
University of Strathclyde

The Smart Rotor Wind Turbine

Charles Plumley

A thesis presented in fulfilment of the requirements

for the degree of Doctor of Philosophy

Centre for Doctoral Training in Wind Energy Systems

Department of Electronic and Electrical Engineering

University of Strathclyde

Glasgow, G1 1XW

Scotland, UK

May 18, 2015

This thesis is the result of the author’s original research. It has been composed by the author and

has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement

must always be made of the use of any material contained in, or derived from, this thesis.

Acknowledgements

First of all I would like to thank my supervisors, Professor Bill Leithead, Dr Ervin Bossanyi, Profes-

sor Mike Graham and Peter Jamieson, for allowing me to conduct this PhD, all the advice they have

given me along the way, and for the freedom I have been permitted to pursue the work in my own

direction. They have made me feel like a true researcher, exploring and progressing independently

in a methodical, yet sometimes haphazard, way.

This thesis is the culmination of four years study at the Wind Energy Systems Centre for

Doctoral Training within the University of Strathclyde and this of course means a big thank you

to Drew Smith, the guy that keeps everything running smoothly. A thank you is also due to all

my fellow CDT colleagues that have kept me company throughout this endeavour and created an

environment where it is actually fun to discuss work. A special thank you as well to those of you

that have supported me over a pint or two on an almost weekly basis.

I would also like to thank my parents for supporting me through all my studies, all 22 years of

them! Maybe it is now time to enter the ‘real world,’ but for the chance to be a student again I am

eternally grateful, and must thank the Engineering and Physical Sciences Research Council (UK)

for funding me these extra 4 years, grant number EP/G037728/1.

Finally, despite occasional protestations, I have thoroughly enjoyed being a student at Strath-

clyde University... from being able to party the nights away, to lying in during the mornings; from

being Pub Captain of the postgraduate society and Commander of Unit Cohesion and Social Coor-

dinator for the Intermingling of Years in the CDT, to joining all the sports clubs such as skydiving,

snowsports, gymnastics, and of course, trampolining; from having the time to study Russian, Chi-

nese and acting, to the ability to visit London every other weekend. These extra-curricular activities

and the friends I have made doing them have been my lifeblood, motivation, source of consolement

and inspiration, without which I may never have completed this PhD. Thank you!

Abstract

The smart rotor is an upgrade to the wind turbine rotor that facilitates active modification of the

blade aerodynamics, thus allowing enhanced control of the rotor loads. In this thesis a number of

research areas relating to the smart rotor are explored and advanced.

The synthesised wind field spatial and temporal requirements are assessed, suggesting the cur-

rent guidelines, of less than 5m spatial and 10Hz temporal resolutions, are more than adequate.

Also regarding the wind field, it is shown that the smart rotor provides the greatest percentage

benefits when there is high wind shear, but low turbulence intensity.

An analytical approach to selecting the chord-width of trailing edge flaps, based on thin aerofoil

theory, is presented. Demonstrating a trade-off between flap size, flap actuator requirements and

load reductions. The unsteady aerodynamics of trailing edge flaps and their modelling in Bladed

is also considered, showing only a limited requirement to develop the aerodynamic code.

A comparison of individual pitch and smart rotor controllers shows that both methods can

achieve similar load reductions. The main benefit of using a smart rotor system is the lower pitch

motion. The smart rotor is also shown to reduce pitch motion by supplementing collective pitch

control. The trade between pitch actuator requirements, load reductions and the cost of smart

rotor control, is therefore considered the defining factor in valuing the smart rotor, rather than

purely load reductions.

Finally, a fault scenario of a single jammed flap is detected and corrected for. With results

suggesting that even unreliable systems can achieve a significant lifetime fatigue load reduction.

These studies are conducted using a methodical process detailed in this thesis, such that future

researchers may build upon this work. Access to the models and code developed are provided in

the appendix.

Contents

1 Introduction 4

1.1 Contribution to knowledge . 5

1.2 Overview of thesis . 6

2 Background 8

2.1 Development of wind as an energy source . 9

2.2 Wind turbine technology . 10

2.3 The smart rotor wind turbine . 14

3 Technical review 17

3.1 Smart rotor control strategies . 18

3.2 Sensors . 21

3.2.1 Accelerometers . 21

3.2.2 Strain gauges . 21

3.3 Flow control devices . 23

3.3.1 Trailing edge flaps . 24

3.4 Bladed: wind turbine modelling software . 26

3.4.1 Aerodynamic modelling . 26

3.5 Discussion . 34

4 Baseline and controllers 39

4.1 Baseline wind turbine . 40

4.1.1 UpWind/NREL 5-MW description . 40

4.2 Smart rotor trailing edge flaps . 43

4.3 Collective pitch control . 46

4.3.1 NREL 5MW controller . 46

4.3.2 UpWind controller . 49

4.4 Advanced load reduction control options . 58

4.4.1 Control using the dq-axis . 58

4.4.2 Independent control . 62

4.5 Validation of baseline . 65

4.5.1 Tower velocity damping . 65

4.5.2 Drivetrain filter . 65

4.5.3 Pitch filters . 67

1

4.5.4 Advanced load reduction control options . 67

5 Performance analysis 73

5.1 Motivation . 74

5.1.1 Cost of Energy . 74

5.1.2 Controller objectives . 75

5.1.3 Loads . 77

5.2 Metrics . 79

5.2.1 Power spectral density plots . 79

5.2.2 Damage equivalent loads . 79

5.2.3 Extreme load extrapolation . 86

5.3 Design load cases . 88

5.3.1 DLC 1.1 and 1.2 . 90

6 Wind field synthesis 96

6.1 Normal turbulence model wind fields . 97

6.2 Grid resolution . 99

6.3 Wind field model: Kaimal and Mann . 101

6.4 Sensitivity study . 103

6.4.1 Turbulence intensity . 103

6.4.2 Wind shear . 104

6.4.3 Tower shadow . 104

6.5 Discussion . 106

7 Trailing edge flap devices 108

7.1 Motivation . 109

7.2 Aerodynamic characteristics . 110

7.2.1 Thin aerofoil theory . 110

7.2.2 Modelling the flaps using XFOIL . 114

7.2.3 Device modelling in Bladed . 115

7.3 Actuator requirements . 120

7.3.1 Motion . 120

7.3.2 Torques . 120

7.3.3 Power . 122

7.4 Discussion . 124

8 Direct comparison of individual pitch and smart rotor control 126

8.1 Motivation . 127

8.2 Fatigue load reductions . 129

8.3 Extreme load reductions . 132

8.4 Pitch actuator requirements . 133

8.5 Flap actuator requirements . 136

8.6 Rotor speed variability . 137

8.7 Discussion . 138

2

9 Supplementary control 141

9.1 Motivation . 142

9.2 Rotor speed control . 143

9.3 Supplementary control design . 144

9.3.1 Tuning the filters . 144

9.4 Supplementary speed control . 147

9.5 Consolidated smart rotor control . 149

9.6 Discussion . 152

10 Faults 154

10.1 Motivation . 155

10.2 Fault cases . 156

10.3 Detection of faults . 157

10.4 Fault correction . 162

10.5 Loads . 163

10.6 Energy Capture . 167

10.7 Discussion . 170

11 Conclusion 172

11.1 Summary . 173

11.2 Deductions, implications and limitations . 174

11.2.1 Wind field synthesis and performance . 174

11.2.2 Trailing edge flaps . 175

11.2.3 Individual pitch and smart rotor control . 175

11.2.4 Supplementary control . 175

11.2.5 Faults . 176

11.3 Future work . 177

Appendices description 179

A Wind turbine model parameters 180

B Flap aerodynamic characteristics from XFOIL 181

C External Bladed controller 182

D MATLAB scripts for load calculations 183

E Reading 3D turbulent wind files 184

3

Chapter 1

Introduction

Smart rotor wind turbines possess additional control over wind turbines that operate using torque

and pitch control. This additional control comes from devices placed along the wind turbine blades

that can alter the local lift and drag characteristics in a responsive manner. With the correct

controller and sensors, this has the potential to reduce loads on the turbine and so their construction

costs. However, the smart rotor wind turbine has yet to gain acceptance within industry, because

of concerns over modelling, the devices to be used, the cost benefits of such a system and the risks

involved, including the risk of faults. This thesis therefore explores a number of themes associated

with the smart rotor, some of which are an advancement on previous work and others that have

not been covered before.

This chapter covers the contribution to knowledge made in this thesis in Section 1.1 and offers

an overview of the thesis in Section 1.2. Publications that are the result of this PhD are detailed

at the end of this chapter.

4

Chapter 1 Introduction

1.1 Contribution to knowledge

This thesis contributes the following to knowledge:

� The influence of wind field synthesis has been explored. Whilst guidelines exist for what

resolution grid to use and for which wind field models should be used for certification, work

here demonstrates what uncertainty the wind field synthesis has on wind turbine simulations

and in particular smart rotor simulations. It is found a grid resolution of less than 5m spacing

in the rotor plane and time resolution of 10Hz in the along wind direction will give accurate

results. The Mann wind model is also shown to require a resolution high enough to avoid roll-

off at high frequencies that result in lower turbulence and so reduced wind turbine loadings.

� The chord width of flaps on the wind turbine blades has been studied, including a brief

consideration of leading edge flaps, this has been done while maintaining the span of the

flaps. Reduced motion is required for flaps with larger surface area, however actuation then

requires higher torques and power.

� The smart rotor has been shown capable of supplementary control. This is tested through

assisting the collective pitch control with rotor speed control, which results in reduced pitch

action. The smart rotor can also reduce loads at the same time though with increased actuator

requirements.

� A new control system that was previously developed for individual pitch control has been

deployed for smart rotor control. The independent pitch control is capable of similar load

reductions as the dq-axis control method, but the control system is distributed rather than

centralised.

� A system of evaluating the performance of a smart rotor control system based on actuator

requirements in conjunction with load reductions has been conducted to more accurately

demonstrate the advantages of using the smart rotor. The method involves achieving similar

load reductions for a variety of control strategies and then comparing the actuator require-

ments. This avoids biasing results simply through choosing preferential gains.

� The influence of faults on the smart rotor has been evaluated for the first time. A fault tolerant

system is described that can result in loads and energy capture similar to the collective pitch

controlled case when a fault jams one of the smart rotor actuators. A detection system is

also described that is capable of detecting a fault based on measurement of 1P cyclic loads

in the event that a fault is left undetected directly by a sensor on the actuator. It is found

that faults are not as prohibitive to the use of the smart rotor as might be expected. Load

reductions can be maintained despite considerable operation in a fault condition.

5

Chapter 1 Introduction

1.2 Overview of thesis

The main body of the thesis contains four chapters looking at the baseline model, performance

analysis and the background to the smart rotor, followed by another five chapters containing original

research: the effect of the wind field on wind turbine performance, the effect of flap chord width

on control, a comparison of smart rotor and individual pitch control, supplementary control and

an analysis of fault conditions.

Chapter 2 contains background information that has led to smart rotor wind turbines being

researched.

Chapter 3 consists of a technical review describing the current state of research into smart rotors

and the areas that are deemed to require further research. Particular attention is also drawn to the

unsteady aerodynamic modelling of trailing edge flaps.

Chapter 4 covers the model used to test the smart rotor wind turbine and the control strategies.

Chapter 5 contains the methodology used to assess the performance of the smart rotor. This

includes the load cases and the metrics used.

Chapter 6 looks at wind field synthesis taking into consideration the wind field models, the

resolution of the wind field, and the effect of turbulence and wind shear on the wind turbine loads.

The effect of using two different wind field models, Kaimal and Mann, during assessment of smart

rotor control is also noted.

Device selection has always been an interesting area of focus, with many different devices being

considered: from trailing edge flaps to plasma actuators, active vortex generators, microtabs and

inflatable structures. An analysis based on the control requirements has been less forthcoming,

and therefore in Chapter 7 the lift, drag and moment coefficients are altered through a progressive

change in the active chord length, to examine what influence these have on load reduction and

actuator requirements.

In Chapter 8, a direct comparison is made between individual pitch control and smart rotor

control. Individual pitch control may be seen as in direct competition to the smart rotor control,

as both can achieve similar objectives. The cost of each system is evaluated based on actuator

wear, rather than load reduction that is often done. This highlights the benefits of each system

fairly as load reductions can be altered simply by making the actuators work harder. The results

suggest that while pitch motion and power consumption is increased when using the individual

pitch control, the torque requirements are not necessarily increased.

Following on from this in Chapter 9 a combined controller is considered that shows the trade-off

between upgrading the pitch actuator and using smart rotor control. This is done not only for load

reduction, but also for speed control. The smart rotor control is found capable in this respect too,

but it is a question of whether implementing a smart rotor is cost effective in comparison to either

upgrading the pitch actuator or indeed using a simpler control mechanism.

Another limitation is the fault tolerance of a smart rotor wind turbine. Traditionally the

robustness of devices has been highlighted as a major disadvantage of the smart rotor, that could

result in costly maintenance and downtime. Research presented in Chapter 10 however suggests this

need not be the case, and that a fault tolerant system is possible that can result in load reductions

and maintain power output despite faults. This helps alleviate this concern.

A summary of the work and an encouragement for future work is given in the conclusion to this

thesis.

6

Chapter 1 Introduction

Publications

[1] C. Plumley, W. E. Leithead, P. Jamieson, E. A. Bossanyi, and M. Graham, “Comparison of

individual pitch and smart rotor control strategies for load reduction,” Journal of Physics:

Conference Series, vol. 524, June 2014.

[2] C. Plumley, W. E. Leithead, P. Jamieson, M. Graham, and E. A. Bossanyi, “Supplementing

wind turbine pitch control with a trailing edge flap smart rotor,” in IET Renewable Power

Generation, (Naples, Italy), 2014.

[3] C. Plumley, W. E. Leithead, P. Jamieson, M. Graham, and E. A. Bossanyi, “Fault Ride-Through

for a Smart Rotor DQ-axis Controlled Wind Turbine with a Jammed Trailing Edge Flap,” in

EWEA, (Barcelona, Spain), 2014.

7

Chapter 2

Background

Wind energy is one of the cheapest forms of renewable energy, but it is still, in the vast majority

of cases, not price competitive with traditional forms of electricity generation, this is largely be-

cause the environmental damage that fossil fuel generators cause is not accounted for. Research is

therefore vital to the long term survival of the industry and its ability to compete without external

dependencies. Whilst the majority of this research is through progressive improvements in cost and

efficiency, other research paths are more radical and can be considered revolutionary. The smart

rotor concept is one such solution. It involves distributing devices along the span of the wind tur-

bine blades that are capable of altering the local aerodynamics and thus supplying an extra degree

of freedom in the control and design of the wind turbine.

This chapter describes the development of wind power over the past couple of decades in Section

2.1, the technological advancements that have led to the smart rotor being considered in Section

2.2, and finally in Section 2.3 of this chapter there is a description of the smart rotor concept.

8

Chapter 2 Background

2.1 Development of wind as an energy source

Wind is an ancient source of energy. It has been used to transport goods and forge empires, help

feed nations and reclaim land, and more recently to generate electricity. These electricity generating

machines are termed wind turbines and they have proliferated since the turn of the new millennium.

The reason for this recent rapid expansion in their construction, over continued use of fossil fuel

generation, is fourfold.

Firstly, anthropogenic Climate Change is largely caused by greenhouse gas emissions, as de-

scribed in the IPCC reports, and so burning fossil fuels to produce electricity will lead to further

global warming [1], which will have serious consequences for the world’s water supply, ecosystems,

food production, coastal areas and health [2]. Renewable energy sources, such as wind power, are

part of the solution to reduce emissions arising from electricity generation and the case for invest-

ment in such technologies is emphasised in [3], which makes clear that the benefits of action now

far outweigh the costs associated with inaction.

Secondly, dependency on energy imports from another country can have serious consequences to

national security. This has arguably led to interventions in Iraq and Libya, disputes over sea-beds

in the South China Sea and the Falklands, and interrupted supplies through Ukraine and other

former Soviet Union countries. Wind power is not an energy resource another country can cut-off

or take control of, it is both indigenous and sustainable. This makes it an ideal option to reduce

energy dependency, in a wider energy mix.

Thirdly, as stated above, wind is a renewable resource. This makes it a long term sustainable

option. Fossil fuels on the other hand deplete over time and though new reserves are being found,

once the fuel is used it takes millions of years to be naturally replaced. For oil in particular a

peak in production is expected this century, which will lead to much more volatile energy prices.

This concern leads back to the 1970’s, when a sharp rise in oil prices led governments to consider

alternatives to fossil fuel plants. Wind power can be used to hedge against price volatility and

supports a long term renewable energy strategy.

Fourthly, by investing now there is the potential to save and make money, by developing an

industry that will become ever more important given the previous three points. Denmark for

example has already benefited substantially from its early investment in wind turbines, through

export to other nations, and China for example is keen to develop its own expertise to cut costs.

These arguments have led to the adoption of legally binding targets in the European Union for

renewable electricity generation and extensive investment around the globe [4]. Europe, China and

the USA are leading the way, with global average annual growth of over 25% since 1993, leading to

2.7% of total world electricity generation from wind in 2013 [5]. This rapid growth has led to the

technical development of large multi-megawatt wind turbines.

9

Chapter 2 Background

2.2 Wind turbine technology

Modern commercial wind turbines are typically horizontal axis 3-bladed upwind variable speed

pitch-to-feather regulated machines, with rated power outputs from a couple to several megawatts.

This has come about from a steady progression in research and development and it is perhaps worth

quickly giving some background to this story, so that the context of the smart rotor is understood.

Professor James Blyth, a lecturer at the precursor to the University of Strathclyde, constructed

the first wind turbine back in 1887. This first wind turbine was a horizontal axis sail-driven

machine used to power his cottage in Marykirk, but it is perhaps his later vertical axis drag-style

machine, used as backup power to Montrose Lunatic Asylum, that people remember better, shown

in Figure 2.1a, which operated for 27 years. Drag-style machines though are less efficient than wind

turbines that use lift to produce torque, and while small scale vertical axis Darrieus wind turbines

can be seen around urban environments, horizontal axis wind turbines dominate the utility scale

landscape. The reason for this is not as clear as one might expect. Vertical axis wind turbines have

their advantages, such as the ability to have the heavy drive-train and generator at the bottom of

the structure, and indeed there are continuous research efforts to explore vertical axis wind turbines.

Perhaps though the biggest driver behind horizontal axis wind turbines is innovation resistance and

the desire to use and build upon a proven product. An example of this can be seen during the

initial ‘wind rush’ in California, where the simpler Danish wind turbines, holding certification from

Risoe, came to dominate the market despite lacking the efficiency and some of the innovations of

the American designs. Regardless of the reason for the proliferation of horizontal over vertical axis

wind turbines, this thesis focusses on further advancement of this dominant technology, so having

the greatest initial impact. This work also is aimed at reducing the resistance to the smart rotor

innovation.

The design of the horizontal axis wind turbine has also evolved over the years. The machine

Charles Brush built back in 1888 was much larger than that of James Blyth, and consisted of a

high solidity horizontal axis rotor capable of producing a peak output of 12kW, Figure 2.1b. High

solidity rotors have high torques at low rotor speeds, this means a higher gearbox ratio is required

to step up the shaft speed for the generator, the large number of blades also clearly come at a

cost. Poul Le Cour found fewer faster rotating blades worked more effectively at the turn of the

20th century, and three blades have been found to be a good balance between cost of the blades,

rotor solidity and rotor speed. Three blades also look symmetrical upon rotation and the forces

across the rotor are more balanced, such that a teetering hub is not required and shaft torque

is not heavily cyclic in wind shear. Nevertheless, one and two-bladed machines are still being

considered, particularly offshore where tip speeds may be higher due to reduced noise constraints.

Again though, the dominance of the 3-bladed machine means that is the one considered in this

work.

The early 3-bladed horizontal axis machines were fixed speed and stall regulated, and the work

on this design is best seen from the example Johannes Juul constructed in 1957, the Gedser 200kW

upwind machine, with induction generator and aerodynamic tip brakes used to protect against over

speed, Figure 2.1c. The main disadvantages of fixed speed stall regulated machines is the reduced

energy capture and uncertainty about the stall characteristics, but it is a highly reliable design.

Wind turbines as large as 1.5MW using this technology have been operated. Larger machines

though require a different control mechanism to reduce loads and have more control over the power

10

Chapter 2 Background

(a) Blythe’s wind turbine (b) Brush’s wind turbine

(c) Gedser wind turbine (d) Tvind wind turbine

Figure 2.1: History of wind turbines

11

Chapter 2 Background

output.

The world’s first multi-megawatt wind turbine was constructed by teachers, students and vol-

unteers in 1978. The Tvind Power wind turbine had a rated power of 2MW and was a downwind

3-bladed wind turbine with full span pitch control, remarkably similar to modern 3-bladed ma-

chines, see Figure 2.1d. Full-span pitch control allows greater energy capture as the wind turbine is

able to operate at rated power for a larger set of wind speeds, as opposed to passive stall controlled

wind turbines that must be designed to stall such that rated power is only reached at one wind

speed. Pitch control also has the ability to reduce noise that would otherwise be induced by stall

and reduces the torque requirements from the generator. There are two types of pitch control:

pitching to feather and pitching to stall. While pitching to feather reduces the angle of attack of

the blade and so reduces the lift, pitching to stall increases the angle of attack of the blade and

induces stall, limiting lift. Generally pitching to feather is used due to uncertainty over the loads

and the nature of stall. However, pitch to stall may be advantageous as regards to fatigue loads

in high wind speeds, as while the mean thrust is higher, the torque and thrust are more stable,

varying less [6].

The Tvind Power wind turbine also had a fully-rated converter so that it could supply power

to the grid. A fully-rated converter, like a doubly fed induction generator, is capable of operating

at a variety of generator speeds. This allows the rotor speed to be adjusted to the incoming wind

field, achieving closer to optimum energy capture at low wind speeds. This has led to the modern

variable speed pitch regulated wind turbine. In these turbines both the torque control and pitch

control use as a single input the generator speed. The torque control operates to optimise energy

capture below rated wind speed and can either be programmed to hold torque or power constant

above rated. The pitch control acts to maintain a constant rotor speed above rated. A more

detailed description of the operation of variable speed wind turbines can be found in Section 4.3 of

this thesis.

To bring down the cost of energy the size of wind turbines has increased considerably in the past

few decades and offshore, where unit costs such as foundations, construction and connections are

high, the trend is to even larger wind turbines [7]. The increasing size of wind turbines comes with

its problems though. The size of the turbines is naturally limited by scaling laws, as while energy

capture scales with the square of the rotor diameter, mass scales approximately to the power of

three [8], but the size is also limited by loads on the rotor. In particular, the non-uniformity of the

wind field encountered by the rotor due to wind shear and turbulence, causes large cyclic loadings.

These loads increase the material requirements and so need mitigating to allow a reduction in the

cost of energy [9].

Control is an essential component of modern multi-MW wind turbine design, and has the ability

to reduce loads through avoiding resonant frequencies and active damping, while also optimising

energy capture [10]. A further development that is being trialled on commercial wind turbines is

individual pitch control, whereby each blade pitches individually to reduce loads on the rotor of

the wind turbine. By pitching the blades individually the effects of a non-uniform wind field can

be mitigated to a certain extent [9]. There are a couple of methods to do so which, again, are

described in detail in the control section. The two principal options are a differential pitch control

where pitch angle for each blade is determined by a central controller and the demanded change

in pitch is 120 degrees out for each blade, based on blade azimuth; and a control where each blade

12

Chapter 2 Background

pitch is independent of the individual pitch control of the other blades, which can be referred to as

a form of distributed control.

Individual pitch control is relatively simple to adopt into modern wind turbines due to the

fact that most wind turbines are already manufactured so that the actuators to pitch each blade

are already independent. This is partly done as a safety measure for over-speed protection, which

requires two different ways of stopping a wind turbine in an emergency. To adopt individual pitch

control all that is physically required is an additional sensor input. This could be a strain gauge

at the blade root, a LIDAR detection system to determine the incoming wind loadings, a Pitot

tube protruding from the leading edge of the blades or some other sensor capable of allowing the

controller to predict the pitch demand for each blade to achieve the control object, typically defined

as reduction of fatigue loads on the rotor. The advantages of this control over the conventional,

collective variable speed wind turbine controllers are the reduction in loadings. The concept of the

smart rotor builds again on what has been done so far.

13

Chapter 2 Background

2.3 The smart rotor wind turbine

The ultimate goal of technical research into wind turbines is to bring down the cost of electricity

from wind. There are numerous ways this can be done and it is not necessarily all about money:

public acceptance, risk and politics are some other areas that also need to be considered. The smart

rotor though is a technology that has potential to reduce the cost of energy.

Smart rotor wind turbines possess additional control over variable speed wind turbines that

operate using torque and pitch control. A smart rotor could use the same sensors as an individual

pitch control, but in addition to these sensors there are control devices attached to the wind turbine

blades capable of altering the local aerodynamics. These can then be activated to change lift and

drag characteristics of the blades in a responsive manner. A wide variety of control devices are

being considered and while this thesis focusses on using trailing edge flaps, other devices are also

suitable for the control systems used.

The control method can be complex, especially as the controller objective may not be as simple

as load reduction and needs to be robust. Two control systems are adopted from individual pitch

control techniques that are known to have achieved positive results, and implemented on the smart

rotor to assess their performance and that of the smart rotor. The diagram in Figure 2.2 portrays

the general control method, which can be considered the template for most systems where a control

is present.

Figure 2.2: Schematic of the smart rotor concept

The potential of the smart rotor concept to reduce fatigue loadings has been shown in a number

of papers. The load reduction and the impact that the smart rotor has on the pitch actuator is

something that is examined in this thesis, to help quantify the benefit such a system might provide.

As such the ability to use them for supplementing collective pitch control is also considered for

reducing pitch demands.

No commercial wind turbine manufacturers are currently designing wind turbines with the smart

rotor in mind. However, there are two demonstration plants in existence: one at Sandia National

Laboratories, Texas [11], and the other at the Technical University of Denmark [12], see Figure 2.3.

Both of the demonstration plants use trailing edge flaps as the control surface, with a multitude

of sensors. This thesis includes a study to determine the effect of changing the flap chord length,

14

Chapter 2 Background

particularly on the smart rotor actuator requirements.

(a) Sandia National Laboratories (b) Technical University of Denmark

Figure 2.3: Smart rotor demonstration wind turbines

The results from the two demonstration plants are just starting to be published and leading

on from successful demonstrations industry might become more involved. This therefore seems an

opportune moment to be studying the smart rotor concept, particularly with the emphasis being

on what benefits the smart rotor can offer.

15

Chapter 2 Background

References

[1] S. Solomon, D. Qin, M. Manning, R. B. Alley, T. Berntsen, N. Bindoff, Z. Chen,

A. Chidthaisong, J. M. Gregory, G. C. Hegerl, M. Heimann, B. Hewitson, B. J. Hoskins,

F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck,

G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T. F. Stocker, P. Whetton,

R. A. Wood, and D. Wratt, “Technical Summary. In: Climate Change 2007: The Physical

Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the In-

tergovernmental Panel on Climate Change,” tech. rep., Cambridge, UK and New York, USA,

2007.

[2] B. Lenny, B. Peter, C. Osvaldo, C. Zhenlin, C. Renate, D. Ogunlade, H. William, H. Saleemul,

K. David, K. Vladimir, K. Zbigniew, L. Jian, L. Ulrike, M. Martin, M. Taroh, M. Bettina,

M. Bert, M. Monirul, N. Nicholls, N. Leonard, P. Rajendra, P. Jean, P. Martin, Q. Dahe,

R. Nijavalli, R. Andy, R. Jiawen, R. Keywan, R. Cynthia, R. Matilde, S. Stephen, S. Youba,

S. Susan, S. Peter, S. Ronald, S. Taishi, S. Rob, T. Dennis, V. Coleen, and Y. Gary, “Climate

Change 2007 : Synthesis Report: An Assessment of the Intergovernmental Panel on Climate

Change,” tech. rep., IPCC, Valencia, Spain, 2007.

[3] N. Stern, “Stern Review on the Economics of Climate Change,” tech. rep., HM Treasury, UK,

2006.

[4] C. Lins, “Renewables 2014 Global Status Report,” tech. rep., REN21, Paris, 2014.

[5] BP, “BP Statistical Review of World Energy June 2014,” tech. rep., 2014.

[6] E. A. Bossanyi, “The Design of closed loop controllers for wind turbines,” Wind Energy, vol. 3,

pp. 149–163, July 2000.

[7] R. Wiser, Z. Yang, M. Hand, O. Hohmeyer, D. Infield, P. H. Jensen, V. Nikolaev, M. OMalley,

G. Sinden, and A. Zervos, “Wind Energy. In IPCC Special Report on Renewable Energy

Sources and Climate Change Mitigation,” tech. rep., IPCC, 2011.

[8] P. Jamieson, Innovation in Wind Turbine Design. Wiley, 2011.

[9] D. Berg, D. G. Wilson, M. F. Barone, B. R. Resor, J. Berg, S. Kota, G. Ervin, and D. Maric,

“The impact of active aerodynamic load control on fatigue and energy capture at low wind

speed sites,” in EWEC, (Marseille, France), US Government: Sandia National Laboratories,

FlexSys Inc., 2009.

[10] E. A. Bossanyi, “Wind Turbine Control for Load Reduction,” Wind Energy, vol. 6, pp. 229–244,

July 2003.

[11] J. Berg, B. R. Resor, J. Paquette, and J. White, “SMART Wind Turbine Rotor: Design

and Field Test,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and

Livermore, California, 2014.

[12] D. Castaignet, T. K. Barlas, T. Buhl, N. K. Poulsen, J. J. Wedel-Heinen, N. A. Olesen, C. Bak,

and T. Kim, “Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load

reduction and system identification,” Wind Energy, vol. 17, pp. 549–564, Apr. 2014.

16

Chapter 3

Technical review

The Smart Rotor has been studied for some time now and has been included in large projects

like the pan-European project UpWind. As such there has already been considerable work in the

smart rotor field. A lot of the research conducted has focussed on specific control devices and their

development, while work has also been conducted on the control of smart rotor systems embedded in

wind turbines. There has also been some research into the modelling of smart rotor wind turbines,

with particular attention drawn to the unsteady aerodynamics that could be important during

rapid deployment of control devices.

In Section 3.1 of this chapter the control strategies proposed for the smart rotor are reviewed, in

Sections 3.2 and 3.3 the sensors and flow devices are looked at respectively, and finally in Section 3.4

the modelling of smart rotor wind turbines is considered, with particular reference to the unsteady

aerodynamics.

17

Chapter 3 Technical review

3.1 Smart rotor control strategies

A number of control strategies have been proposed and used for testing smart rotor wind turbines.

These include systems with centralised, decentralised and distributed architectures, and also both

open-loop and closed-loop control.

A typical centralised closed-loop control for the smart rotor is the dq-axis system developed for

individual pitch control, as in [1]. For example, in [2] this was used effectively with trailing edge

flaps to reduce loads through monitoring the blade root bending moment. The blade root out-

of-plane bending moment was measured for all three blades and these were converted into a fixed

tilt-yaw axis plane using the Coleman transform based on the position of the blades. Two decoupled

Proportional Integral (PI) controllers then worked to minimise these tilt and yaw imbalances, with

the inverse transform setting the demands for each of the blades.

Using this method the 1P cyclic loads on the blades are substantially reduced and the rotor

imbalances eliminated. This resulted in blade root out-of-plane load reductions of 12.6 to 14.6%.

However, loads caused by the stochastic nature of the wind are largely unaffected, apart from those

that impact on cyclic loads due to rotational sampling. This was observed when a localised gust was

trialled in [3]. Depending on the azimuthal location of the gust, the pitch of all three blades varies,

rather than just the blade experiencing the gust. For this reason the dq-axis system is sometimes

referred to as a differential or cyclic pitch control.

In [2], individual pitch and smart rotor control were also combined into a hybrid controller, again

using the dq-axis transform, with high frequency motions assigned to the flaps and low frequency

motions to the pitch actuator. This resulted in load reductions of upto 16.9%. It is also significant

that the individual pitch and smart rotor architectures used are the same. This suggests most of

the control research into individual pitch control is interchangeable with that of the smart rotor,

though with possible different operating regimes (frequencies and wind speeds) and with different

gains.

In [4], alongside the dq-axis control, two decentralised close-loop controllers were trialled. The

first of these controllers was a simple Proportional Integral Differential (PID) controller monitoring

the blade root bending moment, the second splits the flap on each blade into three and PID

controllers then act to reduce local deformations of the blade. Both decentralised controllers reduce

the loads on the blades by more than the centralised controller, with the multiple flap feed-back

control working best to reduce loads, see Table 3.1 for the reductions in blade root out-of-plane

moments.

Table 3.1: Reduction in the standard deviation of the blade root out-of-plane bending moment [%]
[4]

Controller Wind speed [m/s]
8.0 11.4 18.0

Centralised dq-axis control 9.26 5.78 7.92
Decentralised PID control 15.41 10.23 17.32
Multiple flap PID control 19.3 16.35 22.41

These two decentralised controllers are fairly basic, with potentially better results to be seen

for controllers that decouple the smart rotor systems from the rest of the wind turbine dynamics.

18

Chapter 3 Technical review

For example, in [5], this was done by taking into account fictitious forces on the blades and load

reductions of up to 44% were achieved [6].

Alternative decentralised controllers were described in [7] with promising results. These in-

cluded: proportional and integral controllers filtered to focus on 1P signals; a ‘skyhook’ control

that acts as a damper reacting proportionally to either velocity, deflections or accelerations that

works to hold these constant; and a multi-rotational modulated distributed blade control (mmDBC),

which, similar to the dq-axis control, converts the rotational sensor signals into fixed plane signals

for a number of harmonics [8]. These controllers all used either the local flap-wise bending moment

or flap-wise velocities at the location of the actuators as the controller inputs, and flaps as the

aerodynamic control surfaces. Combinations of individual pitch and smart rotor control were also

tested, achieving higher load reductions. The load reduction results from this paper are displayed

in Table 3.2.

Table 3.2: Reduction in damage equivalent loads for the blade root out-of-plane bending moment
[%] [7]

Controller Wind speed [m/s]
11 15 20

IPC 5.2 27.0 19.3
mmDBC 20.4 39.8 38.3
mmDBC + IPC 21.0 42.4 39.7
Skyhook 2P 19.3 33.9 38.0
Skyhook 2P + IPC 23.4 46.4 47.4

Multiple-input-multiple-output controllers (MIMO), such as the Linear Quadratic Regulator

(LQR) and H-infinity type controllers, are also potential options. In [9] a MIMO LQR controller

was used to control flap deflections using multiple flaps per blade. An Observer/Kalman filter

IDentification (OKID) process was adopted to determine the dynamics of the wind turbine with

chirp signals activating the flaps and a steady input wind field, with the prospect that in the future

more realistic wind fields are used for system identification purposes. The blade deflection rate and

maximum deflection angles of the flap are used in the controller cost function.

The LQR control showed a 15.5% reduction in fatigue damage equivalent loads compared to

reductions of 26.0% for a simple PD flap control based on tip displacement and 30.1% reduction for

a highpass and notch filter control tested in [10]. These simulations were run on the same model and

demonstrate the effect changing the controller can have. It is interesting to note that the simpler

PD control and filter control are both better at achieving load reductions than the multivariable

approach, though it is presumed that a multivariable approach could achieve similar results.

Proportional Differential (PD) controllers for flaps based on tip deflection have also been com-

bined with dq-axis individual pitch control in [11], with load reductions greater than either one

acting alone, displayed in Table 3.3. These PD controllers have also been trialled using tip deflec-

tion rates and for microtabs in place of trailing edge flaps for similar results [12].

The use of both individual pitch control and smart rotor control together has therefore been

raised a few times. The load reduction potential presented though does vary and in particular it is

not clear what the costs of implementing either of the systems are.

Feed-forward open-loop controllers have also been considered for smart rotor control. In [13]

19

Chapter 3 Technical review

Table 3.3: Reduction in the standard deviation of the blade root out-of-plane bending moment [%]
[11]

Controller Wind speed [m/s]
16 20

IPC 14.00 19.98
PD 21.54 21.68
PD + IPC 27.81 32.19

an experimental deformable trailing edge flap was tested in a wind tunnel with two types of in-

flow sensor, a Pitot tube and protruding sensor aerofoil. Blade root load reductions of 50% were

recorded. Similarly individual pitch control has shown that feed-forward operation can achieve a

25% reduction in lifetime out-of-plane blade root fatigue loads, suggesting smart rotor control could

be equally beneficial in this scenario [14].

Finally, there are controllers that combine both feed-back and feed-forward control. This is

demonstrated in [15] with Model Predictive Control (MPC), which attempts to optimise perfor-

mance based on the known current state, predictions of the future state and the constraints of

the system. In this case the MPC utilises inflow measurements in addition to high-pass filtered

local blade deflections, with marginal, of the order of a couple of percent, improvement in load

reductions.

An important observation in this paper is the effect that the simulation conditions have on the

load reductions. Namely that increased turbulence intensity results in lower load reductions. It is

not made clear what causes this. Additionally something to note from the tabulated results in this

section are the large variations in load reductions presented for what are often similar controllers.

This is sometimes due to the conditions under which the simulations are run, but also due to

different metrics being used. A fair open description of the methods and metrics used to test

controllers is therefore essential for future comparisons.

Finally regarding control, in [16] robustness is raised as a serious issue. Whilst this is primarily

about operational robustness should a particular sensor or actuator fail and the motivation therefore

towards a distributed system, this does raise the interesting prospect of faults on the smart rotor

system.

20

Chapter 3 Technical review

3.2 Sensors

A full review of the sensors being considered for the smart rotor is contained within [17] and [18].

While Pitot tubes [19], [15], leading edge protruding aerofoils [13], the hinge moment on the

trailing edge flaps [20], pressure sensors, aerodynamic probes [21], LIDAR [22], [23], [24], and

deflection sensors [13] all have potential for use in smart rotor control, accelerometers and strain

gauges are the most likely candidates based on the control strategies considered above.

3.2.1 Accelerometers

Accelerometers are cheap, robust, light weight, easily installed, have low power requirements, are

insensitive to temperature changes in the environmental conditions they will experience and are

relatively immune to electromagnetic waves. This make them close to ideal sensors. They also have

a high bandwidth which, depending on the accelerometer used, may range from 0Hz to 10’s of kHz.

They are being considered for blade condition monitoring purposes with several sensors along the

blade length to monitor mode shape [25] [26] [27] and have been proposed as a sensor for the smart

rotor by a number of authors, and, indeed, both smart rotor demonstration plants, at DTU and

Sandia National Laboratories, have embedded accelerometers that could be used for control. An

example of some accelerometers that have been used to trial structural health monitoring of a wind

turbine blade are shown in Figure 3.1.

Figure 3.1: An example of accelerometers used for blade condition monitoring [28]

Their use can also extend beyond measurement of the acceleration, integrating to get the velocity

or deflection of a blade, which is typical of the PD controllers considered in the previous section.

In such cases it is important that drift is avoided and this can be done, assuming that the absolute

position is less important for the controller, by high-pass filtering.

3.2.2 Strain gauges

The blade root bending moment, and indeed other moments, are measured using strain gauges.

This is typically done on wind turbines at the blade root, but may also be applied along the blades

as needed for some distributed controllers. Types of strain gauges include electrical and optical,

with electrical strain sensors currently more common but difficult to install and unlikely to have

the lifetime required over the number of stress cycles of a wind turbine blade. Optical type strain

sensors have the ability to overcome these constraints. The bandwidth of both types of strain

gauges is likely to be acceptable for smart rotor control. As an example, strain measurements have

been used for smart rotor control in [29], and while highlighting the drawback that strains will

take time to develop due to the inertia of the blade, they are shown as a suitable sensor for control

purposes.

21

Chapter 3 Technical review

In [17] the different types of strain gauges are compared, with fibre optic strain gauges considered

the most suitable due to the complexity of the other techniques. The benefits of an optical system

are described as follows:

� Very light

� Small in diameter

� Resistant to corrosion and fatigue

� Capable of wide bandwidth operation

� Dielectric in nature

� Immune to electrical interference

� Mechanically flexible, diverse geometry possible

� Do not represent electrical pathways within the host structure

� No protection required against lightning

� Extreme sensitivity

� Do not generate heat or electromagnetic interference

� Low attenuation of signals

� Low maintenance, high reliability

� Possibility for detecting health status of the structure

� High versatility of the measures

They can also be used much more effectively than conventional strain gauges due to their ability

to multiplex, effectively allowing measurements along the whole span of the blade using a single

optical fibre and different wavelengths of light. They are however a relatively new technology, so

at the very least there are likely to be teething problems.

Bragg grating sensors are the most common type of optical fibre strain gauge. The fibre contains

a distributed Bragg reflector that reflects only a certain wavelength of light, the Bragg wavelength

(λB) given by λB = 2neΛ, where ne is the effective refractive index of the grating in the fibre core

and Λ is the grating period. The wavelength however is sensitive to both strain and temperature,

as shown in the equation:

[∆λB/λB] = CSε+ CT∆T (3.1)

where ε is the strain, ∆T the change in temperature, and CS and CT are the coefficients of strain

and temperature respectively.

Fibre Bragg grating sensors are already used in blade monitoring and there are various commer-

cial systems based on these sensors, e.g. Smart Fibres’ SmartScan, FiberSensing’s windMETER

and Moog’s Blade Sensing System. They therefore seem the likely technology to be implemented

in the future.

22

Chapter 3 Technical review

3.3 Flow control devices

There are a large number of flow control devices being considered for use on the smart rotor and

there are already a number of reviews considering the options available. The two most uptodate

reviews are [30] and [18]. In [30] the devices are classified by their flow control technique, placement,

method of altering the lift curve and whether the activation is steady or unsteady for a fixed state

(e.g. flaps are steady while a pulsed vortex jet generator is unsteady), see Figure 3.2. This helps

inform the control methods that may be appropriate for the given devices and modelling that may

be appropriate. A control strategy for instance that uses the change in lift coefficient to affect loads

will likely be applicable regardless of the device, as long as the end result of activation is the same.

In [18], a slightly different approach is used to estimate the performance of various devices. The

minimum, maximum and mean change in lift coefficient from various papers are reported for a

number of devices, shown in Figure 3.3, which gives an estimate of the effectiveness of the various

devices.

Figure 3.2: Classification chart for aerodynamic flow control techniques/devices [30]

Figure 3.3: Comparison of aerodynamic device concepts in terms of reported capability to alter the
lift coefficient [18]

23

Chapter 3 Technical review

Rather than reviewing all the options, from the current reviews microtabs and trailing edge flaps

are seen as front runners, and with the application of trailing edge flaps on the two demonstration

plants this further supports the modelling of trailing edge flaps [31] [32]. Trailing edge flap are

also used extensively across the smart rotor field, not only as regards to its design, but also in

papers examining smart rotor control [2] [4] [29] [10] [9] [33] [15] [13] [7]. They therefore seem an

appropriate device to model for control purposes, and bearing in mind that the control works only

to alter the aerodynamic coefficients of the blades, devices that alter the coefficients in a similar

manner to flaps will likely also work with the proposed control strategies.

3.3.1 Trailing edge flaps

Trailing edge flaps are analogous to ailerons on an aircraft wing: deployment alters the camber of

the aerofoil increasing (deployment on the pressure side) or decreasing (deployment on the suction

side) the lift coefficient of the aerofoil. Small deflections of trailing edge flaps can significantly alter

the local lift coefficient of the aerofoil and this, and their size, means power requirements are much

less than for full or part-span pitch control. Their size also means they can deploy much faster than

rotation of entire blade sections and on wind turbines with large rotor diameters multiple flaps may

be deployed along the length of the blades allowing local variations in wind speed to be controlled

and the negative effects mitigated. Trailing edge flaps can be rigid or deformable, as compared in

Figure 3.4.

Figure 3.4: Trailing edge flap concepts [17]

Rigid trailing edge flaps operate in much the same way as ailerons and elevators on aircraft, and

as such have been in use for just over a century. They are mounted at the rear of the blade (on the

trailing edge) and are actuated by providing a moment about the hinge. They can be deployed at

a range of angles and, using the correct actuator, at high bandwidths.

Deformable trailing edge flaps are similar, but form part of the continuous surface of the blade.

This has two main advantages. Firstly the aerodynamic efficiency is improved, and secondly the

actuation can be integrated into the design of the trailing edge flaps so that no separate mechanical

parts are required. Although this should result in fewer reliability problems, they could be harder

to fix and the control has to work against the structural rigidity of the trailing edge (depending on

the material). Its skin will also probably be subject to severe fatigue. This concept is actually a

combination of the idea of an aileron-flap and camber control based on skin deformation, see Figure

3.5.

24

Chapter 3 Technical review

Figure 3.5: Conceptual design layout of a profile with a deformable trailing edge flap [34]

Two examples of research into deformable trailing flaps follow. At Risoe a controllable rubber

trailing edge flap has been developed. The flap is controlled by modifying the pressure in reinforced

voids within the elastic flap, see Figure 3.6. A maximum ∆Cl of 0.2 was measured in wind tunnel

tests and from simulations using HAWC2 maximum equivalent load reductions of 50% for blade

root bending moment [13]. An adaptive compliant wing has been developed by FlexSys Inc. and

the US Air Force Research Laboratories that can deflect a flap ±10◦ and at a rate of 20◦s−1, and

can twist differentially up to 3◦m−1 over the span of the model [30].

Figure 3.6: A finite element analysis of a controllable rubber trailing edge flap design, showing the
deflection of a flap due to pressure in the upper row of voids. Red = high stress, blue = low stress
[13]

While deformable trailing edge flaps have better aerodynamic properties and can potentially be

integrated into the blades to reduce wear and maintenance issues, the design and extensive testing

of such devices is not complete. Hence why the two demonstration plants, and in particular the

Vestas V-27 at Risoe [32] where there is a group specifically working on deformable trailing edge

flaps [29], still use rigid trailing edge flaps.

The placement of flaps and whether multiple flaps per blade should be used has been considered

in [29]. This also raises the question of flap size, with a number of papers opting for flaps with 10%

chord, see Table 3.4, while the Sandia demonstration plant has flaps of 20% chord, and the Risoe

turbine has flaps of chord 13-18%. The span of the flaps also varies, with the Sandia turbine [35]

opting for again 20% of the blade span, and the Risoe turbine three flaps per blade of 5% span

each. The dimensions of the flaps, and constraints that they operate to, will have an effect on the

load reductions and actuator requirements, it is therefore worth exploring what impact different

set-ups will have.

25

Chapter 3 Technical review

Table 3.4: Flap dimensions and constraints [15]

Paper Chord [%] Blade span [%] Max deflection [±deg]
Riziotis and Voutsinas [36] 10 15-47 6
Andersen et al. [37] 10 63 8
Lackner and van Kuik [2] 10 20 10
Barlas and van Kuik [38] 10 20 10
Andersen et al. [29] 10 15-30 8
Resor et al. [10] 10 24 10
Wilson et al. [9] 10 24 10
Berg et al. [33] 10 25 10
Barlas et al.[15] 10 18 8

3.4 Bladed: wind turbine modelling software

This project is run in partnership with DNV GL, who have developed a world leading, well validated,

industry used wind turbine simulation package, Bladed. Other software packages are actually more

prevalent in the smart rotor field, such as HAWC and HAWC 2 [29] [14] [39]; and NRELs FAST

(AeroDyn) [40] [12] [41], which are also capable of simulating additional flaps.

There are some concerns about the limitations of FAST: inaccurate wake models and problems

with the unsteady aerodynamics upon activation of control surfaces; limited modelling resolution

of the blades; and limited controller opportunities [33]. In response, as part of the UpWind project

DU SWAMP was created [42]. This aeroservoelastic tool, like FAST, is primarily for academic use.

Although this means they tend to be less well validated, they are open source and allow the user

to modify the code. DU SWAMP is in the process of being updated, but has already been used in

some published papers regarding the Smart Rotor [35] [10].

Due to the availability of Bladed and concerns regarding FAST, Bladed is used to simulate the

smart rotor wind turbine. Bladed has previously been used to compare smart rotor control with

individual pitch control [2], and the performance of smart rotor control under extreme gusts [3],

however a point raised in these papers is the uncertainty over how activation of the flaps may cause

unsteady aerodynamic effects that are not modelled in Bladed. This is discussed in the following

section.

3.4.1 Aerodynamic modelling

Bladed uses a combined blade element and momentum theory to model the rotor aerodynamics,

with extensions to treat the dynamics of the wake and dynamic stall [43]: ‘dynamic inflow’ based

on [44] and a modified ‘Beddoes-Leishman’ model [45] respectively. It is a well validated code and

is used in the certification of wind turbines. Bladed’s general performance is not in doubt then,

but its specific application of using it to model flaps on the blades has been cast into doubt [2] [3].

In these two papers Bladed was used to model a full wind turbine model with trailing edge flaps

and concern was raised that Bladed does not effectively take account of the unsteady aerodynamics

that are a response to changing flap angles, as has been done for instance in [46]. Instead an

argument was made that these unsteady aerodynamics were not required as the majority of the

control was acting on changes in angle of attack of the blade that are quasi-steady.

26

Chapter 3 Technical review

This has been recreated using a MATLAB script and turbulent wind field, and can be seen

in Figure 3.7 for a 14m/s mean wind speed. The peak in the spectrum is due to the rotational

sampling of the wind field, which corresponds to the rotational frequency of the wind turbine, and

is caused in the most part by wind shear. This is created by taking the Power Spectral Density

(PSD) of the angle of attack for a section of a blade, at radius, r = 52.75m, over a simulation run.

The result is a PSD as a function of frequency in Hz, this is then converted to radians per second

and the reduced frequency found using the standard formula, k = ωc
2U , with the chord at that blade

station, c = 2.518m, and the average perceived velocity of the blade over the simulation, U .

Figure 3.7: Power spectral density plot of the change in angle of attack of the blade

A boundary is then chosen whereby k < 0.05 can be considered quasi-steady and k > 0.05

unsteady. From the cumulative PSD plot it is clear most energy is in the quasi-steady regime, 80%

or more, see Figure 3.8. This is shown as greater than 90% in [2] and [3] possibly due to limiting

the reduced frequency between 0 and 1.5. However, although this suggests that the effects are

small, they still exist, and indeed closer to the hub the unsteady effects will be greater due to the

increased chord and lower perceived wind speed.

Bladed actually takes account of unsteady effects by utilising the Beddoes-Leishman model. An

indicial response function is used for modelling attached flow, with the ability to adjust the time lag

in the development of trailing edge separation. The concern though is that this is designed to take

account of changes in angle of attack (pitching motion), rather than flap actuation. It therefore is

worth comparing the two as regards to unsteady aerodynamics.

In [47] the unsteady effects of these two scenarios were looked at. This was done firstly through

looking at motion with the flap at a fixed angle and harmonic pitching about the quarter chord

point, and secondly with the aerofoil at steady incidence with the flap in oscillatory motion. The

parameters: mean angle of attack, flap chord section ratio, flap amplitude, pitch amplitude, and

reduced frequency of oscillations; are all varied to determine their effect. The change in lift with a

change in angle of attack of the aerofoil was reduced at higher frequency oscillations compared to the

static case. At k=0.36, this was between 60-75% of the static case. Equivalently, the effectiveness

27

Chapter 3 Technical review

Figure 3.8: Cumulative power spectral density plot of the change in angle of attack of the blade

of the flap was reduced to 60-65% of the static case. Therefore the effectiveness of the flap decreases

with increased frequency oscillations. Significantly though, the result of activating both pitch and

flap in oscillatory motion results in a near constant lift coefficient when activated with the correct

phase difference, Figure 3.9. This suggests that pitch and flap motions result in similar unsteady

effects.

Figure 3.9: Lift signal for the airfoil undergoing harmonic pitch oscillations with and without a
trailing edge flap in oscillatory motion. The length of the flap is 10% of the section chord, the mean
angle of attack is αm = 8◦ and the reduced frequencies of airfoil and flap motion is k = 0.36 [47]

Exploration of the underlying theory helps understand this result. The lift per unit span, L, for

28

Chapter 3 Technical review

an aerofoil given by Theodorsen’s Theory [48], is

L =− ρb2
(
vπα̇+ πḧ− πbaα̈− vT4β̇ − T1bβ̈

)
− 2πρvbC

{
vα+ ḣ+ b

(
1

2
− a
)
α̇

1

π
T10vβ + b

1

2π
T11β̇

}
(3.2)

where ρ is the density of air, b the half chord width of the aerofoil, v the velocity of the flow, h

vertical motion, α the pitch angle, β the flap angle, a the coordinate of rotation and C = C(k) =

F (k) + iG(k), Theodorsen’s function, with the values of T defined below:

T1 = −1

3

√
1− c2

(
2 + c2

)
+ c cos−1 c (3.3)

T4 = − cos−1 c+ c
√

1− c2 (3.4)

T10 =
√

1− c2 + cos−1 c (3.5)

T11 = cos−1 c (1− 2c) +
√

1− c2 (2− c) (3.6)

where c is the position of the flap hinge.

When looking at pure sinusoidal pitching oscillations with the coordinate of rotation positioned

at the quarter-chord, this expression can be rewritten in terms of the lift coefficient [49], with

α = ᾱeiωt, as

CLα = ᾱeiωt
[(

πk

2
− iπ

)
k − 2C (π + iπk)

]
(3.7)

and a similar result can be found for pure sinusoidal flap motion of the form β = β̄eiωt,

CLβ = β̄eiωt
[
(iT4 − T1k) k − 2C

(
T10 + i

T11k

2

)]
(3.8)

The difference between pitch and flap oscillations on the lift are displayed in Figure 3.10 for

different reduced frequencies. At low reduced frequencies, of less than 0.1 as suggested by the PSD

plots, the reduction in lift is almost identical for both pitch and flap oscillations. The phase is

also similar with variations less than 10 degrees. This suggests for the lift coefficient that the same

indicial function may be used for both pitch motions and flap motions. The plot also explains the

reduction to 60-75% of the static lift experienced at k=0.36 stated above.

To determine how significant these effects are in normal operation an indicial response approach

is used to compare the unsteady and quasi-steady lift resulting from the turbulent wind field. A

MATLAB script that rotationally samples a turbulent wind field is used for this purpose. The

Wagner indicial response function Equation 3.9 as approximated by RT Jones 1938/40 [50], and

the Kussner function, Equation 3.10 as approximated by Sears and Sparks 1941 [51], are used:

φ = 1− 0.165e−0.045s − 0.355e−0.3s (3.9)

ψ = 1− 0.5e−0.13s − 0.5e−1.0s (3.10)

These are used without using the Duhamel integral, to avoid further approximations being

made, and instead are determined every time step on the change in angle of attack at each time

29

Chapter 3 Technical review

Figure 3.10: Unsteady lift amplitude and phase due to sinusoidal oscillations of pitch and flap angle

step. It should be noted that the distance in semi-chords, s, is considered constant: rather than

using the perceived wind speed, the blades speed due to rotation is used.

As can be seen in Figure 3.11 the lift is attenuated and the phase is shifted. The cross-correlation

between the quasi-steady and unsteady responses is conducted to assess the time delay involved. It

appears to be about 0.01s when the Wagner function is used, and close to 0.05s when the Kussner

function is used, see Figure 3.12. This is close to the sampling frequency, so a higher sampling rate

may need to be used to verify the results. The effect of this time delay and attenuation of the lift

needs to be considered to confirm whether such effects are significant, also variations of the model

parameters need to be considered too.

Figure 3.11: Comparison of quasi-steady and unsteady lift coefficients

In [29] the effect of a time lag and also a delay in the control signal were looked at. The lag was

30

Chapter 3 Technical review

Figure 3.12: Cross-correlations of simulations with quasi-steady lift coefficient

modelled as a first order filter and with the delay the control signals are queued. A 50ms time lag

results in a 10% performance drop in the fatigue load reduction potential, shown in Figure 3.13. If

the lag due to unsteady aerodynamics is between 10 and 50ms as seen from the above analysis, then

this will be detrimental to the load reduction potential when using trailing edge flaps. Therefore,

any smart rotor controller that is to be implemented on a real wind turbine should to be created

on a model that includes unsteady aerodynamics, or accounts for these uncertainties. As the

difference between the unsteady lift coefficient due to pitch and flap oscillations are so similar,

Bladed adequately accounts for this.

While the indicial function used in Bladed to determine the unsteady lift coefficient is suitable,

it is less clear if the drag or turning moment are. The equivalent equation for the unsteady pitching

moment given by Theordorsen’s Theory is

Mα =− ρb2
[
π

(
1

2
− a
)
vbα̇+ πb2

(
1

8
+ a2

)
α̈

+ (T4 + T10) v2β +

(
T1 − T8 − (c− a)T4 +

1

2
T11

)
vbhβ̇

− (T7 + (c− a)T1) b2β̈ − aπbḧ
]

+ 2ρvb2π

(
a+

1

2

)
C

{
vα+ ḣ+ b

(
1

2
− a
)
α̇+

1

π
T10vβ + b

1

2π
T11β̇

}
(3.11)

When the position of rotation is about the quarter-chord point the circulatory terms reduce to

zero. This leaves the non-circulatory terms, which for a pitching aerofoil result in

CMα = − ᾱ
2
eiωt

(
iπ − 3

8
πk

)
k (3.12)

31

Chapter 3 Technical review

Figure 3.13: Effect of delayed signal (queue) and first order delay (1st order) on load reduction [29]

and for a flap in oscillation

CMβ = − β̄
2
eiωt

[
(T4 + T10) +

(
T1 − T8 −

(
c+

1

2

)
T4 +

T11
2

)
ik +

(
T7 +

(
c+

1

2

)
T1

)
k2
]

(3.13)

where T7 and T8 are defined as follows

T7 = −
(

1

8
+ c2

)
cos−1 c+

1

8
c
√

1− c2 (7 + 2c) (3.14)

T8 = −1

3

√
1− c2

(
2c2 + 1

)
+ c cos−1 c (3.15)

A similar plot as before for the lift is shown for the pitching moment in Figure 3.14. The

differences between pitch oscillations and flap oscillations are more pronounced and if the same

method for taking account of unsteady aerodynamics is used for flaps as for changes in pitch, the

phase and amplitude of the turning moment will be incorrectly determined. Indeed the turning

moment due to the flap is relatively constant regardless of the reduced frequency and the phase delay

is also small, making quasi-steady probably more appropriate than use of unsteady calculations

based on pitch motion. Future studies will need to be done to confirm what effect this has, but

looking at the twisting of the blade when either collective pitch control, individual pitch control

or smart rotor control are active, see Figure 3.15, suggests it is not vital to determine accurately

during attached flow operation.

32

Chapter 3 Technical review

Figure 3.14: Unsteady pitch moment amplitude and phase due to sinusoidal oscillations of pitch
and flap angle

Figure 3.15: Blade rotation near the tip about the blade principal axis for collective pitch control
(CPC), individual pitch control (IPC) and smart rotor control (SRC)

33

Chapter 3 Technical review

3.5 Discussion

As regards to smart rotor control of wind turbines a number of paths have been explored in

the literature. In particular the use of individual pitch control strategies for the smart rotor is

interesting and indeed the use of both individual pitch and smart rotor control at the same time.

The advantages in load reduction are clear, but it is less clear why one would adopt one over the

other or indeed combine the two. Indeed the costs and drawbacks of both systems, for example of

faults occurring, have not been quantitatively taken into account.

The majority of the control papers and indeed the research into devices have focussed on trailing

edge flaps, with control papers devoting time to the placement of flaps and the corresponding

sensors, but with less detail on their design, activation and dimensions. This has led to a wide

variety of systems, which make direct comparisons difficult.

Alongside this concern about comparisons are the environmental conditions under which the

various controllers have been tested and the differing metrics used to assess load reduction. Use

of specific conditions or metrics can lead to biased results. It is therefore seen as imperative to

both quantify some of the sensitivities to external conditions, but also lay out clearly the method

of assessing the wind turbine’s performance.

It is also worth considering the sensors to be used, both accelerometers and strain gauges are

often the proposed sensing device for advanced control, with dq-axis control dominated by blade

root bending moment measurements and PD control focussed on blade deflections. These two

options are both easily implemented in Bladed software.

Whilst Bladed is used for certification of wind turbines it has not been validated for smart rotor

control, despite this the use of the outboard blade section for the flaps reduce the probability of

unsteady aerodynamics coming into play. Additionally, the effect on the lift coefficient is similar

for both pitching and flap motion. This means corrections to the lift are valid for low values of the

reduced frequency. On the other hand, whilst the turning moment is significantly different for the

two types of motion, the effect that this moment has on the wind turbine appears marginal.

34

Chapter 3 Technical review

References

[1] E. A. Bossanyi, “Individual Blade Pitch Control for Load Reduction,” Wind Energy, vol. 6,

pp. 119–128, Apr. 2003.

[2] M. A. Lackner and G. A. M. van Kuik, “A comparison of smart rotor control approaches using

trailing edge flaps and individual pitch control,” Wind Energy, vol. 13, pp. 117–134, Mar. 2010.

[3] M. A. Lackner and G. A. M. van Kuik, “The Performance of Wind Turbine Smart Rotor

Control Approaches During Extreme Loads,” Journal of Solar Energy Engineering, vol. 132,

2010.

[4] T. K. Barlas and G. A. M. van Kuik, “Aeroelastic modelling and comparison of advanced

active flap control concepts for load reduction on the Upwind 5MW wind turbine,” in EWEC,

(Marseille, France), 2009.

[5] W. E. Leithead and V. Neilson, “Alleviation of Unbalanced Rotor Loads by Single Blade

Controllers,” in EWEC, (Marseille, France), 2009.

[6] D. Robb, C. Gonzalez, P. Clive, W. E. Leithead, and A. Giles, “Offshore Low Level Jets -

Mitigating the Damage with Lidar and Individual Blade Control,” in EWEA Offshore, (Messe

Frankfurt, Germany), 2013.

[7] W. P. Engels, S. K. Kanev, and T. G. V. Engelen, “Distributed blade control,” in TORQUE:

The Science of Making Torque from Wind, (Heraklion, Crete, Greece), EWEA, 2010.

[8] T. G. V. Engelen, “Design model and load reduction assessment for multi-rotational mode

individual pitch control (higher harmonics control),” in EWEC, (Athens, Greece), 2006.

[9] D. G. Wilson, B. R. Resor, D. Berg, T. K. Barlas, and G. A. M. van Kuik, “Active Aerody-

namic Blade Distributed Flap Control Design Procedure for Load Reduction on the UpWind

5MW Wind Turbine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons

Forum and Aerospace Exposition, (Orlando, Florida), American Institute of Aeronautics and

Astronautics, 2010.

[10] B. R. Resor, D. G. Wilson, D. Berg, J. Berg, T. K. Barlas, J.-W. van Wingerden, and G. A. M.

van Kuik, “Impact of higher fidelity models on simulation of active aerodynamic load control

for fatigue damage reduction,” in 48th AIAA Aerospace Sciences Meeting Including the New

Horizons Forum and Aerospace Exposition, (Orlando, Florida), 2010.

[11] D. G. Wilson, D. Berg, B. R. Resor, M. F. Barone, and J. Berg, “Combined individual pitch

control and active aerodynamic load controller investigation for the 5MW upwind turbine,” in

AWEA Wind Power Conference, (Chicago, Illinois), 2009.

[12] D. G. Wilson and D. Berg, “Active aerodynamic blade control design for load reduction on

large wind turbines,” in EWEA, (Marseille, France), 2009.

[13] H. A. Madsen, P. B. Andersen, T. L. Andersen, C. Bak, and T. Buhl, “The potentials of the

controllable rubber trailing edge flap (CRTEF),” in EWEC, (Warsaw, Poland), 2010.

35

Chapter 3 Technical review

[14] T. J. Larsen, H. A. Madsen, and K. Thomsen, “Active load reduction using individual pitch,

based on local blade flow measurements,” Wind Energy, vol. 8, pp. 67–80, Jan. 2005.

[15] T. K. Barlas, G. van der Veen, and G. A. M. van Kuik, “Model predictive control for wind

turbines with distributed active flaps: incorporating inflow signals and actuator constraints,”

Wind Energy, vol. 15, pp. 757–771, July 2012.

[16] J. K. Rice and M. Verhaegen, “Robust and distributed control of a smart blade,” Wind Energy,

vol. 13, pp. 103–116, Mar. 2010.

[17] T. K. Barlas, “Smart rotor blades and rotor control for wind: State of the Art: Knowledge

Base Report for UpWind WP 1B3,” tech. rep., Delft Technical University, 2006.

[18] T. K. Barlas and G. A. M. van Kuik, “Review of state of the art in smart rotor control research

for wind turbines,” Progress in Aerospace Sciences, vol. 46, pp. 1–27, Jan. 2010.

[19] P. B. Andersen, Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge

Flaps: Sensoring and Control. PhD thesis, Technical University of Denmark, 2010.

[20] T. Behrens and W. J. Zhu, “Feasibility of Aerodynamic Flap Hinge Moment Measurements as

Input for Load Alleviation Control,” in EWEA, (Brussels, Belgium), 2011.

[21] R. P. Benedict, Fundamentals of Temperature, Pressure, and Flow Measurements. John Wiley

& Sons Ltd., third ed., 1984.

[22] D. Schlipf, L. Y. Pao, and P.-W. Cheng, “Comparison of feedforward and model predictive

control of wind turbines using LIDAR,” in 2012 IEEE 51st IEEE Conference on Decision and

Control (CDC), (Maui, Hawaii, USA), pp. 3050–3055, IEEE, Dec. 2012.

[23] M. Harris, M. Hand, and A. D. Wright, “Lidar for turbine control,” tech. rep., NREL, Colorado,

USA, 2006.

[24] M. Mirzaei, L. C. Henriksen, N. K. Poulsen, H. H. Niemann, and M. H. Hansen, “Individual

pitch control using LIDAR measurements,” in 2012 IEEE International Conference on Control

Applications, no. October, (Dubrovnik, Croatia), pp. 1646–1651, IEEE, Oct. 2012.

[25] R. Rolfes, S. Zerbst, G. Haake, J. Reetz, and J. P. Lynch, “Integral SHM-System for Off-

shore Wind Turbines Using Smart Wireless Sensors,” in Proceedings of the 6th International

Workshop on Structural Health Monitoring, (Stanford, CA), 2007.

[26] B. F. Sorensen, L. Lading, P. Sendrup, M. McGugan, C. P. Debel, O. J. D. Kristensen,

G. Larsen, A. M. Hansen, J. Rheinlander, J. Rusborg, and V. D. Jorgen, “Fundamentals for

Remote Structural Health Monitoring of Wind Turbine Blades - a Preproject,” tech. rep.,

Risoe National Laboratory, Roskilde, Denmark, 2002.

[27] C. C. Ciang, J.-R. Lee, and H.-J. Bang, “Structural health monitoring for a wind turbine

system: a review of damage detection methods,” Measurement Science and Technology, vol. 19,

Dec. 2008.

36

Chapter 3 Technical review

[28] M. Rumsey and J. A. Paquette, “Structural health monitoring of wind turbine blades,” in

The 15th International Symposium on: Smart Structures and Materials & Nondestructive

Evaluation and Health Monitoring (W. Ecke, K. J. Peters, and N. G. Meyendorf, eds.), Mar.

2008.

[29] P. B. Andersen, L. C. Henriksen, M. Gaunaa, C. Bak, and T. Buhl, “Deformable trailing edge

flaps for modern megawatt wind turbine controllers using strain gauge sensors,” Wind Energy,

vol. 13, pp. 193–206, Mar. 2010.

[30] S. J. Johnson, J. P. Baker, C. P. van Dam, and D. Berg, “An overview of active load control

techniques for wind turbines with an emphasis on microtabs,” Wind Energy, vol. 13, pp. 239–

253, Mar. 2010.

[31] J. Berg, B. R. Resor, J. Paquette, and J. White, “SMART Wind Turbine Rotor: Design

and Field Test,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and

Livermore, California, 2014.

[32] D. Castaignet, T. K. Barlas, T. Buhl, N. K. Poulsen, J. J. Wedel-Heinen, N. A. Olesen, C. Bak,

and T. Kim, “Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load

reduction and system identification,” Wind Energy, vol. 17, pp. 549–564, Apr. 2014.

[33] D. Berg, D. G. Wilson, B. R. Resor, J. Berg, T. K. Barlas, A. Crowther, and C. Halse,

“System ID Modern Control Algorithms for Active Aerodynamic Load Control and Impact

on Gearbox,” in TORQUE: The Science of Making Torque from Wind, (Heraklion, Crete,

Greece), 2010.

[34] T. Buhl, C. Bak, M. Gaunaa, and P. B. Andersen, “Load alleviation through adaptive trailing

edge control surfaces: ADAPWING overview,” in EWEC, (Athens, Greece), 2006.

[35] D. Berg, J. Berg, J. White, B. R. Resor, and M. Rumsey, “Design, Fabrication, Assembly

and Initial Testing of a SMART Rotor,” in 49th AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, vol. 4-7, (Reston, Virigina), American

Institute of Aeronautics and Astronautics, Jan. 2011.

[36] V. Riziotis and S. Voutsinas, “Aero-elastic modelling of the active flap concept for load control,”

in EWEC, (Brussels, Belgium), 2008.

[37] P. B. Andersen, L. C. Henriksen, M. Gaunaa, C. Bak, and T. Buhl, “Integrating deformable

trailing edge geometry in modern mega-watt wind turbine controllers,” in EWEC, (Brussels,

Belgium), 2008.

[38] T. K. Barlas and G. A. M. van Kuik, “Aeroelastic modelling and comparison of advanced active

flap control concepts for load reduction on the upwind 5MW wind turbine,” in European Wind

Energy Conference, (Marseille, France), 2009.

[39] L. Bergami, “Adaptive Trailing Edge Flaps for Active Load Reduction,” in 7th PhD Seminar

on Wind Energy in Europe, (Delft University of Technology, Netherlands), 2011.

37

Chapter 3 Technical review

[40] D. Berg, D. G. Wilson, B. R. Resor, M. F. Barone, J. Berg, S. Kota, and G. Ervin, “Active

aerodynamic blade load control impacts on utility-scale wind turbines,” in AWEA Windpower,

(Chicago, Illinois, USA), 2009.

[41] D. Berg, D. G. Wilson, M. F. Barone, B. R. Resor, J. Berg, S. Kota, G. Ervin, and D. Maric,

“The impact of active aerodynamic load control on fatigue and energy capture at low wind

speed sites,” in EWEC, (Marseille, France), US Government: Sandia National Laboratories,

FlexSys Inc., 2009.

[42] G. A. M. van Kuik, “Final Report, showing the potential of smart rotor blades and rotor

control,” tech. rep., Delft University of Technology, Delft, Netherlands, 2011.

[43] E. A. Bossanyi, “Bladed Theory Manual,” tech. rep., DNV GL, Bristol, 2013.

[44] D. M. Pitt and D. A. Peters, “Theoretical prediction of dynamic-inflow derivatives,” Vertica,

vol. 5, pp. 21–34, 1981.

[45] J. G. Leishman and T. S. Beddoes, “A Semi-Empirical Model for Dynamic Stall,” Journal of

the American Helicopter Society, vol. 34, no. 3, pp. 3–17, 1989.

[46] P. B. Andersen, M. Gaunaa, C. Bak, and M. H. Hansen, “A Dynamic Stall Model for Airfoils

with Deformable Trailing Edges,” Journal of Physics: Conference Series, vol. 75, July 2007.

[47] N. Troldborg, “Computational study of the Risø-B1-18 airfoil with a hinged flap providing

variable trailing edge geometry,” Wind Engineering, vol. 29, no. 2, pp. 89–114, 2005.

[48] T. Theodorsen, “General theory of aerodynamic instability and the mechanism of flutter,”

NACA Technical Report,, vol. 496, pp. 413–433, 1935.

[49] J. G. Leishman, “Challenges in modelling the unsteady aerodynamics of wind turbines,” Wind

Energy, vol. 5, pp. 85–132, Apr. 2002.

[50] R. T. Jones, “The unsteady lift of a wing of finite aspect ratio,” tech. rep., NACA, Langley,

VA, 1939.

[51] W. R. Sears and B. Sparks, “On the Reaction of an Elastic Wing to Vertical Gusts,” Journal

of the Aeronautical Sciences (Institute of the Aeronautical Sciences), vol. 8, pp. 64–67, Dec.

1941.

38

Chapter 4

Baseline and controllers

To assess the performance of the smart rotor concept and the control strategies applied to it a

baseline needs to be specified. This requires a well validated model, as described in Section 3.4

of the previous chapter, a reference wind turbine, and a baseline controller from which to draw

comparisons. The advanced load reduction control strategies for the comparisons are also needed.

Additionally, load cases, similar to that which the wind turbine would experience in real life,

and a series of metrics, that satisfactorily show the influence of the smart rotor, are also required

and are considered in Chapter 5 and Chapter 6.

In this chapter the baseline wind turbine, central controller and advanced load reduction controls

are described. To this end in Section 4.1 the UpWind/NREL 5MW conceptual three-bladed upwind

variable-speed pitch-to-feather regulated wind turbine is detailed as the baseline wind turbine, upon

which trailing edge flaps are added to test smart rotor control, Section 4.2. The baseline controller

is then explained in Section 4.3, with two advanced load control strategies considered in Section

4.4. A validation of the controllers is given in Section 4.5.

39

Chapter 4 Baseline and controllers

4.1 Baseline wind turbine

The NREL 5-MW reference wind turbine is a conceptual three-bladed upwind variable-speed pitch-

to-feather regulated wind turbine. Its size makes it suitable for trialling advanced concepts such as

smart rotor control and the open source definition given in [1] has meant that it has been extensively

used for simulation and modelling work. For example, as stated in the definition, large projects such

as the US Department of Energy‘s Wind and Hydropower Technologies Program, the International

Energy Agency Wind Annex XXIII Subtask 2 Offshore Code Comparison Collaboration and the

pan-European UpWind research project have used it. Consequently, many authors studying smart

rotor wind turbines have also adopted the modified NREL 5-MW wind turbine as used in the

UpWind project, often referred to as the UpWind 5-MW machine [2] [3] [4] [5] [6] [7].

There are though other wind turbines that have also been used for control research purposes.

For example the WindPACT 1.5MW turbine [8] [7], the DOWEC project wind turbine [9] [10], and

the Supergen project exemplar wind turbines [11] [12]. Others have also used unspecified turbines.

A major drawback though of not specifying what turbine is used, or the details of the wind turbine,

is that comparisons with other works are made difficult. However, the current reference turbines,

although some extensively used, may not be of best design when considering the smart rotor concept.

For instance the smart rotor concept is of growing importance with the increase in rotor diameter,

so larger than 5MW turbines may be more suitable for the inclusion of the smart rotor, perhaps

on turbines of 10 or 20 megawatts, as considered in the UpWind project [13]. On these very large

rotors the smart rotor control will have the ability to reduce turbulent wind field loads across the

blade span, not controllable by current methods, and so the benefit of using the concept may be

greater. Nevertheless, the 5-MW wind turbine is a good place to start and, due to the prevalence

of the NREL 5MW wind turbine, it is used in this work. Additionally, thanks to both the NREL

5MW wind turbine and the UpWind project being publicly funded they are open source. The

9th version UpWind/NREL 5-MW wind turbine has been acquired for use from Jan-Willem van

Wingerden at Delft University, an UpWind project member.

4.1.1 UpWind/NREL 5-MW description

The UpWind 5-MW wind turbine model acquired is based on the NREL 5MW wind turbine as

described in detail in [1], which is based on published information from wind turbine manufacturers,

in particular the Multibrid M5000 [14] and the REpower 5M machine [15], and also previous

conceptual models used in the WindPACT [16], RECOFF [17] and DOWEC [18] projects. The full

details for the blade structure and aerodynamics, hub and nacelle properties, drivetrain, tower and

controllers are all given in the appendices: Appendix A includes the structural characteristics and

general model parameters along with the aerodynamic performance coefficients for the standard

blade profiles, Appendix B includes the method of acquiring the aerodynamic characteristics for

the blade profiles with the flap present, and Appendix C contains the C++ code for the external

controllers, along with a compiled controller. The general properties of the baseline wind turbine

acquired are given in Table 4.1, and some key parameters are highlighted in this section.

The major change that has been made to the NREL model is the tower. The tower in the

definition is a land-based design, but because wind turbines of this size are likely to be placed

offshore, a monopile foundation has been used instead [18], and the turbine situated offshore. This

40

Chapter 4 Baseline and controllers

Table 4.1: Characteristics of NREL 5MW reference wind turbine

Rating 5 MW
Rotor orientation, configuration Upwind, 3 blades
Control Variable speed, collective pitch
Drivetrain, transmission ratio High speed multiple-stage gearbox, 97
Rotor, hub diameter 126m, 3m
Hub height 90m
Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s
Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm
Rated tip speed 80 m/s
Overhang, shaft tilt, precone 5 m, 5 degrees, 2.5 degrees
Rotor mass 110,000 kg
Nacelle mass 240,000 kg
Tower mass 347,460 kg
Coordinate location of overall c.o.m. (-0.2 m, 0.0 m, 64.0 m)

Table 4.2: Natural frequencies of the blades and tower calculated in Bladed

Frequency (Hz) Damping ratio Mode type
0.681 0.004775 Blade flapwise normal mode
1.083 0.004775 Blade edgewise normal mode
1.971 0.004775 Blade flapwise normal mode
4.021 0.004775 Blade edgewise normal mode
4.523 0.004775 Blade flapwise normal mode
0.278 0.01 Tower side-side translational attachment mode
0.28 0.01 Tower fore-aft translational attachment mode
1.706 0.01 Tower side-side rotational attachment mode
2.023 0.01 Tower fore-aft rotational attachment mode
3.017 0.01 Tower side-side normal mode
3.017 0.01 Tower fore-aft normal mode
7.578 0.01 Tower side-side normal mode

adjustment has the effect of reducing the tower’s natural frequency, from 0.32 to 0.28Hz. A tower

structural-damping ratio of 1% critical is assumed in all modes of the isolated tower, as per the

NREL definition.

The drivetrain properties are from the REpower 5M machine, with a multiple-stage gearbox

assumed, but with no frictional losses, instead the generator is assumed to have an electrical effi-

ciency of 94.4%, roughly the same as the total rotor-mechanical to electrical losses of the DOWEC

machine at rated power. The blade extensional stiffness for the NREL 5MW reference wind turbine

came from a rule of thumb derived from the WindPACT project, but was not considered impor-

tant due to the low rotational speed of the turbine. A structural damping ratio of 0.477465% is

used for all modes of the isolated blade, corresponding to the 3% logarithmic decrement as used

in the DOWEC study. The natural frequencies of the blades and tower are shown in Table 4.2 for

reference.

The blade pitch actuator is modelled as a second order passive filter with a natural frequency

of 1Hz and damping ratio of 0.7 as in the UpWind project. This is a lower bandwidth than that

defined in the NREL report, which was set unrealistically high due to the limitation of FAST not

41

Chapter 4 Baseline and controllers

including actuator dynamics [1]. A pitch rate limit of 8 degrees/s is also applied.

The blades themselves consist of two cylinder and six aerofoil profiles. The aerofoil profiles

are the Delft DU40, DU35, DU30, DU25, DU21 and the NACA64-6. While the aerodynamic

characteristics for the Delft aerofoils used are those given in the definition, for the NACA64-6

aerofoil the 2D aerodynamic characteristics for angles of attack between -20 and +20 degrees are

obtained using XFOIL, which can rapidly determine the aerodynamic coefficients of a 2D aerofoil

[19]. These angles of attack cover the normal power production operating region of the wind turbine.

The reason XFOIL is used is that the blade sections where the NACA aerofoil profile is present

are also those where the trailing edge flap smart rotor devices are located. XFOIL is used in

the determination of the aerodynamic characteristics for these flaps, and therefore so as to avoid

discontinuities that might occur due to a different modelling processes the zero flap angle NACA64-6

aerodynamic characteristics are also determined using this method. The polars for this are displayed

in Figure 4.1 and the method of including flaps described in the following section.

Figure 4.1: Aerodynamic characteristics of the NACA64-6 aerofoil

42

Chapter 4 Baseline and controllers

4.2 Smart rotor trailing edge flaps

As seen in the technical review, Section 3.3, there are a number of actuators that may be used to

create a smart rotor wind turbine and despite desires to keep the devices as general as possible for

control purposes, realistic device characteristics help in validating this work. Therefore trailing edge

flaps are modelled here. This choice is based on the fact that these devices are aerodynamically

well understood, due to their similarity to the ailerons found on aircraft wings, and have been

implemented on the two smart rotor demonstration plants which is encouraging [20] [21].

The properties chosen for these devices are deliberately similar to the Sandia smart rotor demon-

stration plant [21]. They are modelled as consisting of 20% of the blade chord width, 20% of the

rotor radius and centred at 87% of the rotor radius, such that there is a gap between the end of

the flap and tip of the blade to minimise the impact of the blade tip vortex. The use of percentage

values is beneficial when it comes to scaling the wind turbine, though only the 5MW model is used

here. The flaps are limited to a maximum deflection angle of 20 degrees, with the aerodynamic

characteristics of these flaps determined using XFOIL.

The span of the blade on which the flaps are located is from 48.51m to 61.11m. Along the

entirety of this section the NACA64-6 aerofoil profile is used, with 18% thickness. This profile is

loaded into XFOIL as a set of polar coordinates, before adjusting the flap angle in XFOIL. This is

done at the 0.8 chord value, using the camber line as the hinge point. Flap angles up to deflections

of 22 degrees are recorded to fulfil the operating regime of the flaps from +20 degrees to -20 degrees.

XFOIL is then used to determine the lift, drag and moment coefficients for the aerofoil profile

for angles of attack between -20 and +20 degrees, which encompass the standard operating region

for the wind turbine blades. The change in lift due to the flap is shown for the 0 degree angle of

attack case in Figure 4.2. As can be seen the lift coefficient can be altered by 1.89, from -0.61 to

1.28 at minimum and maximum deployments respectively, with a zero deployment lift coefficient

of 0.53. The reduction in the lift slope at high angles of deployment is due to boundary layer

separation and the onset of stall.

These results can be compared to the change in lift coefficient when pitching the blade, equivalent

to a change in the angle of attack, displayed in Figure 4.3. The angle of attack of the blade can

be seen to achieve a greater change in lift coefficient and has a steeper gradient. This means that

to achieve the same change in lift, the flap would need to move by 1.89 degrees for every 1 degree

change in pitch.

Due to the shorter span of the blade covered by the flap, one fifth of the rotor diameter, the

effectiveness of the flap is reduced further compared to pitching of the entire blade. Figure 4.4

shows the effectiveness of the flap compared to the pitch at a steady 16 m/s wind speed. As can

be seen a 1 degree change in pitch angle actually requires a 4.6 degree change in the flap angle

to maintain rotor speed. This is actually 2.4 times rather than 5 times the pitch angle required

than might be expected due to only 20% of the span being with the flap. The lower value is a

result of the outboard section providing a higher proportion of the torque, not least because it is

approximately 36% of the swept rotor area. By increasing the size of the flap the ratio of pitch

angle to flap angle can also be reduced, as demonstrated by increasing the chord width in Chapter

7, which has certain benefits for the pitch actuator.

The flap rates of the Sandia demonstration plant are high, averaging 200 degree/s and peaking

at 330 degrees/second [22]. Rather than accept these values, which might be hard to achieve on a

43

Chapter 4 Baseline and controllers

Figure 4.2: Lift coefficient at 0 degrees angle of attack for various flap angles

Figure 4.3: Lift coefficient for various angles of attack with 0 degree flap angle

44

Chapter 4 Baseline and controllers

Figure 4.4: Required pitch angle at 16m/s wind speed for various flap angles

large wind turbine, the flaps simulated are not rate or acceleration limited in the model. Instead

the maximums reached during the simulations are shown for reference.

The flap actuators are set as having an identical response as the pitch actuators and so modelled

by a 2nd order passive filter with a natural frequency of 1Hz and damping coefficient of 0.7. This

is seen as a conservative approach, as flap actuators will likely be able to respond much faster

compared to pitch actuators designed for rotating the entire blade. Future work should adjust this

accordingly.

45

Chapter 4 Baseline and controllers

4.3 Collective pitch control

Two baseline variable speed pitch controllers are described in this section. The NREL 5MW

controller as supplied in the description of the reference wind turbine [1] and the UpWind project

controller described in [6]. Both are variable speed pitch regulated controllers as portrayed in the

torque-speed diagram in Figure 4.5.

The NREL 5MW controller is much simpler than the UpWind controller, however it lacks some

of the performance of the UpWind controller and some of the more advanced controller options. A

difficulty with this is that it might not accurately represent the controllers that are currently used

in commercial wind turbines. However, an advantage is that the simplicity means it may be easier

to determine the effects that a smart rotor control strategy is having on the wind turbine. Neither

of these controllers are original and both are well documented so both act as a good baseline from

which to start.

Figure 4.5: Torque-generator speed diagram for the two controllers: green = NREL 5MW, red =
UpWind control strategy

The NREL 5MW and UpWind controllers are programmed in C++ using the FORTRAN

controller description in the NREL 5MW definition report as a template [1], with the full code

attached in Appendix C along with a compiled UpWind controller for Bladed. What follows is a

detailed description of these two controllers.

4.3.1 NREL 5MW controller

The NREL 5MW wind turbine is a variable speed pitch to feather machine, as such the controller

has two main control systems: one to manage the generator torque for optimum energy capture

below rated, and the other to regulate the generator speed above rated by collectively pitching the

blades. Both control systems use the generator speed measurement as the sole input.

The torque control system operates differently depending on the region of operation. Four

distinct regions are described by the generator speed in each region, see Figure 4.8.

46

Chapter 4 Baseline and controllers

Torque control

In region 1, before cut-in, the generator torque is set to zero to encourage acceleration of the rotor.

In region 1.5 the generator torque demand, QGenD:R1.5, is a linear function of the filtered high

speed shaft generator speed, ωHSSF , given by the equation

QGenD:R1.5 = mR1.5(ωHSSF − ωcut in) (4.1)

The slope, mR1.5, is set so that it goes from zero at the generator cut-in speed, ωcut in, to reach

the optimum power curve at 30% above the rotor cut-in speed. The cut-in speed at the high speed

shaft where the signal is measured is 670rpm; this corresponds to 6.9rpm at the rotor which is the

REpower 5MW cut-in speed, as the NREL 5MW machine has a 97:1 gearbox ratio. 30% on top of

this is 871rpm.

The optimum power curve is given by

QGenD:R2 = KR2ω
2
HSSF (4.2)

The peak power coefficient of 0.482 was found to occur at a tip speed ratio of 7.55 and resulted

in an optimal constant of proportionality of, KR2 = 0.0255764Nm/rpm2. This peak power tracking

is done in region 2, and is also used to calculate the value of the torque at the end of region 1.5 as

well as the start of region 2.5. Region 2.5 ramps from 99% of the generator speed up to the rated

power of the generator based on a generator-slip percentage of 10%.

Above rated, in region 3, the generator torque is inversely proportional to the generator speed

to hold the power output constant at rated power, Prated.

QGenD:R3 = Prated/ωHSSF (4.3)

An alternative control method in region 3 is to hold the torque constant, though this leads

to larger power fluctuations. The switching logic between the regions is based on the high-speed-

shaft generator speed measurement. This measurement is low pass filtered to avoid high-frequency

excitation of the controller. The controller signal is also saturated based on maximum torque and

maximum torque rate of the generator.

The filter on the high speed shaft generator speed measurement is a simple recursive, single-pole

low-pass filter with exponential smoothing. Defined by

y[n] = (1− α)u[n] + αy[n− 1] (4.4)

with

α = e2πTsfc (4.5)

where y is the filtered generator speed, u is the unfiltered generator speed, α is the low-pass filter

coefficient, n is the discrete-time-step counter, Ts the discrete time step and fc the corner frequency.

The corner frequency was set at 0.25Hz, roughly one-quarter of the blades first edgewise natural

frequency. The filtered generator speed measurement is also used in the pitch controller described

below.

47

Chapter 4 Baseline and controllers

Pitch control

The pitch controller is a gain-scheduled PI controller based on the difference between the filtered

generator speed and the rated generator speed of 1173.7rpm. The gains were computed with the

response characteristics recommended in [23] using a single-degree-of-freedom model of the wind

turbine, with angular rotation of the shaft the degree of freedom. From this the proportional gain

was calculated as

KP (θ) =
2IDrivetrainΩ0ζφωφ

NGear(
∂P
∂θ (θ = 0))

GK(θ) (4.6)

and the integral gain as

KI(θ) =
IDrivetrainΩ0ζφω

2
φ

NGear(
∂P
∂θ (θ = 0))

GK(θ) (4.7)

where IDrivetrain is the inertia of the drivetrain cast to the low-speed shaft, Ω0 is the rated rotor

speed of 12.1rpm, ωφn is the natural frequency of the system, ζφ the damping ratio and ∂P
∂θ (θ = 0)

the sensitivity of the aerodynamic power to collective blade pitch angle at zero degrees. GK(θ) is

the gain scheduling parameter defined by the function

GK(θ) =
1

1 + θ
θK

(4.8)

where θK is the value of θ by which the sensitivity of the aerodynamic power to collective blade pitch

doubles from the zero pitch angle. This is needed as at low wind speeds the power output is less

sensitive to changes in pitch than at higher wind speeds, as portrayed in Figure 4.6. Numerically,

the gains were as follows, KP (θ = 0) = 0.01882681s, KI(θ = 0) = 0.008068634 and with θK =

6.302336◦. The gain correction factor, proportional and integral gains are shown in Figure 4.7.

Figure 4.6: Sensitivity of the power output to pitch variations as a function of pitch angle, which
is proportional to the wind speed due to separability

48

Chapter 4 Baseline and controllers

Figure 4.7: NREL 5MW pitch gain correction factor

Quasi-steady results

The steady power curve results for the torque controller are shown in Figures 4.8 and 4.9 for

reference. All operating regions are clearly visible. Note that the transitions between regions are

not particularly smooth, a slight loss in efficiency in region 1.5 and 2.5, and the maintenance of

constant power above rated by reducing the torque inversely proportional to the generator speed.

Quasi-steady results of a Bladed simulation are also plotted on the graphs. These were created

using a point wind speed ramping up from 1 to 25m/s at 0.02m/s2, it is assumed this is slow

enough to give effectively quasi-steady results.

The correct behaviour can be seen for the combined torque and pitch controller when run on

Bladed, as compared to the ideal results from the NREL 5MWs torque control strategy in thick

black. Losses are accounted for between the mechanical and electrical power, such that the rated

power of the generator is reached. These losses account for 5.6%, as in the NREL definition of the

turbine [1]. The pitch control can be seen to effectively limit the generator speed above rated. The

pitch angle as a function of wind speed is shown in Figure 4.10 for quasi-steady operation.

4.3.2 UpWind controller

The UpWind controller, although similar to the NREL 5MW controller [1], is more advanced. In

addition to better power tracking and smoother transitions between the various operating regions,

the controller also has a tower feedback loop, using an accelerometer in the nacelle and pitch control,

a filter to damp torsional vibrations in the drivetrain, and a non-linear pitch control term which

activates in response to sudden gusts. The pitch controller was also better designed to interact with

the torque controller, allowing the pitch controller to become active near rated power when the wind

speed was increasing rapidly. Each of these aspects of the controller is designed in a modular fashion

such that various controller components may be activated/deactivated independently as required.

The commented code is given in Appendix C.

49

Chapter 4 Baseline and controllers

Figure 4.8: NREL 5MW baseline torque control strategy

Figure 4.9: NREL 5MW baseline torque control power curve

50

Chapter 4 Baseline and controllers

Figure 4.10: Blade pitch as a function of wind speed

Torque control

The basic torque control is made up of a PI controller with changing set point, saturated using the

optimum torque curve below rated, and a strategy to maintain constant power above rated. The

above rated region is defined as when the blades are not at fine pitch (0◦). The torque to track the

optimum power curve, which was also used in the NREL 5MW control, was defined by

Qopt =
πρR5Cp(β = 0, λ)

2λ3G3
ω2
gen (4.9)

where ρ was air density, R the rotor radius, Cp the power coefficient at given pitch, β, and tip

speed λ, G was the gearbox ratio and ωgen the generator speed.

A switching speed half way between cut-in generator speed and rated generator speed defines

which set point is used and the saturation limits of the PI torque controller. Below the switching

speed the set point of the controller is set as the cut-in generator speed and the controller is

saturated so as not to allow the torque to exceed the optimum torque, Qopt. When the generator

speed is greater than the switching speed the set point is changed to that of the rated generator

speed and the torque is limited so as not to drop below the optimum torque. The gains of the PI

controller are set with KP = 4200 and KI = 2100, as in the UpWind controller description. After

this process, the torque demand is saturated based on the maximum torque limits and rate limits

as with the NREL 5MW control.

To reduce vibrations of the drivetrain a filter creates a ripple on the torque demand at the

drivetrain frequency. This has the effect of damping the vibrations. The open loop linearised

model of system highlights why the drivetrain filter was required, see Figure 4.11. The high peak

at the drivetrain frequency needs damping to increase stability.

51

Chapter 4 Baseline and controllers

Figure 4.11: Bode plot of the open loop generator torque to generator speed transfer function

The fourth-order filter used was given as two second-order transfer functions

K1
2ζ1s/ω1

1 + 2ζ1s
ω1

+ s2/ω2
1

+K2
2ζ2s/ω2(1 + τ2)

1 + 2ζ2s
ω2

+ s2/ω2
2

(4.10)

with the parameters values: K1 = 1560Nms/rad, ω1 = 24.20rad/s, ζ = 0.132, K2 = 1625Nms/rad,

ω2 = 8.998rad/s, ζ2 = 0.5041, and τ2 = 0.0138s.

The transfer function is discretised for use by the controller using the Tustin approximation,

z ≈ 1 + sT/2

1− sT/2
(4.11)

where T is the time step. A MATLAB script is used to facilitate the conversion of this function for

the controller operating with a timestep of 0.01s, the torque controller time step. The bode-plots

for the continuous filter and the discretised filter are shown in Figure 4.12.

Unlike the original UpWind control, an exclusion zone is not required between 450 and 650rpm,

because the tower is no longer excited by the 3P blade passing frequency. This is due to the

monopile tower used. A look at the Campbell diagram in Figure 4.13 shows that the tower fore-aft

translational frequency is between 1P rotational and 3P blade passing frequencies and so will not

be significantly excited by these because resonance is avoided.

52

Chapter 4 Baseline and controllers

Figure 4.12: Bode plot of the Upwind drivetrain filter

Figure 4.13: Campbell diagram for the baseline wind turbine. The tower fore-aft translational and
tower side-side translational and normal natural frequencies are very similar. The tower translation
mode lies between the 1P and 3P lines so will not be excessively excited

53

Chapter 4 Baseline and controllers

Pitch control

The basis of the pitch controller is similar to that of the NREL 5MW pitch control, although with

slightly different gains and with the integral term being scaled first prior to integration that allows

for a more intuitive understanding of the anti-wind-up limits. It may also result in smoother pitch

action [24].

The generator speed was also put through a low pass filter to stop excessive pitch action with

cut-off frequency of 10rad/s and damping coefficient of 1. Two more notch filters were also included

to reduce pitch action at the blade passing frequency, ω = 3.8rad/s and at ω = 8.2rad/s. The

damping coefficient applied to each was ζ = 0.15 and ζ = 0.2 respectively, and they have the form

1 + s2

ω2

1 + 2ζ
ω s+ s2

ω2

(4.12)

with the discretised combination of these filters is shown in the bode-plot Figure 4.14.

Figure 4.14: Bode plot of the UpWind pitch filter

Built upon this base for the pitch controller are a number of additional parts. First of all the

torque-pitch interaction is improved, so that the pitch controller may start to activate prior to

rated rotor speed if the wind speed is rising fast. This is done by including an additional PI pitch

control demand, based on a power error between the current measured power at the generator and

the wind turbines rated power, with gains of KP = 10−7 and KI = 5× 10−8.

Tower velocity damping is done through a feedback loop using an accelerometer measurement

in the nacelle. This is integrated to determine the velocity of the nacelle and the blades are then

pitched to increase aerodynamic damping resisting the motion. This is gain scheduled in the same

way as the PI pitch control mechanism to take account of the reduced pitch action required at

higher wind speeds for the same controllability. The control is also phased out so as not to operate

54

Chapter 4 Baseline and controllers

below rated wind speed when the loadings on the tower are not that great so as not to reduce

energy capture. The open loop system of pitch motion to tower fore-aft motion is seen in Figure

4.15, with increased gains at higher wind speeds.

Figure 4.15: Bode plot of the open loop pitch angle to fore-aft tower motion transfer function

The low-pass filter to integrate the accelerations is a 0.8s first order lag filter. The tower velocity

damping filter is shown in Figure 4.16 and is of the form

1 + 2ζ1
ω2

1
s+ s2

ω2
1

1 + 2ζ2
ω2
s+ s2

ω2
2

(4.13)

with ω1 = 0.8357, ω2 = 1.3571, ζ1 = 0.69, ζ2 = 1.0 and an overall gain of 0.0454. These values

vary slightly from those described in the UpWind report, due to the natural tower frequency being

lower, but has the same form.

Finally there is a non-linear pitch term to encourage pitching when the wind turbine experiences

a gust. This part of the controller usually does not affect the pitch angle demand. It takes account

of the generator speed error and its rate of change to determine if any additional pitch action is

required, and only does so if the speed error is large, positive and increasing. A first order lag filter

is included to stop the controller reacting to signal noise.

Quasi-steady results

The power curve results for this baseline controller are shown in Figures 4.17 and 4.18, comparing

with both the NREL 5MW control and with the maximum power curve displayed for reference.

It can be seen that the UpWind controller more closely tracks the optimum power curve, which

results in better energy capture.

55

Chapter 4 Baseline and controllers

Figure 4.16: Bode plot of the UpWind tower velocity damping filter

Figure 4.17: Comparison of the NREL 5MW and the UpWind torque control strategies from Bladed
simulations

56

Chapter 4 Baseline and controllers

Figure 4.18: Comparison of the NREL 5MW and UpWind control power curves from Bladed
simulations

The UpWind controller has been designed in a modular fashion so it is possible to pick what

components of the control are active, such as the tower feedback loop or non-linear gust alleviation.

The smart rotor and individual pitch controllers are also designed in a similar fashion, which helps

with robustness and allows these controllers to be deployed with either the simpler NREL 5MW

control or the more complex UpWind control.

57

Chapter 4 Baseline and controllers

4.4 Advanced load reduction control options

Two advanced load reduction control strategies are considered, which are both taken from individual

pitch control research but with the control demand either being pitch angle or flap angle depending

on whether individual pitch control or smart rotor control is being studied. The two strategies

adopted are the dq-axis control [6] and an interpretation of the Independent Blade Control [25],

both described below. These controllers are phased out below rated from 100% at rated power,

to 0% action at 80% rated power. This is so as not to disrupt optimum energy capture, but also

because there is less to be gained in this operating region as the loads below rated power are low.

This may be adjusted dependent on a economic assessment of the trade-off between energy capture

and load reduction.

4.4.1 Control using the dq-axis

The rotating out-of-plane blade root bending moment of each blade is converted to tilt and yaw

moments in a stationary plane using the forward Coleman transform. The magnitude of these vec-

tors then depict the asymmetrical yaw and tilt load components. Proportional Integral controllers

then act to minimise these tilt and yaw moments, before the reverse Coleman transform is used

to set the demand angle for each blade. The dq-axis control and independent control are set-up

identically for both the pitch and smart rotor controls, with the exception that the demand for the

actuators is switched from pitch to flap control and the gains increased by a factor of 6.3 for the

smart rotor case. A visual representation of this strategy is shown in Figure 4.19.

b

a

c

Blade root bending moment

Forward
Coleman

Transform

PI

PI

D

Q

d

q

Reverse
Coleman

Transform

nθ nθ

B

A

C

Pitch/flap demands

Figure 4.19: Schematic of the dq-axis control method

The forward Coleman transformation, otherwise known as the Park’s or dq-0 transform, is

[
d

q

]
=

2

3

[
cos(θ) cos(θ + 2π

3) cos(θ + 4π
3)

sin(θ) sin(θ + 2π
3) sin(θ + 4π

3)

] a

b

c

 (4.14)

where θ is the rotor azimuth angle, a, b, and c are the blade root bending moments of the each of

the three blades, and d and q are the transformed fixed axis loadings, in the yaw and tilt directions

58

Chapter 4 Baseline and controllers

respectively. The reverse transform is A

B

C

 =

 cos(θ) sin(θ)

cos(θ + 2π
3) sin(θ + 2π

3)

cos(θ + 4π
3) sin(θ + 4π

3)

[D

Q

]
(4.15)

where A, B and C are the demanded pitch/flap angles for each of the blades. An offset may be

added to the reverse transform to account for controller delays, ωT , however this was found to

have negligible impact on the load reduction potential of the controller. This controller effectively

eliminates 1P loadings. Higher harmonic loadings may be reduced by altering the transform such

that θ is multiplied by a factor, i.e. n to remove nP loads. To simplify analysis, reduce actuator

requirements and due to the fact 1P loads cause the most significant amount of damage, only the

1P loads are targeted in this work. The maths behind this is explained in the following section.

Theory

To understand the actions of the controllers within the Coleman transform it is worthwhile looking

at the underlying mathematics. This section considers the specific example of identical controllers

acting on both the d and q signals, it may also be expanded to include filters within the Coleman

transform. The mathematical terms used are described in Figure 4.20.

x2(t)

x1(t)

x3(t)

Forward
Coleman

Transform

gD(t)

gQ(t)

yD(t)

yQ(t)

xD(t)

xQ(t)

Reverse
Coleman

Transform
y2(t)

y1(t)

y3(t)

(a) Time domain

X2(s)

X1(s)

X3(s)

Forward
Coleman

Transform

GD(s)

GQ(s)

YD(s)

YQ(s)

XD(s)

XQ(s)

Reverse
Coleman

Transform
Y2(s)

Y1(s)

Y3(s)

(b) Laplace domain

Figure 4.20: Coleman transform with control I/O’s in time and Laplace domains

In the time domain

xD(t) =
2

3

(
x1(t) cos (θ(t)) + x2(t) cos

(
θ(t) +

2π

3

)
+ x3(t) cos

(
θ(t) +

4π

3

))
(4.16)

assuming a constant rotational speed θ(t) → ωt where ω is the constant rotational speed of the

rotor and using the Laplace transform and exponential forms of the trigonometric functions

L
(
eatf(t)

)
= F (s− a) (4.17)

59

Chapter 4 Baseline and controllers

cos(θ) =
eiθ + e−iθ

2
(4.18)

and

sin(θ) =
eiθ − e−iθ

2i
(4.19)

it can be shown that

XD(s) =
2

3

(
1

2
X1(s− iω) +

1

2
X1(s+ iω)+

ei
2π
3

2
X2(s− iω) +

e−i
2π
3

2
X2(s+ iω)+

ei
4π
3

2
X3(s− iω) +

e−i
4π
3

2
X3(s+ iω)

)
(4.20)

and similarly

XQ(s) =
2

3

(
1

2i
X1(s− iω)− 1

2i
X1(s+ iω)+

ei
2π
3

2i
X2(s− iω)− e−i

2π
3

2i
X2(s+ iω)+

ei
4π
3

2i
X3(s− iω)− e−i

4π
3

2i
X3(s+ iω)

)
(4.21)

Equivalently for y1(t) = yD cos(θ(t)) + yQ sin(θ(t))

Y1(s) =
1

2
YD(s− iω) +

1

2
YD(s+ iω) +

1

2i
YQ(s− iω)− 1

2i
YQ(s+ iω) (4.22)

As YD = GD(s)XD(s) and YQ = GQ(s)XQ(s) this may be rewritten

Y1(s) =
1

2
GD(s− iω)XD(s− iω) +

1

2
GD(s+ iω)XD(s+ iω)+

1

2i
GQ(s− iω)XQ(s− iω)− 1

2i
GQ(s+ iω)XQ(s+ iω) (4.23)

Now from Equation 4.20 substituting in s→ s− iω it is trivial to get

XD(s− iω) =
2

3

(
1

2
X1(s− 2iω) +

1

2
X1(s)+

ei
2π
3

2
X2(s− 2iω) +

e−i
2π
3

2
X2(s)+

ei
4π
3

2
X3(s− 2iω) +

e−i
4π
3

2
X3(s)

)
(4.24)

and similar expressions for XD(s + iω), XQ(s − iω) and XQ(s + iω). These may then be used to

acquire
1

2
XD(s− iω) +

1

2i
XQ(s− iω) =

1

3

(
X1(s) + ei

2π
3 X2(s) + ei

4π
3 X3(s)

)
(4.25)

60

Chapter 4 Baseline and controllers

and similarly

1

2
XD(s+ iω)− 1

2i
XQ(s+ iω) =

1

3

(
X1(s) + e−i

2π
3 X2(s) + e−i

4π
3 X3(s)

)
(4.26)

Substituting these into Equation 4.23 with GD(s) = GQ(s) = G(s), and assuming only the real

part of the exponentials are of relevance, gives

Y1(s) = G(s− iω)
1

3

(
X1(s) +

1

2
X2(s) +

1

2
X3(s)

)
+

G(s+ iω)
1

3

(
X1(s) +

1

2
X2(s) +

1

2
X3(s)

)
(4.27)

which, without the internal controller G(s), may be simplified to

Y1noG(s) =
2

3

(
X1(s) +

1

2
X2(s) +

1

2
X3(s)

)
(4.28)

where Y1noG is the result when no internal controller is present. This implies

Y1(s) =
1

2
(G(s− iω) +G(s+ iω))Y1noG (4.29)

leading to the conclusion

G(s)→ 1

2
(G(s− iω) +G(s+ iω)) (4.30)

when G(s) is acting within the Coleman transform compared to outside the transform. The con-

trollers within the transform have been selected as proportional integral controllers to remove the

asymmetric loadings on the rotor, in notation G(s) = KP + KI/s. It can then be shown that

the transfer function for the controllers is as described in Equation 4.31, with the bode plot of this

transfer function displayed in Figure 4.21. The gains chosen for this are Kp = 10−8 and KI = 10−9.

The effect of this controller is to essentially act as a bandpass filter, locked to the rotational fre-

quency of the rotor, which implements a phase shift. The phase shift generated is what leads to a

reduction in the cyclic loadings at the rotational frequency of the rotor.

Kp+
KI

s
→ Kp+

1

2

(
KI

s− iω
+

KI

s+ iω

)
= Kp+

1

2

KIs

s2 + ω2
(4.31)

A problem that may occur with this form of individual pitch control is excitement of the 3P

modes if a 1P oscillation occurs within the transformed coordinate system. To avoid this the d and

q load signals are modified using 1P notch filters, similar to the notch filters used for the standard

pitch control, with ω = 1.2671 and ζ = 1, repeated here for convenience

1 + s2

ω2

1 + 2ζ
ω s+ s2

ω2

(4.32)

61

Chapter 4 Baseline and controllers

Figure 4.21: Bode plot of the IPC controller outwith the Coleman transform

4.4.2 Independent control

An alternative control approach is an independent control system [25], [26]. The collective pitch is

still defined by the central controller, but then the actuator of each blade, or flap in the smart rotor

design, attempts to maintain a set blade root bending moment, Myref , for this pitch demand. An

interpretation of this method is used in this thesis. The control method is displayed in Figure 4.22,

with Myref = Myqs + Mytow + Mynod, where Myqs is the quasi-steady out-of-plane blade root

bending moment, Mytow the moment caused by tower fore-aft motion, and Mynod the moment

caused by nacelle nod motion.

Demanded collective
pitch angle

Blade
modelβ Myqs

−
+ Myref

−+
Controller

Pitch/flap
demand

Blade root
bending moment

Ficticious forces
ÿ, z̈; Ω̇zR, Ω̇yR

Figure 4.22: Schematic of the independent blade control method

The conversion between pitch angle and bending moment is taken into account by a blade model.

In this case the blade model is produced by fitting a curve to the relationship between collective

pitch angle, β in radians, and the out-of-plane blade root bending moment, Myqs, in MNm, during

62

Chapter 4 Baseline and controllers

a quasi-steady Bladed simulation of the wind turbine. This fit is shown in Figure 4.23. It is defined

in the above rated region by the equation

Myqs = 32β2 − 33β + 11 (4.33)

Figure 4.23: Pitch angle to out-of-plane blade root bending moment in quasi steady operation

The controller also needs to differentiate between loads caused by the wind field and those

caused by the wind turbine dynamics, such as tower accelerations, ẍtow and ÿtow, and nacelle nod

and roll accelerations, Ω̇nod and Ω̇roll, so that the blade control is decoupled from the main control

system. An intuitive interpretation of the results in [25], [26] follows.

The tower accelerations cause accelerations at the blade roots. For the out-of-plane blade root

bending moment, Mytow, only fore-aft motion is important ẍtow. This moment is calculated based

on the mass of the blade, mblade = 17732kg, its centre of mass from the blade root rcom = 20.5m,

and the tower fore-aft acceleration ẍtow, to get

Mytow = rcom ×mbladeẍtow (4.34)

The contribution to the blade root out-of-plane bending moment due to nacelle nod and roll

accelerations is different for each blade, as it depends on their azimuthal position. The nod ac-

celerations cause out-of-plane blade moment while roll accelerations cause in-plane moments. The

out-of-plane blade root bending moments caused by nod accelerations are calculated to be

Mynod = IΩ̇nodcos(θ) (4.35)

where I is the inertia of the blade, 363501kgm, and θ is the azimuth angle of the blade with θ = 0

determined to be in the vertical position.

The actual controller is typically designed to target specific frequencies, for example 1P vibra-

63

Chapter 4 Baseline and controllers

tions. This is done through the use of filters on the pitch demand from the independent controller.

The control system is set up as a gain, KP = 10−9, and a low and high pass filter creating a fourth

order band pass filter
s2(

1 + 2ζ
ω s+ s2

ω2

)2 (4.36)

with ω set to the rotational speed of the rotor at rated power and damping coefficient ζ = 0.15.

An additional gain is also applied to the high pass filter, allowing for switching between use of the

filters and a purely proportional based controller.

64

Chapter 4 Baseline and controllers

4.5 Validation of baseline

Under quasi-steady conditions the baseline wind turbine controllers have been seen to correctly track

the demanded path on the torque-rotor speed diagram and limit the power output to rated power.

Tower velocity damping, drivetrain filter damping and the pitch filters are tested under dynamic 3D

turbulent wind field cases. For this, the power spectral density for the tower acceleration, generator

speed and pitch are all compared individually by running simulations with the filters either active

or switched off.

4.5.1 Tower velocity damping

The tower vibrations are in fact not significant for this model and are already well damped; there

is no prominent peak at the natural frequency of the tower 0.28Hz (1.76rad/s). However, using

the active tower velocity damping feedback loop a reduction in loads at the desired frequency is

achieved. As can be seen by the reduction in the peak at the tower frequency shown in Figures

4.24a and 4.24b. Therefore, while active tower velocity damping does not appear worthwhile for

this wind turbine, it is kept as part of a state-of-the-art controller.

(a) Tower base fore-aft bending moment (b) Tower fore-aft velocity

Figure 4.24: Power spectral density for wind speeds 10,12,14,16,20 and 24m/s with and without
the tower velocity damping loop

4.5.2 Drivetrain filter

The drivetrain filter on the other hand is an important component of the controller, without which

the drivetrain frequency is excited causing oscillations in generator speed and so torque. Figure

4.25 shows the PSD of the generator speed for wind speeds from 4 to 24m/s in 4m/s steps. Across

all but the lowest wind speed there is a prominent peak at 10.1rad/s. This corresponds to the first

drivetrain frequency. The drivetrain filter damps out this frequency, which can also be seen in the

time domain, Figure 4.26.

65

Chapter 4 Baseline and controllers

Figure 4.25: Power spectral density of the generator speed for wind speeds 4 to 24m/s in 4m/s
steps, with and without the drivetrain filter. The 4m/s wind speed near cut-in is the lowest trace
and exception to the rule

(a) 8m/s wind speed (b) 12m/s wind speed

(c) 16m/s wind speed

Figure 4.26: Generator speed measurements for turbulent wind field runs, with and without the
drivetrain filter

66

Chapter 4 Baseline and controllers

4.5.3 Pitch filters

The pitch filter works to reduce pitch action. This is done through a low-pass filter that reduces

high speed pitch action, which is not beneficial in maintaining rotor speed, and by limiting pitch

action at the blade passing frequency of 3.8rad/s and at the drivetrain frequency of 10.1rad/s. The

result of such action is shown in Figure 4.27a. As can be seen high frequency action is reduced,

as too is action about the blade passing frequency and drivetrain mode. Basic statistics show that

the standard deviation of the rotor speed is not adversely affected by these filters, as can be seen

in Figure 4.27b.

(a) Power spectral density of the generator speed (b) Generator speed standard deviation

Figure 4.27: Comparison of the baseline controller with and without pitch filters for wind speeds 4
to 24m/s in 4m/s steps

4.5.4 Advanced load reduction control options

The dq-axis control targets the rotational loadings on the wind turbine by converting the moments

on the rotating blades into a fixed yaw and tilt plane. These moments are then minimised by

the controller. Before converting back into the rotational plane of the rotor to set the demanded

pitch angles. To confirm that the controller is working as expected a good starting point is then

to look at the rotor imbalances in the tilt and yaw planes. Figure 4.28 shows that the dq-axis

control effectively eliminates the yaw and tilt imbalances. The performance near rated wind speeds

is less, but this is due to the controllers being phased out below rated to avoid impacting on energy

capture.

Reducing rotor loads is the key objective of dq-axis control. It is then worth looking at the

blade root bending moment to see whether this goal is achieved. Figures 4.29a and 4.29b show

the reduction in the 1P loadings at the angular frequency of the rotor, ω = 1.2671rad/s, 0.2Hz. A

linear plot exemplifies this further as seen in Figure 4.30. This result can be compared with [27],

as seen in Figure 4.31 (note the frequency axis here is in Hz).

The results show that the dq-axis controllers effectively eliminate 1P loadings, but have little

effect at other frequencies. A possible improvement to the dq-axis control portrayed here is the

targeting of higher frequency loadings, such as at twice the rotational frequency of the rotor.

Implementation of this type of control is done by multiplying the rotational position of the blades

by two, on both input and output of the Coleman transform, this has the effect of targeting the 2ω

67

Chapter 4 Baseline and controllers

(a) Mean tilt moment (b) Mean yaw moment

Figure 4.28: Comparison of the baseline controller with the dq-axis controllers looking at the tilt
and yaw moments about the hub. Higher wind speeds produce higher loads

(a) PSD (b) Cumulative PSD

Figure 4.29: Comparison of the baseline controller with the dq-axis controllers looking at the blade
root out-of-plane bending moment

68

Chapter 4 Baseline and controllers

Figure 4.30: Linear plot of the PSD for the My blade root bending moment at 16m/s wind speed

Figure 4.31: Linear plot of the PSD for the My blade root bending moment for baseline (SC), smart
rotor control (IFC) and individual pitch control (IPC) [27]

69

Chapter 4 Baseline and controllers

loads, and higher harmonics may also be targeted in a similar manner. To simplify analysis though

this enhancement is not considered in this work.

The exact load reductions and a comparison between the use of dq-axis and independent pitch

control and smart rotor control for load reduction are evaluated in Chapter 8 of this thesis, and

the rigorous methods for testing the performance of the wind turbine controllers are considered in

the next chapter.

70

Chapter 4 Baseline and controllers

References

[1] B. J. Jonkman, S. Butterfield, W. D. Musial, and G. Scott, “Definition of a 5-MW Reference

Wind Turbine for Offshore System Development,” tech. rep., NREL, Colorado, 2009.

[2] D. G. Wilson, B. R. Resor, D. Berg, T. K. Barlas, and G. A. M. van Kuik, “Active Aerody-

namic Blade Distributed Flap Control Design Procedure for Load Reduction on the UpWind

5MW Wind Turbine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons

Forum and Aerospace Exposition, (Orlando, Florida), American Institute of Aeronautics and

Astronautics, 2010.

[3] T. K. Barlas and G. A. M. van Kuik, “Aeroelastic modelling and comparison of advanced

active flap control concepts for load reduction on the Upwind 5MW wind turbine,” in EWEC,

(Marseille, France), 2009.

[4] P. B. Andersen, Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge

Flaps: Sensoring and Control. PhD thesis, Technical University of Denmark, 2010.

[5] M. A. Lackner and G. A. M. van Kuik, “The Performance of Wind Turbine Smart Rotor

Control Approaches During Extreme Loads,” Journal of Solar Energy Engineering, vol. 132,

2010.

[6] E. A. Bossanyi, D. Witcher, and T. Mercer, “Project UpWind: Controller for 5MW reference

turbine,” tech. rep., Garrad Hassan and Partners Limited, Bristol, 2009.

[7] D. Berg, D. G. Wilson, B. R. Resor, M. F. Barone, J. Berg, S. Kota, and G. Ervin, “Active

aerodynamic blade load control impacts on utility-scale wind turbines,” in AWEA Windpower,

(Chicago, Illinois, USA), 2009.

[8] D. Berg, D. G. Wilson, M. F. Barone, B. R. Resor, J. Berg, S. Kota, G. Ervin, and D. Maric,

“The impact of active aerodynamic load control on fatigue and energy capture at low wind

speed sites,” in EWEC, (Marseille, France), US Government: Sandia National Laboratories,

FlexSys Inc., 2009.

[9] B. A. H. Marrant and T. van Holten, “Comparison of smart rotor blade concepts for large

offshore wind turbines,” in Offshore Wind Energy and Other Renewable Energies in Mediter-

ranean and European Seas, vol. 31, (Civitavecchia, Italy), 2006.

[10] E. L. V. D. Hooft, P. Schaak, and T. G. V. Engelen, “Wind turbine control algorithms,” tech.

rep., Delft Technical University, Delft, Netherlands, 2003.

[11] A. P. Chatzopoulos, Full Envelope Wind Turbine Controller Design for Power Regulation and

Tower Load Reduction. PhD thesis, University of Strathclyde, 2011.

[12] A. Stock and W. E. Leithead, “Providing Grid Frequency Support Using Variable Speed Wind

Turbines with Augmented Control,” in EWEA, (Copenhagen, Denmark), 2012.

[13] J. Peeringa, R. Brood, O. Ceyhan, W. P. Engels, G. de Winkel, and G. de Winkel, “Upwind

20MW Wind Turbine Pre-Design: Blade design and control,” tech. rep., Energy Research

Centre of the Netherlands, 2011.

71

Chapter 4 Baseline and controllers

[14] Areva, “Offshore Windpower M5000,” 2014.

[15] REPower Systems, “REpower Systems, 5M: The 5-megawatt power plant with 126 metre rotor

diameter,” 2014.

[16] D. J. Malcolm and A. C. Hansen, “WindPACT Turbine Rotor Design Study,” tech. rep.,

NREL/SR-500-32495, 2006.

[17] S. Frandsen, N. J. Tarp-Johansen, E. Norton, K. Argyriadis, B. Bulder, and K. Rossis, “Rec-

ommendations for design of offshore wind turbines,” tech. rep., Risoe National Laboratory,

GarradHassan & Partners Ltd., Germanischer Lloyd WindEnergie GmbH, ECN and the Greek

Centre for Renewable Energy Sources, 2005.

[18] H. J. T. Kooijman, C. Lindenburg, D. Winkelaar, and E. L. V. D. Hooft, “DOWEC 6 MW

pre-design: Aero-elastic modelling of the DOWEC 6 MWpre-design in PHATAS,” tech. rep.,

ECN, Petten, Netherlands, 2003.

[19] M. Drela, “XFOIL: An analysis and design system for low Reynolds number airfoils,” in Low

Reynolds number aerodynamics, (Notre Dame, IN, Germany), 1989.

[20] D. Castaignet, T. K. Barlas, T. Buhl, N. K. Poulsen, J. J. Wedel-Heinen, N. A. Olesen, C. Bak,

and T. Kim, “Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load

reduction and system identification,” Wind Energy, vol. 17, pp. 549–564, Apr. 2014.

[21] J. Berg, B. R. Resor, J. Paquette, and J. White, “SMART Wind Turbine Rotor: Design

and Field Test,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and

Livermore, California, 2014.

[22] J. Berg, M. F. Barone, and N. Yoder, “SMART Wind Turbine Rotor: Data Analysis and Con-

clusions,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and Livermore,

California, 2014.

[23] M. H. Hansen, A. Hansen, T. J. Larsen, S. Oye, P. Sorensen, and P. Fuglsang, “Control design

for a pitch-regulated, variable speed wind turbine,” tech. rep., Risoe, Denmark, 2005.

[24] D. J. Leith and W. E. Leithead, “Implementation of wind turbine controllers,” International

Journal of Control, vol. 66, no. 3, pp. 349–380, 1997.

[25] W. E. Leithead, V. Neilson, S. Dominguez, and A. Dutka, “A novel approach to structural

load control using intelligent actuators,” in 17th Mediterranean Conference on Control & Au-

tomation, (Thessaloniki, Greece), pp. 1257–1262, 2009.

[26] W. E. Leithead and V. Neilson, “Alleviation of Unbalanced Rotor Loads by Single Blade

Controllers,” in EWEC, (Marseille, France), 2009.

[27] M. A. Lackner and G. A. M. van Kuik, “A comparison of smart rotor control approaches using

trailing edge flaps and individual pitch control,” Wind Energy, vol. 13, pp. 117–134, Mar. 2010.

72

Chapter 5

Performance analysis

There are numerous methods being used to determine the performance of the smart rotor concept,

both as regards to the metrics for assessment and the conditions under which the control is tested.

This chapter explores the various options and details the methods used for assessing the performance

of the wind turbine in this thesis.

In Section 5.1 the motivation behind research into wind turbines is looked at, with consideration

given to the cost of energy, control objectives, and loads. Section 5.2 then looks at the metrics

used to assess the performance of the smart rotor, with reference to basic statistics, as well as

specific details on using power spectral density plots, damage equivalent loads and extreme load

extrapolation. Finally, the design load cases under which the turbine is tested are described in

Section 5.3.

73

Chapter 5 Performance analysis

5.1 Motivation

5.1.1 Cost of Energy

The performance of a wind turbine can be measured in a number of ways. In the end though, the

adoption of one design or control method over another will depend on a cost analysis. For power

generation this is typically done through a levelised cost of energy analysis, which takes account of

energy capture, capital costs and operations and maintenance expenditure, as well as risk through

the interest rate attached to capital finance. An overview of the capital costs of a wind turbine is

shown in Figure 5.1. This captures the feasible cost reductions that a smart rotor may achieve.

The rotor blades, hub and bearings, as well as the shaft, yaw and pitch systems can be targeted

for load reduction using the smart rotor as discussed later.

Figure 5.1: Breakdown of the capital costs associated with a 5MW wind turbine. Source [1]

More direct applications to quantify cost of energy savings using the smart rotor have focussed

on the blade loads. One paper that attempts a cost analysis of the smart rotor is [2]. A conceptual

2.5MW is created based on the WindPACT 1.5MW to compare costs between a baseline and

two versions of a smart rotor: one with devices capable of altering the local aerodynamics and

one capable of actively extending the blades, the retractable rotor blade. Using the retractable

rotor blade cost of energy could potentially be reduced by between 0.6 and 3.9%, and using active

devices anything between +0.5 and -2.6%, depending on estimates for the smart rotor system costs

and the operations and maintenance costs associated with it. The method is crude, using BEM

aerodynamics, simple control, and rough estimates, but does nonetheless show the potential of the

smart rotor when reducing structural loads.

There are also a few papers from Sandia National Laboratories looking at the cost-of-energy

74

Chapter 5 Performance analysis

benefits of the smart rotor. In [3] and [4], it is proposed that use of a smart rotor to reduce fatigue

loads can allow the blades to be extended and still have the same lifetime as shorter blades. The

effect of simply increasing the blade length while keeping the blade root bending load constant and

the rest of the turbine the same is termed the “grow-the-rotor” concept, Figure 5.2. The extended

rotor has increased energy capture below rated power, with analyses showing a 10-15% increase

in energy capture for a 1.5MW wind turbine, particularly at sites of low mean wind speed. This

equates to a reduction in the cost of energy of between 5 and 9%. Such approaches need to be

used carefully though, as other loads, structural, electrical, mechanical or noise requirements could

easily limit the possibility of increasing energy capture using this method.

Figure 5.2: The “grow-the-rotor” concept whereby the blade length is increased until the blade root
loads match those of the original wind turbine, whilst holding all other wind turbine parameters
the same

While these cost analyses are useful, a detailed cost analysis is beyond the scope of this thesis and

will depend highly on the specifics of the wind turbine and smart rotor system under consideration.

The performance analysis described in this chapter though should aid designers in estimating the

impact adoption of the smart rotor will have on the cost of energy and indeed at understanding

the role the smart rotor might play. Risk on the other hand is not directly considered in this

performance analysis, but is addressed separately in Chapter 10, wherein a fault of the smart rotor

system is examined.

5.1.2 Controller objectives

The assessment of the wind turbine performance depends, at least partly, on the control objectives.

The control objectives inform what criteria should be looked at in the evaluation. The majority of

authors have looked into using the smart rotor control as a means to reduce loads and so reduce

the material constraints required to build large multi-MW wind turbines. However, the smart rotor

concept may also be used to target other objectives, as listed in [5], and displayed here

1. Devices may be deployed to increase lift of the blade at low wind speeds, allowing the turbine

to cut-in earlier and capture additional energy

75

Chapter 5 Performance analysis

2. On downwind machines, these devices could deploy every revolution to counteract the tower

wake effect

3. Active devices could aid in energy capture and load mitigation on turbines that experience

array effects (e.g. to mitigate loads caused by wake from upstream wind turbines)

4. Devices could be used to prevent tower strikes, allowing for larger diameter rotors to be used

and thereby increasing energy capture

5. Aerodynamic performance enhancement and noise reduction could be realized by maintaining

laminar flow over the blade

6. The blade could operate higher on the lift curve with the devices protecting the blade from

getting into stall

Some of these objectives have been looked at. For example using the control to mitigate the

array effects such as wake from upwind turbines [6]. In the helicopter research field the smart rotor

concept is being used to reduce rotor vibrations and reduce noise [7], [8], although this noise due to

vortex wake reaction may not be dominant noise produced by wind turbines. Other authors have

also looked at using the smart rotor as an alternative to pitch and torque control, to regulate rotor

torque and power [9], [10], and in Chapter 9 of this thesis this is explored through supplementing

the pitch speed control mechanism with the aim of reducing pitch actuator requirements. As an

entirely separate objective, the smart rotor’s inclusion of additional sensors also allows for condition

monitoring of the wind turbine system [11], helping to reduce risk and potentially operations and

maintenance costs.

While the use of devices to counteract tower shadow on downwind wind turbines is interesting

this is outside the scope of this thesis due the choice of an upwind turbine being used. Noise

reduction is also beyond the scope of this thesis, as there is no method to determine the noise

output from the wind turbine in the model, additionally, on offshore wind turbines, this is less

likely to be a design driver.

As regards to preventing tower strikes this is unlikely to be implemented, as although increasing

clearance may be possible using smart rotor devices, the failure of such devices also needs to be taken

into account. Therefore, for general performance analysis, tower clearance is neither considered as

an objective nor a qualifying criterion for reducing the cost of energy.

The opportunity to increase energy capture using the smart rotor system is certainly worth

looking at. Despite this, the decision has been made to focus on load reductions, building upon the

work of others in the smart rotor field. Indeed, to make certain that energy capture is not affected

by the smart rotor or advanced load reduction control techniques, they are purposefully phased

out below rated. This simplifies the analysis to an assessment centred on load reduction potential.

This is the primary focus of smart rotor research, particularly on blade root bending moment load

reduction for both fatigue and ultimate loads [7], [11], [12], [13], [14], [15], [16], [17], [18], [19].

76

Chapter 5 Performance analysis

5.1.3 Loads

As regards to the loads used to assess the performance of the smart rotor concept the literature

suggests various metrics and measurands. A common target for control is reduction in loads on the

blade root bending moment. This might be gauged by a reduction in the standard deviation of the

signal or as a reduction in the damage equivalent loads. A summary of some of the papers that use

such methods is found in [20], and is displayed in Figure 5.3.

In the column headings: cf was the % chord width of the flap; drf/r the % span of blade with flaps, δ the maximum
flap deflections, T.I. the turbulence intensity, Vav the mean wind speed, std of RBM the standard deviation of the
blade root bending moment, and DEL the damage equivalent load. In the controller column: PID was a proportional
integral differential controller, HPF a high pass filter, notch a notch filter, LQR a linear quadratic regressive controller,
MPC a model predictive control, and inflow involves measuring the incoming flow field for feed-forward control

Figure 5.3: Comparison of different studies into the smart rotor [20]

Reductions in blade root bending moment are not the only outcome of using control focussed on

this aspect though, as seen in [21] on individual pitch control. Shaft and yaw bearing loads are also

affected, as too is the pitch motion. In [22], a paper on distributed blade control, energy capture

and pitch actuation are also seen to be dependent on controller design. This is also reported in

[23], as well as the effect their controllers have on tip deflection, tower movement and the low speed

shaft torque.

The majority of papers look at similar loads when assessing the performance of the smart rotor.

The choice to use the blade root bending moment as the primary measurement appears to be

because the smart rotor affects this directly when active, and other loads can be considered as

being indirectly affected by the action of the smart rotor control. However, that is not to say

it is the most important or only load that needs to be considered. Reduction in other loads or

parameters may be equally important when it comes to ascertaining the viability of the smart rotor

concept. For example a reduction in mean power production affects the economically viability of

the smart rotor and in [3] it is shown that although most loads are reduced, certain loads can in

fact increase with the low speed shaft torque and blade root pitch moment highlighted, which may

limit cost effectiveness, see Table 5.1. It seems sensible then to measure a selection of loads to gain

a full picture to account for both beneficial and undesirable effects.

A study of the loads themselves also highlights where exactly the control needs to act. In [13]

77

Chapter 5 Performance analysis

Table 5.1: One-million cycle damage equivalent load (Smart rotor/Baseline [%]) with conventional
trailing edge flap

Measurement 9m/s 11m/s 18m/s
Low speed shaft torque -1.9 6.3 12.0
Blade root edge moment 1.1 1.5 -0.3
Blade root flap moment -23.8 -11.9 -12.6
Blade root pitch moment -2.8 1.7 14.9
Tower base side-side moment 0.3 1.8 -5.3
Tower base fore-aft moment -16 -12.3 -3.0
Tower top yaw moment -29.2 -19.0 -21.3

plots of the blade root bending moment damage equivalent loads, based on the load frequency and

mean wind speed, highlight that most fatigue loads are at high wind speeds, low frequencies (below

5Hz) and at blade passing frequencies. This type of load analysis, along with power spectral density

plots, helps resolve where the smart rotor control should focus in order to increase turbine lifetime,

see Figure 5.4.

Figure 5.4: Fatigue analysis in the frequency domain of the blade flapwise root bending moment.
Darker red colors indicate higher fatigue damage contributions [24]

78

Chapter 5 Performance analysis

5.2 Metrics

Different metrics may be considered useful for different purposes. A measurement of the standard

deviation of certain loads may be used to quickly determine whether the control is acting as required.

Power spectral density plots may be used to assess what the frequencies of the loads that need

mitigating are and whether the control is acting to reduce these loads. Whereas damage equivalent

loads and other load calculations help determine how cost effective using the smart rotor concept

would actually be. Just looking at any one of these does not give the full picture, so it is important

to consider a number of these to get a global understanding of the effect the smart rotor is having

on the wind turbine.

There are three overall approaches that have been used to determine the performance of wind

turbines: basic statistics, time domain load analysis and frequency analysis. Basic statistics include

using the mean, recording the maximums and minimums, and calculating the standard deviation.

Time domain analysis is slightly more complicated, often using rainflow counting and Miner’s rule

to determine damage, as per the IEC 61400-1 standard [25], or damage equivalent loads, which are

preferred when specific design restraints are unknown. Then frequency domain analysis involves

converting signals to the frequency domain and plotting power spectral densities.

Calculating the mean, standard deviation and extremes of the signals are a quick method to

determine what effect the control strategy or any other altered parameter is having on the mea-

surements, but it does not quantify the changes in a practical way: a 50% decrease in standard

deviation for example does not necessarily correlate to a specific improvement in design life. To

quantify changes in loads, calculation of damage equivalent loads (DELs) is common. Power Spec-

tral Density (PSD) plots on the other hand aid in determining at which frequencies damping or

control action is required and determining what the root cause is.

5.2.1 Power spectral density plots

Power spectral density plots display the frequencies at which most of the energy, and so damage, is

focussed. The standard log-log plots can be supplemented with cumulative plots to recognise this

more clearly. For example in Figure 5.5 and Figure 5.6 of the flapwise blade root bending moment,

most energy can be seen to be focussed at low frequencies and at the rotational frequency of the

turbine, 1.26rad/s, and harmonics thereof. While Figures 5.7 and 5.8, this time of the high speed

shaft speed, highlight the influence of the first drive-train mode and the need for damping at this

frequency. The drawback of the frequency analysis is that it is hard to monetise any variations and

this is why damage equivalent loads are often used.

5.2.2 Damage equivalent loads

Damage equivalent loads are calculated in the time domain using rainflow counting to determine the

stress cycles and then these are converted to damage using Wohler SN-curves and Palmgren-Miner’s

rule. The process described here is similar to that used in [26].

The procedures for rainflow counting are documented in the ASTM standard E1049-85 [27].

There are a number of different ways to conduct rainflow counting, for example in Bladed the

process is to order the maxima and minima then calculate the cycles, but the process used here is

79

Chapter 5 Performance analysis

Figure 5.5: PSD of blade root bending moment

Figure 5.6: Cumulative PSD of blade root bending moment

80

Chapter 5 Performance analysis

Figure 5.7: PSD of high speed shaft torque

Figure 5.8: Cumulative PSD of high speed shaft torque

81

Chapter 5 Performance analysis

as described in section 5.4.4 of the ASTM standard, and is as follows: let X denote range under

consideration; Y, the previous range adjacent to X, and S, the starting point in the history.

1. Read next reversal (peak or valley). If out of data, go to Step 6.

2. If there are less than three points, go to Step 1. Form ranges X and Y using the three most

recent reversals that have not been discarded.

3. Compare the absolute values of ranges X and Y

If X < Y , go to Step 1

If X >= Y , go to Step 4.

4. If range Y contains the starting point S, go to Step 5; otherwise, count range Y as one cycle;

discard the reversals of Y; and go to Step 2.

5. Count range Y as one half cycle; discard the first reversal in range Y; move the starting point

to the second point in range Y; and go to Step 2.

6. Count each range that has not previously been counted as a half cycle.

The results of using this method on a time series of the blade root bending moment are shown

in Figure 5.9. Note although there are higher harmonics in the spectrum, these are rarely counted

as they do not result in a reversal, so do not affect the fatigue life of the component.

Figure 5.9: Example of the rainflow counting peak selection process

These cycles then need converting to stress ranges. To convert bending moments to stresses the

required formula is

S =
M × y
Ix

(5.1)

82

Chapter 5 Performance analysis

where M is the moment about the neutral axis, y the perpendicular distance to the neutral axis,

and Ix the second moment of area about the neutral axis x. At the hub, the blade section is

cylindrical; the second moment of area may therefore be described by

Ix =
π

4
(r42 − r41) (5.2)

where r2 is the outer radius of the cylinder, and r1 the inner radius. The maximum stresses will

occur at the outer radius, y = r2. The outer radius is given for the NREL 5MW wind turbine,

r2 = 3.5m, unfortunately the inner radius of the cylinder is not given, however an estimate can be

made from the mass per unit length, 715kg/m, and density of the blade assuming it is glass fibre,

2500kg/m3, resulting in r1 = 3.487m, implying Ix = 1.745m4, and the conversion factor for the

root bending moment, MRBM , to maximum stress at the blade root, S, is thus S = 2.01×MRBM ,

in all directions.

Once the number of cycles at different stress ranges has been determined they can be used

to calculate damage equivalent loads using Wohler S-N curves. Wohler S-N curves describe the

number of sinusoidal cycles at different stress ranges before failure occurs, and are dependent on

the material under consideration, for example they have different Wohler exponents and endurance

limits. The formula describing the S-N curve is

N = ND(SD/S)m (5.3)

where m is the Wohler exponent, SD is the endurance limit of the material and ND the number

of cycles to failure at this limit. A typical constant amplitude curve for steel and glass reinforced

plastic (fibreglass) is shown in Figure 5.10, with Wohler exponents 4 and 10 for steel and fibreglass

respectively. The endurance limit of steel is estimated to be 200MPa at 106 cycles and 175MPa

for fibreglass at 108 cycles.

Figure 5.10: Example of constant amplitude SN-curves for steel and fibreglass

83

Chapter 5 Performance analysis

When the loads vary in amplitude, stress ranges below the endurance value may also lead to

component failure, as they can extend existing cracks in the material. To take this into account

the SN curve is extended. Two methods used are elementary Miner’s method: whereby the curve

is simply continued beyond the endurance limit; and Haibachs method: whereby the slope of the

curve is modified slightly beyond the endurance limit. These are portrayed in Figure 5.11. The

treatment of small cycles however has been shown to have little impact on damage prediction, so

use of Elementary Miner’s method is appropriate as a conservative estimate [28] (referenced in [26]).

Figure 5.11: Constant and variable amplitude SN-curves for steel

Another factor affecting the number of loads to failure is the mean of the stress range. The S-N

curve may be modified to take the mean stress into account using an empirical relationship. This

is typically portrayed using the R value, R = Smax/Smin, where Smax and Smin are the maximum

and minimum stresses during a cycle. The Goodman formula is a trusted relationship to account

for non-zero means, defined by Sa
Se

+ Sm
Su

= 1, where Se is the endurance limit of the material, Su

the ultimate limit, Sm the mean stress, and Sa the adjusted S-N curve of constant life. A graph of

some different options is shown in Figure 5.12 for steel, with the area below the curves being the

operable life zone, and that above being the failure zone.

Unfortunately there is limited data available for the composite materials used in wind turbine

blades, and the Goodman diagram is often of a non-linear nature. The mean stress is therefore

typically ignored in damage calculations regarding the wind turbine blades [29], but an approach

that at least accounts for the mean stress is to use an idealised Goodman curve, with the assumptions

that the curve is symmetric (i.e. tensile and compressive actions are equivalent) and that fatigue

strength decreases linearly from a maximum at zero mean stress to zero at the ultimate tensile

and compressive strengths. A simple relationship can then be used to alter the calculated damage

equivalent loads. Metals require a similar mean stress correction [26].

Miner’s rule allows the calculation of the total damage, D, of partial damages, di, due to a finite

84

Chapter 5 Performance analysis

Figure 5.12: Methods to account for non-zero mean stress ranges

number of cycles, ni, at different stress ranges with cycles to failure Ni, as follows

D =

n∑
i=1

di =

n∑
i=1

ni
Ni

(5.4)

If Elementary Miner’s method is used to extend the SN curve such that the SN curve is fully

defined by S = k
N

1
m then the total damage can be rewritten as

D =

n∑
i=1

ni
Ni

=

n∑
i=1

ni
Nref

(
Si
Sref

)m
(5.5)

where S is the stress range and the subscript ref denotes a reference value on the SN curve. Damage

Equivalent Loads (DELs) relate the total damage to an equivalent load over a chosen number of

cycles

D =
n∑
i=1

ni
Nref

(
Si
Sref

)m
=

Neq

Nref

(
Seq
Sref

)m (5.6)

which rearranging leads to

Seq = N
− 1
m

eq

(
n∑
i=1

niS
m
i

) 1
m

(5.7)

If Neq is set to the duration of the sampled data, i.e. 600s, then the 1Hz damage equivalent

load is calculated. It then becomes possible to compare different load conditions and controller

options using this metric, often called the 1Hz Damage Equivalent Load (1Hz DEL or DEQL)

without detailed knowledge of the SN curve required to determine the actual damage over the wind

turbines lifetime.

To determine how a given reduction affects the lifetime of the wind turbine, a simple calculation

taking account of the Wohler coefficient is needed, given by, (Seq,old/Seq,new)m. Different load

85

Chapter 5 Performance analysis

scenarios may also be compared relative to each other over the lifetime of the turbine by comparing

their probability of occurring and damage equivalent loads.

drel,j =
dj
D

=
LjS

m
eq,j

n∑
j=1

LjSmeq,j

(5.8)

where Lj is the duration and Smeq,j the 1Hz damage equivalent load of a particular load scenario.

For example this could be used to calculate the relative loads at various wind speeds using the wind

speed distribution at the site.

Finally, to account for non-zero mean oscillations, a similar process of describing the stress range

caused by a non-zero oscillation with an equivalent stress range with zero mean may be used. For

composites using an idealised symmetric Goodman curve this is defined by

Seq(Sm = 0) = N
− 1
m

eq

(
n∑
i=1

ni

(
Si

1− |Sm|UTS

)m) 1
m

(5.9)

where UTS is the ultimate tensile strength, and Sm the mean of the stress range. An equivalent

for metals is described by

Seq(Sm = 0) = N
− 1
m

eq

(
n∑
i=1

ni(Si + 2MSm,i)
m

) 1
m

(5.10)

where M is the mean stress sensitivity, which for steel is M ≈ 0.075 and cast iron M ≈ 0.19.

5.2.3 Extreme load extrapolation

For extreme loads it is often necessary to do a statistical extrapolation to determine the 1-in-50-

year loading on a wind turbine component. In the Bladed manual to do this extrapolation fifty

40-minute simulations for each external condition, e.g. mean wind speed, are recommended for

offshore wind turbines [30]. The IEC 61400-1 standard [25] on the other hand facilitates the use

of the same simulations as required for fatigue load analysis. The process proposed in the IEC

standard is therefore preferable for easy analysis. The process used for determining the 50 year

extreme load is described below:

1. Extract extreme values from all runs at each given wind speed, vj . The extreme values are

defined as the largest value between successive upcrossings of the mean plus 1.4 standard

deviations, as proposed in the IEC standard.

2. Fit a Gumbel (extreme-value) distribution to the extracted data for each wind speed, P (F |vj)

3. Calculate the long term exceedance probability, Pe(F), for a reference period of 10 minutes,

taking account of the Rayleigh distribution of wind speeds, P (vj), and the expected number

of extreme loads in 10 minutes, n10m,

Pe(F) =
∑
j

(1− (1− P (F |vj))n10m)× P (vj) (5.11)

86

Chapter 5 Performance analysis

Binning is used for this calculation such that vj is the centre of the bins extending ±∆vj/2,

where ∆vj is the separation between mean wind speeds

4. Determine the 50-year load exceedance value, defined as Fk, found where P (Fk) = 3.8×10−7,

which is the probability of a 10 minute period occurring once every 50 years

The tools for these analysis methods are developed in MATLAB and are included in Appendix D.

87

Chapter 5 Performance analysis

5.3 Design load cases

In addition to the various metrics that may be used to assess the effectiveness of the controller,

different load cases may also be used. Much of the smart rotor control concepts have focussed on

minimising fatigue loads and so have used the IEC standard as a reference. The IEC load cases

appear the sensible choice, as it is the industry standard and so well defined, and allows comparison

with some of the other works. Work has also been conducted looking into the effect of the smart

rotor control in meandering wakes (produced from wind turbines upwind) [6] and during more

turbulent flows (IEC extreme turbulence model) [31] and under extreme loads such as gusts [14].

The full set of load cases required for certification is described in [25]. The standard takes

account of various situations: power production, faults, start up, normal shut down, and emergency

shut down; amongst others. The design load cases that are most relevant are those during normal

power production, although the smart rotor may also affect other design situations for example

start up or emergency shut down and faults, including in the smart rotor system itself, looked at

in Chapter 10.

A good analysis of the design load cases and their affect on loads is given in [13], which looks at

a wide selection of design load cases to study both the extreme and fatigue loads on the NREL/Up-

Wind 5MW reference wind turbine. Figure 5.13 shows that DLC 1.1/1.2 contributes the most

to fatigue damage. This is the design load case for when the wind turbine is in normal power

production, under normal turbulence wind conditions. The difference between DLC 1.1 and 1.2

is the method of post-processing used, explained in Section 5.3.1. The loads on the tower fore-aft

moment are also affected by design load cases 4.1, normal shut down, and 3.1, normal start up.

From these results it would appear sensible to use only DLC 1.2 for analysing the fatigue damage.

Although if the effect the smart rotor control has on the tower is of importance the fatigue loads

on this component should be checked with both DLC 1.2 and DLC 4.1 for completeness.

Figure 5.13: Relative contributions of fatigue damage by design load case where: Mx,My,Mz are
the blade in-plane, out-of-plane and pitch moments respectively, MFA and MSS are the fore-aft
and side-side tower moments, Myaw the tower yaw moment, and MDT the main shaft torsion [24]

DLC 1.2 is also used by a number of other authors for testing fatigue load reductions for this

88

Chapter 5 Performance analysis

reason. Examples of works that either directly cite DLC 1.2, or which follow similar cases and use

the normal turbulence model (NTM), are [3], [4], [6], [11], [12], [20], [23], [31], [32], [33], [34] and

[35].

The extreme loads are slightly more complex, with different design load cases causing maximum

loads for different wind turbine components, as seen in the analysis of [13]: DLC 1.3, normal

operation but with an extreme turbulence wind field model (ETM), causes the highest loads for

main shaft torsion and tower yaw moments, and second highest on the tower side-side moment;

DLC 1.4, an extreme coherent gust with direction change (ECD), results in the highest blade flap

moment, and DLC 2.3, a fault during power production with an extreme operational gust (EOG),

the greatest loads for the blade edge and tower fore-aft moments. The extreme loads on the tower

side-side moment are caused by DLC 6.1-6.3, but these are cases when the turbine is stopped

(standing still or idling) and as such these design load cases will unlikely be affected by any smart

rotor control strategy. DLC 1.3, 1.4 and 2.3 are therefore used in [32] and [36] to calculate the

extreme loads of the blade flap, edge and torsion moments, tower fore-aft, side-side and torsion

moments, and the shaft torsion moments.

Figure 5.14: Maximum loads for various design load cases. Acronyms as in text, additionally with
EWS referring to extreme wind shear [24]

DLC 1.4 and 2.3 are both operation under an extreme operational gust. The response of the

smart rotor to gusts is also considered in [14]. A point that is raised is that the IEC standard gust

is a global gust across the entire rotor, whereas local gusts are of more interest to the smart rotor

control, because the devices on the smart rotor can react to local wind field variations.

When considering tip deflection that may cause tower strike in [37] the design load cases that are

seen to be most important are DLC 2.2, 3.2 and 3.3, because these cause the largest tip deflections

89

Chapter 5 Performance analysis

as seen in Table 5.15.

Figure 5.15: Maximum tip deflection in the out-of-plane direction for various design load cases.
Acronyms as in text, additionally with NWP referring to a normal wind profile [37]

The design load case to employ during simulations depends on the control objective, which is

primarily fatigue load reduction. Simulations in this thesis therefore focus on DLC 1.2 as this is

most relevant to fatigue loads and simplifies analysis.

5.3.1 DLC 1.1 and 1.2

Design Load Case 1.1 and 1.2 are identical but DLC 1.1 is utilised to extrapolate for extreme loads

and DLC 1.2 is utilised to calculate fatigue loads during normal power production. DLC 1.1 and 1.2

are employed to determine the loads that result from atmospheric turbulence that occurs during the

normal operation of the wind turbine throughout the wind turbine’s lifetime. A Normal Turbulence

Model (NTM) is used to simulate the wind at a range of wind speeds. The IEC standard considers

a resolution of 2m/s sufficient to account for the wind turbine operating in all wind speeds, with at

least six 10-minute runs for each wind speed. Particular attention should be paid to wind speeds

expected to be the most adverse for the wind turbine design. This includes testing with simulations

of an 8 degree inclination to the horizontal axis of the wind turbine.

The standard categorises wind turbines into different classes depending on their suitability to

different wind conditions. The wind condition parameters that need to be used for each class are

shown in Figure 5.16

Figure 5.16: Basic parameters from the IEC standard for wind turbine classes [25]

90

Chapter 5 Performance analysis

So for example a class IB wind turbine, as used in the UpWind project [19] and specified in the

REpower technical data sheet [38] and so used in this work, has a 10 minute mean reference wind

speed of 50 m/s, and a reference turbulence intensity at 15m/s of 0.14. These parameters are used

in modelling the wind conditions detailed below.

The normal wind conditions include a wind speed distribution that has a Rayleigh distribution

about the mean 10 minute wind speed at hub height, Vhub, given by

PR(Vhub) = 1− exp

[
−π
(
Vhub
2Vave

)2
]

(5.12)

where Vave = 0.2Vref .

The wind profile is given by the power law

V (z) = Vhub

(
z

Vhub

)α
(5.13)

where the power law exponent α assumed to be 0.2. This defines the average vertical wind shear.

In the normal turbulence model (NTM) the representative value of the turbulence standard

deviation, σ1, is given by the 90% quantile for the given hub height wind speed. This value for the

different wind turbine classes is given by

σ1 = Iref (0.75Vhub + b) (5.14)

where b = 5.6m/s.

Regarding the details of the normal turbulence model, it should satisfy a number of requirements:

� The turbulence standard deviation, σ1, in the direction of the mean wind flow (longitudinal

direction) should be invariant with height, and the components normal to the mean wind

speed should have minimum standard deviations of:

Lateral component (horizontal and normal to the longitudinal direction), σ2 >= 0.7σ1

Upward component (tilted from the vertical by the mean flow inclination angle, normal

to the other components), σ3 >= 0.5σ1

� The longitudinal turbulence scale parameter, Λ1, at hub-height z, shall be given by: Λ1 = 0.7z

when z <= 60m and 42m when z >= 60m. The power spectral densities of the three

orthogonal components, S1(f), S2(f) and S3(f) shall asymptotically approach the following

forms as the frequency in the inertial sub range increases S1(f) = 0.05σ2
1(Λ1/Vhub)

−2/3f−5/3,

and S2(f) = S3(f) = 4
3S1(f)

� A recognised model for coherence, defined as the magnitude of the co-spectrum divided by

the auto-spectrum for the longitudinal velocity components at spatially separated points in

a plane normal to the longitudinal direction, shall be used.

The IEC standard recommends the Mann uniform shear turbulence model which fulfils these

requirements, and also lists the Kaimal spectral and exponential coherence model as an alterna-

tive. Other models are discouraged as the choice of wind field model can affect loads significantly.

Annex B in the IEC standard describes both of these models.

91

Chapter 5 Performance analysis

Bladed is capable of creating these two spectrums for use in simulations. The parameters

required for the Mann wind field model are: Shear parameter, γ, Scale length, L, FFT points and

the Maximum lateral/vertical wavelengths. The Kaimal model in Bladed requires the following

parameters: turbulence length scales for the longitudinal, lateral and vertical directions, coherence

scale parameter and coherence decay constant. TurbSim, an open source alternative from NREL,

is also capable of creating the IEC Kaimal wind field spectrums. Both Bladed and TurbSim have

the option of using the von Karman spectrum, which was included in the 2nd edition of the IEC

standard, but excluded from the 3rd. The two software packages may also be used to create gusts

or more extreme wind field profiles that may be used to test the wind turbine under additional IEC

design load cases.

The IEC 61400-1 Ed. 3 Design Load Case (DLC) 1.2 accounts for the fatigue loads and uses

the normal turbulence model (NTM), which is dependent on the wind turbine design class as the

wind field input. The exact parameters used in the wind field synthesis and its effect on the wind

turbine are explored in the following chapter.

92

Chapter 5 Performance analysis

References

[1] C. Aubrey, “Supply Chain: The race to meet demand,” Wind Directions, pp. 27–34, Feb. 2007.

[2] T. J. McCoy and D. A. Griffin, “Control of Rotor Geometry and Aerodynamics: Retractable

Blades and Advanced Concepts,” Wind Engineering, vol. 32, pp. 13–26, Jan. 2008.

[3] D. Berg, D. G. Wilson, M. F. Barone, B. R. Resor, J. Berg, S. Kota, G. Ervin, and D. Maric,

“The impact of active aerodynamic load control on fatigue and energy capture at low wind

speed sites,” in EWEC, (Marseille, France), US Government: Sandia National Laboratories,

FlexSys Inc., 2009.

[4] D. Berg, D. G. Wilson, B. R. Resor, M. F. Barone, J. Berg, S. Kota, and G. Ervin, “Active

aerodynamic blade load control impacts on utility-scale wind turbines,” in AWEA Windpower,

(Chicago, Illinois, USA), 2009.

[5] S. J. Johnson, C. P. V. Dam, and D. Berg, “Active Load Control Techniques for Wind Tur-

bines,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico, USA, 2008.

[6] P. B. Andersen, Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge

Flaps: Sensoring and Control. PhD thesis, Technical University of Denmark, 2010.

[7] T. K. Barlas and G. A. M. van Kuik, “State of the art and prospectives of smart rotor control

for wind turbines,” Journal of Physics: Conference Series, vol. 75, July 2007.

[8] Y. H. Yu, B. Gmelin, W. Splettstoesser, J. J. Philippe, J. Prieur, and T. F. Brooks, “Reduction

of helicopter blade-vortex interaction noise by active rotor control technology,” Progress in

Aerospace Sciences, vol. 33, no. 97, pp. 647–687, 1997.

[9] J. G. Stuart, A. D. Wright, and C. P. Butterfield, “Considerations for an integrated wind tur-

bine controls capability at the National Wind Technology Center: An aileron control case study

for power regulation and load mitigation,” tech. rep., National Renewable Energy Laboratory

(NREL), Golden, CO, USA, June 1996.

[10] S. Joncas, O. Bergsma, and A. Beukers, “Power Regulation and Optimization of Offshore Wind

Turbines Through Trailing Edge Flap Control,” in 43rd AIAA Aerospace Sciences Meeting and

Exhibit, (Reston, Virigina), American Institute of Aeronautics and Astronautics, Jan. 2005.

[11] B. A. H. Marrant and T. van Holten, “Comparison of smart rotor blade concepts for large

offshore wind turbines,” in Offshore Wind Energy and Other Renewable Energies in Mediter-

ranean and European Seas, vol. 31, (Civitavecchia, Italy), 2006.

[12] T. J. Larsen, H. A. Madsen, and K. Thomsen, “Active load reduction using individual pitch,

based on local blade flow measurements,” Wind Energy, vol. 8, pp. 67–80, Jan. 2005.

[13] L. Bergami, “Adaptive Trailing Edge Flaps for Active Load Reduction,” in 7th PhD Seminar

on Wind Energy in Europe, (Delft University of Technology, Netherlands), 2011.

[14] M. A. Lackner and G. A. M. van Kuik, “The Performance of Wind Turbine Smart Rotor

Control Approaches During Extreme Loads,” Journal of Solar Energy Engineering, vol. 132,

2010.

93

Chapter 5 Performance analysis

[15] J.-W. van Wingerden, A. W. Hulskamp, T. K. Barlas, B. A. H. Marrant, G. A. M. van Kuik,

D.-P. Molenaar, and M. Verhaegen, “On the proof of concept of a Smart wind turbine rotor

blade for load alleviation,” Wind Energy, vol. 11, pp. 265–280, May 2008.

[16] S. J. Johnson, J. P. Baker, C. P. van Dam, and D. Berg, “An overview of active load control

techniques for wind turbines with an emphasis on microtabs,” Wind Energy, vol. 13, pp. 239–

253, Mar. 2010.

[17] A. W. Hulskamp, J.-W. van Wingerden, T. K. Barlas, H. Champliaud, G. A. M. van Kuik,

H. Bersee, and M. Verhaegen, “Design of a scaled wind turbine with a smart rotor for dynamic

load control experiments,” Wind Energy, vol. 14, pp. 339–354, Apr. 2011.

[18] T. K. Barlas and G. A. M. van Kuik, “Review of state of the art in smart rotor control research

for wind turbines,” Progress in Aerospace Sciences, vol. 46, pp. 1–27, Jan. 2010.

[19] N. Fichaux, J. Beurskens, P. H. Jensen, and J. Wilkes, Design limits and solutions for very

large wind turbines: A 20 MW turbine is feasible. EWEA, 2011.

[20] T. K. Barlas, G. van der Veen, and G. A. M. van Kuik, “Model predictive control for wind

turbines with distributed active flaps: incorporating inflow signals and actuator constraints,”

Wind Energy, vol. 15, pp. 757–771, July 2012.

[21] E. A. Bossanyi, “Further load reductions with individual pitch control,” Wind Energy, vol. 8,

pp. 481–485, Oct. 2005.

[22] W. P. Engels, S. K. Kanev, and T. G. V. Engelen, “Distributed blade control,” in TORQUE:

The Science of Making Torque from Wind, (Heraklion, Crete, Greece), EWEA, 2010.

[23] D. G. Wilson, D. Berg, B. R. Resor, M. F. Barone, and J. Berg, “Combined individual pitch

control and active aerodynamic load controller investigation for the 5mw upwind turbine,” in

AWEA Wind Power Conference, (Chicago, Illinois), 2009.

[24] L. Bergami, Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Con-

figuration. PhD thesis, Denmark Technical University, 2013.

[25] IEC, “IEC 61400-1 Ed.3: Wind turbines - Part 1: Design requirements,” 2005.

[26] Dick Veldkamp, Chances in wind energy: a probalistic approach to wind turbine fatigue design.

PhD thesis, Delft University, 2006.

[27] ASTM-standard, “ASTM E1049-85: Standard Practices for Cycle Counting in Fatigue Anal-

ysis,” tech. rep., ASTM International, West Conshohocken, PA, USA, 2011.

[28] K. G. Eulitz, “Lebensdauervorhersage I - Verbesserung der Lebensdauerabschatzung durch sys-

tematische Aufarbeitung und Auswertung vorliegender Versuchsreihen,” tech. rep., TU Dres-

den, Dresden, 1994.

[29] H. J. Sutherland and J. F. Mandell, “Updated Goodman Diagrams for Fiberglass Composite

Materials using the DOE/MSU Fatigue Database,” Global Windpower, p. 12, 2004.

[30] E. A. Bossanyi, “Bladed User Manual,” tech. rep., DNV GL, Bristol, 2013.

94

Chapter 5 Performance analysis

[31] M. A. Lackner and G. A. M. van Kuik, “A comparison of smart rotor control approaches using

trailing edge flaps and individual pitch control,” Wind Energy, vol. 13, pp. 117–134, Mar. 2010.

[32] L. Bergami, M. Gaunaa, and J. Heinz, “Indicial lift response function: an empirical relation for

finite-thickness airfoils, and effects on aeroelastic simulations,” Wind Energy, vol. 16, pp. 681–

693, July 2013.

[33] D. Castaignet, N. K. Poulsen, T. Buhl, and J. J. Wedel-Heinen, “Model predictive control of

trailing edge flaps on a wind turbine blade,” in American Control Conference, (San Francisco,

CA, USA), pp. 4398–4403, AACC, 2011.

[34] D. Berg, D. G. Wilson, B. R. Resor, J. Berg, T. K. Barlas, A. Crowther, and C. Halse,

“System ID Modern Control Algorithms for Active Aerodynamic Load Control and Impact

on Gearbox,” in TORQUE: The Science of Making Torque from Wind, (Heraklion, Crete,

Greece), 2010.

[35] B. R. Resor, D. G. Wilson, D. Berg, J. Berg, T. K. Barlas, J.-W. van Wingerden, and G. A. M.

van Kuik, “Impact of higher fidelity models on simulation of active aerodynamic load control

for fatigue damage reduction,” in 48th AIAA Aerospace Sciences Meeting Including the New

Horizons Forum and Aerospace Exposition, (Orlando, Florida), 2010.

[36] E. A. Bossanyi, B. Savini, M. Iribas, M. Hau, B. Fischer, D. Schlipf, T. G. V. Engelen,

M. Rossetti, and C. E. Carcangiu, “Advanced controller research for multi-MW wind turbines

in the UPWIND project,” Wind Energy, vol. 15, pp. 119–145, Jan. 2012.

[37] J. Peeringa, R. Brood, O. Ceyhan, W. P. Engels, G. de Winkel, and G. de Winkel, “Upwind

20MW Wind Turbine Pre-Design: Blade design and control,” tech. rep., Energy Research

Centre of the Netherlands, 2011.

[38] REPower Systems, “REpower Systems, 5M: The 5-megawatt power plant with 126 metre rotor

diameter,” 2014.

95

Chapter 6

Wind field synthesis

Design load cases 1.1/1.2 both use the normal turbulence model as described in the IEC 61400-1

standard. The standard suggests that either the Kaimal or Mann wind field model be used for

creating these 3D turbulent wind fields, but while certain parameters are defined, details such as

the grid spatial and time resolution are not defined. This is likely due to the actual requirement for

accurate results varying depending on wind turbine size and the modelling used. The sensitivity of

simulations to these and other wind field parameters are looked at here.

This chapter describes the normal turbulence model as defined in the IEC standard in Section

6.1, determines the appropriate grid spatial and time resolutions for creating 3D turbulent wind

fields to acquire accurate results in Section 6.2, and looks at the two suggested wind field models in

Section 6.3. Then in Section 6.4 the sensitivity of the load reduction results to turbulence intensity,

wind shear and tower shadow are considered. Finally a summary is given at the end of the chapter.

96

Chapter 6 Wind field synthesis

6.1 Normal turbulence model wind fields

The Design Load Cases (DLC) that are being used to assess the performance of the controllers

and wind turbine are DLC 1.1/1.2, as described in the previous chapter. These are taken from

the IEC 61400-1 standard, edition 3 [1]. Both of these cases use the normal turbulence model that

defines wind fields likely to be present under normal operation of the wind turbine. Two models are

recommended for creating these wind fields: they are the Mann model and the Kaimal model. The

Mann model is described in [2], while the Kaimal model uses the Veers method for coherence [3].

Specific parameters for these two models are given in the standard, and these, along with general

parameters that are used in this work, are defined in Table 6.1. Additional reasons for selecting

certain parameters are noted alongside the table entries.

Table 6.1: Normal turbulence model wind field parameters for Kaimal and Mann models

General parameters Value Reason/Recommendation
Number of points along Y 31 NREL forum, GL standard < 5m spacing
Number of points along Z 31 NREL forum, GL standard < 5m spacing
Volume width Y 130m NREL 5MW to encompass rotor
Volume height Z 130m NREL 5MW to encompass rotor
Duration of wind file 600s IEC/Bladed
Frequency along X (f) ≈10Hz Bladed
Time step s (T = 1/f) ≈0.01s Bladed
Mean wind speed U 4-25m/s IEC
Turbulence seed -
Kaimal model
Turbulence scale parameter (Λ1) 42m IEC/NREL 5MW hub height > 60m
Longitudinal (xLu = 8.1Λ1) 340.2m IEC
Lateral (xLv = 2.7Λ1) 113.4m IEC
Vertical (xLw = 0.66Λ1) 27.72m IEC
Coherence scale parameter (Lc = 8.1Λ1) 340.2m IEC
Coherence decay parameter (H) 12 IEC
Mann model
Shear parameter (γ) 3.9 IEC
Scale length (L = 0.8 or 0.7Λ) 33.6 IEC
FFT points in lateral/vertical direction 128 Bladed > 32
Max lateral/vertical wavelength 168m Bladed > widthY orZ

The 3D turbulent wind fields used in this work are created using Bladed [4]. The wind field

outputs from Bladed are 4-dimensional matrices describing wind speed deviations in the longitu-

dinal, lateral and vertical directions for every point in a 3D space encompassing the rotor in the

vertical and lateral directions and stretching longitudinally for a length defined by the mean wind

speed and duration of the wind file. The deviations have the dimensionless form δ = V−V0

IV0
where

V is the point wind speed, V0 is the mean wind speed and I the turbulence intensity.

This turbulent wind field can then be used, assuming Taylor’s frozen wake hypothesis, as the

input file to full wind turbine simulations, with the wind speed being calculated at the rotor by the

formula

V (r, φ, t) = V0Fs0(Fs + Iδ(r, φ, t))FtFw (6.1)

where Fs0 is the wind shear factor from the reference height (for mean wind speed V0) to the hub

height; Fs is the wind shear factor from the hub height to the point defined by polar coordinates

97

Chapter 6 Wind field synthesis

(r, φ), with r the radius from the centre of the rotor and φ the azimuth angle; Ft is the tower

shadow factor for the point (r, φ); and, Fw is the upwind turbine wake factor for point (r, φ). This

is as presented in [5]. A cubic interpolation is used between data points.

98

Chapter 6 Wind field synthesis

6.2 Grid resolution

The grid resolution required for accurate simulations is determined by running simulations with the

NREL 5MW wind turbine and baseline controller with a variety of grid sizes. Six fully independent

wind field seeds are used at 16m/s mean wind speed to quantify uncertainty that is naturally present

due to the stochastic nature of the wind. For determining the required spatial resolution, a 61×61

grid wind field is created in TurbSim using the Kaimal model [6], with an along wind frequency

of 20Hz, equating to spacings of 2.16m in the horizontal and vertical directions and 0.8m in the

along wind direction. TurbSim is used here due to it being capable of creating larger data files than

Bladed.

Data is then removed from the wind field to achieve wind files with grid points at the same

positions but with fewer evenly spaced points, i.e. factors of 60 plus one (e.g. 31×31, 21×21,

16×16, 13×13 etc. grids). This is achieved by manipulating the turbulent wind field files using a

MATLAB script adapted from NREL’s TurbSim package, see Appendix E.

Power production runs are conducted for each of these corrected wind fields, with wind shear

and tower shadow disabled to simplify analysis. The results of these runs are shown in Figure 6.1.

As can be seen from the figure the uncertainty between different seeds mean a grid resolution of

approximately 13m is acceptable, as the standard deviation between runs is much greater than the

uncertainty due to the grid resolution. The 13m grid resolution equates to a grid size of 11×11

points for the 130m×130m spatial field required of the NREL 5MW wind turbine.

Figure 6.1: Damage equivalent loads for various wind field spatial resolutions

A similar sensitivity study for time resolution is conducted, using a 31×31 spatial grid and start-

ing with a 0.01s time step (100Hz, 0.16m spacing). Points are then removed to create resolutions

of multiples of this time step. The results are shown in Figure 6.2. The damage equivalent load

converges linearly with smaller time steps (increased resolution), and compared to the standard

deviation between wind field seeds, a time step of even 1s appears reasonable.

The resolutions suggested by GL certification are grid spacings of less than 5m in the rotor

99

Chapter 6 Wind field synthesis

Figure 6.2: Damage equivalent loads for various wind field time resolutions

plane and time resolution greater than 10Hz. From the results above these are seen to be more

than adequate. As such, to conform with both the certification guidelines and take a conservative

approach, the grid size used in this thesis is 31x31, with a time resolution of greater than 10Hz.

The IEC standard specifies two wind field models that may be used, and so the next step,

having verified the suitability of the wind field resolutions, is to look at the sensitivity of the wind

turbine simulations to these models.

100

Chapter 6 Wind field synthesis

6.3 Wind field model: Kaimal and Mann

As the Mann and Kaimal models are recommended by the IEC standard and the models and the

programmes employed to create these wind fields are widely used in research and industry, the

loads should be accurate enough at least for standard wind turbine control. This is supported in [7]

and verified here for the dq-axis implementation of the smart rotor wind turbine. The wind fields

from now on are all produced using Bladed.

The Kaimal spectrum model provides consistent results and, as according to the Kolmogorov

law, approaches the asymptotic limit proportional to n−5/3 at high frequencies, see Figure 6.3. On

the other hand the Mann model drops off quicker than expected by this law, showing deficiency at

high frequencies. Whilst this has been justified as the averaging over a sizeable area for each point

in the wind field [2], it is something to bear in mind as it reduces the overall turbulence intensity

and so affects results, as commented upon in the next section.

Figure 6.3: PSD of the along wind component of the wind field at the hub for both Kaimal and
Mann models

This roll-off at high frequencies can be mitigated by increasing the resolution of the model

parameters, as shown in Figure 6.4. In this case the number of FFT points in the vertical/lateral

domain are altered showing that these affect the high frequency component of the spectra. Clearly

more points are preferable, but there are limits that become clear when considering that arrays can

quickly stretch beyond a gigabyte in size, e.g. the top resolution explored here was over 400MB

(= 8192 × 3 × 128 × 128), and the wind field synthesis occurs in the RAM of the computer. The

roll-off may also have some physical basis, as the turbulence spectrum progresses from the inertial

to dissipation range. The narrower range in frequency in Figure 6.4 compared to Figure 6.3 is

simply due to a lower data sampling rate being used.

Ultimately what is important is that the smart rotor control is accurately represented or that

uncertainties in the results are known. Comparing the 1Hz blade root damage equivalent loads for

a 16m/s mean wind speed with class B turbulence the results are not statistically significant, as

101

Chapter 6 Wind field synthesis

Figure 6.4: PSD of the x component of wind speed at the hub for the Mann model with a varying
number of FFT points in the lateral/vertical directions

shown in Table 6.2. Also in the table it can be seen that the differences in the wind field model are

similar across the control strategies. So that although lower loads are seen for the simulations run

with the Mann model, these are represented across all strategies, and indeed the difference between

the individual pitch control and smart rotor control are negligible when using the same wind field.

This lends credibility to the argument that either wind field may be used for analysis of the smart

rotor.

Table 6.2: 1Hz blade root bending moment DEL at 16m/s mean wind speed

Wind field model CPC IPC SRC
Kaimal 9.1± 0.6 7.6± 0.7 7.5± 0.7
Mann 8.6± 0.3 7.2± 0.5 7.2± 0.5

The decision to use only the Kaimal model for evaluation in this thesis is then for expedi-

ency, consistency and to avoid the uncertainty that exists over the selection of the Mann model

parameters, rather than because of a perception that it is more realistic or better than the Mann

model.

102

Chapter 6 Wind field synthesis

6.4 Sensitivity study

6.4.1 Turbulence intensity

Turbulence can have a significant effect on the loads which a wind turbine experiences. While a

class IB turbine has been chosen for study, it is worth examining the sensitivity of loads and load

reductions a smart rotor wind turbine can achieve based on the other classes of turbulence. To this

end six ten-minute runs are conducted as per the IEC standard DLC 1.2 at a wind speed of 16m/s,

a speed at which significant fatigue load damage occurs [8], for each of the turbulence classes.

The damage equivalent loads are similar for both the Kaimal and Mann models, with increased

turbulence causing increased damage to the wind turbine. The Mann model accounts on average

for 94.3% of the turbulence intensity in the lateral direction, and so this may account for the small

reduction in damage equivalent loads observed in Figure 6.5 for the Mann model.

Figure 6.5: A comparison of 1Hz DEL for class A, B and C turbulence

The effect of increased turbulence intensity is not only to increase loads though, but also to

alter the perceived effectiveness of the advanced controller techniques. The reason for this is that

the dq-axis load reduction controllers perform best at reducing cyclic loads on the wind turbine,

which turbulence has a limited effect on. So while a similar load reduction is achieved regardless of

turbulence intensity, the percentage load reduction is much less when higher turbulence intensities

are used, Table 6.3. This makes it vital for fair comparisons of advanced load reduction controllers

to know at what turbulence intensity the controllers are being tested. The table also highlights that

the percentage load reduction is also affected by the model used. The choice of the Kaimal model

may therefore lead to slightly optimistic load reductions despite conservative damage equivalent

load values.

103

Chapter 6 Wind field synthesis

Table 6.3: 1Hz DEL blade root bending moment load reduction compared to the collective pitch
control case [%]

Turbulence class Kaimal Mann
(turbulence intensity) IPC SRC IPC SRC

A (17.6%) 16.0 15.9 14.0 14.5
B (15.4%) 16.5 17.3 16.2 16.8
C (13.2%) 20.8 21.5 19.4 19.9

6.4.2 Wind shear

Bladed allows creation of wind shear using either the power-law or log-law, or a user defined wind

shear. The IEC standard suggests using the power-law, V (z) = Vhub(z/zhub)
α, with α = 0.2.

However, it is worth considering how appropriate it is to use this value considering studies have

shown it to vary considerably. For example [9] has values from 0.3 to 0.45 for a single site varying

each month throughout the year, while [10] and [11] show the dependency of fatigue damage on wind

profile to be considerable. A look at the effect of the wind shear exponent is therefore important.

Varying the exponent from 0 to 0.5 shows that damage accumulates extremely rapidly with

increased wind shear, see Figure 6.6. This plot also clearly demonstrates the advantages of using

load reduction techniques, which reduce the damage equivalent loads considerably. Indeed even at

high wind shears the damage equivalent load is below the baseline case with a shear exponent of 0.2

when operating either individual pitch or smart rotor control. This suggests that these advanced

load reduction techniques would likely be best suited to situations where the standard collective

pitch control is unable to satisfy design restraints. An example of this sort of situation are offshore

low level jets, whereby low turbulence but extreme wind shear results in highly damaging cyclic

loads. Independent blade control may then be used to significantly reduce loads, even to below

those of the collective pitch controlled IEC operational load case [12].

The advantage of using advanced control strategies in environments of increasing wind shear

are displayed in Table 6.4. This also demonstrates the requirement again to carefully compare

systems using the same environment, else load reduction potentials could easily be exaggerated to

the preference of one system over another.

Table 6.4: 1Hz DEL blade root bending moment load reduction compared to the collective pitch
control case [%]

Control Wind shear exponent
strategy 0.0 0.1 0.2 0.3 0.4 0.5
IPC 6.1 9.8 16.5 23.8 29.8 34.1
SRC 6.6 10.3 17.3 24.4 30.0 34.4

6.4.3 Tower shadow

Finally tower shadow is considered, assessing its impact on loads and potential load reductions

using the smart rotor and individual pitch control. A potential flow theory is implemented in

Bladed with a tower dimension correction factor of 1.2, and compared with simulations without

tower shadow present.

104

Chapter 6 Wind field synthesis

Figure 6.6: 1Hz DEL at 16m/s wind speed with class B turbulence intensity and various wind
shear exponents using collective pitch control (CPC), individual pitch control (IPC) and smart
rotor control (SRC)

The change in 1Hz damage equivalent loads is as much as 2% for the collective pitch controlled

baseline case, while load reductions are increased as a result of tower shadow when individual pitch

and smart rotor control are active, and these are of approximately one percent. See Table 6.5 for

the actual loads. Tower shadow is therefore an area where smart rotor control can help, though

gains to be had are much smaller than when operating in a strong wind shear.

Table 6.5: 1Hz DEL blade root bending moment load [MNm]

Control strategy No tower shadow Potential tower shadow
CPC 8.94 9.08
IPC 7.58 7.58
SRC 7.50 7.51

105

Chapter 6 Wind field synthesis

6.5 Discussion

The synthesis of wind fields is a highly complex and uncertain area of research with the results in

this chapter helping to clarify the influence various aspects have on the loadings on wind turbines

and the ability to mitigate these using advanced load reduction techniques.

A grid spatial resolution of 31×31 points spread over the 130m×130m square area of the rotor is

seen to accurately produce results while also fulfilling the GL certification standard, requiring less

than 5m grid spacing. A time resolution of greater than 10Hz has also been seen to produce results

that are accurate, with natural stochastic disturbances contributing much more to the uncertainty

in results than the size of the discrete time steps, even with second long intervals.

Both the Kaimal and Mann wind field models are tested, with the Kaimal model selected for use

due to less uncertainty as to the model parameters, but with the understanding that both models

elicit similar responses from the wind turbine. So the choice here is one of pragmatism rather than

an endorsement of the Kaimal model’s suitability over the Mann model.

Sensitivity studies show that turbulence intensity, wind shear and tower shadow all affect both

loads on the wind turbine and the load reductions seen when operating advanced control strategies.

Low turbulence intensities result in low loads but conversely higher percentage reductions using

individual pitch or smart rotor control. While high wind shears cause both higher loadings and the

ability to mitigate these using either of the advanced load reduction strategies, resulting in high

load reductions.

This highlights the importance of fair comparisons, as it is easy to bias results using the en-

vironmental conditions. Either way, an important result is that the smart rotor control operates

just as effectively as the individual pitch control in all these scenarios. Suggesting the wind field

synthesis method used, if assumed to work for testing individual pitch control, can equally be used

for testing smart rotor control.

106

Chapter 6 Wind field synthesis

References

[1] IEC, “IEC 61400-1 Ed.3: Wind turbines - Part 1: Design requirements,” 2005.

[2] J. Mann, “Wind field simulation,” Probabilistic engineering mechanics, vol. 13, pp. 269–282,

Oct. 1998.

[3] P. Veers, “Three-dimensional wind simulation,” tech. rep., Sandia National Laboratories, Al-

buquerque, New Mexico and Livermore, California, 1988.

[4] E. A. Bossanyi, “Bladed User Manual,” tech. rep., DNV GL, Bristol, 2013.

[5] E. A. Bossanyi, “Bladed Theory Manual,” tech. rep., DNV GL, Bristol, 2013.

[6] N. D. Kelley and B. J. Jonkman, “Overview of the TurbSim stochastic inflow turbulence

simulator,” tech. rep., NREL, Golden, CO, USA, 2005.

[7] Dick Veldkamp, Chances in wind energy: a probalistic approach to wind turbine fatigue design.

PhD thesis, Delft University, 2006.

[8] L. Bergami, “Adaptive Trailing Edge Flaps for Active Load Reduction,” in 7th PhD Seminar

on Wind Energy in Europe, (Delft University of Technology, Netherlands), 2011.

[9] R. Farrugia, “The wind shear exponent in a Mediterranean island climate,” Renewable Energy,

vol. 28, pp. 647–653, Apr. 2003.

[10] A. Sathe and W. Bierbooms, “Influence of different wind profiles due to varying atmospheric

stability on the fatigue life of wind turbines,” Journal of Physics: Conference Series, vol. 75,

July 2007.

[11] A. J. Eggers, R. Digumarthi, and K. Chaney, “Wind Shear and Turbulence Effects on Rotor

Fatigue and Loads Control,” Journal of Solar Energy Engineering, vol. 125, no. 4, p. 402, 2003.

[12] D. Robb, C. Gonzalez, P. Clive, W. E. Leithead, and A. Giles, “Offshore Low Level Jets -

Mitigating the Damage with Lidar and Individual Blade Control,” in EWEA Offshore, no. 2003,

(Messe Frankfurt, Germany), 2013.

107

Chapter 7

Trailing edge flap devices

Whilst there are a large number of aerodynamic devices to choose between for the smart rotor

control, as seen in Chapter 3, trailing edge flaps have been selected for use in this thesis as they

are one of the most developed and promising devices. The baseline wind turbine is designed with

flaps that constitute 20% of the chord width of the blade and 20% of the rotor diameter.

This chapter explores this choice. In Section 7.1 the motivation behind exploring different

configurations is given. In Section 7.2 thin aerofoil theory is used to explore the aerodynamic

characteristics, before using XFOIL to test flaps of 10, 20 and 30% chord in Bladed simulations.

The result of these Bladed simulations are given in Section 7.3 with regard to the flap actuator

requirements. Finally conclusions to this research are made at the end of the chapter.

108

Chapter 7 Trailing edge flap devices

7.1 Motivation

There are numerous devices being considered for smart rotor control as explained in Section 3.3 of

the technical review. Trailing edge flaps are one of the most promising and developed technologies,

but there are a variety of types and sizes that can be considered. Research is ongoing in development

of flexible trailing edges so as to achieve a smooth aerofoil profile when deployed and prevent

separation [1], however, rigid trailing edge flaps, like the ailerons on planes, have been implemented

on the two smart rotor wind turbine demonstration plants. For the Sandia wind turbine the

integration, construction and dimensions of the flaps are catalogued in a number of reports [2], [3],

[4], [5], and it is the dimensions of these flaps that act as a starting point for the work here.

Whilst others have also looked at the ideal placement for trailing edge flaps and their span [6],

this work looks at the effect of changing the flap chord width. This further aids in the selection

of trailing edge flaps and in understanding the theory behind them. The blade structure and

method of actuation is important, but both are beyond the scope of this work. It is important

though to recognise what the requirements of such actuators are, and this is considered by looking

at the motions the flaps undergo, the torque requirements and the cause of these: flap inertia,

aerodynamic pressures, gravity and friction, and the aerodynamic characteristics. This facilitates

future selection of the devices.

109

Chapter 7 Trailing edge flap devices

7.2 Aerodynamic characteristics

The NACA 64618 aerofoil profile is used across the entire span where the flap is located, referenced

in Appendix B. It is therefore used in all the calculations that follow. To assess the impact of the

flap’s chord width, three flap sizes are selected of 10, 20 and 30% of the chord extending forward

from the trailing edge. All other dimensions and limits are kept the same. To determine the effect

of the chord width on the aerodynamic characteristics, and indeed control of the wind turbine, thin

aerofoil theory is used to give an overview of the effect that changing the chord width can have.

XFOIL is then used for the three selected flap sizes, with further analysis to support the conclusions

drawn from thin aerofoil theory. Finally the way this data is used in Bladed is described.

7.2.1 Thin aerofoil theory

From thin aerofoil theory, for example as described in [7], a cambered aerofoil’s lift coefficient is

determined by

CL = 2π

α+
1

π

π∫
0

dz

dx
(cos θ0 − 1)dθ0

 (7.1)

where α is the angle of attack of the aerofoil, dz
dx the gradient of the camber along the chord, and

θ0 corresponds to the distance along the chord, x, given by

x =
c

2
(1− cos θ0) (7.2)

The deployment of a rigid trailing edge flap alters the gradient of the camber by a set amount

from the hinge location to the end aerofoil. This can be approximated, using the small angle

approximation, as β (tanβ ≈ β for small β). Such that

∆
dz

dx
=

{
0 if x <xf

β if x ≥ xf
(7.3)

where β is the angle of the flap and xf the hinge position of the flap. This alters the lift as follows

∆CL = 2

π∫
θf

β(cos θ0 − 1)dθ0 (7.4)

where θf is determined through rearrangement of Equation 7.2 for xf as

θf = cos−1
(

1− 2xf
c

)
(7.5)

Substituting this into Equation 7.4 and integrating this then leads to

∆CL = −2β (sin θf + (π − θf)) (7.6)

Immediately it can be seen that the change in lift is a linear function of the flap angle, β, whose

gradient depends on the location of the flap hinge along the chord. This dependency is shown in

Figure 7.1 for a trailing edge flap, showing the change in lift coefficient per degree of flap deployment.

110

Chapter 7 Trailing edge flap devices

This figure shows the decreasing returns for trailing edge flaps of increasing chord, indicating that

a trailing edge flap need not extend too far forwards to achieve good controllability.

The baseline model includes a flap of 20% chord, based on the Sandia smart rotor demonstration

wind turbine [3]. To assess whether this is the ideal size three flap hinge positions are highlighted

as representative of what might be expected for use on a smart rotor wind turbine. These are for

trailing edge flaps with 10%, 20% and 30% chord lengths. The resulting change in lift coefficients for

these flaps are 0.043, 0.060 and 0.072 per degree of flap deployment. Due to the linear relationship

between lift and flap angle, this means, comparing to the 20% chord length flap, the 10% would

have an increased deflection of 39%, and the 30% chord flap reduced deflections of 27%. Controller

gains therefore need to be adjusted accordingly if a fair comparison is to be made.

Figure 7.1: Lift coefficient for a trailing edge flap deflection to the pressure side for various hinge
positions along the chord

The expected lift coefficient from the NACA 64618 aerofoil can also be calculated using Equation

7.1. NACA 6-series aerofoils are defined by their lift, thickness and location of minimum pressure,

rather than a set camber line. It is possible though to work back from the co-ordinates of the

NACA 64618 aerofoil to determine the camber line and fit a polynomial to it. This polynomial can

then be used to calculate the lift.

For a polynomial

p(x) =

N∑
n=0

pnx
n (7.7)

the lift equation can be reduced to

CL = 2π

[
α+

N∑
n=1

pn
(
1 + Γ(n−1)

)]
(7.8)

111

Chapter 7 Trailing edge flap devices

where Γ0 = 0, and otherwise defined for positive integers as

Γn =

n∑
j=1

j∏
k=1

2k − 1

2k
(7.9)

Figure 7.2 shows a 12th order polynomial fit to the camber line of the aerofoil profile. Whilst

higher order polynomials create a better fit and so should better represent the actual camber line,

they can become ill conditioned and lead to numerical errors. The calculated lift as a function

of polynomial order is shown in Figure 7.3. Excluding the extreme values for low and high order

polynomial fits (i.e. for polynomials of order 4 to 34), the lift coefficient averages 0.53, with a

standard deviation of 0.03. This is close to the result from XFOIL, discussed in the following

section, of 0.5259, and demonstrates that thin aerofoil theory is a good estimate to the expected

lift of an aerofoil profile.

Figure 7.2: 12th order polynomial fit to the calculated camber line of the NACA 64618 profile

Similar calculations can be done for the pitching moment produced by deployment of the trailing

edge flap, using Equation 7.12

CM, c4
=
π

4
[A2 −A1] (7.10)

where

An =
2

π

π∫
0

dz

dx
cos(nθ0)dθ0 (7.11)

Inserting the flap profile as described in Equation 7.3 leads to the simple relationship

CM, c4
=
β

π
(sin(2θf)− sin(θf)) (7.12)

which demonstrates a linear relationship between the pitching moment and the flap angle, β, so

that the larger the flap angle, the larger the pitching moment created. As the blade is not rigid,

112

Chapter 7 Trailing edge flap devices

Figure 7.3: Lift coefficient as a function of the polynomial order, with the 12th order polynomial
data point highlighted

this can lead to twisting and in extreme cases control reversal, whereby the trailing edge flaps are

activated to increase lift, but force the blades to twist reducing the angle of attack and so also

the lift. Figure 7.4a shows a plot of the pitching moment per degree flap angle for various flap

hinge locations. As can be seen the three trailing edge flaps that are being looked at all produce

similar pitching moments upon deployment. However, it should be remembered that the larger

flaps require less deflections to achieve the same lift, so the pitching moment to lift ratio is actually

reduced for flaps of greater percentage chord, Figure 7.4b. If blade torsional rigidity is a problem

this suggests that larger chord width flaps should be used.

(a) Quarter chord pitching moment (b) Ratio of pitching moment to lift coefficient

Figure 7.4: Pitching moments for the trailing edge flaps with 10%, 20% and 30% chord length

Additionally the thin aerofoil theory can be used for leading edge flaps. Figure 7.5 highlights

that these are not suitable for altering the lift coefficient, as only very minor changes in lift are

possible unless the leading edge flap extends far back towards the trailing edge, where most of

113

Chapter 7 Trailing edge flap devices

the change in lift is possible. As such leading edge flaps are not usable for active adjustment

of loads. There is an exception to this when operating close to stall, as leading edge flaps can

extend the lift curve beyond its usual operation, but for pitch to feather wind turbines this is not

relevant. Interestingly there is one other advantage, and that is the pitching moment produced from

deployment of a leading edge flap would positively affect control, such that the pitching moment

produced, causing twisting of the blade, would reinforce the desired change in lift, see Figure 7.6.

This may also be used to counteract the adverse pitching moment produced by trailing edge flaps.

Figure 7.5: Lift coefficient for a leading edge flap deflection to the suction side for various hinge
positions along the chord

7.2.2 Modelling the flaps using XFOIL

The aerodynamic characteristics for the three trailing edge flaps are obtained using XFOIL [8],

which allows rapid calculation of the lift, drag and pitching moments for 2D aerofoil shapes. The

flaps are modelled internally in XFOIL hinged to the NACA 64618 aerofoil at the specified chord,

0.7, 0.8 and 0.9c. The hinge is placed at the camber line, i.e. half way between the top and bottom

surfaces, and is assumed to create a smooth attachment. Examples are plotted in Figure 7.7 for

each of the flaps.

The lift coefficients are plotted in Figure 7.8 for the flaps set at various angles, in the range of

attacks -20 to 20 degrees. At high angles of attack, or with high flap deflections, separation occurs

reducing the lift achieved, as can be seen in the tail ends of the graphs and by the bunching of the

curves at top and bottom where the flap angles are highest. XFOIL does not best represent this

region and indeed empirical or semi-empirical results are preferable at these high angles. At high

angles of attack the data from XFOIL is therefore not used, and instead the data is extended using

the original data supplied with the NREL model [9].

Due to the wind turbine control being pitch-to-feather regulated though, ±20◦ is within the

angle-of-attack operating region of the turbine. So in reality the modelled data is the data used

114

Chapter 7 Trailing edge flap devices

Figure 7.6: Quarter chord pitching moment per degree of leading edge flap angle for various locations
of the flap hinge along the chord

and during normal operation the angle of attack remains in the linear part of the lift curves. Any

excursions are rare, negative in nature, and occur only at high wind speeds and near the tip of the

blades. At 24m/s mean wind speed for example, the angle of attack of the blade tips are within

the above limits over 99% of the time.

The flap deflections required also reduce for the larger flap sizes, as it is the change in lift

coefficient that really matters, such that separation is also avoided with regards to this.

An interesting result can be seen in the plots of the aerodynamic characteristics seen in Figure

7.9. While lift and drag are higher for the larger chord width flaps, Figure 7.9a and Figure 7.9b,

the lift to drag ratio is only marginally affected by the chord width, Figure 7.9d, and the same is

true of the pitching moment induced, Figure 7.9c. This suggests that as regards to aerodynamic

performance, any of these flaps may be used.

7.2.3 Device modelling in Bladed

Bladed uses look up tables to calculate the lift, drag and pitching moments on the blades for each

time step. Therefore Bladed does not know the profile of the blade, or indeed differentiate between

what devices are being used. It simply recognises a change in aerodynamic coefficients based on

the angle of attack and “aileron angle” assigned by the controller.

Up to 20 data sets may be used for each flap section, with interpolation done between data

points. As such, the data for flap angles 0, ±2,±4,±6,±8,±10,±12,±14,±18 and ±22 degrees

are used. Structurally, no changes are made to the blades. Although this is not realistic, when

comparing the different methods of control this is beneficial, especially since the main objective is to

reduce loads such that the blades can be redesigned to be cheaper. As an example, the actual data

input is plotted for the 20% chord flap, at a deflection angle of 0 degrees in Figure 7.10, compared

to the original data that comes with the NREL 5MW model [9]. As can be seen there is a slight

115

Chapter 7 Trailing edge flap devices

(a) 10% chord

(b) 20% chord

(c) 30% chord

Figure 7.7: Aerofoil profiles of the NACA 64618 with trailing edge flaps of various chord lengths

116

Chapter 7 Trailing edge flap devices

(a) 10% chord

(b) 20% chord

(c) 30% chord

Figure 7.8: Lift coefficient for each of the flaps at various deployment angles and angles of attack

117

Chapter 7 Trailing edge flap devices

(a) Lift coefficient (b) Drag coefficient

(c) Lift versus pitching moment (d) Lift versus drag

Figure 7.9: Lift, drag and pitching moment polars

118

Chapter 7 Trailing edge flap devices

discontinuity between the data sets, with higher drag seen in the original data, and a reduced peak

in the lift coefficient. It is therefore suggested that in future studies extrapolation from XFOIL for

the entire 360 degrees should be done using QBlade [10], AirfoilPrep [11], RFoil [12] or similar, as

done for the NREL 5MW original data [9], to better represent the aerodynamic characteristics of

the devices. As mentioned though, due to the wind turbine being pitch regulated, angles of attack

outside ±20 degrees are very unlikely.

(a) Original

(b) With a 20% chord flap deployed at 0 degrees

Figure 7.10: Lift, drag and pitching moment polars ready for input into Bladed

119

Chapter 7 Trailing edge flap devices

7.3 Actuator requirements

As demonstrated in the previous section, the aerodynamic characteristics for each of the trailing

edge flaps being considered are very similar and no one chord length is preferable as regards to

this. The aerodynamics are just one aspect of the problem when selecting suitable devices though.

Actuation of the devices also needs to be considered. The flap actuators will have varying require-

ments depending on the chord of the flaps used. The first thing to look at, as suggested by the

reduced change in lift coefficient for the shorter chord flaps, is the flap motion.

7.3.1 Motion

Maximum deflections, travel, rates and accelerations that the flap undergo are displayed in Table

7.1, alongside the out-of-plane blade root bending moment standard deviation, which is represen-

tative of the loads on the blade root. The motion required of the flap actuators can be considered

in combination with the differences in lift coefficient for each of the flaps, as discussed previously.

While the change in lift coefficient per degree of flap deployment are 0.043, 0.060 and 0.072,

according the ratio 1.39:1:0.83 for the 10%, 20% and 30% flaps respectively, the change in flap

motions is slightly different. In fact the ratio is closer to 1.48:1:0.78. This positive bias towards

flaps with greater chord is likely due to the non-linear nature of the lift coefficient at extreme values,

leading to a reduction in the effectiveness of the flaps at high flap angles. This is due to separation

occurring and since high angles are naturally avoided for flaps with greater chord this is to their

benefit. This is also exemplified by the three wind speeds, as even greater motions are required

by the shorter chord width flaps as the wind speed increases. Indeed if the limits applied to the

Sandia plant are reproduced here, which has maximum deflection limits of ±20 degrees, this can

also lead to saturation of the devices, resulting in a loss of control and so increased loads.

When considering the flap deflections that may be required in 1-in-50-year extreme wind cases,

saturation would become all too clear a problem for the shorter flaps, and in fact flaps that are

greater than 30% of the chord may actually be needed to operate optimally in all wind conditions.

However, there is of course a trade off between making the system operate optimally in all condi-

tions, and the costs associated with implementing such a system. Assuming that the Sandia flap is

optimally designed at 20% chord width, for a similar probability of saturation the deflection limits

of the 10% chord flap would have to be extended to ±31 degrees, whilst for the 30% chord flap

these could be reduced to ±15 degrees. Another area that may lead to increased costs is the torque

rating required of the actuator and so is discussed in the following section.

7.3.2 Torques

The torques required depend upon a number of factors: gravity loads, inertia, aerodynamic loads

and friction. For the pitch actuator, these outputs are supplied by Bladed, using a pitch actuator

friction model with set parameters. For the flap actuator the torques required for each of these

needs to be calculated manually, and is done so as follows with the assumption the mass of the flap

is simply the mass/span of the blade multiplied by the chord width:

� Gravity loads: the centre of mass is calculated for the flap, the offset in the out-of-plane

direction from the pivot point is then taken, and this is multiplied by the weight of the

120

Chapter 7 Trailing edge flap devices

Table 7.1: Flap actuator demands of the dq-axis controller for the various flap chord widths at 12,
16 and 24m/s mean wind speeds. The absolute results are shown for the 20% chord flap. While,
excluding the first result, the other two flaps are shown as a percentage of the 20% results

Metric 10% flap 20% flap 30% flap
Flap deflection 1-in-50-year extreme event (◦) 39.36 25.34 19.5
12m/s
Max flap deflection (◦) 138.1% 9.96 76.8%
Flap travel (◦s−1) 135.0% 3.45 77.0%
Flap rate std (◦s−1) 136.9% 4.86 76.9%
Flap acceleration std (◦s−2) 125.4% 18.34 73.9%
Blade root out-of-plane bending moment std (MNm) 101.0% 1.97 100.3%
16m/s
Max flap deflection (◦) 149.6% 11.02 77.3%
Flap travel (◦s−1) 150.0% 5.02 78.3%
Flap rate std (◦s−1) 149.0% 6.16 77.9%
Flap acceleration std (◦s−2) 131.5% 17.84 74.8%
Blade root out-of-plane bending moment std (MNm) 102.0% 1.65 100.4%
24m/s
Max flap deflection (◦) 152.3% 12.97 77.3%
Flap travel (◦s−1) 159.1% 6.48 78.3%
Flap rate std (◦s−1) 157.2% 7.83 78.0%
Flap acceleration std (◦s−2) 135.2% 20.10 74.8%
Blade root out-of-plane bending moment std (MNm) 103.3% 1.82 100.2%

flap to calculate the torque, τgravity. The out-of-plane displacement from the pivot point

is calculated by taking into account the centre of mass of the flap, dflap, the azimuth of

the rotor, θazi, the pitch of the blade, θblade and the angle of the flap, θflap, such that

r = dflap cos(θazi) sin(θblade+ θflap), and τgravity = r×mflap, where mflap is the mass of the

flap. The flap mass is assumed to be the mass per unit span of the blade multiplied by the

percentage chord of the flap.

� Inertial loads: the inertia of the flap, Iflap, is calculated assuming a triangular flap profile.

The inertia is then multiplied by the angular acceleration of the flap, θ̈flap, to find the torque,

τinertia = Iflapθ̈flap

� Aerodynamic loads: the hinge moment per unit span of the flap at different flap angles and

angles of attack, Cm(α, θflap), is calculated in XFOIL. This data is tabulated in a look-up

table so that the aerodynamic torque on the flap may be calculated for various flap angles.

The aerodynamic torque is also dependent on the chord length of the blade, cblade, and the

velocity of the perceived wind, v. The equation used to calculate the aerodynamic moment

on the flap hinge is then, τaero = 1
2Cm(α, θflap)ρv

2c2blade, where ρ is the density of air.

� Friction: friction opposes the motion of the flap and is dependent on the type of bearing

and actuator used. For example it might consist of a component of constant friction, friction

coefficient proportional to the forces being applied and friction coefficient proportional to the

rate of motion. As the type of bearing and actuator are not been considered in this work, the

frictional component is not considered here. It may however be significant and would increase

121

Chapter 7 Trailing edge flap devices

both torque requirements and power consumption.

Table 7.2 shows the various components and the maximum torques required of the flap actuators

for the three chosen flap chord lengths. It can be seen that the torques required of the flap’s

actuators are dominated by the aerodynamic term when friction is ignored, which is a similar

result to [4]. Gravity and inertial loads are insignificant in comparison. It should be noted the total

maximum torque is not just the sum of the maximum of all three components, as the torques sum

both constructively and destructively.

Table 7.2: Maximum contributions to torque demands of the actuators across all simulation runs
(Nm)

10% flap 20% flap 30% flap
Torque 1-in-50-year extreme event 859 3436 7511
12m/s
Gravity 4 16 35
Inertia 1 11 50
Aerodynamic 372 1451 3390
Total 369 1441 3367
16m/s
Gravity 4 16 35
Inertia 1 10 44
Aerodynamic 394 1515 3504
Total 391 1505 3482
24m/s
Gravity 4 16 35
Inertia 1 7 28
Aerodynamic 429 1599 3659
Total 426 1588 3635

It is also important to recognise the rapidly increasing torques required of larger flaps, as whilst

reductions have been observed in the flap motion, the increase in torque may be more of a concern

when selecting actuators and indeed looking at the power requirements of the flaps, the increase in

torque drives the power demand.

7.3.3 Power

The power demands for the three different flap sizes are shown in Table 7.3. As the wind speed

increases, the power requirements also increase, this is down to both the increased motion at higher

wind speeds and increased torques. The root mean square (rms) power consumption is low though.

More significant are the 1-in-50-year power requirements that are considerably higher than the

mean values. This is in part due to the sinusoidal motion of the flaps, which means even for normal

operation the actuators will need to be rated higher than might be suggested by the rms values.

Additionally it is clear that as the chord width of the flaps increase the power requirements also

increase, this is due to the increased torques far outweighing the benefit of reduced motion.

Friction has however been ignored. A comparison of the power dissipated by constant friction can

be made assuming constant friction across all three flap designs. The greatest power consumption

due to friction will then be from the smallest of the flaps as friction opposes the motion and the

122

Chapter 7 Trailing edge flap devices

Table 7.3: Power requirements of the flap actuators (W)

10% flap 20% flap 30% flap
Power 1-in-50-year extreme event 297 755 1378
12m/s rms power 20 71 141
16m/s rms power 27 86 172
24m/s rms power 38 111 220

smallest flap undergoes the greatest travel, see Table 7.1. However, friction is also likely to be

considerable due to forces acting on the bearings of the flaps, radially, axially and due to bending

moments, and this will depend highly on the structural design of the flaps. A detailed model is

therefore required to accurately determine the contribution of both torques and power requirements

from friction.

123

Chapter 7 Trailing edge flap devices

7.4 Discussion

The aerodynamic characteristics of trailing edge flaps has been looked at through a thin aerofoil

theory analysis and through use of XFOIL. The changes in motion required of the flaps is predicted

and observed in the results from simulations run in Bladed using the 10, 20 and 30% chord width

flaps, with the change in lift coefficient per degree of flap deployment shown to directly affect the

required flap motion.

The torques that are required of the flap actuators due to the inertia of the flap, aerodynamic

pressure and gravity are also considered. The torques increase more rapidly than the decreased

motion, leading to increased power requirements for flaps with longer chord widths.

There is a risk however with shorter flaps that saturation can occur or a loss in performance

due to flow separation, it therefore seems reasonable to select the same chord width as the Sandia

demonstration wind turbine, that is 20% chord width, so as to avoid saturation, reduce the chances

of separation, which is not accurately modelled in XFOIL, and on the other hand not to demand

high torques and powers. This is also likely a size that eases with construction and integration into

wind turbine blades.

As regards to the flap actuator the low torque and power requirements are desirable as a smaller

actuator may then be used, which would facilitate their integration into the limited space available

in the blade. There is also the ability to trade increased torque for decreased movement through

use of flaps with larger chord and span lengths, so an optimum may be found here with a possible

trade off between torque and motion. Equally leverage or gearing may be used.

Friction has not been taken into account and this will add to both torque and power require-

ments, but to include friction a detailed structural model of the blade, flap and actuator will be

required. Such a model would also be useful in analysing changes to the blade dynamics, such as the

blade frequency, its flexibility and the effect that a flexible blade has on the flaps and their design.

This level of detail is beyond the scope of this thesis, but will need to be considered. Additionally,

although the detailed study of flaps of three different chord widths may suggest trends, additional

flap sizes are needed to properly quantify these results.

124

Chapter 7 Trailing edge flap devices

References

[1] S. Daynes and P. M. Weaver, “Design and testing of a deformable wind turbine blade control

surface,” Smart Materials and Structures, vol. 21, Oct. 2012.

[2] D. Berg, J. Berg, J. White, B. R. Resor, and M. Rumsey, “Design, Fabrication, Assembly

and Initial Testing of a SMART Rotor,” in 49th AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, vol. 4-7, (Reston, Virigina), American

Institute of Aeronautics and Astronautics, Jan. 2011.

[3] J. Berg, D. Berg, and J. White, “Fabrication, Integration and Initial Testing of a SMART

Rotor,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and

Aerospace Exposition, (Reston, Virigina), American Institute of Aeronautics and Astronautics,

Jan. 2012.

[4] J. Berg, B. R. Resor, J. Paquette, and J. White, “SMART Wind Turbine Rotor: Design

and Field Test,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and

Livermore, California, 2014.

[5] J. Berg, M. F. Barone, and N. Yoder, “SMART Wind Turbine Rotor: Data Analysis and Con-

clusions,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and Livermore,

California, 2014.

[6] P. B. Andersen, L. C. Henriksen, M. Gaunaa, C. Bak, and T. Buhl, “Deformable trailing edge

flaps for modern megawatt wind turbine controllers using strain gauge sensors,” Wind Energy,

vol. 13, pp. 193–206, Mar. 2010.

[7] J. D. Anderson, Fundamentals of Aerodynamics, vol. 48. Maryland, USA: McGraw-Hill,

fifth ed., Dec. 2011.

[8] M. Drela, “XFOIL: An analysis and design system for low Reynolds number airfoils,” in Low

Reynolds number aerodynamics, (Notre Dame, IN, Germany), 1989.

[9] B. J. Jonkman, S. Butterfield, W. D. Musial, and G. Scott, “Definition of a 5-MW Reference

Wind Turbine for Offshore System Development,” tech. rep., NREL, Colorado, 2009.

[10] D. Marten and J. Wendler, “QBLADE: an open source tool for design and simulation of

horizontal and vertical axis wind turbines,” International Journal of Emerging Technology and

Advanced Engineering, vol. 3, no. 3, pp. 264–269, 2013.

[11] C. Hansen, “NWTC Computer-Aided Engineering Tools (AirfoilPrep),” 2014.

[12] F. Grasso, “Usage of Numerical Optimization in Wind Turbine Airfoil Design,” Journal of

Aircraft, vol. 48, pp. 248–255, Jan. 2011.

125

Chapter 8

Direct comparison of individual

pitch and smart rotor control

Both individual pitch control and smart rotor control are being considered for load reduction

on large multi-megawatt wind turbines. While individual pitch control involves adjusting the

pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control

involves activating control devices distributed along the blades to alter the local aerodynamics of the

blades. In this chapter, two distinct advanced load reduction control strategies are implemented,

as described in Section 4.4 of this thesis. These are the dq-axis centralised controller and the

Independent controller.

The approach used is to attain equal load reductions, assigned as the out-of-plane blade root

bending moment, using both individual pitch and smart rotor control. This allows other parameters

to be compared side-by-side for both control methods. The effectiveness of the control strategies is

determined through measurement of fatigue and extreme load reductions, Section 8.2 and Section

8.3, the pitch and flap actuator requirements, Section 8.4 and Section 8.5, and the rotor speed

variability, Section 8.6.

126

Chapter 8 Direct comparison of individual pitch and smart rotor control

8.1 Motivation

Trailing edge flaps have been shown to demonstrate load reduction potential by a number of authors

with results comparable to those of individual pitch control e.g. [1], [2]. The question then arises

though, as to whether this complex smart rotor system is of merit when similar results can be

achieved using individual pitch control. One method to avoid this question is to simply make the

smart rotor an extension of individual pitch control, i.e. supplementing it to achieve greater load

reductions. This has been tried with promising results [3], [4], but load reduction gains can also

be achieved simply by making the pitch actuators work harder. This has not been considered by

other authors and has resulted in assertions that the smart rotor control is beneficial as regards to

the costs, when indeed the alternative may be a cheaper option. This work therefore attempts to

quantify some of the advantages and disadvantages of each system based on a fatigue load reduction

that would result in similar cost savings regarding the blade design. The fatigue loads that are

affected by the control strategies are therefore looked at in detail. The controllers described in

Chapter 4 of this thesis are used for this purpose.

The results highlight that the loads of the smart rotor are very closely aligned to those of

individual pitch control and that the advanced control strategies used, while important to the

loads affected, do not favour either the smart rotor or individual pitch control. Therefore either

individual pitch or smart rotor control may be used to achieve similar load reductions. This is a

similar result to what others have found, e.g. [3], although previously no direct comparison with

equal load reductions has been made. This is evidence that there need to be other reasons to favour

one system over another than fatigue load reduction.

Although fatigue loads are often the design driver behind large wind turbine blades [5], extreme

loads are also considered as these too can also affect the design [6]. They, like the fatigue loads, are

reduced equally by either smart rotor or individual pitch control, though the advanced controllers

implemented have less of an effect on these extreme loads. Other advanced controllers may specif-

ically target extreme loads though [7]. This makes it clear that load reduction is not the deciding

factor in selecting either smart rotor or individual pitch control, as the cost of energy reduction

as regards to loads could be made equal. Instead other criteria, which ultimately result in cost

savings, need to be considered to encourage the adoption of the smart rotor.

While it is clear that blade designs have to be altered considerably to accommodate smart

rotor devices, the pitch actuator and pitch bearing is also placed under higher demands when

individual pitch control is active [8]. The demands of using the various control strategies on the

pitch actuator are one reason why individual pitch control may not be adopted and is therefore

of interest in this comparison. Pitch travel, rates and accelerations are all increased as a result

of operating individual pitch control, which can lead to increased wear on the bearings, increased

maintenance requirements, increased failures, or simply the requirement of higher cost actuators

that are more capable of sustained activity and the additional cooling that would be required for

heat dissipation. For reference, the pitch actuator and bearings contribute approximately 3% to

the capital cost of a 5MW wind turbine [9], and cause approximately 10% of the downtime due

to failures [10], [11]. On the other hand, the smart rotor can achieve the load reductions of the

individual pitch control without adversely effecting the pitch actuator, potentially leading to cost

reductions.

The actuator requirements of the smart rotor control are also shown to highlight that these

127

Chapter 8 Direct comparison of individual pitch and smart rotor control

may be of a significantly lower power rating than the pitch actuators, though these would likely

be harder to install, power and maintain. An idea is proposed though, that should blades with

smart rotor devices be created that are cheaper than standard blades due to the reduced blade

loads, these could replace blades on current wind turbines with only the additional need to supply

a small amount of power to them, without any other changes to the turbine being required. This

could facilitate fairly rapid testing of the smart rotor once the blades are constructed. The blades

themselves currently contribute approximately a fifth to the overall cost of the wind turbine [9], so

there is some room for manoeuvre.

The rotor speed variability is also considered, as it was felt that using the pitch for both speed

control and load reduction could adversely effect one another. This effect is negligible though. A

look at using smart rotor control to supplement rotor speed control is given in the next chapter.

The comparison that follows highlights the differences between the smart rotor and individual

pitch control systems, as well as the dq-axis and independent control strategies, to aid in the

understanding of what should be implemented on future wind turbines.

128

Chapter 8 Direct comparison of individual pitch and smart rotor control

8.2 Fatigue load reductions

The objective of the individual pitch and smart rotor control techniques is to reduce blade root out-

of-plane loads. However, the goal of this work is to compare the two control methods. By making

the blade root out-of-plane load reductions deliberately similar for both the individual pitch and

smart rotor control methods, a direct comparison can be made between the two in other areas. This

avoids bias that can occur simply by selecting favourable gains for one control type over another,

or by confusing the argument through supplementing one with the other. Whilst the initial study

suggested a pitch to flap angle gain of 4.6, described in Section 4.2, a lower gain of 4.15 was found

to be close to optimal for equivalent load reductions using either flap or pitch control.

Some interesting results can immediately be seen, even within the remit of loads. The lifetime

fatigue load reductions are shown in Table 8.1. These are calculated based on the IEC standard as

described in Chapter 5.

Table 8.1: Lifetime damage equivalent loads as a percentage (%) of the collective pitch controlled
case

Baseline dq-axis control Independent control
Load metric 1Hz DEL [MNm] Pitch Smart rotor Pitch Smart rotor
Blade root Mx 7.05 97.3 97.7 96.1 96.2
Blade root My 7.74 84.2 84.4 89.5 89.5
Rotating hub My 5.35 77.1 76.7 84.1 83.5
Rotating hub Mz 5.34 77.3 76.7 84.3 83.9
Yaw bearing My 3.49 97.1 97.7 101.9 102.2
Yaw bearing Mz 3.44 96.2 96.5 102.1 102.6
Tower base Mx 5.39 99.3 99.6 101.4 100.9
Tower base My 14.84 100.5 100.8 102.1 102.6

The control methods reduce not only the targeted out-of-plane blade root bending moment

(blade root My), but also slightly reduce in-plane blade root bending moment (blade root Mx)

and loads on the shaft (rotating hub My and Mz). Yaw bearing moments on the other hand may

either increase or decrease marginally depending on the control strategy used, and tower loads

exhibit a similar response, though with the fore-aft tower moment (tower base My) undergoing

a small increase in loads regardless of the control strategy. The differences between the dq-axis

and independent control strategies are interesting, as this shows that the control strategies are not

necessarily limited to one key objective.

In this work however, the important comparison is between use of smart rotor control and

individual pitch control. When comparing load reductions for both the individual pitch and smart

rotor control they are all very similar, regardless of control strategy. This suggests either the smart

rotor or individual pitch control method may be used to achieve similar fatigue load reductions. It

is worth however exploring the differences some more to confirm this really is the case.

The blade root out-of-plane lifetime loads are shown in Figure 8.1. All the load reduction occurs

in the above rated region as the advanced control strategies are phased out below rated. This can be

justified simply by looking at the below rated lifetime loads, which already contribute significantly

less to the lifetime damage than at higher wind speeds.

Looking at the load reduction achieved by the control strategies at each mean wind speed, as

129

Chapter 8 Direct comparison of individual pitch and smart rotor control

Figure 8.1: Contributions to lifetime 1Hz damage equivalent loads for the blade root out-of-plane
bending moment for the wind turbine with collective pitch control (baseline), individual dq-axis
pitch control (IPC), dq-axis smart rotor control (SRC), and independent blade control (IPCBF)
and independent smart rotor control (SRCD)

seen in Figure 8.2, there may however be a benefit of additional action at the near rated wind speeds,

where load reductions of around 5%, rather than load reductions of 10 to 15%, are achieved. What is

clear though, is that regardless of wind speed, both individual pitch and smart rotor control perform

equally well, and that a much larger variation in loads is caused by the controller design, rather

than the use of different actuators. The small differences between smart rotor and individual pitch

control at different wind speeds are most likely due to chance, rather than one having an advantage

over the other at different wind speeds.

The variation in loads due to controller design can also be seen in the mean tilt and yaw

moments on the hub, Figure 8.3. Whilst the dq-axis controller specifically targets imbalances in

these moments, the independent controller in-directly helps to reduce these moments. Interestingly,

the dq-axis controller in fact results in small negative tilt and yaw moments, while the independent

controller shifts the imbalances but does not eliminate them. At 10 and 12m/s mean wind speed, it

is also clear that the controllers are not fully active, as the reductions are much less than at higher

wind speeds.

Comparing between the smart rotor and individual pitch control in Figure 8.3, a slight system-

atic difference can be perceived. This is likely due to the gain not being perfect, as it shows itself

across all wind speeds and both dq-axis and independent control strategies. Nevertheless, across

all wind speeds, both the smart rotor and individual pitch achieve similar load reductions. This

suggests that no saturation of the flaps, which are limited to ±20◦, occurs and that smart rotor

control is interchangeable with individual pitch control across the entire operating range of the

wind turbine.

130

Chapter 8 Direct comparison of individual pitch and smart rotor control

Figure 8.2: Comparison of non-lifetime weighted 1Hz damage equivalent loads for the blade root
out-of-plane bending moment at different mean wind speeds

(a) Mean tilt moment (b) Mean yaw moment

Figure 8.3: Average tilt and yaw moments about the hub at above rated wind speeds

131

Chapter 8 Direct comparison of individual pitch and smart rotor control

8.3 Extreme load reductions

The 1-in-50-year occurrence extreme loads from the normal turbulence model design load case

(DLC 1.1), may also be compared between the different control methods. These are shown in Table

8.2. These load results come with the caveat that DLC 1.1 is not always the design-driving load

case, and indeed in cases like emergency shutdown higher loads may result for the advanced load

reduction strategies than for the collective pitch controlled case unless suitable safety systems are

adopted [12] [13].

Table 8.2: Extreme loads compared to collective pitch control as a percentage (%)

Baseline dq-axis control Independent control
Load metric Extreme load [MNm] Pitch Smart rotor Pitch Smart rotor
Blade root Mx 13.4 100.3 105.1 95.7 96.2
Blade root My 25.7 97.2 96.4 96.7 96.7
Rotating hub My 20.3 78.2 78.6 89.8 90.0
Rotating hub Mz 21.8 74.5 74.9 84.7 84.9
Yaw bearing My 20.0 72.7 75.1 91.5 91.6
Yaw bearing Mz 16.5 90.2 91.5 94.5 95.1
Tower base Mx 54.1 91.5 94.5 95.8 97.1
Tower base My 191.5 99.9 101.8 99.2 100.1

It can be seen from comparing the smart rotor and individual pitch control methods that similar

load reductions are again achieved when it comes to extreme loads. This comes with the proviso

that the dq-axis control blade root in-plane moment and tower fore-aft moment show exceptional

results, with a higher extreme load with the smart rotor than for the individual pitch controlled

case. This then requires that extreme loads are also considered when designing the blades for either

smart rotor or individual pitch control.

Apart from this exception, the results support the argument that load reductions, and so savings

to the construction of the blades, may be had either through use of pitch control or through smart

rotor control. To quantitatively value the cost benefits of one system over the other, additional

criteria are therefore required to differentiate the two. To this extent, the actuator requirements

are described in the following two sections.

132

Chapter 8 Direct comparison of individual pitch and smart rotor control

8.4 Pitch actuator requirements

A comparison is made of the pitch motion, torque and power requirements for the pitch actuator

at three above rated wind speeds, 12, 16 and 24m/s, for each control strategy, Table 8.3. The

increased travel and pitch rates over the baseline case will result in increased wear of the actuator

and pitch bearing. As can be seen the independent controller does not increase the motion as much

as the dq-axis controller, but as seen earlier with the current tuning does not achieve as great a load

reduction. This supports the hypothesis that for greater load reductions, actuator requirements

are indeed greater, which is a conclusion found in [14] where load reductions are achieved through

a combination of pitch and smart rotor control. The study however is limited to one wind speed

and actuator requirements measured purely by travel.

Pitch accelerations are also seen to increase, though not by as much. The average torques

required of the pitch actuator do increase though, by approximately 10%. The increase in both

average torques and rates results in a higher mean power demand of the actuators. This would

result in more power loss in the system, but is small compared to the rating of the wind turbine.

It would though require the pitch actuator to have better thermal dissipation.

Control using the smart rotor on the other hand reduces the torque on the pitch actuators, and

whilst the pitch motion is marginally altered, the power requirement as a result of the reduced

torques is also decreased. These are both positive results, as it suggests no change, or even a

de-rating, of the pitch actuator is required when implementing the smart rotor wind turbine.

Based on this criterion, the pitch system would need to be upgraded to operate an individual

pitch control strategy. In contrast, it can be seen that when using a smart rotor control strategy,

the motion required of the pitch actuator can be held close to the baseline case. The cost to upgrade

the pitch system versus the cost of implementing a smart rotor system is key to the decision of one

system over another, but equally it is vital to compare the cost of implementing either system to

the savings made from reduced loads.

Focussing on the pitch rate it is also evident that at higher wind speeds increased pitch action

is required, particularly for the dq-axis controller, but also for the baseline which means for speed

control, see Figure 8.4. Indeed the percentage increase in pitch rate standard deviation is similar

from 16-24m/s for the dq-axis controlled case. Therefore there may be some trade-off between the

rating of the pitch actuator and load reductions at high wind speeds which occur less often.

(a) Absolute (b) Percentage of baseline

Figure 8.4: Standard deviation of the pitch rate at above rated wind speeds

133

Chapter 8 Direct comparison of individual pitch and smart rotor control

Table 8.3: Comparison of pitch actuator motion as a percentage (%) of the baseline collective pitch
controlled wind turbine pitch actuator at 12, 16 and 24 m/s mean wind speed

dq-axis Independent
12m/s Baseline Pitch Smart rotor Pitch Smart rotor
Pitch travel 0.442◦s−1 215.1 100.3 183.7 100.5
Pitch rate std 0.657◦s−1 201.9 100.3 174.6 100.1
Pitch acceleration std 3.884◦s−2 128.1 100.1 98.0 98.0
Pitch torque std 137 kNm 113.7 89.6 111.8 89.5
Pitch power mean 1.11 kW 262.5 84.0 220.0 83.9

dq-axis Independent
16m/s Baseline Pitch Smart rotor Pitch Smart rotor
Pitch travel 0.582◦s−1 270.1 100.5 193.0 101.5
Pitch rate std 0.671◦s−1 258.4 100.6 188.6 101.6
Pitch acceleration std 3.714◦s−2 142.3 100.1 107.3 100.1
Pitch torque std 112 kNm 114.2 87.8 111.4 87.6
Pitch power mean 0.98 kW 338.5 84.8 233.1 84.8

dq-axis Independent
24m/s Baseline Pitch Smart rotor Pitch Smart rotor
Pitch travel 0.654◦s−1 277.8 100.7 172.3 100.5
Pitch rate std 0.820◦s−1 265.1 100.6 169.7 100.5
Pitch acceleration std 4.793◦s−2 130.7 99.2 104.6 99.3
Pitch torque std 89 kNm 100.8 85.4 103.2 85.7
Pitch power mean 0.91 kW 307.0 82.0 191.7 81.8

With regards to the smart rotor, what is very clear though from these tables and figures is

that use of the smart rotor barely affects the pitch actuator motion, regardless of wind speed.

This implies that use of the smart rotor would not require any change to the pitch actuator for

implementation. Supposing naively that the entire benefit of load reduction is found through

decreased cost of the blade construction (rather than longer blades or similar), this would then

allow a blade manufacturer to produce blades for any wind turbine, assuming a power supply can

be suitably supplied to the smart rotor actuators, without any major alterations to the rest of the

turbine or central controller. This could then, at least in theory, be simpler than altering the hub

and pitch actuators to facilitate individual pitch control.

As well as the average rates, accelerations, torques and power demands, the actuator also needs

to perform to the extreme conditions. To this end the lifetime 1-in-50-year extreme values are

displayed in Table 8.4. Again the extreme rates are higher for the pitch controlled case, whilst the

smart rotor control is similar to the baseline with regards to both pitch rates and accelerations.

Strangely, the extreme pitch acceleration for the independent controller is significantly lower than

the baseline or other control strategies. No obvious reason exists for this anomaly, though it could

be down to the method for extreme load extrapolation. Also of interest is the fact that although

the mean torques are lower for the smart rotor, as seen in Table 8.3, the extreme torques are in fact

higher than for the pitch controlled case, and baseline. This is of slight concern as it may mean

larger actuators are required. However, as regards to peak power requirements, again the smart

134

Chapter 8 Direct comparison of individual pitch and smart rotor control

rotor requires similar to the baseline, while the individual pitch control requires peak ratings of

50-60% more than the baseline collective pitch controlled case.

Table 8.4: Comparison of pitch actuator motion as a percentage (%) of the baseline collective pitch
controlled wind turbine pitch actuator

dq-axis Independent
Metric Baseline Pitch Smart rotor Pitch Smart rotor
Pitch rate extreme 8.48◦s−1 156.5 100.2 134.1 98.6
Pitch acceleration extreme 60.7◦s−2 100.2 99.3 82.7 100.6
Pitch torque extreme 910.1 kNm 100.6 106.3 100.8 107.0
Pitch power extreme 30.6 kW 162.2 99.2 151.1 96.0

Due to the increased motion of the individual pitch control the power consumption is higher than

for the collective or smart rotor control cases. This increase will require better thermal dissipation

and an actuator with a higher rated power. Bearing and pitch actuator wear is a complex issue

though. Whilst additional motion may increase wear, lower torques can reduce it, suggesting that a

thorough analysis needs to be conducted into the exact causes and constraints on both the actuator

and the bearings, as depending on the conditions and control strategy, wear might either increase

or decrease and this will depend highly on the type of actuator and bearings under consideration.

This will have a direct impact on the cost of adopting an individual pitch control strategy.

135

Chapter 8 Direct comparison of individual pitch and smart rotor control

8.5 Flap actuator requirements

For the smart rotor, we also need to consider the flap actuator. Although it is possible to reduce

loads through higher bandwidth devices, both pitch and flap actuators are set with the same

actuator model: a second order passive transfer function with a frequency of 1Hz and damping

factor of 0.7. This allows the actuator motion, torque and power required to be directly compared,

without having to significantly adjust the controllers to achieve similar load reductions.

The flap angular motion is of a higher order than the pitch actuator motion. This is because

a 4.15 degree change in flap angle is only equivalent to a 1 degree change in pitch angle. Indeed,

this is why the gains are adjusted from the pitch to flap control, with a factor of 4.15 found to take

account of the reduced span of the flap and the reduced gradient of lift coefficient versus pitch. This

of course is for this particular flap design and as seen in Chapter 7 a trade can be made between

flap motion and flap torques. There is also the possibility of using multiple actuators on each blade

to further reduce the torques required, though rates would stay the same.

As can be seen by comparing the results of Table 8.5 with Table 8.3, the travel required of the

flap is higher than for the pitch actuator. However, direct comparisons with the pitch actuator

should not be drawn, as the flap does not provide speed control and because the space available

in the blade is substantially less than in the hub. Comparisons between the two controllers should

also be avoided, as the differences are down to tuning rather than one being better than the

other. The requirements are therefore not only different as regards to the motions, torques and

power requirements, but also to the physical constraints to which such an actuator would need to

conform. Low torques and power requirements are therefore not only desirable, but necessary.

Table 8.5: Flap actuator demands of the dq-axis and independent controllers

Metric dq-axis Independent
Flap deflection extreme 24.80◦ 23.43◦

12m/s
Flap travel 3.48◦s−1 2.92◦s−1

Flap rate std 0.74◦s−1 0.63◦s−1

Flap acceleration std 2.78◦s−2 1.30◦s−2

16m/s
Flap travel 5.12◦s−1 3.50◦s−1

Flap rate std 0.99◦s−1 0.69◦s−1

Flap acceleration std 2.69◦s−2 1.13◦s−2

24m/s
Flap travel 6.73◦s−1 3.76◦s−1

Flap rate std 1.27◦s−1 0.75◦s−1

Flap acceleration std 3.06◦s−2 1.22◦s−2

The 1-in-50-year maximum deflections are also shown. That these exceed the maximum allowed

flap deflection implies that at times the control system will saturate and so lose some of the ability

to control the loadings. However, this is not limited to the smart rotor control, the extreme pitch

rate also exceeds the 8◦s−1, see Table 8.4. Extreme conditions should therefore be studied to assess

the impact that these conditions would have on the wind turbine.

136

Chapter 8 Direct comparison of individual pitch and smart rotor control

8.6 Rotor speed variability

The final criterion for comparison here is the rotor speed variability. Above rated pitch control is

used to maintain rated rotor speed, whilst the torque is adjusted to hold power output constant. It is

possible that the advanced control strategies may interfere with the central controller, particularly

the rotor speed control when individual pitch control is active as both systems will be utilising

the pitch actuators. It is found however that rotor speed variability is similar regardless of the

control strategy: baseline, dq-axis, independent, smart rotor or individual pitch control. This is

a positive result as it shows that the advanced control strategies are not to the detriment of the

central controller, Figure 8.5.

Figure 8.5: Standard deviation of the rotor speed at above rated wind speed

137

Chapter 8 Direct comparison of individual pitch and smart rotor control

8.7 Discussion

This study verifies that it is possible to achieve similar load reductions with trailing edge flaps as

it is by pitching the entire blade. This was shown using two different control techniques: a dq-axis

centralised controller and a distributed Independent controller. It is also shown that while load

reductions are similar for the smart rotor and individual pitch, the style of the controller does have

an effect on a variety of other variables, including components that are not the direct target of the

controller, for instance tower loading and hub tilt and yaw imbalance.

For individual pitch control, load reductions come at a cost of increased actuator duty and power

requirements. Any requirement to upgrade the pitch actuator and bearings will come at a cost and

it is these potential costs that need to be compared with the price attached to implementing a

smart rotor in deciding which to adopt, if either.

From the results it is clear that use of trailing edge flaps can achieve the same load reductions

as individual pitch control without any alteration to the pitch actuator. Indeed use of the smart

rotor can reduce both the motion and rates of the pitch actuator, creating potential savings. The

real concern here is whether a suitable actuation system can be found that is both reliable and cost

effective in comparison to upgrading the pitch system.

This direct comparison of both individual pitch and smart rotor control encourages future work

to look at the possibility of using the smart rotor to supplement collective pitch control for roles

other than out-of-plane blade root bending moment load reduction as the upgrade to the pitch

actuator is one of the main detractors to implementing individual pitch control it suggests that

further reduction to the pitch actuator requirements may be of further benefit, and this is explored

in Chapter 9.

138

Chapter 8 Direct comparison of individual pitch and smart rotor control

References

[1] P. B. Andersen, L. C. Henriksen, M. Gaunaa, C. Bak, and T. Buhl, “Deformable trailing edge

flaps for modern megawatt wind turbine controllers using strain gauge sensors,” Wind Energy,

vol. 13, pp. 193–206, Mar. 2010.

[2] T. K. Barlas, G. van der Veen, and G. A. M. van Kuik, “Model predictive control for wind

turbines with distributed active flaps: incorporating inflow signals and actuator constraints,”

Wind Energy, vol. 15, pp. 757–771, July 2012.

[3] M. A. Lackner and G. A. M. van Kuik, “A comparison of smart rotor control approaches using

trailing edge flaps and individual pitch control,” Wind Energy, vol. 13, pp. 117–134, Mar. 2010.

[4] D. G. Wilson, D. Berg, B. R. Resor, M. F. Barone, and J. Berg, “Combined individual pitch

control and active aerodynamic load controller investigation for the 5MW upwind turbine,” in

AWEA Wind Power Conference, (Chicago, Illinois), 2009.

[5] P. S. Veers, T. D. Ashwill, H. J. Sutherland, D. L. Laird, D. W. Lobitz, D. A. Griffin, J. F.

Mandell, W. D. Musial, K. Jackson, M. Zuteck, A. Miravete, S. W. Tsai, and J. L. Richmond,

“Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades,” Wind Energy,

vol. 6, pp. 245–259, July 2003.

[6] M. A. Lackner and G. A. M. van Kuik, “The Performance of Wind Turbine Smart Rotor

Control Approaches During Extreme Loads,” Journal of Solar Energy Engineering, vol. 132,

2010.

[7] H. Yi and W. E. Leithead, “Alleviation of Extreme Blade Loads by Individual Blade Control

during Normal Wind turbine Operation,” in EWEA, (Copenhagen, Denmark), 2012.

[8] M. Shan, J. Jacobsen, and S. Adelt, “Field Testing and Practical Aspects of Load Reducing

Pitch Control Systems for a 5 MW Offshore Wind Turbine,” in EWEA, (Vienna, Austria),

2013.

[9] C. Aubrey, “Supply Chain: The race to meet demand,” Wind Directions, pp. 27–34, Feb. 2007.

[10] P. J. Tavner, J. Xiang, and F. Spinato, “Reliability analysis for wind turbines,” Wind Energy,

vol. 10, Jan. 2007.

[11] J. Ribrant and L. M. Bertling, “Survey of Failures in Wind Power Systems With Focus on

Swedish Wind Power Plants During 1997–2005,” IEEE Transactions on Energy Conversion,

vol. 22, pp. 167–173, Mar. 2007.

[12] E. A. Bossanyi, B. Savini, M. Iribas, M. Hau, B. Fischer, D. Schlipf, T. G. V. Engelen,

M. Rossetti, and C. E. Carcangiu, “Advanced controller research for multi-MW wind turbines

in the UPWIND project,” Wind Energy, vol. 15, pp. 119–145, Jan. 2012.

[13] C. L. Bottasso, A. Croce, C. E. D. Riboldi, and M. Salvetti, “Cyclic pitch control for the

reduction of ultimate loads on wind turbines,” Journal of Physics: Conference Series, vol. 524,

June 2014.

139

Chapter 8 Direct comparison of individual pitch and smart rotor control

[14] L. C. Henriksen, L. Bergami, and P. B. Andersen, “A model based control methodology combin-

ing blade pitch and adaptive trailing edge flaps in a common framework,” in EWEA, (Vienna,

Austria), 2013.

140

Chapter 9

Supplementary control

Pitch actuator requirements are increased when individual pitch control is activated, and the avoid-

ance of such increased demands may be seen as a benefit of smart rotor control. The smart rotor

though is capable of more than just reducing the loads on the wind turbine, and can in fact sup-

plement the overall pitch control system to reduce pitch demands.

In this chapter the smart rotor control is used to supplement the pitch rotor speed control.

The motivation for this is explained in Section 9.1, followed by a description of rotor speed control

in Section 9.2. The method of supplementing the pitch control with smart rotor control and the

tuning of the controller are then described in Section 9.3. Results from using the smart rotor control

to just supplement the pitch control and to supplement the pitch control while also achieving

load reductions are then presented in Sections 9.4 and 9.5, before finishing off the chapter with

conclusions.

141

Chapter 9 Supplementary control

9.1 Motivation

The idea of supplementing the pitch control with smart rotor control is not new. It has already been

considered in the case of supporting individual pitch control and thus enhancing load reductions

[1], [2], [3]. As raised in the previous chapter though, this is merely an alternative to upgrading the

pitch actuator. The motivation behind this chapter is then to see the smart rotor as an opportunity

to support the pitch actuator in a variety of roles, as opposed to purely advanced load reduction.

A similar study has been conducted in [4] that has shown this to have potential.

Historically aerodynamic devices have been considered as an alternative to pitch control to

regulate rotor torque, and in particular for over-speed protection [5], [6], [7]. Rather than replacing

pitch control though, this work looks at supplementing it so as to reduce the pitch actuator demands

while maintaining controllability. While this is not seen as the main purpose of smart rotor control

it may be a useful enhancement to the remit of smart rotor control.

Although this work implements the system on a trailing edge flap smart rotor, different devices

may be used implementing the strategies suggested. Equally, although it is rotor speed control that

is supplemented here, in fact the method used to split the signal between the smart rotor and pitch

actuator may be used for the overall pitch demand to fully supplement the pitch control, including

when individual pitch control is active. The smart rotor control then has the ability to not only

reduce loads, but also pitch actuator demands and so pitch actuator and bearing requirements.

142

Chapter 9 Supplementary control

9.2 Rotor speed control

The baseline controller described in Chapter 4 is implemented here. To aid in understanding, the

rotor speed control is described again here with use of a block diagram shown in Figure 9.1.

Rotor speed above rated is controlled by adjusting the collective pitch angle of the blades. To

reduce the aerodynamic torque on the rotor the blades are pitched to feather, reducing the angle

of attack and thus lowering the lift produced. This is done here using a Proportion Integral (PI)

controller based on rotor speed error, and additionally a term to take account of the difference

between actual power and rated power, to encourage pitching in rising wind speeds in the region

just below rated.

Rotor speed +−

Rated rotor speed

+−Power output

Rated power

GK PI

Pitch angle

Pitch demand

Figure 9.1: Rotor speed control system diagram

The two controllers share the same integrator and anti-windup limits, which are imposed on

the integral in the form of minimum and maximum pitch angles and maximum rates. For the rotor

speed error a proportional gain of 0.0135 and integral gain of 0.00453 are used and for the power

error a proportional and integral gain of 10−7 and 5× 10−8 are used respectively. A gain schedule

is used to account for the fact that at lower wind speeds more pitch action is required to achieve

the same controllability. This gain scheduling uses the current pitch angle to adjust the gain and

is of the form GK = 1/(1.0 + θ/12.5), with the pitch angle, θ, in degrees, and a minimum gain

imposed of 1/3.5.

143

Chapter 9 Supplementary control

9.3 Supplementary control design

Supplementation of the pitch speed control is done through splitting the demanded pitch angle

from the PI speed controller based on frequency. High frequency variations are controlled by the

smart rotor, which is considered more than capable of rapid response, and low frequency variations

are left to be controlled by the pitch mechanism. Single pole low and high pass filters are found

to be adequate for this role, implemented as recursive filters, with the same corner frequencies.

This method is portrayed in Figure 9.2. As the filters are complementary, the high pass filter can

be implemented as the original demand minus the low pass filtered demand. A gain is required

to make the demanded flap angle equivalent to the demanded pitch angle, GKflap, as described

in Section 4.2 of the Baseline Chapter and in Chapter 7 on trailing edge flaps. In this case the

value chosen is 4.15, so as to compare directly with the smart rotor controlled case in the previous

chapter.

Controller pitch demand

Low pass filter

High pass filter GKflap

Pitch demand

Flap demand

Figure 9.2: Control system diagram showing how the controller demand is split between the pitch
and flap actuator demands

Whilst in this chapter this method is implemented solely on the PI rotor speed control, the

method could equally be applied to the tower vibration damping feedback loop or indeed the

overall pitch demand. The focus on rotor speed control is done for clarity and simplicity in making

comparisons, and demonstrates the effect that using smart rotor control to supplement pitch control

can have.

9.3.1 Tuning the filters

A series of filter cut-off frequencies are trialled to determine the optimum cut-off frequencies for

the supplementary control, taking account of the impact on the pitch actuator, flap actuator and

rotor speed.

For these results two 10 minute runs using Kaimal 3D turbulent wind fields are run for each

wind speed between 10-24m/s in 2m/s intervals, and the maximum pitch rates and accelerations,

flap deflections and rotor speed variations are found for each different cut-off frequency. This allows

an initial analysis of what effect the supplementary control has on the wind turbine and a discovery

of what filter cut-off frequency is preferable.

At high frequencies the filters are pushed to their limits due to the 10Hz sampling rate of the

pitch controller, as seen in Figure 9.3. However, at these high cut-off frequencies the benefit of

supplementing the pitch control with the smart rotor is already diminished, and so high cut-off

frequency filters are not too important. This can be seen in Figures 9.4a and 9.4b, wherein the

maximum pitch rates and accelerations approach those of the base case where the supplementary

smart rotor speed control is inactive.

144

Chapter 9 Supplementary control

Figure 9.3: Bode plot of low pass discrete filters with increasing cut-off frequencies

Setting the cut-off frequency too low also causes problems, again as seen in increases in the

maximum pitch rates and accelerations, Figures 9.4a and 9.4b. This occurs because the flap actuator

saturates, as can be seen in Figure 9.4c, which portrays the maximum flap angle reached during the

simulations. When this occurs the ability to control the system is reduced, which leads to larger

oscillations in rotor speed, as can be seen in Figure 9.4d. It is therefore clear from this result that

trailing edge flaps are not capable of fully supplanting pitch control as they lack full controllability

due to saturation at 20 degrees in either direction.

These results suggest a cut-off frequency of approximately 1.95rad/s would be effective. As this

maintains the same rotor speed stability as the baseline case, while achieving the highest possible

benefit for the pitch actuator rates and accelerations. The maximum flap angle reached is also less

than half the value at which the flap saturates and so will also help avoid aerodynamic uncertainties

due to separation.

145

Chapter 9 Supplementary control

(a) Maximum pitch rates (b) Maximum pitch accelerations

(c) Maximum flap angles reached (d) Mean standard deviation in rotor speed

Figure 9.4: The effect of supplementary control cut-off frequencies on various parameters across all
above rated wind speeds

146

Chapter 9 Supplementary control

9.4 Supplementary speed control

To analyse the specific case of a 1.95rad/s cut-off frequency in more detail the IEC 61400 standard

is used for a class IB turbine [8]. Six runs at each wind speed from 10-24m/s in 2m/s steps are used;

below 10m/s no pitch action occurs as the wind turbine remains below rated so these simulations

are the same as the base case.

The first thing to analyse is the rotor speed variability as the smart rotor control is designed to

supplement the pitch speed control to maintain constant rotor speed above rated. In Table 9.1 the

supplementary control is seen to actually slightly increase the variability of the rotor speed, by upto

a couple of percent. An increased pitch to flap gain, e.g. greater than 4.15, would decrease this,

while a lower pitch to flap motion gain would increase the variability. So that a comparison can

be made with the smart rotor control assessed in the previous chapter an equalisation of the rotor

speed variability has not been implemented. This can be justified when looking across the wind

speeds, as the increased variability using the supplementary control is negligible in comparison to

the fluctuation in variability due to mean wind speed. Whilst the supplementary control is designed

to maintain constant rotor speed, the objective of supplementing the pitch control is to reduce the

pitch actuator motion, this reduction can be seen by looking at the pitch actuator requirements.

Table 9.1: Above rated rotor speed variability assessed as the standard deviation in rotor speed

Mean wind speed Baseline Supplementary Supplementary compared
[m/s] [deg/s] [deg/s] to baseline [%]
10 5.51 5.52 100.1
12 2.16 2.18 100.5
14 1.21 1.23 101.7
16 1.27 1.29 101.6
18 1.37 1.39 101.2
20 1.51 1.53 101.2
22 1.65 1.67 101.3
24 1.80 1.82 101.5

The pitch actuator travel across different wind speeds is displayed in Table 9.2, which shows

increased benefit of using supplementary control at increased wind speeds. The extreme 1-in-50-

year actuator demands for both the flap and pitch actuator are shown in Table 9.3. As can be seen

pitch actuator demands are reduced considerably when smart rotor supplementary speed control

is active. The reduction in the pitch rate is 32% and in the pitch acceleration 75%. These are to

be expected due to the high frequency control demands being dealt with by the flap actuator. The

torque demands on the other hand increase marginally, by approximately 4%.

It should also be noted that the pitch rate is normally limited to an absolute maximum of 8

degrees per second, this is exceeded approximately once every 16 years for the baseline controller,

leading to occasional saturation of the pitch actuator. This will cause a slight loss in control, but

only very rarely. Contrastingly when the supplementary control is used the chance of saturation is

reduced to a probability of roughly once every 100,000 years, which would appear to suggest the

actuator would be overrated for this use.

The flap deflections on the other hand are limited to an absolute deflection of 20 degrees. The

147

Chapter 9 Supplementary control

Table 9.2: Above rated travel of the pitch actuator

Mean wind speed Baseline Supplementary Supplementary compared
[m/s] [deg/s] [deg/s] to baseline [%]
10 0.1101 0.0925 84.0
12 0.4420 0.3674 83.1
14 0.5116 0.4267 83.4
16 0.5282 0.4270 80.8
18 0.5490 0.4285 78.0
20 0.5809 0.4446 76.5
22 0.6173 0.4622 74.9
24 0.6540 0.4821 73.7

Table 9.3: Extreme 1-in-50-year actuator demands

Variable Baseline Supplementary control
Pitch rates [deg/s] 8.5 5.8
Pitch acceleration [deg/s2] 60.6 15.4
Pitch torque [kNm] 910.1 944.0
Flap deflection [deg] - 12.0
Flap rates [deg/s] - 48.9
Flap acceleration [deg/s2] - 433.5

likelihood of saturating the flap angle limit though is minuscule, with a probability of occurring

only once every few million years of standard operation. This therefore suggests ample room for the

smart rotor to take on more control functions. The flap rates and accelerations though also need

to be considered. In Table 9.3 these are displayed and can be compared with those of the Sandia

demonstration plant, which has rates of 200 to 330 degrees per second [9]. Assuming sinusoidal

oscillations of plus/minus 20 degrees, this equates to accelerations of 2000 to 5545 degrees per

second squared. The values observed therefore appear well within the realm of possibility.

Supplementing the main pitch control mechanism with smart rotor control is clearly feasible

from this investigation, and facilitates a reduction in the pitch actuator requirements. This is the

trivial case though and the smart rotor will likely need to offer something more than just a reduction

in the pitch actuator requirements. The case where the smart rotor reduces loads, as well as the

pitch actuator requirements, is therefore considered. It is termed here ‘consolidated smart rotor

control.’

148

Chapter 9 Supplementary control

9.5 Consolidated smart rotor control

The dq-axis smart rotor control is adopted as described in Section 4.4.1 and combined with the

supplementary control strategy. In the previous chapter individual pitch control was compared

directly with smart rotor control with regard to load reduction and actuator requirements. Here

the focus is on use of smart rotor control for both load reduction and supplementing the overall

pitch control system to reduce pitch demands.

Again an initial look at the rotor speed variability shows this is only mildly affected by the

supplementary control (sup), smart rotor load reduction control (SRC), and by the consolidated

smart rotor control (SRC + sup).

Figure 9.5: Above rated rotor speed variability

Fatigue load reductions are achieved of a similar level to those normally achieved by smart

rotor control, as can be seen in Table 9.4, with only slightly worse results than the purely smart

rotor controlled case. By increasing the smart rotor controller gains, which would increase flap

demands, equivalence between the results is likely possible. The individual pitch control (IPC)

load reductions are displayed as well to show the similarity of the load reduction potential of all

three methods, demonstrating that as close to a fair comparison as possible is being made when

implementing the consolidated controller.

Intriguingly, the tower loads are increased when using the supplementary control. This is likely

due to extra thrust variations near the tower frequency, which is reduced in the collective pitch

controlled case by the tower velocity feedback loop. A coordinated controller design could benefit

this system, limiting interference with the tower vibration damping and so reduce these loads [10].

It should be noted there is no real variation in thrust as a result of using flaps instead of pitch

control, the reason being the thrust on the rotor is in large part due to the lift the blades produce,

as the torque is held constant, the thrust varies only a small amount.

The benefit of the consolidated controller is the reduction in pitch actuator demands, as shown

149

Chapter 9 Supplementary control

Table 9.4: Lifetime damage equivalent loads compared to the baseline [%]

Variable sup IPC SRC SRC + sup
Blade root Mx 100.2 97.4 97.6 97.6
Blade root My 101.0 83.4 83.1 84.5
Rotating hub My 100.2 77.2 76.7 76.9
Rotating hub Mz 100.3 77.1 76.5 76.7
Yaw bearing My 100.6 95.8 96.4 96.9
Yaw bearing Mz 100.6 95.7 96.1 96.5
Tower base Mx 102.1 97.8 98.6 100.7
Tower base My 102.6 99.2 99.8 102.8

in Figure 9.6 for the pitch travel and Table 9.5 for the extreme demands. This result is similar to

[4], with evidence of the trade between pitch and flap travel and load reductions.

In the work done here, the extreme loads are considered too. Activation of the smart rotor load

reduction control barely alters the pitch demands over the collective pitch controlled (CPC) baseline,

apart from an increase in the extreme pitch torque. Supplementary control on its own drastically

reduces the pitch rates and accelerations, as displayed in the previous section. When both smart

rotor control for load reduction and the supplementary control are active, load reductions and pitch

demand reductions similar to the purely supplementary control occur, with rate and acceleration

reductions of 33% and 75% respectively, though again with an increase in the extreme pitch torque

demand.

Figure 9.6: Pitch travel for the various control strategies. The results for the collective pitch
control and smart rotor control are very similar, as too are the results for the supplementary and
consolidated controllers

There is of course a cost to these benefits, and that is that the flap actuator has to work harder

when both smart rotor load reduction control and the supplementary speed control are active.

150

Chapter 9 Supplementary control

Table 9.5: Extreme 1-in-50-year pitch actuator demands

Variable CPC sup IPC SRC SRC + sup
Pitch rates [deg/s] 8.5 5.8 13.3 8.5 5.7
Pitch acceleration [deg/s2] 60.6 15.4 60.7 60.2 15.4
Pitch torque [kNm] 910.1 944.0 916.0 967.5 994.0

Indeed extreme deflections, rates and accelerations all increase. This in fact leads directly to an

increase in the risk of the flap reaching its maximum flap angle, from on average about four times

a year, to over 8 times a year. This may be mitigated by increasing the filter cut-off frequencies

and so reduce the flap deflections contributed by the supplementary speed control, but clearly this

will impact on the pitch actuator reductions achievable, as seen in the initial design study.

Table 9.6: Extreme 1-in-50-year flap actuator demands

Variable sup SRC SRC + sup
Flap deflection [deg] 12.0 25.7 27.5
Flap rates [deg/s] 48.9 69.3 79.8
Flap acceleration [deg/s2] 433.5 622.4 761.5

This consolidated controller demonstrates that there is a trade to be had between the various

aspects that smart rotor control influences: pitch demands, flap demands and load reductions.

Previously, work has focussed rather on the load reductions achievable using smart rotor control,

but it is the trade-off between these three aspects that should be considered when designing and

implementing a smart rotor wind turbine to effectively lead to cost of energy reductions.

151

Chapter 9 Supplementary control

9.6 Discussion

Smart rotor control research has been focussed on load reduction, but in fact additional benefits can

be had from adopting such a system. While smart rotor control devices are generally not capable of

fully replacing pitch control, as seen by the saturation of the flaps when a low cut-off frequency is

selected for the filters, they can help alleviate the pitch demands. This is achieved through filtering

the pitch demand such that high frequencies are dealt with by the smart rotor devices while the low

frequencies are dealt with by pitching the blades. It is also shown that this may be achieved while

also using the smart rotor control for load reduction, suggesting that in the design of smart rotor

wind turbines, supplementary control should be considered to reduce pitch actuator requirements.

The consolidated control example supports this proposition by achieving similar load reductions

to both standard smart rotor control and individual pitch control while extreme pitch rates and

accelerations are reduced by 33% and 75% respectively. This comes at the cost of increased demands

on the flap actuator. A trade between pitch actuator demands, flap actuator demands and load

reductions is therefore considered appropriate when designing and implementing a smart rotor wind

turbine.

152

Chapter 9 Supplementary control

References

[1] M. A. Lackner and G. A. M. van Kuik, “A comparison of smart rotor control approaches using

trailing edge flaps and individual pitch control,” Wind Energy, vol. 13, pp. 117–134, Mar. 2010.

[2] W. P. Engels, S. K. Kanev, and T. G. V. Engelen, “Distributed blade control,” in TORQUE:

The Science of Making Torque from Wind, (Heraklion, Crete, Greece), EWEA, 2010.

[3] D. G. Wilson, D. Berg, B. R. Resor, M. F. Barone, and J. Berg, “Combined individual pitch

control and active aerodynamic load controller investigation for the 5MW upwind turbine,” in

AWEA Wind Power Conference, (Chicago, Illinois), 2009.

[4] L. C. Henriksen, L. Bergami, and P. B. Andersen, “A model based control methodology combin-

ing blade pitch and adaptive trailing edge flaps in a common framework,” in EWEA, (Vienna,

Austria), 2013.

[5] W. W. Jr., M. Snyder, and J. T. Calhoun, “Feasibility Studies of Spoiler and Aileron Control

Systems for Large Horizontal-Axis Wind Turbines,” Journal of Energy, vol. 5, pp. 281–284,

Sept. 1981.

[6] P. Jamieson, A. Bowles, A. Derrick, W. E. Leithead, and M. C. M. Rogers, “Innovative concepts

for aerodynamic control of wind turbine rotors,” Journal of Wind Engineering and Industrial

Aerodynamics, vol. 39, pp. 395–404, Jan. 1992.

[7] J. G. Stuart, A. D. Wright, and C. P. Butterfield, “Considerations for an integrated wind tur-

bine controls capability at the National Wind Technology Center: An aileron control case study

for power regulation and load mitigation,” tech. rep., National Renewable Energy Laboratory

(NREL), Golden, CO, USA, June 1996.

[8] IEC, “IEC 61400-1 Ed.3: Wind turbines - Part 1: Design requirements,” 2005.

[9] J. Berg, M. F. Barone, and N. Yoder, “SMART Wind Turbine Rotor: Data Analysis and Con-

clusions,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and Livermore,

California, 2014.

[10] W. E. Leithead, S. Dominguez, and C. Eee, “Coordinated Control Design for Wind Turbine

Control Systems,” in EWEC, (Athens, Greece), 2006.

153

Chapter 10

Faults

A smart rotor wind turbine is able to reduce fatigue loads by deploying active aerodynamic devices

along the span of the blades, which can lead to a reduced cost of energy. However, a major drawback

is the complexity and potential for unreliability of the system. Faults can cause catastrophic damage

and without compensation would require shut down of the turbine, resulting in lost revenue. This

chapter looks at a fault tolerant solution to avoid shut down of the turbine and lost revenue during

a fault, while keeping additional damage to a minimum.

A worst case scenario of a jammed flap with no direct knowledge of its occurrence is considered,

while operating a dq-axis smart rotor wind turbine. A method for detecting the fault using 1P

cyclic loadings is presented, as well as a method to correct for the fault by adjusting the remaining

active flaps to the same angle as the jammed flap. As the actual angle at which the flap is jammed

is unknown, this is done through monitoring and removing the imbalance in the out-of-plane blade

root bending moment between all three blades. These scenarios are analysed using IEC standard

load cases to assess both loads and the impact on energy capture.

It is found that detection of faults is vital for smart rotor controllers to avoid highly damaging

cyclic loads caused by rotor imbalance, but that fault correction is fairly simple to implement and

this allows the load benefits of the smart rotor to be accessible even with long fault periods.

154

Chapter 10 Faults

10.1 Motivation

For the smart rotor, micro-tabs, jets, vortex generators, plasma fields, active twist, inflatable struc-

tures and many other control devices are being considered, along with a variety of sensors and

actuators [1]. However, concerns over the implementation of these more novel control devices and

the depth of knowledge already associated with trailing edge flaps, have led the two demonstration

plants in operation to minimise risk and opt for these traditional control surfaces, which are similar

to ailerons on an aircraft wing [2] [3]. Nevertheless, the conditions under which an aircraft and wind

turbine operate are quite different. The regular maintenance and no-expense-spared safety require-

ments of aircraft are quite different to the repetitive continuous operation and cost-effectiveness

requirements of devices on wind turbines. Reliability and maintenance are therefore key issues,

especially on offshore machines [4] where the smart rotor concept may be most beneficial because

the high costs of foundations, cabling, maintenance etc., help weigh optimal size analysis towards

larger machines [5].

Fears over the reliability of the devices have not yet been addressed though. Shut down should

the smart rotor system fail is undesirable due to lost revenue, and swift corrective maintenance is

likely to be costly when considering the conditions offshore [6]. A preferable solution is to continue

to operate the wind turbine until maintenance can be conducted, while sustaining power output

and not eliminating the benefits of the smart rotor through increased loadings. A fault detection

and correction system has been developed that does exactly that.

The state-of-the-art controller has been implemented as explained in Chapter 4 with the dq-axis

smart rotor control, Section 4.4.1, with fault cases applied to the system.

155

Chapter 10 Faults

10.2 Fault cases

It is judged that two main faults are likely for the trailing edge flap smart rotor: 1) a broken

linkage and, 2) a jammed flap. The case where a broken linkage occurs and so the flap is ‘free’ is

liable to induce flutter, with no mechanism to stop this happening catastrophic failure may result.

The chance of this fault case occurring therefore needs to be negligible. The second scenario, of a

jammed flap, is therefore considered in this chapter.

If a flap gets jammed cyclic loadings result due to an aerodynamic imbalance, caused by the

one blade experiencing different aerodynamic forces than the other two. This can be exacerbated

if the controller fails to recognise that a fault has occurred and continues to operate the dq-axis

smart rotor control. This may be due to a disconnection between the flap and actuator, such that

feedback sensor measurements are assumed correct, but the flap is jammed. This can be considered

a worst case scenario.

As an example, a +5 degree flap angle is applied to one of the three flaps, while the other two

are allowed to operate as normal. To see what affect this has, cumulative spectrums for the case

where a) the smart rotor system is inactive (CPC), b) the smart rotor system is active and working

correctly (SRC), c) the smart rotor is active but a jam has occurred (SRC fault), and d) smart

rotor fault ride-through is active with a jam having occurred (SRC corrected); are shown in Figure

10.1.

Figure 10.1: Cumulative Power Spectral Density (PSD) of the blade root out-of-plane bending
moment for states a) to d). The corrected case is very similar to the collective pitch control case

The 1P peak is particularly significant when one flap is jammed while the other two still operate

to the dq-axis regime. This 1P loading is due to the controller continuing to activate the other

two flaps causing a significant aerodynamic imbalance. This can drastically reduce the lifetime of

the turbine, as examined in Section 10.5, and highlights the importance of detection and a fault

correction system.

156

Chapter 10 Faults

10.3 Detection of faults

Detection of a fault is possible through a number of methods: direct feedback from sensors measur-

ing the angle of the flap, measurement of the hinge moment of the flap, or indirect measurements

of the blade root bending moment, tower motion or high speed shaft, as revealed in Figure 10.2. A

rapid automatic response is required not just to reduce loads, but also to identify the fault mode

and avoid automatic shutdown due to excessive vibrations.

Figure 10.2: Power spectral density plots highlighting the 1P vibrations

Direct sensor measurement is a trivial case, and results in near instantaneous detection with

knowledge of which and to what degree the flap is jammed. This enables rapid and accurate

adjustment of the remaining flaps to mitigate the fault, with the fault correction system described

in the next section.

Indirect measurements are somewhat more complex to use. The method considered here is

monitoring the average power in the signal around 1P with a trigger to activate fault correction

system should it exceed a given threshold. A band-pass filter is used to filter out the 1P signal and

the power in this signal over a defined window is calculated. This condition monitoring system is

shown in Figure 10.3, where N is the size of the window and in this case 2.6 units is the threshold

limit. Z−k represents a discrete signal delay of k samples.

The threshold needs to be set so as false positives do not shutdown the system and remove

the benefit of the smart rotor control, while still being sensitive enough to detect faults. As the

wind speed increases, the power in the spectrum naturally increases, this can be seen in Figure 10.4

when looking at tower accelerations. To combat this a normalisation procedure is adopted such that

during normal operation the chance of the fault correction system being triggered is 1-in-50-years,

displayed in Figure 10.5 for the normalised results.

This is handled by adjusting the output based on the wind speed. The advantage of adjusting

the signal rather than the threshold is that it is easier for a human to identify when a fault

occurs and simpler to determine the frequency of exceedence across a wide range of wind speeds.

157

Chapter 10 Faults

Measured
signal

1P bandpass
filter

x2 Normalisation +
+

−

Z−1

Z−N

Wind speed
estimate

> 2.6

Yes

No

Trigger fault
correction

Do nothing

Figure 10.3: Condition monitoring system

Figure 10.4: Maximum power observed in simulations across all wind speeds

The adjustment to the signal is based on the maximum observed detection signal, exhibited in

Figure 10.4, for normal smart rotor control operation. A quadratic curve is fitted to this data for

normalisation. The equation for this, where the signal is x, output, y, and wind speed, V , is

y =
1.0x

0.024V 2 − 0.57V + 4.2
(10.1)

The result of this normalisation procedure is shown in Figure 10.6, with the maximum observed

values in normal operation approximately equal to 1 across all wind speeds. The wind speed input

to the normalisation procedure may be as coarse as the 10 minute mean wind speed or a more

active wind speed estimation may be used. If, for example, a wind speed estimation procedure is

employed (e.g. [7]), this may lead to better responsiveness as a lower threshold can be used without

increasing the number of false positives.

At lower wind speeds it is observed that the fault would not always be detected with the

threshold set at 2.6. This is due to the smart rotor control phasing in and out due to the operation

switching between above and below rated. It is also suggestive that at higher wind speeds, detection

158

Chapter 10 Faults

Figure 10.5: Probability of exceeding a given threshold value

Figure 10.6: Power spectral density plots highlighting the 1P vibrations

159

Chapter 10 Faults

may be quicker as the threshold is likely to be exceeded more rapidly. Table 10.1 looks at this in

closer detail, with results from simulations using the detection system described, while monitoring

the tower accelerations.

Table 10.1: Average time before a fault is detected at various wind speeds

Mean wind speed Time before detection
[m/s] Mean [s] Maximum [s]

10 - -
12 255 459
14 120 305
16 79 196
18 91 196
20 87 183
22 89 181
24 90 181

As can be seen at 10 m/s mean wind speed the jammed flap is not detected at all. However,

it should be noted that the the turbine only operated in the above rated region, where the smart

rotor control is active, for 22% of the time, with the longest duration being 57s for an hours worth

of simulation time. During this period 1P oscillations do not build up to a significant level and

indeed the damage caused is therefore low. Faster detection does occur as the wind speed increases,

as expected, and this is fortunate as damage accrues quicker at higher wind speeds, seen in Section

10.5.

Three examples of the detection system working are shown for wind speeds 10m/s, 16m/s

and 24m/s with the fault occurring at zero seconds after an initial unrecorded minute of normal

operation. As can be seen in Figure 10.7 the tower accelerations during the fault increase, but the

detection system identifies the fault prior to excessive excitation thanks to the identification of 1P

vibrations.

The condition monitoring system is flexible and through adjustment of the gains and threshold

limits alternative sensors may be used as required for convenience. In particular measurement of

the blade root bending moment, that is often for dq-axis controlled wind turbines, is an obvious

choice.

160

Chapter 10 Faults

(a) 10 m/s mean wind speed

(b) 16 m/s mean wind speed

(c) 24 m/s mean wind speed

Figure 10.7: Tower accelerations and the fault detection signal. The fault occurs at zero seconds,
and when the detection signal exceeds the threshold, the correction system activates

161

Chapter 10 Faults

10.4 Fault correction

The fault correction system developed removes the cyclic loadings by adjusting the other two flaps

to balance the third in a simple and effective way: the operational flaps are set to the angle of

the jammed flap. If this is not possible to determine directly, the active flap angles are set to zero

before slowly adjusting them to achieve the same mean blade root bending moment across all three

blades. This effectively leads to all flaps having the same fixed flap angle.

The method for adjusting the flaps to achieve the same flap angle as the jammed flap, should the

angle not be directly known, is shown in Figure 10.8. Filters are used to reject 1P and 3P signals

whilst a PI controller is used to adjust the blade root bending moment of the individual blade

to that of the mean collective blade root bending moment. A gain schedule is used to encourage

motion while the deviation from the collective mean is large and reduce motion when it is close to

the mean to reject disturbances.

Blade ‘K’ root
bending moment

1P filter 3P filter +−

Mean collective blade
root bending moment

PI

Gain scheduling

Flap angle

Figure 10.8: Fault ride through control system

As before the 16m/s and 24m/s wind speeds are looked at in detail to view this process, looking

at the flap angles, Figure 10.9. While the flap angles for the working flaps vary about the angle of

the jammed flap, these oscillations are small, and due to the control strategy adopted avoid any

rotor imbalance.

This fault correction strategy described does result in a system with increased loads compared

to the case where the flaps are working, however the improvement over the non-adjusted case is

considerable. The loads are in effect reduced to those of the collective pitch control case, with an

impact on the energy capture dependent on the severity of the jammed flap. These aspects are

looked at in the following two sections.

162

Chapter 10 Faults

(a) 16 m/s mean wind speed

(b) 24 m/s mean wind speed

Figure 10.9: Flap angles following a fault for two different wind speeds

10.5 Loads

Calculated from IEC standard power production runs for a Class IB wind turbine, the lifetime 1 Hz

blade root out-of-plane damage equivalent loads for a turbine, with an uncorrected for flap jammed

at 5 degrees, are 28% greater than those had the turbine been simply operating a normal collective

pitch control strategy. When these fault loads are compared to the loads when the smart rotor

control is working correctly, they are 50% higher. In certain high wind speed conditions, under

which a fault is perhaps more likely to occur, these figures are even worse. For example at a 22m/s

mean wind speed these values are increased to 40% and 80% respectively, as shown in Figure 10.10.

This results in damage accumulating considerably faster than under normal operation and indeed

if a turbine was to operate under this condition for more than 7% of the time, a collective pitch

control would result in lower loads than a smart rotor control, Figure 10.11.

The loads on the tower can be even worse, as seen in Figure 10.12, with a fault condition con-

tributing the same amount of damage in 10 days as the tower would normally experience in a year.

This highlights the requirement to recognise when a fault has occurred and act quickly. Without

any fault detection and correction system catastrophic failure may result requiring the turbine to

be shut down, which will result in lost revenue. The detection system developed recognises faults

within minutes, so the fault condition will be in operation for a very short amount of time, making

damage due to a fault negligible.

Naturally though, the longer the fault duration, with the flaps held in position rather than

operating as per the smart rotor control strategy, the lower the benefit the smart rotor control has

163

Chapter 10 Faults

Figure 10.10: Blade root out-of-plane bending moment 1Hz lifetime damage equivalent loads for
the different operational states

Figure 10.11: Lifetime load reduction in the out-of-plane blade root bending moment due to a fault
with and without fault detection and correction

164

Chapter 10 Faults

Figure 10.12: Blade root out-of-plane bending moment 1Hz lifetime damage equivalent loads for
various fixed flap angles in degrees

for fatigue load reduction. However, a certain load reduction is still sustained even if corrective

maintenance takes weeks before the weather conditions are practicable for offshore maintenance.

A fault that is present for as much as 25% of the time still allows a load reduction of 8% over the

collective pitch control case, also portrayed in Figure 10.11. This is half the potential of the smart

rotor control.

This result is similar for all blades, with varying loads depending on the angle at which the flaps

get jammed, see Figure 10.13. Indeed the lifetime damage equivalent loads of flaps set at negative

20 degrees can in fact result in a 10% load reductions compared to the collective pitch controlled

case. Again, similar results are found for the tower, Figure 10.14. However, the non-zero flap angles

have an adverse effect on the annual energy capture of the wind turbine.

165

Chapter 10 Faults

Figure 10.13: Blade root out-of-plane bending moment 1Hz lifetime damage equivalent loads for
various fixed flap angles in degrees

Figure 10.14: Tower fore-aft moment 1Hz lifetime damage equivalent loads for various fixed flap
angles

166

Chapter 10 Faults

10.6 Energy Capture

The annual capacity factors are shown in Figure 10.15 for each of the IEC wind distribution classes.

The high values particularly of the Class I wind distribution case are a result of assumed 100%

availability and transmission losses not being included, but are indeed comparable to some operating

offshore wind farms [8].

Figure 10.15: Capacity factor of the wind turbine with various fixed flap angles at sites with different
mean wind speeds, IEC wind turbine classes I,II and III

The actual energy loss due to the flaps being fixed at a non-zero angle can be as high as 15% for

a wind turbine with the flaps set at negative 20 degrees, as displayed in Table 10.2. The maximum

losses when considering the Class I case are lower though, at close to 10%. The reason for this

is that after activation of the fault correction system, above rated power capture is maintained.

This is due to the pitch automatically adjusting the collective pitch angle to achieve the correct

torque. Below rated though there is a loss in energy capture which is dependent on the set angle

of the flaps. Looking at the 10-minute mean wind speed power curve for the negative 20 degree

flap deployment the loss in energy below rated can be seen, alongside an increase in the wind speed

at which rated power is reached, Figure 10.16. On the other hand, between negative 5 and zero

degrees, the losses are negligible, and the operation is very similar to the zero flap angle case.

Intriguingly at low wind speeds in the region where the rotor speed is fixed, resulting in a high

tip speed ratio, the loss due to the negative 20 degree fault case is even higher than on average,

whilst a moderate positive flap angle can in fact improve energy capture. This goes against what

might be expected when looking at the Cp-λ curves, Figure 10.17, and has at its root the dynamic

change in lift coefficient due to the incoming turbulent wind field. It is possible then in this region

to improve energy capture through deployment of the flaps, however exploring this issue is beyond

the scope of this thesis.

The Cp-λ curve also highlights where performance is lost, with a reduction in the maximum

power coefficient at the previously optimum tip speed ratio of 24%. This can be improved slightly

167

Chapter 10 Faults

Figure 10.16: 10-minute mean wind speed power curves for various fixed flap angles

Figure 10.17: Power coefficient as a function of tip speed ratio for various fixed flap angles (Cp-λ
curves)

168

Chapter 10 Faults

Table 10.2: Annual energy capture compared to collective pitch controlled case (0 degree flap angle),
at sites with different mean wind speeds

Fixed flap angle Energy capture [%]
[deg] Class I Class II Class III

-20 90.1 87.4 84.9
-15 95.4 94.1 92.8
-10 98.8 98.4 98.0
-5 100.0 100.0 100.0
0 100.0 100.0 100.0
5 99.5 99.3 99.2

10 99.0 98.8 98.6
15 98.1 97.7 97.3
20 96.6 95.8 95.1

by changing the controller so that the new optimum tip speed ratio is tracked, but the improvement

is small, such that during optimum tracking mode there is still a 22% reduction in power output.

The longer the turbine is operating in this condition, the greater the power lost due to the jammed

flap, but this is still much better than a reduction to zero output from shutting down the wind

turbine that would be required had a fault correction strategy not been adopted.

169

Chapter 10 Faults

10.7 Discussion

The smart rotor has the ability to reduce loads on wind turbines, which is likely to be particularly

important for the next generation of multi-MW offshore machines with large swept areas. However,

one of the key concerns associated with the smart rotor concept is the reliability and maintenance

of the system, which could lead to increased costs or lost revenue. Indeed, it is shown in this work

that if a fault occurs and the wind turbine is allowed to continue to operate without correction,

the load reduction benefits are quickly eroded, ultimately requiring the wind turbine to be shut

down. In an offshore environment, where corrective maintenance will take time due to distance,

equipment and weather conditions, this is a serious problem, and could result in significant lost

revenue. Fortunately, a solution has been found which is both simple and effective.

A fault detection and correction system has been implemented that responds rapidly to faults

and allows operation of the wind turbine to continue with loads that are substantially less than that

of the fault case. Operation under a fault condition has been shown to be viable even for extended

periods of time, while still allowing load reductions due to the smart rotor system to be realisable.

This conserves the benefits of the smart rotor, while the reliability and maintenance requirements

are made not to be too arduous, as load reductions and close to optimum power output may still

be achieved even in cases where a flap jams. This helps facilitate the deployment of the smart rotor

on commercial wind turbines by recognising and eliminating one of the barriers.

Reliability and maintenance requirements for the smart rotor are much more lenient than one

might expect, and the fears that faults could hinder deployment of the smart rotor are not wholly

substantiated.

170

Chapter 10 Faults

References

[1] T. K. Barlas and G. A. M. van Kuik, “Review of state of the art in smart rotor control research

for wind turbines,” Progress in Aerospace Sciences, vol. 46, pp. 1–27, Jan. 2010.

[2] J. Berg, B. R. Resor, J. Paquette, and J. White, “SMART Wind Turbine Rotor: Design and

Field Test,” tech. rep., Sandia National Laboratories, Albuquerque, New Mexico and Livermore,

California, 2014.

[3] D. Castaignet, T. K. Barlas, T. Buhl, N. K. Poulsen, J. J. Wedel-Heinen, N. A. Olesen, C. Bak,

and T. Kim, “Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load

reduction and system identification,” Wind Energy, vol. 17, pp. 549–564, Apr. 2014.

[4] G. J. W. V. Bussel, “Offshore wind energy, the reliability dilemma,” in 1st World Wind Energy

Conference, no. 31, (Berlin, Germany), 2002.

[5] P. Jamieson, Innovation in Wind Turbine Design. Wiley, 2011.

[6] J. Dowell, A. Zitrou, L. Walls, T. Bedford, and D. Infield, “Analysis of Wind and Wave Data

to Assess Maintenance Access to Offshore Wind Farms,” in European Safety and Reliability

Association Conference, (Amsterdam, Netherlands), 2013.

[7] K. Z. Ostergaard, P. Brath, and J. Stoustrup, “Estimation of effective wind speed,” Journal of

Physics: Conference Series, vol. 75, July 2007.

[8] Energistyrelsen, “Register of wind turbines,” tech. rep., ENS, Copenhagen, 2014.

171

Chapter 11

Conclusion

This chapter brings together the conclusions from this thesis and proposes some future areas that

may be explored building upon this foundation. A brief summary of the thesis is given in Section

11.1 and this is followed by Section 11.2 describing the deductions, implications and limitations of

the various aspects of this thesis. Finally, a number of future directions are proposed in Section

11.3.

172

Chapter 11 Conclusion

11.1 Summary

The increase in the use of wind energy and the desire to bring down the cost of energy from it have

led to some innovative concepts being considered. The smart rotor is one such concept that has

been shown to reduce loads on the wind turbine, which ultimately could lead to a reduction in the

cost of energy. This thesis contributes to a number of areas involving smart rotor research:

� The understanding of the influence wind fields can have on load reduction results, Chapter 6

� The selection of trailing edge flaps based on actuator requirements in consideration with the

chord width of the flaps, Chapter 7

� The potential of smart rotor control in direct comparison with individual pitch control, Chap-

ter 8

� Demonstration of the potential to reduce pitch actuator requirements by supplementing the

collective pitch control with smart rotor control, Chapter 9.

� Detection and mitigation of faults on the smart rotor, Chapter 10

These areas are analysed in a rigorous methodical manner to provide the ability for others to

repeat this work, build upon it and make accurate comparisons with it: the baseline wind turbine

is described in detail in Chapter 4, with the methods to make quantitative comparisons discussed

in Chapter 5. The deductions and implications from these studies are described in the following

section.

173

Chapter 11 Conclusion

11.2 Deductions, implications and limitations

11.2.1 Wind field synthesis and performance

It is found that the nature of the conditions under which smart rotor control, and indeed individual

pitch control, are operated can have a significant effect on the load reductions observed. For a

turbine operating in high wind shear environments, or equivalently in yawed flow, the cyclic loadings

are high, as too are the rotor imbalances. As the smart rotor and individual pitch control are

effective at removing these imbalances, significant load reductions with these wind field conditions

may be achieved.

Conversely, in high turbulence wind fields, increased loading is a result of stochastic distur-

bances with only large scale structures resulting in cyclic loadings that the advanced load reduction

controllers examined are able to target effectively. This has two fundamental implications.

The first is in the realm of academia. When conducting research into control strategies, results

should be shown for a common wind field, preferably taken from the IEC standard, to conduct

fair comparisons of different controllers. The reason for this is that the results can easily be biased

to suggest superiority. For example a smart rotor turbine simulated with high wind shear and

low turbulence will achieve significantly larger load reductions than one simulated with a low wind

shear and high turbulence. This is also why a standard baseline wind turbine and state-of-the-art

controller are required, as alternatives will also alter the significance of conclusions that may be

made.

The second implication regards the implementation of these advanced load reduction controllers

in reality. It would appear that for greatest benefit these advanced controllers should be imple-

mented in locations where high wind shear is expected. In these cases the maximum load reductions

and so potential cost reductions can be achieved. An example of this is to mitigate the effect of

low level jets using individual pitch control [1].

The study in this thesis however is limited in scope. In particular the number of different shear

exponents and turbulence intensities mean a trend can not be accurately determined. It should also

be pointed out only normal turbulence wind field models are used. This means extreme loads are

not fully taken account of as certain loads are dependent on transient events or even fault conditions.

The nature of these results however still rings true, especially as regards to future studies which,

should they wish to take account of these transients, should also use examples defined in the IEC

standard to facilitate comparisons.

The other criteria of the wind field that has been considered is the grid resolution. It is found

that time resolution sampling of the wind field converges linearly to a point, with periods of even

a few seconds diverging from the highest resolution results by less than the standard deviation due

to the stochastic nature of the wind fields being simulated. The spatial resolution of the wind field

grid is also considered with grid spacings of under 5m, as suggested by the GL standard, being

more than suitable for this wind turbine. This is tested using the Kaimal wind field model, with

parameters of the Mann wind field model also being checked. The potential differences between the

two wind field models is of some concern, but mainly in the actual certification of wind turbines.

The reason being that the true nature of the wind may not be accurately defined by either of these

models and so could promote loads that are not predicted by the simulations conducted.

174

Chapter 11 Conclusion

11.2.2 Trailing edge flaps

The torque and power requirements of trailing edge flap actuators are shown to be low and this

is highly desirable, as if the actuator is to be integrated into the blade the space available will be

constrained and lower torque and power requirements will allow a smaller actuator to be used. The

actuator demands of trailing edge flaps are also shown to be dependent on the chord width of the

flaps. The longer the chord width, the lower the deflection, rates and accelerations required, but

the higher the torques needed.

Proportionally the torque increases more rapidly with increased chord than the reduction in

actuator motion, meaning larger flaps consume more power. This means flaps with shorter chord

widths would be preferable, but there is also a downside to them. With smaller chord width flaps the

deflections required for the same change in lift are increased. This can lead to flow separation, which

reduces aerodynamic efficiency and can lead to increased noise. This study aids in the selection of

trailing edge flaps, complementing work previously done on their location [2] and design [3].

A major drawback with this study though is that friction has not been taken into account. An

accurate friction model may find this alters the results significantly. Naively perhaps, the addition

of friction is expected to bias towards larger flaps, assuming a constant friction coefficient, as the

smaller flaps undergo more travel, however, uneven loads on the bearings may result in something

quite different due to deformation of the blades and flaps.

This work also informs the selection of flaps used in the thesis, which have the same percentage

chord and span as the Sandia smart rotor demonstration plant. This is a trade-off between the

actuator motion and torques, with the additional benefit that comparisons can then be made

directly with the demonstration plant and knowledge that this design is feasible.

11.2.3 Individual pitch and smart rotor control

The smart rotor is shown to be capable of similar load reductions as individual pitch control. By

running simulations where this is the case, a direct comparison between the two regarding other

aspects of the wind turbine is possible. For individual pitch control, the load reductions come at

the cost of increased actuator duty and power requirements. This will also affect the pitch bearing

requirements. These costs need to be less than the savings achieved due to the reduced loads offered

by the individual pitch control, and for the trailing edge flap smart rotor the cost of implementing

the system needs to be less than the savings achieved by the reduced loads. Trailing edge flaps

also have the ability to reduce pitch actuator requirements too, so this may also count towards cost

savings. No actual cost analysis is conducted, but the results may be used to inform a cost analysis.

An additional drawback with this work is that while two different controllers have been tested,

a more through investigation into the trade-off between load reductions and actuator requirements

is not conducted. This could see limits reached beyond which either of the controllers is able to

respond and so divergence suggesting one or other system is preferable.

11.2.4 Supplementary control

Following on from the comparison between individual pitch and smart rotor control, the question

of using smart rotor control to conduct other control functions is considered. Previous work has

demonstrated the ability of the smart rotor to supplement pitch control as an addition to individual

175

Chapter 11 Conclusion

pitch control [4] [5]. In this work it is demonstrated that trailing edge flaps may supplement the

main pitch controller and in so doing reduce the pitch actuator requirements. A similar conclusion

to [6].

The sensitivity analyses based on the cut-off frequency of the filter splitting pitch and flap

demands suggests a balance between pitch actuator reductions and the risk of saturating the flap

deflections. The smart rotor is also shown capable of more than one function, as demonstrated by

aiding in rotor speed control, while also reducing loads on the wind turbine. Again though there

is a trade to be had between load reduction, supplementary control for the pitch actuator and flap

actuator requirements.

The ability of the smart rotor to reduce pitch actuator requirements implies that when designing

smart rotor wind turbines supplementary control is an aspect that should be considered.

11.2.5 Faults

It is shown that if a fault occurs in the smart rotor system and the wind turbine is allowed to

continue to operate without correction, the load reduction benefits are quickly eroded, ultimately

requiring the wind turbine to be shut down. A fault detection and correction system is demonstrated

in this thesis that responds rapidly to faults and allows operation of the wind turbine to continue

with loads that are substantially less than that of the fault case.

When the fault correction system is used, operation can be extended for long periods of time,

while still allowing load reductions due to the smart rotor system to be realisable. This conserves

some of the benefits of the smart rotor, while the reliability and maintenance requirements are

eased.

This has significant implications for the deployment of the smart rotor on wind turbines. With-

out recognising or considering faults, catastrophic damage could occur. Equally, without a fault

correction system, shutting down the turbine will result in significant lost revenue. This is true

particularly offshore, where maintenance is more difficult and takes longer. The system imple-

mented effectively solves these two problems and as such this is an important contribution to the

acceptance of the smart rotor for adoption by industry.

176

Chapter 11 Conclusion

11.3 Future work

Finally, from this work a number of future directions are proposed:

� Conduct a comprehensive analysis of loads, particularly extreme loads, using the IEC standard

cases to further research the ability of both individual pitch and smart rotor control. This

could also include tests of fault conditions including of the trailing edge flap

� Re-run simulations with other aerodynamic flow control devices to validate the claim that

the results will stand for any change in lift coefficient device

� Extend supplementary control such that rather than targeting certain aspects it compre-

hensively covers all pitch actions, so that the pitch actuator benefits fully and there is no

requirement to extensively retune and redesign controllers, e.g. simply splitting the pitch

demand between the smart rotor and pitch actuators based on frequency

� Create a flap actuator model that includes friction

� Conduct a cost analysis to quantify the benefits of individual pitch and smart rotor control

systems

� Adapt the work to use open source software to ease in comparisons and to facilitate con-

tinuation of this work by any individual without the need for licensed software. This would

also allow adaptation of the modelling code to cope with the specific aerodynamics of the

aerodynamic flow control devices implemented

� Test different control strategies including control of smart rotor wind turbines with multiple

flaps per blade, e.g. as per the Sandia demonstration plant

� Validate the model and results against field data

177

Chapter 11 Conclusion

References

[1] D. Robb, C. Gonzalez, P. Clive, W. E. Leithead, and A. Giles, “Offshore Low Level Jets -

Mitigating the Damage with Lidar and Individual Blade Control,” in EWEA Offshore, (Messe

Frankfurt, Germany), 2013.

[2] P. B. Andersen, L. C. Henriksen, M. Gaunaa, C. Bak, and T. Buhl, “Deformable trailing edge

flaps for modern megawatt wind turbine controllers using strain gauge sensors,” Wind Energy,

vol. 13, pp. 193–206, Mar. 2010.

[3] N. Troldborg, “Computational study of the Risø-B1-18 airfoil with a hinged flap providing

variable trailing edge geometry,” Wind Engineering, vol. 29, no. 2, pp. 89–114, 2005.

[4] D. G. Wilson, D. Berg, B. R. Resor, M. F. Barone, and J. Berg, “Combined individual pitch

control and active aerodynamic load controller investigation for the 5MW upwind turbine,” in

AWEA Wind Power Conference, (Chicago, Illinois), 2009.

[5] M. A. Lackner and G. A. M. van Kuik, “A comparison of smart rotor control approaches using

trailing edge flaps and individual pitch control,” Wind Energy, vol. 13, pp. 117–134, Mar. 2010.

[6] L. C. Henriksen, L. Bergami, and P. B. Andersen, “A model based control methodology combin-

ing blade pitch and adaptive trailing edge flaps in a common framework,” in EWEA, (Vienna,

Austria), 2013.

178

Appendices description

In the following appendices the computer files created for this thesis are made available. Where

propriety software is used (i.e. Bladed), an attempt is made to supply the raw data and reports as

well as the project file. This is done in the interest of openness, to facilitate future work, and for

the merely curious. A brief description of the files is also supplied. Visual Studio for the C++ code

compilation is available to download for free online, as too is Octave, an open source alternative to

MATLAB.

The files are embedded in the pdf version of this thesis, which is available from the University

of Strathclyde, for easy and complete access. To download the files, where a pin is seen in the

following pages, right click on it and select, ‘Save Embedded File to Disk...’ A number of the files

have been zipped together using 7-Zip, so that upon extraction they work together.

179

Appendix A

Wind turbine model parameters

In this appendix files relating to the wind turbine model are supplied.

The Bladed version 4.5 project file contains all the information regarding the wind turbine

model, including the structure of the turbine, aerodynamics of the blade sections and actuator

information. Using this model a Bladed simulation of the smart rotor wind turbine presented in

this report can be run. Additionally, a controller dll should be selected as the external controller

file, as the path will be otherwise incorrect, and a 3D turbulent wind field file should also be selected

for use.

The wind turbine model parameters are also attached in this appendix, because Bladed is

proprietary software and so access to it is by no means guaranteed. This is done as an export

report from Bladed, and includes all the characteristics of the wind turbine. It has been split in

two, one pertaining to the general parameters, and the second to the aerodynamic characteristics

of the blade sections, excluding those with flaps. This exclusion is done due to the large number

of coefficients required for the flaps at various angles, and instead the method for attaining them

is provided in Appendix B.

Wind turbine Bladed model

Wind turbine model parameters

Aerodynamic coefficients

180

	 0.2
	

VERSION	4.5.0.61
MULTIBODY	 1
CALCULATION	10
OPTIONS	259745
PROJNAME	NREL_5MW_19Aug14
DATE	19/08/2014
ENGINEER	Charles Plumley
NOTES	"UpWind/NREL 5-MW wind turbine, with blade trailing edge flaps."
DTBLADEDi	 1
DTBLADEDv	""
DTBLADEDf	""
DTBLADEDd	"MSTART EXTRA
PitchAndAileron 1
Angle 0
AileronActuator 1
Aileron_NUMORD 2
Aileron_NUM 0 0 39.478417604357432
Aileron_DENORD 2
Aileron_DEN 1.0000 8.796459430051421 39.478417604357432
MEND"
DTBLADEDa	""
PASSWORD	
MSTART RCON
DIAM	 126
NB	3
TEETER	N
PTC	1
DELTA3	 0
PTCDATA	""
HEIGHT	 90
HOFFST	 0
TOWHT	 87.6
TILT	 8.72663888888889E-02
CONE	-4.36331944444444E-02
SETANG	 0
OVRHNG	 5
CUTIN	 4
CUTOUT	 25
ROTN	C
POSITN	U
CNTLS	A
TYPE	Variable
SPIND	 3
ROOT	 1.5
EXTND	 3.5
EXTDC	 1
TRANSTYPE	G
MEND

MSTART ADAT
NFOILS	9
NFOIL	1
FTYPE	F
NTHICK	2
NREYN	3
 1
-1
-1
-1
-1
-1
NFOIL	2
FTYPE	F
NTHICK	2
NREYN	3
 2
-1
-1
-1
-1
-1
NFOIL	3
FTYPE	F
NTHICK	2
NREYN	3
 3
-1
-1
-1
-1
-1
NFOIL	4
FTYPE	F
NTHICK	2
NREYN	3
 4
-1
-1
-1
-1
-1
NFOIL	5
FTYPE	F
NTHICK	2
NREYN	3
 5
-1
-1
-1
-1
-1
NFOIL	6
FTYPE	F
NTHICK	2
NREYN	3
 6
-1
-1
-1
-1
-1
NFOIL	7
FTYPE	F
NTHICK	2
NREYN	3
 7
-1
-1
-1
-1
-1
NFOIL	8
FTYPE	F
NTHICK	2
NREYN	3
 8
-1
-1
-1
-1
-1
NFOIL	9
FTYPE	M
NTHICK	1
NREYN	1
NDEPL	19
 9
 19
 18
 17
 16
 15
 14
 13
 12
 10
 21
 22
 23
 24
 25
 26
 27
 20
 11
NSETS	27
SETNB	1
SETNAME	Cylinder1_cor
COMMENTS	""
DATE	01-23-2008@15:42:49
XA	 25
THICK	 100
REYN	 7000000
DEPL	 0
NALPHA	3
NVALS	3
ALPHA	-180, 0, 180
CL	 0, 0, 0
CD	 .5, .5, .5
CM	 0, 0, 0
SETNB	2
SETNAME	Cylinder2_cor
COMMENTS	""
DATE	01-23-2008@15:43:25
XA	 25
THICK	 70
REYN	 7000000
DEPL	 0
NALPHA	3
NVALS	3
ALPHA	-180, 0, 180
CL	 0, 0, 0
CD	 .35, .35, .35
CM	 0, 0, 0
SETNB	3
SETNAME	DU40_A17_cor
COMMENTS	""
DATE	01-23-2008@15:41:33
XA	 25
THICK	 40
REYN	 7000000
DEPL	 0
NALPHA	136
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19,-18,-17,-16,-15,-14,-13,-12,-11,-10,-8,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 19, 19.5, 20.5, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .218, .397, .642, .715, .757, .772, .762, .731, .68, .613, .532, .439, .337, .228, .114,-.002,-.12,-.236,-.349,-.456,-.557,-.647,-.727,-.792,-.842,-.874,-.886,-.875,-.839,-.777,-.761,-.744,-.725,-.706,-.685,-.662,-.635,-.605,-.571,-.534,-.494,-.452,-.407,-.36,-.311,-.208,-.111,-.09,-.072,-.065,-.054,-.017, .003, .014, .009, .004, .036, .073, .137, .213, .292, .369, .444, .514, .58, .645, .71, .776, .841, .904, .967, 1.027, 1.084, 1.14, 1.193, 1.242, 1.287, 1.333, 1.368, 1.4, 1.425, 1.449, 1.473, 1.494, 1.513, 1.538, 1.587, 1.614, 1.631, 1.649, 1.666, 1.681, 1.699, 1.719, 1.751, 1.767, 1.798, 1.81, 1.83, 1.847, 1.861, 1.872, 1.881, 1.894, 1.904, 1.915, 1.929, 1.903, 1.82, 1.69, 1.522, 1.323, 1.106, .88, .658, .449, .267, .124, .002,-.118,-.235,-.348,-.453,-.549,-.633,-.702,-.754,-.787,-.797,-.782,-.739,-.664,-.41,-.226, 0
CD	 .0602, .0699, .1107, .3045, .4179, .5355, .6535, .7685, .8777, .9788, 1.07, 1.1499, 1.2174, 1.2716, 1.3118, 1.3378, 1.3492, 1.346, 1.3283, 1.2964, 1.2507, 1.1918, 1.1204, 1.0376, .9446, .8429, .7345, .6215, .5067, .3932, .2849, .2642, .244, .2242, .2049, .1861, .1687, .1533, .1398, .1281, .1183, .1101, .1036, .0986, .0951, .0931, .093, .0689, .0614, .0547, .048, .0411, .0349, .0299, .0255, .0198, .0164, .0147, .0137, .0113, .0114, .0118, .0122, .0124, .0124, .0123, .012, .0119, .0122, .0125, .0129, .0135, .0144, .0158, .0174, .0198, .0231, .0275, .0323, .0393, .0475, .058, .0691, .0816, .0973, .1129, .1288, .165, .1845, .2052, .225, .2467, .2684, .29, .3121, .3554, .3783, .4212, .4415, .483, .5257, .5694, .6141, .6593, .7513, .8441, .9364, 1.0722, 1.2873, 1.4796, 1.6401, 1.7609, 1.836, 1.8614, 1.8347, 1.7567, 1.6334, 1.4847, 1.3879, 1.3912, 1.3795, 1.3528, 1.3114, 1.2557, 1.1864, 1.1041, 1.0102, .906, .7935, .675, .5532, .4318, .3147, .1144, .0702, .0602
CM	 0, .0934, .1697, .2813, .3208, .3516, .3752, .3926, .4048, .4126, .4166, .4176, .4158, .4117, .4057, .3979, .3887, .3781, .3663, .3534, .3394, .3244, .3084, .2914, .2733, .2543, .2342, .2129, .1906, .167, .1422, .1371, .132, .1268, .1215, .1162, .1097, .1012, .0907, .0784, .0646, .0494, .033, .0156,-.0026,-.0213,-.06,-.05,-.0516,-.0532,-.0538,-.0544,-.0554,-.0558,-.0555,-.0534,-.0442,-.0469,-.0522,-.0573,-.0644,-.0718,-.0783,-.0835,-.0866,-.0887,-.09,-.0914,-.0933,-.0947,-.0957,-.0967,-.0973,-.0972,-.0972,-.0968,-.0958,-.0948,-.0942,-.0926,-.0908,-.089,-.0877,-.087,-.087,-.0876,-.0886,-.0917,-.0939,-.0966,-.0996,-.1031,-.1069,-.111,-.1157,-.1242,-.1291,-.1384,-.1416,-.1479,-.1542,-.1603,-.1664,-.1724,-.1841,-.1954,-.2063,-.222,-.2468,-.2701,-.2921,-.3127,-.3321,-.3502,-.3672,-.383,-.3977,-.4112,-.4234,-.4343,-.4437,-.4514,-.4573,-.461,-.4623,-.4606,-.4554,-.4462,-.4323,-.4127,-.3863,-.3521,-.3085,-.1858,-.1022, 0
SETNB	4
SETNAME	DU35_A17_cor
COMMENTS	""
DATE	01-23-2008@15:41:22
XA	 25
THICK	 35
REYN	 7000000
DEPL	 0
NALPHA	135
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19,-18,-17,-16,-15,-14,-13,-12,-11,-10,-5.54,-5.04,-4.54,-4.04,-3.54,-3.04,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15.5, 16, 16.5, 17, 17.5, 18, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .223, .405, .658, .733, .778, .795, .787, .757, .708, .641, .56, .467, .365, .255, .139, .021,-.098,-.216,-.331,-.441,-.544,-.638,-.72,-.788,-.84,-.875,-.889,-.88,-.846,-.784,-.768,-.751,-.733,-.714,-.693,-.671,-.648,-.624,-.601,-.579,-.559,-.539,-.519,-.499,-.48,-.385,-.359,-.36,-.355,-.307,-.246,-.24,-.163,-.091,-.019, .052, .121, .196, .265, .335, .404, .472, .54, .608, .674, .742, .809, .875, .941, 1.007, 1.071, 1.134, 1.198, 1.26, 1.318, 1.368, 1.422, 1.475, 1.523, 1.57, 1.609, 1.642, 1.675, 1.7, 1.717, 1.712, 1.703, 1.671, 1.649, 1.621, 1.598, 1.571, 1.549, 1.544, 1.549, 1.565, 1.565, 1.563, 1.558, 1.552, 1.546, 1.539, 1.527, 1.522, 1.529, 1.544, 1.529, 1.471, 1.376, 1.249, 1.097, .928, .75, .57, .396, .237, .101,-.022,-.143,-.261,-.374,-.48,-.575,-.659,-.727,-.778,-.809,-.818,-.8,-.754,-.677,-.417,-.229, 0
CD	 .0407, .0507, .1055, .2982, .4121, .5308, .6503, .7672, .8785, .9819, 1.0756, 1.158, 1.228, 1.2847, 1.3274, 1.3557, 1.3692, 1.368, 1.3521, 1.3218, 1.2773, 1.2193, 1.1486, 1.066, .9728, .8705, .7611, .6466, .5299, .4141, .303, .2817, .2608, .2404, .2205, .2011, .1822, .164, .1465, .13, .1145, .1, .0867, .0744, .0633, .0534, .0245, .0225, .0196, .0174, .0162, .0144, .024, .0188, .016, .0137, .0118, .0104, .0094, .0096, .0098, .0099, .01, .0102, .0103, .0104, .0105, .0107, .0108, .0109, .011, .0113, .0115, .0117, .012, .0126, .0133, .0143, .0156, .0174, .0194, .0227, .0269, .0319, .0398, .0488, .0614, .0786, .1173, .1377, .16, .1814, .2042, .2316, .2719, .2906, .3085, .3447, .382, .4203, .4593, .4988, .5387, .6187, .6978, .7747, .8869, 1.0671, 1.2319, 1.3747, 1.4899, 1.5728, 1.6202, 1.6302, 1.6031, 1.5423, 1.4598, 1.4041, 1.4053, 1.3914, 1.3625, 1.3188, 1.2608, 1.1891, 1.1046, 1.0086, .9025, .7883, .6684, .5457, .4236, .3066, .1085, .051, .0407
CM	 0, .0937, .1702, .2819, .3213, .352, .3754, .3926, .4046, .4121, .416, .4167, .4146, .4104, .4041, .3961, .3867, .3759, .3639, .3508, .3367, .3216, .3054, .2884, .2703, .2512, .2311, .2099, .1876, .1641, .1396, .1345, .1294, .1243, .1191, .1139, .1086, .1032, .0975, .0898, .0799, .0682, .0547, .0397, .0234, .006,-.08,-.08,-.08,-.08,-.08,-.08,-.0623,-.0674,-.0712,-.0746,-.0778,-.0806,-.0831,-.0863,-.0895,-.0924,-.0949,-.0973,-.0996,-.1016,-.1037,-.1057,-.1076,-.1094,-.1109,-.1118,-.1127,-.1138,-.1144,-.1137,-.1112,-.11,-.1086,-.1064,-.1044,-.1013,-.098,-.0953,-.0925,-.0896,-.0864,-.084,-.083,-.0848,-.088,-.0926,-.0984,-.1052,-.1158,-.1213,-.1248,-.1317,-.1385,-.1452,-.1518,-.1583,-.1647,-.177,-.1886,-.1994,-.2148,-.2392,-.2622,-.2839,-.3043,-.3236,-.3417,-.3586,-.3745,-.3892,-.4028,-.4151,-.4261,-.4357,-.4437,-.4498,-.4538,-.4553,-.454,-.4492,-.4405,-.427,-.4078,-.3821,-.3484,-.3054,-.1842,-.1013, 0
SETNB	5
SETNAME	DU30_A17_cor
COMMENTS	""
DATE	01-23-2008@15:41:09
XA	 25
THICK	 30
REYN	 7000000
DEPL	 0
NALPHA	143
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19,-18,-17,-16,-15.25,-14.24,-13.24,-12.22,-11.22,-10.19,-9.7,-9.18,-8.18,-7.19,-6.65,-6.13,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .274, .547, .685, .766, .816, .836, .832, .804, .756, .69, .609, .515, .411, .3, .182, .061,-.061,-.183,-.302,-.416,-.523,-.622,-.708,-.781,-.838,-.877,-.895,-.889,-.858,-.832,-.852,-.882,-.919,-.963,-1.013,-1.067,-1.125,-1.185,-1.245,-1.29,-1.229,-1.148,-1.052,-.965,-.867,-.822,-.769,-.756,-.69,-.616,-.542,-.525,-.451,-.382,-.314,-.251,-.189,-.12,-.051, .017, .085, .152, .219, .288, .354, .421, .487, .554, .619, .685, .749, .815, .879, .944, 1.008, 1.072, 1.135, 1.197, 1.256, 1.305, 1.39, 1.424, 1.458, 1.488, 1.512, 1.533, 1.549, 1.558, 1.47, 1.398, 1.354, 1.336, 1.333, 1.326, 1.329, 1.326, 1.321, 1.331, 1.333, 1.34, 1.362, 1.382, 1.398, 1.426, 1.437, 1.418, 1.397, 1.376, 1.354, 1.332, 1.293, 1.265, 1.253, 1.264, 1.258, 1.217, 1.146, 1.049, .932, .799, .657, .509, .362, .221, .092,-.03,-.15,-.267,-.379,-.483,-.578,-.66,-.727,-.777,-.807,-.815,-.797,-.75,-.673,-.547,-.274, 0
CD	 .0267, .037, .0968, .2876, .4025, .5232, .6454, .7656, .8807, .9882, 1.0861, 1.173, 1.2474, 1.3084, 1.3552, 1.3875, 1.4048, 1.407, 1.3941, 1.3664, 1.324, 1.2676, 1.1978, 1.1156, 1.022, .9187, .8074, .6904, .5703, .4503, .3357, .3147, .2946, .2752, .2566, .2388, .2218, .2056, .1901, .1754, .1649, .1461, .1263, .1051, .0886, .074, .0684, .0605, .027, .018, .0166, .0152, .0117, .0105, .0097, .0092, .0091, .0089, .0089, .0088, .0088, .0088, .0088, .0088, .0087, .0087, .0088, .0089, .009, .0091, .0092, .0093, .0095, .0096, .0097, .0099, .0101, .0103, .0107, .0112, .0125, .0155, .0171, .0192, .0219, .0255, .0307, .037, .0452, .063, .0784, .0931, .1081, .1239, .1415, .1592, .1743, .1903, .2044, .2186, .2324, .2455, .2584, .2689, .2814, .2943, .3246, .3557, .3875, .4198, .4524, .5183, .5843, .6492, .7438, .897, 1.0402, 1.1686, 1.2779, 1.3647, 1.4267, 1.4621, 1.4708, 1.4544, 1.4196, 1.3938, 1.3943, 1.3798, 1.3504, 1.3063, 1.2481, 1.1763, 1.0919, .9962, .8906, .7771, .6581, .5364, .4157, .3, .1051, .0388, .0267
CM	 0, .1379, .2778, .274, .3118, .3411, .3631, .3791, .3899, .3965, .3994, .3992, .3964, .3915, .3846, .3761, .3663, .3551, .3428, .3295, .3153, .3001, .2841, .2672, .2494, .2308, .2113, .1909, .1696, .1475, .1224, .1156, .1081, .1, .0914, .0823, .0728, .0631, .0531, .043, .0353, .024, .01,-.009,-.023,-.0336,-.0375,-.044,-.0578,-.059,-.0633,-.0674,-.0732,-.0766,-.0797,-.0825,-.0853,-.0884,-.0914,-.0942,-.0969,-.0994,-.1018,-.1041,-.1062,-.1086,-.1107,-.1129,-.1149,-.1168,-.1185,-.1201,-.1218,-.1233,-.1248,-.126,-.127,-.128,-.1287,-.1289,-.127,-.1207,-.1158,-.1116,-.1073,-.1029,-.0983,-.0949,-.0921,-.0899,-.0885,-.0885,-.0902,-.0928,-.0963,-.1006,-.1042,-.1084,-.1125,-.1169,-.1215,-.1263,-.1313,-.1352,-.1406,-.1462,-.1516,-.157,-.1623,-.1676,-.1728,-.1832,-.1935,-.2039,-.2193,-.244,-.2672,-.2891,-.3097,-.329,-.3471,-.3641,-.3799,-.3946,-.4081,-.4204,-.4313,-.4408,-.4486,-.4546,-.4584,-.4597,-.4582,-.4532,-.4441,-.4303,-.4109,-.3848,-.3508,-.3074,-.2786,-.138, 0
SETNB	6
SETNAME	DU25_A17_cor
COMMENTS	""
DATE	01-23-2008@15:40:55
XA	 25
THICK	 25
REYN	 7000000
DEPL	 0
NALPHA	140
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19,-18,-17,-16,-15,-14,-13,-12.01,-11,-9.98,-8.98,-8.47,-7.45,-6.42,-5.4,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .368, .735, .695, .777, .828, .85, .846, .818, .771, .705, .624, .53, .426, .314, .195, .073,-.05,-.173,-.294,-.409,-.518,-.617,-.706,-.78,-.839,-.879,-.898,-.893,-.862,-.803,-.792,-.789,-.792,-.801,-.815,-.833,-.854,-.879,-.905,-.932,-.959,-.985,-.953,-.9,-.827,-.753,-.691,-.555,-.413,-.271,-.22,-.152,-.084,-.018, .049, .115, .181, .247, .312, .377, .444, .508, .573, .636, .701, .765, .827, .89, .952, 1.013, 1.062, 1.161, 1.208, 1.254, 1.301, 1.336, 1.369, 1.4, 1.428, 1.442, 1.427, 1.374, 1.316, 1.277, 1.25, 1.246, 1.247, 1.256, 1.26, 1.271, 1.281, 1.289, 1.294, 1.304, 1.309, 1.315, 1.32, 1.33, 1.343, 1.354, 1.359, 1.36, 1.325, 1.288, 1.251, 1.215, 1.181, 1.12, 1.076, 1.056, 1.066, 1.064, 1.035, .98, .904, .81, .702, .582, .456, .326, .197, .072,-.05,-.17,-.287,-.399,-.502,-.596,-.677,-.743,-.792,-.821,-.826,-.806,-.758,-.679,-.735,-.368, 0
CD	 .0202, .0324, .0943, .2848, .4001, .5215, .6447, .766, .8823, .9911, 1.0905, 1.1787, 1.2545, 1.3168, 1.365, 1.3984, 1.4169, 1.4201, 1.4081, 1.3811, 1.3394, 1.2833, 1.2138, 1.1315, 1.0378, .9341, .8221, .7042, .5829, .4616, .3441, .3209, .2972, .273, .2485, .2237, .199, .1743, .1498, .1256, .102, .0789, .0567, .0271, .0303, .0287, .0271, .0264, .0114, .0094, .0086, .0073, .0071, .007, .0069, .0068, .0068, .0068, .0067, .0067, .0067, .0065, .0065, .0066, .0067, .0068, .0069, .007, .0071, .0073, .0076, .0079, .0099, .0117, .0132, .0143, .0153, .0165, .0181, .0211, .0262, .0336, .042, .0515, .0601, .0693, .0785, .0888, .1, .1108, .1219, .1325, .1433, .1541, .1649, .1754, .1845, .1953, .2061, .217, .228, .239, .2536, .2814, .3098, .3386, .3678, .3972, .4563, .5149, .572, .6548, .7901, .919, 1.0378, 1.1434, 1.2333, 1.3055, 1.3587, 1.3922, 1.4063, 1.4042, 1.3985, 1.3973, 1.381, 1.3498, 1.3041, 1.2442, 1.1709, 1.0852, .9883, .8818, .7676, .6481, .5264, .406, .2912, .0995, .0356, .0202
CM	 0, .1845, .3701, .2679, .3046, .3329, .354, .3693, .3794, .3854, .3878, .3872, .3841, .3788, .3716, .3629, .3529, .3416, .3292, .3159, .3017, .2866, .2707, .2539, .2364, .2181, .1991, .1792, .1587, .1374, .1154, .1101, .1031, .0947, .0849, .0739, .0618, .0488, .0351, .0208, .006,-.0091,-.0243,-.0349,-.0361,-.0464,-.0534,-.065,-.0782,-.0904,-.1006,-.1107,-.1135,-.1162,-.1186,-.1209,-.1231,-.1252,-.1272,-.1293,-.1311,-.133,-.1347,-.1364,-.138,-.1396,-.1411,-.1424,-.1437,-.1448,-.1456,-.1445,-.1419,-.1403,-.1382,-.1362,-.132,-.1276,-.1234,-.1193,-.1152,-.1115,-.1081,-.1052,-.1026,-.1,-.098,-.0969,-.0968,-.0973,-.0981,-.0992,-.1006,-.1023,-.1042,-.1064,-.1082,-.111,-.1143,-.1179,-.1219,-.1261,-.1303,-.1375,-.1446,-.1515,-.1584,-.1651,-.1781,-.1904,-.2017,-.2173,-.2418,-.265,-.2867,-.3072,-.3265,-.3446,-.3616,-.3775,-.3921,-.4057,-.418,-.4289,-.4385,-.4464,-.4524,-.4563,-.4577,-.4563,-.4514,-.4425,-.4288,-.4095,-.3836,-.3497,-.3065,-.3706,-.1846, 0
SETNB	7
SETNAME	DU21_A17_cor
COMMENTS	""
DATE	01-23-2008@15:40:40
XA	 25
THICK	 21
REYN	 7000000
DEPL	 0
NALPHA	142
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19,-18,-17,-16,-15,-14.5,-12.01,-11,-9.98,-8.12,-7.62,-7.11,-6.6,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .394, .788, .67, .749, .797, .818, .813, .786, .739, .675, .596, .505, .403, .294, .179, .06,-.06,-.179,-.295,-.407,-.512,-.608,-.693,-.764,-.82,-.857,-.875,-.869,-.838,-.791,-.794,-.805,-.821,-.843,-.869,-.899,-.931,-.964,-.999,-1.033,-1.05,-.953,-.9,-.827,-.536,-.467,-.393,-.323,-.311,-.245,-.178,-.113,-.048, .016, .08, .145, .208, .27, .333, .396, .458, .521, .583, .645, .706, .768, .828, .888, .948, .996, 1.046, 1.095, 1.145, 1.192, 1.239, 1.283, 1.324, 1.358, 1.385, 1.403, 1.401, 1.358, 1.313, 1.287, 1.274, 1.272, 1.273, 1.273, 1.273, 1.272, 1.273, 1.275, 1.281, 1.284, 1.296, 1.306, 1.308, 1.308, 1.308, 1.308, 1.307, 1.311, 1.325, 1.324, 1.277, 1.229, 1.182, 1.136, 1.093, 1.017, .962, .937, .947, .95, .928, .884, .821, .74, .646, .54, .425, .304, .179, .053,-.073,-.198,-.319,-.434,-.541,-.637,-.72,-.787,-.836,-.864,-.869,-.847,-.795,-.711,-.788,-.394, 0
CD	 .0185, .0332, .0945, .2809, .3932, .5112, .6309, .7485, .8612, .9665, 1.0625, 1.1476, 1.2206, 1.2805, 1.3265, 1.3582, 1.3752, 1.3774, 1.3648, 1.3376, 1.2962, 1.2409, 1.1725, 1.0919, 1.0002, .899, .79, .6754, .5579, .4405, .3256, .3013, .2762, .2506, .2246, .1983, .172, .1457, .1197, .094, .0689, .0567, .0271, .0303, .0287, .0124, .0109, .0092, .0083, .0089, .0082, .0074, .0069, .0065, .0063, .0061, .0058, .0057, .0057, .0057, .0057, .0057, .0057, .0057, .0058, .0058, .0059, .0061, .0063, .0066, .0071, .0079, .009, .0103, .0113, .0122, .0131, .0139, .0147, .0158, .0181, .0211, .0255, .0301, .0347, .0401, .0468, .0545, .0633, .0722, .0806, .09, .0987, .1075, .117, .127, .1368, .1464, .1562, .1664, .177, .1878, .1987, .21, .2214, .2499, .2786, .3077, .3371, .3664, .4246, .4813, .5356, .6127, .7396, .8623, .9781, 1.0846, 1.1796, 1.2617, 1.3297, 1.3827, 1.4202, 1.4423, 1.4512, 1.448, 1.4294, 1.3954, 1.3464, 1.2829, 1.2057, 1.1157, 1.0144, .9033, .7845, .6605, .5346, .4103, .2922, .0969, .0334, .0185
CM	 0, .1978, .3963, .2738, .3118, .3413, .3636, .3799, .3911, .398, .4012, .4014, .399, .3943, .3878, .3796, .37, .3591, .3471, .334, .3199, .3049, .289, .2722, .2545, .2359, .2163, .1958, .1744, .152, .1262, .117, .1059, .0931, .0788, .0631, .0464, .0286, .0102,-.0088,-.0281,-.0378,-.0349,-.0361,-.0464,-.0821,-.0924,-.1015,-.1073,-.1083,-.1112,-.1146,-.1172,-.1194,-.1213,-.1232,-.1252,-.1268,-.1282,-.1297,-.131,-.1324,-.1337,-.135,-.1363,-.1374,-.1385,-.1395,-.1403,-.1406,-.1398,-.139,-.1378,-.1369,-.1353,-.1338,-.1317,-.1291,-.1249,-.1213,-.1177,-.1142,-.1103,-.1066,-.1032,-.1002,-.0971,-.094,-.0909,-.0883,-.0865,-.0854,-.0849,-.0847,-.085,-.0858,-.0869,-.0883,-.0901,-.0922,-.0949,-.098,-.1017,-.1059,-.1105,-.1172,-.1239,-.1305,-.137,-.1433,-.1556,-.1671,-.1778,-.1923,-.2154,-.2374,-.2583,-.2782,-.2971,-.3149,-.3318,-.3476,-.3625,-.3763,-.389,-.4004,-.4105,-.4191,-.426,-.4308,-.4333,-.433,-.4294,-.4219,-.4098,-.3922,-.3682,-.3364,-.2954,-.3966,-.1978, 0
SETNB	8
SETNAME	NACA64_A17_cor
COMMENTS	""
DATE	01-23-2008@15:41:51
XA	 25
THICK	 18
REYN	 6000000
DEPL	 0
NALPHA	127
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19,-18,-17,-16,-15,-14,-13.5,-13,-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-.958,-.982,-1.005,-1.082,-1.113,-1.105,-1.078,-1.053,-1.015,-.904,-.807,-.711,-.595,-.478,-.375,-.264,-.151,-.017, .088, .213, .328, .442, .556, .67, .784, .898, 1.011, 1.103, 1.181, 1.257, 1.293, 1.326, 1.356, 1.382, 1.4, 1.415, 1.425, 1.434, 1.443, 1.451, 1.453, 1.448, 1.444, 1.445, 1.447, 1.448, 1.444, 1.438, 1.439, 1.448, 1.452, 1.448, 1.438, 1.428, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .2297, .204, .1785, .1534, .1288, .1037, .0786, .0535, .0283, .0158, .0151, .0134, .0121, .0111, .0099, .0091, .0086, .0082, .0079, .0072, .0064, .0054, .0052, .0052, .0052, .0053, .0053, .0054, .0058, .0091, .0113, .0124, .013, .0136, .0143, .015, .0267, .0383, .0498, .0613, .0727, .0841, .0954, .1065, .1176, .1287, .1398, .1509, .1619, .1728, .1837, .1947, .2057, .2165, .2272, .2379, .259, .2799, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .0785, .0649, .0508, .0364, .0218, .0129,-.0028,-.0251,-.0419,-.0521,-.061,-.0707,-.0722,-.0734,-.0772,-.0807,-.0825,-.0832,-.0841,-.0869,-.0912,-.0946,-.0971,-.1014,-.1076,-.1126,-.1157,-.1199,-.124,-.1234,-.1184,-.1163,-.1163,-.116,-.1154,-.1149,-.1145,-.1143,-.1147,-.1158,-.1165,-.1153,-.1131,-.1112,-.1101,-.1103,-.1109,-.1114,-.1111,-.1097,-.1079,-.108,-.109,-.1086,-.1077,-.1099,-.1169,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	9
SETNAME	SandFlap_n22
COMMENTS	""
DATE	05-20-2014@14:08:39
XA	 25
THICK	 18
REYN	 6000000
DEPL	-.383972111111111
NALPHA	151
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19.5,-19,-18.5,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-2.0182,-2.0231,-2.0187,-2.0141,-2.0093,-1.9986,-1.9873,-1.9738,-1.9592,-1.9403,-1.9215,-1.8932,-1.8693,-1.8434,-1.8117,-1.7891,-1.7526,-1.7179,-1.6846,-1.6478,-1.6081,-1.5684,-1.5302,-1.49,-1.4469,-1.4031,-1.36,-1.3182,-1.2737,-1.2265,-1.1783,-1.13,-1.0818,-1.0324,-.9828,-.9333,-.882,-.8298,-.7774,-.7246,-.6717,-.6182,-.5646,-.511,-.4574,-.4038,-.3501,-.2974,-.2463,-.1971,-.159,-.1509,-.1293,-.0803,-.0263, .0314, .0893, .1473, .2058, .2643, .3234, .3824, .4419, .5011, .6194, .6763, .7348, .7917, .8467, .8983, .9459, .9867, .9952, .9998, 1.0259, 1.0484, 1.0745, 1.1008, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .06497, .05878, .05388, .0492, .04464, .04079, .03718, .03402, .03119, .02889, .02681, .0253, .02361, .02213, .02096, .01948, .0186, .01767, .01679, .01601, .01534, .01472, .01408, .01349, .01299, .01251, .01199, .01147, .01104, .01066, .01032, .00999, .00963, .00933, .00904, .00875, .00851, .00829, .00805, .00785, .00766, .00747, .00727, .0071, .00693, .00674, .00657, .00639, .00623, .00603, .00574, .00501, .00468, .00461, .00466, .00475, .00494, .00518, .00545, .00575, .0061, .00645, .00671, .0071, .00778, .00775, .00833, .00889, .00961, .0104, .01131, .01229, .01365, .01516, .01632, .01782, .01935, .02097, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.012,-.0125,-.0122,-.0115,-.0103,-.0087,-.0065,-.0038,-.0006, .003, .0071, .0104, .0144, .0184, .0219, .0267, .0298, .0333, .037, .0403, .0433, .0462, .0495, .0524, .055, .0574, .06, .0628, .0651, .067, .0687, .0704, .0721, .0736, .0751, .0765, .0776, .0785, .0794, .0802, .0809, .0816, .0821, .0827, .0832, .0838, .0842, .0849, .0858, .0872, .0907, .1002, .1069, .1079, .1079, .1072, .1063, .1053, .1042, .1029, .1014, .0998, .0981, .0963, .0924, .0905, .0884, .0865, .0845, .083, .0818, .0817, .0866, .0922, .0943, .0963, .0977, .0988,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	10
SETNAME	SandFlap_00
COMMENTS	""
DATE	05-20-2014@14:14:07
XA	 25
THICK	 18
REYN	 6000000
DEPL	 0
NALPHA	152
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-19.5,-19,-18.5,-18,-17.5,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.5377,-1.5072,-1.4726,-1.4339,-1.3893,-1.2036,-1.1722,-1.1421,-1.1154,-1.1094,-1.0701,-1.0256,-.9781,-.9282,-.8766,-.8244,-.7707,-.7164,-.6605,-.6043,-.5471,-.4903,-.4319,-.3737,-.3151,-.2556,-.1967,-.1371,-.077,-.0173, .0425, .103, .1629, .2231, .2836, .3434, .4045, .4646, .5259, .5863, .6465, .7018, .7563, .8107, .8636, .917, .9699, 1.0229, 1.076, 1.1292, 1.1808, 1.2328, 1.2831, 1.3331, 1.3818, 1.4286, 1.4731, 1.5063, 1.5391, 1.5719, 1.6044, 1.6331, 1.6607, 1.6894, 1.7169, 1.7423, 1.7656, 1.7889, 1.8119, 1.8344, 1.8556, 1.8755, 1.8935, 1.9091, 1.9229, 1.9366, 1.9509, 1.964, 1.9799, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .02532, .02309, .02109, .01928, .01767, .0144, .01333, .01235, .01139, .01058, .01011, .00969, .0093, .00894, .00861, .00827, .00792, .00763, .00735, .00714, .00689, .00666, .00646, .00628, .00609, .00593, .00578, .00563, .00549, .00538, .00526, .00512, .00502, .0049, .00477, .00468, .00451, .00441, .0042, .00408, .00405, .00436, .00473, .00509, .00555, .00595, .00637, .00677, .00714, .00747, .00786, .0082, .00859, .00895, .00932, .00972, .01013, .01049, .01099, .01154, .01215, .01296, .01391, .01493, .01612, .01751, .01915, .02091, .02281, .02489, .02717, .0297, .03252, .03566, .03914, .04279, .04652, .05007, .05384, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.1005,-.1015,-.1026,-.104,-.106,-.1282,-.1264,-.1241,-.121,-.1137,-.1115,-.11,-.109,-.1083,-.1079,-.1076,-.1075,-.1075,-.1078,-.108,-.1085,-.1089,-.1096,-.1102,-.1109,-.1118,-.1126,-.1134,-.1144,-.1153,-.1162,-.1173,-.1182,-.1192,-.1203,-.1213,-.1226,-.1237,-.125,-.1263,-.1273,-.1274,-.1273,-.1272,-.1268,-.1266,-.1262,-.1259,-.1256,-.1253,-.1247,-.1241,-.1233,-.1224,-.1214,-.1199,-.118,-.1139,-.1098,-.1059,-.1023,-.0983,-.0944,-.0909,-.0875,-.0842,-.0808,-.0779,-.0751,-.0726,-.0702,-.0681,-.0661,-.0643,-.0627,-.0614,-.0605,-.0593,-.0588,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	11
SETNAME	SandFlap_p22
COMMENTS	""
DATE	05-20-2014@14:14:52
XA	 25
THICK	 18
REYN	 6000000
DEPL	 .383972111111111
NALPHA	147
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-19.5,-19,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-.5, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-.3854,-.3882,-.3751,-.3334,-.285,-.2321,-.1723,-.1096,-.043, .0298, .1053, .1763, .1653, .2067, .2514, .2891, .3107, .3243, .3509, .3757, .3997, .4476, .4914, .6841, .7394, .7931, .8488, .902, .9561, 1.0098, 1.0643, 1.1314, 1.1783, 1.27, 1.366, 1.4123, 1.4583, 1.5028, 1.5478, 1.5913, 1.635, 1.678, 1.7203, 1.7616, 1.7972, 1.8331, 1.8715, 1.911, 1.9495, 1.9859, 2.0161, 2.0459, 2.0793, 2.111, 2.136, 2.1596, 2.1869, 2.2036, 2.2181, 2.2319, 2.2427, 2.2539, 2.2631, 2.2718, 2.2792, 2.2856, 2.2913, 2.3016, 2.3046, 2.3064, 2.3056, 2.3048, 2.3043, 2.307, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01663, .01517, .01287, .01188, .01085, .01003, .0092, .00862, .00805, .00751, .00699, .00652, .00699, .00686, .00682, .00702, .00765, .00907, .01037, .01172, .01307, .01355, .01419, .01639, .01662, .01688, .0171, .01735, .01758, .01782, .01803, .01732, .01765, .01856, .01958, .02021, .02083, .02156, .02228, .02309, .02387, .02467, .02553, .02646, .02773, .02898, .0301, .03115, .0323, .03359, .03529, .03708, .03864, .04032, .04255, .04498, .04715, .05031, .05383, .05762, .06184, .06606, .07059, .07525, .08016, .08524, .09039, .09482, .10032, .10597, .11189, .11771, .12335, .12849, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.2832,-.2761,-.2656,-.2666,-.269,-.2714,-.2752,-.2789,-.2832,-.2887,-.2947,-.2996,-.2875,-.2861,-.2852,-.2828,-.2774,-.2707,-.2663,-.2616,-.2566,-.2559,-.2545,-.2514,-.2519,-.2521,-.2525,-.2525,-.2527,-.2527,-.2529,-.2551,-.2537,-.2505,-.248,-.2465,-.2449,-.243,-.2413,-.2393,-.2373,-.2352,-.233,-.2307,-.2274,-.2242,-.2215,-.219,-.2163,-.2134,-.2096,-.2058,-.2027,-.1993,-.1952,-.191,-.1876,-.183,-.1787,-.1746,-.1707,-.1672,-.1638,-.1608,-.1581,-.1557,-.1535,-.1516,-.15,-.1487,-.1477,-.1469,-.1465,-.1462,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	12
SETNAME	SandFlap_n02
COMMENTS	""
DATE	05-20-2014@14:13:21
XA	 25
THICK	 18
REYN	 6000000
DEPL	-3.49065555555556E-02
NALPHA	145
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.258,-1.2304,-1.2013,-1.1735,-1.1585,-1.1261,-1.0824,-1.035,-.9861,-.9348,-.8831,-.8302,-.7767,-.7212,-.6652,-.6086,-.5515,-.4941,-.4357,-.3774,-.3188,-.2595,-.2003,-.141,-.081,-.021, .0386, .0988, .1588, .2187, .2794, .3393, .4, .4607, .5215, .5809, .6376, .6921, .7476, .802, .8555, .9098, 1.0175, 1.0708, 1.1244, 1.1769, 1.229, 1.2804, 1.331, 1.3798, 1.427, 1.4727, 1.5082, 1.5398, 1.5702, 1.5965, 1.6253, 1.6516, 1.6775, 1.6998, 1.7235, 1.7475, 1.7706, 1.7923, 1.8124, 1.8318, 1.847, 1.8628, 1.8775, 1.8925, 1.9077, 1.9234, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01414, .01302, .01213, .01134, .0106, .01017, .00977, .00938, .00903, .00869, .00838, .00802, .00772, .00744, .00722, .00698, .00672, .00654, .00634, .00614, .006, .00581, .00567, .00555, .00541, .00527, .00517, .00504, .00491, .0048, .00464, .00452, .00438, .00416, .00399, .00402, .00426, .00466, .00498, .00538, .00581, .00619, .00694, .00731, .00765, .00801, .00836, .00872, .00907, .00947, .00987, .01027, .01069, .01115, .01173, .0125, .01333, .01437, .0156, .01716, .01879, .02052, .02239, .02446, .02677, .02926, .03225, .03536, .03871, .0422, .04579, .0489, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.1131,-.1104,-.1075,-.104,-.0978,-.094,-.0922,-.0911,-.0901,-.0895,-.0889,-.0886,-.0884,-.0885,-.0887,-.089,-.0893,-.0898,-.0903,-.0909,-.0916,-.0924,-.0931,-.0939,-.0948,-.0957,-.0965,-.0975,-.0985,-.0994,-.1005,-.1016,-.1027,-.104,-.1053,-.1062,-.1065,-.1065,-.1066,-.1065,-.1063,-.1063,-.106,-.1057,-.1055,-.1052,-.1047,-.1042,-.1035,-.1025,-.1013,-.0998,-.0962,-.092,-.0878,-.0833,-.0796,-.0759,-.0725,-.069,-.0661,-.0634,-.0608,-.0584,-.0562,-.0543,-.0523,-.0507,-.0493,-.0483,-.0475,-.0463,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	13
SETNAME	SandFlap_n04
COMMENTS	""
DATE	05-20-2014@14:12:56
XA	 25
THICK	 18
REYN	 6000000
DEPL	-6.98131111111111E-02
NALPHA	149
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-18.5,-18,-17.5,-17,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.6193,-1.5874,-1.5472,-1.3926,-1.3392,-1.3122,-1.2835,-1.2564,-1.2276,-1.2021,-1.1801,-1.1374,-1.0912,-1.0427,-.9926,-.9409,-.889,-.8358,-.7814,-.7256,-.6694,-.6133,-.5558,-.4981,-.4403,-.3815,-.3229,-.264,-.2045,-.1449,-.0856,-.0257, .0342, .0937, .154, .2139, .2739, .3347, .3946, .4556, .5151, .5711, .6272, .6831, .7381, .7928, .8476, .9022, .9566, 1.0109, 1.0653, 1.1187, 1.1717, 1.2243, 1.2761, 1.3265, 1.3754, 1.4235, 1.4681, 1.5083, 1.5344, 1.5594, 1.5847, 1.6093, 1.6335, 1.6556, 1.6788, 1.7014, 1.7454, 1.7648, 1.7834, 1.8008, 1.8151, 1.8286, 1.8431, 1.8617, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .02376, .02164, .0197, .01794, .01511, .01399, .01302, .01212, .01136, .01071, .01026, .00986, .00948, .00913, .0088, .00848, .00816, .00782, .00756, .00731, .00707, .00683, .00661, .00643, .00623, .00606, .00589, .00575, .00559, .00545, .00534, .0052, .00507, .00495, .0048, .00467, .00452, .00435, .00415, .00393, .00396, .00426, .00457, .00489, .00527, .00567, .00606, .00643, .00679, .00714, .00747, .00782, .00818, .00852, .00887, .00925, .00965, .01004, .01049, .01091, .01141, .0121, .01293, .01397, .01529, .01693, .01859, .02036, .02423, .02654, .02908, .03186, .03506, .03848, .04197, .04516, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.0802,-.0806,-.0821,-.1045,-.1003,-.0975,-.0945,-.0909,-.0873,-.0826,-.0768,-.0747,-.0731,-.072,-.071,-.0704,-.0698,-.0694,-.0692,-.0693,-.0694,-.0695,-.0699,-.0703,-.0707,-.0714,-.0719,-.0726,-.0734,-.0741,-.0749,-.0758,-.0767,-.0775,-.0785,-.0794,-.0804,-.0816,-.0827,-.084,-.0849,-.0852,-.0854,-.0856,-.0857,-.0858,-.0858,-.0858,-.0859,-.0859,-.0859,-.0858,-.0855,-.0853,-.0849,-.0843,-.0834,-.0824,-.0808,-.0784,-.0732,-.0683,-.0641,-.0603,-.057,-.0539,-.0511,-.0484,-.0438,-.0417,-.0398,-.0382,-.0366,-.0354,-.0345,-.034,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	14
SETNAME	SandFlap_n06
COMMENTS	""
DATE	05-20-2014@14:12:29
XA	 25
THICK	 18
REYN	 6000000
DEPL	-.104719666666667
NALPHA	149
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.5234,-1.4986,-1.4744,-1.4478,-1.421,-1.392,-1.3633,-1.3324,-1.3039,-1.2735,-1.2424,-1.2258,-1.1903,-1.1459,-1.0983,-1.0493,-.9982,-.9462,-.8939,-.8402,-.7857,-.7299,-.6738,-.6175,-.56,-.5025,-.4446,-.3861,-.3271,-.2684,-.2093,-.1497,-.0904,-.0311, .0289, .0885, .2084, .268, .3283, .3883, .4476, .5047, .5606, .6175, .6731, .7286, .7841, .8391, .8945, .9493, 1.0042, 1.0583, 1.1123, 1.1659, 1.2185, 1.2703, 1.3204, 1.3701, 1.4167, 1.4623, 1.4986, 1.5205, 1.5421, 1.5625, 1.5842, 1.6062, 1.6274, 1.6484, 1.6696, 1.6901, 1.7117, 1.7305, 1.7483, 1.7621, 1.7766, 1.7911, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .02255, .02065, .01887, .01739, .01609, .01503, .01405, .0132, .01235, .0116, .011, .01035, .00996, .0096, .00923, .00892, .0086, .00831, .00798, .00766, .00742, .00719, .00694, .00672, .00652, .00631, .00616, .00598, .00582, .00567, .00553, .00538, .00527, .00513, .00497, .00486, .00451, .00438, .00413, .00394, .00396, .00421, .00455, .00481, .00518, .00555, .00592, .0063, .00663, .00699, .00732, .00767, .008, .00833, .00869, .00905, .00946, .00983, .01028, .0107, .01118, .01179, .0126, .01377, .01535, .01695, .01859, .02044, .02238, .02448, .02658, .0291, .03186, .03507, .03839, .04181, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.0952,-.0939,-.0921,-.0901,-.0875,-.0848,-.0818,-.0787,-.0751,-.0715,-.0677,-.061,-.0573,-.0553,-.0539,-.0527,-.0518,-.0511,-.0505,-.0501,-.0498,-.0498,-.0499,-.05,-.0503,-.0506,-.051,-.0515,-.0521,-.0527,-.0534,-.0541,-.0548,-.0556,-.0565,-.0573,-.0592,-.0601,-.0613,-.0624,-.0633,-.0637,-.064,-.0644,-.0647,-.0649,-.0651,-.0652,-.0655,-.0656,-.0658,-.0658,-.0659,-.0659,-.0657,-.0654,-.0649,-.0643,-.0632,-.0619,-.0589,-.0532,-.0483,-.0442,-.0412,-.0382,-.0355,-.0328,-.0305,-.0283,-.0265,-.0248,-.0234,-.0221,-.0211,-.0204,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	15
SETNAME	SandFlap_n08
COMMENTS	""
DATE	05-20-2014@14:11:58
XA	 25
THICK	 18
REYN	 6000000
DEPL	-.139626222222222
NALPHA	152
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19.5,-19,-18.5,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2.5, 3, 3.5, 4, 4.5, 5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.6705,-1.6556,-1.6382,-1.6202,-1.5992,-1.5756,-1.5539,-1.5291,-1.5033,-1.4759,-1.4467,-1.4154,-1.3834,-1.3511,-1.3178,-1.2855,-1.2561,-1.2369,-1.1972,-1.1514,-1.1034,-1.0538,-1.0024,-.9503,-.8977,-.844,-.7892,-.7335,-.6777,-.6212,-.5639,-.5063,-.4483,-.3902,-.3314,-.2726,-.2139,-.1545,-.0952,-.0362, .0235, .0832, .1423, .2022, .3214, .3807, .4374, .4946, .5519, .6076, .7195, .7752, .8315, .8867, .9422, .9971, 1.0517, 1.1059, 1.1595, 1.2123, 1.2634, 1.3143, 1.3626, 1.4098, 1.4522, 1.4792, 1.498, 1.5111, 1.5343, 1.555, 1.5747, 1.5949, 1.6151, 1.6345, 1.6537, 1.6762, 1.6951, 1.7116, 1.7235, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .03475, .03164, .02881, .02613, .02387, .02188, .01997, .01838, .01704, .0159, .01492, .01405, .01325, .01253, .01189, .01126, .01064, .01011, .00973, .00937, .00903, .00873, .00842, .00814, .00784, .00753, .0073, .00709, .00684, .00664, .00644, .00623, .00608, .00592, .00575, .0056, .00548, .00533, .00518, .00506, .00491, .00473, .00457, .00439, .00391, .00393, .00422, .00447, .00472, .00511, .00583, .0062, .00649, .00686, .00719, .00752, .00786, .00819, .00853, .00888, .00929, .00966, .0101, .01053, .01105, .01159, .01235, .01396, .01531, .01692, .01869, .02054, .02251, .02463, .02694, .02918, .03183, .03477, .03825, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.087,-.0866,-.0859,-.0849,-.0836,-.082,-.0799,-.0776,-.0748,-.0718,-.0687,-.0657,-.0625,-.0592,-.0558,-.0521,-.0477,-.0411,-.0381,-.0362,-.0347,-.0335,-.0326,-.0318,-.0311,-.0307,-.0304,-.0303,-.0302,-.0303,-.0305,-.0308,-.0312,-.0316,-.0321,-.0327,-.0333,-.034,-.0347,-.0354,-.0362,-.037,-.0378,-.0388,-.0408,-.0417,-.0421,-.0426,-.0432,-.0434,-.0441,-.0445,-.0449,-.0452,-.0455,-.0458,-.046,-.0462,-.0463,-.0463,-.046,-.0457,-.045,-.0441,-.0425,-.038,-.0325,-.0283,-.0255,-.0224,-.0195,-.017,-.0147,-.0127,-.0109,-.0096,-.0084,-.0074,-.0065,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	16
SETNAME	SandFlap_n10
COMMENTS	""
DATE	05-20-2014@14:11:33
XA	 25
THICK	 18
REYN	 6000000
DEPL	-.174532777777778
NALPHA	151
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-19.5,-19,-18.5,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.72,-1.705,-1.6886,-1.6713,-1.6496,-1.628,-1.6058,-1.5806,-1.5551,-1.5242,-1.4944,-1.4642,-1.431,-1.3972,-1.3294,-1.2952,-1.2624,-1.2376,-1.2004,-1.1542,-1.1059,-1.0562,-1.0051,-.9532,-.901,-.8468,-.792,-.7368,-.6809,-.6242,-.5675,-.5099,-.452,-.394,-.3359,-.2771,-.2183,-.1596,-.1006,-.0413, .0175, .136, .1944, .2539, .3123, .3698, .4273, .4846, .5412, .5978, .6537, .7103, .7669, .8228, .8788, .9343, .9896, 1.0444, 1.0987, 1.1522, 1.2044, 1.256, 1.3055, 1.3541, 1.3985, 1.4372, 1.4521, 1.4577, 1.4749, 1.4945, 1.5129, 1.5353, 1.556, 1.5755, 1.5954, 1.6161, 1.638, 1.6523, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .03393, .03094, .02815, .02554, .0234, .02138, .01964, .01824, .01698, .016, .01505, .01418, .01342, .01273, .01148, .01092, .01037, .00986, .00953, .0092, .00888, .00859, .00829, .00798, .0077, .00744, .00723, .007, .00676, .00656, .00637, .00621, .00602, .00586, .00572, .00556, .00542, .0053, .00512, .00496, .00482, .00441, .00417, .0039, .00399, .00419, .00444, .00469, .00504, .00537, .00577, .00609, .00639, .00674, .00706, .0074, .00773, .00806, .0084, .00875, .00915, .00953, .00997, .01038, .0109, .01148, .01211, .01407, .0157, .01734, .01915, .02085, .02277, .02489, .02721, .02958, .03196, .03506, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.0758,-.0748,-.0736,-.0721,-.0703,-.0681,-.0655,-.0626,-.0594,-.0564,-.0532,-.0497,-.0466,-.0433,-.0364,-.0327,-.0286,-.0228,-.0192,-.0172,-.0157,-.0144,-.0134,-.0125,-.0117,-.0112,-.0109,-.0106,-.0105,-.0106,-.0107,-.0109,-.0113,-.0116,-.012,-.0126,-.0131,-.0137,-.0143,-.0151,-.0157,-.0174,-.0181,-.0191,-.0198,-.0204,-.021,-.0216,-.022,-.0225,-.0229,-.0234,-.024,-.0244,-.0249,-.0254,-.0258,-.0262,-.0265,-.0267,-.0267,-.0267,-.0263,-.0259,-.0248,-.0228,-.0168,-.0121,-.0085,-.0055,-.0026,-.0004, .0017, .0035, .0049, .0061, .007, .008,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	17
SETNAME	SandFlap_n12
COMMENTS	""
DATE	05-20-2014@14:11:04
XA	 25
THICK	 18
REYN	 6000000
DEPL	-.209439333333333
NALPHA	151
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19.5,-19,-18.5,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2.5, 3.5, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.7744,-1.775,-1.7653,-1.746,-1.7368,-1.7192,-1.6986,-1.6791,-1.6552,-1.6302,-1.6,-1.5725,-1.5398,-1.5084,-1.4754,-1.44,-1.4061,-1.3696,-1.333,-1.2983,-1.2622,-1.2299,-1.1994,-1.1536,-1.1055,-1.0561,-1.0057,-.9546,-.9019,-.8477,-.7932,-.7385,-.6826,-.6264,-.5693,-.5125,-.4549,-.397,-.3391,-.281,-.2223,-.1638,-.1056,-.0469, .0701, .1859, .3018, .3594, .4175, .4747, .5313, .5881, .6447, .702, .7583, .8148, .8709, .9269, .9821, 1.0372, 1.0914, 1.1443, 1.1968, 1.2473, 1.2968, 1.3426, 1.3847, 1.3833, 1.3973, 1.4157, 1.4333, 1.4508, 1.47, 1.4919, 1.5157, 1.5354, 1.5532, 1.5766, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .04187, .03726, .03373, .03105, .02775, .02523, .02307, .02109, .01956, .01825, .01718, .01613, .01525, .0144, .01366, .01298, .01234, .01175, .0112, .01064, .01017, .00967, .00938, .00906, .00875, .00848, .00817, .00786, .00762, .00739, .00714, .00692, .00673, .0065, .00633, .00616, .006, .00583, .0057, .00555, .00539, .00522, .00507, .00489, .00453, .00397, .00421, .00445, .00467, .00499, .00534, .00569, .00604, .00631, .00666, .00697, .0073, .00761, .00796, .00828, .00864, .00904, .00942, .00987, .01029, .01078, .01138, .01297, .01447, .016, .01769, .01952, .02139, .02326, .02517, .02748, .03005, .03227, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.0653,-.0648,-.0638,-.0627,-.0609,-.059,-.0567,-.0539,-.0508,-.0474,-.0444,-.0409,-.0378,-.0343,-.0309,-.0278,-.0243,-.021,-.0178,-.014,-.0104,-.0059,-.0008, .0013, .003, .0044, .0057, .0068, .0075, .008, .0085, .0089, .009, .0091, .0089, .0089, .0086, .0083, .008, .0075, .007, .0065, .006, .0054, .0041, .0027, .0014, .0008, 0,-.0006,-.0011,-.0017,-.0023,-.0031,-.0036,-.0043,-.0049,-.0056,-.0061,-.0066,-.0071,-.0074,-.0076,-.0076,-.0075,-.007,-.0061, .0009, .0051, .0085, .0116, .0144, .0166, .0184, .0198, .021, .0222, .0229,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	18
SETNAME	SandFlap_n14
COMMENTS	""
DATE	05-20-2014@14:10:39
XA	 25
THICK	 18
REYN	 6000000
DEPL	-.244345888888889
NALPHA	150
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19.5,-19,-18.5,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2.5, 3, 3.5, 4.5, 5, 5.5, 6, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.8253,-1.8211,-1.8114,-1.804,-1.7903,-1.7685,-1.7554,-1.7463,-1.7268,-1.7007,-1.6726,-1.6454,-1.6161,-1.5848,-1.5512,-1.5171,-1.4817,-1.4454,-1.4083,-1.3707,-1.3314,-1.2946,-1.2556,-1.2192,-1.1819,-1.1484,-1.1011,-1.052,-1.0022,-.9514,-.8988,-.8453,-.7915,-.7366,-.6811,-.6254,-.5691,-.512,-.455,-.3978,-.34,-.2822,-.2247,-.1669,-.0512, .0066, .0637, .1779, .2353, .2932, .3514, .4662, .5231, .5801, .638, .6948, .7516, .8082, .8647, .9206, .9762, 1.0312, 1.085, 1.1383, 1.1897, 1.2416, 1.2882, 1.3281, 1.3145, 1.3307, 1.3529, 1.3691, 1.386, 1.4063, 1.4291, 1.4529, 1.4728, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .046, .04159, .03784, .03408, .03094, .02855, .02569, .02292, .0211, .01968, .01853, .01734, .01632, .01543, .01464, .01389, .01323, .0126, .01202, .01149, .01101, .01048, .01005, .00955, .00919, .00893, .00864, .00836, .00809, .00779, .00754, .00733, .0071, .00687, .00667, .00649, .00631, .00614, .00599, .00584, .00568, .0055, .00534, .00517, .00477, .0046, .00428, .0041, .00422, .00443, .00466, .00529, .00565, .006, .00625, .0066, .0069, .00723, .00754, .00788, .00821, .00856, .00896, .00934, .0098, .0101, .01084, .0118, .01366, .01508, .01645, .01818, .02004, .02192, .02378, .02572, .02802, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.0542,-.0539,-.0532,-.052,-.0505,-.0489,-.0464,-.043,-.0395,-.0363,-.033,-.0294,-.0259,-.0224,-.0191,-.0158,-.0125,-.0092,-.006,-.0028, .0002, .0037, .0069, .0107, .0144, .0191, .021, .0226, .024, .0252, .0261, .0267, .0273, .0277, .028, .0281, .0282, .0281, .028, .0278, .0275, .0271, .0268, .0264, .0255, .025, .0245, .0235, .0229, .0222, .0214, .02, .0193, .0186, .0177, .0169, .0161, .0153, .0145, .0137, .013, .0123, .0117, .0111, .0108, .01, .01, .0106, .0192, .023, .0258, .0289, .0315, .0334, .0349, .0361, .0372,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	19
SETNAME	SandFlap_n18
COMMENTS	""
DATE	05-20-2014@14:09:36
XA	 25
THICK	 18
REYN	 6000000
DEPL	-.314159
NALPHA	152
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19.5,-19,-18.5,-18,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.9333,-1.9297,-1.9228,-1.9142,-1.9058,-1.8909,-1.8769,-1.861,-1.843,-1.8241,-1.8029,-1.7803,-1.75,-1.7239,-1.6898,-1.6575,-1.624,-1.5868,-1.552,-1.5136,-1.4739,-1.4361,-1.395,-1.3531,-1.3145,-1.272,-1.2284,-1.1848,-1.1388,-1.0935,-1.0478,-1.0022,-.9554,-.9094,-.8658,-.8218,-.77,-.7172,-.6641,-.6098,-.555,-.5001,-.445,-.3893,-.3337,-.2783,-.2228,-.113,-.0614,-.0104, .0455, .1024, .1603, .219, .2767, .3348, .3926, .4505, .5089, .5667, .6247, .6823, .7402, .7977, .8551, .9119, .9676, 1.0215, 1.0732, 1.1214, 1.1594, 1.1526, 1.1642, 1.1882, 1.2094, 1.2302, 1.2547, 1.2759, 1.2965, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .05413, .0493, .04498, .04097, .0371, .03392, .03082, .02815, .02591, .0239, .02208, .02057, .01938, .01815, .01726, .01634, .01551, .01481, .01409, .01346, .01289, .01232, .01181, .01135, .0108, .01032, .00993, .00957, .00923, .0089, .00858, .00825, .00797, .00771, .00746, .0073, .00708, .00688, .0067, .00653, .00635, .00619, .00603, .00586, .00565, .00547, .00531, .00486, .00455, .00423, .00425, .00438, .00452, .00474, .00502, .00532, .00564, .00595, .00623, .00655, .00686, .0072, .00751, .00788, .00823, .00859, .00882, .00945, .01014, .01095, .01203, .01363, .01507, .01627, .0178, .01947, .02104, .02294, .02507, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.0326,-.0325,-.032,-.031,-.0296,-.0278,-.0256,-.0229,-.0196,-.0158,-.012,-.0079,-.0045,-.0004, .0028, .0064, .0099, .013, .0165, .0196, .0225, .0258, .0286, .0312, .0345, .0372, .0397, .0422, .0443, .0466, .0488, .051, .053, .0552, .058, .0607, .0617, .0625, .0633, .0638, .0641, .0645, .0647, .0648, .0649, .065, .0651, .0653, .066, .0667, .0664, .0658, .0651, .0641, .0633, .0623, .0614, .0603, .0592, .0581, .0569, .0556, .0543, .0529, .0514, .0498, .0483, .047, .0459, .0451, .0455, .053, .0575, .0601, .0624, .0645, .0661, .0676, .0687,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	20
SETNAME	SandFlap_p18
COMMENTS	""
DATE	05-20-2014@14:15:40
XA	 25
THICK	 18
REYN	 6000000
DEPL	 .314159
NALPHA	151
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-19.5,-19,-18.5,-17.5,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-.6763,-.6468,-.6079,-.5334,-.4796,-.402,-.3445,-.2847,-.2233,-.1594,-.0949,-.0564,-.004, .0516, .1078, .1627, .2037, .2614, .3039, .3584, .4017, .4552, .4925, .5417, .5826, .6289, .6805, .7207, .7738, .8646, .9124, .9616, 1.014, 1.0623, 1.1043, 1.1438, 1.1894, 1.2333, 1.2781, 1.3239, 1.3698, 1.4157, 1.46, 1.4995, 1.5405, 1.5824, 1.6249, 1.6669, 1.7083, 1.7427, 1.7798, 1.8186, 1.8571, 1.8956, 1.9231, 1.9579, 1.9941, 2.0288, 2.0505, 2.0805, 2.1109, 2.1305, 2.1528, 2.1714, 2.1888, 2.2032, 2.2152, 2.2257, 2.2348, 2.2432, 2.2505, 2.2568, 2.2619, 2.266, 2.2695, 2.2782, 2.2788, 2.2776, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01704, .01561, .01452, .01224, .01136, .0104, .00959, .00884, .00827, .0077, .00721, .00729, .0071, .0069, .00671, .00649, .00633, .00614, .00613, .00607, .00622, .00624, .00655, .00671, .00711, .00746, .00766, .00825, .00843, .00933, .00965, .00994, .01015, .01049, .01101, .01167, .01218, .01282, .01348, .01411, .01474, .01534, .01604, .01691, .01774, .01856, .01933, .02015, .02101, .02221, .02329, .02431, .02538, .02645, .02818, .02952, .0308, .0322, .03449, .0363, .03815, .0408, .04339, .04647, .04977, .05348, .05752, .06189, .06652, .07129, .07625, .08146, .08689, .09242, .09796, .10277, .10875, .11489, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.2351,-.2347,-.2354,-.2363,-.2392,-.2468,-.2501,-.2536,-.2569,-.2606,-.2641,-.2625,-.2633,-.2646,-.2658,-.2668,-.2646,-.2659,-.2638,-.2643,-.2625,-.2626,-.2595,-.2588,-.2565,-.2552,-.255,-.2526,-.2526,-.2496,-.2486,-.2478,-.2475,-.2465,-.2441,-.2413,-.2397,-.2377,-.2359,-.2343,-.2327,-.2312,-.2293,-.2266,-.2242,-.222,-.2198,-.2176,-.2153,-.212,-.209,-.2064,-.2038,-.2013,-.197,-.194,-.1913,-.1884,-.1838,-.1804,-.1773,-.173,-.1692,-.1654,-.1618,-.1583,-.1549,-.1518,-.149,-.1465,-.1442,-.1423,-.1406,-.1392,-.1381,-.1371,-.1366,-.1364,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	21
SETNAME	SandFlap_p02
COMMENTS	""
DATE	05-20-2014@14:19:30
XA	 25
THICK	 18
REYN	 6000000
DEPL	 3.49065555555556E-02
NALPHA	143
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.0358,-1.0118,-.9676,-.9194,-.8696,-.8177,-.7655,-.7115,-.6568,-.6002,-.5437,-.4861,-.4287,-.3701,-.3114,-.2527,-.193,-.1339,-.0742,-.014, .0456, .1058, .1665, .2264, .2867, .3472, .4071, .4682, .528, .5898, .7099, .7657, .8183, .8718, .924, .9762, 1.0282, 1.0802, 1.1317, 1.184, 1.2345, 1.2838, 1.333, 1.3812, 1.4273, 1.4625, 1.498, 1.5341, 1.5681, 1.6018, 1.6356, 1.6657, 1.6956, 1.7254, 1.7532, 1.7785, 1.8028, 1.829, 1.8522, 1.8744, 1.8957, 1.9138, 1.9297, 1.9466, 1.9621, 1.9795, 1.9956, 2.0086, 2.0201, 2.0301, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01069, .0101, .00966, .00925, .00889, .00852, .00818, .00782, .00755, .00729, .00708, .00682, .0066, .00641, .00621, .00605, .00588, .00574, .00559, .00546, .00536, .00524, .0051, .00502, .0049, .00478, .00469, .00453, .00447, .00426, .00415, .0044, .00483, .00522, .00567, .00611, .00654, .00695, .00735, .00768, .00807, .00847, .00883, .00919, .00958, .00995, .01038, .01085, .01141, .01203, .01272, .01359, .01453, .01556, .01676, .01818, .01975, .02136, .02325, .02535, .02768, .03039, .03341, .03652, .0399, .04318, .04674, .05075, .05502, .0596, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.1333,-.129,-.1277,-.127,-.1264,-.1262,-.126,-.1262,-.1263,-.1268,-.1272,-.1279,-.1285,-.1292,-.13,-.1308,-.1318,-.1326,-.1336,-.1346,-.1355,-.1366,-.1377,-.1387,-.1398,-.1409,-.1419,-.1432,-.1443,-.1458,-.148,-.1481,-.1477,-.1474,-.1469,-.1463,-.1458,-.1452,-.1445,-.144,-.1431,-.1421,-.141,-.1397,-.138,-.1341,-.1304,-.1269,-.1232,-.1197,-.1163,-.1126,-.109,-.1056,-.1021,-.0986,-.0951,-.0922,-.0892,-.0864,-.0838,-.0813,-.079,-.0771,-.0753,-.0739,-.0728,-.0718,-.071,-.0705,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	22
SETNAME	SandFlap_p04
COMMENTS	""
DATE	05-20-2014@14:18:53
XA	 25
THICK	 18
REYN	 6000000
DEPL	 6.98131111111111E-02
NALPHA	146
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.0266,-.9927,-.9655,-.9518,-.9085,-.8614,-.8112,-.7594,-.7066,-.6523,-.597,-.5401,-.4832,-.4254,-.3674,-.3089,-.2498,-.1912,-.1314,-.0724,-.0122, .0478, .1075, .1681, .2287, .2884, .3491, .4092, .4695, .5299, .5903, .6513, .712, .7708, .8273, .878, .9815, 1.0318, 1.0829, 1.1334, 1.1839, 1.2333, 1.2828, 1.3296, 1.3764, 1.412, 1.4499, 1.4876, 1.5243, 1.5605, 1.5945, 1.63, 1.664, 1.694, 1.7255, 1.7587, 1.7857, 1.8114, 1.839, 1.866, 1.8899, 1.9129, 1.9326, 1.951, 1.9696, 1.9871, 2.0041, 2.0195, 2.0338, 2.0465, 2.0575, 2.0669, 2.0754, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01309, .01213, .01116, .01013, .00965, .00923, .00885, .00851, .00815, .00777, .00749, .00724, .00702, .00677, .00654, .00636, .00617, .00601, .00586, .00573, .00557, .00546, .00536, .00523, .00511, .00503, .0049, .00481, .00471, .0046, .00451, .00436, .00426, .00429, .00447, .00495, .00582, .00631, .00673, .00716, .00754, .00795, .00831, .00873, .00909, .00943, .00985, .0103, .01081, .01134, .01199, .01266, .01342, .01436, .01532, .0163, .01757, .019, .02045, .02201, .02385, .02592, .02837, .03107, .03392, .03701, .04025, .04377, .04756, .0516, .05595, .06062, .06553, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.155,-.1537,-.151,-.1464,-.1452,-.1446,-.1443,-.1442,-.1443,-.1446,-.145,-.1456,-.1462,-.147,-.1478,-.1486,-.1496,-.1504,-.1514,-.1523,-.1534,-.1545,-.1555,-.1566,-.1578,-.1588,-.16,-.1611,-.1622,-.1634,-.1645,-.1659,-.1672,-.168,-.1683,-.1675,-.1661,-.1652,-.1645,-.1636,-.1627,-.1616,-.1605,-.1589,-.1573,-.1533,-.1499,-.1467,-.1433,-.14,-.1364,-.1332,-.13,-.1262,-.1228,-.1198,-.1161,-.1125,-.1092,-.1062,-.103,-.1,-.0971,-.0943,-.0919,-.0898,-.0879,-.0862,-.0847,-.0835,-.0825,-.0817,-.0813,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	23
SETNAME	SandFlap_p06
COMMENTS	""
DATE	05-20-2014@14:18:29
XA	 25
THICK	 18
REYN	 6000000
DEPL	 .104719666666667
NALPHA	147
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-17,-16.5,-16,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.0912,-1.0378,-.8987,-.8874,-.8489,-.8024,-.7535,-.7019,-.6484,-.5939,-.5373,-.481,-.4231,-.3659,-.3071,-.2491,-.1897,-.1311,-.0709,-.0119, .0483, .1084, .168, .2286, .2891, .3486, .4094, .4695, .5295, .5895, .6499, .7101, .8293, .8855, .935, .9849, 1.0339, 1.0837, 1.1318, 1.1806, 1.2288, 1.2762, 1.3157, 1.3551, 1.3937, 1.4337, 1.4726, 1.5095, 1.5484, 1.5849, 1.6194, 1.6566, 1.6884, 1.7221, 1.7543, 1.785, 1.8153, 1.8414, 1.8728, 1.8975, 1.9238, 1.9478, 1.9644, 1.984, 2.0031, 2.0214, 2.0387, 2.0542, 2.0683, 2.081, 2.0924, 2.1023, 2.1107, 2.1153, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01349, .01238, .01165, .0107, .00979, .00929, .00887, .00844, .00805, .00774, .00745, .00723, .00697, .00673, .0065, .00635, .00615, .00601, .00583, .00573, .00558, .00546, .00537, .00525, .00513, .00507, .00495, .00485, .00477, .00469, .00458, .00449, .00441, .00457, .00504, .0055, .00601, .00646, .00696, .00739, .0078, .00818, .00854, .00896, .00938, .00982, .0103, .01084, .01137, .012, .01271, .01342, .01431, .01521, .01621, .01731, .01853, .01999, .02129, .02298, .02473, .02674, .02941, .03207, .03493, .03797, .04124, .04479, .0486, .05267, .05701, .06163, .06649, .07198, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.1467,-.1494,-.1677,-.1625,-.1622,-.1619,-.1617,-.1619,-.1623,-.1627,-.1635,-.1641,-.165,-.1658,-.1668,-.1676,-.1687,-.1696,-.1708,-.1717,-.1729,-.174,-.175,-.1762,-.1774,-.1784,-.1796,-.1808,-.1818,-.183,-.1842,-.1854,-.1875,-.1877,-.1866,-.1855,-.1843,-.1833,-.1819,-.1807,-.1793,-.1778,-.1745,-.1713,-.1681,-.1652,-.1621,-.1588,-.156,-.1528,-.1493,-.1465,-.1429,-.1397,-.1363,-.1329,-.1296,-.1259,-.123,-.1195,-.1163,-.1132,-.1097,-.1068,-.1043,-.1019,-.0998,-.0979,-.0962,-.0948,-.0935,-.0925,-.0917,-.0912,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	24
SETNAME	SandFlap_p08
COMMENTS	""
DATE	05-20-2014@14:17:50
XA	 25
THICK	 18
REYN	 6000000
DEPL	 .139626222222222
NALPHA	145
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-17,-16.5,-16,-15.5,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-.9924,-.9308,-.8141,-.7878,-.696,-.6447,-.5906,-.5352,-.4796,-.422,-.3649,-.3078,-.2486,-.1906,-.1307,-.0721,-.0118, .0473, .1072, .1673, .2265, .287, .3469, .4064, .4671, .527, .5866, .6462, .7059, .7651, .8256, .8831, .9384, .985, 1.032, 1.0799, 1.1687, 1.207, 1.2506, 1.2902, 1.3339, 1.3722, 1.4528, 1.4913, 1.53, 1.568, 1.6055, 1.6418, 1.6772, 1.7122, 1.7447, 1.7806, 1.8101, 1.842, 1.8688, 1.8985, 1.9261, 1.9546, 1.9767, 1.997, 2.0158, 2.0351, 2.0537, 2.0715, 2.0876, 2.1028, 2.1159, 2.1254, 2.1326, 2.1383, 2.1432, 2.1476, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01305, .01196, .01109, .01034, .00893, .00842, .00802, .00772, .00747, .00721, .00697, .00673, .00651, .00636, .00614, .00602, .00584, .00573, .0056, .00548, .0054, .00529, .00519, .00511, .005, .00491, .00484, .00477, .00469, .00462, .00453, .00456, .00471, .0052, .00569, .00614, .00717, .0076, .008, .00847, .00886, .00938, .01037, .01094, .01154, .01215, .01284, .01359, .0144, .01527, .01628, .01719, .0184, .01961, .02108, .0225, .02411, .02577, .02791, .03033, .03306, .0359, .03894, .0422, .0457, .04937, .05341, .05795, .06291, .06815, .07363, .0793, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.1616,-.166,-.1801,-.1776,-.1786,-.1791,-.1799,-.1806,-.1813,-.1823,-.1832,-.1841,-.1852,-.1861,-.1874,-.1884,-.1897,-.1907,-.1918,-.193,-.194,-.1952,-.1964,-.1974,-.1987,-.1998,-.2008,-.2018,-.2029,-.204,-.2052,-.2058,-.2059,-.2041,-.2025,-.2011,-.1967,-.1933,-.1909,-.1878,-.1855,-.1823,-.1767,-.1737,-.1708,-.1679,-.1649,-.1619,-.1587,-.1556,-.1522,-.1494,-.1457,-.1425,-.1388,-.1356,-.1322,-.1292,-.1257,-.1222,-.119,-.1162,-.1136,-.1114,-.1092,-.1072,-.1055,-.1039,-.1026,-.1016,-.1009,-.1005,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	25
SETNAME	SandFlap_p10
COMMENTS	""
DATE	05-20-2014@14:17:22
XA	 25
THICK	 18
REYN	 6000000
DEPL	 .174532777777778
NALPHA	140
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1, 0, .5, 1, 1.5, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-.5354,-.4801,-.4238,-.366,-.309,-.25,-.1917,-.1327,-.0735,-.0144, .0451, .1046, .1636, .2231, .2818, .3423, .4014, .4606, .5214, .5804, .6393, .6976, .7561, .8132, .8727, .9286, .981, 1.0558, 1.0976, 1.1379, 1.1795, 1.2636, 1.3041, 1.3471, 1.3897, 1.4281, 1.4704, 1.507, 1.5476, 1.5883, 1.623, 1.6622, 1.6959, 1.7318, 1.7684, 1.7993, 1.834, 1.8616, 1.8949, 1.922, 1.9525, 1.9797, 2.0025, 2.0248, 2.0464, 2.0669, 2.0863, 2.1039, 2.119, 2.1313, 2.1413, 2.1502, 2.1577, 2.1648, 2.1715, 2.1767, 2.181, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .00815, .00779, .0075, .00724, .007, .00672, .00653, .00636, .00616, .00602, .00587, .00575, .00564, .00554, .00546, .00535, .00527, .0052, .00507, .005, .00493, .00489, .00483, .0048, .00472, .00476, .00491, .0058, .0063, .00685, .00743, .00845, .009, .00946, .00998, .01058, .01112, .01182, .01244, .01307, .01389, .01462, .01555, .01645, .01738, .01854, .01961, .02105, .02231, .0239, .0254, .02719, .02932, .03163, .03413, .03687, .03985, .04313, .04672, .05073, .05514, .05979, .06468, .06982, .0751, .08061, .08633, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.1963,-.1975,-.1985,-.1997,-.2007,-.2021,-.2032,-.2044,-.2056,-.2068,-.208,-.2091,-.2102,-.2113,-.2122,-.2135,-.2145,-.2155,-.2168,-.2178,-.2187,-.2195,-.2204,-.221,-.222,-.2223,-.2218,-.2144,-.2117,-.2087,-.206,-.201,-.1982,-.1959,-.1935,-.1905,-.1882,-.1849,-.1824,-.18,-.1766,-.174,-.1706,-.1676,-.1647,-.1611,-.1582,-.1543,-.1514,-.1477,-.1446,-.1413,-.1376,-.1342,-.131,-.128,-.1252,-.1226,-.1201,-.1178,-.1157,-.1139,-.1124,-.1112,-.1103,-.1096,-.1093,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	26
SETNAME	SandFlap_p12
COMMENTS	""
DATE	05-20-2014@14:16:59
XA	 25
THICK	 18
REYN	 6000000
DEPL	 .209439333333333
NALPHA	152
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-20,-19.5,-19,-18.5,-18,-17.5,-17,-15.5,-15,-14.5,-14,-13.5,-13,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-1.0292,-.9946,-.9573,-.9168,-.8758,-.8346,-.7873,-.577,-.5242,-.482,-.4284,-.3716,-.313,-.2538,-.1957,-.1364,-.0775,-.0189, .0409, .0988, .1589, .2162, .2758, .333, .3925, .4517, .5086, .5681, .6268, .6819, .7371, .7814, .8356, .8904, .939, .9907, 1.0326, 1.0663, 1.1073, 1.1451, 1.1868, 1.2314, 1.2712, 1.3142, 1.3594, 1.3979, 1.4402, 1.4827, 1.521, 1.5605, 1.6014, 1.638, 1.6754, 1.7136, 1.7492, 1.782, 1.8193, 1.8509, 1.8824, 1.9165, 1.9425, 1.9754, 2.0046, 2.026, 2.0506, 2.0713, 2.0907, 2.1101, 2.1276, 2.1428, 2.1556, 2.1652, 2.1734, 2.1808, 2.1878, 2.1946, 2.2004, 2.2108, 2.2136, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .02028, .01855, .01703, .01578, .01451, .01329, .01221, .00952, .00871, .0084, .00801, .00767, .00735, .00704, .00678, .00656, .00639, .00622, .00605, .00594, .0058, .00571, .00561, .00555, .00545, .00535, .0053, .0052, .00512, .00509, .00501, .00502, .00498, .00499, .00509, .00517, .00553, .00614, .00669, .00736, .00802, .00855, .00918, .00978, .01028, .01095, .01155, .01216, .01288, .01359, .01428, .01512, .01595, .01682, .01778, .01891, .01989, .02116, .02251, .02376, .02546, .02688, .02858, .03084, .033, .03558, .03842, .04143, .04471, .04833, .05235, .05681, .06152, .06648, .07164, .07688, .08225, .08706, .093, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.1849,-.1862,-.1875,-.1886,-.1899,-.1911,-.1929,-.21,-.2121,-.2116,-.2128,-.2143,-.216,-.2178,-.2192,-.2206,-.2219,-.2231,-.2245,-.2255,-.2268,-.2276,-.2288,-.2295,-.2306,-.2316,-.2322,-.2333,-.2342,-.2344,-.2345,-.2323,-.2323,-.2324,-.2312,-.2306,-.2279,-.2236,-.2209,-.2176,-.2151,-.2131,-.2103,-.2081,-.2063,-.2033,-.201,-.1988,-.1958,-.1932,-.1908,-.1877,-.1848,-.1821,-.179,-.1756,-.173,-.1695,-.1661,-.1632,-.1592,-.1564,-.1532,-.1491,-.1458,-.1422,-.1388,-.1359,-.133,-.1303,-.1278,-.1255,-.1234,-.1216,-.1202,-.119,-.1181,-.1174,-.117,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
SETNB	27
SETNAME	SandFlap_p14
COMMENTS	""
DATE	05-20-2014@14:16:35
XA	 25
THICK	 18
REYN	 6000000
DEPL	 .244345888888889
NALPHA	146
NVALS	3
ALPHA	-180,-175,-170,-160,-155,-150,-145,-140,-135,-130,-125,-120,-115,-110,-105,-100,-95,-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-24,-23,-22,-21,-17.5,-17,-15.5,-15,-14.5,-14,-13.5,-12.5,-12,-11.5,-11,-10.5,-10,-9.5,-9,-8.5,-8,-7.5,-7,-6.5,-6,-5.5,-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-.5, 0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 170, 175, 180
CL	 0, .374, .749, .659, .736, .783, .803, .798, .771, .724, .66, .581, .491, .39, .282, .169, .052,-.067,-.184,-.299,-.409,-.512,-.606,-.689,-.759,-.814,-.85,-.866,-.86,-.829,-.853,-.87,-.89,-.911,-.934,-.735,-.6806,-.4786,-.4219,-.362,-.3219,-.2645,-.1473,-.088,-.028, .0316, .0892, .1483, .2054, .2631, .3196, .3774, .4311, .4809, .5313, .585, .642, .6913, .7437, .7956, .8431, .8916, .9397, .9893, 1.033, 1.0704, 1.1081, 1.1488, 1.189, 1.2315, 1.2771, 1.3214, 1.3656, 1.405, 1.4474, 1.4909, 1.5338, 1.5688, 1.6096, 1.6509, 1.691, 1.7232, 1.7613, 1.7989, 1.8314, 1.8658, 1.901, 1.9291, 1.9608, 1.995, 2.0221, 2.0467, 2.0748, 2.0941, 2.1128, 2.1311, 2.148, 2.1636, 2.177, 2.1876, 2.1955, 2.2023, 2.2098, 2.2197, 2.2249, 2.2287, 2.2314, 2.2329, 1.401, 1.359, 1.3, 1.22, 1.168, 1.116, 1.015, .926, .855, .8, .804, .793, .763, .717, .656, .582, .495, .398, .291, .176, .053,-.074,-.199,-.321,-.436,-.543,-.64,-.723,-.79,-.84,-.868,-.872,-.85,-.798,-.714,-.749,-.374, 0
CD	 .0198, .0341, .0955, .2807, .3919, .5086, .6267, .7427, .8537, .9574, 1.0519, 1.1355, 1.207, 1.2656, 1.3104, 1.341, 1.3572, 1.3587, 1.3456, 1.3181, 1.2765, 1.2212, 1.1532, 1.0731, .9822, .882, .7742, .661, .5451, .4295, .3071, .2814, .2556, .23, .204, .01289, .01183, .00935, .00854, .00788, .00787, .00753, .00696, .00669, .00648, .00629, .00615, .00601, .0059, .0058, .00572, .00563, .00558, .00546, .00541, .00536, .0053, .00533, .00537, .00542, .00552, .00566, .00579, .00597, .0063, .00689, .0076, .00821, .00895, .00966, .01022, .01084, .01144, .01215, .01282, .01345, .0141, .01503, .01578, .01652, .01734, .01847, .01941, .02042, .02166, .02286, .02406, .02568, .02717, .02855, .03038, .03249, .03445, .03713, .04003, .04312, .04648, .05009, .05405, .0584, .06315, .0682, .07329, .07801, .08345, .08916, .09505, .10107, .259, .28, .3004, .3204, .3377, .3554, .3916, .4294, .469, .5324, .6452, .7573, .8664, .9708, 1.0693, 1.1606, 1.2438, 1.3178, 1.3809, 1.4304, 1.4565, 1.4533, 1.4345, 1.4004, 1.3512, 1.2874, 1.2099, 1.1196, 1.0179, .9064, .7871, .6627, .5363, .4116, .2931, .0971, .0334, .0198
CM	 0, .188, .377, .2747, .313, .3428, .3654, .382, .3935, .4007, .4042, .4047, .4025, .3981, .3918, .3838, .3743, .3636, .3517, .3388, .3248, .3099, .294, .2772, .2595, .2409, .2212, .2006, .1789, .1563, .1156, .104, .0916, .079, .065,-.2061,-.2093,-.2245,-.2273,-.2303,-.2289,-.2307,-.2343,-.2361,-.2378,-.2394,-.2405,-.2418,-.2426,-.2436,-.2442,-.245,-.245,-.2441,-.2433,-.2433,-.2439,-.2429,-.2425,-.242,-.2407,-.2396,-.2384,-.2375,-.2354,-.232,-.2288,-.2261,-.2234,-.2212,-.2195,-.2176,-.2156,-.2128,-.2106,-.2086,-.2065,-.2031,-.2007,-.1984,-.196,-.1923,-.1896,-.1869,-.1834,-.1803,-.1775,-.1736,-.1704,-.1676,-.164,-.1602,-.157,-.1531,-.1494,-.1461,-.143,-.14,-.1373,-.1348,-.1324,-.1304,-.1287,-.1272,-.126,-.1251,-.1245,-.1243,-.117,-.119,-.1235,-.1393,-.144,-.1486,-.1577,-.1668,-.1759,-.1897,-.2126,-.2344,-.2553,-.2751,-.2939,-.3117,-.3285,-.3444,-.3593,-.3731,-.3858,-.3973,-.4075,-.4162,-.4231,-.428,-.4306,-.4304,-.427,-.4196,-.4077,-.3903,-.3665,-.3349,-.2942,-.3771,-.1879, 0
MEND

MSTART AERO
TIPLOS	P
HUBLOS	N
WAKE	D
AERTOL	 .001
STALLH	Y
SPTC	-3
LESTALL	N
RDYS	 .25
DYNWAKE_STEP	 .02
TSRRAMP 1 2
SHTaper	0
SHTaperN	 10
SHTaperPit 0 1.047197 1.308996 1.832594 2.094393 4.188787 4.450586 4.974184 5.235983 6.28318
SHTaperFactor 1 1 0 0 1 1 0 0 1 1
MEND

MSTART AEROINFO
WSPEED	 10
PITCH	 0
OMEGA	 0
MEND

MSTART BGEOMMB
BLADENAME	
DISTMODE	RJ
NBE	42
RJ	 0, 0, 1.3667, 1.3667, 4.1, 4.1, 6.8333, 6.8333, 10.25, 10.25, 14.35, 14.35, 18.45, 18.45, 22.55, 22.55, 26.65, 26.65, 30.75, 30.75, 34.85, 34.85, 38.95, 38.95, 43.05, 43.05, 47.15, 47.15, 48.51, 48.51, 51.25, 51.25, 54.6667, 54.6667, 57.4, 57.4, 60.1333, 60.1333, 61.11, 61.11, 61.5, 61.5
DIST	 0, 0, 1.368343, 1.368343, 4.116537, 4.116537, 6.855415, 6.855415, 10.2746, 10.2746, 14.40277, 14.40277, 18.50708, 18.50708, 22.60975, 22.60975, 26.715, 26.715, 30.8157, 30.8157, 34.91579, 34.91579, 39.01626, 39.01626, 43.12543, 43.12543, 47.22683, 47.22683, 48.58698, 48.58698, 51.32731, 51.32731, 54.74409, 54.74409, 57.48343, 57.48343, 60.22004, 60.22004, 61.19769, 61.19769, 61.58807, 61.58807
REF_X	 .2012753, .2012753, .2190463, .2190463, .1708763, .1708763, .1616587, .1616587, 9.282518E-02, 9.282518E-02,-1.325935E-02,-1.325935E-02, 1.722901E-02, 1.722901E-02, 3.442473E-02, 3.442473E-02, 5.385742E-02, 5.385742E-02, 5.010923E-02, 5.010923E-02, .0359671, .0359671, 2.142451E-02, 2.142451E-02,-6.391242E-04,-6.391242E-04, 2.607662E-03, 2.607662E-03, 2.597334E-03, 2.597334E-03, 2.576549E-03, 2.576549E-03, 7.167121E-04, 7.167121E-04, 1.298521E-03, 1.298521E-03, 4.667345E-04, 4.667345E-04, 1.327789E-04, 1.327789E-04, 0, 0
REF_Y	-2.407552E-02,-2.407552E-02, 4.055422E-02, 4.055422E-02,-.2410922,-.2410922,-6.662104E-02,-6.662104E-02,-.1771913,-.1771913,-.6467885,-.6467885,-.4611294,-.4611294,-.3140453,-.3140453,-.1074506,-.1074506,-3.167929E-02,-3.167929E-02,-5.447306E-02,-5.447306E-02,-.1144145,-.1144145,-.3879565,-.3879565,-.2811073,-.2811073,-.2601681,-.2601681,-.2180327,-.2180327,-.241545,-.241545,-5.967216E-02,-5.967216E-02, 7.490716E-02, 7.490716E-02, 3.178366E-02, 3.178366E-02, .014638, .014638
CHORD	 3.5, 3.5, 3.542, 3.542, 3.854, 3.854, 4.167, 4.167, 4.557, 4.557, 4.652, 4.652, 4.458, 4.458, 4.249, 4.249, 4.007, 4.007, 3.748, 3.748, 3.502, 3.502, 3.256, 3.256, 3.01, 3.01, 2.764, 2.764, 2.682334, 2.682334, 2.518, 2.518, 2.313, 2.313, 2.086, 2.086, 1.419, 1.419, .546787, .546787, .2, .2
TWIST	 .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2003636, .2003636, .1773602, .1773602, .1572715, .1572715, .1360483, .1360483, .1142142, .1142142, 9.356702E-02, 9.356702E-02, 7.309433E-02, 7.309433E-02, 5.454149E-02, 5.454149E-02, 4.047415E-02, 4.047415E-02, 3.587949E-02, 3.587949E-02, .0266337, .0266337, 1.506218E-02, 1.506218E-02, 6.457713E-03, 6.457713E-03, 1.850047E-03, 1.850047E-03, 5.263106E-04, 5.263106E-04, 0, 0
CE_X	 0, 0
CE_Y	 49.983, 49.983, 51.8664, 51.8664, 44.2616, 44.2616, 41.8538, 41.8538, 33.8493, 33.8493, 23.5679, 23.5679, 27.1905, 27.1905, 30.1728, 30.1728, 34.91, 34.91, 36.7312, 36.7312, 35.9926, 35.9926, 34.0101, 34.0101, 24.6105, 24.6105, 27.3316, 27.3316, 27.83315, 27.83315, 28.8424, 28.8424, 27.0573, 27.0573, 34.6396, 34.6396, 42.7789, 42.7789, 44.23862, 44.23862, 44.819, 44.819
BTHICK	 100, 100, 100, 100, 90, 90, 70, 70, 40, 40, 35, 35, 35, 35, 30, 30, 25, 25, 25, 25, 21, 21, 21, 21, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18
FOIL	 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8
MOVING	F,M,M,M,M,M,M,M,M,M,M,F,F,F
MEND

MSTART BMASSMB
CM_X	 0, 0
CM_Y	 49.983, 49.983, 51.8664, 51.8664, 44.2616, 44.2616, 41.8538, 41.8538, 33.8493, 33.8493, 23.5679, 23.5679, 27.1905, 27.1905, 30.1728, 30.1728, 34.91, 34.91, 36.7312, 36.7312, 35.9926, 35.9926, 34.0101, 34.0101, 24.6105, 24.6105, 27.3316, 27.3316, 27.83315, 27.83315, 28.8424, 28.8424, 27.0573, 27.0573, 34.6396, 34.6396, 42.7789, 42.7789, 44.23862, 44.23862, 44.819, 44.819
MASS	 713.832, 713.832, 806.3887, 806.3887, 634.9778, 634.9778, 429.4976, 429.4976, 446.4705, 446.4705, 368.8372, 368.8372, 354.8021, 354.8021, 335.9982, 335.9982, 307.5067, 307.5067, 273.303, 273.303, 246.5428, 246.5428, 201.9705, 201.9705, 168.5364, 168.5364, 141.1619, 141.1619, 130.1342, 130.1342, 107.9434, 107.9434, 91.19781, 91.19781, 71.14824, 71.14824, 48.56509, 48.56509, 21.56784, 21.56784, 10.83388, 10.83388
SINER	 1394.03, 1394.03, 1493.8, 1493.8, 742.05, 742.05, 334.143, 334.143, 193.71, 193.71, 71.8003, 71.8003, 44.579, 44.579, 26.4032, 26.4032, 12.2464, 12.2464, 4.76393, 4.76393, 1.8123, 1.8123, .75633, .75633, .580504, .580504, .33253, .33253, 675.2191, 675.2191, .09425, .09425, .1, .1, .06, .06, .001332, .001332, .192386, .192386, .00001, .00001
RGRATIO	 1, 1, 1, 1, .9, .9, .7, .7, .4, .4, .35, .35, .35, .35, .3, .3, .25, .25, .25, .25, .21, .21, .21, .21, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18, .18
BETA_M	 .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2003636, .2003636, .1773602, .1773602, .1572715, .1572715, .1360483, .1360483, .1142142, .1142142, 9.356702E-02, 9.356702E-02, 7.309433E-02, 7.309433E-02, 5.454149E-02, 5.454149E-02, 4.047415E-02, 4.047415E-02, 3.587949E-02, 3.587949E-02, .0266337, .0266337, 1.506218E-02, 1.506218E-02, 6.457713E-03, 6.457713E-03, 1.850047E-03, 1.850047E-03, 5.263106E-04, 5.263106E-04, 0, 0
DEF_RGRATIO	-1
DEF_BETA_M	-1
ICEDBLADES	 0, 0, 0
ICEDENSITY	 700
TIPCHORD	 0
MEND

MSTART BSTIFFMB
EIFLAP	 1.811E+10, 1.811E+10, 1.91E+10, 1.91E+10, 1.123E+10, 1.123E+10, 5.815E+09, 5.815E+09, 4.654E+09, 4.654E+09, 2.542E+09, 2.542E+09, 2.022E+09, 2.022E+09, 1.549E+09, 1.549E+09, 1.051E+09, 1.051E+09, 6.41E+08, 6.41E+08, 3.782E+08, 3.782E+08, 2.151E+08, 2.151E+08, 1.18E+08, 1.18E+08, 8.396E+07, 8.396E+07, 7.43394E+07, 7.43394E+07, 5.498E+07, 5.498E+07, 3.717E+07, 3.717E+07, 2.545E+07, 2.545E+07, 7887000, 7887000, 2365370, 2365370, 170000, 170000
EIEDGE	 1.811E+10, 1.811E+10, 1.955E+10, 1.955E+10, 1.535E+10, 1.535E+10, 8.46E+09, 8.46E+09, 7.173E+09, 7.173E+09, 5.034E+09, 5.034E+09, 4.469E+09, 4.469E+09, 3.953E+09, 3.953E+09, 3.378E+09, 3.378E+09, 2.685E+09, 2.685E+09, 2.17E+09, 2.17E+09, 1.486E+09, 1.486E+09, 1.114E+09, 1.114E+09, 7.559E+08, 7.559E+08, 6.659351E+08, 6.659351E+08, 4.849E+08, 4.849E+08, 3.758E+08, 3.758E+08, 2.735E+08, 2.735E+08, 8.728E+07, 8.728E+07, 2.841457E+07, 2.841457E+07, 5010000, 5010000
BETA_S	 .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2322682, .2003636, .2003636, .1773602, .1773602, .1572715, .1572715, .1360483, .1360483, .1142142, .1142142, 9.356702E-02, 9.356702E-02, 7.309433E-02, 7.309433E-02, 5.454149E-02, 5.454149E-02, 4.047415E-02, 4.047415E-02, 3.587949E-02, 3.587949E-02, .0266337, .0266337, 1.506218E-02, 1.506218E-02, 6.457713E-03, 6.457713E-03, 1.850047E-03, 1.850047E-03, 5.263106E-04, 5.263106E-04, 0, 0
GJ	 5.564E+09, 5.564E+09, 5.359E+09, 5.359E+09, 3.594E+09, 3.594E+09, 1.694E+09, 1.694E+09, 8.467E+08, 8.467E+08, 3.322E+08, 3.322E+08, 2.57E+08, 2.57E+08, 1.961E+08, 1.961E+08, 1.39E+08, 1.39E+08, 7.786E+07, 7.786E+07, 5.37E+07, 5.37E+07, 3.278E+07, 3.278E+07, 1.99E+07, 1.99E+07, 1.545E+07, 1.545E+07, 1.315606E+07, 1.315606E+07, 8540000, 8540000, 6618000, 6618000, 5174000, 5174000, 2233000, 2233000, 771202.4, 771202.4, 190000, 190000
CS_X	 0, 0
CS_Y	 50.041, 50.041, 52.205, 52.205, 45.307, 45.307, 39.024, 39.024, 38.061, 38.061, 38.08, 38.08, 38.142, 38.142, 38.138, 38.138, 38.079, 38.079, 38.508, 38.508, 39.119, 39.119, 41.263, 41.263, 41.281, 41.281, 42.3045, 42.3045, 42.99816, 42.99816, 44.394, 44.394, 41.76, 41.76, 42.542, 42.542, 33, 33, 33, 33, 33, 33
DEF_BETA_S	-1
MEND

MSTART CONSTANTS
RHO	 1.225
RHOW	 1030
VISCOS	 .0000182
GRAVITY	 9.81
MEND

MSTART CONTROL
CMODEL	6
OMMIN	 69.9999647269491
OMMAX	 122.919949846598
TRQSPD	0
GAIN_TSR	 2.14188
TRQSPD_NPTS	0
SPEEDS
TRQS
OMDEM_QS	 122.909467653402
GTORREF	 43093.6
OMDEM_PS	 122.909467653402
PITMIN	 0
PITMAX	 1.570795
PITDIR_PS	F
DISCRETE_Q	2
DISCRETE_P	2
DISCRETE_Y	0
OMTAU	 0
POWTAU	 0
GAINP_QS	 4177.45
GAINI_QS	 2063.27
TDSAT_QS	 0
LSCHED_QS	1
SCHEDVAL_QS	 1
GAINP_PS	 .01716
GAINI_PS	 .011121
TDSAT_PS	 0
PITRMIN	-.349065555555556
PITRMAX	 .349065555555556
LSCHED_PS	2
SCHEDVAR_PS	PITCH
NPOINTS_PS	4
SCHEDX_PS	-1.745328E-02,8.726639E-02,.6108473,1.570795
SCHEDY_PS	1,1,4.86551,4.86551
MEND

MSTART CONTROLFAIL
FAULTENABLED	False
FAULTTIME	0
FAULTVAL	0
MEND

MSTART DISCON
DISCON	'd:\users\rgb10163\dropbox\phd work\visual studio 2010\projects\nrel 5mw external control\debug\nrel 5mw external control.dll'
DLLCALLSTYLE	1
SAMPLETIME	 .01
Data	"// FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

// flag for external Bladed data logging
DataLog_on	= false;					

// flag for torque controller
VSConstP_on	= true;						// Flag to indicate whether constant power (true) or torque (false) above rated

//flag for torsional vibration filter in torque control
FTV_on		= true;						// Flag to indicate whether the torsional vibration filter is on

//flags for pitch controller
PCI_on		= true;						// Flag to indicate whether the pitch interaction with the torque control is on
PCFA_on		= true;						//Flag to indicate whether the pitch notch filter A is on
PCFB_on		= true;						//Flag to indicate whether the pitch notch filter B is on
PCF_on		= true;						// Flag to indicate whether the pitch low-pass filter is on
			
//flags for supplementary control
PC_Smart_on	= false;					// Flag to indicate whether the smart control is used to help with speed control
Sup_FreqCutOff	= #1;					// Value for spliting the pitch signal using filters

			
//flags for individual pitch control
IPC_on		= false;					// Flag to indicate whether dq-axis Individual Pitch Control (IPC) is on
IPCFDA_on	= true;						// Flag to indicate whether IPC yaw error (D-axis) notch filter is on
IPCFQA_on	= true;						// Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

IPCB_on		= false;					// Flag to indicate whether Independent blade pitch control (IPCB) is on
IPCBFL_on	= true;						// Flag to indicate whether IPCB low pass filter is on
IPCBFH_on	= true;						// Flag to indicate whether IPCB high pass filter is on
			
//flag for tower vibration damping using pitch control
TVD_on		= true;						// Flag to indicate whether the tower vibration damping is on
TVD_Smart_on	= false;				// Flag to indicate whether the smart rotor tower vibration damping is on
TVD_Smart_xHat	= #1;					// Ratio of pitch to smart rotor control for tower vibration damping

//flag for non-linear pitch term for gusts
NLP_on		= false;					// Flag to indicate whether the non-linear pitch term for gusts is on

//pitch to flap angle gain factor
SRC_Pitch2Flap = #4.15;					// Gain to convert from pitch to flap angle demand

//flags for Smart Rotor dq-axis control
SRC_on		= true;						// Flag to indicate whether smart rotor control is active
SRCFDA_on	= true;						// Flag to indicate whether SRC yaw error (D-axis) notch filter is on
SRCFQA_on	= true;						// Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

//flag for Smart Rotor distributed control
SRCD_on	= false;					// Flag to indicate whether distributed smart rotor control is active
SRCDFL_on	= true;						// Flag to indicate whether distributed smart rotor control is active
SRCDFH_on	= true;						// Flag to indicate whether distributed smart rotor control is active

//flag for flap faults
SRC_jam_on = false;						// Flag to indicate whether flap 1 is jammed
SRC_jamAngle = #0;						// Angle at which flap 1 is jammed
SRC_jamTime = #0;						// Time at which flap 1 is jammed
SRC_faultRF_on = false;					// Flag to indicate whether fault ride-through is operational
SRC_autoFRF1_on = false;				// Flag to indicate whether auto fault ride-through version 1 is operational
SRC_autoFRF2_on = false;				// Flag to indicate whether auto fault ride-through version 2 is operational
SRC_faultRF1_triggered = false;			// Flag to indicate whether fault ride-through version 1 has been triggered
SRC_faultRF2_triggered = false;			// Flag to indicate whether fault ride-through version 2 has been triggered
SRC_jamNoRF1_on = false;				// Flag to indicate whether detection of fault through measurement of flap angle is disabled

//flags for fixed flap angle
FA_on = false;					// Flag to indicate whether fixed flap angle
FA_aileronAngle = #-0;				// Value for fixed flap angle

//debugging preferences
PC_DbgOut	= false;					// Flag to indicate whether to output pitch control debugging
VS_DbgOut	= false;					// Flag to indicate whether to output torque control debugging "
NOISEOK	0
NOISE	PITCH	0	 0	 0
NOISE	POWER	0	 0	 0
NOISE	GENSPD	0	 0	 0
NOISE	ROTSPD	0	 0	 0
NOISE	GENTRQ	0	 0	 0
NOISE	YAWERR	0	 0	 0
NOISE	WIND	0	 0	 0
NOISE	NACPOS	0	 0	 0
NOISE	OPBM	0	 0	 0
NOISE	ACCFA	0	 0	 0
NOISE	ACCSS	0	 0	 0
NOISE	AZIM	0	 0	 0
RANSEED	0
MAXLOGVARS	70
MEND

MSTART DTRAIN
DTMODEL	3
DLLMODEL	 0
DLLPATH	''
DLLCALLSTYLE	 0
DLLParameters	''
GRATIO	 97
OMDT	 0
GINERT	 534.116
BPOS	3
LSSFLEX	-1
HSSFLEX	0
LSSDOF 0 0 0 1 0 0
KLSS 0 0 0 8.676E+08 0 0
KHSS	 0
DLSS 0 0 0 6215000 0 0
LSSLENGTH	 0
LSSHINGEPOS	 0
DHSS	 0
SLIPCLUTCH	 0
INERTIATOCLUTCH	 0
SLIPCLUTCHFRICTION	 0
SLIPCLUTCHSTICTION	 0
MEND

MSTART EIGENT
NSIDE	2
DTOWS	.01,.01
NFORE	2
DTOWF	.01,.01
NTOWER	7
TDAMP .01 .01 .01 .01 .01 .01 .01
AZIMUTH	 0
RINotInTowSSGenMass	 0
MEND

MSTART EIGENB
NBLADE	 5
BDAMP	 .004775 .004775 .004775 .004775 .004775
MEND

MSTART GENER
GMODEL	2
SimuOrPerfCal	1
PerfCalDef	0
Speeds	1
VARSLIP	0
GSLIP	 0	 0
MAXSLIP	 0
GRATED	 0	 0
WSYNC	 0	 0
GTAU	 0	 0
GTAU1	 0
GTMAX	 100000
IsGPMAX	 0
GPMAX	 0
GTMIN	 0
PHASEANGLE	 0
SUBMODEL	0
XRR	 0
VSKP	 0
VSKI	 0
xm	 0	 0
xs	 0	 0
RS	 0	 0
xr	 0	 0
RR	 0	 0
POLEPAIRS	0	0
C_VAR	 0	 0
PFCSTEPS	0	0
PFCDELAY	 0
TSOFTSTART	 0
AUXLOAD	N
RAUX	 0
XAUX	 0
GRIDHZ	 0
VOLTS	 0
GENERDLLMODEL	 0
GENERDLLPATH	''
GENERDLLPROC	
GENERDLLCALLSTYLE	 0
GENERDLLParameters	''
SynOrInd	 0
GenContSubType	 1
PMorEleEx	 0
DamperType	 1
MagSat	 0
DeMag	 0
GenOrder	 0
GenCont	 1
DeCoupType	 1
PILimitType	 0
DCLinkType	 1
ProtectionType	 1
GridContType	 1
TiCon_d_axGenCont	 0
TiCon_q_axGenCont	 0
Kpd_GenCont	 0
Kid_GenCont	 0
Kpq_GenCont	 0
Kiq_GenCont	 0
Vfd_Excit	 0
MaxConvVoltLLrms	 0
MaxGenConvCurr	 0
MaxGenConvCurrLrms	 0
FieldWeakn	 0
C	 0
ConvLoss	 0
ConvEffi	 0
CBInputType	 3
DeLoadInput	 1
VdcMax	 0
VdcMaxForChop	 0
IrCBLLrmsMax	 0
RCB	 0
VTermThLLrms	 0
VTermMinLLrms	 0
VTermMinLLrmsForConv	 0
VdcTh	 0
TimeConstDeLoadFil	 0
TrqSlopLimit	 0
MinTrqNegSlop	 0
MaxTrqPosSlop	 0
RdcChop	 0
VdcTol	 0
ChopTimeLimit	 0
TimeMaxChop	 0
VdcRef	 0
VTermRefLLrms	 0
Kpd_GridCont	 0
Kid_GridCont	 0
Kpq_GridCont	 0
Kiq_GridCont	 0
TimeConstPLL	 0
MaxConvCurrLrms	 0
MaxReactCurr	 0
IdMaxLrms_GridCont	 0
MinOperaVolGrid	 0
VtMinLLrmsForActCurr	 0
VtMinLLrmsForReaCurr	 0
Kpd_2nd_GridCont	 0
Kid_2nd_GridCont	 0
Kpq_2nd_GridCont	 0
Kiq_2nd_GridCont	 0
VmaxGcLLrms	 0
Xwt_Grid	 0
TmCon_IdGridFil	 0
TmCon_IqGridFil	 0
NetTransient	 0
GridOverCurrLimit	 0
GridNegPowerLimit	 0
QgcType	 1
QgcRef	 0
AuxLoad	 1
Paux	 0
Raux	 0
Xaux	 0
Rs	 0
Rr	 0
Xls	 0
Xlr	 0
Xm	 0
RFe	 0
WindAndFrictFact	 0
WsEleBase	 0
VsLLrmsRat	 0
VRotOpen	 0
PolePairs	 0
StatWdgDorY	 0
RotWdgDorY	 0
PFgenLimit	 0
Rs	 0
IronLoss	 0
RFe	 0
Xls	 0
Xdm	 0
Xqm	 0
Rkd	 0
Rkq	 0
Rkq2	 0
Xlkd	 0
Xlkq	 0
Xlkq2	 0
UM	 0
Rfd	 0
Xlfd	 0
PolePairs	 0
WbaseGener	 0
NoOfXdmSatLkUp	 0
NoOfXqmSatLkUp	 0
AmbTemp	 0
BrAmbTemp	 0
SloRecoil	 0
HeatCap	 0
CoolTimeConst	 0
NoOfBHCurves	 0
SizeOfBH	 0
Wmin	 0
Wknee	 0
Wrat	 0
SpeedTolHigh	 0
SpeedTolLow	 0
SpeedTolGust_Left	 0
SpeedTolGust_Right	 0
Trat	 0
Tknee	 0
Tmin	 0
NoOfPoints	 0
PCOnly	 0
IntpOnLkUp	 0
OptModeGainOrLkUp	 0
FreqFact	 1
VoltFact	 1
PF	 1
PFCapOrInd	 0
NCONVLOSS	 0
DTDAMP	0
DTDAMP_NUMORD	0
DTDAMP_NUM 0
DTDAMP_DENORD	0
DTDAMP_DEN 0
MEND

MSTART GRID
Defined	0
GVOLTS	 0
RCON	 0
XCON	 0
RBUS	 0
XBUS	 0
NTURB	 0
MEND

MSTART LOSS
LMODEL	1
POWERL	 0
EFFICY	 94.4
MECHLOSS	0
NSPD	1
SPDS 0
MLMODEL	1
NTRQ	1
TRQS 0
LOSSTRQ 0
MEND

MSTART NMASS
NACMAS	 240000
NMX	 0
NMY	 1.75
NMZ	-1.9
IYAW	 2608000
INOD	 0
IROLL	 0
MEND

MSTART PCOEFF
TSRMIN	 0
TSRMAX	 30
TSRSTP	 .1
PITCH	 0
PITCH_END	 .383972111111111
PITCH_STEP	 3.49065555555556E-02
OMEGA	 1.20427616666667
MEND

MSTART	PCURVE
VMIN	 4
VMAX	 25
VSTEP	 .5
SCHED	Y
MEND

MSTART RMASS
HUBMAS	 56780
HUBCTR	 0
HUBINE	 115926
HUBINE2	 0
CWTMAS	 0
CWTINE	 0
GENMAS	 0
GENCTR	 0
GENINR	 0
GENINE2	 0
MEND

MSTART SIMCON
INTTOL	 .005
MINSTP	 .000001
MAXSTP	 1
OPSTP	 .01
INITSTEP	 0
OUTSTR	 60
T_STOP	 0
XT_STOP	 0
ENDT	 660
WSTART	 0
MINFAC	 .3
TLOGBUF	 660
MEND

MSTART SLOAD
VMIN	 5
VMAX	 25
VSTEP	 .5
SCHED	Y
MEND

MSTART SPLOAD
WSPEED	 10
AZIMUTH	 0
YAW	 0
INC	 0
PITCH	 0
SWEEP	A
END	 0
STEP	 1.74532773876666E-04
MEND

MSTART TGEOM
TMODEL	2
NTE	24
TJ	-20,-15,-10,-8,-6,-4,-2,0,2,4,6,8,10,10,17.7611,25.5213,33.2803,41.0404,48.8005,56.5606,64.3207,72.0798,79.8399,87.6
TDIAM	6,6,6,6,6,6,6,6,6,6,6,6,6,6,5.787,5.574,5.361,5.148,4.935,4.722,4.509,4.296,4.083,3.87
TDRAGC	 .6
OFFSHORE	1
SEADEPTH	 20
CDVECT	0
CMVECT	0
CDTOW	 1
CMTOW	 2
CDTOWST 0
CMTOWST 0
MEND

MSTART TMASS
TOWM	9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,9517.14,4306.51,4030.44,3763.45,3505.52,3256.66,3016.86,2786.13,2564.46,2351.87,2148.34,1953.87
WALLTHICK	0,0
MATERIAL	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'	'-'
NOMATS	0
TOWMGD	 0
FMASS	 0
FOUNDI	 0
NTPM	0
DAMPER	0
MASS	 0
FREQ	 0
DAMP	 0
STATION	 0
UNIDIREC	0
ANGLE	0
MEND

MSTART TOWSDW
TSMODEL	1
TDCORR	 1.2
MEND

MSTART TSTIFF
EITOW	 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 1.037E+12, 4.745E+11, 4.131E+11, 3.578E+11, 3.083E+11, 2.641E+11, 2.248E+11, 1.901E+11, 1.595E+11, 1.328E+11, 1.095E+11, 8.949E+10
TRANDOF	N
ROTDOF	N
TOWERGEOMSTIFF	0
MEND

MSTART WINDSEL
WMODEL	3
MEANHTTYPE	1
UBAR	 16
REFHT	 90
TURBHTTYPE	0
TI	 .154
TI_V	 .1078
TI_W	 .077
WDIR	 0
FLINC	 0
WINDF	d:\USERS\rgb10163\Documents\WindData\Kaimal\NTM_Kai16s1.wnd
INTERPYZ	3
CIRCWIND	 1
DIRAMP	 0
DIRSTIME	 0
DIRTIMEP	 0
DIRTYPE	F
DIRRATE	 0
GUSTPROPAGATION	1
MEND

MSTART WINDV
WVMODEL	1
WSHEAR	 .2
MEND

MSTART OUTPUT
AEROD_NSTS	8
AEROD_STS	12,13,14,15,16,17,18,19
AEROD	0
BLOADS_NSTS	19
BLOADS_STS	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
BMFLAP	0
BMEDGE	0
SFFLAP	0
SFEDGE	0
BMOUPL	0
BMINPL	0
SFOUPL	0
SFINPL	0
RADIAL	0
PITMOM	0
UNTWIST	0
BL_AERO	0
BL_USER	0
LMLOADS	0
LMPATH	''
LMEXTREME	0
LMFATIGUE	0
BDEFLS_NSTS	1
BDEFLS_STS	19
BDEFLOP	A
BDEFLIP	A
BLDACC	A
TLOADS_NSTS	3
TLOADS_STS	1,8,24
TOW_MX	1
TOW_MY	1
TOW_MZ	1
TOW_FX	1
TOW_FY	1
TOW_FZ	1
TOWD	1
HUBL	1
HUBF	1
DRIVET	1
GENER	1
CONTL	1
GENERAL	1
TEETL	1
COEFF	0
POW	0
SOFTP	0
STATE	0
PITACT	1
YAWOUT	1
EXTCON	1
TDISPS	1
TDISPS_NSTS	 1
TDISPS_POS 87.6
WATERON	0
WATER_NPOS	 1
WATER_POS 0
WPKIN_NSTS	 0
WPKIN_STS
AIRON	0
AIR_NSTS	 0
CALCOPTS	0,0,0,0,0,0,131072,210458,79101,262116,259745,262135,262135,262135,262135,262135,0,0
TestEnvCalcOpts	262135
MEND

0ADAT
0AERO
0AEROINFO
0BGEOMMB
0BMASSMB
0BSTIFFMB
0CONSTANTS
0CONTROL
0CONTROLFAIL
0DISCON
0DTRAIN
0EIGENT
0EIGENB
0GENER
0LOSS
0NMASS
0OUTPUT
0PCOEFF
0PCURVE
0PITACT
0RCON
0RMASS
0RMODE
0SIMCON
0SLOAD
0SPLOAD
0TGEOM
0TMASS
0TOWSDW
0TSTIFF
0WINDSEL
0WINDV
MSTART RMODE
NROTORS	1
NBLADE	5
TYPE	N N N N N
FREQ	 4.2801 6.8054 12.386 25.22 28.106
DAMP	 .004775 .004775 .004775 .004775 .004775
MASS	895.35 1459.9 567.33 805.19 507.71
STIFF	16402 67614 87031 512160 401050
MD011	 0, 8.188286E-05, 7.636261E-04, 2.452233E-03, 6.87117E-03, .0166305, 3.280761E-02, 5.667531E-02, 8.902689E-02, .1316564, .1874252, .2601431, .354621, .4715157, .5151513, .6091457, .7355697, .8395707, .9456915, .9845008, 1
MD012	 0, -1.093743E-05, -1.05239E-04, -3.551789E-04, -1.047642E-03, -2.605167E-03, -5.196012E-03, -8.989592E-03, -1.402004E-02, -2.041508E-02, -2.833983E-02, -3.792285E-02, -4.919763E-02, -6.185463E-02, -6.631199E-02, -7.555073E-02, -.0873959, -9.697685E-02, -.1066016, -.1100434, -.1114177
MD013	 0, -5.474913E-07, 1.75005E-06, 2.339868E-05, 9.001416E-05, 1.641372E-04, 1.611617E-04, 1.971502E-04, 2.972928E-04, 4.544499E-04, 6.02756E-04, 7.205821E-04, 4.767769E-04, 7.140592E-04, 7.830185E-04, 9.258036E-04, 9.131074E-04, 1.528482E-03, 2.034671E-03, 1.895981E-03, 1.840838E-03
MD014	 0, 1.601076E-05, 5.7752E-05, 1.328632E-04, 2.722977E-04, 4.891923E-04, 7.789457E-04, 1.076076E-03, 1.38998E-03, 1.740762E-03, 2.129087E-03, 2.535471E-03, 2.922652E-03, 3.233109E-03, 3.308326E-03, 3.420716E-03, 3.494809E-03, 3.51561E-03, 3.52092E-03, 3.521212E-03, 3.521225E-03
MD015	 0, 1.187843E-04, 4.043059E-04, 8.693848E-04, 1.726054E-03, 3.059152E-03, 4.85907E-03, 6.819784E-03, 9.063653E-03, 1.185719E-02, 1.545261E-02, 2.001625E-02, 2.555648E-02, 3.119816E-02, .0328062, 3.557673E-02, 3.797513E-02, 3.899142E-02, 3.936595E-02, 3.939141E-02, 3.939274E-02
MD016	 0, 1.900193E-05, -3.630435E-05, -5.697406E-05, 1.806475E-04, 3.947395E-04, 4.300731E-04, 4.926474E-04, 5.375919E-04, 8.284861E-04, 1.431576E-03, 2.756996E-03, 4.253108E-03, 5.601014E-03, 6.107158E-03, 7.187578E-03, 7.841587E-03, 8.086849E-03, 7.959826E-03, 7.941797E-03, 7.940297E-03
MD021	 0, 3.121422E-05, 2.581841E-04, 6.891682E-04, 1.580833E-03, 3.177826E-03, 5.324507E-03, 8.117183E-03, 1.174666E-02, 1.652199E-02, 2.320657E-02, .0331511, 4.843834E-02, 7.069467E-02, 7.971781E-02, .100188, .1293322, .1542005, .1799589, .1894112, .1931869
MD022	 0, 2.820018E-04, 2.501774E-03, 7.358978E-03, 1.892423E-02, .0422361, 7.733986E-02, .1241031, .1817263, .2494843, .3267951, .4128937, .5073751, .6091533, .6443051, .716905, .8100298, .885734, .9618762, .9891204, 1
MD023	 0, -1.374143E-05, 2.189898E-04, -8.960032E-05, 3.026348E-04, 3.014002E-03, 1.408446E-03, -2.808611E-04, -3.201633E-03, -4.44949E-03, -3.996627E-03, -2.702605E-03, 3.683229E-03, 1.013186E-03, 4.720393E-04, -6.442381E-04, 1.247224E-05, -5.030151E-03, -8.771318E-03, -7.565193E-03, -7.085604E-03
MD024	 0, -4.053425E-04, -1.24274E-03, -2.408629E-03, -4.38178E-03, -7.08294E-03, -1.001484E-02, -1.276452E-02, -.0153176, -1.772131E-02, -.0199537, -2.204932E-02, -2.399023E-02, -.0256105, -2.607938E-02, -2.688575E-02, -2.755294E-02, -2.780431E-02, -2.789104E-02, -2.789693E-02, -2.789721E-02
MD025	 0, 4.416193E-05, 1.228361E-04, 2.004696E-04, 3.171961E-04, 4.625789E-04, 5.936215E-04, 7.609377E-04, 9.892477E-04, 1.340203E-03, 1.93376E-03, 2.927286E-03, 4.462499E-03, 6.308294E-03, 6.887519E-03, 7.950494E-03, 8.952685E-03, 9.40987E-03, 9.586512E-03, 9.598825E-03, 9.599473E-03
MD026	 0, -1.486984E-05, -2.069491E-05, 3.828264E-05, 3.159095E-05, -5.807912E-05, -1.253643E-04, -1.576743E-04, -1.297433E-04, -3.488748E-05, 1.193743E-04, 4.132573E-04, 7.367543E-04, 1.071777E-03, 1.230194E-03, 1.596475E-03, 1.828466E-03, 1.93248E-03, 1.872621E-03, 1.863937E-03, 1.863207E-03
MD031	 0, -2.559831E-04, -2.342909E-03, -7.304344E-03, -1.961735E-02, -4.500149E-02, -8.266277E-02, -.1312543, -.186402, -.2423404, -.2881632, -.304788, -.2647096, -.1299523, -6.227095E-02, .1076608, .3730683, .6148127, .8698925, .9628544, 1
MD032	 0, 1.571532E-06, 3.600514E-05, 2.213421E-04, 8.691996E-04, 2.415501E-03, 4.805039E-03, 7.896921E-03, 1.113103E-02, 1.385463E-02, 1.496068E-02, 1.295882E-02, 6.391446E-03, -5.91099E-03, -1.115699E-02, -2.306194E-02, -3.964742E-02, -5.363032E-02, -6.782031E-02, -7.290421E-02, -7.493447E-02
MD033	 0, 3.254193E-06, -2.997639E-05, -5.853836E-05, -2.856329E-04, -7.653219E-04, -5.934704E-04, -5.005925E-04, -4.02173E-04, -5.036458E-04, -6.555534E-04, -7.43788E-04, -9.662707E-04, -7.523739E-04, -6.710899E-04, -4.867279E-04, -4.56391E-04, 4.225679E-04, 1.198865E-03, 1.006185E-03, 9.295741E-04
MD034	 0, -3.102427E-06, -3.213845E-05, -1.123787E-04, -2.576048E-04, -4.579253E-04, -6.860274E-04, -8.00303E-04, -7.639288E-04, -5.06753E-04, 7.144419E-05, 1.033755E-03, 2.324992E-03, 3.653473E-03, 4.021911E-03, 4.616111E-03, 5.044306E-03, 5.170204E-03, 5.202133E-03, 5.203836E-03, 5.203912E-03
MD035	 0, -3.699368E-04, -1.21738E-03, -2.506012E-03, -4.679437E-03, -7.565451E-03, -1.065045E-02, -1.289862E-02, -1.393655E-02, -1.299503E-02, -8.51649E-03, 1.725776E-03, 2.018376E-02, 4.507427E-02, 5.337704E-02, 6.912846E-02, 8.460168E-02, 9.187897E-02, 9.477947E-02, 9.498785E-02, 9.499895E-02
MD036	 0, -6.311097E-05, 8.960941E-05, 1.329348E-04, -5.156781E-04, -1.181704E-03, -1.642019E-03, -2.171539E-03, -2.727817E-03, -3.498549E-03, -4.471567E-03, -4.617603E-03, -4.511548E-03, -2.937814E-03, -1.448267E-03, 2.719362E-03, 5.360397E-03, 6.799006E-03, 5.789003E-03, 5.644273E-03, 5.631832E-03
MD041	 0, 9.012369E-05, 9.050136E-04, 3.036513E-03, 8.531477E-03, 1.945273E-02, 3.280554E-02, 4.487468E-02, 5.036215E-02, .0432146, 1.660292E-02, -.0315224, -9.114011E-02, -.1159508, -.1099537, -6.787467E-02, .0394659, .1692711, .3165494, .3687353, .3896168
MD042	 0, -8.525383E-04, -7.334444E-03, -2.074109E-02, -4.981177E-02, -.1007799, -.1629747, -.2254965, -.2761391, -.3026277, -.2926222, -.2356502, -.1214836, 5.150907E-02, .1215974, .2804016, .5059305, .7000095, .8995532, .9713278, 1
MD043	 0, 3.914373E-05, -6.144079E-04, 2.485495E-04, -5.815246E-04, -6.136626E-03, -3.419572E-03, -1.22727E-03, 1.298543E-03, 1.781541E-03, 1.745374E-03, 2.407597E-03, 9.703693E-03, 5.215019E-03, 4.135949E-03, 1.694197E-03, 3.304623E-03, -9.636946E-03, -1.941705E-02, -.0162302, -1.496256E-02
MD044	 0, 1.216905E-03, 3.553899E-03, 6.42794E-03, 1.044414E-02, .0141494, 1.570381E-02, 1.430489E-02, 9.911949E-03, 2.471801E-03, -7.744203E-03, -.0205029, -.035004, -4.923442E-02, -5.375018E-02, -6.194878E-02, -6.930451E-02, -7.231715E-02, -7.342762E-02, -.0735067, -7.351054E-02
MD045	 0, 1.334344E-04, 4.909116E-04, 1.109214E-03, 2.06665E-03, 2.988394E-03, 3.321729E-03, 2.447732E-03, 1.342647E-04, -3.888548E-03, -9.17358E-03, -1.339482E-02, -.0113407, 1.443641E-03, 7.725103E-03, 2.228298E-02, 4.016347E-02, 5.002468E-02, 5.436568E-02, 5.469543E-02, 5.471327E-02
MD046	 0, 1.036488E-04, 4.847267E-05, -8.681308E-05, 3.655544E-04, 1.021144E-03, 1.496423E-03, 1.556993E-03, 1.139239E-03, -1.491786E-04, -2.897729E-03, -8.163578E-03, -1.629045E-02, -2.493499E-02, -2.676185E-02, -2.664959E-02, -2.622466E-02, -2.478877E-02, -2.633574E-02, -2.656215E-02, -2.658217E-02
MD051	 0, 5.793701E-04, 5.149997E-03, 1.556264E-02, 3.925803E-02, 8.195791E-02, .1340456, .1829462, .2123529, .2008002, .1241304, -3.010968E-02, -.2512274, -.3732283, -.3737156, -.2819375, -4.773381E-03, .3712579, .7986472, .9424389, 1
MD052	 0, 1.646575E-04, 1.363483E-03, 3.577465E-03, 7.927663E-03, 1.504225E-02, 2.342006E-02, 3.199608E-02, 3.985105E-02, .0464445, 5.087328E-02, 5.066411E-02, 4.065525E-02, 9.756869E-03, -5.613714E-03, -4.451091E-02, -.1048015, -.1593413, -.2157288, -.2360363, -.2441491
MD053	 0, -1.531993E-05, 1.887602E-04, 8.255278E-05, 7.007045E-04, 2.620409E-03, 1.853705E-03, 1.340955E-03, 8.057727E-04, 6.73359E-04, 4.335234E-04, -1.166198E-04, -1.974304E-03, -1.072457E-03, -8.358071E-04, -2.369547E-04, -5.00979E-04, 3.048029E-03, 5.954443E-03, 5.106987E-03, 4.769919E-03
MD054	 0, -2.330799E-04, -6.247092E-04, -1.011015E-03, -1.509112E-03, -1.927075E-03, -2.073077E-03, -2.015374E-03, -1.777436E-03, -1.351692E-03, -5.233842E-04, 1.373038E-03, 5.131254E-03, 1.049699E-02, 1.240907E-02, 1.601238E-02, 1.923722E-02, 2.044228E-02, .0208328, 2.085811E-02, 2.085931E-02
MD055	 0, 8.31474E-04, 2.629444E-03, 5.094807E-03, 8.650791E-03, 1.196203E-02, 1.311836E-02, 1.040812E-02, 3.114929E-03, -9.702056E-03, -2.716671E-02, -4.321159E-02, -4.220772E-02, -7.760111E-03, 1.047111E-02, 5.408985E-02, .109219, .1400989, .1538381, .1548877, .1549445
MD056	 0, 1.006781E-04, -2.997781E-04, -5.169776E-04, 2.255182E-04, 4.534663E-04, -5.493616E-04, -2.920036E-03, -7.341524E-03, -.0160839, -3.196793E-02, -5.889824E-02, -.0994358, -.1462252, -.1592189, -.1644778, -.1653164, -.1613101, -.1662742, -.1669967, -.1670607
NTOWER	7
TYPE A A A A N N N
FREQ 1.7487 1.7593 10.717 12.709 18.956 18.956 47.612
DAMP .01 .01 .01 .01 .01 .01 .01
MASS 437570 432300 5.2317E+07 3.7206E+07 145690 145690 136400
STIFF 1338000 1338000 6.009E+09 6.009E+09 5.2351E+07 5.2351E+07 3.092E+08
MD011 0
MD012 0 1.70820201184881E-03 6.72532527989133E-03 9.62255832896125E-03 1.30131045691409E-02 1.68866456547498E-02 2.12328632401078E-02 2.60414389795346E-02 3.13020545273498E-02 3.70043915378735E-02 4.31381316654254E-02 4.96929565643255E-02 5.66585478888941E-02 5.66585478888941E-02 9.11310968568402E-02 .139197303888284 .201201388038645 .277371721223776 .367699966653341 .471875405340045 .589132992222731 .718036122851046 .856246895052956 1
MD013 0
MD014 0 -6.77906666364329E-04 -1.32356850247748E-03 -1.57280468445241E-03 -1.81688169358716E-03 -2.05579952988176E-03 -2.28955819333621E-03 -2.51815768395052E-03 -2.74159800172475E-03 -2.95987914665889E-03 -3.17300111875302E-03 -3.38096391800716E-03 -3.58376754442134E-03 -3.58376754442134E-03 -5.30917950861087E-03 -7.0863686010381E-03 -8.90077330306743E-03 -1.07306966803257E-02 -1.25431353385133E-02 -1.42898393143895E-02 -.015901004940902 -1.72753149111254E-02 -1.82665565878056E-02 -1.86610299684919E-02
MD015 0
MD016 0
MD021 0 1.70820201183837E-03 6.72532527985392E-03 9.62255832890992E-03 1.30131045690744E-02 1.68866456546676E-02 2.12328632400095E-02 2.60414389794201E-02 3.13020545272197E-02 .037004391537728 .043138131665265 4.96929565641508E-02 5.66585478887053E-02 5.66585478887053E-02 9.11310968566052E-02 .139197303888017 .201201388038361 .277371721223492 .367699966653071 .471875405339805 .589132992222536 .718036122850908 .856246895052885 1
MD022 0
MD023 0
MD024 0
MD025 0 6.77906666360369E-04 1.32356850247088E-03 1.57280468444512E-03 1.81688169357941E-03 2.05579952987374E-03 2.28955819332814E-03 2.51815768394255E-03 2.74159800171696E-03 2.95987914665135E-03 3.17300111874571E-03 3.38096391800008E-03 3.58376754441446E-03 3.58376754441446E-03 5.30917950860583E-03 7.08636860103497E-03 8.90077330306628E-03 1.07306966803266E-02 1.25431353385162E-02 1.42898393143943E-02 1.59010049409085E-02 1.72753149111335E-02 1.82665565878146E-02 1.86610299685013E-02
MD026 0
MD031 0
MD032 0 7.07292820658156E-02 .273909160989367 .389240602674926 .522737462853693 .673534976667378 .84076837925769 1.02357290576634 1.22108379133503 1.43243627110549 1.65676558021943 1.89320695381857 2.14089562704463 2.14089562704463 3.28179369166977 4.68538195515162 6.24548718957941 7.81754647663866 9.20455527634488 10.1406330652762 10.2671072809084 9.09966783392509 5.98168427012476 1.86610299684982E-02
MD033 0
MD034 0 -2.78413144626315E-02 -5.29802387430945E-02 -6.22791392042725E-02 -7.11456572363041E-02 -7.95797928391902E-02 -8.75815460129306E-02 -9.51509167575263E-02 -.102287905072979 -.108992510959289 -.115264734416459 -.12110457544449 -.126512034043383 -.126512034043383 -.165863862778028 -.193621293368262 -.205435054082778 -.195544005089139 -.156273395735422 -7.73573631975372E-02 5.50609976158732E-02 .259789804894816 .562803662418061 1
MD035 0
MD036 0
MD041 0 -7.07292820654314E-02 -.273909160988 -.389240602673053 -.522737462851278 -.673534976664398 -.840768379254138 -1.02357290576222 -1.22108379133037 -1.4324362711003 -1.65676558021374 -1.89320695381241 -2.14089562703801 -2.14089562703801 -3.28179369166175 -4.68538195514287 -6.24548718957058 -7.81754647663036 -9.20455527633765 -10.1406330652705 -10.2671072809044 -9.09966783392294 -5.98168427012407 -1.86610299685151E-02
MD042 0
MD043 0
MD044 0
MD045 0 -2.78413144624863E-02 -5.29802387428547E-02 -6.22791392040093E-02 -7.11456572360258E-02 -7.95797928389046E-02 -8.75815460126459E-02 -9.51509167572482E-02 -.102287905072711 -.108992510959033 -.115264734416215 -.121104575444256 -.126512034043159 -.126512034043159 -.165863862777891 -.19362129336821 -.205435054082808 -.195544005089244 -.156273395735591 -7.73573631977527E-02 5.50609976156373E-02 .259789804894599 .562803662417916 1
MD046 0
MD051 0
MD052 0 1.73366961028318E-02 6.53368810189663E-02 9.17816652514139E-02 .121798082902701 .155013468359548 .191061610847971 .229584503831041 .270234243949952 .3126750606348 .35658545804565 .401660451645796 .447613882462948 .447613882462948 .632294372946949 .806184543226664 .938144630208771 1 .970956541900951 .843139962340455 .627762295446 .361841799143007 .115351704605152 0
MD053 0
MD054 0 -6.73396510156215E-03 -1.22667270730785E-02 -1.41465838766395E-02 -1.58387651124397E-02 -1.73460881787821E-02 -1.86722045847543E-02 -1.98216795166528E-02 -2.08000618510089E-02 -.021613944855707 -2.22710178725762E-02 -2.27801093297462E-02 -2.31512214898725E-02 -2.31512214898725E-02 -2.37773389063119E-02 -2.03617982970697E-02 -1.30365504110769E-02 -2.44625951229567E-03 1.01158932705598E-02 2.26017474191221E-02 3.21314606388895E-02 3.49298422217754E-02 2.62277444545604E-02 0
MD055 0
MD056 0
MD061 0 .017336696095214 6.53368809926624E-02 9.17816652160706E-02 .121798082858113 .155013468305897 .191061610785769 .229584503761074 .270234243873204 .312675060552334 .35658545795858 .401660451555221 .447613882369877 .447613882369877 .632294372859666 .806184543166364 .938144630182481 1 .970956541914915 .843139962357399 .62776229545942 .36184179915063 .115351704607454 0
MD062 0
MD063 0
MD064 0
MD065 0 6.73396509872408E-03 1.22667270686835E-02 1.41465838720331E-02 1.58387651078327E-02 .017346088174353 1.86722045806557E-02 1.98216795130032E-02 2.08000618478807E-02 2.16139448531224E-02 2.22710178705541E-02 2.27801093282552E-02 2.31512214888577E-02 2.31512214888577E-02 2.37773389086682E-02 2.03617983013316E-02 1.30365504152062E-02 2.44625951489243E-03 -1.01158932695488E-02 -2.26017474192521E-02 -3.21314606395541E-02 -3.49298422225453E-02 -2.62277444551001E-02 0
MD066 0
MD071 0
MD072 0 -3.93384794971158E-02 -.139510624546509 -.190705398419084 -.24581516621622 -.303292135268205 -.361670470697162 -.419585346911337 -.475792304748407 -.529186461021337 -.578821157279362 -.623925681027532 -.663921745266034 -.663921745266034 -.71032315463324 -.544447953317291 -.186732846424049 .280604001990231 .725395519800029 1 .994505792435841 .698498467154469 .255823246248437 0
MD073 0
MD074 0 1.48401068074873E-02 .024352273446131 2.67080675661024E-02 2.82725647422954E-02 2.90820920646758E-02 2.91823460523981E-02 .028628664662957 2.74860637346294E-02 2.58290562851968E-02 2.37412762991907E-02 .02131493178655 1.86501149222111E-02 1.86501149222111E-02 -7.48470179864662E-03 -.034851702844592 -5.55669764186711E-02 -6.19691379773931E-02 -4.93749242327531E-02 -1.88914721711936E-02 2.06714241867499E-02 5.26314406621717E-02 5.43494709684717E-02 0
MD075 0
MD076 0
MEND

		
	

 Position
 false

 cdecl

 Continuous
 0

 false

 true
 -0.13962632270625383
 0.13962632270625383
 false
 0
 0

 6.2831853071795862
 0.7

 0.3

 false

 0
 0

 false

 0
 0

 0
 false

 false
 0
 0
 0
 0
 0

 0
 0

 false
 false
 true
 false

 false

 Constant
 0

 false

 0
 0
 {{0} {0}}

Project Name NREL_5MW_19Aug14

Date 19/08/2014

Engineer Charles Plumley

Notes UpWind/NREL 5-MW wind turbine, with blade trailing edge flaps,

and pitch bearing friction

Version 4.5

Project file d:\users\rgb10163\dropbox\phd

work\bladedprojects\nrel_5mw_sandia_flap08_19aug14.prj

DTBLADED.EXESpecial data MSTART EXTRA

 PitchAndAileron 1

 Angle 0

 AileronActuator 1

 Aileron_NUMORD 2

 Aileron_NUM 0 0 39.478417604357432

 Aileron_DENORD 2

 Aileron_DEN 1.0000 8.796459430051421 39.478417604357432

 MEND

GENERAL CHARACTERISTICS OF ROTOR AND TURBINE

Rotor diameter 126 m

Number of blades 3

Teeter hinge No

Hub height 90 m

Offset of hub to side of tower centre 0 m

Tower height 87.6 m

Tilt angle of rotor to horizontal 5 deg

Cone angle of rotor -2.5 deg

Blade set angle 0 deg

Rotor overhang 5 m

Rotational sense of rotor, viewed from upwind Clockwise

Position of rotor relative to tower Upwind

Transmission Gearbox

Aerodynamic control surfaces Aileron

Fixed / Variable speed Variable

Diameter of spinner 3 m

Radial position of root station 1.5 m

Extension piece diameter 3.5 m

Extension piece drag coefficient 1

Cut in windspeed 4 m/s

Cut out windspeed 25 m/s

BLADE GEOMETRY

Blade length 61.5881 m

Pre-bend at tip 0 m

Pitch control Partial span

Distance

along

blade

(m)

Distance

along

pitch

axis (m)

Chord

(m)

Aerodynamic

Twist (deg)

Thickness

(%)

Neutral

axis (x)

(m)

Neutral

axis (y)

(m)

Neutral

axis,

local (x)

(%)

Neutral

axis,

local (y)

(%)

0 0 3.5 13.308 100 0.201275 -0.024076 0 49.983

1.36834 1.3667 3.542 13.308 100 0.219046 0.040554 0 51.8664

4.11654 4.1 3.854 13.308 90 0.170876 -0.241092 0 44.2616

6.85542 6.8333 4.167 13.308 70 0.161659 -0.066621 0 41.8538

10.2746 10.25 4.557 13.308 40 0.092825 -0.177191 0 33.8493

14.4028 14.35 4.652 11.48 35 -0.013259 -0.646789 0 23.5679

18.5071 18.45 4.458 10.162 35 0.017229 -0.461129 0 27.1905

22.6098 22.55 4.249 9.011 30 0.034425 -0.314045 0 30.1728

26.715 26.65 4.007 7.795 25 0.053857 -0.107451 0 34.91

30.8157 30.75 3.748 6.544 25 0.050109 -0.031679 0 36.7312

34.9158 34.85 3.502 5.361 21 0.035967 -0.054473 0 35.9926

39.0163 38.95 3.256 4.188 21 0.021425 -0.114415 0 34.0101

43.1254 43.05 3.01 3.125 18 -6.391E-04 -0.387957 0 24.6105

47.2268 47.15 2.764 2.319 18 0.002608 -0.281107 0 27.3316

48.587 48.51 2.68233 2.05575 18 0.002597 -0.260168 0 27.8332

48.587 48.51 2.68233 2.05575 18 0.002597 -0.260168 0 27.8332

51.3273 51.25 2.518 1.526 18 0.002577 -0.218033 0 28.8424

54.7441 54.6667 2.313 0.863 18 7.167E-04 -0.241545 0 27.0573

57.4834 57.4 2.086 0.37 18 0.001299 -0.059672 0 34.6396

60.22 60.1333 1.419 0.106 18 4.667E-04 0.074907 0 42.7789

61.1977 61.11 0.546787 0.030155 18 1.328E-04 0.031784 0 44.2386

61.1977 61.11 0.546787 0.030155 18 1.328E-04 0.031784 0 44.2386

61.5881 61.5 0.2 0 18 0 0.014638 0 44.819

Distance along blade (m) Aerofoil section Aerodynamic control

0 1 Fixed

1.36834 1 Fixed

4.11654 1 Fixed

6.85542 2 Fixed

10.2746 3 Fixed

14.4028 4 Fixed

18.5071 4 Fixed

22.6098 5 Fixed

26.715 6 Fixed

30.8157 6 Fixed

34.9158 7 Fixed

39.0163 7 Fixed

43.1254 8 Fixed

47.2268 8 Fixed

48.587 8 Fixed

48.587 9 Moving

51.3273 9 Moving

54.7441 9 Moving

57.4834 9 Moving

60.22 9 Moving

61.1977 9 Moving

61.1977 8 Fixed

61.5881 8 Fixed

BLADE MASS DISTRIBUTION

Centre of

mass (x) (%)

Centre of

mass (y) (%)

Mass/unit

length (kg/m)

Polar intertia/unit

length (kgm)

Radii of

gyration ratio

Mass axis

orientation (deg)

0 49.983 713.832 1394.03 1 13.308

0 51.8664 806.389 1493.8 1 13.308

0 44.2616 634.978 742.05 0.9 13.308

0 41.8538 429.498 334.143 0.7 13.308

0 33.8493 446.471 193.71 0.4 13.308

0 23.5679 368.837 71.8003 0.35 11.48

0 27.1905 354.802 44.579 0.35 10.162

0 30.1728 335.998 26.4032 0.3 9.011

0 34.91 307.507 12.2464 0.25 7.795

0 36.7312 273.303 4.76393 0.25 6.544

0 35.9926 246.543 1.8123 0.21 5.361

0 34.0101 201.971 0.75633 0.21 4.188

0 24.6105 168.536 0.580504 0.18 3.125

0 27.3316 141.162 0.33253 0.18 2.319

0 27.8332 130.134 0.33253 0.18 2.05575

0 27.8332 130.134 0.33253 0.18 2.05575

0 28.8424 107.943 0.09425 0.18 1.526

0 27.0573 91.1978 0.1 0.18 0.863

0 34.6396 71.1482 0.06 0.18 0.37

0 42.7789 48.5651 0.001332 0.18 0.106

0 44.2386 21.5678 0.192386 0.18 0.030155

0 44.2386 21.5678 0.192386 0.18 0.030155

0 44.819 10.8339 1.E-05 0.18 0

Blade 1 Mass Integrals (No ice)

Blade Mass 17731.9 kg

First Mass Moment 363501 kgm

Second Mass Moment 1.177E+07 kgm²

Blade inertia about shaft 1.29E+07 kgm²

BLADE STIFFNESS DISTRIBUTION

Bending

Stiffness about

yp (Nm²)

Bending

Stiffness about

xp (Nm²)

Principal Axis

Orientation

(deg)

Torsional

stiffness (Nm²)

Shear centre

(x) (%)

Shear centre

(y) (%)

1.811E+10 1.811E+10 13.308 5.564E+09 0 50.041

1.91E+10 1.955E+10 13.308 5.359E+09 0 52.205

1.123E+10 1.535E+10 13.308 3.594E+09 0 45.307

5.815E+09 8.46E+09 13.308 1.694E+09 0 39.024

4.654E+09 7.173E+09 13.308 8.467E+08 0 38.061

2.542E+09 5.034E+09 11.48 3.322E+08 0 38.08

2.022E+09 4.469E+09 10.162 2.57E+08 0 38.142

1.549E+09 3.953E+09 9.011 1.961E+08 0 38.138

1.051E+09 3.378E+09 7.795 1.39E+08 0 38.079

6.41E+08 2.685E+09 6.544 7.786E+07 0 38.508

3.782E+08 2.17E+09 5.361 5.37E+07 0 39.119

2.151E+08 1.486E+09 4.188 3.278E+07 0 41.263

1.18E+08 1.114E+09 3.125 1.99E+07 0 41.281

8.396E+07 7.559E+08 2.319 1.545E+07 0 42.3045

7.434E+07 6.659E+08 2.05575 1.316E+07 0 42.9982

7.434E+07 6.659E+08 2.05575 1.316E+07 0 42.9982

5.498E+07 4.849E+08 1.526 8.54E+06 0 44.394

3.717E+07 3.758E+08 0.863 6.618E+06 0 41.76

2.545E+07 2.735E+08 0.37 5.174E+06 0 42.542

7.887E+06 8.728E+07 0.106 2.233E+06 0 33

2.365E+06 2.841E+07 0.030155 771202 0 33

2.365E+06 2.841E+07 0.030155 771202 0 33

170000 5.01E+06 0 190000 0 33

HUB MASS AND INERTIA

Mass of hub 56780 kg

Mass centre of hub 0 m

Hub inertia: about shaft 115926 kgm²

 perpendicular to shaft 0 kgm²

Total Rotor Mass 109976 kg

Total Rotor Inertia 3.877E+07 kgm²

TOWER DETAILS

Station Number Height (m) Diameter (m) Mass/unit length

(kg/m)

Stiffness (Nm²)

1 -20 6 9517.14 1.037E+12

2 -15 6 9517.14 1.037E+12

3 -10 6 9517.14 1.037E+12

4 -8 6 9517.14 1.037E+12

5 -6 6 9517.14 1.037E+12

6 -4 6 9517.14 1.037E+12

7 -2 6 9517.14 1.037E+12

8 0 6 9517.14 1.037E+12

9 2 6 9517.14 1.037E+12

10 4 6 9517.14 1.037E+12

11 6 6 9517.14 1.037E+12

12 8 6 9517.14 1.037E+12

13 10 6 9517.14 1.037E+12

14 10 6 4306.51 4.745E+11

15 17.7611 5.787 4030.44 4.131E+11

16 25.5213 5.574 3763.45 3.578E+11

17 33.2803 5.361 3505.52 3.083E+11

18 41.0404 5.148 3256.66 2.641E+11

19 48.8005 4.935 3016.86 2.248E+11

20 56.5606 4.722 2786.13 1.901E+11

21 64.3207 4.509 2564.46 1.595E+11

22 72.0798 4.296 2351.87 1.328E+11

23 79.8399 4.083 2148.34 1.095E+11

24 87.6 3.87 1953.87 8.949E+10

Total Tower Mass 522614 kg

Total Turbine Mass 872590 kg

Drag coefficient for tower 0.6

Environment Offshore

Mean sea depth 20 m

Marine growth density 0 kg/m³

Hydrodynamic drag coefficient 1

Hydrodynamic mass coefficient 2

No movement of tower foundation

Tower base translational motion? No

Tower base rotational motion? No

NACELLE MASS

Nacelle mass 240000 kg

Nacelle centre of mass lateral offset 0 m

Nacelle centre of mass above tower top 1.75 m

Nacelle centre of mass in front of tower axis -1.9 m

Yaw inertia (about tower axis) 2.608E+06 kgm²

Nodding inertia (about CoG) 0 kgm²

Rolling inertia (about CoG) 0 kgm²

Total Tower-head Mass 349976 kg

Total Yaw Inertia: 0° azimuth 2.474E+07 kgm²

Total Yaw Inertia: 90° azimuth 2.474E+07 kgm²

DRIVE TRAIN

Gearbox ratio 97

Position of shaft brake High speed shaft (Gearbox End)

Generator inertia 534.116 kgm²

High speed shaft inertia: 0 kgm²

Gearbox inertia 0 kgm²

Low speed shaft Flexible

High speed shaft Stiff

GENERATOR CHARACTERISTICS

Generator model Variable Speed

Power electronics time constant 0 s

Maximum generator torque 100000 Nm

Minimum generator torque 0 Nm

Phase Angle 0 deg

ELECTRICAL LOSSES

No load power loss 0 kW

Efficiency 94.4 %

POWER PRODUCTION CONTROL

Variable Speed Pitch Regulated Controller Dynamic

Minimum generator speed 668.451 rpm

Optimal mode quadratic speed-torque gain 2.14188 Nms²/rad²

Optimal mode maximum generator speed 1173.7 rpm

Generator torque set point 43093.6 Nm

Above-rated generator speed set-point 1173.7 rpm

Minimum pitch angle 0 deg

Maximum pitch angle 90 deg

Pitch direction to Feather

Speed transducer time constant 0 s

Power transducer time constant 0 s

Maximum negative pitch rate -20 deg/s

Maximum positive pitch rate 20 deg/s

Torque controller Discrete

Pitch controller Discrete

Discrete Controller: d:\users\rgb10163\dropbox\phd work\visual studio 2010\projects\nrel 5mw

external control\debug\nrel 5mw external control.dll

Communication interval 0.01 s

Maximum logging variables 70

Power production control: Pitch,

 Torque,

 Yaw

External Controller data:

// FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

// flag for external Bladed data logging

DataLog_on = true;

// flag for torque controller

VSConstP_on = true; // Flag to indicate whether constant power (true) or torque (false) above rated

//flag for torsional vibration filter in torque control

FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

//flags for pitch controller

PCI_on = true; // Flag to indicate whether the pitch interaction with the torque

control is on

PCFA_on = true; //Flag to indicate whether the pitch notch filter A is on

PCFB_on = true; //Flag to indicate whether the pitch notch filter B is on

PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

//flags for supplementary control

PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with

speed control

Sup_FreqCutOff = #1.95; // Value for splitting the pitch signal using filters

//flags for individual pitch control

IPC_on = false; // Flag to indicate whether dq-axis Individual Pitch Control (IPC) is

on

IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

IPCB_on = false; // Flag to indicate whether Independent blade pitch control (IPCB)

is on

IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

//flag for tower vibration damping using pitch control

TVD_on = true; // Flag to indicate whether the tower vibration damping is on

TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration

damping is on

TVD_Smart_xHat = #1; // Ratio of pitch to smart rotor control for tower vibration damping

//flag for non-linear pitch term for gusts

NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

//pitch to flap angle gain factor

SRC_Pitch2Flap = #4.15; // Gain to convert from pitch to flap angle demand

//flags for Smart Rotor dq-axis control

SRC_on = true; // Flag to indicate whether smart rotor control is active

SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is

on

SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

//flag for Smart Rotor distributed control

SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

//flag for flap faults

SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

SRC_jamAngle = #20; // Angle at which flap 1 is jammed

SRC_jamTime = #00; // Time at which flap 1 is jammed

SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

SRC_autoFRF1_on = false; // Flag to indicate whether auto fault ride-through version 1 is operational

SRC_autoFRF2_on = false; // Flag to indicate whether auto fault ride-through version 2 is operational

SRC_faultRF1_on = false; // Flag to indicate whether fault ride-through version 1 has been triggered

SRC_faultRF2_on = false; // Flag to indicate whether fault ride-through version 2 has been triggered

SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of

flap angle is disabled

//flags for fixed flap angle

FA_on = false; // Flag to indicate whether fixed flap angle

FA_aileronAngle = #-5; // Value for fixed flap angle

//debugging preferences

PC_DbgOut = false; // Flag to indicate whether to output pitch control debugging

VS_DbgOut = false; // Flag to indicate whether to output torque control debugging

PITCH ACTUATOR

Input Demand

Input Demand Position

Setpoint Trajectory Planning SetpointTrajectoryPlanning

Setpoint Trajectory Planning - Rate Limits True

Setpoint Trajectory Planning - Minimum -7.999999 deg/s

Setpoint Trajectory Planning - Maximum 7.999999 deg/s

Setpoint Trajectory Planning - Acceleration Limits False

Setpoint Trajectory Planning - Minimum 0 deg/s²

Setpoint Trajectory Planning - Maximum 0 deg/s²

Individual Pitch Control True

External

External DLL False

Track External Hardware False

Actuator dynamic response

Response to Position Demand 2nd order passive

Response to Position Demand - Frequency (f) 1 Hz

Response to Position Demand - Damping factor (?) 0.7 -

Position Limits

Limit Switches False

End Stops False

Actuator Details

Bearing Friction True

Friction Model Friction

Friction Model - Use look-up tables False

Coulomb Friction

Friction Model - Constant Friction 0 Nm

Friction Model - + friction per bending moment (Nm per Nm

bending moment)

0.0132

Friction Model - + friction per radial force (Nm per N radial

force)

0.045957

Friction Model - + friction per axial force (Nm per N axial

force (along blade))

0.012075

Friction Model - + friction per rate (Nm per deg/s rate) 0

Stiction

Friction Model - Constant additional 'Stiction' 0 Nm

Friction Model - + stiction per kinetic friction (Nm per Nm

friction)

0

Actuator Drive Details None

Single Actuator Pitch System False

Safety System Definition Rate Demand

Safety System Definition - Actuator Torque/Force Limits None

Safety System Definition - Rate calculated according to Constant rate

Safety System Definition - Rate Demand 0 deg/s

Blade modes

Frequency (Hz) Damping ratio Modal mass Modal stiffness Mode

0.681232 0.004775 895.24 16402 Flapwise normal

mode

1.08334 0.004775 1459.7 67633 Edgewise normal

mode

1.97145 0.004775 567.15 87017 Flapwise normal

mode

4.02153 0.004775 797.53 509220 Edgewise normal

mode

4.52382 0.004775 488.26 394460 Flapwise normal

mode

Tower modes

Rotor azimuth angle 0 deg

Mode Frequency

(Hz)

Damping

factor

Modal mass Modal stiffness

Mode 1 0.278 0.0100 437570.0000 1338000.0000

Mode 2 0.280 0.0100 432300.0000 1338000.0000

Mode 3 1.706 0.0100 52314000.0000 6009000000.0000

Mode 4 2.023 0.0100 37204000.0000 6009000000.0000

Mode 5 3.017 0.0100 145690.0000 52351000.0000

Mode 6 3.017 0.0100 145690.0000 52351000.0000

Mode 7 7.578 0.0100 136400.0000 309200000.0000

Tower modal deflections and rotations: Mode 1: 0.278 Hz

Node X def Y def Z def X rot Y rot Z rot

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.002 0.000 -0.001 0.000 0.000

3 0.000 0.007 0.000 -0.001 0.000 0.000

4 0.000 0.010 0.000 -0.002 0.000 0.000

5 0.000 0.013 0.000 -0.002 0.000 0.000

6 0.000 0.017 0.000 -0.002 0.000 0.000

7 0.000 0.021 0.000 -0.002 0.000 0.000

8 0.000 0.026 0.000 -0.003 0.000 0.000

9 0.000 0.031 0.000 -0.003 0.000 0.000

10 0.000 0.037 0.000 -0.003 0.000 0.000

11 0.000 0.043 0.000 -0.003 0.000 0.000

12 0.000 0.050 0.000 -0.003 0.000 0.000

13 0.000 0.057 0.000 -0.004 0.000 0.000

14 0.000 0.057 0.000 -0.004 0.000 0.000

15 0.000 0.091 0.000 -0.005 0.000 0.000

16 0.000 0.139 0.000 -0.007 0.000 0.000

17 0.000 0.201 0.000 -0.009 0.000 0.000

18 0.000 0.277 0.000 -0.011 0.000 0.000

19 0.000 0.368 0.000 -0.013 0.000 0.000

20 0.000 0.472 0.000 -0.014 0.000 0.000

21 0.000 0.589 0.000 -0.016 0.000 0.000

22 0.000 0.718 0.000 -0.017 0.000 0.000

23 0.000 0.856 0.000 -0.018 0.000 0.000

24 0.000 1.000 0.000 -0.019 0.000 0.000

Tower modal deflections and rotations: Mode 2: 0.280 Hz

Node X def Y def Z def X rot Y rot Z rot

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.002 0.000 0.000 0.000 0.001 0.000

3 0.007 0.000 0.000 0.000 0.001 0.000

4 0.010 0.000 0.000 0.000 0.002 0.000

5 0.013 0.000 0.000 0.000 0.002 0.000

6 0.017 0.000 0.000 0.000 0.002 0.000

7 0.021 0.000 0.000 0.000 0.002 0.000

8 0.026 0.000 0.000 0.000 0.003 0.000

9 0.031 0.000 0.000 0.000 0.003 0.000

10 0.037 0.000 0.000 0.000 0.003 0.000

11 0.043 0.000 0.000 0.000 0.003 0.000

12 0.050 0.000 0.000 0.000 0.003 0.000

13 0.057 0.000 0.000 0.000 0.004 0.000

14 0.057 0.000 0.000 0.000 0.004 0.000

15 0.091 0.000 0.000 0.000 0.005 0.000

16 0.139 0.000 0.000 0.000 0.007 0.000

17 0.201 0.000 0.000 0.000 0.009 0.000

18 0.277 0.000 0.000 0.000 0.011 0.000

19 0.368 0.000 0.000 0.000 0.013 0.000

20 0.472 0.000 0.000 0.000 0.014 0.000

21 0.589 0.000 0.000 0.000 0.016 0.000

22 0.718 0.000 0.000 0.000 0.017 0.000

23 0.856 0.000 0.000 0.000 0.018 0.000

24 1.000 0.000 0.000 0.000 0.019 0.000

Tower modal deflections and rotations: Mode 3: 1.706 Hz

Node X def Y def Z def X rot Y rot Z rot

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.071 0.000 -0.028 0.000 0.000

3 0.000 0.274 0.000 -0.053 0.000 0.000

4 0.000 0.389 0.000 -0.062 0.000 0.000

5 0.000 0.523 0.000 -0.071 0.000 0.000

6 0.000 0.674 0.000 -0.080 0.000 0.000

7 0.000 0.841 0.000 -0.088 0.000 0.000

8 0.000 1.024 0.000 -0.095 0.000 0.000

9 0.000 1.221 0.000 -0.102 0.000 0.000

10 0.000 1.432 0.000 -0.109 0.000 0.000

11 0.000 1.657 0.000 -0.115 0.000 0.000

12 0.000 1.893 0.000 -0.121 0.000 0.000

13 0.000 2.141 0.000 -0.127 0.000 0.000

14 0.000 2.141 0.000 -0.127 0.000 0.000

15 0.000 3.282 0.000 -0.166 0.000 0.000

16 0.000 4.685 0.000 -0.194 0.000 0.000

17 0.000 6.245 0.000 -0.205 0.000 0.000

18 0.000 7.818 0.000 -0.196 0.000 0.000

19 0.000 9.205 0.000 -0.156 0.000 0.000

20 0.000 10.141 0.000 -0.077 0.000 0.000

21 0.000 10.267 0.000 0.055 0.000 0.000

22 0.000 9.100 0.000 0.260 0.000 0.000

23 0.000 5.982 0.000 0.563 0.000 0.000

24 0.000 0.019 0.000 1.000 0.000 0.000

Tower modal deflections and rotations: Mode 4: 2.023 Hz

Node X def Y def Z def X rot Y rot Z rot

1 0.000 0.000 0.000 0.000 0.000 0.000

2 -0.071 0.000 0.000 0.000 -0.028 0.000

3 -0.274 0.000 0.000 0.000 -0.053 0.000

4 -0.389 0.000 0.000 0.000 -0.062 0.000

5 -0.523 0.000 0.000 0.000 -0.071 0.000

6 -0.674 0.000 0.000 0.000 -0.080 0.000

7 -0.841 0.000 0.000 0.000 -0.088 0.000

8 -1.024 0.000 0.000 0.000 -0.095 0.000

9 -1.221 0.000 0.000 0.000 -0.102 0.000

10 -1.432 0.000 0.000 0.000 -0.109 0.000

11 -1.657 0.000 0.000 0.000 -0.115 0.000

12 -1.893 0.000 0.000 0.000 -0.121 0.000

13 -2.141 0.000 0.000 0.000 -0.127 0.000

14 -2.141 0.000 0.000 0.000 -0.127 0.000

15 -3.282 0.000 0.000 0.000 -0.166 0.000

16 -4.685 0.000 0.000 0.000 -0.194 0.000

17 -6.245 0.000 0.000 0.000 -0.205 0.000

18 -7.818 0.000 0.000 0.000 -0.196 0.000

19 -9.205 0.000 0.000 0.000 -0.156 0.000

20 -10.141 0.000 0.000 0.000 -0.077 0.000

21 -10.267 0.000 0.000 0.000 0.055 0.000

22 -9.100 0.000 0.000 0.000 0.260 0.000

23 -5.982 0.000 0.000 0.000 0.563 0.000

24 -0.019 0.000 0.000 0.000 1.000 0.000

Tower modal deflections and rotations: Mode 5: 3.017 Hz

Node X def Y def Z def X rot Y rot Z rot

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.017 0.000 -0.007 0.000 0.000

3 0.000 0.065 0.000 -0.012 0.000 0.000

4 0.000 0.092 0.000 -0.014 0.000 0.000

5 0.000 0.122 0.000 -0.016 0.000 0.000

6 0.000 0.155 0.000 -0.017 0.000 0.000

7 0.000 0.191 0.000 -0.019 0.000 0.000

8 0.000 0.230 0.000 -0.020 0.000 0.000

9 0.000 0.270 0.000 -0.021 0.000 0.000

10 0.000 0.313 0.000 -0.022 0.000 0.000

11 0.000 0.357 0.000 -0.022 0.000 0.000

12 0.000 0.402 0.000 -0.023 0.000 0.000

13 0.000 0.448 0.000 -0.023 0.000 0.000

14 0.000 0.448 0.000 -0.023 0.000 0.000

15 0.000 0.632 0.000 -0.024 0.000 0.000

16 0.000 0.806 0.000 -0.020 0.000 0.000

17 0.000 0.938 0.000 -0.013 0.000 0.000

18 0.000 1.000 0.000 -0.002 0.000 0.000

19 0.000 0.971 0.000 0.010 0.000 0.000

20 0.000 0.843 0.000 0.023 0.000 0.000

21 0.000 0.628 0.000 0.032 0.000 0.000

22 0.000 0.362 0.000 0.035 0.000 0.000

23 0.000 0.115 0.000 0.026 0.000 0.000

24 0.000 0.000 0.000 0.000 0.000 0.000

Tower modal deflections and rotations: Mode 6: 3.017 Hz

Node X def Y def Z def X rot Y rot Z rot

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.017 0.000 0.000 0.000 0.007 0.000

3 0.065 0.000 0.000 0.000 0.012 0.000

4 0.092 0.000 0.000 0.000 0.014 0.000

5 0.122 0.000 0.000 0.000 0.016 0.000

6 0.155 0.000 0.000 0.000 0.017 0.000

7 0.191 0.000 0.000 0.000 0.019 0.000

8 0.230 0.000 0.000 0.000 0.020 0.000

9 0.270 0.000 0.000 0.000 0.021 0.000

10 0.313 0.000 0.000 0.000 0.022 0.000

11 0.357 0.000 0.000 0.000 0.022 0.000

12 0.402 0.000 0.000 0.000 0.023 0.000

13 0.448 0.000 0.000 0.000 0.023 0.000

14 0.448 0.000 0.000 0.000 0.023 0.000

15 0.632 0.000 0.000 0.000 0.024 0.000

16 0.806 0.000 0.000 0.000 0.020 0.000

17 0.938 0.000 0.000 0.000 0.013 0.000

18 1.000 0.000 0.000 0.000 0.002 0.000

19 0.971 0.000 0.000 0.000 -0.010 0.000

20 0.843 0.000 0.000 0.000 -0.023 0.000

21 0.628 0.000 0.000 0.000 -0.032 0.000

22 0.362 0.000 0.000 0.000 -0.035 0.000

23 0.115 0.000 0.000 0.000 -0.026 0.000

24 0.000 0.000 0.000 0.000 0.000 0.000

Tower modal deflections and rotations: Mode 7: 7.578 Hz

Node X def Y def Z def X rot Y rot Z rot

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 -0.039 0.000 0.015 0.000 0.000

3 0.000 -0.140 0.000 0.024 0.000 0.000

4 0.000 -0.191 0.000 0.027 0.000 0.000

5 0.000 -0.246 0.000 0.028 0.000 0.000

6 0.000 -0.303 0.000 0.029 0.000 0.000

7 0.000 -0.362 0.000 0.029 0.000 0.000

8 0.000 -0.420 0.000 0.029 0.000 0.000

9 0.000 -0.476 0.000 0.027 0.000 0.000

10 0.000 -0.529 0.000 0.026 0.000 0.000

11 0.000 -0.579 0.000 0.024 0.000 0.000

12 0.000 -0.624 0.000 0.021 0.000 0.000

13 0.000 -0.664 0.000 0.019 0.000 0.000

14 0.000 -0.664 0.000 0.019 0.000 0.000

15 0.000 -0.710 0.000 -0.007 0.000 0.000

16 0.000 -0.544 0.000 -0.035 0.000 0.000

17 0.000 -0.187 0.000 -0.056 0.000 0.000

18 0.000 0.281 0.000 -0.062 0.000 0.000

19 0.000 0.725 0.000 -0.049 0.000 0.000

20 0.000 1.000 0.000 -0.019 0.000 0.000

21 0.000 0.995 0.000 0.021 0.000 0.000

22 0.000 0.698 0.000 0.053 0.000 0.000

23 0.000 0.256 0.000 0.054 0.000 0.000

24 0.000 0.000 0.000 0.000 0.000 0.000

TOWER SHADOW

Tower shadow model Potential Flow

Fraction of tower diameter to use 1.2

VERTICAL WIND SHEAR

Wind shear model Exponential

Wind shear exponent 0.2

Vertical Direction Shear 0 deg/m

Project file d:\users\rgb10163\dropbox\phd

work\bladedprojects\nrel_5mw_sandia_flap08_19aug14.prj

DTBLADED.EXESpecial

data

MSTART EXTRA

 PitchAndAileron 1

 Angle 0

 AileronActuator 1

 Aileron_NUMORD 2

 Aileron_NUM 0 0 39.478417604357432

 Aileron_DENORD 2

 Aileron_DEN 1.0000 8.796459430051421 39.478417604357432

 MEND

AEROFOIL DATA

Aerofoil Section reference 1: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to Cylinder1_cor

chord ratio

Aerofoil Section reference 2: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to Cylinder2_cor

chord ratio

Aerofoil Section reference 3: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to DU40_A17_cor

chord ratio

Aerofoil Section reference 4: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to DU35_A17_cor

chord ratio

Aerofoil Section reference 5: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to DU30_A17_cor

chord ratio

Aerofoil Section reference 6: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to DU25_A17_cor

chord ratio

Aerofoil Section reference 7: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to DU21_A17_cor

chord ratio

Aerofoil Section reference 8: Aerofoil datasets used for interpolation

Reynolds Number

Thickness to NACA64_A17_cor

chord ratio

Aerofoil Section reference 9: Aerofoil datasets used for interpolation

Deployment angle (deg) Aerofoil Dataset

-22 SandFlap_n22

-18 SandFlap_n18

-14 SandFlap_n14

-12 SandFlap_n12

-10 SandFlap_n10

-8 SandFlap_n08

-6 SandFlap_n06

-4 SandFlap_n04

-2 SandFlap_n02

 0 SandFlap_00

 2 SandFlap_p02

 4 SandFlap_p04

 6 SandFlap_p06

 8 SandFlap_p08

 10 SandFlap_p10

 12 SandFlap_p12

 14 SandFlap_p14

 18 SandFlap_p18

 22 SandFlap_p22

Aerofoil dataset: Cylinder1_cor

Description

Last changed 01-23-2008@15:42:49

Percentage thickness 100 %

Reynolds number 7.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.5 0

0 0 0.5 0

180 0 0.5 0

Aerofoil dataset: Cylinder2_cor

Description

Last changed 01-23-2008@15:43:25

Percentage thickness 70 %

Reynolds number 7.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.35 0

0 0 0.35 0

180 0 0.35 0

Aerofoil dataset: DU40_A17_cor

Description

Last changed 01-23-2008@15:41:33

Percentage thickness 40 %

Reynolds number 7.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.0602 0

-175 0.218 0.0699 0.0934

-170 0.397 0.1107 0.1697

-160 0.642 0.3045 0.2813

-155 0.715 0.4179 0.3208

-150 0.757 0.5355 0.3516

-145 0.772 0.6535 0.3752

-140 0.762 0.7685 0.3926

-135 0.731 0.8777 0.4048

-130 0.68 0.9788 0.4126

-125 0.613 1.07 0.4166

-120 0.532 1.1499 0.4176

-115 0.439 1.2174 0.4158

-110 0.337 1.2716 0.4117

-105 0.228 1.3118 0.4057

-100 0.114 1.3378 0.3979

-95 -0.002 1.3492 0.3887

-90 -0.12 1.346 0.3781

-85 -0.236 1.3283 0.3663

-80 -0.349 1.2964 0.3534

-75 -0.456 1.2507 0.3394

-70 -0.557 1.1918 0.3244

-65 -0.647 1.1204 0.3084

-60 -0.727 1.0376 0.2914

-55 -0.792 0.9446 0.2733

-50 -0.842 0.8429 0.2543

-45 -0.874 0.7345 0.2342

-40 -0.886 0.6215 0.2129

-35 -0.875 0.5067 0.1906

-30 -0.839 0.3932 0.167

-25 -0.777 0.2849 0.1422

-24 -0.761 0.2642 0.1371

-23 -0.744 0.244 0.132

-22 -0.725 0.2242 0.1268

-21 -0.706 0.2049 0.1215

-20 -0.685 0.1861 0.1162

-19 -0.662 0.1687 0.1097

-18 -0.635 0.1533 0.1012

-17 -0.605 0.1398 0.0907

-16 -0.571 0.1281 0.0784

-15 -0.534 0.1183 0.0646

-14 -0.494 0.1101 0.0494

-13 -0.452 0.1036 0.033

-12 -0.407 0.0986 0.0156

-11 -0.36 0.0951 -0.0026

-10 -0.311 0.0931 -0.0213

-8 -0.208 0.093 -0.06

-6 -0.111 0.0689 -0.05

-5.5 -0.09 0.0614 -0.0516

-5 -0.072 0.0547 -0.0532

-4.5 -0.065 0.048 -0.0538

-4 -0.054 0.0411 -0.0544

-3.5 -0.017 0.0349 -0.0554

-3 0.003 0.0299 -0.0558

-2.5 0.014 0.0255 -0.0555

-2 0.009 0.0198 -0.0534

-1.5 0.004 0.0164 -0.0442

-1 0.036 0.0147 -0.0469

-0.5 0.073 0.0137 -0.0522

0 0.137 0.0113 -0.0573

0.5 0.213 0.0114 -0.0644

1 0.292 0.0118 -0.0718

1.5 0.369 0.0122 -0.0783

2 0.444 0.0124 -0.0835

2.5 0.514 0.0124 -0.0866

3 0.58 0.0123 -0.0887

3.5 0.645 0.012 -0.09

4 0.71 0.0119 -0.0914

4.5 0.776 0.0122 -0.0933

5 0.841 0.0125 -0.0947

5.5 0.904 0.0129 -0.0957

6 0.967 0.0135 -0.0967

6.5 1.027 0.0144 -0.0973

7 1.084 0.0158 -0.0972

7.5 1.14 0.0174 -0.0972

8 1.193 0.0198 -0.0968

8.5 1.242 0.0231 -0.0958

9 1.287 0.0275 -0.0948

9.5 1.333 0.0323 -0.0942

10 1.368 0.0393 -0.0926

10.5 1.4 0.0475 -0.0908

11 1.425 0.058 -0.089

11.5 1.449 0.0691 -0.0877

12 1.473 0.0816 -0.087

12.5 1.494 0.0973 -0.087

13 1.513 0.1129 -0.0876

13.5 1.538 0.1288 -0.0886

14.5 1.587 0.165 -0.0917

15 1.614 0.1845 -0.0939

15.5 1.631 0.2052 -0.0966

16 1.649 0.225 -0.0996

16.5 1.666 0.2467 -0.1031

17 1.681 0.2684 -0.1069

17.5 1.699 0.29 -0.111

18 1.719 0.3121 -0.1157

19 1.751 0.3554 -0.1242

19.5 1.767 0.3783 -0.1291

20.5 1.798 0.4212 -0.1384

21 1.81 0.4415 -0.1416

22 1.83 0.483 -0.1479

23 1.847 0.5257 -0.1542

24 1.861 0.5694 -0.1603

25 1.872 0.6141 -0.1664

26 1.881 0.6593 -0.1724

28 1.894 0.7513 -0.1841

30 1.904 0.8441 -0.1954

32 1.915 0.9364 -0.2063

35 1.929 1.0722 -0.222

40 1.903 1.2873 -0.2468

45 1.82 1.4796 -0.2701

50 1.69 1.6401 -0.2921

55 1.522 1.7609 -0.3127

60 1.323 1.836 -0.3321

65 1.106 1.8614 -0.3502

70 0.88 1.8347 -0.3672

75 0.658 1.7567 -0.383

80 0.449 1.6334 -0.3977

85 0.267 1.4847 -0.4112

90 0.124 1.3879 -0.4234

95 0.002 1.3912 -0.4343

100 -0.118 1.3795 -0.4437

105 -0.235 1.3528 -0.4514

110 -0.348 1.3114 -0.4573

115 -0.453 1.2557 -0.461

120 -0.549 1.1864 -0.4623

125 -0.633 1.1041 -0.4606

130 -0.702 1.0102 -0.4554

135 -0.754 0.906 -0.4462

140 -0.787 0.7935 -0.4323

145 -0.797 0.675 -0.4127

150 -0.782 0.5532 -0.3863

155 -0.739 0.4318 -0.3521

160 -0.664 0.3147 -0.3085

170 -0.41 0.1144 -0.1858

175 -0.226 0.0702 -0.1022

180 0 0.0602 0

Aerofoil dataset: DU35_A17_cor

Description

Last changed 01-23-2008@15:41:22

Percentage thickness 35 %

Reynolds number 7.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.0407 0

-175 0.223 0.0507 0.0937

-170 0.405 0.1055 0.1702

-160 0.658 0.2982 0.2819

-155 0.733 0.4121 0.3213

-150 0.778 0.5308 0.352

-145 0.795 0.6503 0.3754

-140 0.787 0.7672 0.3926

-135 0.757 0.8785 0.4046

-130 0.708 0.9819 0.4121

-125 0.641 1.0756 0.416

-120 0.56 1.158 0.4167

-115 0.467 1.228 0.4146

-110 0.365 1.2847 0.4104

-105 0.255 1.3274 0.4041

-100 0.139 1.3557 0.3961

-95 0.021 1.3692 0.3867

-90 -0.098 1.368 0.3759

-85 -0.216 1.3521 0.3639

-80 -0.331 1.3218 0.3508

-75 -0.441 1.2773 0.3367

-70 -0.544 1.2193 0.3216

-65 -0.638 1.1486 0.3054

-60 -0.72 1.066 0.2884

-55 -0.788 0.9728 0.2703

-50 -0.84 0.8705 0.2512

-45 -0.875 0.7611 0.2311

-40 -0.889 0.6466 0.2099

-35 -0.88 0.5299 0.1876

-30 -0.846 0.4141 0.1641

-25 -0.784 0.303 0.1396

-24 -0.768 0.2817 0.1345

-23 -0.751 0.2608 0.1294

-22 -0.733 0.2404 0.1243

-21 -0.714 0.2205 0.1191

-20 -0.693 0.2011 0.1139

-19 -0.671 0.1822 0.1086

-18 -0.648 0.164 0.1032

-17 -0.624 0.1465 0.0975

-16 -0.601 0.13 0.0898

-15 -0.579 0.1145 0.0799

-14 -0.559 0.1 0.0682

-13 -0.539 0.0867 0.0547

-12 -0.519 0.0744 0.0397

-11 -0.499 0.0633 0.0234

-10 -0.48 0.0534 0.006

-5.54 -0.385 0.0245 -0.08

-5.04 -0.359 0.0225 -0.08

-4.54 -0.36 0.0196 -0.08

-4.04 -0.355 0.0174 -0.08

-3.54 -0.307 0.0162 -0.08

-3.04 -0.246 0.0144 -0.08

-3 -0.24 0.024 -0.0623

-2.5 -0.163 0.0188 -0.0674

-2 -0.091 0.016 -0.0712

-1.5 -0.019 0.0137 -0.0746

-1 0.052 0.0118 -0.0778

-0.5 0.121 0.0104 -0.0806

0 0.196 0.0094 -0.0831

0.5 0.265 0.0096 -0.0863

1 0.335 0.0098 -0.0895

1.5 0.404 0.0099 -0.0924

2 0.472 0.01 -0.0949

2.5 0.54 0.0102 -0.0973

3 0.608 0.0103 -0.0996

3.5 0.674 0.0104 -0.1016

4 0.742 0.0105 -0.1037

4.5 0.809 0.0107 -0.1057

5 0.875 0.0108 -0.1076

5.5 0.941 0.0109 -0.1094

6 1.007 0.011 -0.1109

6.5 1.071 0.0113 -0.1118

7 1.134 0.0115 -0.1127

7.5 1.198 0.0117 -0.1138

8 1.26 0.012 -0.1144

8.5 1.318 0.0126 -0.1137

9 1.368 0.0133 -0.1112

9.5 1.422 0.0143 -0.11

10 1.475 0.0156 -0.1086

10.5 1.523 0.0174 -0.1064

11 1.57 0.0194 -0.1044

11.5 1.609 0.0227 -0.1013

12 1.642 0.0269 -0.098

12.5 1.675 0.0319 -0.0953

13 1.7 0.0398 -0.0925

13.5 1.717 0.0488 -0.0896

14 1.712 0.0614 -0.0864

14.5 1.703 0.0786 -0.084

15.5 1.671 0.1173 -0.083

16 1.649 0.1377 -0.0848

16.5 1.621 0.16 -0.088

17 1.598 0.1814 -0.0926

17.5 1.571 0.2042 -0.0984

18 1.549 0.2316 -0.1052

19 1.544 0.2719 -0.1158

19.5 1.549 0.2906 -0.1213

20 1.565 0.3085 -0.1248

21 1.565 0.3447 -0.1317

22 1.563 0.382 -0.1385

23 1.558 0.4203 -0.1452

24 1.552 0.4593 -0.1518

25 1.546 0.4988 -0.1583

26 1.539 0.5387 -0.1647

28 1.527 0.6187 -0.177

30 1.522 0.6978 -0.1886

32 1.529 0.7747 -0.1994

35 1.544 0.8869 -0.2148

40 1.529 1.0671 -0.2392

45 1.471 1.2319 -0.2622

50 1.376 1.3747 -0.2839

55 1.249 1.4899 -0.3043

60 1.097 1.5728 -0.3236

65 0.928 1.6202 -0.3417

70 0.75 1.6302 -0.3586

75 0.57 1.6031 -0.3745

80 0.396 1.5423 -0.3892

85 0.237 1.4598 -0.4028

90 0.101 1.4041 -0.4151

95 -0.022 1.4053 -0.4261

100 -0.143 1.3914 -0.4357

105 -0.261 1.3625 -0.4437

110 -0.374 1.3188 -0.4498

115 -0.48 1.2608 -0.4538

120 -0.575 1.1891 -0.4553

125 -0.659 1.1046 -0.454

130 -0.727 1.0086 -0.4492

135 -0.778 0.9025 -0.4405

140 -0.809 0.7883 -0.427

145 -0.818 0.6684 -0.4078

150 -0.8 0.5457 -0.3821

155 -0.754 0.4236 -0.3484

160 -0.677 0.3066 -0.3054

170 -0.417 0.1085 -0.1842

175 -0.229 0.051 -0.1013

180 0 0.0407 0

Aerofoil dataset: DU30_A17_cor

Description

Last changed 01-23-2008@15:41:09

Percentage thickness 30 %

Reynolds number 7.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.0267 0

-175 0.274 0.037 0.1379

-170 0.547 0.0968 0.2778

-160 0.685 0.2876 0.274

-155 0.766 0.4025 0.3118

-150 0.816 0.5232 0.3411

-145 0.836 0.6454 0.3631

-140 0.832 0.7656 0.3791

-135 0.804 0.8807 0.3899

-130 0.756 0.9882 0.3965

-125 0.69 1.0861 0.3994

-120 0.609 1.173 0.3992

-115 0.515 1.2474 0.3964

-110 0.411 1.3084 0.3915

-105 0.3 1.3552 0.3846

-100 0.182 1.3875 0.3761

-95 0.061 1.4048 0.3663

-90 -0.061 1.407 0.3551

-85 -0.183 1.3941 0.3428

-80 -0.302 1.3664 0.3295

-75 -0.416 1.324 0.3153

-70 -0.523 1.2676 0.3001

-65 -0.622 1.1978 0.2841

-60 -0.708 1.1156 0.2672

-55 -0.781 1.022 0.2494

-50 -0.838 0.9187 0.2308

-45 -0.877 0.8074 0.2113

-40 -0.895 0.6904 0.1909

-35 -0.889 0.5703 0.1696

-30 -0.858 0.4503 0.1475

-25 -0.832 0.3357 0.1224

-24 -0.852 0.3147 0.1156

-23 -0.882 0.2946 0.1081

-22 -0.919 0.2752 0.1

-21 -0.963 0.2566 0.0914

-20 -1.013 0.2388 0.0823

-19 -1.067 0.2218 0.0728

-18 -1.125 0.2056 0.0631

-17 -1.185 0.1901 0.0531

-16 -1.245 0.1754 0.043

-15.25 -1.29 0.1649 0.0353

-14.24 -1.229 0.1461 0.024

-13.24 -1.148 0.1263 0.01

-12.22 -1.052 0.1051 -0.009

-11.22 -0.965 0.0886 -0.023

-10.19 -0.867 0.074 -0.0336

-9.7 -0.822 0.0684 -0.0375

-9.18 -0.769 0.0605 -0.044

-8.18 -0.756 0.027 -0.0578

-7.19 -0.69 0.018 -0.059

-6.65 -0.616 0.0166 -0.0633

-6.13 -0.542 0.0152 -0.0674

-6 -0.525 0.0117 -0.0732

-5.5 -0.451 0.0105 -0.0766

-5 -0.382 0.0097 -0.0797

-4.5 -0.314 0.0092 -0.0825

-4 -0.251 0.0091 -0.0853

-3.5 -0.189 0.0089 -0.0884

-3 -0.12 0.0089 -0.0914

-2.5 -0.051 0.0088 -0.0942

-2 0.017 0.0088 -0.0969

-1.5 0.085 0.0088 -0.0994

-1 0.152 0.0088 -0.1018

-0.5 0.219 0.0088 -0.1041

0 0.288 0.0087 -0.1062

0.5 0.354 0.0087 -0.1086

1 0.421 0.0088 -0.1107

1.5 0.487 0.0089 -0.1129

2 0.554 0.009 -0.1149

2.5 0.619 0.0091 -0.1168

3 0.685 0.0092 -0.1185

3.5 0.749 0.0093 -0.1201

4 0.815 0.0095 -0.1218

4.5 0.879 0.0096 -0.1233

5 0.944 0.0097 -0.1248

5.5 1.008 0.0099 -0.126

6 1.072 0.0101 -0.127

6.5 1.135 0.0103 -0.128

7 1.197 0.0107 -0.1287

7.5 1.256 0.0112 -0.1289

8 1.305 0.0125 -0.127

9 1.39 0.0155 -0.1207

9.5 1.424 0.0171 -0.1158

10 1.458 0.0192 -0.1116

10.5 1.488 0.0219 -0.1073

11 1.512 0.0255 -0.1029

11.5 1.533 0.0307 -0.0983

12 1.549 0.037 -0.0949

12.5 1.558 0.0452 -0.0921

13 1.47 0.063 -0.0899

13.5 1.398 0.0784 -0.0885

14 1.354 0.0931 -0.0885

14.5 1.336 0.1081 -0.0902

15 1.333 0.1239 -0.0928

15.5 1.326 0.1415 -0.0963

16 1.329 0.1592 -0.1006

16.5 1.326 0.1743 -0.1042

17 1.321 0.1903 -0.1084

17.5 1.331 0.2044 -0.1125

18 1.333 0.2186 -0.1169

18.5 1.34 0.2324 -0.1215

19 1.362 0.2455 -0.1263

19.5 1.382 0.2584 -0.1313

20 1.398 0.2689 -0.1352

20.5 1.426 0.2814 -0.1406

21 1.437 0.2943 -0.1462

22 1.418 0.3246 -0.1516

23 1.397 0.3557 -0.157

24 1.376 0.3875 -0.1623

25 1.354 0.4198 -0.1676

26 1.332 0.4524 -0.1728

28 1.293 0.5183 -0.1832

30 1.265 0.5843 -0.1935

32 1.253 0.6492 -0.2039

35 1.264 0.7438 -0.2193

40 1.258 0.897 -0.244

45 1.217 1.0402 -0.2672

50 1.146 1.1686 -0.2891

55 1.049 1.2779 -0.3097

60 0.932 1.3647 -0.329

65 0.799 1.4267 -0.3471

70 0.657 1.4621 -0.3641

75 0.509 1.4708 -0.3799

80 0.362 1.4544 -0.3946

85 0.221 1.4196 -0.4081

90 0.092 1.3938 -0.4204

95 -0.03 1.3943 -0.4313

100 -0.15 1.3798 -0.4408

105 -0.267 1.3504 -0.4486

110 -0.379 1.3063 -0.4546

115 -0.483 1.2481 -0.4584

120 -0.578 1.1763 -0.4597

125 -0.66 1.0919 -0.4582

130 -0.727 0.9962 -0.4532

135 -0.777 0.8906 -0.4441

140 -0.807 0.7771 -0.4303

145 -0.815 0.6581 -0.4109

150 -0.797 0.5364 -0.3848

155 -0.75 0.4157 -0.3508

160 -0.673 0.3 -0.3074

170 -0.547 0.1051 -0.2786

175 -0.274 0.0388 -0.138

180 0 0.0267 0

Aerofoil dataset: DU25_A17_cor

Description

Last changed 01-23-2008@15:40:55

Percentage thickness 25 %

Reynolds number 7.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.0202 0

-175 0.368 0.0324 0.1845

-170 0.735 0.0943 0.3701

-160 0.695 0.2848 0.2679

-155 0.777 0.4001 0.3046

-150 0.828 0.5215 0.3329

-145 0.85 0.6447 0.354

-140 0.846 0.766 0.3693

-135 0.818 0.8823 0.3794

-130 0.771 0.9911 0.3854

-125 0.705 1.0905 0.3878

-120 0.624 1.1787 0.3872

-115 0.53 1.2545 0.3841

-110 0.426 1.3168 0.3788

-105 0.314 1.365 0.3716

-100 0.195 1.3984 0.3629

-95 0.073 1.4169 0.3529

-90 -0.05 1.4201 0.3416

-85 -0.173 1.4081 0.3292

-80 -0.294 1.3811 0.3159

-75 -0.409 1.3394 0.3017

-70 -0.518 1.2833 0.2866

-65 -0.617 1.2138 0.2707

-60 -0.706 1.1315 0.2539

-55 -0.78 1.0378 0.2364

-50 -0.839 0.9341 0.2181

-45 -0.879 0.8221 0.1991

-40 -0.898 0.7042 0.1792

-35 -0.893 0.5829 0.1587

-30 -0.862 0.4616 0.1374

-25 -0.803 0.3441 0.1154

-24 -0.792 0.3209 0.1101

-23 -0.789 0.2972 0.1031

-22 -0.792 0.273 0.0947

-21 -0.801 0.2485 0.0849

-20 -0.815 0.2237 0.0739

-19 -0.833 0.199 0.0618

-18 -0.854 0.1743 0.0488

-17 -0.879 0.1498 0.0351

-16 -0.905 0.1256 0.0208

-15 -0.932 0.102 0.006

-14 -0.959 0.0789 -0.0091

-13 -0.985 0.0567 -0.0243

-12.01 -0.953 0.0271 -0.0349

-11 -0.9 0.0303 -0.0361

-9.98 -0.827 0.0287 -0.0464

-8.98 -0.753 0.0271 -0.0534

-8.47 -0.691 0.0264 -0.065

-7.45 -0.555 0.0114 -0.0782

-6.42 -0.413 0.0094 -0.0904

-5.4 -0.271 0.0086 -0.1006

-5 -0.22 0.0073 -0.1107

-4.5 -0.152 0.0071 -0.1135

-4 -0.084 0.007 -0.1162

-3.5 -0.018 0.0069 -0.1186

-3 0.049 0.0068 -0.1209

-2.5 0.115 0.0068 -0.1231

-2 0.181 0.0068 -0.1252

-1.5 0.247 0.0067 -0.1272

-1 0.312 0.0067 -0.1293

-0.5 0.377 0.0067 -0.1311

0 0.444 0.0065 -0.133

0.5 0.508 0.0065 -0.1347

1 0.573 0.0066 -0.1364

1.5 0.636 0.0067 -0.138

2 0.701 0.0068 -0.1396

2.5 0.765 0.0069 -0.1411

3 0.827 0.007 -0.1424

3.5 0.89 0.0071 -0.1437

4 0.952 0.0073 -0.1448

4.5 1.013 0.0076 -0.1456

5 1.062 0.0079 -0.1445

6 1.161 0.0099 -0.1419

6.5 1.208 0.0117 -0.1403

7 1.254 0.0132 -0.1382

7.5 1.301 0.0143 -0.1362

8 1.336 0.0153 -0.132

8.5 1.369 0.0165 -0.1276

9 1.4 0.0181 -0.1234

9.5 1.428 0.0211 -0.1193

10 1.442 0.0262 -0.1152

10.5 1.427 0.0336 -0.1115

11 1.374 0.042 -0.1081

11.5 1.316 0.0515 -0.1052

12 1.277 0.0601 -0.1026

12.5 1.25 0.0693 -0.1

13 1.246 0.0785 -0.098

13.5 1.247 0.0888 -0.0969

14 1.256 0.1 -0.0968

14.5 1.26 0.1108 -0.0973

15 1.271 0.1219 -0.0981

15.5 1.281 0.1325 -0.0992

16 1.289 0.1433 -0.1006

16.5 1.294 0.1541 -0.1023

17 1.304 0.1649 -0.1042

17.5 1.309 0.1754 -0.1064

18 1.315 0.1845 -0.1082

18.5 1.32 0.1953 -0.111

19 1.33 0.2061 -0.1143

19.5 1.343 0.217 -0.1179

20 1.354 0.228 -0.1219

20.5 1.359 0.239 -0.1261

21 1.36 0.2536 -0.1303

22 1.325 0.2814 -0.1375

23 1.288 0.3098 -0.1446

24 1.251 0.3386 -0.1515

25 1.215 0.3678 -0.1584

26 1.181 0.3972 -0.1651

28 1.12 0.4563 -0.1781

30 1.076 0.5149 -0.1904

32 1.056 0.572 -0.2017

35 1.066 0.6548 -0.2173

40 1.064 0.7901 -0.2418

45 1.035 0.919 -0.265

50 0.98 1.0378 -0.2867

55 0.904 1.1434 -0.3072

60 0.81 1.2333 -0.3265

65 0.702 1.3055 -0.3446

70 0.582 1.3587 -0.3616

75 0.456 1.3922 -0.3775

80 0.326 1.4063 -0.3921

85 0.197 1.4042 -0.4057

90 0.072 1.3985 -0.418

95 -0.05 1.3973 -0.4289

100 -0.17 1.381 -0.4385

105 -0.287 1.3498 -0.4464

110 -0.399 1.3041 -0.4524

115 -0.502 1.2442 -0.4563

120 -0.596 1.1709 -0.4577

125 -0.677 1.0852 -0.4563

130 -0.743 0.9883 -0.4514

135 -0.792 0.8818 -0.4425

140 -0.821 0.7676 -0.4288

145 -0.826 0.6481 -0.4095

150 -0.806 0.5264 -0.3836

155 -0.758 0.406 -0.3497

160 -0.679 0.2912 -0.3065

170 -0.735 0.0995 -0.3706

175 -0.368 0.0356 -0.1846

180 0 0.0202 0

Aerofoil dataset: DU21_A17_cor

Description

Last changed 01-23-2008@15:40:40

Percentage thickness 21 %

Reynolds number 7.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.0185 0

-175 0.394 0.0332 0.1978

-170 0.788 0.0945 0.3963

-160 0.67 0.2809 0.2738

-155 0.749 0.3932 0.3118

-150 0.797 0.5112 0.3413

-145 0.818 0.6309 0.3636

-140 0.813 0.7485 0.3799

-135 0.786 0.8612 0.3911

-130 0.739 0.9665 0.398

-125 0.675 1.0625 0.4012

-120 0.596 1.1476 0.4014

-115 0.505 1.2206 0.399

-110 0.403 1.2805 0.3943

-105 0.294 1.3265 0.3878

-100 0.179 1.3582 0.3796

-95 0.06 1.3752 0.37

-90 -0.06 1.3774 0.3591

-85 -0.179 1.3648 0.3471

-80 -0.295 1.3376 0.334

-75 -0.407 1.2962 0.3199

-70 -0.512 1.2409 0.3049

-65 -0.608 1.1725 0.289

-60 -0.693 1.0919 0.2722

-55 -0.764 1.0002 0.2545

-50 -0.82 0.899 0.2359

-45 -0.857 0.79 0.2163

-40 -0.875 0.6754 0.1958

-35 -0.869 0.5579 0.1744

-30 -0.838 0.4405 0.152

-25 -0.791 0.3256 0.1262

-24 -0.794 0.3013 0.117

-23 -0.805 0.2762 0.1059

-22 -0.821 0.2506 0.0931

-21 -0.843 0.2246 0.0788

-20 -0.869 0.1983 0.0631

-19 -0.899 0.172 0.0464

-18 -0.931 0.1457 0.0286

-17 -0.964 0.1197 0.0102

-16 -0.999 0.094 -0.0088

-15 -1.033 0.0689 -0.0281

-14.5 -1.05 0.0567 -0.0378

-12.01 -0.953 0.0271 -0.0349

-11 -0.9 0.0303 -0.0361

-9.98 -0.827 0.0287 -0.0464

-8.12 -0.536 0.0124 -0.0821

-7.62 -0.467 0.0109 -0.0924

-7.11 -0.393 0.0092 -0.1015

-6.6 -0.323 0.0083 -0.1073

-6.5 -0.311 0.0089 -0.1083

-6 -0.245 0.0082 -0.1112

-5.5 -0.178 0.0074 -0.1146

-5 -0.113 0.0069 -0.1172

-4.5 -0.048 0.0065 -0.1194

-4 0.016 0.0063 -0.1213

-3.5 0.08 0.0061 -0.1232

-3 0.145 0.0058 -0.1252

-2.5 0.208 0.0057 -0.1268

-2 0.27 0.0057 -0.1282

-1.5 0.333 0.0057 -0.1297

-1 0.396 0.0057 -0.131

-0.5 0.458 0.0057 -0.1324

0 0.521 0.0057 -0.1337

0.5 0.583 0.0057 -0.135

1 0.645 0.0058 -0.1363

1.5 0.706 0.0058 -0.1374

2 0.768 0.0059 -0.1385

2.5 0.828 0.0061 -0.1395

3 0.888 0.0063 -0.1403

3.5 0.948 0.0066 -0.1406

4 0.996 0.0071 -0.1398

4.5 1.046 0.0079 -0.139

5 1.095 0.009 -0.1378

5.5 1.145 0.0103 -0.1369

6 1.192 0.0113 -0.1353

6.5 1.239 0.0122 -0.1338

7 1.283 0.0131 -0.1317

7.5 1.324 0.0139 -0.1291

8 1.358 0.0147 -0.1249

8.5 1.385 0.0158 -0.1213

9 1.403 0.0181 -0.1177

9.5 1.401 0.0211 -0.1142

10 1.358 0.0255 -0.1103

10.5 1.313 0.0301 -0.1066

11 1.287 0.0347 -0.1032

11.5 1.274 0.0401 -0.1002

12 1.272 0.0468 -0.0971

12.5 1.273 0.0545 -0.094

13 1.273 0.0633 -0.0909

13.5 1.273 0.0722 -0.0883

14 1.272 0.0806 -0.0865

14.5 1.273 0.09 -0.0854

15 1.275 0.0987 -0.0849

15.5 1.281 0.1075 -0.0847

16 1.284 0.117 -0.085

16.5 1.296 0.127 -0.0858

17 1.306 0.1368 -0.0869

17.5 1.308 0.1464 -0.0883

18 1.308 0.1562 -0.0901

18.5 1.308 0.1664 -0.0922

19 1.308 0.177 -0.0949

19.5 1.307 0.1878 -0.098

20 1.311 0.1987 -0.1017

20.5 1.325 0.21 -0.1059

21 1.324 0.2214 -0.1105

22 1.277 0.2499 -0.1172

23 1.229 0.2786 -0.1239

24 1.182 0.3077 -0.1305

25 1.136 0.3371 -0.137

26 1.093 0.3664 -0.1433

28 1.017 0.4246 -0.1556

30 0.962 0.4813 -0.1671

32 0.937 0.5356 -0.1778

35 0.947 0.6127 -0.1923

40 0.95 0.7396 -0.2154

45 0.928 0.8623 -0.2374

50 0.884 0.9781 -0.2583

55 0.821 1.0846 -0.2782

60 0.74 1.1796 -0.2971

65 0.646 1.2617 -0.3149

70 0.54 1.3297 -0.3318

75 0.425 1.3827 -0.3476

80 0.304 1.4202 -0.3625

85 0.179 1.4423 -0.3763

90 0.053 1.4512 -0.389

95 -0.073 1.448 -0.4004

100 -0.198 1.4294 -0.4105

105 -0.319 1.3954 -0.4191

110 -0.434 1.3464 -0.426

115 -0.541 1.2829 -0.4308

120 -0.637 1.2057 -0.4333

125 -0.72 1.1157 -0.433

130 -0.787 1.0144 -0.4294

135 -0.836 0.9033 -0.4219

140 -0.864 0.7845 -0.4098

145 -0.869 0.6605 -0.3922

150 -0.847 0.5346 -0.3682

155 -0.795 0.4103 -0.3364

160 -0.711 0.2922 -0.2954

170 -0.788 0.0969 -0.3966

175 -0.394 0.0334 -0.1978

180 0 0.0185 0

Aerofoil dataset: NACA64_A17_cor

Description

Last changed 01-23-2008@15:41:51

Percentage thickness 18 %

Reynolds number 6.E+06

Chordwise origin for pitch moments 25 %

Aileron deployment angle 0 deg

Angle of Attack (deg) Lift coefficient Drag coefficient Pitch moment

coefficient

-180 0 0.0198 0

-175 0.374 0.0341 0.188

-170 0.749 0.0955 0.377

-160 0.659 0.2807 0.2747

-155 0.736 0.3919 0.313

-150 0.783 0.5086 0.3428

-145 0.803 0.6267 0.3654

-140 0.798 0.7427 0.382

-135 0.771 0.8537 0.3935

-130 0.724 0.9574 0.4007

-125 0.66 1.0519 0.4042

-120 0.581 1.1355 0.4047

-115 0.491 1.207 0.4025

-110 0.39 1.2656 0.3981

-105 0.282 1.3104 0.3918

-100 0.169 1.341 0.3838

-95 0.052 1.3572 0.3743

-90 -0.067 1.3587 0.3636

-85 -0.184 1.3456 0.3517

-80 -0.299 1.3181 0.3388

-75 -0.409 1.2765 0.3248

-70 -0.512 1.2212 0.3099

-65 -0.606 1.1532 0.294

-60 -0.689 1.0731 0.2772

-55 -0.759 0.9822 0.2595

-50 -0.814 0.882 0.2409

-45 -0.85 0.7742 0.2212

-40 -0.866 0.661 0.2006

-35 -0.86 0.5451 0.1789

-30 -0.829 0.4295 0.1563

-25 -0.853 0.3071 0.1156

-24 -0.87 0.2814 0.104

-23 -0.89 0.2556 0.0916

-22 -0.911 0.2297 0.0785

-21 -0.934 0.204 0.0649

-20 -0.958 0.1785 0.0508

-19 -0.982 0.1534 0.0364

-18 -1.005 0.1288 0.0218

-17 -1.082 0.1037 0.0129

-16 -1.113 0.0786 -0.0028

-15 -1.105 0.0535 -0.0251

-14 -1.078 0.0283 -0.0419

-13.5 -1.053 0.0158 -0.0521

-13 -1.015 0.0151 -0.061

-12 -0.904 0.0134 -0.0707

-11 -0.807 0.0121 -0.0722

-10 -0.711 0.0111 -0.0734

-9 -0.595 0.0099 -0.0772

-8 -0.478 0.0091 -0.0807

-7 -0.375 0.0086 -0.0825

-6 -0.264 0.0082 -0.0832

-5 -0.151 0.0079 -0.0841

-4 -0.017 0.0072 -0.0869

-3 0.088 0.0064 -0.0912

-2 0.213 0.0054 -0.0946

-1 0.328 0.0052 -0.0971

0 0.442 0.0052 -0.1014

1 0.556 0.0052 -0.1076

2 0.67 0.0053 -0.1126

3 0.784 0.0053 -0.1157

4 0.898 0.0054 -0.1199

5 1.011 0.0058 -0.124

6 1.103 0.0091 -0.1234

7 1.181 0.0113 -0.1184

8 1.257 0.0124 -0.1163

8.5 1.293 0.013 -0.1163

9 1.326 0.0136 -0.116

9.5 1.356 0.0143 -0.1154

10 1.382 0.015 -0.1149

10.5 1.4 0.0267 -0.1145

11 1.415 0.0383 -0.1143

11.5 1.425 0.0498 -0.1147

12 1.434 0.0613 -0.1158

12.5 1.443 0.0727 -0.1165

13 1.451 0.0841 -0.1153

13.5 1.453 0.0954 -0.1131

14 1.448 0.1065 -0.1112

14.5 1.444 0.1176 -0.1101

15 1.445 0.1287 -0.1103

15.5 1.447 0.1398 -0.1109

16 1.448 0.1509 -0.1114

16.5 1.444 0.1619 -0.1111

17 1.438 0.1728 -0.1097

17.5 1.439 0.1837 -0.1079

18 1.448 0.1947 -0.108

18.5 1.452 0.2057 -0.109

19 1.448 0.2165 -0.1086

19.5 1.438 0.2272 -0.1077

20 1.428 0.2379 -0.1099

21 1.401 0.259 -0.1169

22 1.359 0.2799 -0.119

23 1.3 0.3004 -0.1235

24 1.22 0.3204 -0.1393

25 1.168 0.3377 -0.144

26 1.116 0.3554 -0.1486

28 1.015 0.3916 -0.1577

30 0.926 0.4294 -0.1668

32 0.855 0.469 -0.1759

35 0.8 0.5324 -0.1897

40 0.804 0.6452 -0.2126

45 0.793 0.7573 -0.2344

50 0.763 0.8664 -0.2553

55 0.717 0.9708 -0.2751

60 0.656 1.0693 -0.2939

65 0.582 1.1606 -0.3117

70 0.495 1.2438 -0.3285

75 0.398 1.3178 -0.3444

80 0.291 1.3809 -0.3593

85 0.176 1.4304 -0.3731

90 0.053 1.4565 -0.3858

95 -0.074 1.4533 -0.3973

100 -0.199 1.4345 -0.4075

105 -0.321 1.4004 -0.4162

110 -0.436 1.3512 -0.4231

115 -0.543 1.2874 -0.428

120 -0.64 1.2099 -0.4306

125 -0.723 1.1196 -0.4304

130 -0.79 1.0179 -0.427

135 -0.84 0.9064 -0.4196

140 -0.868 0.7871 -0.4077

145 -0.872 0.6627 -0.3903

150 -0.85 0.5363 -0.3665

155 -0.798 0.4116 -0.3349

160 -0.714 0.2931 -0.2942

170 -0.749 0.0971 -0.3771

175 -0.374 0.0334 -0.1879

180 0 0.0198 0

Appendix B

Flap aerodynamic characteristics

from XFOIL

This appendix contains the process of obtaining the aerodynamic data for the blade sections with

flaps.

Where the flaps are present on the blades the NACA 64618 aerofoil profile is used, the coordi-

nates of which are included here. This profile is input into XFOIL using MATLAB through running

a script that interfaces between XFOIL and MATLAB and then writes the output polars to Excel

files. This aerodynamic data is then extracted from the produced Excel spreadsheets and replaces

the aerodynamic characteristics of the NACA 64618 aerofoil for the blade sections with the flaps

present in Bladed.

The MATLAB script, XFOIL FlapAerodynamicCoefs.m, is set up to output the aerodynamic

data for the NACA 64618 blade profile with flaps of 10, 20 and 30% chord width, flap angles of

-22 to + 22 degrees deployment in 2 degree steps, and for angles of attack ranging from -20 to +20

degrees. See the README file in the zipped folder for how to use it. This is done utilising the

‘XFOIL - MATLAB interface,’ copyright Rafael Fernandes de Oliveira, which is included, with an

adjustment made to allow flap adjustments. A copy of Mark Drela’s XFOIL is also included in the

package.

Aerofoil coordinates

XFOIL interface with MATLAB scripts

181

NACA64618
 1.000000 0.000000
 0.992694 0.002542
 0.980225 0.006070
 0.965530 0.009933
 0.948629 0.014276
 0.929889 0.019069
 0.909932 0.024186
 0.889280 0.029498
 0.868281 0.034906
 0.847173 0.040335
 0.826097 0.045730
 0.805116 0.051054
 0.784254 0.056280
 0.763516 0.061388
 0.742899 0.066361
 0.722391 0.071184
 0.701977 0.075848
 0.681650 0.080343
 0.661420 0.084659
 0.641297 0.088779
 0.621283 0.092685
 0.601365 0.096364
 0.581542 0.099810
 0.561825 0.103009
 0.542218 0.105945
 0.522727 0.108609
 0.503369 0.110988
 0.484166 0.113066
 0.465143 0.114828
 0.446340 0.116259
 0.427796 0.117337
 0.409529 0.118025
 0.391448 0.118270
 0.373352 0.118057
 0.355106 0.117431
 0.336713 0.116432
 0.318225 0.115075
 0.299697 0.113368
 0.281174 0.111317
 0.262703 0.108926
 0.244328 0.106201
 0.226098 0.103145
 0.208063 0.099762
 0.190280 0.096057
 0.172821 0.092041
 0.155783 0.087733
 0.139279 0.083158
 0.123460 0.078365
 0.108500 0.073418
 0.094584 0.068406
 0.081874 0.063428
 0.070475 0.058583
 0.060407 0.053947
 0.051610 0.049564
 0.043967 0.045452
 0.037336 0.041606
 0.031578 0.038010
 0.026563 0.034634
 0.022181 0.031451
 0.018339 0.028432
 0.014966 0.025549
 0.012003 0.022777
 0.009407 0.020094
 0.007148 0.017477
 0.005209 0.014905
 0.003582 0.012362
 0.002265 0.009840
 0.001256 0.007339
 0.000550 0.004868
 0.000138 0.002445
 0.000000 0.000082
 0.000118 -0.002264
 0.000496 -0.004656
 0.001154 -0.007073
 0.002117 -0.009487
 0.003422 -0.011857
 0.005093 -0.014145
 0.007131 -0.016329
 0.009521 -0.018415
 0.012256 -0.020422
 0.015347 -0.022370
 0.018824 -0.024277
 0.022729 -0.026164
 0.027125 -0.028052
 0.032095 -0.029960
 0.037747 -0.031908
 0.044219 -0.033919
 0.051677 -0.036013
 0.060315 -0.038201
 0.070339 -0.040486
 0.081925 -0.042854
 0.095176 -0.045266
 0.110063 -0.047676
 0.126391 -0.050023
 0.143871 -0.052241
 0.162203 -0.054282
 0.181130 -0.056118
 0.200458 -0.057734
 0.220050 -0.059123
 0.239809 -0.060284
 0.259664 -0.061217
 0.279558 -0.061920
 0.299436 -0.062392
 0.319254 -0.062626
 0.338955 -0.062619
 0.358482 -0.062359
 0.377775 -0.061828
 0.396841 -0.060972
 0.415873 -0.059728
 0.435128 -0.058105
 0.454726 -0.056168
 0.474642 -0.053965
 0.494834 -0.051527
 0.515261 -0.048881
 0.535904 -0.046048
 0.556746 -0.043053
 0.577775 -0.039917
 0.598986 -0.036664
 0.620356 -0.033317
 0.641864 -0.029902
 0.663443 -0.026460
 0.684966 -0.023042
 0.706351 -0.019687
 0.727554 -0.016423
 0.748539 -0.013280
 0.769280 -0.010289
 0.789753 -0.007481
 0.809928 -0.004886
 0.829775 -0.002538
 0.849254 -0.000468
 0.868308 0.001293
 0.886861 0.002714
 0.904805 0.003767
 0.922010 0.004428
 0.938326 0.004683
 0.953611 0.004523
 0.967757 0.003951
 0.980735 0.002966
 0.992583 0.001488
 1.000000 0.000000

XFOILinterface/XFOIL/plotlib/Doc

/***
 Module: Doc

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

Xplot11 Graphics Package "Documentation"

C Version 4.46 11/28/01

(submitted in partial fullfillment of the
 necessity of documenting this package)

History

This plot package is an "extension" of the ancient Versatec graphics
routines which are in turn descended from the even more ancient
Plot10 package that ran Tektronics vector graphics tubes. This
particular package started off life as a severely hacked version of
the Versatec software that supported a wide range of graphics
equipment at MIT's Gas Turbine Lab. At this point the package has
been hacked and extended to the point where no trace of the original
source code remains (that is definitely for the best...). Note that
this package is not PLOT10 compatible, it is closer to a Versatec
graphics library.

The basic philosophy of page-by-page plotting for both the screen
window and hardcopy output has been retained. At the device level,
the major changes have been the use of X-Windows for screen display output,
and PostScript for hardcopy output, neither of which existed when
the original Versatec software was developed. Also, both B&W and Color
output is supported. On the retro-technology side, vector fonts are still
used to completely sidestep the headaches associated with using bitmaps for
both X-graphics and PostScript.

Intent

Xplot11 is a collection of routines intended for use in custom applications
which require more flexibility and power than simple X-versus-Y line plot
packages, but don't require the complexity of full event-driven screen
graphics interaction. It has the following key features:

+ Direct move-to, draw-to
+ Polyline plot, polygon fill
+ Terminal-type WYSIWYG vector font
+ LaTex-like Greek and math symbol vector font
+ Automatic offset/scaling
+ Automatic zooming
+ Automatic clipping against arbitrary "box"
+ Automatic plot primitive storage in display list for X-window replot
 and/or PostScript hardcopy.
+ Color X-graphics and color PostScript support (or black & white)
+ Cursor location query via mouse click

Recently added do-dahs include
+ Double buffering
+ limited 3D support

The last item represents the only capability for "interactive" graphics.
The following features are NOT provided by design:

- Bitmap constructs
- Continuous X-event recognition
- Read/Write Colormaps
- Multiple X windows
- full 3D support (you really ought to be using OpenGL at that point)

Implementation

Xplot11 is implemented at three basic levels of routines, but only
the first, user-level group is called in applications.

+ user level routines - these are in the files:
 plt_base.f
 plt_font.f
 plt_color.f
 plt_util.f
 plt_3D.f ("3D" support routines for passive display of x,y,z objects)

 plt_old.f (old Versatec-style graphics interface)

+ an intermediate level that scales between user and plot, clips and zooms,
 and handles replotting - these are in the file:
 set_subs.f

+ a hardware support level that interfaces to the postscript and X-windows
 plotting devices - these are in the files:
 ps_subs.f
 gw_subs.f
 Xwin.c

One major purpose of the intermediate level is to permit the automatic
generation of a logging list as a side-effect of the user-level calls.
This list allows the entire current plot to be regenerated by a
simple call, e.g.

 CALL REPLOT(2)

if the user wants to make a hardcopy of what's visible on the screen, say.
This call to REPLOT simply takes the calls from the logging list, and calls
the support-level routines again, but now with PostScript output enabled.

Plot Devices

As mentioned above the plot library only supports two devices, the X-window
display and hardcopy in the form of output files in postscript. The plot
device is selected for each plot in the PLOPEN statement which has the
form:
 CALL PLOPEN(relsize,lpsunit,idev)

where idev selects the plotting destination as follows:

 idev X-window PostScript
 ---- -------- ----------
 1 x
 2 B & W
 3 x B & W
 4 Color
 5 x Color

Note that odd idev's include plotting to the X-window, even values select
postscript only and can be used with REPLOT to get a hardcopy of the
current plot.

The lpsunit input specifies the logical unit to use for the postscript output.
If lpsunit=0 Xplot11 writes to unit 80 and to a file called "plot.ps". If
lpsunit>0 the plot will be written to unit #lpsunit with the filename
"plotunitNNN.ps" where NNN=lpsunit. If an open file is found on unit #lpsunit
Xplot11 will assume the unit is under external program control and will only
write postscript data to it, no OPENs, CLOSEs or REWINDs will be done. If
lpsunit<0 is specified separate "plotNNN.ps" files are generated for each
plot, written to logical unit 80. Separate plot files are numbered starting
with NNN=000 (i.e. "plot000.ps") and file names are incremented for each plot.

The first parameter, relsize, gives the relative window size and orientation
to use for the graphics page. A relsize=0.6 gives a graphics window that is
0.6 of the size of the root X-window. If relsize+>0 the page is in Landscape
mode (11x8.5), if relsize<0 the page is in Portrait mode (8.5x11). Note that
relsize does not specify the size for hardcopy, only the screen fraction to
use to display the page on the screen (more on this below...).

Automatic Replot

A call to REPLOT(idev) uses the same plotting destinations used in the
PLOPEN call discussed above. Normally REPLOT is used for either zooming
a previous plot (with REPLOT(1)) or to make a hardcopy of the current plot
(with REPLOT(2) or REPLOT(4)).

This automatic logging and replot capability means that the user program
does not need to be structured to regenerate the plot on demand. This is
well suited to the kind of program structure used for simple Fortran
analysis codes (more casual than event-driven programming).

Note that the current logging is done to an array (in memory) until the
number of plot primitives hits the array limit (set in the parameters in
pltlib.inc, normally 100,000 or more primitives are stored) then the array
is paged out to a logging file "xplot11_logfile" that holds the overflow.
This ensures that a replot can recreate any plot, no matter how complex.
The log file is currently created on logical unit 81 (which is not available
to the user as a postscript file unit) and is deleted automatically when the
user closes plotting.

Plotting coordinate systems

The Xplot11 user interface works with two plotting coordinate systems:

* User units x,y (arbitrary units)
* Absolute units X,Y (inches for PostScript, pseudo_inches for X-graphics)

1 pseudo_inch on the X-window will show up as 1 inch on PostScript.
For brevity, a pseudo_inch will be referred to simply as "Inch" henceforth.

******** Achtung Europeans and Un-American metric zealots !!! ********

If you prefer doing all your plotting in centimeters rather than inches,
you can make the following source code changes...

In subroutine ps_init (in ps_subs.f):

ccc if(P_SCALE.EQ.0.) P_SCALE = 72.
 if(P_SCALE.EQ.0.) P_SCALE = 72. / 2.54

In subroutine gw_init (in gw_subs.f):

ccc DATA iwdefsize, w1size, w2size / 1000, 11.00, 8.50 /
 DATA iwdefsize, w1size, w2size / 1000, 27.94, 21.59 /

...and then translate "inch" to "centimeter" in this file.

While you're at it, you might as well change w1size, w2size above
to match your strange and unnatural paper dimensions in cm.

The absolute (X,Y) axes always span the X-window and PostScript page as
shown below. The user (x,y) axes are relocatable within the screen or page,
and are provided mainly for programming convenience:

 Y_PAGE -------------------------------
 | |
 | |
 | |
 | | |
 | | |
 | y | |
 Y | | user system |
 | | |
 | +------------- |
 | x |
 | |
 | ABSOLUTE SYSTEM |
 | |
 0 +-------------------------------

 0 X X_PAGE

The transformation (x,y) -> (X,Y) is defined as

 X = X_SCALE*x + X_ORG
 Y = Y_SCALE*y + Y_ORG

with the start-up values of the offset/scaling transformation parameters being

 X_SCALE = 1.
 Y_SCALE = 1.
 X_ORG = 0.
 Y_ORG = 0.

so that (x,y) is initially the same as (X,Y) when a plot page is started.
Different offsets and/or scaling factor can be set at any time by

 CALL NEWORIGIN(X_ORG,Y_ORG)
 CALL NEWFACTORS(X_SCALE,Y_SCALE)

Alternatively one could use the "move-to & re-origin" PLOTABS call.

 CALL PLOTABS(X_ORG,Y_ORG,-3)
 CALL NEWFACTORS(X_SCALE,Y_SCALE)

The effect of these specifications persists until these parameters are
changed again or a new plot page is opened with CALL PLOPEN.

Alternatively (and confusingly), one can also change the absolute
transformation offsets X_ORG,Y_ORG via the current user coordinates by

 CALL PLOT(x_org,y_org,-3)

which derives the new absolute offsets directly from the current
transformation:

 (X_ORG)_new = X_SCALE*x_org + X_ORG
 (Y_ORG)_new = Y_SCALE*y_org + Y_ORG

In general, PLOT is affected by the current transformation parameters
whereas PLOTABS is not, so the use of PLOTABS for origin-changing is
conceptually much simpler.

Another alternative way, rather than independently setting origins
and scale factors, is to set the complete user-absolute
transformation (offsets and scaling factors) at any time by

 CALL NEWUSERTRANS(X_ORG,Y_ORG,X_SCALE,Y_SCALE)

For convenience, transformation function routines for direct evaluation
of x(X), y(Y), X(x), Y(y) are provided:

 FUNCTION XABS2usr(X)
 FUNCTION YABS2usr(Y)
 FUNCTION xusr2ABS(x)
 FUNCTION yusr2ABS(y)

It is rarely necessary to use these in applications, however.

Note that the user-to-absolute tranformation can be queried with

 CALL GETUSERTRANS(X_ORG,Y_ORG,X_SCALE,Y_SCALE)

or
 CALL GETORIGIN(X_ORG,Y_ORG) and
 CALL GETFACTORS(X_SCALE,Y_SCALE)

* * *

The default X-window size is (X_PAGE,Y_PAGE) = (11.0 , 8.5),
and can be resized with the mouse via the Window Manager.

For PostScript hardcopy, (X,Y) are inches, so that anything visible
in the default X-window will just fit on a standard 8.5"x11.0" sheet
in Landscape orientation.

For the X-window, (X,Y) are "pseudo_inches", whose size depends
on the physical size of the screen, and on the specified fraction
of the screen taken up by the window. No matter what size the
default X-window appears to be on the terminal, its contents
will fit within a 11.0"x8.5" PostScript page. See "Window Resizing"
section below.

The alternative 8.5"x11.0" Portrait orientation for both the X-window
and Postscript is specified via the PLOPEN call list when a new plot
page is started.

* * *

Most Xplot11 routines come in two versions:

 * User-coordinate routines, which receive the user coordinates (x,y)

 * Absolute-coordinate routines, which receive the absolute coordinates (X,Y)

These are essentially the same, except that the user-coordinate routines
initially perform the transformation (x,y) --> (X,Y) using the current
transformation parameters X_SCALE, Y_SCALE, X_ORG, YORG, previously
set as described above.

The absolute-coordinate plot-command routines are:

 PLOTABS
 POLYLINEABS
 PLNUMBABS
 PLCHARABS
 PLSLANABS
 PLMATHABS
 PLSYMBABS
 PLGRIDABS
 NEWCLIPABS
 NEWZOOMABS

The following routines return information in absolute coordinates:

 GETLASTXYABS
 GETCURSORXYABS
 GETCLIPABS
 GETZOOMABS

 GETORIGIN
 GETWINSIZE
 GETPAGESIZE

Most of the above routines have user-coordinate counterparts,
typically without the "ABS" name ending.

Plot units, Sizing and Zooming

It should be mentioned that there are two additional coordinate
systems used inside Xplot11,

- (GX,GY) X-window pixel coordinates
- (PX,PY) PostScript point coordinates

which actually drive the screen and hardcopy output routines.
The application does not need to be concerned with these, however.

To further add to the confusion, there is another intermediate
set of coordinates associated with the built-in zooming feature,
which "pre-processes" the absolute (X,Y) coordinates before the
actual X-window and PostScript coordinates are generated.
The overall data stream is as follows:

 User --> Absolute --> Zoomed-absolute --> X-window,PostScript

 any --> Inches --> Magnified Inches --> pixels , points

 (x,y) --> (X,Y) --> (X',Y') --> (GX,GY), (PX,PY)

 X' = XFAC*(X + XOFF)
 Y' = YFAC*(Y + YOFF)

The interactive zoom routine

 CALL USETZOOM(LXYsame,Lcursor)

asks the user to specify two corners of a "zoom box" on the X-window,
either by the cursor (if Lcursor = T), or by typing their x,y user coordinates
or X,Y absolute coordinates (if Lcursor = F). This establishes the
intermediate coordinate system (X',Y') which results in the selected zoom
region taking up as much of the output plot page as possible.

When the window is first opened, the zoom parameters are initialized to
 XOFF = 0.
 YOFF = 0.
 XFAC = 1.
 YFAC = 1.

so that (X',Y') = (X,Y) and there is no zooming. Zooming differs
from the usual re-origin and scale change in two key ways:

1) It will distort the vector fonts (unless LXYsame = T)
2) The zoom parameters are NOT reset if a new plot page is started
 with PLOPEN

The zoom offsets and factors can be directly specified with

 CALL NEWZOOMABS(XOFF,YOFF,XFAC,YFAC)

which explicitly sets the zoom parameters in absolute coordinate offsets and
zoom factors from absolute->zoomed coordinates. These can be queried with

 CALL GETZOOMABS(XOFF,YOFF,XFAC,YFAC)

The zooming can be reset with

 CALL CLRZOOM

which just resets the zoom parameters to their default initial values.

The simplest way to treat zooming is as a magnifying lens in front of the
screen and/or hardcopy paper, to be placed and removed interactively at
the whim of the user. NEWZOOMABS should not be used to do axis scaling,
shifting, etc, in normal plot operations. That's what NEWFACTORS and
PLOTABS are for.

Window Resizing

The window dimensions in absolute units are X_WIND,Y_WIND. These are
initialized to be the same as X_PAGE,Y_PAGE, these in turn having default
values set in the parameter statements in pltlib.inc.

If the window is resized with the mouse, then X_WIND,Y_WIND are reset
appropriately on the next PLOPEN or REPLOT call. This resetting is done
so that

a) Y_WIND/X_WIND matches the window aspect ratio in pixels.
b) X_WIND,Y_WIND do not exceed X_PAGE,Y_PAGE, respectively.

The latter requirement ensures that whatever is visible in the window
will fall within the X_PAGE,Y_PAGE limits, and hence will fall on the
hardcopy page. Not all of the page will be "covered" by the graphics
window if the window aspect ratio doesn't match the page aspect ratio.
Two such possible situations are shown below.

 Y_PAGE+---------------------+ Y_PAGE+---------------------+
 Y_WIND|.............. | | |
 |. . | | |
 |. . | Y_WIND|.....................|
 |. . | |. .|
 |. . | |. .|
 |. . | |. .|
 |. . | |. .|
 |.............. | |.....................|
 0 +---------------------+ 0 +---------------------+
 0 X_WIND 0 X_WIND
 X_PAGE X_PAGE

In general, interactively resizing the window has no effect on what
comes out on hardcopy, but it obviously does affect what is visible
on the screen. Adjusting of the plot aspect ratio to fit a resized
window must be done by the application itself. The current window
size can be interrogated with

 CALL GETWINSIZE(X_WIND,Y_WIND)

at any time.

Color and Colormaps

The original Versatec hardware (back when I was a lad...) supported
only black and white plots. This is the 90's however and color
graphics have become ubiquitous (and useful!).

The two graphics output devices used for Xplot11, the Xwindows screen
and the postscript output, both support color graphics. In the
interests of portability, the color support for Xplot11 has been aimed
primarily at a modern minimal configuration, an 8-bitplane color
graphics system. In worst case, if the Xserver does not support at
least 16 colors the package degrades gracefully to provide B&W screen
graphics. Xplot11 can also generate either B&W postscript or color
postscript output, as selected by the user.

Colors in Xplot11 are manipulated by the use of a COLORMAP which contains up
to 256 entries, each of which has an associated color value (red,green,blue).
Unfortunately not all of these 256 may be available at all times. This
limitation arises because Xplot11 uses a read-only Xwindow colormap where
colors are allocated and shared with other applications. This limits the
number of colors that an application may use but has the advantage that
colors will not change as the input focus (mouse) moves through various
windows that each try to reload the graphics hardware with their own private
colormap. The extent of the X colormap used by other Xwindow applications is
typically less than 30-40 colormap entries, depending on what other windows
are displaying. For an 8-bit color depth, this leaves around 220 or so
available for use by Xplot11. Note that this may not be true for your system
if other color-hogging applications are running (such as a window manager with
lots of pretty colored icons). You can monitor the number of colors used in
the read-only colormap with the xcmap command (part of the X distribution, at
least one of the X contributed programs that is typically available with X).

Note that the number of colors available in postscript output is unlimited
but Xplot11 has a 256 color limit.

The default color setting for Xplot11 is to plot white lines on a black
background to reduce glare and enhance color saturation. Some people prefer
to use non-reverse video (black foreground on white background). Black
plotting on white can be selected for Xplot11 plots by setting an environment
variable:

using the csh or tcsh shell
 % setenv XPLOT11_BACKGROUND white
using the sh or bash shell
 % export XPLOT11_BACKGROUND=white

To restore white-on-black video:

using the csh or tcsh shell
 % unsetenv XPLOT11_BACKGROUND
or % setenv XPLOT11_BACKGROUND black
using the sh or bash shell
 % export XPLOT11_BACKGROUND=black

Note that, even though this reverses black and white in the video,
PostScript plots will still be done as black-on-white to save toner.
Note that, internally, Xplot11 always assumes that "white" is the
background color. In reverse-video mode the roles of black and white
are reversed only to the X window, where the color "black" plots to the
screen as white and the color "white" plots as black, all other colors
are unaffected. This may be a little confusing if you are looking at a
reverse video plot with white lines that are selected with the color "black".

Colors can be allocated to the colormap in several ways.

- A default map with 10 basic colors is set up by the package with
 the corresponding colormap indices. These are set as parameters
 in the convenient include file colors.inc .

 BLACK = 1
 WHITE = 2
 RED = 3
 ORANGE = 4
 YELLOW = 5
 GREEN = 6
 CYAN = 7
 BLUE = 8
 MAGENTA = 9
 VIOLET = 10

Their RGB color components are defined in SUBR. COLORMAPDEFAULT,
and can be easily tuned to personal preference. They can be displayed
with the simple program defmap:

 % make defmap
 % defmap

The default 8 RED...VIOLET colors are not fully saturated, but
are darkened somewhat to be adequately visible on black and on white
backgrounds alike (i.e. in both normal and reverse-video modes).
They are well-suited for use with the 8 line styles implemented
in SUBROUTINE XYLINE.

- A color can be allocated or selected by name (like BLACK, ORANGE,
 tan, steelblue,RED...) where the color names must be known to the Xwindows
 server (look in the file /usr/lib/X11/rgb.txt for a complete definition)

- A color can be allocated or selected by its red,green,blue components
 e.g. R,G,B = (0-255,0-255,0-255)

- A continuous range of colors can be allocated at once with a "spectrum"
 colormap, by calling one of the following routines:

 subroutine COLORSPECTRUMHUES(ncols,HUESTR)
 subroutine COLORSPECTRUMTRP(ncols,NBASE,IRGBBASE,COLWIDTH)
 subroutine COLORSPECTRUMRGB(NRGB,IRGB)

 These create additional colors, and append them as a "Spectrum" to the
 end of the current colormap. The spectrum colors are intended mainly
 for use in color contouring, etc.

 The three routines above have three different ways to specify the
 "spectrum", with increasing levels of input detail, ranging from
 a simple rainbow hue string "RYGB" to an array of r,g,b components
 for each color in the "spectrum" (see their comment headers).

Different hue strings can be tried out with program spectrum:

 % make spectrum
 % spectrum

Once allocated, colors in the Xplot11 colormap may be selected, as mentioned
above, with a color name

 CALL NEWCOLORNAME('cyan')

or the r,g,b components

 CALL NEWCOLORRGB(0,255,255)

or by an absolute color index,

 CALL NEWCOLOR(7)

or by a "Spectrum" color index.

 CALL NEWCOLOR(-48)

A positive color index can run from 1 to N_color (# of all colors allocated),
although this is typically used to access the first 10 or so default colors
for simple line plots, etc.

A negative color index can only run from -1 to -N_spectrum (# of Spectrum
colors allocated via one of the COLORSPECTRUMxxx routines). These colors
are a subset of the full colormap, and are typically used to do orderly
shading with the closely-spaced Spectrum colors.

 _ _____
 1 |_rgb_|
 | 2 |_____|
 | 3 |_____|
 4 |_____|
default 5 |_____|
colors 6 |_____|
 7 |_____|
 | 8 |_____|
 | 9 |_____|
 _ 10 |_____|
 11 |_____| -1 <- note that the first spectrum color may be
 12 |_____| -2 located at an index > 11 since the user may
 13 |_____| -3 allocate colors (named or RGB) before
 . . . allocating the spectrum
 . . .

 N_color |_____| -N_spectrum

Double Buffering

Xplot11 now supports double buffering (although this is getting kind of
overly exotic for a simple plot package, it was so simple we added it).
The double buffering can be used to do primitive animation without the screen
flickering that would otherwise spoil the effect. You open a plot as usual
but now you can redirect drawing to a pixmap buffer rather than to the X
window. This done with a DRAWTOBUFFER call before you do any plotting.
This will cause a redirection of the plot so that none of the buffer drawing
will appear until a SHOWBUFFER or PLFLUSH is called. At this point the
buffer pixmap is copied to the X window. Double buffering can be stopped
with a DRAWTOSCREEN to change the plot destination back to the X window.

The new double-buffering functions are

 SUBROUTINE DRAWTOSCREEN Sets plotting destination to screen
 SUBROUTINE DRAWTOBUFFER Sets plotting destination to background buffer
 SUBROUTINE SHOWBUFFER Displays contents of background buffer to screen

Fonts and Symbols

Xplot11 supports only vector fonts as a matter of policy. Currently
there are three fonts available, implemented in three routines which
take character strings to be plotted as arguments:

 SUBROUTINE PLCHAR Keyboard-style WYSIWYG ASCII characters
 SUBROUTINE PLSLAN Slanted version of PLCHAR
 SUBROUTINE PLMATH LaTex-like Greek letters and math symbols

There is also a plotting symbol routine which plots simple geometric
shape "characters" one at a time, indexed by an integer argument.

 SUBROUTINE PLSYMB

All font routines come in absolute-coordinate and user-coordinate
versions, e.g.

 CALL PLCHAR (x,y,ch,'ABCdef',0.0,6)
 or CALL PLCHARABS(X,Y,CH,'ABCdef',0.0,6)

The location x,y or X,Y positions the lower-left corner of the first
character. The user-coordinate character width parameter ch passed
to PLCHAR is converted to an absolute width by using X_SCALE (not Y_SCALE).
Having different X_SCALE and Y_SCALE will not distort the fonts,
since only X_SCALE is used to plot them.

The font routines have their vector fonts encoded in DATA statements
in four separate include files CHAR.INC, SLAN.INC, etc. New fonts
can be created or the existing ones modified by the interactive program
symgen in the sym/ directory. File sym/Readme has more information.

To display the four available fonts and some sample character
strings, run program test in the sym/ directory:

 % cd sym
 % make test
 % test

This will generate a screen display and the corresponding PostScript
file plot.ps which can be printed as a handy programming reference.

In addition to the basic vector font routines above, there is
also a higher-level SUBROUTINE PLNUMB which takes a real argument
and plots the corresponding numeral. This routine does not have
an associated font, but instead calls PLCHAR to plot the individual
digits, decimal point, etc. Like with the other font routines,
an absolute-coordinate version PLNUMBABS is also available.

Utility Routines

The source files plt_util.f and plt_3D.f contain frequently-used
higher-level routines which are convenient for building applications.
For example, a plain x-y plot can be made with three simple calls

 CALL XAXIS(...)
 CALL YAXIS(...)
 CALL XYLINE(...)

although a few preparatory calls to AXIS_ADJ or other scaling routines
might be necessary to set up the appropriate call list parameters.
Additional calls to PLCHAR, PLGRID, might also be desirable for
annotation and grid overlay.

The annotation routine is useful for interactive annotation,
and is simply invoked with:

 CALL ANNOT(char_size)

Anything the user places on the screen while in ANNOT will be
automatically logged and can be echoed to PostScript with

 CALL REPLOT(2)

as described earlier.

==

Typical application calling sequences are illustrated below.

c==== This comment lead indicates a required call. All others are optional.

c==== Initialize plot routines, sets up default (10 color) colormap
 CALL PLINITIALIZE
c
c---- Additional "Spectrum" colormap with hardwired definitions
c (1..64 colors ranging from Blue to Cyan to Green to Yellow)
 CALL COLORSPECTRUMHUES(64,'BCGY')
c
c---- Alternative Spectrum-setup call are given below...
c- (these are more general, but more awkward to set up)
c
c---- User-supplied "Spectrum" interpolated from base color RGB components
c (in lieu of COLORSPECTRUMHUES call above)
CCC CALL COLORSPECTRUMTRP(64,NBASE,IRGB,COLWIDTH)
c
c---- User-supplied "Spectrum" defined by RGB components
c (in lieu of COLORSPECTRUMHUES or COLORSPECTRUMTRP call above)
CCC CALL COLORSPECTRUMRGB(NRGB,IRGB)
c
c
c==== start new X-window plot, Postscript output to default unit and file
c normally "plot.ps" and logical unit 80, no PostScript yet
 CALL PLOPEN(0.8,0,1)
c
c---- move origin +0.1,+0.1 Inches
 CALL PLOT(0.1,0.1,-3)
c
c---- blow up everything 5x in both directions
 CALL NEWFACTOR(5.0)
c
c---- draw some lines
 CALL NEWPEN(3)

 CALL PLOT(x,y,...

 CALL PLOT(x,y,...
c
c---- select color #4 in colormap
 CALL NEWCOLOR(4)
c
c---- alternative to NEWCOLOR call above (will add color if not defined)
CCC CALL NEWCOLORNAME('orange')
c
c---- another alternative to NEWCOLOR call (will also add color if necessary)
CCC ired = 250
CCC igrn = 150
CCC iblu = 0
CCC CALL NEWCOLORRGB(ired,igrn,iblu)
c
c---- plot a number
 CALL PLNUMB(x,y,...
c
c---- flush X buffer so everything is on screen
 CALL PLFLUSH
c
c==== finish plot page
 CALL PLEND
c
c
c---- replot everything (since last PLOPEN call) to PostScript file "plot.ps"
 CALL REPLOT(2)
c
c
c---- query window size (might have been changed by user via mouse)
 CALL GETWINSIZE(Xmax,Ymax)
c
c
c
c==== start another plot page in Portrait orientation, with simultaneous PS
c (this resets all re-origins, scaling)
 CALL PLOPEN(-0.8,0,3)
c
c---- blow up everything 10x, 5x
 CALL NEWFACTORS(10.0,5.0)
c
c---- plot x,y axes
 CALL XAXIS(x0,y0,xlen,dxlen,xann0,dxann,csize,-2)
 CALL YAXIS(x0,y0,ylen,dylen,yann0,dyann,csize,-2)
c
c---- label x axis
 CALL PLCHAR(x0+0.5*xlen,y0-3.0*csize,csize,'X_variable',0.0,10)
c
c---- select Spectrum color #33 and plot a grid
 CALL NEWCOLOR(-33)
 CALL PLGRID(x0,y0,...
c
c---- plot x(y) line with line pattern 3
 CALL XYLINE(n,x,y,xoff,xwt,yoff,ywt,3)
c
c---- replot everything since last PLOPEN call, in case window got resized
 CALL REPLOT(1)
c
 CALL PLOT(x,y,...
 CALL PLOT(x,y,...
 CALL PLFLUSH
c
c---- get cursor location in user coordinates x,y
 CALL GETCURSORXY(x,y,chkey)
c
c---- get cursor location in absolute coordinates x,y
 CALL GETCURSORXYABS(x,y,chkey)
c
 CALL NEWPEN(4)
c
c---- plot character(s) at cursor location in absolute coordinates
 CALL PLCHARABS(X,Y,ch,'Test',0.0,4)
c
 CALL PLOT(x,y,...
 CALL PLOT(x,y,...
 CALL PLFLUSH
c
c---- ask user to specify zoom area (distortion OK, using cursor)
 CALL USETZOOM(.FALSE.,.TRUE.)
c
 CALL PLOT(x,y,...
 CALL PLOT(x,y,...
c
c---- clear zoom if next plot page is not to be zoomed
 CALL CLRZOOM
c
c==== finish plot page
 CALL PLEND
c
c---- same as PLEND call above
ccc CALL PLOT(0.0,0.0,-999)
c
c
c---- end of all plotting, close window, close PostScript file
 CALL PLCLOSE
c
c---- same as PLCLOSE call above
ccc CALL PLOT(0.0,0.0,+999)

==

To make a list of user interface routines, do the following...

 % grep " subroutine" plt*.f

The source file plt_old.f contains the equivalent of the old Versatec
user interface routines (this set includes some of the basic routines
that were retained in the extended package) provided for backwards
compatibility. These routines should not be used in new applications,
since the intent is to phase them out sometime in the 21st Century:-)

The other source files set_subs.f, ps_subs.f, gw_subs.f, Xwin.c
contain internal support routines. These are not intended to be
called by applications (there's no reason to do so in any case).

==

Sample and test programs

volts.f - demo program that draws a simple, labeled plot with axes.

volts_old.f - demo program that draws a simple, labeled plot with axes.
 (uses old "Versatec" plot calls)

squares.f - draws a sine wave in colored boxes with colored labels

squaresdoublebuff.f - tests the double buffering with a sine wave with
 dynamic color sequence in the colored boxes

gridtest.f - tests the grid routines (obvious, aren't we...)

symbols.f - display and test the basic vector fonts

symbolsall.f - display and test all the vector fonts and symbols, has option
 to test the separate plot file or external plot file options

cmap2.f
cmap3.f - used for interactive viewing of RGB color components:

zoomtest.f - test of zooming, enter T T to prompt to keep scale, use cursor

contest.f - test of contoured, filled plots

defmap.f - displays the default colormap produced by CALL COLORMAPDEFAULT

spectrum.f - displays the "Spectrum" produced by
 CALL COLORSPECTRUMHUES(ncols, RYGCBM_string)
 in pie and bar form.

 Typical values for RYGCBM_string might be
 'RYG'
 'GYR'
 'MCY'
 'BMRY'
 'BCGYR', etc.

 Choosing strongly non-contiguous sequences like 'RCB' is OK,
 but will make a horrid-looking Spectrum.

sym/test.f - display current vector fonts

==

XFOILinterface/XFOIL/runs/DOS2UNIX_tmp_guppy

XFOILinterface/XFOIL/plotlib/GPL-library

		 GNU LIBRARY GENERAL PUBLIC LICENSE
		 Version 2, June 1991

 Copyright (C) 1991 Free Software Foundation, Inc.
 675 Mass Ave, Cambridge, MA 02139, USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
 numbered 2 because it goes with version 2 of the ordinary GPL.]

			 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if
you distribute copies of the library, or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can relink them
with the library, after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 Our method of protecting your rights has two steps: (1) copyright
the library, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the library.

 Also, for each distributor's protection, we want to make certain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passed on, we
want its recipients to know that what they have is not the original
version, so that any problems introduced by others will not reflect on
the original authors' reputations.
�
 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that companies distributing free
software will individually obtain patent licenses, thus in effect
transforming the program into proprietary software. To prevent this,
we have made it clear that any patent must be licensed for everyone's
free use or not licensed at all.

 Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License, which was designed for utility programs. This
license, the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary
one; be sure to read it in full, and don't assume that anything in it is
the same as in the ordinary license.

 The reason we have a separate public license for some libraries is that
they blur the distinction we usually make between modifying or adding to a
program and simply using it. Linking a program with a library, without
changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in
a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License
treats it as such.

 Because of this blurred distinction, using the ordinary General
Public License for libraries did not effectively promote software
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.

 However, unrestricted linking of non-free programs would deprive the
users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended to
permit developers of non-free programs to use free libraries, while
preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to achieve
this as regards changes in header files, but we have achieved it as regards
changes in the actual functions of the Library.) The hope is that this
will lead to faster development of free libraries.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, while the latter only
works together with the library.

 Note that it is possible for a library to be covered by the ordinary
General Public License rather than by this special one.
�
		 GNU LIBRARY GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library
General Public License (also called "this License"). Each licensee is
addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
�
 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
�
 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
�
 6. As an exception to the Sections above, you may also compile or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine-readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work that
 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood
 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 c) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 d) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
�
 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
�
 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
�
 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

			 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

		 END OF TERMS AND CONDITIONS
�
 Appendix: How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

 To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

That's all there is to it!

XFOILinterface/XFOIL/plotlib/lines

 600 gw_subs.f
 300 plt_3D.f
1000 plt_base.f
 600 plt_color.f
 730 plt_font.f
1420 plt_old.f
 900 plt_util.f
 600 ps_subs.f
 720 set_subs.f
 20 util-ops.f
6890 TOTAL

XFOILinterface/XFOIL/plotlib/sym/Makefile

#***
Module: Makefile (Xplot/sym directory)

Copyright (C) 1996 Harold Youngren, Mark Drela

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Report problems to: guppy@maine.com
or drela@mit.edu
#***

#Makefile for stroke font creation and editing programs

FC = f77
#FC = g77
FFLAGS = -O1
LIBS = ../libPlt.a -lX11

PROGS = symgen test

all:	$(PROGS)

clean:
	-/bin/rm *.o
	-/bin/rm *.a
	-/bin/rm $(PROGS)

symgen: symgen.o
	$(FC) -o symgen symgen.o $(LIBS)

symgen.o: symgen.f
	$(FC) -c $(FFLAGS) symgen.f

../plt_font.o: ../plt_font.f ../CHAR.INC ../SLAN.INC ../MATH.INC ../SYMB.INC
	$(FC) -c $(FFLAGS) ../plt_font.f
	mv ./plt_font.o ../

test: test.o ../plt_font.o
	$(FC) -o test test.o ../plt_font.o $(LIBS)

test.o: test.f
	$(FC) -c $(FFLAGS) test.f

XFOILinterface/XFOIL/orrs/bin/Makefile

SRC = ../src
PLTOBJ = /var/local/codes/Xplot/libPlt.a

#==
Default compiler flags
FC = f77
FLG = -O
PLTLIB = -lX11
FTNLIB =

#==
Uncomment for Intel Fortran Compiler
FC = ifort
FLG = -O
PLTLIB = -L/usr/X11R6/lib -lX11
FTNLIB = -Vaxlib

Additional IFC stuff needed on MIT's Athena system
#FC = ifc
#FTNLIB = -Vaxlib /usr/lib/C-ctype.o /usr/lib/C_name.o /usr/lib/ctype-info.o

#==

OS: osgen osmap.o

osgen: osgen.o io.o spline.o getarg0.o
	$(FC) -o osgen osgen.o io.o spline.o getarg0.o $(FTNLIB)
fscorr: fscorr.o fs.o
	$(FC) -o fscorr fscorr.o fs.o $(PLTOBJ) $(PLTLIB)
fsrun: fsrun.o fs.o
	$(FC) -o fsrun fsrun.o fs.o $(PLTOBJ) $(PLTLIB)
intai: intai.o osmap.o plutil.o
	$(FC) -o intai intai.o osmap.o plutil.o $(PLTOBJ) $(PLTLIB)
mappl1: mappl1.o ask1.o conlab.o
	$(FC) -o mappl1 mappl1.o ask1.o conlab.o $(PLTOBJ) $(PLTLIB)
ncorr: ncorr.o fs.o
	$(FC) -o ncorr ncorr.o fs.o $(PLTOBJ) $(PLTLIB)
osrun: osrun.o fs.o orrs.o ospres.o plutil.o userio.o getarg0.o
	$(FC) -o osrun osrun.o fs.o orrs.o ospres.o \
plutil.o userio.o getarg0.o $(PLTOBJ) $(PLTLIB) $(FTNLIB)
osseq: osseq.o fs.o orrs.o ospres.o plutil.o userio.o getarg0.o
	$(FC) -o osseq osseq.o fs.o orrs.o ospres.o \
plutil.o userio.o getarg0.o $(PLTOBJ) $(PLTLIB) $(FTNLIB)
pfplot: pfplot.o fs.o ask1.o
	$(FC) -o pfplot pfplot.o fs.o ask1.o $(PLTOBJ) $(PLTLIB)
roll: roll.o
	$(FC) -o roll roll.o $(PLTOBJ) $(PLTLIB) $(FTNLIB)
as2bi: as2bi.o io.o getarg0.o
	$(FC) -o as2bi as2bi.o io.o getarg0.o $(FTNLIB)
bi2as: bi2as.o io.o getarg0.o
	$(FC) -o bi2as bi2as.o io.o getarg0.o $(FTNLIB)
bi2bi: bi2bi.o io.o getarg0.o
	$(FC) -o bi2bi bi2bi.o io.o getarg0.o $(FTNLIB)
otest: otest.o osmap.o
	$(FC) -o otest otest.o osmap.o
osweep: osweep.o osmap.o
	$(FC) -o osweep osweep.o osmap.o

osgen.o: $(SRC)/osgen.f
	$(FC) -c $(FLG) $(SRC)/osgen.f
orrs.o: $(SRC)/orrs.f $(SRC)/ORRS.INC
	$(FC) -c $(FLG) $(SRC)/orrs.f
ospres.o: $(SRC)/ospres.f $(SRC)/OSPRES.INC
	$(FC) -c $(FLG) $(SRC)/ospres.f
pfplot.o: $(SRC)/pfplot.f
	$(FC) -c $(FLG) $(SRC)/pfplot.f
fscorr.o: $(SRC)/fscorr.f
	$(FC) -c $(FLG) $(SRC)/fscorr.f
fsrun.o: $(SRC)/fsrun.f
	$(FC) -c $(FLG) $(SRC)/fsrun.f
fs.o: $(SRC)/fs.f
	$(FC) -c $(FLG) $(SRC)/fs.f
io.o: $(SRC)/io.f
	$(FC) -c $(FLG) $(SRC)/io.f
intai.o: $(SRC)/intai.f
	$(FC) -c $(FLG) $(SRC)/intai.f
mappl1.o: $(SRC)/mappl1.f
	$(FC) -c $(FLG) $(SRC)/mappl1.f
ncorr.o: $(SRC)/ncorr.f
	$(FC) -c $(FLG) $(SRC)/ncorr.f
osmap.o: $(SRC)/osmap.f
	$(FC) -c $(FLG) $(SRC)/osmap.f
osrun.o: $(SRC)/osrun.f
	$(FC) -c $(FLG) $(SRC)/osrun.f
osseq.o: $(SRC)/osseq.f
	$(FC) -c $(FLG) $(SRC)/osseq.f
roll.o: $(SRC)/roll.f
	$(FC) -c $(FLG) $(SRC)/roll.f
otest.o: $(SRC)/otest.f
	$(FC) -c $(FLG) $(SRC)/otest.f
osweep.o: $(SRC)/osweep.f
	$(FC) -c $(FLG) $(SRC)/osweep.f

spline.o: $(SRC)/spline.f
	$(FC) -c $(FLG) $(SRC)/spline.f
conlab.o: $(SRC)/conlab.f
	$(FC) -c $(FLG) $(SRC)/conlab.f
plutil.o: $(SRC)/plutil.f
	$(FC) -c $(FLG) $(SRC)/plutil.f
ask1.o: $(SRC)/ask1.f
	$(FC) -c $(FLG) $(SRC)/ask1.f
userio.o: $(SRC)/userio.f
	$(FC) -c $(FLG) $(SRC)/userio.f
getarg0.o: $(SRC)/getarg0.f
	$(FC) -c $(FLG) $(SRC)/getarg0.f

XFOILinterface/XFOIL/plotlib/examples/Makefile

#***
Module: Makefile (examples directory)

Copyright (C) 1996 Harold Youngren, Mark Drela

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Report problems to: guppy@maine.com
or drela@mit.edu
#***

##
makefile for Xplot11 library examples
##

###==
This line includes your compiler/make options
with definitions for compiler and flags

include ../config.make

###==

LIB = ../$(PLTLIB)

PROGS = volts volts_old \
 symbols symbolsall \
	squares squaresdoublebuff \
	spectrum cmap2 cmap3 defmap \
 gridtest zoomtest contest

examples: $(PROGS)

test: $(PROGS)

clean:
	-/bin/rm *.o
	-/bin/rm $(PROGS)
	-/bin/rm plot*.ps

#Test routines for package

volts: volts.o
	$(FC) -o volts volts.o $(LIB) $(LINKLIB)

volts_old: volts_old.o
	$(FC) -o volts_old volts_old.o $(LIB) $(LINKLIB)

symbols: symbols.o
	$(FC) -o symbols symbols.o $(LIB) $(LINKLIB)

symbolsall: symbolsall.o
	$(FC) -o symbolsall symbolsall.o $(LIB) $(LINKLIB)

squares: squares.o
	$(FC) -o squares squares.o $(LIB) $(LINKLIB)

squaresdoublebuff: squaresdoublebuff.o
	$(FC) -o squaresdoublebuff squaresdoublebuff.o $(LIB) $(LINKLIB)

spectrum: spectrum.o
	$(FC) -o spectrum spectrum.o $(LIB) $(LINKLIB)

cmap2: cmap2.o
	$(FC) -o cmap2 cmap2.o $(LIB) $(LINKLIB)

cmap3: cmap3.o
	$(FC) -o cmap3 cmap3.o $(LIB) $(LINKLIB)

defmap: defmap.o
	$(FC) -o defmap defmap.o $(LIB) $(LINKLIB)

gridtest: gridtest.o
	$(FC) -o gridtest gridtest.o $(LIB) $(LINKLIB)

zoomtest: zoomtest.o
	$(FC) -o zoomtest zoomtest.o $(LIB) $(LINKLIB)

contest: contest.o
	$(FC) -o contest contest.o $(LIB) $(LINKLIB)

volts.o: volts.f
	$(FC) -c $(FFLAGS) $<

volts_old.o: volts_old.f
	$(FC) -c $(FFLAGS) $<

symbols.o: symbols.f
	$(FC) -c $(FFLAGS) $<

symbolsall.o: symbolsall.f
	$(FC) -c $(FFLAGS) $<

squares.o: squares.f
	$(FC) -c $(FFLAGS) $<

squaresdoublebuff.o: squaresdoublebuff.f
	$(FC) -c $(FFLAGS) $<

spectrum.o: spectrum.f
	$(FC) -c $(FFLAGS) $<

cmap2.o: cmap2.f
	$(FC) -c $(FFLAGS) $<

cmap3.o: cmap3.f
	$(FC) -c $(FFLAGS) $<

defmap.o: defmap.f
	$(FC) -c $(FFLAGS) $<

gridtest.o: gridtest.f
	$(FC) -c $(FFLAGS) $<

zoomtest.o: zoomtest.f
	$(FC) -c $(FFLAGS) $<

contest.o: contest.f
	$(FC) -c $(FFLAGS) $<

#May need to specify these on a brain-dead make system
#.f.o:	$(FC) -c $(FFLAGS) $<
#.c.o:	$(CC) -c $(CFLAGS) $<

XFOILinterface/XFOIL/plotlib/Makefile

#***
Module: Makefile

Copyright (C) 1996 Harold Youngren, Mark Drela

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Report problems to: guppy@maine.com
or drela@mit.edu
#***

#================================#
Makefile for Xplot11 library
edit the config.make file to
set specific options for your
system
#================================#

Point to your install directory
#INSTALLDIR= $(HOME)/lib
#INSTALLDIR= /usr/local/lib
#INSTALLDIR= .

Use these to set default library name (overridden in config.make file)
PLTLIB = libPlt.a
#PLTLIB = libPltDP.a

###==
Basic plot library object files
OBJ = plt_base.o plt_font.o plt_util.o plt_color.o \
 set_subs.o gw_subs.o ps_subs.o Xwin.o
OBJMISC =
OBJ3D =
OBJOLD =

###
###--
Uncomment to add the old plot compatibility routines
OBJOLD = plt_old.o
###
###--
Uncomment to add the primitive 3D-view routines
OBJ3D = plt_3D.o
###
###--
Uncomment for f77 compiler w/o AND() and RSHIFT/LSHIFT functions.
This adds some functions to duplicate these using IAND and ISHFT
which often appear in these offending fortran's libraries.
The compilers that this has affected include:
HPUX f77
Absoft f77 on Linux
###
#OBJMISC = util-ops.o

###==
Default compilers and flags, install commands
FC = f77
CC = cc
Some fortrans need trailing underscores in C interface symbols (see Xwin.c)
DEFINE = -DUNDERSCORE
Uncomment DP to make double-precision version
#DP = -r8
FFLAGS = -O $(DP)
CFLAGS = -O $(DEFINE)
AR = ar r
RANLIB = ranlib
LINKLIB = -lX11
###==

###==
This line includes your compiler/make options
with definitions for compiler and flags

include ./config.make

###==

###---
Basic make targets - build library, test programs

$(PLTLIB): $(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC)
	$(AR) $(PLTLIB) $(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC)
	$(RANLIB) $(PLTLIB)

test: $(PLTLIB)
	(cd examples; make test)

###---
Utility functions - install the library, clean the directory

install: $(PLTLIB)
	mv $(PLTLIB) $(INSTALLDIR)
	$(RANLIB) $(INSTALLDIR)/$(PLTLIB)

clean:
	-/bin/rm $(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC)
	-/bin/rm $(PLTLIB)
	-/bin/rm plot*.ps
	(cd examples; make clean)

###---
compile plot package routines

plt_base.o: plt_base.f pltlib.inc
	$(FC) -c $(FFLAGS) plt_base.f

plt_color.o: plt_color.f pltlib.inc
	$(FC) -c $(FFLAGS) plt_color.f

plt_font.o: plt_font.f CHAR.INC SLAN.INC MATH.INC SYMB.INC
	$(FC) -c $(FFLAGS) plt_font.f

plt_util.o: plt_util.f
	$(FC) -c $(FFLAGS) plt_util.f

plt_3D.o: plt_3D.f
	$(FC) -c $(FFLAGS) plt_3D.f

plt_old.o: plt_old.f pltlib.inc
	$(FC) -c $(FFLAGS) plt_old.f

set_subs.o: set_subs.f pltlib.inc
	$(FC) -c $(FFLAGS) set_subs.f

gw_subs.o: gw_subs.f pltlib.inc
	$(FC) -c $(FFLAGS) gw_subs.f

ps_subs.o: ps_subs.f pltlib.inc
	$(FC) -c $(FFLAGS) ps_subs.f

util-ops.o: util-ops.f
	$(FC) -c $(FFLAGS) util-ops.f

Xwin.o: Xwin.c
	$(CC) -c $(CFLAGS) Xwin.c

May need to specify these on a brain-dead make system
#.f.o:	$(FC) -c $(FFLAGS) $<
#.c.o:	$(CC) -c $(CFLAGS) $<

XFOILinterface/XFOIL/bin/Makefile

#***
Makefile for XFOIL V6.93 programs
H.Youngren 4/24/01
M.Drela
#***

SHELL = sh
#BINDIR = $(HOME)/bin/
BINDIR = .

PROGS = xfoil pplot pxplot

SRC = ../src
OSRC = ../orrs/src

XFOILOBJ = xfoil.o xpanel.o xoper.o xtcam.o xgdes.o xqdes.o xmdes.o \
xsolve.o xbl.o xblsys.o xpol.o xplots.o pntops.o xgeom.o xutils.o modify.o \
blplot.o polplt.o aread.o naca.o spline.o plutil.o iopol.o gui.o sort.o \
dplot.o profil.o

PPLOTOBJ = pplot.o polplt.o sort.o iopol.o
PXPLOTOBJ = pxplot.o plutil.o gui.o

XUTILOBJ = userio.o

FTNLIB =

##--
OSOBJ = frplot0.o

Use this for individual TS-wave frequency plotting
OSOBJ = frplot.o ntcalc.o osmap.o

##--
PLTOBJ = ../plotlib/libPlt.a

Use this if you have a copy of the plotlib as a system library
#PLTOBJ = -lPlt

The extra location arg here is for Linux which places X libs in /usr/X11R6
PLTLIB = -L/usr/X11R6/lib -lX11

###==
Default compilers and flags
FFLOPT used for xsolve.f
FC = f77
FFLAGS = -O
FFLOPT = -O
INSTALLCMD = install -s
##--------------------------

Uncomment flags for desired machine...

##--------------------------
DEC Alpha with OSF and DEC f77/f90 compiler
#FC = f77
#FFLAGS = -fast -O4 -tune host
#FFLOPT = -fast -O4 -tune host
#FFLOPT = -fast -O5 -tune host -unroll 3
Debug flags
#FFLAGS = -O0 -g
#FFLOPT = -fast -O4 -tune host
##--------------------------
SGI setup
#FC = f77
#FFLAGS = -O2 -static
#FFLOPT = -O2 -static
##--------------------------
Uncomment for RS/6000
#FFLAGS = -O -qextname
#FFLOPT = -O -qextname
##--------------------------
Uncomment for HP-9000
#FFLAGS = -O +ppu
#FFLOPT = -O +ppu
#FTNLIB = -U77
##--------------------------
Absoft Linux f77
#FC = f77
#FFLAGS = -O -f -s -W -B108 -N34
#FFLOPT = -O -f -s -W -B108 -N34
##--------------------------
f2c/gcc compiler driver
#FC = fort77
#FFLAGS = -O2 -fomit-frame-pointer
#FFLOPT = -O2 -fomit-frame-pointer
##--------------------------
GNU g77
#FC = g77
#FFLAGS = -O3 -fomit-frame-pointer
#FFLOPT = -O3 -fomit-frame-pointer
Debug flags (symbols, array bounds)
#FC = g77
#FFLAGS = -g -O0 -C
##--------------------------
Intel Fortran Compiler
FC = ifort
FFLAGS = -O
FFLOPT = -O
#FTNLIB = -Vaxlib /usr/lib/C-ctype.o /usr/lib/C_name.o /usr/lib/ctype-info.o
#FTNLIB = -Vaxlib
FTNLIB = -Vaxlib -i_dynamic

##--------------------------
Double precision option
FFLAGS = -O -r8
FFLOPT = -O -r8
PLTOBJ = ../plotlib/libPltDP.a

all:	 $(PROGS)

install:
	$(INSTALLCMD) $(PROGS) $(BINDIR)

clean:
	-/bin/rm $(PROGS)
	-/bin/rm $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PPLOTOBJ) $(PXPLOTOBJ)
#	-/bin/rm *.o

xfoil: $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ)
	$(FC) -o xfoil $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB)

pxplot:	$(PXPLOTOBJ) $(XUTILOBJ)
	$(FC) -o pxplot $(PXPLOTOBJ) $(XUTILOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB)

pplot:	$(PPLOTOBJ) $(XUTILOBJ)
	$(FC) -o pplot $(PPLOTOBJ) $(XUTILOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB)

xfoil.o: $(SRC)/xfoil.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLAGS) $(SRC)/xfoil.f
xpanel.o: $(SRC)/xpanel.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLOPT) $(SRC)/xpanel.f
xoper.o: $(SRC)/xoper.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLAGS) $(SRC)/xoper.f
xsolve.o: $(SRC)/xsolve.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLOPT) $(SRC)/xsolve.f
dplot.o: $(SRC)/dplot.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLOPT) $(SRC)/dplot.f
xtcam.o: $(SRC)/xtcam.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
	$(FC) -c $(FFLAGS) $(SRC)/xtcam.f
xgdes.o: $(SRC)/xgdes.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
	$(FC) -c $(FFLAGS) $(SRC)/xgdes.f
xqdes.o: $(SRC)/xqdes.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
	$(FC) -c $(FFLAGS) $(SRC)/xqdes.f
xmdes.o: $(SRC)/xmdes.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC $(SRC)/CIRCLE.INC
	$(FC) -c $(FFLAGS) $(SRC)/xmdes.f
xbl.o: $(SRC)/xbl.f $(SRC)/XFOIL.INC $(SRC)/XBL.INC
	$(FC) -c $(FFLAGS) $(SRC)/xbl.f
xblsys.o: $(SRC)/xblsys.f $(SRC)/XBL.INC
	$(FC) -c $(FFLAGS) $(SRC)/xblsys.f
xplots.o: $(SRC)/xplots.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLAGS) $(SRC)/xplots.f
pntops.o: $(SRC)/pntops.f $(SRC)/XFOIL.INC $(SRC)/XDES.INC
	$(FC) -c $(FFLAGS) $(SRC)/pntops.f
blplot.o: $(SRC)/blplot.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLAGS) $(SRC)/blplot.f
xpol.o: $(SRC)/xpol.f $(SRC)/XFOIL.INC
	$(FC) -c $(FFLAGS) $(SRC)/xpol.f
xgeom.o: $(SRC)/xgeom.f
	$(FC) -c $(FFLAGS) $(SRC)/xgeom.f
xutils.o: $(SRC)/xutils.f
	$(FC) -c $(FFLAGS) $(SRC)/xutils.f
modify.o: $(SRC)/modify.f
	$(FC) -c $(FFLAGS) $(SRC)/modify.f
aread.o: $(SRC)/aread.f
	$(FC) -c $(FFLAGS) $(SRC)/aread.f
naca.o: $(SRC)/naca.f
	$(FC) -c $(FFLAGS) $(SRC)/naca.f
plutil.o: $(SRC)/plutil.f
	$(FC) -c $(FFLAGS) $(SRC)/plutil.f
userio.o: $(SRC)/userio.f
	$(FC) -c $(FFLAGS) $(SRC)/userio.f
gui.o: $(SRC)/gui.f
	$(FC) -c $(FFLAGS) $(SRC)/gui.f
spline.o: $(SRC)/spline.f
	$(FC) -c $(FFLAGS) $(SRC)/spline.f
sort.o: $(SRC)/sort.f
	$(FC) -c $(FFLAGS) $(SRC)/sort.f
profil.o: $(SRC)/profil.f
	$(FC) -c $(FFLAGS) $(SRC)/profil.f

polplt.o: $(SRC)/polplt.f $(SRC)/PINDEX.INC
	$(FC) -c $(FFLAGS) $(SRC)/polplt.f
iopol.o: $(SRC)/iopol.f $(SRC)/PINDEX.INC
	$(FC) -c $(FFLAGS) $(SRC)/iopol.f

pplot.o: $(SRC)/pplot.f $(SRC)/PPLOT.INC
	$(FC) -c $(FFLAGS) $(SRC)/pplot.f
pxplot.o: $(SRC)/pxplot.f $(SRC)/PXPLOT.INC
	$(FC) -c $(FFLAGS) $(SRC)/pxplot.f

frplot0.o: $(SRC)/frplot0.f
	$(FC) -c $(FFLAGS) $(SRC)/frplot0.f
frplot.o: $(SRC)/frplot.f
	$(FC) -c $(FFLAGS) $(SRC)/frplot.f
ntcalc.o: $(SRC)/ntcalc.f
	$(FC) -c $(FFLAGS) $(SRC)/ntcalc.f

osmap.o: $(OSRC)/osmap.f
	$(FC) -c $(FFLAGS) $(OSRC)/osmap.f

XFOILinterface/XFOIL/orrs/bin/Makefile_DP

SRC = ../src
PLTOBJ = /var/local/codes/Xplot/libPltDP.a

#==
Default compiler flags
FC = f77
FLG = -O -r8
PLTLIB = -lX11
FTNLIB =

#==
Uncomment for Intel Fortran Compiler
FC = ifc
FLG = -O -r8
PLTLIB = -L/usr/X11R6/lib -lX11
FTNLIB = -Vaxlib

#==

OS: osgen osmap.o

osgen: osgen.o io.o spline.o getarg0.o
	$(FC) -o osgen osgen.o io.o spline.o getarg0.o $(FTNLIB)
fscorr: fscorr.o fs.o
	$(FC) -o fscorr fscorr.o fs.o $(PLTOBJ) $(PLTLIB)
fsrun: fsrun.o fs.o
	$(FC) -o fsrun fsrun.o fs.o $(PLTOBJ) $(PLTLIB)
intai: intai.o osmap.o plutil.o
	$(FC) -o intai intai.o osmap.o plutil.o $(PLTOBJ) $(PLTLIB)
mappl1: mappl1.o ask1.o conlab.o
	$(FC) -o mappl1 mappl1.o ask1.o conlab.o $(PLTOBJ) $(PLTLIB)
ncorr: ncorr.o fs.o
	$(FC) -o ncorr ncorr.o fs.o $(PLTOBJ) $(PLTLIB)
osrun: osrun.o fs.o orrs.o ospres.o plutil.o userio.o getarg0.o
	$(FC) -o osrun osrun.o fs.o orrs.o ospres.o \
plutil.o userio.o getarg0.o $(PLTOBJ) $(PLTLIB) $(FTNLIB)
osseq: osseq.o fs.o orrs.o ospres.o plutil.o userio.o getarg0.o
	$(FC) -o osseq osseq.o fs.o orrs.o ospres.o \
plutil.o userio.o getarg0.o $(PLTOBJ) $(PLTLIB) $(FTNLIB)
pfplot: pfplot.o fs.o ask1.o
	$(FC) -o pfplot pfplot.o fs.o ask1.o $(PLTOBJ) $(PLTLIB)
roll: roll.o
	$(FC) -o roll roll.o $(PLTOBJ) $(PLTLIB) $(FTNLIB)
as2bi: as2bi.o io.o getarg0.o
	$(FC) -o as2bi as2bi.o io.o getarg0.o $(FTNLIB)
bi2as: bi2as.o io.o getarg0.o
	$(FC) -o bi2as bi2as.o io.o getarg0.o $(FTNLIB)
bi2bi: bi2bi.o io.o getarg0.o
	$(FC) -o bi2bi bi2bi.o io.o getarg0.o $(FTNLIB)
otest: otest.o osmap.o
	$(FC) -o otest otest.o osmap.o
osweep: osweep.o osmap.o
	$(FC) -o osweep osweep.o osmap.o

osgen.o: $(SRC)/osgen.f
	$(FC) -c $(FLG) $(SRC)/osgen.f
orrs.o: $(SRC)/orrs.f $(SRC)/ORRS.INC
	$(FC) -c $(FLG) $(SRC)/orrs.f
ospres.o: $(SRC)/ospres.f $(SRC)/OSPRES.INC
	$(FC) -c $(FLG) $(SRC)/ospres.f
pfplot.o: $(SRC)/pfplot.f
	$(FC) -c $(FLG) $(SRC)/pfplot.f
fscorr.o: $(SRC)/fscorr.f
	$(FC) -c $(FLG) $(SRC)/fscorr.f
fsrun.o: $(SRC)/fsrun.f
	$(FC) -c $(FLG) $(SRC)/fsrun.f
fs.o: $(SRC)/fs.f
	$(FC) -c $(FLG) $(SRC)/fs.f
io.o: $(SRC)/io.f
	$(FC) -c $(FLG) $(SRC)/io.f
intai.o: $(SRC)/intai.f
	$(FC) -c $(FLG) $(SRC)/intai.f
mappl1.o: $(SRC)/mappl1.f
	$(FC) -c $(FLG) $(SRC)/mappl1.f
ncorr.o: $(SRC)/ncorr.f
	$(FC) -c $(FLG) $(SRC)/ncorr.f
osmap.o: $(SRC)/osmap.f
	$(FC) -c $(FLG) $(SRC)/osmap.f
osrun.o: $(SRC)/osrun.f
	$(FC) -c $(FLG) $(SRC)/osrun.f
osseq.o: $(SRC)/osseq.f
	$(FC) -c $(FLG) $(SRC)/osseq.f
roll.o: $(SRC)/roll.f
	$(FC) -c $(FLG) $(SRC)/roll.f
otest.o: $(SRC)/otest.f
	$(FC) -c $(FLG) $(SRC)/otest.f
osweep.o: $(SRC)/osweep.f
	$(FC) -c $(FLG) $(SRC)/osweep.f

spline.o: $(SRC)/spline.f
	$(FC) -c $(FLG) $(SRC)/spline.f
conlab.o: $(SRC)/conlab.f
	$(FC) -c $(FLG) $(SRC)/conlab.f
plutil.o: $(SRC)/plutil.f
	$(FC) -c $(FLG) $(SRC)/plutil.f
ask1.o: $(SRC)/ask1.f
	$(FC) -c $(FLG) $(SRC)/ask1.f
userio.o: $(SRC)/userio.f
	$(FC) -c $(FLG) $(SRC)/userio.f
getarg0.o: $(SRC)/getarg0.f
	$(FC) -c $(FLG) $(SRC)/getarg0.f

XFOILinterface/XFOIL/plotlib/misc/makesplitlib

#!/bin/csh
Shell script for making split version of the Xplot11 library
The split version allows one to link to routines of the same name without
fatal link errors as each module can be extracted as needed.
#
This makes a subdirectory ../merge in the Xplot11 source directory
that contains an fsplit version of the source files. It then compiles
these to make objects, then a library in a crude hack (no makefile).
The resulting library is placed in this directory as libPlt-split.a for
the user to do what he wishes.
HHY 8/30/96

Optionally get f77 flags from #1 argument to makesplitlib
i.e. makesplitlib "-I../foobar -O4 -r8"

set f77flags = "-O2"
set f77 = "g77"
set fsplit = "fsplit-gup"

if ($1 != "") set f77flags = $1
echo "Using fortran compile flags ($f77flags) (option set by arg 1)"

echo "Creating ../merge subdirectory"
if !(-e ./merge) mkdir merge

cd merge

echo "Starting fsplit of all files in Xplot11 directory"
foreach file (../*.f)
 echo "Splitting $file"
 $fsplit $file
end

echo "Compiling all split fortran files..."
foreach file (*.f)
 $f77 -c $f77flags -I../ $file
end

echo "Compiling the C interface file"
cc -c -O -I../ ../Xwin.c

echo "Making library from objects"
ar -r libPlt-split.a *.o

echo "Moving library to main Xplot11 directory"
mv libPlt-split.a ..

exit

XFOILinterface/XFOIL/plotlib/Notes

/***
 Module: Notes

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

Xplot11
C Version 4.46 11/28/01

Released under GNU Library License 8/5/96

Notes:

These routines can be compiled either single or double precision by simply
setting a flag in the Makefile. No source changes.

Two makefiles are supplied, one single precision, one double precision.
Make a link to one to define the Makefile (eg. ln -s Makefile.SP Makefile)

An option exists for the old Versatec compatibility routine SYMBOL (in
plt_old.f) to take an integer or byte argument containing either the string
or an integer specifying a plot symbol. The current arrangement uses
character string arguments and handles plot symbols with the SYMBL routine.
This problem comes up with f77 compilers that do not support the older style
cramming of literal characters into an integer argument. These compilers
add additional length arguments to the argument list for literal character
strings that are flagged as errors by the compiler (this happens for BSD f77
compilers). If you want old-style Versatec SYMBOL calls look at plt_old.f
and make the suggested source changes. You do lose the ability to call
SYMBOL with character variables but you can always use the newer PLCHAR
to plot character strings.

The only known bugs at this time are:

On IBM AIX systems there appears to be a compiler bug with the xlf compiler
that shows up when compiling the library double precision. The polyline
routines are affected, getting every other data point. This was discovered
in July 1996, compiler version unknown. No fix, doesn't affect the single
precision library or other routines in double precision.

Some Xservers have shown problems with the grid routines, this showed up on
OSF 3.2 on the DEC Alpha with the 8 bit X server running on a Mach32 card.
The characteristic is that the masked grid lines show the wrong background
color. This is a server error, complain to your vendor.

Version 4.33 8/30/96

Added logfile for complex plots, fixed xaxis, yaxis to allow non-annotated
but hash-marked axes. Fixes to ps_linepattern to limit to 8 pattern entries.

Note: to make a more versatile library it may be better to break the routines
that make up the library into separate modules to permit linking with routines
of the same name that are user supplied. This will probably be done later but,
if you need to make a split library you can always use the makesplitlib shell
script provided here (crude but it works).

Additional notes 9/5/96

Changes were made to the ps_subs.f and Xwin.c to improve the linepattern
routines, separating the fortran and C code a bit more with a fortran version
of mskbits (bitpat) for the postscript side. The Makefile.DP was changed
to make the DP version of Xplot11 work with xlf90 on the RS6000. This really
should go in the new version (4.34)...HHY

Version 4.34 10/30/96

Changes were made to the bitpat routine in ps_subs.f to replace the iand() and ishft() calls with and() and rshift() calls that are more universal with f77 compilers, in particular f2c which is used on Linux. Note that if you have any trouble with these calls you might replace and(xxx,yyy) with iand(xxx,yyy) and rshift(xxx,n) with ishft(xxx,-n)...HHY

Version 4.35 2/6/97

Fixed logfile to work for plots that replot and then add plot items. Now
the block size is written before each block of log data. Makefiles revised.
Linux makefile added that includes target for shared ELF library. ...HHY

Version 4.36 2/24/97

Updated symbol definitions in sym directory and in the xxx.INC character
font include files.

Version 4.37 6/24/97

Includes MD fix for XAXIS/YAXIS buglet of 5/24/97
Includes HY fix for AXISADJ bug of 4/97
Includes MD fix for gw_curs calling bug of 6/28/97

HY & MD

Version 4.38 3/8/98 HY

Fixed bug for unfilled polylines that do not close and are "closed"
automatically but incorrectly by the Sutherland-Hodgman clipper. These
unfilled polylines are now processed by the regular line clipper by plotting
them as separate line segments.

Added double-buffering by defining pixmap and three new routines to set
graphics destination (screen or buffer) and display buffer contents to screen.

Fixed bug in fortran passing of string colornames to C interface routines
(problem showed up for fortran's that did not terminate strings with nulls).

Fixed buffering bug (initializing counter) for plot primitive overflow file.

Version 4.39 5/3/98 HY

Fixed bug in GETCOLOR index assignments (index hack, off by 1)

Fixed C compiler warning on n = n++ in Xwin.c

More cleanup of gwxcolorname2rgb in Xwin.c, added error message for color name
truncation

Put optional defines for UNDERSCORE to improve portability of fortran to C
interface in Xwin.c for all C routine names.

Added integer declarations for AND to plt_old.f for Absoft f77

Added to documentation a bit...

Version 4.39a 6/12/98

Discovered bug in ancient LINE routine for lines plotted with symbols only.

Version 4.41 7/5/98 HHY

Problems with window resizing on Linux for XROTOR prompted changes to gw_subs.f
and Xwin.c to ensure that a resized window (resized using the PLOTS call)
properly changes size before any plotting is done in it. This is done by
repetitively calling the window status until the resized window actually
changes size.

Version 4.42 12/10/98 HHY

Bug found in ps_subs.f for linepatterns with longer dot patterns. Used
nsegmax rather than nseg for writing pattern to .ps file.
Revised Makefiles.

Version 4.43 6/99 HHY

Bug fixes. Revised Makefiles. No recollection of other changes...

Version 4.44 10/19/00 HHY

Bug fixes. Problem found in plt_color.f for error return value check from
ired in gw_cname2rgb(colorname,ired,igreen,iblue) causing bad color table
mapping for colors with red component=0.
Revised ps_setup.f and plt_base.f to clean up flags for hardcopy processing.

Added capability to specify nunit<0 for separate sequential "plotNNN.ps" files
for each plot. Changed name of plot file for specified unit number to
"plotunitNNN.ps" to keep distinct from separate plot files.

Revised Notes, Doc files. Added Makefile.SP and Makefile.DP to main and
example directories

Version 4.45 01/22/01 HHY

Bug fixes. Problem found in plt_base.f for handling end of postscript plot.
 Changed gw_subs.f to put initial cursor warp to middle of window
 into initialization code (fix from MD 02/26/01).
 Fix to plt_util.f AXISADJ routine to correct ntics value.

 New alternate Makefile.SPnew,Makefile.DPnew,config.make make
 options that consolidate compiler settings into config.make file.

Version 4.46 10/28/01 HHY

Bug fixes. Problem found in ps_subs.f where Postscript DSC conventions
 were not followed on %%Page line in postscript output.

 Fix added to properly close each postcript plot before starting
 a new plot.

 Revised Makefiles.
 Revised Notes file.

XFOILinterface/XFOIL/plotlib/misc/README

This directory contains random, outdated but potentially useful info or
Makefiles.

You may need to read through these and change things substantially to get them working on your machine. They may be of some help.

makesplitlib Script for making a libPlt.a with each routine in a separate
 object file. This may be necessary if you want to change
 particular subroutines within the plotlib with your own
 versions and get them to link. The current library archives
 all the routines within a source file into one linkable entity.

Makefile.linux.shared This makefile was used to make a shared object (ELF)
 library for Linux. If you know what this means I don't
 really need to tell you more.

Readme.absoft Discusses the quirks of the Absoft Fortran compiler(s). The
 Linux versions were the ones specifically addressed here.

XFOILinterface/XFOIL/README

General

XFOIL and its plot library should compile on any Unix system
with normal Fortran-77, C, and X-Windows support. So far,
XFOIL has been tested on the following systems:

 DEC-5000
 Alpha
 SGI
* Sun
* RS/6000
* HP-9000
* Pentium/Linux

The systems marked with "*" have peculiar features which require slight
modifications to the Makefiles in the plotlib/ and bin/ directories.
Examine these Makefiles before building the plot library and XFOIL.

Build sequence

1) Build Orr-Sommerfeld database in ./orrs

 % cd orrs

Follow directions in orrs/README

2) Build the plot library in ./plotlib ...

 % cd plotlib
 % edit Makefile (set compiler flags for your machine)
 % make libPlt.a

3) Build the programs in ./bin ...

 % cd bin
 % edit Makefile (set compiler flags for your machine)
 % make xfoil
 % make pplot
 % make pxplot

Documentation

User Guide is in the xfoil.doc file. If impatient, you can just
run XFOIL in the runs/ directory, which contains a few input files:

 % cd runs
 % ../bin/xfoil

The file session.txt contains keyboard inputs for a typical interactive
session. If one is lost when running XFOIL, typing a "?" at any command
prompt, e.g.

 .GDES c> ?

will always produce a keyboard command menu.

XFOILinterface/XFOIL/plotlib/sym/Readme

/***
 Module: Readme

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

This directory contains programs and routines for creating,
modifying, and using vector fonts.

PROGRAM SYMGEN is an interactive program for creating or modifying
font description files XXXX.FNT, and is invoked with

 % make symgen (requires ../libPlt.a)
 % symgen XXXX

The header of symgen.f has a description of the format of
a XXXX.FNT file, although this is of no concern to the user.
SYMGEN can create an include file XXXX.INC which has the
font encoding placed into Fortran DATA statements. XXXX.INC
is then compiled with a Versaplot SYMBOL-type routine which
is used in applications.

Four sample databases, include files, and application routines
already exist. The application routines are in ../plt_font.f:

 CHAR.FNT CHAR.INC SUBR. PLCHAR (Upper,lower case letters, WYSIWYG)
 SLAN.FNT SLAN.INC SUBR. PLSLAN (Upper,lower case slanted letters)
 MATH.FNT MATH.INC SUBR. PLMATH (Latex-like Greek symbols, exponents)
 SYMB.FNT SYMB.INC SUBR. PLSYMB (Versaplot plotting symbols)

 also available: SUBR. PLNUMB (Whole floating-point numbers)

One can generate analogous files and plot routines for any
custom font, e.g.

 USER.FNT USER.INC SUBR. PLUSER

PROGRAM TEST plots the complete CHAR, SLAN, MATH, and SYMB fonts,
and also plots sample character strings for examination.

 % make test
 % test

Mark Drela
10 March 96

XFOILinterface/XFOIL/orrs/README

Orr-Sommerfeld Computation and Database Package
Last update: 2 Aug 04
Mark Drela, MIT Aero & Astro

===
Execute the following commands to enable OS-database lookup table routine.
Start in the directory containing this README file.

% pwd
% cd src
% edit osmap.f

1) Find the following line in osmap.f (roughly line 100) :

 DATA OSFILE / '/var/local/codes/orrs/osmap.dat' /

 Take the absolute directory string which is generated
 by the pwd command above, paste it in front of the
 osmap.dat filename, e.g.

 DATA OSFILE / '/usr/whatever/orrs/osmap.dat' /

 This statement will tell SUBROUTINE OSMAP where to
 find this table data file.

2) Find the following line in osmap.f (roughly line 75):

 REAL*4 RLSP, WLSP, HLSP,
 & RINCR, WINCR, RL, WL, HL,
 & A, AR, AW, AH, ARW, ARH, AWH, ARWH

If you choose to use single-precision for the OS data file (should be adequate),
leave this line as is. If you wish to do everything in double precision,
change the REAL*4 to REAL.

% cd ../bin
% edit Makefile
 Change the compiler flags to match the Fortran compiler on your system.
 Use Makefile_DP for double-precision OS database file.

% make osgen OR make -f Makefile_DP osgen
% make osmap.o
% cd ..

% bin/osgen osmaps_ns.lst (creates binary file osmap.dat)

SUBROUTINE OSMAP is now enabled. Programs which call it must
be linked with the object file bin/osmap.o

===
Brief description of relevant files.

 osm.0220
 osm.0230
 osm.0240
 osm.0250
 osm.0260
 osm.0270
 osm.0280
 osm.0300
 osm.0320
 osm.0350
 osm.0400
 osm_ns.0500
 osm_ns.0600
 osm_ns.0800
 osm_ns.1000
 osm_ns.1200
 osm_ns.1500
 osm_ns.2000

These contain the data defining the alpha(H,Re,w) function, in ascii format.
Program osgen reads and collates this data into one binary file osmap.dat .
Each file contains data from a constant-H "slice" through the (H,Re,w) space.
The suffix indicates the H value:

 osm.0220 is for H=2.20
 osm.0230 is for H=2.30, etc

The mean-flow U(y) and dU/dy profiles which were used by the OS solver
to generate each slice is contained in each osm.xxxx file near the top.
SUBROUTINE READOS (src/io.f) can be used to extract these mean-flow profiles.

The profiles in osm.0220 through osm.0400 are the Falkner-Skan similarity
profiles for attached flow. The profiles in osm_ns.0500 through osm_ns.2000
are non-similar separated-flow profiles, which have smaller reverse flow
velocities than the alternative Falkner-Skan profiles with the same H.
The non-similar profiles are a better match to actual profiles found
in typical separation bubbles.

===
Other useful routines.

 fs.f Generates Falkner-Skan profiles

 orrs.f Solves Orr-Sommerfeld spatial or temporal-stability problem

XFOILinterface/XFOIL/plotlib/Readme

/***
 Module: Readme

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

C Version 4.46 11/28/01

Make the plotlib under Unix by:

 Before anything is compiled, the config.make file needs to be changed
 to reflect your compiler and library options. Two versions of config.make
 are supplied (config.make.SP and config.make.DP) which contain options for
 making single and double precision versions of the plotlib. Note that there
 are sample declarations several architectures in the Makefile, you may need
 to be comment or uncomment options for your machine. Note that under Unix
 you can simply make a symbolic link to one of these config.make.xx files to
 define config.make using:

 %ln -s config.make.SP config.make

 Then do the make using
 % make

Make the plotlib under Windoze:

 You need Visual C and either the Compaq Visual Fortran compiler or the Intel
 Fortran compiler. You should check the options in Makefile.NT to ensure that
 they match your system. The supplied files match the Intel Fortran compiler.

 Compile and link with command in DOS window:
 C:\Xfoil\plotlib: cd win32
 C:\Xfoil\plotlib\win32: nmake /f Makefile.NT

 This places all the .obj files in the win32 directory and copies libPltxx.lib
 to the parent plotlib directory.

 Alternatively you could load all the files into a Visual Studio project and
 create the library that way.

To create plot library libPlt.a (single precision) you can normally just type:
 % make
 provided the file config.make matches your machine. The supplied config.make
 matches the config.make.SP single precision options file.

To create plot library libPltDP.a (double precision version):
 Link or copy file config.make.DP to config.make and check that the options
 match your machine. Then type:
 % make

If you don't have a file config.make.DP your alternative is to to this:
 go into the config.make and uncomment the line
#PLTLIB = libPltDP.a
 set the DP flag for your compiler (uncomment appropriate line) and then:
 % make

To install plot library libPlt.a:
 check the config.make and Makefile for proper install options and
 destination for your system
 % make install

To create test, example and color selection programs (all optional):
 % make test

OR, go into the examples directory and do a:
 % make

if you want to put the examples in the parent library directory as well:
 % make test

To create the test and examples under Windoze:
 C:\Xfoil\plotlib: cd examples
 C:\Xfoil\plotlib\examples: nmake /f Makefile.NT

To set black-on-white video, define Unix variable as follows:
 % setenv XPLOT11_BACKGROUND white

To restore white-on-black video:
 % unsetenv XPLOT11_BACKGROUND

See the following files for more info:

 Doc Discussion, sample application calls, some routine descriptions
 pltlib.inc Description of all global plot data (for tinkering with source)

 plt_base.f Routine headers describe call lists
 plt_font.f "
 plt_util.f "
 plt_color.f "
 plt_3D.f "

 sym/Readme Description of vector font generation and/or modification

 Readme-examples Description of test and example programs		
 Readme.absoft Info on Absoft Linux f77 for Xplot11 compile

examples/Readme-examples

XFOILinterface/XFOIL/plotlib/examples/Readme-examples

/***
 Module: Readme-examples

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

Make the test programs under Unix by:

change options in ../config.make to match your environment
 % make

Make the test programs under Windoze:

You need Visual C and either the Compaq Visual Fortran compiler or the Intel
Fortran compiler.
compile and link with command in DOS window:

C:\Xfoil\plotlib\examples: nmake /f Makefile.NT

Sample and test programs

volts.f - demo program that draws a simple, labeled plot with axes.

volts_old.f - demo program that draws a simple, labeled plot with axes.
 (uses old "Versatec" plot calls)

squares.f - draws a sine wave in colored boxes, has colored labels

squaresdoublebuff.f - demo of double buffering, draws a sine wave in colored
 boxes that cycle across the sine wave w/o flickering

gridtest.f - tests the grid routines (obvious, aren't we...)

symbols.f
symbolsall.f - display and test the vector fonts

cmap2.f
cmap3.f - used for interactive viewing of RGB color components:

zoomtest.f - test of zooming

contest.f - test of contouring primitives for color, filled contours

defmap.f - displays the default colormap produced by CALL COLORMAPDEFAULT

spectrum.f - displays the "Spectrum" produced by
 CALL COLORSPECTRUMHUES(ncols, RYGCBM_string)
 in pie and bar form.

 Typical values for RYGCBM_string might be
 'RYG'
 'GYR'
 'MCY'
 'BMRY'
 'BCGYR', etc.

 Choosing strongly non-contiguous sequences like 'RCB' is OK,
 but will make a horrid-looking Spectrum.

sym/test.f - display current vector fonts

XFOILinterface/XFOIL/plotlib/win32/Readme-win32

Make the plotlib under Windoze:

 You need Visual C and either the Compaq Visual Fortran compiler or the Intel
 Fortran compiler. You should check the options in Makefile.NT to ensure that
 they match your system. The supplied files match the Intel Fortran compiler.

 Compile and link with command in DOS window:
 C:\Xfoil\plotlib: cd win32
 C:\Xfoil\plotlib\win32: nmake /f Makefile.NT

 This places all the .obj files in the win32 directory and copies libPltxx.lib
 to the parent plotlib directory.

 Alternatively you could load all the files into a Visual Studio project and
 create the library that way.

XFOILinterface/XFOIL/runs/xplot11_logfile

XFOILinterface/XFOIL/orrs/uv.ps

XFOILinterface/XFOIL/src/BLPAR.INC

 COMMON /BLPAR/
 & SCCON,
 & GACON,
 & GBCON,
 & GCCON,
 & DLCON,
 & CTRCON,
 & CTRCEX,
 & DUXCON,
 & CTCON

XFOILinterface/XFOIL/plotlib/CHAR.INC

C Version 4.46 11/28/01

 CHARACTER* 92 CHARS
 INTEGER NODE(20, 92)

 DIMENSION NODE0(20,10)
 DIMENSION NODE1(20,10)
 DIMENSION NODE2(20,10)
 DIMENSION NODE3(20,10)
 DIMENSION NODE4(20,10)
 DIMENSION NODE5(20,10)
 DIMENSION NODE6(20,10)
 DIMENSION NODE7(20,10)
 DIMENSION NODE8(20,10)
 DIMENSION NODE9(20, 2)
 EQUIVALENCE (NODE(1, 1) , NODE0(1,1))
 EQUIVALENCE (NODE(1, 11) , NODE1(1,1))
 EQUIVALENCE (NODE(1, 21) , NODE2(1,1))
 EQUIVALENCE (NODE(1, 31) , NODE3(1,1))
 EQUIVALENCE (NODE(1, 41) , NODE4(1,1))
 EQUIVALENCE (NODE(1, 51) , NODE5(1,1))
 EQUIVALENCE (NODE(1, 61) , NODE6(1,1))
 EQUIVALENCE (NODE(1, 71) , NODE7(1,1))
 EQUIVALENCE (NODE(1, 81) , NODE8(1,1))
 EQUIVALENCE (NODE(1, 91) , NODE9(1,1))
 DATA NCHARS / 92 /
 DATA CHARS(1: 26) / 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' /
 DATA CHARS(27: 52) / 'abcdefghijklmnopqrstuvwxyz' /
 DATA CHARS(53: 78) / '0123456789,.;:`"!?@#$%&|()' /
 DATA CHARS(79: 92) / '[]{}<>_+-*=/^~' /
 DATA NODE0 /
 & 21616,11672,12183,12888,14488,15183,15672,15616,21650,15650,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,11688,14288,15284,15676,15668,15260,14256,15252,15644,
 & 15628,15220,14216,11616,21656,14256, 0, 0, 0, 0,
 & 25674,15183,14488,12888,12183,11672,11632,12121,12816,14416,
 & 15121,15629, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21416,14416,15121,15632,15672,15183,14488,11488,21816,11888,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25616,11616,11688,15688,21656,14756, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,11688,15688,21656,14656, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25674,15183,14488,12888,12183,11672,11632,12121,12816,14416,
 & 15121,15632,15650,14050, 0, 0, 0, 0, 0, 0,
 & 21616,11688,25616,15688,21656,15656, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23888,13816,22616,15016,22688,15088, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21430,11921,12616,13916,14621,15132,15188,25788,13688, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE1 /
 & 21688,11616,25688,11645,22858,15616, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22088,12016,16016, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21416,11488,13648,15888,15816, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,11688,15616,15688, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21632,11672,12183,12888,14488,15183,15672,15632,15121,14416,
 & 12816,12121,11632, 0, 0, 0, 0, 0, 0, 0,
 & 21616,11688,14288,15283,15676,15662,15255,14250,11650, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21632,11672,12183,12888,14488,15183,15672,15632,15121,14416,
 & 12816,12121,11632,24131,15616, 0, 0, 0, 0, 0,
 & 21616,11688,14288,15283,15676,15662,15255,14250,11650,24250,
 & 15816, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25676,15183,14288,13088,12183,11674,11670,12161,13056,14256,
 & 15151,15642,15630,15121,14216,13016,12121,11630, 0, 0,
 & 23688,13616,21488,15888, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE2 /
 & 21688,11632,12121,12816,14416,15121,15632,15688, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21688,11682,13616,15682,15688, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21488,11452,11639,12516,13437,13646,13837,14716,15639,15852,
 & 15888,23646,13654, 0, 0, 0, 0, 0, 0, 0,
 & 21688,11682,15622,15616,25688,15682,11622,11616, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21688,11682,13656,15682,15688,23656,13616, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21688,15688,11616,15616,22756,14556, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22064,14264,15159,15650,15616,25642,12842,12038,11630,11628,
 & 12020,12816,14416,15220,15628, 0, 0, 0, 0, 0,
 & 21888,11816,21852,12260,13064,14664,15460,15852,15828,15420,
 & 14616,13016,12220,11828, 0, 0, 0, 0, 0, 0,
 & 25652,15260,14464,12864,12060,11652,11628,12020,12816,14416,
 & 15220,15628, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25488,15416,25452,15060,14264,12664,11860,11452,11428,11820,
 & 12616,14216,15020,15428, 0, 0, 0, 0, 0, 0 /
 DATA NODE3 /
 & 25626,15220,14416,12816,12020,11628,11652,12060,12864,14464,
 & 15260,15652,15641,11641, 0, 0, 0, 0, 0, 0,
 & 26072,15680,14884,13684,12880,12472,12416,21656,14256, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,12008,12804,14404,15208,15616,15664,25652,15260,14464,
 & 12864,12060,11652,11637,12029,12825,14425,15229,15637, 0,
 & 21688,11616,21652,12060,12864,14464,15260,15652,15616, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22416,15216,24016,14062,12962,23377,13380,13582,13882,14080,
 & 14077,13875,13575,13377, 0, 0, 0, 0, 0, 0,
 & 21416,11808,12604,13804,14608,15016,15062,13862,24375,14177,
 & 14180,14382,14682,14880,14877,14675,14375, 0, 0, 0,
 & 21888,11816,21844,15268,22750,15816, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22316,14916,23616,13688,12788, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21464,11416,21453,11760,12364,12764,13360,13653,13960,14564,
 & 14964,15560,15853,15816,23653,13624, 0, 0, 0, 0,
 & 21664,11616,21652,12060,12864,14464,15260,15652,15616, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE4 /
 & 21628,11652,12060,12864,14464,15260,15652,15628,15220,14416,
 & 12816,12020,11628, 0, 0, 0, 0, 0, 0, 0,
 & 21864,11800,21852,12260,13064,14664,15460,15852,15836,15428,
 & 14624,13024,12228,11836, 0, 0, 0, 0, 0, 0,
 & 25464,15400,25452,15060,14264,12664,11860,11452,11436,11828,
 & 12624,14224,15028,15436, 0, 0, 0, 0, 0, 0,
 & 22064,12016,22052,12460,13264,14664,15460,15852, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25656,15361,14664,12664,11961,11654,11651,11945,12641,14641,
 & 15337,15631,15626,15319,14616,12616,11919,11624, 0, 0,
 & 22484,12428,12820,13616,14816,15620,16028,21666,14266, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21664,11628,12020,12816,14416,15220,15628,25664,15616, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21664,11657,11849,13616,15449,15657,15664, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21464,11440,11630,12516,13429,13636,13829,14716,15630,15840,
 & 15864,23636,13642, 0, 0, 0, 0, 0, 0, 0,
 & 21864,15616,25464,11616, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE5 /
 & 21664,11637,12029,12825,14425,15229,15637,25664,15616,15208,
 & 14404,12804,12008,11616, 0, 0, 0, 0, 0, 0,
 & 21864,15464,11616,15616,22742,14442, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21628,11676,12084,12888,14488,15284,15676,15628,15220,14416,
 & 12816,12020,11628, 0, 0, 0, 0, 0, 0, 0,
 & 22678,13688,13616,22616,14616, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21676,12084,12888,14488,15284,15676,15666,15258,12036,11628,
 & 11616,15616, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21878,12284,13088,14488,15284,15676,15669,15261,14457,15253,
 & 15644,15628,15220,14416,12816,12020,11626,24457,12857, 0,
 & 25088,15016,24016,16016,26040,11640,11688, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25488,11688,11657,14457,15253,15645,15628,15220,14416,12816,
 & 12020,11628, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25678,15284,14488,12888,12084,11676,11628,12020,12816,14416,
 & 15220,15628,15645,15253,14457,12857,12053,11645, 0, 0,
 & 21688,15688,15679,13228,13216, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE6 /
 & 24757,12557,11667,11676,12084,12888,14488,15284,15676,15667,
 & 14757,15647,15628,15220,14416,12816,12020,11628,11647,12557,
 & 21626,12020,12816,14416,15220,15628,15676,15284,14488,12888,
 & 12084,11676,11659,12051,12847,14447,15251,15659, 0, 0,
 & 22604,13416,13424,12624,12616,13215,12604, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22624,13424,13416,12616,12624, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22604,13215,12616,12624,13424,13416,12604,22656,12648,13448,
 & 13456,12656, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22624,12616,13416,13424,12624,22656,12648,13448,13456,12656,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25284,16268,15884,15284, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22184,12666,12784,12184,23784,14266,14384,13784, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23524,13316,13916,13724,13524,23639,14088,13288,13639,23685,
 & 13646, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22074,12283,13088,14288,15083,15274,14866,14160,13754,13647,
 & 13639,23524,13316,13916,13724,13524, 0, 0, 0, 0 /
 DATA NODE7 /
 & 24543,13738,12843,12854,13761,14758,14543,14939,15439,15949,
 & 15865,15075,13877,12674,11863,11647,11931,13222,14422,15627,
 & 23278,12622,24778,14122,21959,15759,21640,15440, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25176,12976,12273,11967,11959,12254,12852,14452,15050,15445,
 & 15437,15031,14328,12128,23616,13688, 0, 0, 0, 0,
 & 21616,15688,22488,12084,12079,12475,12975,13379,13384,12988,
 & 12488,25116,15520,15525,15129,14629,14225,14220,14616,15116,
 & 25636,15023,14418,13716,12816,12021,11629,11637,12246,13956,
 & 14564,14572,14377,13880,13280,12677,12469,12758,15616, 0,
 & 23696,13608, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25092,14382,13965,13850,13935,14318,15008,24417,14230,14150,
 & 14270,14483, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22292,12982,13365,13450,13335,12918,12208,22883,13070,13150,
 & 13030,12817, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25294,13894,13806,15206,24094,14006, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22094,13494,13406,12006,23294,13206, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE8 /
 & 24896,13890,13853,12850,13846,13810,14804,24009,14045,13846,
 & 24091,14054,13853, 0, 0, 0, 0, 0, 0, 0,
 & 22496,13490,13453,14450,13446,13410,12304,23209,13245,13446,
 & 23291,13254,13453, 0, 0, 0, 0, 0, 0, 0,
 & 25666,11648,15630, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21666,15648,11630, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 20800,17200, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21648,15648,23668,13628, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21648,15648, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22765,14531,22731,14565,21748,15548, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21656,15656,21640,15640, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21208,16096, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE9 /
 & 21854,13868,15854, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21546,11951,12754,13452,14344,14942,15745,16150, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /

XFOILinterface/XFOIL/src/CIRCLE.INC

C
C----- CIRCLE.INC include file for circle-plane operations
C
C n
C ICX number of circle-plane points for complex mapping (2 + 1)
C IMX number of complex mapping coefficients Cn

 PARAMETER (ICX=257)
 PARAMETER (IMX=(ICX-1)/4)
C
 COMPLEX ZCOLDW, DZTE, CHORDZ, ZLEOLD, ZC, ZC_CN, PIQ, CN, EIW
C
 COMMON/CPI01/ NC,MC,MCT
C
 COMMON/CPR01/ PI,AGTE,AG0,QIM0,QIMOLD,
 & DWC,WC(ICX),SC(ICX),
 & SCOLD(ICX),XCOLD(ICX),YCOLD(ICX)
C
 COMMON/CPC01/ DZTE, CHORDZ, ZLEOLD, ZCOLDW(ICX),
 & ZC(ICX), ZC_CN(ICX,IMX/4),
 & PIQ(ICX), CN(0:IMX), EIW(ICX,0:IMX)
C

C NC number of circle plane points, must be 2**n + 1
C MC number of Fourier harmonics of P(w) + iQ(w)
C MCT number of Fourier harmonics for which dZC/dCN are calculated
C
C PI 3.1415926
C AGTE trailing edge angle/pi
C AG0 angle of airfoil surface at first point
C QIM0 Q(w) offset = Q(0)
C QIMOLD Q(w) offset for old airfoil
C DWC increment of circle-plane coordinate w, DWC = 2 pi/(NC-1)
C WC(.) circle plane coordinate w for Fourier operations
C SC(.) normalized arc length array s(w)
C SCOLD(.) normalized arc length s(w) of old airfoil
C XCOLD(.) x coordinate x(w) of old airfoil
C YCOLD(.) y coordinate y(w) of old airfoil
C
C DZTE trailing edge gap specified in the complex plane
C CHORDZ airfoil chord specified in the complex plane
C ZLEOLD leading edge of old airfoil
C ZCOLDW(.) d(x+iy)/dw of old airfoil
C ZC(.) complex airfoil coordinates derived from P(w) + iQ(w)
C ZC_CN(..) sensitivities dZC/dCN for driving geometry constraints
C PIQ(.) complex harmonic function P(w) + iQ(w)
C CN(.) Fourier coefficients of P(w) + iQ(w)
C EIW(..) complex number exp(inw) array on the unit circle

XFOILinterface/XFOIL/plotlib/examples/colors.inc

C***
C Module: colors.inc
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C
C**
C Default color definitions for Xplot11
C For use as arguments to NEWCOLOR, e.g.
C
C CALL NEWCOLOR(GREEN)
C
C
C Alternatively, can also use...
C
C CALL NEWCOLORNAME('GREEN')
C
C**
C
 Integer BLACK,
 & WHITE,
 & RED,
 & ORANGE,
 & YELLOW,
 & GREEN,
 & CYAN,
 & BLUE,
 & VIOLET,
 & MAGENTA
C
 parameter (BLACK = 1)
 parameter (WHITE = 2)
 parameter (RED = 3)
 parameter (ORANGE = 4)
 parameter (YELLOW = 5)
 parameter (GREEN = 6)
 parameter (CYAN = 7)
 parameter (BLUE = 8)
 parameter (VIOLET = 9)
 parameter (MAGENTA = 10)

XFOILinterface/XFOIL/plotlib/colors.inc

C***
C Module: colors.inc
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C Version 4.41 7/5/98
C
C**
C Default color definitions for Xplot11
C For use as arguments to NEWCOLOR, e.g.
C
C CALL NEWCOLOR(GREEN)
C
C
C Alternatively, can also use...
C
C CALL NEWCOLORNAME('GREEN')
C
C**
C
 Integer BLACK,
 & WHITE,
 & RED,
 & ORANGE,
 & YELLOW,
 & GREEN,
 & CYAN,
 & BLUE,
 & VIOLET,
 & MAGENTA
C
 parameter (BLACK = 1)
 parameter (WHITE = 2)
 parameter (RED = 3)
 parameter (ORANGE = 4)
 parameter (YELLOW = 5)
 parameter (GREEN = 6)
 parameter (CYAN = 7)
 parameter (BLUE = 8)
 parameter (VIOLET = 9)
 parameter (MAGENTA = 10)

XFOILinterface/XFOIL/plotlib/examples/masks.inc

C***
C Module: masks.inc
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C
C---- dot-pattern masks for use with PLGRID, NEWPAT, etc.
C
C mask0: _________________________ (solid)
C 1:
C 2:
C 3:
C 4:
C
 data mask0, mask1, mask2, mask3, mask4
 & / -1 , -21846, -30584, -32640, -32768 /

XFOILinterface/XFOIL/plotlib/masks.inc

C***
C Module: masks.inc
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C Version 4.46 11/28/01
C
C---- dot-pattern masks for use with PLGRID, NEWPAT, etc.
C
C mask0: _________________________ (solid)
C 1:
C 2:
C 3:
C 4:
C
 data mask0, mask1, mask2, mask3, mask4
 & / -1 , -21846, -30584, -32640, -32768 /
C
C data mask0, mask1, mask2, mask3, mask4
C & /Z'FFFFFFFF',Z'AAAAAAAA',Z'CCCCCCCC',Z'88888888',Z'21084210'/

XFOILinterface/XFOIL/plotlib/MATH.INC

C Version 4.46 11/28/01

 CHARACTER* 92 CHARS
 INTEGER NODE(20, 92)

 DIMENSION NODE0(20,10)
 DIMENSION NODE1(20,10)
 DIMENSION NODE2(20,10)
 DIMENSION NODE3(20,10)
 DIMENSION NODE4(20,10)
 DIMENSION NODE5(20,10)
 DIMENSION NODE6(20,10)
 DIMENSION NODE7(20,10)
 DIMENSION NODE8(20,10)
 DIMENSION NODE9(20, 2)
 EQUIVALENCE (NODE(1, 1) , NODE0(1,1))
 EQUIVALENCE (NODE(1, 11) , NODE1(1,1))
 EQUIVALENCE (NODE(1, 21) , NODE2(1,1))
 EQUIVALENCE (NODE(1, 31) , NODE3(1,1))
 EQUIVALENCE (NODE(1, 41) , NODE4(1,1))
 EQUIVALENCE (NODE(1, 51) , NODE5(1,1))
 EQUIVALENCE (NODE(1, 61) , NODE6(1,1))
 EQUIVALENCE (NODE(1, 71) , NODE7(1,1))
 EQUIVALENCE (NODE(1, 81) , NODE8(1,1))
 EQUIVALENCE (NODE(1, 91) , NODE9(1,1))
 DATA NCHARS / 92 /
 DATA CHARS(1: 26) / 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' /
 DATA CHARS(27: 52) / 'abcdefghijklmnopqrstuvwxyz' /
 DATA CHARS(53: 78) / '0123456789,.;:`"!?@#$%&|()' /
 DATA CHARS(79: 92) / '[]{}<>_+-*=/^~' /
 DATA NODE0 /
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21688,12488,25288,16088,21616,12416,25216,16016,22016,15688,
 & 21988,15516,22188,15716, 0, 0, 0, 0, 0, 0,
 & 21216,13988,16416,11216,21318,16118,13884, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22816,14816,22888,14888,23788,13716,23988,13916,22575,11461,
 & 11443,12529,15129,16243,16261,15175,12575, 0, 0, 0,
 & 25888,16180,16188,11688,22288,12216,22488,12416,21616,13016,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 20490,11096,11064,21964,13196,23890,14396,15296,15691,15684,
 & 13871,13864,15664, 0, 0, 0, 0, 0, 0, 0,
 & 26694,16696,16396,16191,15982,15346,15014,14805,14600,14300,
 & 14302,25014,15754,15982, 0, 0, 0, 0, 0, 0,
 & 26396,16196,15891,15573,14923,14605,14300,14100,24956,14552,
 & 14544,14940,15540,15944,15952,15556,14956, 0, 0, 0 /
 DATA NODE1 /
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21516,12616,24916,16116,21816,13888,15816,25616,13784, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22890,13396,13362,22962,13762,20479,12079, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24416,16769,12169,14416,26565,12565,14518, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,14067,16416,11616, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22416,13216,24416,15216,22716,12788,22916,12988,24716,14788,
 & 24916,14988,21888,11683,11688,16088,16083,15888, 0, 0,
 & 22716,14816,15933,15971,14888,12888,11771,11733,12716,23052,
 & 14652,23056,13048,24656,14648,21973,11931,25773,15731, 0,
 & 23058,13658,14507,16196,17296,23658,13858,14613, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25616,16125,16016,11616,14654,12088,21688,15988,16179,21688,
 & 14452, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21347,11755,12255,12451,12235,12422,12916,13816,14522,15134,
 & 15552,15670,15582,14888,13988,13484,13277,13468,14362,16153 /
 DATA NODE2 /
 & 23016,14616,21674,11984,12588,13184,13766,13716,26074,15784,
 & 15188,14584,13966,13916,23184,13966,24584,13766, 0, 0,
 & 22124,13642,14456,14870,14983,14888,14688,14486,14080,13670,
 & 13253,12935,12924,13118,13516,14216,15019,15926, 0, 0,
 & 21522,11716,13016,11548,11567,12283,13188,14588,15483,16167,
 & 16148,14616,15916,16122,21976,11758,11940,25776,15958,15740,
 & 21626,11716,15916,16026,21678,11788,15988,16078,22660,12644,
 & 25060,15044,22654,15054,22650,15050,21720,15920,21784,15984,
 & 23088,14688,23016,14616,23788,13716,23988,13916,21474,11769,
 & 11842,13029,14629,15842,15969,16274,21769,12040,25969,15640,
 & 22088,11680,11688,16088,11816,16016,16025,15616,21816,11616,
 & 15888, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26064,15554,14937,14323,13617,12916,12217,11722,11534,11746,
 & 12256,12962,13564,14064,14460,14750,14737,14919,15416,16120,
 & 21508,12655,13276,13986,14688,15287,15682,15671,15161,14256,
 & 12757,24256,15449,15837,15626,14918,13816,13016,11820, 0,
 & 21504,15866,25504,15104,14709,14317,13349,12662,12266,11866,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25184,14987,14588,13888,13485,13177,13267,13861,14857,15345,
 & 15233,14722,13716,12816,11922,11734,12150,12857,13861, 0 /
 DATA NODE3 /
 & 25559,14664,13764,12760,12052,11739,11729,12220,13116,14116,
 & 15220,21842,14142, 0, 0, 0, 0, 0, 0, 0,
 & 21645,12057,12863,13864,14962,15556,15744,15332,14427,13326,
 & 12427,11733,11645,23004,14388, 0, 0, 0, 0, 0,
 & 21557,12164,12867,13662,14246,14325,14113,13804,13500,13305,
 & 13416,13932,14950,16063, 0, 0, 0, 0, 0, 0,
 & 21759,11962,12264,12563,12661,12755,11916,22755,13360,14164,
 & 14864,15361,15556,15546,14804, 0, 0, 0, 0, 0,
 & 23164,12424,12618,13016,14116,15018,15724, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22666,12060,11751,11740,12232,13329,14329,15333,15841,16049,
 & 15958,15662,15064,14564,14160,13747,13004, 0, 0, 0,
 & 22464,11616,25764,15264,14862,13448,12037,22843,13924,14218,
 & 14616,15116, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22788,13288,13685,14074,14627,15018,15316,15716,21316,14256,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22764,11600,22130,12122,12517,12916,13716,14418,14922,15664,
 & 24922,15017,15316,15616, 0, 0, 0, 0, 0, 0,
 & 22064,12364,12562,12645,12631,12416,13825,15037,15753,15759,
 & 15662,15564,15264, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE4 /
 & 21641,12052,12962,13964,15062,15651,15641,15428,14418,13316,
 & 12119,11628,11641, 0, 0, 0, 0, 0, 0, 0,
 & 21559,11963,12566,15966,23266,12216,24766,14444,14430,14716,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25554,12154,12469,12779,13285,13988,14788,15285,15579,15669,
 & 15554,15236,14824,14319,13816,13016,12519,12224,12036,12154,
 & 21500,12244,12655,13161,13864,14764,15460,15752,15640,15330,
 & 14223,13022,11923, 0, 0, 0, 0, 0, 0, 0,
 & 26264,13964,12962,12052,11641,11628,12119,13316,14418,15428,
 & 15641,15551,14961,13763, 0, 0, 0, 0, 0, 0,
 & 21655,12061,12764,15964,23864,13016, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21958,12162,12464,12663,12658,12239,12224,12716,13716,14521,
 & 15333,15645,15657,15463,15164, 0, 0, 0, 0, 0,
 & 25660,14964,14264,13464,12761,12254,12147,12542,11936,11728,
 & 12020,12816,13816,14618,15321,22542,14042, 0, 0, 0,
 & 22764,12056,11645,11432,11621,12116,12716,13320,13816,14416,
 & 15120,15731,15942,15953,15564,23320,13740, 0, 0, 0,
 & 25386,14086,12977,12765,13357,14457,23357,12044,11733,12023,
 & 13317,15016,15213,14810,24086,13392, 0, 0, 0, 0 /
 DATA NODE5 /
 & 21865,12163,12357,11947,11736,12025,12822,14222,15228,15938,
 & 16051,15865,23004,14388, 0, 0, 0, 0, 0, 0,
 & 25482,14482,13473,12560,11942,11931,12422,13617,15016,15314,
 & 14809,23990,14482, 0, 0, 0, 0, 0, 0, 0,
 & 21272,11864,13064,13672,13688,13096,11896,11288,11272, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21687,12496,12460,21660,13260, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21290,11896,13196,13690,13683,11268,11260,13660, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21391,11896,13196,13691,13684,13179,12079,23179,13674,13666,
 & 13060,11860,11266, 0, 0, 0, 0, 0, 0, 0,
 & 21296,11271,13771,23296,13260,22860,13560, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23696,11296,11280,13180,13675,13666,13060,11860,11266, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23691,13196,11896,11290,11266,11860,13060,13666,13675,13279,
 & 11679,11275, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21296,13696,13692,12268,12260, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE6 /
 & 21779,11284,11291,11796,13196,13691,13684,13179,13675,13665,
 & 13060,11860,11265,11275,11779,13179, 0, 0, 0, 0,
 & 23682,13177,11777,11282,11290,11896,13096,13690,13666,13060,
 & 11860,11266, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22604,13215,12616,12624,13424,13416,12604, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22624,12616,13416,13424,12624, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21620,11616,12016,12020,11620,23820,13816,14216,14220,13820,
 & 26020,16016,16416,16420,16020, 0, 0, 0, 0, 0,
 & 21466,11890,12590,11466, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22696,13496,14092,14486,14478,14072,13468,12668,12072,11678,
 & 11686,12092,12696, 0, 0, 0, 0, 0, 0, 0,
 & 23130,12822,13622,13530,13130,23441,13588,14488,13441, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE7 /
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22064,15232,22032,15264, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23775,14380,15480,16075,16365,16242,15826,15016,13716,13021,
 & 12834,13245,14153,15053,16249, 0, 0, 0, 0, 0,
 & 21648,15648,23464,13460,13860,13864,13464,23436,13432,13832,
 & 13836,13436, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22001,11201,10708,10716,11223,12023,13601,14401,14908,14916,
 & 14423,13623,12001, 0, 0, 0, 0, 0, 0, 0,
 & 23696,13608, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24872,14159,13941,14121,14808, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22472,13159,13340,13121,12408, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE8 /
 & 24266,11648,14230,26066,13448,16030, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21666,14248,11630,23466,16048,13430, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 27280,14016,17216, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22282,15482,24882,14786,15882,14578,14882, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 20896,17296, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23668,13628,21648,15648, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21648,15648, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23146,13150,13453,13853,14150,14146,13843,13443,13146,23450,
 & 13846,23850,13446, 0, 0, 0, 0, 0, 0, 0,
 & 21656,15656,21640,15640, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21208,16096, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE9 /
 & 22480,14088,15680, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22480,12985,13685,14479,15179,15684, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /

XFOILinterface/XFOIL/orrs/src/ORRS.INC

 PARAMETER (NMAX=2001,NRMAX=3)
 COMPLEX A,B,C,R, F0,F1,F2,F3
 COMPLEX FNORM,IRE, ALPHA,DALPHA, OMEGA,DOMEGA, ALINIT,OMINIT
 COMPLEX FAC, FACSQ, FAC_AL, FAC_OM, FAC_RE
C
 COMMON/OS_CPX/
 & A(4,4,NMAX),B(4,4,NMAX),C(4,4,NMAX),R(4,NRMAX,NMAX),
 & F0(NMAX),F1(NMAX),F2(NMAX),F3(NMAX),FNORM,
 & IRE,ALPHA,DALPHA, OMEGA,DOMEGA, ALINIT,OMINIT,
 & FAC, FACSQ, FAC_AL, FAC_OM, FAC_RE
 COMMON/OS_REL/
 & Y(NMAX),U(NMAX),UD(NMAX),
 & RLX,DFMAX,DFRMS, RESMAX,RESRMS
 COMMON/OS_INT/
 & LST, LRE, N, NRHS, ITER, ITMAX, IBC,ISOL

XFOILinterface/XFOIL/orrs/src/OSPRES.INC

 PARAMETER (NMAX=2001,NRMAX=3)
 COMPLEX A,B,C,R, F0,F1, VT
 COMPLEX ALPHA
C
 COMMON/OSP_CPX/
 & A(2,2,NMAX),B(2,2,NMAX),C(2,2,NMAX),R(2,NRMAX,NMAX),
 & F0(NMAX),F1(NMAX), VT(NMAX),
 & ALPHA
 COMMON/OSP_REL/
 & Y(NMAX),U(NMAX),
 & RLX,DFMAX,DFRMS, RESMAX,RESRMS
 COMMON/OSP_INT/
 & N, NRHS, ITER, ITMAX, IBC,ISOL

XFOILinterface/XFOIL/src/PINDEX.INC

C
C---- Pointers for referencing polar force coefficients
C First 4 pointers must be main polar plot variables.
C
 PARAMETER (
 & IAL = 1, ! alpha
 & ICL = 2, ! CL
 & ICD = 3, ! CD
 & ICM = 4, ! Cm
 & ICW = 5, ! CDwave
 & ICV = 6, ! CDvisc
 & ICP = 7, ! CDpres
 & IMA = 8, ! Mach
 & IRE = 9, ! Re
 & INC = 10, ! Ncrit
 & ICH = 11, ! Hinge moment
 & IMC = 12) ! Minimum Cp on surface
 PARAMETER (IPTOT=12)
C
C
C---------------------
C Pointers for referencing polar airfoil-side quantities
C
 PARAMETER (
 & JTP = 1, ! trip
 & JTN = 2) ! transition
 PARAMETER (JPTOT=2)

 CHARACTER*10 CPOLNAME(IPTOT)
 CHARACTER*5 CPOLSNAME(JPTOT)
 CHARACTER*6 CPOLFORM(IPTOT), CPOLSFORM(JPTOT)
C
 DATA CPOLNAME /
 & 'alpha ',
 & 'CL ',
 & 'CD ',
 & 'CM ',
 & 'CDw ',
 & 'CDv ',
 & 'CDp ',
 & 'Mach ',
 & 'Re ',
 & 'Ncrit ',
 & 'Chinge ',
 & 'Cpmin ' /
 DATA CPOLFORM /
 & 'F7.3 ', ! alpha
 & 'F9.4 ', ! CL
 & 'F10.5 ', ! CD
 & 'F9.4 ', ! CM
 & 'F10.5 ', ! CDw
 & 'F10.5 ', ! CDv
 & 'F10.5 ', ! CDp
 & 'F8.4 ', ! Mach
 & 'E11.3 ', ! Re
 & 'F7.3 ', ! Ncrit
 & 'F9.5 ', ! Chinge
 & 'F8.4 ' / ! Cpmin

 DATA CPOLSNAME /
 & 'Xtrip',
 & 'Xtr ' /
 DATA CPOLSFORM /
 & 'F9.4 ', ! Xtrip
 & 'F9.4 ' / ! Xtr

XFOILinterface/XFOIL/plotlib/pltlib.inc

C***
C Module: pltlib.inc
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C
C*******************************
C --- Global data for Xplot11
C Version 4.46 11/28/01
C*******************************
C
 parameter (Nstore_max=100000,Ncolors_max=256,MaxPolyLine=501)
C
 Real DEFAULT_PAGEHEIGHT,
 & DEFAULT_PAGEWIDTH,
 & DEFAULT_SCREENFRACTION
C
C---Set paper size here
 parameter (DEFAULT_PAGEHEIGHT = 11.0, ! Letter size
 & DEFAULT_PAGEWIDTH = 8.5,
 & DEFAULT_SCREENFRACTION = 0.67)
cc parameter (DEFAULT_PAGEHEIGHT = 11.65, ! A4 European
cc & DEFAULT_PAGEWIDTH = 8.25,
cc & DEFAULT_SCREENFRACTION = 0.67)
C
 Integer NPS_UNIT_DEFAULT,
 & NPRIM_UNIT_DEFAULT
C
 parameter (NPS_UNIT_DEFAULT = 80)
 parameter (NPRIM_UNIT_DEFAULT = 81)
C
 Integer PageCommand,
 & PlotCommand,
 & PenCommand,
 & ScaleCommand,
 & PatternCommand,
 & ColorCommand,
 & PolylinePointCommand,
 & PolylineDrawCommand,
 & MinClipCommand,
 & MaxClipCommand
C
 parameter (PageCommand = 1)
 parameter (PlotCommand = 2)
 parameter (PenCommand = 3)
 parameter (ScaleCommand = 4)
 parameter (PatternCommand = 5)
 parameter (ColorCommand = 6)
 parameter (PolylinePointCommand = 7)
 parameter (PolylineDrawCommand = 8)
 parameter (MinClipCommand = 9)
 parameter (MaxClipCommand = 10)
C
 Integer Page_Portrait,
 & Page_Landscape
C
 parameter (Page_Portrait = 0)
 parameter (Page_Landscape = 1)
C
 LOGICAL LPRIM_OPEN,
 & LGW_GEN, LGW_OPEN, LGW_COLOR, LGW_REVVIDEO,
 & LGW_CHANGED, LGW_RESIZE,
 & LPS_GEN, LPS_OPEN, LPS_COLOR,
 & LPS_UNSTROKED, LPS_EXTERNAL, LPS_ONEFILE
 INTEGER GX_LOC, GY_LOC,
 & GX_ORG, GY_ORG,
 & GX_SIZ, GY_SIZ,
 & GX_CRS, GY_CRS,
 & G_WIDTH, G_HEIGHT, G_DEPTH,
 & G_COLOR_CINDEX
 INTEGER COLOR_RGB
 CHARACTER COLOR_NAME*22
 CHARACTER PS_FILE*80
C
C...Common storing current plot primitives
 Common /PL_PRIML/
 & LPRIM_OPEN
 Common /PL_PRIMI/
 & NPRIM_UNIT,
 & N_PRIM, N_WRIT, N_INCORE,
 & I_TYP(Nstore_max),
 & I_PRIM(Nstore_max)
 Common /PL_PRIMR/
 & X_PRIM(Nstore_max),
 & Y_PRIM(Nstore_max)
C
C...Global data for plotting, clipping, etc.
 Common /PL_PLOTI/
 & I_DEV, I_PAGETYPE,
 & I_PEN, LST_PEN,
 & I_PAT, LST_PAT,
 & I_CLR, LST_CLR
 Common /PL_PLOTR/
 & X_SCALE, Y_SCALE,
 & X_ORG, Y_ORG,
 & X_LST, Y_LST,
 & X_PAGE, Y_PAGE,
 & X_WIND, Y_WIND,
 & CLP_XMIN, CLP_XMAX, CLP_YMIN, CLP_YMAX,
 & XOFF_ZOOM,YOFF_ZOOM,
 & XFAC_ZOOM,YFAC_ZOOM
C
C...Global data for color definition
 Common /PL_COLORI/
 & N_COLOR, N_SPECTRUM, IFIRST_SPECTRUM,
 & COLOR_RGB(Ncolors_max)
 Common /PL_COLORC/
 & COLOR_NAME(Ncolors_max)
C
C...Global data for X-window output
 Common /PL_XWINL/
 & LGW_GEN, LGW_OPEN, LGW_COLOR, LGW_REVVIDEO,
 & LGW_CHANGED, LGW_RESIZE
 Common /PL_XWINI/
 & GX_LOC, GY_LOC,
 & GX_ORG, GY_ORG,
 & GX_SIZ, GY_SIZ,
 & GX_CRS, GY_CRS,
 & G_WIDTH, G_HEIGHT, G_DEPTH,
 & G_COLOR_CINDEX(Ncolors_max)
 Common /PL_XWINR/
 & G_SCALE, G_SCRNFRAC
C
C...Global data for PostScript output
 Common /PL_PSL/
 & LPS_GEN, LPS_OPEN, LPS_COLOR, LPS_UNSTROKED,
 & LPS_EXTERNAL, LPS_ONEFILE
 Common /PL_PSI/
 & IPS_MODE, NPS_UNIT, N_PAGES, I_PAGES, N_VECS
 Common /PL_PSR/
 & PX_ORG, PY_ORG, PX_SIZ, PY_SIZ, P_SCALE,
 & BB_XMIN, BB_XMAX, BB_YMIN, BB_YMAX,
 & PS_LSTX, PS_LSTY
 Common /PL_PSC/
 & PS_FILE

C
C LPRIM_OPEN T if primitives file is open
C NPRIM_UNIT Fortran logical unit for primitives file (unit# 0)
C N_PRIM Number of accumulated primitives
C N_WRIT Number of primitives written to logfile
C N_INCORE Number of primitives in buffer array
C I_TYP(.) type-of-primitive index
C I_PRIM(.) primitive data
C X_PRIM(.) "
C Y_PRIM(.) "
C
C I_DEV "Device" index, specifies X-graphics, PostScript output
C I_PAGETYPE = Page_Landscape or Page_Portrait
C I_PEN, LST_PEN current and previous pen thickness
C I_PAT, LST_PAT current and previous pen pattern
C I_CLR, LST_CLR current and previous color
C
C X_SCALE,Y_SCALE absolute-unit/user-unit scale factors
C X_ORG, Y_ORG user x,y-axis origin in absolute coordinates
C X_LST, Y_LST last pen location in absolute coordinates
C
C X_PAGE, Y_PAGE plot page size in absolute units (typ. 11.0"x8.5")
C X_WIND, Y_WIND X-window size in absolute units
C (will not exceed X_PAGE,Y_PAGE upon window resizing)
C
C CLP_XMIN, CLP_XMAX user-specified clipping limits
C CLP_YMIN, CLP_YMAX (in absolute coordinates)
C
C XOFF_ZOOM zoom offsets
C YOFF_ZOOM
C XFAC_ZOOM zoom scaling factors
C YFAC_ZOOM
C
C N_COLOR total number of defined colors 1..i..N_COLORS
C N_SPECTRUM number of defined colors in Spectrum 0..s..N_SPECTRUM
C IFIRST_SPECTRUM gives index i of first Spectrum color
C COLOR_RGB(i) rgb color index
C COLOR_NAME(i) color name string
C
C LGW_GEN T if X-window graphics are to be generated
C LGW_OPEN T is X-window is currently open
C LGW_COLOR T if X-window has color capability
C LGW_RESIZE T if X-window is to be resized
C LGW_REVVIDEO T if X-window is in reverse-video (swap white,black)
C
C GX_LOC, GY_LOC location of upper-left window corner in screen pixels
C GX_ORG, GY_ORG user-specified origin in window pixels
C GX_SIZ, GY_SIZ window size in pixels
C GX_CRS, GY_CRS user-specified cursor location
C
C G_SCALE # pixels / user plot unit
C G_SCRNFRAC fraction of screen taken up by X-window on opening
C G_WIDTH pixel width of root X window display
C G_HEIGHT pixel height of root X window display
C G_DEPTH color bit depth of screen
C G_COLOR_CINDEX(i) X-colormap index of Xplot11 color i
C
C LPS_GEN T if PostScript output is to be generated
C LPS_OPEN T is PostScript file is currently open
C LPS_COLOR T if color PostScript is to be generated
C LPS_UNSTROKED T if current PostScript page has not been stroked
C LPS_EXTERNAL T if postscript file opened/closed outside of Xplot11
C LPS_ONEFILE T if one postscript file used for each plot, otherwise
C separate numbered plot files will be used for each
C plot
C
C IPS_MODE 0 if Portrait PostScript, 1 if Lansdcape PostScript
C
C PX_ORG, PY_ORG location of user-specified origin (in points)
C PX_SIZ, PY_SIZ size of PostScript page (in points)
C P_SCALE # points / user plot unit
C
C NPS_UNIT Fortran logical unit of PostScript file
C N_PAGES Cumulative count of PS pages generated
C I_PAGES Number of PS pages generated for current plot file
C N_VECS Number of PS vectors generated so far
C
C BB_XMIN, BB_XMAX PostScript Bounding Box limits
C BB_YMIN, BB_YMAX
C
C PS_LSTX, PS_LSTY last PostScript move-to or line-to location
C PS_FILE PostScript output filename

XFOILinterface/XFOIL/src/PPLOT.INC

C
C PPLOT array limits
C
C NAX number of points in one polar
C NPX number of polars
C NFX number of points in one reference polar
C NDX number of reference polars
C ISX number of airfoil sides
C
C
 INCLUDE 'PINDEX.INC'
C
 PARAMETER (NAX=500, NPX=20, NFX=128, NDX=20, ISX=10)
 CHARACTER*80 FNPOL, FNREF, FNAME
 CHARACTER*32 NAME, LABREF, TITLE
 CHARACTER*16 CODE, CCLEN
 LOGICAL LGRID,LPLOT, LCDW, LLIST, LEGND, LCLEN, LAECEN, AUTO
 REAL MACH
C
 COMMON/ALLI/
 & IDEV, IDEVRP, IPSLU, ICOL0, NCOLOR,
 & NA(NPX), NPOL, ICOL(NPX), ILIN(NPX),
 & NF(4,NDX), NDAT, IFCOL(NDX), IFSYM(NDX), NBL(NPX),
 & IRETYP(NPX),IMATYP(NPX), NCLEN,
 & LGRID,LPLOT,LCDW,LLIST,LEGND,LCLEN,LAECEN, AUTO
C
 COMMON/ALLR/
 & PLOTAR, CH, CH2,
 & SIZE,SCRNFR,
 & CPOLPLF(3,IPTOT), VPOLPLF(3,2),
 & XCD,XAL,XOC,
 & MACH(NPX), REYN(NPX), ACRIT(NPX),XTRIP(ISX,NPX),
 & CPOL(NAX,IPTOT,NPX),
 & CPOLSD(NAX,ISX,JPTOT,NPX),
 & CDLMOD(5,NPX),VPPARS(6,NPX),
 & XYREF(NFX,2,4,NDX),
 & VERSION
C
 COMMON/ALLC/
 & FNPOL(NPX), NAME(NPX),
 & FNREF(NDX), LABREF(NDX), TITLE, CODE, CCLEN, FNAME
C

XFOILinterface/XFOIL/src/PXPLOT.INC

C
 PARAMETER (NAX = 80, NX=132, NXB=250, NFX=500)
 IMPLICIT REAL(M)
 CHARACTER*8 CODE
 CHARACTER*32 NAME
 LOGICAL LREF, LFORCE, LMACH, LISES, LCLFIX, LALFIX, LPLOT
 INTEGER MATYP,RETYP
C
 COMMON/COMI/
 & IDEV, IDEVRP, IPSLU, N, NAPLT, NA, MATYP, RETYP,
 & LREF, LFORCE, LMACH, LISES, LCLFIX, LALFIX, LPLOT,
 & IAPLT(NAX), NF,
 & II(2,NAX), IIB,
 & ILE(2,NAX),ITE(2,NAX),
 & ITRAN(2,NAX),
 & CODE,
 & NAME

C
 COMMON/COMR/
 & SIZE, SCRNFR,
 & CLMIN, CLMAX, CDMIN, CDMAX, CMMIN, CMMAX,
 & MACH, REYN, ACRIT, GAM,GM1,CPSTAR(NAX),
 & MA(NAX),ALFA(NAX),CL(NAX),CD(NAX),CDI(NAX),CM(NAX),
 & APLT(NAX),
 & XTR(2,NAX),
 & XF(NFX),MF(NFX),
 & XB(NXB), YB(NXB),
 & X(NX,2,NAX),CP(NX,2,NAX),
 & THET(NX,2,NAX),DSTR(NX,2,NAX),CF(NX,2,NAX),CTAU(NX,2,NAX),
 & VERSION

C

XFOILinterface/XFOIL/plotlib/SLAN.INC

C Version 4.46 11/28/01

 CHARACTER* 92 CHARS
 INTEGER NODE(20, 92)

 DIMENSION NODE0(20,10)
 DIMENSION NODE1(20,10)
 DIMENSION NODE2(20,10)
 DIMENSION NODE3(20,10)
 DIMENSION NODE4(20,10)
 DIMENSION NODE5(20,10)
 DIMENSION NODE6(20,10)
 DIMENSION NODE7(20,10)
 DIMENSION NODE8(20,10)
 DIMENSION NODE9(20, 2)
 EQUIVALENCE (NODE(1, 1) , NODE0(1,1))
 EQUIVALENCE (NODE(1, 11) , NODE1(1,1))
 EQUIVALENCE (NODE(1, 21) , NODE2(1,1))
 EQUIVALENCE (NODE(1, 31) , NODE3(1,1))
 EQUIVALENCE (NODE(1, 41) , NODE4(1,1))
 EQUIVALENCE (NODE(1, 51) , NODE5(1,1))
 EQUIVALENCE (NODE(1, 61) , NODE6(1,1))
 EQUIVALENCE (NODE(1, 71) , NODE7(1,1))
 EQUIVALENCE (NODE(1, 81) , NODE8(1,1))
 EQUIVALENCE (NODE(1, 91) , NODE9(1,1))
 DATA NCHARS / 92 /
 DATA CHARS(1: 26) / 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' /
 DATA CHARS(27: 52) / 'abcdefghijklmnopqrstuvwxyz' /
 DATA CHARS(53: 78) / '0123456789,.;:`"!?@#$%&|()' /
 DATA CHARS(79: 92) / '[]{}<>_+-*=/^~' /
 DATA NODE0 /
 & 21616,12472,13183,13888,15488,16183,16472,15616,22150,16150,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,12688,15188,16184,16476,16368,15860,14856,15752,16044,
 & 15728,15220,14216,11616,22256,14856, 0, 0, 0, 0,
 & 26474,16183,15488,13888,13183,12472,11832,12121,12816,14416,
 & 15121,15729, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21416,14416,15121,15832,16472,16183,15488,12488,21816,12888,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25616,11616,12688,16688,22256,15356, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,12688,16688,22256,15256, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26474,16183,15488,13888,13183,12472,11832,12121,12816,14416,
 & 15121,15832,16150,14550, 0, 0, 0, 0, 0, 0,
 & 21616,12688,25616,16688,22256,16256, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24888,13816,22616,15016,23688,16088, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21630,11921,12616,13916,14621,15332,16188,26788,14688, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE1 /
 & 22688,11616,26688,12045,23458,15616, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23088,12016,16016, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21416,12488,14048,16888,15816, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,12688,15616,16688, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21832,12472,13183,13888,15488,16183,16472,15832,15121,14416,
 & 12816,12121,11832, 0, 0, 0, 0, 0, 0, 0,
 & 21616,12688,15188,16183,16476,16262,15755,14750,12150, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21832,12472,13183,13888,15488,16183,16472,15832,15121,14416,
 & 12816,12121,11832,24331,15616, 0, 0, 0, 0, 0,
 & 21616,12688,15188,16183,16476,16262,15755,14750,12150,24750,
 & 15816, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26576,16183,15288,14088,13183,12474,12470,12761,13656,14856,
 & 15651,15942,15830,15121,14216,13016,12121,11830, 0, 0,
 & 24688,13616,22488,16888, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE2 /
 & 22688,11832,12121,12816,14416,15121,15832,16688, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22688,12582,13616,16582,16688, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22488,11952,11939,12516,13737,14046,14137,14716,15939,16352,
 & 16888,24046,14154, 0, 0, 0, 0, 0, 0, 0,
 & 22688,12582,15622,15616,26688,16582,11622,11616, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22688,12582,14256,16582,16688,24256,13616, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22688,16688,11616,15616,23356,15156, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22764,14964,15759,16150,15616,25942,13142,12338,11730,11728,
 & 12020,12816,14416,15220,15728, 0, 0, 0, 0, 0,
 & 22888,11816,22352,12860,13764,15364,16060,16252,15928,15420,
 & 14616,13016,12220,12028, 0, 0, 0, 0, 0, 0,
 & 26152,15860,15164,13564,12660,12152,11728,12020,12816,14416,
 & 15220,15728, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26488,15416,25952,15660,14964,13364,12460,11952,11528,11820,
 & 12616,14216,15020,15528, 0, 0, 0, 0, 0, 0 /
 DATA NODE3 /
 & 25726,15220,14416,12816,12020,11728,12152,12660,13564,15164,
 & 15860,16152,15941,11941, 0, 0, 0, 0, 0, 0,
 & 26872,16680,15884,14684,13880,13272,12416,22256,14856, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,11908,12704,14304,15108,15616,16364,26152,15860,15164,
 & 13564,12660,12152,11937,12129,12925,14525,15329,15937, 0,
 & 22688,11616,22152,12660,13564,15164,15860,16152,15616, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22416,15216,24016,14662,13562,24277,14280,14482,14782,14980,
 & 14977,14675,14375,14277, 0, 0, 0, 0, 0, 0,
 & 21416,11708,12504,13704,14508,15016,15662,14462,25175,15077,
 & 15080,15282,15582,15780,15777,15475,15175, 0, 0, 0,
 & 22888,11816,22244,15968,23250,15816, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22316,14916,23616,14688,13788, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22164,11416,22053,12360,13064,13464,13960,14153,14560,15264,
 & 15664,16160,16353,15816,24153,13724, 0, 0, 0, 0,
 & 22364,11616,22152,12660,13564,15164,15860,16152,15616, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE4 /
 & 21728,12152,12660,13564,15164,15860,16152,15728,15220,14416,
 & 12816,12020,11728, 0, 0, 0, 0, 0, 0, 0,
 & 22564,11600,22352,12860,13764,15364,16060,16352,16136,15528,
 & 14724,13124,12328,12136, 0, 0, 0, 0, 0, 0,
 & 26164,15200,25952,15660,14964,13364,12460,11952,11736,11928,
 & 12724,14324,15128,15736, 0, 0, 0, 0, 0, 0,
 & 22764,12016,22552,13060,13964,15364,16060,16352, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26256,15961,15364,13364,12661,12255,12151,12345,12941,14941,
 & 15637,15831,15726,15319,14616,12616,11919,11724, 0, 0,
 & 23484,12528,12820,13616,14816,15620,16128,22366,14966, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22364,11728,12020,12816,14416,15220,15728,26364,15616, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22364,12154,13616,16154,16364, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22164,11840,11830,12516,13529,13936,14029,14716,15830,16140,
 & 16564,23936,14042, 0, 0, 0, 0, 0, 0, 0,
 & 22564,15616,26164,11616, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE5 /
 & 22364,11937,12129,12925,14525,15329,15937,26364,15616,15108,
 & 14304,12704,11908,11616, 0, 0, 0, 0, 0, 0,
 & 22564,16164,11616,15616,23042,14742, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21728,12576,13084,13888,15488,16284,16576,15728,15220,14416,
 & 12816,12020,11728, 0, 0, 0, 0, 0, 0, 0,
 & 23578,14688,13616,22616,14616, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22576,13084,13888,15488,16284,16576,16466,15858,12336,11728,
 & 11616,15616, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22778,13284,14088,15488,16284,16576,16469,15861,15057,15753,
 & 16044,15728,15220,14416,12816,12020,11726,25057,13457, 0,
 & 26088,15016,24016,16016,26340,11940,12688, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26488,12688,12257,15057,15753,16045,15728,15220,14416,12816,
 & 12020,11728, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26578,16284,15488,13888,13084,12576,11728,12020,12816,14416,
 & 15220,15728,16045,15753,15057,13457,12553,12045, 0, 0,
 & 22688,16688,16579,13328,13216, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE6 /
 & 25357,13157,12467,12576,13084,13888,15488,16284,16576,16367,
 & 15357,16047,15728,15220,14416,12816,12020,11728,12047,13157,
 & 21726,12020,12816,14416,15220,15728,16576,16284,15488,13888,
 & 13084,12576,12259,12551,13247,14847,15751,16259, 0, 0,
 & 22002,12916,13024,12224,12116,12515,12002, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22224,13024,12916,12116,12224, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22002,12515,12116,12224,13024,12916,12002,22656,12548,13348,
 & 13456,12656, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22224,12116,12916,13024,12224,22656,12548,13348,13456,12656,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25784,16468,16384,15784, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22684,12866,13284,12684,24284,14466,14884,14284, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23124,12816,13416,13324,13124,23439,14588,13788,13439,24185,
 & 13546, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22374,12783,13588,14788,15583,15574,15066,14260,13754,13547,
 & 13439,23124,12816,13416,13324,13124, 0, 0, 0, 0 /
 DATA NODE7 /
 & 24443,13538,12743,12854,13861,14858,14443,14739,15239,15849,
 & 16065,15375,14277,12974,12063,11547,11631,12722,13922,15227,
 & 23678,12223,25178,13723,21859,15859,21440,15340, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25576,13376,12573,12167,12059,12254,12852,14452,15050,15345,
 & 15237,14731,13928,11728,23116,14188, 0, 0, 0, 0,
 & 21116,16188,22888,12484,12479,12875,13375,13779,13784,13388,
 & 12888,24616,15020,15025,14629,14129,13725,13720,14116,14616,
 & 25436,14623,13918,13216,12316,11521,11229,11437,12146,14056,
 & 14764,14872,14777,14280,13680,13077,12669,12858,15116, 0,
 & 23696,13608, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 26092,15282,14665,14350,14235,14418,14808,24515,14430,14650,
 & 15072,15485, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23492,13882,14065,13950,13635,13018,12208,23784,13870,13650,
 & 13229,12816, 0, 0, 0, 0, 0, 0, 0, 0,
 & 25794,14494,13306,14606,24694,13506, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22794,14094,12906,11606,23894,12706, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE8 /
 & 25696,14490,13853,12750,13746,13310,14304,23509,13945,13746,
 & 24691,14054,13853, 0, 0, 0, 0, 0, 0, 0,
 & 23096,14090,13453,14450,13346,12910,11804,22709,13145,13346,
 & 23890,13254,13453, 0, 0, 0, 0, 0, 0, 0,
 & 25866,11548,15330, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21866,15548,11330, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 20600,17000, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21648,15648,23668,13628, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21648,15648, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22265,14031,22231,14065,21248,15048, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21656,15656,21640,15640, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 20608,16696, 0, 0, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE9 /
 & 21634,15634,21648,15648,21662,15662, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21636,15636,21653,12059,12862,13459,13854,14452,15255,15661,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /

XFOILinterface/XFOIL/plotlib/SYMB.INC

C Version 4.46 11/28/01

 CHARACTER* 14 CHARS
 INTEGER NODE(20, 14)

 DIMENSION NODE0(20,10)
 DIMENSION NODE1(20, 4)
 EQUIVALENCE (NODE(1, 1) , NODE0(1,1))
 EQUIVALENCE (NODE(1, 11) , NODE1(1,1))
 DATA NCHARS / 14 /
 DATA CHARS(1: 14) / '0123456789ABCD' /
 DATA NODE0 /
 & 24848,14880,18080,18016,11616,11680,14880, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24848,14880,16480,18064,18032,16416,13216,11632,11664,13280,
 & 14880, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24848,14886,18128,11528,14886, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24885,14811,21148,18548, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 22175,17521,22121,17575, 0, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24848,14882,18248,14814,11448,14882, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24848,14868,18168,14810,11568,14868, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21669,14848,14810,24848,18069, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24886,14848,11627,24848,18027, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 23078,16618,23018,16678,21448,18248, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /
 DATA NODE1 /
 & 21866,17830,21830,17866,24882,14814, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21680,18016,11616,18080,11680, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 21616,18080,18016,11680,11616, 0, 0, 0, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 & 24848,14859,11559,16917,14884,12717,18159,14859, 0, 0,
 & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /

XFOILinterface/XFOIL/plotlib/version.inc

C Version 4.46 11/28/01

XFOILinterface/XFOIL/src/XBL.INC

C
 PARAMETER (NCOM=73)
 REAL COM1(NCOM), COM2(NCOM)
 REAL M1, M1_U1, M1_MS, M2, M2_U2, M2_MS
 LOGICAL SIMI,TRAN,TURB,WAKE
 LOGICAL TRFORC,TRFREE
C
C- SCCON = shear coefficient lag constant
C- GACON = G-beta locus constants...
C- GBCON = G = GACON * sqrt(1.0 + GBCON*beta)
C- GCCON = + GCCON / [H*Rtheta*sqrt(Cf/2)] <-- wall term
C- DLCON = wall/wake dissipation length ratio Lo/L
C- CTCON = Ctau weighting coefficient (implied by G-beta constants)
C
 INCLUDE 'BLPAR.INC'
C
 COMMON/VAR1/ X1, U1, T1, D1, S1, AMPL1, U1_UEI, U1_MS, DW1
 & , H1, H1_T1, H1_D1
 & , M1, M1_U1, M1_MS
 & , R1, R1_U1, R1_MS
 & , V1, V1_U1, V1_MS, V1_RE
 & , HK1, HK1_U1, HK1_T1, HK1_D1, HK1_MS
 & , HS1, HS1_U1, HS1_T1, HS1_D1, HS1_MS, HS1_RE
 & , HC1, HC1_U1, HC1_T1, HC1_D1, HC1_MS
 & , RT1, RT1_U1, RT1_T1, RT1_MS, RT1_RE
 & , CF1, CF1_U1, CF1_T1, CF1_D1, CF1_MS, CF1_RE
 & , DI1, DI1_U1, DI1_T1, DI1_D1, DI1_S1, DI1_MS, DI1_RE
 & , US1, US1_U1, US1_T1, US1_D1, US1_MS, US1_RE
 & , CQ1, CQ1_U1, CQ1_T1, CQ1_D1, CQ1_MS, CQ1_RE
 & , DE1, DE1_U1, DE1_T1, DE1_D1, DE1_MS
 COMMON/VAR2/ X2, U2, T2, D2, S2, AMPL2, U2_UEI, U2_MS, DW2
 & , H2, H2_T2, H2_D2
 & , M2, M2_U2, M2_MS
 & , R2, R2_U2, R2_MS
 & , V2, V2_U2, V2_MS, V2_RE
 & , HK2, HK2_U2, HK2_T2, HK2_D2, HK2_MS
 & , HS2, HS2_U2, HS2_T2, HS2_D2, HS2_MS, HS2_RE
 & , HC2, HC2_U2, HC2_T2, HC2_D2, HC2_MS
 & , RT2, RT2_U2, RT2_T2, RT2_MS, RT2_RE
 & , CF2, CF2_U2, CF2_T2, CF2_D2, CF2_MS, CF2_RE
 & , DI2, DI2_U2, DI2_T2, DI2_D2, DI2_S2, DI2_MS, DI2_RE
 & , US2, US2_U2, US2_T2, US2_D2, US2_MS, US2_RE
 & , CQ2, CQ2_U2, CQ2_T2, CQ2_D2, CQ2_MS, CQ2_RE
 & , DE2, DE2_U2, DE2_T2, DE2_D2, DE2_MS
 EQUIVALENCE (X1,COM1(1)), (X2,COM2(1))
C
 COMMON/VARA/ CFM, CFM_MS, CFM_RE
 & , CFM_U1, CFM_T1, CFM_D1
 & , CFM_U2, CFM_T2, CFM_D2
 & , XT, XT_A1, XT_MS, XT_RE, XT_XF
 & , XT_X1, XT_T1, XT_D1, XT_U1
 & , XT_X2, XT_T2, XT_D2, XT_U2
C
C
 COMMON/SAV/ C1SAV(NCOM), C2SAV(NCOM)
C
 COMMON/VAR/ DWTE
 & , QINFBL
 & , TKBL , TKBL_MS
 & , RSTBL , RSTBL_MS
 & , HSTINV, HSTINV_MS
 & , REYBL , REYBL_MS, REYBL_RE
 & , GAMBL, GM1BL, HVRAT
 & , BULE, XIFORC, AMCRIT
 & , SIMI,TRAN,TURB,WAKE
 & , TRFORC,TRFREE
C
 COMMON/SYS/ VS1(4,5),VS2(4,5),VSREZ(4),VSR(4),VSM(4),VSX(4)
C

XFOILinterface/XFOIL/src/XDES.INC

C INCLUDE file for XFOIL design routines...
C
C---- Statement functions used to offset and scale all plots with blowups
 XMOD(XTMP) = XSF * (XTMP - XOFF)
 YMOD(YTMP) = YSF * (YTMP - YOFF)
C
 YMODP(YTMP) = YSFP * (YTMP - YOFF)
C

XFOILinterface/XFOIL/src/XFOIL.INC

C
C==== XFOIL code global INCLUDE file =====
C
C------ Primary dimensioning limit parameters
C IQX number of surface panel nodes + 6
C IWX number of wake panel nodes
C IPX number of Qspec(s) distributions
C ISX number of airfoil sides
C
C------ Derived dimensioning limit parameters
C IBX number of buffer airfoil nodes
C IMX number of complex mapping coefficients Cn
C IZX number of panel nodes (airfoil + wake)
C IVX number of nodes along BL on one side of airfoil and wake
C NAX number of points in stored polar
C NPX number of polars and reference polars
C NFX number of points in one reference polar
C NTX number of points in thickness/camber arrays
C
C---- include polar variable indexing parameters
 INCLUDE 'PINDEX.INC'
C
 PARAMETER (IQX=360, IWX=36, IPX=5, ISX=2)
 PARAMETER (IBX=2*IQX)
 PARAMETER (IZX=IQX+IWX)
 PARAMETER (IVX=IQX/2 + IWX + 50)
 PARAMETER (NAX=800,NPX=12,NFX=128)
 PARAMETER (NTX=2*IBX)
 CHARACTER*32 LABREF
 CHARACTER*64 FNAME, PFNAME, PFNAMX, ONAME, PREFIX
 CHARACTER*48 NAME, NAMEPOL, CODEPOL, NAMEREF
 CHARACTER*80 ISPARS
 LOGICAL OK,LIMAGE,
 & LGAMU,LQINU,SHARP,LVISC,LALFA,LWAKE,LPACC,
 & LBLINI,LIPAN,LQAIJ,LADIJ,LWDIJ,LCPXX,LQVDES,LQREFL,
 & LQSPEC,LVCONV,LCPREF,LCLOCK,LPFILE,LPFILX,LPPSHO,
 & LBFLAP,LFLAP,LEIW,LSCINI,LFOREF,LNORM,LGSAME,LDCPLOT,
 & LPLCAM, LQSYM ,LGSYM , LQGRID, LGGRID, LGTICK,
 & LQSLOP,LGSLOP, LCSLOP, LQSPPL, LGEOPL, LGPARM,
 & LCPGRD,LBLGRD, LBLSYM, LCMINP, LHMOMP, LFREQP
 LOGICAL LPLOT,LSYM,LIQSET,LCLIP,LVLAB,LCURS,LLAND
 LOGICAL LPGRID, LPCDW, LPLIST, LPLEGN, LAECEN
 LOGICAL TFORCE
 REAL NX, NY, MASS, MINF1, MINF, MINF_CL, MVISC, MACHP1
 INTEGER RETYP, MATYP, AIJPIV
 CHARACTER*1 VMXBL
C
C---- dimension temporary work and storage arrays (EQUIVALENCED below)
 REAL W1(6*IQX),W2(6*IQX),W3(6*IQX),W4(6*IQX),
 & W5(6*IQX),W6(6*IQX),W7(6*IQX),W8(6*IQX)
 REAL BIJ(IQX,IZX), CIJ(IWX,IQX)
C
 COMMON/CR01/ VERSION
 COMMON/CC01/ FNAME,
 & NAME,ISPARS,ONAME,PREFIX,
 & PFNAME(NPX),PFNAMX(NPX),
 & NAMEPOL(NPX), CODEPOL(NPX),
 & NAMEREF(NPX)
 COMMON/QMAT/ Q(IQX,IQX),DQ(IQX),
 & DZDG(IQX),DZDN(IQX),DZDM(IZX),
 & DQDG(IQX),DQDM(IZX),QTAN1,QTAN2,
 & Z_QINF,Z_ALFA,Z_QDOF0,Z_QDOF1,Z_QDOF2,Z_QDOF3
 COMMON/CR03/ AIJ(IQX,IQX),DIJ(IZX,IZX)
 COMMON/CR04/ QINV(IZX),QVIS(IZX),CPI(IZX),CPV(IZX),
 & QINVU(IZX,2), QINV_A(IZX)
 COMMON/CR05/ X(IZX),Y(IZX),XP(IZX),YP(IZX),S(IZX),
 & SLE,XLE,YLE,XTE,YTE,CHORD,YIMAGE,
 & WGAP(IWX),WAKLEN
 COMMON/CR06/ GAM(IQX),GAMU(IQX,2),GAM_A(IQX),SIG(IZX),
 & NX(IZX),NY(IZX),APANEL(IZX),
 & SST,SST_GO,SST_GP,
 & GAMTE,GAMTE_A,
 & SIGTE,SIGTE_A,
 & DSTE,ANTE,ASTE
 COMMON/CR07/ SSPLE,
 & SSPEC(IBX),XSPOC(IBX),YSPOC(IBX),
 & QGAMM(IBX),
 & QSPEC(IBX,IPX),QSPECP(IBX,IPX),
 & ALGAM,CLGAM,CMGAM,
 & ALQSP(IPX),CLQSP(IPX),CMQSP(IPX),
 & QF0(IQX),QF1(IQX),QF2(IQX),QF3(IQX),
 & QDOF0,QDOF1,QDOF2,QDOF3,CLSPEC,FFILT
 COMMON/CI01/ IQ1,IQ2,NSP,NQSP,KQTARG,IACQSP,NC1,NNAME,NPREFIX
 COMMON/CR09/ ADEG,ALFA,AWAKE,MVISC,AVISC,
 & XCMREF,YCMREF,
 & CL,CM,CD,CDP,CDF,CL_ALF,CL_MSQ,
 & PSIO,CIRC,COSA,SINA,QINF,
 & GAMMA,GAMM1,
 & MINF1,MINF,MINF_CL,TKLAM,TKL_MSQ,CPSTAR,QSTAR,
 & CPMN,CPMNI,CPMNV,XCPMNI,XCPMNV
 COMMON/CI03/ NCPREF, NAPOL(NPX), NPOL, IPACT, NLREF,
 & ILINP(NPX),ICOLP(NPX),
 & ISYMR(NPX),ICOLR(NPX),
 & IMATYP(NPX),IRETYP(NPX), NXYPOL(NPX),
 & NPOLREF, NDREF(4,NPX),
 & IPOL(IPTOT), NIPOL, NIPOL0,
 & JPOL(JPTOT), NJPOL
 COMMON/CR10/ XPREF(IQX),CPREF(IQX), VERSPOL(NPX),
 & CPOL(NAX,IPTOT,NPX),
 & CPOLSD(NAX,ISX,JPTOT,NPX),
 & CPOLXY(IQX,2,NPX),
 & MACHP1(NPX),
 & REYNP1(NPX),
 & ACRITP(NPX),XSTRIPP(ISX,NPX),
 & CPOLREF(NFX,2,4,NPX)
 COMMON/CC02/ LABREF
C
 COMMON/CR11/ PI,HOPI,QOPI,DTOR
 COMMON/CR12/ CVPAR,CTERAT,CTRRAT,XSREF1,XSREF2,XPREF1,XPREF2
 COMMON/CI04/ N,NB,NW,NPAN,IST,KIMAGE,
 & ITMAX,NSEQEX,RETYP,MATYP,AIJPIV(IQX),
 & IDEV,IDEVRP,IPSLU,NCOLOR,
 & ICOLS(ISX),NOVER, NCM,NTK
 COMMON/CR13/ SIZE,SCRNFR,PLOTAR, PFAC,QFAC,VFAC,
 & XWIND,YWIND,
 & XPAGE,YPAGE,XMARG,YMARG,
 & CH, CHG, CHQ,
 & XOFAIR,YOFAIR,FACAIR, XOFA,YOFA,FACA,UPRWT,
 & CPMIN,CPMAX,CPDEL,
 & CPOLPLF(3,4),
 & XCDWID,XALWID,XOCWID
 COMMON/CL01/ OK,LIMAGE,SHARP,
 & LGAMU,LQINU,LVISC,LALFA,LWAKE,LPACC,
 & LBLINI,LIPAN,LQAIJ,LADIJ,LWDIJ,LCPXX,LQVDES,LQREFL,
 & LQSPEC,LVCONV,LCPREF,LCLOCK,LPFILE,LPFILX,LPPSHO,
 & LBFLAP,LFLAP,LEIW,LSCINI,LFOREF,LNORM,LGSAME,LDCPLOT,
 & LPLCAM,LQSYM ,LGSYM,
 & LQGRID,LGGRID,LGTICK,
 & LQSLOP,LGSLOP,LCSLOP,LQSPPL,LGEOPL,LGPARM,
 & LCPGRD,LBLGRD,LBLSYM,
 & LPLOT,LSYM,LIQSET,LCLIP,LVLAB,LCURS,LLAND,
 & LPGRID,LPCDW,LPLIST,LPLEGN,LAECEN,
 & LCMINP, LHMOMP, LFREQP
 COMMON/CR14/ XB(IBX),YB(IBX),
 & XBP(IBX),YBP(IBX),SB(IBX),SNEW(4*IBX),
 & XBF,YBF,XOF,YOF,HMOM,HFX,HFY,
 & XBMIN,XBMAX,YBMIN,YBMAX,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB,
 & XCM(2*IBX),YCM(2*IBX),SCM(2*IBX),XCMP(2*IBX),YCMP(2*IBX),
 & XTK(2*IBX),YTK(2*IBX),STK(2*IBX),XTKP(2*IBX),YTKP(2*IBX)
C
 COMMON/CR15/ XSSI(IVX,ISX),UEDG(IVX,ISX),UINV(IVX,ISX),
 & MASS(IVX,ISX),THET(IVX,ISX),DSTR(IVX,ISX),
 & CTAU(IVX,ISX),DELT(IVX,ISX),USLP(IVX,ISX),
 & GUXQ(IVX,ISX),GUXD(IVX,ISX),
 & TAU(IVX,ISX),DIS(IVX,ISX),CTQ(IVX,ISX),
 & VTI(IVX,ISX),
 & REINF1,REINF,REINF_CL,ACRIT,
 & XSTRIP(ISX),XOCTR(ISX),YOCTR(ISX),XSSITR(ISX),
 & UINV_A(IVX,ISX)
 COMMON/CI05/ IBLTE(ISX),NBL(ISX),IPAN(IVX,ISX),ISYS(IVX,ISX),NSYS,
 & ITRAN(ISX)
 COMMON/CL02/ TFORCE(ISX)
 COMMON/CR17/ RMSBL,RMXBL,RLX,VACCEL
 COMMON/CI06/ IMXBL,ISMXBL
 COMMON/CC03/ VMXBL
 COMMON/CR18/ XSF,YSF,XOFF,YOFF,
 & XGMIN,XGMAX,YGMIN,YGMAX,DXYG,
 & XCMIN,XCMAX,YCMIN,YCMAX,DXYC,DYOFFC,
 & XPMIN,XPMAX,YPMIN,YPMAX,DXYP,DYOFFP,
 & YSFP,GTICK
 COMMON/CR19/
 & XCADD(NTX), YCADD(NTX), YCADDP(NTX),
 & XPADD(NTX), YPADD(NTX), YPADDP(NTX),
 & XCAM(NTX),
 & YCAM(NTX), YCAMP(NTX),
 & PCAM(NTX), PCAMP(NTX)
 COMMON/VMAT/ VA(3,2,IZX),VB(3,2,IZX),VDEL(3,2,IZX),
 & VM(3,IZX,IZX),VZ(3,2)
C
C
C---- save storage space
 EQUIVALENCE (Q(1,1),W1(1)), (Q(1,7),W2(1)),
 & (Q(1,13),W3(1)), (Q(1,19),W4(1)),
 & (Q(1,25),W5(1)), (Q(1,31),W6(1)),
 & (Q(1,37),W7(1)), (Q(1,43),W8(1))
 EQUIVALENCE (VM(1,1,1),BIJ(1,1)), (VM(1,1,IZX/2),CIJ(1,1))
C
C
C VERSION version number of this XFOIL implementation
C
C FNAME airfoil data filename
C PFNAME(.) polar append filename
C PFNAMX(.) polar append x/c dump filename
C ONAME default overlay airfoil filename
C PREFIX default filename prefix
C NAME airfoil name
C
C ISPARS ISES domain parameters (not used in XFOIL)
C
C Q(..) generic coefficient matrix
C DQ(.) generic matrix righthand side
C
C DZDG(.) dPsi/dGam
C DZDN(.) dPsi/dn
C DZDM(.) dPsi/dSig
C
C DQDG(.) dQtan/dGam
C DQDM(.) dQtan/dSig
C QTAN1 Qtan at alpha = 0 deg.
C QTAN2 Qtan at alpha = 90 deg.
C
C Z_QINF dPsi/dQinf
C Z_ALFA dPsi/dalfa
C Z_QDOF0 dPsi/dQdof0
C Z_QDOF1 dPsi/dQdof1
C Z_QDOF2 dPsi/dQdof2
C Z_QDOF3 dPsi/dQdof3
C
C AIJ(..) dPsi/dGam influence coefficient matrix (factored if LQAIJ=t)
C BIJ(..) dGam/dSig influence coefficient matrix
C CIJ(..) dQtan/dGam influence coefficient matrix
C DIJ(..) dQtan/dSig influence coefficient matrix
C QINV(.) tangential velocity due to surface vorticity
C QVIS(.) tangential velocity due to surface vorticity & mass sources
C QINVU(..) QINV for alpha = 0, 90 deg.
C QINV_A(.) dQINV/dalpha
C
C X(.),Y(.) airfoil (1<i<N) and wake (N+1<i<N+NW) coordinate arrays
C XP(.),YP(.) dX/dS, dY/dS arrays for spline evaluation
C S(.) arc length along airfoil (spline parameter)
C SLE value of S at leading edge
C XLE,YLE leading edge coordinates
C XTE,YTE trailing edge coordinates
C WGAP(.) thickness of "dead air" region inside wake just behind TE
C WAKLEN wake length to chord ratio
C
C GAM(.) surface vortex panel strength array
C GAMU(.2) surface vortex panel strength arrays for alpha = 0, 90 deg.
C GAM_A(.) dGAM/dALFA
C SIG(.) surface and wake mass defect array
C
C NX(.),NY(.) normal unit vector components at airfoil and wake coordinates
C APANEL(.) surface and wake panel angle array (+ counterclockwise)
C
C SST S value at stagnation point
C SST_GO dSST/dGAM(IST)
C SST_GP dSST/dGAM(IST+1)
C
C GAMTE vortex panel strength across finite-thickness TE
C SIGTE source panel strength across finite-thickness TE
C GAMTE_A dGAMTE/dALFA
C SIGTE_A dSIGTE/dALFA
C DSTE TE panel length
C ANTE,ASTE projected TE thickness perp.,para. to TE bisector
C SHARP .TRUE. if DSTE.EQ.0.0 , .FALSE. otherwise
C
C SSPEC(.) normalized arc length around airfoil (QSPEC coordinate)
C XSPOC(.) x/c at SSPEC points
C YSPOC(.) y/c at SSPEC points
C QSPEC(..) specified surface velocity for inverse calculations
C QSPECP(..) dQSPEC/dSSPEC
C QGAMM(.) surface velocity for current airfoil geometry
C SSPLE SSPEC value at airfoil nose
C
C IQ1,IQ2 target segment endpoint indices on Qspec(s) plot
C NSP number of points in QSPEC array
C NQSP number Qspec arrays
C IACQSP 1: ALQSP is prescribed for Qspec arrays
C 2: CLQSP is prescribed for Qspec arrays
C NC1 number of circle plane points, must be 2**n - 1
C
C NNAME number of characters in airfoil name
C NPREFIX number of characters in default filename prefix
C
C ALQSP(.) alpha,CL,CM corresponding to QSPEC distributions
C CLQSP(.)
C CMQSP(.)
C ALGAM alpha,CL,CM corresponding to QGAMM distribution
C CLGAM
C CMGAM
C
C QF0(.) shape function for QSPEC modification
C QF1(.) "
C QF2(.) "
C QF3(.) "
C QDOF0 shape function weighting coefficient (inverse DOF)
C QDOF1 "
C QDOF2 "
C QDOF3 "
C CLSPEC specified CL
C FFILT circle-plane mapping filter parameter
C
C ADEG,ALFA angle of attack in degrees, radians
C AWAKE angle of attack corresponding to wake geometry (radians)
C AVISC angle of attack corresponding to BL solution (radians)
C MVISC Mach number corresponding to BL solution
C CL,CM current CL and CM calculated from GAM(.) distribution
C CD current CD from BL solution
C CDF current friction CD from BL solution
C CL_ALF dCL/dALFA
C CL_MSQ dCL/d(MINF^2)
C
C PSIO streamfunction inside airfoil
C CIRC circulation
C COSA,SINA cos(ALFA), sin(ALFA)
C QINF freestream speed (defined as 1)
C GAMMA,GAMM1 Gas constant Cp/Cv, Cp/Cv - 1
C MINF1 freestream Mach number at CL=1
C MINF freestream Mach number at current CL
C MINF_CL dMINF/dCL
C TKLAM Karman-Tsien parameter Minf^2 / [1 + sqrt(1-Minf^2)]^2
C TKL_MSQ d(TKLAM)/d(MINF^2)
C CPSTAR sonic pressure coefficient
C QSTAR sonic speed
C
C NCPREF number of reference Cp vs x/c points
C XPREF(.) x/c array corresponding to reference Cp data array
C CPREF(.) reference Cp data array
C LABREF reference Cp data descriptor string
C
C NLREF number of characters in LABREF string
C NAPOL(.) number of points in each stored polar
C NPOL number of stored polars
C IPACT index of "active" polar being accumulated (0 if none are)
C ILINP(.) line style for each polar
C ICOLP(.) color for each polar
C ISYMR(.) symbol type for each reference polar
C ICOLR(.) color for each reference polar
C
C NDREF(..) number of points in each stored reference polar
C NPOLREF number of stored reference polars
C
C VERSPOL(.) version number of generating-code for each polar
C CPOL(...) CL,CD,and other parameters for each polar
C CPOLXY(.1.) x,y coordinates of airfoil geometry which generated each polar
C CPOLXY(.2.)
C NXYPOL(.) number of x,y points in CPOLXY array
C
C PXTR(..) transition locations for each polar
C NAMEPOL(.) airfoil names for each polar
C CODEPOL(.) generating-code names for each polar
C
C NAMEREF(.) name label of reference polar
C
C PI 3.1415926...
C HOPI,QOPI 1/(2 Pi) , 1/(4 Pi)
C DTOR Pi / 180 (degrees to radians conversion factor)
C
C CVPAR curvature attraction parameter for airfoil paneling
C 0 = uniform panel node spacing around airfoil
C ~1 = panel nodes strongly bunched in areas of large curvature
C CTERAT TE panel density / LE panel density ratio
C CTRRAT local refinement panel density / LE panel density ratio
C XSREF1-2 suction side local refinement x/c limits
C XPREF1-2 pressure side local refinement x/c limits
C
C N number of points on airfoil
C NB number of points in buffer airfoil array
C NW number of points in wake
C NPAN default/specified number of points on airfoil
C
C IST stagnation point lies between S(IST), S(IST+1)
C ITMAX max number of Newton iterations
C NSEQEX max number of unconverged sequence points for early exit
C
C RETYP index giving type of Re variation with CL ...
C ... 1 Re constant
C ... 2 Re ~ 1/sqrt(CL) (fixed lift)
C ... 3 Re ~ 1/CL (fixed lift and dynamic pressure)
C
C MATYP index giving type of Ma variation with CL ...
C ... 1 Ma constant
C ... 2 Ma ~ 1/sqrt(CL) (fixed lift)
C
C AIJPIV(.) pivot index array for LU factoring routine
C
C IDEV "device" number for normal screen plotting
C IDEVRP "device" number for replotting (typically for hardcopy)
C IPSLU PostScript file specifier
C NCOLOR Number of defined colors in colormap
C ICOLS(1) color indices of top side
C ICOLS(2) color indices of bottom side
C
C NOVER number of airfoils overlaid on GDES geometry plot
C
C SCRNFR screen fraction taken up by initial plot window
C SIZE plot width (inches)
C PLOTAR plot aspect ratio
C XWIND,YWIND window size in inches
C XPAGE,YPAGE plot-page size in inches (for hardcopy)
C XMARG,YMARG margin dimensions in inches
C PFAC scaling factor for Cp
C QFAC scaling factor for q (surface speed)
C VFAC scaling factor for Cp vectors
C CH character width / plot size ratio
C CHG character width / plot size ratio for geometry plot
C CHQ character width / plot size ratio for Qspec(s) plot
C
C XOFAIR x offset for airfoil in Cp vs x plots
C YOFAIR y offset for airfoil in Cp vs x plots
C FACAIR scale factor for airfoil in Cp vs x plots
C XOFA x offset for airfoil in Cp vs x plots in airfoil units
C YOFA y offset for airfoil in Cp vs x plots in airfoil units
C FACA scale factor for airfoil in Cp vs x plots in airfoil units
C UPRWT u/Qinf scale factor for profile plotting
C CPMAX max Cp in Cp vs x plots
C CPMIN min Cp in Cp vs x plots
C CPDEL delta Cp in Cp vs x plots
C
C CPOLPLF(1,ICD) min CD in CD-CL polar plot
C CPOLPLF(2,ICD) max CD in CD-CL polar plot
C CPOLPLF(3,ICD) delta CD in CD-CL polar plot
C
C XCDWID width of CD -CL polar plot
C XALWID width of alpha-CL polar plot
C XOCWID width of Xtr/c-CL polar plot
C
C OK user question response
C LIMAGE .TRUE. if image airfoil is present
C LGAMU .TRUE. if GAMU arrays exist for current airfoil geometry
C LQINU .TRUE. if QINVU arrays exist for current airfoil geometry
C LVISC .TRUE. if viscous option is invoked
C LALFA .TRUE. if alpha is specifed, .FALSE. if CL is specified
C LWAKE .TRUE. if wake geometry has been calculated
C LPACC .TRUE. if each point calculated is to be saved
C LBLINI .TRUE. if BL has been initialized
C LIPAN .TRUE. if BL->panel pointers IPAN have been calculated
C LQAIJ .TRUE. if dPsi/dGam matrix has been computed and factored
C LADIJ .TRUE. if dQ/dSig matrix for the airfoil has been computed
C LWDIJ .TRUE. if dQ/dSig matrix for the wake has been computed
C LQVDES .TRUE. if viscous Ue is to be plotted in QDES routines
C LQSPEC .TRUE. if Qspec has been initialized
C LQREFL .TRUE. if reflected Qspec is to be plotted in QDES routines
C LVCONV .TRUE. if converged BL solution exists
C LCPREF .TRUE. if reference data is to be plotted on Cp vs x/c plots
C LCLOCK .TRUE. if source airfoil coordinates are clockwise
C LPFILE .TRUE. if polar file is ready to be appended to
C LPFILX .TRUE. if polar dump file is ready to be appended to
C LPPSHO .TRUE. if CL-CD polar is plotted during point sequence
C LBFLAP .TRUE. if buffer airfoil flap parameters are defined
C LFLAP .TRUE. if current airfoil flap parameters are defined
C LEIW .TRUE. if unit circle complex number array is initialized
C LSCINI .TRUE. if old-airfoil circle-plane arc length s(w) exists
C LFOREF .TRUE. if CL,CD... data is to be plotted on Cp vs x/c plots
C LNORM .TRUE. if input buffer airfoil is to be normalized
C LGSAME .TRUE. if current and buffer airfoils are identical
C LDCPLOT .TRUE. if delta(Cp) plot is to be plotted in CAMB menu
C
C LPLCAM .TRUE. if thickness and camber are to be plotted
C LQSYM .TRUE. if symmetric Qspec will be enforced
C LGSYM .TRUE. if symmetric geometry will be enforced
C LQGRID .TRUE. if grid is to overlaid on Qspec(s) plot
C LGGRID .TRUE. if grid is to overlaid on buffer airfoil geometry plot
C LGTICK .TRUE. if node tick marks are to be plotted on buffer airfoil
C LQSLOP .TRUE. if modified Qspec(s) segment is to match slopes
C LGSLOP .TRUE. if modified geometry segment is to match slopes
C LCSLOP .TRUE. if modified camber line segment is to match slopes
C LQSPPL .TRUE. if current Qspec(s) in in plot
C LGEOPL .TRUE. if current geometry in in plot
C LCPGRD .TRUE. if grid is to be plotted on Cp plots
C LBLGRD .TRUE. if grid is to be plotted on BL variable plots
C LBLSYM .TRUE. if symbols are to be plotted on BL variable plots
C LCMINP .TRUE. if min Cp is to be written to polar file for cavitation
C LHMOMP .TRUE. if hinge moment is to be written to polar file
C LFREQP .TRUE. if individual TS-wave frequencies are to be plotted
C
C LPGRID .TRUE. if polar grid overlay is enabled
C LPCDW .TRUE. if polar CDwave is plotted
C LPLIST .TRUE. if polar listing lines (at top of plot) are enabled
C LPLEGN .TRUE. if polar legend is enabled
C
C LPLOT .TRUE. if plot page is open
C LSYM .TRUE. if symbols are to be plotted in QDES routines
C LIQSET .TRUE. if inverse target segment is marked off in QDES
C LCLIP .TRUE. if line-plot clipping is to be performed
C LVLAB .TRUE. if label is to be plotted on viscous-variable plots
C LCURS .TRUE. if cursor input is to be used for blowups, etc.
C LLAND .TRUE. if Landscape orientation for PostScript is used
C
C
C XB(.),YB(.) buffer airfoil coordinate arrays
C XBP(.) dXB/dSB
C YBP(.) dYB/dSB
C SB(.) spline parameter for buffer airfoil
C SNEW(.) new panel endpoint arc length array
C
C XBF,YBF buffer airfoil flap hinge coordinates
C XOF,YOF current airfoil flap hinge coordinates
C HMOM moment of flap about hinge point
C HFX x-force of flap on hinge point
C HFY y-force of flap on hinge point
C
C~~~~~~~~~~~~~~ properties of current buffer airfoil
C
C XBMIN,XBMAX limits of XB array
C YBMIN,YBMAX limits of YB array
C SBLE LE tangency-point SB location
C CHORDB chord
C AREAB area
C RADBLE LE radius
C ANGBTE TE angle (rad)
C
C EI11BA bending inertia about axis 1 x^2 dx dy
C EI22BA bending inertia about axis 2 y^2 dx dy
C APX1BA principal axis 1 angle
C APX2BA principal axis 2 angle
C
C EI11BT bending inertia about axis 1 x^2 t ds
C EI22BT bending inertia about axis 2 y^2 t ds
C APX1BT principal axis 1 angle
C APX2BT principal axis 2 angle
C
C THICKB max thickness
C CAMBRB max camber
C
C~~~~~~~~~~~~~~
C
C XSSI(..) BL arc length coordinate array on each surface
C UEDG(..) BL edge velocity array
C UINV(..) BL edge velocity array without mass defect influence
C MASS(..) BL mass defect array (= UEDG*DSTR)
C THET(..) BL momentum thickness array
C DSTR(..) BL displacement thickness array
C CTAU(..) sqrt(max shear coefficient) array
C (in laminar regions, log of amplification ratio)
C
C TAU(..) wall shear stress array (for plotting only)
C DIS(..) dissipation array (for plotting only)
C CTQ(..) sqrt(equilibrium max shear coefficient) array (")
C VTI(..) +/-1 conversion factor between panel and BL variables
C UINV_A(..) dUINV/dalfa array
C
C REINF1 Reynolds number Vinf c / ve for CL=1
C REINF Reynolds number for current CL
C REINF_CL dREINF/dCL
C
C ACRIT log (critical amplification ratio)
C XSTRIP(.) transition trip x/c locations (if XTRIP > 0),
C transition trip -s/s_side locations (if XTRIP < 0),
C XOCTR(.) actual transition x/c locations
C YOCTR(.) actual transition y/c locations
C XSSITR(.) actual transition xi locations
C
C IBLTE(.) BL array index at trailing edge
C NBL(.) max BL array index
C IPAN(..) panel index corresponding to BL location
C ISYS(..) BL Newton system line number corresponding to BL location
C NSYS total number of lines in BL Newton system
C ITRAN(.) BL array index of transition interval
C TFORCE(.) .TRUE. if transition is forced due to transition strip
C
C VA,VB(...) diagonal and off-diagonal blocks in BL Newton system
C VZ(..) way-off-diagonal block at TE station line
C VM(...) mass-influence coefficient vectors in BL Newton system
C VDEL(..) residual and solution vectors in BL Newton system
C
C RMSBL rms change from BL Newton system solution
C RMXBL max change from BL Newton system solution
C IMXBL location of max change
C ISMXBL index of BL side containing max change
C VMXBL character identifying variable with max change
C RLX underrelaxation factor for Newton update
C VACCEL parameter for accelerating BL Newton system solution
C (any off-diagonal element < VACCEL is not eliminated,
C which speeds up each iteration, but MAY increase
C iteration count)
C Can be set to zero for unadulterated Newton method
C
C XOFF,YOFF x and y offsets for windowing in QDES,GDES routines
C XSF ,YSF x and y scaling factors for windowing in QDES,GDES routines
C
C XGMIN airfoil grid plot limits
C XGMAX
C YGMIN
C YGMAX
C DXYG airfoil grid-plot annotation increment
C GTICK airfoil-plot tick marks size (as fraction of arc length)

XFOILinterface/XFOIL/plotlib/colorstuff/rgbtbl.h

/* RGB lookup table
 duplicates Xwindows rgb.txt as a color name to integer RGB table
 H.Youngren 3/99
*/

typedef struct {
 char *name;
 unsigned int rgb;
} Colordef;

static Colordef colordef[] = {
"snow", 16775930,
"ghost white", 16316671,
"GhostWhite", 16316671,
"white smoke", 16119285,
"WhiteSmoke", 16119285,
"gainsboro", 14474460,
"floral white", 16775920,
"FloralWhite", 16775920,
"old lace", 16643558,
"OldLace", 16643558,
"linen", 16445670,
"antique white", 16444375,
"AntiqueWhite", 16444375,
"papaya whip", 16773077,
"PapayaWhip", 16773077,
"blanched almond", 16772045,
"BlanchedAlmond", 16772045,
"bisque", 16770244,
"peach puff", 16767673,
"PeachPuff", 16767673,
"navajo white", 16768685,
"NavajoWhite", 16768685,
"moccasin", 16770229,
"cornsilk", 16775388,
"ivory", 16777200,
"lemon chiffon", 16775885,
"LemonChiffon", 16775885,
"seashell", 16774638,
"honeydew", 15794160,
"mint cream", 16121850,
"MintCream", 16121850,
"azure", 15794175,
"alice blue", 15792383,
"AliceBlue", 15792383,
"lavender", 15132410,
"lavender blush", 16773365,
"LavenderBlush", 16773365,
"misty rose", 16770273,
"MistyRose", 16770273,
"white", 16777215,
"black", 0,
"dark slate gray", 3100495,
"DarkSlateGray", 3100495,
"dark slate grey", 3100495,
"DarkSlateGrey", 3100495,
"dim gray", 6908265,
"DimGray", 6908265,
"dim grey", 6908265,
"DimGrey", 6908265,
"slate gray", 7372944,
"SlateGray", 7372944,
"slate grey", 7372944,
"SlateGrey", 7372944,
"light slate gray", 7833753,
"LightSlateGray", 7833753,
"light slate grey", 7833753,
"LightSlateGrey", 7833753,
"gray", 12500670,
"grey", 12500670,
"light grey", 13882323,
"LightGrey", 13882323,
"light gray", 13882323,
"LightGray", 13882323,
"midnight blue", 1644912,
"MidnightBlue", 1644912,
"navy", 128,
"navy blue", 128,
"NavyBlue", 128,
"cornflower blue", 6591981,
"CornflowerBlue", 6591981,
"dark slate blue", 4734347,
"DarkSlateBlue", 4734347,
"slate blue", 6970061,
"SlateBlue", 6970061,
"medium slate blue", 8087790,
"MediumSlateBlue", 8087790,
"light slate blue", 8679679,
"LightSlateBlue", 8679679,
"medium blue", 205,
"MediumBlue", 205,
"royal blue", 4286945,
"RoyalBlue", 4286945,
"blue", 255,
"dodger blue", 2003199,
"DodgerBlue", 2003199,
"deep sky blue", 49151,
"DeepSkyBlue", 49151,
"sky blue", 8900331,
"SkyBlue", 8900331,
"light sky blue", 8900346,
"LightSkyBlue", 8900346,
"steel blue", 4620980,
"SteelBlue", 4620980,
"light steel blue", 11584734,
"LightSteelBlue", 11584734,
"light blue", 11393254,
"LightBlue", 11393254,
"powder blue", 11591910,
"PowderBlue", 11591910,
"pale turquoise", 11529966,
"PaleTurquoise", 11529966,
"dark turquoise", 52945,
"DarkTurquoise", 52945,
"medium turquoise", 4772300,
"MediumTurquoise", 4772300,
"turquoise", 4251856,
"cyan", 65535,
"light cyan", 14745599,
"LightCyan", 14745599,
"cadet blue", 6266528,
"CadetBlue", 6266528,
"medium aquamarine", 6737322,
"MediumAquamarine", 6737322,
"aquamarine", 8388564,
"dark green", 25600,
"DarkGreen", 25600,
"dark olive green", 5597999,
"DarkOliveGreen", 5597999,
"dark sea green", 9419919,
"DarkSeaGreen", 9419919,
"sea green", 3050327,
"SeaGreen", 3050327,
"medium sea green", 3978097,
"MediumSeaGreen", 3978097,
"light sea green", 2142890,
"LightSeaGreen", 2142890,
"pale green", 10025880,
"PaleGreen", 10025880,
"spring green", 65407,
"SpringGreen", 65407,
"lawn green", 8190976,
"LawnGreen", 8190976,
"green", 65280,
"chartreuse", 8388352,
"medium spring green", 64154,
"MediumSpringGreen", 64154,
"green yellow", 11403055,
"GreenYellow", 11403055,
"lime green", 3329330,
"LimeGreen", 3329330,
"yellow green", 10145074,
"YellowGreen", 10145074,
"forest green", 2263842,
"ForestGreen", 2263842,
"olive drab", 7048739,
"OliveDrab", 7048739,
"dark khaki", 12433259,
"DarkKhaki", 12433259,
"khaki", 15787660,
"pale goldenrod", 15657130,
"PaleGoldenrod", 15657130,
"light goldenrod yellow", 16448210,
"LightGoldenrodYellow", 16448210,
"light yellow", 16777184,
"LightYellow", 16777184,
"yellow", 16776960,
"gold", 16766720,
"light goldenrod", 15654274,
"LightGoldenrod", 15654274,
"goldenrod", 14329120,
"dark goldenrod", 12092939,
"DarkGoldenrod", 12092939,
"rosy brown", 12357519,
"RosyBrown", 12357519,
"indian red", 13458524,
"IndianRed", 13458524,
"saddle brown", 9127187,
"SaddleBrown", 9127187,
"sienna", 10506797,
"peru", 13468991,
"burlywood", 14596231,
"beige", 16119260,
"wheat", 16113331,
"sandy brown", 16032864,
"SandyBrown", 16032864,
"tan", 13808780,
"chocolate", 13789470,
"firebrick", 11674146,
"brown", 10824234,
"dark salmon", 15308410,
"DarkSalmon", 15308410,
"salmon", 16416882,
"light salmon", 16752762,
"LightSalmon", 16752762,
"orange", 16753920,
"dark orange", 16747520,
"DarkOrange", 16747520,
"coral", 16744272,
"light coral", 15761536,
"LightCoral", 15761536,
"tomato", 16737095,
"orange red", 16729344,
"OrangeRed", 16729344,
"red", 16711680,
"hot pink", 16738740,
"HotPink", 16738740,
"deep pink", 16716947,
"DeepPink", 16716947,
"pink", 16761035,
"light pink", 16758465,
"LightPink", 16758465,
"pale violet red", 14381203,
"PaleVioletRed", 14381203,
"maroon", 11546720,
"medium violet red", 13047173,
"MediumVioletRed", 13047173,
"violet red", 13639824,
"VioletRed", 13639824,
"magenta", 16711935,
"violet", 15631086,
"plum", 14524637,
"orchid", 14315734,
"medium orchid", 12211667,
"MediumOrchid", 12211667,
"dark orchid", 10040012,
"DarkOrchid", 10040012,
"dark violet", 9699539,
"DarkViolet", 9699539,
"blue violet", 9055202,
"BlueViolet", 9055202,
"purple", 10494192,
"medium purple", 9662683,
"MediumPurple", 9662683,
"thistle", 14204888,
"snow1", 16775930,
"snow2", 15657449,
"snow3", 13486537,
"snow4", 9144713,
"seashell1", 16774638,
"seashell2", 15656414,
"seashell3", 13485503,
"seashell4", 9143938,
"AntiqueWhite1", 16773083,
"AntiqueWhite2", 15654860,
"AntiqueWhite3", 13484208,
"AntiqueWhite4", 9143160,
"bisque1", 16770244,
"bisque2", 15652279,
"bisque3", 13481886,
"bisque4", 9141611,
"PeachPuff1", 16767673,
"PeachPuff2", 15649709,
"PeachPuff3", 13479829,
"PeachPuff4", 9140069,
"NavajoWhite1", 16768685,
"NavajoWhite2", 15650721,
"NavajoWhite3", 13480843,
"NavajoWhite4", 9140574,
"LemonChiffon1", 16775885,
"LemonChiffon2", 15657407,
"LemonChiffon3", 13486501,
"LemonChiffon4", 9144688,
"cornsilk1", 16775388,
"cornsilk2", 15657165,
"cornsilk3", 13486257,
"cornsilk4", 9144440,
"ivory1", 16777200,
"ivory2", 15658720,
"ivory3", 13487553,
"ivory4", 9145219,
"honeydew1", 15794160,
"honeydew2", 14741216,
"honeydew3", 12701121,
"honeydew4", 8620931,
"LavenderBlush1", 16773365,
"LavenderBlush2", 15655141,
"LavenderBlush3", 13484485,
"LavenderBlush4", 9143174,
"MistyRose1", 16770273,
"MistyRose2", 15652306,
"MistyRose3", 13481909,
"MistyRose4", 9141627,
"azure1", 15794175,
"azure2", 14741230,
"azure3", 12701133,
"azure4", 8620939,
"SlateBlue1", 8613887,
"SlateBlue2", 8021998,
"SlateBlue3", 6904269,
"SlateBlue4", 4668555,
"RoyalBlue1", 4749055,
"RoyalBlue2", 4419310,
"RoyalBlue3", 3825613,
"RoyalBlue4", 2572427,
"blue1", 255,
"blue2", 238,
"blue3", 205,
"blue4", 139,
"DodgerBlue1", 2003199,
"DodgerBlue2", 1869550,
"DodgerBlue3", 1602765,
"DodgerBlue4", 1068683,
"SteelBlue1", 6535423,
"SteelBlue2", 6073582,
"SteelBlue3", 5215437,
"SteelBlue4", 3564683,
"DeepSkyBlue1", 49151,
"DeepSkyBlue2", 45806,
"DeepSkyBlue3", 39629,
"DeepSkyBlue4", 26763,
"SkyBlue1", 8900351,
"SkyBlue2", 8306926,
"SkyBlue3", 7120589,
"SkyBlue4", 4878475,
"LightSkyBlue1", 11592447,
"LightSkyBlue2", 10802158,
"LightSkyBlue3", 9287373,
"LightSkyBlue4", 6323083,
"SlateGray1", 13034239,
"SlateGray2", 12178414,
"SlateGray3", 10467021,
"SlateGray4", 7109515,
"LightSteelBlue1", 13296127,
"LightSteelBlue2", 12374766,
"LightSteelBlue3", 10663373,
"LightSteelBlue4", 7240587,
"LightBlue1", 12578815,
"LightBlue2", 11722734,
"LightBlue3", 10141901,
"LightBlue4", 6849419,
"LightCyan1", 14745599,
"LightCyan2", 13758190,
"LightCyan3", 11849165,
"LightCyan4", 8031115,
"PaleTurquoise1", 12320767,
"PaleTurquoise2", 11464430,
"PaleTurquoise3", 9883085,
"PaleTurquoise4", 6720395,
"CadetBlue1", 10024447,
"CadetBlue2", 9364974,
"CadetBlue3", 8046029,
"CadetBlue4", 5473931,
"turquoise1", 62975,
"turquoise2", 58862,
"turquoise3", 50637,
"turquoise4", 34443,
"cyan1", 65535,
"cyan2", 61166,
"cyan3", 52685,
"cyan4", 35723,
"DarkSlateGray1", 9961471,
"DarkSlateGray2", 9301742,
"DarkSlateGray3", 7982541,
"DarkSlateGray4", 5409675,
"aquamarine1", 8388564,
"aquamarine2", 7794374,
"aquamarine3", 6737322,
"aquamarine4", 4557684,
"DarkSeaGreen1", 12713921,
"DarkSeaGreen2", 11857588,
"DarkSeaGreen3", 10210715,
"DarkSeaGreen4", 6916969,
"SeaGreen1", 5570463,
"SeaGreen2", 5172884,
"SeaGreen3", 4443520,
"SeaGreen4", 3050327,
"PaleGreen1", 10157978,
"PaleGreen2", 9498256,
"PaleGreen3", 8179068,
"PaleGreen4", 5540692,
"SpringGreen1", 65407,
"SpringGreen2", 61046,
"SpringGreen3", 52582,
"SpringGreen4", 35653,
"green1", 65280,
"green2", 60928,
"green3", 52480,
"green4", 35584,
"chartreuse1", 8388352,
"chartreuse2", 7794176,
"chartreuse3", 6737152,
"chartreuse4", 4557568,
"OliveDrab1", 12648254,
"OliveDrab2", 11791930,
"OliveDrab3", 10145074,
"OliveDrab4", 6916898,
"DarkOliveGreen1", 13303664,
"DarkOliveGreen2", 12381800,
"DarkOliveGreen3", 10669402,
"DarkOliveGreen4", 7244605,
"khaki1", 16774799,
"khaki2", 15656581,
"khaki3", 13485683,
"khaki4", 9143886,
"LightGoldenrod1", 16772235,
"LightGoldenrod2", 15654018,
"LightGoldenrod3", 13483632,
"LightGoldenrod4", 9142604,
"LightYellow1", 16777184,
"LightYellow2", 15658705,
"LightYellow3", 13487540,
"LightYellow4", 9145210,
"yellow1", 16776960,
"yellow2", 15658496,
"yellow3", 13487360,
"yellow4", 9145088,
"gold1", 16766720,
"gold2", 15649024,
"gold3", 13479168,
"gold4", 9139456,
"goldenrod1", 16761125,
"goldenrod2", 15643682,
"goldenrod3", 13474589,
"goldenrod4", 9136404,
"DarkGoldenrod1", 16759055,
"DarkGoldenrod2", 15641870,
"DarkGoldenrod3", 13473036,
"DarkGoldenrod4", 9135368,
"RosyBrown1", 16761281,
"RosyBrown2", 15643828,
"RosyBrown3", 13474715,
"RosyBrown4", 9136489,
"IndianRed1", 16738922,
"IndianRed2", 15623011,
"IndianRed3", 13456725,
"IndianRed4", 9124410,
"sienna1", 16745031,
"sienna2", 15628610,
"sienna3", 13461561,
"sienna4", 9127718,
"burlywood1", 16765851,
"burlywood2", 15648145,
"burlywood3", 13478525,
"burlywood4", 9139029,
"wheat1", 16771002,
"wheat2", 15653038,
"wheat3", 13482646,
"wheat4", 9141862,
"tan1", 16753999,
"tan2", 15637065,
"tan3", 13468991,
"tan4", 9132587,
"chocolate1", 16744228,
"chocolate2", 15627809,
"chocolate3", 13461021,
"chocolate4", 9127187,
"firebrick1", 16724016,
"firebrick2", 15608876,
"firebrick3", 13444646,
"firebrick4", 9116186,
"brown1", 16728128,
"brown2", 15612731,
"brown3", 13447987,
"brown4", 9118499,
"salmon1", 16747625,
"salmon2", 15630946,
"salmon3", 13463636,
"salmon4", 9129017,
"LightSalmon1", 16752762,
"LightSalmon2", 15635826,
"LightSalmon3", 13468002,
"LightSalmon4", 9131842,
"orange1", 16753920,
"orange2", 15636992,
"orange3", 13468928,
"orange4", 9132544,
"DarkOrange1", 16744192,
"DarkOrange2", 15627776,
"DarkOrange3", 13460992,
"DarkOrange4", 9127168,
"coral1", 16740950,
"coral2", 15624784,
"coral3", 13458245,
"coral4", 9125423,
"tomato1", 16737095,
"tomato2", 15621186,
"tomato3", 13455161,
"tomato4", 9123366,
"OrangeRed1", 16729344,
"OrangeRed2", 15613952,
"OrangeRed3", 13448960,
"OrangeRed4", 9118976,
"red1", 16711680,
"red2", 15597568,
"red3", 13434880,
"red4", 9109504,
"DeepPink1", 16716947,
"DeepPink2", 15602313,
"DeepPink3", 13439094,
"DeepPink4", 9112144,
"HotPink1", 16740020,
"HotPink2", 15624871,
"HotPink3", 13459600,
"HotPink4", 9124450,
"pink1", 16758213,
"pink2", 15641016,
"pink3", 13472158,
"pink4", 9134956,
"LightPink1", 16756409,
"LightPink2", 15639213,
"LightPink3", 13470869,
"LightPink4", 9133925,
"PaleVioletRed1", 16745131,
"PaleVioletRed2", 15628703,
"PaleVioletRed3", 13461641,
"PaleVioletRed4", 9127773,
"maroon1", 16725171,
"maroon2", 15610023,
"maroon3", 13445520,
"maroon4", 9116770,
"VioletRed1", 16727702,
"VioletRed2", 15612556,
"VioletRed3", 13447800,
"VioletRed4", 9118290,
"magenta1", 16711935,
"magenta2", 15597806,
"magenta3", 13435085,
"magenta4", 9109643,
"orchid1", 16745466,
"orchid2", 15629033,
"orchid3", 13461961,
"orchid4", 9127817,
"plum1", 16759807,
"plum2", 15642350,
"plum3", 13473485,
"plum4", 9135755,
"MediumOrchid1", 14706431,
"MediumOrchid2", 13721582,
"MediumOrchid3", 11817677,
"MediumOrchid4", 8009611,
"DarkOrchid1", 12533503,
"DarkOrchid2", 11680494,
"DarkOrchid3", 10105549,
"DarkOrchid4", 6824587,
"purple1", 10170623,
"purple2", 9514222,
"purple3", 8201933,
"purple4", 5577355,
"MediumPurple1", 11240191,
"MediumPurple2", 10451438,
"MediumPurple3", 9005261,
"MediumPurple4", 6113163,
"thistle1", 16769535,
"thistle2", 15651566,
"thistle3", 13481421,
"thistle4", 9141131,
"gray0", 0,
"grey0", 0,
"gray1", 197379,
"grey1", 197379,
"gray2", 328965,
"grey2", 328965,
"gray3", 526344,
"grey3", 526344,
"gray4", 657930,
"grey4", 657930,
"gray5", 855309,
"grey5", 855309,
"gray6", 986895,
"grey6", 986895,
"gray7", 1184274,
"grey7", 1184274,
"gray8", 1315860,
"grey8", 1315860,
"gray9", 1513239,
"grey9", 1513239,
"gray10", 1710618,
"grey10", 1710618,
"gray11", 1842204,
"grey11", 1842204,
"gray12", 2039583,
"grey12", 2039583,
"gray13", 2171169,
"grey13", 2171169,
"gray14", 2368548,
"grey14", 2368548,
"gray15", 2500134,
"grey15", 2500134,
"gray16", 2697513,
"grey16", 2697513,
"gray17", 2829099,
"grey17", 2829099,
"gray18", 3026478,
"grey18", 3026478,
"gray19", 3158064,
"grey19", 3158064,
"gray20", 3355443,
"grey20", 3355443,
"gray21", 3552822,
"grey21", 3552822,
"gray22", 3684408,
"grey22", 3684408,
"gray23", 3881787,
"grey23", 3881787,
"gray24", 4013373,
"grey24", 4013373,
"gray25", 4210752,
"grey25", 4210752,
"gray26", 4342338,
"grey26", 4342338,
"gray27", 4539717,
"grey27", 4539717,
"gray28", 4671303,
"grey28", 4671303,
"gray29", 4868682,
"grey29", 4868682,
"gray30", 5066061,
"grey30", 5066061,
"gray31", 5197647,
"grey31", 5197647,
"gray32", 5395026,
"grey32", 5395026,
"gray33", 5526612,
"grey33", 5526612,
"gray34", 5723991,
"grey34", 5723991,
"gray35", 5855577,
"grey35", 5855577,
"gray36", 6052956,
"grey36", 6052956,
"gray37", 6184542,
"grey37", 6184542,
"gray38", 6381921,
"grey38", 6381921,
"gray39", 6513507,
"grey39", 6513507,
"gray40", 6710886,
"grey40", 6710886,
"gray41", 6908265,
"grey41", 6908265,
"gray42", 7039851,
"grey42", 7039851,
"gray43", 7237230,
"grey43", 7237230,
"gray44", 7368816,
"grey44", 7368816,
"gray45", 7566195,
"grey45", 7566195,
"gray46", 7697781,
"grey46", 7697781,
"gray47", 7895160,
"grey47", 7895160,
"gray48", 8026746,
"grey48", 8026746,
"gray49", 8224125,
"grey49", 8224125,
"gray50", 8355711,
"grey50", 8355711,
"gray51", 8553090,
"grey51", 8553090,
"gray52", 8750469,
"grey52", 8750469,
"gray53", 8882055,
"grey53", 8882055,
"gray54", 9079434,
"grey54", 9079434,
"gray55", 9211020,
"grey55", 9211020,
"gray56", 9408399,
"grey56", 9408399,
"gray57", 9539985,
"grey57", 9539985,
"gray58", 9737364,
"grey58", 9737364,
"gray59", 9868950,
"grey59", 9868950,
"gray60", 10066329,
"grey60", 10066329,
"gray61", 10263708,
"grey61", 10263708,
"gray62", 10395294,
"grey62", 10395294,
"gray63", 10592673,
"grey63", 10592673,
"gray64", 10724259,
"grey64", 10724259,
"gray65", 10921638,
"grey65", 10921638,
"gray66", 11053224,
"grey66", 11053224,
"gray67", 11250603,
"grey67", 11250603,
"gray68", 11382189,
"grey68", 11382189,
"gray69", 11579568,
"grey69", 11579568,
"gray70", 11776947,
"grey70", 11776947,
"gray71", 11908533,
"grey71", 11908533,
"gray72", 12105912,
"grey72", 12105912,
"gray73", 12237498,
"grey73", 12237498,
"gray74", 12434877,
"grey74", 12434877,
"gray75", 12566463,
"grey75", 12566463,
"gray76", 12763842,
"grey76", 12763842,
"gray77", 12895428,
"grey77", 12895428,
"gray78", 13092807,
"grey78", 13092807,
"gray79", 13224393,
"grey79", 13224393,
"gray80", 13421772,
"grey80", 13421772,
"gray81", 13619151,
"grey81", 13619151,
"gray82", 13750737,
"grey82", 13750737,
"gray83", 13948116,
"grey83", 13948116,
"gray84", 14079702,
"grey84", 14079702,
"gray85", 14277081,
"grey85", 14277081,
"gray86", 14408667,
"grey86", 14408667,
"gray87", 14606046,
"grey87", 14606046,
"gray88", 14737632,
"grey88", 14737632,
"gray89", 14935011,
"grey89", 14935011,
"gray90", 15066597,
"grey90", 15066597,
"gray91", 15263976,
"grey91", 15263976,
"gray92", 15461355,
"grey92", 15461355,
"gray93", 15592941,
"grey93", 15592941,
"gray94", 15790320,
"grey94", 15790320,
"gray95", 15921906,
"grey95", 15921906,
"gray96", 16119285,
"grey96", 16119285,
"gray97", 16250871,
"grey97", 16250871,
"gray98", 16448250,
"grey98", 16448250,
"gray99", 16579836,
"grey99", 16579836,
"gray100", 16777215,
"grey100", 16777215,
"dark grey", 11119017,
"DarkGrey", 11119017,
"dark gray", 11119017,
"DarkGray", 11119017,
"dark blue", 139,
"DarkBlue", 139,
"dark cyan", 35723,
"DarkCyan", 35723,
"dark magenta", 9109643,
"DarkMagenta", 9109643,
"dark red", 9109504,
"DarkRed", 9109504,
"light green", 9498256,
"LightGreen", 9498256
};

XFOILinterface/XFOIL/plotlib/win32/rgbtbl.h

/* RGB lookup table
 duplicates Xwindows rgb.txt as a color name to integer RGB table
 H.Youngren 3/99
*/

typedef struct {
 char *name;
 unsigned int rgb;
} Colordef;

static Colordef colordef[] = {
"snow", 16775930,
"ghost white", 16316671,
"ghostwhite", 16316671,
"white smoke", 16119285,
"whitesmoke", 16119285,
"gainsboro", 14474460,
"floral white", 16775920,
"floralwhite", 16775920,
"old lace", 16643558,
"oldlace", 16643558,
"linen", 16445670,
"antique white", 16444375,
"antiquewhite", 16444375,
"papaya whip", 16773077,
"papayawhip", 16773077,
"blanched almond", 16772045,
"blanchedalmond", 16772045,
"bisque", 16770244,
"peach puff", 16767673,
"peachpuff", 16767673,
"navajo white", 16768685,
"navajowhite", 16768685,
"moccasin", 16770229,
"cornsilk", 16775388,
"ivory", 16777200,
"lemon chiffon", 16775885,
"lemonchiffon", 16775885,
"seashell", 16774638,
"honeydew", 15794160,
"mint cream", 16121850,
"mintcream", 16121850,
"azure", 15794175,
"alice blue", 15792383,
"aliceblue", 15792383,
"lavender", 15132410,
"lavender blush", 16773365,
"lavenderblush", 16773365,
"misty rose", 16770273,
"mistyrose", 16770273,
"white", 16777215,
"black", 0,
"dark slate gray", 3100495,
"darkslategray", 3100495,
"dark slate grey", 3100495,
"darkslategrey", 3100495,
"dim gray", 6908265,
"dimgray", 6908265,
"dim grey", 6908265,
"dimgrey", 6908265,
"slate gray", 7372944,
"slategray", 7372944,
"slate grey", 7372944,
"slategrey", 7372944,
"light slate gray", 7833753,
"lightslategray", 7833753,
"light slate grey", 7833753,
"lightslategrey", 7833753,
"gray", 12500670,
"grey", 12500670,
"light grey", 13882323,
"lightgrey", 13882323,
"light gray", 13882323,
"lightgray", 13882323,
"midnight blue", 1644912,
"midnightblue", 1644912,
"navy", 128,
"navy blue", 128,
"navyblue", 128,
"cornflower blue", 6591981,
"cornflowerblue", 6591981,
"dark slate blue", 4734347,
"darkslateblue", 4734347,
"slate blue", 6970061,
"slateblue", 6970061,
"medium slate blue", 8087790,
"mediumslateblue", 8087790,
"light slate blue", 8679679,
"lightslateblue", 8679679,
"medium blue", 205,
"mediumblue", 205,
"royal blue", 4286945,
"royalblue", 4286945,
"blue", 255,
"dodger blue", 2003199,
"dodgerblue", 2003199,
"deep sky blue", 49151,
"deepskyblue", 49151,
"sky blue", 8900331,
"skyblue", 8900331,
"light sky blue", 8900346,
"lightskyblue", 8900346,
"steel blue", 4620980,
"steelblue", 4620980,
"light steel blue", 11584734,
"lightsteelblue", 11584734,
"light blue", 11393254,
"lightblue", 11393254,
"powder blue", 11591910,
"powderblue", 11591910,
"pale turquoise", 11529966,
"paleturquoise", 11529966,
"dark turquoise", 52945,
"darkturquoise", 52945,
"medium turquoise", 4772300,
"mediumturquoise", 4772300,
"turquoise", 4251856,
"cyan", 65535,
"light cyan", 14745599,
"lightcyan", 14745599,
"cadet blue", 6266528,
"cadetblue", 6266528,
"medium aquamarine", 6737322,
"mediumaquamarine", 6737322,
"aquamarine", 8388564,
"dark green", 25600,
"darkgreen", 25600,
"dark olive green", 5597999,
"darkolivegreen", 5597999,
"dark sea green", 9419919,
"darkseagreen", 9419919,
"sea green", 3050327,
"seagreen", 3050327,
"medium sea green", 3978097,
"mediumseagreen", 3978097,
"light sea green", 2142890,
"lightseagreen", 2142890,
"pale green", 10025880,
"palegreen", 10025880,
"spring green", 65407,
"springgreen", 65407,
"lawn green", 8190976,
"lawngreen", 8190976,
"green", 65280,
"chartreuse", 8388352,
"medium spring green", 64154,
"mediumspringgreen", 64154,
"green yellow", 11403055,
"greenyellow", 11403055,
"lime green", 3329330,
"limegreen", 3329330,
"yellow green", 10145074,
"yellowgreen", 10145074,
"forest green", 2263842,
"forestgreen", 2263842,
"olive drab", 7048739,
"olivedrab", 7048739,
"dark khaki", 12433259,
"darkkhaki", 12433259,
"khaki", 15787660,
"pale goldenrod", 15657130,
"palegoldenrod", 15657130,
"light goldenrod yellow", 16448210,
"lightgoldenrodyellow", 16448210,
"light yellow", 16777184,
"lightyellow", 16777184,
"yellow", 16776960,
"gold", 16766720,
"light goldenrod", 15654274,
"lightgoldenrod", 15654274,
"goldenrod", 14329120,
"dark goldenrod", 12092939,
"darkgoldenrod", 12092939,
"rosy brown", 12357519,
"rosybrown", 12357519,
"indian red", 13458524,
"indianred", 13458524,
"saddle brown", 9127187,
"saddlebrown", 9127187,
"sienna", 10506797,
"peru", 13468991,
"burlywood", 14596231,
"beige", 16119260,
"wheat", 16113331,
"sandy brown", 16032864,
"sandybrown", 16032864,
"tan", 13808780,
"chocolate", 13789470,
"firebrick", 11674146,
"brown", 10824234,
"dark salmon", 15308410,
"darksalmon", 15308410,
"salmon", 16416882,
"light salmon", 16752762,
"lightsalmon", 16752762,
"orange", 16753920,
"dark orange", 16747520,
"darkorange", 16747520,
"coral", 16744272,
"light coral", 15761536,
"lightcoral", 15761536,
"tomato", 16737095,
"orange red", 16729344,
"orangered", 16729344,
"red", 16711680,
"hot pink", 16738740,
"hotpink", 16738740,
"deep pink", 16716947,
"deeppink", 16716947,
"pink", 16761035,
"light pink", 16758465,
"lightpink", 16758465,
"pale violet red", 14381203,
"palevioletred", 14381203,
"maroon", 11546720,
"medium violet red", 13047173,
"mediumvioletred", 13047173,
"violet red", 13639824,
"violetred", 13639824,
"magenta", 16711935,
"violet", 15631086,
"plum", 14524637,
"orchid", 14315734,
"medium orchid", 12211667,
"mediumorchid", 12211667,
"dark orchid", 10040012,
"darkorchid", 10040012,
"dark violet", 9699539,
"darkviolet", 9699539,
"blue violet", 9055202,
"blueviolet", 9055202,
"purple", 10494192,
"medium purple", 9662683,
"mediumpurple", 9662683,
"thistle", 14204888,
"snow1", 16775930,
"snow2", 15657449,
"snow3", 13486537,
"snow4", 9144713,
"seashell1", 16774638,
"seashell2", 15656414,
"seashell3", 13485503,
"seashell4", 9143938,
"antiquewhite1", 16773083,
"antiquewhite2", 15654860,
"antiquewhite3", 13484208,
"antiquewhite4", 9143160,
"bisque1", 16770244,
"bisque2", 15652279,
"bisque3", 13481886,
"bisque4", 9141611,
"peachpuff1", 16767673,
"peachpuff2", 15649709,
"peachpuff3", 13479829,
"peachpuff4", 9140069,
"navajowhite1", 16768685,
"navajowhite2", 15650721,
"navajowhite3", 13480843,
"navajowhite4", 9140574,
"lemonchiffon1", 16775885,
"lemonchiffon2", 15657407,
"lemonchiffon3", 13486501,
"lemonchiffon4", 9144688,
"cornsilk1", 16775388,
"cornsilk2", 15657165,
"cornsilk3", 13486257,
"cornsilk4", 9144440,
"ivory1", 16777200,
"ivory2", 15658720,
"ivory3", 13487553,
"ivory4", 9145219,
"honeydew1", 15794160,
"honeydew2", 14741216,
"honeydew3", 12701121,
"honeydew4", 8620931,
"lavenderblush1", 16773365,
"lavenderblush2", 15655141,
"lavenderblush3", 13484485,
"lavenderblush4", 9143174,
"mistyrose1", 16770273,
"mistyrose2", 15652306,
"mistyrose3", 13481909,
"mistyrose4", 9141627,
"azure1", 15794175,
"azure2", 14741230,
"azure3", 12701133,
"azure4", 8620939,
"slateblue1", 8613887,
"slateblue2", 8021998,
"slateblue3", 6904269,
"slateblue4", 4668555,
"royalblue1", 4749055,
"royalblue2", 4419310,
"royalblue3", 3825613,
"royalblue4", 2572427,
"blue1", 255,
"blue2", 238,
"blue3", 205,
"blue4", 139,
"dodgerblue1", 2003199,
"dodgerblue2", 1869550,
"dodgerblue3", 1602765,
"dodgerblue4", 1068683,
"steelblue1", 6535423,
"steelblue2", 6073582,
"steelblue3", 5215437,
"steelblue4", 3564683,
"deepskyblue1", 49151,
"deepskyblue2", 45806,
"deepskyblue3", 39629,
"deepskyblue4", 26763,
"skyblue1", 8900351,
"skyblue2", 8306926,
"skyblue3", 7120589,
"skyblue4", 4878475,
"lightskyblue1", 11592447,
"lightskyblue2", 10802158,
"lightskyblue3", 9287373,
"lightskyblue4", 6323083,
"slategray1", 13034239,
"slategray2", 12178414,
"slategray3", 10467021,
"slategray4", 7109515,
"lightsteelblue1", 13296127,
"lightsteelblue2", 12374766,
"lightsteelblue3", 10663373,
"lightsteelblue4", 7240587,
"lightblue1", 12578815,
"lightblue2", 11722734,
"lightblue3", 10141901,
"lightblue4", 6849419,
"lightcyan1", 14745599,
"lightcyan2", 13758190,
"lightcyan3", 11849165,
"lightcyan4", 8031115,
"paleturquoise1", 12320767,
"paleturquoise2", 11464430,
"paleturquoise3", 9883085,
"paleturquoise4", 6720395,
"cadetblue1", 10024447,
"cadetblue2", 9364974,
"cadetblue3", 8046029,
"cadetblue4", 5473931,
"turquoise1", 62975,
"turquoise2", 58862,
"turquoise3", 50637,
"turquoise4", 34443,
"cyan1", 65535,
"cyan2", 61166,
"cyan3", 52685,
"cyan4", 35723,
"darkslategray1", 9961471,
"darkslategray2", 9301742,
"darkslategray3", 7982541,
"darkslategray4", 5409675,
"aquamarine1", 8388564,
"aquamarine2", 7794374,
"aquamarine3", 6737322,
"aquamarine4", 4557684,
"darkseagreen1", 12713921,
"darkseagreen2", 11857588,
"darkseagreen3", 10210715,
"darkseagreen4", 6916969,
"seagreen1", 5570463,
"seagreen2", 5172884,
"seagreen3", 4443520,
"seagreen4", 3050327,
"palegreen1", 10157978,
"palegreen2", 9498256,
"palegreen3", 8179068,
"palegreen4", 5540692,
"springgreen1", 65407,
"springgreen2", 61046,
"springgreen3", 52582,
"springgreen4", 35653,
"green1", 65280,
"green2", 60928,
"green3", 52480,
"green4", 35584,
"chartreuse1", 8388352,
"chartreuse2", 7794176,
"chartreuse3", 6737152,
"chartreuse4", 4557568,
"olivedrab1", 12648254,
"olivedrab2", 11791930,
"olivedrab3", 10145074,
"olivedrab4", 6916898,
"darkolivegreen1", 13303664,
"darkolivegreen2", 12381800,
"darkolivegreen3", 10669402,
"darkolivegreen4", 7244605,
"khaki1", 16774799,
"khaki2", 15656581,
"khaki3", 13485683,
"khaki4", 9143886,
"lightgoldenrod1", 16772235,
"lightgoldenrod2", 15654018,
"lightgoldenrod3", 13483632,
"lightgoldenrod4", 9142604,
"lightyellow1", 16777184,
"lightyellow2", 15658705,
"lightyellow3", 13487540,
"lightyellow4", 9145210,
"yellow1", 16776960,
"yellow2", 15658496,
"yellow3", 13487360,
"yellow4", 9145088,
"gold1", 16766720,
"gold2", 15649024,
"gold3", 13479168,
"gold4", 9139456,
"goldenrod1", 16761125,
"goldenrod2", 15643682,
"goldenrod3", 13474589,
"goldenrod4", 9136404,
"darkgoldenrod1", 16759055,
"darkgoldenrod2", 15641870,
"darkgoldenrod3", 13473036,
"darkgoldenrod4", 9135368,
"rosybrown1", 16761281,
"rosybrown2", 15643828,
"rosybrown3", 13474715,
"rosybrown4", 9136489,
"indianred1", 16738922,
"indianred2", 15623011,
"indianred3", 13456725,
"indianred4", 9124410,
"sienna1", 16745031,
"sienna2", 15628610,
"sienna3", 13461561,
"sienna4", 9127718,
"burlywood1", 16765851,
"burlywood2", 15648145,
"burlywood3", 13478525,
"burlywood4", 9139029,
"wheat1", 16771002,
"wheat2", 15653038,
"wheat3", 13482646,
"wheat4", 9141862,
"tan1", 16753999,
"tan2", 15637065,
"tan3", 13468991,
"tan4", 9132587,
"chocolate1", 16744228,
"chocolate2", 15627809,
"chocolate3", 13461021,
"chocolate4", 9127187,
"firebrick1", 16724016,
"firebrick2", 15608876,
"firebrick3", 13444646,
"firebrick4", 9116186,
"brown1", 16728128,
"brown2", 15612731,
"brown3", 13447987,
"brown4", 9118499,
"salmon1", 16747625,
"salmon2", 15630946,
"salmon3", 13463636,
"salmon4", 9129017,
"lightsalmon1", 16752762,
"lightsalmon2", 15635826,
"lightsalmon3", 13468002,
"lightsalmon4", 9131842,
"orange1", 16753920,
"orange2", 15636992,
"orange3", 13468928,
"orange4", 9132544,
"darkorange1", 16744192,
"darkorange2", 15627776,
"darkorange3", 13460992,
"darkorange4", 9127168,
"coral1", 16740950,
"coral2", 15624784,
"coral3", 13458245,
"coral4", 9125423,
"tomato1", 16737095,
"tomato2", 15621186,
"tomato3", 13455161,
"tomato4", 9123366,
"orangered1", 16729344,
"orangered2", 15613952,
"orangered3", 13448960,
"orangered4", 9118976,
"red1", 16711680,
"red2", 15597568,
"red3", 13434880,
"red4", 9109504,
"deeppink1", 16716947,
"deeppink2", 15602313,
"deeppink3", 13439094,
"deeppink4", 9112144,
"hotpink1", 16740020,
"hotpink2", 15624871,
"hotpink3", 13459600,
"hotpink4", 9124450,
"pink1", 16758213,
"pink2", 15641016,
"pink3", 13472158,
"pink4", 9134956,
"lightpink1", 16756409,
"lightpink2", 15639213,
"lightpink3", 13470869,
"lightpink4", 9133925,
"palevioletred1", 16745131,
"palevioletred2", 15628703,
"palevioletred3", 13461641,
"palevioletred4", 9127773,
"maroon1", 16725171,
"maroon2", 15610023,
"maroon3", 13445520,
"maroon4", 9116770,
"violetred1", 16727702,
"violetred2", 15612556,
"violetred3", 13447800,
"violetred4", 9118290,
"magenta1", 16711935,
"magenta2", 15597806,
"magenta3", 13435085,
"magenta4", 9109643,
"orchid1", 16745466,
"orchid2", 15629033,
"orchid3", 13461961,
"orchid4", 9127817,
"plum1", 16759807,
"plum2", 15642350,
"plum3", 13473485,
"plum4", 9135755,
"mediumorchid1", 14706431,
"mediumorchid2", 13721582,
"mediumorchid3", 11817677,
"mediumorchid4", 8009611,
"darkorchid1", 12533503,
"darkorchid2", 11680494,
"darkorchid3", 10105549,
"darkorchid4", 6824587,
"purple1", 10170623,
"purple2", 9514222,
"purple3", 8201933,
"purple4", 5577355,
"mediumpurple1", 11240191,
"mediumpurple2", 10451438,
"mediumpurple3", 9005261,
"mediumpurple4", 6113163,
"thistle1", 16769535,
"thistle2", 15651566,
"thistle3", 13481421,
"thistle4", 9141131,
"gray0", 0,
"grey0", 0,
"gray1", 197379,
"grey1", 197379,
"gray2", 328965,
"grey2", 328965,
"gray3", 526344,
"grey3", 526344,
"gray4", 657930,
"grey4", 657930,
"gray5", 855309,
"grey5", 855309,
"gray6", 986895,
"grey6", 986895,
"gray7", 1184274,
"grey7", 1184274,
"gray8", 1315860,
"grey8", 1315860,
"gray9", 1513239,
"grey9", 1513239,
"gray10", 1710618,
"grey10", 1710618,
"gray11", 1842204,
"grey11", 1842204,
"gray12", 2039583,
"grey12", 2039583,
"gray13", 2171169,
"grey13", 2171169,
"gray14", 2368548,
"grey14", 2368548,
"gray15", 2500134,
"grey15", 2500134,
"gray16", 2697513,
"grey16", 2697513,
"gray17", 2829099,
"grey17", 2829099,
"gray18", 3026478,
"grey18", 3026478,
"gray19", 3158064,
"grey19", 3158064,
"gray20", 3355443,
"grey20", 3355443,
"gray21", 3552822,
"grey21", 3552822,
"gray22", 3684408,
"grey22", 3684408,
"gray23", 3881787,
"grey23", 3881787,
"gray24", 4013373,
"grey24", 4013373,
"gray25", 4210752,
"grey25", 4210752,
"gray26", 4342338,
"grey26", 4342338,
"gray27", 4539717,
"grey27", 4539717,
"gray28", 4671303,
"grey28", 4671303,
"gray29", 4868682,
"grey29", 4868682,
"gray30", 5066061,
"grey30", 5066061,
"gray31", 5197647,
"grey31", 5197647,
"gray32", 5395026,
"grey32", 5395026,
"gray33", 5526612,
"grey33", 5526612,
"gray34", 5723991,
"grey34", 5723991,
"gray35", 5855577,
"grey35", 5855577,
"gray36", 6052956,
"grey36", 6052956,
"gray37", 6184542,
"grey37", 6184542,
"gray38", 6381921,
"grey38", 6381921,
"gray39", 6513507,
"grey39", 6513507,
"gray40", 6710886,
"grey40", 6710886,
"gray41", 6908265,
"grey41", 6908265,
"gray42", 7039851,
"grey42", 7039851,
"gray43", 7237230,
"grey43", 7237230,
"gray44", 7368816,
"grey44", 7368816,
"gray45", 7566195,
"grey45", 7566195,
"gray46", 7697781,
"grey46", 7697781,
"gray47", 7895160,
"grey47", 7895160,
"gray48", 8026746,
"grey48", 8026746,
"gray49", 8224125,
"grey49", 8224125,
"gray50", 8355711,
"grey50", 8355711,
"gray51", 8553090,
"grey51", 8553090,
"gray52", 8750469,
"grey52", 8750469,
"gray53", 8882055,
"grey53", 8882055,
"gray54", 9079434,
"grey54", 9079434,
"gray55", 9211020,
"grey55", 9211020,
"gray56", 9408399,
"grey56", 9408399,
"gray57", 9539985,
"grey57", 9539985,
"gray58", 9737364,
"grey58", 9737364,
"gray59", 9868950,
"grey59", 9868950,
"gray60", 10066329,
"grey60", 10066329,
"gray61", 10263708,
"grey61", 10263708,
"gray62", 10395294,
"grey62", 10395294,
"gray63", 10592673,
"grey63", 10592673,
"gray64", 10724259,
"grey64", 10724259,
"gray65", 10921638,
"grey65", 10921638,
"gray66", 11053224,
"grey66", 11053224,
"gray67", 11250603,
"grey67", 11250603,
"gray68", 11382189,
"grey68", 11382189,
"gray69", 11579568,
"grey69", 11579568,
"gray70", 11776947,
"grey70", 11776947,
"gray71", 11908533,
"grey71", 11908533,
"gray72", 12105912,
"grey72", 12105912,
"gray73", 12237498,
"grey73", 12237498,
"gray74", 12434877,
"grey74", 12434877,
"gray75", 12566463,
"grey75", 12566463,
"gray76", 12763842,
"grey76", 12763842,
"gray77", 12895428,
"grey77", 12895428,
"gray78", 13092807,
"grey78", 13092807,
"gray79", 13224393,
"grey79", 13224393,
"gray80", 13421772,
"grey80", 13421772,
"gray81", 13619151,
"grey81", 13619151,
"gray82", 13750737,
"grey82", 13750737,
"gray83", 13948116,
"grey83", 13948116,
"gray84", 14079702,
"grey84", 14079702,
"gray85", 14277081,
"grey85", 14277081,
"gray86", 14408667,
"grey86", 14408667,
"gray87", 14606046,
"grey87", 14606046,
"gray88", 14737632,
"grey88", 14737632,
"gray89", 14935011,
"grey89", 14935011,
"gray90", 15066597,
"grey90", 15066597,
"gray91", 15263976,
"grey91", 15263976,
"gray92", 15461355,
"grey92", 15461355,
"gray93", 15592941,
"grey93", 15592941,
"gray94", 15790320,
"grey94", 15790320,
"gray95", 15921906,
"grey95", 15921906,
"gray96", 16119285,
"grey96", 16119285,
"gray97", 16250871,
"grey97", 16250871,
"gray98", 16448250,
"grey98", 16448250,
"gray99", 16579836,
"grey99", 16579836,
"gray100", 16777215,
"grey100", 16777215,
"dark grey", 11119017,
"darkgrey", 11119017,
"dark gray", 11119017,
"darkgray", 11119017,
"dark blue", 139,
"darkblue", 139,
"dark cyan", 35723,
"darkcyan", 35723,
"dark magenta", 9109643,
"darkmagenta", 9109643,
"dark red", 9109504,
"darkred", 9109504,
"light green", 9498256,
"lightgreen", 9498256
};

XFOILinterface/XFOIL/plotlib/win32/Xdefs.h

/* Event definitions from Xwindows */
#define XKeyPress	 2
#define XKeyRelease	 3
#define XButtonPress	 4
#define XButtonRelease	 5
#define XMotionNotify 	 6
#define XEnterNotify	 7
#define XLeaveNotify	 8
#define XFocusIn	 9
#define XFocusOut	 10
#define XKeymapNotify	 11
#define XExpose	 12
#define XGraphicsExpose 13
#define XNoExpose	 14
#define XCreateNotify	 16
#define XDestroyNotify	 17
#define XUnmapNotify	 18
#define XMapNotify	 19
#define XMapRequest	 20
#define XReparentNotify 21
#define XConfigureNotify 22
#define XConfigureRequest 23
#define XGravityNotify 24
#define XResizeRequest	 25
#define XCirculateNotify 26
#define XCirculateRequest 27
#define XPropertyNotify 28
#define XSelectionClear 29
#define XSelectionRequest 30
#define XSelectionNotify 31
#define XColormapNotify 32
#define XClientMessage	 33
#define XMappingNotify	 34
#define XLASTEvent	 35

/* Graphics functions (src to dest) from Xwindows */
#define GXclear	 0
#define GXand		 1
#define GXandReverse	 2
#define GXcopy		 3
#define GXandInverted	 4
#define GXnoop		 5
#define GXxor		 6
#define GXor		 7
#define GXnor		 8
#define GXequiv	 9
#define GXinvert	 10
#define GXorReverse	 11
#define GXcopyInverted	 12
#define GXorInverted	 13
#define GXnand		 14
#define GXset		 15

/* Synchronization functions from Xwindows */
#define XFDIOff 0
#define XFDIOn 1
#define XFDINotThere 2

XFOILinterface/XFOIL/plotlib/colorstuff/rgb.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

typedef struct {
 char *name;
 unsigned int rgb;
} Colordef;

Colordef colordef[] = {
"snow", 16775930,
"ghost white", 16316671,
"GhostWhite", 16316671,
"white smoke", 16119285,
"WhiteSmoke", 16119285,
"gainsboro", 14474460,
"floral white", 16775920,
"FloralWhite", 16775920,
"old lace", 16643558,
"OldLace", 16643558,
"linen", 16445670,
"antique white", 16444375,
"AntiqueWhite", 16444375,
"papaya whip", 16773077,
"PapayaWhip", 16773077,
"blanched almond", 16772045,
"BlanchedAlmond", 16772045,
"bisque", 16770244,
"peach puff", 16767673,
"PeachPuff", 16767673,
"navajo white", 16768685,
"NavajoWhite", 16768685,
"moccasin", 16770229,
"cornsilk", 16775388,
"ivory", 16777200,
"lemon chiffon", 16775885,
"LemonChiffon", 16775885,
"seashell", 16774638,
"honeydew", 15794160,
"mint cream", 16121850,
"MintCream", 16121850,
"azure", 15794175,
"alice blue", 15792383,
"AliceBlue", 15792383,
"lavender", 15132410,
"lavender blush", 16773365,
"LavenderBlush", 16773365,
"misty rose", 16770273,
"MistyRose", 16770273,
"white", 16777215,
"black", 0,
"dark slate gray", 3100495,
"DarkSlateGray", 3100495,
"dark slate grey", 3100495,
"DarkSlateGrey", 3100495,
"dim gray", 6908265,
"DimGray", 6908265,
"dim grey", 6908265,
"DimGrey", 6908265,
"slate gray", 7372944,
"SlateGray", 7372944,
"slate grey", 7372944,
"SlateGrey", 7372944,
"light slate gray", 7833753,
"LightSlateGray", 7833753,
"light slate grey", 7833753,
"LightSlateGrey", 7833753,
"gray", 12500670,
"grey", 12500670,
"light grey", 13882323,
"LightGrey", 13882323,
"light gray", 13882323,
"LightGray", 13882323,
"midnight blue", 1644912,
"MidnightBlue", 1644912,
"navy", 128,
"navy blue", 128,
"NavyBlue", 128,
"cornflower blue", 6591981,
"CornflowerBlue", 6591981,
"dark slate blue", 4734347,
"DarkSlateBlue", 4734347,
"slate blue", 6970061,
"SlateBlue", 6970061,
"medium slate blue", 8087790,
"MediumSlateBlue", 8087790,
"light slate blue", 8679679,
"LightSlateBlue", 8679679,
"medium blue", 205,
"MediumBlue", 205,
"royal blue", 4286945,
"RoyalBlue", 4286945,
"blue", 255,
"dodger blue", 2003199,
"DodgerBlue", 2003199,
"deep sky blue", 49151,
"DeepSkyBlue", 49151,
"sky blue", 8900331,
"SkyBlue", 8900331,
"light sky blue", 8900346,
"LightSkyBlue", 8900346,
"steel blue", 4620980,
"SteelBlue", 4620980,
"light steel blue", 11584734,
"LightSteelBlue", 11584734,
"light blue", 11393254,
"LightBlue", 11393254,
"powder blue", 11591910,
"PowderBlue", 11591910,
"pale turquoise", 11529966,
"PaleTurquoise", 11529966,
"dark turquoise", 52945,
"DarkTurquoise", 52945,
"medium turquoise", 4772300,
"MediumTurquoise", 4772300,
"turquoise", 4251856,
"cyan", 65535,
"light cyan", 14745599,
"LightCyan", 14745599,
"cadet blue", 6266528,
"CadetBlue", 6266528,
"medium aquamarine", 6737322,
"MediumAquamarine", 6737322,
"aquamarine", 8388564,
"dark green", 25600,
"DarkGreen", 25600,
"dark olive green", 5597999,
"DarkOliveGreen", 5597999,
"dark sea green", 9419919,
"DarkSeaGreen", 9419919,
"sea green", 3050327,
"SeaGreen", 3050327,
"medium sea green", 3978097,
"MediumSeaGreen", 3978097,
"light sea green", 2142890,
"LightSeaGreen", 2142890,
"pale green", 10025880,
"PaleGreen", 10025880,
"spring green", 65407,
"SpringGreen", 65407,
"lawn green", 8190976,
"LawnGreen", 8190976,
"green", 65280,
"chartreuse", 8388352,
"medium spring green", 64154,
"MediumSpringGreen", 64154,
"green yellow", 11403055,
"GreenYellow", 11403055,
"lime green", 3329330,
"LimeGreen", 3329330,
"yellow green", 10145074,
"YellowGreen", 10145074,
"forest green", 2263842,
"ForestGreen", 2263842,
"olive drab", 7048739,
"OliveDrab", 7048739,
"dark khaki", 12433259,
"DarkKhaki", 12433259,
"khaki", 15787660,
"pale goldenrod", 15657130,
"PaleGoldenrod", 15657130,
"light goldenrod yellow", 16448210,
"LightGoldenrodYellow", 16448210,
"light yellow", 16777184,
"LightYellow", 16777184,
"yellow", 16776960,
"gold", 16766720,
"light goldenrod", 15654274,
"LightGoldenrod", 15654274,
"goldenrod", 14329120,
"dark goldenrod", 12092939,
"DarkGoldenrod", 12092939,
"rosy brown", 12357519,
"RosyBrown", 12357519,
"indian red", 13458524,
"IndianRed", 13458524,
"saddle brown", 9127187,
"SaddleBrown", 9127187,
"sienna", 10506797,
"peru", 13468991,
"burlywood", 14596231,
"beige", 16119260,
"wheat", 16113331,
"sandy brown", 16032864,
"SandyBrown", 16032864,
"tan", 13808780,
"chocolate", 13789470,
"firebrick", 11674146,
"brown", 10824234,
"dark salmon", 15308410,
"DarkSalmon", 15308410,
"salmon", 16416882,
"light salmon", 16752762,
"LightSalmon", 16752762,
"orange", 16753920,
"dark orange", 16747520,
"DarkOrange", 16747520,
"coral", 16744272,
"light coral", 15761536,
"LightCoral", 15761536,
"tomato", 16737095,
"orange red", 16729344,
"OrangeRed", 16729344,
"red", 16711680,
"hot pink", 16738740,
"HotPink", 16738740,
"deep pink", 16716947,
"DeepPink", 16716947,
"pink", 16761035,
"light pink", 16758465,
"LightPink", 16758465,
"pale violet red", 14381203,
"PaleVioletRed", 14381203,
"maroon", 11546720,
"medium violet red", 13047173,
"MediumVioletRed", 13047173,
"violet red", 13639824,
"VioletRed", 13639824,
"magenta", 16711935,
"violet", 15631086,
"plum", 14524637,
"orchid", 14315734,
"medium orchid", 12211667,
"MediumOrchid", 12211667,
"dark orchid", 10040012,
"DarkOrchid", 10040012,
"dark violet", 9699539,
"DarkViolet", 9699539,
"blue violet", 9055202,
"BlueViolet", 9055202,
"purple", 10494192,
"medium purple", 9662683,
"MediumPurple", 9662683,
"thistle", 14204888,
"snow1", 16775930,
"snow2", 15657449,
"snow3", 13486537,
"snow4", 9144713,
"seashell1", 16774638,
"seashell2", 15656414,
"seashell3", 13485503,
"seashell4", 9143938,
"AntiqueWhite1", 16773083,
"AntiqueWhite2", 15654860,
"AntiqueWhite3", 13484208,
"AntiqueWhite4", 9143160,
"bisque1", 16770244,
"bisque2", 15652279,
"bisque3", 13481886,
"bisque4", 9141611,
"PeachPuff1", 16767673,
"PeachPuff2", 15649709,
"PeachPuff3", 13479829,
"PeachPuff4", 9140069,
"NavajoWhite1", 16768685,
"NavajoWhite2", 15650721,
"NavajoWhite3", 13480843,
"NavajoWhite4", 9140574,
"LemonChiffon1", 16775885,
"LemonChiffon2", 15657407,
"LemonChiffon3", 13486501,
"LemonChiffon4", 9144688,
"cornsilk1", 16775388,
"cornsilk2", 15657165,
"cornsilk3", 13486257,
"cornsilk4", 9144440,
"ivory1", 16777200,
"ivory2", 15658720,
"ivory3", 13487553,
"ivory4", 9145219,
"honeydew1", 15794160,
"honeydew2", 14741216,
"honeydew3", 12701121,
"honeydew4", 8620931,
"LavenderBlush1", 16773365,
"LavenderBlush2", 15655141,
"LavenderBlush3", 13484485,
"LavenderBlush4", 9143174,
"MistyRose1", 16770273,
"MistyRose2", 15652306,
"MistyRose3", 13481909,
"MistyRose4", 9141627,
"azure1", 15794175,
"azure2", 14741230,
"azure3", 12701133,
"azure4", 8620939,
"SlateBlue1", 8613887,
"SlateBlue2", 8021998,
"SlateBlue3", 6904269,
"SlateBlue4", 4668555,
"RoyalBlue1", 4749055,
"RoyalBlue2", 4419310,
"RoyalBlue3", 3825613,
"RoyalBlue4", 2572427,
"blue1", 255,
"blue2", 238,
"blue3", 205,
"blue4", 139,
"DodgerBlue1", 2003199,
"DodgerBlue2", 1869550,
"DodgerBlue3", 1602765,
"DodgerBlue4", 1068683,
"SteelBlue1", 6535423,
"SteelBlue2", 6073582,
"SteelBlue3", 5215437,
"SteelBlue4", 3564683,
"DeepSkyBlue1", 49151,
"DeepSkyBlue2", 45806,
"DeepSkyBlue3", 39629,
"DeepSkyBlue4", 26763,
"SkyBlue1", 8900351,
"SkyBlue2", 8306926,
"SkyBlue3", 7120589,
"SkyBlue4", 4878475,
"LightSkyBlue1", 11592447,
"LightSkyBlue2", 10802158,
"LightSkyBlue3", 9287373,
"LightSkyBlue4", 6323083,
"SlateGray1", 13034239,
"SlateGray2", 12178414,
"SlateGray3", 10467021,
"SlateGray4", 7109515,
"LightSteelBlue1", 13296127,
"LightSteelBlue2", 12374766,
"LightSteelBlue3", 10663373,
"LightSteelBlue4", 7240587,
"LightBlue1", 12578815,
"LightBlue2", 11722734,
"LightBlue3", 10141901,
"LightBlue4", 6849419,
"LightCyan1", 14745599,
"LightCyan2", 13758190,
"LightCyan3", 11849165,
"LightCyan4", 8031115,
"PaleTurquoise1", 12320767,
"PaleTurquoise2", 11464430,
"PaleTurquoise3", 9883085,
"PaleTurquoise4", 6720395,
"CadetBlue1", 10024447,
"CadetBlue2", 9364974,
"CadetBlue3", 8046029,
"CadetBlue4", 5473931,
"turquoise1", 62975,
"turquoise2", 58862,
"turquoise3", 50637,
"turquoise4", 34443,
"cyan1", 65535,
"cyan2", 61166,
"cyan3", 52685,
"cyan4", 35723,
"DarkSlateGray1", 9961471,
"DarkSlateGray2", 9301742,
"DarkSlateGray3", 7982541,
"DarkSlateGray4", 5409675,
"aquamarine1", 8388564,
"aquamarine2", 7794374,
"aquamarine3", 6737322,
"aquamarine4", 4557684,
"DarkSeaGreen1", 12713921,
"DarkSeaGreen2", 11857588,
"DarkSeaGreen3", 10210715,
"DarkSeaGreen4", 6916969,
"SeaGreen1", 5570463,
"SeaGreen2", 5172884,
"SeaGreen3", 4443520,
"SeaGreen4", 3050327,
"PaleGreen1", 10157978,
"PaleGreen2", 9498256,
"PaleGreen3", 8179068,
"PaleGreen4", 5540692,
"SpringGreen1", 65407,
"SpringGreen2", 61046,
"SpringGreen3", 52582,
"SpringGreen4", 35653,
"green1", 65280,
"green2", 60928,
"green3", 52480,
"green4", 35584,
"chartreuse1", 8388352,
"chartreuse2", 7794176,
"chartreuse3", 6737152,
"chartreuse4", 4557568,
"OliveDrab1", 12648254,
"OliveDrab2", 11791930,
"OliveDrab3", 10145074,
"OliveDrab4", 6916898,
"DarkOliveGreen1", 13303664,
"DarkOliveGreen2", 12381800,
"DarkOliveGreen3", 10669402,
"DarkOliveGreen4", 7244605,
"khaki1", 16774799,
"khaki2", 15656581,
"khaki3", 13485683,
"khaki4", 9143886,
"LightGoldenrod1", 16772235,
"LightGoldenrod2", 15654018,
"LightGoldenrod3", 13483632,
"LightGoldenrod4", 9142604,
"LightYellow1", 16777184,
"LightYellow2", 15658705,
"LightYellow3", 13487540,
"LightYellow4", 9145210,
"yellow1", 16776960,
"yellow2", 15658496,
"yellow3", 13487360,
"yellow4", 9145088,
"gold1", 16766720,
"gold2", 15649024,
"gold3", 13479168,
"gold4", 9139456,
"goldenrod1", 16761125,
"goldenrod2", 15643682,
"goldenrod3", 13474589,
"goldenrod4", 9136404,
"DarkGoldenrod1", 16759055,
"DarkGoldenrod2", 15641870,
"DarkGoldenrod3", 13473036,
"DarkGoldenrod4", 9135368,
"RosyBrown1", 16761281,
"RosyBrown2", 15643828,
"RosyBrown3", 13474715,
"RosyBrown4", 9136489,
"IndianRed1", 16738922,
"IndianRed2", 15623011,
"IndianRed3", 13456725,
"IndianRed4", 9124410,
"sienna1", 16745031,
"sienna2", 15628610,
"sienna3", 13461561,
"sienna4", 9127718,
"burlywood1", 16765851,
"burlywood2", 15648145,
"burlywood3", 13478525,
"burlywood4", 9139029,
"wheat1", 16771002,
"wheat2", 15653038,
"wheat3", 13482646,
"wheat4", 9141862,
"tan1", 16753999,
"tan2", 15637065,
"tan3", 13468991,
"tan4", 9132587,
"chocolate1", 16744228,
"chocolate2", 15627809,
"chocolate3", 13461021,
"chocolate4", 9127187,
"firebrick1", 16724016,
"firebrick2", 15608876,
"firebrick3", 13444646,
"firebrick4", 9116186,
"brown1", 16728128,
"brown2", 15612731,
"brown3", 13447987,
"brown4", 9118499,
"salmon1", 16747625,
"salmon2", 15630946,
"salmon3", 13463636,
"salmon4", 9129017,
"LightSalmon1", 16752762,
"LightSalmon2", 15635826,
"LightSalmon3", 13468002,
"LightSalmon4", 9131842,
"orange1", 16753920,
"orange2", 15636992,
"orange3", 13468928,
"orange4", 9132544,
"DarkOrange1", 16744192,
"DarkOrange2", 15627776,
"DarkOrange3", 13460992,
"DarkOrange4", 9127168,
"coral1", 16740950,
"coral2", 15624784,
"coral3", 13458245,
"coral4", 9125423,
"tomato1", 16737095,
"tomato2", 15621186,
"tomato3", 13455161,
"tomato4", 9123366,
"OrangeRed1", 16729344,
"OrangeRed2", 15613952,
"OrangeRed3", 13448960,
"OrangeRed4", 9118976,
"red1", 16711680,
"red2", 15597568,
"red3", 13434880,
"red4", 9109504,
"DeepPink1", 16716947,
"DeepPink2", 15602313,
"DeepPink3", 13439094,
"DeepPink4", 9112144,
"HotPink1", 16740020,
"HotPink2", 15624871,
"HotPink3", 13459600,
"HotPink4", 9124450,
"pink1", 16758213,
"pink2", 15641016,
"pink3", 13472158,
"pink4", 9134956,
"LightPink1", 16756409,
"LightPink2", 15639213,
"LightPink3", 13470869,
"LightPink4", 9133925,
"PaleVioletRed1", 16745131,
"PaleVioletRed2", 15628703,
"PaleVioletRed3", 13461641,
"PaleVioletRed4", 9127773,
"maroon1", 16725171,
"maroon2", 15610023,
"maroon3", 13445520,
"maroon4", 9116770,
"VioletRed1", 16727702,
"VioletRed2", 15612556,
"VioletRed3", 13447800,
"VioletRed4", 9118290,
"magenta1", 16711935,
"magenta2", 15597806,
"magenta3", 13435085,
"magenta4", 9109643,
"orchid1", 16745466,
"orchid2", 15629033,
"orchid3", 13461961,
"orchid4", 9127817,
"plum1", 16759807,
"plum2", 15642350,
"plum3", 13473485,
"plum4", 9135755,
"MediumOrchid1", 14706431,
"MediumOrchid2", 13721582,
"MediumOrchid3", 11817677,
"MediumOrchid4", 8009611,
"DarkOrchid1", 12533503,
"DarkOrchid2", 11680494,
"DarkOrchid3", 10105549,
"DarkOrchid4", 6824587,
"purple1", 10170623,
"purple2", 9514222,
"purple3", 8201933,
"purple4", 5577355,
"MediumPurple1", 11240191,
"MediumPurple2", 10451438,
"MediumPurple3", 9005261,
"MediumPurple4", 6113163,
"thistle1", 16769535,
"thistle2", 15651566,
"thistle3", 13481421,
"thistle4", 9141131,
"gray0", 0,
"grey0", 0,
"gray1", 197379,
"grey1", 197379,
"gray2", 328965,
"grey2", 328965,
"gray3", 526344,
"grey3", 526344,
"gray4", 657930,
"grey4", 657930,
"gray5", 855309,
"grey5", 855309,
"gray6", 986895,
"grey6", 986895,
"gray7", 1184274,
"grey7", 1184274,
"gray8", 1315860,
"grey8", 1315860,
"gray9", 1513239,
"grey9", 1513239,
"gray10", 1710618,
"grey10", 1710618,
"gray11", 1842204,
"grey11", 1842204,
"gray12", 2039583,
"grey12", 2039583,
"gray13", 2171169,
"grey13", 2171169,
"gray14", 2368548,
"grey14", 2368548,
"gray15", 2500134,
"grey15", 2500134,
"gray16", 2697513,
"grey16", 2697513,
"gray17", 2829099,
"grey17", 2829099,
"gray18", 3026478,
"grey18", 3026478,
"gray19", 3158064,
"grey19", 3158064,
"gray20", 3355443,
"grey20", 3355443,
"gray21", 3552822,
"grey21", 3552822,
"gray22", 3684408,
"grey22", 3684408,
"gray23", 3881787,
"grey23", 3881787,
"gray24", 4013373,
"grey24", 4013373,
"gray25", 4210752,
"grey25", 4210752,
"gray26", 4342338,
"grey26", 4342338,
"gray27", 4539717,
"grey27", 4539717,
"gray28", 4671303,
"grey28", 4671303,
"gray29", 4868682,
"grey29", 4868682,
"gray30", 5066061,
"grey30", 5066061,
"gray31", 5197647,
"grey31", 5197647,
"gray32", 5395026,
"grey32", 5395026,
"gray33", 5526612,
"grey33", 5526612,
"gray34", 5723991,
"grey34", 5723991,
"gray35", 5855577,
"grey35", 5855577,
"gray36", 6052956,
"grey36", 6052956,
"gray37", 6184542,
"grey37", 6184542,
"gray38", 6381921,
"grey38", 6381921,
"gray39", 6513507,
"grey39", 6513507,
"gray40", 6710886,
"grey40", 6710886,
"gray41", 6908265,
"grey41", 6908265,
"gray42", 7039851,
"grey42", 7039851,
"gray43", 7237230,
"grey43", 7237230,
"gray44", 7368816,
"grey44", 7368816,
"gray45", 7566195,
"grey45", 7566195,
"gray46", 7697781,
"grey46", 7697781,
"gray47", 7895160,
"grey47", 7895160,
"gray48", 8026746,
"grey48", 8026746,
"gray49", 8224125,
"grey49", 8224125,
"gray50", 8355711,
"grey50", 8355711,
"gray51", 8553090,
"grey51", 8553090,
"gray52", 8750469,
"grey52", 8750469,
"gray53", 8882055,
"grey53", 8882055,
"gray54", 9079434,
"grey54", 9079434,
"gray55", 9211020,
"grey55", 9211020,
"gray56", 9408399,
"grey56", 9408399,
"gray57", 9539985,
"grey57", 9539985,
"gray58", 9737364,
"grey58", 9737364,
"gray59", 9868950,
"grey59", 9868950,
"gray60", 10066329,
"grey60", 10066329,
"gray61", 10263708,
"grey61", 10263708,
"gray62", 10395294,
"grey62", 10395294,
"gray63", 10592673,
"grey63", 10592673,
"gray64", 10724259,
"grey64", 10724259,
"gray65", 10921638,
"grey65", 10921638,
"gray66", 11053224,
"grey66", 11053224,
"gray67", 11250603,
"grey67", 11250603,
"gray68", 11382189,
"grey68", 11382189,
"gray69", 11579568,
"grey69", 11579568,
"gray70", 11776947,
"grey70", 11776947,
"gray71", 11908533,
"grey71", 11908533,
"gray72", 12105912,
"grey72", 12105912,
"gray73", 12237498,
"grey73", 12237498,
"gray74", 12434877,
"grey74", 12434877,
"gray75", 12566463,
"grey75", 12566463,
"gray76", 12763842,
"grey76", 12763842,
"gray77", 12895428,
"grey77", 12895428,
"gray78", 13092807,
"grey78", 13092807,
"gray79", 13224393,
"grey79", 13224393,
"gray80", 13421772,
"grey80", 13421772,
"gray81", 13619151,
"grey81", 13619151,
"gray82", 13750737,
"grey82", 13750737,
"gray83", 13948116,
"grey83", 13948116,
"gray84", 14079702,
"grey84", 14079702,
"gray85", 14277081,
"grey85", 14277081,
"gray86", 14408667,
"grey86", 14408667,
"gray87", 14606046,
"grey87", 14606046,
"gray88", 14737632,
"grey88", 14737632,
"gray89", 14935011,
"grey89", 14935011,
"gray90", 15066597,
"grey90", 15066597,
"gray91", 15263976,
"grey91", 15263976,
"gray92", 15461355,
"grey92", 15461355,
"gray93", 15592941,
"grey93", 15592941,
"gray94", 15790320,
"grey94", 15790320,
"gray95", 15921906,
"grey95", 15921906,
"gray96", 16119285,
"grey96", 16119285,
"gray97", 16250871,
"grey97", 16250871,
"gray98", 16448250,
"grey98", 16448250,
"gray99", 16579836,
"grey99", 16579836,
"gray100", 16777215,
"grey100", 16777215,
"dark grey", 11119017,
"DarkGrey", 11119017,
"dark gray", 11119017,
"DarkGray", 11119017,
"dark blue", 139,
"DarkBlue", 139,
"dark cyan", 35723,
"DarkCyan", 35723,
"dark magenta", 9109643,
"DarkMagenta", 9109643,
"dark red", 9109504,
"DarkRed", 9109504,
"light green", 9498256,
"LightGreen", 9498256
};

main(argc,argv)
char **argv;
int argc;
{

int IC,ic,ncols;
int i,n,ired,igrn,iblu;
char teststr[50], c;

IC = sizeof(Colordef);
ic = sizeof(colordef);
ncols = ic/IC;

printf("Colordef %d\n",IC);
printf("colordef %d\n",ic);
printf("#entries %d\n",ncols);

printf("\nEnter color string: ");

/*if ((c=fgetc(stdin)) != '\n')
ungetc(c,stdin); */

fgets(teststr,50,stdin);
printf("strlen = %d\n",strlen(teststr));

if ((n=strlen(teststr)) != 0) {
 while(n > 0 && teststr[--n] == '\n')
 teststr[n] = '\0'; }

/*fscanf(stdin,"%s",teststr);*/
printf("\nTest string = %s\n",teststr);

for (i=0; i < ncols; i++) {
 if(!strcasecmp(colordef[i].name,teststr)) {

 printf("test string %s found at %d\n",teststr,i);
 printf("found string %s code %d\n",colordef[i].name,colordef[i].rgb);

 ired = 0x000000ff & (colordef[i].rgb >> 16);
 igrn = 0x000000ff & (colordef[i].rgb >> 8);
 iblu = 0x000000ff & (colordef[i].rgb);

 printf("red = %d\ngrn = %d\nblu = %d\n",ired,igrn,iblu);
 }
}

}

XFOILinterface/XFOIL/plotlib/colorstuff/rgbtest.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "rgbtbl.h"

main(argc,argv)
char **argv;
int argc;
{

int IC,ic,ncols;
int i,n,ired,igrn,iblu;
char teststr[50], c;

IC = sizeof(Colordef);
ic = sizeof(colordef);
ncols = ic/IC;

printf("Colordef %d\n",IC);
printf("colordef %d\n",ic);
printf("#entries %d\n",ncols);

printf("\nEnter color string: ");

/*if ((c=fgetc(stdin)) != '\n')
ungetc(c,stdin); */

fgets(teststr,50,stdin);
printf("strlen = %d\n",strlen(teststr));

if ((n=strlen(teststr)) != 0) {
 while(n > 0 && teststr[--n] == '\n')
 teststr[n] = '\0'; }

/*fscanf(stdin,"%s",teststr);*/
printf("\nTest string = %s\n",teststr);

for (i=0; i < ncols; i++) {
 if(!strcasecmp(colordef[i].name,teststr)) {

 printf("test string %s found at %d\n",teststr,i);
 printf("found string %s code %d\n",colordef[i].name,colordef[i].rgb);

 ired = 0x000000ff & (colordef[i].rgb >> 16);
 igrn = 0x000000ff & (colordef[i].rgb >> 8);
 iblu = 0x000000ff & (colordef[i].rgb);

 printf("red = %d\ngrn = %d\nblu = %d\n",ired,igrn,iblu);
 }
}

}

XFOILinterface/XFOIL/plotlib/win32/W32win.c

/***
 W32win.c - FORTRAN/C interface for Windows NT/95 Xplot11

 Copyright (C) 1999 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.rr.com
 or drela@henry.mit.edu
***/

/***
* Xplot11 C-level Win32 interface
C Version 4.43 3/5/99
*
* Status: This code is still pretty rough, it works but there are some
* rough edges (some of which result from problems with the Win32
* API). This is the interface code to create, draw to, refresh,
* destroy a graphics window on a Win32 machine running a Fortran
* application (like XFOIL) making Pltlib calls.
*
* The refresh problem for Win32 (as the Xwindows option for a
* automatic refresh using the server's backing store startup
* option is not available under Win32) is dealt with by creating
* a plot thread that monitors the Windoze events and does window
* refresh. This is done by doing plotting to a memory bitmap and
* writing the bitmap to the screen whenever the window needs
* refresh.
*
* Note that several problems arise in supporting the Xwindows
* plotting functionality under Win32. Colors are handled differently
* than under Xwindows, for color name compatibility I have included
* a color table lookup routine that maps Xwindows color names into
* RGB values. A more serious problem is the inconsistency of the
* Win32 API itself, specifically the functionality varies with the
* version of the Microsoft OS you are running. The most serious
* problem showed up in drawing lines with arbitrary patterns and
* widths. The Win32 API apparently does not support drawing these
* types of lines (used in Pltlib for background grids, among other
* things) satisfactorily. There appears to be no way to draw a line
* with an arbitrary pattern and width. Also it appears that drawing
* patterned lines with transparent background color is not supported.
*
* Harold Youngren 10/01
***/

/***
* Defines graphics primitives for window management and line drawing
* Primitives include:
* gwxrevflag - checks environment variables for background color
* gwxopen - initializes X display and returns size and depth of display
* gwxwinopen - opens X plotting window with specified x,y size and position
* gwxclear - clears plotting window
* gwxstatus - gets current window size and location
* gwxresize - resizes current window to specified size

* gwxreset - resets plotting defaults for window
* gwxclose - closes plotting to X display
* gwxflush - flushes out graphics primitives in buffers
* gwxline - plots line segment

* gwxdash - sets line pattern from integer mask
* gwxcurs - gets graphics cursor position and key pressed
* gwxpen - sets line width in pixels
*
* More advanced routines beyond the original PLOT-10 requirements
* gwxdestroy - closes plot window
* gwxlinez - plots polyline
* gwxpoly - plots filled polygon
* gwxstring - plots string
*
* Color routines
* gwxsetcolor - sets foreground color from color map
* gwxsetbgcolor - sets background color from color map
* gwxcolorname2rgb - find color components of color specified by name string
* gwxallocrgbcolor - allocate a color specified by r,g,b components
* gwxfreecolor - frees an allocated color from colormap
*
* Utility routines
* mskbits - converts integer mask into dot/dash array
*
* Double-buffer routines
* gwxdisplaybuffer - switches background buffer with foreground window
* gwxdrawtobuffer - sets drawing to background buffer
* gwxdrawtowindow - sets drawing to foreground window
**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <windows.h>
#include <process.h>

#include "rgbtbl.h"
#include "Xdefs.h"

typedef struct {
 HWND window;
 HPEN pen;
 HBRUSH fgbrush;
 HBRUSH bgbrush;
 int fg;
 int bg;
 int font;
 int fun;
} GC;

typedef struct {
 int ic;
 int rgb;
 HPEN pen;
 HBRUSH brush;
} COLTBL;

typedef struct Event {
 HWND window;
 int type;
 int x;
 int y;
 int state;
 struct Event *next;
} Event;

/* Calling convention, Intel Fortran is simple, call is same as Unix
 CVF requires Microsoft call */
#ifdef _CVF
#define W32CALL __stdcall
#else
#define W32CALL
#endif

/* Maximum number of polyline points per polyline call,
 increase if necessary */
#define MAXPTS 1000

/* Maximum number of colors */
#define MAXCOLS 256

static char *gwxClass = "PltLib";
static char *gwxName = "PltLib";

/*
BYTE ANDMask[128], ORNMask[128], ORWMask[128];
static BYTE ANDMsk16[] = { 0xfe, 0x00,
 0xfe, 0x00,
 0xfe, 0x00,
 0xff, 0x80,
 0xff, 0x80,
 0xff, 0x00,
 0xfe, 0x00,
 0xfc, 0x18,
 0xf8, 0x38,
 0xf0, 0x7f,
 0xe0, 0xff,
 0xc1, 0xff,
 0x83, 0xff,
 0x07, 0xff,
 0x0f, 0xff,
 0x1f, 0xff };
 static BYTE ORNMsk16[] = { 0x00, 0x00,
 0x00, 0xfe,
 0x00, 0x7e,
 0x00, 0x3e,
 0x00, 0x3e,
 0x00, 0x7e,
 0x00, 0xe6,
 0x01, 0xc2,
 0x03, 0x80,
 0x07, 0x00,
 0x0e, 0x00,
 0x1c, 0x00,
 0x38, 0x00,
 0x70, 0x00,
 0x60, 0x00,
 0x00, 0x00 };
 static BYTE ORWMsk16[] = { 0x01, 0xff,
 0x01, 0x01,
 0x01, 0x01,
 0x00, 0x41,
 0x00, 0x41,
 0x00, 0x81,
 0x01, 0x19,
 0x02, 0x25,
 0x04, 0x47,
 0x08, 0x80,
 0x11, 0x00,
 0x22, 0x00,
 0x44, 0x00,
 0x88, 0x00,
 0x90, 0x00,
 0xe0, 0x00 };
*/

/* Window and graphics global data */
HWND gwxWin;
HDC gwxHDC, gwxmemHDC;
HBITMAP gwxBMAP;
HCURSOR gwxNormalC, gwxWaitC, gwxCurrentC;

GC *gwxGC;

COLTBL RGBmap[MAXCOLS];
int nRGBmap;

/* int xcsize,ycsize; */
int wxstart,wystart,wxsize,wysize;
int xrootsize, yrootsize, rootdepth;
int gwxSize[5];
int gwxXmatte, gwxYmatte, gwxYbar;
int reversevideo;
int initthread;
int penwidth, penpattern, ndash, pendash[16];

HINSTANCE gwxInstance;
ATOM	 gwxRegister;
WNDCLASSEX gwxWndClass;
MSG Message;

Event *gwxEvents, *gwxLEvent, gwxLast;

/*static PARAMS params;*/

void MSKBITS(int*,int*,int*);
int gwxlookupcolor (char*,int*);

/**/
/************************Internal Event Code***************************/

/*These routines simulate the Xwindows XEvents to do user interaction.
 This is done here by collecting a list of relevant events from Windoze
 and managing these for the user who deals only with the simulated XEvents.
 This is probably a grungy hack (it was copied from Bob Haimes Visual3 and
 pV3 ports to Win32) but it works. It may be better to get rid of the
 extra event layer and deal directly with Win32 events.
 HHY */

void
gwxAddEvent(int type, int x, int y, int state)
{
 Event *event;

 event = (Event *) malloc(sizeof(Event));
 if (event == NULL) return;

 event->window = gwxWin;
 event->type = type;
 event->x = x;
 event->y = y;
 event->state = state;
 event->next = NULL;

 if (gwxLEvent != NULL) gwxLEvent->next = event;
 gwxLEvent = event;
 if (gwxEvents == NULL) gwxEvents = event;
 gwxLast = *event;
}

void
gwxRemEvent(int *type, int *x, int *y, int *state)
{
 Event *event;

 if (gwxEvents == NULL) {
 printf("Warning: No Events to remove!\n");
 return;
 }

 event = gwxEvents;
 if (event == gwxLEvent) gwxLEvent = NULL;
 gwxEvents = event->next;

 *type = event->type;
 *x = event->x;
 *y = event->y;
 *state = event->state;
 free(event);
}

/**/
/**/

LRESULT CALLBACK
gwxWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 int i, ix, iy;
 PAINTSTRUCT paint;
 HDC hdc;
 POINT point;
 RECT rect;

 switch (message) {

 case WM_USER:
 return 0;

 case WM_SIZE:
 if (hWnd == gwxWin) {
 if (gwxSize[4]) {
 ix = LOWORD(lParam);
 iy = HIWORD(lParam);
 if ((ix != gwxSize[0]) || (iy != gwxSize[1])) {
 gwxSize[0] = ix;
 gwxSize[1] = iy;
 gwxAddEvent(XExpose, ix, iy, 1);
 }
 } else {
 ix = gwxSize[0] + 2*gwxXmatte;
 iy = gwxSize[1] + 2*gwxYmatte + gwxYbar;
 SetWindowPos(hWnd, HWND_TOP, gwxSize[2], gwxSize[3],
 ix, iy, SWP_NOMOVE|SWP_NOZORDER);
 }
 return 0;
 }
 return 0;

 case WM_MOVE:
 if (hWnd == gwxWin) {
 gwxSize[2] = LOWORD(lParam);
 gwxSize[3] = HIWORD(lParam);
 return 0;
 }
 return 0;

 case WM_PAINT:
	/* printf("WM_PAINT\n"); */
 /*
 * Validate the region even if there are no DisplayFunc.
 * Otherwise, USER will not stop sending WM_PAINT messages.
 */
 hdc = BeginPaint(hWnd, &paint);
 BitBlt(hdc,0,0,xrootsize,yrootsize,gwxmemHDC,0,0,SRCCOPY);
 EndPaint(hWnd, &paint);
 if (hWnd == gwxWin) {
 gwxAddEvent(XExpose, gwxSize[0], gwxSize[1], 1);
 return 0;
 }
 return 0;

 case WM_PALETTECHANGED:
	printf("WM_PALETTECHANGED\n");
 return 0;

 case WM_ACTIVATE:
 break;

 case WM_MOUSEMOVE:
/* printf("mousemove active %d focus %d\n",GetActiveWindow(),GetFocus()); */
 if (GetActiveWindow() != hWnd) {
 SetForegroundWindow(hWnd);
 SetActiveWindow(hWnd);
 }
 if (GetFocus() != hWnd) SetFocus(hWnd);
/*	printf("mousemove %d %d\n",hWnd,gwxWin); */
 return 0;

 case WM_LBUTTONDOWN:
	if (GetAsyncKeyState(VK_RBUTTON) < 0) {
 gwxAddEvent(XButtonPress, LOWORD(lParam), HIWORD(lParam), 2);
	} else {
 gwxAddEvent(XButtonPress, LOWORD(lParam), HIWORD(lParam), 1);
	}
 return 0;

 case WM_LBUTTONUP:
	if (GetAsyncKeyState(VK_RBUTTON) < 0) {
	 gwxAddEvent(XButtonRelease, LOWORD(lParam), HIWORD(lParam), 2);
	} else {
	 gwxAddEvent(XButtonRelease, LOWORD(lParam), HIWORD(lParam), 1);
	}
 return 0;

 case WM_MBUTTONDOWN:
 gwxAddEvent(XButtonPress, LOWORD(lParam), HIWORD(lParam), 2);
 return 0;

 case WM_MBUTTONUP:
 gwxAddEvent(XButtonRelease, LOWORD(lParam), HIWORD(lParam), 2);
 return 0;

 case WM_RBUTTONDOWN:
	if (GetAsyncKeyState(VK_LBUTTON) < 0) {
	 gwxAddEvent(XButtonPress, LOWORD(lParam), HIWORD(lParam), 2);
	} else {
 gwxAddEvent(XButtonPress, LOWORD(lParam), HIWORD(lParam), 3);
	}
 return 0;

 case WM_RBUTTONUP:
	if (GetAsyncKeyState(VK_LBUTTON) < 0) {
	 gwxAddEvent(XButtonRelease, LOWORD(lParam), HIWORD(lParam), 2);
	} else {
 gwxAddEvent(XButtonRelease, LOWORD(lParam), HIWORD(lParam), 3);
	}
 return 0;

 case WM_KEYDOWN:
 GetCursorPos(&point);
 GetWindowRect(hWnd, &rect);
 ix = point.x - rect.left - gwxXmatte;
 iy = point.y - rect.top - gwxYmatte - gwxYbar;
	/* gwxAddEvent(XKeyPress, ix, iy, wParam+256); */
 return 0;

 case WM_KEYUP:
 GetCursorPos(&point);
 GetWindowRect(hWnd, &rect);
 ix = point.x - rect.left - gwxXmatte;
 iy = point.y - rect.top - gwxYmatte - gwxYbar;
 i = wParam+256;
	/* if (i == 300) gwxAddEvent(XKeyPress, ix, iy, i);
 gwxAddEvent(XKeyRelease, ix, iy, i); */
 return 0;

 case WM_CHAR:
 if (wParam == 27) return 0;
 if ((gwxLast.type != 2) || (gwxLast.state < 352) ||
 (gwxLast.state > 361) || (gwxLast.state-wParam != 304)) {
 GetCursorPos(&point);
 GetWindowRect(hWnd, &rect);
 ix = point.x - rect.left - gwxXmatte;
 iy = point.y - rect.top - gwxYmatte - gwxYbar;
 gwxAddEvent(XKeyPress, ix, iy, wParam);
 } else {
 printf("Double Hit: state = %d\n", wParam);
 }
 return 0;

 case WM_SYSCOMMAND:
 /* special code for F10 */
 if ((lParam == 0) && (wParam == 61696)) {
 GetCursorPos(&point);
 GetWindowRect(hWnd, &rect);
 ix = point.x - rect.left - gwxXmatte;
 iy = point.y - rect.top - gwxYmatte - gwxYbar;
 gwxAddEvent(XKeyPress, ix, iy, 377);
 return 0;
 }
 break;

 case WM_CLOSE:
 gwxAddEvent(XKeyPress, 0, 0, 283);
 exit;
 return 0;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc(hWnd, message, wParam, lParam);
}

int
rgb2winrgb(int acol)
{
 int col, r, g, b;

 col = acol & 0x00ffffff;
 r = col >> 16;
 g = (col >> 8) & 0xff;
 b = col & 0xff;
 col = b << 16 | g << 8 | r;
 return col;
}

/* gwxrevflag
 Get XPLOT11 background default from users environment
 Parameters:
 revflag (int*) reverse video flag (0 for white, 1 for black)
*/
void W32CALL
GWXREVFLAG(revflag)
 int *revflag;
{
 char *bufp, *tmp;
/* check environment variable XPLOT11_BACKGROUND for background color
 XPLOT11_BACKGROUND = white gives black on white plotting (like paper)
 XPLOT11_BACKGROUND != white gives white on black plotting (reverse video)
*/
 *revflag = 1;
 bufp = getenv("XPLOT11_BACKGROUND");

/* check lowercased environment for "black" to reverse video */
 if(bufp) {
 for(tmp = bufp; *tmp; tmp++)
 *tmp = tolower(*tmp);
 *revflag = (strcmp(bufp,"white")!=0);
 }
}

/* gwxopen
 Open X window display and get size and depth of root window
 Parameters:
 xsize,ysize (int*) root window size
 depth (int*) screen color depth (pixel depth)
*/
void W32CALL
GWXOPEN(int *xsize, int *ysize, int *depth)
{
	int i, j, k;

/* set depth arbitrarily to 8 bits to work like Xwindows colormaps */
 rootdepth = 8;
 xrootsize = GetSystemMetrics(SM_CXSCREEN);
 yrootsize = GetSystemMetrics(SM_CYSCREEN);

 *depth = rootdepth;
 *xsize = xrootsize;
 *ysize = yrootsize;

 gwxXmatte = GetSystemMetrics(SM_CXFRAME);
 gwxYmatte = GetSystemMetrics(SM_CYFRAME);
 gwxYbar = GetSystemMetrics(SM_CYCAPTION) -
 GetSystemMetrics(SM_CYBORDER);
 /*
 printf("Screen is %d x %d\n", *xsize, *ysize);
 if (gwxXmatte == gwxYmatte) {
 printf("Window matte is %d\n",gwxXmatte);
 } else {
 printf("Window matte is %d x %d\n", gwxXmatte, gwxYmatte);
 }
 printf("Title bar height = %d\n", gwxYbar);
 */

/* check environment variables for default background color
 XPLOT11_BACKGROUND != black gives black on white plotting (like paper)
 XPLOT11_BACKGROUND = black gives white on black plotting (reverse video) */
 GWXREVFLAG(&reversevideo);

/* set up cursor bitmap arrays */
 /*	xcsize = GetSystemMetrics(SM_CXCURSOR);
	ycsize = GetSystemMetrics(SM_CYCURSOR);
	if ((xcsize != 16) && (xcsize != 32)) {
 printf("Unkown Xcursor Size %d\n", xcsize);
	 exit(1);
 }
	if ((ycsize != 16) && (ycsize != 32)) {
 printf("Unkown Ycursor Size %d\n", ycsize);
	 exit(1);
 }
	for (i = 0; i < 128; i++) {
 ANDMask[i] = 0xff;
		ORNMask[i] = 0;
		ORWMask[i] = 0;
	}
	j = 3;
	if (xcsize == 16) j = 1;
 for (k = i = 0; i < 16; i++) {
		ANDMask[k] = ANDMsk16[i*2];
	 ORNMask[k] = ORNMsk16[i*2];
		ORWMask[k] = ORWMsk16[i*2];
	 k++;
	 ANDMask[k] = ANDMsk16[i*2+1];
	 ORNMask[k] = ORNMsk16[i*2+1];
		ORWMask[k] = ORWMsk16[i*2+1];
	 k += j;
	}
	*/

/* set cursor */
 gwxWaitC = LoadCursor(NULL, IDC_WAIT);
 gwxNormalC = LoadCursor(NULL, IDC_CROSS);
/* gwxNormalC = CreateCursor(gwxInstance, 14, 1, xcsize, ycsize,
 ANDMask, ORNMask); */
/* gwxInputC = CreateCursor(gwxInstance, 14, 1, xcsize, ycsize,
 ANDMask, ORWMask); */
 gwxCurrentC = gwxNormalC;

/* Define window class */
 gwxInstance = GetModuleHandle(NULL);

 gwxWndClass.cbSize = sizeof(gwxWndClass);
 gwxWndClass.style = CS_HREDRAW | CS_VREDRAW;
 gwxWndClass.lpfnWndProc = (WNDPROC)gwxWndProc;
 gwxWndClass.cbClsExtra = 0;
 gwxWndClass.cbWndExtra = 0;
 gwxWndClass.hInstance = gwxInstance;
 gwxWndClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 gwxWndClass.hCursor = gwxNormalC;
 if(reversevideo) {
 gwxWndClass.hbrBackground = GetStockObject(BLACK_BRUSH); }
 else {
 gwxWndClass.hbrBackground = GetStockObject(WHITE_BRUSH); }
 gwxWndClass.lpszMenuName = NULL;
 gwxWndClass.lpszClassName = (LPCSTR)gwxClass;

 /* Register the window class */
	gwxRegister = RegisterClassEx(&gwxWndClass);

 /* Check for window register, bomb if no joy... */
 if(gwxRegister == 0) {
 printf("Failed to register window class\n");
	 exit(1);
 }

/* initialize private Xevents loop pointers */
 gwxEvents = NULL;
 gwxLEvent = NULL;

}

GC*
gwxgc(HWND *window, int *fontsize)
{
 GC *gc;
 int r, g, b, ic;

 gc = (GC *) malloc(sizeof(GC));

 gc->window = *window;
 if(reversevideo) {
 gc->fg = RGB(255,255,255);
 gc->bg = RGB(0 ,0 ,0);
 }
 else {
 gc->fg = RGB(0 ,0 ,0);
 gc->bg = RGB(255,255,255);
 }
 gc->pen = CreatePen(PS_SOLID, penwidth, gc->fg);
 gc->fgbrush = CreateSolidBrush(gc->fg);
 gc->bgbrush = CreateSolidBrush(gc->bg);
 gc->font = *fontsize;
 gc->fun = GXcopy; /* copy */

 return gc;
}

void
gwxfreegc(GC **gc)
{
 GC *gcontext;

 gcontext = *gc;
 DeleteObject(gcontext->pen);
 DeleteObject(gcontext->fgbrush);
 DeleteObject(gcontext->bgbrush);
 free(*gc);
}

void
gwxgcfun(int *fun)
{
 GC *gcontext;

 gcontext = gwxGC;
 gcontext->fun = *fun;
}

void
Thread1(PVOID pvoid)
{
 HWND winFocus, winFG, win;
// HWND winF77;
 RECT WinRect ,oldrect;
 POINT point;
 int fontsize;
// int lunit;

 /* printf("\nEntering display thread\n"); */
 /*
 * Make window large enough to hold a client area compensating for borders
 */
 WinRect.left = wxstart;
 WinRect.right = wxstart + wxsize + 2*gwxXmatte;
 WinRect.top = wystart;
 WinRect.bottom = wystart + wysize + 2*gwxYmatte + gwxYbar;

 /*
 printf("\nwxstart %d wystart %d \n",wxstart,wystart);
 printf("\nwxsize %d wysize %d \n",wxsize,wysize);

 printf("\nsetting rectangle left %d right %d \n",WinRect.left,WinRect.right);
 printf("\nsetting rectangle top %d bot %d \n",WinRect.top,WinRect.bottom);
 */

 winFG = GetForegroundWindow();
 winFocus = GetActiveWindow();
 GetWindowRect(winFG, &oldrect);
 /*
 printf("Entry conditions:\n foreground %d/n orig focus %d\n",winFG,winFocus);
 printf("\nold rectangle left %d right %d \n",oldrect.left,oldrect.right);
 printf("\nold rectangle top %d bot %d \n",oldrect.top,oldrect.bottom);
 */

 /* lunit = 5;
 winF77 = fgethwndqq(&lunit);
 printf("\nEntry conditions DVF window: %d/n",winF77);
 */

/* Must use WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles. */

 gwxWin = CreateWindow(gwxClass, gwxClass,
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
 WinRect.left, WinRect.top,
 WinRect.right - WinRect.left, WinRect.bottom - WinRect.top,
 NULL, NULL, gwxInstance, NULL);

 if (gwxWin == NULL) {
 fprintf(stderr, "Error: NULL window handle.\n");
 exit(1);
 }

 ShowWindow(gwxWin, SW_SHOWDEFAULT);
 UpdateWindow(gwxWin);

 gwxHDC = GetDC(gwxWin);
 if (gwxHDC == NULL) {
 fprintf(stderr, "Error: NULL window DC.\n");
 exit(1);
 }

 /* Create compatible window bitmap */
 gwxmemHDC = CreateCompatibleDC(gwxHDC);
 gwxBMAP = CreateCompatibleBitmap(gwxHDC,xrootsize,yrootsize);
 SelectObject(gwxmemHDC, gwxBMAP);

 SelectObject(gwxmemHDC, GetStockObject(ANSI_VAR_FONT));
 SetTextAlign(gwxmemHDC, TA_LEFT | TA_BASELINE | TA_NOUPDATECP);
 SetBkMode(gwxmemHDC, TRANSPARENT);

 gwxSize[0] = wxsize;
 gwxSize[1] = wysize;
 gwxSize[2] = wxstart + 2*gwxXmatte;
 gwxSize[3] = wystart + 2*gwxYmatte + gwxYbar;
 gwxSize[4] = 1;
 SetWindowPos(gwxWin, HWND_TOP, gwxSize[2], gwxSize[3],
 wxsize, wysize, SWP_NOMOVE|SWP_NOZORDER);

 /* SetWindowPos(gwxWin, HWND_TOP, 0,0, 0,0, SWP_NOMOVE | SWP_NOSIZE); */
 SetForegroundWindow(gwxWin);

 nRGBmap = 0;
 penwidth = 0;
 penpattern = -1;
 ndash = 0;
 fontsize = 1;

 gwxGC = gwxgc(&gwxWin, &fontsize);
 SelectObject(gwxmemHDC, gwxGC->pen);

 /* initially clear the background bitmap */
 SelectObject(gwxmemHDC, gwxGC->bgbrush);
 PatBlt(gwxmemHDC, 0, 0, xrootsize, yrootsize, PATCOPY);

 SelectObject(gwxmemHDC, gwxGC->fgbrush);

 /* allocate black and white colors */
/* r = 0;
 g = 0;
 b = 0;
 GWXALLOCRGBCOLOR(&r,&g,&b,&ic);
 r = 0;
 g = 0;
 b = 0;
 GWXALLOCRGBCOLOR(&r,&g,&b,&ic);
*/

 /* printf("entering message loop\n\n"); */

 initthread = 1;

 /* while (GetMessage(&Message, NULL, 0, 0)) { */

 /* Custom message loop to check cursor window to do X-style focus */

 while (1) {
 if(PeekMessage(&Message, gwxWin, 0, 0, PM_REMOVE)) {

	if(Message.message==WM_QUIT)
 break;

 TranslateMessage(&Message);
 DispatchMessage(&Message);
 Sleep(1);
 }
 else {
 GetCursorPos(&point);
 win = WindowFromPoint(point);
 /* printf("pos x %d y %d win %d\n",point.x,point.y,win); */

 /* if(win==winF77) {
 SetActiveWindow(win);
 SetFocus(win);
 SetForegroundWindow(win);
 } */
 /* if(win == winFG) {
	 printf("pos x %d y %d win %d winFG %d\n",point.x,point.y,win,winFG);
 SetActiveWindow(winFG);
 SetFocus(winFG);
 SetForegroundWindow(winFG);
 } */
 Sleep(1);
 }
 }

 /* printf("window thread ending\n"); */
/* return Message.wParam;
 exit; */

 _endthread();
}

/* gwxwinopen
 Open window of specified size and position, return size and depth
 Parameters:
 xstart,ystart (int*) upper left corner coordinates in root
 xsize,ysize (int*) desired window size
*/

void W32CALL
GWXWINOPEN (int *xstart, int *ystart, int *xsize, int *ysize)
{
 /*
 printf("GWXOPEN\nxstart %d\nystart %d\nxsize %d\nysize %d\n",*xstart,*ystart,*xsize,*ysize);
 */
 wxstart = *xstart;
 wystart = *ystart;
 wxsize = *xsize;
 wysize = *ysize;

 /* Start the window thread */
 initthread = 0;
 _beginthread(Thread1,0,NULL);
 /* printf("beginthread called\n"); */

 while(!initthread) {
 Sleep(5);
 }

}

void W32CALL
GWXDESTROY()
{
 ReleaseDC(gwxWin, gwxHDC);
 ReleaseDC(gwxWin, gwxmemHDC);
}

void W32CALL
GWXCLOSE()
{
 PostQuitMessage (0) ;
 /* DestroyCursor(gwxNormalC);
 DestroyCursor(gwxInputC); */
 UnregisterClass((LPCSTR)gwxClass, gwxInstance);
}

void W32CALL
GWXFLUSH()
{
 BitBlt(gwxHDC,0,0,xrootsize,yrootsize,gwxmemHDC,0,0,SRCCOPY);
 /* InvalidateRect(gwxWin,NULL,1); */
}

/* gwxreset
 Reset graphics context to default
 Parameters: None
*/
void W32CALL
GWXRESET()
{
}

/* getPEN
 Creates pen using type, color, width, pattern
*/
HPEN
makenewpen()
{
 HPEN newpen;
 LOGBRUSH lb;
 GC *gcontext;

 gcontext = gwxGC;

 /* printf("makenewpen\n ndash %d\n lmask %d\n fg %d\n width %d\n",ndash,penpattern,gcontext->fg,penwidth); */

 if(ndash == 0) {
 if(penpattern == 0) {
	/* printf("making penpattern 0\n"); */
 newpen = CreatePen(PS_SOLID, penwidth, gcontext->bg);
 }
 if (penpattern == -1) {
	/* printf("making penpattern -1\n"); */
 newpen = CreatePen(PS_SOLID, penwidth, gcontext->fg);
 }
 }
 else {
 /* printf("making dash pen\n"); */
 newpen = CreatePen(PS_DOT, 0, gcontext->fg);
/*
 lb.lbStyle = BS_SOLID;
 lb.lbColor = gcontext->fg;
 lb.lbHatch = 0;
 newpen = ExtCreatePen(PS_GEOMETRIC | PS_USERSTYLE,
 penwidth, &lb, ndash, pendash);
			 */
 }
 return newpen;
}

int
GWXNUMEVENTS()
{
 int stat;

 stat = 1;
 if (gwxEvents == NULL) stat = 0;
 return stat;
}

void
GWXEVENT(int *type, int *x, int *y, int *state)
{
 gwxRemEvent(type, x, y, state);
}

int
GWXGETEVENT(int *type, int *x, int *y, int *state)
{
 int stat;
 Event *event;

 stat = -1;
 event = gwxEvents;
 gwxLEvent = NULL;
 while (event != NULL) {
 if ((*type == event->type) && (stat == -1)) {
 *x = event->x;
 *y = event->y;
 *state = event->state;
 stat = 0;
 if (gwxLEvent == NULL) {
 gwxEvents = event->next;
 } else {
 gwxLEvent->next = event->next;
 }
 free(event);
 event = NULL;
 if (gwxLEvent != NULL) event = gwxLEvent->next;
 } else {
 gwxLEvent = event;
 event = event->next;
 }
 }
 return stat;
}

/* gwxstatus
 Return current window status (position, size)
 Parameters:
 xstart,ystart (int*) upper left corner coordinates in root
 xsize,ysize (int*) desired window size
*/
void W32CALL
GWXSTATUS(int *xstart, int *ystart, int *xsize, int *ysize)

{
 RECT rect;

 /*
 GetClientRect(gwxWin, &rect);
 printf("\nstatus rectangle left %d right %d \n",rect.left,rect.right);
 printf("\n top %d bot %d \n",rect.top,rect.bottom);
 */
 GetWindowRect(gwxWin, &rect);
 *xstart = rect.left;
 *ystart = rect.top;
 *xsize = rect.right - rect.left - 2*gwxXmatte;
 *ysize = rect.bottom - rect.top - 2*gwxYmatte - gwxYbar;

 /*
 printf("\nstatus xstart %d ystart %d \n",*xstart,*ystart);
 printf("\n xsize %d ysize %d \n",*xsize,*ysize);
 printf("\nstatus rectangle left %d right %d \n",rect.left,rect.right);
 printf("\n top %d bot %d \n",rect.top,rect.bottom);
 */
}

/* gwxresize
 Resize screen window to x width, y height
 Parameters:
 x (int*) new width
 y (int*) new height
*/
void W32CALL
GWXRESIZE(x, y)
 int *x, *y;
{
 int ix, iy;

 gwxSize[0] = *x;
 gwxSize[1] = *y;
 ix = gwxSize[0] + 2*gwxXmatte;
 iy = gwxSize[1] + 2*gwxYmatte + gwxYbar;
 SetWindowPos(gwxWin, HWND_TOP, gwxSize[2], gwxSize[3],
 ix, iy, SWP_NOMOVE|SWP_NOZORDER);
}

/* gwxclear
 Clear current plot window
 Parameters: None
*/
void W32CALL
GWXCLEAR()
{
 int i;
 RECT WinRect;

 WinRect.left = 0;
 WinRect.right = gwxSize[0] + 2*gwxXmatte;
 WinRect.top = 0;
 WinRect.bottom = gwxSize[1] + 2*gwxYmatte + gwxYbar;
 FillRect(gwxmemHDC, &WinRect, gwxGC->bgbrush);
 return;
}

/* gwxdisplaybuffer
 Switches background buffer onto foreground window, displaying accumulated
 graphics
 Parameters: None
*/
void W32CALL
GWXDISPLAYBUFFER()
{
}

/* gwxdrawtobuffer
 Switches graphics to draw to the background buffer
 Parameters: None
*/
void W32CALL
GWXDRAWTOBUFFER()
{
/* printf("called gwxdrawtobuffer\n"); */
}

/* gwxdrawtowindow
 Switches graphics to draw to the foreground window
 Parameters: None
*/
void W32CALL
GWXDRAWTOWINDOW()
{
/* printf("called gwxdrawtowindow\n"); */
}

void W32CALL
GWXSTRING(int *x, int *y, char *text, int *length)
{
 int i, xs, ys;
 GC *gcontext;

 xs = *x + gwxXmatte;
 ys = *y + gwxYmatte;

 gcontext = gwxGC;
 if (gcontext->font != 3) {
 SelectObject(gwxmemHDC, GetStockObject(ANSI_VAR_FONT));
 } else {
 SelectObject(gwxmemHDC, GetStockObject(SYSTEM_FONT));
 }
 SetTextColor(gwxmemHDC, gcontext->fg);
 SetBkColor (gwxmemHDC, TRANSPARENT);
 TextOut(gwxmemHDC, xs, ys, text, *length);
}

/* gwxline
 Draw line from x1,y1 to x2,y2
 Parameters:
 x1,y1 (int*) starting position for line
 x2,y2 (int*) ending position for line
*/
void W32CALL
GWXLINE(int *x1, int *y1, int *x2, int *y2)
{
 int i, xs, ys;

 xs = *x1;
 ys = *y1;
 MoveToEx(gwxmemHDC, xs, ys, NULL);
 xs = *x2;
 ys = *y2;
 LineTo(gwxmemHDC, xs, ys);
}

/* gwxlinez
 Draw polyline on window in current color and pen
 Parameters:
 ix (int*) array of x coordinates on polyline
 iy (int*) array of y coordinates on polyline
 n (int*) number of coordinate points
 (see define for MAXPTS at start of this file)
*/
void W32CALL
GWXLINEZ(int *ix, int *iy, int *n)
{
 int i, xs, ys;

 POINT points[MAXPTS];

 if (*n > MAXPTS) {
 fprintf(stderr,"Xplot11.gwxlinez: Too many points in polyline\n");
 printf("Xplot11.gwxlinez: Too many points in polyline\n");
 return;
 }

 for(i=0; i < *n; i++) {
 points[i].x = ix[i];
 points[i].y = iy[i];
/* printf("gwxlinez x %d y %d \n",ix[i],iy[i]); */
 }
 Polyline(gwxmemHDC, points, *n);
}

/* gwxpoly
 Draw filled polyline on window in current color and pen
 Parameters:
 x_coord (int*) array of x coordinates on polyline
 y_coord (int*) array of y coordinates on polyline
 n_coord (int*) number of coordinate points
 (see define for MAXPTS at start of this file)
*/
void W32CALL
GWXPOLY(x_coord, y_coord, n_coord)
 int *x_coord, *y_coord, *n_coord;

{ POINT points[MAXPTS];
 int i,n;

 if (*n_coord >= MAXPTS) {
 fprintf(stderr,"Xplot11.gwxpoly: Too many points in polyline\n");
 printf("Xplot11.gwxpoly: Too many points in polyline\n");
 return;
 }

 for (i=0; i < *n_coord; i++) {
 points[i].x = x_coord[i];
 points[i].y = y_coord[i];

 }
 n = *n_coord;
/* if the polyline is not closed, duplicate first point to ensure closed

 perimeter (speeds up X graphics drastically) */
 if ((points[n-1].x != points[0].x) ||
 (points[n-1].y != points[0].y)) {
 points[n].x = points[0].x;
 points[n].y = points[0].y;
 n++;
 }
 Polygon(gwxmemHDC, points, n);
}

void W32CALL
GWXARC(int *xc, int *yc,
 int *xr, int *yr, float *alpha, float *beta)
{
 int i, j, xs, ys;

 /* only does circles! */

 xs = *xc + *xr;
 ys = *yc;
 MoveToEx(gwxmemHDC, xs, ys, NULL);
 for (j = 2; j <= 360; j += 2) {
 xs = (int) ((double)*xc + (double)*xr*cos((double)j*0.017453292));
 ys = (int) ((double)*yc + (double)*yr*sin((double)j*0.017453292));
 LineTo(gwxmemHDC, xs, ys);
 }
}

void W32CALL
GWXCURS(int *x, int *y, int *state)
{
int type;

/* Eat up all the current events first */

 while(GWXNUMEVENTS()) {
 GWXEVENT(&type, x, y, state);
 /* printf("eat up event %d\n",type); */
 }
/* Now run an event loop until a buttonpress or keypress is found */

 while(1) {
 if(GWXNUMEVENTS()) {
 GWXEVENT(&type, x, y, state);
 /* printf("get event %d\n",type); */
 switch (type) {
 case XKeyPress:
 return;

 case XButtonPress:
 return;
 }
 }
 }
}

void W32CALL
GWXCURS2(int *x, int *y, int *state)
{
 int i, key;
 POINT point;

 key = 0;
 if (GetAsyncKeyState(VK_SHIFT) < 0) key += 1;
 if (GetAsyncKeyState(VK_CONTROL) < 0) key += 4;
 if (GetAsyncKeyState(VK_MENU) < 0) key += 8;
 if (GetAsyncKeyState(VK_LBUTTON) < 0) key += 256;
 if (GetAsyncKeyState(VK_MBUTTON) < 0) key += 512;
 if (GetAsyncKeyState(VK_RBUTTON) < 0) key += 1024;
 if ((GetAsyncKeyState(VK_LBUTTON) < 0) &&
 (GetAsyncKeyState(VK_RBUTTON) < 0)) key -= 768;

 GetCursorPos(&point);

 *x = -1;
 *y = -1;
 *state = 0;
 *x = point.x - gwxSize[2];
 *y = point.y - gwxSize[3];
 *state = key;
}

HWND W32CALL
GWXCURRENTPOINTER(int *x, int *y)
{
 POINT point;
 RECT rect;
 HWND win;

 GetCursorPos(&point);
 win = WindowFromPoint(point);
 GetWindowRect(win, &rect);
 *x = point.x - rect.left;
 *y = point.y - rect.top;
 return win;
}

void W32CALL
GWXSETPOINTER(HWND win, int *x, int *y)
{
 int ix, iy;
 RECT rect;

 if (GetActiveWindow() != win) SetActiveWindow(win);
 if (GetFocus() != win) SetFocus(win);
 if (GetForegroundWindow() != win) SetForegroundWindow(win);
 GetWindowRect(win, &rect);
 ix = *x + rect.left;
 iy = *y + rect.top;
 SetCursorPos(ix, iy);
}

/* gwxdash
 Set line drawing pattern to mask pattern
 Parameters:
 mask (int*) integer mask value (bits set pen pattern for lines)
*/
void W32CALL
GWXDASH(int* lmask)
{
GC *gcontext;
int i, ndsh;
HPEN oldpen;

 penpattern = *lmask;
 gcontext = gwxGC;

 if(*lmask==0) {
 ndash = 0;
 }
 else if(*lmask==-1) {
 ndash = 0;
 }
 else {
 (void) MSKBITS(lmask,pendash,&ndsh);
 ndash = ndsh;
/* for(i=1; i<=ndash; i++) printf("%d dashes %d\n",i,pendash[i-1]); */
 }
 oldpen = gcontext->pen;
 gcontext->pen = makenewpen();
 oldpen = SelectObject(gwxmemHDC, gcontext->pen);
 DeleteObject(oldpen);
}

/* gwxpen
 Set pen width for line drawing
 Parameters:
 ipen (int*) integer pen width
*/
void W32CALL
GWXPEN(int* ipen)
{
GC *gcontext;
HPEN oldpen;

 penwidth = *ipen;
 gcontext = gwxGC;
 oldpen = gcontext->pen;
 gcontext->pen = makenewpen();
 oldpen = SelectObject(gwxmemHDC, gcontext->pen);
 DeleteObject(oldpen);
}

/* mskbits
 Utility routine to convert lower 16 bits of pattern mask
 into pattern array of on/off bit lengths. The 16
 bits of ipat can contain up to 16 on/off bit lengths.
 i.e. 0XAAAAAAA produces ibits=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
 i.e. 0XCCCCCCC produces ibits=(2,2,2,2,2,2,2,2)
 The output pattern stored in integer array ibits=(#on,#off,#on,#off,etc.)
 Parameters:
 mask (int*) input mask
 ibits (int*) output pattern string (#on, #off...)
 ndash (int*) number of entries in pattern array
*/
void
MSKBITS(int* mask, int* ibits, int* ndash)
{
#define BITSINMASK 16 /* use only lower 16 bits of mask word */

int i,ic,ibit,ibitold;
int nbits, nshft;
unsigned short lmask;

/* shift mask until low bit is 1, filling high bits with 0's */
	 lmask = *mask;
 nshft = 0;

	 if(lmask!=0) {
 	 while (!(ibitold = (lmask & 0x01)))
 lmask >>= 1;
 nshft++;
	 }
/* if no 1 bits just exit with no dashes set */
 if(ibitold==0) {
	 *ndash = 0;
	 exit;
	 }

/* cycle through the lower 'length-nshft' bits
 checking for number of contiguous same bits,
 store into ibits array */
 	 nbits = ic = 0;

	 for (i=0; i<(BITSINMASK-nshft); ++i) {

	 ibit=(lmask & 0x01);

	 if(ibit != ibitold) {
	 ibits[ic++] = nbits;
	 nbits = 0;
	 }

 ibitold = ibit;
 nbits++;

	 lmask >>= 1;
	 }

/* add bits at end of shifted bits including any initial shift
 to find the first 1 in the low bit */
	 if(ibit==1) {

 ibits[ic++] = nbits;
 if(nshft>0)
 ibits[ic++] = nshft;

	 }
 else
 	 ibits[ic++] = nbits + nshft;

	 *ndash = ic;
}

/* gwxsetcolor
 Set foreground color to stored colormap pixel value
 Parameters:
 icol (int*) index of pixel value (mapped in colormap)
*/
void W32CALL
GWXSETCOLOR(icol)
 int *icol;
{
 int ic, n, fg;
 GC *gcontext;
 HPEN oldpen;

/* is the color index in range for stored colormap data? */
 ic = *icol;
/* find the color in the table */
 for (n=0; n < nRGBmap; n++) {
 if(ic == RGBmap[n].ic) {
 fg = RGBmap[n].rgb;
 gcontext = gwxGC;
 gcontext->fg = rgb2winrgb(fg);
/* printf("gwxsetfgcolor fg %d wfg %d\n",*fg,gcontext->fg); */
 gcontext->pen = makenewpen();
 gcontext->fgbrush = RGBmap[n].brush;
 oldpen = SelectObject(gwxmemHDC, gcontext->pen);
 DeleteObject(oldpen);
 SelectObject(gwxmemHDC, gcontext->fgbrush);
 return;
 }
 }
 fprintf(stderr,"Xplot11.gwxsetcolor: color index %d out of range\n",*icol);

 printf("Xplot11.gwxsetcolor: color index %d out of range\n",*icol);
}

/* gwxsetbgcolor
 Set background color to pixel value
 Parameters:
 pixel (int*) pixel value (mapped in colormap)
*/
void W32CALL
GWXSETBGCOLOR(icol)
 int *icol;
{
 int ic, n, bg;
 GC *gcontext;
/* is the color index in range for stored colormap data? */
 ic = *icol;
/* find the color in the table */
 for (n=0; n < nRGBmap; n++) {
 if(ic == RGBmap[n].ic) {
 bg = RGBmap[n].rgb;
 gcontext = gwxGC;
 gcontext->bg = rgb2winrgb(bg);
 gcontext->bgbrush = RGBmap[n].brush;
 return;
 }
 }
 fprintf(stderr,"Xplot11.gwxsetbgcolor: color index %d out of range\n",*icol);
 printf("Xplot11.gwxsetbgcolor: color index %d out of range\n",*icol);
}

/* gwxcolorname2rgb
 Find r,g,b components for color specified by name string
 Parameters:
 red,grn,blu (int*) output color components (0-255)
 nc (int*) string length (# of chars)
 colorname (char*) string containing name of valid color
 Note: color names are not case sensitive
 len (int) fortran appended string length (passed by value)

 Valid color names are any color name that is known to X11 color database
 Examples are "Black","White","Yellow","Orange","Red","Green",
 "Cyan","Blue","Magenta", "ivory", etc.
*/
void W32CALL
GWXCOLORNAME2RGB(int *red, int *grn, int *blu,
 int *nc, char *colorname, int len)
{
 char cname[32];
 int i,n;
 int irgb;

 n = *nc;
 /* copy string to avoid overwriting possibly static input string
 Note that string length is explicitly passed to avoid compatibility
 problems with by fortran character arg length */
 if(n>31) {
 n = 31;
 fprintf(stderr,"Xplot11.gwxcolorname2rgb: color name '%s' truncated\n",
	 cname);
 printf("Xplot11.gwxcolorname2rgb: color name '%s' truncated\n",cname);
 }
 strncpy(cname,colorname,n);
 cname[n] = '\0';

 *red = -1;
 *grn = -1;
 *blu = -1;
 if (!gwxlookupcolor(cname,&irgb)) {
 fprintf(stderr,"Xplot11.gwxcolorname2rgb: color name '%s' not found\n",
	 cname);
 printf("Xplot11.gwxcolorname2rgb: color name '%s' not found\n",cname);
 return;
 }
 *red = 0x000000ff & (irgb >> 16);
 *grn = 0x000000ff & (irgb >> 8);
 *blu = 0x000000ff & (irgb);

 /*
 printf("gwxcolorname2rgb red = %d\ngrn = %d\nblu = %d\n",*red,*grn,*blu);
 */
}

int
gwxlookupcolor (char *colorname, int *irgb)
{
 int IC,ic,ncolors;
 int i;
 char cname[32], *ctmp;

 IC = sizeof(Colordef);
 ic = sizeof(colordef);
 ncolors = ic/IC;

 /*
 printf("Colordef %d\n",IC);
 printf("colordef %d\n",ic);
 printf("#entries %d\n",ncolors);
 */

 if(ctmp=strcpy(cname,colorname)) {
 for(ctmp = cname; *ctmp; ctmp++)
 *ctmp = tolower(*ctmp);
 }
 /* printf("cname %s\n",cname); */

 for (i=0; i < ncolors; i++) {
 if(!strcmp(colordef[i].name,cname)) {
 /* printf("found string %s code %d\n",colordef[i].name,colordef[i].rgb); */
 *irgb = colordef[i].rgb;
 return(1);
 }
 }
 return(0);
}

/* gwxallocrgbcolor
 Allocate a color in colormap specified by r,g,b components

 Parameters:
 red,grn,blu (int*) input color components (0-255)
 ic (int*) returned color index or pixel value
*/
void W32CALL
GWXALLOCRGBCOLOR(int *red, int *grn, int *blu, int *ic)
{
 int rgb,col;
 int i;

 rgb = ((0xff & *red) << 16) | ((0xff & *grn) << 8) | (0xff & *blu);
 *ic = -1;

 /* printf("red %d\ngrn %d\nblu %d\nrgb %d\n",*red,*grn,*blu,rgb); */

/* check for rgb color already allocated in table */

 if(nRGBmap > 0) {
 for (i=0; i < nRGBmap; i++) {
 if(rgb == RGBmap[i].rgb) {
 *ic = RGBmap[i].ic;
 /* printf("found color %d in table at %d index %d\n",rgb,i+1,*ic); */
 return;
 }
 }
 }
/* this color's RGB was not in table, allocate it to table
 if there is room allocate a new color */

 if(nRGBmap < MAXCOLS) {
 RGBmap[nRGBmap].rgb = rgb;
 RGBmap[nRGBmap].ic = nRGBmap+1;
 col = rgb2winrgb(rgb);
 RGBmap[nRGBmap].pen = NULL;
 RGBmap[nRGBmap].brush = CreateSolidBrush(col);
 nRGBmap++;
 *ic = nRGBmap;
 /* printf("allocating color table entry %d at %d\n",*ic,nRGBmap-1); */
 }
 else {
 fprintf (stderr,"Xplot11.gwxallocrgbcolor: can't allocate color.\n");
 printf ("Xplot11.gwxallocrgbcolor: can't allocate color.\n");
 }
}

/* gwxfreecolor
 Free a color from color map
 Parameters:
 pix (int*) pixel in colormap
*/
void W32CALL
GWXFREECOLOR(int *icol)
{
 int i,ic,n;

/* is the color index in range for stored colormap data? */
 ic = *icol;
/* printf("color to delete %d\n",ic); */
 if((ic > 0) && (ic <= MAXCOLS)) {

/* find the color in the table */
/* printf("checking colortable of size %d\n",nRGBmap); */
 for (n=0; n < nRGBmap; n++) {
/* printf("comparing RGBmap %d with %d to %d\n",n,RGBmap[n].ic,ic); */
 if(ic == RGBmap[n].ic) {
/* delete the table entry */
/* printf("found color %d to delete at %d\n",ic,n); */

 if(RGBmap[n].pen) DeleteObject(RGBmap[n].pen);
 if(RGBmap[n].brush) DeleteObject(RGBmap[n].brush);

 if(n < nRGBmap-1) {
 for (i=n; i < nRGBmap; i++) {
 RGBmap[i-1].rgb = RGBmap[i].rgb;
 RGBmap[i-1].ic = RGBmap[i].ic;
 RGBmap[i-1].pen = RGBmap[i].pen;
 RGBmap[i-1].brush = RGBmap[i].brush;
 }
 }
 nRGBmap--;
/* printf("deleted color %d\n",*icol); */
 return;
	}
 }
 }
 fprintf(stderr,"Xplot11.gwxfreecolor: color index %d out of range\n",*icol);
 printf("Xplot11.gwxfreecolor: color index %d out of range\n",*icol);
}

XFOILinterface/XFOIL/plotlib/Xwin.c

/***
 Module: Xwin.c

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

/***
* Xplot11 C-level X11 interface
C Version 4.46 11/28/01
*
* Defines graphics primitives for window management and line drawing
* Primitives include:
* gwxrevflag - checks environment variables for background color
* gwxopen - initializes X display and returns size and depth of display
* gwxwinopen - opens X plotting window with specified x,y size and position
* gwxclear - clears plotting window
* gwxstatus - gets current window size and location
* gwxresize - resizes current window to specified size

* gwxreset - resets plotting defaults for window
* gwxclose - closes plotting to X display
* gwxflush - flushes out graphics primitives in buffers
* gwxline - plots line segment

* gwxdash - sets line pattern from integer mask
* gwxcurs - gets graphics cursor position and key pressed
* gwxpen - sets line width in pixels
*
* More advanced routines beyond the original PLOT-10 requirements
* gwxdestroy - closes plot window
* gwxlinez - plots polyline
* gwxpoly - plots filled polygon
* gwxstring - plots string
*
* Color routines
* gwxsetcolor - sets foreground color from color map
* gwxsetbgcolor - sets background color from color map
* gwxcolorname2rgb - find color components of color specified by name string
* gwxallocrgbcolor - allocate a color specified by r,g,b components
* gwxfreecolor - frees an allocated color from colormap
*
* Utility routines
* mskbits - converts integer mask into dot/dash array
*
* Double-buffer routines
* gwxdisplaybuffer - switches background buffer with foreground window
* gwxdrawtobuffer - sets drawing to background buffer
* gwxdrawtowindow - sets drawing to foreground window
**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/cursorfont.h>

/* Handle various system requirements for trailing underscores, or other
 fortran-to-C interface shenanigans thru defines for routine names
 The provided set gives the option of setting a compile flag -DUNDERSCORE
 to include underscores on C routine name symbols */

#ifdef UNDERSCORE

#define MSKBITS mskbits_
#define GWXREVFLAG gwxrevflag_
#define GWXOPEN gwxopen_
#define GWXWINOPEN gwxwinopen_
#define GWXCLEAR gwxclear_
#define GWXSTATUS gwxstatus_
#define GWXRESIZE gwxresize_
#define GWXRESET gwxreset_
#define GWXCLOSE gwxclose_
#define GWXFLUSH gwxflush_
#define GWXLINE gwxline_
#define GWXDASH gwxdash_
#define GWXCURS gwxcurs_
#define GWXPEN gwxpen_
#define GWXDESTROY gwxdestroy_
#define GWXLINEZ gwxlinez_
#define GWXPOLY gwxpoly_
#define GWXSTRING gwxstring_
#define GWXSETCOLOR gwxsetcolor_
#define GWXSETBGCOLOR gwxsetbgcolor_
#define GWXCOLORNAME2RGB gwxcolorname2rgb_
#define GWXALLOCRGBCOLOR gwxallocrgbcolor_
#define GWXFREECOLOR gwxfreecolor_
#define GWXDISPLAYBUFFER gwxdisplaybuffer_
#define GWXDRAWTOBUFFER gwxdrawtobuffer_
#define GWXDRAWTOWINDOW gwxdrawtowindow_

#else

#define MSKBITS mskbits
#define GWXREVFLAG gwxrevflag
#define GWXOPEN gwxopen
#define GWXWINOPEN gwxwinopen
#define GWXCLEAR gwxclear
#define GWXSTATUS gwxstatus
#define GWXRESIZE gwxresize
#define GWXRESET gwxreset
#define GWXCLOSE gwxclose
#define GWXFLUSH gwxflush
#define GWXLINE gwxline
#define GWXDASH gwxdash
#define GWXCURS gwxcurs
#define GWXPEN gwxpen
#define GWXDESTROY gwxdestroy
#define GWXLINEZ gwxlinez
#define GWXPOLY gwxpoly
#define GWXSTRING gwxstring
#define GWXSETCOLOR gwxsetcolor
#define GWXSETBGCOLOR gwxsetbgcolor
#define GWXCOLORNAME2RGB gwxcolorname2rgb
#define GWXALLOCRGBCOLOR gwxallocrgbcolor
#define GWXFREECOLOR gwxfreecolor
#define GWXDISPLAYBUFFER gwxdisplaybuffer
#define GWXDRAWTOBUFFER gwxdrawtobuffer
#define GWXDRAWTOWINDOW gwxdrawtowindow

#endif

/* Maximum number of polyline points per polyline call,
 increase if necessary */
#define MAXPTS 1000

#define argc 0
#define argv (char **) NULL

Display *display;
Window window;
Pixmap pixmap;
Drawable buffer;
Cursor cursor;
GC gc;
unsigned long fgcolor, bgcolor;
int height, width;
int line_width;
int 	 root_width, root_height, root_depth;
int reversevideo;
static Window parent_window;
Colormap cmap;

void MSKBITS(int*,int*,int*);

/**/

/* gwxrevflag
 Get XPLOT11 background default from users environment
 Parameters:
 revflag (int*) reverse video flag (0 for white, 1 for black)
*/

void
GWXREVFLAG(revflag)
 int *revflag;
{

 char *bufp, *tmp;

/* check environment variable XPLOT11_BACKGROUND for background color
 XPLOT11_BACKGROUND = white gives black on white plotting (like paper)
 XPLOT11_BACKGROUND != white gives white on black plotting (reverse video)
*/
 *revflag = 1;
 bufp = getenv("XPLOT11_BACKGROUND");

/* check lowercased environment for "white" for non-reverse video */
 if(bufp) {
 for(tmp = bufp; *tmp; tmp++)
 *tmp = tolower((int) *tmp);
 *revflag = (strcmp(bufp,"white")!=0);
 }
}

/* gwxopen
 Open X window display and get size and depth of root window
 Parameters:
 xsize,ysize (int*) desired window size
 idepth (int*) screen color depth (pixel depth)
 revflag (int*) reverse video flag
*/

void
GWXOPEN(xsizeroot, ysizeroot, depth)
 int *xsizeroot, *ysizeroot, *depth;
{

 int revert;

/* check environment variables for default background color
 XPLOT11_BACKGROUND != black gives black on white plotting (like paper)
 XPLOT11_BACKGROUND = black gives white on black plotting (reverse video) */
 GWXREVFLAG(&reversevideo);

/* open the display */
 display = XOpenDisplay(NULL);
 /* XSynchronize(display,1); */
 if (display == NULL)

 {printf(" Cannot open display...aborting\n");
 exit(1);
 }

/* get old window focus to use later for cursor positioning */
 XGetInputFocus(display,&parent_window,&revert);

/* get root window size and depth attributes */
 root_width = DisplayWidth(display, DefaultScreen(display));
 root_height = DisplayHeight(display, DefaultScreen(display));
 root_depth = DefaultDepth(display, DefaultScreen(display));

 *xsizeroot = root_width;
 *ysizeroot = root_height;
 *depth = root_depth;
}

/* gwxwinopen
 Open window of specified size and position, return size and depth
 Parameters:
 xstart,ystart (int*) upper left corner coordinates in root
 xsize,ysize (int*) desired window size
*/

void
GWXWINOPEN(xstart, ystart, xsize, ysize)
 int *xstart, *ystart, *xsize, *ysize;
{
 XSizeHints hints;
 XSetWindowAttributes wattrib;
 unsigned long wattrib_mask;
 unsigned long	pixel_white,pixel_black;
 XEvent event;
 XColor fgcurs, bgcurs;
 Font font;
 XGCValues gcv;
 unsigned long gcv_mask;

 char *fontname = "6x12";

/* Define a crosshair cursor */
 Pixmap curs;
 unsigned int curs_width=16;
 unsigned int curs_height=16;
 unsigned int curs_x_hot=7;
 unsigned int curs_y_hot=8; /* Was: curs_y_hot=7 MD 3/12/96 */
 static unsigned char curs_bits[] =
 { 0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x00,
 0x80,0x00,0x80,0x00,0x80,0x00,0xff,0x7f,
 0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x00,
 0x80,0x00,0x80,0x00,0x80,0x00,0x00,0x00 };

/* check for open display */
 if (display == NULL)

 {printf(" Cannot open display...aborting in gwxwinopen\n");
 exit(1);
 }

 width = *xsize;
 height = *ysize;
/* printf("gwxwinopen size x %d y %d \n",width,height); */

/* set up window attributes and create window */
 pixel_white = WhitePixel(display, DefaultScreen(display));
 pixel_black = BlackPixel(display, DefaultScreen(display));
 if(reversevideo) {
 fgcolor = pixel_white;
 bgcolor = pixel_black;
 }
 else {
 fgcolor = pixel_black;
 bgcolor = pixel_white;
 }

/* define a colormap and window attributes*/
 cmap = DefaultColormap(display, DefaultScreen(display));

 wattrib.colormap = cmap;
 wattrib.background_pixel = bgcolor;
 wattrib.border_pixel = fgcolor;
 wattrib.event_mask = ExposureMask | ConfigureNotify |

 KeyPressMask | ButtonPressMask;
 wattrib_mask = CWColormap | CWEventMask |

 CWBackPixel | CWBorderPixel;

/* Use backing store (if Expose events are to regen the display,

 comment out these references to backing store */
 wattrib.backing_store = WhenMapped;
 wattrib.backing_planes = AllPlanes;

 wattrib.bit_gravity = SouthWestGravity;

 wattrib.win_gravity = NorthWestGravity;

 wattrib_mask = wattrib_mask |

 CWBitGravity | CWBackingStore |
 CWWinGravity | CWBackingPlanes;

/* create the window using these parameters */
 window = XCreateWindow(display, DefaultRootWindow(display),
 *xstart, *ystart, width, height, 2, root_depth,
 InputOutput, CopyFromParent,
 wattrib_mask, &wattrib);

/* Set pixmap initally pointing to NULL to indicate it is yet not created
 to do double buffering */
 pixmap = (Pixmap) NULL;

/* set initial drawing destination to foreground window */
 buffer = window;

/* set up interaction with the window manager */
 hints.flags = USPosition | USSize;
 hints.width = width;
 hints.height = height;
 hints.x = *xstart;
 hints.y = *ystart;
 XSetNormalHints(display, window, &hints);
 XSetStandardProperties(display, window, "Xplot11\0", "Xplot11\0",
 None, argv, argc, &hints);

/* set up cursor */
 fgcurs.pixel = fgcolor;
 bgcurs.pixel = bgcolor;
 XQueryColor(display,cmap,&fgcurs);
 XQueryColor(display,cmap,&bgcurs);

 if((curs=XCreateBitmapFromData(display,window,(char*)curs_bits,
 curs_width,curs_height))!= None)
	{ cursor = XCreatePixmapCursor(display,curs,curs,
	 &fgcurs,&bgcurs,curs_x_hot,curs_y_hot); }
	else
	{ cursor = XCreateFontCursor(display,XC_draft_small); };

 XDefineCursor(display, window, cursor);
 XRecolorCursor(display, cursor, &fgcurs, &bgcurs);

/* create the gc */
 line_width = 0;
 gcv.function = GXcopy;
 gcv.foreground = fgcolor;
 gcv.background = bgcolor;
 gcv.line_width = line_width;
 gcv.line_style = LineSolid;
 gcv.cap_style = CapButt;
 gcv.fill_style = FillSolid;
 gcv.join_style = JoinMiter;

 gcv_mask = GCFunction | GCForeground | GCBackground | GCLineWidth |

 GCLineStyle | GCCapStyle | GCFillStyle | GCJoinStyle;

 gc = XCreateGC(display, window, gcv_mask, &gcv);

/* load the font */
 font = XLoadFont(display, fontname);
 XSetFont(display, gc, font);

/* map the window and wait for an expose event to proceed */
 XMapWindow(display, window);
 while(1)
 { XNextEvent(display, &event);
 if(event.type==Expose) break; }

/* clear the window */
/* XClearWindow(display,window); */
}

/* gwxclear
 Clear current plot window
 Parameters: None
*/
void
GWXCLEAR()
{
 if(buffer == window)
 { XClearWindow(display,window);
/* printf("clearing window\n"); */
 }
 else
 { XSetForeground(display, gc, bgcolor);
 XFillRectangle(display, buffer, gc, 0, 0, width, height);
 XSetForeground(display, gc, fgcolor);
/* printf("clearing buffer\n"); */
 };
}

/* gwxstatus
 Return current window status (position, size)
 Parameters:
 xstart,ystart (int*) upper left corner coordinates in root
 xsize,ysize (int*) desired window size
*/
void
GWXSTATUS(xstart, ystart, xsize, ysize)
 int *xstart, *ystart, *xsize, *ysize;
{
 XWindowAttributes xwa;
 Window w_root, w_parent, *w_children;
 unsigned int nchildren;

 XGetWindowAttributes(display, window, &xwa);
 *xsize = xwa.width;
 *ysize = xwa.height;
 *xstart = xwa.x;
 *ystart = xwa.y;
/* printf("gwxstatus size x %d y %d \n",*xsize,*ysize); */

/* Position of window is meaningless under window manager, which remaps each
 window under a new parent. Find parent, if not root, get the parent's
 position */
 if(XQueryTree(display,window,&w_root,&w_parent,&w_children,&nchildren))
 {
 XFree((void*) w_children); /* Free the list of child windows */
 if(w_parent!=DefaultRootWindow(display))

 { XGetWindowAttributes(display, w_parent, &xwa);
 *xstart = xwa.x;
 *ystart = xwa.y;
 }

 }
}

/* gwxclose
 Close current windows, buffers and display
 Parameters: None
*/
void
GWXCLOSE()
{

 XFreeCursor(display, cursor);
 XFreeGC(display, gc);
 if(pixmap != (Pixmap) NULL) XFreePixmap(display, pixmap);
 XCloseDisplay(display);
}

/* gwxdestroy
 Close current window and display
 Parameters: None
*/
void
GWXDESTROY()
{ XDestroyWindow(display,window);
}

/* gwxflush
 Flush all pending graphics requests to the screen
 Parameters: None
*/
void
GWXFLUSH()
{ if(buffer == pixmap)
 { XCopyArea(display, pixmap, window, gc, 0, 0, width, height, 0, 0);
/* printf("copying pixmap to window x %d y %d\n",width,height); */
 };

 XFlush(display);
}

/* gwxdisplaybuffer
 Switches background buffer onto foreground window, displaying accumulated
 graphics
 Parameters: None
*/
void
GWXDISPLAYBUFFER()
{ GWXFLUSH();
}

/* gwxdrawtobuffer
 Switches graphics to draw to the background buffer
 Parameters: None
*/
void
GWXDRAWTOBUFFER()
{
/* create and clear the pixmap */
 if(pixmap == (Pixmap) NULL)
 { pixmap = XCreatePixmap(display, window, width, height, root_depth);
 XSetForeground(display, gc, bgcolor);
 XFillRectangle(display, pixmap, gc, 0, 0, width, height);
 XSetForeground(display, gc, fgcolor);
 }

/* point graphics to the pixmap */
 buffer = pixmap;
/* printf("called gwxdrawtobuffer\n"); */
}

/* gwxdrawtowindow
 Switches graphics to draw to the foreground window
 Parameters: None
*/
void
GWXDRAWTOWINDOW()
{ buffer = window;
/* printf("called gwxdrawtowindow\n"); */
}

/* gwxline
 Draw line from x1,y1 to x2,y2
 Parameters:
 x1,y1 (int*) starting position for line
 x2,y2 (int*) ending position for line
*/
void
GWXLINE(x1, y1, x2, y2)
 int *x1, *y1, *x2, *y2;
{ XDrawLine(display, buffer, gc, *x1, *y1, *x2, *y2);
}

/* gwxresize
 Resize screen window to x width, y height
 Parameters:
 x (int*) new width
 y (int*) new height
*/
void
GWXRESIZE(x, y)
 int *x, *y;
{ unsigned int xsiz, ysiz;
 unsigned int xsize, ysize, xstart, ystart;
 int i;
 XEvent event;
 long event_mask;

/* printf("called gwxresize\n"); */
 event_mask = ExposureMask | ResizeRedirectMask;

/* Clear the window events before resizing to setup for post resize Expose */
 while(XPending(display))
 XNextEvent(display, &event);

 xsiz = *x;
 ysiz = *y;
/* printf("gwxresize to x %d y %d\n",xsiz,ysiz); */
 XResizeWindow(display, window, xsiz, ysiz);
 XMapRaised(display, window);
 XFlush(display);

/* check for window size change */
 i = 0;
 while(1)
 { GWXSTATUS(&xstart, &ystart, &xsize, &ysize);
 if((xsize==xsiz) && (ysize==ysiz))
 break;
/* printf("resize status check count = %d\n",i++); */
 }

/* update window size */
 width = xsiz;
 height = ysiz;
/* destroy old back buffer pixmap and create new one in proper size */
 if(pixmap != (Pixmap) NULL)
 { XFreePixmap(display, pixmap);
/* printf("create new pixmap sized to x %d y %d\n",width,height); */
 pixmap = XCreatePixmap(display, window, width, height, root_depth);
 if(buffer != window) buffer = pixmap;
/* clear the pixmap */
 XSetForeground(display, gc, bgcolor);
 XFillRectangle(display, pixmap, gc, 0, 0, width, height);
 XSetForeground(display, gc, fgcolor);
 }

/* Raise the window and wait for an expose event to do anything in it */
/* while(1)
 { XWindowEvent(display, window, event_mask, &event);
 switch(event.type) {
 case Expose:
 printf("Expose event \n");
 break;
 case NoExpose:
 printf("NoExpose event \n");
 break;
 case ResizeRequest:
 printf("resizerequest event \n");
 break;
 }
 } */
}

/* gwxlinez
 Draw polyline on display window in current color and pen
 Parameters:
 ix (int*) array of x coordinates on polyline
 iy (int*) array of y coordinates on polyline
 n (int*) number of coordinate points
 (see define for MAXPTS at start of this file)
*/
void
GWXLINEZ(ix, iy, n)
 int *n, *ix, *iy;
{ XPoint points[MAXPTS];
 int i;

 if (*n > MAXPTS) {
 fprintf(stderr,"Xplot11.gwxlinez: Too many points in polyline\n");
 printf("Xplot11.gwxlinez: Too many points in polyline\n");
 return;
 }

 for(i=0; i < *n; i++) {
 points[i].x = ix[i];
 points[i].y = iy[i];
/* printf("gwxlinez x %d y %d \n",ix[i],iy[i]); */
 }
 XDrawLines(display, buffer, gc, points, *n, CoordModeOrigin);
}

/* gwxpoly
 Draw filled polyline on display window in current color and pen
 Parameters:
 x_coord (int*) array of x coordinates on polyline
 y_coord (int*) array of y coordinates on polyline
 n_coord (int*) number of coordinate points
 (see define for MAXPTS at start of this file)
*/
void
GWXPOLY(x_coord, y_coord, n_coord)
 int *x_coord, *y_coord, *n_coord;
{ XPoint points[MAXPTS];
 int i,n;

 if (*n_coord >= MAXPTS) {
 fprintf(stderr,"Xplot11.gwxpoly: Too many points in polyline\n");
 printf("Xplot11.gwxpoly: Too many points in polyline\n");
 return;
 }

 for (i=0; i < *n_coord; i++) {
 points[i].x = x_coord[i];
 points[i].y = y_coord[i];

 }
 n = *n_coord;
/* if the polyline is not closed, duplicate first point to ensure closed

 perimeter (speeds up X graphics drastically) */
 if ((points[n-1].x != points[0].x) ||

 (points[n-1].y != points[0].y)) {
 points[n].x = points[0].x;
 points[n].y = points[0].y;
 n++;
 }

 XFillPolygon(display, buffer, gc, points, n,
 Nonconvex, CoordModeOrigin);
}

/* gwxsetcolor
 Set foreground color to pixel value
 Parameters:
 pixel (int*) pixel value (mapped in colormap)
*/
void
GWXSETCOLOR(pixel)
 int *pixel;
{ fgcolor = *pixel;
 XSetForeground(display, gc, fgcolor);
}

/* gwxsetbgcolor
 Set background color to pixel value
 Parameters:
 pixel (int*) pixel value (mapped in colormap)
*/
void
GWXSETBGCOLOR(pixel)
 int *pixel;
{ bgcolor = *pixel;
 XSetForeground(display, gc, bgcolor);
}

/* gwxcolorname2rgb
 Find r,g,b components for color specified by name string
 Parameters:
 red,grn,blu (int*) output color components (0-255)
 nc (int*) string length (# of chars)
 colorname (char*) string containing name of valid color
 Note: color names are not case sensitive
 len (int) fortran appended string length (passed by value)

 Valid color names are any color name that is known to X11 color database
 Examples are "Black","White","Yellow","Orange","Red","Green",
 "Cyan","Blue","Magenta", "ivory", etc.
*/
void
GWXCOLORNAME2RGB(int *red, int *grn, int *blu,
 int *nc, char *colorname, int len)
{
 XColor color_def;
 char cname[32];
 int n;

 n = *nc;

 /* copy string to avoid overwriting possibly static input string
 Note that string length is explicitly passed to avoid compatibility
 problems with by fortran character arg length */

 if(n>31) {
 n = 31;
 fprintf(stderr,"Xplot11.gwxcolorname2rgb: color name '%s' truncated\n",
	 cname);
 printf("Xplot11.gwxcolorname2rgb: color name '%s' truncated\n",cname);
 }
 strncpy(cname,colorname,n);
 cname[n] = '\0';

 *red = -1;
 *grn = -1;
 *blu = -1;
 if (!XParseColor(display, cmap,cname,&color_def)) {
 fprintf(stderr,"Xplot11.gwxcolorname2rgb: color name '%s' not found\n",
	 cname);
 printf("Xplot11.gwxcolorname2rgb: color name '%s' not found\n",cname);
 return;
 }
 *red = color_def.red /256;
 *grn = color_def.green/256;
 *blu = color_def.blue /256;
}

/* gwxallocrgbcolor
 Allocate a color in colormap specified by r,g,b components

 Parameters:
 red,grn,blu (int*) input color components (0-255)
 ic (int*) returned color index or pixel value
*/
void
GWXALLOCRGBCOLOR(int *red, int *grn, int *blu, int *ic)
{
 XColor color_def;

 color_def.red = *red * 256;
 color_def.green = *grn * 256;
 color_def.blue = *blu * 256;
 *ic = -1;

 if (!XAllocColor (display, cmap, &color_def)) {
 /* fprintf (stderr,"Xplot11.gwxallocrgbcolor: can't allocate color.\n");
 printf ("Xplot11.gwxallocrgbcolor: can't allocate color.\n");
 */
 return;
 }
 *ic = color_def.pixel;
}

/* gwxfreecolor
 Free a color from color map
 Parameters:
 pix (int*) pixel in colormap
*/
void
GWXFREECOLOR(int *pix)
{ unsigned long lpix;

 lpix = *pix;
 XFreeColors(display,cmap,&lpix,1,0L);
}

/* gwxstring
 Draw string on display at specified position in current font and color
 Parameters:
 x (int*) array of x coordinates on polyline
 y (int*) array of y coordinates on polyline
 string (char*) character string
 length (int*) length of string

*/
void
GWXSTRING(x, y, string, length)
 int *x, *y, *length;
 char *string;
{ XDrawString(display, buffer, gc, *x, *y, string, *length);
}

/* gwxdash
 Set line drawing pattern to mask pattern
 Parameters:
 mask (int*) integer mask value (bits set pen pattern for lines)
*/
void
GWXDASH(int* lmask)
{
char dashes[16];
int idash[16], nchrs, ioff, i;

 if(*lmask==0)

 XSetLineAttributes(display, gc, line_width,

			 LineSolid, CapButt, JoinMiter);
 else if(*lmask==-1)
 XSetLineAttributes(display, gc, line_width,

			 LineSolid, CapButt, JoinMiter);
 else

 {
 (void) MSKBITS(lmask,idash,&nchrs);
 for(i=1;i<=nchrs;i++) dashes[i-1]=idash[i-1];
/* for(i=1;i<=nchrs;i++) printf("%d dashes %d\n",i,dashes[i-1]); */

 ioff = 0;
 XSetDashes(display, gc, ioff, dashes, nchrs);
/* use LineOnOffDash to only write "on" pixels in dashed lines (fg only) */
/* use LineDoubleDash to overwrite all pixels in dashed lines (fg AND bg) */
 XSetLineAttributes(display, gc, line_width,

 LineOnOffDash, CapButt, JoinMiter);
 }
}

/* gwxreset
 Reset graphics context to default
 Parameters: None
*/
void
GWXRESET()
{
 XGCValues gcv;
 unsigned long gcv_mask;

 line_width = 0;
 gcv.function = GXcopy;
 gcv.foreground = fgcolor;
 gcv.background = bgcolor;
 gcv.line_width = line_width;
 gcv.line_style = LineSolid;
 gcv.cap_style = CapButt;
 gcv.fill_style = FillSolid;
 gcv.join_style = JoinMiter;
 gcv_mask = GCFunction | GCForeground | GCBackground | GCLineWidth |
 GCLineStyle | GCCapStyle | GCFillStyle | GCJoinStyle;
 XChangeGC(display, gc, gcv_mask, &gcv);

}

/* gwxpen
 Set pen width for line drawing
 Parameters:
 ipen (int*) integer pen width
*/
void
GWXPEN(int* ipen)
{
 XGCValues gcv;
 unsigned long gcv_mask;

 line_width = *ipen;
 gcv.line_width = line_width;
 gcv.cap_style = CapButt;
 gcv.join_style = JoinMiter;
 gcv_mask = GCLineWidth | GCCapStyle | GCJoinStyle;
 XChangeGC(display, gc, gcv_mask, &gcv);
}

/* gwxcurs
 Get cursor position and key pressed (waits for keypress or buttonpress)
 Parameters:
 x (int*) output cursor x coordinate
 y (int*) output cursor y coordinate
 state (int*) key pressed

*/
void
GWXCURS(x, y, state)
 int *x, *y, *state;
{ XEvent report;
 KeySym key;
 int count,buffer_len,last_event;
 long event_mask;
 char buffer[2];
/* int idev = 1; */

/* XRaiseWindow(display,window); */
 /* XSetInputFocus(display,window,RevertToNone,CurrentTime); */
/* warp to passed-in x,y (typ. previous cursor location) */
/* printf("GWXCURS input x %d y %d\n",*x,*y); */
 XWarpPointer(display, None, window, 0, 0, 0, 0, *x, *y);

 event_mask = ExposureMask | ConfigureNotify |
 KeyPressMask | ButtonPressMask;

/* clear any pending events */

 while(XPending(display))
 XNextEvent(display, &report);

 *state = 0;
 last_event = 0;
 while(! *state)

 { XWindowEvent(display, window, event_mask, &report);
 switch(report.type) {
 case Expose:
 if(last_event != Expose)

 { /* replot_(&idev); */
 XSetInputFocus(display,window,RevertToNone,CurrentTime); }
 break;
 case ConfigureNotify:
 break;
 case ButtonPress:
 *state = report.xbutton.button;
 *x = report.xbutton.x;
 *y = report.xbutton.y;
 break;
 case KeyPress:
 *x = report.xkey.x;
 *y = report.xkey.y;
 buffer_len = 1;
 count = XLookupString(&report.xkey, buffer, buffer_len, &key, NULL);
 /*
 if (count == 0) printf("gwxcurs: Zero length string returned.\n");
 */
 *state = key;
 break;
 }
 last_event = report.type;
 }
/* XRaiseWindow(display,parent_window); */
/* XSetInputFocus(display,parent_window,RevertToNone,CurrentTime); */
 }

/* mskbits
 Utility routine to convert lower 16 bits of pattern mask
 into pattern array of on/off bit lengths. The 16
 bits of ipat can contain up to 16 on/off bit lengths.
 i.e. 0XAAAAAAA produces ibits=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
 i.e. 0XCCCCCCC produces ibits=(2,2,2,2,2,2,2,2)
 The output pattern stored in integer array ibits=(#on,#off,#on,#off,etc.)
 Parameters:
 mask (int*) input mask
 ibits (int*) output pattern string (#on, #off...)
 ndash (int*) number of entries in pattern array
*/
void
MSKBITS(int* mask, int* ibits, int* ndash)
{
#define BITSINMASK 16 /* use only lower 16 bits of mask word */

int i,ic,ibit,ibitold;
int nbits, nshft;
unsigned short lmask;

/* shift mask until low bit is 1, filling high bits with 0's */
	 lmask = *mask;
 nshft = ibitold = 0;

	 if(lmask!=0) {
 	 while (!(ibitold = (lmask & 0x01)))
 lmask >>= 1;
 nshft++;
	 }
/* if no 1 bits just exit with no dashes set */
 if(ibitold==0) {
	 *ndash = 0;
	 exit;
	 }

/* cycle through the lower 'length-nshft' bits
 checking for number of contiguous same bits,
 store into ibits array */
 	 nbits = ic = ibit = 0;

	 for (i=0; i<(BITSINMASK-nshft); ++i) {

	 ibit=(lmask & 0x01);

	 if(ibit != ibitold) {
	 ibits[ic++] = nbits;
	 nbits = 0;
	 }

 ibitold = ibit;
 nbits++;

	 lmask >>= 1;
	 }

/* add bits at end of shifted bits including any initial shift
 to find the first 1 in the low bit */
	 if(ibit==1) {

 ibits[ic++] = nbits;
 if(nshft>0)
 ibits[ic++] = nshft;

	 }
 else
 	 ibits[ic++] = nbits + nshft;

	 *ndash = ic;
}

XFOILinterface/XFOIL/orrs/old/aigen.f

 PROGRAM AIGEN
C---
C Reads OS amplification data ai(R,w) stored in separate files,
C one file for each H value.
C
C Distills this data into arrays which define a tri-cubic spline
C which can be efficiently interrogated to return the ai(R,W,H)
C function and its derivatives.
C
C The tri-cubic spline data is written out as a binary file,
C to be read and used in SUBROUTINE OSHAI.
C---
C
 PARAMETER (NMAX=257,NRX=111,NWX=91,NHX=21)
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
C
 REAL ATMP(NRX+NWX+NHX), ADTMP(NRX+NWX+NHX)
 REAL AC(NRX,NWX,NHX,2),
 & AC_R(NRX,NWX,NHX,2), AC_W(NRX,NWX,NHX,2), AC_H(NRX,NWX,NHX,2),
 & AC_RW(NRX,NWX,NHX,2),AC_RH(NRX,NWX,NHX,2),AC_WH(NRX,NWX,NHX,2),
 & AC_RFH(NRX,NWX,NHX,2)
 REAL RTL(NRX,NHX), WSL(NWX,NHX), HHL(NHX)
 INTEGER N(NHX), NRP(NHX), NWP(NHX)
 INTEGER IRP1(NHX),IRP2(NHX),IWP1(NHX),IWP2(NHX)
C
 PARAMETER (NRZ=31, NWZ=41, NHZ=21)
 INTEGER IW1(NHZ), IW2(NHZ), IR1(NHZ), IR2(NHZ)
 REAL RL(NRZ), WL(NWZ), HL(NHZ),
 & A(NRZ,NWZ,NHZ),
 & AR(NRZ,NWZ,NHZ), AW(NRZ,NWZ,NHZ), AH(NRZ,NWZ,NHZ),
 & ARW(NRZ,NWZ,NHZ),ARH(NRZ,NWZ,NHZ),AWH(NRZ,NWZ,NHZ),
 & ARWH(NRZ,NWZ,NHZ)
C
 CHARACTER ARGP1
 LOGICAL LSPLINE
C
C---- if T, use splines to compute derivatives, otherwise use finite-diff.
 LSPLINE = .TRUE.
C
C---- strides in R and W file values selected for storage in binary table
C- (i.e. binary table can be less dense than the source storage files)
 IRINC = 4
 IWINC = 2
C
C---- set expeced format of source files
 IFORM = 0 ! binary
ccc IFORM = 1 ! ascii
C
 CALL READOS(ARGP1,IFORM,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HHL, AC(1,1,1,1), AC(1,1,1,2),
 & NRX,NWX,NHX)
C
C
 RTLMIN = RTL(1,1)
 WSLMIN = WSL(1,1)
 RTLMAX = RTL(1,1)
 WSLMAX = WSL(1,1)
 DO 10 IHP=1, NHP
 RTLMIN = MIN(RTLMIN , RTL(1,IHP))
 WSLMIN = MIN(WSLMIN , WSL(1,IHP))
 RTLMAX = MAX(RTLMAX , RTL(NRP(IHP),IHP))
 WSLMAX = MAX(WSLMAX , WSL(NWP(IHP),IHP))
 10 CONTINUE
C
 DRTL = RTL(2,1) - RTL(1,1)
 DWSL = WSL(2,1) - WSL(1,1)
C
 NRPTOT = INT((RTLMAX - RTLMIN)/DRTL + 1.001)
 NWPTOT = INT((WSLMAX - WSLMIN)/DWSL + 1.001)
C
 IF(NRPTOT .GT. NRX) STOP 'AIGEN: R index overflow'
 IF(NWPTOT .GT. NWX) STOP 'AIGEN: W index overflow'
C
C---- move ai array for each H to a common origin for splining
 DO 20 IHP=1, NHP
 IROFF = INT((RTL(1,IHP) - RTLMIN)/DRTL + 0.001)
 IWOFF = INT((WSL(1,IHP) - WSLMIN)/DWSL + 0.001)
 IF(IROFF.EQ.0 .AND. IWOFF.EQ.0) GO TO 19
C
 DO IC = 1, 2
 DO IRP=NRP(IHP), 1, -1
 DO IWP=NWP(IHP), 1, -1
 AC(IRP+IROFF,IWP+IWOFF,IHP) = AC(IRP,IWP,IHP)
 AC(IRP,IWP,IHP) = 0.0
 ENDDO
 ENDDO
 ENDDO
C
 IF(IROFF.GT.0) THEN
 DO IRP=NRP(IHP), 1, -1
 RTL(IRP+IROFF,IHP) = RTL(IRP,IHP)
 RTL(IRP,IHP) = 0.0
 ENDDO
 ENDIF
C
 IF(IWOFF.GT.0) THEN
 DO IWP=NWP(IHP), 1, -1
 WSL(IWP+IWOFF,IHP) = WSL(IWP,IHP)
 WSL(IWP,IHP) = 0.0
 ENDDO
 ENDIF
C
 19 IRP1(IHP) = IROFF + 1
 IWP1(IHP) = IWOFF + 1
 IRP2(IHP) = IROFF + NRP(IHP)
 IWP2(IHP) = IWOFF + NWP(IHP)
C
C------ set newly-defined R and W coordinate values
 DO IRP=1, IRP1(IHP)-1
 RTL(IRP,IHP) = RTL(IRP1(IHP),IHP) + DRTL*FLOAT(IRP-IRP1(IHP))
 ENDDO
 DO IRP=IRP2(IHP)+1, NRPTOT
 RTL(IRP,IHP) = RTL(IRP2(IHP),IHP) + DRTL*FLOAT(IRP-IRP2(IHP))
 ENDDO
C
 DO IWP=1, IWP1(IHP)-1
 WSL(IWP,IHP) = WSL(IWP1(IHP),IHP) + DWSL*FLOAT(IWP-IWP1(IHP))
 ENDDO
 DO IWP=IWP2(IHP)+1, NWPTOT
 WSL(IWP,IHP) = WSL(IWP2(IHP),IHP) + DWSL*FLOAT(IWP-IWP2(IHP))
 ENDDO
C
 20 CONTINUE
C
C---- differentiate in H with spline routine to get AC_H
 DO 40 IRP=1, NRPTOT
 DO 401 IWP=1, NWPTOT
C
C-------- find first H index at this R,w
 DO IHP=1, NHP
 IF(IRP.GE.IRP1(IHP) .AND. IRP.LE.IRP2(IHP) .AND.
 & IWP.GE.IWP1(IHP) .AND. IWP.LE.IWP2(IHP)) GO TO 4012
 ENDDO
 GO TO 401
 4012 IHP1 = IHP
C
C-------- find last H index at this R,w
 DO IHP=NHP, 1, -1
 IF(IRP.GE.IRP1(IHP) .AND. IRP.LE.IRP2(IHP) .AND.
 & IWP.GE.IWP1(IHP) .AND. IWP.LE.IWP2(IHP)) GO TO 4022
 ENDDO
 GO TO 401
 4022 IHP2 = IHP
C
 DO IC = 1, 2
 DO IHP=IHP1, IHP2
 ATMP(IHP) = AC(IRP,IWP,IHP,IC)
 ENDDO
C
 IHPNUM = IHP2 - IHP1 + 1
 CALL SPLINE(ATMP(IHP1),ADTMP(IHP1),HHL(IHP1),IHPNUM)
C
 DO IHP=IHP1, IHP2
 AC_H(IRP,IWP,IHP,IC) = ADTMP(IHP)
 ENDDO
 ENDDO
C
 401 CONTINUE
 40 CONTINUE
C
C
 DO IC = 1, 2
C
 IF(LSPLINE) THEN
C----- calculate AC_R and AC_W arrays from spline coefficients
 CALL RDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC(1,1,1,1), AC_R(1,1,1,1))
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC(1,1,1,1), AC_W(1,1,1,1))
C
 CALL RDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC_H(1,1,1,1), AC_RH(1,1,1,1))
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_H(1,1,1,1), AC_WH(1,1,1,1))
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_R(1,1,1,1), AC_RF(1,1,1,1))
C
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_RH(1,1,1,1), AC_RFH(1,1,1,1))
C
 ELSE
C----- calculate AC_R and AC_W arrays by finite-differencing
 CALL RDIFF(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC(1,1,1,1), AC_R(1,1,1,1))
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC(1,1,1,1), AC_W(1,1,1,1))
C
 CALL RDIFF(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC_H(1,1,1,1), AC_RH(1,1,1,1))
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_H(1,1,1,1), AC_WH(1,1,1,1))
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_R(1,1,1,1), AC_RF(1,1,1,1))
C
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_RH(1,1,1,1), AC_RFH(1,1,1,1))
 ENDIF
C
 ENDDO
C
C
 NR = (NRPTOT-1)/IRINC + 1
 NW = (NWPTOT-1)/IWINC + 1
 NH = NHP
C
 DO 60 IHP=1, NHP
 IH = IHP
 IR1(IH) = (IRP1(IHP)-1)/IRINC + 1
 IR2(IH) = (IRP2(IHP)-1)/IRINC + 1
 IW1(IH) = (IWP1(IHP)-1)/IWINC + 1
 IW2(IH) = (IWP2(IHP)-1)/IWINC + 1
C
 IC = 2
 DO 605 IR=1, NR
 IRP = IRINC*(IR-1) + 1
 DO 6055 IW=1, NW
 IWP = IWINC*(IW-1) + 1
 A (IR,IW,IH) = AC (IRP,IWP,IHP,IC)
 AR (IR,IW,IH) = AC_R (IRP,IWP,IHP,IC)
 AW (IR,IW,IH) = AC_W (IRP,IWP,IHP,IC)
 AH (IR,IW,IH) = AC_H (IRP,IWP,IHP,IC)
 ARW (IR,IW,IH) = AC_RW (IRP,IWP,IHP,IC)
 ARH (IR,IW,IH) = AC_RH (IRP,IWP,IHP,IC)
 AWH (IR,IW,IH) = AC_WH (IRP,IWP,IHP,IC)
 ARWH(IR,IW,IH) = AC_RWH(IRP,IWP,IHP,IC)
 6055 CONTINUE
 605 CONTINUE
C
 60 CONTINUE
C
C
 IHP = 1
C
 DO IR=1, NR
 IRP = IRINC*(IR-1) + 1
 RL(IR) = RTL(IRP,IHP)
 ENDDO
C
 DO IW=1, NW
 IWP = IWINC*(IW-1) + 1
 WL(IW) = WSL(IWP,IHP)
 ENDDO
C
 DO IH=1, NH
 IHP = IH
 HL(IH) = HHL(IHP)
 ENDDO
C
C
 OPEN(UNIT=31,FILE='oshai.dat',STATUS='NEW',FORM='UNFORMATTED')
 WRITE(31) NR, NW, NH
 WRITE(31) (RL(IR), IR=1,NR)
 WRITE(31) (WL(IW), IW=1,NW)
 WRITE(31) (HL(IH), IH=1,NH)
 WRITE(31) (IR1(IH),IR2(IH),IW1(IH),IW2(IH), IH=1,NH)
 DO 3 IH=1, NH
 DO 2 IW=IW1(IH), IW2(IH)
 WRITE(31) (A(IR,IW,IH), IR=IR1(IH),IR2(IH))
 WRITE(31) (AR(IR,IW,IH), IR=IR1(IH),IR2(IH))
 WRITE(31) (AW(IR,IW,IH), IR=IR1(IH),IR2(IH))
 WRITE(31) (AH(IR,IW,IH), IR=IR1(IH),IR2(IH))
 WRITE(31) (ARW(IR,IW,IH), IR=IR1(IH),IR2(IH))
 WRITE(31) (ARH(IR,IW,IH), IR=IR1(IH),IR2(IH))
 WRITE(31) (AWH(IR,IW,IH), IR=IR1(IH),IR2(IH))
 WRITE(31) (ARWH(IR,IW,IH), IR=IR1(IH),IR2(IH))
 2 CONTINUE
 3 CONTINUE
 CLOSE(31)
C
 STOP
 END

 SUBROUTINE RDIFF(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC, AC_R)
 COMPLEX AC(NRX,NWX,*),AC_R(NRX,NWX,*)
 REAL RTL(NRX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)
C
 DO 1 IHP=1, NHP
C
C------ differentiate in R with finite differences
 DO 10 IWP=IWP1(IHP), IWP2(IHP)
 IRP = IRP1(IHP)
 DELR = RTL(IRP+1,IHP) - RTL(IRP,IHP)
 AC_R(IRP,IWP,IHP) = (-3.0*AC(IRP ,IWP,IHP)
 & + 4.0*AC(IRP+1,IWP,IHP)
 & - AC(IRP+2,IWP,IHP))/DELR
 IRP = IRP2(IHP)
 DELR = RTL(IRP,IHP) - RTL(IRP-1,IHP)
 AC_R(IRP,IWP,IHP) = (3.0*AC(IRP ,IWP,IHP)
 & - 4.0*AC(IRP-1,IWP,IHP)
 & + AC(IRP-2,IWP,IHP))/DELR
 DO 101 IRP=IRP1(IHP)+1, IRP2(IHP)-1
 DELR = RTL(IRP+1,IHP) - RTL(IRP-1,IHP)
 AC_R(IRP,IWP,IHP) = (AC(IRP+1,IWP,IHP)
 & - AC(IRP-1,IWP,IHP))/DELR
 101 CONTINUE
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC, AC_W)
 COMPLEX AC(NRX,NWX,*),AC_W(NRX,NWX,*)
 REAL WSL(NWX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)
C
 DO 1 IHP=1, NHP
C
C------ differentiate in F with finite differences
 DO 10 IRP=IRP1(IHP), IRP2(IHP)
 IWP = IWP1(IHP)
 DELF = WSL(IWP+1,IHP) - WSL(IWP,IHP)
 AC_W(IRP,IWP,IHP) = (-3.0*AC(IRP,IWP ,IHP)
 & + 4.0*AC(IRP,IWP+1,IHP)
 & - AC(IRP,IWP+2,IHP))/DELF
 IWP = IWP2(IHP)
 DELF = WSL(IWP,IHP) - WSL(IWP-1,IHP)
 AC_W(IRP,IWP,IHP) = (3.0*AC(IRP,IWP ,IHP)
 & - 4.0*AC(IRP,IWP-1,IHP)
 & + AC(IRP,IWP-2,IHP))/DELF
 DO 101 IWP=IWP1(IHP)+1, IWP2(IHP)-1
 DELF = WSL(IWP+1,IHP) - WSL(IWP-1,IHP)
 AC_W(IRP,IWP,IHP) = (AC(IRP,IWP+1,IHP)
 & - AC(IRP,IWP-1,IHP))/DELF
 101 CONTINUE
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE RDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC, AC_R)
 COMPLEX AC(NRX,NWX,*),AC_R(NRX,NWX,*)
 REAL RTL(NRX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)
C
 PARAMETER (NDIM=500)
 REAL ATMP(NDIM), ADTMP(NDIM)
C
 DO 1 IHP=1, NHP
 IF(IRP2(IHP).GT.NDIM) THEN
 WRITE(*,*) 'RDIFFS: Array overflow. Increase NDIM to',IRP2(IHP)
 STOP
 ENDIF
C
C------ differentiate in R with spline
 DO 10 IWP=IWP1(IHP), IWP2(IHP)
C
 DO 101 IRP=IRP1(IHP), IRP2(IHP)
 ATMP(IRP) = AC(IRP,IWP,IHP)
 101 CONTINUE
C
 IRP = IRP1(IHP)
 NUM = IRP2(IHP) - IRP1(IHP) + 1
 CALL SPLINE(ATMP(IRP),ADTMP(IRP),RTL(IRP,IHP),NUM)
C
 DO 102 IRP=IRP1(IHP), IRP2(IHP)
 AC_R(IRP,IWP,IHP) = ADTMP(IRP)
 102 CONTINUE
C
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC, AC_W)
 COMPLEX AC(NRX,NWX,*),AC_W(NRX,NWX,*)
 REAL WSL(NWX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)

 PARAMETER (NDIM=500)
 REAL ATMP(NDIM), ADTMP(NDIM)
C
 DO 1 IHP=1, NHP
 IF(IWP2(IHP).GT.NDIM) THEN
 WRITE(*,*) 'WDIFFS: Array overflow. Increase NDIM to',IWP2(IHP)
 STOP
 ENDIF
C
C------ differentiate in F with spline
 DO 10 IRP=IRP1(IHP), IRP2(IHP)
C
 DO 101 IWP=IWP1(IHP), IWP2(IHP)
 ATMP(IWP) = AC(IRP,IWP,IHP)
 101 CONTINUE
C
 IWP = IWP1(IHP)
 NUM = IWP2(IHP) - IWP1(IHP) + 1
 CALL SPLINE(ATMP(IWP),ADTMP(IWP),WSL(IWP,IHP),NUM)
C
 DO 102 IWP=IWP1(IHP), IWP2(IHP)
 AC_W(IRP,IWP,IHP) = ADTMP(IWP)
 102 CONTINUE
C
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/osnew/aimax.f

 PARAMETER (NHX=8, NRX=40)
 DIMENSION H(NHX), R(0:NRX)
 CHARACTER*5 HNAME(NHX)
 LOGICAL OK
C
 DATA H / 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 12.0, 20.0 /
 DATA HNAME / 'ai.03' ,
 & 'ai.35' ,
 & 'ai.04' ,
 & 'ai.05' ,
 & 'ai.06' ,
 & 'ai.08' ,
 & 'ai.12' ,
 & 'ai.20' /
C
 FSP = 0.08
C
 DO IR=0, NRX
 R(IR) = 10.0 ** (FLOAT(IR)/10.0)
 ENDDO
C
 DO IH = 1, NHX
C
 OPEN(1,FILE=HNAME(IH),STATUS='unknown')
 WRITE(1,1000) '#', H(IH)
 1000 FORMAT(A, F10.5)
C
 DO IR=1, NRX
 CALL OSHAI(R(IR),FSP,H(IH), AI,
 & AI_R, AI_F, AI_H,
 & AIF_R,AIF_F,AIF_H , OK)
C
 WRITE(1,1200) LOG10(R(IR)), -AI
 1200 FORMAT(1X,F10.5, F12.6)
C
 ENDDO
 CLOSE(1)
 ENDDO
C
 STOP
 END

XFOILinterface/XFOIL/src/aread.f

 SUBROUTINE AREAD(LU,FNAME,NMAX,X,Y,N,NAME,ISPARS,ITYPE,INFO)
 DIMENSION X(NMAX), Y(NMAX)
 CHARACTER*(*) FNAME
 CHARACTER*(*) NAME
 CHARACTER*(*) ISPARS
C--
C Reads in several types of airfoil coordinate file.
C
C Input:
C LU logical unit to use for reading
C FNAME name of coordinate file to be read,
C if FNAME(1:1).eq.' ', unit LU is assumed
C to be already open
C INFO 0 keep quiet
C 1 print info on airfoil
C Output:
C X,Y coordinates
C N number of X,Y coordinates
C NAME character name string (if ITYPE > 1)
C ISPARS ISES/MSES domain-size string (if ITYPE > 2)
C ITYPE returns type of file:
C 0 None. Read error occurred.
C 1 Generic.
C 2 Labeled generic.
C 3 MSES single element.
C 4 MSES multi-element.
C--
 CHARACTER*80 LINE1,LINE2,LINE
 LOGICAL LOPEN, ERROR
 DIMENSION A(10)
C
 IEL = 0
 NEL = 0
C
C---- assume read error will occur
 ITYPE = 0
C
 LOPEN = FNAME(1:1) .NE. ' '
 IF(LOPEN) OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=98)
C
 11 READ(LU,1000,END=99,ERR=98) LINE1
 IF(INDEX('#!',LINE1(1:1)) .NE. 0) GO TO 11
C
 12 READ(LU,1000,END=99) LINE2
 IF(INDEX('#!',LINE2(1:1)) .NE. 0) GO TO 12
C
 I = 1
C
C---- try to read numbers from first line
 NA = 10
 CALL GETFLT(LINE1,A,NA,ERROR)
 IF(ERROR .OR. NA.LT.2) THEN
 NAME = LINE1
 ELSE
 IF(INFO.GT.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'Plain airfoil file'
 ENDIF
 ITYPE = 1
 REWIND(LU)
 GO TO 50
 ENDIF
C
C---- try to read numbers from second line
 NA = 10
 CALL GETFLT(LINE2,A,NA,ERROR)
 IF(ERROR .OR. NA.GE.4) THEN
 ISPARS = LINE2
 ELSE
 NAME = LINE1
 IF(INFO.GT.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'Labeled airfoil file. Name: ', NAME
 ENDIF
 ITYPE = 2
 REWIND(LU)
 READ(LU,1000,END=99) LINE1
 GO TO 50
 ENDIF
C
 IF(INFO.GT.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'MSES airfoil file. Name: ', NAME
 ENDIF
 ITYPE = 3
C
C---- read each element until 999.0 or end of file is encountered
 50 NEL = NEL + 1
 DO 55 I=1, NMAX
 51 READ(LU,1000,END=60) LINE
C
C------ skip comment line
 IF(INDEX('#!',LINE(1:1)) .NE. 0) GO TO 51
C
 NA = 2
 CALL GETFLT(LINE,A,NA,ERROR)
 IF(ERROR) GO TO 99
C
C------ skip line without at least two numbers
 IF(NA.LT.2) GO TO 51
C
 X(I) = A(1)
 Y(I) = A(2)
C
 IF (X(I) .EQ. 999.0 .AND. Y(I) .EQ. 999.0) THEN
C-------- if this is the element we want, just exit
 IF(IEL .EQ. NEL) GO TO 60
C
 IF(IEL.EQ.0) THEN
 CALL ASKI('Enter element number^',IEL)
 ITYPE = 4
 ENDIF
C
C-------- if this is the specified element, exit.
 IF(IEL .EQ. NEL) GO TO 60
 GO TO 50
 ENDIF
 55 CONTINUE
 WRITE(*,5030) NMAX
 WRITE(*,5900)
 IF(LOPEN) CLOSE(LU)
 ITYPE = 0
 RETURN
C
 60 N = I-1
 IF(LOPEN) CLOSE(LU)
 RETURN
C
 98 CONTINUE
 NFN = INDEX(FNAME,' ') + 1
 WRITE(*,5050) FNAME(1:NFN)
 WRITE(*,5900)
 ITYPE = 0
 RETURN
C
 99 CONTINUE
 IF(LOPEN) CLOSE(LU)
 WRITE(*,5100)
 WRITE(*,5900)
 ITYPE = 0
 RETURN
C...
 1000 FORMAT(A)
 5030 FORMAT(/' Buffer array size exceeded'
 & /' Maximum number of points: ', I4)
 5050 FORMAT(/' File OPEN error. Nonexistent file: ', A)
 5100 FORMAT(/' File READ error. Unrecognizable file format')
 5900 FORMAT(' *** LOAD NOT COMPLETED ***')
 END ! AREAD

XFOILinterface/XFOIL/orrs/src/as2bi.f

 PROGRAM AS2BI
C---
C Converts a set of ASCII OS data files
C into the equivalent binary OS data files.
C The files to be converted are listed
C in a text file given as the argument.
C The ASCII files are assumed to end with "dat".
C The binary files are assumed to end with "bin".
C---
 PARAMETER (NMAX=257,NRX=101,NWX=91,NHX=21)
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 REAL AR(NRX,NWX,NHX), AI(NRX,NWX,NHX)
 REAL RTL(NRX,NHX)
 REAL WSL(NWX,NHX)
 REAL HH(NHX)
 INTEGER N(NHX), NRP(NHX), NWP(NHX)
 CHARACTER*80 ARGP
C
 CALL GETARG(1,ARGP)
C
 CALL READOS(ARGP,1,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 CALL WRITOS(ARGP,0,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 STOP
 END

XFOILinterface/XFOIL/orrs/src/ask1.f

C
C==== user input routines with prompting and error trapping
C
C
 SUBROUTINE ASKI(PROMPT,IINPUT)
C
C---- integer input
C
 CHARACTER*(*) PROMPT
 INTEGER IINPUT
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 10 WRITE(*,1000) PROMPT(1:NP)
 READ (*,*,ERR=10) IINPUT
 RETURN
C
 1000 FORMAT(/A,' i> ',$)
 END ! ASKI

 SUBROUTINE ASKR(PROMPT,RINPUT)
C
C---- real input
C
 CHARACTER*(*) PROMPT
 REAL RINPUT
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 10 WRITE(*,1000) PROMPT(1:NP)
 READ (*,*,ERR=10) RINPUT
 RETURN
C
 1000 FORMAT(/A,' r> ',$)
 END ! ASKR

 SUBROUTINE ASKL(PROMPT,LINPUT)
C
C---- logical input
C
 CHARACTER*(*) PROMPT
 LOGICAL LINPUT
 CHARACTER*1 CHAR
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 10 WRITE(*,1000) PROMPT(1:NP)
 READ (*,1010) CHAR
 IF(CHAR.EQ.'y') CHAR = 'Y'
 IF(CHAR.EQ.'n') CHAR = 'N'
 IF(CHAR.NE.'Y' .AND. CHAR.NE.'N') GO TO 10
C
 LINPUT = CHAR .EQ. 'Y'
 RETURN
C
 1000 FORMAT(/A,' y/n> ',$)
 1010 FORMAT(A)
 END ! ASKL

 SUBROUTINE ASKS(PROMPT,INPUT)
C
C---- string of arbitrary length input
C
 CHARACTER*(*) PROMPT
 CHARACTER*(*) INPUT
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 WRITE(*,1000) PROMPT(1:NP)
 READ (*,1010) INPUT
C
 RETURN
C
 1000 FORMAT(/A,' s> ',$)
 1010 FORMAT(A)
 END ! ASKS

 SUBROUTINE ASKC(PROMPT,CINPUT)
C
C---- 4-byte character string input
C converted to uppercase
C
 CHARACTER*(*) PROMPT
 CHARACTER*4 CINPUT
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 WRITE(*,1000) PROMPT(1:NP)
 READ (*,1020) CINPUT
 CALL LC2UC(CINPUT)
C
 RETURN
C
 1000 FORMAT(/A,' c> ',$)
 1020 FORMAT(A4)
 END ! ASKC

 SUBROUTINE ASKC2(PROMPT,COMAND,CARGS)
C
C---- returns 4-byte character string input converted to uppercase
C---- also returns rest of input characters in CARGS string
C
 CHARACTER*(*) PROMPT
 CHARACTER*(*) COMAND, CARGS
C
 CHARACTER*128 LINE
C
 IZERO = ICHAR('0')
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.EQ.0) NP = LEN(PROMPT)
C
 WRITE(*,1000) PROMPT(1:NP)
 READ (*,1020) LINE
C
C---- strip off leading blanks
 DO K=1, 128
 IF(LINE(1:1) .EQ. ' ') THEN
 LINE = LINE(2:128)
 ELSE
 GO TO 5
 ENDIF
 ENDDO
 5 CONTINUE
C
C---- find position of first blank, "+", "-", ".", ",", or numeral
 K = INDEX(LINE,' ')
 KI = INDEX(LINE,'-')
 IF(KI.NE.0) K = MIN(K,KI)
 KI = INDEX(LINE,'+')
 IF(KI.NE.0) K = MIN(K,KI)
 KI = INDEX(LINE,'.')
 IF(KI.NE.0) K = MIN(K,KI)
 KI = INDEX(LINE,',')
 IF(KI.NE.0) K = MIN(K,KI)
 DO I=0, 9
 KI = INDEX(LINE,CHAR(IZERO+I))
 IF(KI.NE.0) K = MIN(K,KI)
 ENDDO
C
C---- there is no blank between command and argument... use first 4 characters
 IF(K.LE.0) K = 5
C
 IF(K.EQ.1) THEN
C------ the "command" is a number... set entire COMAND string with it
 COMAND = LINE
 ELSE
C------ the "command" is some string... just use the part up to the argument
 COMAND = LINE(1:K-1)
 ENDIF
C
C---- convert it to uppercase
 CALL LC2UC(COMAND)
C
 CARGS = LINE(K:128)
 CALL STRIP(CARGS,NCARGS)
 RETURN
C
 1000 FORMAT(/A,' c> ',$)
 1020 FORMAT(A)
 END ! ASKC2

 SUBROUTINE LC2UC(INPUT)
 CHARACTER*(*) INPUT
C
 CHARACTER*26 LCASE, UCASE
 DATA LCASE / 'abcdefghijklmnopqrstuvwxyz' /
 DATA UCASE / 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' /
C
 N = LEN(INPUT)
C
 DO 10 I=1, N
 K = INDEX(LCASE , INPUT(I:I))
 IF(K.GT.0) INPUT(I:I) = UCASE(K:K)
 10 CONTINUE
C
 RETURN
 END ! LC2UC

 SUBROUTINE STRIP(STRING,NS)
 CHARACTER*(*) STRING
C---
C Strips leading blanks off string
C and returns length of non-blank part.
C---
 N = LEN(STRING)
C
C---- find last non-blank character
 DO 10 K2=N, 1, -1
 IF(STRING(K2:K2).NE.' ') GO TO 11
 10 CONTINUE
 K2 = 0
 11 CONTINUE
C
C---- find first non-blank character
 DO 20 K1=1, K2
 IF(STRING(K1:K1).NE.' ') GO TO 21
 20 CONTINUE
 21 CONTINUE
C
C---- number of non-blank characters
 NS = K2 - K1 + 1
 IF(NS.EQ.0) RETURN
C
C---- shift STRING so first character is non-blank
 STRING(1:NS) = STRING(K1:K2)
C
C---- pad tail of STRING with blanks
 DO 30 K=NS+1, N
 STRING(K:K) = ' '
 30 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/bi2as.f

 PROGRAM BI2AS
C---
C Converts a set of binary OS data files
C into the equivalent ASCII OS data files.
C The files to be converted are listed
C in a text file given as the argument.
C The binary files are assumed to end with "bin".
C The ASCII files are assumed to end with "dat".
C---
 PARAMETER (NMAX=257,NRX=101,NWX=91,NHX=21)
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 REAL AR(NRX,NWX,NHX), AI(NRX,NWX,NHX)
 REAL RTL(NRX,NHX)
 REAL WSL(NWX,NHX)
 REAL HH(NHX)
 INTEGER N(NHX), NRP(NHX), NWP(NHX)
 CHARACTER*80 ARGP
C
 CALL GETARG(1,ARGP)
C
 CALL READOS(ARGP,0,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 CALL WRITOS(ARGP,1,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 STOP
 END

XFOILinterface/XFOIL/orrs/src/bi2bi.f

 PROGRAM BI2BI
 PARAMETER (NMAX=257,NRX=101,NWX=91,NHX=21)
C
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 REAL AR(NRX,NWX,NHX), AI(NRX,NWX,NHX)
 REAL RT(NRX,NHX),RTL(NRX,NHX)
 REAL WS(NWX,NHX),WSL(NWX,NHX)
 REAL HH(NHX),HHL(NHX)
 INTEGER N(NHX), NRP(NHX), NWP(NHX)
 CHARACTER*80 ARGP
C
 CALL GETARG(1,ARGP)
C
 CALL READIT(ARGP,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
C
 DO 1000 IH=1, NHX
 IF(N(IH) .EQ. 0) GO TO 1001
C
 CALL BREV(HH(IH))
C
 write(*,*) ih, n(ih), hh(ih)

 DO 10 I=1, N(IH)
 CALL BREV(ETA(I,IH))
 CALL BREV(U(I,IH))
 CALL BREV(S(I,IH))
 10 CONTINUE
C
 DO 20 IR=1, NRP(IH)
 CALL BREV(RTL(IR,IH))
 20 CONTINUE
C
 DO 30 IW=1, NWP(IH)
 CALL BREV(WSL(IW,IH))
 30 CONTINUE
C
 DO 40 IW=1, NWP(IH)
 DO 405 IR=1, NRP(IH)
 CALL BREV(AR(IR,IW,IH))
 CALL BREV(AI(IR,IW,IH))
 405 CONTINUE
 40 CONTINUE
C
 CALL BREV(N(IH))
 CALL BREV(NRP(IH))
 CALL BREV(NWP(IH))
C
 1000 CONTINUE
 1001 CONTINUE
C
C
 CALL DUMPIT(ARGP,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 STOP
 END

 SUBROUTINE DUMPIT(ARGP,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
 CHARACTER*(*) ARGP
 DIMENSION N(NHX), NRP(NHX),NWP(NHX)
 DIMENSION ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 DIMENSION AR(NRX,NWX,NHX),AI(NRX,NWX,NHX)
 DIMENSION RTL(NRX,NHX), WSL(NWX,NHX), HH(NHX)
 CHARACTER*80 FNAME
C
 OPEN(10,FILE=ARGP,STATUS='OLD')
C
 DO 1000 IH=1, NHX
 5 READ(10,5000,END=1001) FNAME(2:80)
 5000 FORMAT(A)
C
C------ skip comment line
 IF(INDEX('#!',FNAME(1:1)) .NE. 0) GO TO 5
C
C------ strip off leading blanks
 10 CONTINUE
 IF(INDEX(FNAME(1:1).EQ.' ') THEN
 FNAME = FNAME(2:80)
 GO TO 10
 ENDIF
C
 K = INDEX(FNAME,' ') - 1
C
 FNAME = ARGP(1:K) // '.rbin'
 WRITE(*,*) FNAME
C
 OPEN(9,FILE=FNAME,STATUS='UNKNOWN',FORM='UNFORMATTED')
 WRITE(9) N(IH), HH(IH)
 CALL BREV(N(IH))

 HHREV = HH(IH)
 CALL BREV(HHREV)
C
 WRITE(9) (ETA(I,IH),I=1, N(IH))
 WRITE(9) (U(I,IH) ,I=1, N(IH))
 WRITE(9) (S(I,IH) ,I=1, N(IH))
 WRITE(9) NRP(IH), NWP(IH)
 CALL BREV(NRP(IH))
 CALL BREV(NWP(IH))
C
 WRITE(9) (RTL(IR,IH),IR=1,NRP(IH))
 WRITE(9) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO IW=1, NWP(IH)
 WRITE(9) (AR(IR,IW,IH),IR=1,NRP(IH))
 WRITE(9) (AI(IR,IW,IH),IR=1,NRP(IH))
 ENDDO
 CLOSE(9)

 WRITE(*,*) N(IH), NRP(IH), NWP(IH), HHREV
C
 1000 CONTINUE
 1001 NHP = IH-1
 CLOSE(10)
 CLOSE(9)
C
 RETURN
 END

 SUBROUTINE BREV(AINP)

C---- byte-reverse between DEC and standard format
C
 LOGICAL*1 AB(4), TEMP
 EQUIVALENCE (A,AB)
C
ccc return

 A = AINP
C
 TEMP = AB(1)
 AB(1) = AB(4)
 AB(4) = TEMP
C
 TEMP = AB(2)
 AB(2) = AB(3)
 AB(3) = TEMP
C
 AINP = A
C
 RETURN
 END

XFOILinterface/XFOIL/src/blplot.f

 SUBROUTINE BLPLOT
C--
C Plots various BL variables in x from a menu.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*4 COMAND
ccc CHARACTER*4 CHDUM
 REAL XXBL(IVX,2), XXTR(2), WS(IVX,2), XS(IVX,2)
 REAL HK(IVX,2), ANU(IVX,2)
 INTEGER NSIDE(2), IBL1(2), IBL2(2)
C
 CHARACTER*128 COMARG
 CHARACTER*80 FILDEF, LINE
 CHARACTER*32 COLNAM
 CHARACTER*2 FILSUF(10)
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR
C
 DIMENSION DYGARR(10)
 INTEGER NUMBL(2)
C
 EXTERNAL PLCHAR, PLSLAN, PLMATH
C
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
 DATA FILSUF / 'hk', 'dT', 'dB', 'ue', 'cf',
 & 'cd', 'nc', 'ct', 'rt', 'rl' /
C
C---- number of grid intervals per axis annotation interval
 NGR = 2
C
C---- clear plot-type indicator (no plot yet)
 KPLOT = 0
C
C---- symbol size
 SH = 0.2*CH
C
C---- get current color for restoration
 CALL GETCOLOR(ICOL0)
C
C---- set up Cartesian BL x-arrays for plotting
 DO IS=1, 2
 DO IBL=2, NBL(IS)
 I = IPAN(IBL,IS)
 XXBL(IBL,IS) = X(I)
 XXTR(IS) = XLE + (XTE-XLE)*XOCTR(IS) - (YTE-YLE)*YOCTR(IS)
 ENDDO
 ENDDO
C
 NSIDE(1) = NBL(2) + IBLTE(1) - IBLTE(2)
 NSIDE(2) = NBL(2)
C
 DO IBLW=1, NBL(2)-IBLTE(2)
 XXBL(IBLTE(1)+IBLW,1) = XXBL(IBLTE(2)+IBLW,2)
 ENDDO
C
C
cC---- max BL coordinate plotted
c XBLMAX = 1.6
cC
c DO 3 IS=1, 2
c DO 31 IBL=2, NSIDE(IS)
c IF(XXBL(IBL,IS) .LT. XBLMAX) NUMBL(IS) = IBL-1
c 31 CONTINUE
c 3 CONTINUE
C
 NUMBL(1) = NSIDE(1) - 1
 NUMBL(2) = NSIDE(2) - 1
C
C---- plot width (standard width = 1)
 XWIDTH = 0.9
C
C============================
C---- set default plot axis limits
 5 CONTINUE
C
 CHX = 0.99*(XTE - XLE)
 XTEW = XTE + 0.4*CHX
 CALL SCALIT(1,CHX,0.0,XFAC)
 XDEL = 1.0/(5.0*XFAC)
 XMAX = AINT(ABS(XTEW)/XDEL + 0.05) * SIGN(XDEL,XTEW)
 XMIN = AINT(ABS(XLE)/XDEL + 0.05) * SIGN(XDEL,XLE)
C
 HKMAX = 6.0
 HKMIN = 0.0
 HKDEL = 1.0
C
 CALL SCALIT(NUMBL(1),DSTR(2,1),0.0,YFAC)
 DSMAX = 1.0/YFAC
 DSMIN = 0.0
 DSDEL = (DSMAX-DSMIN)/5.0
C
 CALL SCALIT(NUMBL(2),DSTR(2,2),0.0,YFAC)
 DPMAX = 1.0/YFAC
 DPMIN = 0.0
 DPDEL = (DPMAX-DPMIN)/5.0
C
 UEMAX = 1.6
 UEMIN = 0.0
 UEDEL = 0.2
C
 TAUMAX = 0.0
 DISMAX = 0.0
 DO IS=1, 2
 DO IBL=2, NSIDE(IS)
 TAUMAX = MAX(TAUMAX,TAU(IBL,IS))
 DISMAX = MAX(DISMAX,DIS(IBL,IS))
 ENDDO
 ENDDO
 QUE = 0.5*QINF**2
 CALL SCALIT(1,TAUMAX/QUE,0.0,YFAC)
 CFMAX = 0.5/YFAC
 CFMIN = 0.0
 CFDEL = (CFMAX-CFMIN)/5.0
C
 QRF = QINF
 CALL SCALIT(1,DISMAX/QRF**3,0.0,YFAC)
 DIMAX = 0.5/YFAC
 DIMIN = 0.0
 DIDEL = (DIMAX-DIMIN)/5.0
C
C
 ACR1 = MAX(1.0,ACRIT+1.5)
 CALL SCALIT(1,ACR1,0.0,YFAC)
 ANDEL = 1.0/(5.0*YFAC)
 ANMAX = ANDEL*AINT(ACR1/ANDEL + 0.6)
 ANMIN = 0.
C
 CMAX = 0.0
 DO IS=1, 2
 DO IBL=ITRAN(IS), NSIDE(IS)
 CMAX = MAX(CMAX , ABS(CTAU(IBL,IS)))
 ENDDO
 ENDDO
 CALL SCALIT(1,CMAX,0.0,YFAC)
 CTMAX = 1.0/YFAC
 CTMIN = 0.0
 CTDEL = (CTMAX-CTMIN)/5.0
C
 RMAX = 0.0
 DO IS=1, 2
 DO IBL=2, NSIDE(IS)
 RTHETA = REINF * UEDG(IBL,IS)*THET(IBL,IS)
 RMAX = MAX(RMAX,RTHETA)
 ENDDO
 ENDDO
 CALL SCALIT(1,RMAX,0.0,YFAC)
 RTMAX = 1.0/YFAC
 RTMIN = 0.0
 RTDEL = (RTMAX-RTMIN)/5.0
C
 RLMAX = 5.0
 RLMIN = 1.0
 RLDEL = 1.0
C
C
 500 CONTINUE
 CALL ASKC('..VPLO^',COMAND,COMARG)
C
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 0
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 0
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
 IF(COMAND.EQ.' ') RETURN
 IF(COMAND.EQ.'? ') GO TO 9
 IF(COMAND.EQ.'H '.OR.
 & COMAND.EQ.'HK ') GO TO 10
 IF(COMAND.EQ.'DS '.OR.
 & COMAND.EQ.'DT ') GO TO 20
 IF(COMAND.EQ.'DP '.OR.
 & COMAND.EQ.'DB ') GO TO 30
 IF(COMAND.EQ.'UE ') GO TO 40
 IF(COMAND.EQ.'CF ') GO TO 50
 IF(COMAND.EQ.'CD ') GO TO 60
 IF(COMAND.EQ.'N ') GO TO 70
 IF(COMAND.EQ.'CT ') GO TO 80
 IF(COMAND.EQ.'RT ') GO TO 90
 IF(COMAND.EQ.'RTL ') GO TO 100
 IF(COMAND.EQ.'DUMP') GO TO 120
 IF(COMAND.EQ.'OVER') GO TO 120
 IF(COMAND.EQ.'XLIM' .OR. COMAND.EQ.'X ') GO TO 131
 IF(COMAND.EQ.'YLIM' .OR. COMAND.EQ.'Y ') GO TO 132
 IF(COMAND.EQ.'BLOW' .OR. COMAND.EQ.'B ') GO TO 150
 IF(COMAND.EQ.'RESE' .OR. COMAND.EQ.'R ') GO TO 5
 IF(COMAND.EQ.'GRID') GO TO 152
 IF(COMAND.EQ.'SYMB') GO TO 153
 IF(COMAND.EQ.'LABE') GO TO 154
 IF(COMAND.EQ.'CLIP') GO TO 155
 IF(COMAND.EQ.'FRPL') GO TO 157
 IF(COMAND.EQ.'HARD') GO TO 160
 IF(COMAND.EQ.'SIZE') GO TO 165
 IF(COMAND.EQ.'ANNO') GO TO 170
 IF(COMAND.EQ.'Z ') then
 call usetzoom(.true.,.true.)
 call replot(idev)
 go to 500
 endif
 IF(COMAND.EQ.'U ') then
 call clrzoom
 call replot(idev)
 go to 500
 endif
C
 WRITE(*,1010) COMAND
 GO TO 500
C
 9 WRITE(*,1050)
 GO TO 500
C
C===
C---- plot Hk
C
 10 KPLOT = 1
C
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
C
C---- fill kinematic shape parameter array
 DO IS=1, 2
 DO IBL=2, NSIDE(IS)
 THI = THET(IBL,IS)
 DSI = DSTR(IBL,IS)
 UEI = UEDG(IBL,IS)
 UC = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 AMSQ = UC*UC*HSTINV / (GAMM1*(1.0 - 0.5*UC*UC*HSTINV))
 CALL HKIN(DSI/THI, AMSQ, WS(IBL,IS), DUMMY, DUMMY)
 ENDDO
 ENDDO
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- set offsets and scalings
 YMIN = HKMIN
 YMAX = HKMAX
 YDEL = HKDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 YL = YSF*(YMAX-YMIN-1.5*YDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
 CALL PLCHAR(-4.0*CH,YL-0.5*CH,1.4*CH,'H',0.0,1)
 CALL PLSUBS(-4.0*CH,YL-0.5*CH,1.4*CH,'k',0.0,1,PLCHAR)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,1)

c CALL NEWCOLOR(ICOLS(1))
c CALL XYLINE(NUMBL(1),XXBL(2,1),GUXQ(2,1),XMIN,XSF,YMIN,YSF,4)
c CALL XYLINE(NUMBL(1),XXBL(2,1),GUXD(2,1),XMIN,XSF,YMIN,YSF,7)
c CALL NEWCOLOR(ICOLS(2))
c CALL XYLINE(NUMBL(2),XXBL(2,2),GUXQ(2,2),XMIN,XSF,YMIN,YSF,4)
c CALL XYLINE(NUMBL(2),XXBL(2,2),GUXD(2,2),XMIN,XSF,YMIN,YSF,7)

 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NUMBL(1),XXBL(2,1),USLP(2,1),XMIN,XSF,YMIN,YSF,4)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NUMBL(2),XXBL(2,2),USLP(2,2),XMIN,XSF,YMIN,YSF,4)
C
 IF(LBLSYM) THEN
 CALL NEWCOLOR(ICOLS(1))
 CALL XYSYMB(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,SH,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYSYMB(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C===
C---- plot top delta*, theta
 20 KPLOT = 2
 IS = 1
 YMIN = DSMIN
 YMAX = DSMAX
 YDEL = DSDEL
 GO TO 35
C
C===
C---- plot bottom delta*, theta
 30 KPLOT = 3
 IS = 2
 YMIN = DPMIN
 YMAX = DPMAX
 YDEL = DPDEL
 GO TO 35
C
C
 35 CONTINUE
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 CALL NEWPEN(3)
 IF((YMAX-YMIN)/YDEL .GT. 2.99) THEN
 YL1 = YSF*(YMAX-YMIN-0.5*YDEL)
 YL2 = YSF*(YMAX-YMIN-1.5*YDEL)
 YL3 = YSF*(YMAX-YMIN-2.5*YDEL)
 ELSE
 YL1 = YSF*(YMAX-YMIN-0.25*YDEL)
 YL2 = YSF*(YMAX-YMIN-0.50*YDEL)
 YL3 = YSF*(YMAX-YMIN-0.75*YDEL)
 ENDIF
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL NEWCOLOR(ICOLS(IS))
C
 IF(IS.EQ.1)
 & CALL PLCHAR(-4.5*CH,YL1-0.6*CH,1.3*CH,'Top',0.0, 3)
 IF(IS.EQ.2)
 & CALL PLCHAR(-4.5*CH,YL1-0.6*CH,1.3*CH,'Bot',0.0, 3)
 CALL PLMATH(-4.0*CH,YL2-0.6*CH,1.5*CH,'d' ,0.0,1)
 CALL PLSUPS(-4.0*CH,YL2-0.6*CH,1.5*CH,'*' ,0.0,1,PLCHAR)
 CALL PLMATH(-3.5*CH,YL3-0.6*CH,1.5*CH,'q' ,0.0,1)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 CALL XYLINE(NUMBL(IS),XXBL(2,IS),DSTR(2,IS),XMIN,XSF,YMIN,YSF,1)
 CALL XYLINE(NUMBL(IS),XXBL(2,IS),THET(2,IS),XMIN,XSF,YMIN,YSF,1)
 CALL XYLINE(NUMBL(IS),XXBL(2,IS),DELT(2,IS),XMIN,XSF,YMIN,YSF,2)

c@@@
 DO IBL=2, NSIDE(IS)
 IF(IBL.LT.ITRAN(IS)) THEN
 WS(IBL,IS) = 0.
 ELSE
 WS(IBL,IS) = CTAU(IBL,IS)**2 * 0.7 * DELT(IBL,IS) / 0.15
 ENDIF
 ENDDO
 CALL XYLINE(NUMBL(IS),XXBL(2,IS),WS(2,IS),XMIN,XSF,YMIN,YSF,4)

C
 IF(LBLSYM) THEN
 CALL XYSYMB(NUMBL(IS),XXBL(2,IS),DSTR(2,IS),
 & XMIN,XSF,YMIN,YSF,SH,1)
 CALL XYSYMB(NUMBL(IS),XXBL(2,IS),THET(2,IS),
 & XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C
C===
C---- plot Ue
C
 40 KPLOT = 4
C
C---- fill compressible Ue arrays
 DO IS=1, 2
 DO IBL=2, NSIDE(IS)
 UEI = UEDG(IBL,IS)
 WS(IBL,IS) = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 ENDDO
 ENDDO
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- set offsets and scalings
 YMIN = UEMIN
 YMAX = UEMAX
 YDEL = UEDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 YL = YSF*(YMAX-YMIN-1.5*YDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.0*CH,'X',0.0,1)
 CALL PLSUBS(-5.0*CH,YL-0.5*CH,1.0*CH,'e' ,0.0,1,PLCHAR)
 CALL PLCHAR(-5.0*CH,YL-0.5*CH,1.0*CH,'U /V',0.0,4)
 CALL PLMATH(999.0 ,999.0 ,1.0*CH, '&',0.0,1)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,1)
C
 IF(LBLSYM) THEN
 CALL NEWCOLOR(ICOLS(1))
 CALL XYSYMB(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,SH,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYSYMB(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C==
C---- plot Cf
C
 50 KPLOT = 5
C
 QUE = 0.5*QINF**2
 DO IS=1, 2
 DO IBL=2, NSIDE(IS)
 WS(IBL,IS) = TAU(IBL,IS) / QUE
 ENDDO
 ENDDO
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- set offsets and scalings
 YMIN = CFMIN
 YMAX = CFMAX
 YDEL = CFDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 YL = YSF*(YMAX-YMIN-1.5*YDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
 CALL PLCHAR(-3.5*CH,YL-0.6*CH,1.4*CH,'C',0.0,1)
 CALL PLSUBS(-3.5*CH,YL-0.6*CH,1.4*CH,'f',0.0,1,PLCHAR)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,1)
C
 IF(LBLSYM) THEN
 CALL NEWCOLOR(ICOLS(1))
 CALL XYSYMB(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,SH,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYSYMB(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C==
C---- plot CD
C
 60 KPLOT = 6
C
 QRF = QINF
 DO IS=1, 2
 DO IBL=2, NSIDE(IS)
 WS(IBL,IS) = DIS(IBL,IS) / QRF**3
 ENDDO
 ENDDO
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- set offsets and scalings
 YMIN = DIMIN
 YMAX = DIMAX
 YDEL = DIDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 YL = YSF*(YMAX-YMIN-1.5*YDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X' ,0.0,1)
 CALL PLCHAR(-3.5*CH,YL-0.6*CH,1.4*CH,'C' ,0.0,1)
 CALL PLMATH(-3.7*CH,YL-0.6*CH,1.5*CH,' `',0.0,2)
 CALL PLSUBS(-3.5*CH,YL-0.6*CH,1.4*CH,'D' ,0.0,1,PLSLAN)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,1)
C
 IF(LBLSYM) THEN
 CALL NEWCOLOR(ICOLS(1))
 CALL XYSYMB(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,SH,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYSYMB(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C
C===
C---- plot A/Ao
Cs
 70 KPLOT = 7
C
 IF(LFREQP) THEN
C----- fill Hk and nu arrays
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
 DO IS=1, 2
 DO IBL=2, NSIDE(IS)
 THI = THET(IBL,IS)
 DSI = DSTR(IBL,IS)
 UEI = UEDG(IBL,IS)
 UC = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 AMSQ = UC*UC*HSTINV / (GAMM1*(1.0 - 0.5*UC*UC*HSTINV))
 CALL HKIN(DSI/THI, AMSQ, HK(IBL,IS), DUMMY, DUMMY)
C
 HERAT = (1.0 - 0.5*HSTINV*UE **2)
 & / (1.0 - 0.5*HSTINV*QINF**2)
 RHRAT = HERAT ** (1.0/GAMM1)
 ANU(IBL,IS) = SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 & / (RHRAT * REINF)
 ENDDO
 ENDDO
 ENDIF
C
C---- set offsets and scalings
 YMIN = ANMIN
 YMAX = ANMAX
 YDEL = ANDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 IF((YMAX-YMIN)/YDEL .GT. 1.99) THEN
 YL1 = YSF*(YMAX-YMIN-0.5*YDEL)
 YL2 = YSF*(YMAX-YMIN-1.5*YDEL)
 ELSE
 YL1 = YSF*(YMAX-YMIN-0.33*YDEL)
 YL2 = YSF*(YMAX-YMIN-0.67*YDEL)
 ENDIF
 CALL PLCHAR(-4.0*CH,YL1-0.6*CH,1.2*CH,'ln' ,0.0,2)
 CALL PLCHAR(-5.0*CH,YL2-0.6*CH,1.2*CH,'A/A',0.0,3)
 CALL PLSUBS(-2.6*CH,YL2-0.6*CH,1.2*CH, '0',0.0,1,PLCHAR)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 DO IS=1, 2
 IF(LFREQP) THEN
 CALL NEWPEN(5)
 ELSE
 CALL NEWPEN(3)
 ENDIF
C
 CALL NEWCOLOR(ICOLS(IS))
 NBLS = ITRAN(IS) - 2
 CALL XYLINE(NBLS,XXBL(2,IS),CTAU(2,IS),XMIN,XSF,YMIN,YSF,1)
C
 IF(LBLSYM)
 & CALL XYSYMB(NBLS,XXBL(2,IS),CTAU(2,IS),XMIN,XSF,YMIN,YSF,SH,1)
C
 IF(.NOT.TFORCE(IS)) THEN
 IBL = ITRAN(IS) - 1
 CALL PLOT((XXBL(IBL,IS)-XMIN)*XSF,(CTAU(IBL,IS)-YMIN)*YSF,3)
 CALL PLOT((XXTR(IS) -XMIN)*XSF,(ACRIT -YMIN)*YSF,2)
 ENDIF
C
 IF(LFREQP) THEN
C------- plot amplitudes of individual frequencies
 FREF = 1.0
 CHF = 0.6*CH
C
 CALL NEWPEN(1)
 IO = 2
 NBLS = ITRAN(IS) - 2
C
 CALL GETCOLORRGB(ICOLS(IS),IRED,IGRN,IBLU,COLNAM)
 CALL NEWCOLORRGB((IRED*2)/3,(IGRN*2)/3,(IBLU*2)/3)
 CALL FRPLOT(NBLS,XSSI(IO,IS),XXBL(IO,IS),
 & HK(IO,IS),THET(IO,IS),UEDG(IO,IS),ANU(IO,IS),
 & XXTR(IS), FREF,
 & XMIN,XSF, YMIN,YSF, CHF)
 ENDIF
 ENDDO
C
 CALL NEWCOLOR(ICOL0)
C
 IF(LFREQP) THEN
C----- add label to plot
 XLAB = XSF*(MAX(XXBL(ITRAN(1),1),XXBL(ITRAN(2),2))-XMIN)
 & + 9.0*CHF
 YLAB = 0.5*YSF*(YMAX-YMIN) + 0.5*CH
 CALL NEWPEN(2)
 CALL PLMATH(XLAB,YLAB,CH,'w &',0.0,5)
 CALL PLCHAR(XLAB,YLAB,CH,' L/V ',0.0,5)
 ENDIF
C
 CALL DASH(XSF*XMIN,XSF*XMAX,YSF*(ACRIT-YMIN))
C
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C===
C---- plot Ctau
C
 80 KPLOT = 8
C
C---- set offsets and scalings
 YMIN = CTMIN
 YMAX = CTMAX
 YDEL = CTDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 IF((YMAX-YMIN)/YDEL .GT. 1.99) THEN
 YL1 = YSF*(YMAX-YMIN-0.5*YDEL)
 YL2 = YSF*(YMAX-YMIN-1.5*YDEL)
 ELSE
 YL1 = YSF*(YMAX-YMIN-0.33*YDEL)
 YL2 = YSF*(YMAX-YMIN-0.67*YDEL)
 ENDIF
C
 CALL PLMATH(-3.7*CH,YL1-0.6*CH,1.4*CH,' H',0.0,2)
 CALL PLCHAR(-3.7*CH,YL1-0.6*CH,1.4*CH,'C ',0.0,2)
 CALL PLSUBS(-3.7*CH,YL1-0.6*CH,1.4*CH,'t' ,0.0,1,PLMATH)
C
 CALL PLMATH(-3.7*CH,YL2-0.6*CH,1.4*CH,' H',0.0,2)
 CALL PLCHAR(-3.7*CH,YL2-0.6*CH,1.4*CH,'C ',0.0,2)
 CALL PLSUBS(-3.7*CH,YL2-0.6*CH,1.4*CH,'t' ,0.0,1,PLMATH)
 CALL PLCHAR(-1.8*CH,YL2-1.4*CH,0.7*CH,'eq',0.0,2)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 NBLS = NUMBL(1) - ITRAN(1) + 2
 NBLP = NUMBL(2) - ITRAN(2) + 2
 IT1 = ITRAN(1)
 IT2 = ITRAN(2)
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NBLS,XXBL(IT1,1),CTAU(IT1,1),XMIN,XSF,YMIN,YSF,1)
cc CALL XYLINE(NBLS,XXBL(IT1,1), CTQ(IT1,1),XMIN,XSF,YMIN,YSF,4)
 CALL XYLINE(NUMBL(1),XXBL(2,1),CTQ(2,1),XMIN,XSF,YMIN,YSF,4)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NBLP,XXBL(IT2,2),CTAU(IT2,2),XMIN,XSF,YMIN,YSF,1)
CCC CALL XYLINE(NBLP,XXBL(IT2,2), CTQ(IT2,2),XMIN,XSF,YMIN,YSF,4)
cc CALL XYLINE(IBLTE(2)-IT2+1,
cc & XXBL(IT2,2), CTQ(IT2,2),XMIN,XSF,YMIN,YSF,4)
 CALL XYLINE(NUMBL(2),XXBL(2,2),CTQ(2,2),XMIN,XSF,YMIN,YSF,4)
C
 IF(LBLSYM) THEN
 CALL NEWCOLOR(ICOLS(1))
 CALL XYSYMB(NBLS,XXBL(IT1,1),CTAU(IT1,1),XMIN,XSF,YMIN,YSF,SH,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYSYMB(NBLP,XXBL(IT2,2),CTAU(IT2,2),XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C
C===
C---- plot Rtheta
C
 90 KPLOT = 9
C
C---- 1 / (total enthalpy)
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
C
C---- Sutherland's const./To (assumes stagnation conditions are at STP)
 HVRAT = 0.35
C
C---- fill Rtheta arrays
 DO 801 IS=1, 2
 DO 8012 IBL=2, NSIDE(IS)
 UEI = UEDG(IBL,IS)
 UE = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 HERAT = (1.0 - 0.5*HSTINV*UE **2)
 & / (1.0 - 0.5*HSTINV*QINF**2)
 RHOE = HERAT ** (1.0/GAMM1)
 AMUE = SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 RTHETA = REINF * RHOE*UE*THET(IBL,IS)/AMUE
 WS(IBL,IS) = RTHETA
 8012 CONTINUE
 801 CONTINUE
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- set offsets and scalings
 YMIN = RTMIN
 YMAX = RTMAX
 YDEL = RTDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-1)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
 CALL NEWPEN(1)
 CALL PLGRID(0.0,0.0, NXG,DXG,NYG,DYG, LMASK2)
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 YL = YSF*(YMAX-YMIN-1.5*YDEL)
 CALL PLCHAR(-4.4*CH,YL-0.6*CH,1.4*CH,'Re',0.0,2)
 CALL PLSUBS(-3.0*CH,YL-0.8*CH,1.4*CH, 'q',0.0,1,PLMATH)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,1)
C
 IF(LBLSYM) THEN
 CALL NEWCOLOR(ICOLS(1))
 CALL XYSYMB(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,SH,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYSYMB(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C

cC---- fill and plot Rcrit arrays from AGS bypass transition model
c DO 803 IS=1, 2
c DO 8032 IBL=2, NSIDE(IS)
c THI = THET(IBL,IS)
c DSI = DSTR(IBL,IS)
c UEI = UEDG(IBL,IS)
c UC = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
c AMSQ = UC*UC*HSTINV / (GAMM1*(1.0 - 0.5*UC*UC*HSTINV))
c CALL HKIN(DSI/THI, AMSQ, HKI, DUMMY, DUMMY)
c
c TRB = 100.0 * EXP(-(ACRIT+8.43)/2.4)
c HMI = 1.0/(HKI-1.0)
c GFUN = 3.625*LOG(TANH(10.0*(HMI - 0.55)) + 6.0)
c RCR = 163.0 + EXP((1.0-TRB/6.91)*GFUN)
cC
c THH = TANH(10.0/(HKI-1.0) - 5.5)
c RCR = 163.0 + 74.3*(0.55*THH + 1.0)*(0.94*ACRIT + 1.0)
cC
c WS(IBL,IS) = RCR
c 8032 CONTINUE
c 803 CONTINUE
cC
c CALL NEWPEN(2)
c NUM1 = ITRAN(1) - 2
c NUM2 = ITRAN(2) - 2
c CALL NEWCOLOR(ICOLS(1))
c CALL XYLINE(NUM1,XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,2)
c CALL NEWCOLOR(ICOLS(2))
c CALL XYLINE(NUM2,XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,2)

 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C===
C---- plot log(Rtheta)
C
 100 KPLOT = 10
C
C---- 1 / (total enthalpy)
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
C
C---- Sutherland's const./To (assumes stagnation conditions are at STP)
 HVRAT = 0.35
C
C---- fill log(Rtheta) arrays
 DO 901 IS=1, 2
 DO 9012 IBL=2, NSIDE(IS)
 UEI = UEDG(IBL,IS)
 UE = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 HERAT = (1.0 - 0.5*HSTINV*UE **2)
 & / (1.0 - 0.5*HSTINV*QINF**2)
 RHOE = HERAT ** (1.0/GAMM1)
 AMUE = SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 RTHETA = REINF * RHOE*UE*THET(IBL,IS)/AMUE
 WS(IBL,IS) = 0.
 IF(RTHETA.GT.0.0) WS(IBL,IS) = LOG10(RTHETA)
 9012 CONTINUE
 901 CONTINUE
C
 CALL PLTINI
 CALL PLOT(8.0*CH,6.0*CH,-3)
C
C---- set offsets and scalings
 YMIN = RLMIN
 YMAX = RLMAX
 YDEL = RLDEL
C
 XSF = XWIDTH/(XMAX-XMIN)
 YSF = PLOTAR/(YMAX-YMIN)
C
C---- draw and annotate axes
 CALL NEWPEN(2)
 CALL XAXIS(0.0,0.0,XSF*(XMAX-XMIN),XSF*XDEL,XMIN,XDEL,CH,-2)
 CALL YAXIS(0.0,0.0,YSF*(YMAX-YMIN),YSF*YDEL,YMIN,YDEL,CH,-2)
C
 IF(LBLGRD) THEN
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL
 CALL NEWPEN(1)
 KK = 10
 DO K=1, KK
 FRAC = FLOAT(K+1)/FLOAT(K)
 DYGARR(K) = DYG * LOG10(FRAC)
 ENDDO
 DO IG=1, NYG
 YG0 = DYG*FLOAT(IG-1)
 CALL PLGRID(0.0,YG0, NXG,DXG, KK-1+1000,DYGARR, LMASK2)
 ENDDO
 ENDIF
C
 CALL NEWPEN(3)
 XL = XSF*(XMAX-XMIN-1.5*XDEL)
 CALL PLCHAR(XL-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 IF((YMAX-YMIN)/YDEL .GT. 1.99) THEN
 YL1 = YSF*(YMAX-YMIN-0.5*YDEL)
 YL2 = YSF*(YMAX-YMIN-1.5*YDEL)
 ELSE
 YL1 = YSF*(YMAX-YMIN-0.33*YDEL)
 YL2 = YSF*(YMAX-YMIN-0.67*YDEL)
 ENDIF
 CALL PLCHAR(-5.5*CH,YL1-0.6*CH,1.1*CH,'log' ,0.0,3)
 CALL PLSUBS(-3.3*CH,YL1-0.8*CH,1.1*CH, '10',0.0,2,PLCHAR)
 CALL PLCHAR(-4.4*CH,YL2-0.6*CH,1.4*CH,'Re' ,0.0,2)
 CALL PLSUBS(-3.0*CH,YL2-0.8*CH,1.4*CH, 'q' ,0.0,1,PLMATH)
C
 IF(LVLAB) CALL VLABEL(0.0,YSF*(YMAX-YMIN),CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XOCTR(1),XOCTR(2),
 & ICOLS(1),ICOLS(2),LVCONV)
C
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
C
C---- plot upper and lower distributions
 CALL NEWPEN(3)
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,1)
C
 IF(LBLSYM) THEN
 CALL NEWCOLOR(ICOLS(1))
 CALL XYSYMB(NUMBL(1),XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,SH,1)
 CALL NEWCOLOR(ICOLS(2))
 CALL XYSYMB(NUMBL(2),XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,SH,1)
 ENDIF
C

cC---- fill and plot Rcrit arrays from AGS bypass transition model
c DO 903 IS=1, 2
c DO 9032 IBL=2, NSIDE(IS)
c THI = THET(IBL,IS)
c DSI = DSTR(IBL,IS)
c UEI = UEDG(IBL,IS)
c UC = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
c AMSQ = UC*UC*HSTINV / (GAMM1*(1.0 - 0.5*UC*UC*HSTINV))
c CALL HKIN(DSI/THI, AMSQ, HKI, DUMMY, DUMMY)
cC
c TRB = 100.0 * EXP(-(ACRIT+8.43)/2.4)
c HMI = 1.0/(HKI-1.0)
c GFUN = 3.625*LOG(TANH(10.0*(HMI - 0.55)) + 6.0)
c RCR = 163.0 + EXP((1.0-TRB/6.91)*GFUN)
cC
c WS(IBL,IS) = LOG10(RCR)
c 9032 CONTINUE
c 903 CONTINUE
cC
c CALL NEWPEN(2)
c NUM1 = ITRAN(1) - 2
c NUM2 = ITRAN(2) - 2
c CALL NEWCOLOR(ICOLS(1))
c CALL XYLINE(NUM1,XXBL(2,1),WS(2,1),XMIN,XSF,YMIN,YSF,2)
c CALL NEWCOLOR(ICOLS(2))
c CALL XYLINE(NUM2,XXBL(2,2),WS(2,2),XMIN,XSF,YMIN,YSF,2)

 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
ccc CALL ASKC('Hit <cr>^',CHDUM,COMARG)
 GO TO 500
C
C===
 131 CONTINUE
 IF(NINPUT.GE.3) THEN
 XMIN = RINPUT(1)
 XMAX = RINPUT(2)
 XDEL = RINPUT(3)
 ELSE
 WRITE(*,9101) XMIN, XMAX, XDEL
 9101 FORMAT(/' Currently, Xmin,Xmax,Xdel =', 3F11.4,
 & /' Enter new Xmin,Xmax,Xdel: ', $)
 READ(*,*,ERR=131) XMIN, XMAX, XDEL
 ENDIF
C
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 120 IF(KPLOT.EQ.0) THEN
 WRITE(*,*) 'No current plot'
 GO TO 500
 ENDIF
C
 IF(COMARG(1:1).NE.' ') THEN
 FNAME = COMARG
 ELSE
C----- no argument... get it somehow
 IF(NPREFIX.GT.0) THEN
C------ offer default using existing prefix
 FILDEF = PREFIX(1:NPREFIX) // '.' // FILSUF(KPLOT)
 WRITE(*,1220) FILDEF
 1220 FORMAT(/' Enter filename: ', A)
 READ(*,1000) FNAME
 CALL STRIP(FNAME,NFN)
 IF(NFN.EQ.0) FNAME = FILDEF
 ELSE
C------ nothing available... just ask for filename
 CALL ASKS('Enter filename^',FNAME)
 ENDIF
 ENDIF
C
 IF(COMAND.EQ.'DUMP') GO TO 122
 IF(COMAND.EQ.'OVER') GO TO 124
C
C--
 122 CONTINUE
 LU = 19
 OPEN(LU,FILE=FNAME,STATUS='UNKNOWN')
 REWIND(LU)
C
 WRITE(LU,1001) '# ', NAME
 WRITE(LU,1003) '# alpha =', ALFA/DTOR
 WRITE(LU,1003) '# Mach =', MINF
 WRITE(LU,1002) '# Reyn =', INT(REINF+0.5)
 WRITE(LU,1003) '# Ncrit =', ACRIT
 WRITE(LU,1001) '#'
 WRITE(LU,1001)
 & '# x ', FILSUF(KPLOT)
C 0.234510 0.234510
C
 DO IS = 1, 2
 IBL1(IS) = 2
 IBL2(IS) = NSIDE(IS)
 DO IBL = 2, NSIDE(IS)
 IF(KPLOT.EQ.1) THEN
 THI = THET(IBL,IS)
 DSI = DSTR(IBL,IS)
 UEI = UEDG(IBL,IS)
 UC = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 AMSQ = UC*UC*HSTINV / (GAMM1*(1.0 - 0.5*UC*UC*HSTINV))
 CALL HKIN(DSI/THI, AMSQ, WS(IBL,IS), DUMMY, DUMMY)
 XS(IBL,IS) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.2 .AND. IS.EQ.1) THEN
 IBL1(1) = 2
 IBL1(2) = 2
 IBL2(1) = NSIDE(IS)
 IBL2(2) = NSIDE(IS)
 WS(IBL,1) = DSTR(IBL,IS)
 WS(IBL,2) = THET(IBL,IS)
 XS(IBL,1) = XXBL(IBL,IS)
 XS(IBL,2) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.3 .AND. IS.EQ.2) THEN
 IBL1(1) = 2
 IBL1(2) = 2
 IBL2(1) = NSIDE(IS)
 IBL2(2) = NSIDE(IS)
 WS(IBL,1) = DSTR(IBL,IS)
 WS(IBL,2) = THET(IBL,IS)
 XS(IBL,1) = XXBL(IBL,IS)
 XS(IBL,2) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.4) THEN
 UEI = UEDG(IBL,IS)
 WS(IBL,IS) = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 XS(IBL,IS) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.5) THEN
 WS(IBL,IS) = TAU(IBL,IS) / QUE
 XS(IBL,IS) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.6) THEN
 QRF = QINF
 WS(IBL,IS) = DIS(IBL,IS) / QRF**3
 XS(IBL,IS) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.7) THEN
 IBL1(IS) = 2
 IBL2(IS) = ITRAN(IS) - 1
 WS(IBL,IS) = CTAU(IBL,IS)
 XS(IBL,IS) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.8) THEN
 IBL1(IS) = ITRAN(IS)
 IBL2(IS) = NSIDE(IS)
 WS(IBL,IS) = CTAU(IBL,IS)
 XS(IBL,IS) = XXBL(IBL,IS)
C
 ELSEIF(KPLOT.EQ.9 .OR. KPLOT.EQ.10) THEN
C--------- 1 / (total enthalpy)
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
C
C--------- Sutherland's const./To (assumes stagnation conditions are at STP)
 HVRAT = 0.35
C
C--------- fill Rtheta arrays
 UEI = UEDG(IBL,IS)
 UE = UEI * (1.0-TKLAM) / (1.0 - TKLAM*(UEI/QINF)**2)
 HERAT = (1.0 - 0.5*HSTINV*UE **2)
 & / (1.0 - 0.5*HSTINV*QINF**2)
 RHOE = HERAT ** (1.0/GAMM1)
 AMUE = SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 RTHETA = REINF * RHOE*UE*THET(IBL,IS)/AMUE
C
 IF(KPLOT.EQ.9) THEN
 WS(IBL,IS) = RTHETA
 ELSE
 WS(IBL,IS) = LOG10(MAX(RTHETA,1.0))
 ENDIF
 XS(IBL,IS) = XXBL(IBL,IS)
 ENDIF
 ENDDO
 ENDDO
C
 DO IS = 1, 2
 DO IBL = IBL1(IS), IBL2(IS)
 WRITE(LU,8500) XS(IBL,IS), WS(IBL,IS)
 8500 FORMAT(1X,2G13.5)
 ENDDO
 WRITE(LU,1000)
 ENDDO
C
 CLOSE(LU)
 GO TO 500
C
C--
 124 CONTINUE
 LU = 19
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=128)
C
 IS = 1
 IBL = 1
C
 IBL1(IS) = 2
 IBL2(IS) = 2
C
C---- read and echo header lines
 125 READ(LU,1000,END=127) LINE
 IF(LINE(1:1).EQ.'#') THEN
 WRITE(*,*) LINE(2:80)
 GO TO 125
 ENDIF
C....................................
C---- begin data reading loop
 126 CONTINUE
 IF(LINE(1:10).EQ.' ') THEN
 IF(IS.EQ.2) THEN
C------ empty line... go plot data
 GO TO 127
 ELSE
C------ blank line denotes start of new side
 IS = IS + 1
 IBL = 1
 IBL1(IS) = 2
 IBL2(IS) = 2
 READ(LU,1000,END=127) LINE
 GO TO 126
 ENDIF
 ENDIF
C
 IF(IBL.GE.IVX) GO TO 127
C
C---- read data from line string
 IBL = IBL+1
 READ(LINE,*,ERR=129) XS(IBL,IS), WS(IBL,IS)
 IBL2(IS) = IBL
C
 READ(LU,1000,END=127) LINE
 GO TO 126
C....................................
C
 127 CLOSE(LU)
C
C---- plot data
 CALL GETCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 IF(LCLIP) CALL NEWCLIP(MAX(XCLIP1,0.),MIN(XCLIP2,XSF*(XMAX-XMIN)),
 & MAX(YCLIP1,0.),MIN(YCLIP2,YSF*(YMAX-YMIN)))
 DO IS = 1, 2
 IF(KPLOT.EQ.2) THEN
 CALL NEWCOLOR(ICOLS(1))
 ELSEIF(KPLOT.EQ.3) THEN
 CALL NEWCOLOR(ICOLS(2))
 ELSE
 CALL NEWCOLOR(ICOLS(IS))
 ENDIF
C
 IBL = IBL1(IS)
 NNBL = IBL2(IS) - IBL1(IS) + 1
 SSH = 1.3*SH
 CALL XYSYMB(NNBL,XS(IBL,IS),WS(IBL,IS),
 & XMIN,XSF,YMIN,YSF,SSH,5)
 ENDDO
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIP(XCLIP1,XCLIP2,YCLIP1,YCLIP2)
 CALL PLFLUSH
C
C---- set new default prefix
 KDOT = INDEX(FNAME,'.')
 IF(KDOT.EQ.0) THEN
 PREFIX = FNAME
 ELSE
 PREFIX = FNAME(1:KDOT-1)
 ENDIF
 CALL STRIP(PREFIX,NPREFIX)
 GO TO 500
C
 128 CONTINUE
 WRITE(*,*) 'File OPEN error'
 GO TO 500
C
 129 CONTINUE
 WRITE(*,*) 'File READ error'
 CLOSE(LU)
 GO TO 500
C
C===
 132 IF(KPLOT.EQ.0) THEN
 WRITE(*,*) 'No current plot'
 GO TO 500
 ENDIF
C
 IF(NINPUT.GE.3) THEN
 YMIN = RINPUT(1)
 YMAX = RINPUT(2)
 YDEL = RINPUT(3)
 ELSE
 WRITE(*,9201) YMIN, YMAX, YDEL
 9201 FORMAT(/' Currently, Ymin,Ymax,Ydel =', 3F11.4,
 & /' Enter new Ymin,Ymax,Ydel : ', $)
 READ(*,*,ERR=120) YMIN, YMAX, YDEL
 ENDIF
C
 IF (KPLOT.EQ.1) THEN
 HKMIN = YMIN
 HKMAX = YMAX
 HKDEL = YDEL
 ELSE IF(KPLOT.EQ.2) THEN
 DSMIN = YMIN
 DSMAX = YMAX
 DSDEL = YDEL
 ELSE IF(KPLOT.EQ.3) THEN
 DPMIN = YMIN
 DPMAX = YMAX
 DPDEL = YDEL
 ELSE IF(KPLOT.EQ.4) THEN
 UEMIN = YMIN
 UEMAX = YMAX
 UEDEL = YDEL
 ELSE IF(KPLOT.EQ.5) THEN
 CFMIN = YMIN
 CFMAX = YMAX
 CFDEL = YDEL
 ELSE IF(KPLOT.EQ.6) THEN
 DIMIN = YMIN
 DIMAX = YMAX
 DIDEL = YDEL
 ELSE IF(KPLOT.EQ.7) THEN
 ANMIN = YMIN
 ANMAX = YMAX
 ANDEL = YDEL
 ELSE IF(KPLOT.EQ.8) THEN
 CTMIN = YMIN
 CTMAX = YMAX
 CTDEL = YDEL
 ELSE IF(KPLOT.EQ.9) THEN
 RTMIN = YMIN
 RTMAX = YMAX
 RTDEL = YDEL
 ELSE IF(KPLOT.EQ.10) THEN
 RLMIN = YMIN
 RLMAX = YMAX
CCC RLDEL = YDEL
 ENDIF
C
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 150 IF(KPLOT.EQ.0) THEN
 WRITE(*,*) 'No current plot'
 GO TO 500
 ENDIF
C
 CALL OFFGET(XMIN,YMIN,XSF,YSF,XWIDTH,PLOTAR,.FALSE.,.TRUE.)
 XMAX = XWIDTH/XSF + XMIN
 YMAX = PLOTAR/YSF + YMIN
C
 CALL SCALIT(1,XMAX,XMIN,XFAC)
 XDEL = 1.0 / (5.0*XFAC)
 SGNMIN = SIGN(1.0,XMIN)
 SGNMAX = SIGN(1.0,XMAX)
 XMIN = XDEL * AINT(ABS(XMIN/XDEL) - 0.5)*SGNMIN
 XMAX = XDEL * AINT(ABS(XMAX/XDEL) + 0.5)*SGNMAX
C
 CALL SCALIT(1,YMAX,YMIN,YFAC)
 YDEL = 1.0 / (5.0*YFAC)
 SGNMIN = SIGN(1.0,YMIN)
 SGNMAX = SIGN(1.0,YMAX)
 YMIN = YDEL * AINT(ABS(YMIN/YDEL) - 0.5)*SGNMIN
 YMAX = YDEL * AINT(ABS(YMAX/YDEL) + 0.5)*SGNMAX
C
 IF (KPLOT.EQ.1) THEN
 HKMIN = YMIN
 HKMAX = YMAX
 HKDEL = YDEL
 ELSE IF(KPLOT.EQ.2) THEN
 DSMIN = YMIN
 DSMAX = YMAX
 DSDEL = YDEL
 ELSE IF(KPLOT.EQ.3) THEN
 DPMIN = YMIN
 DPMAX = YMAX
 DPDEL = YDEL
 ELSE IF(KPLOT.EQ.4) THEN
 UEMIN = YMIN
 UEMAX = YMAX
 UEDEL = YDEL
 ELSE IF(KPLOT.EQ.5) THEN
 CFMIN = YMIN
 CFMAX = YMAX
 CFDEL = YDEL
 ELSE IF(KPLOT.EQ.6) THEN
 DIMIN = YMIN
 DIMAX = YMAX
 DIDEL = YDEL
 ELSE IF(KPLOT.EQ.7) THEN
 ANMIN = YMIN
 ANMAX = YMAX
 ANDEL = YDEL
 ELSE IF(KPLOT.EQ.8) THEN
 CTMIN = YMIN
 CTMAX = YMAX
 CTDEL = YDEL
 ELSE IF(KPLOT.EQ.9) THEN
 RTMIN = YMIN
 RTMAX = YMAX
 RTDEL = YDEL
 ELSE IF(KPLOT.EQ.10) THEN
 RLMIN = YMIN
 RLMAX = YMAX
CCC RLDEL = YDEL
 ENDIF
C
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 152 LBLGRD = .NOT.LBLGRD
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 153 LBLSYM = .NOT.LBLSYM
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 154 LVLAB = .NOT.LVLAB
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 155 LCLIP = .NOT.LCLIP
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 157 LFREQP = .NOT.LFREQP
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C
C===
 160 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
 GO TO 500
C
C===
 165 IF(NINPUT.GE.1) THEN
 SIZE = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current plot-object size =', SIZE
 CALL ASKR('Enter new plot-object size^',SIZE)
 ENDIF
C
 GO TO (500,10,20,30,40,50,60,70,80,90) KPLOT+1
 GO TO 500
C===
 170 IF(LPLOT) THEN
 CALL ANNOT(CH)
 ELSE
 WRITE(*,*) 'No active plot to annotate'
 ENDIF
 GO TO 500
C...
 1000 FORMAT(A)
 1001 FORMAT(A,A,A,A)
 1002 FORMAT(A,I9)
 1003 FORMAT(A,F9.4)
 1010 FORMAT(1X,A4,' command not recognized. Type a "?" for list')
 1050 FORMAT(/' <cr> Return to OPER menu'
 & //' H Plot kinematic shape parameter'
 & /' DT Plot top side Dstar and Theta'
 & /' DB Plot bottom side Dstar and Theta'
 & /' UE Plot edge velocity'
 & /' CF Plot skin friction coefficient'
 & /' CD Plot dissipation coefficient'
 & /' N Plot amplification ratio'
 & /' CT Plot max shear coefficient'
 & /' RT Plot Re_theta'
 & /' RTL Plot log(Re_theta)'
 & //' DUMP f Write current plot variable to file'
 & /' OVER f Overlay current plot variable from file'
 & //' X rrr Change x-axis limits'
 & /' Y rrr Change y-axis limits on current plot'
 & //' BLOW Cursor blowup of current plot'
 & /' RESE Reset to default x,y-axis limits'
 & /' SIZE r Change absolute plot-object size'
 & /' .ANNO Annotate plot'
 & /' HARD Hardcopy current plot'
 & //' GRID Toggle grid plotting'
 & /' SYMB Toggle node-symbol plotting'
 & /' LABE Toggle label plotting'
 & /' CLIP Toggle line-plot clipping'
 & /' FRPL Toggle TS frequency plotting')
 END ! BLPLOT

 SUBROUTINE VLABEL(X0,Y0,CH,
 & NAME,
 & REINF,MINF,ACRIT,ALFA,
 & CL,CD,XTRT,XTRB,ICOL1,ICOL2,LVCONV)
 CHARACTER*(*) NAME
 REAL MINF
 LOGICAL LVCONV
C
 EXTERNAL PLCHAR
C
 ADEG = ALFA * 45.0/ATAN(1.0)
 CHN = 1.2*CH
C
 CALL GETCOLOR(ICOL0)
C
 X1 = X0
 X2 = X0 + 16.0*CH
 X3 = X0 + 30.0*CH
 X4 = X0 + 45.0*CH
C
 Y1 = Y0 + 1.5*CH
 Y2 = Y0 + 4.0*CH
 Y3 = Y0 + 6.8*CH
C
 CALL NEWPEN(3)
 CALL PLCHAR(X1,Y3,CHN,NAME,0.0,-1)
C
C
 CALL NEWPEN(2)
 CALL PLCHAR(X1 ,Y2,CH,'Ma = ',0.0,5)
 CALL PLNUMB(X1+5.0*CH,Y2,CH, MINF ,0.0,4)
C
 CALL PLCHAR(X1 ,Y1 ,CH,'Re = ' ,0.0,5)
 NDIG = 3
 IF(REINF .GE. 9.9995E6) NDIG = 2
 IF(REINF .GE. 99.995E6) NDIG = 1
 IF(REINF .GE. 999.95E6) NDIG = 0
 CALL PLNUMB(X1+ 5.0*CH,Y1 ,CH, REINF*1.E-6,0.0,NDIG)
 CALL PLMATH(X1+10.1*CH,Y1+0.10*CH,0.80*CH,'#' ,0.0,1)
 CALL PLCHAR(X1+10.9*CH,Y1 , CH,'10' ,0.0,2)
 CALL PLMATH(X1+12.9*CH,Y1 ,1.10*CH, '6',0.0,1)
C
C
 CALL PLMATH(X2 ,Y2,1.2*CH,'a',0.0,1)
 CALL PLCHAR(X2 ,Y2,CH,' = ',0.0,5)
 CALL PLNUMB(X2+5.0*CH,Y2,CH, ADEG ,0.0,4)
 CALL PLMATH(999.0 ,Y2,CH,'"' ,0.0,1)
C
 CALL PLCHAR(X2 ,Y1,CH,'N = ',0.0,5)
 CALL PLSUBS(X2 ,Y1,CH,'cr' ,0.0,2,PLCHAR)
 CALL PLNUMB(X2+5.0*CH,Y1,CH,ACRIT ,0.0,2)
C
C
 CALL PLCHAR(X3 ,Y2,CH,'C = ',0.0,5)
 CALL PLSUBS(X3 ,Y2,CH, 'L' ,0.0,1,PLCHAR)
 CALL PLNUMB(X3+5.0*CH,Y2,CH, CL ,0.0,4)
C
 CALL PLCHAR(X3 ,Y1,CH,'C = ',0.0,5)
 CALL PLSUBS(X3 ,Y1,CH, 'D' ,0.0,1,PLCHAR)
 CALL PLNUMB(X3+5.0*CH,Y1,CH, CD ,0.0,5)
C
C
 CALL NEWCOLOR(ICOL1)
 CALL PLCHAR(X4 ,Y2,CH,'T:x /c = ',0.0,9)
 CALL PLSUBS(X4+2.0*CH,Y2,0.85*CH,'tr' ,0.0,2,PLCHAR)
 CALL PLNUMB(X4+9.0*CH,Y2,CH, XTRT ,0.0,4)
C
 CALL NEWCOLOR(ICOL2)
 CALL PLCHAR(X4 ,Y1,CH,'B:x /c = ',0.0,9)
 CALL PLSUBS(X4+2.0*CH,Y1,0.85*CH,'tr' ,0.0,2,PLCHAR)
 CALL PLNUMB(X4+9.0*CH,Y1,CH, XTRB ,0.0,4)
C
C
 IF(.NOT.LVCONV) THEN
 CALL NEWCOLORNAME('red')
 XL = X1 + CHN*FLOAT(LEN(NAME)+1)
 CALL PLCHAR(XL,Y3,CHN,'* NOT CONVERGED *',0.0,17)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
C
 RETURN
 END ! VLABEL

XFOILinterface/XFOIL/plotlib/examples/cmap2.f

C***
C Module: cmap.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 program cmap2
c---
c Color selection program.
c
c Displays a 2-D slice through the R-G-B color space,
c and gives the R,G,B components of a mouse-selected color.
c
c The cutting plane is parallel to the RG, RB, or GB plane.
c The position along the remaining B, G, or R axis is specified
c by the % saturation 0..100.
c
c---
c
 character*2 plane
 character*1 axis, chkey
c
 character*40 colorname
c
 dimension x(5), y(5)
 logical lok
c
 ch = 0.03
c
 1000 format(a)
c
 5 write(*,1050)
 1050 format(/' Enter cutting-plane orientation (RG, RB, or GB): ',$)
 read (*,1000) plane
c
 axis = ' '
 if(index('RGrg',plane(1:1)).NE.0 .AND.
 & index('RGrg',plane(2:2)).NE.0) axis = 'B'
 if(index('RBrb',plane(1:1)).NE.0 .AND.
 & index('RBrb',plane(2:2)).NE.0) axis = 'G'
 if(index('Gbgb',plane(1:1)).NE.0 .AND.
 & index('Gbgb',plane(2:2)).NE.0) axis = 'R'
c
ccc if(index('RGB',axis).EQ.0) go to 5
 if(index('RGB',axis).EQ.0) then
 call plot(0.,0.,+999)
 stop
 endif
c
c
 write(*,1100) axis
 1100 format(' Enter % saturation along ',a1,' axis (0..100) : ', $)
 read (*,*) isat
c
 isat = max(0,isat)
 isat = min(99,isat)
c
 nc = 10
c
 sat = float(isat) / 100.0
c
c
c---- R,G,B unit vectors for projection onto x-y cutting plane
 xr = 0.
 yr = 0.
 zr = 0.
c
 xg = 0.
 yg = 0.
 zg = 0.
c
 xb = 0.
 yb = 0.
 zb = 0.
c
 if(sat .lt. 0.50) then
c
 if(index('R',axis).EQ.1) then
 zr = 1.0
 xg = 1.0
 yb = 1.0
 endif
c
 if(index('G',axis).EQ.1) then
 yr = 1.0
 zg = 1.0
 xb = 1.0
 endif
c
 if(index('B',axis).EQ.1) then
 xr = 1.0
 yg = 1.0
 zb = 1.0
 endif
c
 else
c
 if(index('R',axis).EQ.1) then
 zr = 1.0
 yg = 1.0
 xb = 1.0
 endif
c
 if(index('G',axis).EQ.1) then
 xr = 1.0
 zg = 1.0
 yb = 1.0
 endif
c
 if(index('B',axis).EQ.1) then
 yr = 1.0
 xg = 1.0
 zb = 1.0
 endif
c
 endif
c
C
C---Initialize the plot package before we get into color plotting...
 CALL PLINITIALIZE
c
 call PLOPEN(0.8,0,1)
 call PLOT(5.5, 4.25, -3)
 call NEWFACTOR(6.0)
 call PLOT(-0.5,-0.5,-3)
c
c call plopen(-0.8,0,5)
c call plot(0.5,0.5,-3)
c call newfactor(1.4)
c
 xdel = 1.0/float(nc)
 ydel = 1.0/float(nc)
c
 do 10 j = 1, nc
 y0 = ydel*float(j-1)
c
 do 105 i = 1, nc
 x0 = xdel*float(i-1)
c
 xx = x0 + 0.5*xdel
 yy = y0 + 0.5*ydel
 zz = sat
c
 r = xx*xr + yy*yr + zz*zr
 g = xx*xg + yy*yg + zz*zg
 b = xx*xb + yy*yb + zz*zb
c
 ir = int(256.0*r)
 ig = int(256.0*g)
 ib = int(256.0*b)
c
 x(1) = x0
 y(1) = y0
 x(2) = x0 + xdel
 y(2) = y0
 x(3) = x0 + xdel
 y(3) = y0 + ydel
 x(4) = x0
 y(4) = y0 + ydel
 x(5) = x0
 y(5) = y0
 n = 5
c
 call NEWCOLORRGB(ir,ig,ib)
 call POLYLINE(x,y,n,1)
c
 105 continue
 10 continue
c
 call PLFLUSH
c
 write(*,*)
 write(*,*) 'Click on colors...'
C
 200 call GETCURSORXY(xx,yy,chkey)
 zz = sat
c
 r = xx*xr + yy*yr + zz*zr
 g = xx*xg + yy*yg + zz*zg
 b = xx*xb + yy*yb + zz*zb
c
 ir = int(256.0*r)
 ig = int(256.0*g)
 ib = int(256.0*b)
c
 write(*,1500) ir, ig, ib
 1500 format(1x,'R G B = ', i4,',',i4,',',i4)
c
 if(lok(ir,ig,ib)) then
 go to 200
 endif
c
 go to 5
 end

 logical function lok(ir,ig,ib)
 lok = ir.LE.255 .AND. ig.LE.255 .AND. ib.LE.255 .AND.
 & ir.GE.0 .AND. ig.GE.0 .AND. ib.GE.0
 return
 end

XFOILinterface/XFOIL/plotlib/examples/cmap3.f

C***
C Module: cmap3.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 program cmap3
c---
c Color selection program.
c
c Displays a 2-D slice through the R-G-B color space,
c and gives the R,G,B components of a mouse-selected color.
c
c The cutting plane is perpendicular to the diagonal
c axis running from R,G,B = 0,0,0 (black), to
c R,G,B = 1,1,1 (white). The position of this cutting
c plane is specified by the % saturation 0..300.
c The plane passes through one or three pure-color
c corners for the specific saturations shown.
c
c 0% (0 0 0) black
c 100% (1 0 0), (0 1 0), (0 0 1) red , green , blue
c 200% (1 1 0), (1 0 1), (0 1 1) yellow, magenta, cyan
c 300% (1 1 1) white
c
c For 0-100% and 200-300%, the cutting plane is a triangle.
c For 100-200%, the plane is a hexagon.
c
c---
c
 dimension x(4), y(4)
 logical lok
 character*1 chkey
c
 ch = 0.03
 call PLINITIALIZE
c
 1 continue
c
 write(*,1100)
 1100 format(/' Enter % saturation (0..300) : ', $)
 read (*,*) isat
c
 if(isat.eq.0) go to 500
c
 isat = max(1,isat)
 isat = min(299,isat)
c
 nc1 = 10
c
 nc = nc1
 if(isat.gt.100) nc = (nc1*isat)/ 100
 if(isat.gt.200) nc = (nc1*200)/(300-isat) + 1
c
 sat = float(isat) / 100.0
c
c
c---- R,G,B unit vectors for projection onto x-y cutting plane
 xr = -sat
 yr = -sat/sqrt(3.0)
c
 xg = 0.0
 yg = sat*2.0/sqrt(3.0)
c
 xb = sat
 yb = -sat/sqrt(3.0)
c
 call COLORMAPDEFAULT
c
 call PLOPEN(0.8,0,1)
c
 call PLOT(5.5, 4.25, -3)
 call NEWFACTOR(3.0)
c
c
 area = sat * 2.0*sqrt(3.0)
c
 xdel = sat* 2.0 /float(nc)
 ydel = sat*sqrt(3.0)/float(nc)
c
 do 10 j = 1, nc
 y0 = yr + ydel*float(j-1)
c
 do 105 i = 1, nc-j+1
 x0 = xr + xdel*(float(i-1) + 0.5*float(j-1))
c
 xx = x0 + 0.5*xdel
 yy = y0 + ydel/3.0
c
 r = ((xg-xb)*(yy-yb) - (yg-yb)*(xx-xb))/area
 g = ((xb-xr)*(yy-yr) - (yb-yr)*(xx-xr))/area
 b = ((xr-xg)*(yy-yg) - (yr-yg)*(xx-xg))/area
c
 ir = int(256.0*r)
 ig = int(256.0*g)
 ib = int(256.0*b)
c
 if(lok(ir,ig,ib)) then
 x(1) = x0
 y(1) = y0
 x(2) = x0 + xdel
 y(2) = y0
 x(3) = x0 + xdel*0.5
 y(3) = y0 + ydel
 x(4) = x0
 y(4) = y0
 n = 4
c
 call NEWCOLORRGB(ir,ig,ib)
 call POLYLINE(x,y,n,1)
 endif
c
c
 if(i.eq.nc-j+1) go to 105

 xx = x0 + xdel
 yy = y0 + 2.0*ydel/3.0
c
 r = ((xg-xb)*(yy-yb) - (yg-yb)*(xx-xb))/area
 g = ((xb-xr)*(yy-yr) - (yb-yr)*(xx-xr))/area
 b = ((xr-xg)*(yy-yg) - (yr-yg)*(xx-xg))/area
c
 ir = int(256.0*r)
 ig = int(256.0*g)
 ib = int(256.0*b)
c
 if(lok(ir,ig,ib)) then
 x(1) = x0 + xdel
 y(1) = y0
 x(2) = x0 + xdel*1.5
 y(2) = y0 + ydel
 x(3) = x0 + xdel*0.5
 y(3) = y0 + ydel
 x(4) = x0 + xdel
 y(4) = y0
 n = 4
c
 call NEWCOLORRGB(ir,ig,ib)
 call POLYLINE(x,y,n,1)
 endif
c
 105 continue
 10 continue
c
 call PLFLUSH
c
 write(*,*) 'Click on colors...'
C
 200 call GETCURSORXY(xx,yy,chkey)
c
 r = ((xg-xb)*(yy-yb) - (yg-yb)*(xx-xb))/area
 g = ((xb-xr)*(yy-yr) - (yb-yr)*(xx-xr))/area
 b = ((xr-xg)*(yy-yg) - (yr-yg)*(xx-xg))/area
c
 ir = int(256.0*r)
 ig = int(256.0*g)
 ib = int(256.0*b)
c
 write(*,1500) ir, ig, ib
 1500 format(1x,'R G B = ', i4,',',i4,',',i4)
c
 if(lok(ir,ig,ib)) then
 go to 200
 endif
c
 go to 1
c
 500 call PLOT(0.0,0.0,+999)
 stop
C
 end

 logical function lok(ir,ig,ib)
 lok = ir.LE.255 .AND. ig.LE.255 .AND. ib.LE.255 .AND.
 & ir.GE.0 .AND. ig.GE.0 .AND. ib.GE.0
 return
 end

XFOILinterface/XFOIL/orrs/src/conlab.f

C
 SUBROUTINE CONLAB(IX,JX,II,JJ,X,Y,F,FCON,XWT,YWT,
 & CH,NDIG,ISIDE)
 DIMENSION X(IX,JX), Y(IX,JX)
 DIMENSION F(IX,JX)
C---
C Puts numerical labels on the contour with value FCON at the
C edge of the domain specified by ISIDE. The number of digits
C in the label(s) after the decimal point is given by NDIG.
C
C Input:
C IX JX dimensions of arrays X, Y, F
C II JJ array limits of arrays X, Y, F
C X(i,j) coordinates of grid point (i,j)
C Y(i,j)
C F(i,j) function value at grid point (i,j)
C FCON value of F on the contour to be generated
C XWT YWT plotting scale factors for X,Y:
C Xplot = X(i,j)*XWT
C Yplot = Y(i,j)*YWT
C CH absolute character height (no scaling is done)
C NDIG number of digits after decimal point in labels
C ISIDE domain side on which labels are to appear:
C
C . 3 .
C
C 4 2
C
C . 1 .
C
C
C Output: direct plotting calls using Versatec routines
C
C---
 LOGICAL LABEL
C
 DATA PI, RTOD / 3.141592654, 57.2957795 /
C
C---- total number of digits + decimal point
 RDIG = 3.25 + FLOAT(NDIG)
C
 IF(ISIDE.EQ.1) THEN
 JO = 1
 JP = 2
 KLO = 1
 KHI = II-1
 ELSE IF(ISIDE.EQ.2) THEN
 IO = II-1
 IP = II
 KLO = 1
 KHI = JJ-1
 ELSE IF(ISIDE.EQ.3) THEN
 JO = JJ-1
 JP = JJ
 KLO = 1
 KHI = II-1
 ELSE IF(ISIDE.EQ.4) THEN
 IO = 1
 IP = 2
 KLO = 1
 KHI = JJ-1
 ENDIF
C
C---- check domain edge specified by ISIDE if the contour touches it
 DO 10 K=KLO, KHI
C
 IF(ISIDE.EQ.1) THEN
 IO = K
 IP = K+1
 ELSE IF(ISIDE.EQ.2) THEN
 JO = K
 JP = K+1
 ELSE IF(ISIDE.EQ.3) THEN
 IO = K
 IP = K+1
 ELSE IF(ISIDE.EQ.4) THEN
 JO = K
 JP = K+1
 ENDIF
C
C------ flag indicating if contour crosses current cell
 LABEL = .FALSE.
C
C op 3 pp
C
C 4 2
C
C oo 1 po
C
 XOO = X(IO,JO)
 XOP = X(IO,JP)
 XPO = X(IP,JO)
 XPP = X(IP,JP)
C
 YOO = Y(IO,JO)
 YOP = Y(IO,JP)
 YPO = Y(IP,JO)
 YPP = Y(IP,JP)
C
 FOO = F(IO,JO)
 FOP = F(IO,JP)
 FPO = F(IP,JO)
 FPP = F(IP,JP)
C
C------ bottom edge (side 1)
 IF(FCON.GE.FOO .AND. FCON.LT.FPO .OR.
 & FCON.LT.FOO .AND. FCON.GE.FPO) THEN
 IF(ISIDE.EQ.1) THEN
 XCON2 = XOO + (FCON-FOO)*(XPO-XOO)/(FPO-FOO)
 YCON2 = YOO + (FCON-FOO)*(YPO-YOO)/(FPO-FOO)
 LABEL = .TRUE.
 ELSE
 XCON1 = XOO + (FCON-FOO)*(XPO-XOO)/(FPO-FOO)
 YCON1 = YOO + (FCON-FOO)*(YPO-YOO)/(FPO-FOO)
 ENDIF
 ENDIF
C
C------ left edge (side 4)
 IF(FCON.GE.FOO .AND. FCON.LT.FOP .OR.
 & FCON.LT.FOO .AND. FCON.GE.FOP) THEN
 IF(ISIDE.EQ.4) THEN
 XCON2 = XOO + (FCON-FOO)*(XOP-XOO)/(FOP-FOO)
 YCON2 = YOO + (FCON-FOO)*(YOP-YOO)/(FOP-FOO)
 LABEL = .TRUE.
 ELSE
 XCON1 = XOO + (FCON-FOO)*(XOP-XOO)/(FOP-FOO)
 YCON1 = YOO + (FCON-FOO)*(YOP-YOO)/(FOP-FOO)
 ENDIF
 ENDIF
C
C------ right edge (side 2)
 IF(FCON.GE.FPO .AND. FCON.LT.FPP .OR.
 & FCON.LT.FPO .AND. FCON.GE.FPP) THEN
 IF(ISIDE.EQ.2) THEN
 XCON2 = XPO + (FCON-FPO)*(XPP-XPO)/(FPP-FPO)
 YCON2 = YPO + (FCON-FPO)*(YPP-YPO)/(FPP-FPO)
 LABEL = .TRUE.
 ELSE
 XCON1 = XPO + (FCON-FPO)*(XPP-XPO)/(FPP-FPO)
 YCON1 = YPO + (FCON-FPO)*(YPP-YPO)/(FPP-FPO)
 ENDIF
 ENDIF
C
C------ top edge (side 3)
 IF(FCON.GE.FOP .AND. FCON.LT.FPP .OR.
 & FCON.LT.FOP .AND. FCON.GE.FPP) THEN
 IF(ISIDE.EQ.3) THEN
 XCON2 = XOP + (FCON-FOP)*(XPP-XOP)/(FPP-FOP)
 YCON2 = YOP + (FCON-FOP)*(YPP-YOP)/(FPP-FOP)
 LABEL = .TRUE.
 ELSE
 XCON1 = XOP + (FCON-FOP)*(XPP-XOP)/(FPP-FOP)
 YCON1 = YOP + (FCON-FOP)*(YPP-YOP)/(FPP-FOP)
 ENDIF
 ENDIF
C
 IF(LABEL) THEN
C
C------- a contour reaching the domain edge has been found - set coordinates
C of contour on the cell edges
 X1 = XWT*XCON1
 X2 = XWT*XCON2
 Y1 = YWT*YCON1
 Y2 = YWT*YCON2
C
 DX = X2 - X1
 DY = Y2 - Y1
C
C------- contour angle
 ACON = ATAN2(DY , DX)
 SA = SIN(ACON)
 CA = COS(ACON)
C
C------- if contour points to the right ...
 IF(ABS(ACON) .LT. 0.5*PI) THEN
C
C-------- set angle and lower left coordinates of number
 ANUM = RTOD*ACON
 XN = X2 + CH*CA + 0.5*CH*SA
 YN = Y2 + CH*SA - 0.5*CH*CA
C
C------- if contour points to the left ...
 ELSE
C
C-------- add +/- 180 degrees to number angle to make it read right to left
 ANUM = RTOD*ACON - SIGN(180.0,ACON)
C
C-------- set lower left coordinates of number
 XN = X2 + CH*RDIG*CA - 0.5*CH*SA
 YN = Y2 + CH*RDIG*SA + 0.5*CH*CA
C
 ENDIF
C
C------- draw number
 CALL NUMBER(XN,YN,CH,FCON,ANUM,NDIG)
C
 ENDIF
C
 10 CONTINUE
C
 RETURN
 END ! CONLAB

XFOILinterface/XFOIL/plotlib/examples/contest.f

C***
C Module: contest.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 program contest
C
C--- Test of Xplot11 quadrilateral and triangle contour primitives
C
 CHARACTER CHR*2, HUES*10
 DIMENSION X(4), Y(4), Z(4)
 DIMENSION XTRI(3), YTRI(3), ZTRI(3)
C
 DIMENSION XCU(50), YCU(50)
 DIMENSION XCL(50), YCL(50)
 DIMENSION XP(50), YP(50), NE(50)
C
 DATA X / 0., 1., 1., 0. /
 DATA Y / 0., 0., 1., 1. /
 DATA Z / 0., 1., 0., 2. /
C
 IDEV = 3
 nlevel = 50
 ncolors = 64
 WRITE(*,*) ' '
 WRITE(*,*) 'Contour primitives test:'
 WRITE(*,*) ' (contour fills on single square polygon)'
 WRITE(*,*) ' '
 WRITE(*,*) 'Data points...'
 do i = 1, 4
 write(*,*) i,' x = ',X(i),' y = ',Y(i),' z = ',Z(i)
 end do
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) CHR
 ips = -1
 if(CHR.ne.' ') then
 READ(CHR,*,end=2000,err=2000) ips
 endif
 IDEV = 1
 IF(ips.eq.0) IDEV = 3
 IF(ips.ge.1) IDEV = 5
 ipslu = 0
C
C--- Get contour data
 ZL = 0.
 ZU = 2.
 write(*,*) ' '
 write(*,*) 'Contour limits ',ZL,' to ',ZU
 write(*,*) 'Enter # of contour levels'
 read (*,*) nlevel
C
 ipslu = 0
 CALL PLINITIALIZE
 HUES = 'ROYGCBM'
C
C---Set up colormap spectrum colors
 if(ncolors.LE.1) ncolors = 0
 CALL COLORSPECTRUMHUES(ncolors,HUES)
C
 do ITYP = 1, 2
C
 CALL PLOPEN(0.5,ipslu,IDEV)

 call newcolorname('green')
 CALL PLOTABS(.75,.75,-3)
 CALL PLCHAR (999.,999.,.1,'Contour test ',0.,-1)
 if(ITYP.NE.2) then
 WRITE(*,*) 'Polygon contoured and filled as quadrilateral'
 CALL PLCHAR (999.,999.,.1,'Quadrilateral',0.,-1)
 else
 WRITE(*,*) 'Polygon contoured and filled as two triangles'
 CALL PLCHAR (999.,999.,.1,'Two Triangles',0.,-1)
 endif
 CALL PLOT(0.,-0.5,-3)
 CALL PLCHAR (999.,999.,.1,'Nlevels = ',0.,-1)
 CALL PLNUMB (999.,999.,.1,FLOAT(nlevel),0.,-1)
 CALL PLCHAR (999.,999.,.1,' Ncolors = ',0.,-1)
 CALL PLNUMB (999.,999.,.1,FLOAT(ncolors),0.,-1)
 CALL PLOT(2.,2.,-3)
 call factor(4.)
C
C--- Set contour levels and increments
 NCONT = NLEVEL + 1
 DZ = (ZU-ZL)/FLOAT(NCONT)
C
 DO N = 1, NCONT
 ZUPR = FLOAT(N)*DZ
 ZLWR = FLOAT(N-1)*DZ
C
C--- Set color based on contour #
 ICOL = (NCOLORS-1)*FLOAT(N-1)/FLOAT(NCONT-1) + 1
 CALL NEWCOLOR(-ICOL)
C
C--- Reset the line and area counters for each level
 NA = 0
 NV = 0
 NCU = 0
 NCL = 0
C
 if(ITYP.NE.2) then
C
C--- Contour a quadrilateral
 CALL CONTQUAD(X,Y,Z,ZUPR,ZLWR,
 & NCU,XCU,YCU,
 & NCL,XCL,YCL,
 & NA,NE,NV,XP,YP)
C
 else
C
C--- Triangle contouring, use two triangles, split quad on 1-3 diagonal
 xtri(1) = x(1)
 ytri(1) = y(1)
 ztri(1) = z(1)
 xtri(2) = x(2)
 ytri(2) = y(2)
 ztri(2) = z(2)
 xtri(3) = x(3)
 ytri(3) = y(3)
 ztri(3) = z(3)
 CALL CONTTRI(xtri,ytri,ztri,ZUPR,ZLWR,
 & NCU,XCU,YCU,
 & NCL,XCL,YCL,
 & NA,NE,NV,XP,YP)
 xtri(1) = x(3)
 ytri(1) = y(3)
 ztri(1) = z(3)
 xtri(2) = x(4)
 ytri(2) = y(4)
 ztri(2) = z(4)
 xtri(3) = x(1)
 ytri(3) = y(1)
 ztri(3) = z(1)
 CALL CONTTRI(xtri,ytri,ztri,ZUPR,ZLWR,
 & NCU,XCU,YCU,
 & NCL,XCL,YCL,
 & NA,NE,NV,XP,YP)
 endif
C
C
C--- Plot the filled contour polygons
 nv = 1
 DO IA = 1, NA
 call polyline(xp(nv),yp(nv),ne(ia),1)
 nv = nv+ne(ia)
 END DO
C
C--- Plot the contour lines (w/o color in this case).
C Otherwise you could leave out the polygon fills and comment out the
C color change to BLACK to get colored line contours.
C
 call newcolorname('BLACK')
C--- All lower contour lines
 do nn = 1, ncl,2
 call plot(xcl(nn),ycl(nn),3)
 call plot(xcl(nn+1),ycl(nn+1),2)
 end do
C--- And the last upper line
 if(N.EQ.NCONT) then
 do nn = 1, ncu,2
 call plot(xcu(nn),ycu(nn),3)
 call plot(xcu(nn+1),ycu(nn+1),2)
 end do
 endif
C
 END DO
 CALL PLFLUSH
C
 read(*,1000) chr
 CALL PLOT(0.,0.,-999)
C
 end do
 CALL PLOT(0.,0.,+999)
C
 1000 FORMAT(A)
C
 2000 STOP
 END

XFOILinterface/XFOIL/plotlib/examples/defmap.f

C***
C Module: defmap.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 program defmap
C
C Displays Default colormap in a bar
C
C
 dimension xp(100), yp(100), x(100), y(100)
C
 character*24 colorname, inp*2
C
 CH = 0.125
C
 PI = 4.0*ATAN(1.0)
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) INP
 ips = -1
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ips
 endif
 IDEV = 1
 IF(ips.eq.0) IDEV = 3
 IF(ips.ge.1) IDEV = 5
 ipslu = 0
C
C---- for REPLOT: X11 only
 IDEVRP = 1
 CALL PLINITIALIZE
C
C---Now, how many colors...
 ncolors = 10
C
 CALL PLOPEN(0.7,ipslu,IDEV)
 CALL PLOTABS(1.5,1.0,-3)
c
 call GETCOLOR(ICOL0)
C
c---- plot bar
 dx = 1.0
 dy = 5.0/float(ncolors)
 do ii = 1,ncolors
 call NEWCOLOR(ii)
c
 x0 = 0.0
 y0 = dy*float(ii-1)
c
 xp(1) = x0
 yp(1) = y0
 xp(2) = x0+dx
 yp(2) = y0
 xp(3) = x0+dx
 yp(3) = y0+dy
 xp(4) = x0
 yp(4) = y0+dy
 xp(5) = xp(1)
 yp(5) = yp(1)
 call POLYLINE(xp,yp,5,1)
C
 call GETCOLORRGB(ii,ired,igrn,iblu,colorname)
C
 xplt = xp(2) + 3.0*ch
 yplt = 0.5*(yp(2)+yp(3)) - 0.5*ch
 call plnumb(xplt,yplt,ch,float(ii),0.0,-1)
C
 xplt = xplt + 6.0*ch
 call plchar(xplt,yplt,ch,colorname,0.0,24)
C
 xplt = xplt + 26.0*ch
 call NEWCOLORRGB(255,0,0)
 call plnumb(xplt,yplt,ch,float(ired),0.0,-1)
C
 xplt = xplt + 4.0*ch
 call NEWCOLORRGB(0,255,0)
 call plnumb(xplt,yplt,ch,float(igrn),0.0,-1)
C
 xplt = xplt + 4.0*ch
 call NEWCOLORRGB(0,0,255)
 call plnumb(xplt,yplt,ch,float(iblu),0.0,-1)
c
 end do
C
 call NEWCOLOR(ICOL0)
 xplt = 0.0
 yplt = yplt + dy + 2.0*ch
 call plchar(xplt,yplt,1.5*ch,'Default Colormap',0.0,16)
C
 CALL PLFLUSH
C
 WRITE(*,*) 'Hit return to end test'
 READ(5,1000) DUMMY
 1000 FORMAT(A)
C
C GO TO 1
C
 2000 CALL PLOT(0.0,0.0,+999)
 STOP
 END

XFOILinterface/XFOIL/src/dplot.f

C***
C Module: dplot.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE DPLOT(NPR1,XPR,YPR)
 INCLUDE 'XFOIL.INC'
C---
C Plots analytical profiles at specified points.
C If NPR=0, then cursor-selected points are requested.
C---
 DIMENSION XPR(*), YPR(*)
C
 CHARACTER*1 KCHAR
 LOGICAL LCRS, TURB
 LOGICAL LGUI
C
 CALL GETCOLOR(ICOL0)
C
 LCRS = NPR1 .LE. 0
C
 IF(LCRS) THEN
 KDONE = 1
 XDWIN = XPAGE - 2.0*XMARG
 YDWIN = YPAGE - 2.0*YMARG
 X1 = XMARG + 0.91*XDWIN
 X2 = XMARG + 0.99*XDWIN
 Y1 = YMARG + 0.01*YDWIN
 Y2 = YMARG + 0.05*YDWIN
 CALL NEWPEN(5)
 CALL GUIBOX(KDONE, X1,X2,Y1,Y2, 'GREEN' , ' Done ')
C
 WRITE(*,*) ' '
 WRITE(*,*) 'Locate profiles with cursor, type "D" when done...'
 NPR = 12345
C
 ELSE
 NPR = NPR1
C
 ENDIF
C
C---- go over profiles ...
 DO 50 IPR=1, NPR
C
 IF(LCRS) THEN
C------- get cursor plot coordinates
 CALL GETCURSORXY(XC,YC,KCHAR)
 IF(INDEX('Dd',KCHAR).NE.0 .OR. LGUI(KDONE,XC,YC)) THEN
 RETURN
 ENDIF
C
C------- transform to airfoil coordinates
 XC = XC/FACA - XOFA
 YC = YC/FACA - YOFA
C
 ELSE
 XC = XPR(IPR)
 YC = YPR(IPR)
C
 ENDIF
C
C------ find nearest airfoil surface point
 RSQMIN = 1.0E23
 ISMIN = 0
 IBLMIN = 0
 DOFF = 0.00001*(S(N)-S(1))
 DO IS = 1, 2
 DO IBL = 2, IBLTE(IS)
 I = IPAN(IBL,IS)
 XSURF = X(I) + DOFF*YP(I)
 YSURF = Y(I) - DOFF*XP(I)
 RSQ = (XC-XSURF)**2 + (YC-YSURF)**2
 IF(RSQ .LE. RSQMIN) THEN
 RSQMIN = RSQ
 ISMIN = IS
 IBLMIN = IBL
 ENDIF
 ENDDO
 ENDDO
C
 IS = ISMIN
 IBL = IBLMIN
C
 I = IPAN(IBL,IS)
 CRSP = (XC-X(I))*NY(I) - (YC-Y(I))*NX(I)
 IF(IS.EQ.2) CRSP = -CRSP
C
 IF(CRSP.GT.0.0) THEN
 IBLP = IBL+1
 IBLO = IBL
 ELSE
 IBLP = IBL
 IBLO = IBL-1
 ENDIF
 ISP = IS
 ISO = IS
C
 IF(IBLP.GT.IBLTE(IS)) THEN
 IBLP = IBLTE(IS)
 IBLO = IBLP-1
 IBL = IBLTE(IS)
 ELSEIF(IBLO.LT.2) THEN
 IBLO = 2
 IF(ISO.EQ.1) THEN
 ISO = 2
 ELSE
 ISO = 1
 ENDIF
 ENDIF
C
 IP = IPAN(IBLP,ISP)
 IO = IPAN(IBLO,ISO)
C
C------ set interpolation fraction at profile location
 DX = X(IP) - X(IO)
 DY = Y(IP) - Y(IO)
 VX = XC - X(IO)
 VY = YC - Y(IO)
 FRAC = (DX*VX + DY*VY)/(DX*DX+DY*DY)
 FRAC = MIN(MAX(FRAC , 0.0) , 1.0)
C
C------ set averaged displacement vector at profile location
 CA = FRAC*NY(IP) + (1.0-FRAC)*NY(IO)
 SA = FRAC*NX(IP) + (1.0-FRAC)*NX(IO)
 CSMOD = SQRT(CA**2 + SA**2)
 CA = CA/CSMOD
 SA = SA/CSMOD
C
 X0 = FRAC*X(IP) + (1.0-FRAC)*X(IO)
 Y0 = FRAC*Y(IP) + (1.0-FRAC)*Y(IO)
C
 DS = FRAC*DSTR(IBLP,ISP) + (1.0-FRAC)*DSTR(IBLO,ISO)
 TH = FRAC*THET(IBLP,ISP) + (1.0-FRAC)*THET(IBLO,ISO)
 UE = FRAC*UEDG(IBLP,ISP) + (1.0-FRAC)*UEDG(IBLO,ISO)
C
 XI = FRAC*XSSI(IBLP,ISP) + (1.0-FRAC)*XSSI(IBLO,ISO)
 TURB = XI .GT. XSSITR(IS)
C
C------ 1 / (total enthalpy)
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
C
C------ Sutherland's const./To (assumes stagnation conditions are at STP)
 HVRAT = 0.35
C
C------ fill Rtheta arrays
 UEC = UE * (1.0-TKLAM) / (1.0 - TKLAM*(UE/QINF)**2)
 HERAT = (1.0 - 0.5*HSTINV*UEC **2)
 & / (1.0 - 0.5*HSTINV*QINF**2)
 RHOE = HERAT ** (1.0/GAMM1)
 AMUE = SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 RTHETA = REINF * RHOE*UE*TH/AMUE
C
 AMSQ = UEC*UEC*HSTINV / (GAMM1*(1.0 - 0.5*UEC*UEC*HSTINV))
 CALL HKIN(DS/TH, AMSQ, HK, DUMMY, DUMMY)
C
 WRITE(*,9100) X0,Y0, DS, RTHETA, HK
 9100 FORMAT(1X,'x y =', 2F8.4,' Delta* =', G12.4,
 & ' Rtheta =', F10.2,' Hk =', F9.4)
C
 IF(IS.EQ.1) THEN
 UDIR = 1.0
 ELSE
 UDIR = -1.0
 ENDIF
C
 UEI = UE/QINF
 UN = 0.0
 CALL NEWCOLORNAME('green')
 UPRWTS = UPRWT*0.5*(S(N)-S(1))
 CALL PRPLOT(X0,Y0,TH,UEI,UN,HK,RTHETA,AMSQ,TURB,
 & -XOFA,-YOFA,FACA,UPRWTS,SA,CA,UDIR)
 50 CONTINUE
C
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
C
 RETURN
 END ! DPLOT

 SUBROUTINE PRPLOT(X0,Y0,TH,UE,UN,HK,RET,MSQ,TURB,
 & XOFA,YOFA,FACA,UWT,SINA,COSA,UDIR)
C---
C Plots velocity profile taken from flow solution.
C
C X0,Y0 coordinates of point through which profile axis passes
C SA,CA sin,cos of profile axis angle (cw from vertical)
C---
 REAL MSQ
 LOGICAL TURB
C
 PARAMETER (KPRX=129)
 DIMENSION XX(KPRX), YY(KPRX), FFS(KPRX), SFS(KPRX)
c
 XMOD(XTMP) = FACA * (XTMP - XOFA)
 YMOD(YTMP) = FACA * (YTMP - YOFA)
C
 NN = KPRX
 UO = 1.0
 DK = HK*TH
 CT = 0.
C
 IF(TURB) THEN
C------ set Spalding + power-law turbulent profile
 CALL PRWALL(DK,TH,UO,RET,MSQ,CT, BB,
 & DE, DE_DS, DE_TH, DE_UO, DE_RT, DE_MS,
 & US, US_DS, US_TH, US_UO, US_RT, US_MS,
 & HS, HS_DS, HS_TH, HS_UO, HS_RT, HS_MS,
 & CF, CF_DS, CF_TH, CF_UO, CF_RT, CF_MS,
 & CD, CD_DS, CD_TH, CD_UO, CD_RT, CD_MS,
 & CD_CT)
c
 CALL UWALL(TH,UO,DE,US,RET,CF,BB, YY,XX,NN)
C
C------ limit profile height
 DECORR = 1.5 * (3.15 + 1.72/(HK-1.0) + HK) * TH
 DO 422 K=NN, 1, -1
 IF(YY(K) .LE. DECORR) GO TO 423
 422 CONTINUE
 423 NN = K
 DE = YY(K)
C
 ELSE
C------ set Falkner-Skan profile
 INORM = 3
 ISPEC = 2
 HSPEC = HK
 ETAE = 1.5*(3.15 + 1.72/(HK-1.0) + HK)
 GEO = 1.0
 CALL FS(INORM,ISPEC,BU,HSPEC,NN,ETAE,GEO,YY,FFS,XX,SFS,DEFS)
 DE = ETAE*TH
C
 DO 425 K=1, NN
 YY(K) = YY(K)*TH
 425 CONTINUE
C
 ENDIF
C
 YAX = 1.1*DE
C
 X1 = X0
 Y1 = Y0
 X2 = X0 + YAX*SINA
 Y2 = Y0 + YAX*COSA
C
C---- plot axis
 CALL NEWPEN(1)
 CALL PLOT(XMOD(X1),YMOD(Y1),3)
 CALL PLOT(XMOD(X2),YMOD(Y2),2)
C
 DO K=1, NN
 ULOC = UE + UN*(YY(K)-DK)
 XX(K) = XX(K)*UE * UWT * UDIR
CCC YY(K) = YY(K)
 ENDDO
C
C---- rotate and position profile
 DO K=1, NN
 XBAR = XX(K)
 YBAR = YY(K)
 XROT = XBAR*COSA + YBAR*SINA + X0
 YROT = YBAR*COSA - XBAR*SINA + Y0
 XX(K) = XMOD(XROT)
 YY(K) = YMOD(YROT)
 ENDDO
C
 CALL NEWPEN(2)
 CALL XYLINE(NN,XX,YY,0.0,1.0,0.0,1.0,1)
C
 RETURN
 END ! PRPLOT

XFOILinterface/XFOIL/orrs/src/efu.f

 PROGRAM EFU
 PARAMETER(NX=2001)
 DIMENSION Y(NX), S(NX), U(NX), F(NX)
C
 PI = 4.0*ATAN(1.0)
C
 YWALL = -4.8

 YMAX = 40.0
C
 N = NX
C
 DO I=1, N
 Y(I) = YMAX*FLOAT(I-1)/FLOAT(N-1)
 ENDDO
C
 DO I = 1, N
 S(I) = EXP(-(Y(I)+YWALL)**2)
 ENDDO
C
 I = 1
 U(I) = 0.
 F(I) = 0.
 DO I = 2, N
 DY = Y(I) - Y(I-1)
 U(I) = U(I-1) + 0.5*(S(I)+S(I-1))*DY
 F(I) = F(I-1) + 0.5*(U(I)+U(I-1))*DY
 ENDDO
 SMAX = 1.0
C
 UE = U(N)
 DO I = 1, N
 F(I) = F(I)/UE
 U(I) = U(I)/UE
 S(I) = S(I)/UE
 ENDDO
 SMAX = SMAX/UE
C
 DSUM = 0.
 TSUM = 0.
 ESUM = 0.
 DO I = 2, N
 DY = Y(I) - Y(I-1)
 UA = (U(I) + U(I-1))*0.5
 DSUM = DSUM + (1.0 - UA) *DY
 TSUM = TSUM + (1.0 - UA)*UA*DY
 ESUM = ESUM + (1.0 - UA**2)*UA*DY
 ENDDO
C
 WRITE(*,*) N, DSUM/TSUM, 1.0/(SMAX*TSUM)
 DO I = 1, N
 WRITE(*,*) Y(I)/TSUM, U(I), S(I)*TSUM
 ENDDO
C
 STOP
 END

XFOILinterface/XFOIL/src/frplot.f

 SUBROUTINE FRPLOT(N,S,X,HK,TH,UE,VE,XTR,FREF,
 & XOFF,XSF, YOFF,YSF, CHF)
 DIMENSION S(N+1), X(N+1), HK(N+1), TH(N+1), UE(N+1), VE(N+1)
C--
C Plots the amplitude A(x) for a specified number
C of frequencies. The frequency values which are
C used are set internally in the amplitude calculation
C routine NTCALC, and displayed here.
C
C N number of laminar streamwise points i
C (transition is in interval N...N+1)
C S(i) streamwise arc length for integrating -a_i = d[ln(A)]/ds
C X(i) plotting x coordinate
C HK(i) kinematic shape parameter
C TH(i) momentum thickness
C UE(i) edge velocity
C VE(i) edge kinematic viscosity
C XTR transition x location, should be X(N) < XTR < X(N+1)
C
C FREF reference radian frequency (w/FREF is displayed)
C
C XOFF plotting offsets, scales... Xplot = (X-XOFF)*XSF
C YOFF Yplot = (Y-YOFF)*YSF
C XSF
C YSF
C
C CHF character height
C--
C
C---- max number of streamwise points and frequencies
 PARAMETER (IDIM=300,NFX=15)
ccc PARAMETER (IDIM=300,NFX=50)
C
 DIMENSION FREQ(NFX), ANF(IDIM,NFX)
C
 IF(N+1 .GT. IDIM) STOP 'FRPLOT: Array overflow. Increase IDIM.'
C
C---- set number of frequencies plotted
 NFR = NFX
C
C---- calculate wave amplitudes for each frequency
 CALL NTCALC(IDIM,N+1, S,HK,TH,UE,VE,
 & NFR,FREQ,ANF)
C
C---- plot amplitudes for all frequencies
 X1 = X(N)
 X2 = XTR
 FRAC = (X2-X1)/(X(N+1)-X1)
 DO 10 IFR=1, NFR
C
C------ plot A(x) up to the transition interval
 CALL XYLINE(N,X,ANF(1,IFR),XOFF,XSF,YOFF,YSF,1)
C
C------ plot last bit to the transition location in the transition interval
 Y1 = ANF(N,IFR)
 Y2 = ANF(N,IFR) + FRAC*(ANF(N+1,IFR)-ANF(N,IFR))
 CALL PLOT((X1-XOFF)*XSF,(Y1-YOFF)*YSF,3)
 CALL PLOT((X2-XOFF)*XSF,(Y2-YOFF)*YSF,2)
C
C------ label the curve with its frequency if it grew to more than ANFMIN
 ANFMIN = 0.5
 IF(MAX(ANF(N,IFR),ANF(N+1,IFR)) .GT. ANFMIN) THEN
 XNUM = (X2-XOFF)*XSF + 0.5*CHF
 YNUM = (Y2-YOFF)*YSF - 0.5*CHF
 CALL PLNUMB(XNUM,YNUM,CHF,FREQ(IFR)/FREF,0.0,2)
 ENDIF
C
 10 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/src/frplot0.f

 SUBROUTINE FRPLOT(N,S,X,HK,TH,UE,VE,XTR,FREF,
 & XOFF,XSF, YOFF,YSF, CHF)
 DIMENSION S(N), X(N), HK(N), TH(N), UE(N), VE(N)
C--
C Dummy FRPLOT routine
C--
 N = 0
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/fs.f

 SUBROUTINE FS(INORM,ISPEC,BSPEC,HSPEC,N,ETAE,GEO,ETA,F,U,S,DELTA)
 DIMENSION ETA(N), F(N), U(N), S(N)
C---
C Routine for solving the Falkner-Skan equation.
C
C Input:
C ------
C INORM 1: eta = y / sqrt(vx/Ue) "standard" Falkner-Skan coordinate
C 2: eta = y / sqrt(2vx/(m+1)Ue) Hartree's coordinate
C 3: eta = y / Theta momentum thickness normalized coordinate
C ISPEC 1: BU = x/Ue dUe/dx (= "m") specified
C 2: H12 = Dstar/Theta specified
C BSPEC specified pressure gradient parameter (if ISPEC = 1)
C HSPEC specified shape parameter of U profile (if ISPEC = 2)
C N total number of points in profiles
C ETAE edge value of normal coordinate
C GEO exponential stretching factor for ETA:
C = (ETA(j+1)-ETA(j)) / (ETA(j)-ETA(j-1))
C
C Output:
C -------
C BSPEC calculated pressure gradient parameter (if ISPEC = 2)
C HSPEC calculated shape parameter of U profile (if ISPEC = 1)
C ETA normal BL coordinate
C F,U,S Falkner Skan profiles
C DELTA normal coordinate scale for computing y values:
C y(j) = ETA(j) * DELTA
C---
C
 PARAMETER (NMAX=2001,NRMAX=3)
 REAL A(3,3,NMAX),B(3,3,NMAX),C(3,3,NMAX), R(3,NRMAX,NMAX)
C
C---- set number of righthand sides.
 DATA NRHS / 3 /
C
C---- max number of Newton iterations
 ITMAX = 20
C
 IF(N.GT.NMAX) STOP 'FS: Array overflow.'
C
 PI = 4.0*ATAN(1.0)
C
CCCc---- skip initialization if initial-guess U(y) is passed in
CCC if(u(n) .ne. 0.0) go to 9991
CCC
C---- initialize H or BetaU with empirical curve fits
 IF(ISPEC.EQ.1) THEN
 H = 2.6
 BU = BSPEC
 ELSE
 H = HSPEC
 IF(H .LE. 14.07/6.54) STOP 'FS: Specified H too low'
 BU = (0.058*(H-4.0)**2/(H-1.0) - 0.068) / (6.54*H - 14.07) * H**2
 IF(H .GT. 4.0) BU = AMIN1(BU , 0.0)
 ENDIF
C
C---- initialize TN = Delta^2 Ue / vx
 IF(INORM.EQ.3) THEN
 TN = (6.54*H - 14.07) / H**2
 ELSE
 TN = 1.0
 ENDIF
C
C---- set eta array
 DETA = 1.0
 ETA(1) = 0.0
 DO I=2, N
 ETA(I) = ETA(I-1) + DETA
 DETA = GEO*DETA
 ENDDO
C
 DO I=1, N
 ETA(I) = ETA(I) * ETAE/ETA(N)
 ENDDO
C
C
C---- initial guess for profiles using a sine loop for U for half near wall
 IF(H .LE. 3.0) THEN
C
 IF(INORM.EQ.3) THEN
 ETJOIN = 7.3
 ELSE
 ETJOIN = 5.0
 ENDIF
C
 EFAC = 0.5*PI/ETJOIN
 DO 10 I=1, N
 U(I) = SIN(EFAC*ETA(I))
 F(I) = 1.0/EFAC * (1.0 - COS(EFAC*ETA(I)))
 S(I) = EFAC*COS(EFAC*ETA(I))
 IF(ETA(I) .GT. ETJOIN) GO TO 11
 10 CONTINUE
 11 CONTINUE
 IJOIN = I
C
C----- constant U for outer half
 DO I=IJOIN+1, N
 U(I) = 1.0
 F(I) = F(IJOIN) + ETA(I) - ETA(IJOIN)
 S(I) = 0.
 ENDDO
C
 ELSE
C
 IF(INORM.EQ.3) THEN
 ETJOIN = 8.0
 ELSE
 ETJOIN = 8.0
 ENDIF
C
 EFAC = 0.5*PI/ETJOIN
 DO 15 I=1, N
 U(I) = 0.5 - 0.5*COS(2.0*EFAC*ETA(I))
 F(I) = 0.5*ETA(I) - 0.25/EFAC * SIN(2.0*EFAC*ETA(I))
 S(I) = EFAC*SIN(2.0*EFAC*ETA(I))
 IF(ETA(I) .GT. ETJOIN) GO TO 16
 15 CONTINUE
 16 CONTINUE
 IJOIN = I
C
C----- constant U for outer half
 DO I=IJOIN+1, N
 U(I) = 1.0
 F(I) = F(IJOIN) + ETA(I) - ETA(IJOIN)
 S(I) = 0.
 ENDDO
C
 ENDIF
c
 9991 continue
C
C
C---- Newton iteration loop
 DO 100 ITER=1, ITMAX
C
C------ zero out A,B,C blocks and righthand sides R
 DO I=1, N
 DO II=1,3
 DO III=1,3
 A(II,III,I) = 0.
 B(II,III,I) = 0.
 C(II,III,I) = 0.
 ENDDO
 R(II,1,I) = 0.
 R(II,2,I) = 0.
 R(II,3,I) = 0.
 ENDDO
 ENDDO
C
C...
C
 A(1,1,1) = 1.0
 A(2,2,1) = 1.0
 A(3,2,N) = 1.0
 R(1,1,1) = F(1)
 R(2,1,1) = U(1)
 R(3,1,N) = U(N) - 1.0
C
 IF(INORM.EQ.2) THEN
 BETU = 2.0*BU/(BU+1.0)
 BETU_BU = (2.0 - BETU/(BU+1.0))/(BU+1.0)
 BETN = 1.0
 BETN_BU = 0.0
 ELSE
 BETU = BU
 BETU_BU = 1.0
 BETN = 0.5*(1.0 + BU)
 BETN_BU = 0.5
 ENDIF
C
 DO 30 I = 1, N-1
C
 DETA = ETA(I+1) - ETA(I)
 R(1,1,I+1) = F(I+1) - F(I) - 0.5*DETA*(U(I+1)+U(I))
 R(2,1,I+1) = U(I+1) - U(I) - 0.5*DETA*(S(I+1)+S(I))
 R(3,1,I) = S(I+1) - S(I)
 & + TN * (BETN*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
 & + BETU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)))
C
 A(3,1,I) = TN * BETN*0.5*DETA*S(I)
 C(3,1,I) = TN * BETN*0.5*DETA*S(I+1)
 A(3,2,I) = -TN * BETU *DETA*U(I)
 C(3,2,I) = -TN * BETU *DETA*U(I+1)
 A(3,3,I) = TN * BETN*0.5*DETA*F(I) - 1.0
 C(3,3,I) = TN * BETN*0.5*DETA*F(I+1) + 1.0
C
 B(1,1,I+1) = -1.0
 A(1,1,I+1) = 1.0
 B(1,2,I+1) = -0.5*DETA
 A(1,2,I+1) = -0.5*DETA
C
 B(2,2,I+1) = -1.0
 A(2,2,I+1) = 1.0
 B(2,3,I+1) = -0.5*DETA
 A(2,3,I+1) = -0.5*DETA
C
 R(3,2,I) = TN
 & * (BETN_BU*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
 & + BETU_BU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)))
 R(3,3,I) = (BETN*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
 & + BETU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)))
C
 30 CONTINUE
C
C------ shift momentum equations down for better matrix conditioning
 DO I = N, 2, -1
 R(3,1,I) = R(3,1,I) + R(3,1,I-1)
 R(3,2,I) = R(3,2,I) + R(3,2,I-1)
 R(3,3,I) = R(3,3,I) + R(3,3,I-1)
 DO L=1, 3
 A(3,L,I) = A(3,L,I) + C(3,L,I-1)
 B(3,L,I) = B(3,L,I) + A(3,L,I-1)
 ENDDO
 ENDDO
C...
C
C---- solve Newton system for the three solution vectors
 CALL B3SOLV(A,B,C,R,N,NRHS,NRMAX)
C
C---- calculate and linearize Dstar, Theta, in computational space
 DSI = 0.
 DSI1 = 0.
 DSI2 = 0.
 DSI3 = 0.
C
 THI = 0.
 THI1 = 0.
 THI2 = 0.
 THI3 = 0.
C
 DO 40 I = 1, N-1
 US = U(I) + U(I+1)
 DETA = ETA(I+1) - ETA(I)
C
 DSI = DSI + (1.0 - 0.5*US)*DETA
 DSI_US = -0.5*DETA
C
 THI = THI + (1.0 - 0.5*US)*0.5*US*DETA
 THI_US = (0.5 - 0.5*US)*DETA
C
 DSI1 = DSI1 + DSI_US*(R(2,1,I) + R(2,1,I+1))
 DSI2 = DSI2 + DSI_US*(R(2,2,I) + R(2,2,I+1))
 DSI3 = DSI3 + DSI_US*(R(2,3,I) + R(2,3,I+1))
C
 THI1 = THI1 + THI_US*(R(2,1,I) + R(2,1,I+1))
 THI2 = THI2 + THI_US*(R(2,2,I) + R(2,2,I+1))
 THI3 = THI3 + THI_US*(R(2,3,I) + R(2,3,I+1))
 40 CONTINUE
C
C
 IF(ISPEC.EQ.1) THEN
C
C----- set and linearize Bu = Bspec residual
 R1 = BSPEC - BU
 Q11 = 1.0
 Q12 = 0.0
C
 ELSE
C
C----- set and linearize H = Hspec residual
 R1 = DSI - HSPEC*THI
 & -DSI1 + HSPEC*THI1
 Q11 = -DSI2 + HSPEC*THI2
 Q12 = -DSI3 + HSPEC*THI3
C
 ENDIF
C
C
 IF(INORM.EQ.3) THEN
C
C----- set and linearize normalized Theta = 1 residual
 R2 = THI - 1.0
 & -THI1
 Q21 = -THI2
 Q22 = -THI3
C
 ELSE
C
C----- set eta scaling coefficient to unity
 R2 = 1.0 - TN
 Q21 = 0.0
 Q22 = 1.0
C
 ENDIF
C
C
 DET = Q11*Q22 - Q12*Q21
 DBU = -(R1 *Q22 - Q12*R2) / DET
 DTN = -(Q11*R2 - R1 *Q21) / DET
C
C
C---- calculate changes in F,U,S, and the max and rms change
 RMAX = 0.
 RMS = 0.
 DO 50 I=1,N
 DF = -R(1,1,I) - DBU*R(1,2,I) - DTN*R(1,3,I)
 DU = -R(2,1,I) - DBU*R(2,2,I) - DTN*R(2,3,I)
 DS = -R(3,1,I) - DBU*R(3,2,I) - DTN*R(3,3,I)
C
 RMAX = MAX(RMAX,ABS(DF),ABS(DU),ABS(DS))
 RMS = DF**2 + DU**2 + DS**2 + RMS
 50 CONTINUE
 RMS = SQRT(RMS/(3.0*FLOAT(N) + 3.0))
C
 RMAX = MAX(RMAX,ABS(DBU/0.5),ABS(DTN/TN))
C
C---- set underrelaxation factor if necessary by limiting max change to 0.5
 RLX = 1.0
 IF(RMAX.GT.0.5) RLX = 0.5/RMAX
C
C---- update F,U,S
 DO 60 I=1,N
 DF = -R(1,1,I) - DBU*R(1,2,I) - DTN*R(1,3,I)
 DU = -R(2,1,I) - DBU*R(2,2,I) - DTN*R(2,3,I)
 DS = -R(3,1,I) - DBU*R(3,2,I) - DTN*R(3,3,I)
C
 F(I) = F(I) + RLX*DF
 U(I) = U(I) + RLX*DU
 S(I) = S(I) + RLX*DS
 60 CONTINUE
C
C---- update BetaU and Theta
 BU = BU + RLX*DBU
 TN = TN + RLX*DTN
C
 write(*,*) iter, rms, rlx

C---- check for convergence
 IF(ITER.GT.3 .AND. RMS.LT.1.E-5) GO TO 105
C
 100 CONTINUE
 WRITE(*,*) 'FS: Convergence failed'
C
 105 CONTINUE
C
 HSPEC = DSI/THI
 BSPEC = BU
C
 DELTA = SQRT(TN)
C
 RETURN
C
C The
 END

 SUBROUTINE B3SOLV(A,B,C,R,N,NRHS,NRMAX)
 DIMENSION A(3,3,N), B(3,3,N), C(3,3,N), R(3,NRMAX,N)
C **
C This routine solves a 3x3 block-tridiagonal system with an arbitrary
C number of righthand sides by a standard block elimination scheme.
C The solutions are returned in the Rj vectors.
C
C |A C ||d| |R..|
C |B A C ||d| |R..|
C | B . . ||.| = |R..|
C | . . C||.| |R..|
C | B A||d| |R..|
C Mark Drela 10 March 86
C **
C
CCC** Forward sweep: Elimination of lower block diagonal (B's).
 DO 1 I=1, N
C
 IM = I-1
C
C------ don't eliminate B1 block because it doesn't exist
 IF(I.EQ.1) GO TO 12
C
C------ eliminate Bi block, thus modifying Ai and Ci blocks
 DO 11 K=1, 3
 DO 111 L=1, 3
 A(K,L,I) = A(K,L,I)
 & - (B(K,1,I)*C(1,L,IM)
 & + B(K,2,I)*C(2,L,IM)
 & + B(K,3,I)*C(3,L,IM))
 111 CONTINUE
 DO 112 L=1, NRHS
 R(K,L,I) = R(K,L,I)
 & - (B(K,1,I)*R(1,L,IM)
 & + B(K,2,I)*R(2,L,IM)
 & + B(K,3,I)*R(3,L,IM))
 112 CONTINUE
 11 CONTINUE
C
C -1
CCC---- multiply Ci block and righthand side Ri vectors by (Ai)
C using Gaussian elimination.
C
 12 DO 13 KPIV=1, 2
 KP1 = KPIV+1
C
C-------- find max pivot index KX
 KX = KPIV
 DO 131 K=KP1, 3
 IF(ABS(A(K,KPIV,I))-ABS(A(KX,KPIV,I))) 131,131,1311
 1311 KX = K
 131 CONTINUE
C
 IF(A(KX,KPIV,I).EQ.0.0) THEN
 WRITE(*,*) 'Singular A block, i = ',I
 STOP
 ENDIF
C
 PIVOT = 1.0/A(KX,KPIV,I)
C
C-------- switch pivots
 A(KX,KPIV,I) = A(KPIV,KPIV,I)
C
C-------- switch rows & normalize pivot row
 DO 132 L=KP1, 3
 TEMP = A(KX,L,I)*PIVOT
 A(KX,L,I) = A(KPIV,L,I)
 A(KPIV,L,I) = TEMP
 132 CONTINUE
C
 DO 133 L=1, 3
 TEMP = C(KX,L,I)*PIVOT
 C(KX,L,I) = C(KPIV,L,I)
 C(KPIV,L,I) = TEMP
 133 CONTINUE
C
 DO 134 L=1, NRHS
 TEMP = R(KX,L,I)*PIVOT
 R(KX,L,I) = R(KPIV,L,I)
 R(KPIV,L,I) = TEMP
 134 CONTINUE
CB
C-------- forward eliminate everything
 DO 135 K=KP1, 3
 DO 1351 L=KP1, 3
 A(K,L,I) = A(K,L,I) - A(K,KPIV,I)*A(KPIV,L,I)
 1351 CONTINUE
 C(K,1,I) = C(K,1,I) - A(K,KPIV,I)*C(KPIV,1,I)
 C(K,2,I) = C(K,2,I) - A(K,KPIV,I)*C(KPIV,2,I)
 C(K,3,I) = C(K,3,I) - A(K,KPIV,I)*C(KPIV,3,I)
 DO 1352 L=1, NRHS
 R(K,L,I) = R(K,L,I) - A(K,KPIV,I)*R(KPIV,L,I)
 1352 CONTINUE
 135 CONTINUE
C
 13 CONTINUE
C
C------ solve for last row
 IF(A(3,3,I).EQ.0.0) THEN
 WRITE(*,*) 'Singular A block, i = ',I
 STOP
 ENDIF
 PIVOT = 1.0/A(3,3,I)
 C(3,1,I) = C(3,1,I)*PIVOT
 C(3,2,I) = C(3,2,I)*PIVOT
 C(3,3,I) = C(3,3,I)*PIVOT
 DO 14 L=1, NRHS
 R(3,L,I) = R(3,L,I)*PIVOT
 14 CONTINUE
C
C------ back substitute everything
 DO 15 KPIV=2, 1, -1
 KP1 = KPIV+1
 DO 151 K=KP1, 3
 C(KPIV,1,I) = C(KPIV,1,I) - A(KPIV,K,I)*C(K,1,I)
 C(KPIV,2,I) = C(KPIV,2,I) - A(KPIV,K,I)*C(K,2,I)
 C(KPIV,3,I) = C(KPIV,3,I) - A(KPIV,K,I)*C(K,3,I)
 DO 1511 L=1, NRHS
 R(KPIV,L,I) = R(KPIV,L,I) - A(KPIV,K,I)*R(K,L,I)
 1511 CONTINUE
 151 CONTINUE
 15 CONTINUE
 1 CONTINUE
C
CCC** Backward sweep: Back substitution using upper block diagonal (Ci's).
 DO 2 I=N-1, 1, -1
 IP = I+1
 DO 21 L=1, NRHS
 DO 211 K=1, 3
 R(K,L,I) = R(K,L,I)
 & - (R(1,L,IP)*C(K,1,I)
 & + R(2,L,IP)*C(K,2,I)
 & + R(3,L,IP)*C(K,3,I))
 211 CONTINUE
 21 CONTINUE
 2 CONTINUE
C
 RETURN
 END ! B3SOLV

 SUBROUTINE B3SOLV1(A,B,C,R,N,NRHS,NRMAX)
 DIMENSION A(3,3,N), B(3,3,N), C(3,3,N), R(3,NRMAX,N)
C **
C This routine solves a 3x3 block-tridiagonal system with an arbitrary
C number of righthand sides by a standard block elimination scheme.
C The solutions are returned in the Rj vectors.
C
C |A C ||d| |R..|
C |B A C ||d| |R..|
C | B . . ||.| = |R..|
C | . . C||.| |R..|
C | B A||d| |R..|
C Mark Drela 10 March 86
C **
C
CCC** Forward sweep: Elimination of lower block diagonal (B's).
 DO 1 I=1, N
C
 IM = I-1
C
C------ don't eliminate B1 block because it doesn't exist
 IF(I.EQ.1) GO TO 12
C
C------ eliminate Bi block, thus modifying Ai and Ci blocks
 DO 11 K=1, 3
 DO 111 L=1, 3
 A(K,L,I) = A(K,L,I)
 & - (B(K,1,I)*C(1,L,IM)
 & + B(K,2,I)*C(2,L,IM)
 & + B(K,3,I)*C(3,L,IM))
 111 CONTINUE
 DO 112 L=1, NRHS
 R(K,L,I) = R(K,L,I)
 & - (B(K,1,I)*R(1,L,IM)
 & + B(K,2,I)*R(2,L,IM)
 & + B(K,3,I)*R(3,L,IM))
 112 CONTINUE
 11 CONTINUE
C
C -1
CCC---- multiply Ci block and righthand side Ri vectors by (Ai)
C using Gaussian elimination.
C
 12 DO 13 KPIV=1, 2
 KP1 = KPIV+1
C
C-------- find max pivot index KX
 KX = KPIV
 DO 131 K=KP1, 3
 IF(ABS(A(K,KPIV,I))-ABS(A(KX,KPIV,I))) 131,131,1311
 1311 KX = K
 131 CONTINUE
C
 IF(A(KX,KPIV,I).EQ.0.0) THEN
 WRITE(*,*) 'Singular A block, i = ',I
 STOP
 ENDIF
C
 PIVOT = 1.0/A(KX,KPIV,I)
C
C-------- switch pivots
 A(KX,KPIV,I) = A(KPIV,KPIV,I)
C
C-------- switch rows & normalize pivot row
 DO 132 L=KP1, 3
 TEMP = A(KX,L,I)*PIVOT
 A(KX,L,I) = A(KPIV,L,I)
 A(KPIV,L,I) = TEMP
 132 CONTINUE
C
 DO 133 L=1, 3
 TEMP = C(KX,L,I)*PIVOT
 C(KX,L,I) = C(KPIV,L,I)
 C(KPIV,L,I) = TEMP
 133 CONTINUE
C
 DO 134 L=1, NRHS
 TEMP = R(KX,L,I)*PIVOT
 R(KX,L,I) = R(KPIV,L,I)
 R(KPIV,L,I) = TEMP
 134 CONTINUE
CB
C-------- forward eliminate everything
 DO 135 K=KP1, 3
 DO 1351 L=KP1, 3
 A(K,L,I) = A(K,L,I) - A(K,KPIV,I)*A(KPIV,L,I)
 1351 CONTINUE
 C(K,1,I) = C(K,1,I) - A(K,KPIV,I)*C(KPIV,1,I)
 C(K,2,I) = C(K,2,I) - A(K,KPIV,I)*C(KPIV,2,I)
 C(K,3,I) = C(K,3,I) - A(K,KPIV,I)*C(KPIV,3,I)
 DO 1352 L=1, NRHS
 R(K,L,I) = R(K,L,I) - A(K,KPIV,I)*R(KPIV,L,I)
 1352 CONTINUE
 135 CONTINUE
C
 13 CONTINUE
C
C------ solve for last row
 IF(A(3,3,I).EQ.0.0) THEN
 WRITE(*,*) 'Singular A block, i = ',I
 STOP
 ENDIF
 PIVOT = 1.0/A(3,3,I)
 C(3,1,I) = C(3,1,I)*PIVOT
 C(3,2,I) = C(3,2,I)*PIVOT
 C(3,3,I) = C(3,3,I)*PIVOT
 DO 14 L=1, NRHS
 R(3,L,I) = R(3,L,I)*PIVOT
 14 CONTINUE
C
C------ back substitute everything
 DO 15 KPIV=2, 1, -1
 KP1 = KPIV+1
 DO 151 K=KP1, 3
 C(KPIV,1,I) = C(KPIV,1,I) - A(KPIV,K,I)*C(K,1,I)
 C(KPIV,2,I) = C(KPIV,2,I) - A(KPIV,K,I)*C(K,2,I)
 C(KPIV,3,I) = C(KPIV,3,I) - A(KPIV,K,I)*C(K,3,I)
 DO 1511 L=1, NRHS
 R(KPIV,L,I) = R(KPIV,L,I) - A(KPIV,K,I)*R(K,L,I)
 1511 CONTINUE
 151 CONTINUE
 15 CONTINUE
 1 CONTINUE
C
CCC** Backward sweep: Back substitution using upper block diagonal (Ci's).
 DO 2 I=N-1, 1, -1
 IP = I+1
 DO 21 L=1, NRHS
 DO 211 K=1, 3
 R(K,L,I) = R(K,L,I)
 & - (R(1,L,IP)*C(K,1,I)
 & + R(2,L,IP)*C(K,2,I)
 & + R(3,L,IP)*C(K,3,I))
 211 CONTINUE
 21 CONTINUE
 2 CONTINUE
C
 RETURN
 END ! B3SOLV

XFOILinterface/XFOIL/orrs/src/fscorr.f

 PROGRAM FSCORR
 PARAMETER (NHX=200)
 REAL H(NHX), M(NHX), LSQ(NHX), FUN(NHX), FCORR(NHX)
 REAL X(NHX), Y(NHX), Z(NHX)
C
 IDEV = 6
 SIZE = 8.0
 CH = 0.02
C
 HMAX = 10.0
 DH = 1.0
C
 FMAX = 0.5
 DF = 0.1
C
 PAR = 0.75
C
 HWT = 1.0/HMAX
 FWT = PAR/FMAX
C
 OPEN(7,FILE='hfun.fs',STATUS='OLD')
 DO 10 I=1, NHX
 READ(7,*,END=11) H(I),M(I),LSQ(I),FUN(I)
 10 CONTINUE
 11 CONTINUE
 N = I-1
 CLOSE(7)
C
 DO 20 I=1, N
 HB = 1.0/(H(I)-1.0)
ccc F = 0.22*(1.0 - (5.0*HB-1.0)**2) + 0.5*HB - 0.05 + 3.0*HB**3
C
 F = -0.05 + 2.7*HB - 5.5*HB**2 + 3.0*HB**3
C
 HK = H(I)
ccc TFS = (6.54*HK - 14.07)/HK**2
c
 TFS = 4.70*HB - 8.45*HB**2 + 3.41*HB**3
 AM = 2.0*F/TFS - 1.0
C
 Z(I) = M(I)
C
 Y(I) = AM
 X(I) = 10.0*HB

 FUN(I) = M(I)
 FCORR(I) = AM
C
CC F = 0.5*(BUH + 1.0)*TFS
C
C X(I) = 10.0*HB
CC
C F = 0.395*(1.0 - 5.8*(HB-0.485)**2)
C Y(I) = F
C Z(I) = FUN(I)*4.0/H(I)
CC
C FCORR(I) = 0.25*F*H(I)
C
 20 CONTINUE
C
C
 CALL PLOTS(0,-999,IDEV)
 CALL FACTOR(SIZE)
C
 CALL PLOT(8.0*CH,8.0*CH,-3)
C
 CALL PLOTON
C
 CALL XAXIS(0.0,0.0,1.0,DH*HWT,0.0,DH,CH,1)
 CALL YAXIS(0.0,0.0,PAR,DF*FWT,0.0,DF,CH,1)
C
 CALL XYPLOT(N,H,FUN ,0.0,HWT,0.0,FWT,1,0.3*CH,+1)
 CALL XYPLOT(N,H,FCORR,0.0,HWT,0.0,FWT,1,0.3*CH, 0)
C
 CALL XYPLOT(N,X,Z,0.0,HWT,0.0,FWT,1,0.3*CH,+1)
 CALL XYPLOT(N,X,Y,0.0,HWT,0.0,FWT,1,0.3*CH, 0)
C
 CALL PLOTOF
C
 WRITE(*,*) 'Hit <cr>'
 READ(*,1000) ANS
 1000 FORMAT(A4)
C
 CALL PLOT(0.0,0.0,+999)
 STOP
 END

XFOILinterface/XFOIL/orrs/src/fsrun.f

 PROGRAM FSRUN
 PARAMETER (NMAX=256)
 DIMENSION ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 CHARACTER*1 ANS
C
 LST = 1
 LRE = 1
C
 N = 256
 ETAE = 30.0
 GEO = 1.01
C
 IDEV = 6
 SIZE = 6.0
 IHARD = -999
C
 EWT = 1.0/ETAE
 UWT = 0.5
 CH = 0.02
C
 CALL PLOTS(0,IHARD,IDEV)
 CALL FACTOR(SIZE)
C
 CALL PLOT(0.7,0.1,-3)
C
 CALL NEWPEN(1)
C
 CALL PLOT(0.0,0.0,3)
 CALL PLOT(UWT*1.0,0.0,2)
 CALL PLOT(0.0,0.0,3)
 CALL PLOT(0.0,EWT*ETAE,2)
C
 WRITE(*,*) 'Enter H1, H2, dH'
 READ (*,*) H1,H2,DH
C
 NH = INT((H2-H1)/DH) + 1
C
 open(7,file='hfuns.fs',status='unknown')
c
 CALL NEWPEN(3)
 DO 10 IH=1, NH
 H = H1 + DH*FLOAT(IH-1)
 CALL FS(3,2,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C---------------------
c BU = H
c CALL FS(1,1,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C---------------------
C
 DSI = 0.0
 THI = 0.0
 TSI = 0.0
 CDN = 0.0
 DO 103 I=1, N-1
 UA = 0.5*(U(I+1) + U(I))
 DETA = ETA(I+1) - ETA(I)
C
 DSI = DSI + (1.0 - UA) *DETA
 THI = THI + (1.0 - UA)*UA*DETA
 TSI = TSI + (1.0 - UA*UA)*UA*DETA
C
 CDN = CDN + (U(I+1) - U(I))**2 / DETA
 103 CONTINUE
C
 HK = DSI/THI
 HS = TSI/THI
C
 CDN = CDN *THI * 2.0/HS
 CFN = S(1)*THI
C
 DSI = DSI*DELTA
 THI = THI*DELTA
 TSI = TSI*DELTA
C
 BUF = (CFN - CDN)/(HK-1.0) / THI**2
 write(*,*) H, BU, THI**2, 0.5*(BU + 1.0) * THI**2
 write(7,*) H, BU, THI**2, 0.5*(BU + 1.0) * THI**2
c
 CALL PLOTON
 CALL PLOT(UWT*U(1),EWT*ETA(1),3)
 DO 105 I=2, N
 CALL PLOT(UWT*U(I),EWT*ETA(I),2)
 105 CONTINUE
 CALL PLOTOF
 10 CONTINUE
c
 close(7)
C
c WRITE(6,*) 'Hit <cr>'
c READ (5,8000) ANS
c 8000 FORMAT(A1)
C
 CALL PLOT(0.0,0.0,+999)
 STOP
 END

XFOILinterface/XFOIL/src/getarg.f

 SUBROUTINE GETARG(K,ARG)
 CHARACTER*(*) ARG
C
 CALL GETARG_(K,ARG)
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/getarg0.f

 SUBROUTINE GETARG0(IARG,ARG)
C--
C Same as GETARG, but...
C
C ...in the case of Intel Fortran, this one
C doesn't barf if there's no Unix argument
C (just returns blank string instead)
C--
 CHARACTER*(*) ARG
C
 NARG = IARGC()
 IF(NARG.GE.IARG) THEN
 CALL GETARG(IARG,ARG)
 ELSE
 ARG = ' '
 ENDIF
C
 RETURN
 END ! GETARG0

XFOILinterface/XFOIL/plotlib/examples/gridtest.f

C***
C Module: gridtest.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C Example/Test of grid routine
C Sets up two plots, each containing a grid with a label and symbol line
C First plot comes up as B&W in portrait window
C Second plot comes up as color in larger landscape window
C
 INCLUDE 'colors.inc'
 CHARACTER INP*10
 DATA LMASK1, LMASK2 / -32640, -30584 /
 DATA LMASK3, LMASK4/ -21846, Z'AAAAAAAA'/
C
C---- number of grid intervals per axis annotation interval
 NGR = 2
C
 XMIN=.1
 YMIN=.1
 XMAX=.9
 YMAX=.6
 XDEL = 0.1
 YDEL = 0.1
 XSF = 1.0
 YSF = 1.0
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)
C
 CH = 0.03
 SH = 0.2*CH
C
C---What devices to plot to?
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) INP
 IOUT = -1
 if(INP.NE.' ') READ(INP,*,end=2000,err=2000) IOUT
 2 IF(IOUT.LT.0) IDEV = 1
 IF(IOUT.EQ.0) IDEV = 3
 IF(IOUT.GE.1) IDEV = 5
C
C---plot #1 in B&W portrait mode 0.5 of screen height
 CALL PLINITIALIZE
 CALL PLOPEN(-0.5,0,IDEV)
 CALL PLOT(0.1,0.1,-3)
 CALL NEWPEN(1)
 CALL NEWFACTOR(10.)
 CALL PLCHAR(0.2,0.2,1.2*CH,'TEST FOR GRID',0.0,13)
 CALL PLSYMB(999.,0.2,CH,1,0.0,0)
 CALL PLSYMB(0.2,0.2,CH,1,0.0,-1)
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK4)
 CALL PLFLUSH
 PAUSE
 CALL PLOT(0.,0.,-999)
C
C---plot #2 in landscape mode 0.7 of screen width
C (green grid with red lettering with blue symbol line)
 CALL PLOPEN(0.7,0,IDEV)
 CALL PLOT(0.1,0.1,-3)
 CALL NEWFACTOR(10.)
 CALL NEWPEN(1)
 NXG = NGR * INT((XMAX-XMIN)/XDEL + 0.001)
 NYG = NGR * INT((YMAX-YMIN)/YDEL + 0.001)
 DXG = XSF*XDEL / FLOAT(NGR)
 DYG = YSF*YDEL / FLOAT(NGR)

 call NEWCOLORNAME('green')
 CALL PLGRID(0.0,0.0, NXG,DXG, NYG,DYG, LMASK2)

 CALL NEWPEN(1)
 CALL NEWCOLORRGB(255,0,0)
 CALL PLCHAR(0.2,0.2,1.2*CH,'TEST FOR GRID',0.0,13)
 call NEWCOLOR(BLUE)
 call NEWPEN(1)
 CALL PLSYMB(999.,0.2,CH,1,0.0,0)
 CALL PLSYMB(0.2,0.2,CH,1,0.0,-1)
 CALL PLFLUSH
 PAUSE
 CALL PLCLOSE
C
 1000 FORMAT(A)
 2000 STOP
 END

XFOILinterface/XFOIL/src/gui.f

 SUBROUTINE GUIBOX(K, X1,X2,Y1,Y2, COLOR, LABEL)
 CHARACTER*(*) COLOR, LABEL
C--
C Plots a GUI-button box with label string.
C Places the box coordinates into the COM_GUI
C arrays associated with the button index K.
C FUNCTION LGUI can then determine if a cursor
C falls within box K.
C--
 COMMON /COM_GUI/ XGUI(2,20), YGUI(2,20)
C
 IF(K.LT.1 .OR. K.GT.20) RETURN
C
 CALL GETORIGIN(XORG,YORG)
 CALL GETFACTORS(XSCALE,YSCALE)
C
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME(COLOR)
C
C---- set GUI window
 XGUI(1,K) = (X1 - XORG)/XSCALE
 XGUI(2,K) = (X2 - XORG)/XSCALE
 YGUI(1,K) = (Y1 - YORG)/YSCALE
 YGUI(2,K) = (Y2 - YORG)/YSCALE
C
C---- plot GUI window
 CALL PLOT(XGUI(1,K),YGUI(1,K),3)
 CALL PLOT(XGUI(2,K),YGUI(1,K),2)
 CALL PLOT(XGUI(2,K),YGUI(2,K),2)
 CALL PLOT(XGUI(1,K),YGUI(2,K),2)
 CALL PLOT(XGUI(1,K),YGUI(1,K),2)
C
 NL = LEN(LABEL)
 CHA = MIN((XGUI(2,K)-XGUI(1,K))/FLOAT(NL+1),
 & (YGUI(2,K)-YGUI(1,K))/1.8)
 XCA = 0.5*(XGUI(2,K)+XGUI(1,K)) - 0.5*CHA*FLOAT(NL) + 0.2*CHA
 YCA = 0.5*(YGUI(2,K)+YGUI(1,K)) - 0.6*CHA
 CALL PLCHAR(XCA,YCA,CHA,LABEL,0.0,NL)
C
 CALL NEWCOLOR(ICOL0)
 RETURN
 END ! GUIBOX

 LOGICAL FUNCTION LGUI(K,XC,YC)
C---
C Returns T if location XC,YC falls within
C the GUI(K) window defined in GUIBOX.
C---
 COMMON /COM_GUI/ XGUI(2,20), YGUI(2,20)
C
 LGUI = .FALSE.
 IF(K.LT.1 .OR. K.GT.20) RETURN
C
 LGUI = XC .GT. XGUI(1,K) .AND.
 & XC .LE. XGUI(2,K) .AND.
 & YC .GT. YGUI(1,K) .AND.
 & YC .LE. YGUI(2,K)
C
 RETURN
 END ! LGUI

XFOILinterface/XFOIL/plotlib/gw_subs.f

C***
C Module: gw_subs.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C***
C --- Xplot11 driver for X windows plotting to screen
C
C Version 4.46 11/28/01
C
C Notes: These routines handle the interface to the graphics screen
C window. Not normally called by the user.
C The interface file Xwin.c is needed to link to X11
C***

 subroutine gw_setup(scrn_fraction)
C---Sets default size of screen window
C scrn_fraction relative size (0->1) of graphics window to root window
C size defaults to 520x670 if scrn_fraction<0.0 and aspect ratio is set
C by 8.5"x11.0" page size.
C
 include 'pltlib.inc'
 DATA w1size, w2size / DEFAULT_PAGEHEIGHT, DEFAULT_PAGEWIDTH /
C
 G_SCRNFRAC = abs(scrn_fraction)
 G_SCRNFRAC = MIN(1.0,G_SCRNFRAC)
 IF(scrn_fraction .EQ. 0.0) G_SCRNFRAC = DEFAULT_SCREENFRACTION
C
C---set default window size
 if(scrn_fraction .GE. 0.0) then
 X_PAGE = w1size
 Y_PAGE = w2size
 I_PAGETYPE = Page_Landscape
 else
 X_PAGE = w2size
 Y_PAGE = w1size
 I_PAGETYPE = Page_Portrait
 endif
C
C---window size in absolute units (pseudo-inches)
 X_WIND = X_PAGE
 Y_WIND = Y_PAGE
C
C---location of upper left window corner
 GX_LOC = 0
 GY_LOC = 0
C
C---location of plot origin on window
 GX_ORG = 0
 GY_ORG = 0
C
 return
 end

 subroutine gw_init
C---Initializes graphics screen plotting and global plot variables
 include 'pltlib.inc'
C
 ixsiz = GX_SIZ
 iysiz = GY_SIZ
 ixstart = GX_LOC
 iystart = GY_LOC
 scrnfrac = MIN(1.0,G_SCRNFRAC)
 A_RATIO = Y_WIND/X_WIND
C
 if(.NOT.LGW_OPEN) then
C---Open display and window if not already open
 call gwxopen(iwidth,iheight,idepth)
 G_WIDTH = iwidth
 G_HEIGHT = iheight
 G_DEPTH = idepth
C---Adjust window size if fraction of root window is specified
 if(scrnfrac.GT.0.0) then
 ix = ifix(scrnfrac*float(G_WIDTH))
 iy = ifix(scrnfrac*float(G_HEIGHT))
 if(ix*A_RATIO.LT.iy) then
 ixsiz = ix
 iysiz = ifix(A_RATIO*float(ix))
 else
 iysiz = iy
 ixsiz = ifix(float(iy)/A_RATIO)
 endif
 endif
 ixsiz = MIN(ixsiz,G_WIDTH)
 iysiz = MIN(iysiz,G_HEIGHT)
 call gwxwinopen(ixstart,iystart,ixsiz,iysiz)
C---Update flags for reference
 LGW_OPEN = .TRUE.
C---Graphics window color is not used if less than 4 bits (16 colors)
C are available
 LGW_COLOR = (G_DEPTH.gt.4)
 if(.NOT.LGW_COLOR) then
 write(*,*) 'Warning: color depth < 4 bits, color not used...'
 endif
C
C---initial cursor warp will be to middle of window
 GX_SIZ = ixsiz
 GY_SIZ = iysiz
 GX_CRS = GX_ORG + GX_SIZ/2
 GY_CRS = GY_ORG + GY_SIZ/2
C
 else
C
C---Window already open, resize if specified
 if(LGW_RESIZE) then
C
 ixorig = ixsiz
 iyorig = iysiz
C---Resize window if new fractional size of root window is specified
 if(scrnfrac.GT.0.0) then
 ix = ifix(scrnfrac*float(G_WIDTH))
 iy = ifix(scrnfrac*float(G_HEIGHT))
 if(ix*A_RATIO.LT.iy) then
 ixsiz = ix
 iysiz = ifix(A_RATIO*float(ix))
 else
 iysiz = iy
 ixsiz = ifix(float(iy)/A_RATIO)
 endif
 else
 write(*,*) 'Warning: scrnfrac=0 specified, ignoring...'
 stop
 endif
 ixsiz = MIN(ixsiz,G_WIDTH)
 iysiz = MIN(iysiz,G_HEIGHT)
 call gwxresize(ixsiz,iysiz)
 call gwxstatus(ixstart,iystart,ixsz,iysz)
 if(ixsz.NE.ixsiz .OR. iysz.NE.iysiz) then
 write(*,*) 'Window resize fails, using old window size'
 ixsiz = ixorig
 iysiz = iyorig
 endif
C---Update flags for reference
 LGW_RESIZE = .FALSE.
 LGW_CHANGED = .TRUE.
C
 else
C
C...Graphics window can be moved & resized, so reset position & size parameters
 call gwxstatus(ixstart,iystart,ixsiz,iysiz)
 LGW_CHANGED = (ixsiz.ne.GX_SIZ .or. iysiz.ne.GY_SIZ)
C
 endif
C
 call gwxclear
 endif
C
C---Update size and origin
 GX_LOC = ixstart
 GY_LOC = iystart
 GX_SIZ = ixsiz
 GY_SIZ = iysiz
C
C---initial cursor warp will be to middle of window
cc GX_CRS = GX_ORG + GX_SIZ/2
cc GY_CRS = GY_ORG + GY_SIZ/2
C
C...Set new scale so that each window dimension is as big as possible
C but no bigger than X_PAGE or Y_PAGE.
 G_SCALE = max(float(GX_SIZ-1)/X_PAGE,
 & float(GY_SIZ-1)/Y_PAGE)
C
C...New window dimensions
 X_WIND = float(GX_SIZ-1)/G_SCALE
 Y_WIND = float(GY_SIZ-1)/G_SCALE
C
 return
 end

 subroutine gw_line(X1,Y1,X2,Y2)
C---Plots line segment to screen,
C specified in absolute coordinates from X1,Y1 to X2,Y2
 include 'pltlib.inc'
C
 if(LGW_OPEN) then
C...reverse Y axis for X11 plotting
 ix1 = GX_ORG + ifix(G_SCALE*X1)
 ix2 = GX_ORG + ifix(G_SCALE*X2)
 iy1 = GY_SIZ - (GY_ORG + ifix(G_SCALE*Y1)) - 1
 iy2 = GY_SIZ - (GY_ORG + ifix(G_SCALE*Y2)) - 1
 call gwxline(ix1,iy1,ix2,iy2)
 endif
C
 return
 end

 subroutine gw_curs(X,Y,kchar)
C---Gets location of mouse click in graphics window in
C---absolute coordinates
 include 'pltlib.inc'
C
 if(LGW_OPEN) then
C
C------ set previous cursor position (if any) for warping destination
 ix = GX_ORG + GX_CRS
 iy = GY_SIZ - (GY_ORG + GY_CRS)
C
 call gwxcurs(ix,iy,kchar)
 GX_CRS = ix - GX_ORG
 GY_CRS = GY_SIZ - iy - GY_ORG
C
 X = float(GX_CRS)/G_SCALE
 Y = float(GY_CRS)/G_SCALE
C
 endif
 return
 end

 subroutine gw_revflag
C---Gets reverse video flag from users environment settings
 include 'pltlib.inc'
C
 call gwxrevflag(irev)
 LGW_REVVIDEO = (irev.ne.0)
C
 return
 end

 subroutine gw_endplot
C---Flushes current graphics to window and returns control to
C graphics window temporarily
 include 'pltlib.inc'
C
 if(LGW_OPEN) then
 call gwxflush
 endif
C
 return
 end

 subroutine gw_pen(ipen)
C...Sets pen width for screen display
 include 'pltlib.inc'
 dimension ipmap(5)
c data ipmap / 0, 0, 2, 3, 4 / <- too wide!
 data ipmap / 0, 0, 1, 1, 2 /
C
 ip = max(1,ipen)
 ip = min(5,ip)
 if(LGW_OPEN) then
 call gwxpen(ipmap(ip))
 endif
C
 return
 end

 subroutine gw_linepattern(ipat)
C...Sets pen width for screen display
 include 'pltlib.inc'
C
 if(LGW_OPEN) call gwxdash(ipat)
 return
 end

 subroutine gw_flush
C...Flushes out buffered plotting calls to display
 include 'pltlib.inc'
C
 if(LGW_OPEN) call gwxflush
 return
 end

 subroutine gw_drawtoscreen
C...Sets graphics destination to screen
 include 'pltlib.inc'
C
 if(LGW_OPEN) call gwxdrawtowindow
 return
 end

 subroutine gw_drawtobuffer
C...Sets graphics destination to background buffer
 include 'pltlib.inc'
C
 if(LGW_OPEN) call gwxdrawtobuffer
 return
 end

 subroutine gw_showbuffer
C...Displays graphics drawn into background buffer on screen
C This does not change the current destination for drawing commands
 include 'pltlib.inc'
C
 if(LGW_OPEN) call gwxdisplaybuffer
 return
 end

 subroutine gw_clear
C...Erases graphics display
 include 'pltlib.inc'
C
 if(LGW_OPEN) call gwxclear
 return
 end

 subroutine gw_setsize(nx,ny)
C...Resizes X-Window X,Y size to nx,ny in pixels
 include 'pltlib.inc'
C
 if(nx.LE.10) then
 write(*,*) 'No Resize: Window size too small: ',nx,ny
 return
 endif
C
C...Get current window parameters if display is open
 if(LGW_OPEN) then
 call gwxstatus(ixstart,iystart,ixsiz,iysiz)
 LGW_CHANGED = (ixsiz.ne.GX_SIZ .or. iysiz.ne.GY_SIZ)
 GX_LOC = ixstart
 GY_LOC = iystart
 GX_SIZ = ixsiz
 GY_SIZ = iysiz
 endif
C
C...Resize and replot the window contents
 if(LGW_OPEN) then
 call gwxresize(nx,ny)
 call gwxstatus(ixstart,iystart,ixsz,iysz)
 if(ixsz.NE.ixsiz .OR. iysz.NE.iysiz) then
 write(*,*) 'Window resize fails, using old window size'
 ixsz = ixsiz
 iysz = iysiz
 endif
C---Update flags and size for reference
 LGW_RESIZE = .FALSE.
 LGW_CHANGED = .TRUE.
 GX_SIZ = ixsz
 GY_SIZ = iysz
C
C---initial cursor warp will be to middle of window
 GX_CRS = GX_ORG + GX_SIZ/2
 GY_CRS = GY_ORG + GY_SIZ/2
C---Set new scale so that each window dimension is as big as possible
C but no bigger than X_PAGE or Y_PAGE.
 G_SCALE = max(float(GX_SIZ-1)/X_PAGE,
 & float(GY_SIZ-1)/Y_PAGE)
C---New window dimensions
 X_WIND = float(GX_SIZ-1)/G_SCALE
 Y_WIND = float(GY_SIZ-1)/G_SCALE
C---refresh the newly sized window
 call REPLOT(1)
 endif
 return
 end

 subroutine gw_getsize(nx,ny,ppi)
C...Returns X Window X,Y size in pixels,
C and plotting scale in pixels/(absolute coordinate)
 include 'pltlib.inc'
C
 if(LGW_OPEN) then
 nx = GX_SIZ
 ny = GY_SIZ
 ppi = G_SCALE
 endif
 return
 end

 subroutine gw_close
C---Closes graphics window
 include 'pltlib.inc'
C
 if(LGW_OPEN) then
 call gwxclose
 LGW_OPEN = .FALSE.
 endif
 return
 end

 subroutine gw_cname2rgb(colorname,ired,igrn,iblu)
C...Determines RGB color components of color defined the color name
C using the X window color database.
C
C colorname = name of color (must be in X windows rgb.txt file)
C
C The returned color components are
C ired = 0-255 red component (-1 for no color)
C igrn = 0-255 green component
C iblu = 0-255 blue component
C
 include 'pltlib.inc'
 character colorname*(*), cname*80
 ired = -1
 igrn = 0
 iblu = 0
ccc nc = len(colorname)
 cname = colorname
 call g_strip(cname,nc)
 if(LGW_OPEN) then
 call gwxcolorname2rgb(ired,igrn,iblu,nc,cname)
 endif
 return
 end

 subroutine gw_allocrgbcolor(ired,igrn,iblu,icolorindex)
C...Allocates plotting color as defined by RGB components
C The component colors are
C ired = 0-255 red component
C igrn = 0-255 green component
C iblu = 0-255 blue component
C
C icolorindex = returned color index of allocated color in window colormap
C
 include 'pltlib.inc'
 ic = -1
 if(LGW_OPEN .AND. LGW_COLOR) then
 ir = ired
 ig = igrn
 ib = iblu
 call gwxallocrgbcolor(ir,ig,ib,ic)
 icolorindex = ic
 endif
 return
 end

 subroutine gw_color(icolor)
C...Sets foreground plotting color
C The colors are defined by the colormap
C
C The color in the colormap table and colorindex go from 0 -> N_COLOR
C
 include 'pltlib.inc'
c
 if(LGW_OPEN .AND. LGW_COLOR) then
c
 icol = mod(icolor,N_COLOR+1)
 if(icolor.le.0 .OR. icolor.gt.N_COLOR) then
 write(*,*) '*** gw_color - color index out of bounds ',icolor
 return
 endif
C
C...Reverse white and black only in video window if LGW_REVVIDEO is set
 if(LGW_REVVIDEO) then
 if(icolor.eq.2) icol = 1
 if(icolor.eq.1) icol = 2
 endif
C
C...Check colorindex<0 for this color, if so this is an unallocated color
 ic = G_COLOR_CINDEX(icol)
C
C...If color is unallocated, allocate it using the RGB components
 if (ic.lt.0) then
 irgb = COLOR_RGB(icol)
 irg = irgb/256
 ired = irg/256
 igrn = irg - 256*ired
 iblu = irgb - 256*irg
 call gw_allocrgbcolor(ired,igrn,iblu,ic)
C
C...This gives the colorindex in the screen colormap (or -1 for no allocation)
 if(ic.ge.0) G_COLOR_CINDEX(icol) = ic
 endif
C
C...Now, if colorindex is valid, set the color
 if(ic.ge.0) call gwxsetcolor(ic)
c
 endif
 return
 end

 subroutine gw_bgcolor(icolor)
C...Sets background plotting color
C The colors are defined by the colormap
C
C The color in the colormap table and colorindex go from 0 -> N_COLOR
C
 include 'pltlib.inc'
c
 if(LGW_OPEN .AND. LGW_COLOR) then
c
 icol = mod(icolor,N_COLOR+1)
 if(icolor.le.0 .OR. icolor.gt.N_COLOR) then
 write(*,*) '*** gw_bgcolor - color index out of bounds ',
 & icolor
 return
 endif
C
C...Reverse white and black only in video window if LGW_REVVIDEO is set
 if(LGW_REVVIDEO) then
 if(icolor.eq.2) icol = 1
 if(icolor.eq.1) icol = 2
 endif
C
C...Check colorindex<0 for this color, if so this is an unallocated color
 ic = G_COLOR_CINDEX(icol)
C
C...If color is unallocated, allocate it using the RGB components
 if (ic.lt.0) then
 irgb = COLOR_RGB(icol)
 irg = irgb/256
 ired = irg/256
 igrn = irg - 256*ired
 iblu = irgb - 256*irg
 call gw_allocrgbcolor(ired,igrn,iblu,ic)
C
C...This gives the colorindex in the screen colormap (or -1 for no allocation)
 if(ic.ge.0) G_COLOR_CINDEX(icol) = ic
 endif
C
C...Now, if colorindex is valid, set the color
 if(ic.ge.0) call gwxsetbgcolor(ic)
c
 endif
 return
 end

 subroutine gw_newcmap
C...Sets up new colormap, old colormap is flushed
 include 'pltlib.inc'
 if(LGW_OPEN .AND. LGW_COLOR) then
 do i = 1, N_COLOR
 ic = G_COLOR_CINDEX(i)
 if(ic.gt.0) call gwxfreecolor(ic)
 end do
 endif
 return
 end

 subroutine gw_polyline(X,Y,n,ifill)
C...Plots polyline (optionally filled) to screen in foreground color
C X,Y polyline X,Y absolute coordinates
C n number of X,Y points
C ifill fill flag, 0 for no fill, 1 for filled polyline
C
 include 'pltlib.inc'
 dimension X(n), Y(n), ix(MaxPolyLine), iy(MaxPolyLine)
C
 if(n.GT.MaxPolyLine) then
 write(*,*) 'gw_polyline: array overflow. Increase MaxPolyline.'
 return
 endif
c
 if(n.LE.1) return
 if(LGW_OPEN) then
C...reverse Y axis for X11 plotting
 do i = 1, n
 ix(i) = GX_ORG + ifix(G_SCALE*X(i))
 iy(i) = GY_SIZ - (GY_ORG + ifix(G_SCALE*Y(i))) - 1
 end do
 if(ifill.EQ.0) then
 call gwxlinez(ix,iy,n)
 else
 call gwxpoly(ix,iy,n)
 endif
 endif
 return
 end

 subroutine g_strip(strng,n)
 character strng*(*)
c
 nc = len(strng)
 n = nc
 if (n.le.1) return
c
c---- Strips leading blanks off string
 if(strng(1:1).EQ.' ') then
c
c---- find first non-blank character
 do i=2, nc
 if(strng(i:i).NE.' ') go to 10
 end do
 go to 20
 10 ioff = i
C
C---- shift STRNG so first character is non-blank
 strng(1:nc-ioff) = strng(ioff:nc)
C---- pad tail of STRNG with blanks
 strng(nc-ioff+1:nc) = ' '
c
 endif
c
c---- find the index of the last non-blank charater in NAME
 20 do n=nc, 1, -1
 if(strng(n:n).NE.' ') go to 40
 end do
 40 return
 end

XFOILinterface/XFOIL/orrs/src/intai.f

 PROGRAM INTAI
 PARAMETER (NH=14, NF=20, NR=100)
 REAL H(NH), A(NR,NF,NH), R(NR,NH)
 REAL M(NH), L(NH)
 REAL F(NF,NH)
 REAL FEN(NR)
 REAL RTN(7)
 INTEGER IH1(7),IH2(7)
C
 CHARACTER*1 ANS
C
 DATA H / 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0,
 & 3.4, 4.0, 5.0, 7.0, 10.0, 15.0, 20.0 /
C
 DATA M / 1.4240, 0.3225, 0.1231, 0.0408, -.0031, -.0475, -.0683,
 & -.0852, -.0904, -.0868, -.0724, -.0568, -.0415, -.0331 /
C
 DATA L / 0.0637, 0.1876, 0.2902, 0.3756, 0.4471, 0.5569, 0.6330,
 & 0.7168, 0.7540, 0.7153, 0.5731, 0.4083, 0.2582, 0.1786 /
C
 RTN(1) = 10000.0
 RTN(2) = 5000.0
 RTN(3) = 2000.0
 RTN(4) = 500.0
 RTN(5) = 200.0
 RTN(6) = 100.0
 RTN(7) = 50.0
C
 IH1(1) = 1
 IH2(1) = 3
C
 IH1(2) = 3
 IH2(2) = 5
C
 IH1(3) = 5
 IH2(3) = 7
C
 IH1(4) = 7
 IH2(4) = 9
C
 IH1(5) = 9
 IH2(5) = 11
C
 IH1(6) = 11
 IH2(6) = 13
C
 IH1(7) = 13
 IH2(7) = 14
C
 NRANN = 10
C
 ANN = 20.0
 NANN = 10
C
ccc LMASK = -32640
 LMASK = -30584
ccc LMASK = -21846
C
 IDEV = 1
 IDEVRP = 2
C
 SIZE = 8.0
 IPSLU = 0
 SCRNFR = 0.85
C
 CALL PLINITIALIZE
C
 PAR = 0.8
 CH = 0.02
C
 DO 5 IH=1, NH
 write(*,*) ih
 CALL NCALC(H(IH),M(IH),L(IH), NR,R(1,IH), NF,F(1,IH),A(1,1,IH))
 5 CONTINUE
C
C
 DO 100 IPLOT=1, 7
 IF(IPLOT.GT.1) CALL PLOT(0.0,0.0,-999)
C
 CALL PLOPEN(SCRNFR,IPSLU,IDEV)
 CALL NEWFACTOR(SIZE)
 CALL PLOT(5.0*CH,5.0*CH,-3)
C
 DELR = RTN(IPLOT)/FLOAT(NRANN)
 RWT = 1.0/RTN(IPLOT)
 CALL XAXIS(0.0,0.0,1.0,RWT*DELR,0.0,DELR,CH,-1)
C
 DA = ANN/FLOAT(NANN)
 AWT = PAR/ANN
 CALL YAXIS(0.0,0.0,PAR,AWT*DA,0.0,DA,CH,-1)
C
 CALL PLGRID(0.0,0.0,NRANN,RWT*DELR,NANN,AWT*DA,LMASK)
C
C
 DO 10 IH=IH1(IPLOT), IH2(IPLOT)
 DO 102 IR=1, NR
 CALL DAMPL(H(IH),R(IR,IH),FEN(IR))
 102 CONTINUE
C
 CALL XYPLOT(NR,R(1,IH),FEN,0.0,RWT,0.0,AWT,2,0.0,0)
C
 DO 105 IR=2, NR
 IFMAX = 1
 AFMAX = 0.0
 DO 1052 IF=1, NF
 IF(A(IR,IF,IH) .GT. AFMAX) THEN
 AFMAX = A(IR,IF,IH)
 IFMAX = IF
 ENDIF
 1052 CONTINUE
 IF(AFMAX.EQ.0.0) GO TO 105
C
ccc DO 1055 IF=IFMAX, IFMAX
 DO 1055 IF=1, NF
 XPLT1 = RWT*R(IR-1,IH)
 YPLT1 = AWT*A(IR-1,IF,IH)
 XPLT2 = RWT*R(IR,IH)
 YPLT2 = AWT*A(IR,IF,IH)
 IF(YPLT2 .LE. YPLT1) GO TO 1055
 IF(YPLT2 .GT. PAR) GO TO 1055
 IF(XPLT2 .GT. 1.0) GO TO 10
C
 CALL PLOT(XPLT1,YPLT1,3)
 CALL PLOT(XPLT2,YPLT2,2)
 1055 CONTINUE
 105 CONTINUE
 10 CONTINUE
C
 CALL PLFLUSH
C
 WRITE(*,*) 'Hardcopy ? N'
 READ(*,8000) ANS
 8000 FORMAT(A)
 IF(INDEX('Yy',ANS).NE.0) CALL REPLOT(IDEVRP)
C
 CALL PLEND
C
 100 CONTINUE
C
 CALL PLCLOSE
 STOP
 END

 SUBROUTINE NCALC(HK,AM,AL, NR,RT, NF,F, A)
C---
C Computes N factor for a range of frequencies
C and Reynolds numbers by integrating growth rates.
C
C Input: HK shape parameter
C AM x/Ue dUe/dx
C AL theta^2 / nu dUe/dx
C NR number of Rthetas
C NF number of frequencies
C
C Output: RT(.) Rtheta values
C F(.) frequency values
C A(..) TS wave amplitudes
C---
 REAL RT(NR), F(NF), A(NR,NF)
 LOGICAL OK
C
 DW = -2.00/FLOAT(NF-1)
C
 DO 10 IR=1, NR
 DO 105 IF=1, NF
 A(IR,IF) = 0.0
 105 CONTINUE
 10 CONTINUE
C
 HKB = 1.0 / (HK - 1.0)
 RDLC = 2.23 + 1.35*HKB + 0.85*TANH(10.4*HKB - 7.07) - 0.1
 RDC = 10.0**RDLC
 RTC = RDC/HK
C
 WRITE(*,*) 'H Rcr =', HK, RTC
C
 IF(HK.LE.2.21) THEN
 RTN = 3.0*RTC
 DW = -0.20/FLOAT(NF-1)
 WL1 = -1.7
 ELSE IF(HK.LE.2.31) THEN
 RTN = 4.0*RTC
 DW = -0.30/FLOAT(NF-1)
 WL1 = -1.6
 ELSE IF(HK.LE.2.41) THEN
 RTN = 8.0*RTC
 DW = -0.7/FLOAT(NF-1)
 WL1 = -1.5
 ELSE IF(HK.LE.2.51) THEN
 RTN = 12.0*RTC
 DW = -1.20/FLOAT(NF-1)
 WL1 = -1.4
 ELSE IF(HK.LE.2.61) THEN
 RTN = 20.0*RTC
 DW = -1.75/FLOAT(NF-1)
 WL1 = -1.2
 ELSE IF(HK.LE.2.81) THEN
 RTN = 30.0*RTC
 DW = -2.00/FLOAT(NF-1)
 WL1 = -1.0
 ELSE
 RTN = 50.0*RTC
 DW = -2.25/FLOAT(NF-1)
 WL1 = -0.7
 ENDIF
C
ccc DW = -2.00/FLOAT(NF-1)
C
C
 GEO = (RTN/RTC)**(1.0/FLOAT(NR-1))
 RT(1) = RTC
 DO 20 IR=2, NR
 RT(IR) = RT(IR-1)*GEO
 20 CONTINUE
C
 21 ISTART = 1
C
 REXP = (1.0 - 3.0*AM)/(1.0 + AM)
 AFAC = 0.5*(1.0 + AM) * AL
c
ccc write(*,*) rexp, afac
C
 IR = ISTART
 UOT1 = RT(IR)**REXP
C
 DO 30 IF=1, NF
 WLOG = WL1 + DW*FLOAT(IF-1)
 F(IF) = 10.0 ** WLOG
 30 CONTINUE
C
 DO 40 IR=ISTART+1, NR
 IRM = IR-1
C
 DRT = RT(IR) - RT(IRM)
 RSP = 0.5*(RT(IR) + RT(IRM))
 HSP = HK
 HSP = AMIN1(HSP , 19.999)
C
 DO 405 IF=1, NF
 UOT = RSP**REXP
 FSP = F(IF) * (UOT/UOT1)
 CALL OSMAP(RSP,FSP,HSP,
 & AR,
 & AR_R, AR_F, AR_H,
 & ARF_R,ARF_F,ARF_H ,
 & AI,
 & AI_R, AI_F, AI_H,
 & AIF_R,AIF_F,AIF_H , OK)
C
 IF(IR .EQ. ISTART+1) THEN
 IF(AI.LT.0.0) WRITE(*,*) 'Rcrit too high. H =', HSP
 ENDIF
C
 IF(OK) THEN
 DNDRT = -AI/AFAC
 ELSE
 DNDRT = 0.
 ENDIF
C
 A(IR,IF) = A(IRM,IF) + DNDRT * DRT
 A(IR,IF) = MAX(A(IR,IF) , 0.0)
 405 CONTINUE
 40 CONTINUE
C
 RETURN
 END

 SUBROUTINE DAMPL(H,RT,AN)
C--
C Returns envelope amplitude for a similar flow.
C
C Input: H shape parameter
C RT Rtheta
C
C Output: AN n-factor (envelope amplitude)
C--
 HMI = H - 1.0
C
 RLCRIT = 2.492/HMI**0.43 + 0.7*(1.0 + TANH(14.0/HMI - 9.24))
 RCRIT = 10.0**RLCRIT
C
 AN = 0.0
 IF(RT .LE. RCRIT) RETURN
C
 DNDR = 0.028*HMI - 0.0345*EXP(-(3.87/HMI - 2.52)**2)
C
 AN = DNDR*(RT - RCRIT)
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/io.f

 SUBROUTINE READOS(FLIST,IFORM,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C--
C Reads Orr-Sommerfeld data files in binary or ascii format.
C Data is spatial amplification complex wavenumber
C ar(Re,w,H) ai(Re,w,H)
C stored on a R,W,H grid
C R = ln(Re)
C W = ln(w) - 0.5 ln(Re)
C H = H
C
C Input
C FLIST name of text file containing file prefixes to be read
C IFORM -1=unknown
C 0=binary
C 1=ascii
C
C Output
C N(h) number of points across BL, i=1..N
C NMAX max dimension of N
C ETA(i,h) BL y coordinate
C U(i,h) velocity profile
C S(i,h) shear profile dU/deta
C NRP(h) number of RTL values, r=1..NRP
C NWP(h) number of WSL values, w=1..NWP
C NHP number of H values, h=1..NHP
C RTL(r,h) R values
C WSL(w,h) W values
C HH(h) H values
C AR(r,w,h) real wavenumber
C AI(r,w,h) imaginary wavenumber
C
C--
 CHARACTER*(*) FLIST
 DIMENSION N(NHX), NRP(NHX),NWP(NHX)
 DIMENSION ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 DIMENSION AR(NRX,NWX,NHX),AI(NRX,NWX,NHX)
 DIMENSION RTL(NRX,NHX), WSL(NWX,NHX), HH(NHX)
 CHARACTER*80 FNAME
C
 OPEN(10,FILE=FLIST,STATUS='OLD')
C
 WRITE(*,*) 'Reading...'
 DO 1000 IH=1, NHX
 5 READ(10,5000,END=1001) FNAME
 5000 FORMAT(A)
C
C------ skip comment line
 IF(INDEX('#!',FNAME(1:1)) .NE. 0) GO TO 5
C
C------ strip off leading blanks
 10 CONTINUE
 IF(FNAME(1:1).EQ.' ') THEN
 FNAME = FNAME(2:80)
 GO TO 10
 ENDIF
C
 IF(IFORM.LE.-1) THEN
C------- first assume it's an ascii file
 KFORM = 1
C
C------- try reading it as a binary
 OPEN(9,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=1001)
 READ(9,ERR=11) NTEST, HTEST
C
 IF(NTEST.GE.1 .AND. NTEST.LE.NMAX) THEN
C-------- point index within bounds... looks like it's binary
 KFORM = 0
 ENDIF
C
 11 CLOSE(9)
C
 ELSE
 KFORM = IFORM
C
 ENDIF
C
C
 K = INDEX(FNAME,' ') - 1
C
 IF(KFORM.EQ.0) THEN
C------- binary format
 FNAME = FNAME(1:K)
 WRITE(*,*) FNAME, ' binary'
C
 OPEN(9,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=1001)
 READ(9,ERR=1001) N(IH), HH(IH)
 READ(9) (ETA(I,IH),I=1, N(IH))
 READ(9) (U(I,IH) ,I=1, N(IH))
 READ(9) (S(I,IH) ,I=1, N(IH))
 READ(9) NRP(IH), NWP(IH)
 READ(9) (RTL(IR,IH),IR=1,NRP(IH))
 READ(9) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO IW=1, NWP(IH)
 READ(9,END=15) (AR(IR,IW,IH),IR=1,NRP(IH))
 READ(9,END=15) (AI(IR,IW,IH),IR=1,NRP(IH))
 ENDDO
 GO TO 30
C
 15 CONTINUE
 IWLAST = IW-1
 WRITE(*,*)
 & 'Map incomplete. Last complete frequency index:',IWLAST
C
 ELSE
C------- ascii format
 FNAME = FNAME(1:K)
 WRITE(*,*) FNAME, ' ascii'
C
 OPEN(9,FILE=FNAME,STATUS='OLD')
 READ(9,*) N(IH), HH(IH)
 READ(9,*) (ETA(I,IH),I=1, N(IH))
 READ(9,*) (U(I,IH) ,I=1, N(IH))
 READ(9,*) (S(I,IH) ,I=1, N(IH))
 READ(9,*) NRP(IH), NWP(IH)
 READ(9,*) (RTL(IR,IH),IR=1,NRP(IH))
 READ(9,*) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO IW=1, NWP(IH)
 READ(9,*) (AR(IR,IW,IH),IR=1,NRP(IH))
 READ(9,*) (AI(IR,IW,IH),IR=1,NRP(IH))
 ENDDO
 ENDIF
C
 30 CONTINUE
 CLOSE(9)
 GEO = (ETA(3,IH)-ETA(2,IH)) / (ETA(2,IH)-ETA(1,IH))
 WRITE(*,2050) N(IH), HH(IH), ETA(N(IH),IH), GEO
 2050 FORMAT(' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
C
 IFORM = 1
 1000 CONTINUE
 IH = NHX + 1
C
 1001 NHP = IH-1
 CLOSE(10)
 CLOSE(9)
C
C---- re-order if needed to make RTL and WSL monotonically increasing
 DO 40 IH=1, NHP
 IF(RTL(1,IH) .GT. RTL(NRP(IH),IH)) THEN
 DO IR=1, NRP(IH)/2
 IRBACK = NRP(IH)-IR+1
C
 RTEMP = RTL(IR,IH)
 RTL(IR,IH) = RTL(IRBACK,IH)
 RTL(IRBACK,IH) = RTEMP
C
 DO IW=1, NWP(IH)
 ARTEMP = AR(IR,IW,IH)
 AITEMP = AI(IR,IW,IH)
 AR(IR,IW,IH) = AR(IRBACK,IW,IH)
 AI(IR,IW,IH) = AI(IRBACK,IW,IH)
 AR(IRBACK,IW,IH) = ARTEMP
 AI(IRBACK,IW,IH) = AITEMP
 ENDDO
 ENDDO
 ENDIF
C
 IF(WSL(1,IH) .GT. WSL(NWP(IH),IH)) THEN
 DO IW=1, NWP(IH)/2
 IWBACK = NWP(IH)-IW+1
C
 WTEMP = WSL(IW,IH)
 WSL(IW,IH) = WSL(IWBACK,IH)
 WSL(IWBACK,IH) = WTEMP
C
 DO IR=1, NRP(IH)
 ARTEMP = AR(IR,IW,IH)
 AITEMP = AI(IR,IW,IH)
 AR(IR,IW,IH) = AR(IR,IWBACK,IH)
 AI(IR,IW,IH) = AI(IR,IWBACK,IH)
 AR(IR,IWBACK,IH) = ARTEMP
 AI(IR,IWBACK,IH) = AITEMP
 ENDDO
 ENDDO
C
 ENDIF
 40 CONTINUE
C
 RETURN
 END ! READOS

 SUBROUTINE WRITOS(FLIST,IFORM,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C--
C Writes Orr-Sommerfeld data files in binary or ascii format.
C Data is spatial amplification complex wavenumber
C ar(Re,w,H) ai(Re,w,H)
C stored on a R,W,H grid
C R = ln(Re)
C W = ln(w) - 0.5 ln(Re)
C H = H
C
C Input
C FLIST name of text file containing file prefixes to be read
C IFORM 0=binary, ascii otherwise
C N(h) number of points across BL, i=1..N
C NMAX max dimension of N
C ETA(i,h) BL y coordinate
C U(i,h) velocity profile
C S(i,h) shear profile dU/deta
C NRP(h) number of RTL values, r=1..NRP
C NWP(h) number of WSL values, w=1..NWP
C NHP number of H values, h=1..NHP
C RTL(r,h) R values
C WSL(w,h) W values
C HH(h) H values
C AR(r,w,h) real wavenumber
C AI(r,w,h) imaginary wavenumber
C
C Output
C written files
C
C--
C
 CHARACTER*(*) FLIST
 DIMENSION N(NHX), NRP(NHX),NWP(NHX)
 DIMENSION ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 DIMENSION AR(NRX,NWX,NHX),AI(NRX,NWX,NHX)
 DIMENSION RTL(NRX,NHX), WSL(NWX,NHX), HH(NHX)
 CHARACTER*80 FNAME
C
 OPEN(10,FILE=FLIST,STATUS='OLD')
C
 WRITE(*,*) 'Writing...'
 DO 1000 IH=1, NHX
 5 READ(10,5000,END=1001) FNAME
 5000 FORMAT(A)
C
C------ skip comment line
 IF(INDEX('#!',FNAME(1:1)) .NE. 0) GO TO 5
C
C------ strip off leading blanks
 10 CONTINUE
 IF(FNAME(1:1).EQ.' ') THEN
 FNAME = FNAME(2:80)
 GO TO 10
 ENDIF
C
 K = INDEX(FNAME,' ') - 1
C
 IF(IFORM.EQ.0) THEN
 FNAME = FNAME(1:K) // '.bin'
 WRITE(*,*) FNAME
C
 OPEN(9,FILE=FNAME,STATUS='UNKNOWN',FORM='UNFORMATTED',ERR=1001)
 REWIND(9)
 WRITE(9,ERR=1001) N(IH), HH(IH)
 WRITE(9) (ETA(I,IH),I=1, N(IH))
 WRITE(9) (U(I,IH) ,I=1, N(IH))
 WRITE(9) (S(I,IH) ,I=1, N(IH))
 WRITE(9) NRP(IH), NWP(IH)
 WRITE(9) (RTL(IR,IH),IR=1,NRP(IH))
 WRITE(9) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO IW=1, NWP(IH)
 WRITE(9) (AR(IR,IW,IH),IR=1,NRP(IH))
 WRITE(9) (AI(IR,IW,IH),IR=1,NRP(IH))
 ENDDO
C
 ELSE
 FNAME = FNAME(1:K)
 WRITE(*,*) FNAME
C
 OPEN(9,FILE=FNAME,STATUS='UNKNOWN')
 REWIND(9)
 WRITE(9,*) N(IH), HH(IH)
 WRITE(9,*) (ETA(I,IH),I=1, N(IH))
 WRITE(9,*) (U(I,IH) ,I=1, N(IH))
 WRITE(9,*) (S(I,IH) ,I=1, N(IH))
 WRITE(9,*) NRP(IH), NWP(IH)
 WRITE(9,*) (RTL(IR,IH),IR=1,NRP(IH))
 WRITE(9,*) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO IW=1, NWP(IH)
 WRITE(9,*) (AR(IR,IW,IH),IR=1,NRP(IH))
 WRITE(9,*) (AI(IR,IW,IH),IR=1,NRP(IH))
 ENDDO
 ENDIF
C
 CLOSE(9)
 1000 CONTINUE
 IH = NHX + 1
C
 1001 NHP = IH-1
 CLOSE(10)
 CLOSE(9)
C
 RETURN
 END ! WRITOS

XFOILinterface/XFOIL/src/iopol.f

C***
C Module: iopol.f
C
C Copyright (C) 2000 Mark Drela, Harold Youngren
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE POLREAD(LU,FNPOL,ERROR,
 & NAX,NA,CPOL,
 & REYN1,MACH1,ACRIT,XTRIP,
 & NAME, IRETYP,IMATYP,
 & ISX,NBL,CPOLSD,
 & CODE,VERSION)
 INCLUDE 'PINDEX.INC'
 CHARACTER*(*) FNPOL, NAME
 LOGICAL ERROR
 CHARACTER*(*) CODE
 REAL CPOL(NAX,IPTOT), CPOLSD(NAX,ISX,JPTOT)
 REAL MACH1, XTRIP(ISX)
C--
C Reads in polar save file
C
C Input:
C LU logical unit to use for reading
C FNPOL name of polar file to be read,
C if FNPOL(1:1).eq.' ', unit LU will be read
C if it is already open
C NAX polar point array dimension
C ISX airfoil side array dimension
C
C Output:
C ERROR T if a READ error occurred
C NA number polar points
C CPOL polar coefficients and parameters
C REYN1 Reynolds number for CL=1
C MACH1 Mach number for CL=1
C ACRIT Critical amplification ratio
C XTRIP Trip locations
C NAME airfoil name string
C IRETYP flag giving type of Re variation with CL
C IMATYP flag giving type of Ma variation with CL
C NBL number of airfoil elements
C CPOLSD airfoil side-related parameters
C CODE code used to compute polar
C VERSION code version
C--
 CHARACTER*128 LINE
 CHARACTER*1 DUMMY
 REAL RINP(0:IPTOT+2*JPTOT)
C
 INTEGER IPOL(IPTOT), ISPOL(2,JPTOT)
 INTEGER ITMP(IPTOT+2*JPTOT), ITMP0(IPTOT+2*JPTOT)
 LOGICAL LOPEN, LHEAD, LDLAB
 CHARACTER*20 CPNAME
C
C
 ERROR = .FALSE.
 LHEAD = .TRUE.
C
 NA = 0
 NBL = 1
C
c KCH = 0
c KMC = 0
C
 NIPOL = 0
 DO IP = 1, IPTOT
 IPOL(IP) = 0
 ENDDO
 DO JP = 1, JPTOT
 ISPOL(1,JP) = 0
 ISPOL(2,JP) = 0
 ENDDO
C
C---- assume Re,Mach will not be given in header
 IRETYP = 0
 IMATYP = 0
C
C---- do we have to open the file?
 LOPEN = FNPOL .NE. ' '
C
 IF(LOPEN) OPEN(LU,FILE=FNPOL,STATUS='OLD',ERR=90)
C
C===
C---- start data reading loop
 500 CONTINUE
 READ(LU,1000,END=80) LINE
 IF(LINE.EQ.' ') GO TO 500
C
 IF(LHEAD) THEN
C----- parse to get header info
C
C----- assume this will be the data-label line
 LDLAB = .TRUE.
C
C--
 K = INDEX(LINE,'Version')
 IF(K.NE.0) THEN
C------ code,version line
 DO K1=1, 128
 IF(LINE(K1:K1).NE.' ') GO TO 10
 ENDDO
C
 10 CONTINUE
 IF(K.GT.K1) THEN
 CODE = LINE(K1:K-1)
 READ(LINE(K+7:128),*,ERR=11) VERSION
 ENDIF
 11 CONTINUE
 LDLAB = .FALSE.
 ENDIF
C
C--
 KF = INDEX(LINE,'for:')
 IF(KF.NE.0) THEN
C------ airfoil name line
 NAME = LINE(KF+5:128)
 LDLAB = .FALSE.
 ENDIF
C
C--
 KE = INDEX(LINE,'elements')
 IF(KE.GT.0) THEN
C------ element-number line
 READ(LINE(KE-4:KE-1),*,ERR=60) NBL
C------ truncate name line to eliminate elements #
 NAME = LINE(KF+5:KE-4)
C
 IF(2*NBL .GT. ISX) THEN
 NBL = ISX/2
 WRITE(*,*)
 & 'POLREAD: Number of elements set to array limit', NBL
 ENDIF
 LDLAB = .FALSE.
 ENDIF
C
C--
 KR = INDEX(LINE,'Reynolds number')
 KM = INDEX(LINE,'Mach number')
C
 IF(KR.NE.0) THEN
C------ Re-type line
 IF(KM.GT.KR) THEN
 KEND = KM-1
 ELSE
 KEND = 128
 ENDIF
 IF (INDEX(LINE(KR:KEND),'fixed').NE.0) THEN
 IRETYP = 1
 ELSEIF(INDEX(LINE(KR:KEND),'1/sqrt(CL)').NE.0) THEN
 IRETYP = 2
 ELSEIF(INDEX(LINE(KR:KEND),'1/CL').NE.0) THEN
 IRETYP = 3
 ENDIF
 LDLAB = .FALSE.
 ENDIF
C
 IF(KM.NE.0) THEN
C------ Ma-type line
 IF(KR.GT.KM) THEN
 KEND = KR-1
 ELSE
 KEND = 128
 ENDIF
 IF (INDEX(LINE(KM:KEND),'fixed').NE.0) THEN
 IMATYP = 1
 ELSEIF(INDEX(LINE(KM:KEND),'1/sqrt(CL)').NE.0) THEN
 IMATYP = 2
 ELSEIF(INDEX(LINE(KM:KEND),'1/CL').NE.0) THEN
 IMATYP = 3
 ENDIF
 LDLAB = .FALSE.
 ENDIF
C
C--
C---- find specified BL trip location
 K = INDEX(LINE,'xtrf')
 IF(K.NE.0) THEN
C------ new style xtrip line
 KT = INDEX(LINE,'(top)')
 KB = INDEX(LINE,'(bottom)')
 KE = INDEX(LINE,'element ')
C--- check for old style trip line
 KS = INDEX(LINE,'(suc')
 KP = INDEX(LINE,'(pre')
C
 IF(KE.NE.0) THEN
 READ(LINE(KE+7:KE+12),*,ERR=21) N
 ELSE
 N = 1
 ENDIF
 IF(N.LE.NBL) THEN
 IS1 = 2*N-1
 IS2 = 2*N
 XTRIP(IS1) = 1.0
 XTRIP(IS2) = 1.0
 IF(KT.GT.0) READ(LINE(K+6:KT-1) ,*,ERR=21) XTRIP(IS1)
 IF(KB.GT.KT) READ(LINE(KT+5:KB-1),*,ERR=21) XTRIP(IS2)
 IF(KS.GT.0) READ(LINE(K+6:KS-1) ,*,ERR=21) XTRIP(IS1)
 IF(KP.GT.KS) READ(LINE(KS+5:KP-1),*,ERR=21) XTRIP(IS2)
 ENDIF
 21 CONTINUE
 LDLAB = .FALSE.
 ENDIF
C
C--
 K = INDEX(LINE,'Mach =')
 IF(K.NE.0) THEN
 READ(LINE(K+6:128),*,ERR=31) MACH1
 31 CONTINUE
 LDLAB = .FALSE.
 ENDIF
C
C--
 K = INDEX(LINE,'Re =')
 IF(K.NE.0) THEN
 READ(LINE(K+4:128),*,ERR=32) REYN1
 REYN1 = REYN1 * 1.0E6
 32 CONTINUE
 LDLAB = .FALSE.
 ENDIF
C
C--
 K = INDEX(LINE,'Ncrit =')
 IF(K.NE.0) THEN
 READ(LINE(K+7:128),*,ERR=33) ACRIT
 33 CONTINUE
 LDLAB = .FALSE.
 ENDIF
C
C--
 IF(LDLAB .AND. NIPOL.EQ.0) THEN
C------ process line for possible data labels
 DO IP = 1, IPTOT
 CALL STRIP(CPOLNAME(IP),NNAME)
C
C-------- mark this parameter for reading
 K = INDEX(LINE,CPOLNAME(IP)(1:NNAME))
 ITMP0(IP) = K
 ITMP (IP) = K
 ENDDO
C
 DO JP = 1, JPTOT
 CALL STRIP(CPOLSNAME(JP),NNAME)
C
 CPNAME = 'Top ' // CPOLSNAME(JP)
 K1 = INDEX(LINE,CPNAME(1:NNAME+4))
 CPNAME = 'Top_' // CPOLSNAME(JP)
 K2 = INDEX(LINE,CPNAME(1:NNAME+4))
 ITMP0(IPTOT+JP) = MAX(K1,K2)
 ITMP (IPTOT+JP) = MAX(K1,K2)
C
 CPNAME = 'Bot ' // CPOLSNAME(JP)
 K1 = INDEX(LINE,CPNAME(1:NNAME+4))
 CPNAME = 'Bot_' // CPOLSNAME(JP)
 K2 = INDEX(LINE,CPNAME(1:NNAME+4))
 ITMP0(IPTOT+JP+JPTOT) = MAX(K1,K2)
 ITMP (IPTOT+JP+JPTOT) = MAX(K1,K2)
 ENDDO
C
C------ bubble-sort data label positions in line string
 DO IPASS = 1, IPTOT+2*JPTOT
 DO IP = 1, IPTOT+2*JPTOT-1
 IF(ITMP(IP).GT.ITMP(IP+1)) THEN
 ITMPP1 = ITMP(IP+1)
 ITMP(IP+1) = ITMP(IP)
 ITMP(IP) = ITMPP1
 ENDIF
 ENDDO
 ENDDO
C
C------ assign data position to each parameter
 DO IPT = 1, IPTOT+2*JPTOT
 IF(ITMP(IPT).GT.0) THEN
 NIPOL = NIPOL + 1
 DO IP = 1, IPTOT
 IF(ITMP(IPT).EQ.ITMP0(IP)) IPOL(IP) = NIPOL
 ENDDO
 DO JP = 1, JPTOT
 IF(ITMP(IPT).EQ.ITMP0(IPTOT+JP)) ISPOL(1,JP) = NIPOL
 IF(ITMP(IPT).EQ.ITMP0(IPTOT+JPTOT+JP)) ISPOL(2,JP) = NIPOL
 ENDDO
 ENDIF
 ENDDO
C
 ENDIF
C
C--
 IF(INDEX(LINE,'-----').NE.0) THEN
 LHEAD = .FALSE.
 ENDIF
C
C--
 ELSE
C----- read polar data lines
 IA = NA + 1
C
 NINP = IPTOT+2*JPTOT
 CALL GETFLT(LINE,RINP(1),NINP,ERROR)
 IF(ERROR) GO TO 90
C
 DO IP = 1, IPTOT
 CPOL(IA,IP) = RINP(IPOL(IP))
 ENDDO
C
 DO JP = 1, JPTOT
 DO N = 1, NBL
 IS1 = 2*N-1
 IS2 = 2*N
 CPOLSD(IA,IS1,JP) = RINP(ISPOL(1,JP)+2*(N-1))
 CPOLSD(IA,IS2,JP) = RINP(ISPOL(2,JP)+2*(N-1))
 ENDDO
 ENDDO
C
 ACL = MAX(CPOL(IA,ICL) , 0.001)
C
 IF(IPOL(IRE).EQ.0) THEN
C------ Re was not in polar data... set using header info
 IF (IRETYP.EQ.1) THEN
 CPOL(IA,IRE) = REYN1
 ELSEIF(IRETYP.EQ.2) THEN
 CPOL(IA,IRE) = REYN1/SQRT(ACL)
 ELSEIF(IRETYP.EQ.3) THEN
 CPOL(IA,IRE) = REYN1/ACL
 ENDIF
 ENDIF
C
 IF(IPOL(IMA).EQ.0) THEN
C------ Mach was not in polar data... set using header info
 IF (IMATYP.EQ.1) THEN
 CPOL(IA,IMA) = MACH1
 ELSEIF(IMATYP.EQ.2) THEN
 CPOL(IA,IMA) = MACH1/SQRT(ACL)
 ELSEIF(IMATYP.EQ.3) THEN
 CPOL(IA,IMA) = MACH1/ACL
 ENDIF
 ENDIF
C
 IF(IPOL(INC).EQ.0) THEN
C------ Ncrit was not in polar data... set using header info
 CPOL(IA,INC) = ACRIT
 ENDIF
C
 IF(ISPOL(1,JTP).EQ.0) THEN
C------ set trip data using header info
 DO IS = 1, 2*NBL
 CPOLSD(IA,IS,JTP) = XTRIP(IS)
 ENDDO
 ENDIF
C
 NA = IA
 ENDIF
C
 60 CONTINUE
C---- go read next line
 GO TO 500
C===
C
 80 CONTINUE
C---- if file was opened here, then close it
 IF(LOPEN) CLOSE(LU)
 RETURN
C
 90 CONTINUE
 IF(LOPEN) CLOSE(LU)
 ERROR = .TRUE.
 RETURN
C
C..
 1000 FORMAT(A)
 END ! POLREAD

 SUBROUTINE POLWRIT(LU,FNPOL,ERROR, LHEAD,
 & NAX, IA1,IA2, CPOL, IPOL,NIPOL,
 & REYN1,MACH1,ACRIT,XTRIP,
 & NAME, IRETYP,IMATYP,
 & ISX,NBL,CPOLSD, JPOL,NJPOL,
 & CODE,VERSION, LQUERY)
 INCLUDE 'PINDEX.INC'
 CHARACTER*(*) FNPOL, NAME
 LOGICAL ERROR, LHEAD,LQUERY
 CHARACTER*(*) CODE
 REAL CPOL(NAX,IPTOT), CPOLSD(NAX,ISX,JPTOT)
 REAL MACH1, XTRIP(ISX)
 INTEGER IPOL(IPTOT), JPOL(JPTOT)
C--
C Writes polar save file
C
C Input:
C LU logical unit to use for writing
C FNPOL name of polar file to be read,
C if FNPOL(1:1).eq.' ', unit LU is assumed
C to be already open
C NAX polar point array dimension
C ISX airfoil side array dimension
C IA1,IA2 only polar points IA1..IA2 are written
C CPOL polar coefficients and parameters
C IPOL(.) indices of data quantities to be written
C NIPOL number of data quantities to be written
C REYN1 Reynolds number for CL=1
C MACH1 Mach number for CL=1
C ACRIT Critical amplification ratio
C XTRIP Trip locations
C NAME airfoil name string
C IRETYP flag giving type of Re variation with CL
C IMATYP flag giving type of Ma variation with CL
C NBL number of airfoil elements
C CPOLSD airfoil side-related parameters
C JPOL(.) indices of side data quantities to be written
C NJPOL number of side data quantities to be written
C LHEAD T if header and column label are to be written
C CODE code used to compute polar
C VERSION code version
C LQUERY if T, asks permission to overwrite existing file
C
C Output:
C ERROR T if a OPER or WRITE error occurred
C--
 CHARACTER*29 LINE1, LINE2
 CHARACTER*128 LINEL, LINED, LINEF
 CHARACTER*1 ANS
 LOGICAL LOPEN
C
 ERROR = .FALSE.
C
C---- do we have to open the file?
 LOPEN = FNPOL .NE. ' '
C
 IF(LOPEN) THEN
 OPEN(LU,FILE=FNPOL,STATUS='OLD',ERR=20)
C
 IF(LQUERY) THEN
 WRITE(*,*)
 WRITE(*,*) 'Output file exists. Overwrite? Y'
 READ(*,1000) ANS
C
 IF(INDEX('Nn',ANS).EQ.0) GO TO 22
C
 CLOSE(LU)
 WRITE(*,*) 'Polar file not saved'
 RETURN
 ENDIF
C
 20 OPEN(LU,FILE=FNPOL,STATUS='UNKNOWN',ERR=90)
 22 REWIND(LU)
 ENDIF
C
 IF(LHEAD) THEN
 WRITE(LU,*) ' '
 WRITE(LU,8000) CODE, VERSION
 WRITE(LU,*) ' '
 IF(NBL.EQ.1) THEN
 WRITE(LU,9001) NAME
 ELSE
 WRITE(LU,9002) NAME, NBL
 ENDIF
C
 IFFBC = 0
 ISMOM = 0
C
 IF(IFFBC.NE.0 .AND. ISMOM.NE.0) THEN
 IF(IFFBC.EQ.1) LINE1 = ' Solid wall far field '
 IF(IFFBC.EQ.2) LINE1 = ' Vortex + doublet far field '
 IF(IFFBC.EQ.3) LINE1 = ' Constant pressure far field '
 IF(IFFBC.EQ.4) LINE1 = ' Supersonic wave far field '
 IF(IFFBC.GE.5) LINE1 = ' '
 IF(ISMOM.EQ.1) LINE2 = ' S-momentum conserved '
 IF(ISMOM.EQ.2) LINE2 = ' Entropy conserved '
 IF(ISMOM.EQ.3) LINE2 = ' Entropy conserved near LE '
 IF(ISMOM.EQ.4) LINE2 = ' S-mom conserved at shocks '
 IF(ISMOM.GE.5) LINE2 = ' '
 WRITE(LU,9006) LINE1, LINE2
 9006 FORMAT(1X,3X,2A29)
 ENDIF
C
 WRITE(LU,*) ' '
C
 LINE1 = ' '
 LINE2 = ' '
 IF(IRETYP.EQ.1) LINE1 = ' Reynolds number fixed '
 IF(IRETYP.EQ.2) LINE1 = ' Reynolds number ~ 1/sqrt(CL)'
 IF(IRETYP.EQ.3) LINE1 = ' Reynolds number ~ 1/CL '
 IF(IMATYP.EQ.1) LINE2 = ' Mach number fixed '
 IF(IMATYP.EQ.2) LINE2 = ' Mach number ~ 1/sqrt(CL) '
 IF(IMATYP.EQ.3) LINE2 = ' Mach number ~ 1/CL '
 WRITE(LU,9005) IRETYP, IMATYP, LINE1, LINE2
C
 WRITE(LU,*) ' '
 DO N = 1, NBL
 IS1 = 2*N-1
 IS2 = 2*N
 IF(NBL.EQ.1) THEN
 WRITE(LU,9011) XTRIP(IS1), XTRIP(IS2)
 ELSE
 WRITE(LU,9012) XTRIP(IS1), XTRIP(IS2), N
 ENDIF
 ENDDO
 WRITE(LU,9015) MACH1, REYN1/1.0E6, ACRIT
 WRITE(LU,*) ' '
C
 LINEL = ' '
 LINED = ' '
C
 KL = 1
 KD = 1

C
 DO 30 KP = 1, NIPOL
 IP = IPOL(KP)
 IF(IP.EQ.0) GO TO 30
C
 KDOT = INDEX(CPOLFORM(IP),'.')
 IF(KDOT.EQ.0) KDOT = LEN(CPOLFORM(IP))
 READ(CPOLFORM(IP)(2:KDOT-1),*,ERR=95) NFORM
C
 CALL STRIP(CPOLNAME(IP),NNAME)
 NBLANK = MAX((NFORM-NNAME+2)/2 , 0)
C
 LINEL(KL+1+NBLANK:KL+NNAME+NBLANK) = CPOLNAME(IP)(1:NNAME)
 KL = KL + NFORM
C
 LINED(KD+2:KD+NFORM) = '--------------------------------'
 KD = KD + NFORM
 30 CONTINUE
C
 DO 32 KP = 1, NJPOL
 JP = JPOL(KP)
 IF(JP.EQ.0) GO TO 32
C
 KDOT = INDEX(CPOLSFORM(JP),'.')
 IF(KDOT.EQ.0) KDOT = LEN(CPOLSFORM(JP))
 READ(CPOLSFORM(JP)(2:KDOT-1),*,ERR=95) NFORM
C
 CALL STRIP(CPOLSNAME(JP),NNAME)
 NBLANK = MAX((NFORM-NNAME-2)/2 , 0)
C
 DO N = 1, NBL
 LINEL(KL+1+NBLANK:KL+4+NNAME+NBLANK) =
 & 'Top_' // CPOLSNAME(JP)(1:NNAME)
 KL = KL + NFORM
C
 LINED(KD+2:KD+NFORM) = '--------------------------------'
 KD = KD + NFORM
C
 LINEL(KL+1+NBLANK:KL+4+NNAME+NBLANK) =
 & 'Bot_' // CPOLSNAME(JP)(1:NNAME)
 KL = KL + NFORM
C
 LINED(KD+2:KD+NFORM) = '--------------------------------'
 KD = KD + NFORM
 ENDDO
 32 CONTINUE
C
C
C
C LINEL =
C & ' alpha CL CD CDp CM Top_Xtr Bot_Xtr'
CCC 1234567890123456789012345678901234567890123456789012345678901234567890
C K = 62
C
C
C LINEL =
C & ' ------- -------- --------- --------- -------- ------- -------'
CCC 3.453 1.3750 0.00921 0.00512 -0.1450 0.9231 0.5382
CCC 3.453 1.3750 0.00921 0.00213 -0.1450 0.9231 0.5382
C K = 62

 WRITE(LU,1000) LINEL(1:KL)
 WRITE(LU,1000) LINED(1:KD)
C
 ENDIF
C

 LINEF = '(1X'
 KF = 3
 DO KP = 1, NIPOL
 IP = IPOL(KP)
 NF = LEN(CPOLFORM(IP))
C
 LINEF(KF+1:KF+NF+1) = ',' // CPOLFORM(IP)
 KF = KF + NF + 1
 ENDDO
 DO KP = 1, NJPOL
 JP = JPOL(KP)
 NF = LEN(CPOLSFORM(JP))
C
 DO N = 1, NBL
 LINEF(KF+1:KF+NF+1) = ',' // CPOLSFORM(JP)
 KF = KF + NF + 1
C
 LINEF(KF+1:KF+NF+1) = ',' // CPOLSFORM(JP)
 KF = KF + NF + 1
 ENDDO
 ENDDO
 LINEF(KF+1:KF+1) = ')'
 KF = KF + 1
C
C
 DO 40 IA = IA1, IA2
 WRITE(LU,LINEF)
 & (CPOL(IA,IPOL(KP)), KP=1, NIPOL),
 & ((CPOLSD(IA,IS,JPOL(KP)), IS=1, 2*NBL), KP=1, NJPOL)
 40 CONTINUE
C
C---- if file was opened here, then close it
 IF(LOPEN) CLOSE(LU)
 RETURN
C
 90 CONTINUE
 ERROR = .TRUE.
 RETURN
C
 95 CONTINUE
 WRITE(*,*) '? Bad format specification in PINDEX.INC'
 STOP
C
C..
 1000 FORMAT(A)
 8000 FORMAT(7X,A,9X,'Version', F5.2)
 9001 FORMAT(1X,'Calculated polar for: ', A)
 9002 FORMAT(1X,'Calculated polar for: ', A, I4,' elements')
 9005 FORMAT(1X,I1,I2,2A29)
 9011 FORMAT(1X,
 &'xtrf = ',F7.3,' (top) ',F9.3,' (bottom) ')
 9012 FORMAT(1X,
 &'xtrf = ',F7.3,' (top) ',F9.3,' (bottom) element', I3)
 9015 FORMAT(1X,
 &'Mach = ',F7.3,5X,'Re = ',F9.3,' e 6',5X,'Ncrit = ',F7.3)
 9100 FORMAT(1X,F7.3,F9.4,2F10.5,F9.4,2F8.4 , F9.5)
CCC 3.453 1.3750 0.00921 0.500 -0.1450 0.9231 0.5382 -0.00942
CCC 3.453 1.3750 0.00921 0.500 -0.1450 0.9231 0.5382
 END

 SUBROUTINE POLREF(LU,FNREF,ERROR,
 & NFX,NF,XYREF,LABREF)
 INCLUDE 'PINDEX.INC'
 CHARACTER*(*) FNREF,LABREF
 LOGICAL ERROR
 DIMENSION NF(4)
 DIMENSION XYREF(NFX,2,4)
C--
C Reads in polar reference data file
C
C Input:
C LU logical unit to use for reading
C FNREF name of polar file to be read,
C if FNREF(1:1).eq.' ', unit LU is assumed
C to be already open
C NFX polar point array dimension
C
C Output:
C ERROR T if a READ error occurred
C NF(.) number of points in each data block
C XYREF(...) reference polar data
C LABREF(.) reference polar label
C--
 LOGICAL LOPEN
 CHARACTER*80 LINE
C
 ERROR = .FALSE.
 LOPEN = FNREF(1:1) .NE. ' '
 IF(LOPEN) OPEN(LU,FILE=FNREF,STATUS='OLD',ERR=900)
C
C---- try to read data label
 READ(LU,1000,END=900) LINE
 1000 FORMAT(A)
C
C---- set data label if present
 IF(LINE(1:1).EQ.'#') THEN
 LABREF = LINE(2:80)
 ELSE
 LABREF = ' '
 REWIND(LU)
 ENDIF
C
 DO 100 K=1, 4
 DO 10 I=1, NFX
 READ(LU,*,END=11,ERR=900) XYREF(I,1,K), XYREF(I,2,K)
 IF(XYREF(I,1,K) .EQ. 999.0) GO TO 11
 10 CONTINUE
 11 NF(K) = I-1
 100 CONTINUE
 IF(LOPEN) CLOSE(LU)
 RETURN
C
 900 CONTINUE
 ERROR = .TRUE.
C
 RETURN
 END ! POLREF

XFOILinterface/XFOIL/orrs/src/mapgen.f

 PROGRAM MAPGEN
 PARAMETER (NMAX=257,NRX=101,NWX=101)
 REAL ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 REAL UTR(NMAX), UTI(NMAX), VTR(NMAX), VTI(NMAX)
 CHARACTER*48 FNAME
 REAL AR(NRX,NWX), AI(NRX,NWX)
 REAL RT(NRX),RTL(NRX), WS(NWX),WSL(NWX)
 LOGICAL CONV(NRX,NWX)
C
 LST = 1
 LRE = 1
C
 WRMAX = 0.25
C
 RESMAX = 0.1
C
C---- default profile parameters
 N = 256
 GEO = 1.02
 ETAE = 14.0
C
 DO 5 IR=1, NRX
 DO 4 IW=1, NWX
 CONV(IR,IW) = .FALSE.
 4 CONTINUE
 5 CONTINUE
C
C---- generate or read in profile
 CALL PFLGET(N,GEO,ETAE,ETA,F,U,S,H)
C
C
 CALL ASKR('Enter lower log10(Rtheta)^',RT1L)
 CALL ASKR('Enter upper log10(Rtheta)^',RT2L)
 CALL ASKI('Enter number of log10(Rtheta)intervals^',NR)
C
 CALL ASKR('Enter lower log10(Wr*sqrt(Rtheta))^',WS1L)
 CALL ASKR('Enter upper log10(Wr*sqrt(Rtheta))^',WS2L)
 CALL ASKI('Enter number of log10(Wr) intervals^',NW)
C
 NRP = NR + 1
 NWP = NW + 1
C
 IF(NRP.GT.NRX) STOP 'Array overflow'
 IF(NWP.GT.NWX) STOP 'Array overflow'
C
 RT1 = 10.0 ** RT1L
 RT2 = 10.0 ** RT2L
 DO 10 IR=1, NRP
 RTL(IR) = RT1L + (RT2L-RT1L)*FLOAT(IR-1)/FLOAT(NR)
 RT(IR) = 10.0 ** RTL(IR)
 10 CONTINUE
C
 WS1 = 10.0 ** WS1L
 WS2 = 10.0 ** WS2L
 DO 15 IW=1, NWP
 WSL(IW) = WS1L + (WS2L-WS1L)*FLOAT(IW-1)/FLOAT(NW)
 WS(IW) = 10.0 ** WSL(IW)
 15 CONTINUE
C
C
 CALL ASKR('Enter initial ar for lower Rtheta, upper Wr^',AR0)
 CALL ASKR('Enter initial ai for lower Rtheta, upper Wr^',AI0)
C
C
 CALL ASKS('Enter map output filename^',FNAME)
 OPEN(19,FILE=FNAME,STATUS='NEW',FORM='UNFORMATTED')
 WRITE(19) N, H
 WRITE(19) (ETA(I),I=1, N)
 WRITE(19) (U(I) ,I=1, N)
 WRITE(19) (S(I) ,I=1, N)
 WRITE(19) NRP, NWP
 WRITE(19) (RTL(IR),IR=1,NRP)
 WRITE(19) (WSL(IW),IW=1,NWP)
C
 IR1 = NRP
 IR2 = 1
 IRD = -1
C
 DO 100 IW=1, NWP
 WRITE(6,2010)
 2010 FORMAT(/1X,'--------------------')
 DO 90 IR=IR1, IR2, IRD
C
 WR = WS(IW)/SQRT(RT(IR))
C
 WRITE(6,2020) IR,IW, RT(IR), WR
 2020 FORMAT(/1X,2I4,' Rth =', E12.4, ' Wr =', E12.4)
C
 WR0 = WR
 WI0 = 0.0
C
C-------- set initial wavenumber guess
 IRM1 = IR - IRINCR
 IRM2 = IR - 2*IRINCR
 IRM3 = IR - 3*IRINCR
C
 IWM1 = IW - IWINCR
 IWM2 = IW - 2*IWINCR
 IWM3 = IW - 3*IWINCR
C
 IF(IRM2.GE.1 .AND. IRM2.LE.NRP .AND.
 & IWM1.GE.1 .AND. IWM1.LE.NWP) THEN
 AR0 = 2.0*AR(IRM1,IW) - AR(IRM2,IW)
 & + AR(IR ,IWM1) - 2.0*AR(IRM1,IWM1) + AR(IRM2,IWM1)
 AI0 = 2.0*AI(IRM1,IW) - AI(IRM2,IW)
 & + AI(IR ,IWM1) - 2.0*AI(IRM1,IWM1) + AI(IRM2,IWM1)
 ELSE IF(IRM1.GE.1 .AND. IRM1.LE.NRP .AND.
 & IWM2.GE.1 .AND. IWM2.LE.NWP) THEN
 AR0 = AR(IRM1,IW)
 & + 2.0*AR(IR ,IWM1) - 2.0*AR(IRM1,IWM1)
 & - AR(IR ,IWM2) + AR(IRM1,IWM2)
 AI0 = AI(IRM1,IW)
 & + 2.0*AI(IR ,IWM1) - 2.0*AI(IRM1,IWM1)
 & - AI(IR ,IWM2) + AI(IRM1,IWM2)
 ELSE IF(IRM1.GE.1 .AND. IRM1.LE.NRP .AND.
 & IWM1.GE.1 .AND. IWM1.LE.NWP) THEN
 AR0 = AR(IRM1,IW)
 & + AR(IR ,IWM1) - AR(IRM1,IWM1)
 AI0 = AI(IRM1,IW)
 & + AI(IR ,IWM1) - AI(IRM1,IWM1)
 ELSE IF(IRM2.GE.1 .AND. IRM2.LE.NRP) THEN
 AR0 = 2.0*AR(IRM1,IW) - AR(IRM2,IW)
 AI0 = 2.0*AI(IRM1,IW) - AI(IRM2,IW)
 ELSE IF(IWM2.GE.1 .AND. IWM2.LE.NWP) THEN
 AR0 = 2.0*AR(IR,IWM1) - AR(IR,IWM2)
 AI0 = 2.0*AI(IR,IWM1) - AI(IR,IWM2)
 ELSE IF(IRM1.GE.1 .AND. IRM1.LE.NRP) THEN
 AR0 = AR(IRM1,IW)
 AI0 = AI(IRM1,IW)
 ELSE IF(IWM1.GE.1 .AND. IWM1.LE.NWP) THEN
 AR0 = AR(IR,IWM1)
 AI0 = AI(IR,IWM1)
CCC ELSE
CCC STOP 'Cannot start in corner and go in'
 ENDIF
c
 AR(IR,IW) = AR0
 AI(IR,IW) = AI0
C
C-------- don't bother with absurdly high frequency
 IF(WR .GE. WRMAX) THEN
 DELMAX = 0.0
 GO TO 89
 ENDIF
C
 ITMAX = 10
 CALL ORRS(LST,LRE,N,ETA,U,S, RT(IR), ITMAX,
 & AR0,AI0, WR0,WI0, UTR,UTI,VTR,VTI,DELMAX)
C
 89 IF(DELMAX.LT.RESMAX) CONV(IR,IW) = .TRUE.
C
 AR(IR,IW) = AR0
 AI(IR,IW) = AI0
C
 90 CONTINUE
C
 WRITE(19) (AR(IR,IW),IR=1,NRP)
 WRITE(19) (AI(IR,IW),IR=1,NRP)
C
 100 CONTINUE
C
 CLOSE(19)
C
 STOP
 END

 SUBROUTINE PFLGET(N,GEO,ETAE,ETA,F,U,S,H)
 DIMENSION ETA(N),F(N),U(N),S(N)
 CHARACTER*48 FNAME
C
C---- eta coordinate normalized with momentum thickness
 INORM = 3
C
 WRITE(6,*) ' '
 WRITE(6,*) ' 1 Falkner-Skan parameter m = x/U dU/dx'
 WRITE(6,*) ' 2 Falkner-Skan parameter beta = 2m/(m+1)'
 WRITE(6,*) ' 3 Falkner-Skan shape parameter H'
 WRITE(6,*) ' 4 General profile input file'
 WRITE(6,*) ' '
 CALL ASKI('Select profile option^',IOPT)
C
 IF(IOPT.NE.4) THEN
 CALL ASKI('Enter number of BL points^',N)
 CALL ASKR('Enter geometric stretching factor^',GEO)
 CALL ASKR('Enter edge eta value^',ETAE)
 ENDIF
C
C
 IF(IOPT.EQ.1) THEN
C
 CALL ASKR('Enter m^',BU)
 CALL FS(INORM,1,BU,H,N,ETAE,GEO,ETA,F,U,S)
C
 ELSE IF(IOPT.EQ.2) THEN
C
 CALL ASKR('Enter beta^',BETA)
 BU = BETA/(2.0-BETA)
 CALL FS(INORM,1,BU,H,N,ETAE,GEO,ETA,F,U,S)
C
 ELSE IF(IOPT.EQ.3) THEN
C
 CALL ASKR('Enter H^',H)
 CALL FS(INORM,2,BU,H,N,ETAE,GEO,ETA,F,U,S)
C
 ELSE
C
 CALL ASKS('Enter profile filename^',FNAME)
 OPEN(1,FILE=FNAME,STATUS='OLD')
 READ(1,*) N, H
 DO 5 I=1, N
 READ(1,*) ETA(I), U(I), S(I)
 5 CONTINUE
 CLOSE(1)
C
 GEO = (ETA(3)-ETA(2)) / (ETA(2)-ETA(1))
 ENDIF
C
 WRITE(6,1050) N, H, ETA(N), GEO
 1050 FORMAT(/' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/mapmod.f

 PROGRAM MAPMOD
 PARAMETER (NMAX=257,NRX=101,NWX=101)
 REAL ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 REAL UTR(NMAX), UTI(NMAX), VTR(NMAX), VTI(NMAX)
 CHARACTER*48 FNAME
 REAL AR(NRX,NWX), AI(NRX,NWX)
 REAL RT(NRX),RTL(NRX), WS(NWX),WSL(NWX)
C
 LST = 1
 LRE = 1
C
 WRMAX = 0.15
 RESMAX = 0.01
C
 NH = 1
 NHX = 1
 CALL ASKS('Enter map filename^',FNAME)
 CALL READOS(FNAME,1,
 & N,H,ETA,U,S,
 & NRP,NWP,NH,
 & RTL,WSL,HDUM,
 & AR,AI,
 & NRX,NWX,NHX)
 NR = NRP - 1
 NW = NWP - 1
C
 DO 10 IR=1, NRP
 RT(IR) = 10.0 ** RTL(IR)
 10 CONTINUE
C
 DO 15 IW=1, NWP
 WS(IW) = 10.0 ** WSL(IW)
 15 CONTINUE
C
C
 WRITE(*,1200) RTL(1), RTL(NRP), NR, WSL(1), WSL(NWP), NW
 1200 FORMAT(/' log(Rth) : low =', F7.4,' high =', F7.4,' NR =',I3
 & /' log(W*sR): low =', F7.4,' high =', F7.4,' NW =',I3)
C
 WRITE(*,*) ' '
 WRITE(*,*) '1 Add/replace scaled frequencies'
 WRITE(*,*) '2 Add/replace Reynolds numbers'
 WRITE(*,*) ' '
 CALL ASKI('Select option^',IOPT)
 WRITE(*,*) ' '
C
 IF(IOPT.EQ.1) THEN
C
C----- get starting and final frequency indices
 CALL GETFR(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IW1,IW2)
 IWINCR = ISIGN(1 , (IW2-IW1))
C
 CALL ASKI('Enter Re index (+/- dir) to start at^',IR1S)
 IR1 = IABS(IR1S)
 IF(IR1S.GT.0) IR2 = NRP
 IF(IR1S.LT.0) IR2 = 1
 IRINCR = ISIGN(1 , IR1S)
C
 IF(IW2 .GT. NWP) THEN
C
C------ 2nd index past current max --- set new max number of frequencies
 NWP = IW2
 IF(NWP .GT. NWX) STOP 'Array overflow'
C
 ELSE IF(IW2 .LT. 1) THEN
C
C------ 2nd index less than 1 --- move arrays to make space...
 NWMOV = 1 - IW2
 DO 20 IW=NWP, 1, -1
 WSL(IW+NWMOV) = WSL(IW)
 WSL(IW) = 0.0
 WS(IW+NWMOV) = WS(IW)
 WS(IW) = 0.0
 DO 205 IR=1, NRP
 AR(IR,IW+NWMOV) = AR(IR,IW)
 AI(IR,IW+NWMOV) = AI(IR,IW)
 AR(IR,IW) = 0.0
 AI(IR,IW) = 0.0
 205 CONTINUE
 20 CONTINUE
 IW1 = IW1 + NWMOV
 IW2 = IW2 + NWMOV
 NWP = NWP + NWMOV
 IF(NWP .GT. NWX) STOP 'Array overflow'
 ENDIF
C
C----- set new frequencies
 DWSL = WSL(IW1-IWINCR) - WSL(IW1-2*IWINCR)
 DO 25 IW=IW1, IW2, IWINCR
 WSL(IW) = WSL(IW-IWINCR) + DWSL
 WS(IW) = 10.0 ** WSL(IW)
 25 CONTINUE
C
 ELSE
C
 CALL GETRE(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IR1,IR2)
 IRINCR = ISIGN(1 , (IR2-IR1))
C
 CALL ASKI('Enter W index (+/- dir) to start at^',IW1S)
 IW1 = IABS(IW1S)
 IF(IW1S.GT.0) IW2 = NWP
 IF(IW1S.LT.0) IW2 = 1
 IWINCR = ISIGN(1 , IW1S)
C
 IF(IR2 .GT. NRP) THEN
 NRP = IR2
 IF(NRP .GT. NRX) STOP 'Array overflow'
 ELSE IF(IR2 .LT. 1) THEN
 NRMOV = 1 - IR2
 DO 30 IR=NRP, 1, -1
 RTL(IR+NRMOV) = RTL(IR)
 RTL(IR) = 0.0
 RT(IR+NRMOV) = RT(IR)
 RT(IR) = 0.0
 DO 305 IW=1, NWP
 AR(IR+NRMOV,IW) = AR(IR,IW)
 AI(IR+NRMOV,IW) = AI(IR,IW)
 AR(IR,IW) = 0.0
 AI(IR,IW) = 0.0
 305 CONTINUE
 30 CONTINUE
 IR1 = IR1 + NRMOV
 IR2 = IR2 + NRMOV
 NRP = NRP + NRMOV
 IF(NRP .GT. NRX) STOP 'Array overflow'
 ENDIF
C
 DRTL = RTL(IR1-IRINCR) - RTL(IR1-2*IRINCR)
 DO 35 IR=IR1, IR2, IRINCR
 RTL(IR) = RTL(IR-IRINCR) + DRTL
 RT(IR) = 10.0 ** RTL(IR)
 35 CONTINUE
C
 ENDIF
C
C---------------------
C
 CALL ASKS('Enter map output filename^',FNAME)
 OPEN(19,FILE=FNAME,STATUS='NEW',FORM='UNFORMATTED')
 WRITE(19) N, H
 WRITE(19) (ETA(I),I=1, N)
 WRITE(19) (U(I) ,I=1, N)
 WRITE(19) (S(I) ,I=1, N)
 WRITE(19) NRP, NWP
 WRITE(19) (RTL(IR),IR=1,NRP)
 WRITE(19) (WSL(IW),IW=1,NWP)
C
 DO 80 IW=IW1, IW2, IWINCR
C
 WRITE(*,2010)
 2010 FORMAT(/1X,'--------------------')
 DO 810 IR=IR1, IR2, IRINCR
C
 WR = WS(IW)/SQRT(RT(IR))
C
 WRITE(*,2020) IW,IR, RT(IR), WR
 2020 FORMAT(/1X,2I4,' Rth =', E12.4, ' Wr =', E12.4)
C
 WR0 = WR
 WI0 = 0.0
C
C
 IRM1 = IR - IRINCR
 IRM2 = IR - 2*IRINCR
 IRM3 = IR - 3*IRINCR
C
 IWM1 = IW - IWINCR
 IWM2 = IW - 2*IWINCR
 IWM3 = IW - 3*IWINCR
C
ccc AR0 = 2.0*AR(IR,IWM1) - AR(IR,IWM2)
ccc AI0 = 2.0*AI(IR,IWM1) - AI(IR,IWM2)

 IF(IRM2.GE.1 .AND. IRM2.LE.NRP .AND.
 & IWM1.GE.1 .AND. IWM1.LE.NWP) THEN
 AR0 = 2.0*AR(IRM1,IW) - AR(IRM2,IW)
 & + AR(IR ,IWM1) - 2.0*AR(IRM1,IWM1) + AR(IRM2,IWM1)
 AI0 = 2.0*AI(IRM1,IW) - AI(IRM2,IW)
 & + AI(IR ,IWM1) - 2.0*AI(IRM1,IWM1) + AI(IRM2,IWM1)
 ELSE IF(IRM1.GE.1 .AND. IRM1.LE.NRP .AND.
 & IWM2.GE.1 .AND. IWM2.LE.NWP) THEN
 AR0 = AR(IRM1,IW)
 & + 2.0*AR(IR ,IWM1) - 2.0*AR(IRM1,IWM1)
 & - AR(IR ,IWM2) + AR(IRM1,IWM2)
 AI0 = AI(IRM1,IW)
 & + 2.0*AI(IR ,IWM1) - 2.0*AI(IRM1,IWM1)
 & - AI(IR ,IWM2) + AI(IRM1,IWM2)
 ELSE IF(IRM1.GE.1 .AND. IRM1.LE.NRP .AND.
 & IWM1.GE.1 .AND. IWM1.LE.NWP) THEN
 AR0 = AR(IRM1,IW)
 & + AR(IR ,IWM1) - AR(IRM1,IWM1)
 AI0 = AI(IRM1,IW)
 & + AI(IR ,IWM1) - AI(IRM1,IWM1)
 ELSE IF(IRM2.GE.1 .AND. IRM2.LE.NRP) THEN
 AR0 = 2.0*AR(IRM1,IW) - AR(IRM2,IW)
 AI0 = 2.0*AI(IRM1,IW) - AI(IRM2,IW)
 ELSE IF(IWM2.GE.1 .AND. IWM2.LE.NWP) THEN
 AR0 = 2.0*AR(IR,IWM1) - AR(IR,IWM2)
 AI0 = 2.0*AI(IR,IWM1) - AI(IR,IWM2)
 ELSE IF(IRM1.GE.1 .AND. IRM1.LE.NRP) THEN
 AR0 = AR(IRM1,IW)
 AI0 = AI(IRM1,IW)
 ELSE IF(IWM1.GE.1 .AND. IWM1.LE.NWP) THEN
 AR0 = AR(IR,IWM1)
 AI0 = AI(IR,IWM1)
 ELSE
 STOP 'Cannot start in corner and go in'
 ENDIF
c
 if(wr.le.wrmax .and. ir.ge.nrp-2 .and. iw.ge.2) then
 ar0 = ar(ir-2,iw-1)
 ai0 = ai(ir-2,iw-1)
 endif
C
 AR(IR,IW) = AR0
 AI(IR,IW) = AI0
C
 IF(WR .GT. WRMAX) GO TO 810
C
 ITMAX = 12
 CALL ORRS(LST,LRE,N,ETA,U,S, RT(IR), ITMAX,
 & AR0,AI0, WR0,WI0, UTR,UTI, VTR,VTI, DELMAX)
C
 IF(DELMAX.GT.RESMAX) GO TO 810
C
 AR(IR,IW) = AR0
 AI(IR,IW) = AI0
C
 810 CONTINUE
 80 CONTINUE
C
C
 DO 90 IW=1, NWP
 WRITE(19) (AR(IR,IW),IR=1, NRP)
 WRITE(19) (AI(IR,IW),IR=1, NRP)
 90 CONTINUE
C
 CLOSE(19)
C
 STOP
 END

 SUBROUTINE GETFR(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IW1,IW2)
 DIMENSION RTL(NRP), WSL(NWP)
 DIMENSION AR(NRX,NWX), AI(NRX,NWX)
C
 3 WRITE(*,1300) (IW,WSL(IW), IW=1, NWP)
 1300 FORMAT(/1X,' j log[W*sqrt(Rth)]'
 & 1000(/1X, I3, 6X, F7.4))
C
 4 CALL ASKI('Select j of freq. to examine (0=list,-1=end)^',IW)
 IF(IW.EQ.-1) GO TO 9
 IF(IW.LE.0 .OR. IW.GT.NWP) GO TO 3
C
 WRITE(*,1340) (IR,RTL(IR),AR(IR,IW),AI(IR,IW), IR=1, NRP)
C 112 2.3452 0.12345 -.00123
 1340 FORMAT(/1X,' i log(Rtheta) ar ai'
 & 81(/1X, I3, 3X, F7.4, 2X, 2F10.5))
 GO TO 4
C
 9 CONTINUE
 CALL ASKI('Specify first frequency index^',IW1)
 CALL ASKI('Specify last frequency index^',IW2)
 RETURN
C
 END

 SUBROUTINE GETRE(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IR1,IR2)
 DIMENSION RTL(NRP), WSL(NWP)
 DIMENSION AR(NRX,NWX), AI(NRX,NWX)
C
 3 WRITE(*,1300) (IR,RTL(IR), IR=1, NRP)
 1300 FORMAT(/1X,' j log[Rtheta]'
 & 1000(/1X, I3, 6X, F7.4))
C
 4 CALL ASKI('Select i of Rtheta to examine (0=list,-1=end)^',IR)
 IF(IR.EQ.-1) GO TO 9
 IF(IR.LE.0 .OR. IR.GT.NRP) GO TO 3
C
 WRITE(*,1340) (IW,WSL(IW),AR(IR,IW),AI(IR,IW), IW=1, NWP)
C 112 2.3452 0.12345 -.00123
 1340 FORMAT(/1X,' i log[W*sqrt(Rth)] ar ai'
 & 81(/1X, I3, 6X, F7.4, 4X, 2F10.5))
 GO TO 4
C
 9 CONTINUE
 CALL ASKR('Specify first Rtheta index^',IR1)
 CALL ASKR('Specify last Rtheta index^',IR2)
 RETURN
C
 END

XFOILinterface/XFOIL/orrs/src/mapmod2.f

 PROGRAM MAPMOD
 PARAMETER (NMAX=257,NRX=101,NWX=101)
 REAL ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 REAL UTR(NMAX), UTI(NMAX), VTR(NMAX), VTI(NMAX)
 CHARACTER*48 FNAME
 REAL AR(NRX,NWX), AI(NRX,NWX)
 REAL RT(NRX),RTL(NRX), WS(NWX),WSL(NWX)
C
 LST = 1
 LRE = 1
C
 RESMAX = 0.01
C
 CALL READIT(N,H,ETA,U,S,NRP,NWP,RTL,WSL,AR,AI,NRX,NWX)
 NR = NRP - 1
 NW = NWP - 1
C
 DO 10 IR=1, NRP
 RT(IR) = 10.0 ** RTL(IR)
 10 CONTINUE
C
 DO 15 IW=1, NWP
 WS(IW) = 10.0 ** WSL(IW)
 15 CONTINUE
C
C
 WRITE(6,1200) RTL(1), RTL(NRP), NR, WSL(1), WSL(NWP), NW
 1200 FORMAT(/' log(Rth) : low =', F7.4,' high =', F7.4,' NR =',I3
 & /' log(W*sR): low =', F7.4,' high =', F7.4,' NW =',I3)
C
 WRITE(6,*) ' '
 WRITE(6,*) '1 Add/replace scaled frequencies'
 WRITE(6,*) '2 Add/replace Reynolds numbers'
 WRITE(6,*) ' '
 CALL ASK('Select option^',2,IOPT)
 WRITE(6,*) ' '
C
 IF(IOPT.EQ.1) THEN
C
C----- get starting and final frequency indices
 CALL GETFR(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IW1,IW2)
 IWINCR = ISIGN(1 , (IW2-IW1))
C
 CALL ASK('Enter Re index (+/- dir) to start at^',2,IR1S)
 IR1 = IABS(IR1S)
 IF(IR1S.GT.0) IR2 = NRP
 IF(IR1S.LT.0) IR2 = 1
 IRINCR = ISIGN(1 , IR1S)
C
 IF(IW2 .GT. NWP) THEN
C
C------ 2nd index past current max --- set new max number of frequencies
 NWP = IW2
 IF(NWP .GT. NWX) STOP 'Array overflow'
C
 ELSE IF(IW2 .LT. 1) THEN
C
C------ 2nd index less than 1 --- move arrays to make space...
 NWMOV = 1 - IW2
 DO 20 IW=NWP, 1, -1
 WSL(IW+NWMOV) = WSL(IW)
 WSL(IW) = 0.0
 WS(IW+NWMOV) = WS(IW)
 WS(IW) = 0.0
 DO 205 IR=1, NRP
 AR(IR,IW+NWMOV) = AR(IR,IW)
 AI(IR,IW+NWMOV) = AI(IR,IW)
 AR(IR,IW) = 0.0
 AI(IR,IW) = 0.0
 205 CONTINUE
 20 CONTINUE
 IW1 = IW1 + NWMOV
 IW2 = IW2 + NWMOV
 NWP = NWP + NWMOV
 IF(NWP .GT. NWX) STOP 'Array overflow'
 ENDIF
C
C----- set new frequencies
 DWSL = WSL(IW1-IWINCR) - WSL(IW1-2*IWINCR)
 DO 25 IW=IW1, IW2, IWINCR
 WSL(IW) = WSL(IW-IWINCR) + DWSL
 WS(IW) = 10.0 ** WSL(IW)
 25 CONTINUE
C
 ELSE
C
 CALL GETRE(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IR1,IR2)
 IRINCR = ISIGN(1 , (IR2-IR1))
C
 CALL ASK('Enter W index (+/- dir) to start at^',2,IW1S)
 IW1 = IABS(IW1S)
 IF(IW1S.GT.0) IW2 = NWP
 IF(IW1S.LT.0) IW2 = 1
 IWINCR = ISIGN(1 , IW1S)
C
 IF(IR2 .GT. NRP) THEN
 NRP = IR2
 IF(NRP .GT. NRX) STOP 'Array overflow'
 ELSE IF(IR2 .LT. 1) THEN
 NRMOV = 1 - IR2
 DO 30 IR=NRP, 1, -1
 RTL(IR+NRMOV) = RTL(IR)
 RTL(IR) = 0.0
 RT(IR+NRMOV) = RT(IR)
 RT(IR) = 0.0
 DO 305 IW=1, NWP
 AR(IR+NRMOV,IW) = AR(IR,IW)
 AI(IR+NRMOV,IW) = AI(IR,IW)
 AR(IR,IW) = 0.0
 AI(IR,IW) = 0.0
 305 CONTINUE
 30 CONTINUE
 IR1 = IR1 + NRMOV
 IR2 = IR2 + NRMOV
 NRP = NRP + NRMOV
 IF(NRP .GT. NRX) STOP 'Array overflow'
 ENDIF
C
 DRTL = RTL(IR1-IRINCR) - RTL(IR1-2*IRINCR)
 DO 35 IR=IR1, IR2, IRINCR
 RTL(IR) = RTL(IR-IRINCR) + DRTL
 RT(IR) = 10.0 ** RTL(IR)
 35 CONTINUE
C
 ENDIF
C
c
 iw0 = iw1 - 3*iwincr
 ar_iw = (ar(ir2,iw0+2)-ar(ir2,iw0-2))/4.0
 ai_iw = (ai(ir2,iw0+2)-ai(ir2,iw0-2))/4.0
 ar2_iw = (ar(ir2,iw0+2)+ar(ir2,iw0-2)-2.0*ar(ir2,iw0))/4.0
 ai2_iw = (ai(ir2,iw0+2)+ai(ir2,iw0-2)-2.0*ai(ir2,iw0))/4.0
c
 ir0 = ir1 - 3*irincr
 ar_ir = (ar(ir0+2,iw2)-ar(ir0-2,iw2))/4.0
 ai_ir = (ai(ir0+2,iw2)-ai(ir0-2,iw2))/4.0
 ar2_ir = (ar(ir0+2,iw2)+ar(ir0-2,iw2)-2.0*ar(ir0,iw2))/4.0
 ai2_ir = (ai(ir0+2,iw2)+ai(ir0-2,iw2)-2.0*ai(ir0,iw2))/4.0
c
 iw = iw2
 arneww = ar(ir2,iw0) + ar_iw*(iw-iw0) + ar2_iw*0.5*(iw-iw0)**2
 aineww = ai(ir2,iw0) + ai_iw*(iw-iw0) + ai2_iw*0.5*(iw-iw0)**2
c
 ir = ir2
 arnewr = ar(ir0,iw2) + ar_ir*(ir-ir0) + ar2_ir*0.5*(ir-ir0)**2
 ainewr = ai(ir0,iw2) + ai_ir*(ir-ir0) + ai2_ir*0.5*(ir-ir0)**2
c
 ardif = (arneww - arnewr) * 0.5
 aidif = (aineww - ainewr) * 0.5
c
 ar2_iw = ar2_iw - ardif*2.0/(iw-iw0)**2
 ai2_iw = ai2_iw - aidif*2.0/(iw-iw0)**2
c
 ar2_ir = ar2_ir + ardif*2.0/(ir-ir0)**2
 ai2_ir = ai2_ir + aidif*2.0/(ir-ir0)**2
c
 do iw=iw1, iw2, iwincr
 arnew = ar(ir2,iw0) + ar_iw*(iw-iw0) + ar2_iw*0.5*(iw-iw0)**2
 ainew = ai(ir2,iw0) + ai_iw*(iw-iw0) + ai2_iw*0.5*(iw-iw0)**2
 ar(ir2,iw) = arnew
 ai(ir2,iw) = ainew
 enddo
c
 do ir=ir1, ir2, irincr
 arnew = ar(ir0,iw2) + ar_ir*(ir-ir0) + ar2_ir*0.5*(ir-ir0)**2
 ainew = ai(ir0,iw2) + ai_ir*(ir-ir0) + ai2_ir*0.5*(ir-ir0)**2
 ar(ir,iw2) = arnew
 ai(ir,iw2) = ainew
 enddo
c
C---------------------
C
 CALL ASK('Enter map output filename^',4,FNAME)
 OPEN(19,FILE=FNAME,STATUS='NEW',FORM='UNFORMATTED')
 WRITE(19) N, H
 WRITE(19) (ETA(I),I=1, N)
 WRITE(19) (U(I) ,I=1, N)
 WRITE(19) (S(I) ,I=1, N)
 WRITE(19) NRP, NWP
 WRITE(19) (RTL(IR),IR=1,NRP)
 WRITE(19) (WSL(IW),IW=1,NWP)
C
 do ipass=1, 300
c
 DO 80 IW=IW1, IW2, IWINCR
C
ccc WRITE(6,2010)
 2010 FORMAT(/1X,'--------------------')
 DO 810 IR=IR1, IR2, IRINCR
C
 WR = WS(IW)/SQRT(RT(IR))
C
ccc WRITE(6,2020) IW,IR, RT(IR), WR
 2020 FORMAT(/1X,2I4,' Rth =', E12.4, ' Wr =', E12.4)
C
 WR0 = WR
 WI0 = 0.0
C
CCC IF(IOPT.EQ.1) THEN
ccc AR0 = 2.0*AR(IR,IW-IWINCR) - AR(IR,IW-2*IWINCR)
ccc AI0 = 2.0*AI(IR,IW-IWINCR) - AI(IR,IW-2*IWINCR)
CCC ELSE IF(IOPT.EQ.2) THEN
ccc AR0 = 2.0*AR(IR-IRINCR,IW) - AR(IR-2*IRINCR,IW) + AR0
ccc AI0 = 2.0*AI(IR-IRINCR,IW) - AI(IR-2*IRINCR,IW) + AI0
CCC ENDIF
 if(ir.eq.ir2 .or. iw.eq.iw2) go to 810
c
 AR(IR,IW) = (ar(ir,iw-1) + ar(ir,iw+1)
 & + ar(ir-1,iw) + ar(ir+1,iw)) * 0.25
 AI(IR,IW) = (ai(ir,iw-1) + ai(ir,iw+1)
 & + ai(ir-1,iw) + ai(ir+1,iw)) * 0.25
 if(.true.) go to 810
C
C
 ITMAX = 12
 CALL ORRS(LST,LRE,N,ETA,U,S, RT(IR), ITMAX,
 & AR0,AI0, WR0,WI0, UTR,UTI, VTR,VTI, DELMAX)
C
 IF(DELMAX.GT.RESMAX) THEN
 IF(IOPT.EQ.1) THEN
 AR0 = 2.0*AR(IR,IW-IWINCR) - AR(IR,IW-2*IWINCR)
 AI0 = 2.0*AI(IR,IW-IWINCR) - AI(IR,IW-2*IWINCR)
 ELSE IF(IOPT.EQ.2) THEN
 AR0 = 2.0*AR(IR-IRINCR,IW) - AR(IR-2*IRINCR,IW)
 AI0 = 2.0*AI(IR-IRINCR,IW) - AI(IR-2*IRINCR,IW)
 ENDIF
 ENDIF
C
 AR(IR,IW) = AR0
 AI(IR,IW) = AI0
C
 810 CONTINUE
 80 CONTINUE
c
 enddo
C
C
 DO 90 IW=1, NWP
 WRITE(19) (AR(IR,IW),IR=1, NRP)
 WRITE(19) (AI(IR,IW),IR=1, NRP)
 90 CONTINUE
C
 CLOSE(19)
C
 STOP
 END

 SUBROUTINE READIT(N,H,ETA,U,S,NRP,NWP,RTL,WSL,AR,AI,NRX,NWX)
 DIMENSION ETA(1), U(1), S(1)
 DIMENSION AR(NRX,NWX), AI(NRX,NWX)
 DIMENSION RTL(NRX), WSL(NWX)
 LOGICAL*1 FNAME(32)
C
 CALL ASK('Enter map filename^',4,FNAME)
 OPEN(9,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED')
C
 READ(9) N, H
 READ(9) (ETA(I),I=1, N)
 READ(9) (U(I) ,I=1, N)
 READ(9) (S(I) ,I=1, N)
 READ(9) NRP, NWP
 READ(9) (RTL(IR),IR=1,NRP)
 READ(9) (WSL(IW),IW=1,NWP)
C
 DO 10 IW=1, NWP
 READ(9,END=11) (AR(IR,IW),IR=1,NRP)
 READ(9,END=11) (AI(IR,IW),IR=1,NRP)
 10 CONTINUE
 CLOSE(9)
 GO TO 90
C
 11 CONTINUE
 CLOSE(9)
 NWP = IW-1
 WRITE(6,*) 'Map incomplete.'
 WRITE(6,*) 'Last complete frequency index set:',NWP
C
 90 CONTINUE
 GEO = (ETA(3)-ETA(2)) / (ETA(2)-ETA(1))
C
 WRITE(6,1050) N, H, ETA(N), GEO
 1050 FORMAT(/' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
C
 RETURN
 END

 SUBROUTINE GETFR(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IW1,IW2)
 DIMENSION RTL(NRP), WSL(NWP)
 DIMENSION AR(NRX,NWX), AI(NRX,NWX)
C
 3 WRITE(6,1300) (IW,WSL(IW), IW=1, NWP)
 1300 FORMAT(/1X,' j log[W*sqrt(Rth)]'
 & 1000(/1X, I3, 6X, F7.4))
C
 4 CALL ASK('Select j of freq. to examine (0=list,-1=end)^',2,IW)
 IF(IW.EQ.-1) GO TO 9
 IF(IW.LE.0 .OR. IW.GT.NWP) GO TO 3
C
 WRITE(6,1340) (IR,RTL(IR),AR(IR,IW),AI(IR,IW), IR=1, NRP)
C 112 2.3452 0.12345 -.00123
 1340 FORMAT(/1X,' i log(Rtheta) ar ai'
 & 81(/1X, I3, 3X, F7.4, 2X, 2F10.5))
 GO TO 4
C
 9 CONTINUE
 CALL ASK('Specify first frequency index^',2,IW1)
 CALL ASK('Specify last frequency index^',2,IW2)
 RETURN
C
 END

 SUBROUTINE GETRE(NRP,NWP,RTL,WSL,AR,AI,NRX,NWX, IR1,IR2)
 DIMENSION RTL(NRP), WSL(NWP)
 DIMENSION AR(NRX,NWX), AI(NRX,NWX)
C
 3 WRITE(6,1300) (IR,RTL(IR), IR=1, NRP)
 1300 FORMAT(/1X,' j log[Rtheta]'
 & 1000(/1X, I3, 6X, F7.4))
C
 4 CALL ASK('Select i of Rtheta to examine (0=list,-1=end)^',2,IR)
 IF(IR.EQ.-1) GO TO 9
 IF(IR.LE.0 .OR. IR.GT.NRP) GO TO 3
C
 WRITE(6,1340) (IW,WSL(IW),AR(IR,IW),AI(IR,IW), IW=1, NWP)
C 112 2.3452 0.12345 -.00123
 1340 FORMAT(/1X,' i log[W*sqrt(Rth)] ar ai'
 & 81(/1X, I3, 6X, F7.4, 4X, 2F10.5))
 GO TO 4
C
 9 CONTINUE
 CALL ASK('Specify first Rtheta index^',2,IR1)
 CALL ASK('Specify last Rtheta index^',2,IR2)
 RETURN
C
 END

XFOILinterface/XFOIL/orrs/src/mappl1.f

 PROGRAM MAPPL1
 PARAMETER (NMAX=257,NRX=101,NWX=101)
 REAL ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 REAL UTR(NMAX), UTI(NMAX)
 LOGICAL*1 FNAME(32)
 REAL AR(NRX,NWX), AI(NRX,NWX), X(NRX,NWX), Y(NRX,NWX)
 REAL RT(NRX),RTL(NRX), WS(NWX),WSL(NWX)
 CHARACTER*1 ANS
 LOGICAL LABCON, YES, MANUAL
C
 IDEV = 6
 IHARD = 0
 SIZE = 4.0
 CH = 0.020
 CHL = 0.018
C
 NH = 1
 CALL READIT(N,H,ETA,U,S,NRP,NWP,RTL,WSL,AR,AI,NRX,NWX)
 NR = NRP - 1
 NW = NWP - 1
C
 DO 10 IR=1, NRP
 RT(IR) = 10.0 ** RTL(IR)
 10 CONTINUE
C
 DO 15 IW=1, NWP
 WS(IW) = 10.0 ** WSL(IW)
 15 CONTINUE
C
 RTLMIN = RTL(1)
 RTLMAX = RTL(NRP)
C
 WRLMIN = WSL(1) - 0.5*RTL(NRP)
 WRLMAX = WSL(NWP) - 0.5*RTL(1)
C
 ARMIN = AR(1,1)
 ARMAX = AR(1,1)
 AIMIN = AI(1,1)
 AIMAX = AI(1,1)
 DO 30 IW=1, NWP
 DO 301 IR=1, NRP
 ARMIN = AMIN1(ARMIN,AR(IR,IW))
 ARMAX = AMAX1(ARMAX,AR(IR,IW))
 AIMIN = AMIN1(AIMIN,AI(IR,IW))
 AIMAX = AMAX1(AIMAX,AI(IR,IW))
 301 CONTINUE
 30 CONTINUE
C
C
C---- log-log Rtheta-W plot exponent limits
C I1 = INT(RTLMIN+100.001) - 100
C I2 = INT(RTLMAX+100.999) - 100
C J1 = INT(WRLMIN+100.001) - 100
C J2 = INT(WRLMAX+100.999) - 100
C
 I1 = 0
 I2 = 6
 J1 = -6
 J2 = 1
C
 RTLMIN = FLOAT(I1)
 RTLMAX = FLOAT(I2)
 WRLMIN = FLOAT(J1)
 WRLMAX = FLOAT(J2)
C
CCC SF = AMIN1(1.0/(RTLMAX-RTLMIN) , 1.0/(WRLMAX-WRLMIN))
 SF = 1.0/(RTLMAX-RTLMIN)
C
 DO 40 IW=1, NWP
 DO 401 IR=1, NRP
 WRL = WSL(IW) - 0.5*RTL(IR)
 X(IR,IW) = (RTL(IR)-RTLMIN) * SF
 Y(IR,IW) = (WRL -WRLMIN) * SF
 401 CONTINUE
 40 CONTINUE
C
 CALL ASK('Enter contour parameter filename (or <cr>)^',4,FNAME)
 MANUAL = FNAME(1) .EQ. ' '
C
 CALL PLOTS(0,IHARD,IDEV)
 CALL FACTOR(SIZE)
 CALL PLOT(8.0*CH,8.0*CH,-3)
C
 DO 9000 IPASS=1, 2
C
 DO 50 I=I1, I2
 XLIN = (FLOAT(I) -RTLMIN) * SF
 YLIN1 = (FLOAT(J1)-WRLMIN) * SF
 YLIN2 = (FLOAT(J2)-WRLMIN) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN,YLIN1,3)
 CALL PLOT(XLIN,YLIN2,2)
C
 CALL NEWPEN(2)
 RI = FLOAT(I)
 CALL SYMBOL(XLIN-1.0*CH,YLIN1-2.5*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN+1.4*CH,YLIN1-2.0*CH,1.0*CH,RI ,0.0,-1)
 50 CONTINUE
C
 DO 55 J=J1, J2
 YLIN = (FLOAT(J) -WRLMIN) * SF
 XLIN1 = (FLOAT(I1)-RTLMIN) * SF
 XLIN2 = (FLOAT(I2)-RTLMIN) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN1,YLIN,3)
 CALL PLOT(XLIN2,YLIN,2)
C
 CALL NEWPEN(2)
 RJ = FLOAT(J)
 CALL SYMBOL(XLIN1-4.4*CH,YLIN-0.6*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN1-2.0*CH,YLIN-0.1*CH,1.0*CH,RJ ,0.0,-1)
 55 CONTINUE
C
 CALL NEWPEN(3)
 XLAB = (FLOAT((I1+I2)/2) + 0.5 - RTLMIN) * SF - 1.0*CH
 YLAB = (FLOAT(J1) - WRLMIN) * SF - 3.7*CH
 CALL SYMBOL(XLAB ,YLAB ,1.7*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+1.7*CH,YLAB-0.6*CH,1.2*CH,'0',0.0,1)
 CALL SYMBOL(XLAB+1.7*CH,YLAB-0.6*CH,1.2*CH,'-',0.0,1)
C
 CALL NEWPEN(3)
 XLAB = (FLOAT(I1) - RTLMIN) * SF - 7.2*CH
 YLAB = (FLOAT((J1+J2)/2) + 0.5 - WRLMIN) * SF - 0.9*CH
 CALL SYMBOL(XLAB ,YLAB-0.4*CH,1.7*CH,'h' ,0.0,1)
 CALL SYMBOL(XLAB+1.7*CH,YLAB ,1.7*CH,'0/U',0.0,3)
 CALL SYMBOL(XLAB+1.7*CH,YLAB ,1.7*CH,'-' ,0.0,1)
C
 CALL NEWPEN(3)
 XLAB = 0.5*CH
 YLAB = (FLOAT(J2)-WRLMIN)*SF + 1.5*CH
 CALL SYMBOL(XLAB ,YLAB-0.4*CH,2.2*CH,'j',0.0,1)
 IF(IPASS.EQ.1)
 &CALL SYMBOL(XLAB+ 1.8*CH,YLAB-0.4*CH,1.2*CH,'I',0.0,1)
 IF(IPASS.EQ.2)
 &CALL SYMBOL(XLAB+ 1.8*CH,YLAB-0.4*CH,1.2*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+ 3.2*CH,YLAB ,1.8*CH,'0',0.0,1)
 CALL SYMBOL(XLAB+ 3.2*CH,YLAB ,1.8*CH,'-',0.0,1)
 CALL SYMBOL(XLAB+ 6.3*CH,YLAB,1.4*CH,'CONTOURS',0.0,8)
C
 XLAB = (FLOAT(I2)-RTLMIN)*SF - 10.0*1.5*CH
 CALL SYMBOL(XLAB ,YLAB,1.5*CH,'H = ',0.0,4)
 CALL NUMBER(XLAB+6.0*CH,YLAB,1.5*CH, H ,0.0,3)
C
 IF(IPASS.EQ.1) WRITE(6,*) 'ai limits:', AIMIN, AIMAX
 IF(IPASS.EQ.2) WRITE(6,*) 'ar limits:', ARMIN, ARMAX
C
 IF(.NOT.MANUAL) OPEN(19,FILE=FNAME,STATUS='OLD')
C
 800 CONTINUE
c
cc---- plot function grid
c call newpen(1)
c do 60 ir=1, nrp
c call plot(x(ir,1),y(ir,1),3)
c do 610 iw=2, nwp
c call plot(x(ir,iw),y(ir,iw),2)
c 610 continue
c 60 continue
c do 70 iw=1, nwp
c call plot(x(1,iw),y(1,iw),3)
c do 710 ir=2, nrp
c call plot(x(ir,iw),y(ir,iw),2)
c 710 continue
c 70 continue
cc
c
 IF(MANUAL) THEN
 WRITE(6,*) ' '
 CALL ASK('Enter starting contour level^',3,ALOW)
 CALL ASK('Enter contour level increment (+/-)^',3,DA)
 CALL ASK('Enter contour line thickness (1-5)^',2,LPEN)
 CALL ASK('Add numerical labels to contours ?^',5,LABCON)
 ELSE
 READ(19,*,END=900) ALOW, DA, LPEN, LABCON
 IF(ALOW .EQ. 999.0) GO TO 900
 ENDIF
C
C
C**** plot and label contours
C
 CALL NEWPEN(LPEN)
C
C---- go over contour levels
 DO 80 IA = 0, 12345
C
C------ set contour level
 ACON = ALOW + DA*FLOAT(IA)
C
C
 IF(IPASS.EQ.1) THEN
C------- skip out if outside limits
 IF((DA.GT.0.0 .AND. ACON.GT.AIMAX) .OR.
 & (DA.LT.0.0 .AND. ACON.LT.AIMIN)) GO TO 81
C
 CALL CON1(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0,CHL,3,3)
 ENDIF
 ELSE
C------- skip out if outside limits
 IF((DA.GT.0.0 .AND. ACON.GT.ARMAX) .OR.
 & (DA.LT.0.0 .AND. ACON.LT.ARMIN)) GO TO 81
C
 CALL CON1(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0,CHL,3,3)
 ENDIF
 ENDIF
 80 CONTINUE
 81 CONTINUE
C
 IF(MANUAL) THEN
 CALL ASK('Add more contours ?^',5,YES)
 IF(YES) GO TO 800
 ELSE
 GO TO 800
 ENDIF
C
 900 IF(IPASS.LT.2) CALL PLOT((RTLMAX-RTLMIN)*SF+12.0*CH,0.0,-3)
C
 9000 CONTINUE
C
 IF(.NOT.MANUAL) THEN
 CLOSE(19)
 CALL ASK('Hit <cr>^',1,DUMMY)
 ENDIF
C
 CALL PLOT(0.0,0.0,+999)
C
 STOP
 END

 SUBROUTINE READIT(N,H,ETA,U,S,NRP,NWP,RTL,WSL,AR,AI,NRX,NWX)
 DIMENSION ETA(1), U(1), S(1)
 DIMENSION AR(NRX,NWX), AI(NRX,NWX)
 DIMENSION RTL(NRX), WSL(NWX)
 LOGICAL*1 FNAME(32)
C
 CALL ASK('Enter map filename^',4,FNAME)
 OPEN(9,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED')
C
 READ(9) N, H
 READ(9) (ETA(I),I=1, N)
 READ(9) (U(I) ,I=1, N)
 READ(9) (S(I) ,I=1, N)
 READ(9) NRP, NWP
 READ(9) (RTL(IR),IR=1,NRP)
 READ(9) (WSL(IW),IW=1,NWP)
C
 DO 10 IW=1, NWP
 READ(9,END=11) (AR(IR,IW),IR=1,NRP)
 READ(9,END=11) (AI(IR,IW),IR=1,NRP)
 10 CONTINUE
 CLOSE(9)
 GO TO 90
C
 11 CONTINUE
 CLOSE(9)
 IWLAST = IW-1
 WRITE(6,*) 'Map incomplete.'
 WRITE(6,*) 'Last complete frequency index:',IWLAST
C
 90 CONTINUE
 GEO = (ETA(3)-ETA(2)) / (ETA(2)-ETA(1))
C
 WRITE(6,1050) N, H, ETA(N), GEO
 1050 FORMAT(/' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/mappl3.f

 PROGRAM MAPGEN
 PARAMETER (NMAX=257,NRX=101,NWX=61,NHX=21)
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 LOGICAL*1 FNAME(32)
 REAL AR(NRX,NWX,NHX), AI(NRX,NWX,NHX),
 & X(NRX,NWX,NHX), Y(NRX,NWX,NHX)
 REAL RT(NRX,NHX),RTL(NRX,NHX)
 REAL WS(NWX,NHX),WSL(NWX,NHX)
 REAL HH(NHX),HHL(NHX)
 INTEGER N(NHX), NRP(NHX), NRW(NHX), NR(NHX),NW(NHX)
C
 CHARACTER*1 ANS
 LOGICAL LABCON, YES
C
 IDEV = 12
 IHARD = 0
 SIZE = 4.5
 CH = 0.020
 CHL = 0.018
C
 CALL READIT(N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 NH = NHP - 1
 DO 13 IH=1, NHP
 HHL(IH) = HH(IH)
C
 NR(IH) = NRP(IH) - 1
 NW(IH) = NWP(IH) - 1
C
 DO 11 IR=1, NRP(IH)
 RT(IR,IH) = 10.0 ** RTL(IR,IH)
 11 CONTINUE
C
 DO 12 IW=1, NWP(IH)
 WS(IW,IH) = 10.0 ** WSL(IW,IH)
 12 CONTINUE
C
 13 CONTINUE
C
C
 RTLMIN = RTL(1 ,1)
 RTLMAX = RTL(NRP(1),1)
C
 WRLMIN = WSL(1 ,1) - 0.5*RTL(1 ,1)
 WRLMAX = WSL(NWP(1),1) - 0.5*RTL(NRP(1),1)
C
 HHLMIN = HHL(1)
 HHLMAX = HHL(1)
C
 DO 20 IH=1, NHP
 RTLMIN = AMIN1(RTLMIN , RTL(1 ,IH))
 RTLMAX = AMAX1(RTLMAX , RTL(NRP(IH),IH))
C
 WRLMIN = AMIN1(WRLMIN ,
 & WSL(1 ,IH)-0.5*RLT(1 ,IH))
 WRLMAX = AMAX1(WRLMAX ,
 & WSL(NWP(IH),IH)-0.5*RTL(NRP(IH),IH))
C
 HHLMIN = AMIN1(HHLMIN , HHL(IH))
 HHLMAX = AMAX1(HHLMAX , HHL(IH))
 20 CONTINUE
C
C
 ARMIN = AR(1,1,1)
 ARMAX = AR(1,1,1)
 AIMIN = AI(1,1,1)
 AIMAX = AI(1,1,1)
 DO 30 IH=1, NHP
 DO 301 IW=1, NWP(IH)
 DO 3010 IR=1, NRP(IH)
 ARMIN = AMIN1(ARMIN,AR(IR,IW,IH))
 ARMAX = AMAX1(ARMAX,AR(IR,IW,IH))
 AIMIN = AMIN1(AIMIN,AI(IR,IW,IH))
 AIMAX = AMAX1(AIMAX,AI(IR,IW,IH))
 3010 CONTINUE
 301 CONTINUE
 30 CONTINUE
C
C
 I1 = INT(RTLMIN+100.001) - 100
 I2 = INT(RTLMAX+100.999) - 100
 J1 = INT(WRLMIN+100.001) - 100
 J2 = INT(WRLMAX+100.999) - 100
 K1 = INT(HHLMIN+100.001) - 100
 K2 = INT(HHLMAX+100.999) - 100
C
 RTLMIN = FLOAT(I1)
 RTLMAX = FLOAT(I2)
 WRLMIN = FLOAT(J1)
 WRLMAX = FLOAT(J2)
 HHLMIN = FLOAT(K1)
 HHLMAX = FLOAT(K2)
C
 90 WRITE(6,*) ' '
 WRITE(6,*) ' 1 W vs Rtheta'
 WRITE(6,*) ' 2 H vs Rtheta'
 WRITE(6,*) ' 3 W vs H'
 WRITE(6,*) ' '
 CALL ASK('Select plot option\',2,IOPT)
C
 GO TO (100,200,300), IOPT
 GO TO 90
C
 100 CALL GETHH(NHX,NHP,HH,IH)
C
 SF = AMIN1(1.0/(RTLMAX-RTLMIN) , 1.0/(WRLMAX-WRLMIN))
C
 DO 40 IW=1, NWP(IH)
 DO 401 IR=1, NRP(IH)
 WRL = WSL(IW,IH) - 0.5*RTL(IR,IH)
 X(IR,IW) = (RTL(IR,IH)-RTLMIN) * SF
 Y(IR,IW) = (WRL -WRLMIN) * SF
 401 CONTINUE
 40 CONTINUE
C
 CALL PLTINI(IHARD,IDEV,SIZE,CH)
 CALL LAXES(I1,I2,J1,J2,SF,CH)
C

 ELSE IF(IOPT.EQ.2) THEN
C

C
 DO 9000 IPASS=1, 2
C
 CALL NEWPEN(3)
 XLAB = 0.5*CH
 YLAB = (FLOAT(J2)-WRLMIN)*SF + 1.5*CH
 CALL SYMBOL(XLAB ,YLAB-0.4*CH,2.2*CH,'j',0.0,1)
 IF(IPASS.EQ.1)
 &CALL SYMBOL(XLAB+ 1.8*CH,YLAB-0.4*CH,1.2*CH,'I',0.0,1)
 IF(IPASS.EQ.2)
 &CALL SYMBOL(XLAB+ 1.8*CH,YLAB-0.4*CH,1.2*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+ 3.2*CH,YLAB ,1.8*CH,'0',0.0,1)
 CALL SYMBOL(XLAB+ 3.2*CH,YLAB ,1.8*CH,'-',0.0,1)
C
 XLAB = (FLOAT(I2)-RTLMIN)*SF - 10.0*1.5*CH
 CALL SYMBOL(XLAB ,YLAB,1.5*CH,'H = ',0.0,4)
 CALL NUMBER(XLAB+6.0*CH,YLAB,1.5*CH, H ,0.0,3)
C
 IF(IPASS.EQ.1) WRITE(6,*) 'ai limits:', AIMIN, AIMAX
 IF(IPASS.EQ.2) WRITE(6,*) 'ar limits:', ARMIN, ARMAX
C
 800 CONTINUE
 WRITE(6,*) ' '
 CALL ASK('Enter starting contour level\',3,ALOW)
 CALL ASK('Enter contour level increment (+/-)\',3,DA)
 CALL ASK('Enter contour line thickness (1-5)\',2,LPEN)
 CALL ASK('Add numerical labels to contours ?\',5,LABCON)
C
C
C**** plot and label contours
C
 CALL NEWPEN(LPEN)
C
C---- go over contour levels
 DO 60 IA = 0, 12345
C
C------ set contour level
 ACON = ALOW + DA*FLOAT(IA)
C
C
 IF(IPASS.EQ.1) THEN
C------- skip out if outside limits
 IF((DA.GT.0.0 .AND. ACON.GT.AIMAX) .OR.
 & (DA.LT.0.0 .AND. ACON.LT.AIMIN)) GO TO 61
C
 CALL CON1(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AI,ACON,1.0,1.0,CHL,3,3)
 ENDIF
 ELSE
C------- skip out if outside limits
 IF((DA.GT.0.0 .AND. ACON.GT.ARMAX) .OR.
 & (DA.LT.0.0 .AND. ACON.LT.ARMIN)) GO TO 61
C
 CALL CON1(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP,NWP,X,Y,AR,ACON,1.0,1.0,CHL,3,3)
 ENDIF
 ENDIF
 60 CONTINUE
 61 CONTINUE
C
 CALL ASK('Add more contours ?\',5,YES)
 IF(YES) GO TO 800
C
 IF(IPASS.LT.2) CALL PLOT((RTLMAX-RTLMIN)*SF+12.0*CH,0.0,-3)
C
 9000 CONTINUE
C
 CALL PLOT(0.0,0.0,+999)
 STOP
 END

 SUBROUTINE READIT(N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
 DIMENSION N(NHX), NRP(NHX),NWP(NHX)
 DIMENSION ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 DIMENSION AR(NRX,NWX,NHX), AI(NRX,NWX,NHX)
 DIMENSION RTL(NRX), WSL(NWX), HH(NHX)
 LOGICAL*1 FNAME(32)
C
 DO 1000 IH=1, NHX
 CALL ASK('Enter map filename (or <cr> to quit)\',4,FNAME)
 OPEN(9,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=1001)
C
 READ(9) N(IH), HH(IH)
 READ(9) (ETA(I,IH),I=1, N(IH))
 READ(9) (U(I,IH) ,I=1, N(IH))
 READ(9) (S(I,IH) ,I=1, N(IH))
 READ(9) NRP(IH), NWP(IH)
 READ(9) (RTL(IR,IH),IR=1,NRP(IH))
 READ(9) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO 10 IW=1, NWP(IH)
 READ(9,END=11) (AR(IR,IW,IH),IR=1,NRP(IH))
 READ(9,END=11) (AI(IR,IW,IH),IR=1,NRP(IH))
 10 CONTINUE
 CLOSE(9)
 GO TO 90
C
 11 CONTINUE
 CLOSE(9)
 IWLAST = IW-1
 WRITE(6,*) 'Map incomplete.'
 WRITE(6,*) 'Last complete frequency index:',IWLAST
C
 90 CONTINUE
 GEO = (ETA(3,IH)-ETA(2,IH)) / (ETA(2,IH)-ETA(1,IH))
C
 WRITE(6,1050) N(IH), HH(IH), ETA(N,IH), GEO
 1050 FORMAT(/' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
 1000 CONTINUE
 IH = NHX + 1
C
 1001 NHP = IH-1
 RETURN
 END

 SUBROUTINE PLTINI(IHARD,IDEV,SIZE,CH)
 CALL PLOTS(0,IHARD,IDEV)
 CALL FACTOR(SIZE)
 CALL PLOT(8.0*CH,8.0*CH,-3)
 RETURN
 END

 SUBROUTINE LAXES(I1,I2,J1,J2,SF,CH)
C
 DO 50 I=I1, I2
 XLIN = FLOAT(I -I1) * SF
 YLIN1 = FLOAT(J1-J1) * SF
 YLIN2 = FLOAT(J2-J1) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN,YLIN1,3)
 CALL PLOT(XLIN,YLIN2,2)
C
 CALL NEWPEN(2)
 RI = FLOAT(I)
 CALL SYMBOL(XLIN-1.0*CH,YLIN1-2.5*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN+1.4*CH,YLIN1-2.0*CH,1.0*CH,RI ,0.0,-1)
 50 CONTINUE
C
 DO 55 J=J1, J2
 YLIN = FLOAT(J -J1) * SF
 XLIN1 = FLOAT(I1-I1) * SF
 XLIN2 = FLOAT(I2-I1) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN1,YLIN,3)
 CALL PLOT(XLIN2,YLIN,2)
C
 CALL NEWPEN(2)
 RJ = FLOAT(J)
 CALL SYMBOL(XLIN1-4.4*CH,YLIN-0.6*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN1-2.0*CH,YLIN-0.1*CH,1.0*CH,RJ ,0.0,-1)
 55 CONTINUE
C
 RETURN
 END

 SUBROUTINE RLABEL(I1,I2,J1,SF,CH)
 CALL NEWPEN(2)
 XLAB = (FLOAT((I1+I2)/2) + 0.5 - FLOAT(I1)) * SF - 1.0*CH
 YLAB = (FLOAT(J1) - FLOAT(J1)) * SF - 3.5*CH
 CALL SYMBOL(XLAB ,YLAB ,1.5*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB-0.5*CH,1.0*CH,'0',0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB-0.5*CH,1.0*CH,'-',0.0,1)
 RETURN
 END

 SUBROUTINE WLABEL(J1,J2,I1,SF,CH)
 CALL NEWPEN(2)
 XLAB = (FLOAT(I1) - FLOAT(I1)) * SF - 6.5*CH
 YLAB = (FLOAT((J1+J2)/2) + 0.5 - FLOAT(J1)) * SF - 0.8*CH
 CALL SYMBOL(XLAB ,YLAB-0.3*CH,1.5*CH,'h' ,0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB ,1.5*CH,'0/U',0.0,3)
 CALL SYMBOL(XLAB+1.5*CH,YLAB ,1.5*CH,'-' ,0.0,1)
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/mapplt.f

 PROGRAM MAPPLT
 PARAMETER (NMAX=257,NRX=101,NWX=91,NHX=21)
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 LOGICAL*1 FNAME(32)
 REAL AR(NRX,NWX,NHX), AI(NRX,NWX,NHX)
 REAL X(NRX,NWX), Y(NRX,NWX)
 REAL RT(NRX,NHX),RTL(NRX,NHX)
 REAL WS(NWX,NHX),WSL(NWX,NHX)
 REAL HH(NHX),HHL(NHX)
 INTEGER N(NHX), NRP(NHX), NWP(NHX), NR(NHX),NW(NHX)
C
 CHARACTER*1 ANS
 LOGICAL LABCON, YES
C
 IDEV = 12
 IHARD = 0
 SIZE = 4.0
 CH = 0.020
 CHL = 0.018
C
C---- log-log Rtheta-W plot exponent limits
 I1 = 0
 I2 = 6
 J1 = -5
 J2 = 1
C
 CALL PLOTS(0,IHARD,IDEV)
 CALL FACTOR(SIZE)
 CALL PLOT(8.0*CH,8.0*CH,-3)
C
 CALL READIT(N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 NH = NHP - 1
 DO 15 IH=1, NHP
 HHL(IH) = HH(IH)
C
 NR(IH) = NRP(IH) - 1
 NW(IH) = NWP(IH) - 1
C
 DO 13 IR=1, NRP(IH)
 RT(IR,IH) = 10.0 ** RTL(IR,IH)
 13 CONTINUE
C
 DO 14 IW=1, NWP(IH)
 WS(IW,IH) = 10.0 ** WSL(IW,IH)
 14 CONTINUE
C
 15 CONTINUE
C
C
 ARMIN = AR(1,1,1)
 ARMAX = AR(1,1,1)
 AIMIN = AI(1,1,1)
 AIMAX = AI(1,1,1)
 DO 30 IH=1, NHP
 DO 301 IW=1, NWP(IH)
 DO 3010 IR=1, NRP(IH)
 ARMIN = AMIN1(ARMIN,AR(IR,IW,IH))
 ARMAX = AMAX1(ARMAX,AR(IR,IW,IH))
 AIMIN = AMIN1(AIMIN,AI(IR,IW,IH))
 AIMAX = AMAX1(AIMAX,AI(IR,IW,IH))
 3010 CONTINUE
 301 CONTINUE
 30 CONTINUE
C
C
 RTLMIN = RTL(1 ,1)
 RTLMAX = RTL(NRP(1),1)
 WRLMIN = WSL(1 ,1) - 0.5*RTL(1 ,1)
 WRLMAX = WSL(NWP(1),1) - 0.5*RTL(NRP(1),1)
 HHLMIN = HHL(1)
 HHLMAX = HHL(1)
 DO 20 IH=1, NHP
 RTLMIN = AMIN1(RTLMIN , RTL(1 ,IH))
 RTLMAX = AMAX1(RTLMAX , RTL(NRP(IH),IH))
 WRLMIN = AMIN1(WRLMIN ,
 & WSL(1 ,IH)-0.5*RTL(1 ,IH))
 WRLMAX = AMAX1(WRLMAX ,
 & WSL(NWP(IH),IH)-0.5*RTL(NRP(IH),IH))
 HHLMIN = AMIN1(HHLMIN , HHL(IH))
 HHLMAX = AMAX1(HHLMAX , HHL(IH))
 20 CONTINUE
C
C
 RTLMIN = FLOAT(I1)
 RTLMAX = FLOAT(I2)
 WRLMIN = FLOAT(J1)
 WRLMAX = FLOAT(J2)
C
 SF = AMIN1(1.0/(RTLMAX-RTLMIN) , 1.0/(WRLMAX-WRLMIN))
C
C
 DO 2000 IPASS=1, 2
C
 WRITE(6,*) ' '
 IF(IPASS.EQ.1) WRITE(6,*) 'ai limits:', AIMIN, AIMAX
 IF(IPASS.EQ.2) WRITE(6,*) 'ar limits:', ARMIN, ARMAX
C
 WRITE(6,*) ' '
 WRITE(6,*) 'Enter contour level'
 READ (5,*) ACON
 WRITE(6,*) 'Enter contour line thickness (1-5)'
 READ (5,*) LPEN
 WRITE(6,*) 'Add H labels to contours ? N'
 READ (5,9900) ANS
 9900 FORMAT(A1)
 LABCON = ANS.EQ.'Y'
C
c CALL ASK('Enter contour level\',3,ACON)
c CALL ASK('Enter contour line thickness (1-5)\',2,LPEN)
c CALL ASK('Add H labels to contours ?\',5,LABCON)
C
 DO 50 I=I1, I2
 XLIN = (FLOAT(I) -RTLMIN) * SF
 YLIN1 = (FLOAT(J1)-WRLMIN) * SF
 YLIN2 = (FLOAT(J2)-WRLMIN) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN,YLIN1,3)
 CALL PLOT(XLIN,YLIN2,2)
C
 CALL NEWPEN(2)
 RI = FLOAT(I)
 CALL SYMBOL(XLIN-1.0*CH,YLIN1-2.5*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN+1.4*CH,YLIN1-2.0*CH,1.0*CH,RI ,0.0,-1)
 50 CONTINUE
C
 DO 55 J=J1, J2
 YLIN = (FLOAT(J) -WRLMIN) * SF
 XLIN1 = (FLOAT(I1)-RTLMIN) * SF
 XLIN2 = (FLOAT(I2)-RTLMIN) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN1,YLIN,3)
 CALL PLOT(XLIN2,YLIN,2)
C
 CALL NEWPEN(2)
 RJ = FLOAT(J)
 CALL SYMBOL(XLIN1-4.4*CH,YLIN-0.6*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN1-2.0*CH,YLIN-0.1*CH,1.0*CH,RJ ,0.0,-1)
 55 CONTINUE
C
 CALL NEWPEN(2)
 XLAB = (FLOAT((I1+I2)/2) + 0.5 - RTLMIN) * SF - 1.5*CH
 YLAB = (FLOAT(J1) - WRLMIN) * SF - 3.5*CH
 CALL SYMBOL(XLAB ,YLAB ,1.5*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB-0.5*CH,1.0*CH,'0',0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB-0.5*CH,1.0*CH,'-',0.0,1)
C
 CALL NEWPEN(2)
 XLAB = (FLOAT(I1) - RTLMIN) * SF - 6.5*CH
 YLAB = (FLOAT((J1+J2)/2) + 0.5 - WRLMIN) * SF - 0.8*CH
 CALL SYMBOL(XLAB ,YLAB-0.3*CH,1.5*CH,'h' ,0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB ,1.5*CH,'0/U',0.0,3)
 CALL SYMBOL(XLAB+1.5*CH,YLAB ,1.5*CH,'-' ,0.0,1)
C
 CALL NEWPEN(3)
 XLAB = 0.5*CH
 YLAB = (FLOAT(J2)-WRLMIN)*SF + 1.5*CH
 CALL SYMBOL(XLAB ,YLAB,1.8*CH,'H ',0.0,2)
 CALL SYMBOL(XLAB+3.6*CH,YLAB,1.4*CH,'CONTOURS',0.0,8)
C
 XLAB = (FLOAT(I2)-RTLMIN)*SF - 10.0*1.5*CH
 CALL SYMBOL(XLAB ,YLAB-0.4*CH,1.9*CH,'j',0.0,1)
 IF(IPASS.EQ.1)
 &CALL SYMBOL(XLAB+ 1.5*CH,YLAB-0.4*CH,1.2*CH,'I',0.0,1)
 IF(IPASS.EQ.2)
 &CALL SYMBOL(XLAB+ 1.5*CH,YLAB-0.4*CH,1.2*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+ 2.9*CH,YLAB ,1.5*CH,'0',0.0,1)
 CALL SYMBOL(XLAB+ 2.9*CH,YLAB ,1.5*CH,'-',0.0,1)
 CALL SYMBOL(XLAB+ 4.4*CH,YLAB ,1.5*CH,' = ',0.0,3)
 CALL NUMBER(XLAB+ 8.9*CH,YLAB ,1.5*CH,ACON ,0.0,3)
C
 800 CONTINUE
C
C**** plot and label contours
C
 CALL NEWPEN(LPEN)
C
C---- go over shape parameters
 DO 80 IH = 1, NHP
C
 DO 40 IW=1, NWP(IH)
 DO 401 IR=1, NRP(IH)
 WRL = WSL(IW,IH) - 0.5*RTL(IR,IH)
 X(IR,IW) = (RTL(IR,IH)-RTLMIN) * SF
 Y(IR,IW) = (WRL -WRLMIN) * SF
 401 CONTINUE
 40 CONTINUE
C
 IF(IPASS.EQ.1) THEN
 CALL CON1(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,3)
 ENDIF
 ELSE
 CALL CON1(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,3)
 ENDIF
 ENDIF
 80 CONTINUE
 81 CONTINUE
C
 IF(IPASS.LT.2) CALL PLOT((RTLMAX-RTLMIN)*SF+12.0*CH,0.0,-3)
C
 2000 CONTINUE
C
 CALL PLOT(0.0,0.0,+999)
 STOP
 END

 SUBROUTINE READIT(N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
 DIMENSION N(NHX), NRP(NHX),NWP(NHX)
 DIMENSION ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 DIMENSION AR(NRX,NWX,NHX),AI(NRX,NWX,NHX)
 DIMENSION RTL(NRX,NHX), WSL(NWX,NHX), HH(NHX)
 LOGICAL*1 FNAME(32)
C
 OPEN(10,FILE='AIMAPS.DAT',STATUS='OLD')
C
 DO 1000 IH=1, NHX
C
 READ(10,5000,END=1001) FNAME
 5000 FORMAT(32A1)
 FNAME(32) = 0
C
 OPEN(9,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=1001)
 READ(9,ERR=1001) N(IH), HH(IH)
 READ(9) (ETA(I,IH),I=1, N(IH))
 READ(9) (U(I,IH) ,I=1, N(IH))
 READ(9) (S(I,IH) ,I=1, N(IH))
 READ(9) NRP(IH), NWP(IH)
 READ(9) (RTL(IR,IH),IR=1,NRP(IH))
 READ(9) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO 10 IW=1, NWP(IH)
 READ(9,END=11) (AR(IR,IW,IH),IR=1,NRP(IH))
 READ(9,END=11) (AI(IR,IW,IH),IR=1,NRP(IH))
 10 CONTINUE
 CLOSE(9)
 GO TO 30
C
 11 CONTINUE
 CLOSE(9)
 IWLAST = IW-1
 WRITE(6,*) 'Map incomplete.'
 WRITE(6,*) 'Last complete frequency index:',IWLAST
C
 30 CONTINUE
 GEO = (ETA(3,IH)-ETA(2,IH)) / (ETA(2,IH)-ETA(1,IH))
C
 WRITE(6,1050) N(IH), HH(IH), ETA(N(IH),IH), GEO
 1050 FORMAT(/' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
 1000 CONTINUE
 IH = NHX + 1
C
 1001 NHP = IH-1
 CLOSE(10)
 CLOSE(9)
C
 DO 40 IH=1, NHP
 IF(RTL(1,IH) .GT. RTL(NRP(IH),IH)) THEN
C
 DO 405 IR=1, NRP(IH)/2
 IRBACK = NRP(IH)-IR+1
C
 RTEMP = RTL(IR,IH)
 RTL(IR,IH) = RTL(IRBACK,IH)
 RTL(IRBACK,IH) = RTEMP
C
 DO 4055 IW=1, NWP(IH)
 AITEMP = AI(IR,IW,IH)
 AI(IR,IW,IH) = AI(IRBACK,IW,IH)
 AI(IRBACK,IW,IH) = AITEMP
 4055 CONTINUE
 405 CONTINUE
C
 ENDIF
C
 IF(WSL(1,IH) .GT. WSL(NWP(IH),IH)) THEN
C
 DO 407 IW=1, NWP(IH)/2
 IWBACK = NWP(IH)-IW+1
C
 WTEMP = WSL(IW,IH)
 WSL(IW,IH) = WSL(IWBACK,IH)
 WSL(IWBACK,IH) = WTEMP
C
 DO 4075 IR=1, NRP(IH)
 AITEMP = AI(IR,IW,IH)
 AI(IR,IW,IH) = AI(IR,IWBACK,IH)
 AI(IR,IWBACK,IH) = AITEMP
 4075 CONTINUE
 407 CONTINUE
C
 ENDIF
 40 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/mappltd.f

 PROGRAM MAPPLT
 PARAMETER (NMAX=257,NRX=101,NWX=71,NHX=21)
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 LOGICAL*1 FNAME(32)
 REAL AR(NRX,NWX,NHX), AI(NRX,NWX,NHX)
 REAL X(NRX,NWX), Y(NRX,NWX)
 REAL RT(NRX,NHX),RTL(NRX,NHX)
 REAL WS(NWX,NHX),WSL(NWX,NHX)
 REAL HH(NHX),HHL(NHX)
 INTEGER N(NHX), NRP(NHX), NWP(NHX), NR(NHX),NW(NHX)
C
 CHARACTER*1 ANS
 LOGICAL LABCON, YES
C
 IDEV = 12
 IHARD = 0
 SIZE = 4.0
 CH = 0.020
 CHL = 0.018
C
C---- log-log Rtheta-W plot exponent limits
 I1 = 0
 I2 = 6
 J1 = -5
 J2 = 1
C
 CALL PLOTS(0,IHARD,IDEV)
 CALL FACTOR(SIZE)
 CALL PLOT(8.0*CH,8.0*CH,-3)
C
 CALL READIT(N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
C
 NH = NHP - 1
 DO 15 IH=1, NHP
 HHL(IH) = HH(IH)
C
 NR(IH) = NRP(IH) - 1
 NW(IH) = NWP(IH) - 1
C
 DO 13 IR=1, NRP(IH)
 RT(IR,IH) = 10.0 ** RTL(IR,IH)
 13 CONTINUE
C
 DO 14 IW=1, NWP(IH)
 WS(IW,IH) = 10.0 ** WSL(IW,IH)
 14 CONTINUE
C
 15 CONTINUE
C
C
 ARMIN = AR(1,1,1)
 ARMAX = AR(1,1,1)
 AIMIN = AI(1,1,1)
 AIMAX = AI(1,1,1)
 DO 30 IH=1, NHP
 DO 301 IW=1, NWP(IH)
 DO 3010 IR=1, NRP(IH)
 ARMIN = AMIN1(ARMIN,AR(IR,IW,IH))
 ARMAX = AMAX1(ARMAX,AR(IR,IW,IH))
 AIMIN = AMIN1(AIMIN,AI(IR,IW,IH))
 AIMAX = AMAX1(AIMAX,AI(IR,IW,IH))
 3010 CONTINUE
 301 CONTINUE
 30 CONTINUE
C
C
 RTLMIN = RTL(1 ,1)
 RTLMAX = RTL(NRP(1),1)
 WRLMIN = WSL(1 ,1) - 0.5*RTL(1 ,1)
 WRLMAX = WSL(NWP(1),1) - 0.5*RTL(NRP(1),1)
 HHLMIN = HHL(1)
 HHLMAX = HHL(1)
 DO 20 IH=1, NHP
 RTLMIN = AMIN1(RTLMIN , RTL(1 ,IH))
 RTLMAX = AMAX1(RTLMAX , RTL(NRP(IH),IH))
 WRLMIN = AMIN1(WRLMIN ,
 & WSL(1 ,IH)-0.5*RTL(1 ,IH))
 WRLMAX = AMAX1(WRLMAX ,
 & WSL(NWP(IH),IH)-0.5*RTL(NRP(IH),IH))
 HHLMIN = AMIN1(HHLMIN , HHL(IH))
 HHLMAX = AMAX1(HHLMAX , HHL(IH))
 20 CONTINUE
C
C
 RTLMIN = FLOAT(I1)
 RTLMAX = FLOAT(I2)
 WRLMIN = FLOAT(J1)
 WRLMAX = FLOAT(J2)
C
 SF = AMIN1(1.0/(RTLMAX-RTLMIN) , 1.0/(WRLMAX-WRLMIN))
C
C
 DO 2000 IPASS=1, 2
C
 WRITE(6,*) ' '
 IF(IPASS.EQ.1) WRITE(6,*) 'ai limits:', AIMIN, AIMAX
 IF(IPASS.EQ.2) WRITE(6,*) 'ar limits:', ARMIN, ARMAX
C
 WRITE(6,*) ' '
 WRITE(6,*) 'Enter contour level'
 READ (5,*) ACON
 WRITE(6,*) 'Enter contour line thickness (1-5)'
 READ (5,*) LPEN
 WRITE(6,*) 'Add H labels to contours ? N'
 READ (5,9900) ANS
 9900 FORMAT(A1)
 LABCON = ANS.EQ.'Y'
C
c CALL ASK('Enter contour level\',3,ACON)
c CALL ASK('Enter contour line thickness (1-5)\',2,LPEN)
c CALL ASK('Add H labels to contours ?\',5,LABCON)
C
 DO 50 I=I1, I2
 XLIN = (FLOAT(I) -RTLMIN) * SF
 YLIN1 = (FLOAT(J1)-WRLMIN) * SF
 YLIN2 = (FLOAT(J2)-WRLMIN) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN,YLIN1,3)
 CALL PLOT(XLIN,YLIN2,2)
C
 CALL NEWPEN(2)
 RI = FLOAT(I)
 CALL SYMBOL(XLIN-1.0*CH,YLIN1-2.5*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN+1.4*CH,YLIN1-2.0*CH,1.0*CH,RI ,0.0,-1)
 50 CONTINUE
C
 DO 55 J=J1, J2
 YLIN = (FLOAT(J) -WRLMIN) * SF
 XLIN1 = (FLOAT(I1)-RTLMIN) * SF
 XLIN2 = (FLOAT(I2)-RTLMIN) * SF
 CALL NEWPEN(1)
 CALL PLOT(XLIN1,YLIN,3)
 CALL PLOT(XLIN2,YLIN,2)
C
 CALL NEWPEN(2)
 RJ = FLOAT(J)
 CALL SYMBOL(XLIN1-4.4*CH,YLIN-0.6*CH,1.2*CH,'10',0.0, 2)
 CALL NUMBER(XLIN1-2.0*CH,YLIN-0.1*CH,1.0*CH,RJ ,0.0,-1)
 55 CONTINUE
C
 CALL NEWPEN(2)
 XLAB = (FLOAT((I1+I2)/2) + 0.5 - RTLMIN) * SF - 1.5*CH
 YLAB = (FLOAT(J1) - WRLMIN) * SF - 3.5*CH
 CALL SYMBOL(XLAB ,YLAB ,1.5*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB-0.5*CH,1.0*CH,'k',0.0,1)
 CALL SYMBOL(XLAB+2.0*CH,YLAB-0.0*CH,1.0*CH,'*',0.0,1)
C
 CALL NEWPEN(2)
 XLAB = (FLOAT(I1) - RTLMIN) * SF - 6.5*CH
 YLAB = (FLOAT((J1+J2)/2) + 0.5 - WRLMIN) * SF - 0.8*CH
 CALL SYMBOL(XLAB ,YLAB-0.3*CH,1.7*CH,'h' ,0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB-0.3*CH,1.9*CH,'k' ,0.0,1)
 CALL SYMBOL(XLAB+1.5*CH,YLAB ,1.5*CH,' /U',0.0,3)
 CALL SYMBOL(XLAB+2.4*CH,YLAB+0.9*CH,1.0*CH,'*' ,0.0,1)
C
 CALL NEWPEN(3)
 XLAB = 0.5*CH
 YLAB = (FLOAT(J2)-WRLMIN)*SF + 1.5*CH
 CALL SYMBOL(XLAB ,YLAB,1.8*CH,'H ',0.0,2)
 CALL SYMBOL(XLAB+3.6*CH,YLAB,1.4*CH,'CONTOURS',0.0,8)
C
 XLAB = (FLOAT(I2)-RTLMIN)*SF - 10.0*1.5*CH
 CALL SYMBOL(XLAB ,YLAB-0.4*CH,1.9*CH,'j',0.0,1)
 IF(IPASS.EQ.1)
 &CALL SYMBOL(XLAB+ 1.5*CH,YLAB-0.4*CH,1.2*CH,'I',0.0,1)
 IF(IPASS.EQ.2)
 &CALL SYMBOL(XLAB+ 1.5*CH,YLAB-0.4*CH,1.2*CH,'R',0.0,1)
 CALL SYMBOL(XLAB+ 2.9*CH,YLAB-0.4*CH,1.9*CH,'k',0.0,1)
 CALL SYMBOL(XLAB+ 3.8*CH,YLAB+0.9*CH,1.0*CH,'*',0.0,1)
 CALL SYMBOL(XLAB+ 4.4*CH,YLAB ,1.5*CH,' = ',0.0,3)
 CALL NUMBER(XLAB+ 8.9*CH,YLAB ,1.5*CH,ACON ,0.0,3)
C
 800 CONTINUE
C
C**** plot and label contours
C
 CALL NEWPEN(LPEN)
C
C---- go over shape parameters
 DO 80 IH = 1, NHP
C
 DO 40 IW=1, NWP(IH)
 DO 401 IR=1, NRP(IH)
 WRL = WSL(IW,IH) - 0.5*RTL(IR,IH)
 X(IR,IW) = (RTL(IR,IH)-RTLMIN) * SF
 Y(IR,IW) = (WRL -WRLMIN) * SF
 401 CONTINUE
 40 CONTINUE
C
 IF(IPASS.EQ.1) THEN
 CALL CON1(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AI(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,3)
 ENDIF
 ELSE
 CALL CON1(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),ACON,1.0,1.0)
C
C------- draw label contours on bottom, right, and top edges
 IF(LABCON) THEN
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,1)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,2)
 CALL CONLAB(NRX,NWX,NRP(IH),NWP(IH),X,Y,AR(1,1,IH),HH(IH),
 & 1.0,1.0,CHL,3,3)
 ENDIF
 ENDIF
 80 CONTINUE
 81 CONTINUE
C
 IF(IPASS.LT.2) CALL PLOT((RTLMAX-RTLMIN)*SF+12.0*CH,0.0,-3)
C
 2000 CONTINUE
C
 CALL PLOT(0.0,0.0,+999)
 STOP
 END

 SUBROUTINE READIT(N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HH , AR,AI,
 & NRX,NWX,NHX)
 DIMENSION N(NHX), NRP(NHX),NWP(NHX)
 DIMENSION ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
 DIMENSION AR(NRX,NWX,NHX), AI(NRX,NWX,NHX)
 DIMENSION RTL(NRX,NHX), WSL(NWX,NHX), HH(NHX)
 LOGICAL*1 FNAME(32)
C
 DO 1000 IH=1, NHX
ccc CALL ASK('Enter map filename (or <cr> to quit)\',4,FNAME)
ccc OPEN(9,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=1001)
C
 LU = 10+IH
 READ(LU,ERR=1001) N(IH), HH(IH)
 READ(LU) (ETA(I,IH),I=1, N(IH))
 READ(LU) (U(I,IH) ,I=1, N(IH))
 READ(LU) (S(I,IH) ,I=1, N(IH))
 READ(LU) NRP(IH), NWP(IH)
 READ(LU) (RTL(IR,IH),IR=1,NRP(IH))
 READ(LU) (WSL(IW,IH),IW=1,NWP(IH))
C
 DO 4 IR=1, NRP(IH)
 RTL(IR,IH) = RTL(IR,IH) + ALOG10(HH(IH))
 4 CONTINUE
C
 DO 6 IW=1, NWP(IH)
 WSL(IW,IH) = WSL(IW,IH) + 1.5*ALOG10(HH(IH))
 6 CONTINUE
C
 DO 10 IW=1, NWP(IH)
 READ(LU,END=11) (AR(IR,IW,IH),IR=1,NRP(IH))
 READ(LU,END=11) (AI(IR,IW,IH),IR=1,NRP(IH))
 DO 8 IR=1, NRP(IH)
 AR(IR,IW,IH) = AR(IR,IW,IH)*HH(IH)
 AI(IR,IW,IH) = AI(IR,IW,IH)*HH(IH)
 8 CONTINUE
 10 CONTINUE
ccc CLOSE(LU)
 GO TO 90
C
 11 CONTINUE
ccc CLOSE(LU)
 IWLAST = IW-1
 WRITE(6,*) 'Map incomplete.'
 WRITE(6,*) 'Last complete frequency index:',IWLAST
C
 90 CONTINUE
 GEO = (ETA(3,IH)-ETA(2,IH)) / (ETA(2,IH)-ETA(1,IH))
C
 WRITE(6,1050) N(IH), HH(IH), ETA(N(IH),IH), GEO
 1050 FORMAT(/' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
 1000 CONTINUE
 IH = NHX + 1
C
 1001 NHP = IH-1
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/mconv.f

 PROGRAM MAPGEN
 PARAMETER (NMAX=257,NRX=81,NWX=81)
 REAL ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 LOGICAL*1 FNAME(32)
 REAL AR(NRX,NWX), AI(NRX,NWX), X(NRX,NWX), Y(NRX,NWX)
 REAL RT(NRX),RTL(NRX), WS(NWX),WSL(NWX)
 CHARACTER*1 ANS
C
 READ(19) N, H
 READ(19) (ETA(I),I=1, N)
 READ(19) (U(I) ,I=1, N)
 READ(19) (S(I) ,I=1, N)
 READ(19) NRP, NWP
 READ(19) (RTL(IR),IR=1,NRP)
 READ(19) (WSL(IW),IW=1,NWP)
C
 DO 10 IW=NWP, 1, -1
 DO 101 IR=1, NRP
 READ(19,END=11) AR(IR,IW), AI(IR,IW)
 101 CONTINUE
 10 CONTINUE
 11 CONTINUE
C
C
 GEO = (ETA(3)-ETA(2)) / (ETA(2)-ETA(1))
 ETAE = ETA(N)
C
CCC CALL FS(3,2,BU,H,N,ETAE,GEO,ETA,F,U,S)
C
 WRITE(6,*) 'GEO =', GEO, ' ETAE =', ETAE
 WRITE(6,*) 'H =', H , ' N =', N
C
 WRITE(29) N, H
 WRITE(29) (ETA(I),I=1, N)
 WRITE(29) (U(I) ,I=1, N)
 WRITE(29) (S(I) ,I=1, N)
 WRITE(29) NRP, NWP
 WRITE(29) (RTL(IR),IR=1,NRP)
 WRITE(29) (WSL(IW),IW=1,NWP)
C
 DO 20 IW=1, NWP
 WRITE(29) (AR(IR,IW),IR=1,NRP)
 WRITE(29) (AI(IR,IW),IR=1,NRP)
 20 CONTINUE
C
 STOP
 END

XFOILinterface/XFOIL/src/modify.f

C***
C Module: modify.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE MODIFY(IX,IFRST,ILAST,NSIDE,NLINE,
 & X,Y,YD, LBLEND,
 & IMOD1,IMOD2,ISMOD,ILMOD,
 & XMOD,YMOD, XWIN,YWIN, SIZE,
 & XOFF,YOFF,XSF,YSF, COLPNT,COLMOD,
 & NEWPLOT)
 DIMENSION IFRST(NSIDE), ILAST(NSIDE)
 DIMENSION X(IX), Y(IX,NLINE), YD(IX,NLINE)
 DIMENSION XMOD(2),YMOD(2), XWIN(2),YWIN(2)
 LOGICAL LBLEND
 CHARACTER*(*) COLPNT, COLMOD
 EXTERNAL NEWPLOT
C--
C Allows user to modify functions Y1(X),Y2(X)... via cursor input.
C
C Cursor-specified Xu,Yu values are sorted by Xu and splined.
C The resulting spline function Yu(X) is interrogated at input
C X(i) points to obtain the modified Y(i,L) values.
C
C Input: IX first dimension of X,Y arrays
C IFRST(s) first i index in segment s
C ILAST(s) last i index in segment s
C NSIDE number of X segments : s = 1..NSIDE
C NLINE number of Y functions: l = 1..NLINE
C X(i) X values
C Y(i,l) Y values
C YD(i,l) spline derivative array dY/dX (used only if LSLOPE=T)
C LBLEND if T, blends input Yu(Xu) with Y(X) at input endpoints
C XMOD(2) x-limits of box for cursor input
C YMOD(2) y-limits of box for cursor input
C XWIN(2) x-limits of plot window
C YWIN(2) y-limits of plot window
C SIZE overall object scaling size
C XOFF plot offsets,scales used to plot X(S),Y(S)
C YOFF " Xplot = (X-XOFF)*XSF
C XSF " Yplot = (Y-YOFF)*YSF
C YSF "
C COLPNT color of symbols at cursor-selected points
C COLMOD if not blank, plot modified Y(i,l) with color COLMOD
C NEWPLOT subroutine to be called for refreshed plot
C
C Output: Y(i,l) modified Y values
C IMOD1 first i index of modified Y(i,l) values
C IMOD2 last i index of modified Y(i,l) values
C ISMOD index s of segment containing IMOD1,IMOD2
C ILMOD index l of Y(i,l) function which was modified
C--
C
C---- local arrays for accumulating user-specified points
 PARAMETER (NUX=100)
 DIMENSION XU(NUX), YU(NUX), YUD(NUX)
 DIMENSION IUSORT(NUX)
 LOGICAL LDONE, LPLNEW
C
 LOGICAL LGUI
 CHARACTER*1 CHKEY
C
 DATA SH /0.010/
C
 CALL GETCOLOR(ICOL0)
 CALL GETPEN(IPEN0)
C
 KDONE = 1
 KERASE = 2
 KABORT = 3
 KINSIDE = 4
C
 XDWIN = XWIN(2) - XWIN(1)
 YDWIN = YWIN(2) - YWIN(1)
C
 XWS = XDWIN/SIZE
 YWS = YDWIN/SIZE
C
 WRITE(*,*)
 WRITE(*,*) 'Click on new values to change shape...'
 WRITE(*,*) 'Or.. Click buttons or type A,E,D for special action'
 WRITE(*,*) 'Or.. Type I,O,P to In,Out,Pan with cursor...'
 WRITE(*,*)
C
 NUBEG = 1
C
 5 CONTINUE
 CALL NEWPEN(5)
C
 X1 = XWIN(1) + 0.71*XDWIN
 X2 = XWIN(1) + 0.79*XDWIN
 Y1 = YWIN(1) + 0.01*YDWIN
 Y2 = YWIN(1) + 0.05*YDWIN
 CALL GUIBOX(KABORT, X1,X2,Y1,Y2, 'RED' , ' Abort ')
C
 X1 = XWIN(1) + 0.81*XDWIN
 X2 = XWIN(1) + 0.89*XDWIN
 Y1 = YWIN(1) + 0.01*YDWIN
 Y2 = YWIN(1) + 0.05*YDWIN
 CALL GUIBOX(KERASE, X1,X2,Y1,Y2, 'YELLOW', ' Erase ')
C
 X1 = XWIN(1) + 0.91*XDWIN
 X2 = XWIN(1) + 0.99*XDWIN
 Y1 = YWIN(1) + 0.01*YDWIN
 Y2 = YWIN(1) + 0.05*YDWIN
 CALL GUIBOX(KDONE , X1,X2,Y1,Y2, 'GREEN', ' Done ')
C
 X1 = XMOD(1)
 X2 = XMOD(2)
 Y1 = YMOD(1)
 Y2 = YMOD(2)
 CALL GUIBOX(KINSIDE, X1,X2,Y1,Y2, 'ORANGE' , ' ')
C
 CALL PLFLUSH
C
 CALL NEWPEN(IPEN0)
C
 XWS = XDWIN/SIZE
 YWS = YDWIN/SIZE
C
C
 10 CONTINUE
 CALL NEWCOLORNAME(COLPNT)
 DO NU = NUBEG, NUX
C
C------ fetch x-y point coordinates from user
 CALL GETCURSORXY(XU(NU),YU(NU),CHKEY)
C
C------ save current plot scales,offsets in case KEYOFF changes them
 XSF0 = XSF
 YSF0 = YSF
 XOFF0 = XOFF
 YOFF0 = YOFF
C
C------ do possible pan,zoom operations based on CHKEY
 CALL KEYOFF(XU(NU),YU(NU),CHKEY,
 & XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
C------- scales,offsets have changed... replot
 CALL NEWCOLOR(ICOL0)
 CALL NEWPLOT
C
 CALL NEWCOLORNAME(COLPNT)
C
C------- adjust for new plot offsets and scales, replot current store of clicks
 DO IU = 1, NU-1
 XU(IU) = ((XU(IU)/XSF0 + XOFF0) - XOFF)*XSF
 YU(IU) = ((YU(IU)/YSF0 + YOFF0) - YOFF)*YSF
 CALL PLSYMB(XU(IU),YU(IU),SH,3,0.0,0)
 ENDDO
C
C------- will start by fetching NUBEG'th click point
 NUBEG = NU
 GO TO 5
 ENDIF
C
 IF (LGUI(KABORT,XU(NU),YU(NU))
 & .OR. INDEX('Aa',CHKEY).GT.0) THEN
C------- return with no changes
 GO TO 90
C
 ELSEIF(LGUI(KERASE,XU(NU),YU(NU))
 & .OR. INDEX('Ee',CHKEY).GT.0) THEN
 IF(NU.LE.1) THEN
 WRITE(*,*) 'No more points to clear'
 NUBEG = 1
 ELSE
C-------- clear previous point, overplot it white to clear it from screen
 NUBEG = NU - 1
 CALL NEWCOLORNAME('WHITE')
 CALL PLSYMB(XU(NUBEG),YU(NUBEG),SH,3,0.0,0)
 CALL PLFLUSH
 ENDIF
C
C------- keep accepting points starting from NUBEG
 GO TO 10
C
 ELSEIF(LGUI(KDONE,XU(NU),YU(NU))
 & .OR. INDEX('Dd',CHKEY).GT.0) THEN
C------- go process inputs
 GO TO 20
C
 ELSEIF(LGUI(KINSIDE,XU(NU),YU(NU))) THEN
C------- normal click inside modify-window: plot small cross at input point
 CALL PLSYMB(XU(NU),YU(NU),SH,3,0.0,0)
 CALL PLFLUSH
C
 ELSE
C------- must be somewhere outside
 GO TO 20
C
 ENDIF
C
 WRITE(*,1100) NU
 1100 FORMAT(1X, I3)
C
 ENDDO
 WRITE(*,*) 'MODIFY: User-input array limit NUX reached'
C
C---- pick up here when finished with input
 20 CONTINUE
cc IF(INDEX('Dd',CHKEY).GT.0) THEN
ccC----- last point was entered with a "D" ... add it to list
cc CALL PLSYMB(XU(NU),YU(NU),SH,3,0.0,0)
cc CALL PLFLUSH
cc ELSE
C----- discard last point
 NU = NU-1
cc ENDIF
C
C
 IF(NU.LT.2) THEN
 WRITE(*,*)
 WRITE(*,*) 'Need at least 2 points'
 GO TO 90
 ENDIF
C
C---- set first-specified point
 XUSP1 = XU(1)
 YUSP1 = YU(1)
C
C---- undo plot offsets and scales
 DO IU = 1, NU
 XU(IU) = XU(IU)/XSF + XOFF
 YU(IU) = YU(IU)/YSF + YOFF
 ENDDO
C
C---- sort XU,YU points in XU (use spline array YUD as temporary storage)
 CALL HSORT(NU,XU,IUSORT)
C
 DO KSORT = 1, NU
 IU = IUSORT(KSORT)
 YUD(KSORT) = XU(IU)
 ENDDO
 DO IU = 1, NU
 XU(IU) = YUD(IU)
 ENDDO
C
 DO KSORT = 1, NU
 IU = IUSORT(KSORT)
 YUD(KSORT) = YU(IU)
 ENDDO
 DO IU = 1, NU
 YU(IU) = YUD(IU)
 ENDDO
C
C---- remove doubled endpoints and tripled interior points
 DO IPASS = 1, 12345
 LDONE = .TRUE.
 IU = 2
 IF(XU(IU).EQ.XU(IU-1)) THEN
 LDONE = .FALSE.
 IUREM = IU
 ENDIF
 DO IU = 3, NU
 IF(XU(IU).EQ.XU(IU-1) .AND.
 & XU(IU).EQ.XU(IU-2)) THEN
 LDONE = .FALSE.
 IUREM = IU
 ENDIF
 ENDDO
 IU = NU
 IF(XU(IU).EQ.XU(IU-1)) THEN
 LDONE = .FALSE.
 IUREM = IU
 ENDIF
C
 IF(LDONE) THEN
 GO TO 30
 ELSE
 DO IU = IUREM, NU-1
 XU(IU) = XU(IU+1)
 YU(IU) = YU(IU+1)
 ENDDO
 NU = NU - 1
 ENDIF
 ENDDO
C
C---- pick up here when no more points to be removed
 30 CONTINUE
 IF(NU.LT.2) THEN
 WRITE(*,*)
 WRITE(*,*) 'Need at least 2 points'
 GO TO 90
 ENDIF
C
C
C---- find which X,Y input point is closest to first-specified point
 ISMOD = 1
 ILMOD = 1
C
C---- go over all surface points
 DSQMIN = 1.0E24
 DO IL = 1, NLINE
 DO IS = 1, NSIDE
 DO I = IFRST(IS), ILAST(IS)
C---------- convert input arrays to plot coordinates
 XUI = (X(I)-XOFF)*XSF
 YUI = (Y(I,IL)-YOFF)*YSF
 DSQ = (XUI-XUSP1)**2 + (YUI-YUSP1)**2
C
 IF(DSQ .LT. DSQMIN) THEN
C------------ this point is the closest so far... note its indices
 DSQMIN = DSQ
 ISMOD = IS
 ILMOD = IL
 ENDIF
 ENDDO
 ENDDO
 ENDDO
C
C---- set side and function to be modified
 IS = ISMOD
 IL = ILMOD
C
 IF(LBLEND) THEN
C----- reset Y and dY/dX at first and last points of modified interval
 X1 = X(IFRST(IS))
 X2 = X(ILAST(IS))
 I = IFRST(IS)
 N = ILAST(IS) - IFRST(IS) + 1
C
 IU = 1
 IF(XU(IU).GE.X1 .AND. XU(IU).LE.X2) THEN
C------ set function and derivative at left endpoint
 YU(IU) = SEVAL(XU(IU),Y(I,IL),YD(I,IL),X(I),N)
 YD1 = DEVAL(XU(IU),Y(I,IL),YD(I,IL),X(I),N)
 ELSE
 YD1 = -999.0
 ENDIF
C
 IU = NU
 IF(XU(IU).GE.X1 .AND. XU(IU).LE.X2) THEN
 YU(IU) = SEVAL(XU(IU),Y(I,IL),YD(I,IL),X(I),N)
 YD2 = DEVAL(XU(IU),Y(I,IL),YD(I,IL),X(I),N)
 ELSE
 YD2 = -999.0
 ENDIF
C
 ELSE
C----- use natural spline end conditions (zero 3rd derivative)
 YD1 = -999.0
 YD2 = -999.0
C
 ENDIF
C
C---- spline input function values
 CALL SEGSPLD(YU,YUD,XU,NU,YD1,YD2)
C
C
C---- go over all points on modified segment
 IMOD1 = IFRST(IS)
 DO I = IFRST(IS), ILAST(IS)
 XI = X(I)
C
 IF (XI .LT. XU(1)) THEN
C------- current point is before modified interval...try next point
 IMOD1 = I
 ELSEIF(XI .LE. XU(NU)) THEN
C------- stuff new point into Vspec array and plot it
 Y(I,IL) = SEVAL(XI,YU,YUD,XU,NU)
 ELSE
C------- went past modified interval...finish up
 IMOD2 = I
 GO TO 50
 ENDIF
 ENDDO
 IMOD2 = ILAST(IS)
 50 CONTINUE
C
 IF(COLMOD(1:1).NE.' ') THEN
C----- plot modified function over modified interval
 CALL NEWCOLORNAME(COLMOD)
 IPEN = 3
 DO I = IMOD1, IMOD2
 XP = (X(I)-XOFF)*XSF
 YP = (Y(I,IL)-YOFF)*YSF
 CALL PLOT(XP,YP,IPEN)
 IPEN = 2
 ENDDO
 CALL PLFLUSH
 ENDIF
C
C---- return normally
 CALL NEWCOLOR(ICOL0)
 RETURN
C
C---
 90 CONTINUE
 WRITE(*,*) 'No changes made'
 IMOD1 = IFRST(1)
 IMOD2 = IFRST(1) - 1
 ISMOD = 1
 ILMOD = 1
 CALL NEWCOLOR(ICOL0)
 RETURN
C
 END ! MODIFY

 SUBROUTINE MODIXY(IX,IFRST,ILAST,NSIDE,
 & X,Y,XD,YD,S, LBLEND,
 & IMOD1,IMOD2,ISMOD,
 & XMOD,YMOD, XWIN,YWIN,SIZE,
 & XOFF,YOFF,XSF,YSF, LMODPL,
 & NEWPLOT)
 DIMENSION IFRST(NSIDE), ILAST(NSIDE)
 DIMENSION X(IX),Y(IX), XD(IX),YD(IX), S(IX)
 DIMENSION XMOD(2),YMOD(2), XWIN(2),YWIN(2)
 LOGICAL LBLEND, LMODPL
 EXTERNAL NEWPLOT
C--
C Allows user to modify contours X(S),Y(S) via cursor input.
C
C Cursor-specified Xu,Yu values are splined in Su.
C The resulting spline functions Xu(Su),Yu(Su) are interrogated
C at input S(i) points to obtain the modified X(i),Y(i) values.
C
C Input: IX first dimension of X,Y arrays
C IFRST(s) first i index in segment s
C ILAST(s) last i index in segment s
C NSIDE number of X segments : s = 1..NSIDE
C X(i) X values
C Y(i) Y values
C XD(i) spline derivative array dX/dS (used only if LSLOPE=T)
C YD(i) spline derivative array dY/dS (used only if LSLOPE=T)
C S(i) S values
C LBLEND if T, blends input Yu(Xu) with Y(X) at input endpoints
C XMOD(2) x-limits of box for cursor input
C YMOD(2) y-limits of box for cursor input
C XWIN(2) x-limits of plot window
C YWIN(2) y-limits of plot window
C SIZE overall object scaling size
C XOFF plot offsets,scales used to plot X(S),Y(S)
C YOFF " Xplot = (X-XOFF)*XSF
C XSF " Yplot = (Y-YOFF)*YSF
C YSF "
C LMODPL if T, plot modified X(i),Y(i) points
C NEWPLOT subroutine to be called for refreshed plot
C
C Output: X(i) modified X values
C Y(i) modified Y values
C IMOD1 first i index of modified X(i),Y(i) values
C IMOD2 last i index of modified X(i),Y(i) values
C ISMOD index s of segment containing IMOD1,IMOD2
C--
C
C---- local arrays for accumulating user-specified points
 PARAMETER (NUX=200)
 DIMENSION XU(NUX), YU(NUX), XUD(NUX), YUD(NUX), SU(NUX)
 LOGICAL LDONE, LPLNEW
C
 LOGICAL LGUI
 CHARACTER*1 CHKEY
C
 DATA SH /0.010/
C
 CALL GETCOLOR(ICOL0)
 CALL GETPEN(IPEN0)
C
 KDONE = 1
 KERASE = 2
 KABORT = 3
 KINSIDE = 4
C
 XDWIN = XWIN(2) - XWIN(1)
 YDWIN = YWIN(2) - YWIN(1)
C
 XWS = XDWIN/SIZE
 YWS = YDWIN/SIZE
C
 WRITE(*,*)
 WRITE(*,*) 'Click on new values to change shape...'
 WRITE(*,*) 'Or.. Click buttons or type A,E,D for special action'
 WRITE(*,*) 'Or.. Type I,O,P to In,Out,Pan with cursor...'
 WRITE(*,*)
C
 NUBEG = 1
C
 5 CONTINUE
 CALL NEWPEN(5)
C
 X1 = XWIN(1) + 0.71*XDWIN
 X2 = XWIN(1) + 0.79*XDWIN
 Y1 = YWIN(1) + 0.01*YDWIN
 Y2 = YWIN(1) + 0.05*YDWIN
 CALL GUIBOX(KABORT, X1,X2,Y1,Y2, 'RED' , ' Abort ')
C
 X1 = XWIN(1) + 0.81*XDWIN
 X2 = XWIN(1) + 0.89*XDWIN
 Y1 = YWIN(1) + 0.01*YDWIN
 Y2 = YWIN(1) + 0.05*YDWIN
 CALL GUIBOX(KERASE, X1,X2,Y1,Y2, 'YELLOW', ' Erase ')
C
 X1 = XWIN(1) + 0.91*XDWIN
 X2 = XWIN(1) + 0.99*XDWIN
 Y1 = YWIN(1) + 0.01*YDWIN
 Y2 = YWIN(1) + 0.05*YDWIN
 CALL GUIBOX(KDONE , X1,X2,Y1,Y2, 'GREEN', ' Done ')
C
 X1 = XMOD(1)
 X2 = XMOD(2)
 Y1 = YMOD(1)
 Y2 = YMOD(2)
 CALL GUIBOX(KINSIDE, X1,X2,Y1,Y2, 'ORANGE' , ' ')
C
 CALL PLFLUSH
C
 CALL NEWPEN(IPEN0)
C
C
 10 CONTINUE
 CALL NEWCOLORNAME('MAGENTA')
 DO NU = NUBEG, NUX
C
C------ fetch x-y point coordinates from user
 CALL GETCURSORXY(XU(NU),YU(NU),CHKEY)
CCC write(*,*) ichar(chkey)
C
C------ save current plot scales,offsets in case KEYOFF changes them
 XSF0 = XSF
 YSF0 = YSF
 XOFF0 = XOFF
 YOFF0 = YOFF
C
C------ do possible pan,zoom operations based on CHKEY
 CALL KEYOFF(XU(NU),YU(NU),CHKEY,
 & XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
C------- scales,offsets have changed... replot
 CALL NEWCOLOR(ICOL0)
 CALL NEWPLOT
C
 CALL NEWCOLORNAME('MAGENTA')
C
C------- adjust for new plot offsets and scales, replot current store of clicks
 DO IU = 1, NU-1
 XU(IU) = ((XU(IU)/XSF0 + XOFF0) - XOFF)*XSF
 YU(IU) = ((YU(IU)/YSF0 + YOFF0) - YOFF)*YSF
 CALL PLSYMB(XU(IU),YU(IU),SH,3,0.0,0)
 ENDDO
C
C------- will start by fetching NUBEG'th click point
 NUBEG = NU
 GO TO 5
 ENDIF
C
C
C------ process special-action button keys
 IF (LGUI(KABORT,XU(NU),YU(NU))
 & .OR. INDEX('Aa',CHKEY).GT.0) THEN
C------- return with no changes
 GO TO 90
C
 ELSEIF(LGUI(KERASE,XU(NU),YU(NU))
 & .OR. INDEX('Ee',CHKEY).GT.0) THEN
 IF(NU.LE.1) THEN
 WRITE(*,*) 'No more points to clear'
 NUBEG = 1
 ELSE
C-------- clear previous point, overplot it white to clear it from screen
 NUBEG = NU - 1
 CALL NEWCOLORNAME('WHITE')
 CALL PLSYMB(XU(NUBEG),YU(NUBEG),SH,3,0.0,0)
 CALL PLFLUSH
 ENDIF
C
 WRITE(*,1100) NUBEG-1
C
C------- keep accepting points starting from NUBEG
 GO TO 10
C
 ELSEIF(LGUI(KDONE,XU(NU),YU(NU))
 & .OR. INDEX('Dd',CHKEY).GT.0) THEN
C------- go process inputs
 GO TO 20
C
 ELSEIF(LGUI(KINSIDE,XU(NU),YU(NU))) THEN
C------- normal click inside modify-window: plot small cross at input point
 CALL PLSYMB(XU(NU),YU(NU),SH,3,0.0,0)
 CALL PLFLUSH
C
 ELSE
C------- must be somewhere outside
 GO TO 20
C
 ENDIF
C
 WRITE(*,1100) NU
 1100 FORMAT(1X, I3)
C
 ENDDO
 WRITE(*,*) 'MODIXY: User-input array limit NUX reached'
C
C---- pick up here when finished with input
 20 CONTINUE
cc IF(INDEX('Dd',CHKEY).GT.0) THEN
ccC----- last point was entered with a "D" ... add it to list
cc CALL PLSYMB(XU(NU),YU(NU),SH,3,0.0,0)
cc CALL PLFLUSH
cc ELSE
C----- discard last point
 NU = NU-1
cc ENDIF
C
C
 IF(NU.LT.2) THEN
 WRITE(*,*)
 WRITE(*,*) 'Need at least 2 points'
 GO TO 90
 ENDIF
C
C---- set first- and last-specified point
 XUSP1 = XU(1)
 YUSP1 = YU(1)
C
 XUSP2 = XU(NU)
 YUSP2 = YU(NU)
C
C---- undo plot offsets and scales
 DO IU = 1, NU
 XU(IU) = XU(IU)/XSF + XOFF
 YU(IU) = YU(IU)/YSF + YOFF
 ENDDO
C
C---- remove doubled endpoints and tripled interior points
 DO IPASS = 1, 12345
 LDONE = .TRUE.
 IU = 2
 IF(XU(IU).EQ.XU(IU-1)) THEN
 LDONE = .FALSE.
 IUREM = IU
 ENDIF
 DO IU = 3, NU
 IF(XU(IU).EQ.XU(IU-1) .AND.
 & XU(IU).EQ.XU(IU-2)) THEN
 LDONE = .FALSE.
 IUREM = IU
 ENDIF
 ENDDO
 IU = NU
 IF(XU(IU).EQ.XU(IU-1)) THEN
 LDONE = .FALSE.
 IUREM = IU
 ENDIF
C
 IF(LDONE) THEN
 GO TO 30
 ELSE
 DO IU = IUREM, NU-1
 XU(IU) = XU(IU+1)
 YU(IU) = YU(IU+1)
 ENDDO
 NU = NU - 1
 ENDIF
 ENDDO
C
C---- pick up here when no more points to be removed
 30 CONTINUE
 IF(NU.LT.2) THEN
 WRITE(*,*)
 WRITE(*,*) 'Need at least 2 points'
 GO TO 90
 ENDIF
C
C
C---- find which X,Y input point is closest to first-specified point
 ISMOD = 1
 IMOD1 = IFRST(ISMOD)
 XUI = (X(IMOD1)-XOFF)*XSF
 YUI = (Y(IMOD1)-YOFF)*YSF
 DSQMIN = (XUI-XUSP1)**2 + (YUI-YUSP1)**2
 DO IS = 1, NSIDE
 DO I = IFRST(IS), ILAST(IS)
C-------- convert input arrays to plot coordinates
 XUI = (X(I)-XOFF)*XSF
 YUI = (Y(I)-YOFF)*YSF
 DSQ = (XUI-XUSP1)**2 + (YUI-YUSP1)**2
C
 IF(DSQ .LT. DSQMIN) THEN
C---------- this point is the closest so far... note its indices
 DSQMIN = DSQ
 ISMOD = IS
 IMOD1 = I
 ENDIF
 ENDDO
 ENDDO
C
C---- set side and function to be modified
 IS = ISMOD
C
C
C---- find which X,Y input point is closest to last-specified point,
C- but check only element IS
 IMOD2 = IFRST(IS)
 XUI = (X(IMOD2)-XOFF)*XSF
 YUI = (Y(IMOD2)-YOFF)*YSF
 DSQMIN = (XUI-XUSP2)**2 + (YUI-YUSP2)**2
 DO I = IFRST(IS), ILAST(IS)
C------ convert input arrays to plot coordinates
 XUI = (X(I)-XOFF)*XSF
 YUI = (Y(I)-YOFF)*YSF
 DSQ = (XUI-XUSP2)**2 + (YUI-YUSP2)**2
C
 IF(DSQ .LT. DSQMIN) THEN
C-------- this point is the closest so far... note its indices
 DSQMIN = DSQ
 IMOD2 = I
 ENDIF
 ENDDO
C
 IF (IMOD1.EQ.IMOD2) THEN
 WRITE(*,*)
 WRITE(*,*) 'Graft endpoints must be distinct'
 GO TO 90
 ELSEIF(IMOD1.GT.IMOD2) THEN
C----- reverse the input-point ordering to get increasing S values
 DO IU = 1, NU/2
 XTMP = XU(IU)
 YTMP = YU(IU)
 XU(IU) = XU(NU-IU+1)
 YU(IU) = YU(NU-IU+1)
 XU(NU-IU+1) = XTMP
 YU(NU-IU+1) = YTMP
 ENDDO
 ITMP = IMOD1
 IMOD1 = IMOD2
 IMOD2 = ITMP
 ENDIF
C
C---- reset X,Y and dX/dS,dY/dS at first and last points of modified interval
 IU = 1
 IF(LBLEND .OR. IMOD1.NE.IFRST(IS)) THEN
C----- reset 1st input point to match contour, except if non-blended endpoint
 XU(IU) = X(IMOD1)
 YU(IU) = Y(IMOD1)
 ENDIF
 IF(LBLEND .AND. IMOD1.NE.IFRST(IS)) THEN
C----- match derivatives to current contour, except at the endpoints
 XUD1 = XD(IMOD1)
 YUD1 = YD(IMOD1)
 ELSE
C----- do not constrain 1st derivatives (set zero 3rd derivative instead)
 XUD1 = -999.0
 YUD1 = -999.0
 ENDIF
C
 IU = NU
 IF(LBLEND .OR. IMOD2.NE.ILAST(IS)) THEN
C----- reset 1st input point to match contour, except if non-blended endpoint
 XU(IU) = X(IMOD2)
 YU(IU) = Y(IMOD2)
 ENDIF
 IF(LBLEND .AND. IMOD2.NE.ILAST(IS)) THEN
C----- match derivatives to current contour
 XUD2 = XD(IMOD2)
 YUD2 = YD(IMOD2)
 ELSE
C----- do not constrain 1st derivatives (set zero 3rd derivative instead)
 XUD2 = -999.0
 YUD2 = -999.0
 ENDIF
C
C---- set spline parameter
 CALL SCALC(XU,YU,SU,NU)
C
C---- shift and rescale spline parameter SU to match current S
 SU1 = SU(1)
 SU2 = SU(NU)
 DO IU = 1, NU
 SFRAC = (SU(IU)-SU1)/(SU2-SU1)
 SU(IU) = S(IMOD1)*(1.0-SFRAC) + S(IMOD2)*SFRAC
 ENDDO
C
C---- spline input function values
 CALL SEGSPLD(XU,XUD,SU,NU,XUD1,XUD2)
 CALL SEGSPLD(YU,YUD,SU,NU,YUD1,YUD2)
C
C
C---- go over all points on modified segment
 DO I = IMOD1, IMOD2
 SI = S(I)
 X(I) = SEVAL(SI,XU,XUD,SU,NU)
 Y(I) = SEVAL(SI,YU,YUD,SU,NU)
 ENDDO
C
 IF(LMODPL) THEN
C----- plot modified function over modified interval
 CALL NEWCOLORNAME('MAGENTA')
 IPEN = 3
 DO I = IMOD1, IMOD2
 XP = (X(I)-XOFF)*XSF
 YP = (Y(I)-YOFF)*YSF
 CALL PLOT(XP,YP,IPEN)
 IPEN = 2
 ENDDO
 CALL PLFLUSH
 ENDIF
C
C---- return normally
 CALL NEWCOLOR(ICOL0)
 RETURN
C
C---
 90 CONTINUE
 WRITE(*,*) 'No changes made'
 IMOD1 = IFRST(1)
 IMOD2 = IFRST(1) - 1
 ISMOD = 1
 CALL NEWCOLOR(ICOL0)
 RETURN
C
 END ! MODIXY

 SUBROUTINE KEYOFF(XCRS,YCRS,CHKEY,
 & XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
 CHARACTER*1 CHKEY
 LOGICAL LPLNEW
C
 IKEY = ICHAR(CHKEY)
C
 LPLNEW = .FALSE.
C
 IF (IKEY.EQ.81 .OR. IKEY.EQ.180) THEN
C----- pan left arrow
 XOFF = XOFF - 0.02/XSF
 LPLNEW = .TRUE.
C
 ELSEIF(IKEY.EQ.83 .OR. IKEY.EQ.182) THEN
C----- pan right arrow
 XOFF = XOFF + 0.02/XSF
 LPLNEW = .TRUE.

 ELSEIF(IKEY.EQ.82 .OR. IKEY.EQ.184) THEN
C----- pan up arrow
 YOFF = YOFF + 0.02/YSF
 LPLNEW = .TRUE.

 ELSEIF(IKEY.EQ.84 .OR. IKEY.EQ.178) THEN
C----- pan down arrow
 YOFF = YOFF - 0.02/YSF
 LPLNEW = .TRUE.

 ELSEIF(IKEY.EQ.85 .OR. IKEY.EQ.185) THEN
C----- zoom in (Page Up)
 XCEN = 0.5*XWS/XSF + XOFF
 YCEN = 0.5*YWS/YSF + YOFF
 XSF = 1.05*XSF
 YSF = 1.05*YSF
 XOFF = XCEN - 0.5*XWS/XSF
 YOFF = YCEN - 0.5*YWS/YSF
 LPLNEW = .TRUE.

 ELSEIF(IKEY.EQ.86 .OR. IKEY.EQ.179) THEN
C----- zoom out (Page Down)
 XCEN = 0.5*XWS/XSF + XOFF
 YCEN = 0.5*YWS/YSF + YOFF
 XSF = XSF/1.05
 YSF = YSF/1.05
 XOFF = XCEN - 0.5*XWS/XSF
 YOFF = YCEN - 0.5*YWS/YSF
 LPLNEW = .TRUE.
C
 ELSEIF(INDEX('Ii',CHKEY).NE.0) THEN
C----- zoom in, keeping cursor point fixed
 XCU = XCRS/XSF + XOFF
 YCU = YCRS/YSF + YOFF
 XSF = XSF*1.075
 YSF = YSF*1.075
 XOFF = XCU - XCRS/XSF
 YOFF = YCU - YCRS/YSF
 LPLNEW = .TRUE.

 ELSEIF(INDEX('Oo',CHKEY).NE.0) THEN
C----- zoom out, keeping cursor point fixed
 XCU = XCRS/XSF + XOFF
 YCU = YCRS/YSF + YOFF
 XSF = XSF/1.075
 YSF = YSF/1.075
 XOFF = XCU - XCRS/XSF
 YOFF = YCU - YCRS/YSF
 LPLNEW = .TRUE.

 ELSEIF(INDEX('Pp',CHKEY).NE.0) THEN
C----- pan towards cursor
 XCEN = 0.5*XWS
 YCEN = 0.5*YWS
C
 DX = (XCRS-XCEN)/SQRT(XWS*YWS)
 DY = (YCRS-YCEN)/SQRT(XWS*YWS)
C
 XOFF = XOFF + 0.05*DX/XSF
 YOFF = YOFF + 0.05*DY/YSF
 LPLNEW = .TRUE.

 ENDIF
C
 RETURN
 END ! KEYOFF

XFOILinterface/XFOIL/src/naca.f

C***
C Module: naca.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE NACA4(IDES,XX,YT,YC,NSIDE,XB,YB,NB,NAME)
 REAL XX(NSIDE), YT(NSIDE), YC(NSIDE)
 REAL XB(2*NSIDE), YB(2*NSIDE)
 REAL M
 CHARACTER*(*) NAME
C
 CHARACTER*10 DIGITS
 DATA DIGITS / '0123456789' /
C
C---- TE point bunching parameter
 DATA AN / 1.5 /
C
 N4 = IDES / 1000
 N3 = (IDES - N4*1000) / 100
 N2 = (IDES - N4*1000 - N3*100) / 10
 N1 = (IDES - N4*1000 - N3*100 - N2*10)
C
 M = FLOAT(N4) / 100.0
 P = FLOAT(N3) / 10.0
 T = FLOAT(N2*10 + N1) / 100.0
C
 ANP = AN + 1.0
 DO 10 I=1, NSIDE
 FRAC = FLOAT(I-1)/FLOAT(NSIDE-1)
 IF(I.EQ.NSIDE) THEN
 XX(I) = 1.0
 ELSE
 XX(I) = 1.0 - ANP*FRAC*(1.0-FRAC)**AN - (1.0-FRAC)**ANP
 ENDIF
 YT(I) = (0.29690*SQRT(XX(I))
 & - 0.12600*XX(I)
 & - 0.35160*XX(I)**2
 & + 0.28430*XX(I)**3
 & - 0.10150*XX(I)**4) * T / 0.20
 IF(XX(I).LT.P) THEN
 YC(I) = M/P**2 * (2.0*P*XX(I) - XX(I)**2)
 ELSE
 YC(I) = M/(1.0-P)**2 * ((1.0-2.0*P) + 2.0*P*XX(I)-XX(I)**2)
 ENDIF
 10 CONTINUE
C
 IB = 0
 DO 20 I=NSIDE, 1, -1
 IB = IB + 1
 XB(IB) = XX(I)
 YB(IB) = YC(I) + YT(I)
 20 CONTINUE
 DO 30 I=2, NSIDE
 IB = IB + 1
 XB(IB) = XX(I)
 YB(IB) = YC(I) - YT(I)
 30 CONTINUE
 NB = IB
C
 NAME = 'NACA'
 NAME(6:9) = DIGITS(N4+1:N4+1)
 & // DIGITS(N3+1:N3+1)
 & // DIGITS(N2+1:N2+1)
 & // DIGITS(N1+1:N1+1)
C
 RETURN
 END

 SUBROUTINE NACA5(IDES,XX,YT,YC,NSIDE,XB,YB,NB,NAME)
 REAL XX(NSIDE), YT(NSIDE), YC(NSIDE)
 REAL XB(2*NSIDE), YB(2*NSIDE)
 REAL M
C
 CHARACTER*(*) NAME
C
 CHARACTER*10 DIGITS
 DATA DIGITS / '0123456789' /
C
C---- TE point bunching parameter
 DATA AN / 1.5 /
C
 N5 = IDES / 10000
 N4 = (IDES - N5*10000) / 1000
 N3 = (IDES - N5*10000 - N4*1000) / 100
 N2 = (IDES - N5*10000 - N4*1000 - N3*100) / 10
 N1 = (IDES - N5*10000 - N4*1000 - N3*100 - N2*10)
C
 N543 = 100*N5 + 10*N4 + N3
C
 IF (N543 .EQ. 210) THEN
cc P = 0.05
 M = 0.0580
 C = 361.4
 ELSE IF (N543 .EQ. 220) THEN
cc P = 0.10
 M = 0.1260
 C = 51.64
 ELSE IF (N543 .EQ. 230) THEN
cc P = 0.15
 M = 0.2025
 C = 15.957
 ELSE IF (N543 .EQ. 240) THEN
cc P = 0.20
 M = 0.2900
 C = 6.643
 ELSE IF (N543 .EQ. 250) THEN
cc P = 0.25
 M = 0.3910
 C = 3.230
 ELSE
 WRITE(*,*) 'Illegal 5-digit designation'
 WRITE(*,*) 'First three digits must be 210, 220, ... 250'
 IDES = 0
 RETURN
 ENDIF
C
C
 T = FLOAT(N2*10 + N1) / 100.0
C
 ANP = AN + 1.0
 DO 10 I=1, NSIDE
 FRAC = FLOAT(I-1)/FLOAT(NSIDE-1)
 IF(I.EQ.NSIDE) THEN
 XX(I) = 1.0
 ELSE
 XX(I) = 1.0 - ANP*FRAC*(1.0-FRAC)**AN - (1.0-FRAC)**ANP
 ENDIF
C
 YT(I) = (0.29690*SQRT(XX(I))
 & - 0.12600*XX(I)
 & - 0.35160*XX(I)**2
 & + 0.28430*XX(I)**3
 & - 0.10150*XX(I)**4) * T / 0.20
 IF(XX(I).LT.M) THEN
 YC(I) = (C/6.0) * (XX(I)**3 - 3.0*M*XX(I)**2
 & + M*M*(3.0-M)*XX(I))
 ELSE
 YC(I) = (C/6.0) * M**3 * (1.0 - XX(I))
 ENDIF
 10 CONTINUE
C
 IB = 0
 DO 20 I=NSIDE, 1, -1
 IB = IB + 1
 XB(IB) = XX(I)
 YB(IB) = YC(I) + YT(I)
 20 CONTINUE
 DO 30 I=2, NSIDE
 IB = IB + 1
 XB(IB) = XX(I)
 YB(IB) = YC(I) - YT(I)
 30 CONTINUE
 NB = IB
C
 NAME = 'NACA'
 NAME(6:10) = DIGITS(N5+1:N5+1)
 & // DIGITS(N4+1:N4+1)
 & // DIGITS(N3+1:N3+1)
 & // DIGITS(N2+1:N2+1)
 & // DIGITS(N1+1:N1+1)
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/ncorr.f

 PROGRAM NCORR
 PARAMETER (NH=13)
 REAL H(NH), RT(NH),DN(NH)
C
 DATA H / 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.4,
 & 4.0, 5.0, 7.0, 10.0, 15.0, 20.0 /
C
 DATA RT / 4000., 1820., 700., 270., 100., 76., 52.,
 & 34., 26., 14., 9.0, 6.4, 5.0 /
C
 DATA DN / 0.0067, 0.0064, 0.0076, 0.0104, 0.0200, 0.0323, 0.0529,
 & 0.0727, 0.110 , 0.169 , 0.253 , 0.390 , 0.526 /
C
 REAL X1(NH), Y1(NH), F1(NH), G1(NH)
 REAL X2(NH), Y2(NH), F2(NH), G2(NH)
C
 IDEV = 6
 SIZE = 8.0
 CH = 0.02
C
 HMAX = 20.0
 DH = 2.0
C
 FMAX = 0.5
 DF = 0.1
C
 FMAX = 0.05
 DF = 0.005
C
 PAR = 0.75
C
 HWT = 1.0/HMAX
 FWT = PAR/FMAX
C
 N = NH
C
 DO 20 I=1, N
 HB = 1.0/(H(I)-1.0)
C
 X1(I) = 4.0*H(I)
 Y1(I) = DN(I)
 G1(I) = 0.13 * (0.215/HB)
 F1(I) = 0.13 * (0.215/HB)
 & - 0.0345 * EXP(-15.0*(HB-0.65)**2)
 F1(I) = 0.028*(H(I)-1.0)
 & - 0.0345 * EXP(-(3.87/(H(I)-1.0) - 2.52)**2)
C
 X2(I) = HMAX* HB
 Y2(I) = DN(I)
 G2(I) = 0.13 * (0.215/HB)
 F2(I) = 0.13 * (0.215/HB)
 & - 0.0345 * EXP(-15.0*(HB-0.65)**2)
 F2(I) = 0.028*(H(I)-1.0)
 & - 0.0345 * EXP(-(3.87/(H(I)-1.0) - 2.52)**2)
C
 20 CONTINUE
C
C
 CALL PLOTS(0,-999,IDEV)
 CALL FACTOR(SIZE)
C
 CALL PLOT(8.0*CH,8.0*CH,-3)
C
 CALL PLOTON
C
 CALL XAXIS(0.0,-PAR,1.0,0.1,0.0,0.1,CH,1)
C
 CALL XAXIS(0.0,0.0,1.0,DH*HWT,0.0,DH,CH,1)
 CALL YAXIS(0.0,0.0,PAR,DF*FWT,0.0,DF,CH,3)
C
 CALL XYPLOT(N,X1,Y1,0.0,HWT,0.0,FWT,1,0.3*CH,+1)
 CALL XYPLOT(N,X1,F1,0.0,HWT,0.0,FWT,1,0.3*CH, 0)
 CALL XYPLOT(N,X1,G1,0.0,HWT,0.0,FWT,5,0.3*CH, 0)
C
 CALL XYPLOT(N,X2,Y2,0.0,HWT,0.0,FWT,3,0.3*CH,+5)
 CALL XYPLOT(N,X2,F2,0.0,HWT,0.0,FWT,2,0.3*CH, 0)
 CALL XYPLOT(N,X2,G2,0.0,HWT,0.0,FWT,3,0.3*CH, 0)
C
 CALL PLOTOF
C
 WRITE(*,*) 'Hit <cr>'
 READ(*,1000) ANS
 1000 FORMAT(A4)
C
 CALL PLOT(0.0,0.0,+999)
 STOP
 END

XFOILinterface/XFOIL/src/ntcalc.f

 SUBROUTINE NTCALC(NX,N,X,HK,TH,UE,VE, NW,W,A)
C--
C Calculates range of frequencies which span the
C critical frequency. Also calculates the amplitude
C distribution for each frequency.
C
C Input: NX array physical dimension
C N number of streamwise points i
C (i = N point is assumed turbulent)
C X (i) streamwise coordinate array for integrating A(x)
C HK(i) kinematic shape parameter
C TH(i) momentum thickness
C UE(i) edge velocity
C VE(i) edge kinematic viscosity (in same units as UE*TH)
C NW number of frequencies to be set
C
C Output: W(k) radian frequencies in same units as UE/TH
C A(i,k) amplitude distribution for frequency W(k)
C--
 REAL X(NX), HK(NX), TH(NX), UE(NX), VE(NX)
 REAL W(NW), A(NX,NW)
C
 REAL RSP,WSP,HSP,
 & AR,
 & AR_R, AR_W, AR_H,
 & ARW_R,ARW_W,ARW_H ,
 & AI,
 & AI_R, AI_W, AI_H,
 & AIW_R,AIW_W,AIW_H
C
 LOGICAL OK
C
C---- log(frequency) increment over range (i.e. 1.5 decades)
 DW = -1.50/FLOAT(NW-1)
C
C---- frequency and amplitude will be returned as zero if no instability
 DO 10 IW=1, NW
 W(IW) = 0.
 DO 105 I=1, N
 A(I,IW) = 0.
 105 CONTINUE
 10 CONTINUE
C
C---- search downstream for location where Rcrit is first exceeded
 DO 20 I=1, N-1
C------ local Rdelta*
 RDL = LOG10(HK(I)*TH(I)*UE(I)/VE(I))
C
C------ approximate critical Rdelta* for local shape parameter
 HKB = 1.0 / (HK(I) - 1.0)
 RDLC = 2.23 + 1.35*HKB + 0.85*TANH(10.4*HKB - 7.07) - 0.1
C
 IF(RDL .GE. RDLC) GO TO 21
 20 CONTINUE
CCC WRITE(*,*) 'Rcrit not exceeded'
 RETURN
C
 21 ISTART = I
C
C---- set frequency array at location where Rcrit is first exceeded
 I = ISTART
 UOT = UE(I)/TH(I)
 DO 30 IW=1, NW
 WLOG = -1.0 + DW*FLOAT(IW-1)
 W(IW) = (10.0 ** WLOG) * UOT
 30 CONTINUE
C
 DO 40 I=ISTART+1, N
 IM = I-1
C
C------ set flow variables over i-1,i interval
 UA = (UE(IM) + UE(I))*0.5
 VA = (VE(IM) + VE(I))*0.5
 TA = (TH(IM) + TH(I))*0.5
 HA = (HK(IM) + HK(I))*0.5
C
 IF(I.EQ.N) THEN
C------- last point is turbulent, so extrapolate from laminar region
C- (turbulent H is likely to be inappropriate)
 UA = 1.5*UE(IM) - 0.5*UE(IM-1)
 VA = 1.5*VE(IM) - 0.5*VE(IM-1)
 TA = 1.5*TH(IM) - 0.5*TH(IM-1)
 HA = 1.5*HK(IM) - 0.5*HK(IM-1)
 ENDIF
C
C------ set local Rtheta, Hk
 RSP = UA*TA/VA
 HSP = HA
C
C------ limit Hk, (OSMAP routine would clip anyway)
 HSP = MIN(HSP , 19.999)
C
C------ go over frequencies
 DO 405 IW=1, NW
C-------- set Ue/Theta-normalized frequency WSP = w Theta/Ue
 WSP = W(IW)*TA/UA
C
C-------- calculate Theta-normalized spatial growth rate AI = ai * Theta
 CALL OSMAP(RSP,WSP,HSP,
 & AR,
 & AR_R, AR_W, AR_H,
 & ARW_R,ARW_W,ARW_H ,
 & AI,
 & AI_R, AI_W, AI_H,
 & AIW_R,AIW_W,AIW_H , OK)
C
C-------- integrate growth rate to get amplitude
 DX = X(I) - X(IM)
 A(I,IW) = A(IM,IW) - AI * DX/TA
 A(I,IW) = MAX(A(I,IW) , 0.0)
 405 CONTINUE
 40 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/orrs.f

 SUBROUTINE ORRS(LSTI,LREI,NI,YI,UI,UDI, REI, ITMAXI,
 & ALPHAR,ALPHAI , OMEGAR,OMEGAI,
 & UTR,UTI, VTR,VTI, WTR, WTI, CTR, CTI, DELMAX)
 DIMENSION YI(NI), UI(NI), UDI(NI)
 DIMENSION UTR(NI), UTI(NI), VTR(NI), VTI(NI),
 & WTR(NI), WTI(NI), CTR(NI), CTI(NI)
C---
C Routine for solving the Orr-Sommerfeld equation
C in the spatial or temporal stability problems.
C
C Input:
C ------
C LSTI 1: spatial amplification problem
C 2: temporal amplification problem
C LREI 1: Reynolds number fixed
C 2: Reynolds number variable
C [to obtain specified ai (LSTI=1), or wi (LSTI=2)]
C NI total number of points in profiles
C YI normal BL coordinate array
C UI mean flow u(y) profile
C UDI mean flow du/dy profile
C REI Reynolds number
C ITMAXI max number of Newton iterations to seek eigenvalue
C OMEGAR real part of temporal frequency (for initial guess)
C OMEGAI imag. part of temporal frequency (for initial guess)
C ALPHAR real part of complex wavenumber (for initial guess)
C ALPHAI imag. part of complex wavenumber (for initial guess)
C
C Output:
C -------
C OMEGAR real part of temporal frequency (if LSTI = 2)
C OMEGAI imag. part of temporal frequency (if LSTI = 2)
C ALPHAR real part of complex wavenumber (if LSTI = 1)
C ALPHAI imag. part of complex wavenumber (if LSTI = 1)
C UTR real part of perturbation x-velocity profile
C UTI imag. part of perturbation x-velocity profile
C VTR real part of perturbation y-velocity profile
C VTI imag. part of perturbation y-velocity profile
C WTR real part of perturbation vorticity profile
C WTI imag. part of perturbation vorticity profile
C CTR real part of perturbation d(vorticity)/dy profile
C CTI imag. part of perturbation d(vorticity)/dy profile
C DELMAX max change in (UTR,UTI) in last iteration (~= 0 if converged)
C---
C
 INCLUDE 'ORRS.INC'
C
C---- convergence tolerance
 DATA EPS / 1.0E-4 /
C
 IF(NI.GT.NMAX) STOP 'ORRS: Array overflow.'
C
C---- set initial BC flag
 IBC = 1
C
C---- set du'/dy normalization constant (normally imposed at wall)
 FNORM = (1.0,-1.0)
ccc FNORM = (1.0, 0.0)
C
C---- set input variables from parameter list
 LST = LSTI
 LRE = LREI
C
 ITMAX = ITMAXI
C
 N = NI
 DO I=1, N
 Y(I) = YI(I)
 U(I) = UI(I)
 UD(I) = UDI(I)
 ENDDO
C
 IRE = CMPLX(0.0 , REI)
 ALPHA = CMPLX(ALPHAR,ALPHAI)
 OMEGA = CMPLX(OMEGAR,OMEGAI)
C
C---- save initial guess for restoration if normalization condition is relocated
 OMINIT = OMEGA
 ALINIT = ALPHA
C
C
C---- set number of righthand sides
 NRHS = 2
 IF(LRE .EQ. 2) NRHS = 3
C
 CALL OS_INIT
C
C---- Newton iteration loop
 DO 100 ITER=1, ITMAX
C
 CALL OS_SETUP
 CALL OS_SOLVE
 CALL OS_UPDATE
C
 CALL OS_BCCHEK
C
CCC call newpen(1)
CCC do 66 i=1, n
CCC utr(i) = real(f1(i))
CCC 66 continue
CCC call urplot(n,y,utr)
C
 DELMAX = DFMAX
C
 IF(ITMAX.EQ.1) GO TO 101
C
c IF(LRE.EQ.1) THEN
c IF(LST.EQ.1)
c & WRITE(*,7011) ITER,DFMAX,REAL(ALPHA),IMAG(ALPHA)
c 7011 FORMAT(1X,I2,' max =', E11.4,' a =', 2F10.6)
c IF(LST.EQ.2)
c & WRITE(*,7012) ITER,DFMAX,REAL(OMEGA),IMAG(OMEGA)
c 7012 FORMAT(1X,I2,' max =', E11.4,' w =', 2F10.6)
c ELSE
c IF(LST.EQ.1)
c & WRITE(*,7021) ITER,DFMAX,REAL(ALPHA),IMAG(ALPHA),IMAG(IRE)
c 7021 FORMAT(1X,I2,' max =', E11.4,' a =', 2F10.6,' Re =',E11.4)
c IF(LST.EQ.2)
c & WRITE(*,7022) ITER,DFMAX,REAL(OMEGA),IMAG(OMEGA),IMAG(IRE)
c 7022 FORMAT(1X,I2,' max =', E11.4,' w =', 2F10.6,' Re =',E11.4)
c ENDIF
C
 IF(ISOL.NE.0 .AND. DFMAX .LT. EPS) GO TO 101
 100 CONTINUE
 WRITE(*,*) 'ORRS: Convergence failed. Continuing ...'
C
 101 CONTINUE
C
C---- save variables for passing back to calling routine
 ALPHAR = REAL(ALPHA)
 ALPHAI = IMAG(ALPHA)
 OMEGAR = REAL(OMEGA)
 OMEGAI = IMAG(OMEGA)
 REI = IMAG(IRE)
C
 DO 200 I=1, N
 UTR(I) = REAL(F1(I))
 UTI(I) = IMAG(F1(I))
 VTR(I) = REAL((0.0,-1.0)*ALPHA*F0(I))
 VTI(I) = IMAG((0.0,-1.0)*ALPHA*F0(I))
 WTR(I) = -REAL(F2(I))
 WTI(I) = -IMAG(F2(I))
 CTR(I) = -REAL(F3(I))
 CTI(I) = -IMAG(F3(I))
 200 CONTINUE
C
 RETURN
 END ! ORRS

 SUBROUTINE OS_INIT
 INCLUDE 'ORRS.INC'
C
 DO I=1, N
 F0(I) = 0.
 F1(I) = 0.
 F2(I) = 0.
 F3(I) = 0.
 ENDDO
C
 ISOL = 0
C
 RETURN
 END

 SUBROUTINE OS_BCCHEK
 INCLUDE 'ORRS.INC'
 COMPLEX FFACT
C
 FWALL = CABS(F2(1))
 FEDGE = CABS(F2(N))
C
 IF(IBC .EQ. 1 .AND. FEDGE .GT. 2.0*FWALL) THEN
 WRITE(*,*) 'Switching normalizing condition to edge'
 IBC = 2
 FFACT = FNORM/F2(N)
 ELSE IF(IBC .EQ. 2 .AND. FWALL .GT. 2.0*FEDGE) THEN
 WRITE(*,*) 'Switching normalizing condition to wall'
 IBC = 1
 FFACT = FNORM/F2(1)
 ELSE
 RETURN
 ENDIF
C
 DO I=1, N
 F0(I) = F0(I)*FFACT
 F1(I) = F1(I)*FFACT
 F2(I) = F2(I)*FFACT
 F3(I) = F3(I)*FFACT
 ENDDO
C
 ISOL = 0
 ITMAX = MIN0(ITMAX + 1 , 20)
 IF(LST.EQ.1) ALPHA = ALINIT
 IF(LST.EQ.2) OMEGA = OMINIT
C
 RETURN
 END ! OS_BCCHEK

 SUBROUTINE OS_SETUP
 INCLUDE 'ORRS.INC'
C--
C Sets up 4x4 block-tridiagnonal system
C for Orr-Sommerfeld equation solution.
C
C The perturbation stream function has the form:
C
C P(x,y,t;a,w,R,U) = p(y) exp[i(ax - wt)]
C
C The four equations set up are:
C
C p' = q 2
C q' = r + a p
C r' = s 2
C s' = iR[(aU-w)r - aU"p] + a p
C
C p = streamfunction = F0
C q = velocity = F1
C r = vorticity = F2
C s = dr/dy = F3
C
C--
C
C---- zero out A,B,C blocks and righthand sides R
 DO I=1, N
 DO J=1, 4
 DO K=1, 4
 A(J,K,I) = (0.0,0.0)
 B(J,K,I) = (0.0,0.0)
 C(J,K,I) = (0.0,0.0)
 ENDDO
 DO K=1, NRMAX
 R(J,K,I) = (0.0,0.0)
 ENDDO
 ENDDO
 ENDDO
C
 I = 1
C
C---- set 1st wall BC
 R(1,1,I) = F0(I)
 A(1,1,I) = 1.0
C
 IF(IBC.EQ.1) THEN
C
C----- set normalizing condition in lieu of 2nd wall BC (enforced in OS_UPDATE)
 R(2,1,I) = F2(I) - FNORM
 A(2,3,I) = 1.0
C
 ELSE
C
C----- set 2nd wall BC
 R(2,1,I) = F1(I)
 A(2,2,I) = 1.0
C
 ENDIF
C
C---- set interior equations
 DO 50 I=1,N-1
C
 DY = Y(I+1) - Y(I)
 UAV = 0.5*(U(I+1) + U(I))
 UDD = UD(I+1) - UD(I)
C---
C
 R(1,1,I+1) = F0(I+1) - F0(I) - 0.5*DY*(F1(I+1)+F1(I))
 B(1,1,I+1) = -1.0
 A(1,1,I+1) = 1.0
 B(1,2,I+1) = -0.5*DY
 A(1,2,I+1) = -0.5*DY
C---
C
 R(2,1,I+1) = F1(I+1) - F1(I)
 & - 0.5*DY*(F2(I+1)+F2(I)
 & + (F0(I+1)+F0(I))*ALPHA**2)
 IF(LST.EQ.1)
 & R(2,2,I+1) = -0.5*DY * (F0(I+1)+F0(I)) * 2.0*ALPHA
 B(2,1,I+1) = -0.5*DY*ALPHA**2
 A(2,1,I+1) = -0.5*DY*ALPHA**2
 B(2,2,I+1) = -1.0
 A(2,2,I+1) = 1.0
 B(2,3,I+1) = -0.5*DY
 A(2,3,I+1) = -0.5*DY
C---
C
 R(3,1,I) = F2(I+1) - F2(I) - 0.5*DY*(F3(I+1)+F3(I))
 A(3,3,I) = -1.0
 C(3,3,I) = 1.0
 A(3,4,I) = -0.5*DY
 C(3,4,I) = -0.5*DY
C---
C
 R(4,1,I) = F3(I+1) - F3(I)
 & - 0.5*DY* (F2(I+1)+F2(I)) * ALPHA**2
 & - IRE*((ALPHA*UAV-OMEGA)*0.5*DY*(F2(I+1)+F2(I))
 & - ALPHA*UDD*0.5*(F0(I+1)+F0(I)))
 IF(LST.EQ.1)
 & R(4,2,I) = - 0.5*DY* (F2(I+1)+F2(I)) * 2.0*ALPHA
 & - IRE*(UAV *0.5*DY*(F2(I+1)+F2(I))
 & - UDD*0.5*(F0(I+1)+F0(I)))
 IF(LST.EQ.2)
 & R(4,2,I) = - IRE*((-1.0)*0.5*DY*(F2(I+1)+F2(I)))
 R(4,3,I) =
 & -(0.0,1.0)*((ALPHA*UAV-OMEGA)*0.5*DY*(F2(I+1)+F2(I))
 & - ALPHA*UDD*0.5*(F0(I+1)+F0(I)))
 A(4,1,I) = IRE* ALPHA*UDD*0.5
 C(4,1,I) = IRE* ALPHA*UDD*0.5
 A(4,3,I) = -0.5*DY*ALPHA**2 - IRE*(ALPHA*UAV-OMEGA)*0.5*DY
 C(4,3,I) = -0.5*DY*ALPHA**2 - IRE*(ALPHA*UAV-OMEGA)*0.5*DY
 A(4,4,I) = -1.0
 C(4,4,I) = 1.0
C---
C
 50 CONTINUE
C
C---- set asymptotic regularity conditions at outer edge
C
 FACSQ = ALPHA**2 + IRE*(ALPHA*U(N)-OMEGA)
 FAC = CSQRT(FACSQ)
 IF(REAL(FACSQ) .LT. 0.0 .AND. IMAG(FACSQ) .LT. 0.0) THEN
CCC WRITE(*,*) 'ORRS: Overdamped mode.'
 FAC = -FAC
 ENDIF
 FAC_AL = (2.0*ALPHA + IRE*U(N)) * 0.5/FAC
 FAC_OM = (- IRE) * 0.5/FAC
 FAC_RE = (0.0,1.0)*(ALPHA*U(N)-OMEGA) * 0.5/FAC
C
 IF(IBC.EQ.2) THEN
C
C----- set normalization condition in lieu of asymptotic regularity condition
 R(3,1,N) = F2(N) - FNORM
 A(3,3,N) = 1.0
C
 ELSE
C
 R(3,1,N) = (ALPHA + FAC)*(F1(N) + F0(N)*ALPHA) + F2(N)
 IF(LST.EQ.1)
 & R(3,2,N) = (1.0 + FAC_AL)*(F1(N) + F0(N)*ALPHA)
 & + (ALPHA + FAC)*(F0(N))
 IF(LST.EQ.2)
 & R(3,2,N) = (FAC_OM)*(F1(N) + F0(N)*ALPHA)
 R(3,3,N) = (FAC_RE)*(F1(N) + F0(N)*ALPHA)
 A(3,1,N) = (ALPHA + FAC)*(ALPHA)
 A(3,2,N) = (ALPHA + FAC)
 A(3,3,N) = 1.0
C
 ENDIF
C
 R(4,1,N) = F3(N) + F2(N)*FAC
 IF(LST.EQ.1)
 &R(4,2,N) = F2(N)*FAC_AL
 IF(LST.EQ.2)
 &R(4,2,N) = F2(N)*FAC_OM
 R(4,3,N) = F2(N)*FAC_RE
 A(4,3,N) = FAC
 A(4,4,N) = 1.0
C
 RETURN
 END ! OS_SETUP

 SUBROUTINE OS_SOLVE
 INCLUDE 'ORRS.INC'
 COMPLEX PIVOT, TEMP
C---
C 4x4 complex tridiagonal block solver.
C Customized for Orr-Sommerfeld equation system,
C with certain entries assumed to be zero.
C (Gives large CPU speedup).
C
C Assumed initial structure for a block row:
C
C p q r s p q r s p q r s
C |* * # 0| |* * 0 0| |0 0 0 0| <-- p' = q 2
C |* * * 0| |* * * 0| |0 0 0 0| <-- q' = r + a p
C |# # # 0| |* * * *| |0 0 * *| <-- r' = s 2
C |# # # 0| |* * * *| |* 0 * *| <-- s' = iR[(au-w)r - au"p] + a p
C
C B block A block C block
C
C * assumed nonzero in initial system
C # assumed zero in initial system, becoming nonzero due to fill-in
C 0 assumed zero always
C---
C
CCC** Backward sweep: Elimination of upper block diagonal (C's).
 DO 1 I=N, 1, -1
C
 IP = I+1
C
C------ don't eliminate Cn block because it doesn't exist
 IF(I.EQ.N) GO TO 12
C
C------ eliminate Ci block, thus modifying Ai and Ri blocks
 DO 111 L=1, 3
 K = 3
 A(K,L,I) = A(K,L,I)
 & - C(K,3,I)*B(3,L,IP)
 & - C(K,4,I)*B(4,L,IP)
 K = 4
 A(K,L,I) = A(K,L,I)
 & - C(K,1,I)*B(1,L,IP)
 & - C(K,3,I)*B(3,L,IP)
 & - C(K,4,I)*B(4,L,IP)
 111 CONTINUE
 DO 112 L=1, NRHS
 K = 3
 R(K,L,I) = R(K,L,I)
 & - C(K,3,I)*R(3,L,IP)
 & - C(K,4,I)*R(4,L,IP)
 K = 4
 R(K,L,I) = R(K,L,I)
 & - C(K,1,I)*R(1,L,IP)
 & - C(K,3,I)*R(3,L,IP)
 & - C(K,4,I)*R(4,L,IP)
 112 CONTINUE
C
C -1
CCC---- multiply Bi block and righthand side Ri vectors by (Ai)
C using Gaussian elimination.
C
 12 CONTINUE
C
 DO 13 KPIV=4, 2, -1
C
 KM1 = KPIV-1
C
 PIVOT = 1.0/A(KPIV,KPIV,I)
C
C-------- normalize pivot row
 DO 132 L=1, KM1
 A(KPIV,L,I) = A(KPIV,L,I)*PIVOT
 132 CONTINUE
C
 B(KPIV,1,I) = B(KPIV,1,I)*PIVOT
 B(KPIV,2,I) = B(KPIV,2,I)*PIVOT
 B(KPIV,3,I) = B(KPIV,3,I)*PIVOT
C
 DO 134 L=1, NRHS
 R(KPIV,L,I) = R(KPIV,L,I)*PIVOT
 134 CONTINUE
C
C-------- eliminate upper off-diagonal element in Ai block
 K = KM1
 TEMP = A(K,KPIV,I)
 DO 1351 L=KM1, 1, -1
 A(K,L,I) = A(K,L,I) - TEMP*A(KPIV,L,I)
 1351 CONTINUE
 B(K,1,I) = B(K,1,I) - TEMP*B(KPIV,1,I)
 B(K,2,I) = B(K,2,I) - TEMP*B(KPIV,2,I)
 B(K,3,I) = B(K,3,I) - TEMP*B(KPIV,3,I)
 DO 1352 L=1, NRHS
 R(K,L,I) = R(K,L,I) - TEMP*R(KPIV,L,I)
 1352 CONTINUE
C
 13 CONTINUE
C
C
C------ solve for first row
 PIVOT = 1.0/A(1,1,I)
 B(1,1,I) = B(1,1,I)*PIVOT
 B(1,2,I) = B(1,2,I)*PIVOT
 B(1,3,I) = B(1,3,I)*PIVOT
 DO 14 L=1, NRHS
 R(1,L,I) = R(1,L,I)*PIVOT
 14 CONTINUE
C
C------ back substitute (eliminate everything below diagonal in Ai block)
 DO 15 L=1, 3
 B(2,L,I) = B(2,L,I) - A(2,1,I)*B(1,L,I)
 B(3,L,I) = B(3,L,I) - A(3,1,I)*B(1,L,I)
 & - A(3,2,I)*B(2,L,I)
 B(4,L,I) = B(4,L,I) - A(4,1,I)*B(1,L,I)
 & - A(4,2,I)*B(2,L,I)
 & - A(4,3,I)*B(3,L,I)
 15 CONTINUE
C
 DO 16 L=1, NRHS
 R(2,L,I) = R(2,L,I) - A(2,1,I)*R(1,L,I)
 R(3,L,I) = R(3,L,I) - A(3,1,I)*R(1,L,I)
 & - A(3,2,I)*R(2,L,I)
 R(4,L,I) = R(4,L,I) - A(4,1,I)*R(1,L,I)
 & - A(4,2,I)*R(2,L,I)
 & - A(4,3,I)*R(3,L,I)
 16 CONTINUE
C
 1 CONTINUE
C
CCC** Forward sweep: Back substitution using lower block diagonal (Bi's).
 DO 2 I=2, N
 IM = I-1
 DO 21 L=1, NRHS
 DO 211 K=1, 4
 R(K,L,I) = R(K,L,I)
 & - (R(1,L,IM)*B(K,1,I)
 & + R(2,L,IM)*B(K,2,I)
 & + R(3,L,IM)*B(K,3,I))
 211 CONTINUE
 21 CONTINUE
 2 CONTINUE
C
 RETURN
 END ! OS_SOLVE

 SUBROUTINE OS_UPDATE
 INCLUDE 'ORRS.INC'
 COMPLEX DF0,DF1,DF2,DF3
 COMPLEX DAW
 COMPLEX RES, RES_AL, RES_OM, RES_RE, RES_F0, RES_F1, RES_F2,
 & RES_AW
C
 IF(ISOL.EQ.0) THEN
C
C----- no mode solution yet -- don't try to converge on eigenvalue
 DAW = (0.0,0.0)
 DRE = 0.0
C
 ELSE
C
C----- drive eigenvalue (alpha or omega) to satisfy dropped BC at wall or edge
 IF(IBC.EQ.1) THEN
C
C------ wall BC was dropped -- enforce it here
 I = 1
 DAW = (F1(I) - R(2,1,I)) / R(2,2,I)
 DRE = 0.0
C
 ELSE
C
C------ edge BC was dropped -- enforce it here
 RES = (ALPHA + FAC)*(F1(N) + F0(N)*ALPHA) + F2(N)
 RES_AL = (1.0 + FAC_AL)*(F1(N) + F0(N)*ALPHA)
 & + (ALPHA + FAC)*(F0(N))
 RES_OM = (FAC_OM)*(F1(N) + F0(N)*ALPHA)
 RES_RE = (FAC_RE)*(F1(N) + F0(N)*ALPHA)
 RES_F0 = (ALPHA + FAC)*(ALPHA)
 RES_F1 = (ALPHA + FAC)
 RES_F2 = 1.0
C
 IF(LST.EQ.1) RES_AW = RES_AL
 IF(LST.EQ.2) RES_AW = RES_OM
C
 DAW =-(RES -RES_F0*R(1,1,N)-RES_F1*R(2,1,N)-RES_F2*R(3,1,N))
 & / (RES_AW-RES_F0*R(1,2,N)-RES_F1*R(2,2,N)-RES_F2*R(3,2,N))
C
 ENDIF
C
 ENDIF
C
C---- set either alpha or omega change (spatial or temporal problem)
 IF(LST.EQ.1) THEN
 DALPHA = DAW
 DOMEGA = (0.0,0.0)
 ELSE
 DALPHA = (0.0,0.0)
 DOMEGA = DAW
 ENDIF
C
C
 RLX = 1.0
C
 DALF = REAL(DALPHA)/ABS(ALPHA)
 IF(RLX*DALF .LT. -.1) RLX = -.1/DALF
 IF(RLX*DALF .GT. 0.1) RLX = 0.1/DALF
C
 DALF = IMAG(DALPHA)/ABS(ALPHA)
 IF(RLX*DALF .LT. -.1) RLX = -.1/DALF
 IF(RLX*DALF .GT. 0.1) RLX = 0.1/DALF
C
 DOMF = REAL(DOMEGA)/ABS(OMEGA)
 IF(RLX*DOMF .LT. -.1) RLX = -.1/DOMF
 IF(RLX*DOMF .GT. 0.1) RLX = 0.1/DOMF
C
 DOMF = IMAG(DOMEGA)/ABS(OMEGA)
 IF(RLX*DOMF .LT. -.1) RLX = -.1/DOMF
 IF(RLX*DOMF .GT. 0.1) RLX = 0.1/DOMF
C
C DREF = DRE / IMAG(IRE)
C IF(RLX*DREF .LT. -.2) RLX = -.2/DREF
C IF(RLX*DREF .GT. 0.3) RLX = 0.3/DREF
CC
C
C==== see if normalizing condition position needs to be changed
C
cC---- predicted wall and edge f" values at next iteration level
c FWALL = CABS(F2(1) - R(3,1,1) - DAW*R(3,2,1) - DRE*R(3,3,1))
c FEDGE = CABS(F2(N) - R(3,1,N) - DAW*R(3,2,N) - DRE*R(3,3,N))
cC
cC---- set flag to normalize whatever is bigger by factor of 2
cC
c IF(IBC .EQ. 1 .AND. FEDGE .GT. 2.0*FWALL) THEN
cC
c WRITE(*,*) 'Switching normalizing condition to edge'
c IBC = 2
c ITMAX = MIN0(ITMAX+1 , 20)
c IF(LST.EQ.1) ALPHA = ALINIT
c IF(LST.EQ.2) OMEGA = OMINIT
c RETURN
cC
c ELSE IF(IBC .EQ. 2 .AND. FWALL .GT. 2.0*FEDGE) THEN
cC
c WRITE(*,*) 'Switching normalizing condition to wall'
c IBC = 1
c ITMAX = MIN0(ITMAX+1 , 20)
c IF(LST.EQ.1) ALPHA = ALINIT
c IF(LST.EQ.2) OMEGA = OMINIT
c RETURN
cC
c ENDIF
C
C
 DFMAX = 0.0
 DFRMS = 0.0
C
C---- perform Newton update on modes
 DO 50 I=1, N
 DF0 = -R(1,1,I) - DAW*R(1,2,I) - DRE*R(1,3,I)
 DF1 = -R(2,1,I) - DAW*R(2,2,I) - DRE*R(2,3,I)
 DF2 = -R(3,1,I) - DAW*R(3,2,I) - DRE*R(3,3,I)
 DF3 = -R(4,1,I) - DAW*R(4,2,I) - DRE*R(4,3,I)
C
 F0(I) = F0(I) + RLX*DF0
 F1(I) = F1(I) + RLX*DF1
 F2(I) = F2(I) + RLX*DF2
 F3(I) = F3(I) + RLX*DF3
C
 D0SQ = (REAL(DF0)**2 + IMAG(DF0)**2)
 D1SQ = (REAL(DF1)**2 + IMAG(DF1)**2)
 D2SQ = (REAL(DF2)**2 + IMAG(DF2)**2)
 D3SQ = (REAL(DF3)**2 + IMAG(DF3)**2)
C
C IF(D0SQ .GT. DFMAX) THEN
C KVMAX = 0
C IVMAX = I
C DFMAX = D0SQ
C ENDIF
C
C IF(D1SQ .GT. DFMAX) THEN
C KVMAX = 1
C IVMAX = I
C DFMAX = D1SQ
C ENDIF
C
C IF(D2SQ .GT. DFMAX) THEN
C KVMAX = 2
C IVMAX = I
C DFMAX = D2SQ
C ENDIF
C
C IF(D3SQ .GT. DFMAX) THEN
C KVMAX = 3
C IVMAX = I
C DFMAX = D3SQ
C ENDIF
C
 DFMAX = MAX(DFMAX , D0SQ , D1SQ , D2SQ , D3SQ)
 DFRMS = DFRMS + D0SQ + D1SQ + D2SQ + D3SQ
 50 CONTINUE
C
 DFMAX = SQRT(DFMAX)
 DFRMS = SQRT(DFRMS / (4.0*FLOAT(N)))
C
C---- perform Newton update on eigenvalues
 ALPHA = ALPHA + RLX*DALPHA
 OMEGA = OMEGA + RLX*DOMEGA
 IRE = IRE + RLX*CMPLX(0.0,DRE)
C
C---- modes are now available
 ISOL = 1
C
 RETURN
 END ! OS_UPDATE

XFOILinterface/XFOIL/orrs/src/osgen.f

 PROGRAM OSGEN
C---
C Reads OS amplification data alpha(R,w) stored in separate files,
C one file for each H value.
C
C Distills this data into arrays which define a tri-cubic spline
C which can be efficiently interrogated to return the alpha(R,W,H)
C function and its derivatives.
C
C The tri-cubic spline data is written out as a binary file,
C to be read and used in SUBROUTINE OSMAP.
C
C Usage:
C
C % osgen os_list_file
C
C---
C
 PARAMETER (NMAX=257,NRX=111,NWX=91,NHX=21)
 REAL ETA(NMAX,NHX), U(NMAX,NHX), S(NMAX,NHX)
C
 REAL ATMP(NRX+NWX+NHX), ADTMP(NRX+NWX+NHX)
 REAL AC(NRX,NWX,NHX,2),
 & AC_R(NRX,NWX,NHX,2), AC_W(NRX,NWX,NHX,2), AC_H(NRX,NWX,NHX,2),
 & AC_RW(NRX,NWX,NHX,2),AC_RH(NRX,NWX,NHX,2),AC_WH(NRX,NWX,NHX,2),
 & AC_RWH(NRX,NWX,NHX,2)
 REAL RTL(NRX,NHX), WSL(NWX,NHX), HHL(NHX)
 INTEGER N(NHX), NRP(NHX), NWP(NHX)
 INTEGER IRP1(NHX),IRP2(NHX),IWP1(NHX),IWP2(NHX)
C
 PARAMETER (NRZ=31, NWZ=41, NHZ=21)
 INTEGER IW1(NHZ), IW2(NHZ), IR1(NHZ), IR2(NHZ)
 REAL RL(NRZ), WL(NWZ), HL(NHZ),
 & A(NRZ,NWZ,NHZ,2),
 & AR(NRZ,NWZ,NHZ,2), AW(NRZ,NWZ,NHZ,2), AH(NRZ,NWZ,NHZ,2),
 & ARW(NRZ,NWZ,NHZ,2),ARH(NRZ,NWZ,NHZ,2),AWH(NRZ,NWZ,NHZ,2),
 & ARWH(NRZ,NWZ,NHZ,2)
C
 CHARACTER*80 ARGP1
 LOGICAL LSPLINE
C
C---- if T, use splines to compute derivatives, otherwise use finite-diff.
 LSPLINE = .TRUE.
C
C---- strides in R and W file values selected for storage in binary table
C- (i.e. binary table can be less dense than the source storage files)
 IRINC = 4
 IWINC = 2
C
 CALL GETARG0(1,ARGP1)
C
 IF(ARGP1 .EQ. ' ') THEN
 WRITE(*,*) 'Enter file containing list of OS datafiles'
 READ(*,'(A)') ARGP1
 ENDIF
C
C---- set expeced format of source files
 IFORM = -1 ! unknown
ccc IFORM = 0 ! binary
ccc IFORM = 1 ! ascii
C
 CALL READOS(ARGP1,IFORM,
 & N,NMAX,ETA,U,S,
 & NRP,NWP,NHP,
 & RTL,WSL,HHL, AC(1,1,1,1), AC(1,1,1,2),
 & NRX,NWX,NHX)
C
C
 RTLMIN = RTL(1,1)
 WSLMIN = WSL(1,1)
 RTLMAX = RTL(1,1)
 WSLMAX = WSL(1,1)
 DO IHP=1, NHP
 RTLMIN = MIN(RTLMIN , RTL(1,IHP))
 WSLMIN = MIN(WSLMIN , WSL(1,IHP))
 RTLMAX = MAX(RTLMAX , RTL(NRP(IHP),IHP))
 WSLMAX = MAX(WSLMAX , WSL(NWP(IHP),IHP))
 ENDDO
C
 DRTL = RTL(2,1) - RTL(1,1)
 DWSL = WSL(2,1) - WSL(1,1)
C
 NRPTOT = INT((RTLMAX - RTLMIN)/DRTL + 1.001)
 NWPTOT = INT((WSLMAX - WSLMIN)/DWSL + 1.001)
C
 IF(NRPTOT .GT. NRX) STOP 'OSGEN: R index overflow'
 IF(NWPTOT .GT. NWX) STOP 'OSGEN: W index overflow'
C
C---- move ar,ai array for each H to a common origin for splining
 DO 20 IHP=1, NHP
 IROFF = INT((RTL(1,IHP) - RTLMIN)/DRTL + 0.001)
 IWOFF = INT((WSL(1,IHP) - WSLMIN)/DWSL + 0.001)
 IF(IROFF.EQ.0 .AND. IWOFF.EQ.0) GO TO 19
C
 DO IC = 1, 2
 DO IRP=NRP(IHP), 1, -1
 DO IWP=NWP(IHP), 1, -1
 AC(IRP+IROFF,IWP+IWOFF,IHP,IC) = AC(IRP,IWP,IHP,IC)
 AC(IRP,IWP,IHP,IC) = 0.0
 ENDDO
 ENDDO
 ENDDO
C
 IF(IROFF.GT.0) THEN
 DO IRP=NRP(IHP), 1, -1
 RTL(IRP+IROFF,IHP) = RTL(IRP,IHP)
 RTL(IRP,IHP) = 0.0
 ENDDO
 ENDIF
C
 IF(IWOFF.GT.0) THEN
 DO IWP=NWP(IHP), 1, -1
 WSL(IWP+IWOFF,IHP) = WSL(IWP,IHP)
 WSL(IWP,IHP) = 0.0
 ENDDO
 ENDIF
C
 19 IRP1(IHP) = IROFF + 1
 IWP1(IHP) = IWOFF + 1
 IRP2(IHP) = IROFF + NRP(IHP)
 IWP2(IHP) = IWOFF + NWP(IHP)
C
C------ set newly-defined R and W coordinate values
 DO IRP=1, IRP1(IHP)-1
 RTL(IRP,IHP) = RTL(IRP1(IHP),IHP) + DRTL*FLOAT(IRP-IRP1(IHP))
 ENDDO
 DO IRP=IRP2(IHP)+1, NRPTOT
 RTL(IRP,IHP) = RTL(IRP2(IHP),IHP) + DRTL*FLOAT(IRP-IRP2(IHP))
 ENDDO
C
 DO IWP=1, IWP1(IHP)-1
 WSL(IWP,IHP) = WSL(IWP1(IHP),IHP) + DWSL*FLOAT(IWP-IWP1(IHP))
 ENDDO
 DO IWP=IWP2(IHP)+1, NWPTOT
 WSL(IWP,IHP) = WSL(IWP2(IHP),IHP) + DWSL*FLOAT(IWP-IWP2(IHP))
 ENDDO
C
 20 CONTINUE
C
C---- differentiate in H with spline routine to get AC_H
 DO 40 IRP=1, NRPTOT
 DO 401 IWP=1, NWPTOT
C
C-------- find first H index at this R,w
 DO IHP=1, NHP
 IF(IRP.GE.IRP1(IHP) .AND. IRP.LE.IRP2(IHP) .AND.
 & IWP.GE.IWP1(IHP) .AND. IWP.LE.IWP2(IHP)) GO TO 4012
 ENDDO
 GO TO 401
 4012 IHP1 = IHP
C
C-------- find last H index at this R,w
 DO IHP=NHP, 1, -1
 IF(IRP.GE.IRP1(IHP) .AND. IRP.LE.IRP2(IHP) .AND.
 & IWP.GE.IWP1(IHP) .AND. IWP.LE.IWP2(IHP)) GO TO 4022
 ENDDO
 GO TO 401
 4022 IHP2 = IHP
C
 DO IC = 1, 2
 DO IHP=IHP1, IHP2
 ATMP(IHP) = AC(IRP,IWP,IHP,IC)
 ENDDO
C
 IHPNUM = IHP2 - IHP1 + 1
 CALL SPLINE(ATMP(IHP1),ADTMP(IHP1),HHL(IHP1),IHPNUM)
C
 DO IHP=IHP1, IHP2
 AC_H(IRP,IWP,IHP,IC) = ADTMP(IHP)
 ENDDO
 ENDDO
C
 401 CONTINUE
 40 CONTINUE
C
C
 DO 50 IC = 1, 2
 IF(LSPLINE) THEN
C------- calculate AC_R and AC_W arrays from spline coefficients
 CALL RDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC(1,1,1,IC), AC_R(1,1,1,IC))
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC(1,1,1,IC), AC_W(1,1,1,IC))
C
 CALL RDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC_H(1,1,1,IC), AC_RH(1,1,1,IC))
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_H(1,1,1,IC), AC_WH(1,1,1,IC))
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_R(1,1,1,IC), AC_RW(1,1,1,IC))
C
 CALL WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_RH(1,1,1,IC), AC_RWH(1,1,1,IC))
C
 ELSE
C------- calculate AC_R and AC_W arrays by finite-differencing
 CALL RDIFF(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC(1,1,1,IC), AC_R(1,1,1,IC))
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC(1,1,1,IC), AC_W(1,1,1,IC))
C
 CALL RDIFF(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC_H(1,1,1,IC), AC_RH(1,1,1,IC))
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_H(1,1,1,IC), AC_WH(1,1,1,IC))
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_R(1,1,1,IC), AC_RW(1,1,1,IC))
C
 CALL WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC_RH(1,1,1,IC), AC_RWH(1,1,1,IC))
 ENDIF
 50 CONTINUE
C
C
C---- set coarsened array limits
 NR = (NRPTOT-1)/IRINC + 1
 NW = (NWPTOT-1)/IWINC + 1
 NH = NHP
C
 DO 60 IHP=1, NHP
 IH = IHP
 IR1(IH) = (IRP1(IHP)-1)/IRINC + 1
 IR2(IH) = (IRP2(IHP)-1)/IRINC + 1
 IW1(IH) = (IWP1(IHP)-1)/IWINC + 1
 IW2(IH) = (IWP2(IHP)-1)/IWINC + 1
C
 DO IR=1, NR
 IRP = IRINC*(IR-1) + 1
 DO IW=1, NW
 IWP = IWINC*(IW-1) + 1
 DO IC = 1, 2
 A (IR,IW,IH,IC) = AC (IRP,IWP,IHP,IC)
 AR (IR,IW,IH,IC) = AC_R (IRP,IWP,IHP,IC)
 AW (IR,IW,IH,IC) = AC_W (IRP,IWP,IHP,IC)
 AH (IR,IW,IH,IC) = AC_H (IRP,IWP,IHP,IC)
 ARW (IR,IW,IH,IC) = AC_RW (IRP,IWP,IHP,IC)
 ARH (IR,IW,IH,IC) = AC_RH (IRP,IWP,IHP,IC)
 AWH (IR,IW,IH,IC) = AC_WH (IRP,IWP,IHP,IC)
 ARWH(IR,IW,IH,IC) = AC_RWH(IRP,IWP,IHP,IC)
 ENDDO
 ENDDO
 ENDDO
 60 CONTINUE
C
C---- also set coarsened independent vaiable arrays
 IHP = 1
C
 DO IR=1, NR
 IRP = IRINC*(IR-1) + 1
 RL(IR) = RTL(IRP,IHP)
 ENDDO
C
 DO IW=1, NW
 IWP = IWINC*(IW-1) + 1
 WL(IW) = WSL(IWP,IHP)
 ENDDO
C
 DO IH=1, NH
 IHP = IH
 HL(IH) = HHL(IHP)
 ENDDO
C
C
C---- write coarsened arrays into binary data file
 LU = 30
 OPEN(LU,FILE='osmap.dat',STATUS='UNKNOWN',FORM='UNFORMATTED')
C
 WRITE(*,*) 'Writing osmap.dat ...'
C
 WRITE(LU) NR, NW, NH
 WRITE(LU) (RL(IR), IR=1,NR)
 WRITE(LU) (WL(IW), IW=1,NW)
 WRITE(LU) (HL(IH), IH=1,NH)
 WRITE(LU) (IR1(IH),IR2(IH),IW1(IH),IW2(IH), IH=1,NH)
C
C---- write ai first, then ar
 DO 70 IC = 2, 1, -1
 DO IH=1, NH
 DO IW=IW1(IH), IW2(IH)
 WRITE(LU) (A(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 WRITE(LU) (AR(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 WRITE(LU) (AW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 WRITE(LU) (AH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 WRITE(LU) (ARW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 WRITE(LU) (ARH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 WRITE(LU) (AWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 WRITE(LU) (ARWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 ENDDO
 ENDDO
 70 CONTINUE
C
 CLOSE(LU)
C
 STOP
 END

 SUBROUTINE RDIFF(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC, AC_R)
 REAL AC(NRX,NWX,*),AC_R(NRX,NWX,*)
 REAL RTL(NRX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)
C
 DO 1 IHP=1, NHP
C
C------ differentiate in R with finite differences
 DO 10 IWP=IWP1(IHP), IWP2(IHP)
 IRP = IRP1(IHP)
 DELR = RTL(IRP+1,IHP) - RTL(IRP,IHP)
 AC_R(IRP,IWP,IHP) = (-3.0*AC(IRP ,IWP,IHP)
 & + 4.0*AC(IRP+1,IWP,IHP)
 & - AC(IRP+2,IWP,IHP))/DELR
 IRP = IRP2(IHP)
 DELR = RTL(IRP,IHP) - RTL(IRP-1,IHP)
 AC_R(IRP,IWP,IHP) = (3.0*AC(IRP ,IWP,IHP)
 & - 4.0*AC(IRP-1,IWP,IHP)
 & + AC(IRP-2,IWP,IHP))/DELR
 DO 101 IRP=IRP1(IHP)+1, IRP2(IHP)-1
 DELR = RTL(IRP+1,IHP) - RTL(IRP-1,IHP)
 AC_R(IRP,IWP,IHP) = (AC(IRP+1,IWP,IHP)
 & - AC(IRP-1,IWP,IHP))/DELR
 101 CONTINUE
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE WDIFF(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC, AC_W)
 REAL AC(NRX,NWX,*),AC_W(NRX,NWX,*)
 REAL WSL(NWX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)
C
 DO 1 IHP=1, NHP
C
C------ differentiate in F with finite differences
 DO 10 IRP=IRP1(IHP), IRP2(IHP)
 IWP = IWP1(IHP)
 DELF = WSL(IWP+1,IHP) - WSL(IWP,IHP)
 AC_W(IRP,IWP,IHP) = (-3.0*AC(IRP,IWP ,IHP)
 & + 4.0*AC(IRP,IWP+1,IHP)
 & - AC(IRP,IWP+2,IHP))/DELF
 IWP = IWP2(IHP)
 DELF = WSL(IWP,IHP) - WSL(IWP-1,IHP)
 AC_W(IRP,IWP,IHP) = (3.0*AC(IRP,IWP ,IHP)
 & - 4.0*AC(IRP,IWP-1,IHP)
 & + AC(IRP,IWP-2,IHP))/DELF
 DO 101 IWP=IWP1(IHP)+1, IWP2(IHP)-1
 DELF = WSL(IWP+1,IHP) - WSL(IWP-1,IHP)
 AC_W(IRP,IWP,IHP) = (AC(IRP,IWP+1,IHP)
 & - AC(IRP,IWP-1,IHP))/DELF
 101 CONTINUE
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE RDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,RTL,NRX,NWX,
 & AC, AC_R)
 REAL AC(NRX,NWX,*),AC_R(NRX,NWX,*)
 REAL RTL(NRX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)
C
 PARAMETER (NDIM=500)
 REAL ATMP(NDIM), ADTMP(NDIM)
C
 DO 1 IHP=1, NHP
 IF(IRP2(IHP).GT.NDIM) THEN
 WRITE(*,*) 'RDIFFS: Array overflow. Increase NDIM to',IRP2(IHP)
 STOP
 ENDIF
C
C------ differentiate in R with spline
 DO 10 IWP=IWP1(IHP), IWP2(IHP)
C
 DO 101 IRP=IRP1(IHP), IRP2(IHP)
 ATMP(IRP) = AC(IRP,IWP,IHP)
 101 CONTINUE
C
 IRP = IRP1(IHP)
 NUM = IRP2(IHP) - IRP1(IHP) + 1
 CALL SPLINE(ATMP(IRP),ADTMP(IRP),RTL(IRP,IHP),NUM)
C
 DO 102 IRP=IRP1(IHP), IRP2(IHP)
 AC_R(IRP,IWP,IHP) = ADTMP(IRP)
 102 CONTINUE
C
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE WDIFFS(IRP1,IRP2,IWP1,IWP2,NHP,WSL,NRX,NWX,
 & AC, AC_W)
 REAL AC(NRX,NWX,*),AC_W(NRX,NWX,*)
 REAL WSL(NWX,*)
 INTEGER IRP1(*),IRP2(*),IWP1(*),IWP2(*)

 PARAMETER (NDIM=500)
 REAL ATMP(NDIM), ADTMP(NDIM)
C
 DO 1 IHP=1, NHP
 IF(IWP2(IHP).GT.NDIM) THEN
 WRITE(*,*) 'WDIFFS: Array overflow. Increase NDIM to',IWP2(IHP)
 STOP
 ENDIF
C
C------ differentiate in F with spline
 DO 10 IRP=IRP1(IHP), IRP2(IHP)
C
 DO 101 IWP=IWP1(IHP), IWP2(IHP)
 ATMP(IWP) = AC(IRP,IWP,IHP)
 101 CONTINUE
C
 IWP = IWP1(IHP)
 NUM = IWP2(IHP) - IWP1(IHP) + 1
 CALL SPLINE(ATMP(IWP),ADTMP(IWP),WSL(IWP,IHP),NUM)
C
 DO 102 IWP=IWP1(IHP), IWP2(IHP)
 AC_W(IRP,IWP,IHP) = ADTMP(IWP)
 102 CONTINUE
C
 10 CONTINUE
C
 1 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/old/oshai.f

 SUBROUTINE OSHAI(RSP,FSP,HSP, AI,
 & AI_R, AI_F, AI_H,
 & AIF_R,AIF_F,AIF_H , OK)
C---
C
C Returns imaginary part of complex wavenumber (Ai) eigenvalue
C from Orr-Sommerfeld solution with mean profiles characterized
C by shape parameter H. Also returns the sensitivities of Ai
C with respect to the input parameters.
C
C The eigenvalue Ai(Rtheta,f,H) is stored as a 3-D array at
C discrete points, which is then interpolated to any (Rtheta,f,H)
C via a tricubic spline. The spline coordinates actually used are:
C
C RL = log10(Rtheta)
C FL = log10(f) + 0.5 log10(Rtheta)
C HL = H
C
C
C Input:
C ------
C RSP momentum thickness Reynolds number Rtheta = Theta Ue / v
C FSP normalized disturbance frequency f = w Theta/Ue
C HSP shape parameter of mean profile H = Dstar/Theta
C
C Output:
C -------
C AI imaginary part of complex wavenumber * Theta
C AI_R d(AI)/dRtheta
C AI_F d(AI)/df
C AI_H d(AI)/dH
C AIF_R d(dAI/df)/dRtheta
C AIF_F d(dAI/df)/df
C AIF_H d(dAI/df)/dH
C OK T if look up was successful; all values returned are valid
C F if point fell outside (RL,FL) spline domain limits;
C all values (AI, AI_R, etc.) are returned as zero.
C Exception: If points only falls outside HL spline limits,
C then the HL limit is used and an AI value is calculated,
C but OK is still returned as F.
C
C---
C
 REAL B(2,2), BR(2,2), BF(2,2), BH(2,2),
 & BRF(2,2),BRH(2,2),BFH(2,2),BRFH(2,2)
 REAL C(2) , CR(2) , CF(2) , CH(2) ,
 & CRF(2) ,CRH(2) ,CFH(2) ,CRFH(2)
C
 PARAMETER (NRX=31, NFX=41, NHX=21)
 COMMON /AICOM/ NR, NF, NH,
 & IF1(NHX), IF2(NHX), IR1(NHX),IR2(NHX),
 & RINCR, FINCR, RL(NRX), FL(NFX), HL(NHX),
 & A(NRX,NFX,NHX),
 & AR(NRX,NFX,NHX),
 & AF(NRX,NFX,NHX),
 & AH(NRX,NFX,NHX),
 & ARF(NRX,NFX,NHX),
 & ARH(NRX,NFX,NHX),
 & AFH(NRX,NFX,NHX),
 & ARFH(NRX,NFX,NHX)
 LOGICAL LOADED, OK
 SAVE LOADED
C
 DATA LOADED /.FALSE./
C
C---- set ln(10) for derivatives of log10 function
 DATA AL10 /2.302585093/
C
C
 IF(LOADED) GO TO 9
C
C---- first time OSHAI is called ... load in 3-D spline data
 OPEN(UNIT=31,FILE='~/codes/mses/orrs/oshai.dat',
 & STATUS='OLD',FORM='UNFORMATTED')
 WRITE(*,*) 'Loading Orr-Sommerfeld maps...'
 READ(31) NR, NF, NH
 IF(NR.GT.NRX) STOP 'OSHAI: R array limit overflow.'
 IF(NF.GT.NFX) STOP 'OSHAI: F array limit overflow.'
 IF(NH.GT.NHX) STOP 'OSHAI: H array limit overflow.'
 READ(31) (RL(IR), IR=1,NR)
 READ(31) (FL(IF), IF=1,NF)
 READ(31) (HL(IH), IH=1,NH)
 READ(31) (IR1(IH),IR2(IH),IF1(IH),IF2(IH), IH=1,NH)
 DO 3 IH=1, NH
 DO 2 IF=IF1(IH), IF2(IH)
 READ(31) (A(IR,IF,IH), IR=IR1(IH),IR2(IH))
 READ(31) (AR(IR,IF,IH), IR=IR1(IH),IR2(IH))
 READ(31) (AF(IR,IF,IH), IR=IR1(IH),IR2(IH))
 READ(31) (AH(IR,IF,IH), IR=IR1(IH),IR2(IH))
 READ(31) (ARF(IR,IF,IH), IR=IR1(IH),IR2(IH))
 READ(31) (ARH(IR,IF,IH), IR=IR1(IH),IR2(IH))
 READ(31) (AFH(IR,IF,IH), IR=IR1(IH),IR2(IH))
 READ(31) (ARFH(IR,IF,IH), IR=IR1(IH),IR2(IH))
 2 CONTINUE
 3 CONTINUE
 CLOSE(31)
C
 RINCR = (RL(NR) - RL(1))/FLOAT(NR-1)
 FINCR = (FL(NF) - FL(1))/FLOAT(NF-1)
 LOADED = .TRUE.
C
 9 CONTINUE
C
C---- set returned variables in case of out-of-limits error
 AI = 0.0
 AI_R = 0.0
 AI_F = 0.0
 AI_H = 0.0
 AIF_R = 0.0
 AIF_F = 0.0
 AIF_H = 0.0
C
C---- define specified spline coordinates
 RLSP = ALOG10(RSP)
 FLSP = ALOG10(FSP) + 0.5*RLSP
 HLSP = HSP
C
 OK = .TRUE.
C
C---- find H interval
 DO 10 IH=2, NH
 IF(HL(IH) .GE. HLSP) GO TO 11
 10 CONTINUE
 IH = NH
 11 CONTINUE
C
 IF(HSP.LT.HL(1) .OR. HSP.GT.HL(NH)) THEN
 OK = .FALSE.
CCC WRITE(6,*) 'Over H limits. R w H:', RSP,FSP,HSP
CCC RETURN
 ENDIF
C
C---- find R interval
 IR = INT((RLSP-RL(1))/RINCR + 2.001)
 IR1MAX = MAX0(IR1(IH) , IR1(IH-1))
 IR2MIN = MIN0(IR2(IH) , IR2(IH-1))
 IF(IR-1.LT.IR1MAX .OR. IR.GT.IR2MIN) THEN
 OK = .FALSE.
CCC WRITE(6,*) 'Over R limits. R w H:', RSP,FSP,HSP
CCC RETURN
 ENDIF
C
C---- find F interval
 IF = INT((FLSP-FL(1))/FINCR + 2.001)
 IF1MAX = MAX0(IF1(IH) , IF1(IH-1))
 IF2MIN = MIN0(IF2(IH) , IF2(IH-1))
 IF(IF-1.LT.IF1MAX .OR. IF.GT.IF2MIN) THEN
 OK = .FALSE.
CCC WRITE(6,*) 'Over w limits. R w H:', RSP,FSP,HSP
CCC RETURN
 ENDIF
C
C
 DRL = RL(IR) - RL(IR-1)
 DFL = FL(IF) - FL(IF-1)
 DHL = HL(IH) - HL(IH-1)
 TR = (RLSP - RL(IR-1)) / DRL
 TF = (FLSP - FL(IF-1)) / DFL
 TH = (HLSP - HL(IH-1)) / DHL
C
C---- evaluate spline in Rtheta at the corners of HL,FL cell
 DO 20 KH=1, 2
 JH = IH + KH-2
 DO 205 KF=1, 2
 JF = IF + KF-2
 A1 = A (IR-1,JF,JH)
 AR1 = AR (IR-1,JF,JH)
 AF1 = AF (IR-1,JF,JH)
 AH1 = AH (IR-1,JF,JH)
 ARF1 = ARF (IR-1,JF,JH)
 ARH1 = ARH (IR-1,JF,JH)
 AFH1 = AFH (IR-1,JF,JH)
 ARFH1 = ARFH(IR-1,JF,JH)
C
 A2 = A (IR ,JF,JH)
 AR2 = AR (IR ,JF,JH)
 AF2 = AF (IR ,JF,JH)
 AH2 = AH (IR ,JF,JH)
 ARF2 = ARF (IR ,JF,JH)
 ARH2 = ARH (IR ,JF,JH)
 AFH2 = AFH (IR ,JF,JH)
 ARFH2 = ARFH(IR ,JF,JH)
C
 DA1 = DRL*AR1 - A2 + A1
 DA2 = DRL*AR2 - A2 + A1
 DAF1 = DRL*ARF1 - AF2 + AF1
 DAF2 = DRL*ARF2 - AF2 + AF1
 DAH1 = DRL*ARH1 - AH2 + AH1
 DAH2 = DRL*ARH2 - AH2 + AH1
 DAFH1 = DRL*ARFH1 - AFH2 + AFH1
 DAFH2 = DRL*ARFH2 - AFH2 + AFH1
C
C-------- set AI, dAI/dFL, dAI/dHL, d2AI/dHLdFL
 B(KF,KH) = (1.0-TR)* A1 + TR* A2
 & + ((1.0-TR)*DA1 - TR*DA2)*(TR-TR*TR)
 BF(KF,KH) = (1.0-TR)* AF1 + TR* AF2
 & + ((1.0-TR)*DAF1 - TR*DAF2)*(TR-TR*TR)
 BH(KF,KH) = (1.0-TR)* AH1 + TR* AH2
 & + ((1.0-TR)*DAH1 - TR*DAH2)*(TR-TR*TR)
 BFH(KF,KH) = (1.0-TR)* AFH1 + TR* AFH2
 & + ((1.0-TR)*DAFH1 - TR*DAFH2)*(TR-TR*TR)
C
C-------- also, the RL derivatives of the quantities above
 BR(KF,KH) = (A2 - A1
 & + (1.0-4.0*TR+3.0*TR*TR)*DA1 + (3.0*TR-2.0)*TR*DA2)/DRL
 BRF(KF,KH) = (AF2 - AF1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAF1 + (3.0*TR-2.0)*TR*DAF2)/DRL
 BRH(KF,KH) = (AH2 - AH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAH1 + (3.0*TR-2.0)*TR*DAH2)/DRL
 BRFH(KF,KH) = (AFH2 - AFH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAFH1 + (3.0*TR-2.0)*TR*DAFH2)/DRL
C
 205 CONTINUE
 20 CONTINUE
C
C---- evaluate spline in HL at the two FL-interval endpoints
 DO 30 KF=1, 2
 B1 = B (KF,1)
 BR1 = BR (KF,1)
 BF1 = BF (KF,1)
 BH1 = BH (KF,1)
 BRF1 = BRF (KF,1)
 BRH1 = BRH (KF,1)
 BFH1 = BFH (KF,1)
 BRFH1 = BRFH(KF,1)
C
 B2 = B (KF,2)
 BR2 = BR (KF,2)
 BF2 = BF (KF,2)
 BH2 = BH (KF,2)
 BRF2 = BRF (KF,2)
 BRH2 = BRH (KF,2)
 BFH2 = BFH (KF,2)
 BRFH2 = BRFH(KF,2)
C
 DB1 = DHL*BH1 - B2 + B1
 DB2 = DHL*BH2 - B2 + B1
 DBR1 = DHL*BRH1 - BR2 + BR1
 DBR2 = DHL*BRH2 - BR2 + BR1
 DBF1 = DHL*BFH1 - BF2 + BF1
 DBF2 = DHL*BFH2 - BF2 + BF1
 DBRF1 = DHL*BRFH1 - BRF2 + BRF1
 DBRF2 = DHL*BRFH2 - BRF2 + BRF1
C
C------ set AI, dAI/dRL, dAI/dFL
 C(KF) = (1.0-TH)* B1 + TH* B2
 & + ((1.0-TH)*DB1 - TH*DB2)*(TH-TH*TH)
 CR(KF) = (1.0-TH)* BR1 + TH* BR2
 & + ((1.0-TH)*DBR1 - TH*DBR2)*(TH-TH*TH)
 CF(KF) = (1.0-TH)* BF1 + TH* BF2
 & + ((1.0-TH)*DBF1 - TH*DBF2)*(TH-TH*TH)
 CRF(KF) = (1.0-TH)* BRF1 + TH* BRF2
 & + ((1.0-TH)*DBRF1 - TH*DBRF2)*(TH-TH*TH)
C
C------ also, the HL derivatives of the quantities above
 CH(KF) = (B2 - B1
 & + (1.0-4.0*TH+3.0*TH*TH)*DB1 + (3.0*TH-2.0)*TH*DB2)/DHL
 CRH(KF) = (BR2 - BR1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBR1 + (3.0*TH-2.0)*TH*DBR2)/DHL
 CFH(KF) = (BF2 - BF1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBF1 + (3.0*TH-2.0)*TH*DBF2)/DHL
 CRFH(KF) = (BRF2 - BRF1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBRF1 + (3.0*TH-2.0)*TH*DBRF2)/DHL
C
 30 CONTINUE
C
C---- evaluate cubic in FL
 C1 = C (1)
 CR1 = CR (1)
 CF1 = CF (1)
 CH1 = CH (1)
 CRF1 = CRF (1)
 CRH1 = CRH (1)
 CFH1 = CFH (1)
 CRFH1 = CRFH(1)
C
 C2 = C (2)
 CR2 = CR (2)
 CF2 = CF (2)
 CH2 = CH (2)
 CRF2 = CRF (2)
 CRH2 = CRH (2)
 CFH2 = CFH (2)
 CRFH2 = CRFH(2)
C
 DC1 = DFL*CF1 - C2 + C1
 DC2 = DFL*CF2 - C2 + C1
 DCH1 = DFL*CFH1 - CH2 + CH1
 DCH2 = DFL*CFH2 - CH2 + CH1
 DCR1 = DFL*CRF1 - CR2 + CR1
 DCR2 = DFL*CRF2 - CR2 + CR1
 DCRH1 = DFL*CRFH1 - CRH2 + CRH1
 DCRH2 = DFL*CRFH2 - CRH2 + CRH1
C
C---- set AI, dAI/dRL, dAI/dHL
 AI = (1.0-TF)* C1 + TF* C2
 & + ((1.0-TF)*DC1 - TF*DC2)*(TF-TF*TF)
 AI_RL = (1.0-TF)* CR1 + TF* CR2
 & + ((1.0-TF)*DCR1 - TF*DCR2)*(TF-TF*TF)
 AI_HL = (1.0-TF)* CH1 + TF* CH2
 & + ((1.0-TF)*DCH1 - TF*DCH2)*(TF-TF*TF)
C
C---- also, the FL derivatives of the quantities above
 AI_FL = (C2 - C1
 & + (1.0-4.0*TF+3.0*TF*TF)*DC1 + (3.0*TF-2.0)*TF*DC2)/DFL
 AIF_RL = (CR2 - CR1
 & + (1.0-4.0*TF+3.0*TF*TF)*DCR1 + (3.0*TF-2.0)*TF*DCR2)/DFL
 AIF_HL = (CH2 - CH1
 & + (1.0-4.0*TF+3.0*TF*TF)*DCH1 + (3.0*TF-2.0)*TF*DCH2)/DFL
C
 AIF_FL = ((6.0*TF-4.0)*DC1 + (6.0*TF-2.0)*DC2)/DFL**2
C
C
C---- convert derivatives wrt to spline coordinates (RL,FL,HL) into
C- derivatives wrt input variables (Rtheta,f,H)
 AI_R = (AI_RL + 0.5*AI_FL) / (AL10 * RSP)
 AI_F = (AI_FL) / (AL10 * FSP)
 AI_H = AI_HL
C
 AIF_R = (AIF_RL + 0.5*AIF_FL) / (AL10**2 * FSP*RSP)
 AIF_F = (AIF_FL - AL10*AI_FL) / (AL10**2 * FSP*FSP)
 AIF_H = AIF_HL / (AL10 * FSP)
C
C---- if we're within the spline data space, the derivatives are valid
 IF(OK) RETURN
C
C---- if not, the ai value is clamped, and its derivatives are zero
 AI_R = 0.0
 AI_F = 0.0
 AI_H = 0.0
C
 AIF_R = 0.0
 AIF_F = 0.0
 AIF_H = 0.0
C
 RETURN
 END

XFOILinterface/XFOIL/orrs/src/osmap.f

 SUBROUTINE OSMAP(RSP,WSP,HSP,
 & ALFR,
 & ALFR_R, ALFR_W, ALFR_H,
 & ALFRW_R,ALFRW_W,ALFRW_H ,
 & ALFI,
 & ALFI_R, ALFI_W, ALFI_H,
 & ALFIW_R,ALFIW_W,ALFIW_H , OK)
C---
C
C Returns real and imaginary parts of complex wavenumber (Alpha)
C eigenvalue from Orr-Sommerfeld spatial-stability solution
C with mean profiles characterized by shape parameter H.
C Also returns the sensitivities of Alpha with respect to the
C input parameters.
C
C The eigenvalue Alpha(Rtheta,W,H) is stored as a 3-D array at
C discrete points, which is then interpolated to any (Rtheta,W,H)
C via a tricubic spline. The spline coordinates actually used are:
C
C RL = log10(Rtheta)
C WL = log10(W) + 0.5 log10(Rtheta)
C HL = H
C
C
C Input:
C ------
C RSP momentum thickness Reynolds number Rtheta = Theta Ue / v
C WSP normalized disturbance frequency W = w Theta/Ue
C HSP shape parameter of mean profile H = Dstar/Theta
C
C Output:
C -------
C ALFR real part of complex wavenumber * Theta
C ALFR_R d(ALFR)/dRtheta
C ALFR_W d(ALFR)/dW
C ALFR_H d(ALFR)/dH
C ALFRW_R d(dALFR/dW)/dRtheta
C ALFRW_W d(dALFR/dW)/dW
C ALFRW_H d(dALFR/dW)/dH
C
C ALFI imag part of complex wavenumber * Theta
C ALFI_R d(ALFI)/dRtheta
C ALFI_W d(ALFI)/dW
C ALFI_H d(ALFI)/dH
C ALFIW_R d(dALFI/dW)/dRtheta
C ALFIW_W d(dALFI/dW)/dW
C ALFIW_H d(dALFI/dW)/dH
C
C OK T if look up was successful; all values returned are valid
C F if point fell outside (RL,WL) spline domain limits;
C all values (ALFR, ALFR_R, etc.) are returned as zero.
C Exception: If points only falls outside HL spline limits,
C then the HL limit is used and an ALFR value is calculated,
C but OK is still returned as F.
C
C---
 LOGICAL OK
C
C
 REAL B(2,2), BR(2,2), BW(2,2), BH(2,2),
 & BRW(2,2),BRH(2,2),BWH(2,2),BRWH(2,2)
 REAL C(2) , CR(2) , CW(2) , CH(2) ,
 & CRW(2) ,CRH(2) ,CWH(2) ,CRWH(2)
C
 REAL AINT(2),
 & AINT_R(2), AINT_W(2), AINT_H(2),
 & AINTW_R(2),AINTW_W(2),AINTW_H(2)
C
 PARAMETER (NRX=31, NWX=41, NHX=21)
 COMMON /AICOM_I/ NR, NW, NH,
 & IC1, IC2,
 & IW1(NHX), IW2(NHX), IR1(NHX),IR2(NHX)
C
C---
C---- single-precision OS data file
 REAL*4 RLSP, WLSP, HLSP,
 & RINCR, WINCR, RL, WL, HL,
 & A, AR, AW, AH, ARW, ARH, AWH, ARWH
C
C---- native-precision OS data file
c REAL RLSP, WLSP, HLSP,
c & RINCR, WINCR, RL, WL, HL,
c & A, AR, AW, AH, ARW, ARH, AWH, ARWH
C---
C
 COMMON /AICOM_R/ RINCR, WINCR, RL(NRX), WL(NWX), HL(NHX),
 & A(NRX,NWX,NHX,2),
 & AR(NRX,NWX,NHX,2),
 & AW(NRX,NWX,NHX,2),
 & AH(NRX,NWX,NHX,2),
 & ARW(NRX,NWX,NHX,2),
 & ARH(NRX,NWX,NHX,2),
 & AWH(NRX,NWX,NHX,2),
 & ARWH(NRX,NWX,NHX,2)
C
 LOGICAL LOADED
 SAVE LOADED
C
C---- set OSFILE to match the absolute OS database filename
 CHARACTER*128 OSFILE
 DATA OSFILE / 'C:\xfoil\osmap.dat' /
c
c DATA OSFILE
c &/'/afs/athena.mit.edu/course/16/16_d0006/Codes/orrs/osmap_lx.dat'/
C
 DATA LOADED / .FALSE. /
C
C---- set ln(10) for derivatives of log10 function
 DATA AL10 /2.302585093/
C
 IF(LOADED) GO TO 9
C--
C---- first time OSMAP is called ... load in 3-D spline data
C
 NR = 0
 NW = 0
 NH = 0
C
 LU = 31
 OPEN(UNIT=LU,FILE=OSFILE,STATUS='OLD',FORM='UNFORMATTED',ERR=900)
C
 READ(LU) NR, NW, NH
C
 IF(NR.GT.NRX .OR.
 & NW.GT.NWX .OR.
 & NH.GT.NHX) THEN
 WRITE(*,*) 'OSMAP: Array limit exceeded.'
 IF(NR.GT.NRX) WRITE(*,*) ' Increase NRX to', NR
 IF(NW.GT.NWX) WRITE(*,*) ' Increase NWX to', NW
 IF(NH.GT.NHX) WRITE(*,*) ' Increase NHX to', NH
 STOP
 ENDIF
C
 READ(LU) (RL(IR), IR=1,NR)
 READ(LU) (WL(IW), IW=1,NW)
 READ(LU) (HL(IH), IH=1,NH)
 READ(LU) (IR1(IH),IR2(IH),IW1(IH),IW2(IH), IH=1,NH)
C
 DO IC = 2, 1, -1
 DO IH=1, NH
 DO IW=IW1(IH), IW2(IH)
 READ(LU,END=5)
 & (A(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AR(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 ENDDO
 ENDDO
 ENDDO
C
 5 CONTINUE
 IF(IH.LT.NH) THEN
C----- only imaginary part is available
 IC1 = 2
 IC2 = 2
 ELSE
C----- both real and imaginary parts available
 IC1 = 1
 IC2 = 2
 ENDIF
 CLOSE(LU)
C
C
 RINCR = (RL(NR) - RL(1))/FLOAT(NR-1)
 WINCR = (WL(NW) - WL(1))/FLOAT(NW-1)
 LOADED = .TRUE.
C--
 9 CONTINUE
C
C
C---- set returned variables in case of out-of-limits error
 ALFR = 0.0
 ALFR_R = 0.0
 ALFR_W = 0.0
 ALFR_H = 0.0
 ALFRW_R = 0.0
 ALFRW_W = 0.0
 ALFRW_H = 0.0
C
 ALFI = 0.0
 ALFI_R = 0.0
 ALFI_W = 0.0
 ALFI_H = 0.0
 ALFIW_R = 0.0
 ALFIW_W = 0.0
 ALFIW_H = 0.0
C
 IF(NR.EQ.0 .OR. NW.EQ.0 .OR. NH.EQ.0) THEN
C----- map not available for some reason (OPEN or READ error on osmap.dat?)
 OK = .FALSE.
 RETURN
 ENDIF
C
C---- define specified spline coordinates
 RLSP = ALOG10(RSP)
 WLSP = ALOG10(WSP) + 0.5*RLSP
 HLSP = HSP
C
C---- assume map limits will not be exceeded
 OK = .TRUE.
C
C---- find H interval
 DO 10 IH=2, NH
 IF(HL(IH) .GE. HLSP) GO TO 11
 10 CONTINUE
 IH = NH
 11 CONTINUE
C
 IF(HLSP.LT.HL(1) .OR. HLSP.GT.HL(NH)) THEN
CCC OK = .FALSE.
CCC WRITE(*,*) 'Over H limits. R w H:', RSP,WSP,HSP
CCC RETURN
 HLSP = MAX(HL(1) , MIN(HL(NH) , HLSP))
 ENDIF
C
C---- find R interval
 IR = INT((RLSP-RL(1))/RINCR + 2.001)
 IR1X = MAX(IR1(IH) , IR1(IH-1))
 IR2X = MIN(IR2(IH) , IR2(IH-1))
 IF(IR-1.LT.IR1X .OR. IR.GT.IR2X) THEN
 OK = .FALSE.
CCC WRITE(*,*) 'Over R limits. R w H:', RSP,WSP,HSP
CCC RETURN
 IR = MAX(IR1X+1 , MIN(IR2X , IR))
 RLSP = MAX(RL(1) , MIN(RL(NR) , RLSP))
 ENDIF
C
C---- find W interval
 IW = INT((WLSP-WL(1))/WINCR + 2.001)
 IW1X = MAX(IW1(IH) , IW1(IH-1))
 IW2X = MIN(IW2(IH) , IW2(IH-1))
 IF(IW-1.LT.IW1X .OR. IW.GT.IW2X) THEN
 OK = .FALSE.
CCC WRITE(*,*) 'Over w limits. R w H:', RSP,WSP,HSP
CCC RETURN
 IW = MAX(IW1X+1 , MIN(IW2X , IW))
 WLSP = MAX(WL(1) , MIN(WL(NW) , WLSP))
 ENDIF
C
 DRL = RL(IR) - RL(IR-1)
 DWL = WL(IW) - WL(IW-1)
 DHL = HL(IH) - HL(IH-1)
 TR = (RLSP - RL(IR-1)) / DRL
 TW = (WLSP - WL(IW-1)) / DWL
 TH = (HLSP - HL(IH-1)) / DHL
C
 TR = MAX(0.0 , MIN(1.0 , TR))
 TW = MAX(0.0 , MIN(1.0 , TW))
 TH = MAX(0.0 , MIN(1.0 , TH))
C
C---- compute real and imaginary parts
 DO 1000 IC = IC1, IC2
C
C---- evaluate spline in Rtheta at the corners of HL,WL cell
 DO 20 KH=1, 2
 JH = IH + KH-2
 DO 205 KW=1, 2
 JW = IW + KW-2
 A1 = A (IR-1,JW,JH,IC)
 AR1 = AR (IR-1,JW,JH,IC)
 AW1 = AW (IR-1,JW,JH,IC)
 AH1 = AH (IR-1,JW,JH,IC)
 ARW1 = ARW (IR-1,JW,JH,IC)
 ARH1 = ARH (IR-1,JW,JH,IC)
 AWH1 = AWH (IR-1,JW,JH,IC)
 ARWH1 = ARWH(IR-1,JW,JH,IC)
C
 A2 = A (IR ,JW,JH,IC)
 AR2 = AR (IR ,JW,JH,IC)
 AW2 = AW (IR ,JW,JH,IC)
 AH2 = AH (IR ,JW,JH,IC)
 ARW2 = ARW (IR ,JW,JH,IC)
 ARH2 = ARH (IR ,JW,JH,IC)
 AWH2 = AWH (IR ,JW,JH,IC)
 ARWH2 = ARWH(IR ,JW,JH,IC)
C
 DA1 = DRL*AR1 - A2 + A1
 DA2 = DRL*AR2 - A2 + A1
 DAW1 = DRL*ARW1 - AW2 + AW1
 DAW2 = DRL*ARW2 - AW2 + AW1
 DAH1 = DRL*ARH1 - AH2 + AH1
 DAH2 = DRL*ARH2 - AH2 + AH1
 DAWH1 = DRL*ARWH1 - AWH2 + AWH1
 DAWH2 = DRL*ARWH2 - AWH2 + AWH1
C
C-------- set ALFI, dALFI/dWL, dALFI/dHL, d2ALFI/dHLdWL
 B(KW,KH) = (1.0-TR)* A1 + TR* A2
 & + ((1.0-TR)*DA1 - TR*DA2)*(TR-TR*TR)
 BW(KW,KH) = (1.0-TR)* AW1 + TR* AW2
 & + ((1.0-TR)*DAW1 - TR*DAW2)*(TR-TR*TR)
 BH(KW,KH) = (1.0-TR)* AH1 + TR* AH2
 & + ((1.0-TR)*DAH1 - TR*DAH2)*(TR-TR*TR)
 BWH(KW,KH) = (1.0-TR)* AWH1 + TR* AWH2
 & + ((1.0-TR)*DAWH1 - TR*DAWH2)*(TR-TR*TR)
C
C-------- also, the RL derivatives of the quantities above
 BR(KW,KH) = (A2 - A1
 & + (1.0-4.0*TR+3.0*TR*TR)*DA1 + (3.0*TR-2.0)*TR*DA2)/DRL
 BRW(KW,KH) = (AW2 - AW1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAW1 + (3.0*TR-2.0)*TR*DAW2)/DRL
 BRH(KW,KH) = (AH2 - AH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAH1 + (3.0*TR-2.0)*TR*DAH2)/DRL
 BRWH(KW,KH) = (AWH2 - AWH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAWH1 + (3.0*TR-2.0)*TR*DAWH2)/DRL
C
 205 CONTINUE
 20 CONTINUE
C
C---- evaluate spline in HL at the two WL-interval endpoints
 DO 30 KW=1, 2
 B1 = B (KW,1)
 BR1 = BR (KW,1)
 BW1 = BW (KW,1)
 BH1 = BH (KW,1)
 BRW1 = BRW (KW,1)
 BRH1 = BRH (KW,1)
 BWH1 = BWH (KW,1)
 BRWH1 = BRWH(KW,1)
C
 B2 = B (KW,2)
 BR2 = BR (KW,2)
 BW2 = BW (KW,2)
 BH2 = BH (KW,2)
 BRW2 = BRW (KW,2)
 BRH2 = BRH (KW,2)
 BWH2 = BWH (KW,2)
 BRWH2 = BRWH(KW,2)
C
 DB1 = DHL*BH1 - B2 + B1
 DB2 = DHL*BH2 - B2 + B1
 DBR1 = DHL*BRH1 - BR2 + BR1
 DBR2 = DHL*BRH2 - BR2 + BR1
 DBW1 = DHL*BWH1 - BW2 + BW1
 DBW2 = DHL*BWH2 - BW2 + BW1
 DBRW1 = DHL*BRWH1 - BRW2 + BRW1
 DBRW2 = DHL*BRWH2 - BRW2 + BRW1
C
C------ set ALFI, dALFI/dRL, dALFI/dWL
 C(KW) = (1.0-TH)* B1 + TH* B2
 & + ((1.0-TH)*DB1 - TH*DB2)*(TH-TH*TH)
 CR(KW) = (1.0-TH)* BR1 + TH* BR2
 & + ((1.0-TH)*DBR1 - TH*DBR2)*(TH-TH*TH)
 CW(KW) = (1.0-TH)* BW1 + TH* BW2
 & + ((1.0-TH)*DBW1 - TH*DBW2)*(TH-TH*TH)
 CRW(KW) = (1.0-TH)* BRW1 + TH* BRW2
 & + ((1.0-TH)*DBRW1 - TH*DBRW2)*(TH-TH*TH)
C
C------ also, the HL derivatives of the quantities above
 CH(KW) = (B2 - B1
 & + (1.0-4.0*TH+3.0*TH*TH)*DB1 + (3.0*TH-2.0)*TH*DB2)/DHL
 CRH(KW) = (BR2 - BR1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBR1 + (3.0*TH-2.0)*TH*DBR2)/DHL
 CWH(KW) = (BW2 - BW1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBW1 + (3.0*TH-2.0)*TH*DBW2)/DHL
 CRWH(KW) = (BRW2 - BRW1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBRW1 + (3.0*TH-2.0)*TH*DBRW2)/DHL
C
 30 CONTINUE
C
C---- evaluate cubic in WL
 C1 = C (1)
 CR1 = CR (1)
 CW1 = CW (1)
 CH1 = CH (1)
 CRW1 = CRW (1)
 CRH1 = CRH (1)
 CWH1 = CWH (1)
 CRWH1 = CRWH(1)
C
 C2 = C (2)
 CR2 = CR (2)
 CW2 = CW (2)
 CH2 = CH (2)
 CRW2 = CRW (2)
 CRH2 = CRH (2)
 CWH2 = CWH (2)
 CRWH2 = CRWH(2)
C
 DC1 = DWL*CW1 - C2 + C1
 DC2 = DWL*CW2 - C2 + C1
 DCH1 = DWL*CWH1 - CH2 + CH1
 DCH2 = DWL*CWH2 - CH2 + CH1
 DCR1 = DWL*CRW1 - CR2 + CR1
 DCR2 = DWL*CRW2 - CR2 + CR1
CC DCRH1 = DWL*CRWH1 - CRH2 + CRH1
CC DCRH2 = DWL*CRWH2 - CRH2 + CRH1
C
C---- set AINT, dAINT/dRL, dAINT/dHL
 AINT(IC) = (1.0-TW)* C1 + TW* C2
 & + ((1.0-TW)*DC1 - TW*DC2)*(TW-TW*TW)
 AINT_RL = (1.0-TW)* CR1 + TW* CR2
 & + ((1.0-TW)*DCR1 - TW*DCR2)*(TW-TW*TW)
 AINT_HL = (1.0-TW)* CH1 + TW* CH2
 & + ((1.0-TW)*DCH1 - TW*DCH2)*(TW-TW*TW)
C
C---- also, the WL derivatives of the quantities above
 AINT_WL = (C2 - C1
 & + (1.0-4.0*TW+3.0*TW*TW)*DC1 + (3.0*TW-2.0)*TW*DC2)/DWL
 AINTW_RL = (CR2 - CR1
 & + (1.0-4.0*TW+3.0*TW*TW)*DCR1 + (3.0*TW-2.0)*TW*DCR2)/DWL
 AINTW_HL = (CH2 - CH1
 & + (1.0-4.0*TW+3.0*TW*TW)*DCH1 + (3.0*TW-2.0)*TW*DCH2)/DWL
C
 AINTW_WL = ((6.0*TW-4.0)*DC1 + (6.0*TW-2.0)*DC2)/DWL**2
C
C
C---- convert derivatives wrt to spline coordinates (RL,WL,HL) into
C- derivatives wrt input variables (Rtheta,f,H)
 AINT_R(IC) = (AINT_RL + 0.5*AINT_WL) / (AL10 * RSP)
 AINT_W(IC) = (AINT_WL) / (AL10 * WSP)
 AINT_H(IC) = AINT_HL
C
 AINTW_R(IC) = (AINTW_RL + 0.5*AINTW_WL) / (AL10**2 * WSP*RSP)
 AINTW_W(IC) = (AINTW_WL - AL10*AINT_WL) / (AL10**2 * WSP*WSP)
 AINTW_H(IC) = AINTW_HL / (AL10 * WSP)
C
 1000 CONTINUE
C
 ALFR = AINT(1)
 ALFR_R = AINT_R(1)
 ALFR_W = AINT_W(1)
 ALFR_H = AINT_H(1)
 ALFRW_R = AINTW_R(1)
 ALFRW_W = AINTW_W(1)
 ALFRW_H = AINTW_H(1)
C
 ALFI = AINT(2)
 ALFI_R = AINT_R(2)
 ALFI_W = AINT_W(2)
 ALFI_H = AINT_H(2)
 ALFIW_R = AINTW_R(2)
 ALFIW_W = AINTW_W(2)
 ALFIW_H = AINTW_H(2)
C
C---- if we're within the spline data space, the derivatives are valid
 IF(OK) RETURN
C
C---- if not, the ai value is clamped, and its derivatives are zero
 ALFR_R = 0.0
 ALFR_W = 0.0
 ALFR_H = 0.0
 ALFRW_R = 0.0
 ALFRW_W = 0.0
 ALFRW_H = 0.0
C
 ALFI_R = 0.0
 ALFI_W = 0.0
 ALFI_H = 0.0
 ALFIW_R = 0.0
 ALFIW_W = 0.0
 ALFIW_H = 0.0
C
 RETURN
C
 900 CONTINUE
C---- pick up here for file open error
 WRITE(*,*)
 WRITE(*,*) 'OSMAP: OS database file not found: ', OSFILE
 WRITE(*,*) ' Will return zero amplification rates'
C
C---- assume file is loaded so the above error message doesn't appear again
 LOADED = .TRUE.
 OK = .FALSE.
C
 RETURN
 END ! OSMAP

XFOILinterface/XFOIL/orrs/src/osmap_DP.f

 SUBROUTINE OSMAP(RSP,WSP,HSP,
 & ALFR,
 & ALFR_R, ALFR_W, ALFR_H,
 & ALFRW_R,ALFRW_W,ALFRW_H ,
 & ALFI,
 & ALFI_R, ALFI_W, ALFI_H,
 & ALFIW_R,ALFIW_W,ALFIW_H , OK)
C---
C
C Returns real and imaginary parts of complex wavenumber (Alpha)
C eigenvalue from Orr-Sommerfeld spatial-stability solution
C with mean profiles characterized by shape parameter H.
C Also returns the sensitivities of Alpha with respect to the
C input parameters.
C
C The eigenvalue Alpha(Rtheta,W,H) is stored as a 3-D array at
C discrete points, which is then interpolated to any (Rtheta,W,H)
C via a tricubic spline. The spline coordinates actually used are:
C
C RL = log10(Rtheta)
C WL = log10(W) + 0.5 log10(Rtheta)
C HL = H
C
C
C Input:
C ------
C RSP momentum thickness Reynolds number Rtheta = Theta Ue / v
C WSP normalized disturbance frequency W = w Theta/Ue
C HSP shape parameter of mean profile H = Dstar/Theta
C
C Output:
C -------
C ALFR real part of complex wavenumber * Theta
C ALFR_R d(ALFR)/dRtheta
C ALFR_W d(ALFR)/dW
C ALFR_H d(ALFR)/dH
C ALFRW_R d(dALFR/dW)/dRtheta
C ALFRW_W d(dALFR/dW)/dW
C ALFRW_H d(dALFR/dW)/dH
C
C ALFI imag part of complex wavenumber * Theta
C ALFI_R d(ALFI)/dRtheta
C ALFI_W d(ALFI)/dW
C ALFI_H d(ALFI)/dH
C ALFIW_R d(dALFI/dW)/dRtheta
C ALFIW_W d(dALFI/dW)/dW
C ALFIW_H d(dALFI/dW)/dH
C
C OK T if look up was successful; all values returned are valid
C F if point fell outside (RL,WL) spline domain limits;
C all values (ALFR, ALFR_R, etc.) are returned as zero.
C Exception: If points only falls outside HL spline limits,
C then the HL limit is used and an ALFR value is calculated,
C but OK is still returned as F.
C
C---
 LOGICAL OK
C
C
 REAL B(2,2), BR(2,2), BW(2,2), BH(2,2),
 & BRW(2,2),BRH(2,2),BWH(2,2),BRWH(2,2)
 REAL C(2) , CR(2) , CW(2) , CH(2) ,
 & CRW(2) ,CRH(2) ,CWH(2) ,CRWH(2)
C
 REAL AINT(2),
 & AINT_R(2), AINT_W(2), AINT_H(2),
 & AINTW_R(2),AINTW_W(2),AINTW_H(2)
C
 PARAMETER (NRX=31, NWX=41, NHX=21)
 COMMON /AICOM_I/ NR, NW, NH,
 & IC1, IC2,
 & IW1(NHX), IW2(NHX), IR1(NHX),IR2(NHX)
 REAL RLSP, WLSP, HLSP
 REAL RINCR, WINCR, RL, WL, HL,
 & A,
 & AR,
 & AW,
 & AH,
 & ARW,
 & ARH,
 & AWH,
 & ARWH
 COMMON /AICOM_R/ RINCR, WINCR, RL(NRX), WL(NWX), HL(NHX),
 & A(NRX,NWX,NHX,2),
 & AR(NRX,NWX,NHX,2),
 & AW(NRX,NWX,NHX,2),
 & AH(NRX,NWX,NHX,2),
 & ARW(NRX,NWX,NHX,2),
 & ARH(NRX,NWX,NHX,2),
 & AWH(NRX,NWX,NHX,2),
 & ARWH(NRX,NWX,NHX,2)
 LOGICAL LOADED
 SAVE LOADED
C
C---- set OSFILE to match the absolute location of the OS database file
 CHARACTER*48 OSFILE
 DATA OSFILE / '/var/local/codes/orrs/osmap_DP.dat' /
C
 DATA LOADED / .FALSE. /
C
C---- set ln(10) for derivatives of log10 function
 DATA AL10 /2.302585093/
C
C
 IF(LOADED) GO TO 9
C--
C---- first time OSMAP is called ... load in 3-D spline data
C
 NR = 0
 NW = 0
 NH = 0
C
 LU = 31
 OPEN(UNIT=LU,FILE=OSFILE,STATUS='OLD',FORM='UNFORMATTED',ERR=900)
C
 READ(LU) NR, NW, NH
C
 IF(NR.GT.NRX .OR.
 & NW.GT.NWX .OR.
 & NH.GT.NHX) THEN
 WRITE(*,*) 'OSMAP: Array limit exceeded.'
 IF(NR.GT.NRX) WRITE(*,*) ' Increase NRX to', NR
 IF(NW.GT.NWX) WRITE(*,*) ' Increase NWX to', NW
 IF(NH.GT.NHX) WRITE(*,*) ' Increase NHX to', NH
 STOP
 ENDIF
C
 READ(LU) (RL(IR), IR=1,NR)
 READ(LU) (WL(IW), IW=1,NW)
 READ(LU) (HL(IH), IH=1,NH)
 READ(LU) (IR1(IH),IR2(IH),IW1(IH),IW2(IH), IH=1,NH)
 DO IC = 2, 1, -1
 DO IH=1, NH
 DO IW=IW1(IH), IW2(IH)
 READ(LU,END=5)
 & (A(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AR(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 ENDDO
 ENDDO
 ENDDO
C
 5 CONTINUE
 IF(IH.LT.NH) THEN
C----- only imaginary part is available
 IC1 = 2
 IC2 = 2
 ELSE
C----- both real and imaginary parts available
 IC1 = 1
 IC2 = 2
 ENDIF
 CLOSE(LU)
C
C
 RINCR = (RL(NR) - RL(1))/FLOAT(NR-1)
 WINCR = (WL(NW) - WL(1))/FLOAT(NW-1)
 LOADED = .TRUE.
C--
 9 CONTINUE
C
C
C---- set returned variables in case of out-of-limits error
 ALFR = 0.0
 ALFR_R = 0.0
 ALFR_W = 0.0
 ALFR_H = 0.0
 ALFRW_R = 0.0
 ALFRW_W = 0.0
 ALFRW_H = 0.0
C
 ALFI = 0.0
 ALFI_R = 0.0
 ALFI_W = 0.0
 ALFI_H = 0.0
 ALFIW_R = 0.0
 ALFIW_W = 0.0
 ALFIW_H = 0.0
C
 IF(NR.EQ.0 .OR. NW.EQ.0 .OR. NH.EQ.0) THEN
C----- map not available for some reason (OPEN or READ error on osmap.dat?)
 OK = .FALSE.
 RETURN
 ENDIF
C
C---- define specified spline coordinates
 RLSP = ALOG10(RSP)
 WLSP = ALOG10(WSP) + 0.5*RLSP
 HLSP = HSP
C
C---- assume map limits will not be exceeded
 OK = .TRUE.
C
C---- find H interval
 DO 10 IH=2, NH
 IF(HL(IH) .GE. HLSP) GO TO 11
 10 CONTINUE
 IH = NH
 11 CONTINUE
C
 IF(HLSP.LT.HL(1) .OR. HLSP.GT.HL(NH)) THEN
CCC OK = .FALSE.
CCC WRITE(*,*) 'Over H limits. R w H:', RSP,WSP,HSP
CCC RETURN
 HLSP = MAX(HL(1) , MIN(HL(NH) , HLSP))
 ENDIF
C
C---- find R interval
 IR = INT((RLSP-RL(1))/RINCR + 2.001)
 IR1X = MAX(IR1(IH) , IR1(IH-1))
 IR2X = MIN(IR2(IH) , IR2(IH-1))
 IF(IR-1.LT.IR1X .OR. IR.GT.IR2X) THEN
 OK = .FALSE.
CCC WRITE(*,*) 'Over R limits. R w H:', RSP,WSP,HSP
CCC RETURN
 IR = MAX(IR1X+1 , MIN(IR2X , IR))
 RLSP = MAX(RL(1) , MIN(RL(NR) , RLSP))
 ENDIF
C
C---- find W interval
 IW = INT((WLSP-WL(1))/WINCR + 2.001)
 IW1X = MAX(IW1(IH) , IW1(IH-1))
 IW2X = MIN(IW2(IH) , IW2(IH-1))
 IF(IW-1.LT.IW1X .OR. IW.GT.IW2X) THEN
 OK = .FALSE.
CCC WRITE(*,*) 'Over w limits. R w H:', RSP,WSP,HSP
CCC RETURN
 IW = MAX(IW1X+1 , MIN(IW2X , IW))
 WLSP = MAX(WL(1) , MIN(WL(NW) , WLSP))
 ENDIF
C
 DRL = RL(IR) - RL(IR-1)
 DWL = WL(IW) - WL(IW-1)
 DHL = HL(IH) - HL(IH-1)
 TR = (RLSP - RL(IR-1)) / DRL
 TW = (WLSP - WL(IW-1)) / DWL
 TH = (HLSP - HL(IH-1)) / DHL
C
 TR = MAX(0.0 , MIN(1.0 , TR))
 TW = MAX(0.0 , MIN(1.0 , TW))
 TH = MAX(0.0 , MIN(1.0 , TH))
C
C---- compute real and imaginary parts
 DO 1000 IC = IC1, IC2
C
C---- evaluate spline in Rtheta at the corners of HL,WL cell
 DO 20 KH=1, 2
 JH = IH + KH-2
 DO 205 KW=1, 2
 JW = IW + KW-2
 A1 = A (IR-1,JW,JH,IC)
 AR1 = AR (IR-1,JW,JH,IC)
 AW1 = AW (IR-1,JW,JH,IC)
 AH1 = AH (IR-1,JW,JH,IC)
 ARW1 = ARW (IR-1,JW,JH,IC)
 ARH1 = ARH (IR-1,JW,JH,IC)
 AWH1 = AWH (IR-1,JW,JH,IC)
 ARWH1 = ARWH(IR-1,JW,JH,IC)
C
 A2 = A (IR ,JW,JH,IC)
 AR2 = AR (IR ,JW,JH,IC)
 AW2 = AW (IR ,JW,JH,IC)
 AH2 = AH (IR ,JW,JH,IC)
 ARW2 = ARW (IR ,JW,JH,IC)
 ARH2 = ARH (IR ,JW,JH,IC)
 AWH2 = AWH (IR ,JW,JH,IC)
 ARWH2 = ARWH(IR ,JW,JH,IC)
C
 DA1 = DRL*AR1 - A2 + A1
 DA2 = DRL*AR2 - A2 + A1
 DAW1 = DRL*ARW1 - AW2 + AW1
 DAW2 = DRL*ARW2 - AW2 + AW1
 DAH1 = DRL*ARH1 - AH2 + AH1
 DAH2 = DRL*ARH2 - AH2 + AH1
 DAWH1 = DRL*ARWH1 - AWH2 + AWH1
 DAWH2 = DRL*ARWH2 - AWH2 + AWH1
C
C-------- set ALFI, dALFI/dWL, dALFI/dHL, d2ALFI/dHLdWL
 B(KW,KH) = (1.0-TR)* A1 + TR* A2
 & + ((1.0-TR)*DA1 - TR*DA2)*(TR-TR*TR)
 BW(KW,KH) = (1.0-TR)* AW1 + TR* AW2
 & + ((1.0-TR)*DAW1 - TR*DAW2)*(TR-TR*TR)
 BH(KW,KH) = (1.0-TR)* AH1 + TR* AH2
 & + ((1.0-TR)*DAH1 - TR*DAH2)*(TR-TR*TR)
 BWH(KW,KH) = (1.0-TR)* AWH1 + TR* AWH2
 & + ((1.0-TR)*DAWH1 - TR*DAWH2)*(TR-TR*TR)
C
C-------- also, the RL derivatives of the quantities above
 BR(KW,KH) = (A2 - A1
 & + (1.0-4.0*TR+3.0*TR*TR)*DA1 + (3.0*TR-2.0)*TR*DA2)/DRL
 BRW(KW,KH) = (AW2 - AW1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAW1 + (3.0*TR-2.0)*TR*DAW2)/DRL
 BRH(KW,KH) = (AH2 - AH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAH1 + (3.0*TR-2.0)*TR*DAH2)/DRL
 BRWH(KW,KH) = (AWH2 - AWH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAWH1 + (3.0*TR-2.0)*TR*DAWH2)/DRL
C
 205 CONTINUE
 20 CONTINUE
C
C---- evaluate spline in HL at the two WL-interval endpoints
 DO 30 KW=1, 2
 B1 = B (KW,1)
 BR1 = BR (KW,1)
 BW1 = BW (KW,1)
 BH1 = BH (KW,1)
 BRW1 = BRW (KW,1)
 BRH1 = BRH (KW,1)
 BWH1 = BWH (KW,1)
 BRWH1 = BRWH(KW,1)
C
 B2 = B (KW,2)
 BR2 = BR (KW,2)
 BW2 = BW (KW,2)
 BH2 = BH (KW,2)
 BRW2 = BRW (KW,2)
 BRH2 = BRH (KW,2)
 BWH2 = BWH (KW,2)
 BRWH2 = BRWH(KW,2)
C
 DB1 = DHL*BH1 - B2 + B1
 DB2 = DHL*BH2 - B2 + B1
 DBR1 = DHL*BRH1 - BR2 + BR1
 DBR2 = DHL*BRH2 - BR2 + BR1
 DBW1 = DHL*BWH1 - BW2 + BW1
 DBW2 = DHL*BWH2 - BW2 + BW1
 DBRW1 = DHL*BRWH1 - BRW2 + BRW1
 DBRW2 = DHL*BRWH2 - BRW2 + BRW1
C
C------ set ALFI, dALFI/dRL, dALFI/dWL
 C(KW) = (1.0-TH)* B1 + TH* B2
 & + ((1.0-TH)*DB1 - TH*DB2)*(TH-TH*TH)
 CR(KW) = (1.0-TH)* BR1 + TH* BR2
 & + ((1.0-TH)*DBR1 - TH*DBR2)*(TH-TH*TH)
 CW(KW) = (1.0-TH)* BW1 + TH* BW2
 & + ((1.0-TH)*DBW1 - TH*DBW2)*(TH-TH*TH)
 CRW(KW) = (1.0-TH)* BRW1 + TH* BRW2
 & + ((1.0-TH)*DBRW1 - TH*DBRW2)*(TH-TH*TH)
C
C------ also, the HL derivatives of the quantities above
 CH(KW) = (B2 - B1
 & + (1.0-4.0*TH+3.0*TH*TH)*DB1 + (3.0*TH-2.0)*TH*DB2)/DHL
 CRH(KW) = (BR2 - BR1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBR1 + (3.0*TH-2.0)*TH*DBR2)/DHL
 CWH(KW) = (BW2 - BW1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBW1 + (3.0*TH-2.0)*TH*DBW2)/DHL
 CRWH(KW) = (BRW2 - BRW1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBRW1 + (3.0*TH-2.0)*TH*DBRW2)/DHL
C
 30 CONTINUE
C
C---- evaluate cubic in WL
 C1 = C (1)
 CR1 = CR (1)
 CW1 = CW (1)
 CH1 = CH (1)
 CRW1 = CRW (1)
 CRH1 = CRH (1)
 CWH1 = CWH (1)
 CRWH1 = CRWH(1)
C
 C2 = C (2)
 CR2 = CR (2)
 CW2 = CW (2)
 CH2 = CH (2)
 CRW2 = CRW (2)
 CRH2 = CRH (2)
 CWH2 = CWH (2)
 CRWH2 = CRWH(2)
C
 DC1 = DWL*CW1 - C2 + C1
 DC2 = DWL*CW2 - C2 + C1
 DCH1 = DWL*CWH1 - CH2 + CH1
 DCH2 = DWL*CWH2 - CH2 + CH1
 DCR1 = DWL*CRW1 - CR2 + CR1
 DCR2 = DWL*CRW2 - CR2 + CR1
CC DCRH1 = DWL*CRWH1 - CRH2 + CRH1
CC DCRH2 = DWL*CRWH2 - CRH2 + CRH1
C
C---- set AINT, dAINT/dRL, dAINT/dHL
 AINT(IC) = (1.0-TW)* C1 + TW* C2
 & + ((1.0-TW)*DC1 - TW*DC2)*(TW-TW*TW)
 AINT_RL = (1.0-TW)* CR1 + TW* CR2
 & + ((1.0-TW)*DCR1 - TW*DCR2)*(TW-TW*TW)
 AINT_HL = (1.0-TW)* CH1 + TW* CH2
 & + ((1.0-TW)*DCH1 - TW*DCH2)*(TW-TW*TW)
C
C---- also, the WL derivatives of the quantities above
 AINT_WL = (C2 - C1
 & + (1.0-4.0*TW+3.0*TW*TW)*DC1 + (3.0*TW-2.0)*TW*DC2)/DWL
 AINTW_RL = (CR2 - CR1
 & + (1.0-4.0*TW+3.0*TW*TW)*DCR1 + (3.0*TW-2.0)*TW*DCR2)/DWL
 AINTW_HL = (CH2 - CH1
 & + (1.0-4.0*TW+3.0*TW*TW)*DCH1 + (3.0*TW-2.0)*TW*DCH2)/DWL
C
 AINTW_WL = ((6.0*TW-4.0)*DC1 + (6.0*TW-2.0)*DC2)/DWL**2
C
C
C---- convert derivatives wrt to spline coordinates (RL,WL,HL) into
C- derivatives wrt input variables (Rtheta,f,H)
 AINT_R(IC) = (AINT_RL + 0.5*AINT_WL) / (AL10 * RSP)
 AINT_W(IC) = (AINT_WL) / (AL10 * WSP)
 AINT_H(IC) = AINT_HL
C
 AINTW_R(IC) = (AINTW_RL + 0.5*AINTW_WL) / (AL10**2 * WSP*RSP)
 AINTW_W(IC) = (AINTW_WL - AL10*AINT_WL) / (AL10**2 * WSP*WSP)
 AINTW_H(IC) = AINTW_HL / (AL10 * WSP)
C
 1000 CONTINUE
C
 ALFR = AINT(1)
 ALFR_R = AINT_R(1)
 ALFR_W = AINT_W(1)
 ALFR_H = AINT_H(1)
 ALFRW_R = AINTW_R(1)
 ALFRW_W = AINTW_W(1)
 ALFRW_H = AINTW_H(1)
C
 ALFI = AINT(2)
 ALFI_R = AINT_R(2)
 ALFI_W = AINT_W(2)
 ALFI_H = AINT_H(2)
 ALFIW_R = AINTW_R(2)
 ALFIW_W = AINTW_W(2)
 ALFIW_H = AINTW_H(2)
C
C---- if we're within the spline data space, the derivatives are valid
 IF(OK) RETURN
C
C---- if not, the ai value is clamped, and its derivatives are zero
 ALFR_R = 0.0
 ALFR_W = 0.0
 ALFR_H = 0.0
 ALFRW_R = 0.0
 ALFRW_W = 0.0
 ALFRW_H = 0.0
C
 ALFI_R = 0.0
 ALFI_W = 0.0
 ALFI_H = 0.0
 ALFIW_R = 0.0
 ALFIW_W = 0.0
 ALFIW_H = 0.0
C
 RETURN
C
 900 CONTINUE
C---- pick up here for file open error
 WRITE(*,*)
 WRITE(*,*) 'OSMAP: OS database file not found: ', OSFILE
 WRITE(*,*) ' Will return zero amplification rates'
C
C---- assume file is loaded so the above error message doesn't appear again
 LOADED = .TRUE.
 OK = .FALSE.
C
 RETURN
 END ! OSMAP

XFOILinterface/XFOIL/orrs/src/ospres.f

 SUBROUTINE OSPRES(NI,YI,UI, ALPHAR,ALPHAI, VTR,VTI,
 & PTR,PTI)
 DIMENSION YI(NI), UI(NI)
 DIMENSION VTR(NI), VTI(NI)
 DIMENSION PTR(NI), PTI(NI)
C---
C Routine for calculating the Orr-Sommerfeld pressure profile.
C
C Input:
C ------
C NI total number of points in profiles
C YI normal BL coordinate array
C UI mean flow u(y) profile
C ALPHAR real part of complex wavenumber
C ALPHAI imag. part of complex wavenumber
C VTR real part of perturbation y-velocity profile
C VTI imag. part of perturbation y-velocity profile
C
C Output:
C -------
C PTR real part of perturbation pressure profile
C PTI imag. part of perturbation pressure profile
C---
C
 INCLUDE 'OSPRES.INC'
C
C---- convergence tolerance
 DATA EPS / 1.0E-4 /
C
 IF(NI.GT.NMAX) STOP 'OSPRES: Array overflow.'
C
 N = NI
 DO 5 I=1, N
 Y(I) = YI(I)
 U(I) = UI(I)
 VT(I) = CMPLX(VTR(I) , VTI(I))
 5 CONTINUE
C
 ALPHA = CMPLX(ALPHAR,ALPHAI)
C
C---- set number of righthand sides
 NRHS = 1
C
 DO I=1, N
 F0(I) = 0.
 F1(I) = 0.
 ENDDO
 ISOL = 0
C
 CALL SETUP_P
 CALL SOLVE_P
 CALL UPDATE_P
C
 DO 200 I=1, N
 PTR(I) = REAL(F0(I))
 PTI(I) = IMAG(F0(I))
 200 CONTINUE
C
 RETURN
 END ! OSPRES

 SUBROUTINE SETUP_P
 INCLUDE 'OSPRES.INC'
 COMPLEX VTA
C
C---- zero out A,B,C blocks and righthand sides R
 DO 20 I=1, N
 DO 201 J=1, 2
 DO 2001 K=1, 2
 A(J,K,I) = (0.0,0.0)
 B(J,K,I) = (0.0,0.0)
 C(J,K,I) = (0.0,0.0)
 2001 CONTINUE
 DO 2002 K=1, NRMAX
 R(J,K,I) = (0.0,0.0)
 2002 CONTINUE
 201 CONTINUE
 20 CONTINUE
C
 I = 1
C
C---- set 1st wall BC
 R(2,1,I) = F1(I)
 A(2,2,I) = 1.0
C
C---- set interior equations
 DO 50 I=1,N-1
C
 DY = Y(I+1) - Y(I)
 DU = U(I+1) - U(I)
C
C---
C
 R(1,1,I) = F0(I+1) - F0(I) - 0.5*DY*(F1(I+1)+F1(I))
 A(1,1,I) = -1.0
 C(1,1,I) = 1.0
 A(1,2,I) = -0.5*DY
 C(1,2,I) = -0.5*DY
C---
C
 R(2,1,I+1) = F1(I+1) - F1(I) - 0.5*DY*(F0(I+1)+F0(I))*ALPHA**2
 & + (0.0,1.0)*ALPHA*DU*(VT(I+1) + VT(I))
 B(2,1,I+1) = -0.5*DY*ALPHA**2
 A(2,1,I+1) = -0.5*DY*ALPHA**2
 B(2,2,I+1) = -1.0
 A(2,2,I+1) = 1.0
C---
C
 50 CONTINUE
C
C---- set asymptotic regularity conditions at outer edge
C
 R(1,1,N) = F1(N) + F0(N)*ALPHA
 A(1,1,N) = ALPHA
 A(1,2,N) = 1.0
C
 RETURN
 END ! SETUP

 SUBROUTINE SOLVE_P
 INCLUDE 'OSPRES.INC'
 COMPLEX PIVOT, TEMP
C---
C 2x2 complex tridiagonal block solver.
C---
C
CCC** Forward sweep: Elimination of lower block diagonal (B's).
 DO 1 I=1, N
C
 IM = I-1
C
C------ don't eliminate B1 block because it doesn't exist
 IF(I.EQ.1) GO TO 12
C
C------ eliminate Ci block, thus modifying Ai and Ri blocks
 DO 111 L=1, 2
 K = 1
 A(K,L,I) = A(K,L,I)
 & - B(K,1,I)*C(1,L,IM)
 & - B(K,2,I)*C(2,L,IM)
 K = 2
 A(K,L,I) = A(K,L,I)
 & - B(K,1,I)*C(1,L,IM)
 & - B(K,2,I)*C(2,L,IM)
 111 CONTINUE
 DO 112 L=1, NRHS
 K = 1
 R(K,L,I) = R(K,L,I)
 & - B(K,1,I)*R(1,L,IM)
 & - B(K,2,I)*R(2,L,IM)
 K = 2
 R(K,L,I) = R(K,L,I)
 & - B(K,1,I)*R(1,L,IM)
 & - B(K,2,I)*R(2,L,IM)
 112 CONTINUE
C
C -1
CCC---- multiply Ci block and righthand side Ri vectors by (Ai)
C using Gaussian elimination.
C
 12 CONTINUE
C
 DO 13 KPIV=1, 2
C
 KP1 = KPIV+1
C
 PIVOT = 1.0/A(KPIV,KPIV,I)
C
C-------- normalize pivot row
 DO 132 L=KP1, 2
 A(KPIV,L,I) = A(KPIV,L,I)*PIVOT
 132 CONTINUE
C
 C(KPIV,1,I) = C(KPIV,1,I)*PIVOT
 C(KPIV,2,I) = C(KPIV,2,I)*PIVOT
C
 DO 134 L=1, NRHS
 R(KPIV,L,I) = R(KPIV,L,I)*PIVOT
 134 CONTINUE
C
C-------- eliminate lower off-diagonal elements in Ai block
 DO 135 K=KP1, 2
 TEMP = A(K,KPIV,I)
 DO 1351 L=KP1, 2
 A(K,L,I) = A(K,L,I) - TEMP*A(KPIV,L,I)
 1351 CONTINUE
 C(K,1,I) = C(K,1,I) - TEMP*C(KPIV,1,I)
 C(K,2,I) = C(K,2,I) - TEMP*C(KPIV,2,I)
 DO 1352 L=1, NRHS
 R(K,L,I) = R(K,L,I) - TEMP*R(KPIV,L,I)
 1352 CONTINUE
 135 CONTINUE
C
 13 CONTINUE
C
C------ back substitute everything
 DO 15 KPIV=1, 1, -1
 KP1 = KPIV+1
 DO 151 K=KP1, 2
 C(KPIV,1,I) = C(KPIV,1,I) - A(KPIV,K,I)*C(K,1,I)
 C(KPIV,2,I) = C(KPIV,2,I) - A(KPIV,K,I)*C(K,2,I)
 DO 1511 L=1, NRHS
 R(KPIV,L,I) = R(KPIV,L,I) - A(KPIV,K,I)*R(K,L,I)
 1511 CONTINUE
 151 CONTINUE
 15 CONTINUE
C
 1 CONTINUE
C
CCC** Backward sweep: Back substitution using upper block diagonal (Ci's).
 DO 2 I=N-1, 1, -1
 IP = I+1
 DO 21 L=1, NRHS
 DO 211 K=1, 2
 R(K,L,I) = R(K,L,I)
 & - (R(1,L,IP)*C(K,1,I) + R(2,L,IP)*C(K,2,I))
 211 CONTINUE
 21 CONTINUE
 2 CONTINUE
C
 RETURN
 END ! SOLVE

 SUBROUTINE UPDATE_P
 INCLUDE 'OSPRES.INC'
 COMPLEX DF0,DF1
C
 RLX = 1.0
C
C---- perform Newton update on modes
 DO 50 I=1, N
 DF0 = -R(1,1,I)
 DF1 = -R(2,1,I)
C
 F0(I) = F0(I) + RLX*DF0
 F1(I) = F1(I) + RLX*DF1
C
 50 CONTINUE
C
 RETURN
 END ! UPDATE

XFOILinterface/XFOIL/orrs/src/osrun.f

 PROGRAM OSRUN
C--
C Program for executing and displaying Orr-Sommerfeld solution
C--
C
 PARAMETER (NMAX=2001)
 DIMENSION ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 DIMENSION UTR(NMAX), UTI(NMAX), UT(NMAX),
 & VTR(NMAX), VTI(NMAX), VT(NMAX),
 & WTR(NMAX), WTI(NMAX), WT(NMAX),
 & CTR(NMAX), CTI(NMAX), CT(NMAX),
 & PTR(NMAX), PTI(NMAX), PT(NMAX)
 DIMENSION UU(NMAX), VV(NMAX), UV(NMAX), QQ(NMAX)
 CHARACTER*1 ANS
 CHARACTER*80 FNAME, ARGP1
 DIMENSION XLIN(2), YLIN(2)
C
 DIMENSION AINPUT(10)
 LOGICAL ERROR
C
 LST = 1
 LRE = 1
C
 IDEV = 1
 IDEVRP = 2
 IPSLU = 0
C
 SIZE = 6.0
 PAR = 0.75
C
 CALL PLINITIALIZE
C
C
 N = 1001
 ETAE = 16.0
 GEO = 1.01
C
 CH = 0.021
C
 IF(N.GT.NMAX) STOP 'TEST: Array overflow.'
C
 CALL GETARG0(1,ARGP1)
 IF(ARGP1(1:1).EQ.' ') GO TO 50
C
 FNAME = ARGP1
C
C---- try formatted read first
 OPEN(1,FILE=FNAME,STATUS='OLD',ERR=50)
 DO I=1, NMAX
 READ(1,*,ERR=30,END=25) ETA(I), U(I), S(I)
 ENDDO
C
 25 CLOSE(1)
 N = I-1
 GO TO 80
C
C---- now try unformatted read
 30 CONTINUE
 OPEN(19,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=50)
 DO I=1, NMAX
 READ(19,ERR=50,END=35) ETA(I), U(I), S(I)
 ENDDO
C
 35 CLOSE(19)
 N = I-1
 GO TO 80
C
C--
C---- no argument specified or read error... get Falkner-Skan parameter
 50 CONTINUE
 WRITE(*,*) 'Enter Falkner-Skan parameter Beta (or H)'
 READ (*,*) PARM
C
 IF(PARM .GT. 1.0) THEN
 write(*,*) 'Enter ETAE, GEO'
 read (*,*) etae, geo
 H = PARM
 CALL FS(3,2,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C
 ELSE
 write(*,*) 'Enter ETAE, GEO'
 read (*,*) etae, geo
 BU = PARM / (2.0 - PARM)
 CALL FS(3,1,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C
 ENDIF
C
 WRITE(*,*) 'BetaU, H =', BU, H
ccc GO TO 90
C
C--
C---- normalize input profiles
 80 CONTINUE
 DS = 0.
 TH = 0.
 DO I = 1, N-1
 DY = ETA(I+1) - ETA(I)
 UA = (U(I+1) + U(I))*0.5 / U(N)
 DS = DS + (1.0 - UA) *DY
 TH = TH + (1.0 - UA)*UA*DY
 ENDDO
C
 H = DS/TH
 DO I = 1, N
 ETA(I) = ETA(I) / TH
 S(I) = S(I) * TH
 ENDDO
 ETAE = ETA(N)
C
 WRITE(*,*) 'H =', H
C
C---------------------
C
 90 CONTINUE

 do i = 1, n
 write(*,*) i, eta(i), u(i), s(i)
 enddo

 EWT = 1.0/ETAE
C
 DETA = 1.0
 IF(ETAE .GT. 16.01) DETA = 2.0
 IF(ETAE .GT. 30.01) DETA = 5.0
 ETAE = DETA * AINT(ETAE/DETA + 0.51)
C
 CALL PLOPEN(0.7,IPSLU,IDEV)
 CALL PLOTABS(0.5,1.0,-3)
C
 CALL NEWFACTOR(SIZE)
 CALL GETCOLOR(ICOL0)
C
 CALL PLOT(0.5*PAR,0.0,-3)
C
 CALL NEWPEN(1)
 CALL XAXIS(0.0,0.0,-PAR, 0.2*PAR,0.0, 0.2,0.7*CH,1)
 CALL YAXIS(0.0,0.0,-1.0,DETA*EWT,0.0,DETA,0.7*CH,1)
C
 CALL NEWPEN(2)
 XL = -4.0*CH
 YL = (ETAE-1.5*DETA)*EWT - 0.5*CH
 CALL PLCHAR(XL,YL,CH,'y/ ',0.0,3)
 CALL PLMATH(XL,YL,CH,' q',0.0,3)
C
C
 UWT = PAR
 CALL NEWPEN(4)
 CALL XYLINE(N,U,ETA,0.0,UWT,0.0,EWT,1)
 CALL NEWPEN(3)
 CALL XYSYMB(N,U,ETA,0.0,UWT,0.0,EWT,0.125*CH,1)
C
 CALL PLFLUSH
C
 RE = 100.0
 OMEGAR = 0.1
 ALPHAR = 2.0*OMEGAR
 ALPHAI = 0.
C
 DO 100 IPASS=1, 50
 ITMAX = 20
C
 95 AINPUT(1) = RE
 AINPUT(2) = OMEGAR
 WRITE(*,2100) AINPUT(1), AINPUT(2)
 2100 FORMAT(1X,' Enter Rtheta, Wreal:', F9.1, F10.5)
 CALL READR(2,AINPUT,ERROR)
 IF(ERROR) GO TO 95
C
 RE = AINPUT(1)
 OMEGAR = AINPUT(2)
C
 IF(RE .EQ. 0.0) GO TO 101
C
c RD = RE*H
c WR = OMEGAR/RE
c WRITE(*,*) ' '
c WRITE(*,*) 'Rd* =', RD, ' Wr/Rth =', WR
C
 OMEGAI = 0.0
C
 97 AINPUT(1) = ALPHAR
 AINPUT(2) = ALPHAI
 WRITE(*,2200) AINPUT(1), AINPUT(2)
 2200 FORMAT(1X,' Enter initial ar, ai:', 2F10.5)
 CALL READR(2,AINPUT,ERROR)
 IF(ERROR) GO TO 97
C
 ALPHAR = AINPUT(1)
 ALPHAI = AINPUT(2)
C
 ITLIM = ITMAX
 CALL ORRS(LST,LRE,N,ETA,U,S, RE, ITLIM,
 & ALPHAR,ALPHAI, OMEGAR,OMEGAI,
 & UTR,UTI,VTR,VTI,WTR,WTI,CTR,CTI, DELMAX)
C
 CALL OSPRES(N,ETA,U, ALPHAR,ALPHAI, VTR,VTI, PTR,PTI)
C
 DO I=1, N
 UT(I) = SQRT(UTR(I)**2 + UTI(I)**2)
 VT(I) = SQRT(VTR(I)**2 + VTI(I)**2)
 PT(I) = SQRT(PTR(I)**2 + PTI(I)**2)
 UU(I) = 0.5*(UTR(I)*UTR(I) + UTI(I)*UTI(I))
 VV(I) = 0.5*(VTR(I)*VTR(I) + VTI(I)*VTI(I))
 UV(I) = 0.5*(UTR(I)*VTR(I) + UTI(I)*VTI(I))
 QQ(I) = UU(I) + VV(I)
 ENDDO
C
 QTHIK = 0.
 DQTDX = 0.
 UPRES = 0.
 TWORK = 0.
 DISS1 = 0.
 DISS2 = 0.
 DISS3 = 0.
 PQINT = 0.
 DO I = 2, N
 UA = (U(I) + U(I-1))*0.5
 DU = U(I) - U(I-1)
 DY = ETA(I) - ETA(I-1)
C
 URA = (UTR(I) + UTR(I-1))*0.5
 UIA = (UTI(I) + UTI(I-1))*0.5
 VRA = (VTR(I) + VTR(I-1))*0.5
 VIA = (VTI(I) + VTI(I-1))*0.5
 WRA = (WTR(I) + WTR(I-1))*0.5
 WIA = (WTI(I) + WTI(I-1))*0.5
 PRA = (PTR(I) + PTR(I-1))*0.5
 PIA = (PTI(I) + PTI(I-1))*0.5
C
 DUR = UTR(I) - UTR(I-1)
 DUI = UTI(I) - UTI(I-1)
 DVR = VTR(I) - VTR(I-1)
 DVI = VTI(I) - VTI(I-1)
 DWR = WTR(I) - WTR(I-1)
 DWI = WTI(I) - WTI(I-1)
C
 QTHIK = QTHIK + 0.25*(UU(I)+UU(I-1)
 & +VV(I)+VV(I-1))*UA*DY
C
 UDUDX = - (ALPHAI*URA + ALPHAR*UIA)*URA
 & + (ALPHAR*URA - ALPHAI*UIA)*UIA
 VDVDX = - (ALPHAI*VRA + ALPHAR*VIA)*VRA
 & + (ALPHAR*VRA - ALPHAI*VIA)*VIA
C
 PDUDX = - (ALPHAI*URA + ALPHAR*UIA)*PRA
 & + (ALPHAR*URA - ALPHAI*UIA)*PIA
 UDPDX = - (ALPHAI*PRA + ALPHAR*PIA)*URA
 & + (ALPHAR*PRA - ALPHAI*PIA)*UIA
C
 DQTDX = DQTDX + 0.5*(UDUDX + VDVDX)*DY * UA
C
 UPRES = UPRES - 0.5*(UDPDX + PDUDX)*DY
C
 TWORK = TWORK - 0.50*(UV(I)+UV(I-1))*DU
C
 DISS1 = DISS1 + (ALPHAI*URA + ALPHAR*UIA)**2 * DY
 & + (ALPHAR*URA - ALPHAI*UIA)**2 * DY
C
 DISS2 = DISS2 + (DVR**2 + DVI**2) / DY
C
 DISS3 = DISS3
 & + 0.5 * (DUR/DY - ALPHAI*VRA - ALPHAR*VIA)**2 * DY
 & + 0.5 * (DUI/DY + ALPHAR*VRA - ALPHAI*VIA)**2 * DY
C
 PQINT = PQINT
 & - 0.5*URA*DWR - 0.5*(ALPHAI*WRA + ALPHAR*WIA)*VRA * DY
 & - 0.5*UIA*DWI + 0.5*(ALPHAR*WRA - ALPHAI*WIA)*VIA * DY
 ENDDO
C
 DISS1 = DISS1 / RE
 DISS2 = DISS2 / RE
 DISS3 = DISS3 / RE
 PQINT = PQINT / RE
C
C
 DQTDX = DQTDX / QTHIK
 UPRES = UPRES / QTHIK
 TWORK = TWORK / QTHIK
 DISS1 = DISS1 / QTHIK
 DISS2 = DISS2 / QTHIK
 DISS3 = DISS3 / QTHIK
 PQINT = PQINT / QTHIK
C
 DISS = DISS1 + DISS2 + DISS3
C
 WRITE(*,*)
 WRITE(*,*) 'dEdx, P+Dx+D :',DQTDX,TWORK+UPRES+PQINT
 WRITE(*,*) 'P Dx D e:', TWORK, UPRES, PQINT, -DISS
 WRITE(*,*)
C
 IF(IPASS.EQ.1) THEN
 CALL SCALIT(N,UT,0.0,USF,ANN,NANN)
 UWT = PAR*USF
C
 CALL SCALIT(N,VT,0.0,VSF,ANN,NANN)
 VWT = PAR*VSF
C
 CALL SCALIT(N,PT,0.0,PSF,ANN,NANN)
 PWT = PAR*PSF
C
 CALL SCALIT(N,QQ,0.0,TSF,ANN,NANN)
 TWT = PAR*TSF
C
 EOFF = 0.
 UOFF = 0.
 POFF = 0.
 TOFF = 0.
C
 PWT = UWT
 ENDIF
C
C
 CALL NEWPEN(3)
C
 XL = PAR + 5.0*CH
C
 YL = ETAE*EWT
 CALL PLCHAR(XL ,YL , CH,'H = ',0.0, 8)
 CALL PLNUMB(XL+8.0*CH,YL , CH, H ,0.0, 3)
C
 YL = YL - 3.5*CH
 CALL PLCHAR(XL ,YL , CH,'Re = ',0.0, 8)
 CALL PLMATH(XL+1.9*CH,YL-0.4*CH,0.8*CH, 'q' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, RE ,0.0,-1)
C
 YL = YL - 2.5*CH
 CALL PLMATH(XL ,YL , CH,'w q/ = ',0.0, 8)
 CALL PLCHAR(XL ,YL , CH,' U ',0.0, 8)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, OMEGAR ,0.0, 5)
C
 YL = YL - 3.5*CH
 CALL PLMATH(XL ,YL , CH,'a q = ',0.0, 8)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, ALPHAR ,0.0, 5)
C
 YL = YL - 2.5*CH
 CALL PLMATH(XL ,YL , CH,'a q = ',0.0, 8)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'i' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, ALPHAI ,0.0, 5)
C
C
C
 XLIN(1) = -7.5*CH
 XLIN(2) = -1.5*CH
 YLIN(1) = 0.5*CH
 YLIN(2) = 0.5*CH
C
 CALL NEWPEN(2)
C
 XL = PAR + 12.0*CH
 YL = 0.50*ETAE*EWT
C
 CALL NEWCOLORNAME('red')
 CALL XYLINE(N,UTR,ETA,UOFF,UWT,EOFF,EWT,2)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,2)
 CALL PLCHAR(XL ,YL , CH,'u /U',0.0,4)
 CALL PLMATH(XL ,YL , CH,' ` ',0.0,4)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0,1)
C
 YL = YL - 2.5*CH
C
 CALL NEWCOLORNAME('orange')
 CALL XYLINE(N,UTI,ETA,UOFF,UWT,EOFF,EWT,3)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,3)
 CALL PLCHAR(XL ,YL , CH,'u /U',0.0,4)
 CALL PLMATH(XL ,YL , CH,' ` ',0.0,4)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'i' ,0.0,1)
C
 YL = YL - 2.5*CH
C
 CALL NEWCOLORNAME('yellow')
 CALL XYLINE(N,UT ,ETA,UOFF,UWT,EOFF,EWT,1)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,1)
 CALL PLCHAR(XL ,YL , CH,'u /U',0.0,4)
 CALL PLMATH(XL ,YL , CH,' ` ',0.0,4)
 CALL PLCHAR(XL-0.6*CH,YL ,0.9*CH,'| |' ,0.0,3)
C
C
 YL = YL - 3.5*CH
C
 CALL NEWCOLORNAME('violet')
 CALL XYLINE(N,PTR,ETA,POFF,PWT,EOFF,EWT,5)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,5)
 CALL PLCHAR(XL ,YL , CH,'p / U ',0.0,6)
 CALL PLMATH(XL ,YL , CH,' ` r 2',0.0,6)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0,1)
C
 YL = YL - 2.5*CH
C
 CALL NEWCOLORNAME('blue')
 CALL XYLINE(N,PTI,ETA,POFF,PWT,EOFF,EWT,6)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,6)
 CALL PLCHAR(XL ,YL , CH,'p / U ',0.0,6)
 CALL PLMATH(XL ,YL , CH,' ` r 2',0.0,6)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'i' ,0.0,1)
C
 YL = YL - 2.5*CH
C
 CALL NEWCOLORNAME('cyan')
 CALL XYLINE(N,PT ,ETA,POFF,PWT,EOFF,EWT,1)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,1)
 CALL PLCHAR(XL ,YL , CH,'p / U ',0.0,6)
 CALL PLMATH(XL ,YL , CH,' ` r 2',0.0,6)
 CALL PLCHAR(XL-0.6*CH,YL ,0.9*CH,'| |' ,0.0,3)
C
 YL = YL - 3.5*CH
C
 CALL NEWCOLORNAME('green')
 CALL XYLINE(N,QQ ,ETA,TOFF,TWT,EOFF,EWT,2)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,2)
 CALL PLMATH(XL ,YL+0.2*CH, CH,' ___ ' ,0.0,5)
 CALL PLMATH(XL ,YL , CH,' ` ` 2',0.0,8)
 CALL PLCHAR(XL ,YL , CH,' q q /U ',0.0,8)
C
 YL = YL - 2.5*CH
C
 CALL NEWCOLORNAME('green')
 CALL XYLINE(N,UV ,ETA,TOFF,-10.0*TWT,EOFF,EWT,1)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,1)
 CALL PLMATH(XL ,YL+0.2*CH, CH,' ___ ',0.0,12)
 CALL PLMATH(XL ,YL , CH,' ` ` 2 # ',0.0,12)
 CALL PLCHAR(XL ,YL , CH,'-u v /U 10',0.0,12)
C
 CALL NEWCOLOR(ICOL0)
C
 CALL PLFLUSH
C
 99 CONTINUE
 WRITE(*,*) 'Zoom, Unzoom, Annotate, Hardcopy, Dump ?'
 READ (*,1000) ANS
 1000 FORMAT(A)
C
 IF (INDEX('Zz',ANS) .NE. 0) THEN
 CALL USETZOOM(.FALSE.,.TRUE.)
 CALL REPLOT(IDEV)
 GO TO 99
 ELSEIF(INDEX('Uu',ANS) .NE. 0) THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
 GO TO 99
 ELSEIF(INDEX('Aa',ANS) .NE. 0) THEN
 CALL ANNOT(CH)
 GO TO 99
 ELSEIF(INDEX('Hh',ANS) .NE. 0) THEN
 CALL REPLOT(IDEVRP)
 GO TO 99
 ELSEIF(INDEX('Dd',ANS) .NE. 0) THEN
 LU = 9
 WRITE(LU,9922) ALPHAR,ALPHAI, OMEGAR,OMEGAI
 DO I = 1, N
 9922 FORMAT(1X, 8E16.7)
 WRITE(LU,9922)
 & UTR(I), UTI(I), VTR(I), VTI(I), PTR(I), PTI(I)
 ENDDO
 WRITE(*,*) 'Written to fort.9'
C
 ENDIF
C
 100 CONTINUE
 101 CONTINUE
C
 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/orrs/src/osseq.f

 PROGRAM OSSEQ
C--
C Program for executing and displaying Orr-Sommerfeld solution
C--
C
 PARAMETER (NMAX=2001)
 DIMENSION ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 DIMENSION UTR(NMAX), UTI(NMAX), UT(NMAX),
 & VTR(NMAX), VTI(NMAX), VT(NMAX),
 & WTR(NMAX), WTI(NMAX), WT(NMAX),
 & CTR(NMAX), CTI(NMAX), CT(NMAX),
 & PTR(NMAX), PTI(NMAX), PT(NMAX)
 DIMENSION UU(NMAX), VV(NMAX), UV(NMAX), QQ(NMAX)
 CHARACTER*1 ANS
 CHARACTER*80 FNAME, ARGP1
 DIMENSION XLIN(2), YLIN(2)
C
 DIMENSION AINPUT(10)
 LOGICAL ERROR
C
 LST = 1
 LRE = 1
C
 IDEV = 1
 IDEVRP = 2
 IPSLU = 0
C
 SIZE = 6.0
 PAR = 0.75
C
 CALL PLINITIALIZE
C
C
 N = 2001
 ETAE = 16.0
 GEO = 1.01
C
 CH = 0.021
C
 IF(N.GT.NMAX) STOP 'TEST: Array overflow.'
C
 CALL GETARG(1,ARGP1)
 IF(ARGP1(1:1).EQ.' ') GO TO 50
C
 FNAME = ARGP1
C
C---- try formatted read first
 OPEN(1,FILE=FNAME,STATUS='OLD',ERR=50)
 READ(1,*,ERR=30) N, H
 DO I=1, N
 READ(1,*) ETA(I), U(I), S(I)
 ENDDO
 CLOSE(1)
 ETAE = ETA(N)
 GO TO 90
C
C---- now try unformatted read
 30 CONTINUE
 OPEN(19,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=50)
 READ(19,ERR=50) N, H
 READ(19) (ETA(I),I=1, N)
 READ(19) (U(I) ,I=1, N)
 READ(19) (S(I) ,I=1, N)
 ETAE = ETA(N)
 CLOSE(19)
 GO TO 90
C
C---- no argument specified or read error... get Falkner-Skan parameter
 50 CONTINUE
 WRITE(*,*) 'Enter Falkner-Skan parameter Beta (or H)'
 READ (*,*) BETA
C
 IF(BETA .GT. 1.0) THEN
 write(*,*) 'Enter ETAE, GEO'
 read (*,*) etae, geo
 H = BETA
 CALL FS(3,2,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C
 ELSE
 write(*,*) 'Enter ETAE, GEO'
 read (*,*) etae, geo
 BU = BETA / (2.0 - BETA)
 CALL FS(3,1,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C
 ENDIF
C---------------------
C
 90 CONTINUE
 EWT = 1.0/ETAE
C
 DETA = 1.0
 IF(ETAE .GT. 16.01) DETA = 2.0
 IF(ETAE .GT. 30.01) DETA = 5.0
 ETAE = DETA * AINT(ETAE/DETA + 0.51)
C
 CALL PLOPEN(0.7,IPSLU,IDEV)
 CALL PLOTABS(0.5,1.0,-3)
C
 CALL NEWFACTOR(SIZE)
 CALL GETCOLOR(ICOL0)
C
 CALL PLOT(0.5*PAR,0.0,-3)
C
 CALL NEWPEN(1)
 CALL XAXIS(0.0,0.0,-PAR, 0.2*PAR,0.0, 0.2,0.7*CH,1)
 CALL YAXIS(0.0,0.0,-1.0,DETA*EWT,0.0,DETA,0.7*CH,1)
C
 CALL NEWPEN(2)
 XL = -4.0*CH
 YL = (ETAE-1.5*DETA)*EWT - 0.5*CH
 CALL PLCHAR(XL,YL,CH,'y/ ',0.0,3)
 CALL PLMATH(XL,YL,CH,' q',0.0,3)
C
C
 UWT = PAR
 CALL NEWPEN(4)
 CALL XYLINE(N,U,ETA,0.0,UWT,0.0,EWT,1)
 CALL NEWPEN(3)
 CALL XYSYMB(N,U,ETA,0.0,UWT,0.0,EWT,0.125*CH,1)
C
 CALL PLFLUSH
C
 RE = 100.0
 OMEGAR = 0.1
 ALPHAR = 2.0*OMEGAR
 ALPHAI = 0.
C
 WRITE(*,*) 'Enter Rtheta1, Rtheta2:'
 READ(*,*) RTH1, RTH2
C
 WRITE(*,*) 'Enter wr1, wr2:'
 READ(*,*) OMG1, OMG2
C
 WRITE(*,*) 'Enter number of steps:'
 READ(*,*) NPASS
C
 WRITE(*,*) 'Enter initial ar, ai:'
 READ(*,*) ALPHAR, ALPHAI
C
 OPEN(19,FILE='a.dat',STATUS='unknown')
 REWIND(19)
C
 DO 100 IPASS=1, NPASS
 ITMAX = 20
C
 FRAC = FLOAT(IPASS-1) / FLOAT(NPASS-1)
C
 RE = RTH1 * EXP(LOG(RTH2/RTH1) * FRAC)
 OMEGAR = OMG1 * EXP(LOG(OMG2/OMG1) * FRAC)
C
 OMEGAI = 0.0
C
C
 ITLIM = ITMAX
 CALL ORRS(LST,LRE,N,ETA,U,S, RE, ITLIM,
 & ALPHAR,ALPHAI, OMEGAR,OMEGAI,
 & UTR,UTI,VTR,VTI,WTR,WTI,CTR,CTI, DELMAX)
C
 CALL OSPRES(N,ETA,U, ALPHAR,ALPHAI, VTR,VTI, PTR,PTI)
C
 DO I=1, N
 UT(I) = SQRT(UTR(I)**2 + UTI(I)**2)
 VT(I) = SQRT(VTR(I)**2 + VTI(I)**2)
 PT(I) = SQRT(PTR(I)**2 + PTI(I)**2)
 UU(I) = 0.5*(UTR(I)*UTR(I) + UTI(I)*UTI(I))
 VV(I) = 0.5*(VTR(I)*VTR(I) + VTI(I)*VTI(I))
 UV(I) = 0.5*(UTR(I)*VTR(I) + UTI(I)*VTI(I))
 QQ(I) = UU(I) + VV(I)
 ENDDO
C
 QTHIK = 0.
 DQTDX = 0.
 UPRES = 0.
 TWORK = 0.
 DISS1 = 0.
 DISS2 = 0.
 DISS3 = 0.
 PQINT = 0.
 DO I = 2, N
 UA = (U(I) + U(I-1))*0.5
 DU = U(I) - U(I-1)
 DY = ETA(I) - ETA(I-1)
C
 URA = (UTR(I) + UTR(I-1))*0.5
 UIA = (UTI(I) + UTI(I-1))*0.5
 VRA = (VTR(I) + VTR(I-1))*0.5
 VIA = (VTI(I) + VTI(I-1))*0.5
 WRA = (WTR(I) + WTR(I-1))*0.5
 WIA = (WTI(I) + WTI(I-1))*0.5
 PRA = (PTR(I) + PTR(I-1))*0.5
 PIA = (PTI(I) + PTI(I-1))*0.5
C
 DUR = UTR(I) - UTR(I-1)
 DUI = UTI(I) - UTI(I-1)
 DVR = VTR(I) - VTR(I-1)
 DVI = VTI(I) - VTI(I-1)
 DWR = WTR(I) - WTR(I-1)
 DWI = WTI(I) - WTI(I-1)
C
 QTHIK = QTHIK + 0.25*(UU(I)+UU(I-1)
 & +VV(I)+VV(I-1))*UA*DY
C
 UDUDX = - (ALPHAI*URA + ALPHAR*UIA)*URA
 & + (ALPHAR*URA - ALPHAI*UIA)*UIA
 VDVDX = - (ALPHAI*VRA + ALPHAR*VIA)*VRA
 & + (ALPHAR*VRA - ALPHAI*VIA)*VIA
C
 PDUDX = - (ALPHAI*URA + ALPHAR*UIA)*PRA
 & + (ALPHAR*URA - ALPHAI*UIA)*PIA
 UDPDX = - (ALPHAI*PRA + ALPHAR*PIA)*URA
 & + (ALPHAR*PRA - ALPHAI*PIA)*UIA
C
 DQTDX = DQTDX + 0.5*(UDUDX + VDVDX)*DY * UA
C
 UPRES = UPRES - 0.5*(UDPDX + PDUDX)*DY
C
 TWORK = TWORK - 0.50*(UV(I)+UV(I-1))*DU
C
 DISS1 = DISS1 + (ALPHAI*URA + ALPHAR*UIA)**2 * DY
 & + (ALPHAR*URA - ALPHAI*UIA)**2 * DY
C
 DISS2 = DISS2 + (DVR**2 + DVI**2) / DY
C
 DISS3 = DISS3
 & + 0.5 * (DUR/DY - ALPHAI*VRA - ALPHAR*VIA)**2 * DY
 & + 0.5 * (DUI/DY + ALPHAR*VRA - ALPHAI*VIA)**2 * DY
C
 PQINT = PQINT
 & - 0.5*URA*DWR - 0.5*(ALPHAI*WRA + ALPHAR*WIA)*VRA * DY
 & - 0.5*UIA*DWI + 0.5*(ALPHAR*WRA - ALPHAI*WIA)*VIA * DY
 ENDDO
C
 DISS1 = DISS1 / RE
 DISS2 = DISS2 / RE
 DISS3 = DISS3 / RE
 PQINT = PQINT / RE
C
C
 DQTDX = DQTDX / QTHIK
 UPRES = UPRES / QTHIK
 TWORK = TWORK / QTHIK
 DISS1 = DISS1 / QTHIK
 DISS2 = DISS2 / QTHIK
 DISS3 = DISS3 / QTHIK
 PQINT = PQINT / QTHIK
C
 DISS = DISS1 + DISS2 + DISS3
C
 WRITE(*,*)
 WRITE(*,*) 'dEdx, P+Dx+D :',DQTDX,TWORK+UPRES+PQINT
 WRITE(*,*) 'P Dx D e:', TWORK, UPRES, PQINT, -DISS
 WRITE(*,*)
C
 WRITE(19,9944) RE, OMEGAR, DQTDX, TWORK, UPRES, PQINT
 9944 FORMAT(1X,8E14.5)
C
C
 IF(IPASS.EQ.1) THEN
 CALL SCALIT(N,UT,0.0,USF,ANN,NANN)
 UWT = PAR*USF
C
 CALL SCALIT(N,VT,0.0,VSF,ANN,NANN)
 VWT = PAR*VSF
C
 CALL SCALIT(N,PT,0.0,PSF,ANN,NANN)
 PWT = PAR*PSF
C
 CALL SCALIT(N,QQ,0.0,TSF,ANN,NANN)
 TWT = PAR*TSF
C
 EOFF = 0.
 UOFF = 0.
 POFF = 0.
 TOFF = 0.
C
 PWT = UWT
 ENDIF
C
C
 CALL NEWPEN(3)
C
 XL = PAR + 5.0*CH
C
 YL = ETAE*EWT
 CALL PLCHAR(XL ,YL , CH,'H = ',0.0, 8)
 CALL PLNUMB(XL+8.0*CH,YL , CH, H ,0.0, 3)
C
 YL = YL - 3.5*CH
 CALL PLCHAR(XL ,YL , CH,'Re = ',0.0, 8)
 CALL PLMATH(XL+1.9*CH,YL-0.4*CH,0.8*CH, 'q' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, RE ,0.0,-1)
C
 YL = YL - 2.5*CH
 CALL PLMATH(XL ,YL , CH,'w q/ = ',0.0, 8)
 CALL PLCHAR(XL ,YL , CH,' U ',0.0, 8)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, OMEGAR ,0.0, 5)
C
 YL = YL - 3.5*CH
 CALL PLMATH(XL ,YL , CH,'a q = ',0.0, 8)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, ALPHAR ,0.0, 5)
C
 YL = YL - 2.5*CH
 CALL PLMATH(XL ,YL , CH,'a q = ',0.0, 8)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'i' ,0.0, 1)
 CALL PLNUMB(XL+8.0*CH,YL , CH, ALPHAI ,0.0, 5)
C
C
C
 XLIN(1) = -7.5*CH
 XLIN(2) = -1.5*CH
 YLIN(1) = 0.5*CH
 YLIN(2) = 0.5*CH
C
 CALL NEWPEN(2)
C
 XL = PAR + 12.0*CH
 YL = 0.50*ETAE*EWT
C
 CALL NEWCOLORNAME('red')
 CALL XYLINE(N,UTR,ETA,UOFF,UWT,EOFF,EWT,2)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,2)
 CALL PLCHAR(XL ,YL , CH,'u /U',0.0,4)
 CALL PLMATH(XL ,YL , CH,' ` ',0.0,4)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0,1)
C
 YL = YL - 2.5*CH
C
 CALL NEWCOLORNAME('orange')
 CALL XYLINE(N,UTI,ETA,UOFF,UWT,EOFF,EWT,3)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,3)
 CALL PLCHAR(XL ,YL , CH,'u /U',0.0,4)
 CALL PLMATH(XL ,YL , CH,' ` ',0.0,4)
 CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'i' ,0.0,1)
C
 YL = YL - 2.5*CH
cC
c CALL NEWCOLORNAME('yellow')
c CALL XYLINE(N,UT ,ETA,UOFF,UWT,EOFF,EWT,1)
c CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,1)
c CALL PLCHAR(XL ,YL , CH,'u /U',0.0,4)
c CALL PLMATH(XL ,YL , CH,' ` ',0.0,4)
c CALL PLCHAR(XL-0.6*CH,YL ,0.9*CH,'| |' ,0.0,3)
cC
cC
c YL = YL - 3.5*CH
cC
c CALL NEWCOLORNAME('violet')
c CALL XYLINE(N,PTR,ETA,POFF,PWT,EOFF,EWT,5)
c CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,5)
c CALL PLCHAR(XL ,YL , CH,'p / U ',0.0,6)
c CALL PLMATH(XL ,YL , CH,' ` r 2',0.0,6)
c CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'r' ,0.0,1)
cC
c YL = YL - 2.5*CH
cC
c CALL NEWCOLORNAME('blue')
c CALL XYLINE(N,PTI,ETA,POFF,PWT,EOFF,EWT,6)
c CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,6)
c CALL PLCHAR(XL ,YL , CH,'p / U ',0.0,6)
c CALL PLMATH(XL ,YL , CH,' ` r 2',0.0,6)
c CALL PLCHAR(XL+0.9*CH,YL-0.3*CH,0.8*CH, 'i' ,0.0,1)
cC
c YL = YL - 2.5*CH
cC
 CALL NEWCOLORNAME('cyan')
 CALL XYLINE(N,PT ,ETA,POFF,PWT,EOFF,EWT,1)
 CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,1)
 CALL PLCHAR(XL ,YL , CH,'p / U ',0.0,6)
 CALL PLMATH(XL ,YL , CH,' ` r 2',0.0,6)
 CALL PLCHAR(XL-0.6*CH,YL ,0.9*CH,'| |' ,0.0,3)
C
 YL = YL - 3.5*CH
C
c CALL NEWCOLORNAME('green')
c CALL XYLINE(N,QQ ,ETA,TOFF,TWT,EOFF,EWT,2)
c CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,2)
c CALL PLMATH(XL ,YL+0.2*CH, CH,' ___ ' ,0.0,5)
c CALL PLMATH(XL ,YL , CH,' ` ` 2',0.0,8)
c CALL PLCHAR(XL ,YL , CH,' q q /U ',0.0,8)
cC
c YL = YL - 2.5*CH
cC
c CALL NEWCOLORNAME('green')
c CALL XYLINE(N,UV ,ETA,TOFF,-10.0*TWT,EOFF,EWT,1)
c CALL XYLINE(2,XLIN,YLIN,-XL,1.0,-YL,1.0,1)
c CALL PLMATH(XL ,YL+0.2*CH, CH,' ___ ',0.0,12)
c CALL PLMATH(XL ,YL , CH,' ` ` 2 # ',0.0,12)
c CALL PLCHAR(XL ,YL , CH,'-u v /U 10',0.0,12)
cC
 CALL NEWCOLOR(ICOL0)
C
 CALL PLFLUSH
C
 100 CONTINUE
 101 CONTINUE
C
 CLOSE(19)
C
 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/orrs/src/osweep.f

 PROGRAM OSWEEP
 LOGICAL OK
C
 WRITE(*,*) 'Enter Rth1, w1, H1'
 READ (*,*) RSP1, WSP1, HSP1
 IF(RSP1.EQ.0.0) STOP
C
 WRITE(*,*) 'Enter Rth2, w2, H2'
 READ (*,*) RSP2, WSP2, HSP2
 IF(RSP2.EQ.0.0) STOP
C
 RLSP1 = LOG10(RSP1)
 RLSP2 = LOG10(RSP2)
C
 WLSP1 = LOG10(WSP1)
 WLSP2 = LOG10(WSP2)
C
 HLSP1 = HSP1
 HLSP2 = HSP2
C
C
 KK = 1000
C
 LU = 1
 WRITE(LU,1000)
 1000 FORMAT(
 & '# Rtheta w Theta/Ue H ',
 & ' ar Theta ai Theta')
CCC 1234567890123|1234567890123|1234567890123|1234567890123|1234567890123|
 DO K = 0, KK
 T = FLOAT(K)/FLOAT(KK)
C
 RL = RLSP1*(1.0-T) + RLSP2*T
 WL = WLSP1*(1.0-T) + WLSP2*T
 HL = HLSP1*(1.0-T) + HLSP2*T
C
 R = 10.0 ** RL
 W = 10.0 ** WL
 H = HL
C
 CALL OSMAP(R,W,H,
 & AR,
 & AR_R, AR_W, AR_H,
 & ARW_R,ARW_W,ARW_H,
 & AI,
 & AI_R, AI_W, AI_H,
 & AIW_R,AIW_W,AIW_H, OK)
 WRITE(1,1200) R, W, H, AR, AI,
 & AR_R, AR_W, AR_H,
 & AI_R, AI_W, AI_H
 1200 FORMAT(1X, 16E14.6)
 ENDDO
 STOP
C
 END

XFOILinterface/XFOIL/orrs/src/otest.f

 PROGRAM OTEST
 REAL AI(-1:1), AI_R(-1:1), AI_W(-1:1), AI_H(-1:1),
 & AIW_R(-1:1), AIW_W(-1:1), AIW_H(-1:1)
 REAL AR(-1:1), AR_R(-1:1), AR_W(-1:1), AR_H(-1:1),
 & ARW_R(-1:1), ARW_W(-1:1), ARW_H(-1:1)
 LOGICAL OK
C
 1 WRITE(*,*) 'Enter Rth, w, H'
 READ (*,*) RSP, WSP, HSP
 IF(RSP.EQ.0.0) STOP
C
 WRITE(*,*) 'Enter dRth, dw, dH'
 READ (*,*) DR, DW, DH
C
 DO I=-1, 1
cc I = 0
 R = RSP + DR*FLOAT(I)
 CALL OSMAP(R,WSP,HSP,
 & AI(I),
 & AI_R(I), AI_W(I), AI_H(I),
 & AIW_R(I),AIW_W(I),AIW_H(I),
 & AR(I),
 & AR_R(I), AR_W(I), AR_H(I),
 & ARW_R(I),ARW_W(I),ARW_H(I), OK)
 ENDDO
 WRITE(*,*) 'ai :', AI(0)
 DADR = (AI(1) - AI(-1))*0.5/DR
 WRITE(*,*) 'da/dR:', DADR, AI_R(-1), AI_R(0), AI_R(1)
C
 DO I=-1, 1
cc I = 0
 H = HSP + DH*FLOAT(I)
 CALL OSMAP(RSP,WSP,H,
 & AI(I),
 & AI_R(I), AI_W(I), AI_H(I),
 & AIW_R(I),AIW_W(I),AIW_H(I),
 & AR(I),
 & AR_R(I), AR_W(I), AR_H(I),
 & ARW_R(I),ARW_W(I),ARW_H(I), OK)
 ENDDO
 DADH = (AI(1) - AI(-1))*0.5/DH
 WRITE(*,*) 'da/dH:', DADH, AI_H(-1), AI_H(0), AI_H(1)
C
 DO I=-1, 1
cc I = 0
 W = WSP + DW*FLOAT(I)
 CALL OSMAP(RSP,W,HSP,
 & AI(I),
 & AI_R(I), AI_W(I), AI_H(I),
 & AIW_R(I),AIW_W(I),AIW_H(I),
 & AR(I),
 & AR_R(I), AR_W(I), AR_H(I),
 & ARW_R(I),ARW_W(I),ARW_H(I), OK)
 ENDDO
 DADW = (AI(1) - AI(-1))*0.5/DW
 WRITE(*,*) 'da/dw:', DADW, AI_W(-1), AI_W(0), AI_W(1)
C
 DBDR = (AI_R(1) - AI_R(-1))*0.5/DW
 WRITE(*,*) 'daR/dw:', DBDR, AIW_R(-1), AIW_R(0), AIW_R(1)
 DBDH = (AI_H(1) - AI_H(-1))*0.5/DW
 WRITE(*,*) 'daH/dw:', DBDH, AIW_H(-1), AIW_H(0), AIW_H(1)
 DBDW = (AI_W(1) - AI_W(-1))*0.5/DW
 WRITE(*,*) 'daw/dw:', DBDW, AIW_W(-1), AIW_W(0), AIW_W(1)
C
C
 GO TO 1
 END

XFOILinterface/XFOIL/orrs/src/pfplot.f

 PROGRAM PFPLOT
 PARAMETER (NMAX=256)
 REAL ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 CHARACTER*1 ANS
 LOGICAL OK
C
 IDEV = 1
 IDEVRP = 2
 SIZE = 5.0
 IPSLU = 0
 SCRNFR = 0.85
C
 CALL PLINITIALIZE
C
 CALL PLOPEN(SCRNFR,IPSLU,IDEV)
 CALL NEWFACTOR(SIZE)
C
 CALL PLOT(0.7,0.1,-3)
C
 N = 256
 ETAE = 16.0
 GEO = 1.01
C
 EWT = 1.0/ETAE
 UWT = 0.5
 PWT = 0.2
 PWT = 1.0
 CH = 0.02
C
 IF(N.GT.NMAX) STOP 'TEST: Array overflow.'
C
 2 CALL PFLGET(N,GEO,ETAE,ETA,F,U,S,H)
C
 CALL NEWPEN(1)
C
 CALL PLOT(0.0,0.0,3)
 CALL PLOT(UWT*1.0,0.0,2)
 CALL PLOT(0.0,0.0,3)
 CALL PLOT(0.0,EWT*ETAE,2)
C
 CALL NEWPEN(3)
 CALL PLOT(UWT*U(1),EWT*ETA(1),3)
 DO 10 I=2, N
 CALL PLOT(UWT*U(I),EWT*ETA(I),2)
 10 CONTINUE
C
 CALL PLSYMB(UWT ,EWT*ETA(N)+0.5*CH,CH,'H = ',0.0,4)
 CALL PLNUMB(UWT+4.0*CH,EWT*ETA(N)+0.5*CH,CH, H ,0.0,3)
 CALL PLFLUSH
C
 CALL ASKL('Another profile ?^',OK)
 IF(OK) GO TO 2
C
 CALL PLCLOSE
 STOP
 END

 SUBROUTINE PFLGET(N,GEO,ETAE,ETA,F,U,S,H)
 REAL ETA(N),F(N),U(N),S(N)
 CHARACTER*48 FNAME
C
C---- eta coordinate normalized with momentum thickness
 INORM = 3
C
 WRITE(6,*) ' '
 WRITE(6,*) ' 1 Falkner-Skan parameter m = x/U dU/dx'
 WRITE(6,*) ' 2 Falkner-Skan parameter beta = 2m/(m+1)'
 WRITE(6,*) ' 3 Falkner-Skan shape parameter H'
 WRITE(6,*) ' 4 General profile input file'
 WRITE(6,*) ' '
 CALL ASKI('Select profile option^',IOPT)
C
 IF(IOPT.NE.4) THEN
 CALL ASKI('Enter number of BL points^',N)
 CALL ASKR('Enter geometric stretching factor^',GEO)
 CALL ASKR('Enter edge y/theta value^',ETAE)
 ENDIF
C
C
 IF(IOPT.EQ.1) THEN
C
 CALL ASKR('Enter m^',BU)
 CALL FS(INORM,1,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C
 ELSE IF(IOPT.EQ.2) THEN
C
 CALL ASKR('Enter beta^',BETA)
 BU = BETA/(2.0-BETA)
 CALL FS(INORM,1,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C
 ELSE IF(IOPT.EQ.3) THEN
C
 CALL ASKR('Enter H^',H)
 CALL FS(INORM,2,BU,H,N,ETAE,GEO,ETA,F,U,S,DELTA)
C
 ELSE
C
 CALL ASKS('Enter profile filename^',FNAME)
 OPEN(1,FILE=FNAME,STATUS='OLD')
 READ(1,*) N, H
 DO 5 I=1, N
 READ(1,*) ETA(I), U(I), S(I)
 5 CONTINUE
 CLOSE(1)
C
 GEO = (ETA(3)-ETA(2)) / (ETA(2)-ETA(1))
 ETAE = ETA(N)
 ENDIF
C
 WRITE(6,1050) N, H, ETA(N), GEO
 1050 FORMAT(/' n =', I4,' H =', F7.3,
 & ' Ye =', F7.3,
 & ' dYi+1/dYi =',F6.3 /)
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/plt_3D.f

C***
C Module: plt_3D.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C***
C --- Xplot11 3D routines
C
C Version 4.46 11/28/01
C
C Note: These are routine(s) that provide some means of displaying
C 3D objects in conjunction with the usual XPlot11 routines.
C They are by no means complete but can serve as a starting
C point for doing simple 3D graphics.
C
C***

 subroutine VIEW(X,Y,Z,N,XP,YP,XOB,YOB,ZOB,ROBINV,XUP,YUP,ZUP)
 DIMENSION X(N), Y(N), Z(N)
 DIMENSION XP(N), YP(N)
C..
C
C Projects one or more points in 3-D Cartesian space
C onto a 2-D plane from the viewpoint of an observer
C at a specified location. This can be used to view
C a 3-D object (described by a set of x,y,z points)
C by projecting the points into a set of x,y points for
C plotting on a planar 2-D graphics screen.
C The viewing plane, which has its own x,y coordinate
C system, always faces the observer but can be turned
C around the viewing axis, thus simulating the observer
C tilting his head while looking at the object. This tilt
C is specified by giving a vector in x,y,z space which
C "points up" relative to the observer.
C The distance of the observer from the object is specified
C explicitly. This does not affect much the size of the viewed
C object, since the viewing plane contains the 3-D space origin
C and hence is at or near the object. It does however affect the
C apparent distortion of the object due to perspective. This
C is very useful to convey the 3-dimensionality of the object.
C If the observer is very very far away, there is no distortion
C (as in a mechanical drawing).
C
C X,Y,Z Cartesian point coordinates (input)
C N number of points (input)
C XP,YP projected point coordinates on viewing plane (output)
C XOB,YOB,ZOB Cartesian vector pointing towards observer (input)
C (magnitude irrelevant)
C ROBINV 1/(distance to observer) (input)
C XUP,YUP,ZUP Cartesian vector which points "up" from the
C observer's viewpoint (magnitude irrelevant) (input)
C
C Mark Drela July 1988
C..
C
C---- unit view vector perpendicular to viewing plane (towards observer)
 XOBN = XOB/SQRT(XOB**2 + YOB**2 + ZOB**2)
 YOBN = YOB/SQRT(XOB**2 + YOB**2 + ZOB**2)
 ZOBN = ZOB/SQRT(XOB**2 + YOB**2 + ZOB**2)
C
C---- vector along plane's local x coordinate: (up vector)X(view vector)
 XIP = YUP*ZOBN - ZUP*YOBN
 YIP = ZUP*XOBN - XUP*ZOBN
 ZIP = XUP*YOBN - YUP*XOBN
C
C---- normalize plane's x coordinate vector
 XIHAT = XIP/SQRT(XIP**2 + YIP**2 + ZIP**2)
 YIHAT = YIP/SQRT(XIP**2 + YIP**2 + ZIP**2)
 ZIHAT = ZIP/SQRT(XIP**2 + YIP**2 + ZIP**2)
C
C---- unit vector along plane's y coordinate: (view vector)X(x unit vector)
 XJHAT = YOBN*ZIHAT - ZOBN*YIHAT
 YJHAT = ZOBN*XIHAT - XOBN*ZIHAT
 ZJHAT = XOBN*YIHAT - YOBN*XIHAT
C
C---- go over all points
 DO 10 I=1, N
C
 RDOTR = X(I)*XOBN + Y(I)*YOBN + Z(I)*ZOBN
C
C------ viewing-axis component of vector
 DRX = RDOTR*XOBN
 DRY = RDOTR*YOBN
 DRZ = RDOTR*ZOBN
C
C------ projected vector scaling factor due to perspective
 VSCAL = 1.0 / SQRT((XOBN-ROBINV*DRX)**2
 & + (YOBN-ROBINV*DRY)**2
 & + (ZOBN-ROBINV*DRZ)**2)
C
C------ dot vector into plane coordinate system unit vectors, and scale
 XP(I) = (XIHAT*X(I) + YIHAT*Y(I) + ZIHAT*Z(I))*VSCAL
 YP(I) = (XJHAT*X(I) + YJHAT*Y(I) + ZJHAT*Z(I))*VSCAL
C
 10 CONTINUE
C
 RETURN
 END

 SUBROUTINE PROJMATRIX3 (ROTZ,ROTY,RMAT)
C...Purpose: To define rotation and transformation matrix. The input
C pair of angles ROTZ,ROTY specify the viewpoint by
C an angle about the Z axis (CCW) and an angle about
C the newly rotated Y axis (CCW). Both angles are
C right-handed in a conventional sense about each axis.
C
C...Input: ROTZ rotation of viewpoint about Z axis (deg)
C ROTY rotation of viewpoint about new Y axis (deg)
C
C...Output: RMAT 3x3 rotation and perspective matrix
C
 DIMENSION RMAT(3,3)
C
 DTR = 4.0*ATAN(1.0)/180.0
 COSZ = COS(ROTZ*DTR)
 SINZ = SIN(ROTZ*DTR)
 COSY = COS(ROTY*DTR)
 SINY = SIN(ROTY*DTR)
C
C---Rotation matrix (rotation about Z, then rotation about Y)
c xx = -(SINZ*X + COSZ*Y)
 RMAT(1,1) = -SINZ
 RMAT(2,1) = -COSZ
 RMAT(3,1) = 0.0
C yy = SINY*COSZ*X - SINY*SINZ*Y + COSY*Z
 RMAT(1,2) = SINY*COSZ
 RMAT(2,2) = -SINY*SINZ
 RMAT(3,2) = COSY
c zz = -(COSY*COSZ*X - COSY*SINZ*Y - SINY*Z)
 RMAT(1,3) = -COSY*COSZ
 RMAT(2,3) = COSY*SINZ
 RMAT(3,3) = SINY
C
c xx = -(SINZ*X + COSZ*Y)
c yy = SINY*COSZ*X - SINY*SINZ*Y + COSY*Z
c zz = -(COSY*COSZ*X - COSY*SINZ*Y - SINY*Z)
C
c write(*,*) 'Rmatrix row1 ', (RMAT(1,L),L=1,3)
c write(*,*) 'Rmatrix row2 ', (RMAT(2,L),L=1,3)
c write(*,*) 'Rmatrix row3 ', (RMAT(3,L),L=1,3)
c read(*,*)
C
 RETURN
 END

 SUBROUTINE PROJMATRIX4 (ROTZ,ROTY,RDIST,RMAT)
C...Purpose: To define rotation and perspective matrix. The input
C pair of angles ROTZ,ROTY specify the viewpoint by
C an angle about the Z axis (CCW) and an angle about
C the newly rotated Y axis (CCW). Both angles are
C right-handed in a conventional sense about each axis.
C The observer distance RDIST specifies the distance from
C the origin to the observer along the viewpoint direction.
C
C...Input: ROTZ rotation of viewpoint about Z axis (deg)
C ROTY rotation of viewpoint about new Y axis (deg)
C RDIST distance from origin to observer along viewpoint
C
C...Output: RMAT 4x4 rotation and perspective matrix
C
 DIMENSION AMAT(4,4),PMAT(4,4), RMAT(4,4)
C
 DTR = 4.0*ATAN(1.0)/180.0
 COSZ = COS(ROTZ*DTR)
 SINZ = SIN(ROTZ*DTR)
 COSY = COS(ROTY*DTR)
 SINY = SIN(ROTY*DTR)
C
C---Rotation matrix (rotation about Z, then rotation about Y)
c xx = -(SINZ*X + COSZ*Y)
 AMAT(1,1) = -SINZ
 AMAT(2,1) = -COSZ
 AMAT(3,1) = 0.0
 AMAT(4,1) = 0.0
C yy = SINY*COSZ*X - SINY*SINZ*Y + COSY*Z
 AMAT(1,2) = SINY*COSZ
 AMAT(2,2) = -SINY*SINZ
 AMAT(3,2) = COSY
 AMAT(4,2) = 0.0
c zz = -(COSY*COSZ*X - COSY*SINZ*Y - SINY*Z)
 AMAT(1,3) = -COSY*COSZ
 AMAT(2,3) = COSY*SINZ
 AMAT(3,3) = SINY
 AMAT(4,3) = 0.0
C
 AMAT(1,4) = 0.0
 AMAT(2,4) = 0.0
 AMAT(3,4) = 0.0
 AMAT(4,4) = 1.0
C
c xx = -(SINZ*X + COSZ*Y)
c yy = SINY*COSZ*X - SINY*SINZ*Y + COSY*Z
c zz = -(COSY*COSZ*X - COSY*SINZ*Y - SINY*Z)
c
C---Perspective matrix with projection on Z plane
 PMAT(1,1) = 1.0
 PMAT(2,1) = 0.0
 PMAT(3,1) = 0.0
 PMAT(4,1) = 0.0
C
 PMAT(1,2) = 0.0
 PMAT(2,2) = 1.0
 PMAT(3,2) = 0.0
 PMAT(4,2) = 0.0
C
 PMAT(1,3) = 0.0
 PMAT(2,3) = 0.0
 PMAT(3,3) = 1.0
 PMAT(4,3) = 0.0
C
 PMAT(1,4) = 0.0
 PMAT(2,4) = 0.0
 PMAT(3,4) = -RDIST
 PMAT(4,4) = 1.0
C
C---Product of matrices is perspective matrix
 DO J=1, 4
 DO K=1, 4
 TMP = 0.0
 DO L=1, 4
 TMP = TMP + AMAT(J,L)*PMAT(L,K)
 END DO
 RMAT(J,K) = TMP
 END DO
 END DO
C
c write(*,*) 'Rmatrix row1 ', (RMAT(1,L),L=1,4)
c write(*,*) 'Rmatrix row2 ', (RMAT(2,L),L=1,4)
c write(*,*) 'Rmatrix row3 ', (RMAT(3,L),L=1,4)
c write(*,*) 'Rmatrix row4 ', (RMAT(4,L),L=1,4)
c read(*,*)
C
 RETURN
 END

 SUBROUTINE ROTPTS3 (RMAT,PTS_IN,NPTS,PTS_OUT)
C...Purpose: To rotate array of points to a new viewpoint by
C parallel projection. The input rotation matrix
C contains the transformation data in a 3x3 matrix.
C
C...Input: RMAT 3x3 transformation matrix
C PTS_IN array (3xNPTS) of input points
C NPTS number of points in arrays
C
C...Output: PTS_OUT array (3xNPTS) of transformed points
C
 DIMENSION PTS_IN(3,NPTS), PTS_OUT(3,NPTS)
 DIMENSION RMAT(4,4)
C
 DO I = 1, NPTS
C
 DO J=1, 3
 TMP = 0.0
 DO K=1, 3
 TMP = TMP + PTS_IN(K,I)*RMAT(K,J)
 END DO
 PTS_OUT(J,I) = TMP
 END DO
C
 END DO
C
 RETURN
 END

 SUBROUTINE ROTPTS4 (RMAT,PTS_IN,NPTS,PTS_OUT)
C...Purpose: To rotate array of points to a new viewpoint by
C perspective projection. The input rotation matrix
C contains the transformation and perspective data in
C a 4x4 matrix in homogeneous coordinates. Note that input
C coordinates may need to be z-clipped if the user trans.
C moves the points behind the observer. A check is made
C for a singular perspective point (at observer).
C
C...Input: RMAT 4x4 rotation and perspective matrix
C PTS_IN array (3xNPTS) of input points
C NPTS number of points in arrays
C
C...Output: PTS_OUT array (3xNPTS) of transformed points
C
C...Note: You may need to translate your points to recenter them
C about the origin to get good perspective views. Points
C off to the side get pretty distorted...
C
 DIMENSION PTS_IN(3,NPTS), PTS_OUT(3,NPTS)
 DIMENSION RMAT(4,4), PTMP(4), PPTMP(4)
C
 DO I = 1, NPTS
C
 PTMP(1) = PTS_IN(1,I)
 PTMP(2) = PTS_IN(2,I)
 PTMP(3) = PTS_IN(3,I)
 PTMP(4) = 1.0
C
 DO J=1, 4
 TMP = 0.0
 DO K=1, 4
 TMP = TMP + PTMP(K)*RMAT(K,J)
 END DO
 PPTMP(J) = TMP
 END DO
C
 IF(PPTMP(4).NE.0.0) THEN
 PTS_OUT(1,I) = PPTMP(1)/PPTMP(4)
 PTS_OUT(2,I) = PPTMP(2)/PPTMP(4)
 PTS_OUT(3,I) = PPTMP(3)/PPTMP(4)
 ELSE
 WRITE(*,*) 'Homogeneous coordinate singular for pt ',I
 ENDIF
C
 END DO
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/plt_base.f

C***
C Module: plt_base.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C

C Xplot11 *
C**********
C
C Dedicated to perpetuating ugly PLOT-10 and Versatec software
C into the 21st century...
C
C This library supports interactive graphics and hardcopy output using
C the interfaces defined in gw_subs.f and ps_subs.f.
C Currently: gw_subs supports X window graphics in B&W or color
C ps_subs supports B&W or color hardcopy to Postscript file
C
C Version 4.46 11/28/01
C
C Notes:
C
C***

 subroutine PLINITIALIZE
C
C---Plot package initialization routine
C Must be called before any color plot calls
C
 include 'pltlib.inc'
C
 GX_SIZ = 1
 GY_SIZ = 1
C---Check for user default for background and set up a colormap
 call gw_revflag
 call colormapdefault
C
 return
 end

 subroutine PLOPEN(relsize,nunit,idev)
C
C---Plot initialization routine
C
C Must be called before EACH page plot
C
C relsize Fractional size of X-graphics window relative to screen
C if relsize < 0 the graphics page is in Portrait mode 8.5x11
C if relsize >=0 the graphics page is in Landscape mode 11x8.5
C
C nunit Postscript output file specifier
C < 0 Postscript output enabled to individual files plotNNN.ps
C on unit 80 where NNN is cumulative plot number
C = 0 Postscript output enabled to file plot.ps on unit 80
C = NNN Postscript output enabled to file plotUUU.ps on unit UUU
C
C idev Plotting output selector
C
C idev X-window PostScript
C ---- -------- ----------
C 1 x
C 2 B & W
C 3 x B & W
C 4 Color
C 5 x Color
C
C Note: idev<1 or idev>5 gives only X-window output
C (for pseudo-compatibility with old PLTLIB versions)
C ((if you squint real hard))
C
 include 'pltlib.inc'
C
 SAVE ifirst, relsize_save, nunit_save
 DATA ifirst / 0 /
C
 I_DEV = idev
 if(idev.GT.5) I_DEV = 1
C
C---- control flags (gw_init will set LGW_COLOR = T if screen has color)
 LGW_GEN = (I_DEV.EQ.1 .OR. I_DEV.EQ.3 .OR. I_DEV.EQ.5)
 LPS_GEN = (I_DEV.GE.2)
 LPS_COLOR = (I_DEV.GE.4)
C
C
C---- clear primitives counter
 N_PRIM = 0
C
 if(ifirst.EQ.0) then
C------ First-ever PLOPEN call
C
 ifirst = 1
C...graphics window
 LGW_OPEN = .FALSE.
 call gw_setup(relsize)
 LGW_RESIZE = .FALSE.
C
C...PostScript (file not yet opened, and no unstroked page exists)
 NPS_UNIT = -1
 N_PAGES = 0
 call ps_setup(nunit)
C...No zooming to start off
 call CLRZOOM
C...Primitives file initializers
 NPRIM_UNIT = NPRIM_UNIT_DEFAULT
 LPRIM_OPEN = .FALSE.
C
 else
C------ Subsequent PLOPEN call
C...if a postscript file has been opened we need to end the page with
C bounding box information
 if(LPS_OPEN) call ps_endpage
C
 if(abs(relsize-relsize_save) .GT. 0.01) then
C...relsize specfied has changed from previous PLOPEN call..
C...re-setup aspect ratio and prepare to resize current graphics window
 call gw_setup(relsize)
 LGW_RESIZE = .TRUE.
 endif
C
 if(nunit.NE.nunit_save .OR. nunit.LT.0) then
C...nunit changed from previous PLOPEN call or individual plots are desired
C close current PostScript file
 call ps_close
C...set up for new PostScript file
 call ps_setup(nunit)
 endif
C
C...If the prims file is open, rewind to be ready to write from the beginning
 if(LPRIM_OPEN) then
 rewind(NPRIM_UNIT)
 endif
C
 endif
C
C...Initialize selected plot devices
 if(LGW_GEN) call gw_init
 if(LPS_GEN) call ps_init
C
 if(LGW_GEN) then
 if(LGW_CHANGED) write(*,1000) X_WIND, Y_WIND
 1000 format(/1x,'X-window size changed to ',f6.2,'" x',f6.2,'"')
 endif
C
C...Initialize line plot width, pattern, color
 I_PEN = 1
 I_PAT = -1
 I_CLR = 1
 call set_pen(I_PEN)
 call set_pat(I_PAT)
 call set_color(I_CLR)
C
 X_SCALE = 1.0
 Y_SCALE = 1.0
 X_ORG = 0.
 Y_ORG = 0.
 X_LST = 0.
 Y_LST = 0.
C
C...No initial user clipping (clipping only to page size)
 CLP_XMIN = 0.
 CLP_XMAX = X_PAGE
 CLP_YMIN = 0.
 CLP_YMAX = Y_PAGE
C
C
C...Save current call parameters
 relsize_save = relsize
 nunit_save = nunit
C
 return
 end

 subroutine REPLOT(idev)
C
C...Replots plot primitives saved in logging array since last PLOPEN call
c
C idev - as defined in PLOPEN header
C
 include 'pltlib.inc'
 dimension xpoly(MaxPolyLine), ypoly(MaxPolyLine)
C
 idev_old = I_DEV
C
C
 I_DEV = idev
 if(idev.LE.0 .OR. idev.GT.5) I_DEV = idev_old
C
C...Control flags (LGW_COLOR should be already set for current screen)
 LGW_GEN = (I_DEV.EQ.1 .OR. I_DEV.EQ.3 .OR. I_DEV.EQ.5)
 LPS_GEN = (I_DEV.GE.2)
 LPS_COLOR = (I_DEV.GE.4)
C
C...Re-Initialize selected plotting devices
 if(LGW_GEN) call gw_init
 if(LPS_GEN) call ps_init
C
C...Reset plot globals for this plot
 I_PEN = 1
 I_PAT = -1
 I_CLR = 1
 call set_pen(I_PEN)
 call set_pat(I_PAT)
 call set_color(I_CLR)
C
 X_SCALE = 1.0
 Y_SCALE = 1.0
 X_ORG = 0.
 Y_ORG = 0.
 X_LST = 0.
 Y_LST = 0.
C
C...No initial user clipping (clipping only to window limits)
 CLP_XMIN = 0.
 CLP_XMAX = X_PAGE
 CLP_YMIN = 0.
 CLP_YMAX = Y_PAGE
C
 IPOLY = 0
 ICLPMIN = 0
C...Now, go through all the stored plot primitives
 ICNT = -1
 1 call getprim(ICNT,ITYP,IVAL,XVAL,YVAL)
C
 if(ICNT.LT.0) go to 10
C
 if(ITYP.EQ.PageCommand) then
 if(IVAL.EQ.-999) then
 if(LPS_GEN) call ps_endpage
 endif
C
 else if(ITYP.EQ.PlotCommand) then
 call plot_1(XVAL,YVAL,IVAL)
C
C...Not currently using scale info in replots, all X,Y are absolute (HHY)
 else if(ITYP.EQ.ScaleCommand) then
 call set_scl(XVAL,YVAL)
C
 else if(ITYP.EQ.PenCommand) then
 I_PEN = IVAL
C
 else if(ITYP.EQ.PatternCommand) then
 I_PAT = IVAL
C
 else if(ITYP.EQ.ColorCommand) then
 I_CLR = IVAL
C
 else if(ITYP.EQ.PolylinePointCommand) then
 IPOLY = IPOLY+1
 if(IPOLY.GT.MaxPolyline) then
 write(*,*) '*** Error - too many polyline points'
 stop
 endif
 xpoly(IPOLY) = XVAL
 ypoly(IPOLY) = YVAL
C
 else if(ITYP.EQ.PolylineDrawCommand) then
 IPOLY = IPOLY+1
 if(IPOLY.GT.MaxPolyline) then
 write(*,*) '*** Error - too many polyline points'
 stop
 endif
 xpoly(IPOLY) = XVAL
 ypoly(IPOLY) = YVAL
 ifill = IVAL
 call polyline_1(xpoly,ypoly,IPOLY,ifill)
 IPOLY = 0
C
 else if(ITYP.EQ.MinClipCommand) then
 CLPMINX = XVAL
 CLPMINY = YVAL
 ICLPMIN = 1
C
 else if(ITYP.EQ.MaxClipCommand) then
 if(ICLPMIN.NE.1) then
 write(*,*) '*** Error - no previous MinClip stored'
 stop
 endif
 call set_clip(CLPMINX,CLPMINY,XVAL,YVAL)
 ICLPMIN = 0
C
 else
 write(*,*) '? REPLOT -- Illegal Command:', ITYP
C
 endif
 go to 1
C
 10 if(IPOLY.NE.0) then
 write(*,*) '? REPLOT -- No end to polyline command.'
 stop
 endif
 call PLFLUSH
C
 I_DEV = idev_old
 LGW_GEN = (mod(I_DEV,2) .EQ. 1)
 LPS_GEN = (I_DEV .GE. 2)
 LPS_COLOR = (I_DEV .GE. 4)
C
 return
 end

 subroutine PLCLOSE
C---Closes all plotting, no more plots...
C closes any open postscript files
C closes X window
C closes and deletes log file (if used)
 include 'pltlib.inc'
C
 call ps_endpage
 call gw_close
 call ps_close
 if(LPRIM_OPEN) then
 close(unit=NPRIM_UNIT,status='DELETE')
 endif
 return
 end

 subroutine PLEND
C---Ends current plot,
C finishes off current postscript plot page
C ends current X window plot, flushes to display
 include 'pltlib.inc'
C
 call putprim(PageCommand,-999,0.,0.)
 if(LGW_GEN) call gw_endplot
 if(LPS_GEN) call ps_endpage
 return
 end

 subroutine PLOT(x,y,icode)
C---Basic plotting routine, does moves and draws in user coordinates
C with optional reorigin, also can end this plot or all plotting
C x,y coordinates in user units
C icode function code (integer)
C 3 relative move to x,y
C 2 relative line to x,y	
C -2 relative line to x,y and re-origin plotting to x,y
C -3 relative move to x,y and re-origin plotting to x,y
C -999 end this plot page
C +999 end all plotting, close graphics window
C
 include 'pltlib.inc'
C
C...Convert plot coordinates to absolute units and plot
 XABS = xusr2ABS(x)
 YABS = yusr2ABS(y)
 CALL PLOTABS(XABS,YABS,icode)
 return
 end

 subroutine PLOTABS(x,y,icode)
C---Absolute plotting routine, does moves and draws in absolute coordinates
C with optional reorigin, also can end this plot or all plotting
C
C X,Y coordinates in absolute units
C icode function code (integer)
C 3 relative move to X,Y
C 2 relative line to X,Y	
C -2 relative line to X,Y and re-origin plotting to X,Y
C -3 relative move to X,Y and re-origin plotting to X,Y
C -999 end this plot page
C +999 end all plotting, close graphics window
C
 include 'pltlib.inc'
 logical LCODE_OK
C
 icabs = abs(icode)
C
 LCODE_OK = (icabs.EQ.2 .OR. icabs.EQ.3 .OR.
 & icabs.EQ.999)
C
 if(.NOT. LCODE_OK) then
 write(*,*) 'PLOTABS: Unknown function code: ',icode
 write(*,*) ' at point X,Y =',X,Y
 return
 endif
C
C---Check for end of plot page
 if (icode.EQ.-999) then
 call PLEND
C---Check for end of ALL plotting
 elseif(icode.EQ.+999) then
 call PLCLOSE
C
 else
C...Store plot primitive
 call putprim(PlotCommand,icode,X,Y)
C.....Do draw/move call with absolute coordinates
 call plot_1(X,Y,icode)
C
 endif
C
 return
 end

 subroutine POLYLINE(x,y,n,ifill)
C---Basic polyline plotting routine, input in user coordinates
C x,y coordinate arrays in user units
C n number of x,y points
C ifill fill flag, 0 for no fill, 1 for filled polygon
C
 include 'pltlib.inc'
 dimension x(n), y(n)
 dimension XABS(MaxPolyLine), YABS(MaxPolyLine)
C
 if(n.LE.1) return
C...Convert coordinates to absolute coordinates
 do i=1, n
 XABS(i) = xusr2ABS(x(i))
 YABS(i) = yusr2ABS(y(i))
 end do
C...Plot polyline in absolute coordinates
 call POLYLINEABS(XABS,YABS,n,ifill)
 return
 end

 subroutine POLYLINEABS(X,Y,n,ifill)
C---Basic polyline plotting routine, input in absolute coordinates
C X,Y coordinate arrays in absolute units
C n number of X,Y points
C ifill fill flag, 0 for no fill, 1 for filled polygon
C
 include 'pltlib.inc'
 dimension X(n), Y(n)
C
 if(n.LE.1) return
C
C...Store polyline primitives in stored plot array and do polyline plot call
 icode = ifill
 do i=1, n-1
 call putprim(PolylinePointCommand,icode,X(i),Y(i))
 end do
 call putprim(PolylineDrawCommand,icode,X(n),Y(n))
C
C...plot polyline
 call polyline_1(X,Y,n,ifill)
 return
 end

 subroutine GETPEN(ipen)
C...Gets current pen width in pixels
 include 'pltlib.inc'
 ipen = I_PEN
 return
 end

 subroutine NEWPEN(ipen)
C...Sets line width from 1 to 5 (pixels)
 include 'pltlib.inc'
 if(ipen.EQ.I_PEN) return
c
 ip = ipen
 if (ip.GT.5) ip = 5
 if (ip.LT.0) ip = 1
 I_PEN = ip
C...Install pen command into display primitives list
 call putprim(PenCommand,ip,0.,0.)
 return
 end

 subroutine GETPAT(ipat)
C...Gets current line pattern as integer bit pattern
 include 'pltlib.inc'
 ipat = I_PAT
 return
 end

 subroutine NEWPAT(ipat)
C...Sets line pattern using bit pattern in lower 16 bits of ipat
 include 'pltlib.inc'
 if(ipat.EQ.I_PAT) return
c
 I_PAT = ipat
C...Install pattern command into display primitives list
 call putprim(PatternCommand,ipat,0.,0.)
 return
 end

 subroutine GETORIGIN(XORG,YORG)
C...Gets origin of user system in absolute (page) units
 include 'pltlib.inc'
C
 XORG = X_ORG
 YORG = Y_ORG
 return
 end

 subroutine NEWORIGIN(XORG,YORG)
C...Sets origin of user system in absolute (page) units
 include 'pltlib.inc'
C
 X_ORG = XORG
 Y_ORG = YORG
 return
 end

 subroutine GETFACTORS(xscale,yscale)
C...Gets current scale factors in user units
 include 'pltlib.inc'
 xscale = X_SCALE
 yscale = Y_SCALE
 return
 end

 subroutine NEWFACTOR(scale)
C...Sets both plot scale factors to scale
 include 'pltlib.inc'
 call set_scl(scale,scale)
C...Install scale command into display primitives list
 call putprim(ScaleCommand,0,scale,scale)
 return
 end

 subroutine NEWFACTORS(xscale,yscale)
C...Sets plot scale factors
 include 'pltlib.inc'
 call set_scl(xscale,yscale)
C...Install scale command into display primitives list
 call putprim(ScaleCommand,0,xscale,yscale)
 return
 end

 subroutine GETUSERTRANS(XORG,YORG,xscale,yscale)
C...Gets origin and scale factors for user->absolute coordinate transform
 include 'pltlib.inc'
C
 XORG = X_ORG
 YORG = Y_ORG
 xscale = X_SCALE
 yscale = Y_SCALE
 return
 end

 subroutine NEWUSERTRANS(XORG,YORG,xscale,yscale)
C...Sets origin and scale factors for user->absolute coordinate transform
 include 'pltlib.inc'
C
 X_ORG = XORG
 Y_ORG = YORG
 X_SCALE = xscale
 Y_SCALE = yscale
 return
 end

 subroutine GETLASTXY(x,y)
C...Return last x,y plotting location in user coordinates
 include 'pltlib.inc'
C
 call GETLASTXYABS(XABS,YABS)
 x = XABS2usr(XABS)
 y = YABS2usr(YABS)
 return
 end

 subroutine GETLASTXYABS(X,Y)
C...Return last x,y plotting location in user coordinates
 include 'pltlib.inc'
C
 X = X_LST
 Y = Y_LST
 return
 end

 subroutine GETCURSORXY(x,y,chkey)
C...Return current cursor (mouse) x,y location in user coordinates
C...chkey returns the key pressed (instead of mouse click, say)
 include 'pltlib.inc'
 character*1 chkey
C
 call getcursorxyabs(XA,YA,chkey)
C...get user coordinates
 x = XABS2usr(XA)
 y = YABS2usr(YA)
 return
 end

 subroutine GETCURSORXYABS(X,Y,chkey)
C...Return current cursor (mouse) X,Y location in absolute coordinates
C...chkey returns the key pressed (instead of mouse click, say)
 include 'pltlib.inc'
 character*1 chkey
C
 call gw_curs(XZ,YZ,khar)
 chkey = char(khar)
 if(LGW_GEN) call gw_flush
C
C...get absolute coordinates
 X = X_ZM2ABS(XZ)
 Y = Y_ZM2ABS(YZ)
 return
 end

 subroutine GETWINSIZE(XSIZE,YSIZE)
C...Returns current size of graphics window in absolute (page) units
 include 'pltlib.inc'
C
 XSIZE = float(GX_SIZ) / G_SCALE
 YSIZE = float(GY_SIZ) / G_SCALE
 return
 end

 subroutine GETPAGESIZE(XPAGE,YPAGE)
C...Returns current size of page in absolute (page) units
 include 'pltlib.inc'
C
 XPAGE = X_PAGE
 YPAGE = Y_PAGE
 return
 end

 subroutine GETREVVIDEO(lflag)
C...Gets reverse video flag
C Returns lflag = TRUE if reverse video is set
C
 include 'pltlib.inc'
 logical lflag
 lflag = LGW_REVVIDEO
 return
 end

 subroutine WINERASE
C...Erases the graphics area
 include 'pltlib.inc'
 if(LGW_GEN) call gw_clear
 return
 end

 subroutine PLFLUSH
C...Flush out plot components in buffers
 include 'pltlib.inc'
 if(LGW_GEN) call gw_flush
 if(LPS_GEN) call ps_flush
 return
 end

 subroutine DRAWTOSCREEN
C...Sets plotting destination to screen
 include 'pltlib.inc'
C
 call gw_drawtoscreen
 return
 end

 subroutine DRAWTOBUFFER
C...Sets plotting destination to background buffer
 include 'pltlib.inc'
C
 call gw_drawtobuffer
 return
 end

 subroutine SHOWBUFFER
C...Displays contents of background buffer to screen
 include 'pltlib.inc'
C
 call gw_showbuffer
 return
 end

 subroutine NEWCLIP(xmin,xmax,ymin,ymax)
C...Sets clip limits in user coordinates
 include 'pltlib.inc'
C
 X_MIN = xusr2ABS(xmin)
 X_MAX = xusr2ABS(xmax)
 Y_MIN = yusr2ABS(ymin)
 Y_MAX = yusr2ABS(ymax)
 call set_clip(X_MIN,Y_MIN,X_MAX,Y_MAX)
 call putprim(MinClipCommand,0,X_MIN,Y_MIN)
 call putprim(MaxClipCommand,0,X_MAX,Y_MAX)
C
 return
 end

 subroutine NEWCLIPABS(XMIN,XMAX,YMIN,YMAX)
C...Sets clip limits in absolute coordinates
 include 'pltlib.inc'
C
 call set_clip(XMIN,YMIN,XMAX,YMAX)
 call putprim(MinClipCommand,0,XMIN,YMIN)
 call putprim(MaxClipCommand,0,XMAX,YMAX)
C
 return
 end

 subroutine GETCLIP(xmin,xmax,ymin,ymax)
C...Returns clip limits in user coordinates
C
 include 'pltlib.inc'
C
 xmin = XABS2usr(CLP_XMIN)
 xmax = XABS2usr(CLP_XMAX)
 ymin = YABS2usr(CLP_YMIN)
 ymax = YABS2usr(CLP_YMAX)
 return
 end

 subroutine GETCLIPABS(XMIN,XMAX,YMIN,YMAX)
C...Returns clip limits specified in absolute (page) coordinates
C i.e. in inches
C
 include 'pltlib.inc'
C
 XMIN = CLP_XMIN
 YMIN = CLP_YMIN
 XMAX = CLP_XMAX
 YMAX = CLP_YMAX
 return
 end

 subroutine CLRCLIP
C...Resets user clip limits to graphics window limits (no visible clipping)
c
 include 'pltlib.inc'
c
 call set_clip(0.0,0.0,X_PAGE,Y_PAGE)
 call putprim(MinClipCommand,0,0.0 , 0.0)
 call putprim(MaxClipCommand,0,X_PAGE,Y_PAGE)
C
 return
 end

 subroutine GETZOOMABS(XOFF,YOFF,XFAC,YFAC)
C...Returns zoom offsets and scale factors
C XOFF, YOFF are the offsets in absolute coordinates
C XFAC, YFAC are the zoom factors applied to XY'=XYFAC*(XY+XYOFF)
 include 'pltlib.inc'
C
 XOFF = XOFF_ZOOM
 YOFF = YOFF_ZOOM
 XFAC = XFAC_ZOOM
 YFAC = YFAC_ZOOM
C
 return
 end

 subroutine NEWZOOMABS(XOFF,YOFF,XFAC,YFAC)
C...Explicitly sets zoom offsets and scale factors
C The parameters to NEWZOOMABS are the same as output from GETZOOMABS.
C XOFF, YOFF are the offsets in absolute coordinates
C XFAC, YFAC are the zoom factors applied to XY'=XYFAC*(XY+XYOFF)
 include 'pltlib.inc'
C
 XOFF_ZOOM = XOFF
 YOFF_ZOOM = YOFF
 XFAC_ZOOM = XFAC
 YFAC_ZOOM = YFAC
c...Re-draw zoomed plot to X-window only
c call REPLOT(1)
C
 return
 end

 subroutine USETZOOM(LXYSAME,LCURSOR)
C...User interactively sets zoom box, either by mouse selection, or
C by asking for coordinates of the zoom rectangle
 logical LXYSAME,LCURSOR
 include 'pltlib.inc'
c
C...Get zoom parameters from user
 call set_zoom(XOFF_ZOOM,YOFF_ZOOM,XFAC_ZOOM,YFAC_ZOOM,
 & LXYSAME,LCURSOR)
c...Re-draw zoomed plot to X-window only
c call REPLOT(1)
 return
 end

 subroutine CLRZOOM
C...Resets zoom parameters to no-zoom condition
 include 'pltlib.inc'
 call NEWZOOMABS(0.,0.,1.,1.)
 return
 end

 function XABS2usr(X)
C...Converts absolute X to user x
 include 'pltlib.inc'
 XABS2usr = (X - X_ORG)/X_SCALE
 return
 end

 function YABS2usr(Y)
C...Converts absolute Y to user y
 include 'pltlib.inc'
 YABS2usr = (Y - Y_ORG)/Y_SCALE
 return
 end

 function xusr2ABS(x)
C...Converts user x to absolute X
 include 'pltlib.inc'
 xusr2ABS = x*X_SCALE + X_ORG
 return
 end

 function yusr2ABS(y)
C...Converts user y to absolute Y
 include 'pltlib.inc'
 yusr2ABS = y*Y_SCALE + Y_ORG
 return
 end

 subroutine PLGRID (x,y,nx,xd,ny,yd,lmask)
C...Generates linear and non-linear grid patterns (with line masks)
C
C Where: x,y user coordinate of lower lefthand corner of
c the grid to be generated.
c
c nx number of intervals in the x direction
c if 'nx' is greater than 1000, then argument
c 'xd' will be treated as an array of interval values
c with 'nx-1000' elements. '-nx' indicates that the
c actual vertical line generations are to be suppressed.
c xd (nx<1000) user coordinate distance between uniformly
c spaced vertical lines
c (nx>1000) an array of values for spacing vertical
c lines at varying intervals
c
c ny number of intervals in the y direction.
c if 'ny' is greater than 1000, then argument
c 'yd' will be treated as an array of interval values
c with 'ny-1000' elements. '-ny' indicates that the
c actual horizontal line generations are to be suppressed.
c yd (ny<1000) user coordinate distance between uniformly
c spaced horizontal lines
c (ny>1000) an array of values for spacing horizontal
c lines at varying intervals
c
c lmask line mask bit pattern to be used in generating
c the gridded form.
c
c calls: PLGRIDABS
C
 DIMENSION xd(*),yd(*)
 DIMENSION XDABS(500), YDABS(500)

C
 XABS = xusr2ABS(x)
 YABS = yusr2ABS(y)
 call GETFACTORS(xscale,yscale)
 XDABS(1) = xscale*xd(1)
 YDABS(1) = yscale*yd(1)
C
C...Decode grid interval information and scale arrays if necessary
 MX = IABS(nx)
 if(MX.GT.1000) then
 JX = MX/1000
 MX = MX - JX*1000
 do i=2, MX
 XDABS(i) = xscale*xd(i)
 end do
 ENDIF
 MY = IABS(ny)
 if(MY.GT.1000) then
 JY = MY/1000
 MY = MY - JY*1000
 do i=2, MY
 YDABS(i) = yscale*yd(i)
 end do
 ENDIF
C
C...Call absolute coordinate routine
 call PLGRIDABS(XABS,YABS,nx,XDABS,ny,YDABS,lmask)
 RETURN
 END

 subroutine PLGRIDABS(X,Y,nx,XD,ny,YD,lmask)
C...Generates linear and non-linear grid patterns (with line masks)
C
C Where: X,Y absolute coordinate of lower lefthand corner of
c the grid to be generated.
c
c nx number of intervals in the x direction
c if 'nx' is greater than 1000, then argument
c 'xd' will be treated as an array of interval values
c with 'nx-1000' elements. '-nx' indicates that the
c actual vertical line generations are to be suppressed.
c XD (nx<1000) absolute coordinate distance between uniformly
c spaced vertical lines
c (nx>1000) an array of values for spacing vertical
c lines at varying intervals
c
c ny number of intervals in the y direction.
c if 'ny' is greater than 1000, then argument
c 'yd' will be treated as an array of interval values
c with 'ny-1000' elements. '-ny' indicates that the
c actual horizontal line generations are to be suppressed.
c YD (ny<1000) absolute coordinate distance between uniformly
c spaced horizontal lines
c (ny>1000) an array of values for spacing horizontal
c lines at varying intervals
c
c lmask line mask bit pattern to be used in generating
c the gridded form.
c
c calls: PLOTABS
C
 DIMENSION XD(*),YD(*)
C
C...Decode grid interval information
 MX = IABS(nx)
 MY = IABS(ny)
 JX = MX/1000
 JY = MY/1000
 MX = MX - JX*1000
 MY = MY - JY*1000
C
C...Save and set line mask pattern
 LMSK = LMASK
 CALL GETPAT(IMASK)
 CALL NEWPAT(LMSK)
C
C...Set x ordinates for horizontal lines
 X1 = X
 X2 = X + XD(1)*FLOAT(MX)
C
C...Check for 'xd' single value or array
 IF (JX.NE.0) THEN
C...'XD' array, recompute right x ordinate
 X2 = X
 DO I=1,MX
 X2 = X2 + XD(I)
 END DO
 ENDIF
C
C...Generate horizontal lines
 Y2 = Y
 IF (NY.GT.0) THEN
 CALL PLOTABS(X1,Y2,+3)
 CALL PLOTABS(X2,Y2,+2)
 ENDIF
 J = 1
 DO I=1,MY
 Y2 = Y2 + YD(J)
 IF (NY.GT.0) THEN
 CALL PLOTABS(X1,Y2,+3)
 CALL PLOTABS(X2,Y2,+2)
 ENDIF
 J = J + JY
 END DO
C
C...Generate vertical lines
 IF (NX.GT.0) THEN
 Y1 = y
 CALL PLOTABS(X1,Y1,+3)
 CALL PLOTABS(X1,Y2,+2)
 J = 1
 DO I=1,MX
 X1 = X1 + XD(J)
 CALL PLOTABS(X1,Y1,+3)
 CALL PLOTABS(X1,Y2,+2)
 J = J + JX
 END DO
 ENDIF
C
C...Restore line mask pattern
 CALL NEWPAT(IMASK)
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/plt_color.f

C***
C Module: plt_color.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C***
C --- Xplot11 color plotting routines
C
C Version 4.46 11/28/01
C
C Note: These routines implement the interface to setup, select and
C query colors in the XPLOT11 plot package.
C***
C
C The default colormap defines these colors and associated color indices
C (before the user defines any more)...
C BLACK = 1
C WHITE = 2
C YELLOW = 3
C ORANGE = 4
C RED = 5
C GREEN = 6
C CYAN = 7
C BLUE = 8
C MAGENTA = 9
C VIOLET = 10

 subroutine NEWCOLOR(icol)
C...Sets color by composite color index
C color is set by the map index (for +icol)
C or spectrum index (for -icol)
C Color map indices run from 0 -> N_COLORS
C Color spectrum indices run from -1 -> -N_SPECTRUM
C
C (see colormap subroutines below for setting colormap colors)
C
 include 'pltlib.inc'
c
 if(icol.GT.0) then
 if(icol.GT.N_COLOR) then
 write(*,*) 'NEWCOLOR: color index out of bounds: ',
 & icol,N_COLOR
 return
 endif
 icindex = icol
 else
 if(-icol.GT.N_SPECTRUM) then
 write(*,*) 'NEWCOLOR: spectrum index out of bounds: ',
 & -icol,N_SPECTRUM
 return
 endif
 icindex = IFIRST_SPECTRUM - icol - 1
 endif
c
C...Skip if this is the current color
 if(icindex.EQ.I_CLR) return
c
C...Install color command into display primitives list
 I_CLR = icindex
 call putprim(ColorCommand,I_CLR,0.,0.)
c
 return
 end

 subroutine GETCOLOR(icol)
C...Returns current foreground color composite index
C if icol>0 the index is the color table index (non-spectrum colors)
C if icol<0 the index is -(color spectrum index)
C
 include 'pltlib.inc'
 if(I_CLR.ge.IFIRST_SPECTRUM .and.
 & I_CLR.le.IFIRST_SPECTRUM+N_SPECTRUM-1) then
 icol = IFIRST_SPECTRUM - I_CLR - 1
 else
 icol = I_CLR
 endif
 return
 end

 subroutine GETCOLORINDEX(icindex)
C...Returns color table index (not spectrum color index)
C of current foreground color table index (icindex runs from 0 -> N_COLOR)
C
 include 'pltlib.inc'
 icindex = I_CLR
 return
 end

 subroutine NEWCOLORNAME(colorname)
C...Sets color for plotting by named string
C (to circumvent knowing the color table index)
C Valid color names (either upper or lower case) are found by
C running the X11 command: showrgb
C
 character colorname*(*), colorin*22
 include 'pltlib.inc'
c
C...Convert input color to uppercase
 colorin = colorname
 call convrt2uc(colorin)
c
C...Search for color name in current colortable
 do ic = 1, N_COLOR
c write(*,*) 'colorbyname table ic=',ic,' ',colorin,' ',
c & COLOR_NAME(ic),' ci ',G_COLOR_CINDEX(ic)
 if(colorin.eq.COLOR_NAME(ic)) then
 call NEWCOLOR(ic)
 return
 endif
 end do
c
C...Add new color to colortable
C...Get RGB components for named color
 call gw_cname2rgb(colorname,ired,igreen,iblue)
c write(*,*) 'cname->rgb ',colorname, ired,igreen,iblue
c
 if (ired.ge.0) then
 N = N_COLOR + 1
 if(N.gt.Ncolors_max) then
 write(*,*)
 & 'NEWCOLORNAME: Colortable overflow. New color ignored.'
 return
 endif
 G_COLOR_CINDEX(N) = -1
 COLOR_RGB(N) = iblue + 256*(igreen + 256*ired)
 COLOR_NAME(N) = colorin
 N_COLOR = N
 call NEWCOLOR(N)
 else
 write(*,*)
 & 'NEWCOLORNAME: Color not found ',colorname
 endif
c
 return
 end

 subroutine NEWCOLORRGB(ired,igreen,iblue)
C...Sets color for plotting by R,G,B components
C (to circumvent knowing the color table index)
C Valid color components for red,green,blue run from 0-255
C
 include 'pltlib.inc'
c
C...Search for r,g,b color in current colortable
 do ic = 1, N_COLOR
 irgb = iblue + 256*(igreen + 256*ired)
c write(*,*) 'NEWCOLORRGB table ic=',ic,' ',irgb,' ',
c & COLOR_RGB(ic),
c & COLOR_NAME(ic),' ci ',G_COLOR_CINDEX(ic)
 if(irgb.eq.COLOR_RGB(ic)) then
 call NEWCOLOR(ic)
 return
 endif
 end do
c
 N = N_COLOR + 1
 if(N.gt.Ncolors_max) then
 write(*,*)
 & 'NEWCOLORRGB: Colortable overflow. New color ignored.'
 return
 endif
 G_COLOR_CINDEX(N) = -1
 COLOR_RGB(N) = iblue + 256*(igreen + 256*ired)
 COLOR_NAME(N) = 'RGBCOLOR'
 N_COLOR = N
 call NEWCOLOR(N)
 return
 end

 subroutine GETCOLORRGB(icol,ired,igrn,iblu,colorname)
C...Gets color information for color designated by index icol
C if icol<=0, color -icol in Spectrum is queried
C Returns ired - red color component (0-255) (-1 if no color)
C igrn - green color component (0-255) (-1 if no color)
C iblu - blue color component (0-255) (-1 if no color)
C colorname - name of current color (lowercase)
C
 include 'pltlib.inc'
 character*(*) colorname
C
C...First assume color "icol" does not exist
 ired = -1
 igrn = -1
 iblu = -1
 colorname = ' '
c
 if(icol.GT.0) then
 ic = icol
 else
 if(-icol.GT.N_SPECTRUM) then
 write(*,*) 'GETCOLORRGB: spectrum index out of bounds: ',
 & -icol,N_SPECTRUM
 return
 endif
 ic = IFIRST_SPECTRUM - icol - 1
 endif
c
 if(ic.GT.N_COLOR) then
 write(*,*) 'GETCOLORRGB: color index out of bounds: ',
 & ic,N_COLOR
 return
 endif
c
 irgb = COLOR_RGB(ic)
 irg = irgb/256
 ired = irg/256
 igrn = irg - 256*ired
 iblu = irgb - 256*irg
 colorname = COLOR_NAME(ic)
c
 return
 end

 subroutine convrt2uc(input)
C...Convert string to uppercase
C Note that the string must be writeable (a variable, not a constant)
c
 character*(*) input
 character*26 lcase, ucase
 data lcase /'abcdefghijklmnopqrstuvwxyz'/
 data ucase /'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/
c
 n = len(input)
 do i=1, n
 k = index(lcase, input(i:i))
 if(k.gt.0) input(i:i) = ucase(k:k)
 end do
c
 return
 end

 subroutine GETNUMCOLOR(ncol)
C...Gets current number of defined colors
C
 include 'pltlib.inc'
 ncol = N_COLOR
 return
 end

 subroutine GETNUMSPECTRUM(nspec)
C...Gets current number of defined colors in Spectrum
C
 include 'pltlib.inc'
 nspec = N_SPECTRUM
 return
 end

 subroutine COLORMAPDEFAULT
C
C...Creates default colormap palette containing a small number of basic
C colors defined in DATA statement below. The first two colors
C are used as the default foreground and background.
C
C The default colormap contains these defined colors
C BLACK = 1
C WHITE = 2
C YELLOW = 3
C ORANGE = 4
C RED = 5
C GREEN = 6
C CYAN = 7
C BLUE = 8
C MAGENTA = 9
C VIOLET = 10
C
C These colors are then accessible by a normal NEWCOLOR(icol) call:
C icol = 1 .. NCMAP
C
C Also installs the RGB components of these colors and these color
C names in the color table. The colorindex is set to -1 to indicate
C that the color has not yet been mapped to the screen color hardware
C (this step happens the first time the color is actually used).
C
 include 'pltlib.inc'
c
 PARAMETER (NCMAP=10)
C
 INTEGER DEFCMAPRGB1(3,NCMAP), DEFCMAPRGB0(3,NCMAP)
 CHARACTER*10 DEFCMAPNAMES(NCMAP)
c
 SAVE ifirst
 DATA ifirst / 0 /
c
c DATA ((DEFCMAPRGB(L,I),L=1,3),I=1,NCMAP)
c & / 0, 0, 0, ! black
c & 255, 255, 255, ! white
c & 255, 0, 0, ! red
c & 255, 165, 0, ! orange
c & 255, 255, 0, ! yellow
c & 0, 255, 0, ! green
c & 0, 255, 255, ! cyan
c & 0, 0, 255, ! blue
c & 148, 0, 211 / ! violet
c & 255, 0, 255, ! magenta
C
C---- hues for reverse-video (black background), use full saturation
 DATA ((DEFCMAPRGB1(L,I),L=1,3),I=1,NCMAP)
 & / 0, 0, 0, ! black
 & 255, 255, 255, ! white
 & 255, 0, 0, ! red
 & 255, 165, 0, ! orange
 & 255, 255, 0, ! yellow
 & 0, 255, 0, ! green
 & 0, 255, 255, ! cyan
 & 30, 140, 255, ! blue
 & 205, 55, 255, ! violet
 & 255, 0, 255 / ! magenta
C
C---- hues for regular-video (white background), use partial saturation
 DATA ((DEFCMAPRGB0(L,I),L=1,3),I=1,NCMAP)
 & / 0, 0, 0, ! black
 & 255, 255, 255, ! white
 & 255, 0, 0, ! red
 & 255, 165, 0, ! orange
 & 220, 220, 0, ! yellow
 & 0, 225, 0, ! green
 & 0, 210, 210, ! cyan
 & 30, 140, 255, ! blue
 & 205, 55, 255, ! violet
 & 255, 0, 255 / ! magenta
C
 DATA DEFCMAPNAMES
 & / 'BLACK ',
 & 'WHITE ',
 & 'RED ',
 & 'ORANGE ',
 & 'YELLOW ',
 & 'GREEN ',
 & 'CYAN ',
 & 'BLUE ',
 & 'VIOLET ',
 & 'MAGENTA ' /
C
c
C---Initialize the colormap indices for first call
 if(ifirst.EQ.0) then
 N_COLOR = 0
 N_SPECTRUM = 0
 IFIRST_SPECTRUM = 0
 ifirst = 1
 endif
C
C--- Skip installing new default map if there already are NCMAP colors
 if(N_COLOR.EQ.NCMAP) return
C
C--- Flush current colormap if any, to free up space for new map
 if(N_COLOR.GT.0) call gw_newcmap
c
C--- Fill in the colormap with with the default colors and set colorindex
C to -1 to indicate that the color is still unallocated by hardware
 IF(LGW_REVVIDEO) THEN
 do n = 1, NCMAP
 ired = DEFCMAPRGB1(1,n)
 igrn = DEFCMAPRGB1(2,n)
 iblu = DEFCMAPRGB1(3,n)
 COLOR_RGB(n) = iblu + 256*(igrn + 256*ired)
 COLOR_NAME(n) = DEFCMAPNAMES(n)
 G_COLOR_CINDEX(n) = -1
 end do
 ELSE
 do n = 1, NCMAP
 ired = DEFCMAPRGB0(1,n)
 igrn = DEFCMAPRGB0(2,n)
 iblu = DEFCMAPRGB0(3,n)
 COLOR_RGB(n) = iblu + 256*(igrn + 256*ired)
 COLOR_NAME(n) = DEFCMAPNAMES(n)
 G_COLOR_CINDEX(n) = -1
 end do
 ENDIF
C
 N_COLOR = NCMAP
c write(*,*) 'COLORMAPDEFAULT: NCOLOR ',N_COLOR
C
 return
 end

 subroutine COLORSPECTRUMHUES(ncols,HUESTR)
 character*(*) HUESTR
C
C...Sets up a color "Spectrum" table that gives a continuous
C blend between a small number of base colors specified in the
C character string HUESTR, which can be "RYGCBM" or any subset thereof.
C
C The RGB components associated with each specified color are set in
C the DATA statement below. These colors are appended to any existing
C colormap data, typically set up by COLORMAPDEFAULT.
C
C These Spectrum colors are then accessible by NEWCOLOR(-icol)
C -icol = 1 .. ncols
C
C NOTE: The maximum number of colors available to the Spectrum is LESS
C than the screen depth would indicate. Some of the X colormap
C is used by other X window applications, typically this will be
C around 30-40 colormap entries. So, for an 8 bit depth, this
C leaves around 220 or so available for use, only 210 or so after
C the Palette colors (typ. 10) are assigned. Less are available
C if other applications are using the X colormap.
C
 include 'pltlib.inc'
c
C
C...RGB components of the Spectrum-defining base colors
C COLWIDTH controls the relative extent of that defining color
C
 parameter (NRGB = 7)
 dimension irgbhue(3,NRGB), huewidth(NRGB)
C
 DIMENSION IRGBTABLE(3,NRGB)
 DIMENSION COLORWIDTH(NRGB)
 CHARACTER*(NRGB) COLORCHARS
c
 DATA COLORCHARS / 'MBCGYOR' /
 DATA ((IRGBTABLE(L,I),L=1,3),COLORWIDTH(I), I=1, NRGB)
 & / 240, 0, 240, 1.5, ! Magenta
 & 32, 32, 255, 1.0, ! Blue
 & 0, 240, 240, 1.0, ! Cyan
 & 32, 255, 32, 1.0, ! Green
 & 240, 240, 0, 1.0, ! Yellow
 & 255, 160, 0, 1.0, ! Orange
 & 255, 32, 32, 1.5 / ! Red
C Red Green Blue
C
 call convrt2uc(HUESTR)
 nhuemax = len(HUESTR)
c
 nhue = 0
 do k=1, nhuemax
 i = index(COLORCHARS , HUESTR(k:k))
 if(i.ne.0) then
 nhue = nhue + 1
 irgbhue(1,nhue) = IRGBTABLE(1,i)
 irgbhue(2,nhue) = IRGBTABLE(2,i)
 irgbhue(3,nhue) = IRGBTABLE(3,i)
 huewidth(nhue) = COLORWIDTH(i)
 endif
 enddo
c
 CALL COLORSPECTRUMTRP(ncols,nhue,irgbhue,huewidth)
C
 return
 end

 subroutine COLORSPECTRUMTRP(ncols,NBASE,IRGBBASE,COLWIDTH)
C...Interpolates a color "Spectrum" table of 1..ncols colors that are
C a continuous blend between a small number of defined base colors.
C The blending between the base colors is controlled by the color
C "width" COLWIDTH.
C
C Input:
C ncols number desired interpolated colors in spectrum
C NBASE number base colors defined in IRGBBASE
C IRGBBASE array(3,*) of integer RGB components for the base colors
C COLWIDTH color pseudo "width" to use for interpolation
C
C Overwrites the definition of any existing Spectrum.
C
C
 DIMENSION IRGBBASE(3,NBASE)
 DIMENSION COLWIDTH(NBASE)
C
 include 'pltlib.inc'
C
 DIMENSION COLAXIS(NColors_max), IRGBTBL(3,NColors_max)
c
 if(NBASE.GT.NColors_max)
 & STOP 'COLORSPECTRUM: Local IRGBBASE array overflow.'
C
C
C---Don't allow less than 2 spectrum colors defined by interpolation table
 if(ncols.LT.2) return
c
C--- Check to make sure we have enough room in the color table
 if(N_COLOR+ncols+1 .gt. Ncolors_max) then
 write(*,*) 'COLORSPECTRUMTRP: Too many colors specified.'
 return
 endif
C
 COLAXIS(1) = 0.
 do ibase=2, NBASE
 COLAXIS(ibase) = COLAXIS(ibase-1)
 & + 0.5*(COLWIDTH(ibase-1)+COLWIDTH(ibase))
 if(COLAXIS(ibase) .LE. COLAXIS(ibase-1))
 & STOP 'COLORSPECTRUM: Non-monotonic color axis. Check COLWIDTH.'
 enddo
C
C--- Now fill in the rgb table for the Spectrum colors,
C interpolating colors between the entries in the passed-in color table
 ibase = 1
 do i = 1, ncols
 xcol = COLAXIS(NBASE) * float(i-1)/float(ncols-1)
c
 5 xnorm = (xcol -COLAXIS(ibase))
 & / (COLAXIS(ibase+1)-COLAXIS(ibase))
c
 if(xnorm.GT.1.0 .AND. ibase.LT.NBASE) then
 ibase = ibase + 1
 go to 5
 endif
c
 w0 = COLWIDTH(ibase)
 w1 = COLWIDTH(ibase+1)
 frac = w1*xnorm / (w0 + (w1-w0)*xnorm)
C
 red0 = float(IRGBBASE(1,ibase))
 grn0 = float(IRGBBASE(2,ibase))
 blu0 = float(IRGBBASE(3,ibase))
 red1 = float(IRGBBASE(1,ibase+1))
 grn1 = float(IRGBBASE(2,ibase+1))
 blu1 = float(IRGBBASE(3,ibase+1))
c
 IRGBTBL(1,i) = ifix((red0 + frac*(red1-red0)) + 0.5)
 IRGBTBL(2,i) = ifix((grn0 + frac*(grn1-grn0)) + 0.5)
 IRGBTBL(3,i) = ifix((blu0 + frac*(blu1-blu0)) + 0.5)
 end do
 call COLORSPECTRUMRGB(ncols,IRGBTBL)
c
 return
 end

 subroutine COLORSPECTRUMRGB(NRGB,IRGB)
C...Sets up a color "Spectrum" table for NRGB colors that are
C defined by r,g,b values (0-255) in the IRGB array.
C
C Input:
C NRGB number r,g,b colors defined in IRGB
C IRGB array(3,*) of integer RGB components for the colors
C
C Overwrites any existing Spectrum.
C
 DIMENSION IRGB(3,NRGB)
C
 include 'pltlib.inc'
C
 if(N_COLOR.LE.0 .OR. N_COLOR.GT.10) then
 CALL COLORMAPDEFAULT
 endif
C
C--- Check to make sure we have enough room in the color table
 if(N_COLOR+NRGB .gt. Ncolors_max) then
 write(*,*) 'COLORSPECTRUMRGB: Too many colors specified.'
 return
 endif
C
C--- starting index of Spectrum in colormap arrays
 IFIRST_SPECTRUM = N_COLOR + 1
C
C--- Now fill in the Spectrum colors from the passed-in color table
 do i = 1, NRGB
 ired = IRGB(1,i)
 igrn = IRGB(2,i)
 iblu = IRGB(3,i)
C
 IC = IFIRST_SPECTRUM + i - 1
c
 COLOR_RGB(IC) = iblu + 256*(igrn + 256*ired)
 COLOR_NAME(IC) = 'SPECTRUM'
 G_COLOR_CINDEX(IC) = -1
 end do
c
 N_SPECTRUM = NRGB
 N_COLOR = IC
c write(*,*) 'COLORSPECTRUMRGB: NCOLOR,NSPECTRUM ',N_COLOR,N_SPECTRUM
c
 return
 end

 subroutine LWR2UPR(INPUT)
 CHARACTER*(*) INPUT
C
 CHARACTER*26 LCASE, UCASE
 DATA LCASE / 'abcdefghijklmnopqrstuvwxyz' /
 DATA UCASE / 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' /
C
 N = LEN(INPUT)
C
 do I=1, N
 K = INDEX(LCASE , INPUT(I:I))
 IF(K.GT.0) INPUT(I:I) = UCASE(K:K)
 end do
C
 return
 end

XFOILinterface/XFOIL/plotlib/plt_font.f

C***
C Module: plt_font.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C***
C --- Font-related utility routines
C
C--- in user-coordinates...
C PLNUMB - formats and plots a number (using PLCHAR)
C PLCHAR - plots characters using CHAR font (WYSIWYG ASCII)
C PLSLAN - plots characters using SLAN font (slanted ASCII)
C PLMATH - plots characters using MATH font (LaTex-like symbols)
C PLSYMB - plots plot-point symbol
C
C--- similarly, in absolute coordinates
C PLNUMBABS - formats and plots a number
C PLCHARABS - plots characters using CHAR font (normal ASCII)
C PLSLANABS - plots characters using SLAN font (slanted ASCII)
C PLMATHABS - plots characters using MATH font (LaTex-like symbols)
C PLSYMBABS - plots plot-point symbol
C
C Version 4.46 11/28/01
C
C Notes: These routines require the include files that define the
C stroked fonts CHAR, MATH, SLAN, SYMB.
C***

 subroutine PLNUMB(xc,yc,chx,FPN,ANGLE,ndig)
C--
C Plots a floating-point number as a string of characters
C
C xc,yc = user coordinate position for plotting first character
C (lower left point)
C if xc=999. the last x plotting position is used
C if yc=999. the last y plotting position is used
C chx = character width in x (user coordinate length)
C FPN = floating-point number to be plotted
C ANGLE = angle of character string (degrees from x-axis)
C ndig = specification of the number of digits and the type
C of numeric string to be plotted (integer)
C > 0 = number of digits to the right of the decimal
C point to be plotted (last digit is rounded)
C = 0 = rounded integer portion of fpn is plotted
C with a decimal point
C = -1 = rounded integer portion of fpn is plotted
C without the decimal point
C < -1 = rounded integer portion of fpn is plotted
C after having the least significant digits
C truncated (IABS(NDID)-1 digits are truncated)
C
C CALLS: GETFACTORS, PLNUMABS
C--
C
C---Convert user coordinates and size to absolute coordinates
 XABS = xc
 YABS = yc
 if (xc.NE.999.) XABS = xusr2ABS(xc)
 if (yc.NE.999.) YABS = yusr2ABS(yc)
 call GETFACTORS(xscale,yscale)
 CHXABS = xscale*chx
C---Call absolute coordinate routine
 CALL PLNUMBABS(XABS,YABS,CHXABS,FPN,ANGLE,ndig)
C
 RETURN
 END

 subroutine PLCHAR(xc,yc,chx,STRING,ANGLE,nc)
C--
C Plots character string with standard character font
C
C xc,yc = user coordinate position for first character in string
C if xc=999. the last x plotting position is used
C if yc=999. the last y plotting position is used
C chx = character width (user coordinates)
C STRING = character string to plot with nc characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C nc = number of characters to plot
C if nc<0 the length of the string is determined automatically
C
C Character plotting uses the vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 16,16)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETFACTORS, PLCHARABS
C--
 CHARACTER*(*) STRING
C
C---Convert user coordinates and size to absolute coordinates
 XABS = xc
 YABS = yc
 if (xc.NE.999.) XABS = xusr2ABS(xc)
 if (yc.NE.999.) YABS = yusr2ABS(yc)
 call GETFACTORS(xscale,yscale)
 CHXABS = xscale*chx
C---Call absolute coordinate routine
 CALL PLCHARABS(XABS,YABS,CHXABS,STRING,ANGLE,nc)
C
 RETURN
 END

 subroutine PLSLAN(xc,yc,chx,STRING,ANGLE,nc)
C--
C Plots character string with slanted character font
C
C xc,yc = user coordinate position for first character in string
C if xc=999. the last x plotting position is used
C if yc=999. the last y plotting position is used
C chx = character width (user coordinates)
C STRING = character string to plot with nc characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C nc = number of characters to plot
C if nc<0 the length of the string is determined automatically
C
C Character plotting uses the vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 16,16)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETFACTORS, PLCHARABS
C--
 CHARACTER*(*) STRING
C
C---Convert user coordinates and size to absolute coordinates
 XABS = xc
 YABS = yc
 if (xc.NE.999.) XABS = xusr2ABS(xc)
 if (yc.NE.999.) YABS = yusr2ABS(yc)
 call GETFACTORS(xscale,yscale)
 CHXABS = xscale*chx
C---Call absolute coordinate routine
 CALL PLSLANABS(XABS,YABS,CHXABS,STRING,ANGLE,nc)
C
 RETURN
 END

 subroutine PLMATH(xc,yc,chx,STRING,ANGLE,nc)
C--
C Plots character string with math character font
C
C xc,yc = user coordinate position for first character in string
C if xc=999. the last x plotting position is used
C if yc=999. the last y plotting position is used
C chx = character width (user coordinates)
C STRING = character string to plot with nc characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C nc = number of characters to plot
C if nc<0 the length of the string is determined automatically
C
C Character plotting uses the vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 16,16)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETFACTORS, PLMATHABS
C--
 CHARACTER*(*) STRING
C
C---Convert user coordinates and size to absolute coordinates
 XABS = xc
 YABS = yc
 if (xc.NE.999.) XABS = xusr2ABS(xc)
 if (yc.NE.999.) YABS = yusr2ABS(yc)
 call GETFACTORS(xscale,yscale)
 CHXABS = xscale*chx
C---Call absolute coordinate routine
 CALL PLMATHABS(XABS,YABS,CHXABS,STRING,ANGLE,nc)
C
 RETURN
 END

 subroutine PLSYMB(xc,yc,chx,ISYM,ANGLE,nc)
C--
C Plots a symbol with symbol font indexed by integer
C
C xc,yc = user coordinate position for plotting symbol
C if xc=999. the last x plotting position is used
C if yc=999. the last y plotting position is used
C chx = symbol width
C ISYM = integer to select symbol (0..?)
C ANGLE = angle for symbol (radians, positive is righthanded rotation)
C nc = 0 just move to x,y before plotting symbol
C .ne.0 draw line to x,y before plotting symbol
C
C Plots a symbol using vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 48,48)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETFACTORS, PLSYMBABS
C--
 INTEGER ISYM
C
C---Convert user coordinates and size to absolute coordinates
 XABS = xc
 YABS = yc
 if (xc.NE.999.) XABS = xusr2ABS(xc)
 if (yc.NE.999.) YABS = yusr2ABS(yc)
 call GETFACTORS(xscale,yscale)
 CHXABS = xscale*chx
C---Call absolute coordinate routine
 CALL PLSYMBABS(XABS,YABS,CHXABS,ISYM,ANGLE,nc)
C
 RETURN
 END

 subroutine PLNUMBABS(XC,YC,CHX,FPN,ANGLE,ndig)
C--
C Plots a floating-point number as a string of characters
C
C XC,YC = absolute coordinate position for plotting first character
C (lower left point)
C if XC=999. the last x plotting position is used
C if YC=999. the last y plotting position is used
C CHX = character width in x (absolute coordinate length)
C FPN = floating-point number to be plotted
C ANGLE = angle of character string (degrees from x-axis)
C ndig = specification of the number of digits and the type
C of numeric string to be plotted (integer)
C > 0 = number of digits to the right of the decimal
C point to be plotted (last digit is rounded)
C = 0 = rounded integer portion of fpn is plotted
C with a decimal point
C = -1 = rounded integer portion of fpn is plotted
C without the decimal point
C < -1 = rounded integer portion of fpn is plotted
C after having the least significant digits
C truncated (IABS(NDID)-1 digits are truncated)
C
C CALLS: PLCHARABS
C--
 CHARACTER*1 MINUS, POINT, CHDIG
 DATA MINUS/'-'/, POINT/'.'/
C
 IZERO = ichar('0')
C
 T1 = FPN
 XX = XC
 YY = YC
C...Number negative?
 IF (T1 .LT. 0.0) THEN
 CALL PLCHARABS(XX,YY,CHX,MINUS,ANGLE,1)
 xx = 999.
 yy = 999.
 T1 = -T1
 ENDIF
C
C...Set working digit count
 ND = -ndig
C
C...Integer only to be plotted?
 IF (ndig.LE.0) THEN
C...Round and truncate for integer
 IF(ndig.EQ.0) ND = 1
 ND = ND - 1
 T2 = FLOAT(IFIX((T1 + 0.5)/(10.**ND))) + 0.5
 ND = 0
 IF (ndig.EQ.0) ND = -1
 ELSE
C...Round for fraction
 T2 = T1 + 0.5/(10.**ndig)
 ENDIF
C
C...Find number of digits to the left of decimal point
 NL = 1
C...Any more digits to the left of the d.p.
 60 IF (T2 .GE. 10.) THEN
 T2 = T2/10.
 NL = NL + 1
 GO TO 60
 ENDIF
C
C...Set plottable digit count
 NP = NL - ND
C...Bad digit count?
 IF (NP.LE.0) NP = 1
C
C...Plot decimal point (NL=0)
 80 IF(NL.EQ.0) THEN
C...No decimal point?
 IF (ndig.LT.0) GO TO 120
 CALL PLCHARABS(XX,YY,CHX,POINT,ANGLE,1)
 IF (ndig.NE.0) NP = NP + 1
 ELSE
C...Plot digit
 IDIG = IFIX(T2)
 T2 = (T2 - FLOAT (IDIG))*10.
 CHDIG = char(IDIG + IZERO)
 CALL PLCHARABS(XX,YY,CHX,CHDIG,ANGLE,1)
 ENDIF
 xx = 999.
 yy = 999.
C
C...Count digit
 NP = NP - 1
 120 NL = NL - 1
C
C...More digits to plot?
 IF(NP.GT.0) GO TO 80
 RETURN
 END

 subroutine PLCHARABS(XC,YC,CHX,STRING,ANGLE,nc)
C--
C Plots character string with standard character font
C
C XC,YC = absolute coordinate position for first character in string
C if XC=999. the last x plotting position is used
C if YC=999. the last y plotting position is used
C CHX = character width in x (absolute coordinate length)
C STRING = character string to plot with nc characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C nc = number of characters to plot
C if nc<0 the length of the string is determined automatically
C
C Character plotting uses the vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 16,16)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETLASTXYABS, GETPAT, NEWPAT, PLOTABS
C--
 CHARACTER*(*) STRING
C
 INCLUDE 'CHAR.INC'
C
 DATA PI /3.1415926535897932384/
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 XX = XC
 YY = YC
C---- if XC=999. or YC=999. get last x,y character plotting position
 IF (xc.EQ.999. .OR. yc.EQ.999.) THEN
 CALL GETLASTXYABS(XCHR,YCHR)
 IF(XC.EQ.999.) XX = XCHR
 IF(YC.EQ.999.) YY = YCHR
 ENDIF
C
C---- get the old line pattern, only plot characters & symbols with solid lines
 CALL GETPAT(lmask)
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(-1)
 ENDIF
C
C---- if number of characters
 ncc = nc
 if(ncc.LT.0) ncc = LEN(STRING)
 if(ncc.EQ.0) return
c
C---- go over each character...
 DO 12 IC=1, ncc
C
C------ set character origin location
 X0 = XX + CHX*FLOAT(IC-1)*COSA
 Y0 = YY + CHX*FLOAT(IC-1)*SINA
C
 KC = INDEX(CHARS,STRING(IC:IC))
C
 IF(KC.NE.0) THEN
C
C-------- decode and plot each node
 DO K=1, 20
C
C---------- strip off leading point-status digit
 ISTAT = NODE(K,KC) / 10000
 NODEB = NODE(K,KC) - ISTAT*10000
C
C---------- decode x and y location coordinates
 I = NODEB / 100
 J = NODEB - 100*I
C
 FI = FLOAT(I-16)/64.0
 FJ = FLOAT(J-16)/64.0
C
 X = X0 + CHX*(FI*COSA - FJ*SINA)
 Y = Y0 + CHX*(FI*SINA + FJ*COSA)
C
 IF (ISTAT.EQ.0) THEN
 GOTO 12
 ELSEIF (ISTAT.EQ.1) THEN
 CALL PLOTABS(X,Y,2)
 ELSE
 CALL PLOTABS(X,Y,3)
 ENDIF
C
 ENDDO
 ENDIF
C
 12 CONTINUE
C
C---- move to bottom right corner x,y for next call with x,y = 999.,999.
 X0 = XX + CHX*FLOAT(ncc)*COSA
 Y0 = YY + CHX*FLOAT(ncc)*SINA
 CALL PLOTABS(X0,Y0,3)
C
C---- restore line pattern
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(lmask)
 ENDIF
C
 RETURN
 END

 subroutine PLSLANABS(XC,YC,CHX,STRING,ANGLE,nc)
C--
C Plots character string with slanted character font
C
C XC,YC = absolute coordinate position for first character in string
C if XC=999. the last x plotting position is used
C if YC=999. the last y plotting position is used
C CHX = character width in x (absolute coordinate length)
C STRING = character string to plot with nc characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C nc = number of characters to plot
C if nc<0 the length of the string is determined automatically
C
C Character plotting uses the vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 16,16)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETLASTXYABS, GETPAT, NEWPAT, PLOTABS
C--
 CHARACTER*(*) STRING
C
 INCLUDE 'SLAN.INC'
C
 DATA PI /3.1415926535897932384/
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 XX = XC
 YY = YC
C---- if XC=999. or YC=999. get last x,y character plotting position
 IF (xc.EQ.999. .OR. yc.EQ.999.) THEN
 CALL GETLASTXYABS(XCHR,YCHR)
 IF(XC.EQ.999.) XX = XCHR
 IF(YC.EQ.999.) YY = YCHR
 ENDIF
C
C---- get the old line pattern, only plot characters & symbols with solid lines
 CALL GETPAT(lmask)
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(-1)
 ENDIF
C
C---- if number of characters
 ncc = nc
 if(ncc.LT.0) ncc = LEN(STRING)
 if(ncc.EQ.0) return
c
C---- go over each character...
 DO 12 IC=1, ncc
C
C------ set character origin location
 X0 = XX + CHX*FLOAT(IC-1)*COSA
 Y0 = YY + CHX*FLOAT(IC-1)*SINA
C
 KC = INDEX(CHARS,STRING(IC:IC))
C
 IF(KC.NE.0) THEN
C
C-------- decode and plot each node
 DO K=1, 20
C
C---------- strip off leading point-status digit
 ISTAT = NODE(K,KC) / 10000
 NODEB = NODE(K,KC) - ISTAT*10000
C
C---------- decode x and y location coordinates
 I = NODEB / 100
 J = NODEB - 100*I
C
 FI = FLOAT(I-16)/64.0
 FJ = FLOAT(J-16)/64.0
C
 X = X0 + CHX*(FI*COSA - FJ*SINA)
 Y = Y0 + CHX*(FI*SINA + FJ*COSA)
C
 IF (ISTAT.EQ.0) THEN
 GOTO 12
 ELSEIF (ISTAT.EQ.1) THEN
 CALL PLOTABS(X,Y,2)
 ELSE
 CALL PLOTABS(X,Y,3)
 ENDIF
C
 ENDDO
 ENDIF
C
 12 CONTINUE
C
C---- move to bottom right corner x,y for next call with x,y = 999.,999.
 X0 = XX + CHX*FLOAT(ncc)*COSA
 Y0 = YY + CHX*FLOAT(ncc)*SINA
 CALL PLOTABS(X0,Y0,3)
C
C---- restore line pattern
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(lmask)
 ENDIF
C
 RETURN
 END

 subroutine PLMATHABS(XC,YC,CHX,STRING,ANGLE,nc)
C--
C Plots character string with math character font
C
C XC,YC = absolute coordinate position for first character in string
C if XC=999. the last x plotting position is used
C if YC=999. the last y plotting position is used
C CHX = character width in x (absolute coordinate length)
C STRING = character string to plot with nc characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C nc = number of characters to plot
C if nc<0 the length of the string is determined automatically
C
C Character plotting uses the vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 16,16)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETLASTXYABS, GETPAT, NEWPAT, PLOTABS
C--
 CHARACTER*(*) STRING
C
 INCLUDE 'MATH.INC'
C
 DATA PI /3.1415926535897932384/
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 XX = XC
 YY = YC
C---- if XC=999. or YC=999. get last x,y character plotting position
 IF (xc.EQ.999. .OR. yc.EQ.999.) THEN
 CALL GETLASTXYABS(XCHR,YCHR)
 IF(XC.EQ.999.) XX = XCHR
 IF(YC.EQ.999.) YY = YCHR
 ENDIF
C
C---- get the old line pattern, only plot characters & symbols with solid lines
 CALL GETPAT(lmask)
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(-1)
 ENDIF
C
C---- if number of characters
 ncc = nc
 if(ncc.LT.0) ncc = LEN(STRING)
 if(ncc.EQ.0) return
c
C---- go over each character...
 DO 12 IC=1, ncc
C
C------ set character origin location
 X0 = XX + CHX*FLOAT(IC-1)*COSA
 Y0 = YY + CHX*FLOAT(IC-1)*SINA
C
 KC = INDEX(CHARS,STRING(IC:IC))
C
 IF(KC.NE.0) THEN
C
C-------- decode and plot each node
 DO K=1, 20
C
C---------- strip off leading point-status digit
 ISTAT = NODE(K,KC) / 10000
 NODEB = NODE(K,KC) - ISTAT*10000
C
C---------- decode x and y location coordinates
 I = NODEB / 100
 J = NODEB - 100*I
C
 FI = FLOAT(I-16)/64.0
 FJ = FLOAT(J-16)/64.0
C
 X = X0 + CHX*(FI*COSA - FJ*SINA)
 Y = Y0 + CHX*(FI*SINA + FJ*COSA)
C
 IF (ISTAT.EQ.0) THEN
 GOTO 12
 ELSEIF (ISTAT.EQ.1) THEN
 CALL PLOTABS(X,Y,2)
 ELSE
 CALL PLOTABS(X,Y,3)
 ENDIF
C
 ENDDO
 ENDIF
C
 12 CONTINUE
C
C---- move to bottom right corner x,y for next call with x,y = 999.,999.
 X0 = XX + CHX*FLOAT(ncc)*COSA
 Y0 = YY + CHX*FLOAT(ncc)*SINA
 CALL PLOTABS(X0,Y0,3)
C
C---- restore line pattern
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(lmask)
 ENDIF
C
 RETURN
 END

 subroutine PLSYMBABS(XC,YC,CHX,ISYM,ANGLE,nc)
C--
C Plots a symbol with symbol font indexed by integer
C
C XC,YC = absolute coordinate position for plotting symbol
C if XC=999. the last x plotting position is used
C if YC=999. the last y plotting position is used
C CHX = symbol width in x (absolute coordinate length)
C ISYM = integer to select symbol (0..?)
C ANGLE = angle for symbol (radians, positive is righthanded rotation)
C nc = 0 just move to x,y before plotting symbol
C .ne.0 draw line to x,y before plotting symbol
C
C Plots a symbol using vector font database NODE(..)
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy (origin assumed to be at 48,48)
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C
C CALLS: GETLASTXYABS, GETPAT, NEWPAT, PLOTABS
C--
 INTEGER ISYM
C
 INCLUDE 'SYMB.INC'
C
 DATA PI /3.1415926535897932384/
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 XX = XC
 YY = YC
C---- if XC=999. or YC=999. get last x,y character plotting position
 IF (XC.EQ.999. .OR. YC.EQ.999.) THEN
 CALL GETLASTXYABS(XCHR,YCHR)
 IF(XC.EQ.999.) XX = XCHR
 IF(YC.EQ.999.) YY = YCHR
 ENDIF
C
C------ set character origin location
 X0 = XX
 Y0 = YY
C------ draw to X0,Y0 first ?
 IF(nc .NE. 0) CALL PLOTABS(X0,Y0,2)
C
C---- get the old line pattern, only plot characters & symbols with solid lines
 CALL GETPAT(lmask)
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(-1)
 ENDIF
C
C
C---Plot symbol index modulo symbol count (NCHARS defined symbols)
ccc KC = ISYM + 1
 KC = MOD(ISYM,NCHARS) + 1
C
 IF(KC.GE.1 .AND. KC.LE.NCHARS) THEN
C
C-------- decode and plot each node
 DO K=1, 20
C
C---------- strip off leading point-status digit
 ISTAT = NODE(K,KC) / 10000
 NODEB = NODE(K,KC) - ISTAT*10000
C
C---------- decode x and y location coordinates
 I = NODEB / 100
 J = NODEB - 100*I
C
 FI = FLOAT(I-48)/64.0
 FJ = FLOAT(J-48)/64.0
C
 X = X0 + CHX*(FI*COSA - FJ*SINA)
 Y = Y0 + CHX*(FI*SINA + FJ*COSA)
C
 IF (ISTAT.EQ.0) THEN
 GOTO 12
 ELSEIF (ISTAT.EQ.1) THEN
 CALL PLOTABS(X,Y,2)
 ELSE
 CALL PLOTABS(X,Y,3)
 ENDIF
C
 ENDDO
 ENDIF
C
 12 CONTINUE
C
C---- move to origin x,y for next call with x,y = 999.,999.
 CALL PLOTABS(X0,Y0,3)
C
C---- restore line pattern
 IF(lmask.ne.-1) THEN
 CALL NEWPAT(lmask)
 ENDIF
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/plt_old.f

C***
C Module: plt_old.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C***
C --- Xplot11 "old Versatec-like" routines
C
C Version 4.46 11/28/01
C
C Xplot11 interface for older plot routines (similar to that for
C Versatec graphics) as a bridge to backwards compatibility with
C old programs.
C
C These routines are not preferred for creating a new application,
C although they will work. Use the equivalent routines in
C plt_base.f, plt_util.f, etc. if you want more capability.
C
C...Note:
C If your compiler supports passing character data as integers without
C complaining and you want old style Versatec SYMBOL compatibility (so
C you can call SYMBOL with either characters stuffed into an integer
C array or with integer arguments to specify plot symbols) you can use
C the sections of the following code marked with C+++OldVersatec comments.
C In that case you don't need the SYMBL routine, just call SYMBOL with
C integer arguments. You also need to switch marked statements in
C SYMBOL, NUMBER and LINE.
C
C***
C
C
 subroutine PLOTS(idummy,ihard,ldev)
C--- Open plotting
C IHARD - sets hardcopy option
C IHARD=>0 hardcopy on
C IHARD <0 hardcopy off (typically IHARD=-999 sets no hardcopy)
C
C LDEV - output device (used to be LDEV=6 for Xwindows)
C currently LDEV =0 gives BW hardcopy only
C currently LDEV<>0 gives Xwindow (+ BW hardcopy if IHARD>0)
C
C This routine uses IHARD>=0 to select hardcopy output
C The Xwindow defaults to 2/3 of the root window, landscape mode
C
 SAVE ifirst, relsize, nunit
 DATA ifirst / 0 /
C
 if(ifirst.EQ.0) then
 ifirst = 1
 call PLINITIALIZE
 relsize = 0.6666
 nunit = 0
 endif
c
 idev = 0
 if(ldev.NE.0) idev = 1
 if(ihard.GE.0) then
 idev = idev + 2
 endif
cc write(*,*) 'calling plopen with ',relsize,nunit,idev
 call PLOPEN(relsize,nunit,idev)
c
 return
 end

 subroutine PLOTON
 return
 end

 subroutine PLOTOF
 call PLFLUSH
 return
 end

 subroutine ERASE
 call WINERASE
 return
 end

 subroutine FACTOR(scl)
 call NEWFACTOR(scl)
 return
 end

 subroutine WHERE(xnow,ynow,fact)
C--- Returns last x,y position and scale factor
 call GETLASTXY(xnow,ynow)
 call GETFACTORS(fact,dum)
 return
 end

 subroutine WHEREC(xcurs,ycurs)
 character*1 chkey
 call GETCURSORXY(xcurs,ycurs,chkey)
 return
 end

 subroutine WINPIX(nxpix,nypix,ppi)
C--- Returns Xwindow size in pixels and the pixels per inch of
C postsript output (not pixels/inch on the screen!)
C--- WINPIX has been officially replaced by GETWINSIZEABS in XPLOT11
 include 'pltlib.inc'
 nxpix = GX_SIZ
 nypix = GY_SIZ
 ppi = G_SCALE
 return
 end

 subroutine GETWINPIX(nxpix,nypix,ppi)
C--- Same as WINPIX
 call WINPIX(nxpix,nypix,ppi)
 return
 end

 subroutine GRID (X,Y,NX,XD,NY,YD,LMASK)
 call PLGRID (X,Y,NX,XD,NY,YD,LMASK)
 return
 end

 subroutine COLOR (icol)
C--- Selects a foreground color for defined (old-style) colormap
 common / PLT10_OLD / ncols_old, icolmap_old(0:255)
c
 if(ncols_old.LE.0) then
 write(*,*) '*** COLOR no colormap defined'
 endif
 if(icol.LT.0 .OR. icol.GT.ncols_old) then
 write(*,*) '*** COLOR out of bounds: ',icol
 endif
C--- Use colormap entry
 ic = icolmap_old(icol)
c write(*,*) 'COLOR ',icol,ic
 call NEWCOLOR(ic)
 return
 end

 subroutine SETCOL (icol,red,grn,blu)
C--- Set up a colormap entry
C The "old" color routines simply set up rgb entries in the regular
C colormap. They do not use the spectrum colors.
C Note: repeated calls to SETCOL without reseting the colormap will
C (eventually) fill up the allocated 'old-style' colormap.
C
C To reset the 'old-style' colormap give a color
C index icol<0, this resets the number of allocated colors to 0.
C
 common / PLT10_OLD / ncols_old, icolmap_old(0:255)
 data ifirst / 0 /
c
 if(ifirst.EQ.0) then
 ifirst = 1
 ncols_old = 0
 endif
c
 if(ncols_old.GE.256) then
 write(*,*) '*** SETCOL no more colors available: ',ncols_old
 return
 endif
c
C--- Reset the colormap if icol<0
 if(ncols_old.LT.0) then
 ncols_old = 0
 return
 endif
c
 ired = ifix(255.*red)
 igrn = ifix(255.*grn)
 iblu = ifix(255.*blu)
C--- Install as a regular colormap color
 call NEWCOLORRGB(ired,igrn,iblu)
 call GETCOLOR(ic)
c write(*,*) 'SETCOL ',icol,ired,igrn,iblu,ic
 ncols_old = ncols_old + 1
 icolmap_old(icol) = ic
 return
 end

C***
C Versatec-style Utility routines
C LINE
C CURVE
C AXIS
C AXIS2
C SCALE
C SYMBL - plots graphics symbol given by integer argument
C SYMBOL - plots character symbol using stroke graphics that
C call the basic PLOT plotting function
C NUMBER - plots numbers using a format conversion to characters
C***

 SUBROUTINE LINE (XARRAY,YARRAY,NPTS,INC,LINTYP,ISYM)
C...Plots array of x,y data as a piecewise linear set of line segments
C
C Input: XARRAY is an array of coordinate points to be joined
C YARRAY by smooth curve.
C
C NPTS ABS(NPTS) is the number of points to plot from points
C in XARRAY and YARRAY.
C NPTS<0 indicates that scale factors are located as the
C last two elements of each data array (i.e.
C NPTS+1 AND NPTS+2).
C NPTS>0 indicates that the coordinate points are already
C scaled for plotting (no scale factors).
c
C INC increment used to access points in XARRAY,YARRAY
C LINTYP Plotting flag, ABS(LINTYP) is the symbol plotting
C increment (i.e. +2 gives a symbol at every other point)
C LINTYP<0 symbols only
C LINTYP=0 lines only
C LINTYP>0 lines and symbols
C ISYM Symbol index to be used for points with symbols
C
C Calls: PLOT
C
C...Note:
C You might need to change the SYMBL call below to SYMBOL if your compiler
C supports passing character literals as integers without complaining
C and you enable old style Versatec SYMBOL calls with integer arguments.
C See SYMBOL below...
C
 DIMENSION XARRAY(*),YARRAY(*)
 DATA SYMSIZE / 0.08 /
C
C...Initialize subscripts
 LMIN = NPTS*INC + 1
 LDX = LMIN + INC
 NL = LMIN - INC
C
C...Set limits and scaling factors
 FIRSTX = XARRAY(LMIN)
 DELTAX = XARRAY(LDX)
 FIRSTY = YARRAY(LMIN)
 DELTAY = YARRAY(LDX)
C
C...Current plotting location
 CALL GETLASTXY (XN,YN)
 DF = AMAX1 (ABS ((XARRAY(1) - FIRSTX)/DELTAX - XN),
 & ABS ((YARRAY(1) - FIRSTY)/DELTAY - YN))
 DL = AMAX1 (ABS ((XARRAY(NL) - FIRSTX)/DELTAX - XN),
 & ABS ((YARRAY(NL) - FIRSTY)/DELTAY - YN))
 IPEN = 3
 ICODE = -1
 NT = IABS(LINTYP)
C
C...Symbols plotted?
 IF (LINTYP.EQ.0) NT = 1
C
C
 IF (DL.GE.DF) THEN
C...Ascending order
 NF = 1
 NA = NT
 KK = INC
 ELSE
C...Descending order
 NF = NL
 NA = ((NPTS - 1)/NT)*NT + NT - (NPTS - 1)
 KK = -INC
 ENDIF
C
C
 IF(LINTYP.LT.0) THEN
C...Symbols only
 IPENA = 3
 ICODEA = -1
 LSW = 1
 ELSE
C...Symbols
 IPENA = 2
 ICODEA = -2
 LSW = 0
C...Lines only
 IF(LINTYP.EQ.0) NA = LDX
 ENDIF
C
C...Plot data
 DO 120 I=1,NPTS
 XN = (XARRAY(NF) - FIRSTX)/DELTAX
 YN = (YARRAY(NF) - FIRSTY)/DELTAY
C...Plot symbol
 IF (NA.EQ.NT) THEN
C---For new style SYMBL call (character string input to SYMBOL)
 CALL SYMBL(XN,YN,SYMSIZE,ISYM,0.0,ICODE)
C+++OldVersatec (integer variable as input to SYMBOL)
C CALL SYMBL(XN,YN,SYMSIZE,ISYM,0.0,ICODE)
C+++OldVersatec
 NA = 1
 GO TO 110
 ENDIF
C...Or lines between symbols
 IF(NA.LT.NT .AND. LSW.NE.0) GO TO 100
C
C...Plot line to new point
 CALL PLOT(XN,YN,IPEN)
C
C...Counters for plotting points and symbols
 100 NA = NA + 1
 110 NF = NF + KK
 ICODE = ICODEA
 IPEN = IPENA
 120 CONTINUE
 CALL PLOTOF
C
 RETURN
 END

 SUBROUTINE CURVE (X,Y,NE,DELTA)
C...Plots curve with solid or dashed lines
C
C Input: X,Y is an array of coordinate points to be joined
C by smooth curve.
C
C NE ABS(NE) is the number of coordinate points in X and Y.
C NE<0 indicates that scale factors are located as the
C last two elements of each data array (i.e. NE+1 AND NE+2).
C NE>0 indicates that the coordinate points are already
C scaled for plotting (no scale factors).
C
C DELTA ABS(DELTA) is the segment length for approximating
C the curve.
C DELTA<0 indicates that the curve is plotted with dashed lines
C of 'delta' length.
C DELTA>0 indicates that the curve is plotted with a solid line.
C
C Calls: PLOT
C
 DIMENSION X(NE),Y(NE)
C
C...Default scale factors
 XOFF = 0.
 YOFF = 0.
 XFAC = 1.
 YFAC = 1.
 NET = NE
 IF(NET.EQ.0) RETURN
C
 IF(NE.LT.0) THEN
C...Scale factors in last two array elements
 NET = -NET
 XOFF = X(NET+1)
 YOFF = Y(NET+1)
 XFAC = X(NET+2)
 YFAC = Y(NET+2)
 ENDIF
C
C...Solid or dashed lines?
 IF(DELTA.EQ.0.0) RETURN
 MPEN = 4
 DELT = DELTA
 IF (DELT.LT.0.0) THEN
 DELT = -DELT
 MPEN = 5
 ENDIF
C
C...Initialize everything
 K = 1
 IPEN = 3
 DLTSQ = DELTA*DELTA
C
C
C...Begin main loop.
C (X1,Y1) is joined to (X2,Y2) by arc with direction cosines
C (C1,S1) and (C2,S2) at end points. Final values for previous
C arc are initial values for new arc.
C
C...New end point
 110 X2 = (X(K)-XOFF)/XFAC
 Y2 = (Y(K)-YOFF)/YFAC
 IF (K.EQ.NET) GO TO 130
 IF (K.GT.1) GO TO 140
C
C...First data point (K=1)
 120 IF (NET-2) 122,124,126
 122 X1 = (X(1)-XOFF)/XFAC
 Y1 = (Y(1)-YOFF)/YFAC
 CALL PLOT (X1,Y1,+3)
 GOTO 500
 124 DLTX1 = (X(2)-X(1))/XFAC
 DLTY1 = (Y(2)-Y(1))/YFAC
 DLTX2 = DLTX1
 DLTY2 = DLTY1
 GOTO 128
 126 DLTX1 = (X(2)-X(1))/XFAC
 DLTY1 = (Y(2)-Y(1))/YFAC
 DLTX2 = (X(3)-X(2))/XFAC
 DLTY2 = (Y(3)-Y(2))/YFAC
 128 T1 = DLTX1*DLTX1 + DLTY1*DLTY1
 T2 = DLTX2*DLTX2 + DLTY2*DLTY2
 T3 = 2.*SQRT(T1*T2)
 T1 = -T1
 T2 = T3 + T2
 GO TO 150
C
C...Last data point (K=NET)
 130 DLTX1 = X1 - (X(K-2)-XOFF)/XFAC
 DLTY1 = Y1 - (Y(K-2)-YOFF)/YFAC
 DLTX2 = X2 - X1
 DLTY2 = Y2 - Y1
 T1 = DLTX1*DLTX1 + DLTY1*DLTY1
 T2 = DLTX2*DLTX2 + DLTY2*DLTY2
 T3 = 2.*SQRT(T1*T2)
 T2 = -T2
 T1 = T3 + T1
 GO TO 150
C
C...Intermediate data point (1<K<NET)
 140 DLTX1 = X2 - X1
 DLTY1 = Y2 - Y1
 DLTX2 = (X(K+1)-X(K))/XFAC
 DLTY2 = (Y(K+1)-Y(K))/YFAC
 T1 = DLTX1*DLTX1 + DLTY1*DLTY1
 T2 = DLTX2*DLTX2 + DLTY2*DLTY2
C
 150 E = DLTX1*T2 + DLTX2*T1
 F = DLTY1*T2 + DLTY2*T1
 G = SQRT(E*E+F*F)
 IF (G.NE.0.) G = 1./G
 C2 = G*E
 S2 = G*F
 IF (K.EQ.1) GO TO 180
C
 U = X2 - X1
 V = Y2 - Y1
 G = U*U + V*V
 A = C1*C2 + S1*S2
C
C...Check if (X2,Y2) is more than 'DELTA' from (X1,Y1)
 IF (G.GE.DLTSQ) GO TO 200
C
C...Distinguish between close points and coincident points
 IF (G.GT.0.) GO TO 170
C
C...Test for matching tangents
 IF (A.LE.0.99996) GO TO 180
C
C...(X1,Y1),(X2,Y2) less than 'DELTA' apart, hop to next point.
 170 K = K + 1
 IF (K.LE.NET) GO TO 110
C
 180 CALL PLOT (X2,Y2,IPEN)
 H = DELT
 IPEN = 2
 GO TO 320
C
C...Cubic coefficients for X and Y
 200 A = 7. - A
 E = C1 + C2
 F = S1 + S2
 B = U*E + V*F
 T = SQRT(B*B+2.*A*G)
 C = (T+B)/G
 T = 3.*(T-B)/A
 G = C/12.
 A = G*(C*U-3.*E)
 B = G*(C*V-3.*F)
 U = G*(C2-C1) + A
 V = G*(S2-S1) + B
 C = -C/9.
 A = A*C
 B = B*C
 G = H
C
C...X AND Y coordinates of arc are given as parametric cubics with
C parameter going from zero to T and held in G. The increment is DELTA.
C G is set initially to space the first point of the new arc
C at distance DELTA from the last point of the previous arc.
C
C...Generate approximation for each segment
 220 E = G*(G*(A*G+U)+C1) + X1
 F = G*(G*(B*G+V)+S1) + Y1
 CALL PLOT (E,F,IPEN)
 IPEN = MPEN - IPEN
 G = G + DELT
 H = G - T
 IF (H.LE.0.) GO TO 220
C
C...Arc (X1,Y1) to (X2,Y2) complete, setup for next arc
 320 X1 = X2
 Y1 = Y2
 C1 = C2
 S1 = S2
 K = K + 1
 IF (K.LE.NET) GO TO 110
C
C
C...Close to last point of curve
 CALL PLOT (X2,Y2,IPEN)
 500 CALL PLOTOF
 RETURN
 END

 SUBROUTINE AXIS (X,Y,LABEL,NCHAR,AXLEN,ANGLE,FVAL,DV)
C...Plots labeled axis with tic marks and annotations
C
C Input: X,Y Starting coordinates for axis (REAL)
C
C LABEL Text string for labeling the axis
C
C NCHAR Number of characters in the axis label (INTEGER)
C NCHAR>0 annotations generated above axis
C NCHAR<0 annotations generated below axis
C
C AXLEN Axis length in inches (REAL)
C ANGLE Axis angle in degrees (positive CCW) (REAL)
C
C FVAL First annotation value (REAL)
C DV Delta annotation value (REAL)
C
C Calls: NUMBER, SYMBOL
C
C...Note:
C If your compiler supports passing character data as integers without
C complaining and you want old style Versatec SYMBOL compatibility (so
C you can call SYMBOL with either characters stuffed into an integer
C array or with integer arguments to specify plot symbols) you can use
C the sections of the following code marked with C+++OldVersatec comments.
C
C---Declaration as a character variable
 CHARACTER*(*) LABEL
C---Declaration of as integer or byte variable
C+++OldVersatec (use either LOGICAL*1, INTEGER*1 or BYTE declaration)
C LOGICAL*1 LABEL(1)
C INTEGER*1 LABEL(1)
C BYTE LABEL(1)
C+++OldVersatec
C
 DATA RADN/0.01745329/
C
C
C...Side of axis to annotate and label
 SIDE = +1.
 NC = NCHAR
C...NCHAR<0 means plot below axis
 IF (NC.LT.0) THEN
 NC = -NC
 SIDE = -1.
 ENDIF
C
C...Value of 'DV' exponent
 EXP = 0.0
 ADV = ABS (DV)
C
C...Check for zero delta annotation value?
 IF (ADV.NE.0.) THEN
C
C...Get exponent by dividing by decades
 20 IF (ADV.LT.99.) GO TO 40
 ADV = ADV/10.
 EXP = EXP + 1.
 GO TO 20
C
 30 ADV = ADV*10.
 EXP = EXP - 1.
C...If too small cut the exponent
 40 IF (ADV.LT.0.01) GO TO 30
C
 ENDIF
C
C...Normalized 'FVAL' and 'DV'
 VAL = FVAL*(10.**(-EXP))
 ADV = DV*(10.**(-EXP))
C
C...Angular orientation variables
 T2 = ANGLE*RADN
 SINA = SIN (T2)
 COSA = COS (T2)
C
 DX = -0.1
 DY = 0.15*SIDE - 0.05
 XX = X + DX*COSA - DY*SINA
 YY = Y + DY*COSA + DX*SINA
C
C...Annotate axis
 NTIC = AXLEN + 1.0
 DO I=1,NTIC
 CALL NUMBER (XX,YY,0.105,VAL,ANGLE,2)
 VAL = VAL + ADV
 XX = XX + COSA
 YY = YY + SINA
 END DO
C
C...Label axis
 T2 = NC
C
C...Do we have a valid exponent?
 IF (EXP.NE.0.) T2 = NC + 6
C
 DX = -0.07*T2 + 0.5*AXLEN
 DY = 0.325*SIDE - 0.075
 XX = X + DX*COSA - DY*SINA
 YY = Y + DY*COSA + DX*SINA
 CALL SYMBOL (XX,YY,0.14,LABEL,ANGLE,NC)
C
C...Plot exponent
 IF (EXP.NE.0.) THEN
 CALL SYMBOL (999.,999.,0.14,' *10',ANGLE,5)
 T2 = NC + 5
 XX = XX + (T2*COSA - 0.8*SINA)*0.14
 YY = YY + (T2*SINA + 0.8*COSA)*0.14
 CALL NUMBER (XX,YY,0.07,EXP,ANGLE,-1)
 ENDIF
C
C...Draw axis and tic marks
 DX = -0.07*SIDE*SINA
 DY = +0.07*SIDE*COSA
 XX = X
 YY = Y
 CALL PLOT (XX,YY,3)
 DO I=1,NTIC
 CALL PLOT (XX,YY,2)
 CALL PLOT (XX+DX,YY+DY,2)
 CALL PLOT (XX,YY,3)
 XX = XX + COSA
 YY = YY + SINA
 END DO
C
 CALL PLOTOF
 RETURN
 END

 SUBROUTINE AXIS2 (X,Y,LABEL,NCHAR,CSCAL,AXLEN,DAX,ANGLE,FVAL,DV)
C...Plots labeled axis with tic marks and annotations
C
C Input: X,Y Starting coordinates for axis (REAL)
C
C LABEL Text string for labeling the axis
C
C NCHAR Number of characters in the axis label (INTEGER)
C NCHAR>0 annotations generated above axis
C NCHAR<0 annotations generated below axis
C
C CSCAL Character height scale factor
C AXLEN Axis length in inches (REAL)
C DAX Distance between annotations in inches
C DAX>0 first annotation value plotted
C DAX<0 first annotation value not plotted
C (using DAX=1.0 corresponds to AXIS routine)
C ANGLE Axis angle in degrees (positive CCW) (REAL)
C
C FVAL First annotation value (REAL) [not plotted if DAX < 0]
C DV Delta annotation value (REAL)
C
C Calls: NUMBER, SYMBOL
C
C...Note:
C If your compiler supports passing character data as integers without
C complaining and you want old style Versatec SYMBOL compatibility (so
C you can call SYMBOL with either characters stuffed into an integer
C array or with integer arguments to specify plot symbols) you can use
C the sections of the following code marked with C+++OldVersatec comments.
C
C---Declaration as a character variable
 CHARACTER*(*) LABEL
C---Declaration of as integer or byte variable
C+++OldVersatec (use either LOGICAL*1, INTEGER*1 or BYTE declaration)
C LOGICAL*1 LABEL(1)
C INTEGER*1 LABEL(1)
C BYTE LABEL(1)
C+++OldVersatec
C
 DATA RADN/0.01745329/
C
 ADAX = ABS(DAX)
 ISTART = 1
 IF(DAX.LT.0.0) ISTART = 2
C
C...Character heights
 CHARH = 0.140*ADAX*CSCAL
 RNUMH = 0.105*ADAX*CSCAL
C
C
C...Side of axis to annotate and label
 SIDE = +1.
 NC = NCHAR
C...NCHAR<0 is lower side
 IF (NC.LT.0) THEN
 NC = -NC
 SIDE = -1.
 ENDIF
C
C...Exponent?
 EXP = 0.0
 ADV = ABS (DV)
C
C...Check for zero delta annotation value?
 IF (ADV.NE.0.) THEN
C
C...Check exponent by dividing by decades
 20 IF (ADV.LT.99.) GO TO 40
 ADV = ADV/10.
 EXP = EXP + 1.
 GO TO 20
C
 30 ADV = ADV*10.
 EXP = EXP - 1.
C...If too small cut the exponent
 40 IF (ADV.LT.0.01) GO TO 30
C
 ENDIF
C
C...Normalize 'FVAL' AND 'DV'
 AFVAL = FVAL*(10.**(-EXP))
 ADV = DV*(10.**(-EXP))
C
C...Angular orientation variables
 T2 = ANGLE*RADN
 SINA = SIN (T2)
 COSA = COS (T2)
C
 DY = 1.4*RNUMH*SIDE - 0.5*RNUMH
C
C...Annotate axis
 NTIC = INT(AXLEN/ADAX) + 1
 DO I=ISTART, NTIC
 RNT = FLOAT(I-1)
 VAL = AFVAL + ADV*RNT
C...Number of digits before decimal point
 NV10 = INT(ABS(VAL)/10.)
 NDIG = 1
 IF(NV10.GT.0) NDIG = NDIG + 1
C...Add one for minus sign
 IF(VAL.LT.0.) NDIG = NDIG + 1
C
 DX = -(FLOAT(NDIG) + 0.5)*0.84*RNUMH
 XX = X + DX*COSA - DY*SINA + ADAX*COSA*RNT
 YY = Y + DY*COSA + DX*SINA + ADAX*SINA*RNT
 CALL NUMBER (XX,YY,RNUMH,VAL,ANGLE,2)
 END DO
C
C...Label axis
 T2 = FLOAT(NC)
C
C...Do we have a valid exponent?
 IF (EXP.NE.0.) T2 = FLOAT(NC + 6)
C
 DX = -0.5*CHARH*T2 + 0.5*AXLEN
 DY = (1.5*RNUMH + 1.5*CHARH)*SIDE - 0.5*CHARH
 XX = X + DX*COSA - DY*SINA
 YY = Y + DY*COSA + DX*SINA
 CALL SYMBOL (XX,YY,CHARH,LABEL,ANGLE,NC)
C
C...Plot exponent
 IF (EXP.NE.0.) THEN
 CALL SYMBOL (999.,999.,CHARH,' X 10',ANGLE,6)
 T2 = FLOAT(NC + 6)
 XX = XX + (T2*COSA - 0.75*SINA)*CHARH
 YY = YY + (T2*SINA + 0.75*COSA)*CHARH
 CALL NUMBER (XX,YY,0.5*CHARH,EXP,ANGLE,-1)
 ENDIF
C
C...Tic marks
 DX = -0.4*RNUMH*SIDE*SINA
 DY = +0.4*RNUMH*SIDE*COSA
 DO I=1, NTIC
 RNT = FLOAT(I-1)
 XX = X + COSA*ADAX*RNT
 YY = Y + SINA*ADAX*RNT
 CALL PLOT (XX,YY,3)
 CALL PLOT (XX+DX,YY+DY,2)
 END DO
C
C...Axis
 XX = X + COSA*AXLEN
 YY = Y + SINA*AXLEN
 CALL PLOT (X,Y,3)
 CALL PLOT (XX,YY,2)
C
 CALL PLOTOF
 RETURN
 END

 SUBROUTINE SCALE (ARRAY,AXLEN,NPTS,INC)
C...Determines scale factor and offset for elements in array and
C installs values in last 2 array elements
C
C Input: ARRAY is an array of data points (REAL)
C
C AXLEN Axis length in inches (REAL)
C NPTS Number of data points to be scaled (INTEGER)
C INC Increment between points in ARRAY (INTEGER)
C
 DIMENSION ARRAY(1)
C
 DIMENSION UNITS(7)
 DATA UNITS(1)/1./,UNITS(2)/2./,UNITS(3)/4./,UNITS(4)/5./
 DATA UNITS(5)/8./,UNITS(6)/10./,UNITS(7)/20./
C
C
C...Min and max values of 'ARRAY' accessed by 'INC' stride
 K = IABS(INC)
 J = NPTS*K
 ARMIN = ARRAY(1)
 ARMAX = ARMIN
 DO I=1,J,K
 AR = ARRAY(I)
 ARMIN = MIN(ARMIN,AR)
 ARMAX = MAX(ARMAX,AR)
 END DO
C
C...Delta value for unit interval
 DV = (ARMAX - ARMIN)/AXLEN
C
C...If negative or zero scale use the sum of min and max
 IF (DV.LE.0.) THEN
 DV = ABS((ARMIN + ARMIN)/AXLEN) + 1.
 ENDIF
C
C...Exponent for DV
 A = 10.0**(IFIX (ALOG10 (DV) + 1000.) - 1000)
C
C...Normalized 'DV' value (1<DV<10)
 DV = DV/A - 0.01
C...Find appropriate unit and range for DV value from desirable unit list
 DO I=1,6
 IF (UNITS(I).GE.DV) GO TO 40
 END DO
C
C...Set direction for rounding
 40 SGNF = 0.01
 IF (ARMIN.LT.0.) SGNF = -0.99
C
C...Delta value and min value from normalized unit and exponent
 50 DV = UNITS(I)*A
 TMIN = DV*AINT (ARMIN/DV + SGNF)
C
C...Check to make sure the selected scale is big enough
 IF((TMIN + (AXLEN + 0.01)*DV).GE.ARMAX) GO TO 60
 TMIN = AINT (ARMIN/A + SGNF) *A
 IF((TMIN + (AXLEN + 0.01)*DV).GE.ARMAX) GO TO 60
 I = I + 1
 GO TO 50
C
C
C...Recompute min value
 60 TMIN = TMIN - DV*AINT ((AXLEN + (TMIN - ARMAX)/DV)/2.0)
 IF (ARMIN*TMIN.LE.0.0) TMIN = 0.0
C
C...Reverse direction if necessary
 IF (INC.LE.0) THEN
 TMIN = TMIN + DV*AINT (AXLEN + 0.5)
 DV = -DV
 ENDIF
C
C...Install scale and offset into array
 J = J + 1
 ARRAY(J) = TMIN
 K = J + K
 ARRAY(K) = DV
C
 RETURN
 END

 SUBROUTINE SYMBL (X,Y,HGT,ISYM,ANGLE,NC)
C...Plot a symbol at the specified location with specified size and angle
C
C This routine accepts an integer symbol selector
C instead of a character string as its argument
C
C X,Y starting coordinate for the symbol
C HGT symbol height specification (in inches)
C ISYM integer index corresponding to the symbol
C ANGLE angle at which the symbol is plotted
C NC NC must be NC<0
C NC=-1 move to x,y with 'pen' up; plot symbol #ISYM
C NC<-1 move to x,y with 'pen' down; plot symbol #ISYM
CC...Note:
C You might not need the SYMBL routine, if your compiler supports passing
C character literals as integers without complaining and you enable old
C style Versatec SYMBOL calls with integer arguments. See SYMBOL below...
C
 IF (NC.EQ.0) RETURN
 IF (NC.GT.0) THEN
 WRITE(*,*) 'Bad NC argument to SYMBL ',NC
 RETURN
 ENDIF
 CALL SYMBOL (X,Y,HGT,char(ISYM),ANGLE,NC)
 RETURN
 END

 SUBROUTINE SYMBOL(XZ,YZ,HGT,ITEXT,ANGLE,NZ)
C...Plots characters using stroke representation of char. set
C
C XZ,YZ starting coordinate for the text
C HGT character height (in inches)
C ITEXT alphanumeric text to be generated
C ANGLE angle at which the character line is plotted
C NC number of characters to be plotted
C NC>0 alpha text, number of characters to be plotted
C NC=0 plot single character,right-justified in text
C NC=-1 move to x,y with 'pen' up; plot symbol #TEXT
C NC<-1 move to x,y with 'pen' down; plot symbol #TEXT
C
C...Note:
C If your compiler supports passing character data as integers without
C complaining and you want old style Versatec SYMBOL compatibility (so
C you can call SYMBOL with either characters stuffed into an integer
C array or with integer arguments to specify plot symbols) you can use
C the sections of the following code marked with C+++OldVersatec comments.
C In that case you don't need the SYMBL routine, just call SYMBOL with
C integer arguments. However, with integer arguments, you lose some of
C the nice things about character string manipulation.
C
C---Declaration of ITEXT as a character variable
 CHARACTER*(*) ITEXT
C
C---Declaration of ITEXT as integer or byte variable
C+++OldVersatec (use either LOGICAL*1, INTEGER*1 or BYTE declaration)
C LOGICAL*1 ITEXT(1)
C INTEGER*1 ITEXT(1)
C BYTE ITEXT(1)
C+++OldVersatec
C
 DIMENSION XA(14),YA(14)
 DIMENSION ASIN(5),ACOS(5)
 INTEGER*4 IRAM, AND
 INTEGER*4 NCHR,KVAL,NODES,
 & MSKALL,MSK4,MSK5,MSK7,MSK8,MSK11,
 & KHAR(128),NODE(468),
 & NOD1(160), NOD2(160), NOD3(160)
C
C...Assemble the NODE array (this silliness necessary because of f77
C limitation on number of continuation lines)
 EQUIVALENCE (NODE(1) ,NOD1(1))
 EQUIVALENCE (NODE(161),NOD2(1))
 EQUIVALENCE (NODE(321),NOD3(1))
C...Constants
 DATA NBITS /16/, NBYTES /2/
 DATA NCHRS/128/
 DATA RADCO/0.01745329/
 DATA EPSIL/0.0000277 /
 DATA ASIN /0.,1.,0.,-1.,0./,
 & ACOS /1.,0.,-1.,0.,1./
 DATA MSKALL/-1/, MSK4 /15/, MSK5 /31/,
 & MSK7 /127/, MSK8 /255/, MSK11 /2047/
C...Static variables (changed within SYMBOL)
 DATA FCTR/0.7/, FACC/0.0/
 DATA THETA/0.0/
 DATA ANCC, ANCS /1.0, 0.0/
 DATA XC, YC /0.0, 0.0/,
 & XT, YT /0.0, 0.0/,
 & XO, YO /0.0, 0.0/
 DATA XA / 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0./,
 & YA / 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0./
C
C...Characters encoding stroke commands for drawing
 DATA KHAR/ 7, 267, 645, 839, 1095, 1350, 1574, 1797,
 1 1991, 2247, 2513, 3086, 3557, 3747, 3877, 4065,
 2 4129, 4192, 4232, 4519, 4772, 4928, 4967, 5223,
 3 5480, 5760, 5793, 5863, 6117, 6306, 6405, 6604,
 4 7008, 7046, 7272, 7562, 7915, 8301, 8745, 9059,
 5 9187, 9315, 9447, 9700, 9861, 10049, 10116, 10273,
 6 10344, 10629, 10823, 11084, 11498, 11848, 12138, 12484,
 7 12655, 13163, 13546, 13899, 14274, 14372, 14530, 14636,
 8 15055, 15561, 15883, 16263, 16518, 16743, 16998, 17225,
 9 17543, 17799, 18052, 18215, 18466, 18564, 18723, 18859,
 A 19238, 19467, 19849, 20171, 20548, 20709, 20898, 20996,
 1 21156, 21317, 21510, 21731, 21857, 21923, 22050, 22145,
 2 22224, 22754, 22856, 23143, 23403, 23787, 24169, 24486,
 3 24712, 24998, 25229, 25675, 26056, 26343, 26592, 26624,
 4 26660, 26829, 27269, 27461, 27651, 27786, 28129, 28193,
 5 28263, 28516, 28679, 28938, 29284, 29444, 29604, 29764/
C
C...Node data for stroked characters (in 3 separate arrays due to problem
C with some f77 compilers for continuation lines...). You could assemble
C these all into one array and dispense with the equivalence statements if
C your compiler supported lots of continuation lines.
 DATA NOD1/ 8740, 1024, 16452, 9250, 8740, 5123, 272, 12353,
 1 17204, 9250, 8740, 321, 9250, 8770, -4060, 8432,
 2 546, 8772, -4092, 16624, 34, 8740, 544, 16932,
 3 8738, 8228, 578, 9250, 8704, 17412, 16418, 8772,
 4 1092, 64, 34, 8772, -4092, 8944, 8226, 8772,
 5 -4045, 12608, -4096, 4371, 1264, 4401, -4077, 13090,
 6 8770, -4060, 8432, 546, 17648, 1088, -4096, 8738,
 7 17412, 16384, 8738, 9248, 8754, 22642, 9862, 12834,
 8 25122, 9972, 8497, 16965, 22087, 19003, 11047, 26608,
 9 25893, -4061, 25365, 30038, 21621, -3292, 25840, 26150,
 A -4045, 22307, 25584, 17480, -4058, 26209, 20802, 17718,
 1 18250, 23403, -2790,-30190, 8497, 16969, 23146, 31012,
 2 21605, 26199, 10022, 16998, 5157, 13651, 25460, 5157,
 3 13651, 25460, -3978, 25941, 14119, 5872, 18756, -4046,
 4 17234, 12887, 18777, 22512, 14121, 14647, 9316, 21587,
 5 22358, 26150, 13879, 13129, 17136, 9043, 25701, 22070,
 6 10040, 26680, 10281, 14648, -3991, 8944, 21347, 25170,
 7 21346, 14136, 18776, 9508, 13123, 25687, 18777, 22377,
 8 22611, 25129, 14387, 8741, 26096, 9063, -4057, 25412,
 9 18672, 9830, 16946, 13123, 16945, 9573, 16946, 13123/
C
 DATA NOD2/ 16930, 26984, 22841, 10275, 12882, 25448, 14409, 17136,
 1 12882, 10297, 22888, 26148, 8802, 10297, 22888, 26454,
 2 13910, 25955, 21042, 8996, 25840, 22866, -4055, 9456,
 3 16994, 9010, 21091, 25942, 9769, 26934, 22117, 25426,
 4 12835, 10297, 22888, 10601, 26691, 16982, 26472, 22841,
 5 10279, 13910, 25955, 21042, 8997, 13859, 12882, 25448,
 6 22841, 10278, 13653, 26165, 13894, 17717, -4030, 12851,
 7 17218, 13622, 17989, 13808, 16946, 13123, 16945, 26662,
 8 25636, 25840, 26150, 9318, 10290, 17234, 13040, 17478,
 9 22119, 26713, 14632, 26199, 18230, 13636, 21605, 26456,
 C 14375, 9267, 21348, 8741, 26096, 9512, 14681, 26722,
 1 25445, 22054, 22119, 26713, 10530, 21091, 26713, 14632,
 2 9010, 21091, 26713, 10530, 21091, 26729, 10534, 22256,
 3 9762, 25193, 10534, 22256, 9762, 26713, 14632, 9010,
 4 21091, 25941, 8745, -4058, 26352, 26978, 12882, -4030,
 5 18928, 14681, 9010, 21091, 26921, 8944, 9577, -4025,
 6 25129, 8802, 8745, 17769, 25193, 25129, 8775, 27120,
 7 26713, 14632, 9010, 21091, 26658, 10585, 26727, 22054,
 8 26713, 14632, 9010, 21091, 26864, 17506, 8745, 22888,
 9 26454, 9814, 25954, 26713, 14632, 10038, 22117, 25426/
C
 DATA NOD3/ 12835, 10601, -4023, 16937, 9010, 21091, 26921, 17001,
 1 10530, 18018, 26921, 25328, 8809, 10567, 17136, 18281,
 2 10601, 8802, -4042, 22121, 10530, 25129, 25122, 25193,
 3 10530, 18018, 4481, 26455, 17975, 10006, 5412, 13381,
 4 17989, 21604, 30070, 26405, 30068, 8759, 13379, 21348,
 5 26468, 29491, 14320, 10087, -4009, 21314, 18672, 14118,
 6 9267, 21348, 26199, 14135, 9764, 13139, 25702, 22327,
 7 -4075, 29990, 13876, 17236, 22118, -4030, 18467, 26352,
 8 9782, 21347, 10020, 13124, 18244, 21348, 26408, 14149,
 9 25584, 8773, 26455, 17975, 10006, 5412, 13381, 17989,
 E 21604, 22600, 14150, 22117, 25683, 17204, 13638, 26439,
 1 13876, 17251, -3995, 9766, 14150, 13382, 22374, 21233,
 2 -3471, 8534, 10874, 5477, -4045, 13380, 17203, -4042,
 3 14151, 17974, 26662, 25840, 25379, 25379, -4060, 26152,
 4 4679, 29202, 26199, 14118, 9267, 21348, -4030, 18453,
 5 29985, 10792, 14664, 17136, 18521, 26659, 13378, 19066,
 6 16969, -4044, 21744, 14424, 16969, -4044, 21744, 14424,
 7 -4042, 22037, 13876, 5493, 9063, -4057, 25410, 18743,
 8 22345, 16948, 21570, 18688, 0, 0, 0, 0,
 9 0, 0, 0, 0, 0, 0, 0, 0/
C
 X = XZ
 Y = YZ
 NC = NZ
C
C...Save and set line pattern, Symbols/text only drawn with solid lines
C...Process a draw to character position before switching line pattern
 CALL GETPAT(IMASK)
 IF (NC.LT.-1) CALL PLOT(X,Y,2)
 IF(IMASK.NE.-1) THEN
 MSK = MSKALL
 CALL NEWPAT(MSK)
 ENDIF
C
C
C...Get set to loop through the text array character by character
 K = 0
 IC = 3
 DIV = 7.0
C
C
C...Extract next character from text array, masking off high bit
 180 K = K + 1
C
C---For declaration of ITEXT as a character variable
 NCHR = ICHAR(ITEXT(K:K))
C---Declaration of ITEXT as integer or byte variable
C+++OldVersatec (use either LOGICAL*1, INTEGER*1 or BYTE declaration)
C NCHR = ITEXT(K)
C+++OldVersatec
C
C
 NCHR = IRAM(NCHR,0,MSK7)
C
C...NC<0 Centered symbol
C NC=0 Right-justified symbol
C NC>0 Regular left-justified text
C
 IF(NC.LT.0) THEN
 IF (NCHR.LE.13) DIV = 4.0
 ENDIF
 NCC = NCHR
C
C...On first character, set character height, angle and position
C
 IF(K.EQ.1) THEN
C...Use current height and angle?
 IF (HGT.GT.0.0) THEN
 ISTAT = 1
 FCT = HGT/DIV
C...Calculate a new theta if necessary
C use stored quadrant angles if at n(90 deg).
 IF (ANGLE.NE.THETA) THEN
 FACC = FCT
 THETA = ANGLE
 ANG = AMOD(ANGLE,360.0)
 IF (ANG.LT.0) ANG = 360.0 - ANG
 I = (ANG + EPSIL)/90.0
 A = I*90.0
 IF (ABS(ANG-A).GT.EPSIL) THEN
 ANCC = THETA*RADCO
 ANCS = SIN(ANCC)
 ANCC = COS(ANCC)
 ELSE
 ANCS = ASIN(I+1)
 ANCC = ACOS(I+1)
 ENDIF
 CALL SOFFSET(FACC,ANCC,ANCS,XA,YA)
 ENDIF
C...Calculate offsets for new FACC and/or ANGLE
 IF (FCT.NE.FACC) THEN
 FACC = FCT
 CALL SOFFSET(FACC,ANCC,ANCS,XA,YA)
 ENDIF
 ENDIF
C...Set character position
C...If X,Y coordinate = 999.0; use previous value(s) of X and/or Y
 IF (X.NE.999.0) THEN
 XO = X-XA(3)+YA(3)
 XC = XO
 ENDIF
 IF (Y.NE.999.0) THEN
 YO = Y-XA(3)-YA(3)
 YC = YO
 ENDIF
 X = XC
 Y = YC
 ENDIF
C
C
C...Extract node count (5 bits) and index (11 bits) into node array
 KDEX = MOD(NCC,NCHRS) + 1
 KVAL = KHAR(KDEX)
 NDKNT = AND(KVAL,MSK5)
 INDX = IRAM(KVAL,5,MSK11)
C
C...Compute word index into node array for first node
 NWD = INDX/NBYTES + 1
C
C...Compute byte index(NBT = shift count)into node word for node start
 NBT = -8*MOD(INDX,NBYTES) - 8
C
C...Node processing loop
 210 IF(NBT+NBITS.LT.0) THEN
 NWD = NWD + 1
 NBT = -8
 ENDIF
C
C...Extract the next node.
 NODES = IRAM(NODE(NWD),NBT,MSK8)
 NBT = NBT - 8
 NODEY = AND(NODES,MSK4)
 NODEX = IRAM(NODES,4,MSK4)
C
C...Check for special control functions (NODEX = 15)
 IF (NODEX.GE.15) THEN
C -
C...Decode special function (y-offset)
C...Blank,superscript,subscript,carriage return,back space,null char?
C
C...Blank character
 IF(NODEY.EQ.0) THEN
 IC = 3
 GO TO 245
C...Superscript set/reset code: (first test existing state)
 ELSEIF(NODEY.EQ.1) THEN
 IF(ISTAT.EQ.0) THEN
C - For ISTAT=0 return to normal STATE=1
 ISTAT = 1
 FACC = FACC/FCTR
 CALL SOFFSET(FACC,ANCC,ANCS,XA,YA)
 X = X-YA(2)
 Y = Y+XA(2)
 ELSEIF(ISTAT.EQ.1) THEN
C - For ISTAT=1 Set superscript mode,ISTAT=2
 ISTAT = 2
 X = X-YA(5)
 Y = Y+XA(5)
 FACC = FACC*FCTR
 CALL SOFFSET(FACC,ANCC,ANCS,XA,YA)
 ENDIF
C - For ISTAT=2 do nothing and branch to next character
C
C
C...Subscript set/reset code: (first test existing state)
 ELSEIF(NODEY.EQ.2) THEN
C - For ISTAT=0 branch to next character
C - For ISTAT=1) set subscript mode, ISTAT=0
 IF(ISTAT.EQ.1) THEN
 ISTAT = 0
 X = X+YA(2)
 Y = Y-XA(2)
 FACC = FACC*FCTR
 CALL SOFFSET(FACC,ANCC,ANCS,XA,YA)
C - For ISTAT=2 return to normal mode, ISTAT=1
 ELSEIF(ISTAT.EQ.2) THEN
 ISTAT = 1
 FACC = FACC/FCTR
 CALL SOFFSET(FACC,ANCC,ANCS,XA,YA)
 X = X+YA(5)
 Y = Y-XA(5)
 ENDIF
C...Carriage return
 ELSEIF(NODEY.EQ.3) THEN
 X = XO + YA(13)
 Y = YO - XA(13)
 XO = X
 YO = Y
C...Backspace
 ELSEIF(NODEY.EQ.4) THEN
 X = X - XA(8)
 Y = Y - YA(8)
C...Null character
 ELSEIF(NODEY.EQ.5) THEN
 ENDIF
C
C...Go on to next character
 GO TO 260
 ENDIF
C -
C...Process move to node
 NODEX = NODEX + 1
 NODEY = NODEY + 1
 YT = Y + YA(NODEX) + XA(NODEY)
 XT = X + XA(NODEX) - YA(NODEY)
C
C
C...Plot the character stroke
 CALL PLOT(XT,YT,IC)
 IC = 2
 X = XC
 Y = YC
C
C...Decrement and test node count
 245 NDKNT = NDKNT - 1
C
C...Any nodes yet to be processed?
 IF (NDKNT.GE.0) GO TO 210
 X = X + XA(8)
 Y = Y + YA(8)
C
C...Decrement and test symbol count
 260 XC = X
 YC = Y
 IC = 3
 NC = NC - 1
C
C...Any symbols yet to be plotted?
 IF (NC.GT.0) GO TO 180
C
C...End of SYMBOL processing, if necessary restore line pattern
 IF(IMASK.NE.-1) THEN
 CALL NEWPAT(IMASK)
 ENDIF
 RETURN
 END

 SUBROUTINE SOFFSET(FACC,ANCC,ANCS,XA,YA)
C...Calculates character offsets using current factor and direction
C sine and cosine
 DIMENSION XA(14), YA(14)
C
 Z = FACC*ANCC
 W = FACC*ANCS
 XI = Z
 YI = W
 DO L=2,14
 XA(L) = Z
 YA(L) = W
 Z = Z+XI
 W = W+YI
 END DO
 RETURN
 END

 SUBROUTINE NUMBER (X,Y,HEIGHT,FPN,ANGLE,NDIG)
C...Plot number as a string of characters
C
C (X,Y) = starting coordinates for 1st char (real)
C HEIGHT = character height (real)
C FPN = number to be converted to digits and plotted (real)
C ANGLE = angle at which numeric string is to be plotted
C in degrees measured from the x-axis (real)
C NDIG = specification of the number of digits and the type
C of numeric string to be plotted (integer)
C > 0 = number of digits to the right of the decimal
C point to be plotted (last digit is rounded)
C = 0 = rounded integer portion of fpn is plotted
C with a decimal point
C = -1 = rounded integer portion of fpn is plotted
C without the decimal point
C < -1 = rounded integer portion of fpn is plotted
C after having the least significant digits
C truncated (IABS(NDEC)-1 digits are truncated)
C
C CALLS: SYMBOL
C
C...Note:
C If your compiler supports passing character data as integers without
C complaining and you want old style Versatec SYMBOL compatibility (so
C you can call SYMBOL with either characters stuffed into an integer
C array or with integer arguments to specify plot symbols) you can use
C the sections of the following code marked with C+++OldVersatec comments.
C
C---Declaration using character variables
 CHARACTER*1 MINUS, IPOINT, CHDIG
C---Declaration of ITEXT as integer or byte variable
C+++OldVersatec (use either LOGICAL*1, INTEGER*1 or BYTE declaration)
C LOGICAL*1 MINUS, IPOINT, CHDIG
C INTEGER*1 MINUS, IPOINT, CHDIG
C BYTE MINUS, IPOINT, CHDIG
C+++OldVersatec
C
 DATA MINUS/'-'/,IPOINT/'.'/
C
 IZERO = ichar('0')
C
 T1 = FPN
 XZ = X
 YZ = Y
C...Number negative?
 IF (T1.LT.0) THEN
 CALL SYMBOL (XZ,YZ,HEIGHT,MINUS,ANGLE,1)
 XZ = 999.
 YZ = 999.
 T1 = -T1
 ENDIF
C
C...Set working digit count
 ND = -NDIG
C
C...Integer only to be plotted?
 IF (NDIG.LE.0) THEN
C...Round and truncate for integer
 IF(NDIG.EQ.0) ND = 1
 ND = ND - 1
 T2 = FLOAT (IFIX((T1 + 0.5)/(10.**ND))) + 0.5
 ND = 0
 IF (NDIG.EQ.0) ND = -1
 ELSE
C...Round for fraction
 T2 = T1 + 0.5/(10.**NDIG)
 ENDIF
C
C...Find number of digits to the left of decimal point
 NL = 1
C...Any more digits to the left of the d.p.
 60 IF (T2.GE.10.) THEN
 T2 = T2/10.
 NL = NL + 1
 GO TO 60
 ENDIF
C
C...Set plottable digit count
 NP = NL - ND
C...Bad digit count?
 IF (NP.LE.0) NP = 1
C
C...Plot decimal point (NL=0)
 80 IF(NL.EQ.0) THEN
C...No decimal point?
 IF (NDIG.LT.0) GO TO 120
 CALL SYMBOL (XZ,YZ,HEIGHT,IPOINT,ANGLE,1)
 IF (NDIG.NE.0) NP = NP + 1
 ELSE
C...Plot digit
 IDIG = IFIX(T2)
 T2 = (T2 - FLOAT (IDIG))*10.
C---For declaration of CHDIG as character variable
 CHDIG = char(IDIG + IZERO)
C+++OldVersatec (use either LOGICAL*1, INTEGER*1 or BYTE declaration)
C CHDIG = IDIG + IZERO
C+++OldVersatec
 CALL SYMBOL (XZ,YZ,HEIGHT,CHDIG,ANGLE,-1)
 ENDIF
 XZ = 999.
 YZ = 999.
C
C...Count digit
 NP = NP - 1
 120 NL = NL - 1
C
C...More digits to plot?
 IF(NP.GT.0) GO TO 80
 RETURN
 END

 INTEGER*4 FUNCTION IRAM(IWORD,K,MASK)
C...Rotate And Mask 16 bits of a word and mask
C Note that all inputs and outputs are I*4 (32bit)
C New 32 bit version of IRAM HHY 4/1/96
 INTEGER*4 MASK,IWORD,I4,I3,IT1,IT2
 INTEGER RSHIFT, LSHIFT, AND
 I4=LSHIFT(IWORD,16)
 I3=LSHIFT(MASK,16)
C
 IF(K .NE. 0) THEN
C
 if (K .LT. 0) then
 IT1=LSHIFT(I4,-K)
 else
 IT1=RSHIFT(I4,K)
 endif
C
 IF(K .GT. 0) then
 IT2=LSHIFT(I4,16-K)
 else
 IT2=RSHIFT(I4,abs(-K-16))
 endif
C
 I4=IT1+IT2
 ENDIF
C
 I4=AND(I4,I3)
 IRAM=RSHIFT(I4,16)
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/plt_util.f

C***
C Module: plt_util.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C

C --- Xplot11 utility routines
C
C Version 4.46 11/28/01
C
C Note: These are additional routines that supply additional plot
C functionality. Included are routines for axis scaling,
C axis plotting, line or curve plotting, contours, etc.
C***

 subroutine XAXIS(X1,Y1,XAXT,DXANN,FANN,DANN,CHT,NDIG)
C...
C
C X1,Y1 starting point of x axis
C XAXT length of x axis (- = suppress zero annotation)
C DXANN distance between annotations
C FANN first annotation value
C DANN delta annotation value
C CHT character width (- = annotation above axis)
C NDIG number of digits to right of decimal point
C = -1 no decimal point
C = -2 number of digits determined internally
C <= -3 no axis annotation (just hash marks)
C...
C
 XAX = ABS(XAXT)
 CH = ABS(CHT)
C
 IF(NDIG.LE.-2) THEN
 ADANN = ABS(DANN)
 ND = MAX(1 , INT(-LOG10(ADANN)))
 IF(ADANN*10**ND - AINT(ADANN*10**ND+0.01) .GT. 0.01) ND = ND + 1
 IF(ADANN*10**ND - AINT(ADANN*10**ND+0.01) .GT. 0.01) ND = ND + 1
 ELSE
 ND = NDIG
 ENDIF
C
 CALL GETFACTORS(XFAC,YFAC)
 CHX = CH
 CHY = CH*XFAC/YFAC
C
C---- x-axis
 CALL PLOT(X1,Y1,3)
 CALL PLOT(X1+XAX,Y1,2)
C
C---- annotate x-axis
 DO 10 NT=1, 12345
 XT = X1 + DXANN*FLOAT(NT-1)
 IF(XT-X1.GT.XAX+0.5*DXANN) GO TO 11
C---- hash marks
 CALL PLOT(XT,Y1-0.2*CHY,3)
 CALL PLOT(XT,Y1+0.2*CHY,2)
C---- Numeric annotations
 IF(NDIG.LE.-3) GO TO 10
 RN = FANN + DANN*FLOAT(NT-1)
 IF(ABS(RN).LT.1.0E-5 .AND. XAXT.LT.0.0) GO TO 10
 GRN = 0.
 IF(RN.NE.0.0) GRN = ALOG10(ABS(RN)+0.5/10.0**MAX(0,ND))
 GRN = MAX(GRN,0.0)
 NABC = INT(GRN) + 2 + ND
 WIDTH = CHX*FLOAT(NABC)
 IF(RN.LT.0.0) WIDTH = WIDTH + CHX
 XNUM = XT - 0.5*WIDTH + 0.1*CHX
 YNUM = Y1 - 2.1*CHY
 IF(CHT.LT.0.0) YNUM = Y1 + 0.9*CHY
 CALL PLNUMB(XNUM,YNUM,CH,RN,0.0,ND)
 10 CONTINUE
 11 CONTINUE
C
 RETURN
 END

 subroutine YAXIS(X1,Y1,YAXT,DYANN,FANN,DANN,CHT,NDIG)
C...
C
C X1,Y1 starting point of y axis
C YAXT length of y axis (- = suppress zero annotation)
C DYANN distance between annotations
C FANN first annotation value
C DANN delta annotation value
C CHT character width (- = annotation on right side)
C NDIG number of digits to right of decimal point
C = -1 no decimal point
C = -2 number of digits determined internally
C <= -3 no axis annotation (just hash marks)
C...
C
 YAX = ABS(YAXT)
 CH = ABS(CHT)
C
 IF(NDIG.LE.-2) THEN
 ADANN = ABS(DANN)
 ND = MAX(1 , INT(-LOG10(ADANN)))
 IF(ADANN*10**ND - AINT(ADANN*10**ND+0.01) .GT. 0.01) ND = ND + 1
 IF(ADANN*10**ND - AINT(ADANN*10**ND+0.01) .GT. 0.01) ND = ND + 1
 ELSE
 ND = NDIG
 ENDIF
C
 CALL GETFACTORS(XFAC,YFAC)
 CHX = CH
 CHY = CH*XFAC/YFAC
C
C---- y-axis
 CALL PLOT(X1,Y1,3)
 CALL PLOT(X1,Y1+YAX,2)
C
C---- annotate y-axis
 DO 10 NT=1, 12345
 YT = Y1 + DYANN*FLOAT(NT-1)
 IF(YT-Y1.GT.YAX+0.5*DYANN) GO TO 11
C---- hash marks
 CALL PLOT(X1-0.2*CHX,YT,3)
 CALL PLOT(X1+0.2*CHX,YT,2)
C---- Numeric annotations
 IF(NDIG.LE.-3) GO TO 10
 RN = FANN + DANN*FLOAT(NT-1)
 IF(ABS(RN).LT.1.0E-5 .AND. YAXT.LT.0.0) GO TO 10
 GRN = 0.
 IF(RN.NE.0.0) GRN = ALOG10(ABS(RN)+0.5/10.0**MAX(0,ND))
 GRN = MAX(GRN,0.0)
 NABC = INT(GRN) + 2 + ND
 WIDTH = CHX*FLOAT(NABC)
 IF(RN.LT.0.0) WIDTH = WIDTH + CHX
 XT = X1 - (0.6*CHX + WIDTH)
 IF(CHT.LT.0.0) XT = X1 + CHX
 CALL PLNUMB(XT,YT-0.5*CHY,CH,RN,0.0,ND)
 10 CONTINUE
 11 CONTINUE
C
 RETURN
 END

 subroutine XYLINE(N,X,Y,XOFF,XWT,YOFF,YWT,ILIN)
C..
C
C...General XY polyline plotting routine with offsets and scaling
C
C...INPUT X, Y Input arrays of length N
C XOFF,XWT Offset and scale factor for X array...
C YOFF,YWT Offset and scale factor for Y array...
C Xplot = XWT*(X-XOFF)
C Yplot = YWT*(Y-YOFF)
C ILIN Selects line pattern
C
C...8 line patterns are available (repeat for ILIN>8)
C 1 ***************************** SOLID
C 2 **** **** **** **** **** **** LONG DASHED
C 3 ** ** ** ** ** ** ** ** ** ** SHORT DASHED
C 4 * * * * * * * * * * * * * * * DOTTED
C 5 ***** * ***** * ***** * ***** DASH-DOT
C 6 ***** * * ***** * * ***** * * DASH-DOT-DOT
C 7 ***** * * * ***** * * * ***** DASH-DOT-DOT-DOT
C 8 **** **** * * **** **** * * DASH-DASH-DOT-DOT
C
C..
 DIMENSION X(N), Y(N)
C
 DIMENSION NMOV(7), SMOV(8,7)
C
 DATA NPAT / 8 /
 DATA SCL1 / 0.125 /
 DATA NMOV / 2, 2, 2, 4, 6, 8, 8 /
 DATA SMOV /1.2, -.4, 0., 0., 0., 0., 0., 0.,
 & .5, -.4, 0., 0., 0., 0., 0., 0.,
 & .2, -.4, 0., 0., 0., 0., 0., 0.,
 & 1.4, -.4, .2, -.4, 0., 0., 0., 0.,
 & 1.4, -.4, .2, -.4, .2, -.4, 0., 0.,
 & 1.4, -.4, .2, -.4, .2, -.4, .2, -.4,
 & 1.2, -.4, 1.2, -.4, .2, -.4, .2, -.4 /
C
 IF(N.LE.1) RETURN
C
C---- set line pattern scale based on current user scaling factors
 CALL GETFACTORS(XSCALE,YSCALE)
 SCL = SCL1 / SQRT(XSCALE*YSCALE)
C
 NLIN = MAX(ILIN,1)
 IPAT = MOD(NLIN-1,NPAT) + 1
C
 X2 = XWT*(X(1)-XOFF)
 Y2 = YWT*(Y(1)-YOFF)
 CALL PLOT(X2,Y2,3)
C
 IF (IPAT.EQ.1) THEN
C...Plot using continuous line
 DO 10 I=2, N
 X1 = X2
 Y1 = Y2
 X2 = XWT*(X(I)-XOFF)
 Y2 = YWT*(Y(I)-YOFF)
 CALL PLOT(X2,Y2,2)
 10 CONTINUE
C
 ELSE
C...Plot using stored patterns for lines
 I = 1
 S1 = 0.
 S2 = 0.
 S0 = 0.
C
 20 DO 40 II=1, 99999
C
C...Pattern specifies pen up or down
 IM = MOD(II+1,NMOV(IPAT-1)) + 1
 IPEN = 3
 IF(SMOV(IM,IPAT-1).GT.0.) IPEN = 2
C
 DS = SCL*ABS(SMOV(IM,IPAT-1))
 SPAT = S0 + DS
C
C...Find data interval containing pattern point
 30 IF (SPAT.GE.S2 .AND. I+1.LE.N) THEN
 I = I + 1
 CALL PLOT(X2,Y2,IPEN)
 X1 = X2
 Y1 = Y2
 S1 = S2
 X2 = XWT*(X(I)-XOFF)
 Y2 = YWT*(Y(I)-YOFF)
 DS = SQRT((X2-X1)**2 + (Y2-Y1)**2)
 S2 = S1 + DS
 GO TO 30
 ENDIF
C
C...Find point on interval using linear interpolation
 IF (SPAT.GT.S2) SPAT = S2
 IF(S2 .EQ. S1) THEN
 FRAC = 0.0
 ELSE
 FRAC = (SPAT-S1)/(S2-S1)
 ENDIF
 XX = X1 + FRAC*(X2-X1)
 YY = Y1 + FRAC*(Y2-Y1)
C
C...Move to new point using stored pattern to specify pen up or down
 CALL PLOT(XX,YY,IPEN)
 IF (I.GE.N .AND. SPAT.GE.S2) GO TO 50
 S0 = SPAT
 40 CONTINUE
C
 50 CONTINUE
 ENDIF
C
 RETURN
 END

 subroutine XYSYMB(N,X,Y,XOFF,XWT,YOFF,YWT,SH,ISYM)
C...
C
C...GENERAL XY MULTIPLE-SYMBOL PLOTTING ROUTINE
C (useful for overplotting XYLINE plot with point symbols)
C
C...INPUT X, Y Input arrays of length N
C XOFF,XWT Offset and scale factor for X array
C YOFF,YWT Offset and scale factor for Y array
C SH Symbol size
C ISYM Selects symbol type
C if ISYM < 0 ... no plotting
C...
C
 DIMENSION X(N), Y(N)
C
 IF(ISYM.LT.0) RETURN
C
 DO 10 I=1, N
 XPLT = XWT*(X(I)-XOFF)
 YPLT = YWT*(Y(I)-YOFF)
 CALL PLSYMB(XPLT,YPLT,SH,ISYM,0.0,0)
 10 CONTINUE
C
 RETURN
 END

 subroutine CONTGRID(IX,JX,II,JJ,X,Y,F,FCON,XOFF,YOFF,XWT,YWT)
 DIMENSION X(IX,JX), Y(IX,JX), F(IX,JX)
C--
C
C Plots one contour of a function F on a logically rectangular grid.
C (normally called repeatedly if a number of contours is to be drawn)
C
C IX JX dimensions of arrays X, Y, F
C II JJ array limits of arrays X, Y, F
C X(i,j) independent coordinates of point (i,j)
C Y(i,j)
C F(i,j) function value at point (i,j)
C FCON value of F on the contour to be drawn
C XOFF offset for X
C YOFF offset for Y
C XWT scaling factor for X
C YWT scaling factor for Y
C
C XPLOT = (X - XOFF)*XWT
C YPLOT = (Y - YOFF)*YWT
C--
C
 LOGICAL FOUND
C
C---- go over all cells and draw contour in any cell which contains the contour
 DO 10 IO=1, II-1
 IP = IO+1
C
 DO 110 JO=1, JJ-1
 JP = JO+1
C
 FOUND = .FALSE.
C
C op 3 pp
C
C 4 2
C
C oo 1 po
C
 XOO = X(IO,JO)
 XOP = X(IO,JP)
 XPO = X(IP,JO)
 XPP = X(IP,JP)
C
 YOO = Y(IO,JO)
 YOP = Y(IO,JP)
 YPO = Y(IP,JO)
 YPP = Y(IP,JP)
C
 FOO = F(IO,JO)
 FOP = F(IO,JP)
 FPO = F(IP,JO)
 FPP = F(IP,JP)
C
C-------- bottom edge (side 1)
 IF(FCON.GE.FOO .AND. FCON.LT.FPO .OR.
 & FCON.LT.FOO .AND. FCON.GE.FPO) THEN
 XCON = XOO + (FCON-FOO)*(XPO-XOO)/(FPO-FOO)
 YCON = YOO + (FCON-FOO)*(YPO-YOO)/(FPO-FOO)
 IF(FOUND) THEN
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),2)
 ELSE
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),3)
 ENDIF
 FOUND = .NOT.FOUND
 ENDIF
C
C-------- left edge (side 4)
 IF(FCON.GE.FOO .AND. FCON.LT.FOP .OR.
 & FCON.LT.FOO .AND. FCON.GE.FOP) THEN
 XCON = XOO + (FCON-FOO)*(XOP-XOO)/(FOP-FOO)
 YCON = YOO + (FCON-FOO)*(YOP-YOO)/(FOP-FOO)
 IF(FOUND) THEN
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),2)
 ELSE
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),3)
 ENDIF
 FOUND = .NOT.FOUND
 ENDIF
C
C-------- right edge (side 2)
 IF(FCON.GE.FPO .AND. FCON.LT.FPP .OR.
 & FCON.LT.FPO .AND. FCON.GE.FPP) THEN
 XCON = XPO + (FCON-FPO)*(XPP-XPO)/(FPP-FPO)
 YCON = YPO + (FCON-FPO)*(YPP-YPO)/(FPP-FPO)
 IF(FOUND) THEN
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),2)
 ELSE
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),3)
 ENDIF
 FOUND = .NOT.FOUND
 ENDIF
C
C-------- top edge (side 3)
 IF(FCON.GE.FOP .AND. FCON.LT.FPP .OR.
 & FCON.LT.FOP .AND. FCON.GE.FPP) THEN
 XCON = XOP + (FCON-FOP)*(XPP-XOP)/(FPP-FOP)
 YCON = YOP + (FCON-FOP)*(YPP-YOP)/(FPP-FOP)
 IF(FOUND) THEN
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),2)
 ELSE
 CALL PLOT(XWT*(XCON-XOFF),YWT*(YCON-YOFF),3)
 ENDIF
 FOUND = .NOT.FOUND
 ENDIF
C
 110 CONTINUE
 10 CONTINUE
C
 RETURN
 END

 subroutine CONTQUAD(X,Y,F,
 & FUPR,FLWR,
 & NCU,XCU,YCU,
 & NCL,XCL,YCL,
 & NA,NE,NV,XP,YP)
C--
C Contour a single quadrilateral element between an upper and
C a lower contour limit. The output from this routine is both the
C line segments defining the upper and lower contours and a set of
C polygons that define the area of the element lying between the
C contour limits. These may be used to shade the area on a plot.
C
C X, Y Arrays containing quadrilateral coordinate data
C F Array containing the quantity F(x,y) to be contoured,
C ie. F(i) is defined at X(i),Y(i), i=1->4
C FUPR, FLWR Upper and lower contour limits
C NCU Number of upper limit contour line points
C XCU, YCU Arrays of x,y points (in pairs) on upper contour
C NCL Number of lower limit contour line points
C XCL, YCL Arrays of x,y points (in pairs) on lower contour
C NA Number of polygon areas in XP, YP, NE arrays
C NE Array of numbers of points in each polygon area
C NV Vertex count of points in XP,YP arrays
C XP, YP Coordinate points of contour polygons
C
C Note: the output contour line points on the upper contour (XCU,YCU)
C or lower contour (XCL,YCL) are only valid in point pairs, ie.
C points 1 and 2 define a segment, points 3 and 4 define the next,
C etc. In general, there is no guarantee that the cross-pair points
C (like points 2 and 3) will be contiguous. DO NOT PLOT THESE AS A
C CONTIGUOUS ARRAY OF POINTS.
C
C Note: the output areas (NA polygon areas) are stored with the points
C for all polygons in one big XP,YP array. The number of points
C in each polygon are stored in NE, i.e. NE(1) is the number of
C points stored in XP,YP for the first polygon, NE(2) is the number
C of vertices stored following those for the second polygon, etc.
C The total number of vertices is NV=sum[NE(1)+NE(2)..+NE(NA)].
C
C Note: the NCU,NCL,NA,NV counters are cumulative in this routine!
C If you want to contour each quadrilateral without accumulating
C contour points or polygons reset NCU=0,NCL=0,NA=0,NV=0 before
C each call to CONTQUAD.
C
C--
 DIMENSION X(4), Y(4), F(4)
 DIMENSION XP(1), YP(1), NE(1)
 DIMENSION XCL(1), YCL(1), XCU(1), YCU(1)
C
 DIMENSION IANG(4)
 DIMENSION XTMP(3), YTMP(3), FTMP(3)
C
C---- NCU tracks the number of upper contour points
C NCL tracks the number of lower contour points
C NA tracks the number of polygon areas
C NV tracks the total number of stored vertices in the XP,YP arrays
C---- Uncomment these if you want to reset the counters each time you
C contour a quadrilateral
C NA = 0
C NV = 0
C NCU = 0
C NCL = 0
C
 FHI = FUPR
 FLO = FLWR
 IF (FHI.LT.FLO) THEN
 FHI = FLWR
 FLO = FUPR
 ENDIF
C
C---- Extrema
 FMAX = AMAX1(F(1),F(2),F(3),F(4))
 FMIN = AMIN1(F(1),F(2),F(3),F(4))
C
C---- If cell is above contour band or below contour band skip it
 IF (FMAX.LE.FLO .OR. FMIN.GE.FHI) RETURN
C
C---- If cell is totally within contour band there are no contour lines,
C and cell can be shaded directly
 IF (FMAX.LE.FHI .AND. FMIN.GE.FLO) THEN
 DO 2 I = 1, 4
 NV = NV + 1
 XP(NV) = X(I)
 YP(NV) = Y(I)
 2 CONTINUE
 NA = NA + 1
 NE(NA) = 4
 GO TO 100
 ENDIF
C
C----Check for convex or concave quadrilaterals
 ISUM = 0
 DO 3 J = 1, 4
 JM = MOD(J+2,4) + 1
 JP = MOD(J, 4) + 1
 IANG(J) = 1
 IF ((X(J)-X(JM))*(Y(JP)-Y(J)) .LT.
 & (X(JP)-X(J))*(Y(J)-Y(JM))) IANG(J) = -1
 ISUM = ISUM + IANG(J)
 3 CONTINUE
 DO 4 J = 1, 4
 IF (IANG(J)*ISUM.LT.0) GO TO 10
 4 CONTINUE
C
C----All angles < 180 deg., split into 4 triangles with average center pt
 XTMP(3) = 0.25*(X(1)+X(2)+X(3)+X(4))
 YTMP(3) = 0.25*(Y(1)+Y(2)+Y(3)+Y(4))
 FTMP(3) = 0.25*(F(1)+F(2)+F(3)+F(4))
C
 DO 5 I = 1, 4
 IP = MOD(I,4) + 1
 XTMP(1) = X(I)
 YTMP(1) = Y(I)
 FTMP(1) = F(I)
 XTMP(2) = X(IP)
 YTMP(2) = Y(IP)
 FTMP(2) = F(IP)
 CALL CONTTRI(XTMP,YTMP,FTMP,FHI,FLO,
 & NCU,XCU,YCU,NCL,XCL,YCL,NA,NE,NV,XP,YP)
 5 CONTINUE
 GO TO 100
C
C----Quadrilaterals with an angle > 180, two triangles
 10 XTMP(3) = X(J)
 YTMP(3) = Y(J)
 FTMP(3) = F(J)
C
 JP1 = MOD(J,4) + 1
 XTMP(1) = X(JP1)
 YTMP(1) = Y(JP1)
 FTMP(1) = F(JP1)
 JP2 = MOD(JP1,4) + 1
 XTMP(2) = X(JP2)
 YTMP(2) = Y(JP2)
 FTMP(2) = F(JP2)
 CALL CONTTRI(XTMP,YTMP,FTMP,FHI,FLO,
 & NCU,XCU,YCU,NCL,XCL,YCL,NA,NE,NV,XP,YP)
C
 JM2 = MOD(JM+1,4) + 1
 XTMP(1) = X(JM2)
 YTMP(1) = Y(JM2)
 FTMP(1) = F(JM2)
 JM1 = MOD(JM2,4) + 1
 XTMP(2) = X(JM1)
 YTMP(2) = Y(JM1)
 FTMP(2) = F(JM1)
 CALL CONTTRI(XTMP,YTMP,FTMP,FHI,FLO,
 & NCU,XCU,YCU,NCL,XCL,YCL,NA,NE,NV,XP,YP)
C
 100 RETURN
 END

 subroutine CONTTRI(X,Y,F,
 & FUPR,FLWR,
 & NCU,XCU,YCU,
 & NCL,XCL,YCL,
 & NA,NE,NV,XP,YP)
C
C Contour a single triangular element between an upper and
C a lower contour limit. The output from this routine is both the line
C segments defining the upper and lower contours and a set of
C polygons that define the area of the element lying between the
C contour limits. These may be used to shade the area on a plot.
C
C X, Y, Arrays containing triangular element points
C F Array containing the quantity F(x,y) to be contoured,
C ie. F(i) is defined at X(i),Y(i), i=1->3
C FUPR, FLWR Upper and lower contour limits
C NCU Number of upper limit contour line points
C XCU, YCU Arrays of x,y points on upper contour
C NCL Number of lower limit contour line points
C XCL, YCL Arrays of x,y points on lower contour
C NA Number of polygon areas in XP, YP, NE arrays
C NE Array of numbers of points in each polygon area
C NV Vertex count of points in XP,YP arrays
C XP, YP Coordinate points of contour polygons
C
C Note: the output contour line points on the upper contour (XCU,YCU)
C or lower contour (XCL,YCL) are only valid in point pairs, ie.
C points 1 and 2 define a segment, points 3 and 4 define the next,
C etc. In general, there is no guarantee that the cross-pair points
C (like points 2 and 3) will be contiguous. DO NOT PLOT THESE AS A
C CONTIGUOUS ARRAY OF POINTS.
C
C Note: the output areas (NA polygons) are stored with the points
C for all polys in one big XP,YP array. The number of points
C in each polygon are stored in NE, i.e. NE(1) is the number of
C points stored in XP,YP for the first polygon, NE(2) is the number
C of vertices stored following those for the second polygon, etc.
C The total number of vertices is NV=sum[NE(1)+NE(2)..+NE(NA)].
C
C Note: the NCU,NCL,NA,NV counters are cumulative in this routine!
C If you want to contour each triangle without accumulating
C contour points or polygons reset NCU=0,NCL=0,NA=0,NV=0 before
C each call to CONTTRI.
C
 DIMENSION X(3), Y(3), F(3), FH(3), FL(3),
 & XCU(1), YCU(1), XCL(1), YCL(1), XP(1), YP(1), NE(1)
C
C---- NCU tracks the number of upper contour points
C NCL tracks the number of lower contour points
C NA tracks the number of polygon areas
C NV tracks the total number of stored vertices in the XP,YP arrays
C---- Uncomment these if you want to reset the counters each time you
C contour a triangle
C NA = 0
C NV = 0
C NCU = 0
C NCL = 0
C
 FHI = FUPR
 FLO = FLWR
 IF (FHI.LT.FLO) THEN
 FHI = FLWR
 FLO = FUPR
 ENDIF

 NVFRST = NV
C
 EPS = 0.0001*(FHI-FLO)
C
C---- Temporary values
 DO 1 I = 1, 3
 FH(I) = F(I) - FHI
 FL(I) = F(I) - FLO
 IF (FH(I).GE.0. .AND. FH(I).LT. EPS) FH(I) = EPS
 IF (FH(I).LE.0. .AND. FH(I).GT.-EPS) FH(I) = -EPS
 IF (FL(I).GE.0. .AND. FL(I).LT. EPS) FL(I) = EPS
 IF (FL(I).LE.0. .AND. FL(I).GT.-EPS) FL(I) = -EPS
 1 CONTINUE
C
C----Check point by point for points in contour limits
 DO 50 I = 1, 3
C
C----Inside contour limits
 IF (FH(I).LT.0. .AND. FL(I).GT.0.) THEN
 NV = NV + 1
 XP(NV) = X(I)
 YP(NV) = Y(I)
C
 ELSE
C
 IF (FH(I).GE.0.) THEN
C----Check for intersections with previous and next point
 IP = MOD(I,3) + 1
 IM = MOD(I+1,3) + 1
 IF (FH(IM).LT.0.) THEN
 ETA = -(FH(IM)+FH(I))/(FH(IM)-FH(I))
 NCU = NCU + 1
 XCU(NCU) = 0.5*(X(I) + X(IM) + ETA*(X(IM)-X(I)))
 YCU(NCU) = 0.5*(Y(I) + Y(IM) + ETA*(Y(IM)-Y(I)))
 NV = NV + 1
 XP(NV) = XCU(NCU)
 YP(NV) = YCU(NCU)
 ENDIF
 IF (FH(IP).LT.0.) THEN
 ETA = -(FH(IP)+FH(I))/(FH(IP)-FH(I))
 NCU = NCU + 1
 XCU(NCU) = 0.5*(X(I) + X(IP) + ETA*(X(IP)-X(I)))
 YCU(NCU) = 0.5*(Y(I) + Y(IP) + ETA*(Y(IP)-Y(I)))
 NV = NV + 1
 XP(NV) = XCU(NCU)
 YP(NV) = YCU(NCU)
 ENDIF
 ENDIF
C
 IF (FL(I).LE.0.) THEN
C----Check for intersections with previous and next point
 IP = MOD(I,3) + 1
 IM = MOD(I+1,3) + 1
 IF (FL(IM).GT.0.) THEN
 ETA = -(FL(IM)+FL(I))/(FL(IM)-FL(I))
 NCL = NCL + 1
 XCL(NCL) = 0.5*(X(I) + X(IM) + ETA*(X(IM)-X(I)))
 YCL(NCL) = 0.5*(Y(I) + Y(IM) + ETA*(Y(IM)-Y(I)))
 NV = NV + 1
 XP(NV) = XCL(NCL)
 YP(NV) = YCL(NCL)
 ENDIF
 IF (FL(IP).GT.0.) THEN
 ETA = -(FL(IP)+FL(I))/(FL(IP)-FL(I))
 NCL = NCL + 1
 XCL(NCL) = 0.5*(X(I) + X(IP) + ETA*(X(IP)-X(I)))
 YCL(NCL) = 0.5*(Y(I) + Y(IP) + ETA*(Y(IP)-Y(I)))
 NV = NV + 1
 XP(NV) = XCL(NCL)
 YP(NV) = YCL(NCL)
 ENDIF
 ENDIF
C
 ENDIF
C
 50 CONTINUE
C
 IF (NV.GT.NVFRST+2) THEN
 NA = NA + 1
 NE(NA) = NV - NVFRST
 ENDIF
C
 RETURN
 END

 subroutine AXISADJ(xmin,xmax,xspan,deltax,ntics)
C...Make scaled axes with engineering increments between tics
C
C Input: xmin, xmax - input range for which scaled axis is desired
C
C Output: xmin, xmax - adjusted range for scaled axis
C xspan - adjusted span of scaled axis
C deltax - increment to be used for scaled axis
C nincr - number of tics to be used on axis
C note that ntics=1+(xspan/deltax)
C
 real xmin,xmax,xspan,deltax,xinc,xinctbl(5)
 integer ntics,i
 data xinctbl / 0.1, 0.2, 0.25, 0.5, 1. /
c
 xspan1 = xmax-xmin
 if (xspan1.eq.0.) xspan1 = 1.
c
 xpon = ifix(log10(xspan1))
 xspan = xspan1 / 10.**xpon
c
 do i = 1, 5
 xinc = xinctbl(i)
 ntics = 1 + ifix(xspan/xinc + 0.1)
 if (ntics.LE.6) go to 1
 end do
c
 1 deltax = xinc*10.**xpon
 xmin = deltax* ifloor(xmin/deltax)
 xmax = deltax*iceiling(xmax/deltax)
 xspan = xmax - xmin
 ntics = 1 + ifix(xspan/deltax + 0.1)
 return
 end

 function iceiling(x)
c--- returns next highest integer value if fraction is non-zero
 integer iceiling
 real x
 i = ifix(x)
 if(x-i.GT.0.) i = i+1
 iceiling = i
 return
 end

 function ifloor(x)
c--- returns next lowest integer value if fraction is negative, non-zero
 integer ifloor
 real x
 i = ifix(x)
 if(x-i.LT.0.) i = i-1
 ifloor = i
 return
 end

 subroutine ANNOT(CH)
C--
C Interactive annotation menu for adding custom
C ornaments to an active plot (before PLEND call).
C--
 CHARACTER*80 AA
 CHARACTER*1 OPT, KCHAR
C
 SAVE CHF, ISYMB
 DATA CHF, ISYMB / 1.0, 0 /
C
 900 CONTINUE
C
 1000 FORMAT(A)
 1010 FORMAT(A,$)
 1020 FORMAT(A,F7.3,A,$)
 1030 FORMAT(A,I2 ,A,$)
C
 WRITE(*,1050)
 1050 FORMAT(/' C haracters | '
 & /' S lant characters | '
 & /' M ath characters | plot '
 & /' P oint symbol | '
 & /' L ine | '
 & /' A rrow | '
 & /' '
 & /' W idth of characters | modify'
 & /' T ype of point symbol | ')
C
 905 WRITE(*,*)
 WRITE(*,1010) ' Select option or <return>: '
 READ(*,1000) OPT
 IF(OPT.EQ.' ') RETURN
C
 CHI = CHF*CH
C
C---
 IF(INDEX('CcSsMm',OPT).NE.0) THEN
C
 WRITE(*,*) 'Click on lower left point of character string...'
 CALL GETCURSORXY(XX,YY,KCHAR)
 WRITE(*,1010) ' Enter character string: '
 READ (*,1000) AA
C
C---- find index of last non-blank character
 DO 112 NA=80, 1, -1
 IF(AA(NA:NA).NE.' ') GO TO 113
 112 CONTINUE
 113 CONTINUE
C
 CALL NEWPEN(3)
 IF(INDEX('Cc',OPT).NE.0) CALL PLCHAR(XX,YY,CHI,AA,0.0,NA)
 IF(INDEX('Ss',OPT).NE.0) CALL PLSLAN(XX,YY,CHI,AA,0.0,NA)
 IF(INDEX('Mm',OPT).NE.0) CALL PLMATH(XX,YY,CHI,AA,0.0,NA)
 CALL PLFLUSH
C
C---
 ELSE IF(INDEX('Pp',OPT).NE.0) THEN
C
 WRITE(*,*) 'Click on symbol locations ...'
 CALL GETCURSORXY(XX,YY,KCHAR)
 CALL NEWPEN(2)
 CALL PLSYMB(XX,YY,CHI,ISYMB,0.0,0)
 CALL PLFLUSH
C
C---
 ELSE IF(INDEX('LlAa',OPT).NE.0) THEN
C
 WRITE(*,*) 'Click on line points, twice on last point...'
C
 CALL NEWPEN(1)
 CALL GETCURSORXY(XXM,YYM,KCHAR)
 CALL PLOT(XXM,YYM,3)
 CALL PLOT(XXM,YYM,2)
 XXL = XXM
 YYL = YYM
 CALL PLFLUSH
 DO 131 IP=1, 12345
 CALL GETCURSORXY(XX,YY,KCHAR)
 CALL PLOT(XX,YY,2)
 IF(XXM.EQ.XX .AND. YYM.EQ.YY) GO TO 132
 XXL = XXM
 YYL = YYM
 XXM = XX
 YYM = YY
 131 CONTINUE
 132 CONTINUE
C
 IF(INDEX('Aa',OPT).NE.0) THEN
C------ add arrowhead
 DX = XX - XXL
 DY = YY - YYL
 DS = SQRT(DX**2 + DY**2)
 ARLEN = 1.5*CHI
 HAR = 0.1
 IF(DS .GT. ARLEN) THEN
 CALL PLOT(XX-ARLEN*(DX+HAR*DY)/DS,YY-ARLEN*(DY-HAR*DX)/DS,2)
 CALL PLOT(XX-ARLEN*(DX-HAR*DY)/DS,YY-ARLEN*(DY+HAR*DX)/DS,2)
 CALL PLOT(XX,YY,2)
 ENDIF
 ENDIF
C
 XX = XX + 0.7*CHI
 YY = YY - 0.5*CHI
 CALL PLFLUSH
C
C---
 ELSE IF(INDEX('Ww',OPT).NE.0) THEN
C
 140 WRITE(*,1020)
 & ' Enter new character width factor (currently =',CHF,'): '
 READ (*,*,ERR=140) CHF
C
C---
 ELSE IF(INDEX('Tt',OPT).NE.0) THEN
C
 WRITE(*,*)
 WRITE(*,*) ' 0 square 7 Y '
 WRITE(*,*) ' 1 circle 8 flipped Y '
 WRITE(*,*) ' 2 triangle 9 * '
 WRITE(*,*) ' 3 + 10 flipped * '
 WRITE(*,*) ' 4 x 11 hourglass '
 WRITE(*,*) ' 5 diamond 12 bowtie '
 WRITE(*,*) ' 6 yield sign 13 star '
 WRITE(*,*)
 160 WRITE(*,1030) ' Enter new symbol type (currently =',ISYMB,'): '
 READ (*,*,ERR=160) ISYMB
C
C---
 ELSE
C
 GO TO 900
C
 ENDIF
C
 GO TO 905
 END ! ANNOT

XFOILinterface/XFOIL/orrs/src/plutil.f

 SUBROUTINE XYPLOT(N,X,Y,XOFF,XSF,YOFF,YSF,ILIN,SH,ISYM)
 DIMENSION X(N), Y(N)
C
 IF(ISYM.LE.0) CALL XYLINE(N,X,Y,XOFF,XSF,YOFF,YSF,ILIN)
 IF(ISYM.NE.0) CALL XYSYMB(N,X,Y,XOFF,XSF,YOFF,YSF,SH,IABS(ISYM))
C
 RETURN
 END

 SUBROUTINE PLSUBS(XC,YC,CHX,STRING,ANGLE,NC,PLFONT)
C--
C Plots character string as a subscript with font routine PLFONT.
C
C XC,YC = user coordinates of character to be subscripted
C CHX = character width (user coordinates)
C STRING = subscript character string to plot with NC characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C NC = number of subscript characters to plot
C if NC<0 the length of the string is determined automatically
C--
 CHARACTER*(*) STRING
 EXTERNAL PLFONT
 DATA PI /3.1415926535897932384/
C
C---- subscript character reduction factor, and x,y-shift/chx
 DATA CHFAC, CHDX, CHDY / 0.7, 0.9, -0.4 /
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 X = XC + CHX*(CHDX*COSA - CHDY*SINA)
 Y = YC + CHX*(CHDX*SINA + CHDY*COSA)
 CALL PLFONT(X,Y,CHX*CHFAC,STRING,ANGLE,NC)
C
 RETURN
 END

 SUBROUTINE PLSUPS(XC,YC,CHX,STRING,ANGLE,NC,PLFONT)
C--
C Plots character string as a superscript with font routine PLFONT.
C
C XC,YC = user coordinates of character to be superscripted
C CHX = character width (user coordinates)
C STRING = superscript character string to plot with NC characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C NC = number of superscript characters to plot
C if NC<0 the length of the string is determined automatically
C--
 CHARACTER*(*) STRING
 EXTERNAL PLFONT
 DATA PI /3.1415926535897932384/
C
C---- superscript character reduction factor, and x,y-shift/chx
 DATA CHFAC, CHDX, CHDY / 0.7, 0.95, 0.7 /
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 X = XC + CHX*(CHDX*COSA - CHDY*SINA)
 Y = YC + CHX*(CHDX*SINA + CHDY*COSA)
 CALL PLFONT(X,Y,CHX*CHFAC,STRING,ANGLE,NC)
C
 RETURN
 END

 SUBROUTINE SCALIT(N,Y,YOFF,YSF,ANN,NANN)
 DIMENSION Y(N)
C...
C
C Determines scaling factor for the offset Y array so that
C YSF*(Ymax-YOFF) will be O(1.0), but less than 1.0.
C
C ANN = 1.0/YSF is therefore a "nice" plot axis max annotation.
C
C Y(1:N) array whose scaling factor is to be determined
C YOFF offset of Y array (Y-YOFF is actually scaled)
C YSF Y scaling factor
C ANN recommended max Y annotation value = 1.0/ANN
C NANN recommended number of Y annotations
C...
C
 AG2 = ALOG10(2.0)
 AG5 = ALOG10(5.0)
C
 YMAX = ABS(Y(1) - YOFF)
 DO 10 I=2, N
 YMAX = AMAX1(YMAX , ABS(Y(I)-YOFF))
 10 CONTINUE
C
 IF(YMAX.EQ.0.0) THEN
 WRITE(*,*) 'SCALIT: Zero array passed in'
 YSF = 1.0E8
 RETURN
 ENDIF
C
 YLOG = ALOG10(YMAX) - 0.001
C
C---- find log of nearest power of 10 above YMAX
 YLOG1 = AINT(YLOG+100.0) - 99.0

C---- find log of nearest 2x(power of 10) above YMAX
 YLOG2 = YLOG1 + AG2
 IF(YLOG2-1.0.GT.YLOG) YLOG2 = YLOG2 - 1.0
C
C---- find log of nearest 5x(power of 10) above YMAX
 YLOG5 = YLOG1 + AG5
 IF(YLOG5-1.0.GT.YLOG) YLOG5 = YLOG5 - 1.0
C
C---- find log of smallest upper bound
 GMIN = MIN(YLOG1 , YLOG2 , YLOG5)
C
 NANN = 5
 IF (GMIN.EQ.YLOG2) NANN = 4
C
C---- set scaling factor and max annotation
 YSF = 10.0**(-GMIN)
 ANN = 1.0/YSF
C
 RETURN
 END ! SCALIT

 SUBROUTINE ARROW(X,Y,DX,DY)
C..
C
C Plots arrow from X,Y to X+DX,Y+DY
C..
C
C---- fraction of arrow covered by arrowhead, aspect ratio of arrowhead
 DATA FRH, ARH / 0.25, 0.24 /
C
C---- plot arrow
 CALL PLOT(X,Y,3)
 CALL PLOT(X+DX,Y+DY,2)
C
C---- plot arrowhead
 X1 = X + (1.0-FRH)*DX + 0.5*ARH*DY
 Y1 = Y + (1.0-FRH)*DY - 0.5*ARH*DX
 X2 = X + (1.0-FRH)*DX - 0.5*ARH*DY
 Y2 = Y + (1.0-FRH)*DY + 0.5*ARH*DX
 CALL PLOT(X1,Y1,2)
 CALL PLOT(X2,Y2,2)
 CALL PLOT(X+DX,Y+DY,2)
C
 RETURN
 END ! ARROW

XFOILinterface/XFOIL/src/plutil.f

C***
C Module: plutil.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE OPLSET(IDEV,IDEVRP,IPSLU,
 & SIZE,PAR,
 & XMARG,YMARG,XPAGE,YPAGE,
 & CSIZE,SCRNFR,LCURS,LLAND)
 LOGICAL LCURS,LLAND
C---
C Allows user modification of various plot parameters.
C---
 CHARACTER*1 VAR
 CHARACTER*4 COMAND
 CHARACTER*128 COMARG
 CHARACTER*10 CHCURS, CHLAND
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR, LGRAPH, LCOLOR
C
 1000 FORMAT(A)
C
 1 CONTINUE
 IF(LCURS) THEN
 CHCURS = 'Cursor '
 ELSE
 CHCURS = 'Keyboard '
 ENDIF
C
 IF(LLAND) THEN
 CHLAND = 'Landscape '
 ELSE
 CHLAND = 'Portrait '
 ENDIF
C
 LGRAPH = IDEV .GE.1
 LCOLOR = IDEVRP.EQ.4
C
 WRITE(*,2000) LGRAPH, SIZE, PAR,
 & XPAGE,YPAGE, XMARG,YMARG,
 & CSIZE, SCRNFR,
 & CHCURS, CHLAND, LCOLOR
 2000 FORMAT(' ...'
 & //' G raphics-enable flag: ', L2,
 & /' S ize of plot object ', F6.2,'"'
 & /' A spect ratio of plot object ', F8.4
 & /' P age dimensions ', F6.2,' x',F6.2,'"'
 & /' M argins from page edges ', F6.2,'",',F6.2,'"'
 & /' F ont size (relative) ', F8.4
 & /' W indow/screen size fraction ', F8.4
 & /' B lowup input method: ', A
 & /' O rientation of plot: ', A
 & /' C olor PostScript output? ', L2)
C
 5 CALL ASKC(' Option, Value (or <Return>) ^',COMAND,COMARG)
C
 DO I=1, 20
 IINPUT(I) = 0.0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 0
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 0
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
 VAR = COMAND(1:1)
 IF (VAR.EQ.'0' .OR. VAR.EQ.' ') THEN
 RETURN
C
 ELSEIF (INDEX('Gg',VAR).NE.0) THEN
 IF(IDEV.EQ.0) THEN
 IDEV = 1
 ELSE
 IDEV = 0
 ENDIF
C
 ELSEIF (INDEX('Ss',VAR).NE.0) THEN
 IF(NINPUT.GE.1) THEN
 SIZE = RINPUT(1)
 ELSE
 CALL ASKR('Enter size (in)^',SIZE)
 ENDIF
C
 ELSEIF (INDEX('Aa',VAR).NE.0) THEN
 IF(NINPUT.GE.1) THEN
 PAR = RINPUT(1)
 ELSE
 CALL ASKR('Enter aspect ratio^',PAR)
 ENDIF
C
 ELSEIF (INDEX('Pp',VAR).NE.0) THEN
 IF(NINPUT.GE.2) THEN
 XPAGE = RINPUT(1)
 YPAGE = RINPUT(2)
 ELSEIF(NINPUT.GE.1) THEN
 XPAGE = RINPUT(1)
 CALL ASKR('Enter page Y dimension (in)^',YPAGE)
 ELSE
 CALL ASKR('Enter page X dimension (in)^',XPAGE)
 CALL ASKR('Enter page Y dimension (in)^',YPAGE)
 ENDIF
C
 ELSEIF (INDEX('Mm',VAR).NE.0) THEN
 IF(NINPUT.GE.2) THEN
 XMARG = RINPUT(1)
 YMARG = RINPUT(2)
 ELSEIF(NINPUT.GE.1) THEN
 XMARG = RINPUT(1)
 CALL ASKR('Enter page Y margin (in)^',YMARG)
 ELSE
 CALL ASKR('Enter page X margin (in)^',XMARG)
 CALL ASKR('Enter page Y margin (in)^',YMARG)
 ENDIF
C
 ELSEIF (INDEX('Ff',VAR).NE.0) THEN
 IF(NINPUT.GE.1) THEN
 CSIZE = RINPUT(1)
 ELSE
 CALL ASKR('Enter character font size^',CSIZE)
 ENDIF
C
 ELSEIF (INDEX('Ww',VAR).NE.0) THEN
 IF(NINPUT.GE.1) THEN
 SCRNFR = RINPUT(1)
 ELSE
 CALL ASKR('Enter window/screen size fraction^',SCRNFR)
 ENDIF
C
 ELSEIF (INDEX('Bb',VAR).NE.0) THEN
 LCURS = .NOT. LCURS
C
 ELSEIF (INDEX('Oo',VAR).NE.0) THEN
 LLAND = .NOT. LLAND
 WRITE(*,*)
 WRITE(*,*) 'Swapping X,Y page dimensions'
 XTMP = XPAGE
 YTMP = YPAGE
 XPAGE = YTMP
 YPAGE = XTMP
C
 ELSEIF (INDEX('Cc',VAR).NE.0) THEN
 LCOLOR = .NOT. LCOLOR
 IF(LCOLOR) IDEVRP = 4
 IF(.NOT.LCOLOR) IDEVRP = 2
C
 ELSE
 WRITE(*,*) '*** Item not recognized ***'
 ENDIF
 GO TO 1
C
 END ! OPLSET

 SUBROUTINE PLSUBS(XC,YC,CHX,STRING,ANGLE,NC,PLFONT)
C--
C Plots character string as a subscript with font routine PLFONT.
C
C XC,YC = user coordinates of character to be subscripted
C CHX = character width (user coordinates)
C STRING = subscript character string to plot with NC characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C NC = number of subscript characters to plot
C if NC<0 the length of the string is determined automatically
C--
 CHARACTER*(*) STRING
 EXTERNAL PLFONT
 DATA PI /3.1415926535897932384/
C
C---- subscript character reduction factor, and x,y-shift/chx
 DATA CHFAC, CHDX, CHDY / 0.7, 0.9, -0.4 /
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 XX = XC
 YY = YC
C
 IF (XC.EQ.999. .OR. YC.EQ.999.) THEN
 CALL GETLASTXY(XCHR,YCHR)
 IF(XC.EQ.999.) XX = XCHR
 IF(YC.EQ.999.) YY = YCHR
 ENDIF
C
 X = XX + CHX*(CHDX*COSA - CHDY*SINA)
 Y = YY + CHX*(CHDX*SINA + CHDY*COSA)
 CALL PLFONT(X,Y,CHX*CHFAC,STRING,ANGLE,NC)
C
 RETURN
 END

 SUBROUTINE PLSUPS(XC,YC,CHX,STRING,ANGLE,NC,PLFONT)
C--
C Plots character string as a superscript with font routine PLFONT.
C
C XC,YC = user coordinates of character to be superscripted
C CHX = character width (user coordinates)
C STRING = superscript character string to plot with NC characters
C ANGLE = angle of character (radians, positive is righthanded rotation)
C NC = number of superscript characters to plot
C if NC<0 the length of the string is determined automatically
C--
 CHARACTER*(*) STRING
 EXTERNAL PLFONT
 DATA PI /3.1415926535897932384/
C
C---- superscript character reduction factor, and x,y-shift/chx
 DATA CHFAC, CHDX, CHDY / 0.7, 0.95, 0.7 /
C
 SINA = SIN(ANGLE*PI/180.0)
 COSA = COS(ANGLE*PI/180.0)
C
 XX = XC
 YY = YC
C
 IF (XC.EQ.999. .OR. YC.EQ.999.) THEN
 CALL GETLASTXY(XCHR,YCHR)
 IF(XC.EQ.999.) XX = XCHR
 IF(YC.EQ.999.) YY = YCHR
 ENDIF
C
 X = XX + CHX*(CHDX*COSA - CHDY*SINA)
 Y = YY + CHX*(CHDX*SINA + CHDY*COSA)
 CALL PLFONT(X,Y,CHX*CHFAC,STRING,ANGLE,NC)
C
 RETURN
 END

 SUBROUTINE SCALIT(II,Y,YOFF,YSF)
 DIMENSION Y(II)
C---
C Y(1:II) array whose scaling factor is to be determined
C YOFF offset of Y array (Y-YOFF is actually scaled)
C YSF Y scaling factor
C---
C
 AG2 = LOG10(2.0)
 AG5 = LOG10(5.0)
C
 YMAX = ABS(Y(1) - YOFF)
 DO 10 I=2, II
 YMAX = MAX(YMAX , ABS(Y(I)-YOFF))
 10 CONTINUE
C
 IF(YMAX .EQ. 0.0) YMAX = 1.0E-8
 YLOG = LOG10(YMAX)
C
C---- find log of nearest power of 10 above YMAX
 YLOG1 = AINT(YLOG+100.0) - 99.0

C---- find log of nearest 2x(power of 10) above YMAX
 YLOG2 = YLOG1 + AG2
 IF(YLOG2-1.0.GT.YLOG) YLOG2 = YLOG2 - 1.0
C
C---- find log of nearest 5x(power of 10) above YMAX
 YLOG5 = YLOG1 + AG5
 IF(YLOG5-1.0.GT.YLOG) YLOG5 = YLOG5 - 1.0
C
C---- find log of smallest upper bound
 GMIN = MIN(YLOG1 , YLOG2 , YLOG5)
C
C---- set scaling factor
 YSF = 10.0**(-GMIN)
C
 RETURN
 END

 SUBROUTINE OFFGET(XOFF,YOFF,XSF,YSF,XWIND,YWIND,LSAME,LCURS)
 LOGICAL LSAME, LCURS
 CHARACTER*1 KCHAR
C---
C Sets new blowup parameters from cursor input.
C---
C
C---- crosshair "+" symbol size
 DATA SH / 2.0 /
C
C---- get current color
 CALL GETCOLOR(ICOL0)
C
C---- set new crosshair color
 CALL NEWCOLORNAME('red')
C
C
 IF(LCURS) THEN
C
 WRITE(*,*)
 WRITE(*,*) 'Mark off corners of blowup area'
 WRITE(*,*) '(2 identical points default to current area)'
C
 CALL GETCURSORXY(XX1,YY1,KCHAR)
 CALL PLSYMB(XX1,YY1,SH,3,0.0,0)
 CALL PLFLUSH
 WRITE(*,*) 'x,y =', XX1/XSF+XOFF, YY1/YSF+YOFF
C
 CALL GETCURSORXY(XX2,YY2,KCHAR)
 CALL PLSYMB(XX2,YY2,SH,3,0.0,0)
 CALL PLFLUSH
 WRITE(*,*) 'x,y =', XX2/XSF+XOFF, YY2/YSF+YOFF
C
 ELSE
C
 WRITE(*,*)
 WRITE(*,*) 'Enter x,y coordinates of blowup area corners'
 WRITE(*,*) '(2 identical points default to current area)'
 WRITE(*,*)
 1 WRITE(*,*) 'Point 1: '
 READ(*,*,ERR=1) XX1, YY1
 2 WRITE(*,*) 'Point 2: '
 READ(*,*,ERR=2) XX2, YY2
C
 ENDIF
C
C---- restore to initial color
 CALL NEWCOLOR(icol0)
C
 IF(XX1.EQ.XX2 .AND. YY1.EQ.YY2) RETURN
C
C
 XCEN = 0.5*(XX1+XX2)/XSF + XOFF
 YCEN = 0.5*(YY1+YY2)/YSF + YOFF
 XDIF = ABS(XX2 - XX1)/XSF
 YDIF = ABS(YY2 - YY1)/YSF
C
 IF(XDIF.EQ.0.0) XDIF = 1.0E-5
 IF(YDIF.EQ.0.0) YDIF = 1.0E-5
C
 XOFF = MIN(XX1,XX2)/XSF + XOFF
 YOFF = MIN(YY1,YY2)/YSF + YOFF
 XSF = XWIND/XDIF
 YSF = YWIND/YDIF
C
 IF(LSAME) THEN
C------ set equal x,y scales
 SF = MIN(XSF , YSF)
 XSF = SF
 YSF = SF
C
C------ re-center the blowup
 XOFF = XCEN - 0.5*XDIF
 YOFF = YCEN - 0.5*YDIF
 ENDIF
C
 RETURN
 END ! OFFGET

 SUBROUTINE PGUI(KBOX,COLOR,LABEL)
 CHARACTER*(*) COLOR, LABEL
C
 CALL GETWINSIZE(XWIND,YWIND)
cc CALL GETORIGIN(XORG,YORG)
cc CALL GETFACTORS(XSCALE,YSCALE)
C
C---- save and disable current clipping
 CALL GETCLIPABS(XMIN,XMAX,YMIN,YMAX)
 CALL CLRCLIP
C
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME(COLOR)
C
C---- set click box in lower right corner
 YBOX = 0.5*FLOAT(KBOX-1)
 X1 = XWIND - 1.0
 X2 = XWIND - 0.1
 Y1 = YBOX + 0.1
 Y2 = YBOX + 0.5
cc X1 = (XWIND - 1.0 - XORG)/XSCALE
cc X2 = (XWIND - 0.1 - XORG)/XSCALE
cc Y1 = (YBOX + 0.1 - YORG)/YSCALE
cc Y2 = (YBOX + 0.5 - YORG)/YSCALE
C
 CALL GUIBOX(KBOX, X1,X2,Y1,Y2, COLOR, LABEL)
C
C---- restore color and clipping
 CALL NEWCOLOR(ICOL0)
 CALL NEWCLIPABS(XMIN,XMAX,YMIN,YMAX)
C
 RETURN
 END

 SUBROUTINE ARROW(X,Y,DX,DY)
 CALL PLOT(X,Y,3)
 CALL PLOT(X+DX,Y+DY,2)
 X1 = X + 0.85*DX + 0.02*DY
 Y1 = Y + 0.85*DY - 0.02*DX
 X2 = X + 0.85*DX - 0.02*DY
 Y2 = Y + 0.85*DY + 0.02*DX
 CALL PLOT(X1,Y1,2)
 CALL PLOT(X2,Y2,2)
 CALL PLOT(X+DX,Y+DY,2)
 RETURN
 END

 SUBROUTINE DASH(X1,X2,Y)
 CALL NEWPEN(1)
 DX = (X2-X1)/50.0
 DO 10 I=1, 51
 X = X1 + DX*FLOAT(I-1)
 CALL PLOT(X-0.08*DX,Y,3)
 CALL PLOT(X+0.08*DX,Y,2)
 10 CONTINUE
 RETURN
 END

XFOILinterface/XFOIL/src/pntops.f

 SUBROUTINE ADDP
C--
C Adds cursor-selected point.
C--
 INCLUDE 'XFOIL.INC'
 REAL AINP(2)
 LOGICAL ERROR
C
 IF(NB.GE.IBX) THEN
 WRITE(*,*)
 & 'Buffer airfoil arrays will overflow. No action taken.'
 RETURN
 ENDIF
C
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
C
C---- determine interval IPNT-1...IPNT which is to contain added point
 CALL POINTG(XB,XBP,YB,YBP,SB,NB, XWS,YWS, XOFF,YOFF,XSF,YSF,
 & IPNT,AINP(1),AINP(2), KABORT)
 IF(IPNT.EQ.0) RETURN
C
 WRITE(*,*)
 WRITE(*,1020) ' New point', IPNT, AINP(1), AINP(2)
 1020 FORMAT(1X,A,I4,' [',2F10.6,'] : ', $)
C
 CALL READR(2,AINP,ERROR)
 IF(ERROR) THEN
 WRITE(*,*) '* READ error. No changes made.'
 RETURN
 ENDIF
C
C---- make room for new point
 DO I=NB, IPNT, -1
 XB(I+1) = XB(I)
 YB(I+1) = YB(I)
 ENDDO
 NB = NB+1
C
C---- set new point
 XB(IPNT) = AINP(1)
 YB(IPNT) = AINP(2)
C
C---- spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 LGEOPL = .FALSE.
 LGSAME = .FALSE.
C
 RETURN
 END ! ADDP

 SUBROUTINE MOVP(NEWPLOTG)
C--
C Moves cursor-selected point.
C--
 INCLUDE 'XFOIL.INC'
 LOGICAL LGUI
 CHARACTER*1 KCHAR
 REAL AINP(2)
 LOGICAL ERROR, LPLNEW
 EXTERNAL NEWPLOTG
 INCLUDE 'XDES.INC'
C
 SHT = 0.35*CH
C
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
C
 CALL POINTF(XB,XBP,YB,YBP,SB,NB, XWS,YWS, XOFF,YOFF,XSF,YSF,
 & IPNT,XC,YC, KABORT)
 IF(IPNT.EQ.0) RETURN
C
 CALL PLSYMB(XMOD(XB(IPNT)),YMOD(YB(IPNT)),SHT,1,0.0,0)
 CALL PLFLUSH
C
 1000 FORMAT(A)
 1010 FORMAT(1X,A,I4,'"o": x,y =',2F10.6,A)
 1020 FORMAT(1X,A,I4,'"+" ? [',2F10.6,'] : ', $)
C
 WRITE(*,*)
 WRITE(*,1010) 'Move point', IPNT, XB(IPNT), YB(IPNT),
 & ' to cursor click ...'
C
 10 CONTINUE
 CALL GETCURSORXY(XCRS,YCRS,KCHAR)
C
C---- check if zoom,pan action was requested
 CALL KEYOFF(XCRS,YCRS,KCHAR,
 & XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
C----- scales,offsets have changed... replot
 CALL NEWPLOTG
 CALL PLSYMB(XMOD(XB(IPNT)),YMOD(YB(IPNT)),SHT,1,0.0,0)
 CALL PLFLUSH
 GO TO 10
 ENDIF
C
C---- abort button pushed or "A" typed?
 IF(LGUI(KABORT,XCRS,YCRS) .OR. INDEX('Aa',KCHAR).NE.0) RETURN
C
C
C---- OK, new point was selected... first confirm with "+" symbol
 CALL PLSYMB(XCRS,YCRS,1.5*SHT,3,0.0,0)
 CALL PLFLUSH
C
C---- go from screen to internal coordinates X,Y
 AINP(1) = XCRS/XSF + XOFF
 AINP(2) = YCRS/YSF + YOFF
C
 WRITE(*,1020) 'New point', IPNT, AINP(1), AINP(2)
 CALL READR(2,AINP,ERROR)
 IF(ERROR) THEN
 WRITE(*,*) '* READ error. No changes made.'
 RETURN
 ENDIF
C
 XB(IPNT) = AINP(1)
 YB(IPNT) = AINP(2)
C
C---- spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 LGEOPL = .FALSE.
 LGSAME = .FALSE.
C
 RETURN
 END ! MOVP

 SUBROUTINE DELP
C--
C Deletes cursor-selected point.
C--
 INCLUDE 'XFOIL.INC'
C
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
C
 CALL POINTF(XB,XBP,YB,YBP,SB,NB, XWS,YWS, XOFF,YOFF,XSF,YSF,
 & IPNT,XC,YC, KABORT)
 IF(IPNT.EQ.0) RETURN
C
C---- remove closest point
 DO 471 I=IPNT, NB-1
 XB(I) = XB(I+1)
 YB(I) = YB(I+1)
 471 CONTINUE
 NB = NB-1
C
C---- spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 LGEOPL = .FALSE.
 LGSAME = .FALSE.
C
 WRITE(*,1010) IPNT, XC, YC
 1010 FORMAT(/' Deleted point',I4,' : x =',F10.6,' y =',F10.6)
C
 RETURN
 END ! DELP

 SUBROUTINE DIST
C--
C Displays distance between two cursor points.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*1 KCHAR
C
 WRITE(*,*)
 WRITE(*,*) 'Click mouse or hit a key on each point'
 WRITE(*,*)
 CALL GETCURSORXY(XX1,YY1,KCHAR)
 CALL PLOT(XX1,YY1,3)
 CALL PLOT(XX1,YY1,2)
 CALL PLFLUSH
 XX1 = XX1/XSF + XOFF
 YY1 = YY1/YSF + YOFF
 WRITE(*,1010) XX1,YY1
C
 CALL GETCURSORXY(XX2,YY2,KCHAR)
 CALL PLOT(XX2,YY2,3)
 CALL PLOT(XX2,YY2,2)
 CALL PLFLUSH
 XX2 = XX2/XSF + XOFF
 YY2 = YY2/YSF + YOFF
 WRITE(*,1020) XX2,YY2
C
 DX = XX2 - XX1
 DY = YY2 - YY1
 DS = SQRT(DX*DX + DY*DY)
 WRITE(*,1050) DX, DY, DS
C
 1010 FORMAT(' x1 =', F10.6, ' y1 =', F10.6)
 1020 FORMAT(' x2 =', F10.6, ' y2 =', F10.6)
 1050 FORMAT(' dx =', F10.6, ' dy =', F10.6,' ds =', F10.6)
C
 RETURN
 END ! DIST

 SUBROUTINE POINTF(X,XP,Y,YP,S,N, XWS,YWS, XOFF,YOFF,XSF,YSF,
 & IC,XX,YY, KABORT)
 DIMENSION X(N),XP(N),Y(N),YP(N),S(N)
 LOGICAL LGUI
C
 CHARACTER*1 KCHAR
 LOGICAL LPLNEW
C--
C Finds the node IC nearest to cursor location XX,YY.
C--
CCC XMOD(XTMP) = XSF * (XTMP - XOFF)
CCC YMOD(YTMP) = YSF * (YTMP - YOFF)
C
 WRITE(*,*)
 WRITE(*,*) 'Specify point with cursor...'
 WRITE(*,*) 'Or.. Type I,O,P to In,Out,Pan with cursor...'
C
 10 CONTINUE
 CALL NEWPEN(5)
 KABORT = 1
 CALL PGUI(KABORT,'red','Abort')
 CALL PLFLUSH
 CALL NEWPEN(1)
C
C---- read geometry point coordinates
 CALL GETCURSORXY(XCRS,YCRS,KCHAR)
C
C---- do possible pan,zoom operations based on KCHAR
 CALL KEYOFF(XCRS,YCRS,KCHAR, XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
C----- scales,offsets have changed... replot
 CALL GOFSET
 CALL PLTINI
 CALL PLOTG
 GO TO 10
 ENDIF
C
 IF(LGUI(KABORT,XCRS,YCRS) .OR. INDEX('Aa',KCHAR).NE.0) THEN
C----- abort: return with point selected
 IC = 0
 RETURN
 ENDIF
C
C---- go from screen to internal coordinates X,Y
 XX = XCRS/XSF + XOFF
 YY = YCRS/YSF + YOFF
C
C---- find closest airfoil node
 IC = 1
 DMIN = 1.0E9
 DO 7 I=1, N
 DIST = (X(I) - XX)**2 + (Y(I) - YY)**2
 IF(DIST .LT. DMIN) THEN
 DMIN = DIST
 IC = I
 ENDIF
 7 CONTINUE
C
 RETURN
 END ! POINTF

 SUBROUTINE POINTG(X,XP,Y,YP,S,N, XWS,YWS, XOFF,YOFF,XSF,YSF,
 & IC,XX,YY, KABORT)
 DIMENSION X(N),XP(N),Y(N),YP(N),S(N)
 LOGICAL LGUI
C
 CHARACTER*1 KCHAR
 LOGICAL LPLNEW
C--
C Finds the interval IC-1..IC with spline nearest
C to cursor location XX,YY.
C--
CCC XMOD(XTMP) = XSF * (XTMP - XOFF)
CCC YMOD(YTMP) = YSF * (YTMP - YOFF)
C
C---- number of spline sub-interval points searched
 DATA KK / 10 /
C
 WRITE(*,*)
 WRITE(*,*) 'Specify point with cursor...'
 WRITE(*,*) 'Or.. Type I,O,P to In,Out,Pan with cursor...'
C
 10 CONTINUE
 CALL NEWPEN(5)
 KABORT = 1
 CALL PGUI(KABORT,'red','Abort')
 CALL PLFLUSH
 CALL NEWPEN(1)
C
C---- read geometry point coordinates
 CALL GETCURSORXY(XCRS,YCRS,KCHAR)
C
C---- do possible pan,zoom operations based on KCHAR
 CALL KEYOFF(XCRS,YCRS,KCHAR, XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
C----- scales,offsets have changed... replot
 CALL GOFSET
 CALL PLTINI
 CALL PLOTG
 GO TO 10
 ENDIF
C
 IF(LGUI(KABORT,XCRS,YCRS) .OR. INDEX('Aa',KCHAR).NE.0) THEN
C----- abort: return with point selected
 IC = 0
 RETURN
 ENDIF
C
C---- go from screen to internal coordinates X,Y
 XX = XCRS/XSF + XOFF
 YY = YCRS/YSF + YOFF
C
C---- find closest spline node
 IC = 2
 KC = 0
 DMIN = (X(1) - XX)**2 + (Y(1) - YY)**2
 DO 6 I=2, N
 DS = S(I) - S(I-1)
C
C------ skip zero-width spline interval
 IF(DS .EQ. 0.0) GO TO 6
C
C------ search sub-interval points
 DO 62 K=1, KK
 ST = S(I-1) + DS*FLOAT(K)/FLOAT(KK)
 XT = SEVAL(ST,X,XP,S,N)
 YT = SEVAL(ST,Y,YP,S,N)
 DIST = (XT - XX)**2 + (YT - YY)**2
 IF(DIST .LT. DMIN) THEN
 DMIN = DIST
 IC = I
 KC = K
 ENDIF
 62 CONTINUE
 6 CONTINUE
C
 IF(KC.EQ.KK .AND. IC.LT.N) THEN
C------ spline node is the nearest point -- see on which side we are
 DOTP = (X(IC)-XX)*XP(IC) + (Y(IC)-YY)*YP(IC)
 IF(DOTP .LT. 0.0) IC = IC + 1
 ENDIF
C
 RETURN
 END ! POINTG

XFOILinterface/XFOIL/src/polplt.f

C***
C Module: polplt.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
 SUBROUTINE POLPLT(NAX,NPOL,NA,CPOL,
 & REYN,MACH,ACRIT, NAME ,ICOL,ILIN,
 & NFX,NDAT,NF,XYREF,LABREF,IFCOL,IFSYM,
 & ISX,NBL,CPOLSD, IMATYP,IRETYP,
 & TITLE,CODE,VERSION,
 & PLOTAR, XCD,XAL,XOC, CH,CH2, CLEXP,
 & LGRID,LCDW,LLIST,LEGND,LAECEN,
 & CPOLPLF, CCLEN,NCLEN)
C--
C Generates polar plot
C--
 INCLUDE 'PINDEX.INC'
 CHARACTER*(*) NAME(NPOL), LABREF(NDAT)
 CHARACTER*(*) CODE, TITLE, CCLEN
 LOGICAL LGRID, LCDW, LLIST, LEGND, LAECEN
C
 INTEGER NA(NPOL),
 & ICOL(NPOL), ILIN(NPOL), NBL(NPOL),
 & IFCOL(NDAT), IFSYM(NDAT),
 & NF(4,NDAT), IMATYP(NPOL),IRETYP(NPOL)
 REAL CPOL(NAX,IPTOT,NPOL), XYREF(NFX,2,4,NDAT),
 & CPOLSD(NAX,ISX,JPTOT,NPOL)
 REAL CPOLPLF(3,*)
 REAL REYN(NPOL), MACH(NPOL), ACRIT(NPOL)
C--
 LOGICAL NAMVAR,REYVAR,MACVAR,ACRVAR
 REAL XLIN(3), YLIN(3)
 CHARACTER*1 CC
C
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
C
 CALL GETVAR(NPOL,NAME,REYN,MACH,ACRIT,
 & NAMVAR,REYVAR,MACVAR,ACRVAR)
C
C---- polar and data-symbol pen width
 IPEN = 4
 IFPEN = 3
C
C---- symbol height for data
 SH = 0.7*CH2
C
C---- unpack plot limit array
 CLMIN = CPOLPLF(1,ICL)
 CLMAX = CPOLPLF(2,ICL)
 CLDEL = CPOLPLF(3,ICL)
C
 CDMIN = CPOLPLF(1,ICD)
 CDMAX = CPOLPLF(2,ICD)
 CDDEL = CPOLPLF(3,ICD)
C
 CMMIN = CPOLPLF(1,ICM)
 CMMAX = CPOLPLF(2,ICM)
 CMDEL = CPOLPLF(3,ICM)
C
 ALMIN = CPOLPLF(1,IAL)
 ALMAX = CPOLPLF(2,IAL)
 ALDEL = CPOLPLF(3,IAL)
C

c WRITE(*,*) CPOLPLF(1,ICL),CPOLPLF(2,ICL),CPOLPLF(3,ICL)
c WRITE(*,*) CPOLPLF(1,ICD),CPOLPLF(2,ICD),CPOLPLF(3,ICD)
c WRITE(*,*) CPOLPLF(1,ICM),CPOLPLF(2,ICM),CPOLPLF(3,ICM)
c WRITE(*,*) CPOLPLF(1,IAL),CPOLPLF(2,IAL),CPOLPLF(3,IAL)

C---- Get scale factor and set scale factor to 0.9 of current to fit plots
 CALL GETFACTORS(XSZ,YSZ)
 CALL NEWFACTORS(0.9*XSZ,0.9*YSZ)
C
C---- Set sane scale factors for axes
 CLWT = 1.0
 CDWT = 1.0
 CMWT = 1.0
 ALWT = 1.0
C
 CLRANGE = CLMAX-CLMIN
 IF(CLRANGE.NE.0.0) THEN
 CLWT = PLOTAR / CLRANGE
 ENDIF
C
 IF(CDMAX.NE.0.0) THEN
 CDWT = XCD/CDMAX
 ENDIF
C
C---- CM range is whole multiple of CLDEL just larger than 0.5*CLMAX
 CLMX = CLDEL * AINT(0.5*ABS(CLMAX)/CLDEL + 0.51)
 CMMX = MAX(ABS(CMMIN),ABS(CMMAX))
 IF(CMMX.NE.0.0) THEN
 CMWT = CLWT*CLMX/CMMX
 ENDIF
C
 ALRANGE = ALMAX-ALMIN
 IF(ALRANGE.NE.0.0) THEN
 ALWT = XAL / ALRANGE
 ENDIF
C
C
C---- number of text lines to be plotted in left upper legend in CL-CD plot
 LINBOX = NDAT
 IF(LEGND.AND. NPOL.GT.1) LINBOX = LINBOX + NPOL + 1
 DYBOX = CH2*(2.0*FLOAT(LINBOX) + 1.0)
C---- allow # CH2 character string width in label box
 NCHBOX = 18
 DXBOX = FLOAT(NCHBOX)*CH2
C

C---- set default color index
 CALL GETCOLOR(ICOL0)
C---- reorigin for CDMIN,CLMIN
 CALL PLOT(-CDWT*CDMIN,-CLWT*CLMIN,-3)
C
C---- put Polar labels above plots
C Labels contain: Title
C airfoils: Name, Mach, Re, and Ncrit
C
 XPLT0 = CDWT*CDMIN
 YPLT0 = CLWT*CLMAX
 CALL POLLAB(NPOL, NAME ,ICOL,
 & IMATYP, IRETYP,
 & MACH, REYN, ACRIT,
 & TITLE,
 & XPLT0,YPLT0, PLOTAR, CH,CH2,
 & LLIST, CCLEN,NCLEN)
C
 CALL NEWCOLOR(ICOL0)
C
C
C--- CL-CD plot
C==
 IF(XCD.EQ.0.0) GO TO 100
C
C---- CL axis for CL-CD polar
 CALL NEWPEN(2)
 NDIG = NDIGITS(CLDEL)
 CALL YAXIS(CDWT*CDMIN,CLWT*CLMIN,PLOTAR,CLWT*CLDEL,
 & CLMIN,CLDEL,CH2,NDIG)
C
 CALL NEWPEN(3)
 IF(NCLEN.GT.0) THEN
 XPLT = CDWT* CDMIN - 3.0*CH - FLOAT(NCLEN)*1.2*CH
 YPLT = CLWT*(CLMAX-1.5*CLDEL) - 0.5*CH
 CALL PLCHAR(XPLT,YPLT,1.2*CH,'(' ,0.0,1)
 CALL PLCHAR(999.,YPLT,1.2*CH,CCLEN,0.0,NCLEN)
 CALL PLCHAR(999.,YPLT,1.2*CH,')' ,0.0,1)
 ENDIF
C
 XPLT = CDWT* CDMIN - 3.2*CH
 YPLT = CLWT*(CLMAX-0.5*CLDEL) - 0.6*CH
 IF(NCLEN.GT.0) THEN
 CALL PLCHAR(XPLT-1.1*CH,YPLT ,1.1*CH,CC ,0.0,1)
 ENDIF
 CALL PLCHAR(XPLT ,YPLT ,1.4*CH,'C',0.0,1)
 CALL PLCHAR(XPLT+1.2*CH,YPLT-0.4*CH,0.9*CH,'L',0.0,1)
C
 IF(ABS(CLEXP-1.0) .GT. 0.001)
 & CALL PLNUMB(XPLT+1.05*CH,YPLT+1.3*CH,0.70*CH,CLEXP,0.0,1)
C
C---- CD axis for CL-CD polar
 CALL NEWPEN(2)
 CALL XAXIS(CDWT*CDMIN,CLWT*CLMIN,-XCD,CDWT*CDDEL,
 & 10000.*CDMIN,10000.*CDDEL,CH2,-1)
C
 CALL NEWPEN(3)
 NXL = INT((CDMAX-CDMIN)/CDDEL + 0.5)
 XPLT = CDWT*(CDMAX - (FLOAT((NXL+1)/2) - 0.5)*CDDEL) - 4.5*CH2
 YPLT = CLWT* CLMIN - 4.8*CH2
 CALL PLCHAR(XPLT ,YPLT ,1.4*CH,'10' ,0.0,2)
 CALL PLMATH(XPLT ,YPLT ,1.4*CH,' 4' ,0.0,3)
 CALL PLMATH(XPLT+3.9*CH,YPLT ,1.0*CH, '#' ,0.0,1)
 IF(NCLEN.GT.0) THEN
 CALL PLCHAR(XPLT+4.9*CH,YPLT ,1.1*CH, CC ,0.0,1)
 ENDIF
 CALL PLCHAR(XPLT+6.0*CH,YPLT ,1.4*CH, 'C',0.0,1)
 CALL PLCHAR(XPLT+7.2*CH,YPLT-0.4*CH,0.9*CH, 'D',0.0,1)
C
C--- Put legend data in legend box in upper left of CL/CD plot
 IF(LEGND) THEN
C
 YLINE = CLWT*CLMAX - 2.0*CH2
 CALL NEWPEN(3)
C
 IF(NAMVAR) THEN
 XPLT = CDWT*CDMIN + 6.0*CH2
 YPLT = YLINE
 CALL PLCHAR(XPLT ,YPLT, CH2,'Airfoil',0.0,7)
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 IF(REYVAR) THEN
 XPLT = CDWT*CDMIN + 7.5*CH2
 YPLT = YLINE
 ITYP = IRETYP(1)
 IF(ITYP.EQ.1) THEN
 CALL PLCHAR(XPLT ,YPLT, CH2,'Re' ,0.0,2)
 ELSE IF(ITYP.EQ.2) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' R ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Re C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ELSE IF(ITYP.EQ.3) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' # ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Re C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ENDIF
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 IF(ACRVAR) THEN
 XPLT = CDWT*CDMIN + 8.0*CH2
 YPLT = YLINE
 CALL PLCHAR(XPLT,YPLT, CH2,'N' ,0.0,1)
 CALL PLCHAR(999.,999.,0.7*CH2,'crit',0.0,4)
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 IF(MACVAR) THEN
 XPLT = CDWT*CDMIN + 7.5*CH2
 YPLT = YLINE
 ITYP = IMATYP(1)
 IF(ITYP.EQ.1) THEN
 CALL PLCHAR(XPLT ,YPLT, CH2,'Ma' ,0.0,2)
 ELSE IF(ITYP.EQ.2) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' R ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Ma C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ELSE IF(ITYP.EQ.3) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' # ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Ma C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ENDIF
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 ENDIF
C
C---- plot CL-CD polar(s)
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 CALL NEWPEN(IPEN)
 CALL XYLINE(NA(IP),CPOL(1,ICD,IP),CPOL(1,ICL,IP),
 & 0.,CDWT,0.,CLWT,ILIN(IP))
 IF(LCDW)
 & CALL XYLINE(NA(IP),CPOL(1,ICW,IP),CPOL(1,ICL,IP),
 & 0.,CDWT,0.,CLWT,ILIN(IP))
 END DO
C
C---- label each polar with legend
 IF(LEGND .AND. (NAMVAR .OR. REYVAR .OR. ACRVAR .OR. MACVAR)) THEN
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 XLIN(1) = CH2
 XLIN(2) = 3.0*CH2
 XLIN(3) = 6.0*CH2
 YLIN(1) = YLINE + 0.5*CH2
 YLIN(2) = YLINE + 0.5*CH2
 YLIN(3) = YLINE + 0.5*CH2
 CALL NEWPEN(IPEN)
 CALL XYLINE(3,XLIN,YLIN,0.0,1.0,0.0,1.0,ILIN(IP))
 CALL NEWPEN(2)
 XPT = CDWT*CDMIN + 7.5*CH2
 IF(NAMVAR) CALL PLCHAR(XPT,YLINE,.8*CH2,NAME(IP) ,0.,14)
 IF(REYVAR) CALL PLNUMB(XPT,YLINE,.8*CH2,REYN(IP) ,0.,-1)
 IF(ACRVAR) CALL PLNUMB(XPT,YLINE,.8*CH2,ACRIT(IP),0., 3)
 IF(MACVAR) CALL PLNUMB(XPT,YLINE,.8*CH2,MACH(IP) ,0., 3)
 YLINE = YLINE - 2.0*CH2
 END DO
 YLINE = YLINE - 0.5*CH2
C
 ENDIF
C
C
C---- plot CL-CD reference data
 DO ID=1, NDAT
 IF(NF(1,ID).NE.0) THEN
 CALL NEWPEN(IFPEN)
 CALL NEWCOLOR(IFCOL(ID))
 CALL XYSYMB(NF(1,ID),XYREF(1,1,1,ID),XYREF(1,2,1,ID),
 & 0.0,CDWT,0.0,CLWT,SH,IFSYM(ID))
 XPLT = CDWT*CDMIN + 1.5*CH2
 YPLT = YLINE + 0.5*CH2
 CALL PLSYMB(XPLT,YPLT,SH,ID,0.0,0)
 XPLT = CDWT*CDMIN + 3.0*CH2
 CALL NEWPEN(2)
 LABLEN = LEN(LABREF(ID))
 CALL PLCHAR(XPLT,YLINE,0.8*CH2,LABREF(ID),0.0,LABLEN)
 YLINE = YLINE - 2.0*CH2
 ENDIF
 END DO
 CALL NEWCOLOR(ICOL0)
C
C----- coarse grid lines
 CALL NEWPEN(1)
 DXG = CDWT*CDDEL
 DYG = CLWT*CLDEL
C----- check for legend box at top left of CL-CD grid area
 NXGBOX = INT(DXBOX/(DXG/5.0)) + 1
 NYGBOX = INT(DYBOX/(DYG/5.0)) + 1
 IF (LINBOX.EQ.0) THEN
 NXGBOX = 0
 NYGBOX = 0
 ENDIF
 DXGBOX = (DXG/5.0) * FLOAT(NXGBOX)
 DYGBOX = (DYG/5.0) * FLOAT(NYGBOX)
C
 Y0 = CLWT*CLMIN
 NXG = INT(XCD/(CDWT*CDDEL) + 0.01)
 NYG = INT((CLMAX-CLMIN)/CLDEL + 0.01)
C
C----- plot vertical coarse grid lines around label box
 DO K=0, NXG
 DXL = CDWT*CDDEL*FLOAT(K)
 XL = CDWT*CDMIN + DXL
 CALL PLOT(XL,Y0,3)
 IF(DXL-DXGBOX.GT. -0.001*DXGBOX) THEN
 CALL PLOT(XL, Y0 + DYG*FLOAT(NYG) , 2)
 ELSE
 CALL PLOT(XL, Y0 + DYG*FLOAT(NYG)-DYGBOX, 2)
 ENDIF
 END DO
C
C----- plot horizontal coarse grid lines around label box
 Y0 = CLWT*CLMAX
 CALL PLOT(CDWT*CDMIN, Y0, 3)
 CALL PLOT(CDWT*CDMAX, Y0, 2)
 DO K=1, NYG
 DYL = CLWT*CLDEL*FLOAT(K)
 YL = Y0 - DYL
 X0 = CDWT*CDMAX
 IF(DYL-DYGBOX.GT.-0.001*DYGBOX) THEN
 CALL PLOT(CDWT*CDMIN, YL, 3)
 ELSE
 CALL PLOT(CDWT*CDMIN+DXGBOX, YL, 3)
 ENDIF
 CALL PLOT(CDWT*CDMAX, YL, 2)
 END DO
C
C---- plot edges of label box
 Y0 = CLWT*CLMAX-DYGBOX
 CALL PLOT(CDWT*CDMIN, Y0, 3)
 CALL PLOT(CDWT*CDMIN+DXGBOX, Y0, 2)
 CALL PLOT(CDWT*CDMIN+DXGBOX, Y0+DYGBOX, 2)
C
C----- fine grid
 IF(LGRID) THEN
 CALL NEWPEN(1)
 DXG = CDWT*CDDEL / 5.0
 DYG = CLWT*CLDEL / 5.0
 X0 = CDWT*CDMIN
 Y0 = CLWT*CLMIN
C---- plot fine grid under the label box, if present
 NXGF = NXGBOX
 NYGF = 5*NYG - NYGBOX
 IF(NXGF.GT.0) CALL PLGRID(X0,Y0, NXGF,DXG, NYGF,DYG, LMASK2)
C---- plot fine grid right of the label box
 X0 = X0 + DXG*FLOAT(NXGF)
 NXGF = 5*NXG - NXGF
 NYGF = 5*NYG
 CALL PLGRID(X0,Y0, NXGF,DXG, NYGF,DYG, LMASK2)
 ENDIF
C
C--- CL-alfa plot
C==
C---- re-origin for CL-a plot
 CALL PLOT(CDWT*CDMAX + 0.05 - ALWT*ALMIN,0.0,-3)
C
 100 CONTINUE
 IF(XAL.EQ.0.0) GO TO 200
C
C---- CL axis for CL-a plot
 CALL NEWPEN(2)
 CALL YAXIS(0.0,CLWT*CLMIN,-PLOTAR,CLWT*CLDEL,CLMIN,CLDEL,-CH2,1)
C
 CALL NEWPEN(3)
 YPLT = CLWT*(CLMAX-0.5*CLDEL) - 0.6*CH
 IF(NCLEN.GT.0) THEN
 CALL PLCHAR(0.9*CH,YPLT ,1.1*CH,CC ,0.0,1)
 ENDIF
 CALL PLCHAR(2.0*CH,YPLT ,1.4*CH,'C',0.0,1)
 CALL PLCHAR(3.2*CH,YPLT-0.4*CH,0.9*CH,'L',0.0,1)
C
 IF(ABS(CLEXP-1.0) .GT. 0.001)
 & CALL PLNUMB(2.0*CH+1.05*CH,YPLT+1.3*CH,0.70*CH,CLEXP,0.0,1)
C
C---- a-axis for CL-a plot
 CALL NEWPEN(2)
 IF(CLMIN*CLMAX.LE.0.0) THEN
 CALL XAXIS(ALWT*ALMIN,0.0,-XAL,ALWT*ALDEL,ALMIN,ALDEL,CH2,-1)
 ELSE
 CALL XAXIS(ALWT*ALMIN,CLWT*CLMIN,-XAL,ALWT*ALDEL,ALMIN,
 & ALDEL,CH2,-1)
 ENDIF
C
 CALL NEWPEN(3)
 XPLT = ALWT*(ALMAX - 1.5*ALDEL) - 0.5*CH
 YPLT = -4.5*CH
 CALL PLMATH(XPLT,YPLT,1.4*CH,'a',0.0,1)
C
C---- plot CL-a plot
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 CALL NEWPEN(IPEN)
 CALL XYLINE(NA(IP),CPOL(1,IAL,IP),CPOL(1,ICL,IP),
 & 0.0,ALWT,0.0,CLWT,ILIN(IP))
 END DO
C
C---- plot reference data
 DO ID=1, NDAT
 IF(NF(2,ID).NE.0) THEN
 CALL NEWCOLOR(IFCOL(ID))
 CALL NEWPEN(IFPEN)
 CALL XYSYMB(NF(2,ID),XYREF(1,1,2,ID),XYREF(1,2,2,ID),
 & 0.0,ALWT,0.0,CLWT,SH,IFSYM(ID))
 ENDIF
 END DO
 CALL NEWCOLOR(ICOL0)
C
 DXG = ALWT*ALDEL
 DYG = CLWT*CLDEL
 NXG = INT(XAL/(ALWT*ALDEL) + 0.01)
 NYG = INT((CLMAX-CLMIN)/CLDEL + 0.01)
 X0 = ALWT*ALMIN
C----- fine grid
 IF(LGRID) THEN
 CALL NEWPEN(1)
 X0 = ALWT*ALMIN
 Y0 = CLWT*CLMIN
 DYGF = DYG / 5.0
 NYGF = 5*NYG
 CALL PLGRID(X0,Y0, NXG,DXG, NYGF,DYGF, LMASK2)
 ENDIF
C
C
C--- CM-alfa plot
C==
C---- CM axis for CM-a plot, skip CM plot if CMDEL=0.0
 IF(CMDEL.EQ.0) GO TO 200
C
C---- CM axis along positive CL axis (sign of CM set by max(CMMAX,CMMIN))
 IF (CMMAX.GT.0.0 .AND. CMMAX.GT.ABS(CMMIN)) THEN
 CM0 = 0.0
 CM1 = CMMAX
 DIR = 1.0
 ELSE
 CM0 = 0.0
 CM1 = CMMIN
 DIR = -1.0
 ENDIF
C
 YCM = ABS(CMWT*CM1)
 NDIG = NDIGITS(CMDEL)
C---- Offset CM axis to start at CL=0.0 or at CLmin if CLmin>0
 IF(CLMAX*CLMIN.LE.0.0) THEN
 CMOFF = 0.0
 ELSE
 CMOFF = CLWT*CLMIN
 ENDIF
C
 CALL NEWPEN(2)
 CALL YAXIS(0.0,CMOFF,-YCM,CMWT*CMDEL,-CM0,DIR*CMDEL,CH2,NDIG)
C
 CALL NEWPEN(3)
 XPLT = -4.5*CH
 YPLT = CMOFF + CMWT*DIR*CM1 - CMWT*0.5*CMDEL - 0.6*CH
 IF(NCLEN.GT.0) THEN
 CALL PLCHAR(XPLT-0.8*CH,YPLT ,1.1*CH,CC ,0.0,1)
 CALL PLMATH(XPLT+0.2*CH,YPLT ,1.1*CH,'2',0.0,1)
 ENDIF
 CALL PLCHAR(XPLT+1.2*CH,YPLT ,1.4*CH,'C',0.0,1)
 CALL PLCHAR(XPLT+2.4*CH,YPLT-0.4*CH,0.9*CH,'M',0.0,1)
C---- Offset for CM plotting
 YOFF = -CMOFF/(DIR*CMWT)
C
C---- plot CM-a plot
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 CALL NEWPEN(IPEN)
 CALL XYLINE(NA(IP),CPOL(1,IAL,IP),CPOL(1,ICM,IP),
 & 0.0,ALWT,YOFF,DIR*CMWT,ILIN(IP))
 END DO
C
C---- plot reference data
 DO ID=1, NDAT
 IF(NF(3,ID).NE.0) THEN
 CALL NEWCOLOR(IFCOL(ID))
 CALL NEWPEN(IFPEN)
 CALL XYSYMB(NF(3,ID),XYREF(1,1,3,ID),XYREF(1,2,3,ID),
 & 0.0,ALWT,YOFF,DIR*CMWT,SH,IFSYM(ID))
 ENDIF
 END DO
 CALL NEWCOLOR(ICOL0)
C
C
C--- transition location plot
C==
C---- re-origin for xtr plot
 200 CALL PLOT(ALWT*ALMAX + 0.05, 0.0, -3)
 IF(XOC .EQ. 0.0) GO TO 300
C
 CALL NEWPEN(2)
 NDIG = 1
 CALL XAXIS(0.0,CLWT*CLMIN,XOC,0.5*XOC,0.0,0.5,CH2,NDIG)
C
 CALL NEWPEN(3)
 XPLT = 0.75*XOC - 2.2*CH2
 YPLT = CLWT*CLMIN - 4.7*CH2
 CALL PLCHAR(XPLT,YPLT,1.3*CH2,'x /c',0.0,5)
 CALL PLCHAR(XPLT+1.2*CH2,YPLT-0.4*CH2,0.9*CH2,'tr',0.0,2)
C
C---- plot xtr/c
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 CALL NEWPEN(IPEN)
 DO IS=1, 2*NBL(IP)
 CALL XYLINE(NA(IP),CPOLSD(1,IS,JTN,IP),CPOL(1,ICL,IP),
 & 0.0,XOC,0.0,CLWT,ILIN(IP))
 END DO
 END DO
C
C---- plot reference data
 DO ID=1, NDAT
 IF(NF(4,ID).NE.0) THEN
 CALL NEWCOLOR(IFCOL(ID))
 CALL NEWPEN(IFPEN)
 CALL XYSYMB(NF(4,ID),XYREF(1,1,4,ID),XYREF(1,2,4,ID),
 & 0.0,XOC,0.0,CLWT,SH,IFSYM(ID))
 ENDIF
 END DO
 CALL NEWCOLOR(ICOL0)
C
C----- coarse grid lines
 CALL NEWPEN(1)
 CALL PLOT(0.0 ,CLWT*CLMIN,3)
 CALL PLOT(0.0 ,CLWT*CLMAX,2)
 CALL PLOT(0.5*XOC,CLWT*CLMIN,3)
 CALL PLOT(0.5*XOC,CLWT*CLMAX,2)
 CALL PLOT(XOC,CLWT*CLMIN,3)
 CALL PLOT(XOC,CLWT*CLMAX,2)
C
 DYG = CLWT*CLDEL
 Y0 = CLWT*CLMIN
 NYG = INT((CLMAX-CLMIN)/CLDEL + 0.01)
 DO K=0, NYG
 YL = Y0 + DYG*FLOAT(K)
 CALL PLOT(0.0,YL,3)
 CALL PLOT(XOC,YL,2)
 END DO
C
C----- fine grid
 IF(LGRID) THEN
 CALL NEWPEN(1)
 DXG = XOC*0.5 / 5.0
 DYG = CLWT*CLDEL / 5.0
 X0 = 0.0
 Y0 = CLWT*CLMIN
 NXG = 10
 NYG = INT((CLMAX-CLMIN)/CLDEL + 0.01) * 5
 CALL PLGRID(X0,Y0, NXG,DXG, NYG,DYG, LMASK2)
C
 ENDIF
C
C
C==
C---- aerodynamic center
 IF(LAECEN) THEN
C
 CALL NEWPEN(2)
 XPLT = 0.25*XOC - 2.2*CH2
 YPLT = CLWT*CLMIN - 4.7*CH2
 CALL PLCHAR(XPLT,YPLT,1.3*CH2,'x /c',0.0,5)
 CALL PLCHAR(XPLT+1.2*CH2,YPLT-0.4*CH2,0.9*CH2,'ac',0.0,2)
C
 CHS = 0.25*CH2
C
C---- plot xac/c
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 CALL NEWPEN(2)
 DO IA = 1, NA(IP)-1
 DCM = CPOL(IA+1,ICM,IP) - CPOL(IA,ICM,IP)
 DCL = CPOL(IA+1,ICL,IP) - CPOL(IA,ICL,IP)
 CLA = (CPOL(IA+1,ICL,IP) + CPOL(IA,ICL,IP))*0.5
C
 IF(DCL .NE. 0.0) THEN
 XAC = 0.25 - DCM/DCL
 ELSE
 XAC = 0.0
 ENDIF
C
 IF(XAC .GT. 0.0 .AND.
 & XAC .LT. 1.0) THEN
 CALL PLSYMB(XAC*XOC,CLA*CLWT,CHS,5,0.0,0)
 ENDIF
 END DO
 END DO
C
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
C
C==
C---- code and version identifier
 300 CONTINUE
 CHI = 0.75*CH2
 CALL NEWPEN(2)
 XPLT = XOC - 12.0*CHI
 YPLT = CLWT*CLMAX + 0.5*CHI
 CALL PLCHAR(XPLT ,YPLT,CHI,CODE ,0.0,5)
 CALL PLCHAR(XPLT+6.0*CHI,YPLT,CHI,'V' ,0.0,1)
 CALL PLNUMB(XPLT+8.0*CHI,YPLT,CHI,VERSION,0.0,2)
C
 CALL PLFLUSH
C---- reset scale factors
 CALL NEWFACTORS(XSZ,YSZ)
C
 RETURN
 END ! POLPLT

 SUBROUTINE POLLAB(NPOL, NAME ,ICOL,
 & IMATYP, IRETYP,
 & MACH, REYN, ACRIT,
 & TITLE,
 & XPLT0,YPLT0, PLOTAR, CH,CH2,
 & LLIST, CCLEN,NCLEN)
C
 INCLUDE 'PINDEX.INC'
C
 CHARACTER*(*) NAME(NPOL)
 CHARACTER*(*) TITLE, CCLEN
C
 DIMENSION ICOL(NPOL), IMATYP(NPOL),IRETYP(NPOL)
 REAL MACH
 DIMENSION MACH(NPOL), REYN(NPOL), ACRIT(NPOL)
 LOGICAL LLIST
C--
C Generates label for polar plot
C--
 CH3 = 0.90*CH2
 CH4 = 1.10*CH2
C
C---- y-spacing for label lines
 YSPC = 1.9*CH4
C
C...Put up title
C
 XPLT = XPLT0 - CH2
 YPLT = YPLT0 + 0.6*CH4
 IF(LLIST) THEN
 YPLT = YPLT + YSPC*(NPOL+1)
 ELSE
 YPLT = YPLT + 0.5*CH4
 ENDIF
 CALL NEWPEN(3)
 LENT = LEN(TITLE)
 CALL PLCHAR(XPLT,YPLT,1.2*CH4,TITLE,0.0,LENT)
C
 IF(.NOT.LLIST) RETURN
C
C
C...Put up polar identification data: name, flow conditions
 NMAX = 0
 DO IP = 1, NPOL
 CALL STRIP(NAME(IP),NNAME)
 NMAX = MAX(NMAX,NNAME)
 END DO
C
 DO IP = 1, NPOL
C
 CALL NEWCOLOR(ICOL(IP))
C
 XPLT = XPLT0
 YPLT = YPLT0 + YSPC*(NPOL-IP+1)
C
 CALL NEWPEN(3)
 CALL PLCHAR(XPLT,YPLT,CH4,NAME(IP),0.0,NMAX)
 XPLT = XPLT + CH4*FLOAT(NMAX)
C
 CALL NEWPEN(2)
C
 ITYP = IRETYP(IP)
 IF(ITYP.EQ.1) THEN
 CALL PLCHAR(XPLT,YPLT,CH3,' Re = ' ,0.0, 8)
 XPLT = XPLT + CH3*8.0
 ELSE IF(ITYP.EQ.2) THEN
 CALL PLCHAR(XPLT,YPLT,CH3,' Re CL = ',0.0, 11)
 CALL PLMATH(XPLT,YPLT,CH3,' R = ',0.0, 11)
 XPLT = XPLT + CH3*11.0
 ELSE IF(ITYP.EQ.3) THEN
 CALL PLCHAR(XPLT,YPLT,CH3,' Re CL = ',0.0, 11)
 XPLT = XPLT + CH3*11.0
 ENDIF
 CALL PLNUMB(XPLT,YPLT,CH3,REYN(IP),0.0,-1)
 IF(NCLEN.GT.0) THEN
 CALL PLCHAR(999.,YPLT,CH3,'/' ,0.0,1)
 CALL PLCHAR(999.,YPLT,CH3,CCLEN,0.0,NCLEN)
 XPLT = XPLT + CH3*FLOAT(1+NCLEN)
 ENDIF
 XPLT = XPLT + CH3*7.0
C
 ITYP = IMATYP(IP)
 IF(ITYP.EQ.1) THEN
 CALL PLCHAR(XPLT,YPLT,CH3,' Ma = ' ,0.0, 8)
 XPLT = XPLT + CH3*8.0
 ELSE IF(ITYP.EQ.2) THEN
 CALL PLCHAR(XPLT,YPLT,CH3,' Ma CL = ',0.0, 11)
 CALL PLMATH(XPLT,YPLT,CH3,' R = ',0.0, 11)
 XPLT = XPLT + CH3*11.0
 ELSE IF(ITYP.EQ.3) THEN
 CALL PLCHAR(XPLT,YPLT,CH3,' Ma CL = ',0.0, 11)
 XPLT = XPLT + CH3*11.0
 ENDIF
 CALL PLNUMB(XPLT,YPLT,CH3, MACH(IP) ,0.0,3)
 XPLT = XPLT + CH3*5.0
C
 CALL PLCHAR(XPLT,YPLT, CH3,' N',0.0,4)
 XPLT = XPLT + CH3*4.0
 CALL PLCHAR(XPLT,YPLT,0.8*CH3,'crit',0.0,4)
 XPLT = XPLT + CH3*3.2
 CALL PLCHAR(XPLT,YPLT, CH3,' = ' ,0.0,3)
 XPLT = XPLT + CH3*3.0
 CALL PLNUMB(XPLT,YPLT, CH3,ACRIT(IP) ,0.0,3)
 XPLT = XPLT + CH3*6.0
C
 END DO
C
 RETURN
 END ! POLLAB

 SUBROUTINE GETVAR(NPOL,NAME,REYN,MACH,ACRIT,
 & NAMVAR,REYVAR,MACVAR,ACRVAR)
 CHARACTER*(*) NAME
 REAL MACH
 LOGICAL NAMVAR,REYVAR,MACVAR,ACRVAR
C
 DIMENSION NAME(NPOL),REYN(NPOL),MACH(NPOL),ACRIT(NPOL)
C
 NAMVAR = .FALSE.
 MACVAR = .FALSE.
 REYVAR = .FALSE.
 ACRVAR = .FALSE.
C
 DO IP=1, NPOL-1
 IF(NAME(IP) .NE. NAME(IP+1)) THEN
 NAMVAR = .TRUE.
 RETURN
 ENDIF
 END DO
C
 DO IP=1, NPOL-1
 IF(MACH(IP) .NE. MACH(IP+1)) THEN
 MACVAR = .TRUE.
 RETURN
 ENDIF
 END DO
C
 DO IP=1, NPOL-1
 IF(REYN(IP) .NE. REYN(IP+1)) THEN
 REYVAR = .TRUE.
 RETURN
 ENDIF
 END DO
C
 DO IP=1, NPOL-1
 IF(ACRIT(IP) .NE. ACRIT(IP+1)) THEN
 ACRVAR = .TRUE.
 RETURN
 ENDIF
 END DO
C
ccc NAMVAR = .TRUE.
 RETURN
 END ! GETVAR

 INTEGER FUNCTION NDIGITS(X)
C...Returns number of significant (non-zero) fractional digits
 NDIGITS = 0
 XMAG = ABS(X)
 IF(XMAG.EQ.0.) RETURN
 1 XDIF = XMAG-IFIX(XMAG)
 IF(XDIF.LT.1.E-5 .OR. 1.0-XDIF.LT.1.E-5) RETURN
 NDIGITS = NDIGITS+1
 XMAG = 10.*XMAG
 GO TO 1
 END

 SUBROUTINE VEPPLT(NAX,NPOL,NA,VPOL,
 & REYN,MACH,ACRIT, NAME ,ICOL,ILIN,
 & IMATYP,IRETYP,
 & TITLE,CODE,VERSION,
 & PLOTAR, CH,CH2,
 & LGRID,LLIST,LEGND,
 & VPOLPLF)
C--
C Generates velocity-polar plot
C--
 CHARACTER*(*) NAME(NPOL)
 CHARACTER*(*) CODE, TITLE
 LOGICAL LGRID, LLIST, LEGND
C
 INTEGER NA(NPOL),
 & ICOL(NPOL), ILIN(NPOL),
 & IMATYP(NPOL),IRETYP(NPOL)
 REAL VPOL(NAX,2,NPOL)
 REAL VPOLPLF(3,*)
 REAL REYN(NPOL), MACH(NPOL), ACRIT(NPOL)
C--
 LOGICAL NAMVAR,REYVAR,MACVAR,ACRVAR
 REAL XLIN(3), YLIN(3)
 CHARACTER*1 CC
C
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
C
 CALL GETVAR(NPOL,NAME,REYN,MACH,ACRIT,
 & NAMVAR,REYVAR,MACVAR,ACRVAR)
C
C---- polar and data-symbol pen width
 IPEN = 4
 IFPEN = 3
C
C---- symbol height for data
 SH = 0.7*CH2
C
C---- unpack plot limit array
 VHMIN = VPOLPLF(1,1)
 VHMAX = VPOLPLF(2,1)
 VHDEL = VPOLPLF(3,1)
C
 VZMIN = VPOLPLF(1,2)
 VZMAX = VPOLPLF(2,2)
 VZDEL = VPOLPLF(3,2)
C

c WRITE(*,*) VPOLPLF(1,1),VPOLPLF(2,1),VPOLPLF(3,1)
c WRITE(*,*) VPOLPLF(1,2),VPOLPLF(2,2),VPOLPLF(3,2)

C---- Get scale factor and set scale factor to 0.9 of current to fit plots
 CALL GETFACTORS(XSZ,YSZ)
 CALL NEWFACTORS(0.9*XSZ,0.9*YSZ)
C
C---- Set sane scale factors for axes
 VHWT = 1.0
 VZWT = 1.0
C
 VHRANGE = VHMAX-VHMIN
 IF(VHRANGE.NE.0.0) THEN
 VHWT = 1.0 / VHRANGE
 ENDIF
C
 VZRANGE = VZMAX-VZMIN
 IF(VZRANGE.NE.0.0) THEN
 VZWT = PLOTAR / VZRANGE
 ENDIF
C
C
C---- number of text lines to be plotted in upper right legend in VH-VZ plot
 LINBOX = NDAT
 IF(LEGND.AND. NPOL.GT.1) LINBOX = LINBOX + NPOL + 1
 DYBOX = CH2*(2.0*FLOAT(LINBOX) + 1.0)
C
C---- allow # CH2 character string width in label box
 NCHBOX = 18
 DXBOX = FLOAT(NCHBOX)*CH2
C

C---- set default color index
 CALL GETCOLOR(ICOL0)
C---- reorigin for VZMIN,VHMIN
 CALL PLOT(-VHWT*VHMIN,-VZWT*VZMIN,-3)
C
C---- put Polar labels above plots
C Labels contain: Title
C airfoils: Name, Mach, Re, and Ncrit
C
 XPLT0 = VHWT*VHMIN
 YPLT0 = VZWT*VZMAX
 CALL POLLAB(NPOL, NAME ,ICOL,
 & IMATYP,IRETYP,
 & MACH, REYN, ACRIT,
 & TITLE,
 & XPLT0,YPLT0, PLOTAR, CH,CH2,
 & LLIST, ' ',0)
C
 CALL NEWCOLOR(ICOL0)
C
C
C--- VH-VZ plot
C==
C---- VZ axis for VH-VZ polar
 CALL NEWPEN(2)
 NDIG = NDIGITS(VZDEL)
 CALL YAXIS(VHWT*VHMIN,VZWT*VZMIN,PLOTAR,VZWT*VZDEL,
 & VZMIN,VZDEL,CH2,NDIG)
C
 CALL NEWPEN(3)
 XPLT = VHWT* VHMIN - 3.2*CH
 YPLT = VZWT*(VZMAX-0.5*VZDEL) - 0.6*CH
 CALL PLCHAR(XPLT ,YPLT ,1.4*CH,'V',0.0,1)
 CALL PLCHAR(XPLT+1.2*CH,YPLT-0.4*CH,0.9*CH,'z',0.0,1)
C
C---- VH axis for VH-VZ polar
 CALL NEWPEN(2)
 NDIG = NDIGITS(VHDEL)
 CALL XAXIS(VHWT*VHMIN,VZWT*VZMIN,1.0,VHWT*VHDEL,
 & VHMIN,VHDEL,CH2,NDIG)
C
 CALL NEWPEN(3)
 NXL = INT((VHMAX-VHMIN)/VHDEL + 0.5)
 XPLT = VHWT*(VHMAX - (FLOAT((NXL+1)/2) - 0.5)*VHDEL) - 0.5*CH2
 YPLT = VZWT* VZMIN - 4.8*CH2
 CALL PLCHAR(XPLT,YPLT,1.4*CH,'V',0.0,1)
C
C---- set up for coarse grid lines
 CALL NEWPEN(1)
 DXG = VHWT*VHDEL
 DYG = VZWT*VZDEL
C
C---- check for legend box at top left of VH-VZ grid area
 NXGBOX = INT(DXBOX/(DXG/5.0)) + 1
 NYGBOX = INT(DYBOX/(DYG/5.0)) + 1
 IF (LINBOX.EQ.0) THEN
 NXGBOX = 0
 NYGBOX = 0
 ENDIF
 DXGBOX = (DXG/5.0) * FLOAT(NXGBOX)
 DYGBOX = (DYG/5.0) * FLOAT(NYGBOX)
C
 X0 = VHWT*VHMIN
 Y0 = VZWT*VZMIN
 NXG = INT(1.0/(VHWT*VHDEL) + 0.01)
 NYG = INT((VZMAX-VZMIN)/VZDEL + 0.01)
C
C---- Put legend data in legend box in upper right of VH/VZ plot
 IF(LEGND) THEN
C
 XBASE = VHWT*VHMAX - DXGBOX
 YLINE = VZWT*VZMAX - 2.0*CH2
 CALL NEWPEN(3)
C
 IF(NAMVAR) THEN
 XPLT = XBASE + 6.0*CH2
 YPLT = YLINE
 CALL PLCHAR(XPLT ,YPLT, CH2,'Airfoil',0.0,7)
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 IF(REYVAR) THEN
 XPLT = XBASE + 7.5*CH2
 YPLT = YLINE
 ITYP = IRETYP(1)
 IF(ITYP.EQ.1) THEN
 CALL PLCHAR(XPLT ,YPLT, CH2,'Re' ,0.0,2)
 ELSE IF(ITYP.EQ.2) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' R ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Re C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ELSE IF(ITYP.EQ.3) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' # ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Re C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ENDIF
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 IF(ACRVAR) THEN
 XPLT = XBASE + 8.0*CH2
 YPLT = YLINE
 CALL PLCHAR(XPLT,YPLT, CH2,'N' ,0.0,1)
 CALL PLCHAR(999.,999.,0.7*CH2,'crit',0.0,4)
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 IF(MACVAR) THEN
 XPLT = XBASE + 7.5*CH2
 YPLT = YLINE
 ITYP = IMATYP(1)
 IF(ITYP.EQ.1) THEN
 CALL PLCHAR(XPLT ,YPLT, CH2,'Ma' ,0.0,2)
 ELSE IF(ITYP.EQ.2) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' R ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Ma C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ELSE IF(ITYP.EQ.3) THEN
 CALL PLMATH(XPLT-1.0*CH2,YPLT, CH2,' # ',0.0,5)
 CALL PLCHAR(XPLT-1.0*CH2,YPLT, CH2,'Ma C' ,0.0,4)
 CALL PLCHAR(999. ,999.,0.7*CH2, 'L',0.0,1)
 ENDIF
 YLINE = YLINE - 2.25*CH2
 ENDIF
C
 ENDIF
C
C---- plot VH-VZ polar(s)
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 CALL NEWPEN(IPEN)
 CALL XYLINE(NA(IP),VPOL(1,1,IP),VPOL(1,2,IP),
 & 0.,VHWT,0.,VZWT,ILIN(IP))
 END DO
C
C---- label each polar with legend
 IF(LEGND .AND. (NAMVAR .OR. REYVAR .OR. ACRVAR .OR. MACVAR)) THEN
 DO IP=1, NPOL
 CALL NEWCOLOR(ICOL(IP))
 XLIN(1) = XBASE + CH2
 XLIN(2) = XBASE + 3.0*CH2
 XLIN(3) = XBASE + 6.0*CH2
 YLIN(1) = YLINE + 0.5*CH2
 YLIN(2) = YLINE + 0.5*CH2
 YLIN(3) = YLINE + 0.5*CH2
 CALL NEWPEN(IPEN)
 CALL XYLINE(3,XLIN,YLIN,0.0,1.0,0.0,1.0,ILIN(IP))
 CALL NEWPEN(2)
 XPT = XBASE + 7.5*CH2
 IF(NAMVAR) CALL PLCHAR(XPT,YLINE,.8*CH2,NAME(IP) ,0.,14)
 IF(REYVAR) CALL PLNUMB(XPT,YLINE,.8*CH2,REYN(IP) ,0.,-1)
 IF(ACRVAR) CALL PLNUMB(XPT,YLINE,.8*CH2,ACRIT(IP),0., 3)
 IF(MACVAR) CALL PLNUMB(XPT,YLINE,.8*CH2,MACH(IP) ,0., 3)
 YLINE = YLINE - 2.0*CH2
 END DO
 YLINE = YLINE - 0.5*CH2
C
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWPEN(1)
C
C----- plot vertical coarse grid lines around label box
 DO K = 0, NXG
 DXL = VHWT*VHDEL*FLOAT(K)
 XL = X0 + DXL
 CALL PLOT(XL,Y0,3)
 IF(XL .LT. VHWT*VHMAX-0.999*DXGBOX) THEN
 CALL PLOT(XL, Y0 + DYG*FLOAT(NYG) , 2)
 ELSE
 CALL PLOT(XL, Y0 + DYG*FLOAT(NYG)-DYGBOX, 2)
 ENDIF
 END DO
C
C----- plot horizontal coarse grid lines around label box
 DO K = 0, NYG
 DYL = VZWT*VZDEL*FLOAT(K)
 YL = Y0 + DYL
 CALL PLOT(X0,YL,3)
 IF(YL .LT. VZWT*VZMAX-0.999*DYGBOX) THEN
 CALL PLOT(X0 + DXG*FLOAT(NXG), YL, 2)
 ELSE
 CALL PLOT(X0 + DXG*FLOAT(NXG)-DXGBOX, YL, 2)
 ENDIF
 END DO
C
C---- plot edges of label box
 X0 = VHWT*VHMAX
 Y0 = VZWT*VZMAX
 CALL PLOT(X0 , Y0 , 3)
 CALL PLOT(X0-DXGBOX, Y0 , 2)
 CALL PLOT(X0-DXGBOX, Y0-DYGBOX, 2)
 CALL PLOT(X0 , Y0-DYGBOX, 2)
 CALL PLOT(X0 , Y0 , 2)
C
C----- fine grid
 IF(LGRID) THEN
 CALL NEWPEN(1)
 DXG = VHWT*VHDEL / 5.0
 DYG = VZWT*VZDEL / 5.0
 X0 = VHWT*VHMIN
 Y0 = VZWT*VZMIN
C
C----- plot fine grid left of the label box
 NXGF = 5*NXG - NXGBOX
 NYGF = 5*NYG
 CALL PLGRID(X0,Y0, NXGF,DXG, NYGF,DYG, LMASK2)
C
C=---- plot fine grid under the label box, if present
 X0 = VHWT*VHMAX - DXGBOX
 NXGF = NXGBOX
 NYGF = 5*NYG - NYGBOX
 IF(NXGF.GT.0) CALL PLGRID(X0,Y0, NXGF,DXG, NYGF,DYG, LMASK2)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
C
C==
C---- code and version identifier
 300 CONTINUE
 CHI = 0.75*CH2
 CALL NEWPEN(2)
 XPLT = 1.0 - 12.0*CHI
 YPLT = VZWT*VZMAX + 0.5*CHI
 CALL PLCHAR(XPLT ,YPLT,CHI,CODE ,0.0,5)
 CALL PLCHAR(XPLT+6.0*CHI,YPLT,CHI,'V' ,0.0,1)
 CALL PLNUMB(XPLT+8.0*CHI,YPLT,CHI,VERSION,0.0,2)
C
 CALL PLFLUSH
C---- reset scale factors
 CALL NEWFACTORS(XSZ,YSZ)
C
 RETURN
 END ! VEPPLT

XFOILinterface/XFOIL/src/pplot.f

C***
C POLAR PLOTTING FACILITY FOR MSES AND XFOIL
C
C INPUT:
C * Polar file(s) generated by MSES or XFOIL
C * Reference data files in the format:
C
C CD(1) CL(1)
C CD(2) CL(2)
C . .
C . .
C 999.0 999.0
C alpha(1) CL(1)
C alpha(2) CL(2)
C . .
C . .
C 999.0 999.0
C alpha(1) Cm(1)
C alpha(2) Cm(2)
C . .
C . .
C 999.0 999.0
C Xtr/c(1) CL(1)
C Xtr/c(2) CL(2)
C . .
C . .
C 999.0 999.0
C
C The number of points in each set (CD-CL, alpha-CL, etc.)
C is arbitrary, and can be zero.
C
C * pplot.def plot parameter file (optional)
C
C***
C
 PROGRAM PPLOT
 INCLUDE 'PPLOT.INC'
C
 LOGICAL ERROR, LGETFN
 REAL RINP(10)
 REAL CPOLO(NAX,IPTOT,NPX), VPOLO(NAX,2,NPX)
C
 LPLOT = .FALSE.
C
 PI = 4.0*ATAN(1.0)
C
 CALL PLINITIALIZE
C
C...Get default settings
 CALL GETDEF
C
C---- Check for command line args (load file names)
 NPOL = 0
 DO II=1, NPX
 FNAME = ' '
 CALL GETARG0(II,FNAME)
 IF(FNAME.NE.' ') THEN
 NPOL = NPOL + 1
 FNPOL(NPOL) = FNAME
 ELSE
 IF(NPOL.GT.0) THEN
 IOPTS = 11
 GO TO 10
 ELSE
 GO TO 1
 ENDIF
 ENDIF
 END DO
C
 1 WRITE(*,1000)
 IF(NPOL.GT.0) WRITE(*,1010)
 WRITE(*,1020)
 WRITE(*,1050)
C
 1000 FORMAT(/' 1 Read polars (-1 for new set)'
 & /' 2 Read reference data (-2 for new set)'
 & /' 3 Plot CD(CL)'
 & /' 4 Hardcopy current plot'
 & /' 5 Change plot settings'
 & /' 6 Zoom'
 & /' 7 Unzoom'
 & /' 8 Annotation menu'
 & /' 9 Set CD(CL) modifiers')
 1010 FORMAT(' 11 Re-read current polars'
 & /' 12 Re-read current reference data')
 1020 FORMAT(' 13 Plot Vz(V)'
 & /' 19 Set aicraft parameters')
 1050 FORMAT(/' Select option (0=quit): ', $)
C
 READ(*,*,ERR=1) IOPTS
 IOPT = ABS(IOPTS)
C
 GO TO (900, 10, 20, 30, 40, 50, 60, 70, 80, 90, 900,
 & 10, 20,130,900,900,900,900,900,190), IOPT+1
 GO TO 1
C
C===
C---- read polars and assign colors
 10 CONTINUE
 IF (IOPTS.EQ.-1) THEN
C----- read new polars
 IP1 = 1
 IP2 = NPX
 ELSEIF(IOPTS.EQ. 1) THEN
C----- read additional polars
 IP1 = NPOL+1
 IP2 = NPX
 ELSE
C----- re-read old polars
 IP1 = 1
 IP2 = NPOL
 ENDIF
C
 DO 105 IP = IP1, IP2
 IF(IOPTS.EQ.1 .OR. IOPTS.EQ.-1) THEN
 CALL ASKS('Enter polar data filename or <return>^',FNPOL(IP))
 ENDIF
 IF(FNPOL(IP)(1:1) .EQ. ' ') GO TO 108
C
 LU = 9
 CALL POLREAD(LU,FNPOL(IP),ERROR,
 & NAX,NA(IP),CPOL(1,1,IP),
 & REYN(IP),MACH(IP),ACRIT(IP),XTRIP(1,IP),
 & NAME(IP),IRETYP(IP),IMATYP(IP),
 & ISX,NBL(IP),CPOLSD(1,1,1,IP),
 & CODE,VERSION)
 IF(ERROR) THEN
 WRITE(*,*) 'Polar file READ error'
 GO TO 108
 ENDIF
C
 WRITE(*,8000) NAME(IP)
 IF(IMATYP(IP).EQ.1) WRITE(*,8011) MACH(IP)
 IF(IMATYP(IP).EQ.2) WRITE(*,8012) MACH(IP)
 IF(IMATYP(IP).EQ.3) WRITE(*,8013) MACH(IP)
 IF(IRETYP(IP).EQ.1) WRITE(*,8021) REYN(IP)/1.0E6
 IF(IRETYP(IP).EQ.2) WRITE(*,8022) REYN(IP)/1.0E6
 IF(IRETYP(IP).EQ.3) WRITE(*,8023) REYN(IP)/1.0E6
 WRITE(*,8030) ACRIT(IP)
C
 8000 FORMAT(1X,A)
 8011 FORMAT(' Ma =', F7.3, $)
 8012 FORMAT(' sqrt(CL)*Ma =', F7.3, $)
 8013 FORMAT(' CL*Ma =', F7.3, $)
 8021 FORMAT(' Re =', F7.3,' e 6',$)
 8022 FORMAT(' sqrt(CL)*Re =', F7.3,' e 6',$)
 8023 FORMAT(' CL*Re =', F7.3,' e 6',$)
 8030 FORMAT(' Ncrit =', F6.2)
C
 105 CONTINUE
 IP = IP2+1
C
 108 CONTINUE
 NPOL = IP-1
 IP2 = MIN(IP2,NPOL)
C
 DO IP = IP1, IP2
ccc CALL GETTYP(NAX,NA(IP),CPOL(1,1,IP),IMATYP(IP),IRETYP(IP))
 CALL STRIP(NAME(IP),NNAME)
 ICOL(IP) = 2 + IP
 ILIN(IP) = IP
 ENDDO
CCC CALL MINMAX(NAX,NPOL,NA,CPOL,CPOLPLF)
C
C---- are these dimensional polars?
 DO IP = IP1, IP2
 CALL GETCLEN(NAME(IP),CCLEN,NCLEN)
 IF(NCLEN.GT.0) THEN
 LCLEN = .TRUE.
 GO TO 1
 ENDIF
 ENDDO
 IF(.NOT.LPLOT) GO TO 30
 GO TO 1
C
C===
C---- read reference data
 20 CONTINUE
 IF(IOPTS.EQ.12) THEN
C------ re-read old data sets
 ID1 = 1
 ID2 = NDAT
 LGETFN = .FALSE.
 ELSEIF(IOPTS.GT.0) THEN
C------ read additional data sets
 ID1 = NDAT+1
 ID2 = NDX
 LGETFN = .TRUE.
 ELSE
C------ read new data sets
 ID1 = 1
 ID2 = NDX
 LGETFN = .TRUE.
 ENDIF
C
 DO 25 ID = ID1, ID2
 IF(LGETFN) THEN
 CALL ASKS('Enter reference data filename or <return>^',
 & FNREF(ID))
 IF(FNREF(ID)(1:1) .EQ. ' ') GO TO 27
 ENDIF
C
 LU = 9
 OPEN(LU,FILE=FNREF(ID),STATUS='OLD',ERR=27)
 CALL POLREF(LU, FNREF(ID), ERROR,
 & NFX, NF(1,ID), XYREF(1,1,1,ID), LABREF(ID))
 CLOSE(LU)
 IF(ERROR) GO TO 27
C
 NDAT = ID
C
 CALL STRIP(LABREF(ID),NLAB)
 IF(NLAB.EQ.0) THEN
 CALL ASKS('Enter label for reference data^',LABREF(ID))
 CALL STRIP(LABREF(ID),NLAB)
 ENDIF
C
ccc IFCOL(ID) = NCOLOR - ID + 1
 IFCOL(ID) = 2 + ID
 IFSYM(ID) = MOD(ID,10)
 25 CONTINUE
 27 CONTINUE
 GO TO 1
C
C===
C---- Make the CD(CL) Plot
 30 IF (NPOL.EQ.0 .AND. NDAT.EQ.0) GO TO 1
C
C---- sort each polar by increasing alpha
 DO IP=1, NPOL
 CALL PLRSRT(IP,IAL)
 ENDDO
C
C---- set modified polars
 DO IP = 1, NPOL
 DO IA = 1, NA(IP)
 DO I = 1, IPTOT
 CPOLO(IA,I,IP) = CPOL(IA,I,IP)
 ENDDO
 CPOLO(IA,ICD,IP) = CPOL(IA,ICD,IP)
 & + CDLMOD(1,IP)
 & + CDLMOD(2,IP)*CPOL(IA,ICL,IP)
 & + CDLMOD(3,IP)*CPOL(IA,ICL,IP)**2
 IF(CDLMOD(4,IP) .NE. 1.0) THEN
 CPOLO(IA,ICL,IP) = ABS(CPOL(IA,ICL,IP))**CDLMOD(4,IP)
 ENDIF
 IF(CDLMOD(5,IP) .NE. 0.0) THEN
 CPOLO(IA,ICD,IP) = CPOLO(IA,ICD,IP)
 & * ABS(CPOL(IA,ICL,IP))**CDLMOD(5,IP)
 ENDIF
 ENDDO
 ENDDO

 IF (AUTO) THEN
 CALL MINMAX(NAX,NPOL,NA,CPOLO,CPOLPLF)
 CALL SETINC
 ENDIF
C
 IF (LPLOT) CALL PLEND
 CALL PLOPEN(SCRNFR,IPSLU,IDEV)
 LPLOT = .TRUE.
C
C---- set 0.3" left,bottom margins
 CALL PLOTABS(0.3,0.3,-3)
 CALL NEWFACTOR(SIZE)
 CALL PLOT(6.0*CH,6.0*CH,-3)
C

c WRITE(*,*) CPOLPLF(1,ICL),CPOLPLF(2,ICL),CPOLPLF(3,ICL)
c write(*,*)

 CALL POLPLT(NAX,NPOL,NA,CPOLO,
 & REYN,MACH,ACRIT, NAME ,ICOL,ILIN,
 & NFX,NDAT,NF,XYREF,LABREF,IFCOL,IFSYM,
 & ISX,NBL,CPOLSD, IMATYP,IRETYP,
 & TITLE,CODE,VERSION,
 & PLOTAR, XCD,XAL,XOC, CH,CH2, CDLMOD(4,1),
 & LGRID,LCDW,LLIST,LEGND,LAECEN,
 & CPOLPLF, CCLEN,NCLEN)
 GO TO 1
C
C===
C---- hardcopy output
 40 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
 GO TO 1
C
C===
C---- change settings
 50 CALL GETSET
 GO TO 1
C
C===
C---- zoom
 60 CALL USETZOOM(.FALSE.,.TRUE.)
 CALL REPLOT(IDEV)
 GO TO 1
C
C===
C---- unzoom
 70 CALL CLRZOOM
 CALL REPLOT(IDEV)
 GO TO 1
C
C===
C---- annotate plot
 80 IF(.NOT.LPLOT) THEN
 WRITE(*,*) 'No active plot to annotate'
 GO TO 1
 ENDIF
 CALL ANNOT(CH)
 GO TO 1
C===
C---- get modifiers
 90 CONTINUE
 WRITE(*,4900)
 4900 FORMAT(/' CD_plotted = (CD + CD0 + CD1*CL + CD2*CL^2)*CL^expD'
 & /' CL_plotted = CL^exp')
 DO IP = 1, NPOL
 91 WRITE(*,4910) IP, (CDLMOD(K,IP), K=1, 5)
 4910 FORMAT(/' Polar', I3,'...'
 & /' Currently CD0,CD1,CD2,exp,expD = ', 3F10.6, 2F10.4,
 & /' Input new CD0,CD1,CD2,exp,expD: ', $)
 CALL READR(5,CDLMOD(1,IP),ERROR)
 IF(ERROR) GO TO 91
 ENDDO
 GO TO 1
C
C===
C---- Make the Vz(V) Plot
 130 IF (NPOL.EQ.0 .AND. NDAT.EQ.0) GO TO 1
C
C---- sort each polar by increasing alpha
 DO IP=1, NPOL
 CALL PLRSRT(IP,IAL)
 ENDDO
C
C---- set V and Vz for plotting
 DO IP = 1, NPOL
 WOS = VPPARS(1,IP)
 RHO = VPPARS(2,IP)
 AR = VPPARS(3,IP)
 CD0 = VPPARS(4,IP)
 REF = VPPARS(5,IP)
 REX = VPPARS(6,IP)
C
 IF(WOS .EQ. 0.0) THEN
 WRITE(*,*) 'Wing loading W/S not defined. Using 1.0'
 WOS = 1.0
 ENDIF
 IF(RHO .EQ. 0.0) THEN
 WRITE(*,*) 'Air density RHO not defined. Using 1.0'
 RHO = 1.0
 ENDIF
 IF(AR .EQ. 0.0) THEN
 WRITE(*,*) 'Aspect ratio AR not defined. Using 1.0'
 AR = 1.0
 ENDIF
 IF(REF .EQ. 0.0) THEN
 WRITE(*,*) 'Reference REref not defined. Using 10^6'
 REF = 1.0E6
 ENDIF
C
 DO IA = 1, NA(IP)
 CDP = CPOL(IA,ICD,IP)
 CL = CPOL(IA,ICL,IP)
 RE = CPOL(IA,IRE,IP)
C
 CLM = MAX(CL , 0.001)
 VEL = SQRT(2.0*WOS/(RHO*CLM))
C
 CD = CDP
 & + CL*CL/(PI*AR)
 & + CD0*(RE/REF)**REX
C
 VZ = -VEL * CD/CL
C
 VPOLO(IA,1,IP) = VEL
 VPOLO(IA,2,IP) = VZ
 ENDDO
 ENDDO

 IF (AUTO) THEN
 CALL MINMAX(NAX,NPOL,NA,VPOLO,VPOLPLF)
 CALL SETINCV
 ENDIF
C
 IF (LPLOT) CALL PLEND
 CALL PLOPEN(SCRNFR,IPSLU,IDEV)
 LPLOT = .TRUE.
C
C---- set 0.3" left,bottom margins
 CALL PLOTABS(0.3,0.3,-3)
 CALL NEWFACTOR(SIZE)
 CALL PLOT(6.0*CH,6.0*CH,-3)
C
 CALL VEPPLT(NAX,NPOL,NA,VPOLO,
 & REYN,MACH,ACRIT, NAME ,ICOL,ILIN,
 & IMATYP,IRETYP,
 & TITLE,CODE,VERSION,
 & PLOTAR, CH,CH2,
 & LGRID,LLIST,LEGND,
 & VPOLPLF)
 GO TO 1
C
C===
C---- get velocity-polar parameters
 190 CONTINUE
 DO IP = 1, NPOL
 191 WRITE(*,5910) IP, (VPPARS(K,IP), K=1, 6)
 5910 FORMAT(
 & /' Polar', I3,'...'
 & /' Currently W/S,rho,AR,CDo,REref,REexp = ',
 & G12.4,G12.4,F7.2,F10.6,G12.4,F6.2
 & /' Input new W/S,rho,AR,CDo,REref,REexp: ', $)
 CALL READR(6,VPPARS(1,IP),ERROR)
 IF(ERROR) GO TO 191
 ENDDO
 GO TO 1
C===
 900 CALL PLCLOSE
 STOP
 END ! PPLOT

 SUBROUTINE GETCLEN(NAME,CLEN,NCLEN)
 CHARACTER*(*) NAME, CLEN
C--
C Looks for substring "(c=01234***)"
C in the NAME string. If found, then
C the "***" string is returned in CLEN.
C If not found, then CLEN is returned blank.
C--
C
 CLEN = ' '
C
 K1 = INDEX(NAME , '(c=')
 IF(K1.EQ.0) RETURN
C
 NNAME = LEN(NAME)
 K2 = INDEX(NAME(K1:NNAME) , ')') + K1 - 2
 IF(K2-K1.LT.3) RETURN
C
 DO K = K1+3, K2
 IF(INDEX('0123456789.,)' , NAME(K:K)) .EQ. 0) THEN
 CLEN = NAME(K:K2)
 NCLEN = K2-K+1
 RETURN
 ENDIF
 ENDDO
C
 RETURN
 END

 SUBROUTINE MINMAX(NAX,NPOL,NA,CPOL,CPOLPLF)
 INCLUDE 'PINDEX.INC'
 DIMENSION NA(NPOL)
 DIMENSION CPOL(NAX,IPTOT,NPOL), CPOLPLF(3,*)
C--
C Determines max and min limits of polar
C quantities among all polars passed in.
C--
C
 IF(NPOL.LT.1) RETURN
C
 DO K = 1, 4
 CPOLPLF(1,K) = CPOL(1,K,1)
 CPOLPLF(2,K) = CPOL(1,K,1)
 END DO
C
 DO IP=1, NPOL
 DO K=1, 4
 DO I=1, NA(IP)
 CPOLPLF(1,K) = MIN(CPOL(I,K,IP) , CPOLPLF(1,K))
 CPOLPLF(2,K) = MAX(CPOL(I,K,IP) , CPOLPLF(2,K))
 END DO
 END DO
 END DO
C
 RETURN
 END ! MINMAX

 SUBROUTINE GETDEF
 INCLUDE 'PPLOT.INC'
C
C---- Plotting flag
 IDEV = 1 ! X11 window only
c IDEV = 2 ! B&W PostScript output file only (no color)
c IDEV = 3 ! both X11 and B&W PostScript file
c IDEV = 4 ! Color PostScript output file only
c IDEV = 5 ! both X11 and Color PostScript file
C
C---- Re-plotting flag (for hardcopy)
c IDEVRP = 2 ! B&W PostScript
 IDEVRP = 4 ! Color PostScript
C
C---- PostScript output logical unit and file specification
 IPSLU = 0 ! output to file plot.ps on LU 4 (default case)
c IPSLU = ? ! output to file plot?.ps on LU 80+?
C
C---- screen fraction taken up by plot window upon opening
 SCRNFR = 0.70
C
C---- Default plot size in inches
C- (Default plot window is 11.0 x 8.5)
 SIZE = 10.0
C
C---- plot aspect ratio V/H
 PLOTAR = 0.60
C
C---- character height
 CH = 0.014
 CH2 = 0.012
C
C---- set default color table and get number of colors
 CALL COLORMAPDEFAULT
 CALL GETNUMCOLOR(NCOLOR)
C
 LGRID = .TRUE.
 LCDW = .FALSE.
 LLIST = .TRUE.
 LEGND = .TRUE.
 LCLEN = .FALSE.
 LAECEN = .FALSE.
C
C---- automatic scaling for axes
 AUTO = .TRUE.
C
 CPOLPLF(1,ICL) = 0.0 ! CLmax
 CPOLPLF(2,ICL) = 1.5 ! CLmin
 CPOLPLF(3,ICL) = 0.5 ! Axis CL increment
C
 CPOLPLF(1,ICD) = 0.0 ! CDmax
 CPOLPLF(2,ICD) = 0.02 ! CDmin
 CPOLPLF(3,ICD) = 0.01 ! Axis CD increment
C
 CPOLPLF(1,ICM) = 0.0 ! CMmax
 CPOLPLF(2,ICM) = -0.25 ! CMmin
 CPOLPLF(3,ICM) = 0.05 ! Axis CM increment
C
 CPOLPLF(1,IAL) = -4.0 ! ALmax
 CPOLPLF(2,IAL) = 10.0 ! ALmin
 CPOLPLF(3,IAL) = 2.0 ! Axis AL increment
C
C---- Plot layout (relative X size to CL-CD, CL-alfa, transition plots)
 XCD = 0.45
 XAL = 0.25
 XOC = 0.20
C
C---- Set CL,CD modifiers
 DO IP = 1, NPX
 CDLMOD(1,IP) = 0.
 CDLMOD(2,IP) = 0.
 CDLMOD(3,IP) = 0.
 CDLMOD(4,IP) = 1.0
 CDLMOD(5,IP) = 0.
 ENDDO
C
C---- velocity polar plot axis parameters
 VPOLPLF(1,1) = 0.0 ! Vmin
 VPOLPLF(2,1) = 20.0 ! Vmax
 VPOLPLF(3,1) = 2.0 ! Vdel
C
 VPOLPLF(1,2) = -5.0 ! Vzmin
 VPOLPLF(2,2) = 1.0 ! Vzmax
 VPOLPLF(3,2) = 0.5 ! Vzdel
C
C---- Set Vz(V) parameters
 DO IP = 1, NPX
 VPPARS(1,IP) = 0.
 VPPARS(2,IP) = 0.
 VPPARS(3,IP) = 0.
 VPPARS(4,IP) = 0.
 VPPARS(5,IP) = 0.
 VPPARS(6,IP) = 0.
 ENDDO
C
 TITLE = ' '
CCC 12345678901234567890123456789012
C
C...Try to read default file "pplot.def" for stored plot setup
 OPEN(UNIT=10,FILE='pplot.def',STATUS='OLD',ERR=900)
 CALL RDDEF(10)
 RETURN
C
 900 WRITE(*,*)
 WRITE(*,*) 'No pplot.def file found'
 WRITE(*,*) 'Hard-wired defaults used'
 WRITE(*,*)
 RETURN
 END ! GETDEF

 SUBROUTINE RDDEF(LU)
C--- Read PPLOT plot parameters from save file
 INCLUDE 'PPLOT.INC'
C
 READ(LU,*,ERR=90) CPOLPLF(1,ICL), CPOLPLF(2,ICL), CPOLPLF(3,ICL)
 READ(LU,*,ERR=90) CPOLPLF(1,ICD), CPOLPLF(2,ICD), CPOLPLF(3,ICD)
 READ(LU,*,ERR=90) CPOLPLF(1,ICM), CPOLPLF(2,ICM), CPOLPLF(3,ICM)
 READ(LU,*,ERR=90) CPOLPLF(1,IAL), CPOLPLF(2,IAL), CPOLPLF(3,IAL)
 READ(LU,*,ERR=90) XCD, XAL, XOC
 READ(LU,*,ERR=90) SIZ, PLOTAR, LGRID
 READ(LU,*,ERR=90) CH, CH2
 IF(SIZ.GT.0.0) SIZE = SIZ
 AUTO = .FALSE.
 RETURN
C
 90 WRITE(*,*)
 WRITE(*,*) '*** Error reading PPLOT parameter file'
 WRITE(*,*)
 RETURN
 END

 SUBROUTINE WRTDEF(LU)
C--- Write PPLOT plot parameters to save file
 INCLUDE 'PPLOT.INC'
 CHARACTER*1 CGRID
C
 CGRID = 'F'
 IF(LGRID) CGRID = 'T'
C
 WRITE(LU,1010) CPOLPLF(1,ICL), CPOLPLF(2,ICL), CPOLPLF(3,ICL)
 WRITE(LU,1020) CPOLPLF(1,ICD), CPOLPLF(2,ICD), CPOLPLF(3,ICD)
 WRITE(LU,1030) CPOLPLF(1,ICM), CPOLPLF(2,ICM), CPOLPLF(3,ICM)
 WRITE(LU,1040) CPOLPLF(1,IAL), CPOLPLF(2,IAL), CPOLPLF(3,IAL)
 WRITE(LU,1050) XCD, XAL, XOC
 WRITE(LU,1070) SIZE, PLOTAR, CGRID
 WRITE(LU,1080) CH, CH2
 RETURN
C
C...
 1010 FORMAT(1X,3F9.4 ,' | CLmin CLmax dCL')
 1020 FORMAT(1X,3F9.4 ,' | CDmin CDmax dCD')
 1030 FORMAT(1X,3F9.4 ,' | CMmin CMmax dCM')
 1040 FORMAT(1X,3F9.4 ,' | ALmin ALmax dAL')
 1050 FORMAT(1X,3F9.4 ,' | CL-CD CL-alpha CL-Xtr (widths)')
 1070 FORMAT(1X,2F9.4,1X,A1,7X ,' | width height/width grid_plot_flag')
 1080 FORMAT(1X,F9.4,F9.4 ,9X ,' | char.height1 char.height2')
 END ! WRTDEF

 SUBROUTINE GETSET
 INCLUDE 'PPLOT.INC'
 LOGICAL OK, ERROR
 CHARACTER OPTION*2, LINE*80
C
C---- Change plotting parameters
C
 1 WRITE(*,1000)
 1000 FORMAT(/ ' 1 Change CL scaling'
 & / ' 2 Change CD scaling'
 & / ' 3 Change CM scaling'
 & / ' 4 Change ALPHA scaling'
 & / ' 5 Plot Layout'
 & / ' 6 Plot Title'
 & / ' 7 Plot Size'
 & // ' 8 Toggle autoscaling'
 & / ' 9 Toggle Pressure-CD plot'
 & / ' 10 Toggle airfoil list'
 & / ' 11 Toggle plot CL-CD legend box'
 & / ' 12 Toggle aerodynamic center plotting'
 & / ' 13 Toggle color Hardcopy'
 & // ' 14 Read settings from defaults file'
 & / ' 15 Write settings to defaults file'
 & / ' 16 Rescale forces by chord factor'
 & / ' 17 Change reference-length unit'
 & / ' 18 Polar colors'
 & / ' 19 Polar line styles'
 & // ' 21 Change V scaling'
 & / ' 22 Change Vz scaling'
 & // ' Select option: ',$)
C
 READ(*,1005) OPTION
 1005 FORMAT(A)
C
 IF(OPTION .EQ. ' ' .OR. OPTION.EQ.'0') THEN
C
 RETURN
C
 ELSE IF(OPTION.EQ.'1') THEN
C--- Get CL min,max,delta
 WRITE(*,1100) (CPOLPLF(K,ICL), K=1, 3)
 20 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ (LINE,*,ERR=20) (CPOLPLF(K,ICL), K=1, 3)
 WRITE(*,*) (CPOLPLF(K,ICL), K=1, 3)
 AUTO = .FALSE.
C
 ELSE IF(OPTION.EQ.'2') THEN
C--- Get CD min,max,delta
 WRITE(*,1200) (CPOLPLF(K,ICD), K=1, 3)
 30 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ (LINE,*,ERR=30) (CPOLPLF(K,ICD), K=1, 3)
 AUTO = .FALSE.
C
 ELSE IF(OPTION.EQ.'3') THEN
C--- Get CM min,max,delta
 WRITE(*,1300) (CPOLPLF(K,ICM), K=1, 3)
 40 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ (LINE,*,ERR=40) (CPOLPLF(K,ICM), K=1, 3)
 AUTO = .FALSE.
C
 ELSE IF(OPTION.EQ.'4') THEN
C--- Get ALFA min,max,delta
 WRITE(*,1400) (CPOLPLF(K,IAL), K=1, 3)
 50 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ (LINE,*,ERR=50) (CPOLPLF(K,IAL), K=1, 3)
 AUTO = .FALSE.
C
 ELSE IF(OPTION.EQ.'5') THEN
C--- Get Layout offsets for CL-CD,CL-alfa,transition plot sections
 80 WRITE(*,1700) XCD,XAL,XOC
 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ(LINE,*,ERR=80) XCD, XAL, XOC
C
 ELSE IF(OPTION.EQ.'6') THEN
C--- Get plot title
 TITLE = ' '
 CALL ASKS('Enter plot title (80 chars)^',TITLE)
 CALL STRIP(TITLE,NTITLE)
C
 ELSE IF(OPTION.EQ.'7') THEN
C--- Get plot size
 60 WRITE(*,1500) SIZE
 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ(LINE,*,ERR=60) SIZE
C
 ELSE IF(OPTION.EQ.'8') THEN
C--- Toggle autoscaling
 AUTO = .NOT. AUTO
 IF(AUTO) THEN
 WRITE(*,*) 'Axes auto-scaling enabled'
 ELSE
 WRITE(*,*) 'Axes auto-scaling disabled'
 ENDIF
C
 ELSE IF(OPTION.EQ.'9') THEN
C--- CDp plot toggle
 LCDW = .NOT. LCDW
 IF(LCDW) WRITE(*,*) 'CDp will be plotted'
 IF(.NOT.LCDW) WRITE(*,*) 'CDp will not be plotted'
C
 ELSE IF(OPTION.EQ.'10') THEN
C--- List of polars plotted toggle
 LLIST = .NOT. LLIST
 IF(LLIST) WRITE(*,*) 'List of polars will be plotted'
 IF(.NOT.LLIST) WRITE(*,*) 'List of polars will not be plotted'
C
 ELSE IF(OPTION.EQ.'11') THEN
C--- Legend plotted toggle
 LEGND = .NOT. LEGND
 IF(LEGND) WRITE(*,*) 'Legend will be plotted'
 IF(.NOT.LEGND) WRITE(*,*) 'Legend will not be plotted'
C
 ELSE IF(OPTION.EQ.'12') THEN
C--- Legend plotted toggle
 LAECEN = .NOT. LAECEN
 IF(LAECEN) WRITE(*,*) 'Aero.center will be plotted'
 IF(.NOT.LAECEN) WRITE(*,*) 'Aero.center will not be plotted'
C
 ELSE IF(OPTION.EQ.'13') THEN
C--- Color hardcopy toggle
 IF(IDEVRP.EQ.2) THEN
 IDEVRP = 4
 WRITE(*,*) 'Switching to color hardcopy'
 ELSE
 IDEVRP = 2
 WRITE(*,*) 'Switching to B&W hardcopy'
 ENDIF
C
 ELSE IF(OPTION.EQ.'14') THEN
C--- Read defaults from pplot.def file
 LINE = 'Enter settings filename [pplot.def] ^'
 CALL ASKS(LINE,FNAME)
 IF(FNAME.EQ.' ') FNAME = 'pplot.def'
 OPEN(10,FILE=FNAME,STATUS='OLD',ERR=703)
 CALL RDDEF(10)
 CLOSE(10)
 GO TO 1
 703 WRITE(*,*)
 WRITE(*,*) 'Open error on pplot defaults file'
 GO TO 1
C
 ELSE IF(OPTION.EQ.'15') THEN
C--- Save defaults to parameter file
 LINE = 'Enter settings filename [pplot.def] ^'
 CALL ASKS(LINE,FNAME)
 IF(FNAME.EQ.' ') FNAME = 'pplot.def'
 OPEN(10,FILE=FNAME,STATUS='OLD',ERR=803)
 CALL ASKL('File exists. Overwrite ?^',OK)
 IF(OK) GO TO 806
 WRITE(*,*)
 WRITE(*,*) 'No action taken'
 CLOSE(10)
 GO TO 1
 803 OPEN(10,FILE=FNAME,STATUS='UNKNOWN')
 806 CALL WRTDEF(10)
 WRITE(*,*)
 WRITE(*,*) 'PPLOT plot settings written to file'
 CLOSE(10)
C
 ELSE IF(OPTION.EQ.'16') THEN
C--- rescale forces and moments
 WRITE(*,1900)
 SCAL = 1.0
 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ(LINE,*,ERR=1,END=1) CSCAL
 IF(SCAL.NE.0.0) CALL RESCAL(1.0/SCAL)
C
 ELSE IF(OPTION.EQ.'17') THEN
C--- change reference length unit
 WRITE(*,2000)
 CALL ASKS(
 & 'Enter new reference length unit (<return> if none)^',CCLEN)
 CALL STRIP(CCLEN,NCLEN)
C
 ELSE IF(OPTION.EQ.'18') THEN
C------ change polar colors
 IF(NPOL.EQ.0) THEN
 WRITE(*,*) 'No current polars to change'
 GO TO 1
 ELSE
 820 WRITE(LINE,3100) 'polar colors', (ICOL(IP), IP=1, NPOL)
 WRITE(*,1005) LINE
 WRITE(*,3105) 'polar colors'
 READ(*,1005) LINE
 NINP = NPOL
 CALL GETINT(LINE,ICOL,NINP,ERROR)
 IF(ERROR) GO TO 820
 ENDIF
C
 ELSE IF(OPTION.EQ.'19') THEN
C------ change polar line styles
 IF(NPOL.EQ.0) THEN
 WRITE(*,*) 'No current polars to change'
 GO TO 1
 ELSE
 830 WRITE(LINE,3100) 'polar line styles', (ILIN(IP), IP=1, NPOL)
 WRITE(*,1005) LINE
 WRITE(*,3105) 'polar line styles'
 READ(*,1005) LINE
 NINP = NPOL
 CALL GETINT(LINE,ILIN,NINP,ERROR)
 IF(ERROR) GO TO 830
 ENDIF
C
 ELSE IF(OPTION.EQ.'21') THEN
C--- Get V min,max,delta
 WRITE(*,2100) (VPOLPLF(K,1), K=1, 3)
 210 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ (LINE,*,ERR=210) (VPOLPLF(K,1), K=1, 3)
 WRITE(*,*) (VPOLPLF(K,1), K=1, 3)
 AUTO = .FALSE.
C
 ELSE IF(OPTION.EQ.'22') THEN
C--- Get Vz min,max,delta
 WRITE(*,2200) (VPOLPLF(K,2), K=1, 3)
 220 READ(*,1005) LINE
 IF(LINE.EQ.' ') GO TO 1
 READ (LINE,*,ERR=220) (VPOLPLF(K,2), K=1, 3)
 AUTO = .FALSE.
C
 ENDIF
 GO TO 1
C
 1100 FORMAT(/' Current CLmin, CLmax, dCL = ',3F10.5
 & /' Enter new CLmin, CLmax, dCL: ',$)
 1200 FORMAT(/' Current CDmin, CDmax, dCD = ',3F10.5
 & /' Enter new CDmin, CDmax, dCD: ',$)
 1300 FORMAT(/' Current CMmin, CMmax, dCM = ',3F10.5
 & /' Enter new CMmin, CMmax, dCM: ',$)
 1400 FORMAT(/' Current ALmin, ALmax, dAL = ',3F10.5
 & /' Enter new ALmin, ALmax, dAL: ',$)
 1500 FORMAT(/' Current plot size = ', F10.5
 & /' Enter new plot size: ',$)
 1700 FORMAT(/' Current layout offsets xCD =',F8.4,
 & ' xALPHA = ',F8.4,' xTR = ',F8.4/
 & ' Enter new xCD, xALPHA, xTR: ',$)
 1800 FORMAT(/' Default settings file: ',A)
 1900 FORMAT(/'Enter chord scale factor for forces: ',$)
 2000 FORMAT(/'Current reference length unit: ', A)

 2100 FORMAT(/' Current Vmin, Vmax, dV = ',3F10.5
 & /' Enter new Vmin, Vmax, dV: ',$)
 2200 FORMAT(/' Current Vzmin, Vzmax, dVz = ',3F10.5
 & /' Enter new Vzmin, Vzmax, dVz: ',$)
C
 3100 FORMAT(' Currently ',A,' =', 20I3)
 3105 FORMAT(' Enter new ',A,': ',$)
C
 END ! GETSET

 SUBROUTINE PLRSRT(IP,IDSORT)
 INCLUDE 'PPLOT.INC'
 DIMENSION INDX(NAX), ATMP(NAX)
C
C---- sort polar in increasing variable IDSORT
 CALL HSORT(NA(IP),CPOL(1,IDSORT,IP),INDX)
C
C---- do the actual reordering
 DO ID = 1, IPTOT
 CALL ASORT(NA(IP),CPOL(1,ID,IP),INDX,ATMP)
 ENDDO
 DO ID = 1, JPTOT
 DO IS = 1, 2
 CALL ASORT(NA(IP),CPOLSD(1,IS,ID,IP),INDX,ATMP)
 ENDDO
 ENDDO
C
 RETURN
 END ! PLRSRT

 SUBROUTINE GETTYP(NAX,NA,CPOL, IMATYP,IRETYP)
C
C---- Determines type of Ma(CL) and Re(CL) dependence
C
 INCLUDE 'PINDEX.INC'
C
 DIMENSION CPOL(NAX,IPTOT)
C
 IF(CPOL(NA,ICL)*CPOL(1,ICL) .LE. 0.0) THEN
 IMATYP = 1
 IRETYP = 1
 RETURN
 ENDIF
C
 IF(CPOL(NA,IMA)*CPOL(1,IMA) .LE. 0.0) THEN
 IMATYP = 1
 ELSE
 EX = LOG(CPOL(NA,IMA)/CPOL(1,IMA))
 & / LOG(CPOL(NA,ICL)/CPOL(1,ICL))
 IF (ABS(EX) .LT. 0.25) THEN
 IMATYP = 1
 ELSEIF (ABS(EX) .LT. 0.75) THEN
 IMATYP = 2
 ELSE
 IMATYP = 3
 ENDIF
 ENDIF
C
 IF(CPOL(NA,IRE)*CPOL(1,IRE) .LE. 0.0) THEN
 IRETYP = 1
 ELSE
 EX = LOG(CPOL(NA,IRE)/CPOL(1,IRE))
 & / LOG(CPOL(NA,ICL)/CPOL(1,ICL))
 IF (ABS(EX) .LT. 0.25) THEN
 IRETYP = 1
 ELSEIF (ABS(EX) .LT. 0.75) THEN
 IRETYP = 2
 ELSE
 IRETYP = 3
 ENDIF
 ENDIF
C
 RETURN
 END ! GETTYP

 SUBROUTINE RESCAL(SCAL)
 INCLUDE 'PPLOT.INC'
C--
C Rescales forces and moments
C--
C---- rescale polar forces by SCAL, moments by SCAL**2
 DO IP=1, NPOL
 DO I=1, NA(IP)
 CPOL(I,ICL,IP) = CPOL(I,ICL,IP)*SCAL
 CPOL(I,ICD,IP) = CPOL(I,ICD,IP)*SCAL
 CPOL(I,ICW,IP) = CPOL(I,ICW,IP)*SCAL
 CPOL(I,ICM,IP) = CPOL(I,ICM,IP)*SCAL*SCAL
 END DO
 END DO
 RETURN
 END

 SUBROUTINE SETINC
 INCLUDE 'PPLOT.INC'
C--
C Determines axes increments for polars
C from quantities for all polars read in.
C--
C
 CLMAX = CPOLPLF(2,ICL)
 CLMIN = CPOLPLF(1,ICL)
 CDMAX = CPOLPLF(2,ICD)
 CDMIN = CPOLPLF(1,ICD)
 CMMAX = CPOLPLF(2,ICM)
 CMMIN = CPOLPLF(1,ICM)
 ALMAX = CPOLPLF(2,IAL)
 ALMIN = CPOLPLF(1,IAL)
C
C--- CL axes
 CALL AXISADJ2(CLMIN,CLMAX,CLSPAN,DCL,NCLTICS)
C--- CD axes
 CDMIN = 0.0
 CALL AXISADJ2(CDMIN,CDMAX,CDSPAN,DCD,NCDTICS)
C--- CM axes
 IF(ABS(CMMAX).GT.ABS(CMMIN)) THEN
 CMMIN = 0.0
 ELSE
 CMMAX = 0.0
 ENDIF
 CALL AXISADJ2(CMMIN,CMMAX,CMSPAN,DCM,NCMTICS)
c write(*,*) 'cmmin,cmmax ',cmmin,cmmax
c write(*,*) 'dcm,ncmtics ',dcm,ncmtics
C--- ALFA axes
 ALMIN = MIN(0.0,ALMIN)
 CALL AXISADJ2(ALmin,ALmax,ALspan,dAL,nALtics)
 IF(ALMIN.EQ.0.0) ALMIN = -DAL
C
 CPOLPLF(2,ICL) = CLMAX
 CPOLPLF(1,ICL) = CLMIN
 CPOLPLF(3,ICL) = DCL
 CPOLPLF(2,ICD) = CDMAX
 CPOLPLF(1,ICD) = CDMIN
 CPOLPLF(3,ICD) = DCD
 CPOLPLF(2,ICM) = CMMAX
 CPOLPLF(1,ICM) = CMMIN
 CPOLPLF(3,ICM) = DCM
 CPOLPLF(2,IAL) = ALMAX
 CPOLPLF(1,IAL) = ALMIN
 CPOLPLF(3,IAL) = DAL
C
 RETURN
 END ! SETINC

 SUBROUTINE SETINCV
 INCLUDE 'PPLOT.INC'
C--
C Determines axes increments for polars
C from quantities for all polars read in.
C--
C
 VHMAX = VPOLPLF(2,1)
 VHMIN = VPOLPLF(1,1)
 VZMAX = VPOLPLF(2,2)
 VZMIN = VPOLPLF(1,2)
C
C---- V axes
 CALL AXISADJ2(VHMIN,VHMAX,VHSPAN,DVH,NVHTICS)
C
C---- Vz axes
 VZMIN = 0.0
 CALL AXISADJ2(VZMIN,VZMAX,VZSPAN,DVZ,NVZTICS)
C
 VPOLPLF(2,1) = VHMAX
 VPOLPLF(1,1) = VHMIN
 VPOLPLF(3,1) = DVH
 VPOLPLF(2,2) = VZMAX
 VPOLPLF(1,2) = VZMIN
 VPOLPLF(3,2) = DVZ
C
 RETURN
 END ! SETINCV

 subroutine AXISADJ2(xmin,xmax,xspan,deltax,ntics)
C...Make scaled axes with engineering increments between tics
C
C Input: xmin, xmax - input range for which scaled axis is desired
C
C Output: xmin, xmax - adjusted range for scaled axis
C xspan - adjusted span of scaled axis
C deltax - increment to be used for scaled axis
C nincr - number of tics to be used on axis
C note that ntics=1+(xspan/deltax)
C
 real xmin,xmax,xspan,deltax,xinc,xinctbl(4)
 integer ntics,i
 data xinctbl / 0.1, 0.2, 0.5, 1. /
c
 xspan1 = xmax-xmin
 if (xspan1.eq.0.) xspan1 = 1.
c
 xpon = ifix(log10(xspan1))
 xspan = xspan1 / 10.**xpon
c
 do i = 1, 4
 xinc = xinctbl(i)
 ntics = 1 + ifix(xspan/xinc + 0.1)
 if (ntics.LE.6) go to 1
 end do
c
 1 deltax = xinc*10.**xpon
 xmin = deltax* ifloor2(xmin/deltax)
 xmax = deltax*iceiling2(xmax/deltax)
 xspan = xmax - xmin
 ntics = 1 + ifix(xspan/xinc + 0.1)
 return
 end

 function iceiling2(x)
c--- returns next highest integer value if fraction is non-zero
 integer iceiling2
 real x
 i = ifix(x)
 if(x-i.GT.0.) i = i+1
 iceiling2 = i
 return
 end

 function ifloor2(x)
c--- returns next lowest integer value if fraction is negative, non-zero
 integer ifloor2
 real x
 i = ifix(x)
 if(x-i.LT.0.) i = i-1
 ifloor2 = i
 return
 end

XFOILinterface/XFOIL/src/profil.f

C***
C Module: profil.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE PRWALL(DSTAR,THETA,UO,RT,MS,CT, BB,
 & DO, DO_DS, DO_TH, DO_UO, DO_RT, DO_MS,
 & UI, UI_DS, UI_TH, UI_UO, UI_RT, UI_MS,
 & HS, HS_DS, HS_TH, HS_UO, HS_RT, HS_MS,
 & CF, CF_DS, CF_TH, CF_UO, CF_RT, CF_MS,
 & CD, CD_DS, CD_TH, CD_UO, CD_RT, CD_MS, CD_CT)
 IMPLICIT REAL (A-H,M,O-Z)
C==
C Returns wall slip velocity and thickness of wall BL profile
C
C Input:
C DSTAR kinematic displacement thickness
C THETA kinematic momentum thickness
C RT momentum thickness based on ue and THETA
C MS Mach^2 based on ue
C
C UO uo/ue outer velocity; assumed = 1 in this version
C
C Output:
C BB outer profile exponent
C DO thickness of profile deck
C UI inner "slip" velocity
C CF wall skin friction
C==
C
 PARAMETER (N=65)
 DIMENSION ETA(N), UIP(N), UIP_DP(N), G(N), G_BB(N)
C
C---- pi/2 , 2/pi
 DATA HPI, TOPI / 1.570796327 , 0.6366197723 /
C
 DATA T, SQT / 0.28 , 0.5291502622 /
C
C---- TCON = (atan(T^1/2) / T^1/2 - 1/(1+T)) / (2T) + 0.5/(1.0 + T)
C - atan(1/T^1/2) / 2T^1/2
 DATA TCON / -0.3864027035 /
C
C---- slip velocity coefficient
 DATA AK / 0.09 /
C
C---- log-law constants
 DATA VKAP, VB / 0.40 , 5.0 /
C
 HK = DSTAR/THETA
C
 UO = 1.0
 BB = 1.0
C
C---- initialize variables
 CALL CFT(HK,RT,MS,CF,CF_HK,CF_RT,CF_MS)
 SGN = SIGN(1.0 , CF)
 UT = SGN * SQRT(0.5*ABS(CF))
C
 UI = MIN(UT/AK * HPI , 0.90)
 DO = HK*THETA / (1.0 - 0.5*(UO+UI))
C
 EBK = EXP(-VB*VKAP)
C
 DO 1000 ITER=1, 12
C
 SGN = SIGN(1.0 , UT)
C
C------ set d+ = DP(UT DO ; RT TH)
 DP = SGN * UT*RT*DO/THETA
 DP_DO = SGN * UT*RT /THETA
 DP_UT = SGN * RT*DO/THETA
C
 DP_TH = -DP/THETA
 DP_RT = SGN * UT *DO/THETA
 DP_MS = 0.0
C
C------ estimate inner profile edge velocity Ui+ using log-law
 UPE = LOG(DP)/VKAP + VB
C
C------ converge exact Ui+ using Spalding formula
 DO 10 ITUP=1, 5
 UK = UPE*VKAP
 ARG = UK - VB*VKAP
 EXU = EXP(ARG)
 REZ = UPE + EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
 & - DP
 DP_U = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
C
 IF(ABS(REZ/DP) .LT. 1.0E-5) GO TO 11
C
 DUPE = -REZ/DP_U
 UPE = UPE + DUPE
 10 CONTINUE
 WRITE(*,*) 'PRWALL: Ue+ convergence failed, Res =', REZ/DP
 11 CONTINUE
C
 UPE_DP = 1.0/DP_U
C
C 2 2 3 3
C------ set d y+/du+ and d y+/du+ at BL edge
 DP_UU = (EXU - EBK*(1.0 + UK))*VKAP**2
 DP_UUU = (EXU - EBK)*VKAP**3
C
C------ set du+/dy+ at BL edge
 UPD = 1.0/DP_U
 UPD_DP = (-1.0/DP_U**3) * DP_UU
C
C 2 2
C------ set d u+/dy+ at BL edge
CCC UPD_DP = (-1.0/DP_U**3) * DP_UU
 UPDD = UPD_DP
 UPDD_DP = (-1.0/DP_U**4) * DP_UUU
 & + (3.0/DP_U**5) * DP_UU**2
C
C------ set coefficients for Spalding profile correction polynomial
 DC2 = 0.5*DP*DP*UPDD - DP*UPD
 DC2_DP = DP*UPDD - UPD
 & + 0.5*DP*DP*UPDD_DP - DP*UPD_DP
C
 DC3 = -(DP*DP*UPDD - DP*UPD) / 3.0
 DC3_DP = -(2.0 *DP*UPDD - UPD) / 3.0
 & -(DP*DP*UPDD_DP - DP*UPD_DP) / 3.0
C
C------ set outer profile amplitude DUO
 DUO = UO - UT*(UPE + DC2 + DC3)
 DUO_DP = - UT*(UPE_DP + DC2_DP + DC3_DP)
C
 DUO_UT = - (UPE + DC2 + DC3)
 & + DUO_DP*DP_UT
 DUO_DO = DUO_DP*DP_DO
C
 DUO_TH = DUO_DP*DP_TH
 DUO_RT = DUO_DP*DP_RT
 DUO_MS = DUO_DP*DP_MS
c
c write(*,*) 'dUo', duo, duo_dp, duo_ut, duo_do
c read(*,*) ddo, dut
c if(ddo.ne.0.0 .or. dut.ne.0.0) then
c do = do+ddo
c ut = ut+dut
c write(*,*) 'new', duo + duo_do*ddo + duo_ut*dut
c go to 666
c endif
C
C------ set wake profile coefficients
 BB1 = 3.0*(BB +2.0)*(BB+3.0)/(BB+7.0)
 BB1_BB = 3.0*(BB*2.0+5.0)/(BB+7.0) - BB1/(BB+7.0)
 BB2 = -5.0*(BB +1.0)*(BB+3.0)/(BB+7.0)
 BB2_BB = -5.0*(BB*2.0+4.0)/(BB+7.0) - BB2/(BB+7.0)
 BB3 = 2.0*(BB +1.0)*(BB+2.0)/(BB+7.0)
 BB3_BB = 2.0*(BB*2.0+3.0)/(BB+7.0) - BB3/(BB+7.0)
C
C------ fill eta coordinate and inner profile arrays
CCC EXUPE = EXP(UPE*VKAP - VB*VKAP)
 EXUPE = EXU
C
 DEXU = (EXUPE - EBK)/FLOAT(N-1)
C
 I = 1
 UIP(I) = 0.0
 UIP_DP(I) = 0.0
 G(I) = 0.0
 G_BB(I) = 0.0
C
 DO 20 I=2, N
ccc EXU = EBK + DEXU*FLOAT(I-1)
 EXU = EBK + (DEXU - 0.75*DEXU*FLOAT(N-I)/FLOAT(N-1))
 & *FLOAT(I-1)
C
CCC UK = UP*VKAP
 UK = LOG(EXU) + VB*VKAP
C
 UP = UK/VKAP
C
C-------- set "inverse" Spalding profile y+(u+) and derivatives
 YP = UP + EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
 YP_U = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
 YP_UU = (EXU - EBK*(1.0 + UK))*VKAP**2
C
 ET = YP/DP
C
C-------- set final inner profile (fudged Spalding)
 UIP(I) = UP + DC2 *ET**2 + DC3 *ET**3
 UIP_DP(I) = DC2_DP*ET**2 + DC3_DP*ET**3
C
ccc UIPD(I) = 1.0/YP_U + 2.0*DC2 *ET + 3.0*DC3 *ET**2
ccc UIPD_DP(I) = (-1.0/YP_U**3)*YPUU
ccc & + 2.0*DC2_DP*ET + 3.0*DC3_DP*ET**2
C
C-------- set outer profile
 ETB = ET**BB
 ALE = LOG(ET)
C
ccc G(I) = 2.0*ETB - ETB**2
ccc G_BB(I) = (2.0*ETB - 2.0*ETB**2)*ALE
C
 G(I) = (BB1 *ET + BB2 *ET**2 + BB3 *ET**3)*ETB
 G_BB(I) = (BB1_BB*ET + BB2_BB*ET**2 + BB3_BB*ET**3)*ETB
 & + G(I)*ALE
C
 ETA(I) = ET
C
 20 CONTINUE
C
C
 DSN = 0.0
 DSN_DO = 0.0
 DSN_UT = 0.0
 DSN_BB = 0.0
C
 DSN_TH = 0.0
 DSN_RT = 0.0
 DSN_MS = 0.0
C
C
 THN = 0.0
 THN_DO = 0.0
 THN_UT = 0.0
 THN_BB = 0.0
C
 THN_TH = 0.0
 THN_RT = 0.0
 THN_MS = 0.0
C
c TSN = 0.0
c TSN_DO = 0.0
c TSN_UT = 0.0
c TSN_BB = 0.0
c
c TSN_TH = 0.0
c TSN_RT = 0.0
c TSN_MS = 0.0
C
C------ perform integration
 DO 100 I=1, N-1
 DETA = ETA(I+1) - ETA(I)
 GA = 0.5*(G(I+1) + G(I))
 GA_BB = 0.5*(G_BB(I+1) + G_BB(I))
C
 UIPA = 0.5*(UIP(I+1) + UIP(I))
 UIPA_DP = 0.5*(UIP_DP(I+1) + UIP_DP(I))
C
 U = UT*UIPA + DUO *GA
 U_DP = UT*UIPA_DP
C
 U_DO = DUO_DO*GA + U_DP*DP_DO
 U_UT = UIPA + DUO_UT*GA + U_DP*DP_UT
 U_BB = DUO *GA_BB
C
 U_TH = DUO_TH*GA + U_DP*DP_TH
 U_RT = DUO_RT*GA + U_DP*DP_RT
 U_MS = DUO_MS*GA + U_DP*DP_MS
C
C
 DSN = DSN + (1.0 - U)*DETA
 DSN_DO = DSN_DO - U_DO *DETA
 DSN_UT = DSN_UT - U_UT *DETA
 DSN_BB = DSN_BB - U_BB *DETA
C
 DSN_TH = DSN_TH - U_TH *DETA
 DSN_RT = DSN_RT - U_RT *DETA
 DSN_MS = DSN_MS - U_MS *DETA
C
C
 THN = THN + (U - U*U) *DETA
 THN_DO = THN_DO + (1.0 - 2.0*U)*U_DO*DETA
 THN_UT = THN_UT + (1.0 - 2.0*U)*U_UT*DETA
 THN_BB = THN_BB + (1.0 - 2.0*U)*U_BB*DETA
C
 THN_TH = THN_TH + (1.0 - 2.0*U)*U_TH*DETA
 THN_RT = THN_RT + (1.0 - 2.0*U)*U_RT*DETA
 THN_MS = THN_MS + (1.0 - 2.0*U)*U_MS*DETA
C
c TSN = TSN + (U - U*U*U) *DETA
c TSN_DO = TSN_DO + (1.0 - 3.0*U*U)*U_DO*DETA
c TSN_UT = TSN_UT + (1.0 - 3.0*U*U)*U_UT*DETA
c TSN_BB = TSN_BB + (1.0 - 3.0*U*U)*U_BB*DETA
C
c TSN_TH = TSN_TH + (1.0 - 3.0*U*U)*U_TH*DETA
c TSN_RT = TSN_RT + (1.0 - 3.0*U*U)*U_RT*DETA
c TSN_MS = TSN_MS + (1.0 - 3.0*U*U)*U_MS*DETA
C
 100 CONTINUE
C
C------ set up 2x2 system for DO UT
 REZ1 = DO*DSN - THETA*HK
 A11 = DO*DSN_DO + DSN
 A12 = DO*DSN_UT
cc A12 = DO*DSN_BB
C
 REZ2 = DO*THN - THETA
 A21 = DO*THN_DO + THN
 A22 = DO*THN_UT
cc A22 = DO*THN_BB
C
cc IF(ABS(REZ1/THETA) .LT. 2.0E-5 .AND.
cc & ABS(REZ2/THETA) .LT. 2.0E-5) GO TO 1010
 IF(ABS(REZ1/THETA) .LT. 1.0E-3 .AND.
 & ABS(REZ2/THETA) .LT. 1.0E-3) GO TO 1010
C
 DET = A11*A22 - A12*A21
 B11 = A22/DET
 B12 = -A12/DET
 B21 = -A21/DET
 B22 = A11/DET
C
 DDO = -(B11*REZ1 + B12*REZ2)
 DUT = -(B21*REZ1 + B22*REZ2)
cc DBB = -(B21*REZ1 + B22*REZ2)
C
 DMAX = MAX(ABS(DDO/DO) , ABS(DUT/0.05))
cc DMAX = MAX(ABS(DDO/DO) , ABS(DBB/BB))
 RLX = 1.0
 IF(DMAX.GT.0.5) RLX = 0.5/DMAX
C
 DO = DO + RLX*DDO
 UT = UT + RLX*DUT
cc BB = BB + RLX*DBB
c
cc write(*,*) iter, do, ut, rez1, rez2
cc write(*,*) iter, do, bb, rez1, rez2
C
 1000 CONTINUE
C
 WRITE(*,*) 'PRWALL: Convergence failed. Res =', REZ1, REZ2
C
 1010 CONTINUE
C
C
C
CCC REZ1 = DO*DSN - THETA*HK
 Z1_HK = - THETA
 Z1_TH = DO*DSN_TH - HK
 Z1_RT = DO*DSN_RT
 Z1_MS = DO*DSN_MS
C
CCC REZ2 = DO*THN - THETA
 Z2_HK = 0.0
 Z2_TH = DO*THN_TH - 1.0
 Z2_RT = DO*THN_RT
 Z2_MS = DO*THN_MS
C
 DO_HK = -(B11*Z1_HK + B12*Z2_HK)
 DO_TH = -(B11*Z1_TH + B12*Z2_TH)
 DO_RT = -(B11*Z1_RT + B12*Z2_RT)
 DO_MS = -(B11*Z1_MS + B12*Z2_MS)
C
 UT_HK = 0.0
 UT_TH = 0.0
 UT_RT = 0.0
 UT_MS = 0.0
C
 BB_HK = 0.0
 BB_TH = 0.0
 BB_RT = 0.0
 BB_MS = 0.0
C
 UT_HK = -(B21*Z1_HK + B22*Z2_HK)
 UT_TH = -(B21*Z1_TH + B22*Z2_TH)
 UT_RT = -(B21*Z1_RT + B22*Z2_RT)
 UT_MS = -(B21*Z1_MS + B22*Z2_MS)
C
cc BB_HK = -(B21*Z1_HK + B22*Z2_HK)
cc BB_TH = -(B21*Z1_TH + B22*Z2_TH)
cc BB_RT = -(B21*Z1_RT + B22*Z2_RT)
cc BB_MS = -(B21*Z1_MS + B22*Z2_MS)
C
C
C---- set and linearize Cf
 CF = SGN*2.0*UT**2
 CF_UT = SGN*4.0*UT
 CF_DO = 0.0
C
 CF_HK = CF_UT*UT_HK + CF_DO*DO_HK
 CF_TH = CF_UT*UT_TH + CF_DO*DO_TH
 CF_RT = CF_UT*UT_RT + CF_DO*DO_RT
 CF_MS = CF_UT*UT_MS + CF_DO*DO_MS
C
C
C---- set and linearize "slip" velocity UI = UI(DUO(DO UT TH RT MS))
 UI = UO - DUO
 UI_UT = - DUO_UT
 UI_DO = - DUO_DO
C
 UI_HK = UI_UT*UT_HK + UI_DO*DO_HK
 UI_TH = UI_UT*UT_TH + UI_DO*DO_TH - DUO_TH
 UI_RT = UI_UT*UT_RT + UI_DO*DO_RT - DUO_RT
 UI_MS = UI_UT*UT_MS + UI_DO*DO_MS - DUO_MS
C
 RETURN
 END ! PRWALL

 SUBROUTINE UWALL(TH,UO,DO,UI,RT,CF,BB, Y,U,N)
C--
C Returns wall BL profile U(Y).
C
C Input:
C TH kinematic momentum thickness
C UO uo/ue outer velocity (= 1 for normal BL)
C DO BL thickness
C UI inner "slip" velocity
C RT momentum thickness based on ue and THETA
C CF wall skin friction
C BB outer profile exponent
C N number of profile array points
C
C Output:
C Y(i) normal coordinate array
C U(i) u/ue velocity profile array
C---
C
 IMPLICIT REAL (A-H,M,O-Z)
 DIMENSION Y(N), U(N)
 DATA HPI / 1.570796327 /
 DATA AK / 0.09 /
C
C---- log-law constants
 DATA VKAP, VB / 0.40 , 5.0 /
C
 EBK = EXP(-VB*VKAP)
C
 SGN = SIGN(1.0 , CF)
 UT = SGN * SQRT(0.5*ABS(CF))
C
C
C---- set d+ = DP(UT DO ; RT TH)
 DP = SGN * UT*RT*DO/TH
C
C---- estimate inner profile edge velocity Ui+ using log-law
 UPE = LOG(DP)/VKAP + VB
C
C---- converge exact Ui+ using Spalding formula
 DO 10 ITUP=1, 5
 UK = UPE*VKAP
 ARG = UK - VB*VKAP
 EXU = EXP(ARG)
 REZ = UPE + EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
 & - DP
 DP_U = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
C
 IF(ABS(REZ/DP) .LT. 1.0E-5) GO TO 11
C
 DUPE = -REZ/DP_U
 UPE = UPE + DUPE
 10 CONTINUE
 WRITE(*,*) 'UWALL: Ue+ convergence failed, Res =', REZ/DP
 11 CONTINUE
C
C 2 2 3 3
C---- set d y+/du+ and d y+/du+ at BL edge
 DP_UU = (EXU - EBK*(1.0 + UK))*VKAP**2
 DP_UUU = (EXU - EBK)*VKAP**3
C
C 2 2
C---- set du+/dy+ and d u+/dy+ at BL edge
 UPD = 1.0/DP_U
 UPDD = (-1.0/DP_U**3) * DP_UU
C
C---- set coefficients for Spalding profile correction polynomial
 DC2 = 0.5*DP*DP*UPDD - DP*UPD
 DC3 = -(DP*DP*UPDD - DP*UPD) / 3.0
C
C---- set outer profile amplitude DUO
 DUO = UO - UT*(UPE + DC2 + DC3)
C
C
 BB1 = 3.0*(BB +2.0)*(BB+3.0)/(BB+7.0)
 BB2 = -5.0*(BB +1.0)*(BB+3.0)/(BB+7.0)
 BB3 = 2.0*(BB +1.0)*(BB+2.0)/(BB+7.0)
C
c NE = (N*9)/10
 NE = N
C
C---- fill Y coordinate and U profile arrays
CCC EXUPE = EXP(UPE*VKAP - VB*VKAP)
 EXUPE = EXU
C
 DEXU = (EXUPE - EBK)/FLOAT(NE-1)
C
 I = 1
 Y(I) = 0.0
 U(I) = 0.0
 DO 20 I=2, NE
ccc EXU = EBK + DEXU*FLOAT(I-1)
 EXU = EBK + (DEXU - 0.75*DEXU*FLOAT(NE-I)/FLOAT(NE-1))
 & *FLOAT(I-1)
C
CCC UK = UP*VKAP
 UK = LOG(EXU) + VB*VKAP
C
 UP = UK/VKAP
C
C------ set "inverse" Spalding profile y+(u+)
 YP = UP + EXU - EBK*(1.0 + UK + UK*UK/2.0 + UK*UK*UK/6.0)
 YP_UP = 1.0 + (EXU - EBK*(1.0 + UK + UK*UK/2.0))*VKAP
C
 ET = YP/DP
C
C------ set final inner profile (fudged Spalding)
 UIP = UP + DC2*ET**2 + DC3*ET**3
C
C------ set outer profile
 SQE = SQRT(ET)
 ETB = ET**BB
C
ccc G = 2.0*ETB - ETB**2
C
 G = (BB1 *ET + BB2 *ET**2 + BB3 *ET**3)*ETB
C
 Y(I) = ET*DO
 U(I) = UT*UIP + DUO*G
c
 20 CONTINUE
C
c DETA = 0.1 / FLOAT(N - NE - 1)
c DO 300 I=NE+1, N
c ETA = 1.0 + DETA*FLOAT(I-NE)
c Y(I) = DO*ETA
c U(I) = 1.0
c 300 CONTINUE
C
 RETURN
 END ! UWALL

 SUBROUTINE FS(INORM,ISPEC,BSPEC,HSPEC,N,ETAE,GEO,ETA,F,U,S,DELTA)
 IMPLICIT REAL (A-H,M,O-Z)
 DIMENSION ETA(N), F(N), U(N), S(N)
C---
C Routine for solving the Falkner-Skan equation.
C
C Input:
C ------
C INORM 1: eta = y / sqrt(vx/Ue) "standard" Falkner-Skan coordinate
C 2: eta = y / sqrt(2vx/(m+1)Ue) Hartree's coordinate
C 3: eta = y / Theta momentum thickness normalized coordinate
C ISPEC 1: BU = x/Ue dUe/dx (= "m") specified
C 2: H12 = Dstar/Theta specified
C BSPEC specified pressure gradient parameter (if ISPEC = 1)
C HSPEC specified shape parameter of U profile (if ISPEC = 2)
C N total number of points in profiles
C ETAE edge value of normal coordinate
C GEO exponential stretching factor for ETA:
C
C Output:
C -------
C BSPEC calculated pressure gradient parameter (if ISPEC = 2)
C HSPEC calculated shape parameter of U profile (if ISPEC = 1)
C ETA normal BL coordinate
C F,U,S Falkner Skan profiles
C DELTA normal coordinate scale y = eta * Delta
C---
C
 PARAMETER (NMAX=257,NRMAX=3)
 DIMENSION A(3,3,NMAX),B(3,3,NMAX),C(3,3,NMAX),
 & R(3,NRMAX,NMAX)
C
C---- set number of righthand sides.
 DATA NRHS / 3 /
C
 ITMAX = 20
C
 IF(N.GT.NMAX) STOP 'FS: Array overflow.'
C
 PI = 4.0*ATAN(1.0)
C
CCC if(u(n) .ne. 0.0) go to 9991

c
C---- initialize H or BetaU with empirical curve fits
 IF(ISPEC.EQ.1) THEN
 H = 2.6
 BU = BSPEC
 ELSE
 H = HSPEC
 IF(H .LE. 2.17) THEN
 WRITE(*,*) 'FS: Specified H too low'
 H = 2.17
 ENDIF
 BU = (0.058*(H-4.0)**2/(H-1.0) - 0.068) / (6.54*H - 14.07) * H**2
 IF(H .GT. 4.0) BU = MIN(BU , 0.0)
 ENDIF
C
C---- initialize TN = Delta^2 Ue / vx
 IF(INORM.EQ.3) THEN
 TN = (6.54*H - 14.07) / H**2
 ELSE
 TN = 1.0
 ENDIF
C
C---- set eta array
 DETA = 1.0
 ETA(1) = 0.0
 DO 5 I=2, N
 ETA(I) = ETA(I-1) + DETA
 DETA = GEO*DETA
 5 CONTINUE
C
 DO 6 I=1, N
 ETA(I) = ETA(I) * ETAE/ETA(N)
 6 CONTINUE
C
C
C---- initial guess for profiles using a sine loop for U for half near wall
 IF(H .LE. 3.0) THEN
C
 IF(INORM.EQ.3) THEN
 ETJOIN = 7.3
 ELSE
 ETJOIN = 5.0
 ENDIF
C
 EFAC = 0.5*PI/ETJOIN
 DO 10 I=1, N
 U(I) = SIN(EFAC*ETA(I))
 F(I) = 1.0/EFAC * (1.0 - COS(EFAC*ETA(I)))
 S(I) = EFAC*COS(EFAC*ETA(I))
 IF(ETA(I) .GT. ETJOIN) GO TO 11
 10 CONTINUE
 11 CONTINUE
 IJOIN = I
C
C----- constant U for outer half
 DO 12 I=IJOIN+1, N
 U(I) = 1.0
 F(I) = F(IJOIN) + ETA(I) - ETA(IJOIN)
 S(I) = 0.
 12 CONTINUE
C
 ELSE
C
 IF(INORM.EQ.3) THEN
 ETJOIN1 = 0.0
 ETJOIN2 = 8.0
 IF(H .GT. 4.0) THEN
 ETJOIN1 = H - 4.0
 ETJOIN2 = ETJOIN1 + 8.0
 ENDIF
 ELSE
 ETJOIN1 = 0.0
 ETJOIN2 = 8.0
 ENDIF
C
 DO 13 I=1, N
 U(I) = 0.0
 S(I) = 0.0
 F(I) = 0.0
 IF(ETA(I) .GE. ETJOIN1) GO TO 14
 13 CONTINUE
 14 CONTINUE
 IJOIN = I
C
 EFAC = 0.5*PI/(ETJOIN2-ETJOIN1)
 DO 15 I=IJOIN+1, N
 EBAR = ETA(I) - ETJOIN1
 U(I) = 0.5 - 0.5*COS(2.0*EFAC*EBAR)
 F(I) = 0.5*EBAR - 0.25/EFAC * SIN(2.0*EFAC*EBAR)
 S(I) = EFAC*SIN(2.0*EFAC*EBAR)
 IF(ETA(I) .GE. ETJOIN2) GO TO 16
 15 CONTINUE
 16 CONTINUE
 IJOIN = I
C
C----- constant U for outer half
 DO 17 I=IJOIN+1, N
 U(I) = 1.0
 F(I) = F(IJOIN) + ETA(I) - ETA(IJOIN)
 S(I) = 0.
 17 CONTINUE
C
 ENDIF
c
 9991 continue
C
C
C---- Newton iteration loop
 DO 100 ITER=1, ITMAX
C
C------ zero out A,B,C blocks and righthand sides R
 DO 20 I=1, N
 DO 201 II=1,3
 DO 2001 III=1,3
 A(II,III,I) = 0.
 B(II,III,I) = 0.
 C(II,III,I) = 0.
 2001 CONTINUE
 R(II,1,I) = 0.
 R(II,2,I) = 0.
 R(II,3,I) = 0.
 201 CONTINUE
 20 CONTINUE
C
C...
C
 A(1,1,1) = 1.0
 A(2,2,1) = 1.0
 A(3,2,N) = 1.0
 R(1,1,1) = F(1)
 R(2,1,1) = U(1)
 R(3,1,N) = U(N) - 1.0
C
 IF(INORM.EQ.2) THEN
 BETU = 2.0*BU/(BU+1.0)
 BETU_BU = (2.0 - BETU/(BU+1.0))/(BU+1.0)
 BETN = 1.0
 BETN_BU = 0.0
 ELSE
 BETU = BU
 BETU_BU = 1.0
 BETN = 0.5*(1.0 + BU)
 BETN_BU = 0.5
 ENDIF
C
 DO 30 I=1,N-1
C
 DETA = ETA(I+1) - ETA(I)
 R(1,1,I+1) = F(I+1) - F(I) - 0.5*DETA*(U(I+1)+U(I))
 R(2,1,I+1) = U(I+1) - U(I) - 0.5*DETA*(S(I+1)+S(I))
 R(3,1,I) = S(I+1) - S(I)
 & + TN * (BETN*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
 & + BETU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)))
C
 A(3,1,I) = TN * BETN*0.5*DETA*S(I)
 C(3,1,I) = TN * BETN*0.5*DETA*S(I+1)
 A(3,2,I) = -TN * BETU *DETA*U(I)
 C(3,2,I) = -TN * BETU *DETA*U(I+1)
 A(3,3,I) = TN * BETN*0.5*DETA*F(I) - 1.0
 C(3,3,I) = TN * BETN*0.5*DETA*F(I+1) + 1.0
C
 B(1,1,I+1) = -1.0
 A(1,1,I+1) = 1.0
 B(1,2,I+1) = -0.5*DETA
 A(1,2,I+1) = -0.5*DETA
C
 B(2,2,I+1) = -1.0
 A(2,2,I+1) = 1.0
 B(2,3,I+1) = -0.5*DETA
 A(2,3,I+1) = -0.5*DETA
C
 R(3,2,I) = TN
 & * (BETN_BU*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
 & + BETU_BU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)))
 R(3,3,I) = (BETN*DETA*0.5*(F(I+1)*S(I+1) + F(I)*S(I))
 & + BETU*DETA*(1.0 - 0.5*(U(I+1)**2 + U(I)**2)))
C
 30 CONTINUE
C...
C
C
C---- solve Newton system for the three solution vectors
 CALL B3SOLV(A,B,C,R,N,NRHS,NRMAX)
C
C
C---- calculate and linearize Dstar, Theta, in computational space
 DSI = 0.
 DSI1 = 0.
 DSI2 = 0.
 DSI3 = 0.
C
 THI = 0.
 THI1 = 0.
 THI2 = 0.
 THI3 = 0.
C
 DO 40 I=1,N-1
 US = U(I) + U(I+1)
 DETA = ETA(I+1) - ETA(I)
C
 DSI = DSI + (1.0 - 0.5*US)*DETA
 DSI_US = -0.5*DETA
C
 THI = THI + (1.0 - 0.5*US)*0.5*US*DETA
 THI_US = (0.5 - 0.5*US)*DETA
C
 DSI1 = DSI1 + DSI_US*(R(2,1,I) + R(2,1,I+1))
 DSI2 = DSI2 + DSI_US*(R(2,2,I) + R(2,2,I+1))
 DSI3 = DSI3 + DSI_US*(R(2,3,I) + R(2,3,I+1))
C
 THI1 = THI1 + THI_US*(R(2,1,I) + R(2,1,I+1))
 THI2 = THI2 + THI_US*(R(2,2,I) + R(2,2,I+1))
 THI3 = THI3 + THI_US*(R(2,3,I) + R(2,3,I+1))
 40 CONTINUE
C
C
 IF(ISPEC.EQ.1) THEN
C
C----- set and linearize Bu = Bspec residual
 R1 = BSPEC - BU
 Q11 = 1.0
 Q12 = 0.0
C
 ELSE
C
C----- set and linearize H = Hspec residual
 R1 = DSI - HSPEC*THI
 & -DSI1 + HSPEC*THI1
 Q11 = -DSI2 + HSPEC*THI2
 Q12 = -DSI3 + HSPEC*THI3
C
 ENDIF
C
C
 IF(INORM.EQ.3) THEN
C
C----- set and linearize normalized Theta = 1 residual
 R2 = THI - 1.0
 & -THI1
 Q21 = -THI2
 Q22 = -THI3
C
 ELSE
C
C----- set eta scaling coefficient to unity
 R2 = 1.0 - TN
 Q21 = 0.0
 Q22 = 1.0
C
 ENDIF
C
C
 DET = Q11*Q22 - Q12*Q21
 DBU = -(R1 *Q22 - Q12*R2) / DET
 DTN = -(Q11*R2 - R1 *Q21) / DET
C
C
C---- calculate changes in F,U,S, and the max and rms change
 RMAX = 0.
 RMS = 0.
 DO 50 I=1,N
 DF = -R(1,1,I) - DBU*R(1,2,I) - DTN*R(1,3,I)
 DU = -R(2,1,I) - DBU*R(2,2,I) - DTN*R(2,3,I)
 DS = -R(3,1,I) - DBU*R(3,2,I) - DTN*R(3,3,I)
C
 RMAX = MAX(RMAX,ABS(DF),ABS(DU),ABS(DS))
 RMS = DF**2 + DU**2 + DS**2 + RMS
 50 CONTINUE
 RMS = SQRT(RMS/(3.0*FLOAT(N) + 3.0))
C
 RMAX = MAX(RMAX,ABS(DBU/0.5),ABS(DTN/TN))
C
C---- set underrelaxation factor if necessary by limiting max change to 0.5
 RLX = 1.0
 IF(RMAX.GT.0.5) RLX = 0.5/RMAX
C
C---- update F,U,S
 DO 60 I=1,N
 DF = -R(1,1,I) - DBU*R(1,2,I) - DTN*R(1,3,I)
 DU = -R(2,1,I) - DBU*R(2,2,I) - DTN*R(2,3,I)
 DS = -R(3,1,I) - DBU*R(3,2,I) - DTN*R(3,3,I)
C
 F(I) = F(I) + RLX*DF
 U(I) = U(I) + RLX*DU
 S(I) = S(I) + RLX*DS
 60 CONTINUE
C
C---- update BetaU and Theta
 BU = BU + RLX*DBU
 TN = TN + RLX*DTN
C
C---- check for convergence
 IF(ITER.GT.3 .AND. RMS.LT.1.E-5) GO TO 105
C
 100 CONTINUE
 WRITE(*,*) 'FS: Convergence failed'
C
 105 CONTINUE
C
 HSPEC = DSI/THI
 BSPEC = BU
C
 DELTA = SQRT(TN)
C
 RETURN
C
C The
 END

 SUBROUTINE B3SOLV(A,B,C,R,N,NRHS,NRMAX)
 IMPLICIT REAL (A-H,M,O-Z)
 DIMENSION A(3,3,N), B(3,3,N), C(3,3,N), R(3,NRMAX,N)
C **
C This routine solves a 3x3 block-tridiagonal system with an arbitrary
C number of righthand sides by a standard block elimination scheme.
C The solutions are returned in the Rj vectors.
C
C |A C ||d| |R..|
C |B A C ||d| |R..|
C | B . . ||.| = |R..|
C | . . C||.| |R..|
C | B A||d| |R..|
C Mark Drela 10 March 86
C **
C
CCC** Forward sweep: Elimination of lower block diagonal (B's).
 DO 1 I=1, N
C
 IM = I-1
C
C------ don't eliminate B1 block because it doesn't exist
 IF(I.EQ.1) GO TO 12
C
C------ eliminate Bi block, thus modifying Ai and Ci blocks
 DO 11 K=1, 3
 DO 111 L=1, 3
 A(K,L,I) = A(K,L,I)
 & - (B(K,1,I)*C(1,L,IM) + B(K,2,I)*C(2,L,IM) + B(K,3,I)*C(3,L,IM))
 111 CONTINUE
 DO 112 L=1, NRHS
 R(K,L,I) = R(K,L,I)
 & - (B(K,1,I)*R(1,L,IM) + B(K,2,I)*R(2,L,IM) + B(K,3,I)*R(3,L,IM))
 112 CONTINUE
 11 CONTINUE
C
C -1
CCC---- multiply Ci block and righthand side Ri vectors by (Ai)
C using Gaussian elimination.
C
 12 DO 13 KPIV=1, 2
 KP1 = KPIV+1
C
C-------- find max pivot index KX
 KX = KPIV
 DO 131 K=KP1, 3
 IF(ABS(A(K,KPIV,I))-ABS(A(KX,KPIV,I))) 131,131,1311
 1311 KX = K
 131 CONTINUE
C
 IF(A(KX,KPIV,I).EQ.0.0) THEN
 WRITE(*,*) 'Singular A block, i = ',I
 STOP
 ENDIF
C
 PIVOT = 1.0/A(KX,KPIV,I)
C
C-------- switch pivots
 A(KX,KPIV,I) = A(KPIV,KPIV,I)
C
C-------- switch rows & normalize pivot row
 DO 132 L=KP1, 3
 TEMP = A(KX,L,I)*PIVOT
 A(KX,L,I) = A(KPIV,L,I)
 A(KPIV,L,I) = TEMP
 132 CONTINUE
C
 DO 133 L=1, 3
 TEMP = C(KX,L,I)*PIVOT
 C(KX,L,I) = C(KPIV,L,I)
 C(KPIV,L,I) = TEMP
 133 CONTINUE
C
 DO 134 L=1, NRHS
 TEMP = R(KX,L,I)*PIVOT
 R(KX,L,I) = R(KPIV,L,I)
 R(KPIV,L,I) = TEMP
 134 CONTINUE
CB
C-------- forward eliminate everything
 DO 135 K=KP1, 3
 DO 1351 L=KP1, 3
 A(K,L,I) = A(K,L,I) - A(K,KPIV,I)*A(KPIV,L,I)
 1351 CONTINUE
 C(K,1,I) = C(K,1,I) - A(K,KPIV,I)*C(KPIV,1,I)
 C(K,2,I) = C(K,2,I) - A(K,KPIV,I)*C(KPIV,2,I)
 C(K,3,I) = C(K,3,I) - A(K,KPIV,I)*C(KPIV,3,I)
 DO 1352 L=1, NRHS
 R(K,L,I) = R(K,L,I) - A(K,KPIV,I)*R(KPIV,L,I)
 1352 CONTINUE
 135 CONTINUE
C
 13 CONTINUE
C
C------ solve for last row
 IF(A(3,3,I).EQ.0.0) THEN
 WRITE(*,*) 'Singular A block, i = ',I
 STOP
 ENDIF
 PIVOT = 1.0/A(3,3,I)
 C(3,1,I) = C(3,1,I)*PIVOT
 C(3,2,I) = C(3,2,I)*PIVOT
 C(3,3,I) = C(3,3,I)*PIVOT
 DO 14 L=1, NRHS
 R(3,L,I) = R(3,L,I)*PIVOT
 14 CONTINUE
C
C------ back substitute everything
 DO 15 KPIV=2, 1, -1
 KP1 = KPIV+1
 DO 151 K=KP1, 3
 C(KPIV,1,I) = C(KPIV,1,I) - A(KPIV,K,I)*C(K,1,I)
 C(KPIV,2,I) = C(KPIV,2,I) - A(KPIV,K,I)*C(K,2,I)
 C(KPIV,3,I) = C(KPIV,3,I) - A(KPIV,K,I)*C(K,3,I)
 DO 1511 L=1, NRHS
 R(KPIV,L,I) = R(KPIV,L,I) - A(KPIV,K,I)*R(K,L,I)
 1511 CONTINUE
 151 CONTINUE
 15 CONTINUE
 1 CONTINUE
C
CCC** Backward sweep: Back substitution using upper block diagonal (Ci's).
 DO 2 I=N-1, 1, -1
 IP = I+1
 DO 21 L=1, NRHS
 DO 211 K=1, 3
 R(K,L,I) = R(K,L,I)
 & - (R(1,L,IP)*C(K,1,I) + R(2,L,IP)*C(K,2,I) + R(3,L,IP)*C(K,3,I))
 211 CONTINUE
 21 CONTINUE
 2 CONTINUE
C
 RETURN
 END ! B3SOLV

XFOILinterface/XFOIL/plotlib/ps_subs.f

C***
C Module: ps_subs.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C***
C --- Xplot11 driver for postscript output to file
C
C Version 4.46 11/28/01
C
C Notes: PS Plotting coordinates in points (1pt=1/72in.)
C are multiplied by 10 and truncated as integers to
C eliminate extra characters (decimal pts.) in plot file.
C Coordinates are converted to points again by output macros.
C
C Landscape orientation is done by translation and rotation
C of upright plot.
C
C The option exists to check before overwriting all old
C postscript output files (including the default file
C "plot.ps") see the commented section below.
C***

 subroutine ps_setup(nunit)
C
C---Sets defaults for Postscript output
C
C nunit specifies logical unit and suffix for name for .ps output file
C if nunit<0 output file is named "plotXXX.ps" where XXX is the
C plot sequential number (i.e. separate plot files are created
C for each plot)
C if nunit=0 output file is named "plot.ps"
C if nunit>0 output file is named "plotUUU.ps" where UUU is the
C nunit unit number
C
 include 'pltlib.inc'
 character numunit*3
C
 PX_ORG = 10.
 PY_ORG = 10.
 P_SCALE = 0.
 LPS_OPEN = .FALSE.
 LPS_UNSTROKED = .FALSE.
 LPS_EXTERNAL = .FALSE.
 LPS_ONEFILE = .TRUE.
 I_PAGES = 0
C
C---Default postscript output file is "plot.ps", specified if nunit=0,
C with logical IO to Fortran unit NPS_UNIT_DEFAULT.
C (Note that unit NPRIM_UNIT_DEFAULT is also reserved and is dedicated
C to the primitives overflow file)
C
C If user specifies nunit<0 each plot will be printed to a separate
C file with name assigned as "plotNNN.ps" where NNN is the sequential
C plot number
C
C If user specifies a logical unit to use for the plot file the logical
C unit is used for IO and the name assigned is "plotNNN.ps" where
C NNN is the logical unit number (0>NNN<1000)
C
 nunit0 = nunit
 if(nunit.EQ.0) then
 nunit0 = NPS_UNIT_DEFAULT
 PS_FILE = 'plot.ps'
 elseif(nunit.EQ.NPRIM_UNIT_DEFAULT .OR. nunit.GT.999) then
 write(*,*) 'PS_SETUP: PS file unit out of bounds: ',nunit
 write(*,*) ' Using default unit ',NPS_UNIT_DEFAULT
 write(*,*) ' Using default file "plot.ps"'
 nunit0 = NPS_UNIT_DEFAULT
 PS_FILE = 'plot.ps'
 elseif(nunit.LT.0) then
c write(*,*) 'PS_SETUP: separate PS files used for each plot'
c write(*,*) ' Using unit ',NPS_UNIT_DEFAULT
c write(*,*) ' Using file "plot###.ps"'
 nunit0 = NPS_UNIT_DEFAULT
 PS_FILE = 'plot000.ps'
 LPS_ONEFILE = .FALSE.
 else
 write(numunit,10) nunit0
 PS_FILE = 'plotunit' // numunit // '.ps'
 endif
 NPS_UNIT = nunit0
C
 10 format(I3.3)
 return
 end

 subroutine ps_init
C---Initializes Postscript plotting and global plot variables
 include 'pltlib.inc'
C
C---Change page orientation if required
 IPS_MODE = 0
 if(I_PAGETYPE.EQ.Page_Landscape) IPS_MODE = 1
C
 N_VECS = 0
C...P_SCALE set so user graphics scales to 1.0inch/(absolute unit) on page
 if(P_SCALE.EQ.0.) P_SCALE = 72.
 PX_SIZ = P_SCALE*X_PAGE
 PY_SIZ = P_SCALE*Y_PAGE
 call ps_open
C
 return
 end

 subroutine ps_open
C...Initializes PostScript file for plotting commands
 include 'pltlib.inc'
 logical LEXIST, LOPEN
 character*80 PS_FILE2
 character*1 ans
 character numpage*3
C
 LOPEN = LPS_OPEN
 call a_strip(' ',PS_FILE)
 NCH = index(PS_FILE,' ') - 1
C
C---Check status on PS file
C---PS file NOT OPENED.
 if(.NOT.LPS_OPEN) then
C
C---Check unit to see if user opened it already (set status flag LPS_EXTERNAL)
C if file is already open skip opening the file, just use it
C if unit is unopened then open a file for output
 if(LPS_EXTERNAL) go to 10
C---Check if file pre-opened outside of Xplot11
 inquire(unit=NPS_UNIT,opened=LPS_EXTERNAL,err=1)
C
 1 if(.NOT.LPS_EXTERNAL) then
C
C---If we are writing separate plotxxx.ps files create plot file name for
C this plot using cumulative plot number
 if(.NOT.LPS_ONEFILE) then
 write(numpage,100) N_PAGES
 PS_FILE = 'plot' // numpage // '.ps'
 endif
 100 format(I3.3)
C
C
C.....PS_FILE doesn't exist, so open it and proceed
 2 open(unit=NPS_UNIT,file=PS_FILE,status='UNKNOWN',err=3)
 rewind(NPS_UNIT)
 go to 10
C....On open error get some other name and try again...
 3 write(*,1020)
 read (*,1100) PS_FILE2
 call a_strip(' ',PS_FILE2)
 if(PS_FILE2.EQ.' ') go to 3
 PS_FILE = PS_FILE2
 NCH = index(PS_FILE,' ') - 1
 go to 2
C
 endif
C
 1010 format(/' PostScript output file ',A,
 & ' exists. Overwrite? [Y] ',$)
 1020 format(' Specify new output file: ',$)
C
C...Write Postscript file header to identify this as a .ps file
 10 write(NPS_UNIT,1030) PS_FILE
 if(IPS_MODE.EQ.1) write(NPS_UNIT,1040)
 write(NPS_UNIT,1050)
C
 1030 format('%!PS-Adobe-2.0'/
 & '%%Title: ',A/
 & '%%Creator: Xplot11'/
 & '%%Pages: (atend)'/
 & '%%BoundingBox: (atend)')
 1040 format('%%Orientation: Landscape')
 1050 format('%%EndComments'/)
C
 LPS_OPEN = .TRUE.
C
 endif
C
C
C...For any ps_open -> Initialize Postscript last point and bounding box
 PS_LSTX = -99999.
 PS_LSTY = -99999.
 BB_XMIN = 99999.
 BB_YMIN = 99999.
 BB_XMAX = -99999.
 BB_YMAX = -99999.
C
 if(LOPEN) then
 if(LPS_EXTERNAL) then
 write(*,1064)
 else
 write(*,1065) PS_FILE(1:NCH)
 endif
 else
 if(LPS_EXTERNAL) then
 write(*,1059)
 else
 write(*,1060) PS_FILE(1:NCH)
 endif
 endif
 1059 format(' Writing PostScript to external file ...')
 1060 format(' Writing PostScript to file ',A,' ...')
 1064 format(' Appending PostScript to external file ...')
 1065 format(' Appending PostScript to file ',A,' ...')
C
C...Put out a page preamble
 N_PAGES = N_PAGES + 1
 I_PAGES = I_PAGES + 1
 write(NPS_UNIT,1070) I_PAGES, I_PAGES
 1070 format('%%Page: ',I4,2X,I4/
 & 'gsave %Save current context'/
 & '% Define macros for drawing'/
 & '/rscal {10 div exch 10 div exch } bind def'/
 & '/M { rscal moveto } bind def'/
 & '/L { rscal lineto } bind def'/
 & '/SG { setgray } bind def'/
 & '/NP { newpath } bind def'/
 & '/SL { setlinewidth } bind def'/
 & '/CPSM { currentpoint stroke moveto } bind def'/
 & '/CFS { closepath fill stroke } bind def'/
 & '/CO { 2 index 255 div 2 index 255 div 2 index 255 div'/
 & ' setrgbcolor pop pop pop } bind def'/
 & '/LAND { 0 790 translate -90 rotate } bind def'//
 & '% Set up for default line type and width'/
 & ' 1 setlinejoin 0.25 SL [] 0 setdash 0 SG')
C
C---Use one of these sets for rotating/translating to landscape, depending
C on your postscript screen viewer (right-side up/upside-down)
C--
c ixtrans = 0
c iytrans = ifix(P_SCALE*X_PAGE)
c irotate = -90
C--
 ixtrans = ifix(P_SCALE*Y_PAGE)
 iytrans = 0
 irotate = 90
C--
 1080 format('% Rotate and translate for Landscape format'/
 & I4,1X,I4,' translate ',I4,' rotate')
 if(IPS_MODE.EQ.1) write(NPS_UNIT,1080) ixtrans,iytrans,irotate
C
 LPS_UNSTROKED = .TRUE.
 N_VECS = 0
C
 1100 format(a)
 return
 end

 subroutine a_strip(ALPH,STRING)
C
C---- Strips all leading ALPH characters from STRING
 character*(*) STRING
 character*1 ALPH
c
 num = len(STRING)
 do k=1, num
 if(INDEX(STRING(k:k),ALPH) .EQ. 0) go to 10
 enddo
 return
c
 10 STRING = STRING(k:num)
 return
 end

 subroutine ps_close
C...Closes PostScript file for plotting
 include 'pltlib.inc'
C
 if(.NOT.LPS_OPEN) return
C
C...Put out page count
 write(NPS_UNIT,30) I_PAGES
 30 format('%%Trailer'/'%%Pages: ',I4)
C
C...Don't mess with external supplied units
 if(.NOT.LPS_EXTERNAL) then
 close(NPS_UNIT)
 NPS_UNIT = -1
 endif
C
 LPS_OPEN = .FALSE.
 return
 end

 subroutine ps_endpage
C...Ends PostScript page
 include 'pltlib.inc'
C
 if(.NOT.LPS_OPEN) return
 if(.NOT.LPS_UNSTROKED) return
C
C...If a page has already been plotted, finish it
 if(I_PAGES.GT.0) THEN
 write(NPS_UNIT,20) BB_XMIN,BB_YMIN,
 & BB_XMAX,BB_YMAX
 endif
 20 format('stroke showpage grestore'/'%%BoundingBox: ',4F8.1/)
C
 LPS_UNSTROKED = .FALSE.
 N_VECS = 0
C
 return
 end

 subroutine ps_flush
C...Flushes out buffered plot output to PostScript file
 include 'pltlib.inc'
 return
 end

 subroutine ps_color(icolor)
C...Sets PostScript foreground color from stored RGB colormap
C Note: The background color for PS is always white
C the foreground color is normally black
C you get color when color PS printing is enabled
C and the color is set to one of the colors in the color tables
C icolor = 1 mapped to black
C icolor = 2 mapped to white
C ...
C icolor = N_COLOR mapped to last color in color table
C See the colormapping routines in plt_color.f for assigned colors
C
 include 'pltlib.inc'
 character*22 colorname
C
 if(.NOT.LPS_OPEN .OR. .NOT.LPS_COLOR) return
C
C...Flush out existing lines at old color
 if(N_VECS.GT.0) then
 write(NPS_UNIT,10)
 N_VECS = 0
 endif
C
C---Consult color map for RGB values
 icol = icolor
 if(N_COLOR.LE.0) icol = 1
 call GETCOLORRGB(icol,ired,igrn,iblu,colorname)
C
C---RGB goes directly into postscript as color spec
 write(NPS_UNIT,20) ired,igrn,iblu
C
 10 format(' CPSM')
 20 format(' ',3(I5),' CO')
 return
 end

 subroutine ps_pen(jpen)
C...Sets PostScript line width
 include 'pltlib.inc'
C
 if(.NOT.LPS_OPEN) return
C
C...Change the line width for new lines
 if(N_VECS.GT.0) then
 write(NPS_UNIT,10)
 N_VECS = 0
 endif
C
 write(NPS_UNIT,20) 0.25*float(jpen)
C
 10 format(' CPSM')
 20 format(' ',F5.2,' SL')
 return
 end

 subroutine ps_linepattern(lmask)
C...Sets Postscript line pattern
 include 'pltlib.inc'
C
 dimension iseg(32)
 data mskall /-1/
 data nsegmax / 8 /
C
 if(.NOT.LPS_OPEN) return
C
 if(lmask.EQ.0 .OR. lmask.eq.mskall) then
 if(N_VECS.GT.0) write(NPS_UNIT,10)
 write(NPS_UNIT,20)
C
 else
C...Set line pattern from lower 16 bits of line mask (integer)
C Note: no more than 10 pattern elements can be written to PS!
 call bitpat(lmask,nseg,iseg)
 nsg = min(nseg,nsegmax)
	if(N_VECS.GT.0) write(NPS_UNIT,10)
	write(NPS_UNIT,30) (iseg(i),i=1,nsg)
	write(NPS_UNIT,40)
 endif
C
 N_VECS = 0
 10 format(' CPSM')
 20 format(' [] 0 setdash')
 30 format(' [',10I3)
 40 format('] 0 setdash')
C
 return
 end

 subroutine ps_line(X1,Y1,X2,Y2)
C
C...Plots vector in absolute coordinates to PostScript file
C
C Note: coordinates are multiplied by 10 and truncated to integers (now
C accurate to 1/10 of a point, or 1/720 in) to reduce the size of
C the ascii plot file. Note that the moveto and lineto commands
C defined in the preamble divide these by 10 before they hit the
C paper.
C
 include 'pltlib.inc'
C
 if(.NOT.LPS_OPEN) return
C
 PX1 = X1*P_SCALE + PX_ORG
 PY1 = Y1*P_SCALE + PY_ORG
 PX2 = X2*P_SCALE + PX_ORG
 PY2 = Y2*P_SCALE + PY_ORG
 BB_XMAX = MAX(BB_XMAX,PX1,PX2)
 BB_XMIN = MIN(BB_XMIN,PX1,PX2)
 BB_YMAX = MAX(BB_YMAX,PY1,PY2)
 BB_YMIN = MIN(BB_YMIN,PY1,PY2)
 ipx1 = ifix(10.0*PX1)
 ipy1 = ifix(10.0*PY1)
 ipx2 = ifix(10.0*PX2)
 ipy2 = ifix(10.0*PY2)
C
 if(N_VECS.GE.500) then
	write(NPS_UNIT,10)
	N_VECS = 0
 endif
C
 if(PX1.EQ.PS_LSTX .AND. PY1.EQ.PS_LSTY .AND. N_VECS.NE.0) then
 write(NPS_UNIT,30) ipx2,ipy2
 else
	write(NPS_UNIT,20) ipx1,ipy1,ipx2,ipy2
 endif
C
 PS_LSTX = PX2
 PS_LSTY = PY2
 N_VECS = N_VECS + 1
C
 10 format(' CPSM')
 20 format(i5,1x,i5,' M ',i5,1x,i5,' L')
 30 format(i5,1x,i5,' L')
C
 return
 end

 subroutine ps_setscale(factor)
C---Resets postscript plot scaling to factor*72pts/in
 include 'pltlib.inc'
C...P_SCALE set so user graphics scales to factor of 1.0inch/(absolute unit)
 P_SCALE = factor*72.
 PX_SIZ = P_SCALE*X_PAGE
 PY_SIZ = P_SCALE*Y_PAGE
 return
 end

 subroutine ps_polyline(X,Y,n,ifill)
C...Plots polyline to postscript output	
C
C Note for non-color postscript plots, colors in the colormap spectrum
C can be used to shade filled polylines with a grey fill spectrum.
C
C Note: this simply uses the ps_line routine to put up the path,
C then fills and strokes the path. It is important that
C the number of points not exceed the stroke limit in ps_line
C or it will try to stroke the path we need to fill...
C
 include 'pltlib.inc'
 real mingrey, maxgrey
 dimension X(n), Y(n)
 data mingrey, maxgrey / 0.10, 0.95 /
 if(n.LE.1) return
C
C...If this is a filled polyline flush out existing lines
 if(N_VECS.GT.0) then
 write(NPS_UNIT,10)
 N_VECS = 0
 endif
C
 X1 = X(1)
 Y1 = Y(1)
 do i = 2, n
 X2 = X(I)
 Y2 = Y(i)
 call ps_line(X1,Y1,X2,Y2)
 X1 = X2
 Y1 = Y2
 end do
C
C...If this is not a color PS plot, shade any Spectrum color indices with
C a grey shade from light grey to near black to replace the color shading
 if(ifill.eq.0) then
 write(NPS_UNIT,10)
 else
 grey = 0.0
 if(.NOT.LPS_COLOR .AND. N_COLOR.GT.0) then
 call GETCOLOR(icol)
 if(icol.EQ.2) then
 grey = 1.0
 elseif(icol.LT.0) then
 ispec = -icol
 greyfrac = float(ispec-1)/float(N_SPECTRUM-1)
 grey = mingrey + (maxgrey-mingrey)*greyfrac
 else
 grey = 0.0
 endif
 write(NPS_UNIT,15) grey
 endif
 write(NPS_UNIT,20)
 endif
C...Flush vector count since we are shading this now
 N_VECS = 0
 if(grey.NE.0.0) then
 grey = 0.0
 write(NPS_UNIT,15) grey
 endif
C
 10 format(' CPSM')
 15 format(' ',F5.2,' SG')
 20 format(' CFS')
 return
 end

 subroutine bitpat(mask,nout,iout)
c
c--- Takes an integer mask and returns an integer array which contains
c the on/off bit pattern,
c for example: a mask with 0001000100010001 returns 8 integers
c in the iout array (1,3,1,3,1,3,1,3)
c a mask with 1110111011101110 returns 8 integers
c in the iout array (3,1,3,1,3,1,3,1)
c Note: the bit mask is shifted to always start counting on a '1' bit.
c
c--- Uses the library routines and() and rshift() for bit manipulation
c which are present in most fortran libraries as extensions to f77.
c
 dimension iout(*)
c
c--- Shift the mask until the low order bit is 1 to start...
 imask = mask
 do n = 1, 16
 ibitold = and(1,imask)
 if(ibitold.NE.0) go to 5
 nshft = n
 imask = rshift(imask,1)
 end do
c
 5 nout = 0
 if(nshft.GE.16) return
 nbits = 0
c
c--- Cycle through 16 shifts to the right looking at the lower bit
c and comparing with the previous one. If the bit changes record
c the number of preceding contiguous bits in the output array.
c
 do n = 1, 16-nshft
 ibit = and(1,imask)
ccc write(*,*) 'n, imask,ibit,ibitold ',n,imask,ibit,ibitold
c
 if(ibit.ne.ibitold) then
 nout = nout + 1
 iout(nout) = nbits
ccc write(*,*) 'nout ',nout,' adding nbits to iout ',nbits
 nbits = 0
 endif
c
 ibitold = ibit
 nbits = nbits + 1
 imask = rshift(imask,1)
 end do
c--- Add final bit(s) to end of 16 bits checked
c--- Now append any zero bits shifted out originally
 if(ibit.EQ.1) then
 nout = nout + 1
 iout(nout) = nbits
 if(nshft.GT.0) then
 nout = nout + 1
 iout(nout) = nshft
 endif
 else
 nout = nout + 1
 iout(nout) = nbits + nshft
 endif
c
 return
 end

XFOILinterface/XFOIL/src/pxplot.f

 PROGRAM PXPLOT
C***
C Polar dump plotting facility for ISES and XFOIL
C
C INPUT:
C * Polar dump file generated by XFOIL (binary format)
C***
C
C--- Uncomment for Win32/Compaq Visual Fortran compiler (needed for GETARG)
ccc USE DFLIB
C
 INCLUDE 'PXPLOT.INC'
 CHARACTER*132 FNAME
C
C---- Plotting flag
 IDEV = 1 ! X11 window only
c IDEV = 2 ! B&W PostScript output file only (no color)
c IDEV = 3 ! both X11 and B&W PostScript file
c IDEV = 4 ! Color PostScript output file only
c IDEV = 5 ! both X11 and Color PostScript file
C
C---- Re-plotting flag (for hardcopy)
 IDEVRP = 2 ! B&W PostScript
c IDEVRP = 4 ! Color PostScript
C
C---- PostScript output logical unit and file specification
 IPSLU = 0 ! output to file plot.ps on LU 4 (default case)
c IPSLU = ? ! output to file plot?.ps on LU 10+?
C
C---- screen fraction taken up by plot window upon opening
 SCRNFR = 0.70
C
C---- Default plot size in inches
C- (Default plot window is 11.0 x 8.5)
 SIZE = 8.0
C
 LREF = .FALSE.
 LFORCE = .TRUE.
 LPLOT = .FALSE.
C
 CALL PLINITIALIZE
 NA = 0
C
C
C---- Check for dump file on command line
 CALL GETARG0(NARG,FNAME)
 IF(FNAME.NE.' ') GO TO 40
C
C===
 2 WRITE(*,*)
 WRITE(*,*) 'Select option (0=quit):'
 WRITE(*,*)
 WRITE(*,*) ' 1 Select point(s)'
 WRITE(*,*) ' 2 Plot selected point(s)'
 WRITE(*,*) ' 3 Load polar dump file'
 WRITE(*,*)
C
 READ (*,*,ERR=2) IOPT
C
 GO TO (5, 10, 20, 30), IOPT+1
 GO TO 2
C
 5 CALL PLCLOSE
 STOP
C
C---- Select alpha points for plotting
 10 CALL SELPNT
 GO TO 2
C
C---- Plot data for selected points
 20 CALL PLTPNT
 GO TO 2
C
C---- Load a polar dump file
 30 WRITE(*,*) 'Enter polar dump filename'
 READ (*,1000) FNAME
C
 40 IF(FNAME.NE.' ') THEN
 CALL READIT(FNAME)
CCC CALL SORT
 ENDIF
 GO TO 2
C
 1000 FORMAT(A)
C
 END ! PXPLOT

 SUBROUTINE SELPNT
C...
C Requests the user to select the target
C points for all the surface plots. NAPLT
C points are selected and their indices
C are saved in the IAPLT array.
C...
 INCLUDE 'PXPLOT.INC'
 CHARACTER*80 RECORD
 LOGICAL ERROR
C
 WRITE(*,*)
 WRITE(*,*) 'Computed points are:'
 WRITE(*,*)
 IF(LMACH) THEN
C
 WRITE(*,*)
 & ' Mach alpha CL CD CDi CM S xtr P xtr'
CCC 0.875 -10.111 1.1111 1.00000 1.00000 1.0000 1.0000 1.0000
 DO IA=1, NA
 WRITE(*,9110) MA(IA),
 & ALFA(IA),CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA)
 END DO
 9110 FORMAT(1X,F6.3,F8.3,F8.4,2F9.5,F8.4,2F7.4)
C
 ELSE
C
 WRITE(*,*)
 & ' alpha CL CD CDi CM S xtr P xtr Mach'
CCC -10.234 1.1111 1.00000 1.00000 1.0000 1.0000 1.0000 0.876
 DO IA=1, NA
 WRITE(*,9120) ALFA(IA),
 & CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA),MA(IA)
 END DO
 9120 FORMAT(1X,F7.3,F8.4,2F9.5,F8.4,2F7.4,F7.3)
C
 ENDIF
 NAP = 0
 NAPLT = 0
C
 3 CONTINUE
C
 IF(LMACH) THEN
 WRITE(*,*)
 WRITE(*,*)
 & 'Enter Mach(s) of point(s) to be plotted:'
 READ (*,9200) RECORD
 ELSE
 WRITE(*,*)
 WRITE(*,*)
 & 'Enter alpha(s) of point(s) to be plotted:'
 READ (*,9200) RECORD
 ENDIF
 9200 FORMAT(A80)
C
C---- do not make any changes if just a <CR> was input
 IF(RECORD.EQ.' ') GO TO 80
C
 NIN = 0
 CALL GETFLT(RECORD,APLT(NAP+1),NIN,ERROR)
C
C---- do not make any changes if just a <CR> was input
 IF(NIN.EQ.0) GO TO 80
 NAPLT = NAPLT + NIN
C
 IF(LMACH) THEN
C
C---- save selected point indices and count up how many points there are
 DO 50 KA=NAP+1, NAPLT
 IAPLT(KA) = 0
 DO IA=1, NA
 IF(ABS(APLT(KA)-MA(IA)) .LE. 0.0011) IAPLT(KA) = IA
 END DO
 IF(IAPLT(KA).EQ.0) THEN
 WRITE(*,9500) APLT(KA)
 ENDIF
 50 CONTINUE
 9500 FORMAT(1X,'Mach = ',F6.3,' has not been computed')
C
 ELSE
C
C---- save selected point indices and count up how many points there are
 DO 60 KA=NAP+1, NAPLT
 IAPLT(KA) = 0
 DO IA=1, NA
 IF(ABS(APLT(KA)-ALFA(IA)) .LE. 0.0011) IAPLT(KA) = IA
 END DO
 IF(IAPLT(KA).EQ.0) THEN
 WRITE(*,9600) APLT(KA)
 ENDIF
 60 CONTINUE
 9600 FORMAT(1X,'alpha = ',F6.3,' has not been computed')
C
 ENDIF
C
C--- Check for and eliminate invalid alpha or Mach points
 70 DO IA = 1, NAPLT
 IF(IAPLT(IA).LE.0) THEN
 DO IIA = IA+1,NAPLT
 APLT(IIA-1) = APLT(IIA)
 IAPLT(IIA-1) = IAPLT(IIA)
 END DO
 NAPLT = NAPLT-1
 GO TO 70
 END IF
 END DO
C
 NAP = NAPLT
 GO TO 3
C
C---- Display selected alphas/Machs
 80 WRITE(*,*)
 WRITE(*,*) 'Selected points are:'
 WRITE(*,*)
 IF(LMACH) THEN
 WRITE(*,*)
 & ' Mach alpha CL CD CDi CM S xtr P xtr'
CCC 0.875 -10.111 1.1111 1.00000 1.00000 1.0000 1.0000 1.0000
 DO I=1, NAPLT
 IA = IAPLT(I)
 WRITE(*,9110) MA(IA),
 & ALFA(IA),CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA)
 END DO
 ELSE
 WRITE(*,*)
 & ' alpha CL CD CDi CM S xtr P xtr Mach'
CCC -10.234 1.1111 1.00000 1.00000 1.0000 1.0000 1.0000 0.876
 DO I=1, NAPLT
 IA = IAPLT(I)
 WRITE(*,9120) ALFA(IA),
 & CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA),MA(IA)
 END DO
 ENDIF
C
 RETURN
 END ! SELPNT

 SUBROUTINE PLTPNT
 INCLUDE 'PXPLOT.INC'
C
 REAL W(NX,2,NAX)
 CHARACTER*1 ANS
C
 CH = 0.015
 XWAKE = 0.3
C
C---- Cp amd Mach axis limits, increments
 CPMIN = -2.0
 DCP = 0.5
C
 MAMAX = 1.4
 DMA = 0.2
C
 6 WRITE(*,*)
 WRITE(*,*) 'Selected points are:'
 WRITE(*,*)
 WRITE(*,*)
 & ' alpha Mach CL CD CDi CM S xtr P xtr'
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 IF(IA.NE.0) THEN
 WRITE(*,9120) ALFA(IA),
 & MA(IA),CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA)
 ENDIF
 END DO
 9120 FORMAT(1X,F7.3,F7.3,F8.4,2F9.5,F8.4,2F7.4)
C
 1100 FORMAT(A1)
C
 2 WRITE(*,2000)
 2000 FORMAT(/' 1 Mach vs x'
 & /' 2 Cp vs x'
 & /' 3 Hk vs x'
 & /' 4 D,T vs x (top side)'
 & /' 5 D,T vs x (bottom side)'
 & /' 7 Cf vs x'
 & /' 8 A/Ao vs x'
 & /' 9 Ctau vs x'
 & /' 12 change settings'
 & /' 13 annotate current plot'
 & /' 14 hardcopy current plot'
 & //'Select plot option (0 = return to top level): ',$)
 READ (*,*,ERR=2) IOPT
C
 IF(IOPT.EQ.0) THEN
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 RETURN
 ENDIF
C
C
 GO TO (10,20,30,40,50,2 ,70,80,90,2 ,2 ,120,130,140), IOPT
CCCC 1 2 3 4 5 7 8 9 12
 GO TO 2
C
C===
C**** Plot Mach vs x
C
 10 NF = 0
 IF(LREF) CALL GETREF(XF,MF,NF)
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 MACHSQ = MA(IA)**2
 DO IS=1, 2
 IEND = II(IS,IA)-1
 DO I=1, IEND
 PRATEX = (CP(I,IS,IA)*0.5*GAM*MACHSQ + 1.0)**(GM1/GAM)
 & / (1.0 + 0.5*GM1*MACHSQ)
 ATMP = ABS(1.0/PRATEX - 1.0)
 W(I,IS,KA) = SQRT(ATMP*2.0/GM1)
 END DO
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.175,-3)
C
CCC CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
 YFAC = 1.0/MAMAX
C
 YAXT = 0.70
C
 XOFF = -.10
 XSF = 0.75
C
 YOFF = 0.
 YSF = YFAC*YAXT
C
 CALL YAXIS(0.0,0.0,YSF*MAMAX,YSF*DMA,0.0,DMA,CH,1)
 CALL NEWPEN(3)
 CALL PLCHAR(-3.0*CH,0.8*YAXT,1.4*CH,'M',0.0,1)
 CALL IDENT(0.0,YAXT)
C
 CALL AIRFOI(XOFF,0.05*YSF/XSF,XSF)
C
 CALL NEWPEN(1)
 IF(1.0.LE.MAMAX) CALL DASH(0.0,0.58,(1.0-YOFF)*YSF)
 CALL XTICK(XOFF,-YSF*MA(IA),XSF,1.0/XSF)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 IEND = II(IS,IA)-1
 IF(IS.EQ.1) IEND = ITE(IS,IA)
 CALL XYLINE(IEND,X(1,IS,IA),W(1,IS,KA),XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 IF(LREF)
 & CALL RFPLOT(NF,XF,MF,XOFF,XSF,YOFF,YSF,0.5*CH,0)
C
 CALL PLTFOR(0.625,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C
C===
C**** Plot Cp vs x
C
 20 NF = 0
 IF(LREF) CALL GETREF(XF,MF,NF)
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 IEND = II(IS,IA)-1
 DO I=1, IEND
 W(I,IS,KA) = -CP(I,IS,IA)
 END DO
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.2,-3)
C
CCC CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
 YFAC = 1.0/(-CPMIN)
C
 YAXT = 0.4
C
 XOFF = -.1
 XSF = 0.75
C
 YOFF = 0.0
 YSF = YFAC*YAXT
C
 CALL PLOT(0.0,YSF,-3)
C
 CALL YAXIS(0.0,-YSF,YSF*(1.0-CPMIN),YSF*DCP,1.0,-DCP,CH,1)
 CALL NEWPEN(3)
 CALL PLCHAR(-3.5*CH,0.875*YAXT-0.3*CH,1.4*CH,'C',0.0,1)
 CALL PLCHAR(-2.4*CH,0.875*YAXT-0.7*CH,0.9*CH,'p',0.0,1)
 CALL IDENT(0.0,YAXT)
C
 CALL NEWPEN(1)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 IF(-CPSTAR(IA).LE.-CPMIN)
 & CALL DASH(0.0,0.58,(-CPSTAR(IA)-YOFF)*YSF)
 END DO
C
 CALL AIRFOI(XOFF,1.25*YSF/XSF,XSF)
 CALL XTICK(XOFF,0.0,XSF,1.0/XSF)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 IEND = II(IS,IA)-1
 IF(IS.EQ.1) IEND = ITE(IS,IA)
 CALL XYLINE(IEND,X(1,IS,IA),W(1,IS,KA),XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 IF(LREF)
 & CALL RFPLOT(NF,XF,MF,XOFF,XSF,-YOFF,-YSF,0.5*CH,0)
C
 CALL PLTFOR(0.625,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C===
C**** Plot H vs sb
C
 30 CONTINUE
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
C Find Hk for plotting
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 MACHSQ = MA(IA)**2
 DO IS=1, 2
 IEND = II(IS,IA)-1
 DO I=ILE(IS,IA)+1, IEND
 H = DSTR(I,IS,IA)/THET(I,IS,IA)
 PRATEX = (CP(I,IS,IA)*0.5*GAM*MACHSQ + 1.0)**(GM1/GAM)
 & / (1.0 + 0.5*GM1*MACHSQ)
 ATMP = ABS(1.0/PRATEX - 1.0)
 XM = SQRT(ATMP*2.0/GM1)
 W(I,IS,KA) = (H-0.29*XM**2)/(1.+0.113*XM**2)
 END DO
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.2,-3)
C
CCC CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
 YFAC = 1.0/6.0
C
 ANN = 1.0/YFAC
 YAXT = 0.6
C
 XOFF = 0.
 XSF = 0.6
C
 YOFF = 0.
 YSF = YFAC*YAXT
 XAX = 1.4*XSF
C
 CALL XAXIS(0.0,0.0,XAX,0.2*XSF,0.0,0.2,CH,1)
C
 CALL YAXIS(0.0,0.0,YAXT,YAXT/6.0,0.0,ANN/6.0,CH,1)
C
 CALL NEWPEN(3)
 CALL PLCHAR(-4.0*CH,3.4*YFAC ,1.4*CH,'H' ,0.0,1)
 CALL PLCHAR(-2.6*CH,3.4*YFAC-0.4*CH, CH,'k' ,0.0,1)
 CALL IDENT(0.0,YAXT)
C
 CALL PLCHAR(1.1*XSF-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 IL = ILE(IS,IA)
 IEND = II(IS,IA)-1
 IF(IS.EQ.1) IEND = ITE(IS,IA)+1
 CALL XYLINE(IEND-1-IL,X(IL+1,IS,IA),W(IL+1,IS,KA),
 & XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 CALL PLTFOR(0.65,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C===
C**** plot top Dstar, Theta vs sb
C
 40 CONTINUE
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
 IS = 1
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 IEND = II(IS,IA)-1
 DO I=ILE(IS,IA)+1, IEND
 W(I,1,KA) = DSTR(I,IS,IA)
 W(I,2,KA) = THET(I,IS,IA)
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.2,-3)
C
 CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
C
 ANN = 1.0/YFAC
C
 YAXT = 0.6
 XOFF = 0.
 XSF = 0.6
C
 YOFF = 0.
 YSF = YFAC*YAXT
C
 XAX = 1.4*XSF
 CALL XAXIS(0.0,0.0,XAX,0.2*XSF,0.0,0.2,CH,1)
C
 FN = 5.
 CALL YAXIS(0.0,0.0,YAXT,YAXT/FN,0.0,ANN/FN,CH,3)
C
 CALL NEWPEN(3)
 CALL PLCHAR(-4.5*CH,3.4*YAXT/FN ,1.3*CH,'Top',0.0, 3)
 CALL PLMATH(-4.0*CH,2.4*YAXT/FN ,1.5*CH,'d' ,0.0, 1)
 CALL PLCHAR(-2.5*CH,2.4*YAXT/FN+1.6*CH,0.6*CH,'*' ,0.0, 1)
 CALL PLMATH(-3.5*CH,1.4*YAXT/FN ,1.5*CH,'q' ,0.0, 1)
 CALL IDENT(0.0,YAXT)
C
 CALL PLCHAR(1.1*XSF-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IDT=1, 2
 IL = ILE(IS,IA)
 IEND = II(IS,IA)-1
 CALL XYLINE(IEND-1-IL,X(IL+1,1,IA),W(IL+1,IDT,KA),
 & XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 CALL PLTFOR(0.65,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C===
C**** plot bottom Dstar, Theta vs sb
C
 50 CONTINUE
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
 IS = 2
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 IEND = II(IS,IA)-1
 DO I=ILE(IS,IA)+1, IEND
 W(I,1,KA) = DSTR(I,IS,IA)
 W(I,2,KA) = THET(I,IS,IA)
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.2,-3)
C
 CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
C
 ANN = 1.0/YFAC
C
 YAXT = 0.6
 XOFF = 0.
 XSF = 0.6
C
 YOFF = 0.
 YSF = YFAC*YAXT
C
 XAX = 1.4*XSF
 CALL XAXIS(0.0,0.0,XAX,0.2*XSF,0.0,0.2,CH,1)
C
 FN = 5.
 CALL YAXIS(0.0,0.0,YAXT,YAXT/FN,0.0,ANN/FN,CH,3)
C
 CALL NEWPEN(3)
 CALL PLCHAR(-4.5*CH,3.4*YAXT/FN ,1.3*CH,'Bot',0.0, 3)
 CALL PLMATH(-4.0*CH,2.4*YAXT/FN ,1.5*CH,'d' ,0.0, 1)
 CALL PLCHAR(-2.5*CH,2.4*YAXT/FN+1.6*CH,0.6*CH,'*' ,0.0, 1)
 CALL PLMATH(-3.5*CH,1.4*YAXT/FN ,1.5*CH,'q' ,0.0, 1)
 CALL IDENT(0.0,YAXT)
C
 CALL PLCHAR(1.1*XSF-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IDT=1, 2
 IL = ILE(IS,IA)
 IEND = II(IS,IA)-1
 CALL XYLINE(IEND-1-IL,X(IL+1,2,IA),W(IL+1,IDT,KA),
 & XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 CALL PLTFOR(0.65,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C===
C**** Plot Cf vs sb
C
 70 CONTINUE
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 IEND = II(IS,IA)-1
 DO I=ILE(IS,IA)+1, IEND
 W(I,IS,KA) = CF(I,IS,IA)
 END DO
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.2,-3)
C
 CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
 YFAC = 2.0*YFAC
C
 ANN = 1.0/YFAC
C
 YAXT = 0.6
C
 XOFF = 0.
 XSF = 0.6
C
 YOFF = 0.
 YSF = YFAC*YAXT
C
 FN = 5.
 CALL YAXIS(0.0,0.0,YAXT,YAXT/FN,0.0,ANN/FN,CH,3)
C
 XAX = 1.4*XSF
 CALL XAXIS(0.0,0.0,XAX,0.2*XSF,0.0,0.2,CH,1)
C
 CALL NEWPEN(3)
 CALL PLCHAR(-3.5*CH,2.5*YAXT/FN ,1.4*CH,'C',0.0,1)
 CALL PLCHAR(-2.1*CH,2.5*YAXT/FN-0.4*CH,1.0*CH,'f',0.0,1)
 CALL IDENT(0.0,YAXT)
C
 CALL PLCHAR(1.1*XSF-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 IL = ILE(IS,IA)
 IEND = II(IS,IA)-1
 IF(IS.EQ.1) IEND = ITE(IS,IA)+1
 CALL XYLINE(IEND-1-IL,X(IL+1,IS,IA),W(IL+1,IS,KA),
 & XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 CALL PLTFOR(0.65,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C===
C**** plot A/Ao vs sb
 80 CONTINUE
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 ITR = ITRAN(IS,IA)
 DO I=ILE(IS,IA)+1, ITR-1
 W(I,IS,KA) = CTAU(I,IS,IA)
 END DO
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.2,-3)
C
CCC CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
 YFAC = 1.0 / (2.0*AINT(0.5*(ACRIT + 1.0)))
C
 ANN= 1.0/YFAC
C
 YAXT = 0.6
C
 YSF = YFAC*YAXT
 YOFF = 0.
C
 XOFF = 0.
 XSF = 0.6
 XAX = 1.4*XSF
C
 CALL XAXIS(0.0,0.0,XAX,0.2*XSF,0.0,0.2,CH,1)
C
 DANN = 2.0
 DYANN = YAXT/(ANN/DANN)
 CALL YAXIS(0.0,0.0,YAXT,DYANN,0.0,DANN,CH,1)
 CALL NEWPEN(3)
 CALL PLCHAR(-4.5*CH,4.4*DYANN ,1.2*CH,'log',0.0,3)
 CALL PLCHAR(-5.0*CH,3.4*DYANN ,1.2*CH,'A/A',0.0,3)
 CALL PLCHAR(-1.4*CH,3.4*DYANN-0.4*CH,0.8*CH,'0' ,0.0,1)
 CALL IDENT(0.0,YAXT)
C
 CALL PLCHAR(1.1*XSF-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 CALL DASH(0.0,1.0,(ACRIT-YOFF)*YSF)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 IL = ILE(IS,IA)
 ITR = ITRAN(IS,IA)
 CALL XYLINE(ITR-(IL+1),X(IL+1,IS,IA),W(IL+1,IS,KA),
 & XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 CALL PLTFOR(0.65,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C===
C**** Plot Ctau vs sb
C
 90 CONTINUE
C
 DO IA=1, NAX
 DO IS=1, 2
 DO I=1, NX
 W(I,IS,IA) = 0.
 END DO
 END DO
 END DO
C
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 ITR = ITRAN(IS,IA)
 IEND = II(IS,IA)-1
 DO I=ITR, IEND
 W(I,IS,KA) = CTAU(I,IS,IA)
 END DO
 END DO
 END DO
C
 CALL PLTINI
 CALL PLOT(6.*CH,0.2,-3)
C
 CALL SCALIT(NX*2*NAPLT,W,0.0,YFAC)
C
 ANN = 1.0/YFAC
C
 YAXT = 0.6
C
 XOFF = 0.
 XSF = 0.6
C
 YOFF = 0.
 YSF = YFAC*YAXT
C
 XAX = 1.4*XSF
 CALL XAXIS(0.0,0.0,XAX,0.2*XSF,0.0,0.2,CH,1)
C
 FN = 5.
 CALL YAXIS(0.0,0.0,YAXT,YAXT/FN,0.0,ANN/FN,CH,2)
 CALL NEWPEN(3)
 CALL PLMATH(-4.5*CH,2.5*YAXT/FN ,1.4*CH,'R ',0.0,3)
 CALL PLCHAR(-4.5*CH,2.5*YAXT/FN ,1.4*CH,' C ',0.0,3)
 CALL PLMATH(-2.1*CH,2.5*YAXT/FN-0.4*CH,1.0*CH,' t',0.0,3)
 CALL IDENT(0.0,ANN*YSF)
C
 CALL PLCHAR(1.1*XSF-0.6*CH,-3.5*CH,1.2*CH,'X',0.0,1)
C
 CALL NEWPEN(2)
 DO KA=1, NAPLT
 IA = IAPLT(KA)
 DO IS=1, 2
 ITR = ITRAN(IS,IA)
 IEND = II(IS,IA)-1
 IF(IS.EQ.1) IEND = ITE(IS,IA)+1
 CALL XYLINE(IEND-ITR,X(ITR,IS,IA),W(ITR,IS,KA),
 & XOFF,XSF,YOFF,YSF,KA)
 END DO
 END DO
C
 CALL PLTFOR(0.65,YAXT)
C
 CALL PLFLUSH
ccc WRITE(*,*) 'Hit <return>'
ccc READ (*,1100) ANS
 GO TO 2
C
C===
C**** Change settings
C
 120 CONTINUE
 WRITE(*,*)
 WRITE(*,*) ' 0 Cancel'
 WRITE(*,*) ' 1 SIZE plot size'
 WRITE(*,*) ' 2 LREF reference solution plotting flag'
 WRITE(*,*) ' 3 LFORCE force coefficient plotting flag'
 WRITE(*,*) ' 4 NAME case name'
 WRITE(*,*)
 129 WRITE(*,*) 'Change what ?'
 READ (*,*,ERR=129) NUM
 IF(NUM.EQ.0) RETURN
 IF(NUM.EQ.1) THEN
 WRITE(*,*) 'Currently SIZE = ',SIZE
 121 WRITE(*,*) 'Enter new value:'
 READ (*,*,ERR=121) SIZE
 ELSE IF(NUM.EQ.2) THEN
 LREF = .NOT.LREF
 IF(LREF) WRITE(*,*) 'Reference data will be overlaid'
 IF(.NOT.LREF) WRITE(*,*) 'Reference data will not be overlaid'
 ELSE IF(NUM.EQ.3) THEN
 LFORCE = .NOT.LFORCE
 IF(LFORCE) WRITE(*,*) 'Force coeffs. will be plotted'
 IF(.NOT.LFORCE) WRITE(*,*) 'Force coeffs. will not be plotted'
 ELSE IF(NUM.EQ.4) THEN
 WRITE(*,1200) NAME
 1200 FORMAT(1X,'Current NAME: ',A)
 WRITE(*,*) 'Enter new name:'
 READ (*,1210) NAME
 1210 FORMAT(A)
 ENDIF
 GO TO 2
C
C===
C**** annotate plot
 130 IF(.NOT.LPLOT) THEN
 WRITE(*,*) 'No active plot to annotate'
 ELSE
 CALL ANNOT(CH)
 ENDIF
 GO TO 2
C
C===
C**** hardcopy output
 140 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
 GO TO 2
C
 END

 SUBROUTINE PLTINI
 INCLUDE 'PXPLOT.INC'
C
 IF(LPLOT) CALL PLEND
C
 CALL PLOPEN(SCRNFR,IPSLU,IDEV)
 LPLOT = .TRUE.
C
 CALL NEWFACTOR(SIZE)
C
 RETURN
 END

 SUBROUTINE XTICK(XOFF,YOFF,XSF,XLEN)
 CALL NEWPEN(1)
C
 CALL PLOT(0.,-YOFF,3)
 CALL PLOT(-XOFF*XSF,-YOFF,2)
C
 CALL PLOT(-XOFF *XSF,-YOFF,3)
 CALL PLOT((XLEN-XOFF)*XSF,-YOFF,2)
 DO 10 NT=1, 9
 XT = FLOAT(NT)/10.
 CALL PLOT((XT-XOFF)*XSF,-YOFF+0.0025,3)
 CALL PLOT((XT-XOFF)*XSF,-YOFF-0.0025,2)
 10 CONTINUE
 DO 20 NT=0, 2
 XT = FLOAT(NT)/2.
 CALL PLOT((XT-XOFF)*XSF,-YOFF+0.005,3)
 CALL PLOT((XT-XOFF)*XSF,-YOFF-0.005,2)
 20 CONTINUE
 RETURN
 END ! XTICK

 SUBROUTINE RFPLOT(N,X,Y,XOFF,XWT,YOFF,YWT,CH,ID)
 REAL X(N), Y(N)
C
 ISYM = ID
 DO 10 I=1, N
 XPLT = XWT*(X(I)-XOFF)
 YPLT = YWT*(Y(I)-YOFF)
 IF(X(I).EQ.999.0) THEN
 ISYM = ISYM + 1
 ELSE
 CALL PLSYMB(XPLT,YPLT,CH,ISYM,0.0,0)
 ENDIF
 10 CONTINUE
C
 RETURN
 END ! RFPLOT

 SUBROUTINE AIRFOI(XOFF,YOFF,SF)
 INCLUDE 'PXPLOT.INC'
C
 CALL NEWPEN(2)
 IPEN = 3
 DO 10 IB=1, IIB
 CALL PLOT((XB(IB)-XOFF)*SF,(YB(IB)-YOFF)*SF,IPEN)
 IPEN = 2
 10 CONTINUE
C
 RETURN
 END ! AIRFOI

 SUBROUTINE PLTFOR(X1,Y1)
 INCLUDE 'PXPLOT.INC'
C
c CH2 = 0.012
c CH3 = 0.010
c CHN = 0.015
C
 CH2 = 0.015
 CH3 = 0.013
 CHN = 0.018
C
C---- find index of last non-blank character in NAME array
 DO 10 LNB=32, 1, -1
 IF(NAME(LNB:LNB).NE.' ') GO TO 11
 10 CONTINUE
 LNB = 1
 11 CONTINUE
CCC LNB = LNB-1
C
 XLAB = X1
 YLAB = Y1 !!! - CHN
C
 IF(LNB.GT.0) THEN
 CALL NEWPEN(4)
 CALL PLCHAR(X1,YLAB,CHN,NAME,0.0,LNB)
 YLAB = YLAB - 0.5*CH2
 ENDIF
C
 IF(LMACH) THEN
 IF(LCLFIX) THEN
 XLAB = X1
 YLAB = YLAB - 2.2*CH2
 CALL NEWPEN(3)
 CALL PLCHAR(XLAB,YLAB,CH2,'CL = ',0.0, 8)
 CALL NEWPEN(2)
 CALL PLNUMB(XLAB+ 8.0*CH2,YLAB,CH2,CL(1),0.0,4)
 ELSE
 XLAB = X1
 YLAB = YLAB - 2.2*CH2
 CALL NEWPEN(3)
 CALL PLCHAR(XLAB,YLAB,CH2,'Alfa = ',0.0, 8)
 CALL NEWPEN(2)
 CALL PLNUMB(XLAB+ 8.0*CH2,YLAB,CH2,ALFA(1),0.0,4)
 ENDIF
 ELSE
 XLAB = X1
 YLAB = YLAB - 2.2*CH2
 CALL NEWPEN(3)
 ITYP = MATYP
 IF(ITYP.EQ.1) CALL PLCHAR(XLAB,YLAB,CH2,'Ma = ',0.0, 8)
 IF(ITYP.EQ.2) CALL PLCHAR(XLAB,YLAB,CH2,'Ma CL = ',0.0, 8)
 IF(ITYP.EQ.2) CALL PLMATH(XLAB,YLAB,CH2,' R ',0.0, 8)
 IF(ITYP.EQ.3) CALL PLCHAR(XLAB,YLAB,CH2,'Ma CL = ',0.0, 8)
 IF(ITYP.EQ.3) CALL PLMATH(XLAB,YLAB,CH2,' # ',0.0, 8)
 CALL NEWPEN(2)
 CALL PLNUMB(XLAB+ 8.0*CH2,YLAB , CH2, MACH,0.0,4)
 ENDIF
C
 IF(REYN.NE.0.0) THEN
 YLAB = YLAB - 2.0*CH2
 CALL NEWPEN(3)
 ITYP = RETYP
 IF(ITYP.EQ.1) CALL PLCHAR(XLAB,YLAB,CH2,'Re = ',0.0, 8)
 IF(ITYP.EQ.2) CALL PLCHAR(XLAB,YLAB,CH2,'Re CL = ',0.0, 8)
 IF(ITYP.EQ.2) CALL PLMATH(XLAB,YLAB,CH2,' R ',0.0, 8)
 IF(ITYP.EQ.3) CALL PLCHAR(XLAB,YLAB,CH2,'Re CL = ',0.0, 8)
 IF(ITYP.EQ.3) CALL PLMATH(XLAB,YLAB,CH2,' # ',0.0, 8)
 CALL NEWPEN(2)
 CALL PLNUMB(XLAB+ 8.0*CH2,YLAB , CH2, REYN ,0.0,4)
 CALL PLMATH(XLAB+14.0*CH2,YLAB+0.2*CH2,0.80*CH2,' # ',0.0,5)
 CALL PLCHAR(XLAB+14.0*CH2,YLAB , CH2,' 10 ',0.0,5)
 CALL PLMATH(XLAB+14.0*CH2,YLAB+0.6*CH2, CH2,' 6',0.0,5)
C
 YLAB = YLAB - 2.0*CH2
 CALL NEWPEN(3)
 CALL PLCHAR(XLAB ,YLAB, CH2,'N' ,0.0,1)
 CALL PLCHAR(XLAB+1.0*CH2,YLAB,0.75*CH2,'crit',0.0,4)
 CALL PLCHAR(XLAB+4.0*CH2,YLAB, CH2,' = ',0.0,4)
 CALL NEWPEN(2)
 CALL PLNUMB(XLAB+8.0*CH2,YLAB, CH2, ACRIT,0.0,3)
 ENDIF
C
 XL1 = XLAB
 XL2 = XL1 + 7.0*CH3
 XL3 = XL2 + 8.0*CH3
 XL4 = XL3 + 9.0*CH3
 XL5 = XL4 + 8.0*CH3
 XL6 = XL5 + 7.0*CH3
 YLAB = YLAB - 2.7*CH3
 CALL NEWPEN(3)
 IF(LMACH) THEN
 CALL PLCHAR(XL1+0.5*CH3,YLAB,CH3,'Mach' ,0.0,4)
 IF(LCLFIX) THEN
 CALL PLCHAR(XL2+0.5*CH3,YLAB,CH3,'Alfa',0.0,4)
 ELSE
 CALL PLCHAR(XL2+0.5*CH3,YLAB,CH3,' CL ',0.0,4)
 ENDIF
 ELSE
 CALL PLCHAR(XL1+0.5*CH3,YLAB,CH3,'Alfa' ,0.0,4)
 CALL PLCHAR(XL2+0.5*CH3,YLAB,CH3,' CL ' ,0.0,4)
 ENDIF
 CALL PLCHAR(XL3+2.5*CH3,YLAB,CH3,'CD' ,0.0,2)
 CALL PLCHAR(XL4+2.0*CH3,YLAB,CH3,'CM' ,0.0,2)
 IF(REYN.NE.0.0) THEN
 CALL PLCHAR(XL5+1.5*CH3,YLAB, CH3,'Xtr',0.0,3)
 CALL PLCHAR(999. ,YLAB,0.6*CH3,'T' ,0.0,1)
 CALL PLCHAR(XL6+1.5*CH3,YLAB, CH3,'Xtr',0.0,3)
 CALL PLCHAR(999. ,YLAB,0.6*CH3,'B' ,0.0,1)
 ENDIF
C
 CALL NEWPEN(1)
 CALL PLOT(XL1 ,YLAB-0.4*CH3,3)
 CALL PLOT(XL1+5.0*CH3,YLAB-0.4*CH3,2)
 CALL PLOT(XL2 ,YLAB-0.4*CH3,3)
 CALL PLOT(XL2+6.0*CH3,YLAB-0.4*CH3,2)
 CALL PLOT(XL3 ,YLAB-0.4*CH3,3)
 CALL PLOT(XL3+7.0*CH3,YLAB-0.4*CH3,2)
 CALL PLOT(XL4 ,YLAB-0.4*CH3,3)
 CALL PLOT(XL4+6.0*CH3,YLAB-0.4*CH3,2)
 IF(REYN.NE.0.0) THEN
 CALL PLOT(XL5 ,YLAB-0.4*CH3,3)
 CALL PLOT(XL5+5.0*CH3,YLAB-0.4*CH3,2)
 CALL PLOT(XL6 ,YLAB-0.4*CH3,3)
 CALL PLOT(XL6+5.0*CH3,YLAB-0.4*CH3,2)
 ENDIF
C
 CALL NEWPEN(2)
 YLAB = YLAB - 0.5*CH3
 DO 50 KA=1, NAPLT
 IA = IAPLT(KA)
 DXL1 = 0.
 DXL2 = 0.
 DXL3 = 0.
 DXL4 = 0.
 IF(LMACH) THEN
 IF(LCLFIX) THEN
 IF(ALFA(IA).LT.0.0) DXL2 = -CH3
 ELSE
 IF(CL(IA).LT.0.0) DXL2 = -CH3
 ENDIF
 ELSE
 IF(ALFA(IA).LT.0.0) DXL1 = -CH3
 IF(CL(IA).LT.0.0) DXL2 = -CH3
 ENDIF

 IF(CD(IA).LT.0.0) DXL3 = -CH3
 IF(CM(IA).LT.0.0) DXL4 = -CH3
 YLAB = YLAB - 2.0*CH3
 IF(LMACH) THEN
 CALL PLNUMB(XL1+DXL1,YLAB,CH3, MA(IA),0.0,3)
 IF(LCLFIX) THEN
 CALL PLNUMB(XL2+DXL2,YLAB,CH3,ALFA(IA),0.0,3)
 ELSE
 CALL PLNUMB(XL2+DXL2,YLAB,CH3, CL(IA),0.0,4)
 ENDIF
 ELSE
 CALL PLNUMB(XL1+DXL1,YLAB,CH3,ALFA(IA),0.0,3)
 CALL PLNUMB(XL2+DXL2,YLAB,CH3, CL(IA),0.0,4)
 ENDIF
 CALL PLNUMB(XL3+DXL3,YLAB,CH3, CD(IA),0.0,5)
 CALL PLNUMB(XL4+DXL3,YLAB,CH3, CM(IA),0.0,3)
 IF(REYN.NE.0.0) THEN
 CALL PLNUMB(XL5,YLAB,CH3,XTR(1,IA),0.0,3)
 CALL PLNUMB(XL6,YLAB,CH3,XTR(2,IA),0.0,3)
 ENDIF
 50 CONTINUE
C
 RETURN
 END ! PLTFOR

 SUBROUTINE GETREF(X,Y,N)
 REAL X(1), Y(1)
 CHARACTER*132 FNAME
C
 WRITE(*,*) 'Enter reference solution filename:'
 READ (*,1000) FNAME
 1000 FORMAT(A)
C
 OPEN(UNIT=1,FILE=FNAME,STATUS='OLD',ERR=5)
 GO TO 10
C
 5 WRITE(*,*) '*** File open error ***'
 CLOSE(UNIT=1)
 RETURN
C
 10 DO 11 I=1, 500
 READ(1,*,END=12) X(I), Y(I)
 11 CONTINUE
 12 N = I-1
C
 CLOSE(UNIT=1)
 RETURN
 END ! GETREF

 SUBROUTINE READIT(FNAME)
C
C--- Uncomment for Win32/Compaq Visual Fortran compiler (needed for GETARG)
ccc USE DFLIB
C
 INCLUDE 'PXPLOT.INC'
 CHARACTER*132 FNAME
C
 10 IF(FNAME.EQ.' ') THEN
 WRITE(*,*) 'Enter polar dump filename'
 READ (*,1000) FNAME
 ENDIF
C
 IF(FNAME.EQ.' ') RETURN
C
 OPEN(11,FILE=FNAME,STATUS='OLD',FORM='UNFORMATTED',ERR=800)
C
 READ(11) NAME, CODE, VERSION
 READ(11) MACH, REYN, ACRIT
 READ(11) MATYP, RETYP
 READ(11) IITOT, ILETOT, ITETOT, IIB
 READ(11) (XB(IB), YB(IB), IB=1, IIB)
C
C---- T if this is an ISES polar, F if XFOIL polar
 LISES = IITOT .NE. 0
C
C---- T if this is a Mach sweep, F if alpha sweep
 LMACH = (MACH .EQ. 0.0) .AND. LISES
C
 DO IA=1, NAX
C
 IF(LISES) THEN
C------- ISES dump file read
 IF(LMACH) THEN
 READ(11,END=30)
 & ALFA(IA),CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA),
 & MA(IA)
 ELSE
 READ(11,END=30)
 & ALFA(IA),CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA)
 IF(MATYP.EQ.1) MA(IA) = MACH
 IF(MATYP.EQ.2) MA(IA) = MACH/SQRT(CL(IA))
 IF(MATYP.EQ.3) MA(IA) = MACH/CL(IA)
 ENDIF
 II(1,IA) = IITOT
 II(2,IA) = IITOT
 ILE(1,IA) = ILETOT
 ILE(2,IA) = ILETOT
 ITE(1,IA) = ITETOT
 ITE(2,IA) = ITETOT
 ELSE
C------- XFOIL dump file read
 READ(11,END=30)
 & ALFA(IA),CL(IA),CD(IA),CDI(IA),CM(IA),XTR(1,IA),XTR(2,IA)
 READ(11,END=30) II(1,IA), II(2,IA), ITE(1,IA), ITE(2,IA)
 ILE(1,IA) = 1
 ILE(2,IA) = 1
 IF(MATYP.EQ.1) MA(IA) = MACH
 IF(MATYP.EQ.2) MA(IA) = MACH/SQRT(CL(IA))
 IF(MATYP.EQ.3) MA(IA) = MACH/CL(IA)
 ENDIF
C
 DO IS=1, 2
 IF(II(IS,IA).GT.NX) STOP 'Array overflow. Increase NX.'
 READ(11,END=30) (X(I,IS,IA),CP(I,IS,IA),
 & THET(I,IS,IA),DSTR(I,IS,IA),
 & CF(I,IS,IA), CTAU(I,IS,IA), I=1, II(IS,IA))
 END DO
C
 END DO
 WRITE(*,*) 'Point array limit NAX reached.'
C
 30 NA = IA - 1
 CLOSE(11)
C
 DO IA=1, NA
 DO 40 IS=1, 2
 DO I=ILE(IS,IA)+2, II(IS,IA)-1
 IF(X(I-1,IS,IA).LT.XTR(IS,IA) .AND.
 & X(I ,IS,IA).GE.XTR(IS,IA)) THEN
 ITRAN(IS,IA) = I
 GO TO 40
 ENDIF
 END DO
 40 CONTINUE
 END DO
C
 GAM = 1.4
 GM1 = GAM - 1.0
C
 DO IA=1, NA
 CPSTAR(IA) = -999.0
 IF(MA(IA) .NE. 0.0) THEN
 MACHSQ = MA(IA)**2
 CPSTAR(IA) = (((1.0+0.5*GM1*MACHSQ)
 & /(1.0+0.5*GM1))**(GAM/GM1) - 1.0)
 & / (0.5*GAM*MACHSQ)
 ENDIF
 END DO
C
 CLOSE(11)
C
C---- set flags indicating if CL or alpha have been held fixed (in Mach sweep)
 LCLFIX = .TRUE.
 LALFIX = .TRUE.
 DO IA=1, NA-1
 ADCL = ABS(CL(IA) - CL(IA+1))
 ADAL = ABS(ALFA(IA) - ALFA(IA+1))
 IF(ADCL .GT. 0.001) LCLFIX = .FALSE.
 IF(ADAL .GT. 0.001) LALFIX = .FALSE.
 END DO
 GO TO 900
C
 800 WRITE(*,*) 'Error opening polar dump file '
C
 900 RETURN
C
 1000 FORMAT(A)
 END ! READIT

 SUBROUTINE IDENT(XID,YID)
 INCLUDE 'PXPLOT.INC'
C
C---- plot code and version identifier
 CALL NEWPEN(1)
 CHI = 0.012
 CALL PLCHAR(XID+ CHI,YID-1.0*CHI,CHI,CODE ,0.0,5)
 CALL PLCHAR(XID+ CHI,YID-3.0*CHI,CHI,'V' ,0.0,1)
 CALL PLNUMB(XID+3.0*CHI,YID-3.0*CHI,CHI,VERSION,0.0,2)
C
 RETURN
 END ! IDENT

XFOILinterface/XFOIL/orrs/src/roll.f

 program roll
c--
c Computes mean profile and Reynolds stress tensor components
c of Lamb vortex "roller" street.
c--
 parameter (nx=100,ny=200)
 real x(nx,ny), y(nx,ny), u(nx,ny), v(nx,ny), w(nx,ny)
 real uavg(ny), yavg(ny)
 real uu(ny), vv(ny), uv(ny), qq(ny)
c
 St = 0.19
ccc Wmax = 4.45
 Wmax = 0.90
c
 vfrac = 0.75
c
 pi = 4.0*atan(1.0)
c
 xmin = -0.5*pi/St
 xmax = 0.5*pi/St
c
 ymin = -0.75*pi/St
 ymax = 0.75*pi/St
c
 do i=1, nx
 do j=1, ny
 x(i,j) = xmin + (xmax-xmin)*float(i-1)/float(nx-1)
 y(i,j) = ymin + (ymax-ymin)*float(j-1)/float(ny-1)
c
 usum = 0.
 vsum = 0.
c
 do k = -100, 100
 xb = x(i,j) + float(k)*pi/St
 yb = y(i,j)
 rsq = xb**2 + yb**2
c
 arg = Wmax*St*rsq
 arg = min(arg , 30.0)
 ex1 = 1.0 - exp(-arg)
c
 usum = usum + yb/rsq * ex1
 vsum = vsum - xb/rsq * ex1
 enddo
c
 u(i,j) = usum * 0.5/St
 v(i,j) = vsum * 0.5/St
c
 enddo
 enddo
c
 do j=1, ny
 yavg(j) = y(1,j)
 uavg(j) = 0.
 do i=1, nx-1
 uavg(j) = uavg(j) + u(i,j)/float(nx-1)
 enddo
 enddo
c
 do i=1, nx
 do j=1, ny
 u(i,j) = vfrac*u(i,j) + (1.0-vfrac)*uavg(j)
 v(i,j) = vfrac*v(i,j)
 enddo
 enddo
c
c
 do i=2, nx-1
 do j=2, ny-1
 dx = x(i+1,j) - x(i-1,j)
 dy = y(i,j+1) - y(i,j-1)
 dv = v(i+1,j) - v(i-1,j)
 du = u(i,j+1) - u(i,j-1)
c
 w(i,j) = du/dy - dv/dx
 enddo
 enddo
c
c
 theta = 0.0
 do j=1, ny-1
 ua = (uavg(j+1) + uavg(j))*0.5 + 0.5
 dy = yavg(j+1) - yavg(j)
 theta = theta + (1.0 - ua)*ua*dy
 enddo
c
 write(*,*) 'Theta = ', theta
c
 do j=1, ny
 uu(j) = 0.
 vv(j) = 0.
 uv(j) = 0.
 do i=1, nx-1
 up = u(i,j) - uavg(j)
 vp = v(i,j)
 uu(j) = uu(j) + up*up / float(nx-1)
 vv(j) = vv(j) + vp*vp / float(nx-1)
 uv(j) = uv(j) + up*vp / float(nx-1)
 enddo
 qq(j) = uu(j) + vv(j)
 enddo
c
 qint = 0.
 do j=2, ny-1
 qint = qint + uavg(j)*(uu(j) + vv(j)) / float(ny-2)
 enddo
c
c
 idev = 1
 size = 7.0
 ncolor = 64
 ch = 0.01
c
 XOFF = 0.
 YOFF = 0.
 GWT = 0.8 / (YMAX-YMIN)
c
 call plinitialize
 call colorspectrumhues(ncolor,'ROYGCB')
c
c
 call plopen(0.8,0,idev)
 call newfactor(size)
c
 call plot(0.1,0.1,-3)
 call plot(-xmin*GWT,-ymin*GWT,-3)
c
 do ic=1, ncolor
 wcon = Wmax * float(ic-1)/float(ncolor-1)
 call newcolor(-ic)
 call CONTGRID(NX,NY,NX,NY,X,Y,W,WCON,XOFF,YOFF,GWT,GWT)
 enddo
c
 call newcolorname('black')
c
 ydel = 2.0
 y1 = -12.0
 y2 = 12.0
c
c------------------
 call plot(xmax*GWT+0.1,0.0,-3)
c
 uwt = 0.3
c
 udel = 0.2
 u1 = 0.
 u2 = 1.0
c
 call yaxis(0.0,y1*gwt,(y2-y1)*gwt,ydel*gwt,y1,ydel,ch,-2)
 call xaxis(0.0,0.0,-uwt*(u2-u1),uwt*udel,u1,udel,ch,1)
c
 call xyline(ny,uavg,yavg,-0.5,uwt,0.0,gwt,1)
c
c------------------
 call plot(uwt+0.1,0.0,-3)
c
 twt = 3.0
c
 tdel = 0.02
 t1 = 0.
 t2 = 0.1
 call yaxis(0.0,y1*gwt,(y2-y1)*gwt,ydel*gwt,y1,ydel,ch,-2)
 call xaxis(0.0,0.0,-twt*(t2-t1),twt*tdel,t1,tdel,ch,-2)
c
 call xyline(ny,qq,yavg,0.0,twt,0.0,gwt,1)
 call xyline(ny,uu,yavg,0.0,twt,0.0,gwt,2)
 call xyline(ny,vv,yavg,0.0,twt,0.0,gwt,3)
 call xyline(ny,uv,yavg,0.0,10.0*twt,0.0,gwt,4)
c
c------------------

 call plflush
 pause
 call plend
c
c
 call plopen(0.8,0,idev)
 call newfactor(size)
c
 call plot(0.1,0.1,-3)
 call plot(-xmin*GWT,-ymin*GWT,-3)
c
 do ic=1, ncolor
 Ucon = -2.0 + 4.0*float(ic-1)/float(ncolor-1)
 call newcolor(-ic)
 call CONTGRID(NX,NY,NX,NY,X,Y,U,UCON,XOFF,YOFF,GWT,GWT)
 enddo
c
 call plflush
 pause
c
c
 call plclose
 stop
 end

XFOILinterface/XFOIL/plotlib/set_subs.f

C***
C Module: plt_set.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This library is free software; you can redistribute it and/or
C modify it under the terms of the GNU Library General Public
C License as published by the Free Software Foundation; either
C version 2 of the License, or (at your option) any later version.
C
C This library is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
C Library General Public License for more details.
C
C You should have received a copy of the GNU Library General Public
C License along with this library; if not, write to the Free
C Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***
C
C***
C --- Xplot11 internal processing routines
C
C Version 4.46 11/28/01
C
C Note: These are plot-handling routines intended only
C for internal use, including handling the replot buffer,
C internal plot calls and clipping and zooming (the "set_xxx"
C routines). Not intended for general consumption.
C***

 subroutine set_pen(ipen)
C...Sets current pen width in pixels
 include 'pltlib.inc'
 LST_PEN = ipen
 if(LGW_GEN) call gw_pen(ipen)
 if(LPS_GEN) call ps_pen(ipen)
 return
 end

 subroutine set_pat(ipat)
C...Sets current line pattern as integer bit pattern
 include 'pltlib.inc'
 LST_PAT = ipat
 if(LGW_GEN) call gw_linepattern(ipat)
 if(LPS_GEN) call ps_linepattern(ipat)
 return
 end

 subroutine set_color(icolor)
C...Sets foreground color for plotting
 include 'pltlib.inc'
 LST_CLR = icolor
 if(LGW_GEN) call gw_color(icolor)
 if(LPS_GEN) call ps_color(icolor)
 return
 end

 subroutine set_scl(xscale,yscale)
C...Sets user's plotting scale factors to xscale,yscale
 include 'pltlib.inc'
 X_SCALE = xscale
 Y_SCALE = yscale
 return
 end

 subroutine putprim(ityp,ival,xval,yval)
C...Installs plot primitive in save arrays
C If the save arrays fill, the arrays are dumped to a temporary logfile
C
 include 'pltlib.inc'
 SAVE incore
C
 if(N_PRIM.EQ.0) then
 N_WRIT = 0
 incore = 0
 endif
C
C...Don't put primitives if at end of arrays and logging has been disabled
 if(N_PRIM.GT.Nstore_max .AND. .NOT.LPRIM_OPEN) return
C
C...Check number of primitives in in-core save arrays for full arrays
 if(incore.EQ.Nstore_max .AND. N_PRIM.NE.0) THEN
C
C...Primitives arrays are full, how about writing it out to logfile?
 if(.NOT.LPRIM_OPEN) then
C...Open new dump file, or overwrite existing one
 open(NPRIM_UNIT,file='xplot11_logfile',form='UNFORMATTED',
 & status='UNKNOWN',err=10)
 rewind(NPRIM_UNIT)
 LPRIM_OPEN = .TRUE.
 N_WRIT = 0
 endif
C
C...Append in-core save arrays to disk file
C first record is number of elements in this save block,
C second record is integer type and integer value arrays,
C third record is x,y value arrays
 write(NPRIM_UNIT) Nstore_max
 call wr_array(NPRIM_UNIT,Nstore_max,I_TYP,I_PRIM,X_PRIM,Y_PRIM)
 N_WRIT = N_WRIT + Nstore_max
C...incore index is rolled over to 0 and resumes counting up as index
C in the save arrays
 incore = 0
 endif
C
 N_PRIM = N_PRIM + 1
 incore = incore + 1
C
 I_TYP (incore) = ityp
 I_PRIM(incore) = ival
 X_PRIM(incore) = xval
 Y_PRIM(incore) = yval
C
 return
C
 10 write(*,*) '*** Open error on xplot11_logfile, logging disabled'
C...This will disable future logging (see first statement above)
 N_PRIM = Nstore_max + 1
 return
 end

 subroutine getprim(icount,ityp,ival,xval,yval)
C...Gets plot primitive from saved plot array or from log file
C
C Input: icount integer giving primitive count
C icount<=0 as input indicates restart on prims
C list, rewind external prim file, if used
C Output: icount is incremented each fetch until the prims
C list is exhausted, then icount is returned as -1 to
C signal that no more prims are available
C
 include 'pltlib.inc'
 SAVE incore
C
 if(icount.LT.0) THEN
C...primitives-fetching is to be restarted from beginning
C
 if(LPRIM_OPEN) then
 if(N_WRIT .lt. N_PRIM) then
C...append rest of save arrays to disk, so arrays can be used as i/o buffers
 imax = N_PRIM - N_WRIT
 write(NPRIM_UNIT) imax
 call wr_array(NPRIM_UNIT,imax,I_TYP,I_PRIM,X_PRIM,Y_PRIM)
 N_WRIT = N_WRIT + imax
 endif
 rewind(NPRIM_UNIT)
C...now read a buffer of stored prims
 read(NPRIM_UNIT,err=10) imax
 call rd_array(NPRIM_UNIT,imax,I_TYP,I_PRIM,X_PRIM,Y_PRIM)
 ELSE
C...No prim file used initialize incore to total # of prims
 imax = N_PRIM
 endif
 N_INCORE = imax
 incore = 0
 icount = 0
C
 elseif(icount.EQ.N_PRIM) THEN
C...no more primitives are available
 icount = -1
 return
 endif
C
C...Note: icount has the same meaning as N_PRIM in putprim
C... incore has the same meaning as incore in putprim
C
 if(incore.EQ.N_INCORE .AND. icount.ne.0) then
 if(LPRIM_OPEN) then
C...Read next chunk of primitives from file if opened
 read(NPRIM_UNIT,err=10) imax
 call rd_array(NPRIM_UNIT,imax,I_TYP,I_PRIM,X_PRIM,Y_PRIM)
 N_INCORE = imax
 incore = 0
 else
C...Shouldn't get to here if all went OK.
 write(*,*) 'Xplot11: Cannot read log file.'
 icount = -1
 return
 endif
 endif
C
C...Set the values for returning
 icount = icount + 1
 incore = incore + 1
 ityp = I_TYP (incore)
 ival = I_PRIM(incore)
 xval = X_PRIM(incore)
 yval = Y_PRIM(incore)
C
 return
C
 10 write(*,*) '? Xplot11: Error on reading log file.'
 return
 end

 subroutine rd_array(lunit,n,ityp,iprim,xprim,yprim)
c--- Fast unformatted reading of 2 integer and 2 real arrays from log file
 dimension ityp(n), iprim(n),
 & xprim(n), yprim(n)
 read(lunit,err=10) ityp,iprim
 read(lunit,err=10) xprim,yprim
 go to 20
 10 write(*,*) '? Xplot11: Error on reading log file.'
 20 return
 end

 subroutine wr_array(lunit,n,ityp,iprim,xprim,yprim)
c--- Fast unformatted writing of 2 integer and 2 real arrays to log file
 dimension ityp(n), iprim(n),
 & xprim(n), yprim(n)
 write(lunit) ityp,iprim
 write(lunit) xprim,yprim
 return
 end

 subroutine set_clip(XMIN,YMIN,XMAX,YMAX)
 include 'pltlib.inc'
C
C... clip to at least window limits
 CLP_XMIN = MAX(XMIN , 0.0)
 CLP_YMIN = MAX(YMIN , 0.0)
 CLP_XMAX = MIN(XMAX , X_PAGE)
 CLP_YMAX = MIN(YMAX , Y_PAGE)
C
 return
 end

 subroutine plot_1(X,Y,icode)	
C...Processing routine for internal plotting calls, absolute coordinates
C
C X,Y absolute coordinates
C icode function code (integer)
C
C 3 move to X,Y (move in absolute coordinates)
C 2 line to X,Y (line in absolute coordinates)
C
C -2 line to X,Y (line and re-origin in absolute coordinates)
C -3 move to X,Y (move and re-origin in absolute coordinates)
C
 include 'pltlib.inc'
 logical LCODE_OK
C
 icabs = abs(icode)
 LCODE_OK = (icabs.EQ.2 .OR. icabs.EQ.3)
C
 if(.NOT. LCODE_OK) then
 write(*,*) 'PLOTABS_1: unknown function code ',icode
 write(*,*) ' at point X,Y =',X,Y
 return
 endif
C
C...use absolute coordinates to call device plotting
 X1 = X_LST
 Y1 = Y_LST
 X2 = X
 Y2 = Y
C
 if(icabs.eq.2) then
C...make copy of vector for zoomed clipping
 XX1 = X1
 YY1 = Y1
 XX2 = X2
 YY2 = Y2
C...clip vector to user plot limits (CLP_XMIN,CLP_XMAX,CLP_YMIN,CLP_YMAX)
 call clip_ls(XX1,YY1,XX2,YY2,ivis)
C
 if(ivis.NE.0) then
C...check for change in pen, line pattern or color
 if(I_PEN.NE.LST_PEN) call set_pen(I_PEN)
 if(I_PAT.NE.LST_PAT) call set_pat(I_PAT)
 if(I_CLR.NE.LST_CLR) call set_color(I_CLR)
C
C...plot line segment in page coordinates
 if(LGW_GEN) call gw_line(XX1,YY1,XX2,YY2)
 if(LPS_GEN) call ps_line(XX1,YY1,XX2,YY2)
 endif
 endif
C
C...passed-in endpoint (absolute coordinates) now becomes "last" location
 X_LST = X2
 Y_LST = Y2
C
 if(icode.LT.0) then
C...re-origin
 X_ORG = X2
 Y_ORG = Y2
 endif
C
 return
 end

 subroutine clip_ls(X1,Y1,X2,Y2,ivis)
C...Clips line segment against the clip window defined by
C CLP_XMIN,CLP_XMAX,CLP_YMIN,CLP_YMAX returning visibility flag ivis.
C ivis=0 for no visible line segment
C ivis=1 for a visible line segment
C
 include 'pltlib.inc'
 integer iclip_1
C
C... clip to zoomed clipping window or page limits
 CLPXMIN = MAX(X_ABS2ZM(CLP_XMIN) , 0.0)
 CLPYMIN = MAX(Y_ABS2ZM(CLP_YMIN) , 0.0)
 CLPXMAX = MIN(X_ABS2ZM(CLP_XMAX) , X_PAGE)
 CLPYMAX = MIN(Y_ABS2ZM(CLP_YMAX) , Y_PAGE)
C
C... zoomed coordinates for clipping
 X1 = X_ABS2ZM(X1)
 Y1 = Y_ABS2ZM(Y1)
 X2 = X_ABS2ZM(X2)
 Y2 = Y_ABS2ZM(Y2)
C
 ivis = 0
 if(iclip_1(X1,Y1,X2,Y2,CLPXMIN, 1.).eq.0) return
 if(iclip_1(Y1,X1,Y2,X2,CLPYMIN, 1.).eq.0) return
 if(iclip_1(X1,Y1,X2,Y2,CLPXMAX,-1.).eq.0) return
 if(iclip_1(Y1,X1,Y2,X2,CLPYMAX,-1.).eq.0) return
 ivis = 1
 return
 end

 integer function iclip_1(x1,y1,x2,y2,xlim,dir)
C...Basic line clipping, clips line segment against line x=xlim
C with visible side determined by dir (+1. or -1.)
C dir=+1. x>xlim is visible
C dir=-1 x<xlim is visible
C
 iclip_1 = 0
 d1 = dir*(x1-xlim)
 d2 = dir*(x2-xlim)
 if(d1.EQ.0. .AND. d2.EQ.0.) return
C
 if(d1.GE.0. .OR. d2.GE.0.) then
 iclip_1 = 1
 if(d1*d2 .LE. 0.) then
 dy = y2-y1
 d12 = d1-d2
 if(d1 .LT. 0.) then
 x1 = xlim
 y1 = y1 + dy*d1/d12
 endif
 if(d2 .LT. 0.) then
 x2 = xlim
 y2 = y2 + dy*d2/d12
 endif
 endif
 endif
 return
 end

 subroutine polyline_1(X,Y,n,ifill)
C...Processing routine for polyline calls, inputs in absolute coordinates
C X,Y coordinate arrays in absolute units
C n number of x,y points
C ifill fill flag, 0 for no fill, 1 for filled polygon
C
 include 'pltlib.inc'
 dimension X(n), Y(n)
 dimension XZ(MaxPolyLine), YZ(MaxPolyLine)
 dimension XOUT(MaxPolyLine), YOUT(MaxPolyLine)
 dimension XCLP(5), YCLP(5)
C
C...For unfilled polyline treat this as a set of standard line segments
C This avoids putting an unfilled polyline into the more complex filled
C polyline clipper.
 if(ifill.LE.0) then
 if(n.gt.1) then
 call plot_1(X(1),Y(1),3)
 do i = 2, n
 call plot_1(X(i),Y(i),2)
 end do
 endif
 return
 endif
C
 if(n.GT.MaxPolyLine) then
 write(*,*) 'polyline_1: array overflow. Increase MaxPolyline.'
 return
 endif
C
 if(n.LE.1) return
C
C...save last point for next draw command, just in case
 X_LST = X(n)
 Y_LST = Y(n)
C
C...convert to absolute, zoomed coordinates, check for bounding box
 XZ(1) = X_ABS2ZM(X(1))
 YZ(1) = Y_ABS2ZM(Y(1))
 xbbmin = XZ(1)
 ybbmin = YZ(1)
 xbbmax = xbbmin
 ybbmax = ybbmin
 do i=2, n
 XZ(i) = X_ABS2ZM(X(i))
 YZ(i) = Y_ABS2ZM(Y(i))
 IF(XZ(i).LT.xbbmin) xbbmin = XZ(i)
 IF(YZ(i).LT.ybbmin) ybbmin = YZ(i)
 IF(XZ(i).GT.xbbmax) xbbmax = XZ(i)
 IF(YZ(i).GT.ybbmax) ybbmax = YZ(i)
 end do
 NZ = n
C
C...Clip to zoomed clipping window or page limits
 CLPXMIN = MAX(X_ABS2ZM(CLP_XMIN) , 0.0)
 CLPYMIN = MAX(Y_ABS2ZM(CLP_YMIN) , 0.0)
 CLPXMAX = MIN(X_ABS2ZM(CLP_XMAX) , X_PAGE)
 CLPYMAX = MIN(Y_ABS2ZM(CLP_YMAX) , Y_PAGE)
C
C...Check for polygon outside clipping window, skip plotting
 if((xbbmin.GT.CLPXMAX) .OR.
 & (xbbmax.LT.CLPXMIN) .OR.
 & (ybbmin.GT.CLPYMAX) .OR.
 & (ybbmax.LT.CLPYMIN)) RETURN
C
C...Is polygon fully inside clipping window?
 if((xbbmax.GT.CLPXMAX) .OR.
 & (xbbmin.LT.CLPXMIN) .OR.
 & (xbbmax.GT.CLPYMAX) .OR.
 & (ybbmin.LT.CLPYMIN)) then
c
C...If polygon is not fully inside clipping window, clip it.
C Get window vertices of clipping window assembled as a polygon,
C these must be in clockwise order to clip inside the window
 XCLP(1) = CLPXMIN
 YCLP(1) = CLPYMIN
 XCLP(2) = CLPXMIN
 YCLP(2) = CLPYMAX
 XCLP(3) = CLPXMAX
 YCLP(3) = CLPYMAX
 XCLP(4) = CLPXMAX
 YCLP(4) = CLPYMIN
 XCLP(5) = CLPXMIN
 YCLP(5) = CLPYMIN
 nclp = 5
C...use special clipping for polylines that returns a clipped polyline
 call clip_poly0(XZ,YZ,NZ,XCLP,YCLP,nclp,XOUT,YOUT,nout)
c
C...Or if fully inside clip box, just plot the polyline as it is..
 else
 do i = 1, NZ
 XOUT(i) = XZ(i)
 YOUT(i) = YZ(i)
 end do
 nout = NZ
 endif
c
 if(nout.GT.1) then
C...check for change in pen, line pattern or color
 if(I_PEN.NE.LST_PEN) call set_pen(I_PEN)
 if(I_PAT.NE.LST_PAT) call set_pat(I_PAT)
 if(I_CLR.NE.LST_CLR) call set_color(I_CLR)
C...plot polyline in page coordinates
 if(LGW_GEN) call gw_polyline(XOUT,YOUT,nout,ifill)
 if(LPS_GEN) call ps_polyline(XOUT,YOUT,nout,ifill)
 endif
 return
 end

 subroutine clip_poly0(xp,yp,np,xclp,yclp,nclp,xout,yout,nout)
C...Clips polyline xx,yy,nn against the clip window defined by
C xclp,yclp,nclp with output clipped polyline in xout,yout,nout
C
C Clipping algorithm is a Sutherland-Hodgman clipper, implemented here
C as a recursive (in Fortran!!) routine that clips each vertex in order
C against each of the window edges.
C
 dimension xp(np), yp(np),
 & xclp(nclp), yclp(nclp),
 & xout(nout), yout(nout)
 dimension xfrst(5), yfrst(5),
 & xlst(5), ylst(5), ivis(5)
C
 do n = 1, nclp
 ivis(n) = -1
 end do
 nout = 0
 nlvl = 0
 ilast = 0
c
C--- Feed the polyline points through the clipper point by point
 do n = 1, np
 x = xp(n)
 y = yp(n)
 call clip_poly1(x,y,ilast,xclp,yclp,nclp,xout,yout,nout,
 & xfrst,yfrst,xlst,ylst,ivis,nlvl)
 end do
C... Now do finish the clipping with a final call with last flag set
 ilast = 1
 call clip_poly1(x,y,ilast,xclp,yclp,nclp,xout,yout,nout,
 & xfrst,yfrst,xlst,ylst,ivis,nlvl)
c
 return
 end

 subroutine clip_poly1(x,y,ilast,xclp,yclp,nclp,xout,yout,nout,
 & xfrst,yfrst,xlst,ylst,ivis,nlvl)
C...Clipping routine for polylines clipped by polyline xclp,yclp,nclp
C This routine is a recursive (via a faked-out call of clip_poly2)
C
 logical intsct
 dimension xclp(nclp), yclp(nclp),
 & xout(nout), yout(nout)
 dimension xfrst(5), yfrst(5),
 & xlst(5), ylst(5), ivis(5)
C
C... Check for end of clipping process (ilast>0)
 if(nlvl.GE.nclp-1) THEN
 if(ilast.LE.0) then
 nout = nout + 1
 xout(nout) = x
 yout(nout) = y
c write(*,*) 'out ',nout,x,y
 endif
 return
 endif
C... Set clipping edge (same as recursion depth)
 nlvl = nlvl + 1
c
C... Check for closing flag (ilast=1)
C Use first point as last vertex
 if(ilast.gt.0) then
 x = xfrst(nlvl)
 y = yfrst(nlvl)
 endif
c
C... Check point visibility
 x1 = xclp(nlvl)
 y1 = yclp(nlvl)
 dx = xclp(nlvl+1) - x1
 dy = yclp(nlvl+1) - y1
 d2 = dy*(x-x1) - dx*(y-y1)
 ivisp = 0
 if(d2.GT.0.0) ivisp = 1
c
C... Check for intersection, save first point in this level if ivis=-1
 intsct = .FALSE.
 if(ivis(nlvl).LT.0) then
 xfrst(nlvl) = x
 yfrst(nlvl) = y
 go to 20
 endif
 if (ivisp+ivis(nlvl).EQ.1) then
 d1 = dy*(xlst(nlvl)-x1) - dx*(ylst(nlvl)-y1)
 if((d1-d2).NE.0.) then
 intsct = .TRUE.
 frac = d1/(d1-d2)
 xint = xlst(nlvl) + frac*(x-xlst(nlvl))
 yint = ylst(nlvl) + frac*(y-ylst(nlvl))
 endif
 endif
c
C... Save point for next call to this level
C If the close level flag is set (ilast=1) save it in ivis
 20 xlst(nlvl) = x
 ylst(nlvl) = y
 ivis(nlvl) = ivisp
 if(ilast.EQ.1) ivis(nlvl) = 2
c
C... Recurse to next level with intersection...
 if(intsct) then
 ilast = 0
 x = xint
 y = yint
 call clip_poly2(x,y,ilast,xclp,yclp,nclp,xout,yout,nout,
 & xfrst,yfrst,xlst,ylst,ivis,nlvl)
 endif
c
C... Call next level with vertex (if visible) or to close next level
 if(ivis(nlvl).GE.1) then
 x = xlst(nlvl)
 y = ylst(nlvl)
 if(ivis(nlvl).EQ.2) ilast = 1
 call clip_poly2(x,y,ilast,xclp,yclp,nclp,xout,yout,nout,
 & xfrst,yfrst,xlst,ylst,ivis,nlvl)
 endif
c
 nlvl = nlvl - 1
 return
 end

 subroutine clip_poly2(x,y,ilast,xclp,yclp,nclp,xout,yout,nout,
 & xfrst,yfrst,xlst,ylst,ivis,nlvl)
C...Dummy calling routine to allow recursion of clip_poly1
 dimension xclp(nclp), yclp(nclp),
 & xout(nout), yout(nout)
 dimension xfrst(5), yfrst(5),
 & xlst(5), ylst(5), ivis(5)
C
 call clip_poly1(x,y,ilast,xclp,yclp,nclp,xout,yout,nout,
 & xfrst,yfrst,xlst,ylst,ivis,nlvl)
 return
 end

 subroutine set_zoom(XOFF_ZOOM,YOFF_ZOOM,XFAC_ZOOM,YFAC_ZOOM,
 & LSAME,LCURS)
 logical LSAME, LCURS
 character chkey*1, line*80
C---
C Sets new zoom parameters from cursor or keyboard input.
C
C Input/ XOFF_ZOOM zoom offsets
C output: YOFF_ZOOM
C XFAC_ZOOM zoom scaling factors
C YFAC_ZOOM
C
C Input: LSAME T if new zoom factors (XFAC,YFAC) must be the same
C LSAME F if new zoom factor XFAC can be different than YFAC
C LCURS T if input for zoom box comes from graphics input
C LCURS F if input for zoom box comes from keyboard
C---
C
 call GETWINSIZE(XSIZE,YSIZE)
 call GETCOLORINDEX(icolsave)
C--- Set zoom lines in default foreground color (black)
 icol = 1
C
 write(*,*)
 if(LCURS) then
 write(*,*) 'Mark off corners of blowup area'
 write(*,*) '(2 identical points default to current area)'
 else
 write(*,*) 'Enter x,y coordinates of blowup area corners'
 write(*,*) '(2 identical points default to current area)'
 write(*,*) '(default is user coords, use input "x y")'
 write(*,*) '(to specify absolute coords, use input "abs x y")'
 endif
c
C...Get first point
 if(LCURS) then
 call GETCURSORXYABS(XABS1,YABS1,chkey)
 write(*,110) '1',XABS2usr(XABS1),YABS2usr(YABS1),XABS1,YABS1
 else
 1 write(*,*) 'point 1: '
 read(*,100,end=1) line
 if(line.eq.' ') then
 XABS1 = 0.
 YABS1 = 0.
 elseif(line(1:3).NE.'abs' .AND. line(1:3).NE.'ABS') then
 read(line,*,err=1) x1, y1
 XABS1 = xusr2ABS(x1)
 YABS1 = yusr2ABS(y1)
 else
 read(line(4:80),*,err=1) XABS1, YABS1
 endif
 endif
 XZ = X_ABS2ZM(XABS1)
 YZ = Y_ABS2ZM(YABS1)
C... Use direct plotting calls to Xwindow to put crosshairs on screen
 call gw_color(icol)
 call gw_line(XZ, 0.0, XZ, YSIZE)
 call gw_line(0.0, YZ, XSIZE, YZ)
 call gw_flush
c
C...Get second point
 if(LCURS) then
 call GETCURSORXYABS(XABS2,YABS2,chkey)
 write(*,110) '2',XABS2usr(XABS2),YABS2usr(YABS2),XABS2,YABS2
 else
 2 write(*,*) 'point 2: '
 read(*,100,end=2) line
 if(line.eq.' ') then
 XABS2 = 0.
 YABS2 = 0.
 elseif(line(1:3).NE.'abs' .AND. line(1:3).NE.'ABS') then
 read(line,*,err=2) x2, y2
 XABS2 = xusr2ABS(x2)
 YABS2 = yusr2ABS(y2)
 else
 read(line(4:80),*,err=2) XABS2, YABS2
 endif
 endif
 XZ = X_ABS2ZM(XABS2)
 YZ = Y_ABS2ZM(YABS2)
C... Use direct plotting calls to Xwindow to put crosshairs on screen
 call gw_line(XZ, 0.0, XZ, YSIZE)
 call gw_line(0.0, YZ, XSIZE, YZ)
 call gw_flush
 call gw_color(icolsave)
C
C
C... Skip zooming stuff if points are the same
 if(XABS1.eq.XABS2 .and. YABS1.eq.YABS2) return
c
 XDIF = ABS(XABS2 - XABS1)
 YDIF = ABS(YABS2 - YABS1)
 if(XDIF.eq.0.0) XDIF = 0.0001*XSIZE
 if(YDIF.eq.0.0) YDIF = 0.0001*YSIZE
c
 XOFF_ZOOM = -MIN(XABS1,XABS2)
 YOFF_ZOOM = -MIN(YABS1,YABS2)
 XFAC_ZOOM = XSIZE/XDIF
 YFAC_ZOOM = YSIZE/YDIF
c
 if(LSAME) then
C... set equal x,y zoom factors
 fac = MIN(XFAC_ZOOM, YFAC_ZOOM)
 XFAC_ZOOM = fac
 YFAC_ZOOM = fac
c
C... re-center the zoom region
 XOFF_ZOOM = XOFF_ZOOM + 0.5*(XSIZE/fac-XDIF)
 YOFF_ZOOM = YOFF_ZOOM + 0.5*(YSIZE/fac-YDIF)
 endif
c
 100 format(a)
 110 format(' Pt ',a,2x,'usr x,y',2(2x,f11.6),3x,'abs X,Y',2(2x,f11.6))
 return
 end

C***Zoom transformation functions - to and from absolute<->zoomed

 function X_ABS2ZM(X)
C...Converts absolute X to zoomed X'
 include 'pltlib.inc'
 X_ABS2ZM = XFAC_ZOOM*(X + XOFF_ZOOM)
 return
 end

 function Y_ABS2ZM(Y)
C...Converts absolute Y to zoomed Y'
 include 'pltlib.inc'
 Y_ABS2ZM = YFAC_ZOOM*(Y + YOFF_ZOOM)
 return
 end

 function X_ZM2ABS(X)
C...Converts zoomed X' to absolute X
 include 'pltlib.inc'
 X_ZM2ABS = X/XFAC_ZOOM - XOFF_ZOOM
 return
 end

 function Y_ZM2ABS(Y)
C...Converts zoomed Y' to absolute Y
 include 'pltlib.inc'
 Y_ZM2ABS = Y/YFAC_ZOOM - YOFF_ZOOM
 return
 end

XFOILinterface/XFOIL/src/sort.f

 SUBROUTINE HSORT(N,A,INDX)
 DIMENSION A(*)
 DIMENSION INDX(*)
C--------------------------------------
C Heapsort algorithm.
C Returns INDX(.) such that
C
C A(INDX(i)) < A(INDX(i+1))
C
C Stolen from Numerical Recipes.
C--------------------------------------
C
 DO I = 1, N
 INDX(I) = I
 ENDDO
C
 IF(N.LE.1) RETURN
C
 L = N/2 + 1
 IR = N
C
 10 CONTINUE
 IF(L.GT.1) THEN
 L = L-1
 INDXT = INDX(L)
 Q = A(INDXT)
 ELSE
 INDXT = INDX(IR)
 Q = A(INDXT)
 INDX(IR) = INDX(1)
C
 IR = IR - 1
 IF(IR.EQ.1) THEN
 INDX(1) = INDXT
 RETURN
 ENDIF
 ENDIF
C
 I = L
 J = L+L
C
 20 IF(J.LE.IR) THEN
 IF(J.LT.IR) THEN
 IF(A(INDX(J)) .LT. A(INDX(J+1))) J = J+1
 ENDIF
 IF(Q .LT. A(INDX(J))) THEN
 INDX(I) = INDX(J)
C
 I = J
 J = J+J
 ELSE
 J = IR+1
 ENDIF
 GO TO 20
 ENDIF
C
 INDX(I) = INDXT
 GO TO 10
 END

 SUBROUTINE ASORT(N,A,INDX,ATMP)
 DIMENSION A(*), ATMP(*)
 DIMENSION INDX(*)
C---
C Applies sorted index array to reorder A.
C---
 DO I = 1, N
 ATMP(I) = A(I)
 ENDDO
C
 DO I = 1, N
 ISORT = INDX(I)
 A(I) = ATMP(ISORT)
 ENDDO
C
 RETURN
 END

 SUBROUTINE REMD(N,A,INDX,TOL,NNEW)
 DIMENSION A(*)
 DIMENSION INDX(*)
C--
C Sets index array, such that
C duplicate A values are left out
C--
 K = 1
 INDX(K) = 1
C
 DO I = 2, N
 IF(ABS(A(I)-A(I-1)) .GT. TOL) THEN
 K = K + 1
 INDX(K) = I
 ENDIF
 ENDDO
C
 NNEW = K
C
 RETURN
 END ! REMD

 SUBROUTINE SORTDUP(KK,S,W)
C--- Sort arrays in S with no removal of duplicates
 DIMENSION S(KK), W(KK)
 LOGICAL DONE
C
C---- sort arrays
 DO 10 IPASS=1, 1234
 DONE = .TRUE.
 DO 101 N=1, KK-1
 NP = N+1
 IF(S(NP).GE.S(N)) GO TO 101
 TEMP = S(NP)
 S(NP) = S(N)
 S(N) = TEMP
 TEMP = W(NP)
 W(NP) = W(N)
 W(N) = TEMP
 DONE = .FALSE.
 101 CONTINUE
 IF(DONE) GO TO 11
 10 CONTINUE
 WRITE(*,*) 'Sort failed'
C
 11 CONTINUE
 RETURN
 END

 SUBROUTINE FIXDUP(KK,S,W)
C--- Check arrays in S by removing leading and ending duplicates
C eliminate extra duplicates (more than one duplicate point) elsewhere
 DIMENSION S(KK), W(KK)
 LOGICAL DONE
C
C---- Check first elements for dups
 IF(S(2).EQ.S(1)) THEN
 DO N=1, KK-1
 S(N) = S(N+1)
 W(N) = W(N+1)
 END DO
 KK = KK - 1
 ENDIF
C
C---- Check last elements for dups
 IF(S(KK).EQ.S(KK-1)) THEN
 S(KK-1) = S(KK)
 W(KK-1) = W(KK)
 KK = KK - 1
 ENDIF
C
C--- Eliminate more than 2 succeeding identical elements
 10 DO N=1, KK-2
 IF(S(N).EQ.S(N+1) .AND. S(N).EQ.S(N+2)) THEN
 DO I = N, KK-1
 S(I) = S(I+1)
 W(I) = W(I+1)
 END DO
 KK = KK - 1
 GO TO 10
 ENDIF
 END DO
C
 RETURN
 END

 SUBROUTINE SORT(KK,S,W)
 DIMENSION S(KK), W(KK)
 LOGICAL DONE
C
C---- sort arrays
 DO 10 IPASS=1, 1234
 DONE = .TRUE.
 DO 101 N=1, KK-1
 NP = N+1
 IF(S(NP).GE.S(N)) GO TO 101
 TEMP = S(NP)
 S(NP) = S(N)
 S(N) = TEMP
 TEMP = W(NP)
 W(NP) = W(N)
 W(N) = TEMP
 DONE = .FALSE.
 101 CONTINUE
 IF(DONE) GO TO 11
 10 CONTINUE
 WRITE(*,*) 'Sort failed'
C
C---- search for duplicate pairs and eliminate each one
 11 KKS = KK
 DO 20 K=1, KKS
 IF(K.GE.KK) RETURN
 IF(S(K).NE.S(K+1)) GO TO 20
C------- eliminate pair
 KK = KK-2
 DO 201 KT=K, KK
 S(KT) = S(KT+2)
 W(KT) = W(KT+2)
 201 CONTINUE
 20 CONTINUE
C
 RETURN
 END

 SUBROUTINE SORTOL(TOL,KK,S,W)
 DIMENSION S(KK), W(KK)
 LOGICAL DONE
C
C---- sort arrays
 DO IPASS=1, 1234
 DONE = .TRUE.
 DO N=1, KK-1
 NP = N+1
 IF(S(NP).LT.S(N)) THEN
 TEMP = S(NP)
 S(NP) = S(N)
 S(N) = TEMP
 TEMP = W(NP)
 W(NP) = W(N)
 W(N) = TEMP
 DONE = .FALSE.
 ENDIF
 END DO
 IF(DONE) GO TO 10
 END DO
 WRITE(*,*) 'Sort failed'
C
C---- search for near-duplicate pairs and eliminate extra points
C---- Modified 4/24/01 HHY to check list until ALL duplicates removed
C This cures a bug for sharp LE foils where there were 3 LE points in
C camber, thickness lists from GETCAM.
C
 10 KKS = KK
 DONE = .TRUE.
 DO 20 K=1, KKS
 IF(K.GE.KK) GO TO 20
 DSQ = (S(K)-S(K+1))**2 + (W(K)-W(K+1))**2
 IF(DSQ.GE.TOL*TOL) GO TO 20
C------- eliminate extra point pairs
ccc write(*,*) 'extra on point ',k,kks
 KK = KK-1
 DO KT=K+1, KK
 S(KT) = S(KT+1)
 W(KT) = W(KT+1)
 END DO
 DONE = .FALSE.
 20 CONTINUE
 IF(.NOT.DONE) GO TO 10
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/examples/spectrum.f

C***
C Module: spectrum.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 program spectrum
C
C Displays chosen COLORSPECTRUMDEFAULT colors in a circle and bar
C
C
 dimension xp(100), yp(100)
C
 CHARACTER*12 HUES
 CHARACTER*4 INP
 CH = 0.02
C
 PI = 4.0*ATAN(1.0)
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) INP
 ips = -1
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ips
 endif
 IDEV = 1
 IF(ips.eq.0) IDEV = 3
 IF(ips.ge.1) IDEV = 5
 ipslu = 0
C
C---- for REPLOT: X11 only
 IDEVRP = 1
 CALL PLINITIALIZE
C
C---Now, how many colors...
 WRITE(*,*) ' Enter number of colors'
 READ(*,1000,end=2000) INP
 ncolors = 128
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ncolors
 endif
C
 WRITE(*,*) ' Specify hue string (out of ROYGCBM)'
 READ (*,1000) HUES
 IF(HUES.EQ.' ') HUES = 'ROYGCBM'
C
C---Set up colormap spectrum colors
 if(ncolors.LE.1) ncolors = 0
 CALL COLORSPECTRUMHUES(ncolors,HUES)
C
C---- radius of circle
 rad = 3.0
c
 CALL PLOPEN(0.7,ipslu,IDEV)
 CALL PLOT(1.3*rad,1.3*rad,-3)
c
c---- plot circle
 do ii = 1,ncolors
 call NEWCOLOR(-ii)
 t0 = float(ii-1)/float(ncolors) ! + 0.167
 t1 = float(ii)/float(ncolors) ! + 0.167
C
 xp(1) = 0.0
 yp(1) = 0.0
 xp(2) = rad*cos(2.0*pi*t0)
 yp(2) = rad*sin(2.0*pi*t0)
 xp(3) = rad*cos(2.0*pi*(t0+0.25*(t1-t0)))
 yp(3) = rad*sin(2.0*pi*(t0+0.25*(t1-t0)))
 xp(4) = rad*cos(2.0*pi*(t0+0.50*(t1-t0)))
 yp(4) = rad*sin(2.0*pi*(t0+0.50*(t1-t0)))
 xp(5) = rad*cos(2.0*pi*(t0+0.75*(t1-t0)))
 yp(5) = rad*sin(2.0*pi*(t0+0.75*(t1-t0)))
 xp(6) = rad*cos(2.0*pi*t1)
 yp(6) = rad*sin(2.0*pi*t1)
 call POLYLINE(xp,yp,6,1)
 end do
C
 CALL PLOT(1.5*rad,-rad,-3)
C
c---- plot bar
 dx = 1.0
 dy = 2.0*rad/float(ncolors)
 do ii = 1,ncolors
 call NEWCOLOR(-ii)
c
 x0 = 0.0
 y0 = dy*float(ii-1)
c
 xp(1) = x0
 yp(1) = y0
 xp(2) = x0+dx
 yp(2) = y0
 xp(3) = x0+dx
 yp(3) = y0+dy
 xp(4) = x0
 yp(4) = y0+dy
 call POLYLINE(xp,yp,4,1)
 end do
C
 CALL NEWCOLORNAME('black')
 CALL PLOTABS(1.,.75,-3)
 CALL PLCHAR (999.,999.,.1,'SPECTRUM ',0.,+10)
 CALL PLCHAR (999.,999.,.1,HUES,0.,LEN(HUES))
 CALL PLOTABS(1.,0.5,-3)
 CALL PLCHAR (999.,999.,.1,'Ncolors = ',0.,+10)
 CALL PLNUMB (999.,999.,.1,FLOAT(ncolors),0.,-1)
C
 CALL PLFLUSH
 WRITE(*,*) 'Hit return to test replot'
 READ(5,1000) DUMMY
C
 CALL REPLOT(IDEVRP)
 CALL PLFLUSH
C
 WRITE(*,*) 'Hit return to end test'
 READ(5,1000) DUMMY
 1000 FORMAT(A)
C
C GO TO 1
C
 2000 CALL PLOT(0.0,0.0,+999)
 STOP
 END

XFOILinterface/XFOIL/src/spline.f

C***
C Module: spline.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE SPLINE(X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
 PARAMETER (NMAX=600)
 DIMENSION A(NMAX),B(NMAX),C(NMAX)
C---
C Calculates spline coefficients for X(S). |
C Zero 2nd derivative end conditions are used. |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C |
C---
 IF(N.GT.NMAX) STOP 'SPLINE: array overflow, increase NMAX'
C
 DO 1 I=2, N-1
 DSM = S(I) - S(I-1)
 DSP = S(I+1) - S(I)
 B(I) = DSP
 A(I) = 2.0*(DSM+DSP)
 C(I) = DSM
 XS(I) = 3.0*((X(I+1)-X(I))*DSM/DSP + (X(I)-X(I-1))*DSP/DSM)
 1 CONTINUE
C
C---- set zero second derivative end conditions
 A(1) = 2.0
 C(1) = 1.0
 XS(1) = 3.0*(X(2)-X(1)) / (S(2)-S(1))
 B(N) = 1.0
 A(N) = 2.0
 XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
C
C---- solve for derivative array XS
 CALL TRISOL(A,B,C,XS,N)
C
 RETURN
 END ! SPLINE

 SUBROUTINE SPLIND(X,XS,S,N,XS1,XS2)
 DIMENSION X(N),XS(N),S(N)
 PARAMETER (NMAX=600)
 DIMENSION A(NMAX),B(NMAX),C(NMAX)
C---
C Calculates spline coefficients for X(S). |
C Specified 1st derivative and/or usual zero 2nd |
C derivative end conditions are used. |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C XS1,XS2 endpoint derivatives (input) |
C If = 999.0, then usual zero second |
C derivative end condition(s) are used |
C If = -999.0, then zero third |
C derivative end condition(s) are used |
C |
C---
 IF(N.GT.NMAX) STOP 'SPLIND: array overflow, increase NMAX'
C
 DO 1 I=2, N-1
 DSM = S(I) - S(I-1)
 DSP = S(I+1) - S(I)
 B(I) = DSP
 A(I) = 2.0*(DSM+DSP)
 C(I) = DSM
 XS(I) = 3.0*((X(I+1)-X(I))*DSM/DSP + (X(I)-X(I-1))*DSP/DSM)
 1 CONTINUE
C
 IF(XS1.EQ.999.0) THEN
C----- set zero second derivative end condition
 A(1) = 2.0
 C(1) = 1.0
 XS(1) = 3.0*(X(2)-X(1)) / (S(2)-S(1))
 ELSE IF(XS1.EQ.-999.0) THEN
C----- set zero third derivative end condition
 A(1) = 1.0
 C(1) = 1.0
 XS(1) = 2.0*(X(2)-X(1)) / (S(2)-S(1))
 ELSE
C----- set specified first derivative end condition
 A(1) = 1.0
 C(1) = 0.
 XS(1) = XS1
 ENDIF
C
 IF(XS2.EQ.999.0) THEN
 B(N) = 1.0
 A(N) = 2.0
 XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
 ELSE IF(XS2.EQ.-999.0) THEN
 B(N) = 1.0
 A(N) = 1.0
 XS(N) = 2.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
 ELSE
 A(N) = 1.0
 B(N) = 0.
 XS(N) = XS2
 ENDIF
C
 IF(N.EQ.2 .AND. XS1.EQ.-999.0 .AND. XS2.EQ.-999.0) THEN
 B(N) = 1.0
 A(N) = 2.0
 XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
 ENDIF
C
C---- solve for derivative array XS
 CALL TRISOL(A,B,C,XS,N)
C
 RETURN
 END ! SPLIND

 SUBROUTINE SPLINA(X,XS,S,N)
 IMPLICIT REAL (A-H,O-Z)
 DIMENSION X(N),XS(N),S(N)
 LOGICAL LEND
C---
C Calculates spline coefficients for X(S). |
C A simple averaging of adjacent segment slopes |
C is used to achieve non-oscillatory curve |
C End conditions are set by end segment slope |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C |
C---
C
 LEND = .TRUE.
 DO 1 I=1, N-1
 DS = S(I+1)-S(I)
 IF (DS.EQ.0.) THEN
 XS(I) = XS1
 LEND = .TRUE.
 ELSE
 DX = X(I+1)-X(I)
 XS2 = DX / DS
 IF (LEND) THEN
 XS(I) = XS2
 LEND = .FALSE.
 ELSE
 XS(I) = 0.5*(XS1 + XS2)
 ENDIF
 ENDIF
 XS1 = XS2
 1 CONTINUE
 XS(N) = XS1
C
 RETURN
 END ! SPLINA

 SUBROUTINE TRISOL(A,B,C,D,KK)
 DIMENSION A(KK),B(KK),C(KK),D(KK)
C---
C Solves KK long, tri-diagonal system |
C |
C A C D |
C B A C D |
C B A . . |
C . . C . |
C B A D |
C |
C The righthand side D is replaced by |
C the solution. A, C are destroyed. |
C---
C
 DO 1 K=2, KK
 KM = K-1
 C(KM) = C(KM) / A(KM)
 D(KM) = D(KM) / A(KM)
 A(K) = A(K) - B(K)*C(KM)
 D(K) = D(K) - B(K)*D(KM)
 1 CONTINUE
C
 D(KK) = D(KK)/A(KK)
C
 DO 2 K=KK-1, 1, -1
 D(K) = D(K) - C(K)*D(K+1)
 2 CONTINUE
C
 RETURN
 END ! TRISOL

 FUNCTION SEVAL(SS,X,XS,S,N)
 DIMENSION X(N), XS(N), S(N)
C--
C Calculates X(SS) |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 SEVAL = T*X(I) + (1.0-T)*X(I-1) + (T-T*T)*((1.0-T)*CX1 - T*CX2)
 RETURN
 END ! SEVAL

 FUNCTION DEVAL(SS,X,XS,S,N)
 DIMENSION X(N), XS(N), S(N)
C--
C Calculates dX/dS(SS) |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 DEVAL = X(I) - X(I-1) + (1.-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.)*CX2
 DEVAL = DEVAL/DS
 RETURN
 END ! DEVAL

 FUNCTION D2VAL(SS,X,XS,S,N)
 DIMENSION X(N), XS(N), S(N)
C--
C Calculates d2X/dS2(SS) |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 D2VAL = (6.*T-4.)*CX1 + (6.*T-2.0)*CX2
 D2VAL = D2VAL/DS**2
 RETURN
 END ! D2VAL

 FUNCTION CURV(SS,X,XS,Y,YS,S,N)
 DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C---
C Calculates curvature of splined 2-D curve |
C at S = SS |
C |
C S arc length array of curve |
C X, Y coordinate arrays of curve |
C XS,YS derivative arrays |
C (calculated earlier by SPLINE) |
C---
C
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
C
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 XD = X(I) - X(I-1) + (1.0-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.0)*CX2
 XDD = (6.0*T-4.0)*CX1 + (6.0*T-2.0)*CX2
C
 CY1 = DS*YS(I-1) - Y(I) + Y(I-1)
 CY2 = DS*YS(I) - Y(I) + Y(I-1)
 YD = Y(I) - Y(I-1) + (1.0-4.0*T+3.0*T*T)*CY1 + T*(3.0*T-2.0)*CY2
 YDD = (6.0*T-4.0)*CY1 + (6.0*T-2.0)*CY2
C
 SD = SQRT(XD*XD + YD*YD)
 SD = MAX(SD,0.001*DS)
C
 CURV = (XD*YDD - YD*XDD) / SD**3
C
 RETURN
 END ! CURV

 FUNCTION CURVS(SS,X,XS,Y,YS,S,N)
 DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C---
C Calculates curvature derivative of |
C splined 2-D curve at S = SS |
C |
C S arc length array of curve |
C X, Y coordinate arrays of curve |
C XS,YS derivative arrays |
C (calculated earlier by SPLINE) |
C---
C
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
C
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 XD = X(I) - X(I-1) + (1.0-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.0)*CX2
 XDD = (6.0*T-4.0)*CX1 + (6.0*T-2.0)*CX2
 XDDD = 6.0*CX1 + 6.0*CX2
C
 CY1 = DS*YS(I-1) - Y(I) + Y(I-1)
 CY2 = DS*YS(I) - Y(I) + Y(I-1)
 YD = Y(I) - Y(I-1) + (1.0-4.0*T+3.0*T*T)*CY1 + T*(3.0*T-2.0)*CY2
 YDD = (6.0*T-4.0)*CY1 + (6.0*T-2.0)*CY2
 YDDD = 6.0*CY1 + 6.0*CY2
C
 SD = SQRT(XD*XD + YD*YD)
 SD = MAX(SD,0.001*DS)
C
 BOT = SD**3
 DBOTDT = 3.0*SD*(XD*XDD + YD*YDD)
C
 TOP = XD*YDD - YD*XDD
 DTOPDT = XD*YDDD - YD*XDDD
C
 CURVS = (DTOPDT*BOT - DBOTDT*TOP) / BOT**2
C
 RETURN
 END ! CURVS

 SUBROUTINE SINVRT(SI,XI,X,XS,S,N)
 DIMENSION X(N), XS(N), S(N)
C---
C Calculates the "inverse" spline function S(X). |
C Since S(X) can be multi-valued or not defined, |
C this is not a "black-box" routine. The calling |
C program must pass via SI a sufficiently good |
C initial guess for S(XI). |
C |
C XI specified X value (input) |
C SI calculated S(XI) value (input,output) |
C X,XS,S usual spline arrays (input) |
C |
C---
C
 SISAV = SI
C
 DO 10 ITER=1, 10
 RES = SEVAL(SI,X,XS,S,N) - XI
 RESP = DEVAL(SI,X,XS,S,N)
 DS = -RES/RESP
 SI = SI + DS
 IF(ABS(DS/(S(N)-S(1))) .LT. 1.0E-5) RETURN
 10 CONTINUE
 WRITE(*,*)
 & 'SINVRT: spline inversion failed. Input value returned.'
 SI = SISAV
C
 RETURN
 END ! SINVRT

 SUBROUTINE SCALC(X,Y,S,N)
 DIMENSION X(N), Y(N), S(N)
C--
C Calculates the arc length array S |
C for a 2-D array of points (X,Y). |
C--
C
 S(1) = 0.
 DO 10 I=2, N
 S(I) = S(I-1) + SQRT((X(I)-X(I-1))**2 + (Y(I)-Y(I-1))**2)
 10 CONTINUE
C
 RETURN
 END ! SCALC

 SUBROUTINE SPLNXY(X,XS,Y,YS,S,N)
 DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C---
C Splines 2-D shape X(S), Y(S), along |
C with true arc length parameter S. |
C---
 PARAMETER (KMAX=32)
 DIMENSION XT(0:KMAX), YT(0:KMAX)
C
 KK = KMAX
 NPASS = 10
C
C---- set first estimate of arc length parameter
 CALL SCALC(X,Y,S,N)
C
C---- spline X(S) and Y(S)
 CALL SEGSPL(X,XS,S,N)
 CALL SEGSPL(Y,YS,S,N)
C
C---- re-integrate true arc length
 DO 100 IPASS=1, NPASS
C
 SERR = 0.
C
 DS = S(2) - S(1)
 DO I = 2, N
 DX = X(I) - X(I-1)
 DY = Y(I) - Y(I-1)
C
 CX1 = DS*XS(I-1) - DX
 CX2 = DS*XS(I) - DX
 CY1 = DS*YS(I-1) - DY
 CY2 = DS*YS(I) - DY
C
 XT(0) = 0.
 YT(0) = 0.
 DO K=1, KK-1
 T = FLOAT(K) / FLOAT(KK)
 XT(K) = T*DX + (T-T*T)*((1.0-T)*CX1 - T*CX2)
 YT(K) = T*DY + (T-T*T)*((1.0-T)*CY1 - T*CY2)
 ENDDO
 XT(KK) = DX
 YT(KK) = DY
C
 SINT1 = 0.
 DO K=1, KK
 SINT1 = SINT1
 & + SQRT((XT(K)-XT(K-1))**2 + (YT(K)-YT(K-1))**2)
 ENDDO
C
 SINT2 = 0.
 DO K=2, KK, 2
 SINT2 = SINT2
 & + SQRT((XT(K)-XT(K-2))**2 + (YT(K)-YT(K-2))**2)
 ENDDO
C
 SINT = (4.0*SINT1 - SINT2) / 3.0
C
 IF(ABS(SINT-DS) .GT. ABS(SERR)) SERR = SINT - DS
C
 IF(I.LT.N) DS = S(I+1) - S(I)
C
 S(I) = S(I-1) + SQRT(SINT)
 ENDDO
C
 SERR = SERR / (S(N) - S(1))
 WRITE(*,*) IPASS, SERR
C
C------ re-spline X(S) and Y(S)
 CALL SEGSPL(X,XS,S,N)
 CALL SEGSPL(Y,YS,S,N)
C
 IF(ABS(SERR) .LT. 1.0E-7) RETURN
C
 100 CONTINUE
C
 RETURN
 END ! SPLNXY

 SUBROUTINE SEGSPL(X,XS,S,N)
C---
C Splines X(S) array just like SPLINE, |
C but allows derivative discontinuities |
C at segment joints. Segment joints are |
C defined by identical successive S values. |
C---
 DIMENSION X(N), XS(N), S(N)
C
 IF(S(1).EQ.S(2)) STOP 'SEGSPL: First input point duplicated'
 IF(S(N).EQ.S(N-1)) STOP 'SEGSPL: Last input point duplicated'
C
 ISEG0 = 1
 DO 10 ISEG=2, N-2
 IF(S(ISEG).EQ.S(ISEG+1)) THEN
 NSEG = ISEG - ISEG0 + 1
 CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,-999.0,-999.0)
 ISEG0 = ISEG+1
 ENDIF
 10 CONTINUE
C
 NSEG = N - ISEG0 + 1
 CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,-999.0,-999.0)
C
 RETURN
 END ! SEGSPL

 SUBROUTINE SEGSPLD(X,XS,S,N,XS1,XS2)
C---
C Splines X(S) array just like SPLIND, |
C but allows derivative discontinuities |
C at segment joints. Segment joints are |
C defined by identical successive S values. |
C---
 DIMENSION X(N), XS(N), S(N)
C
 IF(S(1).EQ.S(2)) STOP 'SEGSPL: First input point duplicated'
 IF(S(N).EQ.S(N-1)) STOP 'SEGSPL: Last input point duplicated'
C
 ISEG0 = 1
 DO 10 ISEG=2, N-2
 IF(S(ISEG).EQ.S(ISEG+1)) THEN
 NSEG = ISEG - ISEG0 + 1
 CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,XS1,XS2)
 ISEG0 = ISEG+1
 ENDIF
 10 CONTINUE
C
 NSEG = N - ISEG0 + 1
 CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,XS1,XS2)
C
 RETURN
 END ! SEGSPL

XFOILinterface/XFOIL/orrs/src/spline.f

c
c 1-D Spline Package.
c Interpolates a function x(s) over an s interval
c
c Mark Drela
c 1985
c
c Usage:
c
cC---- fill S(i), X(i) arrays
c S(i) = ...
c X(i) = ...
c
cC---- calculate spline coefficients for x(s) from discrete values
cC- (can use SPLIND or SPLINA instead)
c CALL SPLINE(X,XS,S,N)
c
cC---- evaluate splined x(s) and/or its derivatives
cC- at any number of s points SS
c XX = SEVAL(SS,X,XS,S,N)
c XXS = DEVAL(SS,X,XS,S,N)
c XXSS = D2VAL(SS,X,XS,S,N)
c
cC---- alternative to calling SEVAL,DEVAL,D2VAL separately
cC- (slightly more efficient if all three quantities are needed)
c CALL SEVALL(SS,X,XS,S,N, XX,XXS,XXSS)
c
c

 SUBROUTINE SPLINE(X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
 PARAMETER (NMAX=5001)
 DIMENSION A(NMAX),B(NMAX),C(NMAX)
C---
C Calculates spline coefficients for X(S). |
C Natural end conditions are used (zero 3rd |
C derivative over first, last intervals). |
C |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C |
C---
 IF(N.GT.NMAX) STOP 'SPLINE: array overflow, increase NMAX'
C
 DO 1 I=2, N-1
 DSM = S(I) - S(I-1)
 DSP = S(I+1) - S(I)
 B(I) = DSP
 A(I) = 2.0*(DSM+DSP)
 C(I) = DSM
 XS(I) = 3.0*((X(I+1)-X(I))*DSM/DSP + (X(I)-X(I-1))*DSP/DSM)
 1 CONTINUE
C
C---- set zero 3rd derivative end conditions
 A(1) = 1.0
 C(1) = 1.0
 XS(1) = 2.0*(X(2)-X(1)) / (S(2)-S(1))
C
 B(N) = 1.0
 A(N) = 1.0
 XS(N) = 2.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
C
 IF(N.EQ.2) THEN
C----- if only two points are present, specify zero 2nd derivative instead
C- (straight line interpolation will result)
 B(N) = 1.0
 A(N) = 2.0
 XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
 ENDIF
C
C---- solve for derivative array XS
 CALL TRISOL(A,B,C,XS,N)
C
 RETURN
 END ! SPLINE

 SUBROUTINE SPLIND(X,XS,S,N,XS1,XS2)
 DIMENSION X(N),XS(N),S(N)
 PARAMETER (NMAX=5001)
 DIMENSION A(NMAX),B(NMAX),C(NMAX)
C---
C Calculates spline coefficients for X(S). |
C Same as SPLINE, but also allows specified-slope |
C or zero-curvature end conditions to be imposed. |
C |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C XS1,XS2 endpoint derivatives (input) |
C If = 999.0, then usual zero second |
C derivative end condition(s) are used |
C If = -999.0, then zero third |
C derivative end condition(s) are used |
C |
C Note: specifying both XS1,XS2 = -999.0 |
C is equivalent to using SPLINE. |
C |
C---
 IF(N.GT.NMAX) STOP 'SPLIND: array overflow, increase NMAX'
C
 DO 1 I=2, N-1
 DSM = S(I) - S(I-1)
 DSP = S(I+1) - S(I)
 B(I) = DSP
 A(I) = 2.0*(DSM+DSP)
 C(I) = DSM
 XS(I) = 3.0*((X(I+1)-X(I))*DSM/DSP + (X(I)-X(I-1))*DSP/DSM)
 1 CONTINUE
C
 IF(XS1.EQ.999.0) THEN
C----- set zero second derivative end condition
 A(1) = 2.0
 C(1) = 1.0
 XS(1) = 3.0*(X(2)-X(1)) / (S(2)-S(1))
 ELSE IF(XS1.EQ.-999.0) THEN
C----- set zero third derivative end condition
 A(1) = 1.0
 C(1) = 1.0
 XS(1) = 2.0*(X(2)-X(1)) / (S(2)-S(1))
 ELSE
C----- set specified first derivative end condition
 A(1) = 1.0
 C(1) = 0.
 XS(1) = XS1
 ENDIF
C
 IF(XS2.EQ.999.0) THEN
 B(N) = 1.0
 A(N) = 2.0
 XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
 ELSE IF(XS2.EQ.-999.0) THEN
 B(N) = 1.0
 A(N) = 1.0
 XS(N) = 2.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
 ELSE
 A(N) = 1.0
 B(N) = 0.
 XS(N) = XS2
 ENDIF
C
 IF(N.EQ.2 .AND. XS1.EQ.-999.0 .AND. XS2.EQ.-999.0) THEN
 B(N) = 1.0
 A(N) = 2.0
 XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
 ENDIF
C
C---- solve for derivative array XS
 CALL TRISOL(A,B,C,XS,N)
C
 RETURN
 END ! SPLIND

 SUBROUTINE SPLINA(X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
 LOGICAL LEND
C---
C Calculates spline coefficients for X(S) by a |
C simple averaging of adjacent segment slopes. |
C |
C Interpolated X(S) is less likely to oscillate |
C than with SPLINE, but does not have continuity |
C in curvature. |
C |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C |
C---
C
 LEND = .TRUE.
 DO 1 I=1, N-1
 DS = S(I+1)-S(I)
 IF (DS.EQ.0.) THEN
 XS(I) = XS1
 LEND = .TRUE.
 ELSE
 DX = X(I+1)-X(I)
 XS2 = DX / DS
 IF (LEND) THEN
 XS(I) = XS2
 LEND = .FALSE.
 ELSE
 XS(I) = 0.5*(XS1 + XS2)
 ENDIF
 ENDIF
 XS1 = XS2
 1 CONTINUE
 XS(N) = XS1
C
 RETURN
 END ! SPLINA

 SUBROUTINE TRISOL(A,B,C,D,KK)
 DIMENSION A(KK),B(KK),C(KK),D(KK)
C---
C Solves KK long, tri-diagonal system |
C |
C A C D |
C B A C D |
C B A . . |
C . . C . |
C B A D |
C |
C The righthand side D is replaced by |
C the solution. A, C are destroyed. |
C---
C
 DO 1 K=2, KK
 KM = K-1
 C(KM) = C(KM) / A(KM)
 D(KM) = D(KM) / A(KM)
 A(K) = A(K) - B(K)*C(KM)
 D(K) = D(K) - B(K)*D(KM)
 1 CONTINUE
C
 D(KK) = D(KK)/A(KK)
C
 DO 2 K=KK-1, 1, -1
 D(K) = D(K) - C(K)*D(K+1)
 2 CONTINUE
C
 RETURN
 END ! TRISOL

 FUNCTION GEVAL(SS,X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
C--
C Calculates int(X(SS)) dS |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 CONTINUE
C
C---- first integrate up to I-1 point
 GEVAL = 0.
 DO K = 2, I-1
 DS = S(K) - S(K-1)
C
C------ Int X(t) dt for t = 0..1
 DGEV = 0.5*(X(K) + X(K-1)) + (XS(K-1) - XS(K))*DS/12.0
C
 GEVAL = GEVAL + DGEV*DS
 ENDDO
C
C---- now integrate up to SS value in I-1..I interval
 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
C
 DGEV = 0.5*T*T *X(I)
 & + (T - 0.5*T*T)*X(I-1)
 & + (6.0 - 8.0*T + 3.0*T*T)*T*T*CX1/12.0
 & + (- 4.0*T + 3.0*T*T)*T*T*CX2/12.0
C
 GEVAL = GEVAL + DGEV*DS
C
 RETURN
 END ! GEVAL

 FUNCTION SEVAL(SS,X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
C--
C Calculates X(SS) |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 SEVAL = T*X(I) + (1.0-T)*X(I-1) + (T-T*T)*((1.0-T)*CX1 - T*CX2)
 RETURN
 END ! SEVAL

 FUNCTION DEVAL(SS,X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
C--
C Calculates dX/dS(SS) |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 DEVAL = X(I) - X(I-1) + (1.-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.)*CX2
 DEVAL = DEVAL/DS
 RETURN
 END ! DEVAL

 FUNCTION D2VAL(SS,X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
C--
C Calculates d2X/dS2(SS) |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 D2VAL = (6.*T-4.)*CX1 + (6.*T-2.0)*CX2
 D2VAL = D2VAL/DS**2
 RETURN
 END ! D2VAL

 SUBROUTINE SEVALL(SS,X,XS,S,N,
 & XX, XXS, XXSS)
 DIMENSION X(N),XS(N),S(N)
C--
C Calculates all spline derivatives. |
C (Combines SEVAL, DEVAL, D2VAL) |
C XS array must have been calculated by SPLINE |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
C
 F0 = X(I-1)
 F1 = DS*XS(I-1)
 F2 = -DS*(2.0*XS(I-1) + XS(I)) + 3.0*(X(I) - X(I-1))
 F3 = DS*(XS(I-1) + XS(I)) - 2.0*(X(I) - X(I-1))
C
 XX = F0 + T*(F1 + T*(F2 + T* F3))
 XXS = F1 + T*(2.0*F2 + T*3.0*F3)
 XXSS = 2.0*F2 + T*6.0*F3
C
 XXS = XXS/DS
 XXSS = XXSS/DS**2
C
 RETURN
 END ! SEVALL

 SUBROUTINE SEVLIN(SS,X,S,N, XX,XXS)
 DIMENSION X(N),S(N)
C--
C Calculates X(SS) and dX/ds(SS) using piecewise-linear |
C interpolation. This is intended for intepolating very |
C noisy data for which a cubic spline is inappropriate. |
C--
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
 XX = T*X(I) + (1.0-T)*X(I-1)
 XXS = (X(I) - X(I-1))/DS
C
 RETURN
 END ! SEVLIN

 FUNCTION CURV(SS,X,XS,Y,YS,S,N)
 DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C---
C Calculates curvature of splined 2-D curve |
C at S = SS |
C |
C S arc length array of curve |
C X, Y coordinate arrays of curve |
C XS,YS derivative arrays |
C (calculated earlier by SPLINE) |
C---
C
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
C
 F1 = DS*XS(I-1)
 F2 = -DS*(2.0*XS(I-1) + XS(I)) + 3.0*(X(I) - X(I-1))
 F3 = DS*(XS(I-1) + XS(I)) - 2.0*(X(I) - X(I-1))
C
 XD = F1 + T*(2.0*F2 + T*3.0*F3)
 XDD = 2.0*F2 + T*6.0*F3
C
C
 G1 = DS*YS(I-1)
 G2 = -DS*(2.0*YS(I-1) + YS(I)) + 3.0*(Y(I) - Y(I-1))
 G3 = DS*(YS(I-1) + YS(I)) - 2.0*(Y(I) - Y(I-1))
C
 YD = G1 + T*(2.0*G2 + T*3.0*G3)
 YDD = 2.0*G2 + T*6.0*G3
C
C
 CURV = (XD*YDD - YD*XDD) / SQRT((XD*XD + YD*YD)**3)
C
 RETURN
 END ! CURV

 FUNCTION CURVS(SS,X,XS,Y,YS,S,N)
 DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C---
C Calculates curvature derivative of |
C splined 2-D curve at S = SS |
C |
C S arc length array of curve |
C X, Y coordinate arrays of curve |
C XS,YS derivative arrays |
C (calculated earlier by SPLINE) |
C---
C
 ILOW = 1
 I = N
C
 10 IF(I-ILOW .LE. 1) GO TO 11
C
 IMID = (I+ILOW)/2
 IF(SS .LT. S(IMID)) THEN
 I = IMID
 ELSE
 ILOW = IMID
 ENDIF
 GO TO 10
C
 11 DS = S(I) - S(I-1)
 T = (SS - S(I-1)) / DS
C
 CX1 = DS*XS(I-1) - X(I) + X(I-1)
 CX2 = DS*XS(I) - X(I) + X(I-1)
 XD = X(I) - X(I-1) + (1.0-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.0)*CX2
 XDD = (6.0*T-4.0)*CX1 + (6.0*T-2.0)*CX2
 XDDD = 6.0*CX1 + 6.0*CX2
C
 CY1 = DS*YS(I-1) - Y(I) + Y(I-1)
 CY2 = DS*YS(I) - Y(I) + Y(I-1)
 YD = Y(I) - Y(I-1) + (1.0-4.0*T+3.0*T*T)*CY1 + T*(3.0*T-2.0)*CY2
 YDD = (6.0*T-4.0)*CY1 + (6.0*T-2.0)*CY2
 YDDD = 6.0*CY1 + 6.0*CY2
C

 F1 = DS*XS(I-1)
 F2 = -DS*(2.0*XS(I-1) + XS(I)) + 3.0*(X(I) - X(I-1))
 F3 = DS*(XS(I-1) + XS(I)) - 2.0*(X(I) - X(I-1))
C
 XD = F1 + T*(2.0*F2 + T*3.0*F3)
 XDD = 2.0*F2 + T*6.0*F3
 XDDD = 6.0*F3
C
C
 G1 = DS*YS(I-1)
 G2 = -DS*(2.0*YS(I-1) + YS(I)) + 3.0*(Y(I) - Y(I-1))
 G3 = DS*(YS(I-1) + YS(I)) - 2.0*(Y(I) - Y(I-1))
C
 YD = G1 + T*(2.0*G2 + T*3.0*G3)
 YDD = 2.0*G2 + T*6.0*G3
 YDDD = 6.0*G3
C
 SQRTB = SQRT(XD*XD + YD*YD)
 BOT = SQRTB**3
 DBOTDT = 3.0*SQRTB*(XD*XDD + YD*YDD)
C
 TOP = XD*YDD - YD*XDD
 DTOPDT = XD*YDDD - YD*XDDD
C
 CURVS = (DTOPDT*BOT - DBOTDT*TOP) / BOT**2 / DS
C
 RETURN
 END ! CURVS

 SUBROUTINE SINVRT(SI,XI,X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
C--
C Calculates the "inverse" spline function S(X). |
C Since S(X) can be multi-valued or not defined, |
C this is not a "black-box" routine. The call- |
C ing program must pass via SI a sufficiently |
C good initial guess for S(XI). |
C |
C XI specified X value (input) |
C SI calculated S(XI) value (input,output) |
C X,XS,S usual spline arrays (input) |
C |
C--
C
 DO 10 ITER=1, 10
 CALL SEVALL(SI,X,XS,S,N, XX,XXS,XXSS)
 DS = (XI-XX)/XXS
 SI = SI + DS
 IF(ABS(DS/(S(N)-S(1))) .LT. 1.0E-5) RETURN
 10 CONTINUE
 WRITE(6,*) 'SINVRT: spline inversion failed. Continuing...'
 RETURN
C
 END ! SINVRT

 SUBROUTINE SCALC(X,Y,S,N)
 DIMENSION X(N),Y(N),S(N)
C--
C Calculates the arc length array S |
C for a 2-D array of points (X,Y). |
C--
C
 S(1) = 0.
 DO 10 I=2, N
 S(I) = S(I-1) + SQRT((X(I)-X(I-1))**2 + (Y(I)-Y(I-1))**2)
 10 CONTINUE
C
 RETURN
 END ! SCALC

 SUBROUTINE SEGSPL(X,XS,S,N)
 DIMENSION X(N),XS(N),S(N)
C---
C Splines X(S) array just like SPLINE, |
C but allows derivative discontinuities |
C at segment joints. Segment joints are |
C defined by identical successive S values. |
C---
C
 IF(S(1).EQ.S(2)) STOP 'SEGSPL: First input point duplicated'
 IF(S(N).EQ.S(N-1)) STOP 'SEGSPL: Last input point duplicated'
C
 ISEG0 = 1
 DO 10 ISEG=2, N-2
 IF(S(ISEG).EQ.S(ISEG+1)) THEN
 NSEG = ISEG - ISEG0 + 1
 CALL SPLINE(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG)
 ISEG0 = ISEG+1
 ENDIF
 10 CONTINUE
C
 NSEG = N - ISEG0 + 1
 CALL SPLINE(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG)
C
 RETURN
 END ! SEGSPL

 SUBROUTINE SEGSPD(X,XS,S,N,XS1,XS2)
 DIMENSION X(N),XS(N),S(N)
C---
C Splines X(S) array just like SPLIND, |
C but allows derivative discontinuities |
C at segment joints. Segment joints are |
C defined by identical successive S values. |
C---
C
 IF(S(1).EQ.S(2)) STOP 'SEGSPD: First input point duplicated'
 IF(S(N).EQ.S(N-1)) STOP 'SEGSPD: Last input point duplicated'
C
 ISEG0 = 1
 DO 10 ISEG=2, N-2
 IF(S(ISEG).EQ.S(ISEG+1)) THEN
 NSEG = ISEG - ISEG0 + 1
 CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,XS1,XS2)
 ISEG0 = ISEG+1
 ENDIF
 10 CONTINUE
C
 NSEG = N - ISEG0 + 1
 CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,XS1,XS2)
C
 RETURN
 END ! SEGSPD

 SUBROUTINE INTERS(OK,SS1,SS2,
 & X1,XS1,Y1,YS1,S1,N1,
 & X2,XS2,Y2,YS2,S2,N2)
 LOGICAL OK
 DIMENSION X1(N1),XS1(N1),Y1(N1),YS1(N1),S1(N1)
 DIMENSION X2(N2),XS2(N2),Y2(N2),YS2(N2),S2(N2)
C---
C Finds spline coordinate values SS1, SS2 at the
C intersection of two space curves (X1,Y1), (X2,Y2).
C---
 LOGICAL CLIP1, CLIP2
 DATA EPS / 1.0E-5 /
C
 OK = .TRUE.
ccc SS1 = S1(1)
ccc SS2 = S2(1)
 RS1 = 1.0E12
 RS2 = 1.0E12
 DS1 = 0.0
 DS2 = 0.0
C
 DO 1000 ITER=1, 12
C
 RLX = 1.0
 SS1OLD = SS1
 SS2OLD = SS2
 RS1OLD = ABS(RS1)
 RS2OLD = ABS(RS2)
C
 DO 10 IRLX=1, 16
C
 CLIP1 = .FALSE.
 CLIP2 = .FALSE.
 SS1 = SS1OLD + RLX*DS1
 SS2 = SS2OLD + RLX*DS2
C
 IF(SS1.LT.S1(1) .OR. SS1.GT.S1(N1)) THEN
 CLIP1 = .TRUE.
 SS1 = MAX(SS1,S1(1))
 SS1 = MIN(SS1,S1(N1))
 ENDIF
 IF(SS2.LT.S2(1) .OR. SS2.GT.S2(N2)) THEN
 CLIP2 = .TRUE.
 SS2 = MAX(SS2,S2(1))
 SS2 = MIN(SS2,S2(N2))
 ENDIF
C
 XX1 = SEVAL(SS1,X1,XS1,S1,N1)
 XX2 = SEVAL(SS2,X2,XS2,S2,N2)
 YY1 = SEVAL(SS1,Y1,YS1,S1,N1)
 YY2 = SEVAL(SS2,Y2,YS2,S2,N2)
C
 RS1 = XX1 - XX2
 RS2 = YY1 - YY2
C
 IF(ABS(RS1).LT.RS1OLD .AND.
 & ABS(RS2).LT.RS2OLD) GO TO 11
C
 RLX = 0.5*RLX
C
 10 CONTINUE
 WRITE(*,*) 'INTERS: Under-relaxation loop failed.'
 11 CONTINUE
C
 A11 = DEVAL(SS1,X1,XS1,S1,N1)
 A12 = -DEVAL(SS2,X2,XS2,S2,N2)
 A21 = DEVAL(SS1,Y1,YS1,S1,N1)
 A22 = -DEVAL(SS2,Y2,YS2,S2,N2)
C
 DET = A11*A22 - A12*A21
 DS1 = -(RS1*A22 - A12*RS2)/DET
 DS2 = -(A11*RS2 - RS1*A21)/DET
C
 IF(ABS(DS1) .LT. EPS*(S1(N1)-S1(1)) .AND.
 & ABS(DS2) .LT. EPS*(S2(N2)-S2(1))) RETURN
C
 1000 CONTINUE
 WRITE(*,*) 'INTERS: Convergence failed. Res =', RS1, RS2
 IF(CLIP1)
 & WRITE(*,*)' S1 clip:', S1(1), S1(N1), SS1, DS1
 IF(CLIP2)
 & WRITE(*,*)' S2 clip:', S2(1), S2(N2), SS2, DS2
 OK = .FALSE.
C
 RETURN
 END ! INTERS

 SUBROUTINE NEARPT(XPNT,YPNT,SNEAR,X,XP,Y,YP,S,N)
 IMPLICIT REAL (A-H,M,O-Z)
 DIMENSION X(N),XP(N),Y(N),YP(N),S(N)
C==
C Finds arc length position S=SNEAR of a point
C on a 2-D splined curve X(S),Y(S) nearest the
C specified point XPNT,YPNT.
C
C Assumes the value passed in via SNEAR is a good
C initial guess.
C==
C
C---- convergence tolerance
 EPS = 1.0E-4 * (S(N) - S(1))
C
C---- Newton iteration loop
 DO 215 IPASS=1, 10
 CALL SEVALL(SNEAR,X,XP,S,N,XXI,XPI,X2I)
 CALL SEVALL(SNEAR,Y,YP,S,N,YYI,YPI,Y2I)
C
C------ residual is dot product with curve tangent vector
 RES = (XXI-XPNT)*XPI + (YYI-YPNT)*YPI
C
 RES_S = (XPI)*XPI + (YPI)*YPI
 & + (XXI-XPNT)*X2I + (YYI-YPNT)*Y2I
C
 DSN = -RES/RES_S
 SNEAR = SNEAR + DSN
 IF(ABS(DSN) .LT. EPS) GO TO 216
C
 215 CONTINUE
 WRITE(*,*) 'NEARPT: Convergence failed. Continuing...'
 216 CONTINUE
C
 RETURN
 END ! NEARPT

XFOILinterface/XFOIL/plotlib/examples/squares.f

C***
C Module: squares.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C---Test of filled polyline plotting
C Displays a sine wave of filled color rectangles
 dimension xp(100), yp(100), x(100), y(100)
C
 CHARACTER*4 INP
 CH = 0.02
C
 x(1) = 0.
 y(1) = 0.
 x(2) = 0.5
 y(2) = 0.
 x(3) = 0.5
 y(3) = 0.3
 x(4) = 0.
 y(4) = 0.3
 x(5) = x(1)
 y(5) = y(1)
 n = 5
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 WRITE(*,*) 'SQUARES Plot test'
 WRITE(*,*) ' You may just <cr> for each question to take defaults'
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) INP
 ips = -1
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ips
 endif
 IDEV = 1
 IF(ips.eq.0) IDEV = 3
 IF(ips.ge.1) IDEV = 5
 ipslu = 0
C
C---- for REPLOT: X11 only
 IDEVRP = 1
C
C
 CALL PLINITIALIZE
C
C---Now, how many colors...
 WRITE(*,*) ' Enter # colors (0 or 1 gives no colors)'
 READ(*,1000,end=2000) INP
 ncolors = 64
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ncolors
 endif
C---Set up colormap spectrum colors
 if(ncolors.LE.1) ncolors = 0
 CALL COLORSPECTRUMHUES(ncolors,'MBCGYR')
C
C
 CALL PLOPEN(0.7,ipslu,IDEV)
C
 CALL PLOT(0.5,0.5,-3)
 do ii = 1,ncolors
 call NEWCOLOR(-ii)
 f = float(ii-1)/float(ncolors-1)
 xx = 9.0*f
 yy = 3.0*sin(2.0*3.1416*f)
 do i = 1, n
 xp(i) = x(i) + xx
 yp(i) = 4.0 + y(i) + yy
 end do
 call POLYLINE(xp,yp,n,1)
 end do
C
 CALL NEWCOLORNAME('green')
 CALL PLCHAR(0.,0.,10.*CH,'Test ',0.0,5)
 CALL NEWCOLORRGB(0,0,255)
 CALL PLCHAR(999.,999.,10.*CH,'of ',0.0,3)
 CALL NEWCOLORNAME('yellow')
 CALL PLCHAR(999.,999.,10.*CH,'Color ',0.0,6)
 CALL NEWCOLORNAME('red')
 CALL PLCHAR(999.,999.,10.*CH,'Fill',0.0,4)
C
 CALL PLFLUSH
C
 WRITE(*,*) 'Hit return to test replot'
 READ(5,1000) DUMMY
 CALL REPLOT(IDEVRP)
 CALL PLFLUSH
C
 WRITE(*,*) 'Hit return to end test'
 READ(5,1000) DUMMY
 1000 FORMAT(A)
C
 2000 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/plotlib/examples/squares2.f

C***
C Module: squares.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C---Test of filled polyline plotting
C Displays a sine wave of filled color rectangles
 dimension xp(100), yp(100), x(100), y(100)
C
 CHARACTER*4 INP
 CH = 0.02
C
 x(1) = 0.
 y(1) = 0.
 x(2) = 0.5
 y(2) = 0.
 x(3) = 0.5
 y(3) = 0.3
 x(4) = 0.
 y(4) = 0.3
 x(5) = x(1)
 y(5) = y(1)
 n = 5
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 WRITE(*,*) 'SQUARES Plot test'
 WRITE(*,*) ' You may just <cr> for each question to take defaults'
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) INP
 ips = -1
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ips
 endif
 IDEV = 1
 IF(ips.eq.0) IDEV = 3
 IF(ips.ge.1) IDEV = 5
 ipslu = 0
C
C---- for REPLOT: X11 only
 IDEVRP = 1
C
C
 CALL PLINITIALIZE
C
C---Now, how many colors...
 WRITE(*,*) ' Enter # colors (0 or 1 gives no colors)'
 READ(*,1000,end=2000) INP
 ncolors = 64
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ncolors
 endif
C---Set up colormap spectrum colors
 if(ncolors.LE.1) ncolors = 0
 CALL COLORSPECTRUMHUES(ncolors,'MBCGYR')
C
 DO III = -1,1,2
C
 CALL PLOPEN(float(III)*0.7,ipslu,IDEV)
C
 CALL PLOT(0.5,0.5,-3)
 do ii = 1,ncolors
 call NEWCOLOR(-ii)
 f = float(ii-1)/float(ncolors-1)
 xx = 9.0*f
 yy = 3.0*sin(2.0*3.1416*f)
 do i = 1, n
 xp(i) = x(i) + xx
 yp(i) = 4.0 + y(i) + yy
 end do
 call POLYLINE(xp,yp,n,1)
 end do
C
 CALL NEWCOLORNAME('green')
 CALL PLCHAR(0.,0.,10.*CH,'Test ',0.0,5)
 CALL NEWCOLORRGB(0,0,255)
 CALL PLCHAR(999.,999.,10.*CH,'of ',0.0,3)
 CALL NEWCOLORNAME('yellow')
 CALL PLCHAR(999.,999.,10.*CH,'Color ',0.0,6)
 CALL NEWCOLORNAME('red')
 CALL PLCHAR(999.,999.,10.*CH,'Fill',0.0,4)
C
 CALL PLFLUSH
C
 WRITE(*,*) 'Hit return to test replot'
 READ(5,1000) DUMMY
 END DO
C
 WRITE(*,*) 'Hit return to end test'
 READ(5,1000) DUMMY
 1000 FORMAT(A)
C
 2000 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/plotlib/examples/squaresdoublebuff.f

C***
C Module: squares.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C---Test of filled polyline plotting
C Displays a sine wave of filled color rectangles
 dimension xp(100), yp(100), x(100), y(100)
C
 CHARACTER*4 INP, DUMMY
 LOGICAL LDBUFF
 CH = 0.02
C
 x(1) = 0.
 y(1) = 0.
 x(2) = 0.5
 y(2) = 0.
 x(3) = 0.5
 y(3) = 0.3
 x(4) = 0.
 y(4) = 0.3
 x(5) = x(1)
 y(5) = y(1)
 n = 5
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 WRITE(*,*) 'SQUARES Plot test'
 WRITE(*,*) ' You may just <cr> for each question to take defaults'
 WRITE(*,*) ' '
 WRITE(*,*) ' Double buffer? (Y/n)'
 READ(*,1000,end=2000) INP
 LDBUFF = .NOT.(INP.EQ.'n' .OR. INP.EQ.'N')
C
 IDEV = 1
 ipslu = 0
 relsize = 0.7
ccc relsize = -0.7
C
C---- for REPLOT: X11 only
 IDEVRP = 1
C
C
 CALL PLINITIALIZE
C
C---Now, how many colors...
 WRITE(*,*) ' Enter # colors (0 or 1 gives no colors)'
 READ(*,1000,end=2000) INP
 ncolors = 64
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ncolors
 endif
C---Set up colormap spectrum colors
 if(ncolors.LE.1) ncolors = 0
 CALL COLORSPECTRUMHUES(ncolors,'MBCGYR')
C
C---Cycle the colors twice through the sinewave
 10 DO IX = 1, 2*ncolors+1
C
 CALL PLOPEN(relsize,ipslu,IDEV)
C---Set up double buffering for plotting
 IF(LDBUFF) THEN
 CALL DRAWTOBUFFER
 ENDIF
C
 CALL PLOT(0.5,0.5,-3)
 do ii = 1,ncolors
 iix = mod(ii-1+ix-1,ncolors) + 1
cc write(*,*) 'ii,ix,iix ',ii,ix,iix
 call NEWCOLOR(-iix)
 f = float(ii-1)/float(ncolors-1)
 xx = 9.0*f
 yy = 3.0*sin(2.0*3.1416*f)
 do i = 1, n
 xp(i) = x(i) + xx
 yp(i) = 4.0 + y(i) + yy
 end do
 call POLYLINE(xp,yp,n,1)
 end do
C
 CALL NEWCOLORNAME('green')
 CALL PLCHAR(0.,0.,10.*CH,'Test ',0.0,5)
 CALL NEWCOLORRGB(0,0,255)
 CALL PLCHAR(999.,999.,10.*CH,'of ',0.0,3)
 CALL NEWCOLORNAME('yellow')
 CALL PLCHAR(999.,999.,10.*CH,'Color ',0.0,6)
 CALL NEWCOLORNAME('red')
 CALL PLCHAR(999.,999.,10.*CH,'Fill',0.0,4)
C
C---Display the buffered plot
c IF(LDBUFF) THEN
c CALL SHOWBUFFER
c ELSE
 CALL PLFLUSH
c ENDIF
C
C---Timing loop hack to slow things down
c DO I = 1, 1000000
c XXX = sin(float(i))
c END DO
C
C---Stop every frame as a check
ccc READ(5,1000) DUMMY
c
 END DO
C
ccc relsize = -relsize
C
 WRITE(*,*) 'Hit return to end test, R to recycle'
 READ(5,1000) DUMMY
 IF(DUMMY.EQ.'r' .OR. DUMMY.EQ.'R') GO TO 10
 1000 FORMAT(A)
C
 2000 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/plotlib/examples/symbols.f

C***
C Module: symbols.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C---Test routine for Pltlib
C Displays a symbol set in color
C
 CHARACTER*4 INP
 CH = 0.02
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 WRITE(*,*) 'SYMBOLS Plot test'
 WRITE(*,*) ' You may just <cr> for each question to take defaults'
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) INP
 ihard = -1
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ihard
 endif
 IDEV = 1
 IF(ihard.eq.0) IDEV = 3
 IF(ihard.ge.1) IDEV = 5
 ipslu = 0
C
C---Initialize the plot package before we get into color plotting...
 CALL PLINITIALIZE
C
C---Now, how many colors...
 WRITE(*,*) ' Enter # colors (0 or 1 gives no colors)'
 READ(*,1000,end=2000) INP
 ncolors = 32
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ncolors
 endif
C---Set up colormap spectrum colors
 if(ncolors.LE.1) ncolors = 1
 CALL COLORSPECTRUMHUES(ncolors,'MBCGYR')
C
C---Take the default window (portrait, 2/3 screen dimension)
 CALL PLOPEN(0.,ipslu,IDEV)
C
 CALL NEWFACTOR(5.0)
 CALL PLOT(0.10,0.1,-3)
ccc CALL NEWCOLORNAME('black')
C
C---Plot the symbols in 8 columns of 32 characters each (256 total)
 DO ISET=1, 8
C
 I0 = (ISET-1)*32 + 1
 IN = I0 + 31
C
 DO I=I0, IN
 RNUM = FLOAT(I-1)
 XX = 0.2*FLOAT(ISET-1)
 YY = (36.-FLOAT(I-I0))*2.0*CH
C
 ICOLOR = MOD(I-1,NCOLORS) + 1
C WRITE(*,*) 'ICOLOR,ISYM ',ICOLOR,I-1
C---Select one of the colormap spectrum colors (repeat, modulo ncolors)
 IF(ncolors.GT.1) CALL NEWCOLOR(-icolor)
 CALL PLNUMB(XX,YY-0.5*CH,CH,RNUM,0.0,-1)
 CALL PLCHAR(XX+4.0*CH,YY,CH,char(I-1),0.0,1)
 END DO
 END DO
C
C---Put colored title at bottom of plot
 CALL NEWCOLORNAME('blue')
 CALL PLCHAR(0.,0.,2.*CH,'Xplot11 ',0.0,8)
 CALL NEWCOLORNAME('green')
 CALL PLCHAR(999.,999.,2.*CH,'PLCHAR ',0.0,7)
 CALL NEWCOLORNAME('red')
 CALL PLCHAR(999.,999.,2.*CH,'test',0.0,4)
C
 CALL PLFLUSH
 WRITE(*,*) 'Hit return to end test'
 READ(5,1000) INP
 1000 FORMAT(A)
C
 CALL PLEND
C GO TO 1
C
 2000 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/plotlib/examples/symbolsall.f

C***
C Module: symbolsall.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C---Test routine for Pltlib
C Displays a symbol set in color
C
 CHARACTER*4 INP, FNAME*80
 CH = 0.02
C
C---Decide about what devices to plot to
 WRITE(*,*) ' '
 WRITE(*,*) 'Font plot test'
 WRITE(*,*) ' You may just <cr> for each question to take defaults'
 WRITE(*,*) ' '
 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS'
 READ(*,1000,end=2000) INP
 itype = -1
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) itype
 endif
 IDEV = 1
 IF(itype.eq.0) IDEV = 3
 IF(itype.ge.1) IDEV = 5
C
 WRITE(*,*) ' '
 WRITE(*,*) ' Enter 0 for default PSfile'
 WRITE(*,*) ' #>0 for external PSfile on unit #'
 WRITE(*,*) ' Enter -1 for separate PSfiles'
 READ(*,1000,end=2000) INP
 iunit = 0
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) iunit
 endif
 if(iunit.gt.0) then
 WRITE(*,*) 'Enter file name for PSFILE'
 READ(*,1000,end=2000) FNAME
 OPEN(unit=iunit,file=FNAME,status='UNKNOWN')
 endif
C
C---Initialize the plot package before we get into color plotting...
 CALL PLINITIALIZE
C
C---Now, how many colors...
 WRITE(*,*) ' Enter # colors (0 or 1 gives no colors)'
 READ(*,1000,end=2000) INP
 ncolors = 32
 if(INP.ne.' ') then
 READ(INP,*,end=2000,err=2000) ncolors
 endif
C---Set up colormap spectrum colors
 if(ncolors.LE.1) ncolors = 1
 CALL COLORSPECTRUMHUES(ncolors,'MBCGYR')
C
C---Loop through the four defined fonts and symbols
 DO 1500 IFNT = 1, 4
C
C---Take the default window (portrait, 2/3 screen dimension)
 CALL PLOPEN(0.,iunit,IDEV)
C
 CALL NEWFACTOR(5.0)
 CALL PLOT(0.10,0.1,-3)
c CALL NEWCOLORNAME('black')
C
C---Plot the symbols in 8 columns of 32 characters each (256 total)
 DO ISET=1, 8
C
 I0 = (ISET-1)*32 + 1
 IN = I0 + 31
C
 DO I=I0, IN
 RNUM = FLOAT(I-1)
 XX = 0.2*FLOAT(ISET-1)
 YY = (36.-FLOAT(I-I0))*2.0*CH
 ICOLOR = MOD(I-1,NCOLORS) + 1
C WRITE(*,*) 'ICOLOR,ISYM ',ICOLOR,I-1
C---Select one of the colormap spectrum colors (repeat, modulo ncolors)
c write(*,*) ncolors, icolor
 IF(ncolors.GT.1) CALL NEWCOLOR(-icolor)
 CALL PLNUMB(XX,YY-0.5*CH,CH,RNUM,0.0,-1)
 IF(IFNT.EQ.1) CALL PLCHAR(XX+4.0*CH,YY,CH,char(I-1),0.0,1)
 IF(IFNT.EQ.2) CALL PLSLAN(XX+4.0*CH,YY,CH,char(I-1),0.0,1)
 IF(IFNT.EQ.3) CALL PLMATH(XX+4.0*CH,YY,CH,char(I-1),0.0,1)
 IF(IFNT.EQ.4) CALL PLSYMB(XX+4.0*CH,YY,CH,(I-1),0.0,0)
 END DO
 END DO
C
C---Put colored title at bottom of plot
 CALL NEWCOLORNAME('blue')
 CALL PLCHAR(0.,0.,2.*CH,'Xplot11 ',0.0,8)
 CALL NEWCOLORNAME('green')
 IF(IFNT.EQ.1) CALL PLCHAR(999.,999.,2.*CH,'PLCHAR ',0.0,7)
 IF(IFNT.EQ.2) CALL PLCHAR(999.,999.,2.*CH,'PLSLAN ',0.0,7)
 IF(IFNT.EQ.3) CALL PLCHAR(999.,999.,2.*CH,'PLMATH ',0.0,7)
 IF(IFNT.EQ.4) CALL PLCHAR(999.,999.,2.*CH,'PLSYMB ',0.0,7)
 CALL NEWCOLORNAME('red')
 CALL PLCHAR(999.,999.,2.*CH,'test',0.0,4)
C
 CALL PLFLUSH
 WRITE(*,*) 'Hit return to proceed...'
 READ(5,1000) INP
 1000 FORMAT(A)
C
 CALL PLEND
C
 1500 CONTINUE
C
 2000 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/plotlib/sym/symgen.f

C***
C Module: symgen.f (part of font generation tools in Xplot/sym)
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 PROGRAM SYMGEN
C--
C
C Interactive program for creating and modifying vector fonts.
C
C
C A font set is kept stored in a database file XXXX.FNT, which
C is read in when the program is invoked with
C
C % symgen XXXX
C
C The first line of XXXX.FNT is a list of the defined characters.
C Each subsequent line then defines one character in the list:
C
C ABCD...
C 21616 12168 13280 ... <- definition for "A"
C 21616 12280 14880 ... <- definition for "B"
C .
C .
C
C Each 5-digit number defines a vector node x,y location on a 96x96
C grid, with 16,16 being the lower-left "origin" of the character.
C See SUBR. SYMPLT header below for the encoding format.
C If the numbers are zero or missing, then the font character
C is not plotted (blank).
C
C Once the database has been edited, command "W" will generate
C a Fortran INCLUDE file XXXX.INC, with the vector font information
C placed in DATA statements. This is for use in a SYMBOL-type
C routine to allow plotting of the font. Four sample databases,
C include files, and routines already exist:
C
C CHAR.FNT CHAR.INC SUBR. PLCHAR (Upper,lower case letters)
C SLAN.FNT SLAN.INC SUBR. PLSLAN (Slanted version of CHAR)
C MATH.FNT MATH.INC SUBR. PLMATH (Latex-like Greek symbols)
C SYMB.FNT SYMB.INC SUBR. PLSYMB (Versatec plotting symbols)
C
C also available: SUBR. PLNUMB (Whole floating-point numbers)
C
C SUBR. PLCHAR, PLSLAN, and PLMATH (in ../plt_font.f) are identical
C except for their INCLUDE statements. One can generate analogous
C files and plot routines for any custom font, e.g.
C
C USER.FNT USER.INC SUBR. PLUSER
C
C
C SUBR. PLSYMB is nearly the same, except that it takes an integer
C argument ISYM = 0,1... to select the symbol defined on line ISYM+1:
C
C ABCD...
C 21616 12168 13280 ... <- definition for ISYM = 0
C 21616 12280 14880 ... <- definition for ISYM = 1
C .
C .
C The ASCII characters on the first line are ignored in PLSYMB.
C
C PLSYMB also shifts the symbol down and left by 1/2 the symbol
C size, so the symbol is centered on 0,0. This duplicates the
C Versatec SYMBOL routine. Note that PLSYMB can only plot one
C symbol at a time.
C
C
C WARNING: The CHAR font implemented in PLCHAR is assumed to be
C a "WYSIWIG" font, in which each font character closely
C represents its ASCII index character. It is used by
C other libPlt routines (and also this program!), and
C hence should not be significantly modified.
C
C
C--
C
 COMMON /PLTC/ IDEV, IPSLU, SIZE, CH
C
 CHARACTER*100 CHARS
 COMMON /CDATA/ CHARS
 COMMON /NDATA/ NCHAR, NODE(20,100)
 INTEGER NODET(20)
C
 LOGICAL SAVED
C
 CHARACTER*80 ARGP1, STRING, RANGE
C
 CHARACTER*1 COPT, ANS, ALPH, ALPHO, ALPHT, KCHAR
 LOGICAL LABORT, LDONE
C
 SIZE = 6.0
 IDEV = 1
 IPSLU = 0
C
 CH = 0.7
 X0 = 0.0
 Y0 = 0.0
C
 NCHARS = 0
C
C---- get the XXXX working set name
 CALL GETARG(1,ARGP1)
 CALL LOAD(ARGP1)
C
C---- initial overlay character, plot-test string
 ALPHO = ' '
 STRING = ' '
C
C---- initial target character is first one in database
 ALPH = CHARS(1:1)
 SAVED = .TRUE.
C
 CALL PLINITIALIZE
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
C
 CALL GETCOLOR(ICOL0)
C
 1000 FORMAT(A)
C
 900 CONTINUE
 WRITE(*,1005)
 1005 FORMAT(/' C hange target character'
 & /' I nput target character vectors'
 & /' M odify target character vectors'
 & /' T ranslate target character'
 & /' O verlay other character'
 & /' L ean character(s)'
 & /' P lot specified character string'
 & /' A dd a new character to database'
 & /' D elete a character from database'
 & /' S ave database'
 & /' W rite include file from current database'
 & /' Z oom'
 & /' U nzoom'
 & /' Q uit')
C
 910 WRITE(*,1015) ALPH
 1015 FORMAT(/' Select option (target character = ',A1,'): ', $)
 READ(*,1000) COPT
C
 IF(INDEX('Qq',COPT).NE.0) THEN
 IF(.NOT.SAVED) THEN
 WRITE(*,*)
 WRITE(*,*) 'Database not saved. Really quit ? N'
 READ(*,1000) ANS
 IF(INDEX('Yy',ANS) .EQ. 0) GO TO 900
 ENDIF
 CALL PLCLOSE
 STOP
 ENDIF
C
 NOPT = INDEX('CIMTOLPADSWZU',COPT) + INDEX('cimtolpadswzu',COPT)
C
 GOTO (10,20,30,40,50,60,70,80,90,100,110,120,130) NOPT
 GOTO 900
C
C===
C---- select character
 10 CONTINUE
 WRITE(*,1010) CHARS(1:NCHAR)
 1010 FORMAT(/1X,A,
 & //1X,'Select new target character: ',$)
 READ(*,1000) ALPH
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
 GO TO 900
C
C===
C---- input character
 20 CONTINUE
C
 KC = INDEX(CHARS,ALPH)
 IF(KC.EQ.0) THEN
 WRITE(*,*) 'Character is not in database.'
 GO TO 900
 ENDIF
C
C---- clear node-input buffer array
 DO 201 K=1, 20
 NODET(K) = 0
 201 CONTINUE
C
C
C---- small node-select symbol size
 CHS = 0.010*CH
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PABORT
 CALL PDONE
C
ccc CALL PLCHAR(X0,Y0,CH,ALPH,0.0,1)
C
 CALL PLFLUSH
C
 WRITE(*,*)
 WRITE(*,*) 'Input stroke points (double-click to end a stroke)...'
C
 ILAST = -999
 JLAST = -999
 ISTAT = 2
C
 DO 205 K=1, 20
 204 CALL GETCURSORXY(XC,YC,KCHAR)
C
C------ exit if clicked inside "ABORT" box
 IF(LABORT(XC,YC)) THEN
 WRITE(*,*) 'Database unchanged.'
 GO TO 209
 ENDIF
C
C------ finish up if clicked inside "DONE" box
 IF(LDONE(XC,YC)) GO TO 206
C
C------ set integer coordinates and clip to within field
 I = INT(64.0*(XC-X0)/CH + 16.5)
 J = INT(64.0*(YC-Y0)/CH + 16.5)
 I = MAX(0 , MIN(I,96))
 J = MAX(0 , MIN(J,96))
C
 IF(ILAST.EQ.I .AND. JLAST.EQ.J) THEN
 ISTAT = 2
 ILAST = -999
 JLAST = -999
 WRITE(*,*) 'Will start new stroke...'
 GO TO 204
 ENDIF
C
 WRITE(*,1026) K, I, J
 1026 FORMAT(1X,' node',I3,': ', 2I5)
C
C------ set new node location in buffer array
 NODET(K) = 10000*ISTAT + 100*I + J
C
C------ put small symbol over actual node location
 XNODE = CH*FLOAT(I-16)/64.0
 YNODE = CH*FLOAT(J-16)/64.0
 IF(ILAST.EQ.-999 .OR. JLAST.EQ.-999) THEN
 CALL PLOT(XNODE,YNODE,3)
 ELSE
 CALL PLOT(XNODE,YNODE,2)
 ENDIF
 CALL NEWCOLORNAME('orange')
 CALL PLSYMB(XNODE,YNODE,CHS,1,0.0,0)
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
C
C------ set up for next input point
 ILAST = I
 JLAST = J
 ISTAT = 1
C
 205 CONTINUE
 WRITE(*,*) '20-node array limit reached'
 206 CONTINUE
C
C---- put buffer array into database
 KC = INDEX(CHARS,ALPH)
 DO 207 K=1, 20
 NODE(K,KC) = NODET(K)
 207 CONTINUE
 WRITE(*,*)
 WRITE(*,*) 'Database updated.'
 SAVED = .FALSE.
C
C---- replot whole character
 209 CALL PLEND
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
C
 CALL PLEND
 GO TO 900
C
C===
C---- modify character
 30 CONTINUE
 WRITE(*,1030) ALPH
 1030 FORMAT(/1X, 'Modifying character: ', A)
C
 KC = INDEX(CHARS,ALPH)
 IF(KC.EQ.0) THEN
 WRITE(*,*) 'Character is not in database.'
 GO TO 900
 ENDIF
C
C---- save database node array for restoration after abort
 DO 301 K=1, 20
 NODET(K) = NODE(K,KC)
 301 CONTINUE
C
 CALL PLTINI
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
C
ccc CALL PLSYMB(X0,Y0,CH,ALPH,0.0,1)
c
C
C---- small node-select symbol size
 CHS = 0.010*CH
C
 CALL PABORT
 CALL PDONE
 CALL PLFLUSH
C
 WRITE(*,*)
 WRITE(*,*) 'Click on old/new point pairs...'
 DO 305 IPASS=1, 12345
C
 CALL GETCURSORXY(XC,YC,KCHAR)
C
C------ restore and exit if clicked inside "ABORT" box
 IF(LABORT(XC,YC)) THEN
 DO 3052 K=1, 20
 NODE(K,KC) = NODET(K)
 3052 CONTINUE
 WRITE(*,*) 'Database unchanged.'
 GO TO 309
 ENDIF
C
C------ finish up if clicked inside "DONE" box
 IF(LDONE(XC,YC)) GO TO 306
C
C------ set integer coordinates and clip to within field
 I = INT(64.0*(XC-X0)/CH + 16.5)
 J = INT(64.0*(YC-Y0)/CH + 16.5)
 I = MAX(0 , MIN(I,96))
 J = MAX(0 , MIN(J,96))
C
C------ find nearest vector node
 IDMIN = 1000000
 KMIN = 0
 DO 3054 K=1, 20
 ISTAT = NODE(K,KC) / 10000
 IF(ISTAT.EQ.0) GO TO 3055
C
 NODEB = NODE(K,KC) - ISTAT*10000
 IT = NODEB / 100
 JT = NODEB - 100*IT
C
 IDIST = (I - IT)**2 + (J - JT)**2
 IF(IDIST.LT.IDMIN) THEN
 IDMIN = IDIST
 KMIN = K
 ENDIF
 3054 CONTINUE
 3055 CONTINUE
C
 KT = KMIN
 IF(KT.EQ.0) THEN
 WRITE(*,*) 'Nearest point not found.'
 GO TO 900
 ENDIF
C
C------ plot small symbol on nearest vector node to identify it
 ISTAT = NODE(KT,KC) / 10000
 NODEB = NODE(KT,KC) - ISTAT*10000
 IT = NODEB / 100
 JT = NODEB - 100*IT
C
 CALL NEWCOLORNAME('red')
 XNODE = CH*FLOAT(IT-16)/64.0
 YNODE = CH*FLOAT(JT-16)/64.0
 CALL PLSYMB(XNODE,YNODE,CHS,1,0.0,0)
 FK = FLOAT(KT)
 CALL PLNUMB(XNODE+1.5*CHS,YNODE+1.5*CHS,3.0*CHS,FK,0.0,-1)
 CALL NEWCOLOR(ICOL0)
C
C------ now get new location for vector node KT
 CALL GETCURSORXY(XC,YC,KCHAR)
C
 IF(LABORT(XC,YC)) THEN
 DO 3056 K=1, 20
 NODE(K,KC) = NODET(K)
 3056 CONTINUE
 WRITE(*,*) 'No changes made.'
 GO TO 309
 ENDIF
C
 IF(LDONE(XC,YC)) GO TO 306
C
C------ integer coordinates for new location
 I = INT(64.0*(XC-X0)/CH + 16.5)
 J = INT(64.0*(YC-Y0)/CH + 16.5)
 I = MAX(0 , MIN(I,96))
 J = MAX(0 , MIN(J,96))
C
C------ encode coordinates into database
 NODE(KT,KC) = 10000*ISTAT + 100*I + J
C
C------ replot everything
 CALL PLEND
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PABORT
 CALL PDONE
 CALL PLFLUSH
C
 305 CONTINUE
 306 CONTINUE
C
 WRITE(*,*)
 WRITE(*,*) 'Database updated.'
 SAVED = .FALSE.
C
C---- replot final state
 309 CALL PLEND
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
C
 CALL PLEND
 GO TO 900
C
C===
C---- translate current character
 40 CONTINUE
C
 DO K=1, 20
 NODET(K) = 0
 ENDDO
C
 41 WRITE(*,1040)
 1040 FORMAT(/' Enter dX, dY (in points): ', $)
 READ(*,*,ERR=41) ID, JD
C
 IC = INDEX(CHARS,ALPH)
 DO 42 K=1, 20
C
C------ unpack node coordinates from database
 ISTAT = NODE(K,IC) / 10000
 IF(ISTAT.EQ.0) GO TO 43
C
 NODEB = NODE(K,IC) - ISTAT*10000
 I = NODEB / 100
 J = NODEB - 100*I
C
C------ shift coordinates
 I = I + ID
 J = J + JD
C
 IF(I.LT.0 .OR. I.GT.96) THEN
 WRITE(*,*) 'X movement puts character outside field 0..96'
 GO TO 40
 ENDIF
C
 IF(J.LT.0 .OR. J.GT.96) THEN
 WRITE(*,*) 'Y movement puts character outside field 0..96'
 GO TO 40
 ENDIF
C
C------ encode new coordinates in buffer array
 NODET(K) = 10000*ISTAT + 100*I + J
C
 42 CONTINUE
 43 CONTINUE
C
C---- store shifted nodes in database from buffer array
 DO 46 K=1, 20
 NODE(K,IC) = NODET(K)
 46 CONTINUE
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
 GO TO 900
C
C===
C---- select overlay character
 50 CONTINUE
 ALPHO = ' '
 WRITE(*,1050) CHARS(1:NCHAR)
 1050 FORMAT(/1X,A,
 & //1X,'Select character to overlay (<return> if none: ',$)
 READ(*,1000) ALPHO
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
 GO TO 900
C
C===
C---- lean character(s)
 60 CONTINUE
 WRITE(*,1060)
 1060 FORMAT(/' Enter character range to lean (e.g. AZ): ',$)
 READ(*,1000) RANGE
 IF(INDEX(RANGE,' ').EQ.1) GO TO 900
C
 62 WRITE(*,1062)
 1062 FORMAT(/1X,'Enter tan(lean_angle), + to right: ',$)
 READ (*,*,ERR=62) TANA
C
 CALL LEAN(RANGE,TANA)
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
 GO TO 900
C
C===
C---- enter plot test string
 70 CONTINUE
 WRITE(*,1070)
 1070 FORMAT(/' Enter string: ',$)
 READ(*,1000) STRING
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
 GO TO 900
C
C===
C---- add character to database
 80 CONTINUE
 IF(NCHAR+1.GE.100) THEN
 WRITE(*,*)
 WRITE(*,*) 'Array limit reached. Cannot add character.'
 GO TO 900
 ENDIF
C
 WRITE(*,1080)
 1080 FORMAT(/1X,'Enter character to be added: ',$)
 READ(*,1000) ALPH
 IC = INDEX(CHARS,ALPH)
 IF(IC.NE.0) THEN
 WRITE(*,*) 'That is already in database.'
 GO TO 900
 ENDIF
C
 81 WRITE(*,1081) CHARS(1:NCHAR), ALPH
 1081 FORMAT(/1X,A,
 & //1X,' ... insert ',A1,
 & ' before which character ? (<return> to append) : ',$)
 READ(*,1000) ALPHT
 IC = INDEX(CHARS,ALPHT)
 IF(IC.EQ.0) IC = NCHAR+1
C
C---- move up all characters above IC to make room for new character
 IF(IC.LE.NCHAR) THEN
 CHARS(IC+1:NCHAR+1) = CHARS(IC:NCHAR)
 DO 802 KC=NCHAR, IC, -1
 DO 8024 K=1, 20
 NODE(K,KC+1) = NODE(K,KC)
 8024 CONTINUE
 802 CONTINUE
 ENDIF
C
 NCHAR = NCHAR+1
C
C---- set new character and clear its vectors
 CHARS(IC:IC) = ALPH
 DO 804 K=1, 20
 NODE(K,IC) = 0
 804 CONTINUE
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
 GO TO 900
C
C===
C---- delete character from database
 90 CONTINUE
C
 WRITE(*,1090)
 1090 FORMAT(/1X,'Select character to be deleted: ',$)
 READ(*,1000) ALPH
C
 IF(INDEX(' ',ALPH).EQ.1) THEN
 WRITE(*,*) 'No action taken'
 GO TO 900
 ENDIF
C
 IC = INDEX(CHARS,ALPH)
C
 IF(IC.EQ.0) THEN
 WRITE(*,*) 'Character not in database.'
 GO TO 900
 ENDIF
C
C---- pull down all characters above the one to be deleted
 CHARS(IC:NCHAR) = CHARS(IC+1:NCHAR+1)
 DO 902 KC=IC, NCHAR-1
 DO 9024 K=1, 20
 NODE(K,KC) = NODE(K,KC+1)
 9024 CONTINUE
 902 CONTINUE
 NCHAR = NCHAR-1
 IC = MIN(IC,NCHAR)
C
C---- set new current character
 ALPH = CHARS(IC:IC)
C
 CALL PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 CALL PLFLUSH
 CALL PLEND
 GO TO 900
C
C===
C---- write out database
 100 CONTINUE
 CALL SAVE(ARGP1,SAVED)
 GO TO 900
C
C===
C---- write out include file
 110 CONTINUE
 CALL WRIT(ARGP1)
 GO TO 910
C
C===
C---- set zoom
 120 CONTINUE
 CALL USETZOOM(.FALSE.,.TRUE.)
 CALL REPLOT(1)
 GO TO 910
C
C===
C---- clear zoom
 130 CONTINUE
 CALL CLRZOOM
 CALL REPLOT(1)
 GO TO 910
C
 END

 SUBROUTINE LOAD(ARGP1)
 CHARACTER*80 ARGP1,FNAME
C
 CHARACTER*100 CHARS
 COMMON /CDATA/ CHARS
 COMMON /NDATA/ NCHAR, NODE(20,100)
C
 1000 FORMAT(A)
C
 K = INDEX(ARGP1,' ') - 1
 IF(K.LT.1) THEN
 WRITE(*,*) 'SYMGEN argument error: ', ARGP1
 STOP
 ENDIF
C
 FNAME = ARGP1(1:K) // '.FNT'
C
 OPEN(3,FILE=FNAME,STATUS='OLD',ERR=90)
 READ(3,1000) CHARS
 NCHAR = INDEX(CHARS,' ') - 1
C
 DO IC=1, NCHAR
 DO K=1, 20
 NODE(K,IC) = 0
 ENDDO
 ENDDO
C
 DO IC=1, NCHAR
 READ(3,*,END=80) (NODE(K,IC),K=1,20)
C
C------ clear any invalid points (should be zero anyway)
 DO K=1, 20
 ISTAT = NODE(K,IC) / 10000
 IF(ISTAT.EQ.0) NODE(K,IC) = 0
 ENDDO
 ENDDO
C
 80 CONTINUE
 CLOSE(3)
C
 WRITE(*,1200) CHARS(1:NCHAR)
 1200 FORMAT(/1X,'Database read for the following character set...'
 & //1X, A)
C
 RETURN
C
 90 CONTINUE
 WRITE(*,*) 'Database file not found: ',FNAME(1:60)
 RETURN
C
 END

 SUBROUTINE SAVE(ARGP1,SAVED)
 CHARACTER*80 ARGP1,FNAME
 CHARACTER*1 ANS
 CHARACTER*4 CNUM
 LOGICAL SAVED
C
 CHARACTER*100 CHARS
 COMMON /CDATA/ CHARS
 COMMON /NDATA/ NCHAR, NODE(20,100)
C
C
 1000 FORMAT(A)
 1500 FORMAT(1X,20I6)
 2100 FORMAT(/' File ',A,' exits. Overwrite ? Y')
C
C
 KARG = INDEX(ARGP1,' ') - 1
C
C---- write new database file for next SYMGEN call
 FNAME = ARGP1(1:KARG) // '.FNT'
 OPEN(3,FILE=FNAME,STATUS='OLD',ERR=10)
C
 WRITE(*,2100) FNAME(1:KARG+4)
 READ(*,1000) ANS
 IF(INDEX('Nn',ANS) .NE. 0) THEN
 CLOSE(3)
 RETURN
 ENDIF
C
 10 OPEN(3,FILE=FNAME,STATUS='UNKNOWN')
C
 WRITE(3,1000) CHARS(1:NCHAR)
 DO IC=1, NCHAR
 WRITE(3,1500) (NODE(K,IC),K=1,20)
 ENDDO
 CLOSE(3)
 WRITE(*,*)
 WRITE(*,*) 'New database file written: ', FNAME(1:KARG+4)
 SAVED = .TRUE.
C
 RETURN
 END

 SUBROUTINE WRIT(ARGP1)
 CHARACTER*80 ARGP1,FNAME,LINE
 CHARACTER*1 ANS
 CHARACTER*4 CNUM
C
 CHARACTER*100 CHARS
 COMMON /CDATA/ CHARS
 COMMON /NDATA/ NCHAR, NODE(20,100)
C
C---- write new include file for SYMBOL-type routine
C
 1000 FORMAT(A)
 1500 FORMAT(1X,20I6)
 2100 FORMAT(/' File ',A,' exits. Overwrite ? Y')
C
 KARG = INDEX(ARGP1,' ') - 1
C
 FNAME = ARGP1(1:KARG) // '.INC'
 OPEN(4,FILE=FNAME,STATUS='OLD',ERR=20)
C
 WRITE(*,2100) FNAME(1:KARG+4)
 READ(*,1000) ANS
 IF(INDEX('Nn',ANS) .NE. 0) THEN
 CLOSE(4)
 GO TO 28
 ENDIF
C
 20 OPEN(4,FILE=FNAME,STATUS='UNKNOWN')
 WRITE(4,*) ' '
 WRITE(4,3010) NCHAR, NCHAR
C
 WRITE(4,*) ' '
 NARR = (NCHAR-1)/10
 DO N=0, NARR
 NDIM = MIN(10 , NCHAR-N*10)
 WRITE(4,3201) N, NDIM
 ENDDO
 DO N=0, NARR
 WRITE(4,3202) 10*N+1, N
 ENDDO
C
C---Write character translation data statements
 WRITE(4,3020) NCHAR
 DO L=1, 8
 K1 = 26*L - 25
 K2 = 26*L
 IF(K1 .GT. NCHAR) GO TO 21
 K2 = MIN(K2,NCHAR)
 WRITE(4,3021) K1,K2, CHARS(K1:K2)
 ENDDO
 21 CONTINUE
C
C---Write out character node data
 DO N=0, NARR
 IC1 = 10*N + 1
 IC2 = 10*N + 10
 IC2 = MIN(IC2,NCHAR)
C
 IC = IC1
 WRITE(4,3210) N
 DO IC=IC1, IC2-1
 WRITE(4,3220) (NODE(K,IC),K= 1,10)
 WRITE(4,3220) (NODE(K,IC),K=11,20)
 ENDDO
 IC = IC2
 WRITE(4,3220) (NODE(K,IC),K= 1,10)
 WRITE(4,3230) (NODE(K,IC),K=11,20)
 ENDDO
C
 CLOSE(4)
C
 3010 FORMAT(' CHARACTER*',I3,' CHARS'
 & /' INTEGER NODE(20,',I3,')')
C
 3201 FORMAT(' DIMENSION NODE',I1,'(20,',I2,')')
 3202 FORMAT(' EQUIVALENCE (NODE(1,',I3,') , NODE',I1,'(1,1))')
C
 3020 FORMAT(' DATA NCHARS / ',I3,' /')
 3021 FORMAT(' DATA CHARS(',I3,':',I3,') / ''',A,''' /')
C
 3210 FORMAT(' DATA NODE',I1,' /')
 3220 FORMAT(' & ',10(I5,','))
 3230 FORMAT(' & ', 9(I5,','),I5,' /')
C
 CLOSE(4)
 WRITE(*,*)
 WRITE(*,*) 'New include file written: ', FNAME(1:KARG+4)
 WRITE(*,*) 'Put include file in Xplot directory,',
 & ' make libPlt.a to implement new font.'
C
 28 CONTINUE
 RETURN
C
 END

 SUBROUTINE LEAN(RANGE,TANA)
 CHARACTER*(*) RANGE
C
 CHARACTER*1 ALPH
C
 CHARACTER*100 CHARS
 COMMON /CDATA/ CHARS
 COMMON /NDATA/ NCHAR, NODE(20,100)
C
 KC1 = INDEX(CHARS,RANGE(1:1))
 KC2 = INDEX(CHARS,RANGE(2:2))
C
 IF(KC1.EQ.0 .OR. KC2.EQ.0) THEN
 WRITE(*,*) 'Specified range not in current character set.'
 WRITE(*,*) 'No action taken.'
 RETURN
 ENDIF
C
C---- go over each character...
 DO 12 KC=KC1, KC2
C
C------ go over each node
 DO K=1, 20
C
C-------- strip off leading point-status digit
 ISTAT = NODE(K,KC) / 10000
 NODEB = NODE(K,KC) - ISTAT*10000
C
 IF(ISTAT.GT.0) THEN
C
C---------- decode x and y location coordinates
 I = NODEB / 100
 J = NODEB - 100*I
C
C---------- perform tilt
 I = I + INT(FLOAT(J-16)*TANA)
C
C---------- encode coordinates back into database
 NODE(K,KC) = 10000*ISTAT + 100*I + J
C
 ENDIF
C
 ENDDO
C
 12 CONTINUE
C
 RETURN
 END

 SUBROUTINE PLTINI
 COMMON /PLTC/ IDEV, IPSLU, SIZE, CH
C
 RELWSIZ = 0.8
 CALL PLOPEN(RELWSIZ,IPSLU,IDEV)
 CALL PLOTABS(0.125,0.125,-3)
 CALL NEWFACTOR(SIZE)
 CALL PLOT(0.25*CH,0.25*CH,-3)
C
 RETURN
 END ! PLTINI

 SUBROUTINE PLTALL(X0,Y0,ALPH,ALPHO,STRING)
 COMMON /PLTC/ IDEV, IPSLU, SIZE, CH
 CHARACTER*1 ALPH, ALPHO
 CHARACTER*80 STRING
C
 CHSEQ = 0.10*CH
 CHSTR = 0.05*CH
C
 XSEQ = CH + CH/4.0 + 0.03*CH
 YSEQ = CH + CH/4.0 - 1.10*CHSEQ
C
 XCHR = CH + CH/4.0 + 0.03*CH
 YCHR = CH - 0.07*CH
C
 XSTR = XCHR
 YSTR = YCHR - 0.65*CH
C
 CALL PLTINI
 CALL PLTGRD(X0,Y0,CH)
 CALL SYMPLT(X0,Y0,CH,ALPH,0.0,-1)
 CALL SYMPLT(X0,Y0,CH,ALPHO,0.0,1)
 CALL SYMPLT(XSTR,YSTR,CHSTR,STRING,0.0,80)
 CALL PLTCHR(XCHR,YCHR)
C
 XQ = XSEQ
 CHQ = CHSEQ
c CALL PLOT(XQ,YSEQ,3)
 DO ISCAL=0, 10
 CALL SYMPLT(XQ,YSEQ,CHQ,ALPH,0.0,1)
c CALL PLCHAR(999.,999.,CHQ,ALPH,0.0,1)
 XQ = XQ + CHQ
 CHQ = CHQ * 0.75
 ENDDO
C
 RETURN
 END

 SUBROUTINE PLTCHR(XCHR,YCHR)
 COMMON /PLTC/ IDEV, IPSLU, SIZE, CH
C
 CHARACTER*1 ALPH
C
 CHARACTER*100 CHARS
 COMMON /CDATA/ CHARS
 COMMON /NDATA/ NCHAR, NODE(20,100)
C
 CHP = 0.040*CH
C
 DO 10 ILIN=1, 5
 YPLT = YCHR - CHP - 2.5*CHP*(ILIN-1)
 DO 102 KC=1, 26
 XPLT = XCHR + 0.5*CHP + 1.0*CHP*(KC-1)
 XPLT = XCHR + 1.0*CHP*(KC-1)
C
 IC = KC + 26*(ILIN-1)
 IF(IC.GT.NCHAR) GO TO 15
C
 ALPH = CHARS(IC:IC)
 CALL SYMPLT(XPLT,YPLT,CHP,ALPH,0.0,1)
 102 CONTINUE
 10 CONTINUE
C
 15 CONTINUE
 RETURN
 END

 SUBROUTINE SYMPLT(XC,YC,CH,STRING,ANGLE,NC1)
C--
C Plots character string using vector font database NODE(..)
C
C Each NODE(..) value has the form sxxyy
C
C xx = location of polyline point 0 ... 96
C yy
C s = 2 if point is the start of a new polyline stroke
C = 1 if point is inside or at the end of stroke
C = 0 if point is not valid
C--
 CHARACTER*(*) STRING
C
 CHARACTER*1 ALPH
C
 CHARACTER*100 CHARS
 COMMON /CDATA/ CHARS
 COMMON /NDATA/ NCHAR, NODE(20,100)
C
 NC = ABS(NC1)
 CHS = 0.010*CH
C
 CALL GETCOLOR(ICOL0)
C
C---- go over each character...
 DO 12 IC=1, NC
C
C------ set plot location
 X0 = XC + CH*FLOAT(IC-1)
 Y0 = YC
C
 ALPH = STRING(IC:IC)
 KC = INDEX(CHARS,ALPH)
C
 IF(KC.NE.0) THEN
C
C-------- decode and plot each node
 DO K=1, 20
C
C---------- strip off leading point-status digit
 ISTAT = NODE(K,KC) / 10000
 NODEB = NODE(K,KC) - ISTAT*10000
C
C---------- decode x and y location coordinates
 I = NODEB / 100
 J = NODEB - 100*I
C
 X = X0 + CH*FLOAT(I-16)/64.0
 Y = Y0 + CH*FLOAT(J-16)/64.0
C
 IF (ISTAT.EQ.0) THEN
 GOTO 12
 ELSEIF (ISTAT.EQ.1) THEN
 CALL PLOT(X,Y,2)
 ELSE
 CALL PLOT(X,Y,3)
 ENDIF
C
C---------- plot symbol at vector nodes
 IF(NC1.LT.0) THEN
 CALL NEWCOLORNAME('blue')
 CALL PLSYMB(X,Y,CHS,1,0.0,0)
 FK = FLOAT(K)
 CALL PLNUMB(X+1.5*CHS,Y+1.5*CHS,3.0*CHS,FK,0.0,-1)
 CALL NEWCOLOR(ICOL0)
 CALL PLOT(X,Y,3)
 ENDIF
C
 ENDDO
 ENDIF
C
 12 CONTINUE
C
 RETURN
 END

 SUBROUTINE PLTGRD(X0,Y0,CH)
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
C
 CALL NEWPEN(1)
C
 NX = 24
 NY = 24
 DX = CH/16.0
 DY = CH/16.0
 CALL PLGRID(X0-0.25*CH,Y0-0.25*CH, NX,DX, NY,DY, LMASK2)
C
 NX = 2
 NY = 2
 DX = CH/2.0
 DY = CH/2.0
 CALL PLGRID(X0,Y0, NX,DX, NY,DY, LMASK3)
C
 DO I=0,2
 DO J=0,2
 XPLT = X0 + DX*FLOAT(I)
 YPLT = Y0 + DY*FLOAT(J)
 CALL PLSYMB(XPLT,YPLT,CH/96.0,5,0.0,0)
 ENDDO
 ENDDO
C
 CALL PLFLUSH
C
 RETURN
 END

 SUBROUTINE PDONE
 COMMON /PLTC/ IDEV, IPSLU, SIZE, CH
 COMMON /DONE/ XDONE(2), YDONE(2)
C
C---- set DONE window
 XDONE(1) = CH + CH/4.0 + 0.125/SIZE
 XDONE(2) = CH + CH/4.0 + 1.025/SIZE
 YDONE(1) = - CH/4.0 + 0.525/SIZE
 YDONE(2) = - CH/4.0 + 1.425/SIZE
C
C---- plot DONE window
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME('green')
 CALL PLOT(XDONE(1),YDONE(1),3)
 CALL PLOT(XDONE(2),YDONE(1),2)
 CALL PLOT(XDONE(2),YDONE(2),2)
 CALL PLOT(XDONE(1),YDONE(2),2)
 CALL PLOT(XDONE(1),YDONE(1),2)
C
 CHA = MIN((XDONE(2)-XDONE(1))/8.0 , (YDONE(2)-YDONE(1))/1.5)
 XCA = 0.5*(XDONE(2)+XDONE(1)) - 2.0*CHA
 YCA = 0.5*(YDONE(2)+YDONE(1)) - 0.5*CHA
 CALL PLCHAR(XCA,YCA,CHA,'DONE',0.0,4)
 CALL NEWCOLOR(ICOL0)
C
 RETURN
 END

 FUNCTION LDONE(XC,YC)
 COMMON /DONE/ XDONE(2), YDONE(2)
 LOGICAL LDONE
C
C---- return T if location XC,YC falls within DONE window
C
 LDONE = XC .GE. XDONE(1) .AND.
 & XC .LE. XDONE(2) .AND.
 & YC .GE. YDONE(1) .AND.
 & YC .LE. YDONE(2)
C
 RETURN
 END

 SUBROUTINE PABORT
 COMMON /PLTC/ IDEV, IPSLU, SIZE, CH
 COMMON /ABRT/ XABORT(2), YABORT(2)
C
C---- set abort window
 XABORT(1) = CH + CH/4.0 + 0.125/SIZE
 XABORT(2) = CH + CH/4.0 + 1.025/SIZE
 YABORT(1) = - CH/4.0
 YABORT(2) = - CH/4.0 + 0.400/SIZE
C
C---- plot abort window
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME('red')
 CALL PLOT(XABORT(1),YABORT(1),3)
 CALL PLOT(XABORT(2),YABORT(1),2)
 CALL PLOT(XABORT(2),YABORT(2),2)
 CALL PLOT(XABORT(1),YABORT(2),2)
 CALL PLOT(XABORT(1),YABORT(1),2)
C
 CHA = MIN((XABORT(2)-XABORT(1))/8.0 , (YABORT(2)-YABORT(1))/1.5)
 XCA = 0.5*(XABORT(2)+XABORT(1)) - 2.5*CHA
 YCA = 0.5*(YABORT(2)+YABORT(1)) - 0.5*CHA
 CALL PLCHAR(XCA,YCA,CHA,'ABORT',0.0,5)
 CALL NEWCOLOR(ICOL0)
C
 RETURN
 END

 FUNCTION LABORT(XC,YC)
 COMMON /ABRT/ XABORT(2), YABORT(2)
 LOGICAL LABORT
C
C---- return T if location XC,YC falls within abort window
C
 LABORT = XC .GE. XABORT(1) .AND.
 & XC .LE. XABORT(2) .AND.
 & YC .GE. YABORT(1) .AND.
 & YC .LE. YABORT(2)
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/sym/test.f

C***
C Module: test.f (test routine for fonts in Xplot/sym)
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 PROGRAM TEST
C
 IDEV = 3
 IPSLU = 0
 SIZE = 7.0
 IPEN = 3
 CH = 0.020
C
cc size = 5.0
cc ipen = 2
C
 CALL PLINITIALIZE
 CALL PLOPEN(-0.95,IPSLU,IDEV)
 CALL NEWFACTOR(SIZE)
 CALL NEWPEN(IPEN)
C
 CALL PLOTABS(0.60,1.20,-3)
C
 WRITE(*,*) 'Plotting PLCHAR set...'
 CALL PLCHAR(0.0,1.25,CH,
 & 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz',0.0,52)
 CALL PLCHAR(0.0,1.20,CH,
 & '0123456789,.;:`"!?@#$%&|()[]{}<>_+-*=/^~ ',0.0,52)
C
 WRITE(*,*) 'Plotting PLSLAN set...'
 CALL PLSLAN(0.0,1.10,CH,
 & 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz',0.0,52)
 CALL PLSLAN(0.0,1.05,CH,
 & '0123456789,.;:`"!?@#$%&|()[]{}<>_+-*=/^~ ',0.0,52)
C
 WRITE(*,*) 'Plotting PLMATH set...'
 CALL PLMATH(0.0,0.95,CH,
 & 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz',0.0,52)
 CALL PLMATH(0.0,0.90,CH,
 & '0123456789,.;:`"!?@#$%&|()[]{}<>_+-*=/^~ ',0.0,52)
C
 WRITE(*,*) 'Plotting PLSYMB set...'
 DO IS=0, 13
 XX = 0.05*FLOAT(IS)
 CALL PLSYMB(XX,0.80,CH,IS,0.0,0)
 ENDDO
C
 WRITE(*,*) 'Plotting sample character strings...'
C
 CALL PLMATH(0.0 ,0.55,CH,' a2+b2=g2',0.0,9)
C
 CALL PLMATH(0.0 ,0.45,CH,' 2 2 2',0.0,9)
 CALL PLCHAR(0.0 ,0.45,CH,' a +b =c ',0.0,9)
C
 CALL PLMATH(0.0 ,0.35+0.15*CH,
 & CH,'R_____ ',0.0,9)
 CALL PLMATH(0.0 ,0.35,CH,' 2 2 ',0.0,9)
 CALL PLSLAN(0.0 ,0.35,CH,' a +b =c ',0.0,9)
C
 CALL PLMATH(0.30,0.55,CH,' 2',30.0,5)
 CALL PLCHAR(0.30,0.55,CH,'E=mc ',30.0,5)
C
C
 CALL PLMATH(0.30,0.45,CH,'F&= & & & ',-30.0,14)
 CALL PLCHAR(0.30,0.45,CH,' u x+v y+w z',-30.0,14)
C
 CALL PLMATH(0.50,0.55,CH,'l- ',0.0,7)
 CALL PLCHAR(0.50,0.55,CH,' shock',0.0,7)
C
 CALL PLMATH(0.50,0.45,CH,'>=Nf',0.0,4)
 CALL PLCHAR(0.50,0.45,CH,'u ',0.0,4)
C
 CALL PLMATH(0.75,0.55,CH,'V= n H',0.0,7)
 CALL PLCHAR(0.75,0.55,CH,' () ',0.0,7)
 CALL PLSLAN(0.75,0.55,CH,' t ',0.0,7)
C
 CALL PLMATH(0.75,0.45,CH,' __',0.0,5)
 CALL PLMATH(0.75,0.45,CH,'V=Rn',0.0,4)
 CALL PLSLAN(999.0,999.0,CH,'t',0.0,1)
C
 CALL PLMATH(0.75,0.35,CH,' = M ',0.0,7)
 CALL PLCHAR(0.75,0.35,CH,'x [A] b',0.0,7)
C
 CALL PLMATH(0.0-CH,0.25-0.4*CH,2.0*CH,'I',0.0,1)
 CALL PLMATH(0.0,0.25,CH,' () ',0.0,7)
 CALL PLCHAR(0.0,0.25,CH,' F x dx',0.0,7)
C
 CALL PLMATH(0.0,0.15,CH,'e{ ',0.0,3)
 CALL PLCHAR(0.0,0.15,CH,' 1',0.0,3)
C
 CALL PLCHAR(0.25,0.25,CH,'273 K',0.0,5)
 CALL PLMATH(0.25,0.25,CH,' " ',0.0,5)
C
 CALL PLSLAN(0.50,0.25,CH,' y',0.0,8)
 CALL PLMATH(0.50,0.25,CH,'g=-$G/$ ',0.0,8)
C
 CALL PLCHAR(0.75,0.25,CH,' tan ',0.0,9)
 CALL PLSLAN(0.75,0.25,CH,' y/x',0.0,9)
 CALL PLMATH(0.75,0.25,CH,'q= M ',0.0,9)
C
 CALL PLCHAR(0.25,0.15,CH,'Underline',0.0,9)
 CALL PLCHAR(0.25,0.15,CH,'_________',0.0,9)
C
 CALL PLSLAN(0.50,0.15,CH,'Overline',0.0,8)
 CALL PLMATH(0.50,0.15,CH,'________',0.0,8)
C
 CALL PLSLAN(0.75,0.15,CH,' r=0',0.0,5)
 CALL PLMATH(0.75,0.15,CH,'q# ',0.0,5)
 CALL PLMATH(0.75,0.15,CH,' ^ ',0.0,5)
 CALL PLMATH(0.75,0.15+0.4*CH,
 & CH,'^ ',0.0,5)
C
 CALL PLMATH(0.00,0.05+1.2*CH,
 & CH,' * ',0.0,10)
 CALL PLMATH(0.00,0.05+0.4*CH,
 & CH,' > > ',0.0,10)
 CALL PLMATH(0.00,0.05,CH,'> > >',0.0,10)
 CALL PLCHAR(0.00,0.05,CH,'a= r+2 v',0.0,10)
 CALL PLMATH(0.00,0.05,CH,' W# W# ',0.0,10)
C
 CALL PLSLAN(0.30,0.05,CH,' ~ ',0.0,9)
 CALL PLCHAR(0.30,0.05,CH,'ln(1+) ',0.0,9)
 CALL PLMATH(0.30,0.05,CH,' v v',0.0,9)
C
 CALL PLSLAN(0.55,0.05,CH,' ~ ',0.0,14)
 CALL PLCHAR(0.55,0.05,CH,' {g x } g x',0.0,14)
 CALL PLMATH(0.55,0.05,CH,'O () `O ',0.0,14)
C
 CALL PLFLUSH
C
ccc call usetzoom(.true.,.true.)
ccc call replot(1)
C
 READ(*,1) DUMMY
 1 FORMAT(A)
C
 CALL PLOT(0.0,0.0,+999)
C
 END

XFOILinterface/XFOIL/orrs/src/testcon.f

 PROGRAM TESTCON
 PARAMETER (NMAX=256)
 DIMENSION ETA(NMAX), F(NMAX), U(NMAX), S(NMAX)
 DIMENSION UTR(NMAX), UTI(NMAX), VTR(NMAX), VTI(NMAX), UT(NMAX)
 REAL X(50,50), Y(50,50), ZR(50,50), ZI(50,50)
 CHARACTER*1 ANS
C
 IDEV = 12
 SIZE = 6.0
 EWT = 1.0/30.0
 UWT = 0.5
 PWT = 10.0
C
C----------------------
 BU = 0.0
 H = 2.65
 ISPEC = 2
C
 N = 128
 ETAE = 10.0
 GEO = 1.02
C
 CALL FS(3,ISPEC,BU,H,N,ETAE,GEO,ETA,F,U,S)
C---------------------
C
C CALL PLOTS(0,-999,IDEV)
C CALL FACTOR(SIZE)
CC
C CALL PLOT(0.1,0.1,-3)
CC
C CALL NEWPEN(1)
C
c CALL PLOT(0.0,0.0,3)
c CALL PLOT(UWT*1.0,0.0,2)
c CALL PLOT(0.0,0.0,3)
c CALL PLOT(0.0,EWT*20.0,2)
cC
 II = 17
 JJ = 17
C
 NCON = 41
C
C ARMIN = 0.10
C ARMAX = 0.25
C AIMIN = 0.00
C AIMAX = 0.15
C
 ARMIN = 0.08
 ARMAX = 0.20
 AIMIN = -.02
 AIMAX = 0.10
C
 RESPEC = 5000.
 WRSPEC = 0.03000
C
C
 DO 100 J=1, JJ
C
 DO 10 I=1, II
C
 RE = RESPEC
 WR = WRSPEC
 WI = 0.0
C
 AR = ARMIN + (ARMAX-ARMIN) * FLOAT(I-1)/FLOAT(II-1)
 AI = AIMIN + (AIMAX-AIMIN) * FLOAT(J-1)/FLOAT(JJ-1)
C
 ITMAX = 1
 CALL ORRS(1,1,N,ETA,U,S, RE, ITMAX,
 & AR,AI, WR,WI, UTR,UTI,VTR,VTI,RESMAX)
C
 ZR(I,J) = UTR(1)
 ZI(I,J) = UTI(1)
 WRITE(6,1050) I,J,AR,AI,ZR(I,J),ZI(I,J)
 1050 FORMAT(1X,2I4,' alpha =', 2F10.6,' Res =', 2E12.4)
C
C
c DO 15 I=1, N
c UT(I) = SQRT(UTR(I)**2 + UTI(I)**2)
c 15 CONTINUE
C
c CALL NEWPEN(2)
c CALL PLOT(PWT*UT(1),EWT*ETA(1),3)
c DO 20 I=2, N
c CALL PLOT(PWT*UT(I),EWT*ETA(I),2)
c 20 CONTINUE
cC
C CALL PLOT(PWT*UTI(1),EWT*ETA(1),3)
C DO 25 I=2, N
C CALL PLOT(PWT*UTI(I),EWT*ETA(I),2)
C 25 CONTINUE
C
c CALL PLOT(UWT*U(1),EWT*ETA(1),3)
c DO 30 I=2, N
c CALL PLOT(UWT*U(I),EWT*ETA(I),2)
c 30 CONTINUE
C
 10 CONTINUE
 100 CONTINUE
C
 ZRMIN = ZR(1,1)
 ZRMAX = ZR(1,1)
 ZIMIN = ZI(1,1)
 ZIMAX = ZI(1,1)
 DO 150 I=1, II
 DO 160 J=1, JJ
 ZRMIN = AMIN1(ZRMIN,ZR(I,J))
 ZRMAX = AMAX1(ZRMAX,ZR(I,J))
 ZIMIN = AMIN1(ZIMIN,ZI(I,J))
 ZIMAX = AMAX1(ZIMAX,ZI(I,J))
 X(I,J) = FLOAT(I-1)/FLOAT(II-1)
 Y(I,J) = FLOAT(J-1)/FLOAT(JJ-1)
 160 CONTINUE
 150 CONTINUE
C
 CALL PLOTS(0,0,IDEV)
 CALL FACTOR(SIZE)
C
 CALL PLOT(0.2,0.1,-3)
C
 CALL NEWPEN(1)
 CALL PLOT(0.0,0.0,3)
 CALL PLOT(1.0,0.0,2)
 CALL PLOT(1.0,1.0,2)
 CALL PLOT(0.0,1.0,2)
 CALL PLOT(0.0,0.0,2)
C
 CALL NUMBER(0.0,1.20,0.03,H ,0.0,3)
 CALL NUMBER(0.0,1.13,0.03,RE,0.0,5)
 CALL NUMBER(0.3,1.13,0.03,WR,0.0,5)
 CALL SYMBOL(0.0,1.05,0.02,'REAL',0.0,4)
 CALL NUMBER(-.03,-.03,0.02,ARMIN,0.0,4)
 CALL NUMBER(0.97,-.03,0.02,ARMAX,0.0,4)
 CALL NUMBER(-.15,-.01,0.02,AIMIN,0.0,4)
 CALL NUMBER(-.15,0.99,0.02,AIMAX,0.0,4)
C
 FCON = 0.0
 CALL NEWPEN(4)
 CALL CON1(50,50,II,JJ,X,Y,ZR,FCON,1.0,1.0)
C
 CALL NEWPEN(1)
 DO 210 ICON=1, NCON
 FRCON = ZRMIN + (ZRMAX-ZRMIN)*FLOAT(ICON-1)/FLOAT(NCON-1)
 CALL CON1(50,50,II,JJ,X,Y,ZR,FRCON,1.0,1.0)
 210 CONTINUE
C
 WRITE(6,*) 'Hit <cr>'
 READ (5,8000) ANS
 CALL PLOT(0.0,0.0,-999)
C
C
 CALL PLOTS(0,0,IDEV)
 CALL FACTOR(SIZE)
C
 CALL PLOT(0.2,0.1,-3)
C
 CALL NEWPEN(1)
 CALL PLOT(0.0,0.0,3)
 CALL PLOT(1.0,0.0,2)
 CALL PLOT(1.0,1.0,2)
 CALL PLOT(0.0,1.0,2)
 CALL PLOT(0.0,0.0,2)
C
 CALL NUMBER(0.0,1.20,0.03,H ,0.0,3)
 CALL NUMBER(0.0,1.13,0.03,WR,0.0,5)
 CALL SYMBOL(0.0,1.05,0.02,'IMAG',0.0,4)
 CALL NUMBER(-.03,-.03,0.02,ARMIN,0.0,4)
 CALL NUMBER(0.97,-.03,0.02,ARMAX,0.0,4)
 CALL NUMBER(-.15,-.01,0.02,AIMIN,0.0,4)
 CALL NUMBER(-.15,0.99,0.02,AIMAX,0.0,4)
C
 FCON = 0.0
 CALL NEWPEN(4)
 CALL CON1(50,50,II,JJ,X,Y,ZI,FCON,1.0,1.0)
C
 CALL NEWPEN(1)
 DO 220 ICON=1, NCON
 FICON = ZIMIN + (ZIMAX-ZIMIN)*FLOAT(ICON-1)/FLOAT(NCON-1)
 CALL CON1(50,50,II,JJ,X,Y,ZI,FICON,1.0,1.0)
 220 CONTINUE
C
 WRITE(6,*) 'Hit <cr>'
 READ (5,8000) ANS
 8000 FORMAT(A1)
C
 CALL PLOT(0.0,0.0,+999)
 STOP
 END

XFOILinterface/XFOIL/orrs/src/userio.f

 SUBROUTINE READI(N,IVAR,ERROR)
 DIMENSION IVAR(N)
 LOGICAL ERROR
C--
C Reads N integer variables, leaving unchanged
C if only <return> is entered.
C--
 DIMENSION IVTMP(40)
 CHARACTER*80 LINE
C
 READ(*,1000) LINE
 1000 FORMAT(A80)
C
 DO 10 I=1, N
 IVTMP(I) = IVAR(I)
 10 CONTINUE
C
 NTMP = 40
 CALL GETINT(LINE,IVTMP,NTMP,ERROR)
C
 IF(ERROR) RETURN
C
 DO 20 I=1, N
 IVAR(I) = IVTMP(I)
 20 CONTINUE
C
 RETURN
 END ! READI

 SUBROUTINE READR(N,VAR,ERROR)
 DIMENSION VAR(N)
 LOGICAL ERROR
C---
C Reads N real variables, leaving unchanged
C if only <return> is entered.
C---
 DIMENSION VTMP(40)
 CHARACTER*80 LINE
C
 READ(*,1000) LINE
 1000 FORMAT(A80)
C
 DO 10 I=1, N
 VTMP(I) = VAR(I)
 10 CONTINUE
C
 NTMP = 40
 CALL GETFLT(LINE,VTMP,NTMP,ERROR)
C
 IF(ERROR) RETURN
C
 DO 20 I=1, N
 VAR(I) = VTMP(I)
 20 CONTINUE
C
 RETURN
 END ! READR

 SUBROUTINE GETINT(INPUT,INUM,NI,ERROR)
 CHARACTER*(*) INPUT
 INTEGER INUM(*)
 LOGICAL ERROR
C--
C Parses character string INPUT into an array
C of integer numbers returned in INUM(1..NI).
C
C Will attempt to extract no more than NI numbers,
C unless NI = 0, in which case all numbers present
C in INPUT will be extracted.
C
C NI returns how many numbers were actually extracted.
C--
C
C---- number of characters to be examined
 ILEN = LEN(INPUT)
C
C---- ignore everything after a "!" character
 K = INDEX(INPUT,'!')
 IF(K.GT.0) ILEN = K-1
C
C---- set limit on numbers to be read
 NINP = NI
 IF(NINP.EQ.0) NINP = ILEN/2 + 1
C
 NI = 0
C
 IF(ILEN.EQ.0) RETURN
C
C---- extract numbers
 N = 0
 K = 1
 DO 10 IPASS=1, ILEN
C------ find next space (pretend there's one after the end of the string)
 KSPACE = INDEX(INPUT(K:ILEN),' ') + K - 1
 IF(KSPACE.EQ.K-1) KSPACE = ILEN + 1
C
 IF(KSPACE.EQ.K) THEN
C------- just skip this space
 K = K+1
 GO TO 9
 ENDIF
C
C------ also find next comma
 KCOMMA = INDEX(INPUT(K:ILEN),',') + K - 1
 IF(KCOMMA.EQ.K-1) KCOMMA = ILEN + 1
C
C------ space is farther down, so we ran into something...
 N = N+1
C
C------ bug out early if no more numbers are to be read
 IF(N.GT.NINP) GO TO 11
C
C------ set ending delimiter position for this number
 KDELIM = MIN(KSPACE,KCOMMA)
C
 IF(K.EQ.KDELIM) THEN
C------- nothing but a comma... just keep looking
 K = K+1
 GO TO 9
 ENDIF
C
C------ whatever we have, it is in substring K:KEND
 KEND = KDELIM - 1
C
C------ search for floating-point number indicator in substring
 KFLOAT = MAX(INDEX(INPUT(K:KEND),'.'),
 & INDEX(INPUT(K:KEND),'E'),
 & INDEX(INPUT(K:KEND),'e'),
 & INDEX(INPUT(K:KEND),'D'),
 & INDEX(INPUT(K:KEND),'d')) + K - 1
C
 IF(KFLOAT.EQ.K) THEN
C------- only ".eEdD" was input (ugh!)... pretend it's zero anyway
 INUM(N) = 0
 ELSE
C------- read normally, ignoring any stuff after floating-point indicator
 IF(KFLOAT.GT.K) KEND = KFLOAT - 1
 READ(INPUT(K:KEND),*,ERR=20) INUM(N)
 ENDIF
C
 NI = N
C
C------ keep looking after delimiter
 K = KDELIM + 1
C
 9 IF(K.GE.ILEN) GO TO 11
 10 CONTINUE
C
C---- normal return
 11 CONTINUE
 ERROR = .FALSE.
 RETURN
C
C---- bzzzt !!!
 20 CONTINUE
ccc WRITE(*,*) 'GETINT: List-directed read error.'
 ERROR = .TRUE.
 RETURN
 END ! GETINT

 SUBROUTINE GETFLT(INPUT,RNUM,NR,ERROR)
 CHARACTER*(*) INPUT
 REAL RNUM(*)
 LOGICAL ERROR
C--
C Parses character string INPUT into an array
C of real numbers returned in RNUM(1..NR).
C
C Will attempt to extract no more than NR numbers,
C unless NR = 0, in which case all numbers present
C in INPUT will be extracted.
C
C NR returns how many numbers were actually extracted.
C--
C
C---- number of characters to be examined
 ILEN = LEN(INPUT)
C
C---- ignore everything after a "!" character
 K = INDEX(INPUT,'!')
 IF(K.GT.0) ILEN = K-1
C
C---- set limit on numbers to be read
 NINP = NR
 IF(NINP.EQ.0) NINP = ILEN/2 + 1
C
 NR = 0
C
 IF(ILEN.EQ.0) RETURN
C
C---- extract numbers
 N = 0
 K = 1
 DO 10 IPASS=1, ILEN
C------ find next space (pretend there's one after the end of the string)
 KSPACE = INDEX(INPUT(K:ILEN),' ') + K - 1
 IF(KSPACE.EQ.K-1) KSPACE = ILEN + 1
C
 IF(KSPACE.EQ.K) THEN
C------- just skip this space
 K = K+1
 GO TO 9
 ENDIF
C
C------ also find next comma
 KCOMMA = INDEX(INPUT(K:ILEN),',') + K - 1
 IF(KCOMMA.EQ.K-1) KCOMMA = ILEN + 1
C
C------ space is farther down, so we ran into something...
 N = N+1
C
C------ bug out early if no more numbers are to be read
 IF(N.GT.NINP) GO TO 11
C
C------ set ending delimiter position for this number
 KDELIM = MIN(KSPACE,KCOMMA)
C
 IF(K.EQ.KDELIM) THEN
C------- nothing but a comma... just keep looking
 K = K+1
 GO TO 9
 ENDIF
C
C------ whatever we have, it is in substring K:KEND
 KEND = KDELIM - 1
 READ(INPUT(K:KEND),*,ERR=20) RNUM(N)
 NR = N
C
C------ keep looking after delimiter
 K = KDELIM + 1
C
 9 IF(K.GE.ILEN) GO TO 11
 10 CONTINUE
C
C---- normal return
 11 CONTINUE
 ERROR = .FALSE.
 RETURN
C
C---- bzzzt !!!
 20 CONTINUE
ccc WRITE(*,*) 'GETFLT: List-directed read error.'
 ERROR = .TRUE.
 RETURN
 END ! GETFLT

 SUBROUTINE GETNUM(INPUT,INUM,RNUM,NI,NR,NUMTYP,ERROR)
 CHARACTER*(*) INPUT, NUMTYP
 INTEGER INUM(*)
 REAL RNUM(*)
 LOGICAL ERROR
C--
C Parses character string INPUT into separate arrays
C of integer and real numbers returned in
C INUM(1..NI), RNUM(1..NR).
C
C Will attempt to extract no more than NI,NR numbers
C of each type, unless NI,NR = 0, in which case all
C numbers present in INPUT will be extracted.
C
C NI,NR return how many numbers were actually extracted.
C
C String NUMTYP indicates into which array each number went...
C
C NUMTYP(N:N) = 'i' N'th number in INPUT went into INUM(N)
C 'r' N'th number in INPUT went into RNUM(N)
C 'n' N'th number in INPUT was blank (just a comma)
C--
C
C---- number of characters to be examined
 ILEN = LEN(INPUT)
C
C---- ignore everything after a "!" character
 K = INDEX(INPUT,'!')
 IF(K.GT.0) ILEN = K-1
C
C---- set limit on numbers to be read
 NIINP = NI
 NRINP = NR
 IF(NIINP.EQ.0) NIINP = ILEN/2 + 1
 IF(NRINP.EQ.0) NRINP = ILEN/2 + 1
 NINP = MAX(NIINP , NRINP)
C
 NI = 0
 NR = 0
 NUMTYP = ' '
C
 IF(ILEN.EQ.0) RETURN
C
C---- extract numbers
 N = 0
 K = 1
 DO 10 IPASS=1, ILEN
C------ find next space (pretend there's one after the end of the string)
 KSPACE = INDEX(INPUT(K:ILEN),' ') + K - 1
 IF(KSPACE.EQ.K-1) KSPACE = ILEN + 1
C
 IF(KSPACE.EQ.K) THEN
C------- just skip this space
 K = K+1
 GO TO 9
 ENDIF
C
C------ also find next comma
 KCOMMA = INDEX(INPUT(K:ILEN),',') + K - 1
 IF(KCOMMA.EQ.K-1) KCOMMA = ILEN + 1
C
C------ space is farther down, so we ran into something...
 N = N+1
C
C------ bug out early if no more numbers are to be read
 IF(N.GT.NINP) GO TO 11
C
C------ set ending delimiter position for this number
 KDELIM = MIN(KSPACE,KCOMMA)
C
 IF(K.EQ.KDELIM) THEN
C------- nothing but a comma... just set null type indicator and keep looking
 NUMTYP(N:N) = 'n'
 K = K+1
 GO TO 9
 ENDIF
C
C------ whatever we have, it is in substring K:KEND
 KEND = KDELIM - 1
C
C------ search for floating-point number indicator in substring
 KFLOAT = MAX(INDEX(INPUT(K:KEND),'.'),
 & INDEX(INPUT(K:KEND),'E'),
 & INDEX(INPUT(K:KEND),'e'),
 & INDEX(INPUT(K:KEND),'D'),
 & INDEX(INPUT(K:KEND),'d')) + K - 1
C
 IF(KFLOAT.GE.K .AND. KFLOAT.LE.KEND) THEN
C------- real number... read it only if max has not been reached
 IF(N.LE.NRINP) THEN
 READ(INPUT(K:KEND),*,ERR=20) RNUM(N)
 NUMTYP(N:N) = 'r'
 NR = N
 ENDIF
 ELSE
C------- integer number...
 IF(N.LE.NIINP) THEN
 READ(INPUT(K:KEND),*,ERR=20) INUM(N)
 NUMTYP(N:N) = 'i'
 NI = N
 ENDIF
 ENDIF
C
C------ keep looking after delimiter
 K = KDELIM + 1
C
 9 IF(K.GE.ILEN) GO TO 11
 10 CONTINUE
C
C---- normal return
 11 CONTINUE
 ERROR = .FALSE.
 RETURN
C
C---- bzzzt !!!
 20 CONTINUE
ccc WRITE(*,*) 'GETNUM: List-directed read error.'
 ERROR = .TRUE.
 RETURN
 END

 SUBROUTINE GETARG0(IARG,ARG)
C--
C Same as GETARG, but...
C
C ...in the case of Intel Fortran, this one
C doesn't barf if there's no Unix argument
C (just returns blank string instead)
C--
 CHARACTER*(*) ARG
C
 NARG = IARGC()
 IF(NARG.GE.IARG) THEN
 CALL GETARG(IARG,ARG)
 ELSE
 ARG = ' '
 ENDIF
C
 RETURN
 END ! GETARG0

XFOILinterface/XFOIL/src/userio.f

C***
C Module: userio.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
C
C==== user input routines with prompting and error trapping
C
C
 SUBROUTINE ASKI(PROMPT,IINPUT)
C
C---- integer input
C
 CHARACTER*(*) PROMPT
 INTEGER IINPUT
 CHARACTER LINE*80
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 10 WRITE(*,1000) PROMPT(1:NP)
C
 READ (*,1001,ERR=10) LINE
 IF(LINE.NE.' ') THEN
 READ (LINE,*,ERR=10) IINPUT
 ENDIF
 RETURN
C
 1000 FORMAT(/A,' i> ',$)
 1001 FORMAT(A)
 END ! ASKI

 SUBROUTINE ASKR(PROMPT,RINPUT)
C
C---- real input
C
 CHARACTER*(*) PROMPT
 REAL RINPUT
 CHARACTER LINE*80
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 10 WRITE(*,1000) PROMPT(1:NP)
C
 READ (*,1001,ERR=10) LINE
 IF(LINE.NE.' ') THEN
 READ (LINE,*,ERR=10) RINPUT
 ENDIF
 RETURN
C
 1000 FORMAT(/A,' r> ',$)
 1001 FORMAT(A)
 END ! ASKR

 SUBROUTINE ASKL(PROMPT,LINPUT)
C
C---- logical input
C
 CHARACTER*(*) PROMPT
 LOGICAL LINPUT
 CHARACTER*1 CHAR
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 10 WRITE(*,1000) PROMPT(1:NP)
 READ (*,1010) CHAR
 IF(CHAR.EQ.'y') CHAR = 'Y'
 IF(CHAR.EQ.'n') CHAR = 'N'
 IF(CHAR.NE.'Y' .AND. CHAR.NE.'N') GO TO 10
C
 LINPUT = CHAR .EQ. 'Y'
 RETURN
C
 1000 FORMAT(/A,' y/n> ',$)
 1010 FORMAT(A)
 END ! ASKL

 SUBROUTINE ASKS(PROMPT,INPUT)
C
C---- string of arbitrary length input
C
 CHARACTER*(*) PROMPT
 CHARACTER*(*) INPUT
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 WRITE(*,1000) PROMPT(1:NP)
 READ (*,1010) INPUT
C
 RETURN
C
 1000 FORMAT(/A,' s> ',$)
 1010 FORMAT(A)
 END ! ASKS

 SUBROUTINE ASKC(PROMPT,COMAND,CARGS)
C
C---- returns 4-byte character string input converted to uppercase
C---- also returns rest of input characters in CARGS string
C
 CHARACTER*(*) PROMPT
 CHARACTER*(*) COMAND, CARGS
C
 CHARACTER*128 LINE
 LOGICAL ERROR
C
 IZERO = ICHAR('0')
C
 NP = INDEX(PROMPT,'^') - 1
 IF(NP.LE.0) NP = LEN(PROMPT)
C
 WRITE(*,1000) PROMPT(1:NP)
 READ (*,1020) LINE
C
C---- strip off leading blanks
 DO K=1, 128
 IF(LINE(1:1) .EQ. ' ') THEN
 LINE = LINE(2:128)
 ELSE
 GO TO 5
 ENDIF
 ENDDO
 5 CONTINUE
C
C---- find position of first blank, "+", "-", ".", ",", or numeral
 K = INDEX(LINE,' ')
 KI = INDEX(LINE,'-')
 IF(KI.NE.0) K = MIN(K,KI)
 KI = INDEX(LINE,'+')
 IF(KI.NE.0) K = MIN(K,KI)
 KI = INDEX(LINE,'.')
 IF(KI.NE.0) K = MIN(K,KI)
 KI = INDEX(LINE,',')
 IF(KI.NE.0) K = MIN(K,KI)
 DO I=0, 9
 KI = INDEX(LINE,CHAR(IZERO+I))
 IF(KI.NE.0) K = MIN(K,KI)
 ENDDO
C
C---- there is no blank between command and argument... use first 4 characters
 IF(K.LE.0) K = 5
C
 IF(K.EQ.1) THEN
C------ the "command" is a number... set entire COMAND string with it
 COMAND = LINE
 ELSE
C------ the "command" is some string... just use the part up to the argument
 COMAND = LINE(1:K-1)
 ENDIF
C
C---- convert it to uppercase
 CALL LC2UC(COMAND)
C
 CARGS = LINE(K:128)
 CALL STRIP(CARGS,NCARGS)
 RETURN
C
 1000 FORMAT(/A,' c> ',$)
 1020 FORMAT(A)
 END ! ASKC

 SUBROUTINE LC2UC(INPUT)
 CHARACTER*(*) INPUT
C
 CHARACTER*26 LCASE, UCASE
 DATA LCASE / 'abcdefghijklmnopqrstuvwxyz' /
 DATA UCASE / 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' /
C
 N = LEN(INPUT)
C
 DO 10 I=1, N
 K = INDEX(LCASE , INPUT(I:I))
 IF(K.GT.0) INPUT(I:I) = UCASE(K:K)
 10 CONTINUE
C
 RETURN
 END ! LC2UC

 SUBROUTINE READI(N,IVAR,ERROR)
 DIMENSION IVAR(N)
 LOGICAL ERROR
C--
C Reads N integer variables, leaving unchanged
C if only <return> is entered.
C--
 DIMENSION IVTMP(40)
 CHARACTER*80 LINE
C
 READ(*,1000) LINE
 1000 FORMAT(A80)
C
 DO 10 I=1, N
 IVTMP(I) = IVAR(I)
 10 CONTINUE
C
 NTMP = 40
 CALL GETINT(LINE,IVTMP,NTMP,ERROR)
C
 IF(ERROR) RETURN
C
 DO 20 I=1, N
 IVAR(I) = IVTMP(I)
 20 CONTINUE
C
 RETURN
 END ! READI

 SUBROUTINE READR(N,VAR,ERROR)
 DIMENSION VAR(N)
 LOGICAL ERROR
C---
C Reads N real variables, leaving unchanged
C if only <return> is entered.
C---
 DIMENSION VTMP(40)
 CHARACTER*80 LINE
C
 READ(*,1000) LINE
 1000 FORMAT(A80)
C
 DO 10 I=1, N
 VTMP(I) = VAR(I)
 10 CONTINUE
C
 NTMP = 40
 CALL GETFLT(LINE,VTMP,NTMP,ERROR)
C
 IF(ERROR) RETURN
C
 DO 20 I=1, N
 VAR(I) = VTMP(I)
 20 CONTINUE
C
 RETURN
 END ! READR

 SUBROUTINE GETINT(INPUT,A,N,ERROR)
 CHARACTER*(*) INPUT
 INTEGER A(*)
 LOGICAL ERROR
C--
C Parses character string INPUT into an array
C of integer numbers returned in A(1...N)
C
C Will attempt to extract no more than N numbers,
C unless N = 0, in which case all numbers present
C in INPUT will be extracted.
C
C N returns how many numbers were actually extracted.
C--
 CHARACTER*130 REC
C
C---- only first 128 characters in INPUT will be parsed
 ILEN = MIN(LEN(INPUT) , 128)
 ILENP = ILEN + 2
C
C---- put input into local work string (which will be munched)
 REC(1:ILENP) = INPUT(1:ILEN) // ' ,'
C
C---- ignore everything after a "!" character
 K = INDEX(REC,'!')
 IF(K.GT.0) REC(1:ILEN) = REC(1:K-1)
C
 NINP = N
C
C---- count up how many numbers are to be extracted
 N = 0
 K = 1
 DO 10 IPASS=1, ILEN
C------ search for next space or comma starting with current index K
 KSPACE = INDEX(REC(K:ILENP),' ') + K - 1
 KCOMMA = INDEX(REC(K:ILENP),',') + K - 1
C
 IF(K.EQ.KSPACE) THEN
C------- just skip this space
 K = K+1
 GO TO 9
 ENDIF
C
 IF(K.EQ.KCOMMA) THEN
C------- comma found.. increment number count and keep looking
 N = N+1
 K = K+1
 GO TO 9
 ENDIF
C
C------ neither space nor comma found, so we ran into a number...
C- ...increment number counter and keep looking after next space or comma
 N = N+1
 K = MIN(KSPACE,KCOMMA) + 1
C
 9 IF(K.GE.ILEN) GO TO 11
 10 CONTINUE
C
C---- decide on how many numbers to read, and go ahead and read them
 11 IF(NINP.GT.0) N = MIN(N, NINP)
 READ(REC(1:ILEN),*,ERR=20) (A(I),I=1,N)
 ERROR = .FALSE.
 RETURN
C
C---- bzzzt !!!
 20 CONTINUE
ccc WRITE(*,*) 'GETINT: String-to-integer conversion error.'
 N = 0
 ERROR = .TRUE.
 RETURN
 END

 SUBROUTINE GETFLT(INPUT,A,N,ERROR)
 CHARACTER*(*) INPUT
 REAL A(*)
 LOGICAL ERROR
C--
C Parses character string INPUT into an array
C of real numbers returned in A(1...N)
C
C Will attempt to extract no more than N numbers,
C unless N = 0, in which case all numbers present
C in INPUT will be extracted.
C
C N returns how many numbers were actually extracted.
C--
 CHARACTER*130 REC
C
C---- only first 128 characters in INPUT will be parsed
 ILEN = MIN(LEN(INPUT) , 128)
 ILENP = ILEN + 2
C
C---- put input into local work string (which will be munched)
 REC(1:ILENP) = INPUT(1:ILEN) // ' ,'
C
C---- ignore everything after a "!" character
 K = INDEX(REC,'!')
 IF(K.GT.0) REC(1:ILEN) = REC(1:K-1)
C
 NINP = N
C
C---- count up how many numbers are to be extracted
 N = 0
 K = 1
 DO 10 IPASS=1, ILEN
C------ search for next space or comma starting with current index K
 KSPACE = INDEX(REC(K:ILENP),' ') + K - 1
 KCOMMA = INDEX(REC(K:ILENP),',') + K - 1
C
 IF(K.EQ.KSPACE) THEN
C------- just skip this space
 K = K+1
 GO TO 9
 ENDIF
C
 IF(K.EQ.KCOMMA) THEN
C------- comma found.. increment number count and keep looking
 N = N+1
 K = K+1
 GO TO 9
 ENDIF
C
C------ neither space nor comma found, so we ran into a number...
C- ...increment number counter and keep looking after next space or comma
 N = N+1
 K = MIN(KSPACE,KCOMMA) + 1
C
 9 IF(K.GE.ILEN) GO TO 11
 10 CONTINUE
C
C---- decide on how many numbers to read, and go ahead and read them
 11 IF(NINP.GT.0) N = MIN(N, NINP)
 READ(REC(1:ILEN),*,ERR=20) (A(I),I=1,N)
 ERROR = .FALSE.
 RETURN
C
C---- bzzzt !!!
 20 CONTINUE
ccc WRITE(*,*) 'GETFLT: String-to-integer conversion error.'
 N = 0
 ERROR = .TRUE.
 RETURN
 END

 SUBROUTINE STRIP(STRING,NS)
 CHARACTER*(*) STRING
C---
C Strips leading blanks off string
C and returns length of non-blank part.
C---
 N = LEN(STRING)
C
C---- find last non-blank character
 DO 10 K2=N, 1, -1
 IF(STRING(K2:K2).NE.' ') GO TO 11
 10 CONTINUE
 K2 = 0
 11 CONTINUE
C
C---- find first non-blank character
 DO 20 K1=1, K2
 IF(STRING(K1:K1).NE.' ') GO TO 21
 20 CONTINUE
 21 CONTINUE
C
C---- number of non-blank characters
 NS = K2 - K1 + 1
 IF(NS.EQ.0) RETURN
C
C---- shift STRING so first character is non-blank
 STRING(1:NS) = STRING(K1:K2)
C
C---- pad tail of STRING with blanks
 DO 30 K=NS+1, N
 STRING(K:K) = ' '
 30 CONTINUE
C
 RETURN
 END

 SUBROUTINE GETARG0(IARG,ARG)
C--
C Same as GETARG, but...
C
C ...in the case of Intel Fortran, this one
C doesn't barf if there's no Unix argument
C (just returns blank string instead)
C--
 CHARACTER*(*) ARG
C
 NARG = IARGC()
 IF(NARG.GE.IARG) THEN
 CALL GETARG(IARG,ARG)
 ELSE
 ARG = ' '
 ENDIF
C
 RETURN
 END ! GETARG0

XFOILinterface/XFOIL/plotlib/util-ops.f

C--- Replacement functions for Fortran's that lack RSHIFT,LSHIFT,AND
C Version 4.46 11/28/01

 INTEGER FUNCTION RSHIFT(I1,N)
 RSHIFT = ISHFT(I1,-N)
 RETURN
 END

 INTEGER FUNCTION LSHIFT(I1,N)
 LSHIFT = ISHFT(I1,N)
 RETURN
 END

 INTEGER FUNCTION AND(I1,I2)
 AND = IAND(I1,I2)
 RETURN
 END

XFOILinterface/XFOIL/plotlib/examples/volts.f

C***
C Module: volts.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C
C...VOLTS
C Test of Xplot11 interface
C
C
 CHARACTER RDLINE*60
 DIMENSION X(26),Y(26)
 DATA X/0.,5.,15.,25.,30.,35.,40.,45.,50.,55.,60.,65.,70.,75.,80.,
 1 85.,90.,95.,100.,105.,110.,115.,120.,125.,2*0./
C
 DATA Y/0.,10.,15.,10.,-10.,-50.,-80.,-110.,-130.,-145.,-155.,
 1 -160.,-158.,-150.,-130.,-90.,-70.,-20.,20.,50.,70.,80.,85.,
 2 90.,2*0./
C
C
 5 FORMAT(A)
C
C...Alter actual data scales
 DO 10 I=1,24
 X(I) = X(I) * 1000
 10 Y(I) = Y(I) / 10000
C
 IPD = 1
 RELSIZ = -0.6
C
C...Select type(s) of plot output
 WRITE(*,40)
 40 FORMAT('Input plot device (1 screen, 2 PShardcopy, 3 both): ',$)
 READ(*,5,end=1000) RDLINE
 IF(RDLINE.NE.' ') READ(RDLINE,*,err=42) IPD
C
C...Get plot window size as fraction of root window
 42 WRITE(*,45)
 45 FORMAT('Enter window relative size (<ret> gives -0.6): ',$)
 READ(*,5,end=1000) RDLINE
 IF(RDLINE.NE.' ') READ(RDLINE,*,err=50) RELSIZ
C
 50 CALL PLINITIALIZE
 ipslu = 0
 CALL PLOPEN(RELSIZ,ipslu,IPD)
C
 CALL NEWFACTOR(0.9)
 CALL PLOT(1.05,1.05,-3)
C
C...Scale factors from array coordinates
 CALL SCALE(X,7.,24,+1)
 CALL SCALE(Y,7.,24,+1)
C
 IMASK = -1
 IMASK = -30584
C...Test for line mask
c WRITE(*,*) 'Enter line pattern bit mask (integer)'
c READ(*,*,end=1000) IMASK
 call NEWPAT(IMASK)
C
C...Plot the array of points
 CALL NEWPEN (3)
 CALL NEWCOLORNAME('red')
 CALL LINE (X,Y,24,1,+1,0)
 MSKALL = -1
 call NEWPAT(MSKALL)
C
C...Label the axes
 CALL NEWPEN (2)
 CALL NEWCOLORNAME('orchid')
 CALL AXIS (0.,0.,'NANOSECONDS',-11,7.,0.,X(25),X(26))
 CALL NEWCOLORRGB(0,255,255)
 CALL AXIS (0.,0.,'MILLIVOLTS',+10,7.,90.,Y(25),Y(26))
C
C...Plot legend
 CALL NEWPEN (1)
 CALL NEWCOLORNAME('cadetblue')
 CALL PLCHAR (.5,.5,.1,'DX = ',0.,+5)
 CALL PLNUMB (999.,999.,.1,X(26),0.,+3)
 CALL PLNUMB (1.,.75,.1,X(26),0.,0)
 CALL PLNUMB (1.,1.,.1,X(26),0.,-1)
 CALL PLNUMB (1.,1.25,.1,X(26),0.,-4)
C
C...Titles
 CALL NEWCOLORNAME('lime green')
 CALL PLCHAR (2.3,6.5,.1,'VERSAPLOT SAMPLE',0.,+16)
 CALL PLCHAR (1.5,6.75,.2,'TIME VS VOLTAGE',0.,+15)
 CALL NEWCOLORNAME('black')
C
 CALL PLEND
 write(*,*) 'Hit return to exit'
 READ(*,999)
C
 999 FORMAT(A)
1000 CALL PLCLOSE
 STOP
 END

XFOILinterface/XFOIL/plotlib/examples/volts_old.f

C***
C Module: volts_old.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

C VOLTS
C
C Old-style Versatec calls test routine
C
 LOGICAL LODD
 DIMENSION X(26),Y(26),RED(9),BLUE(9),GREEN(9),NCOL(2)
 DATA X/0.,5.,15.,25.,30.,35.,40.,45.,50.,55.,60.,65.,70.,75.,80.,
 1 85.,90.,95.,100.,105.,110.,115.,120.,125.,2*0./
C
 DATA Y/0.,10.,15.,10.,-10.,-50.,-80.,-110.,-130.,-145.,-155.,
 1 -160.,-158.,-150.,-130.,-90.,-70.,-20.,20.,50.,70.,80.,85.,
 2 90.,2*0./
 DATA NCOL/0,8/
 DATA RED /0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0/
 DATA BLUE /0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0/
 DATA GREEN/0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0/	
C
C
C...ALTER ACTUAL DATA SCALES
 DO 10 I=1,24
 X(I) = X(I) * 1000
 10 Y(I) = Y(I) / 10000
C
 IDUM = 0
 ICNT = 0
 IPD = 6
 100 CALL PLOTS (IDUM,0,IPD)
C
 LODD = (MOD(ICNT,2).EQ.1)
 CALL FACTOR (.9)
 IF(IPD .EQ. 6) THEN
 DO 20 I=1,NCOL(2)
 IF(.NOT.LODD) CALL SETCOL(I-1,RED(I),GREEN(I),BLUE(I))
 IF(LODD) CALL SETCOL(I-1,RED(9-I),GREEN(9-I),BLUE(9-I))
 20 CONTINUE
 ENDIF
C
 CALL PLOT (1.05,1.05,-3)
C
 CALL SCALE (X,7.,24,+1)
 CALL SCALE (Y,7.,24,+1)
C
 CALL COLOR(2)
 CALL NEWPEN (2)
cc CALL LINE (X,Y,24,1,1,0)
 CALL LINE (X,Y,24,1,1,0)
 CALL NEWPEN (1)
 CALL COLOR(0)
C
 CALL AXIS (0.,0.,'NANOSECONDS',-11,7.,0.,X(25),X(26))
 CALL AXIS (0.,0.,'MILLIVOLTS',+10,7.,90.,Y(25),Y(26))
C
 CALL SYMBOL (.5,.5,.1,'DX = ',0.,+5)
 CALL NUMBER (999.,999.,.1,X(26),0.,+3)
 CALL NUMBER (1.,.75,.1,X(26),0.,0)
 CALL NUMBER (1.,1.,.1,X(26),0.,-1)
 CALL NUMBER (1.,1.25,.1,X(26),0.,-4)
C
 CALL COLOR(4)
 CALL SYMBOL (2.3,6.5,.1,'VERSAPLOT SAMPLE',0.,+16)
 CALL SYMBOL (1.5,6.75,.2,'TIME VS VOLTAGE',0.,+15)
 CALL COLOR(0)
 CALL PLOTOF
C
 ICNT = ICNT+1
 CALL PLOT (0.,0.,-999)
 WRITE(*,*) '<cr> to cycle colors'
 READ(*,*)
 if(ICNT.LE.2) go to 100

 CALL PLOT (0.,0.,999)
 STOP
 END

XFOILinterface/XFOIL/src/xbl.f

C***
C Module: xbl.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
 SUBROUTINE SETBL
C---
C Sets up the BL Newton system coefficients
C for the current BL variables and the edge
C velocities received from SETUP. The local
C BL system coefficients are then
C incorporated into the global Newton system.
C---
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
 REAL USAV(IVX,2)
 REAL U1_M(2*IVX), U2_M(2*IVX)
 REAL D1_M(2*IVX), D2_M(2*IVX)
 REAL ULE1_M(2*IVX), ULE2_M(2*IVX)
 REAL UTE1_M(2*IVX), UTE2_M(2*IVX)
 REAL MA_CLMR, MSQ_CLMR, MDI
C
C---- set the CL used to define Mach, Reynolds numbers
 IF(LALFA) THEN
 CLMR = CL
 ELSE
 CLMR = CLSPEC
 ENDIF
C
C---- set current MINF(CL)
 CALL MRCL(CLMR,MA_CLMR,RE_CLMR)
 MSQ_CLMR = 2.0*MINF*MA_CLMR
C
C---- set compressibility parameter TKLAM and derivative TK_MSQ
 CALL COMSET
C
C---- set gas constant (= Cp/Cv)
 GAMBL = GAMMA
 GM1BL = GAMM1
C
C---- set parameters for compressibility correction
 QINFBL = QINF
 TKBL = TKLAM
 TKBL_MS = TKL_MSQ
C
C---- stagnation density and 1/enthalpy
 RSTBL = (1.0 + 0.5*GM1BL*MINF**2) ** (1.0/GM1BL)
 RSTBL_MS = 0.5*RSTBL/(1.0 + 0.5*GM1BL*MINF**2)
C
 HSTINV = GM1BL*(MINF/QINFBL)**2 / (1.0 + 0.5*GM1BL*MINF**2)
 HSTINV_MS = GM1BL*(1.0/QINFBL)**2 / (1.0 + 0.5*GM1BL*MINF**2)
 & - 0.5*GM1BL*HSTINV / (1.0 + 0.5*GM1BL*MINF**2)
C
C---- Sutherland's const./To (assumes stagnation conditions are at STP)
 HVRAT = 0.35
C
C---- set Reynolds number based on freestream density, velocity, viscosity
 HERAT = 1.0 - 0.5*QINFBL**2*HSTINV
 HERAT_MS = - 0.5*QINFBL**2*HSTINV_MS
C
 REYBL = REINF * SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 REYBL_RE = SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 REYBL_MS = REYBL * (1.5/HERAT - 1.0/(HERAT+HVRAT))*HERAT_MS
C
 AMCRIT = ACRIT
C
C---- save TE thickness
 DWTE = WGAP(1)
C
 IF(.NOT.LBLINI) THEN
C----- initialize BL by marching with Ue (fudge at separation)
 WRITE(*,*)
 WRITE(*,*) 'Initializing BL ...'
 CALL MRCHUE
 LBLINI = .TRUE.
 ENDIF
C
 WRITE(*,*)
C
C---- march BL with current Ue and Ds to establish transition
 CALL MRCHDU
C
 DO 5 IS=1, 2
 DO 6 IBL=2, NBL(IS)
 USAV(IBL,IS) = UEDG(IBL,IS)
 6 CONTINUE
 5 CONTINUE
C
 CALL UESET
C
 DO 7 IS=1, 2
 DO 8 IBL=2, NBL(IS)
 TEMP = USAV(IBL,IS)
 USAV(IBL,IS) = UEDG(IBL,IS)
 UEDG(IBL,IS) = TEMP
 8 CONTINUE
 7 CONTINUE
C
 ILE1 = IPAN(2,1)
 ILE2 = IPAN(2,2)
 ITE1 = IPAN(IBLTE(1),1)
 ITE2 = IPAN(IBLTE(2),2)
C
 JVTE1 = ISYS(IBLTE(1),1)
 JVTE2 = ISYS(IBLTE(2),2)
C
 DULE1 = UEDG(2,1) - USAV(2,1)
 DULE2 = UEDG(2,2) - USAV(2,2)
C
C---- set LE and TE Ue sensitivities wrt all m values
 DO 10 JS=1, 2
 DO 110 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)
 ULE1_M(JV) = -VTI(2,1)*VTI(JBL,JS)*DIJ(ILE1,J)
 ULE2_M(JV) = -VTI(2,2)*VTI(JBL,JS)*DIJ(ILE2,J)
 UTE1_M(JV) = -VTI(IBLTE(1),1)*VTI(JBL,JS)*DIJ(ITE1,J)
 UTE2_M(JV) = -VTI(IBLTE(2),2)*VTI(JBL,JS)*DIJ(ITE2,J)
 110 CONTINUE
 10 CONTINUE
C
 ULE1_A = UINV_A(2,1)
 ULE2_A = UINV_A(2,2)
C
C**** Go over each boundary layer/wake
 DO 2000 IS=1, 2
C
C---- there is no station "1" at similarity, so zero everything out
 DO 20 JS=1, 2
 DO 210 JBL=2, NBL(JS)
 JV = ISYS(JBL,JS)
 U1_M(JV) = 0.
 D1_M(JV) = 0.
 210 CONTINUE
 20 CONTINUE
 U1_A = 0.
 D1_A = 0.
C
 DUE1 = 0.
 DDS1 = 0.
C
C---- similarity station pressure gradient parameter x/u du/dx
 IBL = 2
 BULE = 1.0
C
C---- set forced transition arc length position
 CALL XIFSET(IS)
C
 TRAN = .FALSE.
 TURB = .FALSE.
C
C**** Sweep downstream setting up BL equation linearizations
 DO 1000 IBL=2, NBL(IS)
C
 IV = ISYS(IBL,IS)
C
 SIMI = IBL.EQ.2
 WAKE = IBL.GT.IBLTE(IS)
 TRAN = IBL.EQ.ITRAN(IS)
 TURB = IBL.GT.ITRAN(IS)
C
 I = IPAN(IBL,IS)
C
C---- set primary variables for current station
 XSI = XSSI(IBL,IS)
 IF(IBL.LT.ITRAN(IS)) AMI = CTAU(IBL,IS)
 IF(IBL.GE.ITRAN(IS)) CTI = CTAU(IBL,IS)
 UEI = UEDG(IBL,IS)
 THI = THET(IBL,IS)
 MDI = MASS(IBL,IS)
C
 DSI = MDI/UEI
C
 IF(WAKE) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
C---- set derivatives of DSI (= D2)
 D2_M2 = 1.0/UEI
 D2_U2 = -DSI/UEI
C
 DO 30 JS=1, 2
 DO 310 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)
 U2_M(JV) = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J)
 D2_M(JV) = D2_U2*U2_M(JV)
 310 CONTINUE
 30 CONTINUE
 D2_M(IV) = D2_M(IV) + D2_M2
C
 U2_A = UINV_A(IBL,IS)
 D2_A = D2_U2*U2_A
C
C---- "forced" changes due to mismatch between UEDG and USAV=UINV+dij*MASS
 DUE2 = UEDG(IBL,IS) - USAV(IBL,IS)
 DDS2 = D2_U2*DUE2
C
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C---- check for transition and set TRAN, XT, etc. if found
 IF(TRAN) THEN
 CALL TRCHEK
 AMI = AMPL2
 ENDIF
 IF(IBL.EQ.ITRAN(IS) .AND. .NOT.TRAN) THEN
 WRITE(*,*) 'SETBL: Xtr??? n1 n2: ', AMPL1, AMPL2
 ENDIF
C
C---- assemble 10x4 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "1" station and the current "2" station
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN
C
C----- define quantities at start of wake, adding TE base thickness to Dstar
 TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 CTE = (CTAU(IBLTE(1),1)*THET(IBLTE(1),1)
 & + CTAU(IBLTE(2),2)*THET(IBLTE(2),2)) / TTE
 CALL TESYS(CTE,TTE,DTE)
C
 TTE_TTE1 = 1.0
 TTE_TTE2 = 1.0
 DTE_MTE1 = 1.0 / UEDG(IBLTE(1),1)
 DTE_UTE1 = -DSTR(IBLTE(1),1) / UEDG(IBLTE(1),1)
 DTE_MTE2 = 1.0 / UEDG(IBLTE(2),2)
 DTE_UTE2 = -DSTR(IBLTE(2),2) / UEDG(IBLTE(2),2)
 CTE_CTE1 = THET(IBLTE(1),1)/TTE
 CTE_CTE2 = THET(IBLTE(2),2)/TTE
 CTE_TTE1 = (CTAU(IBLTE(1),1) - CTE)/TTE
 CTE_TTE2 = (CTAU(IBLTE(2),2) - CTE)/TTE
C
C----- re-define D1 sensitivities wrt m since D1 depends on both TE Ds values
 DO 35 JS=1, 2
 DO 350 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)
 D1_M(JV) = DTE_UTE1*UTE1_M(JV) + DTE_UTE2*UTE2_M(JV)
 350 CONTINUE
 35 CONTINUE
 D1_M(JVTE1) = D1_M(JVTE1) + DTE_MTE1
 D1_M(JVTE2) = D1_M(JVTE2) + DTE_MTE2
C
C----- "forced" changes from UEDG --- USAV=UINV+dij*MASS mismatch
 DUE1 = 0.
 DDS1 = DTE_UTE1*(UEDG(IBLTE(1),1) - USAV(IBLTE(1),1))
 & + DTE_UTE2*(UEDG(IBLTE(2),2) - USAV(IBLTE(2),2))
C
 ELSE
C
 CALL BLSYS
C
 ENDIF
C
C
C---- Save wall shear and equil. max shear coefficient for plotting output
 TAU(IBL,IS) = 0.5*R2*U2*U2*CF2
 DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
 CTQ(IBL,IS) = CQ2
 DELT(IBL,IS) = DE2
 USLP(IBL,IS) = 1.60/(1.0+US2)
C
C@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
c IF(WAKE) THEN
c ALD = DLCON
c ELSE
c ALD = 1.0
c ENDIF
cC
c IF(TURB .AND. .NOT.WAKE) THEN
c GCC = GCCON
c HKC = HK2 - 1.0 - GCC/RT2
c IF(HKC .LT. 0.01) THEN
c HKC = 0.01
c ENDIF
c ELSE
c HKC = HK2 - 1.0
c ENDIF
cC
c HR = HKC / (GACON*ALD*HK2)
c UQ = (0.5*CF2 - HR**2) / (GBCON*D2)
cC
c IF(TURB) THEN
c IBLP = MIN(IBL+1,NBL(IS))
c IBLM = MAX(IBL-1,2)
c DXSSI = XSSI(IBLP,IS) - XSSI(IBLM,IS)
c IF(DXXSI.EQ.0.0) DXSSI = 1.0
c GUXD(IBL,IS) = -LOG(UEDG(IBLP,IS)/UEDG(IBLM,IS)) / DXSSI
c GUXQ(IBL,IS) = -UQ
c ELSE
c GUXD(IBL,IS) = 0.0
c GUXQ(IBL,IS) = 0.0
c ENDIF
C@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
C---- set XI sensitivities wrt LE Ue changes
 IF(IS.EQ.1) THEN
 XI_ULE1 = SST_GO
 XI_ULE2 = -SST_GP
 ELSE
 XI_ULE1 = -SST_GO
 XI_ULE2 = SST_GP
 ENDIF
C
C---- stuff BL system coefficients into main Jacobian matrix
C
 DO 40 JV=1, NSYS
 VM(1,JV,IV) = VS1(1,3)*D1_M(JV) + VS1(1,4)*U1_M(JV)
 & + VS2(1,3)*D2_M(JV) + VS2(1,4)*U2_M(JV)
 & + (VS1(1,5) + VS2(1,5) + VSX(1))
 & *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
 40 CONTINUE
C
 VB(1,1,IV) = VS1(1,1)
 VB(1,2,IV) = VS1(1,2)
C
 VA(1,1,IV) = VS2(1,1)
 VA(1,2,IV) = VS2(1,2)
C
 IF(LALFA) THEN
 VDEL(1,2,IV) = VSR(1)*RE_CLMR + VSM(1)*MSQ_CLMR
 ELSE
 VDEL(1,2,IV) =
 & (VS1(1,4)*U1_A + VS1(1,3)*D1_A)
 & + (VS2(1,4)*U2_A + VS2(1,3)*D2_A)
 & + (VS1(1,5) + VS2(1,5) + VSX(1))
 & *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)
 ENDIF
C
 VDEL(1,1,IV) = VSREZ(1)
 & + (VS1(1,4)*DUE1 + VS1(1,3)*DDS1)
 & + (VS2(1,4)*DUE2 + VS2(1,3)*DDS2)
 & + (VS1(1,5) + VS2(1,5) + VSX(1))
 & *(XI_ULE1*DULE1 + XI_ULE2*DULE2)
C
C
 DO 50 JV=1, NSYS
 VM(2,JV,IV) = VS1(2,3)*D1_M(JV) + VS1(2,4)*U1_M(JV)
 & + VS2(2,3)*D2_M(JV) + VS2(2,4)*U2_M(JV)
 & + (VS1(2,5) + VS2(2,5) + VSX(2))
 & *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
 50 CONTINUE
C
 VB(2,1,IV) = VS1(2,1)
 VB(2,2,IV) = VS1(2,2)
C
 VA(2,1,IV) = VS2(2,1)
 VA(2,2,IV) = VS2(2,2)
C
 IF(LALFA) THEN
 VDEL(2,2,IV) = VSR(2)*RE_CLMR + VSM(2)*MSQ_CLMR
 ELSE
 VDEL(2,2,IV) =
 & (VS1(2,4)*U1_A + VS1(2,3)*D1_A)
 & + (VS2(2,4)*U2_A + VS2(2,3)*D2_A)
 & + (VS1(2,5) + VS2(2,5) + VSX(2))
 & *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)
 ENDIF
C
 VDEL(2,1,IV) = VSREZ(2)
 & + (VS1(2,4)*DUE1 + VS1(2,3)*DDS1)
 & + (VS2(2,4)*DUE2 + VS2(2,3)*DDS2)
 & + (VS1(2,5) + VS2(2,5) + VSX(2))
 & *(XI_ULE1*DULE1 + XI_ULE2*DULE2)
C
C
 DO 60 JV=1, NSYS
 VM(3,JV,IV) = VS1(3,3)*D1_M(JV) + VS1(3,4)*U1_M(JV)
 & + VS2(3,3)*D2_M(JV) + VS2(3,4)*U2_M(JV)
 & + (VS1(3,5) + VS2(3,5) + VSX(3))
 & *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
 60 CONTINUE
C
 VB(3,1,IV) = VS1(3,1)
 VB(3,2,IV) = VS1(3,2)
C
 VA(3,1,IV) = VS2(3,1)
 VA(3,2,IV) = VS2(3,2)
C
 IF(LALFA) THEN
 VDEL(3,2,IV) = VSR(3)*RE_CLMR + VSM(3)*MSQ_CLMR
 ELSE
 VDEL(3,2,IV) =
 & (VS1(3,4)*U1_A + VS1(3,3)*D1_A)
 & + (VS2(3,4)*U2_A + VS2(3,3)*D2_A)
 & + (VS1(3,5) + VS2(3,5) + VSX(3))
 & *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)
 ENDIF
C
 VDEL(3,1,IV) = VSREZ(3)
 & + (VS1(3,4)*DUE1 + VS1(3,3)*DDS1)
 & + (VS2(3,4)*DUE2 + VS2(3,3)*DDS2)
 & + (VS1(3,5) + VS2(3,5) + VSX(3))
 & *(XI_ULE1*DULE1 + XI_ULE2*DULE2)
C
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN
C
C----- redefine coefficients for TTE, DTE, etc
 VZ(1,1) = VS1(1,1)*CTE_CTE1
 VZ(1,2) = VS1(1,1)*CTE_TTE1 + VS1(1,2)*TTE_TTE1
 VB(1,1,IV) = VS1(1,1)*CTE_CTE2
 VB(1,2,IV) = VS1(1,1)*CTE_TTE2 + VS1(1,2)*TTE_TTE2
C
 VZ(2,1) = VS1(2,1)*CTE_CTE1
 VZ(2,2) = VS1(2,1)*CTE_TTE1 + VS1(2,2)*TTE_TTE1
 VB(2,1,IV) = VS1(2,1)*CTE_CTE2
 VB(2,2,IV) = VS1(2,1)*CTE_TTE2 + VS1(2,2)*TTE_TTE2
C
 VZ(3,1) = VS1(3,1)*CTE_CTE1
 VZ(3,2) = VS1(3,1)*CTE_TTE1 + VS1(3,2)*TTE_TTE1
 VB(3,1,IV) = VS1(3,1)*CTE_CTE2
 VB(3,2,IV) = VS1(3,1)*CTE_TTE2 + VS1(3,2)*TTE_TTE2
C
 ENDIF
C
C---- turbulent intervals will follow if currently at transition interval
 IF(TRAN) THEN
 TURB = .TRUE.
C
C------ save transition location
 ITRAN(IS) = IBL
 TFORCE(IS) = TRFORC
 XSSITR(IS) = XT
C
C------ interpolate airfoil geometry to find transition x/c
C- (for user output)
 IF(IS.EQ.1) THEN
 STR = SST - XT
 ELSE
 STR = SST + XT
 ENDIF
 CHX = XTE - XLE
 CHY = YTE - YLE
 CHSQ = CHX**2 + CHY**2
 XTR = SEVAL(STR,X,XP,S,N)
 YTR = SEVAL(STR,Y,YP,S,N)
 XOCTR(IS) = ((XTR-XLE)*CHX + (YTR-YLE)*CHY)/CHSQ
 YOCTR(IS) = ((YTR-YLE)*CHX - (XTR-XLE)*CHY)/CHSQ
 ENDIF
C
 TRAN = .FALSE.
C
 IF(IBL.EQ.IBLTE(IS)) THEN
C----- set "2" variables at TE to wake correlations for next station
C
 TURB = .TRUE.
 WAKE = .TRUE.
 CALL BLVAR(3)
 CALL BLMID(3)
 ENDIF
C
 DO 80 JS=1, 2
 DO 810 JBL=2, NBL(JS)
 JV = ISYS(JBL,JS)
 U1_M(JV) = U2_M(JV)
 D1_M(JV) = D2_M(JV)
 810 CONTINUE
 80 CONTINUE
C
 U1_A = U2_A
 D1_A = D2_A
C
 DUE1 = DUE2
 DDS1 = DDS2
C
C---- set BL variables for next station
 DO 190 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 190 CONTINUE
C
C---- next streamwise station
 1000 CONTINUE
C
 IF(TFORCE(IS)) THEN
 WRITE(*,9100) IS,XOCTR(IS),ITRAN(IS)
 9100 FORMAT(1X,'Side',I2,' forced transition at x/c = ',F7.4,I5)
 ELSE
 WRITE(*,9200) IS,XOCTR(IS),ITRAN(IS)
 9200 FORMAT(1X,'Side',I2,' free transition at x/c = ',F7.4,I5)
 ENDIF
C
C---- next airfoil side
 2000 CONTINUE
C
 RETURN
 END

 SUBROUTINE IBLSYS
C---
C Sets the BL Newton system line number
C corresponding to each BL station.
C---
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
C
 IV = 0
 DO 10 IS=1, 2
 DO 110 IBL=2, NBL(IS)
 IV = IV+1
 ISYS(IBL,IS) = IV
 110 CONTINUE
 10 CONTINUE
C
 NSYS = IV
 IF(NSYS.GT.2*IVX) STOP '*** IBLSYS: BL system array overflow. ***'
C
 RETURN
 END

 SUBROUTINE MRCHUE
C--
C Marches the BLs and wake in direct mode using
C the UEDG array. If separation is encountered,
C a plausible value of Hk extrapolated from
C upstream is prescribed instead. Continuous
C checking of transition onset is performed.
C--
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
 LOGICAL DIRECT
 REAL MSQ
C
C---- shape parameters for separation criteria
 HLMAX = 3.8
 HTMAX = 2.5
C
 DO 2000 IS=1, 2
C
 WRITE(*,*) ' side ', IS, ' ...'
C
C---- set forced transition arc length position
 CALL XIFSET(IS)
C
C---- initialize similarity station with Thwaites' formula
 IBL = 2
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
C BULE = LOG(UEDG(IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI)
C BULE = MAX(-.08 , BULE)
 BULE = 1.0
 UCON = UEI/XSI**BULE
 TSQ = 0.45/(UCON*(5.0*BULE+1.0)*REYBL) * XSI**(1.0-BULE)
 THI = SQRT(TSQ)
 DSI = 2.2*THI
 AMI = 0.0
C
C---- initialize Ctau for first turbulent station
 CTI = 0.03
C
 TRAN = .FALSE.
 TURB = .FALSE.
 ITRAN(IS) = IBLTE(IS)
C
C---- march downstream
 DO 1000 IBL=2, NBL(IS)
 IBM = IBL-1
C
 IW = IBL - IBLTE(IS)
C
 SIMI = IBL.EQ.2
 WAKE = IBL.GT.IBLTE(IS)
C
C------ prescribed quantities
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
C
 IF(WAKE) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
 DIRECT = .TRUE.
C
C------ Newton iteration loop for current station
 DO 100 ITBL=1, 25
C
C-------- assemble 10x3 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "1" station and the current "2" station
C (the "1" station coefficients will be ignored)
C
C
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C-------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
C
C--------- fixed BUG MD 7 Jun 99
 IF(TRAN) THEN
 ITRAN(IS) = IBL
 IF(CTI.LE.0.0) THEN
 CTI = 0.03
 S2 = CTI
 ENDIF
 ELSE
 ITRAN(IS) = IBL+2
 ENDIF
C
C
 ENDIF
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN
 TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 CTE = (CTAU(IBLTE(1),1)*THET(IBLTE(1),1)
 & + CTAU(IBLTE(2),2)*THET(IBLTE(2),2)) / TTE
 CALL TESYS(CTE,TTE,DTE)
 ELSE
 CALL BLSYS
 ENDIF
C
 IF(DIRECT) THEN
C
C--------- try direct mode (set dUe = 0 in currently empty 4th line)
 VS2(4,1) = 0.
 VS2(4,2) = 0.
 VS2(4,3) = 0.
 VS2(4,4) = 1.0
 VSREZ(4) = 0.
C
C--------- solve Newton system for current "2" station
 CALL GAUSS(4,4,VS2,VSREZ,1)
C
C--------- determine max changes and underrelax if necessary
 DMAX = MAX(ABS(VSREZ(2)/THI),
 & ABS(VSREZ(3)/DSI))
 IF(IBL.LT.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/10.0))
 IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/CTI))
C
 RLX = 1.0
 IF(DMAX.GT.0.3) RLX = 0.3/DMAX
C
C--------- see if direct mode is not applicable
 IF(IBL .NE. IBLTE(IS)+1) THEN
C
C---------- calculate resulting kinematic shape parameter Hk
 MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV))
 HTEST = (DSI + RLX*VSREZ(3)) / (THI + RLX*VSREZ(2))
 CALL HKIN(HTEST, MSQ, HKTEST, DUMMY, DUMMY)
C
C---------- decide whether to do direct or inverse problem based on Hk
 IF(IBL.LT.ITRAN(IS)) HMAX = HLMAX
 IF(IBL.GE.ITRAN(IS)) HMAX = HTMAX
 DIRECT = HKTEST.LT.HMAX
 ENDIF
C
 IF(DIRECT) THEN
C---------- update as usual
ccc IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1)
 IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1)
 THI = THI + RLX*VSREZ(2)
 DSI = DSI + RLX*VSREZ(3)
 ELSE
C---------- set prescribed Hk for inverse calculation at the current station
 IF(IBL.LT.ITRAN(IS)) THEN
C----------- laminar case: relatively slow increase in Hk downstream
 HTARG = HK1 + 0.03*(X2-X1)/T1
 ELSE IF(IBL.EQ.ITRAN(IS)) THEN
C----------- transition interval: weighted laminar and turbulent case
 HTARG = HK1 + (0.03*(XT-X1) - 0.15*(X2-XT))/T1
 ELSE IF(WAKE) THEN
C----------- turbulent wake case:
C- asymptotic wake behavior with approximate Backward Euler
 CONST = 0.03*(X2-X1)/T1
 HK2 = HK1
 HK2 = HK2 - (HK2 + CONST*(HK2-1.0)**3 - HK1)
 & /(1.0 + 3.0*CONST*(HK2-1.0)**2)
 HK2 = HK2 - (HK2 + CONST*(HK2-1.0)**3 - HK1)
 & /(1.0 + 3.0*CONST*(HK2-1.0)**2)
 HK2 = HK2 - (HK2 + CONST*(HK2-1.0)**3 - HK1)
 & /(1.0 + 3.0*CONST*(HK2-1.0)**2)
 HTARG = HK2
 ELSE
C----------- turbulent case: relatively fast decrease in Hk downstream
 HTARG = HK1 - 0.15*(X2-X1)/T1
 ENDIF
C
C---------- limit specified Hk to something reasonable
 IF(WAKE) THEN
 HTARG = MAX(HTARG , 1.01)
 ELSE
 HTARG = MAX(HTARG , HMAX)
 ENDIF
C
 WRITE(*,1300) IBL, HTARG
 1300 FORMAT(' MRCHUE: Inverse mode at', I4, ' Hk =', F8.3)
C
C---------- try again with prescribed Hk
 GO TO 100
C
 ENDIF
C
 ELSE
C
C-------- inverse mode (force Hk to prescribed value HTARG)
 VS2(4,1) = 0.
 VS2(4,2) = HK2_T2
 VS2(4,3) = HK2_D2
 VS2(4,4) = HK2_U2
 VSREZ(4) = HTARG - HK2
C
 CALL GAUSS(4,4,VS2,VSREZ,1)
C
C--------- added Ue clamp MD 3 Apr 03
 DMAX = MAX(ABS(VSREZ(2)/THI),
 & ABS(VSREZ(3)/DSI),
 & ABS(VSREZ(4)/UEI))
 IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX , ABS(VSREZ(1)/CTI))
C
 RLX = 1.0
 IF(DMAX.GT.0.3) RLX = 0.3/DMAX
C
C--------- update variables
ccc IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1)
 IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1)
 THI = THI + RLX*VSREZ(2)
 DSI = DSI + RLX*VSREZ(3)
 UEI = UEI + RLX*VSREZ(4)
C
 ENDIF
C
C-------- eliminate absurd transients
 IF(IBL.GE.ITRAN(IS)) THEN
 CTI = MIN(CTI , 0.30)
 CTI = MAX(CTI , 0.0000001)
 ENDIF
C
 IF(IBL.LE.IBLTE(IS)) THEN
 HKLIM = 1.02
 ELSE
 HKLIM = 1.00005
 ENDIF
 MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV))
 DSW = DSI - DSWAKI
 CALL DSLIM(DSW,THI,UEI,MSQ,HKLIM)
 DSI = DSW + DSWAKI
C
 IF(DMAX.LE.1.0E-5) GO TO 110
C
 100 CONTINUE
 WRITE(*,1350) IBL, IS, DMAX
 1350 FORMAT(' MRCHUE: Convergence failed at',I4,' side',I2,
 & ' Res =', E12.4)
C
C------ the current unconverged solution might still be reasonable...
CCC IF(DMAX .LE. 0.1) GO TO 110
 IF(DMAX .LE. 0.1) GO TO 109
C
C------- the current solution is garbage --> extrapolate values instead
 IF(IBL.GT.3) THEN
 IF(IBL.LE.IBLTE(IS)) THEN
 THI = THET(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN
 CTI = CTE
 THI = TTE
 DSI = DTE
 ELSE
 THI = THET(IBM,IS)
 RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS))
 DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN)
 ENDIF
 IF(IBL.EQ.ITRAN(IS)) CTI = 0.05
 IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM,IS)
C
 UEI = UEDG(IBL,IS)
 IF(IBL.GT.2 .AND. IBL.LT.NBL(IS))
 & UEI = 0.5*(UEDG(IBL-1,IS) + UEDG(IBL+1,IS))
 ENDIF
C
 109 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
 IF(TRAN) ITRAN(IS) = IBL
 IF(.NOT.TRAN) ITRAN(IS) = IBL+2
 ENDIF
C
C------- set all other extrapolated values for current station
 IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2)
 IF(WAKE) CALL BLVAR(3)
C
 IF(IBL.LT.ITRAN(IS)) CALL BLMID(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLMID(2)
 IF(WAKE) CALL BLMID(3)
C
C------ pick up here after the Newton iterations
 110 CONTINUE
C
C------ store primary variables
 IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI
 IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI
 THET(IBL,IS) = THI
 DSTR(IBL,IS) = DSI
 UEDG(IBL,IS) = UEI
 MASS(IBL,IS) = DSI*UEI
 TAU(IBL,IS) = 0.5*R2*U2*U2*CF2
 DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
 CTQ(IBL,IS) = CQ2
 DELT(IBL,IS) = DE2
C
C------ set "1" variables to "2" variables for next streamwise station
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
 DO 310 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 310 CONTINUE
C
C------ turbulent intervals will follow transition interval or TE
 IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN
 TURB = .TRUE.
C
C------- save transition location
 TFORCE(IS) = TRFORC
 XSSITR(IS) = XT
 ENDIF
C
 TRAN = .FALSE.
C
 IF(IBL.EQ.IBLTE(IS)) THEN
 THI = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DSI = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 ENDIF
C
 1000 CONTINUE
 2000 CONTINUE
C
 RETURN
 END

 SUBROUTINE MRCHDU
C--
C Marches the BLs and wake in mixed mode using
C the current Ue and Hk. The calculated Ue
C and Hk lie along a line quasi-normal to the
C natural Ue-Hk characteristic line of the
C current BL so that the Goldstein or Levy-Lees
C singularity is never encountered. Continuous
C checking of transition onset is performed.
C--
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
 REAL VTMP(4,5), VZTMP(4)
 REAL MSQ
ccc REAL MDI
C
 DATA DEPS / 5.0E-6 /
C
C---- constant controlling how far Hk is allowed to deviate
C- from the specified value.
 SENSWT = 1000.0
C
 DO 2000 IS=1, 2
C
C---- set forced transition arc length position
 CALL XIFSET(IS)
C
C---- set leading edge pressure gradient parameter x/u du/dx
 IBL = 2
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
CCC BULE = LOG(UEDG(IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI)
CCC BULE = MAX(-.08 , BULE)
 BULE = 1.0
C
C---- old transition station
 ITROLD = ITRAN(IS)
C
 TRAN = .FALSE.
 TURB = .FALSE.
 ITRAN(IS) = IBLTE(IS)
C
C---- march downstream
 DO 1000 IBL=2, NBL(IS)
 IBM = IBL-1
C
 SIMI = IBL.EQ.2
 WAKE = IBL.GT.IBLTE(IS)
C
C------ initialize current station to existing variables
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
 THI = THET(IBL,IS)
 DSI = DSTR(IBL,IS)
CCC MDI = MASS(IBL,IS)
C
C------ fixed BUG MD 7 June 99
 IF(IBL.LT.ITROLD) THEN
 AMI = CTAU(IBL,IS)
 CTI = 0.03
 ELSE
 CTI = CTAU(IBL,IS)
 IF(CTI.LE.0.0) CTI = 0.03
 ENDIF
C
CCC DSI = MDI/UEI
C
 IF(WAKE) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
 IF(IBL.LE.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.02000*THI) + DSWAKI
 IF(IBL.GT.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.00005*THI) + DSWAKI
C
C------ Newton iteration loop for current station
 DO 100 ITBL=1, 25
C
C-------- assemble 10x3 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "1" station and the current "2" station
C (the "1" station coefficients will be ignored)
C
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C-------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
 IF(TRAN) ITRAN(IS) = IBL
 IF(.NOT.TRAN) ITRAN(IS) = IBL+2
 ENDIF
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN
 TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 CTE = (CTAU(IBLTE(1),1)*THET(IBLTE(1),1)
 & + CTAU(IBLTE(2),2)*THET(IBLTE(2),2)) / TTE
 CALL TESYS(CTE,TTE,DTE)
 ELSE
 CALL BLSYS
 ENDIF
C
C-------- set stuff at first iteration...
 IF(ITBL.EQ.1) THEN
C
C--------- set "baseline" Ue and Hk for forming Ue(Hk) relation
 UEREF = U2
 HKREF = HK2
C
C--------- if current point IBL was turbulent and is now laminar, then...
 IF(IBL.LT.ITRAN(IS) .AND. IBL.GE.ITROLD) THEN
C---------- extrapolate baseline Hk
 UEM = UEDG(IBL-1,IS)
 DSM = DSTR(IBL-1,IS)
 THM = THET(IBL-1,IS)
 MSQ = UEM*UEM*HSTINV / (GM1BL*(1.0 - 0.5*UEM*UEM*HSTINV))
 CALL HKIN(DSM/THM, MSQ, HKREF, DUMMY, DUMMY)
 ENDIF
C
C--------- if current point IBL was laminar, then...
 IF(IBL.LT.ITROLD) THEN
C---------- reinitialize or extrapolate Ctau if it's now turbulent
 IF(TRAN) CTAU(IBL,IS) = 0.03
 IF(TURB) CTAU(IBL,IS) = CTAU(IBL-1,IS)
 IF(TRAN .OR. TURB) THEN
 CTI = CTAU(IBL,IS)
 S2 = CTI
 ENDIF
 ENDIF
C
 ENDIF
C
C
 IF(SIMI .OR. IBL.EQ.IBLTE(IS)+1) THEN
C
C--------- for similarity station or first wake point, prescribe Ue
 VS2(4,1) = 0.
 VS2(4,2) = 0.
 VS2(4,3) = 0.
 VS2(4,4) = U2_UEI
 VSREZ(4) = UEREF - U2
C
 ELSE
C
C********* calculate Ue-Hk characteristic slope
C
 DO 20 K=1, 4
 VZTMP(K) = VSREZ(K)
 DO 201 L=1, 5
 VTMP(K,L) = VS2(K,L)
 201 CONTINUE
 20 CONTINUE
C
C--------- set unit dHk
 VTMP(4,1) = 0.
 VTMP(4,2) = HK2_T2
 VTMP(4,3) = HK2_D2
 VTMP(4,4) = HK2_U2*U2_UEI
 VZTMP(4) = 1.0
C
C--------- calculate dUe response
 CALL GAUSS(4,4,VTMP,VZTMP,1)
C
C--------- set SENSWT * (normalized dUe/dHk)
 SENNEW = SENSWT * VZTMP(4) * HKREF/UEREF
 IF(ITBL.LE.5) THEN
 SENS = SENNEW
 ELSE IF(ITBL.LE.15) THEN
 SENS = 0.5*(SENS + SENNEW)
 ENDIF
C
C--------- set prescribed Ue-Hk combination
 VS2(4,1) = 0.
 VS2(4,2) = HK2_T2 * HKREF
 VS2(4,3) = HK2_D2 * HKREF
 VS2(4,4) =(HK2_U2 * HKREF + SENS/UEREF)*U2_UEI
 VSREZ(4) = -(HKREF**2)*(HK2 / HKREF - 1.0)
 & - SENS*(U2 / UEREF - 1.0)
C
 ENDIF
C
C-------- solve Newton system for current "2" station
 CALL GAUSS(4,4,VS2,VSREZ,1)
C
C-------- determine max changes and underrelax if necessary
C-------- (added Ue clamp MD 3 Apr 03)
 DMAX = MAX(ABS(VSREZ(2)/THI),
 & ABS(VSREZ(3)/DSI),
 & ABS(VSREZ(4)/UEI))
 IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/(10.0*CTI)))
C
 RLX = 1.0
 IF(DMAX.GT.0.3) RLX = 0.3/DMAX
C
C-------- update as usual
 IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1)
 IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1)
 THI = THI + RLX*VSREZ(2)
 DSI = DSI + RLX*VSREZ(3)
 UEI = UEI + RLX*VSREZ(4)
C
C-------- eliminate absurd transients
 IF(IBL.GE.ITRAN(IS)) THEN
 CTI = MIN(CTI , 0.30)
 CTI = MAX(CTI , 0.0000001)
 ENDIF
C
 IF(IBL.LE.IBLTE(IS)) THEN
 HKLIM = 1.02
 ELSE
 HKLIM = 1.00005
 ENDIF
 MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV))
 DSW = DSI - DSWAKI
 CALL DSLIM(DSW,THI,UEI,MSQ,HKLIM)
 DSI = DSW + DSWAKI
C
 IF(DMAX.LE.DEPS) GO TO 110
C
 100 CONTINUE
C
 WRITE(*,1350) IBL, IS, DMAX
 1350 FORMAT(' MRCHDU: Convergence failed at',I4,' side',I2,
 & ' Res =', E12.4)
C
C------ the current unconverged solution might still be reasonable...
CCC IF(DMAX .LE. 0.1) GO TO 110
 IF(DMAX .LE. 0.1) GO TO 109
C
C------- the current solution is garbage --> extrapolate values instead
 IF(IBL.GT.3) THEN
 IF(IBL.LE.IBLTE(IS)) THEN
 THI = THET(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 UEI = UEDG(IBM,IS)
 ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN
 CTI = CTE
 THI = TTE
 DSI = DTE
 UEI = UEDG(IBM,IS)
 ELSE
 THI = THET(IBM,IS)
 RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS))
 DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN)
 UEI = UEDG(IBM,IS)
 ENDIF
 IF(IBL.EQ.ITRAN(IS)) CTI = 0.05
 IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM,IS)
 ENDIF
C
 109 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
 IF(TRAN) ITRAN(IS) = IBL
 IF(.NOT.TRAN) ITRAN(IS) = IBL+2
 ENDIF
C
C------- set all other extrapolated values for current station
 IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2)
 IF(WAKE) CALL BLVAR(3)
C
 IF(IBL.LT.ITRAN(IS)) CALL BLMID(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLMID(2)
 IF(WAKE) CALL BLMID(3)
C
C------ pick up here after the Newton iterations
 110 CONTINUE
C
 SENS = SENNEW
C
C------ store primary variables
 IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI
 IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI
 THET(IBL,IS) = THI
 DSTR(IBL,IS) = DSI
 UEDG(IBL,IS) = UEI
 MASS(IBL,IS) = DSI*UEI
 TAU(IBL,IS) = 0.5*R2*U2*U2*CF2
 DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
 CTQ(IBL,IS) = CQ2
C
C------ set "1" variables to "2" variables for next streamwise station
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
 DO 310 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 310 CONTINUE
C
C
C------ turbulent intervals will follow transition interval or TE
 IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN
 TURB = .TRUE.
C
C------- save transition location
 TFORCE(IS) = TRFORC
 XSSITR(IS) = XT
 ENDIF
C
 TRAN = .FALSE.
C
 1000 CONTINUE
C
 2000 CONTINUE
C
 RETURN
 END

 SUBROUTINE XIFSET(IS)
C---
C Sets forced-transition BL coordinate locations.
C---
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
C
 IF(XSTRIP(IS).GE.1.0) THEN
 XIFORC = XSSI(IBLTE(IS),IS)
 RETURN
 ENDIF
C
 CHX = XTE - XLE
 CHY = YTE - YLE
 CHSQ = CHX**2 + CHY**2
C
C---- calculate chord-based x/c, y/c
 DO 10 I=1, N
 W1(I) = ((X(I)-XLE)*CHX + (Y(I)-YLE)*CHY) / CHSQ
 W2(I) = ((Y(I)-YLE)*CHX - (X(I)-XLE)*CHY) / CHSQ
 10 CONTINUE
C
 CALL SPLIND(W1,W3,S,N,-999.0,-999.0)
 CALL SPLIND(W2,W4,S,N,-999.0,-999.0)
C
 IF(IS.EQ.1) THEN
C
C----- set approximate arc length of forced transition point for SINVRT
 STR = SLE + (S(1)-SLE)*XSTRIP(IS)
C
C----- calculate actual arc length
 CALL SINVRT(STR,XSTRIP(IS),W1,W3,S,N)
C
C----- set BL coordinate value
 XIFORC = MIN((SST - STR) , XSSI(IBLTE(IS),IS))
C
 ELSE
C----- same for bottom side
C
 STR = SLE + (S(N)-SLE)*XSTRIP(IS)
 CALL SINVRT(STR,XSTRIP(IS),W1,W3,S,N)
 XIFORC = MIN((STR - SST) , XSSI(IBLTE(IS),IS))
C
 ENDIF
C
 IF(XIFORC .LT. 0.0) THEN
 WRITE(*,1000) IS
 1000 FORMAT(/' *** Stagnation point is past trip on side',I2,' ***')
 XIFORC = XSSI(IBLTE(IS),IS)
 ENDIF
C
 RETURN
 END

 SUBROUTINE UPDATE
C--
C Adds on Newton deltas to boundary layer variables.
C Checks for excessive changes and underrelaxes if necessary.
C Calculates max and rms changes.
C Also calculates the change in the global variable "AC".
C If LALFA=.TRUE. , "AC" is CL
C If LALFA=.FALSE., "AC" is alpha
C--
 INCLUDE 'XFOIL.INC'
 REAL UNEW(IVX,2), U_AC(IVX,2)
 REAL QNEW(IQX), Q_AC(IQX)
 EQUIVALENCE (VA(1,1,1), UNEW(1,1)) ,
 & (VB(1,1,1), QNEW(1))
 EQUIVALENCE (VA(1,1,IVX), U_AC(1,1)) ,
 & (VB(1,1,IVX), Q_AC(1))
 REAL MSQ
C
C---- max allowable alpha changes per iteration
 DALMAX = 0.5*DTOR
 DALMIN = -0.5*DTOR
C
C---- max allowable CL change per iteration
 DCLMAX = 0.5
 DCLMIN = -0.5
 IF(MATYP.NE.1) DCLMIN = MAX(-0.5 , -0.9*CL)
C
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
C
C---- calculate new Ue distribution assuming no under-relaxation
C- also set the sensitivity of Ue wrt to alpha or Re
 DO 1 IS=1, 2
 DO 10 IBL=2, NBL(IS)
 I = IPAN(IBL,IS)
C
 DUI = 0.
 DUI_AC = 0.
 DO 100 JS=1, 2
 DO 1000 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)
 UE_M = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J)
 DUI = DUI + UE_M*(MASS(JBL,JS)+VDEL(3,1,JV))
 DUI_AC = DUI_AC + UE_M*(-VDEL(3,2,JV))
 1000 CONTINUE
 100 CONTINUE
C
C-------- UINV depends on "AC" only if "AC" is alpha
 IF(LALFA) THEN
 UINV_AC = 0.
 ELSE
 UINV_AC = UINV_A(IBL,IS)
 ENDIF
C
 UNEW(IBL,IS) = UINV(IBL,IS) + DUI
 U_AC(IBL,IS) = UINV_AC + DUI_AC
C
 10 CONTINUE
 1 CONTINUE
C
C---- set new Qtan from new Ue with appropriate sign change
 DO 2 IS=1, 2
 DO 20 IBL=2, IBLTE(IS)
 I = IPAN(IBL,IS)
 QNEW(I) = VTI(IBL,IS)*UNEW(IBL,IS)
 Q_AC(I) = VTI(IBL,IS)*U_AC(IBL,IS)
 20 CONTINUE
 2 CONTINUE
C
C---- calculate new CL from this new Qtan
 SA = SIN(ALFA)
 CA = COS(ALFA)
C
 BETA = SQRT(1.0 - MINF**2)
 BETA_MSQ = -0.5/BETA
C
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
 BFAC_MSQ = 0.5 / (1.0 + BETA)
 & - BFAC / (1.0 + BETA) * BETA_MSQ
C
 CLNEW = 0.
 CL_A = 0.
 CL_MS = 0.
 CL_AC = 0.
C
 I = 1
 CGINC = 1.0 - (QNEW(I)/QINF)**2
 CPG1 = CGINC / (BETA + BFAC*CGINC)
 CPG1_MS = -CPG1/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 CPI_Q = -2.0*QNEW(I)/QINF**2
 CPC_CPI = (1.0 - BFAC*CPG1)/ (BETA + BFAC*CGINC)
 CPG1_AC = CPC_CPI*CPI_Q*Q_AC(I)
C
 DO 3 I=1, N
 IP = I+1
 IF(I.EQ.N) IP = 1
C
 CGINC = 1.0 - (QNEW(IP)/QINF)**2
 CPG2 = CGINC / (BETA + BFAC*CGINC)
 CPG2_MS = -CPG2/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 CPI_Q = -2.0*QNEW(IP)/QINF**2
 CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC)
 CPG2_AC = CPC_CPI*CPI_Q*Q_AC(IP)
C
 DX = (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA
 DX_A = -(X(IP) - X(I))*SA + (Y(IP) - Y(I))*CA
C
 AG = 0.5*(CPG2 + CPG1)
 AG_MS = 0.5*(CPG2_MS + CPG1_MS)
 AG_AC = 0.5*(CPG2_AC + CPG1_AC)
C
 CLNEW = CLNEW + DX *AG
 CL_A = CL_A + DX_A*AG
 CL_MS = CL_MS + DX *AG_MS
 CL_AC = CL_AC + DX *AG_AC
C
 CPG1 = CPG2
 CPG1_MS = CPG2_MS
 CPG1_AC = CPG2_AC
 3 CONTINUE
C
C---- initialize under-relaxation factor
 RLX = 1.0
C
 IF(LALFA) THEN
C===== alpha is prescribed: AC is CL
C
C----- set change in Re to account for CL changing, since Re = Re(CL)
 DAC = (CLNEW - CL) / (1.0 - CL_AC - CL_MS*2.0*MINF*MINF_CL)
C
C----- set under-relaxation factor if Re change is too large
 IF(RLX*DAC .GT. DCLMAX) RLX = DCLMAX/DAC
 IF(RLX*DAC .LT. DCLMIN) RLX = DCLMIN/DAC
C
 ELSE
C===== CL is prescribed: AC is alpha
C
C----- set change in alpha to drive CL to prescribed value
 DAC = (CLNEW - CLSPEC) / (0.0 - CL_AC - CL_A)
C
C----- set under-relaxation factor if alpha change is too large
 IF(RLX*DAC .GT. DALMAX) RLX = DALMAX/DAC
 IF(RLX*DAC .LT. DALMIN) RLX = DALMIN/DAC
C
 ENDIF
C
 RMSBL = 0.
 RMXBL = 0.
C
 DHI = 1.5
 DLO = -.5
C
C---- calculate changes in BL variables and under-relaxation if needed
 DO 4 IS=1, 2
 DO 40 IBL=2, NBL(IS)
 IV = ISYS(IBL,IS)
C
C-------- set changes without underrelaxation
 DCTAU = VDEL(1,1,IV) - DAC*VDEL(1,2,IV)
 DTHET = VDEL(2,1,IV) - DAC*VDEL(2,2,IV)
 DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,IV)
 DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS) - UEDG(IBL,IS)
 DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG(IBL,IS)
C
C-------- normalize changes
 IF(IBL.LT.ITRAN(IS)) DN1 = DCTAU / 10.0
 IF(IBL.GE.ITRAN(IS)) DN1 = DCTAU / CTAU(IBL,IS)
 DN2 = DTHET / THET(IBL,IS)
 DN3 = DDSTR / DSTR(IBL,IS)
 DN4 = ABS(DUEDG)/0.25
C
C-------- accumulate for rms change
 RMSBL = RMSBL + DN1**2 + DN2**2 + DN3**2 + DN4**2
C
C-------- see if Ctau needs underrelaxation
 RDN1 = RLX*DN1
 IF(ABS(DN1) .GT. ABS(RMXBL)) THEN
 RMXBL = DN1
 IF(IBL.LT.ITRAN(IS)) VMXBL = 'n'
 IF(IBL.GE.ITRAN(IS)) VMXBL = 'C'
 IMXBL = IBL
 ISMXBL = IS
 ENDIF
 IF(RDN1 .GT. DHI) RLX = DHI/DN1
 IF(RDN1 .LT. DLO) RLX = DLO/DN1
C
C-------- see if Theta needs underrelaxation
 RDN2 = RLX*DN2
 IF(ABS(DN2) .GT. ABS(RMXBL)) THEN
 RMXBL = DN2
 VMXBL = 'T'
 IMXBL = IBL
 ISMXBL = IS
 ENDIF
 IF(RDN2 .GT. DHI) RLX = DHI/DN2
 IF(RDN2 .LT. DLO) RLX = DLO/DN2
C
C-------- see if Dstar needs underrelaxation
 RDN3 = RLX*DN3
 IF(ABS(DN3) .GT. ABS(RMXBL)) THEN
 RMXBL = DN3
 VMXBL = 'D'
 IMXBL = IBL
 ISMXBL = IS
 ENDIF
 IF(RDN3 .GT. DHI) RLX = DHI/DN3
 IF(RDN3 .LT. DLO) RLX = DLO/DN3
C
C-------- see if Ue needs underrelaxation
 RDN4 = RLX*DN4
 IF(ABS(DN4) .GT. ABS(RMXBL)) THEN
 RMXBL = DUEDG
 VMXBL = 'U'
 IMXBL = IBL
 ISMXBL = IS
 ENDIF
 IF(RDN4 .GT. DHI) RLX = DHI/DN4
 IF(RDN4 .LT. DLO) RLX = DLO/DN4
C
 40 CONTINUE
 4 CONTINUE
C
C---- set true rms change
 RMSBL = SQRT(RMSBL / (4.0*FLOAT(NBL(1)+NBL(2))))
C
C
 IF(LALFA) THEN
C----- set underrelaxed change in Reynolds number from change in lift
 CL = CL + RLX*DAC
 ELSE
C----- set underrelaxed change in alpha
 ALFA = ALFA + RLX*DAC
 ADEG = ALFA/DTOR
 ENDIF
C
C---- update BL variables with underrelaxed changes
 DO 5 IS=1, 2
 DO 50 IBL=2, NBL(IS)
 IV = ISYS(IBL,IS)
C
 DCTAU = VDEL(1,1,IV) - DAC*VDEL(1,2,IV)
 DTHET = VDEL(2,1,IV) - DAC*VDEL(2,2,IV)
 DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,IV)
 DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS) - UEDG(IBL,IS)
 DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG(IBL,IS)
C
 CTAU(IBL,IS) = CTAU(IBL,IS) + RLX*DCTAU
 THET(IBL,IS) = THET(IBL,IS) + RLX*DTHET
 DSTR(IBL,IS) = DSTR(IBL,IS) + RLX*DDSTR
 UEDG(IBL,IS) = UEDG(IBL,IS) + RLX*DUEDG
C
 IF(IBL.GT.IBLTE(IS)) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
C-------- eliminate absurd transients
 IF(IBL.GE.ITRAN(IS))
 & CTAU(IBL,IS) = MIN(CTAU(IBL,IS) , 0.25)
C
 IF(IBL.LE.IBLTE(IS)) THEN
 HKLIM = 1.02
 ELSE
 HKLIM = 1.00005
 ENDIF
 MSQ = UEDG(IBL,IS)**2*HSTINV
 & / (GAMM1*(1.0 - 0.5*UEDG(IBL,IS)**2*HSTINV))
 DSW = DSTR(IBL,IS) - DSWAKI
 CALL DSLIM(DSW,THET(IBL,IS),UEDG(IBL,IS),MSQ,HKLIM)
 DSTR(IBL,IS) = DSW + DSWAKI
C
C-------- set new mass defect (nonlinear update)
 MASS(IBL,IS) = DSTR(IBL,IS) * UEDG(IBL,IS)
C
 50 CONTINUE
 5 CONTINUE
C
C
C---- equate upper wake arrays to lower wake arrays
 DO 6 KBL=1, NBL(2)-IBLTE(2)
 CTAU(IBLTE(1)+KBL,1) = CTAU(IBLTE(2)+KBL,2)
 THET(IBLTE(1)+KBL,1) = THET(IBLTE(2)+KBL,2)
 DSTR(IBLTE(1)+KBL,1) = DSTR(IBLTE(2)+KBL,2)
 UEDG(IBLTE(1)+KBL,1) = UEDG(IBLTE(2)+KBL,2)
 TAU(IBLTE(1)+KBL,1) = TAU(IBLTE(2)+KBL,2)
 DIS(IBLTE(1)+KBL,1) = DIS(IBLTE(2)+KBL,2)
 CTQ(IBLTE(1)+KBL,1) = CTQ(IBLTE(2)+KBL,2)
 6 CONTINUE
C
 RETURN
 END

 SUBROUTINE DSLIM(DSTR,THET,UEDG,MSQ,HKLIM)
 IMPLICIT REAL (A-H,M,O-Z)
C
 H = DSTR/THET
 CALL HKIN(H,MSQ,HK,HK_H,HK_M)
C
 DH = MAX(0.0 , HKLIM-HK) / HK_H
 DSTR = DSTR + DH*THET
C
 RETURN
 END

 SUBROUTINE BLPINI
 INCLUDE 'BLPAR.INC'
C
 SCCON = 5.6
 GACON = 6.70
 GBCON = 0.75
 GCCON = 18.0
 DLCON = 0.9
C
 CTRCON = 1.8
 CTRCEX = 3.3
C
 DUXCON = 1.0
C
 CTCON = 0.5/(GACON**2 * GBCON)
C
 RETURN
 END

XFOILinterface/XFOIL/src/xblsys.f

C***
C Module: xblsys.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE TRCHEK
C
C---- 1st-order amplification equation
cc CALL TRCHEK1
C
C---- 2nd-order amplification equation
 CALL TRCHEK2
C
 RETURN
 END

 SUBROUTINE AXSET(HK1, T1, RT1, A1,
 & HK2, T2, RT2, A2, ACRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HK2, AX_T2, AX_RT2, AX_A2)
C--
C Returns average amplification AX over interval 1..2
C--

 common /damp_com/ idamp

C
cC==========================
cC---- 1st-order -- based on "1" quantities only
c CALL DAMPL(HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1)
c AX2_HK2 = 0.0
c AX2_T2 = 0.0
c AX2_RT2 = 0.0
cC
c AX1_A1 = 0.0
c AX2_A2 = 0.0
cC
c AX = AX1
c AX_AX1 = 1.0
c AX_AX2 = 0.0
cC
c ARG = MIN(20.0*(ACRIT-A1) , 20.0)
c EXN = EXP(-ARG)
c EXN_A1 = 20.0*EXN
c EXN_A2 = 0.
cC
c DAX = EXN * 0.0004/T1
c DAX_A1 = EXN_A1* 0.0004/T1
c DAX_A2 = 0.
c DAX_T1 = -DAX/T1
c DAX_T2 = 0.
C
C==========================
C---- 2nd-order
 if(idamp.eq.0) then
 CALL DAMPL(HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1)
 CALL DAMPL(HK2, T2, RT2, AX2, AX2_HK2, AX2_T2, AX2_RT2)
 else
 CALL DAMPL2(HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1)
 CALL DAMPL2(HK2, T2, RT2, AX2, AX2_HK2, AX2_T2, AX2_RT2)
 endif
C
CC---- simple-average version
C AXA = 0.5*(AX1 + AX2)
C IF(AXA .LE. 0.0) THEN
C AXA = 0.0
C AXA_AX1 = 0.0
C AXA_AX2 = 0.0
C ELSE
C AXA_AX1 = 0.5
C AXA_AX2 = 0.5
C ENDIF
C
C---- rms-average version (seems a little better on coarse grids)
 AXSQ = 0.5*(AX1**2 + AX2**2)
 IF(AXSQ .LE. 0.0) THEN
 AXA = 0.0
 AXA_AX1 = 0.0
 AXA_AX2 = 0.0
 ELSE
 AXA = SQRT(AXSQ)
 AXA_AX1 = 0.5*AX1/AXA
 AXA_AX2 = 0.5*AX2/AXA
 ENDIF
C
C----- small additional term to ensure dN/dx > 0 near N = Ncrit
 ARG = MIN(20.0*(ACRIT-0.5*(A1+A2)) , 20.0)
 IF(ARG.LE.0.0) THEN
 EXN = 1.0
CC EXN_AC = 0.
 EXN_A1 = 0.
 EXN_A2 = 0.
 ELSE
 EXN = EXP(-ARG)
CC EXN_AC = -20.0 *EXN
 EXN_A1 = 20.0*0.5*EXN
 EXN_A2 = 20.0*0.5*EXN
 ENDIF
C
 DAX = EXN * 0.002/(T1+T2)
CC DAX_AC = EXN_AC * 0.002/(T1+T2)
 DAX_A1 = EXN_A1 * 0.002/(T1+T2)
 DAX_A2 = EXN_A2 * 0.002/(T1+T2)
 DAX_T1 = -DAX/(T1+T2)
 DAX_T2 = -DAX/(T1+T2)
C
c
c DAX = 0.
c DAX_A1 = 0.
c DAX_A2 = 0.
c DAX_AC = 0.
c DAX_T1 = 0.
c DAX_T2 = 0.
C==========================
C
 AX = AXA + DAX
C
 AX_HK1 = AXA_AX1*AX1_HK1
 AX_T1 = AXA_AX1*AX1_T1 + DAX_T1
 AX_RT1 = AXA_AX1*AX1_RT1
 AX_A1 = DAX_A1
C
 AX_HK2 = AXA_AX2*AX2_HK2
 AX_T2 = AXA_AX2*AX2_T2 + DAX_T2
 AX_RT2 = AXA_AX2*AX2_RT2
 AX_A2 = DAX_A2
C
 RETURN
 END

c SUBROUTINE TRCHEK1
cC---
cC Checks if transition occurs in the current
cC interval 1..2 (IBL-1...IBL) on side IS.
cC
cC Old first-order version.
cC
cC Growth rate is evaluated at the upstream
cC point "1". The discrete amplification
cC equation is
cC
cC Ncrit - N(X1)
cC ------------- = N'(X1)
cC XT - X1
cC
cC which can be immediately solved for
cC the transition location XT.
cC---
c INCLUDE 'XBL.INC'
cC
cC---- calculate AMPL2 value
c CALL AXSET(HK1, T1, RT1, AMPL1,
c & HK2, T2, RT2, AMPL2, AMCRIT,
c & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
c & AX_HK2, AX_T2, AX_RT2, AX_A2)
c AMPL2 = AMPL1 + AX*(X2-X1)
cC
cC---- test for free or forced transition
c TRFREE = AMPL2.GE.AMCRIT
c TRFORC = XIFORC.GT.X1 .AND. XIFORC.LE.X2
cC
cC---- set transition interval flag
c TRAN = TRFORC .OR. TRFREE
cC
cC---- if no transition yet, just return
c IF(.NOT.TRAN) RETURN
cC
cC---- resolve if both forced and free transition
c IF(TRFREE .AND. TRFORC) THEN
c XT = (AMCRIT-AMPL1)/AX + X1
c TRFORC = XIFORC .LT. XT
c TRFREE = XIFORC .GE. XT
c ENDIF
cC
c IF(TRFORC) THEN
cC----- if forced transition, then XT is prescribed
c XT = XIFORC
c XT_A1 = 0.
c XT_X1 = 0.
c XT_T1 = 0.
c XT_D1 = 0.
c XT_U1 = 0.
c XT_X2 = 0.
c XT_T2 = 0.
c XT_D2 = 0.
c XT_U2 = 0.
c XT_MS = 0.
c XT_RE = 0.
c XT_XF = 1.0
c ELSE
cC----- if free transition, XT is related to BL variables
cC- by the amplification equation
cC
c XT = (AMCRIT-AMPL1)/AX + X1
c XT_AX = -(AMCRIT-AMPL1)/AX**2
cC
c XT_A1 = -1.0/AX - (AMCRIT-AMPL1)/AX**2 * AX_A1
c XT_X1 = 1.0
c XT_T1 = XT_AX*(AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1)
c XT_D1 = XT_AX*(AX_HK1*HK1_D1)
c XT_U1 = XT_AX*(AX_HK1*HK1_U1 + AX_RT1*RT1_U1)
c XT_X2 = 0.
c XT_T2 = 0.
c XT_D2 = 0.
c XT_U2 = 0.
c XT_MS = XT_AX*(AX_HK1*HK1_MS + AX_RT1*RT1_MS)
c XT_RE = XT_AX*(AX_RT1*RT1_RE)
c XT_XF = 0.0
c ENDIF
cC
c RETURN
c END

 SUBROUTINE TRCHEK2
C--
C New second-order version: December 1994.
C
C Checks if transition occurs in the current interval X1..X2.
C If transition occurs, then set transition location XT, and
C its sensitivities to "1" and "2" variables. If no transition,
C set amplification AMPL2.
C
C
C Solves the implicit amplification equation for N2:
C
C N2 - N1 N'(XT,NT) + N'(X1,N1)
C ------- = ---------------------
C X2 - X1 2
C
C In effect, a 2-point central difference is used between
C X1..X2 (no transition), or X1..XT (transition). The switch
C is done by defining XT,NT in the equation above depending
C on whether N2 exceeds Ncrit.
C
C If N2<Ncrit: NT=N2 , XT=X2 (no transition)
C
C If N2>Ncrit: NT=Ncrit , XT=(Ncrit-N1)/(N2-N1) (transition)
C
C
C--
 INCLUDE 'XBL.INC'
 DATA DAEPS / 5.0E-5 /
CCC DATA DAEPS / 1.0D-12 /
C
C---- save variables and sensitivities at IBL ("2") for future restoration
 DO 5 ICOM=1, NCOM
 C2SAV(ICOM) = COM2(ICOM)
 5 CONTINUE
C
C---- calculate average amplification rate AX over X1..X2 interval
 CALL AXSET(HK1, T1, RT1, AMPL1,
 & HK2, T2, RT2, AMPL2, AMCRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HK2, AX_T2, AX_RT2, AX_A2)
C
C---- set initial guess for iterate N2 (AMPL2) at X2
 AMPL2 = AMPL1 + AX*(X2-X1)
C
C---- solve implicit system for amplification AMPL2
 DO 100 ITAM=1, 30
C
C---- define weighting factors WF1,WF2 for defining "T" quantities from 1,2
C
 IF(AMPL2 .LE. AMCRIT) THEN
C------ there is no transition yet, "T" is the same as "2"
 AMPLT = AMPL2
 AMPLT_A2 = 1.0
 SFA = 1.0
 SFA_A1 = 0.
 SFA_A2 = 0.
 ELSE
C------ there is transition in X1..X2, "T" is set from N1, N2
 AMPLT = AMCRIT
 AMPLT_A2 = 0.
 SFA = (AMPLT - AMPL1)/(AMPL2-AMPL1)
 SFA_A1 = (SFA - 1.0)/(AMPL2-AMPL1)
 SFA_A2 = (- SFA)/(AMPL2-AMPL1)
 ENDIF
C
 IF(XIFORC.LT.X2) THEN
 SFX = (XIFORC - X1)/(X2-X1)
 SFX_X1 = (SFX - 1.0)/(X2-X1)
 SFX_X2 = (- SFX)/(X2-X1)
 SFX_XF = 1.0 /(X2-X1)
 ELSE
 SFX = 1.0
 SFX_X1 = 0.
 SFX_X2 = 0.
 SFX_XF = 0.
 ENDIF
C
C---- set weighting factor from free or forced transition
 IF(SFA.LT.SFX) THEN
 WF2 = SFA
 WF2_A1 = SFA_A1
 WF2_A2 = SFA_A2
 WF2_X1 = 0.
 WF2_X2 = 0.
 WF2_XF = 0.
 ELSE
 WF2 = SFX
 WF2_A1 = 0.
 WF2_A2 = 0.
 WF2_X1 = SFX_X1
 WF2_X2 = SFX_X2
 WF2_XF = SFX_XF
 ENDIF
C
C
C=====================
CC---- 1st-order (based on "1" quantites only, for testing)
C WF2 = 0.0
C WF2_A1 = 0.0
C WF2_A2 = 0.0
C WF2_X1 = 0.0
C WF2_X2 = 0.0
C WF2_XF = 0.0
C=====================
C
 WF1 = 1.0 - WF2
 WF1_A1 = - WF2_A1
 WF1_A2 = - WF2_A2
 WF1_X1 = - WF2_X1
 WF1_X2 = - WF2_X2
 WF1_XF = - WF2_XF
C
C---- interpolate BL variables to XT
 XT = X1*WF1 + X2*WF2
 TT = T1*WF1 + T2*WF2
 DT = D1*WF1 + D2*WF2
 UT = U1*WF1 + U2*WF2
C
 XT_A2 = X1*WF1_A2 + X2*WF2_A2
 TT_A2 = T1*WF1_A2 + T2*WF2_A2
 DT_A2 = D1*WF1_A2 + D2*WF2_A2
 UT_A2 = U1*WF1_A2 + U2*WF2_A2
C
C---- temporarily set "2" variables from "T" for BLKIN
 X2 = XT
 T2 = TT
 D2 = DT
 U2 = UT
C
C---- calculate laminar secondary "T" variables HKT, RTT
 CALL BLKIN
C
 HKT = HK2
 HKT_TT = HK2_T2
 HKT_DT = HK2_D2
 HKT_UT = HK2_U2
 HKT_MS = HK2_MS
C
 RTT = RT2
 RTT_TT = RT2_T2
 RTT_UT = RT2_U2
 RTT_MS = RT2_MS
 RTT_RE = RT2_RE
C
C---- restore clobbered "2" variables, except for AMPL2
 AMSAVE = AMPL2
 DO 8 ICOM=1, NCOM
 COM2(ICOM) = C2SAV(ICOM)
 8 CONTINUE
 AMPL2 = AMSAVE
C
C---- calculate amplification rate AX over current X1-XT interval
 CALL AXSET(HK1, T1, RT1, AMPL1,
 & HKT, TT, RTT, AMPLT, AMCRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HKT, AX_TT, AX_RTT, AX_AT)
C
C---- punch out early if there is no amplification here
 IF(AX .LE. 0.0) GO TO 101
C
C---- set sensitivity of AX(A2)
 AX_A2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A2
 & + (AX_HKT*HKT_DT)*DT_A2
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_A2
 & + AX_AT *AMPLT_A2
C
C---- residual for implicit AMPL2 definition (amplification equation)
 RES = AMPL2 - AMPL1 - AX *(X2-X1)
 RES_A2 = 1.0 - AX_A2*(X2-X1)
C
 DA2 = -RES/RES_A2
C
 RLX = 1.0
 DXT = XT_A2*DA2
C
 IF(RLX*ABS(DXT/(X2-X1)) .GT. 0.05) RLX = 0.05*ABS((X2-X1)/DXT)
 IF(RLX*ABS(DA2) .GT. 1.0) RLX = 1.0 *ABS(1.0 /DA2)
C
C---- check if converged
 IF(ABS(DA2) .LT. DAEPS) GO TO 101
C
 IF((AMPL2.GT.AMCRIT .AND. AMPL2+RLX*DA2.LT.AMCRIT).OR.
 & (AMPL2.LT.AMCRIT .AND. AMPL2+RLX*DA2.GT.AMCRIT)) THEN
C------ limited Newton step so AMPL2 doesn't step across AMCRIT either way
 AMPL2 = AMCRIT
 ELSE
C------ regular Newton step
 AMPL2 = AMPL2 + RLX*DA2
 ENDIF
C
 100 CONTINUE
 WRITE(*,*) 'TRCHEK2: N2 convergence failed.'
 WRITE(*,6700) X1, XT, X2, AMPL1, AMPLT, AMPL2, AX, DA2
 6700 FORMAT(1X,'x:', 3F9.5,' N:',3F7.3,' Nx:',F8.3,' dN:',E10.3)
C
 101 CONTINUE
C
C
C---- test for free or forced transition
 TRFREE = AMPL2 .GE. AMCRIT
 TRFORC = XIFORC.GT.X1 .AND. XIFORC.LE.X2
C
C---- set transition interval flag
 TRAN = TRFORC .OR. TRFREE
C
 IF(.NOT.TRAN) RETURN
C
C---- resolve if both forced and free transition
 IF(TRFREE .AND. TRFORC) THEN
 TRFORC = XIFORC .LT. XT
 TRFREE = XIFORC .GE. XT
 ENDIF
C
 IF(TRFORC) THEN
C----- if forced transition, then XT is prescribed,
C- no sense calculating the sensitivities, since we know them...
 XT = XIFORC
 XT_A1 = 0.
 XT_X1 = 0.
 XT_T1 = 0.
 XT_D1 = 0.
 XT_U1 = 0.
 XT_X2 = 0.
 XT_T2 = 0.
 XT_D2 = 0.
 XT_U2 = 0.
 XT_MS = 0.
 XT_RE = 0.
 XT_XF = 1.0
 RETURN
 ENDIF
C
C---- free transition ... set sensitivities of XT
C
C---- XT(X1 X2 A1 A2 XF), TT(T1 T2 A1 A2 X1 X2 XF), DT(...
CC XT = X1*WF1 + X2*WF2
CC TT = T1*WF1 + T2*WF2
CC DT = D1*WF1 + D2*WF2
CC UT = U1*WF1 + U2*WF2
C
 XT_X1 = WF1
 TT_T1 = WF1
 DT_D1 = WF1
 UT_U1 = WF1
C
 XT_X2 = WF2
 TT_T2 = WF2
 DT_D2 = WF2
 UT_U2 = WF2
C
 XT_A1 = X1*WF1_A1 + X2*WF2_A1
 TT_A1 = T1*WF1_A1 + T2*WF2_A1
 DT_A1 = D1*WF1_A1 + D2*WF2_A1
 UT_A1 = U1*WF1_A1 + U2*WF2_A1
C
CC XT_A2 = X1*WF1_A2 + X2*WF2_A2
CC TT_A2 = T1*WF1_A2 + T2*WF2_A2
CC DT_A2 = D1*WF1_A2 + D2*WF2_A2
CC UT_A2 = U1*WF1_A2 + U2*WF2_A2
C
 XT_X1 = X1*WF1_X1 + X2*WF2_X1 + XT_X1
 TT_X1 = T1*WF1_X1 + T2*WF2_X1
 DT_X1 = D1*WF1_X1 + D2*WF2_X1
 UT_X1 = U1*WF1_X1 + U2*WF2_X1
C
 XT_X2 = X1*WF1_X2 + X2*WF2_X2 + XT_X2
 TT_X2 = T1*WF1_X2 + T2*WF2_X2
 DT_X2 = D1*WF1_X2 + D2*WF2_X2
 UT_X2 = U1*WF1_X2 + U2*WF2_X2
C
 XT_XF = X1*WF1_XF + X2*WF2_XF
 TT_XF = T1*WF1_XF + T2*WF2_XF
 DT_XF = D1*WF1_XF + D2*WF2_XF
 UT_XF = U1*WF1_XF + U2*WF2_XF
C
C---- at this point, AX = AX(HK1, T1, RT1, A1, HKT, TT, RTT, AT)
C
C---- set sensitivities of AX(T1 D1 U1 A1 T2 D2 U2 A2 MS RE)
 AX_T1 = AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1
 & + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_T1
 AX_D1 = AX_HK1*HK1_D1
 & + (AX_HKT*HKT_DT)*DT_D1
 AX_U1 = AX_HK1*HK1_U1 + AX_RT1*RT1_U1
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_U1
 AX_A1 = AX_A1
 & + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A1
 & + (AX_HKT*HKT_DT)*DT_A1
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_A1
 AX_X1 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_X1
 & + (AX_HKT*HKT_DT)*DT_X1
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_X1
C
 AX_T2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_T2
 AX_D2 = (AX_HKT*HKT_DT)*DT_D2
 AX_U2 = (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_U2
 AX_A2 = AX_AT *AMPLT_A2
 & + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A2
 & + (AX_HKT*HKT_DT)*DT_A2
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_A2
 AX_X2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_X2
 & + (AX_HKT*HKT_DT)*DT_X2
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_X2
C
 AX_XF = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_XF
 & + (AX_HKT*HKT_DT)*DT_XF
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_XF
C
 AX_MS = AX_HKT*HKT_MS + AX_RTT*RTT_MS
 & + AX_HK1*HK1_MS + AX_RT1*RT1_MS
 AX_RE = AX_RTT*RTT_RE
 & + AX_RT1*RT1_RE
C
C
C---- set sensitivities of residual RES
CCC RES = AMPL2 - AMPL1 - AX*(X2-X1)
 Z_AX = - (X2-X1)
C
 Z_A1 = Z_AX*AX_A1 - 1.0
 Z_T1 = Z_AX*AX_T1
 Z_D1 = Z_AX*AX_D1
 Z_U1 = Z_AX*AX_U1
 Z_X1 = Z_AX*AX_X1 + AX
C
 Z_A2 = Z_AX*AX_A2 + 1.0
 Z_T2 = Z_AX*AX_T2
 Z_D2 = Z_AX*AX_D2
 Z_U2 = Z_AX*AX_U2
 Z_X2 = Z_AX*AX_X2 - AX
C
 Z_XF = Z_AX*AX_XF
 Z_MS = Z_AX*AX_MS
 Z_RE = Z_AX*AX_RE
C
C---- set sensitivities of XT, with RES being stationary for A2 constraint
 XT_A1 = XT_A1 - (XT_A2/Z_A2)*Z_A1
 XT_T1 = - (XT_A2/Z_A2)*Z_T1
 XT_D1 = - (XT_A2/Z_A2)*Z_D1
 XT_U1 = - (XT_A2/Z_A2)*Z_U1
 XT_X1 = XT_X1 - (XT_A2/Z_A2)*Z_X1
 XT_T2 = - (XT_A2/Z_A2)*Z_T2
 XT_D2 = - (XT_A2/Z_A2)*Z_D2
 XT_U2 = - (XT_A2/Z_A2)*Z_U2
 XT_X2 = XT_X2 - (XT_A2/Z_A2)*Z_X2
 XT_MS = - (XT_A2/Z_A2)*Z_MS
 XT_RE = - (XT_A2/Z_A2)*Z_RE
 XT_XF = 0.0
C
 RETURN
 END

 SUBROUTINE BLSYS
C--
C
C Sets up the BL Newton system governing the current interval:
C
C | ||dA1| | ||dA2| | |
C | VS1 ||dT1| + | VS2 ||dT2| = |VSREZ|
C | ||dD1| | ||dD2| | |
C |dU1| |dU2|
C |dX1| |dX2|
C
C 3x5 5x1 3x5 5x1 3x1
C
C The system as shown corresponds to a laminar station
C If TRAN, then dS2 replaces dA2
C If TURB, then dS1, dS2 replace dA1, dA2
C
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
C---- calculate secondary BL variables and their sensitivities
 IF(WAKE) THEN
 CALL BLVAR(3)
 CALL BLMID(3)
 ELSE IF(TURB.OR.TRAN) THEN
 CALL BLVAR(2)
 CALL BLMID(2)
 ELSE
 CALL BLVAR(1)
 CALL BLMID(1)
 ENDIF
C
C---- for the similarity station, "1" and "2" variables are the same
 IF(SIMI) THEN
 DO 3 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 3 CONTINUE
 ENDIF
C
C---- set up appropriate finite difference system for current interval
 IF(TRAN) THEN
 CALL TRDIF
 ELSE IF(SIMI) THEN
 CALL BLDIF(0)
 ELSE IF(.NOT.TURB) THEN
 CALL BLDIF(1)
 ELSE IF(WAKE) THEN
 CALL BLDIF(3)
 ELSE IF(TURB) THEN
 CALL BLDIF(2)
 ENDIF
C
 IF(SIMI) THEN
C----- at similarity station, "1" variables are really "2" variables
 DO 10 K=1, 4
 DO 101 L=1, 5
 VS2(K,L) = VS1(K,L) + VS2(K,L)
 VS1(K,L) = 0.
 101 CONTINUE
 10 CONTINUE
 ENDIF
C
C---- change system over into incompressible Uei and Mach
 DO 20 K=1, 4
C
C------ residual derivatives wrt compressible Uec
 RES_U1 = VS1(K,4)
 RES_U2 = VS2(K,4)
 RES_MS = VSM(K)
C
C------ combine with derivatives of compressible U1,U2 = Uec(Uei M)
 VS1(K,4) = RES_U1*U1_UEI
 VS2(K,4) = RES_U2*U2_UEI
 VSM(K) = RES_U1*U1_MS + RES_U2*U2_MS + RES_MS
 20 CONTINUE
C
 RETURN
 END

 SUBROUTINE TESYS(CTE,TTE,DTE)
C--
C Sets up "dummy" BL system between airfoil TE point
C and first wake point infinitesimally behind TE.
C--
 IMPLICIT REAL (M)
 INCLUDE 'XBL.INC'
C
 DO 55 K=1, 4
 VSREZ(K) = 0.
 VSM(K) = 0.
 VSR(K) = 0.
 VSX(K) = 0.
 DO 551 L=1, 5
 VS1(K,L) = 0.
 VS2(K,L) = 0.
 551 CONTINUE
 55 CONTINUE
C
 CALL BLVAR(3)
C
 VS1(1,1) = -1.0
 VS2(1,1) = 1.0
 VSREZ(1) = CTE - S2
C
 VS1(2,2) = -1.0
 VS2(2,2) = 1.0
 VSREZ(2) = TTE - T2
C
 VS1(3,3) = -1.0
 VS2(3,3) = 1.0
 VSREZ(3) = DTE - D2 - DW2
C
 RETURN
 END

 SUBROUTINE BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
C--
C Set BL primary "2" variables from parameter list
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
 X2 = XSI
 AMPL2 = AMI
 S2 = CTI
 T2 = THI
 D2 = DSI - DSWAKI
 DW2 = DSWAKI
C
 U2 = UEI*(1.0-TKBL) / (1.0 - TKBL*(UEI/QINFBL)**2)
 U2_UEI = (1.0 + TKBL*(2.0*U2*UEI/QINFBL**2 - 1.0))
 & / (1.0 - TKBL*(UEI/QINFBL)**2)
 U2_MS = (U2*(UEI/QINFBL)**2 - UEI)*TKBL_MS
 & / (1.0 - TKBL*(UEI/QINFBL)**2)
C
 RETURN
 END ! BLPRV

 SUBROUTINE BLKIN
C--
C Calculates turbulence-independent secondary "2"
C variables from the primary "2" variables.
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
C---- set edge Mach number ** 2
 M2 = U2*U2*HSTINV / (GM1BL*(1.0 - 0.5*U2*U2*HSTINV))
 TR2 = 1.0 + 0.5*GM1BL*M2
 M2_U2 = 2.0*M2*TR2/U2
 M2_MS = U2*U2*TR2 / (GM1BL*(1.0 - 0.5*U2*U2*HSTINV))
 & * HSTINV_MS
C
C---- set edge static density (isentropic relation)
 R2 = RSTBL *TR2**(-1.0/GM1BL)
 R2_U2 = -R2/TR2 * 0.5*M2_U2
 R2_MS = -R2/TR2 * 0.5*M2_MS
 & + RSTBL_MS*TR2**(-1.0/GM1BL)
C
C---- set shape parameter
 H2 = D2/T2
 H2_D2 = 1.0/T2
 H2_T2 = -H2/T2
C
C---- set edge static/stagnation enthalpy
 HERAT = 1.0 - 0.5*U2*U2*HSTINV
 HE_U2 = - U2*HSTINV
 HE_MS = - 0.5*U2*U2*HSTINV_MS
C
C---- set molecular viscosity
 V2 = SQRT((HERAT)**3) * (1.0+HVRAT)/(HERAT+HVRAT)/REYBL
 V2_HE = V2*(1.5/HERAT - 1.0/(HERAT+HVRAT))
C
 V2_U2 = V2_HE*HE_U2
 V2_MS = -V2/REYBL * REYBL_MS + V2_HE*HE_MS
 V2_RE = -V2/REYBL * REYBL_RE
C
C---- set kinematic shape parameter
 CALL HKIN(H2, M2, HK2, HK2_H2, HK2_M2)
C
 HK2_U2 = HK2_M2*M2_U2
 HK2_T2 = HK2_H2*H2_T2
 HK2_D2 = HK2_H2*H2_D2
 HK2_MS = HK2_M2*M2_MS
C
C---- set momentum thickness Reynolds number
 RT2 = R2*U2*T2/V2
 RT2_U2 = RT2*(1.0/U2 + R2_U2/R2 - V2_U2/V2)
 RT2_T2 = RT2/T2
 RT2_MS = RT2*(R2_MS/R2 - V2_MS/V2)
 RT2_RE = RT2*(- V2_RE/V2)
C
 RETURN
 END ! BLKIN

 SUBROUTINE BLVAR(ITYP)
C--
C Calculates all secondary "2" variables from
C the primary "2" variables X2, U2, T2, D2, S2.
C Also calculates the sensitivities of the
C secondary variables wrt the primary variables.
C
C ITYP = 1 : laminar
C ITYP = 2 : turbulent
C ITYP = 3 : turbulent wake
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
 IF(ITYP.EQ.3) HK2 = MAX(HK2,1.00005)
 IF(ITYP.NE.3) HK2 = MAX(HK2,1.05000)
C
C---- density thickness shape parameter (H**)
 CALL HCT(HK2, M2, HC2, HC2_HK2, HC2_M2)
 HC2_U2 = HC2_HK2*HK2_U2 + HC2_M2*M2_U2
 HC2_T2 = HC2_HK2*HK2_T2
 HC2_D2 = HC2_HK2*HK2_D2
 HC2_MS = HC2_HK2*HK2_MS + HC2_M2*M2_MS
C
C---- set KE thickness shape parameter from H - H* correlations
 IF(ITYP.EQ.1) THEN
 CALL HSL(HK2, RT2, M2, HS2, HS2_HK2, HS2_RT2, HS2_M2)
 ELSE
 CALL HST(HK2, RT2, M2, HS2, HS2_HK2, HS2_RT2, HS2_M2)
 ENDIF
C
 HS2_U2 = HS2_HK2*HK2_U2 + HS2_RT2*RT2_U2 + HS2_M2*M2_U2
 HS2_T2 = HS2_HK2*HK2_T2 + HS2_RT2*RT2_T2
 HS2_D2 = HS2_HK2*HK2_D2
 HS2_MS = HS2_HK2*HK2_MS + HS2_RT2*RT2_MS + HS2_M2*M2_MS
 HS2_RE = HS2_RT2*RT2_RE
C
C---- normalized slip velocity Us
 US2 = 0.5*HS2*(1.0 - (HK2-1.0)/(GBCON*H2))
 US2_HS2 = 0.5 * (1.0 - (HK2-1.0)/(GBCON*H2))
 US2_HK2 = 0.5*HS2*(- 1.0 /(GBCON*H2))
 US2_H2 = 0.5*HS2* (HK2-1.0)/(GBCON*H2**2)
C
 US2_U2 = US2_HS2*HS2_U2 + US2_HK2*HK2_U2
 US2_T2 = US2_HS2*HS2_T2 + US2_HK2*HK2_T2 + US2_H2*H2_T2
 US2_D2 = US2_HS2*HS2_D2 + US2_HK2*HK2_D2 + US2_H2*H2_D2
 US2_MS = US2_HS2*HS2_MS + US2_HK2*HK2_MS
 US2_RE = US2_HS2*HS2_RE
C
 IF(ITYP.LE.2 .AND. US2.GT.0.95) THEN
CCC WRITE(*,*) 'BLVAR: Us clamped:', US2
 US2 = 0.98
 US2_U2 = 0.
 US2_T2 = 0.
 US2_D2 = 0.
 US2_MS = 0.
 US2_RE = 0.
 ENDIF
C
 IF(ITYP.EQ.3 .AND. US2.GT.0.99995) THEN
CCC WRITE(*,*) 'BLVAR: Wake Us clamped:', US2
 US2 = 0.99995
 US2_U2 = 0.
 US2_T2 = 0.
 US2_D2 = 0.
 US2_MS = 0.
 US2_RE = 0.
 ENDIF
C
C---- equilibrium wake layer shear coefficient (Ctau)EQ ** 1/2
C ... NEW 12 Oct 94
 GCC = 0.0
 HKC = HK2 - 1.0
 HKC_HK2 = 1.0
 HKC_RT2 = 0.0
 IF(ITYP.EQ.2) THEN
 GCC = GCCON
 HKC = HK2 - 1.0 - GCC/RT2
 HKC_HK2 = 1.0
 HKC_RT2 = GCC/RT2**2
 IF(HKC .LT. 0.01) THEN
 HKC = 0.01
 HKC_HK2 = 0.0
 HKC_RT2 = 0.0
 ENDIF
 ENDIF
C
 HKB = HK2 - 1.0
 USB = 1.0 - US2
 CQ2 =
 & SQRT(CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2))
 CQ2_HS2 = CTCON *HKB*HKC**2 / (USB*H2*HK2**2) * 0.5/CQ2
 CQ2_US2 = CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2) / USB * 0.5/CQ2
 CQ2_HK2 = CTCON*HS2 *HKC**2 / (USB*H2*HK2**2) * 0.5/CQ2
 & - CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**3) * 2.0 * 0.5/CQ2
 & + CTCON*HS2*HKB*HKC / (USB*H2*HK2**2) * 2.0 * 0.5/CQ2
 & *HKC_HK2
 CQ2_RT2 = CTCON*HS2*HKB*HKC / (USB*H2*HK2**2) * 2.0 * 0.5/CQ2
 & *HKC_RT2
 CQ2_H2 =-CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2) / H2 * 0.5/CQ2
C
 CQ2_U2 = CQ2_HS2*HS2_U2 + CQ2_US2*US2_U2 + CQ2_HK2*HK2_U2
 CQ2_T2 = CQ2_HS2*HS2_T2 + CQ2_US2*US2_T2 + CQ2_HK2*HK2_T2
 CQ2_D2 = CQ2_HS2*HS2_D2 + CQ2_US2*US2_D2 + CQ2_HK2*HK2_D2
 CQ2_MS = CQ2_HS2*HS2_MS + CQ2_US2*US2_MS + CQ2_HK2*HK2_MS
 CQ2_RE = CQ2_HS2*HS2_RE + CQ2_US2*US2_RE
C
 CQ2_U2 = CQ2_U2 + CQ2_RT2*RT2_U2
 CQ2_T2 = CQ2_T2 + CQ2_H2*H2_T2 + CQ2_RT2*RT2_T2
 CQ2_D2 = CQ2_D2 + CQ2_H2*H2_D2
 CQ2_MS = CQ2_MS + CQ2_RT2*RT2_MS
 CQ2_RE = CQ2_RE + CQ2_RT2*RT2_RE
C
C
C---- set skin friction coefficient
 IF(ITYP.EQ.3) THEN
C----- wake
 CF2 = 0.
 CF2_HK2 = 0.
 CF2_RT2 = 0.
 CF2_M2 = 0.
 ELSE IF(ITYP.EQ.1) THEN
C----- laminar
 CALL CFL(HK2, RT2, M2, CF2, CF2_HK2, CF2_RT2, CF2_M2)
 ELSE
C----- turbulent
 CALL CFT(HK2, RT2, M2, CF2, CF2_HK2, CF2_RT2, CF2_M2)
 CALL CFL(HK2, RT2, M2, CF2L,CF2L_HK2,CF2L_RT2,CF2L_M2)
 IF(CF2L.GT.CF2) THEN
C------- laminar Cf is greater than turbulent Cf -- use laminar
C- (this will only occur for unreasonably small Rtheta)
ccc write(*,*) 'Cft Cfl Rt Hk:', CF2, CF2L, RT2, HK2, X2
 CF2 = CF2L
 CF2_HK2 = CF2L_HK2
 CF2_RT2 = CF2L_RT2
 CF2_M2 = CF2L_M2
 ENDIF
 ENDIF
C
 CF2_U2 = CF2_HK2*HK2_U2 + CF2_RT2*RT2_U2 + CF2_M2*M2_U2
 CF2_T2 = CF2_HK2*HK2_T2 + CF2_RT2*RT2_T2
 CF2_D2 = CF2_HK2*HK2_D2
 CF2_MS = CF2_HK2*HK2_MS + CF2_RT2*RT2_MS + CF2_M2*M2_MS
 CF2_RE = CF2_RT2*RT2_RE
C
C---- dissipation function 2 CD / H*
 IF(ITYP.EQ.1) THEN
C
C----- laminar
 CALL DIL(HK2, RT2, DI2, DI2_HK2, DI2_RT2)
C
 DI2_U2 = DI2_HK2*HK2_U2 + DI2_RT2*RT2_U2
 DI2_T2 = DI2_HK2*HK2_T2 + DI2_RT2*RT2_T2
 DI2_D2 = DI2_HK2*HK2_D2
 DI2_S2 = 0.
 DI2_MS = DI2_HK2*HK2_MS + DI2_RT2*RT2_MS
 DI2_RE = DI2_RT2*RT2_RE
C
 ELSE IF(ITYP.EQ.2) THEN
C
CCC CALL DIT(HS2, US2, CF2, S2, DI2,
CCC & DI2_HS2, DI2_US2, DI2_CF2, DI2_S2)
C
C----- turbulent wall contribution
 CALL CFT(HK2, RT2, M2, CF2T, CF2T_HK2, CF2T_RT2, CF2T_M2)
 CF2T_U2 = CF2T_HK2*HK2_U2 + CF2T_RT2*RT2_U2 + CF2T_M2*M2_U2
 CF2T_T2 = CF2T_HK2*HK2_T2 + CF2T_RT2*RT2_T2
 CF2T_D2 = CF2T_HK2*HK2_D2
 CF2T_MS = CF2T_HK2*HK2_MS + CF2T_RT2*RT2_MS + CF2T_M2*M2_MS
 CF2T_RE = CF2T_RT2*RT2_RE
C
 DI2 = (0.5*CF2T*US2) * 2.0/HS2
 DI2_HS2 = -(0.5*CF2T*US2) * 2.0/HS2**2
 DI2_US2 = (0.5*CF2T) * 2.0/HS2
 DI2_CF2T = (0.5 *US2) * 2.0/HS2
C
 DI2_S2 = 0.0
 DI2_U2 = DI2_HS2*HS2_U2 + DI2_US2*US2_U2 + DI2_CF2T*CF2T_U2
 DI2_T2 = DI2_HS2*HS2_T2 + DI2_US2*US2_T2 + DI2_CF2T*CF2T_T2
 DI2_D2 = DI2_HS2*HS2_D2 + DI2_US2*US2_D2 + DI2_CF2T*CF2T_D2
 DI2_MS = DI2_HS2*HS2_MS + DI2_US2*US2_MS + DI2_CF2T*CF2T_MS
 DI2_RE = DI2_HS2*HS2_RE + DI2_US2*US2_RE + DI2_CF2T*CF2T_RE
C
C
C----- set minimum Hk for wake layer to still exist
 GRT = LOG(RT2)
 HMIN = 1.0 + 2.1/GRT
 HM_RT2 = -(2.1/GRT**2) / RT2
C
C----- set factor DFAC for correcting wall dissipation for very low Hk
 FL = (HK2-1.0)/(HMIN-1.0)
 FL_HK2 = 1.0/(HMIN-1.0)
 FL_RT2 = (-FL/(HMIN-1.0)) * HM_RT2
C
 TFL = TANH(FL)
 DFAC = 0.5 + 0.5* TFL
 DF_FL = 0.5*(1.0 - TFL**2)
C
 DF_HK2 = DF_FL*FL_HK2
 DF_RT2 = DF_FL*FL_RT2
C
 DI2_S2 = DI2_S2*DFAC
 DI2_U2 = DI2_U2*DFAC + DI2*(DF_HK2*HK2_U2 + DF_RT2*RT2_U2)
 DI2_T2 = DI2_T2*DFAC + DI2*(DF_HK2*HK2_T2 + DF_RT2*RT2_T2)
 DI2_D2 = DI2_D2*DFAC + DI2*(DF_HK2*HK2_D2)
 DI2_MS = DI2_MS*DFAC + DI2*(DF_HK2*HK2_MS + DF_RT2*RT2_MS)
 DI2_RE = DI2_RE*DFAC + DI2*(DF_RT2*RT2_RE)
 DI2 = DI2 *DFAC
C
 ELSE
C
C----- zero wall contribution for wake
 DI2 = 0.0
 DI2_S2 = 0.0
 DI2_U2 = 0.0
 DI2_T2 = 0.0
 DI2_D2 = 0.0
 DI2_MS = 0.0
 DI2_RE = 0.0
C
 ENDIF
C
C
C---- Add on turbulent outer layer contribution
 IF(ITYP.NE.1) THEN
C
 DD = S2**2 * (0.995-US2) * 2.0/HS2
 DD_HS2 = -S2**2 * (0.995-US2) * 2.0/HS2**2
 DD_US2 = -S2**2 * 2.0/HS2
 DD_S2 = S2*2.0* (0.995-US2) * 2.0/HS2
C
 DI2 = DI2 + DD
 DI2_S2 = DD_S2
 DI2_U2 = DI2_U2 + DD_HS2*HS2_U2 + DD_US2*US2_U2
 DI2_T2 = DI2_T2 + DD_HS2*HS2_T2 + DD_US2*US2_T2
 DI2_D2 = DI2_D2 + DD_HS2*HS2_D2 + DD_US2*US2_D2
 DI2_MS = DI2_MS + DD_HS2*HS2_MS + DD_US2*US2_MS
 DI2_RE = DI2_RE + DD_HS2*HS2_RE + DD_US2*US2_RE
C
C----- add laminar stress contribution to outer layer CD
c###
 DD = 0.15*(0.995-US2)**2 / RT2 * 2.0/HS2
 DD_US2 = -0.15*(0.995-US2)*2. / RT2 * 2.0/HS2
 DD_HS2 = -DD/HS2
 DD_RT2 = -DD/RT2
C
 DI2 = DI2 + DD
 DI2_U2 = DI2_U2 + DD_HS2*HS2_U2 + DD_US2*US2_U2 + DD_RT2*RT2_U2
 DI2_T2 = DI2_T2 + DD_HS2*HS2_T2 + DD_US2*US2_T2 + DD_RT2*RT2_T2
 DI2_D2 = DI2_D2 + DD_HS2*HS2_D2 + DD_US2*US2_D2
 DI2_MS = DI2_MS + DD_HS2*HS2_MS + DD_US2*US2_MS + DD_RT2*RT2_MS
 DI2_RE = DI2_RE + DD_HS2*HS2_RE + DD_US2*US2_RE + DD_RT2*RT2_RE
C
 ENDIF
C
C
 IF(ITYP.EQ.2) THEN
 CALL DIL(HK2, RT2, DI2L, DI2L_HK2, DI2L_RT2)
C
 IF(DI2L.GT.DI2) THEN
C------- laminar CD is greater than turbulent CD -- use laminar
C- (this will only occur for unreasonably small Rtheta)
ccc write(*,*) 'CDt CDl Rt Hk:', DI2, DI2L, RT2, HK2
 DI2 = DI2L
 DI2_S2 = 0.
 DI2_U2 = DI2L_HK2*HK2_U2 + DI2L_RT2*RT2_U2
 DI2_T2 = DI2L_HK2*HK2_T2 + DI2L_RT2*RT2_T2
 DI2_D2 = DI2L_HK2*HK2_D2
 DI2_MS = DI2L_HK2*HK2_MS + DI2L_RT2*RT2_MS
 DI2_RE = DI2L_RT2*RT2_RE
 ENDIF
 ENDIF
C
cC----- add on CD contribution of inner shear layer
c IF(ITYP.EQ.3 .AND. DW2.GT.0.0) THEN
c DKON = 0.03*0.75**3
c DDI = DKON*US2**3
c DDI_US2 = 3.0*DKON*US2**2
c DI2 = DI2 + DDI * DW2/DWTE
c DI2_U2 = DI2_U2 + DDI_US2*US2_U2 * DW2/DWTE
c DI2_T2 = DI2_T2 + DDI_US2*US2_T2 * DW2/DWTE
c DI2_D2 = DI2_D2 + DDI_US2*US2_D2 * DW2/DWTE
c DI2_MS = DI2_MS + DDI_US2*US2_MS * DW2/DWTE
c DI2_RE = DI2_RE + DDI_US2*US2_RE * DW2/DWTE
c ENDIF
C
 IF(ITYP.EQ.3) THEN
C------ laminar wake CD
 CALL DILW(HK2, RT2, DI2L, DI2L_HK2, DI2L_RT2)
 IF(DI2L .GT. DI2) THEN
C------- laminar wake CD is greater than turbulent CD -- use laminar
C- (this will only occur for unreasonably small Rtheta)
ccc write(*,*) 'CDt CDl Rt Hk:', DI2, DI2L, RT2, HK2
 DI2 = DI2L
 DI2_S2 = 0.
 DI2_U2 = DI2L_HK2*HK2_U2 + DI2L_RT2*RT2_U2
 DI2_T2 = DI2L_HK2*HK2_T2 + DI2L_RT2*RT2_T2
 DI2_D2 = DI2L_HK2*HK2_D2
 DI2_MS = DI2L_HK2*HK2_MS + DI2L_RT2*RT2_MS
 DI2_RE = DI2L_RT2*RT2_RE
 ENDIF
 ENDIF
C
C
 IF(ITYP.EQ.3) THEN
C----- double dissipation for the wake (two wake halves)
 DI2 = DI2 *2.0
 DI2_S2 = DI2_S2*2.0
 DI2_U2 = DI2_U2*2.0
 DI2_T2 = DI2_T2*2.0
 DI2_D2 = DI2_D2*2.0
 DI2_MS = DI2_MS*2.0
 DI2_RE = DI2_RE*2.0
 ENDIF
C
C---- BL thickness (Delta) from simplified Green's correlation
 DE2 = (3.15 + 1.72/(HK2-1.0))*T2 + D2
 DE2_HK2 = (- 1.72/(HK2-1.0)**2)*T2
C
 DE2_U2 = DE2_HK2*HK2_U2
 DE2_T2 = DE2_HK2*HK2_T2 + (3.15 + 1.72/(HK2-1.0))
 DE2_D2 = DE2_HK2*HK2_D2 + 1.0
 DE2_MS = DE2_HK2*HK2_MS
C
ccc HDMAX = 15.0
 HDMAX = 12.0
 IF(DE2 .GT. HDMAX*T2) THEN
cccc IF(DE2 .GT. HDMAX*T2 .AND. (HK2 .GT. 4.0 .OR. ITYP.EQ.3)) THEN
 DE2 = HDMAX*T2
 DE2_U2 = 0.0
 DE2_T2 = HDMAX
 DE2_D2 = 0.0
 DE2_MS = 0.0
 ENDIF
C
 RETURN
 END

 SUBROUTINE BLMID(ITYP)
C--
C Calculates midpoint skin friction CFM
C
C ITYP = 1 : laminar
C ITYP = 2 : turbulent
C ITYP = 3 : turbulent wake
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
C---- set similarity variables if not defined
 IF(SIMI) THEN
 HK1 = HK2
 HK1_T1 = HK2_T2
 HK1_D1 = HK2_D2
 HK1_U1 = HK2_U2
 HK1_MS = HK2_MS
 RT1 = RT2
 RT1_T1 = RT2_T2
 RT1_U1 = RT2_U2
 RT1_MS = RT2_MS
 RT1_RE = RT2_RE
 M1 = M2
 M1_U1 = M2_U2
 M1_MS = M2_MS
 ENDIF
C
C---- define stuff for midpoint CF
 HKA = 0.5*(HK1 + HK2)
 RTA = 0.5*(RT1 + RT2)
 MA = 0.5*(M1 + M2)
C
C---- midpoint skin friction coefficient (zero in wake)
 IF(ITYP.EQ.3) THEN
 CFM = 0.
 CFM_HKA = 0.
 CFM_RTA = 0.
 CFM_MA = 0.
 CFM_MS = 0.
 ELSE IF(ITYP.EQ.1) THEN
 CALL CFL(HKA, RTA, MA, CFM, CFM_HKA, CFM_RTA, CFM_MA)
 ELSE
 CALL CFT(HKA, RTA, MA, CFM, CFM_HKA, CFM_RTA, CFM_MA)
 CALL CFL(HKA, RTA, MA, CFML,CFML_HKA,CFML_RTA,CFML_MA)
 IF(CFML.GT.CFM) THEN
ccc write(*,*) 'Cft Cfl Rt Hk:', CFM, CFML, RTA, HKA, 0.5*(X1+X2)
 CFM = CFML
 CFM_HKA = CFML_HKA
 CFM_RTA = CFML_RTA
 CFM_MA = CFML_MA
 ENDIF
 ENDIF
C
 CFM_U1 = 0.5*(CFM_HKA*HK1_U1 + CFM_MA*M1_U1 + CFM_RTA*RT1_U1)
 CFM_T1 = 0.5*(CFM_HKA*HK1_T1 + CFM_RTA*RT1_T1)
 CFM_D1 = 0.5*(CFM_HKA*HK1_D1)
C
 CFM_U2 = 0.5*(CFM_HKA*HK2_U2 + CFM_MA*M2_U2 + CFM_RTA*RT2_U2)
 CFM_T2 = 0.5*(CFM_HKA*HK2_T2 + CFM_RTA*RT2_T2)
 CFM_D2 = 0.5*(CFM_HKA*HK2_D2)
C
 CFM_MS = 0.5*(CFM_HKA*HK1_MS + CFM_MA*M1_MS + CFM_RTA*RT1_MS
 & + CFM_HKA*HK2_MS + CFM_MA*M2_MS + CFM_RTA*RT2_MS)
 CFM_RE = 0.5*(CFM_RTA*RT1_RE
 & + CFM_RTA*RT2_RE)
C
 RETURN
 END ! BLMID

 SUBROUTINE TRDIF
C---
C Sets up the Newton system governing the
C transition interval. Equations governing
C the laminar part X1 < xi < XT and
C the turbulent part XT < xi < X2
C are simply summed.
C---
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
 REAL BL1(4,5), BL2(4,5), BLREZ(4), BLM(4), BLR(4), BLX(4)
 & , BT1(4,5), BT2(4,5), BTREZ(4), BTM(4), BTR(4), BTX(4)
C
C---- save variables and sensitivities for future restoration
 DO 5 ICOM=1, NCOM
 C1SAV(ICOM) = COM1(ICOM)
 C2SAV(ICOM) = COM2(ICOM)
 5 CONTINUE
C
C---- weighting factors for linear interpolation to transition point
 WF2 = (XT-X1)/(X2-X1)
 WF2_XT = 1.0/(X2-X1)
C
 WF2_A1 = WF2_XT*XT_A1
 WF2_X1 = WF2_XT*XT_X1 + (WF2-1.0)/(X2-X1)
 WF2_X2 = WF2_XT*XT_X2 - WF2 /(X2-X1)
 WF2_T1 = WF2_XT*XT_T1
 WF2_T2 = WF2_XT*XT_T2
 WF2_D1 = WF2_XT*XT_D1
 WF2_D2 = WF2_XT*XT_D2
 WF2_U1 = WF2_XT*XT_U1
 WF2_U2 = WF2_XT*XT_U2
 WF2_MS = WF2_XT*XT_MS
 WF2_RE = WF2_XT*XT_RE
 WF2_XF = WF2_XT*XT_XF
C
 WF1 = 1.0 - WF2
 WF1_A1 = -WF2_A1
 WF1_X1 = -WF2_X1
 WF1_X2 = -WF2_X2
 WF1_T1 = -WF2_T1
 WF1_T2 = -WF2_T2
 WF1_D1 = -WF2_D1
 WF1_D2 = -WF2_D2
 WF1_U1 = -WF2_U1
 WF1_U2 = -WF2_U2
 WF1_MS = -WF2_MS
 WF1_RE = -WF2_RE
 WF1_XF = -WF2_XF
C
C
C**** FIRST, do laminar part between X1 and XT
C
C-----interpolate primary variables to transition point
 TT = T1*WF1 + T2*WF2
 TT_A1 = T1*WF1_A1 + T2*WF2_A1
 TT_X1 = T1*WF1_X1 + T2*WF2_X1
 TT_X2 = T1*WF1_X2 + T2*WF2_X2
 TT_T1 = T1*WF1_T1 + T2*WF2_T1 + WF1
 TT_T2 = T1*WF1_T2 + T2*WF2_T2 + WF2
 TT_D1 = T1*WF1_D1 + T2*WF2_D1
 TT_D2 = T1*WF1_D2 + T2*WF2_D2
 TT_U1 = T1*WF1_U1 + T2*WF2_U1
 TT_U2 = T1*WF1_U2 + T2*WF2_U2
 TT_MS = T1*WF1_MS + T2*WF2_MS
 TT_RE = T1*WF1_RE + T2*WF2_RE
 TT_XF = T1*WF1_XF + T2*WF2_XF
C
 DT = D1*WF1 + D2*WF2
 DT_A1 = D1*WF1_A1 + D2*WF2_A1
 DT_X1 = D1*WF1_X1 + D2*WF2_X1
 DT_X2 = D1*WF1_X2 + D2*WF2_X2
 DT_T1 = D1*WF1_T1 + D2*WF2_T1
 DT_T2 = D1*WF1_T2 + D2*WF2_T2
 DT_D1 = D1*WF1_D1 + D2*WF2_D1 + WF1
 DT_D2 = D1*WF1_D2 + D2*WF2_D2 + WF2
 DT_U1 = D1*WF1_U1 + D2*WF2_U1
 DT_U2 = D1*WF1_U2 + D2*WF2_U2
 DT_MS = D1*WF1_MS + D2*WF2_MS
 DT_RE = D1*WF1_RE + D2*WF2_RE
 DT_XF = D1*WF1_XF + D2*WF2_XF
C
 UT = U1*WF1 + U2*WF2
 UT_A1 = U1*WF1_A1 + U2*WF2_A1
 UT_X1 = U1*WF1_X1 + U2*WF2_X1
 UT_X2 = U1*WF1_X2 + U2*WF2_X2
 UT_T1 = U1*WF1_T1 + U2*WF2_T1
 UT_T2 = U1*WF1_T2 + U2*WF2_T2
 UT_D1 = U1*WF1_D1 + U2*WF2_D1
 UT_D2 = U1*WF1_D2 + U2*WF2_D2
 UT_U1 = U1*WF1_U1 + U2*WF2_U1 + WF1
 UT_U2 = U1*WF1_U2 + U2*WF2_U2 + WF2
 UT_MS = U1*WF1_MS + U2*WF2_MS
 UT_RE = U1*WF1_RE + U2*WF2_RE
 UT_XF = U1*WF1_XF + U2*WF2_XF
C
C---- set primary "T" variables at XT (really placed into "2" variables)
 X2 = XT
 T2 = TT
 D2 = DT
 U2 = UT
C
 AMPL2 = AMCRIT
 S2 = 0.
C
C---- calculate laminar secondary "T" variables
 CALL BLKIN
 CALL BLVAR(1)
C
C---- calculate X1-XT midpoint CFM value
 CALL BLMID(1)
C=
C= at this point, all "2" variables are really "T" variables at XT
C=
C
C---- set up Newton system for dAm, dTh, dDs, dUe, dXi at X1 and XT
 CALL BLDIF(1)
C
C---- The current Newton system is in terms of "1" and "T" variables,
C- so calculate its equivalent in terms of "1" and "2" variables.
C- In other words, convert residual sensitivities wrt "T" variables
C- into sensitivities wrt "1" and "2" variables. The amplification
C- equation is unnecessary here, so the K=1 row is left empty.
 DO 10 K=2, 3
 BLREZ(K) = VSREZ(K)
 BLM(K) = VSM(K)
 & + VS2(K,2)*TT_MS
 & + VS2(K,3)*DT_MS
 & + VS2(K,4)*UT_MS
 & + VS2(K,5)*XT_MS
 BLR(K) = VSR(K)
 & + VS2(K,2)*TT_RE
 & + VS2(K,3)*DT_RE
 & + VS2(K,4)*UT_RE
 & + VS2(K,5)*XT_RE
 BLX(K) = VSX(K)
 & + VS2(K,2)*TT_XF
 & + VS2(K,3)*DT_XF
 & + VS2(K,4)*UT_XF
 & + VS2(K,5)*XT_XF
C
 BL1(K,1) = VS1(K,1)
 & + VS2(K,2)*TT_A1
 & + VS2(K,3)*DT_A1
 & + VS2(K,4)*UT_A1
 & + VS2(K,5)*XT_A1
 BL1(K,2) = VS1(K,2)
 & + VS2(K,2)*TT_T1
 & + VS2(K,3)*DT_T1
 & + VS2(K,4)*UT_T1
 & + VS2(K,5)*XT_T1
 BL1(K,3) = VS1(K,3)
 & + VS2(K,2)*TT_D1
 & + VS2(K,3)*DT_D1
 & + VS2(K,4)*UT_D1
 & + VS2(K,5)*XT_D1
 BL1(K,4) = VS1(K,4)
 & + VS2(K,2)*TT_U1
 & + VS2(K,3)*DT_U1
 & + VS2(K,4)*UT_U1
 & + VS2(K,5)*XT_U1
 BL1(K,5) = VS1(K,5)
 & + VS2(K,2)*TT_X1
 & + VS2(K,3)*DT_X1
 & + VS2(K,4)*UT_X1
 & + VS2(K,5)*XT_X1
C
 BL2(K,1) = 0.
 BL2(K,2) = VS2(K,2)*TT_T2
 & + VS2(K,3)*DT_T2
 & + VS2(K,4)*UT_T2
 & + VS2(K,5)*XT_T2
 BL2(K,3) = VS2(K,2)*TT_D2
 & + VS2(K,3)*DT_D2
 & + VS2(K,4)*UT_D2
 & + VS2(K,5)*XT_D2
 BL2(K,4) = VS2(K,2)*TT_U2
 & + VS2(K,3)*DT_U2
 & + VS2(K,4)*UT_U2
 & + VS2(K,5)*XT_U2
 BL2(K,5) = VS2(K,2)*TT_X2
 & + VS2(K,3)*DT_X2
 & + VS2(K,4)*UT_X2
 & + VS2(K,5)*XT_X2
C
 10 CONTINUE
C
C
C**** SECOND, set up turbulent part between XT and X2 ****
C
C---- calculate equilibrium shear coefficient CQT at transition point
 CALL BLVAR(2)
C
C---- set initial shear coefficient value ST at transition point
C- (note that CQ2, CQ2_T2, etc. are really "CQT", "CQT_TT", etc.)
C
 CTR = CTRCON*EXP(-CTRCEX/(HK2-1.0))
 CTR_HK2 = CTR * CTRCEX/(HK2-1.0)**2
C
c CTR = 1.1*EXP(-10.0/HK2**2)
c CTR_HK2 = CTR * 10.0 * 2.0/HK2**3
C
CCC CTR = 1.2
CCC CTR = 0.7
CCC CTR_HK2 = 0.0
C
 ST = CTR*CQ2
 ST_TT = CTR*CQ2_T2 + CQ2*CTR_HK2*HK2_T2
 ST_DT = CTR*CQ2_D2 + CQ2*CTR_HK2*HK2_D2
 ST_UT = CTR*CQ2_U2 + CQ2*CTR_HK2*HK2_U2
 ST_MS = CTR*CQ2_MS + CQ2*CTR_HK2*HK2_MS
 ST_RE = CTR*CQ2_RE
C
C---- calculate ST sensitivities wrt the actual "1" and "2" variables
 ST_A1 = ST_TT*TT_A1 + ST_DT*DT_A1 + ST_UT*UT_A1
 ST_X1 = ST_TT*TT_X1 + ST_DT*DT_X1 + ST_UT*UT_X1
 ST_X2 = ST_TT*TT_X2 + ST_DT*DT_X2 + ST_UT*UT_X2
 ST_T1 = ST_TT*TT_T1 + ST_DT*DT_T1 + ST_UT*UT_T1
 ST_T2 = ST_TT*TT_T2 + ST_DT*DT_T2 + ST_UT*UT_T2
 ST_D1 = ST_TT*TT_D1 + ST_DT*DT_D1 + ST_UT*UT_D1
 ST_D2 = ST_TT*TT_D2 + ST_DT*DT_D2 + ST_UT*UT_D2
 ST_U1 = ST_TT*TT_U1 + ST_DT*DT_U1 + ST_UT*UT_U1
 ST_U2 = ST_TT*TT_U2 + ST_DT*DT_U2 + ST_UT*UT_U2
 ST_MS = ST_TT*TT_MS + ST_DT*DT_MS + ST_UT*UT_MS + ST_MS
 ST_RE = ST_TT*TT_RE + ST_DT*DT_RE + ST_UT*UT_RE + ST_RE
 ST_XF = ST_TT*TT_XF + ST_DT*DT_XF + ST_UT*UT_XF
C
 AMPL2 = 0.
 S2 = ST
C
C---- recalculate turbulent secondary "T" variables using proper CTI
 CALL BLVAR(2)
C
C---- set "1" variables to "T" variables and reset "2" variables
C- to their saved turbulent values
 DO 30 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 COM2(ICOM) = C2SAV(ICOM)
 30 CONTINUE
C
C---- calculate XT-X2 midpoint CFM value
 CALL BLMID(2)
C
C---- set up Newton system for dCt, dTh, dDs, dUe, dXi at XT and X2
 CALL BLDIF(2)
C
C---- convert sensitivities wrt "T" variables into sensitivities
C- wrt "1" and "2" variables as done before for the laminar part
 DO 40 K=1, 3
 BTREZ(K) = VSREZ(K)
 BTM(K) = VSM(K)
 & + VS1(K,1)*ST_MS
 & + VS1(K,2)*TT_MS
 & + VS1(K,3)*DT_MS
 & + VS1(K,4)*UT_MS
 & + VS1(K,5)*XT_MS
 BTR(K) = VSR(K)
 & + VS1(K,1)*ST_RE
 & + VS1(K,2)*TT_RE
 & + VS1(K,3)*DT_RE
 & + VS1(K,4)*UT_RE
 & + VS1(K,5)*XT_RE
 BTX(K) = VSX(K)
 & + VS1(K,1)*ST_XF
 & + VS1(K,2)*TT_XF
 & + VS1(K,3)*DT_XF
 & + VS1(K,4)*UT_XF
 & + VS1(K,5)*XT_XF
C
 BT1(K,1) = VS1(K,1)*ST_A1
 & + VS1(K,2)*TT_A1
 & + VS1(K,3)*DT_A1
 & + VS1(K,4)*UT_A1
 & + VS1(K,5)*XT_A1
 BT1(K,2) = VS1(K,1)*ST_T1
 & + VS1(K,2)*TT_T1
 & + VS1(K,3)*DT_T1
 & + VS1(K,4)*UT_T1
 & + VS1(K,5)*XT_T1
 BT1(K,3) = VS1(K,1)*ST_D1
 & + VS1(K,2)*TT_D1
 & + VS1(K,3)*DT_D1
 & + VS1(K,4)*UT_D1
 & + VS1(K,5)*XT_D1
 BT1(K,4) = VS1(K,1)*ST_U1
 & + VS1(K,2)*TT_U1
 & + VS1(K,3)*DT_U1
 & + VS1(K,4)*UT_U1
 & + VS1(K,5)*XT_U1
 BT1(K,5) = VS1(K,1)*ST_X1
 & + VS1(K,2)*TT_X1
 & + VS1(K,3)*DT_X1
 & + VS1(K,4)*UT_X1
 & + VS1(K,5)*XT_X1
C
 BT2(K,1) = VS2(K,1)
 BT2(K,2) = VS2(K,2)
 & + VS1(K,1)*ST_T2
 & + VS1(K,2)*TT_T2
 & + VS1(K,3)*DT_T2
 & + VS1(K,4)*UT_T2
 & + VS1(K,5)*XT_T2
 BT2(K,3) = VS2(K,3)
 & + VS1(K,1)*ST_D2
 & + VS1(K,2)*TT_D2
 & + VS1(K,3)*DT_D2
 & + VS1(K,4)*UT_D2
 & + VS1(K,5)*XT_D2
 BT2(K,4) = VS2(K,4)
 & + VS1(K,1)*ST_U2
 & + VS1(K,2)*TT_U2
 & + VS1(K,3)*DT_U2
 & + VS1(K,4)*UT_U2
 & + VS1(K,5)*XT_U2
 BT2(K,5) = VS2(K,5)
 & + VS1(K,1)*ST_X2
 & + VS1(K,2)*TT_X2
 & + VS1(K,3)*DT_X2
 & + VS1(K,4)*UT_X2
 & + VS1(K,5)*XT_X2
C
 40 CONTINUE
C
C---- Add up laminar and turbulent parts to get final system
C- in terms of honest-to-God "1" and "2" variables.
 VSREZ(1) = BTREZ(1)
 VSREZ(2) = BLREZ(2) + BTREZ(2)
 VSREZ(3) = BLREZ(3) + BTREZ(3)
 VSM(1) = BTM(1)
 VSM(2) = BLM(2) + BTM(2)
 VSM(3) = BLM(3) + BTM(3)
 VSR(1) = BTR(1)
 VSR(2) = BLR(2) + BTR(2)
 VSR(3) = BLR(3) + BTR(3)
 VSX(1) = BTX(1)
 VSX(2) = BLX(2) + BTX(2)
 VSX(3) = BLX(3) + BTX(3)
 DO 60 L=1, 5
 VS1(1,L) = BT1(1,L)
 VS2(1,L) = BT2(1,L)
 VS1(2,L) = BL1(2,L) + BT1(2,L)
 VS2(2,L) = BL2(2,L) + BT2(2,L)
 VS1(3,L) = BL1(3,L) + BT1(3,L)
 VS2(3,L) = BL2(3,L) + BT2(3,L)
 60 CONTINUE
C
C---- To be sanitary, restore "1" quantities which got clobbered
C- in all of the numerical gymnastics above. The "2" variables
C- were already restored for the XT-X2 differencing part.
 DO 70 ICOM=1, NCOM
 COM1(ICOM) = C1SAV(ICOM)
 70 CONTINUE
C
 RETURN
 END

 SUBROUTINE BLDIF(ITYP)
C---
C Sets up the Newton system coefficients and residuals
C
C ITYP = 0 : similarity station
C ITYP = 1 : laminar interval
C ITYP = 2 : turbulent interval
C ITYP = 3 : wake interval
C
C This routine knows nothing about a transition interval,
C which is taken care of by TRDIF.
C---
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
 IF(ITYP.EQ.0) THEN
C----- similarity logarithmic differences (prescribed)
 XLOG = 1.0
 ULOG = BULE
 TLOG = 0.5*(1.0 - BULE)
 HLOG = 0.
 DDLOG = 0.
 ELSE
C----- usual logarithmic differences
 XLOG = LOG(X2/X1)
 ULOG = LOG(U2/U1)
 TLOG = LOG(T2/T1)
 HLOG = LOG(HS2/HS1)
C XLOG = 2.0*(X2-X1)/(X2+X1)
C ULOG = 2.0*(U2-U1)/(U2+U1)
C TLOG = 2.0*(T2-T1)/(T2+T1)
C HLOG = 2.0*(HS2-HS1)/(HS2+HS1)
 DDLOG = 1.0
 ENDIF
C
 DO 55 K=1, 4
 VSREZ(K) = 0.
 VSM(K) = 0.
 VSR(K) = 0.
 VSX(K) = 0.
 DO 551 L=1, 5
 VS1(K,L) = 0.
 VS2(K,L) = 0.
 551 CONTINUE
 55 CONTINUE
C
C---- set triggering constant for local upwinding
 HUPWT = 1.0
C
ccc HDCON = 5.0*HUPWT
ccc HD_HK1 = 0.0
ccc HD_HK2 = 0.0
C
 HDCON = 5.0*HUPWT/HK2**2
 HD_HK1 = 0.0
 HD_HK2 = -HDCON*2.0/HK2
C
C---- use less upwinding in the wake
 IF(ITYP.EQ.3) THEN
 HDCON = HUPWT/HK2**2
 HD_HK1 = 0.0
 HD_HK2 = -HDCON*2.0/HK2
 ENDIF
C
C---- local upwinding is based on local change in log(Hk-1)
C- (mainly kicks in at transition)
 ARG = ABS((HK2-1.0)/(HK1-1.0))
 HL = LOG(ARG)
 HL_HK1 = -1.0/(HK1-1.0)
 HL_HK2 = 1.0/(HK2-1.0)
C
C---- set local upwinding parameter UPW and linearize it
C
C UPW = 0.5 Trapezoidal
C UPW = 1.0 Backward Euler
C
 HLSQ = MIN(HL**2 , 15.0)
 EHH = EXP(-HLSQ*HDCON)
 UPW = 1.0 - 0.5*EHH
 UPW_HL = EHH * HL *HDCON
 UPW_HD = 0.5*EHH * HLSQ
C
 UPW_HK1 = UPW_HL*HL_HK1 + UPW_HD*HD_HK1
 UPW_HK2 = UPW_HL*HL_HK2 + UPW_HD*HD_HK2
C
 UPW_U1 = UPW_HK1*HK1_U1
 UPW_T1 = UPW_HK1*HK1_T1
 UPW_D1 = UPW_HK1*HK1_D1
 UPW_U2 = UPW_HK2*HK2_U2
 UPW_T2 = UPW_HK2*HK2_T2
 UPW_D2 = UPW_HK2*HK2_D2
 UPW_MS = UPW_HK1*HK1_MS
 & + UPW_HK2*HK2_MS
C
C
 IF(ITYP.EQ.0) THEN
C
C***** LE point --> set zero amplification factor
 VS2(1,1) = 1.0
 VSR(1) = 0.
 VSREZ(1) = -AMPL2
C
 ELSE IF(ITYP.EQ.1) THEN
C
C***** laminar part --> set amplification equation
C
C----- set average amplification AX over interval X1..X2
 CALL AXSET(HK1, T1, RT1, AMPL1,
 & HK2, T2, RT2, AMPL2, AMCRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HK2, AX_T2, AX_RT2, AX_A2)
C
 REZC = AMPL2 - AMPL1 - AX*(X2-X1)
 Z_AX = -(X2-X1)
C
 VS1(1,1) = Z_AX* AX_A1 - 1.0
 VS1(1,2) = Z_AX*(AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1)
 VS1(1,3) = Z_AX*(AX_HK1*HK1_D1)
 VS1(1,4) = Z_AX*(AX_HK1*HK1_U1 + AX_RT1*RT1_U1)
 VS1(1,5) = AX
 VS2(1,1) = Z_AX* AX_A2 + 1.0
 VS2(1,2) = Z_AX*(AX_HK2*HK2_T2 + AX_T2 + AX_RT2*RT2_T2)
 VS2(1,3) = Z_AX*(AX_HK2*HK2_D2)
 VS2(1,4) = Z_AX*(AX_HK2*HK2_U2 + AX_RT2*RT2_U2)
 VS2(1,5) = -AX
 VSM(1) = Z_AX*(AX_HK1*HK1_MS + AX_RT1*RT1_MS
 & + AX_HK2*HK2_MS + AX_RT2*RT2_MS)
 VSR(1) = Z_AX*(AX_RT1*RT1_RE
 & + AX_RT2*RT2_RE)
 VSX(1) = 0.
 VSREZ(1) = -REZC
C
 ELSE
C
C***** turbulent part --> set shear lag equation
C
 SA = (1.0-UPW)*S1 + UPW*S2
 CQA = (1.0-UPW)*CQ1 + UPW*CQ2
 CFA = (1.0-UPW)*CF1 + UPW*CF2
 HKA = (1.0-UPW)*HK1 + UPW*HK2
C
 USA = 0.5*(US1 + US2)
 RTA = 0.5*(RT1 + RT2)
 DEA = 0.5*(DE1 + DE2)
 DA = 0.5*(D1 + D2)
C
C
 IF(ITYP.EQ.3) THEN
C------ increased dissipation length in wake (decrease its reciprocal)
 ALD = DLCON
 ELSE
 ALD = 1.0
 ENDIF
C
C----- set and linearize equilibrium 1/Ue dUe/dx ... NEW 12 Oct 94
 IF(ITYP.EQ.2) THEN
 GCC = GCCON
 HKC = HKA - 1.0 - GCC/RTA
 HKC_HKA = 1.0
 HKC_RTA = GCC/RTA**2
 IF(HKC .LT. 0.01) THEN
 HKC = 0.01
 HKC_HKA = 0.0
 HKC_RTA = 0.0
 ENDIF
 ELSE
 GCC = 0.0
 HKC = HKA - 1.0
 HKC_HKA = 1.0
 HKC_RTA = 0.0
 ENDIF
C
 HR = HKC / (GACON*ALD*HKA)
 HR_HKA = HKC_HKA / (GACON*ALD*HKA) - HR / HKA
 HR_RTA = HKC_RTA / (GACON*ALD*HKA)
C
 UQ = (0.5*CFA - HR**2) / (GBCON*DA)
 UQ_HKA = -2.0*HR*HR_HKA / (GBCON*DA)
 UQ_RTA = -2.0*HR*HR_RTA / (GBCON*DA)
 UQ_CFA = 0.5 / (GBCON*DA)
 UQ_DA = -UQ/DA
 UQ_UPW = UQ_CFA*(CF2-CF1) + UQ_HKA*(HK2-HK1)
C
 UQ_T1 = (1.0-UPW)*(UQ_CFA*CF1_T1 + UQ_HKA*HK1_T1) + UQ_UPW*UPW_T1
 UQ_D1 = (1.0-UPW)*(UQ_CFA*CF1_D1 + UQ_HKA*HK1_D1) + UQ_UPW*UPW_D1
 UQ_U1 = (1.0-UPW)*(UQ_CFA*CF1_U1 + UQ_HKA*HK1_U1) + UQ_UPW*UPW_U1
 UQ_T2 = UPW *(UQ_CFA*CF2_T2 + UQ_HKA*HK2_T2) + UQ_UPW*UPW_T2
 UQ_D2 = UPW *(UQ_CFA*CF2_D2 + UQ_HKA*HK2_D2) + UQ_UPW*UPW_D2
 UQ_U2 = UPW *(UQ_CFA*CF2_U2 + UQ_HKA*HK2_U2) + UQ_UPW*UPW_U2
 UQ_MS = (1.0-UPW)*(UQ_CFA*CF1_MS + UQ_HKA*HK1_MS) + UQ_UPW*UPW_MS
 & + UPW *(UQ_CFA*CF2_MS + UQ_HKA*HK2_MS)
 UQ_RE = (1.0-UPW)* UQ_CFA*CF1_RE
 & + UPW * UQ_CFA*CF2_RE
C
 UQ_T1 = UQ_T1 + 0.5*UQ_RTA*RT1_T1
 UQ_D1 = UQ_D1 + 0.5*UQ_DA
 UQ_U1 = UQ_U1 + 0.5*UQ_RTA*RT1_U1
 UQ_T2 = UQ_T2 + 0.5*UQ_RTA*RT2_T2
 UQ_D2 = UQ_D2 + 0.5*UQ_DA
 UQ_U2 = UQ_U2 + 0.5*UQ_RTA*RT2_U2
 UQ_MS = UQ_MS + 0.5*UQ_RTA*RT1_MS
 & + 0.5*UQ_RTA*RT2_MS
 UQ_RE = UQ_RE + 0.5*UQ_RTA*RT1_RE
 & + 0.5*UQ_RTA*RT2_RE
C
 SCC = SCCON*1.333/(1.0+USA)
 SCC_USA = -SCC/(1.0+USA)
C
 SCC_US1 = SCC_USA*0.5
 SCC_US2 = SCC_USA*0.5
C
C
 SLOG = LOG(S2/S1)
 DXI = X2 - X1
C
 REZC = SCC*(CQA - SA*ALD)*DXI
 & - DEA*2.0* SLOG
 & + DEA*2.0*(UQ*DXI - ULOG)*DUXCON
C

c if(! (rt2.gt.1.0e3 .and. rt1.le.1.0e3) .or.
c & (rt2.gt.1.0e4 .and. rt1.le.1.0e4) .or.
c & (rt2.gt.1.0e5 .and. rt1.le.1.0e5)) then
c gga = (HKA-1.0-GCC/RTA)/HKA / sqrt(0.5*CFA)
c write(*,4455) rta, hka, gga, cfa, cqa, sa, uq, ulog/dxi
c 4455 format(1x,f7.0, 2f9.4,f10.6,2f8.5,2f10.5)
c endif

 Z_CFA = DEA*2.0*UQ_CFA*DXI * DUXCON
 Z_HKA = DEA*2.0*UQ_HKA*DXI * DUXCON
 Z_DA = DEA*2.0*UQ_DA *DXI * DUXCON
 Z_SL = -DEA*2.0
 Z_UL = -DEA*2.0 * DUXCON
 Z_DXI = SCC *(CQA - SA*ALD) + DEA*2.0*UQ*DUXCON
 Z_USA = SCC_USA*(CQA - SA*ALD)*DXI
 Z_CQA = SCC*DXI
 Z_SA = -SCC*DXI*ALD
 Z_DEA = 2.0*((UQ*DXI - ULOG)*DUXCON - SLOG)
C
 Z_UPW = Z_CQA*(CQ2-CQ1) + Z_SA *(S2 -S1)
 & + Z_CFA*(CF2-CF1) + Z_HKA*(HK2-HK1)
 Z_DE1 = 0.5*Z_DEA
 Z_DE2 = 0.5*Z_DEA
 Z_US1 = 0.5*Z_USA
 Z_US2 = 0.5*Z_USA
 Z_D1 = 0.5*Z_DA
 Z_D2 = 0.5*Z_DA
 Z_U1 = - Z_UL/U1
 Z_U2 = Z_UL/U2
 Z_X1 = -Z_DXI
 Z_X2 = Z_DXI
 Z_S1 = (1.0-UPW)*Z_SA - Z_SL/S1
 Z_S2 = UPW *Z_SA + Z_SL/S2
 Z_CQ1 = (1.0-UPW)*Z_CQA
 Z_CQ2 = UPW *Z_CQA
 Z_CF1 = (1.0-UPW)*Z_CFA
 Z_CF2 = UPW *Z_CFA
 Z_HK1 = (1.0-UPW)*Z_HKA
 Z_HK2 = UPW *Z_HKA
C
 VS1(1,1) = Z_S1
 VS1(1,2) = Z_UPW*UPW_T1 + Z_DE1*DE1_T1 + Z_US1*US1_T1
 VS1(1,3) = Z_D1 + Z_UPW*UPW_D1 + Z_DE1*DE1_D1 + Z_US1*US1_D1
 VS1(1,4) = Z_U1 + Z_UPW*UPW_U1 + Z_DE1*DE1_U1 + Z_US1*US1_U1
 VS1(1,5) = Z_X1
 VS2(1,1) = Z_S2
 VS2(1,2) = Z_UPW*UPW_T2 + Z_DE2*DE2_T2 + Z_US2*US2_T2
 VS2(1,3) = Z_D2 + Z_UPW*UPW_D2 + Z_DE2*DE2_D2 + Z_US2*US2_D2
 VS2(1,4) = Z_U2 + Z_UPW*UPW_U2 + Z_DE2*DE2_U2 + Z_US2*US2_U2
 VS2(1,5) = Z_X2
 VSM(1) = Z_UPW*UPW_MS + Z_DE1*DE1_MS + Z_US1*US1_MS
 & + Z_DE2*DE2_MS + Z_US2*US2_MS
C
 VS1(1,2) = VS1(1,2) + Z_CQ1*CQ1_T1 + Z_CF1*CF1_T1 + Z_HK1*HK1_T1
 VS1(1,3) = VS1(1,3) + Z_CQ1*CQ1_D1 + Z_CF1*CF1_D1 + Z_HK1*HK1_D1
 VS1(1,4) = VS1(1,4) + Z_CQ1*CQ1_U1 + Z_CF1*CF1_U1 + Z_HK1*HK1_U1
C
 VS2(1,2) = VS2(1,2) + Z_CQ2*CQ2_T2 + Z_CF2*CF2_T2 + Z_HK2*HK2_T2
 VS2(1,3) = VS2(1,3) + Z_CQ2*CQ2_D2 + Z_CF2*CF2_D2 + Z_HK2*HK2_D2
 VS2(1,4) = VS2(1,4) + Z_CQ2*CQ2_U2 + Z_CF2*CF2_U2 + Z_HK2*HK2_U2
C
 VSM(1) = VSM(1) + Z_CQ1*CQ1_MS + Z_CF1*CF1_MS + Z_HK1*HK1_MS
 & + Z_CQ2*CQ2_MS + Z_CF2*CF2_MS + Z_HK2*HK2_MS
 VSR(1) = Z_CQ1*CQ1_RE + Z_CF1*CF1_RE
 & + Z_CQ2*CQ2_RE + Z_CF2*CF2_RE
 VSX(1) = 0.
 VSREZ(1) = -REZC
C
 ENDIF
C
C**** Set up momentum equation
 HA = 0.5*(H1 + H2)
 MA = 0.5*(M1 + M2)
 XA = 0.5*(X1 + X2)
 TA = 0.5*(T1 + T2)
 HWA = 0.5*(DW1/T1 + DW2/T2)
C
C---- set Cf term, using central value CFM for better accuracy in drag
 CFX = 0.50*CFM*XA/TA + 0.25*(CF1*X1/T1 + CF2*X2/T2)
 CFX_XA = 0.50*CFM /TA
 CFX_TA = -.50*CFM*XA/TA**2
C
 CFX_X1 = 0.25*CF1 /T1 + CFX_XA*0.5
 CFX_X2 = 0.25*CF2 /T2 + CFX_XA*0.5
 CFX_T1 = -.25*CF1*X1/T1**2 + CFX_TA*0.5
 CFX_T2 = -.25*CF2*X2/T2**2 + CFX_TA*0.5
 CFX_CF1 = 0.25* X1/T1
 CFX_CF2 = 0.25* X2/T2
 CFX_CFM = 0.50* XA/TA
C
 BTMP = HA + 2.0 - MA + HWA
C
 REZT = TLOG + BTMP*ULOG - XLOG*0.5*CFX
 Z_CFX = -XLOG*0.5
 Z_HA = ULOG
 Z_HWA = ULOG
 Z_MA = -ULOG
 Z_XL =-DDLOG * 0.5*CFX
 Z_UL = DDLOG * BTMP
 Z_TL = DDLOG
C
 Z_CFM = Z_CFX*CFX_CFM
 Z_CF1 = Z_CFX*CFX_CF1
 Z_CF2 = Z_CFX*CFX_CF2
C
 Z_T1 = -Z_TL/T1 + Z_CFX*CFX_T1 + Z_HWA*0.5*(-DW1/T1**2)
 Z_T2 = Z_TL/T2 + Z_CFX*CFX_T2 + Z_HWA*0.5*(-DW2/T2**2)
 Z_X1 = -Z_XL/X1 + Z_CFX*CFX_X1
 Z_X2 = Z_XL/X2 + Z_CFX*CFX_X2
 Z_U1 = -Z_UL/U1
 Z_U2 = Z_UL/U2
C
 VS1(2,2) = 0.5*Z_HA*H1_T1 + Z_CFM*CFM_T1 + Z_CF1*CF1_T1 + Z_T1
 VS1(2,3) = 0.5*Z_HA*H1_D1 + Z_CFM*CFM_D1 + Z_CF1*CF1_D1
 VS1(2,4) = 0.5*Z_MA*M1_U1 + Z_CFM*CFM_U1 + Z_CF1*CF1_U1 + Z_U1
 VS1(2,5) = Z_X1
 VS2(2,2) = 0.5*Z_HA*H2_T2 + Z_CFM*CFM_T2 + Z_CF2*CF2_T2 + Z_T2
 VS2(2,3) = 0.5*Z_HA*H2_D2 + Z_CFM*CFM_D2 + Z_CF2*CF2_D2
 VS2(2,4) = 0.5*Z_MA*M2_U2 + Z_CFM*CFM_U2 + Z_CF2*CF2_U2 + Z_U2
 VS2(2,5) = Z_X2
C
 VSM(2) = 0.5*Z_MA*M1_MS + Z_CFM*CFM_MS + Z_CF1*CF1_MS
 & + 0.5*Z_MA*M2_MS + Z_CF2*CF2_MS
 VSR(2) = Z_CFM*CFM_RE + Z_CF1*CF1_RE
 & + Z_CF2*CF2_RE
 VSX(2) = 0.
 VSREZ(2) = -REZT
C
C**** Set up shape parameter equation
C
 XOT1 = X1/T1
 XOT2 = X2/T2
C
 HA = 0.5*(H1 + H2)
 HSA = 0.5*(HS1 + HS2)
 HCA = 0.5*(HC1 + HC2)
 HWA = 0.5*(DW1/T1 + DW2/T2)
C
 DIX = (1.0-UPW)*DI1*XOT1 + UPW*DI2*XOT2
 CFX = (1.0-UPW)*CF1*XOT1 + UPW*CF2*XOT2
 DIX_UPW = DI2*XOT2 - DI1*XOT1
 CFX_UPW = CF2*XOT2 - CF1*XOT1
C
 BTMP = 2.0*HCA/HSA + 1.0 - HA - HWA
C
 REZH = HLOG + BTMP*ULOG + XLOG*(0.5*CFX-DIX)
 Z_CFX = XLOG*0.5
 Z_DIX = -XLOG
 Z_HCA = 2.0*ULOG/HSA
 Z_HA = -ULOG
 Z_HWA = -ULOG
 Z_XL = DDLOG * (0.5*CFX-DIX)
 Z_UL = DDLOG * BTMP
 Z_HL = DDLOG
C
 Z_UPW = Z_CFX*CFX_UPW + Z_DIX*DIX_UPW
C
 Z_HS1 = -HCA*ULOG/HSA**2 - Z_HL/HS1
 Z_HS2 = -HCA*ULOG/HSA**2 + Z_HL/HS2
C
 Z_CF1 = (1.0-UPW)*Z_CFX*XOT1
 Z_CF2 = UPW *Z_CFX*XOT2
 Z_DI1 = (1.0-UPW)*Z_DIX*XOT1
 Z_DI2 = UPW *Z_DIX*XOT2
C
 Z_T1 = (1.0-UPW)*(Z_CFX*CF1 + Z_DIX*DI1)*(-XOT1/T1)
 Z_T2 = UPW *(Z_CFX*CF2 + Z_DIX*DI2)*(-XOT2/T2)
 Z_X1 = (1.0-UPW)*(Z_CFX*CF1 + Z_DIX*DI1)/ T1 - Z_XL/X1
 Z_X2 = UPW *(Z_CFX*CF2 + Z_DIX*DI2)/ T2 + Z_XL/X2
 Z_U1 = - Z_UL/U1
 Z_U2 = Z_UL/U2
C
 Z_T1 = Z_T1 + Z_HWA*0.5*(-DW1/T1**2)
 Z_T2 = Z_T2 + Z_HWA*0.5*(-DW2/T2**2)
C
 VS1(3,1) = Z_DI1*DI1_S1
 VS1(3,2) = Z_HS1*HS1_T1 + Z_CF1*CF1_T1 + Z_DI1*DI1_T1 + Z_T1
 VS1(3,3) = Z_HS1*HS1_D1 + Z_CF1*CF1_D1 + Z_DI1*DI1_D1
 VS1(3,4) = Z_HS1*HS1_U1 + Z_CF1*CF1_U1 + Z_DI1*DI1_U1 + Z_U1
 VS1(3,5) = Z_X1
 VS2(3,1) = Z_DI2*DI2_S2
 VS2(3,2) = Z_HS2*HS2_T2 + Z_CF2*CF2_T2 + Z_DI2*DI2_T2 + Z_T2
 VS2(3,3) = Z_HS2*HS2_D2 + Z_CF2*CF2_D2 + Z_DI2*DI2_D2
 VS2(3,4) = Z_HS2*HS2_U2 + Z_CF2*CF2_U2 + Z_DI2*DI2_U2 + Z_U2
 VS2(3,5) = Z_X2
 VSM(3) = Z_HS1*HS1_MS + Z_CF1*CF1_MS + Z_DI1*DI1_MS
 & + Z_HS2*HS2_MS + Z_CF2*CF2_MS + Z_DI2*DI2_MS
 VSR(3) = Z_HS1*HS1_RE + Z_CF1*CF1_RE + Z_DI1*DI1_RE
 & + Z_HS2*HS2_RE + Z_CF2*CF2_RE + Z_DI2*DI2_RE
C
 VS1(3,2) = VS1(3,2) + 0.5*(Z_HCA*HC1_T1+Z_HA*H1_T1) + Z_UPW*UPW_T1
 VS1(3,3) = VS1(3,3) + 0.5*(Z_HCA*HC1_D1+Z_HA*H1_D1) + Z_UPW*UPW_D1
 VS1(3,4) = VS1(3,4) + 0.5*(Z_HCA*HC1_U1) + Z_UPW*UPW_U1
 VS2(3,2) = VS2(3,2) + 0.5*(Z_HCA*HC2_T2+Z_HA*H2_T2) + Z_UPW*UPW_T2
 VS2(3,3) = VS2(3,3) + 0.5*(Z_HCA*HC2_D2+Z_HA*H2_D2) + Z_UPW*UPW_D2
 VS2(3,4) = VS2(3,4) + 0.5*(Z_HCA*HC2_U2) + Z_UPW*UPW_U2
C
 VSM(3) = VSM(3) + 0.5*(Z_HCA*HC1_MS) + Z_UPW*UPW_MS
 & + 0.5*(Z_HCA*HC2_MS)
C
 VSX(3) = 0.
 VSREZ(3) = -REZH
C
 RETURN
 END

 SUBROUTINE DAMPL(HK, TH, RT, AX, AX_HK, AX_TH, AX_RT)
C==
C Amplification rate routine for envelope e^n method.
C Reference:
C Drela, M., Giles, M.,
C "Viscous/Inviscid Analysis of Transonic and
C Low Reynolds Number Airfoils",
C AIAA Journal, Oct. 1987.
C
C NEW VERSION. March 1991 (latest bug fix July 93)
C - m(H) correlation made more accurate up to H=20
C - for H > 5, non-similar profiles are used
C instead of Falkner-Skan profiles. These
C non-similar profiles have smaller reverse
C velocities, are more representative of typical
C separation bubble profiles.
C--
C
C input : HK kinematic shape parameter
C TH momentum thickness
C RT momentum-thickness Reynolds number
C
C output: AX envelope spatial amplification rate
C AX_(.) sensitivity of AX to parameter (.)
C
C
C Usage: The log of the envelope amplitude N(x) is
C calculated by integrating AX (= dN/dx) with
C respect to the streamwise distance x.
C x
C /
C N(x) = | AX(H(x),Th(x),Rth(x)) dx
C /
C 0
C The integration can be started from the leading
C edge since AX will be returned as zero when RT
C is below the critical Rtheta. Transition occurs
C when N(x) reaches Ncrit (Ncrit= 9 is "standard").
C==
 IMPLICIT REAL (A-H,M,O-Z)
ccc DATA DGR / 0.04 /
 DATA DGR / 0.08 /
C
 HMI = 1.0/(HK - 1.0)
 HMI_HK = -HMI**2
C
C---- log10(Critical Rth) - H correlation for Falkner-Skan profiles
 AA = 2.492*HMI**0.43
 AA_HK = (AA/HMI)*0.43 * HMI_HK
C
 BB = TANH(14.0*HMI - 9.24)
 BB_HK = (1.0 - BB*BB) * 14.0 * HMI_HK
C
 GRCRIT = AA + 0.7*(BB + 1.0)
 GRC_HK = AA_HK + 0.7* BB_HK
C
C
 GR = LOG10(RT)
 GR_RT = 1.0 / (2.3025851*RT)
C
 IF(GR .LT. GRCRIT-DGR) THEN
C
C----- no amplification for Rtheta < Rcrit
 AX = 0.
 AX_HK = 0.
 AX_TH = 0.
 AX_RT = 0.
C
 ELSE
C
C----- Set steep cubic ramp used to turn on AX smoothly as Rtheta
C- exceeds Rcrit (previously, this was done discontinuously).
C- The ramp goes between -DGR < log10(Rtheta/Rcrit) < DGR
C
 RNORM = (GR - (GRCRIT-DGR)) / (2.0*DGR)
 RN_HK = - GRC_HK / (2.0*DGR)
 RN_RT = GR_RT / (2.0*DGR)
C
 IF(RNORM .GE. 1.0) THEN
 RFAC = 1.0
 RFAC_HK = 0.
 RFAC_RT = 0.
 ELSE
 RFAC = 3.0*RNORM**2 - 2.0*RNORM**3
 RFAC_RN = 6.0*RNORM - 6.0*RNORM**2
C
 RFAC_HK = RFAC_RN*RN_HK
 RFAC_RT = RFAC_RN*RN_RT
 ENDIF
C
C----- Amplification envelope slope correlation for Falkner-Skan
 ARG = 3.87*HMI - 2.52
 ARG_HK = 3.87*HMI_HK
C
 EX = EXP(-ARG**2)
 EX_HK = EX * (-2.0*ARG*ARG_HK)
C
 DADR = 0.028*(HK-1.0) - 0.0345*EX
 DADR_HK = 0.028 - 0.0345*EX_HK
C
C----- new m(H) correlation 1 March 91
 AF = -0.05 + 2.7*HMI - 5.5*HMI**2 + 3.0*HMI**3
 AF_HMI = 2.7 - 11.0*HMI + 9.0*HMI**2
 AF_HK = AF_HMI*HMI_HK
C
 AX = (AF *DADR/TH) * RFAC
 AX_HK = (AF_HK*DADR/TH + AF*DADR_HK/TH) * RFAC
 & + (AF *DADR/TH) * RFAC_HK
 AX_TH = -AX/TH
 AX_RT = (AF *DADR/TH) * RFAC_RT
C
 ENDIF
C
 RETURN
 END ! DAMPL

 SUBROUTINE DAMPL2(HK, TH, RT, AX, AX_HK, AX_TH, AX_RT)
C==
C Amplification rate routine for modified envelope e^n method.
C Reference:
C Drela, M., Giles, M.,
C "Viscous/Inviscid Analysis of Transonic and
C Low Reynolds Number Airfoils",
C AIAA Journal, Oct. 1987.
C
C NEWER VERSION. Nov 1996
C - Amplification rate changes to the Orr-Sommerfeld
C maximum ai(H,Rt) function for H > 4 .
C - This implicitly assumes that the frequency range
C (around w = 0.09 Ue/theta) which experiences this
C maximum amplification rate contains the currently
C most-amplified frequency.
C--
C
C input : HK kinematic shape parameter
C TH momentum thickness
C RT momentum-thickness Reynolds number
C
C output: AX envelope spatial amplification rate
C AX_(.) sensitivity of AX to parameter (.)
C
C
C Usage: The log of the envelope amplitude N(x) is
C calculated by integrating AX (= dN/dx) with
C respect to the streamwise distance x.
C x
C /
C N(x) = | AX(H(x),Th(x),Rth(x)) dx
C /
C 0
C The integration can be started from the leading
C edge since AX will be returned as zero when RT
C is below the critical Rtheta. Transition occurs
C when N(x) reaches Ncrit (Ncrit= 9 is "standard").
C==
 IMPLICIT REAL (A-H,M,O-Z)
 DATA DGR / 0.08 /
 DATA HK1, HK2 / 3.8, 4.2 /
C
 HMI = 1.0/(HK - 1.0)
 HMI_HK = -HMI**2
C
C---- log10(Critical Rth) -- H correlation for Falkner-Skan profiles
 AA = 2.492*HMI**0.43
 AA_HK = (AA/HMI)*0.43 * HMI_HK
C
 BB = TANH(14.0*HMI - 9.24)
 BB_HK = (1.0 - BB*BB) * 14.0 * HMI_HK
C
 GRC = AA + 0.7*(BB + 1.0)
 GRC_HK = AA_HK + 0.7* BB_HK
C
C
 GR = LOG10(RT)
 GR_RT = 1.0 / (2.3025851*RT)
C
 IF(GR .LT. GRC-DGR) THEN
C
C----- no amplification for Rtheta < Rcrit
 AX = 0.
 AX_HK = 0.
 AX_TH = 0.
 AX_RT = 0.
C
 ELSE
C
C----- Set steep cubic ramp used to turn on AX smoothly as Rtheta
C- exceeds Rcrit (previously, this was done discontinuously).
C- The ramp goes between -DGR < log10(Rtheta/Rcrit) < DGR
C
 RNORM = (GR - (GRC-DGR)) / (2.0*DGR)
 RN_HK = - GRC_HK / (2.0*DGR)
 RN_RT = GR_RT / (2.0*DGR)
C
 IF(RNORM .GE. 1.0) THEN
 RFAC = 1.0
 RFAC_HK = 0.
 RFAC_RT = 0.
 ELSE
 RFAC = 3.0*RNORM**2 - 2.0*RNORM**3
 RFAC_RN = 6.0*RNORM - 6.0*RNORM**2
C
 RFAC_HK = RFAC_RN*RN_HK
 RFAC_RT = RFAC_RN*RN_RT
 ENDIF
C
C
C----- set envelope amplification rate with respect to Rtheta
C- DADR = d(N)/d(Rtheta) = f(H)
C
 ARG = 3.87*HMI - 2.52
 ARG_HK = 3.87*HMI_HK
C
 EX = EXP(-ARG**2)
 EX_HK = EX * (-2.0*ARG*ARG_HK)
C
 DADR = 0.028*(HK-1.0) - 0.0345*EX
 DADR_HK = 0.028 - 0.0345*EX_HK
C
C
C----- set conversion factor from d/d(Rtheta) to d/dx
C- AF = Theta d(Rtheta)/dx = f(H)
C
 BRG = -20.0*HMI
 AF = -0.05 + 2.7*HMI - 5.5*HMI**2 + 3.0*HMI**3 + 0.1*EXP(BRG)
 AF_HMI = 2.7 - 11.0*HMI + 9.0*HMI**2 - 2.0*EXP(BRG)
 AF_HK = AF_HMI*HMI_HK
C
C
C----- set amplification rate with respect to x,
C- with RFAC shutting off amplification when below Rcrit
C
 AX = (AF *DADR/TH) * RFAC
 AX_HK = (AF_HK*DADR/TH + AF*DADR_HK/TH) * RFAC
 & + (AF *DADR/TH) * RFAC_HK
 AX_TH = -AX/TH
 AX_RT = (AF *DADR/TH) * RFAC_RT
C
 ENDIF
C
 IF(HK .LT. HK1) RETURN
C
C---- non-envelope max-amplification correction for separated profiles
C
 HNORM = (HK - HK1) / (HK2 - HK1)
 HN_HK = 1.0 / (HK2 - HK1)
C
C---- set blending fraction HFAC = 0..1 over HK1 < HK < HK2
 IF(HNORM .GE. 1.0) THEN
 HFAC = 1.0
 HF_HK = 0.
 ELSE
 HFAC = 3.0*HNORM**2 - 2.0*HNORM**3
 HF_HK = (6.0*HNORM - 6.0*HNORM**2)*HN_HK
 ENDIF
C
C---- "normal" envelope amplification rate AX1
 AX1 = AX
 AX1_HK = AX_HK
 AX1_TH = AX_TH
 AX1_RT = AX_RT
C
C---- set modified amplification rate AX2
 GR0 = 0.30 + 0.35 * EXP(-0.15*(HK-5.0))
 GR0_HK = - 0.35 * EXP(-0.15*(HK-5.0)) * 0.15
C
 TNR = TANH(1.2*(GR - GR0))
 TNR_RT = (1.0 - TNR**2)*1.2*GR_RT
 TNR_HK = -(1.0 - TNR**2)*1.2*GR0_HK
C
 AX2 = (0.086*TNR - 0.25/(HK-1.0)**1.5) / TH
 AX2_HK = (0.086*TNR_HK + 1.5*0.25/(HK-1.0)**2.5) / TH
 AX2_RT = (0.086*TNR_RT) / TH
 AX2_TH = -AX2/TH
C
 IF(AX2 .LT. 0.0) THEN
 AX2 = 0.0
 AX2_HK = 0.
 AX2_RT = 0.
 AX2_TH = 0.
 ENDIF
C
C---- blend the two amplification rates
 AX = HFAC*AX2 + (1.0 - HFAC)*AX1
 AX_HK = HFAC*AX2_HK + (1.0 - HFAC)*AX1_HK + HF_HK*(AX2-AX1)
 AX_RT = HFAC*AX2_RT + (1.0 - HFAC)*AX1_RT
 AX_TH = HFAC*AX2_TH + (1.0 - HFAC)*AX1_TH
C
 RETURN
 END ! DAMPL2

 SUBROUTINE HKIN(H, MSQ, HK, HK_H, HK_MSQ)
 REAL MSQ
C
C---- calculate kinematic shape parameter (assuming air)
C (from Whitfield)
 HK = (H - 0.29*MSQ)/(1.0 + 0.113*MSQ)
 HK_H = 1.0 /(1.0 + 0.113*MSQ)
 HK_MSQ = (-.29 - 0.113*HK)/(1.0 + 0.113*MSQ)
C
 RETURN
 END

 SUBROUTINE DIL(HK, RT, DI, DI_HK, DI_RT)
C
C---- Laminar dissipation function (2 CD/H*) (from Falkner-Skan)
 IF(HK.LT.4.0) THEN
 DI = (0.00205 * (4.0-HK)**5.5 + 0.207) / RT
 DI_HK = (-.00205*5.5*(4.0-HK)**4.5) / RT
 ELSE
 HKB = HK - 4.0
 DEN = 1.0 + 0.02*HKB**2
 DI = (-.0016 * HKB**2 /DEN + 0.207) / RT
 DI_HK = (-.0016*2.0*HKB*(1.0/DEN - 0.02*HKB**2/DEN**2)) / RT
 ENDIF
 DI_RT = -DI/RT
C
 RETURN
 END

 SUBROUTINE DILW(HK, RT, DI, DI_HK, DI_RT)
 REAL MSQ
C
 MSQ = 0.
 CALL HSL(HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ)
C
C---- Laminar wake dissipation function (2 CD/H*)
 RCD = 1.10 * (1.0 - 1.0/HK)**2 / HK
 RCD_HK = -1.10 * (1.0 - 1.0/HK)*2.0 / HK**3
 & - RCD/HK
C
 DI = 2.0*RCD /(HS*RT)
 DI_HK = 2.0*RCD_HK/(HS*RT) - (DI/HS)*HS_HK
 DI_RT = -DI/RT - (DI/HS)*HS_RT
C
 RETURN
 END

 SUBROUTINE HSL(HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ)
 REAL MSQ
C
C---- Laminar HS correlation
 IF(HK.LT.4.35) THEN
 TMP = HK - 4.35
 HS = 0.0111*TMP**2/(HK+1.0)
 & - 0.0278*TMP**3/(HK+1.0) + 1.528
 & - 0.0002*(TMP*HK)**2
 HS_HK = 0.0111*(2.0*TMP - TMP**2/(HK+1.0))/(HK+1.0)
 & - 0.0278*(3.0*TMP**2 - TMP**3/(HK+1.0))/(HK+1.0)
 & - 0.0002*2.0*TMP*HK * (TMP + HK)
 ELSE
 HS = 0.015* (HK-4.35)**2/HK + 1.528
 HS_HK = 0.015*2.0*(HK-4.35) /HK
 & - 0.015* (HK-4.35)**2/HK**2
 ENDIF
C
 HS_RT = 0.
 HS_MSQ = 0.
C
 RETURN
 END

 SUBROUTINE CFL(HK, RT, MSQ, CF, CF_HK, CF_RT, CF_MSQ)
 REAL MSQ
C
C---- Laminar skin friction function (Cf) (from Falkner-Skan)
 IF(HK.LT.5.5) THEN
 TMP = (5.5-HK)**3 / (HK+1.0)
 CF = (0.0727*TMP - 0.07)/RT
 CF_HK = (-.0727*TMP*3.0/(5.5-HK) - 0.0727*TMP/(HK+1.0))/RT
 ELSE
 TMP = 1.0 - 1.0/(HK-4.5)
 CF = (0.015*TMP**2 - 0.07) / RT
 CF_HK = (0.015*TMP*2.0/(HK-4.5)**2) / RT
 ENDIF
 CF_RT = -CF/RT
 CF_MSQ = 0.0
C
 RETURN
 END

 SUBROUTINE DIT(HS, US, CF, ST, DI, DI_HS, DI_US, DI_CF, DI_ST)
C
C---- Turbulent dissipation function (2 CD/H*)
 DI = (0.5*CF*US + ST*ST*(1.0-US)) * 2.0/HS
 DI_HS = -(0.5*CF*US + ST*ST*(1.0-US)) * 2.0/HS**2
 DI_US = (0.5*CF - ST*ST) * 2.0/HS
 DI_CF = (0.5 *US) * 2.0/HS
 DI_ST = (2.0*ST*(1.0-US)) * 2.0/HS
C
 RETURN
 END

 SUBROUTINE HST(HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ)
 IMPLICIT REAL (A-H,M,O-Z)
C
C---- Turbulent HS correlation
C
 DATA HSMIN, DHSINF / 1.500, 0.015 /
C
C---- ### 12/4/94
C---- limited Rtheta dependence for Rtheta < 200
C
C
 IF(RT.GT.400.0) THEN
 HO = 3.0 + 400.0/RT
 HO_RT = - 400.0/RT**2
 ELSE
 HO = 4.0
 HO_RT = 0.
 ENDIF
C
 IF(RT.GT.200.0) THEN
 RTZ = RT
 RTZ_RT = 1.
 ELSE
 RTZ = 200.0
 RTZ_RT = 0.
 ENDIF
C
 IF(HK.LT.HO) THEN
C----- attached branch
C===
C----- old correlation
C- (from Swafford profiles)
c SRT = SQRT(RT)
c HEX = (HO-HK)**1.6
c RTMP = 0.165 - 1.6/SRT
c HS = HSMIN + 4.0/RT + RTMP*HEX/HK
c HS_HK = RTMP*HEX/HK*(-1.6/(HO-HK) - 1.0/HK)
c HS_RT = -4.0/RT**2 + HEX/HK*0.8/SRT/RT
c & + RTMP*HEX/HK*1.6/(HO-HK)*HO_RT
C===
C----- new correlation 29 Nov 91
C- (from arctan(y+) + Schlichting profiles)
 HR = (HO - HK)/(HO-1.0)
 HR_HK = - 1.0/(HO-1.0)
 HR_RT = (1.0 - HR)/(HO-1.0) * HO_RT
 HS = (2.0-HSMIN-4.0/RTZ)*HR**2 * 1.5/(HK+0.5) + HSMIN
 & + 4.0/RTZ
 HS_HK =-(2.0-HSMIN-4.0/RTZ)*HR**2 * 1.5/(HK+0.5)**2
 & + (2.0-HSMIN-4.0/RTZ)*HR*2.0 * 1.5/(HK+0.5) * HR_HK
 HS_RT = (2.0-HSMIN-4.0/RTZ)*HR*2.0 * 1.5/(HK+0.5) * HR_RT
 & + (HR**2 * 1.5/(HK+0.5) - 1.0)*4.0/RTZ**2 * RTZ_RT
C
 ELSE
C
C----- separated branch
 GRT = LOG(RTZ)
 HDIF = HK - HO
 RTMP = HK - HO + 4.0/GRT
 HTMP = 0.007*GRT/RTMP**2 + DHSINF/HK
 HTMP_HK = -.014*GRT/RTMP**3 - DHSINF/HK**2
 HTMP_RT = -.014*GRT/RTMP**3 * (-HO_RT - 4.0/GRT**2/RTZ * RTZ_RT)
 & + 0.007 /RTMP**2 / RTZ * RTZ_RT
 HS = HDIF**2 * HTMP + HSMIN + 4.0/RTZ
 HS_HK = HDIF*2.0* HTMP
 & + HDIF**2 * HTMP_HK
 HS_RT = HDIF**2 * HTMP_RT - 4.0/RTZ**2 * RTZ_RT
 & + HDIF*2.0* HTMP * (-HO_RT)
C
 ENDIF
C
C---- fudge HS slightly to make sure HS -> 2 as HK -> 1
C- (unnecessary with new correlation)
c HTF = 0.485/9.0 * (HK-4.0)**2/HK + 1.515
c HTF_HK = 0.485/9.0 * (1.0-16.0/HK**2)
c ARG = MAX(10.0*(1.0 - HK) , -15.0)
c HXX = EXP(ARG)
c HXX_HK = -10.0*HXX
cC
c HS_HK = (1.0-HXX)*HS_HK + HXX*HTF_HK
c & + (-HS + HTF)*HXX_HK
c HS_RT = (1.0-HXX)*HS_RT
c HS = (1.0-HXX)*HS + HXX*HTF
C
C---- Whitfield's minor additional compressibility correction
 FM = 1.0 + 0.014*MSQ
 HS = (HS + 0.028*MSQ) / FM
 HS_HK = (HS_HK) / FM
 HS_RT = (HS_RT) / FM
 HS_MSQ = 0.028/FM - 0.014*HS/FM
C
 RETURN
 END

 SUBROUTINE CFT(HK, RT, MSQ, CF, CF_HK, CF_RT, CF_MSQ)
 IMPLICIT REAL (A-H,M,O-Z)
 DATA GAM /1.4/
C
C---- Turbulent skin friction function (Cf) (Coles)
 GM1 = GAM - 1.0
 FC = SQRT(1.0 + 0.5*GM1*MSQ)
 GRT = LOG(RT/FC)
 GRT = MAX(GRT,3.0)
C
 GEX = -1.74 - 0.31*HK
C
 ARG = -1.33*HK
 ARG = MAX(-20.0, ARG)
C
 THK = TANH(4.0 - HK/0.875)
C
 CFO = 0.3*EXP(ARG) * (GRT/2.3026)**GEX
 CF = (CFO + 1.1E-4*(THK-1.0)) / FC
 CF_HK = (-1.33*CFO - 0.31*LOG(GRT/2.3026)*CFO
 & - 1.1E-4*(1.0-THK**2) / 0.875) / FC
 CF_RT = GEX*CFO/(FC*GRT) / RT
 CF_MSQ = GEX*CFO/(FC*GRT) * (-0.25*GM1/FC**2) - 0.25*GM1*CF/FC**2
C
 RETURN
 END ! CFT

 SUBROUTINE HCT(HK, MSQ, HC, HC_HK, HC_MSQ)
 REAL MSQ
C
C---- density shape parameter (from Whitfield)
 HC = MSQ * (0.064/(HK-0.8) + 0.251)
 HC_HK = MSQ * (-.064/(HK-0.8)**2)
 HC_MSQ = 0.064/(HK-0.8) + 0.251
C
 RETURN
 END

XFOILinterface/XFOIL/src/xfoil.f

C***
C Module: xfoil.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
 PROGRAM XFOIL
C--- Uncomment for Win32/Compaq Visual Fortran compiler (needed for GETARG)
ccc USE DFLIB
C
 INCLUDE 'XFOIL.INC'
 CHARACTER*4 COMAND
 CHARACTER*128 COMARG
 CHARACTER*1 ANS
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR
C
C---- max panel angle threshold for warning
 DATA ANGTOL / 40.0 /
C
 VERSION = 6.96
 WRITE(*,1005) VERSION
 1005 FORMAT(
 & /' ==='
 & /' XFOIL Version', F5.2
 & /' Copyright (C) 2000 Mark Drela, Harold Youngren'
 & //' This software comes with ABSOLUTELY NO WARRANTY,'
 & /' subject to the GNU General Public License.'
 & //' Caveat computor'
 & /' ===')
C
 CALL INIT
 LU = 8
 CALL GETDEF(LU,'xfoil.def', .TRUE.)
C
C---- try to read airfoil from command line argument, if any
 FNAME = ' '
 NARG = IARGC()
 IF(NARG.GT.0) CALL GETARG(NARG,FNAME)
C
 IF(FNAME(1:1) .NE. ' ') THEN
 CALL LOAD(FNAME,ITYPE)
C
 IF(ITYPE.GT.0 .AND. NB.GT.0) THEN
ccc CALL PANGEN(.TRUE.)
 CALL ABCOPY(.TRUE.)
C
 CALL CANG(X,Y,N,0, IMAX,AMAX)
 IF(ABS(AMAX).GT.ANGTOL) THEN
 WRITE(*,1081) AMAX, IMAX
 1081 FORMAT(
 & /' WARNING: Poor input coordinate distribution'
 & /' Excessive panel angle', F7.1,' at i =', I4
 & /' Repaneling with PANE and/or PPAR suggested'
 & /' (doing GDES,CADD before repaneling _may_'
 & /' improve excessively coarse LE spacing')
 CALL PANPLT
 ENDIF
 ENDIF
 ENDIF
C
 WRITE(*,1100) XCMREF,YCMREF,NPAN
 1100 FORMAT(
 & /' QUIT Exit program'
 & //' .OPER Direct operating point(s)'
 & /' .MDES Complex mapping design routine'
 & /' .QDES Surface speed design routine'
 & /' .GDES Geometry design routine'
 & //' SAVE f Write airfoil to labeled coordinate file'
 & /' PSAV f Write airfoil to plain coordinate file'
 & /' ISAV f Write airfoil to ISES coordinate file'
 & /' MSAV f Write airfoil to MSES coordinate file'
 & /' REVE Reverse written-airfoil node ordering'
 & //' LOAD f Read buffer airfoil from coordinate file'
 & /' NACA i Set NACA 4,5-digit airfoil and buffer airfoil'
 & /' INTE Set buffer airfoil by interpolating two airfoils'
 & /' NORM Buffer airfoil normalization toggle'
 & /' XYCM rr Change CM reference location, currently ',2F8.5
 & //' BEND Display structural properties of current airfoil'
 & //' PCOP Set current-airfoil panel nodes directly',
 & ' from buffer airfoil points'
 & /' PANE Set current-airfoil panel nodes (',I4,')',
 & ' based on curvature'
 & /' .PPAR Show/change paneling'
 & //' .PLOP Plotting options'
 & //' WDEF f Write current-settings file'
 & /' RDEF f Reread current-settings file'
 & /' NAME s Specify new airfoil name'
 & /' NINC Increment name version number'
 & //' Z Zoom | (available in all menus)'
 & /' U Unzoom | ')
C
C---- start of menu loop
 500 CONTINUE
 CALL ASKC(' XFOIL^',COMAND,COMARG)
C
C---- get command line numeric arguments, if any
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 0
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 0
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
C===
 IF(COMAND.EQ.' ') THEN
 GO TO 500
C
C===
 ELSEIF(COMAND.EQ.'? ') THEN
 WRITE(*,1100) XCMREF, YCMREF, NPAN
C
C===
 ELSEIF(COMAND.EQ.'QUIT') THEN
 CALL PLCLOSE
 STOP
C
C===
 ELSEIF(COMAND.EQ.'OPER') THEN
 CALL OPER
C
C===
 ELSEIF(COMAND.EQ.'MDES') THEN
 CALL MDES
C
C===
 ELSEIF(COMAND.EQ.'QDES') THEN
 CALL QDES
C
C===
 ELSEIF(COMAND.EQ.'GDES') THEN
 CALL GDES
C
C===
 ELSEIF(COMAND.EQ.'SAVE') THEN
 CALL SAVE(1,COMARG)
C
C===
 ELSEIF(COMAND.EQ.'PSAV') THEN
 CALL SAVE(0,COMARG)
C
C===
 ELSEIF(COMAND.EQ.'USAV') THEN
 CALL SAVE(-1,COMARG)
C
C===
 ELSEIF(COMAND.EQ.'ISAV') THEN
 CALL SAVE(2,COMARG)
C
C===
 ELSEIF(COMAND.EQ.'MSAV') THEN
 CALL MSAVE(COMARG)
C
C===
 ELSEIF(COMAND.EQ.'REVE') THEN
 LCLOCK = .NOT.LCLOCK
 IF(LCLOCK) THEN
 WRITE(*,*) 'Airfoil will be written in clockwise order'
 ELSE
 WRITE(*,*) 'Airfoil will be written in counterclockwise order'
 ENDIF
C
C===
 ELSEIF(COMAND.EQ.'LOAD') THEN
 CALL LOAD(COMARG,ITYPE)
 IF(ITYPE.GT.0 .AND. NB.GT.0) THEN
ccc CALL PANGEN(.TRUE.)
 CALL ABCOPY(.TRUE.)
C
 CALL CANG(X,Y,N,0, IMAX,AMAX)
 IF(ABS(AMAX).GT.ANGTOL) THEN
 WRITE(*,1081) AMAX, IMAX
 CALL PANPLT
 ENDIF
 ENDIF
C
C===
 ELSEIF(COMAND.EQ.'NACA') THEN
 CALL NACA(IINPUT(1))
C
C===
 ELSEIF(COMAND.EQ.'INTE') THEN
 CALL INTE
C
C===
 ELSEIF(COMAND.EQ.'INTX') THEN
 CALL INTX
C
C===
 ELSEIF(COMAND.EQ.'NORM') THEN
 LNORM = .NOT.LNORM
 IF(LNORM) THEN
 WRITE(*,*) 'Loaded airfoil will be normalized'
 ELSE
 WRITE(*,*) 'Loaded airfoil won''t be normalized'
 ENDIF
C
C==
 ELSEIF(COMAND.EQ.'XYCM') THEN
 IF(NINPUT.GE.2) THEN
 XCMREF = RINPUT(1)
 YCMREF = RINPUT(2)
 ELSE
 CALL ASKR('Enter new CM reference X^',XCMREF)
 CALL ASKR('Enter new CM reference Y^',YCMREF)
 ENDIF
C
C===
 ELSEIF(COMAND.EQ.'BEND') THEN
 IF(N.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) ' No airfoil available'
 GO TO 500
 ENDIF
C
 PEX = 16.0
 CALL IJSECT(N,X,Y, PEX,
 & AREA, SLEN,
 & XC, XMIN, XMAX, XEXINT,
 & YC, YMIN, YMAX, YEXINT,
 & AIXX, AIXXT,
 & AIYY, AIYYT,
 & AJ , AJT)
C
 WRITE(*,*)
 WRITE(*,*) 'Area =', AREA
 WRITE(*,*) 'Slen =', SLEN
 WRITE(*,*)
 WRITE(*,*) 'X-bending parameters:'
 WRITE(*,*) ' centroid Xc =', XC
 WRITE(*,*) ' max X-Xc =', XMAX-XC
 WRITE(*,*) ' min X-Xc =', XMIN-XC
 WRITE(*,*) ' solid Iyy =', AIYY
 WRITE(*,*) ' skin Iyy/t =', AIYYT
 XBAR = MAX(ABS(XMAX-XC) , ABS(XMIN-XC))
 WRITE(*,*) ' solid Iyy/(X-Xc)=', AIYY /XBAR
 WRITE(*,*) ' skin Iyy/t(X-Xc)=', AIYYT/XBAR
C
 WRITE(*,*)
 WRITE(*,*) 'Y-bending parameters:'
 WRITE(*,*) ' centroid Yc =', YC
 WRITE(*,*) ' max Y-Yc =', YMAX-YC
 WRITE(*,*) ' min Y-Yc =', YMIN-YC
 WRITE(*,*) ' solid Ixx =', AIXX
 WRITE(*,*) ' skin Ixx/t =', AIXXT
 YBAR = MAX(ABS(YMAX-YC) , ABS(YMIN-YC))
 WRITE(*,*) ' solid Ixx/(Y-Yc)=', AIXX /YBAR
 WRITE(*,*) ' skin Ixx/t(Y-Yc)=', AIXXT/YBAR
C
c WRITE(*,*)
c WRITE(*,*) ' power-avg X-Xc =', XEXINT
c WRITE(*,*) ' power-avg Y-Yc =', YEXINT
C
 WRITE(*,*)
 WRITE(*,*) ' solid J =', AJ
 WRITE(*,*) ' skin J/t =', AJT
C
C===
 ELSEIF(COMAND.EQ.'PCOP') THEN
 CALL ABCOPY(.TRUE.)
ccc CALL PANPLT
C
C===
 ELSEIF(COMAND.EQ.'PANE') THEN
 CALL PANGEN(.TRUE.)
ccc CALL PANPLT
C
C===
 ELSEIF(COMAND.EQ.'PPAR') THEN
 CALL GETPAN
C
C===
 ELSEIF(COMAND.EQ.'PLOP') THEN
 CALL OPLSET(IDEV,IDEVRP,IPSLU,
 & SIZE,PLOTAR,
 & XMARG,YMARG,XPAGE,YPAGE,
 & CH,SCRNFR,LCURS,LLAND)
C
C===
 ELSEIF(COMAND.EQ.'WDEF') THEN
 LU = 8
 IF(COMARG(1:1).EQ.' ') THEN
 FNAME = 'xfoil.def'
 ELSE
 FNAME = COMARG
 ENDIF
 CALL STRIP(FNAME,NFN)
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=703)
 WRITE(*,701) FNAME(1:NFN)
 701 FORMAT(/' File ', A, ' exists. Overwrite? Y')
 READ(*,1000) ANS
 IF(INDEX('Nn',ANS).EQ.0) GO TO 706
 WRITE(*,*)
 WRITE(*,*) 'No action taken'
 CLOSE(LU)
C
 703 OPEN(LU,FILE=FNAME,STATUS='UNKNOWN')
 706 CALL WRTDEF(LU)
 WRITE(*,708) FNAME(1:NFN)
 708 FORMAT(/' File ', A, ' written')
 CLOSE(LU)
C
C===
 ELSEIF(COMAND.EQ.'RDEF') THEN
 IF(COMARG(1:1).EQ.' ') THEN
 FNAME = 'xfoil.def'
 ELSE
 FNAME = COMARG
 ENDIF
C
 LU = 8
 CALL GETDEF(LU,FNAME, .FALSE.)
C
C===
 ELSEIF(COMAND.EQ.'NAME') THEN
 IF(COMARG.EQ.' ') THEN
 CALL NAMMOD(NAME,0,-1)
 ELSE
 NAME = COMARG
 ENDIF
 CALL STRIP(NAME,NNAME)
C
C===
 ELSEIF(COMAND.EQ.'NINC') THEN
 CALL NAMMOD(NAME,1,1)
 CALL STRIP(NAME,NNAME)
C
C===
 ELSEIF(COMAND.EQ.'Z ') THEN
 IF(LPLOT) THEN
 CALL USETZOOM(.TRUE.,.TRUE.)
 CALL REPLOT(IDEV)
 ENDIF
C
C===
 ELSEIF(COMAND.EQ.'U ') THEN
 IF(LPLOT) THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
 ENDIF
C
C===
 ELSE
 WRITE(*,1050) COMAND
 1050 FORMAT(1X,A4,' command not recognized. Type a "?" for list')
C
 ENDIF
C
C===
 GO TO 500
C
 1000 FORMAT(A)
 END ! XFOIL

 SUBROUTINE INIT
C---
C Variable initialization/default routine.
C See file XFOIL.INC for variable description.
C---
 INCLUDE 'XFOIL.INC'
C
 PI = 4.0*ATAN(1.0)
 HOPI = 0.50/PI
 QOPI = 0.25/PI
 DTOR = PI/180.0
C
C---- default Cp/Cv (air)
 GAMMA = 1.4
 GAMM1 = GAMMA - 1.0
C
C---- set unity freestream speed
 QINF = 1.0
C
C---- initialize freestream Mach number to zero
 MATYP = 1
 MINF1 = 0.
C
 ALFA = 0.0
 COSA = 1.0
 SINA = 0.0
C
 DO 10 I=1, IQX
 GAMU(I,1) = 0.
 GAMU(I,2) = 0.
 GAM(I) = 0.
 GAM_A(I) = 0.
 10 CONTINUE
 PSIO = 0.
C
 CL = 0.
 CM = 0.
 CD = 0.
C
 SIGTE = 0.0
 GAMTE = 0.0
 SIGTE_A = 0.
 GAMTE_A = 0.
C
 DO 20 I=1, IZX
 SIG(I) = 0.
 20 CONTINUE
C
 NQSP = 0
 DO 30 K=1, IPX
 ALQSP(K) = 0.
 CLQSP(K) = 0.
 CMQSP(K) = 0.
 DO 302 I=1, IBX
 QSPEC(I,K) = 0.
 302 CONTINUE
 30 CONTINUE
C
 AWAKE = 0.0
 AVISC = 0.0
C
 KIMAGE = 1
 YIMAGE = -10.0
 LIMAGE = .FALSE.
C
 LGAMU = .FALSE.
 LQINU = .FALSE.
 LVISC = .FALSE.
 LWAKE = .FALSE.
 LPACC = .FALSE.
 LBLINI = .FALSE.
 LIPAN = .FALSE.
 LQAIJ = .FALSE.
 LADIJ = .FALSE.
 LWDIJ = .FALSE.
 LCPXX = .FALSE.
 LQVDES = .FALSE.
 LQSPEC = .FALSE.
 LQREFL = .FALSE.
 LVCONV = .FALSE.
 LCPREF = .FALSE.
 LFOREF = .FALSE.
 LPFILE = .FALSE.
 LPFILX = .FALSE.
 LPPSHO = .FALSE.
 LBFLAP = .FALSE.
 LFLAP = .FALSE.
 LEIW = .FALSE.
 LSCINI = .FALSE.
 LPLOT = .FALSE.
 LCLIP = .FALSE.
 LVLAB = .TRUE.
 LCMINP = .FALSE.
 LHMOMP = .FALSE.
 LFREQP = .TRUE.
C
 LCURS = .TRUE.
 LLAND = .TRUE.
 LGSAME = .FALSE.
C
 LGPARM = .TRUE.
 LPLCAM = .FALSE.
C
C---- input airfoil will not be normalized
 LNORM = .FALSE.
C
C---- airfoil will not be forced symmetric
 LQSYM = .FALSE.
 LGSYM = .FALSE.
C
C---- endpoint slopes will be matched
 LQSLOP = .TRUE.
 LGSLOP = .TRUE.
 LCSLOP = .TRUE.
C
C---- grids on Qspec(s) and buffer airfoil geometry plots will be plotted
 LQGRID = .TRUE.
 LGGRID = .TRUE.
 LGTICK = .TRUE.
C
C---- no grid on Cp plots
 LCPGRD = .FALSE.
C
C---- grid and no symbols are to be used on BL variable plots
 LBLGRD = .TRUE.
 LBLSYM = .FALSE.
C
C---- buffer and current airfoil flap hinge coordinates
 XBF = 0.0
 YBF = 0.0
 XOF = 0.0
 YOF = 0.0
C
 NCPREF = 0
C n
C---- circle plane array size (257, or largest 2 + 1 that will fit array size)
 ANN = LOG(FLOAT((2*IQX)-1))/LOG(2.0)
 NN = INT(ANN + 0.00001)
 NC1 = 2**NN + 1
 NC1 = MIN(NC1 , 257)
C
C---- default paneling parameters
 NPAN = 160
 CVPAR = 1.0
 CTERAT = 0.15
 CTRRAT = 0.2
C
C---- default paneling refinement zone x/c endpoints
 XSREF1 = 1.0
 XSREF2 = 1.0
 XPREF1 = 1.0
 XPREF2 = 1.0
C
C---- no polars present to begin with
 NPOL = 0
 IPACT = 0
 DO IP = 1, NPX
 PFNAME(IP) = ' '
 PFNAMX(IP) = ' '
 ENDDO
C
C---- no reference polars
 NPOLREF = 0
C
C---- plot aspect ratio, character size
 PLOTAR = 0.55
 CH = 0.015
C
C---- airfoil node tick-mark size (as fraction of arc length)
 GTICK = 0.0005
C
C---- Cp limits in Cp vs x plot
 CPMAX = 1.0
 CPMIN = -2.0
 CPDEL = -0.5
 PFAC = PLOTAR/(CPMAX-CPMIN)
C
C---- DCp limits in CAMB loading plot
 YPMIN = -0.2
 YPMAX = 0.4
C
C---- scaling factor for Cp vector plot
 VFAC = 0.25
C
C---- offsets and scale factor for airfoil in Cp vs x plot
 XOFAIR = 0.09
 YOFAIR = -.01
 FACAIR = 0.70
C
C---- u/Qinf scale factor for profile plotting
 UPRWT = 0.02
C
C---- polar plot options, grid, list, legend, no CDW
 LPGRID = .TRUE.
 LPCDW = .FALSE.
 LPLIST = .TRUE.
 LPLEGN = .TRUE.
 LAECEN = .FALSE.
C
C---- axis limits and annotation deltas for polar plot
 CPOLPLF(1,ICD) = 0.0
 CPOLPLF(2,ICD) = 0.04
 CPOLPLF(3,ICD) = 0.01
C
 CPOLPLF(1,ICL) = 0.
 CPOLPLF(2,ICL) = 1.5
 CPOLPLF(3,ICL) = 0.5
C
 CPOLPLF(1,ICM) = -0.25
 CPOLPLF(2,ICM) = 0.0
 CPOLPLF(3,ICM) = 0.05
C
 CPOLPLF(1,IAL) = -4.0
 CPOLPLF(2,IAL) = 10.0
 CPOLPLF(3,IAL) = 2.0
C
C---- widths of plot boxes in polar plot page
 XCDWID = 0.45
 XALWID = 0.25
 XOCWID = 0.20
C
C---- line style and color index for each polar
 DO IP=1, NPX
 ILINP(IP) = IP
 ICOLP(IP) = 3 + MOD(IP-1,8)
 ENDDO
C
C---- polar variables to be written to polar save file
 IPOL(1) = IAL
 IPOL(2) = ICL
 IPOL(3) = ICD
 IPOL(4) = ICP
 IPOL(5) = ICM
 NIPOL = 5
 NIPOL0 = 5
C
 JPOL(1) = JTN
 NJPOL = 1
C
C---- default Cm reference location
 XCMREF = 0.25
 YCMREF = 0.
C
C---- default viscous parameters
 RETYP = 1
 REINF1 = 0.
 ACRIT = 9.0
 XSTRIP(1) = 1.0
 XSTRIP(2) = 1.0
 XOCTR(1) = 1.0
 XOCTR(2) = 1.0
 YOCTR(1) = 0.
 YOCTR(2) = 0.
 WAKLEN = 1.0
C
C---- set BL calibration parameters
 CALL BLPINI
C
C---- Newton iteration limit
 ITMAX = 10
C
C---- max number of unconverged sequence points for early exit
 NSEQEX = 4
C
C---- drop tolerance for BL system solver
 VACCEL = 0.01
C
C---- inverse-mapping auto-filter level
 FFILT = 0.0
C
C---- default overlay airfoil filename
 ONAME = ' '
C
C---- default filename prefix
 PREFIX = ' '
C
C---- Plotting flag
 IDEV = 1 ! X11 window only
c IDEV = 2 ! B&W PostScript output file only (no color)
c IDEV = 3 ! both X11 and B&W PostScript file
c IDEV = 4 ! Color PostScript output file only
c IDEV = 5 ! both X11 and Color PostScript file
C
C---- Re-plotting flag (for hardcopy)
 IDEVRP = 2 ! B&W PostScript
c IDEVRP = 4 ! Color PostScript
C
C---- PostScript output logical unit and file specification
 IPSLU = 0 ! output to file plot.ps on LU 4 (default case)
c IPSLU = ? ! output to file plot?.ps on LU 10+?
C
C---- screen fraction taken up by plot window upon opening
 SCRNFR = 0.80
C
C---- Default plot size in inches
C- (Default plot window is 11.0 x 8.5)
C- (Must be smaller than XPAGE if objects are to fit on paper page)
 SIZE = 10.0

C---- plot-window dimensions in inches for plot blowup calculations
C- currently, 11.0 x 8.5 default window is hard-wired in libPlt
 XPAGE = 11.0
 YPAGE = 8.5
C
C---- page margins in inches
 XMARG = 0.0
 YMARG = 0.0
C
C---- set top and bottom-side colors
 ICOLS(1) = 5
 ICOLS(2) = 7
C
C 3 red
C 4 orange
C 5 yellow
C 6 green
C 7 cyan
C 8 blue
C 9 violet
C 10 magenta
C
C
 CALL PLINITIALIZE
C
C---- set up color spectrum
 NCOLOR = 64
 CALL COLORSPECTRUMHUES(NCOLOR,'RYGCBM')
C
C
 NNAME = 32
 NAME = ' '
CCC 12345678901234567890123456789012
C
C---- MSES domain parameters (not used in XFOIL)
 ISPARS = ' -2.0 3.0 -2.5 3.5'
C
C---- set MINF, REINF, based on current CL-dependence
 CALL MRCL(1.0,MINF_CL,REINF_CL)
C
C---- set various compressibility parameters from MINF
 CALL COMSET
C
 RETURN
 END ! INIT

 SUBROUTINE MRCL(CLS,M_CLS,R_CLS)
C---
C Sets actual Mach, Reynolds numbers
C from unit-CL values and specified CLS
C depending on MATYP,RETYP flags.
C---
 INCLUDE 'XFOIL.INC'
 REAL M_CLS
C
 CLA = MAX(CLS , 0.000001)
C
 IF(RETYP.LT.1 .OR. RETYP.GT.3) THEN
 WRITE(*,*) 'MRCL: Illegal Re(CL) dependence trigger.'
 WRITE(*,*) ' Setting fixed Re.'
 RETYP = 1
 ENDIF
 IF(MATYP.LT.1 .OR. MATYP.GT.3) THEN
 WRITE(*,*) 'MRCL: Illegal Mach(CL) dependence trigger.'
 WRITE(*,*) ' Setting fixed Mach.'
 MATYP = 1
 ENDIF
C
C
 IF(MATYP.EQ.1) THEN
C
 MINF = MINF1
 M_CLS = 0.
C
 ELSE IF(MATYP.EQ.2) THEN
C
 MINF = MINF1/SQRT(CLA)
 M_CLS = -0.5*MINF/CLA
C
 ELSE IF(MATYP.EQ.3) THEN
C
 MINF = MINF1
 M_CLS = 0.
C
 ENDIF
C
C
 IF(RETYP.EQ.1) THEN
C
 REINF = REINF1
 R_CLS = 0.
C
 ELSE IF(RETYP.EQ.2) THEN
C
 REINF = REINF1/SQRT(CLA)
 R_CLS = -0.5*REINF/CLA
C
 ELSE IF(RETYP.EQ.3) THEN
C
 REINF = REINF1/CLA
 R_CLS = -REINF /CLA
C
 ENDIF
C
C
 IF(MINF .GE. 0.99) THEN
 WRITE(*,*)
 WRITE(*,*) 'MRCL: CL too low for chosen Mach(CL) dependence'
 WRITE(*,*) ' Aritificially limiting Mach to 0.99'
 MINF = 0.99
 M_CLS = 0.
 ENDIF
C
 RRAT = 1.0
 IF(REINF1 .GT. 0.0) RRAT = REINF/REINF1
C
 IF(RRAT .GT. 100.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'MRCL: CL too low for chosen Re(CL) dependence'
 WRITE(*,*) ' Aritificially limiting Re to ',REINF1*100.0
 REINF = REINF1*100.0
 R_CLS = 0.
 ENDIF
C
 RETURN
 END ! MRCL

 SUBROUTINE GETDEF(LU,FILNAM,LASK)
 CHARACTER*(*) FILNAM
 LOGICAL LASK
C---
C Reads in default parameters from file xfoil.def
C If LASK=t, ask user if file is to be read.
C---
 INCLUDE 'XFOIL.INC'
 LOGICAL LCOLOR
 CHARACTER*1 ANS
C
 1000 FORMAT(A)
C
 OPEN(LU,FILE=FILNAM,STATUS='OLD',ERR=90)
 IF(LASK) THEN
 WRITE(*,1050) FILNAM
 1050 FORMAT(/' Read settings from file ', A, ' ? Y')
 READ(*,1000) ANS
 IF(INDEX('Nn',ANS).NE.0) THEN
 CLOSE(LU)
 RETURN
 ENDIF
 ENDIF
C
 CLMIN = CPOLPLF(1,ICL)
 CLMAX = CPOLPLF(2,ICL)
 CLDEL = CPOLPLF(3,ICL)
C
 CDMIN = CPOLPLF(1,ICD)
 CDMAX = CPOLPLF(2,ICD)
 CDDEL = CPOLPLF(3,ICD)
C
 ALMIN = CPOLPLF(1,IAL)
 ALMAX = CPOLPLF(2,IAL)
 ALDEL = CPOLPLF(3,IAL)
C
 CMMIN = CPOLPLF(1,ICM)
 CMMAX = CPOLPLF(2,ICM)
 CMDEL = CPOLPLF(3,ICM)
C
C---- default paneling parameters (viscous)
 READ(LU,*,ERR=80) NPAN, CVPAR, CTERAT, CTRRAT
 READ(LU,*,ERR=80) XSREF1, XSREF2, XPREF1, XPREF2
C
C---- plotting parameters
 READ(LU,*,ERR=80) SIZE, PLOTAR, CH, SCRNFR
C
C---- plot sizes
 READ(LU,*,ERR=80) XPAGE, YPAGE, XMARG, YMARG
C
C---- plot flags
 READ(LU,*,ERR=80) LCOLOR, LCURS
C
C---- Cp limits in Cp vs x plot
 READ(LU,*,ERR=80) CPMAX, CPMIN, CPDEL
 PFAC = PLOTAR/(CPMAX-CPMIN)
C
C---- airfoil x-offset and scale factor in Cp vs x plot, BL profile weight
 READ(LU,*,ERR=80) XOFAIR, FACAIR, UPRWT
C
C---- polar plot CL,CD,alpha,CM min,max,delta
 READ(LU,*,ERR=80) (CPOLPLF(K,ICL), K=1, 3)
 READ(LU,*,ERR=80) (CPOLPLF(K,ICD), K=1, 3)
 READ(LU,*,ERR=80) (CPOLPLF(K,IAL), K=1, 3)
 READ(LU,*,ERR=80) (CPOLPLF(K,ICM), K=1, 3)
C
C---- default Mach and viscous parameters
 READ(LU,*,ERR=80) MATYP, MINF1, VACCEL
 READ(LU,*,ERR=80) RETYP, RMILL, ACRIT
 READ(LU,*,ERR=80) XSTRIP(1), XSTRIP(2)
C
 IF(LCOLOR) IDEVRP = 4
 IF(.NOT.LCOLOR) IDEVRP = 2
C
 REINF1 = RMILL * 1.0E6
C
C---- set MINF, REINF
 CALL MRCL(1.0,MINF_CL,REINF_CL)
C
C---- set various compressibility parameters from new MINF
 CALL COMSET
C
 CLOSE(LU)
 WRITE(*,1600) FILNAM
 1600 FORMAT(/' Default parameters read in from file ', A,':' /)
 CALL WRTDEF(6)
 RETURN
C
 80 CONTINUE
 CLOSE(LU)
 WRITE(*,1800) FILNAM
 1800 FORMAT(/' File ', A,' read error'
 & /' Settings may have been changed')
 RETURN
C
 90 CONTINUE
 WRITE(*,1900) FILNAM
 1900 FORMAT(/' File ', A,' not found')
 RETURN
C
 END ! GETDEF

 SUBROUTINE WRTDEF(LU)
C--
C Writes default parameters to unit LU
C--
 INCLUDE 'XFOIL.INC'
 LOGICAL LCOLOR
C
 LCOLOR = IDEVRP.EQ.4
C
C---- default paneling parameters (viscous)
 WRITE(LU,1010) NPAN , CVPAR , CTERAT, CTRRAT
 WRITE(LU,1020) XSREF1, XSREF2, XPREF1, XPREF2
C
C---- plotting parameters
 WRITE(LU,1030) SIZE, PLOTAR, CH, SCRNFR
C
C---- plot sizes
 WRITE(LU,1032) XPAGE, YPAGE, XMARG, YMARG
C
C---- plot flags
 WRITE(LU,1034) LCOLOR, LCURS
C
C---- Cp limits in Cp vs x plot
 WRITE(LU,1040) CPMAX, CPMIN, CPDEL
C
C---- x-offset and scale factor for airfoil on Cp vs x plot
 WRITE(LU,1050) XOFAIR, FACAIR, UPRWT
C
C---- polar plot CL,CD,alpha,CM min,max,delta
 WRITE(LU,1061) (CPOLPLF(K,ICL), K=1, 3)
 WRITE(LU,1062) (CPOLPLF(K,ICD), K=1, 3)
 WRITE(LU,1063) (CPOLPLF(K,IAL), K=1, 3)
 WRITE(LU,1064) (CPOLPLF(K,ICM), K=1, 3)
C
C---- default viscous parameters
 WRITE(LU,1071) MATYP , MINF1 , VACCEL
 WRITE(LU,1072) RETYP , REINF1/1.0E6 , ACRIT
 WRITE(LU,1080) XSTRIP(1), XSTRIP(2)
C
 RETURN
C...
 1010 FORMAT(1X,I5,4X,F9.4,F9.4,F9.4,' | Npan PPanel TErat REFrat')
 1020 FORMAT(1X,F9.4 ,F9.4,F9.4,F9.4,' | XrefS1 XrefS2 XrefP1 XrefP2')
 1030 FORMAT(1X,F9.4 ,F9.4,F9.4,F9.4,' | Size plotAR CHsize ScrnFr')
 1032 FORMAT(1X,F9.4 ,F9.4,F9.4,F9.4,' | Xpage Ypage Xmargn Ymargn')
 1034 FORMAT(1X,L2,7X,L2,7X,9X , 9X ,' | Lcolor Lcursor')
 1040 FORMAT(1X,F9.4 ,F9.4,F9.4, 9X ,' | CPmax CPmin CPdel')
 1050 FORMAT(1X,F9.4 ,F9.4,F9.4, 9X ,' | XoffAir ScalAir BLUwt')
 1061 FORMAT(1X,F9.4 ,F9.4,F9.4, 9X ,' | CLmin CLmax CLdel')
 1062 FORMAT(1X,F9.4 ,F9.4,F9.4, 9X ,' | CDmin CDmax CDdel')
 1063 FORMAT(1X,F9.4 ,F9.4,F9.4, 9X ,' | ALmin ALmax ALdel')
 1064 FORMAT(1X,F9.4 ,F9.4,F9.4, 9X ,' | CMmin CMmax CMdel')
 1071 FORMAT(1X,I3,6X,F9.4,F9.4, 9X ,' | MAtype Mach Vaccel')
 1072 FORMAT(1X,I3,6X,F9.4,F9.4, 9X ,' | REtype Re/10^6 Ncrit')
 1080 FORMAT(1X,F9.4 ,F9.4, 9X , 9X ,' | XtripT XtripB')
 END ! WRTDEF

 SUBROUTINE COMSET
 INCLUDE 'XFOIL.INC'
C
C---- set Karman-Tsien parameter TKLAM
 BETA = SQRT(1.0 - MINF**2)
 BETA_MSQ = -0.5/BETA
C
 TKLAM = MINF**2 / (1.0 + BETA)**2
 TKL_MSQ = 1.0 / (1.0 + BETA)**2
 & - 2.0*TKLAM/ (1.0 + BETA) * BETA_MSQ
C
C---- set sonic Pressure coefficient and speed
 IF(MINF.EQ.0.0) THEN
 CPSTAR = -999.0
 QSTAR = 999.0
 ELSE
 CPSTAR = 2.0 / (GAMMA*MINF**2)
 & * (((1.0 + 0.5*GAMM1*MINF**2)
 & /(1.0 + 0.5*GAMM1))**(GAMMA/GAMM1) - 1.0)
 QSTAR = QINF/MINF
 & * SQRT((1.0 + 0.5*GAMM1*MINF**2)
 & /(1.0 + 0.5*GAMM1))
 ENDIF
C
 RETURN
 END ! COMSET

 SUBROUTINE CPCALC(N,Q,QINF,MINF,CP)
C---
C Sets compressible Cp from speed.
C---
 DIMENSION Q(N),CP(N)
 REAL MINF
C
 LOGICAL DENNEG
C
 BETA = SQRT(1.0 - MINF**2)
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
C
 DENNEG = .FALSE.
C
 DO 20 I=1, N
 CPINC = 1.0 - (Q(I)/QINF)**2
 DEN = BETA + BFAC*CPINC
 CP(I) = CPINC / DEN
 IF(DEN .LE. 0.0) DENNEG = .TRUE.
 20 CONTINUE
C
 IF(DENNEG) THEN
 WRITE(*,*)
 WRITE(*,*) 'CPCALC: Local speed too large. ',
 & 'Compressibility corrections invalid.'
 ENDIF
C
 RETURN
 END ! CPCALC

 SUBROUTINE CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF,
 & XREF,YREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
C---
C Integrates surface pressures to get CL and CM.
C Integrates skin friction to get CDF.
C Calculates dCL/dAlpha for prescribed-CL routines.
C---
 DIMENSION X(N),Y(N), GAM(N), GAM_A(N)
 REAL MINF
C
ccC---- moment-reference coordinates
cc XREF = 0.25
cc YREF = 0.
C
 SA = SIN(ALFA)
 CA = COS(ALFA)
C
 BETA = SQRT(1.0 - MINF**2)
 BETA_MSQ = -0.5/BETA
C
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
 BFAC_MSQ = 0.5 / (1.0 + BETA)
 & - BFAC / (1.0 + BETA) * BETA_MSQ
C
 CL = 0.0
 CM = 0.0

 CDP = 0.0
C
 CL_ALF = 0.
 CL_MSQ = 0.
C
 I = 1
 CGINC = 1.0 - (GAM(I)/QINF)**2
 CPG1 = CGINC/(BETA + BFAC*CGINC)
 CPG1_MSQ = -CPG1/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 CPI_GAM = -2.0*GAM(I)/QINF**2
 CPC_CPI = (1.0 - BFAC*CPG1)/ (BETA + BFAC*CGINC)
 CPG1_ALF = CPC_CPI*CPI_GAM*GAM_A(I)
C
 DO 10 I=1, N
 IP = I+1
 IF(I.EQ.N) IP = 1
C
 CGINC = 1.0 - (GAM(IP)/QINF)**2
 CPG2 = CGINC/(BETA + BFAC*CGINC)
 CPG2_MSQ = -CPG2/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 CPI_GAM = -2.0*GAM(IP)/QINF**2
 CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC)
 CPG2_ALF = CPC_CPI*CPI_GAM*GAM_A(IP)
C
 DX = (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA
 DY = (Y(IP) - Y(I))*CA - (X(IP) - X(I))*SA
 DG = CPG2 - CPG1
C
 AX = (0.5*(X(IP)+X(I))-XREF)*CA + (0.5*(Y(IP)+Y(I))-YREF)*SA
 AY = (0.5*(Y(IP)+Y(I))-YREF)*CA - (0.5*(X(IP)+X(I))-XREF)*SA
 AG = 0.5*(CPG2 + CPG1)
C
 DX_ALF = -(X(IP) - X(I))*SA + (Y(IP) - Y(I))*CA
 AG_ALF = 0.5*(CPG2_ALF + CPG1_ALF)
 AG_MSQ = 0.5*(CPG2_MSQ + CPG1_MSQ)
C
 CL = CL + DX* AG
 CDP = CDP - DY* AG
 CM = CM - DX*(AG*AX + DG*DX/12.0)
 & - DY*(AG*AY + DG*DY/12.0)
C
 CL_ALF = CL_ALF + DX*AG_ALF + AG*DX_ALF
 CL_MSQ = CL_MSQ + DX*AG_MSQ
C
 CPG1 = CPG2
 CPG1_ALF = CPG2_ALF
 CPG1_MSQ = CPG2_MSQ
 10 CONTINUE
C
 RETURN
 END ! CLCALC

 SUBROUTINE CDCALC
 INCLUDE 'XFOIL.INC'
C
 SA = SIN(ALFA)
 CA = COS(ALFA)
C
 IF(LVISC .AND. LBLINI) THEN
C
C----- set variables at the end of the wake
 THWAKE = THET(NBL(2),2)
 URAT = UEDG(NBL(2),2)/QINF
 UEWAKE = UEDG(NBL(2),2) * (1.0-TKLAM) / (1.0 - TKLAM*URAT**2)
 SHWAKE = DSTR(NBL(2),2)/THET(NBL(2),2)
C
C----- extrapolate wake to downstream infinity using Squire-Young relation
C (reduces errors of the wake not being long enough)
 CD = 2.0*THWAKE * (UEWAKE/QINF)**(0.5*(5.0+SHWAKE))
C
 ELSE
C
 CD = 0.0
C
 ENDIF
C
C---- calculate friction drag coefficient
 CDF = 0.0
 DO 20 IS=1, 2
 DO 205 IBL=3, IBLTE(IS)
 I = IPAN(IBL ,IS)
 IM = IPAN(IBL-1,IS)
 DX = (X(I) - X(IM))*CA + (Y(I) - Y(IM))*SA
 CDF = CDF + 0.5*(TAU(IBL,IS)+TAU(IBL-1,IS))*DX * 2.0/QINF**2
 205 CONTINUE
 20 CONTINUE
C
 RETURN
 END ! CDCALC

 SUBROUTINE LOAD(FILNAM,ITYPE)
C--
C Reads airfoil file into buffer airfoil
C and does various initial processesing on it.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) FILNAM
C
 FNAME = FILNAM
 IF(FNAME(1:1) .EQ. ' ') CALL ASKS('Enter filename^',FNAME)
C
 LU = 9
 CALL AREAD(LU,FNAME,IBX,XB,YB,NB,NAME,ISPARS,ITYPE,1)
 IF(ITYPE.EQ.0) RETURN
C
 IF(ITYPE.EQ.1) CALL ASKS('Enter airfoil name^',NAME)
 CALL STRIP(NAME,NNAME)
C
C---- set default prefix for other filenames
 KDOT = INDEX(FNAME,'.')
 IF(KDOT.EQ.0) THEN
 PREFIX = FNAME
 ELSE
 PREFIX = FNAME(1:KDOT-1)
 ENDIF
 CALL STRIP(PREFIX,NPREFIX)
C
C---- calculate airfoil area assuming counterclockwise ordering
 AREA = 0.0
 DO 50 I=1, NB
 IP = I+1
 IF(I.EQ.NB) IP = 1
 AREA = AREA + 0.5*(YB(I)+YB(IP))*(XB(I)-XB(IP))
 50 CONTINUE
C
 IF(AREA.GE.0.0) THEN
 LCLOCK = .FALSE.
 WRITE(*,1010) NB
 ELSE
C----- if area is negative (clockwise order), reverse coordinate order
 LCLOCK = .TRUE.
 WRITE(*,1011) NB
 DO 55 I=1, NB/2
 XTMP = XB(NB-I+1)
 YTMP = YB(NB-I+1)
 XB(NB-I+1) = XB(I)
 YB(NB-I+1) = YB(I)
 XB(I) = XTMP
 YB(I) = YTMP
 55 CONTINUE
 ENDIF
C
 IF(LNORM) THEN
 CALL NORM(XB,XBP,YB,YBP,SB,NB)
 WRITE(*,1020)
 ENDIF
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB, W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 XBLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YBLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XBTE = 0.5*(XB(1) + XB(NB))
 YBTE = 0.5*(YB(1) + YB(NB))
C
 WRITE(*,1050) XBLE,YBLE, CHORDB,
 & XBTE,YBTE
C
C---- set reasonable MSES domain parameters for non-MSES coordinate file
 IF(ITYPE.LE.2) THEN
 XBLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YBLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XINL = XBLE - 2.0*CHORDB
 XOUT = XBLE + 3.0*CHORDB
 YBOT = YBLE - 2.5*CHORDB
 YTOP = YBLE + 3.5*CHORDB
 XINL = AINT(20.0*ABS(XINL/CHORDB)+0.5)/20.0 * SIGN(CHORDB,XINL)
 XOUT = AINT(20.0*ABS(XOUT/CHORDB)+0.5)/20.0 * SIGN(CHORDB,XOUT)
 YBOT = AINT(20.0*ABS(YBOT/CHORDB)+0.5)/20.0 * SIGN(CHORDB,YBOT)
 YTOP = AINT(20.0*ABS(YTOP/CHORDB)+0.5)/20.0 * SIGN(CHORDB,YTOP)
 WRITE(ISPARS,1005) XINL, XOUT, YBOT, YTOP
 1005 FORMAT(1X, 4F8.2)
 ENDIF
C
C---- wipe out old flap hinge location
 XBF = 0.0
 YBF = 0.0
 LBFLAP = .FALSE.
C
C---- wipe out off-design alphas, CLs
cc NALOFF = 0
cc NCLOFF = 0
C
 RETURN
C...
 1010 FORMAT(/' Number of input coordinate points:', I4
 & /' Counterclockwise ordering')
 1011 FORMAT(/' Number of input coordinate points:', I4
 & /' Clockwise ordering')
 1020 FORMAT(/' Airfoil has been normalized')
 1050 FORMAT(/' LE x,y =', 2F10.5,' | Chord =',F10.5
 & /' TE x,y =', 2F10.5,' |')
 END ! LOAD

 SUBROUTINE SAVE(IFTYP,FNAME1)
C--------------------------------
C Writes out current airfoil
C--------------------------------
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) FNAME1
C
 CHARACTER*1 ANS
C
 LU = 2
C
C---- get output filename if it was not supplied
 IF(FNAME1(1:1) .NE. ' ') THEN
 FNAME = FNAME1
 ELSE
 CALL ASKS('Enter output filename^',FNAME)
 ENDIF
C
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=5)
 WRITE(*,*)
 WRITE(*,*) 'Output file exists. Overwrite? Y'
 READ(*,1000) ANS
 IF(INDEX('Nn',ANS).EQ.0) GO TO 6
C
 CLOSE(LU)
 WRITE(*,*) 'Current airfoil not saved.'
 RETURN
C
 5 OPEN(LU,FILE=FNAME,STATUS='NEW',ERR=90)
 6 REWIND(LU)
C
 IF(IFTYP.GE.1) THEN
C----- write name to first line
 WRITE(LU,1000) NAME(1:NNAME)
 ENDIF
C
 IF(IFTYP.GE.2) THEN
C----- write MSES domain parameters to second line
 DO K=80, 1, -1
 IF(INDEX(ISPARS(K:K),' ') .NE. 1) GO TO 11
 ENDDO
 11 CONTINUE
C
 WRITE(LU,1000) ISPARS(1:K)
 ENDIF
C
 IF(LCLOCK) THEN
C----- write out in clockwise order (reversed from internal XFOIL order)
 IBEG = N
 IEND = 1
 INCR = -1
 ELSE
C----- write out in counterclockwise order (same as internal XFOIL order)
 IBEG = 1
 IEND = N
 INCR = 1
 ENDIF
C
 IF(IFTYP.EQ.-1) THEN
 DO I=IBEG, IEND, INCR
 WRITE(LU,1400) INT(X(I)+SIGN(0.5,X(I))),
 & INT(Y(I)+SIGN(0.5,Y(I)))
 ENDDO
 ELSE
 DO I=IBEG, IEND, INCR
 WRITE(LU,1100) X(I),Y(I)
 ENDDO
 ENDIF
C
 CLOSE(LU)
 RETURN
C
 90 WRITE(*,*) 'Bad filename.'
 WRITE(*,*) 'Current airfoil not saved.'
 RETURN
C
 1000 FORMAT(A)
 1100 FORMAT(1X,2F12.6)
 1400 FORMAT(1X,2I12)
 END ! SAVE

 SUBROUTINE MSAVE(FNAME1)
C--
C Writes out current airfoil as one
C element in a multielement MSES file.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) FNAME1
C
 CHARACTER*80 NAME1, ISPARS1
C
 PARAMETER (NEX=5)
 DIMENSION NTMP(NEX)
 DIMENSION XTMP(2*IQX,NEX), YTMP(2*IQX,NEX)
 EQUIVALENCE (Q(1,1),XTMP(1,1)), (Q(1,IQX/2),YTMP(1,1))
C
 LU = 2
C
C---- get output filename if it was not supplied
 IF(FNAME1(1:1) .NE. ' ') THEN
 FNAME = FNAME1
 ELSE
 CALL ASKS('Enter output filename for element replacement^',FNAME)
 ENDIF
C
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=9005)
C
 READ(LU,1000,ERR=9010) NAME1
 READ(LU,1000,ERR=9010) ISPARS1
C
 DO NN1=80, 2, -1
 IF(NAME1(NN1:NN1) .NE. ' ') GO TO 10
 ENDDO
 10 CONTINUE
C
 DO NI1=80, 2, -1
 IF(ISPARS1(NI1:NI1) .NE. ' ') GO TO 20
 ENDDO
 20 CONTINUE
C
C---- read in existing airfoil coordinates
 40 DO 55 IEL=1, NEX
 DO 50 I=1, 2*IQX+1
 READ(LU,*,END=56) XTMP(I,IEL), YTMP(I,IEL)
 IF(XTMP(I,IEL).EQ.999.0) THEN
 NTMP(IEL) = I-1
 GO TO 55
 ENDIF
 50 CONTINUE
 STOP 'LOAD: Array overflow'
 55 CONTINUE
 NEL = NEX
C
 56 IF(I.EQ.1) THEN
C----- coordinate file has "999.0 999.0" at the end ...
 NEL = IEL-1
 ELSE
C----- coordinate file has no ending line
 NEL = IEL
 NTMP(IEL) = I-1
 ENDIF
C
C
 WRITE(*,3010) NEL
 CALL ASKI('Enter element to be replaced by current airfoil^',IEL)
C
 IF(IEL.LT.1 .OR. IEL.GT.NEL+1) THEN
 WRITE(*,*) 'Element number inappropriate. Airfoil not written.'
 CLOSE(LU)
 RETURN
 ELSE IF(IEL.EQ.NEL+1) THEN
 NEL = NEL+1
 ENDIF
C
C
 NTMP(IEL) = N
 DO 70 I = 1, NTMP(IEL)
 IF(LCLOCK) THEN
C------- write out in clockwise order (reversed from internal XFOIL order)
 IDIR = NTMP(IEL) - I + 1
 ELSE
C------- write out in counterclockwise order (same as internal XFOIL order)
 IDIR = I
 ENDIF
 XTMP(I,IEL) = X(IDIR)
 YTMP(I,IEL) = Y(IDIR)
 70 CONTINUE
C
C
 REWIND(LU)
C
C---- write first 2 lines of MSES format coordinate file
 WRITE(LU,1000) NAME1(1:NN1)
 WRITE(LU,1000) ISPARS1(1:NI1)
C
 DO 80 IEL=1, NEL
 DO 805 I=1, NTMP(IEL)
 WRITE(LU,1100) XTMP(I,IEL),YTMP(I,IEL)
 805 CONTINUE
 IF(IEL.LT.NEL) WRITE(LU,*) ' 999.0 999.0'
 80 CONTINUE
C
 CLOSE(LU)
 RETURN
C
 9005 WRITE(*,*) 'Old file OPEN error. Airfoil not saved.'
 RETURN
C
 9010 WRITE(*,*) 'Old file READ error. Airfoil not saved.'
 CLOSE(LU)
 RETURN
C
 1000 FORMAT(A)
 1100 FORMAT(1X,5F12.6)
 3010 FORMAT(/' Specified multielement airfoil has',I2,' elements.')
 END ! MSAVE

 SUBROUTINE ROTATE(X,Y,N,ALFA)
 DIMENSION X(N), Y(N)
C
 SA = SIN(ALFA)
 CA = COS(ALFA)
CCC XOFF = 0.25*(1.0-CA)
CCC YOFF = 0.25*SA
 XOFF = 0.
 YOFF = 0.
 DO 8 I=1, N
 XT = X(I)
 YT = Y(I)
 X(I) = CA*XT + SA*YT + XOFF
 Y(I) = CA*YT - SA*XT + YOFF
 8 CONTINUE
C
 RETURN
 END

 SUBROUTINE NACA(IDES1)
 INCLUDE 'XFOIL.INC'
C
C---- number of points per side
 NSIDE = IQX/3
C
 IF(IDES1 .LE. 0) THEN
 CALL ASKI('Enter NACA 4 or 5-digit airfoil designation^',IDES)
 ELSE
 IDES = IDES1
 ENDIF
C
 ITYPE = 0
 IF(IDES.LE.25099) ITYPE = 5
 IF(IDES.LE.9999) ITYPE = 4
C
 IF(ITYPE.EQ.0) THEN
 WRITE(*,*) 'This designation not implemented.'
 RETURN
 ENDIF
C
 IF(ITYPE.EQ.4) CALL NACA4(IDES,W1,W2,W3,NSIDE,XB,YB,NB,NAME)
 IF(ITYPE.EQ.5) CALL NACA5(IDES,W1,W2,W3,NSIDE,XB,YB,NB,NAME)
 CALL STRIP(NAME,NNAME)
C
C---- see if routines didn't recognize designator
 IF(IDES.EQ.0) RETURN
C
 LCLOCK = .FALSE.
C
 XBF = 0.0
 YBF = 0.0
 LBFLAP = .FALSE.
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB, W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 WRITE(*,1200) NB
 1200 FORMAT(/' Buffer airfoil set using', I4,' points')
C
C---- set paneling
 CALL PANGEN(.TRUE.)
ccc CALL PANPLT
C
 RETURN
 END ! NACA

 SUBROUTINE PANGEN(SHOPAR)
C---
C Set paneling distribution from buffer airfoil
C geometry, thus creating current airfoil.
C
C If REFINE=True, bunch points at x=XSREF on
C top side and at x=XPREF on bottom side
C by setting a fictitious local curvature of
C CTRRAT*(LE curvature) there.
C---
 INCLUDE 'XFOIL.INC'
 LOGICAL SHOPAR
C
 IF(NB.LT.2) THEN
 WRITE(*,*) 'PANGEN: Buffer airfoil not available.'
 N = 0
 RETURN
 ENDIF
C
C---- Number of temporary nodes for panel distribution calculation
C exceeds the specified panel number by factor of IPFAC.
 IPFAC = 3
C
C---- number of airfoil panel points
 N = NPAN
C
cC---- number of wake points
c NW = NPAN/8 + 2
c IF(NW.GT.IWX) THEN
c WRITE(*,*)
c & 'Array size (IWX) too small. Last wake point index reduced.'
c NW = IWX
c ENDIF
C
C---- set arc length spline parameter
 CALL SCALC(XB,YB,SB,NB)
C
C---- spline raw airfoil coordinates
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
C---- normalizing length (~ chord)
 SBREF = 0.5*(SB(NB)-SB(1))
C
C---- set up curvature array
 DO I = 1, NB
 W5(I) = ABS(CURV(SB(I),XB,XBP,YB,YBP,SB,NB)) * SBREF
 ENDDO
C
C---- locate LE point arc length value and the normalized curvature there
 CALL LEFIND(SBLE,XB,XBP,YB,YBP,SB,NB)
 CVLE = ABS(CURV(SBLE,XB,XBP,YB,YBP,SB,NB)) * SBREF
C
C---- check for doubled point (sharp corner) at LE
 IBLE = 0
 DO I = 1, NB-1
 IF(SBLE.EQ.SB(I) .AND. SBLE.EQ.SB(I+1)) THEN
 IBLE = I
 WRITE(*,*)
 WRITE(*,*) 'Sharp leading edge'
 GO TO 21
 ENDIF
 ENDDO
 21 CONTINUE
C
C---- set LE, TE points
 XBLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YBLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XBTE = 0.5*(XB(1)+XB(NB))
 YBTE = 0.5*(YB(1)+YB(NB))
 CHBSQ = (XBTE-XBLE)**2 + (YBTE-YBLE)**2
C
C---- set average curvature over 2*NK+1 points within Rcurv of LE point
 NK = 3
 CVSUM = 0.
 DO K = -NK, NK
 FRAC = FLOAT(K)/FLOAT(NK)
 SBK = SBLE + FRAC*SBREF/MAX(CVLE,20.0)
 CVK = ABS(CURV(SBK,XB,XBP,YB,YBP,SB,NB)) * SBREF
 CVSUM = CVSUM + CVK
 ENDDO
 CVAVG = CVSUM/FLOAT(2*NK+1)
C
C---- dummy curvature for sharp LE
 IF(IBLE.NE.0) CVAVG = 10.0
C
C---- set curvature attraction coefficient actually used
 CC = 6.0 * CVPAR
C
C---- set artificial curvature at TE to bunch panels there
 CVTE = CVAVG * CTERAT
 W5(1) = CVTE
 W5(NB) = CVTE
C
C
C**** smooth curvature array for smoother panel size distribution ****
C
CCC CALL ASKR('Enter curvature smoothing length/c^',SMOOL)
CCC SMOOL = 0.010
C
C---- set smoothing length = 1 / averaged LE curvature, but
C- no more than 5% of chord and no less than 1/4 average panel spacing
 SMOOL = MAX(1.0/MAX(CVAVG,20.0) , 0.25 /FLOAT(NPAN/2))
C
 SMOOSQ = (SMOOL*SBREF) ** 2
C
C---- set up tri-diagonal system for smoothed curvatures
 W2(1) = 1.0
 W3(1) = 0.0
 DO I=2, NB-1
 DSM = SB(I) - SB(I-1)
 DSP = SB(I+1) - SB(I)
 DSO = 0.5*(SB(I+1) - SB(I-1))
C
 IF(DSM.EQ.0.0 .OR. DSP.EQ.0.0) THEN
C------- leave curvature at corner point unchanged
 W1(I) = 0.0
 W2(I) = 1.0
 W3(I) = 0.0
 ELSE
 W1(I) = SMOOSQ * (- 1.0/DSM) / DSO
 W2(I) = SMOOSQ * (1.0/DSP + 1.0/DSM) / DSO + 1.0
 W3(I) = SMOOSQ * (-1.0/DSP) / DSO
 ENDIF
 ENDDO
C
 W1(NB) = 0.0
 W2(NB) = 1.0
C
C---- fix curvature at LE point by modifying equations adjacent to LE
 DO I=2, NB-1
 IF(SB(I).EQ.SBLE .OR. I.EQ.IBLE .OR. I.EQ.IBLE+1) THEN
C------- if node falls right on LE point, fix curvature there
 W1(I) = 0.
 W2(I) = 1.0
 W3(I) = 0.
 W5(I) = CVLE
 ELSE IF(SB(I-1).LT.SBLE .AND. SB(I).GT.SBLE) THEN
C------- modify equation at node just before LE point
 DSM = SB(I-1) - SB(I-2)
 DSP = SBLE - SB(I-1)
 DSO = 0.5*(SBLE - SB(I-2))
C
 W1(I-1) = SMOOSQ * (- 1.0/DSM) / DSO
 W2(I-1) = SMOOSQ * (1.0/DSP + 1.0/DSM) / DSO + 1.0
 W3(I-1) = 0.
 W5(I-1) = W5(I-1) + SMOOSQ*CVLE/(DSP*DSO)
C
C------- modify equation at node just after LE point
 DSM = SB(I) - SBLE
 DSP = SB(I+1) - SB(I)
 DSO = 0.5*(SB(I+1) - SBLE)
 W1(I) = 0.
 W2(I) = SMOOSQ * (1.0/DSP + 1.0/DSM) / DSO + 1.0
 W3(I) = SMOOSQ * (-1.0/DSP) / DSO
 W5(I) = W5(I) + SMOOSQ*CVLE/(DSM*DSO)
C
 GO TO 51
 ENDIF
 ENDDO
 51 CONTINUE
C
C---- set artificial curvature at bunching points and fix it there
 DO I=2, NB-1
C------ chord-based x/c coordinate
 XOC = ((XB(I)-XBLE)*(XBTE-XBLE)
 & + (YB(I)-YBLE)*(YBTE-YBLE)) / CHBSQ
C
 IF(SB(I).LT.SBLE) THEN
C------- check if top side point is in refinement area
 IF(XOC.GT.XSREF1 .AND. XOC.LT.XSREF2) THEN
 W1(I) = 0.
 W2(I) = 1.0
 W3(I) = 0.
 W5(I) = CVLE*CTRRAT
 ENDIF
 ELSE
C------- check if bottom side point is in refinement area
 IF(XOC.GT.XPREF1 .AND. XOC.LT.XPREF2) THEN
 W1(I) = 0.
 W2(I) = 1.0
 W3(I) = 0.
 W5(I) = CVLE*CTRRAT
 ENDIF
 ENDIF
 ENDDO
C
C---- solve for smoothed curvature array W5
 IF(IBLE.EQ.0) THEN
 CALL TRISOL(W2,W1,W3,W5,NB)
 ELSE
 I = 1
 CALL TRISOL(W2(I),W1(I),W3(I),W5(I),IBLE)
 I = IBLE+1
 CALL TRISOL(W2(I),W1(I),W3(I),W5(I),NB-IBLE)
 ENDIF
C
C---- find max curvature
 CVMAX = 0.
 DO I=1, NB
 CVMAX = MAX(CVMAX , ABS(W5(I)))
 ENDDO
C
C---- normalize curvature array
 DO I=1, NB
 W5(I) = W5(I) / CVMAX
 ENDDO
C
C---- spline curvature array
 CALL SEGSPL(W5,W6,SB,NB)
C
C---- Set initial guess for node positions uniform in s.
C More nodes than specified (by factor of IPFAC) are
C temporarily used for more reliable convergence.
 NN = IPFAC*(N-1)+1
C
C---- ratio of lengths of panel at TE to one away from the TE
 RDSTE = 0.667
 RTF = (RDSTE-1.0)*FLOAT(IPFAC) + 1.0
C
 IF(IBLE.EQ.0) THEN
C
 DSAVG = (SB(NB)-SB(1))/(FLOAT(NN-3) + 2.0*RTF)
 SNEW(1) = SB(1)
 DO I=2, NN-1
 SNEW(I) = SB(1) + DSAVG * (FLOAT(I-2) + RTF)
 ENDDO
 SNEW(NN) = SB(NB)
C
 ELSE
C
 NFRAC1 = (N * IBLE) / NB
C
 NN1 = IPFAC*(NFRAC1-1)+1
 DSAVG1 = (SBLE-SB(1))/(FLOAT(NN1-2) + RTF)
 SNEW(1) = SB(1)
 DO I=2, NN1
 SNEW(I) = SB(1) + DSAVG1 * (FLOAT(I-2) + RTF)
 ENDDO
C
 NN2 = NN - NN1 + 1
 DSAVG2 = (SB(NB)-SBLE)/(FLOAT(NN2-2) + RTF)
 DO I=2, NN2-1
 SNEW(I-1+NN1) = SBLE + DSAVG2 * (FLOAT(I-2) + RTF)
 ENDDO
 SNEW(NN) = SB(NB)
C
 ENDIF
C
C---- Newton iteration loop for new node positions
 DO 10 ITER=1, 20
C
C------ set up tri-diagonal system for node position deltas
 CV1 = SEVAL(SNEW(1),W5,W6,SB,NB)
 CV2 = SEVAL(SNEW(2),W5,W6,SB,NB)
 CVS1 = DEVAL(SNEW(1),W5,W6,SB,NB)
 CVS2 = DEVAL(SNEW(2),W5,W6,SB,NB)
C
 CAVM = SQRT(CV1**2 + CV2**2)
 IF(CAVM .EQ. 0.0) THEN
 CAVM_S1 = 0.
 CAVM_S2 = 0.
 ELSE
 CAVM_S1 = CVS1 * CV1/CAVM
 CAVM_S2 = CVS2 * CV2/CAVM
 ENDIF
C
 DO 110 I=2, NN-1
 DSM = SNEW(I) - SNEW(I-1)
 DSP = SNEW(I) - SNEW(I+1)
 CV3 = SEVAL(SNEW(I+1),W5,W6,SB,NB)
 CVS3 = DEVAL(SNEW(I+1),W5,W6,SB,NB)
C
 CAVP = SQRT(CV3**2 + CV2**2)
 IF(CAVP .EQ. 0.0) THEN
 CAVP_S2 = 0.
 CAVP_S3 = 0.
 ELSE
 CAVP_S2 = CVS2 * CV2/CAVP
 CAVP_S3 = CVS3 * CV3/CAVP
 ENDIF
C
 FM = CC*CAVM + 1.0
 FP = CC*CAVP + 1.0
C
 REZ = DSP*FP + DSM*FM
C
C-------- lower, main, and upper diagonals
 W1(I) = -FM + CC* DSM*CAVM_S1
 W2(I) = FP + FM + CC*(DSP*CAVP_S2 + DSM*CAVM_S2)
 W3(I) = -FP + CC* DSP*CAVP_S3
C
C-------- residual, requiring that
C (1 + C*curv)*deltaS is equal on both sides of node i
 W4(I) = -REZ
C
 CV1 = CV2
 CV2 = CV3
 CVS1 = CVS2
 CVS2 = CVS3
 CAVM = CAVP
 CAVM_S1 = CAVP_S2
 CAVM_S2 = CAVP_S3
 110 CONTINUE
C
C------ fix endpoints (at TE)
 W2(1) = 1.0
 W3(1) = 0.0
 W4(1) = 0.0
 W1(NN) = 0.0
 W2(NN) = 1.0
 W4(NN) = 0.0
C
 IF(RTF .NE. 1.0) THEN
C------- fudge equations adjacent to TE to get TE panel length ratio RTF
C
 I = 2
 W4(I) = -((SNEW(I) - SNEW(I-1)) + RTF*(SNEW(I) - SNEW(I+1)))
 W1(I) = -1.0
 W2(I) = 1.0 + RTF
 W3(I) = - RTF
C
 I = NN-1
 W4(I) = -((SNEW(I) - SNEW(I+1)) + RTF*(SNEW(I) - SNEW(I-1)))
 W3(I) = -1.0
 W2(I) = 1.0 + RTF
 W1(I) = - RTF
 ENDIF
C
C
C------ fix sharp LE point
 IF(IBLE.NE.0) THEN
 I = NN1
 W1(I) = 0.0
 W2(I) = 1.0
 W3(I) = 0.0
 W4(I) = SBLE - SNEW(I)
 ENDIF
C
C------ solve for changes W4 in node position arc length values
 CALL TRISOL(W2,W1,W3,W4,NN)
C
C------ find under-relaxation factor to keep nodes from changing order
 RLX = 1.0
 DMAX = 0.0
 DO I=1, NN-1
 DS = SNEW(I+1) - SNEW(I)
 DDS = W4(I+1) - W4(I)
 DSRAT = 1.0 + RLX*DDS/DS
 IF(DSRAT.GT.4.0) RLX = (4.0-1.0)*DS/DDS
 IF(DSRAT.LT.0.2) RLX = (0.2-1.0)*DS/DDS
 DMAX = MAX(ABS(W4(I)),DMAX)
 ENDDO
C
C------ update node position
 DO I=2, NN-1
 SNEW(I) = SNEW(I) + RLX*W4(I)
 ENDDO
C
CCC IF(RLX.EQ.1.0) WRITE(*,*) DMAX
CCC IF(RLX.NE.1.0) WRITE(*,*) DMAX,' RLX =',RLX
 IF(ABS(DMAX).LT.1.E-3) GO TO 11
 10 CONTINUE
 WRITE(*,*) 'Paneling convergence failed. Continuing anyway...'
C
 11 CONTINUE
C
C---- set new panel node coordinates
 DO I=1, N
 IND = IPFAC*(I-1) + 1
 S(I) = SNEW(IND)
 X(I) = SEVAL(SNEW(IND),XB,XBP,SB,NB)
 Y(I) = SEVAL(SNEW(IND),YB,YBP,SB,NB)
 ENDDO
C
C
C---- go over buffer airfoil again, checking for corners (double points)
 NCORN = 0
 DO 25 IB=1, NB-1
 IF(SB(IB) .EQ. SB(IB+1)) THEN
C------- found one !
C
 NCORN = NCORN+1
 XBCORN = XB(IB)
 YBCORN = YB(IB)
 SBCORN = SB(IB)
C
C------- find current-airfoil panel which contains corner
 DO 252 I=1, N
C
C--------- keep stepping until first node past corner
 IF(S(I) .LE. SBCORN) GO TO 252
C
C---------- move remainder of panel nodes to make room for additional node
 DO 2522 J=N, I, -1
 X(J+1) = X(J)
 Y(J+1) = Y(J)
 S(J+1) = S(J)
 2522 CONTINUE
 N = N+1
C
 IF(N .GT. IQX-1)
 & STOP 'PANEL: Too many panels. Increase IQX in XFOIL.INC'
C
 X(I) = XBCORN
 Y(I) = YBCORN
 S(I) = SBCORN
C
C---------- shift nodes adjacent to corner to keep panel sizes comparable
 IF(I-2 .GE. 1) THEN
 S(I-1) = 0.5*(S(I) + S(I-2))
 X(I-1) = SEVAL(S(I-1),XB,XBP,SB,NB)
 Y(I-1) = SEVAL(S(I-1),YB,YBP,SB,NB)
 ENDIF
C
 IF(I+2 .LE. N) THEN
 S(I+1) = 0.5*(S(I) + S(I+2))
 X(I+1) = SEVAL(S(I+1),XB,XBP,SB,NB)
 Y(I+1) = SEVAL(S(I+1),YB,YBP,SB,NB)
 ENDIF
C
C---------- go on to next input geometry point to check for corner
 GO TO 25
C
 252 CONTINUE
 ENDIF
 25 CONTINUE
C
 CALL SCALC(X,Y,S,N)
 CALL SEGSPL(X,XP,S,N)
 CALL SEGSPL(Y,YP,S,N)
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
C
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
 CHORD = SQRT((XTE-XLE)**2 + (YTE-YLE)**2)
C
C---- calculate panel size ratios (user info)
 DSMIN = 1000.0
 DSMAX = -1000.0
 DO 40 I=1, N-1
 DS = S(I+1)-S(I)
 IF(DS .EQ. 0.0) GO TO 40
 DSMIN = MIN(DSMIN,DS)
 DSMAX = MAX(DSMAX,DS)
 40 CONTINUE
C
 DSMIN = DSMIN*FLOAT(N-1)/S(N)
 DSMAX = DSMAX*FLOAT(N-1)/S(N)
ccc WRITE(*,*) 'DSmin/DSavg = ',DSMIN,' DSmax/DSavg = ',DSMAX
C
C---- set various flags for new airfoil
 LGAMU = .FALSE.
 LQINU = .FALSE.
 LWAKE = .FALSE.
 LQAIJ = .FALSE.
 LADIJ = .FALSE.
 LWDIJ = .FALSE.
 LIPAN = .FALSE.
 LBLINI = .FALSE.
 LVCONV = .FALSE.
 LSCINI = .FALSE.
 LQSPEC = .FALSE.
 LGSAME = .FALSE.
C
 IF(LBFLAP) THEN
 XOF = XBF
 YOF = YBF
 LFLAP = .TRUE.
 ENDIF
C
C---- determine if TE is blunt or sharp, calculate TE geometry parameters
 CALL TECALC
C
C---- calculate normal vectors
 CALL NCALC(X,Y,S,N,NX,NY)
C
C---- calculate panel angles for panel routines
 CALL APCALC
C
 IF(SHARP) THEN
 WRITE(*,1090) 'Sharp trailing edge'
 ELSE
 GAP = SQRT((X(1)-X(N))**2 + (Y(1)-Y(N))**2)
 WRITE(*,1090) 'Blunt trailing edge. Gap =', GAP
 ENDIF
 1090 FORMAT(/1X,A,F9.5)
C
 IF(SHOPAR) WRITE(*,1100) NPAN, CVPAR, CTERAT, CTRRAT,
 & XSREF1, XSREF2, XPREF1, XPREF2
 1100 FORMAT(/' Paneling parameters used...'
 & /' Number of panel nodes ' , I4
 & /' Panel bunching parameter ' , F6.3
 & /' TE/LE panel density ratio ' , F6.3
 & /' Refined-area/LE panel density ratio ' , F6.3
 & /' Top side refined area x/c limits ' , 2F6.3
 & /' Bottom side refined area x/c limits ' , 2F6.3)
C
 RETURN
 END ! PANGEN

 SUBROUTINE GETPAN
 INCLUDE 'XFOIL.INC'
 LOGICAL LCHANGE
 CHARACTER*4 VAR
 CHARACTER*128 COMARG
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR
C
 IF(NB.LE.1) THEN
 WRITE(*,*) 'GETPAN: Buffer airfoil not available.'
 RETURN
 ENDIF
C
 5 CONTINUE
 IF(N.LE.1) THEN
 WRITE(*,*) 'No current airfoil to plot'
 ELSE
 CALL PANPLT
 ENDIF
 LCHANGE = .FALSE.
C
 10 WRITE(*,1000) NPAN, CVPAR, CTERAT, CTRRAT,
 & XSREF1, XSREF2, XPREF1, XPREF2
 1000 FORMAT(
 & /' Present paneling parameters...'
 & /' N i Number of panel nodes ' , I4
 & /' P r Panel bunching parameter ' , F6.3
 & /' T r TE/LE panel density ratio ' , F6.3
 & /' R r Refined area/LE panel density ratio ' , F6.3
 & /' XT rr Top side refined area x/c limits ' , 2F6.3
 & /' XB rr Bottom side refined area x/c limits ' , 2F6.3
 & /' Z oom'
 & /' U nzoom')
C
 12 CALL ASKC('Change what ? (<cr> if nothing else)^',VAR,COMARG)
C
 IF(VAR.EQ.'Z ') THEN
 CALL USETZOOM(.TRUE.,.TRUE.)
 CALL REPLOT(IDEV)
 GO TO 12
 ENDIF
C
 IF(VAR.EQ.'U ') THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
 GO TO 12
 ENDIF
C
C
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 0
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 0
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
 IF (VAR.EQ.' ') THEN
C
 IF(LCHANGE) THEN
C
C-------- set new panel distribution, and display max panel corner angle
 CALL PANGEN(.FALSE.)
 IF(N.GT.0) CALL CANG(X,Y,N,1,IMAX,AMAX)
C
C-------- go back to paneling menu
 GO TO 5
 ENDIF
C
 CALL CLRZOOM
 RETURN
C
 ELSE IF(VAR.EQ.'N ' .OR. VAR.EQ.'n ') THEN
C
 IF(NINPUT.GE.1) THEN
 NPAN = IINPUT(1)
 ELSE
 CALL ASKI('Enter number of panel nodes^',NPAN)
 ENDIF
 IF(NPAN .GT. IQX-6) THEN
 NPAN = IQX - 6
 WRITE(*,1200) NPAN
 1200 FORMAT(1X,' Number of panel nodes reduced to array limit:',I4)
 ENDIF
 LCHANGE = .TRUE.
C
 ELSE IF(VAR.EQ.'P ' .OR. VAR.EQ.'p ') THEN
C
 IF(NINPUT.GE.1) THEN
 CVPAR = RINPUT(1)
 ELSE
 CALL ASKR('Enter panel bunching parameter (0 to ~1)^',CVPAR)
 ENDIF
 LCHANGE = .TRUE.
C
 ELSE IF(VAR.EQ.'T ' .OR. VAR.EQ.'t ') THEN
C
 IF(NINPUT.GE.1) THEN
 CTERAT = RINPUT(1)
 ELSE
 CALL ASKR('Enter TE/LE panel density ratio^',CTERAT)
 ENDIF
 LCHANGE = .TRUE.
C
 ELSE IF(VAR.EQ.'R ' .OR. VAR.EQ.'r ') THEN
C
 IF(NINPUT.GE.1) THEN
 CTRRAT = RINPUT(1)
 ELSE
 CALL ASKR('Enter refined-area panel density ratio^',CTRRAT)
 ENDIF
 LCHANGE = .TRUE.
C
 ELSE IF(VAR.EQ.'XT ' .OR. VAR.EQ.'xt ') THEN
C
 IF(NINPUT.GE.2) THEN
 XSREF1 = RINPUT(1)
 XSREF2 = RINPUT(2)
 ELSE
 CALL ASKR('Enter left top side refinement limit^',XSREF1)
 CALL ASKR('Enter right top side refinement limit^',XSREF2)
 ENDIF
 LCHANGE = .TRUE.
C
 ELSE IF(VAR.EQ.'XB ' .OR. VAR.EQ.'xb ') THEN
C
 IF(NINPUT.GE.2) THEN
 XPREF1 = RINPUT(1)
 XPREF2 = RINPUT(2)
 ELSE
 CALL ASKR('Enter left bottom side refinement limit^',XPREF1)
 CALL ASKR('Enter right bottom side refinement limit^',XPREF2)
 ENDIF
 LCHANGE = .TRUE.
C
 ELSE
C
 WRITE(*,*)
 WRITE(*,*) '*** Input not recognized ***'
 GO TO 10
C
 ENDIF
C
 GO TO 12
C
 END ! GETPAN

 SUBROUTINE TECALC
C---
C Calculates total and projected TE gap
C areas and TE panel strengths.
C---
 INCLUDE 'XFOIL.INC'
C
C---- set TE base vector and TE bisector components
 DXTE = X(1) - X(N)
 DYTE = Y(1) - Y(N)
 DXS = 0.5*(-XP(1) + XP(N))
 DYS = 0.5*(-YP(1) + YP(N))
C
C---- normal and streamwise projected TE gap areas
 ANTE = DXS*DYTE - DYS*DXTE
 ASTE = DXS*DXTE + DYS*DYTE
C
C---- total TE gap area
 DSTE = SQRT(DXTE**2 + DYTE**2)
C
 SHARP = DSTE .LT. 0.0001*CHORD
C
 IF(SHARP) THEN
 SCS = 1.0
 SDS = 0.0
 ELSE
 SCS = ANTE/DSTE
 SDS = ASTE/DSTE
 ENDIF
C
C---- TE panel source and vorticity strengths
 SIGTE = 0.5*(GAM(1) - GAM(N))*SCS
 GAMTE = -.5*(GAM(1) - GAM(N))*SDS
C
 SIGTE_A = 0.5*(GAM_A(1) - GAM_A(N))*SCS
 GAMTE_A = -.5*(GAM_A(1) - GAM_A(N))*SDS
C
 RETURN
 END ! TECALC

 SUBROUTINE INTE
C---
C Interpolates two airfoils into an intermediate shape.
C Extrapolation is also possible to a reasonable extent.
C---
 INCLUDE 'XFOIL.INC'
 CHARACTER*2 CAIR
 INTEGER NINT(2)
 REAL SINT(IBX,2),
 & XINT(IBX,2), XPINT(IBX,2),
 & YINT(IBX,2), YPINT(IBX,2),
 & SLEINT(2)
 CHARACTER*20 PROMPTN
 CHARACTER*48 NAMEINT(2)
 CHARACTER*80 ISPARST
C
 LU = 21
C
 1000 FORMAT(A)
C
 WRITE(*,1100) NAME
 DO IP=1, NPOL
 IF(NXYPOL(IP).GT.0) THEN
 WRITE(*,1200) IP, NAMEPOL(IP)
 ENDIF
 ENDDO
 IF (NPOL.EQ.0) THEN
 PROMPTN = '" (F C): '
 NPR = 12
 ELSEIF(NPOL.EQ.1) THEN
 PROMPTN = '" (F C 1): '
 NPR = 14
 ELSEIF(NPOL.EQ.2) THEN
 PROMPTN = '" (F C 1 2): '
 NPR = 16
 ELSE
 PROMPTN = '" (F C 1 2..): '
 NPR = 18
 ENDIF
C
 1100 FORMAT(/ ' F disk file'
 & / ' C current airfoil ', A)
 1200 FORMAT(1X,I2,' polar airfoil ', A)
C
 2100 FORMAT(/' Select source of airfoil "',I1, A, $)
C
 DO 40 K = 1, 2
 IAIR = K - 1
 20 WRITE(*,2100) IAIR, PROMPTN(1:NPR)
 READ(*,1000) CAIR
C
 IF (INDEX('Ff',CAIR(1:1)).NE.0) THEN
 CALL ASKS('Enter filename^',FNAME)
 CALL AREAD(LU,FNAME,IBX,
 & XINT(1,K),YINT(1,K),NINT(K),
 & NAMEINT(K),ISPARST,ITYPE,0)
 IF(ITYPE.EQ.0) RETURN
C
 ELSEIF(INDEX('Cc',CAIR(1:1)).NE.0) THEN
 IF(N.LE.1) THEN
 WRITE(*,*) 'No current airfoil available'
 GO TO 20
 ENDIF
C
 NINT(K) = N
 DO I = 1, N
 XINT(I,K) = X(I)
 YINT(I,K) = Y(I)
 ENDDO
 NAMEINT(K) = NAME
C
 ELSE
 READ(CAIR,*,ERR=90) IP
 IF(IP.LT.1 .OR. IP.GT.NPOL) THEN
 GO TO 90
 ELSEIF(NXYPOL(IP).LE.0) THEN
 GO TO 90
 ELSE
 NINT(K) = NXYPOL(IP)
 DO I = 1, N
 XINT(I,K) = CPOLXY(I,1,IP)
 YINT(I,K) = CPOLXY(I,2,IP)
 ENDDO
 ENDIF
 NAMEINT(K) = NAMEPOL(IP)
C
 ENDIF
C
 CALL SCALC(XINT(1,K),YINT(1,K),SINT(1,K),NINT(K))
 CALL SEGSPLD(XINT(1,K),XPINT(1,K),SINT(1,K),NINT(K),-999.,-999.)
 CALL SEGSPLD(YINT(1,K),YPINT(1,K),SINT(1,K),NINT(K),-999.,-999.)
 CALL LEFIND(SLEINT(K),
 & XINT(1,K),XPINT(1,K),
 & YINT(1,K),YPINT(1,K),SINT(1,K),NINT(K))
 40 CONTINUE
C
 WRITE(*,*)
 WRITE(*,*) 'airfoil "0": ', NAMEINT(1)
 WRITE(*,*) 'airfoil "1": ', NAMEINT(2)
 FRAC = 0.5
 CALL ASKR('Specify interpolating fraction 0...1^',FRAC)
C
 CALL INTER(XINT(1,1),XPINT(1,1),
 & YINT(1,1),YPINT(1,1),SINT(1,1),NINT(1),SLEINT(1),
 & XINT(1,2),XPINT(1,2),
 & YINT(1,2),YPINT(1,2),SINT(1,2),NINT(2),SLEINT(2),
 & XB,YB,NB,FRAC)
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB, W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL ASKS('Enter new airfoil name^',NAME)
 CALL STRIP(NAME,NNAME)
 WRITE(*,*)
 WRITE(*,*) 'Result has been placed in buffer airfoil'
 WRITE(*,*) 'Execute PCOP or PANE to set new current airfoil'
 RETURN
C
 90 CONTINUE
 WRITE(*,*)
 WRITE(*,*) 'Invalid response'
 RETURN
 END ! INTE

 SUBROUTINE INTX
C---
C Interpolates two airfoils into an intermediate shape.
C Extrapolation is also possible to a reasonable extent.
C---
 INCLUDE 'XFOIL.INC'
 CHARACTER*2 CAIR
 INTEGER NINT(2)
 REAL SINT(IBX,2),
 & XINT(IBX,2), XPINT(IBX,2),
 & YINT(IBX,2), YPINT(IBX,2),
 & SLEINT(2)
 CHARACTER*20 PROMPTN
 CHARACTER*48 NAMEINT(2)
 CHARACTER*80 ISPARST
C
 LU = 21
C
 1000 FORMAT(A)
C
 WRITE(*,1100) NAME
 DO IP=1, NPOL
 IF(NXYPOL(IP).GT.0) THEN
 WRITE(*,1200) IP, NAMEPOL(IP)
 ENDIF
 ENDDO
 IF (NPOL.EQ.0) THEN
 PROMPTN = '" (F C): '
 NPR = 12
 ELSEIF(NPOL.EQ.1) THEN
 PROMPTN = '" (F C 1): '
 NPR = 14
 ELSEIF(NPOL.EQ.2) THEN
 PROMPTN = '" (F C 1 2): '
 NPR = 16
 ELSE
 PROMPTN = '" (F C 1 2..): '
 NPR = 18
 ENDIF
C
 1100 FORMAT(/ ' F disk file'
 & / ' C current airfoil ', A)
 1200 FORMAT(1X,I2,' polar airfoil ', A)
C
 2100 FORMAT(/' Select source of airfoil "',I1, A, $)
C
 DO 40 K = 1, 2
 IAIR = K - 1
 20 WRITE(*,2100) IAIR, PROMPTN(1:NPR)
 READ(*,1000) CAIR
C
 IF (INDEX('Ff',CAIR(1:1)).NE.0) THEN
 CALL ASKS('Enter filename^',FNAME)
 CALL AREAD(LU,FNAME,IBX,
 & XINT(1,K),YINT(1,K),NINT(K),
 & NAMEINT(K),ISPARST,ITYPE,0)
 IF(ITYPE.EQ.0) RETURN
C
 ELSEIF(INDEX('Cc',CAIR(1:1)).NE.0) THEN
 IF(N.LE.1) THEN
 WRITE(*,*) 'No current airfoil available'
 GO TO 20
 ENDIF
C
 NINT(K) = N
 DO I = 1, N
 XINT(I,K) = X(I)
 YINT(I,K) = Y(I)
 ENDDO
 NAMEINT(K) = NAME
C
 ELSE
 READ(CAIR,*,ERR=90) IP
 IF(IP.LT.1 .OR. IP.GT.NPOL) THEN
 GO TO 90
 ELSEIF(NXYPOL(IP).LE.0) THEN
 GO TO 90
 ELSE
 NINT(K) = NXYPOL(IP)
 DO I = 1, N
 XINT(I,K) = CPOLXY(I,1,IP)
 YINT(I,K) = CPOLXY(I,2,IP)
 ENDDO
 ENDIF
 NAMEINT(K) = NAMEPOL(IP)
C
 ENDIF
C
 CALL SCALC(XINT(1,K),YINT(1,K),SINT(1,K),NINT(K))
 CALL SEGSPLD(XINT(1,K),XPINT(1,K),SINT(1,K),NINT(K),-999.,-999.)
 CALL SEGSPLD(YINT(1,K),YPINT(1,K),SINT(1,K),NINT(K),-999.,-999.)
 CALL LEFIND(SLEINT(K),
 & XINT(1,K),XPINT(1,K),
 & YINT(1,K),YPINT(1,K),SINT(1,K),NINT(K))
 40 CONTINUE
C
 WRITE(*,*)
 WRITE(*,*) 'airfoil "0": ', NAMEINT(1)
 WRITE(*,*) 'airfoil "1": ', NAMEINT(2)
 FRAC = 0.5
 CALL ASKR('Specify interpolating fraction 0...1^',FRAC)
C
 CALL INTERX(XINT(1,1),XPINT(1,1),
 & YINT(1,1),YPINT(1,1),SINT(1,1),NINT(1),SLEINT(1),
 & XINT(1,2),XPINT(1,2),
 & YINT(1,2),YPINT(1,2),SINT(1,2),NINT(2),SLEINT(2),
 & XB,YB,NB,FRAC)
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB, W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL ASKS('Enter new airfoil name^',NAME)
 CALL STRIP(NAME,NNAME)
 WRITE(*,*)
 WRITE(*,*) 'Result has been placed in buffer airfoil'
 WRITE(*,*) 'Execute PCOP or PANE to set new current airfoil'
 RETURN
C
 90 CONTINUE
 WRITE(*,*)
 WRITE(*,*) 'Invalid response'
 RETURN
 END ! INTX

XFOILinterface/XFOIL/src/xgdes.f

C***
C Module: xgdes.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
 SUBROUTINE GDES
 INCLUDE 'XFOIL.INC'
 CHARACTER*4 COMAND, COMOLD
 LOGICAL LRECALC, LMODPL, LPLNEW
 DIMENSION XBOX(2), YBOX(2), XRF(2)
C
 CHARACTER*128 COMARG, ARGOLD
 CHARACTER*1 CHKEY
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR
C
 EXTERNAL NEWPLOTG
C
 SAVE COMOLD, ARGOLD
C
 COMAND = '****'
 COMARG = ' '
 LRECALC = .FALSE.
C
 IF(NB.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) '*** No airfoil available ***'
 RETURN
 ENDIF
C
 LPLCAM = .FALSE.
 LSYM = .TRUE.
C
 WRITE(*,*)
 WRITE(*,*) 'You are working with the buffer airfoil'
C
 CALL PLTINI
 CALL GOFINI
 CALL PLOTG
C
C==
C---- start of menu loop
 500 CONTINUE
 COMOLD = COMAND
 ARGOLD = COMARG
C
 501 IF(LGSYM) THEN
 CALL ASKC('.GDESs^',COMAND,COMARG)
 ELSE
 CALL ASKC('.GDES^',COMAND,COMARG)
 ENDIF
C
C--
C---- process previous command ?
 IF(COMAND(1:1).EQ.'!') THEN
 IF(COMOLD.EQ.'****') THEN
 WRITE(*,*) 'Previous .GDES command not valid'
 GO TO 501
 ELSE
 COMAND = COMOLD
 COMARG = ARGOLD
 LRECALC = .TRUE.
 ENDIF
 ELSE
 LRECALC = .FALSE.
 ENDIF
C
 IF(COMAND.EQ.' ') THEN
C----- just <return> was typed... clean up plotting and exit OPER
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 LGSYM = .FALSE.
 LGEOPL = .FALSE.
 IF(.NOT.LGSAME) THEN
 WRITE(*,*)
 WRITE(*,*) 'Buffer airfoil is not identical to current airfoil'
 ENDIF
 CALL CLRZOOM
 RETURN
 ENDIF
C
C---- extract command line numeric arguments
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 20
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 20
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
C--
 IF(COMAND.EQ.'? ') THEN
 WRITE(*,1050)
 1050 FORMAT(
 & /' <cr> Return to Top Level'
 & /' ! Redo previous command'
 &//' GSET Set buffer airfoil <== current airfoil'
 & /' eXec Set current airfoil <== buffer airfoil'
 & /' SYMM Toggle y-symmetry flag'
 &//' ADEG r Rotate about origin (degrees)'
 & /' ARAD r Rotate about origin (radians)'
 & /' Tran rr Translate'
 & /' Scal r Scale about origin'
 & /' LINS rr. Linearly-varying y scale'
 & /' DERO Derotate (set chord line level)'
 &//' TGAP rr Change trailing edge gap'
 & /' LERA rr Change leading edge radius'
 &//' TCPL Toggle thickness and camber plotting'
 & /' TFAC rr Scale existing thickness and camber'
 & /' TSET rr Set new thickness and camber'
 & /' HIGH rr Move camber and thickness highpoints'
 & /' .CAMB Modify camber shape directly or via loading'
 &//' Flap rrr Deflect trailing edge flap'
 &//' Modi Modify contour via cursor'
 & /' SLOP Toggle modified-contour slope matching flag'
 &//' CORN Double point with cursor (set sharp corner)'
 & /' ADDP Add point with cursor or keyboard x,y'
 & /' MOVP Move point with cursor or keyboard x,y'
 & /' DELP Delete point with cursor'
 &//' UNIT Normalize buffer airfoil to unit chord'
 & /' Dist Determine distance between 2 cursor points'
 & /' CLIS List curvatures'
 & /' CPLO Plot curvatures'
 & /' CANG List panel corner angles'
 & /' CADD ri. Add points at corners exceeding angle threshold'
 &//' Plot Replot buffer airfoil'
 & /' INPL Replot buffer airfoil without scaling (in inches)'
 & /' Blow Blowup plot region'
 & /' Rese Reset plot scale and origin'
 & /' Wind Plot window adjust via cursor and keys'
 &//' TSIZ r Change tick-mark size'
 & /' TICK Toggle node tick-mark plotting'
 & /' GRID Toggle grid plotting'
 & /' GPAR Toggle geometric parameter plotting'
 & /' Over f Overlay disk file airfoil'
 &//' SIZE r Change absolute plot-object size'
 & /' .ANNO Annotate plot'
 & /' HARD Hardcopy current plot'
 &//' NAME s Specify new airfoil name'
 & /' NINC Increment name version number')

C
C--
 ELSEIF(COMAND.EQ.'Z ') THEN
 CALL USETZOOM(.TRUE.,.TRUE.)
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'U ') THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'GSET') THEN
 NB = N
 DO I=1, NB
 XB(I) = X(I)
 YB(I) = Y(I)
 ENDDO
 LGSAME = .TRUE.
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL PLTINI
 CALL PLOTG
 IF(LGSYM) CALL ZERCAM
C
C--
 ELSEIF(COMAND.EQ.'EXEC' .OR.
 & COMAND.EQ.'X ') THEN
 CALL ABCOPY(.TRUE.)
cc CALL NAMMOD(NAME,1,1)
cc CALL STRIP(NAME,NNAME)
C
C--
 ELSEIF(COMAND.EQ.'SYMM') THEN
 LGSYM = .NOT.LGSYM
 IF(LGSYM) THEN
 WRITE(*,*) 'y-symmetry forcing enabled.'
 CALL ZERCAM
 ELSE
 WRITE(*,*) 'y-symmetry forcing disabled.'
 ENDIF
C
C===
C---- rotate airfoil by degrees
 ELSEIF(COMAND.EQ.'ADEG' .OR.
 & COMAND.EQ.'ARAD') THEN
 IF(COMAND.EQ.'ADEG') THEN
 IF(NINPUT.GE.1) THEN
 ADEG = RINPUT(1)
 ELSE
 ADEG = 0.0
 CALL ASKR('Enter angle change (deg)^',ADEG)
 ENDIF
 ARAD = ADEG*PI/180.0
 ELSE
 IF(NINPUT.GE.1) THEN
 ARAD = RINPUT(1)
 ELSE
 ARAD = 0.0
 CALL ASKR('Enter angle change (rad)^',ARAD)
 ENDIF
 ENDIF
C
 CALL ROTATE(XB,YB,NB,ARAD)
CCC CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 APX1BA = APX1BA - ARAD
 APX2BA = APX2BA - ARAD
 APX1BT = APX1BT - ARAD
 APX2BT = APX2BT - ARAD
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'TRAN' .OR.
 & COMAND.EQ.'T ') THEN
 IF (NINPUT.GE.2) THEN
 DELX = RINPUT(1)
 DELY = RINPUT(2)
 ELSEIF(NINPUT.GE.1) THEN
 DELX = RINPUT(1)
 DELY = 0.0
 CALL ASKR('Enter delta(y)^',DELY)
 ELSE
 DELX = 0.0
 CALL ASKR('Enter delta(x)^',DELX)
 DELY = 0.0
 CALL ASKR('Enter delta(y)^',DELY)
 ENDIF
 DO I=1, NB
 XB(I) = XB(I) + DELX
 YB(I) = YB(I) + DELY
 ENDDO
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'SCAL' .OR.
 & COMAND.EQ.'S ') THEN
 IF(NINPUT.GE.1) THEN
 FAC = RINPUT(1)
 XXFAC = FAC
 YYFAC = FAC
 ELSE
 FAC = 1.0
 CALL ASKR('Enter scale factor (0 for separate x,y scales)^',FAC)
 XXFAC = FAC
 YYFAC = FAC
 ENDIF
C
 IF(FAC .EQ. 0.0) THEN
 IF(NINPUT.GE.3) THEN
 XXFAC = RINPUT(2)
 YYFAC = RINPUT(3)
 ELSE
 XXFAC = 1.0
 CALL ASKR('Enter x scale factor^',XXFAC)
 YYFAC = 1.0
 CALL ASKR('Enter y scale factor^',YYFAC)
 ENDIF
 ENDIF
C
 DO I=1, NB
 XB(I) = XB(I)*XXFAC
 YB(I) = YB(I)*YYFAC
 ENDDO
C
C----- re-order if necessary to maintain counterclockwise ordering
 IF(XXFAC*YYFAC .LT. 0.0) THEN
 DO I=1, NB/2
 XTMP = XB(I)
 YTMP = YB(I)
 XB(I) = XB(NB-I+1)
 YB(I) = YB(NB-I+1)
 XB(NB-I+1) = XTMP
 YB(NB-I+1) = YTMP
 ENDDO
 ENDIF
C
C----- re-spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'LINS') THEN
 40 CONTINUE
 IF(NINPUT.GE.4) THEN
 XOC1 = RINPUT(1)
 YFAC1 = RINPUT(2)
 XOC2 = RINPUT(3)
 YFAC2 = RINPUT(4)
 ELSE
 1001 FORMAT(/1X,A,$)
 41 WRITE(*,1001) 'Location 1... enter x/c, y-scale : '
 READ(*,*,ERR=41) XOC1, YFAC1
 42 WRITE(*,1001) 'Location 2... enter x/c, y-scale : '
 READ(*,*,ERR=42) XOC2, YFAC2
 ENDIF
C
 IF(ABS(XOC1-XOC2) .LT. 1.0E-5) THEN
 WRITE(*,*) 'x/c locations 1 and 2 must be different'
 NINPUT = 0
 GO TO 40
 ENDIF
C
 CALL LEFIND(SBLE,XB,XBP,YB,YBP,SB,NB)
 XLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XTE = 0.5*(XB(1) + XB(NB))
 YTE = 0.5*(YB(1) + YB(NB))
 DO I=1, NB
 XOC = (XB(I)-XLE) / (XTE-XLE)
 FR1 = (XOC2-XOC)/(XOC2-XOC1)
 FR2 = (XOC -XOC1)/(XOC2-XOC1)
 YYFAC = FR1*YFAC1 + FR2*YFAC2
 YB(I) = YB(I)*YYFAC
 ENDDO
C
C----- re-spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'DERO') THEN
 CALL LEFIND(SBLE,XB,XBP,YB,YBP,SB,NB)
 XLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XTE = 0.5*(XB(1) + XB(NB))
 YTE = 0.5*(YB(1) + YB(NB))
C
 ARAD = ATAN2(YTE-YLE,XTE-XLE)
 CALL ROTATE(XB,YB,NB,ARAD)
 WRITE(*,1080) ARAD / DTOR
 1080 FORMAT(/'Rotating buffer airfoil by ',F8.3,' deg.')
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'TGAP') THEN
 CALL TGAP(RINPUT,NINPUT)
C
C--
 ELSEIF(COMAND.EQ.'LERA') THEN
 CALL LERAD(RINPUT,NINPUT)
C
C--
cc ELSEIF(COMAND.EQ.'TC ') THEN
cc CALL TCBUF
C
C--
 ELSEIF(COMAND.EQ.'TCPL') THEN
 LPLCAM = .NOT.LPLCAM
 CALL PLTINI
 CALL GOFINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'TFAC') THEN
 IF(.NOT.LPLCAM) THEN
 WRITE(*,*) 'Enabling camber,thickness plotting'
 LPLCAM = .TRUE.
 CALL PLTINI
 CALL GOFINI
 CALL PLOTG
 ENDIF
 CALL TCSCAL(RINPUT,NINPUT)
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 CALL PLTCAM('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'TSET') THEN
 IF(.NOT.LPLCAM) THEN
 WRITE(*,*) 'Enabling camber,thickness plotting'
 LPLCAM = .TRUE.
 CALL PLTINI
 CALL GOFINI
 CALL PLOTG
 ENDIF
 CALL TCSET(RINPUT,NINPUT)
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 CALL PLTCAM('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'HIGH') THEN
 IF(.NOT.LPLCAM) THEN
 WRITE(*,*) 'Enabling camber,thickness plotting'
 LPLCAM = .TRUE.
 CALL PLTINI
 CALL GOFINI
 CALL PLOTG
 ENDIF
 CALL HIPNT(RINPUT,NINPUT)
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 CALL PLTCAM('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'CAMB') THEN
 IF(LGSYM) THEN
 WRITE(*,*) 'Disabling symmetry enforcement.'
 LGSYM = .FALSE.
 ENDIF
 CALL CAMB
C
C--
 ELSEIF(COMAND.EQ.'CANG') THEN
 CALL CANG(XB,YB,NB,2, IMAX,AMAX)
C
C--
 ELSEIF(COMAND.EQ.'CADD') THEN
 CALL CANG(XB,YB,NB,2, IMAX,AMAX)
 WRITE(*,*)
C
 XBMIN = XB(1)
 XBMAX = XB(1)
 DO I=1, NB
 XBMIN = MIN(XBMIN,XB(I))
 XBMAX = MAX(XBMAX,XB(I))
 ENDDO
C
C----- default inputs
 ATOL = 0.5*AMAX
 ISPL = 1
 XRF(1) = XBMIN - 0.1*(XBMAX-XBMIN)
 XRF(2) = XBMAX + 0.1*(XBMAX-XBMIN)
C
 IF (NINPUT.LE.0) THEN
 GO TO 70
 ELSEIF(NINPUT.LE.1) THEN
 ATOL = RINPUT(1)
 GO TO 71
 ELSEIF(NINPUT.LE.2) THEN
 ATOL = RINPUT(1)
 ISPL = IINPUT(2)
 GO TO 72
 ELSEIF(NINPUT.LE.4) THEN
 ATOL = RINPUT(1)
 ISPL = IINPUT(2)
 XRF(1) = RINPUT(3)
 XRF(2) = RINPUT(4)
 GO TO 74
 ENDIF
C
 70 WRITE(*,1090) ATOL
 1090 FORMAT(1X,
 & 'Enter corner angle criterion for refinement (deg):', F8.3)
 CALL READR(1,ATOL,ERROR)
 IF(ERROR) GO TO 70
C
 71 WRITE(*,1091) ISPL
 1091 FORMAT(1X,
 & 'Enter type of spline parameter (1=uniform, 2=arclength):', I4)
 CALL READI(1,ISPL,ERROR)
 IF(ERROR) GO TO 71
 IF(ISPL.LE.0) GO TO 500
 IF(ISPL.GT.2) GO TO 71
C
 72 WRITE(*,1092) XRF(1), XRF(2)
 1092 FORMAT(1X,
 & 'Enter refinement x limits:', 2F10.5)
 CALL READR(2,XRF,ERROR)
 IF(ERROR) GO TO 72
C
 74 CONTINUE
 IF(ISPL.EQ.1) THEN
 SB(1) = 0.0
 DO I = 2, NB
 IF(XB(I).EQ.XB(I-1) .AND. YB(I).EQ.YB(I-1)) THEN
 SB(I) = SB(I-1)
 ELSE
 SB(I) = SB(I-1) + 1.0
 ENDIF
 ENDDO
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
 ENDIF
C
 CALL AREFINE(XB,YB,SB,XBP,YBP,NB, ATOL,
 & IBX,NNEW,W1,W2,XRF(1),XRF(2))
C
 NBADD = NNEW - NB
 WRITE(*,*) 'Number of points added: ', NBADD
C
 NB = NNEW
 DO I = 1, NB
 XB(I) = W1(I)
 YB(I) = W2(I)
 ENDDO
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
C
 CALL CANG(XB,YB,NB,1, IMAX,AMAX)
C
C--
 ELSEIF(COMAND.EQ.'CLIS') THEN
 CALL CLIS(XB,XBP,YB,YBP,SB,NB)
C
C--
 ELSEIF(COMAND.EQ.'CPLO') THEN
 CALL PLTCRV(SBLE,XB,XBP,YB,YBP,SB,NB,W1)
C
C--
 ELSEIF(COMAND.EQ.'FLAP' .OR.
 & COMAND.EQ.'F ') THEN
 CALL FLAP(RINPUT,NINPUT)
C
C--
 ELSEIF(COMAND.EQ.'MODI' .OR.
 & COMAND.EQ.'M ') THEN
C----- plot current geometry if it's not on the screen
 IF(.NOT.LGEOPL) THEN
 CALL PLTINI
 CALL PLOTG
 ENDIF
C
 IF(LGSYM) THEN
 DO I = 1, NB
 W1(I) = XB(I)
 W2(I) = YB(I)
 ENDDO
 ENDIF
C
 IBFRST = 1
 IBLAST = NB
 NSIDE = 1
 XBOX(1) = XMARG
 XBOX(2) = XPAGE-XMARG
 YBOX(1) = YMARG
 YBOX(2) = YPAGE-YMARG
 LMODPL = .FALSE.
 CALL MODIXY(IBX,IBFRST,IBLAST,NSIDE,
 & XB,YB,XBP,YBP,SB, LGSLOP,
 & IGMOD1,IGMOD2,ISMOD,
 & XBOX,YBOX, XBOX,YBOX,SIZE,
 & XOFF,YOFF,XSF,YSF, LMODPL,
 & NEWPLOTG)
C
 IF(LGSYM) THEN
 DO I = 1, NB
 XBDEL = XB(I) - W1(I)
 YBDEL = YB(I) - W2(I)
 XB(I) = XB(I) + XBDEL
 YB(I) = YB(I) + YBDEL
 ENDDO
 CALL ZERCAM
 ENDIF
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'SLOP') THEN
 LGSLOP = .NOT.LGSLOP
 IF(LGSLOP) THEN
 WRITE(*,*) 'Modified segment will be',
 & ' made tangent at endpoints'
 ELSE
 WRITE(*,*) 'Modified segment will not be',
 & ' made tangent at endpoints'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'CORN') THEN
 IF(NB.EQ.2*IQX) THEN
 WRITE(*,*)
 & 'Buffer airfoil arrays will overflow. No action taken.'
 GO TO 500
 ENDIF
C
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
 CALL POINTF(XB,XBP,YB,YBP,SB,NB, XWS,YWS, XOFF,YOFF,XSF,YSF,
 & IPNT,XC,YC, KABORT)
 IF(IPNT.EQ.0) GO TO 500
 IF(IPNT.EQ.1 .OR. IPNT.EQ.NB) THEN
 WRITE(*,*) 'Cannot double trailing edge point. No action taken.'
 GO TO 500
 ENDIF
C
C----- add doubled point
 DO I=NB, IPNT, -1
 XB(I+1) = XB(I)
 YB(I+1) = YB(I)
 ENDDO
 NB = NB+1
C
C----- spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'ADDP') THEN
 CALL ADDP
C
C--
 ELSEIF(COMAND.EQ.'DELP') THEN
 CALL DELP
C
C--
 ELSEIF(COMAND.EQ.'MOVP') THEN
 CALL MOVP(NEWPLOTG)
C
C--
 ELSEIF(COMAND.EQ.'UNIT') THEN
 CALL NORM(XB,XBP,YB,YBP,SB,NB)
C
C----- re-spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'DIST' .OR.
 & COMAND.EQ.'D ') THEN
 CALL DIST
C
C--
 ELSEIF(COMAND.EQ.'HARD') THEN
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
C
C--
 ELSEIF(COMAND.EQ.'PLOT' .OR.
 & COMAND.EQ.'P ') THEN
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'INPL') THEN
 CALL PLTINI
 XOFF0 = XOFF
 YOFF0 = YOFF
 XSF0 = XSF
 YSF0 = YSF
C
 XSF = 1.0/SIZE
 YSF = 1.0/SIZE
c write(*,*) 'Enter Xoff, Yoff'
c read (*,*) xoff, yoff
c xoff = -xoff
c yoff = -yoff
c
 CALL PLOTG
 XOFF = XOFF0
 YOFF = YOFF0
 XSF = XSF0
 YSF = YSF0
C
C--
 ELSEIF(COMAND.EQ.'BLOW' .OR.
 & COMAND.EQ.'B ') THEN
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
 CALL OFFGET(XOFF,YOFF,XSF,YSF,XWS,YWS, .TRUE. , .TRUE.)
 CALL GOFSET
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'RESE' .OR.
 & COMAND.EQ.'R ') THEN
 CALL PLTINI
 CALL GOFINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'WIND' .OR.
 & COMAND.EQ.'W ') THEN
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
C
 WRITE(*,*) ' '
 WRITE(*,*) 'Type I,O,P to In,Out,Pan with cursor...'
C
 80 CALL PLTINI
 CALL PLOTG
C
 CALL GETCURSORXY(XCRS,YCRS,CHKEY)
C
C----- do possible pan,zoom operations based on CHKEY
 CALL KEYOFF(XCRS,YCRS,CHKEY, XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
 CALL GOFSET
 GO TO 80
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'TSIZ') THEN
 IF(NINPUT.GE.1) THEN
 GTICK = RINPUT(1)
 ELSE
 WRITE(*,*)
 & 'Current tick-mark size (as fraction of perimeter) =', GTICK
 CALL ASKR('Enter new tick-mark size^',GTICK)
 ENDIF
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'TICK') THEN
 LGTICK = .NOT.LGTICK
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'GRID') THEN
 LGGRID = .NOT.LGGRID
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'GPAR') THEN
 LGPARM = .NOT.LGPARM
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'SIZE') THEN
 IF(NINPUT.GE.1) THEN
 SIZE = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current plot-object size =', SIZE
 CALL ASKR('Enter new plot-object size^',SIZE)
 ENDIF
 CALL PLTINI
 CALL PLOTG
C
C--
 ELSEIF(COMAND.EQ.'OVER' .OR.
 & COMAND.EQ.'O ') THEN
 CALL OVER(COMARG)
C
C--
 ELSEIF(COMAND.EQ.'ANNO') THEN
 IF(LPLOT) THEN
 CALL ANNOT(CH)
 ELSE
 WRITE(*,*) 'No active plot to annotate'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'NAME') THEN
 IF(COMARG.EQ.' ') THEN
 CALL NAMMOD(NAME,0,-1)
 ELSE
 NAME = COMARG
 ENDIF
 CALL STRIP(NAME,NNAME)
C
C--
 ELSEIF(COMAND.EQ.'NINC') THEN
 CALL NAMMOD(NAME,1,1)
 CALL STRIP(NAME,NNAME)
C
C--
 ELSEIF(COMAND.EQ.'NDEC') THEN
 CALL NAMMOD(NAME,-1,1)
 CALL STRIP(NAME,NNAME)
C
C--
 ELSEIF(COMAND.EQ.'SINT') THEN
 CALL SPLNXY(XB,XBP,YB,YBP,SB,NB)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'cyan')
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
 LGEOPL = .FALSE.
C
C--
 ELSE
 WRITE(*,1100) COMAND
 1100 FORMAT(' Command ',A4,' not recognized. Type a " ? " for list.')
 COMAND = '****'
 ENDIF
C
 GO TO 500
 END ! GDES

 SUBROUTINE NEWPLOTG
 CALL GOFSET
 CALL PLTINI
 CALL PLOTG
 RETURN
 END

 SUBROUTINE ABCOPY(LCONF)
 INCLUDE 'XFOIL.INC'
 LOGICAL LCONF
C
 IF(NB.LE.1) THEN
 WRITE(*,*) 'ABCOPY: Buffer airfoil not available.'
 RETURN
 ELSEIF(NB.GT.IQX-5) THEN
 WRITE(*,*) 'Maximum number of panel nodes : ',IQX-5
 WRITE(*,*) 'Number of buffer airfoil points: ',NB
 WRITE(*,*) 'Current airfoil cannot be set.'
 WRITE(*,*) 'Try executing PANE at Top Level instead.'
 RETURN
 ENDIF
 IF(N.NE.NB) LBLINI = .FALSE.
C
 N = NB
 DO 101 I=1, N
 X(I) = XB(I)
 Y(I) = YB(I)
 101 CONTINUE
 LGSAME = .TRUE.
C
 IF(LBFLAP) THEN
 XOF = XBF
 YOF = YBF
 LFLAP = .TRUE.
 ENDIF
C
C---- strip out doubled points
 I = 1
 102 CONTINUE
 I = I+1
 IF(X(I-1).EQ.X(I) .AND. Y(I-1).EQ.Y(I)) THEN
 DO 104 J=I, N-1
 X(J) = X(J+1)
 Y(J) = Y(J+1)
 104 CONTINUE
 N = N-1
 ENDIF
 IF(I.LT.N) GO TO 102
C
 CALL SCALC(X,Y,S,N)
 CALL SEGSPL(X,XP,S,N)
 CALL SEGSPL(Y,YP,S,N)
 CALL NCALC(X,Y,S,N,NX,NY)
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
 CHORD = SQRT((XTE-XLE)**2 + (YTE-YLE)**2)
 CALL TECALC
 CALL APCALC
C
 LGAMU = .FALSE.
 LQINU = .FALSE.
 LWAKE = .FALSE.
 LQAIJ = .FALSE.
 LADIJ = .FALSE.
 LWDIJ = .FALSE.
 LIPAN = .FALSE.
 LVCONV = .FALSE.
 LSCINI = .FALSE.
CCC LBLINI = .FALSE.
C
 IF(LCONF) WRITE(*,1200) N
 1200 FORMAT(/' Current airfoil nodes set from buffer airfoil nodes (',
 & I4,')')
C
 RETURN
 END ! ABCOPY

 SUBROUTINE GOFINI
C--
C Sets initial airfoil scaling and offset parameters
C--
 INCLUDE 'XFOIL.INC'
C
C---- get airfoil bounding box
 XBMIN = XB(1)
 YBMIN = YB(1)
 XBMAX = XB(1)
 YBMAX = YB(1)
 DO I=1, NB
 XBMIN = MIN(XBMIN,XB(I))
 YBMIN = MIN(YBMIN,YB(I))
 XBMAX = MAX(XBMAX,XB(I))
 YBMAX = MAX(YBMAX,YB(I))
 ENDDO
C
C---- set camber and thickness distributions
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
C
C---- get camber,thickness y bounds
 CMMIN = 0.
 CMMAX = 0.
 DO I=1, NCM
 CMMIN = MIN(CMMIN,YCM(I))
 CMMAX = MAX(CMMAX,YCM(I))
 ENDDO
 TKMIN = 0.
 TKMAX = 0.
 DO I=1, NTK
 TKMIN = MIN(TKMIN,YTK(I))
 TKMAX = MAX(TKMAX,YTK(I))
 ENDDO
C
 XRANGE = XBMAX - XBMIN
 YRANGE = YBMAX - YBMIN
C
C---- set x,y scaling factors needed for O(1) size plot with "nice" limits
 CALL SCALIT(1,0.95*XRANGE,0.0,XSF)
 CALL SCALIT(1,0.95*YRANGE,0.0,YSF)
C
C---- grid increment as a fraction of a nice upper bound on delta x
cc DXYG = 0.1 / XSF
 DXYG = 0.1 / MIN(XSF,YSF)
C
C---- set "nice" grid limits as integer multiples of DXYG
c XGMAX = DXYG*(INT(XBMAX/DXYG+1000.05) - 999)
c XGMIN = DXYG*(INT(XBMIN/DXYG-1000.05) + 999)
c YGMAX = DXYG*(INT(YBMAX/DXYG+1000.25) - 999)
c YGMIN = DXYG*(INT(YBMIN/DXYG-1000.25) + 999)
C
C---- set "nice" grid limits as integer multiples of DXYG
 XGMAX = DXYG*(INT(XBMAX/DXYG+1001.01) - 1000)
 XGMIN = DXYG*(INT(XBMIN/DXYG-1001.01) + 1000)
 YGMAX = DXYG*(INT(YBMAX/DXYG+1001.01) - 1000)
 YGMIN = DXYG*(INT(YBMIN/DXYG-1001.01) + 1000)
C
C---- set bounding box for thickness/camber plot
 DXYC = DXYG
 XCMIN = XGMIN
 XCMAX = XGMAX
 YCMIN = MIN(CMMIN,-TKMAX)
 YCMAX = MAX(CMMAX, TKMAX)
 YCMAX = DXYC*(INT(YCMAX/DXYC+1000.25) - 999)
 YCMIN = DXYC*(INT(YCMIN/DXYC-1000.25) + 999)
 YCMAX = MAX(YCMAX,YCMIN+DXYC)
C
C---- set minimum scaling factor to fit airfoil or grid
 IF(LGGRID) THEN
 XRANGE = XGMAX - XGMIN
 YRANGE = YGMAX - YGMIN
 ELSE
 XRANGE = XBMAX - XBMIN
 YRANGE = YBMAX - YBMIN
 ENDIF
C
C---- include y range from thickness/camber plot if present
 IF(LPLCAM) THEN
 YRANGE = YRANGE + (YCMAX - YCMIN)
 ENDIF
C
 RANGE = MAX(XRANGE,YRANGE)
C
 SF = MIN(1.0/XRANGE , PLOTAR/YRANGE)
 XSF = SF
 YSF = SF
 CHG = 0.75*CH * RANGE*SF
C--- HHY 4/24/01 keep the character size from getting too low

 CHG = MAX(CHG,0.0075)
C
 IF(LGGRID) THEN
C------ set offsets to position grid, with space for numerical axis annotations
 XOFF = XGMIN - 0.05*RANGE - 3.0*CHG/SF
 YOFF = YGMIN - 0.05*RANGE - 2.0*CHG/SF
 ELSE
C------ set offsets to position airfoil
 XOFF = XBMIN - 0.05*RANGE
 YOFF = YBMIN - 0.05*RANGE
 ENDIF
C
C---- set plot limits for DCp plot (y-axis limit defaults set in INIT)
 XPMIN = XGMIN
 XPMAX = XGMAX
ccc DXYP = DXYG
 CALL AXISADJ(YPMIN,YPMAX,PSPAN,DXYP,NTICS)
C
C---- set Yoffset for camber plot in scale factor YSF for geom plots
 DYOFFC = - YGMAX + YCMIN - 2.2*CHG/YSF
C
C---- set the Cp scale factor for DCp plots
 PAR = (YPAGE-2.0*YMARG)/(XPAGE-2.0*XMARG)
 DPRANGE = YPMAX-YPMIN
 DYPLT = MAX(0.1,PAR-PLOTAR)
 YSFP = 0.8*DYPLT/DPRANGE
 YSFP = YSFP/YSF
C
C---- set shifts to YOFF for DCp plots in scale factor YSF for geom plots
 DYOFFP = -YCMAX+DYOFFC + YPMIN*YSFP - 2.2*CHG/YSF
C
 RETURN
 END ! GOFINI

 SUBROUTINE GOFSET
C--
C Sets grid-overlay parameters
C--
 INCLUDE 'XFOIL.INC'
C
C---- airfoil extent
 XBMIN = XB(1)
 YBMIN = YB(1)
 XBMAX = XB(1)
 YBMAX = YB(1)
 DO I=1, NB
 XBMIN = MIN(XBMIN,XB(I))
 YBMIN = MIN(YBMIN,YB(I))
 XBMAX = MAX(XBMAX,XB(I))
 YBMAX = MAX(YBMAX,YB(I))
 ENDDO
C
 RANGE = MAX((XWIND/SIZE)/XSF , (YWIND/SIZE)/YSF)
C
C---- set bounding-box corner locations in user coordinates
 XG1 = XOFF + 0.1*RANGE + 4.0*CHG/XSF
 YG1 = YOFF + 0.1*RANGE + 2.0*CHG/YSF
 XG2 = XOFF - 0.1*RANGE + (XWIND/SIZE)/XSF
 YG2 = YOFF - 0.1*RANGE + (YWIND/SIZE)/YSF
C
C---- crunch down onto airfoil limits
 XG1 = MAX(XG1,XBMIN)
 XG2 = MIN(XG2,XBMAX)
 YG1 = MAX(YG1,YBMIN)
 YG2 = MIN(YG2,YBMAX)
C
C---- set x,y scaling factors needed for O(1) size plot with "nice" limits
 CALL SCALIT(1,0.95*(XG2-XG1),0.0,GXSF)
 CALL SCALIT(1,0.95*(YG2-YG1),0.0,GYSF)
C
 GSF = GXSF
ccc GSF = MIN(GXSF,GYSF)
C
C---- grid increment as a fraction of a nice upper bound on delta x
 DXYG = 0.1 / GSF
C
C---- set "nice" grid limits as integer multiples of DXYG
 XGMAX = DXYG*(INT(XG2/DXYG+1001.01) - 1000)
 XGMIN = DXYG*(INT(XG1/DXYG-1001.01) + 1000)
 YGMAX = DXYG*(INT(YG2/DXYG+1001.01) - 1000)
 YGMIN = DXYG*(INT(YG1/DXYG-1001.01) + 1000)
C
 RETURN
 END ! GOFSET

 SUBROUTINE TGAP(RINPUT,NINPUT)
C----------------------------------
C Used to set buffer airfoil
C trailing edge gap
C----------------------------------
 INCLUDE 'XFOIL.INC'
 DIMENSION RINPUT(*)
C
 CALL LEFIND(SBLE,XB,XBP,YB,YBP,SB,NB)
 XBLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YBLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XBTE = 0.5*(XB(1)+XB(NB))
 YBTE = 0.5*(YB(1)+YB(NB))
 CHBSQ = (XBTE-XBLE)**2 + (YBTE-YBLE)**2
C
 DXN = XB(1) - XB(NB)
 DYN = YB(1) - YB(NB)
 GAP = SQRT(DXN**2 + DYN**2)
C
C---- components of unit vector parallel to TE gap
 IF(GAP.GT.0.0) THEN
 DXU = DXN / GAP
 DYU = DYN / GAP
 ELSE
 DXU = -.5*(YBP(NB) - YBP(1))
 DYU = 0.5*(XBP(NB) - XBP(1))
 ENDIF
C
 IF (NINPUT .GE. 2) THEN
 GAPNEW = RINPUT(1)
 DOC = RINPUT(2)
 ELSEIF(NINPUT .GE. 1) THEN
 GAPNEW = RINPUT(1)
 DOC = 1.0
 CALL ASKR('Enter blending distance/c (0..1)^',DOC)
 ELSE
 WRITE(*,1000) GAP
 1000 FORMAT(/' Current gap =',F9.5)
 GAPNEW = 0.0
 CALL ASKR('Enter new gap^',GAPNEW)
 DOC = 1.0
 CALL ASKR('Enter blending distance/c (0..1)^',DOC)
 ENDIF
C
 DOC = MIN(MAX(DOC , 0.0) , 1.0)
C
 DGAP = GAPNEW - GAP
C
C---- go over each point, changing the y-thickness appropriately
 DO 30 I=1, NB
C
C------ chord-based x/c
 XOC = ((XB(I)-XBLE)*(XBTE-XBLE)
 & + (YB(I)-YBLE)*(YBTE-YBLE)) / CHBSQ
C
C------ thickness factor tails off exponentially away from trailing edge
 IF(DOC .EQ. 0.0) THEN
 TFAC = 0.0
 IF(I.EQ.1 .OR. I.EQ.NB) TFAC = 1.0
 ELSE
 ARG = MIN((1.0-XOC)*(1.0/DOC-1.0) , 15.0)
 TFAC = EXP(-ARG)
 ENDIF
C
 IF(SB(I).LE.SBLE) THEN
 XB(I) = XB(I) + 0.5*DGAP*XOC*TFAC*DXU
 YB(I) = YB(I) + 0.5*DGAP*XOC*TFAC*DYU
 ELSE
 XB(I) = XB(I) - 0.5*DGAP*XOC*TFAC*DXU
 YB(I) = YB(I) - 0.5*DGAP*XOC*TFAC*DYU
 ENDIF
 30 CONTINUE
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
C
 LGEOPL = .FALSE.
 LGSAME = .FALSE.
C
 RETURN
 END ! TGAP

 SUBROUTINE LERAD(RINPUT,NINPUT)
C----------------------------
C Changes buffer airfoil
C leading edge radius.
C----------------------------
 INCLUDE 'XFOIL.INC'
 DIMENSION RINPUT(*)
C
 IF (NINPUT .GE. 2) THEN
 RFAC = RINPUT(1)
 DOC = RINPUT(2)
 ELSEIF(NINPUT .GE. 1) THEN
 RFAC = RINPUT(1)
 DOC = 1.0
 CALL ASKR('Enter blending distance/c from LE^',DOC)
 ELSE
 RFAC = 1.0
 CALL ASKR('Enter approx. new/old LE radius scaling ratio^',RFAC)
 DOC = 1.0
 CALL ASKR('Enter blending distance/c from LE^',DOC)
 ENDIF
C
 DOC = MAX(DOC , 0.001)
C
 CALL LERSCL(XB,XBP,YB,YBP,SB,NB, DOC,RFAC, W1,W2)
C
 DO 40 I=1, NB
 XB(I) = W1(I)
 YB(I) = W2(I)
 40 CONTINUE
C
C---- spline new coordinates
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
C---- find max curvature
 CVMAX = 0.
 DO 6 I=NB/4, (3*NB)/4
 CV = CURV(SB(I),XB,XBP,YB,YBP,SB,NB)
 CVMAX = MAX(ABS(CV) , CVMAX)
 6 CONTINUE
C
 RADIUS = 1.0/CVMAX
C
 WRITE(*,1000) RADIUS
 1000 FORMAT(/' New LE radius = ',F7.5)
C
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
C
 LGEOPL = .FALSE.
 LGSAME = .FALSE.
C
 RETURN
 END ! LERAD

 SUBROUTINE SCLXY
C---
C Scale airfoil about LE, TE, or selected point
C---
 INCLUDE 'XFOIL.INC'
 CHARACTER*1 VAR
C
 CALL LEFIND(SBLE,XB,XBP,YB,YBP,SB,NB)
 XLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XTE = 0.5*(XB(1) + XB(NB))
 YTE = 0.5*(YB(1) + YB(NB))
C
 WRITE(*,*) 'Enter origin for airfoil scaling:'
 WRITE(*,*) ' L scales about LE'
 WRITE(*,*) ' T scales about TE'
 WRITE(*,*) ' P scales about input point'
C
 CALL ASKS('Select origin for scaling^',VAR)
 IF (VAR.EQ.'L') THEN
 XORG = XLE
 YORG = YLE
 ELSE IF (VAR.EQ.'T') THEN
 XORG = XTE
 YORG = YTE
 ELSE
 XORG = 0.25
 YORG = 0.0
 CALL ASKR('Enter X origin for scaling^',XORG)
 CALL ASKR('Enter Y origin for scaling^',YORG)
 ENDIF
C
 SCL = 1.0
 CALL ASKR('Enter scaling factor about selected point^',SCL)
C
 DO 10 I=1, NB
 XB(I) = SCL*(XB(I) - XORG) + XORG
 YB(I) = SCL*(YB(I) - YORG) + YORG
 10 CONTINUE
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 RETURN
 END ! SCLXY

 SUBROUTINE FLAP(RINPUT,NINPUT)
C--
C Modifies buffer airfoil for a deflected flap.
C Points may be added/subtracted in the flap
C break vicinity to clean things up.
C--
 INCLUDE 'XFOIL.INC'
 LOGICAL LCHANGE
 DIMENSION RINPUT(*)
C
 LOGICAL INSID
 LOGICAL INSIDE
 LOGICAL LT1NEW,LT2NEW,LB1NEW,LB2NEW
C
 SHT = CH * MAX(XSF,YSF)
C
 IF(NINPUT.GE.2) THEN
 XBF = RINPUT(1)
 YBF = RINPUT(2)
 ELSE
 XBF = -999.0
 YBF = -999.0
 ENDIF
C
 CALL GETXYF(XB,XBP,YB,YBP,SB,NB, TOPS,BOTS,XBF,YBF)
 INSID = INSIDE(XB,YB,NB,XBF,YBF)
C
 WRITE(*,1050) XBF, YBF
 1050 FORMAT(/' Flap hinge: x,y =', 2F9.5)
C
 IF(NINPUT.GE.3) THEN
 DDEF = RINPUT(3)
 ELSE
 DDEF = 0.0
 CALL ASKR('Enter flap deflection in degrees (+ down)^',DDEF)
 ENDIF
 RDEF = DDEF*PI/180.0
 IF(RDEF .EQ. 0.0) RETURN
C
C
 IF(INSID) THEN
 ATOP = MAX(0.0 , -RDEF)
 ABOT = MAX(0.0 , RDEF)
 ELSE
 CHX = DEVAL(BOTS,XB,XBP,SB,NB) - DEVAL(TOPS,XB,XBP,SB,NB)
 CHY = DEVAL(BOTS,YB,YBP,SB,NB) - DEVAL(TOPS,YB,YBP,SB,NB)
 FVX = SEVAL(BOTS,XB,XBP,SB,NB) + SEVAL(TOPS,XB,XBP,SB,NB)
 FVY = SEVAL(BOTS,YB,YBP,SB,NB) + SEVAL(TOPS,YB,YBP,SB,NB)
 CRSP = CHX*(YBF-0.5*FVY) - CHY*(XBF-0.5*FVX)
 IF(CRSP .GT. 0.0) THEN
C-------- flap hinge is above airfoil
 ATOP = MAX(0.0 , RDEF)
 ABOT = MAX(0.0 , RDEF)
 ELSE
C-------- flap hinge is below airfoil
 ATOP = MAX(0.0 , -RDEF)
 ABOT = MAX(0.0 , -RDEF)
 ENDIF
 ENDIF
C
C---- find upper and lower surface break arc length values...
 CALL SSS(TOPS,ST1,ST2,ATOP,XBF,YBF,XB,XBP,YB,YBP,SB,NB,1)
 CALL SSS(BOTS,SB1,SB2,ABOT,XBF,YBF,XB,XBP,YB,YBP,SB,NB,2)
C
C---- ... and x,y coordinates
 XT1 = SEVAL(ST1,XB,XBP,SB,NB)
 YT1 = SEVAL(ST1,YB,YBP,SB,NB)
 XT2 = SEVAL(ST2,XB,XBP,SB,NB)
 YT2 = SEVAL(ST2,YB,YBP,SB,NB)
 XB1 = SEVAL(SB1,XB,XBP,SB,NB)
 YB1 = SEVAL(SB1,YB,YBP,SB,NB)
 XB2 = SEVAL(SB2,XB,XBP,SB,NB)
 YB2 = SEVAL(SB2,YB,YBP,SB,NB)
C
C
 WRITE(*,1100) XT1, YT1, XT2, YT2,
 & XB1, YB1, XB2, YB2
 1100 FORMAT(/' Top breaks: x,y = ', 2F9.5, 4X, 2F9.5
 & /' Bot breaks: x,y = ', 2F9.5, 4X, 2F9.5)
C
C---- find points adjacent to breaks
 DO 5 I=1, NB-1
 IF(SB(I).LE.ST1 .AND. SB(I+1).GT.ST1) IT1 = I+1
 IF(SB(I).LT.ST2 .AND. SB(I+1).GE.ST2) IT2 = I
 IF(SB(I).LE.SB1 .AND. SB(I+1).GT.SB1) IB1 = I
 IF(SB(I).LT.SB2 .AND. SB(I+1).GE.SB2) IB2 = I+1
 5 CONTINUE
C
 DSAVG = (SB(NB)-SB(1))/FLOAT(NB-1)
C
C---- smallest fraction of s increments i+1 and i+2 away from break point
 SFRAC = 0.33333
C
 IF(ATOP .NE. 0.0) THEN
 ST1P = ST1 + SFRAC*(SB(IT1)-ST1)
 ST1Q = ST1 + SFRAC*(SB(IT1+1)-ST1)
 IF(SB(IT1) .LT. ST1Q) THEN
C-------- simply move adjacent point to ideal SFRAC location
 XT1NEW = SEVAL(ST1Q,XB,XBP,SB,NB)
 YT1NEW = SEVAL(ST1Q,YB,YBP,SB,NB)
 LT1NEW = .FALSE.
 ELSE
C-------- make new point at SFRAC location
 XT1NEW = SEVAL(ST1P,XB,XBP,SB,NB)
 YT1NEW = SEVAL(ST1P,YB,YBP,SB,NB)
 LT1NEW = .TRUE.
 ENDIF
C
 ST2P = ST2 + SFRAC*(SB(IT2)-ST2)
 IT2Q = MAX(IT2-1,1)
 ST2Q = ST2 + SFRAC*(SB(IT2Q)-ST2)
 IF(SB(IT2) .GT. ST2Q) THEN
C-------- simply move adjacent point
 XT2NEW = SEVAL(ST2Q,XB,XBP,SB,NB)
 YT2NEW = SEVAL(ST2Q,YB,YBP,SB,NB)
 LT2NEW = .FALSE.
 ELSE
C-------- make new point
 XT2NEW = SEVAL(ST2P,XB,XBP,SB,NB)
 YT2NEW = SEVAL(ST2P,YB,YBP,SB,NB)
 LT2NEW = .TRUE.
 ENDIF
 ENDIF
C
 IF(ABOT .NE. 0.0) THEN
 SB1P = SB1 + SFRAC*(SB(IB1)-SB1)
 SB1Q = SB1 + SFRAC*(SB(IB1-1)-SB1)
 IF(SB(IB1) .GT. SB1Q) THEN
C-------- simply move adjacent point
 XB1NEW = SEVAL(SB1Q,XB,XBP,SB,NB)
 YB1NEW = SEVAL(SB1Q,YB,YBP,SB,NB)
 LB1NEW = .FALSE.
 ELSE
C-------- make new point
 XB1NEW = SEVAL(SB1P,XB,XBP,SB,NB)
 YB1NEW = SEVAL(SB1P,YB,YBP,SB,NB)
 LB1NEW = .TRUE.
 ENDIF
C
 SB2P = SB2 + SFRAC*(SB(IB2)-SB2)
 IB2Q = MIN(IB2+1,NB)
 SB2Q = SB2 + SFRAC*(SB(IB2Q)-SB2)
 IF(SB(IB2) .LT. SB2Q) THEN
C-------- simply move adjacent point
 XB2NEW = SEVAL(SB2Q,XB,XBP,SB,NB)
 YB2NEW = SEVAL(SB2Q,YB,YBP,SB,NB)
 LB2NEW = .FALSE.
 ELSE
C-------- make new point
 XB2NEW = SEVAL(SB2P,XB,XBP,SB,NB)
 YB2NEW = SEVAL(SB2P,YB,YBP,SB,NB)
 LB2NEW = .TRUE.
 ENDIF
 ENDIF
C
cc DSTOP = ABS(SB(IT2)-SB(IT1))
cc DSBOT = ABS(SB(IB2)-SB(IB1))
C
 SIND = SIN(RDEF)
 COSD = COS(RDEF)
C
C---- rotate flap points about the hinge point (XBF,YBF)
 DO 10 I=1, NB
 IF(I.GE.IT1 .AND. I.LE.IB1) GO TO 10
C
 XBAR = XB(I) - XBF
 YBAR = YB(I) - YBF
C
 XB(I) = XBF + XBAR*COSD + YBAR*SIND
 YB(I) = YBF - XBAR*SIND + YBAR*COSD
 10 CONTINUE
C
 IDIF = IT1-IT2-1
 IF(IDIF.GT.0) THEN
C----- delete points on upper airfoil surface which "disappeared".
 NB = NB -IDIF
 IT1 = IT1-IDIF
 IB1 = IB1-IDIF
 IB2 = IB2-IDIF
 DO 21 I=IT2+1, NB
 SB(I) = SB(I+IDIF)
 XB(I) = XB(I+IDIF)
 YB(I) = YB(I+IDIF)
 21 CONTINUE
 ENDIF
C
 IDIF = IB2-IB1-1
 IF(IDIF.GT.0) THEN
C----- delete points on lower airfoil surface which "disappeared".
 NB = NB -IDIF
 IB2 = IB2-IDIF
 DO 22 I=IB1+1, NB
 SB(I) = SB(I+IDIF)
 XB(I) = XB(I+IDIF)
 YB(I) = YB(I+IDIF)
 22 CONTINUE
 ENDIF
C
C
 IF(ATOP .EQ. 0.0) THEN
C
C------ arc length of newly created surface on top of airfoil
 DSNEW = ABS(RDEF)*SQRT((XT1-XBF)**2 + (YT1-YBF)**2)
C
C------ number of points to be added to define newly created surface
 NPADD = INT(1.5*DSNEW/DSAVG + 1.0)
ccc NPADD = INT(1.5*DSNEW/DSTOP + 1.0)
C
C------ skip everything if no points are to be added
 IF(NPADD.EQ.0) GO TO 35
C
C------ increase coordinate array length to make room for the new point(s)
 NB = NB +NPADD
 IT1 = IT1+NPADD
 IB1 = IB1+NPADD
 IB2 = IB2+NPADD
 DO 30 I=NB, IT1, -1
 XB(I) = XB(I-NPADD)
 YB(I) = YB(I-NPADD)
 30 CONTINUE
C
C------ add new points along the new surface circular arc segment
 DANG = RDEF / FLOAT(NPADD)
 XBAR = XT1 - XBF
 YBAR = YT1 - YBF
 DO 31 IP=1, NPADD
 ANG = DANG*(FLOAT(IP) - 0.5)
 CA = COS(ANG)
 SA = SIN(ANG)
C
 XB(IT1-IP) = XBF + XBAR*CA + YBAR*SA
 YB(IT1-IP) = YBF - XBAR*SA + YBAR*CA
 31 CONTINUE
C
 ELSE
C
C------ set point in the corner and possibly two adjacent points
 NPADD = 1
 IF(LT2NEW) NPADD = NPADD+1
 IF(LT1NEW) NPADD = NPADD+1
C
 NB = NB +NPADD
 IT1 = IT1+NPADD
 IB1 = IB1+NPADD
 IB2 = IB2+NPADD
 DO 33 I=NB, IT1, -1
 XB(I) = XB(I-NPADD)
 YB(I) = YB(I-NPADD)
 33 CONTINUE
C
 IF(LT1NEW) THEN
 XB(IT1-1) = XT1NEW
 YB(IT1-1) = YT1NEW
 XB(IT1-2) = XT1
 YB(IT1-2) = YT1
 ELSE
 XB(IT1) = XT1NEW
 YB(IT1) = YT1NEW
 XB(IT1-1) = XT1
 YB(IT1-1) = YT1
 ENDIF
C
 XBAR = XT2NEW - XBF
 YBAR = YT2NEW - YBF
 IF(LT2NEW) THEN
 XB(IT2+1) = XBF + XBAR*COSD + YBAR*SIND
 YB(IT2+1) = YBF - XBAR*SIND + YBAR*COSD
 ELSE
 XB(IT2) = XBF + XBAR*COSD + YBAR*SIND
 YB(IT2) = YBF - XBAR*SIND + YBAR*COSD
 ENDIF
C
 ENDIF
 35 CONTINUE
C
C
 IF(ABOT .EQ. 0.0) THEN
C
C------ arc length of newly created surface on top of airfoil
 DSNEW = ABS(RDEF)*SQRT((XB1-XBF)**2 + (YB1-YBF)**2)
C
C------ number of points to be added to define newly created surface
 NPADD = INT(1.5*DSNEW/DSAVG + 1.0)
ccc NPADD = INT(1.5*DSNEW/DSBOT + 1.0)
C
C------ skip everything if no points are to be added
 IF(NPADD.EQ.0) GO TO 45
C
C------ increase coordinate array length to make room for the new point(s)
 NB = NB +NPADD
 IB2 = IB2+NPADD
 DO 40 I=NB, IB2, -1
 XB(I) = XB(I-NPADD)
 YB(I) = YB(I-NPADD)
 40 CONTINUE
C
C------ add new points along the new surface circular arc segment
 DANG = RDEF / FLOAT(NPADD)
 XBAR = XB1 - XBF
 YBAR = YB1 - YBF
 DO 41 IP=1, NPADD
 ANG = DANG*(FLOAT(IP) - 0.5)
 CA = COS(ANG)
 SA = SIN(ANG)
C
 XB(IB1+IP) = XBF + XBAR*CA + YBAR*SA
 YB(IB1+IP) = YBF - XBAR*SA + YBAR*CA
 41 CONTINUE
C
 ELSE

C------ set point in the corner and possibly two adjacent points
 NPADD = 1
 IF(LB2NEW) NPADD = NPADD+1
 IF(LB1NEW) NPADD = NPADD+1
C
 NB = NB +NPADD
 IB2 = IB2+NPADD
 DO 43 I=NB, IB2, -1
 XB(I) = XB(I-NPADD)
 YB(I) = YB(I-NPADD)
 43 CONTINUE
C
 IF(LB1NEW) THEN
 XB(IB1+1) = XB1NEW
 YB(IB1+1) = YB1NEW
 XB(IB1+2) = XB1
 YB(IB1+2) = YB1
 ELSE
 XB(IB1) = XB1NEW
 YB(IB1) = YB1NEW
 XB(IB1+1) = XB1
 YB(IB1+1) = YB1
 ENDIF
C
 XBAR = XB2NEW - XBF
 YBAR = YB2NEW - YBF
 IF(LB2NEW) THEN
 XB(IB2-1) = XBF + XBAR*COSD + YBAR*SIND
 YB(IB2-1) = YBF - XBAR*SIND + YBAR*COSD
 ELSE
 XB(IB2) = XBF + XBAR*COSD + YBAR*SIND
 YB(IB2) = YBF - XBAR*SIND + YBAR*COSD
 ENDIF
C
 ENDIF
 45 CONTINUE
C
C
C---- check new geometry for splinter segments
 STOL = 0.2
 CALL SCHECK(XB,YB,NB, STOL, LCHANGE)
C
C---- spline new geometry
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 LBFLAP = .TRUE.
C
 IF(LGSYM) THEN
 WRITE(*,*)
 WRITE(*,*) 'Disabling symmetry enforcement'
 LGSYM = .FALSE.
 ENDIF
C
C
 IF(.NOT.LPLOT) THEN
 CALL PLTINI
 ENDIF
C
C---- save current color and set new color
 CALL GETCOLOR(ICOL0)
C
 CALL NEWCOLORNAME('green')
 CALL PLOT((XBF-XOFF)*XSF,(YBF-YOFF)*YSF,3)
 CALL PLOT((XT1-XOFF)*XSF,(YT1-YOFF)*YSF,2)
 CALL PLOT((XBF-XOFF)*XSF,(YBF-YOFF)*YSF,3)
 CALL PLOT((XB1-XOFF)*XSF,(YB1-YOFF)*YSF,2)
C
 IF(ATOP .EQ. 0.0) THEN
 XBAR = XT1 - XBF
 YBAR = YT1 - YBF
 XT1C = XBF + XBAR*COSD + YBAR*SIND
 YT1C = YBF - XBAR*SIND + YBAR*COSD
 CALL PLOT((XBF -XOFF)*XSF,(YBF -YOFF)*YSF,3)
 CALL PLOT((XT1C-XOFF)*XSF,(YT1C-YOFF)*YSF,2)
 ENDIF
C
 IF(ABOT .EQ. 0.0) THEN
 XBAR = XB1 - XBF
 YBAR = YB1 - YBF
 XB1C = XBF + XBAR*COSD + YBAR*SIND
 YB1C = YBF - XBAR*SIND + YBAR*COSD
 CALL PLOT((XBF -XOFF)*XSF,(YBF -YOFF)*YSF,3)
 CALL PLOT((XB1C-XOFF)*XSF,(YB1C-YOFF)*YSF,2)
 ENDIF
C
 CALL NEWCOLORNAME('red')
 CALL PLSYMB((XBF-XOFF)*XSF,(YBF-YOFF)*YSF,0.5*SHT,1,0.0,0)
C
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
C
 LGEOPL = .FALSE.
 LGSAME = .FALSE.
C
 CALL NEWCOLOR(ICOL0)
 RETURN
 END ! FLAP

 LOGICAL FUNCTION INSIDE(X,Y,N, XF,YF)
 DIMENSION X(N),Y(N)
C-------------------------------------
C Returns .TRUE. if point XF,YF
C is inside contour X(i),Y(i).
C-------------------------------------
C
C---- integrate subtended angle around airfoil perimeter
 ANGLE = 0.0
 DO 10 I=1, N
 IP = I+1
 IF(I.EQ.N) IP = 1
 XB1 = X(I) - XF
 YB1 = Y(I) - YF
 XB2 = X(IP) - XF
 YB2 = Y(IP) - YF
 ANGLE = ANGLE + (XB1*YB2 - YB1*XB2)
 & / SQRT((XB1**2 + YB1**2)*(XB2**2 + YB2**2))
 10 CONTINUE
C
C---- angle = 0 if XF,YF is outside, angle = +/- 2 pi if XF,YF is inside
 INSIDE = ABS(ANGLE) .GT. 1.0
C
 RETURN
 END ! INSIDE

 SUBROUTINE GETXYF(X,XP,Y,YP,S,N, TOPS,BOTS,XF,YF)
 DIMENSION X(N),XP(N),Y(N),YP(N),S(N)
C
 IF(XF .EQ. -999.0)
 & CALL ASKR('Enter flap hinge x location^',XF)
C
C---- find top and bottom y at hinge x location
 TOPS = S(1) + (X(1) - XF)
 BOTS = S(N) - (X(N) - XF)
 CALL SINVRT(TOPS,XF,X,XP,S,N)
 CALL SINVRT(BOTS,XF,X,XP,S,N)
 TOPY = SEVAL(TOPS,Y,YP,S,N)
 BOTY = SEVAL(BOTS,Y,YP,S,N)
C
 WRITE(*,1000) TOPY, BOTY
 1000 FORMAT(/' Top surface: y =', F8.4,' y/t = 1.0'
 & /' Bottom surface: y =', F8.4,' y/t = 0.0')
C
 IF(YF .EQ. -999.0)
 & CALL ASKR(
 & 'Enter flap hinge y location (or 999 to specify y/t)^',YF)
C
 IF(YF .EQ. 999.0) THEN
 CALL ASKR('Enter flap hinge relative y/t location^',YREL)
 YF = TOPY*YREL + BOTY*(1.0-YREL)
 ENDIF
C
 RETURN
 END ! GETXYF

 SUBROUTINE PLOTG
C--
C Plots buffer airfoil with ticked chord line or grid
C--
 INCLUDE 'XFOIL.INC'
C
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
 INCLUDE 'XDES.INC'
C
C---- node tick mark size and corner symbol size
 DTICK = GTICK*(SB(NB)-SB(1))
 SSH = DTICK * 3.0
C
 CALL NCALC(XB,YB,SB,NB,W1,W2)
C
 IF(LGGRID) THEN
 CALL GRDAIR(XGMIN,XGMAX,YGMIN,YGMAX,DXYG,DXYG,CHG,.TRUE.,.TRUE.,
 & XOFF,XSF,YOFF,YSF, LMASK2)
 XL0 = XMOD(XGMIN)
 YL0 = YMOD(YGMAX) + 2.0*CH
 ELSE
C------ plot chord line and tick marks every 10% chord
 CALL NEWPEN(1)
 CALL PLOT(XMOD(0.0),YMOD(0.0),3)
 CALL PLOT(XMOD(1.0),YMOD(0.0),2)
 DO ITICK=1, 10
 XPLT = FLOAT(ITICK)/10.0
 CALL PLOT(XMOD(XPLT),YMOD(0.003),3)
 CALL PLOT(XMOD(XPLT),YMOD(-.003),2)
 ENDDO
C
 XL0 = XMOD(XBMIN)
 YL0 = YMOD(YBMAX) + 2.0*CH
 ENDIF
 IF(LPLCAM) YL0 = YSF*(YCMAX-DYOFFC-YOFF) + 2.0*CH
C
 CALL PLFLUSH
C
 CALL NEWPEN(2)
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'black')
C
 IF(LGTICK) THEN
C----- draw tiny tick mark normal to airfoil surface at each panel node
 DO I=2, NB-1
 CALL PLOT(XMOD(XB(I)),YMOD(YB(I)),3)
 CALL PLOT(XMOD(XB(I)-DTICK*W1(I)),YMOD(YB(I)-DTICK*W2(I)),2)
 ENDDO
 ENDIF
c
cC---- plot symbol at nose
c CALL NSFIND(STLE,XB,XBP,YB,YBP,SB,NB)
c XT = SEVAL(STLE,XB,XBP,SB,NB)
c YT = SEVAL(STLE,YB,YBP,SB,NB)
c CALL PLSYMB(XMOD(XT),YMOD(YT),0.005*XSF,5,0.0,0)
c
C---- put symbol at any doubled point
 DO I=1, NB-1
 IF(SB(I) .EQ. SB(I+1))
 & CALL PLSYMB(XMOD(XB(I)),YMOD(YB(I)),SSH,5,0.0,0)
 ENDDO
C
 IF(LPLCAM) THEN
 CALL PLTCAM(' ')
 ENDIF
C
 IF(LGPARM) THEN
 CALL NEWPEN(3)
 CALL GPARPL(XL0,YL0,0.7*CH,.TRUE.,NAME,
 & CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
 ENDIF
C
 CALL PLFLUSH
C
 LGEOPL = .TRUE.
 NOVER = 0
C
 RETURN
 END ! PLOTG

 SUBROUTINE PLTCAM(COLIN)
C--
C Plots camber & thickness distributions
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) COLIN
 CHARACTER*32 COLC, COLT
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
C
C---- plot camber/thickness only if camber/tickness plot is being shown
 IF(.NOT.LPLCAM) RETURN
C
 CALL NEWPEN(1)
 CALL GRDAIR(XGMIN,XGMAX,YCMIN,YCMAX,DXYG,DXYG,CHG,.FALSE.,.TRUE.,
 & XOFF,XSF,DYOFFC+YOFF,YSF, LMASK2)
C
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
 CALL SCALC(XCM,YCM,SCM,NCM)
 CALL SEGSPL(XCM,XCMP,SCM,NCM)
 CALL SEGSPL(YCM,YCMP,SCM,NCM)
 CALL SCALC(XTK,YTK,STK,NTK)
 CALL SEGSPL(XTK,XTKP,STK,NTK)
 CALL SEGSPL(YTK,YTKP,STK,NTK)
C
 IF(COLIN(1:1) .EQ. ' ') THEN
 COLC = 'green'
 COLT = 'cyan'
 ELSE
 COLC = COLIN
 COLT = COLIN
 ENDIF
C
 CALL NEWPEN(2)
 YOF = YOFF + DYOFFC
 CALL PLTAIR(XTK,XTKP,YTK,YTKP,STK,NTK,XOFF,XSF, YOF, YSF,COLT)
 CALL PLTAIR(XTK,XTKP,YTK,YTKP,STK,NTK,XOFF,XSF,-YOF,-YSF,COLT)
C--- Offset for camber includes offset for LE camber point
 YOFF1C = YOFF + DYOFFC + YCM(1)
 CALL PLTAIR(XCM,XCMP,YCM,YCMP,SCM,NCM,XOFF,XSF, YOFF1C,YSF,COLC)
C
 RETURN
 END ! PLTCAM

 SUBROUTINE PLNEWP(COLOR)
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) COLOR
C
 INCLUDE 'XDES.INC'
C
C---- don't plot geometric parameters if camber/tickness plot is being shown
 IF(LPLCAM) RETURN
C
 CALL GETCOLOR(ICOL0)
C
 CALL NEWCOLORNAME(COLOR)
 CALL NEWPEN(3)
C
 NOVER = NOVER + 1
 IF(LGGRID) THEN
 XL0 = XMOD(XGMIN) + 2.0*CH + 9.0*CH*FLOAT(NOVER)
 YL0 = YMOD(YGMAX) + 2.0*CH
 ELSE
 XL0 = XMOD(XBMIN) + 2.0*CH + 9.0*CH*FLOAT(NOVER)
 YL0 = YMOD(YBMAX) + 2.0*CH
 ENDIF

 IF(LPLCAM) YL0 = YSF*(YCMAX-YOFF-DYOFFC) + 2.0*CH
C
 IF(LGPARM) THEN
 CALL GPARPL(XL0,YL0,0.7*CH,.FALSE.,NAME,
 & CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
C
 RETURN
 END ! PLNEWP

 SUBROUTINE GPARPL(X0,Y0,CH, LABEL, NAME,
 & CHORD,AREA,RADLE,ANGTE,
 & EI11A,EI22A,APX1A,APX2A,
 & EI11T,EI22T,APX1T,APX2T,
 & THICK,CAMBR)
 LOGICAL LABEL
 EXTERNAL PLCHAR
 CHARACTER NAME*(*)
C
 RTD = 45.0/ATAN(1.0)
C
 XSPACE = 30.0*CH
 YSPACE = 2.0*CH
C
 X = X0
 Y = Y0
C
 IF(LABEL) THEN
 CALL PLCHAR(X,Y,CH,' = ',0.0, 9)
 CALL PLMATH(X,Y,CH,' Oq ',0.0, 9)
 CALL PLSUBS(X+3.0*CH,Y,CH,'TE',0.0, 2, PLCHAR)
 ENDIF
 CALL PLNUMB(X+9.0*CH,Y,CH,ANGTE*RTD ,0.0, 2)
 CALL PLMATH(999.,Y,CH,'"' ,0.0, 1)
 Y = Y + YSPACE
C
 IF(LABEL) THEN
 CALL PLCHAR(X,Y,CH,' r = ',0.0, 9)
 CALL PLSUBS(X+3.0*CH,Y,CH,'LE',0.0, 2, PLCHAR)
 ENDIF
 CALL PLNUMB(X+9.0*CH,Y,CH,RADLE,0.0, 5)
 Y = Y + YSPACE
C
 IF(LABEL) THEN
 CALL PLCHAR(X,Y,CH,'camber = ',0.0, 9)
 ENDIF
 CALL PLNUMB(X+9.0*CH,Y,CH,CAMBR,0.0, 5)
 Y = Y + YSPACE
C
 IF(LABEL) THEN
 CALL PLCHAR(X,Y,CH,'thick. = ',0.0, 9)
 ENDIF
 CALL PLNUMB(X+9.0*CH,Y,CH,THICK,0.0, 5)
 Y = Y + YSPACE
C
 IF(LABEL) THEN
 CALL PLCHAR(X,Y,CH,' area = ',0.0, 9)
 ENDIF
 CALL PLNUMB(X+9.0*CH,Y,CH, AREA,0.0, 5)
 Y = Y + YSPACE
C
C
c X = X0 + XSPACE
c Y = Y0
cC
c Y = Y + YSPACE
cC
c CALL PLMATH(X,Y,1.4*CH,'I',0.0,1)
c CALL PLMATH(X,Y,CH,' 2 ',0.0,-1)
c CALL PLCHAR(X,Y,CH,' (y-y) ds = ',0.0,-1)
c CALL PLNUMB(999.,Y,CH, 1000.0*EI11T,0.0,4)
c CALL PLMATH(999.,Y,CH,'#' ,0.0,1)
c CALL PLCHAR(999.,Y,CH, '10' ,0.0,2)
c CALL PLMATH(999.,Y,CH, '3',0.0,1)
c CALL PLSUBS(X+4.0*CH,Y,CH,'o',0.0,1,PLCHAR)
c Y = Y + YSPACE
cC
c CALL PLMATH(X,Y,1.4*CH,'I',0.0,1)
c CALL PLMATH(X,Y,CH,' 2 ',0.0,-1)
c CALL PLCHAR(X,Y,CH,' (y-y) dA = ',0.0,-1)
c CALL PLNUMB(999.,Y,CH, 1000.0*EI11A,0.0,4)
c CALL PLMATH(999.,Y,CH,'#' ,0.0,1)
c CALL PLCHAR(999.,Y,CH, '10' ,0.0,2)
c CALL PLMATH(999.,Y,CH, '3',0.0,1)
c CALL PLSUBS(X+4.0*CH,Y,CH,'o',0.0,1,PLCHAR)
c Y = Y + YSPACE
cC
c CALL PLMATH(X,Y,CH,' ',0.0,-1)
c CALL PLCHAR(X,Y,CH,' area = ',0.0,-1)
c CALL PLNUMB(999.,Y,CH, AREA,0.0, 5)
c Y = Y + YSPACE
C
C--- Plot airfoil name over data list
 CALL PLCHAR(X+9.0*CH,Y,CH,NAME,0.0, 12)
C
 RETURN
 END ! GPARPL

 SUBROUTINE GRDAIR(XGMIN,XGMAX, YGMIN,YGMAX,DXGN,DYGN,CHG,
 & LXAXIS,LYAXIS,
 & XOFF,XSF,YOFF,YSF, LMASK)
 LOGICAL LXAXIS,LYAXIS
C--
C Plots grid with axes.
C Intended for airfoil plot.
C--
 INCLUDE 'XDES.INC'
C
 CALL NEWPEN(1)
C
C---- plot outline
 CALL PLOT(XMOD(XGMIN),YMOD(YGMIN),3)
 CALL PLOT(XMOD(XGMAX),YMOD(YGMIN),2)
 CALL PLOT(XMOD(XGMAX),YMOD(YGMAX),2)
 CALL PLOT(XMOD(XGMIN),YMOD(YGMAX),2)
 CALL PLOT(XMOD(XGMIN),YMOD(YGMIN),2)
C
 IF(LXAXIS)
 & CALL XAXIS(XMOD(XGMIN),YMOD(YGMIN),(XGMAX-XGMIN)*XSF,
 & DXGN*XSF, XGMIN,DXGN,CHG,-2)
 IF(LYAXIS)
 & CALL YAXIS(XMOD(XGMIN),YMOD(YGMIN),(YGMAX-YGMIN)*YSF,
 & DYGN*YSF, YGMIN,DYGN,CHG,-2)
C
C---- fine grid
 NXG = INT((XGMAX-XGMIN)/DXGN + 0.1)
 NYG = INT((YGMAX-YGMIN)/DYGN + 0.1)
 NXG = MAX(1,NXG)
 NYG = MAX(1,NYG)
C
 X0 = XMOD(XGMIN)
 Y0 = YMOD(YGMIN)
 DXG = (XMOD(XGMAX)-X0)/NXG
 DYG = (YMOD(YGMAX)-Y0)/NYG
 CALL PLGRID(X0,Y0,NXG,DXG,NYG,DYG, LMASK)
C
 RETURN
 END ! GRDAIR

 SUBROUTINE PLTAIR(XX,XXP,YY,YYP,SS,NN, XOFF,XSF,YOFF,YSF,COLOR)
 DIMENSION XX(NN), XXP(NN), YY(NN), YYP(NN), SS(NN)
 CHARACTER*(*) COLOR
C-----------------------------
C Plots passed-in airfoil
C-----------------------------
 LOGICAL LCOLOR
 XMOD(XTMP) = XSF * (XTMP - XOFF)
 YMOD(YTMP) = YSF * (YTMP - YOFF)
C
 NT = 20
ccc NT = 50
C
 LCOLOR = COLOR(1:1) .NE. ' '
C
 IF(LCOLOR) THEN
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME(COLOR)
 ENDIF
C
 DO 60 I=2, NN
 DS = SS(I) - SS(I-1)
 CALL PLOT(XMOD(XX(I-1)),YMOD(YY(I-1)),3)
C
C------ subdivide current panel into NT segments for smoother airfoil plot
 DO 610 IT=1, NT
 ST = SS(I-1) + DS*FLOAT(IT)/FLOAT(NT)
 XT = SEVAL(ST,XX,XXP,SS,NN)
 YT = SEVAL(ST,YY,YYP,SS,NN)
 CALL PLOT(XMOD(XT),YMOD(YT),2)
 610 CONTINUE
 60 CONTINUE
C
 IF(LCOLOR) CALL NEWCOLOR(ICOL0)
C
 CALL PLFLUSH
C
 RETURN
 END ! PLTAIR

 SUBROUTINE OVER(FNAME1)
C--
C Overlays plot of airfoil from coordinate file.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) FNAME1
C
 CHARACTER*32 NAME0, NAMEW
 CHARACTER*80 ISPARS0
C
 IF(FNAME1(1:1).NE.' ') THEN
 FNAME = FNAME1
 ELSE
C----- no argument... get it somehow
 IF(ONAME(1:1).NE.' ') THEN
C------ offer existing default
 WRITE(*,1100) ONAME
 1100 FORMAT(/' Enter filename: ', A)
 READ(*,1000) FNAME
 1000 FORMAT(A)
 CALL STRIP(FNAME,NFN)
 IF(NFN.EQ.0) FNAME = ONAME
 ELSE
C------ just ask for filename
 CALL ASKS('Enter filename^',FNAME)
 ENDIF
 ENDIF
C
 LU = 9
 CALL AREAD(LU,FNAME,2*IQX,W1,W2,NN,NAME0,ISPARS0,ITYPE,1)
 IF(ITYPE.EQ.0) RETURN
C
C---- set new default filename
 ONAME = FNAME
C
 IF(LNORM) THEN
C----- normalize to unit chord
 CALL NORM(W1,W3,W2,W4,W5,NN)
 ELSE
 CALL SCALC(W1,W2,W5,NN)
 CALL SEGSPL(W1,W3,W5,NN)
 CALL SEGSPL(W2,W4,W5,NN)
 ENDIF
C
 NAMEW = NAME
 SWLE = SBLE
 CHORDW = CHORDB
 AREAW = AREAB
 RADWLE = RADBLE
 ANGWTE = ANGBTE
 EI11WA = EI11BA
 EI22WA = EI22BA
 APX1WA = APX1BA
 APX2WA = APX2BA
 EI11WT = EI11BT
 EI22WT = EI22BT
 APX1WT = APX1BT
 APX2WT = APX2BT
 THICKW = THICKB
 CAMBRW = CAMBRB
C
 NAME = NAME0
 CALL GEOPAR(W1,W3,W2,W4,W5,NN,W6,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 IF(.NOT.LPLOT) THEN
 CALL PLTINI
ccc CALL PLOT(0.05,0.30,-3)
 ENDIF
C
 CALL NEWPEN(2)
 CALL PLTAIR(W1,W3,W2,W4,W5,NN, XOFF,XSF, YOFF,YSF,'cyan')
 CALL PLNEWP('cyan')
C
C---- restore parameters
 NAME = NAMEW
 SBLE = SWLE
 CHORDB = CHORDW
 AREAB = AREAW
 RADBLE = RADWLE
 ANGBTE = ANGWTE
 EI11BA = EI11WA
 EI22BA = EI22WA
 APX1BA = APX1WA
 APX2BA = APX2WA
 EI11BT = EI11WT
 EI22BT = EI22WT
 APX1BT = APX1WT
 APX2BT = APX2WT
 THICKB = THICKW
 CAMBRB = CAMBRW
C
 RETURN
 END ! OVER

XFOILinterface/XFOIL/src/xgeom.f

C***
C Module: xgeom.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE LEFIND(SLE,X,XP,Y,YP,S,N)
 DIMENSION X(*),XP(*),Y(*),YP(*),S(*)
C--
C Locates leading edge spline-parameter value SLE
C
C The defining condition is
C
C (X-XTE,Y-YTE) . (X',Y') = 0 at S = SLE
C
C i.e. the surface tangent is normal to the chord
C line connecting X(SLE),Y(SLE) and the TE point.
C--
C
C---- convergence tolerance
 DSEPS = (S(N)-S(1)) * 1.0E-5
C
C---- set trailing edge point coordinates
 XTE = 0.5*(X(1) + X(N))
 YTE = 0.5*(Y(1) + Y(N))
C
C---- get first guess for SLE
 DO 10 I=3, N-2
 DXTE = X(I) - XTE
 DYTE = Y(I) - YTE
 DX = X(I+1) - X(I)
 DY = Y(I+1) - Y(I)
 DOTP = DXTE*DX + DYTE*DY
 IF(DOTP .LT. 0.0) GO TO 11
 10 CONTINUE
C
 11 SLE = S(I)
C
C---- check for sharp LE case
 IF(S(I) .EQ. S(I-1)) THEN
ccc WRITE(*,*) 'Sharp LE found at ',I,SLE
 RETURN
 ENDIF
C
C---- Newton iteration to get exact SLE value
 DO 20 ITER=1, 50
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 DXDS = DEVAL(SLE,X,XP,S,N)
 DYDS = DEVAL(SLE,Y,YP,S,N)
 DXDD = D2VAL(SLE,X,XP,S,N)
 DYDD = D2VAL(SLE,Y,YP,S,N)
C
 XCHORD = XLE - XTE
 YCHORD = YLE - YTE
C
C------ drive dot product between chord line and LE tangent to zero
 RES = XCHORD*DXDS + YCHORD*DYDS
 RESS = DXDS *DXDS + DYDS *DYDS
 & + XCHORD*DXDD + YCHORD*DYDD
C
C------ Newton delta for SLE
 DSLE = -RES/RESS
C
 DSLE = MAX(DSLE , -0.02*ABS(XCHORD+YCHORD))
 DSLE = MIN(DSLE , 0.02*ABS(XCHORD+YCHORD))
 SLE = SLE + DSLE
 IF(ABS(DSLE) .LT. DSEPS) RETURN
 20 CONTINUE
 WRITE(*,*) 'LEFIND: LE point not found. Continuing...'
 SLE = S(I)
 RETURN
 END

 SUBROUTINE XLFIND(SLE,X,XP,Y,YP,S,N)
 DIMENSION X(*),XP(*),Y(*),YP(*),S(*)
C--
C Locates leftmost (minimum x) point location SLE
C
C The defining condition is
C
C X' = 0 at S = SLE
C
C i.e. the surface tangent is vertical
C--
C
 DSLEN = S(N) - S(1)
C
C---- convergence tolerance
 DSEPS = (S(N)-S(1)) * 1.0E-5
C
C---- get first guess for SLE
 DO 10 I=3, N-2
 DX = X(I+1) - X(I)
 IF(DX .GT. 0.0) GO TO 11
 10 CONTINUE
C
 11 SLE = S(I)
C
C---- check for sharp LE case
 IF(S(I) .EQ. S(I-1)) THEN
ccc WRITE(*,*) 'Sharp LE found at ',I,SLE
 RETURN
 ENDIF
C
C---- Newton iteration to get exact SLE value
 DO 20 ITER=1, 50
 DXDS = DEVAL(SLE,X,XP,S,N)
 DXDD = D2VAL(SLE,X,XP,S,N)
C
C------ drive DXDS to zero
 RES = DXDS
 RESS = DXDD
C
C------ Newton delta for SLE
 DSLE = -RES/RESS
C
 DSLE = MAX(DSLE , -0.01*ABS(DSLEN))
 DSLE = MIN(DSLE , 0.01*ABS(DSLEN))
 SLE = SLE + DSLE
 IF(ABS(DSLE) .LT. DSEPS) RETURN
 20 CONTINUE
 WRITE(*,*) 'XLFIND: Left point not found. Continuing...'
 SLE = S(I)
 RETURN
 END ! XLFIND

 SUBROUTINE NSFIND(SLE,X,XP,Y,YP,S,N)
 REAL X(*),Y(*),S(*),XP(*),YP(*)
C--
C Finds "nose" of airfoil where curvature is a maximum
C--
C
 PARAMETER (NMAX=500)
 DIMENSION A(NMAX), B(NMAX), C(NMAX), CV(NMAX)
C
 IF(N.GT.NMAX) STOP 'NSFIND: Local array overflow. Increase NMAX.'
C
C---- set up curvature array
 DO 3 I=1, N
 CV(I) = CURV(S(I),X,XP,Y,YP,S,N)
 3 CONTINUE
C
C---- curvature smoothing length
 SMOOL = 0.006*(S(N)-S(1))
C
C---- set up tri-diagonal system for smoothed curvatures
 SMOOSQ = SMOOL**2
 A(1) = 1.0
 C(1) = 0.0
 DO 4 I=2, N-1
 DSM = S(I) - S(I-1)
 DSP = S(I+1) - S(I)
 DSO = 0.5*(S(I+1) - S(I-1))
C
 IF(DSM.EQ.0.0 .OR. DSP.EQ.0.0) THEN
C------- leave curvature at corner point unchanged
 B(I) = 0.0
 A(I) = 1.0
 C(I) = 0.0
 ELSE
 B(I) = SMOOSQ * (- 1.0/DSM) / DSO
 A(I) = SMOOSQ * (1.0/DSP + 1.0/DSM) / DSO + 1.0
 C(I) = SMOOSQ * (-1.0/DSP) / DSO
 ENDIF
 4 CONTINUE
 B(N) = 0.0
 A(N) = 1.0
C
 CALL TRISOL(A,B,C,CV,N)
C
C---- find max curvature index
 CVMAX = 0.
 IVMAX = 0
 DO 71 I=2, N-1
 IF(ABS(CV(I)) .GT. CVMAX) THEN
 CVMAX = ABS(CV(I))
 IVMAX = I
 ENDIF
 71 CONTINUE
C
C---- fit a parabola to the curvature at the three points near maximum
 I = IVMAX
C
 IP = I+1
 IM = I-1
 IF(S(I) .EQ. S(IP)) IP = I+2
 IF(S(I) .EQ. S(IM)) IM = I-2

 DSM = S(I) - S(IM)
 DSP = S(IP) - S(I)
C
 CVSM = (CV(I)-CV(IM))/DSM
 CVSP = (CV(IP)-CV(I))/DSP
C
C---- 1st and 2nd derivatives at i=IVMAX
 CVS = (CVSM*DSP + CVSP*DSM)/(DSP+DSM)
 CVSS = 2.0*(CVSP-CVSM)/(DSP+DSM)
C
C---- set location of arc length at maximum of parabola
 DS = -CVS/CVSS
 SLE = S(I) + DS
C
 RETURN
 END

 SUBROUTINE SOPPS(SOPP, SI, X,XP,Y,YP,S,N, SLE)
 DIMENSION X(*),XP(*),Y(*),YP(*),S(*)
C--
C Calculates arc length SOPP of point
C which is opposite of point SI, on the
C other side of the airfoil baseline
C--
C
C---- reference length for testing convergence
 SLEN = S(N) - S(1)
C
C---This fails miserably with sharp LE foils, tsk,tsk,tsk HHY 4/24/01
C---- set baseline vector normal to surface at LE point
c DXC = -DEVAL(SLE,Y,YP,S,N)
c DYC = DEVAL(SLE,X,XP,S,N)
c DSC = SQRT(DXC**2 + DYC**2)
c DXC = DXC/DSC
c DYC = DYC/DSC
C
C---Rational alternative 4/24/01 HHY
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
 CHORD = SQRT((XTE-XLE)**2 + (YTE-YLE)**2)
C---- set unit chord-line vector
 DXC = (XTE-XLE) / CHORD
 DYC = (YTE-YLE) / CHORD
C
C
 IF(SI.LT.SLE) THEN
 IN = 1
 INOPP = N
 ELSE
 IN = N
 INOPP = 1
 ENDIF
 SFRAC = (SI-SLE)/(S(IN)-SLE)
 SOPP = SLE + SFRAC*(S(INOPP)-SLE)
C
 IF(ABS(SFRAC) .LE. 1.0E-5) THEN
 SOPP = SLE
 RETURN
 ENDIF
C
C---- XBAR = x coordinate in chord-line axes
 XI = SEVAL(SI , X,XP,S,N)
 YI = SEVAL(SI , Y,YP,S,N)
 XLE = SEVAL(SLE, X,XP,S,N)
 YLE = SEVAL(SLE, Y,YP,S,N)
 XBAR = (XI-XLE)*DXC + (YI-YLE)*DYC
C
C---- converge on exact opposite point with same XBAR value
 DO 300 ITER=1, 12
 XOPP = SEVAL(SOPP,X,XP,S,N)
 YOPP = SEVAL(SOPP,Y,YP,S,N)
 XOPPD = DEVAL(SOPP,X,XP,S,N)
 YOPPD = DEVAL(SOPP,Y,YP,S,N)
C
 RES = (XOPP -XLE)*DXC + (YOPP -YLE)*DYC - XBAR
 RESD = XOPPD *DXC + YOPPD *DYC
C
 IF(ABS(RES)/SLEN .LT. 1.0E-5) GO TO 305
 IF(RESD .EQ. 0.0) GO TO 303
C
 DSOPP = -RES/RESD
 SOPP = SOPP + DSOPP
C
 IF(ABS(DSOPP)/SLEN .LT. 1.0E-5) GO TO 305
 300 CONTINUE
 303 WRITE(*,*)
 & 'SOPPS: Opposite-point location failed. Continuing...'
 SOPP = SLE + SFRAC*(S(INOPP)-SLE)
C
 305 CONTINUE
 RETURN
 END ! SOPPS

 SUBROUTINE NORM(X,XP,Y,YP,S,N)
 DIMENSION X(*),XP(*),Y(*),YP(*),S(*)
C---
C Scales coordinates to get unit chord
C---
C
 CALL SCALC(X,Y,S,N)
 CALL SEGSPL(X,XP,S,N)
 CALL SEGSPL(Y,YP,S,N)
C
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
C
 XMAX = 0.5*(X(1) + X(N))
 XMIN = SEVAL(SLE,X,XP,S,N)
 YMIN = SEVAL(SLE,Y,YP,S,N)
C
 FUDGE = 1.0/(XMAX-XMIN)
 DO 40 I=1, N
 X(I) = (X(I)-XMIN)*FUDGE
 Y(I) = (Y(I)-YMIN)*FUDGE
 S(I) = S(I)*FUDGE
 40 CONTINUE
C
 RETURN
 END

 SUBROUTINE GEOPAR(X,XP,Y,YP,S,N, T,
 & SLE,CHORD,AREA,RADLE,ANGTE,
 & EI11A,EI22A,APX1A,APX2A,
 & EI11T,EI22T,APX1T,APX2T,
 & THICK,CAMBR)
 DIMENSION X(*), XP(*), Y(*), YP(*), S(*), T(*)
C
 PARAMETER (IBX=600)
 DIMENSION
 & XCAM(2*IBX), YCAM(2*IBX), YCAMP(2*IBX),
 & XTHK(2*IBX), YTHK(2*IBX), YTHKP(2*IBX)
C--
C Sets geometric parameters for airfoil shape
C--
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
C
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
C
 CHSQ = (XTE-XLE)**2 + (YTE-YLE)**2
 CHORD = SQRT(CHSQ)
C
 CURVLE = CURV(SLE,X,XP,Y,YP,S,N)
C
 RADLE = 0.0
 IF(ABS(CURVLE) .GT. 0.001*(S(N)-S(1))) RADLE = 1.0 / CURVLE
C
 ANG1 = ATAN2(-YP(1) , -XP(1))
 ANG2 = ATANC(YP(N) , XP(N) , ANG1)
 ANGTE = ANG2 - ANG1
C

 DO I=1, N
 T(I) = 1.0
 ENDDO
C
 CALL AECALC(N,X,Y,T, 1,
 & AREA,XCENA,YCENA,EI11A,EI22A,APX1A,APX2A)
C
 CALL AECALC(N,X,Y,T, 2,
 & SLEN,XCENT,YCENT,EI11T,EI22T,APX1T,APX2T)
C
C--- Old, approximate thickness,camber routine (on discrete points only)
 CALL TCCALC(X,XP,Y,YP,S,N, THICK,XTHICK, CAMBR,XCAMBR)
C
C--- More accurate thickness and camber estimates
cc CALL GETCAM(XCAM,YCAM,NCAM,XTHK,YTHK,NTHK,
cc & X,XP,Y,YP,S,N)
cc CALL GETMAX(XCAM,YCAM,YCAMP,NCAM,XCAMBR,CAMBR)
cc CALL GETMAX(XTHK,YTHK,YTHKP,NTHK,XTHICK,THICK)
cc THICK = 2.0*THICK
C
 WRITE(*,1000) THICK,XTHICK,CAMBR,XCAMBR
 1000 FORMAT(' Max thickness = ',F12.6,' at x = ',F7.3,
 & /' Max camber = ',F12.6,' at x = ',F7.3)

C
 RETURN
 END ! GEOPAR

 SUBROUTINE AECALC(N,X,Y,T, ITYPE,
 & AREA,XCEN,YCEN,EI11,EI22,APX1,APX2)
 DIMENSION X(*),Y(*),T(*)
C---
C Calculates geometric properties of shape X,Y
C
C Input:
C N number of points
C X(.) shape coordinate point arrays
C Y(.)
C T(.) skin-thickness array, used only if ITYPE = 2
C ITYPE = 1 ... integration is over whole area dx dy
C = 2 ... integration is over skin area t ds
C
C Output:
C XCEN,YCEN centroid location
C EI11,EI22 principal moments of inertia
C APX1,APX2 principal-axis angles
C---
 DATA PI / 3.141592653589793238 /
C
 SINT = 0.0
 AINT = 0.0
 XINT = 0.0
 YINT = 0.0
 XXINT = 0.0
 XYINT = 0.0
 YYINT = 0.0
C
 DO 10 IO = 1, N
 IF(IO.EQ.N) THEN
 IP = 1
 ELSE
 IP = IO + 1
 ENDIF
C
 DX = X(IO) - X(IP)
 DY = Y(IO) - Y(IP)
 XA = (X(IO) + X(IP))*0.50
 YA = (Y(IO) + Y(IP))*0.50
 TA = (T(IO) + T(IP))*0.50
C
 DS = SQRT(DX*DX + DY*DY)
 SINT = SINT + DS

 IF(ITYPE.EQ.1) THEN
C-------- integrate over airfoil cross-section
 DA = YA*DX
 AINT = AINT + DA
 XINT = XINT + XA *DA
 YINT = YINT + YA *DA/2.0
 XXINT = XXINT + XA*XA*DA
 XYINT = XYINT + XA*YA*DA/2.0
 YYINT = YYINT + YA*YA*DA/3.0
 ELSE
C-------- integrate over skin thickness
 DA = TA*DS
 AINT = AINT + DA
 XINT = XINT + XA *DA
 YINT = YINT + YA *DA
 XXINT = XXINT + XA*XA*DA
 XYINT = XYINT + XA*YA*DA
 YYINT = YYINT + YA*YA*DA
 ENDIF
C
 10 CONTINUE
C
 AREA = AINT
C
 IF(AINT .EQ. 0.0) THEN
 XCEN = 0.0
 YCEN = 0.0
 EI11 = 0.0
 EI22 = 0.0
 APX1 = 0.0
 APX2 = ATAN2(1.0,0.0)
 RETURN
 ENDIF
C
C
C---- calculate centroid location
 XCEN = XINT/AINT
 YCEN = YINT/AINT
C
C---- calculate inertias
 EIXX = YYINT - YCEN*YCEN*AINT
 EIXY = XYINT - XCEN*YCEN*AINT
 EIYY = XXINT - XCEN*XCEN*AINT
C
C---- set principal-axis inertias, EI11 is closest to "up-down" bending inertia
 EISQ = 0.25*(EIXX - EIYY)**2 + EIXY**2
 SGN = SIGN(1.0 , EIYY-EIXX)
 EI11 = 0.5*(EIXX + EIYY) - SGN*SQRT(EISQ)
 EI22 = 0.5*(EIXX + EIYY) + SGN*SQRT(EISQ)
C
 IF(EI11.EQ.0.0 .OR. EI22.EQ.0.0) THEN
C----- vanishing section stiffness
 APX1 = 0.0
 APX2 = ATAN2(1.0,0.0)
C
 ELSEIF(EISQ/(EI11*EI22) .LT. (0.001*SINT)**4) THEN
C----- rotationally-invariant section (circle, square, etc.)
 APX1 = 0.0
 APX2 = ATAN2(1.0,0.0)
C
 ELSE
C----- normal airfoil section
 C1 = EIXY
 S1 = EIXX-EI11
C
 C2 = EIXY
 S2 = EIXX-EI22
C
 IF(ABS(S1).GT.ABS(S2)) THEN
 APX1 = ATAN2(S1,C1)
 APX2 = APX1 + 0.5*PI
 ELSE
 APX2 = ATAN2(S2,C2)
 APX1 = APX2 - 0.5*PI
 ENDIF

 IF(APX1.LT.-0.5*PI) APX1 = APX1 + PI
 IF(APX1.GT.+0.5*PI) APX1 = APX1 - PI
 IF(APX2.LT.-0.5*PI) APX2 = APX2 + PI
 IF(APX2.GT.+0.5*PI) APX2 = APX2 - PI
C
 ENDIF
C
 RETURN
 END ! AECALC

 SUBROUTINE TCCALC(X,XP,Y,YP,S,N,
 & THICK,XTHICK, CAMBR,XCAMBR)
 DIMENSION X(*),XP(*),Y(*),YP(*),S(*)
C---
C Calculates max thickness and camber at airfoil points
C
C Note: this routine does not find the maximum camber or
C thickness exactly as it only looks at discrete points
C
C Input:
C N number of points
C X(.) shape coordinate point arrays
C Y(.)
C
C Output:
C THICK max thickness
C CAMBR max camber
C---
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
 CHORD = SQRT((XTE-XLE)**2 + (YTE-YLE)**2)
C
C---- set unit chord-line vector
 DXC = (XTE-XLE) / CHORD
 DYC = (YTE-YLE) / CHORD
C
 THICK = 0.
 XTHICK = 0.
 CAMBR = 0.
 XCAMBR = 0.
C
C---- go over each point, finding the y-thickness and camber
 DO 30 I=1, N
 XBAR = (X(I)-XLE)*DXC + (Y(I)-YLE)*DYC
 YBAR = (Y(I)-YLE)*DXC - (X(I)-XLE)*DYC
C
C------ set point on the opposite side with the same chord x value
 CALL SOPPS(SOPP, S(I), X,XP,Y,YP,S,N, SLE)
 XOPP = SEVAL(SOPP,X,XP,S,N)
 YOPP = SEVAL(SOPP,Y,YP,S,N)
C
 YBAROP = (YOPP-YLE)*DXC - (XOPP-XLE)*DYC
C
 YC = 0.5*(YBAR+YBAROP)
 YT = ABS(YBAR-YBAROP)
C
 IF(ABS(YC) .GT. ABS(CAMBR)) THEN
 CAMBR = YC
 XCAMBR = XOPP
 ENDIF
 IF(ABS(YT) .GT. ABS(THICK)) THEN
 THICK = YT
 XTHICK = XOPP
 ENDIF
 30 CONTINUE
C
 RETURN
 END ! TCCALC

 SUBROUTINE YSYM(X,XP,Y,YP,S,NX,N,ISIDE, XNEW,YNEW)
C---
C Makes passed-in airfoil symmetric about chord line.
C---

 DIMENSION X(NX),XP(NX),Y(NX),YP(NX),S(NX)
 DIMENSION XNEW(NX), YNEW(NX)
C
 SREF = S(N) - S(1)
C
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
 CHSQ = (XTE-XLE)**2 + (YTE-YLE)**2
C
C---- set unit chord-line vector
 DXC = (XTE-XLE) / SQRT(CHSQ)
 DYC = (YTE-YLE) / SQRT(CHSQ)
C
C---- find index of node ILE which is just before leading edge point
 DO 5 I=2, N
 DS = S(I) - S(I-1)
 IF(S(I)-SLE .GE. -0.01*DS) GO TO 6
 5 CONTINUE
 6 CONTINUE
 ILE = I-1
C
 DS = S(ILE+1) - S(ILE)
 IF(SLE-S(ILE-1) .LT. 0.1*DS) THEN
C------ point is just before LE, we will move it ahead to LE
 ILE1 = ILE - 1
 ILE2 = ILE + 1
 ELSE IF(S(ILE+1)-SLE .LT. 0.1*DS) THEN
C------ point is just after LE, we will move it back to LE
 ILE1 = ILE
 ILE2 = ILE + 2
 ELSE
C------ no point is near LE ... we will add new point
 ILE1 = ILE
 ILE2 = ILE + 1
 ENDIF
C
C---- set index limits of side which will set symmetric geometry
 IF(ISIDE.EQ.1) THEN
 IG1 = 1
 IG2 = ILE1
 IGDIR = +1
 ELSE
 IG1 = N
 IG2 = ILE2
 IGDIR = -1
 ENDIF
C
C---- set new number of points, including LE point
 NNEW = 2*(IABS(IG2-IG1) + 1) + 1
 IF(NNEW.GT.NX) STOP 'YSYM: Array overflow on passed arrays.'
C
C---- set symmetric geometry
 DO 10 I=IG1, IG2, IGDIR
C
C------ coordinates in chord-line axes
 XBAR = (X(I)-XLE)*DXC + (Y(I)-YLE)*DYC
 YBAR = (Y(I)-YLE)*DXC - (X(I)-XLE)*DYC
C
 I1 = 1 + (I - IG1)*IGDIR
 I2 = NNEW - (I - IG1)*IGDIR
C
 XNEW(I1) = XLE + XBAR*DXC - YBAR*DYC
 XNEW(I2) = XLE + XBAR*DXC + YBAR*DYC
C
 YNEW(I1) = YLE + YBAR*DXC + XBAR*DYC
 YNEW(I2) = YLE - YBAR*DXC + XBAR*DYC
 10 CONTINUE
C
C---- set new LE point
 XNEW(NNEW/2+1) = XLE
 YNEW(NNEW/2+1) = YLE
C
C---- set geometry for returning
 N = NNEW
 DO 20 IG = 1, N
 IF(IGDIR.EQ.+1) THEN
 I = IG
 ELSE
 I = N - IG + 1
 ENDIF
 X(I) = XNEW(IG)
 Y(I) = YNEW(IG)
 20 CONTINUE
C
 CALL SCALC(X,Y,S,N)
 CALL SEGSPL(X,XP,S,N)
 CALL SEGSPL(Y,YP,S,N)
C
 RETURN
 END ! YSYM

 SUBROUTINE LERSCL(X,XP,Y,YP,S,N, DOC,RFAC, XNEW,YNEW)
C---
C Adjusts airfoil to scale LE radius by factor RFAC.
C Blending of new shape is done with decay length DOC.
C---
 DIMENSION X(*),XP(*),Y(*),YP(*),S(*)
 DIMENSION XNEW(*), YNEW(*)
C
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
 CHORD = SQRT((XTE-XLE)**2 + (YTE-YLE)**2)
C
C---- set unit chord-line vector
 DXC = (XTE-XLE) / CHORD
 DYC = (YTE-YLE) / CHORD
C
 SRFAC = SQRT(ABS(RFAC))
C
C---- go over each point, changing the y-thickness appropriately
 DO 30 I=1, N
 XBAR = (X(I)-XLE)*DXC + (Y(I)-YLE)*DYC
 YBAR = (Y(I)-YLE)*DXC - (X(I)-XLE)*DYC
C
C------ set point on the opposite side with the same chord x value
 CALL SOPPS(SOPP, S(I), X,XP,Y,YP,S,N, SLE)
 XOPP = SEVAL(SOPP,X,XP,S,N)
 YOPP = SEVAL(SOPP,Y,YP,S,N)
C
 YBAROP = (YOPP-YLE)*DXC - (XOPP-XLE)*DYC
C
C------ thickness factor tails off exponentially towards trailing edge
 XOC = XBAR/CHORD
 ARG = MIN(XOC/DOC , 15.0)
 TFAC = 1.0 - (1.0-SRFAC)*EXP(-ARG)
C
C------ set new chord x,y coordinates by changing thickness locally
 YBARCT = 0.5*(YBAR+YBAROP) + TFAC*0.5*(YBAR-YBAROP)
C
 XNEW(I) = XLE + XBAR *DXC - YBARCT*DYC
 YNEW(I) = YLE + YBARCT*DXC + XBAR *DYC
 30 CONTINUE
C
 RETURN
 END

 SUBROUTINE SSS(SS,S1,S2,DEL,XBF,YBF,X,XP,Y,YP,S,N,ISIDE)
 DIMENSION X(*),XP(*),Y(*),YP(*),S(*)
C--
C Returns arc length points S1,S2 at flap surface break
C locations. S1 is on fixed airfoil part, S2 is on flap.
C The points are defined according to two cases:
C
C
C If DEL > 0: Surface will be eliminated in S1 < s < S2
C
C Returns the arc length values S1,S2 of the endpoints
C of the airfoil surface segment which "disappears" as a
C result of the flap deflection. The line segments between
C these enpoints and the flap hinge point (XBF,YBF) have
C an included angle of DEL. DEL is therefore the flap
C deflection which will join up the points at S1,S2.
C SS is an approximate arc length value near S1 and S2.
C It is used as an initial guess for the Newton loop
C for S1 and S2.
C
C
C If DEL = 0: Surface will be created at s = S1 = S2
C
C If DEL=0, then S1,S2 will cooincide, and will be located
C on the airfoil surface where the segment joining the
C point at S1,S2 and the hinge point is perpendicular to
C the airfoil surface. This will be the point where the
C airfoil surface must be broken to permit a gap to open
C as a result of the flap deflection.
C--
C
C---- convergence epsilon
 DATA EPS / 1.0E-5 /
C
 STOT = ABS(S(N) - S(1))
C
 SIND = SIN(0.5*ABS(DEL))
C
 SSGN = 1.0
 IF(ISIDE.EQ.1) SSGN = -1.0
C
C---- initial guesses for S1, S2
 RSQ = (SEVAL(SS,X,XP,S,N)-XBF)**2 + (SEVAL(SS,Y,YP,S,N)-YBF)**2
 S1 = SS - (SIND*SQRT(RSQ) + EPS*STOT)*SSGN
 S2 = SS + (SIND*SQRT(RSQ) + EPS*STOT)*SSGN
C
C---- Newton iteration loop
 DO 10 ITER=1, 10
 X1 = SEVAL(S1,X,XP,S,N)
 X1P = DEVAL(S1,X,XP,S,N)
 Y1 = SEVAL(S1,Y,YP,S,N)
 Y1P = DEVAL(S1,Y,YP,S,N)
C
 X2 = SEVAL(S2,X,XP,S,N)
 X2P = DEVAL(S2,X,XP,S,N)
 Y2 = SEVAL(S2,Y,YP,S,N)
 Y2P = DEVAL(S2,Y,YP,S,N)
C
 R1SQ = (X1-XBF)**2 + (Y1-YBF)**2
 R2SQ = (X2-XBF)**2 + (Y2-YBF)**2
 R1 = SQRT(R1SQ)
 R2 = SQRT(R2SQ)
C
 RRSQ = (X1-X2)**2 + (Y1-Y2)**2
 RR = SQRT(RRSQ)
C
 IF(R1.LE.EPS*STOT .OR. R2.LE.EPS*STOT) THEN
 S1 = SS
 S2 = SS
 RETURN
 ENDIF
C
 R1_S1 = (X1P*(X1-XBF) + Y1P*(Y1-YBF))/R1
 R2_S2 = (X2P*(X2-XBF) + Y2P*(Y2-YBF))/R2
C
 IF(SIND.GT.0.01) THEN
C
 IF(RR.EQ.0.0) RETURN
C
 RR_S1 = (X1P*(X1-X2) + Y1P*(Y1-Y2))/RR
 RR_S2 = -(X2P*(X1-X2) + Y2P*(Y1-Y2))/RR
C
C------- Residual 1: set included angle via dot product
 RS1 = ((XBF-X1)*(X2-X1) + (YBF-Y1)*(Y2-Y1))/RR - SIND*R1
 A11 = ((XBF-X1)*(-X1P) + (YBF-Y1)*(-Y1P))/RR
 & + ((-X1P)*(X2-X1) + (-Y1P)*(Y2-Y1))/RR
 & - ((XBF-X1)*(X2-X1) + (YBF-Y1)*(Y2-Y1))*RR_S1/RRSQ
 & - SIND*R1_S1
 A12 = ((XBF-X1)*(X2P) + (YBF-Y1)*(Y2P))/RR
 & - ((XBF-X1)*(X2-X1) + (YBF-Y1)*(Y2-Y1))*RR_S2/RRSQ
C
C------- Residual 2: set equal length segments
 RS2 = R1 - R2
 A21 = R1_S1
 A22 = - R2_S2
C
 ELSE
C
C------- Residual 1: set included angle via small angle approximation
 RS1 = (R1+R2)*SIND + (S1 - S2)*SSGN
 A11 = R1_S1 *SIND + SSGN
 A12 = R2_S2 *SIND - SSGN
C
C------- Residual 2: set vector sum of line segments beteen the
C- endpoints and flap hinge to be perpendicular to airfoil surface.
 X1PP = D2VAL(S1,X,XP,S,N)
 Y1PP = D2VAL(S1,Y,YP,S,N)
 X2PP = D2VAL(S2,X,XP,S,N)
 Y2PP = D2VAL(S2,Y,YP,S,N)
C
 XTOT = X1+X2 - 2.0*XBF
 YTOT = Y1+Y2 - 2.0*YBF
C
 RS2 = XTOT*(X1P+X2P) + YTOT*(Y1P+Y2P)
 A21 = X1P*(X1P+X2P) + Y1P*(Y1P+Y2P) + XTOT*X1PP + YTOT*Y1PP
 A22 = X2P*(X1P+X2P) + Y2P*(Y1P+Y2P) + XTOT*X2PP + YTOT*Y2PP
C
 ENDIF
C
 DET = A11*A22 - A12*A21
 DS1 = -(RS1*A22 - A12*RS2) / DET
 DS2 = -(A11*RS2 - RS1*A21) / DET
C
 DS1 = MIN(DS1 , 0.01*STOT)
 DS1 = MAX(DS1 , -.01*STOT)
 DS2 = MIN(DS2 , 0.01*STOT)
 DS2 = MAX(DS2 , -.01*STOT)
C
 S1 = S1 + DS1
 S2 = S2 + DS2
 IF(ABS(DS1)+ABS(DS2) .LT. EPS*STOT) GO TO 11
 10 CONTINUE
 WRITE(*,*) 'SSS: failed to converge subtending angle points'
 S1 = SS
 S2 = SS
C
 11 CONTINUE
C
C---- make sure points are identical if included angle is zero.
 IF(DEL.EQ.0.0) THEN
 S1 = 0.5*(S1+S2)
 S2 = S1
 ENDIF
C
 RETURN
 END

 SUBROUTINE CLIS(X,XP,Y,YP,S,N)
 DIMENSION X(*), XP(*), Y(*), YP(*), S(*)
C---
C Displays curvatures at panel nodes.
C---
 PI = 4.0*ATAN(1.0)
C
 CMAX = 0.0
 IMAX = 1
C
C---- go over each point, calculating curvature
 WRITE(*,1050)
 DO 30 I=1, N
 IF(I.EQ.1) THEN
 ARAD = ATAN2(-YP(I),-XP(I))
 ELSE
 ARAD = ATANC(-YP(I),-XP(I),ARAD)
 ENDIF
 ADEG = ARAD * 180.0/PI
 CV = CURV(S(I),X,XP,Y,YP,S,N)
 WRITE(*,1100) I, X(I), Y(I), S(I), ADEG, CV
 IF(ABS(CV) .GT. ABS(CMAX)) THEN
 CMAX = CV
 IMAX = I
 ENDIF
 30 CONTINUE
C
 WRITE(*,1200) CMAX, IMAX, X(IMAX), Y(IMAX), S(IMAX)
C
 RETURN
C
 1050 FORMAT(
 & /' i x y s theta curv')
CCC 120 0.12134 -0.10234 -0.30234 180.024 2025.322
 1100 FORMAT(1X,I3, 3F10.5, F11.3, F12.3)
 1200 FORMAT(/' Maximum curvature =', F14.3,
 & ' at i,x,y,s = ', I3, 3F9.4)
 END ! CLIS

 SUBROUTINE PLTCRV(SBLE,XB,XBP,YB,YBP,SB,NB,CV)
C
C---- Plot the curvature on the blade
C
 DIMENSION XB(NB),XBP(NB),YB(NB),YBP(NB),SB(NB),CV(NB)
 CHARACTER ANS*1, ANSARG*128
 LOGICAL LCVEXP, ERROR
C
 DATA LMASK0, LMASK1, LMASK2, LMASK3 / -1, -32640, -30584, -21846 /
C
 CH = 0.01
 LCVEXP = .FALSE.
 CVEXP = 1.0/3.0
C
 10 SBTOT = 0.5*(SB(NB)-SB(1))
 XTE = 0.5*(XB(NB)+XB(1))
 YTE = 0.5*(YB(NB)+YB(1))
 XLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YLE = SEVAL(SBLE,YB,YBP,SB,NB)
 CVLE = CURV(SBLE,XB,XBP,YB,YBP,SB,NB) * SBTOT
 IF(LCVEXP) CVLE = CVLE**CVEXP
C
 CVMAX = CVLE
 SVMAX = SBLE
 XVMAX = XLE
 CVMIN = CVLE
 SVMIN = SBLE
 XVMIN = XLE
 DO I=1, NB
C---- set up curvature array
 CV(I) = CURV(SB(I),XB,XBP,YB,YBP,SB,NB) * SBTOT
 IF(LCVEXP) THEN
 IF(CV(I).GT.0.0) THEN
 CV(I) = CV(I)**CVEXP
 ELSEIF(CV(I).EQ.0.0) THEN
 CV(I) = 0.0
 ELSEIF(CV(I).LT.0.0) THEN
 CVSGN = SIGN(1.0,CV(I))
 CV(I) = CVSGN*(ABS(CV(I))**CVEXP)
 ENDIF
 ENDIF
 IF(CV(I).GT.CVMAX) THEN
 CVMAX = CV(I)
 SVMAX = SB(I)
 XVMAX = XB(I)
 ENDIF
 IF(CV(I).LT.CVMIN) THEN
 CVMIN = CV(I)
 SVMIN = SB(I)
 XVMIN = XB(I)
 ENDIF
 IF(SB(I).LE.SBLE) ILE = I
 END DO
C
cc CALL SCALIT(1,CVMAX-CVMIN,0.0,CWT)
 CVMX = CVMAX
 CVMN = CVMIN
 CALL AXISADJ(CVMN,CVMX,CVSPAN,CVDEL,NCVTICS)
 CWT = 1.0/CVSPAN
 XMX = XTE
 XMN = XLE
 CALL AXISADJ(XMN,XMX,XSPAN,XDEL,NXTICS)
C--- Correct min/max for points just slightly off from a major division in X
 IF(XLE-XMN.GT.0.95*XDEL) XMN = XMN + XDEL
 IF(XMX-XTE.GT.0.95*XDEL) XMX = XMX - XDEL
 XSPAN = XMX-XMN
 XWT = 1.0/XSPAN
C
 PAR = 0.75
 XLEN = 0.8
 YLEN = PAR*XLEN
 XMIN = XMN
 XMAX = XMX
 XDEL = XDEL
 NXG = (XMAX-XMIN)/XDEL
 XSF = XLEN/(XMAX-XMIN)
 XOF = XMN
 YMIN = CVMN
 YMAX = CVMX
 YDEL = CVDEL
 NYG = (YMAX-YMIN)/YDEL
 YSF = YLEN/(YMAX-YMIN)
 YOF = 0.0
C
 CALL PLTINI
 CALL PLOT(0.14,0.1+YLEN*(-YMIN/(YMAX-YMIN)),-3)
C
C--- X axis (x/c)
 CALL NEWPEN(2)
 XLN = XLEN
 IF(XMIN.EQ.0.0) XLN = -XLN
 CALL XAXIS(0.0,0.0,XLN,XSF*XDEL,XMIN,XDEL,CH,1)
 XC = XSF*3.5*XDEL -0.5*1.2*CH
 YC = -3.5*1.2*CH
 CALL PLCHAR(XC,YC,1.2*CH,'X',0.0,1)
C
C--- Y axis (curvature)
 CALL YAXIS(0.0,YSF*YMIN,YLEN,YSF*YDEL,YMIN,YDEL,CH,1)
 XC = -4.5*1.2*CH
 YC = YSF*(YMAX-0.5*YDEL) - 0.5*1.2*CH
 IF(LCVEXP) THEN
 CALL PLCHAR(XC-4.5*1.2*CH,YC,1.2*CH,'CV^',0.0,3)
 CALL PLNUMB(XC-1.5*1.2*CH,YC+0.5*CH,CH,CVEXP,0.0,2)
 ELSE
 CALL PLCHAR(XC,YC,1.2*CH,'CV',0.0,2)
 ENDIF
C
 CALL PLGRID(0.0,YSF*YMIN, NXG,XSF*XDEL, NYG,YSF*YDEL, LMASK2)
 XC = 0.0
 YC = YSF*YMAX + 1.0*1.2*CH
 IF(LCVEXP) THEN
 CALL PLCHAR(XC,YC,1.2*CH,'Curvature^n vs X',0.0,16)
 ELSE
 CALL PLCHAR(XC,YC,1.2*CH,'Curvature vs X',0.0,16)
 ENDIF
C
C--- Upper surface curvature
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME('yellow')
 CALL XYLINE(ILE,XB,CV,XOF,XSF,YOF,YSF,1)
 XC = XSF*(XB(2*ILE/3)-XOF)
 YC = YSF*(CV(2*ILE/3)-YOF)
 CALL PLCHAR(XC+0.5*CH,YC+0.5*CH,CH,'Upper',0.0,5)
C
C--- LE curvature
 CALL NEWCOLORNAME('red')
 XC = XSF*(XLE-XOF)
 YC = YSF*(CVLE-YOF)
 CALL PLSYMB(XC,YC,CH,3,0.0,0)
 CALL PLCHAR(XC+1.0*CH,YC-0.5*CH,CH,'LE',0.0,2)
C
C--- Lower surface curvature
 CALL NEWCOLORNAME('cyan')
 CALL XYLINE(NB-ILE+1,XB(ILE),CV(ILE),XOF,XSF,YOF,YSF,2)
 XC = XSF*(XB((ILE+NB)/2)-XOF)
 YC = YSF*(CV((ILE+NB)/2)-YOF)
 CALL PLCHAR(XC+0.5*CH,YC+0.5*CH,CH,'Lower',0.0,5)
C
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
C
C
 20 WRITE(*,*) ' '
 WRITE(*,*) 'Airfoil curvature (yellow-upper, cyan-lower) '
 IF(LCVEXP) THEN
 WRITE(*,*) ' Range compressed using CV=(curvature)^n with n =',
 & CVEXP
 ENDIF
 WRITE(*,*) ' CVLE = ',CVLE, ' at S = ',SBLE, ' at X = ',XLE
 WRITE(*,*) ' CVmax = ',CVMAX,' at S = ',SVMAX,' at X = ',XVMAX
 WRITE(*,*) ' CVmin = ',CVMIN,' at S = ',SVMIN,' at X = ',XVMIN
C
 WRITE(*,*) ' '
 WRITE(*,*) 'Enter C for curvature plot'
 WRITE(*,*) 'Enter N for curvature**N plot'
 WRITE(*,*) 'Hit <cr> to exit'
 ANSARG = ' '
 CALL ASKC('..CPLO^',ANS,ANSARG)
 IF(ANS.EQ.' ') RETURN
C
 RINPUT = 0.0
 NINPUT = 1
 CALL GETFLT(ANSARG,RINPUT,NINPUT,ERROR)
C
 IF(ANS.EQ.'n' .OR. ANS.EQ.'N') THEN
 IF(NINPUT.GE.1) THEN
 CVEXP = RINPUT
 ELSE
 CVEXP = 0.3
 CALL ASKR('Enter curvature exponent (default 0.3)^',CVEXP)
 ENDIF
 LCVEXP = .TRUE.
 GO TO 10
 ENDIF
 IF(ANS.EQ.'c' .OR. ANS.EQ.'C') THEN
 LCVEXP = .FALSE.
 GO TO 10
 ENDIF
 GO TO 20
C
 1000 FORMAT(A)
 END

 SUBROUTINE CANG(X,Y,N,IPRINT, IMAX,AMAX)
 DIMENSION X(*), Y(*)
C---
C IPRINT=2: Displays all panel node corner angles
C IPRINT=1: Displays max panel node corner angle
C IPRINT=0: No display... just returns values
C---
C
 AMAX = 0.0
 IMAX = 1
C
C---- go over each point, calculating corner angle
 IF(IPRINT.EQ.2) WRITE(*,1050)
 DO 30 I=2, N-1
 DX1 = X(I) - X(I-1)
 DY1 = Y(I) - Y(I-1)
 DX2 = X(I) - X(I+1)
 DY2 = Y(I) - Y(I+1)
C
C------ allow for doubled points
 IF(DX1.EQ.0.0 .AND. DY1.EQ.0.0) THEN
 DX1 = X(I) - X(I-2)
 DY1 = Y(I) - Y(I-2)
 ENDIF
 IF(DX2.EQ.0.0 .AND. DY2.EQ.0.0) THEN
 DX2 = X(I) - X(I+2)
 DY2 = Y(I) - Y(I+2)
 ENDIF
C
 CROSSP = (DX2*DY1 - DY2*DX1)
 & / SQRT((DX1**2 + DY1**2) * (DX2**2 + DY2**2))
 ANGL = ASIN(CROSSP)*(180.0/3.1415926)
 IF(IPRINT.EQ.2) WRITE(*,1100) I, X(I), Y(I), ANGL
 IF(ABS(ANGL) .GT. ABS(AMAX)) THEN
 AMAX = ANGL
 IMAX = I
 ENDIF
 30 CONTINUE
C
 IF(IPRINT.GE.1) WRITE(*,1200) AMAX, IMAX, X(IMAX), Y(IMAX)
C
 RETURN
C
 1050 FORMAT(/' i x y angle')
CCC 120 0.2134 -0.0234 25.322
 1100 FORMAT(1X,I3, 2F9.4, F9.3)
 1200 FORMAT(/' Maximum panel corner angle =', F7.3,
 & ' at i,x,y = ', I3, 2F9.4)
 END ! CANG

 SUBROUTINE INTER(X0,XP0,Y0,YP0,S0,N0,SLE0,
 & X1,XP1,Y1,YP1,S1,N1,SLE1,
 & X,Y,N,FRAC)
C ...
C
C Interpolates two source airfoil shapes into an "intermediate" shape.
C
C Procedure:
C The interpolated x coordinate at a given normalized spline
C parameter value is a weighted average of the two source
C x coordinates at the same normalized spline parameter value.
C Ditto for the y coordinates. The normalized spline parameter
C runs from 0 at the leading edge to 1 at the trailing edge on
C each surface.
C ...
C
 REAL X0(N0),Y0(N0),XP0(N0),YP0(N0),S0(N0)
 REAL X1(N1),Y1(N1),XP1(N1),YP1(N1),S1(N1)
 REAL X(N),Y(N)
C
C---- number of points in interpolated airfoil is the same as in airfoil 0
 N = N0
C
C---- interpolation weighting fractions
 F0 = 1.0 - FRAC
 F1 = FRAC
C
C---- top side spline parameter increments
 TOPS0 = S0(1) - SLE0
 TOPS1 = S1(1) - SLE1
C
C---- bottom side spline parameter increments
 BOTS0 = S0(N0) - SLE0
 BOTS1 = S1(N1) - SLE1
C
 DO 50 I=1, N
C
C------ normalized spline parameter is taken from airfoil 0 value
 IF(S0(I).LT.SLE0) SN = (S0(I) - SLE0) / TOPS0 ! top side
 IF(S0(I).GE.SLE0) SN = (S0(I) - SLE0) / BOTS0 ! bottom side
C
C------ set actual spline parameters
 ST0 = S0(I)
 IF(ST0.LT.SLE0) ST1 = SLE1 + TOPS1 * SN
 IF(ST0.GE.SLE0) ST1 = SLE1 + BOTS1 * SN
C
C------ set input coordinates at common spline parameter location
 XT0 = SEVAL(ST0,X0,XP0,S0,N0)
 YT0 = SEVAL(ST0,Y0,YP0,S0,N0)
 XT1 = SEVAL(ST1,X1,XP1,S1,N1)
 YT1 = SEVAL(ST1,Y1,YP1,S1,N1)
C
C------ set interpolated x,y coordinates
 X(I) = F0*XT0 + F1*XT1
 Y(I) = F0*YT0 + F1*YT1
C
 50 CONTINUE
C
 RETURN
 END ! INTER

 SUBROUTINE INTERX(X0,XP0,Y0,YP0,S0,N0,SLE0,
 & X1,XP1,Y1,YP1,S1,N1,SLE1,
 & X,Y,N,FRAC)
C ...
C
C Interpolates two source airfoil shapes into an "intermediate" shape.
C
C Procedure:
C The interpolated x coordinate at a given normalized spline
C parameter value is a weighted average of the two source
C x coordinates at the same normalized spline parameter value.
C Ditto for the y coordinates. The normalized spline parameter
C runs from 0 at the leading edge to 1 at the trailing edge on
C each surface.
C ...
C
 REAL X0(N0),Y0(N0),XP0(N0),YP0(N0),S0(N0)
 REAL X1(N1),Y1(N1),XP1(N1),YP1(N1),S1(N1)
 REAL X(N),Y(N)
C
C---- number of points in interpolated airfoil is the same as in airfoil 0
 N = N0
C
C---- interpolation weighting fractions
 F0 = 1.0 - FRAC
 F1 = FRAC
C
 XLE0 = SEVAL(SLE0,X0,XP0,S0,N0)
 XLE1 = SEVAL(SLE1,X1,XP1,S1,N1)
C
 DO 50 I=1, N
C
C------ normalized x parameter is taken from airfoil 0 value
 IF(S0(I).LT.SLE0) XN = (X0(I) - XLE0) / (X0(1) - XLE0)
 IF(S0(I).GE.SLE0) XN = (X0(I) - XLE0) / (X0(N0) - XLE0)
C
C------ set target x and initial spline parameters
 XT0 = X0(I)
 ST0 = S0(I)
 IF(ST0.LT.SLE0) THEN
 XT1 = XLE1 + (X1(1) - XLE1) * XN
 ST1 = SLE1 + (S1(1) - SLE1) * XN
 ELSE
 XT1 = XLE1 + (X1(N1) - XLE1) * XN
 ST1 = SLE1 + (S1(N1) - SLE1) * XN
 ENDIF
C
 CALL SINVRT(ST0,XT0,X0,XP0,S0,N0)
 CALL SINVRT(ST1,XT1,X1,XP1,S1,N1)
C
C------ set input coordinates at common spline parameter location
 XT0 = SEVAL(ST0,X0,XP0,S0,N0)
 YT0 = SEVAL(ST0,Y0,YP0,S0,N0)
 XT1 = SEVAL(ST1,X1,XP1,S1,N1)
 YT1 = SEVAL(ST1,Y1,YP1,S1,N1)
C
C------ set interpolated x,y coordinates
 X(I) = F0*XT0 + F1*XT1
 Y(I) = F0*YT0 + F1*YT1
C
 50 CONTINUE
C
 RETURN
 END ! INTERX

 SUBROUTINE IJSECT(N,X,Y, PEX,
 & AREA, SLEN,
 & XC, XMIN, XMAX, XEXINT,
 & YC, YMIN, YMAX, YEXINT,
 & AIXX, AIXXT,
 & AIYY, AIYYT,
 & AJ , AJT)
 DIMENSION X(*), Y(*)
C
 XMIN = X(1)
 XMAX = X(1)
 YMIN = Y(1)
 YMAX = Y(1)
C
 DX = X(1) - X(N)
 DY = Y(1) - Y(N)
 DS = SQRT(DX*DX + DY*DY)
 XAVG = 0.5*(X(1) + X(N))
 YAVG = 0.5*(Y(1) + Y(N))
C
 X_DY = DY * XAVG
 XX_DY = DY * XAVG**2
 XXX_DY = DY * XAVG**3
 X_DS = DS * XAVG
 XX_DS = DS * XAVG**2
C
 Y_DX = DX * YAVG
 YY_DX = DX * YAVG**2
 YYY_DX = DX * YAVG**3
 Y_DS = DS * YAVG
 YY_DS = DS * YAVG**2
C
 C_DS = DS
C
 DO 10 I = 2, N
 DX = X(I) - X(I-1)
 DY = Y(I) - Y(I-1)
 DS = SQRT(DX*DX + DY*DY)
 XAVG = 0.5*(X(I) + X(I-1))
 YAVG = 0.5*(Y(I) + Y(I-1))
C
 X_DY = X_DY + DY * XAVG
 XX_DY = XX_DY + DY * XAVG**2
 XXX_DY = XXX_DY + DY * XAVG**3
 X_DS = X_DS + DS * XAVG
 XX_DS = XX_DS + DS * XAVG**2
C
 Y_DX = Y_DX + DX * YAVG
 YY_DX = YY_DX + DX * YAVG**2
 YYY_DX = YYY_DX + DX * YAVG**3
 Y_DS = Y_DS + DS * YAVG
 YY_DS = YY_DS + DS * YAVG**2
C
 C_DS = C_DS + DS
C
 XMIN = MIN(XMIN,X(I))
 XMAX = MAX(XMAX,X(I))
 YMIN = MIN(YMIN,Y(I))
 YMAX = MAX(YMAX,Y(I))
 10 CONTINUE
C
 AREA = -Y_DX
 SLEN = C_DS
C
 IF(AREA.EQ.0.0) RETURN
C
 XC = XX_DY / (2.0*X_DY)
 AIYY = XXX_DY/3.0 - XX_DY*XC + X_DY*XC**2
 AIYYT = XX_DS - X_DS*XC*2.0 + C_DS*XC**2
C
 YC = YY_DX / (2.0*Y_DX)
 AIXX = -YYY_DX/3.0 + YY_DX*YC - Y_DX*YC**2
 AIXXT = YY_DS - Y_DS*YC*2.0 + C_DS*YC**2
C
C
 SINT = 0.
 XINT = 0.
 YINT = 0.
C
 DO 20 I=2, N
 DX = X(I) - X(I-1)
 DY = Y(I) - Y(I-1)
 DS = SQRT(DX*DX + DY*DY)
 XAVG = 0.5*(X(I) + X(I-1)) - XC
 YAVG = 0.5*(Y(I) + Y(I-1)) - YC
C
 SINT = SINT + DS
cc XINT = XINT + DS * ABS(XAVG)**PEX
cc YINT = YINT + DS * ABS(YAVG)**PEX
 20 CONTINUE
C
 DO I=1, N-1
 IF(X(I+1) .GE. X(I)) GO TO 30
 ENDDO
 IMID = N/2
 30 IMID = I
C
 AJ = 0.0
 DO I = 2, IMID
 XAVG = 0.5*(X(I) + X(I-1))
 YAVG = 0.5*(Y(I) + Y(I-1))
 DX = X(I-1) - X(I)
C
 IF(XAVG.GT.X(N)) THEN
 YOPP = Y(N)
 GO TO 41
 ENDIF
 IF(XAVG.LE.X(IMID)) THEN
 YOPP = Y(IMID)
 GO TO 41
 ENDIF
C
 DO J = N, IMID, -1
 IF(XAVG.GT.X(J-1) .AND. XAVG.LE.X(J)) THEN
 FRAC = (XAVG - X(J-1))
 & / (X(J) - X(J-1))
 YOPP = Y(J-1) + (Y(J)-Y(J-1))*FRAC
 GO TO 41
 ENDIF
 ENDDO
 41 CONTINUE
C
 AJ = AJ + ABS(YAVG-YOPP)**3 * DX / 3.0
 ENDDO
C
 AJT = 4.0*AREA**2/SLEN
C
cc XEXINT = (XINT/SINT)**(1.0/PEX)
cc YEXINT = (YINT/SINT)**(1.0/PEX)
C
 RETURN
 END ! IJSECT

 SUBROUTINE AREFINE(X,Y,S,XS,YS,N, ATOL,
 & NDIM,NNEW,XNEW,YNEW,X1,X2)
C---
C Adds points to a x,y spline contour wherever
C the angle between adjacent segments at a node
C exceeds a specified threshold. The points are
C added 1/3 of a segment before and after the
C offending node.
C
C The point adding is done only within X1..X2.
C
C Intended for doubling the number of points
C of Eppler and Selig airfoils so that they are
C suitable for clean interpolation using Xfoil's
C arc-length spline routines.
C--
 REAL X(*), Y(*), S(*), XS(*), YS(*)
 REAL XNEW(NDIM), YNEW(NDIM)
 LOGICAL LREF
C
 ATOLR = ATOL * 3.14159/180.0
C
 K = 1
 XNEW(K) = X(1)
 YNEW(K) = Y(1)
C
 DO 10 I = 2, N-1
 IM = I-1
 IP = I+1
C
 DXM = X(I) - X(I-1)
 DYM = Y(I) - Y(I-1)
 DXP = X(I+1) - X(I)
 DYP = Y(I+1) - Y(I)
C
 CRSP = DXM*DYP - DYM*DXP
 DOTP = DXM*DXP + DYM*DYP
 IF(CRSP.EQ.0.0 .AND. DOTP.EQ.0.0) THEN
 ASEG = 0.0
 ELSE
 ASEG = ATAN2(CRSP , DOTP)
 ENDIF
C
 LREF = ABS(ASEG) .GT. ATOLR
C
 IF(LREF) THEN
C------- add extra point just before this node
 SMID = S(I) - 0.3333*(S(I)-S(I-1))
 XK = SEVAL(SMID,X,XS,S,N)
 YK = SEVAL(SMID,Y,YS,S,N)
 IF(XK.GE.X1 .AND. XK.LE.X2) THEN
 K = K + 1
 IF(K .GT. NDIM) GO TO 90
 XNEW(K) = XK
 YNEW(K) = YK
 ENDIF
 ENDIF
C
C------ add the node itself
 K = K + 1
 IF(K .GT. NDIM) GO TO 90
 XNEW(K) = X(I)
 YNEW(K) = Y(I)
C
 IF(LREF) THEN
C------- add extra point just after this node
 SMID = S(I) + 0.3333*(S(I+1)-S(I))
 XK = SEVAL(SMID,X,XS,S,N)
 YK = SEVAL(SMID,Y,YS,S,N)
 IF(XK.GE.X1 .AND. XK.LE.X2) THEN
 K = K + 1
 IF(K .GT. NDIM) GO TO 90
 XNEW(K) = XK
 YNEW(K) = YK
 ENDIF
 ENDIF
 10 CONTINUE
C
 K = K + 1
 IF(K .GT. NDIM) GO TO 90
 XNEW(K) = X(N)
 YNEW(K) = Y(N)
C
 NNEW = K
 RETURN
C
 90 CONTINUE
 WRITE(*,*) 'SDOUBLE: Arrays will overflow. No action taken.'
 NNEW = 0
 RETURN
C
 END ! AREFINE

 SUBROUTINE SCHECK(X,Y,N, STOL, LCHANGE)
C---
C Removes points from an x,y spline contour wherever
C the size of a segment between nodes falls below a
C a specified threshold of the adjacent segments.
C The two node points defining the short segment are
C replaced with a single node at their midpoint.
C Note that the number of nodes may be altered by
C this routine.
C
C Intended for eliminating odd "micro" panels
C that occur when blending a flap to a foil.
C If LCHANGE is set on return the airfoil definition
C has been changed and resplining should be done.
C
C The recommended value for STOL is 0.05 (meaning
C segments less than 5% of the length of either adjoining
C segment are removed). 4/24/01 HHY
C--
 REAL X(*), Y(*)
 LOGICAL LCHANGE
C
 LCHANGE = .FALSE.
C--- Check STOL for sanity
 IF(STOL.GT.0.3) THEN
 WRITE(*,*) 'SCHECK: Bad value for small panels (STOL > 0.3)'
 RETURN
 ENDIF
C
 10 DO 20 I = 2, N-2
 IM1 = I-1
 IP1 = I+1
 IP2 = I+2
C
 DXM1 = X(I) - X(I-1)
 DYM1 = Y(I) - Y(I-1)
 DSM1 = SQRT(DXM1*DXM1 + DYM1*DYM1)
C
 DXP1 = X(I+1) - X(I)
 DYP1 = Y(I+1) - Y(I)
 DSP1 = SQRT(DXP1*DXP1 + DYP1*DYP1)
C
 DXP2 = X(I+2) - X(I+1)
 DYP2 = Y(I+2) - Y(I+1)
 DSP2 = SQRT(DXP2*DXP2 + DYP2*DYP2)
C
C------- Don't mess with doubled points (slope breaks)
 IF(DSP1.EQ.0.0) GO TO 20
C
 IF(DSP1.LT.STOL*DSM1 .OR. DSP1.LT.STOL*DSP2) THEN
C------- Replace node I with average of I and I+1
 X(I) = 0.5*(X(I)+X(I+1))
 Y(I) = 0.5*(Y(I)+Y(I+1))
C------- Remove node I+1
 DO L = I+1, N
 X(L) = X(L+1)
 Y(L) = Y(L+1)
 END DO
 N = N - 1
 LCHANGE = .TRUE.
 WRITE(*,*) 'SCHECK segment removed at ',I
 GO TO 10
 ENDIF
C
 20 CONTINUE
C
 RETURN
 END ! SCHECK

XFOILinterface/XFOIL/src/xmdes.f

C***
C Module: xmdes.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
 SUBROUTINE MDES
C------------------------------------
C Full-Inverse design routine.
C Based on circle plane mapping.
C------------------------------------
 INCLUDE 'XFOIL.INC'
 LOGICAL LCNPL, LRECALC
C
 CHARACTER*4 COMAND, COMOLD
 CHARACTER*80 LINE
C
 CHARACTER*128 COMARG, ARGOLD
 CHARACTER*1 CHKEY
C
 REAL XBOX(2), YBOX(2)
 REAL XSP(IBX), YSP(IBX,IPX), YSPD(IBX,IPX)
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR, LPLNEW
C
 EXTERNAL NEWPLOTQ
C
 SAVE COMOLD, ARGOLD
C
C---- statement function for compressible Karman-Tsien velocity
 QCOMP(G) = G*(1.0-TKLAM) / (1.0 - TKLAM*(G/QINF)**2)
C
 COMAND = '****'
 COMARG = ' '
 LRECALC = .FALSE.
C
 IF(N.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) '*** No airfoil available ***'
 RETURN
 ENDIF
C
 LCNPL = .FALSE.
 LSYM = .TRUE.
C
 NTQSPL = 1
 IF(LQSLOP) NTQSPL = 4
C
 1 CONTINUE
C
C---- see if current Qspec, if any, didn't come from Mixed-Inverse
 IF(NSP.NE.NC1) THEN
 LQSPEC = .FALSE.
 IQ1 = 1
 IQ2 = NC1
 ENDIF
C
C---- initialize Fourier transform arrays if it hasn't been done
 IF(.NOT.LEIW) CALL EIWSET(NC1)
 LEIW = .TRUE.
C
C---- if Qspec alpha has never been set, set it to current alpha
 IF(NQSP .EQ. 0) THEN
 IACQSP = 1
 ALQSP(1) = ALFA
 NQSP = 1
 ENDIF
C
 IF(.NOT.LSCINI) THEN
C------ initialize s(w) for current airfoil, generating its Cn coefficients
 CALL SCINIT(N,X,XP,Y,YP,S,SLE)
 LSCINI = .TRUE.
C
C------ set up to initialize Qspec to current conditions
 LQSPEC = .FALSE.
 ENDIF
C
C---- set initial Q for current alpha
 ALGAM = ALFA
 CALL MAPGAM(1,ALGAM,CLGAM,CMGAM)
 WRITE(*,1150) ALGAM/DTOR, CLGAM
C
 IF(.NOT.LQSPEC) THEN
C------ set Cn coefficients from current Q
 CALL CNCALC(QGAMM,.FALSE.)
C
C------ set Qspec from Cn coefficients
 CALL QSPCIR
 WRITE(*,1190)
 ENDIF
C
 CALL QPLINI(.TRUE.)
 CALL QSPLOT
C
C==
C---- start of menu loop
 500 CONTINUE
 COMOLD = COMAND
 ARGOLD = COMARG
C
 501 IF(LQSYM) THEN
 CALL ASKC('.MDESs^',COMAND,COMARG)
 ELSE
 CALL ASKC('.MDES^',COMAND,COMARG)
 ENDIF
C
 505 CONTINUE
C
C---- process previous command ?
 IF(COMAND(1:1).EQ.'!') THEN
 IF(COMOLD.EQ.'****') THEN
 WRITE(*,*) 'Previous .MDES command not valid'
 GO TO 501
 ELSE
 COMAND = COMOLD
 COMARG = ARGOLD
 LRECALC = .TRUE.
 ENDIF
 ELSE
 LRECALC = .FALSE.
 ENDIF
C
 IF(COMAND.EQ.' ') THEN
C----- just <return> was typed... clean up plotting and exit OPER
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 LQSYM = .FALSE.
 LQSPPL = .FALSE.
 CALL CLRZOOM
 RETURN
 ENDIF
C
C---- extract command line numeric arguments
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 0
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 0
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
C--
 IF(COMAND.EQ.'? ') THEN
 WRITE(*,1050)
 1050 FORMAT(
 & /' <cr> Return to Top Level'
 & /' ! Redo previous command'
 & //' INIT Re-initialize mapping'
 & /' QSET Reset Qspec <== Q'
 & /' AQ r.. Show/select alpha(s) for Qspec'
 & /' CQ r.. Show/select CL(s) for Qspec'
 & //' Symm Toggle symmetry flag'
 & /' TGAP r Set new TE gap'
 & /' TANG r Set new TE angle'
ccc & /' READ Read in Qspec'
 & //' Modi Modify Qspec'
 & /' MARK Mark off target segment for smoothing'
 & /' SMOO Smooth Qspec inside target segment'
 & /' FILT Apply Hanning filter to entire Qspec'
 & /' SLOP Toggle modified-Qspec slope matching flag'
 & //' eXec Execute full-inverse calculation'
 & //' VISC Qvis overlay toggle'
 & /' REFL Reflected Qspec overlay toggle'
 & /' SPEC Plot mapping coefficient spectrum'
 & //' Plot Replot Qspec (line) and Q (symbols)'
 & /' Blow Blowup plot region'
 & /' Rese Reset plot scale and origin'
 & /' Wind Plot window adjust via cursor and keys'
 & //' SIZE r Change absolute plot-object size'
 & /' .ANNO Annotate plot'
 & /' HARD Hardcopy current plot'
 & //' PERT Perturb one Cn and generate geometry')
C
C--
 ELSEIF(COMAND.EQ.'Z ') THEN
 CALL USETZOOM(.TRUE.,.TRUE.)
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'U ') THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'INIT') THEN
 LQSPEC = .FALSE.
 LSCINI = .FALSE.
 GO TO 1
C
C--
 ELSEIF(COMAND.EQ.'QSET') THEN
 CALL CNCALC(QGAMM,.FALSE.)
 IF(LQSYM) CALL CNSYMM
 CALL QSPCIR
C
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'AQ ') THEN
C----- set Qspec(s) for specified alphas
 IF(NINPUT.GE.1) THEN
 NQSP = MIN(NINPUT , IPX)
 DO K=1, NQSP
 ALQSP(K) = RINPUT(K)*DTOR
 ENDDO
 ELSE
 WRITE(*,1150) ALGAM/DTOR, CLGAM
 WRITE(*,1161) (ALQSP(K)/DTOR,K=1,NQSP)
 161 WRITE(*,1162)
 1161 FORMAT(/' Current Qspec alphas =',20F9.3)
 1162 FORMAT(' New alphas or <return>: ',$)
 READ (*,5000) LINE
 NTMP = IPX
 CALL GETFLT(LINE,W1,NTMP,ERROR)
 IF(ERROR) GO TO 161
 NTMP = MIN(NTMP , IPX)
C
C------ if just <return> was hit, don't do anything
 IF(NTMP .EQ. 0) GO TO 500
C
 NQSP = NTMP
 DO K=1, NQSP
 ALQSP(K) = W1(K)*DTOR
 ENDDO
 ENDIF
C
 IACQSP = 1
 CALL QSPCIR
C
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'CQ ') THEN
C----- set Qspec(s) for specified CLs
 IF(NINPUT.GE.1) THEN
 NQSP = MIN(NINPUT , IPX)
 DO K=1, NQSP
 CLQSP(K) = RINPUT(K)
 ENDDO
 ELSE
 WRITE(*,1150) ALGAM/DTOR, CLGAM
 WRITE(*,1171) (CLQSP(K),K=1,NQSP)
 171 WRITE(*,1172)
 1171 FORMAT(/' Current Qspec CLs =',20F8.4)
 1172 FORMAT(' New CLs or <return>: ',$)
 READ (*,5000) LINE
 NTMP = IPX
 CALL GETFLT(LINE,W1,NTMP,ERROR)
 IF(ERROR) GO TO 171
 NTMP = MIN(NTMP , IPX)
C
C------ if just <return> was hit, don't do anything
 IF(NTMP .EQ. 0) GO TO 500
C
 NQSP = NTMP
 DO K=1, NQSP
 CLQSP(K) = W1(K)
 ENDDO
 ENDIF
C
 IACQSP = 2
 CALL QSPCIR
C
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'SYMM' .OR.
 & COMAND.EQ.'S ') THEN
 LQSYM = .NOT.LQSYM
 IF(LQSYM) THEN
 WRITE(*,*) 'Qspec symmetry forcing enabled.'
ccc KQSP = 1
ccc CALL SYMQSP(KQSP)
ccc CALL CNCALC(QSPEC(1,KQSP),.FALSE.)
 CALL CNSYMM
 CALL QSPCIR
C
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
 ELSE
 WRITE(*,*) 'Qspec symmetry forcing disabled.'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'TGAP') THEN
 CALL DZTSET(RINPUT,NINPUT)
C
C--
 ELSEIF(COMAND.EQ.'TANG') THEN
 CALL AGTSET(RINPUT,NINPUT)
C
C--
 ELSEIF(COMAND.EQ.'VISC') THEN
C----- toggle Qvis plotting flag
 LQVDES = .NOT.LQVDES
 IF(LQVDES) THEN
 WRITE(*,*) 'Qspec & Qvis will be plotted'
 ELSE
 WRITE(*,*) 'Only Qspec will be plotted'
 CALL QPLINI(.FALSE.)
 ENDIF
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'REFL') THEN
C----- toggle reflected Qspec plotting flag
 LQREFL = .NOT.LQREFL
 IF(LQREFL) THEN
 WRITE(*,*) 'Reflected Qspec will be plotted'
 ELSE
 WRITE(*,*) 'Reflected Qspec will not be plotted'
 CALL QPLINI(.FALSE.)
 ENDIF
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'MODI' .OR.
 & COMAND.EQ.'M ') THEN
C----- make sure there is a Qspec(s) plot on the screen
 IF(.NOT.LQSPPL) THEN
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 ENDIF
 CALL GETCOLOR(ICOL0)
C
C----- set up arrays for calling MODIFY
 IFRST = 1
 ILAST = NSP
 NSIDE = 1
 NLINE = NQSP
 DO I = 1, NSP
 ISP = NSP - I + 1
 XSP(ISP) = 1.0 - SSPEC(I)
 DO KQSP = 1, NQSP
 GCOMP = QCOMP(QSPEC(I,KQSP))/QINF
 YSP(ISP,KQSP) = QFAC*GCOMP
 ENDDO
 ENDDO
 DO KQSP = 1, NQSP
 CALL SEGSPL(YSP(1,KQSP),YSPD(1,KQSP),XSP,NSP)
 ENDDO
C
C----- get the user's modifying input
 XBOX(1) = XMARG
 XBOX(2) = XPAGE-XMARG
 YBOX(1) = YMARG
 YBOX(2) = YPAGE-YMARG
 CALL MODIFY(IBX,IFRST,ILAST,NSIDE,NLINE,
 & XSP,YSP,YSPD, LQSLOP,
 & ISP1,ISP2,ISMOD,KQSP,
 & XBOX,YBOX, XBOX,YBOX,SIZE,
 & XOFF,YOFF,XSF,YSF, 'RED','RED',
 & NEWPLOTQ)
C
C----- put modified info back into global arrays
 IQMOD1 = NSP - ISP2 + 1
 IQMOD2 = NSP - ISP1 + 1
 DO I=1, NSP
 ISP = NSP - I + 1
 QSCOM = QINF*YSP(ISP,KQSP)/QFAC
 QSPEC(I,KQSP) = QINCOM(QSCOM,QINF,TKLAM)
 ENDDO
C
C----- calculate new mapping coefficients
 CALL CNCALC(QSPEC(1,KQSP),LQSYM)
C
C----- set new Qspec(s) for all alphas or CLs
 CALL QSPCIR
C
 WRITE(*,1200) ALGAM/DTOR, CLGAM, CMGAM
C
 CALL NEWCOLORNAME('MAGENTA')
 DO KQSP=1, NQSP
cc CALL QSPPLT(IQMOD1,IQMOD2,KQSP,NTQSPL)
cc IF(LQSYM) CALL QSPPLT(NSP-IQMOD2+1,NSP-IQMOD1+1,KQSP,NTQSPL)
 CALL QSPPLT(1,NSP,KQSP,NTQSPL)
C
 CALL QSPINT(ALQSP(KQSP),QSPEC(1,KQSP),QINF,MINF,
 & CLQ,CMQSP(KQSP))
C
C------- set new CL only if alpha is prescribed
 IF(IACQSP.EQ.1) CLQSP(KQSP) = CLQ
C
 WRITE(*,1210) KQSP, ALQSP(KQSP)/DTOR,CLQSP(KQSP),CMQSP(KQSP)
 ENDDO
 CALL NEWCOLOR(ICOL0)
C
 CALL PLFLUSH
 LQSPPL = .FALSE.
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'MARK') THEN
C----- get target segment endpoints
 CALL IQSGET
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'READ') THEN
C----- read in Qspec
 KQSP = 1
 CALL GETVOV(KQSP)
 CALL CNCALC(QSPEC(1,KQSP),.FALSE.)
 IF(LQSYM) CALL CNSYMM
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
 KQSP = 1
 CALL QSPINT(ALQSP(KQSP),QSPEC(1,KQSP),QINF,MINF,
 & CLQSP(KQSP),CMQSP(KQSP))
 WRITE(*,1200) ALGAM/DTOR,CLGAM,CMGAM
 WRITE(*,1210) KQSP, ALQSP(KQSP)/DTOR,CLQSP(KQSP),CMQSP(KQSP)
C
C--
 ELSEIF(COMAND.EQ.'SMOO') THEN
C----- smooth Qspec within target segment
 KQSP = KQTARG
 CALL SMOOQ(IQ1,IQ2,KQSP)
 CALL CNCALC(QSPEC(1,KQSP),LQSYM)
 CALL QSPCIR
C
 WRITE(*,1200) ALGAM/DTOR,CLGAM,CMGAM
C
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME('MAGENTA')
 DO KQSP=1, NQSP
 IF(LCNPL) THEN
 CALL CNPLOT(PLOTAR,CH,.FALSE.)
 ELSE
 CALL QSPPLT(IQ1,IQ2,KQSP,NTQSPL)
 IF(LQSYM) CALL QSPPLT(NSP-IQ2+1,NSP-IQ1+1,KQSP,NTQSPL)
 ENDIF
C
 CALL QSPINT(ALQSP(KQSP),QSPEC(1,KQSP),QINF,MINF,
 & CLQ,CMQSP(KQSP))
C
C------- set new CL only if alpha is prescribed
 IF(IACQSP.EQ.1) CLQSP(KQSP) = CLQ
C
 WRITE(*,1210) KQSP,ALQSP(KQSP)/DTOR,CLQSP(KQSP),CMQSP(KQSP)
 ENDDO
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
 LQSPPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'FILT') THEN
C----- apply modified Hanning filter to Cn coefficients
 CFILT = 0.2
 CALL CNFILT(CFILT)
 CALL PIQSUM
 CALL QSPCIR
C
 WRITE(*,1200) ALGAM/DTOR,CLGAM,CMGAM
C
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME('MAGENTA')
 DO KQSP=1, NQSP
 IF(LCNPL) THEN
 CALL CNPLOT(PLOTAR,CH,.FALSE.)
 ELSE
 CALL QSPPLT(1,NSP,KQSP,NTQSPL)
 ENDIF
 IF(LQSYM) CALL QSPPLT(NSP-IQ2+1,NSP-IQ1+1,KQSP,NTQSPL)
C
 CALL QSPINT(ALQSP(KQSP),QSPEC(1,KQSP),QINF,MINF,
 & CLQ,CMQSP(KQSP))
C
C------- set new CL only if alpha is prescribed
 IF(IACQSP.EQ.1) CLQSP(KQSP) = CLQ
C
 WRITE(*,1210) KQSP,ALQSP(KQSP)/DTOR,CLQSP(KQSP),CMQSP(KQSP)
 ENDDO
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
 LQSPPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'SLOP') THEN
 LQSLOP = .NOT.LQSLOP
 IF(LQSLOP) THEN
 WRITE(*,*)
 & 'Modified Qspec piece will be made tangent at endpoints'
 NTQSPL = 4
 ELSE
 WRITE(*,*)
 & 'Modified Qspec piece will not be made tangent at endpoints'
 NTQSPL = 1
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'HARD') THEN
C----- hardcopy current plot
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
C
C--
 ELSEIF(COMAND.EQ.'PLOT' .OR.
 & COMAND.EQ.'P ') THEN
C----- plot Qspec distribution
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'SPEC') THEN
C----- plot mapping coefficient spectrum
 CALL CNPLOT(PLOTAR,CH,.TRUE.)
 LCNPL = .TRUE.
C
C--
 ELSEIF(COMAND.EQ.'BLOW' .OR.
 & COMAND.EQ.'B ') THEN
C----- get blowup parameters
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
 CALL OFFGET(XOFF,YOFF,XSF,YSF,XWS,YWS, .FALSE. , .TRUE.)
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'RESE' .OR.
 & COMAND.EQ.'R ') THEN
C----- reset blowup parameters and replot
 CALL QPLINI(.TRUE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'WIND' .OR.
 & COMAND.EQ.'W ') THEN
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
C
 WRITE(*,*) ' '
 WRITE(*,*) 'Type I,O,P to In,Out,Pan with cursor...'
C
 80 CALL QPLINI(.FALSE.)
 CALL QSPLOT
C
 CALL GETCURSORXY(XCRS,YCRS,CHKEY)
C
C----- do possible pan,zoom operations based on CHKEY
 CALL KEYOFF(XCRS,YCRS,CHKEY, XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
 GO TO 80
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'SIZE') THEN
C----- change size
 IF(NINPUT.GE.1) THEN
 SIZE = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current plot-object size =', SIZE
 CALL ASKR('Enter new plot-object size^',SIZE)
 ENDIF
C
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 LCNPL = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'ANNO') THEN
C----- annotate plot
 IF(LPLOT) THEN
 CALL ANNOT(CH)
 ELSE
 WRITE(*,*) 'No active plot to annotate'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'DUMP') THEN
 FNAME = COMARG
 IF(FNAME(1:1).EQ.' ')
 & CALL ASKS('Enter Cn output filename^',FNAME)
C
 LU = 19
 OPEN(LU,FILE=FNAME,STATUS='UNKNOWN')
 CALL CNDUMP(LU)
 CLOSE(LU)
C
C--
 ELSEIF(COMAND.EQ.'EXEC' .OR.
 & COMAND.EQ.'X ') THEN
C----- execute full-inverse calculation
 CALL MAPGEN(FFILT,NB,XB,YB)
C
C----- spline new buffer airfoil
 CALL SCALC(XB,YB,SB,NB)
 CALL SPLIND(XB,XBP,SB,NB,-999.0,-999.0)
 CALL SPLIND(YB,YBP,SB,NB,-999.0,-999.0)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
C----- determine airfoil box size and location
 CALL AIRLIM(N,X,Y,XMIN,XMAX,YMIN,YMAX)
C
C----- y-offset for airfoil in Cp vs x plot
 FACA = FACAIR/(XMAX-XMIN)
 XOFA = XOFAIR*(XMAX-XMIN) - XMIN
 YOFA = YOFAIR*(XMAX-XMIN) - YMAX - CPMAX*PFAC*(XMAX-XMIN)
C
C----- start new plot
 CALL PLTINI
C
C----- re-origin for Cp vs x plot
 CALL PLOT(0.09 , 0.04 + CPMAX*PFAC + (YMAX-YMIN)*FACA, -3)
C
 write(*,*) xofa, yofa, faca
 write(*,*) cpmin, cpmax, cpdel, pfac

C----- plot Cp(x) axes
 CALL CPAXES(LCPGRD,
 & N,X,Y,XOFA,YOFA,FACA,
 & CPMIN,CPMAX,CPDEL,PFAC,CH,
 & 'XFOIL',VERSION)
C
C----- plot current inviscid -Cp distributions
 CALL NEWPEN(2)
 CALL XYLINE(N,X,CPI,-XOFA,FACA,0.0,-PFAC,1)
C
C----- set initial x,y-positions of sequence plot label top
 XL = 0.70
 YL = -CPMIN*PFAC
C
C----- plot name and operating parameters
 CALL COEFPL(XL,YL,CH,.FALSE.,.FALSE.,.TRUE.,
 & NAME,NNAME,
 & REINF,MINF,ACRIT,ALFA,CL,CM,CD,CDP)
C
C----- draw sequence plot label
 XL = XL - 3.0*CH
 YL = YL - 1.0*CH
 CALL SEQLAB(XL,YL,XL1,XL2,XL3,XL4,XL5,XL6,CHSEQ,0,.FALSE.)
C
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME('magenta')
C
C----- plot new airfoil dashed
 CALL PLBAIR(1,XOFA,YOFA,FACA)
C
 YL = YL - 0.2*CH
 DO K=1, NQSP
 ALS1 = ALQSP(K)
 CLS1 = CLQSP(K)
 CALL NEWPEN(2)
 CALL QCCALC(IACQSP,ALS1,CLS1,CMS1,MINF,QINF,NC,W1,W2,W5,W6)
 CALL CRPLOT(NC,W1,W6,XOFA,FACA)
 CALL SEQPLT(YL,XL1,XL2,XL3,XL4,XL5,XL6,
 & CHSEQ,ALS1/DTOR,CLS1,CMS1,.FALSE.)
 ENDDO
 CALL NEWCOLOR(ICOL0)
C
 CALL PLFLUSH
 LQSPPL = .FALSE.
 LGSAME = .FALSE.
 LCNPL = .FALSE.
C
 WRITE(*,1300)
 1300 FORMAT(//' New buffer airfoil generated'
 & /' Execute PANE at Top Level to set new current airfoil'/)
C
C--
 ELSEIF(COMAND.EQ.'PERT') THEN
 CALL PERT(QSPEC(1,1))
C----- set Q(s) for changed Cn
 CALL QSPCIR
C----- go generate perturbed geometry
 COMAND = 'EXEC'
 COMARG = ' '
 GO TO 505
C
C--
 ELSE
 WRITE(*,1100) COMAND
 1100 FORMAT(' Command ',A4,' not recognized. Type a " ? " for list.')
 COMAND = '****'
C
 ENDIF
C
 GO TO 500
C
C..
C
 1150 FORMAT(/' Current Q operating condition:',
 & ' alpha = ', F7.3, ' CL = ', F8.4)
 1190 FORMAT(/' Qspec initialized to current Q')
 1200 FORMAT(
 & /' Current : alpha =', F9.4,' CL =',F11.6,' CM =',F11.6)
 1210 FORMAT(
 & ' Qspec',I2,
 & ' : alpha =', F9.4,' CL =',F11.6,' CM =',F11.6)
 5000 FORMAT(A)
 END ! MDES

 SUBROUTINE DZTSET(RINPUT,NINPUT)
 INCLUDE 'CIRCLE.INC'
 DIMENSION RINPUT(*)
C
 IF(NINPUT.GE.2) THEN
 DXNEW = RINPUT(1)
 DYNEW = RINPUT(2)
 ELSE
 WRITE(*,1170) REAL(DZTE), IMAG(DZTE)
 1170 FORMAT(/' Current TE gap dx/c dy/c =', 2F7.4)
 CALL ASKR('Enter new TE gap dx/c^',DXNEW)
 CALL ASKR('Enter new TE gap dy/c^',DYNEW)
 ENDIF
C
 DZTE = CMPLX(DXNEW,DYNEW)
 RETURN
 END

 SUBROUTINE AGTSET(RINPUT,NINPUT)
 INCLUDE 'CIRCLE.INC'
 DIMENSION RINPUT(*)
C
 IF(NINPUT.GE.2) THEN
 AGTED = RINPUT(1)
 ELSE
 WRITE(*,1180) AGTE*180.0
 1180 FORMAT(/' Current TE angle =', F7.3,' deg.')
 CALL ASKR('Enter new TE angle (deg)^',AGTED)
 ENDIF
C
 AGTE = AGTED/180.0
 RETURN
 END

 SUBROUTINE MAPGAM(IAC,ALG,CLG,CMG)
C--
C Sets mapped Q for current airfoil
C for angle of attack or CL.
C
C IAC=1: specified ALGAM
C IAC=2: specified CLGAM
C--
 INCLUDE 'XFOIL.INC'
C
C---- calculate q(w), set number of circle points NSP
 CALL QCCALC(IAC,ALG,CLG,CMG,MINF,QINF,NSP,W1,W2,W5,W6)
C
C---- store q(w), s(w), x(w), y(w)
 CHX = XTE - XLE
 CHY = YTE - YLE
 CHSQ = CHX**2 + CHY**2
 DO 3 I=1, NSP
 QGAMM(I) = W6(I)
 SSPEC(I) = W5(I)
 XIC = SEVAL(S(N)*SSPEC(I),X,XP,S,N)
 YIC = SEVAL(S(N)*SSPEC(I),Y,YP,S,N)
 XSPOC(I) = ((XIC-XLE)*CHX + (YIC-YLE)*CHY)/CHSQ
 YSPOC(I) = ((YIC-YLE)*CHX - (XIC-XLE)*CHY)/CHSQ
 3 CONTINUE
 SSPLE = SLE/S(N)
C
 RETURN
 END ! MAPGAM

 SUBROUTINE QSPCIR
C--
C Sets Qspec arrays for all design alphas or CLs
C--
 INCLUDE 'XFOIL.INC'
C
 DO 10 KQSP=1, NQSP
 CALL QCCALC(IACQSP,ALQSP(KQSP),CLQSP(KQSP),CMQSP(KQSP),
 & MINF,QINF,NSP,W1,W2,W5,QSPEC(1,KQSP))
 CALL SPLQSP(KQSP)
 10 CONTINUE
 LQSPEC = .TRUE.
C
 RETURN
 END

 SUBROUTINE CRPLOT(NC,XC,QC,XOFA1,FACA1)
C--
C Plots dashed -Cp distribution from speed stored in QC
C--
 INCLUDE 'XFOIL.INC'
 DIMENSION XC(NC),QC(NC)
C
 INCR = (NC-1)/128
 INCR = MAX(INCR,1)
C
 DFRAC = 0.15
C
 BETA = SQRT(1.0 - MINF**2)
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
C
 DO 60 IC=2, (NC-1-INCR), INCR
 X1 = XC(IC)
 X2 = XC(IC+INCR)
 CPI1 = 1.0 - (QC(IC) /QINF)**2
 CPI2 = 1.0 - (QC(IC+INCR)/QINF)**2
 Y1 = CPI1 / (BETA + BFAC*CPI1)
 Y2 = CPI2 / (BETA + BFAC*CPI2)
 DX = X2 - X1
 DY = Y2 - Y1
 CALL PLOT((X1 + DX*DFRAC + XOFA1)*FACA1,
 & (Y1 + DY*DFRAC)*(-PFAC),3)
 CALL PLOT((X2 - DX*DFRAC + XOFA1)*FACA1,
 & (Y2 - DY*DFRAC)*(-PFAC),2)
 60 CONTINUE
C
 RETURN
 END ! CRPLOT

 SUBROUTINE PLBAIR(ILINE,XOFA1,YOFA1,FACA1)
C---
C Plots solid or dashed buffer airfoil contour.
C---
 INCLUDE 'XFOIL.INC'
C
 CALL NEWPEN(2)
C
C---- dash between every other point
 INCR = 2
C
C---- use solid or dashed line
 IF(ILINE.EQ.0) DFRAC = 0.
 IF(ILINE.EQ.1) DFRAC = 0.15
C
 DO 10 I=1, NB-INCR, INCR
 X1 = XB(I)
 Y1 = YB(I)
 X2 = XB(I+INCR)
 Y2 = YB(I+INCR)
 DX = X2 - X1
 DY = Y2 - Y1
 CALL PLOT((X1 + DX*DFRAC + XOFA1)*FACA1,
 & (Y1 + DY*DFRAC + YOFA1)*FACA1,3)
 CALL PLOT((X2 - DX*DFRAC + XOFA1)*FACA1,
 & (Y2 - DY*DFRAC + YOFA1)*FACA1,2)
 10 CONTINUE
C
 RETURN
 END ! PLBAIR

 SUBROUTINE MAPGEN(FFILT,N,X,Y)
C--
C Calculates the geometry from the speed function
C Fourier coefficients Cn, modifying them as needed
C to achieve specified constraints.
C--
 INCLUDE 'CIRCLE.INC'
 DIMENSION X(NC), Y(NC)
C
 COMPLEX QQ(IMX/4,IMX/4),DCN(IMX/4)
C
C---- preset rotation offset of airfoil so that initial angle is close
C- to the old airfoil's angle
 DX = XCOLD(2) - XCOLD(1)
 DY = YCOLD(2) - YCOLD(1)
 QIM0 = ATAN2(DX , -DY) + 0.5*PI*(1.0+AGTE)
 QIMOFF = QIM0 - IMAG(CN(0))
 CN(0) = CN(0) + CMPLX(0.0 , QIMOFF)
C
C---- inverse-transform and calculate geometry ZC = z(w)
ccc CALL CNFILT(FFILT)
 CALL PIQSUM
 CALL ZCCALC(MCT)
C
C---- scale,rotate z(w) to get previous chord and orientation
 CALL ZCNORM(MCT)
C
CCCC---- put back rotation offset so speed routine QCCALC gets the right alpha
CCC CN(0) = CN(0) - CMPLX(0.0 , QIMOFF)
C
C---- enforce Lighthill's first constraint
 CN(0) = CMPLX(0.0, IMAG(CN(0)))
C
C---- number of free coefficients
 NCN = 1
C
C---- Newton iteration loop for modified Cn's
 DO 100 ITERCN=1, 10
 DO M=1, NCN
 DO L=1, NCN
 QQ(M,L) = 0.
 ENDDO
 DCN(M) = 0.
 QQ(M,M) = 1.0
 ENDDO
C
C------ fix TE gap
 M = 1
 DCN(M) = ZC(1) - ZC(NC) - DZTE
 DO L=1, NCN
 QQ(M,L) = ZC_CN(1,L) - ZC_CN(NC,L)
 ENDDO
C
 CALL CGAUSS(IMX/4,NCN,QQ,DCN,1)
C
 DCNMAX = 0.
 DO M=1, NCN
 CN(M) = CN(M) - DCN(M)
 DCNMAX = MAX(ABS(DCN(M)) , DCNMAX)
 ENDDO
C
ccc CALL CNFILT(FFILT)
 CALL PIQSUM
C
 CALL ZCCALC(MCT)
 CALL ZCNORM(MCT)
C
 WRITE(*,*) ITERCN, DCNMAX
 IF(DCNMAX.LE.5.0E-5) GO TO 101
 100 CONTINUE
 WRITE(*,*)
 WRITE(*,*) 'MAPGEN: Geometric constraints not fully converged'
C
 101 CONTINUE
C
C---- return new airfoil coordinates
 N = NC
 DO 120 I=1, NC
 X(I) = REAL(ZC(I))
 Y(I) = IMAG(ZC(I))
 120 CONTINUE
C
 RETURN
 END ! MAPGEN

 SUBROUTINE SCINIT(N,X,XP,Y,YP,S,SLE)
C--
C Calculates the circle-plane coordinate s(w) = SC
C at each point of the current geometry.
C A by-product is the complex-mapping coefficients Cn.
C (see CNCALC header for more info).
C--
 DIMENSION X(N),XP(N),Y(N),YP(N),S(N)
C
 INCLUDE 'CIRCLE.INC'
 COMPLEX DCN, ZLE, ZTE
cc DATA CEPS, SEPS / 1.0E-5, 5.0E-5 /
 DATA CEPS, SEPS / 1.0E-7, 5.0E-7 /
C
C---- set TE angle parameter
 AGTE = (ATAN2(XP(N) , -YP(N))
 & - ATAN2(XP(1) , -YP(1)))/PI - 1.0
C
C---- set surface angle at first point
 AG0 = ATAN2(XP(1) , -YP(1))
C
C---- temporary offset Qo to make Q(w)-Qo = 0 at w = 0 , 2 pi
C- --- avoids Gibbs problems with Q(w)'s Fourier sine transform
 QIM0 = AG0 + 0.5*PI*(1.0+AGTE)
C
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
C
C---- save TE gap and airfoil chord
 DXTE = X(1) - X(N)
 DYTE = Y(1) - Y(N)
 DZTE = CMPLX(DXTE,DYTE)
C
 CHORDX = 0.5*(X(1)+X(N)) - XLE
 CHORDY = 0.5*(Y(1)+Y(N)) - YLE
 CHORDZ = CMPLX(CHORDX , CHORDY)
 ZLEOLD = CMPLX(XLE , YLE)
C
 WRITE(*,1100) REAL(DZTE), IMAG(DZTE), AGTE*180.0
 1100 FORMAT(/' Current TE gap dx dy =', 2F7.4,
 & ' TE angle =', F7.3,' deg.' /)
 WRITE(*,*) 'Initializing mapping coordinate ...'
C
C---- set approximate slope ds/dw at airfoil nose
 CVLE = CURV(SLE,X,XP,Y,YP,S,N) * S(N)
 CVABS = ABS(CVLE)
 DSDWLE = MAX(1.0E-3, 0.5/CVABS)
C
 TOPS = SLE/S(N)
 BOTS = (S(N)-SLE)/S(N)
C
C---- set initial top surface s(w)
 WWT = 1.0 - 2.0*DSDWLE/TOPS
 DO 10 IC=1, (NC-1)/2+1
 SC(IC) = TOPS*(1.0 - COS(WWT*WC(IC)))
 & /(1.0 - COS(WWT*PI))
 10 CONTINUE
C
C---- set initial bottom surface s(w)
 WWT = 1.0 - 2.0*DSDWLE/BOTS
 DO 15 IC=(NC-1)/2+2, NC
 SC(IC) = 1.0
 & - BOTS*(1.0 - COS(WWT*(WC(NC)-WC(IC))))
 & /(1.0 - COS(WWT* PI))
 15 CONTINUE
C
C---- iteration loop for s(w) array
 DO 500 IPASS=1, 30
C
C---- calculate imaginary part of harmonic function P(w) + iQ(w)
 DO 20 IC=1, NC
C
 SIC = S(1) + (S(N)-S(1))*SC(IC)
 DXDS = DEVAL(SIC,X,XP,S,N)
 DYDS = DEVAL(SIC,Y,YP,S,N)
C
C------ set Q(w) - Qo (Qo defined so that Q(w)-Qo = 0 at w = 0 , 2 pi)
 QIM = ATAN2(DXDS , -DYDS)
 & - 0.5*(WC(IC)-PI)*(1.0+AGTE)
 & - QIM0
C
 PIQ(IC) = CMPLX(0.0 , QIM)
C
 20 CONTINUE
C
C---- Fourier-decompose Q(w)
 CALL FTP
C
C---- zero out average real part and add on Qo we took out above
 CN(0) = CMPLX(0.0 , IMAG(CN(0))+QIM0)
C
C---- transform back to get entire PIQ = P(w) + iQ(w)
 CALL PIQSUM
C
C---- save s(w) for monitoring of changes in s(w) by ZCCALC
 DO 30 IC=1, NC
 SCOLD(IC) = SC(IC)
 30 CONTINUE
C
C---- correct n=1 complex coefficient Cn for proper TE gap
 DO 40 ITGAP=1, 5
 CALL ZCCALC(1)
C
C------ set current LE,TE locations
 CALL ZLEFIND(ZLE,ZC,WC,NC,PIQ,AGTE)
 ZTE = 0.5*(ZC(1)+ZC(NC))
C
 DZWT = ABS(ZTE-ZLE)/ABS(CHORDZ)
 DCN = -(ZC(1) - ZC(NC) - DZWT*DZTE)
 & / (ZC_CN(1,1) - ZC_CN(NC,1))
 CN(1) = CN(1) + DCN
C
 CALL PIQSUM
 IF(ABS(DCN) .LT. CEPS) GO TO 41
 40 CONTINUE
 41 CONTINUE
C
 DSCMAX = 0.
 DO 50 IC=1, NC
 DSCMAX = MAX(DSCMAX , ABS(SC(IC)-SCOLD(IC)))
 50 CONTINUE
C
 WRITE(*,*) IPASS, ' max(dw) =', DSCMAX
 IF(DSCMAX .LT. SEPS) GO TO 505
C
 500 CONTINUE
 505 CONTINUE
C
C---- normalize final geometry
 CALL ZCNORM(1)
C
C---- set final s(w), x(w), y(w) arrays for old airfoil
 DO 510 IC=1, NC
 SCOLD(IC) = SC(IC)
 XCOLD(IC) = REAL(ZC(IC))
 YCOLD(IC) = IMAG(ZC(IC))
 510 CONTINUE
C
 DO 600 IC=1, NC
 SINW = 2.0*SIN(0.5*WC(IC))
 SINWE = 0.
 IF(SINW.GT.0.0) SINWE = SINW**(1.0-AGTE)
C
 HWC = 0.5*(WC(IC)-PI)*(1.0+AGTE) - 0.5*PI
 ZCOLDW(IC) = SINWE * EXP(PIQ(IC) + CMPLX(0.0,HWC))
 600 CONTINUE
C
 QIMOLD = IMAG(CN(0))
C
cC---- print out Fourier coefficients
c write(*,*) ' '
c do 700 m=0, mc
c write(*,*) m, real(cn(m)), IMAG(cn(m))
c write(1,*) m, real(cn(m)), IMAG(cn(m))
ccc 7000 format(1x,i3,2f10.6)
c 700 continue
C
 RETURN
 END ! SCINIT

 SUBROUTINE CNCALC(QC,LSYMM)
C--
C Calculates the complex Fourier coefficients Cn of
C the real part of the harmonic function P(w) + iQ(w)
C which is set from either the current surface speed
C function
C e
C 2 cos(w/2 - alpha) [2 sin(w/2)]
C P(w) = ln -------------------------------
C q(w)
C
C
C or the geometry function
C
C e
C z'(w) [2 sin(w/2)]
C P(w) = ln ------------------
C 2 sin(w/2)
C
C depending on whether the speed q(w) or the
C geometry z(w) is specified for that particular
C value of w.
C (z(w) option is currently implemented separately in SCINIT)
C
C By Fourier-transforming P(w) into a sequence
C of Fourier coefficients Cn, its complex conjugate
C function Q(w) is automatically determined by an
C inverse transformation in PIQSUM. The overall
C P(w) + iQ(w) then uniquely defines the overall
C airfoil geometry, which is calculated in ZCCALC.
C
C If LSYMM=t, then the Real(Cn) change from current
C Cn values is doubled, and Imag(Cn) is zeroed out.
C--
 REAL QC(NC)
 LOGICAL LSYMM
C
 INCLUDE 'CIRCLE.INC'
 DIMENSION QCW(ICX)
C
 COMPLEX CNSAV
 COMMON /WORK/ CNSAV(0:IMX)
C
cc REAL WCJ(2)
C
 IF(NC .GT. ICX) STOP 'CNCALC: Array overflow.'
C
ccC---- assume q(w) segment is entire airfoil
cc WCJ(1) = WC(1)
cc WCJ(2) = WC(NC)
ccC
cc IF(LIQSET) THEN
ccC----- set w at q(w) segment endpoints
cc WCJ(1) = WC(IQ1)
cc WCJ(2) = WC(IQ2)
cc ENDIF
C
C---- spline q(w)
 CALL SPLIND(QC,QCW,WC,NC,-999.0,-999.0)
C
C---- get approximate w value at stagnation point
 DO 10 IC=2, NC
 IF(QC(IC).LT.0.0) GO TO 11
 10 CONTINUE
 11 WCLE = WC(IC)
C
C---- set exact numerical w value at stagnation point from splined q(w)
 CALL SINVRT(WCLE,0.0,QC,QCW,WC,NC)
C
C---- set corresponding circle plane alpha
 ALFCIR = 0.5*(WCLE - PI)
C
C---- calculate real part of harmonic function P(w) + iQ(w)
 DO 120 IC=2, NC-1
C
 COSW = 2.0*COS(0.5*WC(IC) - ALFCIR)
 SINW = 2.0*SIN(0.5*WC(IC))
 SINWE = SINW**AGTE
C
cc IF(WC(IC).GE.WCJ(1) .AND. WC(IC).LE.WCJ(2)) THEN
C
C------- set P(w) from q(w)
 IF(ABS(COSW).LT.1.0E-4) THEN
C-------- use asymptotic form near stagnation point
 PFUN = ABS(SINWE/QCW(IC))
 ELSE
C-------- use actual expression
 PFUN = ABS(COSW*SINWE/QC(IC))
 ENDIF
C
cc ELSE
ccC
ccC------- set P(w) from old geometry derivative z'(w)
cc PFUN = ABS(ZCOLDW(IC)*SINWE/SINW)
ccC
cc ENDIF
C
 PIQ(IC) = CMPLX(LOG(PFUN) , 0.0)
C
 120 CONTINUE
C
C---- extrapolate P(w) to TE
 PIQ(1) = 3.0*PIQ(2) - 3.0*PIQ(3) + PIQ(4)
 PIQ(NC) = 3.0*PIQ(NC-1) - 3.0*PIQ(NC-2) + PIQ(NC-3)
C
 DO 50 M=0, MC
 CNSAV(M) = CN(M)
 50 CONTINUE
C
C---- Fourier-transform P(w) to get new Cn coefficients
 CALL FTP
 CN(0) = CMPLX(0.0 , QIMOLD)
C
 IF(LSYMM) THEN
 DO 60 M=1, MC
 CNR = 2.0*REAL(CN(M)) - REAL(CNSAV(M))
 CN(M) = CMPLX(CNR , 0.0)
 60 CONTINUE
 ENDIF
C
 CALL PIQSUM
C
 RETURN
 END ! CNCALC

 SUBROUTINE CNSYMM
 INCLUDE 'CIRCLE.INC'
C
C---- eliminate imaginary (camber) parts of mapping coefficients
 DO 10 M=1, MC
 CN(M) = CMPLX(REAL(CN(M)) , 0.0)
 10 CONTINUE
C
 CALL PIQSUM
 RETURN
 END ! CNSYMM

 SUBROUTINE PIQSUM
C---
C Inverse-transform to get back modified
C speed function and its conjugate.
C---
 INCLUDE 'CIRCLE.INC'
 COMPLEX ZSUM
C
 DO 300 IC=1, NC
 ZSUM = (0.0,0.0)
 DO 310 M=0, MC
 ZSUM = ZSUM + CN(M)*CONJG(EIW(IC,M))
 310 CONTINUE
 PIQ(IC) = ZSUM
 300 CONTINUE
C
 RETURN
 END ! PIQSUM

 SUBROUTINE CNFILT(FFILT)
C-------------------------------------
C Filters out upper harmonics
C with modified Hanning filter.
C-------------------------------------
 INCLUDE 'CIRCLE.INC'
C
 IF(FFILT.EQ.0.0) RETURN
C
 DO 10 M=0, MC
 FREQ = FLOAT(M)/FLOAT(MC)
 CWT = 0.5*(1.0 + COS(PI*FREQ))
 CWTX = CWT
 IF(FFILT.GT.0.0) CWTX = CWT**FFILT
 CN(M) = CN(M) * CWTX
 10 CONTINUE
C
 RETURN
 END ! CNFILT

 SUBROUTINE ZCCALC(MTEST)
C--
C Calculates the airfoil geometry z(w) from the
C harmonic function P(w) + iQ(w). Also normalizes
C the coordinates to the old chord and calculates
C the geometry sensitivities dz/dCn (1 < n < MTEST)
C for each point.
C--
 INCLUDE 'CIRCLE.INC'
 COMPLEX DZDW1, DZDW2, DZ_PIQ1, DZ_PIQ2
C
C---- integrate upper airfoil surface coordinates from x,y = 4,0
 IC = 1
 ZC(IC) = (4.0,0.0)
 DO 10 M=1, MTEST
 ZC_CN(IC,M) = (0.0,0.0)
 10 CONTINUE
C
 SINW = 2.0*SIN(0.5*WC(IC))
 SINWE = 0.
 IF(SINW.GT.0.0) SINWE = SINW**(1.0-AGTE)
C
 HWC = 0.5*(WC(IC)-PI)*(1.0+AGTE) - 0.5*PI
 DZDW1 = SINWE * EXP(PIQ(IC) + CMPLX(0.0,HWC))
 DO 20 IC=2, NC
C
 SINW = 2.0*SIN(0.5*WC(IC))
 SINWE = 0.
 IF(SINW.GT.0.0) SINWE = SINW**(1.0-AGTE)
C
 HWC = 0.5*(WC(IC)-PI)*(1.0+AGTE) - 0.5*PI
 DZDW2 = SINWE * EXP(PIQ(IC) + CMPLX(0.0,HWC))
C
 ZC(IC) = 0.5*(DZDW1+DZDW2)*DWC + ZC(IC-1)
 DZ_PIQ1 = 0.5*(DZDW1)*DWC
 DZ_PIQ2 = 0.5*(DZDW2)*DWC
C
 DO 210 M=1, MTEST
 ZC_CN(IC,M) = DZ_PIQ1*CONJG(EIW(IC-1,M))
 & + DZ_PIQ2*CONJG(EIW(IC ,M))
 & + ZC_CN(IC-1,M)
 210 CONTINUE
C
 DZDW1 = DZDW2
 20 CONTINUE
C
C---- set arc length array s(w)
 SC(1) = 0.
 DO 50 IC=2, NC
 SC(IC) = SC(IC-1) + ABS(ZC(IC)-ZC(IC-1))
 50 CONTINUE
C
C---- normalize arc length
 DO 60 IC=1, NC
 SC(IC) = SC(IC)/SC(NC)
 60 CONTINUE
C
 RETURN
 END ! ZCCALC

 SUBROUTINE ZCNORM(MTEST)
C---
C Normalizes the complex airfoil z(w) to
C the old chord and angle, and resets the
C influence coefficients dz/dCn .
C---
 INCLUDE 'CIRCLE.INC'
 COMPLEX DZDW1, DZDW2
 COMPLEX ZCNEW, ZLE, ZTE, ZC_ZTE, ZTE_CN(IMX/4)
C
C---- find current LE location
 CALL ZLEFIND(ZLE,ZC,WC,NC,PIQ,AGTE)
C
C---- place leading edge at origin
 DO 60 IC=1, NC
 ZC(IC) = ZC(IC) - ZLE
 60 CONTINUE
C
C---- set normalizing quantities and sensitivities
 ZTE = 0.5*(ZC(1) + ZC(NC))
 DO 480 M=1, MTEST
 ZTE_CN(M) = 0.5*(ZC_CN(1,M) + ZC_CN(NC,M))
 480 CONTINUE
C
C---- normalize airfoil to proper chord, put LE at old position,
C- and set sensitivities dz/dCn for the rescaled coordinates
 DO 500 IC=1, NC
 ZCNEW = CHORDZ*ZC(IC)/ZTE
 ZC_ZTE = -ZCNEW/ZTE
 ZC(IC) = ZCNEW
 DO 510 M=1, MTEST
 ZC_CN(IC,M) = CHORDZ*ZC_CN(IC,M)/ZTE + ZC_ZTE*ZTE_CN(M)
 510 CONTINUE
 500 CONTINUE
C
C---- add on rotation to mapping coefficient so QCCALC gets the right alpha
 QIMOFF = -IMAG(LOG(CHORDZ/ZTE))
 CN(0) = CN(0) - CMPLX(0.0 , QIMOFF)
C
C---- shift airfoil to put LE at old location
 DO 600 IC=1, NC
 ZC(IC) = ZC(IC) + ZLEOLD
 600 CONTINUE
C
 RETURN
 END ! ZCNORM

 SUBROUTINE QCCALC(ISPEC,ALFA,CL,CM,MINF,QINF,
 & NCIR,XCIR,YCIR,SCIR,QCIR)
C---
C Calculates the surface speed from the complex
C speed function so that either a prescribed
C ALFA or CL is achieved, depending on whether
C ISPEC=1 or 2. The CL calculation uses the
C transformed Karman-Tsien Cp.
C---
 INCLUDE 'CIRCLE.INC'
 COMPLEX DZ, ZA, EIA, CMT,CFT,CFT_A
 DIMENSION XCIR(NC),YCIR(NC),SCIR(NC),QCIR(NC)
 DIMENSION QC_A(ICX)
 REAL MINF
 DATA AEPS / 5.0E-7 /
C
C---- Karman-Tsien quantities
 BETA = SQRT(1.0 - MINF**2)
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
C
 NCIR = NC
C
C---- Newton iteration loop (executed only once if alpha specified)
 DO 1 IPASS=1, 10
C
C------ set alpha in the circle plane
 ALFCIR = ALFA - IMAG(CN(0))
C
 CMT = (0.0,0.0)
 CFT = (0.0,0.0)
 CFT_A = (0.0,0.0)
C
C------ set surface speed for current circle plane alpha
 DO 10 IC=1, NC
 PPP = REAL(PIQ(IC))
 EPPP = EXP(-PPP)
 SINW = 2.0*SIN(0.5*WC(IC))
C
 IF(AGTE.EQ.0.0) THEN
 SINWE = 1.0
 ELSE IF(SINW.GT.0.0) THEN
 SINWE = SINW**AGTE
 ELSE
 SINWE = 0.0
 ENDIF
C
 QCIR(IC) = 2.0*COS(0.5*WC(IC) - ALFCIR)*SINWE * EPPP
 QC_A(IC) = 2.0*SIN(0.5*WC(IC) - ALFCIR)*SINWE * EPPP
C
 XCIR(IC) = REAL(ZC(IC))
 YCIR(IC) = IMAG(ZC(IC))
 SCIR(IC) = SC(IC)
 10 CONTINUE
C
C------ integrate compressible Cp dz to get complex force CL + iCD
 IC = 1
 CPINC1 = 1.0 - (QCIR(IC)/QINF)**2
 CPI_Q1 = -2.0*QCIR(IC)/QINF**2
 CPCOM1 = CPINC1 / (BETA + BFAC*CPINC1)
 CPC_Q1 = (1.0 - BFAC*CPCOM1)/(BETA + BFAC*CPINC1) * CPI_Q1
 CPC_A1 = CPC_Q1*QC_A(IC)
 DO 20 IC=1, NC
 ICP = IC+1
 IF(IC.EQ.NC) ICP = 1
C
 CPINC2 = 1.0 - (QCIR(ICP)/QINF)**2
 CPI_Q2 = -2.0*QCIR(ICP)/QINF**2
 CPCOM2 = CPINC2 / (BETA + BFAC*CPINC2)
 CPC_Q2 = (1.0 - BFAC*CPCOM2)/(BETA + BFAC*CPINC2) * CPI_Q2
 CPC_A2 = CPC_Q2*QC_A(ICP)
C
 ZA = (ZC(ICP) + ZC(IC))*0.5 - (0.25,0.0)
 DZ = ZC(ICP) - ZC(IC)
C
 CMT = CMT - 0.5*(CPCOM1 + CPCOM2)*DZ*CONJG(ZA)
 & + (CPCOM1 - CPCOM2)*DZ*CONJG(DZ)/12.0
 CFT = CFT + 0.5*(CPCOM1 + CPCOM2)*DZ
 CFT_A = CFT_A + 0.5*(CPC_A1 + CPC_A2)*DZ
C
 CPCOM1 = CPCOM2
 CPC_A1 = CPC_A2
 20 CONTINUE
C
C------ rotate force vector into freestream coordinates
 EIA = EXP(CMPLX(0.0,-ALFA))
 CFT = CFT *EIA
 CFT_A = CFT_A*EIA + CFT*(0.0,-1.0)
C
C------ lift is real part of complex force vector
 CLT = REAL(CFT)
 CLT_A = REAL(CFT_A)
C
C------ moment is real part of complex moment
 CM = REAL(CMT)
C
 IF(ISPEC.EQ.1) THEN
C------- if alpha is prescribed, we're done
 CL = CLT
 RETURN
 ELSE
C------- adjust alpha with Newton-Raphson to get specified CL
 DALFA = (CL - CLT)/CLT_A
 ALFA = ALFA + DALFA
 IF(ABS(DALFA) .LT. AEPS) RETURN
 ENDIF
C
 1 CONTINUE
 WRITE(*,*) 'QCCALC: CL convergence failed. dAlpha =', DALFA
C
 RETURN
 END ! QCCALC

 SUBROUTINE QSPINT(ALQSP,QSPEC,QINF,MINF,CLQSP,CMQSP)
C--
C Integrates circle-plane array surface
C pressures to get CL and CM
C--
 INCLUDE 'CIRCLE.INC'
 DIMENSION QSPEC(NC)
 REAL MINF
C
 SA = SIN(ALQSP)
 CA = COS(ALQSP)
C
 BETA = SQRT(1.0 - MINF**2)
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
C
 CLQSP = 0.0
 CMQSP = 0.0
C
 I = 1
 CQINC = 1.0 - (QSPEC(I)/QINF)**2
 CPQ1 = CQINC / (BETA + BFAC*CQINC)
C
 DO 10 I=1, NC
 IP = I+1
 IF(I.EQ.NC) IP = 1
C
 CQINC = 1.0 - (QSPEC(IP)/QINF)**2
 CPQ2 = CQINC / (BETA + BFAC*CQINC)
C
 DX = (XCOLD(IP) - XCOLD(I))*CA + (YCOLD(IP) - YCOLD(I))*SA
 DY = (YCOLD(IP) - YCOLD(I))*CA - (XCOLD(IP) - XCOLD(I))*SA
 DU = CPQ2 - CPQ1
C
 AX = 0.5*(XCOLD(IP)+XCOLD(I))*CA + 0.5*(YCOLD(IP)+YCOLD(I))*SA
 AY = 0.5*(YCOLD(IP)+YCOLD(I))*CA - 0.5*(XCOLD(IP)+XCOLD(I))*SA
 AQ = 0.5*(CPQ2 + CPQ1)
C
 CLQSP = CLQSP + DX* AQ
 CMQSP = CMQSP - DX*(AQ*(AX-0.25) + DU*DX/12.0)
 & - DY*(AQ* AY + DU*DY/12.0)
C
 CPQ1 = CPQ2
 10 CONTINUE
C
 RETURN
 END ! QSPINT

 SUBROUTINE FTP
C--
C Slow-Fourier-Transform P(w) using Trapezoidal integration.
C--
 INCLUDE 'CIRCLE.INC'
 COMPLEX ZSUM
C
 DO 200 M=0, MC
 ZSUM = (0.0,0.0)
 DO 210 IC=2, NC-1
 ZSUM = ZSUM + PIQ(IC)*EIW(IC,M)
 210 CONTINUE
 CN(M) = (0.5*(PIQ(1)*EIW(1,M) + PIQ(NC)*EIW(NC,M))
 & + ZSUM)*DWC / PI
 200 CONTINUE
 CN(0) = 0.5*CN(0)
C
 RETURN
 END ! FTP

 SUBROUTINE EIWSET(NC1)
C--
C Calculates the uniformly-spaced circle-plane
C coordinate array WC (omega), and the
C corresponding complex unit numbers exp(inw)
C for Slow Fourier Transform operations.
C--
 INCLUDE 'CIRCLE.INC'
C
 PI = 4.0*ATAN(1.0)
C
C---- set requested number of points in circle plane
 NC = NC1
 MC = NC1/4
 MCT = NC1/16
C
 IF(NC.GT.ICX) STOP 'EIWSET: Array overflow. Increase ICX.'
C
 DWC = 2.0*PI / FLOAT(NC-1)
C
 DO 10 IC=1, NC
 WC(IC) = DWC*FLOAT(IC-1)
 10 CONTINUE
C
C---- set m = 0 numbers
 DO 20 IC=1, NC
 EIW(IC,0) = (1.0, 0.0)
 20 CONTINUE
C
C---- set m = 1 numbers
 DO 30 IC=1, NC
 EIW(IC,1) = EXP(CMPLX(0.0 , WC(IC)))
 30 CONTINUE
C
C---- set m > 1 numbers by indexing appropriately from m = 1 numbers
 DO 40 M=2, MC
 DO 410 IC=1, NC
 IC1 = M*(IC-1)
 IC1 = MOD(IC1 , (NC-1)) + 1
 EIW(IC,M) = EIW(IC1,1)
 410 CONTINUE
 40 CONTINUE
C
 RETURN
 END ! EIWSET

 SUBROUTINE PERT(QSPEC)
C--
C Calculates the perturbed geometry resulting from
C one Cn mapping coefficient being perturbed by user.
C--
 INCLUDE 'CIRCLE.INC'
 DIMENSION QSPEC(ICX)
C
 COMPLEX QQ(IMX/4,IMX/4),DCN(IMX/4)
C
C---- calculate mapping coefficients for initial airfoil shape
 CALL CNCALC(QSPEC,.FALSE.)
C
C---- preset rotation offset of airfoil so that initial angle is close
C- to the old airfoil's angle
 DX = XCOLD(2) - XCOLD(1)
 DY = YCOLD(2) - YCOLD(1)
 QIM0 = ATAN2(DX , -DY) + 0.5*PI*(1.0+AGTE)
 QIMOFF = QIM0 - IMAG(CN(0))
 CN(0) = CN(0) + CMPLX(0.0 , QIMOFF)
C
 WRITE(*,*)
 WRITE(*,*) 'Current mapping coefficients...'
 WRITE(*,*) ' n Re(Cn) Im(Cn)'
ccc DO M = 1, NC
 DO M = 1, MIN(NC,32)
 WRITE(*,1010) M, REAL(CN(M)), IMAG(CN(M))
 1010 FORMAT(4X,I4, 2F12.6)
 ENDDO
C
 10 WRITE(*,1050)
 1050 FORMAT(/4X,'Enter n, delta(Cnr), delta(Cni): ', $)
 READ(*,*,ERR=10) M, DCNR, DCNI
 IF(M.LE.0) THEN
 GO TO 10
 ELSEIF(M.GT.NC) THEN
 WRITE(*,*) 'Max number of modes is', NC
 GO TO 10
 ENDIF
 CN(M) = CN(M) + CMPLX(DCNR , DCNI)
C
C---- inverse-transform and calculate geometry
ccc CALL CNFILT(FFILT)
 CALL PIQSUM
 CALL ZCCALC(MCT)
C
C---- normalize chord and set exact previous alpha
 CALL ZCNORM(MCT)
C
CCC---- put back rotation offset so speed routine QCCALC gets the right alpha
CCC CN(0) = CN(0) - CMPLX(0.0 , QIMOFF)

C---- enforce Lighthill's first constraint
 CN(0) = CMPLX(0.0, IMAG(CN(0)))

C---- number of free coefficients
 NCN = 1

C---- Newton iteration loop for modified Cn's
 DO 100 ITERCN=1, 10

C------ fix TE gap
 M = 1
 DCN(M) = ZC(1) - ZC(NC) - DZTE
 DO L=1, NCN
 QQ(M,L) = ZC_CN(1,L) - ZC_CN(NC,L)
 ENDDO
C
 CALL CGAUSS(IMX/4,NCN,QQ,DCN,1)
C
 DCNMAX = 0.
 DO M=1, NCN
 CN(M) = CN(M) - DCN(M)
 DCNMAX = MAX(ABS(DCN(M)) , DCNMAX)
 ENDDO
C
ccc CALL CNFILT(FFILT)
 CALL PIQSUM
C
 CALL ZCCALC(MCT)
 CALL ZCNORM(MCT)
C
 WRITE(*,*) ITERCN, DCNMAX
 IF(DCNMAX.LE.5.0E-5) GO TO 101
 100 CONTINUE
 WRITE(*,*) 'TE gap,chord did not converge'
 101 CONTINUE
 RETURN
 END ! PERT

 SUBROUTINE CNDUMP(LU)
C--
C Writes out the Fourier coefficients Cn
C--
 INCLUDE 'CIRCLE.INC'
C
 do 700 m=0, mc
 write(LU,7000) m, real(cn(m)), imag(cn(m))
 & , real(piq(m+1)), imag(piq(m+1))
 700 continue
C
 do 710 m=mc+1, nc-1
 write(LU,7000) m, 0.0, 0.0
 & , real(piq(m+1)), imag(piq(m+1))
 710 continue
c
 7000 format(1x,i3,4f11.6)
c
 RETURN
 END

 SUBROUTINE GETVOV(KQSP)
 INCLUDE 'XFOIL.INC'
CLED ENTIRE ROUTINE
C
 KK = 0
 DO 5 I=1, IQX
 W1(I) = 0.
 W2(I) = 0.
 W3(I) = 0.
 5 CONTINUE
C
 LU = 2
C
 CALL ASKS('Enter V/Vinf vs s data filename^',FNAME)
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=98)
C
C---- read the Qspec file
 DO 10 K=1, IQX
 READ(LU,*,END=11,ERR=99) W1(K), W2(K)
 10 CONTINUE
 11 KK = K-1
 CLOSE(LU)
C
C---- nondimensionalize S distances
 SSPAN = W1(KK) - W1(1)
 SSTART = W1(1)
 DO 15 K=1, KK
 W1(K) = 1. - (W1(K) - SSTART) / SSPAN
 15 CONTINUE
C
C---- sort input points then, removing identical pairs
 CALL SORT(KK,W1,W2)
C
C---- spline input points
 CALL SPLIND(W2,W3,W1,KK,-999.0,-999.0)
C
C---- set Qspec array
 DO 20 I=1, NSP
 SS = SSPEC(I)
C
C------ evaluate spline at SSPEC positions
 QSNEW = SEVAL(SS,W2,W3,W1,KK)
C
C------ set incompressible speed from new compressible speed
 QSPEC(I,KQSP) = QINCOM(QSNEW,QINF,TKLAM)
C
 20 CONTINUE
C
C---- spline new Qspec array
 CALL SPLQSP(KQSP)
C
 RETURN
C
 98 WRITE(*,*) 'GETVOV: File OPEN error.'
 RETURN
C
 99 WRITE(*,*) 'GETVOV: File READ error.'
 CLOSE(LU)
 RETURN
C
 END ! GETVOV

 SUBROUTINE CNPLOT(PLOTAR,CH,LAXES)
C--
C Plots Cn coefficient spectrum.
C--
 INCLUDE 'CIRCLE.INC'
 LOGICAL LAXES
C
 CPAR = PLOTAR
 SH = 0.2*CH
C
 GNDEL = 1.0
 GNMAX = 0.0
 GNMIN = -5.0
C
 FNDEL = 10.0
 FNMAX = FNDEL*(AINT(FLOAT(MC)/FNDEL) + 0.99)
 FNMIN = 0.0
C
 GSF = CPAR/(GNMAX-GNMIN)
 FSF = 0.9/(FNMAX-FNMIN)
C
 IF(LAXES) THEN
C
C------ initialize plot
 CALL PLTINI
C
 CALL PLOT(8.0*CH,4.0*CH,-3)
C
ccc DO 1000 IRC=1, 2
C
 CALL PLOT(-FNMIN*FSF,-GNMIN*GSF,-3)
C
 CALL XAXIS(FNMIN*FSF,0.0,(FNMAX-FNMIN)*FSF,FNDEL*FSF,
 & FNMIN,FNDEL,-CH,-1)
 CALL YAXIS(0.0,GNMIN*GSF,(GNMAX-GNMIN)*GSF,GNDEL*GSF,
 & GNMIN,GNDEL, CH,1)
C
 CALL NEWPEN(3)
 XL = (FNMAX - 1.5*FNDEL)*FSF - 0.6*CH
 CALL PLCHAR(XL,1.0*CH,1.2*CH,'n',0.0,1)
C
 YL = (GNMAX - 1.5*GNDEL)*GSF - 0.6*CH
 CALL PLCHAR(-5.0*CH,YL,1.0*CH,'log',0.0,3)
 CALL PLCHAR(-2.0*CH,YL-0.4*CH,0.7*CH,'10',0.0,2)
C
 YL = (GNMAX - 2.5*GNDEL)*GSF - 0.6*CH
 CALL PLMATH(-5.5*CH,YL,1.2*CH,'| |',0.0,4)
 CALL PLCHAR(-5.5*CH,YL,1.2*CH,' C ',0.0,4)
 CALL PLCHAR(-3.2*CH,YL-0.4*CH,0.8*CH,'n',0.0,1)
C
 ENDIF
C
 CALL GETCOLOR(ICOL0)
C
 IF(.NOT.LAXES) CALL NEWCOLORNAME('magenta')
 DO 10 M=0, MC
C
 FN = FLOAT(M)
 ACN = ABS(CN(M))
 ACN = MAX(ACN , 10.0**(GNMIN-1.0))
 GN = LOG10(ACN)
C
 CALL PLSYMB(FN*FSF,GN*GSF,SH,1,0.0,0)
C
 10 CONTINUE
C
 IF(.NOT.LAXES) CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
C
 RETURN
 END ! CNPLOT

 SUBROUTINE ZLEFIND(ZLE,ZC,WC,NC,PIQ,AGTE)
 COMPLEX ZLE, ZC(*), PIQ(*)
 DIMENSION WC(*)
C
 COMPLEX DZDW1, DZDW2, ZTE
C
C---- temporary work arrays for splining near leading edge
 PARAMETER (NTX=33)
 DIMENSION XC(NTX),YC(NTX), XCW(NTX),YCW(NTX)
C
 DATA PI /3.1415926535897932384/
C
 ZTE = 0.5*(ZC(1)+ZC(NC))
C
C---- find point farthest from TE
 DMAX = 0.0
 DO 30 IC = 1, NC
 DIST = ABS(ZC(IC) - ZTE)
C
 IF(DIST.GT.DMAX) THEN
 DMAX = DIST
 ICLE = IC
 ENDIF
 30 CONTINUE
C
C---- set restricted spline limits around leading edge
 IC1 = MAX(ICLE - (NTX-1)/2 , 1)
 IC2 = MIN(ICLE + (NTX-1)/2 , NC)
C
C---- set up derivatives at spline endpoints
 SINW = 2.0*SIN(0.5*WC(IC1))
 SINWE = SINW**(1.0-AGTE)
 HWC = 0.5*(WC(IC1)-PI)*(1.0+AGTE) - 0.5*PI
 DZDW1 = SINWE * EXP(PIQ(IC1) + CMPLX(0.0,HWC))
C
 SINW = 2.0*SIN(0.5*WC(IC2))
 SINWE = SINW**(1.0-AGTE)
 HWC = 0.5*(WC(IC2)-PI)*(1.0+AGTE) - 0.5*PI
 DZDW2 = SINWE * EXP(PIQ(IC2) + CMPLX(0.0,HWC))
C
C---- fill temporary x,y coordinate arrays
 DO 40 IC=IC1, IC2
 I = IC-IC1+1
 XC(I) = REAL(ZC(IC))
 YC(I) = IMAG(ZC(IC))
 40 CONTINUE
C
C---- calculate spline near leading edge with derivative end conditions
 NIC = IC2 - IC1 + 1
 CALL SPLIND(XC,XCW,WC(IC1),NIC,REAL(DZDW1),REAL(DZDW2))
 CALL SPLIND(YC,YCW,WC(IC1),NIC,IMAG(DZDW1),IMAG(DZDW2))
C
 XCTE = 0.5*REAL(ZC(1) + ZC(NC))
 YCTE = 0.5*IMAG(ZC(1) + ZC(NC))
C
C---- initial guess for leading edge coordinate
 WCLE = WC(ICLE)
C
C---- Newton loop for improved leading edge coordinate
 DO 50 ITCLE=1, 10
 XCLE = SEVAL(WCLE,XC,XCW,WC(IC1),NIC)
 YCLE = SEVAL(WCLE,YC,YCW,WC(IC1),NIC)
 DXDW = DEVAL(WCLE,XC,XCW,WC(IC1),NIC)
 DYDW = DEVAL(WCLE,YC,YCW,WC(IC1),NIC)
 DXDD = D2VAL(WCLE,XC,XCW,WC(IC1),NIC)
 DYDD = D2VAL(WCLE,YC,YCW,WC(IC1),NIC)
C
 XCHORD = XCLE - XCTE
 YCHORD = YCLE - YCTE
C
C------ drive dot product between chord line and LE tangent to zero
 RES = XCHORD*DXDW + YCHORD*DYDW
 RESW = DXDW *DXDW + DYDW *DYDW
 & + XCHORD*DXDD + YCHORD*DYDD
C
 DWCLE = -RES/RESW
 WCLE = WCLE + DWCLE
C
 IF(ABS(DWCLE).LT.1.0E-5) GO TO 51
 50 CONTINUE
 WRITE(*,*) 'ZLEFIND: LE location failed.'
 WCLE = WC(ICLE)
 51 CONTINUE
C
C---- set final leading edge point complex coordinate
 XCLE = SEVAL(WCLE,XC,XCW,WC(IC1),NIC)
 YCLE = SEVAL(WCLE,YC,YCW,WC(IC1),NIC)
 ZLE = CMPLX(XCLE,YCLE)
C
 RETURN
 END ! ZLEFIND

XFOILinterface/XFOIL/src/xoper.f

C***
C Module: xoper.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
 SUBROUTINE OPER
 INCLUDE 'XFOIL.INC'
 CHARACTER*1 ANS
 CHARACTER*4 COMAND, COMOLD
 LOGICAL LRECALC, LCPX
C
 CHARACTER*128 COMARG, ARGOLD, LINE
C
 PARAMETER (NPRX = 101)
 DIMENSION XPR(NPRX), YPR(NPRX)
C
 DIMENSION NBLP(NPX)
 DIMENSION IPPAI(NPX), NAPOLT(NPX)
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR

 common /damp_com/ idamp

C
C---- retain last-command info if OPER is exited and then re-entered
 SAVE COMOLD, ARGOLD
C
C---- logical units for polar save file, polar dump file
 LUPLR = 9
 LUPLX = 11
C
 COMAND = '****'
 COMARG = ' '
 LRECALC = .FALSE.
 LCPX = .FALSE.
C
 IF(N.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) '*** No airfoil available ***'
 RETURN
 ENDIF
C
 IF(IPACT.NE.0) THEN
 WRITE(*,5000) IPACT
 5000 FORMAT(/' Polar', I3,' is active')
 ENDIF
C
ccc 500 CONTINUE
 COMOLD = COMAND
 ARGOLD = COMARG
C
C==
C---- start of menu loop
 500 CONTINUE
C
 IF(LVISC) THEN
 IF(LPACC) THEN
 CALL ASKC('.OPERva^',COMAND,COMARG)
 ELSE
 CALL ASKC('.OPERv^',COMAND,COMARG)
 ENDIF
 ELSE
 IF(LPACC) THEN
 CALL ASKC('.OPERia^',COMAND,COMARG)
 ELSE
 CALL ASKC('.OPERi^',COMAND,COMARG)
 ENDIF
 ENDIF
C
C---- process previous command ?
 IF(COMAND(1:1).EQ.'!') THEN
 IF(COMOLD.EQ.'****') THEN
 WRITE(*,*) 'Previous .OPER command not valid'
 GO TO 500
 ELSE
 COMAND = COMOLD
 COMARG = ARGOLD
 LRECALC = .TRUE.
 ENDIF
 ELSE
 LRECALC = .FALSE.
 ENDIF
C
 IF(COMAND.EQ.' ') THEN
C----- just <return> was typed... clean up plotting and exit OPER
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL CLRZOOM
 RETURN
 ENDIF
C
C---- extract command line numeric arguments
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 20
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 20
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
C--
 IF(COMAND.EQ.'? ') THEN
 WRITE(*,1050)
 1050 FORMAT(
 & /' <cr> Return to Top Level'
 & /' ! Redo last ALFA,CLI,CL,ASEQ,CSEQ,VELS'
 &//' Visc r Toggle Inviscid/Viscous mode'
 & /' .VPAR Change BL parameter(s)'
 & /' Re r Change Reynolds number'
 & /' Mach r Change Mach number'
 & /' Type i Change type of Mach,Re variation with CL'
 & /' ITER Change viscous-solution iteration limit'
 & /' INIT Toggle BL initialization flag'
 &//' Alfa r Prescribe alpha'
 & /' CLI r Prescribe inviscid CL'
 & /' Cl r Prescribe CL'
 & /' ASeq rrr Prescribe a sequence of alphas'
 & /' CSeq rrr Prescribe a sequence of CLs'
 &//' SEQP Toggle polar/Cp(x) sequence plot display'
 & /' CINC Toggle minimum Cp inclusion in polar'
 & /' HINC Toggle hinge moment inclusion in polar'
 & /' Pacc i Toggle auto point accumulation to active polar'
 & /' PGET f Read new polar from save file'
 & /' PWRT i Write polar to save file'
 & /' PSUM Show summary of stored polars'
 & /' PLIS i List stored polar(s)'
 & /' PDEL i Delete stored polar'
 & /' PSOR i Sort stored polar'
 & /' PPlo ii. Plot stored polar(s)'
 & /' APlo ii. Plot stored airfoil(s) for each polar'
 & /' ASET i Copy stored airfoil into current airfoil'
 & /' PREM ir. Remove point(s) from stored polar'
 & /' PNAM i Change airfoil name of stored polar'
 & /' PPAX Change polar plot axis limits'
 &//' RGET f Read new reference polar from file'
 & /' RDEL i Delete stored reference polar'
 &//' GRID Toggle Cp vs x grid overlay'
 & /' CREF Toggle reference Cp data overlay'
 & /' FREF Toggle reference CL,CD.. data display'
 &//' CPx Plot Cp vs x'
 & /' CPV Plot airfoil with pressure vectors (gee wiz)'
 & /' .VPlo BL variable plots'
 & /' .ANNO Annotate current plot'
 & /' HARD Hardcopy current plot'
 & /' SIZE r Change plot-object size'
 & /' CPMI r Change minimum Cp axis annotation'
 &//' BL i Plot boundary layer velocity profiles'
 & /' BLC Plot boundary layer velocity profiles at cursor'
 & /' BLWT r Change velocity profile scale weight'
 &//' FMOM Calculate flap hinge moment and forces'
 & /' FNEW rr Set new flap hinge point'
 & /' VELS rr Calculate velocity components at a point'
 & /' DUMP f Output Ue,Dstar,Theta,Cf vs s,x,y to file'
 & /' CPWR f Output x vs Cp to file'
 & /' CPMN Report minimum surface Cp'
 & /' NAME s Specify new airfoil name'
 & /' NINC Increment name version number')
c &//' IMAG Toggle image-airfoil'
C
C--
 ELSEIF(COMAND.EQ.'Z ') THEN
 CALL USETZOOM(.TRUE.,.TRUE.)
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'U ') THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'VISC' .OR.
 & COMAND.EQ.'V ') THEN
 IF(LPACC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
C
 LVISC = .NOT. LVISC
C
 IF(LVISC) THEN
 IF(NINPUT.GE.1) THEN
 REINF1 = RINPUT(1)
 ELSE IF(REINF1 .EQ. 0.0) THEN
 CALL ASKR('Enter Reynolds number^',REINF1)
 ENDIF
C
 CALL MRSHOW(.TRUE.,.TRUE.)
 ENDIF
 LVCONV = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'HARD') THEN
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
C
C--
 ELSEIF(COMAND.EQ.'SIZE') THEN
 IF(NINPUT.GE.1) THEN
 SIZE = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current plot-object size =', SIZE
 CALL ASKR('Enter new plot-object size^',SIZE)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'CPMI') THEN
 IF(NINPUT.GE.1) THEN
 CPMIN = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current CPmin =', CPMIN
 CALL ASKR('Enter new CPmin^',CPMIN)
 ENDIF
C
 PFAC = PLOTAR/(CPMAX-CPMIN)
 CPDEL = -0.5
 IF(CPMIN .LT. -4.01) CPDEL = -1.0
C
C--
 ELSEIF(COMAND.EQ.'VPAR') THEN
 CALL VPAR
C
C--
 ELSEIF(COMAND.EQ.'RE ' .OR.
 & COMAND.EQ.'R ') THEN
 IF(LPACC .AND. LVISC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
C
 IF(NINPUT.GE.1) THEN
 REINF1 = RINPUT(1)
 ELSE
 WRITE(*,*)
 WRITE(*,*) 'Currently...'
 CALL MRSHOW(.FALSE.,.TRUE.)
 CALL ASKR('Enter new Reynolds number^',REINF1)
 ENDIF
C
ccc CALL MRSHOW(.FALSE.,.TRUE.)
 CALL MRCL(1.0,MINF_CL,REINF_CL)
 LVCONV = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'MACH' .OR.
 & COMAND.EQ.'M ') THEN
 IF(LPACC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
C
 15 CONTINUE
 IF(NINPUT.GE.1) THEN
 MINF1 = RINPUT(1)
 ELSE
 WRITE(*,*)
 WRITE(*,*) 'Currently...'
 CALL MRSHOW(.TRUE.,.FALSE.)
 CALL ASKR('Enter Mach number^',MINF1)
 ENDIF
C
 IF(MINF1.GE.1.0) THEN
 WRITE(*,*) 'Supersonic freestream not allowed'
 NINPUT = 0
 GO TO 15
 ENDIF
ccc CALL MRSHOW(.TRUE.,.FALSE.)
 CALL MRCL(1.0,MINF_CL,REINF_CL)
 CALL COMSET
C
 IF(MINF.GT.0.0) WRITE(*,1300) CPSTAR, QSTAR/QINF
 1300 FORMAT(/' Sonic Cp =', F10.2, ' Sonic Q/Qinf =', F10.3/)
C
 CALL CPCALC(N,QINV,QINF,MINF,CPI)
 IF(LVISC) CALL CPCALC(N+NW,QVIS,QINF,MINF,CPV)
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
 CALL CDCALC
 LVCONV = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'TYPE' .OR.
 & COMAND.EQ.'T') THEN
 IF(LPACC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
C
 17 CONTINUE
 IF(NINPUT.GE.1) THEN
 ITYP = IINPUT(1)
 ELSE
 WRITE(*,1105)
 1105 FORMAT(
 & /' Type parameters held constant varying fixed '
 & /' ---- ------------------------ ------- -----------'
 & /' 1 M , Re .. lift chord, vel.'
 & /' 2 M sqrt(CL) , Re sqrt(CL) .. vel. chord, lift'
 & /' 3 M , Re CL .. chord lift , vel.')
 CALL ASKI('Enter type of Mach,Re variation with CL^',ITYP)
 ENDIF
C
 IF(ITYP.EQ.1) THEN
 MATYP = 1
 RETYP = 1
 ELSE IF(ITYP.EQ.2) THEN
 MATYP = 2
 RETYP = 2
 ELSE IF(ITYP.EQ.3) THEN
 MATYP = 1
 RETYP = 3
 ENDIF
C
 IF(ITYP.LT.1 .OR. ITYP.GT.3) THEN
 NINPUT = 0
 GO TO 17
 ENDIF
C
 CALL MRSHOW(.TRUE.,.TRUE.)
 CALL MRCL(1.0,MINF_CL,REINF_CL)
 CALL COMSET
 LVCONV = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'ITER') THEN
 18 CONTINUE
 IF(NINPUT.GE.1) THEN
 ITMAX = IINPUT(1)
 ELSE
 WRITE(*,*) 'Current iteration limit:', ITMAX
 CALL ASKI('Enter new iteration limit^',ITMAX)
 ENDIF
C
 IF(ITMAX.LT.1) THEN
 NINPUT = 0
 GO TO 18
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'INIT') THEN
 LBLINI = .NOT.LBLINI
 IF(LBLINI) THEN
 WRITE(*,*) 'BLs are assumed to be initialized'
 ELSE
 WRITE(*,*) 'BLs will be initialized on next point'
 LIPAN = .FALSE.
 ENDIF
C
C--
c ELSEIF(COMAND.EQ.'IMAG') THEN
c LIMAGE = .NOT.LIMAGE
c IF(LIMAGE) THEN
c CALL ASKR('Enter y-position of image plane^',YIMAGE)
c CALL ASKI('Specify image type (1=wall -1=free jet)^',KIMAGE)
c ELSE
c WRITE(*,*) 'Image airfoil removed'
c ENDIF
c LGAMU = .FALSE.
c LQAIJ = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'ALFA' .OR.
 & COMAND.EQ.'A ') THEN
 IF(.NOT.LRECALC) THEN
C------- set inviscid solution only if point is not being recalculated
 IF(NINPUT.GE.1) THEN
 ADEG = RINPUT(1)
 ELSE
 ADEG = ALFA/DTOR
 CALL ASKR('Enter angle of attack (deg)^',ADEG)
 ENDIF
 LALFA = .TRUE.
 ALFA = DTOR*ADEG
 QINF = 1.0
 CALL SPECAL
 IF(ABS(ALFA-AWAKE) .GT. 1.0E-5) LWAKE = .FALSE.
 IF(ABS(ALFA-AVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 IF(ABS(MINF-MVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 ENDIF
C
 IF(LVISC) CALL VISCAL(ITMAX)
 CALL CPX
 CALL FCPMIN
C
ccc IF(LVISC .AND. LPACC .AND. LVCONV) THEN
 IF(LPACC .AND. (LVCONV .OR. .NOT.LVISC)) THEN
 CALL PLRADD(LUPLR,IPACT)
 CALL PLXADD(LUPLX,IPACT)
 ENDIF
C
 IF(LVISC .AND. .NOT.LPACC .AND. .NOT.LVCONV) THEN
 WRITE(*,*) 'Type "!" to continue iterating'
 ENDIF
C
C WRITE(*,*) 'N NW =', N, NW
C call aski('Enter i^',ioff)
C call askr('Enter dmass^',dms)
Cc
C do 43 is=1, 2
C do 430 ibl=2, nbl(is)
C i = ipan(ibl,is)
C mass(ibl,is) = 0.
C if(i.eq.ioff) mass(ibl,is) = dms
C 430 continue
C 43 continue
Cc
C call ueset
C call qvfue
C call gamqv
C call cpcalc(N+NW,QVIS,QINF,MINF,CPV)
C call cdcalc
c CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF,XCMREF,YCMREF,
c & CL,CM,CDP, CL_ALF,CL_MSQ)
C call cpx
Cc
C
 COMOLD = COMAND
 ARGOLD = COMARG
C
C--
 ELSEIF(COMAND.EQ.'CLI ') THEN
 IF(.NOT.LRECALC) THEN
 IF(NINPUT.GE.1) THEN
 CLSPEC = RINPUT(1)
 ELSE
 CALL ASKR('Enter inviscid lift coefficient^',CLSPEC)
 ENDIF
 LALFA = .TRUE.
 ALFA = 0.0
 QINF = 1.0
 CALL SPECCL
 ADEG = ALFA/DTOR
 IF(ABS(ALFA-AWAKE) .GT. 1.0E-5) LWAKE = .FALSE.
 IF(ABS(ALFA-AVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 IF(ABS(MINF-MVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 ENDIF
C
 IF(LVISC) CALL VISCAL(ITMAX)
 CALL CPX
 CALL FCPMIN
C
ccc IF(LVISC .AND. LPACC .AND. LVCONV) THEN
 IF(LPACC .AND. (LVCONV .OR. .NOT.LVISC)) THEN
 CALL PLRADD(LUPLR,IPACT)
 CALL PLXADD(LUPLX,IPACT)
 ENDIF
C
 IF(LVISC .AND. .NOT.LPACC .AND. .NOT.LVCONV) THEN
 WRITE(*,*) 'Type "!" to continue iterating'
 ENDIF
C
 COMOLD = COMAND
 ARGOLD = COMARG
C
C--
 ELSEIF(COMAND.EQ.'CL ' .OR.
 & COMAND.EQ.'C ') THEN
 IF(.NOT.LRECALC) THEN
 IF(NINPUT.GE.1) THEN
 CLSPEC = RINPUT(1)
 ELSE
 CALL ASKR('Enter lift coefficient^',CLSPEC)
 ENDIF
 LALFA = .FALSE.
 ALFA = 0.0
 QINF = 1.0
 CALL SPECCL
 ADEG = ALFA/DTOR
 IF(ABS(ALFA-AWAKE) .GT. 1.0E-5) LWAKE = .FALSE.
 IF(ABS(ALFA-AVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 IF(ABS(MINF-MVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 ENDIF
 IF(LVISC) CALL VISCAL(ITMAX)
 CALL FCPMIN
C
 CALL CPX
ccc IF(LVISC .AND. LPACC .AND. LVCONV) THEN
 IF(LPACC .AND. (LVCONV .OR. .NOT.LVISC)) THEN
 CALL PLRADD(LUPLR,IPACT)
 CALL PLXADD(LUPLX,IPACT)
 ENDIF
C
 IF(LVISC .AND. .NOT.LPACC .AND. .NOT.LVCONV) THEN
 WRITE(*,*) 'Type "!" to continue iterating'
 ENDIF
C
 COMOLD = COMAND
 ARGOLD = COMARG
C
C--
 ELSEIF(COMAND.EQ.'ASEQ' .OR.
 & COMAND.EQ.'AS ' .OR.
 & COMAND.EQ.'CSEQ' .OR.
 & COMAND.EQ.'CS ') THEN
 LALFA = COMAND.EQ.'ASEQ' .OR.
 & COMAND.EQ.'AS '
C
 IF(LALFA) THEN
 IF (NINPUT.GE.3) THEN
 AA1 = RINPUT(1)
 AA2 = RINPUT(2)
 DAA = RINPUT(3)
 ELSEIF(NINPUT.GE.2) THEN
 AA1 = RINPUT(1)
 AA2 = RINPUT(2)
 DAA = DAA/DTOR
 CALL ASKR('Enter alfa increment (deg)^',DAA)
 ELSEIF(NINPUT.GE.1) THEN
 AA1 = RINPUT(1)
 AA2 = AA2/DTOR
 CALL ASKR('Enter last alfa value (deg)^',AA2)
 DAA = DAA/DTOR
 CALL ASKR('Enter alfa increment (deg)^',DAA)
 ELSE
 AA1 = AA1/DTOR
 CALL ASKR('Enter first alfa value (deg)^',AA1)
 AA2 = AA2/DTOR
 CALL ASKR('Enter last alfa value (deg)^',AA2)
 DAA = DAA/DTOR
 CALL ASKR('Enter alfa increment (deg)^',DAA)
 ENDIF
 IF(AA2.LT.AA1) THEN
 DAA = -ABS(DAA)
 ELSE
 DAA = ABS(DAA)
 ENDIF
 AA1 = AA1*DTOR
 AA2 = AA2*DTOR
 DAA = DAA*DTOR
 NPOINT = 1
 IF(DAA .NE. 0.0) NPOINT = INT((AA2-AA1)/DAA + 0.5) + 1
C
 ELSE
 IF (NINPUT.GE.3) THEN
 CL1 = RINPUT(1)
 CL2 = RINPUT(2)
 DCL = RINPUT(3)
 ELSEIF(NINPUT.GE.2) THEN
 CL1 = RINPUT(1)
 CL2 = RINPUT(2)
 CALL ASKR('Enter CL increment ^',DCL)
 ELSEIF(NINPUT.GE.1) THEN
 CL1 = RINPUT(1)
 CALL ASKR('Enter last CL value^',CL2)
 CALL ASKR('Enter CL increment ^',DCL)
 ELSE
 CALL ASKR('Enter first CL value^',CL1)
 CALL ASKR('Enter last CL value^',CL2)
 CALL ASKR('Enter CL increment ^',DCL)
 ENDIF
 IF(CL2.LT.CL1) THEN
 DCL = -ABS(DCL)
 ELSE
 DCL = ABS(DCL)
 ENDIF
 NPOINT = 1
 IF(DCL .NE. 0.0) NPOINT = INT((CL2-CL1)/DCL + 0.5) + 1
 ENDIF
C
C- - - - - - - - - - - - - - - - - -
C
C----- initialize plot
 CALL PLTINI
C
 IF(LPPSHO) THEN
C------ set up for polar plot
C
 ELSE
C------ set up for Cp(x) plot
C
C------ Cp scaling factor
 PFAC = PLOTAR/(CPMAX-CPMIN)
C
C------ determine airfoil box size and location
 CALL AIRLIM(N,X,Y,XMIN,XMAX,YMIN,YMAX)
C
C------ y-offset for airfoil in Cp vs x plot
 FACA = FACAIR/(XMAX-XMIN)
 XOFA = XOFAIR*(XMAX-XMIN) - XMIN
 YOFA = YOFAIR*(XMAX-XMIN) - YMAX - CPMAX*PFAC/FACA
C
C------ re-origin for Cp vs x plot
 CALL PLOT(0.09 , 0.04 + CPMAX*PFAC + (YMAX-YMIN)*FACA, -3)
C
C------ draw axes and airfoil picture for Cp vs x plot
 CALL CPAXES(LCPGRD,
 & N,X,Y,XOFA,YOFA,FACA,
 & CPMIN,CPMAX,CPDEL,PFAC,CH,
 & 'XFOIL',VERSION)
C
C------ set initial x,y-positions of sequence plot label top
 XL = 0.65
 IF(LVISC) XL = 0.48
 YL = -CPMIN*PFAC
C
C------ draw sequence plot label
 CALL SEQLAB(XL,YL,XL1,XL2,XL3,XL4,XL5,XL6,CHSEQ,1,LVISC)
C
 CALL PLFLUSH
C
C------ set label y position
 YL = YL - 0.2*CH
 ENDIF
C
C----- initialize unconverged-point counter
 ISEQEX = 0
 ALAST = ADEG
 CLAST = CL
C
C----- calculate each point, add Cp distribution to plot, and save to polar
 DO 115 IPOINT=1, NPOINT
C
C------- set proper alpha for this point
 IF(LALFA) THEN
 ALFA = AA1 + DAA*FLOAT(IPOINT-1)
 ELSE
 CLSPEC = CL1 + DCL*FLOAT(IPOINT-1)
 CALL SPECCL
 ENDIF
C
 IF(ABS(ALFA-AWAKE) .GT. 1.0E-5) LWAKE = .FALSE.
 IF(ABS(ALFA-AVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 IF(ABS(MINF-MVISC) .GT. 1.0E-5) LVCONV = .FALSE.
 CALL SPECAL
 ITMAXS = ITMAX + 5
 IF(LVISC) CALL VISCAL(ITMAXS)
C
 ADEG = ALFA/DTOR
C
 CALL FCPMIN
C
C------- add point to buffer polar and/or disk files
ccc IF(LVISC .AND. LPACC .AND. LVCONV) THEN
 IF(LPACC .AND. (LVCONV .OR. .NOT.LVISC)) THEN
 CALL PLRADD(LUPLR,IPACT)
 CALL PLXADD(LUPLX,IPACT)
 ENDIF
C
 IF(LPPSHO) THEN
 CALL PLTINI
ccc CALL PLOTABS(0.5,0.5,-3)
 PSIZE = 1.0*SIZE
 CALL NEWFACTOR(PSIZE)
 CALL PLOT(5.0*CH,7.0*CH,-3)
C
 CH1 = CH*0.90
 CH2 = CH*0.75
 CLEXP = 1.0
C
 DO IP=1, NPOL
 NBLP(IP) = 1
 ENDDO
C
 CALL POLPLT(NAX,NPOL,NAPOL,CPOL,
 & REYNP1,MACHP1,ACRITP, NAMEPOL,ICOLP,ILINP,
 & NFX,NPOLREF,NDREF,CPOLREF,NAMEREF,ICOLR,ISYMR,
 & ISX,NBLP,CPOLSD ,IMATYP,IRETYP,
 & ' ','XFOIL',VERSION,
 & PLOTAR,XCDWID,XALWID,XOCWID,CH1,CH2,CLEXP,
 & LPGRID,LPCDW,LPLIST,LPLEGN,LAECEN,
 & CPOLPLF,' ',0)
 ELSE
C-------- add alpha, CL, etc. to plot
 CALL SEQPLT(YL,XL1,XL2,XL3,XL4,XL5,XL6,CHSEQ,ADEG,CL,CM,LVISC)
C
C-------- add sonic Cp dashed line if within plot
 IF(CPSTAR.GE.CPMIN) CALL DASH(0.0,XL-CH,-CPSTAR*PFAC)
C
 CALL NEWPEN(2)
 IF(LVISC) THEN
C--------- Plot viscous -Cp distribution on airfoil
 CALL XYLINE(N+NW,X,CPV,-XOFA,FACA,0.0,-PFAC,1)
 ELSE
C--------- Plot inviscid -Cp distribution on airfoil
 CALL XYLINE(N,X,CPI,-XOFA,FACA,0.0,-PFAC,1)
 ENDIF
 ENDIF
C
 CALL PLFLUSH
c###
ccc call dcpout
C
 IF(LVISC .AND. .NOT.LVCONV) THEN
C-------- increment unconverged-point counter
 ISEQEX = ISEQEX + 1
 IF(ISEQEX .GE. NSEQEX) THEN
 WRITE(*,1150) ISEQEX, ALAST, CLAST
 1150 FORMAT(
 & /' Sequence halted since previous',I3,' points did not converge'
 & /' Last-converged alpha =', F8.3, ' CL =', F10.5)
 GO TO 116
 ENDIF
 ELSE
C-------- converged OK... reset unconverged-point counter
 ISEQEX = 0
 ALAST = ADEG
 CLAST = CL
 ENDIF
C
 115 CONTINUE
 116 CONTINUE
ccc CALL ASKC('hit <cr>^',DUMMY,COMARG)
C
 COMOLD = COMAND
 ARGOLD = COMARG
C
C--
 ELSEIF(COMAND.EQ.'SEQP') THEN
 LPPSHO = .NOT.LPPSHO
 IF(LPPSHO) THEN
 WRITE(*,*) 'Polar will be plotted during point sequence'
 ELSE
 WRITE(*,*) 'Cp(x) will be plotted during point sequence'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PACC' .OR.
 & COMAND.EQ.'P ') THEN
 LPACC = .NOT.LPACC
C
 IF(LPACC) THEN
 IF(NINPUT.GE.1) THEN
C------- slot into which accumulated polar will go
 IP = MIN(MAX(IINPUT(1) , 0) , NPOL+1)
 ELSE
C------- no command argument was given... just use next available slot
 IP = NPOL+1
 PFNAME(IP) = ' '
 PFNAMX(IP) = ' '
 ENDIF
C
 IF(IP.GT.NPOL) THEN
 IF(NPOL.EQ.NPX) THEN
 WRITE(*,*)
 WRITE(*,*) 'Number of polars is at array limit'
 WRITE(*,*) 'New polar will not be stored'
 IPACT = 0
 ELSE
 IPACT = NPOL + 1
 PFNAME(IPACT) = ' '
 PFNAMX(IPACT) = ' '
 ENDIF
C
 ELSE
 IPACT = IP
C
 ENDIF
C
C------ set up for appending to new or existing polar (if IPACT > 0)
 CALL PLRSET(IPACT)
C
C------ jump out if decision was made to abort polar accumulation
 IF(IPACT.LE.0) THEN
 LPACC = .FALSE.
 GO TO 500
 ENDIF
C
 CALL PLRINI(LUPLR,IPACT)
 CALL PLXINI(LUPLX,IPACT)
 WRITE(*,*)
 WRITE(*,*) 'Polar accumulation enabled'
C
 ELSE
 WRITE(*,*)
 WRITE(*,*) 'Polar accumulation disabled'
 IPACT = 0
C
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PGET') THEN
 IF(NPOL.GE.NPX) THEN
 WRITE(*,*)
 WRITE(*,*) 'Number of polars is at array limit'
 WRITE(*,*) 'Delete with PDEL if necessary'
 GO TO 500
 ENDIF
C
 IP = NPOL+1
C
 IF(COMARG.EQ.' ') THEN
 CALL ASKS('Enter polar filename^',FNAME)
 ELSE
 FNAME = COMARG
 ENDIF
C
 LU = 17
 CALL POLREAD(LU,FNAME,ERROR,
 & NAX,NAPOL(IP),CPOL(1,1,IP),
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP),IRETYP(IP),IMATYP(IP),
 & ISX,NBLP(IP),CPOLSD(1,1,1,IP),
 & CODEPOL(IP),VERSPOL(IP))
 IF(ERROR) THEN
 WRITE(*,*) 'Polar file READ error'
 ELSE
 NPOL = IP
 NXYPOL(IP) = 0
 CALL STRIP(NAMEPOL(IP),NNAMEP)
 NEL = 1
 CALL POLWRIT(6,' ',ERROR, .TRUE.,
 & NAX, 1,NAPOL(IP), CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP),IRETYP(IP),IMATYP(IP),
 & ISX,NEL,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & CODEPOL(IP),VERSPOL(IP), .FALSE.)
 PFNAME(IP) = FNAME
 WRITE(*,5500) IP
 5500 FORMAT(/' Stored as Polar', I4)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PWRT') THEN
 75 CONTINUE
 IF(NPOL.EQ.1) THEN
 IP = 1
 ELSEIF(NINPUT.EQ.0) THEN
 CALL PLRSUM(1,NPOL,IPACT)
 CALL ASKI(
 & 'Enter index of polar to write (0=all, -1=abort)^',IP)
 IF(IP.EQ.-1) GO TO 500
 ELSE
 IP = IINPUT(1)
 ENDIF
C
 IF(IP.EQ.0) THEN
 IP1 = 1
 IP2 = NPOL
 ELSEIF(IP.GE.1 .AND. IP.LE.NPOL) THEN
 IP1 = IP
 IP2 = IP
 ELSE
 NINPUT = 0
 GO TO 75
 ENDIF
C
 NEL = 1
 DO IP = IP1, IP2
 LU = 19
 CALL PLRSUM(IP,IP,IPACT)
 CALL STRIP(PFNAME(IP),NPF)
 IF(NPF.EQ.0) THEN
 LINE = 'Enter polar output filename^'
 ELSE
 LINE = 'Enter polar output filename ['
 & // PFNAME(IP)(1:NPF) // ']^'
 ENDIF
 CALL ASKS(LINE,FNAME)
 IF(NPF.NE.0 .AND. FNAME.EQ.' ') FNAME = PFNAME(IP)
C
 NIPOL = NIPOL0
 IF(LCMINP) THEN
 NIPOL = NIPOL + 1
 IPOL(IMC) = NIPOL
 ENDIF
 IF(LHMOMP) THEN
 NIPOL = NIPOL + 1
 IPOL(ICH) = NIPOL
 ENDIF
C
 CALL POLWRIT(LU,FNAME,ERROR, .TRUE.,
 & NAX, 1,NAPOL(IP),CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP),IRETYP(IP),IMATYP(IP),
 & ISX,NEL,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & 'XFOIL',VERSION, .TRUE.)
 IF(ERROR) THEN
 WRITE(*,1075) IP
 1075 FORMAT(' Polar', I3,' not written')
 ELSE
 PFNAME(IP) = FNAME
 ENDIF
 ENDDO
C
C--
 ELSEIF(COMAND.EQ.'RGET') THEN
 IF(NPOLREF.GE.NPX) THEN
 WRITE(*,*)
 WRITE(*,*) 'Number of reference polars is at array limit'
 WRITE(*,*) 'Delete with RDEL if necessary'
 GO TO 500
 ENDIF
C
 IR = NPOLREF+1
C
 IF(COMARG.EQ.' ') THEN
 CALL ASKS('Enter reference polar filename^',FNAME)
 ELSE
 FNAME = COMARG
 ENDIF
C
 LU = 9
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=27)
 CALL POLREF(LU, FNAME, ERROR,
 & NFX, NDREF(1,IR), CPOLREF(1,1,1,IR), NAMEREF(IR))
 CLOSE(LU)
 IF(ERROR) GO TO 27
C
 NPOLREF = IR
C
 CALL STRIP(NAMEREF(IR),NNREF)
 IF(NNREF.EQ.0) THEN
 CALL ASKS('Enter label for reference polar^',NAMEREF(IR))
 CALL STRIP(NAMEREF(IR),NNREF)
 ELSE
 WRITE(*,*)
 WRITE(*,*) NAMEREF(IR)
 ENDIF
C
ccc ICOLR(IR) = NCOLOR - IR + 1
 ICOLR(IR) = 2 + IR
 ISYMR(IR) = MOD(IR,10)
 25 CONTINUE
 GO TO 500
C
 27 CONTINUE
 WRITE(*,*) 'File OPEN error'
C
C--
 ELSEIF(COMAND.EQ.'RDEL') THEN
 IF(NPOLREF.EQ.0) THEN
 WRITE(*,*) 'No reference polars are stored'
 GO TO 500
 ENDIF
C
 IF(NINPUT.GE.1) THEN
 IR = IINPUT(1)
 ELSE
 IR = NPOLREF+1
 ENDIF
C
 35 CONTINUE
C
 IF(IR.EQ.0) THEN
C------- delete all polars
 NPOLREF = 0
C
 ELSEIF(IR.EQ.-1) THEN
C------- abort
 GO TO 500
C
 ELSEIF(IR.LT.-1 .OR. IR.GT.NPOLREF) THEN
 CALL PRFSUM(1,NPOLREF)
 CALL ASKI(
 & 'Specify ref. polar to delete (0 = all, -1 = abort)^',IR)
 GO TO 35
C
 ELSE
C------- delete ref. polar IR
 DO JR = IR+1, NPOLREF
 CALL PRFCOP(JR,JR-1)
 WRITE(*,1310) JR, JR-1
 1410 FORMAT(' Ref.polar',I3,' moved into ref.polar',I3)
 ENDDO
 NPOLREF = NPOLREF-1
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PSUM') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'No polars are stored'
 GO TO 500
 ENDIF
C
 CALL PLRSUM(1,NPOL,IPACT)
C
C--
 ELSEIF(COMAND.EQ.'PLIS') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'No polars are stored'
 GO TO 500
 ENDIF
C
 IF(NINPUT.EQ.0) THEN
 IP1 = 1
 IP2 = NPOL
 ELSE
 IP = IINPUT(1)
 IF(IP.EQ.0) THEN
 IP1 = 1
 IP2 = NPOL
 ELSEIF(IP.GE.1 .AND. IP.LE.NPOL) THEN
 IP1 = IP
 IP2 = IP
 ELSE
 WRITE(*,*)
 WRITE(*,*) 'Specified stored polar does not exist'
 GO TO 500
 ENDIF
 ENDIF
C
 NIPOL = NIPOL0
 IF(LCMINP) THEN
 NIPOL = NIPOL + 1
 IPOL(IMC) = NIPOL
 ENDIF
 IF(LHMOMP) THEN
 NIPOL = NIPOL + 1
 IPOL(ICH) = NIPOL
 ENDIF
C
 NEL = 1
 DO IP = IP1, IP2
 WRITE(*,3100) IP
 3100 FORMAT(
 &/' =='
 &/' Polar', I3)
 IA1 = 1
 IA2 = NAPOL(IP)
 CALL POLWRIT(6,' ',ERROR, .TRUE.,
 & NAX, IA1,IA2, CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP), IRETYP(IP),IMATYP(IP),
 & ISX,NEL,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & 'XFOIL',VERSION, .FALSE.)
 ENDDO
 NIPOL = NIPOL0
C
C--
 ELSEIF(COMAND.EQ.'PDEL') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*) 'No polars are stored'
 GO TO 500
 ENDIF
C
 IF(NINPUT.GE.1) THEN
C------- use command argument
 IP = IINPUT(1)
 ELSE
C------- no argument given... set up for user query test below
 IP = NPOL+1
 ENDIF
C
 40 CONTINUE
 IF(IP.EQ.0) THEN
C------- delete all polars
 NPOL = 0
 IPACT = 0
 LPACC = .FALSE.
C
 ELSEIF(IP.EQ.-1) THEN
C------- abort
 GO TO 500
C
 ELSEIF(IP.LT.-1 .OR. IP.GT.NPOL) THEN
 CALL PLRSUM(1,NPOL,IPACT)
 CALL ASKI(
 & 'Specify polar to delete (0 = all, -1 = abort)^',IP)
 GO TO 40
C
 ELSE
C------- delete polar IP
 IF(IPACT.EQ.IP) THEN
 WRITE(*,*) 'Active polar deleted. Accumulation turned off'
 IPACT = 0
 LPACC = .FALSE.
 ENDIF
C
 DO JP = IP+1, NPOL
 CALL PLRCOP(JP,JP-1)
 WRITE(*,1310) JP, JP-1
 1310 FORMAT(' Polar',I3,' moved into polar',I3)
 IF(IPACT.EQ.JP) THEN
 IPACT = JP-1
 ENDIF
 ENDDO
 NPOL = NPOL-1
C
 ENDIF
C
 IF(IPACT.GT.0) THEN
 WRITE(*,1320) IPACT
 1320 FORMAT(' Polar',I3,' is now active')
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PSOR') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*) 'No polars are stored'
 GO TO 500
 ENDIF
C
 IF(NINPUT.GE.1) THEN
C------- use command argument
 IP = IINPUT(1)
 ELSE
C------- no argument given... set up for user query test below
 IP = NPOL+1
 ENDIF
C
C------ sort polars in increasing alpha
 IDSORT = IAL
C
 42 CONTINUE
 IF (IP.EQ.-1) THEN
C------- abort
 GO TO 500
C
 ELSEIF(IP.LT.-1 .OR. IP.GT.NPOL) THEN
 CALL PLRSUM(1,NPOL,IPACT)
 CALL ASKI(
 & 'Specify polar to sort (0 = all, -1 = abort)^',IP)
 GO TO 42
C
 ELSE
C------- sort polar(s)
 IF(IP.EQ.0) THEN
 IP1 = 1
 IP2 = NPOL
 ELSE
 IP1 = IP
 IP2 = IP
 ENDIF
 DO JP = IP1, IP2
 CALL PLRSRT(JP,IDSORT)
 ENDDO
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PPLO' .OR.
 & COMAND.EQ.'PP ') THEN
C------ set temporary polar-size array to plot only selected polars
 IF(NINPUT.EQ.0) THEN
C------- no polars specified... plot all of them
 DO IP=1, NPOL
 NAPOLT(IP) = NAPOL(IP)
 ENDDO
 ELSE
C------- set up to plot only specified polars
 DO IP=1, NPOL
 NAPOLT(IP) = 0
 ENDDO
 DO K=1, NINPUT
 IP = IINPUT(K)
 IF(IP.GE.1 .AND. IP.LE.NPOL) NAPOLT(IP) = NAPOL(IP)
 ENDDO
 ENDIF
C
 CALL PLTINI
ccc CALL PLOTABS(0.5,0.5,-3)
 PSIZE = 1.0*SIZE
 CALL NEWFACTOR(PSIZE)
 CALL PLOT(5.0*CH,7.0*CH,-3)
C
 CH1 = CH*0.90
 CH2 = CH*0.75
 CLEXP = 1.0
 DO IP=1, NPOL
 NBLP(IP) = 1
 ENDDO
C
 CALL POLPLT(NAX,NPOL,NAPOLT,CPOL,
 & REYNP1,MACHP1,ACRITP, NAMEPOL,ICOLP,ILINP,
 & NFX,NPOLREF,NDREF,CPOLREF,NAMEREF,ICOLR,ISYMR,
 & ISX,NBLP,CPOLSD ,IMATYP,IRETYP,
 & ' ','XFOIL',VERSION,
 & PLOTAR,XCDWID,XALWID,XOCWID,CH1,CH2,CLEXP,
 & LPGRID,LPCDW,LPLIST,LPLEGN,LAECEN,
 & CPOLPLF,' ',0)
C
C--
 ELSEIF(COMAND.EQ.'APLO' .OR.
 & COMAND.EQ.'AP ') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'No polars are stored'
 GO TO 500
 ENDIF
C
 IF(NINPUT.EQ.0) THEN
 NPPAI = NPOL
 DO K=1, NPPAI
 IPPAI(K) = K
 ENDDO
 ELSE
 NPPAI = MIN(NINPUT , NPX)
 DO K=1, NPPAI
 IINP = IINPUT(K)
 IF(IINP.GE.1 .AND. IINP.LE.NPOL) THEN
 IPPAI(K) = IINP
 ELSE
 IPPAI(K) = 0
 ENDIF
 ENDDO
 ENDIF
C
 CALL PPAPLT(NPPAI,IPPAI)
C
C--
 ELSEIF(COMAND.EQ.'ASET') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'No polar airfoils are stored'
 GO TO 500
 ENDIF
C
 50 CONTINUE
 IF(NINPUT.EQ.0) THEN
 IF(NPOL.EQ.1) THEN
 IP = 1
 ELSE
 CALL PLRSUM(1,NPOL,IPACT)
 CALL ASKI('Enter index of polar airfoil to set^',IP)
 ENDIF
 ELSE
 IP = IINPUT(1)
 ENDIF
C
 IF(IP.EQ.0) THEN
 GO TO 500
 ELSEIF(IP.LT.1 .OR. IP.GT.NPOL) THEN
 WRITE(*,*)
 WRITE(*,*) 'Specified polar airfoil does not exist'
 NINPUT = 0
 GO TO 50
 ENDIF
C
 WRITE(*,*)
 WRITE(*,*) 'Current airfoil will be overwritten. Proceed? Y'
 READ(*,1000) ANS
 1000 FORMAT(A)
C
 IF(INDEX('Nn',ANS) .NE. 0) THEN
 WRITE(*,*) 'No action taken'
 GO TO 500
 ELSE
 CALL APCOPY(IP)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PREM') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'No polars are stored'
 GO TO 500
 ENDIF
C
 52 CONTINUE
 IF(NINPUT.EQ.0) THEN
 IF(NPOL.EQ.1) THEN
 IP = 1
 ELSE
 CALL PLRSUM(1,NPOL,IPACT)
 CALL ASKI('Enter index of polar to modify^',IP)
 ENDIF
 ELSE
 IP = IINPUT(1)
 ENDIF
C
 IF(IP.EQ.0) THEN
 GO TO 500
 ELSEIF(IP.LT.1 .OR. IP.GT.NPOL) THEN
 WRITE(*,*)
 WRITE(*,*) 'Specified polar airfoil does not exist'
 NINPUT = 0
 GO TO 52
 ENDIF
C
 IF(NINPUT.GE.2) THEN
 NREM = NINPUT - 1
 ELSE
 NIPOL = NIPOL0
 IF(LCMINP) THEN
 NIPOL = NIPOL + 1
 IPOL(IMC) = NIPOL
 ENDIF
 IF(LHMOMP) THEN
 NIPOL = NIPOL + 1
 IPOL(ICH) = NIPOL
 ENDIF
C
 WRITE(*,3100) IP
 IA1 = 1
 IA2 = NAPOL(IP)
 CALL POLWRIT(6,' ',ERROR, .TRUE.,
 & NAX, IA1,IA2, CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP), IRETYP(IP),IMATYP(IP),
 & ISX,1,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & 'XFOIL',VERSION, .FALSE.)
 53 WRITE(*,3220)
 3220 FORMAT(/' Enter alpha(s) of points to be removed: ', $)
 READ(*,1000) LINE
 NREM = 19
 CALL GETFLT(LINE,RINPUT(2),NREM,ERROR)
 IF(ERROR) GO TO 53
 ENDIF
C
C----- go over specified alphas to be removed
 DO 55 IREM = 1, NREM
C------- check all alpha points in polar IP
 DO IA = 1, NAPOL(IP)
 ADIF = CPOL(IA,IAL,IP) - RINPUT(IREM+1)
 IF(ABS(ADIF) .LT. 0.0005) THEN
C---------- alphas match within 3-digit print tolerance...
C- remove point by pulling down all points above it
 DO JA = IA, NAPOL(IP)-1
 DO K = 1, IPTOT
 CPOL(JA,K,IP) = CPOL(JA+1,K,IP)
 ENDDO
 DO K = 1, JPTOT
 CPOLSD(JA,1,K,IP) = CPOLSD(JA+1,1,K,IP)
 CPOLSD(JA,2,K,IP) = CPOLSD(JA+1,2,K,IP)
 ENDDO
 ENDDO
C---------- shrink polar by 1
 NAPOL(IP) = NAPOL(IP) - 1
C
 IF(NAPOL(IP).LE.0) THEN
C----------- last point has been removed... eliminate this polar IP
 DO JP = IP+1, NPOL
 CALL PLRCOP(JP,JP-1)
 IF(IPACT.EQ.JP) IPACT = JP-1
 WRITE(*,1310) JP, JP-1
 ENDDO
 NPOL = NPOL-1
C
 IF(IPACT.GT.0) THEN
 WRITE(*,1320) IPACT
 ENDIF
C
 GO TO 500
 ENDIF
C
C---------- go to next specified alpha to be removed
 GO TO 55
 ENDIF
 ENDDO
 55 CONTINUE
C
C--
 ELSEIF(COMAND.EQ.'PNAM') THEN
 IF(NPOL.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'No polars are stored'
 GO TO 500
 ENDIF
C
 58 CONTINUE
 IF(NINPUT.EQ.0) THEN
 IF(NPOL.EQ.1) THEN
 IP = 1
 ELSE
 CALL PLRSUM(1,NPOL,IPACT)
 CALL ASKI('Enter index of polar to modify^',IP)
 ENDIF
 ELSE
 IP = IINPUT(1)
 ENDIF
C
 IF(IP.EQ.0) THEN
 GO TO 500
 ELSEIF(IP.LT.1 .OR. IP.GT.NPOL) THEN
 WRITE(*,*)
 WRITE(*,*) 'Specified polar airfoil does not exist'
 NINPUT = 0
 GO TO 58
 ENDIF
C
 IF(NINPUT.GE.2) THEN
 NREM = NINPUT - 1
 ELSE
 NIPOL = NIPOL0
 IF(LCMINP) THEN
 NIPOL = NIPOL + 1
 IPOL(IMC) = NIPOL
 ENDIF
 IF(LHMOMP) THEN
 NIPOL = NIPOL + 1
 IPOL(ICH) = NIPOL
 ENDIF
C
 WRITE(*,3100) IP
 IA1 = 0
 IA2 = 0
 CALL POLWRIT(6,' ',ERROR, .TRUE.,
 & NAX, IA1,IA2, CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP), IRETYP(IP),IMATYP(IP),
 & ISX,1,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & 'XFOIL',VERSION, .FALSE.)
 NIPOL = NIPOL0
 WRITE(*,3320)
 3320 FORMAT(/' Enter new airfoil name of polar: ', $)
 READ(*,1000) NAMEPOL(IP)
 CALL STRIP(NAMEPOL(IP),NNP)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'PPAX') THEN
 CALL POLAXI(CPOLPLF,XCDWID,XALWI,XOCWID)
C
C--
 ELSEIF(COMAND.EQ.'CREF') THEN
 LCPREF = .NOT. LCPREF
 IF(LCPREF) THEN
 WRITE(*,*) 'Reference Cp plotting enabled'
 ELSE
 WRITE(*,*) 'Reference Cp plotting disabled'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'FREF') THEN
 LFOREF = .NOT. LFOREF
 IF(LFOREF) THEN
 WRITE(*,*) 'Reference force plotting enabled'
 ELSE
 WRITE(*,*) 'Reference force plotting disabled'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'CPX ' .OR.
 & COMAND.EQ.'CP ') THEN
 CALL CPX
C
C--
 ELSEIF(COMAND.EQ.'GRID') THEN
 LCPGRD = .NOT.LCPGRD
 IF(LCPGRD) THEN
 WRITE(*,*) 'Cp grid overlay enabled'
 ELSE
 WRITE(*,*) 'Cp grid overlay disabled'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'CPV ') THEN
 CALL CPVEC
C
C--
 ELSEIF(COMAND.EQ.'BL ') THEN
 IF(.NOT.LVCONV) THEN
 WRITE(*,*) 'Compute valid viscous solution first'
 GO TO 500
 ENDIF
C
 IF(NINPUT.GE.1) THEN
 NPR = MIN(IINPUT(1) , NPRX)
 ELSE
 NPR = 21
 WRITE(*,*) 'Using default number of profiles:', NPR
 ENDIF
C
 IF(NPR.GT.1) THEN
C------ set NPR points along surface, offset slightly for the locating logic
 DOFF = 0.00001*(S(N)-S(1))
 DO IPR = 1, NPR
 FRAC = FLOAT(IPR-1)/FLOAT(NPR-1)
 SPR = S(1) + (S(N)-S(1))*FRAC
 XPR(IPR) = SEVAL(SPR,X,XP,S,N) + DOFF*DEVAL(SPR,Y,YP,S,N)
 YPR(IPR) = SEVAL(SPR,Y,YP,S,N) - DOFF*DEVAL(SPR,X,XP,S,N)
 ENDDO
 ENDIF
C
 CALL CPX
 CALL DPLOT(NPR,XPR,YPR)
C
C--
 ELSEIF(COMAND.EQ.'BLC ') THEN
 IF(.NOT.LVCONV) THEN
 WRITE(*,*) 'Compute valid viscous solution first'
 GO TO 500
 ENDIF
C
 NPR = 0
 CALL CPX
 CALL DPLOT(NPR,XPR,YPR)
C
C--
 ELSEIF(COMAND.EQ.'BLWT') THEN
 IF(NINPUT.GE.1) THEN
 UPRWT = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current u/Qinf profile plot weight =', UPRWT
 CALL ASKR('Enter new plot weight^',UPRWT)
 ENDIF
C
 CALL CPX
C
C--
 ELSEIF(COMAND.EQ.'FMOM') THEN
 CALL MHINGE
 WRITE(*,1500) XOF,YOF,HMOM,HFX,HFY
 1500 FORMAT(/' Flap hinge x,y :', 2F8.4/
 & ' 2 2'/
 & ' Hinge moment/span = ',F8.6,' x 1/2 rho V c '/
 & ' 2 '/
 & ' x-Force /span = ',F8.6,' x 1/2 rho V c '/
 & ' 2 '/
 & ' y-Force /span = ',F8.6,' x 1/2 rho V c '/)
C
C--
 ELSEIF(COMAND.EQ.'FNEW') THEN
 IF (NINPUT.GE.2) THEN
 XOF = RINPUT(1)
 YOF = RINPUT(2)
 ELSEIF(NINPUT.GE.1) THEN
 XOF = RINPUT(1)
 YOF = -999.0
 ELSE
 XOF = -999.0
 YOF = -999.0
 ENDIF
 LFLAP = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'VELS') THEN
 IF (NINPUT.GE.2) THEN
 XXX = RINPUT(1)
 YYY = RINPUT(2)
 ELSEIF(NINPUT.GE.1) THEN
 XXX = RINPUT(1)
 CALL ASKR('Enter y^',YYY)
 ELSE
 CALL ASKR('Enter x^',XXX)
 CALL ASKR('Enter y^',YYY)
 ENDIF
 CALL PSILIN(0,XXX,YYY,-1.0,0.0,PSI,VVV,.FALSE.,.TRUE.)
 CALL PSILIN(0,XXX,YYY, 0.0,1.0,PSI,UUU,.FALSE.,.TRUE.)
 QQQ = SQRT(UUU**2 + VVV**2)
 CPP = 1.0 - (UUU**2 + VVV**2)
 WRITE(*,1800) UUU,VVV,QQQ,CPP
 1800 FORMAT(/' u/Uinf = ', F8.4, ' v/Uinf = ', F8.4
 & /' q/Uinf = ', F8.4, ' Cp = ', F8.4 /)
C
 COMOLD = COMAND
 ARGOLD = COMARG
C
C--
 ELSEIF(COMAND.EQ.'DUMP') THEN
 CALL BLDUMP(COMARG)
C
C--
 ELSEIF(COMAND.EQ.'CPWR') THEN
 CALL CPDUMP(COMARG)
C
C--
 ELSEIF(COMAND.EQ.'CPMN') THEN
 IF(LVISC)THEN
 WRITE(*,1769) CPMNI, XCPMNI, CPMNV, XCPMNV
 1769 FORMAT(' Minimum Inviscid Cp =',F8.4,' at x =',F8.4
 & / ' Minimum Viscous Cp =',F8.4,' at x =',F8.4)
 ELSE
 WRITE(*,1779) CPMNI, XCPMNI
 1779 FORMAT(' Minimum Inviscid Cp =',F8.4,' at x =',F8.4)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'CINC') THEN
 LCMINP = .NOT.LCMINP
 IF(LCMINP) THEN
 WRITE(*,*) 'Min Cp will be written to polar save file'
 ELSE
 WRITE(*,*) 'Min Cp won''t be written to polar save file'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'HINC') THEN
 LHMOMP = .NOT.LHMOMP
 IF(LHMOMP) THEN
 WRITE(*,*) 'Hinge moment will be written to polar save file'
 IF(.NOT.LFLAP) THEN
 WRITE(*,*)
 WRITE(*,*) 'Note: Flap hinge location not defined'
 WRITE(*,*) ' Set it with FNEW command'
 ENDIF
 ELSE
 WRITE(*,*) 'Hinge moment won''t be written to polar save file'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'ANNO') THEN
 IF(LPLOT) THEN
 CALL ANNOT(CH)
 ELSE
 WRITE(*,*) 'No active plot to annotate'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'VPLO' .OR.
 & COMAND.EQ.'V ') THEN
 CALL BLPLOT
C
C--
 ELSEIF(COMAND.EQ.'NAME') THEN
 IF(COMARG.EQ.' ') THEN
 CALL NAMMOD(NAME,0,-1)
 ELSE
 NAME = COMARG
 ENDIF
 CALL STRIP(NAME,NNAME)
C
C--
 ELSEIF(COMAND.EQ.'NINC') THEN
 CALL NAMMOD(NAME,1,1)
 CALL STRIP(NAME,NNAME)
C
C--
 ELSEIF(COMAND.EQ.'NDEC') THEN
 CALL NAMMOD(NAME,-1,1)
 CALL STRIP(NAME,NNAME)
C
C--
 ELSEIF(COMAND.EQ.'DAMP') THEN
 IF(IDAMP.EQ.0) THEN
 IDAMP = 1
 WRITE(*,*) 'Modified amplification used'
 ELSE
 IDAMP = 0
 WRITE(*,*) 'Original amplification used'
 ENDIF
C--
 ELSE
 WRITE(*,8000) COMAND
 8000 FORMAT(1X,A4,' command not recognized. Type a "?" for list')

 ENDIF
C
C---- go back to top of menu loop
 GO TO 500
C
C--
 2100 FORMAT(/' * Polar is being accumulated.'
 & /' * Cannot change its parameters in midstream.')
 END ! OPER

 SUBROUTINE FCPMIN
C--
C Finds minimum Cp on dist for cavitation work
C--
 INCLUDE 'XFOIL.INC'
C
 XCPMNI = X(1)
 XCPMNV = X(1)
 CPMNI = CPI(1)
 CPMNV = CPV(1)
C
 DO I = 2, N + NW
 IF(CPI(I) .LT. CPMNI) THEN
 XCPMNI = X(I)
 CPMNI = CPI(I)
 ENDIF
 IF(CPV(I) .LT. CPMNV) THEN
 XCPMNV = X(I)
 CPMNV = CPV(I)
 ENDIF
 ENDDO
C

 IF(LVISC)THEN
 CPMN = CPMNV
 ELSE
 CPMN = CPMNI
C
 CPMNV = CPMNI
 XCPMNV = XCPMNI
 ENDIF
C
 RETURN
 END ! FCPMIN

 SUBROUTINE MRSHOW(LM,LR)
 INCLUDE 'XFOIL.INC'
 LOGICAL LM, LR
C
 IF(LM .OR. LR) WRITE(*,*)
C
 IF(LM) THEN
 IF(MATYP.EQ.1) WRITE(*,1100) MINF1
 IF(MATYP.EQ.2) WRITE(*,1100) MINF1, ' / sqrt(CL)'
 IF(MATYP.EQ.3) WRITE(*,1100) MINF1, ' / CL'
 ENDIF
C
 IF(LR) THEN
 IF(RETYP.EQ.1) WRITE(*,1200) INT(REINF1)
 IF(RETYP.EQ.2) WRITE(*,1200) INT(REINF1), ' / sqrt(CL)'
 IF(RETYP.EQ.3) WRITE(*,1200) INT(REINF1), ' / CL'
 ENDIF
C
 RETURN
C
 1100 FORMAT(1X,'M =' , F10.4, A)
 1200 FORMAT(1X,'Re =' , I10 , A)
 END ! MRSHOW

 SUBROUTINE NAMMOD(NAME,KDEL,KMOD0)
 CHARACTER*(*) NAME
C---
C Requests new modified NAME with
C version number in brackets, e.g.
C NACA 0012 [5]
C
C If bracketed index exists in NAME,
C it is incremented by KDEL.
C If no bracketed index exists, it
C is added with initial value KMOD0,
C unless KMOD0 is negative in which
C case nothing is added.
C---
 CHARACTER*48 NAMDEF
C
 CALL STRIP(NAME,NNAME)
 KBRACK1 = INDEX(NAME,'[')
 KBRACK2 = INDEX(NAME,']')
C
 NAMDEF = NAME(1:NNAME)
C
 IF(KBRACK1.NE.0 .AND.
 & KBRACK2.NE.0 .AND. KBRACK2-KBRACK1.GT.1) THEN
C----- brackets exist... get number, (go get user's input on READ error)
 READ(NAME(KBRACK1+1:KBRACK2-1),*,ERR=40) KMOD
 KMOD = IABS(KMOD)
 KMODP = MOD(KMOD+KDEL , 100)
 IF(KBRACK1.GE.2) THEN
 NAME = NAME(1:KBRACK1-1)
 ELSE
 NAME = ' '
 ENDIF
 CALL STRIP(NAME,NNAME)
 ELSEIF(KMOD0.GT.0) THEN
 KMODP = MOD(KMOD0 , 100)
 ELSE
 KMODP = 0
 ENDIF
C
 IF (KMODP.GE.10) THEN
 NAMDEF = NAME(1:NNAME) // ' []'
 WRITE(NAMDEF(NNAME+3:NNAME+4),1020) KMODP
 1020 FORMAT(I2)
 ELSEIF(KMODP.GE. 1) THEN
 NAMDEF = NAME(1:NNAME) // ' []'
 WRITE(NAMDEF(NNAME+3:NNAME+3),1025) KMODP
 1025 FORMAT(I1)
 ENDIF
C
 40 WRITE(*,1040) NAMDEF
 1040 FORMAT(/' Enter airfoil name or <return> for default: ',A)
 READ(*,1000) NAME
 1000 FORMAT(A)
 IF(NAME .EQ. ' ') NAME = NAMDEF
C
 RETURN
 END ! NAMMOD

 SUBROUTINE BLDUMP(FNAME1)
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) FNAME1
C
 CHARACTER*80 FILDEF
C
 1000 FORMAT(A,A)
C
 IF(FNAME1(1:1).NE.' ') THEN
 FNAME = FNAME1
 ELSE
C----- no argument... get it somehow
 IF(NPREFIX.GT.0) THEN
C------ offer default using existing prefix
 FILDEF = PREFIX(1:NPREFIX) // '.bl'
 WRITE(*,1100) FILDEF
 1100 FORMAT(/' Enter filename: ', A)
 READ(*,1000) FNAME
 CALL STRIP(FNAME,NFN)
 IF(NFN.EQ.0) FNAME = FILDEF
 ELSE
C------ nothing available... just ask for filename
 CALL ASKS('Enter filename^',FNAME)
 ENDIF
 ENDIF
C
 LU = 19
 OPEN(LU,FILE=FNAME,STATUS='UNKNOWN')
 REWIND(LU)
C
 WRITE(LU,1000)
 & '# s x y Ue/Vinf Dstar Theta ',
 & ' Cf H'
C 1.23456 0.23451 0.23451 0.23451 0.012345 0.001234 0.004123 10.512
C
 CALL COMSET
 DO 10 I=1, N
 IS = 1
 IF(GAM(I) .LT. 0.0) IS = 2
C
 IF(LIPAN .AND. LVISC) THEN
 IF(IS.EQ.1) THEN
 IBL = IBLTE(IS) - I + 1
 ELSE
 IBL = IBLTE(IS) + I - N
 ENDIF
 DS = DSTR(IBL,IS)
 TH = THET(IBL,IS)
 CF = TAU(IBL,IS)/(0.5*QINF**2)
 IF(TH.EQ.0.0) THEN
 H = 1.0
 ELSE
 H = DS/TH
 ENDIF
 ELSE
 DS = 0.
 TH = 0.
 CF = 0.
 H = 1.0
 ENDIF
 UE = (GAM(I)/QINF)*(1.0-TKLAM) / (1.0 - TKLAM*(GAM(I)/QINF)**2)
 AMSQ = UE*UE*HSTINV / (GAMM1*(1.0 - 0.5*UE*UE*HSTINV))
 CALL HKIN(H, AMSQ, HK, DUMMY, DUMMY)
C
 WRITE(LU,8500) S(I), X(I), Y(I), UE, DS, TH, CF, HK
 8500 FORMAT(1X,4F9.5,3F10.6,F10.3)
 10 CONTINUE
C
 IF(LWAKE) THEN
 IS = 2
 DO 20 I=N+1, N+NW
 IBL = IBLTE(IS) + I - N
 DS = DSTR(IBL,IS)
 TH = THET(IBL,IS)
 H = DS/TH
 CF = 0.
 UI = UEDG(IBL,IS)
 UE = (UI/QINF)*(1.0-TKLAM) / (1.0 - TKLAM*(UI/QINF)**2)
 AMSQ = UE*UE*HSTINV / (GAMM1*(1.0 - 0.5*UE*UE*HSTINV))
 CALL HKIN(H, AMSQ, HK, DUMMY, DUMMY)
C
 WRITE(LU,8500) S(I), X(I), Y(I), UE, DS, TH, CF, HK
 20 CONTINUE
 ENDIF
C
 CLOSE(LU)
 RETURN
 END ! BLDUMP

 SUBROUTINE CPDUMP(FNAME1)
 INCLUDE 'XFOIL.INC'
 CHARACTER*(*) FNAME1
C
 CHARACTER*80 FILDEF
C
 1000 FORMAT(A)
C
 IF(FNAME1(1:1).NE.' ') THEN
 FNAME = FNAME1
 ELSE
C----- no argument... get it somehow
 IF(NPREFIX.GT.0) THEN
C------ offer default using existing prefix
 FILDEF = PREFIX(1:NPREFIX) // '.cp'
 WRITE(*,1100) FILDEF
 1100 FORMAT(/' Enter filename: ', A)
 READ(*,1000) FNAME
 CALL STRIP(FNAME,NFN)
 IF(NFN.EQ.0) FNAME = FILDEF
 ELSE
C------ nothing available... just ask for filename
 CALL ASKS('Enter filename^',FNAME)
 ENDIF
 ENDIF
C
C
 LU = 19
 OPEN(LU,FILE=FNAME,STATUS='UNKNOWN')
 REWIND(LU)
C
 WRITE(LU,1000)
 & '# x Cp '
C 0.23451 0.23451
C
 CALL COMSET
C
 BETA = SQRT(1.0 - MINF**2)
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
C
 DO 10 I=1, N
 CPINC = 1.0 - (GAM(I)/QINF)**2
 DEN = BETA + BFAC*CPINC
 CPCOM = CPINC / DEN
C
 WRITE(LU,8500) X(I), CPCOM
 8500 FORMAT(1X,2F9.5)
 10 CONTINUE
C
 CLOSE(LU)
 RETURN
 END ! CPDUMP

 SUBROUTINE MHINGE
C--
C Calculates the hinge moment of the flap about
C (XOF,YOF) by integrating surface pressures.
C--
 INCLUDE 'XFOIL.INC'
C
 IF(.NOT.LFLAP) THEN
C
 CALL GETXYF(X,XP,Y,YP,S,N, TOPS,BOTS,XOF,YOF)
 LFLAP = .TRUE.
C
 ELSE
C
C------ find top and bottom y at hinge x location
 TOPS = XOF
 BOTS = S(N) - XOF
 CALL SINVRT(TOPS,XOF,X,XP,S,N)
 CALL SINVRT(BOTS,XOF,X,XP,S,N)
C
 ENDIF
C
 TOPX = SEVAL(TOPS,X,XP,S,N)
 TOPY = SEVAL(TOPS,Y,YP,S,N)
 BOTX = SEVAL(BOTS,X,XP,S,N)
 BOTY = SEVAL(BOTS,Y,YP,S,N)
C
C
 HMOM = 0.
 HFX = 0.
 HFY = 0.
C
C---- integrate pressures on top and bottom sides of flap
 DO 20 I=2, N
 IF(S(I-1).GE.TOPS .AND. S(I).LE.BOTS) GO TO 20
C
 DX = X(I) - X(I-1)
 DY = Y(I) - Y(I-1)
 XMID = 0.5*(X(I)+X(I-1)) - XOF
 YMID = 0.5*(Y(I)+Y(I-1)) - YOF
 IF(LVISC) THEN
 PMID = 0.5*(CPV(I) + CPV(I-1))
 ELSE
 PMID = 0.5*(CPI(I) + CPI(I-1))
 ENDIF
 HMOM = HMOM + PMID*(XMID*DX + YMID*DY)
 HFX = HFX - PMID* DY
 HFY = HFY + PMID* DX
 20 CONTINUE
C
C---- find S(I)..S(I-1) interval containing s=TOPS
 DO I=2, N
 IF(S(I).GT.TOPS) GO TO 31
 ENDDO
C
 31 CONTINUE
C---- add on top surface chunk TOPS..S(I-1), missed in the DO 20 loop.
 DX = TOPX - X(I-1)
 DY = TOPY - Y(I-1)
 XMID = 0.5*(TOPX+X(I-1)) - XOF
 YMID = 0.5*(TOPY+Y(I-1)) - YOF
 IF(S(I) .NE. S(I-1)) THEN
 FRAC = (TOPS-S(I-1))/(S(I)-S(I-1))
 ELSE
 FRAC = 0.
 ENDIF
 IF(LVISC) THEN
 TOPP = CPV(I)*FRAC + CPV(I-1)*(1.0-FRAC)
 PMID = 0.5*(TOPP+CPV(I-1))
 ELSE
 TOPP = CPI(I)*FRAC + CPI(I-1)*(1.0-FRAC)
 PMID = 0.5*(TOPP+CPI(I-1))
 ENDIF
 HMOM = HMOM + PMID*(XMID*DX + YMID*DY)
 HFX = HFX - PMID* DY
 HFY = HFY + PMID* DX
C
C---- add on inside flap surface contribution from hinge to top surface
 DX = XOF - TOPX
 DY = YOF - TOPY
 XMID = 0.5*(TOPX+XOF) - XOF
 YMID = 0.5*(TOPY+YOF) - YOF
 HMOM = HMOM + PMID*(XMID*DX + YMID*DY)
 HFX = HFX - PMID* DY
 HFY = HFY + PMID* DX
C
C---- find S(I)..S(I-1) interval containing s=BOTS
 DO I=N, 2, -1
 IF(S(I-1).LT.BOTS) GO TO 41
 ENDDO
C
 41 CONTINUE
C---- add on bottom surface chunk BOTS..S(I), missed in the DO 20 loop.
 DX = X(I) - BOTX
 DY = Y(I) - BOTY
 XMID = 0.5*(BOTX+X(I)) - XOF
 YMID = 0.5*(BOTY+Y(I)) - YOF
 IF(S(I) .NE. S(I-1)) THEN
 FRAC = (BOTS-S(I-1))/(S(I)-S(I-1))
 ELSE
 FRAC = 0.
 ENDIF
 IF(LVISC) THEN
 BOTP = CPV(I)*FRAC + CPV(I-1)*(1.0-FRAC)
 PMID = 0.5*(BOTP+CPV(I))
 ELSE
 BOTP = CPI(I)*FRAC + CPI(I-1)*(1.0-FRAC)
 PMID = 0.5*(BOTP+CPI(I))
 ENDIF
 HMOM = HMOM + PMID*(XMID*DX + YMID*DY)
 HFX = HFX - PMID* DY
 HFY = HFY + PMID* DX
C
C---- add on inside flap surface contribution from hinge to bottom surface
 DX = BOTX - XOF
 DY = BOTY - YOF
 XMID = 0.5*(BOTX+XOF) - XOF
 YMID = 0.5*(BOTY+YOF) - YOF
 HMOM = HMOM + PMID*(XMID*DX + YMID*DY)
 HFX = HFX - PMID* DY
 HFY = HFY + PMID* DX
C
C---- add on TE base thickness contribution
 DX = X(1) - X(N)
 DY = Y(1) - Y(N)
 XMID = 0.5*(X(1)+X(N)) - XOF
 YMID = 0.5*(Y(1)+Y(N)) - YOF
 IF(LVISC) THEN
 PMID = 0.5*(CPV(1)+CPV(N))
 ELSE
 PMID = 0.5*(CPI(1)+CPI(N))
 ENDIF
 HMOM = HMOM + PMID*(XMID*DX + YMID*DY)
 HFX = HFX - PMID* DY
 HFY = HFY + PMID* DX
C
 RETURN
 END ! MHINGE

 SUBROUTINE VPAR
C---
C Viscous parameter change menu routine.
C---
 INCLUDE 'XFOIL.INC'
 INCLUDE 'BLPAR.INC'
 CHARACTER*4 COMAND
 CHARACTER*128 COMARG
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR
C
C
 10 TURB = 100.0 * EXP(-(ACRIT + 8.43)/2.4)
 WRITE(*,1200) XSTRIP(1), XSTRIP(2), ACRIT, TURB, VACCEL,
 & SCCON, DUXCON, GACON, GBCON, CTCON, CTRCON, CTRCEX
 1200 FORMAT(/' Xtr/c =', F8.4, ' top side'
 & /' Xtr/c =', F8.4, ' bottom side'
 & /' Ncrit =', F8.2, ' (', F6.3, ' % turb. level)'
 & /' Vacc =', F8.4,
 & //' Klag =', F8.4,' Uxwt =', F8.2
 & /' A =', F8.4,' B =', F8.4,' KCt =', F8.5
 & /' CtiniK=', F8.4,' CtiniX=', F8.4)
C
C==
C---- start of user interaction loop
 500 CONTINUE
 CALL ASKC('..VPAR^',COMAND,COMARG)
C
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 20
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 20
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
C--
 IF(COMAND.EQ.' ') THEN
 RETURN
C
C--
 ELSEIF(COMAND.EQ.'? ') THEN
 WRITE(*,1050)
 1050 FORMAT(
 & /' <cr> Return to OPER menu'
 & /' SHOW Display viscous parameters'
 & /' XTR rr Change trip positions Xtr/c'
 & /' N r Change critical amplification exponent Ncrit'
 & /' VACC r Change Newton solution acceleration parameter'
 & /' INIT BL initialization flag toggle'
 & //' LAG change lag equation constants'
 & /' GB change G-beta constants'
 & /' CTR change initial transition-Ctau constants'
 & /' REST restore BL calibration to baseline')
C
C--
 ELSEIF(COMAND.EQ.'SHOW') THEN
 GO TO 10
C
C--
 ELSEIF(COMAND.EQ.'XTR ') THEN
 IF(LPACC .AND. LVISC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
 IF(NINPUT.GE.2) THEN
 XSTRIP(1) = RINPUT(1)
 XSTRIP(2) = RINPUT(2)
 ELSE
 CALL ASKR('Enter top side Xtrip/c^',XSTRIP(1))
 CALL ASKR('Enter bottom side Xtrip/c^',XSTRIP(2))
 ENDIF
 LVCONV = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'N ') THEN
 IF(LPACC .AND. LVISC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
 IF(NINPUT.GE.1) THEN
 ACRIT = RINPUT(1)
 ELSE
 CALL ASKR('Enter critical amplification ratio^',ACRIT)
 ENDIF
 LVCONV = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'VACC') THEN
 IF(NINPUT.GE.1) THEN
 VACCEL = RINPUT(1)
 ELSE
 CALL ASKR('Enter viscous acceleration parameter^',VACCEL)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'INIT') THEN
 LBLINI = .NOT.LBLINI
 IF(.NOT.LBLINI) WRITE(*,*)'BLs will be initialized on next point'
 IF(LBLINI) WRITE(*,*)'BLs are assumed to be initialized'
 IF(.NOT.LBLINI) LIPAN = .FALSE.
C
C--
 ELSEIF(COMAND.EQ.'LAG ') THEN
 IF(LPACC .AND. LVISC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
 IF(NINPUT.GE.2) THEN
 SCCON = RINPUT(1)
 DUXCON = RINPUT(2)
 ELSE
 CALL ASKR('Enter shear lag constant^',SCCON)
 CALL ASKR('Enter shear lag UxEQ weight^',DUXCON)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'GB ') THEN
 IF(LPACC .AND. LVISC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
 IF(NINPUT.GE.2) THEN
 GACON = RINPUT(1)
 GBCON = RINPUT(2)
 ELSE
 CALL ASKR('Enter G-beta constant A^',GACON)
 CALL ASKR('Enter G-beta constant B^',GBCON)
 ENDIF
 CTCON = 0.5/(GACON**2 * GBCON)
C
C--
 ELSEIF(COMAND.EQ.'CTR ') THEN
 IF(LPACC .AND. LVISC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
 IF(NINPUT.GE.2) THEN
 CTRCON = RINPUT(1)
 CTRCEX = RINPUT(2)
 ELSE
 CALL ASKR('Enter initial-Ctau constant^',CTRCON)
 CALL ASKR('Enter initial-Ctau exponent^',CTRCEX)
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'REST') THEN
 IF(LPACC .AND. LVISC) THEN
 WRITE(*,2100)
 GO TO 500
 ENDIF
 CALL BLPINI
C
C--
 ELSE
 WRITE(*,1000) COMAND
 1000 FORMAT(1X,A4,' command not recognized. Type a "?" for list')
C
 ENDIF
C
 GO TO 500
C--
 2100 FORMAT(/' * Polar is being accumulated.'
 & /' * Cannot change its parameters in midstream.')
 END ! VPAR

 SUBROUTINE SPECAL
C-----------------------------------
C Converges to specified alpha.
C-----------------------------------
 INCLUDE 'XFOIL.INC'
 REAL MINF_CLM, MSQ_CLM
C
C---- calculate surface vorticity distributions for alpha = 0, 90 degrees
 IF(.NOT.LGAMU .OR. .NOT.LQAIJ) CALL GGCALC
C
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
C
C---- superimpose suitably weighted alpha = 0, 90 distributions
 DO 50 I=1, N
 GAM(I) = COSA*GAMU(I,1) + SINA*GAMU(I,2)
 GAM_A(I) = -SINA*GAMU(I,1) + COSA*GAMU(I,2)
 50 CONTINUE
 PSIO = COSA*GAMU(N+1,1) + SINA*GAMU(N+1,2)
C
 CALL TECALC
 CALL QISET
C
C---- set initial guess for the Newton variable CLM
 CLM = 1.0
C
C---- set corresponding M(CLM), Re(CLM)
 CALL MRCL(CLM,MINF_CLM,REINF_CLM)
 CALL COMSET
C
C---- set corresponding CL(M)
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
C
C---- iterate on CLM
 DO 100 ITCL=1, 20
C
 MSQ_CLM = 2.0*MINF*MINF_CLM
 DCLM = (CL - CLM)/(1.0 - CL_MSQ*MSQ_CLM)
C
 CLM1 = CLM
 RLX = 1.0
C
C------ under-relaxation loop to avoid driving M(CL) above 1
 DO 90 IRLX=1, 12
C
 CLM = CLM1 + RLX*DCLM
C
C-------- set new freestream Mach M(CLM)
 CALL MRCL(CLM,MINF_CLM,REINF_CLM)
C
C-------- if Mach is OK, go do next Newton iteration
 IF(MATYP.EQ.1 .OR. MINF.EQ.0.0 .OR. MINF_CLM.NE.0.0) GO TO 91
C
 RLX = 0.5*RLX
 90 CONTINUE
 91 CONTINUE
C
C------ set new CL(M)
 CALL COMSET
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP,CL_ALF,CL_MSQ)
C
 IF(ABS(DCLM).LE.1.0E-6) GO TO 110
C
 100 CONTINUE
 WRITE(*,*) 'SPECAL: Minf convergence failed'
 110 CONTINUE
C
C---- set final Mach, CL, Cp distributions, and hinge moment
 CALL MRCL(CL,MINF_CL,REINF_CL)
 CALL COMSET
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
 CALL CPCALC(N,QINV,QINF,MINF,CPI)
 IF(LVISC) THEN
 CALL CPCALC(N+NW,QVIS,QINF,MINF,CPV)
 CALL CPCALC(N+NW,QINV,QINF,MINF,CPI)
 ELSE
 CALL CPCALC(N,QINV,QINF,MINF,CPI)
 ENDIF
 IF(LFLAP) CALL MHINGE
C
 RETURN
 END ! SPECAL

 SUBROUTINE SPECCL
C---
C Converges to specified inviscid CL.
C---
 INCLUDE 'XFOIL.INC'
C
C---- calculate surface vorticity distributions for alpha = 0, 90 degrees
 IF(.NOT.LGAMU .OR. .NOT.LQAIJ) CALL GGCALC
C
C---- set freestream Mach from specified CL -- Mach will be held fixed
 CALL MRCL(CLSPEC,MINF_CL,REINF_CL)
 CALL COMSET
C
C---- current alpha is the initial guess for Newton variable ALFA
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
 DO 10 I=1, N
 GAM(I) = COSA*GAMU(I,1) + SINA*GAMU(I,2)
 GAM_A(I) = -SINA*GAMU(I,1) + COSA*GAMU(I,2)
 10 CONTINUE
 PSIO = COSA*GAMU(N+1,1) + SINA*GAMU(N+1,2)
C
C---- get corresponding CL, CL_alpha, CL_Mach
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
C
C---- Newton loop for alpha to get specified inviscid CL
 DO 100 ITAL=1, 20
C
 DALFA = (CLSPEC - CL) / CL_ALF
 RLX = 1.0
C
 ALFA = ALFA + RLX*DALFA
C
C------ set new surface speed distribution
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
 DO 40 I=1, N
 GAM(I) = COSA*GAMU(I,1) + SINA*GAMU(I,2)
 GAM_A(I) = -SINA*GAMU(I,1) + COSA*GAMU(I,2)
 40 CONTINUE
 PSIO = COSA*GAMU(N+1,1) + SINA*GAMU(N+1,2)
C
C------ set new CL(alpha)
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP,CL_ALF,CL_MSQ)
C
 IF(ABS(DALFA).LE.1.0E-6) GO TO 110
 100 CONTINUE
 WRITE(*,*) 'SPECCL: CL convergence failed'
 110 CONTINUE
C
C---- set final surface speed and Cp distributions
 CALL TECALC
 CALL QISET
 IF(LVISC) THEN
 CALL CPCALC(N+NW,QVIS,QINF,MINF,CPV)
 CALL CPCALC(N+NW,QINV,QINF,MINF,CPI)
 ELSE
 CALL CPCALC(N,QINV,QINF,MINF,CPI)
 ENDIF
 IF(LFLAP) CALL MHINGE
C
 RETURN
 END ! SPECCL

 SUBROUTINE VISCAL(NITER1)
C--
C Converges viscous operating point
C--
 INCLUDE 'XFOIL.INC'
C
C---- convergence tolerance
 DATA EPS1 / 1.0E-4 /
C
 NITER = NITER1
C
C---- calculate wake trajectory from current inviscid solution if necessary
 IF(.NOT.LWAKE) THEN
 CALL XYWAKE
 ENDIF
C
C---- set velocities on wake from airfoil vorticity for alpha=0, 90
 CALL QWCALC
C
C---- set velocities on airfoil and wake for initial alpha
 CALL QISET
C
 IF(.NOT.LIPAN) THEN
C
 IF(LBLINI) CALL GAMQV
C
C----- locate stagnation point arc length position and panel index
 CALL STFIND
C
C----- set BL position -> panel position pointers
 CALL IBLPAN
C
C----- calculate surface arc length array for current stagnation point location
 CALL XICALC
C
C----- set BL position -> system line pointers
 CALL IBLSYS
C
 ENDIF
C
C---- set inviscid BL edge velocity UINV from QINV
 CALL UICALC
C
 IF(.NOT.LBLINI) THEN
C
C----- set initial Ue from inviscid Ue
 DO IBL=1, NBL(1)
 UEDG(IBL,1) = UINV(IBL,1)
 ENDDO
C
 DO IBL=1, NBL(2)
 UEDG(IBL,2) = UINV(IBL,2)
 ENDDO
C
 ENDIF
C
 IF(LVCONV) THEN
C----- set correct CL if converged point exists
 CALL QVFUE
 IF(LVISC) THEN
 CALL CPCALC(N+NW,QVIS,QINF,MINF,CPV)
 CALL CPCALC(N+NW,QINV,QINF,MINF,CPI)
 ELSE
 CALL CPCALC(N,QINV,QINF,MINF,CPI)
 ENDIF
 CALL GAMQV
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
 CALL CDCALC
 ENDIF
C
C---- set up source influence matrix if it doesn't exist
 IF(.NOT.LWDIJ .OR. .NOT.LADIJ) CALL QDCALC
C
C---- Newton iteration for entire BL solution
 IF(NITER.EQ.0) CALL ASKI('Enter number of iterations^',NITER)
 WRITE(*,*)
 WRITE(*,*) 'Solving BL system ...'
 DO 1000 ITER=1, NITER
C
C------ fill Newton system for BL variables
 CALL SETBL
C
C------ solve Newton system with custom solver
 CALL BLSOLV
C
C------ update BL variables
 CALL UPDATE
C
 IF(LALFA) THEN
C------- set new freestream Mach, Re from new CL
 CALL MRCL(CL,MINF_CL,REINF_CL)
 CALL COMSET
 ELSE
C------- set new inviscid speeds QINV and UINV for new alpha
 CALL QISET
 CALL UICALC
 ENDIF
C
C------ calculate edge velocities QVIS(.) from UEDG(..)
 CALL QVFUE
C
C------ set GAM distribution from QVIS
 CALL GAMQV
C
C------ relocate stagnation point
 CALL STMOVE
C
C------ set updated CL,CD
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP,CL_ALF,CL_MSQ)
 CALL CDCALC
C
C------ display changes and test for convergence
 IF(RLX.LT.1.0)
 & WRITE(*,2000) ITER, RMSBL, RMXBL, VMXBL,IMXBL,ISMXBL,RLX
 IF(RLX.EQ.1.0)
 & WRITE(*,2010) ITER, RMSBL, RMXBL, VMXBL,IMXBL,ISMXBL
 CDP = CD - CDF
 WRITE(*,2020) ALFA/DTOR, CL, CM, CD, CDF, CDP
C
 IF(RMSBL .LT. EPS1) THEN
 LVCONV = .TRUE.
 AVISC = ALFA
 MVISC = MINF
 GO TO 90
 ENDIF
C
 1000 CONTINUE
 WRITE(*,*) 'VISCAL: Convergence failed'
C
 90 CONTINUE
 CALL CPCALC(N+NW,QINV,QINF,MINF,CPI)
 CALL CPCALC(N+NW,QVIS,QINF,MINF,CPV)
 IF(LFLAP) CALL MHINGE
 RETURN
C..
 2000 FORMAT
 & (/1X,I3,' rms: ',E10.4,' max: ',E10.4,3X,A1,' at ',I4,I3,
 & ' RLX:',F6.3)
 2010 FORMAT
 & (/1X,I3,' rms: ',E10.4,' max: ',E10.4,3X,A1,' at ',I4,I3)
 2020 FORMAT
 & (1X,3X,' a =', F7.3,' CL =',F8.4 /
 & 1X,3X,' Cm =', F8.4, ' CD =',F9.5,
 & ' => CDf =',F9.5,' CDp =',F9.5)
 END ! VISCAL

 subroutine dcpout
 include 'XFOIL.INC'
c
c Computes and writes upper and lower-surface
c Cp values at two specified x locations
c
c
 x1 = 0.05
 x2 = 0.15
c
 lu = 60
 open(lu,file='dcp.out',status='old',access='append',err=10)
 go to 20
c
 10 continue
 open(lu,file='dcp.out',status='new')
 write(lu,*) '# ', name
 write(lu,*) '# alpha CL ',
 & ' Cpl05 Cpu05 dCp05 ',
 & ' Cpl15 Cpu15 dCp15 '
 20 continue
c
 call spline(cpv,w1,s,n)
c
 su1 = sle + x1*(s(1)-sle)
 sl1 = sle + x1*(s(n)-sle)
 su2 = sle + x2*(s(1)-sle)
 sl2 = sle + x2*(s(n)-sle)
c
 call sinvrt(sl1,x1,x,xp,s,n)
 call sinvrt(su1,x1,x,xp,s,n)
 call sinvrt(sl2,x2,x,xp,s,n)
 call sinvrt(su2,x2,x,xp,s,n)
c
 cpl1 = seval(sl1,cpv,w1,s,n)
 cpu1 = seval(su1,cpv,w1,s,n)
 cpl2 = seval(sl2,cpv,w1,s,n)
 cpu2 = seval(su2,cpv,w1,s,n)
c
 write(lu,1200) alfa/dtor, cl,
 & cpl1, cpu1, cpl1-cpu1,
 & cpl2, cpu2, cpl2-cpu2

 1200 format(1x, f7.3, f9.4, 8f10.5)
c
 close(lu)
c
 return
 end

XFOILinterface/XFOIL/src/xpanel.f

C***
C Module: xpanel.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE APCALC
 INCLUDE 'XFOIL.INC'
C
C---- set angles of airfoil panels
 DO 10 I=1, N-1
 SX = X(I+1) - X(I)
 SY = Y(I+1) - Y(I)
 IF(SX.EQ.0.0 .AND. SY.EQ.0.0) THEN
 APANEL(I) = ATAN2(-NY(I) , -NX(I))
 ELSE
 APANEL(I) = ATAN2(SX , -SY)
 ENDIF
 10 CONTINUE
C
C---- TE panel
 I = N
 IP = 1
 IF(SHARP) THEN
 APANEL(I) = PI
 ELSE
 SX = X(IP) - X(I)
 SY = Y(IP) - Y(I)
 APANEL(I) = ATAN2(-SX , SY) + PI
 ENDIF
C
 RETURN
 END

 SUBROUTINE NCALC(X,Y,S,N,XN,YN)
C---------------------------------------
C Calculates normal unit vector
C components at airfoil panel nodes
C---------------------------------------
 DIMENSION X(N), Y(N), S(N), XN(N), YN(N)
C
 IF(N.LE.1) RETURN
C
 CALL SEGSPL(X,XN,S,N)
 CALL SEGSPL(Y,YN,S,N)
 DO 10 I=1, N
 SX = YN(I)
 SY = -XN(I)
 SMOD = SQRT(SX*SX + SY*SY)
 XN(I) = SX/SMOD
 YN(I) = SY/SMOD
 10 CONTINUE
C
C---- average normal vectors at corner points
 DO 20 I=1, N-1
 IF(S(I) .EQ. S(I+1)) THEN
 SX = 0.5*(XN(I) + XN(I+1))
 SY = 0.5*(YN(I) + YN(I+1))
 SMOD = SQRT(SX*SX + SY*SY)
 XN(I) = SX/SMOD
 YN(I) = SY/SMOD
 XN(I+1) = SX/SMOD
 YN(I+1) = SY/SMOD
 ENDIF
 20 CONTINUE
C
 RETURN
 END

 SUBROUTINE PSILIN(I,XI,YI,NXI,NYI,PSI,PSI_NI,GEOLIN,SIGLIN)
C---
C Calculates current streamfunction Psi at panel node or wake node
C I due to freestream and all bound vorticity Gam on the airfoil.
C Sensitivities of Psi with respect to alpha (Z_ALFA) and inverse
C Qspec DOFs (Z_QDOF0,Z_QDOF1) which influence Gam in inverse cases.
C Also calculates the sensitivity vector dPsi/dGam (DZDG).
C
C If SIGLIN=True, then Psi includes the effects of the viscous
C source distribution Sig and the sensitivity vector dPsi/dSig
C (DZDM) is calculated.
C
C If GEOLIN=True, then the geometric sensitivity vector dPsi/dn
C is calculated, where n is the normal motion of the jth node.
C
C Airfoil: 1 < I < N
C Wake: N+1 < I < N+NW
C---
 INCLUDE 'XFOIL.INC'
 REAL NXO, NYO, NXP, NYP, NXI, NYI
 LOGICAL GEOLIN,SIGLIN
C
C---- distance tolerance for determining if two points are the same
 SEPS = (S(N)-S(1)) * 1.0E-5
C
 IO = I
C
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
C
 DO 3 JO=1, N
 DZDG(JO) = 0.0
 DZDN(JO) = 0.0
 DQDG(JO) = 0.0
 3 CONTINUE
C
 DO 4 JO=1, N
 DZDM(JO) = 0.0
 DQDM(JO) = 0.0
 4 CONTINUE
C
 Z_QINF = 0.
 Z_ALFA = 0.
 Z_QDOF0 = 0.
 Z_QDOF1 = 0.
 Z_QDOF2 = 0.
 Z_QDOF3 = 0.
C
 PSI = 0.
 PSI_NI = 0.
C
 QTAN1 = 0.
 QTAN2 = 0.
 QTANM = 0.
C
 IF(SHARP) THEN
 SCS = 1.0
 SDS = 0.0
 ELSE
 SCS = ANTE/DSTE
 SDS = ASTE/DSTE
 ENDIF
C
 DO 10 JO=1, N
 JP = JO+1
C
 JM = JO-1
 JQ = JP+1
C
 IF(JO.EQ.1) THEN
 JM = JO
 ELSE IF(JO.EQ.N-1) THEN
 JQ = JP
 ELSE IF(JO.EQ.N) THEN
 JP = 1
 IF((X(JO)-X(JP))**2 + (Y(JO)-Y(JP))**2 .LT. SEPS**2) GO TO 12
 ENDIF
C
 DSO = SQRT((X(JO)-X(JP))**2 + (Y(JO)-Y(JP))**2)
C
C------ skip null panel
 IF(DSO .EQ. 0.0) GO TO 10
C
 DSIO = 1.0 / DSO
C
 APAN = APANEL(JO)
C
 RX1 = XI - X(JO)
 RY1 = YI - Y(JO)
 RX2 = XI - X(JP)
 RY2 = YI - Y(JP)
C
 SX = (X(JP) - X(JO)) * DSIO
 SY = (Y(JP) - Y(JO)) * DSIO
C
 X1 = SX*RX1 + SY*RY1
 X2 = SX*RX2 + SY*RY2
 YY = SX*RY1 - SY*RX1
C
 RS1 = RX1*RX1 + RY1*RY1
 RS2 = RX2*RX2 + RY2*RY2
C
C------ set reflection flag SGN to avoid branch problems with arctan
 IF(IO.GE.1 .AND. IO.LE.N) THEN
C------- no problem on airfoil surface
 SGN = 1.0
 ELSE
C------- make sure arctan falls between -/+ Pi/2
 SGN = SIGN(1.0,YY)
 ENDIF
C
C------ set log(r^2) and arctan(x/y), correcting for reflection if any
 IF(IO.NE.JO .AND. RS1.GT.0.0) THEN
 G1 = LOG(RS1)
 T1 = ATAN2(SGN*X1,SGN*YY) + (0.5 - 0.5*SGN)*PI
 ELSE
 G1 = 0.0
 T1 = 0.0
 ENDIF
C
 IF(IO.NE.JP .AND. RS2.GT.0.0) THEN
 G2 = LOG(RS2)
 T2 = ATAN2(SGN*X2,SGN*YY) + (0.5 - 0.5*SGN)*PI
 ELSE
 G2 = 0.0
 T2 = 0.0
 ENDIF
C
 X1I = SX*NXI + SY*NYI
 X2I = SX*NXI + SY*NYI
 YYI = SX*NYI - SY*NXI
C
 IF(GEOLIN) THEN
 NXO = NX(JO)
 NYO = NY(JO)
 NXP = NX(JP)
 NYP = NY(JP)
C
 X1O =-((RX1-X1*SX)*NXO + (RY1-X1*SY)*NYO)*DSIO-(SX*NXO+SY*NYO)
 X1P = ((RX1-X1*SX)*NXP + (RY1-X1*SY)*NYP)*DSIO
 X2O =-((RX2-X2*SX)*NXO + (RY2-X2*SY)*NYO)*DSIO
 X2P = ((RX2-X2*SX)*NXP + (RY2-X2*SY)*NYP)*DSIO-(SX*NXP+SY*NYP)
 YYO = ((RX1+X1*SY)*NYO - (RY1-X1*SX)*NXO)*DSIO-(SX*NYO-SY*NXO)
 YYP =-((RX1-X1*SY)*NYP - (RY1+X1*SX)*NXP)*DSIO
 ENDIF
C
 IF(JO.EQ.N) GO TO 11
C
 IF(SIGLIN) THEN
C
C------- set up midpoint quantities
 X0 = 0.5*(X1+X2)
 RS0 = X0*X0 + YY*YY
 G0 = LOG(RS0)
 T0 = ATAN2(SGN*X0,SGN*YY) + (0.5 - 0.5*SGN)*PI
C
C------- calculate source contribution to Psi for 1-0 half-panel
 DXINV = 1.0/(X1-X0)
 PSUM = X0*(T0-APAN) - X1*(T1-APAN) + 0.5*YY*(G1-G0)
 PDIF = ((X1+X0)*PSUM + RS1*(T1-APAN) - RS0*(T0-APAN)
 & + (X0-X1)*YY) * DXINV
C
 PSX1 = -(T1-APAN)
 PSX0 = T0-APAN
 PSYY = 0.5*(G1-G0)
C
 PDX1 = ((X1+X0)*PSX1 + PSUM + 2.0*X1*(T1-APAN) - PDIF) * DXINV
 PDX0 = ((X1+X0)*PSX0 + PSUM - 2.0*X0*(T0-APAN) + PDIF) * DXINV
 PDYY = ((X1+X0)*PSYY + 2.0*(X0-X1 + YY*(T1-T0))) * DXINV
C
 DSM = SQRT((X(JP)-X(JM))**2 + (Y(JP)-Y(JM))**2)
 DSIM = 1.0/DSM
C
CCC SIG0 = (SIG(JP) - SIG(JO))*DSIO
CCC SIG1 = (SIG(JP) - SIG(JM))*DSIM
CCC SSUM = SIG0 + SIG1
CCC SDIF = SIG0 - SIG1
C
 SSUM = (SIG(JP) - SIG(JO))*DSIO + (SIG(JP) - SIG(JM))*DSIM
 SDIF = (SIG(JP) - SIG(JO))*DSIO - (SIG(JP) - SIG(JM))*DSIM
C
 PSI = PSI + QOPI*(PSUM*SSUM + PDIF*SDIF)
C
C------- dPsi/dm
 DZDM(JM) = DZDM(JM) + QOPI*(-PSUM*DSIM + PDIF*DSIM)
 DZDM(JO) = DZDM(JO) + QOPI*(-PSUM*DSIO - PDIF*DSIO)
 DZDM(JP) = DZDM(JP) + QOPI*(PSUM*(DSIO+DSIM)
 & + PDIF*(DSIO-DSIM))
C
C------- dPsi/dni
 PSNI = PSX1*X1I + PSX0*(X1I+X2I)*0.5 + PSYY*YYI
 PDNI = PDX1*X1I + PDX0*(X1I+X2I)*0.5 + PDYY*YYI
 PSI_NI = PSI_NI + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 QTANM = QTANM + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 DQDM(JM) = DQDM(JM) + QOPI*(-PSNI*DSIM + PDNI*DSIM)
 DQDM(JO) = DQDM(JO) + QOPI*(-PSNI*DSIO - PDNI*DSIO)
 DQDM(JP) = DQDM(JP) + QOPI*(PSNI*(DSIO+DSIM)
 & + PDNI*(DSIO-DSIM))
C
C
C------- calculate source contribution to Psi for 0-2 half-panel
 DXINV = 1.0/(X0-X2)
 PSUM = X2*(T2-APAN) - X0*(T0-APAN) + 0.5*YY*(G0-G2)
 PDIF = ((X0+X2)*PSUM + RS0*(T0-APAN) - RS2*(T2-APAN)
 & + (X2-X0)*YY) * DXINV
C
 PSX0 = -(T0-APAN)
 PSX2 = T2-APAN
 PSYY = 0.5*(G0-G2)
C
 PDX0 = ((X0+X2)*PSX0 + PSUM + 2.0*X0*(T0-APAN) - PDIF) * DXINV
 PDX2 = ((X0+X2)*PSX2 + PSUM - 2.0*X2*(T2-APAN) + PDIF) * DXINV
 PDYY = ((X0+X2)*PSYY + 2.0*(X2-X0 + YY*(T0-T2))) * DXINV
C
 DSP = SQRT((X(JQ)-X(JO))**2 + (Y(JQ)-Y(JO))**2)
 DSIP = 1.0/DSP
C
CCC SIG2 = (SIG(JQ) - SIG(JO))*DSIP
CCC SIG0 = (SIG(JP) - SIG(JO))*DSIO
CCC SSUM = SIG2 + SIG0
CCC SDIF = SIG2 - SIG0
C
 SSUM = (SIG(JQ) - SIG(JO))*DSIP + (SIG(JP) - SIG(JO))*DSIO
 SDIF = (SIG(JQ) - SIG(JO))*DSIP - (SIG(JP) - SIG(JO))*DSIO
C
 PSI = PSI + QOPI*(PSUM*SSUM + PDIF*SDIF)
C
C------- dPsi/dm
 DZDM(JO) = DZDM(JO) + QOPI*(-PSUM*(DSIP+DSIO)
 & - PDIF*(DSIP-DSIO))
 DZDM(JP) = DZDM(JP) + QOPI*(PSUM*DSIO - PDIF*DSIO)
 DZDM(JQ) = DZDM(JQ) + QOPI*(PSUM*DSIP + PDIF*DSIP)
C
C------- dPsi/dni
 PSNI = PSX0*(X1I+X2I)*0.5 + PSX2*X2I + PSYY*YYI
 PDNI = PDX0*(X1I+X2I)*0.5 + PDX2*X2I + PDYY*YYI
 PSI_NI = PSI_NI + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 QTANM = QTANM + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 DQDM(JO) = DQDM(JO) + QOPI*(-PSNI*(DSIP+DSIO)
 & - PDNI*(DSIP-DSIO))
 DQDM(JP) = DQDM(JP) + QOPI*(PSNI*DSIO - PDNI*DSIO)
 DQDM(JQ) = DQDM(JQ) + QOPI*(PSNI*DSIP + PDNI*DSIP)
C
 ENDIF
C
C------ calculate vortex panel contribution to Psi
 DXINV = 1.0/(X1-X2)
 PSIS = 0.5*X1*G1 - 0.5*X2*G2 + X2 - X1 + YY*(T1-T2)
 PSID = ((X1+X2)*PSIS + 0.5*(RS2*G2-RS1*G1 + X1*X1-X2*X2))*DXINV
C
 PSX1 = 0.5*G1
 PSX2 = -.5*G2
 PSYY = T1-T2
C
 PDX1 = ((X1+X2)*PSX1 + PSIS - X1*G1 - PSID)*DXINV
 PDX2 = ((X1+X2)*PSX2 + PSIS + X2*G2 + PSID)*DXINV
 PDYY = ((X1+X2)*PSYY - YY*(G1-G2))*DXINV
C
 GSUM1 = GAMU(JP,1) + GAMU(JO,1)
 GSUM2 = GAMU(JP,2) + GAMU(JO,2)
 GDIF1 = GAMU(JP,1) - GAMU(JO,1)
 GDIF2 = GAMU(JP,2) - GAMU(JO,2)
C
 GSUM = GAM(JP) + GAM(JO)
 GDIF = GAM(JP) - GAM(JO)
C
 PSI = PSI + QOPI*(PSIS*GSUM + PSID*GDIF)
C
C------ dPsi/dGam
 DZDG(JO) = DZDG(JO) + QOPI*(PSIS-PSID)
 DZDG(JP) = DZDG(JP) + QOPI*(PSIS+PSID)
C
C------ dPsi/dni
 PSNI = PSX1*X1I + PSX2*X2I + PSYY*YYI
 PDNI = PDX1*X1I + PDX2*X2I + PDYY*YYI
 PSI_NI = PSI_NI + QOPI*(GSUM*PSNI + GDIF*PDNI)
C
 QTAN1 = QTAN1 + QOPI*(GSUM1*PSNI + GDIF1*PDNI)
 QTAN2 = QTAN2 + QOPI*(GSUM2*PSNI + GDIF2*PDNI)
C
 DQDG(JO) = DQDG(JO) + QOPI*(PSNI - PDNI)
 DQDG(JP) = DQDG(JP) + QOPI*(PSNI + PDNI)
C
 IF(GEOLIN) THEN
C
C------- dPsi/dn
 DZDN(JO) = DZDN(JO)+ QOPI*GSUM*(PSX1*X1O + PSX2*X2O + PSYY*YYO)
 & + QOPI*GDIF*(PDX1*X1O + PDX2*X2O + PDYY*YYO)
 DZDN(JP) = DZDN(JP)+ QOPI*GSUM*(PSX1*X1P + PSX2*X2P + PSYY*YYP)
 & + QOPI*GDIF*(PDX1*X1P + PDX2*X2P + PDYY*YYP)
C------- dPsi/dP
 Z_QDOF0 = Z_QDOF0
 & + QOPI*((PSIS-PSID)*QF0(JO) + (PSIS+PSID)*QF0(JP))
 Z_QDOF1 = Z_QDOF1
 & + QOPI*((PSIS-PSID)*QF1(JO) + (PSIS+PSID)*QF1(JP))
 Z_QDOF2 = Z_QDOF2
 & + QOPI*((PSIS-PSID)*QF2(JO) + (PSIS+PSID)*QF2(JP))
 Z_QDOF3 = Z_QDOF3
 & + QOPI*((PSIS-PSID)*QF3(JO) + (PSIS+PSID)*QF3(JP))
 ENDIF
C
C
 10 CONTINUE
C
 11 CONTINUE
 PSIG = 0.5*YY*(G1-G2) + X2*(T2-APAN) - X1*(T1-APAN)
 PGAM = 0.5*X1*G1 - 0.5*X2*G2 + X2 - X1 + YY*(T1-T2)
C
 PSIGX1 = -(T1-APAN)
 PSIGX2 = T2-APAN
 PSIGYY = 0.5*(G1-G2)
 PGAMX1 = 0.5*G1
 PGAMX2 = -.5*G2
 PGAMYY = T1-T2
C
 PSIGNI = PSIGX1*X1I + PSIGX2*X2I + PSIGYY*YYI
 PGAMNI = PGAMX1*X1I + PGAMX2*X2I + PGAMYY*YYI
C
C---- TE panel source and vortex strengths
 SIGTE1 = 0.5*SCS*(GAMU(JP,1) - GAMU(JO,1))
 SIGTE2 = 0.5*SCS*(GAMU(JP,2) - GAMU(JO,2))
 GAMTE1 = -.5*SDS*(GAMU(JP,1) - GAMU(JO,1))
 GAMTE2 = -.5*SDS*(GAMU(JP,2) - GAMU(JO,2))
C
 SIGTE = 0.5*SCS*(GAM(JP) - GAM(JO))
 GAMTE = -.5*SDS*(GAM(JP) - GAM(JO))
C
C---- TE panel contribution to Psi
 PSI = PSI + HOPI*(PSIG*SIGTE + PGAM*GAMTE)
C
C---- dPsi/dGam
 DZDG(JO) = DZDG(JO) - HOPI*PSIG*SCS*0.5
 DZDG(JP) = DZDG(JP) + HOPI*PSIG*SCS*0.5
C
 DZDG(JO) = DZDG(JO) + HOPI*PGAM*SDS*0.5
 DZDG(JP) = DZDG(JP) - HOPI*PGAM*SDS*0.5
C
C---- dPsi/dni
 PSI_NI = PSI_NI + HOPI*(PSIGNI*SIGTE + PGAMNI*GAMTE)
C
 QTAN1 = QTAN1 + HOPI*(PSIGNI*SIGTE1 + PGAMNI*GAMTE1)
 QTAN2 = QTAN2 + HOPI*(PSIGNI*SIGTE2 + PGAMNI*GAMTE2)
C
 DQDG(JO) = DQDG(JO) - HOPI*(PSIGNI*0.5*SCS - PGAMNI*0.5*SDS)
 DQDG(JP) = DQDG(JP) + HOPI*(PSIGNI*0.5*SCS - PGAMNI*0.5*SDS)
C
 IF(GEOLIN) THEN
C
C----- dPsi/dn
 DZDN(JO) = DZDN(JO)
 & + HOPI*(PSIGX1*X1O + PSIGX2*X2O + PSIGYY*YYO)*SIGTE
 & + HOPI*(PGAMX1*X1O + PGAMX2*X2O + PGAMYY*YYO)*GAMTE
 DZDN(JP) = DZDN(JP)
 & + HOPI*(PSIGX1*X1P + PSIGX2*X2P + PSIGYY*YYP)*SIGTE
 & + HOPI*(PGAMX1*X1P + PGAMX2*X2P + PGAMYY*YYP)*GAMTE
C
C----- dPsi/dP
 Z_QDOF0 = Z_QDOF0 + HOPI*PSIG*0.5*(QF0(JP)-QF0(JO))*SCS
 & - HOPI*PGAM*0.5*(QF0(JP)-QF0(JO))*SDS
 Z_QDOF1 = Z_QDOF1 + HOPI*PSIG*0.5*(QF1(JP)-QF1(JO))*SCS
 & - HOPI*PGAM*0.5*(QF1(JP)-QF1(JO))*SDS
 Z_QDOF2 = Z_QDOF2 + HOPI*PSIG*0.5*(QF2(JP)-QF2(JO))*SCS
 & - HOPI*PGAM*0.5*(QF2(JP)-QF2(JO))*SDS
 Z_QDOF3 = Z_QDOF3 + HOPI*PSIG*0.5*(QF3(JP)-QF3(JO))*SCS
 & - HOPI*PGAM*0.5*(QF3(JP)-QF3(JO))*SDS
C
 ENDIF
C
 12 CONTINUE
C
C**** Freestream terms
 PSI = PSI + QINF*(COSA*YI - SINA*XI)
C
C---- dPsi/dn
 PSI_NI = PSI_NI + QINF*(COSA*NYI - SINA*NXI)
C
 QTAN1 = QTAN1 + QINF*NYI
 QTAN2 = QTAN2 - QINF*NXI
C
C---- dPsi/dQinf
 Z_QINF = Z_QINF + (COSA*YI - SINA*XI)
C
C---- dPsi/dalfa
 Z_ALFA = Z_ALFA - QINF*(SINA*YI + COSA*XI)
C
 IF(.NOT.LIMAGE) RETURN
C
C
C
 DO 20 JO=1, N
 JP = JO+1
C
 JM = JO-1
 JQ = JP+1
C
 IF(JO.EQ.1) THEN
 JM = JO
 ELSE IF(JO.EQ.N-1) THEN
 JQ = JP
 ELSE IF(JO.EQ.N) THEN
 JP = 1
 IF((X(JO)-X(JP))**2 + (Y(JO)-Y(JP))**2 .LT. SEPS**2) GO TO 22
 ENDIF
C
 DSO = SQRT((X(JO)-X(JP))**2 + (Y(JO)-Y(JP))**2)
C
C------ skip null panel
 IF(DSO .EQ. 0.0) GO TO 20
C
 DSIO = 1.0 / DSO
C
ccc APAN = APANEL(JO)
 APAN = PI - APANEL(JO) + 2.0*ALFA
C
 XJO = X(JO) + 2.0*(YIMAGE+Y(JO))*SINA
 YJO = Y(JO) - 2.0*(YIMAGE+Y(JO))*COSA
 XJP = X(JP) + 2.0*(YIMAGE+Y(JP))*SINA
 YJP = Y(JP) - 2.0*(YIMAGE+Y(JP))*COSA
C
 RX1 = XI - XJO
 RY1 = YI - YJO
 RX2 = XI - XJP
 RY2 = YI - YJP
C
 SX = (XJP - XJO) * DSIO
 SY = (YJP - YJO) * DSIO
C
 X1 = SX*RX1 + SY*RY1
 X2 = SX*RX2 + SY*RY2
 YY = SX*RY1 - SY*RX1
C
 RS1 = RX1*RX1 + RY1*RY1
 RS2 = RX2*RX2 + RY2*RY2
C
C------ set reflection flag SGN to avoid branch problems with arctan
 IF(IO.GE.1 .AND. IO.LE.N) THEN
C------- no problem on airfoil surface
 SGN = 1.0
 ELSE
C------- make sure arctan falls between -/+ Pi/2
 SGN = SIGN(1.0,YY)
 ENDIF
C
C------ set log(r^2) and arctan(x/y), correcting for reflection if any
 G1 = LOG(RS1)
 T1 = ATAN2(SGN*X1,SGN*YY) + (0.5 - 0.5*SGN)*PI
C
 G2 = LOG(RS2)
 T2 = ATAN2(SGN*X2,SGN*YY) + (0.5 - 0.5*SGN)*PI
C
 X1I = SX*NXI + SY*NYI
 X2I = SX*NXI + SY*NYI
 YYI = SX*NYI - SY*NXI
C
 IF(GEOLIN) THEN
 NXO = NX(JO)
 NYO = NY(JO)
 NXP = NX(JP)
 NYP = NY(JP)
C
 X1O =-((RX1-X1*SX)*NXO + (RY1-X1*SY)*NYO)*DSIO-(SX*NXO+SY*NYO)
 X1P = ((RX1-X1*SX)*NXP + (RY1-X1*SY)*NYP)*DSIO
 X2O =-((RX2-X2*SX)*NXO + (RY2-X2*SY)*NYO)*DSIO
 X2P = ((RX2-X2*SX)*NXP + (RY2-X2*SY)*NYP)*DSIO-(SX*NXP+SY*NYP)
 YYO = ((RX1+X1*SY)*NYO - (RY1-X1*SX)*NXO)*DSIO-(SX*NYO-SY*NXO)
 YYP =-((RX1-X1*SY)*NYP - (RY1+X1*SX)*NXP)*DSIO
 ENDIF
C
 IF(JO.EQ.N) GO TO 21
C
 IF(SIGLIN) THEN
C
C------- set up midpoint quantities
 X0 = 0.5*(X1+X2)
 RS0 = X0*X0 + YY*YY
 G0 = LOG(RS0)
 T0 = ATAN2(SGN*X0,SGN*YY) + (0.5 - 0.5*SGN)*PI
C
C------- calculate source contribution to Psi for 1-0 half-panel
 DXINV = 1.0/(X1-X0)
 PSUM = X0*(T0-APAN) - X1*(T1-APAN) + 0.5*YY*(G1-G0)
 PDIF = ((X1+X0)*PSUM + RS1*(T1-APAN) - RS0*(T0-APAN)
 & + (X0-X1)*YY) * DXINV
C
 PSX1 = -(T1-APAN)
 PSX0 = T0-APAN
 PSYY = 0.5*(G1-G0)
C
 PDX1 = ((X1+X0)*PSX1 + PSUM + 2.0*X1*(T1-APAN) - PDIF) * DXINV
 PDX0 = ((X1+X0)*PSX0 + PSUM - 2.0*X0*(T0-APAN) + PDIF) * DXINV
 PDYY = ((X1+X0)*PSYY + 2.0*(X0-X1 + YY*(T1-T0))) * DXINV
C
 DSM = SQRT((X(JP)-X(JM))**2 + (Y(JP)-Y(JM))**2)
 DSIM = 1.0/DSM
C
CCC SIG0 = (SIG(JP) - SIG(JO))*DSIO
CCC SIG1 = (SIG(JP) - SIG(JM))*DSIM
CCC SSUM = SIG0 + SIG1
CCC SDIF = SIG0 - SIG1
C
 SSUM = (SIG(JP) - SIG(JO))*DSIO + (SIG(JP) - SIG(JM))*DSIM
 SDIF = (SIG(JP) - SIG(JO))*DSIO - (SIG(JP) - SIG(JM))*DSIM
C
 PSI = PSI + QOPI*(PSUM*SSUM + PDIF*SDIF)
C
C------- dPsi/dm
 DZDM(JM) = DZDM(JM) + QOPI*(-PSUM*DSIM + PDIF*DSIM)
 DZDM(JO) = DZDM(JO) + QOPI*(-PSUM*DSIO - PDIF*DSIO)
 DZDM(JP) = DZDM(JP) + QOPI*(PSUM*(DSIO+DSIM)
 & + PDIF*(DSIO-DSIM))
C
C------- dPsi/dni
 PSNI = PSX1*X1I + PSX0*(X1I+X2I)*0.5 + PSYY*YYI
 PDNI = PDX1*X1I + PDX0*(X1I+X2I)*0.5 + PDYY*YYI
 PSI_NI = PSI_NI + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 QTANM = QTANM + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 DQDM(JM) = DQDM(JM) + QOPI*(-PSNI*DSIM + PDNI*DSIM)
 DQDM(JO) = DQDM(JO) + QOPI*(-PSNI*DSIO - PDNI*DSIO)
 DQDM(JP) = DQDM(JP) + QOPI*(PSNI*(DSIO+DSIM)
 & + PDNI*(DSIO-DSIM))
C
C
C------- calculate source contribution to Psi for 0-2 half-panel
 DXINV = 1.0/(X0-X2)
 PSUM = X2*(T2-APAN) - X0*(T0-APAN) + 0.5*YY*(G0-G2)
 PDIF = ((X0+X2)*PSUM + RS0*(T0-APAN) - RS2*(T2-APAN)
 & + (X2-X0)*YY) * DXINV
C
 PSX0 = -(T0-APAN)
 PSX2 = T2-APAN
 PSYY = 0.5*(G0-G2)
C
 PDX0 = ((X0+X2)*PSX0 + PSUM + 2.0*X0*(T0-APAN) - PDIF) * DXINV
 PDX2 = ((X0+X2)*PSX2 + PSUM - 2.0*X2*(T2-APAN) + PDIF) * DXINV
 PDYY = ((X0+X2)*PSYY + 2.0*(X2-X0 + YY*(T0-T2))) * DXINV
C
 DSP = SQRT((X(JQ)-X(JO))**2 + (Y(JQ)-Y(JO))**2)
 DSIP = 1.0/DSP
C
CCC SIG2 = (SIG(JQ) - SIG(JO))*DSIP
CCC SIG0 = (SIG(JP) - SIG(JO))*DSIO
CCC SSUM = SIG2 + SIG0
CCC SDIF = SIG2 - SIG0
C
 SSUM = (SIG(JQ) - SIG(JO))*DSIP + (SIG(JP) - SIG(JO))*DSIO
 SDIF = (SIG(JQ) - SIG(JO))*DSIP - (SIG(JP) - SIG(JO))*DSIO
C
 PSI = PSI + QOPI*(PSUM*SSUM + PDIF*SDIF)
C
C------- dPsi/dm
 DZDM(JO) = DZDM(JO) + QOPI*(-PSUM*(DSIP+DSIO)
 & - PDIF*(DSIP-DSIO))
 DZDM(JP) = DZDM(JP) + QOPI*(PSUM*DSIO - PDIF*DSIO)
 DZDM(JQ) = DZDM(JQ) + QOPI*(PSUM*DSIP + PDIF*DSIP)
C
C------- dPsi/dni
 PSNI = PSX0*(X1I+X2I)*0.5 + PSX2*X2I + PSYY*YYI
 PDNI = PDX0*(X1I+X2I)*0.5 + PDX2*X2I + PDYY*YYI
 PSI_NI = PSI_NI + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 QTANM = QTANM + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 DQDM(JO) = DQDM(JO) + QOPI*(-PSNI*(DSIP+DSIO)
 & - PDNI*(DSIP-DSIO))
 DQDM(JP) = DQDM(JP) + QOPI*(PSNI*DSIO - PDNI*DSIO)
 DQDM(JQ) = DQDM(JQ) + QOPI*(PSNI*DSIP + PDNI*DSIP)
C
 ENDIF
C
C------ calculate vortex panel contribution to Psi
 DXINV = 1.0/(X1-X2)
 PSIS = 0.5*X1*G1 - 0.5*X2*G2 + X2 - X1 + YY*(T1-T2)
 PSID = ((X1+X2)*PSIS + 0.5*(RS2*G2-RS1*G1 + X1*X1-X2*X2))*DXINV
C
 PSX1 = 0.5*G1
 PSX2 = -.5*G2
 PSYY = T1-T2
C
 PDX1 = ((X1+X2)*PSX1 + PSIS - X1*G1 - PSID)*DXINV
 PDX2 = ((X1+X2)*PSX2 + PSIS + X2*G2 + PSID)*DXINV
 PDYY = ((X1+X2)*PSYY - YY*(G1-G2))*DXINV
C
 GSUM1 = GAMU(JP,1) + GAMU(JO,1)
 GSUM2 = GAMU(JP,2) + GAMU(JO,2)
 GDIF1 = GAMU(JP,1) - GAMU(JO,1)
 GDIF2 = GAMU(JP,2) - GAMU(JO,2)
C
 GSUM = GAM(JP) + GAM(JO)
 GDIF = GAM(JP) - GAM(JO)
C
 PSI = PSI - QOPI*(PSIS*GSUM + PSID*GDIF)
C
C------ dPsi/dGam
 DZDG(JO) = DZDG(JO) - QOPI*(PSIS-PSID)
 DZDG(JP) = DZDG(JP) - QOPI*(PSIS+PSID)
C
C------ dPsi/dni
 PSNI = PSX1*X1I + PSX2*X2I + PSYY*YYI
 PDNI = PDX1*X1I + PDX2*X2I + PDYY*YYI
 PSI_NI = PSI_NI - QOPI*(GSUM*PSNI + GDIF*PDNI)
C
 QTAN1 = QTAN1 - QOPI*(GSUM1*PSNI + GDIF1*PDNI)
 QTAN2 = QTAN2 - QOPI*(GSUM2*PSNI + GDIF2*PDNI)
C
 DQDG(JO) = DQDG(JO) - QOPI*(PSNI - PDNI)
 DQDG(JP) = DQDG(JP) - QOPI*(PSNI + PDNI)
C
 IF(GEOLIN) THEN
C
C------- dPsi/dn
 DZDN(JO) = DZDN(JO)- QOPI*GSUM*(PSX1*X1O + PSX2*X2O + PSYY*YYO)
 & - QOPI*GDIF*(PDX1*X1O + PDX2*X2O + PDYY*YYO)
 DZDN(JP) = DZDN(JP)- QOPI*GSUM*(PSX1*X1P + PSX2*X2P + PSYY*YYP)
 & - QOPI*GDIF*(PDX1*X1P + PDX2*X2P + PDYY*YYP)
C------- dPsi/dP
 Z_QDOF0 = Z_QDOF0
 & - QOPI*((PSIS-PSID)*QF0(JO) + (PSIS+PSID)*QF0(JP))
 Z_QDOF1 = Z_QDOF1
 & - QOPI*((PSIS-PSID)*QF1(JO) + (PSIS+PSID)*QF1(JP))
 Z_QDOF2 = Z_QDOF2
 & - QOPI*((PSIS-PSID)*QF2(JO) + (PSIS+PSID)*QF2(JP))
 Z_QDOF3 = Z_QDOF3
 & - QOPI*((PSIS-PSID)*QF3(JO) + (PSIS+PSID)*QF3(JP))
 ENDIF
C
C
 20 CONTINUE
C
 21 CONTINUE
 PSIG = 0.5*YY*(G1-G2) + X2*(T2-APAN) - X1*(T1-APAN)
 PGAM = 0.5*X1*G1 - 0.5*X2*G2 + X2 - X1 + YY*(T1-T2)
C
 PSIGX1 = -(T1-APAN)
 PSIGX2 = T2-APAN
 PSIGYY = 0.5*(G1-G2)
 PGAMX1 = 0.5*G1
 PGAMX2 = -.5*G2
 PGAMYY = T1-T2
C
 PSIGNI = PSIGX1*X1I + PSIGX2*X2I + PSIGYY*YYI
 PGAMNI = PGAMX1*X1I + PGAMX2*X2I + PGAMYY*YYI
C
C---- TE panel source and vortex strengths
 SIGTE1 = 0.5*SCS*(GAMU(JP,1) - GAMU(JO,1))
 SIGTE2 = 0.5*SCS*(GAMU(JP,2) - GAMU(JO,2))
 GAMTE1 = -.5*SDS*(GAMU(JP,1) - GAMU(JO,1))
 GAMTE2 = -.5*SDS*(GAMU(JP,2) - GAMU(JO,2))
C
 SIGTE = 0.5*SCS*(GAM(JP) - GAM(JO))
 GAMTE = -.5*SDS*(GAM(JP) - GAM(JO))
C
C---- TE panel contribution to Psi
 PSI = PSI + HOPI*(PSIG*SIGTE - PGAM*GAMTE)
C
C---- dPsi/dGam
 DZDG(JO) = DZDG(JO) - HOPI*PSIG*SCS*0.5
 DZDG(JP) = DZDG(JP) + HOPI*PSIG*SCS*0.5
C
 DZDG(JO) = DZDG(JO) - HOPI*PGAM*SDS*0.5
 DZDG(JP) = DZDG(JP) + HOPI*PGAM*SDS*0.5
C
C---- dPsi/dni
 PSI_NI = PSI_NI + HOPI*(PSIGNI*SIGTE - PGAMNI*GAMTE)
C
 QTAN1 = QTAN1 + HOPI*(PSIGNI*SIGTE1 - PGAMNI*GAMTE1)
 QTAN2 = QTAN2 + HOPI*(PSIGNI*SIGTE2 - PGAMNI*GAMTE2)
C
 DQDG(JO) = DQDG(JO) - HOPI*(PSIGNI*0.5*SCS + PGAMNI*0.5*SDS)
 DQDG(JP) = DQDG(JP) + HOPI*(PSIGNI*0.5*SCS + PGAMNI*0.5*SDS)
C
 IF(GEOLIN) THEN
C
C----- dPsi/dn
 DZDN(JO) = DZDN(JO)
 & + HOPI*(PSIGX1*X1O + PSIGX2*X2O + PSIGYY*YYO)*SIGTE
 & - HOPI*(PGAMX1*X1O + PGAMX2*X2O + PGAMYY*YYO)*GAMTE
 DZDN(JP) = DZDN(JP)
 & + HOPI*(PSIGX1*X1P + PSIGX2*X2P + PSIGYY*YYP)*SIGTE
 & - HOPI*(PGAMX1*X1P + PGAMX2*X2P + PGAMYY*YYP)*GAMTE
C
C----- dPsi/dP
 Z_QDOF0 = Z_QDOF0 + HOPI*PSIG*0.5*(QF0(JP)-QF0(JO))*SCS
 & + HOPI*PGAM*0.5*(QF0(JP)-QF0(JO))*SDS
 Z_QDOF1 = Z_QDOF1 + HOPI*PSIG*0.5*(QF1(JP)-QF1(JO))*SCS
 & + HOPI*PGAM*0.5*(QF1(JP)-QF1(JO))*SDS
 Z_QDOF2 = Z_QDOF2 + HOPI*PSIG*0.5*(QF2(JP)-QF2(JO))*SCS
 & + HOPI*PGAM*0.5*(QF2(JP)-QF2(JO))*SDS
 Z_QDOF3 = Z_QDOF3 + HOPI*PSIG*0.5*(QF3(JP)-QF3(JO))*SCS
 & + HOPI*PGAM*0.5*(QF3(JP)-QF3(JO))*SDS
C
 ENDIF
C
 22 CONTINUE
C
 RETURN
 END

 SUBROUTINE PSWLIN(I,XI,YI,NXI,NYI,PSI,PSI_NI)
C--
C Calculates current streamfunction Psi and tangential velocity
C Qtan at panel node or wake node I due to freestream and wake
C sources Sig. Also calculates sensitivity vectors dPsi/dSig
C (DZDM) and dQtan/dSig (DQDM).
C
C Airfoil: 1 < I < N
C Wake: N+1 < I < N+NW
C--
 INCLUDE 'XFOIL.INC'
 REAL NXI, NYI
C
 IO = I
C
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
C
 DO 4 JO=N+1, N+NW
 DZDM(JO) = 0.0
 DQDM(JO) = 0.0
 4 CONTINUE
C
 PSI = 0.
 PSI_NI = 0.
C
 DO 20 JO=N+1, N+NW-1
C
 JP = JO+1
C
 JM = JO-1
 JQ = JP+1
 IF(JO.EQ.N+1) THEN
 JM = JO
 ELSE IF(JO.EQ.N+NW-1) THEN
 JQ = JP
 ENDIF
C
 DSO = SQRT((X(JO)-X(JP))**2 + (Y(JO)-Y(JP))**2)
 DSIO = 1.0 / DSO
C
 APAN = APANEL(JO)
C
 RX1 = XI - X(JO)
 RY1 = YI - Y(JO)
 RX2 = XI - X(JP)
 RY2 = YI - Y(JP)
C
 SX = (X(JP) - X(JO)) * DSIO
 SY = (Y(JP) - Y(JO)) * DSIO
C
 X1 = SX*RX1 + SY*RY1
 X2 = SX*RX2 + SY*RY2
 YY = SX*RY1 - SY*RX1
C
 RS1 = RX1*RX1 + RY1*RY1
 RS2 = RX2*RX2 + RY2*RY2
C
 IF(IO.GE.N+1 .AND. IO.LE.N+NW) THEN
 SGN = 1.0
 ELSE
 SGN = SIGN(1.0,YY)
 ENDIF
C
 IF(IO.NE.JO .AND. RS1.GT.0.0) THEN
 G1 = LOG(RS1)
 T1 = ATAN2(SGN*X1,SGN*YY) - (0.5 - 0.5*SGN)*PI
 ELSE
 G1 = 0.0
 T1 = 0.0
 ENDIF
C
 IF(IO.NE.JP .AND. RS2.GT.0.0) THEN
 G2 = LOG(RS2)
 T2 = ATAN2(SGN*X2,SGN*YY) - (0.5 - 0.5*SGN)*PI
 ELSE
 G2 = 0.0
 T2 = 0.0
 ENDIF
C
 X1I = SX*NXI + SY*NYI
 X2I = SX*NXI + SY*NYI
 YYI = SX*NYI - SY*NXI
C
C------- set up midpoint quantities
 X0 = 0.5*(X1+X2)
 RS0 = X0*X0 + YY*YY
 G0 = LOG(RS0)
 T0 = ATAN2(SGN*X0,SGN*YY) - (0.5 - 0.5*SGN)*PI
C
C------- calculate source contribution to Psi for 1-0 half-panel
 DXINV = 1.0/(X1-X0)
 PSUM = X0*(T0-APAN) - X1*(T1-APAN) + 0.5*YY*(G1-G0)
 PDIF = ((X1+X0)*PSUM + RS1*(T1-APAN) - RS0*(T0-APAN)
 & + (X0-X1)*YY) * DXINV
C
 PSX1 = -(T1-APAN)
 PSX0 = T0-APAN
 PSYY = 0.5*(G1-G0)
C
 PDX1 = ((X1+X0)*PSX1 + PSUM + 2.0*X1*(T1-APAN) - PDIF) * DXINV
 PDX0 = ((X1+X0)*PSX0 + PSUM - 2.0*X0*(T0-APAN) + PDIF) * DXINV
 PDYY = ((X1+X0)*PSYY + 2.0*(X0-X1 + YY*(T1-T0))) * DXINV
C
 DSM = SQRT((X(JP)-X(JM))**2 + (Y(JP)-Y(JM))**2)
 DSIM = 1.0/DSM
C
CCC SIG0 = (SIG(JP) - SIG(JO))*DSIO
CCC SIG1 = (SIG(JP) - SIG(JM))*DSIM
CCC SSUM = SIG0 + SIG1
CCC SDIF = SIG0 - SIG1
C
 SSUM = (SIG(JP) - SIG(JO))*DSIO + (SIG(JP) - SIG(JM))*DSIM
 SDIF = (SIG(JP) - SIG(JO))*DSIO - (SIG(JP) - SIG(JM))*DSIM
C
 PSI = PSI + QOPI*(PSUM*SSUM + PDIF*SDIF)
C
C------- dPsi/dm
 DZDM(JM) = DZDM(JM) + QOPI*(-PSUM*DSIM + PDIF*DSIM)
 DZDM(JO) = DZDM(JO) + QOPI*(-PSUM*DSIO - PDIF*DSIO)
 DZDM(JP) = DZDM(JP) + QOPI*(PSUM*(DSIO+DSIM)
 & + PDIF*(DSIO-DSIM))
C
C------- dPsi/dni
 PSNI = PSX1*X1I + PSX0*(X1I+X2I)*0.5 + PSYY*YYI
 PDNI = PDX1*X1I + PDX0*(X1I+X2I)*0.5 + PDYY*YYI
 PSI_NI = PSI_NI + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 DQDM(JM) = DQDM(JM) + QOPI*(-PSNI*DSIM + PDNI*DSIM)
 DQDM(JO) = DQDM(JO) + QOPI*(-PSNI*DSIO - PDNI*DSIO)
 DQDM(JP) = DQDM(JP) + QOPI*(PSNI*(DSIO+DSIM)
 & + PDNI*(DSIO-DSIM))
C
C
C------- calculate source contribution to Psi for 0-2 half-panel
 DXINV = 1.0/(X0-X2)
 PSUM = X2*(T2-APAN) - X0*(T0-APAN) + 0.5*YY*(G0-G2)
 PDIF = ((X0+X2)*PSUM + RS0*(T0-APAN) - RS2*(T2-APAN)
 & + (X2-X0)*YY) * DXINV
C
 PSX0 = -(T0-APAN)
 PSX2 = T2-APAN
 PSYY = 0.5*(G0-G2)
C
 PDX0 = ((X0+X2)*PSX0 + PSUM + 2.0*X0*(T0-APAN) - PDIF) * DXINV
 PDX2 = ((X0+X2)*PSX2 + PSUM - 2.0*X2*(T2-APAN) + PDIF) * DXINV
 PDYY = ((X0+X2)*PSYY + 2.0*(X2-X0 + YY*(T0-T2))) * DXINV
C
 DSP = SQRT((X(JQ)-X(JO))**2 + (Y(JQ)-Y(JO))**2)
 DSIP = 1.0/DSP
C
CCC SIG2 = (SIG(JQ) - SIG(JO))*DSIP
CCC SIG0 = (SIG(JP) - SIG(JO))*DSIO
CCC SSUM = SIG2 + SIG0
CCC SDIF = SIG2 - SIG0
C
 SSUM = (SIG(JQ) - SIG(JO))*DSIP + (SIG(JP) - SIG(JO))*DSIO
 SDIF = (SIG(JQ) - SIG(JO))*DSIP - (SIG(JP) - SIG(JO))*DSIO
C
 PSI = PSI + QOPI*(PSUM*SSUM + PDIF*SDIF)
C
C------- dPsi/dm
 DZDM(JO) = DZDM(JO) + QOPI*(-PSUM*(DSIP+DSIO)
 & - PDIF*(DSIP-DSIO))
 DZDM(JP) = DZDM(JP) + QOPI*(PSUM*DSIO - PDIF*DSIO)
 DZDM(JQ) = DZDM(JQ) + QOPI*(PSUM*DSIP + PDIF*DSIP)
C
C------- dPsi/dni
 PSNI = PSX0*(X1I+X2I)*0.5 + PSX2*X2I + PSYY*YYI
 PDNI = PDX0*(X1I+X2I)*0.5 + PDX2*X2I + PDYY*YYI
 PSI_NI = PSI_NI + QOPI*(PSNI*SSUM + PDNI*SDIF)
C
 DQDM(JO) = DQDM(JO) + QOPI*(-PSNI*(DSIP+DSIO)
 & - PDNI*(DSIP-DSIO))
 DQDM(JP) = DQDM(JP) + QOPI*(PSNI*DSIO - PDNI*DSIO)
 DQDM(JQ) = DQDM(JQ) + QOPI*(PSNI*DSIP + PDNI*DSIP)
C
 20 CONTINUE
C
 RETURN
 END

 SUBROUTINE GGCALC
C--
C Calculates two surface vorticity (gamma) distributions
C for alpha = 0, 90 degrees. These are superimposed
C in SPECAL or SPECCL for specified alpha or CL.
C--
 INCLUDE 'XFOIL.INC'
C
C---- distance of internal control point ahead of sharp TE
C- (fraction of smaller panel length adjacent to TE)
 BWT = 0.1
C
 WRITE(*,*) 'Calculating unit vorticity distributions ...'
C
 DO 10 I=1, N
 GAM(I) = 0.
 GAMU(I,1) = 0.
 GAMU(I,2) = 0.
 10 CONTINUE
 PSIO = 0.
C
C---- Set up matrix system for Psi = Psio on airfoil surface.
C- The unknowns are (dGamma)i and dPsio.
 DO 20 I=1, N
C
C------ calculate Psi and dPsi/dGamma array for current node
 CALL PSILIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N,.FALSE.,.TRUE.)
C
 PSIINF = QINF*(COS(ALFA)*Y(I) - SIN(ALFA)*X(I))
C
C------ RES1 = PSI(0) - PSIO
C------ RES2 = PSI(90) - PSIO
 RES1 = QINF*Y(I)
 RES2 = -QINF*X(I)
C
C------ dRes/dGamma
 DO 201 J=1, N
 AIJ(I,J) = DZDG(J)
 201 CONTINUE
C
 DO 202 J=1, N
 BIJ(I,J) = -DZDM(J)
 202 CONTINUE
C
C------ dRes/dPsio
 AIJ(I,N+1) = -1.0
C
 GAMU(I,1) = -RES1
 GAMU(I,2) = -RES2
C
 20 CONTINUE
C
C---- set Kutta condition
C- RES = GAM(1) + GAM(N)
 RES = 0.
C
 DO 30 J=1, N+1
 AIJ(N+1,J) = 0.0
 30 CONTINUE
C
 AIJ(N+1,1) = 1.0
 AIJ(N+1,N) = 1.0
C
 GAMU(N+1,1) = -RES
 GAMU(N+1,2) = -RES
C
C---- set up Kutta condition (no direct source influence)
 DO 32 J=1, N
 BIJ(N+1,J) = 0.
 32 CONTINUE
C
 IF(SHARP) THEN
C----- set zero internal velocity in TE corner
C
C----- set TE bisector angle
 AG1 = ATAN2(-YP(1),-XP(1))
 AG2 = ATANC(YP(N), XP(N),AG1)
 ABIS = 0.5*(AG1+AG2)
 CBIS = COS(ABIS)
 SBIS = SIN(ABIS)
C
C----- minimum panel length adjacent to TE
 DS1 = SQRT((X(1)-X(2))**2 + (Y(1)-Y(2))**2)
 DS2 = SQRT((X(N)-X(N-1))**2 + (Y(N)-Y(N-1))**2)
 DSMIN = MIN(DS1 , DS2)
C
C----- control point on bisector just ahead of TE point
 XBIS = XTE - BWT*DSMIN*CBIS
 YBIS = YTE - BWT*DSMIN*SBIS
ccc write(*,*) xbis, ybis
C
C----- set velocity component along bisector line
 CALL PSILIN(0,XBIS,YBIS,-SBIS,CBIS,PSI,QBIS,.FALSE.,.TRUE.)
C
CCC--- RES = DQDGj*Gammaj + DQDMj*Massj + QINF*(COSA*CBIS + SINA*SBIS)
 RES = QBIS
C
C----- dRes/dGamma
 DO J=1, N
 AIJ(N,J) = DQDG(J)
 ENDDO
C
C----- -dRes/dMass
 DO J=1, N
 BIJ(N,J) = -DQDM(J)
 ENDDO
C
C----- dRes/dPsio
 AIJ(N,N+1) = 0.
C
C----- -dRes/dUinf
 GAMU(N,1) = -CBIS
C
C----- -dRes/dVinf
 GAMU(N,2) = -SBIS
C
 ENDIF
C
C---- LU-factor coefficient matrix AIJ
 CALL LUDCMP(IQX,N+1,AIJ,AIJPIV)
 LQAIJ = .TRUE.
C
C---- solve system for the two vorticity distributions
 CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,GAMU(1,1))
 CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,GAMU(1,2))
C
C---- set inviscid alpha=0,90 surface speeds for this geometry
 DO 50 I=1, N
 QINVU(I,1) = GAMU(I,1)
 QINVU(I,2) = GAMU(I,2)
 50 CONTINUE
C
 LGAMU = .TRUE.
C
 RETURN
 END

 SUBROUTINE QWCALC
C---
C Sets inviscid tangential velocity for alpha = 0, 90
C on wake due to freestream and airfoil surface vorticity.
C---
 INCLUDE 'XFOIL.INC'
C
C---- first wake point (same as TE)
 QINVU(N+1,1) = QINVU(N,1)
 QINVU(N+1,2) = QINVU(N,2)
C
C---- rest of wake
 DO 10 I=N+2, N+NW
 CALL PSILIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_NI,.FALSE.,.FALSE.)
 QINVU(I,1) = QTAN1
 QINVU(I,2) = QTAN2
 10 CONTINUE
C
 RETURN
 END

 SUBROUTINE QDCALC
C---
C Calculates source panel influence coefficient
C matrix for current airfoil and wake geometry.
C---
 INCLUDE 'XFOIL.INC'
C
 WRITE(*,*) 'Calculating source influence matrix ...'
C
 IF(.NOT.LADIJ) THEN
C
C----- calculate source influence matrix for airfoil surface if it doesn't exist
 DO 10 J=1, N
C
C------- multiply each dPsi/Sig vector by inverse of factored dPsi/dGam matrix
 CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,BIJ(1,J))
C
C------- store resulting dGam/dSig = dQtan/dSig vector
 DO 105 I=1, N
 DIJ(I,J) = BIJ(I,J)
 105 CONTINUE
C
 10 CONTINUE
 LADIJ = .TRUE.
C
 ENDIF
C
C---- set up coefficient matrix of dPsi/dm on airfoil surface
 DO 20 I=1, N
 CALL PSWLIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N)
 DO 202 J=N+1, N+NW
 BIJ(I,J) = -DZDM(J)
 202 CONTINUE
 20 CONTINUE
C
C---- set up Kutta condition (no direct source influence)
 DO 32 J=N+1, N+NW
 BIJ(N+1,J) = 0.
 32 CONTINUE
C
C---- sharp TE gamma extrapolation also has no source influence
 IF(SHARP) THEN
 DO 34 J=N+1, N+NW
 BIJ(N,J) = 0.
 34 CONTINUE
 ENDIF
C
C---- multiply by inverse of factored dPsi/dGam matrix
 DO 40 J=N+1, N+NW
 CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,BIJ(1,J))
 40 CONTINUE
C
C---- set the source influence matrix for the wake sources
 DO 50 I=1, N
 DO 510 J=N+1, N+NW
 DIJ(I,J) = BIJ(I,J)
 510 CONTINUE
 50 CONTINUE
C
C**** Now we need to calculate the influence of sources on the wake velocities
C
C---- calculcate dQtan/dGam and dQtan/dSig at the wake points
 DO 70 I=N+1, N+NW
C
 IW = I-N
C
C------ airfoil contribution at wake panel node
 CALL PSILIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N,.FALSE.,.TRUE.)
C
 DO 710 J=1, N
 CIJ(IW,J) = DQDG(J)
 710 CONTINUE
C
 DO 720 J=1, N
 DIJ(I,J) = DQDM(J)
 720 CONTINUE
C
C------ wake contribution
 CALL PSWLIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N)
C
 DO 730 J=N+1, N+NW
 DIJ(I,J) = DQDM(J)
 730 CONTINUE
C
 70 CONTINUE
C
C---- add on effect of all sources on airfoil vorticity which effects wake Qtan
 DO 80 I=N+1, N+NW
 IW = I-N
C
C------ airfoil surface source contribution first
 DO 810 J=1, N
 SUM = 0.
 DO 8100 K=1, N
 SUM = SUM + CIJ(IW,K)*DIJ(K,J)
 8100 CONTINUE
 DIJ(I,J) = DIJ(I,J) + SUM
 810 CONTINUE
C
C------ wake source contribution next
 DO 820 J=N+1, N+NW
 SUM = 0.
 DO 8200 K=1, N
 SUM = SUM + CIJ(IW,K)*BIJ(K,J)
 8200 CONTINUE
 DIJ(I,J) = DIJ(I,J) + SUM
 820 CONTINUE
C
 80 CONTINUE
C
C---- make sure first wake point has same velocity as trailing edge
 DO 90 J=1, N+NW
 DIJ(N+1,J) = DIJ(N,J)
 90 CONTINUE
C
 LWDIJ = .TRUE.
C
 RETURN
 END

 SUBROUTINE XYWAKE
C---
C Sets wake coordinate array for current surface
C vorticity and/or mass source distributions.
C---
 INCLUDE 'XFOIL.INC'
C
 WRITE(*,*) 'Calculating wake trajectory ...'
C
C---- number of wake points
 NW = N/8 + 2
 IF(NW.GT.IWX) THEN
 WRITE(*,*)
 & 'Array size (IWX) too small. Last wake point index reduced.'
 NW = IWX
 ENDIF
C
 DS1 = 0.5*(S(2) - S(1) + S(N) - S(N-1))
 CALL SETEXP(SNEW(N+1),DS1,WAKLEN*CHORD,NW)
C
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
C
C---- set first wake point a tiny distance behind TE
 I = N+1
 SX = 0.5*(YP(N) - YP(1))
 SY = 0.5*(XP(1) - XP(N))
 SMOD = SQRT(SX**2 + SY**2)
 NX(I) = SX / SMOD
 NY(I) = SY / SMOD
 X(I) = XTE - 0.0001*NY(I)
 Y(I) = YTE + 0.0001*NX(I)
 S(I) = S(N)
C
C---- calculate streamfunction gradient components at first point
 CALL PSILIN(I,X(I),Y(I),1.0,0.0,PSI,PSI_X,.FALSE.,.FALSE.)
 CALL PSILIN(I,X(I),Y(I),0.0,1.0,PSI,PSI_Y,.FALSE.,.FALSE.)
C
C---- set unit vector normal to wake at first point
 NX(I+1) = -PSI_X / SQRT(PSI_X**2 + PSI_Y**2)
 NY(I+1) = -PSI_Y / SQRT(PSI_X**2 + PSI_Y**2)
C
C---- set angle of wake panel normal
 APANEL(I) = ATAN2(PSI_Y , PSI_X)
C
C---- set rest of wake points
 DO 10 I=N+2, N+NW
 DS = SNEW(I) - SNEW(I-1)
C
C------ set new point DS downstream of last point
 X(I) = X(I-1) - DS*NY(I)
 Y(I) = Y(I-1) + DS*NX(I)
 S(I) = S(I-1) + DS
C
 IF(I.EQ.N+NW) GO TO 10
C
C------- calculate normal vector for next point
 CALL PSILIN(I,X(I),Y(I),1.0,0.0,PSI,PSI_X,.FALSE.,.FALSE.)
 CALL PSILIN(I,X(I),Y(I),0.0,1.0,PSI,PSI_Y,.FALSE.,.FALSE.)
C
 NX(I+1) = -PSI_X / SQRT(PSI_X**2 + PSI_Y**2)
 NY(I+1) = -PSI_Y / SQRT(PSI_X**2 + PSI_Y**2)
C
C------- set angle of wake panel normal
 APANEL(I) = ATAN2(PSI_Y , PSI_X)
C
 10 CONTINUE
C
C---- set wake presence flag and corresponding alpha
 LWAKE = .TRUE.
 AWAKE = ALFA
C
C---- old source influence matrix is invalid for the new wake geometry
 LWDIJ = .FALSE.
C
 RETURN
 END

 SUBROUTINE STFIND
C---
C Locates stagnation point arc length
C location SST and panel index IST.
C---
 INCLUDE 'XFOIL.INC'
C
 DO 10 I=1, N-1
 IF(GAM(I).GE.0.0 .AND. GAM(I+1).LT.0.0) GO TO 11
 10 CONTINUE
C
 WRITE(*,*) 'STFIND: Stagnation point not found. Continuing ...'
 I = N/2
C
 11 CONTINUE
C
 IST = I
 DGAM = GAM(I+1) - GAM(I)
 DS = S(I+1) - S(I)
C
C---- evaluate so as to minimize roundoff for very small GAM(I) or GAM(I+1)
 IF(GAM(I) .LT. -GAM(I+1)) THEN
 SST = S(I) - DS*(GAM(I) /DGAM)
 ELSE
 SST = S(I+1) - DS*(GAM(I+1)/DGAM)
 ENDIF
C
C---- tweak stagnation point if it falls right on a node (very unlikely)
 IF(SST .LE. S(I)) SST = S(I) + 1.0E-7
 IF(SST .GE. S(I+1)) SST = S(I+1) - 1.0E-7
C
 SST_GO = (SST - S(I+1))/DGAM
 SST_GP = (S(I) - SST)/DGAM
C
 RETURN
 END

 SUBROUTINE IBLPAN
C---
C Sets BL location -> panel location pointer array IPAN
C---
 INCLUDE 'XFOIL.INC'
C
C---- top surface first
 IS = 1
C
 IBL = 1
 DO 10 I=IST, 1, -1
 IBL = IBL+1
 IPAN(IBL,IS) = I
 VTI(IBL,IS) = 1.0
 10 CONTINUE
C
 IBLTE(IS) = IBL
 NBL(IS) = IBL
C
C---- bottom surface next
 IS = 2
C
 IBL = 1
 DO 20 I=IST+1, N
 IBL = IBL+1
 IPAN(IBL,IS) = I
 VTI(IBL,IS) = -1.0
 20 CONTINUE
C
C---- wake
 IBLTE(IS) = IBL
C
 DO 25 IW=1, NW
 I = N+IW
 IBL = IBLTE(IS)+IW
 IPAN(IBL,IS) = I
 VTI(IBL,IS) = -1.0
 25 CONTINUE
C
 NBL(IS) = IBLTE(IS) + NW
C
C---- upper wake pointers (for plotting only)
 DO 35 IW=1, NW
 IPAN(IBLTE(1)+IW,1) = IPAN(IBLTE(2)+IW,2)
 VTI(IBLTE(1)+IW,1) = 1.0
 35 CONTINUE
C
C
 IBLMAX = MAX(IBLTE(1),IBLTE(2)) + NW
 IF(IBLMAX.GT.IVX) THEN
 WRITE(*,*) ' *** BL array overflow.'
 WRITE(*,*) ' *** Increase IVX to at least', IBLMAX
 STOP
 ENDIF
C
 LIPAN = .TRUE.
 RETURN
 END

 SUBROUTINE XICALC
C---
C Sets BL arc length array on each airfoil side and wake
C---
 INCLUDE 'XFOIL.INC'
 DATA XFEPS / 1.0E-7 /
C
C---- minimum xi node arc length near stagnation point
 XEPS = XFEPS*(S(N)-S(1))
C
 IS = 1
C
 XSSI(1,IS) = 0.
C
 DO 10 IBL=2, IBLTE(IS)
 I = IPAN(IBL,IS)
 XSSI(IBL,IS) = MAX(SST - S(I) , XEPS)
 10 CONTINUE
C
C
 IS = 2
C
 XSSI(1,IS) = 0.
C
 DO 20 IBL=2, IBLTE(IS)
 I = IPAN(IBL,IS)
 XSSI(IBL,IS) = MAX(S(I) - SST , XEPS)
 20 CONTINUE
C
 IBL = IBLTE(IS) + 1
 XSSI(IBL,IS) = XSSI(IBL-1,IS)
C
 DO 25 IBL=IBLTE(IS)+2, NBL(IS)
 I = IPAN(IBL,IS)
 XSSI(IBL,IS) = XSSI(IBL-1,IS)
 & + SQRT((X(I)-X(I-1))**2 + (Y(I)-Y(I-1))**2)
 25 CONTINUE
C
C---- trailing edge flap length to TE gap ratio
 TELRAT = 2.50
C
C---- set up parameters for TE flap cubics
C
ccc DWDXTE = YP(1)/XP(1) + YP(N)/XP(N) !!! BUG 2/2/95
C
 CROSP = (XP(1)*YP(N) - YP(1)*XP(N))
 & / SQRT((XP(1)**2 + YP(1)**2)
 & *(XP(N)**2 + YP(N)**2))
 DWDXTE = CROSP / SQRT(1.0 - CROSP**2)
C
C---- limit cubic to avoid absurd TE gap widths
 DWDXTE = MAX(DWDXTE,-3.0/TELRAT)
 DWDXTE = MIN(DWDXTE, 3.0/TELRAT)
C
 AA = 3.0 + TELRAT*DWDXTE
 BB = -2.0 - TELRAT*DWDXTE
C
 IF(SHARP) THEN
 DO 30 IW=1, NW
 WGAP(IW) = 0.
 30 CONTINUE
 ELSE
C----- set TE flap (wake gap) array
 IS = 2
 DO 35 IW=1, NW
 IBL = IBLTE(IS) + IW
 ZN = 1.0 - (XSSI(IBL,IS)-XSSI(IBLTE(IS),IS)) / (TELRAT*ANTE)
 WGAP(IW) = 0.
 IF(ZN.GE.0.0) WGAP(IW) = ANTE * (AA + BB*ZN)*ZN**2
 35 CONTINUE
 ENDIF
C
 RETURN
 END

 SUBROUTINE UICALC
C--
C Sets inviscid Ue from panel inviscid tangential velocity
C--
 INCLUDE 'XFOIL.INC'
C
 DO 10 IS=1, 2
 UINV (1,IS) = 0.
 UINV_A(1,IS) = 0.
 DO 110 IBL=2, NBL(IS)
 I = IPAN(IBL,IS)
 UINV (IBL,IS) = VTI(IBL,IS)*QINV (I)
 UINV_A(IBL,IS) = VTI(IBL,IS)*QINV_A(I)
 110 CONTINUE
 10 CONTINUE
C
 RETURN
 END

 SUBROUTINE UECALC
C--
C Sets viscous Ue from panel viscous tangential velocity
C--
 INCLUDE 'XFOIL.INC'
C
 DO 10 IS=1, 2
 UEDG(1,IS) = 0.
 DO 110 IBL=2, NBL(IS)
 I = IPAN(IBL,IS)
 UEDG(IBL,IS) = VTI(IBL,IS)*QVIS(I)
 110 CONTINUE
 10 CONTINUE
C
 RETURN
 END

 SUBROUTINE QVFUE
C--
C Sets panel viscous tangential velocity from viscous Ue
C--
 INCLUDE 'XFOIL.INC'
C
 DO 1 IS=1, 2
 DO 10 IBL=2, NBL(IS)
 I = IPAN(IBL,IS)
 QVIS(I) = VTI(IBL,IS)*UEDG(IBL,IS)
 10 CONTINUE
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE QISET
C---
C Sets inviscid panel tangential velocity for
C current alpha.
C---
 INCLUDE 'XFOIL.INC'
C
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
C
 DO 5 I=1, N+NW
 QINV (I) = COSA*QINVU(I,1) + SINA*QINVU(I,2)
 QINV_A(I) = -SINA*QINVU(I,1) + COSA*QINVU(I,2)
 5 CONTINUE
C
 RETURN
 END

 SUBROUTINE GAMQV
 INCLUDE 'XFOIL.INC'
C
 DO 10 I=1, N
 GAM(I) = QVIS(I)
 GAM_A(I) = QINV_A(I)
 10 CONTINUE
C
 RETURN
 END

 SUBROUTINE STMOVE
C---
C Moves stagnation point location to new panel.
C---
 INCLUDE 'XFOIL.INC'
C
C---- locate new stagnation point arc length SST from GAM distribution
 ISTOLD = IST
 CALL STFIND
C
 IF(ISTOLD.EQ.IST) THEN
C
C----- recalculate new arc length array
 CALL XICALC
C
 ELSE
C
CCC WRITE(*,*) 'STMOVE: Resetting stagnation point'
C
C----- set new BL position -> panel position pointers
 CALL IBLPAN
C
C----- set new inviscid BL edge velocity UINV from QINV
 CALL UICALC
C
C----- recalculate new arc length array
 CALL XICALC
C
C----- set BL position -> system line pointers
 CALL IBLSYS
C
 IF(IST.GT.ISTOLD) THEN
C------ increase in number of points on top side (IS=1)
 IDIF = IST-ISTOLD
C
 ITRAN(1) = ITRAN(1) + IDIF
 ITRAN(2) = ITRAN(2) - IDIF
C
C------ move top side BL variables downstream
 DO 110 IBL=NBL(1), IDIF+2, -1
 CTAU(IBL,1) = CTAU(IBL-IDIF,1)
 THET(IBL,1) = THET(IBL-IDIF,1)
 DSTR(IBL,1) = DSTR(IBL-IDIF,1)
 UEDG(IBL,1) = UEDG(IBL-IDIF,1)
 110 CONTINUE
C
C------ set BL variables between old and new stagnation point
 DUDX = UEDG(IDIF+2,1)/XSSI(IDIF+2,1)
 DO 115 IBL=IDIF+1, 2, -1
 CTAU(IBL,1) = CTAU(IDIF+2,1)
 THET(IBL,1) = THET(IDIF+2,1)
 DSTR(IBL,1) = DSTR(IDIF+2,1)
 UEDG(IBL,1) = DUDX * XSSI(IBL,1)
 115 CONTINUE
C
C------ move bottom side BL variables upstream
 DO 120 IBL=2, NBL(2)
 CTAU(IBL,2) = CTAU(IBL+IDIF,2)
 THET(IBL,2) = THET(IBL+IDIF,2)
 DSTR(IBL,2) = DSTR(IBL+IDIF,2)
 UEDG(IBL,2) = UEDG(IBL+IDIF,2)
 120 CONTINUE
C
 ELSE
C------ increase in number of points on bottom side (IS=2)
 IDIF = ISTOLD-IST
C
 ITRAN(1) = ITRAN(1) - IDIF
 ITRAN(2) = ITRAN(2) + IDIF
C
C------ move bottom side BL variables downstream
 DO 210 IBL=NBL(2), IDIF+2, -1
 CTAU(IBL,2) = CTAU(IBL-IDIF,2)
 THET(IBL,2) = THET(IBL-IDIF,2)
 DSTR(IBL,2) = DSTR(IBL-IDIF,2)
 UEDG(IBL,2) = UEDG(IBL-IDIF,2)
 210 CONTINUE
C
C------ set BL variables between old and new stagnation point
 DUDX = UEDG(IDIF+2,2)/XSSI(IDIF+2,2)

 write(*,*) 'idif Ue xi dudx',
 & idif, UEDG(idif+2,2), xssi(idif+2,2), dudx

 DO 215 IBL=IDIF+1, 2, -1
 CTAU(IBL,2) = CTAU(IDIF+2,2)
 THET(IBL,2) = THET(IDIF+2,2)
 DSTR(IBL,2) = DSTR(IDIF+2,2)
 UEDG(IBL,2) = DUDX * XSSI(IBL,2)
 215 CONTINUE

 write(*,*) 'Uenew xinew', idif+1, uedg(idif+1,2), xssi(idif+1,2)

C
C------ move top side BL variables upstream
 DO 220 IBL=2, NBL(1)
 CTAU(IBL,1) = CTAU(IBL+IDIF,1)
 THET(IBL,1) = THET(IBL+IDIF,1)
 DSTR(IBL,1) = DSTR(IBL+IDIF,1)
 UEDG(IBL,1) = UEDG(IBL+IDIF,1)
 220 CONTINUE
 ENDIF
C
C----- tweak Ue so it's not zero, in case stag. point is right on node
 DO IS = 1, 2
 DO IBL = 2, NBL(IS)
 I = IPAN(IBL,IS)
 IF(UEDG(IBL,IS).LE.UEPS) THEN
 UEDG(IBL,IS) = UEPS
 QVIS(I) = VTI(IBL,IS)*UEPS
 GAM(I) = VTI(IBL,IS)*UEPS
 ENDIF
 ENDDO
 ENDDO
C
 ENDIF
C
C---- set new mass array since Ue has been tweaked
 DO 50 IS=1, 2
 DO 510 IBL=2, NBL(IS)
 MASS(IBL,IS) = DSTR(IBL,IS)*UEDG(IBL,IS)
 510 CONTINUE
 50 CONTINUE
C
 RETURN
 END

 SUBROUTINE UESET
C---
C Sets Ue from inviscid Ue plus all source influence
C---
 INCLUDE 'XFOIL.INC'
C
 DO 1 IS=1, 2
 DO 10 IBL=2, NBL(IS)
 I = IPAN(IBL,IS)
C
 DUI = 0.
 DO 100 JS=1, 2
 DO 1000 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 UE_M = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J)
 DUI = DUI + UE_M*MASS(JBL,JS)
 1000 CONTINUE
 100 CONTINUE
C
 UEDG(IBL,IS) = UINV(IBL,IS) + DUI
C
 10 CONTINUE
 1 CONTINUE
C
 RETURN
 END

 SUBROUTINE DSSET
 INCLUDE 'XFOIL.INC'
C
 DO 1 IS=1, 2
 DO 10 IBL=2, NBL(IS)
 DSTR(IBL,IS) = MASS(IBL,IS) / UEDG(IBL,IS)
 10 CONTINUE
 1 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/src/xplots.f

C***
C Module: xplots.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE PLTINI
 INCLUDE 'XFOIL.INC'
C
C---- terminate old plot if any
 IF(LPLOT) CALL PLEND
C
C---- initialize new plot
 IF(LLAND) THEN
 SIGNFR = SCRNFR
 ELSE
 SIGNFR = -SCRNFR
 ENDIF
 CALL PLOPEN(SIGNFR,IPSLU,IDEV)
 LPLOT = .TRUE.
C
C---- set X-window size in inches (might have been resized by user)
 CALL GETWINSIZE(XWIND,YWIND)
C
C---- draw plot page outline offset by margins
 CALL NEWPEN(5)
 IF(XMARG .GT. 0.0) THEN
 CALL PLOTABS(XMARG, YMARG,3)
 CALL PLOTABS(XMARG,YPAGE-YMARG,2)
 CALL PLOTABS(XPAGE-XMARG, YMARG,3)
 CALL PLOTABS(XPAGE-XMARG,YPAGE-YMARG,2)
 ENDIF
 IF(YMARG .GT. 0.0) THEN
 CALL PLOTABS(XMARG, YMARG,3)
 CALL PLOTABS(XPAGE-XMARG, YMARG,2)
 CALL PLOTABS(XMARG,YPAGE-YMARG,3)
 CALL PLOTABS(XPAGE-XMARG,YPAGE-YMARG,2)
 ENDIF
 CALL NEWPEN(1)
C
 CALL PLOTABS(XMARG,YMARG,-3)
 CALL NEWCLIPABS(XMARG, XPAGE-XMARG, YMARG, YPAGE-YMARG)
C
 CALL NEWFACTOR(SIZE)
C
 RETURN
 END

 SUBROUTINE PANPLT
C---
C Shows panel nodes on current airfoil geometry.
C---
 INCLUDE 'XFOIL.INC'
C
 XPLT(XX) = (XX - XOFP)*GSF
 YPLT(YY) = (YY - YOFP)*GSF
C
C---- length of normal tick mark showing panel node
 DSN = 0.01*CHORD
C
 XMIN = X(1)
 XMAX = X(1)
 YMIN = Y(1)
 YMAX = Y(1)
 DO 10 I=2, N
 XMIN = MIN(X(I),XMIN)
 XMAX = MAX(X(I),XMAX)
 YMIN = MIN(Y(I),YMIN)
 YMAX = MAX(Y(I),YMAX)
 10 CONTINUE
C
C---- set scale, offsets, to center airfoil in plot area
 XRANGE = MAX(1.0E-9, XMAX-XMIN)
 YRANGE = MAX(1.0E-9, YMAX-YMIN)
 GSF = MIN(1.0/XRANGE , PLOTAR/YRANGE)
 XOFP = XMIN - 0.5*(1.0 -GSF*XRANGE)/GSF - 0.05/GSF
 YOFP = YMIN - 0.5*(PLOTAR-GSF*YRANGE)/GSF - 0.05/GSF
C
C
 CALL PLTINI
C
 CALL GETCOLOR(ICOL0)
C
C---- plot axial chord line
 CALL NEWCOLORNAME('green')
 CALL NEWPEN(1)
 CALL PLOT(XPLT(XLE),YPLT(YLE),3)
 CALL PLOT(XPLT(XTE),YPLT(YTE),2)
C
C---- add tick marks
 DO 20 IT=1, 9
 XOC = FLOAT(IT)/10.0
 XT = XLE + XOC*(XTE-XLE)
 YT = YLE + XOC*(YTE-YLE)
C
 DT = 0.003
 IF(IT.EQ.5) DT = 0.005
 DTX = -DT*(YTE-YLE)
 DTY = DT*(XTE-XLE)
C
 CALL PLOT(XPLT(XT+DTX),YPLT(YT+DTY),3)
 CALL PLOT(XPLT(XT-DTX),YPLT(YT-DTY),2)
 20 CONTINUE
C
 CALL NEWCOLOR(ICOL0)
C
 I = 1
 CALL PLOT(XPLT(X(I)),YPLT(Y(I)),3)
C
 XOCM = ((X(I)-XLE)*(XTE-XLE)
 & + (Y(I)-YLE)*(YTE-YLE)) / CHORD**2
 DO 40 I=1, N
 XOCI = ((X(I)-XLE)*(XTE-XLE)
 & + (Y(I)-YLE)*(YTE-YLE)) / CHORD**2
C
 IF(S(I).GT.SLE .AND. S(I-1).LE.SLE) THEN
 XOCM = 0.0
 CALL NEWCOLOR(ICOL0)
 ENDIF
C
 IF(S(I).LT.SLE) THEN
C-------- upper surface
 IF(XOCI.LT.XSREF2 .AND. XOCM.GT.XSREF2) THEN
 FRAC = (XSREF2-XOCM)/(XOCI-XOCM)
 XF = X(I-1) + FRAC*(X(I)-X(I-1))
 YF = Y(I-1) + FRAC*(Y(I)-Y(I-1))
 CALL PLOT(XPLT(XF),YPLT(YF),2)
 CALL NEWCOLORNAME('magenta')
 ENDIF
 IF(XOCI.LT.XSREF1 .AND. XOCM.GT.XSREF1) THEN
 FRAC = (XSREF1-XOCM)/(XOCI-XOCM)
 XF = X(I-1) + FRAC*(X(I)-X(I-1))
 YF = Y(I-1) + FRAC*(Y(I)-Y(I-1))
 CALL PLOT(XPLT(XF),YPLT(YF),2)
 CALL NEWCOLOR(ICOL0)
 ENDIF
 ELSE
C-------- lower surface
 IF(XOCI.GT.XPREF1 .AND. XOCM.LT.XPREF1) THEN
 FRAC = (XPREF1-XOCM)/(XOCI-XOCM)
 XF = X(I-1) + FRAC*(X(I)-X(I-1))
 YF = Y(I-1) + FRAC*(Y(I)-Y(I-1))
 CALL PLOT(XPLT(XF),YPLT(YF),2)
 CALL NEWCOLORNAME('magenta')
 ENDIF
 IF(XOCI.GT.XPREF2 .AND. XOCM.LT.XPREF2) THEN
 FRAC = (XPREF2-XOCM)/(XOCI-XOCM)
 XF = X(I-1) + FRAC*(X(I)-X(I-1))
 YF = Y(I-1) + FRAC*(Y(I)-Y(I-1))
 CALL PLOT(XPLT(XF),YPLT(YF),2)
 CALL NEWCOLOR(ICOL0)
 ENDIF
 ENDIF
C
 CALL PLOT(XPLT(X(I)),YPLT(Y(I)),2)
 CALL PLOT(XPLT(X(I)+DSN*NX(I)),YPLT(Y(I)+DSN*NY(I)),2)
 CALL PLOT(XPLT(X(I)),YPLT(Y(I)),3)
C
 XOCM = XOCI
 40 CONTINUE
C
 CALL CANG(X,Y,N,0, IMAX,AMAX)
 CH2 = 0.9*CH
C
 CALL PLOTABS(XMARG,YPAGE-YMARG,3)
 CALL GETLASTXY(XPL,YPL)
 XPL = XPL + 2.0*CH
 YPL = YPL - 3.0*CH
C
 CALL PLCHAR(XPL,YPL,CH,'Current airfoil paneling',0.0,-1)
C
 YPL = YPL - 2.4*CH
 CALL PLCHAR(XPL,YPL,CH2,'No. panel nodes: ',0.0,-1)
 RNUM = FLOAT(N) + 0.1
 CALL PLNUMB(999.0,YPL,CH2,RNUM ,0.0,-1)
C
 YPL = YPL - 2.4*CH
 CALL PLCHAR(XPL,YPL,CH2,'Max panel angle: ',0.0,-1)
 CALL PLNUMB(999.0,YPL,CH2,AMAX,0.0,2)
 CALL PLMATH(999.0,YPL,CH2,'"' ,0.0,1)
C
 CALL PLFLUSH

 CALL PLEND
 LPLOT = .FALSE.
C
 RETURN
 END

 SUBROUTINE CPX
C---
C Plots Cp vs x, integrated forces,
C parameters, and reference data.
C---
 INCLUDE 'XFOIL.INC'
C
C---- set x location of label
 XPLT = 0.70
 IF(LFOREF) XPLT = 0.52
C
C---- size and type of reference-data symbol
 SH = 0.7*CH
 ISYM = 5
C
C---- Cp scaling factor
 PFAC = PLOTAR/(CPMAX-CPMIN)
C
C---- determine airfoil box size and location
 CALL AIRLIM(N,X,Y,XMIN,XMAX,YMIN,YMAX)
C
C---- y-offset for airfoil in Cp vs x plot
 FACA = FACAIR/(XMAX-XMIN)
 XOFA = XOFAIR*(XMAX-XMIN) - XMIN
 YOFA = YOFAIR*(XMAX-XMIN) - YMAX - CPMAX*PFAC/FACA
C
 CALL PLTINI
C
 CALL GETCOLOR(ICOL0)
C
C---- re-origin for Cp vs x plot
 CALL PLOT(0.09 , 0.04 + CPMAX*PFAC + (YMAX-YMIN)*FACA, -3)
C
C---- plot Cp(x) axes
 CALL CPAXES(LCPGRD,
 & N,X,Y,XOFA,YOFA,FACA,
 & CPMIN,CPMAX,CPDEL,PFAC,CH,
 & 'XFOIL',VERSION)
C
C---- add displacement surface to airfoil if viscous flag is set
 IF(LVISC) CALL CPDISP(N,X,Y,NX,NY,XOFA,YOFA,FACA,
 & IVX,IBLTE,NBL,IPAN,DSTR,ANTE,ICOLS)
C
C---- add sonic Cp dashed line if within plot
 IF(CPSTAR.GE.CPMIN) CALL DASH(0.0,1.0,-CPSTAR*PFAC)
C
 CALL NEWPEN(2)
 IF(LVISC) THEN
C----- plot viscous and inviscid Cp
 ILE1 = IPAN(2,1)
 ILE2 = IPAN(2,2)
C
 N1 = ILE1
 CALL NEWCOLOR(ICOLS(1))
 CALL XYLINE(N1,X(1),CPV(1),-XOFA,FACA,0.0,-PFAC,1)
C
 N2 = N - ILE2 + 1
 CALL NEWCOLOR(ICOLS(2))
 CALL XYLINE(N2,X(ILE2),CPV(ILE2),-XOFA,FACA,0.0,-PFAC,1)
C
 CALL NEWCOLOR(ICOL0)
 CALL XYLINE(NW,X(N+1),CPV(N+1),-XOFA,FACA,0.0,-PFAC,1)
C
 CALL NEWPEN(1)
 CALL CPDASH(N+NW,X,CPI, XOFA,FACA,PFAC)
 ELSE
C----- plot inviscid Cp only
 CALL XYLINE(N,X,CPI,-XOFA,FACA,0.0,-PFAC,1)
 ENDIF
C
C
C
 IF(LCPREF) THEN
 CALL GETXYL(IQX,NCPREF,XPREF,CPREF,LABREF,
 & 'Enter Cp vs x data filename^')
C
 CALL NEWCOLORNAME('cyan')
 CALL NEWPEN(2)
 DO K=1, NCPREF
 CALL PLSYMB((XPREF(K)+XOFA)*FACA,-PFAC*CPREF(K),
 & SH,ISYM,0.0,0)
 ENDDO
 CALL NEWCOLOR(ICOL0)
 ENDIF
C
C---- plot force coefficient
 YPLT = -CPMIN*PFAC
 CALL COEFPL(XPLT,YPLT,CH,LVISC,LFOREF,LVCONV,
 & NAME,NNAME,
 & REINF,MINF,ACRIT,ALFA,CL,CM,CD,CDP)
C
 IF(LFOREF) THEN
 CALL NEWCOLORNAME('cyan')
 YPLT = -CPMIN*PFAC
 CALL FOREF(XPLT,YPLT,CH,LVISC, MINF)
 CALL NEWCOLOR(ICOL0)
 ENDIF
C
 IF(LCPREF .AND. NCPREF.GT.0 .AND. LABREF(1:1).NE.' ') THEN
 CALL NEWCOLORNAME('cyan')
 YPLT = YPLT - 3.5*CH
 CALL PLSYMB(XPLT-1.0*CH,YPLT+0.5*CH,SH,ISYM ,0.0, 0)
 CALL PLCHAR(XPLT+1.0*CH,YPLT ,CH,LABREF,0.0,-1)
 CALL NEWCOLOR(ICOL0)
 ENDIF
C

 CALL PLFLUSH
C
 RETURN
 END

 SUBROUTINE GETXYL(NDIM,N,X,Y,LABEL,PROMPT)
C---
C Reads reference x,y data, with label
C---
 DIMENSION X(NDIM), Y(NDIM)
 CHARACTER*(*) LABEL, PROMPT
C
 CHARACTER*128 FNAME
 LU = 2
C
 N = 0
C
 CALL ASKS(PROMPT,FNAME)
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=98)
C
C---- read first line for possible label
 READ(LU,1000) LABEL
 1000 FORMAT(A)
C
 K1 = 1
 READ(LABEL,*,ERR=10) X(K1), Y(K1)
 K1 = 2
C
 10 DO K = K1, NDIM
 READ(LU,*,END=15,ERR=99) X(K), Y(K)
 ENDDO
 15 N = K-1
 CLOSE(LU)
C
 KP = INDEX(LABEL,'#')
 IF(KP.EQ.0) THEN
 CALL ASKS('Enter data description label^',LABEL)
 ELSE
 LABEL(KP:KP) = ' '
 ENDIF
C
 CALL STRIP(LABEL,NLABEL)
 RETURN
C
 98 WRITE(*,*) 'GETXYL: File OPEN error.'
 RETURN
C
 99 WRITE(*,*) 'GETXYL: File READ error.'
 CLOSE(LU)
 RETURN
C
 END

 SUBROUTINE AIRLIM(N,X,Y,XMIN,XMAX,YMIN,YMAX)
 DIMENSION X(N),Y(N)
C---
C Sets airfoil width and thickness
C for airfoil plot space allocation.
C---
C
 XMIN = X(1)
 XMAX = X(1)
 YMIN = Y(1)
 YMAX = Y(1)
 DO 4 I=1, N
 XMIN = MIN(XMIN,X(I))
 XMAX = MAX(XMAX,X(I))
 YMIN = MIN(YMIN,Y(I))
 YMAX = MAX(YMAX,Y(I))
 4 CONTINUE
 AIRDX = XMAX - XMIN
 AIRDY = YMAX - YMIN
C
C---- round up to nearest 10% of max dimension
 AIRDIM = MAX(AIRDX, AIRDY)
 AIRDX = 0.05*AIRDIM * AINT(AIRDX/(0.05*AIRDIM) + 1.2)
 AIRDY = 0.05*AIRDIM * AINT(AIRDY/(0.05*AIRDIM) + 1.2)
C
 XAVG = 0.5*(XMAX+XMIN)
 YAVG = 0.5*(YMAX+YMIN)
C
 XMIN = XAVG - 0.5*AIRDX
 XMAX = XAVG + 0.5*AIRDX
 YMIN = YAVG - 0.5*AIRDY
 YMAX = YAVG + 0.5*AIRDY
C
C---- fudge y-space again to 25% of plot width
 DDY = MIN(AIRDY , 0.25*AIRDX) - AIRDY
C
C---- fudge y limits to match fudged y space, keeping average y the same
 YMIN = YMIN - 0.5*DDY
 YMAX = YMAX + 0.5*DDY
C
 RETURN
 END

 SUBROUTINE CPAXES(LGRID,
 & N,X,Y,XOFA,YOFA,FACA,
 & CPMIN,CPMAX,CPDEL,PFAC,CH,
 & CODE,VERSION)
C--
C Plots axes and airfoil for Cp vs x plot
C--
 LOGICAL LGRID
 DIMENSION X(N),Y(N)
 CHARACTER*(*) CODE
C
 EXTERNAL PLCHAR
C
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
C
C---- plot Cp axis from Cpmax to Cpmin
 CALL NEWPEN(2)
 CALL YAXIS(0.0,-CPMAX*PFAC,-(CPMIN-CPMAX)*PFAC,-CPDEL*PFAC,
 & CPMAX,CPDEL,0.9*CH,1)
 CALL NEWPEN(3)
 YLAB = (FLOAT(INT(CPMIN/CPDEL + 0.01)/2) + 0.5)
 & * (-CPDEL)*PFAC - 0.6*CH
 CALL PLCHAR(-4.0*CH,YLAB,1.4*CH,'C',0.0,1)
 CALL PLSUBS(-4.0*CH,YLAB,1.4*CH,'p',0.0,1,PLCHAR)
C
C---- plot Cp=0 line
 CALL NEWPEN(1)
 CALL PLOT(0.0,0.0,3)
 CALL PLOT(1.0,0.0,2)
C
C---- add tick marks
 DO 10 IT=0, 2
 XTIK = 0.5*FLOAT(IT)
 CALL PLOT((XTIK+XOFA)*FACA,0.005,3)
 CALL PLOT((XTIK+XOFA)*FACA,-.005,2)
 10 CONTINUE
C
 DO 15 IT=1, 9
 XTIK = 0.1*FLOAT(IT)
 CALL PLOT((XTIK+XOFA)*FACA,0.0025,3)
 CALL PLOT((XTIK+XOFA)*FACA,-.0025,2)
 15 CONTINUE
C
C---- plot airfoil contour
 CALL NEWPEN(2)
 CALL PLOT((X(1)+XOFA)*FACA,(Y(1)+YOFA)*FACA,3)
 DO 20 I=2, N
 CALL PLOT((X(I)+XOFA)*FACA,(Y(I)+YOFA)*FACA,2)
 20 CONTINUE
C
C---- plot code identifier
 CALL NEWPEN(2)
 CHI = 0.60*CH
 CHJ = 0.50*CH
 LENC = LEN(CODE)
 CALL PLCHAR(CHI,-CPMIN*PFAC-1.0*CHI,CHI,CODE ,0.0,LENC)
 CALL PLCHAR(CHI,-CPMIN*PFAC-3.0*CHI,CHJ,'V' ,0.0,1)
 CALL PLNUMB(3.0*CHJ,-CPMIN*PFAC-3.0*CHI,CHJ,VERSION,0.0,2)
C
 IF(LGRID) THEN
 X0 = XOFA*FACA
 Y0 = -CPMAX*PFAC
 NXG = 10
 NYG = INT((CPMIN-CPMAX)/CPDEL + 0.01) * 5
 DXG = 0.1*FACA
 DYG = -CPDEL*PFAC / 5.0
 CALL NEWPEN(1)
 CALL PLGRID(X0,Y0, NXG,DXG, NYG,DYG, LMASK2)
 ENDIF
C
 RETURN
 END

 SUBROUTINE CPDISP(N,X,Y,NX,NY,XOFA,YOFA,FACA,
 & IVX,IBLTE,NBL,IPAN,DSTR,ANTE,ICOLS)
C--
C Plots displacement surface on airfoil
C--
 REAL NX,NY
 DIMENSION X(N),Y(N),NX(N),NY(N)
 DIMENSION IBLTE(2),NBL(2),IPAN(IVX,2)
 DIMENSION DSTR(IVX,2)
 DIMENSION ICOLS(2)
C
 CALL GETCOLOR(ICOL0)
 CALL NEWPEN(1)
C
C---- plot displacement surface on both airfoil sides
 DO 40 IS=1, 2
 IPEN = 3
 DO 410 IBL=2, IBLTE(IS)
 I = IPAN(IBL,IS)
 XPLT = X(I) + NX(I)*DSTR(IBL,IS)
 YPLT = Y(I) + NY(I)*DSTR(IBL,IS)
 CALL NEWCOLOR(ICOLS(IS))
 CALL PLOT((XPLT+XOFA)*FACA,(YPLT+YOFA)*FACA,IPEN)
 IPEN = 2
 410 CONTINUE
 40 CONTINUE
C
 IS = 2
C
C---- set upper and lower wake Dstar fractions based on first wake point
 DSTRTE = DSTR(IBLTE(IS)+1,IS)
 IF(DSTRTE.NE.0.0) THEN
 DSF1 = (DSTR(IBLTE(1),1) + 0.5*ANTE) / DSTRTE
 DSF2 = (DSTR(IBLTE(2),2) + 0.5*ANTE) / DSTRTE
 ELSE
 DSF1 = 0.5
 DSF2 = 0.5
 ENDIF
C
C---- plot upper wake displacement surface
ccc CALL NEWCOLOR(ICOLS(1))
 CALL NEWCOLOR(ICOL0)
 IBL = IBLTE(1)
 I = IPAN(IBL,1)
 XPLT = X(I) + NX(I)*DSTR(IBL,1)
 YPLT = Y(I) + NY(I)*DSTR(IBL,1)
 CALL PLOT((XPLT+XOFA)*FACA,(YPLT+YOFA)*FACA,3)
 DO 50 IBL=IBLTE(IS)+1, NBL(IS)
 I = IPAN(IBL,IS)
 XPLT = X(I) - NX(I)*DSTR(IBL,IS)*DSF1
 YPLT = Y(I) - NY(I)*DSTR(IBL,IS)*DSF1
 CALL PLOT((XPLT+XOFA)*FACA,(YPLT+YOFA)*FACA,2)
 50 CONTINUE
C
C---- plot lower wake displacement surface
ccc CALL NEWCOLOR(ICOLS(2))
 CALL NEWCOLOR(ICOL0)
 IBL = IBLTE(2)
 I = IPAN(IBL,2)
 XPLT = X(I) + NX(I)*DSTR(IBL,2)
 YPLT = Y(I) + NY(I)*DSTR(IBL,2)
 CALL PLOT((XPLT+XOFA)*FACA,(YPLT+YOFA)*FACA,3)
 DO 55 IBL=IBLTE(IS)+1, NBL(IS)
 I = IPAN(IBL,IS)
 XPLT = X(I) + NX(I)*DSTR(IBL,IS)*DSF2
 YPLT = Y(I) + NY(I)*DSTR(IBL,IS)*DSF2
 CALL PLOT((XPLT+XOFA)*FACA,(YPLT+YOFA)*FACA,2)
 55 CONTINUE
C
 CALL PLFLUSH
 CALL NEWCOLOR(ICOL0)
C
 RETURN
 END

 SUBROUTINE CPDASH(N,X,CP, XOFA,FACA,PFAC)
C----------------------------------
C Plot dashed -Cp distribution.
C----------------------------------
 DIMENSION X(N),CP(N)
C
 DO 40 I=2, N
 DX = X(I) - X(I-1)
 DC = CP(I) - CP(I-1)
 CALL PLOT((X(I)-0.75*DX+XOFA)*FACA,-PFAC*(CP(I)-0.75*DC),3)
 CALL PLOT((X(I)-0.25*DX+XOFA)*FACA,-PFAC*(CP(I)-0.25*DC),2)
 40 CONTINUE
C
 RETURN
 END

 SUBROUTINE SEQLAB(XLAB,YLAB,XL1,XL2,XL3,XL4,XL5,XL6,
 & CHSEQ,IPAR,LVT)
C---
C Plots label for alpha- or CL-sequence Cp vs x plot.
C---
 INCLUDE 'XFOIL.INC'
 LOGICAL LVT
C
 EXTERNAL PLCHAR
C
 CHN = 1.10*CH
 CCH = 0.90*CH
 CHS = 0.70*CH
C
 YSPACE = 2.1*CCH
C
C---- x-location of parameter labels
 XLP = XLAB + 1.0*CCH
 IF(LVT) XLP = XLAB + 7.0*CCH
C
 IF(IPAR.EQ.1) THEN
C
C----- plot case name
 CALL NEWPEN(3)
 YLAB = YLAB - CH
 XPLT = XLP + 8.0*CCH - 0.5*CHN*FLOAT(NNAME)
 CALL PLCHAR(XPLT,YLAB,CHN,NAME,0.0,NNAME)
C
 YLAB = YLAB - YSPACE
 CALL NEWPEN(3)
 IF (MATYP.EQ.1) THEN
 CALL PLCHAR(XLP,YLAB,CCH,' Ma = ',0.0,7)
 ELSEIF(MATYP.EQ.2) THEN
ccc CALL PLMATH(XLP,YLAB,CCH,' _ ',0.0,7)
 CALL PLCHAR(XLP,YLAB,CCH,'Ma C = ',0.0,7)
 CALL PLMATH(XLP,YLAB,CCH,' R ',0.0,7)
 CALL PLSUBS(XLP+3.0*CCH,YLAB,CCH,'L',0.0,1,PLCHAR)
 ELSEIF(MATYP.EQ.3) THEN
 CALL PLCHAR(XLP,YLAB,CCH,'Ma C = ',0.0,7)
 CALL PLSUBS(XLP+3.0*CCH,YLAB,CCH,'L',0.0,1,PLCHAR)
 ENDIF
 CALL PLNUMB(XLP+7.0*CCH,YLAB,CCH, MINF1,0.0,3)
C
 IF(LVT) THEN
 YLAB = YLAB - YSPACE
 CALL NEWPEN(3)
 IF (RETYP.EQ.1) THEN
 CALL PLCHAR(XLP,YLAB,CCH,' Re = ',0.0,7)
 ELSEIF(RETYP.EQ.2) THEN
ccc CALL PLMATH(XLP,YLAB,CCH,' _ ',0.0,7)
 CALL PLCHAR(XLP,YLAB,CCH,'Re C = ',0.0,7)
 CALL PLMATH(XLP,YLAB,CCH,' R ',0.0,7)
 CALL PLSUBS(XLP+3.0*CCH,YLAB,CCH,'L',0.0,1,PLCHAR)
 ELSEIF(RETYP.EQ.3) THEN
 CALL PLCHAR(XLP,YLAB,CCH,'Re C = ',0.0,7)
 CALL PLSUBS(XLP+3.0*CCH,YLAB,CCH,'L',0.0,1,PLCHAR)
 ENDIF
 NDIG = 3
 IF(REINF .GE. 9.9995E6) NDIG = 2
 IF(REINF .GE. 99.995E6) NDIG = 1
 IF(REINF .GE. 999.95E6) NDIG = 0
 RE6 = REINF1*1.0E-6
 CALL PLNUMB(XLP+ 7.0*CCH,YLAB , CCH,RE6 ,0.0,NDIG)
 CALL PLMATH(XLP+12.1*CCH,YLAB+0.2*CCH,0.80*CCH,'#' ,0.0,1)
 CALL PLCHAR(XLP+13.0*CCH,YLAB , CCH,'10' ,0.0,2)
 CALL PLMATH(XLP+15.0*CCH,YLAB ,1.10*CCH, '6',0.0,1)
C
 YLAB = YLAB - YSPACE
 CALL NEWPEN(3)
 CALL PLCHAR(XLP ,YLAB,CCH,' N = ',0.0,7)
 CALL PLSUBS(XLP+2.0*CCH,YLAB,CCH, 'cr' ,0.0,2,PLCHAR)
 CALL PLNUMB(XLP+7.0*CCH,YLAB,CCH,ACRIT ,0.0,3)
 ENDIF
C
 ENDIF
C
 XL1 = XLAB
 XL2 = XL1 + 7.0*CHS
 XL3 = XL2 + 8.0*CHS
 XL4 = XL3 + 8.0*CHS
 XL5 = XL4 + 9.0*CHS
 XL6 = XL5 + 7.0*CHS
 YLAB = YLAB - 2.7*CHS
 CALL NEWPEN(3)
 CALL PLMATH(XL1+2.0*CHS,YLAB,1.3*CHS,'a',0.0,1)
 CALL PLCHAR(XL2+2.0*CHS,YLAB,CHS,'C',0.0,1)
 CALL PLSUBS(XL2+2.0*CHS,YLAB,CHS,'L',0.0,1,PLCHAR)
 CALL PLCHAR(XL3+2.0*CHS,YLAB,CHS,'C',0.0,1)
 CALL PLSUBS(XL3+2.0*CHS,YLAB,CHS,'M',0.0,1,PLCHAR)
 IF(LVT) THEN
 CALL PLCHAR(XL4+2.5*CHS,YLAB, CHS,'C',0.0,1)
 CALL PLSUBS(XL4+2.5*CHS,YLAB, CHS,'D',0.0,1,PLCHAR)
 CALL PLCHAR(XL5 ,YLAB,0.8*CHS,'Top',0.0,3)
 CALL PLCHAR(XL5+3.0*CHS,YLAB, CHS,'X' ,0.0,1)
 CALL PLCHAR(XL5+3.9*CHS,YLAB,0.6*CHS,'tr' ,0.0,2)
 CALL PLCHAR(XL6 ,YLAB,0.8*CHS,'Bot',0.0,3)
 CALL PLCHAR(XL6+3.0*CHS,YLAB, CHS,'X' ,0.0,1)
 CALL PLCHAR(XL6+3.9*CHS,YLAB,0.6*CHS,'tr' ,0.0,2)
 ENDIF
C
 CALL NEWPEN(1)
 CALL PLOT(XL1 ,YLAB-0.6*CHS,3)
 CALL PLOT(XL1+5.0*CHS,YLAB-0.6*CHS,2)
 CALL PLOT(XL2 ,YLAB-0.6*CHS,3)
 CALL PLOT(XL2+6.0*CHS,YLAB-0.6*CHS,2)
 CALL PLOT(XL3 ,YLAB-0.6*CHS,3)
 CALL PLOT(XL3+6.0*CHS,YLAB-0.6*CHS,2)
 IF(LVT) THEN
 CALL PLOT(XL4 ,YLAB-0.6*CHS,3)
 CALL PLOT(XL4+7.0*CHS,YLAB-0.6*CHS,2)
 CALL PLOT(XL5 ,YLAB-0.6*CHS,3)
 CALL PLOT(XL5+5.0*CHS,YLAB-0.6*CHS,2)
 CALL PLOT(XL6 ,YLAB-0.6*CHS,3)
 CALL PLOT(XL6+5.0*CHS,YLAB-0.6*CHS,2)
 ENDIF
C
 YLAB = YLAB - 0.5*CHS
C
 CHSEQ = CHS
 RETURN
 END

 SUBROUTINE SEQPLT(YLAB,XL1,XL2,XL3,XL4,XL5,XL6,
 & CHS,ALT,CLT,CMT,LVT)
C--
C Plots force coefficients for one point on
C alpha- or CL-sequence Cp vs x plot.
C--
 INCLUDE 'XFOIL.INC'
 LOGICAL LVT
C
 CALL NEWPEN(2)
 DXL1 = 0.
 DXL2 = 0.
 DXL3 = CHS
 DXL4 = 0.
 IF(ALT .LT. 0.0) DXL1 = DXL1 - CHS
 IF(CLT .LT. 0.0) DXL2 = DXL2 - CHS
 IF(CMT .LT. 0.0) DXL3 = DXL3 - CHS
 IF(CD .LT. 0.0) DXL4 = DXL4 - CHS
 IF(ALT .GE. 10.) DXL1 = DXL1 - CHS
 IF(ALT .LE.-10.) DXL1 = DXL1 - CHS
C
 YLAB = YLAB - 2.1*CHS
 CALL PLNUMB(XL1+DXL1,YLAB,CHS,ALT,0.0,3)
 CALL PLNUMB(XL2+DXL2,YLAB,CHS,CLT,0.0,4)
 CALL PLNUMB(XL3+DXL3,YLAB,CHS,CMT,0.0,3)
 IF(LVT) THEN
 CALL PLNUMB(XL4+DXL4,YLAB,CHS, CD,0.0,5)
 CALL PLNUMB(XL5 ,YLAB,CHS,XOCTR(1),0.0,3)
 CALL PLNUMB(XL6 ,YLAB,CHS,XOCTR(2),0.0,3)
 ENDIF
C
 RETURN
 END

 SUBROUTINE COEFPL(XL,YL,CH,LVISC,LFOREF,LVCONV,
 & NAME,NNAME,
 & REINF,MINF,ACRIT,ALFA,CL,CM,CD,CDP)
C--
C Plots force coefficients for single-point Cp vs x plot.
C
C XL,YL upper-left corner of label block,
C returned as location of lower-left corner
C
C--
 LOGICAL LVISC, LFOREF, LVCONV
 CHARACTER*(*) NAME
 REAL MINF
C
 EXTERNAL PLCHAR
C
 CHN = 1.10*CH
 CCH = 0.90*CH
 SCH = 0.70*CH
C
 YSPACE = 2.2*CCH
C
 ADEG = ALFA * 45.0/ATAN(1.0)
C
 CALL GETCOLOR(ICOL0)
C
 CALL NEWPEN(3)
 XPLT1 = XL + 16.0*CCH - FLOAT(NNAME)*CHN
 XPLT2 = XL + 6.0*CCH - 0.5*FLOAT(NNAME)*CHN
 IF(LFOREF) XPLT = MIN(XPLT1 , XPLT2)
 IF(.NOT.LFOREF) XPLT = XPLT2
 YL = YL - CHN
 CALL PLCHAR(XPLT,YL,CHN,NAME,0.0,NNAME)
C
 YL = YL - 0.2*CH
 CALL NEWPEN(2)
C
 IF(MINF .GT. 0.0) THEN
 YL = YL - 2.0*CH
 CALL PLCHAR(XL ,YL,CCH,'Ma = ',0.0,5)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, MINF ,0.0,4)
 ENDIF
C
 IF(LVISC) THEN
 YL = YL - YSPACE
 CALL PLCHAR(XL ,YL ,CCH,'Re = ' ,0.0,5)
 NDIG = 3
 IF(REINF .GE. 9.9995E6) NDIG = 2
 IF(REINF .GE. 99.995E6) NDIG = 1
 IF(REINF .GE. 999.95E6) NDIG = 0
 CALL PLNUMB(XL+ 5.0*CCH,YL ,CCH, REINF*1.E-6,0.0,NDIG)
 CALL PLMATH(XL+10.1*CCH,YL+0.10*CCH,0.80*CCH,'#' ,0.0,1)
 CALL PLCHAR(XL+10.9*CCH,YL , CCH,'10' ,0.0,2)
 CALL PLMATH(XL+12.9*CCH,YL ,1.10*CCH, '6',0.0,1)
 ENDIF
C
 YL = YL - YSPACE
 CALL PLMATH(XL ,YL,1.2*CCH,'a',0.0,1)
 CALL PLMATH(XL ,YL,CCH,' = ',0.0,5)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, ADEG ,0.0,4)
 CALL PLMATH(999.0 ,YL,CCH,'"' ,0.0,1)
C
 YL = YL - YSPACE
 CALL PLCHAR(XL ,YL,CCH,'C = ',0.0,5)
 CALL PLSUBS(XL ,YL,CCH, 'L' ,0.0,1,PLCHAR)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, CL ,0.0,4)
C
 YL = YL - YSPACE
 CALL PLCHAR(XL ,YL,CCH,'C = ',0.0,5)
 CALL PLSUBS(XL ,YL,CCH, 'M' ,0.0,1,PLCHAR)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, CM ,0.0,4)
C
 IF(.NOT.LVISC) THEN
 YL = YL - YSPACE
 CALL PLCHAR(XL ,YL,CCH,'C = ',0.0,5)
 CALL PLSUBS(XL ,YL,CCH, 'Dp' ,0.0,2,PLCHAR)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, CDP ,0.0,5)
 ENDIF
C
 IF(LVISC) THEN
 YL = YL - YSPACE
 CALL PLCHAR(XL ,YL,CCH,'C = ',0.0,5)
 CALL PLSUBS(XL ,YL,CCH, 'D' ,0.0,1,PLCHAR)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, CD ,0.0,5)
C
 ELOD = 0.
 IF(CD.NE.0.0) ELOD = CL/CD
C
 YL = YL - YSPACE
 CALL PLCHAR(XL ,YL,0.8*CCH,'L/D',0.0,3)
 CALL PLCHAR(XL ,YL,CCH,' = ',0.0,5)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, ELOD ,0.0,2)
C
 YL = YL - YSPACE
 CALL PLCHAR(XL ,YL,CCH,'N = ',0.0,5)
 CALL PLSUBS(XL ,YL,CCH, 'cr' ,0.0,2,PLCHAR)
 CALL PLNUMB(XL+5.0*CCH,YL,CCH, ACRIT ,0.0,2)
C
 ENDIF
C
 IF(LVISC .AND. .NOT.LVCONV) THEN
 CALL NEWCOLORNAME('red')
 YL = YL - 3.0*CCH
 CALL PLCHAR(XL-5.0*CCH,YL,1.5*CCH,'* NOT CONVERGED *',0.0,17)
 ENDIF
C
 CALL NEWCOLOR(ICOL0)
C
 RETURN
 END

 SUBROUTINE FOREF(XL,YL,CH,LVISC, MINF)
C---
C Plots reference data force coefficients
C next to calculated coefficients.
C
C XL,YL upper-left corner of label block,
C returned as location of lower-left corner
C
C---
 LOGICAL LVISC
 REAL MINF
C
 CHARACTER*32 LABEXP
C
 CHN = 1.10*CH
 CCH = 0.90*CH
C
 YSPACE = 2.2*CCH
C
 XL0 = XL
 YL0 = YL
C
 CALL PLFLUSH
 10 WRITE(*,*) 'Enter reference Mach, Re, Alpha, CL, CD, CM:'
 READ(*,*,ERR=10) AMEX, REEX, ALEX, CLEX, CDEX, CMEX
C
 XL = XL + 18.5*CCH
 YL = YL - CHN
C
 YL = YL - 0.2*CH
 CALL NEWPEN(2)
C
 IF(MINF .GT. 0.0) THEN
 YL = YL - YSPACE
 CALL PLNUMB(XL,YL,CCH,AMEX,0.0,3)
 ENDIF
C
 IF(LVISC) THEN
 YL = YL - YSPACE
 CALL PLNUMB(XL,YL,CCH,REEX*1.0E-6,0.0,3)
 CALL PLMATH(XL+5.0*CCH,YL+0.10*CCH,0.80*CCH,'#' ,0.0,1)
 CALL PLCHAR(XL+5.8*CCH,YL , CCH,'10' ,0.0,2)
 CALL PLMATH(XL+7.8*CCH,YL ,1.10*CCH, '6',0.0,1)
 ENDIF
C
 YL = YL - YSPACE
 CALL PLNUMB(XL,YL,CCH,ALEX,0.0,3)
C
 YL = YL - YSPACE
 CALL PLNUMB(XL,YL,CCH,CLEX,0.0,4)
C
 YL = YL - YSPACE
 CALL PLNUMB(XL,YL,CCH,CMEX,0.0,4)
C
 IF(LVISC) THEN
 YL = YL - YSPACE
 CALL PLNUMB(XL,YL,CCH,CDEX,0.0,5)
C
 YL = YL - YSPACE
 ELOD = 0.0
 IF(CDEX.NE.0.0) ELOD = CLEX/CDEX
 CALL PLNUMB(XL,YL,CCH,ELOD,0.0,2)
 ENDIF
C
 CALL NEWPEN(1)
 XLIN = XL - 1.5*CCH
 CALL PLOT(XLIN,YL0,3)
 CALL PLOT(XLIN,YL ,2)
C
 CALL PLFLUSH
C
 CALL ASKS('Enter reference force data label^',LABEXP)
 CALL NEWPEN(3)
 YL1 = YL0 - CHN
 CALL PLCHAR(XL,YL1,0.9*CHN,LABEXP,0.0,-1)
C
 RETURN
 END

 SUBROUTINE CPVEC
C---
C Plots airfoil with normal pressure force vectors.
C---
 INCLUDE 'XFOIL.INC'
C
 DO 2 I=1, N
 W1(I) = X(I)
 W2(I) = Y(I)
 2 CONTINUE
C
 CALL ROTATE(W1,W2,N,ALFA)
 CALL NCALC(W1,W2,S,N,W3,W4)
C
C---- set geometric limits
 XMIN = W1(1)
 XMAX = W1(1)
 YMIN = W2(1)
 YMAX = W2(1)
 DO 5 I=1, N
 XMIN = MIN(XMIN,W1(I))
 XMAX = MAX(XMAX,W1(I))
 YMIN = MIN(YMIN,W2(I))
 YMAX = MAX(YMAX,W2(I))
 5 CONTINUE
C
C---- set pressure vector scale VSF
 XRANGE = MAX(1.0E-9, XMAX-XMIN)
 YRANGE = MAX(1.0E-9, YMAX-YMIN)
 VSF = VFAC / MIN(1.0/XRANGE , PLOTAR/YRANGE)
C
C
C---- set limits again, including pressure vectors
 DO 8 I=1, N
 IF(LVISC) CP = CPV(I)
 IF(.NOT.LVISC) CP = CPI(I)
 DX = ABS(CP)*VSF*W3(I)
 DY = ABS(CP)*VSF*W4(I)
 XMIN = MIN(XMIN,W1(I)+DX)
 XMAX = MAX(XMAX,W1(I)+DX)
 YMIN = MIN(YMIN,W2(I)+DY)
 YMAX = MAX(YMAX,W2(I)+DY)
 8 CONTINUE
C
C---- set scale, offsets, to center airfoil+vectors in plot area
 XRANGE = MAX(1.0E-9, XMAX-XMIN)
 YRANGE = MAX(1.0E-9, YMAX-YMIN)
 GSF = MIN(1.0/XRANGE , PLOTAR/YRANGE)
 XOFG = XMIN - 0.5*(1.0 -GSF*XRANGE)/GSF - 0.05/GSF
 YOFG = YMIN - 0.5*(PLOTAR-GSF*YRANGE)/GSF - 0.05/GSF
C
 CALL PLTINI
C
 CALL NEWPEN(2)
 CALL PLOT((W1(1)-XOFG)*GSF,(W2(1)-YOFG)*GSF,3)
 DO 10 I=2, N
 CALL PLOT((W1(I)-XOFG)*GSF,(W2(I)-YOFG)*GSF,2)
 10 CONTINUE
C
 DO 20 I=2, N-1
 IF(LVISC) CP = CPV(I)
 IF(.NOT.LVISC) CP = CPI(I)
 DX = -CP*VSF*W3(I)*GSF
 DY = -CP*VSF*W4(I)*GSF
 XL = (W1(I)-XOFG)*GSF
 YL = (W2(I)-YOFG)*GSF
 IF(CP.LT.0.0) CALL ARROW(XL ,YL ,DX,DY)
 IF(CP.GE.0.0) CALL ARROW(XL-DX,YL-DY,DX,DY)
 20 CONTINUE
C
 CALL PLFLUSH
 RETURN
 END

 SUBROUTINE PPAPLT(NPPAI,IPPAI)
 DIMENSION IPPAI(*)
C---
C Plots mutiple polar airfoils overlaid
C---
 INCLUDE 'XFOIL.INC'
C
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
 INCLUDE 'XDES.INC'
C
 CALL PLTINI
 CALL GOFINI
C
 CALL NEWPEN(1)
C
 IF(LGGRID) THEN
C------ plot outline
ccc CALL PLOT(XMOD(XGMIN),YMOD(YGMIN),3)
 CALL PLOT(XMOD(XGMAX),YMOD(YGMIN),3)
 CALL PLOT(XMOD(XGMAX),YMOD(YGMAX),2)
 CALL PLOT(XMOD(XGMIN),YMOD(YGMAX),2)
ccc CALL PLOT(XMOD(XGMIN),YMOD(YGMIN),2)
C
 CALL XAXIS(XMOD(XGMIN),YMOD(YGMIN),(XGMAX-XGMIN)*XSF,
 & DXYG*XSF, XGMIN,DXYG,CHG,-2)
 CALL YAXIS(XMOD(XGMIN),YMOD(YGMIN),(YGMAX-YGMIN)*YSF,
 & DXYG*YSF, YGMIN,DXYG,CHG,-2)
C
C------ fine grid
 NXG = INT((XGMAX-XGMIN)/DXYG + 0.01)
 NYG = INT((YGMAX-YGMIN)/DXYG + 0.01)
 X0 = XMOD(XGMIN)
 Y0 = YMOD(YGMIN)
 DXG = (XMOD(XGMAX)-X0)/NXG
 DYG = (YMOD(YGMAX)-Y0)/NYG
 CALL PLGRID(X0,Y0,NXG,DXG,NYG,DYG, LMASK2)
C
 XL0 = XMOD(XGMIN) + 1.0*CH
 YL0 = YMOD(YGMAX) + 3.0*CH
 ELSE
C
C------ plot chord line and tick marks every 10% chord
 CALL PLOT(XMOD(0.0),YMOD(0.0),3)
 CALL PLOT(XMOD(1.0),YMOD(0.0),2)
 DO 10 ITICK=1, 10
 XPLT = FLOAT(ITICK)/10.0
 CALL PLOT(XMOD(XPLT),YMOD(0.003),3)
 CALL PLOT(XMOD(XPLT),YMOD(-.003),2)
 10 CONTINUE
C
 XL0 = XMOD(XBMIN) + 1.0*CH
 YL0 = YMOD(YBMAX) + 3.0*CH
 ENDIF
C
 CALL GETCOLOR(ICOL0)
C
 CALL NEWPEN(2)
 CALL PLTAIR(X,XP,Y,YP,S,N, XOFF,XSF,YOFF,YSF,'black')
C
 XLAB = XL0
 YLAB = YL0
 CHL = CH
 DO 40 K = NPPAI, 1, -1
 IP = IPPAI(K)
 IF(IP.EQ.0) GO TO 40
C
C------- plot airfoil if it's archived
 NXY = NXYPOL(IP)
 IF(NXY.GT.1) THEN
 CALL SCALC(CPOLXY(1,1,IP),CPOLXY(1,2,IP),W3,NXY)
 CALL SPLINE(CPOLXY(1,1,IP),W1,W3,NXY)
 CALL SPLINE(CPOLXY(1,2,IP),W2,W3,NXY)
C
 CALL NEWCOLOR(ICOLP(IP))
 CALL PLTAIR(CPOLXY(1,1,IP),W1,
 & CPOLXY(1,2,IP),W2, W3,NXY,
 & XOFF,XSF,YOFF,YSF,' ')
C
C-------- also plot its number and name
 CALL STRIP(NAMEPOL(IP),NNAMEP)
 PFLT = FLOAT(IP)
 CALL PLNUMB(XLAB,YLAB,CHL,PFLT,0.0,-1)
 CALL PLCHAR(XLAB+3.0*CHL,YLAB,CHL,NAMEPOL(IP),0.0,NNAMEP)
 YLAB = YLAB + 2.5*CHL
 ENDIF
 40 CONTINUE
C
 CALL PLFLUSH
C
 RETURN
 END ! PPAPLT

 SUBROUTINE RESETSCL
C---- Resets scales, offsets for zooming
C uses offsets XOFF,YOFF
C scale factors XSF,YSF
 INCLUDE 'XFOIL.INC'
 XOFF = 0.0
 YOFF = 0.0
 XSF = 1.0
 YSF = 1.0
 RETURN
 END

XFOILinterface/XFOIL/src/xpol.f

C***
C Module: xpol.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE PLRSET(IP)
C--
C Selects slot IP for saving polar.
C Resets all parameters if necessary.
C--
 INCLUDE 'XFOIL.INC'
 LOGICAL ERROR
C
 IF(IP.LE.0) THEN
C----- invalid polar index
 RETURN
C
 ELSEIF(IP.GE.1 .AND. IP.LE.NPOL) THEN
 WRITE(*,*)
 WRITE(*,*) 'Existing stored polar is chosen for appending...'
 NIPOL = NIPOL0
 IF(LCMINP) THEN
 NIPOL = NIPOL + 1
 IPOL(IMC) = NIPOL
 ENDIF
 IF(LHMOMP) THEN
 NIPOL = NIPOL + 1
 IPOL(ICH) = NIPOL
 ENDIF
 CALL POLWRIT(6,' ',ERROR, .TRUE.,
 & NAX, 1,NAPOL(IP), CPOL(1,1,IP),IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP), IRETYP(IP),IMATYP(IP),
 & ISX,1,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & 'XFOIL',VERSION, .FALSE.)
 NIPOL = NIPOL0
C
C----- check if geometries differ...
 IF(N.NE.NXYPOL(IP)) GO TO 10
 SIZREF = S(N) - S(1)
 DO I = 1, N
 DSQ = (X(I)-CPOLXY(I,1,IP))**2 + (Y(I)-CPOLXY(I,2,IP))**2
 DSFRAC = SQRT(DSQ) / SIZREF
 IF(DSFRAC .GT. 0.00001) GO TO 10
 ENDDO
 GO TO 20
C
 10 WRITE(*,*) 'Current airfoil differs from airfoil of stored polar'
 WRITE(*,1100)
 1100 FORMAT(
 & /' -'
 & /' 0 abort polar accumulation'
 & /' 1 compute with current airfoil'
 & /' 2 compute with stored airfoil',
 & ' (overwrite current airfoil)')
 CALL ASKI(' Select action^', IOPT)
 IF(IOPT.EQ.0) THEN
 IP = 0
 RETURN
 ELSEIF(IOPT.EQ.1) THEN
 CONTINUE
 ELSEIF(IOPT.EQ.2) THEN
 CALL APCOPY(IP)
 ENDIF
C
 20 CONTINUE
 WRITE(*,*)
 WRITE(*,*) 'Setting current parameters to those of stored polar'
C
 NAME = NAMEPOL(IP)
 CALL STRIP(NAME,NNAME)
C
 RETYP = IRETYP(IP)
 MATYP = IMATYP(IP)
C
 MINF1 = MACHP1(IP)
 REINF1 = REYNP1(IP)
 ACRIT = ACRITP(IP)
C
 XSTRIP(1) = XSTRIPP(1,IP)
 XSTRIP(2) = XSTRIPP(2,IP)
C
 ELSE
C----- new polar slot is chosen
 NPOL = IP
C
 NAPOL(IP) = 0
C
 NAMEPOL(IP) = NAME
 IRETYP(IP) = RETYP
 IMATYP(IP) = MATYP
C
 IF(LVISC) THEN
 REYNP1(IP) = REINF1
 ELSE
 REYNP1(IP) = 0.
 ENDIF
 MACHP1(IP) = MINF1
 ACRITP(IP) = ACRIT
C
 XSTRIPP(1,IP) = XSTRIP(1)
 XSTRIPP(2,IP) = XSTRIP(2)
C
 NXYPOL(IP) = N
 DO I = 1, N
 CPOLXY(I,1,IP) = X(I)
 CPOLXY(I,2,IP) = Y(I)
 ENDDO
C
 WRITE(*,2100) IP, NAMEPOL(IP)
 2100 FORMAT(/' Polar', I3, ' newly created for accumulation'
 & /' Airfoil archived with polar: ', A)
 ENDIF
C
 END ! PLRSET

 SUBROUTINE APCOPY(IP)
 INCLUDE 'XFOIL.INC'
C
 N = NXYPOL(IP)
 DO I = 1, N
 X(I) = CPOLXY(I,1,IP)
 Y(I) = CPOLXY(I,2,IP)
 ENDDO
 NAME = NAMEPOL(IP) ! new MD 30 Oct 02
C
 CALL SCALC(X,Y,S,N)
 CALL SEGSPL(X,XP,S,N)
 CALL SEGSPL(Y,YP,S,N)
 CALL NCALC(X,Y,S,N,NX,NY)
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 XTE = 0.5*(X(1)+X(N))
 YTE = 0.5*(Y(1)+Y(N))
 CHORD = SQRT((XTE-XLE)**2 + (YTE-YLE)**2)
 CALL TECALC
 CALL APCALC
C
 LGAMU = .FALSE.
 LQINU = .FALSE.
 LWAKE = .FALSE.
 LQAIJ = .FALSE.
 LADIJ = .FALSE.
 LWDIJ = .FALSE.
 LIPAN = .FALSE.
 LVCONV = .FALSE.
 LSCINI = .FALSE.
CC LBLINI = .FALSE.
C
 RETURN
 END ! APCOPY

 SUBROUTINE PLRINI(LU,IP)
C--
C Checks or initializes a polar save file.
C
C If file PFNAME(IP) exists, it is checked for consistency
C with current parameters. Polar saving is enabled
C only if file parameters match current parameters.
C
C If file PFNAME(IP) doesn't exist, a new one is set up by
C writing a header to it, and polar saving is enabled.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*128 LINE, LINEL, PROMPT
C
 LOGICAL NAMDIF, ERROR
C
 INTEGER NBLP(ISX,IPX)
C
 REAL RINP(IPTOT)
C
 CALL STRIP(PFNAME(IP),NPF)
 IF(NPF.EQ.0) THEN
 PROMPT = 'Enter polar save filename'
 & // ' OR <return> for no file^'
 ELSE
 WRITE(*,*) 'Default polar save filename: ', PFNAME(IP)(1:NPF)
 PROMPT = 'Enter new filename'
 & // ' OR "none"'
 & // ' OR <return> for default^'
 ENDIF
C
 CALL ASKS(PROMPT,FNAME)
 CALL STRIP(FNAME,NFN)
C
 IF(NFN.EQ.0) THEN
 FNAME = PFNAME(IP)
 NFN = NPF
 ELSEIF(INDEX('NONEnone',FNAME(1:4)).NE.0) THEN
 NFN = 0
 ENDIF
C
 IF(NFN.EQ.0) THEN
 LPFILE = .FALSE.
 WRITE(*,*)
 WRITE(*,*) 'Polar save file will NOT be written'
 RETURN
 ENDIF
C
C---- no valid file yet
 LPFILE = .FALSE.
C
C---- try reading the polar file to see if it exists
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=60)
 CALL POLREAD(LU,' ',ERROR,
 & NAX,NAPOL(IP),CPOL(1,1,IP),
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP),IRETYP(IP),IMATYP(IP),
 & ISX,NBLP(1,IP),CPOLSD(1,1,1,IP),
 & CODEPOL(IP),VERSPOL(IP))
 IF(ERROR) GO TO 90
 CLOSE(LU)
 PFNAME(IP) = FNAME
C
 CALL STRIP(NAMEPOL(IP),NNAMEP)
C
C---- check to see if the names are different
 IF(NNAME .NE. NNAMEP) THEN
 NAMDIF = .TRUE.
 ELSE
 NAMDIF = .FALSE.
 DO K=1, NNAME
 IF(NAME(K:K).NE.NAMEPOL(IP)(K:K)) NAMDIF = .TRUE.
 ENDDO
 ENDIF
C
C---- check if the polar save file is for the same airfoil and conditions
 IF(NAMDIF .OR.
 & REYNP1(IP) .NE. REINF1 .OR.
 & MACHP1(IP) .NE. MINF1 .OR.
 & IRETYP(IP) .NE. RETYP .OR.
 & IMATYP(IP) .NE. MATYP .OR.
 & ACRITP(IP) .NE. ACRIT .OR.
 & XSTRIPP(1,IP) .NE. XSTRIP(1) .OR.
 & XSTRIPP(2,IP) .NE. XSTRIP(2)) THEN
C
 WRITE(*,6600) NAME, NAMEPOL(IP) ,
 & REINF1, REYNP1(IP) ,
 & MINF1, MACHP1(IP) ,
 & RETYP, IRETYP(IP) ,
 & MATYP, IMATYP(IP) ,
 & ACRIT, ACRITP(IP) ,
 & XSTRIP(1),XSTRIPP(1,IP),
 & XSTRIP(2),XSTRIPP(2,IP)
C
 6600 FORMAT(
 & /' Current Save file'
 & /' ------------------ ------------------'
 & /' name : ', A , A
 & /' Re : ', F12.0, 20X, F12.0
 & /' Mach : ', F12.4, 20X, F12.4
 & /' Retyp: ', I7 , 25X, I7
 & /' Matyp: ', I7 , 25X, I7
 & /' Ncrit: ', F12.4, 20X, F12.4
 & /' xtr T: ', F12.4, 20X, F12.4
 & /' xtr B: ', F12.4, 20X, F12.4)
C
 WRITE(*,*)
 WRITE(*,*)
 & 'Current parameters different from old save file values.'
 CALL ASKL
 & ('Set current parameters to old save file values ?^',OK)
C
 IF(OK) THEN
 NAME = NAMEPOL(IP)
 NNAME = NNAMEP
 REINF1 = REYNP1(IP)
 MINF1 = MACHP1(IP)
 RETYP = IRETYP(IP)
 MATYP = IMATYP(IP)
 ACRIT = ACRITP(IP)
 XSTRIP(1) = XSTRIPP(1,IP)
 XSTRIP(2) = XSTRIPP(2,IP)
 ELSE
 WRITE(*,*)
 WRITE(*,*) 'Old polar save file NOT available for appending'
 RETURN
 ENDIF
 ENDIF
C
C---- display polar save file just read in
 WRITE(*,*)
 WRITE(*,*) 'Old polar save file read in ...'
 CALL POLWRIT(6,' ',ERROR, .TRUE.,
 & NAX, 1,NAPOL(IP), CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP), IRETYP(IP),IMATYP(IP),
 & ISX,1,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & CODEPOL(IP),VERSPOL(IP), .FALSE.)
C
C---- enable writing to the save file
 LPFILE = .TRUE.
 WRITE(*,*)
 WRITE(*,*) 'Old polar save file available for appending'
 RETURN
C
C
C---- the polar save file doesn't exist, so write new header
 60 CONTINUE
 NIPOL = NIPOL0
 IF(LCMINP) THEN
 NIPOL = NIPOL + 1
 IPOL(IMC) = NIPOL
 ENDIF
 IF(LHMOMP) THEN
 NIPOL = NIPOL + 1
 IPOL(ICH) = NIPOL
 ENDIF
C
 OPEN(LU,FILE=FNAME,STATUS='NEW',ERR=80)
 CALL POLWRIT(LU,' ',ERROR, .TRUE.,
 & NAX, 0,-1, CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP),IRETYP(IP),IMATYP(IP),
 & ISX,1,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & 'XFOIL',VERSION, .FALSE.)
 CLOSE(LU)
 PFNAME(IP) = FNAME
C
 NIPOL = NIPOL0
C
C---- enable writing to the save file
 LPFILE = .TRUE.
 WRITE(*,*)
 WRITE(*,*) 'New polar save file available'
 RETURN
C
C---- the polar save file doesn't exist, so write new header
 80 WRITE(*,*) 'New polar save file OPEN error'
 RETURN
C
C---- READ error trap
 90 WRITE(*,*) 'Old polar save file READ error'
 CLOSE(LU)
 RETURN
C
C..
 1000 FORMAT(A)
 1010 FORMAT(22X,A32)
 1020 FORMAT(8X,F7.3,10X,F9.3)
 1030 FORMAT(8X,F7.3,10X,F9.3,17X,F7.3)
 END ! PLRINI

 SUBROUTINE PLXINI(LU,IP)
C--
C Checks or initializes a polar dump file.
C
C If file PFNAMX(IP) exists, it is checked for consistency
C with current parameters. Polar dumping is enabled
C only if file parameters match current parameters.
C
C If file PFNAMX(IP) doesn't exist, a new one is set up by
C writing a header to it, and polar dumping is enabled.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*128 PROMPT
C
 CHARACTER*32 NAMEX
 REAL MACHX
 INTEGER RETYPX, MATYPX
 LOGICAL NAMDIF
C
 CALL STRIP(PFNAMX(IP),NPF)
 IF(NPF.EQ.0) THEN
 PROMPT = 'Enter polar dump filename'
 & // ' OR <return> for no file^'
 ELSE
 WRITE(*,*) 'Default polar dump filename: ', PFNAMX(IP)(1:NPF)
 PROMPT = 'Enter new filename'
 & // ' OR "none"'
 & // ' OR <return> for default^'
 ENDIF
C
 CALL ASKS(PROMPT,FNAME)
 CALL STRIP(FNAME,NFN)
C
 IF(INDEX('NONEnone',FNAME(1:4)).NE.0) NFN = 0
C
 IF(NFN.EQ.0) THEN
 LPFILX = .FALSE.
 WRITE(*,*)
 WRITE(*,*) 'Polar dump file will NOT be written'
 RETURN
 ENDIF
C
C---- no valid dump file yet
 LPFILX = .FALSE.
C
C---- try reading the unformatted polar dump file to see if it exists
 OPEN(LU,FILE=FNAME,
 & STATUS='UNKNOWN',FORM='UNFORMATTED',ERR=80)
 READ(LU,ERR=90,END=60) NAMEX
C
C---- if we got to here, it exists, so read the header
 READ(LU) MACHX, REYNX, ACRITX
 READ(LU) MATYPX, RETYPX
 READ(LU) IIX, ILEX, ITEX, IIBX
C
 REYNX = REYNX*1.0E6
C
C---- set polar dump file pointer at the end
 45 READ(LU,END=46) DUMMY
 GO TO 45
C
 46 CLOSE(LU)
 PFNAMX(IP) = FNAME
C
 CALL STRIP(NAMEX,NNAMEX)
C
C---- check to see if the names are different
 IF(NNAME .NE. NNAMEX) THEN
 NAMDIF = .TRUE.
 ELSE
 NAMDIF = .FALSE.
 DO 50 K=1, NNAME
 IF(NAME(K:K).NE.NAMEX(K:K)) NAMDIF = .TRUE.
 50 CONTINUE
 ENDIF
C
C---- check if the polar save file is for the same airfoil and conditions
 IF(NAMDIF .OR.
 & REYNX .NE. REINF1 .OR.
 & MACHX .NE. MINF1 .OR.
 & ACRITX .NE. ACRIT .OR.
 & RETYPX .NE. RETYP .OR.
 & MATYPX .NE. MATYP) THEN
C
 WRITE(*,6600) NAMEX , NAME,
 & REYNX , REINF1,
 & MACHX , MINF1,
 & RETYPX , RETYP,
 & MATYPX , MATYP,
 & ACRITX , ACRIT
C
 6600 FORMAT(
 & /' Dump file Current'
 & /' ------------ ------------'
 & /' name : ', A , A
 & /' Re : ', F12.0, 20X, F12.0
 & /' Mach : ', F12.4, 20X, F12.4
 & /' Retyp: ', I7 , 25X, I7
 & /' Matyp: ', I7 , 25X, I7
 & /' Ncrit: ', F12.4, 20X, F12.4)
C
 WRITE(*,*)
 WRITE(*,*)
 & 'Current parameters different from old dump file values.'
 CALL ASKL
 & ('Set current parameters to old dump file values ?^',OK)
C
 IF(OK) THEN
 NAME = NAMEX
 NNAME = NNAMEX
 MINF1 = MACHX
 REINF1 = REYNX
 ACRIT = ACRITX
 RETYP = RETYPX
 MATYP = MATYPX
 ELSE
 WRITE(*,*)
 WRITE(*,*) 'Old polar dump file NOT available for appending'
 RETURN
 ENDIF
 ENDIF
C
C---- enable writing to the save file
 LPFILX = .TRUE.
 WRITE(*,*)
 WRITE(*,*) 'Old polar dump file available for appending'
 RETURN
C
C
C---- the polar dump file doesn't exist, so write new header
 60 CONTINUE
 WRITE(LU) NAME, 'XFOIL ', VERSION
 WRITE(LU) MINF1, REINF1/1.0E6, ACRIT
 WRITE(LU) MATYP, RETYP
 WRITE(LU) 0, 0, 0, N
 WRITE(LU) (X(I), Y(I), I=1, N)
C
 70 CONTINUE
C
 CLOSE(LU)
 PFNAMX(IP) = FNAME
C
C---- enable writing to the save file
 LPFILX = .TRUE.
 WRITE(*,*)
 WRITE(*,*) 'New polar dump file available'
 RETURN
C
C---- OPEN error trap
 80 WRITE(*,1080) FNAME
 RETURN
C
C---- READ error trap
 90 WRITE(*,*) 'Polar dump file READ error'
 CLOSE(LU)
 RETURN
C..
 1080 FORMAT(' OPEN error on polar dump file ', A48)
 END ! PLXINI

 SUBROUTINE PLRADD(LU,IP)
 INCLUDE 'XFOIL.INC'
 LOGICAL ERROR
C
cc WRITE(*,1000) CL, CD, CM
cc 1000 FORMAT(/' CL =', F7.3, ' Cd =', F9.5, ' Cm =', F8.4)
C
C---- add point to storage arrays
 IF(IP.EQ.0) THEN
 WRITE(*,*) 'No active polar is declared. Point not stored.'
C
 ELSE
 IF(NAPOL(IP).EQ.NAX) THEN
 WRITE(*,*) 'Polar storage arrays full. Point not stored'
C
 ELSE
 NAPOL(IP) = NAPOL(IP)+1
C
C------ store current point
 IF(LVISC) THEN
 CDTOT = CD
 CDV = CD
 RE = REINF
 ELSE
 CDTOT = 0.
 CDV = 0.
 RE = 0.
 ENDIF
C
 IA = NAPOL(IP)
 CPOL(IA,IAL,IP) = ADEG
 CPOL(IA,ICL,IP) = CL
 CPOL(IA,ICD,IP) = CDTOT
 CPOL(IA,ICM,IP) = CM
 CPOL(IA,ICP,IP) = CDP
 CPOL(IA,ICV,IP) = CDV
 CPOL(IA,IMA,IP) = MINF
 CPOL(IA,IRE,IP) = RE
 CPOL(IA,INC,IP) = ACRIT
 DO IS = 1, 2
 IF(LVISC) THEN
 XOCT = XOCTR(IS)
 ELSE
 XOCT = 0.
 ENDIF
 CPOLSD(IA,IS,JTP,IP) = XSTRIP(IS)
 CPOLSD(IA,IS,JTN,IP) = XOCT
 ENDDO
C
 IF(LFLAP) THEN
 CALL MHINGE
 CPOL(IA,ICH,IP) = HMOM
 ELSE
 CPOL(IA,ICH,IP) = 0.
 ENDIF
 CPOL(IA,IMC,IP) = CPMN
C
 WRITE(*,1100) IP
 1100 FORMAT(/' Point added to stored polar', I3)
 ENDIF
 ENDIF
C
C---- add point to save file
 IF(LPFILE) THEN
 NIPOL = NIPOL0
 IF(LCMINP) THEN
 NIPOL = NIPOL + 1
 IPOL(IMC) = NIPOL
 ENDIF
 IF(LHMOMP) THEN
 NIPOL = NIPOL + 1
 IPOL(ICH) = NIPOL
 ENDIF
C
 OPEN(LU,FILE=PFNAME(IP),STATUS='OLD')
 CALL BOTTOM(LU)
 IA = NAPOL(IP)
 CALL POLWRIT(LU,' ',ERROR, .FALSE.,
 & NAX, IA,IA, CPOL(1,1,IP), IPOL,NIPOL,
 & REYNP1(IP),MACHP1(IP),ACRITP(IP),XSTRIPP(1,IP),
 & NAMEPOL(IP), IRETYP(IP),IMATYP(IP),
 & ISX,1,CPOLSD(1,1,1,IP), JPOL,NJPOL,
 & 'XFOIL',VERSION, .FALSE.)
 CLOSE(LU)
 NIPOL = NIPOL0
 WRITE(*,1200) PFNAME(IP)
 1200 FORMAT(' Point written to save file ', A48)
 ELSE
 WRITE(*,1300)
 1300 FORMAT(' Save file unspecified or not available')
 ENDIF
C
cccC---- sort polar in increasing alpha
ccc IDSORT = IAL
ccc CALL PLRSRT(IP,IDSORT)
C
 RETURN
 END ! PLRADD

 SUBROUTINE PLXADD(LU,IP)
 INCLUDE 'XFOIL.INC'
 INTEGER NSIDE(2)
C
 DIMENSION XX(IVX,2), CP(IVX,2), CF(IVX,2)
C
 IF(.NOT.LPFILX) THEN
 WRITE(*,1050)
 1050 FORMAT(' Dump file unspecified or not available')
 RETURN
 ENDIF
C
 BETA = SQRT(1.0 - MINF**2)
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
C
 OPEN(LU,FILE=PFNAMX(IP),STATUS='OLD',FORM='UNFORMATTED')
 CALL BOTTOMX(LU)
C
C---- write integrated forces to unformatted dump file
 IF(LVISC) THEN
 CDTOT = CD
 XT1 = XOCTR(1)
 XT2 = XOCTR(2)
 ELSE
 CDTOT = 0.
 XT1 = 0.
 XT2 = 0.
 ENDIF
 WRITE(LU) ALFA/DTOR,CL,CDTOT,0.0,CM,XT1,XT2
C
 NSIDE(1) = IBLTE(1) + (NBL(2)-IBLTE(2))
 NSIDE(2) = NBL(2)
C
 NSIDE(1) = MAX(NSIDE(1) , 2)
 NSIDE(2) = MAX(NSIDE(2) , 2)
C
C---- write indexing info
 WRITE(LU) NSIDE(1), NSIDE(2), IBLTE(1), IBLTE(2)
C
 QUE = 0.5*QINF**2
C
C---- set stagnation point quantities
 IBL = 1
 XX(IBL,1) = SEVAL(SST,X,XP,S,N)
 CP(IBL,1) = 1.0 / (BETA + BFAC)
 CF(IBL,1) = 0.0
 THET(IBL,1) = 0.5*(THET(2,1) + THET(2,2))
 DSTR(IBL,1) = 0.5*(DSTR(2,1) + DSTR(2,2))
 CTAU(IBL,1) = 0.0
C
 XX(IBL,2) = XX(IBL,1)
 CP(IBL,2) = CP(IBL,1)
 CF(IBL,2) = CF(IBL,1)
 THET(IBL,2) = THET(IBL,1)
 DSTR(IBL,2) = DSTR(IBL,1)
 CTAU(IBL,2) = CTAU(IBL,1)
C
C---- set BL and wake quantities
 DO 10 IS=1, 2
 DO IBL=2, NSIDE(IS)
 I = IPAN(IBL,IS)
 XX(IBL,IS) = X(I)
 CP(IBL,IS) = CPV(I)
 CF(IBL,IS) = TAU(IBL,IS) / QUE
 ENDDO
 10 CONTINUE
C
 DO IS=1, 2
 WRITE(LU) (XX(IBL,IS),CP(IBL,IS),THET(IBL,IS),DSTR(IBL,IS),
 & CF(IBL,IS),CTAU(IBL,IS), IBL=1, NSIDE(IS))
 ENDDO
C
 CLOSE(LU)
 WRITE(*,1100) PFNAMX(IP)
 1100 FORMAT(' Point written to dump file ', A48)
 RETURN
C
 END ! PLXADD

 SUBROUTINE PLRSRT(IP,IDSORT)
 INCLUDE 'XFOIL.INC'
 DIMENSION INDX(NAX), ATMP(NAX)
C
C---- sort polar in increasing variable IDSORT
 CALL HSORT(NAPOL(IP),CPOL(1,IDSORT,IP),INDX)
C
C---- do the actual reordering
 DO ID = 1, IPTOT
 CALL ASORT(NAPOL(IP),CPOL(1,ID,IP),INDX,ATMP)
 ENDDO
 DO ID = 1, JPTOT
 DO IS = 1, 2
 CALL ASORT(NAPOL(IP),CPOLSD(1,IS,ID,IP),INDX,ATMP)
 ENDDO
 ENDDO
C
 RETURN
 END ! PLRSRT

 SUBROUTINE PLRSUM(IP1,IP2,IPACTT)
C---
C Prints summary of polars IP1..IP2
C---
 INCLUDE 'XFOIL.INC'
 CHARACTER*5 CLTYP(3)
 CHARACTER*1 CACC, CFIL
C
 DATA CLTYP / ' ', '/sqCL', '/CL ' /
C
 1100 FORMAT(1X,A,A)
 WRITE(*,*)
 WRITE(*,1100)
 & ' airfoil Re Mach ',
 & ' Ncrit XtripT XtripB file'
 WRITE(*,1100)
 & ' ------------------------ ------------ ----------',
 & ' ----- ------ ------ -------------------'
CCC > 10 NACA 0012 (mod) 1.232e6/sqCL 0.781/sqCL
CCC 9.00 1.000 1.000
CCC 1234567890123456789012345678901234567890123456789012345678901234567890
C
 DO IP = IP1, IP2
 IF(IP.EQ.IPACTT) THEN
 CACC = '>'
 IF(LPFILE) THEN
 CFIL = '>'
 ELSE
 CFIL = ' '
 ENDIF
 ELSE
 CACC = ' '
 CFIL = ' '
 ENDIF
C
 IRET = IRETYP(IP)
 IMAT = IMATYP(IP)
C
 IF(REYNP1(IP).GT.0.0) THEN
 IEXP = INT(LOG10(REYNP1(IP)))
 IEXP = MAX(MIN(IEXP , 9) , 0)
 RMAN = REYNP1(IP) / 10.0**IEXP
 ELSE
 RMAN = 0.0
 ENDIF
C
 CALL STRIP(PFNAME(IP),NPF)
 WRITE(*,1200) CACC, IP, NAMEPOL(IP),
 & RMAN, IEXP, CLTYP(IRET), MACHP1(IP), CLTYP(IMAT),
 & ACRITP(IP), XSTRIPP(1,IP), XSTRIPP(2,IP),
 & CFIL,PFNAME(IP)(1:NPF)
 1200 FORMAT(1X,A1,I3,2X, A24, F7.3,'e',I1,A5, F7.3,A5,
 & F7.2, 2F8.3, 2X, A1, 1X, A)
 ENDDO
C
 RETURN
 END ! PLRSUM

 SUBROUTINE PRFSUM(IR1,IR2)
C---
C Prints summary of reference polars IR1..IR2
C---
 INCLUDE 'XFOIL.INC'
C
 1100 FORMAT(1X,A,A)
 WRITE(*,*)
 WRITE(*,1100) ' reference polar '
 WRITE(*,1100) ' --'
CCC 123456789012345678901234567890123456789012345678
C
 DO IR = IR1, IR2
 WRITE(*,1200) IR, NAMEREF(IR)
 1200 FORMAT(1X,1X,I3,2X, A48)
 ENDDO
C
 RETURN
 END ! PRFSUM

 SUBROUTINE PLRCOP(IP1,IP2)
C---
C Copies polar in slot IP1 into slot IP2
C---
 INCLUDE 'XFOIL.INC'
C
 NAMEPOL(IP2) = NAMEPOL(IP1)
 CODEPOL(IP2) = CODEPOL(IP1)
 VERSPOL(IP2) = VERSPOL(IP1)
 PFNAME(IP2) = PFNAME(IP1)
 PFNAMX(IP2) = PFNAMX(IP1)
C
 MACHP1(IP2) = MACHP1(IP1)
 REYNP1(IP2) = REYNP1(IP1)
 ACRITP(IP2) = ACRITP(IP1)
C
 IMATYP(IP2) = IMATYP(IP1)
 IRETYP(IP2) = IRETYP(IP1)
C
 XSTRIPP(1,IP2) = XSTRIPP(1,IP1)
 XSTRIPP(2,IP2) = XSTRIPP(2,IP1)
C
 NAPOL(IP2) = NAPOL(IP1)
 DO IA=1, NAPOL(IP2)
 DO ID = 1, IPTOT
 CPOL(IA,ID,IP2) = CPOL(IA,ID,IP1)
 ENDDO
 DO ID = 1, JPTOT
 CPOLSD(IA,1,ID,IP2) = CPOLSD(IA,1,ID,IP1)
 CPOLSD(IA,2,ID,IP2) = CPOLSD(IA,2,ID,IP1)
 ENDDO
 ENDDO
C
 NXYPOL(IP2) = NXYPOL(IP1)
 DO I = 1, NXYPOL(IP1)
 CPOLXY(I,1,IP2) = CPOLXY(I,1,IP1)
 CPOLXY(I,2,IP2) = CPOLXY(I,2,IP1)
 ENDDO
C
 RETURN
 END ! PLRCOP

 SUBROUTINE PRFCOP(IR1,IR2)
C---
C Copies reference polar in slot IR1 into slot IR2
C---
 INCLUDE 'XFOIL.INC'
C
 NAMEREF(IR2) = NAMEREF(IR1)
C
 DO K = 1, 4
 NDREF(K,IR2) = NDREF(K,IR1)
 ENDDO
C
 DO IS = 1, 2
 DO K = 1, 4
 DO IA=1, NDREF(K,IR2)
 CPOLREF(IA,IS,K,IR2) = CPOLREF(IA,IS,K,IR1)
 ENDDO
 ENDDO
 ENDDO
C
 RETURN
 END ! PRFCOP

 SUBROUTINE POLAXI(CPOLPLF,XCDWID,XALWID,XOCWID)
C---
C Gets polar plot axis limits from user
C---
 INCLUDE 'PINDEX.INC'
 DIMENSION CPOLPLF(3,*)
C
 LOGICAL ERROR
 CHARACTER*5 CVAR(4)
 DATA CVAR / 'Alpha' , ' CL ', ' CD ', ' -CM ' /
C
 WRITE(*,*) 'Enter new axis annotations,',
 & ' or <return> to leave unchanged...'
 WRITE(*,*)
C
 DO KV=1, 4
 5 WRITE(*,1200) CVAR(KV), (CPOLPLF(J,KV), J=1, 3)
 1200 FORMAT(3X,A,' min, max, delta:', 3F11.5)
 CALL READR(3,CPOLPLF(1,KV),ERROR)
 IF(ERROR) THEN
 WRITE(*,*) 'READ error. Enter again.'
 GO TO 5
 ENDIF
 ENDDO
C
cC---- widths of plot boxes in polar plot page
c XCDWID = 0.45
c XALWID = 0.25
c XOCWID = 0.20
C
 RETURN
 END ! POLAXI

 SUBROUTINE BOTTOM(LU)
 CHARACTER*1 DUMMY
C
 10 READ(LU,1000,END=90,ERR=90) DUMMY
 1000 FORMAT(A)
 GO TO 10
C
 90 RETURN
 END

 SUBROUTINE BOTTOMX(LU)
 CHARACTER*1 DUMMY
C
 10 READ(LU,END=90,ERR=90) DUMMY
 GO TO 10
C
 90 RETURN
 END

XFOILinterface/XFOIL/src/xqdes.f

C***
C Module: xqdes.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***
C
 SUBROUTINE QDES
C--
C Mixed-Inverse design routine. Based on the
C same panel formulation as basic analysis method.
C--
 INCLUDE 'XFOIL.INC'
 CHARACTER*4 COMAND, COMOLD
 LOGICAL LRECALC
C
 CHARACTER*128 COMARG, ARGOLD
 CHARACTER*1 CHKEY
C
 REAL XBOX(2), YBOX(2)
 REAL XSP(IBX), YSP(IBX,IPX), YSPD(IBX,IPX)
C
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR, LPLNEW
C
 EXTERNAL NEWPLOTQ
C
 SAVE COMOLD, ARGOLD
C
C---- statement function for compressible Karman-Tsien velocity
 QCOMP(G) = G*(1.0-TKLAM) / (1.0 - TKLAM*(G/QINF)**2)
C
C
 COMAND = '****'
 COMARG = ' '
 LRECALC = .FALSE.
C
 IF(N.EQ.0) THEN
 WRITE(*,*)
 WRITE(*,*) '*** No airfoil available ***'
 RETURN
 ENDIF
C
 LSYM = .TRUE.
C
C---- number of sub-intervals for Qspec(s) plotting
 NTQSPL = 1
 IF(LQSLOP) NTQSPL = 8
C
C---- make sure a current solution exists
 CALL SPECAL
C
C---- see if current Qspec, if any, didn't come from Full-Inverse
 IF(NSP.NE.N) THEN
 LQSPEC = .FALSE.
 LIQSET = .FALSE.
 ENDIF
C
C---- set alpha, etc corresponding to Q
 ALGAM = ALFA
 CLGAM = CL
 CMGAM = CM
C
C---- set "old" speed distribution Q, arc length, and x/c,y/c arrays
 CHX = XTE - XLE
 CHY = YTE - YLE
 CHSQ = CHX**2 + CHY**2
 NSP = N
 DO I=1, NSP
 QGAMM(I) = GAM(I)
 SSPEC(I) = S(I)/S(N)
 XSPOC(I) = ((X(I)-XLE)*CHX + (Y(I)-YLE)*CHY)/CHSQ
 YSPOC(I) = ((Y(I)-YLE)*CHX - (X(I)-XLE)*CHY)/CHSQ
 ENDDO
 SSPLE = SLE/S(N)
C
 WRITE(*,1150) ALGAM/DTOR, CLGAM
 1150 FORMAT(/' Current Q operating condition:'
 & /' alpha = ', F8.3, ' deg. CL = ', F8.4 /)
C
 IF(.NOT.LQSPEC) THEN
C----- initialize Qspec to "old" solution and notify user
 NQSP = 1
 KQTARG = 1
 CALL GAMQSP(1)
 WRITE(*,1155)
 LQSPEC = .TRUE.
 ENDIF
C
C---- initialize blowup parameters and plot Qspec(s)
 CALL QPLINI(.TRUE.)
 CALL QSPLOT
C
C
C==
C---- start of menu loop
 500 CONTINUE
 COMOLD = COMAND
 ARGOLD = COMARG
C
 501 CALL ASKC('.QDES^',COMAND,COMARG)
C
C--
C---- process previous command ?
 IF(COMAND(1:1).EQ.'!') THEN
 IF(COMOLD.EQ.'****') THEN
 WRITE(*,*) 'Previous .QDES command not valid'
 GO TO 501
 ELSE
 COMAND = COMOLD
 COMARG = ARGOLD
 LRECALC = .TRUE.
 ENDIF
 ELSE
 LRECALC = .FALSE.
 ENDIF
C
 IF(COMAND.EQ.' ') THEN
C----- just <return> was typed... clean up plotting and exit OPER
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 LQSYM = .FALSE.
 LQSPPL = .FALSE.
 CALL CLRZOOM
 RETURN
 ENDIF
C
C---- extract command line numeric arguments
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 0
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 0
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
C--
 IF(COMAND.EQ.'? ') THEN
 WRITE(*,1050)
 1050 FORMAT(
 & /' <cr> Return to Top Level'
 & //' QSET Reset Qspec <== Q'
 & //' Modi Modify Qspec'
 & /' MARK Mark off target segment'
 & /' SMOO Smooth Qspec inside target segment'
 & /' SLOP Toggle modified-Qspec slope matching flag'
 & //' eXec i Execute mixed-inverse calculation'
 & /' REST Restore geometry from buffer airfoil'
 & /' CPXX CPxx endpoint constraint toggle'
 & //' VISC Qvis overlay toggle'
 & /' REFL Reflected Qspec overlay toggle'
 & //' Plot Plot Qspec (line) and Q (symbols)'
 & /' Blow Blowup plot region'
 & /' Rese Reset plot scale and origin'
 & /' Wind Plot window adjust via cursor and keys'
 & //' SIZE r Change absolute plot-object size'
 & /' .ANNO Annotate plot'
 & /' HARD Hardcopy current plot')
C
C--
 ELSEIF(COMAND.EQ.'Z ') THEN
 CALL USETZOOM(.TRUE.,.TRUE.)
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'U ') THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
C
C--
C---- re-initialize Qspec to Q
 ELSEIF(COMAND.EQ.'QSET') THEN
 CALL GAMQSP(1)
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 GO TO 500
C
C--
C---- toggle Qvis plotting flag
 ELSEIF(COMAND.EQ.'VISC') THEN
 LQVDES = .NOT.LQVDES
 IF(LQVDES) THEN
 WRITE(*,*) 'Qspec & Qvis will be plotted'
 ELSE
 WRITE(*,*) 'Only Qspec will be plotted'
 CALL QPLINI(.FALSE.)
 ENDIF
 CALL QSPLOT
 GO TO 500
C
C--
C---- toggle reflected Qspec plotting flag
 ELSEIF(COMAND.EQ.'REFL') THEN
 LQREFL = .NOT.LQREFL
 IF(LQREFL) THEN
 WRITE(*,*) 'Reflected Qspec will be plotted'
 ELSE
 WRITE(*,*) 'Reflected Qspec will not be plotted'
 CALL QPLINI(.FALSE.)
 ENDIF
 CALL QSPLOT
 GO TO 500
C
C--
C---- get target segment endpoints
 ELSEIF(COMAND.EQ.'MARK') THEN
 CALL IQSGET
 GO TO 500
C
C--
C---- modify Qspec
 ELSEIF(COMAND.EQ.'MODI' .OR.
 & COMAND.EQ.'M ') THEN
C----- make sure there is a Qspec(s) plot on the screen
 IF(.NOT.LQSPPL) THEN
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 ENDIF
 CALL GETCOLOR(ICOL0)
C
C----- set up arrays for calling MODIFY
 IFRST = 1
 ILAST = NSP
 NSIDE = 1
 NLINE = NQSP
 DO I = 1, NSP
 ISP = NSP - I + 1
 XSP(ISP) = 1.0 - SSPEC(I)
 DO KQSP = 1, NQSP
 GCOMP = QCOMP(QSPEC(I,KQSP))/QINF
 YSP(ISP,KQSP) = QFAC*GCOMP
 ENDDO
 ENDDO
 DO KQSP = 1, NQSP
 CALL SEGSPL(YSP(1,KQSP),YSPD(1,KQSP),XSP,NSP)
 ENDDO
C
C----- get the user's modifying input
 XBOX(1) = XMARG
 XBOX(2) = XPAGE-XMARG
 YBOX(1) = YMARG
 YBOX(2) = YPAGE-YMARG
 CALL MODIFY(IBX,IFRST,ILAST,NSIDE,NLINE,
 & XSP,YSP,YSPD, LQSLOP,
 & ISP1,ISP2,ISMOD,KQSP,
 & XBOX,YBOX, XBOX,YBOX,SIZE,
 & XOFF,YOFF,XSF,YSF, 'RED',' ',
 & NEWPLOTQ)
C
C----- put modified info back into global arrays
 IQMOD2 = NSP - ISP1 + 1
 IQMOD1 = NSP - ISP2 + 1
 DO I=1, NSP
 ISP = NSP - I + 1
 QSCOM = QINF*YSP(ISP,KQSP)/QFAC
 QSPEC(I,KQSP) = QINCOM(QSCOM,QINF,TKLAM)
 ENDDO
C
C----- display new splined Qspec(s)
 CALL SPLQSP(KQSP)
 CALL NEWCOLORNAME('MAGENTA')
 CALL QSPPLT(IQMOD1,IQMOD2,KQSP,NTQSPL)
 CALL NEWCOLOR(ICOL0)
C
C----- print forces associated with modified Qspec(s)
 CALL PLFLUSH
 CALL CLCALC(N,X,Y,QSPEC(1,KQSP),W1,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CLQSP(KQSP),CMQSP(KQSP),CDPQ, CLQ_ALF,CLQ_MSQ)
 WRITE(*,1200) CL,CM,CLQSP(KQSP),CMQSP(KQSP)
 GO TO 500
C
C--
C---- smooth Qspec within target segment, or entire Qspec if not marked off
 ELSEIF(COMAND.EQ.'SMOO') THEN
 CALL GETCOLOR(ICOL0)
C
 KQSP = 1
 CALL SMOOQ(IQ1,IQ2,KQSP)
 CALL SPLQSP(KQSP)
C
 CALL NEWCOLORNAME('magenta')
 CALL QSPPLT(IQ1,IQ2,KQSP,NTQSPL)
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
 LQSPPL = .FALSE.
C
 CALL CLCALC(N,X,Y,QSPEC(1,KQSP),W1,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CLQSP(KQSP),CMQSP(KQSP),CDPQ, CLQ_ALF,CLQ_MSQ)
 WRITE(*,1200) CL,CM,CLQSP(KQSP),CMQSP(KQSP)
 GO TO 500
C
C--
C---- toggle Qspec endpoint slope matching
 ELSEIF(COMAND.EQ.'SLOP') THEN
 LQSLOP = .NOT.LQSLOP
 IF(LQSLOP) THEN
 WRITE(*,*)
 & 'Modified Qspec piece will be made tangent at endpoints'
 ELSE
 WRITE(*,*)
 & 'Modified Qspec piece will not be made tangent at endpoints'
 ENDIF
 GO TO 500
C
C--
C---- hardcopy replot
 ELSEIF(COMAND.EQ.'HARD') THEN
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
 GO TO 500
C
C--
C---- plot Qspec and Q distributions
 ELSEIF(COMAND.EQ.'PLOT' .OR.
 & COMAND.EQ.'P ') THEN
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 GO TO 500
C
C--
C---- get blowup parameters
 ELSEIF(COMAND.EQ.'BLOW' .OR.
 & COMAND.EQ.'B ') THEN
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
 CALL OFFGET(XOFF,YOFF,XSF,YSF,XWS,YWS, .FALSE. , .TRUE.)
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 GO TO 500
C
C--
C---- reset blowup parameters and replot
 ELSEIF(COMAND.EQ.'RESE' .OR.
 & COMAND.EQ.'R ') THEN
 CALL QPLINI(.TRUE.)
 CALL QSPLOT
 GO TO 500
C
C--
 ELSEIF(COMAND.EQ.'WIND' .OR.
 & COMAND.EQ.'W ') THEN
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
C
 WRITE(*,*) ' '
 WRITE(*,*) 'Type I,O,P to In,Out,Pan with cursor...'
C
 80 CALL QPLINI(.FALSE.)
 CALL QSPLOT
C
 CALL GETCURSORXY(XCRS,YCRS,CHKEY)
C
C----- do possible pan,zoom operations based on CHKEY
 CALL KEYOFF(XCRS,YCRS,CHKEY, XWS,YWS, XOFF,YOFF,XSF,YSF, LPLNEW)
C
 IF(LPLNEW) THEN
 GO TO 80
 ENDIF
C
C--
C---- annotate plot
 ELSEIF(COMAND.EQ.'ANNO') THEN
 IF(LPLOT) THEN
 CALL ANNOT(CH)
 ELSE
 WRITE(*,*) 'No active plot to annotate'
 ENDIF
 GO TO 500
C
C--
C---- change plot size
 ELSEIF(COMAND.EQ.'SIZE') THEN
 IF(NINPUT.GE.1) THEN
 SIZE = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current plot size =', SIZE
 CALL ASKR('Enter new plot size^',SIZE)
 ENDIF
C
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 GO TO 500
C
C--
C---- toggle CPxx preservation constraints
 ELSEIF(COMAND.EQ.'CPXX') THEN
 LCPXX = .NOT.LCPXX
 IF(LCPXX) THEN
 WRITE(*,*) 'CPxx will be constrained'
 ELSE
 WRITE(*,*) 'CPxx will not be constrained'
 ENDIF
 GO TO 500
C
C--
C---- set up for mixed-inverse calculation
 ELSEIF(COMAND.EQ.'EXEC' .OR.
 & COMAND.EQ.'X ') THEN
 IF(.NOT.LIQSET) THEN
 WRITE(*,*) '*** Must mark off target segment first ***'
 GO TO 500
 ENDIF
C
C---- check if target segment includes stagnation point
 IST = 0
 DO I=IQ1, IQ2-1
 IF(QGAMM(I).GE.0.0 .AND. QGAMM(I+1).LT.0.0) IST = I
 ENDDO
C
 IF(IST.NE.0) THEN
 WRITE(*,*)
 WRITE(*,*) 'Target segment cannot include ',
 & 'stagnation point in mixed-inverse.'
 GO TO 500
 ENDIF
C
 KQSP = 1
 CLSPEC = CLQSP(KQSP)
CCC CALL ASKR('Enter specified CL^',CLSPEC)
C
C----- save current coordinates for restoration if requested
 DO I=1, N
 XB(I) = X(I)
 YB(I) = Y(I)
 SB(I) = S(I)
 XBP(I) = XP(I)
 YBP(I) = YP(I)
 ENDDO
 NB = N
 LGSAME = .TRUE.
C
 WRITE(*,*)
 WRITE(*,*) 'Current airfoil saved in buffer airfoil'
C
C----- execute mixed-inverse calculation
 IF(NINPUT.GE.1) THEN
 NITERQ = IINPUT(1)
 ELSE
 CALL ASKI('Enter max number of iterations^',NITERQ)
 ENDIF
C
 CALL MIXED(KQSP,NITERQ)
 ADEG = ALFA/DTOR
C
C----- spline new airfoil shape
 CALL SCALC(X,Y,S,N)
 CALL SPLIND(X,XP,S,N,-999.0,-999.0)
 CALL SPLIND(Y,YP,S,N,-999.0,-999.0)
 CALL NCALC(X,Y,S,N,NX,NY)
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 CHORD = SQRT((0.5*(X(1)+X(N)) - XLE)**2
 & + (0.5*(Y(1)+Y(N)) - YLE)**2)
 CALL TECALC
 CALL APCALC
C
 ALGAM = ALFA
C
 NSP = N
 DO I=1, N
 QGAMM(I) = GAM(I)
 SSPEC(I) = S(I)/S(N)
 ENDDO
 SSPLE = SLE/S(N)
C
C----- set inviscid surface speeds and calculate compressible Cp
 DO I=1, N
 QINV(I) = GAM(I)
 ENDDO
 CALL CPCALC(N,QINV,QINF,MINF,CPI)
C
C----- influence coefficients & other stuff is no longer valid for new airfoil
 LGAMU = .FALSE.
 LQINU = .FALSE.
 LWAKE = .FALSE.
 LQAIJ = .FALSE.
 LADIJ = .FALSE.
 LWDIJ = .FALSE.
 LIPAN = .FALSE.
 LVCONV = .FALSE.
 LSCINI = .FALSE.
CCC LBLINI = .FALSE.
 LGSAME = .FALSE.
C
cc CALL NAMMOD(NAME,1,1)
cc CALL STRIP(NAME,NNAME)
C
C--
C---- restore and spline old airfoil
 ELSEIF(COMAND.EQ.'REST') THEN
 DO I=1, N
 X(I) = XB(I)
 Y(I) = YB(I)
 ENDDO
 CALL SCALC(X,Y,S,N)
 CALL SPLIND(X,XP,S,N,-999.0,-999.0)
 CALL SPLIND(Y,YP,S,N,-999.0,-999.0)
 CALL NCALC(X,Y,S,N,NX,NY)
 CALL LEFIND(SLE,X,XP,Y,YP,S,N)
 XLE = SEVAL(SLE,X,XP,S,N)
 YLE = SEVAL(SLE,Y,YP,S,N)
 CHORD = SQRT((0.5*(X(1)+X(N)) - XLE)**2
 & + (0.5*(Y(1)+Y(N)) - YLE)**2)
 CALL TECALC
 CALL APCALC
 LGAMU = .FALSE.
 LQINU = .FALSE.
 LGSAME = .TRUE.
C
cc CALL NAMMOD(NAME,-1,1)
cc CALL STRIP(NAME,NNAME)
C
C--
 ELSE
 WRITE(*,1100) COMAND
 1100 FORMAT(' Command ',A4,' not recognized. Type a " ? " for list.')
C
 COMAND = '****'
 ENDIF
C
 GO TO 500
C
C..
C
 1155 FORMAT(/' Qspec initialized to current Q.'/)
 1200 FORMAT(/' Q : CL =',F11.6, ' CM =',F11.6
 & /' Qspec: CL =',F11.6, ' CM =',F11.6)
 END

 SUBROUTINE NEWPLOTQ
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 RETURN
 END

 SUBROUTINE QPLINI(LDEF)
C--
C Sets up Qspec(s) plot.
C If LDEF=t, sets default offsets.
C--
 INCLUDE 'XFOIL.INC'
 LOGICAL LDEF
 LOGICAL LAIR
C
C---- number of x/c grid lines
 PARAMETER (NG=10,NQ=20)
 DIMENSION SSPG(-NG:NG), SLPG(-NG:NG), QSPG(-NQ:NQ)
 DATA LMASK1, LMASK2, LMASK3 / -32640, -30584, -21846 /
C
 INCLUDE 'XDES.INC'
C
C---- statement function for compressible Karman-Tsien velocity
 QCOMP(G) = G*(1.0-TKLAM) / (1.0 - TKLAM*(G/QINF)**2)
C
C
C---- make room for airfoil plot if complex-mapping routine is being used
 LAIR = NSP .EQ. NC1
C
C---- speed annotation increment
 DQANN = 0.5
C
C---- find max and min speeds for current Qgamm and Qspec
 QMIN = QGAMM(1)
 QMAX = QGAMM(1)
 DO 5 I=2, NSP
 QMIN = MIN(QMIN,QGAMM(I))
 QMAX = MAX(QMAX,QGAMM(I))
 5 CONTINUE
C
 DO 7 KQSP=1, NQSP
 DO 72 I=2, NSP
 QMIN = MIN(QMIN,QSPEC(I,KQSP))
 QMAX = MAX(QMAX,QSPEC(I,KQSP))
 72 CONTINUE
 7 CONTINUE
C
 QMIN = QCOMP(QMIN)/QINF
 QMAX = QCOMP(QMAX)/QINF
C
C---- round up to bounding annotations
 NMIN = INT(QMIN/DQANN) - 1
 NMAX = INT(QMAX/DQANN) + 1
C
 IF(LQREFL) THEN
C----- set limits so reflectes Qspec(s) also fits on plot
 NMAX = MAX(ABS(NMIN) , ABS(NMAX))
 NMIN = -NMAX
 ENDIF
C
 QMIN = DQANN*FLOAT(NMIN)
 QMAX = DQANN*FLOAT(NMAX)
C
C
C---- start new plot
 CALL PLTINI
C
C---- speed plotting scale factor
 QFAC = 1.0/(QMAX-QMIN)
C
C---- default offsets
 IF(LDEF) THEN
 XADD = 0.050
 YADD = 0.075
C
 XWMIN = MIN(XWIND - XMARG , XPAGE - 2.0*XMARG)
 YWMIN = MIN(YWIND - YMARG , YPAGE - 2.0*YMARG)
C
 XSF = (XWMIN/SIZE) / (1.0 + 2.0*XADD)
 YSF = (YWMIN/SIZE) / (1.0 + 2.0*YADD)
 CHQ = 0.7*CH * XSF
 XOFF = -XADD - 2.0*CHQ/XSF
 YOFF = -YADD + QMIN*QFAC
 ENDIF
C
 CALL SPLIND(XSPOC,W7,SSPEC,NSP,-999.0,-999.0)
 CALL SPLIND(YSPOC,W8,SSPEC,NSP,-999.0,-999.0)
C
 DO 11 IG=1, NG
 XOC = FLOAT(IG)/FLOAT(NG)
 SSP = SSPLE + (SSPEC(1)-SSPLE)*XOC
 CALL SINVRT(SSP,XOC,XSPOC,W7,SSPEC,NSP)
 SSPG(IG) = XMOD(1.0-SSP)
C
 XOC = 0.1*FLOAT(IG)/FLOAT(NG)
 SSP = SSPLE + (SSPEC(1)-SSPLE)*XOC
 CALL SINVRT(SSP,XOC,XSPOC,W7,SSPEC,NSP)
 SLPG(IG) = XMOD(1.0-SSP)
 11 CONTINUE
C
 SSPG(0) = XMOD(1.0-SSPLE)
 SLPG(0) = XMOD(1.0-SSPLE)
C
 DO 12 IG=-NG,-1
 XOC = FLOAT(-IG)/FLOAT(NG)
 SSP = SSPLE + (SSPEC(NSP)-SSPLE)*XOC
 CALL SINVRT(SSP,XOC,XSPOC,W7,SSPEC,NSP)
 SSPG(IG) = XMOD(1.0-SSP)
C
 XOC = 0.1*FLOAT(-IG)/FLOAT(NG)
 SSP = SSPLE + (SSPEC(NSP)-SSPLE)*XOC
 CALL SINVRT(SSP,XOC,XSPOC,W7,SSPEC,NSP)
 SLPG(IG) = XMOD(1.0-SSP)
 12 CONTINUE
C
C
C---- plot axes
 CALL NEWPEN(1)
 CALL PLOT(XMOD(0.0),YMOD(0.0),3)
 CALL PLOT(XMOD(1.0),YMOD(0.0),2)
 CALL PLOT(XMOD(0.0),YMOD(QFAC*QMIN),3)
 CALL PLOT(XMOD(0.0),YMOD(QFAC*QMAX),2)
 CALL PLOT(XMOD(1.0),YMOD(QFAC*QMIN),3)
 CALL PLOT(XMOD(1.0),YMOD(QFAC*QMAX),2)
C
C---- plot sonic lines if within range
 IF(QSTAR/QINF.LE.QMAX)
 & CALL DASH(XMOD(0.0),XMOD(1.0),YMOD(QFAC*QSTAR/QINF))
 IF(-QSTAR/QINF.GE.QMIN)
 & CALL DASH(XMOD(0.0),XMOD(1.0),YMOD(-QFAC*QSTAR/QINF))
C
C---- annotate axes
 DO 20 NT=NMIN, NMAX
 YPLT = QFAC*(QMAX-QMIN)*FLOAT(NT)/FLOAT(NMAX-NMIN)
ccc IF(MOD(NT,2).EQ.0) THEN
 RNUM = DQANN*FLOAT(NT)
 CALL NEWPEN(2)
 XNUM = XMOD(0.0)-3.5*CHQ
 YNUM = YMOD(YPLT)-0.5*CHQ
 IF(RNUM.LT.0.0) XNUM = XNUM - CHQ
 CALL PLNUMB(XNUM,YNUM,CHQ,RNUM,0.0,1)
ccc ENDIF
C
 QSPG(NT) = YMOD(0.0)
 IF(IABS(NT).LE.NQ) QSPG(NT) = YMOD(YPLT)
C
 CALL NEWPEN(1)
 CALL PLOT(XMOD(0.0) ,YMOD(YPLT),3)
 CALL PLOT(XMOD(0.0)-0.3*CHQ,YMOD(YPLT),2)
 CALL PLOT(XMOD(1.0) ,YMOD(YPLT),3)
 CALL PLOT(XMOD(1.0)+0.3*CHQ,YMOD(YPLT),2)
 20 CONTINUE
C
 XPLT = 0.5*(SSPG(NG-2)+SSPG(NG-3)) - 1.8*CHQ
 CALL PLCHAR(XPLT,YMOD(0.0)-2.0*CHQ,1.2*CHQ,'x/c',0.0,3)
C
 YPLT = QFAC*(QMAX-QMIN)*(FLOAT(NMAX)-1.5)/FLOAT(NMAX-NMIN)
 CALL PLCHAR(XMOD(0.0)-4.8*CHQ,YMOD(YPLT)-0.6*CHQ,
 & 1.2*CHQ,'q/V ',0.0,4)
 CALL PLMATH(XMOD(0.0)-4.8*CHQ,YMOD(YPLT)-0.6*CHQ,
 & 1.2*CHQ,' &',0.0,4)
C
 INCR = MAX((2*NG)/20,1)
 DO 21 IG=-NG+INCR, NG-INCR, INCR
 CALL PLOT(SSPG(IG),QSPG(0)+0.20*CHQ,3)
 CALL PLOT(SSPG(IG),QSPG(0)-0.20*CHQ,2)
 CALL PLOT(SLPG(IG),QSPG(0)+0.15*CHQ,3)
 CALL PLOT(SLPG(IG),QSPG(0)-0.15*CHQ,2)
 21 CONTINUE
C
 INCR = MAX((2*NG)/4,1)
 DO 22 IG=-NG+INCR, NG-INCR, INCR
 CALL PLOT(SSPG(IG),QSPG(0)+0.40*CHQ,3)
 CALL PLOT(SSPG(IG),QSPG(0)-0.40*CHQ,2)
 CALL PLOT(SLPG(IG),QSPG(0)+0.30*CHQ,3)
 CALL PLOT(SLPG(IG),QSPG(0)-0.30*CHQ,2)
 22 CONTINUE
C
 INCR = MAX((2*NG)/2,1)
 DO 23 IG=-NG+INCR, NG-INCR, INCR
 CALL PLOT(SSPG(IG),QSPG(0)+0.80*CHQ,3)
 CALL PLOT(SSPG(IG),QSPG(0)-0.80*CHQ,2)
 CALL PLOT(SLPG(IG),QSPG(0)+0.60*CHQ,3)
 CALL PLOT(SLPG(IG),QSPG(0)-0.60*CHQ,2)
 23 CONTINUE
C
C
 IF(LQGRID) THEN
 DO 30 K=1, NG
 W1(K) = SSPG(K-NG) - SSPG(K-1-NG)
 W2(K) = SSPG(K) - SSPG(K-1)
 W6(K) = SLPG(K-NG) - SLPG(K-1-NG)
 W7(K) = SLPG(K) - SLPG(K-1)
 30 CONTINUE
 DO 33 K=1, -NMIN
 W3(K) = QSPG(K+NMIN) - QSPG(K-1+NMIN)
 33 CONTINUE
 DO 34 K=1, NMAX
 W4(K) = QSPG(K) - QSPG(K-1)
 34 CONTINUE
C
 CALL NEWPEN(1)
 CALL PLGRID(SSPG(-NG),QSPG(NMIN),1000+NG,W1,1000-NMIN,W3,LMASK2)
 CALL PLGRID(SSPG(0) ,QSPG(0) ,1000+NG,W2,1000+NMAX,W4,LMASK2)
cc CALL PLGRID(SLPG(-NG),QSPG(NMIN),1000+NG,W6,1000-NMIN,W3,LMASK1)
cc CALL PLGRID(SLPG(0) ,QSPG(0) ,1000+NG,W7,1000+NMAX,W4,LMASK1)
 ENDIF
C
 CALL PLFLUSH
C
 RETURN
 END

 SUBROUTINE QSPLOT
C--
C Plots Q(s) and Qspec(s) distributions.
C--
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XDES.INC'
C
C---- statement function for compressible Karman-Tsien velocity
 QCOMP(G) = G*(1.0-TKLAM) / (1.0 - TKLAM*(G/QINF)**2)
C
C---- symbol height
 SHT = 0.4*CHQ
C
 CALL GETCOLOR(ICOL0)
C
 IF(LSYM) THEN
 IF(LIQSET) CALL NEWCOLORNAME('cyan')
 DO 50 I=1, NSP
 IF(LIQSET .AND. I.EQ.IQ1) CALL NEWCOLOR(ICOL0)
 XPLT = 1.0 - SSPEC(I)
 YPLT = QFAC*QCOMP(QGAMM(I))/QINF
 CALL PLSYMB(XMOD(XPLT),YMOD(YPLT),SHT,3,0.,0)
 IF(LIQSET .AND. I.EQ.IQ2) CALL NEWCOLORNAME('cyan')
 50 CONTINUE
 IF(LIQSET) CALL NEWCOLOR(ICOL0)
 ENDIF
C
 NTQSPL = 1
 IF(LQSLOP) NTQSPL = 8
C
C---- plot individual Qspec lines
 DO 60 KQSP=1, NQSP
 IF(LIQSET) THEN
 CALL NEWCOLORNAME('cyan')
 CALL QSPPLT(1,IQ1,KQSP,NTQSPL)
 CALL NEWCOLOR(ICOL0)
 CALL QSPPLT(IQ1,IQ2,KQSP,NTQSPL)
 CALL NEWCOLORNAME('cyan')
 CALL QSPPLT(IQ2,NSP,KQSP,NTQSPL)
 CALL NEWCOLOR(ICOL0)
 ELSE
 CALL QSPPLT(1,NSP,KQSP,NTQSPL)
 ENDIF
 60 CONTINUE
C
C
 IF(LQVDES) THEN
 CALL NEWCOLORNAME('orange')
 DO 65 I=2, N
 DSP = S(I) - S(I-1)
 DQV = QCOMP(QVIS(I)) - QCOMP(QVIS(I-1))
 SP1 = (S(I-1) + 0.25*DSP)/S(N)
 SP2 = (S(I) - 0.25*DSP)/S(N)
 QV1 = QCOMP(QVIS(I-1)) + 0.25*DQV
 QV2 = QCOMP(QVIS(I)) - 0.25*DQV
 CALL PLOT(XMOD(1.0-SP1),YMOD(QFAC*QV1/QINF),3)
 CALL PLOT(XMOD(1.0-SP2),YMOD(QFAC*QV2/QINF),2)
 65 CONTINUE
 CALL NEWCOLOR(ICOL0)
 ENDIF
C
 IF(LQREFL) THEN
 IF(LIQSET) CALL NEWCOLORNAME('cyan')
C
 KQSP = 1
C
C----- find stagnation point SSPEC value SSPST
 DO 70 ISTSP=1, NSP-1
 IF(QSPEC(ISTSP+1,KQSP).LT.0.0) GO TO 71
 70 CONTINUE
 71 DSSP = SSPEC(ISTSP+1) - SSPEC(ISTSP)
 DQSP = QSPEC(ISTSP+1,KQSP) - QSPEC(ISTSP,KQSP)
 SSPST = SSPEC(ISTSP) - QSPEC(ISTSP,KQSP)*DSSP/DQSP
C
C----- plot reflected suction side QSPEC over pressure side QSPEC,
C- fudging arc length SSPEC so stagnation points conside
 SPFUDG = (SSPEC(NSP) - SSPST) / (SSPST - SSPEC(1))
 DO 80 I=2, ISTSP
 DSP = SSPEC(I) - SSPEC(I-1)
 DQS = QCOMP(QSPEC(I,KQSP)) - QCOMP(QSPEC(I-1,KQSP))
 SP1 = (SSPEC(I-1) + 0.35*DSP)*SPFUDG
 SP2 = (SSPEC(I) - 0.35*DSP)*SPFUDG
 QS1 = QCOMP(QSPEC(I-1,KQSP)) + 0.35*DQS
 QS2 = QCOMP(QSPEC(I ,KQSP)) - 0.35*DQS
 CALL PLOT(XMOD(SP1),YMOD(-QFAC*QS1/QINF),3)
 CALL PLOT(XMOD(SP2),YMOD(-QFAC*QS2/QINF),2)
 80 CONTINUE
C
C----- plot reflected pressure side QSPEC over suction side QSPEC,
C- again fudging arc length SSPEC so stagnation points coincide
 SPFUDG = (SSPST - SSPEC(1)) / (SSPEC(NSP) - SSPST)
 DO 85 I=ISTSP+1, NSP
 DSP = SSPEC(I) - SSPEC(I-1)
 DQS = QCOMP(QSPEC(I,KQSP)) - QCOMP(QSPEC(I-1,KQSP))
 SP1 = 1.0 - SSPST + (SSPEC(I-1) + 0.35*DSP - SSPST)*SPFUDG
 SP2 = 1.0 - SSPST + (SSPEC(I) - 0.35*DSP - SSPST)*SPFUDG
 QS1 = QCOMP(QSPEC(I-1,KQSP)) + 0.35*DQS
 QS2 = QCOMP(QSPEC(I ,KQSP)) - 0.35*DQS
 CALL PLOT(XMOD(SP1),YMOD(-QFAC*QS1/QINF),3)
 CALL PLOT(XMOD(SP2),YMOD(-QFAC*QS2/QINF),2)
 85 CONTINUE
C
 CALL NEWCOLOR(ICOL0)
 ENDIF
C
C
 CALL PLFLUSH
 LQSPPL = .TRUE.
C
 IF(.NOT.LIQSET) RETURN
C
 KQSP = KQTARG
C
 CALL NEWCOLORNAME('cyan')
 YPLT1 = QFAC*QCOMP(QSPEC(IQ1,KQSP))/QINF
 YPLT2 = QFAC*QCOMP(QSPEC(IQ2,KQSP))/QINF
 CALL PLOT(XMOD(1.0-SSPEC(IQ1)),YMOD(YPLT1)-0.03,3)
 CALL PLOT(XMOD(1.0-SSPEC(IQ1)),YMOD(YPLT1)+0.03,2)
 CALL PLOT(XMOD(1.0-SSPEC(IQ2)),YMOD(YPLT2)-0.03,3)
 CALL PLOT(XMOD(1.0-SSPEC(IQ2)),YMOD(YPLT2)+0.03,2)
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
C
 RETURN
 END

 SUBROUTINE QSPPLT(IQSPL1,IQSPL2,KQSP,NT)
C--
C Plots KQSP-th Qspec(s) distribution
C between indices IQSPL1..IQSPL2
C--
C
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XDES.INC'
C
C---- statement function for compressible Karman-Tsien velocity
 QCOMP(G) = G*(1.0-TKLAM) / (1.0 - TKLAM*(G/QINF)**2)
C
C---- go over chosen intervals
 DO I=IQSPL1+1, IQSPL2
 DS = SSPEC(I) - SSPEC(I-1)
C
C------ plot Qpsec using NT sub-intervals for smooth curve
 IPL = 3
 DO IT=0, NT
 SSPT = SSPEC(I-1) + DS*FLOAT(IT)/FLOAT(NT)
 QSPT = SEVAL(SSPT,QSPEC(1,KQSP),QSPECP(1,KQSP),SSPEC,NSP)
 XPLT = 1.0 - SSPT
 YPLT = QFAC*QCOMP(QSPT)/QINF
 CALL PLOT(XMOD(XPLT),YMOD(YPLT),IPL)
 IPL = 2
 ENDDO
 ENDDO
C
 RETURN
 END

 SUBROUTINE IQSGET
C--
C Sets target segment endpoint indices from cursor input.
C--
 INCLUDE 'XFOIL.INC'
 DIMENSION IQNEW(2)
 CHARACTER*1 KCHAR
 INCLUDE 'XDES.INC'
C
C---- statement function for compressible Karman-Tsien velocity
 QCOMP(G) = G*(1.0-TKLAM) / (1.0 - TKLAM*(G/QINF)**2)
C
 IF(.NOT.LQSPPL) THEN
 CALL QPLINI(.FALSE.)
 CALL QSPLOT
 ENDIF
C
 SH = 0.01*XSF
C
 CALL GETCOLOR(ICOL0)
C
 IQNEW(1) = 0
 IQNEW(2) = 0
 WRITE(*,*)
 WRITE(*,*) 'Mark off segment endpoints'
 WRITE(*,*)
 DO 10 IE=1, 2
C
C------ get cursor location from user
 5 CALL GETCURSORXY(XE,YE,KCHAR)
 DMIN = 1.0E9
 IQNEW(IE) = 1
 KQMIN = 1
C
C------ search all Qspec lines only for first selected point
 IF(IE.EQ.1) THEN
 KQSP1 = 1
 KQSPN = NQSP
 ELSE
 KQSP1 = KQTARG
 KQSPN = KQTARG
 ENDIF
C
C------ find plot point closest to cursor point
 DO 102 KQSP=KQSP1, KQSPN
 DO 1024 I=1, NSP
 GCOMP = QCOMP(QSPEC(I,KQSP))/QINF
 XPNT = XMOD(1.0-SSPEC(I))
 YPNT = YMOD(QFAC*GCOMP)
 DIST = (XE - XPNT)**2 + (YE - YPNT)**2
 IF(DIST.GT.DMIN) GO TO 1024
 DMIN = DIST
 IQNEW(IE) = I
 KQMIN = KQSP
 1024 CONTINUE
 102 CONTINUE
C
C------ nearest point to first clicked point sets target line
 IF(IE.EQ.1) KQTARG = KQMIN
C
 CALL NEWCOLORNAME('red')
 I = IQNEW(IE)
 QSCOMP = QCOMP(QSPEC(I,KQTARG))/QINF
 CALL PLOT(XMOD(1.0-SSPEC(I)),YMOD(QFAC*QSCOMP)-0.03,3)
 CALL PLOT(XMOD(1.0-SSPEC(I)),YMOD(QFAC*QSCOMP)+0.03,2)
 CALL NEWCOLOR(ICOL0)
 CALL PLFLUSH
 10 CONTINUE
C
 IF(IQNEW(1).EQ.IQNEW(2)) THEN
 WRITE(*,*) '*** Endpoints must be distinct ***'
 WRITE(*,*) '*** NEW SEGMENT NOT MARKED OFF ***'
 RETURN
 ENDIF
C
 IQ1 = MIN0(IQNEW(1),IQNEW(2))
 IQ2 = MAX0(IQNEW(1),IQNEW(2))
C
 LIQSET = .TRUE.
 RETURN
 END

 SUBROUTINE SPLQSP(KQSP)
C--
C Splines Qspec(s). The end intervals are treated
C specially to avoid Gibbs-type problems from
C blindly splining to the stagnation point.
C--
 INCLUDE 'XFOIL.INC'
C
C---- usual spline with natural end BCs
 CALL SPLIND(QSPEC(2,KQSP),QSPECP(2,KQSP),SSPEC(2),NSP-2,
 & -999.0,-999.0)
C
ccC---- pseudo-monotonic spline with simple secant slope calculation
cc CALL SPLINA(QSPEC(2,KQSP),QSPECP(2,KQSP),SSPEC(2),NSP-2)
C
C---- end intervals are splined separately with natural BCs at
C the trailing edge and matching slopes at the interior points
C
 I = 1
 CALL SPLIND(QSPEC(I,KQSP),QSPECP(I,KQSP),SSPEC(I),2,
 & -999.0,QSPECP(I+1,KQSP))
C
 I = NSP-1
 CALL SPLIND(QSPEC(I,KQSP),QSPECP(I,KQSP),SSPEC(I),2,
 & QSPECP(I,KQSP),-999.0)
C
 RETURN
 END

 SUBROUTINE SMOOQ(KQ1,KQ2,KQSP)
C--
C Smooths Qspec(s) inside target segment
C--
 INCLUDE 'XFOIL.INC'
C
cC---- calculate smoothing coordinate
ccc IF(NSP.EQ.NC1) THEN
cC
cC------ mapping inverse: use circle plane coordinate
c I = 1
c W8(I) = 0.0
c DO 10 I=2, NSP
c SINW = 2.0*SIN(0.25*(WC(I)+WC(I-1)))
c SINWE = SINW**(1.0-AGTE)
cC
c DSDW = SINWE * EXP(REAL(0.5*(PIQ(I)+PIQ(I-1))))
c W8(I) = W8(I-1) + (WC(I)-WC(I-1))/DSDW
c 10 CONTINUE
c DO 11 I=1, NSP
c W8(I) = W8(I)/W8(NSP)
c 11 CONTINUE
cC
cC------ do not smooth first and last intervals in circle plane
c KQ1 = MAX(IQ1,2)
c KQ2 = MIN(IQ2,NSP-1)
cC
ccc ELSE
C
C------ mixed inverse: use arc length coordinate
 DO 15 I=1, NSP
 W8(I) = SSPEC(I)
 15 CONTINUE
C
ccc ENDIF
C
C
 IF(KQ2-KQ1 .LT. 2) THEN
 WRITE(*,*) 'Segment is too short. No smoothing possible.'
 RETURN
 ENDIF
C
C---- set smoothing length (~ distance over which data is smeared)
 SMOOL = 0.002*(W8(NSP) - W8(1))
CCC CALL ASKR('Enter Qspec smoothing length^',SMOOL)
C
C---- set up tri-diagonal system for smoothed Qspec
 SMOOSQ = SMOOL**2
 DO 20 I=KQ1+1, KQ2-1
 DSM = W8(I) - W8(I-1)
 DSP = W8(I+1) - W8(I)
 DSO = 0.5*(W8(I+1) - W8(I-1))
C
 W1(I) = SMOOSQ * (- 1.0/DSM) / DSO
 W2(I) = SMOOSQ * (1.0/DSP + 1.0/DSM) / DSO + 1.0
 W3(I) = SMOOSQ * (-1.0/DSP) / DSO
 20 CONTINUE
C
C---- set fixed-Qspec end conditions
 W2(KQ1) = 1.0
 W3(KQ1) = 0.0
C
 W1(KQ2) = 0.0
 W2(KQ2) = 1.0
C
 IF(LQSLOP) THEN
C----- also enforce slope matching at endpoints
 I = KQ1 + 1
 DSM = W8(I) - W8(I-1)
 DSP = W8(I+1) - W8(I)
 DS = W8(I+1) - W8(I-1)
 W1(I) = -1.0/DSM - (DSM/DS)/DSM
 W2(I) = 1.0/DSM + (DSM/DS)/DSM + (DSM/DS)/DSP
 W3(I) = - (DSM/DS)/DSP
 QSPP1 = W1(I)*QSPEC(I-1,KQSP)
 & + W2(I)*QSPEC(I ,KQSP)
 & + W3(I)*QSPEC(I+1,KQSP)
C
 I = KQ2 - 1
 DSM = W8(I) - W8(I-1)
 DSP = W8(I+1) - W8(I)
 DS = W8(I+1) - W8(I-1)
 W1(I) = (DSP/DS)/DSM
 W2(I) = -1.0/DSP - (DSP/DS)/DSP - (DSP/DS)/DSM
 W3(I) = 1.0/DSP + (DSP/DS)/DSP
 QSPP2 = W1(I)*QSPEC(I-1,KQSP)
 & + W2(I)*QSPEC(I ,KQSP)
 & + W3(I)*QSPEC(I+1,KQSP)
C
 QSPEC(KQ1+1,KQSP) = QSPP1
 QSPEC(KQ2-1,KQSP) = QSPP2
 ENDIF
C
C
C---- solve for smoothed Qspec array
 CALL TRISOL(W2(KQ1),W1(KQ1),W3(KQ1),QSPEC(KQ1,KQSP),(KQ2-KQ1+1))
C
C
cc IF(LQSYM) THEN
cc DO 40 I=KQ1+1, KQ2-1
cc QSPEC(NSP-I+1,KQSP) = -QSPEC(I,KQSP)
cc 40 CONTINUE
cc ENDIF
C
 RETURN
 END

 FUNCTION QINCOM(QC,QINF,TKLAM)
C-------------------------------------
C Sets incompressible speed from
C Karman-Tsien compressible speed
C-------------------------------------
C
 IF(TKLAM.LT.1.0E-4 .OR. ABS(QC).LT.1.0E-4) THEN
C----- for nearly incompressible case or very small speed, use asymptotic
C expansion of singular quadratic formula to avoid numerical problems
 QINCOM = QC/(1.0 - TKLAM)
 ELSE
C----- use quadratic formula for typical case
 TMP = 0.5*(1.0 - TKLAM)*QINF/(QC*TKLAM)
 QINCOM = QINF*TMP*(SQRT(1.0 + 1.0/(TKLAM*TMP**2)) - 1.0)
 ENDIF
 RETURN
 END

 SUBROUTINE GAMQSP(KQSP)
C--
C Sets Qspec(s,k) from current speed Q(s).
C--
 INCLUDE 'XFOIL.INC'
C
 ALQSP(KQSP) = ALGAM
 CLQSP(KQSP) = CLGAM
 CMQSP(KQSP) = CMGAM
C
 DO 10 I=1, NSP
 QSPEC(I,KQSP) = QGAMM(I)
 10 CONTINUE
C
C---- zero out Qspec DOFs
 QDOF0 = 0.0
 QDOF1 = 0.0
 QDOF2 = 0.0
 QDOF3 = 0.0
C
 CALL SPLQSP(KQSP)
C
C---- reset target segment endpoints
 IF(.NOT.LIQSET) THEN
 IQ1 = 1
 IQ2 = NSP
 ENDIF
C
 RETURN
 END

 SUBROUTINE SYMQSP(KQSP)
C---
C Forces symmetry of Qspec(KQSP) array
C---
 INCLUDE 'XFOIL.INC'
C
 ALQSP(KQSP) = 0.
 CLQSP(KQSP) = 0.
 CMQSP(KQSP) = 0.
C
 SSPMID = 0.5*(SSPEC(NSP) - SSPEC(1))
 DO 10 I=1, (NSP+1)/2
 SSPEC(I) = SSPMID + 0.5*(SSPEC(I) - SSPEC(NSP-I+1))
 QSPEC(I,KQSP) = 0.5*(QSPEC(I,KQSP) - QSPEC(NSP-I+1,KQSP))
 10 CONTINUE
C
 DO 15 I=(NSP+1)/2+1, NSP
 SSPEC(I) = -SSPEC(NSP-I+1) + 2.0*SSPMID
 QSPEC(I,KQSP) = -QSPEC(NSP-I+1,KQSP)
 15 CONTINUE
C
C---- zero out Qspec DOFs
 QDOF0 = 0.0
 QDOF1 = 0.0
 QDOF2 = 0.0
 QDOF3 = 0.0
C
 CALL SPLQSP(KQSP)
C
 WRITE(*,1000) KQSP
 1000 FORMAT(/' Qspec',I2,' made symmetric')
C
 RETURN
 END

 SUBROUTINE MIXED(KQSP,NITERQ)
C---
C Performs a mixed-inverse calculation using
C the specified surface speed array QSPEC.
C---
 INCLUDE 'XFOIL.INC'
C
C---- distance of internal control point ahead of sharp TE
C- (fraction of smaller panel length adjacent to TE)
 BWT = 0.1
C
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
 CALL SCALC(X,Y,S,N)
C
C---- zero-out and set DOF shape functions
 DO 1 I=1, N
 QF0(I) = 0.0
 QF1(I) = 0.0
 QF2(I) = 0.0
 QF3(I) = 0.0
 1 CONTINUE
C
C---- set DOF shape functions and specified speed
 DO 2 I=IQ1, IQ2
 FS = (S(I)-S(IQ1)) / (S(IQ2)-S(IQ1))
CCC QF0(I) = (1.0-FS)**2
CCC QF1(I) = FS**2
 QF0(I) = 1.0 - FS
 QF1(I) = FS
 IF(LCPXX) THEN
 QF2(I) = EXP(-5.0* FS)
 QF3(I) = EXP(-5.0*(1.0-FS))
 ELSE
 QF2(I) = 0.0
 QF3(I) = 0.0
 ENDIF
 GAM(I) = QSPEC(I,KQSP) + QDOF0*QF0(I) + QDOF1*QF1(I)
 & + QDOF2*QF2(I) + QDOF3*QF3(I)
 2 CONTINUE
C
 99 CONTINUE
C
C---- perform Newton iterations on the new geometry
 DO 1000 ITER=1, NITERQ
C
 DO 3 I=1, N+5
 DO 31 J=1, N+5
 Q(I,J) = 0.
 31 CONTINUE
 3 CONTINUE
C
C---- calculate normal direction vectors along which the nodes move
 CALL NCALC(X,Y,S,N,NX,NY)
C
C---- go over all nodes, setting up Psi = Psi0 equations
 DO 20 I=1, N
 CALL PSILIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N,.TRUE.,.FALSE.)
C
 DZDN(I) = DZDN(I) + PSI_N
C
C------ fill columns for specified geometry location
 DO 201 J=1, IQ1-1
 Q(I,J) = Q(I,J) + DZDG(J)
 201 CONTINUE
C
C------ fill columns for specified surface speed location
 DO 202 J=IQ1, IQ2
 Q(I,J) = Q(I,J) + DZDN(J)
 202 CONTINUE
C
C------ fill columns for specified geometry location
 DO 203 J=IQ2+1, N
 Q(I,J) = Q(I,J) + DZDG(J)
 203 CONTINUE
C
C------ set residual
 DQ(I) = PSIO - PSI
C
C------ fill global unknown columns
 Q(I,N+1) = Q(I,N+1) - 1.0
 Q(I,N+2) = Q(I,N+2) + Z_QDOF0
 Q(I,N+3) = Q(I,N+3) + Z_QDOF1
 Q(I,N+4) = Q(I,N+4) + Z_QDOF2
 Q(I,N+5) = Q(I,N+5) + Z_QDOF3
 20 CONTINUE
C
C---- set up Kutta condition
 DQ(N+1) = -(GAM(1) + GAM(N))
 CALL GAMLIN(N+1,1,1.0)
 CALL GAMLIN(N+1,N,1.0)
C
 IF(SHARP) THEN
C----- set zero internal velocity in TE corner
C
C----- set TE bisector angle
 AG1 = ATAN2(-YP(1),-XP(1))
 AG2 = ATANC(YP(N), XP(N),AG1)
 ABIS = 0.5*(AG1+AG2)
 CBIS = COS(ABIS)
 SBIS = SIN(ABIS)
C
C----- minimum panel length adjacent to TE
 DS1 = SQRT((X(1)-X(2))**2 + (Y(1)-Y(2))**2)
 DS2 = SQRT((X(N)-X(N-1))**2 + (Y(N)-Y(N-1))**2)
 DSMIN = MIN(DS1 , DS2)
C
C----- control point on bisector just ahead of TE point
 XBIS = XTE - BWT*DSMIN*CBIS
 YBIS = YTE - BWT*DSMIN*SBIS
ccc write(*,*) xbis, ybis
C
C----- set velocity component along bisector line
 CALL PSILIN(0,XBIS,YBIS,-SBIS,CBIS,PSI,QBIS,.FALSE.,.TRUE.)
C
CCC--- RES = DQDGj*Gamj + DQDMj*Massj + QINF*(COSA*CBIS + SINA*SBIS)
 RES = QBIS
C
 DO J=1, N+5
 Q(N,J) = 0.
 ENDDO
C
C----- dRes/dgamj
 DO J=1, N
 CALL GAMLIN(N,J, DQDG(J))
 Q(N,J) = DQDG(J)
 ENDDO
C
C----- dRes/dPsio
 Q(N,N+1) = 0.
C
C----- -dRes/dUinf
 DQ(N) = -RES
 ENDIF
C
C---- pinned IQ1 point condition
 Q(N+2,IQ1) = 1.0
 DQ(N+2) = 0.0
C
C---- pinned IQ2 point condition
 Q(N+3,IQ2) = 1.0
 DQ(N+3) = 0.0
C
 IF(IQ1.GT.1 .AND. LCPXX) THEN
C----- speed regularity IQ1 condition
 RES = GAM(IQ1-1) - 2.0* GAM(IQ1) + GAM(IQ1+1)
 & - (QSPEC(IQ1-1,KQSP) - 2.0*QSPEC(IQ1,KQSP) + QSPEC(IQ1+1,KQSP))
 CALL GAMLIN(N+4,IQ1-1, 1.0)
 CALL GAMLIN(N+4,IQ1 ,-2.0)
 CALL GAMLIN(N+4,IQ1+1, 1.0)
 DQ(N+4) = -RES
 ELSE
C----- zero DOF condition
 Q(N+4,N+4) = 1.0
 DQ(N+4) = -QDOF2
 ENDIF
C
 IF(IQ2.LT.N .AND. LCPXX) THEN
C----- speed regularity IQ2 condition
 RES = GAM(IQ2-1) - 2.0* GAM(IQ2) + GAM(IQ2+1)
 & - (QSPEC(IQ2-1,KQSP) - 2.0*QSPEC(IQ2,KQSP) + QSPEC(IQ2+1,KQSP))
 CALL GAMLIN(N+5,IQ2-1, 1.0)
 CALL GAMLIN(N+5,IQ2 ,-2.0)
 CALL GAMLIN(N+5,IQ2+1, 1.0)
 DQ(N+5) = -RES
 ELSE
C----- zero DOF condition
 Q(N+5,N+5) = 1.0
 DQ(N+5) = -QDOF3
 ENDIF
C
 CALL GAUSS(IQX,N+5,Q,DQ,1)
C
 INMAX = 0
 IGMAX = 0
 DNMAX = 0.0
 DGMAX = 0.0
C
C---- update surface speed GAM before target segment
 DO 100 I=1, IQ1-1
 GAM(I) = GAM(I) + DQ(I)
 IF(ABS(DQ(I)) .GT. ABS(DGMAX)) THEN
 DGMAX = DQ(I)
 IGMAX = I
 ENDIF
 100 CONTINUE
C
C---- update panel nodes inside target segment
 DO 110 I=IQ1, IQ2
 X(I) = X(I) + NX(I)*DQ(I)
 Y(I) = Y(I) + NY(I)*DQ(I)
 IF(ABS(DQ(I)) .GT. ABS(DNMAX)) THEN
 DNMAX = DQ(I)
 INMAX = I
 ENDIF
 110 CONTINUE
C
C---- update surface speed GAM after target segment
 DO 120 I=IQ2+1, N
 GAM(I) = GAM(I) + DQ(I)
 IF(ABS(DQ(I)) .GT. ABS(DGMAX)) THEN
 DGMAX = DQ(I)
 IGMAX = I
 ENDIF
 120 CONTINUE
C
C---- update gloabal variables
 PSIO = PSIO + DQ(N+1)
 QDOF0 = QDOF0 + DQ(N+2)
 QDOF1 = QDOF1 + DQ(N+3)
 QDOF2 = QDOF2 + DQ(N+4)
 QDOF3 = QDOF3 + DQ(N+5)
C
 COSA = COS(ALFA)
 SINA = SIN(ALFA)
 CALL SCALC(X,Y,S,N)
C
C---- set correct surface speed over target segment including DOF contributions
 DO 140 I=IQ1, IQ2
 GAM(I) = QSPEC(I,KQSP) + QDOF0*QF0(I) + QDOF1*QF1(I)
 & + QDOF2*QF2(I) + QDOF3*QF3(I)
 140 CONTINUE
C
C---- update everything else
 CALL TECALC
 CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
 WRITE(*,2000) DNMAX,INMAX,DGMAX,IGMAX,CL
 & ,DQ(N+2),DQ(N+3)
 & ,DQ(N+4),DQ(N+5)
 2000 FORMAT(/' dNmax =',E10.3,I4,' dQmax =',E10.3,I4,' CL =',F7.4
 & /' dQf1 =',E10.3,4X,' dQf2 =',E10.3
 & /' dQf3 =',E10.3,4X,' dQf4 =',E10.3)
C
 IF(ABS(DNMAX).LT.5.0E-5 .AND. ABS(DGMAX).LT.5.0E-4) THEN
 WRITE(*,*)
 WRITE(*,*) 'New current airfoil generated'
 WRITE(*,*) 'Old buffer airfoil unchanged'
 RETURN
 ENDIF
C
 1000 CONTINUE
 WRITE(*,*) 'Not quite converged. Can EXEC again if necessary.'
 RETURN
C
 END

 SUBROUTINE GAMLIN(I,J,COEF)
C---
C Adds on Jacobian entry for point I due to node speed GAM at J.
C GAM is either a local unknown if outside target segment,
C or dependent on global Qspec DOF's if inside target segment.
C---
 INCLUDE 'XFOIL.INC'
C
 IF(J.GE.IQ1 .AND. J.LE.IQ2) THEN
C----- inside target segment
 Q(I,N+2) = Q(I,N+2) + COEF*QF0(J)
 Q(I,N+3) = Q(I,N+3) + COEF*QF1(J)
 Q(I,N+4) = Q(I,N+4) + COEF*QF2(J)
 Q(I,N+5) = Q(I,N+5) + COEF*QF3(J)
 ELSE
C----- outside target segment
 Q(I,J) = Q(I,J) + COEF
 ENDIF
 RETURN
 END

XFOILinterface/XFOIL/src/xsolve.f

C***
C Module: xsolve.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE GAUSS(NSIZ,NN,Z,R,NRHS)
C ***
C * *
C * Solves general NxN system in NN unknowns *
C * with arbitrary number (NRHS) of righthand sides. *
C * Assumes system is invertible... *
C * ...if it isn't, a divide by zero will result. *
C * *
C * Z is the coefficient matrix... *
C * ...destroyed during solution process. *
C * R is the righthand side(s)... *
C * ...replaced by the solution vector(s). *
C * *
C * Mark Drela 1984 *
C ***
C
 DIMENSION Z(NSIZ,NSIZ), R(NSIZ,NRHS)
C
 DO 1 NP=1, NN-1
 NP1 = NP+1
C
C------ find max pivot index NX
 NX = NP
 DO 11 N=NP1, NN
 IF(ABS(Z(N,NP))-ABS(Z(NX,NP))) 11,11,111
 111 NX = N
 11 CONTINUE
C
 PIVOT = 1.0/Z(NX,NP)
C
C------ switch pivots
 Z(NX,NP) = Z(NP,NP)
C
C------ switch rows & normalize pivot row
 DO 12 L=NP1, NN
 TEMP = Z(NX,L)*PIVOT
 Z(NX,L) = Z(NP,L)
 Z(NP,L) = TEMP
 12 CONTINUE
C
 DO 13 L=1, NRHS
 TEMP = R(NX,L)*PIVOT
 R(NX,L) = R(NP,L)
 R(NP,L) = TEMP
 13 CONTINUE
C
C------ forward eliminate everything
 DO 15 K=NP1, NN
 ZTMP = Z(K,NP)
C
C IF(ZTMP.EQ.0.0) GO TO 15
C
 DO 151 L=NP1, NN
 Z(K,L) = Z(K,L) - ZTMP*Z(NP,L)
 151 CONTINUE
 DO 152 L=1, NRHS
 R(K,L) = R(K,L) - ZTMP*R(NP,L)
 152 CONTINUE
 15 CONTINUE
C
 1 CONTINUE
C
C---- solve for last row
 DO 2 L=1, NRHS
 R(NN,L) = R(NN,L)/Z(NN,NN)
 2 CONTINUE
C
C---- back substitute everything
 DO 3 NP=NN-1, 1, -1
 NP1 = NP+1
 DO 31 L=1, NRHS
 DO 310 K=NP1, NN
 R(NP,L) = R(NP,L) - Z(NP,K)*R(K,L)
 310 CONTINUE
 31 CONTINUE
 3 CONTINUE
C
 RETURN
 END ! GAUSS

 SUBROUTINE CGAUSS(NSIZ,NN,Z,R,NRHS)
C**
C Solves general complex linear systems.
C**
 COMPLEX Z(NSIZ,NSIZ), R(NSIZ,NRHS)
 COMPLEX PIVOT, TEMP, ZTMP
C
 DO 1 NP=1, NN-1
 NP1 = NP+1
C
C------ find max pivot index NX
 NX = NP
 DO 11 N=NP1, NN
 IF(ABS(Z(N,NP))-ABS(Z(NX,NP))) 11,11,111
 111 NX = N
 11 CONTINUE
C
 PIVOT = (1.0,0.0)/Z(NX,NP)
C
C------ switch pivots
 Z(NX,NP) = Z(NP,NP)
C
C------ switch rows & normalize pivot row
 DO 12 L=NP1, NN
 TEMP = Z(NX,L)*PIVOT
 Z(NX,L) = Z(NP,L)
 Z(NP,L) = TEMP
 12 CONTINUE
C
 DO 13 L=1, NRHS
 TEMP = R(NX,L)*PIVOT
 R(NX,L) = R(NP,L)
 R(NP,L) = TEMP
 13 CONTINUE
C
C------ forward eliminate everything
 DO 15 K=NP1, NN
 ZTMP = Z(K,NP)
C
C IF(ZTMP.EQ.0.0) GO TO 15
C
 DO 151 L=NP1, NN
 Z(K,L) = Z(K,L) - ZTMP*Z(NP,L)
 151 CONTINUE
 DO 152 L=1, NRHS
 R(K,L) = R(K,L) - ZTMP*R(NP,L)
 152 CONTINUE
 15 CONTINUE
C
 1 CONTINUE
C
C---- solve for last row
 DO 2 L=1, NRHS
 R(NN,L) = R(NN,L)/Z(NN,NN)
 2 CONTINUE
C
C---- back substitute everything
 DO 3 NP=NN-1, 1, -1
 NP1 = NP+1
 DO 31 L=1, NRHS
 DO 310 K=NP1, NN
 R(NP,L) = R(NP,L) - Z(NP,K)*R(K,L)
 310 CONTINUE
 31 CONTINUE
 3 CONTINUE
C
 RETURN
 END ! CGAUSS

 SUBROUTINE LUDCMP(NSIZ,N,A,INDX)
C ***
C * *
C * Factors a full NxN matrix into an LU form. *
C * Subr. BAKSUB can back-substitute it with some RHS.*
C * Assumes matrix is non-singular... *
C * ...if it isn't, a divide by zero will result. *
C * *
C * A is the matrix... *
C * ...replaced with its LU factors. *
C * *
C * Mark Drela 1988 *
C ***
C
 DIMENSION A(NSIZ,NSIZ), INDX(NSIZ)
C
 PARAMETER (NVX=300)
 DIMENSION VV(NVX)
C
 IF(N.GT.NVX) STOP 'LUDCMP: Array overflow. Increase NVX.'
C
 DO 12 I=1, N
 AAMAX = 0.
 DO 11 J=1, N
 AAMAX = MAX(ABS(A(I,J)) , AAMAX)
 11 CONTINUE
 VV(I) = 1.0/AAMAX
 12 CONTINUE
C
 DO 19 J=1, N
 DO 14 I=1, J-1
 SUM = A(I,J)
 DO 13 K=1, I-1
 SUM = SUM - A(I,K)*A(K,J)
 13 CONTINUE
 A(I,J) = SUM
 14 CONTINUE
C
 AAMAX = 0.
 DO 16 I=J, N
 SUM = A(I,J)
 DO 15 K=1, J-1
 SUM = SUM - A(I,K)*A(K,J)
 15 CONTINUE
 A(I,J) = SUM
C
 DUM = VV(I)*ABS(SUM)
 IF(DUM.GE.AAMAX) THEN
 IMAX = I
 AAMAX = DUM
 ENDIF
 16 CONTINUE
C
 IF(J.NE.IMAX) THEN
 DO 17 K=1, N
 DUM = A(IMAX,K)
 A(IMAX,K) = A(J,K)
 A(J,K) = DUM
 17 CONTINUE
 VV(IMAX) = VV(J)
 ENDIF
C
 INDX(J) = IMAX
 IF(J.NE.N) THEN
 DUM = 1.0/A(J,J)
 DO 18 I=J+1, N
 A(I,J) = A(I,J)*DUM
 18 CONTINUE
 ENDIF
C
 19 CONTINUE
C
 RETURN
 END ! LUDCMP

 SUBROUTINE BAKSUB(NSIZ,N,A,INDX,B)
 DIMENSION A(NSIZ,NSIZ), B(NSIZ), INDX(NSIZ)
C
 II = 0
 DO 12 I=1, N
 LL = INDX(I)
 SUM = B(LL)
 B(LL) = B(I)
 IF(II.NE.0) THEN
 DO 11 J=II, I-1
 SUM = SUM - A(I,J)*B(J)
 11 CONTINUE
 ELSE IF(SUM.NE.0.0) THEN
 II = I
 ENDIF
 B(I) = SUM
 12 CONTINUE
C
 DO 14 I=N, 1, -1
 SUM = B(I)
 IF(I.LT.N) THEN
 DO 13 J=I+1, N
 SUM = SUM - A(I,J)*B(J)
 13 CONTINUE
 ENDIF
 B(I) = SUM/A(I,I)
 14 CONTINUE
C
 RETURN
 END ! BAKSUB

 SUBROUTINE BLSOLV
C---
C Custom solver for coupled viscous-inviscid Newton system:
C
C A | | . | | . | d R S
C B A | . | | . | d R S
C | B A . | | . | d R S
C | | . | d = R - dRe S
C | | | B A | . | d R S
C | Z | | B A . | d R S
C | d R S
C | | | | | | B A d R S
C
C A, B, Z 3x3 blocks containing linearized BL equation coefficients
C | 3x1 vectors containing mass defect influence
C coefficients on Ue
C d 3x1 unknown vectors (Newton deltas for Ctau, Theta, m)
C R 3x1 residual vectors
C S 3x1 Re influence vectors
C---
 INCLUDE 'XFOIL.INC'
C
 IVTE1 = ISYS(IBLTE(1),1)
C
 VACC1 = VACCEL
 VACC2 = VACCEL * 2.0 / (S(N) - S(1))
 VACC3 = VACCEL * 2.0 / (S(N) - S(1))
C
 DO 1000 IV=1, NSYS
C
 IVP = IV + 1
C
C====== Invert VA(IV) block
C
C------ normalize first row
 PIVOT = 1.0 / VA(1,1,IV)
 VA(1,2,IV) = VA(1,2,IV) * PIVOT
 DO 10 L=IV, NSYS
 VM(1,L,IV) = VM(1,L,IV)*PIVOT
 10 CONTINUE
 VDEL(1,1,IV) = VDEL(1,1,IV)*PIVOT
 VDEL(1,2,IV) = VDEL(1,2,IV)*PIVOT
C
C------ eliminate lower first column in VA block
 DO 15 K=2, 3
 VTMP = VA(K,1,IV)
 VA(K,2,IV) = VA(K,2,IV) - VTMP*VA(1,2,IV)
 DO 150 L=IV, NSYS
 VM(K,L,IV) = VM(K,L,IV) - VTMP*VM(1,L,IV)
 150 CONTINUE
 VDEL(K,1,IV) = VDEL(K,1,IV) - VTMP*VDEL(1,1,IV)
 VDEL(K,2,IV) = VDEL(K,2,IV) - VTMP*VDEL(1,2,IV)
 15 CONTINUE
C
C
C------ normalize second row
 PIVOT = 1.0 / VA(2,2,IV)
 DO 20 L=IV, NSYS
 VM(2,L,IV) = VM(2,L,IV)*PIVOT
 20 CONTINUE
 VDEL(2,1,IV) = VDEL(2,1,IV)*PIVOT
 VDEL(2,2,IV) = VDEL(2,2,IV)*PIVOT
C
C------ eliminate lower second column in VA block
 K = 3
 VTMP = VA(K,2,IV)
 DO 250 L=IV, NSYS
 VM(K,L,IV) = VM(K,L,IV) - VTMP*VM(2,L,IV)
 250 CONTINUE
 VDEL(K,1,IV) = VDEL(K,1,IV) - VTMP*VDEL(2,1,IV)
 VDEL(K,2,IV) = VDEL(K,2,IV) - VTMP*VDEL(2,2,IV)
C
C
C------ normalize third row
 PIVOT = 1.0/VM(3,IV,IV)
 DO 350 L=IVP, NSYS
 VM(3,L,IV) = VM(3,L,IV)*PIVOT
 350 CONTINUE
 VDEL(3,1,IV) = VDEL(3,1,IV)*PIVOT
 VDEL(3,2,IV) = VDEL(3,2,IV)*PIVOT
C
C
C------ eliminate upper third column in VA block
 VTMP1 = VM(1,IV,IV)
 VTMP2 = VM(2,IV,IV)
 DO 450 L=IVP, NSYS
 VM(1,L,IV) = VM(1,L,IV) - VTMP1*VM(3,L,IV)
 VM(2,L,IV) = VM(2,L,IV) - VTMP2*VM(3,L,IV)
 450 CONTINUE
 VDEL(1,1,IV) = VDEL(1,1,IV) - VTMP1*VDEL(3,1,IV)
 VDEL(2,1,IV) = VDEL(2,1,IV) - VTMP2*VDEL(3,1,IV)
 VDEL(1,2,IV) = VDEL(1,2,IV) - VTMP1*VDEL(3,2,IV)
 VDEL(2,2,IV) = VDEL(2,2,IV) - VTMP2*VDEL(3,2,IV)
C
C------ eliminate upper second column in VA block
 VTMP = VA(1,2,IV)
 DO 460 L=IVP, NSYS
 VM(1,L,IV) = VM(1,L,IV) - VTMP*VM(2,L,IV)
 460 CONTINUE
 VDEL(1,1,IV) = VDEL(1,1,IV) - VTMP*VDEL(2,1,IV)
 VDEL(1,2,IV) = VDEL(1,2,IV) - VTMP*VDEL(2,2,IV)
C
C
 IF(IV.EQ.NSYS) GO TO 1000
C
C====== Eliminate VB(IV+1) block, rows 1 -> 3
 DO 50 K=1, 3
 VTMP1 = VB(K, 1,IVP)
 VTMP2 = VB(K, 2,IVP)
 VTMP3 = VM(K,IV,IVP)
 DO 510 L=IVP, NSYS
 VM(K,L,IVP) = VM(K,L,IVP)
 & - (VTMP1*VM(1,L,IV)
 & + VTMP2*VM(2,L,IV)
 & + VTMP3*VM(3,L,IV))
 510 CONTINUE
 VDEL(K,1,IVP) = VDEL(K,1,IVP)
 & - (VTMP1*VDEL(1,1,IV)
 & + VTMP2*VDEL(2,1,IV)
 & + VTMP3*VDEL(3,1,IV))
 VDEL(K,2,IVP) = VDEL(K,2,IVP)
 & - (VTMP1*VDEL(1,2,IV)
 & + VTMP2*VDEL(2,2,IV)
 & + VTMP3*VDEL(3,2,IV))
 50 CONTINUE
C
 IF(IV.EQ.IVTE1) THEN
C------- eliminate VZ block
 IVZ = ISYS(IBLTE(2)+1,2)
C
 DO 55 K=1, 3
 VTMP1 = VZ(K,1)
 VTMP2 = VZ(K,2)
 DO 515 L=IVP, NSYS
 VM(K,L,IVZ) = VM(K,L,IVZ)
 & - (VTMP1*VM(1,L,IV)
 & + VTMP2*VM(2,L,IV))
 515 CONTINUE
 VDEL(K,1,IVZ) = VDEL(K,1,IVZ)
 & - (VTMP1*VDEL(1,1,IV)
 & + VTMP2*VDEL(2,1,IV))
 VDEL(K,2,IVZ) = VDEL(K,2,IVZ)
 & - (VTMP1*VDEL(1,2,IV)
 & + VTMP2*VDEL(2,2,IV))
 55 CONTINUE
 ENDIF
C
 IF(IVP.EQ.NSYS) GO TO 1000
C
C====== Eliminate lower VM column
 DO 60 KV=IV+2, NSYS
 VTMP1 = VM(1,IV,KV)
 VTMP2 = VM(2,IV,KV)
 VTMP3 = VM(3,IV,KV)
C
 IF(ABS(VTMP1).GT.VACC1) THEN
 DO 610 L=IVP, NSYS
 VM(1,L,KV) = VM(1,L,KV) - VTMP1*VM(3,L,IV)
 610 CONTINUE
 VDEL(1,1,KV) = VDEL(1,1,KV) - VTMP1*VDEL(3,1,IV)
 VDEL(1,2,KV) = VDEL(1,2,KV) - VTMP1*VDEL(3,2,IV)
 ENDIF
C
 IF(ABS(VTMP2).GT.VACC2) THEN
 DO 620 L=IVP, NSYS
 VM(2,L,KV) = VM(2,L,KV) - VTMP2*VM(3,L,IV)
 620 CONTINUE
 VDEL(2,1,KV) = VDEL(2,1,KV) - VTMP2*VDEL(3,1,IV)
 VDEL(2,2,KV) = VDEL(2,2,KV) - VTMP2*VDEL(3,2,IV)
 ENDIF
C
 IF(ABS(VTMP3).GT.VACC3) THEN
 DO 630 L=IVP, NSYS
 VM(3,L,KV) = VM(3,L,KV) - VTMP3*VM(3,L,IV)
 630 CONTINUE
 VDEL(3,1,KV) = VDEL(3,1,KV) - VTMP3*VDEL(3,1,IV)
 VDEL(3,2,KV) = VDEL(3,2,KV) - VTMP3*VDEL(3,2,IV)
 ENDIF
C
 60 CONTINUE
C
 1000 CONTINUE
C
C
C
 DO 2000 IV=NSYS, 2, -1
C
C------ eliminate upper VM columns
 VTMP = VDEL(3,1,IV)
 DO 81 KV=IV-1, 1, -1
 VDEL(1,1,KV) = VDEL(1,1,KV) - VM(1,IV,KV)*VTMP
 VDEL(2,1,KV) = VDEL(2,1,KV) - VM(2,IV,KV)*VTMP
 VDEL(3,1,KV) = VDEL(3,1,KV) - VM(3,IV,KV)*VTMP
 81 CONTINUE
C
 VTMP = VDEL(3,2,IV)
 DO 82 KV=IV-1, 1, -1
 VDEL(1,2,KV) = VDEL(1,2,KV) - VM(1,IV,KV)*VTMP
 VDEL(2,2,KV) = VDEL(2,2,KV) - VM(2,IV,KV)*VTMP
 VDEL(3,2,KV) = VDEL(3,2,KV) - VM(3,IV,KV)*VTMP
 82 CONTINUE
C
 2000 CONTINUE
C
 RETURN
 END

XFOILinterface/XFOIL/src/xtcam.f

C Module: xtcam.f
C
C Copyright (C) 2000 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE CAMB
C---
C Camber modification routine.
C---
 INCLUDE 'XFOIL.INC'
C
 CHARACTER*72 LINE
 CHARACTER*4 COMAND, COMOLD
 CHARACTER*128 COMARG, ARGOLD
 CHARACTER*1 ANS
C
 REAL XBOX(2), YBOX(2)
 DIMENSION IINPUT(20)
 DIMENSION RINPUT(20)
 LOGICAL ERROR, LRECALC, LCLEAR, LGPARSAVE
C
 EXTERNAL NEWPLOTC
C
 DATA LMASK0, LMASK1, LMASK2, LMASK3 / -1, -32640, -30584, -21846 /
C
 1000 FORMAT(A)
C
 LGPARSAVE = LGPARM
 COMAND = '****'
 COMARG = ' '
 LRECALC = .FALSE.
 LCLEAR = .TRUE.
 LU = 8
C
 COMOLD = COMAND
 ARGOLD = COMARG
C
 IF(.NOT.LPLCAM) THEN
 WRITE(*,*) 'Enabling camber,thickness plotting'
 LPLCAM = .TRUE.
 CALL GOFINI
 ENDIF
C
C--- Check chordline direction (should be unrotated for camber routines
C to function correctly
 XLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XTE = 0.5*(XB(1)+XB(NB))
 YTE = 0.5*(YB(1)+YB(NB))
 AROT = ATAN2(YLE-YTE,XTE-XLE) / DTOR
 IF(ABS(AROT).GT.1.0) THEN
 WRITE(*,*) ' '
 WRITE(*,*) 'Warning: CAMB does not work well on rotated foils'
 WRITE(*,*) 'Current chordline angle: ',AROT
 WRITE(*,*) 'Proceeding anyway...'
 ENDIF
C
 CHS = 0.5*CHG
 LDCPLOT = .FALSE.
 LGPARM = .NOT.LDCPLOT
C
 WRITE(*,1200)
C
C--
C---- pick up here to initialize camber and loading
 100 CONTINUE
C
C---- find leftmost point
cc CALL LEFIND(SBL,XB,XBP,YB,YBP,SB,NB)
 CALL XLFIND(SBL,XB,XBP,YB,YBP,SB,NB)
C
 XBL = SEVAL(SBL, XB,XBP,SB,NB)
 YBL = SEVAL(SBL, YB,YBP,SB,NB)
 XBR = 0.5*(XB(1)+XB(NB))
 YBR = 0.5*(YB(1)+YB(NB))
C
C---- set "chordline" axis vector for camber,thickness definitions
 XBCH = XBR - XBL
cc YBCH = YBR - YBL
 YBCH = 0.
 SBCH = SQRT(XBCH**2 + YBCH**2)
C
C---- find the current buffer airfoil camber and thickness
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
C
 NCAM = MIN(201 , NTX)
 DO K=1, NCAM
 XCAM(K) = XCM(1) + (XCM(NCM)-XCM(1))*FLOAT(K-1)/FLOAT(NCAM-1)
 ENDDO
C
 IF(LCLEAR) THEN
C---- initialize added camber to zero
 NCADD = 2
 XCADD(1) = XCAM(1)
 XCADD(2) = XCAM(NCAM)
 YCADD(1) = 0.0
 YCADD(2) = 0.0
C---- initialize added loading to zero
 NPADD = 2
 XPADD(1) = XCAM(1)
 XPADD(2) = XCAM(NCAM)
 YPADD(1) = 0.0
 YPADD(2) = 0.0
C---- spline added camber line y(x) and added loading dCp(x)
 CALL SEGSPL(YCADD,YCADDP,XCADD,NCADD)
 CALL SEGSPL(YPADD,YPADDP,XPADD,NPADD)
C----- interpolate to dense plotting array
 DO K=1, NCAM
 YCAM(K) = SEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 YCAMP(K) = DEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 PCAM(K) = SEVAL(XCAM(K),YPADD,YPADDP,XPADD,NPADD)
 PCAMP(K) = DEVAL(XCAM(K),YPADD,YPADDP,XPADD,NPADD)
 ENDDO
 LCLEAR = .FALSE.
 ENDIF
C
C--
C---- pick up here to find and display current camber and added camber line properties
 200 CONTINUE
C
 WRITE(*,*)
 WRITE(*,*) 'Buffer airfoil thickness and camber:'
 CALL TCBUF
C
 XMX = 0.0
 YMX = 0.0
 DO K=1, NCAM
 IF(ABS(YCAM(K)) .GT. YMX) THEN
 XMX = XCAM(K)
 YMX = YCAM(K)
 ENDIF
 END DO
 CHRD = XCAM(NCAM) - XCAM(1)
 ALE = ATAN(DEVAL(XCAM(1) ,YCAM,YCAMP,XCAM,NCAM)) / DTOR
 ATE = ATAN(DEVAL(XCAM(NCAM),YCAM,YCAMP,XCAM,NCAM)) / DTOR
 WRITE(*,1100) ALE, ATE, YMX/CHRD, XMX/CHRD
 1100 FORMAT(/' Added camber line incidence at LE = ', F6.2, ' deg.',
 & /' Added camber line incidence at TE = ', F6.2, ' deg.',
 & /' Max added camber y/c = ', F8.4, ' at x/c = ', F7.3)
C
C--
C---- pick up here to replot everything
 300 CONTINUE
 LGPARM = .NOT.LDCPLOT
 CALL PLTINI
 CALL PLOTG
 CALL PLOTC
C
C==
C---- top of menu loop
 500 CALL ASKC('..CAMB^',COMAND,COMARG)
C
C---- process previous command ?
 IF(COMAND(1:1).EQ.'!') THEN
 IF(COMOLD.EQ.'****') THEN
 WRITE(*,*) 'Previous ..CAMB command not valid'
 GO TO 500
 ELSE
 COMAND = COMOLD
 COMARG = ARGOLD
 ENDIF
 ENDIF
C
 IF(COMAND.EQ.' ') THEN
C----- just <return> was typed... clean up plotting and exit CAMP
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL CLRZOOM
 LGPARM = LGPARSAVE
 RETURN
 ENDIF
C
C---- extract command line numeric arguments
 DO I=1, 20
 IINPUT(I) = 0
 RINPUT(I) = 0.0
 ENDDO
 NINPUT = 20
 CALL GETINT(COMARG,IINPUT,NINPUT,ERROR)
 NINPUT = 20
 CALL GETFLT(COMARG,RINPUT,NINPUT,ERROR)
C
 IF(COMAND.EQ.' ') THEN
 IF(LPLOT) CALL PLEND
 RETURN
C
 ELSEIF(COMAND.EQ.'? ') THEN
 WRITE(*,1200)
 1200 FORMAT(
 & /' <cr> Return to GDES'
 & /' TFAC rr Scale existing thickness and camber'
 & /' TSET rr Set new thickness and camber'
 & /' HIGH rr Move camber and thickness highpoints'
 & /' WRTC Write airfoil camber x/c,y/c to file'
 & //' RDAC Read added camber x/c,y/c from file'
 & /' SETC Set added camber x/c,y/c from camberline'
 & /' INPC Input added camber x/c,y/c from keyboard'
 & /' MODC Modify added camber x/c,y/c with cursor'
 & /' INPP Input added loading x/c,DCp from keyboard'
 & /' MODP Modify added loading x/c,DCp with cursor'
 & /' SLOP Toggle modified-camber,dCp slope matching flag'
 & /' SCAL r Scale the added camber'
 & /' CLR Clear the added camber'
 & /' ADD Add added camber to the existing camberline'
 & //' DCPL Toggle DCp plot'
 & /' CPLI rr Change DCp axis plot limits'
 & //' Blow Blowup plot region'
 & /' Rese Reset plot scale and origin'
 & //' SIZE r Change absolute plot-object size'
 & /' .ANNO Annotate plot'
 & /' HARD Hardcopy current plot')
C
C--
 ELSEIF(COMAND.EQ.'Z ') THEN
 CALL USETZOOM(.TRUE.,.TRUE.)
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'U ') THEN
 CALL CLRZOOM
 CALL REPLOT(IDEV)
C
C--
 ELSEIF(COMAND.EQ.'TFAC') THEN
 CALL TCSCAL(RINPUT,NINPUT)
 GO TO 100
C
C--
 ELSEIF(COMAND.EQ.'TSET') THEN
 CALL TCSET(RINPUT,NINPUT)
 GO TO 100
C
C--
 ELSEIF(COMAND.EQ.'HIGH') THEN
 CALL HIPNT(RINPUT,NINPUT)
 GO TO 100
C
C--
 ELSEIF(COMAND.EQ.'WRTC') THEN
 CALL ASKS('Enter output camber filename^',FNAME)
C
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=12)
 WRITE(*,*)
 WRITE(*,*) 'Output file exists. Overwrite? Y'
 READ(*,1000) ANS
 IF(INDEX('Nn',ANS).EQ.0) GO TO 13
C
 CLOSE(LU)
 WRITE(*,*) 'Current camber not saved.'
 GO TO 500
C
 12 OPEN(LU,FILE=FNAME,STATUS='NEW',ERR=15)
 13 REWIND(LU)
C
C--- Write out normalized camber coordinates (x/c in range 0->1, y/c)
 WRITE(LU,1000) 'Camber: '//NAME
 DO K = 1, NCM
 WRITE(LU,14) (XCM(K)-XCM(1))/XBCH,(YCM(K)-YCM(1))/XBCH
 END DO
 CLOSE(LU)
 GO TO 500
C
 14 FORMAT(2(1X,F12.6))
C
 15 WRITE(*,*) 'Error opening camber save file'
 GO TO 500
C
C--
 ELSEIF(COMAND.EQ.'RDAC ') THEN
 CALL ASKS('Enter added camber filename^',FNAME)
 OPEN(LU,FILE=FNAME,STATUS='OLD',ERR=19)
 READ(LU,1000,ERR=18,END=18) LINE
 NCADD = 0
 DO K = 1, NTX
 READ(LU,*,ERR=18,END=18) XX,YY
 NCADD = NCADD + 1
 XCADD(NCADD) = XX
 YCADD(NCADD) = YY
 END DO
 18 CLOSE(LU)
 IF(NCADD.LE.1 .OR. (XCADD(NCADD)-XCADD(1)).EQ.0.0) THEN
 NCADD = 2
 XCADD(1) = XCAM(1)
 XCADD(2) = XCAM(NCAM)
 YCADD(1) = 0.0
 YCADD(2) = 0.0
 WRITE(*,*) 'No added camber points found'
 GO TO 100
 ENDIF
C----- normalize input camber to x/c range 0->1
 XCORG = XCADD(1)
 XCSCL = XCADD(NCADD) - XCORG
 DO K=1, NCADD
 XCADD(K) = (XCADD(K)-XCORG) / XCSCL
 YCADD(K) = YCADD(K) / XCSCL
 ENDDO
C----- reorigin and scale added camber to camber line coordinates
 DO K=1, NCADD
 XCADD(K) = XCAM(1) + XCADD(K)*XBCH - YCADD(K)*YBCH
 YCADD(K) = XCADD(K)*YBCH + YCADD(K)*XBCH
 ENDDO
C----- spline camber line y(x)
 CALL SEGSPL(YCADD,YCADDP,XCADD,NCADD)
C----- interpolate to dense plotting array
 DO K=1, NCAM
 YCAM(K) = SEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 YCAMP(K) = DEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 ENDDO
 LDCPLOT = .FALSE.
 GO TO 200

 19 WRITE(*,*)
 WRITE(*,*) 'Error opening added camber file'
 GO TO 500
C
C--
 ELSEIF(COMAND.EQ.'SETC') THEN
C----- Set added camber from camberline
 NCADD = NCM
 DO K=1, NCM
 XCADD(K) = XCM(K)
 YCADD(K) = YCM(K)
 END DO
C----- spline added camber line y(x)
 CALL SEGSPL(YCADD,YCADDP,XCADD,NCADD)
C
C----- interpolate to dense plotting array
 DO K=1, NCAM
 YCAM(K) = SEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 YCAMP(K) = DEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 ENDDO
 LDCPLOT = .FALSE.
 GO TO 200
C
C--
 ELSEIF(COMAND.EQ.'INPC') THEN
C----- Manual input of camber points
 20 WRITE(*,2000)
 2000 FORMAT(/' Manual input of camber x/c,y/c:',
 & //' Input x/c, y/c pairs from x/c = 0 to x/c = 1',
cc & /' Identical successive points enable a slope break',
 & /' <cr> ends input')
C
C--- Points of x/c, y/c are added to existing definition of added camber line
 CALL GETCOLOR(ICOL0)
 CALL NEWCOLORNAME('RED')
 NCADD = 0
 DO 25 I=1, 2*IQX
 23 READ(*,1000,ERR=24) LINE
 IF(LINE.EQ.' ') GO TO 26
 READ(LINE,*,ERR=24) XX,YY
 IF(XX.LE.0.0) THEN
 XX = 0.0
 ELSEIF(XX.GE.1.0) THEN
 XX = 1.0
 ENDIF
 NCADD = NCADD + 1
 XCADD(NCADD) = XCAM(1) + XX*XBCH - YY*YBCH
 YCADD(NCADD) = XX*YBCH + YY*XBCH
C
 XPL = XSF*(XCADD(NCADD)-XOFF)
 YPL = YSF*(YCADD(NCADD)-YOFF-DYOFFC)
 CALL PLSYMB(XPL,YPL,CHS*XSF,1,0.0,I-1)
 CALL PLFLUSH
 GO TO 25
 24 WRITE(*,*) 'try again'
 GO TO 23
 25 CONTINUE
C----- Sort points allowing duplicates for slope breaks
 26 CALL SORTDUP(NCADD,XCADD,YCADD)
 CALL FIXDUP (NCADD,XCADD,YCADD)
 CALL NEWCOLOR(ICOL0)
C----- spline camber line y(x)
 CALL SEGSPL(YCADD,YCADDP,XCADD,NCADD)
C
C----- interpolate to dense plotting array
 DO K=1, NCAM
 YCAM(K) = SEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 YCAMP(K) = DEVAL(XCAM(K),YCADD,YCADDP,XCADD,NCADD)
 ENDDO
 LDCPLOT = .FALSE.
 GO TO 200
C
C--
 ELSEIF(COMAND.EQ.'INPP') THEN
C----- Manual input of loading points
 30 WRITE(*,3000)
 3000 FORMAT(/' Manual input of loading x/c, DCp:',
 & //' Input x/c, DCp pairs from x/c = 0 to x/c = 1',
cc & /' Identical successive points enable a slope break',
 & /' <cr> ends input')
C
 CALL GETPEN(IPN)
 CALL GETCOLOR(ICOL0)
C
 CALL NEWPEN(1)
 CHL = 1.5*CHG
 YOFFP = (DYOFFP+YOFF)/YSFP
 CALL GRDAIR(XPMIN,XPMAX,YPMIN,YPMAX,DXYG,DXYP,CHG,.FALSE.,.TRUE.,
 & XOFF,XSF,YOFFP,YSF*YSFP, LMASK2)
 CALL NEWCOLORNAME('RED')
 CALL NEWPEN(2)
 XLAB = (XPMIN -XOFF)*XSF - 4.0*CHL
 YLAB = (YPMAX-0.5*DXYP-YOFFP)*YSFP*YSF - 0.6*CHL
 CALL PLCHAR(XLAB,YLAB,CHL,' Cp',0.0,3)
 CALL PLMATH(XLAB,YLAB,CHL,'O ',0.0,3)
C
C--- Points of x/c, dCp are added to existing definition of loading line
 DO 35 I=1, 2*IQX
 33 READ(*,1000,ERR=34) LINE
 IF(LINE.EQ.' ') GO TO 36
 READ(LINE,*,ERR=34) XX,YY
 IF(XX.LE.0.0) THEN
 XX = 0.0
 ELSEIF(XX.GE.1.0) THEN
 XX = 1.0
 ENDIF
 NPADD = NPADD + 1
 XPADD(NPADD) = XCAM(1) + XX*XBCH
 YPADD(NPADD) = YY
C
 YOFFP = (DYOFFP*YOFF)/YSFP
 XPL = (XPADD(NPADD)-XOFF)*XSF
 YPL = (YPADD(NPADD)-YOFFP)*YSFP*YSF
 CALL PLSYMB(XPL,YPL,CHS,1,0.0,I-1)
 CALL PLFLUSH
 GO TO 35
 34 WRITE(*,*) 'try again'
 GO TO 33
 35 CONTINUE
C----- Sort points allowing duplicates for slope breaks
 36 CALL SORTDUP(NPADD,XPADD,YPADD)
 CALL FIXDUP (NPADD,XPADD,YPADD)
 CALL NEWCOLOR(ICOL0)
 CALL NEWPEN(IPN)
C----- spline loading DCp(x)
 CALL SEGSPL(YPADD,YPADDP,XPADD,NPADD)
C
C----- interpolate to dense plotting array
 DO K=1, NCAM
 PCAM(K) = SEVAL(XCAM(K),YPADD,YPADDP,XPADD,NPADD)
 PCAMP(K) = DEVAL(XCAM(K),YPADD,YPADDP,XPADD,NPADD)
 ENDDO
C
C----- calculate camber line corresponding to specified loading
 CALL CPCAM(NCAM,XCAM,YCAM,YCAMP,PCAM,PCAMP)
C
C----- calculate added lift and moment from added loading
 CLX = 0.0
 CMX = 0.0
 DO K=1, NCAM-1
 DX = XCAM(K+1) - XCAM(K)
 XA = 0.5*(XCAM(K+1) + XCAM(K))
 PA = 0.5*(PCAM(K+1) + PCAM(K))
 CLX = CLX + PA*DX
 CMX = CMX + PA*DX*(XCMREF-XA)
 END DO
 WRITE(*,1110) CLX, CMX
C
 LDCPLOT = .TRUE.
 GO TO 200
C
C--
 ELSEIF(COMAND.EQ.'MODC') THEN
C----- Interactively modify camber
 XBOX(1) = XMARG
 XBOX(2) = XPAGE-XMARG
 YBOX(1) = YMARG
 YBOX(2) = YPAGE-YMARG
 XOFF1 = XOFF
 YOFF1 = YOFF+DYOFFC
 XSF1 = XSF
 YSF1 = YSF
 CALL MODIFY(NTX,1,NCAM,1,1,
 & XCAM,YCAM,YCAMP, LCSLOP,
 & K1,K2,ISMOD,IFMOD,
 & XBOX,YBOX, XBOX,YBOX,SIZE,
 & XOFF1,YOFF1,XSF1,YSF1, 'RED',' ',
 & NEWPLOTC)
 LDCPLOT = .FALSE.
 GO TO 200
C
C--
 ELSEIF(COMAND.EQ.'MODP') THEN
C----- Interactively modify loading
 IF(.NOT.LDCPLOT) THEN
 LDCPLOT = .TRUE.
 LGPARM = .NOT.LDCPLOT
 CALL PLTINI
 CALL PLOTG
 CALL PLOTC
 ENDIF
 XBOX(1) = XMARG
 XBOX(2) = XPAGE-XMARG
 YBOX(1) = YMARG
 YBOX(2) = YPAGE-YMARG
 XOFF1 = XOFF
 YOFF1 = (DYOFFP+YOFF)/YSFP
 XSF1 = XSF
 YSF1 = YSF*YSFP
 CALL MODIFY(NTX,1,NCAM,1,1,
 & XCAM,PCAM,PCAMP, LCSLOP,
 & K1,K2,ISMOD,IFMOD,
 & XBOX,YBOX, XBOX,YBOX,SIZE,
 & XOFF1,YOFF1,XSF1,YSF1, 'RED',' ',
 & NEWPLOTC)
C
C----- calculate camber line corresponding to specified loading
 CALL CPCAM(NCAM,XCAM,YCAM,YCAMP,PCAM,PCAMP)
C
C----- calculate added lift and moment from added loading
 CLX = 0.0
 CMX = 0.0
 DO K=1, NCAM-1
 DX = XCAM(K+1) - XCAM(K)
 XA = 0.5*(XCAM(K+1) + XCAM(K))
 PA = 0.5*(PCAM(K+1) + PCAM(K))
 CLX = CLX + PA*DX
 CMX = CMX + PA*DX*(XCMREF-XA)
 END DO
 WRITE(*,1110) CLX, CMX
C
 GO TO 200
C
C--
 ELSEIF(COMAND.EQ.'CLR ') THEN
C----- Clear the added camber
 LCLEAR = .TRUE.
 LDCPLOT = .FALSE.
 GO TO 100
C
C--
 ELSEIF(COMAND.EQ.'SCAL') THEN
C----- Scale camber
 IF(NINPUT.GE.1) THEN
 SCAL = RINPUT(1)
 ELSE
 SCAL = 1.0
 CALL ASKR('Enter camber scaling factor^',SCAL)
 ENDIF
C
C--- Scale added camber user arrays
 DO I = 1, NCADD
 YCADD(I) = YCADD(I) *SCAL
 YPADD(I) = YPADD(I) *SCAL
 YCADDP(I) = YCADDP(I)*SCAL
 YPADDP(I) = YPADDP(I)*SCAL
 END DO
C
C--- Scale added camber arrays
 DO I = 1, NCAM
 YCAM(I) = YCAM(I) *SCAL
 YCAMP(I) = YCAMP(I)*SCAL
 PCAM(I) = PCAM(I) *SCAL
 PCAMP(I) = PCAMP(I)*SCAL
 END DO
C
C----- calculate added lift and moment from added loading
 CLX = 0.0
 CMX = 0.0
 DO K=1, NCAM-1
 DX = XCAM(K+1) - XCAM(K)
 XA = 0.5*(XCAM(K+1) + XCAM(K))
 PA = 0.5*(PCAM(K+1) + PCAM(K))
 CLX = CLX + PA*DX
 CMX = CMX + PA*DX*(XCMREF-XA)
 END DO
 IF(CLX.NE.0.0 .AND. CMX.NE.0.0) WRITE(*,1110) CLX, CMX
C
 COMOLD = COMAND
 ARGOLD = COMARG
C
C
C----- go replot new shape and resume menu loop
 GO TO 200
C
C--
 ELSEIF(COMAND.EQ.'ADD ') THEN
C----- Add camber to camberline
 CALL SEGSPL(YCAM,YCAMP,XCAM,NCAM)
C
C----- go over each point, changing the camber line appropriately
 DO I=1, NB
C------- coordinates of point on the opposite side with the same chord x value
 CALL SOPPS(SBOPP, SB(I),XB,XBP,YB,YBP,SB,NB,SBL)
 XBOPP = SEVAL(SBOPP,XB,XBP,SB,NB)
 YBOPP = SEVAL(SBOPP,YB,YBP,SB,NB)
C
C------- set present camber height
 OLDCAM = 0.5*(YB(I)+YBOPP)*XBCH/SBCH
 & - 0.5*(XB(I)+XBOPP)*YBCH/SBCH
C
C------- add on new camber
 CAM = OLDCAM
 & + SEVAL(XB(I),YCAM,YCAMP,XCAM,NCAM)
C
C------- set new y coordinate by changing camber & thickness appropriately
 W1(I) = CAM + 0.5*(YB(I)-YBOPP)
 END DO
C
 DO I=1, NB
 YB(I) = W1(I)
 END DO
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 LDCPLOT = .FALSE.
C---- reinitialize added camber to zero
 LCLEAR = .TRUE.
 GO TO 100
C
C--
 ELSEIF(COMAND.EQ.'SLOP') THEN
 LCSLOP = .NOT.LCSLOP
 IF(LCSLOP) THEN
 WRITE(*,*) 'Modified segment will be',
 & ' made tangent at endpoints'
 ELSE
 WRITE(*,*) 'Modified segment will not be',
 & ' made tangent at endpoints'
 ENDIF
C
C--
 ELSEIF(COMAND.EQ.'BLOW' .OR.
 & COMAND.EQ.'B ') THEN
 XWS = XWIND/SIZE
 YWS = YWIND/SIZE
 CALL OFFGET(XOFF,YOFF,XSF,YSF,XWS,YWS, .TRUE. , .TRUE.)
 SF = MIN(XSF,YSF)
 XSF = SF
 YSF = SF
 GO TO 300
C
C--
 ELSEIF(COMAND.EQ.'RESE' .OR.
 & COMAND.EQ.'R ') THEN
 CALL PLTINI
 CALL GOFINI
 CALL PLOTG
cc CALL RESETSCL
 GO TO 300
C
C--
 ELSEIF(COMAND.EQ.'DCPL') THEN
C----- Toggle DCp plot flag
 LDCPLOT = .NOT.LDCPLOT
 GO TO 200
C
C--
 ELSEIF(COMAND.EQ.'CPLI') THEN
 IF (NINPUT.GE.2) THEN
 YPMN = RINPUT(1)
 YPMX = RINPUT(2)
 ELSEIF(NINPUT.GE.1) THEN
 YPMIN = RINPUT(1)
 CALL ASKR('Enter max DCp^',YPMX)
 ELSE
 CALL ASKR('Enter min DCp^',YPMN)
 CALL ASKR('Enter max DCp^',YPMX)
 ENDIF
 IF(YPMX-YPMN.GT.0.0) THEN
 CALL AXISADJ(YPMN,YPMX,PSPAN,DXYP,NTICS)
 YPMIN = YPMN
 YPMAX = YPMX
 CALL GOFINI
 ENDIF
 GO TO 300
C
C--
 ELSEIF(COMAND.EQ.'SIZE') THEN
 IF(NINPUT.GE.1) THEN
 SIZE = RINPUT(1)
 ELSE
 WRITE(*,*) 'Current plot-object size =', SIZE
 CALL ASKR('Enter new plot-object size^',SIZE)
 ENDIF
 CALL GOFINI
 GO TO 300
C
C--
 ELSEIF(COMAND.EQ.'ANNO') THEN
 IF(LPLOT) THEN
 CALL ANNOT(CH)
 ELSE
 WRITE(*,*) 'No active plot to annotate'
 ENDIF
 GO TO 300
C
C--
 ELSEIF(COMAND.EQ.'HARD') THEN
 IF(LPLOT) CALL PLEND
 LPLOT = .FALSE.
 CALL REPLOT(IDEVRP)
 GO TO 300
C
C---
 ELSE
 WRITE(*,8000) COMAND
 8000 FORMAT(1X,A4,' command not recognized. Type a "?" for list')
C
 ENDIF
 GO TO 500
C
 1110 FORMAT(/' Delta Cp loading gives delta CL = ',F7.3,
 & /' delta CM = ',F7.3)
C
 END ! CAMB

 SUBROUTINE NEWPLOTC
 CALL PLTINI
 CALL PLOTG
 CALL PLOTC
 RETURN
 END

 SUBROUTINE PLOTC
C--
C Plots camber, thickness on its own axis above airfoil plot
C Also plots deltaCP distribution above the camber,thickness
C on its own axis above airfoil plot if LDCPLOT is set
C--
 INCLUDE 'XFOIL.INC'
C
 DATA LMASK0, LMASK1, LMASK2, LMASK3 / -1, -32640, -30584, -21846 /
C
 CALL GETCOLOR(ICOL0)
 CALL GETPAT(IPAT0)
C
 CHS = 0.6*CHG
C
 IF(LDCPLOT) THEN
C----- current DCp loading is valid... plot it
 CALL NEWPEN(1)
 CHL = 1.5*CHG
 YOFFP = (DYOFFP+YOFF)/YSFP
 CALL GRDAIR(XGMIN,XGMAX,YPMIN,YPMAX,DXYG,DXYP,CHG,.FALSE.,.TRUE.,
 & XOFF,XSF,YOFFP,YSFP*YSF, LMASK2)
C
 CALL NEWCOLORNAME('RED')
 CALL NEWPEN(2)
 XLAB = (XPMIN -XOFF)*XSF - 4.0*CHL
 YLAB = (YPMAX-0.5*DXYP-YOFFP)*YSFP*YSF - 0.6*CHL
 CALL PLCHAR(XLAB,YLAB,CHL,' Cp',0.0,3)
 CALL PLMATH(XLAB,YLAB,CHL,'O ',0.0,3)
C
 CALL XYLINE(NCAM,XCAM,PCAM,XOFF,XSF,YOFFP,YSFP*YSF,1)
ccc CALL XYSYMB(NCAM,XCAM,PCAM,XOFF,XSF,YOFFP,YSFP*YSF,CHS,1)
 CALL NEWCOLOR(ICOL0)
C
cC----- plot derived camber line in dotted line
c CALL NEWPAT(LMASK3)
c ELSE
cC----- plot specified camber line in solid line
c CALL NEWPAT(LMASK0)
 ENDIF
C
 CALL NEWPEN(1)
 CALL NEWCOLORNAME('RED')
 CALL XYLINE(NCAM,XCAM,YCAM,XOFF,XSF,YOFF+DYOFFC,YSF,1)
ccc CALL XYSYMB(NCAM,XCAM,YCAM,XOFF,XSF,YOFF+DYOFFC,YSF,CHS,1)
C
 CALL NEWCOLOR(ICOL0)
 CALL NEWPAT(IPAT0)
 CALL PLFLUSH
C
 RETURN
 END ! PLOTC

 SUBROUTINE ZERCAM
C---
C Zeros out camber of buffer airfoil
C---
 INCLUDE 'XFOIL.INC'
C
 WRITE(*,*) 'Setting current camber to zero.'
 TFAC = 1.0
 CFAC = 0.0
 CALL THKCAM(TFAC,CFAC)
C
C---- make points exact mirror images
 CALL YSYM(XB,XBP,YB,YBP,SB,2*IQX,NB,1,W1,W2)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 CALL PLTAIR(XB,XBP,YB,YBP,SB,NB, XOFF,XSF,YOFF,YSF,'magenta')
 CALL PLNEWP('magenta')
C
 LGEOPL = .FALSE.
 LGSAME = .FALSE.
C
 RETURN
 END ! ZERCAM

 SUBROUTINE TCBUF
C--
C Reports buffer airfoil thickness and camber
C--
 INCLUDE 'XFOIL.INC'
C
C--- find the current buffer airfoil camber and thickness
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
 CALL GETMAX(XCM,YCM,YCMP,NCM,CXMAX,CYMAX)
 CALL GETMAX(XTK,YTK,YTKP,NTK,TXMAX,TYMAX)
C
 WRITE(*,1000) 2.0*TYMAX,TXMAX, CYMAX,CXMAX
 1000 FORMAT(' Max thickness = ',F8.4,' at x = ',F7.3,
 & /' Max camber = ',F8.4,' at x = ',F7.3)
C
 RETURN
 END ! TCBUF

 SUBROUTINE TCSCAL(RINPUT,NINPUT)
 DIMENSION RINPUT(*)
C--
C Finds buffer airfoil thickness and/or camber,
C plots thickness, camber and airfoil,
C and scales t and/or c by user input factors
C--
 INCLUDE 'XFOIL.INC'
C
C--- find the current buffer airfoil camber and thickness
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
 CALL GETMAX(XCM,YCM,YCMP,NCM,CXMAX,CYMAX)
 CALL GETMAX(XTK,YTK,YTKP,NTK,TXMAX,TYMAX)
C
 WRITE(*,1000) 2.0*TYMAX,TXMAX, CYMAX,CXMAX
C
 IF (NINPUT .GE. 2) THEN
 TFAC = RINPUT(1)
 CFAC = RINPUT(2)
 ELSEIF(NINPUT .GE. 1) THEN
 TFAC = RINPUT(1)
 IF(LGSYM) THEN
 WRITE(*,*) 'Symmetry enforced: Maintaining zero camber.'
 ELSE
 CFAC = 1.0
 CALL ASKR('Enter new/old camber scale factor^',CFAC)
 ENDIF
 ELSE
 TFAC = 1.0
 CALL ASKR('Enter new/old thickness scale factor^',TFAC)
 IF(LGSYM) THEN
 WRITE(*,*) 'Symmetry enforced: Maintaining zero camber.'
 ELSE
 CFAC = 1.0
 CALL ASKR('Enter new/old camber scale factor^',CFAC)
 ENDIF
 ENDIF
C
ccc IF (TFAC.LT.0.0) TFAC = 0.0
 CALL THKCAM(TFAC,CFAC)
C
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
cc IPLT = 1
cc CALL PLOTC
C
 1000 FORMAT(/' Max thickness = ',F8.4,' at x = ',F7.3,
 & /' Max camber = ',F8.4,' at x = ',F7.3/)
C
 RETURN
 END ! TCSCAL

 SUBROUTINE TCSET(RINPUT,NINPUT)
 DIMENSION RINPUT(*)
C--
C Finds buffer airfoil thickness and/or camber,
C plots thickness, camber and airfoil,
C and scales t and/or c by user input factors
C--
 INCLUDE 'XFOIL.INC'
C
C--- find the current buffer airfoil camber and thickness
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
 CALL GETMAX(XCM,YCM,YCMP,NCM,CXMAX,CYMAX)
 CALL GETMAX(XTK,YTK,YTKP,NTK,TXMAX,TYMAX)
C
 WRITE(*,1000) 2.0*TYMAX,TXMAX, CYMAX,CXMAX
 1000 FORMAT(/' Max thickness = ',F8.4,' at x = ',F7.3,
 & /' Max camber = ',F8.4,' at x = ',F7.3/)
C
cc IPLT = 0
cc CALL PLOTC
C
 IF (NINPUT .GE. 2) THEN
 TNEW = RINPUT(1)
 CNEW = RINPUT(2)
 ELSEIF(NINPUT .GE. 1) THEN
 TNEW = RINPUT(1)
 IF(LGSYM) THEN
 WRITE(*,*) 'Symmetry enforced: Maintaining zero camber.'
 ELSE
 CNEW = 999
 CALL ASKR('Enter new max camber <ret> to skip^',CNEW)
 ENDIF
 ELSE
 TNEW = 999
 CALL ASKR('Enter new max thickness <ret> to skip^',TNEW)
 IF(LGSYM) THEN
 WRITE(*,*) 'Symmetry enforced: Maintaining zero camber.'
 ELSE
 CNEW = 999
 CALL ASKR('Enter new max camber <ret> to skip^',CNEW)
 ENDIF
 ENDIF
C
 CFAC = 1.0
 TFAC = 1.0
 IF(CYMAX.NE.0.0 .AND. CNEW.NE.999.0) CFAC = CNEW / (CYMAX)
 IF(TYMAX.NE.0.0 .AND. TNEW.NE.999.0) TFAC = TNEW / (2.0*TYMAX)
C
C---- sanity checks on scaling factors
 IF(ABS(TFAC) .GT. 100.0 .OR. ABS(CFAC) .GT. 100.0) THEN
 WRITE(*,1100) TFAC, CFAC
 1100 FORMAT(/' Questionable input...'
 & /' Implied scaling factors are:', F13.2,' x thickness'
 & /' ', F13.2,' x camber ')
 CALL ASKL('Apply scaling factors?^',OK)
 IF(.NOT.OK) THEN
 WRITE(*,*) 'No action taken'
 RETURN
 ENDIF
 ENDIF
C
ccc IF (TFAC.LT.0.0) TFAC = 0.0
 CALL THKCAM(TFAC,CFAC)
C
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
cc IPLT = 1
cc CALL PLOTC
C
 RETURN
 END ! TCSET

 SUBROUTINE THKCAM(TFAC,CFAC)
C---
C Changes buffer airfoil thickness and camber
C---
 INCLUDE 'XFOIL.INC'
C
 CALL LEFIND(SBLE,XB,XBP,YB,YBP,SB,NB)
C
C---This fails miserably with sharp LE foils, tsk,tsk,tsk HHY 4/24/01
C---- set baseline vector normal to surface at LE point
c DXC = -DEVAL(SBLE,YB,YBP,SB,NB)
c DYC = DEVAL(SBLE,XB,XBP,SB,NB)
c DSC = SQRT(DXC**2 + DYC**2)
c DXC = DXC/DSC
c DYC = DYC/DSC
C
C---Rational alternative 4/24/01 HHY
 XLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XTE = 0.5*(XB(1)+XB(NB))
 YTE = 0.5*(YB(1)+YB(NB))
 CHORD = SQRT((XTE-XLE)**2 + (YTE-YLE)**2)
C---- set unit chord-line vector
 DXC = (XTE-XLE) / CHORD
 DYC = (YTE-YLE) / CHORD
C
C---- go over each point, changing the y-thickness appropriately
 DO I=1, NB
C------ coordinates of point on the opposite side with the same x value
 CALL SOPPS(SBOPP, SB(I),XB,XBP,YB,YBP,SB,NB,SBLE)
 XBOPP = SEVAL(SBOPP,XB,XBP,SB,NB)
 YBOPP = SEVAL(SBOPP,YB,YBP,SB,NB)
C
C------ set new y coordinate by changing camber & thickness appropriately
 XCAVG = (0.5*(XB(I)+XBOPP)*DXC + 0.5*(YB(I)+YBOPP)*DYC)
 YCAVG = CFAC * (0.5*(YB(I)+YBOPP)*DXC - 0.5*(XB(I)+XBOPP)*DYC)

 XCDEL = (0.5*(XB(I)-XBOPP)*DXC + 0.5*(YB(I)-YBOPP)*DYC)
 YCDEL = TFAC * (0.5*(YB(I)-YBOPP)*DXC - 0.5*(XB(I)-XBOPP)*DYC)
C
 W1(I) = (XCAVG+XCDEL)*DXC - (YCAVG+YCDEL)*DYC
 W2(I) = (YCAVG+YCDEL)*DXC + (XCAVG+XCDEL)*DYC
 ENDDO
C
 DO I=1, NB
 XB(I) = W1(I)
 YB(I) = W2(I)
 ENDDO
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 RETURN
 END ! THKCAM

 SUBROUTINE HIPNT(RINPUT,NINPUT)
 DIMENSION RINPUT(*)
C--
C Changes buffer airfoil
C thickness and/or camber highpoint
C--
 INCLUDE 'XFOIL.INC'
 REAL XFN(5), YFN(5), YFNP(5), SFN(5)
C
C
C--- Check chordline direction (should be unrotated for camber routines)
C to function correctly
 XLE = SEVAL(SBLE,XB,XBP,SB,NB)
 YLE = SEVAL(SBLE,YB,YBP,SB,NB)
 XTE = 0.5*(XB(1)+XB(NB))
 YTE = 0.5*(YB(1)+YB(NB))
 AROT = ATAN2(YLE-YTE,XTE-XLE) / DTOR
 IF(ABS(AROT).GT.1.0) THEN
 WRITE(*,*) ' '
 WRITE(*,*) 'Warning: HIGH does not work well on rotated foils'
 WRITE(*,*) 'Current chordline angle: ',AROT
 WRITE(*,*) 'Proceeding anyway...'
 ENDIF
C
C
C---- find leftmost point location
 CALL XLFIND(SBL,XB,XBP,YB,YBP,SB,NB)
 XBL = SEVAL(SBL,XB,XBP,SB,NB)
 YBL = SEVAL(SBL,YB,YBP,SB,NB)
C
 10 CONTINUE
C
C---- find the current buffer airfoil camber and thickness
 CALL GETCAM(XCM,YCM,NCM,XTK,YTK,NTK,
 & XB,XBP,YB,YBP,SB,NB)
C
C---- find the max thickness and camber
 CALL GETMAX(XCM,YCM,YCMP,NCM,CXMAX,CYMAX)
 CALL GETMAX(XTK,YTK,YTKP,NTK,TXMAX,TYMAX)
C
C
C---- make a picture and get some input specs for mods
cc IPLT = 0
cc CALL PLOTC
 WRITE(*,1010) 2.0*TYMAX,TXMAX, CYMAX,CXMAX
 1010 FORMAT(/' Max thickness = ',F8.4,' at x = ',F7.3,
 & /' Max camber = ',F8.4,' at x = ',F7.3/)
C
 IF (NINPUT .GE. 2) THEN
 THPNT = RINPUT(1)
 CHPNT = RINPUT(2)
 ELSEIF(NINPUT .GE. 1) THEN
 THPNT = RINPUT(1)
 IF(LGSYM) THEN
 WRITE(*,*) 'Symmetry enforced: Maintaining zero camber.'
 ELSE
 CHPNT = 0.0
 CALL ASKR('Enter new camber highpoint x: ^',CHPNT)
 ENDIF
 ELSE
 THPNT = 0.0
 CALL ASKR('Enter new thickness highpoint x: ^',THPNT)
 IF(LGSYM) THEN
 WRITE(*,*) 'Symmetry enforced: Maintaining zero camber.'
 ELSE
 CHPNT = 0.0
 CALL ASKR('Enter new camber highpoint x: ^',CHPNT)
 ENDIF
 ENDIF
C
 IF (THPNT.LE.0.0) THPNT = TXMAX
 IF (CHPNT.LE.0.0) CHPNT = CXMAX
C
C--- a simple cubic mapping function is used to map x/c to move highpoints
C
C the assumption is that a smooth function (cubic, given by the old and
C new highpoint locations) maps the range 0-1 for x/c
C into the range 0-1 for altered x/c distribution for the same y/c
C thickness or camber (ie. slide the points smoothly along the x axis)
C
C--- shift thickness highpoint
 IF (THPNT .GT. 0.0) THEN
 XFN(1) = XTK(1)
 XFN(2) = TXMAX
 XFN(3) = XTK(NTK)
 YFN(1) = XTK(1)
 YFN(2) = THPNT
 YFN(3) = XTK(NTK)
 CALL SPLINA(YFN,YFNP,XFN,3)
 DO I = 1, NTK
 XTK(I) = SEVAL(XTK(I),YFN,YFNP,XFN,3)
 ENDDO
 ENDIF
C
C--- shift camber highpoint
 IF (CHPNT .GT. 0.0) THEN
 XFN(1) = XCM(1)
 XFN(2) = CXMAX
 XFN(3) = XCM(NCM)
 YFN(1) = XCM(1)
 YFN(2) = CHPNT
 YFN(3) = XCM(NCM)
 CALL SPLINA(YFN,YFNP,XFN,3)
 DO I = 1, NCM
 XCM(I) = SEVAL(XCM(I),YFN,YFNP,XFN,3)
 ENDDO
 ENDIF
C
cc IPLT = 1
cc CALL PLOTC
C
C CALL ASKL('Is this acceptable? ^',OK)
C IF(.NOT.OK) GO TO 10
C
C---- Make new airfoil from thickness and camber
C new airfoil points are spaced to match the original
C--- HHY 4/24/01 got rid of splining vs X,Y vs S (buggy), now spline Y(X)
 CALL SEGSPL(YTK,YTKP,XTK,NTK)
 CALL SEGSPL(YCM,YCMP,XCM,NCM)
C
C
C---- for each orig. airfoil point setup new YB from camber and thickness
 DO 40 I=1, NB
C
C------ spline camber and thickness at original xb points
 YCC = SEVAL(XB(I),YCM,YCMP,XCM,NCM)
 YTT = SEVAL(XB(I),YTK,YTKP,XTK,NTK)
C
C------ set new y coordinate from new camber & thickness
 IF (SB(I) .LE. SBL) THEN
 YB(I) = YCC + YTT
 ELSE
 YB(I) = YCC - YTT
 ENDIF
C---- Add Y-offset for original leftmost (LE) point to camber
 YB(I) = YB(I) + YBL
 40 CONTINUE
C
 CALL SCALC(XB,YB,SB,NB)
 CALL SEGSPL(XB,XBP,SB,NB)
 CALL SEGSPL(YB,YBP,SB,NB)
C
 CALL GEOPAR(XB,XBP,YB,YBP,SB,NB,W1,
 & SBLE,CHORDB,AREAB,RADBLE,ANGBTE,
 & EI11BA,EI22BA,APX1BA,APX2BA,
 & EI11BT,EI22BT,APX1BT,APX2BT,
 & THICKB,CAMBRB)
C
 RETURN
 END ! HIPNT

 SUBROUTINE GETCAM (XCM,YCM,NCM,XTK,YTK,NTK,
 & X,XP,Y,YP,S,N)
C--
C Finds camber and thickness
C distribution for input airfoil
C--
 REAL XCM(*), YCM(*)
 REAL XTK(*), YTK(*)
 REAL X(*),XP(*),Y(*),YP(*),S(*)
C
 CALL XLFIND(SL,X,XP,Y,YP,S,N)
 XL = SEVAL(SL,X,XP,S,N)
 YL = SEVAL(SL,Y,YP,S,N)
C
C---- go over each point, finding opposite points, getting camber and thickness
 DO 10 I=1, N
C------ coordinates of point on the opposite side with the same x value
 CALL SOPPS(SOPP, S(I), X,XP,Y,YP,S,N,SL)
 XOPP = SEVAL(SOPP,X,XP,S,N)
 YOPP = SEVAL(SOPP,Y,YP,S,N)
C
C------ get camber and thickness
 XCM(I) = 0.5*(X(I)+XOPP)
 YCM(I) = 0.5*(Y(I)+YOPP)
 XTK(I) = 0.5*(X(I)+XOPP)
 YTK(I) = 0.5*(Y(I)-YOPP)
 YTK(I) = ABS(YTK(I))
c if (XOPP.gt.0.9) then
c write(*,*) 'cm i,x,y ',i,xcm(i),ycm(i)
c write(*,*) 'tk i,x,y ',i,xtk(i),ytk(i)
c endif
 10 CONTINUE
C
C---- Tolerance for nominally identical points
 TOL = 1.0E-3 * (S(N)-S(1))
C
C---- Sort the camber points
 NCM = N+1
 XCM(N+1) = XL
 YCM(N+1) = YL
 CALL SORTOL(TOL,NCM,XCM,YCM)
C
C--- Reorigin camber from LE so camberlines start at Y=0 4/24/01 HHY
C policy now to generate camber independent of Y-offsets
 YOF = YCM(1)
 DO I = 1, NCM
 YCM(I) = YCM(I) - YOF
 END DO
C
C---- Sort the thickness points
 NTK = N+1
 XTK(N+1) = XL
 YTK(N+1) = 0.0
 CALL SORTOL(TOL,NTK,XTK,YTK)
C
 RETURN
 END ! GETCAM

 SUBROUTINE GETMAX(X,Y,YP,N,XMAX,YMAX)
 REAL X(*), Y(*), YP(*)
C--
C Calculates camber or thickness highpoint
C and x position
C--
C
 XLEN = X(N) - X(1)
 XTOL = XLEN * 1.0E-5
C
 CALL SEGSPL(Y,YP,X,N)
C
C---- get approx max point and rough interval size
 YMAX0 = Y(1)
 XMAX0 = X(1)
 DO 5 I = 2, N
 IF (ABS(Y(I)).GT.ABS(YMAX0)) THEN
 YMAX0 = Y(I)
 XMAX0 = 0.5*(X(I-1) + X(I))
 DDX = 0.5*ABS(X(I+1) - X(I-1))
 ENDIF
 5 CONTINUE
 XMAX = XMAX0
C
C---- do a Newton loop to refine estimate
 DO 10 ITER=1, 10
 YMAX = SEVAL(XMAX,Y,YP,X,N)
 RES = DEVAL(XMAX,Y,YP,X,N)
 RESP = D2VAL(XMAX,Y,YP,X,N)
 IF (ABS(XLEN*RESP) .LT. 1.0E-6) GO TO 20
 DX = -RES/RESP
 DX = SIGN(MIN(0.5*DDX,ABS(DX)) , DX)
 XMAX = XMAX + DX
 IF(ABS(DX) .LT. XTOL) GO TO 20
 10 CONTINUE
 WRITE(*,*)
 & 'GETMAX: Newton iteration for max camber/thickness failed.'
 YMAX = YMAX0
 XMAX = XMAX0
C
 20 RETURN
 END ! GETMAX

 SUBROUTINE CPCAM(N,X,Y,DYDX,P,DPDX)
 REAL X(*), Y(*), DYDX(*), P(*), DPDX(*)
C--
C Generates y(x) camberline from specified DCp(x) distribution.
C
C Input: N number of points
C X(.) x array
C P(.) DCp array
C DPDX(.) dDCp/dx array
C
C Output: Y(.) y(x) array
C DYDX(.) dy/dx array
C--
C---- 1 / 4 pi
 DATA QOPI / 7.9577471545948E-02 /
C
C---- singular part of camber y(x) due to finite loadings P0,P1 at LE and TE
C- dYSING/dX has logarithmic singularity at x=X0,X1
 YSING(XT) = QOPI*P1*((XT-X1)*LOG(MAX((X1-XT)/(X1-X0),1.E-6)) - XT)
 & - QOPI*P0*((XT-X0)*LOG(MAX((XT-X0)/(X1-X0),1.E-6)) - XT)
C
 P0 = P(1)
 P1 = P(N)
C
 X0 = X(1)
 X1 = X(N)
C
C---- calculate Cauchy integral for y'(x) with removed singularity
 DO I=1, N
 DYDX(I) = 0.0
 J = 1
 IF(I.EQ.J) THEN
 YP1 = DPDX(J)
 ELSE
 YP1 = (P(J) - P(I)) / (X(J) - X(I))
 ENDIF
 DO J=2, N
 IF(I.EQ.J) THEN
 YP2 = DPDX(J)
 ELSE
 YP2 = (P(J) - P(I)) / (X(J) - X(I))
 ENDIF
 DYDX(I) = DYDX(I) + 0.5*(YP1+YP2)*(X(J)-X(J-1))
 YP1 = YP2
 END DO
 DYDX(I) = QOPI*DYDX(I)
C
C------ add on removed part of Cauchy integral, further leaving out the
C- possible infinities at LE and TE so that y(x) can be safely splined.
C- The infinities are analytically integrated, and added on to y(x)
C- with the statement function YSING.
 IF(I.NE.1) THEN
 DYDX(I) = DYDX(I)
 & - QOPI*(P(I) - P0)*LOG(X(I) - X0)
 ENDIF
 IF(I.NE.N) THEN
 DYDX(I) = DYDX(I)
 & + QOPI*(P(I) - P1)*LOG(X1 - X(I))
 ENDIF
 END DO
C
C---- integrate regular part of y'(x) from LE
 Y(1) = 0.
 DO I=2, N
 Y(I) = Y(I-1)
 & + 0.5*(DYDX(I) + DYDX(I-1))*(X(I) - X(I-1))
 END DO
C
C---- add on singular part
 DO I=1, N
 Y(I) = Y(I) + YSING(X(I))
 END DO
C
C---- add offset and angle of attack to get y(0) = y(1) = 0
 Y0 = Y(1)
 Y1 = Y(N)
 DO I=1, N
 Y(I) = Y(I)
 & - Y0*(X1 -X(I))/(X1-X0)
 & - Y1*(X(I)-X0)/(X1-X0)
 END DO
C
 RETURN
 END ! CPCAM

XFOILinterface/XFOIL/src/xutils.f

 SUBROUTINE SETEXP(S,DS1,SMAX,NN)
C..
C Sets geometrically stretched array S:
C
C S(i+1) - S(i) = r * [S(i) - S(i-1)]
C
C S (output) array to be set
C DS1 (input) first S increment: S(2) - S(1)
C SMAX (input) final S value: S(NN)
C NN (input) number of points
C..
 REAL S(NN)
C
 SIGMA = SMAX/DS1
 NEX = NN-1
 RNEX = FLOAT(NEX)
 RNI = 1.0/RNEX
C
C---- solve quadratic for initial geometric ratio guess
 AAA = RNEX*(RNEX-1.0)*(RNEX-2.0) / 6.0
 BBB = RNEX*(RNEX-1.0) / 2.0
 CCC = RNEX - SIGMA
C
 DISC = BBB**2 - 4.0*AAA*CCC
 DISC = MAX(0.0 , DISC)
C
 IF(NEX.LE.1) THEN
 STOP 'SETEXP: Cannot fill array. N too small.'
 ELSE IF(NEX.EQ.2) THEN
 RATIO = -CCC/BBB + 1.0
 ELSE
 RATIO = (-BBB + SQRT(DISC))/(2.0*AAA) + 1.0
 ENDIF
C
 IF(RATIO.EQ.1.0) GO TO 11
C
C---- Newton iteration for actual geometric ratio
 DO 1 ITER=1, 100
 SIGMAN = (RATIO**NEX - 1.0) / (RATIO - 1.0)
 RES = SIGMAN**RNI - SIGMA**RNI
 DRESDR = RNI*SIGMAN**RNI
 & * (RNEX*RATIO**(NEX-1) - SIGMAN) / (RATIO**NEX - 1.0)
C
 DRATIO = -RES/DRESDR
 RATIO = RATIO + DRATIO
C
 IF(ABS(DRATIO) .LT. 1.0E-5) GO TO 11
C
 1 CONTINUE
 WRITE(*,*) 'SETEXP: Convergence failed. Continuing anyway ...'
C
C---- set up stretched array using converged geometric ratio
 11 S(1) = 0.0
 DS = DS1
 DO 2 N=2, NN
 S(N) = S(N-1) + DS
 DS = DS*RATIO
 2 CONTINUE
C
 RETURN
 END

 FUNCTION ATANC(Y,X,THOLD)
 IMPLICIT REAL (A-H,M,O-Z)
C---
C ATAN2 function with branch cut checking.
C
C Increments position angle of point X,Y from some previous
C value THOLD due to a change in position, ensuring that the
C position change does not cross the ATAN2 branch cut
C (which is in the -x direction). For example:
C
C ATANC(-1.0 , -1.0 , 0.75*pi) returns 1.25*pi , whereas
C ATAN2(-1.0 , -1.0) returns -.75*pi .
C
C Typically, ATANC is used to fill an array of angles:
C
C THETA(1) = ATAN2(Y(1) , X(1))
C DO i=2, N
C THETA(i) = ATANC(Y(i) , X(i) , THETA(i-1))
C END DO
C
C This will prevent the angle array THETA(i) from jumping by
C +/- 2 pi when the path X(i),Y(i) crosses the negative x axis.
C
C Input:
C X,Y point position coordinates
C THOLD position angle of nearby point
C
C Output:
C ATANC position angle of X,Y
C---
 DATA PI /3.1415926535897932384/
 DATA TPI /6.2831853071795864769/
C
C---- set new position angle, ignoring branch cut in ATAN2 function for now
 THNEW = ATAN2(Y , X)
 DTHET = THNEW - THOLD
C
C---- angle change cannot exceed +/- pi, so get rid of any multiples of 2 pi
 DTCORR = DTHET - TPI*INT((DTHET + SIGN(PI,DTHET))/TPI)
C
C---- set correct new angle
 ATANC = THOLD + DTCORR
C
 RETURN
 END ! ATANC

XFOILinterface/XFOIL/plotlib/examples/zoomtest.f

C***
C Module: zoomtest.f
C
C Copyright (C) 1996 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***

 PROGRAM ZOOMTEST
C
C---- dot-pattern masks for use with PLGRID, NEWPAT, etc.
C
C mask0: _________________________ (solid)
C 1:
C 2:
C 3:
C 4:
C
 CHARACTER LINE*80
 LOGICAL LXYSAME, LCURSOR
 data mask0, mask1, mask2, mask3, mask4
 & / -1 , -21846, -30584, -32640, -32768 /

C
 IDEV = 1
 IPSLU = 0
 SIZE = 0.8
C
 CH = 0.020
C
 CALL PLINITIALIZE
 CALL PLOPEN(0.78,IPSLU,IDEV)
 CALL DRAWTOBUFFER
 CALL NEWFACTOR(SIZE)
C
 CALL PLOTABS(1.00,1.00,-3)
C
 call PLGRID(0.0,0.0,22,0.5,17,0.5,MASK2)
 call PLGRID(0.0,0.0,11,1.0, 9,1.0,MASK1)
 call PLGRID(0.0,0.0, 3,5.0, 2,5.0,MASK0)
 call PLSLAN(0.1,0.1,0.2,'abcDEF123',0.0,9)
 CALL NEWCOLORNAME('green')
 call PLCHAR(1.1,1.1,0.2,'321GHIjkl',0.0,9)
 CALL NEWCOLORNAME('red')
 call PLSLAN(2.1,2.1,0.2,'mnoPQR123',0.0,9)
 CALL NEWCOLORNAME('blue')
 call PLCHAR(3.1,3.1,0.2,'321STUvwx',0.0,9)
 CALL NEWCOLORNAME('black')
c
 CALL PLFLUSH
c
 write(*,*) ' '
 write(*,*) 'The zoom can be done with same X,Y scales'
 write(*,*) 'Either mouse or keyboard can set the zoom rectangle'
 write(*,*) 'Enter XYsame, MouseInput flags (T/F):'
 LXYSAME = .TRUE.
 LCURSOR = .TRUE.
 read(*,1000) LINE
 if(LINE.NE.' ') THEN
 read(LINE,*,err=10) LXYSAME,LCURSOR
 endif
 10 write(*,*) ' '
C
 do k=1, 3
 call USETZOOM(LXYSAME , LCURSOR)
 call REPLOT(1)
 enddo
 pause
 call CLRZOOM
 call REPLOT(1)
 pause
c
 CALL PLOT(0.0,0.0,+999)
 1000 FORMAT(A)
C
 END

XFOILinterface/license.txt

Copyright (c) 2011, Rafael Fernandes de Oliveira
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

XFOILinterface/NACA64618.txt

1 0
0.99 0.003385
0.98 0.006126
0.97 0.008767
0.96 0.011357
0.95 0.013921
0.94 0.016478
0.93 0.019036
0.92 0.021598
0.91 0.024163
0.9 0.026733
0.875 0.033169
0.85 0.039603
0.825 0.046004
0.8 0.052337
0.775 0.058566
0.75 0.064656
0.725 0.070573
0.7 0.076285
0.675 0.081773
0.65 0.087012
0.625 0.091967
0.6 0.096599
0.575 0.100887
0.55 0.104799
0.525 0.108299
0.5 0.11136
0.475 0.113937
0.45 0.11599
0.44 0.11665
0.43 0.117211
0.42 0.117667
0.41 0.118003
0.4 0.118204
0.39 0.118258
0.38 0.118168
0.37 0.117946
0.36 0.117607
0.35 0.117159
0.34 0.116603
0.33 0.115942
0.32 0.115181
0.31 0.114319
0.3 0.113356
0.29 0.112292
0.28 0.111127
0.27 0.109863
0.26 0.108497
0.25 0.107027
0.24 0.105454
0.23 0.103774
0.22 0.101985
0.21 0.100084
0.2 0.098068
0.19 0.095934
0.18 0.093676
0.17 0.091291
0.16 0.088772
0.15 0.08611
0.14 0.083298
0.13 0.080329
0.12 0.077188
0.11 0.073862
0.1 0.070334
0.095 0.068489
0.09 0.066584
0.085 0.064617
0.08 0.062583
0.075 0.060478
0.07 0.058297
0.065 0.056032
0.06 0.053676
0.055 0.051218
0.05 0.048647
0.045 0.04595
0.04 0.04311
0.035 0.040102
0.03 0.036899
0.025 0.033454
0.02 0.029694
0.0175 0.027666
0.015 0.025511
0.0125 0.023197
0.01 0.020674
0.009 0.019587
0.008 0.018447
0.007 0.017241
0.006 0.015955
0.005 0.014565
0.004 0.013037
0.003 0.011296
0.002 0.009227
0.00175 0.008633
0.0015 0.007997
0.00125 0.007312
0.001 0.006555
0.00075 0.005695
0.0005 0.004672
0.0004 0.00419
0.0003 0.003636
0.0002 0.00297
0.0001 0.002104
0 0
0.0001 -0.002092
0.0002 -0.002954
0.0003 -0.003613
0.0004 -0.004169
0.0005 -0.004658
0.00075 -0.005698
0.001 -0.006572
0.00125 -0.00734
0.0015 -0.008027
0.00175 -0.008654
0.002 -0.009231
0.003 -0.011176
0.004 -0.012729
0.005 -0.01403
0.006 -0.01516
0.007 -0.016174
0.008 -0.017098
0.009 -0.017953
0.01 -0.01875
0.0125 -0.020537
0.015 -0.022107
0.0175 -0.023517
0.02 -0.024803
0.025 -0.027092
0.03 -0.029102
0.035 -0.030904
0.04 -0.032546
0.045 -0.034061
0.05 -0.035472
0.055 -0.036792
0.06 -0.038035
0.065 -0.039209
0.07 -0.040322
0.075 -0.041381
0.08 -0.042389
0.085 -0.04335
0.09 -0.044268
0.095 -0.045145
0.1 -0.045987
0.11 -0.047576
0.12 -0.04905
0.13 -0.050417
0.14 -0.051688
0.15 -0.052868
0.16 -0.053967
0.17 -0.054988
0.18 -0.055934
0.19 -0.056811
0.2 -0.057621
0.21 -0.058365
0.22 -0.059045
0.23 -0.059664
0.24 -0.060224
0.25 -0.060723
0.26 -0.061163
0.27 -0.061545
0.28 -0.061871
0.29 -0.062137
0.3 -0.062343
0.31 -0.06249
0.32 -0.062577
0.33 -0.062602
0.34 -0.062563
0.35 -0.06246
0.36 -0.062287
0.37 -0.06204
0.38 -0.061716
0.39 -0.061301
0.4 -0.060778
0.41 -0.060138
0.42 -0.059388
0.43 -0.058544
0.44 -0.057622
0.45 -0.056632
0.475 -0.053897
0.5 -0.05085
0.525 -0.047539
0.55 -0.044014
0.575 -0.040316
0.6 -0.036486
0.625 -0.032565
0.65 -0.028585
0.675 -0.024603
0.7 -0.02066
0.725 -0.016795
0.75 -0.013048
0.775 -0.009472
0.8 -0.006122
0.825 -0.003065
0.85 -0.000376
0.875 0.001859
0.9 0.003536
0.91 0.004023
0.92 0.004387
0.93 0.00462
0.94 0.004702
0.95 0.004614
0.96 0.004338
0.97 0.003829
0.98 0.003042
0.99 0.00191
1 0

XFOILinterface/Polar.txt

 XFOIL Version 6.94

 Calculated polar for: NACA64618

 1 1 Reynolds number fixed Mach number fixed

 xtrf = 1.000 (top) 1.000 (bottom)
 Mach = 0.100 Re = 30.000 e 6 Ncrit = 9.000

 alpha CL CD CDp CM Top_Xtr Bot_Xtr Chinge
 ------- -------- --------- --------- -------- ------- ------- -------
 -20.000 -1.9873 0.07990 0.07624 -0.0230 0.6307 0.0058 -0.011
 -19.500 -1.9886 0.07403 0.07028 -0.0238 0.6252 0.0059 -0.010
 -19.000 -1.9877 0.06857 0.06474 -0.0241 0.6228 0.0059 -0.010
 -18.500 -1.9838 0.06362 0.05971 -0.0239 0.6226 0.0059 -0.009
 -18.000 -1.9779 0.05895 0.05497 -0.0232 0.6223 0.0059 -0.009
 -17.500 -1.9692 0.05469 0.05064 -0.0221 0.6219 0.0059 -0.008
 -17.000 -1.9601 0.05060 0.04648 -0.0207 0.6211 0.0059 -0.008
 -16.500 -1.9475 0.04703 0.04285 -0.0188 0.6166 0.0060 -0.007
 -16.000 -1.9322 0.04385 0.03959 -0.0165 0.6085 0.0060 -0.007
 -15.500 -1.9138 0.04109 0.03679 -0.0140 0.6032 0.0060 -0.007
 -15.000 -1.8958 0.03846 0.03410 -0.0111 0.6006 0.0060 -0.006
 -14.500 -1.8698 0.03653 0.03213 -0.0085 0.5966 0.0060 -0.006
 -14.000 -1.8498 0.03422 0.02978 -0.0052 0.5920 0.0060 -0.006
 -13.500 -1.8197 0.03266 0.02818 -0.0026 0.5859 0.0060 -0.005
 -13.000 -1.7885 0.03119 0.02669 0.0001 0.5837 0.0060 -0.005
 -12.500 -1.7620 0.02950 0.02498 0.0032 0.5833 0.0060 -0.005
 -12.000 -1.7323 0.02803 0.02348 0.0062 0.5826 0.0060 -0.005
 -11.500 -1.6975 0.02688 0.02231 0.0088 0.5807 0.0060 -0.004
 -11.000 -1.6627 0.02576 0.02117 0.0115 0.5743 0.0060 -0.004
 -10.500 -1.6311 0.02451 0.01990 0.0146 0.5645 0.0067 -0.004
 -10.000 -1.6012 0.02318 0.01855 0.0180 0.5628 0.0072 -0.004
 -9.500 -1.5645 0.02223 0.01759 0.0207 0.5581 0.0075 -0.004
 -9.000 -1.5274 0.02132 0.01667 0.0233 0.5502 0.0078 -0.003
 -8.500 -1.4895 0.02047 0.01582 0.0259 0.5437 0.0081 -0.003
 -8.000 -1.4511 0.01964 0.01498 0.0285 0.5428 0.0082 -0.003
 -7.500 -1.4164 0.01866 0.01400 0.0315 0.5409 0.0083 -0.003
 -7.000 -1.3752 0.01800 0.01333 0.0338 0.5345 0.0083 -0.003
 -6.500 -1.3333 0.01739 0.01271 0.0360 0.5267 0.0084 -0.003
 -6.000 -1.2909 0.01679 0.01211 0.0382 0.5234 0.0089 -0.002
 -5.500 -1.2475 0.01623 0.01156 0.0402 0.5221 0.0087 -0.002
 -5.000 -1.2055 0.01564 0.01098 0.0425 0.5164 0.0100 -0.002
 -4.500 -1.1638 0.01504 0.01039 0.0448 0.5089 0.0109 -0.002
 -4.000 -1.1234 0.01441 0.00976 0.0473 0.5036 0.0111 -0.002
 -3.500 -1.0780 0.01396 0.00932 0.0491 0.5025 0.0112 -0.002
 -3.000 -1.0331 0.01351 0.00890 0.0510 0.4996 0.0130 -0.002
 -2.500 -0.9879 0.01309 0.00849 0.0529 0.4953 0.0141 -0.002
 -2.000 -0.9416 0.01272 0.00813 0.0546 0.4888 0.0149 -0.001
 -1.500 -0.8959 0.01234 0.00778 0.0564 0.4839 0.0169 -0.001
 -1.000 -0.8494 0.01198 0.00745 0.0580 0.4833 0.0177 -0.001
 -0.500 -0.8034 0.01162 0.00712 0.0598 0.4813 0.0201 -0.001
 0.000 -0.7580 0.01127 0.00678 0.0616 0.4761 0.0216 -0.001
 0.500 -0.7150 0.01084 0.00637 0.0638 0.4683 0.0249 -0.001
 1.000 -0.6693 0.01050 0.00607 0.0656 0.4643 0.0296 -0.001
 1.500 -0.6234 0.01017 0.00579 0.0674 0.4633 0.0352 -0.001
 2.000 -0.5773 0.00987 0.00551 0.0691 0.4602 0.0396 -0.001
 2.500 -0.5336 0.00954 0.00523 0.0713 0.4546 0.0508 -0.001
 3.000 -0.4900 0.00919 0.00494 0.0734 0.4476 0.0618 -0.001
 4.000 -0.4133 0.00822 0.00415 0.0796 0.4441 0.1121 -0.002
 4.500 -0.3793 0.00764 0.00367 0.0834 0.4419 0.1444 -0.002
 5.000 -0.3570 0.00678 0.00290 0.0893 0.4316 0.1821 -0.002
 5.500 -0.3474 0.00596 0.00217 0.0978 0.4253 0.2180 -0.003
 6.000 -0.3023 0.00563 0.00193 0.0995 0.4094 0.2661 -0.003
 6.500 -0.2646 0.00459 0.00134 0.1022 0.3915 0.4327 -0.003
 7.000 -0.2085 0.00435 0.00120 0.1017 0.3665 0.4870 -0.003
 7.500 -0.1516 0.00415 0.00108 0.1010 0.3355 0.5478 -0.003
 8.500 -0.0340 0.00412 0.00106 0.0990 0.2711 0.6229 -0.002
 9.000 0.0239 0.00371 0.00088 0.0979 0.2432 0.7237 -0.002
 9.500 0.0836 0.00395 0.00101 0.0967 0.2103 0.7243 -0.002
 10.000 0.1426 0.00427 0.00120 0.0956 0.1709 0.7244 -0.001
 11.000 0.2606 0.00489 0.00160 0.0932 0.1083 0.7245 -0.001
 11.500 0.3194 0.00522 0.00182 0.0920 0.0865 0.7245 -0.001
 12.000 0.3784 0.00551 0.00203 0.0908 0.0684 0.7245 0.000
 12.500 0.4372 0.00582 0.00228 0.0895 0.0555 0.7245 0.000
 13.000 0.4958 0.00616 0.00254 0.0882 0.0422 0.7245 0.000
 13.500 0.5544 0.00648 0.00281 0.0869 0.0350 0.7245 0.000
 14.000 0.6128 0.00684 0.00312 0.0855 0.0283 0.7245 0.000
 14.500 0.6712 0.00720 0.00344 0.0841 0.0238 0.7245 0.001
 15.000 0.7295 0.00758 0.00379 0.0826 0.0205 0.7245 0.001
 15.500 0.7871 0.00801 0.00418 0.0811 0.0177 0.7245 0.001
 16.000 0.8448 0.00841 0.00456 0.0797 0.0165 0.7246 0.001
 16.500 0.9017 0.00894 0.00506 0.0781 0.0145 0.7246 0.002
 17.000 0.9584 0.00942 0.00553 0.0766 0.0134 0.7246 0.002
 17.500 1.0141 0.00998 0.00606 0.0751 0.0126 0.7246 0.002
 18.000 1.0689 0.01068 0.00676 0.0734 0.0112 0.7246 0.002

XFOILinterface/README.txt

1) Open XFOIL_FlapAerodynamicCoefs.m

2) Make any changes you so wish

3) Click run

4) The program will interface with XFOIL, this could take a few minutes

5) The aerodynamic coefficients will be caluclated

6) And automatically be saved in an Excel spreadsheet
7) Copy and paste the relevant data into Bladed aerofoil sections

XFOILinterface/XFOIL/sessions.txt

 Typical XFOIL session keyboard inputs.
 All commands can be in lowercase.
 Blank lines below are only for easier reading -- they are not Return's!
 A command with its argument(s) ommitted will result in an input prompt.
 Some files in ./runs are used here.

 Note: The Eppler 387 coordinates are not smooth, so the Cp plots will
 appear "noisy". Xfoil's results will not be affected noticably
 by such cosmetic defects, unless they are very severe.

LOAD e387.dat (or: NACA 4410

GDES (enter GDES menu) |
CADD (add points at corners) | These commands are optional,
<return> (accept default input) | and are recommended only for
<return> (accept default input) | Eppler and Selig airfoils
<return> (accept default input) | to give smoother LE shapes
<return> (return to Top Level) |

PANEL (regenerate paneling since better panel node spacing is needed)

OPER (enter OPER menu)
ALFA 5.0
ASEQ 0.0 6.0 2.0

VISC 1.0e5 (set viscous mode, with argument anticipating Re prompt)
CL 0.78
CREF
CPX
BL (plot boundary layer profiles)
cp_100_040.387
CREF

INIT (force initialization of viscous solution for big alpha change)
ALFA -2.5
! (keep iterating on this difficult case)

PACC (set up for new polar 1)
<return> (decline writing to polar save file)
<return> (decline writing to polar dump file)
ASEQ -2.5 -2.0 0.05 (small steps when bottom transition is moving fast)
ASEQ -1.5 8.0 0.5 (bigger steps OK over most of polar)
ASEQ 8.2 9.0 0.2 (small steps when close to stall is more reliable)
PPLOT
PACC (turn off polar 1 accumulation)

PPAX
<return> (default alpha axis OK)
<return> (default CL axis OK)
0.0 0.04 0.02 (better CD axis)
<return> (default CM axis OK)
PPLOT

RGET polref_100.387 (read in experimental polar data)
PPLOT

VPAR (enter viscous parameter menu)
N 11.0 (set new lower turbulence level)
<return> (back to OPER)

INIT
ALFA -2.5
PACC (set up for new polar 2)
<return> (decline writing to polar save file)
<return> (decline writing to polar dump file)
ASEQ -2.5 -2.0 0.05 (small steps when bottom transition is moving fast)
ASEQ -1.5 8.0 0.5 (bigger steps OK over most of polar)
ASEQ 8.2 9.0 0.2 (small steps when close to stall is more reliable)
PPLOT (both polars compared to experimental polar)
PACC
VISC

PWRT 1 (write polar 1 to save file)
e387_09.100 (filename indicates Eppler 387, Ncrit=9, Re=100K)

ALFA 4.0 (set inviscid solution for MDES design operations)
<return> (exit OPER)

MDES
AQ 0.0 4.0 8.0
RESE
BLOW (zoom in on region of interest, undo with RESE)
MODI (modify some segment of one of the q(s) curves with cursor)
MODI (repeat if necessary to modify further...)
MODI
.
.
EXEC
<return>
PANEL
OPER
CL 0.5
 etc....
<return>
GDES
GSET
CAMB
INPC
0.0 0.0
0.5 0.03
1.0 0.0
ADD
<return>
PLOT
TCPL (turn off camber/thickness plotting activated in CAMB)
FLAP 0.70 0.04 -5.0
PLOT
EXEC
<return>
OPER
ALFA 5.0
 etc....

===

 Typical XFOIL session to generate and plot two polars.
 All commands can be in lowercase.
 Blank lines below are only for easier reading -- they are not Return's!
 A command with its argument(s) ommitted will result in an input prompt.

LOAD airfoil_file.dat

GDES (enter GDES menu) |
CADD (add points at corners) | These commands are optional,
<return> (accept default input) | and are recommended only for
<return> (accept default input) | Eppler and Selig airfoils
<return> (accept default input) | to give smoother LE shapes
<return> (return to Top Level) |

PANE (optional: use if input airfoil_file.dat has inadequate points)

OPER (enter OPER menu)
VISC 2e5 (toggle viscous mode, with Re = 200000)
TYPE 2 (optional: use if constant-lift polars are to be used)

ALFA -2 (specify minimum alpha (must give CL>0 for Type 2 polar))
PACC (toggle auto accumulation on for new polar 1)
polar1_file (choose polar save filename, or <return> for no file writing)
<return> (decline dump file writing)
ASEQ -2 8 0.2 (compute alpha sequence to generate polar)
PPLO (optional: plot the polar we have so far)
ASEQ 8.2 9 0.2 (compute additional points if needed)
PPLO
PACC (toggle auto accumulation off)

RE 1.5e5 (set new Re = 150k, still using Type 2 CL dependence)
INIT (current alpha=9, so re-initialize for very different alpha)

ALFA -2
PACC (toggle auto accumulation on for new polar 2)
polar2_file (choose polar save filename, or <return> for no file writing)
<return> (decline dump file writing)
ASEQ -2 9 0.2 (compute alpha sequence to generate polar)
PACC (toggle auto accumulation off)

PPLO (plot all two polars currently stored)
PGET polar3_file (optional: read previously-generated polar save file)
PPLO (plot all three polars currently stored)
HARD (make Postscript file of current polar plot)

<return>
QUIT

Notes:

1) Sometimes you may not want to automatically write the polar to a file.
In this case the PACC command is followed by a <return> rather than a filename:

PACC
<return>

You can later use PWRT if you decide to write out the polar after all:

PWRT (will display all stored polars available for writing)
2 (choose polar 2 for writing)
polar2_file (specify output filename)

This approach is "dangerous" in that if XFOIL crashes, the stored polars
are lost. This may or may not be a big deal, depending on how many polar
points you have. XFOIL doesn't crash very easily, but it can happen.
A common cause is accidental specification of a silly flow condition, e.g.

ALFA 90

In viscous mode this will produce all sorts of numerical fireworks,
and possibly an arithmetic fault.

2) Saved polar files can be plotted with the separate PPLOT program.
Or you can use XFOIL itself, by reading in each polar file via PGET,
and then plotting them via PPLO. PDEL, PSUM, etc. can also be used
to set up a list of polars that you want to plot. PPAX can be used
to change the polar plot axis limits.

3) It is sometimes necessary to change the airfoil name in the polar save file.
This can be easily done with a text editor. But do not change the other
information headers, since this might confuse the polar file read routine.

XFOILinterface/XFOIL/version_notes.txt

New features in XFOIL 6.1 (April 94)

- An improved plot library libPlt.a is now used, courtesy of H. Youngren.
 It allows resizing of the window, and plots are not erased upon overlay
 by another window. A minor new nuisance is that the cursor does return
 automatically to parent window after cursor input.

- All LOGICAL*1 arrays have been eliminated (good riddance!).
 CHARACTER strings are used instead. This was made possible
 by the new plot library which accepts CHARACTER variables.

- Mach number can now scale with 1/sqrt(CL) just like Reynolds number.

- Numerous improvements have been made to the GDES, MDES, and QDES
 facilities. Cursor-input Qspec(s) in QDES and MDES will now match
 slopes where grafted into the current Qspec(s). Much fewer cursor
 input points are now required. Same goes for the geometry contour
 in GDES. The slope-matching can be disabled to get the cruddy old
 way of doing things. The Qspec(s) plot in MDES and QDES now also
 features an x/c grid overlay, making it more obvious where the
 airfoil nose is among other things. The Qspec(s) plot in MDES
 can also show Qspec(s) for more than one angle of attack, showing
 the effect of any modification on off-design pressure distributions.
 Symmetric airfoils can be much more easily designed now in MDES
 and GDES.

- Treament of non-unity airfoil chords is now much more consistent.
 Clear distinctions are made between cartesian x,y and the airfoil
 chord line-based x/c,y/c coordinates. GDES now has more general
 airfoil positioning and scaling operations, and there is better
 graphical info on the results of flap and camber change operations.

- Cursor-selected blowups in QDES and MDES now produce exactly
 the blowup region demarked, not some approximation thereto.
 The GDES blowups are also more faithful, but must still be
 approximate since they will not allow x/y distortion.

- A second-order treatment of the amplification equation has been
 implemented. As expected, It makes the solution less dependent
 on the panel density. However, it also seems to be less robust.
 For this reason, it has been implemented only as an option,
 and the old first-order treatment has been retained as the
 standard formulation. To switch between the two, a few labeled
 code lines in SUBROUTINES AXSET, TRCHEK (in xblsys.f) simply
 need to be commented/uncommented.

New features in XFOIL 6.3 (Oct 94)

- Nice grid overlays and axis limit set capabilities have been
 added to the viscous variable plots (VPAR).

- GDES has a number of new options, mainly for controlling
 individual coordinate points.

- Minor modifications have been made to the viscous formulation
 to make it very nearly the same as the MSES 2.6 formulation,
 except that XFOIL still uses a single-layer wake.

New features in XFOIL 6.4 (Dec 94)

- A modification to the e^n transition criterion has been added
 to make it more reliable, especially for small Ncrit. The
 default form for the amplification equation is now second-order.

- Limiters have been put into most of the turbulent correlations
 to make them automatically revert to their laminar form at small
 Rtheta, including the dissipation coefficient for the wake.
 As a result, XFOIL will now produce reasonable answers for
 chord Reynolds numbers down to about 1000, which approaches
 the Stokes-flow regime. The airfoils must be reasonably thin,
 however, else there might not be any steady solution due to
 vortex shedding. Thin indoor-model wing airfoils can be
 predicted reasonably well, for example.

New features in XFOIL 6.6 (March 96)

- A fourth type of airfoil coordinate format is now recognized.
 This is called a "labeled coordinate file", and is the same as
 the plain format file, but includes the airfoil name string
 on the first line, followed by the coordinates.

- A completely new plot library is now used, courtesy of H.Youngren.
 It supports color, PostScript echo on demand (instead of the arcane
 hardcopy-toggle approach of the previous plot library), lowercase
 fonts, LaTex-like math fonts (in annotation menu), etc. This
 one plot library is used for all machines.

- Color is now used in many of the screen plots, but only where
 it actually helps to see what's happening. Color is NOT used
 for ornamental purposes. Hence, many of the plots or parts
 of plots are still monochrome. Color PostScript can be output
 by setting the IDEVRP flag appropriately (see SUBR. INIT).

- The "!" command is now understood by OPER,GDES,MDES, and QDES.
 This simply repeats the last valid command, and saves typing
 in repetitive-command situtations.

New features in XFOIL 6.8 (August 96)

- The matrix-conditioning problem which appears in sharp-TE cases
 with large TE angles has been significantly alleviated. A more
 forgiving TE vorticity extrapolation scheme is used.

- GDES now displays useful geometric info along with the airfoil shape.

- Color is now used in most of the plots to aid visualization.
 The plot can be customized with a number of plot options set
 in the PLOP menu. Portrait orientation plots can now be
 generated if desired.

- Almost all commands which result in prompted input can now
 be given arguments with the input values. For example,
 instead of

 .OPERi c> alfa

 Enter angle of attack (deg) r> 3.5

 one can simply type

 .OPERi c> alfa 3.5

 which suppresses the prompt and just takes the "3.5" as its input.
 This also works for multiple-input commands. For example:

 .OPERi c> aseq 0 10 0.5

 does the usual alpha-sequence calculation with no further prompts.
 This also works for filenames. For example:

 XFOIL c> load e387.dat

New and final(!) features in XFOIL 6.9 (February 00)
--

- Finally fixed that annoying screwy behavior with sharp trailing edges.
 Instead of the vorticity extrapolation scheme, the chordwise velocity
 at an internal point near the TE is set to zero to enforce solution
 regularity there (this complements the Kutta condition, which controls
 the normal velocity component). This additional internal point is
 placed 1/10 of the smallest panel length ahead of the TE. The results
 are extremely insensitive to its exact location.

- Multiple airfoil versions and associated polars can now be stored
 inside XFOIL. The polars and airfoils are managed in OPER.
 Having the polars and airfoils online reduces the amount of
 airfoil read/writes and mental bookkeeping which was required
 in previous XFOIL versions which had only one airfoil stored.
 Quite a few new commands have been added to OPER to deal with
 this additional stuff, but everything more or less defaults to
 the previous conventions if only one airfoil is kept stored.
 The session.txt file has a sample session with multiple polars.

- Airfoil interpolation can now be performed with the INTE
 command at top level.

- A bunch of Youngren's camber/thickness modification stuff has
 been incorporated into GDES.

- Most of the interactive modification displays now include
 "Erase" and "Done" keys in addition to the "Abort" key.
 These can also be activated just by typing "e", "d", or "a"
 rather than by clicking on the button. The Erase key
 deletes the previous click entry (or previous entries if done
 repeatedly). The Done key terminates input. In previous versions
 this was done by three identical clicks, which was sometimes
 difficult to do.

XFOIL 6.91 (December 00) (first web release)
--

- Renamed "Gamma" to "Q" in the QDES and MDES menus. This gives
 somewhat more obvious relation to "Qspec".

- The PREM command has been added to the OPER menu. This allows
 removing individual points from stored polars.

- The CADD command has been added to the GDES menu. This adds
 new points into the buffer airfoil at excessive panel corners.
 The new points are interpolated using a uniform-parameter spline,
 which gives much smoother shapes near the leading edges of
 Selig and Eppler airfoils, whose point spacing at the leading edge
 is usually not suitable for Xfoil's arclength-parameter spline.
 For example, the load sequence...

 LOAD s6063.dat
 GDES
 CADD
 <return> (accept default inputs)
 <return>
 <return>
 <return>
 PANE (generate new paneling using smoother buffer airfoil)

 will give a much smoother paneled airfoil than the more direct...

 LOAD s6063.dat
 PANE

XFOIL 6.92 (January 01)

- Fixed the PSOR command. Giving "0" for the polar index now sorts all
 the polars as advertised. Previously, this deleted all the polars (oops).

- Fixed PPLO command. Giving multiple individual polar indices now plots only
 those polars as advertised. Previously, all polars were always plotted.

- Added DUMP and OVER commands to the VPLO menu. This allows comparing
 viscous variable distributions between different airfoils and/or
 different operating points.

- Added BLC, BLWT commands to OPER menu. These allow plotting of boundary
 layer velocity profiles on airfoil in Cp vs x plot. Gives more insight
 into what the flow is doing than just the displacement body shape.

XFOIL 6.93 (18 January 01) HHY

- Improvements to polar plotting for XFOIL and PPLOT. Many fixes to read
 XFOIL and non-XFOIL polar files. Routine polplt.f overhauled to eliminate
 numerous cruftious hacks and long-standing polar plot problems.

- PPLOT improvements to add options and de-obfuscate menu choices. Tweaks to
 make pplot.f work with new polplt.f changes. More robust than previous
 version - now reads MSES and old XFOIL format polar files.

- Fixed CAMB options for INPP and MODP. Plotting hack for INPP fixed to
 to properly display grid. MODP problems (improper scaling of user points)
 fixed.

- Changed ASKR and ASKI and all relevant calls. Now ASKR or ASKI calls do
 not modify variable passed in if read line is blank (i.e. user just inputs
 a <cr>). Lines to set reasonable defaults added throughout where these
 routines read temp variables or variables not stored in globals. This affects
 mostly routines in GDES.

- Latest plotlib (version 4.44) included. This version has several bug fixes
 and adds capability to write separate postscript files for each plot (if you
 ask for this). Also default background color is now black. User must now
 specifically ask for white background by setting environment variable
 "XPLOT11_BACKGROUND white". This is done for csh/tcsh and bash using
 csh: setenv XPLOT11_BACKGROUND white
 bash: export XPLOT11_BACKGROUND=white

- Bug in dplot.f (LGUI declaration) and funky format (A,I) in xplots.f changed
 to work with g77.

XFOIL 6.93 (March,April '01) MD's additions

- Made CM axis line up with CL-axis tics in polplt.f .

- Changed Xplot11 to start cursor at previous location rather than at
 center of plot window. Makes repetitive mouse input much more pleasant.

- Checks for excessive panel angle in input coordinates, and prints
 suggested corrective action if indicated.

XFOIL 6.94 (Nov '01)

- Put in alternative short versions of most commonly used commands
 Examples:
 "ALFA" and "A" are now equivalent commands in OPER
 "EXEC" and "X" are now equivalent commands in MDES,QDES,GDES

- Added a number of minor widgets and doodads

- Fixed PostScript output semi-bug (wrong number of tokens after %%Page)

XFOIL 6.95 (Feb '03)

- ITER command in OPER now accepts a numeric argument like the other commands

- Improved ADDP and MOVP in GDES, allowing optional keyboard x,y entry

- Added I,O,P key functions in cursor-modifiaction windows,
 allowing zooming and panning without exiting the window

- Added individual-frequency plotting to A/Ao plot in VPLO.
 Requires Orr-Sommerfeld database in compatible binary form.
 This is built in the new directory orrs/

XFOIL 6.96 (Jan '05)

- Added a bunch of features to PPLOT.
 Power coefficient polars and aircraft polars can now be plotted.

- Added graphic enable/disable flag to PLOP sub-menu.
 Allows suppression of graphics output for batch execution.

- Increased default number of panel nodes from 140 to 160

- Changed VACCEL logic to make it independent of airfoil size
 (previously it assumed that chord was comparable to unity)

XFOILinterface/XFOIL/xfoil_doc.txt

XFOIL 6.9 User Primer THE last update 30 Nov 2001

Mark Drela, MIT Aero & Astro
Harold Youngren, Aerocraft, Inc.

General Description
===================
XFOIL is an interactive program for the design and analysis of subsonic
isolated airfoils. It consists of a collection of menu-driven routines
which perform various useful functions such as:

 - Viscous (or inviscid) analysis of an existing airfoil, allowing
 * forced or free transition
	 * transitional separation bubble(s)
 * limited trailing edge separation
 * lift and drag predictions just beyond CLmax
 * Karman-Tsien compressibility correction

 - Airfoil design and redesign by interactive specification of
 a surface speed distribution via screen cursor or mouse. Two
 such facilities are implemented.
 * Full-Inverse, based on a complex-mapping formulation
 * Mixed-Inverse, an extension of XFOIL's basic panel method
 Full-inverse allows multi-point design, while Mixed-inverse allows
 relatively strict geometry control over parts of the airfoil.

 - Airfoil redesign by interactive specification of
 new geometric parameters such as
 * new max thickness and/or camber
 * new LE radius
 * new TE thickness
 * new camber line via geometry specification
 * new camber line via loading change specification
 * flap deflection
 * explicit contour geometry (via screen cursor)

 - Blending of airfoils

 - Drag polar calculation with fixed or varying Reynolds and/or
 Mach numbers.

 - Writing and reading of airfoil geometry and polar save files

 - Plotting of geometry, pressure distributions, and polars
 (Versaplot-derivative plot package used)

XFOIL is best suited for use on a good workstation. A high-end PC
is also effective, but must run Unix to support the X-Windows graphics.
The source code of XFOIL is Fortran 77. The plot library also
uses a few C routines for the X-Windows interface.

History

XFOIL 1.0 was written by Mark Drela in 1986. The main goal
was to combine the speed and accuracy of high-order panel methods
with the new fully-coupled viscous/inviscid interaction
method used in the ISES code developed by Drela and Giles.
A fully interactive interface was employed from the beginning
to make it much easier to use than the traditional batch-type
CFD codes. Several inverse modes and a geometry manipulator
were also incorporated early in XFOIL's development, making
it a fairly general airfoil development system.

Since version 1.0, XFOIL has undergone numerous revisions,
upgrades, hacks, and enhancements. These changes mainly originated
from perceived shortcomings during actual design use, so XFOIL
is now strongly geared to practical airfoil development.
Harold Youngren provided the Xplot11 plot package which
is a vast improvement over the grim Versaplot-type package
used initially. Enhancements and suggestions from Youngren
and other people were also incorporated into XFOIL itself
along the way.

Over the past few years, bug reports and enhancement
suggestions have slowed to practically nil, and so
after a final few enhancements from version 6.8, XFOIL 6.9
is officially "frozen" and being made public. Although
any bugs will likely be fixed, no further development
is planned at this point. Method extensions are being
planned, but these will be incorporated in a completely
new next-generation code.

Note to code developers and code enhancers...
XFOIL does not exactly have the cleanest implementation,
but it isn't too bad considering its vast modification
history. Feel free to muck with the code as you like,
provided everything is done under the GPL agreement.
Drela and Youngren will not be inclined to assist with
any code modifications at this point, however, since we
each have a dozen other projects waiting. So proceed
at your own risk.

Theory References

The general XFOIL methodology is described in
 Drela, M.,
 XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,
 Conference on Low Reynolds Number Airfoil Aerodynamics,
 University of Notre Dame, June 1989.

which also appears as a chapter in:
 Low Reynolds Number Aerodynamics. T.J. Mueller (Editor).
 Lecture Notes in Engineering #54. Springer Verlag. 1989.
 ISBN 3-540-51884-3
 ISBN 0-387-51884-3

The boundary layer formulation used by XFOIL is described in:
 Drela, M. and Giles, M.B.
 Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
 AIAA Journal, 25(10), pp.1347-1355, October 1987.

The blunt trailing edge treatment is described in:
 Drela, M.,
 Integral Boundary Layer Formulation for Blunt Trailing Edges,
 Paper AIAA-89-2166, August 1989.

Other related literature:
 Drela, M.,
 Elements of Airfoil Design Methodology,
 Applied Computational Aerodynamics, (P. Henne, editor),
 AIAA Progress in Aeronautics and Astronautics, Volume 125, 1990.

 Drela, M.,
 Low-Reynolds Number Airfoil Design for the MIT Daedalus Prototype: A Case Study,
 Journal of Aircraft, 25(8), pp.724-732, August 1988.

 Drela, M.,
 Pros and Cons of Airfoil Optimization,
 Chapter in "Frontiers of Computational Fluid Dynamics, 1998",
 D.A. Caughey, M.M. Hafez, Eds.
 World Scientific, ISBN 981-02-3707-3

Inviscid Formulation

The inviscid formulation of XFOIL is a simple linear-vorticity stream
function panel method. A finite trailing edge base thickness is modeled
with a source panel. The equations are closed with an explicit Kutta
condition. A high-resolution inviscid calculation with the default
160 panels requires seconds to execute on a RISC workstation. Subsequent
operating points for the same airfoil but different angles of attack
are obtained nearly instantly.

A Karman-Tsien compressibility correction is incorporated, allowing
good compressible predictions all the way to sonic conditions. The
theoretical foundation of the Karman-Tsien correction breaks down
in supersonic flow, and as a result accuracy rapidly degrades as the
transonic regime is entered. Of course, shocked flows cannot be
predicted with any certainty.

Inverse Formulation

There are two types of inverse methods incorporated in XFOIL:
Full-Inverse and Mixed-Inverse. The Full-Inverse formulation
is essentially Lighthill's and van Ingen's complex mapping method,
which is also used in the Eppler code and Selig's PROFOIL code.
It calculates the entire airfoil geometry from the entire surface
speed distribution. The Mixed-Inverse formulation is simply
the inviscid panel formulation (the discrete governing equations
are identical) except that instead of the panel vortex strengths
being the unknowns, the panel node coordinates are treated as
unknowns wherever the surface speed is prescribed. Only a part
of the airfoil is altered at any one time, as will be described later.
Allowing the panel geometry to be a variable results in a non-linear
problem, but this is solved in a straightforward manner with
a full-Newton method.

Viscous Formulation

The boundary layers and wake are described with a two-equation lagged
dissipation integral BL formulation and an envelope e^n transition
criterion, both taken from the transonic analysis/design ISES code.
The entire viscous solution (boundary layers and wake) is strongly
interacted with the incompressible potential flow via the surface
transpiration model (the alternative displacement body model is used
in ISES). This permits proper calculation of limited separation regions.
The drag is determined from the wake momentum thickness far downstream.
A special treatment is used for a blunt trailing edge which fairly
accurately accounts for base drag.

The total velocity at each point on the airfoil surface and wake, with
contributions from the freestream, the airfoil surface vorticity, and
the equivalent viscous source distribution, is obtained from the panel
solution with the Karman-Tsien correction added. This is incorporated
into the viscous equations, yielding a nonlinear elliptic system
which is readily solved by a full-Newton method as in the ISES code.
Execution times are quite rapid, requiring about 10 seconds on a RISC
workstation for a high-resolution calculation with 160 panels. For a
sequence of closely spaced angles of attack (as in a polar), the
calculation time per point can be substantially smaller.

If lift is specified, then the wake trajectory for a viscous calculation
is taken from an inviscid solution at the specified lift. If alpha is
specified, then the wake trajectory is taken from an inviscid solution
at that alpha. This is not strictly correct, since viscous effects will
in general decrease lift and change the trajectory. This secondary
correction is not performed, since a new source influence matrix would
have to be calculated each time the wake trajectory is changed. This
would result in unreasonably long calculation times. The effect of this
approximation on the overall accuracy is small, and will be felt mainly
near or past stall, where accuracy tends to degrade anyway. In attached
cases, the effect of the incorrect wake trajectory is imperceptible.

Data Structure
==============
XFOIL stores all its data in RAM during execution. Saving of the data
to files is NOT normally performed automatically, so the user must be
careful to save work results before exiting XFOIL. The exception to
this is optional automatic saving to disk of polar data as it's being
computed in OPER (described later).

Stored airfoils and polars

XFOIL 6.9 stores multiple polars and associated airfoils and parameters
during one interactive session. Each such data set is designated by its
"stored polar" index:

polar 1: x,y, CL(a), CD(a)... Re, Ma, Ncrit...
polar 2: x,y, CL(a), CD(a)... Re, Ma, Ncrit...
 .
 .

Not all of the data need to be present for each stored polar.
For example, x,y would be absent if the CL,CD polar was read in
from an external file rather than computed online.

Earlier XFOIL versions in effect only allowed one stored airfoil
and stored polar at a time. The new multiple storage feature makes
iterative redesign considerably more convenient, since the cases
can contain multiple design versions which can be easily overlaid
on plots.

Current and buffer airfoils

XFOIL 6.9 retains the concept of a "current airfoil"
and "buffer airfoil" used in previous versions.
These are the airfoils on which the various calculations
are performed, and they are distinct from the "polar" x,y coordinates
described above. The polar x,y are simply archived data,
and do not directly participate in computations. The polar
x,y must first be transferred into the current airfoil if
they are to be used for computation.

Program Execution
=================

XFOIL is executed with

 % xfoil

When the program starts, the following top level menu and prompt appear:

 QUIT Exit program

 .OPER Direct operating point(s)
 .MDES Complex mapping design routine
 .QDES Surface speed design routine
 .GDES Geometry design routine

 SAVE f Write airfoil to labeled coordinate file
 PSAV f Write airfoil to plain coordinate file
 ISAV f Write airfoil to ISES coordinate file
 MSAV f Write airfoil to MSES coordinate file
 REVE Reverse written-airfoil node ordering

 LOAD f Read buffer airfoil from coordinate file
 NACA i Set NACA 4,5-digit airfoil and buffer airfoil
 INTE Set buffer airfoil by interpolating two airfoils
 NORM Buffer airfoil normalization toggle

 BEND Display structural properties of current airfoil

 PCOP Set current-airfoil panel nodes directly from buffer airfoil points
 PANE Set current-airfoil panel nodes (140) based on curvature
 .PPAR Show/change paneling

 .PLOP Plotting options

 WDEF f Write current-settings file
 RDEF f Reread current-settings file
 NAME s Specify new airfoil name
 NINC Increment name version number

 Z Zoom | (available in all menus)
 U Unzoom |

 XFOIL c>

The commands preceded by a period place the user in another
lower-level menu. The other commands are executed immediately
and the user is prompted for another top level command.
The lowercase letters i,r,f,s following some commands indicate
the type of argument(s) expected by the command:

 i integer
 r real
 f filename
 s character string

Commands will be shown here in uppercase, although they are not
case sensitive.

Typically, either the LOAD or the NACA command is issued first
to create an airfoil for analysis or redesign. The NACA command
expects an integer argument designating the airfoil:

 XFOIL c> NACA 4415

As with all commands, omitting the argument will produce a prompt:

 XFOIL c> NACA

 Enter NACA 4 or 5-digit airfoil designation i> 4415

The LOAD command reads and processes a formatted airfoil coordinate
file defining an arbitrary airfoil. It expects a filename argument:

 XFOIL c> LOAD e387.dat

The NACA or LOAD commands can be skipped if XFOIL is executed with
a filename as an argument, as for example

 % xfoil e387.dat

which then executes the LOAD procedure before the first menu prompt
is given.

Airfoil file formats

LOAD recognizes four airfoil file formats: Plain, Labeled, ISES, MSES.
All data lines are significant with the exception of lines beginning
with "#", which are ignored.

Plain coordinate file
.....................

This contains only the X,Y coordinates, which run from the
trailing edge, round the leading edge, back to the trailing edge
in either direction:

X(1) Y(1)
X(2) Y(2)
 . .
 . .
X(N) Y(N)

Labeled coordinate file
.......................

This is the same as the plain file, except that it also has an
airfoil name string on the first line:

NACA 0012
X(1) Y(1)
X(2) Y(2)
 . .

This is deemed the most convenient format to use.
The presence of the name string is automatically recognized if
it does not begin with a Fortran-readable pair of numbers. Hence,
"00 12 NACA Airfoil" cannot be used as a name, since the "00 12"
will be interpreted as the first pair of coordinates. "0012 NACA"
is OK, however.

Some Fortran implementations will also choke on airfoil names
that begin with T or F. These will be interpreted as logical
variables, defeating the name-detection logic. Beginning the
name with _T or _F is a workable solution to this "feature".

ISES coordinate file
....................

This has four or five ISES grid domain parameters in addition to the name:

NACA 0012
-2.0 3.0 -2.5 3.0
X(1) Y(1)
X(2) Y(2)
 . .

If the second line has four or more numbers, then these are interpreted
as the grid domain parameters.

MSES coordinate file
....................

This is the same as the ISES coordinate file, except that it can
contain multiple elements, each one separated by the line

999.0 999.0

The user is asked which of these elements is to be read in.

Buffer airfoil normalization

XFOIL will normally perform all operations on an airfoil with the
same shape and location in cartesian space as the input airfoil.
However, if the normalization flag is set (toggled with the NORM
command), the airfoil coordinates will be immediately normalized
to unit chord and the leading edge will be placed at the origin.
A message is printed to remind the user.

Buffer airfoil generation via interpolation

The INTE command is new in XFOIL 6.9, and allows interpolating
or "blending" of airfoils in various proportions. The polar shape
of an interpolated airfoil will often be quite close to the
interpolated polars of its two parent airfoils. Extrapolation
can also be done by specifying a blending fraction outside
the 0..1 range, although the resulting airfoil may be quite
weird if the extrapolation is excessive.

A good way to use INTE is to "augment" or "tone down" the
modifications to an airfoil performed in MDES or GDES.
For example, say airfoil B is obtained by modifying airfoil A:

 A -> MDES -> B

Suppose the modification changed A's polar in the right direction,
but not quite far enough. The additional needed change can be
done by extrapolating past airfoil B in INTE:

Airfoil "0": A
Airfoil "1": B
Interpolating fraction 0..1 : 1.4
Output airfoil: C

Plotted along the "modification axis", the airfoils are:

A B C
0.0 1.0 1.4 ...

So airfoil C has 40% more of the change received by B in the redesign.
Aifoil C's polar will also be changed about 40% more as intended.

Further buffer airfoil manipulation

The GDES facility allows very extensive manipulation of the buffer airfoil.
This will be described in much more detail in a later section. If only
analysis is performed, the GDES facility would not normally be used.

Generation of current airfoil

When the buffer airfoil coordinates are read from a file during startup,
or read in via the LOAD command, they are by default
also copied directly into the ``current'', or working airfoil.
Hence, no special action is needed to start analysis operations. However,
if the input airfoil has a poor point distribution (too many, too few,
poorly spaced, etc), one can use PANE to create a better panel node
distribution for the current airfoil on the splined buffer airfoil shape.
The paneling routine increases the point density in areas of
high curvature (i.e. the leading edge) and at the trailing edge
to a degree specified by the user. The user can also increase
panel density over one additional interval on each airfoil side,
perhaps near transition. The current-airfoil paneling can be
displayed and/or modified with PPAR.

In some cases it is desirable to explicitly re-copy the buffer
airfoil into the current airfoil via PCOP. In previous XFOIL
versions this had to be done with the equivalent command sequence
 LOAD
 GDES
 EXEC

With XFOIL 6.9, the GDES,EXEC commands after LOAD are now superfluous.

The NACA command automatically invokes the paneling routine to create
a current airfoil with a suitable paneling.

Saving current airfoil coordinates

A coordinate file in any one of these four formats can be written
with the PSAV, SAVE, ISAV, or MSAV command, respectively.
When issuing the MSAV command, the user is also asked which element
in the file is to be overwritten. XFOIL can thus be used to easily
"edit" individual elements in MSES multielement configurations.
Of course, normalization should not be performed on an element if
it is to be written back to the same multielement file.
Only the current-airfoil coordinates can be saved to a file.
If the buffer or polar x,y coordinates need to be saved, they
must first be copied into the current airfoil.

Units
=====
Most XFOIL operations are performed on the airfoil's cartesian
coordinates x,y , which do not necessarily have a unit chord c.
Since the chord is ambiguous for odd shapes, the XFOIL
force coefficients CL, CD, CM are obtained by normalizing the
forces and moment with only the freestream dynamic pressure
(the reference chord is assumed to be unity). Likewise, the
XFOIL Reynolds number RE is defined with the freestream velocity
and viscosity, and an implied unit chord:

 CL = L / q | V = freestream speed
 CD = D / q | v = freestream kinematic viscosity
 CM = M / q | r = freestream density
 RE = V / v | q = 0.5 r V^2

The conventional definitions are

 Cl = L / q c
 Cd = D / q c
 Cm = M / q c^2
 Rc = V c / v

so that the conventional and XFOIL definitions differ only by
the chord factor c or c^2.

For example, a NACA 4412 airfoil is operated in the OPER menu at

 RE = 500000
 ALFA = 3

first with chord=1.0, and then with chord=0.5 (changed with SCAL
command in the GDES menu, say). The results produced by XFOIL are:

 c = 1.0 : CL = 0.80 CD = 0.0082 (RE = 500000, Rc = 500000)
 c = 0.5 : CL = 0.40 CD = 0.0053 (RE = 500000, Rc = 250000)

Since CL is not normalized with the chord, it is nearly proportional
to the airfoil size. It is not exactly proportional, since the true
chord Reynolds number Rc is different, and there is always a weak
Reynolds number effect on lift. In contrast, the CD for the smaller
airfoil is significantly greater than 1/2 times the larger-airfoil CD,
since chord Reynolds number has a significant impact on profile drag.
Repeating the c = 0.5 case at RE = 1000000, produces the expected
result that CL and CD are exactly 1/2 times their c = 1.0 values.

 c = 0.5 : CL = 0.40 CD = 0.0041 (RE = 1000000, Rc = 500000)

Although XFOIL performs its operations with no regard to the size
of the airfoil, some quantities are nevertheless defined in terms
of the chord length. Examples are the camber line shape and BL trip
locations, which are specified in terms of the relative x/c,y/c along
and normal to the airfoil chord line. This is done only for the user's
convenience. In the input and output labeling, "x,y" always refer
to the cartesian coordinates, while "x/c,y/c" refer to the chord-
based coordinates which are shifted, rotated, and scaled so that
the airfoil's leading edge is at (x/c,y/c) = (0,0), and
the airfoil's trailing edge is at (x/c,y/c) = (1,0). The two
systems cooincide only if the airfoil is normalized.

Analysis
========
Most of the commands in the top level XFOIL menu merely put the user
into some lower command level with its own menu and prompt. Issuing
The OPER command, for instance, will produce the prompt

 .OPERi c>

Typing a " ? " will result in the OPER analysis menu being displayed:

 <cr> Return to Top Level
 ! Redo last ALFA,CLI,CL,ASEQ,CSEQ,VELS

 Visc r Toggle Inviscid/Viscous mode
 .VPAR Change BL parameter(s)
 Re r Change Reynolds number
 Mach r Change Mach number
 Type i Change type of Mach,Re variation with CL
 ITER Change viscous-solution iteration limit
 INIT Toggle BL initialization flag

 Alfa r Prescribe alpha
 CLI r Prescribe inviscid CL
 Cl r Prescribe CL
 ASeq rrr Prescribe a sequence of alphas
 CSeq rrr Prescribe a sequence of CLs

 SEQP Toggle polar/Cp(x) sequence plot display
 CINC Toggle minimum Cp inclusion in polar
 HINC Toggle hinge moment inclusion in polar
 Pacc i Toggle auto point accumulation to active polar
 PGET f Read new polar from save file
 PWRT i Write polar to save file
 PSUM Show summary of stored polars
 PLIS i List stored polar(s)
 PDEL i Delete stored polar
 PSOR i Sort stored polar
 PPlo ii. Plot stored polar(s)
 APlo ii. Plot stored airfoil(s) for each polar
 ASET i Copy stored airfoil into current airfoil
 PREM ir. Remove point(s) from stored polar
 PNAM i Change airfoil name of stored polar
 PPAX Change polar plot axis limits

 RGET f Read new reference polar from file
 RDEL i Delete stored reference polar

 GRID Toggle Cp vs x grid overlay
 CREF Toggle reference Cp data overlay
 FREF Toggle reference CL,CD.. data display

 CPx Plot Cp vs x
 CPV Plot airfoil with pressure vectors (gee wiz)
 .VPlo BL variable plots
 .ANNO Annotate current plot
 HARD Hardcopy current plot
 SIZE r Change plot-object size
 CPMI r Change minimum Cp axis annotation

 BL i Plot boundary layer velocity profiles
 BLC Plot boundary layer velocity profiles at cursor
 BLWT r Change velocity profile scale weight

 FMOM Calculate flap hinge moment and forces
 FNEW rr Set new flap hinge point
 VELS rr Calculate velocity components at a point
 DUMP f Output Ue,Dstar,Theta,Cf vs s,x,y to file
 CPWR f Output x vs Cp to file
 CPMN Report minimum surface Cp
 NAME s Specify new airfoil name
 NINC Increment name version number

The commands are not case sensitive. Some commands expect multiple
arguments, but if the arguments are not typed, prompts will be issued.

The most commonly-used commands have alternative short forms,
indicated by the uppercase part of the command in the menu list.
For example, the menu shows...

 Alfa r Prescribe alpha
 CLI r Prescribe inviscid CL
 Cl r Prescribe CL
 ASeq rrr Prescribe a sequence of alphas
 CSeq rrr Prescribe a sequence of CLs

The "A" command is the short alternative form of "ALFA", and "C"
is the short alternative of "CL". Likewise, "AS" and "CS"
are the short forms of "ASEQ" and "CSEQ". The CLI command
has no short form (as indicated by all capitals in the menu),
and must be fully typed.

Hopefully, most of the commands are self-explanatory. For inviscid
cases, the CLI and CL commands are identical. For viscous cases,
CLI is equivalent to specifying alpha, this being determined a priori
from the specified lift coefficient via an inviscid solution. CL will
return a viscous solution with the specified true viscous lift
coefficient at an alpha which is determined as part of the solution
(prescribing a CL above CLmax will cause serious problems, however!).
The user is always prompted for any required input. When in doubt,
typing a " ? " will always produce a menu.

After an ALFA, CL, or CLI command is executed, the Cp vs x distribution
is displayed, and can be displayed again at any time with CPX.
If the viscous mode is active, the true viscous Cp is shown as a solid
line, and the inviscid Cp at that same alpha is shown as a dashed line.
Each dash covers one panel, so the local dashed line density is also
a useful visual indicator of panel resolution quality. If the inviscid
mode is active, only the inviscid Cp is shown as a solid line.

The difference between the true viscous Cp distribution (solid line)
and the inviscid Cp distribution (dashed line) is due to the
modification of the effective airfoil shape by the boundary layers.
This effective airfoil shape is shown superimposed on the actual
current airfoil shape under the Cp vs x plot. The gap between
these effective and actual shapes is equal to the local displacement
thickness delta*, which can also be plotted in the VPAR menu.
This is only about 1/3 to 1/2 as large as the overall boundary
layer thickness, which can be visualized via the BL or BLC commands
which diplay velocity profiles through the boundary layer.
BL displays a number of profiles equally spaced around the
airfoil's perimeter, while BLC displays profiles at cursor-selected
locations. The zooming commands Z, U, may be necessary to better
see these small profiles in most cases.

If the Cp reference data overlay option is enabled with CREF,
initiating a Cp vs x plot will first result in the user being
prompted for a formatted data file with the following format:

x(1) Cp(1)
x(2) Cp(2)
 . .
 . .

The Cp vs x plot is then displayed as usual but with the data overlaid.
If FREF has been issued previously, then numerical reference values
for CL, CD, etc. will be requested and added to the plot next to the
computed values.

Boundary-layer quantities are plotted from the VPLO menu:

 H Plot kinematic shape parameter
 DT Plot top side Dstar and Theta
 DB Plot bottom side Dstar and Theta
 UE Plot edge velocity
 CF Plot skin friction coefficient
 CD Plot dissipation coefficient
 N Plot amplification ratio
 CT Plot max shear coefficient
 RT Plot Re_theta
 RTL Plot log(Re_theta)

 X rrr Change x-axis limits
 Y rrr Change y-axis limits on current plot

 Blow Cursor blowup of current plot
 Rese Reset to default x,y-axis limits
 SIZE r Change absolute plot-object size
 .ANNO Annotate plot
 HARD Hardcopy current plot

 GRID Toggle grid plotting
 SYMB Toggle node-symbol plotting
 LABE Toggle label plotting
 CLIP Toggle line-plot clipping

This menu is largely self-explanatory. The skin friction
coefficient plotted with the CF command is defined as

 2
 Cf = tau / 0.5 rho Qinf

This differs from the standard boundary layer theory definition
which uses the local Ue rather than Qinf for the normalization.
Using the constant freestream reference makes Cf(x) have the
same shape as the physical shear stress tau(x).

The dissipation coefficient CD' (this is NOT the drag coefficient!!!)
is plotted with the CD command. CD'(x) is proportional to the local
energy dissipation rate due to viscous shear and turbulent mixing.
Hence, it indicates where on the airfoil drag is being created.
It is in fact a much better indicator of drag production than Cf(x),
since Cf does not account for pressure drag. CD', on the other
hand, accounts for everything. Its relationship to the total
profile drag coefficient is simply

 /
 CD = | 2 CD' ds
 /

with the integration performed over both boundary layers and also
the wake. It will be seen that if the flow is separated at the
trailing edge, much of the drag contribution (energy dissipation)
of CD' occurs in the wake.

As mentioned earlier, all forces are normalized with freestream
dynamic pressure only. CL, CD, CM are the usual chord-based
definitions only if the airfoil has a unit chord -- in general,
they will scale with the airfoil's chord. Also, CM is defined
about the cartesian point (xref,yref) = (0.25,0.0), which is not
necessarily the airfoil's 1/4 chord point.

 -- Force calculation --

The lift and moment coefficients CL, CM, are calculated by direct
surface pressure integration:

 / _ /
 CL = L/q = | Cp dx CM = M/q = | -Cp [(x-xref) dx + (y-yref) dy]
 / /

 _
 where x = x cos(a) + y sin(a) ; a = angle of attack
 _
 y = y cos(a) - x sin(a)

The integrals performed in the counterclockwise direction
around the airfoil contour. The pressure coefficient Cp is
calculated using the Karman-Tsien compressibility correction.

The drag coefficient CD is obtained by applying the Squire-Young
formula at the last point in the wake --- NOT at the trailing edge.

 (H+5)/2
 CD = D/q = 2 Theta_i = 2 Theta (u/V)

 where Theta = momentum thickness |
 u = edge velocity | at end of wake
 H = shape parameter |

 V = freestream velocity
 Theta_i = momentum thickness at "downstream infinity"

The Squire-Young formula in effect extrapolates the momentum
thickness to downstream infinity. It assumes that the wake behaves
in a asymptotic manner downstream of the point of application.
This assumption is strongly violated in the near-wake behind an
airfoil with trailing edge separation, but is always reasonable
some distance behind the airfoil. Hence, the usual application
of Squire-Young at the trailing edge is questionable with separation
present, but its application at the last wake point (typically
1 chord downstream) is always reasonable. Also, application at
the last wake point also results in the formula having a smaller
effect in any case, since there u ~ V, and hence Theta_i ~ Theta.

In most 2-D airfoil experiments, drag is measured indirectly by
measuring 2 Theta/c in the wake, often within one chord of the
airfoil's trailing edge. For consistency, this should be compared
to the Theta value predicted by XFOIL at the same wake location,
rather than the "true" Cd = 2 Theta_i/c value which is effectively
at downstream infinity. In general, Theta_i will be smaller
than Theta. In most airfoil drag measurement experiments, this
difference may amount to the drag measurement being several
percent too large, unless some correction is performed.

In addition to calculating the total viscous CD from the wake
momentum thickness, XFOIL also determines the friction and pressure
drag components CDf,CDp of this total CD. These are calculated by

 / _
 CDf = | Cf dx CDp = CD - CDf
 /

Here, Cf is the skin friction coefficient defined with the
freestream dynamic pressure, not the BL edge dynamic pressure
commonly used in BL theory. Note that CDp is deduced from
CD and CDf instead of being calculated via surface pressure
integration. This conventional definition

 / _
 CDp = | Cp dy
 /

is NOT used, since it is typically swamped by numerical noise.

 -- Transition criterion --

Transition in an XFOIL solution is triggered by one of two ways:

 free transition: e^n criterion is met
 forced transition: a trip or the trailing edge is encountered

The e^n method is always active, and free transition can occur
upstream of the trip. The e^n method has the user-specified
parameter "Ncrit", which is the log of the amplification factor
of the most-amplified frequency which triggers transition.
A suitable value of this parameter depends on the ambient
disturbance level in which the airfoil operates, and mimics
the effect of such disturbances on transition. Below are typical
values of Ncrit for various situations.

 situation Ncrit
 ----------------- -----
 sailplane 12-14
 motorglider 11-13
 clean wind tunnel 10-12
 average wind tunnel 9 <= standard "e^9 method"
 dirty wind tunnel 4-8

Note: The e^n method in XFOIL is actually the simplified envelope
version, which is the same as the full e^n method only for flows
with constant H(x). If H is not constant, the two methods differ
somewhat, but this difference is typically within the uncertainty
in choosing Ncrit.

The e^n method is only appropriate for predicting transition in
situations where the growth of 2-D Tollmien-Schlichting waves via
linear instability is the dominant transition-initiating mechanism.
Fortunately, this happens to be the case in a vast majority of airfoil
applications. Other possible mechanisms are:

* Crossflow instabilities. These occur on swept wings with significant
 favorable chordwise pressure gradients.

* Attachment-line transition. This requires large sweep, large LE
 radius, and a large Reynolds number. Occurs primarily on big jets.

* Bypass transition. This occurs in cases with sufficient wall
 roughness and/or large freestream turbulence or vibration levels.
 The linear-instability phase predicted by the e^n method is
 "bypassed", giving relatively early transition. Usually occurs
 in favorable pressure gradients, while the linear-instability
 mechanism usually dominates in adverse pressure gradients.

If any of these alternative transition mechanisms are present, the
trips must be set to mimick their effect. The bypass transition
mechanism can be mimicked to some extent by the e^n method by
setting Ncrit to a small value --- Ncrit=1 or less. This will
cause transition just after linear instability begins. For
very large freestream turbulence or roughness in favorable
pressure gradients, bypass transition can occur before the
linear instability threshold, and in this case trips will have
to be set as well.

Numerical accuracy

-- Panel density requirements --
If strong separation bubbles are present in a viscous solution, then
it is very important to have good panel resolution in the region of the
bubble(s). The large gradients at a bubble tend to cause significant
numerical errors even if a large number of panels is used. If a separation
bubble appears to be poorly resolved, it is a good idea to re-panel the
airfoil with more points, and/or with points bunched around the bubble
region. The paneling is controlled from the PPAR menu. A good rule of
thumb is that the shape parameter Hk just after transition in the bubble
should not decrease by more than 1.0 per point. Likewise, the surface
velocity Ue/Vinf should not change by more than 0.05 per point past
transition, otherwise there may be significant numerical errors in the
drag. The point values can be observed by issuing SYMB from the VPLO menu.
Moderate chord Reynolds numbers (1-3 million, say) usually require the
finest paneling, since the bubbles are still important, but very small.
On many airfoils, especially those with small leading edge radii,
the development of the small bubble which forms just behind the
leading edge can have a significant effect on CLmax. For such cases,
the default paneling density at the bubble may not be adequate.
In all cases, inadequate bubble resolution results in a "ragged"
or "scalloped" CL vs CD drag polar curve, so fortunately this is
easy to spot.

-- Differencing order of accuracy --
The BL equations are normally discretized with two-point central
differencing (i.e. the Trapezoidal Scheme), which is second-order
accurate, but only marginally stable. In particular, it has problems
with the relatively stiff shape parameter and lag equations at
transition, where at high Reynolds number the shape parameter must
change very rapidly. Oscillations and overshoots in the shape parameter
will occur with the Trapezoidal Scheme if the grid cannot resolve this
rapid change. To avoid this nasty behavior, upwinding must be introduced,
resulting in the Backward Euler Scheme, which is very stable, but has
only first-order accuracy. Previous versions of XFOIL allowed a specific
constant amount of upwinding to be user-specified. Currently,
XFOIL automatically introduces upwinding into the equations only
in regions of rapid change (typically transition). This ensures
that the overall scheme is stable and as accurate as possible.

Since only a minimal amount of upwinding is introduced in the
interest of numerical accuracy, small oscillations in the shape
parameter H will sometimes appear near the stagnation point if
relatively coarse paneling is used there. These oscillations
are primarily a cosmetic defect, and do not significantly affect
the downstream development of the boundary layer. Eliminating them
by increasing upwiding would in fact produce much greater errors
in the overall viscous solution.

Viscous solution acceleration

The execution of a viscous case requires the solution of a large
linear system every Newton iteration. The coefficient matrix of
this system is 1/3 full, although most of its entries are very small.
Substantial savings in CPU time (factor of 4 or more) result when
these small entries are neglected. SUBROUTINE BLSOLV which solves the
large Newton system ignores any off-diagonal element whose magnitude
is smaller than the variable VACCEL, which is initialized in SUBROUTINE
INIT, and which can be changed at runtime from the VPAR menu with the
VACC command.

A nonzero VACCEL parameter should in principle degrade the convergence rate
of the viscous solution and thus result in more Newton iterations, although
the effect is usually too small to notice. For very low Reynolds number
cases (less than 100000), it MAY adversely affect the convergence rate
or stability, and one should try reducing VACCEL or even setting it
to zero if all other efforts at convergence are unsuccessful.
The value of VACCEL has absolutely no effect on the final converged
viscous solution (if attained).

Polar calculations and plotting

The polar calculation facility driven from the OPER menu deserves
a detailed description. It has been considerably upgraded from
previous XFOIL versions.

The simplest way to create a polar is to issue the PACC command
which sets the auto polar accumulation toggle and asks for the
optional save and dump filenames. If either filename is
given, each computed operating point will be stored internally
and also written to the specified file. If no filename is given,
the automatic writing is not performed.

The polar's operating points can be computed individually with ALFA,
or more conveniently en masse with ASEQ. One can also use CL or CSEQ,
although these will not work close to CLmax.

The polar can be plotted anytime with PPLO. If previous polars have been
computed or read in with PGET, they can be plotted as well. If a polar
is deemed incomplete, additional points can be computed as needed.

If automatic writing of a polar was not chosen (no filename was given
for PACC), the polar can be written later all at once with the PWRT
command. The only drawback to this approach is that if the program
crashes during a polar calculation sweep for whatever reason, the
computed polar and all other stored information will be lost.

If existing filenames are given to PACC, the subsequent computed
points will be appended to these files, but only if the airfoil name
and flow parameters in the file match the current parameters.
This is to prevent clobbering of the polar file with "wrong"
additional points. Messages are always produced informing
the user of what's going on.

Off-line polar plotting

Polar save file(s) can also be plotted off-line with the separate
program PPLOT. This is entirely menu driven, and is simply executed:

 % pplot

The file pplot.def contains plotting parameters, and is read
automatically if available. If it's not available, then internal
defaults are used.

Like the RGET,FREF commands in OPER, PPLOT permits reference data
to be overlaid. A reference polar data file has the following form:

CD(1) CL(1)
CD(2) CL(2)
 . .
 . .
999.0 999.0
alpha(1) CL(1)
alpha(2) CL(2)
 . .
 . .
999.0 999.0
alpha(1) Cm(1)
alpha(2) Cm(2)
 . .
 . .
999.0 999.0
Xtr/c(1) CL(1)
Xtr/c(2) CL(2)
 . .
 . .
999.0 999.0

The number of points in each set (CD-CL, alpha-CL, etc.) is arbitrary,
and can be zero.

The contents of a polar dump file can be selectively plotted with
the separate menu-driven program PXPLOT. It is executed with:

 % pxplot <dump filename>

This allows surface plots of Cp vs x, H vs x, etc. for any or
all of the saved operating points. Of course, these plots can
be generated in XFOIL for any individual operating point, so PXPLOT
and the dump file itself are somewhat redundant in this respect.

Re, Mach dependence

A few comments are in order on the TYPE command, which allows the
user to set the dependence of the Mach and Reynolds numbers on CL.
Any CL-CD polar can be of the following three types:

 Type parameters held constant varying fixed
 ---- ------------------------ ------- -----------
 1 M , Re .. lift chord, vel.
 2 M sqrt(CL) , Re sqrt(CL) .. vel. chord, lift
 3 M , Re CL .. chord lift , vel.

* Type 1 corresponds to a given wing at a fixed velocity going over
an angle of attack range, as in a wind tunnel test alpha sweep or
a sudden aircraft pullup. This is also the common form for an
airfoil polar.

* Type 2 corresponds to an aircraft in level flight at a given altitude
undergoing trim speed changes. This is the most useful airfoil polar
form for determining a drag polar for an aircraft at 1-g. For this case,
The "Mach number" input with the MACH command is actually interpreted
as the product M sqrt(CL), and the "Reynolds number" input with the
VISC or RE commands is actually interpreted as RE sqrt(CL). For a wing
in level flight, these products can be computed from the following exact
relations, with Re based on the mean chord:

 1/2 1/2
 | 2 W/S | 1 | 2 rho W |
 M sqrt(CL) = | --- --- | RE sqrt(CL) = -- | ------- |
 | 1.4 p | mu | AR |

 W = weight p = ambient pressure
 S = wing area mu = dynamic viscosity
 AR = aspect ratio rho = ambient air density

* Type 3 corresponds to a wing of "rubber chord" with a given lift
at a given speed. This is best used for selecting an optimum CL
for an airfoil while taking Reynolds number changes into account.
The product RE CL can be computed from the following:

 2 W
 RE CL = ------ b = span = sqrt(S*AR)
 mu V b

Caution must be used with Types 2 and 3 so as to not allow the CL
to go negative. In addition, with non-zero Mach and Type 2,
the CL must not fall below that value which makes Mach exceed
unity. Warning messages are printed when these problems occur.

Output
======
All output goes directly to the terminal screen. H. Youngren's plot
package Xplot11 (libPlt.a) used by XFOIL drives monochrome and color
X-Windows graphics, and generates B&W or color PostScript files for
hardcopy. The default setup assumes color X-Windows graphics
(if available), and B&W PostScript. These defaults are controlled
by the IDEV and IDEVRP flags in SUBROUTINE INIT (in xfoil.f).

The Xplot11 library should work on all Unix systems. The Makefile
in the ./plotlib/ directory requires some modifications for some
machines.

The default X-graphics window is in Landscape mode, with a black
(reverse-video) background. Normal-video can be selected by setting
the Unix shell variable

 % setenv XPLOT11_BACKGROUND white

before Xfoil is started. The nicer reverse-video is restored with:

 % unsetenv XPLOT11_BACKGROUND

See the plotlib/Doc file for more info on the plot library.

Xplot11 provides a built-in Zoom/Unzoom capability which can
be applied to whatever is on the screen. Zooming/Unzooming
can be perfomed with the "Z" and "U" commands from nearly all
the menus --- these commands are not listed to reduce clutter.

Some of the menus also have their own Blowup/Reset commands.
The distinction is that XFOIL's plots don't try to adjust
themselves to Zoom parameters, so a highly-"Zoomed" plot may
show nothing at all. In contrast, Blowup/Reset instructs
XFOIL to change its own plot scales, so a highly-"Blown-up"
plot will at least show the axes.

Plot Hardcopy
=============
For hardcopy, the current screen plot can be echoed to a PostScript file
plot.ps with the HARD command. The size of the plot objects on the
screen and on hardcopy can be changed with the SIZE command from most
menus. The number requested is the width of the plot in inches.

*** NOTE ***
If the plot.ps file is to be previewed with some X-Windows PostScript
viewer, or imported into word-processing systems, XFOIL must be exited
with QUIT in order for the plot.ps file to be properly terminated.
For just printing, this may or may not be necessary.

*** NOTE ***
For the geometry plot in GDES, and the Qspec(s) plots in QDES and MDES
(described below), the hardcopy plot size will also be affected if
the graphics window is resized with the cursor at the window manager
level. This is because the plot is always scaled so that it fills
up as much of the window as possible. If the window size is left
at its start-up size, the hardcopy plot widths will come out with the
specified size in inches. If any window dimension is increased from
its default value, then a subsequent hardcopy plot will probably not
fit on a standard 8.5" x 11.0" sheet.

Full-Inverse Design Routine (MDES)
==================================
XFOIL's Full-Inverse complex-mapping facility (MDES) takes as input
a speed distribution "Qspec" specified over the entire airfoil surface,
modifies it somewhat to satisfy the Lighthill constraints, and generates
a new overall geometry. First a bit of the underlying theory...

The geometry and the surface velocities can both be computed from
a set of complex mapping coefficients "Cn" in the form

 x + iy = z(w;Cn)
 u - iv = f(w;Cn,alpha)

where w= 0..2*pi is the independent parameter going around the airfoil.
The z and f functions are rather complicated but this is not important
here. The key to the full-inverse method is that the mapping coefficients
Cn can be computed from a known contour angle theta(w) = arctan(dy/dz)
OR from a surface speed q(w) = |u-iv|. The other quantity the follows.
In summary, the operations and their commands are...

 a) Direct problem: theta -> Cn -> u-iv, q (QSET)
 b) Inverse problem: Qspec -> Cn -> x+iy, theta (EXEC)

Creation of seed surface speed distribution

MDES performs QSET and sets Qspec = q automatically upon entry
if Qspec does not exist. This Qspec is then the starting point
for subsequent design operations.

This default initialization in effect makes MDES a redesign method
in which the surface speed distribution of an existing airfoil is
used as a starting point to generate a new speed distribution.
A ``pure'' design code which requests the entire surface speed
distribution every time is often less natural to use, since airfoil
design is invariably an iterative process involving repeated
analyze/fix cycles. The MDES menu is shown below.

 <cr> Return to Top Level
 ! Redo previous command

 INIT Re-initialize mapping
 QSET Reset Qspec <== Q
 AQ r.. Show/select alpha(s) for Qspec
 CQ r.. Show/select CL(s) for Qspec

 Symm Toggle symmetry flag
 TGAP r Set new TE gap
 TANG r Set new TE angle

 Modi Modify Qspec
 MARK Mark off target segment for smoothing
 SMOO Smooth Qspec inside target segment
 FILT Apply Hanning filter to entire Qspec
 SLOP Toggle modified-Qspec slope matching flag

 eXec Execute full-inverse calculation

 Plot Replot Qspec (line) and Q (symbols)
 VISC Qvis overlay toggle
 REFL Reflected Qspec overlay toggle
 SPEC Plot mapping coefficient spectrum

 Blow Blowup plot region
 Rese Reset plot scale and origin
 Wind Plot window adjust via cursor and keys

 SIZE r Change absolute plot-object size
 .ANNO Annotate plot
 HARD Hardcopy current plot

 PERT Perturb one Cn and generate geometry

As described above, the initial Qspec distribution is taken from
"Q", the speed distribution corresponding to the current
geometry at the last angle of attack employed in OPER. Qspec
can be set back to this Q with QSET anytime.

Modification of surface speed distributions

-- Cursor input of modifications --
Qspec can be modified to whatever is desired with the MODI command
by specifying points with the screen cursor which are then splined.
The points can be entered in any order. The last point can be
erased by clicking on the "Erase" button or simply typing "e"
in the graphics window. The input sequence is terminated by
clicking on the "Done" button or by typing "d" in the graphics window.
The "Abort" button or typing "a" aborts the MODI command and
returns to the MDES menu. The BLOW command can be used to enlarge
regions of interest at any time by specifying opposite corners
of the blowup region.

-- Modification endpoint blending --
Normally, the modified piece of Qspec(s) is blended into the current
Qspec(s) with matching values and slopes at the piece endpoints.
The slope matching can be turned on/off with the SLOP toggle command.
If slope matching is turned off, the modified piece will match only
the existing value, but a slope discontinuity will be allowed.

-- Smoothing --
Qspec can be smoothed with the SMOO command, which normally operates
on the entire distribution, but can be confined to a target segment
whose endpoints are selected with the MARK command. The smoothing
acts to alleviate second derivatives in Qspec(s), so that with many
consecutive SMOO commands Qspec(s) will approach a straight line
over the target segment. If the slope-matching flag is set, the
endpoint slopes are preserved.

The FILT command is an alternative smoothing procedure which acts on
the Fourier coefficients of Qspec directly, and is global in its effect.
It is useful for "cleaning up" the entire Qspec(s) distribution if
noise is present from some geometric glitch on the airfoil surface.
Also, unintended noise might be introduced into Qspec from a poor
modification via the cursor.

FILT acts by multiplying the Fourier coefficients by a Hanning window
filter function raised to the power of a filter parameter "F". This
tapers off the high frequencies of Qspec to varying degrees. A value
of F = 0.0 gives no filtering, F = 1.0 gives the standard Hanning filter,
F = 2.0 applies the Hanning filter twice, etc. The standard Hanning
filter appears to be a bit too drastic, so a filter parameter of
F = 0.2 is currently used. Hence, issuing FILT five times corresponds
to the standard Hanning filter. The SPEC command displays the mapping
coefficient spectrum at any time.

-- Symmetry forcing --
The symmetry-forcing option (SYMM toggle) is useful when a symmetric
airfoil is being designed. If active, this option zeroes out all
antisymmetric (camber) Qspec changes, and doubles all symmetric
(thickness) changes. This unfortunately has the annoying side
effect of also doubling the numerical roundoff noise in Qspec
every time a MODI operation is performed. This noise sooner or later
becomes visible as high-frequency wiggles which double with each
MODI command. Issuing FILT occasionally keeps this parasitic
noise growth under control.

-- Adjustment for Lighthill constraints --
The MODI, BLOW, MARK, SMOO, SLOP, FILT commands can be issued repeatedly
in any order until Qspec is modified to have the desired distribution.
In general, the surface speed distributions actually plotted will not
exactly match what was input with the cursor, since corrections are
automatically added to maintain the specified trailing edge gap and
to enforce consistency with the freestream speed. These are known
as the Lighthill constraints on the surface speed.

The trailing edge gap is initialized from the initial airfoil and can
be changed with TGAP. To reduce the "corrupting" effect of the
constraint-driven corrections, a good rule of thumb is that the
Qspec distribution should be modified so as to preserve the total CL.
The CL is simply twice the area under the Qspec(s) curve (= 2 x circulation),
so that this area should be preserved.

-- Multipoint surface speed display --
A very useful feature of the MDES facility is the ability to display
and modify a number of Qspec distributions corresponding to different
alpha or inviscid CL values. These values are displayed and/or selected
via the AQ or CQ commands. When any one Qspec distribution is modified,
the result of modification is also displayed on all the other distributions.
This allows rapid design at multiple operating points. When the Qspec
curves correspond to specified CL values, the alpha for each curve will be
adjusted after each Qspec modification so as to preserve that curve's CL.
The resulting Qspec will therefore not match the input cursor points
exactly because of this alpha correction.

Generation of new geometry

The EXEC command generates a new buffer airfoil corresponding
to the current Qspec distribution. If subsequent operations on
this airfoil are to be performed (SAVE, OPER, etc.), it is
necessary to first generate a current airfoil from this buffer
airfoil using PANE at the top level menu. This seemingly
complicated sequence is necessary because the airfoil points
generated by EXEC are uniformly spaced in the circle plane,
which gives a rather poor point (panel node) spacing distribution
on the physical airfoil. This sequence also prevents the current
airfoil from being overwritten immediately when EXEC is issued.
Once the new current airfoil is generated with PANE, it can
then be analyzed in OPER, modified in GDES, or whatever.

The PERT command allows manual input of the complex mapping
coefficients Cn which determine the geometry. These coefficients
are normally determined from Qspec(s) (this is the essence of
the inverse method). The PERT command is provided simply
as a means of allowing generation of geometric perturbation
modes, possibly for external optimization or whatever.

The manually-changed Cn values result in changes in geometry
as well as the current Qspec(s) distributions. The QSET command
will restore everything to its unperturbed state.

The Full-Inverse facility is very fast, after an initialization
calculation of several seconds (on a RISC workstation), it requires
only a fraction of a second to generate the new buffer airfoil.

Mixed-Inverse Design Routine (QDES)
===================================
XFOIL's Mixed-Inverse facility (QDES) is useful in certain redesign
problems where parts of the airfoil cannot be altered under any
circumstances. The Mixed-Inverse menu is shown below.

 <cr> Return to Top Level

 QSET Reset Qspec <== Q

 Modi Modify Qspec
 MARK Mark off target segment
 SMOO Smooth Qspec inside target segment
 SLOP Toggle modified-Qspec slope matching flag

 eXec i Execute mixed-inverse calculation
 REST Restore geometry from buffer airfoil
 CPXX CPxx endpoint constraint toggle

 Plot Plot Qspec (line) and Q (symbols)
 VISC Qvis overlay toggle
 REFL Reflected Qspec overlay toggle

 Blow Blowup plot region
 Rese Reset plot scale and origin
 Wind Plot window adjust via cursor and keys

 SIZE r Change absolute plot-object size
 .ANNO Annotate plot
 HARD Hardcopy current plot

The QDES menu above is intentionally geared for the redesign of a segment
of an existing airfoil (with its surface speed distribution calculated
previously in OPER) rather than the generation of a totally new airfoil.

Creation of seed surface speed distribution

When QDES is entered, the specified speed distribution Qspec is
initialized to the current speed distribution Q last set in OPER.
If a direct solution for the current airfoil hasn't been calculated yet,
QDES goes ahead and calculates it, using the last-set angle of attack.
If this isn't the desired angle, it can be set in OPER using ALFA.
QSET can then be used to set Qspec from the current Q distribution.
The QSET command can be used anytime later to "reset" Qspec if the
modification has been botched.

Modification of surface speed distribution
--
Qspec can be repeatedly modified with the screen cursor and the MODI
command, exactly as in MDES. It is also necessary to mark off the
target segment where the geometry is to be modified with the
MARK command.

Generation of new airfoil geometry

EXEC modifies the airfoil over the target segment to match Qspec
there as closely as possible. The remainder of the airfoil
geometry is left unaltered. EXEC requests the number of Newton
iterations to be performed in the inverse calculation. Although as
many as six iterations may be required for convergence to machine zero,
it is _not_ necessary to fully converge a Mixed-Inverse case. Two
iterations are usually sufficient to get very close to the new
geometry. In any case, the new surface speed distribution Q
which actually results from the inverse calculation will typically
differ somewhat from the specified distribution Qspec by function
modes which are added to Qspec. At least two modes are added,
with their magnitudes determined by geometric closure requirements
at the inverse segment endpoints. As with the MDES complex-mapping
routine, the necessary modifications to Qspec will be smallest if
Qspec is modified so that CL (the area under the Qspec(s) curve) is
roughly preserved.

Issuing PLOT after the EXEC command finishes will compare the specified
(Qspec) and resulting (Q) speed distributions. If extra smoothness
in the surface speed is required, the CPXX command just before EXEC
will enable the addition of two additional modes which allow the
second derivative in the pressure at the endpoints to be unchanged
from the starting airfoil. The disadvantage of this option is that
the resulting surface speed Q will now deviate more from the
specified speed Qspec. It is allowable to repeatedly modify Qspec,
set or reset the CPXX option, and issue the EXEC command in any order.

The Mixed-Inverse modification is performed on the current airfoil
directly, in contrast to Full-Inverse which generates the buffer
airfoil as its output. In fact, it is important _not_ to issue the
PANE or PCOP commands at top level after doing work in the QDES menu,
as the new current airfoil will be overwritten with the old buffer
airfoil.

Geometry Design Routine
=======================
Executing the GDES command from the top level menu will put the user
into the GDES routine. It has a rather extensive menu:

 <cr> Return to Top Level
 ! Redo previous command

 GSET Set buffer airfoil <== current airfoil
 eXec Set current airfoil <== buffer airfoil
 SYMM Toggle y-symmetry flag

 ADEG r Rotate about origin (degrees)
 ARAD r Rotate about origin (radians)
 Tran rr Translate
 Scal r Scale about origin
 LINS rr. Linearly-varying y scale
 DERO Derotate (set chord line level)

 TGAP rr Change trailing edge gap
 LERA rr Change leading edge radius

 TCPL Toggle thickness and camber plotting
 TFAC rr Scale existing thickness and camber
 TSET rr Set new thickness and camber
 HIGH rr Move camber and thickness highpoints
 .CAMB Modify camber shape directly or via loading

 Flap rrr Deflect trailing edge flap

 Modi Modify contour via cursor
 SLOP Toggle modified-contour slope matching flag

 CORN Double point with cursor (set sharp corner)
 ADDP Add point with cursor
 DELP Delete point with cursor
 MOVP Move point with cursor

 UNIT Normalize buffer airfoil to unit chord
 Dist Determine distance between 2 cursor points
 CLIS List curvatures
 CPLO Plot curvatures
 CANG List panel corner angles
 CADD ri. Add points at corners exceeding angle threshold

 Plot Replot buffer airfoil
 INPL Replot buffer airfoil without scaling (in inches)
 Blow Blowup plot region
 Rese Reset plot scale and origin
 Wind Plot window adjust via cursor and keys

 TSIZ Change tick-mark size
 TICK r Toggle node tick-mark plotting
 GRID Toggle grid plotting
 GPAR Toggle geometric parameter plotting
 Over f Overlay disk file airfoil

 SIZE r Change absolute plot-object size
 .ANNO Annotate plot
 HARD Hardcopy current plot

 NAME s Specify new airfoil name
 NINC Increment name version number

Creating seed buffer airfoil

The first command typically executed is GSET, which sets the temporary
buffer airfoil from the current airfoil. Sometimes it might be desired
to operate directly on the coordinates of an already existing buffer
airfoil. It typically contains coordinates read in from a disk file
by LOAD at Top Level, or coordinates generated by EXEC from the MDES
menu, depending on what was done last. In either of these cases, GSET
is skipped.

Point addition (typ. to Eppler and Selig airfoils)
--
If the buffer airfoil has an excessively coarse point spacing,
additional points can be added with the CADD command. Using the
PANE command at top level also does this, but CADD allows the point
addition to be restricted to locations with excessive corner angles
(displayed with CANG), and also to locations which fall within a specified
x-range. Different spline parameters can also be used to determine
the inserted spline points. For example, the command

 .GDES c> CADD 10.0 2 -0.1 0.2

will add spline points adjacent to each existing point whose panel
angle exceeds +/-10 degrees, and only if the added point will fall
within the interval -0.1 < x < 0.2. The "2" indicates that an
arclength spline parameter is to be used. The PANE command will
always use the arclength spline.

Some archived airfoils, notably the Eppler airfoils and some of the
Selig airfoils have an excessively coarse point spacing around
the leading edge. The spacing has apparently been tailored for
a uniform-parameter spline, and often produces a badly shaped
leading edge with the arclength-parameter spline used in Xfoil.
The following command will insert additional points giving
a much smoother shape for subsequent analysis.

 .GDES c> CADD 10.0 1 -0.1 1.1

The 10.0 degree angle tolerance can be varied as needed (1/2 of the max
angle is the default). The "1" argument (also a default) specifies
a uniform-parameter spline for the interpolation since this works best
for Eppler airfoils), and the default x range indicates that the
entire airfoil is to be treated. The CADD command can be repeated
to keep reducing the max panel angle, but this may or may not
improve the smoothness of the resulting splined airfoil.

Modifying buffer airfoil

Once the buffer airfoil is suitably initialized, most of the GDES
commands can then be used to modify it. The resulting new shape
will usually be replotted immediately in a highlighted color.
The plot can be refreshed anytime with the PLOT command.

Sometimes a sequence of commands is necessary to achieve the desired
effect. For instance, suppose an airfoil with the current thickness
envelope is to be given an entirely new camber line. Issuing TSET and
hitting a <cr> (keep same thickness) and a new camber
of 0 will result in the current thickness envelope unchanged and the
current camber eliminated, so that a symmetrical airfoil remains.
The new camber line can then be added in the CAMB sub-menu:

 <cr> Return to GDES
 TFAC rr Scale existing thickness and camber
 TSET rr Set new thickness and camber
 HIGH rr Move camber and thickness highpoints
 WRTC Write airfoil camber x/c,y/c to file

 RDAC Read added camber x/c,y/c from file
 SETC Set added camber x/c,y/c from camberline
 INPC Input added camber x/c,y/c from keyboard
 MODC Modify added camber x/c,y/c with cursor
 INPP Input added loading x/c,DCp from keyboard
 MODP Modify added loading x/c,DCp with cursor
 SLOP Toggle modified-camber,dCp slope matching flag
 SCAL r Scale the added camber
 CLR Clear the added camber
 ADD Add added camber to the existing camberline

 DCPL Toggle DCp plot
 CPLI rr Change DCp axis plot limits

 Blow Blowup plot region
 Rese Reset plot scale and origin

 SIZE r Change absolute plot-object size
 .ANNO Annotate plot
 HARD Hardcopy current plot

..CAMB c>

INPC takes the new camber line as a sequence of x/c,y/c coordinate
pairs which are splined. INPP takes a sequence of x/c,delta(Cp)
pairs instead. This delta(Cp) (i.e. loading) distribution, defined as

delta(Cp) = (Cp)lower - (Cp)upper

is then used in Glauert's thin-airfoil relations to define the
x/c,y/c camber line.

With INPC and INPP, a slope discontinuity in y(x) or Cp(x) can
be specified with two identical consecutive x/c values, which
prevents splining across this point. INPP can thus easily
generate a camber line with a piecewise-linear delta(Cp) loading
distribution, as for example an a=0.8 NACA 6-digit airfoil:
 x/c delta(Cp)
 0.0 0.5
 0.8 0.5
 0.8 0.5
 1.0 0.0

This results in a constant delta(Cp) = 0.5 for 0.0 < x/c < 0.8 ,
then decreasing linearly to delta(Cp) = 0.0 for 0.8 < x/c < 1.0

Once a suitable added camber is input, it is added to the
existing buffer airfoil camber via the ADD command.

The various GDES commands for modifying camber-line, thickness, leading
edge radius, etc. should suffice for most geometry modification tasks.
If truly frustrated, the user can "draw" the new contour with the MODI
command, which accepts cursor inputs in the same manner as the MDES
and QDES procedures. Slope matching at the modified-piece endpoints
can likewise be enabled/disabled with the SLOP toggle command. The
only important difference is that here the points must be entered
in consecutive order along the new contour, although one can "erase"
a previously-entered point by clicking on "Erase" or type "e" in the
graphics window.

A point can be doubled with the CORN command. A doubled point is
useful wherever a sharp corner is required, such as at a flap break.
Normally, the spline routine enforces slope continuity at all points,
effectively preventing sharp corners. A doubled point, marked by
a small diamond symbol on the plot, causes separate splines to be
generated on each side of the corner, thus allowing the slope
break. The doubled point is eliminated by clicking on it after
issuing the DELP command. Using DELP on a normal single point will
delete that point entirely.

The TGAP command sets the thickness (or gap) of the blunt trailing edge.
The gap "ds" is defined as the distance between the upper and lower
coordinate endpoints: ds^2 = dx^2 + dy^2. If the gap is already nonzero,
then the new TE base vector (dx,dy) will have the same orientation as
the old one, i.e.

 dy| dy|
 --| = --|
 dx| dx|
 new old

If the gap is zero to begin with, then the new base vector will be
perpendicular to the trailing edge bisector. If the base orientation
comes out in an unexpected way, it probably means that the gap was
not *exactly* zero. The fix is to first set the gap to zero, and
then set it again to the desired value.

After a new gap size is input, a "blending distance/c" will also be
requested. This controls how rapidly the new TE blends into the
original airfoil, and is essentially the length scale for the blending
function, which is exponential in x/c. The limiting values are:

distance/c = 0: Only the upper- and lower-surface TE points are changed
 = 1: A linear "wedge" is added or subtracted from the airfoil

Saving buffer airfoil into current airfoil
--
Once the desired buffer airfoil is created, a new current airfoil is set
directly from the buffer airfoil with the EXEC command (equivalent to
PCOP at top level). Alternatively, the new current airfoil can be
re-paneled from the buffer airfoil with the PANE command at top level.
The new current airfoil can then be analyzed in OPER. If the buffer
airfoil has any doubled corner points, the doubled points will be
eliminated, but a current-airfoil node will fall exactly on each
buffer-airfoil corner.

Start-up Defaults
=================
XFOIL has hardwired parameters (in subr. INIT) controlling the
paneling, plotting, and viscous execution. Most of these can
be changed at runtime in the various menus. To avoid the need
to change the parameters everytime XFOIL is executed, they
can be saved to the default file xfoil.def with the WDEF
command at TOP LEVEL. This file has the format:

 140 1.0000 0.1500 0.2000 | Npan PPanel TErat REFrat
 1.0000 1.0000 1.0000 1.0000 | XrefS1 XrefS2 XrefP1 XrefP2
 10.0000 0.5500 0.0150 0.8500 | Size plotAR CHsize ScrnFr
 11.0000 8.5000 0.0000 0.0000 | Xpage Ypage Xmargn Ymargn
 F T | Lcolor Lcursor
 1.0000 -2.0000 -0.5000 | CPmax CPmin CPdel
 0.0900 0.7000 | XoffAir ScalAir BLUwt
 0.0000 1.5000 0.5000 | CLmin CLmax CLdel
 0.0000 0.0200 0.0100 | CDmin CDmax CDdel
 -4.0000 10.0000 2.0000 | ALmin ALmax ALdel
 0.0000 0.3000 0.1000 | CMmin CMmax CMdel
 1 0.0000 0.0100 | MAtype Mach Vaccel
 1 0.0000 9.0000 | REtype Re/10^6 Ncrit
 1.0000 1.0000 | XtripT XtripB

Line 1: Paneling parameters from the PPAR menu
Line 2: Paneling refinement locations
Line 3: Specifies the absolute plot size, the plot aspect ratio,
 and scales the character, number, and symbol heights
Line 4: Defines page size and page margins, in inches
Line 5: Flags for color PostScript output, cursor screen input
Line 6: Defines the Cp axis annotations
Line 7: x-offset and scale for airfoil on Cp vs x plot, BL u profile scale
Line 8: CL axis annotations on polar plot
Line 9: CD axis annotations on polar plot
Line 10: alpha axis annotations on polar plot
Line 11: CM axis annotations on polar plot
Line 12: Mach-CL dependence type, Mach number, solution acceleration parameter
Line 13: Re-CL dependence type, Reynolds number, transition parameter
Line 14: Forced transition x/c locations on top,bottom sides

This file will be read at any time with the RDEF command, thus
avoiding the manual entry of all the information.

Caveats
=======
The XFOIL code is not foolproof, and requires some level of aerodynamic
expertise and common sense on the part of the user. Although the
inviscid analysis (OPERi), geometry design (GDES), and Full-Inverse
(MDES) routines are nearly invulnerable to failure, the Mixed-Inverse
(QDES) design routines and especially the viscous analysis (OPERv)
routines will fail if a "reasonable" problem is not specified.
Typical failure scenarios are:

 - Viscous Analysis (OPERv)
 * Massive separation from excessive airfoil thickness,
 flap deflection, or angle of attack
 * Inherently unsteady flow (von Karman vortex street, etc.)
 * Poor resolution of leading edge pressure spike
 * Poor resolution of small viscous features
 (e.g. separation bubbles)
 * Reynolds number too low

 - Mixed-Inverse Surface Speed Design (QDES)
 * Re-entrant airfoil shape (negative thickness)

A possible consequence of these occurences is an arithmetic fault
causing program failure. This is unlikely, but it does happen
occasionally. It is therefore a good idea to save any previous work
before an ambitious calculation is attempted.

The following situations may give problems strictly due to numerical
roundoff:

 - Excessively small panel(s) somewhere on the airfoil

 - Airfoil located too far from origin

 - Airfoil too thin

These situations will rarely result in an arithmatic failure,
but will typically result in a "ragged" Cp distribution.
Examine the paneling in the GDES menu, making the GSET command
if neceesary to set the current paneling. Eliminate excessively
small panels my deleting one or more panel nodes with the
DELP command.

When performing viscous analysis calculations, it is always a good idea
to sequence runs so that alpha does not change too drastically from one
case to another. The Newton solution method always uses the last
available solution as a starting guess for a new solution, and works
best if the change from the old to the new solutions is reasonably
small. For this reason, it is best to perform difficult calculations
(such as past CLmax) by gradually increasing alpha. The ASEQ command in
OPER is convenient for this. If the user insists on a large change from
one point to another, it is best to force a re-initialization of the
boundary layers with the INIT command from the VPAR menu in OPER before
the radical calculation is performed. INIT should always be executed
whenever the viscous solution blows up but the program doesn't crash.

The viscous analysis will execute no more Newton iterations than
set by the current iteration limit each time an ALFA, CL, etc. command
is issued. If convergence is not achieved within this limit, ALFA or CL
can be issued as often as needed (most easily with "!"), with another
set of Newton iterations being performed each time. This iteration
limit can be changed from its default value of 10 with the ITER command
in OPER.

One should always be wary of trusting solutions which show regions
of supersonic flow. Such flows can be reliably predicted only with
a truly nonlinear field method (such as the MSES code). As a rule
of thumb, if the maximum Mach number doesn't exceed 1.05 anywhere,
shock losses will be very small, the Cp distributions will be
reasonably accurate, and the drag predicted by XFOIL is likely
to be accurate.

XFOILinterface/XFOIL/orrs/uv.tex

\documentstyle[12pt]{article}

\pagestyle{plain}

 \topmargin 0in \headheight 0pt \headsep 0pt \raggedbottom
 \oddsidemargin 0in
 \textheight 9.25in \textwidth 6.0in
 \parskip 5pt plus 1pt minus 1pt
 \def \baselinestretch {1.0} % single spaced
 \setlength {\unitlength} {1.0in}

\begin{document}

\def \ei {{e^{i(\alpha x - \omega t)}}}
\def \eiax {{e^{- \alpha_i x}}}
\def \eitax {{e^{-2\alpha_i x}}}

\def \cwt {\cos (\,)}
\def \swt {\sin (\,)}
\def \cqwt {\cos^2 (\,)}
\def \sqwt {\sin^2 (\,)}

\def \thalf {{\textstyle \frac{1}{2}}}

\def \d {\partial}

\def \beqa {\begin{eqnarray*}}
\def \eeqa {\end{eqnarray*}}

\def \strut {\rule{0em}{2.0ex}}

\beqa
\alpha &=& \alpha_r + i \alpha_i \\
\omega &=& \omega_r
\eeqa
\beqa
\cwt & \equiv & \cos(\alpha_r x - \omega_r t) \\[0.25em]
\swt & \equiv & \sin(\alpha_r x - \omega_r t)
\eeqa
\beqa
u' \;=\; \Re \left[(u_r + i u_i) \, \ei \right] &=&
 \left(u_r \cwt - u_i \swt \strut \right) \eiax \\[0.5em]
v' \;=\; \Re \left[(v_r + i v_i) \, \ei \right] &=&
 \left(v_r \cwt - v_i \swt \strut \right) \eiax \\[0.5em]
p' \;=\; \Re \left[(p_r + i p_i) \, \ei \right] &=&
 \left(p_r \cwt - p_i \swt \strut \right) \eiax
\eeqa
\beqa
u'v' & = & \left(u_r v_r \cqwt \,+\, u_i v_i \sqwt \:-\:
 (u_r v_i + u_i v_r) \swt \cwt \right) \eitax \\[0.5em]
{u'}^2 & = & \left(u_r^2 \cqwt \,+\, u_i^2 \sqwt \:-\:
 2 u_r u_i \swt \cwt \right) \eitax \\[0.5em]
{v'}^2 & = & \left(v_r^2 \cqwt \,+\, v_i^2 \sqwt \:-\:
 2 v_r v_i \swt \cwt \right) \eitax
\eeqa
\beqa
\overline{ u'v' } &=& \thalf \left(u_r v_r + u_i v_i \strut \right)
 \eitax \\[0.5em]
\overline{{u'}^2} &=& \thalf \left(u_r^2 + u_i^2 \right)
 \eitax \\[0.5em]
\overline{{v'}^2} &=& \thalf \left(v_r^2 + v_i^2 \right)
 \eitax
\eeqa
\beqa
\frac{\d u'}{\d x} &=&
\Re \!\left[(i \alpha_r - \alpha_i)
 \left(u_r + i u_i \strut \right) \, \ei \right]
\;=\; \left(-(\alpha_i u_r + \alpha_r u_i) \cwt
 \:-\: (\alpha_r u_r - \alpha_i u_i) \swt \strut \right) \eiax \\[0.5em]
%
\frac{\d v'}{\d x} &=&
\Re \!\left[(i \alpha_r - \alpha_i)
 \left(v_r + i v_i \strut \right) \, \ei \right]
\;=\; \left(-(\alpha_i v_r + \alpha_r v_i) \cwt
 \:-\: (\alpha_r v_r - \alpha_i v_i) \swt \strut \right) \eiax \\[0.5em]
%
\frac{\d u'}{\d y} &=&
\Re \!\left[\left(Du_r + i Du_i \strut \right) \, \ei \right]
\;=\; \left(Du_r \cwt - Du_i \swt \strut \right) \eiax \\[0.5em]
\frac{\d v'}{\d y} &=&
\Re \!\left[\left(Dv_r + i Dv_i \strut \right) \, \ei \right]
\;=\; \left(Dv_r \cwt - Dv_i \swt \strut \right) \eiax
\eeqa
\beqa
\nabla^2 u' &=& -\frac{\d \omega'}{\d y}
\;=\; \left(-D\omega_r \cwt + D\omega_i \swt \strut \right) \eiax \\[0.5em]
\nabla^2 v' &=& \;\; \frac{\d \omega'}{\d x}
\;=\; \left(-(\alpha_i \omega_r + \alpha_r \omega_i) \cwt
 \:-\: (\alpha_r \omega_r - \alpha_i \omega_i) \swt \strut \right) \eiax
\eeqa
\newpage

\beqa
Q &=& \int \thalf \left(\overline{{u'}^2 + {v'}^2} \right) \bar{u} \, dy \;=\;
 \int {\textstyle \frac{1}{4}}
 \left(u_r^2 + u_i^2 + v_r^2 + v_i^2 \right) \bar{u} \, dy
 \;\; \eitax \\[0.75em]
\frac{dQ}{dx} &=& \int \left(
 \overline{u' {\textstyle \frac{\d u'}{\d x}}} \:+\:
 \overline{v' {\textstyle \frac{\d v'}{\d x}}} \right) \bar{u} \, dy
\;=\; \int \thalf \left[
 - u_r (\alpha_i u_r + \alpha_r u_i)
 \:+\: u_i (\alpha_r u_r - \alpha_i u_i) \rule{0ex}{3ex} \right. \\
& & \hspace{29.0ex} \left. \rule{0ex}{3ex}
 -\: v_r (\alpha_i v_r + \alpha_r v_i)
 \:+\: v_i (\alpha_r v_r - \alpha_i v_i) \right] \bar{u} \, dy
\;\; \eitax
\eeqa
\beqa
\epsilon &=& \nu \left[
 2 \overline{\textstyle \left(\frac{\d u'}{\d x} \right)^2 }
\:+\: 2 \overline{\textstyle \left(\frac{\d v'}{\d y} \right)^2 }
\:+\: \overline{\textstyle \left(\frac{\d u'}{\d y}
 +\frac{\d v'}{\d x} \right)^2 } \right] \\
%
&=& \nu \left[\rule{0ex}{3ex}
 (\alpha_i u_r + \alpha_r u_i)^2
\:+\: (\alpha_r u_r - \alpha_i u_i)^2
\:+\: (Dv_r)^2 + (Dv_i)^2 \right. \\
& & \hspace{3ex} \left. \rule{0ex}{3ex}
\;+\; \thalf (Du_r - \alpha_i v_r - \alpha_r v_i)^2
\:+\: \thalf (Du_i + \alpha_r v_r - \alpha_i v_i)^2 \right]
\;\;\; \eitax
\eeqa
\beqa
{\cal D}_x \;=\; \frac{\d}{\d x} \! \left\{
 \overline{ u' \left[p' + \thalf ({u'}^2 + {v'}^2) \right] }
 \right\} &=&
\overline{ \textstyle \frac{\d u'}{\d x}
 \left[p' + \thalf ({u'}^2 + {v'}^2) \right] } \:+\:
\overline{ \textstyle u' \left[\frac{\d p'}{\d x}
 + u' \frac{\d u'}{\d x} + v' \frac{\d v'}{\d x} \right] } \\
&=& \thalf \left[
 - p_r (\alpha_i u_r + \alpha_r u_i)
 \:+\: p_i (\alpha_r u_r - \alpha_i u_i) \rule{0ex}{3ex} \right. \\
& & \left. \hspace{2.5ex}
 - u_r (\alpha_i p_r + \alpha_r p_i)
 \:+\: u_i (\alpha_r p_r - \alpha_i p_i) \rule{0ex}{3ex} \right]
\;\; \eitax
\eeqa
\beqa
\Pi_q \;=\; \nu \left(u' \nabla^2 u' \,+\, v' \nabla^2 v' \right)
&=& \thalf \, \nu \left[-u_r D\omega_r - u_i D\omega_i
 \:-\: v_r (\alpha_i \omega_r + \alpha_r \omega_i)
 \:+\: v_i (\alpha_r \omega_r - \alpha_i \omega_i) \rule{0ex}{3ex} \right]
\eeqa

\beqa
\frac{dQ}{dx} &=& \int -\overline{u'v'} \, d\bar{u}
 \;-\; \int {\cal D}_x \, dy \;+\; \int \Pi_q \, dy
\eeqa
\end{document}

XFOILinterface/XFOIL/plotlib/win32/libPlt.lib

plt_3D.obj

plt_old.obj

W32win.obj

ps_subs.obj

gw_subs.obj

set_subs.obj

plt_color.obj

plt_util.obj

plt_font.obj

plt_base.obj

XFOILinterface/XFOIL/orrs/osm.0220

 256 2.200004
 0.0000000E+00 2.2630259E-02 4.5351036E-02 6.8162702E-02 9.1065601E-02
 0.1140601 0.1371466 0.1603255 0.1835970 0.2069616
 0.2304197 0.2539716 0.2776178 0.3013585 0.3251942
 0.3491252 0.3731520 0.3972748 0.4214941 0.4458103
 0.4702238 0.4947349 0.5193442 0.5440518 0.5688582
 0.5937638 0.6187692 0.6438745 0.6690802 0.6943867
 0.7197945 0.7453039 0.7709153 0.7966292 0.8224459
 0.8483660 0.8743896 0.9005173 0.9267496 0.9530869
 0.9795294 1.006078 1.032732 1.059493 1.086362
 1.113337 1.140421 1.167613 1.194913 1.222323
 1.249843 1.277472 1.305212 1.333063 1.361026
 1.389100 1.417287 1.445586 1.473999 1.502525
 1.531165 1.559920 1.588790 1.617775 1.646876
 1.676094 1.705429 1.734881 1.764450 1.794138
 1.823945 1.853871 1.883916 1.914082 1.944369
 1.974776 2.005306 2.035957 2.066731 2.097628
 2.128649 2.159793 2.191063 2.222457 2.253977
 2.285623 2.317396 2.349296 2.381323 2.413478
 2.445763 2.478176 2.510719 2.543392 2.576195
 2.609130 2.642197 2.675395 2.708727 2.742193
 2.775791 2.809525 2.843393 2.877396 2.911536
 2.945812 2.980226 3.014776 3.049466 3.084294
 3.119261 3.154368 3.189615 3.225004 3.260534
 3.296206 3.332021 3.367979 3.404081 3.440328
 3.476719 3.513256 3.549939 3.586769 3.623746
 3.660871 3.698145 3.735567 3.773140 3.810863
 3.848736 3.886761 3.924938 3.963268 4.001751
 4.040388 4.079180 4.118126 4.157229 4.196488
 4.235904 4.275478 4.315210 4.355101 4.395151
 4.435362 4.475734 4.516267 4.556962 4.597819
 4.638841 4.680026 4.721376 4.762892 4.804574
 4.846422 4.888438 4.930621 4.972974 5.015496
 5.058188 5.101050 5.144085 5.187291 5.230670
 5.274223 5.317950 5.361852 5.405929 5.450183
 5.494614 5.539222 5.584009 5.628975 5.674121
 5.719447 5.764955 5.810645 5.856518 5.902574
 5.948814 5.995239 6.041850 6.088647 6.135631
 6.182804 6.230165 6.277715 6.325456 6.373388
 6.421512 6.469828 6.518337 6.567040 6.615938
 6.665031 6.714322 6.763809 6.813494 6.863378
 6.913461 6.963745 7.014230 7.064917 7.115807
 7.166899 7.218196 7.269699 7.321408 7.373323
 7.425446 7.477778 7.530319 7.583070 7.636033
 7.689207 7.742593 7.796194 7.850008 7.904038
 7.958284 8.012747 8.067428 8.122327 8.177446
 8.232786 8.288347 8.344131 8.400137 8.456367
 8.512823 8.569504 8.626412 8.683548 8.740912
 8.798506 8.856329 8.914385 8.972672 9.031192
 9.089947 9.148936 9.208161 9.267624 9.327323
 9.387262 9.447441 9.507861 9.568522 9.629426
 9.690573 9.751966 9.813603 9.875488 9.937620
 10.00000
 0.0000000E+00 8.3407219E-03 1.6666964E-02 2.4978295E-02 3.3274274E-02
 4.1554470E-02 4.9818438E-02 5.8065753E-02 6.6295974E-02 7.4508660E-02
 8.2703374E-02 9.0879679E-02 9.9037148E-02 0.1071753 0.1152938
 0.1233921 0.1314698 0.1395266 0.1475618 0.1555751
 0.1635662 0.1715344 0.1794795 0.1874009 0.1952983
 0.2031712 0.2110192 0.2188419 0.2266388 0.2344095
 0.2421536 0.2498707 0.2575603 0.2652221 0.2728556
 0.2804604 0.2880360 0.2955822 0.3030984 0.3105844
 0.3180396 0.3254636 0.3328562 0.3402168 0.3475451
 0.3548407 0.3621032 0.3693323 0.3765275 0.3836884
 0.3908148 0.3979062 0.4049623 0.4119827 0.4189669
 0.4259148 0.4328260 0.4396999 0.4465365 0.4533353
 0.4600959 0.4668180 0.4735014 0.4801456 0.4867504
 0.4933155 0.4998405 0.5063251 0.5127691 0.5191721
 0.5255339 0.5318542 0.5381327 0.5443690 0.5505630
 0.5567145 0.5628231 0.5688885 0.5749106 0.5808890
 0.5868237 0.5927143 0.5985606 0.6043624 0.6101195
 0.6158316 0.6214987 0.6271204 0.6326967 0.6382272
 0.6437120 0.6491507 0.6545433 0.6598896 0.6651893
 0.6704425 0.6756490 0.6808085 0.6859211 0.6909867
 0.6960050 0.7009761 0.7058997 0.7107760 0.7156047
 0.7203857 0.7251192 0.7298049 0.7344428 0.7390330
 0.7435753 0.7480698 0.7525163 0.7569150 0.7612658
 0.7655689 0.7698239 0.7740312 0.7781906 0.7823023
 0.7863663 0.7903826 0.7943512 0.7982723 0.8021458
 0.8059720 0.8097510 0.8134826 0.8171672 0.8208048
 0.8243954 0.8279393 0.8314366 0.8348874 0.8382919
 0.8416501 0.8449624 0.8482288 0.8514495 0.8546247
 0.8577546 0.8608394 0.8638793 0.8668745 0.8698252
 0.8727317 0.8755942 0.8784128 0.8811879 0.8839197
 0.8866085 0.8892545 0.8918580 0.8944193 0.8969385
 0.8994161 0.9018524 0.9042475 0.9066020 0.9089158
 0.9111896 0.9134235 0.9156179 0.9177731 0.9198894
 0.9219673 0.9240069 0.9260088 0.9279731 0.9299003
 0.9317908 0.9336450 0.9354630 0.9372454 0.9389926
 0.9407048 0.9423825 0.9440261 0.9456359 0.9472124
 0.9487559 0.9502668 0.9517456 0.9531927 0.9546083
 0.9559931 0.9573472 0.9586712 0.9599655 0.9612305
 0.9624666 0.9636741 0.9648536 0.9660055 0.9671301
 0.9682279 0.9692993 0.9703446 0.9713644 0.9723591
 0.9733290 0.9742746 0.9751962 0.9760944 0.9769696
 0.9778220 0.9786522 0.9794606 0.9802475 0.9810134
 0.9817587 0.9824838 0.9831891 0.9838750 0.9845418
 0.9851901 0.9858201 0.9864324 0.9870271 0.9876049
 0.9881659 0.9887106 0.9892395 0.9897528 0.9902509
 0.9907342 0.9912031 0.9916579 0.9920989 0.9925266
 0.9929413 0.9933432 0.9937328 0.9941104 0.9944763
 0.9948309 0.9951744 0.9955072 0.9958296 0.9961419
 0.9964444 0.9967374 0.9970213 0.9972962 0.9975625
 0.9978205 0.9980704 0.9983125 0.9985471 0.9987745
 0.9989948 0.9992083 0.9994154 0.9996162 0.9998110
 1.000000
 0.3696158 0.3675143 0.3654045 0.3632867 0.3611610
 0.3590276 0.3568865 0.3547379 0.3525821 0.3504192
 0.3482493 0.3460726 0.3438893 0.3416996 0.3395035
 0.3373014 0.3350933 0.3328794 0.3306600 0.3284351
 0.3262050 0.3239698 0.3217298 0.3194851 0.3172359
 0.3149824 0.3127247 0.3104631 0.3081978 0.3059289
 0.3036566 0.3013811 0.2991027 0.2968215 0.2945377
 0.2922515 0.2899631 0.2876727 0.2853805 0.2830867
 0.2807916 0.2784952 0.2761979 0.2738998 0.2716011
 0.2693020 0.2670028 0.2647036 0.2624047 0.2601062
 0.2578084 0.2555114 0.2532156 0.2509210 0.2486279
 0.2463366 0.2440471 0.2417599 0.2394749 0.2371925
 0.2349128 0.2326362 0.2303627 0.2280926 0.2258261
 0.2235634 0.2213047 0.2190503 0.2168003 0.2145550
 0.2123146 0.2100791 0.2078490 0.2056243 0.2034054
 0.2011923 0.1989853 0.1967846 0.1945904 0.1924029
 0.1902224 0.1880489 0.1858827 0.1837240 0.1815730
 0.1794299 0.1772949 0.1751682 0.1730499 0.1709403
 0.1688396 0.1667479 0.1646654 0.1625923 0.1605288
 0.1584751 0.1564313 0.1543977 0.1523743 0.1503614
 0.1483592 0.1463678 0.1443874 0.1424181 0.1404601
 0.1385136 0.1365788 0.1346557 0.1327445 0.1308455
 0.1289587 0.1270843 0.1252224 0.1233732 0.1215368
 0.1197133 0.1179029 0.1161058 0.1143220 0.1125516
 0.1107948 0.1090518 0.1073226 0.1056073 0.1039061
 0.1022190 0.1005462 9.8887719E-02 9.7243734E-02 9.5614292E-02
 9.3999505E-02 9.2399463E-02 9.0814233E-02 8.9243919E-02 8.7688580E-02
 8.6148299E-02 8.4623151E-02 8.3113201E-02 8.1618518E-02 8.0139160E-02
 7.8675173E-02 7.7226631E-02 7.5793587E-02 7.4376076E-02 7.2974153E-02
 7.1587838E-02 7.0217177E-02 6.8862222E-02 6.7523003E-02 6.6199526E-02
 6.4891808E-02 6.3599892E-02 6.2323768E-02 6.1063461E-02 5.9818998E-02
 5.8590349E-02 5.7377543E-02 5.6180570E-02 5.4999396E-02 5.3834062E-02
 5.2684512E-02 5.1550757E-02 5.0432745E-02 4.9330484E-02 4.8243925E-02
 4.7173057E-02 4.6117812E-02 4.5078192E-02 4.4054128E-02 4.3045584E-02
 4.2052511E-02 4.1074850E-02 4.0112566E-02 3.9165575E-02 3.8233828E-02
 3.7317265E-02 3.6415800E-02 3.5529371E-02 3.4657907E-02 3.3801325E-02
 3.2959558E-02 3.2132499E-02 3.1320076E-02 3.0522203E-02 2.9738773E-02
 2.8969688E-02 2.8214863E-02 2.7474184E-02 2.6747560E-02 2.6034866E-02
 2.5336003E-02 2.4650864E-02 2.3979334E-02 2.3321290E-02 2.2676613E-02
 2.2045190E-02 2.1426883E-02 2.0821575E-02 2.0229133E-02 1.9649433E-02
 1.9082343E-02 1.8527728E-02 1.7985437E-02 1.7455358E-02 1.6937332E-02
 1.6431233E-02 1.5936907E-02 1.5454213E-02 1.4983006E-02 1.4523143E-02
 1.4074470E-02 1.3636839E-02 1.3210105E-02 1.2794108E-02 1.2388704E-02
 1.1993736E-02 1.1609062E-02 1.1234507E-02 1.0869931E-02 1.0515173E-02
 1.0170076E-02 9.8344907E-03 9.5082531E-03 9.1912104E-03 8.8831997E-03
 8.5840691E-03 8.2936622E-03 8.0118198E-03 7.7383853E-03 7.4732029E-03
 7.2161155E-03 6.9669709E-03 6.7256060E-03 6.4918734E-03 6.2656151E-03
 6.0466807E-03 5.8349180E-03 5.6301677E-03 5.4322886E-03 5.2411240E-03
 5.0565246E-03 4.8783463E-03 4.7064414E-03 4.5406618E-03 4.3808683E-03
 4.2269100E-03 4.0786504E-03 3.9359475E-03 3.7986645E-03 3.6666642E-03
 3.5398109E-03 3.4179667E-03 3.3010039E-03 3.1887891E-03 3.0811962E-03
 2.9780979E-03
 61 21
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000 5.050000 5.100000 5.150000 5.200000
 5.250000 5.300000 5.350000 5.400000 5.450000
 5.500000 5.550000 5.600000 5.650000 5.700000
 5.750000 5.800000 5.850000 5.900000 5.950000
 6.000000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -9.9999994E-02 -5.0000012E-02
 0.0000000E+00 5.0000012E-02 0.1000000 0.1500000 0.2000000
 0.2500000 0.3000000 0.3500000 0.4000000 0.4500000
 0.5000000
 3.7436936E-02 3.6304478E-02 3.5205115E-02 3.4137953E-02 3.3102106E-02
 3.2096703E-02 3.1120889E-02 3.0173836E-02 2.9254727E-02 2.8362775E-02
 2.7497208E-02 2.6657259E-02 2.5842197E-02 2.5051309E-02 2.4283892E-02
 2.3539264E-02 2.2816759E-02 2.2115728E-02 2.1435551E-02 2.0775611E-02
 2.0135321E-02 1.9514086E-02 1.8911362E-02 1.8326586E-02 1.7759236E-02
 1.7208802E-02 1.6674768E-02 1.6156660E-02 1.5653996E-02 1.5166320E-02
 1.4693195E-02 1.4234174E-02 1.3788848E-02 1.3356806E-02 1.2937648E-02
 1.2531006E-02 1.2136492E-02 1.1753755E-02 1.1382437E-02 1.1022205E-02
 1.0672733E-02 1.0333692E-02 1.0004782E-02 9.6856970E-03 9.3761478E-03
 9.0758558E-03 8.7845456E-03 8.5019507E-03 8.2278112E-03 7.9618841E-03
 7.7039301E-03 7.4537033E-03 7.2109890E-03 6.9755609E-03 6.7472081E-03
 6.5257261E-03 6.3109086E-03 6.1025689E-03 5.9005101E-03 5.7045547E-03
 5.5145253E-03
 9.5066465E-03 9.1067562E-03 8.7240739E-03 8.3578490E-03 8.0073653E-03
 7.6719318E-03 7.3508862E-03 7.0435884E-03 6.7494316E-03 6.4678341E-03
 6.1982339E-03 5.9400960E-03 5.6929081E-03 5.4561831E-03 5.2294508E-03
 5.0122659E-03 4.8042000E-03 4.6048453E-03 4.4138124E-03 4.2307312E-03
 4.0552448E-03 3.8870142E-03 3.7257194E-03 3.5710472E-03 3.4227073E-03
 3.2804196E-03 3.1439138E-03 3.0129377E-03 2.8872457E-03 2.7666059E-03
 2.6508009E-03 2.5396158E-03 2.4328495E-03 2.3303125E-03 2.2318182E-03
 2.1371979E-03 2.0462805E-03 1.9589106E-03 1.8749348E-03 1.7942097E-03
 1.7165988E-03 1.6419684E-03 1.5701969E-03 1.5011621E-03 1.4347517E-03
 1.3708582E-03 1.3093771E-03 1.2502095E-03 1.1932605E-03 1.1384420E-03
 1.0856683E-03 1.0348554E-03 9.8592835E-04 9.3881151E-04 8.9343399E-04
 8.4972772E-04 8.0762862E-04 7.6707575E-04 7.2800962E-04 6.9037464E-04
 6.5411656E-04
 4.1596029E-02 4.0328376E-02 3.9098397E-02 3.7905015E-02 3.6747202E-02
 3.5623942E-02 3.4534231E-02 3.3477109E-02 3.2451626E-02 3.1456862E-02
 3.0491920E-02 2.9555926E-02 2.8648017E-02 2.7767384E-02 2.6913200E-02
 2.6084697E-02 2.5281094E-02 2.4501657E-02 2.3745665E-02 2.3012420E-02
 2.2301236E-02 2.1611445E-02 2.0942416E-02 2.0293513E-02 1.9664131E-02
 1.9053698E-02 1.8461620E-02 1.7887359E-02 1.7330367E-02 1.6790129E-02
 1.6266143E-02 1.5757902E-02 1.5264951E-02 1.4786812E-02 1.4323038E-02
 1.3873213E-02 1.3436896E-02 1.3013694E-02 1.2603200E-02 1.2205035E-02
 1.1818836E-02 1.1444232E-02 1.1080883E-02 1.0728443E-02 1.0386587E-02
 1.0055006E-02 9.7333817E-03 9.4214231E-03 9.1188364E-03 8.8253431E-03
 8.5406806E-03 8.2645705E-03 7.9967761E-03 7.7370345E-03 7.4851201E-03
 7.2407974E-03 7.0038335E-03 6.7740241E-03 6.5511535E-03 6.3350112E-03
 6.1254110E-03
 9.4185797E-03 9.0036802E-03 8.6072972E-03 8.2286019E-03 7.8668054E-03
 7.5211436E-03 7.1908878E-03 6.8753362E-03 6.5738210E-03 6.2856996E-03
 6.0103615E-03 5.7472158E-03 5.4957052E-03 5.2552940E-03 5.0254688E-03
 4.8057432E-03 4.5956499E-03 4.3947436E-03 4.2026020E-03 4.0188199E-03
 3.8430111E-03 3.6748073E-03 3.5138603E-03 3.3598326E-03 3.2124084E-03
 3.0712851E-03 2.9361714E-03 2.8067941E-03 2.6828910E-03 2.5642100E-03
 2.4505169E-03 2.3415834E-03 2.2371940E-03 2.1371439E-03 2.0412356E-03
 1.9492876E-03 1.8611185E-03 1.7765621E-03 1.6954542E-03 1.6176440E-03
 1.5429878E-03 1.4713451E-03 1.4025823E-03 1.3365754E-03 1.2732041E-03
 1.2123554E-03 1.1539188E-03 1.0977929E-03 1.0438772E-03 9.9207845E-04
 9.4230956E-04 8.9448190E-04 8.4851781E-04 8.0433680E-04 7.6186919E-04
 7.2104298E-04 6.8179041E-04 6.4404984E-04 6.0776219E-04 5.7286624E-04
 5.3931063E-04
 4.6127636E-02 4.4712204E-02 4.3339457E-02 4.2008162E-02 4.0717121E-02
 3.9465137E-02 3.8251065E-02 3.7073784E-02 3.5932194E-02 3.4825243E-02
 3.3751894E-02 3.2711133E-02 3.1701986E-02 3.0723501E-02 2.9774753E-02
 2.8854840E-02 2.7962888E-02 2.7098041E-02 2.6259487E-02 2.5446419E-02
 2.4658058E-02 2.3893652E-02 2.3152474E-02 2.2433804E-02 2.1736950E-02
 2.1061264E-02 2.0406077E-02 1.9770775E-02 1.9154735E-02 1.8557373E-02
 1.7978124E-02 1.7416421E-02 1.6871735E-02 1.6343538E-02 1.5831321E-02
 1.5334614E-02 1.4852923E-02 1.4385800E-02 1.3932790E-02 1.3493469E-02
 1.3067425E-02 1.2654238E-02 1.2253532E-02 1.1864919E-02 1.1488030E-02
 1.1122517E-02 1.0768025E-02 1.0424229E-02 1.0090802E-02 9.7674290E-03
 9.4538098E-03 9.1496464E-03 8.8546630E-03 8.5685728E-03 8.2911123E-03
 8.0220308E-03 7.7610663E-03 7.5079878E-03 7.2625498E-03 7.0245271E-03
 6.7937067E-03
 9.2647113E-03 8.8332165E-03 8.4217815E-03 8.0294861E-03 7.6554492E-03
 7.2988262E-03 6.9588032E-03 6.6346060E-03 6.3254917E-03 6.0307509E-03
 5.7497052E-03 5.4817046E-03 5.2261306E-03 4.9823946E-03 4.7499305E-03
 4.5282017E-03 4.3166960E-03 4.1149221E-03 3.9224159E-03 3.7387358E-03
 3.5634567E-03 3.3961772E-03 3.2365147E-03 3.0841038E-03 2.9385975E-03
 2.7996672E-03 2.6669989E-03 2.5402918E-03 2.4192617E-03 2.3036401E-03
 2.1931687E-03 2.0876033E-03 1.9867125E-03 1.8902733E-03 1.7980757E-03
 1.7099228E-03 1.6256211E-03 1.5449926E-03 1.4678632E-03 1.3940721E-03
 1.3234640E-03 1.2558887E-03 1.1912102E-03 1.1292924E-03 1.0700101E-03
 1.0132419E-03 9.5887436E-04 9.0679713E-04 8.5690850E-04 8.0910977E-04
 7.6330785E-04 7.1941363E-04 6.7734357E-04 6.3701550E-04 5.9835421E-04
 5.6128955E-04 5.2574911E-04 4.9167051E-04 4.5898982E-04 4.2764805E-04
 3.9759057E-04
 5.1089924E-02 4.9512330E-02 4.7982957E-02 4.6500370E-02 4.5063186E-02
 4.3670032E-02 4.2319585E-02 4.1010559E-02 3.9741691E-02 3.8511772E-02
 3.7319612E-02 3.6164057E-02 3.5043973E-02 3.3958301E-02 3.2905962E-02
 3.1885941E-02 3.0897232E-02 2.9938873E-02 2.9009927E-02 2.8109483E-02
 2.7236661E-02 2.6390597E-02 2.5570476E-02 2.4775468E-02 2.4004808E-02
 2.3257751E-02 2.2533542E-02 2.1831485E-02 2.1150883E-02 2.0491071E-02
 1.9851413E-02 1.9231265E-02 1.8630043E-02 1.8047135E-02 1.7481992E-02
 1.6934060E-02 1.6402796E-02 1.5887694E-02 1.5388249E-02 1.4903975E-02
 1.4434416E-02 1.3979099E-02 1.3537602E-02 1.3109487E-02 1.2694350E-02
 1.2291793E-02 1.1901423E-02 1.1522874E-02 1.1155778E-02 1.0799789E-02
 1.0454568E-02 1.0119784E-02 9.7951228E-03 9.4802724E-03 9.1749402E-03
 8.8788373E-03 8.5916771E-03 8.3132014E-03 8.0431364E-03 7.7812341E-03
 7.5272555E-03
 9.0465397E-03 8.5963160E-03 8.1679877E-03 7.7605234E-03 7.3729339E-03
 7.0042689E-03 6.6536209E-03 6.3201217E-03 6.0029360E-03 5.7012774E-03
 5.4143853E-03 5.1415376E-03 4.8820428E-03 4.6352455E-03 4.4005192E-03
 4.1772663E-03 3.9649173E-03 3.7629313E-03 3.5707941E-03 3.3880135E-03
 3.2141260E-03 3.0486844E-03 2.8912716E-03 2.7414826E-03 2.5989376E-03
 2.4632753E-03 2.3341521E-03 2.2112401E-03 2.0942297E-03 1.9828253E-03
 1.8767483E-03 1.7757314E-03 1.6795259E-03 1.5878869E-03 1.5005916E-03
 1.4174235E-03 1.3381758E-03 1.2626571E-03 1.1906822E-03 1.1220743E-03
 1.0566711E-03 9.9431188E-04 9.3484932E-04 8.7814062E-04 8.2405191E-04
 7.7245664E-04 7.2323129E-04 6.7626400E-04 6.3144433E-04 5.8867020E-04
 5.4784276E-04 5.0886959E-04 4.7166293E-04 4.3613833E-04 4.0221922E-04
 3.6982843E-04 3.3889350E-04 3.0935070E-04 2.8113290E-04 2.5418069E-04
 2.2843851E-04
 5.6553118E-02 5.4796804E-02 5.3094812E-02 5.1445495E-02 4.9847260E-02
 4.8298541E-02 4.6797819E-02 4.5343626E-02 4.3934513E-02 4.2569105E-02
 4.1246045E-02 3.9964005E-02 3.8721725E-02 3.7517965E-02 3.6351521E-02
 3.5221230E-02 3.4125954E-02 3.3064600E-02 3.2036111E-02 3.1039450E-02
 3.0073617E-02 2.9137643E-02 2.8230598E-02 2.7351558E-02 2.6499650E-02
 2.5674026E-02 2.4873843E-02 2.4098318E-02 2.3346663E-02 2.2618126E-02
 2.1911995E-02 2.1227546E-02 2.0564120E-02 1.9921033E-02 1.9297656E-02
 1.8693382E-02 1.8107597E-02 1.7539732E-02 1.6989218E-02 1.6455512E-02
 1.5938105E-02 1.5436470E-02 1.4950129E-02 1.4478591E-02 1.4021408E-02
 1.3578134E-02 1.3148334E-02 1.2731589E-02 1.2327498E-02 1.1935667E-02
 1.1555724E-02 1.1187295E-02 1.0830034E-02 1.0483591E-02 1.0147638E-02
 9.8218527E-03 9.5059238E-03 9.1995541E-03 8.9024473E-03 8.6143194E-03
 8.3349077E-03
 8.7711401E-03 8.2993591E-03 7.8516705E-03 7.4269003E-03 7.0239259E-03
 6.6416743E-03 6.2791170E-03 5.9352745E-03 5.6092064E-03 5.3000236E-03
 5.0068707E-03 4.7289324E-03 4.4654356E-03 4.2156451E-03 3.9788578E-03
 3.7544020E-03 3.5416442E-03 3.3399793E-03 3.1488345E-03 2.9676615E-03
 2.7959428E-03 2.6331849E-03 2.4789209E-03 2.3327055E-03 2.1941192E-03
 2.0627617E-03 1.9382524E-03 1.8202325E-03 1.7083619E-03 1.6023155E-03
 1.5017883E-03 1.4064884E-03 1.3161420E-03 1.2304869E-03 1.1492755E-03
 1.0722766E-03 9.9926605E-04 9.3003520E-04 8.6438278E-04 8.0212235E-04
 7.4307580E-04 6.8707397E-04 6.3395768E-04 5.8357295E-04 5.3577923E-04
 4.9044058E-04 4.4742908E-04 4.0662213E-04 3.6790621E-04 3.3117094E-04
 2.9631500E-04 2.6324147E-04 2.3185684E-04 2.0207564E-04 1.7381461E-04
 1.4699558E-04 1.2154697E-04 9.7396573E-05 7.4480762E-05 5.2735209E-05
 3.2104013E-05
 6.2600113E-02 6.0645867E-02 5.8752682E-02 5.6918673E-02 5.5142030E-02
 5.3420968E-02 5.1753756E-02 5.0138716E-02 4.8574209E-02 4.7058675E-02
 4.5590557E-02 4.4168372E-02 4.2790670E-02 4.1456059E-02 4.0163171E-02
 3.8910683E-02 3.7697323E-02 3.6521837E-02 3.5383042E-02 3.4279767E-02
 3.3210881E-02 3.2175291E-02 3.1171944E-02 3.0199800E-02 2.9257877E-02
 2.8345227E-02 2.7460892E-02 2.6603991E-02 2.5773639E-02 2.4968995E-02
 2.4189256E-02 2.3433607E-02 2.2701304E-02 2.1991592E-02 2.1303754E-02
 2.0637115E-02 1.9990984E-02 1.9364726E-02 1.8757699E-02 1.8169304E-02
 1.7598959E-02 1.7046083E-02 1.6510133E-02 1.5990578E-02 1.5486894E-02
 1.4998599E-02 1.4525197E-02 1.4066231E-02 1.3621244E-02 1.3189801E-02
 1.2771486E-02 1.2365879E-02 1.1972600E-02 1.1591258E-02 1.1221480E-02
 1.0862919E-02 1.0515220E-02 1.0178055E-02 9.8510887E-03 9.5340190E-03
 9.2265410E-03
 8.4542166E-03 7.9571065E-03 7.4867075E-03 7.0416746E-03 6.6207321E-03
 6.2226490E-03 5.8462531E-03 5.4904278E-03 5.1541058E-03 4.8362738E-03
 4.5359610E-03 4.2522475E-03 3.9842529E-03 3.7311481E-03 3.4921367E-03
 3.2664652E-03 3.0534177E-03 2.8523144E-03 2.6625108E-03 2.4833924E-03
 2.3143797E-03 2.1549196E-03 2.0044935E-03 1.8626035E-03 1.7287816E-03
 1.6025846E-03 1.4835879E-03 1.3713974E-03 1.2656333E-03 1.1659391E-03
 1.0719787E-03 9.8342996E-04 8.9999253E-04 8.2138024E-04 7.4732152E-04
 6.7756342E-04 6.1186205E-04 5.4999138E-04 4.9173186E-04 4.3688383E-04
 3.8525340E-04 3.3665847E-04 2.9092669E-04 2.4789642E-04 2.0741415E-04
 1.6933611E-04 1.3352491E-04 9.9852499E-05 6.8195732E-05 3.8440634E-05
 1.0479516E-05 -1.5790447E-05 -4.0465111E-05 -6.3635045E-05 -8.5387466E-05
 -1.0580169E-04 -1.2495424E-04 -1.4291775E-04 -1.5975996E-04 -1.7554250E-04
 -1.9032684E-04
 6.9326647E-02 6.7152031E-02 6.5045945E-02 6.3006260E-02 6.1030906E-02
 5.9117861E-02 5.7265166E-02 5.5470917E-02 5.3733263E-02 5.2050423E-02
 5.0420661E-02 4.8842285E-02 4.7313657E-02 4.5833200E-02 4.4399373E-02
 4.3010700E-02 4.1665725E-02 4.0363036E-02 3.9101303E-02 3.7879206E-02
 3.6695473E-02 3.5548866E-02 3.4438211E-02 3.3362333E-02 3.2320119E-02
 3.1310510E-02 3.0332433E-02 2.9384891E-02 2.8466890E-02 2.7577490E-02
 2.6715782E-02 2.5880860E-02 2.5071882E-02 2.4288004E-02 2.3528427E-02
 2.2792384E-02 2.2079106E-02 2.1387883E-02 2.0717993E-02 2.0068770E-02
 1.9439558E-02 1.8829705E-02 1.8238615E-02 1.7665679E-02 1.7110325E-02
 1.6572004E-02 1.6050164E-02 1.5544299E-02 1.5053894E-02 1.4578467E-02
 1.4117553E-02 1.3670688E-02 1.3237438E-02 1.2817372E-02 1.2410074E-02
 1.2015161E-02 1.1632231E-02 1.1260928E-02 1.0900873E-02 1.0551726E-02
 1.0213152E-02
 8.1231054E-03 7.5955205E-03 7.0977774E-03 6.6283257E-03 6.1856927E-03
 5.7684644E-03 5.3752940E-03 5.0049005E-03 4.6560583E-03 4.3276111E-03
 4.0184478E-03 3.7275180E-03 3.4538200E-03 3.1964073E-03 2.9543773E-03
 2.7268732E-03 2.5130846E-03 2.3122397E-03 2.1236110E-03 1.9465070E-03
 1.7802719E-03 1.6242859E-03 1.4779635E-03 1.3407476E-03 1.2121137E-03
 1.0915661E-03 9.7863411E-04 8.7287376E-04 7.7386462E-04 6.8121275E-04
 5.9454254E-04 5.1349914E-04 4.3775086E-04 3.6698242E-04 3.0089536E-04
 2.3921188E-04 1.8166364E-04 1.2800460E-04 7.7997043E-05 3.1421427E-05
 -1.1931425E-05 -5.2260766E-05 -8.9749818E-05 -1.2457537E-04 -1.5690055E-04
 -1.8688089E-04 -2.1466374E-04 -2.4038437E-04 -2.6417430E-04 -2.8615419E-04
 -3.0643845E-04 -3.2513356E-04 -3.4234393E-04 -3.5816236E-04 -3.7268011E-04
 -3.8598009E-04 -3.9814188E-04 -4.0923900E-04 -4.1934219E-04 -4.2851683E-04
 -4.3682367E-04
 7.6841608E-02 7.4420400E-02 7.2076030E-02 6.9806091E-02 6.7608252E-02
 6.5480217E-02 6.3419797E-02 6.1424822E-02 5.9493218E-02 5.7622969E-02
 5.5812117E-02 5.4058753E-02 5.2361038E-02 5.0717190E-02 4.9125474E-02
 4.7584224E-02 4.6091799E-02 4.4646621E-02 4.3247178E-02 4.1891996E-02
 4.0579639E-02 3.9308712E-02 3.8077898E-02 3.6885865E-02 3.5731383E-02
 3.4613241E-02 3.3530239E-02 3.2481264E-02 3.1465195E-02 3.0480973E-02
 2.9527579E-02 2.8603999E-02 2.7709292E-02 2.6842499E-02 2.6002727E-02
 2.5189124E-02 2.4400823E-02 2.3637025E-02 2.2896927E-02 2.2179773E-02
 2.1484837E-02 2.0811392E-02 2.0158762E-02 1.9526269E-02 1.8913271E-02
 1.8319160E-02 1.7743317E-02 1.7185172E-02 1.6644150E-02 1.6119719E-02
 1.5611353E-02 1.5118531E-02 1.4640779E-02 1.4177608E-02 1.3728560E-02
 1.3293204E-02 1.2871088E-02 1.2461817E-02 1.2064976E-02 1.1680179E-02
 1.1307058E-02
 7.8195138E-03 7.2543416E-03 6.7227599E-03 6.2229680E-03 5.7532573E-03
 5.3119911E-03 4.8976145E-03 4.5086467E-03 4.1436772E-03 3.8013700E-03
 3.4804537E-03 3.1797183E-03 2.8980179E-03 2.6342669E-03 2.3874338E-03
 2.1565421E-03 1.9406648E-03 1.7389271E-03 1.5504988E-03 1.3745961E-03
 1.2104767E-03 1.0574369E-03 9.1481738E-04 7.8198803E-04 6.5835938E-04
 5.4337143E-04 4.3649701E-04 3.3724014E-04 2.4512899E-04 1.5972159E-04
 8.0601625E-05 7.3751194E-06 -6.0328559E-05 -1.2285887E-04 -1.8054618E-04
 -2.3369624E-04 -2.8260486E-04 -3.2754309E-04 -3.6877213E-04 -4.0653298E-04
 -4.4105379E-04 -4.7254970E-04 -5.0122297E-04 -5.2726315E-04 -5.5084849E-04
 -5.7214580E-04 -5.9131323E-04 -6.0849765E-04 -6.2383857E-04 -6.3746527E-04
 -6.4949866E-04 -6.6005514E-04 -6.6924060E-04 -6.7715510E-04 -6.8389450E-04
 -6.8954495E-04 -6.9419108E-04 -6.9790869E-04 -7.0076995E-04 -7.0284319E-04
 -7.0419046E-04
 8.5268266E-02 8.2569785E-02 7.9957440E-02 7.7428520E-02 7.4980401E-02
 7.2610505E-02 7.0316359E-02 6.8095520E-02 6.5945655E-02 6.3864514E-02
 6.1849874E-02 5.9899591E-02 5.8011591E-02 5.6183886E-02 5.4414511E-02
 5.2701585E-02 5.1043279E-02 4.9437802E-02 4.7883466E-02 4.6378605E-02
 4.4921599E-02 4.3510891E-02 4.2144988E-02 4.0822405E-02 3.9541744E-02
 3.8301654E-02 3.7100781E-02 3.5937872E-02 3.4811672E-02 3.3720993E-02
 3.2664683E-02 3.1641603E-02 3.0650700E-02 2.9690897E-02 2.8761189E-02
 2.7860621E-02 2.6988218E-02 2.6143083E-02 2.5324322E-02 2.4531081E-02
 2.3762546E-02 2.3017900E-02 2.2296390E-02 2.1597255E-02 2.0919779E-02
 2.0263270E-02 1.9627046E-02 1.9010464E-02 1.8412886E-02 1.7833706E-02
 1.7272344E-02 1.6728217E-02 1.6200792E-02 1.5689520E-02 1.5193902E-02
 1.4713437E-02 1.4247642E-02 1.3796058E-02 1.3358226E-02 1.2933721E-02
 1.2522124E-02
 7.6023298E-03 6.9897175E-03 6.4152014E-03 5.8766822E-03 5.3721643E-03
 4.8997472E-03 4.4576218E-03 4.0440704E-03 3.6574595E-03 3.2962440E-03
 2.9589527E-03 2.6441899E-03 2.3506368E-03 2.0770417E-03 1.8222193E-03
 1.5850496E-03 1.3644699E-03 1.1594780E-03 9.6912490E-04 7.9251640E-04
 6.2880572E-04 4.7719383E-04 3.3692742E-04 2.0729340E-04 8.7623077E-05
 -2.2715851E-05 -1.2432085E-04 -2.1775090E-04 -3.0353776E-04 -3.8217768E-04
 -4.5413891E-04 -5.1986281E-04 -5.7976396E-04 -6.3423271E-04 -6.8363658E-04
 -7.2831789E-04 -7.6860306E-04 -8.0479478E-04 -8.3717849E-04 -8.6602260E-04
 -8.9157821E-04 -9.1408280E-04 -9.3375548E-04 -9.5080608E-04 -9.6542755E-04
 -9.7780279E-04 -9.8810298E-04 -9.9648768E-04 -1.0031059E-03 -1.0080992E-03
 -1.0115961E-03 -1.0137217E-03 -1.0145889E-03 -1.0143059E-03 -1.0129706E-03
 -1.0106781E-03 -1.0075148E-03 -1.0035619E-03 -9.9889538E-04 -9.9358405E-04
 -9.8769506E-04
 9.4746627E-02 9.1735080E-02 8.8820122E-02 8.5998707E-02 8.3267882E-02
 8.0624767E-02 7.8066565E-02 7.5590573E-02 7.3194146E-02 7.0874743E-02
 6.8629876E-02 6.6457152E-02 6.4354219E-02 6.2318854E-02 6.0348839E-02
 5.8442060E-02 5.6596458E-02 5.4810029E-02 5.3080861E-02 5.1407076E-02
 4.9786866E-02 4.8218466E-02 4.6700202E-02 4.5230400E-02 4.3807484E-02
 4.2429939E-02 4.1096240E-02 3.9804976E-02 3.8554732E-02 3.7344173E-02
 3.6172003E-02 3.5036944E-02 3.3937801E-02 3.2873373E-02 3.1842537E-02
 3.0844199E-02 2.9877273E-02 2.8940754E-02 2.8033633E-02 2.7154949E-02
 2.6303798E-02 2.5479250E-02 2.4680465E-02 2.3906585E-02 2.3156814E-02
 2.2430368E-02 2.1726487E-02 2.1044446E-02 2.0383535E-02 1.9743068E-02
 1.9122401E-02 1.8520879E-02 1.7937902E-02 1.7372860E-02 1.6825188E-02
 1.6294328E-02 1.5779745E-02 1.5280918E-02 1.4797342E-02 1.4328533E-02
 1.3874027E-02
 7.5512938E-03 6.8776929E-03 6.2476415E-03 5.6586759E-03 5.1084645E-03
 4.5947819E-03 4.1155186E-03 3.6686717E-03 3.2523395E-03 2.8647250E-03
 2.5041201E-03 2.1689082E-03 1.8575578E-03 1.5686230E-03 1.3007347E-03
 1.0525979E-03 8.2299003E-04 6.1075581E-04 4.1480537E-04 2.3411014E-04
 6.7698566E-05 -8.5345171E-05 -2.2588010E-04 -3.5472249E-04 -4.7263727E-04
 -5.8034237E-04 -6.7851890E-04 -7.6780387E-04 -8.4879820E-04 -9.2206505E-04
 -9.8813453E-04 -1.0475062E-03 -1.1006466E-03 -1.1479956E-03 -1.1899654E-03
 -1.2269426E-03 -1.2592918E-03 -1.2873500E-03 -1.3114383E-03 -1.3318565E-03
 -1.3488817E-03 -1.3627781E-03 -1.3737896E-03 -1.3821470E-03 -1.3880641E-03
 -1.3917420E-03 -1.3933677E-03 -1.3931175E-03 -1.3911542E-03 -1.3876307E-03
 -1.3826899E-03 -1.3764634E-03 -1.3690764E-03 -1.3606441E-03 -1.3512735E-03
 -1.3410649E-03 -1.3301098E-03 -1.3184977E-03 -1.3063052E-03 -1.2936095E-03
 -1.2804781E-03
 0.1054376 0.1020712 9.8813236E-02 9.5660232E-02 9.2608906E-02
 8.9656033E-02 8.6798474E-02 8.4033191E-02 8.1357218E-02 7.8767709E-02
 7.6261878E-02 7.3837027E-02 7.1490504E-02 6.9219820E-02 6.7022473E-02
 6.4896092E-02 6.2838353E-02 6.0847010E-02 5.8919895E-02 5.7054900E-02
 5.5249989E-02 5.3503174E-02 5.1812567E-02 5.0176278E-02 4.8592534E-02
 4.7059629E-02 4.5575842E-02 4.4139583E-02 4.2749256E-02 4.1403349E-02
 4.0100425E-02 3.8839020E-02 3.7617799E-02 3.6435399E-02 3.5290562E-02
 3.4182049E-02 3.3108652E-02 3.2069229E-02 3.1062638E-02 3.0087806E-02
 2.9143710E-02 2.8229309E-02 2.7343651E-02 2.6485780E-02 2.5654791E-02
 2.4849812E-02 2.4069978E-02 2.3314485E-02 2.2582522E-02 2.1873334E-02
 2.1186188E-02 2.0520352E-02 1.9875148E-02 1.9249901E-02 1.8643966E-02
 1.8056728E-02 1.7487571E-02 1.6935932E-02 1.6401226E-02 1.5882924E-02
 1.5380500E-02
 7.7724163E-03 7.0194243E-03 6.3166288E-03 5.6611313E-03 5.0501879E-03
 4.4811866E-03 3.9516552E-03 3.4592478E-03 3.0017393E-03 2.5770306E-03
 2.1831284E-03 1.8181478E-03 1.4803046E-03 1.1679183E-03 8.7939814E-04
 6.1324041E-04 3.6802681E-04 1.4241904E-04 -6.4842985E-05 -2.5494932E-04
 -4.2902128E-04 -5.8811530E-04 -7.3322194E-04 -8.6527999E-04 -9.8516827E-04
 -1.0937137E-03 -1.1916955E-03 -1.2798434E-03 -1.3588453E-03 -1.4293456E-03
 -1.4919498E-03 -1.5472261E-03 -1.5957064E-03 -1.6378907E-03 -1.6742479E-03
 -1.7052152E-03 -1.7312053E-03 -1.7526009E-03 -1.7697640E-03 -1.7830301E-03
 -1.7927146E-03 -1.7991117E-03 -1.8024971E-03 -1.8031270E-03 -1.8012427E-03
 -1.7970662E-03 -1.7908077E-03 -1.7826615E-03 -1.7728099E-03 -1.7614212E-03
 -1.7486525E-03 -1.7346500E-03 -1.7195519E-03 -1.7034825E-03 -1.6865603E-03
 -1.6688943E-03 -1.6505858E-03 -1.6317280E-03 -1.6124084E-03 -1.5927070E-03
 -1.5726979E-03
 0.1175285 0.1137586 0.1101104 0.1065801 0.1031642
 9.9858880E-02 9.6660733E-02 9.3566336E-02 9.0572357E-02 8.7675609E-02
 8.4872968E-02 8.2161382E-02 7.9537891E-02 7.6999687E-02 7.4543953E-02
 7.2168015E-02 6.9869258E-02 6.7645140E-02 6.5493241E-02 6.3411161E-02
 6.1396606E-02 5.9447344E-02 5.7561234E-02 5.5736139E-02 5.3970076E-02
 5.2261095E-02 5.0607260E-02 4.9006779E-02 4.7457848E-02 4.5958765E-02
 4.4507891E-02 4.3103587E-02 4.1744333E-02 4.0428609E-02 3.9154973E-02
 3.7922043E-02 3.6728442E-02 3.5572879E-02 3.4454085E-02 3.3370838E-02
 3.2321971E-02 3.1306330E-02 3.0322831E-02 2.9370397E-02 2.8448006E-02
 2.7554680E-02 2.6689442E-02 2.5851384E-02 2.5039600E-02 2.4253236E-02
 2.3491459E-02 2.2753451E-02 2.2038460E-02 2.1345707E-02 2.0674480E-02
 2.0024084E-02 1.9393830E-02 1.8783079E-02 1.8191179E-02 1.7617529E-02
 1.7061545E-02
 8.4060477E-03 7.5489874E-03 6.7502814E-03 6.0065035E-03 5.3144153E-03
 4.6709375E-03 4.0731542E-03 3.5183078E-03 3.0037847E-03 2.5271173E-03
 2.0859682E-03 1.6781281E-03 1.3015110E-03 9.5414789E-04 6.3417893E-04
 3.3984950E-04 6.9505360E-05 -1.7841444E-04 -4.0537785E-04 -6.1277050E-04
 -8.0189476E-04 -9.7397837E-04 -1.1301725E-03 -1.2715657E-03 -1.3991754E-03
 -1.5139593E-03 -1.6168198E-03 -1.7085978E-03 -1.7900906E-03 -1.8620400E-03
 -1.9251434E-03 -1.9800549E-03 -2.0273880E-03 -2.0677154E-03 -2.1015753E-03
 -2.1294700E-03 -2.1518704E-03 -2.1692165E-03 -2.1819202E-03 -2.1903645E-03
 -2.1949101E-03 -2.1958908E-03 -2.1936197E-03 -2.1883899E-03 -2.1804720E-03
 -2.1701197E-03 -2.1575706E-03 -2.1430426E-03 -2.1267424E-03 -2.1088594E-03
 -2.0895703E-03 -2.0690393E-03 -2.0474202E-03 -2.0248534E-03 -2.0014709E-03
 -1.9773943E-03 -1.9527359E-03 -1.9276004E-03 -1.9020835E-03 -1.8762738E-03
 -1.8502543E-03
 0.1312416 0.1270108 0.1229170 0.1189559 0.1151235
 0.1114157 0.1078286 0.1043584 0.1010013 9.7753763E-02
 9.4612300E-02 9.1573462E-02 8.8633932E-02 8.5790522E-02 8.3040059E-02
 8.0379546E-02 7.7806026E-02 7.5316623E-02 7.2908595E-02 7.0579253E-02
 6.8325989E-02 6.6146269E-02 6.4037696E-02 6.1997835E-02 6.0024448E-02
 5.8115318E-02 5.6268271E-02 5.4481268E-02 5.2752264E-02 5.1079333E-02
 4.9460616E-02 4.7894266E-02 4.6378560E-02 4.4911768E-02 4.3492269E-02
 4.2118490E-02 4.0788874E-02 3.9501965E-02 3.8256314E-02 3.7050553E-02
 3.5883360E-02 3.4753412E-02 3.3659507E-02 3.2600418E-02 3.1574987E-02
 3.0582108E-02 2.9620681E-02 2.8689682E-02 2.7788084E-02 2.6914919E-02
 2.6069259E-02 2.5250172E-02 2.4456810E-02 2.3688300E-02 2.2943832E-02
 2.2222629E-02 2.1523912E-02 2.0846957E-02 2.0191032E-02 1.9555472E-02
 1.8939603E-02
 9.6384352E-03 8.6445883E-03 7.7191601E-03 6.8580862E-03 6.0575255E-03
 5.3138323E-03 4.6235537E-03 3.9834338E-03 3.3903795E-03 2.8414864E-03
 2.3339929E-03 1.8653013E-03 1.4329489E-03 1.0346258E-03 6.6814374E-04
 3.3144056E-04 2.2574373E-05 -2.6028810E-04 -5.1886454E-04 -7.5478043E-04
 -9.6956146E-04 -1.1646444E-03 -1.3413752E-03 -1.5010252E-03 -1.6447853E-03
 -1.7737718E-03 -1.8890378E-03 -1.9915656E-03 -2.0822810E-03 -2.1620502E-03
 -2.2316829E-03 -2.2919413E-03 -2.3435361E-03 -2.3871353E-03 -2.4233607E-03
 -2.4527968E-03 -2.4759877E-03 -2.4934439E-03 -2.5056407E-03 -2.5130229E-03
 -2.5160050E-03 -2.5149730E-03 -2.5102899E-03 -2.5022905E-03 -2.4912891E-03
 -2.4775760E-03 -2.4614246E-03 -2.4430866E-03 -2.4227968E-03 -2.4007745E-03
 -2.3772228E-03 -2.3523283E-03 -2.3262671E-03 -2.2992005E-03 -2.2712790E-03
 -2.2426420E-03 -2.2134173E-03 -2.1837247E-03 -2.1536732E-03 -2.1233642E-03
 -2.0928916E-03
 0.1468457 0.1420861 0.1374810 0.1330256 0.1287154
 0.1245458 0.1205124 0.1166111 0.1128375 0.1091877
 0.1056578 0.1022438 9.8942094E-02 9.5748976E-02 9.2660934E-02
 8.9674562E-02 8.6786494E-02 8.3993517E-02 8.1292495E-02 7.8680389E-02
 7.6154254E-02 7.3711216E-02 7.1348540E-02 6.9063485E-02 6.6853493E-02
 6.4716063E-02 6.2648714E-02 6.0649130E-02 5.8714997E-02 5.6844130E-02
 5.5034410E-02 5.3283736E-02 5.1590160E-02 4.9951714E-02 4.8366550E-02
 4.6832889E-02 4.5348965E-02 4.3913122E-02 4.2523712E-02 4.1179180E-02
 3.9878033E-02 3.8618777E-02 3.7400030E-02 3.6220402E-02 3.5078593E-02
 3.3973351E-02 3.2903414E-02 3.1867631E-02 3.0864837E-02 2.9893937E-02
 2.8953882E-02 2.8043611E-02 2.7162168E-02 2.6308570E-02 2.5481898E-02
 2.4681268E-02 2.3905806E-02 2.3154695E-02 2.2427112E-02 2.1722289E-02
 2.1039480E-02
 1.1717668E-02 1.0544123E-02 9.4514554E-03 8.4348144E-03 7.4896305E-03
 6.6115647E-03 5.7965191E-03 5.0406242E-03 4.3402151E-03 3.6918409E-03
 3.0922387E-03 2.5383267E-03 2.0271954E-03 1.5561120E-03 1.1224879E-03
 7.2388898E-04 3.5802013E-04 2.2721972E-05 -2.8403944E-04 -5.6417449E-04
 -8.1948430E-04 -1.0516612E-03 -1.2622921E-03 -1.4528740E-03 -1.6248078E-03
 -1.7794069E-03 -1.9179096E-03 -2.0414728E-03 -2.1511833E-03 -2.2480593E-03
 -2.3330518E-03 -2.4070553E-03 -2.4709052E-03 -2.5253838E-03 -2.5712217E-03
 -2.6091035E-03 -2.6396683E-03 -2.6635125E-03 -2.6811936E-03 -2.6932331E-03
 -2.7001160E-03 -2.7022951E-03 -2.7001936E-03 -2.6942031E-03 -2.6846922E-03
 -2.6720017E-03 -2.6564489E-03 -2.6383302E-03 -2.6179194E-03 -2.5954719E-03
 -2.5712268E-03 -2.5454024E-03 -2.5182045E-03 -2.4898218E-03 -2.4604311E-03
 -2.4301955E-03 -2.3992644E-03 -2.3677794E-03 -2.3358685E-03 -2.3036520E-03
 -2.2712401E-03
 0.1646747 0.1593050 0.1541099 0.1490839 0.1442222
 0.1395196 0.1349713 0.1305725 0.1263185 0.1222047
 0.1182268 0.1143803 0.1106611 0.1070651 0.1035882
 0.1002266 9.6976489E-02 9.3834229E-02 9.0796262E-02 8.7859124E-02
 8.5019462E-02 8.2274020E-02 7.9619668E-02 7.7053308E-02 7.4572012E-02
 7.2172932E-02 6.9853254E-02 6.7610331E-02 6.5441519E-02 6.3344322E-02
 6.1316349E-02 5.9355184E-02 5.7458609E-02 5.5624381E-02 5.3850401E-02
 5.2134633E-02 5.0475065E-02 4.8869800E-02 4.7316976E-02 4.5814820E-02
 4.4361617E-02 4.2955678E-02 4.1595425E-02 4.0279280E-02 3.9005760E-02
 3.7773430E-02 3.6580876E-02 3.5426769E-02 3.4309797E-02 3.3228718E-02
 3.2182321E-02 3.1169428E-02 3.0188935E-02 2.9239727E-02 2.8320773E-02
 2.7431065E-02 2.6569609E-02 2.5735475E-02 2.4927739E-02 2.4145531E-02
 2.3388002E-02
 1.4974737E-02 1.3565946E-02 1.2253434E-02 1.1031405E-02 9.8943869E-03
 8.8372119E-03 7.8549897E-03 6.9431113E-03 6.0972068E-03 5.3131827E-03
 4.5871516E-03 3.9154491E-03 3.2946230E-03 2.7214275E-03 2.1927860E-03
 1.7058136E-03 1.2577870E-03 8.4614160E-04 4.6847161E-04 1.2250718E-04
 -1.9388586E-04 -4.8271246E-04 -7.4585277E-04 -9.8508236E-04 -1.2020599E-03
 -1.3983410E-03 -1.5753943E-03 -1.7345879E-03 -1.8772115E-03 -2.0044690E-03
 -2.1174874E-03 -2.2173277E-03 -2.3049780E-03 -2.3813655E-03 -2.4473553E-03
 -2.5037590E-03 -2.5513323E-03 -2.5907829E-03 -2.6227739E-03 -2.6479210E-03
 -2.6667987E-03 -2.6799457E-03 -2.6878633E-03 -2.6910184E-03 -2.6898463E-03
 -2.6847522E-03 -2.6761142E-03 -2.6642845E-03 -2.6495904E-03 -2.6323355E-03
 -2.6128036E-03 -2.5912584E-03 -2.5679443E-03 -2.5430892E-03 -2.5169032E-03
 -2.4895843E-03 -2.4613123E-03 -2.4322588E-03 -2.4025792E-03 -2.3724197E-03
 -2.3419152E-03
 0.1851600 0.1790809 0.1731996 0.1675101 0.1620069
 0.1566844 0.1515371 0.1465597 0.1417469 0.1370937
 0.1325950 0.1282459 0.1240417 0.1199777 0.1160494
 0.1122524 0.1085824 0.1050351 0.1016067 9.8293141E-02
 9.5090576E-02 9.1995299E-02 8.9003749E-02 8.6112373E-02 8.3317831E-02
 8.0616876E-02 7.8006253E-02 7.5482957E-02 7.3043965E-02 7.0686400E-02
 6.8407536E-02 6.6204607E-02 6.4075068E-02 6.2016338E-02 6.0026024E-02
 5.8101784E-02 5.6241326E-02 5.4442476E-02 5.2703094E-02 5.1021151E-02
 4.9394686E-02 4.7821760E-02 4.6300571E-02 4.4829320E-02 4.3406304E-02
 4.2029891E-02 4.0698450E-02 3.9410479E-02 3.8164467E-02 3.6958996E-02
 3.5792705E-02 3.4664229E-02 3.3572309E-02 3.2515690E-02 3.1493183E-02
 3.0503647E-02 2.9545957E-02 2.8619045E-02 2.7721856E-02 2.6853414E-02
 2.6012747E-02
 1.9848917E-02 1.8134426E-02 1.6535141E-02 1.5044118E-02 1.3654822E-02
 1.2361046E-02 1.1156956E-02 1.0037049E-02 8.9961132E-03 8.0292635E-03
 7.1318657E-03 6.2995590E-03 5.5282312E-03 4.8140218E-03 4.1532656E-03
 3.5425380E-03 2.9785938E-03 2.4583850E-03 1.9790521E-03 1.5378919E-03
 1.1323700E-03 7.6010113E-04 4.1884655E-04 1.0649605E-04 -1.7892027E-04
 -4.3925826E-04 -6.7626528E-04 -8.9156802E-04 -1.0867049E-03 -1.2631044E-03
 -1.4221155E-03 -1.5650020E-03 -1.6929394E-03 -1.8070360E-03 -1.9083248E-03
 -1.9977731E-03 -2.0762866E-03 -2.1447097E-03 -2.2038354E-03 -2.2544027E-03
 -2.2970985E-03 -2.3325710E-03 -2.3614191E-03 -2.3842056E-03 -2.4014555E-03
 -2.4136554E-03 -2.4212629E-03 -2.4247025E-03 -2.4243696E-03 -2.4206352E-03
 -2.4138428E-03 -2.4043142E-03 -2.3923477E-03 -2.3782221E-03 -2.3621968E-03
 -2.3445163E-03 -2.3254058E-03 -2.3050753E-03 -2.2837205E-03 -2.2615285E-03
 -2.2386697E-03
 0.2088838 0.2019728 0.1952862 0.1888178 0.1825612
 0.1765104 0.1706593 0.1650020 0.1595325 0.1542452
 0.1491345 0.1441947 0.1394207 0.1348070 0.1303486
 0.1260405 0.1218778 0.1178556 0.1139695 0.1102150
 0.1065875 0.1030829 9.9697120E-02 9.6426032E-02 9.3265817E-02
 9.0212725E-02 8.7263055E-02 8.4413312E-02 8.1660032E-02 7.8999907E-02
 7.6429784E-02 7.3946483E-02 7.1547054E-02 6.9228560E-02 6.6988200E-02
 6.4823307E-02 6.2731214E-02 6.0709428E-02 5.8755476E-02 5.6867018E-02
 5.5041809E-02 5.3277601E-02 5.1572323E-02 4.9923901E-02 4.8330378E-02
 4.6789862E-02 4.5300506E-02 4.3860566E-02 4.2468313E-02 4.1122112E-02
 3.9820399E-02 3.8561616E-02 3.7344322E-02 3.6167074E-02 3.5028510E-02
 3.3927333E-02 3.2862242E-02 3.1832028E-02 3.0835494E-02 2.9871505E-02
 2.8938970E-02
 2.6910763E-02 2.4804339E-02 2.2836173E-02 2.0997899E-02 1.9281665E-02
 1.7680045E-02 1.6186044E-02 1.4793085E-02 1.3494947E-02 1.2285793E-02
 1.1160107E-02 1.0112696E-02 9.1386540E-03 8.2333954E-03 7.3925629E-03
 6.6120764E-03 5.8880881E-03 5.2169692E-03 4.5953244E-03 4.0199459E-03
 3.4878179E-03 2.9961125E-03 2.5421595E-03 2.1234574E-03 1.7376570E-03
 1.3825602E-03 1.0560835E-03 7.5628603E-04 4.8134438E-04 2.2954677E-04
 -7.0967712E-07 -2.1093490E-04 -4.0253298E-04 -5.7682738E-04 -7.3505787E-04
 -8.7837758E-04 -1.0078743E-03 -1.1245639E-03 -1.2293982E-03 -1.3232639E-03
 -1.4069917E-03 -1.4813620E-03 -1.5471018E-03 -1.6048900E-03 -1.6553628E-03
 -1.6991136E-03 -1.7367008E-03 -1.7686400E-03 -1.7954221E-03 -1.8174987E-03
 -1.8352937E-03 -1.8492084E-03 -1.8596107E-03 -1.8668512E-03 -1.8712592E-03
 -1.8731389E-03 -1.8727781E-03 -1.8704486E-03 -1.8664070E-03 -1.8608921E-03
 -1.8541339E-03
 0.2366638 0.2287704 0.2211317 0.2137410 0.2065916
 0.1996768 0.1929899 0.1865245 0.1802740 0.1742320
 0.1683924 0.1627490 0.1572958 0.1520268 0.1469362
 0.1420185 0.1372681 0.1326795 0.1282476 0.1239672
 0.1198334 0.1158411 0.1119858 0.1082628 0.1046676
 0.1011960 9.7843729E-02 9.4606675E-02 9.1480888E-02 8.8462546E-02
 8.5547969E-02 8.2733504E-02 8.0015756E-02 7.7391259E-02 7.4856833E-02
 7.2409324E-02 7.0045672E-02 6.7762963E-02 6.5558352E-02 6.3429087E-02
 6.1372578E-02 5.9386220E-02 5.7467598E-02 5.5614304E-02 5.3824071E-02
 5.2094717E-02 5.0424080E-02 4.8810147E-02 4.7250912E-02 4.5744497E-02
 4.4289082E-02 4.2882871E-02 4.1524209E-02 4.0211428E-02 3.8942967E-02
 3.7717320E-02 3.6533017E-02 3.5388660E-02 3.4282882E-02 3.3214390E-02
 3.2181926E-02
 3.6859978E-02 3.4262300E-02 3.1830665E-02 2.9554954E-02 2.7425686E-02
 2.5433904E-02 2.3571204E-02 2.1829691E-02 2.0201907E-02 1.8680861E-02
 1.7259970E-02 1.5933042E-02 1.4694243E-02 1.3538094E-02 1.2459440E-02
 1.1453443E-02 1.0515518E-02 9.6413838E-03 8.8270167E-03 8.0686258E-03
 7.3626498E-03 6.7057344E-03 6.0947440E-03 5.5267154E-03 4.9988846E-03
 4.5086490E-03 4.0535582E-03 3.6313168E-03 3.2397755E-03 2.8769115E-03
 2.5408375E-03 2.2297623E-03 1.9420367E-03 1.6760780E-03 1.4304334E-03
 1.2037279E-03 9.9467172E-04 8.0205908E-04 6.2475965E-04 4.6170806E-04
 3.1191704E-04 1.7445171E-04 4.8441310E-05 -6.6935514E-05 -1.7244351E-04
 -2.6880114E-04 -3.5668770E-04 -4.3673528E-04 -5.0953776E-04 -5.7565444E-04
 -6.3561252E-04 -6.8991166E-04 -7.3901092E-04 -7.8335794E-04 -8.2336855E-04
 -8.5944054E-04 -8.9195045E-04 -9.2125376E-04 -9.4770332E-04 -9.7162474E-04
 -9.9334016E-04
 0.2696457 0.2605942 0.2518308 0.2433484 0.2351400
 0.2271983 0.2195161 0.2120864 0.2049022 0.1979564
 0.1912422 0.1847529 0.1784817 0.1724222 0.1665678
 0.1609122 0.1554494 0.1501732 0.1450777 0.1401572
 0.1354061 0.1308187 0.1263899 0.1221143 0.1179870
 0.1140030 0.1101574 0.1064456 0.1028632 9.9405721E-02
 9.6068941E-02 9.2848673E-02 8.9741014E-02 8.6742006E-02 8.3847947E-02
 8.1055239E-02 7.8360304E-02 7.5759813E-02 7.3250428E-02 7.0829011E-02
 6.8492532E-02 6.6237956E-02 6.4062506E-02 6.1963376E-02 5.9937932E-02
 5.7983633E-02 5.6097977E-02 5.4278634E-02 5.2523285E-02 5.0829753E-02
 4.9195934E-02 4.7619782E-02 4.6099391E-02 4.4632856E-02 4.3218412E-02
 4.1854363E-02 4.0539049E-02 3.9270945E-02 3.8048513E-02 3.6870334E-02
 3.5735060E-02
 5.0451905E-02 4.7255784E-02 4.4259701E-02 4.1451283E-02 3.8818918E-02
 3.6351681E-02 3.4039363E-02 3.1872347E-02 2.9841602E-02 2.7938658E-02
 2.6155585E-02 2.4484888E-02 2.2919577E-02 2.1453056E-02 2.0079123E-02
 1.8792013E-02 1.7586244E-02 1.6456708E-02 1.5398615E-02 1.4407467E-02
 1.3479036E-02 1.2609356E-02 1.1794727E-02 1.1031657E-02 1.0316888E-02
 9.6473806E-03 9.0202568E-03 8.4328437E-03 7.8826286E-03 7.3672715E-03
 6.8845777E-03 6.4324737E-03 6.0090558E-03 5.6125056E-03 5.2411482E-03
 4.8934151E-03 4.5678210E-03 4.2629926E-03 3.9776405E-03 3.7105461E-03
 3.4605986E-03 3.2267170E-03 3.0079207E-03 2.8032823E-03 2.6119177E-03
 2.4330148E-03 2.2657905E-03 2.1095288E-03 1.9635302E-03 1.8271591E-03
 1.6997828E-03 1.5808181E-03 1.4697054E-03 1.3658992E-03 1.2688752E-03
 1.1781205E-03 1.0931296E-03 1.0133971E-03 9.3841273E-04 8.6766481E-04
 8.0061215E-04
 0.3092989 0.2989036 0.2888328 0.2790792 0.2696352
 0.2604933 0.2516459 0.2430852 0.2348036 0.2267936
 0.2190476 0.2115581 0.2043179 0.1973195 0.1905559
 0.1840201 0.1777051 0.1716041 0.1657106 0.1600180
 0.1545201 0.1492105 0.1440835 0.1391329 0.1343531
 0.1297386 0.1252839 0.1209838 0.1168331 0.1128270
 0.1089607 0.1052294 0.1016288 9.8154388E-02 9.4802096E-02
 9.1567904E-02 8.8447861E-02 8.5438274E-02 8.2535513E-02 7.9736136E-02
 7.7036940E-02 7.4434713E-02 7.1926579E-02 6.9509700E-02 6.7181498E-02
 6.4939611E-02 6.2781811E-02 6.0706209E-02 5.8711082E-02 5.6795049E-02
 5.4956980E-02 5.3195979E-02 5.1511355E-02 4.9902383E-02 4.8368059E-02
 4.6906762E-02 4.5515887E-02 4.4191696E-02 4.2929366E-02 4.1723471E-02
 4.0568430E-02
 6.8337537E-02 6.4422891E-02 6.0751550E-02 5.7308152E-02 5.4078460E-02
 5.1049013E-02 4.8207249E-02 4.5541331E-02 4.3040205E-02 4.0693585E-02
 3.8491681E-02 3.6425401E-02 3.4486186E-02 3.2666046E-02 3.0957429E-02
 2.9353322E-02 2.7847100E-02 2.6432540E-02 2.5103878E-02 2.3855643E-02
 2.2682754E-02 2.1580417E-02 2.0544188E-02 1.9569846E-02 1.8653518E-02
 1.7791517E-02 1.6980428E-02 1.6217064E-02 1.5498439E-02 1.4821767E-02
 1.4184472E-02 1.3584113E-02 1.3018465E-02 1.2485425E-02 1.1983070E-02
 1.1509596E-02 1.1063351E-02 1.0642807E-02 1.0246526E-02 9.8732319E-03
 9.5217451E-03 9.1909459E-03 8.8798646E-03 8.5875904E-03 8.3132824E-03
 8.0561703E-03 7.8155100E-03 7.5905756E-03 7.3805870E-03 7.1846619E-03
 7.0017516E-03 6.8304581E-03 6.6689565E-03 6.5148026E-03 6.3649127E-03
 6.2155775E-03 6.0627600E-03 5.9025679E-03 5.7317708E-03 5.5482220E-03
 5.3509329E-03
 0.3572143 0.3452878 0.3337267 0.3225236 0.3116710
 0.3011610 0.2909856 0.2811367 0.2716061 0.2623857
 0.2534675 0.2448433 0.2365050 0.2284448 0.2206549
 0.2131276 0.2058552 0.1988303 0.1920457 0.1854943
 0.1791691 0.1730634 0.1671707 0.1614843 0.1559984
 0.1507068 0.1456037 0.1406835 0.1359407 0.1313703
 0.1269670 0.1227260 0.1186427 0.1147122 0.1109301
 0.1072921 0.1037936 0.1004302 9.7197585E-02 9.4091147E-02
 9.1106392E-02 8.8238582E-02 8.5483089E-02 8.2835071E-02 8.0289736E-02
 7.7842355E-02 7.5488158E-02 7.3222600E-02 7.1041144E-02 6.8939544E-02
 6.6913694E-02 6.4959660E-02 6.3073821E-02 6.1252620E-02 5.9492804E-02
 5.7791281E-02 5.6145109E-02 5.4551564E-02 5.3007994E-02 5.1511951E-02
 5.0061077E-02
 9.0979353E-02 8.6184047E-02 8.1687339E-02 7.7470243E-02 7.3515132E-02
 6.9805294E-02 6.6325240E-02 6.3060433E-02 5.9997257E-02 5.7123002E-02
 5.4425765E-02 5.1894352E-02 4.9518295E-02 4.7287874E-02 4.5193862E-02
 4.3227669E-02 4.1381270E-02 3.9647065E-02 3.8018025E-02 3.6487512E-02
 3.5049323E-02 3.3697572E-02 3.2426856E-02 3.1231940E-02 3.0108012E-02
 2.9050525E-02 2.8055115E-02 2.7117686E-02 2.6234357E-02 2.5401352E-02
 2.4615094E-02 2.3872102E-02 2.3169007E-02 2.2502458E-02 2.1869237E-02
 2.1266097E-02 2.0689862E-02 2.0137412E-02 1.9605657E-02 1.9091612E-02
 1.8592415E-02 1.8105339E-02 1.7627902E-02 1.7157856E-02 1.6693184E-02
 1.6232170E-02 1.5773410E-02 1.5315773E-02 1.4858375E-02 1.4400578E-02
 1.3941972E-02 1.3482289E-02 1.3021462E-02 1.2559474E-02 1.2096440E-02
 1.1632540E-02 1.1168007E-02 1.0703096E-02 1.0238130E-02 9.7734109E-03
 9.3093030E-03

XFOILinterface/XFOIL/orrs/osm.0230

 256 2.300003
 0.0000000E+00 2.2630259E-02 4.5351036E-02 6.8162702E-02 9.1065601E-02
 0.1140601 0.1371466 0.1603255 0.1835970 0.2069616
 0.2304197 0.2539716 0.2776178 0.3013585 0.3251942
 0.3491252 0.3731520 0.3972748 0.4214941 0.4458103
 0.4702238 0.4947349 0.5193442 0.5440518 0.5688582
 0.5937638 0.6187692 0.6438745 0.6690802 0.6943867
 0.7197945 0.7453039 0.7709153 0.7966292 0.8224459
 0.8483660 0.8743896 0.9005173 0.9267496 0.9530869
 0.9795294 1.006078 1.032732 1.059493 1.086362
 1.113337 1.140421 1.167613 1.194913 1.222323
 1.249843 1.277472 1.305212 1.333063 1.361026
 1.389100 1.417287 1.445586 1.473999 1.502525
 1.531165 1.559920 1.588790 1.617775 1.646876
 1.676094 1.705429 1.734881 1.764450 1.794138
 1.823945 1.853871 1.883916 1.914082 1.944369
 1.974776 2.005306 2.035957 2.066731 2.097628
 2.128649 2.159793 2.191063 2.222457 2.253977
 2.285623 2.317396 2.349296 2.381323 2.413478
 2.445763 2.478176 2.510719 2.543392 2.576195
 2.609130 2.642197 2.675395 2.708727 2.742193
 2.775791 2.809525 2.843393 2.877396 2.911536
 2.945812 2.980226 3.014776 3.049466 3.084294
 3.119261 3.154368 3.189615 3.225004 3.260534
 3.296206 3.332021 3.367979 3.404081 3.440328
 3.476719 3.513256 3.549939 3.586769 3.623746
 3.660871 3.698145 3.735567 3.773140 3.810863
 3.848736 3.886761 3.924938 3.963268 4.001751
 4.040388 4.079180 4.118126 4.157229 4.196488
 4.235904 4.275478 4.315210 4.355101 4.395151
 4.435362 4.475734 4.516267 4.556962 4.597819
 4.638841 4.680026 4.721376 4.762892 4.804574
 4.846422 4.888438 4.930621 4.972974 5.015496
 5.058188 5.101050 5.144085 5.187291 5.230670
 5.274223 5.317950 5.361852 5.405929 5.450183
 5.494614 5.539222 5.584009 5.628975 5.674121
 5.719447 5.764955 5.810645 5.856518 5.902574
 5.948814 5.995239 6.041850 6.088647 6.135631
 6.182804 6.230165 6.277715 6.325456 6.373388
 6.421512 6.469828 6.518337 6.567040 6.615938
 6.665031 6.714322 6.763809 6.813494 6.863378
 6.913461 6.963745 7.014230 7.064917 7.115807
 7.166899 7.218196 7.269699 7.321408 7.373323
 7.425446 7.477778 7.530319 7.583070 7.636033
 7.689207 7.742593 7.796194 7.850008 7.904038
 7.958284 8.012747 8.067428 8.122327 8.177446
 8.232786 8.288347 8.344131 8.400137 8.456367
 8.512823 8.569504 8.626412 8.683548 8.740912
 8.798506 8.856329 8.914385 8.972672 9.031192
 9.089947 9.148936 9.208161 9.267624 9.327323
 9.387262 9.447441 9.507861 9.568522 9.629426
 9.690573 9.751966 9.813603 9.875488 9.937620
 10.00000
 0.0000000E+00 7.3295287E-03 1.4656671E-02 2.1981167E-02 2.9302742E-02
 3.6621138E-02 4.3936070E-02 5.1247276E-02 5.8554471E-02 6.5857366E-02
 7.3155686E-02 8.0449134E-02 8.7737441E-02 9.5020287E-02 0.1022974
 0.1095685 0.1168332 0.1240912 0.1313423 0.1385861
 0.1458224 0.1530507 0.1602708 0.1674823 0.1746850
 0.1818784 0.1890623 0.1962364 0.2034002 0.2105534
 0.2176957 0.2248268 0.2319463 0.2390538 0.2461490
 0.2532316 0.2603011 0.2673571 0.2743995 0.2814277
 0.2884413 0.2954401 0.3024236 0.3093914 0.3163432
 0.3232786 0.3301972 0.3370987 0.3439825 0.3508483
 0.3576957 0.3645243 0.3713337 0.3781236 0.3848934
 0.3916428 0.3983714 0.4050787 0.4117645 0.4184281
 0.4250693 0.4316875 0.4382824 0.4448536 0.4514006
 0.4579230 0.4644204 0.4708924 0.4773384 0.4837581
 0.4901511 0.4965170 0.5028553 0.5091655 0.5154473
 0.5217002 0.5279238 0.5341176 0.5402813 0.5464144
 0.5525163 0.5585869 0.5646256 0.5706319 0.5766055
 0.5825459 0.5884528 0.5943256 0.6001639 0.6059674
 0.6117357 0.6174682 0.6231647 0.6288247 0.6344476
 0.6400334 0.6455814 0.6510913 0.6565627 0.6619952
 0.6673885 0.6727421 0.6780556 0.6833287 0.6885612
 0.6937524 0.6989021 0.7040100 0.7090758 0.7140990
 0.7190793 0.7240164 0.7289100 0.7337598 0.7385654
 0.7433267 0.7480431 0.7527146 0.7573407 0.7619213
 0.7664561 0.7709447 0.7753870 0.7797827 0.7841316
 0.7884336 0.7926883 0.7968954 0.8010551 0.8051669
 0.8092307 0.8132464 0.8172138 0.8211328 0.8250033
 0.8288250 0.8325980 0.8363221 0.8399972 0.8436234
 0.8472005 0.8507283 0.8542071 0.8576366 0.8610170
 0.8643481 0.8676301 0.8708628 0.8740465 0.8771811
 0.8802667 0.8833033 0.8862911 0.8892302 0.8921207
 0.8949626 0.8977562 0.9005017 0.9031991 0.9058486
 0.9084506 0.9110051 0.9135123 0.9159727 0.9183862
 0.9207533 0.9230742 0.9253492 0.9275786 0.9297627
 0.9319017 0.9339961 0.9360462 0.9380524 0.9400150
 0.9419343 0.9438109 0.9456450 0.9474372 0.9491878
 0.9508972 0.9525658 0.9541943 0.9557829 0.9573323
 0.9588428 0.9603149 0.9617492 0.9631461 0.9645061
 0.9658298 0.9671177 0.9683703 0.9695882 0.9707718
 0.9719217 0.9730386 0.9741229 0.9751751 0.9761960
 0.9771859 0.9781455 0.9790754 0.9799761 0.9808482
 0.9816923 0.9825089 0.9832986 0.9840621 0.9847997
 0.9855123 0.9862003 0.9868642 0.9875047 0.9881223
 0.9887176 0.9892911 0.9898434 0.9903750 0.9908866
 0.9913786 0.9918516 0.9923061 0.9927425 0.9931616
 0.9935637 0.9939495 0.9943193 0.9946736 0.9950131
 0.9953380 0.9956490 0.9959465 0.9962309 0.9965027
 0.9967623 0.9970102 0.9972469 0.9974725 0.9976877
 0.9978928 0.9980882 0.9982743 0.9984514 0.9986199
 0.9987801 0.9989325 0.9990773 0.9992148 0.9993454
 0.9994694 0.9995871 0.9996987 0.9998045 0.9999049
 1.000000
 0.3245780 0.3231855 0.3217874 0.3203837 0.3189743
 0.3175594 0.3161389 0.3147127 0.3132808 0.3118432
 0.3104000 0.3089511 0.3074965 0.3060361 0.3045700
 0.3030982 0.3016206 0.3001373 0.2986482 0.2971533
 0.2956527 0.2941463 0.2926341 0.2911162 0.2895925
 0.2880630 0.2865278 0.2849868 0.2834400 0.2818875
 0.2803293 0.2787653 0.2771956 0.2756202 0.2740391
 0.2724524 0.2708600 0.2692619 0.2676583 0.2660490
 0.2644342 0.2628138 0.2611879 0.2595565 0.2579197
 0.2562774 0.2546298 0.2529768 0.2513185 0.2496550
 0.2479862 0.2463122 0.2446332 0.2429490 0.2412598
 0.2395657 0.2378666 0.2361627 0.2344540 0.2327406
 0.2310225 0.2292999 0.2275727 0.2258411 0.2241051
 0.2223649 0.2206204 0.2188719 0.2171193 0.2153628
 0.2136025 0.2118384 0.2100707 0.2082995 0.2065249
 0.2047469 0.2029658 0.2011816 0.1993944 0.1976044
 0.1958117 0.1940163 0.1922186 0.1904185 0.1886162
 0.1868120 0.1850058 0.1831979 0.1813884 0.1795775
 0.1777653 0.1759520 0.1741377 0.1723227 0.1705071
 0.1686911 0.1668748 0.1650584 0.1632422 0.1614263
 0.1596108 0.1577961 0.1559823 0.1541696 0.1523581
 0.1505482 0.1487400 0.1469337 0.1451296 0.1433278
 0.1415286 0.1397323 0.1379390 0.1361489 0.1343624
 0.1325795 0.1308007 0.1290261 0.1272559 0.1254904
 0.1237299 0.1219746 0.1202247 0.1184805 0.1167422
 0.1150101 0.1132845 0.1115655 0.1098536 0.1081488
 0.1064515 0.1047620 0.1030805 0.1014072 9.9742375E-02
 9.8086357E-02 9.6439362E-02 9.4801664E-02 9.3173496E-02 9.1555133E-02
 8.9946814E-02 8.8348813E-02 8.6761370E-02 8.5184745E-02 8.3619177E-02
 8.2064919E-02 8.0522209E-02 7.8991301E-02 7.7472448E-02 7.5965866E-02
 7.4471787E-02 7.2990447E-02 7.1522072E-02 7.0066892E-02 6.8625145E-02
 6.7197002E-02 6.5782726E-02 6.4382501E-02 6.2996507E-02 6.1624993E-02
 6.0268108E-02 5.8926076E-02 5.7599038E-02 5.6287210E-02 5.4990739E-02
 5.3709812E-02 5.2444551E-02 5.1195163E-02 4.9961753E-02 4.8744466E-02
 4.7543447E-02 4.6358816E-02 4.5190703E-02 4.4039197E-02 4.2904411E-02
 4.1786455E-02 4.0685400E-02 3.9601330E-02 3.8534325E-02 3.7484445E-02
 3.6451768E-02 3.5436310E-02 3.4438130E-02 3.3457264E-02 3.2493729E-02
 3.1547528E-02 3.0618688E-02 2.9707193E-02 2.8813049E-02 2.7936215E-02
 2.7076678E-02 2.6234409E-02 2.5409361E-02 2.4601480E-02 2.3810700E-02
 2.3036966E-02 2.2280185E-02 2.1540282E-02 2.0817155E-02 2.0110715E-02
 1.9420853E-02 1.8747445E-02 1.8090356E-02 1.7449485E-02 1.6824665E-02
 1.6215771E-02 1.5622639E-02 1.5045108E-02 1.4483015E-02 1.3936192E-02
 1.3404454E-02 1.2887616E-02 1.2385495E-02 1.1897886E-02 1.1424597E-02
 1.0965416E-02 1.0520147E-02 1.0088552E-02 9.6704299E-03 9.2655476E-03
 8.8736806E-03 8.4946053E-03 8.1280796E-03 7.7738729E-03 7.4317390E-03
 7.1014427E-03 6.7827408E-03 6.4753871E-03 6.1791348E-03 5.8937371E-03
 5.6189443E-03 5.3545116E-03 5.1001804E-03 4.8557096E-03 4.6208459E-03
 4.3953429E-03 4.1789524E-03 3.9714202E-03 3.7725093E-03 3.5819686E-03
 3.3995549E-03 3.2250301E-03 3.0581544E-03 2.8986880E-03 2.7464018E-03
 2.6010571E-03 2.4624292E-03 2.3302906E-03 2.2044210E-03 2.0846010E-03
 1.9706148E-03 1.8622474E-03 1.7592943E-03 1.6615497E-03 1.5688150E-03
 1.4808940E-03
 61 21
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000 5.050000 5.100000 5.150000 5.200000
 5.250000 5.300000 5.350000 5.400000 5.450000
 5.500000 5.550000 5.600000 5.650000 5.700000
 5.750000 5.800000 5.850000 5.900000 5.950000
 6.000000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -9.9999994E-02 -5.0000012E-02
 0.0000000E+00 5.0000012E-02 0.1000000 0.1500000 0.2000000
 0.2500000 0.3000000 0.3500000 0.4000000 0.4500000
 0.5000000
 3.8498309E-02 3.7307918E-02 3.6154971E-02 3.5038281E-02 3.3956688E-02
 3.2909051E-02 3.1894285E-02 3.0911325E-02 2.9959142E-02 2.9036749E-02
 2.8143184E-02 2.7277509E-02 2.6438825E-02 2.5626266E-02 2.4838988E-02
 2.4076171E-02 2.3337029E-02 2.2620793E-02 2.1926740E-02 2.1254145E-02
 2.0602327E-02 1.9970609E-02 1.9358361E-02 1.8764945E-02 1.8189767E-02
 1.7632253E-02 1.7091826E-02 1.6567949E-02 1.6060090E-02 1.5567746E-02
 1.5090431E-02 1.4627658E-02 1.4178973E-02 1.3743930E-02 1.3322098E-02
 1.2913071E-02 1.2516435E-02 1.2131809E-02 1.1758811E-02 1.1397082E-02
 1.1046274E-02 1.0706034E-02 1.0376049E-02 1.0055992E-02 9.7455541E-03
 9.4444444E-03 9.1523696E-03 8.8690519E-03 8.5942168E-03 8.3276127E-03
 8.0689862E-03 7.8180833E-03 7.5746765E-03 7.3385341E-03 7.1094348E-03
 6.8871658E-03 6.6715148E-03 6.4622895E-03 6.2592844E-03 6.0623167E-03
 5.8712051E-03
 7.1532805E-03 6.8293200E-03 6.5208585E-03 6.2271007E-03 5.9473007E-03
 5.6807459E-03 5.4267650E-03 5.1847231E-03 4.9540163E-03 4.7340770E-03
 4.5243674E-03 4.3243733E-03 4.1336124E-03 3.9516282E-03 3.7779855E-03
 3.6122715E-03 3.4540975E-03 3.3030929E-03 3.1589100E-03 3.0212116E-03
 2.8896872E-03 2.7640334E-03 2.6439715E-03 2.5292265E-03 2.4195476E-03
 2.3146910E-03 2.2144255E-03 2.1185330E-03 2.0268050E-03 1.9390471E-03
 1.8550707E-03 1.7746971E-03 1.6977582E-03 1.6240937E-03 1.5535504E-03
 1.4859849E-03 1.4212582E-03 1.3592398E-03 1.2998038E-03 1.2428337E-03
 1.1882167E-03 1.1358438E-03 1.0856155E-03 1.0374349E-03 9.9120720E-04
 9.4684720E-04 9.0427103E-04 8.6339837E-04 8.2415232E-04 7.8646437E-04
 7.5026450E-04 7.1548688E-04 6.8206817E-04 6.4995216E-04 6.1908015E-04
 5.8940059E-04 5.6085945E-04 5.3341099E-04 5.0700601E-04 4.8160192E-04
 4.5715674E-04
 4.2492159E-02 4.1170936E-02 3.9891716E-02 3.8653132E-02 3.7453864E-02
 3.6292624E-02 3.5168163E-02 3.4079291E-02 3.3024829E-02 3.2003660E-02
 3.1014688E-02 3.0056868E-02 2.9129164E-02 2.8230613E-02 2.7360246E-02
 2.6517153E-02 2.5700433E-02 2.4909232E-02 2.4142722E-02 2.3400100E-02
 2.2680590E-02 2.1983435E-02 2.1307921E-02 2.0653339E-02 2.0019012E-02
 1.9404301E-02 1.8808557E-02 1.8231183E-02 1.7671578E-02 1.7129181E-02
 1.6603440E-02 1.6093811E-02 1.5599799E-02 1.5120893E-02 1.4656612E-02
 1.4206504E-02 1.3770105E-02 1.3346995E-02 1.2936742E-02 1.2538943E-02
 1.2153216E-02 1.1779170E-02 1.1416446E-02 1.1064684E-02 1.0723540E-02
 1.0392691E-02 1.0071810E-02 9.7605912E-03 9.4587263E-03 9.1659306E-03
 8.8819284E-03 8.6064348E-03 8.3392039E-03 8.0799656E-03 7.8284862E-03
 7.5845248E-03 7.3478404E-03 7.1182260E-03 6.8954593E-03 6.6793244E-03
 6.4696325E-03
 6.8533113E-03 6.5212832E-03 6.2058386E-03 5.9061102E-03 5.6212833E-03
 5.3505837E-03 5.0932793E-03 4.8486753E-03 4.6161176E-03 4.3949853E-03
 4.1846903E-03 3.9846748E-03 3.7944133E-03 3.6134049E-03 3.4411789E-03
 3.2772857E-03 3.1213020E-03 2.9728236E-03 2.8314730E-03 2.6968890E-03
 2.5687271E-03 2.4466647E-03 2.3303942E-03 2.2196257E-03 2.1140820E-03
 2.0135008E-03 1.9176351E-03 1.8262509E-03 1.7391233E-03 1.6560409E-03
 1.5768041E-03 1.5012206E-03 1.4291117E-03 1.3603066E-03 1.2946411E-03
 1.2319632E-03 1.1721244E-03 1.1149892E-03 1.0604223E-03 1.0082999E-03
 9.5850497E-04 9.1092469E-04 8.6545100E-04 8.2198257E-04 7.8042346E-04
 7.4068242E-04 7.0267287E-04 6.6631282E-04 6.3152140E-04 5.9822696E-04
 5.6635792E-04 5.3584686E-04 5.0663081E-04 4.7864855E-04 4.5184375E-04
 4.2616090E-04 4.0154625E-04 3.7795346E-04 3.5533600E-04 3.3364593E-04
 3.1284391E-04
 4.6865750E-02 4.5401212E-02 4.3983664E-02 4.2611551E-02 4.1283388E-02
 3.9997704E-02 3.8753100E-02 3.7548210E-02 3.6381721E-02 3.5252362E-02
 3.4158900E-02 3.3100147E-02 3.2074954E-02 3.1082215E-02 3.0120857E-02
 2.9189844E-02 2.8288176E-02 2.7414877E-02 2.6569029E-02 2.5749721E-02
 2.4956083E-02 2.4187276E-02 2.3442492E-02 2.2720937E-02 2.2021852E-02
 2.1344524E-02 2.0688223E-02 2.0052282E-02 1.9436032E-02 1.8838832E-02
 1.8260084E-02 1.7699178E-02 1.7155550E-02 1.6628634E-02 1.6117893E-02
 1.5622825E-02 1.5142916E-02 1.4677687E-02 1.4226662E-02 1.3789400E-02
 1.3365465E-02 1.2954422E-02 1.2555877E-02 1.2169429E-02 1.1794693E-02
 1.1431312E-02 1.1078916E-02 1.0737170E-02 1.0405738E-02 1.0084297E-02
 9.7725354E-03 9.4701499E-03 9.1768568E-03 8.8923657E-03 8.6164027E-03
 8.3487164E-03 8.0890357E-03 7.8371270E-03 7.5927423E-03 7.3556518E-03
 7.1256394E-03
 6.4869472E-03 6.1455788E-03 5.8221081E-03 5.5155791E-03 5.2250940E-03
 4.9498021E-03 4.6888911E-03 4.4415984E-03 4.2072013E-03 3.9850171E-03
 3.7743954E-03 3.5747243E-03 3.3854244E-03 3.2059443E-03 3.0357644E-03
 2.8743932E-03 2.7213648E-03 2.5762354E-03 2.4385925E-03 2.3080353E-03
 2.1841929E-03 2.0667089E-03 1.9552514E-03 1.8494987E-03 1.7491530E-03
 1.6539289E-03 1.5635561E-03 1.4777813E-03 1.3963612E-03 1.3190669E-03
 1.2456846E-03 1.1760071E-03 1.1098408E-03 1.0470023E-03 9.8731602E-04
 9.3062012E-04 8.7675574E-04 8.2557666E-04 7.7694218E-04 7.3072099E-04
 6.8678771E-04 6.4502185E-04 6.0531159E-04 5.6755129E-04 5.3163886E-04
 4.9748062E-04 4.6498352E-04 4.3406305E-04 4.0463833E-04 3.7663197E-04
 3.4997097E-04 3.2458667E-04 3.0041396E-04 2.7739047E-04 2.5545611E-04
 2.3455970E-04 2.1464303E-04 1.9566040E-04 1.7756296E-04 1.6030582E-04
 1.4384845E-04
 5.1682085E-02 5.0059821E-02 4.8490018E-02 4.6970926E-02 4.5500860E-02
 4.4078171E-02 4.2701278E-02 4.1368641E-02 4.0078782E-02 3.8830273E-02
 3.7621729E-02 3.6451813E-02 3.5319228E-02 3.4222744E-02 3.3161145E-02
 3.2133281E-02 3.1138016E-02 3.0174274E-02 2.9241007E-02 2.8337210E-02
 2.7461905E-02 2.6614150E-02 2.5793044E-02 2.4997691E-02 2.4227256E-02
 2.3480931E-02 2.2757903E-02 2.2057433E-02 2.1378767E-02 2.0721197E-02
 2.0084048E-02 1.9466639E-02 1.8868346E-02 1.8288536E-02 1.7726619E-02
 1.7182022E-02 1.6654179E-02 1.6142553E-02 1.5646623E-02 1.5165888E-02
 1.4699870E-02 1.4248081E-02 1.3810089E-02 1.3385436E-02 1.2973712E-02
 1.2574502E-02 1.2187410E-02 1.1812055E-02 1.1448064E-02 1.1095081E-02
 1.0752764E-02 1.0420775E-02 1.0098791E-02 9.7864987E-03 9.4835963E-03
 9.1897948E-03 8.9048054E-03 8.6283628E-03 8.3601903E-03 8.1000412E-03
 7.8476705E-03
 6.0617761E-03 5.7092705E-03 5.3762537E-03 5.0616595E-03 4.7644866E-03
 4.4837841E-03 4.2186514E-03 3.9682374E-03 3.7317351E-03 3.5083846E-03
 3.2974631E-03 3.0982904E-03 2.9102177E-03 2.7326371E-03 2.5649720E-03
 2.4066733E-03 2.2572260E-03 2.1161421E-03 1.9829588E-03 1.8572392E-03
 1.7385710E-03 1.6265638E-03 1.5208498E-03 1.4210769E-03 1.3269167E-03
 1.2380582E-03 1.1542049E-03 1.0750805E-03 1.0004203E-03 9.2997489E-04
 8.6351042E-04 8.0080313E-04 7.4164587E-04 6.8583712E-04 6.3319009E-04
 5.8352889E-04 5.3668476E-04 4.9250032E-04 4.5082596E-04 4.1151987E-04
 3.7445113E-04 3.3949030E-04 3.0652180E-04 2.7543027E-04 2.4611200E-04
 2.1846556E-04 1.9239586E-04 1.6781421E-04 1.4463569E-04 1.2278135E-04
 1.0217456E-04 8.2746868E-05 6.4427593E-05 4.7155791E-05 3.0871204E-05
 1.5516947E-05 1.0396665E-06 -1.2610210E-05 -2.5482001E-05 -3.7617818E-05
 -4.9060549E-05
 5.7014223E-02 5.5217478E-02 5.3479224E-02 5.1797483E-02 5.0170362E-02
 4.8596010E-02 4.7072649E-02 4.5598559E-02 4.4172071E-02 4.2791590E-02
 4.1455563E-02 4.0162489E-02 3.8910925E-02 3.7699480E-02 3.6526803E-02
 3.5391603E-02 3.4292608E-02 3.3228621E-02 3.2198466E-02 3.1201020E-02
 3.0235188E-02 2.9299919E-02 2.8394205E-02 2.7517054E-02 2.6667530E-02
 2.5844723E-02 2.5047734E-02 2.4275733E-02 2.3527885E-02 2.2803398E-02
 2.2101521E-02 2.1421492E-02 2.0762620E-02 2.0124195E-02 1.9505560E-02
 1.8906083E-02 1.8325126E-02 1.7762102E-02 1.7216424E-02 1.6687529E-02
 1.6174896E-02 1.5677979E-02 1.5196295E-02 1.4729337E-02 1.4276646E-02
 1.3837770E-02 1.3412262E-02 1.2999700E-02 1.2599670E-02 1.2211778E-02
 1.1835644E-02 1.1470892E-02 1.1117163E-02 1.0774113E-02 1.0441406E-02
 1.0118718E-02 9.8057352E-03 9.5021585E-03 9.2076864E-03 8.9220386E-03
 8.6449450E-03
 5.5942088E-03 5.2279793E-03 4.8831534E-03 4.5585334E-03 4.2529921E-03
 3.9654570E-03 3.6949150E-03 3.4404071E-03 3.2010286E-03 2.9759235E-03
 2.7642797E-03 2.5653332E-03 2.3783571E-03 2.2026699E-03 2.0376265E-03
 1.8826124E-03 1.7370519E-03 1.6004005E-03 1.4721432E-03 1.3517940E-03
 1.2388923E-03 1.1330068E-03 1.0337272E-03 9.4066671E-04 8.5346232E-04
 7.7176944E-04 6.9526216E-04 6.2363583E-04 5.5660144E-04 4.9388519E-04
 4.3523186E-04 3.8039722E-04 3.2915411E-04 2.8128570E-04 2.3658916E-04
 1.9487350E-04 1.5595795E-04 1.1967219E-04 8.5855114E-05 5.4355725E-05
 2.5033396E-05 -2.2482286E-06 -2.7613794E-05 -5.1184827E-05 -7.3071613E-05
 -9.3379429E-05 -1.1220783E-04 -1.2965179E-04 -1.4579826E-04 -1.6073113E-04
 -1.7452687E-04 -1.8725909E-04 -1.9899959E-04 -2.0980963E-04 -2.1975262E-04
 -2.2888571E-04 -2.3726234E-04 -2.4493365E-04 -2.5194709E-04 -2.5834836E-04
 -2.6417879E-04
 6.2945098E-02 6.0954351E-02 5.9028734E-02 5.7166040E-02 5.5364154E-02
 5.3621002E-02 5.1934596E-02 5.0303012E-02 4.8724383E-02 4.7196925E-02
 4.5718905E-02 4.4288639E-02 4.2904522E-02 4.1564997E-02 4.0268559E-02
 3.9013755E-02 3.7799180E-02 3.6623474E-02 3.5485357E-02 3.4383547E-02
 3.3316839E-02 3.2284051E-02 3.1284060E-02 3.0315759E-02 2.9378101E-02
 2.8470082E-02 2.7590692E-02 2.6739005E-02 2.5914088E-02 2.5115062E-02
 2.4341088E-02 2.3591321E-02 2.2864984E-02 2.2161290E-02 2.1479508E-02
 2.0818932E-02 2.0178854E-02 1.9558618E-02 1.8957570E-02 1.8375091E-02
 1.7810589E-02 1.7263468E-02 1.6733179E-02 1.6219174E-02 1.5720926E-02
 1.5237944E-02 1.4769726E-02 1.4315803E-02 1.3875717E-02 1.3449033E-02
 1.3035323E-02 1.2634167E-02 1.2245180E-02 1.1867969E-02 1.1502162E-02
 1.1147406E-02 1.0803347E-02 1.0469651E-02 1.0145986E-02 9.8320488E-03
 9.5275333E-03
 5.1119397E-03 4.7281804E-03 4.3681348E-03 4.0304423E-03 3.7138199E-03
 3.4170502E-03 3.1389827E-03 2.8785304E-03 2.6346659E-03 2.4064190E-03
 2.1928733E-03 1.9931602E-03 1.8064624E-03 1.6320094E-03 1.4690696E-03
 1.3169566E-03 1.1750195E-03 1.0426472E-03 9.1926160E-04 8.0431701E-04
 6.9730036E-04 5.9772644E-04 5.0513999E-04 4.1910890E-04 3.3922883E-04
 2.6511849E-04 1.9641564E-04 1.3278497E-04 7.3903364E-05 1.9472516E-05
 -3.0790008E-05 -7.7151490E-05 -1.1986215E-04 -1.5915729E-04 -1.9525966E-04
 -2.2837568E-04 -2.5870357E-04 -2.8642666E-04 -3.1171975E-04 -3.3474321E-04
 -3.5565189E-04 -3.7458920E-04 -3.9169032E-04 -4.0708206E-04 -4.2088426E-04
 -4.3320781E-04 -4.4415786E-04 -4.5383384E-04 -4.6232808E-04 -4.6972636E-04
 -4.7611035E-04 -4.8155725E-04 -4.8613668E-04 -4.8991654E-04 -4.9295998E-04
 -4.9532537E-04 -4.9706694E-04 -4.9823808E-04 -4.9888593E-04 -4.9905397E-04
 -4.9878535E-04
 6.9567688E-02 6.7360140E-02 6.5225095E-02 6.3160107E-02 6.1162788E-02
 5.9230845E-02 5.7362050E-02 5.5554260E-02 5.3805389E-02 5.2113447E-02
 5.0476506E-02 4.8892695E-02 4.7360208E-02 4.5877319E-02 4.4442330E-02
 4.3053649E-02 4.1709695E-02 4.0408943E-02 3.9149966E-02 3.7931349E-02
 3.6751732E-02 3.5609804E-02 3.4504313E-02 3.3434018E-02 3.2397754E-02
 3.1394400E-02 3.0422835E-02 2.9482014E-02 2.8570907E-02 2.7688533E-02
 2.6833948E-02 2.6006218E-02 2.5204470E-02 2.4427835E-02 2.3675490E-02
 2.2946650E-02 2.2240527E-02 2.1556392E-02 2.0893514E-02 2.0251203E-02
 1.9628800E-02 1.9025641E-02 1.8441120E-02 1.7874615E-02 1.7325554E-02
 1.6793374E-02 1.6277526E-02 1.5777493E-02 1.5292760E-02 1.4822835E-02
 1.4367254E-02 1.3925551E-02 1.3497290E-02 1.3082037E-02 1.2679375E-02
 1.2288919E-02 1.1910267E-02 1.1543063E-02 1.1186927E-02 1.0841520E-02
 1.0506504E-02
 4.6562976E-03 4.2494051E-03 3.8690206E-03 3.5135825E-03 3.1816228E-03
 2.8717462E-03 2.5826404E-03 2.3130602E-03 2.0618327E-03 1.8278520E-03
 1.6100720E-03 1.4075055E-03 1.2192210E-03 1.0443426E-03 8.8204152E-04
 7.3153683E-04 5.9209357E-04 4.6301834E-04 3.4365949E-04 2.3340146E-04
 1.3166394E-04 3.7903315E-05 -4.8393184E-05 -1.2770966E-04 -2.0049955E-04
 -2.6718984E-04 -3.2818291E-04 -3.8385674E-04 -4.3456513E-04 -4.8064219E-04
 -5.2240182E-04 -5.6013884E-04 -5.9412996E-04 -6.2463339E-04 -6.5189507E-04
 -6.7614106E-04 -6.9758872E-04 -7.1643753E-04 -7.3287828E-04 -7.4708584E-04
 -7.5922703E-04 -7.6945795E-04 -7.7792356E-04 -7.8476116E-04 -7.9009746E-04
 -7.9405319E-04 -7.9673977E-04 -7.9826108E-04 -7.9871609E-04 -7.9819676E-04
 -7.9678732E-04 -7.9456653E-04 -7.9161196E-04 -7.8799052E-04 -7.8376947E-04
 -7.7900779E-04 -7.7376195E-04 -7.6808420E-04 -7.6202396E-04 -7.5562665E-04
 -7.4893463E-04
 7.6986000E-02 7.4535154E-02 7.2165035E-02 6.9872901E-02 6.7656122E-02
 6.5512136E-02 6.3438460E-02 6.1432708E-02 5.9492566E-02 5.7615820E-02
 5.5800311E-02 5.4043960E-02 5.2344747E-02 5.0700758E-02 4.9110107E-02
 4.7570996E-02 4.6081673E-02 4.4640448E-02 4.3245710E-02 4.1895889E-02
 4.0589470E-02 3.9324977E-02 3.8101029E-02 3.6916222E-02 3.5769276E-02
 3.4658924E-02 3.3583917E-02 3.2543100E-02 3.1535305E-02 3.0559443E-02
 2.9614463E-02 2.8699322E-02 2.7813047E-02 2.6954662E-02 2.6123254E-02
 2.5317943E-02 2.4537848E-02 2.3782160E-02 2.3050060E-02 2.2340780E-02
 2.1653578E-02 2.0987727E-02 2.0342538E-02 1.9717326E-02 1.9111443E-02
 1.8524276E-02 1.7955204E-02 1.7403647E-02 1.6869036E-02 1.6350830E-02
 1.5848503E-02 1.5361531E-02 1.4889438E-02 1.4431739E-02 1.3987971E-02
 1.3557705E-02 1.3140489E-02 1.2735926E-02 1.2343603E-02 1.1963136E-02
 1.1594155E-02
 4.2850631E-03 3.8468938E-03 3.4386313E-03 3.0584778E-03 2.7047382E-03
 2.3758062E-03 2.0701683E-03 1.7863947E-03 1.5231366E-03 1.2791237E-03
 1.0531544E-03 8.4409927E-04 6.5089023E-04 4.7252455E-04 3.0805639E-04
 1.5659331E-04 1.7296901E-05 -1.1062185E-04 -2.2790594E-04 -3.3525421E-04
 -4.3332489E-04 -5.2273500E-04 -6.0406479E-04 -6.7786122E-04 -7.4463576E-04
 -8.0487167E-04 -8.5902034E-04 -9.0750615E-04 -9.5072796E-04 -9.8905910E-04
 -1.0228504E-03 -1.0524304E-03 -1.0781079E-03 -1.1001710E-03 -1.1188912E-03
 -1.1345207E-03 -1.1472990E-03 -1.1574457E-03 -1.1651706E-03 -1.1706678E-03
 -1.1741192E-03 -1.1756941E-03 -1.1755520E-03 -1.1738412E-03 -1.1707008E-03
 -1.1662593E-03 -1.1606385E-03 -1.1539500E-03 -1.1462994E-03 -1.1377846E-03
 -1.1284951E-03 -1.1185176E-03 -1.1079301E-03 -1.0968051E-03 -1.0852126E-03
 -1.0732136E-03 -1.0608688E-03 -1.0482320E-03 -1.0353520E-03 -1.0222771E-03
 -1.0090492E-03
 8.5317217E-02 8.2592338E-02 7.9957373E-02 7.7409290E-02 7.4945189E-02
 7.2562195E-02 7.0257574E-02 6.8028666E-02 6.5872885E-02 6.3787796E-02
 6.1770972E-02 5.9820104E-02 5.7932951E-02 5.6107365E-02 5.4341249E-02
 5.2632600E-02 5.0979465E-02 4.9379949E-02 4.7832258E-02 4.6334643E-02
 4.4885401E-02 4.3482896E-02 4.2125568E-02 4.0811874E-02 3.9540347E-02
 3.8309600E-02 3.7118219E-02 3.5964917E-02 3.4848399E-02 3.3767439E-02
 3.2720856E-02 3.1707484E-02 3.0726248E-02 2.9776042E-02 2.8855847E-02
 2.7964687E-02 2.7101573E-02 2.6265593E-02 2.5455840E-02 2.4671454E-02
 2.3911608E-02 2.3175480E-02 2.2462305E-02 2.1771321E-02 2.1101808E-02
 2.0453066E-02 1.9824412E-02 1.9215198E-02 1.8624790E-02 1.8052576E-02
 1.7497977E-02 1.6960405E-02 1.6439332E-02 1.5934208E-02 1.5444532E-02
 1.4969807E-02 1.4509549E-02 1.4063300E-02 1.3630602E-02 1.3211032E-02
 1.2804172E-02
 4.0766373E-03 3.5955783E-03 3.1486063E-03 2.7336348E-03 2.3486963E-03
 1.9919288E-03 1.6615776E-03 1.3559876E-03 1.0735987E-03 8.1293931E-04
 5.7262642E-04 3.5135198E-04 1.4788563E-04 -3.8927774E-05 -2.1017797E-04
 -3.6688967E-04 -5.1002786E-04 -6.4049818E-04 -7.5915275E-04 -8.6679141E-04
 -9.6416700E-04 -1.0519858E-03 -1.1309100E-03 -1.2015641E-03 -1.2645306E-03
 -1.3203576E-03 -1.3695599E-03 -1.4126179E-03 -1.4499837E-03 -1.4820807E-03
 -1.5093050E-03 -1.5320263E-03 -1.5505939E-03 -1.5653307E-03 -1.5765426E-03
 -1.5845117E-03 -1.5895052E-03 -1.5917709E-03 -1.5915405E-03 -1.5890308E-03
 -1.5844431E-03 -1.5779670E-03 -1.5697770E-03 -1.5600380E-03 -1.5489018E-03
 -1.5365118E-03 -1.5229984E-03 -1.5084868E-03 -1.4930894E-03 -1.4769145E-03
 -1.4600585E-03 -1.4426151E-03 -1.4246678E-03 -1.4062964E-03 -1.3875718E-03
 -1.3685640E-03 -1.3493338E-03 -1.3299392E-03 -1.3104336E-03 -1.2908640E-03
 -1.2712777E-03
 9.4694801E-02 9.1660246E-02 8.8725962E-02 8.5888565E-02 8.3144844E-02
 8.0491617E-02 7.7925861E-02 7.5444609E-02 7.3045015E-02 7.0724331E-02
 6.8479888E-02 6.6309094E-02 6.4209461E-02 6.2178608E-02 6.0214173E-02
 5.8313925E-02 5.6475680E-02 5.4697338E-02 5.2976884E-02 5.1312350E-02
 4.9701851E-02 4.8143543E-02 4.6635684E-02 4.5176540E-02 4.3764487E-02
 4.2397950E-02 4.1075360E-02 3.9795268E-02 3.8556218E-02 3.7356846E-02
 3.6195830E-02 3.5071861E-02 3.3983715E-02 3.2930177E-02 3.1910107E-02
 3.0922387E-02 2.9965926E-02 2.9039701E-02 2.8142693E-02 2.7273936E-02
 2.6432514E-02 2.5617490E-02 2.4828022E-02 2.4063248E-02 2.3322364E-02
 2.2604588E-02 2.1909153E-02 2.1235337E-02 2.0582426E-02 1.9949740E-02
 1.9336628E-02 1.8742437E-02 1.8166570E-02 1.7608417E-02 1.7067416E-02
 1.6543010E-02 1.6034663E-02 1.5541858E-02 1.5064093E-02 1.4600883E-02
 1.4151769E-02
 4.1365507E-03 3.5963429E-03 3.0954198E-03 2.6313395E-03 2.2018054E-03
 1.8046421E-03 1.4378035E-03 1.0993589E-03 7.8748888E-04 5.0048385E-04
 2.3673015E-04 -5.2919358E-06 -2.2700982E-04 -4.2976730E-04 -6.1482890E-04
 -7.8338198E-04 -9.3654328E-04 -1.0753636E-03 -1.2008261E-03 -1.3138576E-03
 -1.4153265E-03 -1.5060477E-03 -1.5867843E-03 -1.6582547E-03 -1.7211309E-03
 -1.7760417E-03 -1.8235780E-03 -1.8642917E-03 -1.8987008E-03 -1.9272891E-03
 -1.9505098E-03 -1.9687864E-03 -1.9825147E-03 -1.9920652E-03 -1.9977835E-03
 -1.9999929E-03 -1.9989950E-03 -1.9950699E-03 -1.9884808E-03 -1.9794730E-03
 -1.9682732E-03 -1.9550943E-03 -1.9401340E-03 -1.9235765E-03 -1.9055925E-03
 -1.8863415E-03 -1.8659704E-03 -1.8446174E-03 -1.8224091E-03 -1.7994640E-03
 -1.7758912E-03 -1.7517917E-03 -1.7272596E-03 -1.7023813E-03 -1.6772368E-03
 -1.6519000E-03 -1.6264380E-03 -1.6009153E-03 -1.5753873E-03 -1.5499085E-03
 -1.5245271E-03
 0.1052729 0.1018873 9.8613642E-02 9.5448181E-02 9.2387356E-02
 8.9427650E-02 8.6565718E-02 8.3798282E-02 8.1122145E-02 7.8534283E-02
 7.6031707E-02 7.3611557E-02 7.1271025E-02 6.9007471E-02 6.6818252E-02
 6.4700887E-02 6.2652923E-02 6.0672015E-02 5.8755901E-02 5.6902379E-02
 5.5109337E-02 5.3374719E-02 5.1696558E-02 5.0072916E-02 4.8501957E-02
 4.6981931E-02 4.5511071E-02 4.4087749E-02 4.2710330E-02 4.1377276E-02
 4.0087111E-02 3.8838360E-02 3.7629656E-02 3.6459621E-02 3.5326976E-02
 3.4230478E-02 3.3168893E-02 3.2141071E-02 3.1145867E-02 3.0182200E-02
 2.9249031E-02 2.8345326E-02 2.7470123E-02 2.6622461E-02 2.5801435E-02
 2.5006175E-02 2.4235813E-02 2.3489542E-02 2.2766557E-02 2.2066101E-02
 2.1387441E-02 2.0729851E-02 2.0092649E-02 1.9475166E-02 1.8876759E-02
 1.8296819E-02 1.7734727E-02 1.7189924E-02 1.6661832E-02 1.6149921E-02
 1.5653668E-02
 4.6073846E-03 3.9855922E-03 3.4096078E-03 2.8765542E-03 2.3837294E-03
 1.9285752E-03 1.5086863E-03 1.1217948E-03 7.6576415E-04 4.3858879E-04
 1.3837454E-04 -1.3665789E-04 -3.8818250E-04 -6.1777199E-04 -8.2690542E-04
 -1.0169727E-03 -1.1892800E-03 -1.3450517E-03 -1.4854394E-03 -1.6115217E-03
 -1.7243124E-03 -1.8247613E-03 -1.9137571E-03 -1.9921358E-03 -2.0606783E-03
 -2.1201165E-03 -2.1711362E-03 -2.2143780E-03 -2.2504423E-03 -2.2798900E-03
 -2.3032459E-03 -2.3209995E-03 -2.3336096E-03 -2.3415028E-03 -2.3450793E-03
 -2.3447103E-03 -2.3407447E-03 -2.3335051E-03 -2.3232934E-03 -2.3103913E-03
 -2.2950599E-03 -2.2775426E-03 -2.2580663E-03 -2.2368415E-03 -2.2140644E-03
 -2.1899154E-03 -2.1645641E-03 -2.1381665E-03 -2.1108673E-03 -2.0828014E-03
 -2.0540929E-03 -2.0248555E-03 -1.9951975E-03 -1.9652147E-03 -1.9349990E-03
 -1.9046337E-03 -1.8741948E-03 -1.8437534E-03 -1.8133740E-03 -1.7831161E-03
 -1.7530345E-03
 0.1172326 0.1134476 0.1097878 0.1062490 0.1028272
 9.9518709E-02 9.6319675E-02 9.3226492E-02 9.0235636E-02 8.7343730E-02
 8.4547453E-02 8.1843600E-02 7.9229057E-02 7.6700859E-02 7.4256070E-02
 7.1891882E-02 6.9605581E-02 6.7394517E-02 6.5256163E-02 6.3188046E-02
 6.1187796E-02 5.9253097E-02 5.7381742E-02 5.5571552E-02 5.3820476E-02
 5.2126516E-02 5.0487697E-02 4.8902191E-02 4.7368158E-02 4.5883853E-02
 4.4447627E-02 4.3057811E-02 4.1712869E-02 4.0411249E-02 3.9151505E-02
 3.7932239E-02 3.6752064E-02 3.5609681E-02 3.4503806E-02 3.3433214E-02
 3.2396741E-02 3.1393219E-02 3.0421562E-02 2.9480699E-02 2.8569601E-02
 2.7687293E-02 2.6832797E-02 2.6005208E-02 2.5203621E-02 2.4427179E-02
 2.3675064E-02 2.2946451E-02 2.2240594E-02 2.1556720E-02 2.0894114E-02
 2.0252092E-02 1.9629966E-02 1.9027099E-02 1.8442847E-02 1.7876608E-02
 1.7327810E-02
 5.6837020E-03 4.9496512E-03 4.2696651E-03 3.6403313E-03 3.0584405E-03
 2.5209652E-03 2.0250508E-03 1.5680171E-03 1.1473316E-03 7.6062232E-04
 4.0565009E-04 8.0310543E-05 -2.1737456E-04 -4.8926083E-04 -7.3709746E-04
 -9.6252357E-04 -1.1670796E-03 -1.3522124E-03 -1.5192756E-03 -1.6695431E-03
 -1.8042079E-03 -1.9243893E-03 -2.0311323E-03 -2.1254229E-03 -2.2081782E-03
 -2.2802574E-03 -2.3424681E-03 -2.3955626E-03 -2.4402463E-03 -2.4771774E-03
 -2.5069709E-03 -2.5302025E-03 -2.5474087E-03 -2.5590910E-03 -2.5657164E-03
 -2.5677215E-03 -2.5655124E-03 -2.5594686E-03 -2.5499437E-03 -2.5372652E-03
 -2.5217396E-03 -2.5036514E-03 -2.4832655E-03 -2.4608271E-03 -2.4365657E-03
 -2.4106926E-03 -2.3834051E-03 -2.3548857E-03 -2.3253029E-03 -2.2948137E-03
 -2.2635639E-03 -2.2316861E-03 -2.1993059E-03 -2.1665366E-03 -2.1334842E-03
 -2.1002470E-03 -2.0669131E-03 -2.0335671E-03 -2.0002830E-03 -1.9671319E-03
 -1.9341776E-03
 0.1307922 0.1265506 0.1224492 0.1184834 0.1146489
 0.1109415 0.1073569 0.1038913 0.1005406 9.7301081E-02
 9.4169103E-02 9.1141060E-02 8.8213474E-02 8.5383028E-02 8.2646415E-02
 8.0000512E-02 7.7442266E-02 7.4968673E-02 7.2576918E-02 7.0264220E-02
 6.8027899E-02 6.5865345E-02 6.3774087E-02 6.1751641E-02 5.9795711E-02
 5.7904035E-02 5.6074396E-02 5.4304712E-02 5.2592903E-02 5.0937019E-02
 4.9335178E-02 4.7785502E-02 4.6286244E-02 4.4835664E-02 4.3432124E-02
 4.2074036E-02 4.0759835E-02 3.9488059E-02 3.8257249E-02 3.7066028E-02
 3.5913073E-02 3.4797065E-02 3.3716794E-02 3.2671031E-02 3.1658616E-02
 3.0678457E-02 2.9729445E-02 2.8810563E-02 2.7920784E-02 2.7059145E-02
 2.6224721E-02 2.5416588E-02 2.4633897E-02 2.3875782E-02 2.3141442E-02
 2.2430100E-02 2.1740980E-02 2.1073371E-02 2.0426540E-02 1.9799829E-02
 1.9192567E-02
 7.6344088E-03 6.7464290E-03 5.9230295E-03 5.1601273E-03 4.4538891E-03
 3.8006983E-03 3.1971466E-03 2.6400301E-03 2.1263286E-03 1.6532151E-03
 1.2180168E-03 8.1822521E-04 4.5148245E-04 1.1557779E-04 -1.9157378E-04
 -4.7192100E-04 -7.2730251E-04 -9.5943868E-04 -1.1699422E-03 -1.3603278E-03
 -1.5320157E-03 -1.6863381E-03 -1.8245394E-03 -1.9477897E-03 -2.0571812E-03
 -2.1537368E-03 -2.2384170E-03 -2.3121145E-03 -2.3756698E-03 -2.4298651E-03
 -2.4754317E-03 -2.5130545E-03 -2.5433702E-03 -2.5669769E-03 -2.5844292E-03
 -2.5962458E-03 -2.6029116E-03 -2.6048759E-03 -2.6025607E-03 -2.5963553E-03
 -2.5866255E-03 -2.5737092E-03 -2.5579233E-03 -2.5395595E-03 -2.5188904E-03
 -2.4961703E-03 -2.4716326E-03 -2.4454980E-03 -2.4179672E-03 -2.3892273E-03
 -2.3594536E-03 -2.3288066E-03 -2.2974361E-03 -2.2654792E-03 -2.2330643E-03
 -2.2003094E-03 -2.1673229E-03 -2.1342065E-03 -2.1010519E-03 -2.0679459E-03
 -2.0349668E-03
 0.1462273 0.1414596 0.1368493 0.1323915 0.1280814
 0.1239143 0.1198857 0.1159911 0.1122260 0.1085864
 0.1050681 0.1016671 9.8379575E-02 9.5201671E-02 9.2129767E-02
 8.9160323E-02 8.6289883E-02 8.3515108E-02 8.0832779E-02 7.8239761E-02
 7.5733036E-02 7.3309645E-02 7.0966788E-02 6.8701670E-02 6.6511661E-02
 6.4394228E-02 6.2346831E-02 6.0367119E-02 5.8452737E-02 5.6601461E-02
 5.4811154E-02 5.3079687E-02 5.1405091E-02 4.9785372E-02 4.8218671E-02
 4.6703193E-02 4.5237165E-02 4.3818917E-02 4.2446796E-02 4.1119236E-02
 3.9834745E-02 3.8591824E-02 3.7389088E-02 3.6225151E-02 3.5098713E-02
 3.4008514E-02 3.2953303E-02 3.1931933E-02 3.0943239E-02 2.9986136E-02
 2.9059568E-02 2.8162492E-02 2.7293950E-02 2.6452964E-02 2.5638625E-02
 2.4850054E-02 2.4086382E-02 2.3346798E-02 2.2630488E-02 2.1936690E-02
 2.1264663E-02
 1.0836340E-02 9.7381948E-03 8.7180585E-03 7.7710114E-03 6.8924357E-03
 6.0779774E-03 5.3235367E-03 4.6252613E-03 3.9795181E-03 3.3829091E-03
 2.8322251E-03 2.3244510E-03 1.8567577E-03 1.4264842E-03 1.0311344E-03
 6.6836074E-04 3.3595966E-04 3.1865377E-05 -2.4586081E-04 -4.9903837E-04
 -7.2937034E-04 -9.3845837E-04 -1.1277973E-03 -1.2987957E-03 -1.4527623E-03
 -1.5909272E-03 -1.7144474E-03 -1.8243953E-03 -1.9217829E-03 -2.0075510E-03
 -2.0825800E-03 -2.1476946E-03 -2.2036633E-03 -2.2512055E-03 -2.2909914E-03
 -2.3236470E-03 -2.3497578E-03 -2.3698683E-03 -2.3844859E-03 -2.3940846E-03
 -2.3991065E-03 -2.3999633E-03 -2.3970371E-03 -2.3906839E-03 -2.3812368E-03
 -2.3690041E-03 -2.3542726E-03 -2.3373109E-03 -2.3183648E-03 -2.2976666E-03
 -2.2754308E-03 -2.2518558E-03 -2.2271266E-03 -2.2014147E-03 -2.1748799E-03
 -2.1476694E-03 -2.1199211E-03 -2.0917624E-03 -2.0633114E-03 -2.0346784E-03
 -2.0059643E-03
 0.1639139 0.1585323 0.1533282 0.1482964 0.1434314
 0.1387282 0.1341817 0.1297870 0.1255391 0.1214335
 0.1174654 0.1136305 0.1099242 0.1063425 0.1028812
 9.9536188E-02 9.6303664E-02 9.3179800E-02 9.0160973E-02 8.7243602E-02
 8.4424242E-02 8.1699558E-02 7.9066329E-02 7.6521389E-02 7.4061736E-02
 7.1684472E-02 6.9386706E-02 6.7165762E-02 6.5018930E-02 6.2943682E-02
 6.0937583E-02 5.8998182E-02 5.7123236E-02 5.5310473E-02 5.3557765E-02
 5.1863056E-02 5.0224323E-02 4.8639648E-02 4.7107156E-02 4.5625061E-02
 4.4191647E-02 4.2805210E-02 4.1464169E-02 4.0166941E-02 3.8912043E-02
 3.7698042E-02 3.6523510E-02 3.5387140E-02 3.4287609E-02 3.3223677E-02
 3.2194141E-02 3.1197825E-02 3.0233636E-02 2.9300461E-02 2.8397270E-02
 2.7523074E-02 2.6676875E-02 2.5857756E-02 2.5064802E-02 2.4297148E-02
 2.3553954E-02
 1.5822789E-02 1.4439917E-02 1.3152085E-02 1.1953341E-02 1.0838080E-02
 9.8010404E-03 8.8372659E-03 7.9421001E-03 7.1111498E-03 6.3403202E-03
 5.6257294E-03 4.9637407E-03 4.3509365E-03 3.7841096E-03 3.2602432E-03
 2.7765050E-03 2.3302357E-03 1.9189398E-03 1.5402769E-03 1.1920496E-03
 8.7219663E-04 5.7878258E-04 3.1000117E-04 6.4149513E-05 -1.6036213E-04
 -3.6502053E-04 -5.5122795E-04 -7.2028855E-04 -8.7342534E-04 -1.0117872E-03
 -1.1364368E-03 -1.2483861E-03 -1.3485668E-03 -1.4378566E-03 -1.5170737E-03
 -1.5869834E-03 -1.6483009E-03 -1.7016935E-03 -1.7477849E-03 -1.7871599E-03
 -1.8203571E-03 -1.8478878E-03 -1.8702229E-03 -1.8878044E-03 -1.9010440E-03
 -1.9103260E-03 -1.9160068E-03 -1.9184224E-03 -1.9178841E-03 -1.9146806E-03
 -1.9090831E-03 -1.9013446E-03 -1.8917009E-03 -1.8803697E-03 -1.8675578E-03
 -1.8534568E-03 -1.8382446E-03 -1.8220876E-03 -1.8051456E-03 -1.7875627E-03
 -1.7694781E-03
 0.1844317 0.1783194 0.1724084 0.1666929 0.1611671
 0.1558255 0.1506624 0.1456724 0.1408500 0.1361900
 0.1316872 0.1273367 0.1231333 0.1190725 0.1151495
 0.1113597 0.1076987 0.1041622 0.1007460 9.7446024E-02
 9.4258375E-02 9.1179177E-02 8.8204756E-02 8.5331462E-02 8.2555853E-02
 7.9874575E-02 7.7284314E-02 7.4781962E-02 7.2364412E-02 7.0028752E-02
 6.7772143E-02 6.5591790E-02 6.3485086E-02 6.1449394E-02 5.9482273E-02
 5.7581343E-02 5.5744264E-02 5.3968832E-02 5.2252878E-02 5.0594334E-02
 4.8991218E-02 4.7441572E-02 4.5943573E-02 4.4495400E-02 4.3095335E-02
 4.1741736E-02 4.0432967E-02 3.9167508E-02 3.7943855E-02 3.6760572E-02
 3.5616301E-02 3.4509681E-02 3.3439454E-02 3.2404363E-02 3.1403229E-02
 3.0434914E-02 2.9498298E-02 2.8592331E-02 2.7715962E-02 2.6868226E-02
 2.6048165E-02
 2.3338787E-02 2.1577671E-02 1.9932650E-02 1.8396512E-02 1.6962461E-02
 1.5624112E-02 1.4375464E-02 1.3210905E-02 1.2125110E-02 1.1113151E-02
 1.0170338E-02 9.2922896E-03 8.4748892E-03 7.7142757E-03 7.0068059E-03
 6.3490840E-03 5.7378998E-03 5.1702396E-03 4.6432992E-03 4.1544200E-03
 3.7011257E-03 3.2810760E-03 2.8920923E-03 2.5321185E-03 2.1992300E-03
 1.8916358E-03 1.6076330E-03 1.3456410E-03 1.1041741E-03 8.8184356E-04
 6.7734637E-04 4.8945838E-04 3.1703812E-04 1.5901076E-04 1.4377545E-05
 -1.1780310E-04 -2.3840576E-04 -3.4825772E-04 -4.4812812E-04 -5.3873897E-04
 -6.2075868E-04 -6.9482531E-04 -7.6152466E-04 -8.2141178E-04 -8.7500334E-04
 -9.2278130E-04 -9.6520147E-04 -1.0026873E-03 -1.0356337E-03 -1.0644144E-03
 -1.0893776E-03 -1.1108532E-03 -1.1291427E-03 -1.1445384E-03 -1.1573097E-03
 -1.1677131E-03 -1.1759889E-03 -1.1823642E-03 -1.1870560E-03 -1.1902679E-03
 -1.1921949E-03
 0.2087864 0.2017861 0.1950146 0.1884655 0.1821329
 0.1760106 0.1700925 0.1643727 0.1588452 0.1535043
 0.1483442 0.1433594 0.1385443 0.1338936 0.1294020
 0.1250645 0.1208759 0.1168315 0.1129263 0.1091560
 0.1055158 0.1020015 9.8608717E-02 9.5333368E-02 9.2171445E-02
 8.9119069E-02 8.6172417E-02 8.3327875E-02 8.0581851E-02 7.7930935E-02
 7.5371832E-02 7.2901264E-02 7.0516184E-02 6.8213530E-02 6.5990418E-02
 6.3844077E-02 6.1771732E-02 5.9770815E-02 5.7838764E-02 5.5973157E-02
 5.4171667E-02 5.2431986E-02 5.0751965E-02 4.9129464E-02 4.7562480E-02
 4.6049062E-02 4.4587310E-02 4.3175440E-02 4.1811686E-02 4.0494382E-02
 3.9221939E-02 3.7992779E-02 3.6805440E-02 3.5658475E-02 3.4550522E-02
 3.3480283E-02 3.2446470E-02 3.1447902E-02 3.0483389E-02 2.9551841E-02
 2.8652204E-02
 3.4323387E-02 3.2084368E-02 2.9986521E-02 2.8020982E-02 2.6179487E-02
 2.4454242E-02 2.2837965E-02 2.1323839E-02 1.9905444E-02 1.8576808E-02
 1.7332299E-02 1.6166650E-02 1.5074897E-02 1.4052454E-02 1.3094939E-02
 1.2198316E-02 1.1358751E-02 1.0572669E-02 9.8367371E-03 9.1478182E-03
 8.5029677E-03 7.8994371E-03 7.3346342E-03 6.8061440E-03 6.3117039E-03
 5.8492036E-03 5.4166373E-03 5.0121471E-03 4.6339883E-03 4.2805220E-03
 3.9502201E-03 3.6416291E-03 3.3534179E-03 3.0843120E-03 2.8331229E-03
 2.5987488E-03 2.3801341E-03 2.1763060E-03 1.9863378E-03 1.8093704E-03
 1.6445928E-03 1.4912360E-03 1.3485898E-03 1.2159788E-03 1.0927669E-03
 9.7836123E-04 8.7219640E-04 7.7375164E-04 6.8251701E-04 5.9802778E-04
 5.1983853E-04 4.4752573E-04 3.8070045E-04 3.1897626E-04 2.6199280E-04
 2.0941201E-04 1.6090595E-04 1.1614973E-04 7.4844487E-05 3.6691341E-05
 1.3933068E-06
 0.2386564 0.2305904 0.2227824 0.2152260 0.2079147
 0.2008419 0.1940010 0.1873858 0.1809895 0.1748060
 0.1688290 0.1630523 0.1574698 0.1520756 0.1468639
 0.1418289 0.1369651 0.1322669 0.1277291 0.1233465
 0.1191141 0.1150269 0.1110802 0.1072693 0.1035897
 0.1000371 9.6607283E-02 9.3296103E-02 9.0099595E-02 8.7013952E-02
 8.4035508E-02 8.1160635E-02 7.8385957E-02 7.5708069E-02 7.3123813E-02
 7.0630118E-02 6.8223976E-02 6.5902546E-02 6.3663051E-02 6.1502818E-02
 5.9419308E-02 5.7410002E-02 5.5472523E-02 5.3604491E-02 5.1803667E-02
 5.0067835E-02 4.8394796E-02 4.6782453E-02 4.5228690E-02 4.3731477E-02
 4.2288817E-02 4.0898703E-02 3.9559245E-02 3.8268540E-02 3.7024755E-02
 3.5826154E-02 3.4671005E-02 3.3557687E-02 3.2484639E-02 3.1450398E-02
 3.0453606E-02
 4.9554072E-02 4.6757620E-02 4.4133432E-02 4.1670494E-02 3.9358519E-02
 3.7187859E-02 3.5149485E-02 3.3234969E-02 3.1436380E-02 2.9746333E-02
 2.8157877E-02 2.6664516E-02 2.5260167E-02 2.3939140E-02 2.2696082E-02
 2.1526013E-02 2.0424237E-02 1.9386368E-02 1.8408310E-02 1.7486218E-02
 1.6616490E-02 1.5795758E-02 1.5020873E-02 1.4288878E-02 1.3597009E-02
 1.2942719E-02 1.2323561E-02 1.1737283E-02 1.1181793E-02 1.0655119E-02
 1.0155434E-02 9.6810274E-03 9.2303362E-03 8.8018570E-03 8.3942534E-03
 8.0062645E-03 7.6367464E-03 7.2846385E-03 6.9489903E-03 6.6289366E-03
 6.3237082E-03 6.0326178E-03 5.7550892E-03 5.4905917E-03 5.2386932E-03
 4.9990350E-03 4.7713085E-03 4.5552771E-03 4.3507530E-03 4.1575842E-03
 3.9756713E-03 3.8049279E-03 3.6453456E-03 3.4968974E-03 3.3596519E-03
 3.2336931E-03 3.1192165E-03 3.0165345E-03 2.9260905E-03 2.8486184E-03
 2.7851954E-03
 0.2759621 0.2666856 0.2577005 0.2490005 0.2405786
 0.2324280 0.2245418 0.2169130 0.2095348 0.2024003
 0.1955027 0.1888352 0.1823914 0.1761648 0.1701488
 0.1643374 0.1587244 0.1533038 0.1480701 0.1430175
 0.1381408 0.1334346 0.1288940 0.1245141 0.1202905
 0.1162186 0.1122944 0.1085138 0.1048731 0.1013685
 9.7996749E-02 9.4754159E-02 9.1637440E-02 8.8642985E-02 8.5767239E-02
 8.3006412E-02 8.0356412E-02 7.7812992E-02 7.5371645E-02 7.3027760E-02
 7.0776634E-02 6.8613499E-02 6.6533782E-02 6.4533003E-02 6.2606893E-02
 6.0751483E-02 5.8962967E-02 5.7237912E-02 5.5573031E-02 5.3965379E-02
 5.2412126E-02 5.0910722E-02 4.9458787E-02 4.8054077E-02 4.6694487E-02
 4.5378100E-02 4.4103034E-02 4.2867579E-02 4.1670032E-02 4.0508848E-02
 3.9382517E-02
 6.9016971E-02 6.5568574E-02 6.2333629E-02 5.9298452E-02 5.6450345E-02
 5.3777337E-02 5.1268313E-02 4.8912872E-02 4.6701346E-02 4.4624615E-02
 4.2674281E-02 4.0842373E-02 3.9121546E-02 3.7504889E-02 3.5985932E-02
 3.4558713E-02 3.3217583E-02 3.1957306E-02 3.0772978E-02 2.9660044E-02
 2.8614195E-02 2.7631419E-02 2.6707942E-02 2.5840174E-02 2.5024761E-02
 2.4258483E-02 2.3538196E-02 2.2860862E-02 2.2223487E-02 2.1623090E-02
 2.1056611E-02 2.0520931E-02 2.0012898E-02 1.9529201E-02 1.9066552E-02
 1.8621674E-02 1.8191287E-02 1.7772401E-02 1.7362187E-02 1.6958226E-02
 1.6558448E-02 1.6161177E-02 1.5765140E-02 1.5369429E-02 1.4973449E-02
 1.4576858E-02 1.4179504E-02 1.3781411E-02 1.3382708E-02 1.2983561E-02
 1.2584241E-02 1.2184995E-02 1.1786124E-02 1.1387874E-02 1.0990498E-02
 1.0594266E-02 1.0199391E-02 9.8060993E-03 9.4145611E-03 9.0249786E-03
 8.6375065E-03
 0.3218945 0.3112565 0.3009492 0.2909661 0.2813004
 0.2719451 0.2628932 0.2541373 0.2456702 0.2374845
 0.2295731 0.2219285 0.2145436 0.2074113 0.2005244
 0.1938761 0.1874594 0.1812674 0.1752935 0.1695312
 0.1639738 0.1586150 0.1534484 0.1484678 0.1436670
 0.1390401 0.1345808 0.1302834 0.1261420 0.1221509
 0.1183045 0.1145973 0.1110239 0.1075789 0.1042574
 0.1010544 9.7964935E-02 9.4984502E-02 9.2108570E-02 8.9332826E-02
 8.6653210E-02 8.4065691E-02 8.1566505E-02 7.9152040E-02 7.6818809E-02
 7.4563541E-02 7.2383076E-02 7.0274368E-02 6.8234570E-02 6.6260889E-02
 6.4350732E-02 6.2501527E-02 6.0710903E-02 5.8976509E-02 5.7296086E-02
 5.5667534E-02 5.4088745E-02 5.2557733E-02 5.1072534E-02 4.9631283E-02
 4.8232172E-02
 9.2358701E-02 8.8075124E-02 8.4055260E-02 8.0281734E-02 7.6738521E-02
 7.3410459E-02 7.0283517E-02 6.7344479E-02 6.4580970E-02 6.1981522E-02
 5.9535250E-02 5.7232007E-02 5.5062223E-02 5.3016987E-02 5.1087819E-02
 4.9266860E-02 4.7546577E-02 4.5919962E-02 4.4380337E-02 4.2921443E-02
 4.1537374E-02 4.0222537E-02 3.8971640E-02 3.7779700E-02 3.6642049E-02
 3.5554323E-02 3.4512352E-02 3.3512302E-02 3.2550599E-02 3.1623945E-02
 3.0729283E-02 2.9863771E-02 2.9024903E-02 2.8210355E-02 2.7418016E-02
 2.6646031E-02 2.5892735E-02 2.5156634E-02 2.4436390E-02 2.3730852E-02
 2.3039056E-02 2.2360023E-02 2.1693034E-02 2.1037355E-02 2.0392392E-02
 1.9757623E-02 1.9132558E-02 1.8516788E-02 1.7909918E-02 1.7311607E-02
 1.6721563E-02 1.6139479E-02 1.5565126E-02 1.4998233E-02 1.4438597E-02
 1.3886016E-02 1.3340292E-02 1.2801266E-02 1.2268778E-02 1.1742684E-02
 1.1222891E-02
 0.3772264 0.3650148 0.3531755 0.3417022 0.3305884
 0.3198267 0.3094097 0.2993298 0.2895789 0.2801493
 0.2710326 0.2622207 0.2537051 0.2454780 0.2375309
 0.2298558 0.2224443 0.2152885 0.2083804 0.2017122
 0.1952759 0.1890640 0.1830690 0.1772832 0.1716995
 0.1663109 0.1611103 0.1560909 0.1512462 0.1465696
 0.1420550 0.1376962 0.1334874 0.1294230 0.1254973
 0.1217053 0.1180416 0.1145015 0.1110802 0.1077732
 0.1045761 0.1014846 9.8494902E-02 9.5602974E-02 9.2805117E-02
 9.0097800E-02 8.7477542E-02 8.4941067E-02 8.2485169E-02 8.0106765E-02
 7.7802964E-02 7.5570837E-02 7.3407695E-02 7.1310781E-02 6.9277577E-02
 6.7305572E-02 6.5392308E-02 6.3535452E-02 6.1732668E-02 5.9981715E-02
 5.8280449E-02
 0.1199223 0.1145522 0.1095075 0.1047663 0.1003082
 9.6113920E-02 9.2165716E-02 8.8446885E-02 8.4941782E-02 8.1635900E-02
 7.8515433E-02 7.5567678E-02 7.2780728E-02 7.0143335E-02 6.7644991E-02
 6.5276004E-02 6.3027091E-02 6.0889691E-02 5.8855787E-02 5.6917954E-02
 5.5069208E-02 5.3303011E-02 5.1613346E-02 4.9994603E-02 4.8441622E-02
 4.6949588E-02 4.5514029E-02 4.4130884E-02 4.2796358E-02 4.1507050E-02
 4.0259726E-02 3.9051492E-02 3.7879754E-02 3.6742032E-02 3.5636127E-02
 3.4560017E-02 3.3511892E-02 3.2490049E-02 3.1492949E-02 3.0519230E-02
 2.9567596E-02 2.8636852E-02 2.7725972E-02 2.6833929E-02 2.5959820E-02
 2.5102828E-02 2.4262149E-02 2.3437062E-02 2.2626890E-02 2.1831011E-02
 2.1048844E-02 2.0279808E-02 1.9523434E-02 1.8779205E-02 1.8046683E-02
 1.7325489E-02 1.6615203E-02 1.5915513E-02 1.5226081E-02 1.4546662E-02
 1.3877018E-02

XFOILinterface/XFOIL/orrs/osm.0240

 256 2.400001
 0.0000000E+00 2.2630259E-02 4.5351036E-02 6.8162702E-02 9.1065601E-02
 0.1140601 0.1371466 0.1603255 0.1835970 0.2069616
 0.2304197 0.2539716 0.2776178 0.3013585 0.3251942
 0.3491252 0.3731520 0.3972748 0.4214941 0.4458103
 0.4702238 0.4947349 0.5193442 0.5440518 0.5688582
 0.5937638 0.6187692 0.6438745 0.6690802 0.6943867
 0.7197945 0.7453039 0.7709153 0.7966292 0.8224459
 0.8483660 0.8743896 0.9005173 0.9267496 0.9530869
 0.9795294 1.006078 1.032732 1.059493 1.086362
 1.113337 1.140421 1.167613 1.194913 1.222323
 1.249843 1.277472 1.305212 1.333063 1.361026
 1.389100 1.417287 1.445586 1.473999 1.502525
 1.531165 1.559920 1.588790 1.617775 1.646876
 1.676094 1.705429 1.734881 1.764450 1.794138
 1.823945 1.853871 1.883916 1.914082 1.944369
 1.974776 2.005306 2.035957 2.066731 2.097628
 2.128649 2.159793 2.191063 2.222457 2.253977
 2.285623 2.317396 2.349296 2.381323 2.413478
 2.445763 2.478176 2.510719 2.543392 2.576195
 2.609130 2.642197 2.675395 2.708727 2.742193
 2.775791 2.809525 2.843393 2.877396 2.911536
 2.945812 2.980226 3.014776 3.049466 3.084294
 3.119261 3.154368 3.189615 3.225004 3.260534
 3.296206 3.332021 3.367979 3.404081 3.440328
 3.476719 3.513256 3.549939 3.586769 3.623746
 3.660871 3.698145 3.735567 3.773140 3.810863
 3.848736 3.886761 3.924938 3.963268 4.001751
 4.040388 4.079180 4.118126 4.157229 4.196488
 4.235904 4.275478 4.315210 4.355101 4.395151
 4.435362 4.475734 4.516267 4.556962 4.597819
 4.638841 4.680026 4.721376 4.762892 4.804574
 4.846422 4.888438 4.930621 4.972974 5.015496
 5.058188 5.101050 5.144085 5.187291 5.230670
 5.274223 5.317950 5.361852 5.405929 5.450183
 5.494614 5.539222 5.584009 5.628975 5.674121
 5.719447 5.764955 5.810645 5.856518 5.902574
 5.948814 5.995239 6.041850 6.088647 6.135631
 6.182804 6.230165 6.277715 6.325456 6.373388
 6.421512 6.469828 6.518337 6.567040 6.615938
 6.665031 6.714322 6.763809 6.813494 6.863378
 6.913461 6.963745 7.014230 7.064917 7.115807
 7.166899 7.218196 7.269699 7.321408 7.373323
 7.425446 7.477778 7.530319 7.583070 7.636033
 7.689207 7.742593 7.796194 7.850008 7.904038
 7.958284 8.012747 8.067428 8.122327 8.177446
 8.232786 8.288347 8.344131 8.400137 8.456367
 8.512823 8.569504 8.626412 8.683548 8.740912
 8.798506 8.856329 8.914385 8.972672 9.031192
 9.089947 9.148936 9.208161 9.267624 9.327323
 9.387262 9.447441 9.507861 9.568522 9.629426
 9.690573 9.751966 9.813603 9.875488 9.937620
 10.00000
 0.0000000E+00 6.4368225E-03 1.2880692E-02 1.9331487E-02 2.5789075E-02
 3.2253329E-02 3.8724106E-02 4.5201275E-02 5.1684689E-02 5.8174197E-02
 6.4669646E-02 7.1170889E-02 7.7677771E-02 8.4190108E-02 9.0707742E-02
 9.7230516E-02 0.1037582 0.1102907 0.1168278 0.1233692
 0.1299149 0.1364645 0.1430179 0.1495749 0.1561353
 0.1626988 0.1692652 0.1758343 0.1824059 0.1889796
 0.1955553 0.2021328 0.2087116 0.2152917 0.2218727
 0.2284543 0.2350362 0.2416183 0.2482001 0.2547814
 0.2613619 0.2679412 0.2745191 0.2810952 0.2876692
 0.2942407 0.3008095 0.3073751 0.3139373 0.3204955
 0.3270496 0.3335991 0.3401436 0.3466827 0.3532160
 0.3597432 0.3662638 0.3727774 0.3792836 0.3857820
 0.3922721 0.3987534 0.4052256 0.4116881 0.4181406
 0.4245826 0.4310135 0.4374329 0.4438402 0.4502351
 0.4566169 0.4629853 0.4693396 0.4756794 0.4820041
 0.4883131 0.4946061 0.5008823 0.5071413 0.5133825
 0.5196053 0.5258092 0.5319935 0.5381578 0.5443014
 0.5504237 0.5565242 0.5626022 0.5686571 0.5746883
 0.5806953 0.5866774 0.5926340 0.5985644 0.6044680
 0.6103442 0.6161925 0.6220120 0.6278023 0.6335626
 0.6392924 0.6449909 0.6506576 0.6562918 0.6618930
 0.6674603 0.6729932 0.6784911 0.6839533 0.6893792
 0.6947680 0.7001194 0.7054325 0.7107068 0.7159415
 0.7211364 0.7262905 0.7314032 0.7364742 0.7415026
 0.7464880 0.7514297 0.7563272 0.7611799 0.7659872
 0.7707487 0.7754638 0.7801319 0.7847525 0.7893252
 0.7938494 0.7983246 0.8027505 0.8071265 0.8114521
 0.8157271 0.8199508 0.8241230 0.8282433 0.8323113
 0.8363267 0.8402890 0.8441980 0.8480535 0.8518552
 0.8556026 0.8592958 0.8629343 0.8665180 0.8700468
 0.8735204 0.8769388 0.8803018 0.8836093 0.8868613
 0.8900576 0.8931983 0.8962833 0.8993129 0.9022867
 0.9052050 0.9080679 0.9108755 0.9136279 0.9163252
 0.9189676 0.9215555 0.9240888 0.9265679 0.9289932
 0.9313648 0.9336830 0.9359483 0.9381610 0.9403214
 0.9424300 0.9444872 0.9464934 0.9484491 0.9503548
 0.9522110 0.9540181 0.9557768 0.9574876 0.9591511
 0.9607680 0.9623386 0.9638638 0.9653442 0.9667804
 0.9681730 0.9695229 0.9708306 0.9720967 0.9733223
 0.9745077 0.9756540 0.9767617 0.9778317 0.9788646
 0.9798613 0.9808224 0.9817489 0.9826415 0.9835008
 0.9843279 0.9851232 0.9858878 0.9866223 0.9873276
 0.9880044 0.9886535 0.9892756 0.9898716 0.9904421
 0.9909880 0.9915100 0.9920087 0.9924851 0.9929398
 0.9933734 0.9937868 0.9941805 0.9945554 0.9949120
 0.9952510 0.9955732 0.9958790 0.9961692 0.9964443
 0.9967051 0.9969519 0.9971855 0.9974064 0.9976151
 0.9978122 0.9979981 0.9981735 0.9983386 0.9984942
 0.9986405 0.9987781 0.9989074 0.9990287 0.9991425
 0.9992493 0.9993492 0.9994428 0.9995303 0.9996122
 0.9996886 0.9997599 0.9998264 0.9998885 0.9999462
 1.000000
 0.2848450 0.2840237 0.2831990 0.2823708 0.2815391
 0.2807038 0.2798646 0.2790217 0.2781747 0.2773237
 0.2764685 0.2756091 0.2747453 0.2738770 0.2730041
 0.2721265 0.2712442 0.2703569 0.2694646 0.2685673
 0.2676646 0.2667567 0.2658433 0.2649243 0.2639997
 0.2630693 0.2621331 0.2611908 0.2602424 0.2592877
 0.2583268 0.2573594 0.2563854 0.2554047 0.2544173
 0.2534230 0.2524216 0.2514132 0.2503975 0.2493744
 0.2483439 0.2473059 0.2462601 0.2452066 0.2441452
 0.2430758 0.2419983 0.2409126 0.2398185 0.2387161
 0.2376051 0.2364856 0.2353573 0.2342202 0.2330742
 0.2319192 0.2307551 0.2295819 0.2283994 0.2272075
 0.2260062 0.2247954 0.2235750 0.2223449 0.2211051
 0.2198556 0.2185961 0.2173267 0.2160474 0.2147580
 0.2134585 0.2121489 0.2108291 0.2094991 0.2081589
 0.2068084 0.2054475 0.2040764 0.2026949 0.2013031
 0.1999010 0.1984885 0.1970656 0.1956325 0.1941890
 0.1927353 0.1912713 0.1897971 0.1883128 0.1868183
 0.1853138 0.1837993 0.1822749 0.1807407 0.1791967
 0.1776432 0.1760800 0.1745075 0.1729256 0.1713345
 0.1697344 0.1681255 0.1665077 0.1648814 0.1632467
 0.1616038 0.1599528 0.1582940 0.1566276 0.1549538
 0.1532727 0.1515848 0.1498901 0.1481890 0.1464817
 0.1447684 0.1430496 0.1413254 0.1395961 0.1378622
 0.1361238 0.1343813 0.1326351 0.1308855 0.1291329
 0.1273776 0.1256199 0.1238604 0.1220993 0.1203370
 0.1185741 0.1168107 0.1150475 0.1132848 0.1115231
 0.1097627 0.1080042 0.1062479 0.1044944 0.1027441
 0.1009974 9.9254854E-02 9.7516924E-02 9.5784083E-02 9.4056800E-02
 9.2335552E-02 9.0620816E-02 8.8913105E-02 8.7212920E-02 8.5520700E-02
 8.3836958E-02 8.2162172E-02 8.0496818E-02 7.8841403E-02 7.7196412E-02
 7.5562298E-02 7.3939562E-02 7.2328679E-02 7.0730068E-02 6.9144271E-02
 6.7571670E-02 6.6012777E-02 6.4467981E-02 6.2937766E-02 6.1422527E-02
 5.9922718E-02 5.8438707E-02 5.6970954E-02 5.5519804E-02 5.4085653E-02
 5.2668877E-02 5.1269826E-02 4.9888868E-02 4.8526302E-02 4.7182471E-02
 4.5857683E-02 4.4552218E-02 4.3266360E-02 4.2000376E-02 4.0754508E-02
 3.9529011E-02 3.8324069E-02 3.7139904E-02 3.5976704E-02 3.4834620E-02
 3.3713795E-02 3.2614380E-02 3.1536479E-02 3.0480200E-02 2.9445603E-02
 2.8432770E-02 2.7441747E-02 2.6472559E-02 2.5525212E-02 2.4599697E-02
 2.3696000E-02 2.2814058E-02 2.1953825E-02 2.1115214E-02 2.0298146E-02
 1.9502504E-02 1.8728161E-02 1.7974958E-02 1.7242769E-02 1.6531391E-02
 1.5840659E-02 1.5170358E-02 1.4520267E-02 1.3890162E-02 1.3279803E-02
 1.2688927E-02 1.2117266E-02 1.1564548E-02 1.1030474E-02 1.0514752E-02
 1.0017065E-02 9.5371129E-03 9.0745408E-03 8.6290333E-03 8.2002394E-03
 7.7878106E-03 7.3914025E-03 7.0106434E-03 6.6451761E-03 6.2946253E-03
 5.9586256E-03 5.6368029E-03 5.3287800E-03 5.0341799E-03 4.7526243E-03
 4.4837343E-03 4.2271363E-03 3.9824448E-03 3.7492926E-03 3.5273028E-03
 3.3161077E-03 3.1153397E-03 2.9246286E-03 2.7436232E-03 2.5719623E-03
 2.4092959E-03 2.2552807E-03 2.1095774E-03 1.9718497E-03 1.8417749E-03
 1.7190259E-03 1.6032929E-03 1.4942674E-03 1.3916518E-03 1.2951540E-03
 1.2044896E-03 1.1193794E-03 1.0395576E-03 9.6476264E-04 8.9474302E-04
 8.2925457E-04
 91 31
 1.500001 1.550001 1.600001 1.650001 1.700001
 1.750001 1.800001 1.850001 1.900001 1.950001
 2.000001 2.050001 2.100001 2.150001 2.200001
 2.250001 2.300001 2.350001 2.400001 2.450001
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150001 4.200001
 4.250001 4.300001 4.350001 4.400002 4.450002
 4.500002 4.550002 4.600002 4.650002 4.700003
 4.750003 4.800003 4.850003 4.900003 4.950004
 5.000004 5.050004 5.100004 5.150004 5.200005
 5.250005 5.300005 5.350005 5.400005 5.450006
 5.500006 5.550006 5.600006 5.650006 5.700006
 5.750007 5.800007 5.850007 5.900007 5.950007
 6.000008
 -1.000000 -0.9500001 -0.9000001 -0.8500001 -0.8000001
 -0.7500001 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -9.9999994E-02 -5.0000012E-02
 0.0000000E+00 5.0000012E-02 0.1000000 0.1500000 0.2000000
 0.2500001 0.3000001 0.3500001 0.4000001 0.4500001
 0.5000001
 2.9390294E-02 2.9038610E-02 2.8616397E-02 2.8137485E-02 2.7613457E-02
 2.7054012E-02 2.6467340E-02 2.5860406E-02 2.5239175E-02 2.4608832E-02
 2.3973873E-02 2.3338206E-02 2.2705201E-02 2.2077713E-02 2.1458123E-02
 2.0848321E-02 2.0249782E-02 1.9663591E-02 1.9090503E-02 1.8531028E-02
 1.7985472E-02 1.7454008E-02 1.6936693E-02 1.6433511E-02 1.5944365E-02
 1.5469098E-02 1.5007499E-02 1.4559313E-02 1.4124265E-02 1.3702055E-02
 1.3292371E-02 1.2894888E-02 1.2509279E-02 1.2135221E-02 1.1772381E-02
 1.1420436E-02 1.1079071E-02 1.0747960E-02 1.0426798E-02 1.0115285E-02
 9.8131252E-03 9.5200287E-03 9.2357192E-03 8.9599211E-03 8.6923763E-03
 8.4328270E-03 8.1810243E-03 7.9367300E-03 7.6997094E-03 7.4697398E-03
 7.2466061E-03 7.0300912E-03 6.8199942E-03 6.6161230E-03 6.4182775E-03
 6.2262774E-03 6.0399501E-03 5.8591128E-03 5.6836037E-03 5.5132597E-03
 5.3479257E-03 5.1874476E-03 5.0316821E-03 4.8804861E-03 4.7337208E-03
 4.5912536E-03 4.4529582E-03 4.3187062E-03 4.1883779E-03 4.0618591E-03
 3.9390321E-03 3.8197937E-03 3.7040303E-03 3.5916425E-03 3.4825320E-03
 3.3765992E-03 3.2737546E-03 3.1739008E-03 3.0769547E-03 2.9828309E-03
 2.8914455E-03 2.8027189E-03 2.7165713E-03 2.6329309E-03 2.5517263E-03
 2.4728803E-03 2.3963277E-03 2.3220028E-03 2.2498388E-03 2.1797766E-03
 2.1117534E-03
 2.6121248E-02 2.4649557E-02 2.3272704E-02 2.1984484E-02 2.0779109E-02
 1.9651251E-02 1.8596025E-02 1.7608935E-02 1.6685810E-02 1.5822755E-02
 1.5016057E-02 1.4262131E-02 1.3557499E-02 1.2898753E-02 1.2282576E-02
 1.1705763E-02 1.1165261E-02 1.0658205E-02 1.0181949E-02 9.7340774E-03
 9.3124006E-03 8.9149326E-03 8.5398620E-03 8.1855366E-03 7.8504365E-03
 7.5331652E-03 7.2324495E-03 6.9471234E-03 6.6761225E-03 6.4184749E-03
 6.1732931E-03 5.9397621E-03 5.7171355E-03 5.5047269E-03 5.3019077E-03
 5.1080985E-03 4.9227644E-03 4.7454126E-03 4.5755892E-03 4.4128727E-03
 4.2568743E-03 4.1072313E-03 3.9636064E-03 3.8256911E-03 3.6931923E-03
 3.5658390E-03 3.4433783E-03 3.3255722E-03 3.2122014E-03 3.1030569E-03
 2.9979439E-03 2.8966779E-03 2.7990895E-03 2.7050150E-03 2.6143009E-03
 2.5268034E-03 2.4423869E-03 2.3609218E-03 2.2822861E-03 2.2063644E-03
 2.1330472E-03 2.0622311E-03 1.9938159E-03 1.9277076E-03 1.8638184E-03
 1.8020618E-03 1.7423575E-03 1.6846280E-03 1.6287990E-03 1.5748008E-03
 1.5225660E-03 1.4720303E-03 1.4231323E-03 1.3758122E-03 1.3300152E-03
 1.2856865E-03 1.2427747E-03 1.2012296E-03 1.1610049E-03 1.1220539E-03
 1.0843338E-03 1.0478013E-03 1.0124173E-03 9.7814214E-04 9.4493985E-04
 9.1277290E-04 8.8160788E-04 8.5141190E-04 8.2215189E-04 7.9379819E-04
 7.6632079E-04
 3.5115901E-02 3.4495115E-02 3.3824563E-02 3.3115283E-02 3.2376636E-02
 3.1616554E-02 3.0841799E-02 3.0058201E-02 2.9270776E-02 2.8483886E-02
 2.7701272E-02 2.6926149E-02 2.6161211E-02 2.5408661E-02 2.4670254E-02
 2.3947312E-02 2.3240799E-02 2.2551360E-02 2.1879394E-02 2.1225112E-02
 2.0588579E-02 1.9969752E-02 1.9368490E-02 1.8784586E-02 1.8217783E-02
 1.7667746E-02 1.7134130E-02 1.6616544E-02 1.6114598E-02 1.5627878E-02
 1.5155962E-02 1.4698435E-02 1.4254876E-02 1.3824875E-02 1.3408022E-02
 1.3003912E-02 1.2612154E-02 1.2232361E-02 1.1864161E-02 1.1507186E-02
 1.1161086E-02 1.0825514E-02 1.0500132E-02 1.0184627E-02 9.8786764E-03
 9.5819850E-03 9.2942538E-03 9.0151960E-03 8.7445499E-03 8.4820380E-03
 8.2274135E-03 7.9804212E-03 7.7408236E-03 7.5083920E-03 7.2829053E-03
 7.0641413E-03 6.8518925E-03 6.6459617E-03 6.4461487E-03 6.2522655E-03
 6.0641323E-03 5.8815703E-03 5.7044113E-03 5.5324882E-03 5.3656409E-03
 5.2037165E-03 5.0465632E-03 4.8940401E-03 4.7460040E-03 4.6023210E-03
 4.4628610E-03 4.3274947E-03 4.1960999E-03 4.0685572E-03 3.9447560E-03
 3.8245774E-03 3.7079176E-03 3.5946746E-03 3.4847406E-03 3.3780236E-03
 3.2744247E-03 3.1738495E-03 3.0762176E-03 2.9814315E-03 2.8894148E-03
 2.8000840E-03 2.7133611E-03 2.6291690E-03 2.5474338E-03 2.4680821E-03
 2.3910482E-03
 2.6137473E-02 2.4701960E-02 2.3353208E-02 2.2086846E-02 2.0898566E-02
 1.9784177E-02 1.8739659E-02 1.7761149E-02 1.6844902E-02 1.5987296E-02
 1.5184759E-02 1.4433794E-02 1.3730959E-02 1.3072889E-02 1.2456328E-02
 1.1878172E-02 1.1335493E-02 1.0825576E-02 1.0345927E-02 9.8942630E-03
 9.4684968E-03 9.0667251E-03 8.6871935E-03 8.3282916E-03 7.9885423E-03
 7.6665902E-03 7.3611923E-03 7.0712133E-03 6.7956145E-03 6.5334435E-03
 6.2838253E-03 6.0459585E-03 5.8191055E-03 5.6025861E-03 5.3957780E-03
 5.1981052E-03 5.0090351E-03 4.8280749E-03 4.6547712E-03 4.4887010E-03
 4.3294746E-03 4.1767280E-03 4.0301229E-03 3.8893446E-03 3.7540994E-03
 3.6241123E-03 3.4991279E-03 3.3789047E-03 3.2632190E-03 3.1518585E-03
 3.0446262E-03 2.9413332E-03 2.8418058E-03 2.7458768E-03 2.6533930E-03
 2.5642037E-03 2.4781700E-03 2.3951610E-03 2.3150507E-03 2.2377211E-03
 2.1630588E-03 2.0909577E-03 2.0213169E-03 1.9540389E-03 1.8890315E-03
 1.8262086E-03 1.7654853E-03 1.7067828E-03 1.6500250E-03 1.5951394E-03
 1.5420577E-03 1.4907117E-03 1.4410398E-03 1.3929809E-03 1.3464771E-03
 1.3014721E-03 1.2579139E-03 1.2157506E-03 1.1749334E-03 1.1354160E-03
 1.0971527E-03 1.0601002E-03 1.0242176E-03 9.8946376E-04 9.5580221E-04
 9.2319428E-04 8.9160597E-04 8.6100260E-04 8.3135115E-04 8.0262072E-04
 7.7478058E-04
 4.1044705E-02 4.0166862E-02 3.9256275E-02 3.8322050E-02 3.7371993E-02
 3.6412761E-02 3.5450090E-02 3.4488924E-02 3.3533528E-02 3.2587554E-02
 3.1654097E-02 3.0735742E-02 2.9834572E-02 2.8952228E-02 2.8089922E-02
 2.7248515E-02 2.6428549E-02 2.5630333E-02 2.4853965E-02 2.4099411E-02
 2.3366505E-02 2.2655005E-02 2.1964584E-02 2.1294853E-02 2.0645380E-02
 2.0015696E-02 1.9405309E-02 1.8813701E-02 1.8240362E-02 1.7684765E-02
 1.7146394E-02 1.6624726E-02 1.6119249E-02 1.5629463E-02 1.5154874E-02
 1.4695000E-02 1.4249376E-02 1.3817539E-02 1.3399049E-02 1.2993474E-02
 1.2600399E-02 1.2219416E-02 1.1850136E-02 1.1492183E-02 1.1145186E-02
 1.0808798E-02 1.0482670E-02 1.0166472E-02 9.8598916E-03 9.5626209E-03
 9.2743561E-03 8.9948131E-03 8.7237144E-03 8.4607918E-03 8.2057882E-03
 7.9584550E-03 7.7185472E-03 7.4858321E-03 7.2600883E-03 7.0410925E-03
 6.8286378E-03 6.6225240E-03 6.4225495E-03 6.2285243E-03 6.0402667E-03
 5.8575990E-03 5.6803478E-03 5.5083544E-03 5.3414484E-03 5.1794774E-03
 5.0222958E-03 4.8697535E-03 4.7217086E-03 4.5780307E-03 4.4385847E-03
 4.3032416E-03 4.1718786E-03 4.0443791E-03 3.9206236E-03 3.8005034E-03
 3.6839063E-03 3.5707285E-03 3.4608687E-03 3.3542309E-03 3.2507149E-03
 3.1502314E-03 3.0526908E-03 2.9580032E-03 2.8660866E-03 2.7768593E-03
 2.6902412E-03
 2.6155483E-02 2.4739593E-02 2.3406474E-02 2.2152616E-02 2.0974401E-02
 1.9868195E-02 1.8830370E-02 1.7857334E-02 1.6945519E-02 1.6091365E-02
 1.5291352E-02 1.4541993E-02 1.3839870E-02 1.3181658E-02 1.2564178E-02
 1.1984423E-02 1.1439587E-02 1.0927071E-02 1.0444487E-02 9.9896360E-03
 9.5605040E-03 9.1552297E-03 8.7721059E-03 8.4095579E-03 8.0661392E-03
 7.7405260E-03 7.4315015E-03 7.1379524E-03 6.8588550E-03 6.5932688E-03
 6.3403305E-03 6.0992455E-03 5.8692833E-03 5.6497674E-03 5.4400773E-03
 5.2396380E-03 5.0479169E-03 4.8644240E-03 4.6887021E-03 4.5203269E-03
 4.3589058E-03 4.2040735E-03 4.0554870E-03 3.9128303E-03 3.7758052E-03
 3.6441351E-03 3.5175590E-03 3.3958324E-03 3.2787288E-03 3.1660332E-03
 3.0575418E-03 2.9530663E-03 2.8524268E-03 2.7554552E-03 2.6619916E-03
 2.5718855E-03 2.4849949E-03 2.4011836E-03 2.3203236E-03 2.2422948E-03
 2.1669811E-03 2.0942749E-03 2.0240697E-03 1.9562682E-03 1.8907756E-03
 1.8275030E-03 1.7663636E-03 1.7072770E-03 1.6501655E-03 1.5949538E-03
 1.5415719E-03 1.4899513E-03 1.4400270E-03 1.3917385E-03 1.3450244E-03
 1.2998279E-03 1.2560966E-03 1.2137761E-03 1.1728168E-03 1.1331717E-03
 1.0947936E-03 1.0576381E-03 1.0216639E-03 9.8682940E-04 9.5309562E-04
 9.2042488E-04 8.8878069E-04 8.5812900E-04 8.2843576E-04 7.9966884E-04
 7.7179755E-04
 4.7254369E-02 4.6122186E-02 4.4972077E-02 4.3811765E-02 4.2647902E-02
 4.1486170E-02 4.0331494E-02 3.9188102E-02 3.8059570E-02 3.6948945E-02
 3.5858717E-02 3.4790896E-02 3.3747032E-02 3.2728247E-02 3.1735308E-02
 3.0768672E-02 2.9828541E-02 2.8914912E-02 2.8027639E-02 2.7166439E-02
 2.6330942E-02 2.5520701E-02 2.4735201E-02 2.3973884E-02 2.3236157E-02
 2.2521399E-02 2.1828985E-02 2.1158271E-02 2.0508617E-02 1.9879388E-02
 1.9269956E-02 1.8679703E-02 1.8108016E-02 1.7554294E-02 1.7017972E-02
 1.6498471E-02 1.5995251E-02 1.5507776E-02 1.5035524E-02 1.4578000E-02
 1.4134719E-02 1.3705212E-02 1.3289021E-02 1.2885723E-02 1.2494881E-02
 1.2116094E-02 1.1748970E-02 1.1393119E-02 1.1048185E-02 1.0713808E-02
 1.0389653E-02 1.0075381E-02 9.7706793E-03 9.4752386E-03 9.1887629E-03
 8.9109689E-03 8.6415755E-03 8.3803209E-03 8.1269424E-03 7.8811925E-03
 7.6428368E-03 7.4116318E-03 7.1873656E-03 6.9698095E-03 6.7587635E-03
 6.5540210E-03 6.3553867E-03 6.1626728E-03 5.9756963E-03 5.7942779E-03
 5.6182491E-03 5.4474450E-03 5.2817021E-03 5.1208697E-03 4.9647996E-03
 4.8133391E-03 4.6663564E-03 4.5237099E-03 4.3852748E-03 4.2509162E-03
 4.1205194E-03 3.9939582E-03 3.8711205E-03 3.7518982E-03 3.6361772E-03
 3.5238566E-03 3.4148335E-03 3.3090101E-03 3.2062917E-03 3.1065855E-03
 3.0098031E-03
 2.6176121E-02 2.4768298E-02 2.3441546E-02 2.2192731E-02 2.1018550E-02
 1.9915583E-02 1.8880349E-02 1.7909328E-02 1.6998963E-02 1.6145693E-02
 1.5345980E-02 1.4596326E-02 1.3893320E-02 1.3233691E-02 1.2614321E-02
 1.2032289E-02 1.1484874E-02 1.0969562E-02 1.0484024E-02 1.0026122E-02
 9.5938770E-03 9.1854623E-03 8.7991999E-03 8.4335404E-03 8.0870613E-03
 7.7584567E-03 7.4465270E-03 7.1501695E-03 6.8683708E-03 6.6001983E-03
 6.3447901E-03 6.1013582E-03 5.8691702E-03 5.6475536E-03 5.4358849E-03
 5.2335882E-03 5.0401296E-03 4.8550153E-03 4.6777846E-03 4.5080110E-03
 4.3452983E-03 4.1892757E-03 4.0395972E-03 3.8959435E-03 3.7580114E-03
 3.6255203E-03 3.4982041E-03 3.3758159E-03 3.2581247E-03 3.1449106E-03
 3.0359675E-03 2.9311029E-03 2.8301321E-03 2.7328851E-03 2.6391970E-03
 2.5489165E-03 2.4618953E-03 2.3779974E-03 2.2970906E-03 2.2190511E-03
 2.1437621E-03 2.0711108E-03 2.0009908E-03 1.9333010E-03 1.8679461E-03
 1.8048331E-03 1.7438753E-03 1.6849893E-03 1.6280953E-03 1.5731172E-03
 1.5199829E-03 1.4686233E-03 1.4189712E-03 1.3709634E-03 1.3245397E-03
 1.2796426E-03 1.2362149E-03 1.1942043E-03 1.1535601E-03 1.1142326E-03
 1.0761752E-03 1.0393421E-03 1.0036915E-03 9.6918113E-04 9.3577168E-04
 9.0342405E-04 8.7210204E-04 8.4177050E-04 8.1239454E-04 7.8394206E-04
 7.5638242E-04
 5.3814724E-02 5.2424185E-02 5.1029339E-02 4.9636830E-02 4.8252389E-02
 4.6880938E-02 4.5526687E-02 4.4193227E-02 4.2883530E-02 4.1600060E-02
 4.0344760E-02 3.9119102E-02 3.7924144E-02 3.6760569E-02 3.5628736E-02
 3.4528743E-02 3.3460487E-02 3.2423690E-02 3.1417955E-02 3.0442772E-02
 2.9497558E-02 2.8581664E-02 2.7694393E-02 2.6835008E-02 2.6002759E-02
 2.5196876E-02 2.4416586E-02 2.3661118E-02 2.2929708E-02 2.2221595E-02
 2.1536045E-02 2.0872319E-02 2.0229714E-02 1.9607527E-02 1.9005097E-02
 1.8421762E-02 1.7856890E-02 1.7309863E-02 1.6780084E-02 1.6266979E-02
 1.5769998E-02 1.5288596E-02 1.4822254E-02 1.4370478E-02 1.3932779E-02
 1.3508691E-02 1.3097764E-02 1.2699563E-02 1.2313673E-02 1.1939690E-02
 1.1577222E-02 1.1225890E-02 1.0885337E-02 1.0555209E-02 1.0235172E-02
 9.9249016E-03 9.6240779E-03 9.3324007E-03 9.0495786E-03 8.7753301E-03
 8.5093779E-03 8.2514603E-03 8.0013284E-03 7.7587296E-03 7.5234286E-03
 7.2951964E-03 7.0738085E-03 6.8590613E-03 6.6507361E-03 6.4486382E-03
 6.2525719E-03 6.0623577E-03 5.8778068E-03 5.6987493E-03 5.5250111E-03
 5.3564329E-03 5.1928563E-03 5.0341315E-03 4.8801061E-03 4.7306390E-03
 4.5855884E-03 4.4448255E-03 4.3082167E-03 4.1756411E-03 4.0469705E-03
 3.9220909E-03 3.8008923E-03 3.6832571E-03 3.5690854E-03 3.4582652E-03
 3.3507063E-03
 2.6205257E-02 2.4796039E-02 2.3467666E-02 2.2217117E-02 2.1041159E-02
 1.9936401E-02 1.8899359E-02 1.7926460E-02 1.7014097E-02 1.6158652E-02
 1.5356529E-02 1.4604215E-02 1.3898311E-02 1.3235571E-02 1.2612930E-02
 1.2027523E-02 1.1476682E-02 1.0957939E-02 1.0469003E-02 1.0007760E-02
 9.5722508E-03 9.1606732E-03 8.7713599E-03 8.4027788E-03 8.0535179E-03
 7.7222814E-03 7.4078734E-03 7.1091955E-03 6.8252347E-03 6.5550595E-03
 6.2978072E-03 6.0526859E-03 5.8189617E-03 5.5959569E-03 5.3830449E-03
 5.1796427E-03 4.9852137E-03 4.7992556E-03 4.6213050E-03 4.4509294E-03
 4.2877244E-03 4.1313153E-03 3.9813505E-03 3.8375044E-03 3.6994687E-03
 3.5669561E-03 3.4396981E-03 3.3174406E-03 3.1999478E-03 3.0869958E-03
 2.9783738E-03 2.8738843E-03 2.7733392E-03 2.6765640E-03 2.5833913E-03
 2.4936639E-03 2.4072314E-03 2.3239546E-03 2.2436976E-03 2.1663352E-03
 2.0917454E-03 2.0198142E-03 1.9504330E-03 1.8834978E-03 1.8189104E-03
 1.7565772E-03 1.6964079E-03 1.6383190E-03 1.5822275E-03 1.5280563E-03
 1.4757323E-03 1.4251828E-03 1.3763424E-03 1.3291454E-03 1.2835300E-03
 1.2394370E-03 1.1968102E-03 1.1555949E-03 1.1157398E-03 1.0771956E-03
 1.0399129E-03 1.0038471E-03 9.6895511E-04 9.3519338E-04 9.0252294E-04
 8.7090360E-04 8.4030046E-04 8.1067666E-04 7.8199600E-04 7.5422868E-04
 7.2734128E-04
 6.0793109E-02 5.9134997E-02 5.7485595E-02 5.5850685E-02 5.4235239E-02
 5.2643497E-02 5.1079046E-02 4.9544878E-02 4.8043400E-02 4.6576533E-02
 4.5145679E-02 4.3751840E-02 4.2395607E-02 4.1077245E-02 3.9796758E-02
 3.8553912E-02 3.7348315E-02 3.6179412E-02 3.5046555E-02 3.3949021E-02
 3.2885991E-02 3.1856623E-02 3.0860025E-02 2.9895287E-02 2.8961491E-02
 2.8057713E-02 2.7183028E-02 2.6336526E-02 2.5517307E-02 2.4724489E-02
 2.3957206E-02 2.3214620E-02 2.2495897E-02 2.1800248E-02 2.1126898E-02
 2.0475097E-02 1.9844109E-02 1.9233242E-02 1.8641807E-02 1.8069150E-02
 1.7514637E-02 1.6977657E-02 1.6457612E-02 1.5953945E-02 1.5466096E-02
 1.4993539E-02 1.4535759E-02 1.4092268E-02 1.3662591E-02 1.3246265E-02
 1.2842858E-02 1.2451929E-02 1.2073084E-02 1.1705913E-02 1.1350045E-02
 1.1005106E-02 1.0670744E-02 1.0346611E-02 1.0032384E-02 9.7277360E-03
 9.4323652E-03 9.1459742E-03 8.8682715E-03 8.5989861E-03 8.3378442E-03
 8.0845933E-03 7.8389784E-03 7.6007652E-03 7.3697171E-03 7.1456083E-03
 6.9282237E-03 6.7173531E-03 6.5127956E-03 6.3143489E-03 6.1218287E-03
 5.9350510E-03 5.7538413E-03 5.5780197E-03 5.4074260E-03 5.2419002E-03
 5.0812871E-03 4.9254373E-03 4.7742012E-03 4.6274420E-03 4.4850241E-03
 4.3468149E-03 4.2126877E-03 4.0825158E-03 3.9561833E-03 3.8335768E-03
 3.7145792E-03
 2.6251476E-02 2.4832070E-02 2.3494342E-02 2.2235222E-02 2.1051407E-02
 1.9939423E-02 1.8895671E-02 1.7916476E-02 1.6998122E-02 1.6136898E-02
 1.5329154E-02 1.4571344E-02 1.3860058E-02 1.3192064E-02 1.2564326E-02
 1.1973999E-02 1.1418439E-02 1.0895194E-02 1.0401987E-02 9.9367071E-03
 9.4974050E-03 9.0822773E-03 8.6896634E-03 8.3180293E-03 7.9659652E-03
 7.6321689E-03 7.3154434E-03 7.0146830E-03 6.7288699E-03 6.4570624E-03
 6.1983932E-03 5.9520607E-03 5.7173218E-03 5.4934900E-03 5.2799289E-03
 5.0760503E-03 4.8813028E-03 4.6951794E-03 4.5172037E-03 4.3469388E-03
 4.1839704E-03 4.0279152E-03 3.8784146E-03 3.7351330E-03 3.5977578E-03
 3.4659922E-03 3.3395623E-03 3.2182061E-03 3.1016828E-03 2.9897613E-03
 2.8822280E-03 2.7788768E-03 2.6795170E-03 2.5839671E-03 2.4920572E-03
 2.4036237E-03 2.3185147E-03 2.2365844E-03 2.1576949E-03 2.0817171E-03
 2.0085261E-03 1.9380053E-03 1.8700425E-03 1.8045319E-03 1.7413724E-03
 1.6804684E-03 1.6217269E-03 1.5650622E-03 1.5103908E-03 1.4576329E-03
 1.4067139E-03 1.3575607E-03 1.3101060E-03 1.2642820E-03 1.2200263E-03
 1.1772802E-03 1.1359847E-03 1.0960838E-03 1.0575281E-03 1.0202640E-03
 9.8424533E-04 9.4942458E-04 9.1575825E-04 8.8320376E-04 8.5172069E-04
 8.2126877E-04 7.9181243E-04 7.6331344E-04 7.3573925E-04 7.0905738E-04
 6.8323454E-04
 6.8258248E-02 6.6318937E-02 6.4401187E-02 6.2510066E-02 6.0649864E-02
 5.8824215E-02 5.7036117E-02 5.5287983E-02 5.3581681E-02 5.1918603E-02
 5.0299652E-02 4.8725363E-02 4.7195897E-02 4.5711137E-02 4.4270728E-02
 4.2874120E-02 4.1520625E-02 4.0209427E-02 3.8939629E-02 3.7710246E-02
 3.6520254E-02 3.5368595E-02 3.4254190E-02 3.3175927E-02 3.2132722E-02
 3.1123478E-02 3.0147122E-02 2.9202577E-02 2.8288817E-02 2.7404811E-02
 2.6549572E-02 2.5722126E-02 2.4921529E-02 2.4146870E-02 2.3397272E-02
 2.2671873E-02 2.1969846E-02 2.1290388E-02 2.0632729E-02 1.9996129E-02
 1.9379860E-02 1.8783234E-02 1.8205574E-02 1.7646240E-02 1.7104616E-02
 1.6580094E-02 1.6072102E-02 1.5580079E-02 1.5103493E-02 1.4641825E-02
 1.4194575E-02 1.3761265E-02 1.3341435E-02 1.2934632E-02 1.2540428E-02
 1.2158415E-02 1.1788185E-02 1.1429359E-02 1.1081563E-02 1.0744438E-02
 1.0417632E-02 1.0100823E-02 9.7936839E-03 9.4958991E-03 9.2071742E-03
 8.9272158E-03 8.6557511E-03 8.3924988E-03 8.1372121E-03 7.8896256E-03
 7.6495055E-03 7.4166171E-03 7.1907272E-03 6.9716191E-03 6.7590824E-03
 6.5529095E-03 6.3529038E-03 6.1588758E-03 5.9706368E-03 5.7880096E-03
 5.6108255E-03 5.4389099E-03 5.2721021E-03 5.1102489E-03 4.9531995E-03
 4.8008016E-03 4.6529160E-03 4.5094090E-03 4.3701441E-03 4.2349943E-03
 4.1038333E-03
 2.6325639E-02 2.4886994E-02 2.3531746E-02 2.2256663E-02 2.1058269E-02
 1.9932924E-02 1.8876864E-02 1.7886255E-02 1.6957240E-02 1.6086010E-02
 1.5268829E-02 1.4502106E-02 1.3782405E-02 1.3106484E-02 1.2471297E-02
 1.1874000E-02 1.1311944E-02 1.0782663E-02 1.0283871E-02 9.8134475E-03
 9.3694273E-03 8.9500006E-03 8.5534910E-03 8.1783552E-03 7.8231674E-03
 7.4866125E-03 7.1674762E-03 6.8646409E-03 6.5770699E-03 6.3038096E-03
 6.0439748E-03 5.7967496E-03 5.5613751E-03 5.3371494E-03 5.1234248E-03
 4.9195932E-03 4.7250967E-03 4.5394087E-03 4.3620444E-03 4.1925511E-03
 4.0305047E-03 3.8755108E-03 3.7271974E-03 3.5852224E-03 3.4492603E-03
 3.3190050E-03 3.1941752E-03 3.0745019E-03 2.9597331E-03 2.8496324E-03
 2.7439753E-03 2.6425538E-03 2.5451677E-03 2.4516315E-03 2.3617670E-03
 2.2754085E-03 2.1923967E-03 2.1125823E-03 2.0358237E-03 1.9619870E-03
 1.8909427E-03 1.8225717E-03 1.7567588E-03 1.6933944E-03 1.6323740E-03
 1.5736007E-03 1.5169801E-03 1.4624216E-03 1.4098423E-03 1.3591582E-03
 1.3102937E-03 1.2631759E-03 1.2177331E-03 1.1738986E-03 1.1316087E-03
 1.0908009E-03 1.0514187E-03 1.0134050E-03 9.7670767E-04 9.4127451E-04
 9.0705696E-04 8.7400828E-04 8.4208464E-04 8.1124203E-04 7.8144070E-04
 7.5264025E-04 7.2480377E-04 6.9789559E-04 6.7188148E-04 6.4672728E-04
 6.2240148E-04
 7.6283246E-02 7.4045107E-02 7.1841568E-02 6.9677033E-02 6.7555204E-02
 6.5479107E-02 6.3451163E-02 6.1473262E-02 5.9546713E-02 5.7672389E-02
 5.5850722E-02 5.4081790E-02 5.2365337E-02 5.0700873E-02 4.9087688E-02
 4.7524918E-02 4.6011575E-02 4.4546559E-02 4.3128707E-02 4.1756798E-02
 4.0429562E-02 3.9145723E-02 3.7903983E-02 3.6703043E-02 3.5541628E-02
 3.4418460E-02 3.3332292E-02 3.2281898E-02 3.1266078E-02 3.0283663E-02
 2.9333521E-02 2.8414538E-02 2.7525648E-02 2.6665812E-02 2.5834031E-02
 2.5029330E-02 2.4250766E-02 2.3497447E-02 2.2768486E-02 2.2063050E-02
 2.1380324E-02 2.0719523E-02 2.0079890E-02 1.9460704E-02 1.8861262E-02
 1.8280892E-02 1.7718939E-02 1.7174773E-02 1.6647803E-02 1.6137440E-02
 1.5643124E-02 1.5164318E-02 1.4700497E-02 1.4251169E-02 1.3815847E-02
 1.3394067E-02 1.2985380E-02 1.2589350E-02 1.2205572E-02 1.1833632E-02
 1.1473149E-02 1.1123747E-02 1.0785071E-02 1.0456766E-02 1.0138500E-02
 9.8299487E-03 9.5308032E-03 9.2407577E-03 8.9595243E-03 8.6868200E-03
 8.4223719E-03 8.1659239E-03 7.9172160E-03 7.6760072E-03 7.4420627E-03
 7.2151516E-03 6.9950568E-03 6.7815608E-03 6.5744636E-03 6.3735582E-03
 6.1786612E-03 5.9895786E-03 5.8061327E-03 5.6281565E-03 5.4554711E-03
 5.2879197E-03 5.1253415E-03 4.9675899E-03 4.8145130E-03 4.6659666E-03
 4.5218184E-03
 2.6441213E-02 2.4973376E-02 2.3591479E-02 2.2292048E-02 2.1071367E-02
 1.9925561E-02 1.8850649E-02 1.7842606E-02 1.6897419E-02 1.6011147E-02
 1.5179961E-02 1.4400199E-02 1.3668375E-02 1.2981203E-02 1.2335608E-02
 1.1728707E-02 1.1157818E-02 1.0620448E-02 1.0114271E-02 9.6371407E-03
 9.1870632E-03 8.7621985E-03 8.3608450E-03 7.9814279E-03 7.6224934E-03
 7.2827041E-03 6.9608171E-03 6.6556865E-03 6.3662520E-03 6.0915342E-03
 5.8306260E-03 5.5826842E-03 5.3469301E-03 5.1226402E-03 4.9091419E-03
 4.7058128E-03 4.5120702E-03 4.3273726E-03 4.1512162E-03 3.9831307E-03
 3.8226775E-03 3.6694452E-03 3.5230489E-03 3.3831312E-03 3.2493540E-03
 3.1214019E-03 2.9989788E-03 2.8818035E-03 2.7696162E-03 2.6621700E-03
 2.5592321E-03 2.4605850E-03 2.3660201E-03 2.2753458E-03 2.1883764E-03
 2.1049373E-03 2.0248664E-03 1.9480065E-03 1.8742132E-03 1.8033432E-03
 1.7352668E-03 1.6698589E-03 1.6070008E-03 1.5465776E-03 1.4884846E-03
 1.4326188E-03 1.3788833E-03 1.3271872E-03 1.2774437E-03 1.2295662E-03
 1.1834792E-03 1.1391059E-03 1.0963731E-03 1.0552137E-03 1.0155633E-03
 9.7735785E-04 9.4053842E-04 9.0504921E-04 8.7083573E-04 8.3784602E-04
 8.0603181E-04 7.7534450E-04 7.4573903E-04 7.1717513E-04 6.8960845E-04
 6.6300115E-04 6.3731585E-04 6.1251671E-04 5.8856833E-04 5.6543929E-04
 5.4309663E-04
 8.4948167E-02 8.2389779E-02 7.9879485E-02 7.7421069E-02 7.5017639E-02
 7.2671637E-02 7.0384964E-02 6.8158902E-02 6.5994263E-02 6.3891403E-02
 6.1850280E-02 5.9870508E-02 5.7951432E-02 5.6092180E-02 5.4291692E-02
 5.2548766E-02 5.0862093E-02 4.9230296E-02 4.7651917E-02 4.6125479E-02
 4.4649459E-02 4.3222345E-02 4.1842613E-02 4.0508755E-02 3.9219279E-02
 3.7972722E-02 3.6767654E-02 3.5602659E-02 3.4476377E-02 3.3387475E-02
 3.2334663E-02 3.1316683E-02 3.0332319E-02 2.9380402E-02 2.8459791E-02
 2.7569400E-02 2.6708161E-02 2.5875058E-02 2.5069105E-02 2.4289353E-02
 2.3534890E-02 2.2804838E-02 2.2098336E-02 2.1414584E-02 2.0752786E-02
 2.0112187E-02 1.9492056E-02 1.8891683E-02 1.8310409E-02 1.7747570E-02
 1.7202545E-02 1.6674725E-02 1.6163532E-02 1.5668407E-02 1.5188801E-02
 1.4724207E-02 1.4274118E-02 1.3838052E-02 1.3415542E-02 1.3006142E-02
 1.2609420E-02 1.2224958E-02 1.1852356E-02 1.1491224E-02 1.1141188E-02
 1.0801888E-02 1.0472980E-02 1.0154123E-02 9.8449988E-03 9.5452880E-03
 9.2546931E-03 8.9729233E-03 8.6996974E-03 8.4347371E-03 8.1777899E-03
 7.9285996E-03 7.6869177E-03 7.4525108E-03 7.2251498E-03 7.0046126E-03
 6.7906869E-03 6.5831691E-03 6.3818586E-03 6.1865589E-03 5.9970845E-03
 5.8132582E-03 5.6349086E-03 5.4618595E-03 5.2939490E-03 5.1310230E-03
 4.9729296E-03
 2.6615230E-02 2.5106775E-02 2.3687670E-02 2.2354113E-02 2.1102082E-02
 1.9927423E-02 1.8825900E-02 1.7793264E-02 1.6825320E-02 1.5917970E-02
 1.5067274E-02 1.4269465E-02 1.3520976E-02 1.2818453E-02 1.2158749E-02
 1.1538923E-02 1.0956232E-02 1.0408120E-02 9.8922141E-03 9.4063133E-03
 8.9483745E-03 8.5165082E-03 8.1089698E-03 7.7241394E-03 7.3605231E-03
 7.0167370E-03 6.6914996E-03 6.3836281E-03 6.0920236E-03 5.8156708E-03
 5.5536279E-03 5.3050178E-03 5.0690323E-03 4.8449156E-03 4.6319687E-03
 4.4295373E-03 4.2370167E-03 4.0538367E-03 3.8794719E-03 3.7134304E-03
 3.5552513E-03 3.4045021E-03 3.2607804E-03 3.1237095E-03 2.9929362E-03
 2.8681275E-03 2.7489723E-03 2.6351754E-03 2.5264646E-03 2.4225803E-03
 2.3232768E-03 2.2283278E-03 2.1375143E-03 2.0506324E-03 1.9674907E-03
 1.8879048E-03 1.8117054E-03 1.7387293E-03 1.6688214E-03 1.6018382E-03
 1.5376402E-03 1.4760983E-03 1.4170883E-03 1.3604938E-03 1.3062020E-03
 1.2541083E-03 1.2041142E-03 1.1561222E-03 1.1100447E-03 1.0657930E-03
 1.0232874E-03 9.8245102E-04 9.4320934E-04 9.0549211E-04 8.6923235E-04
 8.3436933E-04 8.0083904E-04 7.6858606E-04 7.3755451E-04 7.0769311E-04
 6.7895110E-04 6.5128243E-04 6.2464102E-04 5.9898372E-04 5.7426863E-04
 5.5045803E-04 5.2751531E-04 5.0540169E-04 4.8408430E-04 4.6353176E-04
 4.4371252E-04
 9.4342537E-02 9.1438800E-02 8.8597283E-02 8.5821189E-02 8.3113074E-02
 8.0474794E-02 7.7907667E-02 7.5412452E-02 7.2989382E-02 7.0638336E-02
 6.8358772E-02 6.6149868E-02 6.4010531E-02 6.1939511E-02 5.9935365E-02
 5.7996545E-02 5.6121420E-02 5.4308284E-02 5.2555393E-02 5.0860971E-02
 4.9223240E-02 4.7640420E-02 4.6110753E-02 4.4632487E-02 4.3203916E-02
 4.1823361E-02 4.0489182E-02 3.9199784E-02 3.7953608E-02 3.6749147E-02
 3.5584938E-02 3.4459561E-02 3.3371646E-02 3.2319862E-02 3.1302948E-02
 3.0319655E-02 2.9368797E-02 2.8449235E-02 2.7559847E-02 2.6699580E-02
 2.5867404E-02 2.5062338E-02 2.4283417E-02 2.3529740E-02 2.2800418E-02
 2.2094609E-02 2.1411495E-02 2.0750284E-02 2.0110229E-02 1.9490600E-02
 1.8890696E-02 1.8309837E-02 1.7747378E-02 1.7202698E-02 1.6675191E-02
 1.6164280E-02 1.5669405E-02 1.5190028E-02 1.4725631E-02 1.4275711E-02
 1.3839796E-02 1.3417419E-02 1.3008128E-02 1.2611496E-02 1.2227107E-02
 1.1854559E-02 1.1493471E-02 1.1143463E-02 1.0804177E-02 1.0475275E-02
 1.0156411E-02 9.8472694E-03 9.5475325E-03 9.2569022E-03 8.9750895E-03
 8.7018125E-03 8.4367981E-03 8.1797848E-03 7.9305219E-03 7.6887649E-03
 7.4542784E-03 7.2268331E-03 7.0062065E-03 6.7921886E-03 6.5845703E-03
 6.3831545E-03 6.1877519E-03 5.9981709E-03 5.8142324E-03 5.6357668E-03
 5.4625976E-03
 2.6869934E-02 2.5307402E-02 2.3838578E-02 2.2459261E-02 2.1165080E-02
 1.9951537E-02 1.8814106E-02 1.7748285E-02 1.6749661E-02 1.5813960E-02
 1.4937082E-02 1.4115133E-02 1.3344431E-02 1.2621514E-02 1.1943134E-02
 1.1306255E-02 1.0708042E-02 1.0145859E-02 9.6172513E-03 9.1199409E-03
 8.6518144E-03 8.2109142E-03 7.7954275E-03 7.4036722E-03 7.0340922E-03
 6.6852439E-03 6.3557923E-03 6.0445000E-03 5.7502161E-03 5.4718750E-03
 5.2084886E-03 4.9591376E-03 4.7229696E-03 4.4991854E-03 4.2870510E-03
 4.0858742E-03 3.8950141E-03 3.7138718E-03 3.5418873E-03 3.3785403E-03
 3.2233412E-03 3.0758327E-03 2.9355884E-03 2.8022071E-03 2.6753130E-03
 2.5545545E-03 2.4396002E-03 2.3301374E-03 2.2258786E-03 2.1265456E-03
 2.0318807E-03 1.9416398E-03 1.8555953E-03 1.7735306E-03 1.6952410E-03
 1.6205367E-03 1.5492340E-03 1.4811619E-03 1.4161593E-03 1.3540725E-03
 1.2947584E-03 1.2380793E-03 1.1839045E-03 1.1321134E-03 1.0825894E-03
 1.0352227E-03 9.8990963E-04 9.4655028E-04 9.0505247E-04 8.6532783E-04
 8.2729146E-04 7.9086382E-04 7.5596909E-04 7.2253583E-04 6.9049554E-04
 6.5978465E-04 6.3033926E-04 6.0210202E-04 5.7501829E-04 5.4903422E-04
 5.2410027E-04 5.0016859E-04 4.7719356E-04 4.5513196E-04 4.3394268E-04
 4.1358662E-04 3.9402797E-04 3.7522957E-04 3.5715813E-04 3.3978320E-04
 3.2307074E-04
 0.1045678 0.1012899 9.8089144E-02 9.4968252E-02 9.1929168E-02
 8.8973179E-02 8.6101003E-02 8.3312854E-02 8.0608428E-02 7.7987045E-02
 7.5447693E-02 7.2989076E-02 7.0609681E-02 6.8307824E-02 6.6081688E-02
 6.3929334E-02 6.1848782E-02 5.9837993E-02 5.7894889E-02 5.6017395E-02
 5.4203432E-02 5.2450955E-02 5.0757922E-02 4.9122330E-02 4.7542244E-02
 4.6015743E-02 4.4540960E-02 4.3116082E-02 4.1739356E-02 4.0409073E-02
 3.9123591E-02 3.7881304E-02 3.6680665E-02 3.5520196E-02 3.4398459E-02
 3.3314064E-02 3.2265682E-02 3.1252023E-02 3.0271845E-02 2.9323963E-02
 2.8407231E-02 2.7520539E-02 2.6662825E-02 2.5833067E-02 2.5030283E-02
 2.4253529E-02 2.3501886E-02 2.2774478E-02 2.2070475E-02 2.1389054E-02
 2.0729443E-02 2.0090878E-02 1.9472655E-02 1.8874057E-02 1.8294428E-02
 1.7733129E-02 1.7189523E-02 1.6663026E-02 1.6153049E-02 1.5659045E-02
 1.5180489E-02 1.4716851E-02 1.4267641E-02 1.3832383E-02 1.3410609E-02
 1.3001889E-02 1.2605780E-02 1.2221878E-02 1.1849778E-02 1.1489102E-02
 1.1139480E-02 1.0800544E-02 1.0471961E-02 1.0153392E-02 9.8445164E-03
 9.5450273E-03 9.2546204E-03 8.9730090E-03 8.6999079E-03 8.4350556E-03
 8.1781894E-03 7.9290504E-03 7.6874038E-03 7.4530104E-03 7.2256429E-03
 7.0050848E-03 6.7911190E-03 6.5835468E-03 6.3821580E-03 6.1867712E-03
 5.9971968E-03
 2.7235147E-02 2.5602434E-02 2.4068885E-02 2.2629842E-02 2.1280503E-02
 2.0015994E-02 1.8831452E-02 1.7722078E-02 1.6683206E-02 1.5710346E-02
 1.4799205E-02 1.3945714E-02 1.3146037E-02 1.2396560E-02 1.1693900E-02
 1.1034888E-02 1.0416570E-02 9.8361894E-03 9.2911851E-03 8.7791756E-03
 8.2979463E-03 7.8454446E-03 7.4197683E-03 7.0191477E-03 6.6419435E-03
 6.2866346E-03 5.9518102E-03 5.6361584E-03 5.3384621E-03 5.0575929E-03
 4.7924975E-03 4.5421966E-03 4.3057823E-03 4.0824050E-03 3.8712774E-03
 3.6716636E-03 3.4828752E-03 3.3042685E-03 3.1352486E-03 2.9752532E-03
 2.8237596E-03 2.6802782E-03 2.5443477E-03 2.4155399E-03 2.2934524E-03
 2.1777048E-03 2.0679431E-03 1.9638345E-03 1.8650659E-03 1.7713422E-03
 1.6823879E-03 1.5979409E-03 1.5177580E-03 1.4416068E-03 1.3692719E-03
 1.3005479E-03 1.2352418E-03 1.1731712E-03 1.1141638E-03 1.0580582E-03
 1.0047037E-03 9.5395313E-04 9.0566982E-04 8.5972744E-04 8.1600226E-04
 7.7438110E-04 7.3475321E-04 6.9701782E-04 6.6107517E-04 6.2683591E-04
 5.9421232E-04 5.6311960E-04 5.3348270E-04 5.0522661E-04 4.7828164E-04
 4.5258249E-04 4.2806505E-04 4.0467098E-04 3.8234142E-04 3.6102635E-04
 3.4067433E-04 3.2123621E-04 3.0266691E-04 2.8492493E-04 2.6796700E-04
 2.5175713E-04 2.3625631E-04 2.2143108E-04 2.0724609E-04 1.9367343E-04
 1.8068078E-04
 0.1157397 0.1120550 0.1084635 0.1049672 0.1015676
 9.8265290E-02 9.5060445E-02 9.1952682E-02 8.8941127E-02 8.6024590E-02
 8.3201528E-02 8.0470160E-02 7.7828512E-02 7.5274453E-02 7.2805755E-02
 7.0420071E-02 6.8115041E-02 6.5888248E-02 6.3737281E-02 6.1659724E-02
 5.9653170E-02 5.7715274E-02 5.5843711E-02 5.4036200E-02 5.2290525E-02
 5.0604511E-02 4.8976053E-02 4.7403108E-02 4.5883700E-02 4.4415891E-02
 4.2997845E-02 4.1627761E-02 4.0303905E-02 3.9024610E-02 3.7788272E-02
 3.6593337E-02 3.5438314E-02 3.4321763E-02 3.3242304E-02 3.2198608E-02
 3.1189386E-02 3.0213416E-02 2.9269502E-02 2.8356520E-02 2.7473358E-02
 2.6618980E-02 2.5792351E-02 2.4992509E-02 2.4218515E-02 2.3469470E-02
 2.2744505E-02 2.2042779E-02 2.1363499E-02 2.0705881E-02 2.0069186E-02
 1.9452713E-02 1.8855749E-02 1.8277649E-02 1.7717760E-02 1.7175483E-02
 1.6650219E-02 1.6141387E-02 1.5648458E-02 1.5170889E-02 1.4708166E-02
 1.4259816E-02 1.3825344E-02 1.3404310E-02 1.2996259E-02 1.2600773E-02
 1.2217446E-02 1.1845878E-02 1.1485689E-02 1.1136509E-02 1.0797979E-02
 1.0469768E-02 1.0151536E-02 9.8429685E-03 9.5437514E-03 9.2535885E-03
 8.9721968E-03 8.6992905E-03 8.4346132E-03 8.1778886E-03 7.9288818E-03
 7.6873451E-03 7.4530360E-03 7.2257412E-03 7.0052370E-03 6.7913053E-03
 6.5837530E-03
 2.7751710E-02 2.6029367E-02 2.4412956E-02 2.2897284E-02 2.1477060E-02
 2.0146970E-02 1.8901760E-02 1.7736292E-02 1.6645595E-02 1.5624910E-02
 1.4669702E-02 1.3775683E-02 1.2938805E-02 1.2155264E-02 1.1421491E-02
 1.0734146E-02 1.0090110E-02 9.4864769E-03 8.9205345E-03 8.3897645E-03
 7.8918198E-03 7.4245236E-03 6.9858511E-03 6.5739187E-03 6.1869784E-03
 5.8234064E-03 5.4816906E-03 5.1604267E-03 4.8583094E-03 4.5741224E-03
 4.3067336E-03 4.0550889E-03 3.8182065E-03 3.5951713E-03 3.3851287E-03
 3.1872822E-03 3.0008880E-03 2.8252511E-03 2.6597208E-03 2.5036910E-03
 2.3565930E-03 2.2178954E-03 2.0870978E-03 1.9637360E-03 1.8473719E-03
 1.7375953E-03 1.6340212E-03 1.5362891E-03 1.4440605E-03 1.3570157E-03
 1.2748570E-03 1.1973018E-03 1.1240877E-03 1.0549657E-03 9.8970195E-04
 9.2807814E-04 8.6988322E-04 8.1492664E-04 7.6302304E-04 7.1400136E-04
 6.6769694E-04 6.2395609E-04 5.8263633E-04 5.4360158E-04 5.0672062E-04
 4.7187647E-04 4.3895084E-04 4.0783960E-04 3.7843778E-04 3.5065223E-04
 3.2439138E-04 2.9957108E-04 2.7610877E-04 2.5393051E-04 2.3296212E-04
 2.1313819E-04 1.9439406E-04 1.7666921E-04 1.5990651E-04 1.4405164E-04
 1.2905477E-04 1.1486694E-04 1.0144430E-04 8.8741122E-05 7.6720149E-05
 6.5342407E-05 5.4568489E-05 4.4368080E-05 3.4708977E-05 2.5557765E-05
 1.6888676E-05
 0.1279904 0.1238626 0.1198451 0.1159393 0.1121461
 0.1084656 0.1048972 0.1014400 9.8092593E-02 9.4853133E-02
 9.1719583E-02 8.8689648E-02 8.5760862E-02 8.2930617E-02 8.0196232E-02
 7.7554941E-02 7.5003944E-02 7.2540447E-02 7.0161648E-02 6.7864776E-02
 6.5647081E-02 6.3505866E-02 6.1438505E-02 5.9442401E-02 5.7515062E-02
 5.5654027E-02 5.3856924E-02 5.2121457E-02 5.0445404E-02 4.8826601E-02
 4.7262974E-02 4.5752525E-02 4.4293303E-02 4.2883448E-02 4.1521180E-02
 4.0204752E-02 3.8932502E-02 3.7702836E-02 3.6514200E-02 3.5365120E-02
 3.4254171E-02 3.3179983E-02 3.2141235E-02 3.1136662E-02 3.0165050E-02
 2.9225221E-02 2.8316056E-02 2.7436463E-02 2.6585413E-02 2.5761899E-02
 2.4964955E-02 2.4193663E-02 2.3447132E-02 2.2724498E-02 2.2024937E-02
 2.1347672E-02 2.0691920E-02 2.0056963E-02 1.9442080E-02 1.8846594E-02
 1.8269857E-02 1.7711230E-02 1.7170113E-02 1.6645908E-02 1.6138054E-02
 1.5646020E-02 1.5169268E-02 1.4707300E-02 1.4259620E-02 1.3825766E-02
 1.3405291E-02 1.2997741E-02 1.2602713E-02 1.2219789E-02 1.1848575E-02
 1.1488707E-02 1.1139801E-02 1.0801519E-02 1.0473513E-02 1.0155458E-02
 9.8470328E-03 9.5479321E-03 9.2578642E-03 8.9765368E-03 8.7036723E-03
 8.4390147E-03 8.1822937E-03 7.9332693E-03 7.6916916E-03 7.4573294E-03
 7.2299652E-03
 2.8476201E-02 2.6640605E-02 2.4919303E-02 2.3306478E-02 2.1796275E-02
 2.0382872E-02 1.9060556E-02 1.7823786E-02 1.6667223E-02 1.5585778E-02
 1.4574612E-02 1.3629149E-02 1.2745075E-02 1.1918335E-02 1.1145120E-02
 1.0421872E-02 9.7452560E-03 9.1121644E-03 8.5196951E-03 7.9651494E-03
 7.4460078E-03 6.9599277E-03 6.5047280E-03 6.0783778E-03 5.6789881E-03
 5.3047999E-03 4.9541751E-03 4.6255891E-03 4.3176208E-03 4.0289476E-03
 3.7583346E-03 3.5046306E-03 3.2667646E-03 3.0437352E-03 2.8346069E-03
 2.6385079E-03 2.4546224E-03 2.2821869E-03 2.1204909E-03 1.9688690E-03
 1.8266969E-03 1.6933912E-03 1.5684061E-03 1.4512301E-03 1.3413845E-03
 1.2384189E-03 1.1419145E-03 1.0514759E-03 9.6673262E-04 8.8733714E-04
 8.1296486E-04 7.4330909E-04 6.7808392E-04 6.1701896E-04 5.5986090E-04
 5.0637330E-04 4.5633147E-04 4.0952710E-04 3.6576111E-04 3.2484927E-04
 2.8661761E-04 2.5090229E-04 2.1754876E-04 1.8641306E-04 1.5735799E-04
 1.3025741E-04 1.0498888E-04 8.1440434E-05 5.9504309E-05 3.9082199E-05
 2.0079422E-05 2.4053120E-06 -1.4020789E-05 -2.9278550E-05 -4.3442524E-05
 -5.6579647E-05 -6.8758840E-05 -8.0038328E-05 -9.0477239E-05 -1.0012917E-04
 -1.0904690E-04 -1.1727692E-04 -1.2486479E-04 -1.3185294E-04 -1.3828222E-04
 -1.4418821E-04 -1.4960852E-04 -1.5457468E-04 -1.5911853E-04 -1.6327020E-04
 -1.6705523E-04
 0.1414700 0.1368591 0.1323767 0.1280238 0.1238004
 0.1197062 0.1157400 0.1119002 0.1081848 0.1045914
 0.1011174 9.7759888E-02 9.4515979E-02 9.1382533E-02 8.8356353E-02
 8.5434236E-02 8.2612924E-02 7.9889186E-02 7.7259839E-02 7.4721687E-02
 7.2271623E-02 6.9906592E-02 6.7623623E-02 6.5419778E-02 6.3292265E-02
 6.1238322E-02 5.9255287E-02 5.7340585E-02 5.5491727E-02 5.3706300E-02
 5.1981989E-02 5.0316565E-02 4.8707854E-02 4.7153786E-02 4.5652367E-02
 4.4201672E-02 4.2799845E-02 4.1445110E-02 4.0135745E-02 3.8870115E-02
 3.7646636E-02 3.6463782E-02 3.5320081E-02 3.4214154E-02 3.3144627E-02
 3.2110214E-02 3.1109663E-02 3.0141767E-02 2.9205380E-02 2.8299393E-02
 2.7422739E-02 2.6574390E-02 2.5753370E-02 2.4958706E-02 2.4189504E-02
 2.3444895E-02 2.2724010E-02 2.2026056E-02 2.1350238E-02 2.0695806E-02
 2.0062042E-02 1.9448234E-02 1.8853726E-02 1.8277852E-02 1.7719997E-02
 1.7179566E-02 1.6655967E-02 1.6148647E-02 1.5657069E-02 1.5180709E-02
 1.4719080E-02 1.4271677E-02 1.3838057E-02 1.3417754E-02 1.3010345E-02
 1.2615410E-02 1.2232541E-02 1.1861354E-02 1.1501467E-02 1.1152523E-02
 1.0814168E-02 1.0486068E-02 1.0167892E-02 9.8593244E-03 9.5600607E-03
 9.2698112E-03 8.9882817E-03 8.7152086E-03 8.4503135E-03 8.1933476E-03
 7.9440642E-03
 2.9487267E-02 2.7509617E-02 2.5656568E-02 2.3921587E-02 2.2298152E-02
 2.0779848E-02 1.9360419E-02 1.8033838E-02 1.6794322E-02 1.5636364E-02
 1.4554737E-02 1.3544509E-02 1.2601022E-02 1.1719896E-02 1.0897025E-02
 1.0128553E-02 9.4108768E-03 8.7406309E-03 8.1146685E-03 7.5300527E-03
 6.9840453E-03 6.4740931E-03 5.9978147E-03 5.5529913E-03 5.1375530E-03
 4.7495714E-03 4.3872464E-03 4.0489039E-03 3.7329779E-03 3.4380120E-03
 3.1626422E-03 2.9055993E-03 2.6656988E-03 2.4418312E-03 2.2329639E-03
 2.0381326E-03 1.8564335E-03 1.6870209E-03 1.5291071E-03 1.3819571E-03
 1.2448783E-03 1.1172278E-03 9.9839852E-04 8.8782789E-04 7.8498636E-04
 6.8937719E-04 6.0053705E-04 5.1803183E-04 4.4145450E-04 3.7042215E-04
 3.0457933E-04 2.4359017E-04 1.8714120E-04 1.3493682E-04 8.6702981E-05
 4.2180036E-05 1.1245963E-06 -3.6689016E-05 -7.1474526E-05 -1.0343304E-04
 -1.3275094E-04 -1.5960447E-04 -1.8415769E-04 -2.0656669E-04 -2.2697619E-04
 -2.4552114E-04 -2.6233084E-04 -2.7752356E-04 -2.9121176E-04 -3.0350141E-04
 -3.1448854E-04 -3.2426964E-04 -3.3292756E-04 -3.4054604E-04 -3.4719927E-04
 -3.5295996E-04 -3.5789443E-04 -3.6206501E-04 -3.6553145E-04 -3.6834655E-04
 -3.7056411E-04 -3.7222914E-04 -3.7339045E-04 -3.7408719E-04 -3.7435960E-04
 -3.7424450E-04 -3.7377744E-04 -3.7298803E-04 -3.7190900E-04 -3.7056667E-04
 -3.6898695E-04
 0.1563477 0.1512101 0.1462203 0.1413787 0.1366850
 0.1321379 0.1277359 0.1234766 0.1193574 0.1153753
 0.1115272 0.1078097 0.1042191 0.1007518 9.7404271E-02
 9.4172657E-02 9.1053270E-02 8.8042423E-02 8.5136488E-02 8.2331866E-02
 7.9625048E-02 7.7012591E-02 7.4491158E-02 7.2057471E-02 6.9708370E-02
 6.7440793E-02 6.5251775E-02 6.3138418E-02 6.1097980E-02 5.9127763E-02
 5.7225198E-02 5.5387788E-02 5.3613137E-02 5.1898938E-02 5.0242987E-02
 4.8643131E-02 4.7097325E-02 4.5603596E-02 4.4160035E-02 4.2764824E-02
 4.1416217E-02 4.0112510E-02 3.8852099E-02 3.7633419E-02 3.6454972E-02
 3.5315331E-02 3.4213096E-02 3.3146944E-02 3.2115605E-02 3.1117845E-02
 3.0152483E-02 2.9218381E-02 2.8314456E-02 2.7439645E-02 2.6592944E-02
 2.5773387E-02 2.4980024E-02 2.4211971E-02 2.3468349E-02 2.2748323E-02
 2.2051109E-02 2.1375909E-02 2.0722002E-02 2.0088650E-02 1.9475171E-02
 1.8880907E-02 1.8305207E-02 1.7747458E-02 1.7207060E-02 1.6683435E-02
 1.6176047E-02 1.5684342E-02 1.5207822E-02 1.4745972E-02 1.4298328E-02
 1.3864426E-02 1.3443816E-02 1.3036067E-02 1.2640768E-02 1.2257509E-02
 1.1885915E-02 1.1525604E-02 1.1176216E-02 1.0837407E-02 1.0508833E-02
 1.0190175E-02 9.8811118E-03 9.5813489E-03 9.2905844E-03 9.0085361E-03
 8.7349340E-03
 3.0893991E-02 2.8739018E-02 2.6721351E-02 2.4833597E-02 2.3068465E-02
 2.1418827E-02 1.9877788E-02 1.8438717E-02 1.7095277E-02 1.5841447E-02
 1.4671516E-02 1.3580086E-02 1.2562070E-02 1.1612674E-02 1.0727406E-02
 9.9020433E-03 9.1326339E-03 8.4154792E-03 7.7471253E-03 7.1243364E-03
 6.5440941E-03 6.0035796E-03 5.5001606E-03 5.0313799E-03 4.5949435E-03
 4.1887122E-03 3.8106861E-03 3.4590019E-03 3.1319179E-03 2.8278097E-03
 2.5451600E-03 2.2825496E-03 2.0386577E-03 1.8122466E-03 1.6021641E-03
 1.4073292E-03 1.2267358E-03 1.0594394E-03 9.0456090E-04 7.6127902E-04
 6.2882178E-04 5.0647045E-04 3.9355116E-04 2.8943681E-04 1.9353810E-04
 1.0530297E-04 2.4217470E-05 -5.0200717E-05 -1.1840142E-04 -1.8080708E-04
 -2.3781290E-04 -2.8978827E-04 -3.3707847E-04 -3.8000700E-04 -4.1887615E-04
 -4.5397007E-04 -4.8555341E-04 -5.1387394E-04 -5.3916371E-04 -5.6164112E-04
 -5.8150827E-04 -5.9895508E-04 -6.1416003E-04 -6.2728947E-04 -6.3849869E-04
 -6.4793281E-04 -6.5572816E-04 -6.6201220E-04 -6.6690415E-04 -6.7051465E-04
 -6.7294692E-04 -6.7429867E-04 -6.7465956E-04 -6.7411654E-04 -6.7274558E-04
 -6.7062228E-04 -6.6781382E-04 -6.6438672E-04 -6.6039735E-04 -6.5590546E-04
 -6.5095990E-04 -6.4560882E-04 -6.3990045E-04 -6.3387194E-04 -6.2756578E-04
 -6.2101695E-04 -6.1425910E-04 -6.0732331E-04 -6.0023746E-04 -5.9302989E-04
 -5.8572454E-04
 0.1728107 0.1670996 0.1615565 0.1561814 0.1509733
 0.1459304 0.1410506 0.1363309 0.1317681 0.1273586
 0.1230987 0.1189843 0.1150114 0.1111757 0.1074731
 0.1038993 0.1004501 9.7121403E-02 9.3909010E-02 9.0808950E-02
 8.7817289E-02 8.4930167E-02 8.2143873E-02 7.9454750E-02 7.6859295E-02
 7.4354090E-02 7.1935833E-02 6.9601335E-02 6.7347527E-02 6.5171421E-02
 6.3070185E-02 6.1041053E-02 5.9081361E-02 5.7188552E-02 5.5360183E-02
 5.3593889E-02 5.1887389E-02 5.0238509E-02 4.8645124E-02 4.7105234E-02
 4.5616899E-02 4.4178236E-02 4.2787459E-02 4.1442852E-02 4.0142749E-02
 3.8885560E-02 3.7669752E-02 3.6493845E-02 3.5356447E-02 3.4256175E-02
 3.3191741E-02 3.2161865E-02 3.1165358E-02 3.0201031E-02 2.9267782E-02
 2.8364547E-02 2.7490258E-02 2.6643947E-02 2.5824632E-02 2.5031395E-02
 2.4263363E-02 2.3519656E-02 2.2799468E-02 2.2101987E-02 2.1426454E-02
 2.0772146E-02 2.0138336E-02 1.9524349E-02 1.8929513E-02 1.8353201E-02
 1.7794807E-02 1.7253725E-02 1.6729392E-02 1.6221259E-02 1.5728788E-02
 1.5251485E-02 1.4788838E-02 1.4340380E-02 1.3905644E-02 1.3484193E-02
 1.3075599E-02 1.2679439E-02 1.2295326E-02 1.1922867E-02 1.1561688E-02
 1.1211438E-02 1.0871759E-02 1.0542322E-02 1.0222794E-02 9.9128680E-03
 9.6122446E-03
 3.2846715E-02 3.0471016E-02 2.8248223E-02 2.6169956E-02 2.4227999E-02
 2.2414386E-02 2.0721426E-02 1.9141762E-02 1.7668359E-02 1.6294556E-02
 1.5014023E-02 1.3820787E-02 1.2709206E-02 1.1673975E-02 1.0710103E-02
 9.8129120E-03 8.9780074E-03 8.2012806E-03 7.4788784E-03 6.8072015E-03
 6.1828769E-03 5.6027588E-03 5.0639003E-03 4.5635547E-03 4.0991488E-03
 3.6682850E-03 3.2687183E-03 2.8983559E-03 2.5552411E-03 2.2375472E-03
 1.9435663E-03 1.6717041E-03 1.4204727E-03 1.1884803E-03 9.7442738E-04
 7.7710097E-04 5.9536594E-04 4.2816263E-04 2.7450101E-04 1.3345591E-04
 4.1638582E-06 -1.1418381E-04 -2.2234317E-04 -3.2101671E-04 -4.1086494E-04
 -4.9250445E-04 -5.6651159E-04 -6.3342258E-04 -6.9374061E-04 -7.4793684E-04
 -7.9644826E-04 -8.3968684E-04 -8.7803463E-04 -9.1185095E-04 -9.4146963E-04
 -9.6720265E-04 -9.8934351E-04 -1.0081623E-03 -1.0239166E-03 -1.0368433E-03
 -1.0471629E-03 -1.0550839E-03 -1.0608003E-03 -1.0644905E-03 -1.0663251E-03
 -1.0664592E-03 -1.0650401E-03 -1.0622040E-03 -1.0580795E-03 -1.0527824E-03
 -1.0464251E-03 -1.0391091E-03 -1.0309316E-03 -1.0219801E-03 -1.0123381E-03
 -1.0020818E-03 -9.9128345E-04 -9.8000886E-04 -9.6832059E-04 -9.5627428E-04
 -9.4392354E-04 -9.3131751E-04 -9.1850135E-04 -9.0551615E-04 -8.9240202E-04
 -8.7919389E-04 -8.6592499E-04 -8.5262628E-04 -8.3932519E-04 -8.2604680E-04
 -8.1281504E-04
 0.1910618 0.1847282 0.1785833 0.1726265 0.1668565
 0.1612712 0.1558677 0.1506426 0.1455920 0.1407120
 0.1359980 0.1314456 0.1270501 0.1228068 0.1187110
 0.1147578 0.1109426 0.1072608 0.1037077 0.1002790
 9.6970171E-02 9.3777068E-02 9.0695508E-02 8.7721474E-02 8.4851071E-02
 8.2080528E-02 7.9406202E-02 7.6824568E-02 7.4332215E-02 7.1925871E-02
 6.9602393E-02 6.7358717E-02 6.5191910E-02 6.3099153E-02 6.1077733E-02
 5.9125047E-02 5.7238564E-02 5.5415884E-02 5.3654663E-02 5.1952682E-02
 5.0307795E-02 4.8717927E-02 4.7181088E-02 4.5695387E-02 4.4258971E-02
 4.2870097E-02 4.1527048E-02 4.0228195E-02 3.8971979E-02 3.7756894E-02
 3.6581483E-02 3.5444353E-02 3.4344170E-02 3.3279628E-02 3.2249492E-02
 3.1252578E-02 3.0287726E-02 2.9353835E-02 2.8449830E-02 2.7574692E-02
 2.6727444E-02 2.5907118E-02 2.5112815E-02 2.4343638E-02 2.3598744E-02
 2.2877326E-02 2.2178577E-02 2.1501759E-02 2.0846115E-02 2.0210957E-02
 1.9595606E-02 1.8999392E-02 1.8421700E-02 1.7861905E-02 1.7319422E-02
 1.6793692E-02 1.6284158E-02 1.5790300E-02 1.5311600E-02 1.4847567E-02
 1.4397736E-02 1.3961636E-02 1.3538834E-02 1.3128893E-02 1.2731403E-02
 1.2345973E-02 1.1972209E-02 1.1609746E-02 1.1258217E-02 1.0917276E-02
 1.0586591E-02
 3.5551153E-02 3.2900892E-02 3.0422654E-02 2.8106902E-02 2.5944328E-02
 2.3925941E-02 2.2043092E-02 2.0287517E-02 1.8651329E-02 1.7127050E-02
 1.5707584E-02 1.4386230E-02 1.3156663E-02 1.2012925E-02 1.0949420E-02
 9.9608824E-03 9.0423813E-03 8.1892861E-03 7.3972628E-03 6.6622519E-03
 5.9804535E-03 5.3483127E-03 4.7625061E-03 4.2199241E-03 3.7176593E-03
 3.2529973E-03 2.8233980E-03 2.4264902E-03 2.0600571E-03 1.7220286E-03
 1.4104689E-03 1.1235707E-03 8.5964805E-04 6.1711977E-04 3.9451686E-04
 1.9046188E-04 3.6691749E-06 -1.6706107E-04 -3.2285042E-04 -4.6474475E-04
 -5.9372239E-04 -7.1069697E-04 -8.1652147E-04 -9.1199117E-04 -9.9784974E-04
 -1.0747925E-03 -1.1434678E-03 -1.2044797E-03 -1.2583932E-03 -1.3057363E-03
 -1.3470015E-03 -1.3826473E-03 -1.4131026E-03 -1.4387671E-03 -1.4600145E-03
 -1.4771925E-03 -1.4906249E-03 -1.5006156E-03 -1.5074458E-03 -1.5113779E-03
 -1.5126583E-03 -1.5115149E-03 -1.5081605E-03 -1.5027913E-03 -1.4955937E-03
 -1.4867370E-03 -1.4763840E-03 -1.4646793E-03 -1.4517636E-03 -1.4377630E-03
 -1.4227969E-03 -1.4069763E-03 -1.3904035E-03 -1.3731730E-03 -1.3553733E-03
 -1.3370859E-03 -1.3183865E-03 -1.2993432E-03 -1.2800224E-03 -1.2604835E-03
 -1.2407803E-03 -1.2209628E-03 -1.2010803E-03 -1.1811726E-03 -1.1612814E-03
 -1.1414416E-03 -1.1216862E-03 -1.1020455E-03 -1.0825467E-03 -1.0632152E-03
 -1.0440744E-03
 0.2113142 0.2043087 0.1975119 0.1909233 0.1845414
 0.1783637 0.1723870 0.1666075 0.1610210 0.1556227
 0.1504079 0.1453716 0.1405085 0.1358134 0.1312812
 0.1269065 0.1226843 0.1186093 0.1146766 0.1108812
 0.1072184 0.1036834 0.1002718 9.6979052E-02 9.3800917E-02
 9.0733238E-02 8.7772019E-02 8.4913380E-02 8.2153574E-02 7.9488993E-02
 7.6916158E-02 7.4431725E-02 7.2032452E-02 6.9715217E-02 6.7477040E-02
 6.5315038E-02 6.3226432E-02 6.1208550E-02 5.9258815E-02 5.7374775E-02
 5.5554044E-02 5.3794336E-02 5.2093446E-02 5.0449274E-02 4.8859783E-02
 4.7323022E-02 4.5837101E-02 4.4400204E-02 4.3010611E-02 4.1666646E-02
 4.0366698E-02 3.9109204E-02 3.7892703E-02 3.6715727E-02 3.5576925E-02
 3.4474965E-02 3.3408560E-02 3.2376494E-02 3.1377565E-02 3.0410647E-02
 2.9474648E-02 2.8568497E-02 2.7691193E-02 2.6841737E-02 2.6019195E-02
 2.5222668E-02 2.4451260E-02 2.3704147E-02 2.2980496E-02 2.2279531E-02
 2.1600502E-02 2.0942669E-02 2.0305341E-02 1.9687831E-02 1.9089483E-02
 1.8509680E-02 1.7947802E-02 1.7403267E-02 1.6875502E-02 1.6363967E-02
 1.5868139E-02 1.5387495E-02 1.4921557E-02 1.4469842E-02 1.4031890E-02
 1.3607273E-02 1.3195543E-02 1.2796303E-02 1.2409145E-02 1.2033686E-02
 1.1669559E-02
 3.9287198E-02 3.6295004E-02 3.3498179E-02 3.0885827E-02 2.8447354E-02
 2.6172534E-02 2.4051551E-02 2.2075037E-02 2.0234030E-02 1.8520059E-02
 1.6925069E-02 1.5441461E-02 1.4062053E-02 1.2780092E-02 1.1589219E-02
 1.0483457E-02 9.4572026E-03 8.5051944E-03 7.6225046E-03 6.8045137E-03
 6.0468926E-03 5.3455974E-03 4.6968404E-03 4.0970757E-03 3.5429916E-03
 3.0314892E-03 2.5596714E-03 2.1248311E-03 1.7244396E-03 1.3561316E-03
 1.0176991E-03 7.0707698E-04 4.2233858E-04 1.6168214E-04 -7.6571538E-05
 -2.9399499E-04 -4.9205445E-04 -6.7211961E-04 -8.3546893E-04 -9.8329643E-04
 -1.1167161E-03 -1.2367681E-03 -1.3444244E-03 -1.4405907E-03 -1.5261117E-03
 -1.6017782E-03 -1.6683245E-03 -1.7264385E-03 -1.7767603E-03 -1.8198875E-03
 -1.8563776E-03 -1.8867492E-03 -1.9114864E-03 -1.9310408E-03 -1.9458323E-03
 -1.9562535E-03 -1.9626687E-03 -1.9654182E-03 -1.9648175E-03 -1.9611607E-03
 -1.9547236E-03 -1.9457587E-03 -1.9345047E-03 -1.9211801E-03 -1.9059919E-03
 -1.8891277E-03 -1.8707657E-03 -1.8510687E-03 -1.8301891E-03 -1.8082678E-03
 -1.7854352E-03 -1.7618118E-03 -1.7375095E-03 -1.7126319E-03 -1.6872747E-03
 -1.6615258E-03 -1.6354669E-03 -1.6091731E-03 -1.5827136E-03 -1.5561518E-03
 -1.5295453E-03 -1.5029492E-03 -1.4764118E-03 -1.4499776E-03 -1.4236890E-03
 -1.3975820E-03 -1.3716921E-03 -1.3460498E-03 -1.3206825E-03 -1.2956163E-03
 -1.2708735E-03
 0.2337825 0.2260581 0.2185608 0.2112905 0.2042458
 0.1974242 0.1908224 0.1844365 0.1782619 0.1722939
 0.1665272 0.1609563 0.1555758 0.1503800 0.1453633
 0.1405199 0.1358444 0.1313311 0.1269747 0.1227697
 0.1187110 0.1147934 0.1110120 0.1073620 0.1038387
 0.1004376 9.7154282E-02 9.3984492E-02 9.0924159E-02 8.7969303E-02
 8.5116118E-02 8.2360923E-02 7.9700142E-02 7.7130355E-02 7.4648283E-02
 7.2250731E-02 6.9934644E-02 6.7697071E-02 6.5535165E-02 6.3446209E-02
 6.1427578E-02 5.9476726E-02 5.7591222E-02 5.5768736E-02 5.4007005E-02
 5.2303869E-02 5.0657235E-02 4.9065080E-02 4.7525499E-02 4.6036627E-02
 4.4596672E-02 4.3203905E-02 4.1856688E-02 4.0553402E-02 3.9292526E-02
 3.8072601E-02 3.6892172E-02 3.5749897E-02 3.4644444E-02 3.3574548E-02
 3.2538995E-02 3.1536590E-02 3.0566230E-02 2.9626792E-02 2.8717233E-02
 2.7836559E-02 2.6983775E-02 2.6157947E-02 2.5358165E-02 2.4583554E-02
 2.3833288E-02 2.3106530E-02 2.2402517E-02 2.1720486E-02 2.1059707E-02
 2.0419486E-02 1.9799137E-02 1.9198015E-02 1.8615482E-02 1.8050931E-02
 1.7503787E-02 1.6973460E-02 1.6459428E-02 1.5961144E-02 1.5478109E-02
 1.5009827E-02 1.4555823E-02 1.4115640E-02 1.3688825E-02 1.3274960E-02
 1.2873629E-02
 4.4435140E-02 4.1015845E-02 3.7820291E-02 3.4836043E-02 3.2050990E-02
 2.9453455E-02 2.7032208E-02 2.4776520E-02 2.2676138E-02 2.0721357E-02
 1.8902946E-02 1.7212208E-02 1.5640907E-02 1.4181310E-02 1.2826123E-02
 1.1568504E-02 1.0402023E-02 9.3206475E-03 8.3187213E-03 7.3909471E-03
 6.5323557E-03 5.7383026E-03 5.0044390E-03 4.3266914E-03 3.7012545E-03
 3.1245656E-03 2.5932959E-03 2.1043338E-03 1.6547695E-03 1.2418820E-03
 8.6313422E-04 5.1614863E-04 1.9870907E-04 -9.1258167E-05 -3.5568347E-04
 -5.9637614E-04 -8.1502326E-04 -1.0131992E-03 -1.1923753E-03 -1.3539223E-03
 -1.4991220E-03 -1.6291694E-03 -1.7451813E-03 -1.8481966E-03 -1.9391861E-03
 -2.0190561E-03 -2.0886501E-03 -2.1487549E-03 -2.2001052E-03 -2.2433843E-03
 -2.2792297E-03 -2.3082357E-03 -2.3309547E-03 -2.3479029E-03 -2.3595588E-03
 -2.3663703E-03 -2.3687521E-03 -2.3670911E-03 -2.3617474E-03 -2.3530545E-03
 -2.3413247E-03 -2.3268450E-03 -2.3098858E-03 -2.2906945E-03 -2.2695032E-03
 -2.2465263E-03 -2.2219629E-03 -2.1959972E-03 -2.1687998E-03 -2.1405285E-03
 -2.1113302E-03 -2.0813402E-03 -2.0506827E-03 -2.0194738E-03 -1.9878198E-03
 -1.9558186E-03 -1.9235606E-03 -1.8911294E-03 -1.8586002E-03 -1.8260444E-03
 -1.7935251E-03 -1.7611021E-03 -1.7288288E-03 -1.6967539E-03 -1.6649219E-03
 -1.6333746E-03 -1.6021482E-03 -1.5712767E-03 -1.5407896E-03 -1.5107134E-03
 -1.4810738E-03
 0.2586528 0.2501856 0.2419455 0.2339478 0.2261919
 0.2186759 0.2113971 0.2043516 0.1975352 0.1909430
 0.1845697 0.1784100 0.1724579 0.1667077 0.1611535
 0.1557892 0.1506090 0.1456071 0.1407775 0.1361146
 0.1316127 0.1272665 0.1230705 0.1190196 0.1151087
 0.1113329 0.1076873 0.1041675 0.1007689 9.7487278E-02
 9.4318338E-02 9.1258101E-02 8.8302650E-02 8.5448235E-02 8.2691237E-02
 8.0028147E-02 7.7455595E-02 7.4970335E-02 7.2569214E-02 7.0249237E-02
 6.8007484E-02 6.5841153E-02 6.3747548E-02 6.1724089E-02 5.9768252E-02
 5.7877652E-02 5.6049950E-02 5.4282922E-02 5.2574422E-02 5.0922390E-02
 4.9324829E-02 4.7779813E-02 4.6285518E-02 4.4840135E-02 4.3441981E-02
 4.2089418E-02 4.0780827E-02 3.9514717E-02 3.8289584E-02 3.7104037E-02
 3.5956711E-02 3.4846283E-02 3.3771496E-02 3.2731123E-02 3.1723998E-02
 3.0748999E-02 2.9805008E-02 2.8891008E-02 2.8005963E-02 2.7148902E-02
 2.6318908E-02 2.5515039E-02 2.4736453E-02 2.3982279E-02 2.3251725E-02
 2.2544006E-02 2.1858355E-02 2.1194056E-02 2.0550398E-02 1.9926703E-02
 1.9322323E-02 1.8736614E-02 1.8168984E-02 1.7618824E-02 1.7085578E-02
 1.6568700E-02 1.6067652E-02 1.5581929E-02 1.5111031E-02 1.4654481E-02
 1.4211825E-02
 5.1479917E-02 4.7558948E-02 4.3861721E-02 4.0408436E-02 3.7185285E-02
 3.4178860E-02 3.1376276E-02 2.8765151E-02 2.6333686E-02 2.4070662E-02
 2.1965437E-02 2.0007949E-02 1.8188708E-02 1.6498759E-02 1.4929685E-02
 1.3473569E-02 1.2122981E-02 1.0870948E-02 9.7109182E-03 8.6367736E-03
 7.6427623E-03 6.7235092E-03 5.8739763E-03 5.0894525E-03 4.3655285E-03
 3.6980801E-03 3.0832489E-03 2.5174259E-03 1.9972434E-03 1.5195451E-03
 1.0813890E-03 6.8001676E-04 3.1286030E-04 -2.2486496E-05 -3.2826557E-04
 -6.0657295E-04 -8.5936824E-04 -1.0884772E-03 -1.2956079E-03 -1.4823510E-03
 -1.6501930E-03 -1.8005219E-03 -1.9346313E-03 -2.0537281E-03 -2.1589368E-03
 -2.2513096E-03 -2.3318240E-03 -2.4013931E-03 -2.4608660E-03 -2.5110368E-03
 -2.5526430E-03 -2.5863729E-03 -2.6128660E-03 -2.6327185E-03 -2.6464865E-03
 -2.6546859E-03 -2.6577972E-03 -2.6562668E-03 -2.6505108E-03 -2.6409146E-03
 -2.6278379E-03 -2.6116129E-03 -2.5925501E-03 -2.5709353E-03 -2.5470357E-03
 -2.5210986E-03 -2.4933526E-03 -2.4640092E-03 -2.4332656E-03 -2.4013026E-03
 -2.3682895E-03 -2.3343798E-03 -2.2997183E-03 -2.2644366E-03 -2.2286572E-03
 -2.1924919E-03 -2.1560441E-03 -2.1194108E-03 -2.0826769E-03 -2.0459231E-03
 -2.0092244E-03 -1.9726458E-03 -1.9362512E-03 -1.9000946E-03 -1.8642283E-03
 -1.8286986E-03 -1.7935467E-03 -1.7588128E-03 -1.7245288E-03 -1.6907284E-03
 -1.6574375E-03
 0.2860608 0.2768428 0.2678519 0.2591035 0.2505969
 0.2423425 0.2343387 0.2265829 0.2190715 0.2118004
 0.2047646 0.1979590 0.1913780 0.1850160 0.1788669
 0.1729247 0.1671835 0.1616371 0.1562794 0.1511047
 0.1461069 0.1412802 0.1366191 0.1321179 0.1277712
 0.1235738 0.1195206 0.1156065 0.1118267 0.1081765
 0.1046514 0.1012469 9.7958893E-02 9.4783142E-02 9.1715716E-02
 8.8752761E-02 8.5890569E-02 8.3125561E-02 8.0454275E-02 7.7873372E-02
 7.5379662E-02 7.2970018E-02 7.0641443E-02 6.8391100E-02 6.6216171E-02
 6.4114012E-02 6.2082022E-02 6.0117722E-02 5.8218725E-02 5.6382731E-02
 5.4607518E-02 5.2890942E-02 5.1230963E-02 4.9625564E-02 4.8072852E-02
 4.6571020E-02 4.5118246E-02 4.3712854E-02 4.2353187E-02 4.1037660E-02
 3.9764773E-02 3.8533024E-02 3.7341036E-02 3.6187399E-02 3.5070825E-02
 3.3990063E-02 3.2943871E-02 3.1931087E-02 3.0950565E-02 3.0001219E-02
 2.9082013E-02 2.8191909E-02 2.7329952E-02 2.6495177E-02 2.5686689E-02
 2.4903618E-02 2.4145100E-02 2.3410341E-02 2.2698535E-02 2.2008935E-02
 2.1340813E-02 2.0693455E-02 2.0066183E-02 1.9458337E-02 1.8869283E-02
 1.8298417E-02 1.7745132E-02 1.7208874E-02 1.6689073E-02 1.6185211E-02
 1.5696770E-02
 6.0975317E-02 5.6495931E-02 5.2240286E-02 4.8228584E-02 4.4447020E-02
 4.0918034E-02 3.7626784E-02 3.4558970E-02 3.1700913E-02 2.9039601E-02
 2.6562661E-02 2.4258407E-02 2.2115782E-02 2.0124357E-02 1.8274339E-02
 1.6556498E-02 1.4962159E-02 1.3483209E-02 1.2112005E-02 1.0841401E-02
 9.6646929E-03 8.5756062E-03 7.5682602E-03 6.6371490E-03 5.7771308E-03
 4.9833790E-03 4.2513898E-03 3.5769439E-03 2.9561031E-03 2.3851763E-03
 1.8607210E-03 1.3795090E-03 9.3853241E-04 5.3497672E-04 1.6621820E-04
 -1.7020351E-04 -4.7658038E-04 -7.5505389E-04 -1.0076265E-03 -1.2361617E-03
 -1.4424035E-03 -1.6279796E-03 -1.7944068E-03 -1.9431018E-03 -2.0753841E-03
 -2.1924863E-03 -2.2955581E-03 -2.3856692E-03 -2.4638178E-03 -2.5309345E-03
 -2.5878863E-03 -2.6354799E-03 -2.6744674E-03 -2.7055491E-03 -2.7293777E-03
 -2.7465571E-03 -2.7576543E-03 -2.7631919E-03 -2.7636592E-03 -2.7595093E-03
 -2.7511648E-03 -2.7390157E-03 -2.7234275E-03 -2.7047356E-03 -2.6832551E-03
 -2.6592754E-03 -2.6330664E-03 -2.6048780E-03 -2.5749400E-03 -2.5434680E-03
 -2.5106592E-03 -2.4766962E-03 -2.4417501E-03 -2.4059752E-03 -2.3695163E-03
 -2.3325069E-03 -2.2950687E-03 -2.2573157E-03 -2.2193503E-03 -2.1812690E-03
 -2.1431590E-03 -2.1051005E-03 -2.0671671E-03 -2.0294264E-03 -1.9919395E-03
 -1.9547625E-03 -1.9179475E-03 -1.8815404E-03 -1.8455832E-03 -1.8101147E-03
 -1.7751700E-03
 0.3161652 0.3061858 0.2964335 0.2869237 0.2776557
 0.2686399 0.2598748 0.2513662 0.2431124 0.2351107
 0.2273578 0.2198493 0.2125806 0.2055466 0.1987417
 0.1921604 0.1857968 0.1796448 0.1736986 0.1679520
 0.1623990 0.1570338 0.1518504 0.1468431 0.1420060
 0.1373337 0.1328207 0.1284617 0.1242514 0.1201849
 0.1162572 0.1124635 0.1087992 0.1052599 0.1018412
 9.8538868E-02 9.5348835E-02 9.2267178E-02 8.9290068E-02 8.6413853E-02
 8.3634973E-02 8.0949999E-02 7.8355588E-02 7.5848594E-02 7.3425896E-02
 7.1084529E-02 6.8821631E-02 6.6634417E-02 6.4520240E-02 6.2476516E-02
 6.0500775E-02 5.8590617E-02 5.6743763E-02 5.4957956E-02 5.3231087E-02
 5.1561102E-02 4.9945988E-02 4.8383862E-02 4.6872858E-02 4.5411207E-02
 4.3997217E-02 4.2629220E-02 4.1305643E-02 4.0024940E-02 3.8785640E-02
 3.7586346E-02 3.6425665E-02 3.5302293E-02 3.4214947E-02 3.3162408E-02
 3.2143507E-02 3.1157084E-02 3.0202063E-02 2.9277375E-02 2.8382000E-02
 2.7514970E-02 2.6675317E-02 2.5862150E-02 2.5074568E-02 2.4311727E-02
 2.3572819E-02 2.2857033E-02 2.2163630E-02 2.1491850E-02 2.0840993E-02
 2.0210382E-02 1.9599339E-02 1.9007245E-02 1.8433459E-02 1.7877398E-02
 1.7338496E-02
 7.3705003E-02 6.8592079E-02 6.3702904E-02 5.9057679E-02 5.4642599E-02
 5.0480098E-02 4.6555333E-02 4.2893905E-02 3.9479852E-02 3.6298018E-02
 3.3333946E-02 3.0573932E-02 2.8005004E-02 2.5614949E-02 2.3392225E-02
 2.1325991E-02 1.9406060E-02 1.7622849E-02 1.5967380E-02 1.4431231E-02
 1.3006502E-02 1.1685804E-02 1.0462197E-02 9.3291951E-03 8.2807261E-03
 7.3111034E-03 6.4150067E-03 5.5874540E-03 4.8237946E-03 4.1196658E-03
 3.4710036E-03 2.8739893E-03 2.3250664E-03 1.8209044E-03 1.3583965E-03
 9.3463255E-04 5.4689642E-04 1.9265109E-04 -1.3047681E-04 -4.2469674E-04
 -6.9207832E-04 -9.3455042E-04 -1.1539169E-03 -1.3518562E-03 -1.5299388E-03
 -1.6896279E-03 -1.8322903E-03 -1.9591989E-03 -2.0715408E-03 -2.1704228E-03
 -2.2568773E-03 -2.3318666E-03 -2.3962858E-03 -2.4509714E-03 -2.4966982E-03
 -2.5341921E-03 -2.5641255E-03 -2.5871268E-03 -2.6037781E-03 -2.6146234E-03
 -2.6201659E-03 -2.6208768E-03 -2.6171901E-03 -2.6095121E-03 -2.5982186E-03
 -2.5836593E-03 -2.5661581E-03 -2.5460157E-03 -2.5235105E-03 -2.4989031E-03
 -2.4724319E-03 -2.4443180E-03 -2.4147686E-03 -2.3839723E-03 -2.3521055E-03
 -2.3193317E-03 -2.2857992E-03 -2.2516488E-03 -2.2170059E-03 -2.1819901E-03
 -2.1467104E-03 -2.1112659E-03 -2.0757494E-03 -2.0402456E-03 -2.0048316E-03
 -1.9695805E-03 -1.9345565E-03 -1.8998215E-03 -1.8654284E-03 -1.8314295E-03
 -1.7978724E-03
 0.3492019 0.3384447 0.3279146 0.3176270 0.3075813
 0.2977878 0.2882449 0.2789586 0.2699271 0.2611519
 0.2526323 0.2443664 0.2363514 0.2285836 0.2210590
 0.2137727 0.2067198 0.1998948 0.1932922 0.1869063
 0.1807312 0.1747610 0.1689898 0.1634118 0.1580212
 0.1528121 0.1477788 0.1429158 0.1382176 0.1336788
 0.1292942 0.1250586 0.1209670 0.1170146 0.1131967
 0.1095086 0.1059460 0.1025045 9.9179849E-02 9.5968090E-02
 9.2865266E-02 8.9867577E-02 8.6971335E-02 8.4173046E-02 8.1469223E-02
 7.8856587E-02 7.6331921E-02 7.3892124E-02 7.1534246E-02 6.9255404E-02
 6.7052811E-02 6.4923793E-02 6.2865779E-02 6.0876247E-02 5.8952831E-02
 5.7093218E-02 5.5295147E-02 5.3556506E-02 5.1875181E-02 5.0249200E-02
 4.8676651E-02 4.7155648E-02 4.5684434E-02 4.4261258E-02 4.2884476E-02
 4.1552499E-02 4.0263761E-02 3.9016806E-02 3.7810169E-02 3.6642496E-02
 3.5512462E-02 3.4418758E-02 3.3360183E-02 3.2335527E-02 3.1343639E-02
 3.0383436E-02 2.9453831E-02 2.8553814E-02 2.7682379E-02 2.6838573E-02
 2.6021490E-02 2.5230218E-02 2.4463929E-02 2.3721773E-02 2.3002960E-02
 2.2306731E-02 2.1632330E-02 2.0979054E-02 2.0346195E-02 1.9733101E-02
 1.9139124E-02
 9.0817071E-02 8.4968001E-02 7.9342686E-02 7.3961325E-02 6.8810113E-02
 6.3911483E-02 5.9250593E-02 5.4853048E-02 5.0702877E-02 4.6830419E-02
 4.3218568E-02 3.9851096E-02 3.6712628E-02 3.3788629E-02 3.1065390E-02
 2.8529990E-02 2.6170284E-02 2.3974873E-02 2.1933036E-02 2.0034736E-02
 1.8270539E-02 1.6631633E-02 1.5109737E-02 1.3697102E-02 1.2386484E-02
 1.1171080E-02 1.0044549E-02 9.0009309E-03 8.0346698E-03 7.1405577E-03
 6.3137226E-03 5.5496078E-03 4.8439493E-03 4.1927607E-03 3.5923258E-03
 3.0391584E-03 2.5300037E-03 2.0618164E-03 1.6317505E-03 1.2371561E-03
 8.7554735E-04 5.4460659E-04 2.4216370E-04 -3.3794928E-05 -2.8516623E-04
 -5.1370496E-04 -7.2106184E-04 -9.0877229E-04 -1.0782677E-03 -1.2308824E-03
 -1.3678655E-03 -1.4903826E-03 -1.5995122E-03 -1.6962703E-03 -1.7815977E-03
 -1.8563706E-03 -1.9214120E-03 -1.9774796E-03 -2.0252864E-03 -2.0654942E-03
 -2.0987166E-03 -2.1255289E-03 -2.1464629E-03 -2.1620165E-03 -2.1726522E-03
 -2.1787966E-03 -2.1808518E-03 -2.1791880E-03 -2.1741488E-03 -2.1660570E-03
 -2.1552101E-03 -2.1418827E-03 -2.1263331E-03 -2.1087995E-03 -2.0895011E-03
 -2.0686446E-03 -2.0464200E-03 -2.0230035E-03 -1.9985575E-03 -1.9732323E-03
 -1.9471707E-03 -1.9205015E-03 -1.8933445E-03 -1.8658119E-03 -1.8380062E-03
 -1.8100231E-03 -1.7819518E-03 -1.7538730E-03 -1.7258632E-03 -1.6979944E-03
 -1.6703316E-03
 0.3856816 0.3741136 0.3627727 0.3516744 0.3408179
 0.3302137 0.3198601 0.3097630 0.2999208 0.2903349
 0.2810046 0.2719280 0.2631059 0.2545378 0.2462220
 0.2381559 0.2303362 0.2227589 0.2154195 0.2083133
 0.2014350 0.1947792 0.1883404 0.1821128 0.1760909
 0.1702687 0.1646406 0.1592007 0.1539434 0.1488632
 0.1439544 0.1392116 0.1346295 0.1302029 0.1259266
 0.1217958 0.1178054 0.1139509 0.1102276 0.1066311
 0.1031569 9.9801026E-02 9.6559241E-02 9.3427666E-02 9.0402454E-02
 8.7479919E-02 8.4656462E-02 8.1928618E-02 7.9293072E-02 7.6746576E-02
 7.4286014E-02 7.1908332E-02 6.9610693E-02 6.7390218E-02 6.5244228E-02
 6.3170135E-02 6.1165370E-02 5.9227534E-02 5.7354257E-02 5.5543289E-02
 5.3792465E-02 5.2099660E-02 5.0462883E-02 4.8880138E-02 4.7349568E-02
 4.5869380E-02 4.4437800E-02 4.3053161E-02 4.1713830E-02 4.0418245E-02
 3.9164927E-02 3.7952393E-02 3.6779273E-02 3.5644192E-02 3.4545872E-02
 3.3483073E-02 3.2454565E-02 3.1459216E-02 3.0495876E-02 2.9563490E-02
 2.8661024E-02 2.7787451E-02 2.6941836E-02 2.6123226E-02 2.5330734E-02
 2.4563499E-02 2.3820680E-02 2.3101486E-02 2.2405127E-02 2.1730866E-02
 2.1077983E-02
 0.1140387 0.1073110 0.1008071 9.4547123E-02 8.8517293E-02
 8.2740054E-02 7.7200562E-02 7.1924426E-02 6.6895671E-02 6.2144633E-02
 5.7654206E-02 5.3461969E-02 4.9549237E-02 4.5898296E-02 4.2492494E-02
 3.9316081E-02 3.6354311E-02 3.3593286E-02 3.1019993E-02 2.8622199E-02
 2.6388466E-02 2.4308084E-02 2.2370987E-02 2.0567760E-02 1.8889641E-02
 1.7328370E-02 1.5876245E-02 1.4526044E-02 1.3271030E-02 1.2104892E-02
 1.1021727E-02 1.0016008E-02 9.0825623E-03 8.2165757E-03 7.4135200E-03
 6.6691833E-03 5.9796041E-03 5.3410921E-03 4.7501940E-03 4.2036879E-03
 3.6985516E-03 3.2319699E-03 2.8013014E-03 2.4040916E-03 2.0380353E-03
 1.7009854E-03 1.3909332E-03 1.1059977E-03 8.4443344E-04 6.0460571E-04
 3.8498439E-04 1.8413903E-04 7.4488435E-07 -1.6644684E-04 -3.1859332E-04
 -4.5677234E-04 -5.8200723E-04 -6.9522916E-04 -7.9732476E-04 -8.8911463E-04
 -9.7135967E-04 -1.0447797E-03 -1.1100371E-03 -1.1677539E-03 -1.2185086E-03
 -1.2628417E-03 -1.3012559E-03 -1.3342219E-03 -1.3621756E-03 -1.3855227E-03
 -1.4046457E-03 -1.4198978E-03 -1.4316081E-03 -1.4400817E-03 -1.4456076E-03
 -1.4484514E-03 -1.4488598E-03 -1.4470662E-03 -1.4432843E-03 -1.4377154E-03
 -1.4305478E-03 -1.4219555E-03 -1.4120998E-03 -1.4011364E-03 -1.3892050E-03
 -1.3764369E-03 -1.3629596E-03 -1.3488875E-03 -1.3343332E-03 -1.3193967E-03
 -1.3041775E-03
 0.4270479 0.4145870 0.4023533 0.3903620 0.3786127
 0.3671156 0.3558691 0.3448793 0.3341442 0.3236655
 0.3134425 0.3034731 0.2937582 0.2842953 0.2750870
 0.2661345 0.2574375 0.2489946 0.2408033 0.2328607
 0.2251629 0.2177056 0.2104842 0.2034935 0.1967283
 0.1901832 0.1838525 0.1777307 0.1718120 0.1660906
 0.1605610 0.1552173 0.1500539 0.1450654 0.1402463
 0.1355912 0.1310949 0.1267521 0.1225578 0.1185072
 0.1145955 0.1108179 0.1071699 0.1036471 0.1002453
 9.6960194E-02 9.3787827E-02 9.0724245E-02 8.7765686E-02 8.4908485E-02
 8.2149081E-02 7.9484016E-02 7.6910019E-02 7.4423835E-02 7.2022386E-02
 6.9702707E-02 6.7461856E-02 6.5297090E-02 6.3205674E-02 6.1185036E-02
 5.9232697E-02 5.7346199E-02 5.5523258E-02 5.3761594E-02 5.2059058E-02
 5.0413590E-02 4.8823155E-02 4.7285836E-02 4.5799755E-02 4.4363134E-02
 4.2974256E-02 4.1631427E-02 4.0333074E-02 3.9077636E-02 3.7863642E-02
 3.6689665E-02 3.5554308E-02 3.4456279E-02 3.3394277E-02 3.2367084E-02
 3.1373527E-02 3.0412452E-02 2.9482799E-02 2.8583478E-02 2.7713504E-02
 2.6871903E-02 2.6057726E-02 2.5270088E-02 2.4508113E-02 2.3770977E-02
 2.3057887E-02
 0.1458368 0.1380419 0.1304708 0.1231437 0.1160467
 0.1092023 0.1025957 9.6252456E-02 9.0156570E-02 8.4338404E-02
 7.8780860E-02 7.3521510E-02 6.8541668E-02 6.3889280E-02 5.9543148E-02
 5.5483315E-02 5.1691104E-02 4.8149053E-02 4.4840802E-02 4.1750994E-02
 3.8865328E-02 3.6170434E-02 3.3653785E-02 3.1303678E-02 2.9109206E-02
 2.7060175E-02 2.5147043E-02 2.3360904E-02 2.1693449E-02 2.0136891E-02
 1.8683992E-02 1.7327951E-02 1.6062437E-02 1.4881522E-02 1.3779687E-02
 1.2751743E-02 1.1792880E-02 1.0898561E-02 1.0064566E-02 9.2869699E-03
 8.5620731E-03 7.8864265E-03 7.2568124E-03 6.6702194E-03 6.1238301E-03
 5.6150262E-03 5.1413332E-03 4.7004572E-03 4.2902408E-03 3.9086882E-03
 3.5539113E-03 3.2241447E-03 2.9177652E-03 2.6332138E-03 2.3690641E-03
 2.1239773E-03 1.8966809E-03 1.6860075E-03 1.4908561E-03 1.3101905E-03
 1.1430632E-03 9.8855677E-04 8.4583391E-04 7.1410649E-04 5.9263705E-04
 4.8073445E-04 3.7775273E-04 2.8308615E-04 1.9616706E-04 1.1646622E-04
 4.3489970E-05 -2.3231065E-05 -8.4123414E-05 -1.3960463E-04 -1.9005031E-04
 -2.3581537E-04 -2.7723529E-04 -3.1462638E-04 -3.4828245E-04 -3.7847512E-04
 -4.0546610E-04 -4.2949631E-04 -4.5079691E-04 -4.6957817E-04 -4.8604835E-04
 -5.0039159E-04 -5.1279244E-04 -5.2341900E-04 -5.3243898E-04 -5.4000388E-04
 -5.4626516E-04
 0.4769443 0.4634132 0.4501093 0.4370479 0.4242283
 0.4116611 0.3993445 0.3872845 0.3754793 0.3639306
 0.3526374 0.3415980 0.3308131 0.3202802 0.3100019
 0.2999797 0.2902177 0.2807182 0.2714821 0.2625086
 0.2537961 0.2453421 0.2371432 0.2291957 0.2214950
 0.2140365 0.2068150 0.1998252 0.1930617 0.1865188
 0.1801909 0.1740723 0.1681572 0.1624399 0.1569148
 0.1515763 0.1464187 0.1414368 0.1366251 0.1319783
 0.1274914 0.1231593 0.1189772 0.1149401 0.1110436
 0.1072830 0.1036538 0.1001519 9.6772954E-02 9.3512937E-02
 9.0367876E-02 8.7333873E-02 8.4407173E-02 8.1584118E-02 7.8861125E-02
 7.6234713E-02 7.3701523E-02 7.1258225E-02 6.8901628E-02 6.6628605E-02
 6.4436153E-02 6.2321298E-02 6.0281217E-02 5.8313128E-02 5.6414362E-02
 5.4582350E-02 5.2814577E-02 5.1108647E-02 4.9462240E-02 4.7873117E-02
 4.6339128E-02 4.4858214E-02 4.3428380E-02 4.2047720E-02 4.0714413E-02
 3.9426699E-02 3.8182892E-02 3.6981385E-02 3.5820622E-02 3.4699138E-02
 3.3615500E-02 3.2568358E-02 3.1556413E-02 3.0578431E-02 2.9633207E-02
 2.8719619E-02 2.7836584E-02 2.6983067E-02 2.6158085E-02 2.5360726E-02
 2.4590082E-02
 0.1883059 0.1792645 0.1704468 0.1618731 0.1535296
 0.1454387 0.1375856 0.1299958 0.1226534 0.1155887
 0.1087847 0.1022788 9.6052483E-02 9.0153605E-02 8.4560990E-02
 7.9333000E-02 7.4444950E-02 6.9873936E-02 6.5598533E-02 6.1598916E-02
 5.7856429E-02 5.4353811E-02 5.1074948E-02 4.8004761E-02 4.5129329E-02
 4.2435583E-02 3.9911341E-02 3.7545279E-02 3.5326857E-02 3.3246230E-02
 3.1294215E-02 2.9462276E-02 2.7742401E-02 2.6127186E-02 2.4609707E-02
 2.3183497E-02 2.1842545E-02 2.0581253E-02 1.9394394E-02 1.8277116E-02
 1.7224897E-02 1.6233532E-02 1.5299117E-02 1.4418029E-02 1.3586893E-02
 1.2802602E-02 1.2062250E-02 1.1363148E-02 1.0702824E-02 1.0078992E-02
 9.4895298E-03 8.9324554E-03 8.4059564E-03 7.9083610E-03 7.4381065E-03
 6.9937389E-03 6.5739127E-03 6.1773648E-03 5.8029192E-03 5.4494683E-03
 5.1159686E-03 4.8014387E-03 4.5049465E-03 4.2255954E-03 3.9625545E-03
 3.7150085E-03 3.4821930E-03 3.2633690E-03 3.0578324E-03 2.8649091E-03
 2.6839566E-03 2.5143519E-03 2.3555134E-03 2.2068725E-03 2.0679021E-03
 1.9380853E-03 1.8169445E-03 1.7040151E-03 1.5988651E-03 1.5010806E-03
 1.4102808E-03 1.3260978E-03 1.2481937E-03 1.1762454E-03 1.1099648E-03
 1.0490738E-03 9.9331734E-04 9.4247464E-04 8.9633378E-04 8.5470558E-04
 8.1744057E-04
 0.5393474 0.5245715 0.5100229 0.4957169 0.4816528
 0.4678411 0.4542800 0.4409755 0.4279258 0.4151326
 0.4025950 0.3903112 0.3782819 0.3665045 0.3549818
 0.3437152 0.3327087 0.3219706 0.3115055 0.3013164
 0.2914041 0.2817687 0.2724085 0.2633210 0.2545032
 0.2459509 0.2376598 0.2296250 0.2218412 0.2143029
 0.2070044 0.1999398 0.1931031 0.1864885 0.1800898
 0.1739011 0.1679164 0.1621298 0.1565356 0.1511281
 0.1459020 0.1408519 0.1359727 0.1312599 0.1267090
 0.1223162 0.1180779 0.1139916 0.1100551 0.1062672
 0.1026273 9.9135458E-02 9.5791295E-02 9.2593923E-02 8.9540750E-02
 8.6627200E-02 8.3846644E-02 8.1191063E-02 7.8651682E-02 7.6219819E-02
 7.3887266E-02 7.1646661E-02 6.9491416E-02 6.7415781E-02 6.5414786E-02
 6.3484006E-02 6.1619613E-02 5.9818123E-02 5.8076516E-02 5.6392021E-02
 5.4762077E-02 5.3184427E-02 5.1656924E-02 5.0177582E-02 4.8744570E-02
 4.7356166E-02 4.6010710E-02 4.4706691E-02 4.3442614E-02 4.2217113E-02
 4.1028842E-02 3.9876528E-02 3.8758963E-02 3.7674967E-02 3.6623418E-02
 3.5603233E-02 3.4613349E-02 3.3652749E-02 3.2720476E-02 3.1815544E-02
 3.0937036E-02
 0.2401299 0.2297607 0.2196152 0.2097137 0.2000423
 0.1906236 0.1814426 0.1725249 0.1638547 0.1554622
 0.1473304 0.1394967 0.1319426 0.1247159 0.1177955
 0.1112397 0.1050239 9.9214874E-02 9.3784817E-02 8.8708013E-02
 8.3960205E-02 7.9519302E-02 7.5364433E-02 7.1476333E-02 6.7837149E-02
 6.4430214E-02 6.1240096E-02 5.8252439E-02 5.5453941E-02 5.2832164E-02
 5.0375644E-02 4.8073750E-02 4.5916542E-02 4.3894865E-02 4.2000260E-02
 4.0224865E-02 3.8561434E-02 3.7003323E-02 3.5544373E-02 3.4178998E-02
 3.2902088E-02 3.1709004E-02 3.0595545E-02 2.9557977E-02 2.8592935E-02
 2.7697410E-02 2.6868630E-02 2.6104037E-02 2.5400959E-02 2.4756463E-02
 2.4166889E-02 2.3627521E-02 2.3132235E-02 2.2673476E-02 2.2242665E-02
 2.1831047E-02 2.1430524E-02 2.1034544E-02 2.0638429E-02 2.0239221E-02
 1.9835409E-02 1.9426581E-02 1.9012934E-02 1.8595142E-02 1.8174071E-02
 1.7750651E-02 1.7325850E-02 1.6900539E-02 1.6475575E-02 1.6051691E-02
 1.5629552E-02 1.5209744E-02 1.4792746E-02 1.4378993E-02 1.3968837E-02
 1.3562576E-02 1.3160454E-02 1.2762643E-02 1.2369335E-02 1.1980620E-02
 1.1596584E-02 1.1217262E-02 1.0842686E-02 1.0472870E-02 1.0107783E-02
 9.7473776E-03 9.3916198E-03 9.0404367E-03 8.6937575E-03 8.3514974E-03
 8.0135651E-03
 0.6146592 0.5985413 0.5826505 0.5670023 0.5515962
 0.5364423 0.5215392 0.5068927 0.4925010 0.4783658
 0.4644862 0.4508604 0.4374891 0.4243697 0.4115050
 0.3988965 0.3865481 0.3744681 0.3626611 0.3511425
 0.3399181 0.3289912 0.3183635 0.3080350 0.2980047
 0.2882703 0.2788287 0.2696761 0.2608081 0.2522199
 0.2439062 0.2358613 0.2280796 0.2205550 0.2132815
 0.2062528 0.1994626 0.1929047 0.1865727 0.1804602
 0.1745611 0.1688688 0.1633772 0.1580801 0.1529710
 0.1480441 0.1432931 0.1387119 0.1342945 0.1300352
 0.1259280 0.1219673 0.1181475 0.1144632 0.1109091
 0.1074799 0.1041709 0.1009772 9.7894162E-02 9.4917327E-02
 9.2042476E-02 8.9265533E-02 8.6582609E-02 8.3989926E-02 8.1483990E-02
 7.9061382E-02 7.6718867E-02 7.4453354E-02 7.2261907E-02 7.0141755E-02
 6.8090133E-02 6.6104598E-02 6.4182639E-02 6.2321946E-02 6.0520303E-02
 5.8775559E-02 5.7085656E-02 5.5448674E-02 5.3862706E-02 5.2325979E-02
 5.0836723E-02 4.9393278E-02 4.7994040E-02 4.6637442E-02 4.5322001E-02
 4.4046257E-02 4.2808790E-02 4.1608259E-02 4.0443320E-02 3.9312698E-02
 3.8215134E-02
 0.2998838 0.2880520 0.2764439 0.2650799 0.2539459
 0.2430646 0.2324211 0.2220410 0.2119082 0.2020532
 0.1924588 0.1831627 0.1741460 0.1654569 0.1570740
 0.1490557 0.1413774 0.1341059 0.1272134 0.1207700
 0.1147447 0.1091087 0.1038349 9.8898545E-02 9.4276443E-02
 8.9946993E-02 8.5890226E-02 8.2087420E-02 7.8521140E-02 7.5175367E-02
 7.2034925E-02 6.9085717E-02 6.6314667E-02 6.3709415E-02 6.1258558E-02
 5.8951307E-02 5.6777593E-02 5.4728009E-02 5.2793715E-02 5.0966352E-02
 4.9238168E-02 4.7601797E-02 4.6050426E-02 4.4577599E-02 4.3177266E-02
 4.1843854E-02 4.0572017E-02 3.9356947E-02 3.8194094E-02 3.7079271E-02
 3.6008682E-02 3.4978740E-02 3.3986289E-02 3.3028375E-02 3.2102384E-02
 3.1205939E-02 3.0336894E-02 2.9493323E-02 2.8673578E-02 2.7876040E-02
 2.7099410E-02 2.6342472E-02 2.5604108E-02 2.4883378E-02 2.4179427E-02
 2.3491452E-02 2.2818761E-02 2.2160705E-02 2.1516761E-02 2.0886343E-02
 2.0268960E-02 1.9664181E-02 1.9071583E-02 1.8490760E-02 1.7921319E-02
 1.7362921E-02 1.6815217E-02 1.6277885E-02 1.5750594E-02 1.5233027E-02
 1.4724926E-02 1.4225947E-02 1.3735839E-02 1.3254318E-02 1.2781109E-02
 1.2315953E-02 1.1858588E-02 1.1408774E-02 1.0966266E-02 1.0530825E-02
 1.0102252E-02
 0.7033469 0.6857308 0.6683420 0.6511958 0.6342918
 0.6176400 0.6012390 0.5850945 0.5692049 0.5535719
 0.5381945 0.5230708 0.5082017 0.4935847 0.4792223
 0.4651162 0.4512702 0.4376926 0.4243880 0.4113719
 0.3986500 0.3862389 0.3741446 0.3623710 0.3509199
 0.3397915 0.3289842 0.3184959 0.3083230 0.2984612
 0.2889055 0.2796505 0.2706902 0.2620180 0.2536276
 0.2455120 0.2376641 0.2300769 0.2227430 0.2156553
 0.2088064 0.2021889 0.1957958 0.1896199 0.1836541
 0.1778915 0.1723251 0.1669483 0.1617545 0.1567373
 0.1518905 0.1472079 0.1426836 0.1383120 0.1340874
 0.1300045 0.1260581 0.1222433 0.1185552 0.1149891
 0.1115406 0.1082054 0.1049794 0.1018587 9.8839246E-02
 9.5917597E-02 9.3090154E-02 9.0353563E-02 8.7704591E-02 8.5140146E-02
 8.2657181E-02 8.0252856E-02 7.7924393E-02 7.5669147E-02 7.3484555E-02
 7.1368188E-02 6.9317624E-02 6.7330629E-02 6.5404952E-02 6.3538469E-02
 6.1729152E-02 5.9974998E-02 5.8274072E-02 5.6624506E-02 5.5024490E-02
 5.3472266E-02 5.1966105E-02 5.0504372E-02 4.9085412E-02 4.7707651E-02
 4.6369541E-02
 0.3684596 0.3549676 0.3416994 0.3286752 0.3158811
 0.3033397 0.2910361 0.2789958 0.2672031 0.2556880
 0.2444336 0.2334775 0.2228008 0.2124517 0.2024088
 0.1927305 0.1833922 0.1744608 0.1659083 0.1578051
 0.1501197 0.1429258 0.1361888 0.1298763 0.1239585
 0.1184077 0.1131982 0.1083057 0.1037082 9.9384829E-02
 9.5316209E-02 9.1484465E-02 8.7872855E-02 8.4465854E-02 8.1248969E-02
 7.8208782E-02 7.5332716E-02 7.2609186E-02 7.0027299E-02 6.7577057E-02
 6.5249071E-02 6.3034683E-02 6.0925849E-02 5.8915097E-02 5.6995519E-02
 5.5160813E-02 5.3404961E-02 5.1722631E-02 5.0108749E-02 4.8558738E-02
 4.7068309E-02 4.5633573E-02 4.4250932E-02 4.2917065E-02 4.1629061E-02
 4.0384028E-02 3.9179459E-02 3.8013015E-02 3.6882579E-02 3.5786107E-02
 3.4721870E-02 3.3688165E-02 3.2683421E-02 3.1706270E-02 3.0755367E-02
 2.9829513E-02 2.8927559E-02 2.8048474E-02 2.7191248E-02 2.6355000E-02
 2.5538826E-02 2.4741922E-02 2.3963522E-02 2.3202918E-02 2.2459397E-02
 2.1732323E-02 2.1021053E-02 2.0325022E-02 1.9643627E-02 1.8976342E-02
 1.8322645E-02 1.7682012E-02 1.7053975E-02 1.6438073E-02 1.5833866E-02
 1.5240902E-02 1.4658799E-02 1.4087144E-02 1.3525597E-02 1.2973786E-02
 1.2431388E-02
 0.8065649 0.7872549 0.7681721 0.7493321 0.7307341
 0.7123885 0.6942935 0.6764552 0.6588718 0.6415451
 0.6244739 0.6076565 0.5910938 0.5747831 0.5587272
 0.5429276 0.5273881 0.5121169 0.4971189 0.4824092
 0.4679939 0.4538894 0.4401017 0.4266476 0.4135343
 0.4007658 0.3883441 0.3762690 0.3645392 0.3531518
 0.3421030 0.3313881 0.3210012 0.3109365 0.3011872
 0.2917465 0.2826068 0.2737608 0.2652007 0.2569186
 0.2489068 0.2411573 0.2336623 0.2264141 0.2194048
 0.2126269 0.2060729 0.1997353 0.1936072 0.1876813
 0.1819509 0.1764093 0.1710499 0.1658666 0.1608531
 0.1560037 0.1513125 0.1467740 0.1423829 0.1381340
 0.1340225 0.1300433 0.1261920 0.1224641 0.1188553
 0.1153614 0.1119785 0.1087028 0.1055304 0.1024580
 9.9481963E-02 9.6599065E-02 9.3806088E-02 9.1099963E-02 8.8477731E-02
 8.5936479E-02 8.3473474E-02 8.1086017E-02 7.8771479E-02 7.6527387E-02
 7.4351259E-02 7.2240762E-02 7.0193589E-02 6.8207480E-02 6.6280283E-02
 6.4409852E-02 6.2594138E-02 6.0831122E-02 5.9118826E-02 5.7455309E-02
 5.5838700E-02
 0.4472448 0.4318967 0.4167724 0.4018922 0.3872421
 0.3728447 0.3586850 0.3447888 0.3311401 0.3177691
 0.3046588 0.2918468 0.2793143 0.2671094 0.2552107
 0.2436766 0.2324826 0.2216954 0.2112872 0.2013282
 0.1917871 0.1827375 0.1741447 0.1660898 0.1585342
 0.1514425 0.1447818 0.1385213 0.1326329 0.1270901
 0.1218684 0.1169452 0.1122991 0.1079111 0.1037625
 9.9836685E-02 9.6118122E-02 9.2592217E-02 8.9245528E-02 8.6065702E-02
 8.3041184E-02 8.0161154E-02 7.7415906E-02 7.4796319E-02 7.2293758E-02
 6.9900587E-02 6.7609452E-02 6.5413773E-02 6.3307345E-02 6.1284464E-02
 5.9339993E-02 5.7468966E-02 5.5666946E-02 5.3929828E-02 5.2253779E-02
 5.0635271E-02 4.9071111E-02 4.7558196E-02 4.6093855E-02 4.4675432E-02
 4.3300550E-02 4.1967016E-02 4.0672790E-02 3.9415915E-02 3.8194608E-02
 3.7007201E-02 3.5852145E-02 3.4727987E-02 3.3633359E-02 3.2566965E-02
 3.1527534E-02 3.0514004E-02 2.9525237E-02 2.8560225E-02 2.7618015E-02
 2.6697632E-02 2.5798215E-02 2.4918916E-02 2.4058953E-02 2.3217537E-02
 2.2393921E-02 2.1587431E-02 2.0797404E-02 2.0023182E-02 1.9264165E-02
 1.8519763E-02 1.7789455E-02 1.7072702E-02 1.6369034E-02 1.5677994E-02
 1.4999162E-02
 0.9259448 0.9047272 0.8837370 0.8629894 0.8424839
 0.8222308 0.8022284 0.7824827 0.7629920 0.7437579
 0.7247795 0.7060548 0.6875848 0.6693669 0.6514038
 0.6336969 0.6162502 0.5990718 0.5821666 0.5655499
 0.5492274 0.5332158 0.5175210 0.5021599 0.4871396
 0.4724789 0.4581852 0.4442630 0.4307142 0.4175390
 0.4047356 0.3923012 0.3802312 0.3685205 0.3571632
 0.3461526 0.3354815 0.3251422 0.3151267 0.3054271
 0.2960350 0.2869421 0.2781398 0.2696199 0.2613737
 0.2533933 0.2456703 0.2381966 0.2309643 0.2239656
 0.2171930 0.2106390 0.2042964 0.1981581 0.1922174
 0.1864676 0.1809023 0.1755152 0.1703003 0.1652519
 0.1603641 0.1556316 0.1510492 0.1466117 0.1423143
 0.1381521 0.1341205 0.1302153 0.1264321 0.1227667
 0.1192153 0.1157738 0.1124387 0.1092063 0.1060732
 0.1030358 0.1000911 9.7235791E-02 9.4466835E-02 9.1781192E-02
 8.9176007E-02 8.6648457E-02 8.4195748E-02 8.1815243E-02 7.9504289E-02
 7.7260360E-02 7.5080916E-02 7.2963558E-02 7.0905872E-02 6.8905503E-02
 6.6960178E-02
 0.5380021 0.5205948 0.5034112 0.4864718 0.4697626
 0.4533061 0.4370874 0.4211321 0.4054243 0.3899943
 0.3748250 0.3599540 0.3453626 0.3310988 0.3171411
 0.3035482 0.2902952 0.2774492 0.2649821 0.2529643
 0.2413644 0.2302559 0.2196043 0.2094906 0.1998762
 0.1908516 0.1823748 0.1744066 0.1669106 0.1598535
 0.1532042 0.1469336 0.1410150 0.1354237 0.1301368
 0.1251329 0.1203922 0.1158965 0.1116290 0.1075738
 0.1037166 0.1000439 9.6543252E-02 9.3203224E-02 9.0013161E-02
 8.6963296E-02 8.4044509E-02 8.1248417E-02 7.8567170E-02 7.5993732E-02
 7.3521316E-02 7.1143880E-02 6.8855725E-02 6.6651493E-02 6.4526483E-02
 6.2476095E-02 6.0496140E-02 5.8582757E-02 5.6732327E-02 5.4941587E-02
 5.3207334E-02 5.1526751E-02 4.9897145E-02 4.8315916E-02 4.6780750E-02
 4.5289487E-02 4.3840032E-02 4.2430431E-02 4.1058879E-02 3.9723702E-02
 3.8423225E-02 3.7155952E-02 3.5920423E-02 3.4715269E-02 3.3539243E-02
 3.2391012E-02 3.1269480E-02 3.0173508E-02 2.9102055E-02 2.8054070E-02
 2.7028622E-02 2.6024802E-02 2.5041712E-02 2.4078550E-02 2.3134544E-02
 2.2208955E-02 2.1301100E-02 2.0410346E-02 1.9536087E-02 1.8677805E-02
 1.7835006E-02

XFOILinterface/XFOIL/orrs/osm.0250

 256 2.500001
 0.0000000E+00 2.1006253E-02 4.2107038E-02 6.3302770E-02 8.4593892E-02
 0.1059808 0.1274640 0.1490438 0.1707208 0.1924953
 0.2143678 0.2363387 0.2584085 0.2805776 0.3028465
 0.3252155 0.3476853 0.3702561 0.3929285 0.4157030
 0.4385799 0.4615598 0.4846431 0.5078303 0.5311218
 0.5545181 0.5780197 0.6016271 0.6253407 0.6491610
 0.6730886 0.6971237 0.7212670 0.7455190 0.7698802
 0.7943510 0.8189319 0.8436233 0.8684260 0.8933402
 0.9183666 0.9435055 0.9687576 0.9941233 1.019603
 1.045198 1.070907 1.096732 1.122674 1.148733
 1.174908 1.201202 1.227613 1.254144 1.280794
 1.307564 1.334454 1.361465 1.388598 1.415853
 1.443231 1.470732 1.498356 1.526105 1.553979
 1.581978 1.610103 1.638355 1.666734 1.695241
 1.723876 1.752639 1.781533 1.810556 1.839710
 1.868995 1.898411 1.927961 1.957643 1.987458
 2.017408 2.047493 2.077713 2.108069 2.138562
 2.169192 2.199959 2.230865 2.261910 2.293096
 2.324421 2.355887 2.387495 2.419245 2.451138
 2.483174 2.515355 2.547680 2.580151 2.612768
 2.645532 2.678443 2.711503 2.744711 2.778068
 2.811576 2.845234 2.879044 2.913006 2.947121
 2.981390 3.015812 3.050390 3.085123 3.120012
 3.155059 3.190263 3.225625 3.261147 3.296829
 3.332670 3.368674 3.404840 3.441168 3.477659
 3.514315 3.551136 3.588123 3.625276 3.662596
 3.700084 3.737741 3.775566 3.813563 3.851731
 3.890070 3.928581 3.967267 4.006126 4.045160
 4.084369 4.123755 4.163319 4.203060 4.242980
 4.283080 4.323360 4.363822 4.404465 4.445291
 4.486302 4.527497 4.568877 4.610443 4.652197
 4.694138 4.736268 4.778587 4.821097 4.863799
 4.906693 4.949780 4.993060 5.036535 5.080206
 5.124073 5.168138 5.212401 5.256863 5.301525
 5.346389 5.391454 5.436722 5.482193 5.527870
 5.573751 5.619840 5.666136 5.712639 5.759352
 5.806276 5.853411 5.900757 5.948318 5.996091
 6.044080 6.092285 6.140706 6.189346 6.238204
 6.287282 6.336582 6.386103 6.435847 6.485816
 6.536008 6.586426 6.637072 6.687945 6.739048
 6.790380 6.841943 6.893738 6.945766 6.998028
 7.050526 7.103260 7.156231 7.209440 7.262889
 7.316579 7.370510 7.424684 7.479102 7.533764
 7.588673 7.643828 7.699232 7.754885 7.810789
 7.866944 7.923351 7.980012 8.036929 8.094102
 8.151532 8.209221 8.267168 8.325377 8.383848
 8.442581 8.501579 8.560843 8.620373 8.680171
 8.740238 8.800577 8.861185 8.922068 8.983223
 9.044655 9.106362 9.168347 9.230611 9.293156
 9.355982 9.419090 9.482483 9.546160 9.610125
 9.674377 9.738918 9.803749 9.868873 9.934290
 10.00000
 0.0000000E+00 5.2387770E-03 1.0494146E-02 1.5766112E-02 2.1054685E-02
 2.6359867E-02 3.1681657E-02 3.7020054E-02 4.2375050E-02 4.7746643E-02
 5.3134814E-02 5.8539551E-02 6.3960843E-02 6.9398649E-02 7.4852958E-02
 8.0323748E-02 8.5810967E-02 9.1314584E-02 9.6834570E-02 0.1023709
 0.1079234 0.1134922 0.1190771 0.1246781 0.1302952
 0.1359282 0.1415770 0.1472417 0.1529220 0.1586180
 0.1643294 0.1700563 0.1757984 0.1815557 0.1873281
 0.1931154 0.1989174 0.2047341 0.2105653 0.2164108
 0.2222705 0.2281442 0.2340317 0.2399328 0.2458473
 0.2517751 0.2577159 0.2636695 0.2696357 0.2756142
 0.2816049 0.2876073 0.2936213 0.2996467 0.3056830
 0.3117301 0.3177876 0.3238553 0.3299327 0.3360196
 0.3421156 0.3482204 0.3543336 0.3604549 0.3665837
 0.3727199 0.3788629 0.3850122 0.3911676 0.3973285
 0.4034945 0.4096652 0.4158399 0.4220183 0.4281999
 0.4343841 0.4405704 0.4467582 0.4529470 0.4591363
 0.4653254 0.4715137 0.4777007 0.4838857 0.4900681
 0.4962473 0.5024225 0.5085931 0.5147585 0.5209179
 0.5270706 0.5332159 0.5393530 0.5454812 0.5515998
 0.5577079 0.5638048 0.5698897 0.5759617 0.5820201
 0.5880640 0.5940925 0.6001048 0.6061000 0.6120774
 0.6180358 0.6239746 0.6298926 0.6357891 0.6416633
 0.6475139 0.6533402 0.6591411 0.6649158 0.6706633
 0.6763826 0.6820728 0.6877328 0.6933618 0.6989586
 0.7045224 0.7100521 0.7155469 0.7210056 0.7264273
 0.7318110 0.7371558 0.7424606 0.7477245 0.7529466
 0.7581258 0.7632612 0.7683519 0.7733969 0.7783954
 0.7833463 0.7882488 0.7931021 0.7979052 0.8026572
 0.8073573 0.8120048 0.8165988 0.8211384 0.8256230
 0.8300518 0.8344241 0.8387391 0.8429962 0.8471947
 0.8513341 0.8554137 0.8594329 0.8633913 0.8672883
 0.8711234 0.8748962 0.8786063 0.8822532 0.8858367
 0.8893566 0.8928124 0.8962038 0.8995309 0.9027933
 0.9059910 0.9091239 0.9121920 0.9151951 0.9181334
 0.9210070 0.9238159 0.9265603 0.9292404 0.9318564
 0.9344086 0.9368973 0.9393229 0.9416857 0.9439862
 0.9462248 0.9484020 0.9505184 0.9525745 0.9545709
 0.9565083 0.9583874 0.9602088 0.9619734 0.9636818
 0.9653348 0.9669333 0.9684781 0.9699702 0.9714103
 0.9727994 0.9741384 0.9754284 0.9766703 0.9778650
 0.9790137 0.9801173 0.9811767 0.9821932 0.9831678
 0.9841015 0.9849952 0.9858503 0.9866678 0.9874485
 0.9881938 0.9889045 0.9895819 0.9902269 0.9908406
 0.9914241 0.9919784 0.9925045 0.9930035 0.9934763
 0.9939240 0.9943475 0.9947477 0.9951257 0.9954823
 0.9958184 0.9961349 0.9964328 0.9967127 0.9969757
 0.9972225 0.9974537 0.9976703 0.9978729 0.9980623
 0.9982392 0.9984041 0.9985578 0.9987009 0.9988339
 0.9989575 0.9990722 0.9991785 0.9992769 0.9993680
 0.9994522 0.9995298 0.9996014 0.9996673 0.9997280
 0.9997838 0.9998350 0.9998819 0.9999248 0.9999641
 1.000000
 0.2495564 0.2492262 0.2488944 0.2485610 0.2482257
 0.2478886 0.2475494 0.2472082 0.2468647 0.2465188
 0.2461705 0.2458197 0.2454661 0.2451096 0.2447503
 0.2443878 0.2440221 0.2436531 0.2432805 0.2429044
 0.2425245 0.2421406 0.2417527 0.2413606 0.2409642
 0.2405632 0.2401576 0.2397472 0.2393317 0.2389112
 0.2384853 0.2380539 0.2376169 0.2371740 0.2367252
 0.2362702 0.2358089 0.2353410 0.2348664 0.2343849
 0.2338963 0.2334004 0.2328970 0.2323860 0.2318671
 0.2313402 0.2308050 0.2302613 0.2297089 0.2291477
 0.2285774 0.2279978 0.2274087 0.2268099 0.2262011
 0.2255822 0.2249529 0.2243131 0.2236625 0.2230008
 0.2223279 0.2216436 0.2209476 0.2202397 0.2195198
 0.2187874 0.2180426 0.2172849 0.2165143 0.2157305
 0.2149333 0.2141224 0.2132978 0.2124590 0.2116060
 0.2107385 0.2098564 0.2089593 0.2080472 0.2071199
 0.2061770 0.2052186 0.2042443 0.2032540 0.2022475
 0.2012247 0.2001853 0.1991293 0.1980565 0.1969667
 0.1958598 0.1947357 0.1935942 0.1924353 0.1912588
 0.1900646 0.1888527 0.1876229 0.1863753 0.1851097
 0.1838260 0.1825244 0.1812046 0.1798668 0.1785109
 0.1771370 0.1757450 0.1743351 0.1729072 0.1714614
 0.1699978 0.1685166 0.1670178 0.1655015 0.1639680
 0.1624173 0.1608497 0.1592654 0.1576645 0.1560473
 0.1544141 0.1527651 0.1511006 0.1494210 0.1477265
 0.1460175 0.1442943 0.1425574 0.1408072 0.1390440
 0.1372684 0.1354807 0.1336816 0.1318713 0.1300506
 0.1282199 0.1263797 0.1245308 0.1226735 0.1208087
 0.1189369 0.1170586 0.1151747 0.1132858 0.1113926
 0.1094957 0.1075960 0.1056941 0.1037908 0.1018870
 9.9983163E-02 9.8080315E-02 9.6179202E-02 9.4280601E-02 9.2385307E-02
 9.0494186E-02 8.8608034E-02 8.6727679E-02 8.4853940E-02 8.2987651E-02
 8.1129633E-02 7.9280727E-02 7.7441797E-02 7.5613633E-02 7.3797047E-02
 7.1992896E-02 7.0201963E-02 6.8425044E-02 6.6662952E-02 6.4916469E-02
 6.3186333E-02 6.1473325E-02 5.9778210E-02 5.8101673E-02 5.6444440E-02
 5.4807197E-02 5.3190615E-02 5.1595327E-02 5.0022002E-02 4.8471216E-02
 4.6943512E-02 4.5439508E-02 4.3959696E-02 4.2504564E-02 4.1074622E-02
 3.9670277E-02 3.8291950E-02 3.6940034E-02 3.5614844E-02 3.4316752E-02
 3.3046015E-02 3.1802863E-02 3.0587558E-02 2.9400259E-02 2.8241122E-02
 2.7110294E-02 2.6007833E-02 2.4933789E-02 2.3888202E-02 2.2871051E-02
 2.1882286E-02 2.0921826E-02 1.9989569E-02 1.9085366E-02 1.8209046E-02
 1.7360402E-02 1.6539218E-02 1.5745206E-02 1.4978118E-02 1.4237606E-02
 1.3523348E-02 1.2834975E-02 1.2172102E-02 1.1534325E-02 1.0921210E-02
 1.0332315E-02 9.7671682E-03 9.2252903E-03 8.7061850E-03 8.2093300E-03
 7.7342088E-03 7.2802873E-03 6.8470160E-03 6.4338357E-03 6.0401894E-03
 5.6655076E-03 5.3092209E-03 4.9707596E-03 4.6495385E-03 4.3449760E-03
 4.0565119E-03 3.7835587E-03 3.5255502E-03 3.2819163E-03 3.0520959E-03
 2.8355345E-03 2.6316775E-03 2.4399981E-03 2.2599499E-03 2.0910210E-03
 1.9326924E-03 1.7844694E-03 1.6458615E-03 1.5163929E-03 1.3955964E-03
 1.2830242E-03 1.1782392E-03 1.0808173E-03 9.9035050E-04 9.0644031E-04
 8.2870771E-04 7.5678778E-04 6.9032761E-04 6.2898814E-04 5.7244673E-04
 5.2039640E-04
 91 41
 1.500001 1.550001 1.600001 1.650001 1.700001
 1.750001 1.800001 1.850001 1.900001 1.950001
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300001 4.350001 4.400001 4.450001
 4.500001 4.550002 4.600002 4.650002 4.700002
 4.750002 4.800003 4.850003 4.900003 4.950003
 5.000003 5.050004 5.100004 5.150004 5.200004
 5.250004 5.300004 5.350005 5.400005 5.450005
 5.500005 5.550005 5.600006 5.650006 5.700006
 5.750006 5.800006 5.850007 5.900007 5.950007
 6.000007
 -1.500001 -1.450001 -1.400001 -1.350001 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -0.1000000 -5.0000012E-02
 0.0000000E+00 5.0000012E-02 0.1000000 0.1500000 0.2000000
 0.2500001 0.3000001 0.3500001 0.4000001 0.4500001
 0.5000001
 -8.5442397E-04 -1.5705775E-03 -2.3117468E-03 -3.0620368E-03 -3.7900996E-03
 -4.4188639E-03 -4.6983226E-03 -4.0499074E-03 -2.9735840E-03 -1.9603481E-03
 -1.0614125E-03 -2.7321090E-04 4.1022277E-04 9.9452806E-04 1.4851429E-03
 1.8887545E-03 2.2135978E-03 2.4689622E-03 2.6644247E-03 2.8091068E-03
 2.9112750E-03 2.9781864E-03 3.0160942E-03 3.0303316E-03 3.0254296E-03
 3.0052336E-03 2.9730010E-03 2.9314859E-03 2.8829889E-03 2.8294036E-03
 2.7722411E-03 2.7126633E-03 2.6515264E-03 2.5894486E-03 2.5268844E-03
 2.4641957E-03 2.4016937E-03 2.3396586E-03 2.2783361E-03 2.2179189E-03
 2.1585443E-03 2.1002993E-03 2.0432405E-03 1.9874037E-03 1.9328198E-03
 1.8795066E-03 1.8274748E-03 1.7767213E-03 1.7272396E-03 1.6790156E-03
 1.6320338E-03 1.5862748E-03 1.5417194E-03 1.4983425E-03 1.4561214E-03
 1.4150322E-03 1.3750478E-03 1.3361435E-03 1.2982938E-03 1.2614735E-03
 1.2256562E-03 1.1908178E-03 1.1569322E-03 1.1239762E-03 1.0919252E-03
 1.0607546E-03 1.0304428E-03 1.0009663E-03 9.7230339E-04 9.4443170E-04
 9.1733079E-04 8.9098018E-04 8.6535851E-04 8.4044761E-04 8.1622723E-04
 7.9267885E-04 7.6978392E-04 7.4752601E-04 7.2588719E-04 7.0484949E-04
 6.8439858E-04 6.6451606E-04 6.4518856E-04 6.2640046E-04 6.0813589E-04
 5.9038127E-04 5.7312270E-04 5.5634644E-04 5.4003939E-04 5.2418828E-04
 5.0878077E-04
 4.3235626E-02 4.0051304E-02 3.6923520E-02 3.3808265E-02 3.0640082E-02
 2.7319007E-02 2.3708001E-02 2.0184480E-02 1.7511539E-02 1.5422432E-02
 1.3710059E-02 1.2276105E-02 1.1062274E-02 1.0027830E-02 9.1406330E-03
 8.3738556E-03 7.7052345E-03 7.1168612E-03 6.5947296E-03 6.1280536E-03
 5.7085534E-03 5.3298110E-03 4.9867393E-03 4.6752240E-03 4.3918439E-03
 4.1336804E-03 3.8981806E-03 3.6830527E-03 3.4862021E-03 3.3056873E-03
 3.1397105E-03 2.9866265E-03 2.8449707E-03 2.7134833E-03 2.5911073E-03
 2.4769614E-03 2.3702986E-03 2.2704562E-03 2.1768278E-03 2.0888464E-03
 2.0059946E-03 1.9278108E-03 1.8538940E-03 1.7838939E-03 1.7175019E-03
 1.6544381E-03 1.5944492E-03 1.5373065E-03 1.4828062E-03 1.4307630E-03
 1.3810124E-03 1.3334024E-03 1.2877978E-03 1.2440728E-03 1.2021149E-03
 1.1618210E-03 1.1230953E-03 1.0858515E-03 1.0500100E-03 1.0154970E-03
 9.8224462E-04 9.5019053E-04 9.1927574E-04 8.8944734E-04 8.6065428E-04
 8.3285006E-04 8.0599100E-04 7.8003615E-04 7.5494783E-04 7.3068903E-04
 7.0722710E-04 6.8452978E-04 6.6256645E-04 6.4130977E-04 6.2073249E-04
 6.0080906E-04 5.8151537E-04 5.6282891E-04 5.4472854E-04 5.2719191E-04
 5.1020097E-04 4.9373537E-04 4.7777852E-04 4.6231292E-04 4.4732157E-04
 4.3278912E-04 4.1870022E-04 4.0504104E-04 3.9179742E-04 3.7895545E-04
 3.6650305E-04
 7.8595936E-04 2.1653312E-04 -3.2413815E-04 -7.9294993E-04 -1.1220154E-03
 -1.2167025E-03 -1.0043967E-03 -5.2093883E-04 1.0918258E-04 7.7400974E-04
 1.4085188E-03 1.9799192E-03 2.4735588E-03 2.8854506E-03 3.2182827E-03
 3.4787240E-03 3.6752836E-03 3.8169147E-03 3.9121360E-03 3.9686523E-03
 3.9932285E-03 3.9917179E-03 3.9691376E-03 3.9297678E-03 3.8772472E-03
 3.8146521E-03 3.7445545E-03 3.6690664E-03 3.5898802E-03 3.5083026E-03
 3.4253125E-03 3.3416280E-03 3.2577831E-03 3.1742007E-03 3.0912363E-03
 3.0091994E-03 2.9283508E-03 2.8488967E-03 2.7709815E-03 2.6946964E-03
 2.6200970E-03 2.5472168E-03 2.4760771E-03 2.4066879E-03 2.3390490E-03
 2.2731465E-03 2.2089626E-03 2.1464725E-03 2.0856487E-03 2.0264585E-03
 1.9688716E-03 1.9128510E-03 1.8583614E-03 1.8053685E-03 1.7538341E-03
 1.7037228E-03 1.6549972E-03 1.6076230E-03 1.5615637E-03 1.5167861E-03
 1.4732541E-03 1.4309346E-03 1.3897956E-03 1.3498040E-03 1.3109297E-03
 1.2731416E-03 1.2364096E-03 1.2007051E-03 1.1659998E-03 1.1322661E-03
 1.0994771E-03 1.0676062E-03 1.0366284E-03 1.0065191E-03 9.7725505E-04
 9.4881066E-04 9.2116545E-04 8.9429610E-04 8.6818234E-04 8.4280141E-04
 8.1813341E-04 7.9416012E-04 7.7085971E-04 7.4821559E-04 7.2620896E-04
 7.0482196E-04 6.8403664E-04 6.6383695E-04 6.4420793E-04 6.2513130E-04
 6.0659298E-04
 4.1287314E-02 3.8036823E-02 3.4843273E-02 3.1680219E-02 2.8532628E-02
 2.5429292E-02 2.2480374E-02 1.9833865E-02 1.7560683E-02 1.5640959E-02
 1.4023182E-02 1.2655037E-02 1.1490923E-02 1.0492238E-02 9.6273692E-03
 8.8710217E-03 8.2035279E-03 7.6098116E-03 7.0783356E-03 6.6001764E-03
 6.1683068E-03 5.7770754E-03 5.4218317E-03 5.0986409E-03 4.8041120E-03
 4.5352369E-03 4.2893086E-03 4.0638614E-03 3.8566438E-03 3.6656237E-03
 3.4889968E-03 3.3252041E-03 3.1729154E-03 3.0310152E-03 2.8985378E-03
 2.7746339E-03 2.6585311E-03 2.5495174E-03 2.4469479E-03 2.3502449E-03
 2.2589038E-03 2.1724792E-03 2.0905808E-03 2.0128535E-03 1.9389780E-03
 1.8686651E-03 1.8016587E-03 1.7377249E-03 1.6766543E-03 1.6182563E-03
 1.5623583E-03 1.5088031E-03 1.4574481E-03 1.4081624E-03 1.3608265E-03
 1.3153311E-03 1.2715751E-03 1.2294665E-03 1.1889196E-03 1.1498557E-03
 1.1122004E-03 1.0758875E-03 1.0408526E-03 1.0070376E-03 9.7438780E-04
 9.4285142E-04 9.1238105E-04 8.8293134E-04 8.5446006E-04 8.2692754E-04
 8.0029661E-04 7.7453098E-04 7.4959779E-04 7.2546536E-04 7.0210430E-04
 6.7948463E-04 6.5758091E-04 6.3636643E-04 6.1581767E-04 5.9591024E-04
 5.7662197E-04 5.5793300E-04 5.3982087E-04 5.2226760E-04 5.0525449E-04
 4.8876333E-04 4.7277671E-04 4.5727837E-04 4.4225363E-04 4.2768588E-04
 4.1356092E-04
 2.8155616E-03 2.4320921E-03 2.1221801E-03 1.9256920E-03 1.8815122E-03
 2.0107562E-03 2.3000510E-03 2.7024518E-03 3.1578199E-03 3.6134301E-03
 4.0326235E-03 4.3946640E-03 4.6911878E-03 4.9220715E-03 5.0919014E-03
 5.2074487E-03 5.2761319E-03 5.3051878E-03 5.3012627E-03 5.2702823E-03
 5.2174269E-03 5.1471847E-03 5.0634053E-03 4.9693640E-03 4.8678098E-03
 4.7610109E-03 4.6507916E-03 4.5385729E-03 4.4254381E-03 4.3121893E-03
 4.1994313E-03 4.0876339E-03 3.9771795E-03 3.8683894E-03 3.7615320E-03
 3.6568083E-03 3.5543598E-03 3.4542710E-03 3.3565888E-03 3.2613324E-03
 3.1685054E-03 3.0781014E-03 2.9900989E-03 2.9044675E-03 2.8211703E-03
 2.7401622E-03 2.6613963E-03 2.5848248E-03 2.5103935E-03 2.4380521E-03
 2.3677482E-03 2.2994254E-03 2.2330354E-03 2.1685236E-03 2.1058391E-03
 2.0449320E-03 1.9857523E-03 1.9282518E-03 1.8723831E-03 1.8181009E-03
 1.7653585E-03 1.7141134E-03 1.6643233E-03 1.6159464E-03 1.5689423E-03
 1.5232736E-03 1.4788989E-03 1.4357847E-03 1.3938928E-03 1.3531902E-03
 1.3136406E-03 1.2752141E-03 1.2378773E-03 1.2016003E-03 1.1663521E-03
 1.1321034E-03 1.0988259E-03 1.0664933E-03 1.0350777E-03 1.0045535E-03
 9.7489654E-04 9.4607944E-04 9.1808202E-04 8.9087954E-04 8.6444814E-04
 8.3876867E-04 8.1381801E-04 7.8957569E-04 7.6602463E-04 7.4314064E-04
 7.2090846E-04
 3.9196897E-02 3.5941564E-02 3.2781072E-02 2.9721279E-02 2.6789030E-02
 2.4034306E-02 2.1515748E-02 1.9274835E-02 1.7320910E-02 1.5636235E-02
 1.4188400E-02 1.2940686E-02 1.1858689E-02 1.0912847E-02 1.0079243E-02
 9.3390718E-03 8.6776940E-03 8.0836732E-03 7.5479466E-03 7.0632189E-03
 6.6234786E-03 6.2236735E-03 5.8594630E-03 5.5270400E-03 5.2230167E-03
 4.9443399E-03 4.6882536E-03 4.4522844E-03 4.2342395E-03 4.0322118E-03
 3.8445573E-03 3.6698685E-03 3.5069271E-03 3.3546565E-03 3.2120873E-03
 3.0783352E-03 2.9526036E-03 2.8341757E-03 2.7224238E-03 2.6167885E-03
 2.5167775E-03 2.4219474E-03 2.3318976E-03 2.2462700E-03 2.1647392E-03
 2.0870152E-03 2.0128344E-03 1.9419590E-03 1.8741724E-03 1.8092780E-03
 1.7470972E-03 1.6874655E-03 1.6302352E-03 1.5752674E-03 1.5224373E-03
 1.4716297E-03 1.4227370E-03 1.3756615E-03 1.3303107E-03 1.2866016E-03
 1.2444541E-03 1.2037957E-03 1.1645585E-03 1.1266784E-03 1.0900965E-03
 1.0547567E-03 1.0206054E-03 9.8759506E-04 9.5567794E-04 9.2481129E-04
 8.9495274E-04 8.6606405E-04 8.3810819E-04 8.1105001E-04 7.8485609E-04
 7.5949484E-04 7.3493604E-04 7.1115146E-04 6.8811327E-04 6.6579564E-04
 6.4417423E-04 6.2322384E-04 6.0292298E-04 5.8324926E-04 5.6418183E-04
 5.4570066E-04 5.2778708E-04 5.1042123E-04 4.9358775E-04 4.7726667E-04
 4.6144373E-04
 5.3020455E-03 5.1167258E-03 5.0196680E-03 5.0281831E-03 5.1461956E-03
 5.3596734E-03 5.6386353E-03 5.9452271E-03 6.2447987E-03 6.5115718E-03
 6.7305872E-03 6.8959421E-03 7.0079286E-03 7.0703821E-03 7.0888409E-03
 7.0693800E-03 7.0179887E-03 6.9402396E-03 6.8411613E-03 6.7252032E-03
 6.5962332E-03 6.4575812E-03 6.3120737E-03 6.1620497E-03 6.0094139E-03
 5.8556665E-03 5.7019619E-03 5.5491650E-03 5.3979289E-03 5.2487496E-03
 5.1020221E-03 4.9580601E-03 4.8171119E-03 4.6793623E-03 4.5449333E-03
 4.4138907E-03 4.2862548E-03 4.1620219E-03 4.0411688E-03 3.9236527E-03
 3.8094262E-03 3.6984296E-03 3.5905931E-03 3.4858456E-03 3.3841142E-03
 3.2853181E-03 3.1893817E-03 3.0962287E-03 3.0057768E-03 2.9179542E-03
 2.8326812E-03 2.7498859E-03 2.6694969E-03 2.5914398E-03 2.5156490E-03
 2.4420554E-03 2.3705962E-03 2.3012054E-03 2.2338231E-03 2.1683879E-03
 2.1048465E-03 2.0431369E-03 1.9832104E-03 1.9250100E-03 1.8684875E-03
 1.8135925E-03 1.7602767E-03 1.7084946E-03 1.6582025E-03 1.6093547E-03
 1.5619082E-03 1.5158259E-03 1.4710659E-03 1.4275896E-03 1.3853598E-03
 1.3443404E-03 1.3044978E-03 1.2657975E-03 1.2282053E-03 1.1916902E-03
 1.1562211E-03 1.1217674E-03 1.0883008E-03 1.0557936E-03 1.0242173E-03
 9.9354470E-04 9.6375204E-04 9.3481201E-04 9.0669980E-04 8.7939453E-04
 8.5287174E-04
 3.7003968E-02 3.3822183E-02 3.0792300E-02 2.7935579E-02 2.5281036E-02
 2.2857592E-02 2.0684015E-02 1.8761745E-02 1.7076420E-02 1.5602916E-02
 1.4312208E-02 1.3176342E-02 1.2170932E-02 1.1275764E-02 1.0474505E-02
 9.7540356E-03 9.1037648E-03 8.5150301E-03 7.9806428E-03 7.4945232E-03
 7.0514376E-03 6.6468059E-03 6.2765693E-03 5.9370822E-03 5.6250794E-03
 5.3376276E-03 5.0721220E-03 4.8262719E-03 4.5980839E-03 4.3858327E-03
 4.1880091E-03 4.0032789E-03 3.8304499E-03 3.6684417E-03 3.5162824E-03
 3.3730986E-03 3.2381143E-03 3.1106430E-03 2.9900740E-03 2.8758575E-03
 2.7675023E-03 2.6645635E-03 2.5666405E-03 2.4733739E-03 2.3844384E-03
 2.2995388E-03 2.2184085E-03 2.1408040E-03 2.0665028E-03 1.9953058E-03
 1.9270255E-03 1.8614942E-03 1.7985556E-03 1.7380678E-03 1.6798994E-03
 1.6239281E-03 1.5700423E-03 1.5181372E-03 1.4681164E-03 1.4198897E-03
 1.3733747E-03 1.3284914E-03 1.2851681E-03 1.2433354E-03 1.2029296E-03
 1.1638907E-03 1.1261612E-03 1.0896884E-03 1.0544223E-03 1.0203139E-03
 9.8731846E-04 9.5539459E-04 9.2450116E-04 8.9459913E-04 8.6565223E-04
 8.3762611E-04 8.1048766E-04 7.8420556E-04 7.5874873E-04 7.3408918E-04
 7.1019953E-04 6.8705261E-04 6.6462415E-04 6.4289005E-04 6.2182709E-04
 6.0141215E-04 5.8162562E-04 5.6244573E-04 5.4385234E-04 5.2582857E-04
 5.0835480E-04
 8.3234422E-03 8.3199656E-03 8.3854450E-03 8.5132327E-03 8.6864643E-03
 8.8807605E-03 9.0707559E-03 9.2354687E-03 9.3610901E-03 9.4409203E-03
 9.4737168E-03 9.4618024E-03 9.4094696E-03 9.3218843E-03 9.2044156E-03
 9.0622352E-03 8.9001367E-03 8.7224366E-03 8.5329572E-03 8.3350167E-03
 8.1314528E-03 7.9246508E-03 7.7165603E-03 7.5087380E-03 7.3023965E-03
 7.0984466E-03 6.8975794E-03 6.7002992E-03 6.5069948E-03 6.3179578E-03
 6.1334120E-03 5.9534987E-03 5.7783085E-03 5.6078709E-03 5.4421774E-03
 5.2811760E-03 5.1248032E-03 4.9729729E-03 4.8255995E-03 4.6825767E-03
 4.5437994E-03 4.4091521E-03 4.2785234E-03 4.1517969E-03 4.0288600E-03
 3.9096014E-03 3.7939064E-03 3.6816695E-03 3.5727797E-03 3.4671386E-03
 3.3646424E-03 3.2651930E-03 3.1686961E-03 3.0750600E-03 2.9841943E-03
 2.8960155E-03 2.8104377E-03 2.7273826E-03 2.6467717E-03 2.5685288E-03
 2.4925810E-03 2.4188599E-03 2.3472973E-03 2.2778269E-03 2.2103838E-03
 2.1449081E-03 2.0813418E-03 2.0196263E-03 1.9597071E-03 1.9015278E-03
 1.8450379E-03 1.7901888E-03 1.7369294E-03 1.6852147E-03 1.6349960E-03
 1.5862351E-03 1.5388826E-03 1.4928986E-03 1.4482467E-03 1.4048840E-03
 1.3627728E-03 1.3218805E-03 1.2821677E-03 1.2436005E-03 1.2061486E-03
 1.1697765E-03 1.1344549E-03 1.1001525E-03 1.0668396E-03 1.0344866E-03
 1.0030692E-03
 3.4775794E-02 3.1756096E-02 2.8945528E-02 2.6361065E-02 2.4014521E-02
 2.1907957E-02 2.0031920E-02 1.8367779E-02 1.6892001E-02 1.5580292E-02
 1.4410135E-02 1.3361996E-02 1.2419430E-02 1.1568800E-02 1.0798791E-02
 1.0099964E-02 9.4643421E-03 8.8851005E-03 8.3563123E-03 7.8727687E-03
 7.4298275E-03 7.0233294E-03 6.6495300E-03 6.3050590E-03 5.9869066E-03
 5.6923986E-03 5.4191817E-03 5.1651904E-03 4.9286061E-03 4.7078244E-03
 4.5014066E-03 4.3080570E-03 4.1266093E-03 3.9560185E-03 3.7953483E-03
 3.6437644E-03 3.5005240E-03 3.3649590E-03 3.2364724E-03 3.1145238E-03
 2.9986275E-03 2.8883433E-03 2.7832757E-03 2.6830658E-03 2.5873873E-03
 2.4959452E-03 2.4084686E-03 2.3247125E-03 2.2444509E-03 2.1674791E-03
 2.0936078E-03 2.0226627E-03 1.9544840E-03 1.8889253E-03 1.8258491E-03
 1.7651293E-03 1.7066489E-03 1.6502987E-03 1.5959785E-03 1.5435922E-03
 1.4930521E-03 1.4442756E-03 1.3971857E-03 1.3517094E-03 1.3077778E-03
 1.2653277E-03 1.2242980E-03 1.1846318E-03 1.1462753E-03 1.1091762E-03
 1.0732870E-03 1.0385617E-03 1.0049562E-03 9.7242958E-04 9.4094186E-04
 9.1045699E-04 8.8093639E-04 8.5234753E-04 8.2465814E-04 7.9783623E-04
 7.7185093E-04 7.4667583E-04 7.2228262E-04 6.9864414E-04 6.7573675E-04
 6.5353519E-04 6.3201669E-04 6.1115850E-04 5.9094012E-04 5.7133951E-04
 5.5233837E-04
 1.1947385E-02 1.2062965E-02 1.2195631E-02 1.2327885E-02 1.2441844E-02
 1.2522938E-02 1.2561847E-02 1.2554477E-02 1.2500898E-02 1.2403940E-02
 1.2268023E-02 1.2098295E-02 1.1900056E-02 1.1678452E-02 1.1438254E-02
 1.1183805E-02 1.0918963E-02 1.0647103E-02 1.0371130E-02 1.0093504E-02
 9.8162442E-03 9.5409900E-03 9.2690242E-03 9.0013165E-03 8.7385969E-03
 8.4813945E-03 8.2300892E-03 7.9849502E-03 7.7461568E-03 7.5138183E-03
 7.2879787E-03 7.0686233E-03 6.8556881E-03 6.6490830E-03 6.4486843E-03
 6.2543564E-03 6.0659568E-03 5.8833226E-03 5.7063024E-03 5.5347281E-03
 5.3684376E-03 5.2072667E-03 5.0510569E-03 4.8996494E-03 4.7528911E-03
 4.6106298E-03 4.4727214E-03 4.3390244E-03 4.2093988E-03 4.0837135E-03
 3.9618425E-03 3.8436563E-03 3.7290403E-03 3.6178778E-03 3.5100572E-03
 3.4054713E-03 3.3040186E-03 3.2055948E-03 3.1101094E-03 3.0174647E-03
 2.9275760E-03 2.8403525E-03 2.7557127E-03 2.6735764E-03 2.5938665E-03
 2.5165088E-03 2.4414279E-03 2.3685575E-03 2.2978275E-03 2.2291739E-03
 2.1625322E-03 2.0978451E-03 2.0350493E-03 1.9740905E-03 1.9149127E-03
 1.8574633E-03 1.8016875E-03 1.7475393E-03 1.6949693E-03 1.6439302E-03
 1.5943772E-03 1.5462631E-03 1.4995501E-03 1.4541943E-03 1.4101571E-03
 1.3674001E-03 1.3258844E-03 1.2855725E-03 1.2464338E-03 1.2084279E-03
 1.1715271E-03
 3.2641031E-02 2.9877501E-02 2.7358033E-02 2.5079973E-02 2.3032349E-02
 2.1197306E-02 1.9553430E-02 1.8078646E-02 1.6752295E-02 1.5556007E-02
 1.4473943E-02 1.3492648E-02 1.2600694E-02 1.1788350E-02 1.1047240E-02
 1.0370100E-02 9.7505413E-03 9.1828918E-03 8.6620701E-03 8.1834905E-03
 7.7429977E-03 7.3368340E-03 6.9616078E-03 6.6142785E-03 6.2921401E-03
 5.9927842E-03 5.7140822E-03 5.4541361E-03 5.2112499E-03 4.9839029E-03
 4.7707194E-03 4.5704651E-03 4.3820278E-03 4.2044166E-03 4.0367427E-03
 3.8782069E-03 3.7280947E-03 3.5857582E-03 3.4506167E-03 3.3221424E-03
 3.1998600E-03 3.0833380E-03 2.9721858E-03 2.8660481E-03 2.7646008E-03
 2.6675481E-03 2.5746217E-03 2.4855733E-03 2.4001764E-03 2.3182235E-03
 2.2395223E-03 2.1638970E-03 2.0911833E-03 2.0212308E-03 1.9539006E-03
 1.8890614E-03 1.8265930E-03 1.7663824E-03 1.7083242E-03 1.6523208E-03
 1.5982810E-03 1.5461167E-03 1.4957476E-03 1.4470986E-03 1.4000965E-03
 1.3546746E-03 1.3107694E-03 1.2683198E-03 1.2272687E-03 1.1875621E-03
 1.1491486E-03 1.1119805E-03 1.0760097E-03 1.0411931E-03 1.0074888E-03
 9.7485597E-04 9.4325631E-04 9.1265445E-04 8.8301493E-04 8.5430418E-04
 8.2649064E-04 7.9954258E-04 7.7343179E-04 7.4812997E-04 7.2360970E-04
 6.9984625E-04 6.7681330E-04 6.5448735E-04 6.3284609E-04 6.1186572E-04
 5.9152726E-04
 1.6146360E-02 1.6259857E-02 1.6331458E-02 1.6353035E-02 1.6320396E-02
 1.6233500E-02 1.6095268E-02 1.5910454E-02 1.5684778E-02 1.5424265E-02
 1.5134843E-02 1.4822125E-02 1.4491249E-02 1.4146861E-02 1.3793078E-02
 1.3433490E-02 1.3071203E-02 1.2708846E-02 1.2348603E-02 1.1992252E-02
 1.1641196E-02 1.1296516E-02 1.0959013E-02 1.0629260E-02 1.0307660E-02
 9.9944724E-03 9.6898517E-03 9.3938662E-03 9.1065187E-03 8.8277468E-03
 8.5574351E-03 8.2954392E-03 8.0415700E-03 7.7956379E-03 7.5574280E-03
 7.3267226E-03 7.1033025E-03 6.8869414E-03 6.6774171E-03 6.4745056E-03
 6.2779943E-03 6.0876654E-03 5.9033162E-03 5.7247416E-03 5.5517498E-03
 5.3841514E-03 5.2217622E-03 5.0644088E-03 4.9119201E-03 4.7641331E-03
 4.6208906E-03 4.4820402E-03 4.3474347E-03 4.2169378E-03 4.0904107E-03
 3.9677243E-03 3.8487543E-03 3.7333779E-03 3.6214795E-03 3.5129492E-03
 3.4076755E-03 3.3055600E-03 3.2064971E-03 3.1103923E-03 3.0171524E-03
 2.9266900E-03 2.8389131E-03 2.7537416E-03 2.6710939E-03 2.5908942E-03
 2.5130631E-03 2.4375275E-03 2.3642217E-03 2.2930747E-03 2.2240232E-03
 2.1569985E-03 2.0919440E-03 2.0287987E-03 1.9675069E-03 1.9080094E-03
 1.8502543E-03 1.7941906E-03 1.7397645E-03 1.6869307E-03 1.6356413E-03
 1.5858479E-03 1.5375095E-03 1.4905821E-03 1.4450235E-03 1.4007924E-03
 1.3578512E-03
 3.0786721E-02 2.8333331E-02 2.6115574E-02 2.4113823E-02 2.2306724E-02
 2.0673094E-02 1.9193344E-02 1.7850054E-02 1.6628064E-02 1.5514303E-02
 1.4497492E-02 1.3567871E-02 1.2716917E-02 1.1937123E-02 1.1221811E-02
 1.0564988E-02 9.9612372E-03 9.4056288E-03 8.8936659E-03 8.4212422E-03
 7.9846205E-03 7.5804107E-03 7.2055608E-03 6.8573281E-03 6.5332628E-03
 6.2311715E-03 5.9490856E-03 5.6852358E-03 5.4380256E-03 5.2060154E-03
 4.9879090E-03 4.7825379E-03 4.5888540E-03 4.4059181E-03 4.2328816E-03
 4.0689795E-03 3.9135227E-03 3.7658873E-03 3.6255093E-03 3.4918771E-03
 3.3645274E-03 3.2430366E-03 3.1270233E-03 3.0161340E-03 2.9100513E-03
 2.8084819E-03 2.7111566E-03 2.6178295E-03 2.5282744E-03 2.4422817E-03
 2.3596589E-03 2.2802278E-03 2.2038233E-03 2.1302931E-03 2.0594934E-03
 1.9912934E-03 1.9255686E-03 1.8622043E-03 1.8010915E-03 1.7421306E-03
 1.6852261E-03 1.6302902E-03 1.5772380E-03 1.5259905E-03 1.4764741E-03
 1.4286187E-03 1.3823564E-03 1.3376266E-03 1.2943679E-03 1.2525253E-03
 1.2120437E-03 1.1728718E-03 1.1349623E-03 1.0982690E-03 1.0627467E-03
 1.0283544E-03 9.9505042E-04 9.6279773E-04 9.3155983E-04 9.0130023E-04
 8.7198563E-04 8.4358483E-04 8.1606512E-04 7.8939856E-04 7.6355599E-04
 7.3850941E-04 7.1423379E-04 6.9070287E-04 6.6789315E-04 6.4578000E-04
 6.2434183E-04
 2.0759596E-02 2.0744149E-02 2.0655781E-02 2.0499274E-02 2.0281199E-02
 2.0009097E-02 1.9690754E-02 1.9333772E-02 1.8945290E-02 1.8531863E-02
 1.8099390E-02 1.7653124E-02 1.7197695E-02 1.6737128E-02 1.6274890E-02
 1.5813923E-02 1.5356686E-02 1.4905197E-02 1.4461066E-02 1.4025539E-02
 1.3599554E-02 1.3183777E-02 1.2778673E-02 1.2384525E-02 1.2001492E-02
 1.1629618E-02 1.1268875E-02 1.0919153E-02 1.0580292E-02 1.0252084E-02
 9.9342940E-03 9.6266484E-03 9.3288766E-03 9.0406826E-03 8.7617813E-03
 8.4918700E-03 8.2306629E-03 7.9778628E-03 7.7331928E-03 7.4963742E-03
 7.2671329E-03 7.0452127E-03 6.8303542E-03 6.6223154E-03 6.4208610E-03
 6.2257601E-03 6.0367920E-03 5.8537498E-03 5.6764288E-03 5.5046272E-03
 5.3381664E-03 5.1768580E-03 5.0205323E-03 4.8690201E-03 4.7221598E-03
 4.5798002E-03 4.4417894E-03 4.3079844E-03 4.1782488E-03 4.0524490E-03
 3.9304602E-03 3.8121513E-03 3.6974137E-03 3.5861281E-03 3.4781841E-03
 3.3734757E-03 3.2719017E-03 3.1733629E-03 3.0777662E-03 2.9850160E-03
 2.8950246E-03 2.8077068E-03 2.7229832E-03 2.6407670E-03 2.5609846E-03
 2.4835630E-03 2.4084286E-03 2.3355102E-03 2.2647413E-03 2.1960568E-03
 2.1293957E-03 2.0646928E-03 2.0018914E-03 1.9409320E-03 1.8817653E-03
 1.8243337E-03 1.7685855E-03 1.7144687E-03 1.6619373E-03 1.6109454E-03
 1.5614426E-03
 2.9333230E-02 2.7162196E-02 2.5189590E-02 2.3394616E-02 2.1758428E-02
 2.0264395E-02 1.8898014E-02 1.7646678E-02 1.6499383E-02 1.5446479E-02
 1.4479427E-02 1.3590607E-02 1.2773164E-02 1.2020875E-02 1.1328063E-02
 1.0689517E-02 1.0100435E-02 9.5564006E-03 9.0533514E-03 8.5875671E-03
 8.1556542E-03 7.7545331E-03 7.3814285E-03 7.0338300E-03 6.7094867E-03
 6.4063594E-03 6.1226087E-03 5.8565708E-03 5.6067402E-03 5.3717624E-03
 5.1504136E-03 4.9415892E-03 4.7442964E-03 4.5576380E-03 4.3808054E-03
 4.2130630E-03 4.0537487E-03 3.9022579E-03 3.7580461E-03 3.6206178E-03
 3.4895195E-03 3.3643392E-03 3.2447004E-03 3.1302599E-03 3.0207015E-03
 2.9157368E-03 2.8150987E-03 2.7185439E-03 2.6258465E-03 2.5367967E-03
 2.4512033E-03 2.3688865E-03 2.2896808E-03 2.2134322E-03 2.1399970E-03
 2.0692411E-03 2.0010395E-03 1.9352753E-03 1.8718389E-03 1.8106274E-03
 1.7515444E-03 1.6944977E-03 1.6394033E-03 1.5861798E-03 1.5347502E-03
 1.4850424E-03 1.4369892E-03 1.3905251E-03 1.3455888E-03 1.3021216E-03
 1.2600683E-03 1.2193758E-03 1.1799954E-03 1.1418767E-03 1.1049755E-03
 1.0692480E-03 1.0346521E-03 1.0011485E-03 9.6869824E-04 9.3726511E-04
 9.0681476E-04 8.7731273E-04 8.4872678E-04 8.2102645E-04 7.9418242E-04
 7.6816592E-04 7.4294955E-04 7.1850652E-04 6.9481193E-04 6.7184196E-04
 6.4957188E-04
 2.5617389E-02 2.5400823E-02 2.5107998E-02 2.4749864E-02 2.4336858E-02
 2.3878649E-02 2.3384066E-02 2.2860998E-02 2.2316465E-02 2.1756632E-02
 2.1186896E-02 2.0611927E-02 2.0035747E-02 1.9461773E-02 1.8892866E-02
 1.8331401E-02 1.7779281E-02 1.7238013E-02 1.6708743E-02 1.6192302E-02
 1.5689265E-02 1.5199988E-02 1.4724674E-02 1.4263374E-02 1.3816043E-02
 1.3382549E-02 1.2962686E-02 1.2556198E-02 1.2162783E-02 1.1782112E-02
 1.1413832E-02 1.1057582E-02 1.0712983E-02 1.0379671E-02 1.0057271E-02
 9.7454144E-03 9.4437432E-03 9.1519011E-03 8.8695511E-03 8.5963542E-03
 8.3319908E-03 8.0761500E-03 7.8285262E-03 7.5888331E-03 7.3567894E-03
 7.1321279E-03 6.9145900E-03 6.7039239E-03 6.4998968E-03 6.3022766E-03
 6.1108381E-03 5.9253769E-03 5.7456847E-03 5.5715661E-03 5.4028365E-03
 5.2393102E-03 5.0808154E-03 4.9271863E-03 4.7782622E-03 4.6338886E-03
 4.4939122E-03 4.3581924E-03 4.2265900E-03 4.0989737E-03 3.9752168E-03
 3.8551888E-03 3.7387761E-03 3.6258665E-03 3.5163413E-03 3.4100960E-03
 3.3070343E-03 3.2070465E-03 3.1100411E-03 3.0159252E-03 2.9246097E-03
 2.8360100E-03 2.7500370E-03 2.6666136E-03 2.5856581E-03 2.5071003E-03
 2.4308618E-03 2.3568762E-03 2.2850723E-03 2.2153843E-03 2.1477519E-03
 2.0821064E-03 2.0183942E-03 1.9565541E-03 1.8965304E-03 1.8382679E-03
 1.7817161E-03
 2.8247222E-02 2.6285622E-02 2.4486652E-02 2.2834726E-02 2.1316167E-02
 1.9919001E-02 1.8632650E-02 1.7447721E-02 1.6355794E-02 1.5349247E-02
 1.4421139E-02 1.3565097E-02 1.2775247E-02 1.2046136E-02 1.1372702E-02
 1.0750240E-02 1.0174380E-02 9.6410736E-03 9.1465982E-03 8.6875316E-03
 8.2607567E-03 7.8634396E-03 7.4930121E-03 7.1471399E-03 6.8237204E-03
 6.5208343E-03 6.2367502E-03 5.9698969E-03 5.7188487E-03 5.4823281E-03
 5.2591707E-03 5.0483299E-03 4.8488542E-03 4.6598874E-03 4.4806502E-03
 4.3104375E-03 4.1486085E-03 3.9945804E-03 3.8478244E-03 3.7078571E-03
 3.5742377E-03 3.4465638E-03 3.3244658E-03 3.2076056E-03 3.0956748E-03
 2.9883853E-03 2.8854760E-03 2.7867041E-03 2.6918456E-03 2.6006927E-03
 2.5130538E-03 2.4287493E-03 2.3476139E-03 2.2694932E-03 2.1942428E-03
 2.1217281E-03 2.0518221E-03 1.9844088E-03 1.9193753E-03 1.8566188E-03
 1.7960408E-03 1.7375490E-03 1.6810565E-03 1.6264811E-03 1.5737459E-03
 1.5227756E-03 1.4735020E-03 1.4258589E-03 1.3797821E-03 1.3352134E-03
 1.2920960E-03 1.2503752E-03 1.2099991E-03 1.1709197E-03 1.1330894E-03
 1.0964638E-03 1.0609993E-03 1.0266555E-03 9.9339325E-04 9.6117484E-04
 9.2996401E-04 8.9972664E-04 8.7042997E-04 8.4204081E-04 8.1453042E-04
 7.8786793E-04 7.6202606E-04 7.3697756E-04 7.1269646E-04 6.8915699E-04
 6.6633534E-04
 3.0648444E-02 3.0205220E-02 2.9695345E-02 2.9131018E-02 2.8523097E-02
 2.7881188E-02 2.7213732E-02 2.6528096E-02 2.5830694E-02 2.5127070E-02
 2.4421984E-02 2.3719495E-02 2.3023015E-02 2.2335397E-02 2.1658966E-02
 2.0995576E-02 2.0346664E-02 1.9713305E-02 1.9096257E-02 1.8496020E-02
 1.7912872E-02 1.7346922E-02 1.6798142E-02 1.6266389E-02 1.5751436E-02
 1.5252985E-02 1.4770678E-02 1.4304125E-02 1.3852898E-02 1.3416553E-02
 1.2994642E-02 1.2586706E-02 1.2192281E-02 1.1810914E-02 1.1442163E-02
 1.1085584E-02 1.0740753E-02 1.0407249E-02 1.0084677E-02 9.7726397E-03
 9.4707655E-03 9.1786869E-03 8.8960556E-03 8.6225374E-03 8.3578089E-03
 8.1015527E-03 7.8534773E-03 7.6132906E-03 7.3807151E-03 7.1554920E-03
 6.9373623E-03 6.7260792E-03 6.5214117E-03 6.3231313E-03 6.1310218E-03
 5.9448783E-03 5.7644942E-03 5.5896793E-03 5.4202494E-03 5.2560261E-03
 5.0968318E-03 4.9425098E-03 4.7928942E-03 4.6478324E-03 4.5071803E-03
 4.3707928E-03 4.2385315E-03 4.1102679E-03 3.9858706E-03 3.8652187E-03
 3.7481925E-03 3.6346805E-03 3.5245665E-03 3.4177469E-03 3.3141226E-03
 3.2135868E-03 3.1160468E-03 3.0214116E-03 2.9295871E-03 2.8404901E-03
 2.7540324E-03 2.6701393E-03 2.5887296E-03 2.5097269E-03 2.4330607E-03
 2.3586536E-03 2.2864433E-03 2.2163622E-03 2.1483439E-03 2.0823255E-03
 2.0182522E-03
 2.7422609E-02 2.5604161E-02 2.3923675E-02 2.2370176E-02 2.0933807E-02
 1.9605659E-02 1.8377613E-02 1.7242201E-02 1.6192516E-02 1.5222135E-02
 1.4325052E-02 1.3495635E-02 1.2728598E-02 1.2018979E-02 1.1362115E-02
 1.0753649E-02 1.0189525E-02 9.6659772E-03 9.1795381E-03 8.7270262E-03
 8.3055310E-03 7.9124020E-03 7.5452272E-03 7.2018085E-03 6.8801530E-03
 6.5784454E-03 6.2950407E-03 6.0284450E-03 5.7773045E-03 5.5403975E-03
 5.3166142E-03 5.1049502E-03 4.9044932E-03 4.7144182E-03 4.5339735E-03
 4.3624779E-03 4.1993097E-03 4.0439023E-03 3.8957428E-03 3.7543580E-03
 3.6193188E-03 3.4902291E-03 3.3667278E-03 3.2484820E-03 3.1351869E-03
 3.0265602E-03 2.9223412E-03 2.8222913E-03 2.7261872E-03 2.6338231E-03
 2.5450073E-03 2.4595617E-03 2.3773210E-03 2.2981304E-03 2.2218458E-03
 2.1483323E-03 2.0774624E-03 2.0091180E-03 1.9431880E-03 1.8795675E-03
 1.8181572E-03 1.7588636E-03 1.7016000E-03 1.6462831E-03 1.5928331E-03
 1.5411767E-03 1.4912423E-03 1.4429643E-03 1.3962776E-03 1.3511219E-03
 1.3074394E-03 1.2651769E-03 1.2242792E-03 1.1846985E-03 1.1463858E-03
 1.1092967E-03 1.0733862E-03 1.0386142E-03 1.0049387E-03 9.7232312E-04
 9.4072975E-04 9.1012463E-04 8.8047195E-04 8.5174176E-04 8.2390179E-04
 7.9692155E-04 7.7077327E-04 7.4542896E-04 7.2086160E-04 6.9704629E-04
 6.7395833E-04
 3.5859544E-02 3.5183538E-02 3.4454364E-02 3.3683617E-02 3.2881465E-02
 3.2056734E-02 3.1217119E-02 3.0369233E-02 2.9518798E-02 2.8670685E-02
 2.7829029E-02 2.6997291E-02 2.6178334E-02 2.5374474E-02 2.4587546E-02
 2.3818957E-02 2.3069724E-02 2.2340564E-02 2.1631906E-02 2.0943956E-02
 2.0276751E-02 1.9630169E-02 1.9003984E-02 1.8397866E-02 1.7811427E-02
 1.7244209E-02 1.6695721E-02 1.6165443E-02 1.5652824E-02 1.5157330E-02
 1.4678397E-02 1.4215475E-02 1.3768022E-02 1.3335501E-02 1.2917389E-02
 1.2513177E-02 1.2122366E-02 1.1744470E-02 1.1379036E-02 1.1025608E-02
 1.0683754E-02 1.0353057E-02 1.0033118E-02 9.7235488E-03 9.4239814E-03
 9.1340570E-03 8.8534374E-03 8.5817892E-03 8.3187995E-03 8.0641648E-03
 7.8175971E-03 7.5788097E-03 7.3475400E-03 7.1235257E-03 6.9065215E-03
 6.6962927E-03 6.4926012E-03 6.2952335E-03 6.1039710E-03 5.9186178E-03
 5.7389769E-03 5.5648517E-03 5.3960718E-03 5.2324468E-03 5.0738226E-03
 4.9200305E-03 4.7709132E-03 4.6263225E-03 4.4861124E-03 4.3501379E-03
 4.2182710E-03 4.0903757E-03 3.9663273E-03 3.8460083E-03 3.7292941E-03
 3.6160750E-03 3.5062432E-03 3.3996946E-03 3.2963220E-03 3.1960264E-03
 3.0987156E-03 3.0043002E-03 2.9126834E-03 2.8237868E-03 2.7375240E-03
 2.6538149E-03 2.5725795E-03 2.4937484E-03 2.4172387E-03 2.3429906E-03
 2.2709286E-03
 2.6767328E-02 2.5045751E-02 2.3446726E-02 2.1962184E-02 2.0584593E-02
 1.9306868E-02 1.8122317E-02 1.7024599E-02 1.6007693E-02 1.5065869E-02
 1.4193678E-02 1.3385943E-02 1.2637744E-02 1.1944433E-02 1.1301629E-02
 1.0705229E-02 1.0151402E-02 9.6366024E-03 9.1575589E-03 8.7112701E-03
 8.2949791E-03 7.9061752E-03 7.5425655E-03 7.2020525E-03 6.8827379E-03
 6.5828841E-03 6.3009164E-03 6.0354061E-03 5.7850559E-03 5.5486895E-03
 5.3252405E-03 5.1137372E-03 4.9132979E-03 4.7231247E-03 4.5424891E-03
 4.3707266E-03 4.2072330E-03 4.0514553E-03 3.9028914E-03 3.7610792E-03
 3.6255955E-03 3.4960539E-03 3.3720962E-03 3.2533973E-03 3.1396535E-03
 3.0305872E-03 2.9259410E-03 2.8254751E-03 2.7289707E-03 2.6362224E-03
 2.5470390E-03 2.4612432E-03 2.3786703E-03 2.2991642E-03 2.2225834E-03
 2.1487908E-03 2.0776594E-03 2.0090709E-03 1.9429122E-03 1.8790793E-03
 1.8174734E-03 1.7579988E-03 1.7005688E-03 1.6450979E-03 1.5915084E-03
 1.5397250E-03 1.4896754E-03 1.4412937E-03 1.3945141E-03 1.3492757E-03
 1.3055209E-03 1.2631934E-03 1.2222405E-03 1.1826116E-03 1.1442590E-03
 1.1071358E-03 1.0711986E-03 1.0364049E-03 1.0027138E-03 9.7008731E-04
 9.3848770E-04 9.0788084E-04 8.7823032E-04 8.4950548E-04 8.2167314E-04
 7.9470448E-04 7.6856965E-04 7.4324146E-04 7.1869197E-04 6.9489563E-04
 6.7182881E-04
 4.1290756E-02 4.0380083E-02 3.9430227E-02 3.8451731E-02 3.7453793E-02
 3.6444355E-02 3.5430279E-02 3.4417450E-02 3.3410884E-02 3.2414827E-02
 3.1432807E-02 3.0467736E-02 2.9521953E-02 2.8597303E-02 2.7695164E-02
 2.6816547E-02 2.5962099E-02 2.5132211E-02 2.4327025E-02 2.3546493E-02
 2.2790417E-02 2.2058474E-02 2.1350235E-02 2.0665208E-02 2.0002842E-02
 1.9362537E-02 1.8743662E-02 1.8145569E-02 1.7567605E-02 1.7009115E-02
 1.6469449E-02 1.5947955E-02 1.5444000E-02 1.4956974E-02 1.4486264E-02
 1.4031290E-02 1.3591481E-02 1.3166288E-02 1.2755182E-02 1.2357653E-02
 1.1973212E-02 1.1601379E-02 1.1241700E-02 1.0893741E-02 1.0557078E-02
 1.0231309E-02 9.9160448E-03 9.6109081E-03 9.3155503E-03 9.0296241E-03
 8.7527949E-03 8.4847528E-03 8.2251877E-03 7.9738079E-03 7.7303322E-03
 7.4944939E-03 7.2660274E-03 7.0446921E-03 6.8302359E-03 6.6224318E-03
 6.4210654E-03 6.2259082E-03 6.0367696E-03 5.8534401E-03 5.6757308E-03
 5.5034650E-03 5.3364546E-03 5.1745330E-03 5.0175404E-03 4.8653092E-03
 4.7176965E-03 4.5745447E-03 4.4357176E-03 4.3010758E-03 4.1704876E-03
 4.0438231E-03 3.9209588E-03 3.8017768E-03 3.6861615E-03 3.5740002E-03
 3.4651910E-03 3.3596205E-03 3.2571943E-03 3.1578147E-03 3.0613847E-03
 2.9678191E-03 2.8770268E-03 2.7889227E-03 2.7034257E-03 2.6204574E-03
 2.5399365E-03
 2.6222153E-02 2.4566565E-02 2.3024149E-02 2.1588529E-02 2.0253489E-02
 1.9012980E-02 1.7861133E-02 1.6792241E-02 1.5800791E-02 1.4881462E-02
 1.4029136E-02 1.3238904E-02 1.2506090E-02 1.1826258E-02 1.1195226E-02
 1.0609070E-02 1.0064137E-02 9.5570413E-03 9.0846634E-03 8.6441254E-03
 8.2327984E-03 7.8482693E-03 7.4883327E-03 7.1509755E-03 6.8343678E-03
 6.5368358E-03 6.2568639E-03 5.9930682E-03 5.7441951E-03 5.5091078E-03
 5.2867671E-03 5.0762328E-03 4.8766453E-03 4.6872268E-03 4.5072641E-03
 4.3361094E-03 4.1731698E-03 4.0179035E-03 3.8698171E-03 3.7284545E-03
 3.5934018E-03 3.4642729E-03 3.3407183E-03 3.2224145E-03 3.1090607E-03
 3.0003814E-03 2.8961208E-03 2.7960422E-03 2.6999251E-03 2.6075677E-03
 2.5187775E-03 2.4333780E-03 2.3512058E-03 2.2721032E-03 2.1959280E-03
 2.1225456E-03 2.0518266E-03 1.9836545E-03 1.9179144E-03 1.8545010E-03
 1.7933171E-03 1.7342647E-03 1.6772585E-03 1.6222119E-03 1.5690457E-03
 1.5176859E-03 1.4680594E-03 1.4200986E-03 1.3737382E-03 1.3289165E-03
 1.2855768E-03 1.2436610E-03 1.2031175E-03 1.1638942E-03 1.1259427E-03
 1.0892175E-03 1.0536734E-03 1.0192681E-03 9.8596129E-04 9.5371297E-04
 9.2248840E-04 8.9224917E-04 8.6296198E-04 8.3459390E-04 8.0711307E-04
 7.8048935E-04 7.5469440E-04 7.2969828E-04 7.0547580E-04 6.8200036E-04
 6.5924710E-04
 4.6992883E-02 4.5844294E-02 4.4670112E-02 4.3479815E-02 4.2281631E-02
 4.1082654E-02 3.9888985E-02 3.8705781E-02 3.7537441E-02 3.6387589E-02
 3.5259217E-02 3.4154702E-02 3.3075910E-02 3.2024235E-02 3.1000655E-02
 3.0005803E-02 2.9040007E-02 2.8103348E-02 2.7195705E-02 2.6316790E-02
 2.5466183E-02 2.4643360E-02 2.3847716E-02 2.3078576E-02 2.2335242E-02
 2.1616962E-02 2.0922981E-02 2.0252513E-02 1.9604800E-02 1.8979074E-02
 1.8374577E-02 1.7790567E-02 1.7226314E-02 1.6681114E-02 1.6154280E-02
 1.5645143E-02 1.5153069E-02 1.4677423E-02 1.4217619E-02 1.3773073E-02
 1.3343232E-02 1.2927555E-02 1.2525530E-02 1.2136671E-02 1.1760497E-02
 1.1396552E-02 1.1044403E-02 1.0703625E-02 1.0373816E-02 1.0054592E-02
 9.7455774E-03 9.4464133E-03 9.1567617E-03 8.8762846E-03 8.6046699E-03
 8.3416151E-03 8.0868239E-03 7.8400224E-03 7.6009259E-03 7.3692817E-03
 7.1448428E-03 6.9273608E-03 6.7166141E-03 6.5123676E-03 6.3144076E-03
 6.1225384E-03 5.9365458E-03 5.7562501E-03 5.5814576E-03 5.4119909E-03
 5.2476823E-03 5.0883605E-03 4.9338681E-03 4.7840513E-03 4.6387585E-03
 4.4978452E-03 4.3611773E-03 4.2286180E-03 4.1000368E-03 3.9753080E-03
 3.8543150E-03 3.7369386E-03 3.6230707E-03 3.5125909E-03 3.4054047E-03
 3.3014088E-03 3.2004989E-03 3.1025864E-03 3.0075761E-03 2.9153829E-03
 2.8259153E-03
 2.5752500E-02 2.4141442E-02 2.2638010E-02 2.1236742E-02 1.9932149E-02
 1.8718742E-02 1.7591093E-02 1.6543848E-02 1.5571769E-02 1.4669765E-02
 1.3832902E-02 1.3056442E-02 1.2335867E-02 1.1666881E-02 1.1045435E-02
 1.0467746E-02 9.9302875E-03 9.4297910E-03 8.9632403E-03 8.5278619E-03
 8.1211058E-03 7.7406350E-03 7.3843147E-03 7.0501915E-03 6.7364862E-03
 6.4415783E-03 6.1639878E-03 5.9023714E-03 5.6555057E-03 5.4222788E-03
 5.2016778E-03 4.9927798E-03 4.7947438E-03 4.6068053E-03 4.4282638E-03
 4.2584809E-03 4.0968722E-03 3.9429027E-03 3.7960848E-03 3.6559685E-03
 3.5221411E-03 3.3942240E-03 3.2718647E-03 3.1547453E-03 3.0425659E-03
 2.9350517E-03 2.8319478E-03 2.7330182E-03 2.6380434E-03 2.5468189E-03
 2.4591556E-03 2.3748758E-03 2.2938151E-03 2.2158171E-03 2.1407378E-03
 2.0684416E-03 1.9988015E-03 1.9316984E-03 1.8670164E-03 1.8046515E-03
 1.7445055E-03 1.6864805E-03 1.6304898E-03 1.5764473E-03 1.5242720E-03
 1.4738915E-03 1.4252310E-03 1.3782235E-03 1.3328028E-03 1.2889085E-03
 1.2464803E-03 1.2054635E-03 1.1658036E-03 1.1274498E-03 1.0903545E-03
 1.0544693E-03 1.0197518E-03 9.8615768E-04 9.5364725E-04 9.2218118E-04
 8.9172251E-04 8.6223544E-04 8.3368673E-04 8.0604083E-04 7.7926839E-04
 7.5333827E-04 7.2822074E-04 7.0388895E-04 6.8031665E-04 6.5747648E-04
 6.3534407E-04
 5.3020108E-02 5.1627353E-02 5.0222117E-02 4.8812903E-02 4.7407076E-02
 4.6010934E-02 4.4629883E-02 4.3268431E-02 4.1930363E-02 4.0618744E-02
 3.9336048E-02 3.8084161E-02 3.6864504E-02 3.5678044E-02 3.4525391E-02
 3.3406828E-02 3.2322366E-02 3.1271808E-02 3.0254785E-02 2.9270761E-02
 2.8319107E-02 2.7399095E-02 2.6509948E-02 2.5650809E-02 2.4820829E-02
 2.4019100E-02 2.3244729E-02 2.2496814E-02 2.1774463E-02 2.1076793E-02
 2.0402940E-02 1.9752057E-02 1.9123314E-02 1.8515917E-02 1.7929088E-02
 1.7362075E-02 1.6814154E-02 1.6284624E-02 1.5772812E-02 1.5278064E-02
 1.4799763E-02 1.4337305E-02 1.3890109E-02 1.3457626E-02 1.3039321E-02
 1.2634689E-02 1.2243227E-02 1.1864471E-02 1.1497967E-02 1.1143279E-02
 1.0799991E-02 1.0467702E-02 1.0146029E-02 9.8345922E-03 9.5330467E-03
 9.2410492E-03 8.9582652E-03 8.6843837E-03 8.4190993E-03 8.1621204E-03
 7.9131732E-03 7.6719732E-03 7.4382708E-03 7.2118104E-03 6.9923564E-03
 6.7796712E-03 6.5735360E-03 6.3737375E-03 6.1800573E-03 5.9923050E-03
 5.8102892E-03 5.6338147E-03 5.4627121E-03 5.2968035E-03 5.1359208E-03
 4.9799075E-03 4.8286077E-03 4.6818699E-03 4.5395494E-03 4.4015069E-03
 4.2676129E-03 4.1377298E-03 4.0117325E-03 3.8895037E-03 3.7709249E-03
 3.6558837E-03 3.5442668E-03 3.4359710E-03 3.3308906E-03 3.2289301E-03
 3.1299938E-03
 2.5339082E-02 2.3756487E-02 2.2278482E-02 2.0900065E-02 1.9616097E-02
 1.8421367E-02 1.7310655E-02 1.6278775E-02 1.5320625E-02 1.4431222E-02
 1.3605732E-02 1.2839518E-02 1.2128142E-02 1.1467411E-02 1.0853371E-02
 1.0282327E-02 9.7508421E-03 9.2557278E-03 8.7940432E-03 8.3630830E-03
 7.9603521E-03 7.5835749E-03 7.2306562E-03 6.8996893E-03 6.5889331E-03
 6.2967967E-03 6.0218317E-03 5.7627205E-03 5.5182576E-03 5.2873506E-03
 5.0689997E-03 4.8622964E-03 4.6664076E-03 4.4805799E-03 4.3041185E-03
 4.1363891E-03 3.9768144E-03 3.8248599E-03 3.6800429E-03 3.5419138E-03
 3.4100623E-03 3.2841081E-03 3.1637042E-03 3.0485271E-03 2.9382808E-03
 2.8326884E-03 2.7314946E-03 2.6344624E-03 2.5413728E-03 2.4520210E-03
 2.3662152E-03 2.2837780E-03 2.2045444E-03 2.1283554E-03 2.0550690E-03
 1.9845474E-03 1.9166629E-03 1.8512940E-03 1.7883284E-03 1.7276582E-03
 1.6691850E-03 1.6128102E-03 1.5584475E-03 1.5060097E-03 1.4554174E-03
 1.4065945E-03 1.3594676E-03 1.3139708E-03 1.2700352E-03 1.2276013E-03
 1.1866087E-03 1.1470021E-03 1.1087285E-03 1.0717352E-03 1.0359749E-03
 1.0013998E-03 9.6796744E-04 9.3563419E-04 9.0435828E-04 8.7410328E-04
 8.4483117E-04 8.1650616E-04 7.8909291E-04 7.6256099E-04 7.3687738E-04
 7.1201281E-04 6.8793853E-04 6.6462666E-04 6.4204971E-04 6.2018284E-04
 5.9900223E-04
 5.9428930E-02 5.7782374E-02 5.6136150E-02 5.4497883E-02 5.2874163E-02
 5.1270589E-02 4.9691893E-02 4.8141986E-02 4.6624087E-02 4.5140736E-02
 4.3693893E-02 4.2284992E-02 4.0915020E-02 3.9584558E-02 3.8293839E-02
 3.7042823E-02 3.5831220E-02 3.4658562E-02 3.3524211E-02 3.2427415E-02
 3.1367313E-02 3.0342991E-02 2.9353458E-02 2.8397709E-02 2.7474713E-02
 2.6583418E-02 2.5722779E-02 2.4891762E-02 2.4089336E-02 2.3314508E-02
 2.2566287E-02 2.1843720E-02 2.1145869E-02 2.0471836E-02 1.9820752E-02
 1.9191764E-02 1.8584067E-02 1.7996866E-02 1.7429415E-02 1.6880985E-02
 1.6350873E-02 1.5838407E-02 1.5342940E-02 1.4863861E-02 1.4400560E-02
 1.3952479E-02 1.3519059E-02 1.3099770E-02 1.2694119E-02 1.2301608E-02
 1.1921774E-02 1.1554166E-02 1.1198363E-02 1.0853940E-02 1.0520498E-02
 1.0197668E-02 9.8850755E-03 9.5823659E-03 9.2892023E-03 9.0052560E-03
 8.7302243E-03 8.4637897E-03 8.2056727E-03 7.9555865E-03 7.7132685E-03
 7.4784630E-03 7.2509064E-03 7.0303767E-03 6.8166279E-03 6.6094403E-03
 6.4086067E-03 6.2139141E-03 6.0251676E-03 5.8421651E-03 5.6647300E-03
 5.4926840E-03 5.3258478E-03 5.1640607E-03 5.0071576E-03 4.8549841E-03
 4.7073923E-03 4.5642364E-03 4.4253813E-03 4.2906837E-03 4.1600177E-03
 4.0332591E-03 3.9102803E-03 3.7909716E-03 3.6752138E-03 3.5629016E-03
 3.4539199E-03
 2.4972059E-02 2.3404747E-02 2.1940757E-02 2.0575257E-02 1.9303231E-02
 1.8119557E-02 1.7019080E-02 1.5996657E-02 1.5047219E-02 1.4165819E-02
 1.3347660E-02 1.2588144E-02 1.1882887E-02 1.1227739E-02 1.0618809E-02
 1.0052455E-02 9.5252916E-03 9.0341838E-03 8.5762385E-03 8.1487847E-03
 7.7493736E-03 7.3757516E-03 7.0258644E-03 6.6978238E-03 6.3899136E-03
 6.1005619E-03 5.8283373E-03 5.5719316E-03 5.3301542E-03 5.1019201E-03
 4.8862360E-03 4.6821972E-03 4.4889771E-03 4.3058204E-03 4.1320352E-03
 3.9669899E-03 3.8101049E-03 3.6608484E-03 3.5187318E-03 3.3833080E-03
 3.2541614E-03 3.1309139E-03 3.0132136E-03 2.9007366E-03 2.7931831E-03
 2.6902764E-03 2.5917571E-03 2.4973871E-03 2.4069450E-03 2.3202242E-03
 2.2370308E-03 2.1571855E-03 2.0805229E-03 2.0068823E-03 1.9361181E-03
 1.8680937E-03 1.8026776E-03 1.7397500E-03 1.6791943E-03 1.6209045E-03
 1.5647799E-03 1.5107217E-03 1.4586423E-03 1.4084537E-03 1.3600769E-03
 1.3134355E-03 1.2684539E-03 1.2250661E-03 1.1832055E-03 1.1428091E-03
 1.1038191E-03 1.0661788E-03 1.0298351E-03 9.9473540E-04 9.6083374E-04
 9.2808239E-04 8.9643494E-04 8.6585194E-04 8.3629228E-04 8.0771674E-04
 7.8008883E-04 7.5337302E-04 7.2753773E-04 7.0254633E-04 6.7837152E-04
 6.5498246E-04 6.3234987E-04 6.1044726E-04 5.8924843E-04 5.6872860E-04
 5.4886215E-04
 6.6278987E-02 6.4365610E-02 6.2465288E-02 6.0584884E-02 5.8730289E-02
 5.6906432E-02 5.5117436E-02 5.3366646E-02 5.1656727E-02 4.9989719E-02
 4.8367094E-02 4.6789855E-02 4.5258552E-02 4.3773398E-02 4.2334262E-02
 4.0940788E-02 3.9592382E-02 3.8288292E-02 3.7027635E-02 3.5809409E-02
 3.4632538E-02 3.3495884E-02 3.2398280E-02 3.1338524E-02 3.0315410E-02
 2.9327728E-02 2.8374275E-02 2.7453868E-02 2.6565345E-02 2.5707569E-02
 2.4879431E-02 2.4079848E-02 2.3307774E-02 2.2562198E-02 2.1842143E-02
 2.1146661E-02 2.0474842E-02 1.9825801E-02 1.9198706E-02 1.8592741E-02
 1.8007120E-02 1.7441092E-02 1.6893940E-02 1.6364971E-02 1.5853520E-02
 1.5358952E-02 1.4880649E-02 1.4418018E-02 1.3970505E-02 1.3537567E-02
 1.3118676E-02 1.2713336E-02 1.2321068E-02 1.1941412E-02 1.1573916E-02
 1.1218171E-02 1.0873755E-02 1.0540279E-02 1.0217364E-02 9.9046500E-03
 9.6017867E-03 9.3084387E-03 9.0242848E-03 8.7490082E-03 8.4823137E-03
 8.2239155E-03 7.9735387E-03 7.7309101E-03 7.4957707E-03 7.2678821E-03
 7.0470055E-03 6.8328981E-03 6.6253534E-03 6.4241504E-03 6.2290854E-03
 6.0399622E-03 5.8565838E-03 5.6787739E-03 5.5063446E-03 5.3391280E-03
 5.1769591E-03 5.0196764E-03 4.8671267E-03 4.7191600E-03 4.5756320E-03
 4.4364040E-03 4.3013389E-03 4.1703111E-03 4.0431917E-03 3.9198571E-03
 3.8001935E-03
 2.4647810E-02 2.3083935E-02 2.1623459E-02 2.0261548E-02 1.8993150E-02
 1.7813114E-02 1.6716231E-02 1.5697327E-02 1.4751292E-02 1.3873161E-02
 1.3058123E-02 1.2301574E-02 1.1599142E-02 1.0946694E-02 1.0340355E-02
 9.7765131E-03 9.2518013E-03 8.7631103E-03 8.3075603E-03 7.8825047E-03
 7.4855075E-03 7.1143312E-03 6.7669298E-03 6.4414274E-03 6.1361142E-03
 5.8494261E-03 5.5799317E-03 5.3263269E-03 5.0874199E-03 4.8621255E-03
 4.6494487E-03 4.4484809E-03 4.2583924E-03 4.0784236E-03 3.9078807E-03
 3.7461235E-03 3.5925689E-03 3.4466793E-03 3.3079633E-03 3.1759646E-03
 3.0502670E-03 2.9304835E-03 2.8162599E-03 2.7072679E-03 2.6032007E-03
 2.5037783E-03 2.4087382E-03 2.3178381E-03 2.2308531E-03 2.1475719E-03
 2.0677990E-03 1.9913523E-03 1.9180598E-03 1.8477631E-03 1.7803108E-03
 1.7155664E-03 1.6533948E-03 1.5936756E-03 1.5362896E-03 1.4811300E-03
 1.4280929E-03 1.3770809E-03 1.3280039E-03 1.2807742E-03 1.2353102E-03
 1.1915342E-03 1.1493746E-03 1.1087607E-03 1.0696247E-03 1.0319081E-03
 9.9554996E-04 9.6049113E-04 9.2668209E-04 8.9406996E-04 8.6260610E-04
 8.3224534E-04 8.0294232E-04 7.7465631E-04 7.4734527E-04 7.2097295E-04
 6.9550186E-04 6.7089713E-04 6.4712600E-04 6.2415568E-04 6.0195697E-04
 5.8050000E-04 5.5975595E-04 5.3970015E-04 5.2030489E-04 5.0154683E-04
 4.8340249E-04
 7.3634736E-02 7.1438164E-02 6.9267526E-02 6.7128994E-02 6.5027803E-02
 6.2968276E-02 6.0953956E-02 5.8987617E-02 5.7071406E-02 5.5206869E-02
 5.3395007E-02 5.1636379E-02 4.9931135E-02 4.8279095E-02 4.6679787E-02
 4.5132514E-02 4.3636385E-02 4.2190365E-02 4.0793300E-02 3.9443947E-02
 3.8140979E-02 3.6883049E-02 3.5668779E-02 3.4496766E-02 3.3365630E-02
 3.2273971E-02 3.1220423E-02 3.0203652E-02 2.9222332E-02 2.8275184E-02
 2.7360961E-02 2.6478453E-02 2.5626481E-02 2.4803916E-02 2.4009662E-02
 2.3242662E-02 2.2501901E-02 2.1786392E-02 2.1095205E-02 2.0427426E-02
 1.9782189E-02 1.9158648E-02 1.8556008E-02 1.7973503E-02 1.7410381E-02
 1.6865941E-02 1.6339496E-02 1.5830388E-02 1.5337994E-02 1.4861712E-02
 1.4400965E-02 1.3955183E-02 1.3523851E-02 1.3106446E-02 1.2702472E-02
 1.2311473E-02 1.1932976E-02 1.1566560E-02 1.1211793E-02 1.0868277E-02
 1.0535631E-02 1.0213473E-02 9.9014528E-03 9.5992200E-03 9.3064420E-03
 9.0228077E-03 8.7480061E-03 8.4817391E-03 8.2237227E-03 7.9736831E-03
 7.7313650E-03 7.4964967E-03 7.2688521E-03 7.0481827E-03 6.8342621E-03
 6.6268779E-03 6.4258073E-03 6.2308577E-03 6.0418304E-03 5.8585238E-03
 5.6807706E-03 5.5083842E-03 5.3411946E-03 5.1790406E-03 5.0217598E-03
 4.8691998E-03 4.7212113E-03 4.5776539E-03 4.4383858E-03 4.3032714E-03
 4.1721896E-03
 2.4367487E-02 2.2795457E-02 2.1328064E-02 1.9960321E-02 1.8687045E-02
 1.7502945E-02 1.6402695E-02 1.5381020E-02 1.4432720E-02 1.3552752E-02
 1.2736253E-02 1.1978581E-02 1.1275331E-02 1.0622356E-02 1.0015771E-02
 9.4519500E-03 8.9275260E-03 8.4393770E-03 7.9846261E-03 7.5606173E-03
 7.1649090E-03 6.7952625E-03 6.4496202E-03 6.1261035E-03 5.8229920E-03
 5.5387127E-03 5.2718255E-03 5.0210161E-03 4.7850818E-03 4.5629251E-03
 4.3535419E-03 4.1560098E-03 3.9694882E-03 3.7932079E-03 3.6264602E-03
 3.4685996E-03 3.3190262E-03 3.1771972E-03 3.0426066E-03 2.9147929E-03
 2.7933274E-03 2.6778160E-03 2.5678957E-03 2.4632292E-03 2.3635062E-03
 2.2684352E-03 2.1777505E-03 2.0912015E-03 2.0085578E-03 1.9296041E-03
 1.8541388E-03 1.7819747E-03 1.7129381E-03 1.6468634E-03 1.5835988E-03
 1.5230027E-03 1.4649375E-03 1.4092792E-03 1.3559080E-03 1.3047121E-03
 1.2555895E-03 1.2084384E-03 1.1631664E-03 1.1196871E-03 1.0779157E-03
 1.0377743E-03 9.9919015E-04 9.6209167E-04 9.2641282E-04 8.9209026E-04
 8.5906690E-04 8.2728127E-04 7.9668517E-04 7.6722377E-04 7.3885027E-04
 7.1151805E-04 6.8518351E-04 6.5980508E-04 6.3534419E-04 6.1175943E-04
 5.8901904E-04 5.6708633E-04 5.4592825E-04 5.2551518E-04 5.0581619E-04
 4.8680318E-04 4.6844847E-04 4.5072709E-04 4.3361378E-04 4.1708309E-04
 4.0111638E-04
 8.1567295E-02 7.9067804E-02 7.6607518E-02 7.4191950E-02 7.1825720E-02
 6.9512561E-02 6.7255452E-02 6.5056629E-02 6.2917724E-02 6.0839772E-02
 5.8823325E-02 5.6868490E-02 5.4975010E-02 5.3142320E-02 5.1369589E-02
 4.9655780E-02 4.7999684E-02 4.6399970E-02 4.4855196E-02 4.3363865E-02
 4.1924398E-02 4.0535208E-02 3.9194692E-02 3.7901245E-02 3.6653269E-02
 3.5449184E-02 3.4287449E-02 3.3166535E-02 3.2084960E-02 3.1041287E-02
 3.0034121E-02 2.9062094E-02 2.8123900E-02 2.7218269E-02 2.6343988E-02
 2.5499867E-02 2.4684776E-02 2.3897626E-02 2.3137365E-02 2.2402987E-02
 2.1693526E-02 2.1008048E-02 2.0345656E-02 1.9705500E-02 1.9086756E-02
 1.8488634E-02 1.7910378E-02 1.7351249E-02 1.6810566E-02 1.6287655E-02
 1.5781866E-02 1.5292590E-02 1.4819237E-02 1.4361226E-02 1.3918024E-02
 1.3489108E-02 1.3073967E-02 1.2672122E-02 1.2283103E-02 1.1906470E-02
 1.1541799E-02 1.1188664E-02 1.0846681E-02 1.0515464E-02 1.0194643E-02
 9.8838750E-03 9.5828082E-03 9.2911283E-03 9.0085147E-03 8.7346630E-03
 8.4692864E-03 8.2120979E-03 7.9628387E-03 7.7212327E-03 7.4870409E-03
 7.2600222E-03 7.0399311E-03 6.8265568E-03 6.6196676E-03 6.4190682E-03
 6.2245536E-03 6.0359170E-03 5.8529889E-03 5.6755743E-03 5.5035027E-03
 5.3366041E-03 5.1747151E-03 5.0176792E-03 4.8653414E-03 4.7175577E-03
 4.5741866E-03
 2.4136659E-02 2.2544371E-02 2.1059025E-02 1.9675387E-02 1.8388048E-02
 1.7191516E-02 1.6080283E-02 1.5048902E-02 1.4092041E-02 1.3204541E-02
 1.2381444E-02 1.1618027E-02 1.0909826E-02 1.0252639E-02 9.6425330E-03
 9.0758456E-03 8.5491724E-03 8.0593610E-03 7.6035014E-03 7.1789105E-03
 6.7831203E-03 6.4138626E-03 6.0690590E-03 5.7468023E-03 5.4453486E-03
 5.1631010E-03 4.8985933E-03 4.6504899E-03 4.4175643E-03 4.1986960E-03
 3.9928588E-03 3.7991102E-03 3.6165894E-03 3.4445049E-03 3.2821333E-03
 3.1288061E-03 2.9839110E-03 2.8468827E-03 2.7172046E-03 2.5943983E-03
 2.4780221E-03 2.3676690E-03 2.2629611E-03 2.1635517E-03 2.0691187E-03
 1.9793613E-03 1.8940039E-03 1.8127848E-03 1.7354692E-03 1.6618324E-03
 1.5916644E-03 1.5247739E-03 1.4609803E-03 1.4001122E-03 1.3420132E-03
 1.2865358E-03 1.2335407E-03 1.1828976E-03 1.1344850E-03 1.0881891E-03
 1.0439025E-03 1.0015217E-03 9.6095423E-04 9.2210906E-04 8.8490173E-04
 8.4925315E-04 8.1508711E-04 7.8233390E-04 7.5092481E-04 7.2079815E-04
 6.9189200E-04 6.6414976E-04 6.3752080E-04 6.1194866E-04 5.8738975E-04
 5.6379713E-04 5.4112496E-04 5.1933515E-04 4.9838517E-04 4.7824072E-04
 4.5886650E-04 4.4022547E-04 4.2228945E-04 4.0502570E-04 3.8840660E-04
 3.7240295E-04 3.5698988E-04 3.4214190E-04 3.2783506E-04 3.1404709E-04
 3.0075654E-04
 9.0156503E-02 8.7331034E-02 8.4558591E-02 8.1844091E-02 7.9191558E-02
 7.6604158E-02 7.4084312E-02 7.1633704E-02 6.9253460E-02 6.6944107E-02
 6.4705729E-02 6.2537991E-02 6.0440205E-02 5.8411408E-02 5.6450397E-02
 5.4555777E-02 5.2726015E-02 5.0959457E-02 4.9254365E-02 4.7608946E-02
 4.6021365E-02 4.4489775E-02 4.3012332E-02 4.1587193E-02 4.0212553E-02
 3.8886618E-02 3.7607629E-02 3.6373883E-02 3.5183717E-02 3.4035515E-02
 3.2927707E-02 3.1858779E-02 3.0827260E-02 2.9831747E-02 2.8870866E-02
 2.7943317E-02 2.7047830E-02 2.6183186E-02 2.5348235E-02 2.4541844E-02
 2.3762939E-02 2.3010496E-02 2.2283506E-02 2.1581035E-02 2.0902161E-02
 2.0246014E-02 1.9611752E-02 1.8998558E-02 1.8405680E-02 1.7832363E-02
 1.7277900E-02 1.6741604E-02 1.6222831E-02 1.5720934E-02 1.5235323E-02
 1.4765421E-02 1.4310658E-02 1.3870516E-02 1.3444471E-02 1.3032028E-02
 1.2632731E-02 1.2246099E-02 1.1871721E-02 1.1509155E-02 1.1158008E-02
 1.0817890E-02 1.0488424E-02 1.0169252E-02 9.8600239E-03 9.5604109E-03
 9.2700906E-03 8.9887520E-03 8.7161008E-03 8.4518455E-03 8.1957150E-03
 7.9474431E-03 7.7067628E-03 7.4734427E-03 7.2472300E-03 7.0279012E-03
 6.8152384E-03 6.6090152E-03 6.4090402E-03 6.2151002E-03 6.0270098E-03
 5.8445828E-03 5.6676380E-03 5.4960041E-03 5.3295116E-03 5.1680002E-03
 5.0113145E-03
 2.3965925E-02 2.2340082E-02 2.0824574E-02 1.9413836E-02 1.8102163E-02
 1.6883787E-02 1.5752953E-02 1.4704004E-02 1.3731423E-02 1.2829888E-02
 1.1994304E-02 1.1219834E-02 1.0501907E-02 9.8362332E-03 9.2188008E-03
 8.6458726E-03 8.1139775E-03 7.6199002E-03 7.1606743E-03 6.7335609E-03
 6.3360399E-03 5.9657968E-03 5.6207031E-03 5.2988078E-03 4.9983254E-03
 4.7176126E-03 4.4551664E-03 4.2096111E-03 3.9796825E-03 3.7642266E-03
 3.5621810E-03 3.3725719E-03 3.1945072E-03 3.0271653E-03 2.8697932E-03
 2.7216980E-03 2.5822411E-03 2.4508352E-03 2.3269393E-03 2.2100543E-03
 2.0997189E-03 1.9955083E-03 1.8970266E-03 1.8039114E-03 1.7158234E-03
 1.6324506E-03 1.5535021E-03 1.4787066E-03 1.4078160E-03 1.3405961E-03
 1.2768287E-03 1.2163114E-03 1.1588575E-03 1.1042859E-03 1.0524371E-03
 1.0031550E-03 9.5629494E-04 9.1172336E-04 8.6931454E-04 8.2894729E-04
 7.9051423E-04 7.5390690E-04 7.1903178E-04 6.8579329E-04 6.5410696E-04
 6.2389008E-04 5.9506681E-04 5.6756486E-04 5.4131536E-04 5.1625527E-04
 4.9232325E-04 4.6946248E-04 4.4761872E-04 4.2674129E-04 4.0678270E-04
 3.8769701E-04 3.6943876E-04 3.5197148E-04 3.3525372E-04 3.1924917E-04
 3.0392551E-04 2.8924656E-04 2.7518443E-04 2.6170732E-04 2.4878903E-04
 2.3640202E-04 2.2452137E-04 2.1312332E-04 2.0218563E-04 1.9168697E-04
 1.8160575E-04
 9.9493071E-02 9.6315108E-02 9.3204752E-02 9.0166353E-02 8.7203346E-02
 8.4318325E-02 8.1513152E-02 7.8788981E-02 7.6146379E-02 7.3585391E-02
 7.1105614E-02 6.8706229E-02 6.6386119E-02 6.4143911E-02 6.1978005E-02
 5.9886619E-02 5.7867873E-02 5.5919759E-02 5.4040235E-02 5.2227192E-02
 5.0478499E-02 4.8792038E-02 4.7165696E-02 4.5597374E-02 4.4085030E-02
 4.2626631E-02 4.1220222E-02 3.9863862E-02 3.8555700E-02 3.7293930E-02
 3.6076792E-02 3.4902595E-02 3.3769708E-02 3.2676555E-02 3.1621631E-02
 3.0603461E-02 2.9620651E-02 2.8671851E-02 2.7755776E-02 2.6871169E-02
 2.6016843E-02 2.5191655E-02 2.4394499E-02 2.3624331E-02 2.2880133E-02
 2.2160944E-02 2.1465827E-02 2.0793891E-02 2.0144287E-02 1.9516192E-02
 1.8908823E-02 1.8321414E-02 1.7753260E-02 1.7203651E-02 1.6671926E-02
 1.6157452E-02 1.5659600E-02 1.5177800E-02 1.4711472E-02 1.4260072E-02
 1.3823095E-02 1.3400019E-02 1.2990379E-02 1.2593697E-02 1.2209531E-02
 1.1837463E-02 1.1477074E-02 1.1127966E-02 1.0789760E-02 1.0462088E-02
 1.0144601E-02 9.8369531E-03 9.5388228E-03 9.2498884E-03 8.9698490E-03
 8.6984197E-03 8.4353033E-03 8.1802430E-03 7.9329656E-03 7.6932209E-03
 7.4607707E-03 7.2353743E-03 7.0168106E-03 6.8048513E-03 6.5992926E-03
 6.3999337E-03 6.2065679E-03 6.0190121E-03 5.8370782E-03 5.6605930E-03
 5.4893829E-03
 2.3872370E-02 2.2197857E-02 2.0638261E-02 1.9187601E-02 1.7839799E-02
 1.6588742E-02 1.5428379E-02 1.4352780E-02 1.3356191E-02 1.2433087E-02
 1.1578185E-02 1.0786487E-02 1.0053281E-02 9.3741389E-03 8.7449336E-03
 8.1618158E-03 7.6212138E-03 7.1198153E-03 6.6545643E-03 6.2226397E-03
 5.8214422E-03 5.4485793E-03 5.1018535E-03 4.7792415E-03 4.4788942E-03
 4.1991081E-03 3.9383192E-03 3.6950945E-03 3.4681163E-03 3.2561796E-03
 3.0581735E-03 2.8730768E-03 2.6999542E-03 2.5379451E-03 2.3862554E-03
 2.2441554E-03 2.1109723E-03 1.9860864E-03 1.8689289E-03 1.7589687E-03
 1.6557195E-03 1.5587303E-03 1.4675843E-03 1.3818971E-03 1.3013085E-03
 1.2254897E-03 1.1541314E-03 1.0869495E-03 1.0236772E-03 9.6406869E-04
 9.0789463E-04 8.5494050E-04 8.0500962E-04 7.5791363E-04 7.1348069E-04
 6.7154999E-04 6.3196901E-04 5.9459964E-04 5.5930717E-04 5.2596850E-04
 4.9447158E-04 4.6470459E-04 4.3656869E-04 4.0996703E-04 3.8481169E-04
 3.6101945E-04 3.3851297E-04 3.1721592E-04 2.9706082E-04 2.7798227E-04
 2.5991997E-04 2.4281595E-04 2.2661620E-04 2.1127015E-04 1.9672887E-04
 1.8294997E-04 1.6988660E-04 1.5750367E-04 1.4575984E-04 1.3462118E-04
 1.2405431E-04 1.1402732E-04 1.0451063E-04 9.5475421E-05 8.6895641E-05
 7.8747158E-05 7.1004899E-05 6.3646432E-05 5.6651606E-05 5.0000188E-05
 4.3672917E-05
 0.1096807 0.1061202 0.1026429 9.9252366E-02 9.5951647E-02
 9.2742696E-02 8.9626826E-02 8.6604618E-02 8.3676115E-02 8.0840804E-02
 7.8097798E-02 7.5445786E-02 7.2883189E-02 7.0408188E-02 6.8018757E-02
 6.5712728E-02 6.3487805E-02 6.1341643E-02 5.9271824E-02 5.7275929E-02
 5.5351496E-02 5.3496104E-02 5.1707346E-02 4.9982853E-02 4.8320312E-02
 4.6717450E-02 4.5172051E-02 4.3681957E-02 4.2245090E-02 4.0859427E-02
 3.9523024E-02 3.8233995E-02 3.6990505E-02 3.5790827E-02 3.4633271E-02
 3.3516213E-02 3.2438099E-02 3.1397432E-02 3.0392790E-02 2.9422784E-02
 2.8486101E-02 2.7581464E-02 2.6707666E-02 2.5863541E-02 2.5047975E-02
 2.4259895E-02 2.3498271E-02 2.2762116E-02 2.2050498E-02 2.1362506E-02
 2.0697275E-02 2.0053966E-02 1.9431792E-02 1.8829977E-02 1.8247791E-02
 1.7684540E-02 1.7139532E-02 1.6612127E-02 1.6101696E-02 1.5607645E-02
 1.5129403E-02 1.4666411E-02 1.4218141E-02 1.3784086E-02 1.3363753E-02
 1.2956675E-02 1.2562396E-02 1.2180483E-02 1.1810510E-02 1.1452083E-02
 1.1104812E-02 1.0768317E-02 1.0442248E-02 1.0126254E-02 9.8199975E-03
 9.5231663E-03 9.2354463E-03 8.9565376E-03 8.6861504E-03 8.4240129E-03
 8.1698596E-03 7.9234224E-03 7.6844618E-03 7.4527338E-03 7.2280075E-03
 7.0100608E-03 6.7986744E-03 6.5936474E-03 6.3947667E-03 6.2018470E-03
 6.0146959E-03
 2.3882013E-02 2.2141270E-02 2.0521371E-02 1.9015841E-02 1.7618142E-02
 1.6321756E-02 1.5120262E-02 1.4007402E-02 1.2977124E-02 1.2023639E-02
 1.1141430E-02 1.0325286E-02 9.5702931E-03 8.8718534E-03 8.2256692E-03
 7.6277368E-03 7.0743421E-03 6.5620388E-03 6.0876464E-03 5.6482186E-03
 5.2410481E-03 4.8636338E-03 4.5136772E-03 4.1890605E-03 3.8878415E-03
 3.6082293E-03 3.3485789E-03 3.1073801E-03 2.8832413E-03 2.6748851E-03
 2.4811379E-03 2.3009162E-03 2.1332246E-03 1.9771468E-03 1.8318418E-03
 1.6965270E-03 1.5704870E-03 1.4530587E-03 1.3436322E-03 1.2416429E-03
 1.1465694E-03 1.0579283E-03 9.7527378E-04 8.9819316E-04 8.2630437E-04
 7.5925206E-04 6.9670723E-04 6.3836417E-04 5.8394141E-04 5.3317536E-04
 4.8582093E-04 4.4165057E-04 4.0045407E-04 3.6203366E-04 3.2620772E-04
 2.9280412E-04 2.6166526E-04 2.3264154E-04 2.0559395E-04 1.8039657E-04
 1.5692631E-04 1.3507246E-04 1.1472685E-04 9.5796262E-05 7.8185069E-05
 6.1809289E-05 4.6588681E-05 3.2447675E-05 1.9315479E-05 7.1280488E-06
 -4.1778148E-06 -1.4659248E-05 -2.4368943E-05 -3.3357715E-05 -4.1675048E-05
 -4.9362650E-05 -5.6462675E-05 -6.3015475E-05 -6.9057547E-05 -7.4621646E-05
 -7.9740115E-05 -8.4443935E-05 -8.8761190E-05 -9.2717455E-05 -9.6338408E-05
 -9.9647368E-05 -1.0266603E-04 -1.0541366E-04 -1.0791204E-04 -1.1017686E-04
 -1.1222732E-04
 0.1208383 0.1168616 0.1129846 0.1092105 0.1055415
 0.1019792 9.8524243E-02 9.5176622E-02 9.1935821E-02 8.8800788E-02
 8.5770093E-02 8.2841933E-02 8.0014199E-02 7.7284634E-02 7.4650735E-02
 7.2109900E-02 6.9659434E-02 6.7296572E-02 6.5018535E-02 6.2822521E-02
 6.0705740E-02 5.8665417E-02 5.6698859E-02 5.4803360E-02 5.2976344E-02
 5.1215243E-02 4.9517594E-02 4.7880977E-02 4.6303075E-02 4.4781633E-02
 4.3314498E-02 4.1899558E-02 4.0534787E-02 3.9218269E-02 3.7948124E-02
 3.6722559E-02 3.5539851E-02 3.4398347E-02 3.3296470E-02 3.2232691E-02
 3.1205542E-02 3.0213637E-02 2.9255623E-02 2.8330231E-02 2.7436212E-02
 2.6572401E-02 2.5737647E-02 2.4930874E-02 2.4151046E-02 2.3397163E-02
 2.2668276E-02 2.1963455E-02 2.1281833E-02 2.0622559E-02 1.9984825E-02
 1.9367872E-02 1.8770933E-02 1.8193310E-02 1.7634308E-02 1.7093275E-02
 1.6569583E-02 1.6062610E-02 1.5571792E-02 1.5096555E-02 1.4636361E-02
 1.4190706E-02 1.3759077E-02 1.3341008E-02 1.2936026E-02 1.2543694E-02
 1.2163593E-02 1.1795303E-02 1.1438436E-02 1.1092606E-02 1.0757446E-02
 1.0432612E-02 1.0117757E-02 9.8125571E-03 9.5166918E-03 9.2298612E-03
 8.9517739E-03 8.6821364E-03 8.4206900E-03 8.1671569E-03 7.9212962E-03
 7.6828576E-03 7.4515971E-03 7.2272969E-03 7.0097339E-03 6.7986851E-03
 6.5939599E-03
 2.4033429E-02 2.2205755E-02 2.0506429E-02 1.8928386E-02 1.7464556E-02
 1.6107922E-02 1.4851621E-02 1.3688991E-02 1.2613616E-02 1.1619379E-02
 1.0700458E-02 9.8513644E-03 9.0669347E-03 8.3423294E-03 7.6730275E-03
 7.0548262E-03 6.4838137E-03 5.9563634E-03 5.4691206E-03 5.0189821E-03
 4.6030828E-03 4.2187818E-03 3.8636413E-03 3.5354160E-03 3.2320388E-03
 2.9516057E-03 2.6923625E-03 2.4526946E-03 2.2311134E-03 2.0262531E-03
 1.8368522E-03 1.6617466E-03 1.4998670E-03 1.3502260E-03 1.2119145E-03
 1.0840927E-03 9.6598401E-04 8.5687608E-04 7.5610593E-04 6.6306518E-04
 5.7718868E-04 4.9795542E-04 4.2488251E-04 3.5752397E-04 2.9546639E-04
 2.3832815E-04 1.8575259E-04 1.3741253E-04 9.3003131E-05 5.2240408E-05
 1.4864921E-05 -1.9370244E-05 -5.0688690E-05 -7.9300196E-05 -1.0540098E-04
 -1.2917092E-04 -1.5078037E-04 -1.7038427E-04 -1.8812831E-04 -2.0414863E-04
 -2.1857144E-04 -2.3151340E-04 -2.4308477E-04 -2.5338531E-04 -2.6251169E-04
 -2.7055005E-04 -2.7758515E-04 -2.8369046E-04 -2.8893989E-04 -2.9339880E-04
 -2.9712863E-04 -3.0018642E-04 -3.0262748E-04 -3.0449996E-04 -3.0585314E-04
 -3.0672815E-04 -3.0716561E-04 -3.0720377E-04 -3.0687801E-04 -3.0622032E-04
 -3.0526079E-04 -3.0402938E-04 -3.0255079E-04 -3.0085081E-04 -2.9895015E-04
 -2.9687170E-04 -2.9463667E-04 -2.9226067E-04 -2.8975995E-04 -2.8715469E-04
 -2.8445513E-04
 0.1331011 0.1286709 0.1243581 0.1201652 0.1160941
 0.1121456 0.1083198 0.1046161 0.1010335 9.7570233E-02
 9.4224378E-02 9.0993561E-02 8.7875187E-02 8.4866442E-02 8.1964366E-02
 7.9165883E-02 7.6467842E-02 7.3867060E-02 7.1360335E-02 6.8944477E-02
 6.6616312E-02 6.4372718E-02 6.2210646E-02 6.0127072E-02 5.8119103E-02
 5.6183871E-02 5.4318622E-02 5.2520674E-02 5.0787430E-02 4.9116410E-02
 4.7505200E-02 4.5951474E-02 4.4452988E-02 4.3007609E-02 4.1613270E-02
 4.0267982E-02 3.8969845E-02 3.7717029E-02 3.6507796E-02 3.5340458E-02
 3.4213398E-02 3.3125080E-02 3.2074027E-02 3.1058818E-02 3.0078096E-02
 2.9130559E-02 2.8214967E-02 2.7330104E-02 2.6474850E-02 2.5648098E-02
 2.4848795E-02 2.4075925E-02 2.3328541E-02 2.2605693E-02 2.1906501E-02
 2.1230120E-02 2.0575721E-02 1.9942524E-02 1.9329770E-02 1.8736735E-02
 1.8162739E-02 1.7607093E-02 1.7069174E-02 1.6548354E-02 1.6044043E-02
 1.5555684E-02 1.5082715E-02 1.4624620E-02 1.4180887E-02 1.3751027E-02
 1.3334587E-02 1.2931097E-02 1.2540138E-02 1.2161286E-02 1.1794133E-02
 1.1438309E-02 1.1093419E-02 1.0759123E-02 1.0435058E-02 1.0120899E-02
 9.8163234E-03 9.5210159E-03 9.2346827E-03 8.9570284E-03 8.6877747E-03
 8.4266635E-03 8.1734182E-03 7.9278005E-03 7.6895598E-03 7.4584647E-03
 7.2342944E-03
 2.4382764E-02 2.2443501E-02 2.0641979E-02 1.8970437E-02 1.7421152E-02
 1.5986530E-02 1.4659164E-02 1.3431901E-02 1.2297876E-02 1.1250555E-02
 1.0283737E-02 9.3915798E-03 8.5685877E-03 7.8096143E-03 7.1098544E-03
 6.4648278E-03 5.8703711E-03 5.3226221E-03 4.8179966E-03 4.3531815E-03
 3.9251116E-03 3.5309538E-03 3.1680935E-03 2.8341170E-03 2.5268001E-03
 2.2440879E-03 1.9840857E-03 1.7450494E-03 1.5253659E-03 1.3235541E-03
 1.1382421E-03 9.6816826E-04 8.1216672E-04 6.6916464E-04 5.3816871E-04
 4.1826468E-04 3.0860689E-04 2.0841505E-04 1.1696863E-04 3.3601536E-05
 -4.2300966E-05 -1.1130676E-04 -1.7394284E-04 -2.3069480E-04 -2.8201242E-04
 -3.2831207E-04 -3.6997808E-04 -4.0736777E-04 -4.4080938E-04 -4.7061016E-04
 -4.9705291E-04 -5.2039971E-04 -5.4089137E-04 -5.5875484E-04 -5.7419762E-04
 -5.8741501E-04 -5.9858296E-04 -6.0787005E-04 -6.1542942E-04 -6.2140409E-04
 -6.2592537E-04 -6.2911806E-04 -6.3109392E-04 -6.3195941E-04 -6.3181401E-04
 -6.3074555E-04 -6.2883896E-04 -6.2617403E-04 -6.2282081E-04 -6.1884878E-04
 -6.1431713E-04 -6.0928584E-04 -6.0380687E-04 -5.9792906E-04 -5.9170020E-04
 -5.8515964E-04 -5.7834951E-04 -5.7130330E-04 -5.6405639E-04 -5.5663788E-04
 -5.4907775E-04 -5.4140110E-04 -5.3363305E-04 -5.2579487E-04 -5.1790883E-04
 -5.0999055E-04 -5.0206122E-04 -4.9413351E-04 -4.8622375E-04 -4.7834541E-04
 -4.7050897E-04
 0.1466222 0.1416974 0.1369086 0.1322582 0.1277472
 0.1233759 0.1191439 0.1150500 0.1110924 0.1072689
 0.1035769 0.1000135 9.6575595E-02 9.3259744E-02 9.0062499E-02
 8.6980291E-02 8.4009491E-02 8.1146449E-02 7.8387529E-02 7.5729132E-02
 7.3167652E-02 7.0699610E-02 6.8321571E-02 6.6030160E-02 6.3822150E-02
 6.1694346E-02 5.9643686E-02 5.7667188E-02 5.5761989E-02 5.3925328E-02
 5.2154530E-02 5.0447036E-02 4.8800353E-02 4.7212131E-02 4.5680087E-02
 4.4202026E-02 4.2775854E-02 4.1399546E-02 4.0071189E-02 3.8788922E-02
 3.7550971E-02 3.6355630E-02 3.5201270E-02 3.4086343E-02 3.3009343E-02
 3.1968843E-02 3.0963458E-02 2.9991874E-02 2.9052844E-02 2.8145153E-02
 2.7267637E-02 2.6419185E-02 2.5598750E-02 2.4805283E-02 2.4037823E-02
 2.3295438E-02 2.2577206E-02 2.1882281E-02 2.1209819E-02 2.0559033E-02
 1.9929163E-02 1.9319460E-02 1.8729236E-02 1.8157793E-02 1.7604496E-02
 1.7068716E-02 1.6549841E-02 1.6047310E-02 1.5560552E-02 1.5089034E-02
 1.4632253E-02 1.4189693E-02 1.3760897E-02 1.3345389E-02 1.2942740E-02
 1.2552517E-02 1.2174304E-02 1.1807723E-02 1.1452370E-02 1.1107896E-02
 1.0773938E-02 1.0450154E-02 1.0136222E-02 9.8318150E-03 9.5366277E-03
 9.2503717E-03 8.9727491E-03 8.7034991E-03 8.4423404E-03 8.1890244E-03
 7.9433043E-03
 2.5010375E-02 2.2929927E-02 2.0998877E-02 1.9208631E-02 1.7550705E-02
 1.6016793E-02 1.4598834E-02 1.3289071E-02 1.2080083E-02 1.0964816E-02
 9.9365897E-03 8.9891097E-03 8.1164604E-03 7.3131002E-03 6.5738526E-03
 5.8938921E-03 5.2687260E-03 4.6941829E-03 4.1663907E-03 3.6817633E-03
 3.2369783E-03 2.8289624E-03 2.4548725E-03 2.1120834E-03 1.7981693E-03
 1.5108887E-03 1.2481717E-03 1.0081109E-03 7.8893802E-04 5.8903114E-04
 4.0688622E-04 2.4111599E-04 9.0440823E-05 -4.6318884E-05 -1.7025544E-04
 -2.8237441E-04 -3.8360592E-04 -4.7480696E-04 -5.5677089E-04 -6.3022954E-04
 -6.9585821E-04 -7.5428159E-04 -8.0607668E-04 -8.5177622E-04 -8.9187105E-04
 -9.2681864E-04 -9.5703802E-04 -9.8291796E-04 -1.0048166E-03 -1.0230679E-03
 -1.0379775E-03 -1.0498303E-03 -1.0588854E-03 -1.0653887E-03 -1.0695611E-03
 -1.0716126E-03 -1.0717334E-03 -1.0700999E-03 -1.0668759E-03 -1.0622125E-03
 -1.0562495E-03 -1.0491160E-03 -1.0409312E-03 -1.0318046E-03 -1.0218373E-03
 -1.0111241E-03 -9.9975266E-04 -9.8779949E-04 -9.7534043E-04 -9.6244266E-04
 -9.4916852E-04 -9.3557604E-04 -9.2171744E-04 -9.0764253E-04 -8.9339312E-04
 -8.7901374E-04 -8.6454116E-04 -8.5000758E-04 -8.3544792E-04 -8.2088757E-04
 -8.0635602E-04 -7.9187530E-04 -7.7746745E-04 -7.6315360E-04 -7.4895070E-04
 -7.3487533E-04 -7.2094280E-04 -7.0716487E-04 -6.9355505E-04 -6.8012334E-04
 -6.6687830E-04
 0.1615715 0.1561072 0.1507988 0.1456481 0.1406556
 0.1358211 0.1311435 0.1266209 0.1222512 0.1180314
 0.1139583 0.1100284 0.1062381 0.1025833 9.9060021E-02
 9.5664240E-02 9.2391782E-02 8.9238532E-02 8.6200379E-02 8.3273254E-02
 8.0453172E-02 7.7736199E-02 7.5118534E-02 7.2596408E-02 7.0166245E-02
 6.7824498E-02 6.5567777E-02 6.3392796E-02 6.1296362E-02 5.9275445E-02
 5.7327088E-02 5.5448454E-02 5.3636808E-02 5.1889550E-02 5.0204162E-02
 4.8578229E-02 4.7009438E-02 4.5495566E-02 4.4034496E-02 4.2624176E-02
 4.1262660E-02 3.9948061E-02 3.8678598E-02 3.7452549E-02 3.6268257E-02
 3.5124160E-02 3.4018725E-02 3.2950509E-02 3.1918131E-02 3.0920254E-02
 2.9955598E-02 2.9022941E-02 2.8121119E-02 2.7248992E-02 2.6405491E-02
 2.5589587E-02 2.4800269E-02 2.4036605E-02 2.3297666E-02 2.2582576E-02
 2.1890504E-02 2.1220624E-02 2.0572180E-02 1.9944401E-02 1.9336583E-02
 1.8748039E-02 1.8178098E-02 1.7626131E-02 1.7091516E-02 1.6573662E-02
 1.6072018E-02 1.5586018E-02 1.5115152E-02 1.4658896E-02 1.4216781E-02
 1.3788330E-02 1.3373092E-02 1.2970630E-02 1.2580523E-02 1.2202365E-02
 1.1835773E-02 1.1480366E-02 1.1135779E-02 1.0801666E-02 1.0477688E-02
 1.0163520E-02 9.8588429E-03 9.5633622E-03 9.2767738E-03 8.9988019E-03
 8.7291719E-03
 2.6029395E-02 2.3771951E-02 2.1678271E-02 1.9738777E-02 1.7944064E-02
 1.6284969E-02 1.4752634E-02 1.3338563E-02 1.2034640E-02 1.0833167E-02
 9.7268550E-03 8.7088440E-03 7.7726874E-03 6.9123437E-03 6.1221654E-03
 5.3968877E-03 4.7316048E-03 4.1217566E-03 3.5631061E-03 3.0517229E-03
 2.5839650E-03 2.1564574E-03 1.7660755E-03 1.4099285E-03 1.0853459E-03
 7.8985520E-04 5.2117318E-04 2.7718960E-04 5.5953882E-05 -1.4433159E-04
 -3.2533109E-04 -4.8857986E-04 -6.3549512E-04 -7.6738454E-04 -8.8545721E-04
 -9.9082908E-04 -1.0845278E-03 -1.1675052E-03 -1.2406384E-03 -1.3047352E-03
 -1.3605452E-03 -1.4087568E-03 -1.4500079E-03 -1.4848841E-03 -1.5139279E-03
 -1.5376415E-03 -1.5564858E-03 -1.5708864E-03 -1.5812370E-03 -1.5878992E-03
 -1.5912097E-03 -1.5914763E-03 -1.5889842E-03 -1.5839947E-03 -1.5767504E-03
 -1.5674758E-03 -1.5563763E-03 -1.5436404E-03 -1.5294434E-03 -1.5139468E-03
 -1.4972987E-03 -1.4796347E-03 -1.4610812E-03 -1.4417530E-03 -1.4217562E-03
 -1.4011894E-03 -1.3801402E-03 -1.3586921E-03 -1.3369202E-03 -1.3148937E-03
 -1.2926754E-03 -1.2703232E-03 -1.2478897E-03 -1.2254243E-03 -1.2029695E-03
 -1.1805663E-03 -1.1582494E-03 -1.1360544E-03 -1.1140088E-03 -1.0921418E-03
 -1.0704760E-03 -1.0490330E-03 -1.0278351E-03 -1.0068960E-03 -9.8623417E-04
 -9.6586253E-04 -9.4579341E-04 -9.2603720E-04 -9.0660277E-04 -8.8749843E-04
 -8.6873194E-04
 0.1781333 0.1720816 0.1662063 0.1605087 0.1549891
 0.1496467 0.1444798 0.1394861 0.1346626 0.1300060
 0.1255123 0.1211776 0.1169975 0.1129675 0.1090831
 0.1053397 0.1017325 9.8256961E-02 9.4908498E-02 9.1682583E-02
 8.8574767E-02 8.5580692E-02 8.2696140E-02 7.9916939E-02 7.7239141E-02
 7.4658826E-02 7.2172254E-02 6.9775783E-02 6.7465916E-02 6.5239295E-02
 6.3092664E-02 6.1022911E-02 5.9027001E-02 5.7102084E-02 5.5245381E-02
 5.3454231E-02 5.1726092E-02 5.0058503E-02 4.8449140E-02 4.6895742E-02
 4.5396160E-02 4.3948315E-02 4.2550243E-02 4.1200045E-02 3.9895907E-02
 3.8636077E-02 3.7418898E-02 3.6242753E-02 3.5106130E-02 3.4007553E-02
 3.2945614E-02 3.1918958E-02 3.0926298E-02 2.9966379E-02 2.9038021E-02
 2.8140094E-02 2.7271478E-02 2.6431141E-02 2.5618060E-02 2.4831269E-02
 2.4069849E-02 2.3332892E-02 2.2619555E-02 2.1928996E-02 2.1260431E-02
 2.0613108E-02 1.9986283E-02 1.9379260E-02 1.8791353E-02 1.8221917E-02
 1.7670330E-02 1.7135981E-02 1.6618293E-02 1.6116710E-02 1.5630689E-02
 1.5159721E-02 1.4703295E-02 1.4260941E-02 1.3832189E-02 1.3416596E-02
 1.3013734E-02 1.2623177E-02 1.2244538E-02 1.1877425E-02 1.1521464E-02
 1.1176303E-02 1.0841586E-02 1.0516983E-02 1.0202166E-02 9.8968307E-03
 9.6006729E-03
 2.7596625E-02 2.5118483E-02 2.2821687E-02 2.0695493E-02 1.8729389E-02
 1.6913183E-02 1.5237045E-02 1.3691565E-02 1.2267775E-02 1.0957172E-02
 9.7517194E-03 8.6438460E-03 7.6264408E-03 6.6928403E-03 5.8368123E-03
 5.0525446E-03 4.3346155E-03 3.6779835E-03 3.0779627E-03 2.5301978E-03
 2.0306536E-03 1.5755855E-03 1.1615237E-03 7.8525726E-04 4.4381668E-04
 1.3445012E-04 -1.4538552E-04 -3.9803982E-04 -6.2568771E-04 -8.3033345E-04
 -1.0138339E-03 -1.1779007E-03 -1.3241157E-03 -1.4539378E-03 -1.5687166E-03
 -1.6696948E-03 -1.7580213E-03 -1.8347552E-03 -1.9008734E-03 -1.9572780E-03
 -2.0048001E-03 -2.0442065E-03 -2.0762051E-03 -2.1014472E-03 -2.1205337E-03
 -2.1340195E-03 -2.1424156E-03 -2.1461907E-03 -2.1457796E-03 -2.1415821E-03
 -2.1339643E-03 -2.1232667E-03 -2.1098000E-03 -2.0938511E-03 -2.0756840E-03
 -2.0555411E-03 -2.0336467E-03 -2.0102041E-03 -1.9854037E-03 -1.9594177E-03
 -1.9324051E-03 -1.9045108E-03 -1.8758711E-03 -1.8466047E-03 -1.8168264E-03
 -1.7866381E-03 -1.7561329E-03 -1.7253974E-03 -1.6945102E-03 -1.6635401E-03
 -1.6325548E-03 -1.6016110E-03 -1.5707643E-03 -1.5400612E-03 -1.5095467E-03
 -1.4792599E-03 -1.4492364E-03 -1.4195086E-03 -1.3901053E-03 -1.3610510E-03
 -1.3323696E-03 -1.3040806E-03 -1.2762013E-03 -1.2487475E-03 -1.2217325E-03
 -1.1951684E-03 -1.1690642E-03 -1.1434295E-03 -1.1182701E-03 -1.0935919E-03
 -1.0693982E-03
 0.1965013 0.1898119 0.1833196 0.1770254 0.1709295
 0.1650306 0.1593266 0.1538147 0.1484914 0.1433527
 0.1383944 0.1336118 0.1289999 0.1245538 0.1202684
 0.1161385 0.1121590 0.1083247 0.1046305 0.1010714
 9.7642571E-02 9.4339170E-02 9.1156535E-02 8.8090114E-02 8.5135505E-02
 8.2288429E-02 7.9544760E-02 7.6900490E-02 7.4351780E-02 7.1894921E-02
 6.9526352E-02 6.7242615E-02 6.5040402E-02 6.2916562E-02 6.0868029E-02
 5.8891881E-02 5.6985307E-02 5.5145603E-02 5.3370204E-02 5.1656615E-02
 5.0002467E-02 4.8405480E-02 4.6863459E-02 4.5374334E-02 4.3936074E-02
 4.2546783E-02 4.1204594E-02 3.9907739E-02 3.8654543E-02 3.7443381E-02
 3.6272682E-02 3.5140961E-02 3.4046795E-02 3.2988794E-02 3.1965651E-02
 3.0976113E-02 3.0018954E-02 2.9093018E-02 2.8197180E-02 2.7330376E-02
 2.6491584E-02 2.5679801E-02 2.4894089E-02 2.4133528E-02 2.3397243E-02
 2.2684403E-02 2.1994183E-02 2.1325821E-02 2.0678552E-02 2.0051662E-02
 1.9444467E-02 1.8856289E-02 1.8286496E-02 1.7734461E-02 1.7199595E-02
 1.6681327E-02 1.6179096E-02 1.5692387E-02 1.5220675E-02 1.4763467E-02
 1.4320296E-02 1.3890696E-02 1.3474231E-02 1.3070467E-02 1.2678992E-02
 1.2299420E-02 1.1931356E-02 1.1574443E-02 1.1228310E-02 1.0892621E-02
 1.0567041E-02
 2.9926503E-02 2.7173860E-02 2.4623919E-02 2.2264559E-02 2.0083968E-02
 1.8070696E-02 1.6213750E-02 1.4502605E-02 1.2927254E-02 1.1478205E-02
 1.0146497E-02 8.9236889E-03 7.8018508E-03 6.7735580E-03 5.8318567E-03
 4.9702642E-03 4.1827303E-03 3.4636245E-03 2.8077101E-03 2.2101214E-03
 1.6663409E-03 1.1721782E-03 7.2374882E-04 3.1745341E-04 -5.0039165E-05
 -3.8181257E-04 -6.8072329E-04 -9.4940799E-04 -1.1903095E-03 -1.4056783E-03
 -1.5976013E-03 -1.7680012E-03 -1.9186559E-03 -2.0512049E-03 -2.1671630E-03
 -2.2679279E-03 -2.3547877E-03 -2.4289333E-03 -2.4914595E-03 -2.5433777E-03
 -2.5856206E-03 -2.6190465E-03 -2.6444471E-03 -2.6625518E-03 -2.6740318E-03
 -2.6795056E-03 -2.6795431E-03 -2.6746676E-03 -2.6653614E-03 -2.6520679E-03
 -2.6351963E-03 -2.6151200E-03 -2.5921843E-03 -2.5667055E-03 -2.5389742E-03
 -2.5092589E-03 -2.4778023E-03 -2.4448314E-03 -2.4105499E-03 -2.3751471E-03
 -2.3387969E-03 -2.3016559E-03 -2.2638701E-03 -2.2255690E-03 -2.1868751E-03
 -2.1478974E-03 -2.1087371E-03 -2.0694837E-03 -2.0302208E-03 -1.9910224E-03
 -1.9519572E-03 -1.9130867E-03 -1.8744667E-03 -1.8361462E-03 -1.7981703E-03
 -1.7605800E-03 -1.7234107E-03 -1.6866934E-03 -1.6504575E-03 -1.6147281E-03
 -1.5795262E-03 -1.5448703E-03 -1.5107790E-03 -1.4772641E-03 -1.4443388E-03
 -1.4120133E-03 -1.3802944E-03 -1.3491893E-03 -1.3187027E-03 -1.2888392E-03
 -1.2595997E-03
 0.2168683 0.2094910 0.2023305 0.1953884 0.1886645
 0.1821574 0.1758650 0.1697840 0.1639107 0.1582405
 0.1527688 0.1474905 0.1424001 0.1374922 0.1327611
 0.1282013 0.1238070 0.1195727 0.1154927 0.1115616
 0.1077741 0.1041249 0.1006088 9.7220875E-02 9.3956344E-02
 9.0810478E-02 8.7778769E-02 8.4856808E-02 8.2040377E-02 7.9325415E-02
 7.6707996E-02 7.4184343E-02 7.1750790E-02 6.9403887E-02 6.7140244E-02
 6.4956658E-02 6.2850013E-02 6.0817346E-02 5.8855813E-02 5.6962673E-02
 5.5135302E-02 5.3371176E-02 5.1667880E-02 5.0023120E-02 4.8434660E-02
 4.6900384E-02 4.5418251E-02 4.3986283E-02 4.2602636E-02 4.1265503E-02
 3.9973158E-02 3.8723942E-02 3.7516288E-02 3.6348652E-02 3.5219584E-02
 3.4127701E-02 3.3071641E-02 3.2050125E-02 3.1061897E-02 3.0105786E-02
 2.9180663E-02 2.8285401E-02 2.7418979E-02 2.6580365E-02 2.5768593E-02
 2.4982739E-02 2.4221897E-02 2.3485206E-02 2.2771835E-02 2.2080984E-02
 2.1411899E-02 2.0763824E-02 2.0136060E-02 1.9527918E-02 1.8938737E-02
 1.8367894E-02 1.7814765E-02 1.7278770E-02 1.6759340E-02 1.6255921E-02
 1.5768001E-02 1.5295058E-02 1.4836619E-02 1.4392196E-02 1.3961337E-02
 1.3543616E-02 1.3138589E-02 1.2745867E-02 1.2365038E-02 1.1995734E-02
 1.1637578E-02
 3.3309460E-02 3.0215593E-02 2.7350137E-02 2.4699384E-02 2.2249987E-02
 1.9989036E-02 1.7904136E-02 1.5983438E-02 1.4215663E-02 1.2590141E-02
 1.1096784E-02 9.7260959E-03 8.4691625E-03 7.3176241E-03 6.2636626E-03
 5.2999770E-03 4.4197589E-03 3.6166662E-03 2.8847971E-03 2.2186688E-03
 1.6131847E-03 1.0636173E-03 5.6558201E-04 1.1501372E-04 -2.9185019E-04
 -6.5849622E-04 -9.8815281E-04 -1.2838029E-03 -1.5482090E-03 -1.7839195E-03
 -1.9932941E-03 -2.1785109E-03 -2.3415815E-03 -2.4843614E-03 -2.6085656E-03
 -2.7157764E-03 -2.8074516E-03 -2.8849375E-03 -2.9494730E-03 -3.0022019E-03
 -3.0441785E-03 -3.0763720E-03 -3.0996765E-03 -3.1149152E-03 -3.1228450E-03
 -3.1241628E-03 -3.1195104E-03 -3.1094768E-03 -3.0946040E-03 -3.0753906E-03
 -3.0522943E-03 -3.0257350E-03 -2.9960989E-03 -2.9637392E-03 -2.9289811E-03
 -2.8921235E-03 -2.8534373E-03 -2.8131737E-03 -2.7715601E-03 -2.7288063E-03
 -2.6851036E-03 -2.6406259E-03 -2.5955332E-03 -2.5499691E-03 -2.5040677E-03
 -2.4579484E-03 -2.4117201E-03 -2.3654834E-03 -2.3193266E-03 -2.2733316E-03
 -2.2275718E-03 -2.1821130E-03 -2.1370158E-03 -2.0923316E-03 -2.0481094E-03
 -2.0043920E-03 -1.9612159E-03 -1.9186155E-03 -1.8766199E-03 -1.8352551E-03
 -1.7945424E-03 -1.7545020E-03 -1.7151504E-03 -1.6765003E-03 -1.6385643E-03
 -1.6013513E-03 -1.5648690E-03 -1.5291226E-03 -1.4941157E-03 -1.4598523E-03
 -1.4263307E-03
 0.2394093 0.2312977 0.2234207 0.2157803 0.2083768
 0.2012092 0.1942753 0.1875720 0.1810953 0.1748408
 0.1688032 0.1629773 0.1573573 0.1519374 0.1467115
 0.1416736 0.1368175 0.1321373 0.1276269 0.1232804
 0.1190919 0.1150558 0.1111665 0.1074186 0.1038069
 0.1003262 9.6971504E-02 9.3738124E-02 9.0621404E-02 8.7616883E-02
 8.4720269E-02 8.1927396E-02 7.9234257E-02 7.6637030E-02 7.4132025E-02
 7.1715683E-02 6.9384582E-02 6.7135438E-02 6.4965129E-02 6.2870629E-02
 6.0849015E-02 5.8897525E-02 5.7013467E-02 5.5194307E-02 5.3437572E-02
 5.1740911E-02 5.0102063E-02 4.8518851E-02 4.6989206E-02 4.5511138E-02
 4.4082727E-02 4.2702138E-02 4.1367624E-02 4.0077467E-02 3.8830072E-02
 3.7623890E-02 3.6457404E-02 3.5329208E-02 3.4237906E-02 3.3182185E-02
 3.2160792E-02 3.1172488E-02 3.0216129E-02 2.9290562E-02 2.8394729E-02
 2.7527597E-02 2.6688151E-02 2.5875453E-02 2.5088564E-02 2.4326600E-02
 2.3588728E-02 2.2874102E-02 2.2181956E-02 2.1511512E-02 2.0862047E-02
 2.0232860E-02 1.9623268E-02 1.9032625E-02 1.8460294E-02 1.7905671E-02
 1.7368179E-02 1.6847244E-02 1.6342336E-02 1.5852917E-02 1.5378494E-02
 1.4918579E-02 1.4472693E-02 1.4040401E-02 1.3621245E-02 1.3214818E-02
 1.2820704E-02
 3.8136981E-02 3.4618817E-02 3.1359650E-02 2.8344011E-02 2.5556834E-02
 2.2983527E-02 2.0610066E-02 1.8423041E-02 1.6409697E-02 1.4557944E-02
 1.2856363E-02 1.1294199E-02 9.8613556E-03 8.5483585E-03 7.3463488E-03
 6.2470501E-03 5.2427379E-03 4.3262159E-03 3.4907877E-03 2.7302247E-03
 2.0387359E-03 1.4109483E-03 8.4187795E-04 3.2689533E-04 -1.3827797E-04
 -5.5761577E-04 -9.3479239E-04 -1.2732095E-03 -1.5760151E-03 -1.8461155E-03
 -2.0862012E-03 -2.2987579E-03 -2.4860823E-03 -2.6502907E-03 -2.7933402E-03
 -2.9170376E-03 -3.0230475E-03 -3.1129052E-03 -3.1880266E-03 -3.2497162E-03
 -3.2991772E-03 -3.3375155E-03 -3.3657511E-03 -3.3848223E-03 -3.3955926E-03
 -3.3988568E-03 -3.3953444E-03 -3.3857273E-03 -3.3706226E-03 -3.3505971E-03
 -3.3261713E-03 -3.2978223E-03 -3.2659890E-03 -3.2310728E-03 -3.1934425E-03
 -3.1534354E-03 -3.1113608E-03 -3.0675014E-03 -3.0221157E-03 -2.9754397E-03
 -2.9276900E-03 -2.8790634E-03 -2.8297401E-03 -2.7798819E-03 -2.7296394E-03
 -2.6791478E-03 -2.6285297E-03 -2.5778960E-03 -2.5273482E-03 -2.4769770E-03
 -2.4268655E-03 -2.3770870E-03 -2.3277085E-03 -2.2787885E-03 -2.2303814E-03
 -2.1825349E-03 -2.1352901E-03 -2.0886846E-03 -2.0427515E-03 -1.9975191E-03
 -1.9530122E-03 -1.9092521E-03 -1.8662580E-03 -1.8240436E-03 -1.7826227E-03
 -1.7420063E-03 -1.7022014E-03 -1.6632156E-03 -1.6250521E-03 -1.5877148E-03
 -1.5512045E-03
 0.2642373 0.2553698 0.2467367 0.2383545 0.2302248
 0.2223474 0.2147209 0.2073427 0.2002092 0.1933160
 0.1866581 0.1802302 0.1740265 0.1680409 0.1622672
 0.1566990 0.1513300 0.1461536 0.1411637 0.1363538
 0.1317177 0.1272493 0.1229426 0.1187919 0.1147913
 0.1109354 0.1072188 0.1036363 0.1001828 9.6853450E-02
 9.3643591E-02 9.0548649E-02 8.7564223E-02 8.4686123E-02 8.1910290E-02
 7.9232782E-02 7.6649874E-02 7.4157923E-02 7.1753472E-02 6.9433168E-02
 6.7193806E-02 6.5032311E-02 6.2945709E-02 6.0931198E-02 5.8986019E-02
 5.7107575E-02 5.5293348E-02 5.3540926E-02 5.1848017E-02 5.0212394E-02
 4.8631933E-02 4.7104586E-02 4.5628414E-02 4.4201501E-02 4.2822078E-02
 4.1488416E-02 4.0198829E-02 3.8951751E-02 3.7745625E-02 3.6578998E-02
 3.5450462E-02 3.4358650E-02 3.3302274E-02 3.2280061E-02 3.1290833E-02
 3.0333435E-02 2.9406734E-02 2.8509689E-02 2.7641261E-02 2.6800461E-02
 2.5986360E-02 2.5198018E-02 2.4434587E-02 2.3695193E-02 2.2979042E-02
 2.2285348E-02 2.1613352E-02 2.0962337E-02 2.0331593E-02 1.9720456E-02
 1.9128276E-02 1.8554421E-02 1.7998300E-02 1.7459316E-02 1.6936922E-02
 1.6430577E-02 1.5939755E-02 1.5463958E-02 1.5002694E-02 1.4555496E-02
 1.4121921E-02
 4.4901893E-02 4.0891830E-02 3.7140764E-02 3.3667222E-02 3.0454315E-02
 2.7485598E-02 2.4745245E-02 2.2218077E-02 1.9889636E-02 1.7746208E-02
 1.5774818E-02 1.3963240E-02 1.2299973E-02 1.0774234E-02 9.3759289E-03
 8.0956146E-03 6.9244769E-03 5.8543007E-03 4.8774332E-03 3.9867526E-03
 3.1756372E-03 2.4379296E-03 1.7679257E-03 1.1603185E-03 6.1020156E-04
 1.1301583E-04 -3.3545721E-04 -7.3912524E-04 -1.1016057E-03 -1.4262400E-03
 -1.7161233E-03 -1.9741144E-03 -2.2028580E-03 -2.4047918E-03 -2.5821705E-03
 -2.7370737E-03 -2.8714216E-03 -2.9869848E-03 -3.0853944E-03 -3.1681559E-03
 -3.2366565E-03 -3.2921727E-03 -3.3358820E-03 -3.3688657E-03 -3.3921204E-03
 -3.4065638E-03 -3.4130388E-03 -3.4123196E-03 -3.4051184E-03 -3.3920896E-03
 -3.3738345E-03 -3.3509040E-03 -3.3238041E-03 -3.2929983E-03 -3.2589133E-03
 -3.2219377E-03 -3.1824291E-03 -3.1407140E-03 -3.0970909E-03 -3.0518332E-03
 -3.0051910E-03 -2.9573918E-03 -2.9086433E-03 -2.8591352E-03 -2.8090400E-03
 -2.7585153E-03 -2.7077019E-03 -2.6567320E-03 -2.6057207E-03 -2.5547757E-03
 -2.5039923E-03 -2.4534571E-03 -2.4032493E-03 -2.3534379E-03 -2.3040860E-03
 -2.2552502E-03 -2.2069800E-03 -2.1593210E-03 -2.1123115E-03 -2.0659871E-03
 -2.0203784E-03 -1.9755105E-03 -1.9314082E-03 -1.8880896E-03 -1.8455727E-03
 -1.8038714E-03 -1.7629969E-03 -1.7229590E-03 -1.6837643E-03 -1.6454189E-03
 -1.6079274E-03
 0.2913548 0.2817281 0.2723360 0.2631947 0.2543059
 0.2456805 0.2373188 0.2292194 0.2213799 0.2137967
 0.2064657 0.1993819 0.1925397 0.1859334 0.1795568
 0.1734036 0.1674673 0.1617413 0.1562190 0.1508939
 0.1457594 0.1408091 0.1360366 0.1314358 0.1270006
 0.1227250 0.1186033 0.1146297 0.1107989 0.1071056
 0.1035446 0.1001110 9.6799992E-02 9.3606971E-02 9.0527557E-02
 8.7557279E-02 8.4692091E-02 8.1927985E-02 7.9261169E-02 7.6687917E-02
 7.4204654E-02 7.1808048E-02 6.9494791E-02 6.7261718E-02 6.5105811E-02
 6.3024163E-02 6.1013993E-02 5.9072614E-02 5.7197455E-02 5.5386052E-02
 5.3636029E-02 5.1945113E-02 5.0311130E-02 4.8731972E-02 4.7205634E-02
 4.5730196E-02 4.4303797E-02 4.2924654E-02 4.1591063E-02 4.0301383E-02
 3.9054040E-02 3.7847519E-02 3.6680371E-02 3.5551194E-02 3.4458656E-02
 3.3401463E-02 3.2378372E-02 3.1388197E-02 3.0429799E-02 2.9502073E-02
 2.8603960E-02 2.7734447E-02 2.6892547E-02 2.6077325E-02 2.5287874E-02
 2.4523322E-02 2.3782829E-02 2.3065586E-02 2.2370815E-02 2.1697769E-02
 2.1045718E-02 2.0413974E-02 1.9801868E-02 1.9208748E-02 1.8633993E-02
 1.8077007E-02 1.7537205E-02 1.7014034E-02 1.6506951E-02 1.6015438E-02
 1.5538996E-02
 5.4164872E-02 4.9616843E-02 4.5327812E-02 4.1316308E-02 3.7565444E-02
 3.4094457E-02 3.0885659E-02 2.7921990E-02 2.5187140E-02 2.2665575E-02
 2.0342568E-02 1.8204210E-02 1.6237397E-02 1.4429816E-02 1.2769920E-02
 1.1246896E-02 9.8506408E-03 8.5717235E-03 7.4013486E-03 6.3313246E-03
 5.3540231E-03 4.4623548E-03 3.6497351E-03 2.9100382E-03 2.2375947E-03
 1.6271309E-03 1.0737679E-03 5.7297654E-04 1.2056805E-04 -2.8733542E-04
 -6.5432210E-04 -9.8371704E-04 -1.2785906E-03 -1.5417774E-03 -1.7759107E-03
 -1.9833902E-03 -2.1664610E-03 -2.3271900E-03 -2.4674772E-03 -2.5890789E-03
 -2.6936184E-03 -2.7825783E-03 -2.8573361E-03 -2.9191575E-03 -2.9692079E-03
 -3.0085589E-03 -3.0381978E-03 -3.0590314E-03 -3.0718953E-03 -3.0775559E-03
 -3.0767180E-03 -3.0700292E-03 -3.0580827E-03 -3.0414246E-03 -3.0205573E-03
 -2.9959371E-03 -2.9679863E-03 -2.9370899E-03 -2.9036016E-03 -2.8678435E-03
 -2.8301133E-03 -2.7906799E-03 -2.7497902E-03 -2.7076718E-03 -2.6645295E-03
 -2.6205515E-03 -2.5759090E-03 -2.5307573E-03 -2.4852396E-03 -2.4394842E-03
 -2.3936077E-03 -2.3477173E-03 -2.3019074E-03 -2.2562668E-03 -2.2108718E-03
 -2.1657941E-03 -2.1210979E-03 -2.0768398E-03 -2.0330695E-03 -1.9898345E-03
 -1.9471743E-03 -1.9051257E-03 -1.8637209E-03 -1.8229873E-03 -1.7829493E-03
 -1.7436297E-03 -1.7050463E-03 -1.6672156E-03 -1.6301515E-03 -1.5938651E-03
 -1.5583670E-03
 0.3206600 0.3102761 0.3001268 0.2902284 0.2805825
 0.2712000 0.2620811 0.2532313 0.2446503 0.2363366
 0.2282877 0.2204999 0.2129688 0.2056894 0.1986562
 0.1918633 0.1853046 0.1789737 0.1728641 0.1669692
 0.1612824 0.1557971 0.1505068 0.1454049 0.1404852
 0.1357413 0.1311671 0.1267565 0.1225038 0.1184033
 0.1144494 0.1106367 0.1069601 0.1034145 9.9995121E-02
 9.6697137E-02 9.3516059E-02 9.0447478E-02 8.7487213E-02 8.4631167E-02
 8.1875429E-02 7.9216205E-02 7.6649867E-02 7.4172929E-02 7.1782015E-02
 6.9473915E-02 6.7245513E-02 6.5093830E-02 6.3015990E-02 6.1009236E-02
 5.9070941E-02 5.7198539E-02 5.5389620E-02 5.3641818E-02 5.1952899E-02
 5.0320692E-02 4.8743144E-02 4.7218237E-02 4.5744076E-02 4.4318821E-02
 4.2940706E-02 4.1608039E-02 4.0319197E-02 3.9072607E-02 3.7866782E-02
 3.6700260E-02 3.5571676E-02 3.4479678E-02 3.3423007E-02 3.2400418E-02
 3.1410731E-02 3.0452803E-02 2.9525548E-02 2.8627908E-02 2.7758874E-02
 2.6917471E-02 2.6102759E-02 2.5313841E-02 2.4549840E-02 2.3809932E-02
 2.3093307E-02 2.2399185E-02 2.1726822E-02 2.1075502E-02 2.0444527E-02
 1.9833237E-02 1.9240979E-02 1.8667141E-02 1.8111119E-02 1.7572340E-02
 1.7050248E-02
 6.6741303E-02 6.1592713E-02 5.6703124E-02 5.2091066E-02 4.7739647E-02
 4.3668110E-02 3.9858762E-02 3.6332153E-02 3.3070158E-02 3.0055353E-02
 2.7271155E-02 2.4701839E-02 2.2332475E-02 2.0149056E-02 1.8138351E-02
 1.6287964E-02 1.4586274E-02 1.3022421E-02 1.1586246E-02 1.0268285E-02
 9.0597030E-03 7.9522654E-03 6.9383406E-03 6.0108025E-03 5.1630470E-03
 4.3889284E-03 3.6827538E-03 3.0392366E-03 2.4534785E-03 1.9209413E-03
 1.4374173E-03 9.9901576E-04 6.0212938E-04 2.4342895E-04 -8.0165424E-05
 -3.7150475E-04 -6.3322223E-04 -8.6774718E-04 -1.0773224E-03 -1.2640224E-03
 -1.4297657E-03 -1.5762986E-03 -1.7052594E-03 -1.8181438E-03 -1.9163330E-03
 -2.0010993E-03 -2.0736160E-03 -2.1349604E-03 -2.1861279E-03 -2.2280321E-03
 -2.2615120E-03 -2.2873427E-03 -2.3062362E-03 -2.3188451E-03 -2.3257679E-03
 -2.3275600E-03 -2.3247255E-03 -2.3177315E-03 -2.3070038E-03 -2.2929348E-03
 -2.2758844E-03 -2.2561825E-03 -2.2341304E-03 -2.2100052E-03 -2.1840613E-03
 -2.1565291E-03 -2.1276230E-03 -2.0975373E-03 -2.0664495E-03 -2.0345214E-03
 -2.0019021E-03 -1.9687265E-03 -1.9351193E-03 -1.9011912E-03 -1.8670458E-03
 -1.8327771E-03 -1.7984692E-03 -1.7642002E-03 -1.7300381E-03 -1.6960489E-03
 -1.6622901E-03 -1.6288118E-03 -1.5956624E-03 -1.5628849E-03 -1.5305172E-03
 -1.4985960E-03 -1.4671499E-03 -1.4362090E-03 -1.4057982E-03 -1.3759418E-03
 -1.3466586E-03
 0.3518542 0.3407243 0.3298290 0.3191846 0.3087927
 0.2986642 0.2887995 0.2792037 0.2698768 0.2608176
 0.2520267 0.2435033 0.2352456 0.2272505 0.2195141
 0.2120319 0.2047988 0.1978093 0.1910576 0.1845375
 0.1782427 0.1721667 0.1663033 0.1606457 0.1551877
 0.1499227 0.1448444 0.1399466 0.1352230 0.1306677
 0.1262747 0.1220384 0.1179532 0.1140135 0.1102142
 0.1065501 0.1030162 9.9607691E-02 9.6320041E-02 9.3148708E-02
 9.0089373E-02 8.7137841E-02 8.4290095E-02 8.1542246E-02 7.8890570E-02
 7.6331466E-02 7.3861472E-02 7.1477264E-02 6.9175616E-02 6.6953458E-02
 6.4807840E-02 6.2735893E-02 6.0734890E-02 5.8802202E-02 5.6935314E-02
 5.5131786E-02 5.3389296E-02 5.1705599E-02 5.0078545E-02 4.8506070E-02
 4.6986196E-02 4.5517012E-02 4.4096686E-02 4.2723462E-02 4.1395649E-02
 4.0111627E-02 3.8869832E-02 3.7668776E-02 3.6507014E-02 3.5383165E-02
 3.4295887E-02 3.3243924E-02 3.2226026E-02 3.1241028E-02 3.0287787E-02
 2.9365212E-02 2.8472254E-02 2.7607901E-02 2.6771184E-02 2.5961170E-02
 2.5176954E-02 2.4417674E-02 2.3682494E-02 2.2970619E-02 2.2281270E-02
 2.1613710E-02 2.0967221E-02 2.0341115E-02 1.9734731E-02 1.9147431E-02
 1.8578604E-02
 8.3905347E-02 7.8067362E-02 7.2488382E-02 6.7186937E-02 6.2146131E-02
 5.7385214E-02 5.2886490E-02 4.8670504E-02 4.4719137E-02 4.1055106E-02
 3.7660126E-02 3.4516606E-02 3.1607788E-02 2.8917782E-02 2.6431531E-02
 2.4134835E-02 2.2014344E-02 2.0057511E-02 1.8252606E-02 1.6588613E-02
 1.5055255E-02 1.3642947E-02 1.2342745E-02 1.1146318E-02 1.0045925E-02
 9.0343487E-03 8.1048859E-03 7.2513125E-03 6.4678490E-03 5.7491474E-03
 5.0902222E-03 4.4864761E-03 3.9336355E-03 3.4277437E-03 2.9651488E-03
 2.5424659E-03 2.1565589E-03 1.8045269E-03 1.4837056E-03 1.1916137E-03
 9.2595001E-04 6.8463641E-04 4.6570695E-04 2.6736097E-04 8.7945889E-05
 -7.4074465E-05 -2.2011324E-04 -3.5146863E-04 -4.6934548E-04 -5.7485246E-04
 -6.6900509E-04 -7.5274653E-04 -8.2694291E-04 -8.9239649E-04 -9.4983727E-04
 -9.9994522E-04 -1.0433438E-03 -1.0806072E-03 -1.1122671E-03 -1.1388087E-03
 -1.1606799E-03 -1.1782969E-03 -1.1920372E-03 -1.2022527E-03 -1.2092645E-03
 -1.2133690E-03 -1.2148410E-03 -1.2139324E-03 -1.2108715E-03 -1.2058708E-03
 -1.1991272E-03 -1.1908239E-03 -1.1811221E-03 -1.1701775E-03 -1.1581277E-03
 -1.1451037E-03 -1.1312254E-03 -1.1165984E-03 -1.1013250E-03 -1.0854984E-03
 -1.0692029E-03 -1.0525170E-03 -1.0355103E-03 -1.0182521E-03 -1.0008019E-03
 -9.8321750E-04 -9.6554932E-04 -9.4784593E-04 -9.3015481E-04 -9.1251399E-04
 -8.9496537E-04
 0.3842754 0.3724236 0.3608064 0.3494401 0.3383264
 0.3274761 0.3168895 0.3065719 0.2965232 0.2867422
 0.2772295 0.2679743 0.2589798 0.2502472 0.2417763
 0.2335657 0.2256128 0.2179143 0.2104659 0.2032631
 0.1963007 0.1895733 0.1830750 0.1767998 0.1707417
 0.1648945 0.1592519 0.1538077 0.1485556 0.1434895
 0.1386033 0.1338911 0.1293468 0.1249648 0.1207394
 0.1166651 0.1127365 0.1089484 0.1052958 0.1017737
 9.8377362E-02 9.5102176E-02 9.1943674E-02 8.8897519E-02 8.5959546E-02
 8.3125733E-02 8.0392182E-02 7.7755153E-02 7.5211033E-02 7.2756335E-02
 7.0387721E-02 6.8101943E-02 6.5895908E-02 6.3766629E-02 6.1711237E-02
 5.9726968E-02 5.7811175E-02 5.5961289E-02 5.4174870E-02 5.2449558E-02
 5.0783087E-02 4.9173292E-02 4.7618076E-02 4.6115428E-02 4.4663437E-02
 4.3260239E-02 4.1904062E-02 4.0593199E-02 3.9326012E-02 3.8100928E-02
 3.6916431E-02 3.5771076E-02 3.4663461E-02 3.3592246E-02 3.2556150E-02
 3.1553932E-02 3.0584408E-02 2.9646438E-02 2.8738912E-02 2.7860796E-02
 2.7011063E-02 2.6188746E-02 2.5392909E-02 2.4622647E-02 2.3877108E-02
 2.3155453E-02 2.2456896E-02 2.1780653E-02 2.1126000E-02 2.0492233E-02
 1.9878671E-02
 0.1079526 0.1012885 9.4883360E-02 8.8755801E-02 8.2888894E-02
 7.7301875E-02 7.1977057E-02 6.6934988E-02 6.2157545E-02 5.7667442E-02
 5.3446390E-02 4.9520999E-02 4.5872863E-02 4.2484216E-02 3.9338075E-02
 3.6418263E-02 3.3709425E-02 3.1197095E-02 2.8867623E-02 2.6708204E-02
 2.4706773E-02 2.2852080E-02 2.1133609E-02 1.9541530E-02 1.8066689E-02
 1.6700530E-02 1.5435132E-02 1.4263087E-02 1.3177537E-02 1.2172112E-02
 1.1240904E-02 1.0378411E-02 9.5795430E-03 8.8395979E-03 8.1541967E-03
 7.5193061E-03 6.9311741E-03 6.3863304E-03 5.8815842E-03 5.4139593E-03
 4.9807127E-03 4.5793122E-03 4.2073783E-03 3.8628045E-03 3.5435520E-03
 3.2477768E-03 2.9737565E-03 2.7199108E-03 2.4847691E-03 2.2669814E-03
 2.0652930E-03 1.8785448E-03 1.7056657E-03 1.5456637E-03 1.3976109E-03
 1.2606703E-03 1.1340426E-03 1.0170053E-03 9.0887881E-04 8.0904004E-04
 7.1690610E-04 6.3193584E-04 5.5362884E-04 4.8152453E-04 4.1519271E-04
 3.5423171E-04 2.9826615E-04 2.4695729E-04 1.9998394E-04 1.5704583E-04
 1.1786490E-04 8.2189166E-05 4.9773538E-05 2.0399790E-05 -6.1404799E-06
 -3.0040128E-05 -5.1479252E-05 -7.0622649E-05 -8.7621687E-05 -1.0262531E-04
 -1.1576260E-04 -1.2715880E-04 -1.3692694E-04 -1.4517104E-04 -1.5199586E-04
 -1.5748221E-04 -1.6172281E-04 -1.6478621E-04 -1.6674557E-04 -1.6766771E-04
 -1.6760569E-04
 0.4171556 0.4045791 0.3922372 0.3801463 0.3683080
 0.3567331 0.3454219 0.3343796 0.3236063 0.3131007
 0.3028634 0.2928836 0.2831645 0.2736760 0.2644262
 0.2554207 0.2466630 0.2381550 0.2298970 0.2218882
 0.2141269 0.2066106 0.1993360 0.1922997 0.1854977
 0.1789259 0.1725798 0.1664549 0.1605465 0.1548497
 0.1493596 0.1440711 0.1389787 0.1340772 0.1293608
 0.1248237 0.1204598 0.1162631 0.1122275 0.1083468
 0.1046150 0.1010261 9.7574137E-02 9.4253488E-02 9.1058634E-02
 8.7984264E-02 8.5025258E-02 8.2176745E-02 7.9434030E-02 7.6792628E-02
 7.4248314E-02 7.1796969E-02 6.9434740E-02 6.7157932E-02 6.4963028E-02
 6.2846668E-02 6.0805641E-02 5.8836922E-02 5.6937587E-02 5.5104878E-02
 5.3336132E-02 5.1628843E-02 4.9980592E-02 4.8389088E-02 4.6852130E-02
 4.5367617E-02 4.3933548E-02 4.2548005E-02 4.1209150E-02 3.9915230E-02
 3.8664568E-02 3.7455559E-02 3.6286656E-02 3.5156392E-02 3.4063347E-02
 3.3006169E-02 3.1983558E-02 3.0994272E-02 3.0037120E-02 2.9110942E-02
 2.8214648E-02 2.7347172E-02 2.6507504E-02 2.5694668E-02 2.4907723E-02
 2.4145767E-02 2.3407925E-02 2.2693379E-02 2.2001304E-02 2.1330936E-02
 2.0681521E-02
 0.1445108 0.1367740 0.1292962 0.1220959 0.1151563
 0.1084966 0.1020991 9.5984340E-02 9.0134211E-02 8.4571421E-02
 7.9277679E-02 7.4279606E-02 6.9558799E-02 6.5151550E-02 6.1037891E-02
 5.7198476E-02 5.3614773E-02 5.0269134E-02 4.7144704E-02 4.4225600E-02
 4.1496802E-02 3.8944248E-02 3.6554769E-02 3.4316059E-02 3.2216784E-02
 3.0246371E-02 2.8395237E-02 2.6654508E-02 2.5016284E-02 2.3473402E-02
 2.2019478E-02 2.0648830E-02 1.9356426E-02 1.8137837E-02 1.6989075E-02
 1.5906518E-02 1.4886919E-02 1.3927185E-02 1.3024437E-02 1.2175933E-02
 1.1378975E-02 1.0630978E-02 9.9293981E-03 9.2717847E-03 8.6557241E-03
 8.0789039E-03 7.5390679E-03 7.0340522E-03 6.5617766E-03 6.1202594E-03
 5.7076132E-03 5.3220335E-03 4.9618254E-03 4.6253745E-03 4.3111648E-03
 4.0177684E-03 3.7438434E-03 3.4881211E-03 3.2494259E-03 3.0266426E-03
 2.8187393E-03 2.6247392E-03 2.4437385E-03 2.2748823E-03 2.1173798E-03
 1.9704932E-03 1.8335263E-03 1.7058346E-03 1.5868171E-03 1.4759095E-03
 1.3725861E-03 1.2763572E-03 1.1867675E-03 1.1033878E-03 1.0258235E-03
 9.5370226E-04 8.8667561E-04 8.2442304E-04 7.6664181E-04 7.1305264E-04
 6.6339190E-04 6.1741733E-04 5.7490013E-04 5.3562864E-04 4.9940601E-04
 4.6604834E-04 4.3538635E-04 4.0725875E-04 3.8152520E-04 3.5804010E-04
 3.3668260E-04
 0.4603718 0.4470558 0.4339744 0.4211440 0.4085661
 0.3962517 0.3842010 0.3724192 0.3609064 0.3496612
 0.3386844 0.3279652 0.3175067 0.3072788 0.2972896
 0.2875375 0.2780397 0.2688102 0.2598617 0.2512041
 0.2428452 0.2347897 0.2270394 0.2195919 0.2124419
 0.2055802 0.1989955 0.1926746 0.1866037 0.1807686
 0.1751560 0.1697528 0.1645473 0.1595285 0.1546864
 0.1500119 0.1454968 0.1411334 0.1369148 0.1328346
 0.1288869 0.1250662 0.1213676 0.1177861 0.1143174
 0.1109573 0.1077018 0.1045472 0.1014901 9.8526835E-02
 9.5654443E-02 9.2869729E-02 9.0169817E-02 8.7551907E-02 8.5013300E-02
 8.2551457E-02 8.0163889E-02 7.7848196E-02 7.5602099E-02 7.3423393E-02
 7.1309999E-02 6.9259845E-02 6.7270935E-02 6.5341398E-02 6.3469380E-02
 6.1653104E-02 5.9890863E-02 5.8180999E-02 5.6521889E-02 5.4912020E-02
 5.3349856E-02 5.1833946E-02 5.0362907E-02 4.8935376E-02 4.7550026E-02
 4.6205603E-02 4.4900838E-02 4.3634549E-02 4.2405579E-02 4.1212790E-02
 4.0055089E-02 3.8931396E-02 3.7840728E-02 3.6782023E-02 3.5754338E-02
 3.4756720E-02 3.3788238E-02 3.2848008E-02 3.1935137E-02 3.1048769E-02
 3.0188089E-02
 0.2039758 0.1951249 0.1865330 0.1782186 0.1701650
 0.1623912 0.1548797 0.1476509 0.1406867 0.1340099
 0.1276022 0.1214901 0.1156553 0.1101341 0.1049064
 0.1000859 9.5645674E-02 9.1559149E-02 8.7800048E-02 8.4342249E-02
 8.1158631E-02 7.8221917E-02 7.5504638E-02 7.2979748E-02 7.0621423E-02
 6.8406045E-02 6.6312835E-02 6.4323999E-02 6.2425088E-02 6.0604487E-02
 5.8852915E-02 5.7163075E-02 5.5529449E-02 5.3947549E-02 5.2413963E-02
 5.0925873E-02 4.9480952E-02 4.8077360E-02 4.6713367E-02 4.5387574E-02
 4.4098660E-02 4.2845462E-02 4.1626878E-02 4.0441830E-02 3.9289437E-02
 3.8168628E-02 3.7078593E-02 3.6018398E-02 3.4987230E-02 3.3984218E-02
 3.3008602E-02 3.2059502E-02 3.1136246E-02 3.0238023E-02 2.9364144E-02
 2.8513895E-02 2.7686555E-02 2.6881468E-02 2.6098013E-02 2.5335476E-02
 2.4593318E-02 2.3870867E-02 2.3167549E-02 2.2482790E-02 2.1816034E-02
 2.1166738E-02 2.0534348E-02 1.9918384E-02 1.9318322E-02 1.8733697E-02
 1.8164009E-02 1.7608779E-02 1.7067598E-02 1.6539995E-02 1.6025560E-02
 1.5523873E-02 1.5034511E-02 1.4557090E-02 1.4091230E-02 1.3636529E-02
 1.3192636E-02 1.2759193E-02 1.2335838E-02 1.1922236E-02 1.1518044E-02
 1.1122961E-02 1.0736641E-02 1.0358793E-02 9.9891126E-03 9.6272966E-03
 9.2730690E-03
 0.5303861 0.5161560 0.5021606 0.4884161 0.4749243
 0.4616959 0.4487312 0.4360355 0.4236087 0.4114496
 0.3995589 0.3879258 0.3765535 0.3654117 0.3545087
 0.3438428 0.3334311 0.3232679 0.3133634 0.3037248
 0.2943565 0.2852603 0.2764361 0.2678818 0.2595946
 0.2515695 0.2438015 0.2362844 0.2290120 0.2219770
 0.2151725 0.2085911 0.2022257 0.1960689 0.1901136
 0.1843529 0.1787797 0.1733875 0.1681698 0.1631203
 0.1582333 0.1535026 0.1489228 0.1444887 0.1401950
 0.1360368 0.1320095 0.1281085 0.1243294 0.1206681
 0.1171205 0.1136829 0.1103515 0.1071228 0.1039934
 0.1009600 9.8019421E-02 9.5168665E-02 9.2404798E-02 8.9725025E-02
 8.7126635E-02 8.4607013E-02 8.2163639E-02 7.9794087E-02 7.7496029E-02
 7.5267196E-02 7.3105387E-02 7.1008541E-02 6.8974607E-02 6.7001641E-02
 6.5087706E-02 6.3230984E-02 6.1429709E-02 5.9682176E-02 5.7986688E-02
 5.6341697E-02 5.4745581E-02 5.3196866E-02 5.1694103E-02 5.0235849E-02
 4.8820715E-02 4.7447402E-02 4.6114601E-02 4.4821035E-02 4.3565512E-02
 4.2346813E-02 4.1163791E-02 4.0015306E-02 3.8900267E-02 3.7817597E-02
 3.6766231E-02
 0.2752608 0.2644514 0.2539011 0.2436283 0.2336162
 0.2238841 0.2144141 0.2052270 0.1963044 0.1876692
 0.1793031 0.1712327 0.1634395 0.1559599 0.1487739
 0.1419951 0.1355966 0.1296206 0.1240341 0.1188056
 0.1139066 0.1093099 0.1049912 0.1009275 9.7097792E-02
 9.3483016E-02 9.0065531E-02 8.6829461E-02 8.3760239E-02 8.0844685E-02
 7.8070894E-02 7.5428188E-02 7.2906621E-02 7.0497520E-02 6.8192936E-02
 6.5985650E-02 6.3869208E-02 6.1837606E-02 5.9885655E-02 5.8008425E-02
 5.6201529E-02 5.4460991E-02 5.2783120E-02 5.1164564E-02 4.9602196E-02
 4.8093155E-02 4.6634916E-02 4.5224961E-02 4.3861054E-02 4.2541139E-02
 4.1263182E-02 4.0025473E-02 3.8826238E-02 3.7663866E-02 3.6536872E-02
 3.5443865E-02 3.4383491E-02 3.3354439E-02 3.2355580E-02 3.1385731E-02
 3.0443843E-02 2.9528843E-02 2.8639786E-02 2.7775720E-02 2.6935732E-02
 2.6119031E-02 2.5324728E-02 2.4552075E-02 2.3800306E-02 2.3068732E-02
 2.2356600E-02 2.1663263E-02 2.0988066E-02 2.0330394E-02 1.9689629E-02
 1.9065211E-02 1.8456556E-02 1.7863134E-02 1.7284384E-02 1.6719848E-02
 1.6168972E-02 1.5631316E-02 1.5106395E-02 1.4593762E-02 1.4092965E-02
 1.3603590E-02 1.3125231E-02 1.2657471E-02 1.2199921E-02 1.1752214E-02
 1.1313974E-02
 0.6154647 0.5998525 0.5844750 0.5693485 0.5544747
 0.5398642 0.5255175 0.5114398 0.4976311 0.4840901
 0.4708174 0.4578024 0.4450482 0.4325245 0.4202396
 0.4081917 0.3963982 0.3848531 0.3735667 0.3625327
 0.3517617 0.3412614 0.3310363 0.3210886 0.3114187
 0.3020256 0.2929062 0.2840571 0.2754738 0.2671511
 0.2590833 0.2512642 0.2436876 0.2363468 0.2292353
 0.2223464 0.2156734 0.2092097 0.2029487 0.1968843
 0.1910100 0.1853196 0.1798073 0.1744672 0.1692938
 0.1642815 0.1594250 0.1547194 0.1501595 0.1457407
 0.1414583 0.1373078 0.1332850 0.1293857 0.1256060
 0.1219418 0.1183896 0.1149458 0.1116068 0.1083692
 0.1052300 0.1021858 9.9233821E-02 9.6371040E-02 9.3594611E-02
 9.0901889E-02 8.8290207E-02 8.5757025E-02 8.3299935E-02 8.0916531E-02
 7.8604497E-02 7.6361664E-02 7.4185841E-02 7.2074972E-02 7.0027024E-02
 6.8040080E-02 6.6112213E-02 6.4241610E-02 6.2426496E-02 6.0665123E-02
 5.8955826E-02 5.7297003E-02 5.5687040E-02 5.4124411E-02 5.2607607E-02
 5.1135186E-02 4.9705729E-02 4.8317827E-02 4.6970133E-02 4.5661334E-02
 4.4390127E-02
 0.3478923 0.3351365 0.3226399 0.3104208 0.2984626
 0.2867842 0.2753681 0.2642347 0.2533661 0.2427848
 0.2324726 0.2224561 0.2127168 0.2032912 0.1941592
 0.1854344 0.1770898 0.1691678 0.1616354 0.1545730
 0.1479454 0.1417192 0.1358637 0.1303505 0.1251540
 0.1202497 0.1156159 0.1112319 0.1070794 0.1031414
 9.9402219E-02 9.5847569E-02 9.2464373E-02 8.9240685E-02 8.6165592E-02
 8.3229080E-02 8.0421947E-02 7.7735826E-02 7.5163163E-02 7.2696827E-02
 7.0330255E-02 6.8057626E-02 6.5873481E-02 6.3772745E-02 6.1750807E-02
 5.9803355E-02 5.7926469E-02 5.6116425E-02 5.4369885E-02 5.2683629E-02
 5.1054761E-02 4.9480520E-02 4.7958367E-02 4.6485931E-02 4.5060970E-02
 4.3681361E-02 4.2345177E-02 4.1050553E-02 3.9795719E-02 3.8579036E-02
 3.7398968E-02 3.6254019E-02 3.5142832E-02 3.4064058E-02 3.3016451E-02
 3.1998791E-02 3.1009976E-02 3.0048901E-02 2.9114565E-02 2.8205903E-02
 2.7322030E-02 2.6462017E-02 2.5624963E-02 2.4810050E-02 2.4016477E-02
 2.3243468E-02 2.2490257E-02 2.1756142E-02 2.1040417E-02 2.0342421E-02
 1.9661495E-02 1.8997025E-02 1.8348390E-02 1.7715015E-02 1.7096337E-02
 1.6491802E-02 1.5900888E-02 1.5323087E-02 1.4757890E-02 1.4204840E-02
 1.3663474E-02
 0.7133434 0.6961390 0.6791695 0.6624509 0.6459849
 0.6297826 0.6138439 0.5981742 0.5827735 0.5676405
 0.5527760 0.5381691 0.5238231 0.5097076 0.4958310
 0.4821914 0.4688062 0.4556694 0.4427913 0.4301656
 0.4178030 0.4057040 0.3938804 0.3823411 0.3710912
 0.3601340 0.3494705 0.3391001 0.3290203 0.3192284
 0.3097200 0.3004901 0.2915335 0.2828442 0.2744159
 0.2662423 0.2583168 0.2506327 0.2431834 0.2359621
 0.2289623 0.2221773 0.2156007 0.2092262 0.2030475
 0.1970585 0.1912535 0.1856266 0.1801722 0.1748849
 0.1697593 0.1647905 0.1599734 0.1553032 0.1507753
 0.1463853 0.1421286 0.1380012 0.1339989 0.1301178
 0.1263541 0.1227041 0.1191642 0.1157311 0.1124012
 0.1091716 0.1060390 0.1030003 0.1000527 9.7193353E-02
 9.4419539E-02 9.1728568E-02 8.9117877E-02 8.6585000E-02 8.4127493E-02
 8.1743039E-02 7.9429358E-02 7.7184260E-02 7.5005613E-02 7.2891295E-02
 7.0839323E-02 6.8847701E-02 6.6914573E-02 6.5038010E-02 6.3216232E-02
 6.1447475E-02 5.9729993E-02 5.8062103E-02 5.6442142E-02 5.4868497E-02
 5.3339574E-02
 0.4285705 0.4137662 0.3992211 0.3849535 0.3709468
 0.3572200 0.3437554 0.3305736 0.3176566 0.3050269
 0.2926663 0.2806014 0.2688139 0.2573399 0.2461596
 0.2353865 0.2249936 0.2150233 0.2054425 0.1963319
 0.1876560 0.1795067 0.1718451 0.1646350 0.1578431
 0.1514383 0.1453923 0.1396785 0.1342732 0.1291538
 0.1243000 0.1196929 0.1153155 0.1111518 0.1071871
 0.1034081 9.9802658E-02 9.6359253E-02 9.3067572E-02 8.9918040E-02
 8.6901903E-02 8.4011026E-02 8.1237860E-02 7.8575544E-02 7.6017655E-02
 7.3558450E-02 7.1192324E-02 6.8914257E-02 6.6719659E-02 6.4604089E-02
 6.2563553E-02 6.0594305E-02 5.8692783E-02 5.6855723E-02 5.5080034E-02
 5.3362992E-02 5.1701762E-02 5.0093863E-02 4.8536956E-02 4.7028828E-02
 4.5567349E-02 4.4150539E-02 4.2776562E-02 4.1443639E-02 4.0150099E-02
 3.8894307E-02 3.7674848E-02 3.6490168E-02 3.5339005E-02 3.4219958E-02
 3.3131879E-02 3.2073528E-02 3.1043779E-02 3.0041523E-02 2.9065734E-02
 2.8115397E-02 2.7189562E-02 2.6287315E-02 2.5407741E-02 2.4549995E-02
 2.3713224E-02 2.2896662E-02 2.2099532E-02 2.1321101E-02 2.0560645E-02
 1.9817490E-02 1.9090965E-02 1.8380443E-02 1.7685303E-02 1.7004983E-02
 1.6338896E-02
 0.8254934 0.8065130 0.7877675 0.7692729 0.7510311
 0.7330528 0.7153382 0.6978925 0.6807160 0.6638072
 0.6471668 0.6307841 0.6146622 0.5987710 0.5831186
 0.5677033 0.5525424 0.5376299 0.5229760 0.5085747
 0.4944364 0.4805617 0.4669489 0.4536166 0.4405780
 0.4278431 0.4154184 0.4033073 0.3915117 0.3800316
 0.3688651 0.3580094 0.3474602 0.3372128 0.3272621
 0.3176019 0.3082258 0.2991274 0.2903000 0.2817365
 0.2734300 0.2653735 0.2575600 0.2499828 0.2426348
 0.2355094 0.2286001 0.2219003 0.2154038 0.2091043
 0.2029958 0.1970725 0.1913287 0.1857589 0.1803577
 0.1751198 0.1700403 0.1651141 0.1603366 0.1557031
 0.1512092 0.1468505 0.1426229 0.1385222 0.1345446
 0.1306863 0.1269435 0.1233127 0.1197905 0.1163734
 0.1130583 0.1098418 0.1067212 0.1036933 0.1007552
 9.7904243E-02 9.5137633E-02 9.2452735E-02 8.9847028E-02 8.7317966E-02
 8.4863164E-02 8.2480222E-02 8.0166861E-02 7.7920802E-02 7.5739890E-02
 7.3621958E-02 7.1564898E-02 6.9566667E-02 6.7625254E-02 6.5738656E-02
 6.3904956E-02
 0.5238381 0.5066619 0.4897448 0.4731054 0.4567268
 0.4406282 0.4247918 0.4092382 0.3939493 0.3789479
 0.3642155 0.3497789 0.3356196 0.3217739 0.3082219
 0.2950771 0.2823125 0.2699706 0.2580181 0.2465359
 0.2354883 0.2249675 0.2150831 0.2057881 0.1970402
 0.1887991 0.1810278 0.1736926 0.1667616 0.1602063
 0.1539998 0.1481175 0.1425366 0.1372363 0.1321976
 0.1274026 0.1228350 0.1184799 0.1143235 0.1103530
 0.1065566 0.1029237 9.9444143E-02 9.6108764E-02 9.2909068E-02
 8.9837126E-02 8.6885728E-02 8.4048048E-02 8.1317887E-02 7.8689411E-02
 7.6157205E-02 7.3716260E-02 7.1361944E-02 6.9089830E-02 6.6895865E-02
 6.4776301E-02 6.2727518E-02 6.0746193E-02 5.8829252E-02 5.6973722E-02
 5.5176895E-02 5.3436130E-02 5.1748972E-02 5.0113123E-02 4.8526399E-02
 4.6986751E-02 4.5492209E-02 4.4040885E-02 4.2631079E-02 4.1261058E-02
 3.9929200E-02 3.8634010E-02 3.7374061E-02 3.6147919E-02 3.4954257E-02
 3.3791810E-02 3.2659333E-02 3.1555697E-02 3.0479733E-02 2.9430393E-02
 2.8406601E-02 2.7407389E-02 2.6431821E-02 2.5478898E-02 2.4547813E-02
 2.3637660E-02 2.2747673E-02 2.1877052E-02 2.1025062E-02 2.0190984E-02
 1.9374175E-02
 0.9530811 0.9321755 0.9115048 0.8910851 0.8709181
 0.8510146 0.8313748 0.8120041 0.7929024 0.7740685
 0.7555031 0.7371954 0.7191485 0.7013323 0.6837549
 0.6664147 0.6493288 0.6324914 0.6159127 0.5995864
 0.5835233 0.5677239 0.5521473 0.5368260 0.5217867
 0.5070484 0.4926273 0.4785340 0.4647764 0.4513587
 0.4382840 0.4255518 0.4131610 0.4011087 0.3893909
 0.3780029 0.3669390 0.3561930 0.3457586 0.3356286
 0.3257961 0.3162535 0.3069936 0.2980090 0.2892921
 0.2808356 0.2726323 0.2646749 0.2569563 0.2494695
 0.2422077 0.2351641 0.2283324 0.2217061 0.2152790
 0.2090451 0.2029985 0.1971336 0.1914447 0.1859265
 0.1805738 0.1753815 0.1703448 0.1654588 0.1607189
 0.1561206 0.1516595 0.1473316 0.1431326 0.1390586
 0.1351057 0.1312703 0.1275486 0.1239371 0.1204325
 0.1170314 0.1137305 0.1105267 0.1074169 0.1043981
 0.1014675 9.8622136E-02 9.5859274E-02 9.3176156E-02 9.0570197E-02
 8.8038735E-02 8.5579246E-02 8.3189227E-02 8.0866218E-02 7.8607798E-02
 7.6411627E-02
 0.6418547 0.6217014 0.6018073 0.5821909 0.5628354
 0.5437598 0.5249465 0.5064160 0.4881503 0.4701720
 0.4524628 0.4350494 0.4179132 0.4010907 0.3845619
 0.3684404 0.3526991 0.3373804 0.3224513 0.3079923
 0.2939681 0.2804705 0.2678001 0.2558962 0.2447034
 0.2341707 0.2242495 0.2148962 0.2060696 0.1977327
 0.1898504 0.1823902 0.1753230 0.1686211 0.1622594
 0.1562147 0.1504656 0.1449921 0.1397765 0.1348017
 0.1300522 0.1255139 0.1211734 0.1170188 0.1130386
 0.1092226 0.1055611 0.1020451 9.8666571E-02 9.5417596E-02
 9.2291191E-02 8.9280717E-02 8.6379953E-02 8.3583318E-02 8.0885313E-02
 7.8281112E-02 7.5765967E-02 7.3335595E-02 7.0985839E-02 6.8712957E-02
 6.6513322E-02 6.4383559E-02 6.2320519E-02 6.0321167E-02 5.8382731E-02
 5.6502499E-02 5.4678053E-02 5.2906871E-02 5.1186781E-02 4.9515635E-02
 4.7891326E-02 4.6311948E-02 4.4775646E-02 4.3280646E-02 4.1825317E-02
 4.0407997E-02 3.9027143E-02 3.7681326E-02 3.6369056E-02 3.5089064E-02
 3.3840023E-02 3.2620680E-02 3.1429861E-02 3.0266408E-02 2.9129302E-02
 2.8017413E-02 2.6929840E-02 2.5865596E-02 2.4823816E-02 2.3803663E-02
 2.2804372E-02

XFOILinterface/XFOIL/orrs/osm.0260

 256 2.599997
 0.0000000E+00 1.9475343E-02 3.9048065E-02 5.8718648E-02 7.8487583E-02
 9.8355368E-02 0.1183225 0.1383895 0.1585567 0.1788249
 0.1991943 0.2196656 0.2402393 0.2609158 0.2816958
 0.3025796 0.3235678 0.3446610 0.3658596 0.3871643
 0.4085754 0.4300936 0.4517194 0.4734534 0.4952960
 0.5172477 0.5393094 0.5614812 0.5837640 0.6061581
 0.6286643 0.6512829 0.6740146 0.6968601 0.7198197
 0.7428942 0.7660840 0.7893897 0.8128120 0.8363514
 0.8600085 0.8837839 0.9076781 0.9316919 0.9558257
 0.9800801 1.004456 1.028953 1.053573 1.078317
 1.103184 1.128175 1.153291 1.178533 1.203901
 1.229396 1.255018 1.280768 1.306648 1.332656
 1.358795 1.385064 1.411465 1.437997 1.464663
 1.491461 1.518394 1.545461 1.572664 1.600003
 1.627478 1.655091 1.682842 1.710731 1.738760
 1.766929 1.795239 1.823691 1.852284 1.881021
 1.909902 1.938927 1.968096 1.997412 2.026875
 2.056484 2.086242 2.116149 2.146205 2.176411
 2.206769 2.237278 2.267939 2.298754 2.329724
 2.360847 2.392127 2.423563 2.455156 2.486907
 2.518817 2.550887 2.583117 2.615508 2.648061
 2.680776 2.713655 2.746699 2.779908 2.813283
 2.846824 2.880534 2.914412 2.948459 2.982677
 3.017066 3.051626 3.086360 3.121267 3.156348
 3.191606 3.227039 3.262650 3.298438 3.334405
 3.370553 3.406881 3.443391 3.480083 3.516959
 3.554019 3.591264 3.628696 3.666315 3.704122
 3.742117 3.780303 3.818680 3.857249 3.896011
 3.934966 3.974116 4.013462 4.053005 4.092745
 4.132684 4.172823 4.213162 4.253704 4.294447
 4.335395 4.376547 4.417905 4.459470 4.501243
 4.543224 4.585416 4.627818 4.670433 4.713260
 4.756301 4.799558 4.843031 4.886722 4.930631
 4.974760 5.019109 5.063679 5.108473 5.153491
 5.198734 5.244203 5.289899 5.335824 5.381979
 5.428364 5.474981 5.521831 5.568915 5.616235
 5.663792 5.711586 5.759619 5.807893 5.856408
 5.905165 5.954165 6.003412 6.052904 6.102644
 6.152633 6.202871 6.253361 6.304103 6.355099
 6.406349 6.457857 6.509621 6.561645 6.613928
 6.666473 6.719281 6.772353 6.825690 6.879293
 6.933165 6.987306 7.041718 7.096402 7.151359
 7.206592 7.262099 7.317885 7.373950 7.430295
 7.486923 7.543832 7.601027 7.658507 7.716275
 7.774333 7.832679 7.891318 7.950250 8.009476
 8.068999 8.128819 8.188938 8.249358 8.310081
 8.371106 8.432437 8.494075 8.556020 8.618276
 8.680842 8.743721 8.806915 8.870425 8.934253
 8.998400 9.062867 9.127657 9.192770 9.258209
 9.323976 9.390071 9.456497 9.523254 9.590345
 9.657773 9.725537 9.793640 9.862084 9.930870
 10.00000
 0.0000000E+00 4.2477720E-03 8.5172160E-03 1.2808441E-02 1.7121555E-02
 2.1456672E-02 2.5813892E-02 3.0193327E-02 3.4595072E-02 3.9019238E-02
 4.3465924E-02 4.7935225E-02 5.2427243E-02 5.6942075E-02 6.1479811E-02
 6.6040546E-02 7.0624366E-02 7.5231366E-02 7.9861619E-02 8.4515207E-02
 8.9192219E-02 9.3892731E-02 9.8616816E-02 0.1033645 0.1081360
 0.1129312 0.1177502 0.1225931 0.1274600 0.1323508
 0.1372657 0.1422047 0.1471678 0.1521550 0.1571664
 0.1622019 0.1672617 0.1723457 0.1774539 0.1825864
 0.1877430 0.1929239 0.1981289 0.2033581 0.2086114
 0.2138887 0.2191901 0.2245155 0.2298647 0.2352379
 0.2406347 0.2460552 0.2514994 0.2569669 0.2624578
 0.2679720 0.2735091 0.2790693 0.2846522 0.2902577
 0.2958857 0.3015358 0.3072080 0.3129020 0.3186176
 0.3243545 0.3301126 0.3358914 0.3416908 0.3475104
 0.3533500 0.3592092 0.3650876 0.3709849 0.3769008
 0.3828349 0.3887867 0.3947558 0.4007418 0.4067443
 0.4127628 0.4187967 0.4248456 0.4309089 0.4369861
 0.4430768 0.4491802 0.4552957 0.4614227 0.4675606
 0.4737088 0.4798666 0.4860331 0.4922078 0.4983898
 0.5045785 0.5107731 0.5169725 0.5231763 0.5293832
 0.5355927 0.5418038 0.5480155 0.5542269 0.5604371
 0.5666451 0.5728498 0.5790502 0.5852454 0.5914342
 0.5976155 0.6037884 0.6099515 0.6161038 0.6222442
 0.6283714 0.6344842 0.6405815 0.6466620 0.6527244
 0.6587675 0.6647899 0.6707905 0.6767678 0.6827206
 0.6886476 0.6945473 0.7004185 0.7062598 0.7120697
 0.7178470 0.7235903 0.7292981 0.7349691 0.7406019
 0.7461951 0.7517473 0.7572572 0.7627234 0.7681444
 0.7735189 0.7788456 0.7841232 0.7893502 0.7945255
 0.7996475 0.8047153 0.8097274 0.8146825 0.8195795
 0.8244174 0.8291947 0.8339103 0.8385634 0.8431526
 0.8476772 0.8521359 0.8565278 0.8608521 0.8651080
 0.8692943 0.8734106 0.8774560 0.8814299 0.8853314
 0.8891603 0.8929157 0.8965973 0.9002048 0.9037376
 0.9071954 0.9105781 0.9138854 0.9171172 0.9202734
 0.9233539 0.9263589 0.9292884 0.9321427 0.9349218
 0.9376262 0.9402561 0.9428120 0.9452944 0.9477037
 0.9500405 0.9523054 0.9544993 0.9566228 0.9586767
 0.9606618 0.9625792 0.9644296 0.9662142 0.9679340
 0.9695899 0.9711832 0.9727150 0.9741865 0.9755990
 0.9769536 0.9782518 0.9794946 0.9806836 0.9818200
 0.9829053 0.9839407 0.9849278 0.9858679 0.9867623
 0.9876127 0.9884202 0.9891864 0.9899127 0.9906004
 0.9912510 0.9918659 0.9924463 0.9929937 0.9935095
 0.9939948 0.9944512 0.9948797 0.9952816 0.9956582
 0.9960107 0.9963403 0.9966480 0.9969350 0.9972024
 0.9974512 0.9976824 0.9978970 0.9980960 0.9982802
 0.9984506 0.9986079 0.9987530 0.9988866 0.9990096
 0.9991226 0.9992262 0.9993210 0.9994079 0.9994872
 0.9995596 0.9996255 0.9996855 0.9997399 0.9997893
 0.9998340 0.9998745 0.9999110 0.9999439 0.9999734
 1.000000
 0.2180992 0.2181213 0.2181434 0.2181655 0.2181874
 0.2182091 0.2182305 0.2182515 0.2182720 0.2182919
 0.2183111 0.2183295 0.2183470 0.2183636 0.2183790
 0.2183931 0.2184059 0.2184173 0.2184270 0.2184351
 0.2184412 0.2184454 0.2184475 0.2184473 0.2184447
 0.2184395 0.2184316 0.2184209 0.2184071 0.2183902
 0.2183699 0.2183460 0.2183185 0.2182871 0.2182516
 0.2182119 0.2181677 0.2181189 0.2180653 0.2180066
 0.2179427 0.2178733 0.2177982 0.2177172 0.2176301
 0.2175367 0.2174366 0.2173298 0.2172158 0.2170945
 0.2169657 0.2168290 0.2166842 0.2165310 0.2163692
 0.2161985 0.2160186 0.2158292 0.2156301 0.2154209
 0.2152013 0.2149711 0.2147299 0.2144775 0.2142134
 0.2139375 0.2136493 0.2133486 0.2130350 0.2127082
 0.2123679 0.2120137 0.2116453 0.2112623 0.2108644
 0.2104513 0.2100225 0.2095778 0.2091168 0.2086391
 0.2081445 0.2076324 0.2071027 0.2065548 0.2059886
 0.2054035 0.2047993 0.2041756 0.2035321 0.2028684
 0.2021842 0.2014791 0.2007528 0.2000050 0.1992353
 0.1984435 0.1976291 0.1967920 0.1959317 0.1950481
 0.1941408 0.1932095 0.1922540 0.1912740 0.1902693
 0.1892397 0.1881849 0.1871047 0.1859989 0.1848675
 0.1837101 0.1825267 0.1813171 0.1800812 0.1788190
 0.1775303 0.1762152 0.1748735 0.1735054 0.1721107
 0.1706896 0.1692421 0.1677683 0.1662684 0.1647424
 0.1631905 0.1616130 0.1600100 0.1583819 0.1567288
 0.1550512 0.1533495 0.1516238 0.1498748 0.1481027
 0.1463082 0.1444917 0.1426538 0.1407950 0.1389160
 0.1370173 0.1350998 0.1331641 0.1312109 0.1292410
 0.1272553 0.1252546 0.1232397 0.1212116 0.1191712
 0.1171195 0.1150574 0.1129861 0.1109065 0.1088197
 0.1067269 0.1046291 0.1025275 0.1004232 9.8317482E-02
 9.6211523E-02 9.4106503E-02 9.2003644E-02 8.9904197E-02 8.7809429E-02
 8.5720532E-02 8.3638825E-02 8.1565551E-02 7.9501927E-02 7.7449247E-02
 7.5408749E-02 7.3381685E-02 7.1369275E-02 6.9372736E-02 6.7393251E-02
 6.5432049E-02 6.3490279E-02 6.1569106E-02 5.9669588E-02 5.7792887E-02
 5.5939995E-02 5.4111991E-02 5.2309860E-02 5.0534546E-02 4.8786983E-02
 4.7068056E-02 4.5378592E-02 4.3719362E-02 4.2091131E-02 4.0494591E-02
 3.8930383E-02 3.7399132E-02 3.5901342E-02 3.4437522E-02 3.3008125E-02
 3.1613551E-02 3.0254064E-02 2.8929994E-02 2.7641539E-02 2.6388869E-02
 2.5172081E-02 2.3991231E-02 2.2846319E-02 2.1737294E-02 2.0664046E-02
 1.9626411E-02 1.8624173E-02 1.7657083E-02 1.6724806E-02 1.5827006E-02
 1.4963271E-02 1.4133178E-02 1.3336211E-02 1.2571861E-02 1.1839571E-02
 1.1138733E-02 1.0468737E-02 9.8289065E-03 9.2185680E-03 8.6370055E-03
 8.0834823E-03 7.5572589E-03 7.0575578E-03 6.5835905E-03 6.1345757E-03
 5.7096817E-03 5.3081159E-03 4.9290564E-03 4.5716730E-03 4.2351428E-03
 3.9186650E-03 3.6214059E-03 3.3425603E-03 3.0813329E-03 2.8369224E-03
 2.6085556E-03 2.3954667E-03 2.1968964E-03 2.0121133E-03 1.8403977E-03
 1.6810478E-03 1.5333840E-03 1.3967444E-03 1.2704900E-03 1.1539998E-03
 1.0466789E-03 9.4795268E-04 8.5726992E-04 7.7410450E-04 6.9794961E-04
 6.2832201E-04 5.6476437E-04 5.0683983E-04 4.5413349E-04 4.0625472E-04
 3.6283227E-04
 91 51
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000 5.050000 5.100000 5.150000 5.200000
 5.250000 5.300000 5.350000 5.400000 5.450000
 5.500000 5.550000 5.600000 5.650000 5.700000
 5.750000 5.800000 5.850000 5.900000 5.950000
 6.000000
 -1.500001 -1.450001 -1.400001 -1.350001 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -0.1000000 -5.0000012E-02
 0.0000000E+00 4.9999952E-02 0.1000000 0.1500000 0.2000000
 0.2500000 0.3000000 0.3500000 0.4000000 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 8.6909700E-03 8.0804368E-03 7.4811494E-03 6.9057713E-03 6.3676881E-03
 5.8810855E-03 5.4600742E-03 5.1170173E-03 4.8596309E-03 4.6882350E-03
 4.5943861E-03 4.5622680E-03 4.5723352E-03 4.6052448E-03 4.6447599E-03
 4.6789851E-03 4.7003347E-03 4.7048284E-03 4.6911323E-03 4.6596914E-03
 4.6120030E-03 4.5501157E-03 4.4762818E-03 4.3927431E-03 4.3016053E-03
 4.2047631E-03 4.1038748E-03 4.0003504E-03 3.8953600E-03 3.7898470E-03
 3.6845664E-03 3.5801090E-03 3.4769387E-03 3.3754206E-03 3.2758415E-03
 3.1784240E-03 3.0833345E-03 2.9906847E-03 2.9005413E-03 2.8129343E-03
 2.7278601E-03 2.6453009E-03 2.5652214E-03 2.4875796E-03 2.4123220E-03
 2.3393917E-03 2.2687269E-03 2.2002626E-03 2.1339324E-03 2.0696719E-03
 2.0074146E-03 1.9470953E-03 1.8886541E-03 1.8320234E-03 1.7771464E-03
 1.7239659E-03 1.6724220E-03 1.6224615E-03 1.5740318E-03 1.5270822E-03
 1.4815634E-03 1.4374272E-03 1.3946295E-03 1.3531252E-03 1.3128733E-03
 1.2738323E-03 1.2359641E-03 1.1992299E-03 1.1635949E-03 1.1290205E-03
 1.0954782E-03 1.0629321E-03 1.0313520E-03 1.0007073E-03 9.7096950E-04
 9.4210944E-04 9.1410062E-04 8.8691723E-04 8.6053304E-04 8.3492539E-04
 8.1006764E-04 7.8594009E-04 7.6251879E-04 7.3978200E-04 7.1771076E-04
 6.9628499E-04 6.7548390E-04 6.5528916E-04 6.3568359E-04 6.1664789E-04
 5.9816684E-04
 4.1258436E-02 3.8251814E-02 3.5381481E-02 3.2639399E-02 3.0019134E-02
 2.7516989E-02 2.5133345E-02 2.2873715E-02 2.0748826E-02 1.8772496E-02
 1.6957898E-02 1.5313280E-02 1.3839464E-02 1.2529875E-02 1.1372428E-02
 1.0351928E-02 9.4522871E-03 8.6579956E-03 7.9549504E-03 7.3308088E-03
 6.7749503E-03 6.2783631E-03 5.8334088E-03 5.4336004E-03 5.0733928E-03
 4.7480254E-03 4.4533769E-03 4.1858586E-03 3.9423443E-03 3.7201007E-03
 3.5167476E-03 3.3302053E-03 3.1586699E-03 3.0005667E-03 2.8545102E-03
 2.7192777E-03 2.5937811E-03 2.4770489E-03 2.3682192E-03 2.2665274E-03
 2.1712966E-03 2.0819325E-03 1.9979051E-03 1.9187458E-03 1.8440355E-03
 1.7733997E-03 1.7065048E-03 1.6430529E-03 1.5827756E-03 1.5254345E-03
 1.4708136E-03 1.4187170E-03 1.3689727E-03 1.3214179E-03 1.2759112E-03
 1.2323227E-03 1.1905314E-03 1.1504304E-03 1.1119207E-03 1.0749114E-03
 1.0393200E-03 1.0050689E-03 9.7208901E-04 9.4031409E-04 9.0968533E-04
 8.8014640E-04 8.5164624E-04 8.2413614E-04 7.9757214E-04 7.7191059E-04
 7.4711535E-04 7.2314701E-04 6.9997291E-04 6.7755947E-04 6.5587752E-04
 6.3489750E-04 6.1459240E-04 5.9493707E-04 5.7590642E-04 5.5747834E-04
 5.3962978E-04 5.2234117E-04 5.0559192E-04 4.8936292E-04 4.7363687E-04
 4.5839683E-04 4.4362512E-04 4.2930653E-04 4.1542665E-04 4.0196982E-04
 3.8892330E-04
 1.0213493E-02 9.6654734E-03 9.1373231E-03 8.6410483E-03 8.1879813E-03
 7.7882153E-03 7.4493936E-03 7.1752290E-03 6.9643180E-03 6.8097832E-03
 6.7002666E-03 6.6220420E-03 6.5614167E-03 6.5066689E-03 6.4490242E-03
 6.3827825E-03 6.3049127E-03 6.2143980E-03 6.1115935E-03 5.9977011E-03
 5.8743637E-03 5.7434039E-03 5.6066411E-03 5.4657799E-03 5.3223553E-03
 5.1776962E-03 5.0329203E-03 4.8889397E-03 4.7464855E-03 4.6061291E-03
 4.4683139E-03 4.3333801E-03 4.2015798E-03 4.0731067E-03 3.9480883E-03
 3.8266007E-03 3.7086762E-03 3.5943035E-03 3.4834519E-03 3.3760592E-03
 3.2720561E-03 3.1713631E-03 3.0738895E-03 2.9795486E-03 2.8882392E-03
 2.7998690E-03 2.7143403E-03 2.6315558E-03 2.5514234E-03 2.4738521E-03
 2.3987517E-03 2.3260359E-03 2.2556225E-03 2.1874290E-03 2.1213789E-03
 2.0573977E-03 1.9954122E-03 1.9353565E-03 1.8771609E-03 1.8207626E-03
 1.7661022E-03 1.7131178E-03 1.6617572E-03 1.6119629E-03 1.5636848E-03
 1.5168728E-03 1.4714759E-03 1.4274527E-03 1.3847542E-03 1.3433401E-03
 1.3031687E-03 1.2641996E-03 1.2263962E-03 1.1897219E-03 1.1541374E-03
 1.1196128E-03 1.0861119E-03 1.0536057E-03 1.0220617E-03 9.9144911E-04
 9.6174155E-04 9.3290943E-04 9.0492802E-04 8.7776937E-04 8.5140864E-04
 8.2582363E-04 8.0098934E-04 7.7688403E-04 7.5348531E-04 7.3077134E-04
 7.0872158E-04
 3.9714731E-02 3.6726583E-02 3.3885036E-02 3.1185612E-02 2.8625941E-02
 2.6206408E-02 2.3930363E-02 2.1803644E-02 1.9833134E-02 1.8024582E-02
 1.6380368E-02 1.4898067E-02 1.3570435E-02 1.2386392E-02 1.1332655E-02
 1.0395207E-02 9.5604472E-03 8.8158408E-03 8.1502125E-03 7.5537940E-03
 7.0181098E-03 6.5358416E-03 6.1006569E-03 5.7070642E-03 5.3502712E-03
 5.0260904E-03 4.7308463E-03 4.4613173E-03 4.2146784E-03 3.9884504E-03
 3.7804674E-03 3.5888262E-03 3.4118500E-03 3.2480578E-03 3.0961314E-03
 2.9548944E-03 2.8233039E-03 2.7004282E-03 2.5854483E-03 2.4776342E-03
 2.3763396E-03 2.2809899E-03 2.1910716E-03 2.1061290E-03 2.0257500E-03
 1.9495705E-03 1.8772626E-03 1.8085305E-03 1.7431109E-03 1.6807641E-03
 1.6212749E-03 1.5644479E-03 1.5101078E-03 1.4580929E-03 1.4082578E-03
 1.3604695E-03 1.3146068E-03 1.2705585E-03 1.2282220E-03 1.1875039E-03
 1.1483193E-03 1.1105863E-03 1.0742336E-03 1.0391917E-03 1.0053980E-03
 9.7279408E-04 9.4132411E-04 9.1093883E-04 8.8158826E-04 8.5322984E-04
 8.2582067E-04 7.9932116E-04 7.7369541E-04 7.4890821E-04 7.2492525E-04
 7.0171704E-04 6.7925308E-04 6.5750681E-04 6.3645036E-04 6.1605842E-04
 5.9630838E-04 5.7717640E-04 5.5864116E-04 5.4068194E-04 5.2327878E-04
 5.0641305E-04 4.9006636E-04 4.7422163E-04 4.5886220E-04 4.4397174E-04
 4.2953491E-04
 1.2041223E-02 1.1565113E-02 1.1114274E-02 1.0697964E-02 1.0323294E-02
 9.9945515E-03 9.7124428E-03 9.4738221E-03 9.2720799E-03 9.0982653E-03
 8.9425724E-03 8.7958621E-03 8.6506866E-03 8.5017458E-03 8.3458340E-03
 8.1814975E-03 8.0085909E-03 7.8278417E-03 7.6404968E-03 7.4480665E-03
 7.2521316E-03 7.0542218E-03 6.8557444E-03 6.6579417E-03 6.4618601E-03
 6.2683676E-03 6.0781543E-03 5.8917543E-03 5.7095741E-03 5.5319066E-03
 5.3589651E-03 5.1908870E-03 5.0277482E-03 4.8695724E-03 4.7163432E-03
 4.5680017E-03 4.4244593E-03 4.2856080E-03 4.1513299E-03 4.0214933E-03
 3.8959624E-03 3.7746013E-03 3.6572663E-03 3.5438237E-03 3.4341305E-03
 3.3280563E-03 3.2254681E-03 3.1262382E-03 3.0302468E-03 2.9373709E-03
 2.8474999E-03 2.7605223E-03 2.6763338E-03 2.5948335E-03 2.5159232E-03
 2.4395124E-03 2.3655111E-03 2.2938352E-03 2.2244011E-03 2.1571321E-03
 2.0919538E-03 2.0287938E-03 1.9675833E-03 1.9082570E-03 1.8507502E-03
 1.7950037E-03 1.7409566E-03 1.6885553E-03 1.6377444E-03 1.5884711E-03
 1.5406882E-03 1.4943467E-03 1.4493989E-03 1.4058022E-03 1.3635112E-03
 1.3224866E-03 1.2826880E-03 1.2440757E-03 1.2066152E-03 1.1702664E-03
 1.1350001E-03 1.1007785E-03 1.0675717E-03 1.0353470E-03 1.0040754E-03
 9.7372814E-04 9.4427704E-04 9.1569382E-04 8.8795030E-04 8.6102646E-04
 8.3489338E-04
 3.8031247E-02 3.5084344E-02 3.2298859E-02 2.9673465E-02 2.7208410E-02
 2.4905412E-02 2.2766896E-02 2.0794796E-02 1.8989179E-02 1.7347155E-02
 1.5862424E-02 1.4525639E-02 1.3325301E-02 1.2248837E-02 1.1283580E-02
 1.0417417E-02 9.6392194E-03 8.9389645E-03 8.3077727E-03 7.7378200E-03
 7.2222212E-03 6.7549255E-03 6.3305972E-03 5.9445337E-03 5.5925697E-03
 5.2710269E-03 4.9766507E-03 4.7065690E-03 4.4582519E-03 4.2294613E-03
 4.0182164E-03 3.8227630E-03 3.6415372E-03 3.4731443E-03 3.3163440E-03
 3.1700272E-03 3.0332101E-03 2.9050179E-03 2.7846752E-03 2.6714886E-03
 2.5648400E-03 2.4641769E-03 2.3690055E-03 2.2788839E-03 2.1934141E-03
 2.1122410E-03 2.0350432E-03 1.9615311E-03 1.8914453E-03 1.8245480E-03
 1.7606263E-03 1.6994856E-03 1.6409486E-03 1.5848553E-03 1.5310580E-03
 1.4794224E-03 1.4298251E-03 1.3821536E-03 1.3363020E-03 1.2921753E-03
 1.2496847E-03 1.2087484E-03 1.1692898E-03 1.1312384E-03 1.0945278E-03
 1.0590979E-03 1.0248893E-03 9.9185016E-04 9.5992925E-04 9.2907966E-04
 8.9925743E-04 8.7042025E-04 8.4252929E-04 8.1554742E-04 7.8943849E-04
 7.6417014E-04 7.3971035E-04 7.1602926E-04 6.9309899E-04 6.7089056E-04
 6.4938085E-04 6.2854274E-04 6.0835487E-04 5.8879290E-04 5.6983659E-04
 5.5146537E-04 5.3365983E-04 5.1640003E-04 4.9966795E-04 4.8344786E-04
 4.6772152E-04
 1.4241377E-02 1.3840899E-02 1.3464273E-02 1.3116009E-02 1.2797670E-02
 1.2507812E-02 1.2242308E-02 1.1995212E-02 1.1759837E-02 1.1529818E-02
 1.1299897E-02 1.1066318E-02 1.0826860E-02 1.0580641E-02 1.0327812E-02
 1.0069232E-02 9.8061943E-03 9.5402133E-03 9.2728510E-03 9.0056341E-03
 8.7399455E-03 8.4770164E-03 8.2178898E-03 7.9634245E-03 7.7143009E-03
 7.4710315E-03 7.2339978E-03 7.0034554E-03 6.7795780E-03 6.5624462E-03
 6.3520847E-03 6.1484571E-03 5.9514879E-03 5.7610599E-03 5.5770250E-03
 5.3992174E-03 5.2274559E-03 5.0615515E-03 4.9013100E-03 4.7465353E-03
 4.5970352E-03 4.4526160E-03 4.3130866E-03 4.1782684E-03 4.0479810E-03
 3.9220531E-03 3.8003181E-03 3.6826178E-03 3.5688009E-03 3.4587204E-03
 3.3522341E-03 3.2492094E-03 3.1495201E-03 3.0530370E-03 2.9596500E-03
 2.8692444E-03 2.7817104E-03 2.6969491E-03 2.6148595E-03 2.5353485E-03
 2.4583263E-03 2.3837066E-03 2.3114060E-03 2.2413468E-03 2.1734503E-03
 2.1076449E-03 2.0438614E-03 1.9820321E-03 1.9220902E-03 1.8639776E-03
 1.8076304E-03 1.7529933E-03 1.7000110E-03 1.6486263E-03 1.5987940E-03
 1.5504619E-03 1.5035797E-03 1.4581060E-03 1.4139942E-03 1.3712003E-03
 1.3296852E-03 1.2894067E-03 1.2503288E-03 1.2124133E-03 1.1756244E-03
 1.1399282E-03 1.1052897E-03 1.0716773E-03 1.0390582E-03 1.0074034E-03
 9.7668706E-04
 3.6233135E-02 3.3361152E-02 3.0669188E-02 2.8157031E-02 2.5824418E-02
 2.3670396E-02 2.1692438E-02 1.9885734E-02 1.8242951E-02 1.6754488E-02
 1.5409102E-02 1.4194680E-02 1.3099000E-02 1.2110257E-02 1.1217434E-02
 1.0410449E-02 9.6802088E-03 9.0185748E-03 8.4182899E-03 7.8728935E-03
 7.3766191E-03 6.9243265E-03 6.5114275E-03 6.1338325E-03 5.7878918E-03
 5.4703546E-03 5.1783300E-03 4.9092476E-03 4.6608248E-03 4.4310200E-03
 4.2180172E-03 4.0201899E-03 3.8360842E-03 3.6644051E-03 3.5039927E-03
 3.3538141E-03 3.2129495E-03 3.0805774E-03 2.9559643E-03 2.8384523E-03
 2.7274548E-03 2.6224426E-03 2.5229426E-03 2.4285307E-03 2.3388222E-03
 2.2534733E-03 2.1721702E-03 2.0946318E-03 2.0206026E-03 1.9498501E-03
 1.8821630E-03 1.8173485E-03 1.7552330E-03 1.6956527E-03 1.6384638E-03
 1.5835301E-03 1.5307260E-03 1.4799390E-03 1.4310624E-03 1.3839985E-03
 1.3386582E-03 1.2949558E-03 1.2528141E-03 1.2121602E-03 1.1729255E-03
 1.1350480E-03 1.0984672E-03 1.0631279E-03 1.0289771E-03 9.9596637E-04
 9.6404954E-04 9.3318225E-04 9.0332283E-04 8.7443233E-04 8.4647420E-04
 8.1941386E-04 7.9321628E-04 7.6785136E-04 7.4328826E-04 7.1949809E-04
 6.9645367E-04 6.7412865E-04 6.5249827E-04 6.3153857E-04 6.1122677E-04
 5.9154100E-04 5.7245995E-04 5.5396417E-04 5.3603284E-04 5.1864865E-04
 5.0179492E-04
 1.6880937E-02 1.6544823E-02 1.6220478E-02 1.5907405E-02 1.5603147E-02
 1.5303910E-02 1.5005489E-02 1.4704042E-02 1.4396649E-02 1.4081534E-02
 1.3758061E-02 1.3426561E-02 1.3088088E-02 1.2744159E-02 1.2396563E-02
 1.2047170E-02 1.1697833E-02 1.1350278E-02 1.1006058E-02 1.0666540E-02
 1.0332866E-02 1.0005975E-02 9.6865995E-03 9.3753003E-03 9.0724695E-03
 8.7783588E-03 8.4931208E-03 8.2168039E-03 7.9493895E-03 7.6907892E-03
 7.4408758E-03 7.1994672E-03 6.9663543E-03 6.7413081E-03 6.5240851E-03
 6.3144239E-03 6.1120698E-03 5.9167566E-03 5.7282313E-03 5.5462378E-03
 5.3705280E-03 5.2008573E-03 5.0369930E-03 4.8787124E-03 4.7257948E-03
 4.5780330E-03 4.4352319E-03 4.2971913E-03 4.1637374E-03 4.0346906E-03
 3.9098854E-03 3.7891604E-03 3.6723656E-03 3.5593531E-03 3.4499841E-03
 3.3441281E-03 3.2416540E-03 3.1424435E-03 3.0463780E-03 2.9533478E-03
 2.8632472E-03 2.7759699E-03 2.6914231E-03 2.6095093E-03 2.5301396E-03
 2.4532292E-03 2.3786929E-03 2.3064516E-03 2.2364291E-03 2.1685523E-03
 2.1027508E-03 2.0389538E-03 1.9770986E-03 1.9171233E-03 1.8589627E-03
 1.8025649E-03 1.7478652E-03 1.6948170E-03 1.6433629E-03 1.5934558E-03
 1.5450466E-03 1.4980854E-03 1.4525296E-03 1.4083328E-03 1.3654571E-03
 1.3238564E-03 1.2834969E-03 1.2443337E-03 1.2063358E-03 1.1694650E-03
 1.1336862E-03
 3.4376848E-02 3.1624209E-02 2.9069638E-02 2.6710067E-02 2.4540685E-02
 2.2554554E-02 2.0742666E-02 1.9094249E-02 1.7597402E-02 1.6239701E-02
 1.5008803E-02 1.3892844E-02 1.2880727E-02 1.1962231E-02 1.1128067E-02
 1.0369830E-02 9.6799415E-03 9.0515865E-03 8.4786220E-03 7.9555325E-03
 7.4773394E-03 7.0395614E-03 6.6381698E-03 6.2695513E-03 5.9304596E-03
 5.6179888E-03 5.3295367E-03 5.0627734E-03 4.8156162E-03 4.5861914E-03
 4.3728226E-03 4.1740062E-03 3.9883936E-03 3.8147832E-03 3.6520974E-03
 3.4993717E-03 3.3557452E-03 3.2204438E-03 3.0927763E-03 2.9721195E-03
 2.8579165E-03 2.7496633E-03 2.6469063E-03 2.5492390E-03 2.4562920E-03
 2.3677319E-03 2.2832565E-03 2.2025900E-03 2.1254856E-03 2.0517143E-03
 1.9810693E-03 1.9133609E-03 1.8484157E-03 1.7860752E-03 1.7261923E-03
 1.6686337E-03 1.6132735E-03 1.5599994E-03 1.5087026E-03 1.4592869E-03
 1.4116603E-03 1.3657372E-03 1.3214390E-03 1.2786909E-03 1.2374239E-03
 1.1975733E-03 1.1590781E-03 1.1218820E-03 1.0859296E-03 1.0511712E-03
 1.0175593E-03 9.8504755E-04 9.5359364E-04 9.2315749E-04 8.9369982E-04
 8.6518546E-04 8.3757751E-04 8.1084471E-04 7.8495487E-04 7.5987866E-04
 7.3558668E-04 7.1205141E-04 6.8924727E-04 6.6714868E-04 6.4573274E-04
 6.2497432E-04 6.0485408E-04 5.8534846E-04 5.6643924E-04 5.4810534E-04
 5.3032860E-04
 2.0001443E-02 1.9692807E-02 1.9373789E-02 1.9042548E-02 1.8697208E-02
 1.8336460E-02 1.7959855E-02 1.7567875E-02 1.7161841E-02 1.6743712E-02
 1.6315868E-02 1.5880913E-02 1.5441484E-02 1.5000151E-02 1.4559316E-02
 1.4121161E-02 1.3687602E-02 1.3260302E-02 1.2840641E-02 1.2429759E-02
 1.2028537E-02 1.1637645E-02 1.1257556E-02 1.0888584E-02 1.0530892E-02
 1.0184537E-02 9.8494738E-03 9.5255887E-03 9.2127072E-03 8.9105982E-03
 8.6189965E-03 8.3376104E-03 8.0661215E-03 7.8042131E-03 7.5515481E-03
 7.3077958E-03 7.0726299E-03 6.8457201E-03 6.6267592E-03 6.4154295E-03
 6.2114378E-03 6.0144928E-03 5.8243177E-03 5.6406488E-03 5.4632276E-03
 5.2918135E-03 5.1261699E-03 4.9660704E-03 4.8113079E-03 4.6616774E-03
 4.5169820E-03 4.3770331E-03 4.2416574E-03 4.1106842E-03 3.9839507E-03
 3.8613027E-03 3.7425901E-03 3.6276747E-03 3.5164163E-03 3.4086898E-03
 3.3043686E-03 3.2033322E-03 3.1054665E-03 3.0106658E-03 2.9188199E-03
 2.8298316E-03 2.7436025E-03 2.6600428E-03 2.5790597E-03 2.5005662E-03
 2.4244855E-03 2.3507308E-03 2.2792327E-03 2.2099116E-03 2.1427013E-03
 2.0775306E-03 2.0143376E-03 1.9530541E-03 1.8936221E-03 1.8359802E-03
 1.7800756E-03 1.7258477E-03 1.6732499E-03 1.6222278E-03 1.5727337E-03
 1.5247186E-03 1.4781345E-03 1.4329435E-03 1.3890963E-03 1.3465516E-03
 1.3052743E-03
 3.2554362E-02 2.9966170E-02 2.7584838E-02 2.5401320E-02 2.3404740E-02
 2.1582866E-02 1.9922739E-02 1.8411236E-02 1.7035553E-02 1.5783519E-02
 1.4643781E-02 1.3605880E-02 1.2660255E-02 1.1798210E-02 1.1011848E-02
 1.0294007E-02 9.6381875E-03 9.0384884E-03 8.4895529E-03 7.9865213E-03
 7.5249868E-03 7.1009565E-03 6.7108232E-03 6.3513364E-03 6.0195625E-03
 5.7128617E-03 5.4288581E-03 5.1654149E-03 4.9206116E-03 4.6927165E-03
 4.4801785E-03 4.2816009E-03 4.0957322E-03 3.9214529E-03 3.7577562E-03
 3.6037387E-03 3.4585905E-03 3.3215820E-03 3.1920609E-03 3.0694343E-03
 2.9531738E-03 2.8427988E-03 2.7378758E-03 2.6380150E-03 2.5428603E-03
 2.4520901E-03 2.3654122E-03 2.2825592E-03 2.2032906E-03 2.1273831E-03
 2.0546354E-03 1.9848594E-03 1.9178870E-03 1.8535590E-03 1.7917330E-03
 1.7322750E-03 1.6750611E-03 1.6199782E-03 1.5669189E-03 1.5157860E-03
 1.4664883E-03 1.4189385E-03 1.3730583E-03 1.3287731E-03 1.2860111E-03
 1.2447088E-03 1.2048038E-03 1.1662380E-03 1.1289564E-03 1.0929069E-03
 1.0580424E-03 1.0243148E-03 9.9168113E-04 9.6009945E-04 9.2953170E-04
 8.9993788E-04 8.7128521E-04 8.4353721E-04 8.1666274E-04 7.9063041E-04
 7.6541107E-04 7.4097590E-04 7.1729854E-04 6.9435261E-04 6.7211309E-04
 6.5055763E-04 6.2966096E-04 6.0940412E-04 5.8976340E-04 5.7071942E-04
 5.5225426E-04
 2.3589831E-02 2.3247611E-02 2.2871967E-02 2.2464409E-02 2.2027258E-02
 2.1563601E-02 2.1077078E-02 2.0571649E-02 2.0051405E-02 1.9520355E-02
 1.8982342E-02 1.8440908E-02 1.7899279E-02 1.7360305E-02 1.6826492E-02
 1.6299959E-02 1.5782481E-02 1.5275511E-02 1.4780199E-02 1.4297425E-02
 1.3827819E-02 1.3371808E-02 1.2929640E-02 1.2501417E-02 1.2087117E-02
 1.1686622E-02 1.1299728E-02 1.0926172E-02 1.0565647E-02 1.0217800E-02
 9.8822555E-03 9.5586246E-03 9.2464918E-03 8.9454642E-03 8.6551281E-03
 8.3750840E-03 8.1049437E-03 7.8443186E-03 7.5928415E-03 7.3501468E-03
 7.1158949E-03 6.8897465E-03 6.6713826E-03 6.4605009E-03 6.2568011E-03
 6.0600089E-03 5.8698542E-03 5.6860764E-03 5.5084359E-03 5.3366954E-03
 5.1706326E-03 5.0100335E-03 4.8546921E-03 4.7044191E-03 4.5590228E-03
 4.4183270E-03 4.2821602E-03 4.1503613E-03 4.0227715E-03 3.8992437E-03
 3.7796341E-03 3.6638032E-03 3.5516236E-03 3.4429659E-03 3.3377090E-03
 3.2357394E-03 3.1369422E-03 3.0412131E-03 2.9484462E-03 2.8585435E-03
 2.7714083E-03 2.6869513E-03 2.6050878E-03 2.5257224E-03 2.4487842E-03
 2.3741871E-03 2.3018583E-03 2.2317267E-03 2.1637173E-03 2.0977645E-03
 2.0338036E-03 1.9717689E-03 1.9116038E-03 1.8532468E-03 1.7966370E-03
 1.7417246E-03 1.6884565E-03 1.6367834E-03 1.5866492E-03 1.5380133E-03
 1.4908232E-03
 3.0869858E-02 2.8471440E-02 2.6273731E-02 2.4262965E-02 2.2425067E-02
 2.0746121E-02 1.9212786E-02 1.7812498E-02 1.6533587E-02 1.5365312E-02
 1.4297826E-02 1.3322130E-02 1.2430003E-02 1.1613929E-02 1.0867050E-02
 1.0183082E-02 9.5562870E-03 8.9814086E-03 8.4536467E-03 7.9686297E-03
 7.5223655E-03 7.1112318E-03 6.7319395E-03 6.3815163E-03 6.0572689E-03
 5.7567642E-03 5.4778080E-03 5.2184169E-03 4.9768067E-03 4.7513689E-03
 4.5406530E-03 4.3433588E-03 4.1583157E-03 3.9844727E-03 3.8208850E-03
 3.6667006E-03 3.5211535E-03 3.3835559E-03 3.2532858E-03 3.1297815E-03
 3.0125382E-03 2.9010957E-03 2.7950394E-03 2.6939944E-03 2.5976186E-03
 2.5056007E-03 2.4176578E-03 2.3335314E-03 2.2529867E-03 2.1758073E-03
 2.1017946E-03 2.0307673E-03 1.9625577E-03 1.8970115E-03 1.8339872E-03
 1.7733525E-03 1.7149854E-03 1.6587741E-03 1.6046109E-03 1.5524008E-03
 1.5020507E-03 1.4534757E-03 1.4065964E-03 1.3613375E-03 1.3176291E-03
 1.2754060E-03 1.2346045E-03 1.1951679E-03 1.1570397E-03 1.1201685E-03
 1.0845043E-03 1.0500012E-03 1.0166147E-03 9.8430132E-04 9.5302315E-04
 9.2274108E-04 8.9341850E-04 8.6502143E-04 8.3751586E-04 8.1087160E-04
 7.8505796E-04 7.6004624E-04 7.3580915E-04 7.1231945E-04 6.8955205E-04
 6.6748296E-04 6.4608944E-04 6.2534818E-04 6.0523790E-04 5.8573839E-04
 5.6682905E-04
 2.7581094E-02 2.7140411E-02 2.6652228E-02 2.6122715E-02 2.5558256E-02
 2.4965219E-02 2.4349755E-02 2.3717657E-02 2.3074254E-02 2.2424378E-02
 2.1772321E-02 2.1121867E-02 2.0476272E-02 1.9838318E-02 1.9210337E-02
 1.8594235E-02 1.7991552E-02 1.7403480E-02 1.6830895E-02 1.6274437E-02
 1.5734497E-02 1.5211275E-02 1.4704822E-02 1.4215051E-02 1.3741774E-02
 1.3284707E-02 1.2843517E-02 1.2417804E-02 1.2007145E-02 1.1611075E-02
 1.1229123E-02 1.0860805E-02 1.0505633E-02 1.0163129E-02 9.8328162E-03
 9.5142238E-03 9.2069088E-03 8.9104166E-03 8.6243348E-03 8.3482508E-03
 8.0817612E-03 7.8244982E-03 7.5760907E-03 7.3361951E-03 7.1044751E-03
 6.8806172E-03 6.6643152E-03 6.4552757E-03 6.2532257E-03 6.0578967E-03
 5.8690310E-03 5.6863949E-03 5.5097505E-03 5.3388784E-03 5.1735635E-03
 5.0136079E-03 4.8588146E-03 4.7089979E-03 4.5639798E-03 4.4235918E-03
 4.2876685E-03 4.1560540E-03 4.0285983E-03 3.9051594E-03 3.7855925E-03
 3.6697697E-03 3.5575638E-03 3.4488523E-03 3.3435151E-03 3.2414393E-03
 3.1425206E-03 3.0466469E-03 2.9537219E-03 2.8636500E-03 2.7763341E-03
 2.6916824E-03 2.6096164E-03 2.5300449E-03 2.4528923E-03 2.3780765E-03
 2.3055254E-03 2.2351653E-03 2.1669308E-03 2.1007485E-03 2.0365599E-03
 1.9742970E-03 1.9138993E-03 1.8553146E-03 1.7984771E-03 1.7433424E-03
 1.6898499E-03
 2.9392211E-02 2.7177488E-02 2.5146693E-02 2.3285298E-02 2.1579541E-02
 2.0016564E-02 1.8584475E-02 1.7272316E-02 1.6070003E-02 1.4968276E-02
 1.3958623E-02 1.3033204E-02 1.2184809E-02 1.1406779E-02 1.0692996E-02
 1.0037804E-02 9.4360020E-03 8.8828048E-03 8.3738239E-03 7.9050446E-03
 7.4727926E-03 7.0737246E-03 6.7047984E-03 6.3632545E-03 6.0465885E-03
 5.7525327E-03 5.4790354E-03 5.2242419E-03 4.9864813E-03 4.7642426E-03
 4.5561669E-03 4.3610288E-03 4.1777268E-03 4.0052668E-03 3.8427566E-03
 3.6893869E-03 3.5444326E-03 3.4072362E-03 3.2772066E-03 3.1538063E-03
 3.0365512E-03 2.9250006E-03 2.8187558E-03 2.7174549E-03 2.6207676E-03
 2.5283939E-03 2.4400591E-03 2.3555125E-03 2.2745249E-03 2.1968861E-03
 2.1224013E-03 2.0508941E-03 1.9822002E-03 1.9161678E-03 1.8526571E-03
 1.7915398E-03 1.7326939E-03 1.6760090E-03 1.6213796E-03 1.5687107E-03
 1.5179105E-03 1.4688951E-03 1.4215842E-03 1.3759040E-03 1.3317839E-03
 1.2891593E-03 1.2479674E-03 1.2081501E-03 1.1696517E-03 1.1324201E-03
 1.0964070E-03 1.0615641E-03 1.0278465E-03 9.9521375E-04 9.6362451E-04
 9.3303889E-04 9.0342399E-04 8.7474240E-04 8.4696134E-04 8.2004897E-04
 7.9397543E-04 7.6871132E-04 7.4422854E-04 7.2050118E-04 6.9750327E-04
 6.7521055E-04 6.5359834E-04 6.3264545E-04 6.1232864E-04 5.9262913E-04
 5.7352515E-04
 3.1901833E-02 3.1313308E-02 3.0674184E-02 2.9993679E-02 2.9280417E-02
 2.8542312E-02 2.7786531E-02 2.7019475E-02 2.6246794E-02 2.5473423E-02
 2.4703618E-02 2.3941010E-02 2.3188658E-02 2.2449089E-02 2.1724364E-02
 2.1016095E-02 2.0325553E-02 1.9653641E-02 1.9000987E-02 1.8367978E-02
 1.7754780E-02 1.7161395E-02 1.6587680E-02 1.6033379E-02 1.5498143E-02
 1.4981555E-02 1.4483138E-02 1.4002374E-02 1.3538733E-02 1.3091651E-02
 1.2660559E-02 1.2244890E-02 1.1844075E-02 1.1457569E-02 1.1084819E-02
 1.0725295E-02 1.0378488E-02 1.0043893E-02 9.7210389E-03 9.4094537E-03
 9.1087027E-03 8.8183573E-03 8.5380021E-03 8.2672592E-03 8.0057466E-03
 7.7531100E-03 7.5090062E-03 7.2731068E-03 7.0451028E-03 6.8246936E-03
 6.6115879E-03 6.4055240E-03 6.2062335E-03 6.0134642E-03 5.8269827E-03
 5.6465562E-03 5.4719667E-03 5.3030057E-03 5.1394715E-03 4.9811685E-03
 4.8279152E-03 4.6795337E-03 4.5358515E-03 4.3967091E-03 4.2619472E-03
 4.1314163E-03 4.0049711E-03 3.8824766E-03 3.7637942E-03 3.6487966E-03
 3.5373638E-03 3.4293728E-03 3.3247101E-03 3.2232683E-03 3.1249395E-03
 3.0296259E-03 2.9372221E-03 2.8476382E-03 2.7607786E-03 2.6765622E-03
 2.5948982E-03 2.5157093E-03 2.4389105E-03 2.3644336E-03 2.2921984E-03
 2.2221387E-03 2.1541810E-03 2.0882643E-03 2.0243200E-03 1.9622911E-03
 1.9021202E-03
 2.8130880E-02 2.6072066E-02 2.4178380E-02 2.2436991E-02 2.0835999E-02
 1.9364428E-02 1.8012112E-02 1.6769659E-02 1.5628349E-02 1.4580093E-02
 1.3617381E-02 1.2733222E-02 1.1921118E-02 1.1175030E-02 1.0489354E-02
 9.8588914E-03 9.2788329E-03 8.7447427E-03 8.2525359E-03 7.7984706E-03
 7.3791202E-03 6.9913520E-03 6.6323164E-03 6.2994217E-03 5.9903138E-03
 5.7028560E-03 5.4351133E-03 5.1853363E-03 4.9519464E-03 4.7335164E-03
 4.5287577E-03 4.3365108E-03 4.1557271E-03 3.9854636E-03 3.8248687E-03
 3.6731714E-03 3.5296772E-03 3.3937581E-03 3.2648463E-03 3.1424256E-03
 3.0260305E-03 2.9152369E-03 2.8096591E-03 2.7089473E-03 2.6127824E-03
 2.5208716E-03 2.4329498E-03 2.3487711E-03 2.2681146E-03 2.1907731E-03
 2.1165574E-03 2.0452952E-03 1.9768239E-03 1.9109955E-03 1.8476737E-03
 1.7867301E-03 1.7280466E-03 1.6715134E-03 1.6170273E-03 1.5644924E-03
 1.5138199E-03 1.4649261E-03 1.4177314E-03 1.3721626E-03 1.3281500E-03
 1.2856290E-03 1.2445372E-03 1.2048178E-03 1.1664139E-03 1.1292745E-03
 1.0933509E-03 1.0585956E-03 1.0249637E-03 9.9241477E-04 9.6090697E-04
 9.3040243E-04 9.0086501E-04 8.7226095E-04 8.4455439E-04 8.1771542E-04
 7.9171400E-04 7.6652033E-04 7.4210612E-04 7.1844622E-04 6.9551292E-04
 6.7328446E-04 6.5173418E-04 6.3084235E-04 6.1058439E-04 5.9094187E-04
 5.7189452E-04
 3.6507793E-02 3.5740629E-02 3.4927350E-02 3.4078378E-02 3.3203054E-02
 3.2309666E-02 3.1405501E-02 3.0496918E-02 2.9589407E-02 2.8687667E-02
 2.7795676E-02 2.6916759E-02 2.6053647E-02 2.5208542E-02 2.4383191E-02
 2.3578905E-02 2.2796642E-02 2.2037044E-02 2.1300483E-02 2.0587113E-02
 1.9896884E-02 1.9229598E-02 1.8584941E-02 1.7962487E-02 1.7361747E-02
 1.6782159E-02 1.6223118E-02 1.5683999E-02 1.5164158E-02 1.4662932E-02
 1.4179666E-02 1.3713709E-02 1.3264412E-02 1.2831146E-02 1.2413303E-02
 1.2010280E-02 1.1621503E-02 1.1246413E-02 1.0884475E-02 1.0535173E-02
 1.0198011E-02 9.8725120E-03 9.5582204E-03 9.2547089E-03 8.9615481E-03
 8.6783469E-03 8.4047178E-03 8.1402985E-03 7.8847408E-03 7.6377089E-03
 7.3988778E-03 7.1679521E-03 6.9446312E-03 6.7286342E-03 6.5196962E-03
 6.3175615E-03 6.1219814E-03 5.9327227E-03 5.7495511E-03 5.5722608E-03
 5.4006390E-03 5.2344860E-03 5.0736144E-03 4.9178335E-03 4.7669723E-03
 4.6208631E-03 4.4793370E-03 4.3422426E-03 4.2094304E-03 4.0807477E-03
 3.9560688E-03 3.8352488E-03 3.7181661E-03 3.6046933E-03 3.4947111E-03
 3.3881033E-03 3.2847647E-03 3.1845863E-03 3.0874638E-03 2.9932996E-03
 2.9019951E-03 2.8134624E-03 2.7276112E-03 2.6443584E-03 2.5636167E-03
 2.4853095E-03 2.4093578E-03 2.3356911E-03 2.2642335E-03 2.1949182E-03
 2.1276765E-03
 2.7055213E-02 2.5119254E-02 2.3332596E-02 2.1684576E-02 2.0165237E-02
 1.8765254E-02 1.7475892E-02 1.6288945E-02 1.5196699E-02 1.4191911E-02
 1.3267766E-02 1.2417870E-02 1.1636228E-02 1.0917234E-02 1.0255660E-02
 9.6466308E-03 9.0856338E-03 8.5684918E-03 8.0913529E-03 7.6506864E-03
 7.2432514E-03 6.8660853E-03 6.5164850E-03 6.1919955E-03 5.8903792E-03
 5.6096064E-03 5.3478391E-03 5.1034112E-03 4.8748199E-03 4.6607056E-03
 4.4598375E-03 4.2711087E-03 4.0935157E-03 3.9261556E-03 3.7682103E-03
 3.6189405E-03 3.4776782E-03 3.3438178E-03 3.2168129E-03 3.0961640E-03
 2.9814197E-03 2.8721706E-03 2.7680444E-03 2.6686988E-03 2.5738231E-03
 2.4831344E-03 2.3963735E-03 2.3133003E-03 2.2336992E-03 2.1573673E-03
 2.0841192E-03 2.0137855E-03 1.9462097E-03 1.8812439E-03 1.8187532E-03
 1.7586142E-03 1.7007088E-03 1.6449293E-03 1.5911724E-03 1.5393458E-03
 1.4893613E-03 1.4411357E-03 1.3945912E-03 1.3496540E-03 1.3062556E-03
 1.2643334E-03 1.2238242E-03 1.1846714E-03 1.1468206E-03 1.1102193E-03
 1.0748199E-03 1.0405756E-03 1.0074429E-03 9.7537902E-04 9.4434374E-04
 9.1430027E-04 8.8521268E-04 8.5704552E-04 8.2976633E-04 8.0334407E-04
 7.7774632E-04 7.5294659E-04 7.2891708E-04 7.0563110E-04 6.8306312E-04
 6.6118845E-04 6.3998374E-04 6.1942742E-04 5.9949793E-04 5.8017310E-04
 5.6143431E-04
 4.1389916E-02 4.0425420E-02 3.9423298E-02 3.8394049E-02 3.7346900E-02
 3.6289901E-02 3.5230044E-02 3.4173328E-02 3.3124868E-02 3.2088980E-02
 3.1069260E-02 3.0068651E-02 2.9089523E-02 2.8133724E-02 2.7202664E-02
 2.6297344E-02 2.5418431E-02 2.4566296E-02 2.3741065E-02 2.2942657E-02
 2.2170825E-02 2.1425182E-02 2.0705234E-02 2.0010404E-02 1.9340048E-02
 1.8693468E-02 1.8069947E-02 1.7468736E-02 1.6889079E-02 1.6330227E-02
 1.5791427E-02 1.5271933E-02 1.4771026E-02 1.4287997E-02 1.3822162E-02
 1.3372850E-02 1.2939421E-02 1.2521248E-02 1.2117743E-02 1.1728332E-02
 1.1352459E-02 1.0989595E-02 1.0639240E-02 1.0300906E-02 9.9741276E-03
 9.6584652E-03 9.3534915E-03 9.0587959E-03 8.7739928E-03 8.4987087E-03
 8.2325889E-03 7.9752877E-03 7.7264830E-03 7.4858582E-03 7.2531155E-03
 7.0279748E-03 6.8101464E-03 6.5993778E-03 6.3954093E-03 6.1980048E-03
 6.0069342E-03 5.8219633E-03 5.6428919E-03 5.4694987E-03 5.3016003E-03
 5.1390030E-03 4.9815211E-03 4.8289848E-03 4.6812231E-03 4.5380737E-03
 4.3993825E-03 4.2649996E-03 4.1347798E-03 4.0085893E-03 3.8862866E-03
 3.7677472E-03 3.6528509E-03 3.5414768E-03 3.4335072E-03 3.3288307E-03
 3.2273424E-03 3.1289430E-03 3.0335253E-03 2.9410028E-03 2.8512776E-03
 2.7642620E-03 2.6798681E-03 2.5980170E-03 2.5186222E-03 2.4416132E-03
 2.3669105E-03
 2.6124258E-02 2.4281774E-02 2.2576891E-02 2.1000704E-02 1.9544730E-02
 1.8200865E-02 1.6961370E-02 1.5818881E-02 1.4766364E-02 1.3797146E-02
 1.2904898E-02 1.2083631E-02 1.1327702E-02 1.0631805E-02 9.9909855E-03
 9.4006099E-03 8.8563822E-03 8.3543221E-03 7.8907572E-03 7.4623162E-03
 7.0659048E-03 6.6986913E-03 6.3580908E-03 6.0417531E-03 5.7475362E-03
 5.4734950E-03 5.2178688E-03 4.9790600E-03 4.7556260E-03 4.5462581E-03
 4.3497779E-03 4.1651162E-03 3.9913072E-03 3.8274799E-03 3.6728445E-03
 3.5266841E-03 3.3883548E-03 3.2572676E-03 3.1328918E-03 3.0147452E-03
 2.9023865E-03 2.7954183E-03 2.6934748E-03 2.5962247E-03 2.5033650E-03
 2.4146184E-03 2.3297302E-03 2.2484667E-03 2.1706147E-03 2.0959773E-03
 2.0243723E-03 1.9556317E-03 1.8896026E-03 1.8261387E-03 1.7651090E-03
 1.7063909E-03 1.6498679E-03 1.5954336E-03 1.5429875E-03 1.4924377E-03
 1.4436974E-03 1.3966827E-03 1.3513193E-03 1.3075331E-03 1.2652584E-03
 1.2244302E-03 1.1849881E-03 1.1468760E-03 1.1100392E-03 1.0744277E-03
 1.0399933E-03 1.0066895E-03 9.7447308E-04 9.4330346E-04 9.1314048E-04
 8.8394590E-04 8.5568603E-04 8.2832662E-04 8.0183404E-04 7.7617681E-04
 7.5132644E-04 7.2725571E-04 7.0393423E-04 6.8133889E-04 6.5944367E-04
 6.3822354E-04 6.1765721E-04 5.9772161E-04 5.7839544E-04 5.5965962E-04
 5.4149365E-04
 4.6564091E-02 4.5389123E-02 4.4186864E-02 4.2967346E-02 4.1739315E-02
 4.0510334E-02 3.9286897E-02 3.8074534E-02 3.6877908E-02 3.5700869E-02
 3.4546610E-02 3.3417653E-02 3.2316003E-02 3.1243136E-02 3.0200135E-02
 2.9187683E-02 2.8206171E-02 2.7255697E-02 2.6336143E-02 2.5447214E-02
 2.4588456E-02 2.3759294E-02 2.2959057E-02 2.2187017E-02 2.1442378E-02
 2.0724313E-02 2.0031970E-02 1.9364482E-02 1.8720994E-02 1.8100642E-02
 1.7502582E-02 1.6925981E-02 1.6370025E-02 1.5833935E-02 1.5316930E-02
 1.4818287E-02 1.4337278E-02 1.3873218E-02 1.3425446E-02 1.2993329E-02
 1.2576260E-02 1.2173643E-02 1.1784923E-02 1.1409563E-02 1.1047048E-02
 1.0696886E-02 1.0358604E-02 1.0031744E-02 9.7158849E-03 9.4106086E-03
 9.1155162E-03 8.8302335E-03 8.5543916E-03 8.2876431E-03 8.0296565E-03
 7.7801151E-03 7.5387061E-03 7.3051467E-03 7.0791426E-03 6.8604294E-03
 6.6487542E-03 6.4438558E-03 6.2455107E-03 6.0534799E-03 5.8675427E-03
 5.6874966E-03 5.5131312E-03 5.3442512E-03 5.1806774E-03 5.0222189E-03
 4.8687137E-03 4.7199852E-03 4.5758788E-03 4.4362373E-03 4.3009128E-03
 4.1697654E-03 4.0426520E-03 3.9194403E-03 3.8000082E-03 3.6842271E-03
 3.5719860E-03 3.4631568E-03 3.3576386E-03 3.2553249E-03 3.1561079E-03
 3.0598941E-03 2.9665858E-03 2.8760901E-03 2.7883172E-03 2.7031854E-03
 2.6206034E-03
 2.5302406E-02 2.3529723E-02 2.1886533E-02 2.0365162E-02 1.8958112E-02
 1.7658092E-02 1.6458027E-02 1.5351085E-02 1.4330691E-02 1.3390541E-02
 1.2524624E-02 1.1727232E-02 1.0992954E-02 1.0316706E-02 9.6937213E-03
 9.1195470E-03 8.5900435E-03 8.1013823E-03 7.6500257E-03 7.2327256E-03
 6.8464973E-03 6.4886138E-03 6.1565796E-03 5.8481279E-03 5.5611907E-03
 5.2938927E-03 5.0445301E-03 4.8115617E-03 4.5935884E-03 4.3893480E-03
 4.1976948E-03 4.0175947E-03 3.8481089E-03 3.6883908E-03 3.5376723E-03
 3.3952578E-03 3.2605163E-03 3.1328746E-03 3.0118143E-03 2.8968647E-03
 2.7875938E-03 2.6836118E-03 2.5845598E-03 2.4901149E-03 2.3999775E-03
 2.3138756E-03 2.2315597E-03 2.1527987E-03 2.0773839E-03 2.0051217E-03
 1.9358293E-03 1.8693452E-03 1.8055163E-03 1.7441995E-03 1.6852645E-03
 1.6285897E-03 1.5740623E-03 1.5215764E-03 1.4710320E-03 1.4223395E-03
 1.3754111E-03 1.3301658E-03 1.2865298E-03 1.2444317E-03 1.2038030E-03
 1.1645828E-03 1.1267092E-03 1.0901284E-03 1.0547872E-03 1.0206328E-03
 9.8762335E-04 9.5570768E-04 9.2484668E-04 8.9499919E-04 8.6612516E-04
 8.3818956E-04 8.1115612E-04 7.8499177E-04 7.5966562E-04 7.3514611E-04
 7.1140483E-04 6.8841386E-04 6.6614570E-04 6.4457639E-04 6.2367902E-04
 6.0343463E-04 5.8381638E-04 5.6480500E-04 5.4637936E-04 5.2851991E-04
 5.1120599E-04
 5.2061215E-02 5.0664145E-02 4.9250904E-02 4.7830872E-02 4.6412170E-02
 4.5001794E-02 4.3605682E-02 4.2228837E-02 4.0875435E-02 3.9548878E-02
 3.8251899E-02 3.6986634E-02 3.5754688E-02 3.4557197E-02 3.3394892E-02
 3.2268167E-02 3.1177109E-02 3.0121569E-02 2.9101186E-02 2.8115440E-02
 2.7163675E-02 2.6245128E-02 2.5358956E-02 2.4504261E-02 2.3680106E-02
 2.2885513E-02 2.2119511E-02 2.1381097E-02 2.0669313E-02 1.9983182E-02
 1.9321756E-02 1.8684108E-02 1.8069329E-02 1.7476542E-02 1.6904902E-02
 1.6353579E-02 1.5821798E-02 1.5308776E-02 1.4813799E-02 1.4336158E-02
 1.3875177E-02 1.3430205E-02 1.3000622E-02 1.2585841E-02 1.2185285E-02
 1.1798409E-02 1.1424694E-02 1.1063637E-02 1.0714756E-02 1.0377601E-02
 1.0051725E-02 9.7367084E-03 9.4321519E-03 9.1376640E-03 8.8528786E-03
 8.5774418E-03 8.3110090E-03 8.0532674E-03 7.8038862E-03 7.5625759E-03
 7.3290514E-03 7.1030292E-03 6.8842568E-03 6.6724657E-03 6.4674155E-03
 6.2688831E-03 6.0766283E-03 5.8904462E-03 5.7101231E-03 5.5354554E-03
 5.3662611E-03 5.2023474E-03 5.0435378E-03 4.8896638E-03 4.7405562E-03
 4.5960592E-03 4.4560190E-03 4.3202909E-03 4.1887299E-03 4.0612016E-03
 3.9375727E-03 3.8177178E-03 3.7015181E-03 3.5888469E-03 3.4795951E-03
 3.3736564E-03 3.2709176E-03 3.1712821E-03 3.0746509E-03 2.9809291E-03
 2.8900204E-03
 2.4563238E-02 2.2841442E-02 2.1243839E-02 1.9763524E-02 1.8393610E-02
 1.7127302E-02 1.5957933E-02 1.4879000E-02 1.3884204E-02 1.2967472E-02
 1.2123001E-02 1.1345251E-02 1.0628982E-02 9.9692466E-03 9.3614217E-03
 8.8011725E-03 8.2844812E-03 7.8076273E-03 7.3671700E-03 6.9599561E-03
 6.5830853E-03 6.2339036E-03 5.9099882E-03 5.6091337E-03 5.3293286E-03
 5.0687469E-03 4.8257341E-03 4.5987852E-03 4.3865405E-03 4.1877651E-03
 4.0013432E-03 3.8262613E-03 3.6616044E-03 3.5065433E-03 3.3603234E-03
 3.2222643E-03 3.0917467E-03 2.9682068E-03 2.8511358E-03 2.7400693E-03
 2.6345821E-03 2.5342903E-03 2.4388398E-03 2.3479117E-03 2.2612114E-03
 2.1784676E-03 2.0994348E-03 2.0238864E-03 1.9516125E-03 1.8824236E-03
 1.8161390E-03 1.7525965E-03 1.6916469E-03 1.6331468E-03 1.5769684E-03
 1.5229903E-03 1.4711000E-03 1.4211958E-03 1.3731759E-03 1.3269513E-03
 1.2824376E-03 1.2395536E-03 1.1982268E-03 1.1583841E-03 1.1199601E-03
 1.0828959E-03 1.0471280E-03 1.0126057E-03 9.7927498E-04 9.4708405E-04
 9.1599103E-04 8.8594761E-04 8.5691444E-04 8.2885084E-04 8.0171763E-04
 7.7548152E-04 7.5010658E-04 7.2556146E-04 7.0181233E-04 6.7883253E-04
 6.5659179E-04 6.3506555E-04 6.1422592E-04 5.9404754E-04 5.7450717E-04
 5.5558403E-04 5.3725456E-04 5.1949912E-04 5.0229620E-04 4.8562890E-04
 4.6947633E-04
 5.7921518E-02 5.6290075E-02 5.4653961E-02 5.3021878E-02 5.1401276E-02
 4.9798559E-02 4.8219103E-02 4.6667390E-02 4.5147099E-02 4.3661166E-02
 4.2211898E-02 4.0801015E-02 3.9429739E-02 3.8098849E-02 3.6808759E-02
 3.5559539E-02 3.4351006E-02 3.3182736E-02 3.2054134E-02 3.0964456E-02
 2.9912839E-02 2.8898319E-02 2.7919881E-02 2.6976457E-02 2.6066948E-02
 2.5190232E-02 2.4345199E-02 2.3530718E-02 2.2745710E-02 2.1989072E-02
 2.1259749E-02 2.0556713E-02 1.9878941E-02 1.9225476E-02 1.8595377E-02
 1.7987730E-02 1.7401658E-02 1.6836321E-02 1.6290914E-02 1.5764650E-02
 1.5256793E-02 1.4766624E-02 1.4293451E-02 1.3836623E-02 1.3395509E-02
 1.2969510E-02 1.2558037E-02 1.2160547E-02 1.1776504E-02 1.1405403E-02
 1.1046759E-02 1.0700107E-02 1.0365000E-02 1.0041004E-02 9.7277211E-03
 9.4247535E-03 9.1317203E-03 8.8482704E-03 8.5740490E-03 8.3087282E-03
 8.0519989E-03 7.8035383E-03 7.5630648E-03 7.3302928E-03 7.1049556E-03
 6.8867905E-03 6.6755512E-03 6.4710020E-03 6.2728995E-03 6.0810349E-03
 5.8951946E-03 5.7151648E-03 5.5407607E-03 5.3717848E-03 5.2080564E-03
 5.0494019E-03 4.8956526E-03 4.7466462E-03 4.6022227E-03 4.4622337E-03
 4.3265386E-03 4.1949898E-03 4.0674540E-03 3.9438042E-03 3.8239136E-03
 3.7076622E-03 3.5949294E-03 3.4856061E-03 3.3795794E-03 3.2767497E-03
 3.1770128E-03
 2.3888545E-02 2.2202019E-02 2.0636529E-02 1.9185597E-02 1.7842676E-02
 1.6601242E-02 1.5454846E-02 1.4397161E-02 1.3422037E-02 1.2523539E-02
 1.1695971E-02 1.0933900E-02 1.0232182E-02 9.5859664E-03 8.9907134E-03
 8.4421774E-03 7.9364190E-03 7.4697891E-03 7.0389216E-03 6.6407248E-03
 6.2723579E-03 5.9312219E-03 5.6149424E-03 5.3213588E-03 5.0485004E-03
 4.7945781E-03 4.5579644E-03 4.3371860E-03 4.1309050E-03 3.9379094E-03
 3.7571003E-03 3.5874788E-03 3.4281444E-03 3.2782787E-03 3.1371366E-03
 3.0040459E-03 2.8783944E-03 2.7596224E-03 2.6472281E-03 2.5407479E-03
 2.4397639E-03 2.3438926E-03 2.2527822E-03 2.1661152E-03 2.0835993E-03
 2.0049668E-03 1.9299696E-03 1.8583830E-03 1.7900007E-03 1.7246275E-03
 1.6620910E-03 1.6022264E-03 1.5448841E-03 1.4899223E-03 1.4372141E-03
 1.3866387E-03 1.3380829E-03 1.2914451E-03 1.2466271E-03 1.2035385E-03
 1.1620962E-03 1.1222195E-03 1.0838347E-03 1.0468727E-03 1.0112675E-03
 9.7695959E-04 9.4388833E-04 9.1200240E-04 8.8124914E-04 8.5157866E-04
 8.2294794E-04 7.9530990E-04 7.6862745E-04 7.4285892E-04 7.1796845E-04
 6.9392094E-04 6.7068409E-04 6.4822414E-04 6.2651106E-04 6.0551730E-04
 5.8521569E-04 5.6557904E-04 5.4658123E-04 5.2820327E-04 5.1041751E-04
 4.9320463E-04 4.7654167E-04 4.6041096E-04 4.4479250E-04 4.2966771E-04
 4.1501952E-04
 6.4192310E-02 6.2312525E-02 6.0439862E-02 5.8582321E-02 5.6746747E-02
 5.4938935E-02 5.3163718E-02 5.1425051E-02 4.9726129E-02 4.8069432E-02
 4.6456821E-02 4.4889621E-02 4.3368671E-02 4.1894384E-02 4.0466845E-02
 3.9085824E-02 3.7750844E-02 3.6461223E-02 3.5216104E-02 3.4014527E-02
 3.2855399E-02 3.1737566E-02 3.0659812E-02 2.9620903E-02 2.8619569E-02
 2.7654532E-02 2.6724529E-02 2.5828294E-02 2.4964608E-02 2.4132248E-02
 2.3330035E-02 2.2556823E-02 2.1811491E-02 2.1092962E-02 2.0400202E-02
 1.9732198E-02 1.9087987E-02 1.8466625E-02 1.7867239E-02 1.7288962E-02
 1.6730966E-02 1.6192464E-02 1.5672695E-02 1.5170938E-02 1.4686494E-02
 1.4218705E-02 1.3766922E-02 1.3330533E-02 1.2908966E-02 1.2501650E-02
 1.2108051E-02 1.1727649E-02 1.1359966E-02 1.1004512E-02 1.0660842E-02
 1.0328528E-02 1.0007150E-02 9.6963076E-03 9.3956199E-03 9.1047194E-03
 8.8232644E-03 8.5509047E-03 8.2873236E-03 8.0322074E-03 7.7852602E-03
 7.5462018E-03 7.3147430E-03 7.0906342E-03 6.8736109E-03 6.6634309E-03
 6.4598657E-03 6.2626856E-03 6.0716793E-03 5.8866250E-03 5.7073343E-03
 5.5336128E-03 5.3652693E-03 5.2021290E-03 5.0440161E-03 4.8907669E-03
 4.7422196E-03 4.5982213E-03 4.4586300E-03 4.3232907E-03 4.1920720E-03
 4.0648417E-03 3.9414642E-03 3.8218258E-03 3.7058019E-03 3.5932784E-03
 3.4841390E-03
 2.3266546E-02 2.1601653E-02 2.0056320E-02 1.8624257E-02 1.7299062E-02
 1.6074307E-02 1.4943633E-02 1.3900776E-02 1.2939643E-02 1.2054344E-02
 1.1239232E-02 1.0488923E-02 9.7983172E-03 9.1626141E-03 8.5773217E-03
 8.0382433E-03 7.5414842E-03 7.0834435E-03 6.6607934E-03 6.2704855E-03
 5.9097125E-03 5.5759107E-03 5.2667349E-03 4.9800524E-03 4.7139153E-03
 4.4665565E-03 4.2363666E-03 4.0218872E-03 3.8217928E-03 3.6348838E-03
 3.4600666E-03 3.2963546E-03 3.1428484E-03 2.9987351E-03 2.8632744E-03
 2.7357945E-03 2.6156851E-03 2.5023886E-03 2.3954024E-03 2.2942647E-03
 2.1985550E-03 2.1078901E-03 2.0219188E-03 1.9403221E-03 1.8628050E-03
 1.7891009E-03 1.7189622E-03 1.6521607E-03 1.5884902E-03 1.5277563E-03
 1.4697842E-03 1.4144074E-03 1.3614793E-03 1.3108562E-03 1.2624088E-03
 1.2160179E-03 1.1715721E-03 1.1289663E-03 1.0881043E-03 1.0488953E-03
 1.0112579E-03 9.7510876E-04 9.4037701E-04 9.0699270E-04 8.7489205E-04
 8.4401539E-04 8.1430259E-04 7.8570162E-04 7.5816218E-04 7.3163526E-04
 7.0607726E-04 6.8144547E-04 6.5770006E-04 6.3480128E-04 6.1271549E-04
 5.9140741E-04 5.7084393E-04 5.5099546E-04 5.3183240E-04 5.1332836E-04
 4.9545447E-04 4.7818784E-04 4.6150532E-04 4.4538142E-04 4.2979620E-04
 4.1472857E-04 4.0015718E-04 3.8606711E-04 3.7243689E-04 3.5925096E-04
 3.4649161E-04
 7.0927560E-02 6.8783186E-02 6.6658065E-02 6.4559534E-02 6.2493827E-02
 6.0466181E-02 5.8480877E-02 5.6541368E-02 5.4650359E-02 5.2809868E-02
 5.1021330E-02 4.9285658E-02 4.7603302E-02 4.5974325E-02 4.4398472E-02
 4.2875189E-02 4.1403715E-02 3.9983086E-02 3.8612198E-02 3.7289836E-02
 3.6014687E-02 3.4785379E-02 3.3600498E-02 3.2458622E-02 3.1358294E-02
 3.0298077E-02 2.9276535E-02 2.8292259E-02 2.7343882E-02 2.6430041E-02
 2.5549429E-02 2.4700765E-02 2.3882810E-02 2.3094377E-02 2.2334313E-02
 2.1601506E-02 2.0894885E-02 2.0213420E-02 1.9556135E-02 1.8922074E-02
 1.8310327E-02 1.7720021E-02 1.7150326E-02 1.6600436E-02 1.6069589E-02
 1.5557047E-02 1.5062107E-02 1.4584087E-02 1.4122350E-02 1.3676281E-02
 1.3245277E-02 1.2828778E-02 1.2426237E-02 1.2037134E-02 1.1660968E-02
 1.1297272E-02 1.0945574E-02 1.0605443E-02 1.0276453E-02 9.9582048E-03
 9.6503086E-03 9.3523953E-03 9.0641100E-03 8.7851034E-03 8.5150506E-03
 8.2536433E-03 8.0005741E-03 7.7555501E-03 7.5182882E-03 7.2885305E-03
 7.0660175E-03 6.8504922E-03 6.6417241E-03 6.4394819E-03 6.2435446E-03
 6.0537034E-03 5.8697481E-03 5.6914897E-03 5.5187298E-03 5.3512929E-03
 5.1890016E-03 5.0316849E-03 4.8791808E-03 4.7313352E-03 4.5879930E-03
 4.4490118E-03 4.3142475E-03 4.1835667E-03 4.0568369E-03 3.9339294E-03
 3.8147257E-03
 2.2690551E-02 2.1034583E-02 1.9498106E-02 1.8074833E-02 1.6758358E-02
 1.5542242E-02 1.4420092E-02 1.3385628E-02 1.2432736E-02 1.1555510E-02
 1.0748292E-02 1.0005698E-02 9.3226312E-03 8.6942986E-03 8.1162201E-03
 7.5842147E-03 7.0944019E-03 6.6431970E-03 6.2272912E-03 5.8436492E-03
 5.4894784E-03 5.1622274E-03 4.8595648E-03 4.5793648E-03 4.3196892E-03
 4.0787752E-03 3.8550182E-03 3.6469621E-03 3.4532847E-03 3.2727839E-03
 3.1043675E-03 2.9470457E-03 2.7999158E-03 2.6621637E-03 2.5330437E-03
 2.4118819E-03 2.2980608E-03 2.1910225E-03 2.0902569E-03 1.9952990E-03
 1.9057237E-03 1.8211434E-03 1.7412042E-03 1.6655810E-03 1.5939795E-03
 1.5261237E-03 1.4617671E-03 1.4006771E-03 1.3426436E-03 1.2874737E-03
 1.2349852E-03 1.1850150E-03 1.1374083E-03 1.0920244E-03 1.0487331E-03
 1.0074127E-03 9.6795015E-04 9.3024137E-04 8.9418708E-04 8.5969927E-04
 8.2669104E-04 7.9508586E-04 7.6480972E-04 7.3579233E-04 7.0796895E-04
 6.8128254E-04 6.5567414E-04 6.3109049E-04 6.0748099E-04 5.8480160E-04
 5.6300621E-04 5.4205325E-04 5.2190392E-04 5.0252100E-04 4.8386984E-04
 4.6591801E-04 4.4863333E-04 4.3198728E-04 4.1595069E-04 4.0049787E-04
 3.8560366E-04 3.7124459E-04 3.5739641E-04 3.4403996E-04 3.3115348E-04
 3.1871811E-04 3.0671511E-04 2.9512678E-04 2.8393633E-04 2.7312757E-04
 2.6268605E-04
 7.8188576E-02 7.5760812E-02 7.3364839E-02 7.1007401E-02 6.8694174E-02
 6.6429794E-02 6.4218052E-02 6.2061880E-02 5.9963495E-02 5.7924464E-02
 5.5945773E-02 5.4027934E-02 5.2170999E-02 5.0374657E-02 4.8638318E-02
 4.6961091E-02 4.5341913E-02 4.3779537E-02 4.2272568E-02 4.0819559E-02
 3.9418932E-02 3.8069103E-02 3.6768433E-02 3.5515290E-02 3.4308042E-02
 3.3145044E-02 3.2024696E-02 3.0945424E-02 2.9905692E-02 2.8903991E-02
 2.7938860E-02 2.7008889E-02 2.6112705E-02 2.5248989E-02 2.4416465E-02
 2.3613906E-02 2.2840131E-02 2.2094004E-02 2.1374442E-02 2.0680394E-02
 2.0010855E-02 1.9364865E-02 1.8741503E-02 1.8139891E-02 1.7559174E-02
 1.6998552E-02 1.6457241E-02 1.5934499E-02 1.5429614E-02 1.4941909E-02
 1.4470734E-02 1.4015451E-02 1.3575477E-02 1.3150230E-02 1.2739157E-02
 1.2341750E-02 1.1957482E-02 1.1585890E-02 1.1226496E-02 1.0878859E-02
 1.0542563E-02 1.0217190E-02 9.9023543E-03 9.5976740E-03 9.3027903E-03
 9.0173613E-03 8.7410547E-03 8.4735472E-03 8.2145324E-03 7.9637142E-03
 7.7208215E-03 7.4855648E-03 7.2577000E-03 7.0369630E-03 6.8231127E-03
 6.6159279E-03 6.4151683E-03 6.2206341E-03 6.0321125E-03 5.8493954E-03
 5.6723049E-03 5.5006468E-03 5.3342422E-03 5.1729241E-03 5.0165225E-03
 4.8648803E-03 4.7178413E-03 4.5752609E-03 4.4369916E-03 4.3028947E-03
 4.1728457E-03
 2.2158315E-02 2.0498669E-02 1.8959695E-02 1.7534992E-02 1.6218014E-02
 1.5002218E-02 1.3881098E-02 1.2848280E-02 1.1897564E-02 1.1022971E-02
 1.0218790E-02 9.4795795E-03 8.8002123E-03 8.1758620E-03 7.6020258E-03
 7.0745042E-03 6.5894034E-03 6.1431257E-03 5.7323533E-03 5.3540375E-03
 5.0053815E-03 4.6838266E-03 4.3870280E-03 4.1128532E-03 3.8593549E-03
 3.6247617E-03 3.4074574E-03 3.2059748E-03 3.0189797E-03 2.8452603E-03
 2.6837119E-03 2.5333317E-03 2.3932089E-03 2.2625139E-03 2.1404915E-03
 2.0264555E-03 1.9197792E-03 1.8198950E-03 1.7262805E-03 1.6384618E-03
 1.5560065E-03 1.4785166E-03 1.4056311E-03 1.3370186E-03 1.2723753E-03
 1.2114206E-03 1.1539005E-03 1.0995793E-03 1.0482403E-03 9.9968479E-04
 9.5373072E-04 9.1020594E-04 8.6895691E-04 8.2983851E-04 7.9271552E-04
 7.5746782E-04 7.2397722E-04 6.9214165E-04 6.6185789E-04 6.3303695E-04
 6.0559373E-04 5.7944830E-04 5.5452599E-04 5.3075945E-04 5.0808274E-04
 4.8643703E-04 4.6576577E-04 4.4601664E-04 4.2713960E-04 4.0908754E-04
 3.9182176E-04 3.7529619E-04 3.5947686E-04 3.4432521E-04 3.2980766E-04
 3.1589507E-04 3.0255396E-04 2.8975922E-04 2.7748448E-04 2.6570124E-04
 2.5438977E-04 2.4352685E-04 2.3308878E-04 2.2305874E-04 2.1341616E-04
 2.0414399E-04 1.9522441E-04 1.8664230E-04 1.7838254E-04 1.7042956E-04
 1.6277189E-04
 8.6045362E-02 8.3312541E-02 8.0624662E-02 7.7987887E-02 7.5407296E-02
 7.2887018E-02 7.0430309E-02 6.8039581E-02 6.5716587E-02 6.3462414E-02
 6.1277609E-02 5.9162240E-02 5.7115979E-02 5.5138122E-02 5.3227711E-02
 5.1383521E-02 4.9604166E-02 4.7888078E-02 4.6233580E-02 4.4638950E-02
 4.3102350E-02 4.1621942E-02 4.0195860E-02 3.8822249E-02 3.7499245E-02
 3.6225021E-02 3.4997787E-02 3.3815764E-02 3.2677252E-02 3.1580571E-02
 3.0524110E-02 2.9506287E-02 2.8525591E-02 2.7580561E-02 2.6669795E-02
 2.5791924E-02 2.4945652E-02 2.4129724E-02 2.3342943E-02 2.2584151E-02
 2.1852247E-02 2.1146167E-02 2.0464895E-02 1.9807464E-02 1.9172937E-02
 1.8560426E-02 1.7969077E-02 1.7398061E-02 1.6846612E-02 1.6313974E-02
 1.5799424E-02 1.5302283E-02 1.4821893E-02 1.4357612E-02 1.3908850E-02
 1.3475030E-02 1.3055589E-02 1.2650001E-02 1.2257754E-02 1.1878366E-02
 1.1511372E-02 1.1156314E-02 1.0812775E-02 1.0480336E-02 1.0158597E-02
 9.8471912E-03 9.5457416E-03 9.2539070E-03 8.9713503E-03 8.6977435E-03
 8.4327860E-03 8.1761703E-03 7.9276217E-03 7.6868501E-03 7.4536041E-03
 7.2276285E-03 7.0086671E-03 6.7964983E-03 6.5908795E-03 6.3916110E-03
 6.1984728E-03 6.0112560E-03 5.8297804E-03 5.6538479E-03 5.4832785E-03
 5.3179008E-03 5.1575443E-03 5.0020460E-03 4.8512532E-03 4.7050128E-03
 4.5631817E-03
 2.1672130E-02 1.9995622E-02 1.8442180E-02 1.7005160E-02 1.5677813E-02
 1.4453386E-02 1.3325191E-02 1.2286692E-02 1.1331542E-02 1.0453643E-02
 9.6471701E-03 8.9065963E-03 8.2267085E-03 7.6026125E-03 7.0297471E-03
 6.5038614E-03 6.0210126E-03 5.5775614E-03 5.1701511E-03 4.7957008E-03
 4.4513773E-03 4.1345893E-03 3.8429648E-03 3.5743413E-03 3.3267434E-03
 3.0983693E-03 2.8875796E-03 2.6928785E-03 2.5129074E-03 2.3464300E-03
 2.1923173E-03 2.0495432E-03 1.9171761E-03 1.7943626E-03 1.6803304E-03
 1.5743710E-03 1.4758428E-03 1.3841548E-03 1.2987743E-03 1.2192087E-03
 1.1450121E-03 1.0757734E-03 1.0111192E-03 9.5070433E-04 8.9421566E-04
 8.4136397E-04 7.9188467E-04 7.4553286E-04 7.0208695E-04 6.6133944E-04
 6.2310055E-04 5.8719650E-04 5.5346702E-04 5.2176096E-04 4.9194286E-04
 4.6388569E-04 4.3747184E-04 4.1259176E-04 3.8914659E-04 3.6704139E-04
 3.4619146E-04 3.2651424E-04 3.0793701E-04 2.9039101E-04 2.7380939E-04
 2.5813494E-04 2.4330916E-04 2.2928164E-04 2.1600438E-04 2.0343058E-04
 1.9151968E-04 1.8023030E-04 1.6952770E-04 1.5937495E-04 1.4974352E-04
 1.4060031E-04 1.3191656E-04 1.2366893E-04 1.1582816E-04 1.0837644E-04
 1.0128837E-04 9.4542746E-05 8.8123277E-05 8.2010243E-05 7.6186829E-05
 7.0636619E-05 6.5345033E-05 6.0297276E-05 5.5482276E-05 5.0885559E-05
 4.6496327E-05
 9.4578251E-02 9.1515742E-02 8.8512026E-02 8.5572720E-02 8.2702368E-02
 7.9904556E-02 7.7182002E-02 7.4536636E-02 7.1969680E-02 6.9481760E-02
 6.7072958E-02 6.4742908E-02 6.2490840E-02 6.0315665E-02 5.8216032E-02
 5.6190364E-02 5.4236904E-02 5.2353777E-02 5.0538987E-02 4.8790503E-02
 4.7106218E-02 4.5484006E-02 4.3921761E-02 4.2417370E-02 4.0968750E-02
 3.9573837E-02 3.8230628E-02 3.6937147E-02 3.5691496E-02 3.4491818E-02
 3.3336312E-02 3.2223240E-02 3.1150917E-02 3.0117739E-02 2.9122138E-02
 2.8162630E-02 2.7237765E-02 2.6346160E-02 2.5486508E-02 2.4657523E-02
 2.3857992E-02 2.3086753E-02 2.2342674E-02 2.1624701E-02 2.0931803E-02
 2.0262999E-02 1.9617353E-02 1.8993955E-02 1.8391963E-02 1.7810540E-02
 1.7248906E-02 1.6706303E-02 1.6182017E-02 1.5675336E-02 1.5185620E-02
 1.4712229E-02 1.4254546E-02 1.3812006E-02 1.3384041E-02 1.2970116E-02
 1.2569732E-02 1.2182378E-02 1.1807606E-02 1.1444946E-02 1.1093978E-02
 1.0754283E-02 1.0425461E-02 1.0107129E-02 9.7989216E-03 9.5004858E-03
 9.2114834E-03 8.9315865E-03 8.6604878E-03 8.3978781E-03 8.1434771E-03
 7.8970045E-03 7.6581864E-03 7.4267760E-03 7.2025135E-03 6.9851698E-03
 6.7745168E-03 6.5703238E-03 6.3723898E-03 6.1805006E-03 5.9944591E-03
 5.8140801E-03 5.6391745E-03 5.4695704E-03 5.3050932E-03 5.1455791E-03
 4.9908720E-03
 2.1239707E-02 1.9531945E-02 1.7950898E-02 1.6489588E-02 1.5140958E-02
 1.3897971E-02 1.2753691E-02 1.1701351E-02 1.0734404E-02 9.8465709E-03
 9.0318704E-03 8.2846303E-03 7.5995186E-03 6.9715288E-03 6.3959984E-03
 5.8685872E-03 5.3852722E-03 4.9423375E-03 4.5363554E-03 4.1641793E-03
 3.8229167E-03 3.5099164E-03 3.2227526E-03 2.9592109E-03 2.7172635E-03
 2.4950623E-03 2.2909208E-03 2.1033022E-03 1.9308034E-03 1.7721475E-03
 1.6261698E-03 1.4918060E-03 1.3680897E-03 1.2541375E-03 1.1491431E-03
 1.0523725E-03 9.6315239E-04 8.8087004E-04 8.0496760E-04 7.3492981E-04
 6.7028968E-04 6.1061920E-04 5.5552431E-04 5.0464628E-04 4.5765514E-04
 4.1424829E-04 3.7414802E-04 3.3709937E-04 3.0287020E-04 2.7124226E-04
 2.4201984E-04 2.1502069E-04 1.9007723E-04 1.6703247E-04 1.4574804E-04
 1.2608968E-04 1.0793640E-04 9.1179492E-05 7.5713491E-05 6.1442552E-05
 4.8280523E-05 3.6143498E-05 2.4958830E-05 1.4654500E-05 5.1689590E-06
 -3.5613198E-06 -1.1588846E-05 -1.8966817E-05 -2.5740579E-05 -3.1955686E-05
 -3.7653619E-05 -4.2871070E-05 -4.7643320E-05 -5.2004620E-05 -5.5982273E-05
 -5.9606984E-05 -6.2905310E-05 -6.5899498E-05 -6.8614856E-05 -7.1070281E-05
 -7.3285053E-05 -7.5279269E-05 -7.7067998E-05 -7.8668294E-05 -8.0095073E-05
 -8.1361366E-05 -8.2480015E-05 -8.3462866E-05 -8.4320440E-05 -8.5063468E-05
 -8.5701176E-05
 0.1038798 0.1004597 9.7113222E-02 9.3845300E-02 9.0659998E-02
 8.7560363E-02 8.4548570E-02 8.1626020E-02 7.8793444E-02 7.6050960E-02
 7.3398165E-02 7.0834234E-02 6.8357937E-02 6.5967776E-02 6.3661978E-02
 6.1438568E-02 5.9295431E-02 5.7230320E-02 5.5240911E-02 5.3324837E-02
 5.1479682E-02 4.9703039E-02 4.7992501E-02 4.6345700E-02 4.4760279E-02
 4.3233942E-02 4.1764457E-02 4.0349614E-02 3.8987301E-02 3.7675463E-02
 3.6412101E-02 3.5195291E-02 3.4023177E-02 3.2893974E-02 3.1805970E-02
 3.0757507E-02 2.9747002E-02 2.8772932E-02 2.7833845E-02 2.6928337E-02
 2.6055068E-02 2.5212763E-02 2.4400182E-02 2.3616157E-02 2.2859558E-02
 2.2129318E-02 2.1424396E-02 2.0743806E-02 2.0086613E-02 1.9451907E-02
 1.8838828E-02 1.8246541E-02 1.7674271E-02 1.7121244E-02 1.6586741E-02
 1.6070073E-02 1.5570567E-02 1.5087594E-02 1.4620540E-02 1.4168815E-02
 1.3731874E-02 1.3309167E-02 1.2900190E-02 1.2504439E-02 1.2121442E-02
 1.1750755E-02 1.1391936E-02 1.1044567E-02 1.0708247E-02 1.0382587E-02
 1.0067225E-02 9.7618010E-03 9.4659729E-03 9.1794096E-03 8.9018000E-03
 8.6328443E-03 8.3722370E-03 8.1197117E-03 7.8749899E-03 7.6378090E-03
 7.4079274E-03 7.1850982E-03 6.9690952E-03 6.7596813E-03 6.5566520E-03
 6.3598016E-03 6.1689191E-03 5.9838207E-03 5.8043133E-03 5.6302208E-03
 5.4613687E-03
 2.0875916E-02 1.9120716E-02 1.7497253E-02 1.5998118E-02 1.4615856E-02
 1.3343071E-02 1.2172501E-02 1.1097081E-02 1.0110001E-02 9.2047397E-03
 8.3751008E-03 7.6152221E-03 6.9195959E-03 6.2830555E-03 5.7007945E-03
 5.1683388E-03 4.6815407E-03 4.2365720E-03 3.8298960E-03 3.4582678E-03
 3.1186999E-03 2.8084524E-03 2.5250139E-03 2.2660904E-03 2.0295803E-03
 1.8135625E-03 1.6162806E-03 1.4361350E-03 1.2716595E-03 1.1215211E-03
 9.8449888E-04 8.5947721E-04 7.4544200E-04 6.4146327E-04 5.4669240E-04
 4.6035487E-04 3.8174074E-04 3.1020262E-04 2.4514989E-04 1.8603863E-04
 1.3237250E-04 8.3699291E-05 3.9602182E-05 -3.0022167E-07 -3.6356843E-05
 -6.8886548E-05 -9.8184762E-05 -1.2451891E-04 -1.4813637E-04 -1.6926575E-04
 -1.8811307E-04 -2.0487177E-04 -2.1971454E-04 -2.3280538E-04 -2.4429109E-04
 -2.5430950E-04 -2.6298512E-04 -2.7043239E-04 -2.7675860E-04 -2.8206207E-04
 -2.8643073E-04 -2.8994770E-04 -2.9268919E-04 -2.9472547E-04 -2.9612178E-04
 -2.9693535E-04 -2.9722115E-04 -2.9703067E-04 -2.9640860E-04 -2.9539893E-04
 -2.9404007E-04 -2.9236640E-04 -2.9041397E-04 -2.8821224E-04 -2.8578754E-04
 -2.8316674E-04 -2.8037524E-04 -2.7743186E-04 -2.7435817E-04 -2.7117334E-04
 -2.6789244E-04 -2.6453077E-04 -2.6110260E-04 -2.5762356E-04 -2.5410240E-04
 -2.5055045E-04 -2.4697915E-04 -2.4339640E-04 -2.3981072E-04 -2.3622977E-04
 -2.3266059E-04
 0.1140566 0.1102478 0.1065283 0.1029025 9.9374071E-02
 9.5945403E-02 9.2618167E-02 8.9393228E-02 8.6270772E-02 8.3250396E-02
 8.0331184E-02 7.7511832E-02 7.4790642E-02 7.2165616E-02 6.9634572E-02
 6.7195110E-02 6.4844705E-02 6.2580727E-02 6.0400471E-02 5.8301233E-02
 5.6280240E-02 5.4334775E-02 5.2462108E-02 5.0659586E-02 4.8924576E-02
 4.7254510E-02 4.5646895E-02 4.4099275E-02 4.2609319E-02 4.1174732E-02
 3.9793313E-02 3.8462937E-02 3.7181541E-02 3.5947178E-02 3.4757942E-02
 3.3612017E-02 3.2507654E-02 3.1443179E-02 3.0416999E-02 2.9427567E-02
 2.8473420E-02 2.7553141E-02 2.6665382E-02 2.5808858E-02 2.4982333E-02
 2.4184626E-02 2.3414604E-02 2.2671184E-02 2.1953341E-02 2.1260077E-02
 2.0590454E-02 1.9943556E-02 1.9318528E-02 1.8714529E-02 1.8130772E-02
 1.7566504E-02 1.7020985E-02 1.6493527E-02 1.5983453E-02 1.5490133E-02
 1.5012955E-02 1.4551328E-02 1.4104689E-02 1.3672503E-02 1.3254242E-02
 1.2849429E-02 1.2457569E-02 1.2078215E-02 1.1710925E-02 1.1355280E-02
 1.1010877E-02 1.0677319E-02 1.0354244E-02 1.0041287E-02 9.7381026E-03
 9.4443643E-03 9.1597503E-03 8.8839540E-03 8.6166710E-03 8.3576320E-03
 8.1065604E-03 7.8631826E-03 7.6272557E-03 7.3985304E-03 7.1767718E-03
 6.9617559E-03 6.7532593E-03 6.5510790E-03 6.3549993E-03 6.1648325E-03
 5.9803869E-03
 2.0605542E-02 1.8784314E-02 1.7101409E-02 1.5548883E-02 1.4118794E-02
 1.2803295E-02 1.1594714E-02 1.0485617E-02 9.4688535E-03 8.5375952E-03
 7.6853656E-03 6.9060465E-03 6.1938921E-03 5.5435235E-03 4.9499352E-03
 4.4084643E-03 3.9147926E-03 3.4649288E-03 3.0551897E-03 2.6821832E-03
 2.3427901E-03 2.0341445E-03 1.7536171E-03 1.4987995E-03 1.2674853E-03
 1.0576516E-03 8.6745067E-04 6.9519010E-04 5.3932436E-04 3.9843866E-04
 2.7123763E-04 1.5653952E-04 5.3263080E-05 -3.9581260E-05 -1.2289577E-04
 -1.9750986E-04 -2.6418027E-04 -3.2359923E-04 -3.7639873E-04 -4.2316059E-04
 -4.6441267E-04 -5.0064304E-04 -5.3229486E-04 -5.5977690E-04 -5.8345968E-04
 -6.0368777E-04 -6.2077149E-04 -6.3499837E-04 -6.4663024E-04 -6.5590860E-04
 -6.6305307E-04 -6.6826609E-04 -6.7173154E-04 -6.7362003E-04 -6.7408517E-04
 -6.7327032E-04 -6.7130401E-04 -6.6830672E-04 -6.6438911E-04 -6.5964705E-04
 -6.5417495E-04 -6.4805429E-04 -6.4136478E-04 -6.3417183E-04 -6.2654377E-04
 -6.1853504E-04 -6.1020133E-04 -6.0159015E-04 -5.9274660E-04 -5.8370980E-04
 -5.7451817E-04 -5.6520436E-04 -5.5579824E-04 -5.4632744E-04 -5.3681788E-04
 -5.2729127E-04 -5.1776797E-04 -5.0826790E-04 -4.9880851E-04 -4.8940186E-04
 -4.8006233E-04 -4.7080379E-04 -4.6163570E-04 -4.5256733E-04 -4.4360803E-04
 -4.3476475E-04 -4.2604489E-04 -4.1745248E-04 -4.0899499E-04 -4.0067508E-04
 -3.9249790E-04
 0.1252313 0.1209989 0.1168726 0.1128565 0.1089533
 0.1051652 0.1014932 9.7937554E-02 9.4497979E-02 9.1173477E-02
 8.7962627E-02 8.4863551E-02 8.1874073E-02 7.8991704E-02 7.6213777E-02
 7.3537447E-02 7.0959747E-02 6.8477631E-02 6.6087969E-02 6.3787699E-02
 6.1573680E-02 5.9442822E-02 5.7392087E-02 5.5418484E-02 5.3519089E-02
 5.1691029E-02 4.9931530E-02 4.8237883E-02 4.6607502E-02 4.5037843E-02
 4.3526482E-02 4.2071063E-02 4.0669329E-02 3.9319124E-02 3.8018350E-02
 3.6765013E-02 3.5557192E-02 3.4393046E-02 3.3270825E-02 3.2188825E-02
 3.1145442E-02 3.0139135E-02 2.9168407E-02 2.8231867E-02 2.7328139E-02
 2.6455948E-02 2.5614038E-02 2.4801232E-02 2.4016401E-02 2.3258459E-02
 2.2526374E-02 2.1819139E-02 2.1135822E-02 2.0475505E-02 1.9837318E-02
 1.9220445E-02 1.8624071E-02 1.8047445E-02 1.7489828E-02 1.6950529E-02
 1.6428880E-02 1.5924223E-02 1.5435963E-02 1.4963495E-02 1.4506254E-02
 1.4063711E-02 1.3635328E-02 1.3220620E-02 1.2819096E-02 1.2430295E-02
 1.2053788E-02 1.1689139E-02 1.1335944E-02 1.0993808E-02 1.0662351E-02
 1.0341221E-02 1.0030060E-02 9.7285397E-03 9.4363298E-03 9.1531230E-03
 8.8786241E-03 8.6125359E-03 8.3545931E-03 8.1045162E-03 7.8620594E-03
 7.6269712E-03 7.3990012E-03 7.1779368E-03 6.9635469E-03 6.7556114E-03
 6.5539349E-03
 2.0467246E-02 1.8558316E-02 1.6796116E-02 1.5172061E-02 1.3677609E-02
 1.2304367E-02 1.1044157E-02 9.8890793E-03 8.8315606E-03 7.8643803E-03
 6.9807000E-03 6.1740726E-03 5.4384428E-03 4.7681457E-03 4.1579087E-03
 3.6028218E-03 3.0983347E-03 2.6402383E-03 2.2246439E-03 1.8479701E-03
 1.5069143E-03 1.1984438E-03 9.1976626E-04 6.6832575E-04 4.4177202E-04
 2.3795248E-04 5.4892866E-05 -1.0921412E-04 -2.5602465E-04 -3.8705370E-04
 -5.0369173E-04 -6.0720858E-04 -6.9876749E-04 -7.7943306E-04 -8.5018051E-04
 -9.1190101E-04 -9.6541119E-04 -1.0114571E-03 -1.0507238E-03 -1.0838363E-03
 -1.1113662E-03 -1.1338361E-03 -1.1517281E-03 -1.1654776E-03 -1.1754871E-03
 -1.1821223E-03 -1.1857193E-03 -1.1865831E-03 -1.1849954E-03 -1.1812118E-03
 -1.1754649E-03 -1.1679716E-03 -1.1589244E-03 -1.1485005E-03 -1.1368647E-03
 -1.1241635E-03 -1.1105337E-03 -1.0960972E-03 -1.0809652E-03 -1.0652400E-03
 -1.0490160E-03 -1.0323763E-03 -1.0153974E-03 -9.9814741E-04 -9.8069082E-04
 -9.6308329E-04 -9.4537821E-04 -9.2761900E-04 -9.0984994E-04 -8.9210848E-04
 -8.7442738E-04 -8.5683557E-04 -8.3936367E-04 -8.2203251E-04 -8.0486643E-04
 -7.8788243E-04 -7.7109743E-04 -7.5452653E-04 -7.3818280E-04 -7.2207709E-04
 -7.0621923E-04 -6.9061783E-04 -6.7527912E-04 -6.6020916E-04 -6.4541149E-04
 -6.3089107E-04 -6.1665301E-04 -6.0269545E-04 -5.8902003E-04 -5.7563116E-04
 -5.6252501E-04
 0.1375432 0.1328487 0.1282782 0.1238352 0.1195222
 0.1153406 0.1112909 0.1073728 0.1035855 9.9927202E-02
 9.6396104E-02 9.2989743E-02 8.9705370E-02 8.6540006E-02 8.3490469E-02
 8.0553412E-02 7.7725410E-02 7.5002961E-02 7.2382517E-02 6.9860592E-02
 6.7433655E-02 6.5098234E-02 6.2850930E-02 6.0688403E-02 5.8607407E-02
 5.6604754E-02 5.4677367E-02 5.2822247E-02 5.1036540E-02 4.9317438E-02
 4.7662269E-02 4.6068445E-02 4.4533469E-02 4.3054972E-02 4.1630656E-02
 4.0258318E-02 3.8935862E-02 3.7661258E-02 3.6432587E-02 3.5247989E-02
 3.4105688E-02 3.3003993E-02 3.1941283E-02 3.0916011E-02 2.9926684E-02
 2.8971888E-02 2.8050266E-02 2.7160510E-02 2.6301395E-02 2.5471725E-02
 2.4670364E-02 2.3896217E-02 2.3148267E-02 2.2425495E-02 2.1726957E-02
 2.1051751E-02 2.0398995E-02 1.9767856E-02 1.9157531E-02 1.8567257E-02
 1.7996309E-02 1.7443962E-02 1.6909562E-02 1.6392453E-02 1.5892010E-02
 1.5407655E-02 1.4938805E-02 1.4484917E-02 1.4045463E-02 1.3619934E-02
 1.3207862E-02 1.2808763E-02 1.2422206E-02 1.2047751E-02 1.1684984E-02
 1.1333522E-02 1.0992965E-02 1.0662961E-02 1.0343146E-02 1.0033186E-02
 9.7327502E-03 9.4415238E-03 9.1592083E-03 8.8855037E-03 8.6201308E-03
 8.3628288E-03 8.1133153E-03 7.8713577E-03 7.6367008E-03 7.4091107E-03
 7.1883700E-03
 2.0518908E-02 1.8496698E-02 1.6631782E-02 1.4914801E-02 1.3336494E-02
 1.1887792E-02 1.0559903E-02 9.3443468E-03 8.2330164E-03 7.2182007E-03
 6.2926020E-03 5.4493453E-03 4.6819784E-03 3.9844653E-03 3.3511885E-03
 2.7769122E-03 2.2567825E-03 1.7863050E-03 1.3613245E-03 9.7800815E-04
 6.3282112E-04 3.2250615E-04 4.4067314E-05 -2.0524551E-04 -4.2796397E-04
 -6.2640820E-04 -8.0271153E-04 -9.5882738E-04 -1.0965475E-03 -1.2175150E-03
 -1.3232370E-03 -1.4150913E-03 -1.4943428E-03 -1.5621469E-03 -1.6195651E-03
 -1.6675652E-03 -1.7070362E-03 -1.7387890E-03 -1.7635681E-03 -1.7820523E-03
 -1.7948636E-03 -1.8025679E-03 -1.8056855E-03 -1.8046908E-03 -1.8000171E-03
 -1.7920597E-03 -1.7811785E-03 -1.7677038E-03 -1.7519342E-03 -1.7341452E-03
 -1.7145851E-03 -1.6934812E-03 -1.6710382E-03 -1.6474441E-03 -1.6228702E-03
 -1.5974718E-03 -1.5713861E-03 -1.5447437E-03 -1.5176573E-03 -1.4902317E-03
 -1.4625600E-03 -1.4347284E-03 -1.4068111E-03 -1.3788772E-03 -1.3509901E-03
 -1.3232017E-03 -1.2955617E-03 -1.2681157E-03 -1.2408999E-03 -1.2139514E-03
 -1.1872980E-03 -1.1609679E-03 -1.1349834E-03 -1.1093640E-03 -1.0841287E-03
 -1.0592908E-03 -1.0348643E-03 -1.0108581E-03 -9.8728156E-04 -9.6414040E-04
 -9.4144203E-04 -9.1918791E-04 -8.9738256E-04 -8.7602559E-04 -8.5511961E-04
 -8.3466136E-04 -8.1465294E-04 -7.9508900E-04 -7.7596889E-04 -7.5728988E-04
 -7.3904585E-04
 0.1511487 0.1459496 0.1408935 0.1359834 0.1312213
 0.1266081 0.1221438 0.1178274 0.1136575 0.1096319
 0.1057481 0.1020030 9.8393306E-02 9.4915539E-02 9.1565967E-02
 8.8340729E-02 8.5235901E-02 8.2247503E-02 7.9371534E-02 7.6604068E-02
 7.3941134E-02 7.1378894E-02 6.8913527E-02 6.6541359E-02 6.4258754E-02
 6.2062215E-02 5.9948329E-02 5.7913791E-02 5.5955447E-02 5.4070212E-02
 5.2255139E-02 5.0507389E-02 4.8824206E-02 4.7203001E-02 4.5641240E-02
 4.4136506E-02 4.2686500E-02 4.1288979E-02 3.9941859E-02 3.8643081E-02
 3.7390713E-02 3.6182888E-02 3.5017822E-02 3.3893820E-02 3.2809258E-02
 3.1762578E-02 3.0752277E-02 2.9776935E-02 2.8835200E-02 2.7925763E-02
 2.7047379E-02 2.6198845E-02 2.5379039E-02 2.4586847E-02 2.3821237E-02
 2.3081217E-02 2.2365807E-02 2.1674113E-02 2.1005239E-02 2.0358354E-02
 1.9732658E-02 1.9127361E-02 1.8541744E-02 1.7975077E-02 1.7426692E-02
 1.6895939E-02 1.6382178E-02 1.5884828E-02 1.5403298E-02 1.4937035E-02
 1.4485521E-02 1.4048226E-02 1.3624678E-02 1.3214394E-02 1.2816925E-02
 1.2431839E-02 1.2058706E-02 1.1697141E-02 1.1346740E-02 1.1007140E-02
 1.0677977E-02 1.0358905E-02 1.0049599E-02 9.7497301E-03 9.4589898E-03
 9.1770878E-03 8.9037260E-03 8.6386437E-03 8.3815558E-03 8.1322165E-03
 7.8903809E-03
 2.0844543E-02 1.8678529E-02 1.6682938E-02 1.4847471E-02 1.3161997E-02
 1.1616630E-02 1.0201811E-02 8.9083472E-03 7.7274702E-03 6.6508460E-03
 5.6705987E-03 4.7793104E-03 3.9700270E-03 3.2362370E-03 2.5718808E-03
 1.9713079E-03 1.4292768E-03 9.4093010E-04 5.0177274E-04 1.0765412E-04
 -2.4525891E-04 -5.6049996E-04 -8.4132352E-04 -1.0907230E-03 -1.3114528E-03
 -1.5060442E-03 -1.6768223E-03 -1.8259210E-03 -1.9552996E-03 -2.0667543E-03
 -2.1619326E-03 -2.2423456E-03 -2.3093759E-03 -2.3642909E-03 -2.4082516E-03
 -2.4423199E-03 -2.4674672E-03 -2.4845824E-03 -2.4944779E-03 -2.4978973E-03
 -2.4955177E-03 -2.4879591E-03 -2.4757867E-03 -2.4595172E-03 -2.4396179E-03
 -2.4165206E-03 -2.3906138E-03 -2.3622522E-03 -2.3317577E-03 -2.2994271E-03
 -2.2655232E-03 -2.2302899E-03 -2.1939445E-03 -2.1566860E-03 -2.1186923E-03
 -2.0801278E-03 -2.0411373E-03 -2.0018513E-03 -1.9623889E-03 -1.9228556E-03
 -1.8833475E-03 -1.8439491E-03 -1.8047360E-03 -1.7657754E-03 -1.7271265E-03
 -1.6888438E-03 -1.6509732E-03 -1.6135536E-03 -1.5766219E-03 -1.5402086E-03
 -1.5043397E-03 -1.4690388E-03 -1.4343229E-03 -1.4002093E-03 -1.3667088E-03
 -1.3338336E-03 -1.3015915E-03 -1.2699860E-03 -1.2390233E-03 -1.2087028E-03
 -1.1790280E-03 -1.1499958E-03 -1.1216048E-03 -1.0938518E-03 -1.0667328E-03
 -1.0402425E-03 -1.0143756E-03 -9.8912476E-04 -9.6448406E-04 -9.4044593E-04
 -9.1700081E-04
 0.1662197 0.1604697 0.1548824 0.1494606 0.1442059
 0.1391186 0.1341982 0.1294433 0.1248516 0.1204206
 0.1161470 0.1120273 0.1080575 0.1042336 0.1005514
 9.7006328E-02 9.3594089E-02 9.0310171E-02 8.7150089E-02 8.4109448E-02
 8.1183866E-02 7.8369036E-02 7.5660750E-02 7.3054940E-02 7.0547596E-02
 6.8134844E-02 6.5812938E-02 6.3578226E-02 6.1427254E-02 5.9356619E-02
 5.7363085E-02 5.5443518E-02 5.3594913E-02 5.1814400E-02 5.0099213E-02
 4.8446700E-02 4.6854317E-02 4.5319624E-02 4.3840311E-02 4.2414129E-02
 4.1038949E-02 3.9712720E-02 3.8433488E-02 3.7199393E-02 3.6008630E-02
 3.4859505E-02 3.3750363E-02 3.2679647E-02 3.1645853E-02 3.0647561E-02
 2.9683387E-02 2.8752023E-02 2.7852219E-02 2.6982764E-02 2.6142515E-02
 2.5330381E-02 2.4545288E-02 2.3786249E-02 2.3052281E-02 2.2342462E-02
 2.1655921E-02 2.0991787E-02 2.0349270E-02 1.9727562E-02 1.9125931E-02
 1.8543666E-02 1.7980063E-02 1.7434474E-02 1.6906254E-02 1.6394800E-02
 1.5899533E-02 1.5419881E-02 1.4955319E-02 1.4505310E-02 1.4069373E-02
 1.3647025E-02 1.3237803E-02 1.2841266E-02 1.2456988E-02 1.2084555E-02
 1.1723582E-02 1.1373683E-02 1.1034493E-02 1.0705663E-02 1.0386848E-02
 1.0077728E-02 9.7779818E-03 9.4873123E-03 9.2054205E-03 8.9320261E-03
 8.6668581E-03
 2.1563005E-02 1.9216362E-02 1.7056284E-02 1.5071358E-02 1.3250391E-02
 1.1582503E-02 1.0057194E-02 8.6644012E-03 7.3945238E-03 6.2384577E-03
 5.1876055E-03 4.2338734E-03 3.3696704E-03 2.5878940E-03 1.8819295E-03
 1.2456087E-03 6.7320460E-04 1.5940730E-04 -3.0070165E-04 -7.1166444E-04
 -1.0776833E-03 -1.4026329E-03 -1.6900859E-03 -1.9433297E-03 -2.1653925E-03
 -2.3590594E-03 -2.5268896E-03 -2.6712343E-03 -2.7942513E-03 -2.8979219E-03
 -2.9840625E-03 -3.0543397E-03 -3.1102786E-03 -3.1532762E-03 -3.1846135E-03
 -3.2054612E-03 -3.2168888E-03 -3.2198755E-03 -3.2153167E-03 -3.2040260E-03
 -3.1867512E-03 -3.1641698E-03 -3.1369028E-03 -3.1055124E-03 -3.0705121E-03
 -3.0323700E-03 -2.9915094E-03 -2.9483149E-03 -2.9031364E-03 -2.8562893E-03
 -2.8080617E-03 -2.7587102E-03 -2.7084716E-03 -2.6575532E-03 -2.6061458E-03
 -2.5544213E-03 -2.5025310E-03 -2.4506121E-03 -2.3987861E-03 -2.3471639E-03
 -2.2958408E-03 -2.2449023E-03 -2.1944249E-03 -2.1444745E-03 -2.0951091E-03
 -2.0463807E-03 -1.9983305E-03 -1.9509982E-03 -1.9044153E-03 -1.8586086E-03
 -1.8136001E-03 -1.7694078E-03 -1.7260461E-03 -1.6835266E-03 -1.6418565E-03
 -1.6010418E-03 -1.5610839E-03 -1.5219861E-03 -1.4837441E-03 -1.4463576E-03
 -1.4098209E-03 -1.3741270E-03 -1.3392719E-03 -1.3052443E-03 -1.2720370E-03
 -1.2396405E-03 -1.2080433E-03 -1.1772355E-03 -1.1472043E-03 -1.1179391E-03
 -1.0894270E-03
 0.1829398 0.1765889 0.1704211 0.1644390 0.1586437
 0.1530352 0.1476126 0.1423739 0.1373164 0.1324369
 0.1277316 0.1231964 0.1188269 0.1146184 0.1105661
 0.1066651 0.1029104 9.9296972E-02 9.5819928E-02 9.2474386E-02
 8.9255460E-02 8.6158425E-02 8.3178632E-02 8.0311596E-02 7.7552907E-02
 7.4898303E-02 7.2343662E-02 6.9884978E-02 6.7518435E-02 6.5240309E-02
 6.3047044E-02 6.0935207E-02 5.8901470E-02 5.6942705E-02 5.5055853E-02
 5.3238008E-02 5.1486377E-02 4.9798273E-02 4.8171148E-02 4.6602536E-02
 4.5090090E-02 4.3631554E-02 4.2224780E-02 4.0867716E-02 3.9558385E-02
 3.8294900E-02 3.7075456E-02 3.5898328E-02 3.4761868E-02 3.3664495E-02
 3.2604702E-02 3.1581033E-02 3.0592117E-02 2.9636614E-02 2.8713264E-02
 2.7820870E-02 2.6958240E-02 2.6124289E-02 2.5317932E-02 2.4538154E-02
 2.3783993E-02 2.3054488E-02 2.2348763E-02 2.1665938E-02 2.1005196E-02
 2.0365758E-02 1.9746849E-02 1.9147750E-02 1.8567752E-02 1.8006191E-02
 1.7462431E-02 1.6935838E-02 1.6425826E-02 1.5931828E-02 1.5453285E-02
 1.4989684E-02 1.4540507E-02 1.4105271E-02 1.3683503E-02 1.3274758E-02
 1.2878602E-02 1.2494608E-02 1.2122385E-02 1.1761541E-02 1.1411699E-02
 1.1072509E-02 1.0743615E-02 1.0424688E-02 1.0115402E-02 9.8154498E-03
 9.5245335E-03
 2.2838855E-02 2.0266667E-02 1.7900703E-02 1.5728228E-02 1.3736779E-02
 1.1914269E-02 1.0249063E-02 8.7300185E-03 7.3465304E-03 6.0885418E-03
 4.9465657E-03 3.9116726E-03 2.9754904E-03 2.1301860E-03 1.3684618E-03
 6.8351225E-04 6.9015543E-05 -4.8089123E-04 -9.7164325E-04 -1.4082639E-03
 -1.7953999E-03 -2.1373404E-03 -2.4380428E-03 -2.7011493E-03 -2.9300181E-03
 -3.1277374E-03 -3.2971487E-03 -3.4408609E-03 -3.5612707E-03 -3.6605778E-03
 -3.7408015E-03 -3.8037908E-03 -3.8512407E-03 -3.8847034E-03 -3.9055999E-03
 -3.9152293E-03 -3.9147795E-03 -3.9053350E-03 -3.8878869E-03 -3.8633393E-03
 -3.8325144E-03 -3.7961630E-03 -3.7549692E-03 -3.7095526E-03 -3.6604789E-03
 -3.6082603E-03 -3.5533619E-03 -3.4962026E-03 -3.4371649E-03 -3.3765933E-03
 -3.3147971E-03 -3.2520567E-03 -3.1886243E-03 -3.1247248E-03 -3.0605614E-03
 -2.9963164E-03 -2.9321495E-03 -2.8682060E-03 -2.8046134E-03 -2.7414844E-03
 -2.6789198E-03 -2.6170050E-03 -2.5558195E-03 -2.4954251E-03 -2.4358828E-03
 -2.3772400E-03 -2.3195380E-03 -2.2628128E-03 -2.2070925E-03 -2.1523992E-03
 -2.0987536E-03 -2.0461667E-03 -1.9946517E-03 -1.9442124E-03 -1.8948533E-03
 -1.8465746E-03 -1.7993739E-03 -1.7532476E-03 -1.7081889E-03 -1.6641900E-03
 -1.6212413E-03 -1.5793317E-03 -1.5384506E-03 -1.4985825E-03 -1.4597159E-03
 -1.4218354E-03 -1.3849258E-03 -1.3489726E-03 -1.3139584E-03 -1.2798682E-03
 -1.2466845E-03
 0.2014965 0.1944927 0.1876921 0.1810973 0.1747095
 0.1685285 0.1625529 0.1567805 0.1512081 0.1458320
 0.1406480 0.1356515 0.1308375 0.1262008 0.1217361
 0.1174379 0.1133008 0.1093193 0.1054879 0.1018012
 9.8253921E-02 9.4840877E-02 9.1556944E-02 8.8397197E-02 8.5356809E-02
 8.2431078E-02 7.9615511E-02 7.6905705E-02 7.4297465E-02 7.1786694E-02
 6.9369510E-02 6.7042105E-02 6.4800858E-02 6.2642306E-02 6.0563102E-02
 5.8560032E-02 5.6630030E-02 5.4770131E-02 5.2977536E-02 5.1249519E-02
 4.9583498E-02 4.7976993E-02 4.6427615E-02 4.4933114E-02 4.3491296E-02
 4.2100094E-02 4.0757503E-02 3.9461613E-02 3.8210612E-02 3.7002753E-02
 3.5836358E-02 3.4709834E-02 3.3621658E-02 3.2570347E-02 3.1554505E-02
 3.0572809E-02 2.9623954E-02 2.8706722E-02 2.7819920E-02 2.6962429E-02
 2.6133176E-02 2.5331110E-02 2.4555251E-02 2.3804633E-02 2.3078352E-02
 2.2375541E-02 2.1695346E-02 2.1036979E-02 2.0399649E-02 1.9782625E-02
 1.9185200E-02 1.8606678E-02 1.8046418E-02 1.7503779E-02 1.6978158E-02
 1.6468976E-02 1.5975665E-02 1.5497702E-02 1.5034557E-02 1.4585734E-02
 1.4150763E-02 1.3729174E-02 1.3320529E-02 1.2924397E-02 1.2540363E-02
 1.2168043E-02 1.1807043E-02 1.1457008E-02 1.1117568E-02 1.0788393E-02
 1.0469146E-02
 2.4895994E-02 2.2042971E-02 1.9419890E-02 1.7012453E-02 1.4806703E-02
 1.2789119E-02 1.0946703E-02 9.2670191E-03 7.7382405E-03 6.3491603E-03
 5.0892127E-03 3.9484543E-03 2.9175649E-03 1.9878240E-03 1.1511067E-03
 3.9983320E-04 -2.7303564E-04 -8.7403483E-04 -1.4092219E-03 -1.8841977E-03
 -2.3041470E-03 -2.6738576E-03 -2.9977472E-03 -3.2798843E-03 -3.5240229E-03
 -3.7336142E-03 -3.9118356E-03 -4.0616062E-03 -4.1856067E-03 -4.2862981E-03
 -4.3659406E-03 -4.4266037E-03 -4.4701830E-03 -4.4984170E-03 -4.5128935E-03
 -4.5150658E-03 -4.5062620E-03 -4.4876938E-03 -4.4604680E-03 -4.4255918E-03
 -4.3839845E-03 -4.3364814E-03 -4.2838431E-03 -4.2267595E-03 -4.1658580E-03
 -4.1017057E-03 -4.0348168E-03 -3.9656563E-03 -3.8946446E-03 -3.8221588E-03
 -3.7485419E-03 -3.6740974E-03 -3.5991028E-03 -3.5238017E-03 -3.4484142E-03
 -3.3731372E-03 -3.2981420E-03 -3.2235859E-03 -3.1496019E-03 -3.0763091E-03
 -3.0038150E-03 -2.9322072E-03 -2.8615673E-03 -2.7919598E-03 -2.7234443E-03
 -2.6560684E-03 -2.5898730E-03 -2.5248905E-03 -2.4611473E-03 -2.3986632E-03
 -2.3374544E-03 -2.2775300E-03 -2.2188970E-03 -2.1615569E-03 -2.1055082E-03
 -2.0507490E-03 -1.9972702E-03 -1.9450641E-03 -1.8941190E-03 -1.8444227E-03
 -1.7959612E-03 -1.7487174E-03 -1.7026768E-03 -1.6578196E-03 -1.6141287E-03
 -1.5715859E-03 -1.5301694E-03 -1.4898611E-03 -1.4506397E-03 -1.4124860E-03
 -1.3753782E-03
 0.2220680 0.2143593 0.2068726 0.1996113 0.1925766
 0.1857684 0.1791854 0.1728251 0.1666843 0.1607589
 0.1550443 0.1495356 0.1442272 0.1391137 0.1341891
 0.1294476 0.1248833 0.1204900 0.1162620 0.1121933
 0.1082781 0.1045108 0.1008858 9.7397648E-02 9.4041146E-02
 9.0811148E-02 8.7702714E-02 8.4711008E-02 8.1831463E-02 7.9059571E-02
 7.6391056E-02 7.3821768E-02 7.1347691E-02 6.8965033E-02 6.6670097E-02
 6.4459361E-02 6.2329430E-02 6.0277045E-02 5.8299109E-02 5.6392618E-02
 5.4554719E-02 5.2782662E-02 5.1073819E-02 4.9425688E-02 4.7835853E-02
 4.6302013E-02 4.4821966E-02 4.3393578E-02 4.2014852E-02 4.0683847E-02
 3.9398707E-02 3.8157657E-02 3.6959019E-02 3.5801142E-02 3.4682479E-02
 3.3601563E-02 3.2556944E-02 3.1547271E-02 3.0571222E-02 2.9627556E-02
 2.8715085E-02 2.7832633E-02 2.6979126E-02 2.6153488E-02 2.5354711E-02
 2.4581840E-02 2.3833930E-02 2.3110094E-02 2.2409473E-02 2.1731244E-02
 2.1074632E-02 2.0438865E-02 1.9823225E-02 1.9227011E-02 1.8649548E-02
 1.8090207E-02 1.7548356E-02 1.7023405E-02 1.6514778E-02 1.6021924E-02
 1.5544326E-02 1.5081456E-02 1.4632844E-02 1.4198003E-02 1.3776481E-02
 1.3367853E-02 1.2971680E-02 1.2587571E-02 1.2215123E-02 1.1853970E-02
 1.1503738E-02
 2.8035013E-02 2.4832811E-02 2.1888802E-02 1.9186936E-02 1.6711533E-02
 1.4447414E-02 1.2379979E-02 1.0495272E-02 8.7800203E-03 7.2216517E-03
 5.8083110E-03 4.5288447E-03 3.3728001E-03 2.3303926E-03 1.3925066E-03
 5.5063551E-04 -2.0312407E-04 -8.7610824E-04 -1.4751238E-03 -2.0064635E-03
 -2.4759579E-03 -2.8889901E-03 -3.2505323E-03 -3.5651638E-03 -3.8371114E-03
 -4.0702652E-03 -4.2682034E-03 -4.4342168E-03 -4.5713289E-03 -4.6823155E-03
 -4.7697243E-03 -4.8358911E-03 -4.8829555E-03 -4.9128761E-03 -4.9274461E-03
 -4.9283048E-03 -4.9169492E-03 -4.8947465E-03 -4.8629423E-03 -4.8226737E-03
 -4.7749747E-03 -4.7207857E-03 -4.6609612E-03 -4.5962785E-03 -4.5274394E-03
 -4.4550821E-03 -4.3797828E-03 -4.3020598E-03 -4.2223847E-03 -4.1411780E-03
 -4.0588202E-03 -3.9756512E-03 -3.8919763E-03 -3.8080665E-03 -3.7241650E-03
 -3.6404873E-03 -3.5572227E-03 -3.4745410E-03 -3.3925883E-03 -3.3114953E-03
 -3.2313741E-03 -3.1523213E-03 -3.0744215E-03 -2.9977448E-03 -2.9223515E-03
 -2.8482925E-03 -2.7756067E-03 -2.7043284E-03 -2.6344815E-03 -2.5660859E-03
 -2.4991536E-03 -2.4336926E-03 -2.3697070E-03 -2.3071941E-03 -2.2461498E-03
 -2.1865673E-03 -2.1284348E-03 -2.0717408E-03 -2.0164682E-03 -1.9626012E-03
 -1.9101222E-03 -1.8590098E-03 -1.8092449E-03 -1.7608036E-03 -1.7136653E-03
 -1.6678061E-03 -1.6232028E-03 -1.5798319E-03 -1.5376684E-03 -1.4966887E-03
 -1.4568698E-03
 0.2447992 0.2363383 0.2281156 0.2201352 0.2123994
 0.2049088 0.1976623 0.1906578 0.1838920 0.1773610
 0.1710600 0.1649839 0.1591269 0.1534831 0.1480465
 0.1428106 0.1377692 0.1329158 0.1282440 0.1237476
 0.1194202 0.1152557 0.1112481 0.1073915 0.1036802
 0.1001086 9.6671298E-02 9.3363062E-02 9.0178862E-02 8.7113768E-02
 8.4163085E-02 8.1322245E-02 7.8586861E-02 7.5952746E-02 7.3415831E-02
 7.0972227E-02 6.8618193E-02 6.6350125E-02 6.4164609E-02 6.2058326E-02
 6.0028099E-02 5.8070906E-02 5.6183819E-02 5.4364074E-02 5.2608985E-02
 5.0916001E-02 4.9282666E-02 4.7706634E-02 4.6185661E-02 4.4717602E-02
 4.3300398E-02 4.1932065E-02 4.0610738E-02 3.9334580E-02 3.8101882E-02
 3.6910996E-02 3.5760310E-02 3.4648325E-02 3.3573579E-02 3.2534670E-02
 3.1530287E-02 3.0559124E-02 2.9619982E-02 2.8711660E-02 2.7833046E-02
 2.6983071E-02 2.6160680E-02 2.5364900E-02 2.4594765E-02 2.3849364E-02
 2.3127835E-02 2.2429315E-02 2.1753021E-02 2.1098161E-02 2.0463992E-02
 1.9849813E-02 1.9254919E-02 1.8678669E-02 1.8120414E-02 1.7579548E-02
 1.7055493E-02 1.6547671E-02 1.6055554E-02 1.5578607E-02 1.5116337E-02
 1.4668258E-02 1.4233896E-02 1.3812820E-02 1.3404578E-02 1.3008768E-02
 1.2624981E-02
 3.2655597E-02 2.9019920E-02 2.5675559E-02 2.2604596E-02 1.9789463E-02
 1.7213140E-02 1.4859224E-02 1.2712017E-02 1.0756581E-02 8.9787599E-03
 7.3651909E-03 5.9033078E-03 4.5813164E-03 3.3881783E-03 2.3136053E-03
 1.3479880E-03 4.8239838E-04 -2.9145880E-04 -9.8128244E-04 -1.5941934E-03
 -2.1367958E-03 -2.6151871E-03 -3.0350033E-03 -3.4014389E-03 -3.7192898E-03
 -3.9929715E-03 -4.2265495E-03 -4.4237641E-03 -4.5880503E-03 -4.7225663E-03
 -4.8302095E-03 -4.9136383E-03 -4.9752886E-03 -5.0173909E-03 -5.0419862E-03
 -5.0509418E-03 -5.0459630E-03 -5.0286069E-03 -5.0002937E-03 -4.9623172E-03
 -4.9158554E-03 -4.8619802E-03 -4.8016636E-03 -4.7357907E-03 -4.6651601E-03
 -4.5904974E-03 -4.5124572E-03 -4.4316305E-03 -4.3485500E-03 -4.2636953E-03
 -4.1774968E-03 -4.0903385E-03 -4.0025678E-03 -3.9144894E-03 -3.8263788E-03
 -3.7384783E-03 -3.6510017E-03 -3.5641387E-03 -3.4780540E-03 -3.3928922E-03
 -3.3087800E-03 -3.2258246E-03 -3.1441185E-03 -3.0637404E-03 -2.9847564E-03
 -2.9072212E-03 -2.8311776E-03 -2.7566624E-03 -2.6837001E-03 -2.6123114E-03
 -2.5425097E-03 -2.4743006E-03 -2.4076875E-03 -2.3426667E-03 -2.2792313E-03
 -2.2173729E-03 -2.1570767E-03 -2.0983282E-03 -2.0411087E-03 -1.9853981E-03
 -1.9311759E-03 -1.8784185E-03 -1.8271019E-03 -1.7772012E-03 -1.7286910E-03
 -1.6815454E-03 -1.6357366E-03 -1.5912397E-03 -1.5480268E-03 -1.5060713E-03
 -1.4653465E-03
 0.2697249 0.2605118 0.2515129 0.2427690 0.2342838
 0.2260593 0.2180956 0.2103913 0.2029440 0.1957500
 0.1888048 0.1821035 0.1756404 0.1694095 0.1634046
 0.1576191 0.1520465 0.1466799 0.1415126 0.1365380
 0.1317494 0.1271402 0.1227039 0.1184342 0.1143249
 0.1103701 0.1065638 0.1029002 9.9374056E-02 9.5979847E-02
 9.2712454E-02 8.9566886E-02 8.6538322E-02 8.3622150E-02 8.0813907E-02
 7.8109287E-02 7.5504176E-02 7.2994605E-02 7.0576765E-02 6.8246998E-02
 6.6001788E-02 6.3837767E-02 6.1751705E-02 5.9740521E-02 5.7801228E-02
 5.5930991E-02 5.4127075E-02 5.2386861E-02 5.0707866E-02 4.9087688E-02
 4.7524028E-02 4.6014678E-02 4.4557557E-02 4.3150607E-02 4.1791931E-02
 4.0479682E-02 3.9212059E-02 3.7987400E-02 3.6804050E-02 3.5660468E-02
 3.4555167E-02 3.3486709E-02 3.2453734E-02 3.1454917E-02 3.0489013E-02
 2.9554823E-02 2.8651169E-02 2.7776971E-02 2.6931148E-02 2.6112683E-02
 2.5320619E-02 2.4553990E-02 2.3811927E-02 2.3093538E-02 2.2398012E-02
 2.1724554E-02 2.1072388E-02 2.0440795E-02 1.9829055E-02 1.9236499E-02
 1.8662479E-02 1.8106360E-02 1.7567553E-02 1.7045457E-02 1.6539535E-02
 1.6049247E-02 1.5574072E-02 1.5113518E-02 1.4667102E-02 1.4234362E-02
 1.3814864E-02
 3.9182734E-02 3.5113581E-02 3.1270962E-02 2.7737830E-02 2.4494737E-02
 2.1522755E-02 1.8803559E-02 1.6319569E-02 1.4054011E-02 1.1990947E-02
 1.0115315E-02 8.4129246E-03 6.8704467E-03 5.4753814E-03 4.2160652E-03
 3.0816044E-03 2.0618571E-03 1.1473967E-03 3.2946048E-04 -4.0005622E-04
 -1.0486796E-03 -1.6233696E-03 -2.1305541E-03 -2.5761700E-03 -2.9656978E-03
 -3.3041926E-03 -3.5963058E-03 -3.8463245E-03 -4.0581836E-03 -4.2355089E-03
 -4.3816254E-03 -4.4995854E-03 -4.5921882E-03 -4.6619982E-03 -4.7113635E-03
 -4.7424319E-03 -4.7571673E-03 -4.7573638E-03 -4.7446573E-03 -4.7205393E-03
 -4.6863682E-03 -4.6433825E-03 -4.5927009E-03 -4.5353463E-03 -4.4722427E-03
 -4.4042254E-03 -4.3320530E-03 -4.2564082E-03 -4.1779061E-03 -4.0971027E-03
 -4.0144939E-03 -3.9305263E-03 -3.8456009E-03 -3.7600710E-03 -3.6742548E-03
 -3.5884341E-03 -3.5028562E-03 -3.4177422E-03 -3.3332820E-03 -3.2496452E-03
 -3.1669771E-03 -3.0854044E-03 -3.0050341E-03 -2.9259583E-03 -2.8482543E-03
 -2.7719866E-03 -2.6972047E-03 -2.6239546E-03 -2.5522646E-03 -2.4821595E-03
 -2.4136566E-03 -2.3467639E-03 -2.2814872E-03 -2.2178227E-03 -2.1557657E-03
 -2.0953068E-03 -2.0364306E-03 -1.9791238E-03 -1.9233646E-03 -1.8691334E-03
 -1.8164079E-03 -1.7651636E-03 -1.7153750E-03 -1.6670142E-03 -1.6200560E-03
 -1.5744725E-03 -1.5302347E-03 -1.4873145E-03 -1.4456839E-03 -1.4053138E-03
 -1.3661778E-03
 0.2967423 0.2867770 0.2770020 0.2674944 0.2582267
 0.2492291 0.2405041 0.2320520 0.2238716 0.2159607
 0.2083156 0.2009321 0.1938051 0.1869290 0.1802976
 0.1739046 0.1677434 0.1618070 0.1560887 0.1505814
 0.1452783 0.1401723 0.1352567 0.1305249 0.1259701
 0.1215858 0.1173659 0.1133041 0.1093945 0.1056312
 0.1020088 9.8521560E-02 9.5164381E-02 9.1932178E-02 8.8820025E-02
 8.5823208E-02 8.2937174E-02 8.0157526E-02 7.7480093E-02 7.4900776E-02
 7.2415709E-02 7.0021152E-02 6.7713492E-02 6.5489314E-02 6.3345283E-02
 6.1278258E-02 5.9285175E-02 5.7363119E-02 5.5509299E-02 5.3721037E-02
 5.1995769E-02 5.0331026E-02 4.8724461E-02 4.7173794E-02 4.5676872E-02
 4.4231649E-02 4.2836096E-02 4.1488342E-02 4.0186547E-02 3.8928967E-02
 3.7713949E-02 3.6539860E-02 3.5405204E-02 3.4308463E-02 3.3248257E-02
 3.2223243E-02 3.1232100E-02 3.0273609E-02 2.9346569E-02 2.8449830E-02
 2.7582327E-02 2.6742982E-02 2.5930807E-02 2.5144823E-02 2.4384107E-02
 2.3647781E-02 2.2934975E-02 2.2244886E-02 2.1576704E-02 2.0929694E-02
 2.0303126E-02 1.9696297E-02 1.9108543E-02 1.8539213E-02 1.7987685E-02
 1.7453380E-02 1.6935702E-02 1.6434129E-02 1.5948102E-02 1.5477126E-02
 1.5020713E-02
 4.8058085E-02 4.3555450E-02 3.9214570E-02 3.5219263E-02 3.1438809E-02
 2.7966365E-02 2.4781834E-02 2.1865759E-02 1.9199509E-02 1.6765274E-02
 1.4546171E-02 1.2526229E-02 1.0690412E-02 9.0245800E-03 7.5155078E-03
 6.1508114E-03 4.9189571E-03 3.8091836E-03 2.8114894E-03 1.9166011E-03
 1.1158955E-03 4.0139625E-04 -2.3428473E-04 -7.9796795E-04 -1.2959637E-03
 -1.7340946E-03 -2.1177263E-03 -2.4518112E-03 -2.7408921E-03 -2.9891639E-03
 -3.2004754E-03 -3.3783645E-03 -3.5260774E-03 -3.6465919E-03 -3.7426332E-03
 -3.8167015E-03 -3.8710791E-03 -3.9078579E-03 -3.9289431E-03 -3.9360765E-03
 -3.9308430E-03 -3.9146892E-03 -3.8889288E-03 -3.8547555E-03 -3.8132535E-03
 -3.7654042E-03 -3.7120988E-03 -3.6541405E-03 -3.5922544E-03 -3.5270953E-03
 -3.4592513E-03 -3.3892491E-03 -3.3175657E-03 -3.2446214E-03 -3.1707962E-03
 -3.0964238E-03 -3.0218030E-03 -2.9471985E-03 -2.8728400E-03 -2.7989342E-03
 -2.7256557E-03 -2.6531611E-03 -2.5815840E-03 -2.5110370E-03 -2.4416177E-03
 -2.3734106E-03 -2.3064788E-03 -2.2408820E-03 -2.1766615E-03 -2.1138520E-03
 -2.0524804E-03 -1.9925637E-03 -1.9341127E-03 -1.8771312E-03 -1.8216185E-03
 -1.7675712E-03 -1.7149774E-03 -1.6638257E-03 -1.6140981E-03 -1.5657761E-03
 -1.5188407E-03 -1.4732693E-03 -1.4290358E-03 -1.3861156E-03 -1.3444817E-03
 -1.3041086E-03 -1.2649676E-03 -1.2270330E-03 -1.1902738E-03 -1.1546641E-03
 -1.1201765E-03
 0.3255729 0.3148555 0.3043043 0.2940331 0.2839828
 0.2742122 0.2647043 0.2554746 0.2465249 0.2378551
 0.2294637 0.2213479 0.2135040 0.2059275 0.1986132
 0.1915552 0.1847473 0.1781832 0.1718559 0.1657586
 0.1598845 0.1542263 0.1487770 0.1435299 0.1384778
 0.1336140 0.1289318 0.1244247 0.1200862 0.1159102
 0.1118905 0.1080212 0.1042967 0.1007113 9.7259797E-02
 9.3936875E-02 9.0737589E-02 8.7657072E-02 8.4690720E-02 8.1834011E-02
 7.9082638E-02 7.6432452E-02 7.3879451E-02 7.1419805E-02 6.9049813E-02
 6.6765949E-02 6.4564794E-02 6.2443089E-02 6.0397703E-02 5.8425635E-02
 5.6523997E-02 5.4690018E-02 5.2921068E-02 5.1214568E-02 4.9568113E-02
 4.7979377E-02 4.6446092E-02 4.4966135E-02 4.3537438E-02 4.2158034E-02
 4.0826056E-02 3.9539669E-02 3.8297169E-02 3.7096858E-02 3.5937175E-02
 3.4816600E-02 3.3733644E-02 3.2686941E-02 3.1675112E-02 3.0696897E-02
 2.9751059E-02 2.8836397E-02 2.7951809E-02 2.7096177E-02 2.6268465E-02
 2.5467694E-02 2.4692874E-02 2.3943104E-02 2.3217494E-02 2.2515191E-02
 2.1835389E-02 2.1177301E-02 2.0540178E-02 1.9923298E-02 1.9325962E-02
 1.8747520E-02 1.8187314E-02 1.7644752E-02 1.7119223E-02 1.6610166E-02
 1.6117046E-02
 5.9871007E-02 5.4934885E-02 5.0095744E-02 4.5638260E-02 4.1320439E-02
 3.7347529E-02 3.3572990E-02 3.0104252E-02 2.6921121E-02 2.4004115E-02
 2.1334602E-02 1.8894864E-02 1.6668096E-02 1.4638421E-02 1.2790938E-02
 1.1111620E-02 9.5873596E-03 8.2059093E-03 6.9558243E-03 5.8264970E-03
 4.8080240E-03 3.8912222E-03 3.0675905E-03 2.3292480E-03 1.6688969E-03
 1.0797982E-03 5.5572629E-04 9.0931106E-05 -3.1987185E-04 -6.8156357E-04
 -9.9863135E-04 -1.2752053E-03 -1.5150749E-03 -1.7217242E-03 -1.8983454E-03
 -2.0478677E-03 -2.1729742E-03 -2.2761205E-03 -2.3595490E-03 -2.4253116E-03
 -2.4752808E-03 -2.5111637E-03 -2.5345171E-03 -2.5467521E-03 -2.5491633E-03
 -2.5429165E-03 -2.5290712E-03 -2.5085919E-03 -2.4823470E-03 -2.4511227E-03
 -2.4156284E-03 -2.3765045E-03 -2.3343251E-03 -2.2896077E-03 -2.2428143E-03
 -2.1943592E-03 -2.1446131E-03 -2.0939035E-03 -2.0425213E-03 -1.9907269E-03
 -1.9387486E-03 -1.8867853E-03 -1.8350127E-03 -1.7835831E-03 -1.7326296E-03
 -1.6822664E-03 -1.6325894E-03 -1.5836838E-03 -1.5356129E-03 -1.4884399E-03
 -1.4422073E-03 -1.3969527E-03 -1.3527048E-03 -1.3094827E-03 -1.2673008E-03
 -1.2261679E-03 -1.1860850E-03 -1.1470525E-03 -1.1090625E-03 -1.0721063E-03
 -1.0361718E-03 -1.0012455E-03 -9.6730597E-04 -9.3433884E-04 -9.0231997E-04
 -8.7122922E-04 -8.4104191E-04 -8.1173645E-04 -7.8328594E-04 -7.5566577E-04
 -7.2885066E-04
 0.3555612 0.3440916 0.3327642 0.3217292 0.3108964
 0.3003528 0.2900619 0.2800547 0.2703323 0.2608891
 0.2517274 0.2428475 0.2342485 0.2259280 0.2178828
 0.2101086 0.2026006 0.1953533 0.1883608 0.1816168
 0.1751148 0.1688479 0.1628094 0.1569923 0.1513896
 0.1459945 0.1407999 0.1357992 0.1309856 0.1263524
 0.1218933 0.1176019 0.1134720 0.1094977 0.1056731
 0.1019926 9.8450601E-02 9.5041834E-02 9.1761179E-02 8.8603638E-02
 8.5564412E-02 8.2638875E-02 7.9822533E-02 7.7111125E-02 7.4500464E-02
 7.1986586E-02 6.9565654E-02 6.7233935E-02 6.4987935E-02 6.2824219E-02
 6.0739525E-02 5.8730695E-02 5.6794744E-02 5.4928727E-02 5.3129915E-02
 5.1395640E-02 4.9723323E-02 4.8110552E-02 4.6554949E-02 4.5054287E-02
 4.3606423E-02 4.2209268E-02 4.0860865E-02 3.9559301E-02 3.8302775E-02
 3.7089564E-02 3.5917979E-02 3.4786444E-02 3.3693410E-02 3.2637428E-02
 3.1617116E-02 3.0631093E-02 2.9678106E-02 2.8756905E-02 2.7866308E-02
 2.7005199E-02 2.6172474E-02 2.5367115E-02 2.4588104E-02 2.3834486E-02
 2.3105362E-02 2.2399835E-02 2.1717075E-02 2.1056257E-02 2.0416608E-02
 1.9797396E-02 1.9197885E-02 1.8617401E-02 1.8055262E-02 1.7510854E-02
 1.6983563E-02
 7.5425416E-02 7.0055805E-02 6.4718395E-02 5.9798725E-02 5.4943543E-02
 5.0470162E-02 4.6105612E-02 4.2084206E-02 3.8237207E-02 3.4693070E-02
 3.1432096E-02 2.8435253E-02 2.5684286E-02 2.3161761E-02 2.0851191E-02
 1.8736931E-02 1.6804265E-02 1.5039376E-02 1.3429294E-02 1.1961938E-02
 1.0625992E-02 9.4109448E-03 8.3070127E-03 7.3051266E-03 6.3968636E-03
 5.5744350E-03 4.8306240E-03 4.1587651E-03 3.5527202E-03 3.0068143E-03
 2.5158194E-03 2.0749297E-03 1.6797149E-03 1.3261057E-03 1.0103756E-03
 7.2909083E-04 4.7910670E-04 2.5753706E-04 6.1747312E-05 -1.1068099E-04
 -2.6196096E-04 -3.9411330E-04 -5.0898583E-04 -6.0826057E-04 -6.9348153E-04
 -7.6604547E-04 -8.2723657E-04 -8.7821839E-04 -9.2005025E-04 -9.5369422E-04
 -9.8002783E-04 -9.9984847E-04 -1.0138751E-03 -1.0227651E-03 -1.0271104E-03
 -1.0274466E-03 -1.0242612E-03 -1.0179905E-03 -1.0090320E-03 -9.9774182E-04
 -9.8443963E-04 -9.6941489E-04 -9.5292478E-04 -9.3520334E-04 -9.1645622E-04
 -8.9686969E-04 -8.7660772E-04 -8.5581822E-04 -8.3462882E-04 -8.1315514E-04
 -7.9150026E-04 -7.6975051E-04 -7.4798439E-04 -7.2626985E-04 -7.0466351E-04
 -6.8321783E-04 -6.6197384E-04 -6.4096885E-04 -6.2023179E-04 -5.9978745E-04
 -5.7965680E-04 -5.5985519E-04 -5.4039346E-04 -5.2128045E-04 -5.0252053E-04
 -4.8411742E-04 -4.6606953E-04 -4.4837510E-04 -4.3102907E-04 -4.1402571E-04
 -3.9735701E-04
 0.3850349 0.3728131 0.3607095 0.3489108 0.3372954
 0.3259788 0.3149049 0.3041202 0.2936250 0.2834085
 0.2735023 0.2638690 0.2545126 0.2454356 0.2366386
 0.2281211 0.2198812 0.2119160 0.2042218 0.1967942
 0.1896281 0.1827179 0.1760576 0.1696410 0.1634617
 0.1575127 0.1517873 0.1462786 0.1409795 0.1358831
 0.1309824 0.1262705 0.1217407 0.1173861 0.1132004
 0.1091769 0.1053094 0.1015919 9.8018348E-02 9.4583035E-02
 9.1280393E-02 8.8105038E-02 8.5051760E-02 8.2115583E-02 7.9291679E-02
 7.6575421E-02 7.3962346E-02 7.1448185E-02 6.9028847E-02 6.6700391E-02
 6.4459071E-02 6.2301256E-02 6.0223520E-02 5.8222525E-02 5.6295119E-02
 5.4438304E-02 5.2649144E-02 5.0924908E-02 4.9262926E-02 4.7660675E-02
 4.6115756E-02 4.4625826E-02 4.3188713E-02 4.1802268E-02 4.0464491E-02
 3.9173461E-02 3.7927318E-02 3.6724314E-02 3.5562746E-02 3.4441009E-02
 3.3357576E-02 3.2310944E-02 3.1299733E-02 3.0322561E-02 2.9378159E-02
 2.8465297E-02 2.7582766E-02 2.6729461E-02 2.5904274E-02 2.5106180E-02
 2.4334190E-02 2.3587326E-02 2.2864698E-02 2.2165416E-02 2.1488640E-02
 2.0833571E-02 2.0199427E-02 1.9585479E-02 1.8991001E-02 1.8415308E-02
 1.7857755E-02
 9.5775776E-02 8.9972675E-02 8.4136985E-02 7.8755118E-02 7.3362574E-02
 6.8388723E-02 6.3434161E-02 5.8860078E-02 5.4349199E-02 5.0177936E-02
 4.6130199E-02 4.2378560E-02 3.8904682E-02 3.5690695E-02 3.2719381E-02
 2.9974153E-02 2.7439300E-02 2.5099875E-02 2.2941813E-02 2.0951916E-02
 1.9117795E-02 1.7427895E-02 1.5871493E-02 1.4438584E-02 1.3119908E-02
 1.1906864E-02 1.0791490E-02 9.7664213E-03 8.8248495E-03 7.9604639E-03
 7.1674245E-03 6.4403210E-03 5.7741450E-03 5.1642652E-03 4.6063745E-03
 4.0964922E-03 3.6309117E-03 3.2062032E-03 2.8191870E-03 2.4669021E-03
 2.1466091E-03 1.8557623E-03 1.5920029E-03 1.3531442E-03 1.1371564E-03
 9.4216119E-04 7.6641882E-04 6.0831616E-04 4.6636665E-04 3.3919213E-04
 2.2552186E-04 1.2418166E-04 3.4088189E-05 -4.5757843E-05 -1.1627321E-04
 -1.7830323E-04 -2.3262898E-04 -2.7996252E-04 -3.2096115E-04 -3.5622701E-04
 -3.8631051E-04 -4.1171795E-04 -4.3291060E-04 -4.5031187E-04 -4.6430665E-04
 -4.7524765E-04 -4.8345592E-04 -4.8922369E-04 -4.9281667E-04 -4.9447682E-04
 -4.9442332E-04 -4.9285556E-04 -4.8995379E-04 -4.8588082E-04 -4.8078454E-04
 -4.7479791E-04 -4.6804070E-04 -4.6062117E-04 -4.5263610E-04 -4.4417247E-04
 -4.3530867E-04 -4.2611410E-04 -4.1665084E-04 -4.0697429E-04 -3.9713376E-04
 -3.8717262E-04 -3.7712924E-04 -3.6703754E-04 -3.5692679E-04 -3.4682354E-04
 -3.3674951E-04
 0.4085532 0.3955790 0.3826993 0.3701369 0.3577389
 0.3456492 0.3337923 0.3222300 0.3109621 0.2999722
 0.2893217 0.2791618 0.2692716 0.2596614 0.2503387
 0.2413079 0.2325705 0.2241262 0.2159726 0.2081057
 0.2005205 0.1932109 0.1861701 0.1793911 0.1728661
 0.1665873 0.1605469 0.1547368 0.1491491 0.1437759
 0.1386094 0.1336420 0.1288662 0.1242747 0.1198605
 0.1156166 0.1115364 0.1076133 0.1038412 0.1002139
 9.6725628E-02 9.3370795E-02 9.0143964E-02 8.7039962E-02 8.4053747E-02
 8.1180543E-02 7.8415714E-02 7.5754821E-02 7.3193632E-02 7.0728064E-02
 6.8354204E-02 6.6068307E-02 6.3866794E-02 6.1746202E-02 5.9703253E-02
 5.7734825E-02 5.5837847E-02 5.4009471E-02 5.2246902E-02 5.0547518E-02
 4.8908792E-02 4.7328275E-02 4.5803681E-02 4.4332769E-02 4.2913418E-02
 4.1543622E-02 4.0221419E-02 3.8944963E-02 3.7712462E-02 3.6522221E-02
 3.5372633E-02 3.4262102E-02 3.3189178E-02 3.2152396E-02 3.1150403E-02
 3.0181905E-02 2.9245628E-02 2.8340384E-02 2.7465019E-02 2.6618427E-02
 2.5799565E-02 2.5007404E-02 2.4240987E-02 2.3499371E-02 2.2781678E-02
 2.2087049E-02 2.1414649E-02 2.0763710E-02 2.0133452E-02 1.9523170E-02
 1.8932154E-02
 0.1209521 0.1147155 0.1083815 0.1025375 9.6607544E-02
 9.1133222E-02 8.5588649E-02 8.0461882E-02 7.5287111E-02 7.0488714E-02
 6.5654203E-02 6.0754888E-02 5.6148071E-02 5.1824547E-02 4.7774389E-02
 4.3987092E-02 4.0451679E-02 3.7156936E-02 3.4091257E-02 3.1243043E-02
 2.8600579E-02 2.6152262E-02 2.3886653E-02 2.1792589E-02 1.9859245E-02
 1.8076133E-02 1.6433235E-02 1.4920956E-02 1.3530215E-02 1.2252371E-02
 1.1079281E-02 1.0003267E-02 9.0171220E-03 8.1140995E-03 7.2878813E-03
 6.5325676E-03 5.8426620E-03 5.2130367E-03 4.6389378E-03 4.1159382E-03
 3.6399341E-03 3.2071199E-03 2.8139690E-03 2.4572231E-03 2.1338661E-03
 1.8411123E-03 1.5763858E-03 1.3373129E-03 1.1217057E-03 9.2754746E-04
 7.5297948E-04 5.9629016E-04 4.5590976E-04 3.3038869E-04 2.1840066E-04
 1.1872665E-04 3.0245497E-05 -4.8067064E-05 -1.1715403E-04 -1.7787601E-04
 -2.3102123E-04 -2.7731215E-04 -3.1740768E-04 -3.5191176E-04 -3.8137380E-04
 -4.0629593E-04 -4.2713661E-04 -4.4431255E-04 -4.5820378E-04 -4.6915599E-04
 -4.7748315E-04 -4.8347091E-04 -4.8737816E-04 -4.8943999E-04 -4.8986927E-04
 -4.8885879E-04 -4.8658304E-04 -4.8319949E-04 -4.7885018E-04 -4.7366382E-04
 -4.6775574E-04 -4.6122994E-04 -4.5418015E-04 -4.4669016E-04 -4.3883472E-04
 -4.3068212E-04 -4.2229192E-04 -4.1371814E-04 -4.0500893E-04 -3.9620660E-04
 -3.8734957E-04
 0.4236937 0.4099673 0.3963114 0.3829852 0.3698047
 0.3569418 0.3443019 0.3319620 0.3199214 0.3081581
 0.2967631 0.2870506 0.2775711 0.2683256 0.2593157
 0.2505431 0.2420095 0.2337158 0.2256626 0.2178497
 0.2102761 0.2029401 0.1958394 0.1889710 0.1823314
 0.1759164 0.1697215 0.1637419 0.1579724 0.1524076
 0.1470420 0.1418698 0.1368853 0.1320827 0.1274561
 0.1229998 0.1187080 0.1145751 0.1105954 0.1067635
 0.1030740 9.9521764E-02 9.6101567E-02 9.2808522E-02 8.9637786E-02
 8.6584717E-02 8.3644770E-02 8.0813572E-02 7.8086928E-02 7.5460739E-02
 7.2931089E-02 7.0494175E-02 6.8146385E-02 6.5884165E-02 6.3704163E-02
 6.1603166E-02 5.9578005E-02 5.7625744E-02 5.5743456E-02 5.3928412E-02
 5.2177988E-02 5.0489612E-02 4.8860889E-02 4.7289442E-02 4.5773067E-02
 4.4309624E-02 4.2897038E-02 4.1533370E-02 4.0216707E-02 3.8945258E-02
 3.7717298E-02 3.6531150E-02 3.5385251E-02 3.4278050E-02 3.3208106E-02
 3.2174032E-02 3.1174462E-02 3.0208137E-02 2.9273806E-02 2.8370297E-02
 2.7496494E-02 2.6651291E-02 2.5833664E-02 2.5042607E-02 2.4277158E-02
 2.3536419E-02 2.2819499E-02 2.2125555E-02 2.1453764E-02 2.0803360E-02
 2.0173594E-02
 0.1362384 0.1295684 0.1227361 0.1164298 0.1099625
 0.1039877 9.7853117E-02 9.2173666E-02 8.6334996E-02 8.0909461E-02
 7.5288169E-02 6.9885120E-02 6.4765610E-02 5.9929132E-02 5.5372667E-02
 5.1091012E-02 4.7077209E-02 4.3322731E-02 3.9817877E-02 3.6552168E-02
 3.3514418E-02 3.0693162E-02 2.8076729E-02 2.5653569E-02 2.3412216E-02
 2.1341452E-02 1.9430434E-02 1.7668664E-02 1.6046152E-02 1.4553318E-02
 1.3181079E-02 1.1920849E-02 1.0764502E-02 9.7044213E-03 8.7334365E-03
 7.8448309E-03 7.0323264E-03 6.2900539E-03 5.6125582E-03 4.9947430E-03
 4.4318773E-03 3.9195642E-03 3.4537248E-03 3.0305816E-03 2.6466318E-03
 2.2986354E-03 1.9835969E-03 1.6987468E-03 1.4415341E-03 1.2096001E-03
 1.0007723E-03 8.1304694E-04 6.4458442E-04 4.9368531E-04 3.5879252E-04
 2.3847436E-04 1.3141234E-04 3.6400816E-05 -4.7668847E-05 -1.2181160E-04
 -1.8695673E-04 -2.4395681E-04 -2.9358949E-04 -3.3656781E-04 -3.7354208E-04
 -4.0510565E-04 -4.3180128E-04 -4.5412255E-04 -4.7251993E-04 -4.8740307E-04
 -4.9914455E-04 -5.0808344E-04 -5.1452738E-04 -5.1875570E-04 -5.2102166E-04
 -5.2155455E-04 -5.2056205E-04 -5.1823183E-04 -5.1473366E-04 -5.1022047E-04
 -5.0483033E-04 -4.9868732E-04 -4.9190357E-04 -4.8457921E-04 -4.7680477E-04
 -4.6866079E-04 -4.6021948E-04 -4.5154599E-04 -4.4269775E-04 -4.3372659E-04
 -4.2467826E-04
 0.4491940 0.4347153 0.4202832 0.4061931 0.3922301
 0.3785941 0.3651711 0.3520537 0.3392403 0.3267035
 0.3145642 0.3043542 0.2944117 0.2847318 0.2753108
 0.2661453 0.2572323 0.2485695 0.2401543 0.2319844
 0.2240573 0.2163702 0.2089203 0.2017043 0.1947187
 0.1879598 0.1814233 0.1751049 0.1690001 0.1631039
 0.1574113 0.1519172 0.1466162 0.1415031 0.1365722
 0.1318183 0.1272357 0.1228191 0.1185630 0.1144621
 0.1105112 0.1067049 0.1030383 9.9506274E-02 9.6104063E-02
 9.2826895E-02 8.9670151E-02 8.6629309E-02 8.3700068E-02 8.0878191E-02
 7.8159593E-02 7.5540312E-02 7.3016569E-02 7.0584640E-02 6.8241000E-02
 6.5982252E-02 6.3805044E-02 6.1706260E-02 5.9682805E-02 5.7731766E-02
 5.5850338E-02 5.4035779E-02 5.2285533E-02 5.0597049E-02 4.8967957E-02
 4.7395974E-02 4.5878857E-02 4.4414517E-02 4.3000899E-02 4.1636072E-02
 4.0318184E-02 3.9045412E-02 3.7816066E-02 3.6628481E-02 3.5481084E-02
 3.4372389E-02 3.3300910E-02 3.2265291E-02 3.1264171E-02 3.0296285E-02
 2.9360419E-02 2.8455377E-02 2.7580060E-02 2.6733365E-02 2.5914263E-02
 2.5121773E-02 2.4354920E-02 2.3612814E-02 2.2894554E-02 2.2199307E-02
 2.1526271E-02
 0.1453326 0.1382290 0.1308984 0.1241299 0.1171253
 0.1106500 0.1039254 9.7693235E-02 9.1190651E-02 8.5137986E-02
 7.8729905E-02 7.3432222E-02 6.8387240E-02 6.3593537E-02 5.9048653E-02
 5.4749172E-02 5.0690569E-02 4.6867456E-02 4.3273430E-02 3.9901420E-02
 3.6743607E-02 3.3791680E-02 3.1036917E-02 2.8470317E-02 2.6082702E-02
 2.3864836E-02 2.1807522E-02 1.9901661E-02 1.8138364E-02 1.6508939E-02
 1.5004983E-02 1.3618397E-02 1.2341416E-02 1.1166642E-02 1.0087016E-02
 9.0958392E-03 8.1867920E-03 7.3538972E-03 6.5915533E-03 5.8944733E-03
 5.2577183E-03 4.6766615E-03 4.1469829E-03 3.6646577E-03 3.2259305E-03
 2.8273137E-03 2.4655613E-03 2.1376661E-03 1.8408385E-03 1.5724954E-03
 1.3302468E-03 1.1118816E-03 9.1536221E-04 7.3880027E-04 5.8046327E-04
 4.3875116E-04 3.1218986E-04 1.9942501E-04 9.9209879E-05 1.0401226E-05
 -6.8050314E-05 -1.3710941E-04 -1.9765789E-04 -2.5050543E-04 -2.9639134E-04
 -3.3599226E-04 -3.6992726E-04 -3.9876034E-04 -4.2300747E-04 -4.4313807E-04
 -4.5957995E-04 -4.7272301E-04 -4.8292091E-04 -4.9049582E-04 -4.9573986E-04
 -4.9891794E-04 -5.0027040E-04 -5.0001446E-04 -4.9834681E-04 -4.9544481E-04
 -4.9146917E-04 -4.8656415E-04 -4.8085986E-04 -4.7447335E-04 -4.6750970E-04
 -4.6006311E-04 -4.5221805E-04 -4.4405021E-04 -4.3562683E-04 -4.2700837E-04
 -4.1824835E-04
 0.4806166 0.4653856 0.4501773 0.4353234 0.4205779
 0.4061688 0.3919627 0.3780676 0.3644815 0.3511712
 0.3382874 0.3272513 0.3165196 0.3060851 0.2959417
 0.2860838 0.2765061 0.2672038 0.2581725 0.2494079
 0.2409057 0.2326619 0.2246722 0.2169324 0.2094382
 0.2021849 0.1951681 0.1883827 0.1818240 0.1754867
 0.1693656 0.1634553 0.1577503 0.1522451 0.1469342
 0.1418119 0.1368726 0.1321106 0.1275204 0.1230965
 0.1188333 0.1147255 0.1107678 0.1069549 0.1032817
 9.9743240E-02 9.6334666E-02 9.3051195E-02 8.9888245E-02 8.6841330E-02
 8.3906084E-02 8.1078291E-02 7.8353912E-02 7.5728938E-02 7.3199607E-02
 7.0762247E-02 6.8413287E-02 6.6149324E-02 6.3967049E-02 6.1863292E-02
 5.9835043E-02 5.7879318E-02 5.5993337E-02 5.4174352E-02 5.2419789E-02
 5.0727151E-02 4.9094018E-02 4.7518115E-02 4.5997214E-02 4.4529185E-02
 4.3112032E-02 4.1743767E-02 4.0422548E-02 3.9146561E-02 3.7914094E-02
 3.6723517E-02 3.5573222E-02 3.4461726E-02 3.3387542E-02 3.2349296E-02
 3.1345665E-02 3.0375343E-02 2.9437127E-02 2.8529825E-02 2.7652308E-02
 2.6803512E-02 2.5982382E-02 2.5187926E-02 2.4419190E-02 2.3675254E-02
 2.2955244E-02
 0.1574739 0.1499369 0.1421080 0.1348773 0.1273352
 0.1203594 0.1130448 0.1062600 9.9093489E-02 9.2413701E-02
 8.5218839E-02 7.9731449E-02 7.4492685E-02 6.9500796E-02 6.4753503E-02
 6.0247533E-02 5.5978924E-02 5.1942948E-02 4.8134085E-02 4.4546168E-02
 4.1172527E-02 3.8005799E-02 3.5038337E-02 3.2262102E-02 2.9668869E-02
 2.7250202E-02 2.4997620E-02 2.2902617E-02 2.0956829E-02 1.9151941E-02
 1.7479835E-02 1.5932610E-02 1.4502617E-02 1.3182472E-02 1.1965082E-02
 1.0843669E-02 9.8117553E-03 8.8631893E-03 7.9921493E-03 7.1931113E-03
 6.4608781E-03 5.7905461E-03 5.1775193E-03 4.6174806E-03 4.1063912E-03
 3.6404757E-03 3.2162059E-03 2.8302979E-03 2.4796952E-03 2.1615541E-03
 1.8732329E-03 1.6122806E-03 1.3764293E-03 1.1635731E-03 9.7176858E-04
 7.9922244E-04 6.4427045E-04 5.0538476E-04 3.8115293E-04 2.7027645E-04
 1.7155969E-04 8.3901490E-05 6.2945146E-06 -6.2192092E-05 -1.2240767E-04
 -1.7513127E-04 -2.2107875E-04 -2.6090303E-04 -2.9520260E-04 -3.2452331E-04
 -3.4936369E-04 -3.7017930E-04 -3.8738397E-04 -4.0135594E-04 -4.1243836E-04
 -4.2094340E-04 -4.2715494E-04 -4.3133021E-04 -4.3370214E-04 -4.3448218E-04
 -4.3386119E-04 -4.3201196E-04 -4.2908959E-04 -4.2523505E-04 -4.2057430E-04
 -4.1522126E-04 -4.0927753E-04 -4.0283453E-04 -3.9597403E-04 -3.8876911E-04
 -3.8128457E-04
 0.5149150 0.4989316 0.4829470 0.4673294 0.4518012
 0.4366191 0.4216299 0.4069571 0.3925983 0.3785146
 0.3648863 0.3529397 0.3413281 0.3300444 0.3190806
 0.3084298 0.2980857 0.2880423 0.2782939 0.2688352
 0.2596611 0.2507664 0.2421462 0.2337954 0.2257090
 0.2178820 0.2103090 0.2029848 0.1959041 0.1890612
 0.1824505 0.1760664 0.1699030 0.1639545 0.1582150
 0.1526785 0.1473391 0.1421909 0.1372280 0.1324445
 0.1278346 0.1233925 0.1191127 0.1149896 0.1110177
 0.1071917 0.1035065 9.9956758E-02 9.6537724E-02 9.3244523E-02
 9.0072490E-02 8.7017052E-02 8.4073856E-02 8.1238590E-02 7.8507163E-02
 7.5875618E-02 7.3340066E-02 7.0896834E-02 6.8542317E-02 6.6273093E-02
 6.4085871E-02 6.1977405E-02 5.9944686E-02 5.7984713E-02 5.6094673E-02
 5.4271862E-02 5.2513637E-02 5.0817505E-02 4.9181037E-02 4.7601935E-02
 4.6077993E-02 4.4607051E-02 4.3187100E-02 4.1816160E-02 4.0492363E-02
 3.9213922E-02 3.7979085E-02 3.6786232E-02 3.5633754E-02 3.4520134E-02
 3.3443928E-02 3.2403726E-02 3.1398207E-02 3.0426059E-02 2.9486075E-02
 2.8577076E-02 2.7697910E-02 2.6847515E-02 2.6024835E-02 2.5228869E-02
 2.4458678E-02
 0.1731326 0.1651620 0.1568348 0.1491418 0.1410623
 0.1335861 0.1256815 0.1183439 0.1105135 0.1032066
 9.5224954E-02 8.9355513E-02 8.3734892E-02 7.8362167E-02 7.3236130E-02
 6.8354614E-02 6.3714817E-02 5.9312809E-02 5.5144113E-02 5.1203523E-02
 4.7485113E-02 4.3982349E-02 4.0688213E-02 3.7595369E-02 3.4696061E-02
 3.1982291E-02 2.9445924E-02 2.7078720E-02 2.4872461E-02 2.2818906E-02
 2.0909952E-02 1.9137615E-02 1.7494075E-02 1.5971789E-02 1.4563406E-02
 1.3261827E-02 1.2060271E-02 1.0952217E-02 9.9314665E-03 8.9920955E-03
 8.1285005E-03 7.3353648E-03 6.6076703E-03 5.9406944E-03 5.3299800E-03
 4.7713560E-03 4.2608986E-03 3.7949397E-03 3.3700571E-03 2.9830502E-03
 2.6309351E-03 2.3109347E-03 2.0204694E-03 1.7571377E-03 1.5187163E-03
 1.3031443E-03 1.1085067E-03 9.3303918E-04 7.7510474E-04 6.3319778E-04
 5.0592632E-04 3.9200368E-04 2.9025113E-04 1.9957739E-04 1.1898376E-04
 4.7550711E-05 -1.5567426E-05 -7.1143964E-05 -1.1988985E-04 -1.6245531E-04
 -1.9943481E-04 -2.3137410E-04 -2.5876917E-04 -2.8207476E-04 -3.0170495E-04
 -3.1803688E-04 -3.3141431E-04 -3.4214984E-04 -3.5052781E-04 -3.5680609E-04
 -3.6121850E-04 -3.6397771E-04 -3.6527513E-04 -3.6528468E-04 -3.6416316E-04
 -3.6205209E-04 -3.5907867E-04 -3.5535760E-04 -3.5099199E-04 -3.4607566E-04
 -3.4068790E-04
 0.5501981 0.5334623 0.5167013 0.5003200 0.4840092
 0.4680539 0.4522816 0.4368312 0.4216996 0.4068424
 0.3924697 0.3796272 0.3671462 0.3550174 0.3432339
 0.3317869 0.3206697 0.3098755 0.2993979 0.2892309
 0.2793689 0.2698061 0.2605371 0.2515563 0.2428583
 0.2344374 0.2262882 0.2184050 0.2107819 0.2034132
 0.1962929 0.1894149 0.1827732 0.1763617 0.1701740
 0.1642041 0.1584456 0.1528924 0.1475382 0.1423768
 0.1374023 0.1326084 0.1279892 0.1235389 0.1192516
 0.1151218 0.1111439 0.1073124 0.1036221 0.1000678
 9.6644528E-02 9.3347408E-02 9.0171739E-02 8.7112911E-02 8.4166504E-02
 8.1328273E-02 7.8594021E-02 7.5959794E-02 7.3421687E-02 7.0976011E-02
 6.8619184E-02 6.6347726E-02 6.4158358E-02 6.2047835E-02 6.0013097E-02
 5.8051217E-02 5.6159314E-02 5.4334689E-02 5.2574702E-02 5.0876856E-02
 4.9238749E-02 4.7658030E-02 4.6132524E-02 4.4660058E-02 4.3238606E-02
 4.1866228E-02 4.0541019E-02 3.9261203E-02 3.8025025E-02 3.6830854E-02
 3.5677101E-02 3.4562230E-02 3.3484809E-02 3.2443412E-02 3.1436715E-02
 3.0463448E-02 2.9522352E-02 2.8612262E-02 2.7732039E-02 2.6880594E-02
 2.6056899E-02
 0.1920287 0.1836246 0.1747991 0.1666439 0.1580270
 0.1500503 0.1415556 0.1336653 0.1251710 0.1172369
 0.1084685 0.1020947 9.5962398E-02 9.0074368E-02 8.4432378E-02
 7.9036810E-02 7.3887348E-02 6.8982519E-02 6.4319618E-02 5.9895337E-02
 5.5705234E-02 5.1744044E-02 4.8005871E-02 4.4484254E-02 4.1172065E-02
 3.8061876E-02 3.5145875E-02 3.2415971E-02 2.9864039E-02 2.7481783E-02
 2.5260912E-02 2.3193194E-02 2.1270450E-02 1.9484749E-02 1.7828241E-02
 1.6293360E-02 1.4872760E-02 1.3559339E-02 1.2346327E-02 1.1227204E-02
 1.0195754E-02 9.2460616E-03 8.3725136E-03 7.5698039E-03 6.8328991E-03
 6.1570760E-03 5.5378680E-03 4.9710898E-03 4.4528195E-03 3.9793802E-03
 3.5473327E-03 3.1534652E-03 2.7947917E-03 2.4685166E-03 2.1720505E-03
 1.9029872E-03 1.6590833E-03 1.4382703E-03 1.2386227E-03 1.0583643E-03
 8.9585327E-04 7.4956712E-04 6.1810698E-04 5.0017715E-04 3.9458802E-04
 3.0024370E-04 2.1613369E-04 1.4133230E-04 7.4985401E-05 1.6312488E-05
 -3.5402794E-05 -8.0818238E-05 -1.2053460E-04 -1.5510220E-04 -1.8502385E-04
 -2.1075858E-04 -2.3272567E-04 -2.5130666E-04 -2.6685017E-04 -2.7967268E-04
 -2.9006239E-04 -2.9828094E-04 -3.0456591E-04 -3.0913280E-04 -3.1217691E-04
 -3.1387492E-04 -3.1438656E-04 -3.1385603E-04 -3.1241355E-04 -3.1018036E-04
 -3.0725315E-04
 0.5848722 0.5673840 0.5498466 0.5327013 0.5156080
 0.4988796 0.4823242 0.4660961 0.4501918 0.4345610
 0.4194438 0.4058061 0.3925567 0.3796852 0.3671800
 0.3550339 0.3432346 0.3317758 0.3206502 0.3098495
 0.2993675 0.2891982 0.2793353 0.2697730 0.2605059
 0.2515278 0.2428334 0.2344168 0.2262725 0.2183944
 0.2107768 0.2034136 0.1962988 0.1894263 0.1827900
 0.1763837 0.1702010 0.1642357 0.1584816 0.1529325
 0.1475820 0.1424241 0.1374526 0.1326615 0.1280448
 0.1235966 0.1193112 0.1151829 0.1112063 0.1073758
 0.1036863 0.1001326 9.6709758E-02 9.3412839E-02 9.0237193E-02
 8.7178290E-02 8.4231645E-02 8.1393048E-02 7.8658320E-02 7.6023489E-02
 7.3484749E-02 7.1038328E-02 6.8680711E-02 6.6408396E-02 6.4218082E-02
 6.2106617E-02 6.0070891E-02 5.8107991E-02 5.6215040E-02 5.4389343E-02
 5.2628301E-02 5.0929360E-02 4.9290162E-02 4.7708355E-02 4.6181738E-02
 4.4708192E-02 4.3285660E-02 4.1912202E-02 4.0585928E-02 3.9305042E-02
 3.8067836E-02 3.6872629E-02 3.5717871E-02 3.4602001E-02 3.3523589E-02
 3.2481246E-02 3.1473611E-02 3.0499415E-02 2.9557416E-02 2.8646434E-02
 2.7765354E-02
 0.2125184 0.2036809 0.1943570 0.1857396 0.1765853
 0.1681080 0.1590234 0.1505803 0.1414220 0.1328608
 0.1233056 0.1164376 0.1097857 0.1033599 9.7168081E-02
 9.1215521E-02 8.5506491E-02 8.0043025E-02 7.4826404E-02 6.9856547E-02
 6.5131560E-02 6.0648546E-02 5.6403439E-02 5.2391049E-02 4.8605759E-02
 4.5040753E-02 4.1688904E-02 3.8542390E-02 3.5593394E-02 3.2833431E-02
 3.0254137E-02 2.7846992E-02 2.5603449E-02 2.3515090E-02 2.1573523E-02
 1.9770604E-02 1.8098336E-02 1.6548999E-02 1.5115106E-02 1.3789451E-02
 1.2565132E-02 1.1435535E-02 1.0394363E-02 9.4356388E-03 8.5536726E-03
 7.7430983E-03 6.9988314E-03 6.3160937E-03 5.6903963E-03 5.1175142E-03
 4.5934850E-03 4.1146036E-03 3.6774133E-03 3.2786743E-03 2.9153752E-03
 2.5847154E-03 2.2840768E-03 2.0110416E-03 1.7633531E-03 1.5389291E-03
 1.3358367E-03 1.1522840E-03 9.8662195E-04 8.3731877E-04 7.0296699E-04
 5.8226724E-04 4.7401901E-04 3.7712045E-04 2.9055684E-04 2.1339417E-04
 1.4477743E-04 8.3918079E-05 3.0096224E-05 -1.7349730E-05 -5.9025009E-05
 -9.5482508E-05 -1.2722923E-04 -1.5472675E-04 -1.7839785E-04 -1.9862679E-04
 -2.1576436E-04 -2.3012990E-04 -2.4201360E-04 -2.5167945E-04 -2.5936734E-04
 -2.6529451E-04 -2.6965837E-04 -2.7263720E-04 -2.7439272E-04 -2.7507916E-04
 -2.7481088E-04
 0.6095369 0.5912961 0.5729823 0.5550731 0.5371971
 0.5196955 0.5023569 0.4853513 0.4686741 0.4522698
 0.4364081 0.4246772 0.4129463 0.4012153 0.3894844
 0.3777534 0.3660225 0.3542916 0.3425606 0.3311679
 0.3201056 0.3093644 0.2989386 0.2888209 0.2790060
 0.2694876 0.2602603 0.2513185 0.2426569 0.2342699
 0.2261522 0.2182980 0.2107016 0.2033575 0.1962596
 0.1894022 0.1827792 0.1763845 0.1702122 0.1642560
 0.1585098 0.1529675 0.1476230 0.1424702 0.1375031
 0.1327157 0.1281020 0.1236564 0.1193731 0.1152465
 0.1112712 0.1074416 0.1037528 0.1001995 9.6776739E-02
 9.3479805E-02 9.0303935E-02 8.7244637E-02 8.4297471E-02 8.1458203E-02
 7.8722768E-02 7.6087110E-02 7.3547468E-02 7.1100086E-02 6.8741418E-02
 6.6468060E-02 6.4276665E-02 6.2164079E-02 6.0127210E-02 5.8163136E-02
 5.6269046E-02 5.4442178E-02 5.2679960E-02 5.0979864E-02 4.9339481E-02
 4.7756538E-02 4.6228778E-02 4.4754103E-02 4.3330453E-02 4.1955885E-02
 4.0628538E-02 3.9346587E-02 3.8108334E-02 3.6912099E-02 3.5756320E-02
 3.4639478E-02 3.3560097E-02 3.2516811E-02 3.1508248E-02 3.0533148E-02
 2.9590273E-02
 0.2255411 0.2162701 0.2064479 0.1973683 0.1876765
 0.1786987 0.1690240 0.1600282 0.1502060 0.1410176
 0.1306755 0.1250153 0.1193550 0.1136948 0.1080345
 0.1023743 9.6714057E-02 9.1053814E-02 8.5393570E-02 7.9971440E-02
 7.4789613E-02 6.9849059E-02 6.5148965E-02 6.0686983E-02 5.6459650E-02
 5.2462462E-02 4.8689794E-02 4.5135453E-02 4.1792523E-02 3.8653411E-02
 3.5710417E-02 3.2955289E-02 3.0379757E-02 2.7975505E-02 2.5734050E-02
 2.3647064E-02 2.1706263E-02 1.9903557E-02 1.8231047E-02 1.6681058E-02
 1.5246150E-02 1.3919170E-02 1.2693251E-02 1.1561848E-02 1.0518686E-02
 9.5578097E-03 8.6735627E-03 7.8606028E-03 7.1138856E-03 6.4286352E-03
 5.8003850E-03 5.2249194E-03 4.6983045E-03 4.2168340E-03 3.7770632E-03
 3.3757698E-03 3.0099403E-03 2.6767817E-03 2.3736830E-03 2.0982246E-03
 1.8481652E-03 1.6214144E-03 1.4160454E-03 1.2302679E-03 1.0624313E-03
 9.1100985E-04 7.7459100E-04 6.5187772E-04 5.4166891E-04 4.4286196E-04
 3.5444266E-04 2.7547529E-04 2.0510370E-04 1.4253875E-04 8.7059423E-05
 3.8003487E-05 -5.2358755E-06 -4.3212549E-05 -7.6434648E-05 -1.0536536E-04
 -1.3042768E-04 -1.5200776E-04 -1.7045694E-04 -1.8609595E-04 -1.9921603E-04
 -2.1008201E-04 -2.1893493E-04 -2.2599311E-04 -2.3145483E-04 -2.3551080E-04
 -2.3828937E-04
 0.6408622 0.6218689 0.6027787 0.5841054 0.5654467
 0.5471720 0.5290502 0.5112669 0.4938169 0.4766390
 0.4600329 0.4482870 0.4365412 0.4247953 0.4130495
 0.4013036 0.3895578 0.3778120 0.3660661 0.3543203
 0.3425744 0.3311719 0.3201031 0.3093602 0.2989335
 0.2888173 0.2790053 0.2694903 0.2602676 0.2513308
 0.2426742 0.2342923 0.2261796 0.2183302 0.2107385
 0.2033987 0.1963049 0.1894511 0.1828315 0.1764399
 0.1702702 0.1643163 0.1585721 0.1530315 0.1476884
 0.1425368 0.1375705 0.1327837 0.1281705 0.1237252
 0.1194419 0.1153152 0.1113396 0.1075097 0.1038203
 0.1002664 9.6842937E-02 9.3545206E-02 9.0368457E-02 8.7308198E-02
 8.4360078E-02 8.1519783E-02 7.8783266E-02 7.6146513E-02 7.3605709E-02
 7.1157210E-02 6.8797387E-02 6.6522859E-02 6.4330280E-02 6.2216502E-02
 6.0178477E-02 5.8213230E-02 5.6317970E-02 5.4489948E-02 5.2726571E-02
 5.1025353E-02 4.9383856E-02 4.7799803E-02 4.6270963E-02 4.4795208E-02
 4.3370519E-02 4.1994914E-02 4.0666558E-02 3.9383616E-02 3.8144372E-02
 3.6947202E-02 3.5790484E-02 3.4672730E-02 3.3592455E-02 3.2548290E-02
 3.1538881E-02
 0.2410082 0.2313038 0.2209832 0.2114414 0.2012122
 0.1917339 0.1814691 0.1719206 0.1614343 0.1516187
 0.1404899 0.1349276 0.1293652 0.1238029 0.1182406
 0.1126783 0.1071160 0.1015536 9.5991313E-02 9.0428993E-02
 8.4866673E-02 7.9531372E-02 7.4427254E-02 6.9555126E-02 6.4915910E-02
 6.0507007E-02 5.6326155E-02 5.2369397E-02 4.8631959E-02 4.5107681E-02
 4.1790538E-02 3.8673397E-02 3.5748925E-02 3.3009391E-02 3.0446915E-02
 2.8053332E-02 2.5820587E-02 2.3740567E-02 2.1805234E-02 2.0006750E-02
 1.8337315E-02 1.6789453E-02 1.5355871E-02 1.4029551E-02 1.2803710E-02
 1.1671883E-02 1.0627899E-02 9.6658571E-03 8.7801749E-03 7.9655554E-03
 7.2169937E-03 6.5297610E-03 5.8994251E-03 5.3217863E-03 4.7929380E-03
 4.3092114E-03 3.8671582E-03 3.4635786E-03 3.0954673E-03 2.7600401E-03
 2.4547034E-03 2.1770366E-03 1.9248044E-03 1.6959207E-03 1.4884594E-03
 1.3006399E-03 1.1308084E-03 9.7743876E-04 8.3912269E-04 7.1456010E-04
 6.0255494E-04 5.0199957E-04 4.1188081E-04 3.3126277E-04 2.5928669E-04
 1.9516541E-04 1.3817452E-04 8.7651533E-05 4.2988624E-05 3.6300471E-06
 -3.0932169E-05 -6.1163752E-05 -8.7487955E-05 -1.1029249E-04 -1.2992980E-04
 -1.4672111E-04 -1.6095920E-04 -1.7291000E-04 -1.8281555E-04 -1.9089553E-04
 -1.9734890E-04
 0.6728151 0.6530692 0.6332025 0.6137652 0.5943238
 0.5752758 0.5563708 0.5378098 0.5195869 0.5016354
 0.4842847 0.4724951 0.4607055 0.4489160 0.4371264
 0.4253369 0.4135473 0.4017577 0.3899682 0.3781786
 0.3663891 0.3545995 0.3428099 0.3313720 0.3202727
 0.3095043 0.2990558 0.2889231 0.2790970 0.2695715
 0.2603401 0.2513971 0.2427359 0.2343510 0.2262362
 0.2183856 0.2107935 0.2034536 0.1963601 0.1895069
 0.1828880 0.1764971 0.1703282 0.1643752 0.1586317
 0.1530918 0.1477493 0.1425980 0.1376321 0.1328455
 0.1282324 0.1237870 0.1195036 0.1153767 0.1114007
 0.1075704 0.1038805 0.1003259 9.6901812E-02 9.3603298E-02
 9.0425797E-02 8.7364696E-02 8.4415689E-02 8.1574470E-02 7.8836970E-02
 7.6199263E-02 7.3657475E-02 7.1207948E-02 6.8847097E-02 6.6571519E-02
 6.4377926E-02 6.2263101E-02 6.0224034E-02 5.8257755E-02 5.6361444E-02
 5.4532420E-02 5.2768029E-02 5.1065806E-02 4.9423322E-02 4.7838286E-02
 4.6308491E-02 4.4831790E-02 4.3406174E-02 4.2029660E-02 4.0700391E-02
 3.9416581E-02 3.8176477E-02 3.6978465E-02 3.5820913E-02 3.4702346E-02
 3.3621289E-02
 0.2572357 0.2470978 0.2362789 0.2262748 0.2155082
 0.2055293 0.1946744 0.1845732 0.1734230 0.1629802
 0.1510645 0.1455378 0.1400112 0.1344845 0.1289578
 0.1234312 0.1179045 0.1123779 0.1068512 0.1013245
 9.5797867E-02 9.0271205E-02 8.4744543E-02 7.9443134E-02 7.4368387E-02
 6.9523387E-02 6.4907119E-02 6.0518671E-02 5.6355812E-02 5.2415133E-02
 4.8691317E-02 4.5178723E-02 4.1871317E-02 3.8762327E-02 3.5844471E-02
 3.3110347E-02 3.0552002E-02 2.8161576E-02 2.5931101E-02 2.3852536E-02
 2.1918008E-02 2.0119740E-02 1.8450011E-02 1.6901454E-02 1.5466796E-02
 1.4139106E-02 1.2911645E-02 1.1777999E-02 1.0732024E-02 9.7678825E-03
 8.8799968E-03 8.0631021E-03 7.3122205E-03 6.6226334E-03 5.9899180E-03
 5.4099234E-03 4.8787189E-03 4.3926593E-03 3.9482992E-03 3.5424435E-03
 3.1721066E-03 2.8344935E-03 2.5270185E-03 2.2472616E-03 1.9929875E-03
 1.7621197E-03 1.5527254E-03 1.3630253E-03 1.1913638E-03 1.0362187E-03
 8.9618005E-04 7.6994539E-04 6.5631728E-04 5.5418856E-04 4.6254304E-04
 3.8044559E-04 3.0703543E-04 2.4152333E-04 1.8318401E-04 1.3135400E-04
 8.5424552E-05 4.4837816E-05 9.0844942E-06 -2.2301991E-05 -4.9746559E-05
 -7.3637260E-05 -9.4328127E-05 -1.1214126E-04 -1.2737059E-04 -1.4028327E-04
 -1.5112248E-04
 0.7087407 0.6882420 0.6675988 0.6473975 0.6271732
 0.6073520 0.5876637 0.5683249 0.5493292 0.5306040
 0.5125087 0.5003656 0.4882224 0.4760793 0.4639362
 0.4517931 0.4396500 0.4275069 0.4153638 0.4032207
 0.3910776 0.3789345 0.3667914 0.3546483 0.3425052
 0.3314013 0.3202975 0.3095257 0.2990749 0.2889411
 0.2791142 0.2695900 0.2603602 0.2514190 0.2427599
 0.2343773 0.2262650 0.2184170 0.2108274 0.2034901
 0.1963991 0.1895483 0.1829315 0.1765426 0.1703755
 0.1644240 0.1586819 0.1531432 0.1478016 0.1426512
 0.1376859 0.1328998 0.1282870 0.1238418 0.1195584
 0.1154313 0.1114551 0.1076245 0.1039342 0.1003791
 9.6954450E-02 9.3655311E-02 9.0477116E-02 8.7415278E-02 8.4465459E-02
 8.1623442E-02 7.8885108E-02 7.6246522E-02 7.3703840E-02 7.1253389E-02
 6.8891637E-02 6.6615127E-02 6.4420603E-02 6.2304847E-02 6.0264830E-02
 5.8297634E-02 5.6400400E-02 5.4570455E-02 5.2805159E-02 5.1102027E-02
 4.9458668E-02 4.7872752E-02 4.6342097E-02 4.4864550E-02 4.3438088E-02
 4.2060766E-02 4.0730696E-02 3.9446097E-02 3.8205221E-02 3.7006438E-02
 3.5848163E-02
 0.2765957 0.2660242 0.2547069 0.2442406 0.2329365
 0.2224571 0.2110121 0.2003581 0.1885439 0.1774739
 0.1647714 0.1590394 0.1533075 0.1475755 0.1418436
 0.1361116 0.1303796 0.1246477 0.1189157 0.1131838
 0.1074518 0.1017199 9.5987953E-02 9.0256006E-02 8.4524058E-02
 7.9460107E-02 7.4396156E-02 6.9563724E-02 6.4956360E-02 6.0577057E-02
 5.6422811E-02 5.2489620E-02 4.8771564E-02 4.5264512E-02 4.1961562E-02
 3.8856238E-02 3.5941541E-02 3.3209734E-02 3.0653076E-02 2.8263878E-02
 2.6034087E-02 2.3955701E-02 2.2020938E-02 2.0222103E-02 1.8551551E-02
 1.7001854E-02 1.5565883E-02 1.4236652E-02 1.3007507E-02 1.1872074E-02
 1.0824193E-02 9.8580597E-03 8.9681353E-03 8.1491526E-03 7.3961583E-03
 6.7044552E-03 6.0696234E-03 5.4875165E-03 4.9542175E-03 4.4660829E-03
 4.0196879E-03 3.6118294E-03 3.2395280E-03 2.8999902E-03 2.5906307E-03
 2.3090413E-03 2.0529763E-03 1.8203642E-03 1.6092714E-03 1.4179194E-03
 1.2446573E-03 1.0879540E-03 9.4640412E-04 8.1870239E-04 7.0365088E-04
 6.0014246E-04 5.0715916E-04 4.2376379E-04 3.4909500E-04 2.8236271E-04
 2.2284183E-04 1.6986526E-04 1.2282490E-04 8.1160331E-05 4.4361645E-05
 1.1962099E-05 -1.6465574E-05 -4.1309300E-05 -6.2924330E-05 -8.1633552E-05
 -9.7731849E-05
 0.7119689 0.6907176 0.6692978 0.6483323 0.6273253
 0.6067307 0.5862591 0.5661426 0.5463739 0.5268751
 0.5080351 0.4975876 0.4871401 0.4766927 0.4662452
 0.4557977 0.4453503 0.4349028 0.4244553 0.4140078
 0.4035604 0.3931129 0.3826654 0.3722180 0.3617705
 0.3513230 0.3408755 0.3304281 0.3199806 0.3095331
 0.2990856 0.2889512 0.2791245 0.2696030 0.2603762
 0.2514368 0.2427813 0.2344011 0.2262915 0.2184462
 0.2108590 0.2035242 0.1964354 0.1895867 0.1829718
 0.1765846 0.1704190 0.1644689 0.1587280 0.1531902
 0.1478495 0.1426997 0.1377349 0.1329491 0.1283365
 0.1238914 0.1196079 0.1154807 0.1115043 0.1076733
 0.1039826 0.1004271 9.7001843E-02 9.3702108E-02 9.0523235E-02
 8.7460726E-02 8.4510185E-02 8.1667423E-02 7.8928299E-02 7.6288894E-02
 7.3745422E-02 7.1294144E-02 6.8931550E-02 6.6654198E-02 6.4458802E-02
 6.2342219E-02 6.0301363E-02 5.8333326E-02 5.6435261E-02 5.4604471E-02
 5.2838370E-02 5.1134426E-02 4.9490273E-02 4.7903568E-02 4.6372127E-02
 4.4893827E-02 4.3466616E-02 4.2088564E-02 4.0757768E-02 3.9472450E-02
 3.8230892E-02
 0.2743147 0.2633097 0.2514940 0.2405654 0.2287239
 0.2177438 0.2057088 0.1945020 0.1820238 0.1703266
 0.1568373 0.1522440 0.1476508 0.1430575 0.1384642
 0.1338709 0.1292776 0.1246843 0.1200911 0.1154978
 0.1109045 0.1063112 0.1017179 9.7124651E-02 9.2531368E-02
 8.7938085E-02 8.3344802E-02 7.8751519E-02 7.4158236E-02 6.9564953E-02
 6.4971671E-02 6.0607493E-02 5.6464270E-02 5.2541152E-02 4.8831202E-02
 4.5331538E-02 4.2034552E-02 3.8933754E-02 3.6023140E-02 3.3294331E-02
 3.0740086E-02 2.8352525E-02 2.6123738E-02 2.4045896E-02 2.2111291E-02
 2.0312151E-02 1.8641027E-02 1.7090447E-02 1.5653362E-02 1.4322867E-02
 1.3092289E-02 1.1955258E-02 1.0905714E-02 9.9378303E-03 9.0460926E-03
 8.2252761E-03 7.4704080E-03 6.7768297E-03 6.1401161E-03 5.5561299E-03
 5.0209793E-03 4.5310031E-03 4.0828031E-03 3.6731695E-03 3.2991208E-03
 2.9578819E-03 2.6468558E-03 2.3636392E-03 2.1059881E-03 1.8718295E-03
 1.6592372E-03 1.4664244E-03 1.2917423E-03 1.1336642E-03 9.9077635E-04
 8.6178078E-04 7.4547110E-04 6.4074417E-04 5.4657803E-04 4.6203556E-04
 3.8625591E-04 3.1844617E-04 2.5788174E-04 2.0389383E-04 1.5587186E-04
 1.1325643E-04 7.5534947E-05 4.2240270E-05 1.2944692E-05 -1.2740661E-05
 -3.5171113E-05
 0.7337140 0.7117099 0.6895134 0.6677837 0.6459939
 0.6246260 0.6033711 0.5824769 0.5619352 0.5416628
 0.5220780 0.5119428 0.5018076 0.4916723 0.4815371
 0.4714019 0.4612667 0.4511315 0.4409963 0.4308611
 0.4207259 0.4105907 0.4004555 0.3903203 0.3801851
 0.3700499 0.3599147 0.3497795 0.3396443 0.3295091
 0.3193739 0.3092387 0.2991035 0.2889683 0.2791421
 0.2696189 0.2603947 0.2514571 0.2428032 0.2344249
 0.2263172 0.2184737 0.2108888 0.2035561 0.1964691
 0.1896221 0.1830088 0.1766231 0.1704588 0.1645098
 0.1587698 0.1532329 0.1478928 0.1427436 0.1377791
 0.1329936 0.1283811 0.1239360 0.1196525 0.1155251
 0.1115485 0.1077171 0.1040261 0.1004701 9.7044319E-02
 9.3744062E-02 9.0564594E-02 8.7501459E-02 8.4550254E-02 8.1706777E-02
 7.8966975E-02 7.6326840E-02 7.3782630E-02 7.1330592E-02 6.8967231E-02
 6.6689134E-02 6.4492978E-02 6.2375635E-02 6.0334023E-02 5.8365211E-02
 5.6466412E-02 5.4634880E-02 5.2868046E-02 5.1163372E-02 4.9518488E-02
 4.7931090E-02 4.6398956E-02 4.4919979E-02 4.3492097E-02 4.2113375E-02
 4.0781945E-02
 0.2839795 0.2725409 0.2602268 0.2488360 0.2364568
 0.2249762 0.2123510 0.2005915 0.1874493 0.1751250
 0.1608489 0.1564920 0.1521350 0.1477781 0.1434212
 0.1390643 0.1347073 0.1303504 0.1259935 0.1216366
 0.1172797 0.1129228 0.1085658 0.1042089 9.9852018E-02
 9.5495105E-02 9.1138192E-02 8.6781278E-02 8.2424365E-02 7.8067452E-02
 7.3710538E-02 6.9353625E-02 6.4996712E-02 6.0639799E-02 5.6509413E-02
 5.2594710E-02 4.8892278E-02 4.5397304E-02 4.2104743E-02 3.9007954E-02
 3.6099520E-02 3.3372853E-02 3.0820273E-02 2.8433710E-02 2.6205428E-02
 2.4127726E-02 2.2192897E-02 2.0393219E-02 1.8721413E-02 1.7169878E-02
 1.5731679E-02 1.4399875E-02 1.3167918E-02 1.2029413E-02 1.0978295E-02
 1.0008799E-02 9.1153979E-03 8.2928911E-03 7.5363251E-03 6.8410356E-03
 6.2026279E-03 5.6169471E-03 5.0801267E-03 4.5885113E-03 4.1386881E-03
 3.7274661E-03 3.3518660E-03 3.0091084E-03 2.6965989E-03 2.4119336E-03
 2.1528781E-03 1.9173470E-03 1.7034217E-03 1.5093142E-03 1.3333739E-03
 1.1740783E-03 1.0300084E-03 8.9986535E-04 7.8244379E-04 6.7663746E-04
 5.8142579E-04 4.9586926E-04 4.1910700E-04 3.5034647E-04 2.8885851E-04
 2.3397784E-04 1.8508962E-04 1.4163367E-04 1.0309657E-04 6.9010624E-05
 3.8948267E-05
 0.7380213 0.7152643 0.6922911 0.6697972 0.6472247
 0.6250833 0.6030452 0.5813731 0.5600584 0.5390123
 0.5186828 0.5094587 0.5002346 0.4910105 0.4817864
 0.4725623 0.4633382 0.4541141 0.4448901 0.4356660
 0.4264419 0.4172178 0.4079937 0.3987696 0.3895455
 0.3803214 0.3710974 0.3618733 0.3526492 0.3434251
 0.3342010 0.3249769 0.3157528 0.3065287 0.2973047
 0.2880806 0.2788565 0.2696324 0.2604083 0.2514746
 0.2428221 0.2344466 0.2263401 0.2184983 0.2109157
 0.2035847 0.1964997 0.1896542 0.1830423 0.1766578
 0.1704946 0.1645466 0.1588076 0.1532713 0.1479318
 0.1427831 0.1378189 0.1330337 0.1284213 0.1239761
 0.1196926 0.1155651 0.1115882 0.1077565 0.1040650
 0.1005086 9.7082429E-02 9.3781658E-02 9.0601638E-02 8.7537900E-02
 8.4586121E-02 8.1742018E-02 7.9001576E-02 7.6360792E-02 7.3815882E-02
 7.1363196E-02 6.8999149E-02 6.6720366E-02 6.4523526E-02 6.2405486E-02
 6.0363203E-02 5.8393713E-02 5.6494243E-02 5.4662041E-02 5.2894529E-02
 5.1189225E-02 4.9543694E-02 4.7955669E-02 4.6422914E-02 4.4943314E-02
 4.3514844E-02
 0.2812143 0.2693422 0.2565296 0.2446765 0.2317598
 0.2197786 0.2065633 0.1942510 0.1804448 0.1674932
 0.1524303 0.1487346 0.1450390 0.1413433 0.1376477
 0.1339520 0.1302564 0.1265607 0.1228651 0.1191695
 0.1154738 0.1117782 0.1080825 0.1043869 0.1006913
 9.6995629E-02 9.3299992E-02 8.9604355E-02 8.5908718E-02 8.2213081E-02
 7.8517444E-02 7.4821807E-02 7.1126170E-02 6.7430533E-02 6.3734896E-02
 6.0039259E-02 5.6343626E-02 5.2647993E-02 4.8952360E-02 4.5460183E-02
 4.2170111E-02 3.9074790E-02 3.6168341E-02 3.3444200E-02 3.0892668E-02
 2.8507181E-02 2.6278963E-02 2.4201324E-02 2.2266062E-02 2.0465942E-02
 1.8793402E-02 1.7240828E-02 1.5801566E-02 1.4468555E-02 1.3235259E-02
 1.2095393E-02 1.1042837E-02 1.0071859E-02 9.1769556E-03 8.3529139E-03
 7.5948243E-03 6.8979878E-03 6.2580537E-03 5.6708637E-03 5.1325443E-03
 4.6394598E-03 4.1881930E-03 3.7755596E-03 3.3985761E-03 3.0544640E-03
 2.7406393E-03 2.4546897E-03 2.1943806E-03 1.9576342E-03 1.7425247E-03
 1.5472710E-03 1.3702180E-03 1.2098412E-03 1.0647249E-03 9.3356584E-04
 8.1516115E-04 7.0839952E-04 6.1226182E-04 5.2580767E-04 4.4817617E-04
 3.7857422E-04 3.1627208E-04 2.6060123E-04 2.1094682E-04 1.6674744E-04
 1.2748926E-04
 0.7795881 0.7560781 0.7323283 0.7090702 0.6857148
 0.6628000 0.6399785 0.6175287 0.5954409 0.5736210
 0.5525469 0.5427800 0.5330132 0.5232463 0.5134796
 0.5037129 0.4939463 0.4841797 0.4744131 0.4646465
 0.4548799 0.4451132 0.4353466 0.4255800 0.4158134
 0.4060468 0.3962802 0.3865136 0.3767470 0.3669804
 0.3572138 0.3474472 0.3376805 0.3279139 0.3181473
 0.3083807 0.2986141 0.2888475 0.2790809 0.2696047
 0.2604097 0.2514917 0.2428428 0.2344657 0.2263608
 0.2185212 0.2109398 0.2036105 0.1965272 0.1896834
 0.1830726 0.1766892 0.1705270 0.1645799 0.1588415
 0.1533061 0.1479670 0.1428186 0.1378548 0.1330696
 0.1284574 0.1240122 0.1197286 0.1156009 0.1116237
 0.1077918 0.1041000 0.1005432 9.7116545E-02 9.3815275E-02
 9.0634786E-02 8.7570526E-02 8.4618203E-02 8.1773542E-02 7.9032496E-02
 7.6391138E-02 7.3845625E-02 7.1392328E-02 6.9027670E-02 6.6748254E-02
 6.4550817E-02 6.2432151E-02 6.0389258E-02 5.8419168E-02 5.6519080E-02
 5.4686297E-02 5.2918192E-02 5.1212300E-02 4.9566198E-02 4.7977593E-02
 4.6444297E-02
 0.3051560 0.2928502 0.2795391 0.2672237 0.2537695
 0.2412876 0.2274822 0.2146172 0.2001469 0.1865681
 0.1707184 0.1666406 0.1625628 0.1584850 0.1544071
 0.1503293 0.1462515 0.1421738 0.1380960 0.1340183
 0.1299406 0.1258628 0.1217851 0.1177075 0.1136298
 0.1095521 0.1054744 0.1013968 9.7319104E-02 9.3241431E-02
 8.9163758E-02 8.5086085E-02 8.1008412E-02 7.6930739E-02 7.2853073E-02
 6.8775408E-02 6.4697757E-02 6.0620118E-02 5.6542490E-02 5.2668322E-02
 4.8996259E-02 4.5518946E-02 4.2230505E-02 3.9135203E-02 3.6232334E-02
 3.3509120E-02 3.0959163E-02 2.8573520E-02 2.6345413E-02 2.4267267E-02
 2.2331843E-02 2.0530922E-02 1.8857606E-02 1.7304230E-02 1.5863940E-02
 1.4529821E-02 1.3295283E-02 1.2154135E-02 1.1100263E-02 1.0127914E-02
 9.2316596E-03 8.4062461E-03 7.6467716E-03 6.9485581E-03 6.3072364E-03
 5.7186983E-03 5.1790308E-03 4.6846350E-03 4.2320821E-03 3.8181834E-03
 3.4399698E-03 3.0946566E-03 2.7796600E-03 2.4925664E-03 2.2311450E-03
 1.9933190E-03 1.7771593E-03 1.5808865E-03 1.4028470E-03 1.2415142E-03
 1.0954712E-03 9.6341304E-04 8.4413553E-04 7.3652767E-04 6.3956837E-04
 5.5232045E-04 4.7391892E-04 4.0357237E-04 3.4054968E-04 2.8418045E-04
 2.3384861E-04
 0.8120018 0.7877387 0.7632121 0.7391899 0.7150517
 0.6913635 0.6677586 0.6445310 0.6216701 0.5990763
 0.5772575 0.5672327 0.5572079 0.5471833 0.5371587
 0.5271343 0.5171100 0.5070859 0.4970618 0.4870377
 0.4770136 0.4669895 0.4569654 0.4469413 0.4369172
 0.4268931 0.4168690 0.4068449 0.3968208 0.3867967
 0.3767726 0.3667485 0.3567244 0.3467003 0.3366762
 0.3266521 0.3166280 0.3066039 0.2965799 0.2868462
 0.2773938 0.2682183 0.2593119 0.2506773 0.2423151
 0.2342180 0.2263793 0.2185406 0.2109608 0.2036339
 0.1965525 0.1897096 0.1830999 0.1767173 0.1705562
 0.1646100 0.1588722 0.1533372 0.1479986 0.1428505
 0.1378870 0.1331019 0.1284897 0.1240445 0.1197608
 0.1156330 0.1116556 0.1078234 0.1041312 0.1005741
 9.7147077E-02 9.3845367E-02 9.0664431E-02 8.7599710E-02 8.4646858E-02
 8.1801720E-02 7.9060145E-02 7.6418258E-02 7.3872201E-02 7.1418338E-02
 6.9053143E-02 6.6773176E-02 6.4575180E-02 6.2455971E-02 6.0412508E-02
 5.8441892E-02 5.6541257E-02 5.4707948E-02 5.2939311E-02 5.1232882E-02
 4.9586277E-02
 0.3223148 0.3095754 0.2957658 0.2829881 0.2689964
 0.2560138 0.2416183 0.2282005 0.2130662 0.1988602
 0.1822235 0.1779741 0.1737247 0.1694752 0.1652258
 0.1609764 0.1567270 0.1524776 0.1482283 0.1439790
 0.1397297 0.1354804 0.1312311 0.1269819 0.1227327
 0.1184836 0.1142344 0.1099852 0.1057360 0.1014869
 9.7237699E-02 9.2988528E-02 8.8739365E-02 8.4490202E-02 8.0241054E-02
 7.5991906E-02 7.1742773E-02 6.7493662E-02 6.3244566E-02 5.9198942E-02
 5.5355433E-02 5.1706679E-02 4.8246797E-02 4.4980057E-02 4.1905750E-02
 3.9011102E-02 3.6289714E-02 3.3568326E-02 3.1018291E-02 2.8633812E-02
 2.6405448E-02 2.4326768E-02 2.2390673E-02 2.0589080E-02 1.8915191E-02
 1.7360866E-02 1.5919724E-02 1.4584348E-02 1.3348794E-02 1.2206391E-02
 1.1151331E-02 1.0177793E-02 9.2802858E-03 8.4536476E-03 7.6929093E-03
 6.9934530E-03 6.3509014E-03 5.7611461E-03 5.2202772E-03 4.7247047E-03
 4.2710109E-03 3.8559868E-03 3.4766777E-03 3.1302960E-03 2.8142552E-03
 2.5261480E-03 2.2637362E-03 2.0249509E-03 1.8078561E-03 1.6106813E-03
 1.4317656E-03 1.2695832E-03 1.1227197E-03 9.8986458E-04 8.6981367E-04
 7.6145557E-04 6.6376902E-04 5.7581521E-04 4.9673166E-04 4.2572655E-04
 3.6206612E-04
 0.8251079 0.8000919 0.7747884 0.7500020 0.7250807
 0.7006193 0.6762309 0.6522253 0.6285914 0.6052237
 0.5826601 0.5728986 0.5631373 0.5533761 0.5436150
 0.5338542 0.5240936 0.5143331 0.5045727 0.4948125
 0.4850523 0.4752920 0.4655318 0.4557716 0.4460113
 0.4362511 0.4264909 0.4167306 0.4069704 0.3972102
 0.3874499 0.3776897 0.3679295 0.3581693 0.3484091
 0.3386489 0.3288887 0.3191285 0.3093684 0.2998986
 0.2907101 0.2817985 0.2731561 0.2647855 0.2566872
 0.2488541 0.2412793 0.2337045 0.2261298 0.2185550
 0.2109802 0.2036574 0.1965760 0.1897334 0.1831246
 0.1767427 0.1705823 0.1646370 0.1588999 0.1533652
 0.1480270 0.1428792 0.1379158 0.1331309 0.1285186
 0.1240735 0.1197896 0.1156617 0.1116841 0.1078517
 0.1041592 0.1006017 9.7174361E-02 9.3872279E-02 9.0690911E-02
 8.7625772E-02 8.4672488E-02 8.1826888E-02 7.9084851E-02 7.6442465E-02
 7.3895939E-02 7.1441576E-02 6.9075890E-02 6.6795416E-02 6.4596914E-02
 6.2477227E-02 6.0433276E-02 5.8462176E-02 5.6561057E-02 5.4727245E-02
 5.2958153E-02
 0.3266729 0.3134999 0.2991918 0.2859518 0.2714225
 0.2579392 0.2429535 0.2289830 0.2131846 0.1983514
 0.1809278 0.1768524 0.1727770 0.1687015 0.1646261
 0.1605507 0.1564754 0.1524000 0.1483247 0.1442495
 0.1401742 0.1360990 0.1320238 0.1279487 0.1238736
 0.1197986 0.1157235 0.1116485 0.1075735 0.1034984
 9.9423409E-02 9.5348381E-02 9.1273367E-02 8.7198354E-02 8.3123356E-02
 7.9048365E-02 7.4973390E-02 7.0898443E-02 6.6823512E-02 6.2952064E-02
 5.9282739E-02 5.5808172E-02 5.2522477E-02 4.9429927E-02 4.6529815E-02
 4.3809362E-02 4.1262168E-02 3.8714975E-02 3.6167782E-02 3.3620588E-02
 3.1073397E-02 2.8688928E-02 2.6458267E-02 2.4379663E-02 2.2442728E-02
 2.0641232E-02 1.8966502E-02 1.7411429E-02 1.5969140E-02 1.4633041E-02
 1.3396404E-02 1.2253008E-02 1.1196827E-02 1.0222163E-02 9.3235094E-03
 8.4957602E-03 7.7339113E-03 7.0333560E-03 6.3896854E-03 5.7988372E-03
 5.2569038E-03 4.7602807E-03 4.3055560E-03 3.8895321E-03 3.5092472E-03
 3.1619156E-03 2.8449474E-03 2.5559384E-03 2.2926459E-03 2.0530019E-03
 1.8350841E-03 1.6371030E-03 1.4574112E-03 1.2944761E-03 1.1468829E-03
 1.0133224E-03 8.9258625E-04 7.8356313E-04 6.8522966E-04 5.9665035E-04
 5.1696226E-04

XFOILinterface/XFOIL/orrs/osm.0270

 256 2.700000
 0.0000000E+00 1.4220098E-02 2.8539736E-02 4.2959616E-02 5.7480428E-02
 7.2102889E-02 8.6827710E-02 0.1016556 0.1165873 0.1316235
 0.1467649 0.1620124 0.1773666 0.1928282 0.2083981
 0.2240770 0.2398656 0.2557648 0.2717752 0.2878977
 0.3041331 0.3204821 0.3369456 0.3535243 0.3702191
 0.3870307 0.4039600 0.4210078 0.4381749 0.4554622
 0.4728706 0.4904007 0.5080537 0.5258301 0.5437310
 0.5617573 0.5799097 0.5981891 0.6165965 0.6351328
 0.6537988 0.6725954 0.6915237 0.7105844 0.7297786
 0.7491072 0.7685710 0.7881711 0.8079084 0.8277838
 0.8477984 0.8679531 0.8882488 0.9086866 0.9292675
 0.9499925 0.9708626 0.9918786 1.013042 1.034353
 1.055814 1.077425 1.099187 1.121101 1.143169
 1.165391 1.187769 1.210303 1.232995 1.255847
 1.278857 1.302029 1.325364 1.348861 1.372524
 1.396351 1.420346 1.444508 1.468840 1.493342
 1.518015 1.542861 1.567881 1.593077 1.618448
 1.643997 1.669725 1.695634 1.721723 1.747995
 1.774451 1.801092 1.827920 1.854935 1.882140
 1.909535 1.937122 1.964902 1.992876 2.021046
 2.049413 2.077979 2.106745 2.135712 2.164882
 2.194257 2.223837 2.253623 2.283619 2.313824
 2.344241 2.374871 2.405715 2.436775 2.468052
 2.499549 2.531265 2.563204 2.595367 2.627754
 2.660369 2.693211 2.726284 2.759588 2.793125
 2.826897 2.860905 2.895152 2.929638 2.964365
 2.999336 3.034551 3.070013 3.105723 3.141683
 3.177895 3.214360 3.251081 3.288059 3.325294
 3.362792 3.400551 3.438575 3.476865 3.515423
 3.554251 3.593351 3.632724 3.672373 3.712300
 3.752506 3.792994 3.833764 3.874821 3.916165
 3.957798 3.999722 4.041941 4.084454 4.127265
 4.170376 4.213789 4.257505 4.301528 4.345859
 4.390500 4.435453 4.480721 4.526306 4.572210
 4.618435 4.664985 4.711860 4.759063 4.806596
 4.854462 4.902663 4.951201 5.000081 5.049301
 5.098866 5.148777 5.199039 5.249652 5.300620
 5.351944 5.403628 5.455673 5.508083 5.560859
 5.614005 5.667523 5.721416 5.775685 5.830335
 5.885366 5.940785 5.996590 6.052786 6.109375
 6.166361 6.223744 6.281531 6.339722 6.398319
 6.457328 6.516749 6.576586 6.636842 6.697520
 6.758622 6.820152 6.882113 6.944508 7.007339
 7.070611 7.134325 7.198484 7.263094 7.328155
 7.393672 7.459648 7.526085 7.592987 7.660358
 7.728200 7.796518 7.865313 7.934590 8.004353
 8.074602 8.145345 8.216581 8.288318 8.360556
 8.433299 8.506552 8.580318 8.654600 8.729403
 8.804729 8.880582 8.956964 9.033883 9.111341
 9.189339 9.267885 9.346979 9.426628 9.506834
 9.587602 9.668935 9.750837 9.833313 9.916366
 10.00000
 0.0000000E+00 2.7032089E-03 5.4283966E-03 8.1757605E-03 1.0945496E-02
 1.3737804E-02 1.6552886E-02 1.9390939E-02 2.2252174E-02 2.5136791E-02
 2.8044999E-02 3.0977003E-02 3.3933014E-02 3.6913242E-02 3.9917901E-02
 4.2947207E-02 4.6001367E-02 4.9080599E-02 5.2185126E-02 5.5315159E-02
 5.8470920E-02 6.1652631E-02 6.4860508E-02 6.8094790E-02 7.1355678E-02
 7.4643411E-02 7.7958196E-02 8.1300281E-02 8.4669895E-02 8.8067248E-02
 9.1492571E-02 9.4946101E-02 9.8428063E-02 0.1019387 0.1054782
 0.1090468 0.1126448 0.1162724 0.1199297 0.1236171
 0.1273348 0.1310829 0.1348618 0.1386717 0.1425127
 0.1463851 0.1502891 0.1542250 0.1581929 0.1621932
 0.1662259 0.1702914 0.1743898 0.1785214 0.1826863
 0.1868847 0.1911170 0.1953831 0.1996835 0.2040182
 0.2083873 0.2127913 0.2172301 0.2217041 0.2262132
 0.2307577 0.2353378 0.2399536 0.2446052 0.2492929
 0.2540166 0.2587766 0.2635730 0.2684058 0.2732751
 0.2781811 0.2831237 0.2881032 0.2931195 0.2981727
 0.3032628 0.3083898 0.3135537 0.3187546 0.3239923
 0.3292669 0.3345783 0.3399266 0.3453114 0.3507329
 0.3561907 0.3616849 0.3672152 0.3727814 0.3783835
 0.3840210 0.3896940 0.3954019 0.4011447 0.4069218
 0.4127331 0.4185781 0.4244565 0.4303678 0.4363116
 0.4422874 0.4482947 0.4543330 0.4604017 0.4665002
 0.4726278 0.4787840 0.4849680 0.4911790 0.4974162
 0.5036789 0.5099663 0.5162773 0.5226112 0.5289668
 0.5353433 0.5417395 0.5481545 0.5545869 0.5610356
 0.5674995 0.5739772 0.5804675 0.5869688 0.5934800
 0.5999994 0.6065257 0.6130573 0.6195925 0.6261298
 0.6326675 0.6392039 0.6457371 0.6522654 0.6587869
 0.6652998 0.6718021 0.6782919 0.6847669 0.6912253
 0.6976652 0.7040839 0.7104797 0.7168503 0.7231935
 0.7295070 0.7357885 0.7420357 0.7482463 0.7544181
 0.7605485 0.7666354 0.7726763 0.7786688 0.7846106
 0.7904993 0.7963325 0.8021078 0.8078231 0.8134758
 0.8190637 0.8245847 0.8300363 0.8354165 0.8407231
 0.8459539 0.8511070 0.8561803 0.8611719 0.8660799
 0.8709025 0.8756380 0.8802847 0.8848413 0.8893059
 0.8936775 0.8979546 0.9021361 0.9062211 0.9102084
 0.9140973 0.9178871 0.9215770 0.9251668 0.9286560
 0.9320443 0.9353318 0.9385182 0.9416040 0.9445893
 0.9474745 0.9502603 0.9529471 0.9555360 0.9580277
 0.9604233 0.9627240 0.9649310 0.9670457 0.9690697
 0.9710044 0.9728516 0.9746131 0.9762907 0.9778865
 0.9794023 0.9808404 0.9822028 0.9834918 0.9847096
 0.9858586 0.9869410 0.9879592 0.9889157 0.9898127
 0.9906526 0.9914380 0.9921710 0.9928542 0.9934898
 0.9940802 0.9946277 0.9951344 0.9956025 0.9960344
 0.9964320 0.9967974 0.9971325 0.9974393 0.9977196
 0.9979752 0.9982077 0.9984190 0.9986104 0.9987835
 0.9989397 0.9990804 0.9992067 0.9993199 0.9994212
 0.9995116 0.9995920 0.9996634 0.9997267 0.9997825
 0.9998317 0.9998749 0.9999129 0.9999460 0.9999749
 1.000000
 0.1899914 0.1902041 0.1904183 0.1906339 0.1908510
 0.1910694 0.1912892 0.1915104 0.1917329 0.1919566
 0.1921817 0.1924079 0.1926354 0.1928640 0.1930937
 0.1933246 0.1935565 0.1937893 0.1940232 0.1942579
 0.1944935 0.1947299 0.1949671 0.1952049 0.1954434
 0.1956825 0.1959221 0.1961621 0.1964025 0.1966432
 0.1968841 0.1971252 0.1973663 0.1976075 0.1978485
 0.1980893 0.1983298 0.1985699 0.1988095 0.1990485
 0.1992868 0.1995243 0.1997607 0.1999962 0.2002304
 0.2004633 0.2006946 0.2009244 0.2011524 0.2013785
 0.2016025 0.2018243 0.2020437 0.2022604 0.2024745
 0.2026855 0.2028935 0.2030981 0.2032991 0.2034964
 0.2036898 0.2038789 0.2040637 0.2042437 0.2044189
 0.2045889 0.2047535 0.2049125 0.2050655 0.2052122
 0.2053524 0.2054858 0.2056121 0.2057310 0.2058421
 0.2059450 0.2060396 0.2061254 0.2062020 0.2062692
 0.2063265 0.2063735 0.2064099 0.2064352 0.2064490
 0.2064510 0.2064407 0.2064176 0.2063813 0.2063314
 0.2062673 0.2061886 0.2060949 0.2059856 0.2058603
 0.2057183 0.2055592 0.2053825 0.2051877 0.2049741
 0.2047413 0.2044887 0.2042156 0.2039217 0.2036061
 0.2032685 0.2029082 0.2025245 0.2021170 0.2016849
 0.2012278 0.2007449 0.2002356 0.1996995 0.1991358
 0.1985439 0.1979233 0.1972733 0.1965933 0.1958827
 0.1951409 0.1943674 0.1935616 0.1927228 0.1918506
 0.1909444 0.1900036 0.1890278 0.1880165 0.1869691
 0.1858852 0.1847644 0.1836062 0.1824103 0.1811764
 0.1799040 0.1785928 0.1772427 0.1758534 0.1744247
 0.1729564 0.1714484 0.1699007 0.1683132 0.1666860
 0.1650191 0.1633128 0.1615670 0.1597822 0.1579586
 0.1560964 0.1541964 0.1522588 0.1502842 0.1482732
 0.1462266 0.1441450 0.1420294 0.1398806 0.1376996
 0.1354874 0.1332452 0.1309741 0.1286755 0.1263506
 0.1240009 0.1216278 0.1192330 0.1168180 0.1143846
 0.1119345 0.1094695 0.1069916 0.1045026 0.1020046
 9.9499524E-02 9.6989624E-02 9.4476998E-02 9.1963738E-02 8.9452192E-02
 8.6944498E-02 8.4443003E-02 8.1949905E-02 7.9467565E-02 7.6998226E-02
 7.4544221E-02 7.2107822E-02 6.9691353E-02 6.7296989E-02 6.4927056E-02
 6.2583663E-02 6.0268965E-02 5.7985101E-02 5.5734098E-02 5.3517953E-02
 5.1338565E-02 4.9197707E-02 4.7097258E-02 4.5038778E-02 4.3023895E-02
 4.1054036E-02 3.9130632E-02 3.7254855E-02 3.5427891E-02 3.3650782E-02
 3.1924389E-02 3.0249536E-02 2.8626867E-02 2.7056901E-02 2.5540041E-02
 2.4076588E-02 2.2666659E-02 2.1310277E-02 2.0007353E-02 1.8757645E-02
 1.7560828E-02 1.6416425E-02 1.5323862E-02 1.4282444E-02 1.3291406E-02
 1.2349835E-02 1.1456774E-02 1.0611161E-02 9.8118400E-03 9.0575898E-03
 8.3471481E-03 7.6791612E-03 7.0522460E-03 6.4649633E-03 5.9158360E-03
 5.4033832E-03 4.9260627E-03 4.4823568E-03 4.0707085E-03 3.6895846E-03
 3.3374457E-03 3.0127659E-03 2.7140342E-03 2.4397781E-03 2.1885347E-03
 1.9588866E-03 1.7494496E-03 1.5588857E-03 1.3858897E-03 1.2292141E-03
 1.0876621E-03 9.6007774E-04 8.4537355E-04 7.4250234E-04 6.5048021E-04
 5.6837453E-04 4.9530889E-04 4.3046114E-04 3.7306259E-04 3.2239722E-04
 2.7779947E-04
 101 51
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000 5.050000 5.100000 5.150000 5.200000
 5.250000 5.300000 5.350000 5.400000 5.450000
 5.500000 5.550000 5.600000 5.650000 5.700000
 5.750000 5.800000 5.850000 5.900000 5.950000
 6.000000
 -1.500001 -1.450001 -1.400001 -1.350001 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -0.1000000 -5.0000012E-02
 0.0000000E+00 4.9999952E-02 0.1000000 0.1500000 0.2000000
 0.2500000 0.3000000 0.3500000 0.4000000 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 2.0613750E-02 2.0425217E-02 2.0120334E-02 1.9716237E-02 1.9228041E-02
 1.8670389E-02 1.8057114E-02 1.7401176E-02 1.6714664E-02 1.6008904E-02
 1.5294183E-02 1.4580237E-02 1.3875956E-02 1.3189496E-02 1.2528207E-02
 1.1898575E-02 1.1306011E-02 1.0754673E-02 1.0247166E-02 9.7843334E-03
 9.3651395E-03 8.9867478E-03 8.6448658E-03 8.3342493E-03 8.0493353E-03
 7.7848020E-03 7.5359787E-03 7.2990730E-03 7.0712278E-03 6.8504321E-03
 6.6353837E-03 6.4253337E-03 6.2199240E-03 6.0190572E-03 5.8227945E-03
 5.6312750E-03 5.4446673E-03 5.2631325E-03 5.0868085E-03 4.9157888E-03
 4.7501363E-03 4.5898724E-03 4.4349837E-03 4.2854231E-03 4.1411179E-03
 4.0019639E-03 3.8678439E-03 3.7386129E-03 3.6141202E-03 3.4942057E-03
 3.3787016E-03 3.2674456E-03 3.1602711E-03 3.0570151E-03 2.9575161E-03
 2.8616218E-03 2.7691785E-03 2.6800460E-03 2.5940810E-03 2.5111546E-03
 2.4311384E-03 2.3539106E-03 2.2793587E-03 2.2073688E-03 2.1378393E-03
 2.0706735E-03 2.0057724E-03 1.9430483E-03 1.8824165E-03 1.8237947E-03
 1.7671075E-03 1.7122785E-03 1.6592400E-03 1.6079232E-03 1.5582666E-03
 1.5102077E-03 1.4636907E-03 1.4186571E-03 1.3750566E-03 1.3328352E-03
 1.2919480E-03 1.2523475E-03 1.2139862E-03 1.1768267E-03 1.1408237E-03
 1.1059390E-03 1.0721362E-03 1.0393778E-03 1.0076291E-03 9.7685878E-04
 9.4703102E-04 9.1811700E-04 8.9008670E-04 8.6291000E-04 8.3656085E-04
 8.1101392E-04 7.8624074E-04 7.6221768E-04 7.3892070E-04 7.1632589E-04
 6.9441291E-04
 7.8224003E-02 7.3379315E-02 6.8753175E-02 6.4343087E-02 6.0145985E-02
 5.6157403E-02 5.2372020E-02 4.8783720E-02 4.5385845E-02 4.2171296E-02
 3.9132942E-02 3.6263496E-02 3.3555895E-02 3.1003505E-02 2.8600253E-02
 2.6340839E-02 2.4220826E-02 2.2236718E-02 2.0385802E-02 1.8665923E-02
 1.7075047E-02 1.5610742E-02 1.4269684E-02 1.3047367E-02 1.1937955E-02
 1.0934476E-02 1.0029134E-02 9.2137055E-03 8.4799258E-03 7.8197718E-03
 7.2256844E-03 6.6906754E-03 6.2083830E-03 5.7730731E-03 5.3796079E-03
 5.0234017E-03 4.7003836E-03 4.4069374E-03 4.1398616E-03 3.8963188E-03
 3.6737982E-03 3.4700753E-03 3.2831773E-03 3.1113550E-03 2.9530516E-03
 2.8068845E-03 2.6716250E-03 2.5461796E-03 2.4295831E-03 2.3209753E-03
 2.2195932E-03 2.1247591E-03 2.0358716E-03 1.9523938E-03 1.8738467E-03
 1.7998054E-03 1.7298880E-03 1.6637556E-03 1.6011014E-03 1.5416545E-03
 1.4851674E-03 1.4314201E-03 1.3802144E-03 1.3313686E-03 1.2847213E-03
 1.2401270E-03 1.1974501E-03 1.1565698E-03 1.1173756E-03 1.0797660E-03
 1.0436503E-03 1.0089414E-03 9.7556354E-04 9.4344415E-04 9.1251783E-04
 8.8272407E-04 8.5400633E-04 8.2631182E-04 7.9959270E-04 7.7380321E-04
 7.4890279E-04 7.2485051E-04 7.0161012E-04 6.7914795E-04 6.5743091E-04
 6.3642795E-04 6.1611185E-04 5.9645477E-04 5.7743117E-04 5.5901770E-04
 5.4119009E-04 5.2392803E-04 5.0721044E-04 4.9101695E-04 4.7532973E-04
 4.6013133E-04 4.4540380E-04 4.3113169E-04 4.1729934E-04 4.0389100E-04
 3.9089425E-04
 2.1928525E-02 2.1745112E-02 2.1447901E-02 2.1053666E-02 2.0577962E-02
 2.0035679E-02 1.9440867E-02 1.8806769E-02 1.8145388E-02 1.7468156E-02
 1.6785398E-02 1.6106518E-02 1.5439894E-02 1.4792806E-02 1.4171357E-02
 1.3580326E-02 1.3023004E-02 1.2501124E-02 1.2014812E-02 1.1562683E-02
 1.1142123E-02 1.0749632E-02 1.0381300E-02 1.0033219E-02 9.7018257E-03
 9.3841190E-03 9.0777501E-03 8.7809972E-03 8.4927101E-03 8.2121640E-03
 7.9389792E-03 7.6729925E-03 7.4141957E-03 7.1626478E-03 6.9184308E-03
 6.6816262E-03 6.4522880E-03 6.2304321E-03 6.0160453E-03 5.8090664E-03
 5.6094034E-03 5.4169325E-03 5.2314973E-03 5.0529288E-03 4.8810267E-03
 4.7155796E-03 4.5563672E-03 4.4031581E-03 4.2557274E-03 4.1138409E-03
 3.9772722E-03 3.8458030E-03 3.7192132E-03 3.5972984E-03 3.4798533E-03
 3.3666906E-03 3.2576234E-03 3.1524738E-03 3.0510752E-03 2.9532707E-03
 2.8589058E-03 2.7678357E-03 2.6799256E-03 2.5950433E-03 2.5130666E-03
 2.4338786E-03 2.3573646E-03 2.2834260E-03 2.2119533E-03 2.1428552E-03
 2.0760412E-03 2.0114214E-03 1.9489173E-03 1.8884469E-03 1.8299361E-03
 1.7733150E-03 1.7185101E-03 1.6654623E-03 1.6141032E-03 1.5643759E-03
 1.5162218E-03 1.4695865E-03 1.4244185E-03 1.3806680E-03 1.3382810E-03
 1.2972183E-03 1.2574301E-03 1.2188747E-03 1.1815128E-03 1.1453021E-03
 1.1102065E-03 1.0761892E-03 1.0432145E-03 1.0112473E-03 9.8025729E-04
 9.5020968E-04 9.2107762E-04 8.9282962E-04 8.6543855E-04 8.3887565E-04
 8.1311638E-04
 7.6747805E-02 7.1899630E-02 6.7271605E-02 6.2861919E-02 5.8667418E-02
 5.4683916E-02 5.0906420E-02 4.7329169E-02 4.3946102E-02 4.0750772E-02
 3.7736677E-02 3.4897462E-02 3.2227043E-02 2.9719770E-02 2.7370518E-02
 2.5174698E-02 2.3128176E-02 2.1227133E-02 1.9467741E-02 1.7845860E-02
 1.6356748E-02 1.4994801E-02 1.3753505E-02 1.2625530E-02 1.1602926E-02
 1.0677416E-02 9.8406812E-03 9.0846093E-03 8.4014814E-03 7.7840728E-03
 7.2257267E-03 6.7203669E-03 6.2624882E-03 5.8471286E-03 5.4698330E-03
 5.1266067E-03 4.8138807E-03 4.5284689E-03 4.2675333E-03 4.0285415E-03
 3.8092365E-03 3.6076056E-03 3.4218535E-03 3.2503814E-03 3.0917616E-03
 2.9447211E-03 2.8081285E-03 2.6809738E-03 2.5623648E-03 2.4514997E-03
 2.3476677E-03 2.2502360E-03 2.1586362E-03 2.0723646E-03 1.9909684E-03
 1.9140448E-03 1.8412307E-03 1.7722001E-03 1.7066625E-03 1.6443545E-03
 1.5850401E-03 1.5285037E-03 1.4745534E-03 1.4230135E-03 1.3737254E-03
 1.3265444E-03 1.2813379E-03 1.2379892E-03 1.1963843E-03 1.1564251E-03
 1.1180195E-03 1.0810810E-03 1.0455337E-03 1.0113040E-03 9.7832584E-04
 9.4653777E-04 9.1588113E-04 8.8630483E-04 8.5775688E-04 8.3019194E-04
 8.0356700E-04 7.7784114E-04 7.5297750E-04 7.2893925E-04 7.0569193E-04
 6.8320514E-04 6.6144898E-04 6.4039411E-04 6.2001520E-04 6.0028589E-04
 5.8118225E-04 5.6268217E-04 5.4476317E-04 5.2740437E-04 5.1058654E-04
 4.9429032E-04 4.7849846E-04 4.6319366E-04 4.4835874E-04 4.3397897E-04
 4.2003818E-04
 2.3465609E-02 2.3292528E-02 2.3008194E-02 2.2629708E-02 2.2172919E-02
 2.1652536E-02 2.1082861E-02 2.0477047E-02 1.9847166E-02 1.9204177E-02
 1.8557854E-02 1.7916702E-02 1.7287876E-02 1.6677072E-02 1.6088480E-02
 1.5524733E-02 1.4986956E-02 1.4474941E-02 1.3987368E-02 1.3522159E-02
 1.3076838E-02 1.2648871E-02 1.2235921E-02 1.1836032E-02 1.1447684E-02
 1.1069812E-02 1.0701730E-02 1.0343080E-02 9.9937171E-03 9.6536586E-03
 9.3229990E-03 9.0018669E-03 8.6903842E-03 8.3886525E-03 8.0967126E-03
 7.8145629E-03 7.5421548E-03 7.2793788E-03 7.0260917E-03 6.7821043E-03
 6.5472061E-03 6.3211489E-03 6.1036646E-03 5.8944738E-03 5.6932829E-03
 5.4997928E-03 5.3136991E-03 5.1347041E-03 4.9625169E-03 4.7968472E-03
 4.6374132E-03 4.4839480E-03 4.3361885E-03 4.1938885E-03 4.0568076E-03
 3.9247200E-03 3.7974101E-03 3.6746706E-03 3.5563039E-03 3.4421245E-03
 3.3319588E-03 3.2256362E-03 3.1229989E-03 3.0238968E-03 2.9281841E-03
 2.8357243E-03 2.7463918E-03 2.6600612E-03 2.5766143E-03 2.4959440E-03
 2.4179381E-03 2.3424998E-03 2.2695342E-03 2.1989457E-03 2.1306484E-03
 2.0645584E-03 2.0005952E-03 1.9386829E-03 1.8787489E-03 1.8207199E-03
 1.7645345E-03 1.7101251E-03 1.6574290E-03 1.6063917E-03 1.5569503E-03
 1.5090539E-03 1.4626519E-03 1.4176888E-03 1.3741223E-03 1.3318995E-03
 1.2909827E-03 1.2513230E-03 1.2128856E-03 1.1756230E-03 1.1395027E-03
 1.1044848E-03 1.0705353E-03 1.0376191E-03 1.0057007E-03 9.7475358E-04
 9.4474392E-04
 7.5072236E-02 7.0222735E-02 6.5596141E-02 6.1191011E-02 5.7004508E-02
 5.3032793E-02 4.9271397E-02 4.5715205E-02 4.2358786E-02 3.9196510E-02
 3.6222726E-02 3.3431921E-02 3.0818749E-02 2.8378092E-02 2.6104959E-02
 2.3994373E-02 2.2041155E-02 2.0239729E-02 1.8583911E-02 1.7066805E-02
 1.5680825E-02 1.4417765E-02 1.3269016E-02 1.2225809E-02 1.1279413E-02
 1.0421364E-02 9.6435938E-03 8.9385351E-03 8.2991822E-03 7.7190865E-03
 7.1923644E-03 6.7136707E-03 6.2781642E-03 5.8814809E-03 5.5196839E-03
 5.1892367E-03 4.8869657E-03 4.6100211E-03 4.3558558E-03 4.1221832E-03
 3.9069569E-03 3.7083453E-03 3.5247076E-03 3.3545801E-03 3.1966520E-03
 3.0497550E-03 2.9128448E-03 2.7849914E-03 2.6653644E-03 2.5532201E-03
 2.4478962E-03 2.3487990E-03 2.2553976E-03 2.1672179E-03 2.0838329E-03
 2.0048595E-03 1.9299551E-03 1.8588098E-03 1.7911436E-03 1.7267050E-03
 1.6652675E-03 1.6066238E-03 1.5505881E-03 1.4969887E-03 1.4456719E-03
 1.3964956E-03 1.3493324E-03 1.3040639E-03 1.2605811E-03 1.2187861E-03
 1.1785858E-03 1.1398974E-03 1.1026417E-03 1.0667472E-03 1.0321474E-03
 9.9878025E-04 9.6658693E-04 9.3551446E-04 9.0551225E-04 8.7653304E-04
 8.4853399E-04 8.2147238E-04 7.9531030E-04 7.7001000E-04 7.4553775E-04
 7.2186056E-04 6.9894880E-04 6.7677133E-04 6.5530237E-04 6.3451368E-04
 6.1438268E-04 5.9488346E-04 5.7599600E-04 5.5769557E-04 5.3996412E-04
 5.2278058E-04 5.0612749E-04 4.8998569E-04 4.7433784E-04 4.5916854E-04
 4.4446177E-04
 2.5275759E-02 2.5120100E-02 2.4856474E-02 2.4501503E-02 2.4071235E-02
 2.3580616E-02 2.3043549E-02 2.2472715E-02 2.1879489E-02 2.1273827E-02
 2.0664169E-02 2.0057384E-02 1.9458719E-02 1.8871853E-02 1.8298987E-02
 1.7741067E-02 1.7198045E-02 1.6669216E-02 1.6153531E-02 1.5649853E-02
 1.5157186E-02 1.4674785E-02 1.4202191E-02 1.3739226E-02 1.3285961E-02
 1.2842622E-02 1.2409552E-02 1.1987141E-02 1.1575781E-02 1.1175832E-02
 1.0787585E-02 1.0411256E-02 1.0046986E-02 9.6948287E-03 9.3547571E-03
 9.0266699E-03 8.7104077E-03 8.4057525E-03 8.1124548E-03 7.8302128E-03
 7.5587034E-03 7.2975797E-03 7.0464849E-03 6.8050507E-03 6.5729008E-03
 6.3496688E-03 6.1349841E-03 5.9284889E-03 5.7298318E-03 5.5386773E-03
 5.3546987E-03 5.1775817E-03 5.0070239E-03 4.8427442E-03 4.6844655E-03
 4.5319297E-03 4.3848865E-03 4.2431038E-03 4.1063558E-03 3.9744326E-03
 3.8471313E-03 3.7242603E-03 3.6056431E-03 3.4910955E-03 3.3804667E-03
 3.2735928E-03 3.1703275E-03 3.0705333E-03 2.9740711E-03 2.8808150E-03
 2.7906438E-03 2.7034408E-03 2.6190937E-03 2.5375027E-03 2.4585575E-03
 2.3821695E-03 2.3082437E-03 2.2366908E-03 2.1674267E-03 2.1003720E-03
 2.0354469E-03 1.9725794E-03 1.9116967E-03 1.8527269E-03 1.7956117E-03
 1.7402848E-03 1.6866832E-03 1.6347513E-03 1.5844343E-03 1.5356741E-03
 1.4884218E-03 1.4426261E-03 1.3982421E-03 1.3552213E-03 1.3135206E-03
 1.2730942E-03 1.2339042E-03 1.1959093E-03 1.1590682E-03 1.1233495E-03
 1.0887147E-03
 7.3171966E-02 6.8325758E-02 6.3706741E-02 5.9313796E-02 5.5144686E-02
 5.1196247E-02 4.7464654E-02 4.3945584E-02 4.0634356E-02 3.7526086E-02
 3.4615688E-02 3.1897955E-02 2.9367436E-02 2.7018383E-02 2.4844564E-02
 2.2839157E-02 2.0994639E-02 1.9302811E-02 1.7754845E-02 1.6341461E-02
 1.5053145E-02 1.3880334E-02 1.2813650E-02 1.1844068E-02 1.0963001E-02
 1.0162409E-02 9.4348248E-03 8.7733576E-03 8.1716934E-03 7.6240618E-03
 7.1252063E-03 6.6703563E-03 6.2551843E-03 5.8757840E-03 5.5286214E-03
 5.2105123E-03 4.9185893E-03 4.6502682E-03 4.4032354E-03 4.1754022E-03
 3.9648986E-03 3.7700429E-03 3.5893300E-03 3.4214142E-03 3.2650875E-03
 3.1192712E-03 2.9830008E-03 2.8554108E-03 2.7357307E-03 2.6232677E-03
 2.5174026E-03 2.4175793E-03 2.3232994E-03 2.2341167E-03 2.1496275E-03
 2.0694702E-03 1.9933181E-03 1.9208773E-03 1.8518803E-03 1.7860873E-03
 1.7232792E-03 1.6632582E-03 1.6058439E-03 1.5508698E-03 1.4981887E-03
 1.4476613E-03 1.3991625E-03 1.3525782E-03 1.3078002E-03 1.2647317E-03
 1.2232835E-03 1.1833711E-03 1.1449184E-03 1.1078531E-03 1.0721085E-03
 1.0376233E-03 1.0043399E-03 9.7220414E-04 9.4116537E-04 9.1117679E-04
 8.8219345E-04 8.5417443E-04 8.2707941E-04 8.0087100E-04 7.7551609E-04
 7.5098075E-04 7.2723214E-04 7.0424256E-04 6.8198342E-04 6.6042633E-04
 6.3954835E-04 6.1932276E-04 5.9972855E-04 5.8074214E-04 5.6234334E-04
 5.4451084E-04 5.2722706E-04 5.1047141E-04 4.9422751E-04 4.7847850E-04
 4.6320810E-04
 2.7425740E-02 2.7297191E-02 2.7063854E-02 2.6742032E-02 2.6347399E-02
 2.5894335E-02 2.5395805E-02 2.4863265E-02 2.4306551E-02 2.3733791E-02
 2.3151428E-02 2.2564294E-02 2.1975819E-02 2.1388227E-02 2.0802902E-02
 2.0220634E-02 1.9641956E-02 1.9067330E-02 1.8497279E-02 1.7932490E-02
 1.7373798E-02 1.6822167E-02 1.6278630E-02 1.5744258E-02 1.5220086E-02
 1.4707078E-02 1.4206107E-02 1.3717907E-02 1.3243085E-02 1.2782106E-02
 1.2335292E-02 1.1902844E-02 1.1484827E-02 1.1081222E-02 1.0691903E-02
 1.0316660E-02 9.9552339E-03 9.6072983E-03 9.2724962E-03 8.9504290E-03
 8.6406870E-03 8.3428323E-03 8.0564246E-03 7.7810227E-03 7.5161881E-03
 7.2614830E-03 7.0164884E-03 6.7807874E-03 6.5539829E-03 6.3356915E-03
 6.1255437E-03 5.9231846E-03 5.7282732E-03 5.5404953E-03 5.3595360E-03
 5.1851077E-03 5.0169332E-03 4.8547452E-03 4.6982919E-03 4.5473380E-03
 4.4016559E-03 4.2610271E-03 4.1252519E-03 3.9941310E-03 3.8674809E-03
 3.7451272E-03 3.6268984E-03 3.5126389E-03 3.4021921E-03 3.2954167E-03
 3.1921735E-03 3.0923269E-03 2.9957560E-03 2.9023362E-03 2.8119534E-03
 2.7244999E-03 2.6398653E-03 2.5579499E-03 2.4786608E-03 2.4019019E-03
 2.3275870E-03 2.2556258E-03 2.1859421E-03 2.1184555E-03 2.0530892E-03
 1.9897756E-03 1.9284377E-03 1.8690149E-03 1.8114405E-03 1.7556539E-03
 1.7015947E-03 1.6492052E-03 1.5984321E-03 1.5492190E-03 1.5015192E-03
 1.4552805E-03 1.4104600E-03 1.3670023E-03 1.3248734E-03 1.2840256E-03
 1.2444179E-03
 7.1022540E-02 6.6188440E-02 6.1588090E-02 5.7220962E-02 5.3085577E-02
 4.9179580E-02 4.5499869E-02 4.2042725E-02 3.8803883E-02 3.5778463E-02
 3.2960951E-02 3.0345103E-02 2.7923865E-02 2.5689334E-02 2.3632739E-02
 2.1744594E-02 2.0014806E-02 1.8432949E-02 1.6988464E-02 1.5670896E-02
 1.4470085E-02 1.3376298E-02 1.2380326E-02 1.1473568E-02 1.0648002E-02
 9.8962309E-03 9.2114378E-03 8.5873753E-03 8.0183307E-03 7.4990839E-03
 7.0248824E-03 6.5914020E-03 6.1947173E-03 5.8312747E-03 5.4978556E-03
 5.1915511E-03 4.9097338E-03 4.6500359E-03 4.4103255E-03 4.1886820E-03
 3.9833784E-03 3.7928640E-03 3.6157467E-03 3.4507783E-03 3.2968426E-03
 3.1529344E-03 3.0181566E-03 2.8917035E-03 2.7728549E-03 2.6609621E-03
 2.5554432E-03 2.4557773E-03 2.3614937E-03 2.2721703E-03 2.1874267E-03
 2.1069194E-03 2.0303379E-03 1.9574009E-03 1.8878547E-03 1.8214687E-03
 1.7580328E-03 1.6973565E-03 1.6392660E-03 1.5836023E-03 1.5302199E-03
 1.4789863E-03 1.4297777E-03 1.3824839E-03 1.3369999E-03 1.2932300E-03
 1.2510882E-03 1.2104888E-03 1.1713589E-03 1.1336270E-03 1.0972271E-03
 1.0620988E-03 1.0281834E-03 9.9542830E-04 9.6378411E-04 9.3320227E-04
 9.0363983E-04 8.7505288E-04 8.4740442E-04 8.2065660E-04 7.9477351E-04
 7.6972373E-04 7.4547372E-04 7.2199502E-04 6.9925777E-04 6.7723671E-04
 6.5590470E-04 6.3523819E-04 6.1521295E-04 5.9580727E-04 5.7699991E-04
 5.5876951E-04 5.4109778E-04 5.2396441E-04 5.0735287E-04 4.9124548E-04
 4.7562525E-04
 3.0003788E-02 2.9914457E-02 2.9722463E-02 2.9443214E-02 2.9091135E-02
 2.8679021E-02 2.8217960E-02 2.7717292E-02 2.7184667E-02 2.6626149E-02
 2.6046515E-02 2.5449496E-02 2.4838114E-02 2.4214970E-02 2.3582468E-02
 2.2942955E-02 2.2298798E-02 2.1652408E-02 2.1006200E-02 2.0362545E-02
 1.9723732E-02 1.9091904E-02 1.8469017E-02 1.7856827E-02 1.7256863E-02
 1.6670415E-02 1.6098546E-02 1.5542086E-02 1.5001680E-02 1.4477759E-02
 1.3970581E-02 1.3480258E-02 1.3006757E-02 1.2549953E-02 1.2109601E-02
 1.1685394E-02 1.1276959E-02 1.0883865E-02 1.0505670E-02 1.0141877E-02
 9.7919879E-03 9.4554946E-03 9.1318758E-03 8.8206334E-03 8.5212579E-03
 8.2332585E-03 7.9561649E-03 7.6895012E-03 7.4328366E-03 7.1857339E-03
 6.9477852E-03 6.7185950E-03 6.4977882E-03 6.2850122E-03 6.0799182E-03
 5.8821877E-03 5.6915111E-03 5.5075912E-03 5.3301468E-03 5.1589208E-03
 4.9936520E-03 4.8341001E-03 4.6800431E-03 4.5312545E-03 4.3875324E-03
 4.2486773E-03 4.1144998E-03 3.9848229E-03 3.8594704E-03 3.7382848E-03
 3.6211072E-03 3.5077848E-03 3.3981784E-03 3.2921552E-03 3.1895780E-03
 3.0903241E-03 2.9942768E-03 2.9013220E-03 2.8113455E-03 2.7242429E-03
 2.6399195E-03 2.5582698E-03 2.4792086E-03 2.4026406E-03 2.3284855E-03
 2.2566570E-03 2.1870800E-03 2.1196727E-03 2.0543684E-03 1.9910908E-03
 1.9297795E-03 1.8703607E-03 1.8127795E-03 1.7569704E-03 1.7028784E-03
 1.6504494E-03 1.5996213E-03 1.5503515E-03 1.5025825E-03 1.4562712E-03
 1.4113643E-03
 6.8605743E-02 6.3800134E-02 5.9238389E-02 5.4920502E-02 5.0845798E-02
 4.7012396E-02 4.3417335E-02 4.0056553E-02 3.6924817E-02 3.4015670E-02
 3.1321421E-02 2.8833196E-02 2.6541069E-02 2.4434309E-02 2.2501601E-02
 2.0731373E-02 1.9112021E-02 1.7632181E-02 1.6280865E-02 1.5047607E-02
 1.3922540E-02 1.2896422E-02 1.1960655E-02 1.1107287E-02 1.0328960E-02
 9.6189035E-03 8.9708976E-03 8.3792349E-03 7.8386934E-03 7.3444983E-03
 6.8922886E-03 6.4780964E-03 6.0983114E-03 5.7496568E-03 5.4291626E-03
 5.1341397E-03 4.8621548E-03 4.6110121E-03 4.3787351E-03 4.1635358E-03
 3.9638109E-03 3.7781163E-03 3.6051543E-03 3.4437638E-03 3.2928993E-03
 3.1516224E-03 3.0190931E-03 2.8945538E-03 2.7773289E-03 2.6668073E-03
 2.5624426E-03 2.4637398E-03 2.3702553E-03 2.2815885E-03 2.1973778E-03
 2.1172967E-03 2.0410498E-03 1.9683675E-03 1.8990067E-03 1.8327478E-03
 1.7693881E-03 1.7087440E-03 1.6506499E-03 1.5949489E-03 1.5415037E-03
 1.4901839E-03 1.4408699E-03 1.3934550E-03 1.3478348E-03 1.3039194E-03
 1.2616217E-03 1.2208604E-03 1.1815618E-03 1.1436575E-03 1.1070812E-03
 1.0717737E-03 1.0376794E-03 1.0047440E-03 9.7291893E-04 9.4215624E-04
 9.1241405E-04 8.8364922E-04 8.5582421E-04 8.2890131E-04 8.0284581E-04
 7.7762478E-04 7.5320678E-04 7.2956149E-04 7.0666178E-04 6.8447937E-04
 6.6298974E-04 6.4216723E-04 6.2198937E-04 6.0243375E-04 5.8347889E-04
 5.6510430E-04 5.4728985E-04 5.3001835E-04 5.1326951E-04 4.9702817E-04
 4.8127599E-04
 3.3124570E-02 3.3086400E-02 3.2943830E-02 3.2710489E-02 3.2398254E-02
 3.2017402E-02 3.1576596E-02 3.1083141E-02 3.0543255E-02 2.9962407E-02
 2.9345628E-02 2.8697694E-02 2.8023299E-02 2.7327105E-02 2.6613723E-02
 2.5887670E-02 2.5153302E-02 2.4414739E-02 2.3675824E-02 2.2940056E-02
 2.2210581E-02 2.1490164E-02 2.0781200E-02 2.0085733E-02 1.9405441E-02
 1.8741697E-02 1.8095555E-02 1.7467804E-02 1.6859004E-02 1.6269483E-02
 1.5699388E-02 1.5148702E-02 1.4617278E-02 1.4104863E-02 1.3611098E-02
 1.3135566E-02 1.2677785E-02 1.2237232E-02 1.1813358E-02 1.1405591E-02
 1.1013348E-02 1.0636050E-02 1.0273105E-02 9.9239498E-03 9.5880162E-03
 9.2647597E-03 8.9536523E-03 8.6541809E-03 8.3658537E-03 8.0881938E-03
 7.8207571E-03 7.5631030E-03 7.3148203E-03 7.0755119E-03 6.8448042E-03
 6.6223424E-03 6.4077815E-03 6.2007965E-03 6.0010771E-03 5.8083311E-03
 5.6222742E-03 5.4426421E-03 5.2691801E-03 5.1016463E-03 4.9398048E-03
 4.7834427E-03 4.6323431E-03 4.4863089E-03 4.3451432E-03 4.2086681E-03
 4.0767076E-03 3.9490904E-03 3.8256638E-03 3.7062692E-03 3.5907615E-03
 3.4790002E-03 3.3708503E-03 3.2661874E-03 3.1648807E-03 3.0668152E-03
 2.9718776E-03 2.8799572E-03 2.7909565E-03 2.7047640E-03 2.6212917E-03
 2.5404429E-03 2.4621282E-03 2.3862643E-03 2.3127648E-03 2.2415528E-03
 2.1725541E-03 2.1056905E-03 2.0408956E-03 1.9781000E-03 1.9172339E-03
 1.8582388E-03 1.8010541E-03 1.7456207E-03 1.6918776E-03 1.6397764E-03
 1.5892602E-03
 6.5920942E-02 6.1173078E-02 5.6683622E-02 5.2452534E-02 4.8478939E-02
 4.4759985E-02 4.1291054E-02 3.8065657E-02 3.5075590E-02 3.2311115E-02
 2.9761236E-02 2.7414067E-02 2.5257152E-02 2.3277873E-02 2.1463690E-02
 1.9802392E-02 1.8282237E-02 1.6892081E-02 1.5621415E-02 1.4460397E-02
 1.3399858E-02 1.2431270E-02 1.1546723E-02 1.0738916E-02 1.0001090E-02
 9.3270224E-03 8.7109795E-03 8.1476960E-03 7.6323417E-03 7.1604908E-03
 6.7280969E-03 6.3314741E-03 5.9672580E-03 5.6323996E-03 5.3241262E-03
 5.0399248E-03 4.7775223E-03 4.5348643E-03 4.3101003E-03 4.1015563E-03
 3.9077299E-03 3.7272654E-03 3.5589475E-03 3.4016829E-03 3.2544895E-03
 3.1164836E-03 2.9868721E-03 2.8649417E-03 2.7500531E-03 2.6416273E-03
 2.5391455E-03 2.4421397E-03 2.3501874E-03 2.2629059E-03 2.1799528E-03
 2.1010146E-03 2.0258087E-03 1.9540780E-03 1.8855889E-03 1.8201297E-03
 1.7575059E-03 1.6975414E-03 1.6400745E-03 1.5849556E-03 1.5320502E-03
 1.4812335E-03 1.4323887E-03 1.3854118E-03 1.3402035E-03 1.2966732E-03
 1.2547380E-03 1.2143172E-03 1.1753415E-03 1.1377402E-03 1.1014526E-03
 1.0664182E-03 1.0325824E-03 9.9989306E-04 9.6830155E-04 9.3776127E-04
 9.0823014E-04 8.7966758E-04 8.5203547E-04 8.2529552E-04 7.9941592E-04
 7.7436247E-04 7.5010449E-04 7.2661357E-04 7.0385955E-04 6.8181736E-04
 6.6046207E-04 6.3976843E-04 6.1971386E-04 6.0027663E-04 5.8143365E-04
 5.6316680E-04 5.4545561E-04 5.2828208E-04 5.1162794E-04 4.9547711E-04
 4.7981166E-04
 3.6928069E-02 3.6944278E-02 3.6845695E-02 3.6643427E-02 3.6346532E-02
 3.5963394E-02 3.5501778E-02 3.4969177E-02 3.4373041E-02 3.3720840E-02
 3.3020101E-02 3.2278318E-02 3.1502847E-02 3.0700790E-02 2.9878860E-02
 2.9043334E-02 2.8199943E-02 2.7353883E-02 2.6509773E-02 2.5671668E-02
 2.4843074E-02 2.4026988E-02 2.3225907E-02 2.2441905E-02 2.1676619E-02
 2.0931331E-02 2.0207001E-02 1.9504284E-02 1.8823594E-02 1.8165121E-02
 1.7528864E-02 1.6914668E-02 1.6322251E-02 1.5751231E-02 1.5201133E-02
 1.4671415E-02 1.4161502E-02 1.3670766E-02 1.3198567E-02 1.2744248E-02
 1.2307148E-02 1.1886614E-02 1.1481985E-02 1.1092637E-02 1.0717940E-02
 1.0357292E-02 1.0010114E-02 9.6758381E-03 9.3539273E-03 9.0438649E-03
 8.7451488E-03 8.4573086E-03 8.1798853E-03 7.9124533E-03 7.6545905E-03
 7.4059111E-03 7.1660364E-03 6.9346079E-03 6.7112828E-03 6.4957379E-03
 6.2876600E-03 6.0867607E-03 5.8927508E-03 5.7053645E-03 5.5243429E-03
 5.3494442E-03 5.1804343E-03 5.0170859E-03 4.8591895E-03 4.7065401E-03
 4.5589400E-03 4.4162069E-03 4.2781592E-03 4.1446267E-03 4.0154452E-03
 3.8904557E-03 3.7695121E-03 3.6524714E-03 3.5391881E-03 3.4295360E-03
 3.3233878E-03 3.2206161E-03 3.1211076E-03 3.0247513E-03 2.9314340E-03
 2.8410512E-03 2.7535115E-03 2.6687107E-03 2.5865596E-03 2.5069683E-03
 2.4298504E-03 2.3551241E-03 2.2827119E-03 2.2125344E-03 2.1445211E-03
 2.0785995E-03 2.0146980E-03 1.9527589E-03 1.8927072E-03 1.8344937E-03
 1.7780510E-03
 6.3005172E-02 5.8363076E-02 5.3996686E-02 4.9904246E-02 4.6081889E-02
 4.2523202E-02 3.9219484E-02 3.6160145E-02 3.3333194E-02 3.0725718E-02
 2.8324332E-02 2.6115550E-02 2.4086116E-02 2.2223169E-02 2.0514403E-02
 1.8948138E-02 1.7513355E-02 1.6199719E-02 1.4997536E-02 1.3897768E-02
 1.2891998E-02 1.1972382E-02 1.1131629E-02 1.0362997E-02 9.6602207E-03
 9.0175159E-03 8.4295450E-03 7.8913840E-03 7.3985206E-03 6.9468054E-03
 6.5324432E-03 6.1519686E-03 5.8022230E-03 5.4803356E-03 5.1836940E-03
 4.9099335E-03 4.6569100E-03 4.4226861E-03 4.2055161E-03 4.0038223E-03
 3.8161839E-03 3.6413223E-03 3.4780870E-03 3.3254451E-03 3.1824640E-03
 3.0483075E-03 2.9222239E-03 2.8035343E-03 2.6916303E-03 2.5859624E-03
 2.4860345E-03 2.3914007E-03 2.3016569E-03 2.2164381E-03 2.1354142E-03
 2.0582862E-03 1.9847827E-03 1.9146558E-03 1.8476812E-03 1.7836554E-03
 1.7223904E-03 1.6637166E-03 1.6074765E-03 1.5535274E-03 1.5017380E-03
 1.4519867E-03 1.4041623E-03 1.3581619E-03 1.3138893E-03 1.2712581E-03
 1.2301852E-03 1.1905952E-03 1.1524161E-03 1.1155843E-03 1.0800363E-03
 1.0457140E-03 1.0125655E-03 9.8054006E-04 9.4958750E-04 9.1966544E-04
 8.9073170E-04 8.6274545E-04 8.3567016E-04 8.0946943E-04 7.8410981E-04
 7.5955904E-04 7.3578785E-04 7.1276672E-04 6.9046911E-04 6.6886813E-04
 6.4793759E-04 6.2765653E-04 6.0800114E-04 5.8894849E-04 5.7048001E-04
 5.5257429E-04 5.3521228E-04 5.1837804E-04 5.0205074E-04 4.8621575E-04
 4.7085623E-04
 4.1559644E-02 4.1607309E-02 4.1517358E-02 4.1299567E-02 4.0963162E-02
 4.0518060E-02 3.9974667E-02 3.9343808E-02 3.8636502E-02 3.7863713E-02
 3.7036121E-02 3.6163948E-02 3.5256762E-02 3.4323428E-02 3.3371978E-02
 3.2409675E-02 3.1442940E-02 3.0477412E-02 2.9517999E-02 2.8568888E-02
 2.7633633E-02 2.6715191E-02 2.5815971E-02 2.4937918E-02 2.4082523E-02
 2.3250902E-02 2.2443835E-02 2.1661805E-02 2.0905055E-02 2.0173607E-02
 1.9467302E-02 1.8785831E-02 1.8128775E-02 1.7495615E-02 1.6885750E-02
 1.6298534E-02 1.5733270E-02 1.5189235E-02 1.4665704E-02 1.4161931E-02
 1.3677171E-02 1.3210696E-02 1.2761777E-02 1.2329727E-02 1.1913850E-02
 1.1513487E-02 1.1128000E-02 1.0756768E-02 1.0399211E-02 1.0054750E-02
 9.7228484E-03 9.4029829E-03 9.0946564E-03 8.7973950E-03 8.5107479E-03
 8.2342820E-03 7.9675838E-03 7.7102603E-03 7.4619330E-03 7.2222496E-03
 6.9908598E-03 6.7674476E-03 6.5516960E-03 6.3433046E-03 6.1419960E-03
 5.9474953E-03 5.7595433E-03 5.5778963E-03 5.4023140E-03 5.2325702E-03
 5.0684474E-03 4.9097426E-03 4.7562495E-03 4.6077855E-03 4.4641639E-03
 4.3252134E-03 4.1907616E-03 4.0606558E-03 3.9347350E-03 3.8128530E-03
 3.6948717E-03 3.5806498E-03 3.4700574E-03 3.3629728E-03 3.2592728E-03
 3.1588450E-03 3.0615714E-03 2.9673486E-03 2.8760708E-03 2.7876426E-03
 2.7019677E-03 2.6189550E-03 2.5385085E-03 2.4605559E-03 2.3850019E-03
 2.3117790E-03 2.2408005E-03 2.1720035E-03 2.1053075E-03 2.0406540E-03
 1.9779697E-03
 5.9959386E-02 5.5488680E-02 5.1306576E-02 4.7406580E-02 4.3779135E-02
 4.0412724E-02 3.7294418E-02 3.4410462E-02 3.1746827E-02 2.9289544E-02
 2.7024969E-02 2.4939964E-02 2.3021959E-02 2.1259036E-02 1.9639900E-02
 1.8153897E-02 1.6790990E-02 1.5541751E-02 1.4397318E-02 1.3349385E-02
 1.2390183E-02 1.1512442E-02 1.0709381E-02 9.9746892E-03 9.3025006E-03
 8.6873695E-03 8.1242705E-03 7.6085553E-03 7.1359552E-03 6.7025446E-03
 6.3047288E-03 5.9392243E-03 5.6030322E-03 5.2934284E-03 5.0079362E-03
 4.7443081E-03 4.5005088E-03 4.2746975E-03 4.0652165E-03 3.8705645E-03
 3.6893936E-03 3.5204845E-03 3.3627436E-03 3.2151854E-03 3.0769226E-03
 2.9471559E-03 2.8251680E-03 2.7103098E-03 2.6019989E-03 2.4997091E-03
 2.4029659E-03 2.3113398E-03 2.2244442E-03 2.1419271E-03 2.0634707E-03
 1.9887888E-03 1.9176165E-03 1.8497183E-03 1.7848761E-03 1.7228933E-03
 1.6635885E-03 1.6067950E-03 1.5523650E-03 1.5001560E-03 1.4500436E-03
 1.4019086E-03 1.3556413E-03 1.3111457E-03 1.2683264E-03 1.2270984E-03
 1.1873816E-03 1.1491034E-03 1.1121946E-03 1.0765903E-03 1.0422318E-03
 1.0090618E-03 9.7702839E-04 9.4608305E-04 9.1617816E-04 8.8727055E-04
 8.5932028E-04 8.3228789E-04 8.0613670E-04 7.8083156E-04 7.5634132E-04
 7.3263439E-04 7.0968078E-04 6.8745244E-04 6.6592329E-04 6.4506725E-04
 6.2486035E-04 6.0528144E-04 5.8630569E-04 5.6791404E-04 5.5008539E-04
 5.3280132E-04 5.1604118E-04 4.9978972E-04 4.8402973E-04 4.6874437E-04
 4.5391856E-04
 4.7119219E-02 4.7132324E-02 4.6976913E-02 4.6665985E-02 4.6213754E-02
 4.5635208E-02 4.4945657E-02 4.4160284E-02 4.3293756E-02 4.2360000E-02
 4.1371979E-02 4.0341590E-02 3.9279647E-02 3.8195837E-02 3.7098773E-02
 3.5996020E-02 3.4894168E-02 3.3798911E-02 3.2715093E-02 3.1646799E-02
 3.0597428E-02 2.9569751E-02 2.8565975E-02 2.7587829E-02 2.6636595E-02
 2.5713172E-02 2.4818134E-02 2.3951763E-02 2.3114109E-02 2.2305017E-02
 2.1524156E-02 2.0771060E-02 2.0045165E-02 1.9345809E-02 1.8672273E-02
 1.8023785E-02 1.7399540E-02 1.6798720E-02 1.6220491E-02 1.5664021E-02
 1.5128492E-02 1.4613092E-02 1.4117019E-02 1.3639507E-02 1.3179811E-02
 1.2737195E-02 1.2310966E-02 1.1900449E-02 1.1504998E-02 1.1123998E-02
 1.0756847E-02 1.0402980E-02 1.0061852E-02 9.7329430E-03 9.4157616E-03
 9.1098314E-03 8.8146981E-03 8.5299332E-03 8.2551185E-03 7.9898657E-03
 7.7337925E-03 7.4865497E-03 7.2477870E-03 7.0171733E-03 6.7944019E-03
 6.5791723E-03 6.3711982E-03 6.1702086E-03 5.9759282E-03 5.7881228E-03
 5.6065456E-03 5.4309662E-03 5.2611683E-03 5.0969357E-03 4.9380683E-03
 4.7843801E-03 4.6356744E-03 4.4917776E-03 4.3525225E-03 4.2177364E-03
 4.0872744E-03 3.9609740E-03 3.8386984E-03 3.7203026E-03 3.6056552E-03
 3.4946254E-03 3.3870942E-03 3.2829398E-03 3.1820463E-03 3.0843068E-03
 2.9896088E-03 2.8978598E-03 2.8089553E-03 2.7228037E-03 2.6393104E-03
 2.5583927E-03 2.4799616E-03 2.4039387E-03 2.3302452E-03 2.2588018E-03
 2.1895412E-03
 5.6957871E-02 5.2721441E-02 4.8771311E-02 4.5095131E-02 4.1678857E-02
 3.8508214E-02 3.5568945E-02 3.2847118E-02 3.0329291E-02 2.8002562E-02
 2.5854604E-02 2.3873685E-02 2.2048600E-02 2.0368718E-02 1.8823903E-02
 1.7404545E-02 1.6101515E-02 1.4906175E-02 1.3810344E-02 1.2806306E-02
 1.1886807E-02 1.1045019E-02 1.0274547E-02 9.5694251E-03 8.9240829E-03
 8.3333468E-03 7.7924258E-03 7.2968905E-03 6.8426682E-03 6.4260080E-03
 6.0434788E-03 5.6919386E-03 5.3685228E-03 5.0706291E-03 4.7958842E-03
 4.5421426E-03 4.3074563E-03 4.0900665E-03 3.8883840E-03 3.7009753E-03
 3.5265470E-03 3.3639346E-03 3.2120864E-03 3.0700590E-03 2.9370012E-03
 2.8121439E-03 2.6947993E-03 2.5843414E-03 2.4802103E-03 2.3819001E-03
 2.2889518E-03 2.2009513E-03 2.1175251E-03 2.0383338E-03 1.9630704E-03
 1.8914561E-03 1.8232368E-03 1.7581834E-03 1.6960830E-03 1.6367469E-03
 1.5799976E-03 1.5256754E-03 1.4736342E-03 1.4237380E-03 1.3758637E-03
 1.3298967E-03 1.2857316E-03 1.2432731E-03 1.2024281E-03 1.1631153E-03
 1.1252579E-03 1.0887834E-03 1.0536244E-03 1.0197194E-03 9.8700996E-04
 9.5544226E-04 9.2496409E-04 8.9552859E-04 8.6709094E-04 8.3960855E-04
 8.1304176E-04 7.8735320E-04 7.6250790E-04 7.3847204E-04 7.1521342E-04
 6.9270242E-04 6.7091052E-04 6.4981298E-04 6.2937953E-04 6.0958980E-04
 5.9041841E-04 5.7184370E-04 5.5384531E-04 5.3640211E-04 5.1949377E-04
 5.0310406E-04 4.8721311E-04 4.7180653E-04 4.5686497E-04 4.4237525E-04
 4.2832145E-04
 5.3605177E-02 5.3482320E-02 5.3165779E-02 5.2675668E-02 5.2032679E-02
 5.1257048E-02 5.0368153E-02 4.9384229E-02 4.8322164E-02 4.7197409E-02
 4.6023972E-02 4.4814397E-02 4.3579858E-02 4.2330209E-02 4.1074075E-02
 3.9818943E-02 3.8571250E-02 3.7336476E-02 3.6119249E-02 3.4923382E-02
 3.3752017E-02 3.2607663E-02 3.1492259E-02 3.0407278E-02 2.9353745E-02
 2.8332321E-02 2.7343351E-02 2.6386900E-02 2.5462823E-02 2.4570765E-02
 2.3710225E-02 2.2880575E-02 2.2081096E-02 2.1310983E-02 2.0569388E-02
 1.9855410E-02 1.9168139E-02 1.8506642E-02 1.7869987E-02 1.7257255E-02
 1.6667528E-02 1.6099913E-02 1.5553539E-02 1.5027557E-02 1.4521149E-02
 1.4033518E-02 1.3563900E-02 1.3111555E-02 1.2675785E-02 1.2255912E-02
 1.1851279E-02 1.1461271E-02 1.1085292E-02 1.0722774E-02 1.0373171E-02
 1.0035970E-02 9.7106714E-03 9.3967980E-03 9.0938993E-03 8.8015459E-03
 8.5193207E-03 8.2468288E-03 7.9836957E-03 7.7295555E-03 7.4840668E-03
 7.2469050E-03 7.0177433E-03 6.7962874E-03 6.5822396E-03 6.3753361E-03
 6.1753080E-03 5.9818937E-03 5.7948660E-03 5.6139701E-03 5.4390011E-03
 5.2697416E-03 5.1059816E-03 4.9475301E-03 4.7941925E-03 4.6457909E-03
 4.5021507E-03 4.3631061E-03 4.2284927E-03 4.0981653E-03 3.9719674E-03
 3.8497571E-03 3.7314019E-03 3.6167710E-03 3.5057347E-03 3.3981684E-03
 3.2939606E-03 3.1930003E-03 3.0951693E-03 3.0003733E-03 2.9085076E-03
 2.8194783E-03 2.7331861E-03 2.6495480E-03 2.5684698E-03 2.4898758E-03
 2.4136822E-03
 5.4201592E-02 5.0226044E-02 4.6516132E-02 4.3057118E-02 3.9835393E-02
 3.6837809E-02 3.4051891E-02 3.1465743E-02 2.9067973E-02 2.6847648E-02
 2.4794219E-02 2.2897508E-02 2.1147691E-02 1.9535288E-02 1.8051172E-02
 1.6686568E-02 1.5433063E-02 1.4282626E-02 1.3227592E-02 1.2260689E-02
 1.1375038E-02 1.0564141E-02 9.8218890E-03 9.1425721E-03 8.5208463E-03
 7.9517430E-03 7.4306573E-03 6.9533265E-03 6.5158317E-03 6.1145611E-03
 5.7462128E-03 5.4077599E-03 5.0964463E-03 4.8097637E-03 4.5454293E-03
 4.3013771E-03 4.0757298E-03 3.8667943E-03 3.6730419E-03 3.4930883E-03
 3.3256889E-03 3.1697189E-03 3.0241630E-03 2.8881135E-03 2.7607447E-03
 2.6413165E-03 2.5291587E-03 2.4236699E-03 2.3243064E-03 2.2305760E-03
 2.1420345E-03 2.0582813E-03 1.9789517E-03 1.9037176E-03 1.8322791E-03
 1.7643657E-03 1.6997312E-03 1.6381487E-03 1.5794156E-03 1.5233451E-03
 1.4697656E-03 1.4185199E-03 1.3694675E-03 1.3224755E-03 1.2774230E-03
 1.2341995E-03 1.1927014E-03 1.1528351E-03 1.1145117E-03 1.0776523E-03
 1.0421803E-03 1.0080264E-03 9.7512535E-04 9.4341557E-04 9.1284252E-04
 8.8335323E-04 8.5489673E-04 8.2742935E-04 8.0090488E-04 7.7528419E-04
 7.5052818E-04 7.2660123E-04 7.0346950E-04 6.8110065E-04 6.5946253E-04
 6.3852908E-04 6.1827153E-04 5.9866405E-04 5.7968230E-04 5.6130253E-04
 5.4350222E-04 5.2626169E-04 5.0955813E-04 4.9337477E-04 4.7769299E-04
 4.6249395E-04 4.4776214E-04 4.3348028E-04 4.1963361E-04 4.0620752E-04
 3.9318760E-04
 6.0922287E-02 6.0561325E-02 5.9997771E-02 5.9257869E-02 5.8366455E-02
 5.7346694E-02 5.6219921E-02 5.5005599E-02 5.3721353E-02 5.2383002E-02
 5.1004656E-02 4.9598824E-02 4.8176505E-02 4.6747331E-02 4.5319635E-02
 4.3900594E-02 4.2496316E-02 4.1111957E-02 3.9751798E-02 3.8419321E-02
 3.7117366E-02 3.5848100E-02 3.4613185E-02 3.3413798E-02 3.2250691E-02
 3.1124271E-02 3.0034645E-02 2.8981648E-02 2.7964924E-02 2.6983924E-02
 2.6037965E-02 2.5126243E-02 2.4247874E-02 2.3401925E-02 2.2587391E-02
 2.1803254E-02 2.1048477E-02 2.0322010E-02 1.9622827E-02 1.8949892E-02
 1.8302208E-02 1.7678780E-02 1.7078657E-02 1.6500913E-02 1.5944637E-02
 1.5408974E-02 1.4893078E-02 1.4396146E-02 1.3917409E-02 1.3456129E-02
 1.3011597E-02 1.2583127E-02 1.2170072E-02 1.1771810E-02 1.1387749E-02
 1.1017319E-02 1.0659973E-02 1.0315193E-02 9.9824807E-03 9.6613662E-03
 9.3513913E-03 9.0521267E-03 8.7631531E-03 8.4840730E-03 8.2145091E-03
 7.9541001E-03 7.7024954E-03 7.4593714E-03 7.2243963E-03 6.9972714E-03
 6.7777117E-03 6.5654241E-03 6.3601574E-03 6.1616441E-03 5.9696361E-03
 5.7839113E-03 5.6042299E-03 5.4303776E-03 5.2621560E-03 5.0993515E-03
 4.9417848E-03 4.7892653E-03 4.6416181E-03 4.4986722E-03 4.3602670E-03
 4.2262441E-03 4.0964517E-03 3.9707455E-03 3.8489876E-03 3.7310440E-03
 3.6167905E-03 3.5060921E-03 3.3988350E-03 3.2949089E-03 3.1941980E-03
 3.0965921E-03 3.0019972E-03 2.9103099E-03 2.8214352E-03 2.7352844E-03
 2.6517611E-03
 5.1830608E-02 4.8093222E-02 4.4591375E-02 4.1313771E-02 3.8249992E-02
 3.5390165E-02 3.2724772E-02 3.0244503E-02 2.7940191E-02 2.5802765E-02
 2.3823237E-02 2.1992724E-02 2.0302473E-02 1.8743897E-02 1.7308598E-02
 1.5988424E-02 1.4775462E-02 1.3662113E-02 1.2641075E-02 1.1705385E-02
 1.0848427E-02 1.0063942E-02 9.3460260E-03 8.6891530E-03 8.0881482E-03
 7.5381948E-03 7.0348247E-03 6.5739085E-03 6.1516422E-03 5.7645268E-03
 5.4093553E-03 5.0831977E-03 4.7833775E-03 4.5074662E-03 4.2532496E-03
 4.0187258E-03 3.8020744E-03 3.6016544E-03 3.4159818E-03 3.2437150E-03
 3.0836458E-03 2.9346803E-03 2.7958343E-03 2.6662252E-03 2.5450485E-03
 2.4315831E-03 2.3251784E-03 2.2252463E-03 2.1312574E-03 2.0427324E-03
 1.9592361E-03 1.8803783E-03 1.8058016E-03 1.7351850E-03 1.6682361E-03
 1.6046907E-03 1.5443055E-03 1.4868594E-03 1.4321543E-03 1.3800076E-03
 1.3302497E-03 1.2827300E-03 1.2373072E-03 1.1938520E-03 1.1522479E-03
 1.1123843E-03 1.0741625E-03 1.0374901E-03 1.0022806E-03 9.6845423E-04
 9.3594048E-04 9.0466655E-04 8.7457505E-04 8.4560330E-04 8.1769720E-04
 7.9080748E-04 7.6488359E-04 7.3988090E-04 7.1576115E-04 6.9248048E-04
 6.7000539E-04 6.4829900E-04 6.2732969E-04 6.0706609E-04 5.8747933E-04
 5.6854088E-04 5.5022677E-04 5.3251057E-04 5.1536853E-04 4.9878139E-04
 4.8272588E-04 4.6718144E-04 4.5212975E-04 4.3755435E-04 4.2343567E-04
 4.0975658E-04 3.9650389E-04 3.8366075E-04 3.7121377E-04 3.5914933E-04
 3.4745224E-04
 6.8960279E-02 6.8285070E-02 6.7413852E-02 6.6375285E-02 6.5195613E-02
 6.3898712E-02 6.2506191E-02 6.1037496E-02 5.9510048E-02 5.7939347E-02
 5.6339130E-02 5.4721478E-02 5.3096976E-02 5.1474806E-02 4.9862873E-02
 4.8267923E-02 4.6695657E-02 4.5150831E-02 4.3637332E-02 4.2158291E-02
 4.0716168E-02 3.9312817E-02 3.7949558E-02 3.6627285E-02 3.5346452E-02
 3.4107201E-02 3.2909390E-02 3.1752612E-02 3.0636296E-02 2.9559687E-02
 2.8521907E-02 2.7521981E-02 2.6558859E-02 2.5631439E-02 2.4738586E-02
 2.3879129E-02 2.3051916E-02 2.2255762E-02 2.1489535E-02 2.0752091E-02
 2.0042323E-02 1.9359149E-02 1.8701511E-02 1.8068394E-02 1.7458811E-02
 1.6871816E-02 1.6306493E-02 1.5761957E-02 1.5237376E-02 1.4731933E-02
 1.4244855E-02 1.3775394E-02 1.3322842E-02 1.2886516E-02 1.2465768E-02
 1.2059971E-02 1.1668533E-02 1.1290883E-02 1.0926473E-02 1.0574792E-02
 1.0235332E-02 9.9076182E-03 9.5912004E-03 9.2856362E-03 8.9905122E-03
 8.7054325E-03 8.4300097E-03 8.1638889E-03 7.9067070E-03 7.6581356E-03
 7.4178562E-03 7.1855574E-03 6.9609531E-03 6.7437515E-03 6.5336809E-03
 6.3304980E-03 6.1339363E-03 5.9437724E-03 5.7597663E-03 5.5817016E-03
 5.4093739E-03 5.2425736E-03 5.0811078E-03 4.9247947E-03 4.7734492E-03
 4.6269028E-03 4.4849901E-03 4.3475521E-03 4.2144344E-03 4.0854909E-03
 3.9605787E-03 3.8395645E-03 3.7223203E-03 3.6087108E-03 3.4986187E-03
 3.3919327E-03 3.2885310E-03 3.1883121E-03 3.0911709E-03 2.9970047E-03
 2.9057153E-03
 4.9883954E-02 4.6331119E-02 4.2986620E-02 3.9843876E-02 3.6896419E-02
 3.4137625E-02 3.1560637E-02 2.9158287E-02 2.6923152E-02 2.4847556E-02
 2.2923645E-02 2.1143451E-02 1.9498957E-02 1.7982183E-02 1.6585218E-02
 1.5300306E-02 1.4119874E-02 1.3036598E-02 1.2043409E-02 1.1133543E-02
 1.0300568E-02 9.5383739E-03 8.8411998E-03 8.2036452E-03 7.6206545E-03
 7.0875227E-03 6.5998794E-03 6.1536911E-03 5.7452419E-03 5.3711133E-03
 5.0281752E-03 4.7135665E-03 4.4246772E-03 4.1591339E-03 3.9147767E-03
 3.6896511E-03 3.4819827E-03 3.2901668E-03 3.1127553E-03 2.9484376E-03
 2.7960299E-03 2.6544649E-03 2.5227799E-03 2.4001084E-03 2.2856633E-03
 2.1787372E-03 2.0786938E-03 1.9849523E-03 1.8969942E-03 1.8143486E-03
 1.7365888E-03 1.6633272E-03 1.5942159E-03 1.5289359E-03 1.4672015E-03
 1.4087481E-03 1.3533395E-03 1.3007594E-03 1.2508089E-03 1.2033080E-03
 1.1580925E-03 1.1150106E-03 1.0739253E-03 1.0347081E-03 9.9724531E-04
 9.6142729E-04 9.2715712E-04 8.9434534E-04 8.6290471E-04 8.3275960E-04
 8.0383860E-04 7.7607547E-04 7.4940757E-04 7.2377780E-04 6.9913111E-04
 6.7542394E-04 6.5260188E-04 6.3062971E-04 6.0946005E-04 5.8905821E-04
 5.6938949E-04 5.5041921E-04 5.3211581E-04 5.1445083E-04 4.9739523E-04
 4.8092523E-04 4.6501454E-04 4.4963972E-04 4.3478000E-04 4.2041324E-04
 4.0652006E-04 3.9308157E-04 3.8008133E-04 3.6750123E-04 3.5532503E-04
 3.4353882E-04 3.3212613E-04 3.2107419E-04 3.1037151E-04 3.0000310E-04
 2.8995689E-04
 7.7656835E-02 7.6618917E-02 7.5400509E-02 7.4030191E-02 7.2533868E-02
 7.0934914E-02 6.9254309E-02 6.7510895E-02 6.5721445E-02 6.3900851E-02
 6.2062249E-02 6.0217142E-02 5.8375575E-02 5.6546204E-02 5.4736435E-02
 5.2952558E-02 5.1199798E-02 4.9482491E-02 4.7804117E-02 4.6167407E-02
 4.4574451E-02 4.3026753E-02 4.1525297E-02 4.0070653E-02 3.8662996E-02
 3.7302170E-02 3.5987783E-02 3.4719173E-02 3.3495557E-02 3.2315947E-02
 3.1179274E-02 3.0084366E-02 2.9030005E-02 2.8014915E-02 2.7037809E-02
 2.6097368E-02 2.5192294E-02 2.4321279E-02 2.3483066E-02 2.2676384E-02
 2.1900019E-02 2.1152776E-02 2.0433495E-02 1.9741066E-02 1.9074412E-02
 1.8432485E-02 1.7814288E-02 1.7218858E-02 1.6645277E-02 1.6092647E-02
 1.5560131E-02 1.5046909E-02 1.4552203E-02 1.4075268E-02 1.3615391E-02
 1.3171894E-02 1.2744115E-02 1.2331435E-02 1.1933256E-02 1.1549007E-02
 1.1178144E-02 1.0820145E-02 1.0474509E-02 1.0140752E-02 9.8184282E-03
 9.5070936E-03 9.2063276E-03 8.9157363E-03 8.6349268E-03 8.3635384E-03
 8.1012258E-03 7.8476388E-03 7.6024611E-03 7.3653804E-03 7.1361051E-03
 6.9143469E-03 6.6998354E-03 6.4923149E-03 6.2915199E-03 6.0972213E-03
 5.9091910E-03 5.7271952E-03 5.5510341E-03 5.3804955E-03 5.2153841E-03
 5.0555128E-03 4.9007004E-03 4.7507738E-03 4.6055634E-03 4.4649099E-03
 4.3286597E-03 4.1966615E-03 4.0687714E-03 3.9448547E-03 3.8247805E-03
 3.7084131E-03 3.5956348E-03 3.4863295E-03 3.3803745E-03 3.2776680E-03
 3.1781031E-03
 4.8333105E-02 4.4904847E-02 4.1665662E-02 3.8612887E-02 3.5743099E-02
 3.3052053E-02 3.0534763E-02 2.8185539E-02 2.5998101E-02 2.3965681E-02
 2.2081144E-02 2.0337084E-02 1.8725935E-02 1.7240064E-02 1.5871851E-02
 1.4613767E-02 1.3458426E-02 1.2398656E-02 1.1427525E-02 1.0538381E-02
 9.7248880E-03 8.9810295E-03 8.3011296E-03 7.6798694E-03 7.1122642E-03
 6.5936809E-03 6.1198212E-03 5.6867129E-03 5.2907001E-03 4.9284222E-03
 4.5968019E-03 4.2930255E-03 4.0145265E-03 3.7589767E-03 3.5242522E-03
 3.3084294E-03 3.1097662E-03 2.9266838E-03 2.7577567E-03 2.6016962E-03
 2.4573342E-03 2.3236223E-03 2.1996072E-03 2.0844352E-03 1.9773277E-03
 1.8775901E-03 1.7845863E-03 1.6977475E-03 1.6165581E-03 1.5405483E-03
 1.4692988E-03 1.4024231E-03 1.3395767E-03 1.2804426E-03 1.2247368E-03
 1.1721975E-03 1.1225885E-03 1.0756941E-03 1.0313186E-03 9.8928192E-04
 9.4941980E-04 9.1158471E-04 8.7563810E-04 8.4145390E-04 8.0891734E-04
 7.7792245E-04 7.4837077E-04 7.2017522E-04 6.9324957E-04 6.6752057E-04
 6.4291753E-04 6.1937375E-04 5.9682818E-04 5.7522720E-04 5.5451714E-04
 5.3465104E-04 5.1558239E-04 4.9727171E-04 4.7967656E-04 4.6276319E-04
 4.4649767E-04 4.3084586E-04 4.1578079E-04 4.0127340E-04 3.8729733E-04
 3.7382665E-04 3.6084055E-04 3.4831604E-04 3.3623318E-04 3.2457258E-04
 3.1331554E-04 3.0244561E-04 2.9194506E-04 2.8180075E-04 2.7199756E-04
 2.6251996E-04 2.5335499E-04 2.4449310E-04 2.3591863E-04 2.2762347E-04
 2.1959590E-04
 8.7009765E-02 8.5577510E-02 8.3983988E-02 8.2256682E-02 8.0420420E-02
 7.8497589E-02 7.6508276E-02 7.4470483E-02 7.2400227E-02 7.0311666E-02
 6.8217292E-02 6.6127993E-02 6.4053230E-02 6.2001120E-02 5.9978548E-02
 5.7991307E-02 5.6044158E-02 5.4140989E-02 5.2284855E-02 5.0478090E-02
 4.8722390E-02 4.7018897E-02 4.5368243E-02 4.3770678E-02 4.2226061E-02
 4.0733952E-02 3.9293680E-02 3.7904330E-02 3.6564868E-02 3.5274092E-02
 3.4030709E-02 3.2833356E-02 3.1680606E-02 3.0571027E-02 2.9503146E-02
 2.8475493E-02 2.7486613E-02 2.6535055E-02 2.5619419E-02 2.4738317E-02
 2.3890395E-02 2.3074351E-02 2.2288907E-02 2.1532841E-02 2.0804971E-02
 2.0104157E-02 1.9429302E-02 1.8779345E-02 1.8153284E-02 1.7550150E-02
 1.6969007E-02 1.6408963E-02 1.5869172E-02 1.5348809E-02 1.4847098E-02
 1.4363298E-02 1.3896682E-02 1.3446571E-02 1.3012311E-02 1.2593278E-02
 1.2188870E-02 1.1798517E-02 1.1421679E-02 1.1057816E-02 1.0706436E-02
 1.0367064E-02 1.0039236E-02 9.7225131E-03 9.4164759E-03 9.1207195E-03
 8.8348696E-03 8.5585415E-03 8.2913926E-03 8.0330782E-03 7.7832756E-03
 7.5416840E-03 7.3079863E-03 7.0819133E-03 6.8631801E-03 6.6515254E-03
 6.4467024E-03 6.2484657E-03 6.0565853E-03 5.8708289E-03 5.6909914E-03
 5.5168676E-03 5.3482521E-03 5.1849615E-03 5.0268080E-03 4.8736185E-03
 4.7252248E-03 4.5814607E-03 4.4421796E-03 4.3072179E-03 4.1764416E-03
 4.0497039E-03 3.9268699E-03 3.8078208E-03 3.6924230E-03 3.5805611E-03
 3.4721137E-03
 4.7130756E-02 4.3772783E-02 4.0592697E-02 3.7590362E-02 3.4764279E-02
 3.2111678E-02 2.9628694E-02 2.7310485E-02 2.5151426E-02 2.3145245E-02
 2.1285182E-02 1.9564113E-02 1.7974684E-02 1.6509421E-02 1.5160822E-02
 1.3921450E-02 1.2783987E-02 1.1741317E-02 1.0786546E-02 9.9130673E-03
 9.1145840E-03 8.3851125E-03 7.7190157E-03 7.1110073E-03 6.5561431E-03
 6.0498239E-03 5.5877897E-03 5.1661013E-03 4.7811414E-03 4.4295783E-03
 4.1083647E-03 3.8147185E-03 3.5460996E-03 3.3002011E-03 3.0749198E-03
 2.8683539E-03 2.6787736E-03 2.5046177E-03 2.3444693E-03 2.1970498E-03
 2.0612024E-03 1.9358825E-03 1.8201418E-03 1.7131307E-03 1.6140762E-03
 1.5222797E-03 1.4371126E-03 1.3580018E-03 1.2844346E-03 1.2159414E-03
 1.1521006E-03 1.0925259E-03 1.0368726E-03 9.8482065E-04 9.3608664E-04
 8.9040870E-04 8.4754842E-04 8.0728979E-04 7.6943549E-04 7.3380704E-04
 7.0023735E-04 6.6857855E-04 6.3869474E-04 6.1045564E-04 5.8374909E-04
 5.5846822E-04 5.3451734E-04 5.1180588E-04 4.9025222E-04 4.6977951E-04
 4.5032092E-04 4.3180829E-04 4.1418453E-04 3.9739453E-04 3.8138570E-04
 3.6611609E-04 3.5153530E-04 3.3760726E-04 3.2429310E-04 3.1155703E-04
 2.9936890E-04 2.8769681E-04 2.7651395E-04 2.6579117E-04 2.5550654E-04
 2.4563720E-04 2.3616086E-04 2.2705745E-04 2.1830852E-04 2.0989540E-04
 2.0180401E-04 1.9401649E-04 1.8652056E-04 1.7929953E-04 1.7234328E-04
 1.6563806E-04 1.5917257E-04 1.5293735E-04 1.4692152E-04 1.4111568E-04
 1.3550975E-04
 9.7062536E-02 9.5211282E-02 9.3218945E-02 9.1111660E-02 8.8913076E-02
 8.6644545E-02 8.4325247E-02 8.1972331E-02 7.9601064E-02 7.7224918E-02
 7.4855715E-02 7.2503746E-02 7.0177913E-02 6.7885764E-02 6.5633692E-02
 6.3426979E-02 6.1269913E-02 5.9165943E-02 5.7117674E-02 5.5127028E-02
 5.3195301E-02 5.1323257E-02 4.9511176E-02 4.7758959E-02 4.6066143E-02
 4.4431981E-02 4.2855516E-02 4.1335568E-02 3.9870836E-02 3.8459875E-02
 3.7101164E-02 3.5793126E-02 3.4534127E-02 3.3322539E-02 3.2156706E-02
 3.1034984E-02 2.9955743E-02 2.8917383E-02 2.7918354E-02 2.6957111E-02
 2.6032178E-02 2.5142105E-02 2.4285499E-02 2.3461014E-02 2.2667354E-02
 2.1903267E-02 2.1167548E-02 2.0459037E-02 1.9776642E-02 1.9119287E-02
 1.8485960E-02 1.7875675E-02 1.7287513E-02 1.6720563E-02 1.6173985E-02
 1.5646953E-02 1.5138688E-02 1.4648436E-02 1.4175477E-02 1.3719141E-02
 1.3278759E-02 1.2853710E-02 1.2443395E-02 1.2047242E-02 1.1664696E-02
 1.1295245E-02 1.0938375E-02 1.0593614E-02 1.0260495E-02 9.9385856E-03
 9.6274605E-03 9.3267169E-03 9.0359729E-03 8.7548504E-03 8.4830001E-03
 8.2200812E-03 7.9657724E-03 7.7197552E-03 7.4817287E-03 7.2514135E-03
 7.0285364E-03 6.8128183E-03 6.6040182E-03 6.4018900E-03 6.2061986E-03
 6.0167224E-03 5.8332407E-03 5.6555546E-03 5.4834546E-03 5.3167571E-03
 5.1552728E-03 4.9988288E-03 4.8472499E-03 4.7003799E-03 4.5580571E-03
 4.4201277E-03 4.2864480E-03 4.1568791E-03 4.0312838E-03 3.9095278E-03
 3.7914924E-03
 4.6238363E-02 4.2903949E-02 3.9742805E-02 3.6756188E-02 3.3943601E-02
 3.1303033E-02 2.8831152E-02 2.6523495E-02 2.4374705E-02 2.2378691E-02
 2.0528795E-02 1.8817963E-02 1.7238861E-02 1.5784021E-02 1.4445925E-02
 1.3217106E-02 1.2090222E-02 1.1058123E-02 1.0113891E-02 9.2508923E-03
 8.4628090E-03 7.7436487E-03 7.0877615E-03 6.4898590E-03 5.9449985E-03
 5.4485817E-03 4.9963552E-03 4.5843897E-03 4.2090705E-03 3.8670772E-03
 3.5553717E-03 3.2711772E-03 3.0119624E-03 2.7754232E-03 2.5594635E-03
 2.3621826E-03 2.1818541E-03 2.0169148E-03 1.8659505E-03 1.7276790E-03
 1.6009402E-03 1.4846857E-03 1.3779668E-03 1.2799259E-03 1.1897858E-03
 1.1068450E-03 1.0304664E-03 9.6007419E-04 8.9514873E-04 8.3521527E-04
 7.7984785E-04 7.2865514E-04 6.8128703E-04 6.3742016E-04 5.9676595E-04
 5.5905816E-04 5.2405684E-04 4.9154175E-04 4.6131111E-04 4.3318528E-04
 4.0699579E-04 3.8259130E-04 3.5983138E-04 3.3859248E-04 3.1875429E-04
 3.0021212E-04 2.8286752E-04 2.6663192E-04 2.5142176E-04 2.3716352E-04
 2.2378477E-04 2.1122450E-04 1.9942303E-04 1.8832576E-04 1.7788386E-04
 1.6804994E-04 1.5878392E-04 1.5004487E-04 1.4179671E-04 1.3400790E-04
 1.2664768E-04 1.1968461E-04 1.1309415E-04 1.0685263E-04 1.0093699E-04
 9.5326424E-05 9.0000496E-05 8.4943204E-05 8.0135178E-05 7.5563570E-05
 7.1210954E-05 6.7066947E-05 6.3115702E-05 5.9349437E-05 5.5755369E-05
 5.2322976E-05 4.9043647E-05 4.5908495E-05 4.2909887E-05 4.0037386E-05
 3.7288079E-05
 0.1078895 0.1055956 0.1031806 0.1006695 9.8084740E-02
 9.5446900E-02 9.2774302E-02 9.0083368E-02 8.7388687E-02 8.4703073E-02
 8.2037777E-02 7.9402499E-02 7.6805569E-02 7.4254051E-02 7.1753792E-02
 6.9309607E-02 6.6925287E-02 6.4603813E-02 6.2347371E-02 6.0157433E-02
 5.8034893E-02 5.5980120E-02 5.3993020E-02 5.2073129E-02 5.0219648E-02
 4.8431508E-02 4.6707444E-02 4.5045979E-02 4.3445542E-02 4.1904435E-02
 4.0420875E-02 3.8993049E-02 3.7619103E-02 3.6297198E-02 3.5025474E-02
 3.3802092E-02 3.2625236E-02 3.1493142E-02 3.0404080E-02 2.9356351E-02
 2.8348317E-02 2.7378399E-02 2.6445055E-02 2.5546806E-02 2.4682226E-02
 2.3849944E-02 2.3048641E-02 2.2277042E-02 2.1533947E-02 2.0818185E-02
 2.0128639E-02 1.9464238E-02 1.8823965E-02 1.8206835E-02 1.7611913E-02
 1.7038312E-02 1.6485164E-02 1.5951650E-02 1.5436990E-02 1.4940438E-02
 1.4461278E-02 1.3998814E-02 1.3552406E-02 1.3121418E-02 1.2705248E-02
 1.2303342E-02 1.1915126E-02 1.1540098E-02 1.1177739E-02 1.0827578E-02
 1.0489155E-02 1.0162030E-02 9.8457830E-03 9.5400028E-03 9.2443088E-03
 8.9583313E-03 8.6817183E-03 8.4141213E-03 8.1552183E-03 7.9046953E-03
 7.6622604E-03 7.4276114E-03 7.2004870E-03 6.9806133E-03 6.7677349E-03
 6.5616160E-03 6.3620093E-03 6.1687031E-03 5.9814765E-03 5.8001108E-03
 5.6244223E-03 5.4542059E-03 5.2892831E-03 5.1294728E-03 4.9746046E-03
 4.8245150E-03 4.6790447E-03 4.5380420E-03 4.4013555E-03 4.2688479E-03
 4.1403798E-03
 4.5635100E-02 4.2282991E-02 3.9104681E-02 3.6101975E-02 3.3274747E-02
 3.0621210E-02 2.8138136E-02 2.5821107E-02 2.3664730E-02 2.1662850E-02
 1.9808713E-02 1.8095147E-02 1.6514694E-02 1.5059761E-02 1.3722690E-02
 1.2495905E-02 1.1371937E-02 1.0343538E-02 9.4036944E-03 8.5456837E-03
 7.7631255E-03 7.0499568E-03 6.4004785E-03 5.8093625E-03 5.2716229E-03
 4.7826362E-03 4.3381192E-03 3.9341194E-03 3.5670055E-03 3.2334388E-03
 2.9303657E-03 2.6549930E-03 2.4047743E-03 2.1773931E-03 1.9707379E-03
 1.7828946E-03 1.6121215E-03 1.4568408E-03 1.3156260E-03 1.1871762E-03
 1.0703207E-03 9.6399366E-04 8.6723489E-04 7.7916950E-04 6.9900788E-04
 6.2603678E-04 5.5960502E-04 4.9912435E-04 4.4406421E-04 3.9393862E-04
 3.4831028E-04 3.0677923E-04 2.6898502E-04 2.3459757E-04 2.0331782E-04
 1.7487405E-04 1.4901874E-04 1.2552526E-04 1.0419013E-04 8.4824038E-05
 6.7258472E-05 5.1335322E-05 3.6913974E-05 2.3864262E-05 1.2066282E-05
 1.4148535E-06 -8.1933422E-06 -1.6844593E-05 -2.4625147E-05 -3.1609274E-05
 -3.7867027E-05 -4.3459724E-05 -4.8447688E-05 -5.2884036E-05 -5.6816676E-05
 -6.0291139E-05 -6.3345644E-05 -6.6021334E-05 -6.8350841E-05 -7.0365582E-05
 -7.2092975E-05 -7.3563060E-05 -7.4796029E-05 -7.5815879E-05 -7.6643046E-05
 -7.7295408E-05 -7.7791898E-05 -7.8144847E-05 -7.8369259E-05 -7.8481673E-05
 -7.8489196E-05 -7.8405974E-05 -7.8240984E-05 -7.8003388E-05 -7.7701821E-05
 -7.7342622E-05 -7.6933444E-05 -7.6480792E-05 -7.5990858E-05 -7.5468553E-05
 -7.4918040E-05
 0.1195870 0.1168249 0.1139610 0.1110195 0.1080220
 0.1049885 0.1019365 9.8881863E-02 9.5838614E-02 9.2819013E-02
 8.9833744E-02 8.6892001E-02 8.4001578E-02 8.1169024E-02 7.8399681E-02
 7.5697877E-02 7.3066935E-02 7.0509352E-02 6.8026841E-02 6.5620452E-02
 6.3290641E-02 6.1037362E-02 5.8860131E-02 5.6758102E-02 5.4730117E-02
 5.2774757E-02 5.0890427E-02 4.9075343E-02 4.7327619E-02 4.5645285E-02
 4.4026285E-02 4.2468548E-02 4.0969975E-02 3.9528493E-02 3.8142007E-02
 3.6808476E-02 3.5525899E-02 3.4292277E-02 3.3105727E-02 3.1964365E-02
 3.0866388E-02 2.9810043E-02 2.8793640E-02 2.7815558E-02 2.6874235E-02
 2.5968153E-02 2.5095867E-02 2.4255993E-02 2.3447201E-02 2.2668213E-02
 2.1917805E-02 2.1194812E-02 2.0498110E-02 1.9826626E-02 1.9179342E-02
 1.8555276E-02 1.7953495E-02 1.7373094E-02 1.6813220E-02 1.6273063E-02
 1.5751833E-02 1.5248783E-02 1.4763204E-02 1.4294401E-02 1.3841730E-02
 1.3404566E-02 1.2982308E-02 1.2574386E-02 1.2180244E-02 1.1799372E-02
 1.1431267E-02 1.1075441E-02 1.0731444E-02 1.0398834E-02 1.0077184E-02
 9.7661037E-03 9.4651906E-03 9.1740889E-03 8.8924393E-03 8.6198961E-03
 8.3561400E-03 8.1008514E-03 7.8537408E-03 7.6145041E-03 7.3828795E-03
 7.1585993E-03 6.9413972E-03 6.7310417E-03 6.5272846E-03 6.3299127E-03
 6.1387043E-03 5.9534390E-03 5.7739350E-03 5.5999868E-03 5.4314076E-03
 5.2680229E-03 5.1096585E-03 4.9561467E-03 4.8073330E-03 4.6630614E-03
 4.5231776E-03
 4.5319349E-02 4.1910954E-02 3.8681008E-02 3.5631318E-02 3.2761682E-02
 3.0070147E-02 2.7553292E-02 2.5206460E-02 2.3024011E-02 2.0999523E-02
 1.9125976E-02 1.7395936E-02 1.5801687E-02 1.4335392E-02 1.2989171E-02
 1.1755227E-02 1.0625903E-02 9.5937699E-03 8.6516561E-03 7.7927010E-03
 7.0103942E-03 6.2985672E-03 5.6514195E-03 5.0635370E-03 4.5298594E-03
 4.0456941E-03 3.6066982E-03 3.2088635E-03 2.8485083E-03 2.5222488E-03
 2.2269858E-03 1.9598880E-03 1.7183693E-03 1.5000749E-03 1.3028602E-03
 1.1247756E-03 9.6404698E-04 8.1906491E-04 6.8837026E-04 5.7063653E-04
 4.6466064E-04 3.6935057E-04 2.8371939E-04 2.0686739E-04 1.3798350E-04
 7.6326862E-05 2.1228785E-05 -2.7920038E-05 -7.1670307E-05 -1.1052451E-04
 -1.4493767E-04 -1.7532220E-04 -2.0205640E-04 -2.2548166E-04 -2.4590731E-04
 -2.6361825E-04 -2.7886996E-04 -2.9189885E-04 -3.0291689E-04 -3.1211827E-04
 -3.1968011E-04 -3.2576395E-04 -3.3051474E-04 -3.3406870E-04 -3.3654476E-04
 -3.3805642E-04 -3.3870147E-04 -3.3857461E-04 -3.3776008E-04 -3.3633068E-04
 -3.3435819E-04 -3.3190576E-04 -3.2903050E-04 -3.2578275E-04 -3.2221284E-04
 -3.1836110E-04 -3.1426994E-04 -3.0997177E-04 -3.0549840E-04 -3.0088113E-04
 -2.9614553E-04 -2.9131540E-04 -2.8641018E-04 -2.8145339E-04 -2.7645746E-04
 -2.7144051E-04 -2.6641780E-04 -2.6139905E-04 -2.5639858E-04 -2.5142296E-04
 -2.4648197E-04 -2.4158694E-04 -2.3673951E-04 -2.3194814E-04 -2.2721961E-04
 -2.2255586E-04 -2.1796260E-04 -2.1344364E-04 -2.0899902E-04 -2.0463330E-04
 -2.0034904E-04
 0.1322689 0.1290098 0.1256675 0.1222657 0.1188256
 0.1153666 0.1119058 0.1084586 0.1050386 0.1016575
 9.8325484E-02 9.5051326E-02 9.1842316E-02 8.8704497E-02 8.5642733E-02
 8.2660832E-02 7.9761624E-02 7.6947153E-02 7.4218638E-02 7.1576655E-02
 6.9021225E-02 6.6551872E-02 6.4167656E-02 6.1867367E-02 5.9649434E-02
 5.7512078E-02 5.5453327E-02 5.3471070E-02 5.1563103E-02 4.9727134E-02
 4.7960810E-02 4.6261776E-02 4.4627674E-02 4.3056153E-02 4.1544899E-02
 4.0091623E-02 3.8694084E-02 3.7350096E-02 3.6057554E-02 3.4814391E-02
 3.3618618E-02 3.2468300E-02 3.1361580E-02 3.0296680E-02 2.9271869E-02
 2.8285503E-02 2.7335992E-02 2.6421808E-02 2.5541507E-02 2.4693683E-02
 2.3877002E-02 2.3090186E-02 2.2332005E-02 2.1601291E-02 2.0896930E-02
 2.0217847E-02 1.9563019E-02 1.8931469E-02 1.8322263E-02 1.7734511E-02
 1.7167358E-02 1.6619982E-02 1.6091624E-02 1.5581508E-02 1.5088947E-02
 1.4613251E-02 1.4153762E-02 1.3709872E-02 1.3280976E-02 1.2866500E-02
 1.2465915E-02 1.2078676E-02 1.1704305E-02 1.1342311E-02 1.0992241E-02
 1.0653657E-02 1.0326136E-02 1.0009277E-02 9.7026918E-03 9.4060125E-03
 9.1188848E-03 8.8409670E-03 8.5719358E-03 8.3114710E-03 8.0592781E-03
 7.8150723E-03 7.5785602E-03 7.3494976E-03 7.1276082E-03 6.9126585E-03
 6.7044133E-03 6.5026344E-03 6.3071162E-03 6.1176391E-03 5.9340033E-03
 5.7560168E-03 5.5834898E-03 5.4162424E-03 5.2541019E-03 5.0969007E-03
 4.9444763E-03
 4.5308769E-02 4.1805547E-02 3.8488980E-02 3.5360508E-02 3.2419521E-02
 2.9663634E-02 2.7088977E-02 2.4690457E-02 2.2461984E-02 2.0396713E-02
 1.8487208E-02 1.6725643E-02 1.5103923E-02 1.3613865E-02 1.2247263E-02
 1.0996021E-02 9.8522073E-03 8.8081425E-03 7.8564333E-03 6.9900141E-03
 6.2021911E-03 5.4866322E-03 4.8373924E-03 4.2489194E-03 3.7160371E-03
 3.2339389E-03 2.7981836E-03 2.4046716E-03 2.0496321E-03 1.7296018E-03
 1.4414082E-03 1.1821483E-03 9.4916893E-04 7.4005290E-04 5.5259449E-04
 3.8478570E-04 2.3479872E-04 1.0097319E-04 -1.8202436E-05 -1.2410032E-04
 -2.1796722E-04 -3.0093922E-04 -3.7404278E-04 -4.3821329E-04 -4.9430231E-04
 -5.4307922E-04 -5.8524590E-04 -6.2144024E-04 -6.5223966E-04 -6.7817210E-04
 -6.9971447E-04 -7.1730139E-04 -7.3132926E-04 -7.4215716E-04 -7.5011043E-04
 -7.5548899E-04 -7.5856090E-04 -7.5957348E-04 -7.5874664E-04 -7.5628812E-04
 -7.5237866E-04 -7.4718776E-04 -7.4086478E-04 -7.3355314E-04 -7.2537264E-04
 -7.1644114E-04 -7.0686091E-04 -6.9672323E-04 -6.8611314E-04 -6.7510945E-04
 -6.6377851E-04 -6.5218512E-04 -6.4038415E-04 -6.2842568E-04 -6.1635493E-04
 -6.0421537E-04 -5.9204089E-04 -5.7986530E-04 -5.6771748E-04 -5.5562303E-04
 -5.4360664E-04 -5.3168635E-04 -5.1988178E-04 -5.0820841E-04 -4.9667881E-04
 -4.8530457E-04 -4.7410009E-04 -4.6306808E-04 -4.5222111E-04 -4.4156221E-04
 -4.3109618E-04 -4.2082983E-04 -4.1076384E-04 -4.0090166E-04 -3.9124597E-04
 -3.8179467E-04 -3.7255068E-04 -3.6351412E-04 -3.5468227E-04 -3.4605552E-04
 -3.3763261E-04
 0.1460658 0.1422770 0.1384230 0.1345274 0.1306110
 0.1266932 0.1227907 0.1189186 0.1150902 0.1113167
 0.1076081 0.1039726 0.1004169 9.6946798E-02 9.3566522E-02
 9.0279400E-02 8.7087795E-02 8.3993204E-02 8.0996387E-02 7.8097411E-02
 7.5295836E-02 7.2590701E-02 6.9980636E-02 6.7463972E-02 6.5038733E-02
 6.2702738E-02 6.0453624E-02 5.8288898E-02 5.6206018E-02 5.4202337E-02
 5.2275185E-02 5.0421901E-02 4.8639819E-02 4.6926320E-02 4.5278806E-02
 4.3694735E-02 4.2171635E-02 4.0707070E-02 3.9298717E-02 3.7944302E-02
 3.6641616E-02 3.5388552E-02 3.4183063E-02 3.3023186E-02 3.1907041E-02
 3.0832807E-02 2.9798752E-02 2.8803207E-02 2.7844587E-02 2.6921352E-02
 2.6032045E-02 2.5175273E-02 2.4349693E-02 2.3554023E-02 2.2787049E-02
 2.2047605E-02 2.1334570E-02 2.0646876E-02 1.9983510E-02 1.9343495E-02
 1.8725904E-02 1.8129840E-02 1.7554469E-02 1.6998962E-02 1.6462551E-02
 1.5944503E-02 1.5444090E-02 1.4960649E-02 1.4493525E-02 1.4042094E-02
 1.3605776E-02 1.3183988E-02 1.2776201E-02 1.2381879E-02 1.2000527E-02
 1.1631678E-02 1.1274869E-02 1.0929657E-02 1.0595630E-02 1.0272377E-02
 9.9595208E-03 9.6566873E-03 9.3635237E-03 9.0796817E-03 8.8048400E-03
 8.5386904E-03 8.2809180E-03 8.0312472E-03 7.7893892E-03 7.5550782E-03
 7.3280637E-03 7.1080942E-03 6.8949363E-03 6.6883513E-03 6.4881328E-03
 6.2940577E-03 6.1059268E-03 5.9235450E-03 5.7467213E-03 5.5752755E-03
 5.4090335E-03
 4.5641389E-02 4.2002577E-02 3.8561966E-02 3.5320360E-02 3.2276496E-02
 2.9427329E-02 2.6768357E-02 2.4293851E-02 2.1997130E-02 1.9870756E-02
 1.7906750E-02 1.6096750E-02 1.4432192E-02 1.2904422E-02 1.1504814E-02
 1.0224881E-02 9.0563325E-03 7.9911640E-03 7.0216805E-03 6.1405478E-03
 5.3408206E-03 4.6159429E-03 3.9597633E-03 3.3665437E-03 2.8309308E-03
 2.3479618E-03 1.9130447E-03 1.5219430E-03 1.1707571E-03 8.5590471E-04
 5.7409977E-04 3.2233121E-04 9.7847958E-05 -1.0186394E-04 -2.7909889E-04
 -4.3594997E-04 -5.7432562E-04 -6.9595978E-04 -8.0243830E-04 -8.9519774E-04
 -9.7555120E-04 -1.0446910E-03 -1.1036993E-03 -1.1535647E-03 -1.1951844E-03
 -1.2293747E-03 -1.2568785E-03 -1.2783706E-03 -1.2944640E-03 -1.3057184E-03
 -1.3126415E-03 -1.3156933E-03 -1.3152941E-03 -1.3118251E-03 -1.3056328E-03
 -1.2970309E-03 -1.2863067E-03 -1.2737182E-03 -1.2594991E-03 -1.2438659E-03
 -1.2270098E-03 -1.2091065E-03 -1.1903135E-03 -1.1707748E-03 -1.1506184E-03
 -1.1299625E-03 -1.1089117E-03 -1.0875593E-03 -1.0659912E-03 -1.0442847E-03
 -1.0225060E-03 -1.0007172E-03 -9.7897137E-04 -9.5731812E-04 -9.3580107E-04
 -9.1445621E-04 -8.9331600E-04 -8.7241293E-04 -8.5176865E-04 -8.3140767E-04
 -8.1134809E-04 -7.9160446E-04 -7.7219249E-04 -7.5312343E-04 -7.3440478E-04
 -7.1604393E-04 -6.9804967E-04 -6.8042160E-04 -6.6316564E-04 -6.4628338E-04
 -6.2977383E-04 -6.1363610E-04 -5.9786974E-04 -5.8247446E-04 -5.6744443E-04
 -5.5277807E-04 -5.3847180E-04 -5.2452128E-04 -5.1092060E-04 -4.9766683E-04
 -4.8475180E-04
 0.1611239 0.1567692 0.1523667 0.1479398 0.1435099
 0.1390961 0.1347153 0.1303825 0.1261104 0.1219104
 0.1177918 0.1137626 0.1098291 0.1059964 0.1022684
 9.8648019E-02 9.5136948E-02 9.1736227E-02 8.8446073E-02 8.5266046E-02
 8.2195193E-02 7.9232059E-02 7.6374792E-02 7.3621258E-02 7.0969015E-02
 6.8415448E-02 6.5957785E-02 6.3593119E-02 6.1318520E-02 5.9130985E-02
 5.7027478E-02 5.5005006E-02 5.3060573E-02 5.1191259E-02 4.9394172E-02
 4.7666494E-02 4.6005480E-02 4.4408444E-02 4.2872820E-02 4.1396096E-02
 3.9975863E-02 3.8609792E-02 3.7295625E-02 3.6031231E-02 3.4814540E-02
 3.3643562E-02 3.2516398E-02 3.1431217E-02 3.0386295E-02 2.9379951E-02
 2.8410591E-02 2.7476685E-02 2.6576780E-02 2.5709467E-02 2.4873434E-02
 2.4067394E-02 2.3290131E-02 2.2540485E-02 2.1817340E-02 2.1119643E-02
 2.0446375E-02 1.9796565E-02 1.9169299E-02 1.8563675E-02 1.7978854E-02
 1.7414041E-02 1.6868442E-02 1.6341338E-02 1.5832001E-02 1.5339769E-02
 1.4863998E-02 1.4404059E-02 1.3959366E-02 1.3529351E-02 1.3113465E-02
 1.2711203E-02 1.2322051E-02 1.1945542E-02 1.1581211E-02 1.1228627E-02
 1.0887366E-02 1.0557020E-02 1.0237212E-02 9.9275662E-03 9.6277259E-03
 9.3373517E-03 9.0561137E-03 8.7836962E-03 8.5197920E-03 8.2641169E-03
 8.0163935E-03 7.7763405E-03 7.5437124E-03 7.3182508E-03 7.0997253E-03
 6.8878955E-03 6.6825440E-03 6.4834645E-03 6.2904386E-03 6.1032763E-03
 5.9217839E-03
 4.6378266E-02 4.2558905E-02 3.8952645E-02 3.5559449E-02 3.2377210E-02
 2.9402053E-02 2.6628664E-02 2.4050521E-02 2.1660184E-02 1.9449491E-02
 1.7409766E-02 1.5532004E-02 1.3807018E-02 1.2225590E-02 1.0778561E-02
 9.4569512E-03 8.2520153E-03 7.1553313E-03 6.1588190E-03 5.2547888E-03
 4.4359751E-03 3.6955194E-03 3.0269928E-03 2.4244036E-03 1.8821610E-03
 1.3950818E-03 9.5836725E-04 5.6758977E-04 2.1867362E-04 -9.2137001E-05
 -3.6828418E-04 -6.1292748E-04 -8.2895835E-04 -1.0190211E-03 -1.1855346E-03
 -1.3307078E-03 -1.4565571E-03 -1.5649208E-03 -1.6574762E-03 -1.7357534E-03
 -1.8011455E-03 -1.8549226E-03 -1.8982403E-03 -1.9321516E-03 -1.9576142E-03
 -1.9755024E-03 -1.9866098E-03 -1.9916599E-03 -1.9913076E-03 -1.9861520E-03
 -1.9767350E-03 -1.9635514E-03 -1.9470471E-03 -1.9276327E-03 -1.9056730E-03
 -1.8815062E-03 -1.8554336E-03 -1.8277309E-03 -1.7986452E-03 -1.7684025E-03
 -1.7372052E-03 -1.7052362E-03 -1.6726594E-03 -1.6396240E-03 -1.6062621E-03
 -1.5726930E-03 -1.5390230E-03 -1.5053479E-03 -1.4717536E-03 -1.4383120E-03
 -1.4050925E-03 -1.3721524E-03 -1.3395455E-03 -1.3073123E-03 -1.2754966E-03
 -1.2441291E-03 -1.2132401E-03 -1.1828537E-03 -1.1529913E-03 -1.1236676E-03
 -1.0948993E-03 -1.0666955E-03 -1.0390645E-03 -1.0120112E-03 -9.8554092E-04
 -9.5965486E-04 -9.3435234E-04 -9.0963423E-04 -8.8549714E-04 -8.6193602E-04
 -8.3894591E-04 -8.1652316E-04 -7.9465937E-04 -7.7334803E-04 -7.5258076E-04
 -7.3235057E-04 -7.1264809E-04 -6.9346291E-04 -6.7478791E-04 -6.5661274E-04
 -6.3892716E-04
 0.1776047 0.1726451 0.1676538 0.1626551 0.1576708
 0.1527205 0.1478211 0.1429877 0.1382333 0.1335687
 0.1290032 0.1245443 0.1201981 0.1159691 0.1118609
 0.1078757 0.1040147 0.1002785 9.6666798E-02 9.3178481E-02
 8.9812115E-02 8.6565711E-02 8.3436899E-02 8.0423050E-02 7.7521235E-02
 7.4728362E-02 7.2041214E-02 6.9456436E-02 6.6970706E-02 6.4580604E-02
 6.2282726E-02 6.0073692E-02 5.7950180E-02 5.5908933E-02 5.3946745E-02
 5.2060485E-02 5.0247125E-02 4.8503704E-02 4.6827406E-02 4.5215454E-02
 4.3665208E-02 4.2174112E-02 4.0739700E-02 3.9359633E-02 3.8031634E-02
 3.6753535E-02 3.5523258E-02 3.4338810E-02 3.3198297E-02 3.2099880E-02
 3.1041820E-02 3.0022459E-02 2.9040193E-02 2.8093500E-02 2.7180931E-02
 2.6301099E-02 2.5452664E-02 2.4634367E-02 2.3844985E-02 2.3083376E-02
 2.2348424E-02 2.1639070E-02 2.0954311E-02 2.0293172E-02 1.9654734E-02
 1.9038126E-02 1.8442487E-02 1.7867023E-02 1.7310956E-02 1.6773552E-02
 1.6254110E-02 1.5751939E-02 1.5266411E-02 1.4796894E-02 1.4342798E-02
 1.3903567E-02 1.3478640E-02 1.3067512E-02 1.2669672E-02 1.2284643E-02
 1.1911977E-02 1.1551223E-02 1.1201966E-02 1.0863794E-02 1.0536321E-02
 1.0219175E-02 9.9120019E-03 9.6144555E-03 9.3261981E-03 9.0469178E-03
 8.7763136E-03 8.5140811E-03 8.2599521E-03 8.0136396E-03 7.7749002E-03
 7.5434675E-03 7.3190997E-03 7.1015772E-03 6.8906690E-03 6.6861538E-03
 6.4878282E-03
 4.7608167E-02 4.3557234E-02 3.9737836E-02 3.6148947E-02 3.2787468E-02
 2.9648550E-02 2.6725901E-02 2.4012061E-02 2.1498669E-02 1.9176684E-02
 1.7036600E-02 1.5068615E-02 1.3262792E-02 1.1609212E-02 1.0098058E-02
 8.7197404E-03 7.4649449E-03 6.3247243E-03 5.2905064E-03 4.3541528E-03
 3.5079734E-03 2.7447226E-03 2.0576108E-03 1.4403047E-03 8.8690175E-04
 3.9192464E-04 -4.9698006E-05 -4.4265090E-04 -7.9125294E-04 -1.0994808E-03
 -1.3709895E-03 -1.6091334E-03 -1.8169923E-03 -1.9973803E-03 -2.1528790E-03
 -2.2858472E-03 -2.3984425E-03 -2.4926343E-03 -2.5702207E-03 -2.6328436E-03
 -2.6820004E-03 -2.7190580E-03 -2.7452600E-03 -2.7617407E-03 -2.7695338E-03
 -2.7695806E-03 -2.7627363E-03 -2.7497790E-03 -2.7314189E-03 -2.7082989E-03
 -2.6810032E-03 -2.6500612E-03 -2.6159568E-03 -2.5791232E-03 -2.5399579E-03
 -2.4988169E-03 -2.4560248E-03 -2.4118712E-03 -2.3666197E-03 -2.3205082E-03
 -2.2737482E-03 -2.2265324E-03 -2.1790317E-03 -2.1313969E-03 -2.0837670E-03
 -2.0362618E-03 -1.9889912E-03 -1.9420487E-03 -1.8955170E-03 -1.8494708E-03
 -1.8039759E-03 -1.7590852E-03 -1.7148486E-03 -1.6713035E-03 -1.6284881E-03
 -1.5864288E-03 -1.5451512E-03 -1.5046718E-03 -1.4650071E-03 -1.4261681E-03
 -1.3881618E-03 -1.3509908E-03 -1.3146615E-03 -1.2791688E-03 -1.2445136E-03
 -1.2106899E-03 -1.1776900E-03 -1.1455083E-03 -1.1141354E-03 -1.0835610E-03
 -1.0537743E-03 -1.0247637E-03 -9.9651632E-04 -9.6901954E-04 -9.4225840E-04
 -9.1622089E-04 -8.9089351E-04 -8.6625945E-04 -8.4230333E-04 -8.1901468E-04
 -7.9637504E-04
 0.1956833 0.1900778 0.1844554 0.1788415 0.1732590
 0.1677281 0.1622665 0.1568895 0.1516100 0.1464391
 0.1413858 0.1364575 0.1316597 0.1269968 0.1224718
 0.1180863 0.1138412 0.1097364 0.1057709 0.1019433
 9.8251469E-02 9.4692856E-02 9.1264553E-02 8.7963402E-02 8.4785968E-02
 8.1728660E-02 7.8787774E-02 7.5959504E-02 7.3240072E-02 7.0625640E-02
 6.8112381E-02 6.5696552E-02 6.3374452E-02 6.1142448E-02 5.8997013E-02
 5.6934688E-02 5.4952141E-02 5.3046100E-02 5.1213481E-02 4.9451236E-02
 4.7756467E-02 4.6126366E-02 4.4558235E-02 4.3049518E-02 4.1597724E-02
 4.0200472E-02 3.8855504E-02 3.7560631E-02 3.6313780E-02 3.5112955E-02
 3.3956245E-02 3.2841831E-02 3.1767979E-02 3.0733012E-02 2.9735351E-02
 2.8773477E-02 2.7845936E-02 2.6951339E-02 2.6088357E-02 2.5255738E-02
 2.4452265E-02 2.3676777E-02 2.2928182E-02 2.2205412E-02 2.1507462E-02
 2.0833377E-02 2.0182220E-02 1.9553119E-02 1.8945226E-02 1.8357733E-02
 1.7789880E-02 1.7240908E-02 1.6710129E-02 1.6196854E-02 1.5700435E-02
 1.5220264E-02 1.4755733E-02 1.4306281E-02 1.3871356E-02 1.3450432E-02
 1.3043022E-02 1.2648626E-02 1.2266798E-02 1.1897086E-02 1.1539065E-02
 1.1192338E-02 1.0856495E-02 1.0531180E-02 1.0216014E-02 9.9106617E-03
 9.6147843E-03 9.3280599E-03 9.0501849E-03 8.7808585E-03 8.5197976E-03
 8.2667246E-03 8.0213752E-03 7.7835033E-03 7.5528543E-03 7.3291962E-03
 7.1122996E-03
 4.9454093E-02 4.5112781E-02 4.1025203E-02 3.7189290E-02 3.3600859E-02
 3.0253954E-02 2.7141176E-02 2.4253964E-02 2.1582896E-02 1.9117888E-02
 1.6848434E-02 1.4763779E-02 1.2853082E-02 1.1105568E-02 9.5106121E-03
 8.0578718E-03 6.7373272E-03 5.5393679E-03 4.4548078E-03 3.4749331E-03
 2.5915194E-03 1.7968203E-03 1.0835794E-03 4.4503013E-04 -1.2513933E-04
 -6.3278509E-04 -1.0833332E-03 -1.4818017E-03 -1.8328172E-03 -2.1406473E-03
 -2.4092153E-03 -2.6421307E-03 -2.8427041E-03 -3.0139701E-03 -3.1587139E-03
 -3.2794813E-03 -3.3786043E-03 -3.4582140E-03 -3.5202582E-03 -3.5665149E-03
 -3.5986102E-03 -3.6180243E-03 -3.6261086E-03 -3.6240930E-03 -3.6131018E-03
 -3.5941538E-03 -3.5681794E-03 -3.5360216E-03 -3.4984509E-03 -3.4561621E-03
 -3.4097889E-03 -3.3599020E-03 -3.3070224E-03 -3.2516180E-03 -3.1941156E-03
 -3.1348972E-03 -3.0743063E-03 -3.0126546E-03 -2.9502215E-03 -2.8872571E-03
 -2.8239859E-03 -2.7606073E-03 -2.6972990E-03 -2.6342180E-03 -2.5715064E-03
 -2.5092883E-03 -2.4476692E-03 -2.3867465E-03 -2.3266010E-03 -2.2673046E-03
 -2.2089169E-03 -2.1514923E-03 -2.0950711E-03 -2.0396907E-03 -1.9853804E-03
 -1.9321619E-03 -1.8800520E-03 -1.8290656E-03 -1.7792080E-03 -1.7304854E-03
 -1.6828965E-03 -1.6364401E-03 -1.5911100E-03 -1.5468979E-03 -1.5037957E-03
 -1.4617897E-03 -1.4208683E-03 -1.3810149E-03 -1.3422152E-03 -1.3044500E-03
 -1.2677039E-03 -1.2319568E-03 -1.1971903E-03 -1.1633835E-03 -1.1305184E-03
 -1.0985734E-03 -1.0675293E-03 -1.0373646E-03 -1.0080590E-03 -9.7959337E-04
 -9.5194601E-04
 0.2155433 0.2092512 0.2029546 0.1966808 0.1904544
 0.1842967 0.1782263 0.1722590 0.1664084 0.1606857
 0.1550998 0.1496580 0.1443657 0.1392269 0.1342441
 0.1294185 0.1247505 0.1202393 0.1158836 0.1116813
 0.1076296 0.1037255 9.9965513E-02 9.6345916E-02 9.2862748E-02
 8.9511886E-02 8.6289138E-02 8.3190210E-02 8.0210842E-02 7.7346765E-02
 7.4593723E-02 7.1947545E-02 6.9404125E-02 6.6959493E-02 6.4609714E-02
 6.2351011E-02 6.0179695E-02 5.8092199E-02 5.6085110E-02 5.4155108E-02
 5.2298997E-02 5.0513718E-02 4.8796315E-02 4.7143973E-02 4.5553982E-02
 4.4023734E-02 4.2550754E-02 4.1132640E-02 3.9767139E-02 3.8452052E-02
 3.7185300E-02 3.5964888E-02 3.4788907E-02 3.3655535E-02 3.2563046E-02
 3.1509764E-02 3.0494099E-02 2.9514534E-02 2.8569620E-02 2.7657971E-02
 2.6778257E-02 2.5929213E-02 2.5109639E-02 2.4318356E-02 2.3554275E-02
 2.2816341E-02 2.2103526E-02 2.1414882E-02 2.0749465E-02 2.0106401E-02
 1.9484852E-02 1.8883988E-02 1.8303052E-02 1.7741285E-02 1.7197987E-02
 1.6672477E-02 1.6164094E-02 1.5672226E-02 1.5196265E-02 1.4735634E-02
 1.4289800E-02 1.3858211E-02 1.3440385E-02 1.3035815E-02 1.2644051E-02
 1.2264638E-02 1.1897145E-02 1.1541171E-02 1.1196304E-02 1.0862176E-02
 1.0538415E-02 1.0224668E-02 9.9206101E-03 9.6258987E-03 9.3402332E-03
 9.0633063E-03 8.7948302E-03 8.5345320E-03 8.2821352E-03 8.0373902E-03
 7.8000389E-03
 5.2081846E-02 4.7381926E-02 4.2961940E-02 3.8818818E-02 3.4947257E-02
 3.1340141E-02 2.7988840E-02 2.4883574E-02 2.2013679E-02 1.9367874E-02
 1.6934469E-02 1.4701575E-02 1.2657261E-02 1.0789715E-02 9.0873297E-03
 7.5388341E-03 6.1333305E-03 4.8603904E-03 3.7100597E-03 2.6729011E-03
 1.7400163E-03 9.0302789E-04 1.5408974E-04 -5.1411486E-04 -1.1084120E-03
 -1.6351389E-03 -2.1001687E-03 -2.5089374E-03 -2.8664591E-03 -3.1773639E-03
 -3.4459126E-03 -3.6760250E-03 -3.8713026E-03 -4.0350491E-03 -4.1702967E-03
 -4.2798216E-03 -4.3661669E-03 -4.4316580E-03 -4.4784234E-03 -4.5084045E-03
 -4.5233769E-03 -4.5249602E-03 -4.5146295E-03 -4.4937311E-03 -4.4634910E-03
 -4.4250251E-03 -4.3793456E-03 -4.3273740E-03 -4.2699482E-03 -4.2078262E-03
 -4.1416958E-03 -4.0721782E-03 -3.9998367E-03 -3.9251782E-03 -3.8486598E-03
 -3.7706965E-03 -3.6916565E-03 -3.6118727E-03 -3.5316404E-03 -3.4512288E-03
 -3.3708722E-03 -3.2907806E-03 -3.2111402E-03 -3.1321149E-03 -3.0538477E-03
 -2.9764669E-03 -2.9000796E-03 -2.8247817E-03 -2.7506517E-03 -2.6777599E-03
 -2.6061635E-03 -2.5359094E-03 -2.4670365E-03 -2.3995740E-03 -2.3335444E-03
 -2.2689656E-03 -2.2058480E-03 -2.1441949E-03 -2.0840068E-03 -2.0252818E-03
 -1.9680110E-03 -1.9121852E-03 -1.8577897E-03 -1.8048101E-03 -1.7532257E-03
 -1.7030201E-03 -1.6541710E-03 -1.6066538E-03 -1.5604466E-03 -1.5155227E-03
 -1.4718591E-03 -1.4294278E-03 -1.3882036E-03 -1.3481586E-03 -1.3092676E-03
 -1.2715015E-03 -1.2348345E-03 -1.1992393E-03 -1.1646898E-03 -1.1311595E-03
 -1.0986202E-03
 0.2373600 0.2303526 0.2233406 0.2163631 0.2094468
 0.2026148 0.1958872 0.1892809 0.1828101 0.1764865
 0.1703194 0.1643161 0.1584819 0.1528205 0.1473341
 0.1420237 0.1368890 0.1319289 0.1271414 0.1225239
 0.1180731 0.1137853 0.1096566 0.1056827 0.1018591
 9.8181024E-02 9.4643883E-02 9.1242857E-02 8.7973207E-02 8.4830172E-02
 8.1809066E-02 7.8905262E-02 7.6114260E-02 7.3431663E-02 7.0853159E-02
 6.8374582E-02 6.5991901E-02 6.3701190E-02 6.1498724E-02 5.9380837E-02
 5.7344053E-02 5.5385005E-02 5.3500455E-02 5.1687319E-02 4.9942631E-02
 4.8263535E-02 4.6647307E-02 4.5091335E-02 4.3593131E-02 4.2150289E-02
 4.0760536E-02 3.9421674E-02 3.8131621E-02 3.6888368E-02 3.5690013E-02
 3.4534737E-02 3.3420779E-02 3.2346483E-02 3.1310242E-02 3.0310545E-02
 2.9345930E-02 2.8415006E-02 2.7516443E-02 2.6648965E-02 2.5811357E-02
 2.5002470E-02 2.4221165E-02 2.3466401E-02 2.2737149E-02 2.2032432E-02
 2.1351339E-02 2.0692952E-02 2.0056441E-02 1.9440969E-02 1.8845765E-02
 1.8270083E-02 1.7713195E-02 1.7174425E-02 1.6653102E-02 1.6148597E-02
 1.5660318E-02 1.5187668E-02 1.4730104E-02 1.4287077E-02 1.3858087E-02
 1.3442641E-02 1.3040263E-02 1.2650502E-02 1.2272921E-02 1.1907100E-02
 1.1552644E-02 1.1209163E-02 1.0876285E-02 1.0553656E-02 1.0240930E-02
 9.9377790E-03 9.6438825E-03 9.3589406E-03 9.0826517E-03 8.8147419E-03
 8.5549252E-03
 5.5679955E-02 5.0572708E-02 4.5745395E-02 4.1224398E-02 3.7003409E-02
 3.3074141E-02 2.9426701E-02 2.6049972E-02 2.2931922E-02 2.0059887E-02
 1.7420808E-02 1.5001459E-02 1.2788611E-02 1.0769201E-02 8.9304345E-03
 7.2599016E-03 5.7456372E-03 4.3762014E-03 3.1406872E-03 2.0287654E-03
 1.0307013E-03 1.3733396E-04 -6.5991527E-04 -1.3690466E-03 -1.9975232E-03
 -2.5522760E-03 -3.0397309E-03 -3.4658387E-03 -3.8360902E-03 -4.1555585E-03
 -4.4289157E-03 -4.6604602E-03 -4.8541469E-03 -5.0136019E-03 -5.1421574E-03
 -5.2428646E-03 -5.3185206E-03 -5.3716837E-03 -5.4046935E-03 -5.4196888E-03
 -5.4186229E-03 -5.4032775E-03 -5.3752754E-03 -5.3360988E-03 -5.2870945E-03
 -5.2294894E-03 -5.1643956E-03 -5.0928239E-03 -5.0156941E-03 -4.9338341E-03
 -4.8479978E-03 -4.7588632E-03 -4.6670455E-03 -4.5730947E-03 -4.4775102E-03
 -4.3807379E-03 -4.2831777E-03 -4.1851862E-03 -4.0870840E-03 -3.9891535E-03
 -3.8916492E-03 -3.7947886E-03 -3.6987732E-03 -3.6037688E-03 -3.5099261E-03
 -3.4173771E-03 -3.3262302E-03 -3.2365802E-03 -3.1485059E-03 -3.0620755E-03
 -2.9773423E-03 -2.8943478E-03 -2.8131269E-03 -2.7337028E-03 -2.6560919E-03
 -2.5803046E-03 -2.5063418E-03 -2.4342032E-03 -2.3638790E-03 -2.2953590E-03
 -2.2286270E-03 -2.1636630E-03 -2.1004458E-03 -2.0389510E-03 -1.9791508E-03
 -1.9210180E-03 -1.8645209E-03 -1.8096303E-03 -1.7563116E-03 -1.7045339E-03
 -1.6542625E-03 -1.6054625E-03 -1.5581017E-03 -1.5121425E-03 -1.4675539E-03
 -1.4242982E-03 -1.3823431E-03 -1.3416545E-03 -1.3021976E-03 -1.2639414E-03
 -1.2268515E-03
 0.2612714 0.2535308 0.2457856 0.2380750 0.2304256
 0.2228734 0.2154406 0.2081455 0.2010038 0.1940280
 0.1872279 0.1806113 0.1741836 0.1679486 0.1619082
 0.1560631 0.1504129 0.1449558 0.1396896 0.1346111
 0.1297164 0.1250015 0.1204618 0.1160925 0.1118885
 0.1078447 0.1039558 0.1002165 9.6621670E-02 9.3165971E-02
 8.9844264E-02 8.6651474E-02 8.3582647E-02 8.0632962E-02 7.7797696E-02
 7.5072281E-02 7.2452284E-02 6.9933407E-02 6.7511566E-02 6.5182745E-02
 6.2943138E-02 6.0789052E-02 5.8716930E-02 5.6723397E-02 5.4805186E-02
 5.2959178E-02 5.1182378E-02 4.9471911E-02 4.7825046E-02 4.6239149E-02
 4.4711709E-02 4.3240312E-02 4.1822672E-02 4.0456578E-02 3.9139938E-02
 3.7870735E-02 3.6647052E-02 3.5467044E-02 3.4328956E-02 3.3231117E-02
 3.2171920E-02 3.1149821E-02 3.0163366E-02 2.9211132E-02 2.8291790E-02
 2.7404068E-02 2.6546713E-02 2.5718573E-02 2.4918512E-02 2.4145452E-02
 2.3398386E-02 2.2676308E-02 2.1978291E-02 2.1303415E-02 2.0650828E-02
 2.0019710E-02 1.9409258E-02 1.8818719E-02 1.8247359E-02 1.7694484E-02
 1.7159434E-02 1.6641557E-02 1.6140245E-02 1.5654908E-02 1.5184978E-02
 1.4729923E-02 1.4289209E-02 1.3862344E-02 1.3448846E-02 1.3048256E-02
 1.2660132E-02 1.2284042E-02 1.1919590E-02 1.1566374E-02 1.1224021E-02
 1.0892160E-02 1.0570450E-02 1.0258553E-02 9.9561382E-03 9.6629085E-03
 9.3785506E-03
 6.0391918E-02 5.4857187E-02 4.9602393E-02 4.4653915E-02 4.0005449E-02
 3.5680611E-02 3.1668302E-02 2.7956041E-02 2.4530331E-02 2.1376973E-02
 1.8481366E-02 1.5828731E-02 1.3404316E-02 1.1193584E-02 9.1823107E-03
 7.3567275E-03 5.7035726E-03 4.2101778E-03 2.8644803E-03 1.6550599E-03
 5.7116186E-04 -3.9733195E-04 -1.2598943E-03 -2.0253579E-03 -2.7019642E-03
 -3.2973660E-03 -3.8186628E-03 -4.2724265E-03 -4.6647270E-03 -5.0011734E-03
 -5.2869315E-03 -5.5267583E-03 -5.7250294E-03 -5.8857617E-03 -6.0126428E-03
 -6.1090551E-03 -6.1780969E-03 -6.2226034E-03 -6.2451684E-03 -6.2481621E-03
 -6.2337504E-03 -6.2039061E-03 -6.1604306E-03 -6.1049629E-03 -6.0389955E-03
 -5.9638857E-03 -5.8808648E-03 -5.7910504E-03 -5.6954562E-03 -5.5950000E-03
 -5.4905084E-03 -5.3827306E-03 -5.2723410E-03 -5.1599452E-03 -5.0460887E-03
 -4.9312599E-03 -4.8158946E-03 -4.7003818E-03 -4.5850654E-03 -4.4702566E-03
 -4.3562227E-03 -4.2432020E-03 -4.1314056E-03 -4.0210113E-03 -3.9121779E-03
 -3.8050404E-03 -3.6997120E-03 -3.5962898E-03 -3.4948529E-03 -3.3954661E-03
 -3.2981813E-03 -3.2030370E-03 -3.1100635E-03 -3.0192763E-03 -2.9306877E-03
 -2.8443015E-03 -2.7601093E-03 -2.6781044E-03 -2.5982696E-03 -2.5205831E-03
 -2.4450235E-03 -2.3715592E-03 -2.3001619E-03 -2.2307960E-03 -2.1634265E-03
 -2.0980164E-03 -2.0345247E-03 -1.9729126E-03 -1.9131391E-03 -1.8551601E-03
 -1.7989357E-03 -1.7444212E-03 -1.6915752E-03 -1.6403529E-03 -1.5907143E-03
 -1.5426154E-03 -1.4960148E-03 -1.4508711E-03 -1.4071442E-03 -1.3647926E-03
 -1.3237777E-03
 0.2873961 0.2789058 0.2704110 0.2619509 0.2535519
 0.2452501 0.2370677 0.2290365 0.2211741 0.2134942
 0.2060082 0.1987242 0.1916485 0.1847849 0.1781358
 0.1717017 0.1654820 0.1594749 0.1536777 0.1480868
 0.1426980 0.1375069 0.1325084 0.1276971 0.1230675
 0.1186140 0.1143307 0.1102120 0.1062521 0.1024452
 9.8785721E-02 9.5268086E-02 9.1886871E-02 8.8636801E-02 8.5512720E-02
 8.2509615E-02 7.9622641E-02 7.6847099E-02 7.4178495E-02 7.1612440E-02
 6.9144756E-02 6.6771381E-02 6.4488418E-02 6.2292174E-02 6.0179040E-02
 5.8145598E-02 5.6188542E-02 5.4304715E-02 5.2491117E-02 5.0744832E-02
 4.9063105E-02 4.7443278E-02 4.5882817E-02 4.4379286E-02 4.2930372E-02
 4.1533869E-02 4.0187638E-02 3.8889647E-02 3.7637953E-02 3.6430717E-02
 3.5266150E-02 3.4142550E-02 3.3058312E-02 3.2011859E-02 3.1001715E-02
 3.0026475E-02 2.9084759E-02 2.8175276E-02 2.7296776E-02 2.6448071E-02
 2.5628032E-02 2.4835555E-02 2.4069604E-02 2.3329172E-02 2.2613309E-02
 2.1921104E-02 2.1251664E-02 2.0604165E-02 1.9977786E-02 1.9371763E-02
 1.8785365E-02 1.8217864E-02 1.7668597E-02 1.7136900E-02 1.6622156E-02
 1.6123760E-02 1.5641134E-02 1.5173738E-02 1.4721028E-02 1.4282498E-02
 1.3857665E-02 1.3446051E-02 1.3047214E-02 1.2660711E-02 1.2286132E-02
 1.1923066E-02 1.1571138E-02 1.1229980E-02 1.0899222E-02 1.0578534E-02
 1.0267574E-02
 6.6400222E-02 6.0418934E-02 5.4717597E-02 4.9322579E-02 4.4227574E-02
 3.9456200E-02 3.4997359E-02 3.0872779E-02 2.7067512E-02 2.3565769E-02
 2.0351252E-02 1.7407466E-02 1.4717926E-02 1.2266387E-02 1.0036966E-02
 8.0142897E-03 6.1835595E-03 4.5306468E-03 3.0421054E-03 1.7052108E-03
 5.0798251E-04 -5.6084781E-04 -1.5118276E-03 -2.3547939E-03 -3.0989219E-03
 -3.7527338E-03 -4.3241368E-03 -4.8204530E-03 -5.2484456E-03 -5.6143664E-03
 -5.9239748E-03 -6.1825765E-03 -6.3950522E-03 -6.5658828E-03 -6.6991872E-03
 -6.7987395E-03 -6.8679997E-03 -6.9101346E-03 -6.9280406E-03 -6.9243647E-03
 -6.9015268E-03 -6.8617314E-03 -6.8069873E-03 -6.7391284E-03 -6.6598193E-03
 -6.5705734E-03 -6.4727659E-03 -6.3676429E-03 -6.2563336E-03 -6.1398586E-03
 -6.0191406E-03 -5.8950102E-03 -5.7682176E-03 -5.6394343E-03 -5.5092648E-03
 -5.3782486E-03 -5.2468674E-03 -5.1155500E-03 -4.9846759E-03 -4.8545832E-03
 -4.7255675E-03 -4.5978869E-03 -4.4717696E-03 -4.3474096E-03 -4.2249765E-03
 -4.1046147E-03 -3.9864429E-03 -3.8705643E-03 -3.7570593E-03 -3.6459928E-03
 -3.5374181E-03 -3.4313707E-03 -3.3278777E-03 -3.2269496E-03 -3.1285947E-03
 -3.0328094E-03 -2.9395814E-03 -2.8488929E-03 -2.7607209E-03 -2.6750367E-03
 -2.5918079E-03 -2.5109961E-03 -2.4325626E-03 -2.3564636E-03 -2.2826544E-03
 -2.2110892E-03 -2.1417176E-03 -2.0744908E-03 -2.0093583E-03 -1.9462692E-03
 -1.8851720E-03 -1.8260141E-03 -1.7687459E-03 -1.7133141E-03 -1.6596697E-03
 -1.6077601E-03 -1.5575368E-03 -1.5089501E-03 -1.4619513E-03 -1.4164932E-03
 -1.3725307E-03
 0.3158262 0.3065705 0.2973103 0.2880847 0.2789202
 0.2698531 0.2609053 0.2521088 0.2434810 0.2350490
 0.2268257 0.2188209 0.2110419 0.2034933 0.1961782
 0.1890974 0.1822504 0.1756357 0.1692504 0.1630907
 0.1571525 0.1514306 0.1459198 0.1406145 0.1355085
 0.1305958 0.1258702 0.1213255 0.1169554 0.1127537
 0.1087142 0.1048310 0.1010981 9.7509794E-02 9.4060428E-02
 9.0744548E-02 8.7556854E-02 8.4492192E-02 8.1545658E-02 7.8712434E-02
 7.5987935E-02 7.3367715E-02 7.0847489E-02 6.8423174E-02 6.6090822E-02
 6.3846663E-02 6.1687056E-02 5.9608519E-02 5.7607736E-02 5.5681501E-02
 5.3826757E-02 5.2040577E-02 5.0320148E-02 4.8662782E-02 4.7065929E-02
 4.5527115E-02 4.4044007E-02 4.2614326E-02 4.1235939E-02 3.9906789E-02
 3.8624894E-02 3.7388373E-02 3.6195438E-02 3.5044342E-02 3.3933446E-02
 3.2861177E-02 3.1826016E-02 3.0826531E-02 2.9861316E-02 2.8929060E-02
 2.8028514E-02 2.7158434E-02 2.6317686E-02 2.5505140E-02 2.4719737E-02
 2.3960471E-02 2.3226352E-02 2.2516452E-02 2.1829866E-02 2.1165742E-02
 2.0523267E-02 1.9901639E-02 1.9300109E-02 1.8717948E-02 1.8154461E-02
 1.7608995E-02 1.7080894E-02 1.6569553E-02 1.6074382E-02 1.5594807E-02
 1.5130306E-02 1.4680334E-02 1.4244412E-02 1.3822046E-02 1.3412780E-02
 1.3016165E-02 1.2631774E-02 1.2259208E-02 1.1898059E-02 1.1547958E-02
 1.1208531E-02
 7.3944390E-02 6.7497194E-02 6.1329957E-02 5.5469047E-02 4.9908154E-02
 4.4670891E-02 3.9746162E-02 3.5155699E-02 3.0884551E-02 2.6953017E-02
 2.3343135E-02 2.0036593E-02 1.7015047E-02 1.4260372E-02 1.1754813E-02
 9.4811702E-03 7.4228779E-03 5.5641169E-03 3.8898257E-03 2.3857455E-03
 1.0384502E-03 -1.6468436E-04 -1.2354838E-03 -2.1849731E-03 -3.0234435E-03
 -3.7604542E-03 -4.4048741E-03 -4.9649230E-03 -5.4481914E-03 -5.8617005E-03
 -6.2119216E-03 -6.5048165E-03 -6.7458726E-03 -6.9401287E-03 -7.0922174E-03
 -7.2063864E-03 -7.2865291E-03 -7.3362114E-03 -7.3586935E-03 -7.3569585E-03
 -7.3337294E-03 -7.2914911E-03 -7.2325072E-03 -7.1588410E-03 -7.0723696E-03
 -6.9747977E-03 -6.8676728E-03 -6.7523993E-03 -6.6302470E-03 -6.5023657E-03
 -6.3697929E-03 -6.2334635E-03 -6.0942192E-03 -5.9528151E-03 -5.8099306E-03
 -5.6661698E-03 -5.5220732E-03 -5.3781196E-03 -5.2347365E-03 -5.0922977E-03
 -4.9511357E-03 -4.8115370E-03 -4.6737548E-03 -4.5380048E-03 -4.4044736E-03
 -4.2733210E-03 -4.1446760E-03 -4.0186532E-03 -3.8953363E-03 -3.7747980E-03
 -3.6570935E-03 -3.5422577E-03 -3.4303181E-03 -3.3212844E-03 -3.2151612E-03
 -3.1119403E-03 -3.0116050E-03 -2.9141339E-03 -2.8194941E-03 -2.7276524E-03
 -2.6385686E-03 -2.5521959E-03 -2.4684884E-03 -2.3873928E-03 -2.3088567E-03
 -2.2328247E-03 -2.1592381E-03 -2.0880406E-03 -2.0191707E-03 -1.9525695E-03
 -1.8881768E-03 -1.8259312E-03 -1.7657743E-03 -1.7076442E-03 -1.6514838E-03
 -1.5972322E-03 -1.5448335E-03 -1.4942305E-03 -1.4453661E-03 -1.3981831E-03
 -1.3526338E-03
 0.3466075 0.3365710 0.3265300 0.3165236 0.3065784
 0.2967306 0.2870020 0.2774248 0.2680164 0.2588037
 0.2497998 0.2410263 0.2324923 0.2242044 0.2161665
 0.2083807 0.2008472 0.1935648 0.1865311 0.1797425
 0.1731949 0.1668832 0.1608019 0.1549452 0.1493067
 0.1438801 0.1386587 0.1336359 0.1288050 0.1241595
 0.1196926 0.1153979 0.1112690 0.1072997 0.1034838
 9.9815413E-02 9.6288756E-02 9.2898212E-02 8.9638412E-02 8.6504094E-02
 8.3490208E-02 8.0591895E-02 7.7804439E-02 7.5123347E-02 7.2544292E-02
 7.0063084E-02 6.7675717E-02 6.5378360E-02 6.3167326E-02 6.1039101E-02
 5.8990270E-02 5.7017598E-02 5.5117976E-02 5.3288423E-02 5.1526096E-02
 4.9828265E-02 4.8192315E-02 4.6615738E-02 4.5096144E-02 4.3631248E-02
 4.2218860E-02 4.0856868E-02 3.9543286E-02 3.8276162E-02 3.7053682E-02
 3.5874087E-02 3.4735676E-02 3.3636857E-02 3.2576069E-02 3.1551842E-02
 3.0562781E-02 2.9607503E-02 2.8684743E-02 2.7793227E-02 2.6931789E-02
 2.6099300E-02 2.5294647E-02 2.4516806E-02 2.3764767E-02 2.3037568E-02
 2.2334309E-02 2.1654088E-02 2.0996083E-02 2.0359468E-02 1.9743474E-02
 1.9147364E-02 1.8570416E-02 1.8011956E-02 1.7471317E-02 1.6947871E-02
 1.6441027E-02 1.5950181E-02 1.5474801E-02 1.5014332E-02 1.4568278E-02
 1.4136131E-02 1.3717417E-02 1.3311699E-02 1.2918514E-02 1.2537454E-02
 1.2168112E-02
 8.3348498E-02 7.6413207E-02 6.9757879E-02 6.3408881E-02 5.7359908E-02
 5.1634572E-02 4.6221774E-02 4.1143242E-02 3.6384031E-02 3.1964436E-02
 2.7866496E-02 2.4109328E-02 2.0672753E-02 1.7536731E-02 1.4681544E-02
 1.2088017E-02 9.7376443E-03 7.6127141E-03 5.6963377E-03 3.9725117E-03
 2.4261456E-03 1.0430401E-03 -1.9011683E-04 -1.2857469E-03 -2.2554479E-03
 -3.1100078E-03 -3.8594338E-03 -4.5130108E-03 -5.0793188E-03 -5.5662948E-03
 -5.9812618E-03 -6.3309697E-03 -6.6216309E-03 -6.8589565E-03 -7.0481985E-03
 -7.1941749E-03 -7.3013022E-03 -7.3736296E-03 -7.4148588E-03 -7.4283788E-03
 -7.4172826E-03 -7.3843938E-03 -7.3322877E-03 -7.2633107E-03 -7.1795965E-03
 -7.0830844E-03 -6.9755358E-03 -6.8585472E-03 -6.7335665E-03 -6.6019008E-03
 -6.4647319E-03 -6.3231238E-03 -6.1780345E-03 -6.0303258E-03 -5.8807679E-03
 -5.7300529E-03 -5.5787927E-03 -5.4275375E-03 -5.2767689E-03 -5.1269187E-03
 -4.9783611E-03 -4.8314249E-03 -4.6864003E-03 -4.5435308E-03 -4.4030319E-03
 -4.2650844E-03 -4.1298377E-03 -3.9974204E-03 -3.8679312E-03 -3.7414529E-03
 -3.6180476E-03 -3.4977566E-03 -3.3806129E-03 -3.2666286E-03 -3.1558077E-03
 -3.0481445E-03 -2.9436180E-03 -2.8422060E-03 -2.7438726E-03 -2.6485790E-03
 -2.5562812E-03 -2.4669273E-03 -2.3804647E-03 -2.2968350E-03 -2.2159775E-03
 -2.1378319E-03 -2.0623310E-03 -1.9894105E-03 -1.9190027E-03 -1.8510413E-03
 -1.7854574E-03 -1.7221826E-03 -1.6611512E-03 -1.6022930E-03 -1.5455445E-03
 -1.4908371E-03 -1.4381061E-03 -1.3872889E-03 -1.3383207E-03 -1.2911432E-03
 -1.2456907E-03
 0.3797842 0.3689451 0.3581015 0.3472925 0.3365448
 0.3258944 0.3153634 0.3049837 0.2947728 0.2847577
 0.2749513 0.2653754 0.2560464 0.2469734 0.2381627
 0.2296180 0.2213413 0.2133324 0.2055899 0.1981111
 0.1908923 0.1839287 0.1772151 0.1707457 0.1645142
 0.1585140 0.1527384 0.1471804 0.1418331 0.1366894
 0.1317424 0.1269850 0.1224106 0.1180123 0.1137837
 0.1097182 0.1058096 0.1020519 9.8439060E-02 9.4965465E-02
 9.1625579E-02 8.8414043E-02 8.5325696E-02 8.2355604E-02 7.9498984E-02
 7.6751225E-02 7.4107930E-02 7.1564823E-02 6.9117859E-02 6.6763096E-02
 6.4496800E-02 6.2315349E-02 6.0215306E-02 5.8193345E-02 5.6246307E-02
 5.4371152E-02 5.2564967E-02 5.0824966E-02 4.9148466E-02 4.7532931E-02
 4.5975905E-02 4.4475038E-02 4.3028101E-02 4.1632921E-02 4.0287454E-02
 3.8989756E-02 3.7737899E-02 3.6530122E-02 3.5364658E-02 3.4239877E-02
 3.3154201E-02 3.2106098E-02 3.1094123E-02 3.0116882E-02 2.9173048E-02
 2.8261354E-02 2.7380556E-02 2.6529511E-02 2.5707079E-02 2.4912182E-02
 2.4143821E-02 2.3400972E-02 2.2682721E-02 2.1988137E-02 2.1316370E-02
 2.0666579E-02 2.0037960E-02 1.9429760E-02 1.8841233E-02 1.8271673E-02
 1.7720420E-02 1.7186802E-02 1.6670220E-02 1.6170047E-02 1.5685739E-02
 1.5216719E-02 1.4762478E-02 1.4322493E-02 1.3896283E-02 1.3483373E-02
 1.3083308E-02
 9.5491156E-02 8.7999716E-02 8.0788247E-02 7.3883116E-02 6.7278020E-02
 6.0996566E-02 5.5027656E-02 4.9393013E-02 4.4077694E-02 3.9101996E-02
 3.4447953E-02 3.0134687E-02 2.6181882E-02 2.2567833E-02 1.9270996E-02
 1.6270272E-02 1.3545183E-02 1.1076043E-02 8.8440133E-03 6.8311817E-03
 5.0206105E-03 3.3963386E-03 1.9433679E-03 6.4766972E-04 -5.0386641E-04
 -1.5234487E-03 -2.4224264E-03 -3.2113313E-03 -3.8999158E-03 -4.4972040E-03
 -5.0115339E-03 -5.4505952E-03 -5.8214716E-03 -6.1306832E-03 -6.3842256E-03
 -6.5876055E-03 -6.7458749E-03 -6.8636662E-03 -6.9452175E-03 -6.9944095E-03
 -7.0147905E-03 -7.0095970E-03 -6.9817835E-03 -6.9340430E-03 -6.8688244E-03
 -6.7883581E-03 -6.6946680E-03 -6.5895896E-03 -6.4747878E-03 -6.3517685E-03
 -6.2218918E-03 -6.0863853E-03 -5.9463540E-03 -5.8027897E-03 -5.6565856E-03
 -5.5085379E-03 -5.3593596E-03 -5.2096839E-03 -5.0600749E-03 -4.9110278E-03
 -4.7629843E-03 -4.6163267E-03 -4.4713938E-03 -4.3284735E-03 -4.1878182E-03
 -4.0496425E-03 -3.9141267E-03 -3.7814237E-03 -3.6516541E-03 -3.5249211E-03
 -3.4013009E-03 -3.2808518E-03 -3.1636143E-03 -3.0496134E-03 -2.9388589E-03
 -2.8313498E-03 -2.7270725E-03 -2.6260060E-03 -2.5281166E-03 -2.4333668E-03
 -2.3417131E-03 -2.2531019E-03 -2.1674805E-03 -2.0847872E-03 -2.0049606E-03
 -1.9279347E-03 -1.8536408E-03 -1.7820105E-03 -1.7129717E-03 -1.6464530E-03
 -1.5823836E-03 -1.5206897E-03 -1.4612996E-03 -1.4041394E-03 -1.3491396E-03
 -1.2962283E-03 -1.2453359E-03 -1.1963928E-03 -1.1493318E-03 -1.1040857E-03
 -1.0605893E-03
 0.4150276 0.4033800 0.3917279 0.3801105 0.3685544
 0.3570955 0.3457561 0.3345680 0.3235487 0.3127252
 0.3021105 0.2917262 0.2815857 0.2717018 0.2620843
 0.2527402 0.2436738 0.2348875 0.2263816 0.2181550
 0.2102052 0.2025284 0.1951203 0.1879755 0.1810882
 0.1744520 0.1680603 0.1619062 0.1559825 0.1502821
 0.1447977 0.1395220 0.1344479 0.1295684 0.1248763
 0.1203648 0.1160272 0.1118570 0.1078477 0.1039931
 0.1002873 9.6724302E-02 9.3298577E-02 9.0004683E-02 8.6837336E-02
 8.3791479E-02 8.0862232E-02 7.8044876E-02 7.5334944E-02 7.2728045E-02
 7.0220038E-02 6.7806900E-02 6.5484792E-02 6.3250005E-02 6.1099026E-02
 5.9028450E-02 5.7035018E-02 5.5115607E-02 5.3267222E-02 5.1487003E-02
 4.9772214E-02 4.8120204E-02 4.6528477E-02 4.4994581E-02 4.3516226E-02
 4.2091217E-02 4.0717393E-02 3.9392754E-02 3.8115337E-02 3.6883276E-02
 3.5694811E-02 3.4548201E-02 3.3441842E-02 3.2374125E-02 3.1343576E-02
 3.0348767E-02 2.9388294E-02 2.8460857E-02 2.7565176E-02 2.6700042E-02
 2.5864314E-02 2.5056856E-02 2.4276618E-02 2.3522565E-02 2.2793723E-02
 2.2089170E-02 2.1407979E-02 2.0749308E-02 2.0112313E-02 1.9496216E-02
 1.8900251E-02 1.8323690E-02 1.7765826E-02 1.7225994E-02 1.6703548E-02
 1.6197866E-02 1.5708348E-02 1.5234447E-02 1.4775590E-02 1.4331263E-02
 1.3900961E-02
 0.1115568 0.1033885 9.5500149E-02 8.7918140E-02 8.0636173E-02
 7.3677853E-02 6.7032084E-02 6.0720578E-02 5.4728396E-02 4.9075838E-02
 4.3744940E-02 3.8754825E-02 3.4167074E-02 2.9959146E-02 2.6108300E-02
 2.2591975E-02 1.9388009E-02 1.6474927E-02 1.3832024E-02 1.1439491E-02
 9.2784837E-03 7.3311739E-03 5.5807377E-03 4.0113968E-03 2.6083405E-03
 1.3577559E-03 2.4677406E-04 -7.3659531E-04 -1.6034469E-03 -2.3640876E-03
 -3.0280438E-03 -3.6041192E-03 -4.1004298E-03 -4.5244549E-03 -4.8830826E-03
 -5.1826471E-03 -5.4289582E-03 -5.6273555E-03 -5.7827197E-03 -5.8995313E-03
 -5.9818816E-03 -6.0335128E-03 -6.0578412E-03 -6.0579767E-03 -6.0367580E-03
 -5.9967646E-03 -5.9403423E-03 -5.8696195E-03 -5.7865297E-03 -5.6928205E-03
 -5.5900733E-03 -5.4797172E-03 -5.3630373E-03 -5.2411938E-03 -5.1152292E-03
 -4.9860743E-03 -4.8545655E-03 -4.7214488E-03 -4.5873858E-03 -4.4529671E-03
 -4.3187132E-03 -4.1850824E-03 -4.0524798E-03 -3.9212536E-03 -3.7917120E-03
 -3.6641171E-03 -3.5386952E-03 -3.4156374E-03 -3.2951033E-03 -3.1772251E-03
 -3.0621104E-03 -2.9498430E-03 -2.8404885E-03 -2.7340907E-03 -2.6306803E-03
 -2.5302758E-03 -2.4328767E-03 -2.3384753E-03 -2.2470537E-03 -2.1585843E-03
 -2.0730332E-03 -1.9903583E-03 -1.9105136E-03 -1.8334466E-03 -1.7591007E-03
 -1.6874186E-03 -1.6183364E-03 -1.5517912E-03 -1.4877149E-03 -1.4260418E-03
 -1.3667030E-03 -1.3096294E-03 -1.2547520E-03 -1.2020014E-03 -1.1513097E-03
 -1.1026069E-03 -1.0558257E-03 -1.0108999E-03 -9.6776290E-04 -9.2634972E-04
 -8.8659691E-04
 0.4513278 0.4389136 0.4264948 0.4141108 0.4017881
 0.3895627 0.3774567 0.3655021 0.3537163 0.3421263
 0.3307451 0.3195944 0.3086682 0.2979847 0.2875589
 0.2774023 0.2675233 0.2579281 0.2486201 0.2396011
 0.2308708 0.2224277 0.2142688 0.2063904 0.1987876
 0.1914549 0.1843864 0.1775755 0.1710155 0.1646993
 0.1586198 0.1527695 0.1471411 0.1417274 0.1365210
 0.1315148 0.1267015 0.1220742 0.1176262 0.1133506
 0.1092410 0.1052910 0.1014945 9.7845510E-02 9.4338290E-02
 9.0967223E-02 8.7726921E-02 8.4612146E-02 8.1617899E-02 7.8739323E-02
 7.5971760E-02 7.3310710E-02 7.0751868E-02 6.8291061E-02 6.5924309E-02
 6.3647799E-02 6.1457828E-02 5.9350867E-02 5.7323523E-02 5.5372566E-02
 5.3494863E-02 5.1687423E-02 4.9947396E-02 4.8272010E-02 4.6658654E-02
 4.5104824E-02 4.3608069E-02 4.2166110E-02 4.0776704E-02 3.9437745E-02
 3.8147226E-02 3.6903158E-02 3.5703726E-02 3.4547113E-02 3.3431634E-02
 3.2355666E-02 3.1317621E-02 3.0316032E-02 2.9349443E-02 2.8416499E-02
 2.7515894E-02 2.6646350E-02 2.5806697E-02 2.4995755E-02 2.4212433E-02
 2.3455691E-02 2.2724492E-02 2.2017892E-02 2.1334952E-02 2.0674784E-02
 2.0036547E-02 1.9419413E-02 1.8822616E-02 1.8245397E-02 1.7687039E-02
 1.7146859E-02 1.6624186E-02 1.6118409E-02 1.5628900E-02 1.5155086E-02
 1.4696405E-02
 0.1323532 0.1233834 0.1146936 0.1063101 9.8226681E-02
 9.0466902E-02 8.3019681E-02 7.5906724E-02 6.9113091E-02 6.2659092E-02
 5.6526762E-02 5.0735220E-02 4.5384172E-02 4.0452141E-02 3.5916723E-02
 3.1755175E-02 2.7944647E-02 2.4462644E-02 2.1287166E-02 1.8396882E-02
 1.5771333E-02 1.3390968E-02 1.1237207E-02 9.2925224E-03 7.5403615E-03
 5.9652147E-03 4.5525632E-03 3.2888560E-03 2.1614793E-03 1.1587179E-03
 2.6969437E-04 -5.1565602E-04 -1.2066285E-03 -1.8118031E-03 -2.3390946E-03
 -2.7957843E-03 -3.1885644E-03 -3.5235835E-03 -3.8064744E-03 -4.0424056E-03
 -4.2361026E-03 -4.3918910E-03 -4.5137154E-03 -4.6051806E-03 -4.6695699E-03
 -4.7098724E-03 -4.7288118E-03 -4.7288616E-03 -4.7122664E-03 -4.6810638E-03
 -4.6371007E-03 -4.5820484E-03 -4.5174183E-03 -4.4445731E-03 -4.3647466E-03
 -4.2790463E-03 -4.1884696E-03 -4.0939120E-03 -3.9961785E-03 -3.8959871E-03
 -3.7939802E-03 -3.6907294E-03 -3.5867470E-03 -3.4824819E-03 -3.3783342E-03
 -3.2746564E-03 -3.1717564E-03 -3.0699056E-03 -2.9693355E-03 -2.8702500E-03
 -2.7728241E-03 -2.6772027E-03 -2.5835114E-03 -2.4918518E-03 -2.4023075E-03
 -2.3149461E-03 -2.2298170E-03 -2.1469584E-03 -2.0663941E-03 -1.9881385E-03
 -1.9121965E-03 -1.8385624E-03 -1.7672244E-03 -1.6981636E-03 -1.6313548E-03
 -1.5667687E-03 -1.5043698E-03 -1.4441212E-03 -1.3859798E-03 -1.3299029E-03
 -1.2758441E-03 -1.2237534E-03 -1.1735832E-03 -1.1252809E-03 -1.0787960E-03
 -1.0340755E-03 -9.9106727E-04 -9.4971864E-04 -9.0997684E-04 -8.7179051E-04
 -8.3510717E-04
 0.4867337 0.4736676 0.4605971 0.4475614 0.4345869
 0.4217097 0.4089520 0.3963457 0.3839083 0.3716667
 0.3596338 0.3478316 0.3362132 0.3248038 0.3136244
 0.3026929 0.2920237 0.2816282 0.2715152 0.2616906
 0.2521585 0.2429207 0.2339775 0.2253276 0.2169686
 0.2088967 0.2011077 0.1935961 0.1863564 0.1793821
 0.1726665 0.1662028 0.1599837 0.1540018 0.1482499
 0.1427204 0.1374060 0.1322991 0.1273925 0.1226789
 0.1181513 0.1138027 0.1096262 0.1056152 0.1017633
 9.8064199E-02 9.4511710E-02 9.1099948E-02 8.7823242E-02 8.4676050E-02
 8.1653036E-02 7.8749083E-02 7.5959235E-02 7.3278740E-02 7.0703037E-02
 6.8227738E-02 6.5848634E-02 6.3561678E-02 6.1362993E-02 5.9248883E-02
 5.7215791E-02 5.5260304E-02 5.3379189E-02 5.1569287E-02 4.9827650E-02
 4.8151433E-02 4.6537876E-02 4.4984411E-02 4.3488510E-02 4.2047806E-02
 4.0660039E-02 3.9323002E-02 3.8034648E-02 3.6792949E-02 3.5596039E-02
 3.4442097E-02 3.3329375E-02 3.2256231E-02 3.1221058E-02 3.0222354E-02
 2.9258687E-02 2.8328637E-02 2.7430909E-02 2.6564222E-02 2.5727361E-02
 2.4919188E-02 2.4138572E-02 2.3384476E-02 2.2655861E-02 2.1951767E-02
 2.1271275E-02 2.0613480E-02 1.9977545E-02 1.9362641E-02 1.8767996E-02
 1.8192854E-02 1.7636506E-02 1.7098259E-02 1.6577456E-02 1.6073475E-02
 1.5585696E-02
 0.1583134 0.1484476 0.1388618 0.1295824 0.1206030
 0.1119473 0.1036042 9.5595323E-02 8.7905779E-02 8.0555879E-02
 7.3527656E-02 6.6840231E-02 6.0613845E-02 5.4831851E-02 4.9475625E-02
 4.4525038E-02 3.9959017E-02 3.5756100E-02 3.1894602E-02 2.8353019E-02
 2.5110347E-02 2.2146154E-02 1.9440766E-02 1.6975394E-02 1.4732146E-02
 1.2694092E-02 1.0845303E-02 9.1708144E-03 7.6566478E-03 6.2897471E-03
 5.0579607E-03 3.9500291E-03 2.9555026E-03 2.0647326E-03 1.2688008E-03
 5.5948703E-04 -7.0790287E-05 -6.2900467E-04 -1.1215548E-03 -1.5543327E-03
 -1.9327488E-03 -2.2617616E-03 -2.5459295E-03 -2.7894238E-03 -2.9960722E-03
 -3.1693832E-03 -3.3125700E-03 -3.4285795E-03 -3.5201048E-03 -3.5896164E-03
 -3.6393739E-03 -3.6714443E-03 -3.6877182E-03 -3.6899238E-03 -3.6796420E-03
 -3.6583110E-03 -3.6272486E-03 -3.5876571E-03 -3.5406258E-03 -3.4871516E-03
 -3.4281390E-03 -3.3644100E-03 -3.2967092E-03 -3.2257123E-03 -3.1520296E-03
 -3.0762132E-03 -2.9987581E-03 -2.9201130E-03 -2.8406766E-03 -2.7608075E-03
 -2.6808269E-03 -2.6010177E-03 -2.5216329E-03 -2.4428931E-03 -2.3649940E-03
 -2.2881073E-03 -2.2123780E-03 -2.1379353E-03 -2.0648863E-03 -1.9933225E-03
 -1.9233202E-03 -1.8549409E-03 -1.7882338E-03 -1.7232363E-03 -1.6599769E-03
 -1.5984733E-03 -1.5387359E-03 -1.4807675E-03 -1.4245635E-03 -1.3701161E-03
 -1.3174097E-03 -1.2664244E-03 -1.2171388E-03 -1.1695249E-03 -1.1235548E-03
 -1.0791959E-03 -1.0364145E-03 -9.9517591E-04 -9.5544232E-04 -9.1717573E-04
 -8.8033755E-04
 0.5179778 0.5044522 0.4909222 0.4774270 0.4639931
 0.4506566 0.4374395 0.4243739 0.4114771 0.3987761
 0.3862840 0.3740225 0.3618898 0.3499153 0.3381259
 0.3265459 0.3151962 0.3040955 0.2932590 0.2826993
 0.2724264 0.2624476 0.2527680 0.2433908 0.2343170
 0.2255461 0.2170761 0.2089038 0.2010248 0.1934339
 0.1861250 0.1790914 0.1723260 0.1658213 0.1595694
 0.1535624 0.1477921 0.1422504 0.1369292 0.1318203
 0.1269159 0.1222081 0.1176891 0.1133517 0.1091884
 0.1051923 0.1013564 9.7674109E-02 9.4139136E-02 9.0745255E-02
 8.7486573E-02 8.4357359E-02 8.1352159E-02 7.8465700E-02 7.5692952E-02
 7.3029093E-02 7.0469476E-02 6.8009675E-02 6.5645427E-02 6.3372701E-02
 6.1187603E-02 5.9086401E-02 5.7065580E-02 5.5121697E-02 5.3251535E-02
 5.1452011E-02 4.9720123E-02 4.8053075E-02 4.6448134E-02 4.4902727E-02
 4.3414403E-02 4.1980773E-02 4.0599622E-02 3.9268754E-02 3.7986137E-02
 3.6749814E-02 3.5557892E-02 3.4408588E-02 3.3300173E-02 3.2231010E-02
 3.1199556E-02 3.0204285E-02 2.9243793E-02 2.8316680E-02 2.7421657E-02
 2.6557481E-02 2.5722928E-02 2.4916880E-02 2.4138220E-02 2.3385914E-02
 2.2658957E-02 2.1956377E-02 2.1277271E-02 2.0620747E-02 1.9985966E-02
 1.9372119E-02 1.8778430E-02 1.8204171E-02 1.7648619E-02 1.7111097E-02
 1.6590945E-02
 0.1883088 0.1775676 0.1671064 0.1569515 0.1470968
 0.1375657 0.1283471 0.1194629 0.1108980 0.1026727
 9.4769098E-02 8.7206312E-02 8.0076925E-02 7.3375933E-02 6.7094825E-02
 6.1222229E-02 5.5744298E-02 5.0645519E-02 4.5908928E-02 4.1516785E-02
 3.7450891E-02 3.3692989E-02 3.0224873E-02 2.7028808E-02 2.4087537E-02
 2.1384448E-02 1.8903650E-02 1.6629983E-02 1.4549118E-02 1.2647461E-02
 1.0912193E-02 9.3312506E-03 7.8933118E-03 6.5877414E-03 5.4045692E-03
 4.3344554E-03 3.3686713E-03 2.4990526E-03 1.7179950E-03 1.0183922E-03
 3.9362910E-04 -1.6245572E-04 -6.5559120E-04 -1.0910906E-03 -1.4738960E-03
 -1.8085826E-03 -2.0993915E-03 -2.3502489E-03 -2.5647792E-03 -2.7463357E-03
 -2.8980104E-03 -3.0226542E-03 -3.1228922E-03 -3.2011415E-03 -3.2596225E-03
 -3.3003755E-03 -3.3252730E-03 -3.3360308E-03 -3.3342198E-03 -3.3212767E-03
 -3.2985162E-03 -3.2671357E-03 -3.2282288E-03 -3.1827893E-03 -3.1317230E-03
 -3.0758518E-03 -3.0159182E-03 -2.9525987E-03 -2.8865014E-03 -2.8181747E-03
 -2.7481159E-03 -2.6767666E-03 -2.6045262E-03 -2.5317499E-03 -2.4587540E-03
 -2.3858214E-03 -2.3131990E-03 -2.2411076E-03 -2.1697381E-03 -2.0992588E-03
 -2.0298152E-03 -1.9615309E-03 -1.8945131E-03 -1.8288515E-03 -1.7646194E-03
 -1.7018783E-03 -1.6406762E-03 -1.5810501E-03 -1.5230274E-03 -1.4666260E-03
 -1.4118566E-03 -1.3587227E-03 -1.3072211E-03 -1.2573426E-03 -1.2090747E-03
 -1.1623984E-03 -1.1172938E-03 -1.0737359E-03 -1.0316963E-03 -9.9114724E-04
 -9.5205603E-04
 0.5420173 0.5281639 0.5143062 0.5004833 0.4867218
 0.4730576 0.4595129 0.4461197 0.4328953 0.4198668
 0.4070472 0.3944581 0.3819985 0.3696902 0.3575550
 0.3456147 0.3338897 0.3223991 0.3111600 0.3001869
 0.2894921 0.2790854 0.2689740 0.2591631 0.2496554
 0.2404520 0.2315522 0.2229538 0.2146534 0.2066464
 0.1989276 0.1914908 0.1843294 0.1774364 0.1708041
 0.1644250 0.1582912 0.1523947 0.1467276 0.1412821
 0.1360500 0.1310239 0.1261958 0.1215584 0.1171044
 0.1128266 0.1087181 0.1047720 0.1009821 9.7341798E-02
 9.3845144E-02 9.0486206E-02 8.7259345E-02 8.4159084E-02 8.1180193E-02
 7.8317635E-02 7.5566560E-02 7.2922319E-02 7.0380442E-02 6.7936681E-02
 6.5586917E-02 6.3327223E-02 6.1153866E-02 5.9063204E-02 5.7051811E-02
 5.5116415E-02 5.3253807E-02 5.1461015E-02 4.9735114E-02 4.8073363E-02
 4.6473123E-02 4.4931844E-02 4.3447144E-02 4.2016678E-02 4.0638249E-02
 3.9309759E-02 3.8029164E-02 3.6794554E-02 3.5604067E-02 3.4455933E-02
 3.3348486E-02 3.2280080E-02 3.1249203E-02 3.0254342E-02 2.9294098E-02
 2.8367132E-02 2.7472127E-02 2.6607860E-02 2.5773136E-02 2.4966825E-02
 2.4187844E-02 2.3435147E-02 2.2707747E-02 2.2004673E-02 2.1325044E-02
 2.0667957E-02 2.0032577E-02 1.9418124E-02 1.8823802E-02 1.8248899E-02
 1.7692685E-02
 0.2166078 0.2052407 0.1941536 0.1833728 0.1728922
 0.1627351 0.1528907 0.1433806 0.1341898 0.1253386
 0.1168092 0.1086206 0.1007602 9.3240201E-02 8.6069770E-02
 7.9255618E-02 7.2801061E-02 6.6706605E-02 6.0969681E-02 5.5585042E-02
 5.0545141E-02 4.5840342E-02 4.1459341E-02 3.7389599E-02 3.3617526E-02
 3.0128870E-02 2.6909022E-02 2.3943126E-02 2.1216461E-02 1.8714394E-02
 1.6422629E-02 1.4327311E-02 1.2415083E-02 1.0673153E-02 9.0893041E-03
 7.6519256E-03 6.3500484E-03 5.1733083E-03 4.1119978E-03 3.1569742E-03
 2.2997065E-03 1.5322213E-03 8.4708969E-04 2.3740660E-04 -3.0324605E-04
 -7.8082312E-04 -1.2008338E-03 -1.5683820E-03 -1.8881760E-03 -2.1645662E-03
 -2.4015645E-03 -2.6028645E-03 -2.7718660E-03 -2.9116969E-03 -3.0252263E-03
 -3.1150903E-03 -3.1837060E-03 -3.2332875E-03 -3.2658619E-03 -3.2832811E-03
 -3.2872397E-03 -3.2792832E-03 -3.2608211E-03 -3.2331364E-03 -3.1973978E-03
 -3.1546669E-03 -3.1059070E-03 -3.0519927E-03 -2.9937134E-03 -2.9317841E-03
 -2.8668512E-03 -2.7994930E-03 -2.7302345E-03 -2.6595420E-03 -2.5878355E-03
 -2.5154909E-03 -2.4428389E-03 -2.3701771E-03 -2.2977646E-03 -2.2258335E-03
 -2.1545847E-03 -2.0841933E-03 -2.0148128E-03 -1.9465727E-03 -1.8795843E-03
 -1.8139428E-03 -1.7497250E-03 -1.6869962E-03 -1.6258049E-03 -1.5661923E-03
 -1.5081875E-03 -1.4518085E-03 -1.3970686E-03 -1.3439709E-03 -1.2925136E-03
 -1.2426876E-03 -1.1944809E-03 -1.1478758E-03 -1.1028502E-03 -1.0593868E-03
 -1.0174442E-03
 0.5648808 0.5505622 0.5362393 0.5219512 0.5077244
 0.4935952 0.4795853 0.4657271 0.4520376 0.4385442
 0.4252595 0.4122055 0.3993911 0.3868174 0.3744855
 0.3623970 0.3505543 0.3389605 0.3276194 0.3165355
 0.3057137 0.2951584 0.2848740 0.2748644 0.2651325
 0.2556803 0.2465090 0.2376186 0.2290085 0.2206767
 0.2126206 0.2048367 0.1973208 0.1900682 0.1830734
 0.1763308 0.1698342 0.1635770 0.1575527 0.1517544
 0.1461753 0.1408082 0.1356463 0.1306826 0.1259101
 0.1213222 0.1169120 0.1126730 0.1085988 0.1046830
 0.1009197 9.7302832E-02 9.3826666E-02 9.0485618E-02 8.7274328E-02
 8.4187590E-02 8.1220366E-02 7.8367822E-02 7.5625286E-02 7.2988287E-02
 7.0452511E-02 6.8013802E-02 6.5668203E-02 6.3411854E-02 6.1241116E-02
 5.9152488E-02 5.7142559E-02 5.5208143E-02 5.3346090E-02 5.1553465E-02
 4.9827449E-02 4.8165280E-02 4.6564393E-02 4.5022257E-02 4.3536499E-02
 4.2104859E-02 4.0725116E-02 3.9395209E-02 3.8113113E-02 3.6876924E-02
 3.5684813E-02 3.4535009E-02 3.3425864E-02 3.2355741E-02 3.1323113E-02
 3.0326530E-02 2.9364550E-02 2.8435858E-02 2.7539138E-02 2.6673164E-02
 2.5836771E-02 2.5028806E-02 2.4248200E-02 2.3493901E-02 2.2764934E-02
 2.2060327E-02 2.1379184E-02 2.0720633E-02 2.0083820E-02 1.9467968E-02
 1.8872282E-02
 0.2340101 0.2223246 0.2109190 0.1998198 0.1890207
 0.1785453 0.1683824 0.1585539 0.1490447 0.1398752
 0.1310274 0.1225204 0.1142987 0.1063741 9.8758325E-02
 9.1461897E-02 8.4493652E-02 7.7860400E-02 7.1566552E-02 6.5613747E-02
 6.0001153E-02 5.4725226E-02 4.9780097E-02 4.5157831E-02 4.0848702E-02
 3.6841553E-02 3.3124141E-02 2.9683348E-02 2.6505543E-02 2.3576774E-02
 2.0882972E-02 1.8410172E-02 1.6144630E-02 1.4072957E-02 1.2182153E-02
 1.0459726E-02 8.8937236E-03 7.4727521E-03 6.1860345E-03 5.0233612E-03
 3.9751204E-03 3.0322892E-03 2.1864106E-03 1.4295932E-03 7.5446675E-04
 1.5416846E-04 -3.7767491E-04 -8.4697950E-04 -1.2592227E-03 -1.6194779E-03
 -1.9324317E-03 -2.2024114E-03 -2.4334050E-03 -2.6290882E-03 -2.7928406E-03
 -2.9277711E-03 -3.0367344E-03 -3.1223500E-03 -3.1870187E-03 -3.2329396E-03
 -3.2621250E-03 -3.2764138E-03 -3.2774860E-03 -3.2668742E-03 -3.2459749E-03
 -3.2160601E-03 -3.1782861E-03 -3.1337033E-03 -3.0832635E-03 -3.0278310E-03
 -2.9681863E-03 -2.9050342E-03 -2.8390114E-03 -2.7706889E-03 -2.7005814E-03
 -2.6291502E-03 -2.5568062E-03 -2.4839179E-03 -2.4108102E-03 -2.3377729E-03
 -2.2650626E-03 -2.1929021E-03 -2.1214886E-03 -2.0509923E-03 -1.9815604E-03
 -1.9133200E-03 -1.8463780E-03 -1.7808244E-03 -1.7167332E-03 -1.6541651E-03
 -1.5931680E-03 -1.5337773E-03 -1.4760204E-03 -1.4199128E-03 -1.3654652E-03
 -1.3126779E-03 -1.2615464E-03 -1.2120620E-03 -1.1642082E-03 -1.1179689E-03
 -1.0733155E-03
 0.5987692 0.5836599 0.5685463 0.5534676 0.5384501
 0.5235302 0.5087299 0.4940811 0.4796012 0.4653172
 0.4512422 0.4373978 0.4238520 0.4106027 0.3976459
 0.3849779 0.3725943 0.3604918 0.3486674 0.3371195
 0.3258471 0.3148498 0.3041279 0.2936821 0.2835131
 0.2736213 0.2640072 0.2546707 0.2456113 0.2368277
 0.2283182 0.2200806 0.2121116 0.2044078 0.1969651
 0.1897788 0.1828439 0.1761549 0.1697060 0.1634911
 0.1575041 0.1517385 0.1461878 0.1408454 0.1357047
 0.1307591 0.1260020 0.1214268 0.1170272 0.1127969
 0.1087295 0.1048192 0.1010599 9.7445831E-02 9.3971498E-02
 9.0631440E-02 8.7420359E-02 8.4333159E-02 8.1364915E-02 7.8510895E-02
 7.5766496E-02 7.3127285E-02 7.0589051E-02 6.8147637E-02 6.5799154E-02
 6.3539825E-02 6.1365977E-02 5.9274171E-02 5.7261012E-02 5.5323325E-02
 5.3458035E-02 5.1662162E-02 4.9932923E-02 4.8267562E-02 4.6663500E-02
 4.5118283E-02 4.3629490E-02 4.2194873E-02 4.0812220E-02 3.9479457E-02
 3.8194608E-02 3.6955725E-02 3.5760999E-02 3.4608655E-02 3.3497024E-02
 3.2424521E-02 3.1389575E-02 3.0390741E-02 2.9426590E-02 2.8495785E-02
 2.7597040E-02 2.6729099E-02 2.5890805E-02 2.5081005E-02 2.4298625E-02
 2.3542611E-02 2.2811979E-02 2.2105787E-02 2.1423096E-02 2.0763054E-02
 2.0124802E-02
 0.2448482 0.2330055 0.2214428 0.2101865 0.1992303
 0.1885977 0.1782778 0.1682921 0.1586259 0.1492993
 0.1402944 0.1316303 0.1232676 0.1152076 0.1074530
 0.1000066 9.2871420E-02 8.6050436E-02 7.9545863E-02 7.3359035E-02
 6.7489974E-02 6.1937194E-02 5.6697711E-02 5.1767033E-02 4.7138985E-02
 4.2806134E-02 3.8759712E-02 3.4989905E-02 3.1486090E-02 2.8236849E-02
 2.5230337E-02 2.2454416E-02 1.9896744E-02 1.7545024E-02 1.5387049E-02
 1.3410821E-02 1.1604668E-02 9.9572679E-03 8.4577492E-03 7.0956787E-03
 5.8611119E-03 4.7446121E-03 3.7372415E-03 2.8305880E-03 2.0167278E-03
 1.2882284E-03 6.3814211E-04 5.9972739E-05 -4.5232070E-04 -9.0436760E-04
 -1.3013924E-03 -1.6482418E-03 -1.9494003E-03 -2.2090185E-03 -2.4309244E-03
 -2.6186539E-03 -2.7754637E-03 -2.9043516E-03 -3.0080730E-03 -3.0891590E-03
 -3.1499336E-03 -3.1925251E-03 -3.2188834E-03 -3.2307929E-03 -3.2298835E-03
 -3.2176429E-03 -3.1954290E-03 -3.1644779E-03 -3.1259130E-03 -3.0807578E-03
 -3.0299395E-03 -2.9742983E-03 -2.9145950E-03 -2.8515160E-03 -2.7856815E-03
 -2.7176500E-03 -2.6479214E-03 -2.5769456E-03 -2.5051231E-03 -2.4328132E-03
 -2.3603337E-03 -2.2879657E-03 -2.2159601E-03 -2.1445330E-03 -2.0738763E-03
 -2.0041573E-03 -1.9355171E-03 -1.8680799E-03 -1.8019491E-03 -1.7372116E-03
 -1.6739403E-03 -1.6121920E-03 -1.5520127E-03 -1.4934371E-03 -1.4364899E-03
 -1.3811857E-03 -1.3275337E-03 -1.2755338E-03 -1.2251807E-03 -1.1764662E-03
 -1.1293689E-03
 0.6424309 0.6262508 0.6100664 0.5939169 0.5778287
 0.5618381 0.5459670 0.5302476 0.5146971 0.4993427
 0.4841971 0.4692823 0.4547065 0.4404682 0.4265648
 0.4129917 0.3997429 0.3868129 0.3741960 0.3618870
 0.3498818 0.3381769 0.3267695 0.3156574 0.3048388
 0.2943122 0.2840762 0.2741294 0.2644704 0.2550974
 0.2460085 0.2372010 0.2286721 0.2204186 0.2124365
 0.2047216 0.1972694 0.1900746 0.1831320 0.1764357
 0.1699800 0.1637585 0.1577649 0.1519928 0.1464356
 0.1410866 0.1359393 0.1309871 0.1262234 0.1216416
 0.1172355 0.1129986 0.1089248 0.1050081 0.1012425
 9.7622305E-02 9.4141938E-02 9.0795964E-02 8.7579094E-02 8.4486291E-02
 8.1512608E-02 7.8653269E-02 7.5903751E-02 7.3259562E-02 7.0716485E-02
 6.8270452E-02 6.5917484E-02 6.3653819E-02 6.1475802E-02 5.9379946E-02
 5.7362933E-02 5.5421513E-02 5.3552639E-02 5.1753309E-02 5.0020732E-02
 4.8352186E-02 4.6745062E-02 4.5196887E-02 4.3705259E-02 4.2267900E-02
 4.0882640E-02 3.9547365E-02 3.8260087E-02 3.7018873E-02 3.5821896E-02
 3.4667410E-02 3.3553712E-02 3.2479215E-02 3.1442355E-02 3.0441670E-02
 2.9475760E-02 2.8543243E-02 2.7642854E-02 2.6773339E-02 2.5933521E-02
 2.5122251E-02 2.4338454E-02 2.3581086E-02 2.2849146E-02 2.2141688E-02
 2.1457778E-02
 0.2583354 0.2462751 0.2344950 0.2230212 0.2118475
 0.2009975 0.1904601 0.1802571 0.1703734 0.1608293
 0.1516070 0.1427256 0.1341412 0.1258537 0.1178621
 0.1101676 0.1027716 9.5675662E-02 8.8881947E-02 8.2391694E-02
 7.6205738E-02 7.0323907E-02 6.4744756E-02 5.9465807E-02 5.4483097E-02
 4.9791589E-02 4.5384973E-02 4.1255839E-02 3.7395798E-02 3.3795625E-02
 3.0445348E-02 2.7334495E-02 2.4452137E-02 2.1787161E-02 1.9328274E-02
 1.7064171E-02 1.4983639E-02 1.3075643E-02 1.1329435E-02 9.7345309E-03
 8.2808388E-03 6.9586448E-03 5.7586725E-03 4.6720868E-03 3.6904991E-03
 2.8059736E-03 2.0110279E-03 1.2986222E-03 6.6216278E-04 9.5462921E-05
 -4.0724914E-04 -8.5135561E-04 -1.2418668E-03 -1.5834402E-03 -1.8803916E-03
 -2.1367231E-03 -2.3561399E-03 -2.5420624E-03 -2.6976496E-03 -2.8258120E-03
 -2.9292302E-03 -3.0103717E-03 -3.0715012E-03 -3.1147003E-03 -3.1418751E-03
 -3.1547726E-03 -3.1549910E-03 -3.1439918E-03 -3.1231076E-03 -3.0935553E-03
 -3.0564417E-03 -3.0127738E-03 -2.9634680E-03 -2.9093523E-03 -2.8511796E-03
 -2.7896294E-03 -2.7253148E-03 -2.6587890E-03 -2.5905482E-03 -2.5210385E-03
 -2.4506589E-03 -2.3797648E-03 -2.3086737E-03 -2.2376643E-03 -2.1669872E-03
 -2.0968588E-03 -2.0274695E-03 -1.9589863E-03 -1.8915520E-03 -1.8252897E-03
 -1.7603035E-03 -1.6966811E-03 -1.6344948E-03 -1.5738026E-03 -1.5146522E-03
 -1.4570769E-03 -1.4011024E-03 -1.3467469E-03 -1.2940164E-03 -1.2429183E-03
 -1.1934383E-03
 0.6911811 0.6738031 0.6564209 0.6390736 0.6217876
 0.6045993 0.5875306 0.5706135 0.5538654 0.5373133
 0.5209702 0.5048578 0.4891302 0.4737803 0.4588068
 0.4442051 0.4299670 0.4160845 0.4025493 0.3893548
 0.3764940 0.3639610 0.3517511 0.3398595 0.3282828
 0.3170178 0.3060617 0.2954117 0.2850657 0.2750210
 0.2652751 0.2558252 0.2466682 0.2378007 0.2292188
 0.2209185 0.2128951 0.2051437 0.1976592 0.1904358
 0.1834677 0.1767489 0.1702728 0.1640332 0.1580233
 0.1522365 0.1466660 0.1413049 0.1361466 0.1311843
 0.1264113 0.1218210 0.1174069 0.1131627 0.1090820
 0.1051589 0.1013873 9.7761445E-02 9.4275735E-02 9.0924725E-02
 8.7703109E-02 8.4605768E-02 8.1627794E-02 7.8764357E-02 7.6010890E-02
 7.3362999E-02 7.0816353E-02 6.8366885E-02 6.6010624E-02 6.3743792E-02
 6.1562762E-02 5.9463996E-02 5.7444181E-02 5.5500064E-02 5.3628568E-02
 5.1826756E-02 5.0091766E-02 4.8420895E-02 4.6811521E-02 4.5261171E-02
 4.3767467E-02 4.2328086E-02 4.0940877E-02 3.9603718E-02 3.8314611E-02
 3.7071653E-02 3.5872977E-02 3.4716852E-02 3.3601575E-02 3.2525539E-02
 3.1487208E-02 3.0485092E-02 2.9517800E-02 2.8583948E-02 2.7682269E-02
 2.6811507E-02 2.5970472E-02 2.5158046E-02 2.4373122E-02 2.3614665E-02
 2.2881674E-02
 0.2759403 0.2635985 0.2515368 0.2397815 0.2283264
 0.2171949 0.2063760 0.1958915 0.1857263 0.1759008
 0.1663971 0.1572342 0.1483419 0.1397267 0.1313895
 0.1233320 0.1155544 0.1080606 0.1008535 9.3936607E-02
 8.7312624E-02 8.0983169E-02 7.4949160E-02 6.9210425E-02 6.3765466E-02
 5.8611579E-02 5.3744856E-02 4.9160164E-02 4.4851284E-02 4.0810976E-02
 3.7031084E-02 3.3502687E-02 3.0216247E-02 2.7161788E-02 2.4328876E-02
 2.1706905E-02 1.9285131E-02 1.7052785E-02 1.4999213E-02 1.3113879E-02
 1.1386495E-02 9.8070484E-03 8.3658407E-03 7.0535690E-03 5.8612926E-03
 4.7804872E-03 3.8030436E-03 2.9212700E-03 2.1279166E-03 1.4161267E-03
 7.7947316E-04 2.1191800E-04 -2.9218479E-04 -7.3811412E-04 -1.1307832E-03
 -1.4747692E-03 -1.7743268E-03 -2.0334036E-03 -2.2556561E-03 -2.4444642E-03
 -2.6029574E-03 -2.7340215E-03 -2.8403155E-03 -2.9242910E-03 -2.9881999E-03
 -3.0341123E-03 -3.0639293E-03 -3.0793913E-03 -3.0820947E-03 -3.0734967E-03
 -3.0549308E-03 -3.0276130E-03 -2.9926517E-03 -2.9510548E-03 -2.9037399E-03
 -2.8515395E-03 -2.7952068E-03 -2.7354248E-03 -2.6728085E-03 -2.6079144E-03
 -2.5412431E-03 -2.4732405E-03 -2.4043107E-03 -2.3348108E-03 -2.2650603E-03
 -2.1953434E-03 -2.1259096E-03 -2.0569791E-03 -1.9887446E-03 -1.9213749E-03
 -1.8550159E-03 -1.7897913E-03 -1.7258073E-03 -1.6631534E-03 -1.6019040E-03
 -1.5421180E-03 -1.4838442E-03 -1.4271188E-03 -1.3719676E-03 -1.3184173E-03
 -1.2664602E-03
 0.7416958 0.7230985 0.7044969 0.6859303 0.6674251
 0.6490176 0.6307296 0.6125934 0.5946260 0.5768547
 0.5592924 0.5419608 0.5250533 0.5085447 0.4924638
 0.4768032 0.4615495 0.4466894 0.4322142 0.4181129
 0.4043761 0.3909961 0.3779650 0.3652762 0.3529241
 0.3409039 0.3292111 0.3178418 0.3067927 0.2960604
 0.2856417 0.2755332 0.2657316 0.2562333 0.2470344
 0.2381308 0.2295180 0.2211910 0.2131450 0.2053743
 0.1978732 0.1906357 0.1836555 0.1769263 0.1704414
 0.1641941 0.1581775 0.1523847 0.1468090 0.1414432
 0.1362807 0.1313145 0.1265378 0.1219441 0.1175269
 0.1132796 0.1091960 0.1052700 0.1014956 9.7867124E-02
 9.4378799E-02 9.1025189E-02 8.7801039E-02 8.4701188E-02 8.1720710E-02
 7.8854866E-02 7.6099016E-02 7.3448755E-02 7.0899785E-02 6.8448015E-02
 6.6089526E-02 6.3820489E-02 6.1637301E-02 5.9536412E-02 5.7514500E-02
 5.5568364E-02 5.3694878E-02 5.1891118E-02 5.0154220E-02 4.8481483E-02
 4.6870317E-02 4.5318197E-02 4.3822773E-02 4.2381722E-02 4.0992875E-02
 3.9654139E-02 3.8363498E-02 3.7119038E-02 3.5918914E-02 3.4761369E-02
 3.3644728E-02 3.2567360E-02 3.1527739E-02 3.0524375E-02 2.9555863E-02
 2.8620841E-02 2.7718017E-02 2.6846150E-02 2.6004050E-02 2.5190588E-02
 2.4404656E-02
 0.2950077 0.2825015 0.2702755 0.2583559 0.2467364
 0.2354406 0.2244574 0.2138086 0.2034791 0.1934894
 0.1838214 0.1744942 0.1653003 0.1563523 0.1476599
 0.1392124 0.1310113 0.1230647 0.1153793 0.1079604
 0.1008152 9.3949102E-02 8.7366536E-02 8.1071064E-02 7.5064704E-02
 6.9348469E-02 6.3921832E-02 5.8782555E-02 5.3927463E-02 4.9351748E-02
 4.5049541E-02 4.1013882E-02 3.7236821E-02 3.3709779E-02 3.0423351E-02
 2.7367663E-02 2.4532557E-02 2.1907492E-02 1.9481929E-02 1.7245201E-02
 1.5186764E-02 1.3296205E-02 1.1563308E-02 9.9781677E-03 8.5311672E-03
 7.2130454E-03 6.0149319E-03 4.9283351E-03 3.9452012E-03 3.0578629E-03
 2.2590871E-03 1.5420439E-03 9.0031448E-04 3.2787153E-04 -1.8092386E-04
 -6.3134386E-04 -1.0283077E-03 -1.3763953E-03 -1.6798639E-03 -1.9426610E-03
 -2.1684526E-03 -2.3606282E-03 -2.5223196E-03 -2.6564233E-03 -2.7656045E-03
 -2.8523204E-03 -2.9188346E-03 -2.9672219E-03 -2.9993907E-03 -3.0170905E-03
 -3.0219210E-03 -3.0153487E-03 -2.9987118E-03 -2.9732322E-03 -2.9400240E-03
 -2.9001005E-03 -2.8543838E-03 -2.8037108E-03 -2.7488396E-03 -2.6904559E-03
 -2.6291811E-03 -2.5655725E-03 -2.5001348E-03 -2.4333182E-03 -2.3655274E-03
 -2.2971244E-03 -2.2284295E-03 -2.1597301E-03 -2.0912765E-03 -2.0232925E-03
 -1.9559730E-03 -1.8894871E-03 -1.8239819E-03 -1.7595837E-03 -1.6964012E-03
 -1.6345222E-03 -1.5740240E-03 -1.5149680E-03 -1.4574006E-03 -1.4013723E-03
 -1.3468874E-03
 0.7812542 0.7624661 0.7436739 0.7249166 0.7062207
 0.6876225 0.6691439 0.6508169 0.6326589 0.6146969
 0.5969439 0.5794216 0.5615973 0.5437760 0.5265113
 0.5097678 0.4934883 0.4776550 0.4622540 0.4472719
 0.4326937 0.4185076 0.4047000 0.3912619 0.3781829
 0.3654552 0.3530722 0.3410272 0.3293153 0.3179318
 0.3068722 0.2961327 0.2857095 0.2755988 0.2657967
 0.2562992 0.2471022 0.2382010 0.2295912 0.2212676
 0.2132249 0.2054576 0.1979597 0.1907252 0.1837478
 0.1770210 0.1705382 0.1642926 0.1582774 0.1524857
 0.1469107 0.1415453 0.1363828 0.1314164 0.1266393
 0.1220449 0.1176267 0.1133783 0.1092934 0.1053660
 0.1015901 9.7959928E-02 9.4469868E-02 9.1114424E-02 8.7888360E-02
 8.4786609E-02 8.1804164E-02 7.8936331E-02 7.6178469E-02 7.3526174E-02
 7.0975222E-02 6.8521455E-02 6.6160984E-02 6.3889980E-02 6.1704814E-02
 5.9602037E-02 5.7578240E-02 5.5630255E-02 5.3754952E-02 5.1949400E-02
 5.0210781E-02 4.8536338E-02 4.6923518E-02 4.5369782E-02 4.3872766E-02
 4.2430192E-02 4.1039851E-02 3.9699666E-02 3.8407609E-02 3.7161775E-02
 3.5960328E-02 3.4801483E-02 3.3683594E-02 3.2605011E-02 3.1564213E-02
 3.0559706E-02 2.9590080E-02 2.8653994E-02 2.7750131E-02 2.6877262E-02
 2.6034189E-02
 0.2963927 0.2854133 0.2747140 0.2643211 0.2542283
 0.2444593 0.2350029 0.2258809 0.2170782 0.2086153
 0.2004741 0.1926738 0.1830014 0.1737510 0.1648459
 0.1561185 0.1475803 0.1392503 0.1311396 0.1232605
 0.1156230 0.1082356 0.1011089 9.4251163E-02 8.7669745E-02
 8.1369966E-02 7.5356044E-02 6.9629729E-02 6.4191736E-02 5.9040453E-02
 5.4173321E-02 4.9585737E-02 4.5272272E-02 4.1225899E-02 3.7438896E-02
 3.3902545E-02 3.0607503E-02 2.7543833E-02 2.4701307E-02 2.2069367E-02
 1.9637344E-02 1.7394569E-02 1.5330440E-02 1.3434490E-02 1.1696502E-02
 1.0106504E-02 8.6548654E-03 7.3323059E-03 6.1299433E-03 5.0392780E-03
 4.0522269E-03 3.1611260E-03 2.3587311E-03 1.6382062E-03 9.9312980E-04
 4.1747288E-04 -9.4414791E-05 -5.4780854E-04 -9.4763102E-04 -1.2984619E-03
 -1.6045630E-03 -1.8698924E-03 -2.0981110E-03 -2.2926177E-03 -2.4565463E-03
 -2.5927934E-03 -2.7040329E-03 -2.7927239E-03 -2.8611321E-03 -2.9113381E-03
 -2.9452518E-03 -2.9646256E-03 -2.9710643E-03 -2.9660359E-03 -2.9508818E-03
 -2.9268283E-03 -2.8949897E-03 -2.8563840E-03 -2.8119350E-03 -2.7624818E-03
 -2.7087857E-03 -2.6515343E-03 -2.5913506E-03 -2.5287946E-03 -2.4643715E-03
 -2.3985354E-03 -2.3316916E-03 -2.2642033E-03 -2.1963930E-03 -2.1285485E-03
 -2.0609240E-03 -1.9937414E-03 -1.9271986E-03 -1.8614656E-03 -1.7966902E-03
 -1.7330002E-03 -1.6705040E-03 -1.6092932E-03 -1.5494425E-03 -1.4910303E-03
 -1.4340739E-03
 0.7082675 0.6946357 0.6809998 0.6673989 0.6538593
 0.6404175 0.6270952 0.6139246 0.6009229 0.5881172
 0.5755206 0.5631548 0.5507889 0.5384230 0.5260571
 0.5136912 0.5013254 0.4889595 0.4765937 0.4642279
 0.4518621 0.4394962 0.4271304 0.4147646 0.4023988
 0.3900330 0.3776672 0.3653013 0.3529355 0.3409096
 0.3292171 0.3178529 0.3068121 0.2960907 0.2856845
 0.2755896 0.2658021 0.2563178 0.2471328 0.2382425
 0.2296422 0.2213271 0.2132917 0.2055307 0.1980384
 0.1908085 0.1838349 0.1771112 0.1706309 0.1643872
 0.1583733 0.1525825 0.1470079 0.1416426 0.1364798
 0.1315129 0.1267350 0.1221396 0.1177202 0.1134704
 0.1093841 0.1054550 0.1016774 9.8045461E-02 9.4553530E-02
 9.1196239E-02 8.7968260E-02 8.4864564E-02 8.1880167E-02 7.9010360E-02
 7.6250575E-02 7.3596343E-02 7.1043469E-02 6.8587795E-02 6.6225424E-02
 6.3952595E-02 6.1765622E-02 5.9661057E-02 5.7635512E-02 5.5685800E-02
 5.3808846E-02 5.2001666E-02 5.0261449E-02 4.8585467E-02 4.6971109E-02
 4.5415923E-02 4.3917473E-02 4.2473514E-02 4.1081820E-02 3.9740317E-02
 3.8446996E-02 3.7199926E-02 3.5997279E-02 3.4837279E-02 3.3718266E-02
 3.2638587E-02 3.1596724E-02 3.0591207E-02 2.9620590E-02 2.8683549E-02
 2.7778756E-02
 0.2601114 0.2509666 0.2421020 0.2335438 0.2252857
 0.2173514 0.2097297 0.2024423 0.1954744 0.1888462
 0.1825397 0.1765742 0.1706086 0.1646430 0.1586775
 0.1527119 0.1467464 0.1407808 0.1348152 0.1288497
 0.1228841 0.1169186 0.1109530 0.1049875 9.9021934E-02
 9.3056388E-02 8.7090842E-02 8.1125297E-02 7.5159751E-02 6.9475964E-02
 6.4075053E-02 5.8956292E-02 5.4117337E-02 4.9554300E-02 4.5261949E-02
 4.1233841E-02 3.7462454E-02 3.3939358E-02 3.0655503E-02 2.7601164E-02
 2.4766298E-02 2.2140579E-02 1.9713497E-02 1.7474549E-02 1.5413273E-02
 1.3519327E-02 1.1782604E-02 1.0193239E-02 8.7417075E-03 7.4188081E-03
 6.2157228E-03 5.1240195E-03 4.1356781E-03 3.2430801E-03 2.4390279E-03
 1.7167293E-03 1.0697852E-03 4.9219379E-04 -2.1667540E-05 -4.7705264E-04
 -8.7886880E-04 -1.2316870E-03 -1.5397519E-03 -1.8070162E-03 -2.0371340E-03
 -2.2334936E-03 -2.3992306E-03 -2.5372363E-03 -2.6501827E-03 -2.7405284E-03
 -2.8105367E-03 -2.8622891E-03 -2.8976963E-03 -2.9185119E-03 -2.9263406E-03
 -2.9226521E-03 -2.9087893E-03 -2.8859798E-03 -2.8553400E-03 -2.8178890E-03
 -2.7745531E-03 -2.7261721E-03 -2.6735098E-03 -2.6172553E-03 -2.5580321E-03
 -2.4964041E-03 -2.4328760E-03 -2.3679046E-03 -2.3018958E-03 -2.2352138E-03
 -2.1681844E-03 -2.1010940E-03 -2.0341999E-03 -1.9677251E-03 -1.9018672E-03
 -1.8367983E-03 -1.7726668E-03 -1.7096013E-03 -1.6477110E-03 -1.5871085E-03
 -1.5278282E-03
 0.7335877 0.7199399 0.7062879 0.6926709 0.6791154
 0.6656575 0.6523191 0.6391325 0.6261148 0.6132932
 0.6006807 0.5882989 0.5759171 0.5635353 0.5511535
 0.5387717 0.5263900 0.5140082 0.5016264 0.4892446
 0.4768628 0.4644810 0.4520992 0.4397174 0.4273356
 0.4149538 0.4025720 0.3901902 0.3778085 0.3654267
 0.3530449 0.3410071 0.3293060 0.3179359 0.3068916
 0.2961682 0.2857612 0.2756665 0.2658798 0.2563970
 0.2472136 0.2383251 0.2297267 0.2214133 0.2133796
 0.2056201 0.1981289 0.1909000 0.1839272 0.1772041
 0.1707240 0.1644803 0.1584663 0.1526751 0.1470999
 0.1417339 0.1365702 0.1316022 0.1268230 0.1222263
 0.1178055 0.1135542 0.1094662 0.1055355 0.1017562
 9.8122537E-02 9.4628833E-02 9.1269746E-02 8.8039964E-02 8.4934436E-02
 8.1948273E-02 7.9076663E-02 7.6315098E-02 7.3659100E-02 7.1104445E-02
 6.8647079E-02 6.6283017E-02 6.4008519E-02 6.1819907E-02 5.9713721E-02
 5.7686631E-02 5.5735383E-02 5.3856932E-02 5.2048292E-02 5.0306637E-02
 4.8629273E-02 4.7013577E-02 4.5457069E-02 4.3957349E-02 4.2512134E-02
 4.1119248E-02 3.9776564E-02 3.8482118E-02 3.7233945E-02 3.6030233E-02
 3.4869198E-02 3.3749163E-02 3.2668531E-02 3.1625729E-02 3.0619297E-02
 2.9647797E-02
 0.2696842 0.2606076 0.2518112 0.2433212 0.2351314
 0.2272653 0.2197118 0.2124928 0.2055931 0.1990332
 0.1927951 0.1868978 0.1810006 0.1751034 0.1692061
 0.1633089 0.1574116 0.1515144 0.1456172 0.1397199
 0.1338227 0.1279254 0.1220282 0.1161310 0.1102337
 0.1043365 9.8439284E-02 9.2542052E-02 8.6644821E-02 8.0747589E-02
 7.4850358E-02 6.9226615E-02 6.3878633E-02 5.8805779E-02 5.4006748E-02
 4.9477860E-02 4.5214996E-02 4.1211758E-02 3.7461415E-02 3.3955958E-02
 3.0686662E-02 2.7644297E-02 2.4819123E-02 2.2201130E-02 1.9780133E-02
 1.7545799E-02 1.5487912E-02 1.3596309E-02 1.1861068E-02 1.0272467E-02
 8.8210935E-03 7.4978578E-03 6.2940335E-03 5.2012699E-03 4.2116120E-03
 3.3175079E-03 2.5117977E-03 1.7877305E-03 1.1389406E-03 5.5946055E-04
 4.3688364E-05 -4.1361735E-04 -8.1733894E-04 -1.1720433E-03 -1.4819658E-03
 -1.7510407E-03 -1.9829285E-03 -2.1810087E-03 -2.3484149E-03 -2.4880376E-03
 -2.6025441E-03 -2.6943970E-03 -2.7658574E-03 -2.8190094E-03 -2.8557635E-03
 -2.8778745E-03 -2.8869493E-03 -2.8844585E-03 -2.8717481E-03 -2.8500455E-03
 -2.8204708E-03 -2.7840438E-03 -2.7416928E-03 -2.6942601E-03 -2.6425098E-03
 -2.5871349E-03 -2.5287587E-03 -2.4679471E-03 -2.4052064E-03 -2.3409936E-03
 -2.2757184E-03 -2.2097446E-03 -2.1433998E-03 -2.0769713E-03 -2.0107175E-03
 -1.9448625E-03 -1.8796044E-03 -1.8151175E-03 -1.7515498E-03 -1.6890313E-03
 -1.6276715E-03
 0.7594195 0.7457434 0.7320631 0.7184178 0.7048339
 0.6913477 0.6779811 0.6647663 0.6517204 0.6388706
 0.6262299 0.6138199 0.6014099 0.5889999 0.5765899
 0.5641800 0.5517700 0.5393600 0.5269500 0.5145400
 0.5021300 0.4897201 0.4773102 0.4649002 0.4524903
 0.4400804 0.4276704 0.4152605 0.4028506 0.3904407
 0.3780307 0.3656208 0.3532109 0.3411505 0.3294321
 0.3180484 0.3069935 0.2962623 0.2858497 0.2757511
 0.2659620 0.2564777 0.2472936 0.2384049 0.2298068
 0.2214939 0.2134608 0.2057019 0.1982114 0.1909831
 0.1840107 0.1772878 0.1708079 0.1645641 0.1585498
 0.1527582 0.1471824 0.1418157 0.1366511 0.1316821
 0.1269019 0.1223039 0.1178818 0.1136291 0.1095397
 0.1056076 0.1018267 9.8191470E-02 9.4696172E-02 9.1335446E-02
 8.8104077E-02 8.4996924E-02 8.2009137E-02 7.9135917E-02 7.6372720E-02
 7.3715158E-02 7.1158946E-02 6.8700030E-02 6.6334449E-02 6.4058430E-02
 6.1868381E-02 5.9760761E-02 5.7732265E-02 5.5779647E-02 5.3899836E-02
 5.2089904E-02 5.0346974E-02 4.8668373E-02 4.7051463E-02 4.5493770E-02
 4.3992922E-02 4.2546596E-02 4.1152634E-02 3.9808910E-02 3.8513448E-02
 3.7264291E-02 3.6059614E-02 3.4897670E-02 3.3776738E-02 3.2695238E-02
 3.1651590E-02
 0.2801202 0.2710817 0.2623235 0.2538717 0.2457201
 0.2378923 0.2303772 0.2231964 0.2163351 0.2098135
 0.2036136 0.1977547 0.1918958 0.1860369 0.1801780
 0.1743191 0.1684602 0.1626012 0.1567423 0.1508834
 0.1450245 0.1391656 0.1333067 0.1274478 0.1215889
 0.1157300 0.1098711 0.1040122 9.8153271E-02 9.2294373E-02
 8.6435474E-02 8.0576576E-02 7.4717678E-02 6.9128290E-02 6.3809201E-02
 5.8761943E-02 5.3985052E-02 4.9475364E-02 4.5228455E-02 4.1238800E-02
 3.7499920E-02 3.4003787E-02 3.0742183E-02 2.7705930E-02 2.4885587E-02
 2.2271233E-02 1.9852867E-02 1.7620318E-02 1.5563493E-02 1.3672359E-02
 1.1937059E-02 1.0347981E-02 8.8957828E-03 7.5714309E-03 6.3662757E-03
 5.2720136E-03 4.2807255E-03 3.3848889E-03 2.5773805E-03 1.8514772E-03
 1.2008362E-03 6.1949732E-04 1.0188083E-04 -3.5724745E-04 -7.6276396E-04
 -1.1192163E-03 -1.4308454E-03 -1.7015797E-03 -1.9350760E-03 -2.1347136E-03
 -2.3036199E-03 -2.4446915E-03 -2.5605934E-03 -2.6537892E-03 -2.7265421E-03
 -2.7809348E-03 -2.8188815E-03 -2.8421374E-03 -2.8523118E-03 -2.8508774E-03
 -2.8391813E-03 -2.8184529E-03 -2.7898145E-03 -2.7542873E-03 -2.7128011E-03
 -2.6662007E-03 -2.6152511E-03 -2.5606472E-03 -2.5030132E-03 -2.4429164E-03
 -2.3808666E-03 -2.3173187E-03 -2.2526863E-03 -2.1873328E-03 -2.1215875E-03
 -2.0557391E-03 -1.9900454E-03 -1.9247337E-03 -1.8600018E-03 -1.7960243E-03
 -1.7329507E-03
 0.7846931 0.7710059 0.7573146 0.7436583 0.7300634
 0.7165663 0.7031888 0.6899630 0.6769062 0.6640455
 0.6513939 0.6389732 0.6265524 0.6141316 0.6017109
 0.5892901 0.5768693 0.5644485 0.5520278 0.5396070
 0.5271862 0.5147654 0.5023447 0.4899239 0.4775032
 0.4650824 0.4526617 0.4402409 0.4278202 0.4153994
 0.4029787 0.3905579 0.3781372 0.3657165 0.3532957
 0.3412268 0.3295019 0.3181134 0.3070561 0.2963233
 0.2859101 0.2758119 0.2660235 0.2565404 0.2473578
 0.2384707 0.2298741 0.2215627 0.2135310 0.2057734
 0.1982840 0.1910565 0.1840848 0.1773624 0.1708826
 0.1646390 0.1586246 0.1528326 0.1472563 0.1418890
 0.1367237 0.1317537 0.1269725 0.1223735 0.1179501
 0.1136963 0.1096056 0.1056721 0.1018898 9.8253123E-02
 9.4756424E-02 9.1394246E-02 8.8161416E-02 8.5052796E-02 8.2063518E-02
 7.9188876E-02 7.6424234E-02 7.3765248E-02 7.1207620E-02 6.8747297E-02
 6.6380374E-02 6.4103015E-02 6.1911650E-02 5.9802741E-02 5.7772968E-02
 5.5819135E-02 5.3938124E-02 5.2127022E-02 5.0382957E-02 4.8703231E-02
 4.7085259E-02 4.5526516E-02 4.4024646E-02 4.2577330E-02 4.1182406E-02
 3.9837748E-02 3.8541369E-02 3.7291348E-02 3.6085818E-02 3.4923047E-02
 3.3801321E-02
 0.2909374 0.2819234 0.2731895 0.2647622 0.2566350
 0.2488316 0.2413409 0.2341846 0.2273477 0.2208506
 0.2146752 0.2088408 0.2030064 0.1971719 0.1913375
 0.1855031 0.1796686 0.1738342 0.1679998 0.1621653
 0.1563309 0.1504965 0.1446621 0.1388276 0.1329932
 0.1271588 0.1213243 0.1154899 0.1096555 0.1038211
 9.7986646E-02 9.2152223E-02 8.6317800E-02 8.0483377E-02 7.4648954E-02
 6.9080681E-02 6.3781463E-02 5.8751516E-02 5.3989347E-02 4.9492188E-02
 4.5256432E-02 4.1276284E-02 3.7545040E-02 3.4055293E-02 3.0798951E-02
 2.7766874E-02 2.4949627E-02 2.2337604E-02 1.9920839E-02 1.7689284E-02
 1.5632888E-02 1.3741726E-02 1.2006024E-02 1.0416218E-02 8.9630326E-03
 7.6375036E-03 6.4309933E-03 5.3352481E-03 4.3423786E-03 3.4449061E-03
 2.6357223E-03 1.9081143E-03 1.2557672E-03 6.7272835E-04 1.5342636E-04
 -3.0735007E-04 -7.1448443E-04 -1.0725142E-03 -1.3856767E-03 -1.6579006E-03
 -1.8928321E-03 -2.0938583E-03 -2.2641032E-03 -2.4064633E-03 -2.5236066E-03
 -2.6179932E-03 -2.6918903E-03 -2.7473823E-03 -2.7863835E-03 -2.8106517E-03
 -2.8217977E-03 -2.8212953E-03 -2.8104933E-03 -2.7906236E-03 -2.7628094E-03
 -2.7280750E-03 -2.6873501E-03 -2.6414827E-03 -2.5912372E-03 -2.5373104E-03
 -2.4803299E-03 -2.4208622E-03 -2.3594180E-03 -2.2964554E-03 -2.2323867E-03
 -2.1675790E-03 -2.1023597E-03 -2.0370209E-03 -1.9718201E-03 -1.9069856E-03
 -1.8427157E-03
 0.8098542 0.7961597 0.7824612 0.7687976 0.7551955
 0.7416911 0.7283064 0.7150734 0.7020095 0.6891417
 0.6764830 0.6640552 0.6516274 0.6391996 0.6267718
 0.6143440 0.6019162 0.5894884 0.5770606 0.5646328
 0.5522050 0.5397772 0.5273494 0.5149215 0.5024937
 0.4900660 0.4776382 0.4652104 0.4527826 0.4403549
 0.4279271 0.4154993 0.4030715 0.3906437 0.3782160
 0.3657882 0.3533604 0.3412867 0.3295567 0.3181673
 0.3071084 0.2963754 0.2859628 0.2758652 0.2660781
 0.2565964 0.2474153 0.2385298 0.2299347 0.2216247
 0.2135944 0.2058379 0.1983494 0.1911227 0.1841516
 0.1774296 0.1709500 0.1647064 0.1586918 0.1528995
 0.1473228 0.1419548 0.1367888 0.1318180 0.1270359
 0.1224359 0.1180115 0.1137564 0.1096645 0.1057298
 0.1019463 9.8308325E-02 9.4810322E-02 9.1446817E-02 8.8212639E-02
 8.5102729E-02 8.2112134E-02 7.9236180E-02 7.6470241E-02 7.3809944E-02
 7.1251087E-02 6.8789519E-02 6.6421360E-02 6.4142801E-02 6.1950240E-02
 5.9840199E-02 5.7809304E-02 5.5854369E-02 5.3972285E-02 5.2160122E-02
 5.0415050E-02 4.8734333E-02 4.7115393E-02 4.5555718E-02 4.4052936E-02
 4.2604733E-02 4.1208938E-02 3.9863463E-02 3.8566273E-02 3.7315469E-02
 3.6109179E-02
 0.3016693 0.2926793 0.2839695 0.2755662 0.2674631
 0.2596839 0.2522173 0.2450852 0.2382725 0.2317996
 0.2256485 0.2198383 0.2140281 0.2082179 0.2024077
 0.1965975 0.1907874 0.1849772 0.1791670 0.1733568
 0.1675466 0.1617364 0.1559262 0.1501161 0.1443059
 0.1384957 0.1326855 0.1268753 0.1210651 0.1152549
 0.1094448 0.1036346 9.7824380E-02 9.2014194E-02 8.6204007E-02
 8.0393821E-02 7.4583635E-02 6.9037445E-02 6.3756704E-02 5.8743000E-02
 5.3995214E-02 4.9510144E-02 4.5284119E-02 4.1312382E-02 3.7588064E-02
 3.4104150E-02 3.0852299E-02 2.7823593E-02 2.5009001E-02 2.2398831E-02
 1.9983254E-02 1.7752329E-02 1.5696103E-02 1.3804711E-02 1.2068444E-02
 1.0477826E-02 9.0236152E-03 7.6968805E-03 6.4890315E-03 5.3918599E-03
 4.3975012E-03 3.4984769E-03 2.6877287E-03 1.9585397E-03 1.3046145E-03
 7.2002161E-04 1.9918515E-04 -2.6309455E-04 -6.7169528E-04 -1.0311540E-03
 -1.3456945E-03 -1.6192547E-03 -1.8554758E-03 -2.0577435E-03 -2.2291867E-03
 -2.3726947E-03 -2.4909426E-03 -2.5863885E-03 -2.6613036E-03 -2.7177704E-03
 -2.7577069E-03 -2.7828712E-03 -2.7948762E-03 -2.7951982E-03 -2.7851865E-03
 -2.7660758E-03 -2.7389899E-03 -2.7049540E-03 -2.6649009E-03 -2.6196777E-03
 -2.5700536E-03 -2.5167235E-03 -2.4603179E-03 -2.4014041E-03 -2.3404935E-03
 -2.2780458E-03 -2.2144734E-03 -2.1501458E-03 -2.0853898E-03 -2.0204992E-03
 -1.9557322E-03
 0.8215165 0.8081705 0.7948204 0.7815053 0.7682518
 0.7550959 0.7420598 0.7291754 0.7164601 0.7039410
 0.6916311 0.6795520 0.6674730 0.6553939 0.6433148
 0.6312358 0.6191567 0.6070777 0.5949986 0.5829195
 0.5708405 0.5587614 0.5466824 0.5346033 0.5225242
 0.5104452 0.4983661 0.4862871 0.4742081 0.4621290
 0.4500500 0.4379710 0.4258919 0.4138129 0.4017339
 0.3896548 0.3775758 0.3654968 0.3534178 0.3413387
 0.3296070 0.3182143 0.3071548 0.2964217 0.2860093
 0.2759126 0.2661269 0.2566464 0.2474668 0.2385827
 0.2299891 0.2216805 0.2136513 0.2058959 0.1984082
 0.1911822 0.1842116 0.1774899 0.1710105 0.1647668
 0.1587521 0.1529595 0.1473824 0.1420138 0.1368471
 0.1318756 0.1270926 0.1224917 0.1180663 0.1138102
 0.1097173 0.1057814 0.1019968 9.8357655E-02 9.4858438E-02
 9.1493785E-02 8.8258423E-02 8.5147321E-02 8.2155548E-02 7.9278387E-02
 7.6511316E-02 7.3849864E-02 7.1289875E-02 6.8827190E-02 6.6457912E-02
 6.4178303E-02 6.1984684E-02 5.9873611E-02 5.7841707E-02 5.5885773E-02
 5.4002747E-02 5.2189648E-02 5.0443668E-02 4.8762064E-02 4.7142264E-02
 4.5581743E-02 4.4078138E-02 4.2629164E-02 4.1232601E-02 3.9886378E-02
 3.8588468E-02
 0.3026974 0.2939849 0.2855527 0.2774270 0.2696016
 0.2621000 0.2549111 0.2480567 0.2415217 0.2353266
 0.2294532 0.2239207 0.2183883 0.2128559 0.2073235
 0.2017910 0.1962586 0.1907262 0.1851937 0.1796613
 0.1741289 0.1685965 0.1630640 0.1575316 0.1519992
 0.1464667 0.1409343 0.1354019 0.1298695 0.1243370
 0.1188046 0.1132722 0.1077397 0.1022073 9.6674889E-02
 9.1142461E-02 8.5610032E-02 8.0077603E-02 7.4545175E-02 6.9012746E-02
 6.3749023E-02 5.8747709E-02 5.4010078E-02 4.9534444E-02 4.5316495E-02
 4.1351173E-02 3.7632022E-02 3.4152322E-02 3.0903742E-02 2.7877657E-02
 2.5064848E-02 2.2455905E-02 2.0040965E-02 1.7810263E-02 1.5753886E-02
 1.3862033E-02 1.2125065E-02 1.0533519E-02 9.0782177E-03 7.7502704E-03
 6.5411227E-03 5.4425681E-03 4.4467882E-03 3.5463176E-03 2.7340977E-03
 2.0034558E-03 1.3480824E-03 7.6206314E-04 2.3982827E-04 -2.2382096E-04
 -6.3374458E-04 -9.9448906E-04 -1.3102733E-03 -1.5850323E-03 -1.8224114E-03
 -2.0257891E-03 -2.1983001E-03 -2.3428339E-03 -2.4620651E-03 -2.5584558E-03
 -2.6342734E-03 -2.6916068E-03 -2.7323724E-03 -2.7583311E-03 -2.7710972E-03
 -2.7721487E-03 -2.7628364E-03 -2.7443958E-03 -2.7179532E-03 -2.6845348E-03
 -2.6450749E-03 -2.6004207E-03 -2.5513438E-03 -2.4985408E-03 -2.4426423E-03
 -2.3842163E-03 -2.3237763E-03 -2.2617825E-03 -2.1986484E-03 -2.1347424E-03
 -2.0703953E-03
 0.8173187 0.8046567 0.7919908 0.7793598 0.7667903
 0.7543187 0.7419667 0.7297666 0.7177356 0.7059008
 0.6942753 0.6828807 0.6714861 0.6600915 0.6486968
 0.6373022 0.6259076 0.6145130 0.6031184 0.5917237
 0.5803291 0.5689345 0.5575399 0.5461453 0.5347506
 0.5233560 0.5119614 0.5005668 0.4891722 0.4777775
 0.4663829 0.4549883 0.4435937 0.4321991 0.4208044
 0.4094098 0.3980152 0.3866206 0.3752260 0.3638313
 0.3524367 0.3410421 0.3296475 0.3182529 0.3071938
 0.2964613 0.2860489 0.2759540 0.2661695 0.2566907
 0.2475124 0.2386299 0.2300376 0.2217302 0.2137022
 0.2059478 0.1984610 0.1912356 0.1842654 0.1775440
 0.1710648 0.1648211 0.1588062 0.1530133 0.1474358
 0.1420667 0.1368994 0.1319272 0.1271434 0.1225416
 0.1181154 0.1138584 0.1097645 0.1058276 0.1020419
 9.8401733E-02 9.4901457E-02 9.1535747E-02 8.8299304E-02 8.5187107E-02
 8.2194299E-02 7.9316087E-02 7.6547965E-02 7.3885493E-02 7.1324453E-02
 6.8860792E-02 6.6490538E-02 6.4209960E-02 6.2015403E-02 5.9903398E-02
 5.7870608E-02 5.5913787E-02 5.4029908E-02 5.2215971E-02 5.0469179E-02
 4.8786782E-02 4.7166202E-02 4.5604952E-02 4.4100616E-02 4.2650938E-02
 4.1253690E-02
 0.2913756 0.2832025 0.2753097 0.2677234 0.2604373
 0.2534751 0.2468257 0.2405107 0.2345152 0.2288595
 0.2235256 0.2185327 0.2135397 0.2085468 0.2035539
 0.1985609 0.1935680 0.1885751 0.1835821 0.1785892
 0.1735963 0.1686033 0.1636104 0.1586175 0.1536245
 0.1486316 0.1436387 0.1386458 0.1336528 0.1286599
 0.1236670 0.1186740 0.1136811 0.1086882 0.1036953
 9.8702334E-02 9.3709409E-02 8.8716485E-02 8.3723560E-02 7.8730635E-02
 7.3737711E-02 6.8744786E-02 6.3751861E-02 5.8758941E-02 5.4030973E-02
 4.9561933E-02 4.5350440E-02 4.1390512E-02 3.7675593E-02 3.4198701E-02
 3.0952504E-02 2.7928371E-02 2.5116799E-02 2.2508543E-02 2.0093963E-02
 1.7863201E-02 1.5806476E-02 1.3914043E-02 1.2176255E-02 1.0583744E-02
 9.1273626E-03 7.7982242E-03 6.5878248E-03 5.4879589E-03 4.4908361E-03
 3.5890250E-03 2.7754535E-03 2.0434712E-03 1.3867718E-03 7.9944544E-04
 2.7594494E-04 -1.8894087E-04 -6.0006196E-04 -9.6196594E-04 -1.2788705E-03
 -1.5547029E-03 -1.7931169E-03 -1.9974888E-03 -2.1709544E-03 -2.3164046E-03
 -2.4365117E-03 -2.5337413E-03 -2.6103631E-03 -2.6684650E-03 -2.7099671E-03
 -2.7366308E-03 -2.7500715E-03 -2.7517690E-03 -2.7430761E-03 -2.7252282E-03
 -2.6993551E-03 -2.6664820E-03 -2.6275462E-03 -2.5833952E-03 -2.5348023E-03
 -2.4824645E-03 -2.4270131E-03 -2.3690185E-03 -2.3089936E-03 -2.2473999E-03
 -2.1846523E-03
 0.8250971 0.8127691 0.8004372 0.7881402 0.7759049
 0.7637674 0.7517496 0.7398837 0.7281870 0.7166865
 0.7053954 0.6943352 0.6832749 0.6722147 0.6611544
 0.6500942 0.6390340 0.6279737 0.6169135 0.6058533
 0.5947930 0.5837328 0.5726725 0.5616123 0.5505521
 0.5394918 0.5284316 0.5173714 0.5063111 0.4952509
 0.4841906 0.4731304 0.4620702 0.4510099 0.4399497
 0.4288895 0.4178292 0.4067690 0.3957087 0.3846485
 0.3735883 0.3625280 0.3514678 0.3404076 0.3293473
 0.3182871 0.3072268 0.2964936 0.2860841 0.2759903
 0.2662075 0.2567297 0.2475530 0.2386720 0.2300810
 0.2217748 0.2137478 0.2059943 0.1985082 0.1912834
 0.1843137 0.1775925 0.1711134 0.1648697 0.1588546
 0.1530615 0.1474836 0.1421141 0.1369462 0.1319733
 0.1271889 0.1225863 0.1181593 0.1139014 0.1098066
 0.1058688 0.1020822 9.8441102E-02 9.4939873E-02 9.1573171E-02
 8.8335797E-02 8.5222647E-02 8.2228877E-02 7.9349726E-02 7.6580644E-02
 7.3917270E-02 7.1355328E-02 6.8890765E-02 6.6519640E-02 6.4238183E-02
 6.2042799E-02 5.9929959E-02 5.7896364E-02 5.5938769E-02 5.4054122E-02
 5.2239440E-02 5.0491903E-02 4.8808821E-02 4.7187552E-02 4.5625634E-02
 4.4120651E-02
 0.2891706 0.2812687 0.2736470 0.2663319 0.2593170
 0.2526260 0.2462478 0.2402041 0.2344798 0.2290954
 0.2240328 0.2193111 0.2145895 0.2098679 0.2051462
 0.2004246 0.1957029 0.1909813 0.1862597 0.1815380
 0.1768164 0.1720947 0.1673731 0.1626514 0.1579298
 0.1532082 0.1484865 0.1437649 0.1390432 0.1343216
 0.1296000 0.1248783 0.1201567 0.1154350 0.1107134
 0.1059918 0.1012701 9.6548513E-02 9.1826878E-02 8.7105244E-02
 8.2383610E-02 7.7661976E-02 7.2940342E-02 6.8218708E-02 6.3497074E-02
 5.8775440E-02 5.4053806E-02 4.9589984E-02 4.5385171E-02 4.1428793E-02
 3.7717260E-02 3.4242596E-02 3.0998060E-02 2.7975319E-02 2.5164774E-02
 2.2556968E-02 2.0142408E-02 1.7911404E-02 1.5854249E-02 1.3961087E-02
 1.2222481E-02 1.0628981E-02 9.1715371E-03 7.8412658E-03 6.6296621E-03
 5.5285785E-03 4.5302133E-03 3.6271519E-03 2.8123369E-03 2.0791171E-03
 1.4212158E-03 8.3270587E-04 3.0805421E-04 -1.5794829E-04 -5.7015597E-04
 -9.3309785E-04 -1.2510067E-03 -1.5278041E-03 -1.7671445E-03 -1.9724083E-03
 -2.1467234E-03 -2.2929900E-03 -2.4138782E-03 -2.5118559E-03 -2.5891927E-03
 -2.6479785E-03 -2.6901341E-03 -2.7174233E-03 -2.7314625E-03 -2.7337326E-03
 -2.7255886E-03 -2.7082670E-03 -2.6828970E-03 -2.6505070E-03 -2.6120346E-03
 -2.5683290E-03 -2.5201628E-03 -2.4682372E-03 -2.4131816E-03 -2.3555672E-03
 -2.2959097E-03
 0.7998778 0.7885165 0.7771511 0.7658209 0.7545522
 0.7433814 0.7323305 0.7214314 0.7107016 0.7001681
 0.6898439 0.6797507 0.6696575 0.6595643 0.6494710
 0.6393778 0.6292846 0.6191914 0.6090982 0.5990050
 0.5889118 0.5788186 0.5687253 0.5586321 0.5485389
 0.5384457 0.5283525 0.5182593 0.5081661 0.4980729
 0.4879797 0.4778864 0.4677932 0.4577000 0.4476068
 0.4375136 0.4274204 0.4173272 0.4072340 0.3971407
 0.3870475 0.3769543 0.3668611 0.3567679 0.3466747
 0.3365815 0.3264883 0.3163950 0.3063018 0.2962086
 0.2861154 0.2760222 0.2662405 0.2567647 0.2475893
 0.2387093 0.2301197 0.2218147 0.2137886 0.2060358
 0.1985505 0.1913262 0.1843569 0.1776359 0.1711569
 0.1649131 0.1588980 0.1531046 0.1475263 0.1421563
 0.1369880 0.1320146 0.1272295 0.1226263 0.1181984
 0.1139398 0.1098442 0.1059057 0.1021182 9.8476209E-02
 9.4974168E-02 9.1606595E-02 8.8368364E-02 8.5254364E-02 8.2259715E-02
 7.9379737E-02 7.6609820E-02 7.3945619E-02 7.1382858E-02 6.8917476E-02
 6.6545583E-02 6.4263359E-02 6.2067222E-02 5.9953649E-02 5.7919335E-02
 5.5961035E-02 5.4075684E-02 5.2260362E-02 5.0512172E-02 4.8828460E-02
 4.7206577E-02
 0.2611500 0.2540135 0.2471572 0.2406076 0.2343581
 0.2284326 0.2228198 0.2175416 0.2125829 0.2079639
 0.2036668 0.1997107 0.1957545 0.1917984 0.1878423
 0.1838861 0.1799300 0.1759738 0.1720177 0.1680616
 0.1641054 0.1601493 0.1561932 0.1522370 0.1482809
 0.1443247 0.1403686 0.1364125 0.1324563 0.1285002
 0.1245440 0.1205879 0.1166318 0.1126756 0.1087195
 0.1047633 0.1008072 9.6851066E-02 9.2894927E-02 8.8938788E-02
 8.4982648E-02 8.1026509E-02 7.7070370E-02 7.3114231E-02 6.9158092E-02
 6.5201953E-02 6.1245818E-02 5.7289686E-02 5.3333554E-02 4.9377423E-02
 4.5421291E-02 4.1465160E-02 3.7757218E-02 3.4283932E-02 3.1041257E-02
 2.8019285E-02 2.5208870E-02 2.2601284E-02 2.0186646E-02 1.7955296E-02
 1.5897490E-02 1.4003628E-02 1.2264155E-02 1.0669714E-02 9.2112077E-03
 7.8798551E-03 6.6671292E-03 5.5649094E-03 4.5653931E-03 3.6611762E-03
 2.8452328E-03 2.1108896E-03 1.4518891E-03 8.6230610E-04 3.3660562E-04
 -1.3040208E-04 -5.4358196E-04 -9.0746180E-04 -1.2262708E-03 -1.5039357E-03
 -1.7441029E-03 -1.9501606E-03 -2.1252378E-03 -2.2722327E-03 -2.3938187E-03
 -2.4924609E-03 -2.5704333E-03 -2.6298275E-03 -2.6725635E-03 -2.7004085E-03
 -2.7149790E-03 -2.7177574E-03 -2.7100998E-03 -2.6932440E-03 -2.6683209E-03
 -2.6363586E-03 -2.5982959E-03 -2.5549848E-03 -2.5071981E-03 -2.4556348E-03
 -2.4009293E-03
 0.8198264 0.8084697 0.7971090 0.7857835 0.7745196
 0.7633536 0.7523076 0.7414134 0.7306886 0.7201600
 0.7098409 0.6997528 0.6896647 0.6795766 0.6694885
 0.6594005 0.6493124 0.6392243 0.6291362 0.6190481
 0.6089600 0.5988719 0.5887839 0.5786958 0.5686077
 0.5585196 0.5484315 0.5383434 0.5282553 0.5181673
 0.5080792 0.4979911 0.4879030 0.4778149 0.4677268
 0.4576387 0.4475507 0.4374626 0.4273745 0.4172864
 0.4071983 0.3971102 0.3870221 0.3769341 0.3668460
 0.3567579 0.3466698 0.3365817 0.3264936 0.3164055
 0.3063174 0.2962294 0.2861413 0.2760532 0.2662719
 0.2567952 0.2476213 0.2387427 0.2301545 0.2218502
 0.2138249 0.2060731 0.1985884 0.1913645 0.1843954
 0.1776748 0.1711958 0.1649521 0.1589367 0.1531431
 0.1475646 0.1421942 0.1370254 0.1320514 0.1272658
 0.1226619 0.1182335 0.1139742 0.1098778 0.1059385
 0.1021503 9.8507583E-02 9.5004760E-02 9.1636427E-02 8.8397406E-02
 8.5282654E-02 8.2287244E-02 7.9406507E-02 7.6635845E-02 7.3970884E-02
 7.1407408E-02 6.8941317E-02 6.6568725E-02 6.4285807E-02 6.2089000E-02
 5.9974767E-02 5.7939794E-02 5.5980884E-02 5.4094926E-02 5.2279003E-02
 5.0530240E-02
 0.2689436 0.2618099 0.2549565 0.2484096 0.2421630
 0.2362404 0.2306305 0.2253551 0.2203993 0.2157833
 0.2114891 0.2075358 0.2035826 0.1996294 0.1956761
 0.1917229 0.1877697 0.1838164 0.1798632 0.1759100
 0.1719567 0.1680035 0.1640503 0.1600970 0.1561438
 0.1521906 0.1482373 0.1442841 0.1403309 0.1363776
 0.1324244 0.1284712 0.1245179 0.1205647 0.1166115
 0.1126583 0.1087051 0.1047518 0.1007986 9.6845396E-02
 9.2892177E-02 8.8938959E-02 8.4985740E-02 8.1032522E-02 7.7079304E-02
 7.3126085E-02 6.9172867E-02 6.5219648E-02 6.1266433E-02 5.7313219E-02
 5.3360004E-02 4.9406789E-02 4.5453575E-02 4.1500360E-02 3.7792999E-02
 3.4322031E-02 3.1081015E-02 2.8059121E-02 2.5249343E-02 2.2641528E-02
 2.0226790E-02 1.7995019E-02 1.5936635E-02 1.4041981E-02 1.2301642E-02
 1.0706321E-02 9.2468206E-03 7.9144510E-03 6.7006694E-03 5.5973837E-03
 4.5968220E-03 3.6915559E-03 2.8745707E-03 2.1392084E-03 1.4792004E-03
 8.8865211E-04 3.6201091E-04 -1.0590702E-04 -5.1996281E-04 -8.8468665E-04
 -1.2043003E-03 -1.4827398E-03 -1.7236490E-03 -1.9304171E-03 -2.1061758E-03
 -2.2538193E-03 -2.3760260E-03 -2.4752615E-03 -2.5538001E-03 -2.6137347E-03
 -2.6569874E-03 -2.6853250E-03 -2.7003672E-03 -2.7035971E-03 -2.6963716E-03
 -2.6799294E-03 -2.6554016E-03 -2.6238190E-03 -2.5861203E-03 -2.5431565E-03
 -2.4957049E-03

XFOILinterface/XFOIL/orrs/osm.0280

 256 2.800001
 0.0000000E+00 8.5867168E-03 1.7259302E-02 2.6018610E-02 3.4865513E-02
 4.3800887E-02 5.2825615E-02 6.1940584E-02 7.1146704E-02 8.0444887E-02
 8.9836054E-02 9.9321127E-02 0.1089011 0.1185768 0.1283493
 0.1382195 0.1481884 0.1582570 0.1684263 0.1786973
 0.1890710 0.1995484 0.2101306 0.2208186 0.2316135
 0.2425164 0.2535282 0.2646503 0.2758835 0.2872290
 0.2986880 0.3102616 0.3219509 0.3337571 0.3456814
 0.3577250 0.3698889 0.3821745 0.3945830 0.4071155
 0.4197734 0.4325578 0.4454702 0.4585116 0.4716834
 0.4849869 0.4984235 0.5119945 0.5257012 0.5395449
 0.5535270 0.5676490 0.5819122 0.5963180 0.6108680
 0.6255633 0.6404057 0.6553965 0.6705372 0.6858292
 0.7012742 0.7168736 0.7326291 0.7485421 0.7646142
 0.7808470 0.7972422 0.8138013 0.8305261 0.8474181
 0.8644789 0.8817104 0.8991143 0.9166921 0.9344457
 0.9523768 0.9704872 0.9887789 1.007253 1.025913
 1.044758 1.063793 1.083017 1.102434 1.122045
 1.141852 1.161858 1.182063 1.202470 1.223082
 1.243899 1.264925 1.286161 1.307609 1.329272
 1.351151 1.373249 1.395569 1.418111 1.440879
 1.463874 1.487100 1.510557 1.534250 1.558179
 1.582347 1.606758 1.631412 1.656313 1.681463
 1.706864 1.732519 1.758431 1.784602 1.811035
 1.837732 1.864696 1.891929 1.919435 1.947216
 1.975275 2.003615 2.032238 2.061146 2.090345
 2.119835 2.149620 2.179703 2.210087 2.240774
 2.271769 2.303073 2.334691 2.366624 2.398877
 2.431453 2.464354 2.497584 2.531147 2.565045
 2.599282 2.633861 2.668787 2.704061 2.739688
 2.775672 2.812015 2.848722 2.885796 2.923241
 2.961060 2.999257 3.037836 3.076802 3.116156
 3.155905 3.196050 3.236598 3.277550 3.318912
 3.360688 3.402882 3.445497 3.488539 3.532011
 3.575918 3.620263 3.665053 3.710290 3.755980
 3.802126 3.848734 3.895808 3.943353 3.991373
 4.039873 4.088859 4.138334 4.188304 4.238774
 4.289749 4.341233 4.393232 4.445751 4.498795
 4.552370 4.606480 4.661131 4.716329 4.772079
 4.828386 4.885257 4.942697 5.000710 5.059304
 5.118484 5.178256 5.238625 5.299597 5.361180
 5.423379 5.486199 5.549648 5.613731 5.678455
 5.743826 5.809851 5.876536 5.943889 6.011914
 6.080620 6.150013 6.220099 6.290887 6.362382
 6.434593 6.507525 6.581188 6.655586 6.730729
 6.806623 6.883276 6.960695 7.038888 7.117863
 7.197629 7.278192 7.359560 7.441743 7.524746
 7.608581 7.693253 7.778772 7.865147 7.952385
 8.040495 8.129487 8.219369 8.310149 8.401837
 8.494442 8.587973 8.682440 8.777850 8.874216
 8.971545 9.069846 9.169132 9.269409 9.370690
 9.472983 9.576299 9.680650 9.786042 9.892488
 10.00000
 0.0000000E+00 1.4162895E-03 2.8487102E-03 4.2974623E-03 5.7627503E-03
 7.2447797E-03 8.7437602E-03 1.0259903E-02 1.1793423E-02 1.3344539E-02
 1.4913472E-02 1.6500445E-02 1.8105686E-02 1.9729424E-02 2.1371894E-02
 2.3033326E-02 2.4713969E-02 2.6414059E-02 2.8133845E-02 2.9873580E-02
 3.1633507E-02 3.3413894E-02 3.5214990E-02 3.7037067E-02 3.8880385E-02
 4.0745221E-02 4.2631846E-02 4.4540539E-02 4.6471577E-02 4.8425250E-02
 5.0401848E-02 5.2401658E-02 5.4424986E-02 5.6472130E-02 5.8543388E-02
 6.0639083E-02 6.2759511E-02 6.4905003E-02 6.7075871E-02 6.9272451E-02
 7.1495056E-02 7.3744036E-02 7.6019727E-02 7.8322463E-02 8.0652595E-02
 8.3010472E-02 8.5396461E-02 8.7810904E-02 9.0254180E-02 9.2726640E-02
 9.5228672E-02 9.7760655E-02 0.1003230 0.1029160 0.1055401
 0.1081958 0.1108833 0.1136032 0.1163557 0.1191414
 0.1219607 0.1248139 0.1277015 0.1306240 0.1335817
 0.1365751 0.1396047 0.1426709 0.1457742 0.1489149
 0.1520936 0.1553108 0.1585669 0.1618623 0.1651976
 0.1685733 0.1719897 0.1754475 0.1789470 0.1824889
 0.1860735 0.1897014 0.1933731 0.1970890 0.2008497
 0.2046557 0.2085075 0.2124056 0.2163505 0.2203427
 0.2243827 0.2284710 0.2326081 0.2367945 0.2410308
 0.2453174 0.2496548 0.2540435 0.2584841 0.2629769
 0.2675224 0.2721212 0.2767736 0.2814803 0.2862414
 0.2910577 0.2959294 0.3008569 0.3058408 0.3108813
 0.3159789 0.3211338 0.3263465 0.3316174 0.3369465
 0.3423344 0.3477811 0.3532871 0.3588524 0.3644773
 0.3701620 0.3759064 0.3817109 0.3875754 0.3935000
 0.3994845 0.4055291 0.4116336 0.4177979 0.4240217
 0.4303049 0.4366471 0.4430481 0.4495075 0.4560247
 0.4625993 0.4692308 0.4759183 0.4826614 0.4894591
 0.4963107 0.5032151 0.5101713 0.5171783 0.5242350
 0.5313398 0.5384915 0.5456888 0.5529299 0.5602134
 0.5675371 0.5748995 0.5822984 0.5897319 0.5971977
 0.6046934 0.6122167 0.6197649 0.6273354 0.6349254
 0.6425320 0.6501520 0.6577825 0.6654199 0.6730611
 0.6807024 0.6883401 0.6959704 0.7035897 0.7111936
 0.7187783 0.7263394 0.7338727 0.7413737 0.7488379
 0.7562609 0.7636378 0.7709641 0.7782348 0.7854453
 0.7925906 0.7996659 0.8066661 0.8135866 0.8204224
 0.8271686 0.8338203 0.8403729 0.8468217 0.8531621
 0.8593896 0.8654999 0.8714887 0.8773519 0.8830858
 0.8886865 0.8941507 0.8994749 0.9046564 0.9096922
 0.9145800 0.9193174 0.9239028 0.9283344 0.9326110
 0.9367318 0.9406961 0.9445037 0.9481547 0.9516495
 0.9549892 0.9581747 0.9612076 0.9640898 0.9668235
 0.9694111 0.9718555 0.9741598 0.9763274 0.9783618
 0.9802672 0.9820474 0.9837068 0.9852498 0.9866812
 0.9880055 0.9892277 0.9903526 0.9913852 0.9923303
 0.9931929 0.9939780 0.9946904 0.9953347 0.9959158
 0.9964381 0.9969061 0.9973239 0.9976958 0.9980255
 0.9983168 0.9985733 0.9987982 0.9989946 0.9991656
 0.9993138 0.9994416 0.9995515 0.9996455 0.9997256
 0.9997935 0.9998507 0.9998989 0.9999390 0.9999724
 1.000000
 0.1648267 0.1650525 0.1652806 0.1655109 0.1657435
 0.1659784 0.1662157 0.1664552 0.1666971 0.1669414
 0.1671881 0.1674372 0.1676886 0.1679425 0.1681989
 0.1684576 0.1687189 0.1689826 0.1692488 0.1695176
 0.1697888 0.1700625 0.1703388 0.1706177 0.1708991
 0.1711830 0.1714695 0.1717586 0.1720503 0.1723446
 0.1726414 0.1729409 0.1732429 0.1735475 0.1738548
 0.1741646 0.1744770 0.1747920 0.1751096 0.1754298
 0.1757526 0.1760779 0.1764058 0.1767362 0.1770691
 0.1774045 0.1777425 0.1780829 0.1784257 0.1787710
 0.1791187 0.1794688 0.1798211 0.1801758 0.1805328
 0.1808920 0.1812533 0.1816168 0.1819824 0.1823501
 0.1827197 0.1830912 0.1834646 0.1838397 0.1842166
 0.1845952 0.1849753 0.1853568 0.1857398 0.1861240
 0.1865094 0.1868960 0.1872834 0.1876718 0.1880608
 0.1884505 0.1888406 0.1892311 0.1896217 0.1900123
 0.1904027 0.1907928 0.1911824 0.1915714 0.1919593
 0.1923462 0.1927317 0.1931157 0.1934979 0.1938780
 0.1942558 0.1946310 0.1950033 0.1953725 0.1957382
 0.1961001 0.1964578 0.1968111 0.1971595 0.1975027
 0.1978403 0.1981719 0.1984970 0.1988152 0.1991260
 0.1994291 0.1997238 0.2000097 0.2002863 0.2005529
 0.2008091 0.2010542 0.2012876 0.2015087 0.2017169
 0.2019114 0.2020917 0.2022569 0.2024063 0.2025391
 0.2026547 0.2027520 0.2028305 0.2028890 0.2029269
 0.2029432 0.2029369 0.2029070 0.2028527 0.2027729
 0.2026666 0.2025328 0.2023703 0.2021780 0.2019549
 0.2016999 0.2014116 0.2010891 0.2007311 0.2003363
 0.1999036 0.1994317 0.1989193 0.1983653 0.1977683
 0.1971270 0.1964403 0.1957067 0.1949251 0.1940942
 0.1932127 0.1922794 0.1912930 0.1902524 0.1891563
 0.1880037 0.1867934 0.1855244 0.1841957 0.1828062
 0.1813551 0.1798415 0.1782646 0.1766239 0.1749186
 0.1731483 0.1713126 0.1694111 0.1674436 0.1654102
 0.1633108 0.1611457 0.1589152 0.1566198 0.1542603
 0.1518373 0.1493520 0.1468055 0.1441991 0.1415345
 0.1388134 0.1360377 0.1332097 0.1303316 0.1274061
 0.1244358 0.1214239 0.1183735 0.1152879 0.1121708
 0.1090259 0.1058572 0.1026687 9.9464752E-02 9.6249819E-02
 9.3028463E-02 8.9805357E-02 8.6585313E-02 8.3373182E-02 8.0173872E-02
 7.6992407E-02 7.3833808E-02 7.0703059E-02 6.7605101E-02 6.4544946E-02
 6.1527368E-02 5.8557112E-02 5.5638831E-02 5.2776963E-02 4.9975820E-02
 4.7239423E-02 4.4571638E-02 4.1976079E-02 3.9456028E-02 3.7014499E-02
 3.4654208E-02 3.2377511E-02 3.0186445E-02 2.8082706E-02 2.6067566E-02
 2.4142001E-02 2.2306569E-02 2.0561485E-02 1.8906586E-02 1.7341349E-02
 1.5864888E-02 1.4476037E-02 1.3173250E-02 1.1954696E-02 1.0818301E-02
 9.7616771E-03 8.7822406E-03 7.8771878E-03 7.0435433E-03 6.2781721E-03
 5.5778315E-03 4.9391631E-03 4.3587675E-03 3.8332017E-03 3.3590072E-03
 2.9327492E-03 2.5510290E-03 2.2105093E-03 1.9079500E-03 1.6401950E-03
 1.4042213E-03 1.1971332E-03 1.0161697E-03 8.5873582E-04 7.2238216E-04
 6.0483074E-04 5.0396315E-04 4.1782396E-04 3.4462605E-04 2.8273545E-04
 2.3067309E-04
 101 51
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000 5.050000 5.100000 5.150000 5.200000
 5.250000 5.300000 5.350000 5.400000 5.450000
 5.500000 5.550000 5.600000 5.650000 5.700000
 5.750000 5.800000 5.850000 5.900000 5.950000
 6.000000
 -1.500001 -1.450001 -1.400001 -1.350001 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -0.1000000 -5.0000012E-02
 0.0000000E+00 4.9999952E-02 0.1000000 0.1500000 0.2000000
 0.2500000 0.3000000 0.3500000 0.4000000 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 2.7019631E-02 2.6685160E-02 2.6235504E-02 2.5688356E-02 2.5059512E-02
 2.4364108E-02 2.3616228E-02 2.2828918E-02 2.2014152E-02 2.1182803E-02
 2.0344740E-02 1.9508671E-02 1.8682344E-02 1.7872477E-02 1.7084718E-02
 1.6323714E-02 1.5593047E-02 1.4895304E-02 1.4232032E-02 1.3603820E-02
 1.3010373E-02 1.2450641E-02 1.1922964E-02 1.1425280E-02 1.0955301E-02
 1.0510682E-02 1.0089176E-02 9.6887043E-03 9.3074478E-03 8.9438278E-03
 8.5965106E-03 8.2643842E-03 7.9465266E-03 7.6421527E-03 7.3505952E-03
 7.0712706E-03 6.8036574E-03 6.5472717E-03 6.3016680E-03 6.0664141E-03
 5.8410950E-03 5.6253076E-03 5.4186527E-03 5.2207462E-03 5.0312052E-03
 4.8496523E-03 4.6757273E-03 4.5090714E-03 4.3493412E-03 4.1962080E-03
 4.0493505E-03 3.9084670E-03 3.7732664E-03 3.6434748E-03 3.5188242E-03
 3.3990724E-03 3.2839777E-03 3.1733261E-03 3.0668981E-03 2.9645034E-03
 2.8659517E-03 2.7710658E-03 2.6796784E-03 2.5916372E-03 2.5067872E-03
 2.4249945E-03 2.3461257E-03 2.2700520E-03 2.1966589E-03 2.1258339E-03
 2.0574706E-03 1.9914669E-03 1.9277302E-03 1.8661667E-03 1.8066944E-03
 1.7492296E-03 1.6936972E-03 1.6400174E-03 1.5881252E-03 1.5379495E-03
 1.4894305E-03 1.4425035E-03 1.3971094E-03 1.3531971E-03 1.3107061E-03
 1.2695931E-03 1.2298044E-03 1.1912907E-03 1.1540115E-03 1.1179253E-03
 1.0829839E-03 1.0491540E-03 1.0163942E-03 9.8466687E-04 9.5393939E-04
 9.2417945E-04 8.9535053E-04 8.6742261E-04 8.4036659E-04 8.1414985E-04
 7.8875036E-04
 7.5546630E-02 7.0680335E-02 6.6046499E-02 6.1642837E-02 5.7465713E-02
 5.3510424E-02 4.9771342E-02 4.6242144E-02 4.2915944E-02 3.9785501E-02
 3.6843311E-02 3.4081824E-02 3.1493519E-02 2.9071031E-02 2.6807228E-02
 2.4695285E-02 2.2728657E-02 2.0901114E-02 1.9206649E-02 1.7639406E-02
 1.6193597E-02 1.4863354E-02 1.3642685E-02 1.2525421E-02 1.1505200E-02
 1.0575523E-02 9.7298389E-03 8.9616282E-03 8.2645258E-03 7.6323841E-03
 7.0593623E-03 6.5399716E-03 6.0691005E-03 5.6420420E-03 5.2544731E-03
 4.9024527E-03 4.5824079E-03 4.2911000E-03 4.0256158E-03 3.7833233E-03
 3.5618632E-03 3.3591136E-03 3.1731736E-03 3.0023411E-03 2.8450922E-03
 2.7000634E-03 2.5660396E-03 2.4419331E-03 2.3267765E-03 2.2197079E-03
 2.1199556E-03 2.0268338E-03 1.9397305E-03 1.8580989E-03 1.7814497E-03
 1.7093489E-03 1.6414043E-03 1.5772691E-03 1.5166289E-03 1.4592042E-03
 1.4047425E-03 1.3530160E-03 1.3038220E-03 1.2569756E-03 1.2123098E-03
 1.1696744E-03 1.1289339E-03 1.0899613E-03 1.0526467E-03 1.0168855E-03
 9.8258525E-04 9.4965892E-04 9.1802783E-04 8.8761962E-04 8.5836888E-04
 8.3021383E-04 8.0309849E-04 7.7696808E-04 7.5177755E-04 7.2747929E-04
 7.0403336E-04 6.8140042E-04 6.5954187E-04 6.3842750E-04 6.1802159E-04
 5.9829728E-04 5.7922438E-04 5.6077732E-04 5.4293138E-04 5.2566221E-04
 5.0894846E-04 4.9276854E-04 4.7710311E-04 4.6193157E-04 4.4723795E-04
 4.3300478E-04 4.1921454E-04 4.0585236E-04 3.9290334E-04 3.8035319E-04
 3.6818886E-04
 2.8391995E-02 2.8060660E-02 2.7616085E-02 2.7075520E-02 2.6455104E-02
 2.5770040E-02 2.5034426E-02 2.4261346E-02 2.3462545E-02 2.2648789E-02
 2.1829601E-02 2.1013329E-02 2.0207131E-02 1.9416992E-02 1.8647717E-02
 1.7902974E-02 1.7185334E-02 1.6496334E-02 1.5836613E-02 1.5206028E-02
 1.4603832E-02 1.4028850E-02 1.3479642E-02 1.2954670E-02 1.2452401E-02
 1.1971392E-02 1.1510354E-02 1.1068145E-02 1.0643790E-02 1.0236450E-02
 9.8453984E-03 9.4699953E-03 9.1096759E-03 8.7639205E-03 8.4322309E-03
 8.1141274E-03 7.8091444E-03 7.5168153E-03 7.2366884E-03 6.9682989E-03
 6.7111878E-03 6.4648981E-03 6.2289741E-03 6.0029747E-03 5.7864571E-03
 5.5789873E-03 5.3801527E-03 5.1895455E-03 5.0067739E-03 4.8314664E-03
 4.6632597E-03 4.5018164E-03 4.3468047E-03 4.1979221E-03 4.0548677E-03
 3.9173719E-03 3.7851692E-03 3.6580074E-03 3.5356565E-03 3.4178970E-03
 3.3045155E-03 3.1953133E-03 3.0901104E-03 2.9887264E-03 2.8909950E-03
 2.7967615E-03 2.7058742E-03 2.6181964E-03 2.5335886E-03 2.4519279E-03
 2.3730951E-03 2.2969749E-03 2.2234595E-03 2.1524462E-03 2.0838368E-03
 2.0175432E-03 1.9534659E-03 1.8915322E-03 1.8316531E-03 1.7737552E-03
 1.7177640E-03 1.6636088E-03 1.6112261E-03 1.5605505E-03 1.5115145E-03
 1.4640687E-03 1.4181504E-03 1.3737049E-03 1.3306859E-03 1.2890383E-03
 1.2487182E-03 1.2096784E-03 1.1718768E-03 1.1352660E-03 1.0998091E-03
 1.0654657E-03 1.0322004E-03 9.9997653E-04 9.6875901E-04 9.3851349E-04
 9.0920768E-04
 7.4100293E-02 6.9234222E-02 6.4603113E-02 6.0204867E-02 5.6035940E-02
 5.2091826E-02 4.8367146E-02 4.4855855E-02 4.1551340E-02 3.8446706E-02
 3.5534818E-02 3.2808460E-02 3.0260410E-02 2.7883550E-02 2.5670836E-02
 2.3615349E-02 2.1710226E-02 1.9948658E-02 1.8323762E-02 1.6828576E-02
 1.5456015E-02 1.4198841E-02 1.3049714E-02 1.2001263E-02 1.1046136E-02
 1.0177110E-02 9.3871867E-03 8.6696418E-03 8.0181221E-03 7.4266433E-03
 6.8896394E-03 6.4019621E-03 5.9588766E-03 5.5560530E-03 5.1895422E-03
 4.8557548E-03 4.5514400E-03 4.2736572E-03 4.0197554E-03 3.7873439E-03
 3.5742710E-03 3.3786027E-03 3.1986027E-03 3.0327167E-03 2.8795493E-03
 2.7378520E-03 2.6065107E-03 2.4845274E-03 2.3710127E-03 2.2651702E-03
 2.1662891E-03 2.0737352E-03 1.9869395E-03 1.9053958E-03 1.8286487E-03
 1.7562927E-03 1.6879630E-03 1.6233303E-03 1.5621025E-03 1.5040163E-03
 1.4488319E-03 1.3963338E-03 1.3463304E-03 1.2986445E-03 1.2531183E-03
 1.2096073E-03 1.1679803E-03 1.1281172E-03 1.0899110E-03 1.0532603E-03
 1.0180754E-03 9.8427245E-04 9.5177395E-04 9.2051062E-04 8.9041668E-04
 8.6143316E-04 8.3350117E-04 8.0657349E-04 7.8059873E-04 7.5553358E-04
 7.3133613E-04 7.0796761E-04 6.8539230E-04 6.6357682E-04 6.4248603E-04
 6.2209374E-04 6.0236925E-04 5.8328576E-04 5.6482037E-04 5.4694695E-04
 5.2964455E-04 5.1289093E-04 4.9666635E-04 4.8095113E-04 4.6572709E-04
 4.5097590E-04 4.3668275E-04 4.2283145E-04 4.0940539E-04 3.9639097E-04
 3.8377437E-04
 2.9996326E-02 2.9672479E-02 2.9237108E-02 2.8707605E-02 2.8100159E-02
 2.7429754E-02 2.6710458E-02 2.5955060E-02 2.5175055E-02 2.4380656E-02
 2.3580737E-02 2.2782881E-02 2.1993341E-02 2.1217108E-02 2.0457985E-02
 1.9718669E-02 1.9000888E-02 1.8305587E-02 1.7633053E-02 1.6983135E-02
 1.6355380E-02 1.5749179E-02 1.5163855E-02 1.4598752E-02 1.4053258E-02
 1.3526835E-02 1.3019001E-02 1.2529328E-02 1.2057438E-02 1.1602963E-02
 1.1165538E-02 1.0744797E-02 1.0340357E-02 9.9518262E-03 9.5787728E-03
 9.2207519E-03 8.8773035E-03 8.5479422E-03 8.2321772E-03 7.9295021E-03
 7.6394142E-03 7.3613990E-03 7.0949504E-03 6.8395678E-03 6.5947622E-03
 6.3600531E-03 6.1349710E-03 5.9190728E-03 5.7119285E-03 5.5131195E-03
 5.3222543E-03 5.1389541E-03 4.9628620E-03 4.7936365E-03 4.6309563E-03
 4.4745193E-03 4.3240339E-03 4.1792290E-03 4.0398431E-03 3.9056330E-03
 3.7763717E-03 3.6518355E-03 3.5318222E-03 3.4161357E-03 3.3045884E-03
 3.1970073E-03 3.0932277E-03 2.9930922E-03 2.8964481E-03 2.8031606E-03
 2.7130859E-03 2.6261029E-03 2.5420894E-03 2.4609261E-03 2.3825052E-03
 2.3067209E-03 2.2334722E-03 2.1626658E-03 2.0942090E-03 2.0280115E-03
 1.9639954E-03 1.9020791E-03 1.8421836E-03 1.7842405E-03 1.7281735E-03
 1.6739212E-03 1.6214185E-03 1.5705999E-03 1.5214117E-03 1.4737911E-03
 1.4276915E-03 1.3830513E-03 1.3398306E-03 1.2979707E-03 1.2574327E-03
 1.2181685E-03 1.1801353E-03 1.1432929E-03 1.1076010E-03 1.0730211E-03
 1.0395184E-03
 7.2465613E-02 6.7603320E-02 6.2979423E-02 5.8592111E-02 5.4438151E-02
 5.0513133E-02 4.6812084E-02 4.3329265E-02 4.0058434E-02 3.6992971E-02
 3.4125984E-02 3.1450387E-02 2.8958935E-02 2.6644291E-02 2.4498936E-02
 2.2515237E-02 2.0685352E-02 1.9001279E-02 1.7454823E-02 1.6037660E-02
 1.4741404E-02 1.3557675E-02 1.2478204E-02 1.1494942E-02 1.0600108E-02
 9.7862892E-03 9.0464689E-03 8.3740763E-03 7.7629914E-03 7.2075441E-03
 6.7025130E-03 6.2431046E-03 5.8249393E-03 5.4440261E-03 5.0967308E-03
 4.7797584E-03 4.4901264E-03 4.2251339E-03 3.9823488E-03 3.7595751E-03
 3.5548343E-03 3.3663502E-03 3.1925237E-03 3.0319248E-03 2.8832702E-03
 2.7454079E-03 2.6173091E-03 2.4980544E-03 2.3868198E-03 2.2828684E-03
 2.1855407E-03 2.0942478E-03 2.0084609E-03 1.9277064E-03 1.8515610E-03
 1.7796441E-03 1.7116138E-03 1.6471621E-03 1.5860132E-03 1.5279165E-03
 1.4726492E-03 1.4200056E-03 1.3698024E-03 1.3218728E-03 1.2760658E-03
 1.2322426E-03 1.1902782E-03 1.1500583E-03 1.1114782E-03 1.0744412E-03
 1.0388605E-03 1.0046539E-03 9.7174902E-04 9.4007526E-04 9.0956956E-04
 8.8017399E-04 8.5183355E-04 8.2449749E-04 7.9811952E-04 7.7265484E-04
 7.4806286E-04 7.2430645E-04 7.0134754E-04 6.7915389E-04 6.5769261E-04
 6.3693547E-04 6.1685260E-04 5.9741869E-04 5.7860912E-04 5.6039821E-04
 5.4276478E-04 5.2568695E-04 5.0914602E-04 4.9312005E-04 4.7759237E-04
 4.6254508E-04 4.4796130E-04 4.3382510E-04 4.2012159E-04 4.0683532E-04
 3.9395309E-04
 3.1884193E-02 3.1573437E-02 3.1152986E-02 3.0639881E-02 3.0050190E-02
 2.9398741E-02 2.8699070E-02 2.7963353E-02 2.7202345E-02 2.6425360E-02
 2.5640292E-02 2.4853673E-02 2.4070727E-02 2.3295537E-02 2.2531155E-02
 2.1779817E-02 2.1043085E-02 2.0322049E-02 1.9617461E-02 1.8929843E-02
 1.8259598E-02 1.7607046E-02 1.6972451E-02 1.6356051E-02 1.5758049E-02
 1.5178591E-02 1.4617775E-02 1.4075636E-02 1.3552149E-02 1.3047205E-02
 1.2560636E-02 1.2092188E-02 1.1641558E-02 1.1208384E-02 1.0792241E-02
 1.0392668E-02 1.0009175E-02 9.6412292E-03 9.2882989E-03 8.9498227E-03
 8.6252401E-03 8.3139855E-03 8.0155050E-03 7.7292449E-03 7.4546640E-03
 7.1912422E-03 6.9384705E-03 6.6958601E-03 6.4629344E-03 6.2392536E-03
 6.0243835E-03 5.8179158E-03 5.6194561E-03 5.4286453E-03 5.2451249E-03
 5.0685648E-03 4.8986520E-03 4.7350852E-03 4.5775841E-03 4.4258824E-03
 4.2797234E-03 4.1388716E-03 4.0031001E-03 3.8721855E-03 3.7459354E-03
 3.6241480E-03 3.5066414E-03 3.3932442E-03 3.2837859E-03 3.1781096E-03
 3.0760695E-03 2.9775193E-03 2.8823202E-03 2.7903514E-03 2.7014783E-03
 2.6155906E-03 2.5325743E-03 2.4523220E-03 2.3747294E-03 2.2996971E-03
 2.2271350E-03 2.1569505E-03 2.0890585E-03 2.0233726E-03 1.9598196E-03
 1.8983224E-03 1.8388040E-03 1.7812001E-03 1.7254435E-03 1.6714651E-03
 1.6192072E-03 1.5686066E-03 1.5196120E-03 1.4721651E-03 1.4262160E-03
 1.3817078E-03 1.3386002E-03 1.2968415E-03 1.2563850E-03 1.2171889E-03
 1.1792158E-03
 7.0622392E-02 6.5770164E-02 6.1161358E-02 5.6794241E-02 5.2665930E-02
 4.8772551E-02 4.5109343E-02 4.1670829E-02 3.8450915E-02 3.5443015E-02
 3.2640047E-02 3.0034514E-02 2.7618499E-02 2.5383722E-02 2.3321498E-02
 2.1422848E-02 1.9678514E-02 1.8079087E-02 1.6615080E-02 1.5277069E-02
 1.4055806E-02 1.2942299E-02 1.1927916E-02 1.1004456E-02 1.0164167E-02
 9.3997894E-03 8.7045673E-03 8.0722310E-03 7.4970028E-03 6.9735656E-03
 6.4970404E-03 6.0629714E-03 5.6672911E-03 5.3062998E-03 4.9766325E-03
 4.6752389E-03 4.3993560E-03 4.1464870E-03 3.9143777E-03 3.7009933E-03
 3.5045044E-03 3.3232642E-03 3.1557933E-03 3.0007639E-03 2.8569857E-03
 2.7233928E-03 2.5990291E-03 2.4830382E-03 2.3746549E-03 2.2731931E-03
 2.1780385E-03 2.0886397E-03 2.0045030E-03 1.9251858E-03 1.8502910E-03
 1.7794592E-03 1.7123716E-03 1.6487356E-03 1.5882929E-03 1.5308056E-03
 1.4760611E-03 1.4238668E-03 1.3740489E-03 1.3264456E-03 1.2809152E-03
 1.2373248E-03 1.1955533E-03 1.1554934E-03 1.1170420E-03 1.0801078E-03
 1.0446074E-03 1.0104608E-03 9.7759627E-04 9.4594934E-04 9.1545604E-04
 8.8606070E-04 8.5770956E-04 8.3035527E-04 8.0394966E-04 7.7845040E-04
 7.5381825E-04 7.3001481E-04 7.0700556E-04 6.8475597E-04 6.6323706E-04
 6.4241816E-04 6.2227092E-04 6.0277054E-04 5.8389304E-04 5.6561205E-04
 5.4790726E-04 5.3075713E-04 5.1414303E-04 4.9804314E-04 4.8244125E-04
 4.6731910E-04 4.5265944E-04 4.3844813E-04 4.2466860E-04 4.1130668E-04
 3.9834948E-04
 3.4121819E-02 3.3831064E-02 3.3431694E-02 3.2940343E-02 3.2372467E-02
 3.1742148E-02 3.1062005E-02 3.0343154E-02 2.9595226E-02 2.8826408E-02
 2.8043557E-02 2.7252328E-02 2.6457356E-02 2.5662437E-02 2.4870705E-02
 2.4084777E-02 2.3306899E-02 2.2539046E-02 2.1782948E-02 2.1040175E-02
 2.0312125E-02 1.9600039E-02 1.8904997E-02 1.8227927E-02 1.7569583E-02
 1.6930562E-02 1.6311307E-02 1.5712097E-02 1.5133081E-02 1.4574263E-02
 1.4035533E-02 1.3516672E-02 1.3017366E-02 1.2537232E-02 1.2075813E-02
 1.1632595E-02 1.1207039E-02 1.0798551E-02 1.0406546E-02 1.0030397E-02
 9.6694976E-03 9.3232216E-03 8.9909602E-03 8.6721098E-03 8.3660930E-03
 8.0723297E-03 7.7902814E-03 7.5194081E-03 7.2592115E-03 7.0092017E-03
 6.7689153E-03 6.5379110E-03 6.3157636E-03 6.1020800E-03 5.8964747E-03
 5.6985938E-03 5.5080927E-03 5.3246478E-03 5.1479451E-03 4.9777026E-03
 4.8136418E-03 4.6554967E-03 4.5030215E-03 4.3559764E-03 4.2141383E-03
 4.0772981E-03 3.9452468E-03 3.8177955E-03 3.6947590E-03 3.5759639E-03
 3.4612464E-03 3.3504402E-03 3.2434009E-03 3.1399808E-03 3.0400422E-03
 2.9434576E-03 2.8500955E-03 2.7598368E-03 2.6725703E-03 2.5881850E-03
 2.5065746E-03 2.4276352E-03 2.3512731E-03 2.2773969E-03 2.2059174E-03
 2.1367501E-03 2.0698083E-03 2.0050218E-03 1.9423068E-03 1.8815997E-03
 1.8228255E-03 1.7659187E-03 1.7108141E-03 1.6574510E-03 1.6057738E-03
 1.5557186E-03 1.5072407E-03 1.4602728E-03 1.4147774E-03 1.3706994E-03
 1.3279908E-03
 6.8553701E-02 6.3722491E-02 5.9141699E-02 5.4809846E-02 5.0724424E-02
 4.6881735E-02 4.3277077E-02 3.9904844E-02 3.6758546E-02 3.3830903E-02
 3.1113869E-02 2.8598702E-02 2.6276043E-02 2.4136035E-02 2.2168426E-02
 2.0362750E-02 1.8708441E-02 1.7195038E-02 1.5812265E-02 1.4550173E-02
 1.3399246E-02 1.2350422E-02 1.1395164E-02 1.0525478E-02 9.7338995E-03
 9.0135057E-03 8.3578937E-03 7.7611567E-03 7.2178720E-03 6.7230528E-03
 6.2721409E-03 5.8609764E-03 5.4857563E-03 5.1430361E-03 4.8296726E-03
 4.5428225E-03 4.2799083E-03 4.0385998E-03 3.8167951E-03 3.6125984E-03
 3.4243006E-03 3.2503670E-03 3.0894163E-03 2.9402119E-03 2.8016421E-03
 2.6727100E-03 2.5525244E-03 2.4402821E-03 2.3352704E-03 2.2368440E-03
 2.1444270E-03 2.0575027E-03 1.9756069E-03 1.8983238E-03 1.8252762E-03
 1.7561303E-03 1.6905805E-03 1.6283540E-03 1.5692019E-03 1.5129021E-03
 1.4592515E-03 1.4080674E-03 1.3591828E-03 1.3124458E-03 1.2677188E-03
 1.2248773E-03 1.1838039E-03 1.1443953E-03 1.1065542E-03 1.0701914E-03
 1.0352269E-03 1.0015847E-03 9.6919545E-04 9.3799498E-04 9.0792374E-04
 8.7892776E-04 8.5095403E-04 8.2395552E-04 7.9788786E-04 7.7270967E-04
 7.4838195E-04 7.2486745E-04 7.0213189E-04 6.8014371E-04 6.5887294E-04
 6.3829025E-04 6.1836786E-04 5.9908273E-04 5.8040838E-04 5.6232128E-04
 5.4480269E-04 5.2782940E-04 5.1138236E-04 4.9544277E-04 4.7999309E-04
 4.6501652E-04 4.5049679E-04 4.3641700E-04 4.2276349E-04 4.0952189E-04
 3.9667852E-04
 3.6793385E-02 3.6529575E-02 3.6156271E-02 3.5689179E-02 3.5142571E-02
 3.4529250E-02 3.3860520E-02 3.3146273E-02 3.2395098E-02 3.1614415E-02
 3.0810699E-02 2.9989611E-02 2.9156191E-02 2.8314969E-02 2.7470056E-02
 2.6625223E-02 2.5783902E-02 2.4949241E-02 2.4124069E-02 2.3310915E-02
 2.2512011E-02 2.1729292E-02 2.0964378E-02 2.0218624E-02 1.9493110E-02
 1.8788660E-02 1.8105859E-02 1.7445084E-02 1.6806532E-02 1.6190214E-02
 1.5596001E-02 1.5023640E-02 1.4472763E-02 1.3942934E-02 1.3433622E-02
 1.2944259E-02 1.2474224E-02 1.2022866E-02 1.1589532E-02 1.1173535E-02
 1.0774201E-02 1.0390857E-02 1.0022831E-02 9.6694771E-03 9.3301618E-03
 9.0042688E-03 8.6912084E-03 8.3904024E-03 8.1013171E-03 7.8234207E-03
 7.5562159E-03 7.2992253E-03 7.0519927E-03 6.8140943E-03 6.5851100E-03
 6.3646589E-03 6.1523682E-03 5.9478837E-03 5.7508685E-03 5.5610146E-03
 5.3780125E-03 5.2015763E-03 5.0314399E-03 4.8673386E-03 4.7090277E-03
 4.5562750E-03 4.4088517E-03 4.2665545E-03 4.1291723E-03 3.9965194E-03
 3.8684080E-03 3.7446618E-03 3.6251133E-03 3.5096069E-03 3.3979844E-03
 3.2901012E-03 3.1858189E-03 3.0850070E-03 2.9875315E-03 2.8932693E-03
 2.8021131E-03 2.7139375E-03 2.6286456E-03 2.5461270E-03 2.4662861E-03
 2.3890266E-03 2.3142595E-03 2.2418925E-03 2.1718487E-03 2.1040412E-03
 2.0383957E-03 1.9748339E-03 1.9132902E-03 1.8536922E-03 1.7959740E-03
 1.7400751E-03 1.6859255E-03 1.6334777E-03 1.5826644E-03 1.5334382E-03
 1.4857404E-03
 6.6251978E-02 6.1460230E-02 5.6928471E-02 5.2655298E-02 4.8638109E-02
 4.4872832E-02 4.1354053E-02 3.8075082E-02 3.5028055E-02 3.2204024E-02
 2.9593125E-02 2.7184760E-02 2.4967793E-02 2.2930790E-02 2.1062195E-02
 1.9350532E-02 1.7784573E-02 1.6353441E-02 1.5046720E-02 1.3854515E-02
 1.2767485E-02 1.1776865E-02 1.0874459E-02 1.0052658E-02 9.3043875E-03
 8.6231027E-03 8.0027739E-03 7.4378420E-03 6.9232043E-03 6.4541814E-03
 6.0264897E-03 5.6362180E-03 5.2798004E-03 4.9539944E-03 4.6558543E-03
 4.3827044E-03 4.1321260E-03 3.9019331E-03 3.6901489E-03 3.4949938E-03
 3.3148665E-03 3.1483227E-03 2.9940675E-03 2.8509395E-03 2.7178940E-03
 2.5939946E-03 2.4784030E-03 2.3703647E-03 2.2692068E-03 2.1743239E-03
 2.0851709E-03 2.0012609E-03 1.9221556E-03 1.8474621E-03 1.7768237E-03
 1.7099226E-03 1.6464713E-03 1.5862082E-03 1.5288988E-03 1.4743317E-03
 1.4223127E-03 1.3726682E-03 1.3252398E-03 1.2798810E-03 1.2364615E-03
 1.1948597E-03 1.1549671E-03 1.1166811E-03 1.0799115E-03 1.0445702E-03
 1.0105813E-03 9.7787217E-04 9.4637566E-04 9.1603037E-04 8.8677852E-04
 8.5856690E-04 8.3134737E-04 8.0507318E-04 7.7970087E-04 7.5518969E-04
 7.3150435E-04 7.0860703E-04 6.8646646E-04 6.6505017E-04 6.4432935E-04
 6.2427664E-04 6.0486462E-04 5.8607029E-04 5.6786987E-04 5.5023917E-04
 5.3315976E-04 5.1660999E-04 5.0057145E-04 4.8502625E-04 4.6995585E-04
 4.5534520E-04 4.4117673E-04 4.2743853E-04 4.1411244E-04 4.0118714E-04
 3.8864775E-04
 4.0002093E-02 3.9768357E-02 3.9419912E-02 3.8971040E-02 3.8434412E-02
 3.7821498E-02 3.7142627E-02 3.6407128E-02 3.5623558E-02 3.4799792E-02
 3.3943176E-02 3.3060573E-02 3.2158416E-02 3.1242713E-02 3.0319026E-02
 2.9392462E-02 2.8467670E-02 2.7548814E-02 2.6639584E-02 2.5743190E-02
 2.4862403E-02 2.3999549E-02 2.3156544E-02 2.2334944E-02 2.1535948E-02
 2.0760443E-02 2.0009041E-02 1.9282097E-02 1.8579768E-02 1.7902015E-02
 1.7248634E-02 1.6619289E-02 1.6013544E-02 1.5430869E-02 1.4870655E-02
 1.4332256E-02 1.3814971E-02 1.3318074E-02 1.2840841E-02 1.2382518E-02
 1.1942366E-02 1.1519657E-02 1.1113659E-02 1.0723675E-02 1.0349018E-02
 9.9890260E-03 9.6430629E-03 9.3105147E-03 8.9907916E-03 8.6833285E-03
 8.3875963E-03 8.1030717E-03 7.8292731E-03 7.5657261E-03 7.3119919E-03
 7.0676566E-03 6.8323091E-03 6.6055707E-03 6.3870759E-03 6.1764857E-03
 5.9734653E-03 5.7777055E-03 5.5889082E-03 5.4067932E-03 5.2310843E-03
 5.0615342E-03 4.8978901E-03 4.7399225E-03 4.5874049E-03 4.4401311E-03
 4.2978926E-03 4.1604973E-03 4.0277657E-03 3.8995144E-03 3.7755764E-03
 3.6557927E-03 3.5400044E-03 3.4280680E-03 3.3198376E-03 3.2151793E-03
 3.1139613E-03 3.0160614E-03 2.9213643E-03 2.8297431E-03 2.7411019E-03
 2.6553264E-03 2.5723167E-03 2.4919785E-03 2.4142154E-03 2.3389366E-03
 2.2660620E-03 2.1955022E-03 2.1271815E-03 2.0610227E-03 1.9969479E-03
 1.9348926E-03 1.8747874E-03 1.8165665E-03 1.7601599E-03 1.7055197E-03
 1.6525758E-03
 6.3729413E-02 5.9006445E-02 5.4555319E-02 5.0373886E-02 4.6458311E-02
 4.2802889E-02 3.9400212E-02 3.6241367E-02 3.3316184E-02 3.0613495E-02
 2.8121458E-02 2.5827816E-02 2.3720166E-02 2.1786178E-02 2.0013774E-02
 1.8391266E-02 1.6907429E-02 1.5551593E-02 1.4313657E-02 1.3184112E-02
 1.2154059E-02 1.1215165E-02 1.0359675E-02 9.5803952E-03 8.8706426E-03
 8.2242433E-03 7.6355017E-03 7.0991674E-03 6.6104247E-03 6.1648474E-03
 5.7583898E-03 5.3873551E-03 5.0483723E-03 4.7383755E-03 4.4545787E-03
 4.1944552E-03 3.9557177E-03 3.7362997E-03 3.5343354E-03 3.3481435E-03
 3.1762084E-03 3.0171701E-03 2.8698035E-03 2.7330113E-03 2.6058070E-03
 2.4873056E-03 2.3767126E-03 2.2733158E-03 2.1764769E-03 2.0856212E-03
 2.0002355E-03 1.9198562E-03 1.8440672E-03 1.7724929E-03 1.7047980E-03
 1.6406785E-03 1.5798588E-03 1.5220939E-03 1.4671570E-03 1.4148467E-03
 1.3649783E-03 1.3173851E-03 1.2719159E-03 1.2284322E-03 1.1868057E-03
 1.1469250E-03 1.1086809E-03 1.0719795E-03 1.0367301E-03 1.0028527E-03
 9.7027171E-04 9.3891664E-04 9.0872409E-04 8.7963510E-04 8.5159583E-04
 8.2455407E-04 7.9846103E-04 7.7327475E-04 7.4895192E-04 7.2545541E-04
 7.0274813E-04 6.8079727E-04 6.5957062E-04 6.3903717E-04 6.1916996E-04
 5.9994205E-04 5.8132806E-04 5.6330481E-04 5.4584898E-04 5.2893953E-04
 5.1255699E-04 4.9668213E-04 4.8129485E-04 4.6638038E-04 4.5191913E-04
 4.3789853E-04 4.2430163E-04 4.1111451E-04 3.9832250E-04 3.8591307E-04
 3.7387467E-04
 4.3863803E-02 4.3651320E-02 4.3311872E-02 4.2858418E-02 4.2302806E-02
 4.1656390E-02 4.0930029E-02 4.0134192E-02 3.9278992E-02 3.8374141E-02
 3.7428904E-02 3.6452048E-02 3.5451740E-02 3.4435552E-02 3.3410355E-02
 3.2382354E-02 3.1357050E-02 3.0339301E-02 2.9333293E-02 2.8342612E-02
 2.7370267E-02 2.6418753E-02 2.5490070E-02 2.4585806E-02 2.3707137E-02
 2.2854907E-02 2.2029659E-02 2.1231668E-02 2.0460989E-02 1.9717481E-02
 1.9000841E-02 1.8310631E-02 1.7646305E-02 1.7007239E-02 1.6392734E-02
 1.5802039E-02 1.5234382E-02 1.4688953E-02 1.4164944E-02 1.3661537E-02
 1.3177923E-02 1.2713308E-02 1.2266901E-02 1.1837954E-02 1.1425717E-02
 1.1029482E-02 1.0648562E-02 1.0282293E-02 9.9300472E-03 9.5912144E-03
 9.2652142E-03 8.9514991E-03 8.6495327E-03 8.3588213E-03 8.0788750E-03
 7.8092478E-03 7.5495015E-03 7.2992211E-03 7.0580072E-03 6.8254932E-03
 6.6013150E-03 6.3851387E-03 6.1766310E-03 5.9754909E-03 5.7814205E-03
 5.5941376E-03 5.4133763E-03 5.2388762E-03 5.0703972E-03 4.9077068E-03
 4.7505773E-03 4.5988006E-03 4.4521727E-03 4.3104952E-03 4.1735847E-03
 4.0412596E-03 3.9133551E-03 3.7897055E-03 3.6701516E-03 3.5545470E-03
 3.4427491E-03 3.3346154E-03 3.2300155E-03 3.1288269E-03 3.0309225E-03
 2.9361844E-03 2.8445097E-03 2.7557830E-03 2.6699034E-03 2.5867724E-03
 2.5062913E-03 2.4283705E-03 2.3529262E-03 2.2798683E-03 2.2091181E-03
 2.1405953E-03 2.0742221E-03 2.0099350E-03 1.9476514E-03 1.8873162E-03
 1.8288544E-03
 6.1032832E-02 5.6420401E-02 5.2091297E-02 4.8041038E-02 4.4262882E-02
 4.0748101E-02 3.7486397E-02 3.4466229E-02 3.1675246E-02 2.9100621E-02
 2.6729360E-02 2.4548508E-02 2.2545388E-02 2.0707691E-02 1.9023580E-02
 1.7481763E-02 1.6071498E-02 1.4782639E-02 1.3605615E-02 1.2531435E-02
 1.1551698E-02 1.0658532E-02 9.8446012E-03 9.1031026E-03 8.4277056E-03
 7.8125559E-03 7.2522475E-03 6.7417962E-03 6.2766219E-03 5.8525191E-03
 5.4656384E-03 5.1124617E-03 4.7897832E-03 4.4946880E-03 4.2245253E-03
 3.9768922E-03 3.7496130E-03 3.5407241E-03 3.3484532E-03 3.1712018E-03
 3.0075307E-03 2.8561472E-03 2.7158873E-03 2.5857098E-03 2.4646730E-03
 2.3519387E-03 2.2467503E-03 2.1484299E-03 2.0563698E-03 1.9700236E-03
 1.8888999E-03 1.8125569E-03 1.7405988E-03 1.6726672E-03 1.6084411E-03
 1.5476302E-03 1.4899718E-03 1.4352287E-03 1.3831872E-03 1.3336523E-03
 1.2864477E-03 1.2414138E-03 1.1984059E-03 1.1572910E-03 1.1179456E-03
 1.0802625E-03 1.0441387E-03 1.0094820E-03 9.7620703E-04 9.4423641E-04
 9.1349724E-04 8.8392285E-04 8.5545250E-04 8.2802906E-04 8.0159976E-04
 7.7611522E-04 7.5153017E-04 7.2780316E-04 7.0489437E-04 6.8276521E-04
 6.6138420E-04 6.4071629E-04 6.2073185E-04 6.0140330E-04 5.8270211E-04
 5.6460354E-04 5.4708455E-04 5.3012121E-04 5.1369355E-04 4.9777975E-04
 4.8236220E-04 4.6742123E-04 4.5294006E-04 4.3890232E-04 4.2529328E-04
 4.1209653E-04 3.9929771E-04 3.8688417E-04 3.7484182E-04 3.6315949E-04
 3.5182337E-04
 4.8486393E-02 4.8263270E-02 4.7893383E-02 4.7390219E-02 4.6767224E-02
 4.6037912E-02 4.5215689E-02 4.4313699E-02 4.3344665E-02 4.2320680E-02
 4.1253097E-02 4.0152442E-02 3.9028317E-02 3.7889414E-02 3.6743481E-02
 3.5597377E-02 3.4457065E-02 3.3327710E-02 3.2213714E-02 3.1118751E-02
 3.0045887E-02 2.8997583E-02 2.7975794E-02 2.6982011E-02 2.6017312E-02
 2.5082422E-02 2.4177749E-02 2.3303440E-02 2.2459419E-02 2.1645416E-02
 2.0860996E-02 2.0105598E-02 1.9378569E-02 1.8679168E-02 1.8006586E-02
 1.7359985E-02 1.6738491E-02 1.6141204E-02 1.5567245E-02 1.5015716E-02
 1.4485730E-02 1.3976423E-02 1.3486941E-02 1.3016477E-02 1.2564224E-02
 1.2129411E-02 1.1711300E-02 1.1309179E-02 1.0922368E-02 1.0550209E-02
 1.0192079E-02 9.8473802E-03 9.5155425E-03 9.1960197E-03 8.8882940E-03
 8.5918754E-03 8.3062891E-03 8.0310851E-03 7.7658333E-03 7.5101312E-03
 7.2635799E-03 7.0258197E-03 6.7964890E-03 6.5752501E-03 6.3617844E-03
 6.1557819E-03 5.9569501E-03 5.7650092E-03 5.5796918E-03 5.4007410E-03
 5.2279099E-03 5.0609694E-03 4.8996918E-03 4.7438657E-03 4.5932848E-03
 4.4477563E-03 4.3070875E-03 4.1711042E-03 4.0396303E-03 3.9124987E-03
 3.7895590E-03 3.6706524E-03 3.5556348E-03 3.4443671E-03 3.3367185E-03
 3.2325592E-03 3.1317642E-03 3.0342136E-03 2.9397937E-03 2.8484007E-03
 2.7599232E-03 2.6742662E-03 2.5913231E-03 2.5110133E-03 2.4332353E-03
 2.3579118E-03 2.2849506E-03 2.2142825E-03 2.1458219E-03 2.0795004E-03
 2.0152433E-03
 5.8256533E-02 5.3803150E-02 4.9638629E-02 4.5754593E-02 4.2140596E-02
 3.8784914E-02 3.5674952E-02 3.2797638E-02 3.0139741E-02 2.7688097E-02
 2.5429778E-02 2.3352217E-02 2.1443270E-02 1.9691281E-02 1.8085098E-02
 1.6614109E-02 1.5268229E-02 1.4037924E-02 1.2914185E-02 1.1888536E-02
 1.0953023E-02 1.0100192E-02 9.3230791E-03 8.6152041E-03 7.9705380E-03
 7.3834909E-03 6.8488987E-03 6.3619949E-03 5.9183990E-03 5.5140872E-03
 5.1453724E-03 4.8088911E-03 4.5015733E-03 4.2206291E-03 3.9635212E-03
 3.7279546E-03 3.5118470E-03 3.3133223E-03 3.1306848E-03 2.9624084E-03
 2.8071171E-03 2.6635763E-03 2.5306724E-03 2.4074093E-03 2.2928908E-03
 2.1863098E-03 2.0869451E-03 1.9941488E-03 1.9073378E-03 1.8259881E-03
 1.7496299E-03 1.6778392E-03 1.6102359E-03 1.5464771E-03 1.4862539E-03
 1.4292875E-03 1.3753260E-03 1.3241410E-03 1.2755269E-03 1.2292980E-03
 1.1852825E-03 1.1433302E-03 1.1032976E-03 1.0650581E-03 1.0284964E-03
 9.9350465E-04 9.5998746E-04 9.2785456E-04 8.9702423E-04 8.6742186E-04
 8.3897793E-04 8.1162993E-04 7.8531570E-04 7.5998431E-04 7.3558255E-04
 7.1206695E-04 6.8939122E-04 6.6751562E-04 6.4640283E-04 6.2601757E-04
 6.0632668E-04 5.8729970E-04 5.6890713E-04 5.5112230E-04 5.3392077E-04
 5.1727687E-04 5.0116912E-04 4.8557593E-04 4.7047657E-04 4.5585306E-04
 4.4168657E-04 4.2795963E-04 4.1465682E-04 4.0176368E-04 3.8926350E-04
 3.7714327E-04 3.6538759E-04 3.5398811E-04 3.4292910E-04 3.3220017E-04
 3.2178991E-04
 5.3935722E-02 5.3641185E-02 5.3177539E-02 5.2561905E-02 5.1811717E-02
 5.0944276E-02 4.9976408E-02 4.8924230E-02 4.7802873E-02 4.6626382E-02
 4.5407642E-02 4.4158299E-02 4.2888813E-02 4.1608457E-02 4.0325385E-02
 3.9046690E-02 3.7778467E-02 3.6525939E-02 3.5293452E-02 3.4084633E-02
 3.2902427E-02 3.1749163E-02 3.0626643E-02 2.9536199E-02 2.8478736E-02
 2.7454814E-02 2.6464682E-02 2.5508314E-02 2.4585482E-02 2.3695761E-02
 2.2838574E-02 2.2013232E-02 2.1218941E-02 2.0454844E-02 1.9720025E-02
 1.9013532E-02 1.8334385E-02 1.7681608E-02 1.7054211E-02 1.6451221E-02
 1.5871679E-02 1.5314642E-02 1.4779187E-02 1.4264426E-02 1.3769505E-02
 1.3293583E-02 1.2835866E-02 1.2395580E-02 1.1971992E-02 1.1564400E-02
 1.1172120E-02 1.0794510E-02 1.0430953E-02 1.0080856E-02 9.7436644E-03
 9.4188396E-03 9.1058658E-03 8.8042589E-03 8.5135493E-03 8.2332967E-03
 7.9630716E-03 7.7024782E-03 7.4511240E-03 7.2086384E-03 6.9746729E-03
 6.7488933E-03 6.5309764E-03 6.3206200E-03 6.1175162E-03 5.9214029E-03
 5.7320027E-03 5.5490606E-03 5.3723352E-03 5.2015842E-03 5.0365869E-03
 4.8771333E-03 4.7230101E-03 4.5740223E-03 4.4299848E-03 4.2907051E-03
 4.1560242E-03 4.0257657E-03 3.8997764E-03 3.7778961E-03 3.6599815E-03
 3.5458889E-03 3.4354881E-03 3.3286470E-03 3.2252378E-03 3.1251430E-03
 3.0282408E-03 2.9344310E-03 2.8435981E-03 2.7556478E-03 2.6704734E-03
 2.5879871E-03 2.5080901E-03 2.4307026E-03 2.3557351E-03 2.2831063E-03
 2.2127407E-03
 5.5536274E-02 5.1281162E-02 4.7308870E-02 4.3607708E-02 4.0165089E-02
 3.6968138E-02 3.4003921E-02 3.1259589E-02 2.8722534E-02 2.6380435E-02
 2.4221305E-02 2.2233546E-02 2.0405943E-02 1.8727722E-02 1.7188519E-02
 1.5778448E-02 1.4488052E-02 1.3308362E-02 1.2230866E-02 1.1247513E-02
 1.0350742E-02 9.5334304E-03 8.7889144E-03 8.1109833E-03 7.4938447E-03
 6.9321278E-03 6.4208619E-03 5.9554582E-03 5.5317017E-03 5.1457128E-03
 4.7939457E-03 4.4731577E-03 4.1803950E-03 3.9129718E-03 3.6684491E-03
 3.4446158E-03 3.2394731E-03 3.0512144E-03 2.8782112E-03 2.7189974E-03
 2.5722485E-03 2.4367780E-03 2.3115168E-03 2.1955052E-03 2.0878825E-03
 1.9878719E-03 1.8947797E-03 1.8079811E-03 1.7269141E-03 1.6510761E-03
 1.5800130E-03 1.5133156E-03 1.4506176E-03 1.3915873E-03 1.3359284E-03
 1.2833708E-03 1.2336707E-03 1.1866099E-03 1.1419863E-03 1.0996236E-03
 1.0593543E-03 1.0210334E-03 9.8452403E-04 9.4970275E-04 9.1645669E-04
 8.8468543E-04 8.5429556E-04 8.2519947E-04 7.9731765E-04 7.7058072E-04
 7.4491935E-04 7.2027516E-04 6.9659034E-04 6.7381142E-04 6.5189222E-04
 6.3078763E-04 6.1045535E-04 5.9085694E-04 5.7195791E-04 5.5372220E-04
 5.3612166E-04 5.1912555E-04 5.0270796E-04 4.8684113E-04 4.7150315E-04
 4.5666954E-04 4.4232162E-04 4.2843752E-04 4.1500016E-04 4.0199034E-04
 3.8938949E-04 3.7718687E-04 3.6536218E-04 3.5390546E-04 3.4279993E-04
 3.3203533E-04 3.2159718E-04 3.1147577E-04 3.0165774E-04 2.9213467E-04
 2.8289598E-04
 6.0211711E-02 5.9765801E-02 5.9134457E-02 5.8340054E-02 5.7404373E-02
 5.6348231E-02 5.5191223E-02 5.3951517E-02 5.2645799E-02 5.1289208E-02
 4.9895369E-02 4.8476435E-02 4.7043156E-02 4.5604952E-02 4.4170015E-02
 4.2745396E-02 4.1337091E-02 3.9950158E-02 3.8588811E-02 3.7256449E-02
 3.5955824E-02 3.4689058E-02 3.3457737E-02 3.2262981E-02 3.1105500E-02
 2.9985638E-02 2.8903456E-02 2.7858743E-02 2.6851099E-02 2.5879929E-02
 2.4944501E-02 2.4043972E-02 2.3177417E-02 2.2343842E-02 2.1542210E-02
 2.0771451E-02 2.0030489E-02 1.9318229E-02 1.8633591E-02 1.7975517E-02
 1.7342949E-02 1.6734868E-02 1.6150277E-02 1.5588214E-02 1.5047746E-02
 1.4527971E-02 1.4028025E-02 1.3547069E-02 1.3084319E-02 1.2639008E-02
 1.2210396E-02 1.1797789E-02 1.1400522E-02 1.1017951E-02 1.0649465E-02
 1.0294491E-02 9.9524641E-03 9.6228551E-03 9.3051577E-03 8.9988895E-03
 8.7035876E-03 8.4188078E-03 8.1441365E-03 7.8791631E-03 7.6235090E-03
 7.3768101E-03 7.1387058E-03 6.9088684E-03 6.6869701E-03 6.4727133E-03
 6.2658046E-03 6.0659540E-03 5.8729067E-03 5.6863870E-03 5.5061658E-03
 5.3320043E-03 5.1636705E-03 5.0009578E-03 4.8436509E-03 4.6915524E-03
 4.5444760E-03 4.4022365E-03 4.2646565E-03 4.1315756E-03 4.0028249E-03
 3.8782523E-03 3.7577115E-03 3.6410620E-03 3.5281598E-03 3.4188759E-03
 3.3130858E-03 3.2106724E-03 3.1115052E-03 3.0154868E-03 2.9225040E-03
 2.8324544E-03 2.7452314E-03 2.6607513E-03 2.5789079E-03 2.4996228E-03
 2.4228075E-03
 5.3012148E-02 4.8967261E-02 4.5187701E-02 4.1661531E-02 3.8376812E-02
 3.5321768E-02 3.2484859E-02 2.9854717E-02 2.7420186E-02 2.5170296E-02
 2.3094306E-02 2.1181691E-02 1.9422203E-02 1.7805891E-02 1.6323114E-02
 1.4964587E-02 1.3721388E-02 1.2584999E-02 1.1547297E-02 1.0600580E-02
 9.7375717E-03 8.9514200E-03 8.2356883E-03 7.5843749E-03 6.9918730E-03
 6.4529837E-03 5.9628915E-03 5.5171470E-03 5.1116669E-03 4.7426918E-03
 4.4067879E-03 4.1008126E-03 3.8219078E-03 3.5674730E-03 3.3351472E-03
 3.1227937E-03 2.9284770E-03 2.7504526E-03 2.5871431E-03 2.4371324E-03
 2.2991411E-03 2.1720210E-03 2.0547337E-03 1.9463585E-03 1.8460563E-03
 1.7530781E-03 1.6667496E-03 1.5864674E-03 1.5116878E-03 1.4419215E-03
 1.3767278E-03 1.3157113E-03 1.2585173E-03 1.2048226E-03 1.1543378E-03
 1.1068044E-03 1.0619828E-03 1.0196603E-03 9.7964506E-04 9.4176020E-04
 9.0584910E-04 8.7176519E-04 8.3937898E-04 8.0857100E-04 7.7923149E-04
 7.5126276E-04 7.2457310E-04 6.9907948E-04 6.7470549E-04 6.5138267E-04
 6.2904763E-04 6.0763914E-04 5.8710499E-04 5.6739338E-04 5.4845907E-04
 5.3026067E-04 5.1275705E-04 4.9591262E-04 4.7969189E-04 4.6406506E-04
 4.4900164E-04 4.3447476E-04 4.2045812E-04 4.0692757E-04 3.9386246E-04
 3.8123975E-04 3.6904149E-04 3.5724879E-04 3.4584460E-04 3.3481134E-04
 3.2413483E-04 3.1380192E-04 3.0379463E-04 2.9410387E-04 2.8471634E-04
 2.7562131E-04 2.6680503E-04 2.5826102E-04 2.4997583E-04 2.4194153E-04
 2.3415011E-04
 6.7263253E-02 6.6587202E-02 6.5720819E-02 6.4690463E-02 6.3520849E-02
 6.2234886E-02 6.0853604E-02 5.9396129E-02 5.7879753E-02 5.6319941E-02
 5.4730467E-02 5.3123511E-02 5.1509731E-02 4.9898405E-02 4.8297524E-02
 4.6713926E-02 4.5153346E-02 4.3620601E-02 4.2119622E-02 4.0653553E-02
 3.9224882E-02 3.7835468E-02 3.6486641E-02 3.5179291E-02 3.3913877E-02
 3.2690521E-02 3.1509083E-02 3.0369138E-02 2.9270101E-02 2.8211193E-02
 2.7191516E-02 2.6210062E-02 2.5265755E-02 2.4357470E-02 2.3484029E-02
 2.2644239E-02 2.1836899E-02 2.1060811E-02 2.0314794E-02 1.9597676E-02
 1.8908318E-02 1.8245602E-02 1.7608445E-02 1.6995806E-02 1.6406668E-02
 1.5840063E-02 1.5295045E-02 1.4770714E-02 1.4266206E-02 1.3780697E-02
 1.3313398E-02 1.2863539E-02 1.2430398E-02 1.2013286E-02 1.1611537E-02
 1.1224520E-02 1.0851627E-02 1.0492282E-02 1.0145932E-02 9.8120533E-03
 9.4901416E-03 9.1797179E-03 8.8803172E-03 8.5915038E-03 8.3128586E-03
 8.0439821E-03 7.7844891E-03 7.5340215E-03 7.2922162E-03 7.0587425E-03
 6.8332893E-03 6.6155344E-03 6.4052003E-03 6.2019965E-03 6.0056532E-03
 5.8159218E-03 5.6325472E-03 5.4552923E-03 5.2839448E-03 5.1182671E-03
 4.9580699E-03 4.8031425E-03 4.6532969E-03 4.5083510E-03 4.3681259E-03
 4.2324564E-03 4.1011772E-03 3.9741332E-03 3.8511758E-03 3.7321616E-03
 3.6169572E-03 3.5054197E-03 3.3974277E-03 3.2928635E-03 3.1916026E-03
 3.0935286E-03 2.9985427E-03 2.9065351E-03 2.8174047E-03 2.7310576E-03
 2.6473941E-03
 5.0781198E-02 4.6926752E-02 4.3315515E-02 3.9937817E-02 3.6784176E-02
 3.3845156E-02 3.1111300E-02 2.8573070E-02 2.6220873E-02 2.4045082E-02
 2.2036074E-02 2.0184271E-02 1.8480211E-02 1.6914606E-02 1.5478362E-02
 1.4162664E-02 1.2958982E-02 1.1859127E-02 1.0855265E-02 9.9399406E-03
 9.1060931E-03 8.3470587E-03 7.6565738E-03 7.0287907E-03 6.4582429E-03
 5.9398594E-03 5.4689399E-03 5.0411518E-03 4.6525095E-03 4.2993482E-03
 3.9783218E-03 3.6863713E-03 3.4207103E-03 3.1788079E-03 2.9583676E-03
 2.7573081E-03 2.5737477E-03 2.4059892E-03 2.2524993E-03 2.1118973E-03
 1.9829420E-03 1.8645105E-03 1.7556004E-03 1.6553061E-03 1.5628156E-03
 1.4773977E-03 1.3983948E-03 1.3252188E-03 1.2573380E-03 1.1942746E-03
 1.1356014E-03 1.0809302E-03 1.0299118E-03 9.8223379E-04 9.3761302E-04
 8.9579390E-04 8.5654430E-04 8.1965816E-04 7.8494404E-04 7.5223151E-04
 7.2136585E-04 6.9220562E-04 6.6462363E-04 6.3850154E-04 6.1373564E-04
 5.9022766E-04 5.6789030E-04 5.4664380E-04 5.2641251E-04 5.0712877E-04
 4.8873387E-04 4.7116695E-04 4.5437791E-04 4.3831850E-04 4.2294446E-04
 4.0821574E-04 3.9409270E-04 3.8054187E-04 3.6753257E-04 3.5503108E-04
 3.4301428E-04 3.3145351E-04 3.2032450E-04 3.0960821E-04 2.9928100E-04
 2.8932490E-04 2.7972102E-04 2.7045328E-04 2.6150554E-04 2.5286386E-04
 2.4451487E-04 2.3644370E-04 2.2863789E-04 2.2109071E-04 2.1378580E-04
 2.0671482E-04 1.9986910E-04 1.9323916E-04 1.8681603E-04 1.8059321E-04
 1.7456093E-04
 7.5033039E-02 7.4063659E-02 7.2909512E-02 7.1598835E-02 7.0157520E-02
 6.8609156E-02 6.6975102E-02 6.5274604E-02 6.3524894E-02 6.1741292E-02
 5.9937343E-02 5.8124948E-02 5.6314468E-02 5.4514870E-02 5.2733809E-02
 5.0977785E-02 4.9252219E-02 4.7561590E-02 4.5909509E-02 4.4298809E-02
 4.2731680E-02 4.1209679E-02 3.9733868E-02 3.8304858E-02 3.6922853E-02
 3.5587743E-02 3.4299143E-02 3.3056419E-02 3.1858772E-02 3.0705238E-02
 2.9594727E-02 2.8526070E-02 2.7498024E-02 2.6509304E-02 2.5558598E-02
 2.4644570E-02 2.3765899E-02 2.2921251E-02 2.2109343E-02 2.1328885E-02
 2.0578634E-02 1.9857375E-02 1.9163931E-02 1.8497158E-02 1.7855965E-02
 1.7239286E-02 1.6646110E-02 1.6075447E-02 1.5526373E-02 1.4997983E-02
 1.4489417E-02 1.3999844E-02 1.3528481E-02 1.3074573E-02 1.2637400E-02
 1.2216272E-02 1.1810536E-02 1.1419554E-02 1.1042730E-02 1.0679494E-02
 1.0329292E-02 9.9915983E-03 9.6659204E-03 9.3517713E-03 9.0486957E-03
 8.7562613E-03 8.4740464E-03 8.2016587E-03 7.9387017E-03 7.6848175E-03
 7.4396604E-03 7.2028898E-03 6.9741947E-03 6.7532584E-03 6.5397853E-03
 6.3335127E-03 6.1341505E-03 5.9414576E-03 5.7551758E-03 5.5750706E-03
 5.4009235E-03 5.2325088E-03 5.0696163E-03 4.9120537E-03 4.7596241E-03
 4.6121441E-03 4.4694380E-03 4.3313382E-03 4.1976776E-03 4.0683039E-03
 3.9430633E-03 3.8218144E-03 3.7044238E-03 3.5907454E-03 3.4806596E-03
 3.3740443E-03 3.2707751E-03 3.1707431E-03 3.0738385E-03 2.9799549E-03
 2.8889910E-03
 4.8880164E-02 4.5176335E-02 4.1695405E-02 3.8431067E-02 3.5376672E-02
 3.2525148E-02 2.9868970E-02 2.7400190E-02 2.5110507E-02 2.2991341E-02
 2.1033928E-02 1.9229384E-02 1.7568814E-02 1.6043385E-02 1.4644392E-02
 1.3363330E-02 1.2191927E-02 1.1122220E-02 1.0146558E-02 9.2576500E-03
 8.4485812E-03 7.7128117E-03 7.0441957E-03 6.4369896E-03 5.8858283E-03
 5.3857295E-03 4.9320809E-03 4.5206295E-03 4.1474625E-03 3.8089924E-03
 3.5019328E-03 3.2232879E-03 2.9703279E-03 2.7405748E-03 2.5317790E-03
 2.3419042E-03 2.1691073E-03 2.0117261E-03 1.8682606E-03 1.7373578E-03
 1.6177995E-03 1.5084904E-03 1.4084447E-03 1.3167739E-03 1.2326814E-03
 1.1554506E-03 1.0844346E-03 1.0190542E-03 9.5878937E-04 9.0317003E-04
 8.5177249E-04 8.0421550E-04 7.6015783E-04 7.1928854E-04 6.8132946E-04
 6.4602884E-04 6.1315938E-04 5.8251282E-04 5.5390620E-04 5.2716851E-04
 5.0214742E-04 4.7870399E-04 4.5671291E-04 4.3605847E-04 4.1663731E-04
 3.9835420E-04 3.8112359E-04 3.6486742E-04 3.4951026E-04 3.3498785E-04
 3.2124121E-04 3.0821466E-04 2.9585813E-04 2.8412425E-04 2.7296841E-04
 2.6235779E-04 2.5225047E-04 2.4261717E-04 2.3342506E-04 2.2464665E-04
 2.1625801E-04 2.0823347E-04 2.0054962E-04 1.9318835E-04 1.8613070E-04
 1.7935754E-04 1.7285391E-04 1.6660494E-04 1.6059549E-04 1.5481425E-04
 1.4924732E-04 1.4388490E-04 1.3871789E-04 1.3373210E-04 1.2892179E-04
 1.2427833E-04 1.1979284E-04 1.1545753E-04 1.1126674E-04 1.0721351E-04
 1.0329230E-04
 8.3492458E-02 8.2183443E-02 8.0702089E-02 7.9076841E-02 7.7333547E-02
 7.5495601E-02 7.3584042E-02 7.1617775E-02 6.9613613E-02 6.7586474E-02
 6.5549493E-02 6.3514136E-02 6.1490357E-02 5.9486713E-02 5.7510458E-02
 5.5567712E-02 5.3663511E-02 5.1801968E-02 4.9986336E-02 4.8219115E-02
 4.6502151E-02 4.4836704E-02 4.3223508E-02 4.1662905E-02 4.0154822E-02
 3.8698882E-02 3.7294451E-02 3.5940662E-02 3.4636512E-02 3.3380803E-02
 3.2172266E-02 3.1009536E-02 2.9891200E-02 2.8815804E-02 2.7781881E-02
 2.6787942E-02 2.5832526E-02 2.4914166E-02 2.4031453E-02 2.3182970E-02
 2.2367358E-02 2.1583298E-02 2.0829493E-02 2.0104714E-02 1.9407762E-02
 1.8737482E-02 1.8092770E-02 1.7472558E-02 1.6875831E-02 1.6301602E-02
 1.5748946E-02 1.5216957E-02 1.4704778E-02 1.4211592E-02 1.3736614E-02
 1.3279096E-02 1.2838314E-02 1.2413587E-02 1.2004263E-02 1.1609709E-02
 1.1229340E-02 1.0862576E-02 1.0508876E-02 1.0167708E-02 9.8385885E-03
 9.5210355E-03 9.2145856E-03 8.9188144E-03 8.6332997E-03 8.3576431E-03
 8.0914749E-03 7.8344122E-03 7.5861188E-03 7.3462534E-03 7.1145040E-03
 6.8905605E-03 6.6741314E-03 6.4649414E-03 6.2627085E-03 6.0671847E-03
 5.8781276E-03 5.6952867E-03 5.5184499E-03 5.3473907E-03 5.1819002E-03
 5.0217845E-03 4.8668468E-03 4.7169058E-03 4.5717838E-03 4.4313082E-03
 4.2953212E-03 4.1636638E-03 4.0361816E-03 3.9127357E-03 3.7931900E-03
 3.6773996E-03 3.5652434E-03 3.4565988E-03 3.3513422E-03 3.2493640E-03
 3.1505534E-03
 4.7303233E-02 4.3703426E-02 4.0311612E-02 3.7124418E-02 3.4137517E-02
 3.1345658E-02 2.8742773E-02 2.6322052E-02 2.4076093E-02 2.1997025E-02
 2.0076638E-02 1.8306497E-02 1.6678050E-02 1.5182744E-02 1.3812092E-02
 1.2557765E-02 1.1411639E-02 1.0365869E-02 9.4129061E-03 8.5455477E-03
 7.7569536E-03 7.0406608E-03 6.3905884E-03 5.8010551E-03 5.2667535E-03
 4.7827642E-03 4.3445267E-03 3.9478401E-03 3.5888429E-03 3.2639934E-03
 2.9700531E-03 2.7040644E-03 2.4633396E-03 2.2454339E-03 2.0481311E-03
 1.8694237E-03 1.7074955E-03 1.5607089E-03 1.4275833E-03 1.3067852E-03
 1.1971103E-03 1.0974787E-03 1.0069154E-03 9.2454290E-04 8.4957370E-04
 7.8129594E-04 7.1907166E-04 6.6232524E-04 6.1054010E-04 5.6324870E-04
 5.2003301E-04 4.8051297E-04 4.4434774E-04 4.1122930E-04 3.8088183E-04
 3.5305266E-04 3.2751451E-04 3.0406218E-04 2.8251307E-04 2.6269356E-04
 2.4445701E-04 2.2766287E-04 2.1218735E-04 1.9791249E-04 1.8474055E-04
 1.7257419E-04 1.6132704E-04 1.5092286E-04 1.4129159E-04 1.3236688E-04
 1.2409236E-04 1.1641133E-04 1.0927490E-04 1.0263937E-04 9.6464319E-05
 9.0711677E-05 8.5346168E-05 8.0338963E-05 7.5658485E-05 7.1280221E-05
 6.7181369E-05 6.3335232E-05 5.9727379E-05 5.6335768E-05 5.3143791E-05
 5.0137212E-05 4.7300779E-05 4.4622589E-05 4.2089512E-05 3.9690771E-05
 3.7416907E-05 3.5258607E-05 3.3205670E-05 3.1253356E-05 2.9393834E-05
 2.7617971E-05 2.5921789E-05 2.4299770E-05 2.2745829E-05 2.1256508E-05
 1.9827661E-05
 9.2651866E-02 9.0968408E-02 8.9128524E-02 8.7160051E-02 8.5088216E-02
 8.2935825E-02 8.0723323E-02 7.8469045E-02 7.6189294E-02 7.3898427E-02
 7.1609110E-02 6.9332331E-02 6.7077577E-02 6.4852953E-02 6.2665299E-02
 6.0520295E-02 5.8422584E-02 5.6375876E-02 5.4383062E-02 5.2446268E-02
 5.0566986E-02 4.8746139E-02 4.6984147E-02 4.5281030E-02 4.3636434E-02
 4.2049695E-02 4.0519927E-02 3.9046001E-02 3.7626669E-02 3.6260530E-02
 3.4946080E-02 3.3681765E-02 3.2465968E-02 3.1297069E-02 3.0173415E-02
 2.9093359E-02 2.8055280E-02 2.7057566E-02 2.6098663E-02 2.5177022E-02
 2.4291154E-02 2.3439616E-02 2.2620991E-02 2.1833938E-02 2.1077154E-02
 2.0349376E-02 1.9649401E-02 1.8976061E-02 1.8328259E-02 1.7704921E-02
 1.7105034E-02 1.6527610E-02 1.5971722E-02 1.5436474E-02 1.4921013E-02
 1.4424526E-02 1.3946228E-02 1.3485368E-02 1.3041242E-02 1.2613166E-02
 1.2200488E-02 1.1802585E-02 1.1418873E-02 1.1048769E-02 1.0691733E-02
 1.0347258E-02 1.0014841E-02 9.6940063E-03 9.3843034E-03 9.0852939E-03
 8.7965773E-03 8.5177394E-03 8.2484139E-03 7.9882275E-03 7.7368445E-03
 7.4939318E-03 7.2591566E-03 7.0322305E-03 6.8128509E-03 6.6007413E-03
 6.3956366E-03 6.1972784E-03 6.0054250E-03 5.8198278E-03 5.6402748E-03
 5.4665445E-03 5.2984240E-03 5.1357173E-03 4.9782302E-03 4.8257811E-03
 4.6781925E-03 4.5352941E-03 4.3969285E-03 4.2629307E-03 4.1331560E-03
 4.0074545E-03 3.8856859E-03 3.7677274E-03 3.6534418E-03 3.5427068E-03
 3.4354001E-03
 4.6028819E-02 4.2487539E-02 3.9145362E-02 3.6000956E-02 3.3051558E-02
 3.0293114E-02 2.7720468E-02 2.5327496E-02 2.3107333E-02 2.1052500E-02
 1.9155076E-02 1.7406842E-02 1.5799403E-02 1.4324324E-02 1.2973194E-02
 1.1737745E-02 1.0609897E-02 9.5818350E-03 8.6460328E-03 7.7953083E-03
 7.0228479E-03 6.3222018E-03 5.6873132E-03 5.1125237E-03 4.5925495E-03
 4.1224929E-03 3.6978214E-03 3.3143575E-03 2.9682661E-03 2.6560288E-03
 2.3744288E-03 2.1205337E-03 1.8916718E-03 1.6854209E-03 1.4995789E-03
 1.3321540E-03 1.1813414E-03 1.0455144E-03 9.2320109E-04 8.1307639E-04
 7.1394152E-04 6.2472111E-04 5.4444169E-04 4.7222895E-04 4.0729516E-04
 3.4893051E-04 2.9649650E-04 2.4941494E-04 2.0716924E-04 1.6929070E-04
 1.3535847E-04 1.0499099E-04 7.7845019E-05 5.3610896E-05 3.2009644E-05
 1.2788239E-05 -4.2818288E-06 -1.9409141E-05 -3.2777894E-05 -4.4559678E-05
 -5.4907563E-05 -6.3960120E-05 -7.1842202E-05 -7.8669582E-05 -8.4547035E-05
 -8.9566223E-05 -9.3812829E-05 -9.7366268E-05 -1.0029510E-04 -1.0266475E-04
 -1.0453061E-04 -1.0594931E-04 -1.0696609E-04 -1.0762648E-04 -1.0796652E-04
 -1.0802320E-04 -1.0783246E-04 -1.0742006E-04 -1.0681455E-04 -1.0604019E-04
 -1.0511866E-04 -1.0406889E-04 -1.0290869E-04 -1.0165748E-04 -1.0032531E-04
 -9.8928045E-05 -9.7477212E-05 -9.5984557E-05 -9.4458541E-05 -9.2907736E-05
 -9.1340298E-05 -8.9762274E-05 -8.8179397E-05 -8.6598382E-05 -8.5023021E-05
 -8.3458457E-05 -8.1909442E-05 -8.0375583E-05 -7.8861951E-05 -7.7371042E-05
 -7.5905489E-05
 0.1025558 0.1004686 9.8242342E-02 9.5903933E-02 9.3477860E-02
 9.0986215E-02 8.8448822E-02 8.5883424E-02 8.3305739E-02 8.0729634E-02
 7.8167222E-02 7.5629026E-02 7.3124059E-02 7.0659965E-02 6.8243138E-02
 6.5878831E-02 6.3571244E-02 6.1323706E-02 5.9138689E-02 5.7017945E-02
 5.4962583E-02 5.2973181E-02 5.1049810E-02 4.9192168E-02 4.7399580E-02
 4.5671090E-02 4.4005517E-02 4.2401474E-02 4.0857449E-02 3.9371789E-02
 3.7942767E-02 3.6568604E-02 3.5247479E-02 3.3977557E-02 3.2757007E-02
 3.1583998E-02 3.0456735E-02 2.9373441E-02 2.8332405E-02 2.7331926E-02
 2.6370376E-02 2.5446165E-02 2.4557758E-02 2.3703681E-02 2.2882508E-02
 2.2092868E-02 2.1333445E-02 2.0602964E-02 1.9900234E-02 1.9224083E-02
 1.8573398E-02 1.7947113E-02 1.7344220E-02 1.6763730E-02 1.6204728E-02
 1.5666319E-02 1.5147655E-02 1.4647920E-02 1.4166335E-02 1.3702170E-02
 1.3254704E-02 1.2823270E-02 1.2407217E-02 1.2005932E-02 1.1618815E-02
 1.1245316E-02 1.0884886E-02 1.0537013E-02 1.0201205E-02 9.8769898E-03
 9.5639220E-03 9.2615644E-03 8.9695137E-03 8.6873649E-03 8.4147491E-03
 8.1513077E-03 7.8966925E-03 7.6505691E-03 7.4126218E-03 7.1825525E-03
 6.9600730E-03 6.7448942E-03 6.5367571E-03 6.3354042E-03 6.1405916E-03
 5.9520849E-03 5.7696542E-03 5.5930922E-03 5.4221791E-03 5.2567241E-03
 5.0965315E-03 4.9414211E-03 4.7912123E-03 4.6457420E-03 4.5048422E-03
 4.3683574E-03 4.2361352E-03 4.1080373E-03 3.9839167E-03 3.8636425E-03
 3.7470877E-03
 4.5037635E-02 4.1512672E-02 3.8183313E-02 3.5049431E-02 3.2109138E-02
 2.9359026E-02 2.6794387E-02 2.4409419E-02 2.2197457E-02 2.0151151E-02
 1.8262653E-02 1.6523767E-02 1.4926094E-02 1.3461169E-02 1.2120544E-02
 1.0895902E-02 9.7791180E-03 8.7623205E-03 7.8379484E-03 6.9987727E-03
 6.2379474E-03 5.5489931E-03 4.9258322E-03 4.3627839E-03 3.8545555E-03
 3.3962382E-03 2.9832949E-03 2.6115449E-03 2.2771510E-03 1.9765936E-03
 1.7066571E-03 1.4644107E-03 1.2471824E-03 1.0525467E-03 8.7830384E-04
 7.2245853E-04 5.8320380E-04 4.5890964E-04 3.4809974E-04 2.4944174E-04
 1.6173386E-04 8.3891704E-05 1.4936499E-05 -4.6012508E-05 -9.9753343E-05
 -1.4700055E-04 -1.8840276E-04 -2.2454481E-04 -2.5594985E-04 -2.8309465E-04
 -3.0640897E-04 -3.2627999E-04 -3.4305497E-04 -3.5705304E-04 -3.6855644E-04
 -3.7782537E-04 -3.8509149E-04 -3.9056712E-04 -3.9444424E-04 -3.9689298E-04
 -3.9807381E-04 -3.9812396E-04 -3.9717508E-04 -3.9533942E-04 -3.9272613E-04
 -3.8942782E-04 -3.8553044E-04 -3.8111294E-04 -3.7624509E-04 -3.7099016E-04
 -3.6540601E-04 -3.5954473E-04 -3.5345246E-04 -3.4717194E-04 -3.4074031E-04
 -3.3419227E-04 -3.2755724E-04 -3.2086487E-04 -3.1413927E-04 -3.0739978E-04
 -3.0066763E-04 -2.9396074E-04 -2.8729436E-04 -2.8068078E-04 -2.7413230E-04
 -2.6765966E-04 -2.6127222E-04 -2.5497569E-04 -2.4878030E-04 -2.4268894E-04
 -2.3670853E-04 -2.3084015E-04 -2.2509051E-04 -2.1945838E-04 -2.1394808E-04
 -2.0856028E-04 -2.0329643E-04 -1.9815561E-04 -1.9313945E-04 -1.8824743E-04
 -1.8347753E-04
 0.1132758 0.1107570 0.1081166 0.1053811 0.1025740
 9.9716879E-02 9.6828997E-02 9.3927510E-02 9.1027655E-02 8.8142782E-02
 8.5284539E-02 8.2462966E-02 7.9686604E-02 7.6962657E-02 7.4297056E-02
 7.1694605E-02 6.9159083E-02 6.6693380E-02 6.4299569E-02 6.1978977E-02
 5.9732344E-02 5.7559855E-02 5.5461220E-02 5.3435780E-02 5.1482528E-02
 4.9600188E-02 4.7787260E-02 4.6042070E-02 4.4362828E-02 4.2747613E-02
 4.1194439E-02 3.9701283E-02 3.8266089E-02 3.6886811E-02 3.5561401E-02
 3.4287833E-02 3.3064105E-02 3.1888273E-02 3.0758444E-02 2.9672753E-02
 2.8629407E-02 2.7626675E-02 2.6662868E-02 2.5736377E-02 2.4845639E-02
 2.3989161E-02 2.3165505E-02 2.2373289E-02 2.1611199E-02 2.0877963E-02
 2.0172372E-02 1.9493265E-02 1.8839536E-02 1.8210122E-02 1.7604010E-02
 1.7020242E-02 1.6457880E-02 1.5916044E-02 1.5393892E-02 1.4890622E-02
 1.4405464E-02 1.3937671E-02 1.3486557E-02 1.3051440E-02 1.2631679E-02
 1.2226677E-02 1.1835827E-02 1.1458588E-02 1.1094416E-02 1.0742799E-02
 1.0403262E-02 1.0075321E-02 9.7585469E-03 9.4524994E-03 9.1567710E-03
 8.8709788E-03 8.5947467E-03 8.3277142E-03 8.0695348E-03 7.8198845E-03
 7.5784535E-03 7.3449286E-03 7.1190363E-03 6.9004889E-03 6.6890204E-03
 6.4843860E-03 6.2863273E-03 6.0946248E-03 5.9090503E-03 5.7293768E-03
 5.5554141E-03 5.3869528E-03 5.2238028E-03 5.0657834E-03 4.9127173E-03
 4.7644367E-03 4.6207756E-03 4.4815806E-03 4.3466990E-03 4.2159860E-03
 4.0893033E-03
 4.4321328E-02 4.0773023E-02 3.7421413E-02 3.4266904E-02 3.1307958E-02
 2.8541369E-02 2.5962511E-02 2.3565596E-02 2.1343907E-02 1.9290006E-02
 1.7395915E-02 1.5653310E-02 1.4053639E-02 1.2588286E-02 1.1248655E-02
 1.0026291E-02 8.9129312E-03 7.9005836E-03 6.9815735E-03 6.1485707E-03
 5.3946422E-03 4.7132317E-03 4.0981895E-03 3.5437802E-03 3.0446558E-03
 2.5958661E-03 2.1928328E-03 1.8313417E-03 1.5075264E-03 1.2178370E-03
 9.5903547E-04 7.2816375E-04 5.2252907E-04 3.3968536E-04 1.7740876E-04
 3.3685697E-05 -9.3311690E-05 -2.0523481E-04 -3.0357810E-04 -3.8969464E-04
 -4.6480537E-04 -5.3001381E-04 -5.8631669E-04 -6.3461409E-04 -6.7572057E-04
 -7.1036810E-04 -7.3922123E-04 -7.6287851E-04 -7.8188098E-04 -7.9671759E-04
 -8.0783031E-04 -8.1561873E-04 -8.2044315E-04 -8.2262966E-04 -8.2247402E-04
 -8.2024292E-04 -8.1617688E-04 -8.1049633E-04 -8.0339547E-04 -7.9505437E-04
 -7.8563252E-04 -7.7527901E-04 -7.6412188E-04 -7.5228093E-04 -7.3986460E-04
 -7.2696700E-04 -7.1367872E-04 -7.0007448E-04 -6.8622682E-04 -6.7219953E-04
 -6.5804675E-04 -6.4382184E-04 -6.2956841E-04 -6.1532715E-04 -6.0113549E-04
 -5.8702374E-04 -5.7301915E-04 -5.5914838E-04 -5.4543279E-04 -5.3189107E-04
 -5.1853812E-04 -5.0539139E-04 -4.9245852E-04 -4.7975170E-04 -4.6728080E-04
 -4.5505026E-04 -4.4306857E-04 -4.3133649E-04 -4.1985698E-04 -4.0863705E-04
 -3.9767200E-04 -3.8696450E-04 -3.7651643E-04 -3.6632316E-04 -3.5638531E-04
 -3.4669923E-04 -3.3726334E-04 -3.2807514E-04 -3.1912996E-04 -3.1042605E-04
 -3.0195736E-04
 0.1249051 0.1219255 0.1188419 0.1156799 0.1124628
 0.1092117 0.1059453 0.1026803 9.9431515E-02 9.6211933E-02
 9.3032710E-02 8.9903452E-02 8.6832248E-02 8.3825856E-02 8.0889739E-02
 7.8028284E-02 7.5244792E-02 7.2541736E-02 6.9920734E-02 6.7382693E-02
 6.4927936E-02 6.2556237E-02 6.0266927E-02 5.8058966E-02 5.5930983E-02
 5.3881336E-02 5.1908217E-02 5.0009608E-02 4.8183419E-02 4.6427436E-02
 4.4739388E-02 4.3116990E-02 4.1557930E-02 4.0059913E-02 3.8620658E-02
 3.7237912E-02 3.5909489E-02 3.4633204E-02 3.3406995E-02 3.2228813E-02
 3.1096684E-02 3.0008703E-02 2.8963031E-02 2.7957903E-02 2.6991621E-02
 2.6062539E-02 2.5169093E-02 2.4309782E-02 2.3483165E-02 2.2687860E-02
 2.1922551E-02 2.1185977E-02 2.0476926E-02 1.9794242E-02 1.9136835E-02
 1.8503649E-02 1.7893676E-02 1.7305955E-02 1.6739566E-02 1.6193649E-02
 1.5667353E-02 1.5159887E-02 1.4670493E-02 1.4198428E-02 1.3743012E-02
 1.3303581E-02 1.2879490E-02 1.2470142E-02 1.2074947E-02 1.1693364E-02
 1.1324864E-02 1.0968932E-02 1.0625090E-02 1.0292878E-02 9.9718431E-03
 9.6615776E-03 9.3616610E-03 9.0717161E-03 8.7913694E-03 8.5202614E-03
 8.2580578E-03 8.0044223E-03 7.7590588E-03 7.5216475E-03 7.2919158E-03
 7.0695910E-03 6.8543931E-03 6.6460846E-03 6.4444090E-03 6.2491447E-03
 6.0600624E-03 5.8769425E-03 5.6995885E-03 5.5277944E-03 5.3613698E-03
 5.2001346E-03 5.0439090E-03 4.8925271E-03 4.7458243E-03 4.6036458E-03
 4.4658366E-03
 4.3886125E-02 4.0275648E-02 3.6866911E-02 3.3660386E-02 3.0654471E-02
 2.7845819E-02 2.5229605E-02 2.2799803E-02 2.0549433E-02 1.8470779E-02
 1.6555576E-02 1.4795213E-02 1.3180867E-02 1.1703661E-02 1.0354744E-02
 9.1254283E-03 8.0072349E-03 6.9919773E-03 6.0717971E-03 5.2392064E-03
 4.4871210E-03 3.8088586E-03 3.1981508E-03 2.6491580E-03 2.1564388E-03
 1.7149569E-03 1.3200587E-03 9.6745888E-04 6.5322727E-04 3.7375640E-04
 1.2574968E-04 -9.3801420E-05 -2.8763813E-04 -4.5825646E-04 -6.0792157E-04
 -7.3869171E-04 -8.5243571E-04 -9.5084554E-04 -1.0354529E-03 -1.1076464E-03
 -1.1686832E-03 -1.2197013E-03 -1.2617264E-03 -1.2956924E-03 -1.3224386E-03
 -1.3427280E-03 -1.3572485E-03 -1.3666225E-03 -1.3714153E-03 -1.3721355E-03
 -1.3692437E-03 -1.3631559E-03 -1.3542515E-03 -1.3428712E-03 -1.3293216E-03
 -1.3138828E-03 -1.2968067E-03 -1.2783207E-03 -1.2586307E-03 -1.2379204E-03
 -1.2163603E-03 -1.1940984E-03 -1.1712706E-03 -1.1480013E-03 -1.1243969E-03
 -1.1005582E-03 -1.0765719E-03 -1.0525183E-03 -1.0284671E-03 -1.0044791E-03
 -9.8061096E-04 -9.5691252E-04 -9.3342696E-04 -9.1018912E-04 -8.8723673E-04
 -8.6459494E-04 -8.4229157E-04 -8.2034565E-04 -7.9877477E-04 -7.7759556E-04
 -7.5681979E-04 -7.3645834E-04 -7.1651553E-04 -6.9700251E-04 -6.7791832E-04
 -6.5926649E-04 -6.4105127E-04 -6.2326778E-04 -6.0591917E-04 -5.8899890E-04
 -5.7250576E-04 -5.5643718E-04 -5.4078561E-04 -5.2554661E-04 -5.1071570E-04
 -4.9628445E-04 -4.8224838E-04 -4.6859941E-04 -4.5532951E-04 -4.4243253E-04
 -4.2989981E-04
 0.1375558 0.1340839 0.1305251 0.1269047 0.1232458
 0.1195691 0.1158931 0.1122343 0.1086071 0.1050240
 0.1014959 9.8031975E-02 9.4639897E-02 9.1325969E-02 8.8095210E-02
 8.4951542E-02 8.1897818E-02 7.8936040E-02 7.6067358E-02 7.3292248E-02
 7.0610583E-02 6.8021700E-02 6.5524489E-02 6.3117534E-02 6.0799036E-02
 5.8567010E-02 5.6419238E-02 5.4353382E-02 5.2367005E-02 5.0457571E-02
 4.8622500E-02 4.6859205E-02 4.5165103E-02 4.3537624E-02 4.1974239E-02
 4.0472452E-02 3.9029818E-02 3.7643965E-02 3.6312599E-02 3.5033472E-02
 3.3804428E-02 3.2623373E-02 3.1488292E-02 3.0397264E-02 2.9348416E-02
 2.8339976E-02 2.7370224E-02 2.6437517E-02 2.5540302E-02 2.4677064E-02
 2.3846375E-02 2.3046859E-02 2.2277201E-02 2.1536147E-02 2.0822506E-02
 2.0135136E-02 1.9472940E-02 1.8834876E-02 1.8219952E-02 1.7627215E-02
 1.7055767E-02 1.6504729E-02 1.5973292E-02 1.5460647E-02 1.4966051E-02
 1.4488787E-02 1.4028156E-02 1.3583516E-02 1.3154228E-02 1.2739692E-02
 1.2339348E-02 1.1952626E-02 1.1579026E-02 1.1218028E-02 1.0869161E-02
 1.0531966E-02 1.0206003E-02 9.8908516E-03 9.5861088E-03 9.2913909E-03
 9.0063298E-03 8.7305689E-03 8.4637739E-03 8.2056131E-03 7.9557830E-03
 7.7139875E-03 7.4799242E-03 7.2533404E-03 7.0339530E-03 6.8215220E-03
 6.6158026E-03 6.4165550E-03 6.2235650E-03 6.0366094E-03 5.8554830E-03
 5.6799906E-03 5.5099381E-03 5.3451443E-03 5.1854304E-03 5.0306274E-03
 4.8805731E-03
 4.3755073E-02 4.0042486E-02 3.6540303E-02 3.3248682E-02 3.0165672E-02
 2.7287513E-02 2.4608945E-02 2.2123504E-02 1.9823756E-02 1.7701533E-02
 1.5748147E-02 1.3954565E-02 1.2311563E-02 1.0809888E-02 9.4403429E-03
 8.1939101E-03 7.0618070E-03 6.0355742E-03 5.1071011E-03 4.2686681E-03
 3.5129853E-03 2.8331748E-03 2.2228002E-03 1.6758632E-03 1.1867788E-03
 7.5037795E-04 3.6188716E-04 1.6909646E-05 -2.8859216E-04 -5.5832218E-04
 -7.9566601E-04 -1.0037201E-03 -1.1853075E-03 -1.3429982E-03 -1.4791325E-03
 -1.5958385E-03 -1.6950491E-03 -1.7785160E-03 -1.8478354E-03 -1.9044480E-03
 -1.9496628E-03 -1.9846703E-03 -2.0105422E-03 -2.0282529E-03 -2.0386872E-03
 -2.0426430E-03 -2.0408451E-03 -2.0339496E-03 -2.0225479E-03 -2.0071801E-03
 -1.9883302E-03 -1.9664385E-03 -1.9419035E-03 -1.9150848E-03 -1.8863067E-03
 -1.8558637E-03 -1.8240206E-03 -1.7910163E-03 -1.7570637E-03 -1.7223612E-03
 -1.6870786E-03 -1.6513740E-03 -1.6153867E-03 -1.5792445E-03 -1.5430563E-03
 -1.5069247E-03 -1.4709374E-03 -1.4351719E-03 -1.3996970E-03 -1.3645764E-03
 -1.3298613E-03 -1.2955999E-03 -1.2618304E-03 -1.2285885E-03 -1.1959024E-03
 -1.1637993E-03 -1.1322973E-03 -1.1014134E-03 -1.0711612E-03 -1.0415498E-03
 -1.0125883E-03 -9.8427944E-04 -9.5662661E-04 -9.2963083E-04 -9.0328814E-04
 -8.7759708E-04 -8.5255597E-04 -8.2815415E-04 -8.0438895E-04 -7.8125042E-04
 -7.5873005E-04 -7.3681946E-04 -7.1550836E-04 -6.9478591E-04 -6.7464344E-04
 -6.5506634E-04 -6.3604495E-04 -6.1756786E-04 -5.9962180E-04 -5.8219646E-04
 -5.6527799E-04
 0.1513577 0.1473592 0.1432902 0.1391762 0.1350404
 0.1309034 0.1267836 0.1226973 0.1186588 0.1146803
 0.1107724 0.1069439 0.1032019 9.9552535E-02 9.6000239E-02
 9.2548475E-02 8.9199647E-02 8.5955247E-02 8.2815960E-02 7.9781771E-02
 7.6852076E-02 7.4025750E-02 7.1301237E-02 6.8676643E-02 6.6149786E-02
 6.3718222E-02 6.1379373E-02 5.9130482E-02 5.6968771E-02 5.4891329E-02
 5.2895259E-02 5.0977644E-02 4.9135584E-02 4.7366235E-02 4.5666769E-02
 4.4034429E-02 4.2466536E-02 4.0960453E-02 3.9513662E-02 3.8123712E-02
 3.6788214E-02 3.5504896E-02 3.4271549E-02 3.3086069E-02 3.1946428E-02
 3.0850673E-02 2.9796941E-02 2.8783450E-02 2.7808495E-02 2.6870435E-02
 2.5967712E-02 2.5098838E-02 2.4262380E-02 2.3456976E-02 2.2681331E-02
 2.1934206E-02 2.1214411E-02 2.0520814E-02 1.9852335E-02 1.9207953E-02
 1.8586673E-02 1.7987555E-02 1.7409714E-02 1.6852280E-02 1.6314443E-02
 1.5795425E-02 1.5294468E-02 1.4810874E-02 1.4343951E-02 1.3893048E-02
 1.3457555E-02 1.3036863E-02 1.2630419E-02 1.2237662E-02 1.1858074E-02
 1.1491174E-02 1.1136471E-02 1.0793514E-02 1.0461862E-02 1.0141099E-02
 9.8308297E-03 9.5306654E-03 9.2402417E-03 8.9591993E-03 8.6872075E-03
 8.4239459E-03 8.1690894E-03 7.9223551E-03 7.6834480E-03 7.4520949E-03
 7.2280383E-03 7.0110173E-03 6.8007982E-03 6.5971338E-03 6.3998140E-03
 6.2086135E-03 6.0233274E-03 5.8437590E-03 5.6697130E-03 5.5010067E-03
 5.3374637E-03
 4.3970652E-02 4.0113050E-02 3.6478002E-02 3.3065103E-02 2.9871801E-02
 2.6893718E-02 2.4124973E-02 2.1558460E-02 1.9186132E-02 1.6999222E-02
 1.4988462E-02 1.3144261E-02 1.1456879E-02 9.9165700E-03 8.5136723E-03
 7.2387466E-03 6.0826121E-03 5.0364481E-03 4.0918039E-03 3.2406552E-03
 2.4754258E-03 1.7889803E-03 1.1746419E-03 6.2619103E-04 1.3783995E-04
 -2.9576945E-04 -6.7958666E-04 -1.0181712E-03 -1.3157135E-03 -1.5760601E-03
 -1.8027308E-03 -1.9989489E-03 -2.1676547E-03 -2.3115310E-03 -2.4330227E-03
 -2.5343564E-03 -2.6175589E-03 -2.6844698E-03 -2.7367657E-03 -2.7759641E-03
 -2.8034488E-03 -2.8204739E-03 -2.8281733E-03 -2.8275822E-03 -2.8196345E-03
 -2.8051795E-03 -2.7849874E-03 -2.7597537E-03 -2.7301086E-03 -2.6966254E-03
 -2.6598210E-03 -2.6201606E-03 -2.5780690E-03 -2.5339262E-03 -2.4880788E-03
 -2.4408347E-03 -2.3924753E-03 -2.3432516E-03 -2.2933877E-03 -2.2430886E-03
 -2.1925354E-03 -2.1418894E-03 -2.0912951E-03 -2.0408812E-03 -1.9907597E-03
 -1.9410348E-03 -1.8917926E-03 -1.8431093E-03 -1.7950545E-03 -1.7476870E-03
 -1.7010552E-03 -1.6552026E-03 -1.6101650E-03 -1.5659730E-03 -1.5226515E-03
 -1.4802180E-03 -1.4386864E-03 -1.3980715E-03 -1.3583774E-03 -1.3196084E-03
 -1.2817665E-03 -1.2448475E-03 -1.2088503E-03 -1.1737678E-03 -1.1395913E-03
 -1.1063109E-03 -1.0739190E-03 -1.0423993E-03 -1.0117413E-03 -9.8193076E-04
 -9.5295196E-04 -9.2478900E-04 -8.9742651E-04 -8.7084918E-04 -8.4503886E-04
 -8.1997894E-04 -7.9565268E-04 -7.7204307E-04 -7.4913190E-04 -7.2690332E-04
 -7.0533797E-04
 0.1664578 0.1618954 0.1572782 0.1526323 0.1479811
 0.1433456 0.1387443 0.1341936 0.1297076 0.1252984
 0.1209763 0.1167497 0.1126257 0.1086097 0.1047058
 0.1009169 9.7245023E-02 9.3691103E-02 9.0255335E-02 8.6937167E-02
 8.3735496E-02 8.0648698E-02 7.7674732E-02 7.4811235E-02 7.2055526E-02
 6.9404744E-02 6.6855870E-02 6.4405739E-02 6.2051140E-02 5.9788827E-02
 5.7615504E-02 5.5527925E-02 5.3522848E-02 5.1597111E-02 4.9747590E-02
 4.7971245E-02 4.6265110E-02 4.4626296E-02 4.3052040E-02 4.1539636E-02
 4.0086500E-02 3.8690135E-02 3.7348118E-02 3.6058165E-02 3.4818061E-02
 3.3625681E-02 3.2478996E-02 3.1376060E-02 3.0315023E-02 2.9294098E-02
 2.8311597E-02 2.7365889E-02 2.6455432E-02 2.5578735E-02 2.4734398E-02
 2.3921072E-02 2.3137460E-02 2.2382339E-02 2.1654533E-02 2.0952925E-02
 2.0276451E-02 1.9624081E-02 1.8994851E-02 1.8387815E-02 1.7802099E-02
 1.7236855E-02 1.6691260E-02 1.6164552E-02 1.5655978E-02 1.5164842E-02
 1.4690467E-02 1.4232199E-02 1.3789427E-02 1.3361556E-02 1.2948016E-02
 1.2548278E-02 1.2161816E-02 1.1788134E-02 1.1426754E-02 1.1077230E-02
 1.0739124E-02 1.0412009E-02 1.0095500E-02 9.7892070E-03 9.4927568E-03
 9.2058107E-03 8.9280177E-03 8.6590610E-03 8.3986223E-03 8.1464108E-03
 7.9021407E-03 7.6655238E-03 7.4363113E-03 7.2142389E-03 6.9990717E-03
 6.7905630E-03 6.5884958E-03 6.3926559E-03 6.2028244E-03 6.0188081E-03
 5.8404095E-03
 4.4598684E-02 4.0548380E-02 3.6736336E-02 3.3161405E-02 2.9820254E-02
 2.6707703E-02 2.3817070E-02 2.1140454E-02 1.8669022E-02 1.6393254E-02
 1.4303151E-02 1.2388432E-02 1.0638696E-02 9.0435790E-03 7.5928392E-03
 6.2764906E-03 5.0848513E-03 4.0086280E-03 3.0389372E-03 2.1673515E-03
 1.3859224E-03 6.8716740E-04 6.4089836E-05 -4.8982707E-04 -9.8064810E-04
 -1.4139893E-03 -1.7950408E-03 -2.1285869E-03 -2.4190263E-03 -2.6704043E-03
 -2.8864245E-03 -3.0704814E-03 -3.2256774E-03 -3.3548451E-03 -3.4605723E-03
 -3.5452172E-03 -3.6109285E-03 -3.6596623E-03 -3.6931990E-03 -3.7131598E-03
 -3.7210155E-03 -3.7181063E-03 -3.7056454E-03 -3.6847363E-03 -3.6563806E-03
 -3.6214865E-03 -3.5808794E-03 -3.5353035E-03 -3.4854338E-03 -3.4318834E-03
 -3.3752029E-03 -3.3158932E-03 -3.2544041E-03 -3.1911433E-03 -3.1264750E-03
 -3.0607299E-03 -2.9942032E-03 -2.9271592E-03 -2.8598343E-03 -2.7924431E-03
 -2.7251721E-03 -2.6581895E-03 -2.5916423E-03 -2.5256635E-03 -2.4603654E-03
 -2.3958508E-03 -2.3322050E-03 -2.2695051E-03 -2.2078166E-03 -2.1471905E-03
 -2.0876760E-03 -2.0293090E-03 -1.9721240E-03 -1.9161386E-03 -1.8613765E-03
 -1.8078475E-03 -1.7555599E-03 -1.7045189E-03 -1.6547231E-03 -1.6061681E-03
 -1.5588502E-03 -1.5127580E-03 -1.4678800E-03 -1.4242014E-03 -1.3817094E-03
 -1.3403848E-03 -1.3002097E-03 -1.2611658E-03 -1.2232317E-03 -1.1863852E-03
 -1.1506042E-03 -1.1158681E-03 -1.0821526E-03 -1.0494344E-03 -1.0176894E-03
 -9.8689587E-04 -9.5702958E-04 -9.2806586E-04 -8.9998264E-04 -8.7275717E-04
 -8.4636500E-04
 0.1830189 0.1778532 0.1726473 0.1674282 0.1622202
 0.1570447 0.1519208 0.1468650 0.1418916 0.1370126
 0.1322383 0.1275767 0.1230346 0.1186171 0.1143277
 0.1101691 0.1061426 0.1022487 9.8486982E-02 9.4856434E-02
 9.1355413E-02 8.7981738E-02 8.4732845E-02 8.1605874E-02 7.8597650E-02
 7.5704835E-02 7.2923928E-02 7.0251331E-02 6.7683429E-02 6.5216534E-02
 6.2846981E-02 6.0571127E-02 5.8385395E-02 5.6286275E-02 5.4270327E-02
 5.2334186E-02 5.0474603E-02 4.8688401E-02 4.6972562E-02 4.5324117E-02
 4.3740246E-02 4.2218216E-02 4.0755384E-02 3.9349269E-02 3.7997443E-02
 3.6697596E-02 3.5447519E-02 3.4245089E-02 3.3088304E-02 3.1975210E-02
 3.0903962E-02 2.9872805E-02 2.8880043E-02 2.7924070E-02 2.7003350E-02
 2.6116421E-02 2.5261872E-02 2.4438374E-02 2.3644641E-02 2.2879466E-02
 2.2141688E-02 2.1430178E-02 2.0743892E-02 2.0081807E-02 1.9442957E-02
 1.8826431E-02 1.8231327E-02 1.7656812E-02 1.7102078E-02 1.6566349E-02
 1.6048901E-02 1.5549011E-02 1.5066024E-02 1.4599281E-02 1.4148168E-02
 1.3712108E-02 1.3290516E-02 1.2882870E-02 1.2488637E-02 1.2107326E-02
 1.1738468E-02 1.1381602E-02 1.1036295E-02 1.0702125E-02 1.0378690E-02
 1.0065615E-02 9.7625228E-03 9.4690640E-03 9.1848942E-03 8.9096911E-03
 8.6431447E-03 8.3849449E-03 8.1348186E-03 7.8924727E-03 7.6576574E-03
 7.4301022E-03 7.2095627E-03 6.9958125E-03 6.7886198E-03 6.5877615E-03
 6.3930294E-03
 4.5733802E-02 4.1436601E-02 3.7397113E-02 3.3613339E-02 3.0081028E-02
 2.6794063E-02 2.3744795E-02 2.0924374E-02 1.8323028E-02 1.5930312E-02
 1.3735337E-02 1.1726978E-02 9.8940190E-03 8.2253246E-03 6.7099342E-03
 5.3371815E-03 4.0967432E-03 2.9787351E-03 1.9737151E-03 1.0727398E-03
 2.6737552E-04 -4.5030616E-04 -1.0877231E-03 -1.6517837E-03 -2.1489162E-03
 -2.5850765E-03 -2.9657718E-03 -3.2960814E-03 -3.5806838E-03 -3.8238785E-03
 -4.0296116E-03 -4.2014993E-03 -4.3428577E-03 -4.4567096E-03 -4.5458251E-03
 -4.6127276E-03 -4.6597240E-03 -4.6889107E-03 -4.7022039E-03 -4.7013424E-03
 -4.6879118E-03 -4.6633524E-03 -4.6289740E-03 -4.5859632E-03 -4.5354017E-03
 -4.4782669E-03 -4.4154464E-03 -4.3477407E-03 -4.2758808E-03 -4.2005214E-03
 -4.1222568E-03 -4.0416210E-03 -3.9590984E-03 -3.8751201E-03 -3.7900785E-03
 -3.7043223E-03 -3.6181656E-03 -3.5318860E-03 -3.4457322E-03 -3.3599278E-03
 -3.2746659E-03 -3.1901228E-03 -3.1064490E-03 -3.0237748E-03 -2.9422187E-03
 -2.8618791E-03 -2.7828424E-03 -2.7051817E-03 -2.6289548E-03 -2.5542127E-03
 -2.4809991E-03 -2.4093431E-03 -2.3392697E-03 -2.2707935E-03 -2.2039288E-03
 -2.1386778E-03 -2.0750426E-03 -2.0130165E-03 -1.9525929E-03 -1.8937584E-03
 -1.8364999E-03 -1.7807952E-03 -1.7266282E-03 -1.6739742E-03 -1.6228101E-03
 -1.5731101E-03 -1.5248460E-03 -1.4779908E-03 -1.4325150E-03 -1.3883895E-03
 -1.3455838E-03 -1.3040680E-03 -1.2638097E-03 -1.2247800E-03 -1.1869457E-03
 -1.1502777E-03 -1.1147461E-03 -1.0803179E-03 -1.0469627E-03 -1.0146537E-03
 -9.8335883E-04
 0.2012168 0.1954077 0.1895711 0.1837355 0.1779266
 0.1721668 0.1664759 0.1608710 0.1553666 0.1499750
 0.1447063 0.1395686 0.1345682 0.1297100 0.1249972
 0.1204319 0.1160149 0.1117462 0.1076250 0.1036495
 9.9817567E-02 9.6126534E-02 9.2573255E-02 8.9154348E-02 8.5866109E-02
 8.2704701E-02 7.9666138E-02 7.6746337E-02 7.3941261E-02 7.1246758E-02
 6.8658769E-02 6.6173248E-02 6.3786238E-02 6.1493862E-02 5.9292339E-02
 5.7177965E-02 5.5147182E-02 5.3196508E-02 5.1322635E-02 4.9522325E-02
 4.7792491E-02 4.6130143E-02 4.4532411E-02 4.2996574E-02 4.1519996E-02
 4.0100154E-02 3.8734637E-02 3.7421141E-02 3.6157466E-02 3.4941502E-02
 3.3771232E-02 3.2644734E-02 3.1560175E-02 3.0515794E-02 2.9509919E-02
 2.8540952E-02 2.7607366E-02 2.6707698E-02 2.5840553E-02 2.5004614E-02
 2.4198605E-02 2.3421304E-02 2.2671575E-02 2.1948291E-02 2.1250401E-02
 2.0576904E-02 1.9926829E-02 1.9299254E-02 1.8693294E-02 1.8108115E-02
 1.7542914E-02 1.6996903E-02 1.6469367E-02 1.5959583E-02 1.5466883E-02
 1.4990631E-02 1.4530199E-02 1.4084997E-02 1.3654458E-02 1.3238037E-02
 1.2835226E-02 1.2445511E-02 1.2068431E-02 1.1703516E-02 1.1350329E-02
 1.1008462E-02 1.0677490E-02 1.0357047E-02 1.0046748E-02 9.7462451E-03
 9.4551891E-03 9.1732545E-03 8.9001283E-03 8.6355051E-03 8.3790915E-03
 8.1306109E-03 7.8897895E-03 7.6563824E-03 7.4301264E-03 7.2107883E-03
 6.9981343E-03
 4.7506765E-02 4.2900283E-02 3.8574956E-02 3.4527894E-02 3.0753873E-02
 2.7245723E-02 2.3994714E-02 2.0990882E-02 1.8223349E-02 1.5680583E-02
 1.3350633E-02 1.1221336E-02 9.2804935E-03 7.5160274E-03 5.9160800E-03
 4.4691376E-03 3.1640842E-03 1.9902829E-03 9.3759230E-04 -3.5899061E-06
 -8.4231026E-04 -1.5870737E-03 -2.2458343E-03 -2.8259982E-03 -3.3344636E-03
 -3.7776201E-03 -4.1613807E-03 -4.4912044E-03 -4.7721174E-03 -5.0087478E-03
 -5.2053425E-03 -5.3658038E-03 -5.4937024E-03 -5.5923066E-03 -5.6646070E-03
 -5.7133343E-03 -5.7409811E-03 -5.7498212E-03 -5.7419278E-03 -5.7191867E-03
 -5.6833168E-03 -5.6358799E-03 -5.5782953E-03 -5.5118515E-03 -5.4377196E-03
 -5.3569581E-03 -5.2705286E-03 -5.1792990E-03 -5.0840578E-03 -4.9855113E-03
 -4.8843026E-03 -4.7810031E-03 -4.6761339E-03 -4.5701582E-03 -4.4634943E-03
 -4.3565151E-03 -4.2495499E-03 -4.1428958E-03 -4.0368144E-03 -3.9315387E-03
 -3.8272718E-03 -3.7241920E-03 -3.6224551E-03 -3.5221945E-03 -3.4235271E-03
 -3.3265536E-03 -3.2313534E-03 -3.1379985E-03 -3.0465433E-03 -2.9570330E-03
 -2.8695017E-03 -2.7839756E-03 -2.7004702E-03 -2.6189943E-03 -2.5395518E-03
 -2.4621375E-03 -2.3867411E-03 -2.3133527E-03 -2.2419500E-03 -2.1725153E-03
 -2.1050207E-03 -2.0394397E-03 -1.9757419E-03 -1.9138948E-03 -1.8538652E-03
 -1.7956175E-03 -1.7391152E-03 -1.6843204E-03 -1.6311947E-03 -1.5796993E-03
 -1.5297957E-03 -1.4814438E-03 -1.4346046E-03 -1.3892372E-03 -1.3453042E-03
 -1.3027651E-03 -1.2615824E-03 -1.2217161E-03 -1.1831302E-03 -1.1457866E-03
 -1.1096485E-03
 0.2212353 0.2147437 0.2082345 0.2017386 0.1952833
 0.1888928 0.1825880 0.1763867 0.1703043 0.1643533
 0.1585440 0.1528846 0.1473813 0.1420387 0.1368596
 0.1318457 0.1269975 0.1223144 0.1177950 0.1134372
 0.1092380 0.1051944 0.1013027 9.7558811E-02 9.3958616E-02
 9.0497740E-02 8.7171689E-02 8.3975896E-02 8.0905832E-02 7.7956922E-02
 7.5124636E-02 7.2404534E-02 6.9792233E-02 6.7283489E-02 6.4874128E-02
 6.2560111E-02 6.0337517E-02 5.8202554E-02 5.6151595E-02 5.4181099E-02
 5.2287687E-02 5.0468110E-02 4.8719224E-02 4.7038056E-02 4.5421727E-02
 4.3867487E-02 4.2372707E-02 4.0934853E-02 3.9551552E-02 3.8220476E-02
 3.6939438E-02 3.5706326E-02 3.4519140E-02 3.3375956E-02 3.2274954E-02
 3.1214384E-02 3.0192565E-02 2.9207908E-02 2.8258888E-02 2.7344055E-02
 2.6462018E-02 2.5611445E-02 2.4791081E-02 2.3999693E-02 2.3236137E-02
 2.2499317E-02 2.1788152E-02 2.1101652E-02 2.0438837E-02 1.9798791E-02
 1.9180635E-02 1.8583512E-02 1.8006630E-02 1.7449195E-02 1.6910482E-02
 1.6389783E-02 1.5886405E-02 1.5399721E-02 1.4929093E-02 1.4473928E-02
 1.4033666E-02 1.3607741E-02 1.3195650E-02 1.2796873E-02 1.2410942E-02
 1.2037391E-02 1.1675769E-02 1.1325669E-02 1.0986665E-02 1.0658378E-02
 1.0340426E-02 1.0032448E-02 9.7341090E-03 9.4450638E-03 9.1649974E-03
 8.8936035E-03 8.6305821E-03 8.3756624E-03 8.1285583E-03 7.8890184E-03
 7.6567805E-03
 5.0093435E-02 4.5105617E-02 4.0426519E-02 3.6052495E-02 3.1977348E-02
 2.8192829E-02 2.4689034E-02 2.1454757E-02 1.8477859E-02 1.5745535E-02
 1.3244580E-02 1.0961596E-02 8.8831913E-03 6.9961427E-03 5.2874940E-03
 3.7446895E-03 2.3556245E-03 1.1087321E-03 -7.0056699E-06 -1.0020143E-03
 -1.8861088E-03 -2.6685153E-03 -3.3578612E-03 -3.9621792E-03 -4.4889506E-03
 -4.9451115E-03 -5.3370781E-03 -5.6707794E-03 -5.9516747E-03 -6.1847963E-03
 -6.3747652E-03 -6.5258248E-03 -6.6418648E-03 -6.7264470E-03 -6.7828288E-03
 -6.8139890E-03 -6.8226475E-03 -6.8112831E-03 -6.7821611E-03 -6.7373388E-03
 -6.6786916E-03 -6.6079246E-03 -6.5265861E-03 -6.4360830E-03 -6.3376897E-03
 -6.2325625E-03 -6.1217463E-03 -6.0061854E-03 -5.8867345E-03 -5.7641636E-03
 -5.6391647E-03 -5.5123605E-03 -5.3843111E-03 -5.2555152E-03 -5.1264199E-03
 -4.9974262E-03 -4.8688864E-03 -4.7411141E-03 -4.6143862E-03 -4.4889492E-03
 -4.3650134E-03 -4.2427653E-03 -4.1223643E-03 -4.0039481E-03 -3.8876319E-03
 -3.7735163E-03 -3.6616805E-03 -3.5521903E-03 -3.4450954E-03 -3.3404366E-03
 -3.2382417E-03 -3.1385280E-03 -3.0413044E-03 -2.9465712E-03 -2.8543195E-03
 -2.7645398E-03 -2.6772122E-03 -2.5923112E-03 -2.5098086E-03 -2.4296741E-03
 -2.3518717E-03 -2.2763626E-03 -2.2031062E-03 -2.1320602E-03 -2.0631775E-03
 -1.9964164E-03 -1.9317273E-03 -1.8690622E-03 -1.8083740E-03 -1.7496116E-03
 -1.6927283E-03 -1.6376732E-03 -1.5843977E-03 -1.5328533E-03 -1.4829916E-03
 -1.4347637E-03 -1.3881229E-03 -1.3430220E-03 -1.2994156E-03 -1.2572571E-03
 -1.2165032E-03
 0.2432494 0.2360465 0.2288260 0.2216276 0.2144812
 0.2074131 0.2004460 0.1935991 0.1868887 0.1803281
 0.1739281 0.1676971 0.1616415 0.1557656 0.1500722
 0.1445627 0.1392372 0.1340946 0.1291330 0.1243499
 0.1197418 0.1153051 0.1110355 0.1069286 0.1029795
 9.9183403E-02 9.5535308E-02 9.2030145E-02 8.8662885E-02 8.5428484E-02
 8.2321957E-02 7.9338402E-02 7.6473020E-02 7.3721148E-02 7.1078219E-02
 6.8539798E-02 6.6101603E-02 6.3759476E-02 6.1509460E-02 5.9347674E-02
 5.7270434E-02 5.5274166E-02 5.3355455E-02 5.1511034E-02 4.9737763E-02
 4.8032630E-02 4.6392754E-02 4.4815380E-02 4.3297891E-02 4.1837744E-02
 4.0432550E-02 3.9079990E-02 3.7777875E-02 3.6524095E-02 3.5316654E-02
 3.4153633E-02 3.3033188E-02 3.1953581E-02 3.0913129E-02 2.9910251E-02
 2.8943408E-02 2.8011145E-02 2.7112074E-02 2.6244855E-02 2.5408221E-02
 2.4600966E-02 2.3821903E-02 2.3069948E-02 2.2344017E-02 2.1643100E-02
 2.0966239E-02 2.0312484E-02 1.9680962E-02 1.9070806E-02 1.8481206E-02
 1.7911393E-02 1.7360611E-02 1.6828150E-02 1.6313314E-02 1.5815452E-02
 1.5333950E-02 1.4868186E-02 1.4417597E-02 1.3981616E-02 1.3559725E-02
 1.3151412E-02 1.2756189E-02 1.2373585E-02 1.2003156E-02 1.1644463E-02
 1.1297104E-02 1.0960674E-02 1.0634795E-02 1.0319102E-02 1.0013239E-02
 9.7168721E-03 9.4296737E-03 9.1513386E-03 8.8815587E-03 8.6200526E-03
 8.3665345E-03
 5.3693403E-02 4.8273042E-02 4.3161400E-02 3.8385957E-02 3.3939756E-02
 2.9813528E-02 2.5996171E-02 2.2475179E-02 1.9237017E-02 1.6267432E-02
 1.3551762E-02 1.1075168E-02 8.8228323E-03 6.7801541E-03 4.9328492E-03
 3.2670950E-03 1.7695773E-03 4.2758972E-04 -7.7096419E-04 -1.8375232E-03
 -2.7828494E-03 -3.6170566E-03 -4.3496005E-03 -4.9892855E-03 -5.5443104E-03
 -6.0222768E-03 -6.4302185E-03 -6.7746378E-03 -7.0615234E-03 -7.2963955E-03
 -7.4843257E-03 -7.6299724E-03 -7.7376082E-03 -7.8111445E-03 -7.8541609E-03
 -7.8699309E-03 -7.8614438E-03 -7.8314245E-03 -7.7823624E-03 -7.7165188E-03
 -7.6359552E-03 -7.5425450E-03 -7.4379868E-03 -7.3238262E-03 -7.2014616E-03
 -7.0721614E-03 -6.9370670E-03 -6.7972140E-03 -6.6535384E-03 -6.5068766E-03
 -6.3579860E-03 -6.2075439E-03 -6.0561569E-03 -5.9043667E-03 -5.7526571E-03
 -5.6014596E-03 -5.4511544E-03 -5.3020748E-03 -5.1545189E-03 -5.0087436E-03
 -4.8649758E-03 -4.7234064E-03 -4.5842058E-03 -4.4475119E-03 -4.3134438E-03
 -4.1821026E-03 -4.0535633E-03 -3.9278916E-03 -3.8051314E-03 -3.6853179E-03
 -3.5684744E-03 -3.4546079E-03 -3.3437214E-03 -3.2358048E-03 -3.1308434E-03
 -3.0288149E-03 -2.9296870E-03 -2.8334300E-03 -2.7400013E-03 -2.6493592E-03
 -2.5614575E-03 -2.4762466E-03 -2.3936729E-03 -2.3136851E-03 -2.2362247E-03
 -2.1612376E-03 -2.0886625E-03 -2.0184433E-03 -1.9505176E-03 -1.8848291E-03
 -1.8213165E-03 -1.7599185E-03 -1.7005801E-03 -1.6432378E-03 -1.5878365E-03
 -1.5343163E-03 -1.4826219E-03 -1.4326979E-03 -1.3844868E-03 -1.3379363E-03
 -1.2929942E-03
 0.2674031 0.2594681 0.2515155 0.2435851 0.2357067
 0.2279165 0.2202397 0.2126976 0.2053079 0.1980853
 0.1910414 0.1841853 0.1775235 0.1710609 0.1648002
 0.1587426 0.1528880 0.1472350 0.1417815 0.1365244
 0.1314599 0.1265838 0.1218913 0.1173775 0.1130371
 0.1088648 0.1048549 0.1010020 9.7300395E-02 9.3744710E-02
 9.0329431E-02 8.7049171E-02 8.3898701E-02 8.0872901E-02 7.7966779E-02
 7.5175479E-02 7.2494321E-02 6.9918744E-02 6.7444429E-02 6.5067127E-02
 6.2782794E-02 6.0587544E-02 5.8477607E-02 5.6449421E-02 5.4499533E-02
 5.2624654E-02 5.0821621E-02 4.9087405E-02 4.7419131E-02 4.5814022E-02
 4.4269439E-02 4.2782843E-02 4.1351829E-02 3.9974071E-02 3.8647380E-02
 3.7369635E-02 3.6138821E-02 3.4953013E-02 3.3810362E-02 3.2709125E-02
 3.1647615E-02 3.0624216E-02 2.9637406E-02 2.8685696E-02 2.7767701E-02
 2.6882090E-02 2.6027551E-02 2.5202883E-02 2.4406897E-02 2.3638470E-02
 2.2896551E-02 2.2180082E-02 2.1488110E-02 2.0819668E-02 2.0173868E-02
 1.9549856E-02 1.8946797E-02 1.8363906E-02 1.7800417E-02 1.7255612E-02
 1.6728802E-02 1.6219309E-02 1.5726501E-02 1.5249767E-02 1.4788515E-02
 1.4342198E-02 1.3910260E-02 1.3492193E-02 1.3087492E-02 1.2695692E-02
 1.2316332E-02 1.1948965E-02 1.1593184E-02 1.1248576E-02 1.0914760E-02
 1.0591350E-02 1.0277997E-02 9.9743539E-03 9.6800877E-03 9.3948878E-03
 9.1184424E-03
 5.8457173E-02 5.2583836E-02 4.7019221E-02 4.1790809E-02 3.6891639E-02
 3.2346476E-02 2.8143167E-02 2.4267921E-02 2.0705743E-02 1.7440820E-02
 1.4456859E-02 1.1737364E-02 9.2658699E-03 7.0261541E-03 5.0023589E-03
 3.1791439E-03 1.5417479E-03 7.6087163E-05 -1.2312348E-03 -2.3928799E-03
 -3.4207627E-03 -4.3260716E-03 -5.1192651E-03 -5.8100815E-03 -6.4075887E-03
 -6.9201943E-03 -7.3556788E-03 -7.7212327E-03 -8.0234827E-03 -8.2685379E-03
 -8.4620118E-03 -8.6090583E-03 -8.7144077E-03 -8.7823914E-03 -8.8169733E-03
 -8.8217771E-03 -8.8001145E-03 -8.7550031E-03 -8.6891977E-03 -8.6052027E-03
 -8.5053016E-03 -8.3915638E-03 -8.2658706E-03 -8.1299320E-03 -7.9852901E-03
 -7.8333458E-03 -7.6753614E-03 -7.5124782E-03 -7.3457244E-03 -7.1760244E-03
 -7.0042070E-03 -6.8310155E-03 -6.6571166E-03 -6.4831018E-03 -6.3094990E-03
 -6.1367773E-03 -5.9653497E-03 -5.7955789E-03 -5.6277830E-03 -5.4622418E-03
 -5.2991943E-03 -5.1388461E-03 -4.9813758E-03 -4.8269276E-03 -4.6756272E-03
 -4.5275735E-03 -4.3828450E-03 -4.2415047E-03 -4.1035945E-03 -3.9691445E-03
 -3.8381710E-03 -3.7106769E-03 -3.5866571E-03 -3.4660921E-03 -3.3489589E-03
 -3.2352263E-03 -3.1248522E-03 -3.0177948E-03 -2.9140029E-03 -2.8134219E-03
 -2.7159969E-03 -2.6216647E-03 -2.5303634E-03 -2.4420256E-03 -2.3565860E-03
 -2.2739756E-03 -2.1941247E-03 -2.1169637E-03 -2.0424214E-03 -1.9704266E-03
 -1.9009101E-03 -1.8338009E-03 -1.7690292E-03 -1.7065246E-03 -1.6462201E-03
 -1.5880477E-03 -1.5319403E-03 -1.4778333E-03 -1.4256615E-03 -1.3753617E-03
 -1.3268731E-03
 0.2938190 0.2851320 0.2764273 0.2677447 0.2591142
 0.2505720 0.2421432 0.2338594 0.2257409 0.2178040
 0.2100620 0.2025249 0.1952005 0.1880939 0.1812084
 0.1745454 0.1681047 0.1618851 0.1558841 0.1500984
 0.1445240 0.1391562 0.1339899 0.1290196 0.1242397
 0.1196442 0.1152272 0.1109826 0.1069043 0.1029864
 9.9222802E-02 9.5607765E-02 9.2135519E-02 8.8800490E-02 8.5597217E-02
 8.2520388E-02 7.9564907E-02 7.6725774E-02 7.3998250E-02 7.1377687E-02
 6.8859674E-02 6.6439912E-02 6.4114295E-02 6.1878901E-02 5.9729945E-02
 5.7663810E-02 5.5677012E-02 5.3766228E-02 5.1928289E-02 5.0160136E-02
 4.8458867E-02 4.6821687E-02 4.5245934E-02 4.3729052E-02 4.2268615E-02
 4.0862300E-02 3.9507866E-02 3.8203191E-02 3.6946233E-02 3.5735067E-02
 3.4567818E-02 3.3442713E-02 3.2358062E-02 3.1312227E-02 3.0303657E-02
 2.9330883E-02 2.8392468E-02 2.7487062E-02 2.6613357E-02 2.5770115E-02
 2.4956157E-02 2.4170328E-02 2.3411550E-02 2.2678772E-02 2.1970998E-02
 2.1287285E-02 2.0626698E-02 1.9988379E-02 1.9371472E-02 1.8775184E-02
 1.8198743E-02 1.7641403E-02 1.7102469E-02 1.6581250E-02 1.6077101E-02
 1.5589400E-02 1.5117540E-02 1.4660964E-02 1.4219106E-02 1.3791440E-02
 1.3377466E-02 1.2976692E-02 1.2588657E-02 1.2212904E-02 1.1849009E-02
 1.1496546E-02 1.1155133E-02 1.0824388E-02 1.0503934E-02 1.0193422E-02
 9.8925158E-03
 6.4573310E-02 5.8228347E-02 5.2192107E-02 4.6492074E-02 4.1121282E-02
 3.6104497E-02 3.1429570E-02 2.7119268E-02 2.3157252E-02 1.9526128E-02
 1.6207892E-02 1.3184245E-02 1.0436882E-02 7.9477411E-03 5.6991540E-03
 3.6740173E-03 1.8558741E-03 2.2901919E-04 -1.2214838E-03 -2.5097539E-03
 -3.6490734E-03 -4.6519125E-03 -5.5299327E-03 -6.2939893E-03 -6.9541908E-03
 -7.5199092E-03 -7.9998197E-03 -8.4019424E-03 -8.7336656E-03 -9.0018036E-03
 -9.2126178E-03 -9.3718600E-03 -9.4848089E-03 -9.5562963E-03 -9.5907478E-03
 -9.5922081E-03 -9.5643727E-03 -9.5106084E-03 -9.4339913E-03 -9.3373172E-03
 -9.2231287E-03 -9.0937400E-03 -8.9512467E-03 -8.7975534E-03 -8.6343810E-03
 -8.4632887E-03 -8.2856817E-03 -8.1028277E-03 -7.9158731E-03 -7.7258409E-03
 -7.5336518E-03 -7.3401304E-03 -7.1460144E-03 -6.9519584E-03 -6.7585446E-03
 -6.5662879E-03 -6.3756453E-03 -6.1870143E-03 -6.0007423E-03 -5.8171344E-03
 -5.6364527E-03 -5.4589179E-03 -5.2847234E-03 -5.1140231E-03 -4.9469508E-03
 -4.7836108E-03 -4.6240846E-03 -4.4684373E-03 -4.3167071E-03 -4.1689235E-03
 -4.0251003E-03 -3.8852338E-03 -3.7493131E-03 -3.6173114E-03 -3.4891986E-03
 -3.3649341E-03 -3.2444689E-03 -3.1277498E-03 -3.0147149E-03 -2.9053022E-03
 -2.7994434E-03 -2.6970666E-03 -2.5980973E-03 -2.5024591E-03 -2.4100740E-03
 -2.3208633E-03 -2.2347455E-03 -2.1516392E-03 -2.0714635E-03 -1.9941370E-03
 -1.9195779E-03 -1.8477048E-03 -1.7784400E-03 -1.7117009E-03 -1.6474113E-03
 -1.5854915E-03 -1.5258673E-03 -1.4684638E-03 -1.4132061E-03 -1.3600232E-03
 -1.3088441E-03
 0.3225863 0.3131273 0.3036507 0.2941963 0.2847939
 0.2754799 0.2662792 0.2572236 0.2483332 0.2396345
 0.2311428 0.2228705 0.2148265 0.2070173 0.1994471
 0.1921180 0.1850304 0.1781833 0.1715743 0.1652002
 0.1590567 0.1531391 0.1474421 0.1419597 0.1366860
 0.1316147 0.1267393 0.1220533 0.1175502 0.1132235
 0.1090667 0.1050736 0.1012378 9.7553261E-02 9.4014116E-02
 9.0614542E-02 8.7348968E-02 8.4211923E-02 8.1198223E-02 7.8302793E-02
 7.5520761E-02 7.2847441E-02 7.0278309E-02 6.7809053E-02 6.5435506E-02
 6.3153684E-02 6.0959760E-02 5.8850061E-02 5.6821093E-02 5.4869480E-02
 5.2992009E-02 5.1185597E-02 4.9447298E-02 4.7774281E-02 4.6163872E-02
 4.4613481E-02 4.3120649E-02 4.1682996E-02 4.0298279E-02 3.8964350E-02
 3.7679140E-02 3.6440667E-02 3.5247076E-02 3.4096524E-02 3.2987300E-02
 3.1917773E-02 3.0886341E-02 2.9891511E-02 2.8931819E-02 2.8005894E-02
 2.7112426E-02 2.6250118E-02 2.5417792E-02 2.4614263E-02 2.3838423E-02
 2.3089226E-02 2.2365639E-02 2.1666685E-02 2.0991435E-02 2.0338986E-02
 1.9708497E-02 1.9099124E-02 1.8510096E-02 1.7940646E-02 1.7390050E-02
 1.6857626E-02 1.6342696E-02 1.5844624E-02 1.5362796E-02 1.4896620E-02
 1.4445546E-02 1.4009013E-02 1.3586517E-02 1.3177551E-02 1.2781639E-02
 1.2398317E-02 1.2027137E-02 1.1667693E-02 1.1319560E-02 1.0982358E-02
 1.0655698E-02
 7.2288476E-02 6.5452971E-02 5.8926187E-02 5.2735623E-02 4.6874303E-02
 4.1366991E-02 3.6201537E-02 3.1400707E-02 2.6948167E-02 2.2864992E-02
 1.9131569E-02 1.5727801E-02 1.2633474E-02 9.8285470E-03 7.2933706E-03
 5.0088759E-03 2.9566810E-03 1.1192310E-03 -5.2018708E-04 -1.9773841E-03
 -3.2672430E-03 -4.4037425E-03 -5.3999578E-03 -6.2680668E-03 -7.0194136E-03
 -7.6645194E-03 -8.2131252E-03 -8.6742388E-03 -9.0561630E-03 -9.3665561E-03
 -9.6124560E-03 -9.8003345E-03 -9.9361241E-03 -1.0025263E-02 -1.0072730E-02
 -1.0083076E-02 -1.0060459E-02 -1.0008674E-02 -9.9311769E-03 -9.8311147E-03
 -9.7113540E-03 -9.5744934E-03 -9.4228946E-03 -9.2586968E-03 -9.0838382E-03
 -8.9000687E-03 -8.7089697E-03 -8.5119652E-03 -8.3103394E-03 -8.1052445E-03
 -7.8977114E-03 -7.6886648E-03 -7.4789291E-03 -7.2692386E-03 -7.0602442E-03
 -6.8525225E-03 -6.6465801E-03 -6.4428621E-03 -6.2417551E-03 -6.0435990E-03
 -5.8486825E-03 -5.6572519E-03 -5.4695196E-03 -5.2856556E-03 -5.1058065E-03
 -4.9300888E-03 -4.7585871E-03 -4.5913728E-03 -4.4284877E-03 -4.2699617E-03
 -4.1158064E-03 -3.9660158E-03 -3.8205774E-03 -3.6794571E-03 -3.5426207E-03
 -3.4100208E-03 -3.2816001E-03 -3.1572985E-03 -3.0370462E-03 -2.9207717E-03
 -2.8083972E-03 -2.6998403E-03 -2.5950205E-03 -2.4938488E-03 -2.3962383E-03
 -2.3020993E-03 -2.2113407E-03 -2.1238732E-03 -2.0396034E-03 -1.9584422E-03
 -1.8802973E-03 -1.8050780E-03 -1.7326958E-03 -1.6630607E-03 -1.5960871E-03
 -1.5316866E-03 -1.4697752E-03 -1.4102698E-03 -1.3530888E-03 -1.2981514E-03
 -1.2453787E-03
 0.3537385 0.3434878 0.3332194 0.3229732 0.3127791
 0.3026733 0.2926809 0.2828336 0.2731515 0.2636611
 0.2543778 0.2453225 0.2365069 0.2279395 0.2196261
 0.2115703 0.2037735 0.1962356 0.1889550 0.1819286
 0.1751526 0.1686223 0.1623323 0.1562768 0.1504495
 0.1448438 0.1394529 0.1342700 0.1292882 0.1245005
 0.1199000 0.1154799 0.1112335 0.1071541 0.1032354
 9.9471040E-02 9.5854983E-02 9.2381261E-02 8.9044221E-02 8.5838273E-02
 8.2758099E-02 7.9798549E-02 7.6954655E-02 7.4221671E-02 7.1595006E-02
 6.9070257E-02 6.6643208E-02 6.4309791E-02 6.2066153E-02 5.9908565E-02
 5.7833437E-02 5.5837382E-02 5.3917117E-02 5.2069508E-02 5.0291568E-02
 4.8580434E-02 4.6933364E-02 4.5347724E-02 4.3821003E-02 4.2350814E-02
 4.0934846E-02 3.9570905E-02 3.8256899E-02 3.6990792E-02 3.5770677E-02
 3.4594718E-02 3.3461131E-02 3.2368250E-02 3.1314451E-02 3.0298186E-02
 2.9317996E-02 2.8372437E-02 2.7460186E-02 2.6579911E-02 2.5730394E-02
 2.4910444E-02 2.4118908E-02 2.3354713E-02 2.2616798E-02 2.1904159E-02
 2.1215854E-02 2.0550942E-02 1.9908559E-02 1.9287845E-02 1.8687995E-02
 1.8108239E-02 1.7547816E-02 1.7006027E-02 1.6482176E-02 1.5975606E-02
 1.5485696E-02 1.5011823E-02 1.4553424E-02 1.4109922E-02 1.3680797E-02
 1.3265529E-02 1.2863620E-02 1.2474609E-02 1.2098021E-02 1.1733434E-02
 1.1380420E-02
 8.1933431E-02 7.4585155E-02 6.7545608E-02 6.0842294E-02 5.4468237E-02
 4.8448186E-02 4.2769998E-02 3.7456438E-02 3.2491170E-02 2.7895270E-02
 2.3649128E-02 1.9772289E-02 1.6242808E-02 1.3038742E-02 1.0138433E-02
 7.5207613E-03 5.1652929E-03 3.0524482E-03 1.1635409E-03 -5.1914412E-04
 -2.0123092E-03 -3.3316624E-03 -4.4919197E-03 -5.5068000E-03 -6.3890964E-03
 -7.1506822E-03 -7.8025600E-03 -8.3549144E-03 -8.8171344E-03 -9.1978861E-03
 -9.5051434E-03 -9.7462358E-03 -9.9278865E-03 -1.0056264E-02 -1.0137014E-02
 -1.0175302E-02 -1.0175846E-02 -1.0142951E-02 -1.0080543E-02 -9.9921981E-03
 -9.8811639E-03 -9.7503969E-03 -9.6025756E-03 -9.4401324E-03 -9.2652636E-03
 -9.0799583E-03 -8.8860113E-03 -8.6850375E-03 -8.4784944E-03 -8.2676876E-03
 -8.0537880E-03 -7.8378441E-03 -7.6207896E-03 -7.4034538E-03 -7.1865791E-03
 -6.9708144E-03 -6.7567346E-03 -6.5448461E-03 -6.3355826E-03 -6.1293324E-03
 -5.9264190E-03 -5.7271235E-03 -5.5316873E-03 -5.3403024E-03 -5.1531349E-03
 -4.9703163E-03 -4.7919475E-03 -4.6181059E-03 -4.4488437E-03 -4.2841947E-03
 -4.1241748E-03 -3.9687781E-03 -3.8179930E-03 -3.6717865E-03 -3.5301191E-03
 -3.3929411E-03 -3.2601929E-03 -3.1318075E-03 -3.0077104E-03 -2.8878243E-03
 -2.7720665E-03 -2.6603476E-03 -2.5525787E-03 -2.4486645E-03 -2.3485117E-03
 -2.2520251E-03 -2.1591040E-03 -2.0696521E-03 -1.9835692E-03 -1.9007588E-03
 -1.8211221E-03 -1.7445628E-03 -1.6709834E-03 -1.6002886E-03 -1.5323851E-03
 -1.4671790E-03 -1.4045809E-03 -1.3444998E-03 -1.2868488E-03 -1.2315429E-03
 -1.1784965E-03
 0.3872458 0.3761806 0.3650979 0.3540374 0.3430289
 0.3321088 0.3213022 0.3106407 0.3001443 0.2898397
 0.2797421 0.2698726 0.2602464 0.2508754 0.2417681
 0.2329304 0.2243659 0.2160760 0.2080604 0.2003172
 0.1928433 0.1856347 0.1786864 0.1719927 0.1655476
 0.1593443 0.1533761 0.1476359 0.1421164 0.1368104
 0.1317106 0.1268099 0.1221009 0.1175766 0.1132303
 0.1090549 0.1050441 0.1011913 9.7490273E-02 9.3935050E-02
 9.0519741E-02 8.7238722E-02 8.4086522E-02 8.1057921E-02 7.8147866E-02
 7.5351484E-02 7.2664127E-02 7.0081279E-02 6.7598671E-02 6.5212153E-02
 6.2917754E-02 6.0711689E-02 5.8590312E-02 5.6550123E-02 5.4587800E-02
 5.2700136E-02 5.0884053E-02 4.9136627E-02 4.7455035E-02 4.5836605E-02
 4.4278748E-02 4.2778999E-02 4.1335013E-02 3.9944496E-02 3.8605306E-02
 3.7315391E-02 3.6072731E-02 3.4875467E-02 3.3721749E-02 3.2609858E-02
 3.1538125E-02 3.0504951E-02 2.9508818E-02 2.8548252E-02 2.7621865E-02
 2.6728319E-02 2.5866307E-02 2.5034629E-02 2.4232086E-02 2.3457550E-02
 2.2709962E-02 2.1988252E-02 2.1291459E-02 2.0618603E-02 1.9968791E-02
 1.9341145E-02 1.8734824E-02 1.8149028E-02 1.7582981E-02 1.7035944E-02
 1.6507227E-02 1.5996125E-02 1.5502008E-02 1.5024226E-02 1.4562209E-02
 1.4115358E-02 1.3683134E-02 1.3265003E-02 1.2860458E-02 1.2469011E-02
 1.2090184E-02
 9.4405487E-02 8.6473800E-02 7.8850850E-02 7.1564138E-02 6.4606681E-02
 5.8003232E-02 5.1741645E-02 4.5844689E-02 4.0296026E-02 3.5116736E-02
 3.0287212E-02 2.5826994E-02 2.1755684E-02 1.8049914E-02 1.4686320E-02
 1.1641902E-02 8.8942526E-03 6.4217662E-03 4.2037056E-03 2.2203384E-03
 4.5297880E-04 -1.1159902E-03 -2.5031234E-03 -3.7238896E-03 -4.7927415E-03
 -5.7231179E-03 -6.5274942E-03 -7.2174254E-03 -7.8035896E-03 -8.2958452E-03
 -8.7032765E-03 -9.0342378E-03 -9.2964014E-03 -9.4968062E-03 -9.6419025E-03
 -9.7375941E-03 -9.7892731E-03 -9.8018665E-03 -9.7798612E-03 -9.7273486E-03
 -9.6480474E-03 -9.5453402E-03 -9.4222911E-03 -9.2816828E-03 -9.1260299E-03
 -8.9576086E-03 -8.7784696E-03 -8.5904635E-03 -8.3952555E-03 -8.1943404E-03
 -7.9890573E-03 -7.7806036E-03 -7.5700488E-03 -7.3583433E-03 -7.1463352E-03
 -6.9347695E-03 -6.7243050E-03 -6.5155188E-03 -6.3089179E-03 -6.1049424E-03
 -5.9039714E-03 -5.7063284E-03 -5.5122944E-03 -5.3220973E-03 -5.1359325E-03
 -4.9539586E-03 -4.7762981E-03 -4.6030502E-03 -4.4342829E-03 -4.2700456E-03
 -4.1103661E-03 -3.9552520E-03 -3.8046998E-03 -3.6586842E-03 -3.5171735E-03
 -3.3801245E-03 -3.2474820E-03 -3.1191832E-03 -2.9951592E-03 -2.8753350E-03
 -2.7596287E-03 -2.6479568E-03 -2.5402303E-03 -2.4363569E-03 -2.3362434E-03
 -2.2397963E-03 -2.1469169E-03 -2.0575093E-03 -1.9714744E-03 -1.8887164E-03
 -1.8091375E-03 -1.7326397E-03 -1.6591292E-03 -1.5885094E-03 -1.5206874E-03
 -1.4555696E-03 -1.3930665E-03 -1.3330893E-03 -1.2755484E-03 -1.2203632E-03
 -1.1674438E-03
 0.4226539 0.4107728 0.3988743 0.3869978 0.3751736
 0.3634377 0.3518153 0.3403379 0.3290258 0.3179053
 0.3069919 0.2963066 0.2858567 0.2756586 0.2657251
 0.2560658 0.2466872 0.2375937 0.2287873 0.2202682
 0.2120348 0.2040846 0.1964135 0.1890169 0.1818891
 0.1750239 0.1684149 0.1620548 0.1559367 0.1500532
 0.1443966 0.1389595 0.1337345 0.1287140 0.1238908
 0.1192576 0.1148073 0.1105330 0.1064279 0.1024855
 9.8699361E-02 9.5063329E-02 9.1571406E-02 8.8217840E-02 8.4997013E-02
 8.1903562E-02 7.8932293E-02 7.6078199E-02 7.3336512E-02 7.0702568E-02
 6.8171956E-02 6.5740399E-02 6.3403815E-02 6.1158251E-02 5.8999963E-02
 5.6925334E-02 5.4930888E-02 5.3013314E-02 5.1169410E-02 4.9396146E-02
 4.7690600E-02 4.6049960E-02 4.4471569E-02 4.2952832E-02 4.1491304E-02
 4.0084660E-02 3.8730606E-02 3.7427023E-02 3.6171820E-02 3.4963038E-02
 3.3798803E-02 3.2677274E-02 3.1596765E-02 3.0555572E-02 2.9552139E-02
 2.8584959E-02 2.7652554E-02 2.6753565E-02 2.5886642E-02 2.5050512E-02
 2.4243983E-02 2.3465862E-02 2.2715053E-02 2.1990478E-02 2.1291113E-02
 2.0615997E-02 1.9964172E-02 1.9334756E-02 1.8726878E-02 1.8139720E-02
 1.7572502E-02 1.7024459E-02 1.6494868E-02 1.5983040E-02 1.5488307E-02
 1.5010032E-02 1.4547599E-02 1.4100444E-02 1.3667979E-02 1.3249684E-02
 1.2845038E-02
 0.1108526 0.1022143 9.3884677E-02 8.5891306E-02 7.8227192E-02
 7.0917085E-02 6.3948847E-02 5.7345252E-02 5.1089950E-02 4.5204021E-02
 3.9667863E-02 3.4501016E-02 2.9765017E-02 2.5436221E-02 2.1490490E-02
 1.7903684E-02 1.4651900E-02 1.1711860E-02 9.0610143E-03 6.6777114E-03
 4.5413151E-03 2.6322603E-03 9.3206629E-04 -5.7661254E-04 -1.9100420E-03
 -3.0833958E-03 -4.1107927E-03 -5.0053606E-03 -5.7792324E-03 -6.4436467E-03
 -7.0089679E-03 -7.4847424E-03 -7.8797461E-03 -8.2020359E-03 -8.4589999E-03
 -8.6574089E-03 -8.8034449E-03 -8.9027602E-03 -8.9605013E-03 -8.9813629E-03
 -8.9696134E-03 -8.9291316E-03 -8.8634379E-03 -8.7757241E-03 -8.6688763E-03
 -8.5455077E-03 -8.4079746E-03 -8.2584042E-03 -8.0987094E-03 -7.9306122E-03
 -7.7556581E-03 -7.5752288E-03 -7.3905652E-03 -7.2027692E-03 -7.0128301E-03
 -6.8216207E-03 -6.6299178E-03 -6.4384071E-03 -6.2476927E-03 -6.0583078E-03
 -5.8707152E-03 -5.6853192E-03 -5.5024722E-03 -5.3224722E-03 -5.1455777E-03
 -4.9720085E-03 -4.8019420E-03 -4.6355319E-03 -4.4728951E-03 -4.3141306E-03
 -4.1593090E-03 -4.0084813E-03 -3.8616827E-03 -3.7189275E-03 -3.5802200E-03
 -3.4455482E-03 -3.3148921E-03 -3.1882185E-03 -3.0654864E-03 -2.9466483E-03
 -2.8316493E-03 -2.7204268E-03 -2.6129177E-03 -2.5090501E-03 -2.4087504E-03
 -2.3119438E-03 -2.2185491E-03 -2.1284875E-03 -2.0416765E-03 -1.9580314E-03
 -1.8774698E-03 -1.7999063E-03 -1.7252583E-03 -1.6534383E-03 -1.5843661E-03
 -1.5179552E-03 -1.4541256E-03 -1.3927935E-03 -1.3338799E-03 -1.2773063E-03
 -1.2229923E-03
 0.4588625 0.4462111 0.4335423 0.4208956 0.4083011
 0.3957949 0.3834022 0.3711546 0.3590722 0.3471814
 0.3354978 0.3240422 0.3127987 0.3017892 0.2910320
 0.2805417 0.2703297 0.2604045 0.2507719 0.2414353
 0.2323963 0.2236545 0.2152082 0.2070542 0.1991885
 0.1916060 0.1843009 0.1772669 0.1704973 0.1639849
 0.1577224 0.1517021 0.1459165 0.1403579 0.1350185
 0.1298907 0.1249670 0.1202399 0.1157021 0.1113464
 0.1071658 0.1031534 9.9302694E-02 9.5607139E-02 9.2060506E-02
 8.8656746E-02 8.5390002E-02 8.2254618E-02 7.9245180E-02 7.6356418E-02
 7.3583297E-02 7.0920944E-02 6.8364710E-02 6.5910093E-02 6.3552819E-02
 6.1288755E-02 5.9113942E-02 5.7024602E-02 5.5017084E-02 5.3087946E-02
 5.1233847E-02 4.9451604E-02 4.7738194E-02 4.6090674E-02 4.4506285E-02
 4.2982377E-02 4.1516382E-02 4.0105894E-02 3.8748562E-02 3.7442189E-02
 3.6184665E-02 3.4973927E-02 3.3808082E-02 3.2685243E-02 3.1603660E-02
 3.0561648E-02 2.9557578E-02 2.8589927E-02 2.7657198E-02 2.6757995E-02
 2.5890972E-02 2.5054825E-02 2.4248352E-02 2.3470342E-02 2.2719683E-02
 2.1995310E-02 2.1296173E-02 2.0621298E-02 1.9969737E-02 1.9340588E-02
 1.8732989E-02 1.8146114E-02 1.7579170E-02 1.7031398E-02 1.6502069E-02
 1.5990494E-02 1.5496002E-02 1.5017964E-02 1.4555759E-02 1.4108806E-02
 1.3676538E-02
 0.1318965 0.1224302 0.1132727 0.1044514 9.5959373E-02
 8.7821364E-02 8.0025226E-02 7.2593741E-02 6.5510556E-02 5.8796741E-02
 5.2432705E-02 4.6437982E-02 4.0909022E-02 3.5824250E-02 3.1160709E-02
 2.6894791E-02 2.3002483E-02 1.9459944E-02 1.6243657E-02 1.3330699E-02
 1.0698987E-02 8.3273416E-03 6.1955843E-03 4.2846533E-03 2.5765365E-03
 1.0543525E-03 -2.9768096E-04 -1.4942841E-03 -2.5491228E-03 -3.4748742E-03
 -4.2832620E-03 -4.9851076E-03 -5.5903648E-03 -6.1081932E-03 -6.5470054E-03
 -6.9145053E-03 -7.2177504E-03 -7.4631926E-03 -7.6567191E-03 -7.8037046E-03
 -7.9090493E-03 -7.9772137E-03 -8.0122557E-03 -8.0178678E-03 -7.9974020E-03
 -7.9539036E-03 -7.8901350E-03 -7.8086033E-03 -7.7115772E-03 -7.6011126E-03
 -7.4790725E-03 -7.3471377E-03 -7.2068283E-03 -7.0595164E-03 -6.9064419E-03
 -6.7487173E-03 -6.5873493E-03 -6.4232354E-03 -6.2571852E-03 -6.0899239E-03
 -5.9220982E-03 -5.7542846E-03 -5.5869981E-03 -5.4206904E-03 -5.2557653E-03
 -5.0925789E-03 -4.9314364E-03 -4.7726124E-03 -4.6163388E-03 -4.4628149E-03
 -4.3122154E-03 -4.1646794E-03 -4.0203310E-03 -3.8792621E-03 -3.7415521E-03
 -3.6072603E-03 -3.4764267E-03 -3.3490800E-03 -3.2252339E-03 -3.1048891E-03
 -2.9880397E-03 -2.8746657E-03 -2.7647414E-03 -2.6582314E-03 -2.5550972E-03
 -2.4552916E-03 -2.3587628E-03 -2.2654564E-03 -2.1753104E-03 -2.0882634E-03
 -2.0042516E-03 -1.9232052E-03 -1.8450569E-03 -1.7697336E-03 -1.6971664E-03
 -1.6272789E-03 -1.5600015E-03 -1.4952603E-03 -1.4329813E-03 -1.3730933E-03
 -1.3155225E-03
 0.4939902 0.4806763 0.4673448 0.4540355 0.4407783
 0.4276095 0.4145542 0.4016440 0.3888990 0.3763456
 0.3639994 0.3518812 0.3399356 0.3281904 0.3166698
 0.3053947 0.2943824 0.2836472 0.2732002 0.2630497
 0.2532018 0.2436598 0.2344256 0.2254989 0.2168781
 0.2085602 0.2005411 0.1928156 0.1853779 0.1782216
 0.1713396 0.1647244 0.1583683 0.1522634 0.1464015
 0.1407745 0.1353742 0.1301925 0.1252212 0.1204524
 0.1158783 0.1114912 0.1072836 0.1032482 9.9378049E-02
 9.5666230E-02 9.2106119E-02 8.8691324E-02 8.5415721E-02 8.2273342E-02
 7.9258509E-02 7.6365732E-02 7.3589757E-02 7.0925541E-02 6.8368264E-02
 6.5913297E-02 6.3556232E-02 6.1292801E-02 5.9118975E-02 5.7030898E-02
 5.5024855E-02 5.3097308E-02 5.1244915E-02 4.9464401E-02 4.7752727E-02
 4.6106961E-02 4.4524264E-02 4.3001991E-02 4.1537561E-02 4.0128540E-02
 3.8772620E-02 3.7467539E-02 3.6211208E-02 3.5001568E-02 3.3836704E-02
 3.2714766E-02 3.1633981E-02 3.0592669E-02 2.9589202E-02 2.8622055E-02
 2.7689772E-02 2.6790913E-02 2.5924167E-02 2.5088230E-02 2.4281876E-02
 2.3503950E-02 2.2753309E-02 2.2028895E-02 2.1329675E-02 2.0654660E-02
 2.0002928E-02 1.9373562E-02 1.8765720E-02 1.8178560E-02 1.7611308E-02
 1.7063199E-02 1.6533516E-02 1.6021568E-02 1.5526681E-02 1.5048237E-02
 1.4585609E-02
 0.1575474 0.1471697 0.1371008 0.1273681 0.1179648
 0.1089154 0.1002079 9.1865085E-02 8.3870567E-02 7.6245427E-02
 6.8970069E-02 6.2064040E-02 5.5636827E-02 4.9672894E-02 4.4154312E-02
 3.9061293E-02 3.4372706E-02 3.0066721E-02 2.6121076E-02 2.2513477E-02
 1.9221975E-02 1.6225111E-02 1.3502140E-02 1.1033178E-02 8.7992493E-03
 6.7823813E-03 4.9656290E-03 3.3330722E-03 1.8698366E-03 5.6201644E-04
 -6.0332182E-04 -1.6381778E-03 -2.5536830E-03 -3.3601290E-03 -4.0670335E-03
 -4.6831821E-03 -5.2166795E-03 -5.6749955E-03 -6.0650017E-03 -6.3930284E-03
 -6.6648968E-03 -6.8859570E-03 -7.0611266E-03 -7.1949200E-03 -7.2914776E-03
 -7.3546018E-03 -7.3877755E-03 -7.3941918E-03 -7.3767710E-03 -7.3381877E-03
 -7.2808862E-03 -7.2070989E-03 -7.1188635E-03 -7.0180385E-03 -6.9063171E-03
 -6.7852400E-03 -6.6562071E-03 -6.5204897E-03 -6.3792388E-03 -6.2334999E-03
 -6.0842140E-03 -5.9322319E-03 -5.7783220E-03 -5.6231683E-03 -5.4673892E-03
 -5.3115394E-03 -5.1561058E-03 -5.0015301E-03 -4.8481948E-03 -4.6964432E-03
 -4.5465752E-03 -4.3988489E-03 -4.2534936E-03 -4.1107014E-03 -3.9706370E-03
 -3.8334432E-03 -3.6992319E-03 -3.5680993E-03 -3.4401186E-03 -3.3153470E-03
 -3.1938248E-03 -3.0755785E-03 -2.9606225E-03 -2.8489572E-03 -2.7405755E-03
 -2.6354601E-03 -2.5335848E-03 -2.4349168E-03 -2.3394173E-03 -2.2470425E-03
 -2.1577419E-03 -2.0714614E-03 -1.9881453E-03 -1.9077316E-03 -1.8301607E-03
 -1.7553635E-03 -1.6832763E-03 -1.6138325E-03 -1.5469610E-03 -1.4825993E-03
 -1.4206659E-03
 0.5255470 0.5117246 0.4978847 0.4840671 0.4703017
 0.4566245 0.4430609 0.4296424 0.4163891 0.4033275
 0.3904730 0.3778467 0.3653542 0.3530258 0.3408895
 0.3289706 0.3172916 0.3058724 0.2947296 0.2838767
 0.2733245 0.2630813 0.2531524 0.2435411 0.2342485
 0.2252739 0.2166149 0.2082677 0.2002275 0.1924884
 0.1850436 0.1778857 0.1710070 0.1643992 0.1580540
 0.1519625 0.1461163 0.1405065 0.1351245 0.1299617
 0.1250097 0.1202602 0.1157052 0.1113367 0.1071472
 0.1031292 9.9275641E-02 9.5579512E-02 9.2034213E-02 8.8633299E-02
 8.5370615E-02 8.2240224E-02 7.9236463E-02 7.6353848E-02 7.3587172E-02
 7.0931450E-02 6.8381861E-02 6.5933831E-02 6.3582972E-02 6.1325114E-02
 5.9156239E-02 5.7072513E-02 5.5070303E-02 5.3146083E-02 5.1296525E-02
 4.9518477E-02 4.7808852E-02 4.6164777E-02 4.4583455E-02 4.3062244E-02
 4.1598629E-02 4.0190171E-02 3.8834598E-02 3.7529662E-02 3.6273289E-02
 3.5063475E-02 3.3898283E-02 3.2775898E-02 3.1694550E-02 3.0652566E-02
 2.9648375E-02 2.8680414E-02 2.7747253E-02 2.6847469E-02 2.5979742E-02
 2.5142802E-02 2.4335409E-02 2.3556419E-02 2.2804694E-02 2.2079181E-02
 2.1378864E-02 2.0702740E-02 2.0049902E-02 1.9419434E-02 1.8810485E-02
 1.8222237E-02 1.7653894E-02 1.7104719E-02 1.6573977E-02 1.6060987E-02
 1.5565073E-02
 0.1860977 0.1748274 0.1638658 0.1532405 0.1429444
 0.1330024 0.1234023 0.1141668 0.1052797 9.6761934E-02
 8.8593952E-02 8.0795303E-02 7.3444702E-02 6.6538207E-02 6.0068619E-02
 5.4025818E-02 4.8397124E-02 4.3168020E-02 3.8322330E-02 3.3842769E-02
 2.9711345E-02 2.5909688E-02 2.2419222E-02 1.9221589E-02 1.6298667E-02
 1.3632791E-02 1.1206871E-02 9.0044290E-03 7.0097293E-03 5.2077328E-03
 3.5841542E-03 2.1254977E-03 8.1901555E-04 -3.4727296E-04 -1.3846235E-03
 -2.3035717E-03 -3.1139629E-03 -3.8249779E-03 -4.4451514E-03 -4.9824286E-03
 -5.4441737E-03 -5.8372095E-03 -6.1678505E-03 -6.4419233E-03 -6.6648112E-03
 -6.8414714E-03 -6.9764699E-03 -7.0740026E-03 -7.1379235E-03 -7.1717696E-03
 -7.1787830E-03 -7.1619316E-03 -7.1239290E-03 -7.0672547E-03 -6.9941729E-03
 -6.9067474E-03 -6.8068570E-03 -6.6962102E-03 -6.5763588E-03 -6.4487117E-03
 -6.3145473E-03 -6.1750165E-03 -6.0311635E-03 -5.8839265E-03 -5.7341531E-03
 -5.5826046E-03 -5.4299571E-03 -5.2768243E-03 -5.1237443E-03 -4.9711997E-03
 -4.8196199E-03 -4.6693790E-03 -4.5208107E-03 -4.3741991E-03 -4.2297966E-03
 -4.0878230E-03 -3.9484585E-03 -3.8118612E-03 -3.6781598E-03 -3.5474626E-03
 -3.4198563E-03 -3.2954051E-03 -3.1741601E-03 -3.0561546E-03 -2.9414082E-03
 -2.8299305E-03 -2.7217160E-03 -2.6167538E-03 -2.5150196E-03 -2.4164843E-03
 -2.3211124E-03 -2.2288603E-03 -2.1396822E-03 -2.0535232E-03 -1.9703303E-03
 -1.8900415E-03 -1.8125972E-03 -1.7379324E-03 -1.6659802E-03 -1.5966789E-03
 -1.5299511E-03
 0.5525292 0.5383083 0.5240699 0.5098538 0.4956900
 0.4816146 0.4676526 0.4538358 0.4401843 0.4267244
 0.4134717 0.4004470 0.3875689 0.3748593 0.3623398
 0.3500310 0.3379520 0.3261208 0.3145531 0.3032625
 0.2922606 0.2815570 0.2711585 0.2610702 0.2512951
 0.2418346 0.2326880 0.2238535 0.2153279 0.2071069
 0.1991851 0.1915565 0.1842144 0.1771515 0.1703604
 0.1638329 0.1575611 0.1515365 0.1457510 0.1401962
 0.1348639 0.1297458 0.1248339 0.1201203 0.1155973
 0.1112574 0.1070932 0.1030975 9.9263638E-02 9.5584787E-02
 9.2054568E-02 8.8666752E-02 8.5415401E-02 8.2294725E-02 7.9299234E-02
 7.6423630E-02 7.3662817E-02 7.1011908E-02 6.8466209E-02 6.6021279E-02
 6.3672811E-02 6.1416693E-02 5.9249006E-02 5.7165965E-02 5.5163998E-02
 5.3239685E-02 5.1389690E-02 4.9610917E-02 4.7900323E-02 4.6255067E-02
 4.4672415E-02 4.3149713E-02 4.1684490E-02 4.0274326E-02 3.8916942E-02
 3.7610170E-02 3.6351897E-02 3.5140153E-02 3.3973008E-02 3.2848645E-02
 3.1765342E-02 3.0721400E-02 2.9715259E-02 2.8745372E-02 2.7810290E-02
 2.6908640E-02 2.6039064E-02 2.5200306E-02 2.4391141E-02 2.3610406E-02
 2.2856988E-02 2.2129811E-02 2.1427872E-02 2.0750174E-02 2.0095803E-02
 1.9463841E-02 1.8853439E-02 1.8263785E-02 1.7694080E-02 1.7143585E-02
 1.6611554E-02
 0.2126899 0.2006998 0.1890185 0.1776735 0.1666577
 0.1559961 0.1456763 0.1357212 0.1261144 0.1168770
 0.1079894 9.9471144E-02 9.1332510E-02 8.3582871E-02 7.6228961E-02
 6.9274597E-02 6.2720537E-02 5.6564488E-02 5.0801165E-02 4.5422617E-02
 4.0418565E-02 3.5776701E-02 3.1483058E-02 2.7522525E-02 2.3878988E-02
 2.0535875E-02 1.7476313E-02 1.4683359E-02 1.2140306E-02 9.8307095E-03
 7.7386093E-03 5.8486252E-03 4.1459915E-03 2.6166611E-03 1.2472777E-03
 2.5234443E-05 -1.0613386E-03 -2.0235882E-03 -2.8719185E-03 -3.6160646E-03
 -4.2650732E-03 -4.8273569E-03 -5.3107133E-03 -5.7223551E-03 -6.0689533E-03
 -6.3566603E-03 -6.5911454E-03 -6.7776269E-03 -6.9208965E-03 -7.0253592E-03
 -7.0950491E-03 -7.1336646E-03 -7.1445880E-03 -7.1309097E-03 -7.0954538E-03
 -7.0407977E-03 -6.9692843E-03 -6.8830512E-03 -6.7840391E-03 -6.6740126E-03
 -6.5545700E-03 -6.4271586E-03 -6.2930924E-03 -6.1535505E-03 -6.0096034E-03
 -5.8622127E-03 -5.7122395E-03 -5.5604619E-03 -5.4075690E-03 -5.2541816E-03
 -5.1008519E-03 -4.9480656E-03 -4.7962577E-03 -4.6458063E-03 -4.4970461E-03
 -4.3502711E-03 -4.2057293E-03 -4.0636407E-03 -3.9241891E-03 -3.7875311E-03
 -3.6537973E-03 -3.5230943E-03 -3.3955069E-03 -3.2710992E-03 -3.1499213E-03
 -3.0320068E-03 -2.9173724E-03 -2.8060286E-03 -2.6979649E-03 -2.5931713E-03
 -2.4916243E-03 -2.3932906E-03 -2.2981358E-03 -2.2061132E-03 -2.1171756E-03
 -2.0312690E-03 -1.9483373E-03 -1.8683203E-03 -1.7911544E-03 -1.7167779E-03
 -1.6451181E-03
 0.5800251 0.5653383 0.5506340 0.5359521 0.5213224
 0.5067813 0.4923538 0.4780714 0.4639543 0.4500289
 0.4363106 0.4228205 0.4095405 0.3964776 0.3836390
 0.3710323 0.3586648 0.3465448 0.3346804 0.3230796
 0.3117503 0.3006997 0.2899342 0.2794593 0.2692792
 0.2593970 0.2498146 0.2405323 0.2315498 0.2228653
 0.2144759 0.2063779 0.1985668 0.1910374 0.1837838
 0.1767996 0.1700780 0.1636119 0.1573940 0.1514166
 0.1456722 0.1401531 0.1348516 0.1297600 0.1248707
 0.1201763 0.1156695 0.1113430 0.1071899 0.1032033
 9.9376611E-02 9.5703393E-02 9.2177421E-02 8.8792659E-02 8.5543312E-02
 8.2423784E-02 7.9428665E-02 7.6552771E-02 7.3791102E-02 7.1138874E-02
 6.8591498E-02 6.6144541E-02 6.3793801E-02 6.1535172E-02 5.9364803E-02
 5.7278994E-02 5.5274136E-02 5.3346861E-02 5.1493872E-02 4.9712058E-02
 4.7998466E-02 4.6350196E-02 4.4764563E-02 4.3238916E-02 4.1770775E-02
 4.0357772E-02 3.8997598E-02 3.7688099E-02 3.6427170E-02 3.5212822E-02
 3.4043167E-02 3.2916352E-02 3.1830676E-02 3.0784432E-02 2.9776050E-02
 2.8804019E-02 2.7866855E-02 2.6963187E-02 2.6091667E-02 2.5251023E-02
 2.4440056E-02 2.3657570E-02 2.2902470E-02 2.2173673E-02 2.1470169E-02
 2.0790961E-02 2.0135133E-02 1.9501777E-02 1.8890029E-02 1.8299080E-02
 1.7728126E-02
 0.2322317 0.2197922 0.2076615 0.1958671 0.1844020
 0.1732910 0.1625219 0.1521174 0.1420613 0.1323746
 0.1230377 0.1140702 0.1054475 9.7180247E-02 8.9277633E-02
 8.1747442E-02 7.4595422E-02 6.7825146E-02 6.1437454E-02 5.5430569E-02
 4.9800102E-02 4.4539273E-02 3.9639037E-02 3.5088412E-02 3.0874806E-02
 2.6984364E-02 2.3402242E-02 2.0112954E-02 1.7100658E-02 1.4349322E-02
 1.1842967E-02 9.5658684E-03 7.5026499E-03 5.6384401E-03 3.9589042E-03
 2.4503260E-03 1.0996648E-03 -1.0544132E-04 -1.1766360E-03 -2.1248874E-03
 -2.9604663E-03 -3.6929678E-03 -4.3313401E-03 -4.8838938E-03 -5.3583467E-03
 -5.7618474E-03 -6.1010015E-03 -6.3819098E-03 -6.6101900E-03 -6.7910152E-03
 -6.9291419E-03 -7.0289327E-03 -7.0943898E-03 -7.1291793E-03 -7.1366522E-03
 -7.1198740E-03 -7.0816423E-03 -7.0245066E-03 -6.9507901E-03 -6.8626078E-03
 -6.7618815E-03 -6.6503538E-03 -6.5296083E-03 -6.4010751E-03 -6.2660505E-03
 -6.1257049E-03 -5.9810886E-03 -5.8331541E-03 -5.6827511E-03 -5.5306442E-03
 -5.3775180E-03 -5.2239792E-03 -5.0705737E-03 -4.9177795E-03 -4.7660219E-03
 -4.6156789E-03 -4.4670743E-03 -4.3204958E-03 -4.1761897E-03 -4.0343674E-03
 -3.8952155E-03 -3.7588803E-03 -3.6254914E-03 -3.4951516E-03 -3.3679442E-03
 -3.2439316E-03 -3.1231593E-03 -3.0056594E-03 -2.8914472E-03 -2.7805306E-03
 -2.6729016E-03 -2.5685437E-03 -2.4674351E-03 -2.3695414E-03 -2.2748257E-03
 -2.1832420E-03 -2.0947410E-03 -2.0092705E-03 -1.9267709E-03 -1.8471874E-03
 -1.7704469E-03
 0.6151029 0.5996861 0.5842521 0.5688403 0.5534809
 0.5382099 0.5230527 0.5080406 0.4931938 0.4785387
 0.4640908 0.4498711 0.4359130 0.4222184 0.4087876
 0.3956214 0.3827202 0.3700851 0.3577181 0.3456217
 0.3337992 0.3222542 0.3109905 0.3000119 0.2893218
 0.2789231 0.2688183 0.2590088 0.2494954 0.2402778
 0.2313550 0.2227248 0.2143845 0.2063303 0.1985581
 0.1910626 0.1838384 0.1768794 0.1701792 0.1637310
 0.1575278 0.1515623 0.1458274 0.1403155 0.1350192
 0.1299312 0.1250441 0.1203506 0.1158437 0.1115162
 0.1073613 0.1033724 9.9542789E-02 9.5866263E-02 9.2336670E-02
 8.8948056E-02 8.5694663E-02 8.2570948E-02 7.9571545E-02 7.6691337E-02
 7.3925354E-02 7.1268812E-02 6.8717189E-02 6.6266008E-02 6.3911095E-02
 6.1648443E-02 5.9474103E-02 5.7384424E-02 5.5375807E-02 5.3444866E-02
 5.1588353E-02 4.9803112E-02 4.8086211E-02 4.6434741E-02 4.4845995E-02
 4.3317385E-02 4.1846368E-02 4.0430598E-02 3.9067756E-02 3.7755679E-02
 3.6492292E-02 3.5275571E-02 3.4103625E-02 3.2974619E-02 3.1886809E-02
 3.0838547E-02 2.9828208E-02 2.8854301E-02 2.7915327E-02 2.7009919E-02
 2.6136735E-02 2.5294485E-02 2.4481975E-02 2.3698004E-02 2.2941478E-02
 2.2211308E-02 2.1506475E-02 2.0826010E-02 2.0168955E-02 1.9534426E-02
 1.8921547E-02
 0.2475136 0.2347946 0.2223845 0.2103106 0.1985661
 0.1871756 0.1761271 0.1654433 0.1551077 0.1451416
 0.1355254 0.1262785 0.1173693 0.1088022 0.1005814
 9.2711836E-02 8.5197531E-02 7.8042090E-02 7.1247697E-02 6.4815015E-02
 5.8743164E-02 5.3029086E-02 4.7667976E-02 4.2653151E-02 3.7976135E-02
 3.3626907E-02 2.9594103E-02 2.5865240E-02 2.2427008E-02 1.9265428E-02
 1.6366126E-02 1.3714525E-02 1.1296016E-02 9.0961643E-03 7.1007577E-03
 5.2959714E-03 3.6684428E-03 2.2053239E-03 8.9435896E-04 -2.7612975E-04
 -1.3171819E-03 -2.2392201E-03 -3.0520386E-03 -3.7648035E-03 -4.3860897E-03
 -4.9238889E-03 -5.3856275E-03 -5.7782005E-03 -6.1079888E-03 -6.3808961E-03
 -6.6023706E-03 -6.7774332E-03 -6.9107045E-03 -7.0064333E-03 -7.0685162E-03
 -7.1005286E-03 -7.1057440E-03 -7.0871566E-03 -7.0475033E-03 -6.9892802E-03
 -6.9147646E-03 -6.8260292E-03 -6.7249597E-03 -6.6132681E-03 -6.4925100E-03
 -6.3640936E-03 -6.2292917E-03 -6.0892580E-03 -5.9450292E-03 -5.7975408E-03
 -5.6476346E-03 -5.4960633E-03 -5.3435043E-03 -5.1905550E-03 -5.0377552E-03
 -4.8855813E-03 -4.7344514E-03 -4.5847385E-03 -4.4367644E-03 -4.2908145E-03
 -4.1471347E-03 -4.0059332E-03 -3.8673927E-03 -3.7316617E-03 -3.5988684E-03
 -3.4691149E-03 -3.3424813E-03 -3.2190329E-03 -3.0988136E-03 -2.9818555E-03
 -2.8681757E-03 -2.7577779E-03 -2.6506581E-03 -2.5467987E-03 -2.4461769E-03
 -2.3487599E-03 -2.2545101E-03 -2.1633825E-03 -2.0753280E-03 -1.9903001E-03
 -1.9082276E-03
 0.6579178 0.6415191 0.6251031 0.6087095 0.5923681
 0.5761153 0.5599763 0.5439824 0.5281539 0.5125170
 0.4970874 0.4818860 0.4669895 0.4523994 0.4381143
 0.4241317 0.4104486 0.3970622 0.3839701 0.3711708
 0.3586636 0.3464486 0.3345264 0.3228984 0.3115661
 0.3005310 0.2897947 0.2793584 0.2692229 0.2593884
 0.2498544 0.2406197 0.2316823 0.2230397 0.2146884
 0.2066244 0.1988430 0.1913390 0.1841066 0.1771398
 0.1704319 0.1639761 0.1577654 0.1517926 0.1460504
 0.1405313 0.1352280 0.1301331 0.1252392 0.1205391
 0.1160256 0.1116918 0.1075307 0.1035357 9.9700332E-02
 9.6018188E-02 9.2483126E-02 8.9089222E-02 8.5830703E-02 8.2702063E-02
 7.9697922E-02 7.6813117E-02 7.4042730E-02 7.1381927E-02 6.8826161E-02
 6.6371061E-02 6.4012356E-02 6.1746031E-02 5.9568174E-02 5.7475083E-02
 5.5463217E-02 5.3529128E-02 5.1669598E-02 4.9881447E-02 4.8161730E-02
 4.6507575E-02 4.4916239E-02 4.3385126E-02 4.1911714E-02 4.0493611E-02
 3.9128553E-02 3.7814338E-02 3.6548879E-02 3.5330165E-02 3.4156293E-02
 3.3025451E-02 3.1935871E-02 3.0885898E-02 2.9873913E-02 2.8898401E-02
 2.7957914E-02 2.7051024E-02 2.6176423E-02 2.5332812E-02 2.4518980E-02
 2.3733739E-02 2.2975985E-02 2.2244642E-02 2.1538675E-02 2.0857116E-02
 2.0199005E-02
 0.2639673 0.2509684 0.2382784 0.2259247 0.2139003
 0.2022299 0.1909015 0.1799378 0.1693225 0.1590765
 0.1491804 0.1396537 0.1304522 0.1215767 0.1130294
 0.1048131 9.6931197E-02 8.9387223E-02 8.2184114E-02 7.5324386E-02
 6.8809174E-02 6.2638380E-02 5.6810353E-02 5.1321890E-02 4.6168081E-02
 4.1342426E-02 3.6836926E-02 3.2642242E-02 2.8747905E-02 2.5142409E-02
 2.1813465E-02 1.8748218E-02 1.5933413E-02 1.3355599E-02 1.1001229E-02
 8.8568628E-03 6.9092480E-03 5.1454380E-03 3.5529053E-03 2.1195281E-03
 8.3371054E-04 -3.1562147E-04 -1.3389837E-03 -2.2463109E-03 -3.0469808E-03
 -3.7498029E-03 -4.3630260E-03 -4.8943609E-03 -5.3509870E-03 -5.7395892E-03
 -6.0663694E-03 -6.3370713E-03 -6.5570087E-03 -6.7310878E-03 -6.8638292E-03
 -6.9593973E-03 -7.0216204E-03 -7.0540123E-03 -7.0597967E-03 -7.0419246E-03
 -7.0030987E-03 -6.9457856E-03 -6.8722381E-03 -6.7845085E-03 -6.6844672E-03
 -6.5738154E-03 -6.4540943E-03 -6.3267066E-03 -6.1929175E-03 -6.0538757E-03
 -5.9106164E-03 -5.7640695E-03 -5.6150784E-03 -5.4643909E-03 -5.3126849E-03
 -5.1605622E-03 -5.0085583E-03 -4.8571508E-03 -4.7067595E-03 -4.5577562E-03
 -4.4104699E-03 -4.2651789E-03 -4.1221357E-03 -3.9815474E-03 -3.8435976E-03
 -3.7084394E-03 -3.5761963E-03 -3.4469755E-03 -3.3208576E-03 -3.1979072E-03
 -3.0781722E-03 -2.9616822E-03 -2.8484578E-03 -2.7385014E-03 -2.6318117E-03
 -2.5283687E-03 -2.4281524E-03 -2.3311321E-03 -2.2372669E-03 -2.1465246E-03
 -2.0588369E-03
 0.7057483 0.6882147 0.6706637 0.6531351 0.6356589
 0.6182713 0.6009974 0.5838688 0.5669055 0.5501339
 0.5335698 0.5172337 0.5012501 0.4856186 0.4703367
 0.4553992 0.4408007 0.4265345 0.4125950 0.3989768
 0.3856759 0.3726891 0.3600141 0.3476496 0.3355948
 0.3238496 0.3124143 0.3012889 0.2904737 0.2799688
 0.2697736 0.2598873 0.2503084 0.2410348 0.2320638
 0.2233919 0.2150151 0.2069289 0.1991281 0.1916070
 0.1843595 0.1773792 0.1706593 0.1641927 0.1579723
 0.1519906 0.1462402 0.1407136 0.1354033 0.1303018
 0.1254018 0.1206959 0.1161770 0.1118379 0.1076718
 0.1036721 9.9832147E-02 9.6145593E-02 9.2606276E-02 8.9208283E-02
 8.5945837E-02 8.2813360E-02 7.9805538E-02 7.6917157E-02 7.4143268E-02
 7.1479142E-02 6.8920128E-02 6.6461876E-02 6.4100109E-02 6.1830815E-02
 5.9650116E-02 5.7554245E-02 5.5539697E-02 5.3603012E-02 5.1740937E-02
 4.9950376E-02 4.8228294E-02 4.6571862E-02 4.4978321E-02 4.3445062E-02
 4.1969601E-02 4.0549509E-02 3.9182529E-02 3.7866451E-02 3.6599185E-02
 3.5378750E-02 3.4203205E-02 3.3070747E-02 3.1979606E-02 3.0928120E-02
 2.9914690E-02 2.8937778E-02 2.7995938E-02 2.7087744E-02 2.6211884E-02
 2.5367061E-02 2.4552047E-02 2.3765687E-02 2.3006843E-02 2.2274451E-02
 2.1567473E-02
 0.2832101 0.2699038 0.2569063 0.2442452 0.2319134
 0.2199357 0.2082999 0.1970288 0.1861061 0.1755528
 0.1653493 0.1555153 0.1459824 0.1367519 0.1278246
 0.1192037 0.1108923 0.1028951 9.5216885E-02 8.7862149E-02
 8.0834530E-02 7.4137278E-02 6.7771778E-02 6.1738461E-02 5.6035902E-02
 5.0661247E-02 4.5610026E-02 4.0876187E-02 3.6452342E-02 3.2329723E-02
 2.8498461E-02 2.4947774E-02 2.1666069E-02 1.8641230E-02 1.5860682E-02
 1.3311629E-02 1.0981185E-02 8.8564930E-03 6.9248891E-03 5.1739258E-03
 3.5915172E-03 2.1659716E-03 8.8603352E-04 -2.5902703E-04 -1.2794471E-03
 -2.1849384E-03 -2.9846630E-03 -3.6872560E-03 -4.3008104E-03 -4.8329174E-03
 -5.2906536E-03 -5.6806151E-03 -6.0089324E-03 -6.2812944E-03 -6.5029641E-03
 -6.6788117E-03 -6.8133296E-03 -6.9106594E-03 -6.9746124E-03 -7.0086876E-03
 -7.0161005E-03 -6.9997972E-03 -6.9624740E-03 -6.9065974E-03 -6.8344176E-03
 -6.7479908E-03 -6.6491864E-03 -6.5397071E-03 -6.4210971E-03 -6.2947613E-03
 -6.1619715E-03 -6.0238736E-03 -5.8815097E-03 -5.7358127E-03 -5.5876258E-03
 -5.4377057E-03 -5.2867266E-03 -5.1352978E-03 -4.9839541E-03 -4.8331753E-03
 -4.6833879E-03 -4.5349607E-03 -4.3882262E-03 -4.2434661E-03 -4.1009299E-03
 -3.9608330E-03 -3.8233551E-03 -3.6886518E-03 -3.5568490E-03 -3.4280536E-03
 -3.3023490E-03 -3.1797991E-03 -3.0604522E-03 -2.9443409E-03 -2.8314833E-03
 -2.7218845E-03 -2.6155426E-03 -2.5124408E-03 -2.4125564E-03 -2.3158730E-03
 -2.2223252E-03
 0.7565062 0.7377384 0.7189534 0.7001908 0.6814806
 0.6628590 0.6443512 0.6259887 0.6077916 0.5897863
 0.5719883 0.5544186 0.5372587 0.5205004 0.5041462
 0.4881877 0.4726153 0.4574192 0.4425886 0.4281146
 0.4139889 0.4002049 0.3867562 0.3736385 0.3608480
 0.3483821 0.3362389 0.3244170 0.3129154 0.3017334
 0.2908700 0.2803241 0.2700944 0.2601792 0.2505761
 0.2412823 0.2322944 0.2236084 0.2152200 0.2071240
 0.1993148 0.1917866 0.1845329 0.1775472 0.1708224
 0.1643514 0.1581269 0.1521413 0.1463873 0.1408571
 0.1355434 0.1304385 0.1255351 0.1208259 0.1163036
 0.1119613 0.1077920 0.1037890 9.9945761E-02 9.6256003E-02
 9.2713542E-02 8.9312404E-02 8.6046867E-02 8.2911342E-02 7.9900496E-02
 7.7009186E-02 7.4232414E-02 7.1565457E-02 6.9003671E-02 6.6542685E-02
 6.4178303E-02 6.1906431E-02 5.9723224E-02 5.7624925E-02 5.5607978E-02
 5.3669013E-02 5.1804706E-02 5.0011970E-02 4.8287787E-02 4.6629306E-02
 4.5033809E-02 4.3498643E-02 4.2021334E-02 4.0599462E-02 3.9230745E-02
 3.7913006E-02 3.6644135E-02 3.5422143E-02 3.4245104E-02 3.3111189E-02
 3.2018658E-02 3.0965816E-02 2.9951092E-02 2.8972920E-02 2.8029865E-02
 2.7120508E-02 2.6243515E-02 2.5397608E-02 2.4581552E-02 2.3794189E-02
 2.3034364E-02
 0.3039450 0.2903846 0.2771330 0.2642177 0.2516318
 0.2394000 0.2275102 0.2159850 0.2048082 0.1940009
 0.1835434 0.1734552 0.1636144 0.1540424 0.1447410
 0.1357106 0.1269546 0.1184798 0.1102940 0.1024039
 9.4817191E-02 8.7540902E-02 8.0580331E-02 7.3940404E-02 6.7623854E-02
 6.1632186E-02 5.5965170E-02 5.0620660E-02 4.5594800E-02 4.0882237E-02
 3.6475997E-02 3.2367807E-02 2.8548200E-02 2.5006747E-02 2.1732196E-02
 1.8712660E-02 1.5935879E-02 1.3389256E-02 1.1060164E-02 8.9359200E-03
 7.0040063E-03 5.2521415E-03 3.6683467E-03 2.2410564E-03 9.5911842E-04
 -1.8814451E-04 -1.2108958E-03 -2.1187933E-03 -2.9209487E-03 -3.6259675E-03
 -4.2419224E-03 -4.7763749E-03 -5.2363891E-03 -5.6285504E-03 -5.9589804E-03
 -6.2333606E-03 -6.4569563E-03 -6.6346354E-03 -6.7708911E-03 -6.8698656E-03
 -6.9353725E-03 -6.9709169E-03 -6.9797174E-03 -6.9647222E-03 -6.9286339E-03
 -6.8739215E-03 -6.8028402E-03 -6.7174500E-03 -6.6196239E-03 -6.5110675E-03
 -6.3933334E-03 -6.2678251E-03 -6.1358185E-03 -5.9984643E-03 -5.8568041E-03
 -5.7117785E-03 -5.5642291E-03 -5.4149176E-03 -5.2645192E-03 -5.1136431E-03
 -4.9628303E-03 -4.8125600E-03 -4.6632593E-03 -4.5153019E-03 -4.3690158E-03
 -4.2246911E-03 -4.0825740E-03 -3.9428822E-03 -3.8057952E-03 -3.6714694E-03
 -3.5400356E-03 -3.4115964E-03 -3.2862390E-03 -3.1640253E-03 -3.0450081E-03
 -2.9292151E-03 -2.8166682E-03 -2.7073771E-03 -2.6013304E-03 -2.4985375E-03
 -2.3989375E-03
 0.8079235 0.7879806 0.7680205 0.7480828 0.7281976
 0.7084010 0.6887183 0.6691809 0.6498089 0.6306288
 0.6116561 0.5929117 0.5745324 0.5565318 0.5390195
 0.5219730 0.5053797 0.4892172 0.4734741 0.4581341
 0.4431840 0.4286115 0.4144047 0.4005541 0.3870518
 0.3738908 0.3610663 0.3485737 0.3364099 0.3245727
 0.3130600 0.3018701 0.2910015 0.2804526 0.2702214
 0.2603057 0.2507029 0.2414099 0.2324231 0.2237383
 0.2153509 0.2072558 0.1994473 0.1919195 0.1846659
 0.1776800 0.1709546 0.1644827 0.1582571 0.1522701
 0.1465143 0.1409823 0.1356664 0.1305593 0.1256534
 0.1209417 0.1164168 0.1120717 0.1078996 0.1038938
 0.1000478 9.6355170E-02 9.2809886E-02 8.9405924E-02 8.6137563E-02
 8.2999311E-02 7.9985738E-02 7.7091753E-02 7.4312359E-02 7.1642794E-02
 6.9078520E-02 6.6615075E-02 6.4248301E-02 6.1974097E-02 5.9788592E-02
 5.7688102E-02 5.5669021E-02 5.3727973E-02 5.1861648E-02 5.0066948E-02
 4.8340891E-02 4.6680573E-02 4.5083307E-02 4.3546431E-02 4.2067453E-02
 4.0643994E-02 3.9273731E-02 3.7954502E-02 3.6684193E-02 3.5460804E-02
 3.4282427E-02 3.3147212E-02 3.2053437E-02 3.0999392E-02 2.9983506E-02
 2.9004218E-02 2.8060073E-02 2.7149683E-02 2.6271686E-02 2.5424819E-02
 2.4607826E-02
 0.3212253 0.3077758 0.2946351 0.2818307 0.2693557
 0.2572348 0.2454558 0.2340416 0.2229757 0.2122793
 0.2019327 0.1919555 0.1818610 0.1720290 0.1624513
 0.1530985 0.1439773 0.1350939 0.1264601 0.1180858
 0.1099818 0.1021592 9.4627179E-02 8.7395385E-02 8.0470957E-02
 7.3860779E-02 6.7568690E-02 6.1597392E-02 5.5947315E-02 5.0616991E-02
 4.5603085E-02 4.0900592E-02 3.6502805E-02 3.2401755E-02 2.8588066E-02
 2.5051458E-02 2.1780819E-02 1.8764377E-02 1.5989950E-02 1.3445050E-02
 1.1117092E-02 8.9934887E-03 7.0617683E-03 5.3097294E-03 3.7254633E-03
 2.2974280E-03 1.0145293E-03 -1.3386905E-04 -1.1578851E-03 -2.0671436E-03
 -2.8707404E-03 -3.5772477E-03 -4.1947174E-03 -4.7306931E-03 -5.1922258E-03
 -5.5858837E-03 -5.9177838E-03 -6.1936001E-03 -6.4185900E-03 -6.5976158E-03
 -6.7351693E-03 -6.8353917E-03 -6.9020935E-03 -6.9387816E-03 -6.9486736E-03
 -6.9347192E-03 -6.8996199E-03 -6.8458500E-03 -6.7756660E-03 -6.6911257E-03
 -6.5941089E-03 -6.4863218E-03 -6.3693174E-03 -6.2445020E-03 -6.1131543E-03
 -5.9764292E-03 -5.8353674E-03 -5.6909113E-03 -5.5439053E-03 -5.3951098E-03
 -5.2452092E-03 -5.0948062E-03 -4.9444484E-03 -4.7946135E-03 -4.6457294E-03
 -4.4981749E-03 -4.3522771E-03 -4.2083254E-03 -4.0665679E-03 -3.9272220E-03
 -3.7904740E-03 -3.6564753E-03 -3.5253568E-03 -3.3972249E-03 -3.2721655E-03
 -3.1502433E-03 -3.0315067E-03 -2.9159912E-03 -2.8037145E-03 -2.6947078E-03
 -2.5889177E-03
 0.7291888 0.7151607 0.7011154 0.6870925 0.6731222
 0.6592406 0.6454729 0.6318505 0.6183937 0.6051287
 0.5920712 0.5792419 0.5664127 0.5535834 0.5407542
 0.5279250 0.5150957 0.5022665 0.4894372 0.4766080
 0.4637787 0.4509495 0.4381202 0.4252910 0.4124618
 0.3996325 0.3868033 0.3739740 0.3611448 0.3486507
 0.3364879 0.3246532 0.3131441 0.3019586 0.2910947
 0.2805504 0.2703237 0.2604122 0.2508133 0.2415237
 0.2325398 0.2238574 0.2154719 0.2073781 0.1995705
 0.1920430 0.1847894 0.1778030 0.1710769 0.1646040
 0.1583769 0.1523883 0.1466307 0.1410966 0.1357785
 0.1306691 0.1257608 0.1210466 0.1165191 0.1121714
 0.1079967 0.1039882 0.1001395 9.6444279E-02 9.2896335E-02
 8.9489803E-02 8.6218879E-02 8.3078086E-02 8.0062024E-02 7.7165581E-02
 7.4383818E-02 7.1711928E-02 6.9145381E-02 6.6679716E-02 6.4310759E-02
 6.2034469E-02 5.9846930E-02 5.7744458E-02 5.5723451E-02 5.3780518E-02
 5.1912412E-02 5.0115962E-02 4.8388205E-02 4.6726264E-02 4.5127396E-02
 4.3589003E-02 4.2108551E-02 4.0683661E-02 3.9312024E-02 3.7991453E-02
 3.6719866E-02 3.5495237E-02 3.4315668E-02 3.3179298E-02 3.2084413E-02
 3.1029291E-02 3.0012358E-02 2.9032085E-02 2.8086977E-02 2.7175659E-02
 2.6296768E-02
 0.2614764 0.2517663 0.2423651 0.2333003 0.2245648
 0.2161834 0.2081440 0.2004693 0.1931430 0.1861861
 0.1795791 0.1733415 0.1671038 0.1608662 0.1546286
 0.1483909 0.1421533 0.1359157 0.1296781 0.1234405
 0.1172028 0.1109652 0.1047276 9.8490007E-02 9.2252396E-02
 8.6014785E-02 7.9777174E-02 7.3539563E-02 6.7301951E-02 6.1378445E-02
 5.5770181E-02 5.0476301E-02 4.5494135E-02 4.0819049E-02 3.6444865E-02
 3.2363914E-02 2.8567256E-02 2.5044983E-02 2.1786263E-02 1.8779656E-02
 1.6013226E-02 1.3474726E-02 1.1151778E-02 9.0320148E-03 7.1031526E-03
 5.3531202E-03 3.7701514E-03 2.3428232E-03 1.0601607E-03 -8.8387133E-05
 -1.1128677E-03 -2.0228373E-03 -2.8273305E-03 -3.5348763E-03 -4.1534822E-03
 -4.6906597E-03 -5.1534344E-03 -5.5483556E-03 -5.8815209E-03 -6.1585871E-03
 -6.3848039E-03 -6.5650260E-03 -6.7037377E-03 -6.8050772E-03 -6.8728523E-03
 -6.9105667E-03 -6.9214380E-03 -6.9084167E-03 -6.8742069E-03 -6.8212799E-03
 -6.7518950E-03 -6.6681146E-03 -6.5718177E-03 -6.4647119E-03 -6.3483524E-03
 -6.2241517E-03 -6.0933847E-03 -5.9572118E-03 -5.8166729E-03 -5.6727137E-03
 -5.5261841E-03 -5.3778403E-03 -5.2283700E-03 -5.0783786E-03 -4.9284142E-03
 -4.7789575E-03 -4.6304357E-03 -4.4832285E-03 -4.3376638E-03 -4.1940338E-03
 -4.0525887E-03 -3.9135427E-03 -3.7770849E-03 -3.6433672E-03 -3.5125224E-03
 -3.3846553E-03 -3.2598528E-03 -3.1381813E-03 -3.0196900E-03 -2.9044114E-03
 -2.7923665E-03
 0.7556328 0.7415839 0.7275180 0.7134746 0.6994838
 0.6855816 0.6717935 0.6581507 0.6446735 0.6313881
 0.6183102 0.6054606 0.5926110 0.5797613 0.5669117
 0.5540621 0.5412124 0.5283628 0.5155132 0.5026636
 0.4898140 0.4769644 0.4641148 0.4512652 0.4384157
 0.4255661 0.4127165 0.3998670 0.3870174 0.3741678
 0.3613183 0.3488084 0.3366335 0.3247897 0.3132740
 0.3020837 0.2912165 0.2806700 0.2704420 0.2605298
 0.2509305 0.2416408 0.2326568 0.2239743 0.2155885
 0.2074944 0.1996863 0.1921582 0.1849037 0.1779163
 0.1711889 0.1647145 0.1584858 0.1524954 0.1467358
 0.1411997 0.1358795 0.1307679 0.1258573 0.1211407
 0.1166108 0.1122607 0.1080836 0.1040727 0.1002216
 9.6523970E-02 9.2973635E-02 8.9564756E-02 8.6291507E-02 8.3148405E-02
 8.0130145E-02 7.7231504E-02 7.4447602E-02 7.1773611E-02 6.9204994E-02
 6.6737376E-02 6.4366475E-02 6.2088307E-02 5.9898939E-02 5.7794672E-02
 5.5771969E-02 5.3827371E-02 5.1957648E-02 5.0159637E-02 4.8430357E-02
 4.6766963E-02 4.5166686E-02 4.3626927E-02 4.2145155E-02 4.0718984E-02
 3.9346125E-02 3.8024362E-02 3.6751635E-02 3.5525903E-02 3.4345265E-02
 3.3207871E-02 3.2111980E-02 3.1055918E-02 3.0038062E-02 2.9056901E-02
 2.8110936E-02
 0.2719525 0.2623002 0.2529568 0.2439497 0.2352721
 0.2269486 0.2189670 0.2113501 0.2040817 0.1971826
 0.1906335 0.1844537 0.1782740 0.1720942 0.1659145
 0.1597347 0.1535550 0.1473752 0.1411955 0.1350157
 0.1288360 0.1226562 0.1164765 0.1102967 0.1041170
 9.7937241E-02 9.1757491E-02 8.5577741E-02 7.9397991E-02 7.3218241E-02
 6.7038491E-02 6.1165534E-02 5.5601150E-02 5.0345182E-02 4.5395415E-02
 4.0747903E-02 3.6397003E-02 3.2335538E-02 2.8555114E-02 2.5046146E-02
 2.1798270E-02 1.8800346E-02 1.6040750E-02 1.3507546E-02 1.1188608E-02
 9.0717440E-03 7.1448656E-03 5.3960653E-03 3.8137261E-03 2.3865395E-03
 1.1036149E-03 -4.5497189E-05 -1.0707800E-03 -1.9817320E-03 -2.7873341E-03
 -3.4960692E-03 -4.1159238E-03 -4.6543791E-03 -5.1184413E-03 -5.5146390E-03
 -5.8490559E-03 -6.1273463E-03 -6.3547445E-03 -6.5361080E-03 -6.6759135E-03
 -6.7782965E-03 -6.8470668E-03 -6.8857269E-03 -6.8974951E-03 -6.8853237E-03
 -6.8519167E-03 -6.7997496E-03 -6.7310827E-03 -6.6479794E-03 -6.5523209E-03
 -6.4458200E-03 -6.3300324E-03 -6.2063718E-03 -6.0761147E-03 -5.9404233E-03
 -5.8003454E-03 -5.6568207E-03 -5.5107032E-03 -5.3627533E-03 -5.2136555E-03
 -5.0640241E-03 -4.9144002E-03 -4.7652707E-03 -4.6170619E-03 -4.4701542E-03
 -4.3248804E-03 -4.1815285E-03 -4.0403521E-03 -3.9015661E-03 -3.7653581E-03
 -3.6318845E-03 -3.5012742E-03 -3.3736371E-03 -3.2490566E-03 -3.1276017E-03
 -3.0093207E-03
 0.7822083 0.7681371 0.7540488 0.7399831 0.7259700
 0.7120457 0.6982354 0.6845705 0.6710711 0.6577635
 0.6446635 0.6317918 0.6189200 0.6060483 0.5931765
 0.5803048 0.5674331 0.5545613 0.5416896 0.5288178
 0.5159461 0.5030743 0.4902026 0.4773310 0.4644593
 0.4515876 0.4387159 0.4258442 0.4129725 0.4001009
 0.3872292 0.3743575 0.3614858 0.3489586 0.3367704
 0.3249166 0.3133935 0.3021977 0.2913268 0.2807779
 0.2705483 0.2606353 0.2510354 0.2417454 0.2327613
 0.2240787 0.2156929 0.2075985 0.1997900 0.1922613
 0.1850061 0.1780177 0.1712892 0.1648134 0.1585833
 0.1525913 0.1468301 0.1412921 0.1359700 0.1308563
 0.1259437 0.1212249 0.1166929 0.1123407 0.1081613
 0.1041483 0.1002950 9.6595183E-02 9.3042716E-02 8.9631669E-02
 8.6356372E-02 8.3211228E-02 8.0190949E-02 7.7290341E-02 7.4504487E-02
 7.1828648E-02 6.9258198E-02 6.6788793E-02 6.4416163E-02 6.2136289E-02
 5.9945308E-02 5.7839457E-02 5.5815212E-02 5.3869125E-02 5.1997941E-02
 5.0198551E-02 4.8467923E-02 4.6803225E-02 4.5201685E-02 4.3660697E-02
 4.2177763E-02 4.0750451E-02 3.9376497E-02 3.8053684E-02 3.6779933E-02
 3.5553213E-02 3.4371614E-02 3.3233322E-02 3.2136541E-02 3.1079628E-02
 3.0060951E-02
 0.2829509 0.2733363 0.2640306 0.2550612 0.2464213
 0.2381356 0.2301917 0.2226127 0.2153820 0.2085208
 0.2020094 0.1958675 0.1897255 0.1835836 0.1774416
 0.1712997 0.1651577 0.1590158 0.1528738 0.1467319
 0.1405900 0.1344480 0.1283061 0.1221641 0.1160222
 0.1098802 0.1037383 9.7596362E-02 9.1454424E-02 8.5312486E-02
 7.9170547E-02 7.3028609E-02 6.6886671E-02 6.1046660E-02 5.5510629E-02
 5.0279096E-02 4.5350336E-02 4.0720597E-02 3.6384687E-02 3.2335661E-02
 2.8565492E-02 2.5064906E-02 2.1823715E-02 1.8831035E-02 1.6075492E-02
 1.3545275E-02 1.1228425E-02 9.1129122E-03 7.1867891E-03 5.4382449E-03
 3.8557486E-03 2.4280844E-03 1.1444326E-03 -5.6050867E-06 -1.0319526E-03
 -1.9440618E-03 -2.7508908E-03 -3.4608953E-03 -4.0820329E-03 -4.6217679E-03
 -5.0870874E-03 -5.4845191E-03 -5.8201314E-03 -6.0995747E-03 -6.3280836E-03
 -6.5105036E-03 -6.6513172E-03 -6.7546577E-03 -6.8243365E-03 -6.8638548E-03
 -6.8764337E-03 -6.8650269E-03 -6.8323412E-03 -6.7808540E-03 -6.7128255E-03
 -6.6303257E-03 -6.5352344E-03 -6.4292690E-03 -6.3139847E-03 -6.1907978E-03
 -6.0609919E-03 -5.9257252E-03 -5.7860487E-03 -5.6429049E-03 -5.4971469E-03
 -5.3495415E-03 -5.2007711E-03 -5.0514499E-03 -4.9021225E-03 -4.7532767E-03
 -4.6053417E-03 -4.4586938E-03 -4.3136720E-03 -4.1705617E-03 -4.0296181E-03
 -3.8910566E-03 -3.7550658E-03 -3.6218027E-03 -3.4913975E-03 -3.3639590E-03
 -3.2395723E-03
 0.8084834 0.7943998 0.7802992 0.7662212 0.7521958
 0.7382593 0.7244366 0.7107595 0.6972478 0.6839281
 0.6708159 0.6579320 0.6450481 0.6321642 0.6192803
 0.6063964 0.5935125 0.5806286 0.5677447 0.5548608
 0.5419769 0.5290930 0.5162091 0.5033252 0.4904413
 0.4775575 0.4646736 0.4517898 0.4389059 0.4260221
 0.4131382 0.4002544 0.3873706 0.3744867 0.3616029
 0.3490667 0.3368717 0.3250131 0.3134869 0.3022894
 0.2914174 0.2808682 0.2706387 0.2607259 0.2511266
 0.2418371 0.2328535 0.2241712 0.2157856 0.2076912
 0.1998825 0.1923535 0.1850976 0.1781084 0.1713789
 0.1649021 0.1586706 0.1526772 0.1469144 0.1413748
 0.1360509 0.1309354 0.1260210 0.1213003 0.1167663
 0.1124121 0.1082308 0.1042158 0.1003605 9.6658751E-02
 9.3104392E-02 8.9691445E-02 8.6414278E-02 8.3267286E-02 8.0245174E-02
 7.7342831E-02 7.4555255E-02 7.1877733E-02 6.9305643E-02 6.6834614E-02
 6.4460464E-02 6.2179077E-02 5.9986632E-02 5.7879362E-02 5.5853728E-02
 5.3906329E-02 5.2033853E-02 5.0233219E-02 4.8501391E-02 4.6835512E-02
 4.5232862E-02 4.3690782E-02 4.2206798E-02 4.0778477E-02 3.9403550E-02
 3.8079791E-02 3.6805119E-02 3.5577536E-02 3.4395088E-02 3.3255976E-02
 3.2158416E-02
 0.2941695 0.2845831 0.2753056 0.2663645 0.2577528
 0.2494952 0.2415797 0.2340289 0.2268264 0.2199935
 0.2135104 0.2073967 0.2012831 0.1951694 0.1890558
 0.1829422 0.1768285 0.1707149 0.1646012 0.1584876
 0.1523739 0.1462603 0.1401466 0.1340330 0.1279193
 0.1218057 0.1156920 0.1095784 0.1034647 9.7351104E-02
 9.1237463E-02 8.5123822E-02 7.9010181E-02 7.2896540E-02 6.6782899E-02
 6.0967095E-02 5.5452805E-02 5.0239652E-02 4.5326639E-02 4.0710390E-02
 3.6385782E-02 3.2346152E-02 2.8583625E-02 2.5089225E-02 2.1852901E-02
 1.8863969E-02 1.6111208E-02 1.3582949E-02 1.1267379E-02 9.1525689E-03
 7.2266599E-03 5.4779463E-03 3.8949742E-03 2.4665860E-03 1.1820293E-03
 3.0956402E-05 -9.9652819E-04 -1.9098409E-03 -2.7179117E-03 -3.4291658E-03
 -4.0515470E-03 -4.5925118E-03 -5.0590304E-03 -5.4576253E-03 -5.7943612E-03
 -6.0748765E-03 -6.3044108E-03 -6.4878049E-03 -6.6295438E-03 -6.7337593E-03
 -6.8042618E-03 -6.8445583E-03 -6.8578697E-03 -6.8471516E-03 -6.8151122E-03
 -6.7642326E-03 -6.6967760E-03 -6.6148126E-03 -6.5202266E-03 -6.4147338E-03
 -6.2998966E-03 -6.1771292E-03 -6.0477196E-03 -5.9128259E-03 -5.7735010E-03
 -5.6306920E-03 -5.4852511E-03 -5.3379466E-03 -5.1894607E-03 -5.0404104E-03
 -4.8913443E-03 -4.7427453E-03 -4.5950478E-03 -4.4486290E-03 -4.3038246E-03
 -4.1609243E-03 -4.0201824E-03 -3.8818184E-03 -3.7460171E-03 -3.6129374E-03
 -3.4827096E-03
 0.8346373 0.8205455 0.8064367 0.7923505 0.7783169
 0.7643721 0.7505413 0.7368559 0.7233362 0.7100083
 0.6968881 0.6839962 0.6711043 0.6582124 0.6453205
 0.6324286 0.6195368 0.6066449 0.5937530 0.5808611
 0.5679692 0.5550773 0.5421854 0.5292935 0.5164016
 0.5035098 0.4906179 0.4777260 0.4648341 0.4519422
 0.4390503 0.4261584 0.4132665 0.4003747 0.3874828
 0.3745909 0.3616990 0.3491559 0.3369568 0.3250951
 0.3135672 0.3023687 0.2914965 0.2809474 0.2707185
 0.2608064 0.2512078 0.2419189 0.2329358 0.2242540
 0.2158686 0.2077743 0.1999655 0.1924360 0.1851797
 0.1781898 0.1714594 0.1649815 0.1587489 0.1527542
 0.1469900 0.1414488 0.1361234 0.1310062 0.1260900
 0.1213677 0.1168320 0.1124760 0.1082929 0.1042761
 0.1004191 9.6715562E-02 9.3159467E-02 8.9744814E-02 8.6465932E-02
 8.3317317E-02 8.0293588E-02 7.7389657E-02 7.4600533E-02 7.1921483E-02
 6.9347955E-02 6.6875502E-02 6.4499952E-02 6.2217221E-02 6.0023449E-02
 5.7914931E-02 5.5888075E-02 5.3939484E-02 5.2065860E-02 5.0264098E-02
 4.8531208E-02 4.6864290E-02 4.5260638E-02 4.3717593E-02 4.2232674E-02
 4.0803444E-02 3.9427634E-02 3.8103048E-02 3.6827564E-02 3.5599198E-02
 3.4415998E-02
 0.3054411 0.2958788 0.2866254 0.2777085 0.2691210
 0.2608877 0.2529964 0.2454699 0.2382918 0.2314832
 0.2250244 0.2189351 0.2128458 0.2067565 0.2006672
 0.1945779 0.1884886 0.1823993 0.1763100 0.1702207
 0.1641314 0.1580421 0.1519528 0.1458635 0.1397742
 0.1336849 0.1275956 0.1215064 0.1154171 0.1093278
 0.1032385 9.7149216E-02 9.1059931E-02 8.4970646E-02 7.8881361E-02
 7.2792076E-02 6.6702791E-02 6.0907859E-02 5.5411767E-02 5.0214503E-02
 4.5315310E-02 4.0709928E-02 3.6394477E-02 3.2362431E-02 2.8606065E-02
 2.5116395E-02 2.1883797E-02 1.8897604E-02 1.6146787E-02 1.3619796E-02
 1.1304920E-02 9.1903368E-03 7.2642737E-03 5.5150958E-03 3.9314181E-03
 2.5021604E-03 1.2165863E-03 6.4403102E-05 -9.6426392E-04 -1.8787829E-03
 -2.6880696E-03 -3.4005449E-03 -4.0241224E-03 -4.5662583E-03 -5.0339149E-03
 -5.4335981E-03 -5.7713790E-03 -6.0528889E-03 -6.2833684E-03 -6.4676595E-03
 -6.6102422E-03 -6.7152544E-03 -6.7865066E-03 -6.8275072E-03 -6.8414789E-03
 -6.8313815E-03 -6.7999237E-03 -6.7495881E-03 -6.6826413E-03 -6.6011562E-03
 -6.5070190E-03 -6.4019468E-03 -6.2875049E-03 -6.1651100E-03 -6.0360478E-03
 -5.9014852E-03 -5.7624704E-03 -5.6199552E-03 -5.4747933E-03 -5.3277500E-03
 -5.1795165E-03 -5.0307033E-03 -4.8818649E-03 -4.7334828E-03 -4.5859925E-03
 -4.4397721E-03 -4.2951577E-03 -4.1524423E-03 -4.0118778E-03 -3.8736835E-03
 -3.7380478E-03
 0.8607681 0.8466690 0.8325529 0.8184595 0.8044186
 0.7904666 0.7766287 0.7629362 0.7494093 0.7360744
 0.7229472 0.7100484 0.6971495 0.6842507 0.6713518
 0.6584529 0.6455541 0.6326552 0.6197563 0.6068575
 0.5939586 0.5810598 0.5681609 0.5552620 0.5423632
 0.5294643 0.5165654 0.5036666 0.4907677 0.4778689
 0.4649700 0.4520711 0.4391723 0.4262734 0.4133745
 0.4004757 0.3875768 0.3746780 0.3617791 0.3492315
 0.3370287 0.3251652 0.3136360 0.3024374 0.2915656
 0.2810171 0.2707888 0.2608775 0.2512797 0.2419917
 0.2330092 0.2243278 0.2159427 0.2078485 0.2000396
 0.1925099 0.1852531 0.1782626 0.1715314 0.1650526
 0.1588189 0.1528230 0.1470575 0.1415150 0.1361881
 0.1310696 0.1261518 0.1214279 0.1168906 0.1125330
 0.1083484 0.1043300 0.1004714 9.6766271E-02 9.3208574E-02
 8.9792423E-02 8.6512037E-02 8.3361946E-02 8.0336772E-02 7.7431396E-02
 7.4640915E-02 7.1960509E-02 6.9385670E-02 6.6911943E-02 6.4535126E-02
 6.2251218E-02 6.0056277E-02 5.7946626E-02 5.5918675E-02 5.3969003E-02
 5.2094374E-02 5.0291620E-02 4.8557766E-02 4.6889924E-02 4.5285378E-02
 4.3741465E-02 4.2255700E-02 4.0825684E-02 3.9449092E-02 3.8123757E-02
 3.6847550E-02
 0.3168291 0.3072861 0.2980519 0.2891541 0.2805859
 0.2723719 0.2644999 0.2569927 0.2498339 0.2430447
 0.2366053 0.2305354 0.2244655 0.2183956 0.2123257
 0.2062557 0.2001858 0.1941159 0.1880460 0.1819761
 0.1759062 0.1698363 0.1637664 0.1576964 0.1516265
 0.1455566 0.1394867 0.1334168 0.1273469 0.1212770
 0.1152070 0.1091371 0.1030672 9.6997306E-02 9.0927392E-02
 8.4857479E-02 7.8787565E-02 7.2717652E-02 6.6647738E-02 6.0869977E-02
 5.5388309E-02 5.0203841E-02 4.5314807E-02 4.0718190E-02 3.6409818E-02
 3.2383472E-02 2.8631622E-02 2.5145531E-02 2.1915551E-02 1.8931283E-02
 1.6181694E-02 1.3655369E-02 1.1340717E-02 9.2259850E-03 7.2994847E-03
 5.5496469E-03 3.9651231E-03 2.5348777E-03 1.2482243E-03 9.4898482E-05
 -9.3492941E-04 -1.8506424E-03 -2.6611108E-03 -3.3747535E-03 -3.9994773E-03
 -4.5427112E-03 -5.0114286E-03 -5.4121274E-03 -5.7508755E-03 -6.0333074E-03
 -6.2646531E-03 -6.4497627E-03 -6.5931156E-03 -6.6988524E-03 -6.7707840E-03
 -6.8124202E-03 -6.8269884E-03 -6.8174484E-03 -6.7865113E-03 -6.7366632E-03
 -6.6701737E-03 -6.5891142E-03 -6.4953766E-03 -6.3906792E-03 -6.2765861E-03
 -6.1545218E-03 -6.0257688E-03 -5.8914972E-03 -5.7527567E-03 -5.6105005E-03
 -5.4655834E-03 -5.3187720E-03 -5.1707579E-03 -5.0221551E-03 -4.8735156E-03
 -4.7253235E-03 -4.5780130E-03 -4.4319686E-03 -4.2875209E-03 -4.1449657E-03
 -4.0045553E-03
 0.8868905 0.8727847 0.8586618 0.8445616 0.8305141
 0.8165554 0.8027109 0.7890118 0.7754785 0.7621371
 0.7490034 0.7360981 0.7231928 0.7102875 0.6973822
 0.6844769 0.6715716 0.6586663 0.6457610 0.6328557
 0.6199504 0.6070451 0.5941398 0.5812345 0.5683292
 0.5554239 0.5425186 0.5296133 0.5167080 0.5038027
 0.4908974 0.4779921 0.4650868 0.4521815 0.4392762
 0.4263709 0.4134656 0.4005603 0.3876550 0.3747497
 0.3618444 0.3492940 0.3370884 0.3252240 0.3136955
 0.3024971 0.2916259 0.2810780 0.2708509 0.2609405
 0.2513436 0.2420564 0.2330746 0.2243937 0.2160089
 0.2079149 0.2001059 0.1925760 0.1853188 0.1783277
 0.1715958 0.1651162 0.1588815 0.1528846 0.1471179
 0.1415743 0.1362461 0.1311261 0.1262071 0.1214817
 0.1169430 0.1125840 0.1083979 0.1043781 0.1005180
 9.6811526E-02 9.3252443E-02 8.9834914E-02 8.6553171E-02 8.3401725E-02
 8.0375277E-02 7.7468634E-02 7.4676916E-02 7.1995310E-02 6.9419265E-02
 6.6944420E-02 6.4566500E-02 6.2281515E-02 6.0085535E-02 5.7974860E-02
 5.5945940E-02 5.3995322E-02 5.2119780E-02 5.0316136E-02 4.8581433E-02
 4.6912763E-02 4.5307402E-02 4.3762736E-02 4.2276226E-02 4.0845491E-02
 3.9468206E-02
 0.3282258 0.3187001 0.3094834 0.3006032 0.2920524
 0.2838559 0.2760015 0.2685119 0.2613707 0.2545991
 0.2481775 0.2421253 0.2360731 0.2300209 0.2239687
 0.2179165 0.2118643 0.2058121 0.1997599 0.1937077
 0.1876555 0.1816033 0.1755511 0.1694989 0.1634467
 0.1573945 0.1513423 0.1452901 0.1392379 0.1331857
 0.1271335 0.1210814 0.1150292 0.1089770 0.1029248
 9.6872635E-02 9.0820454E-02 8.4768273E-02 7.8716092E-02 7.2663911E-02
 6.6611730E-02 6.0847025E-02 5.5376761E-02 5.0202508E-02 4.5321748E-02
 4.0732123E-02 3.6429312E-02 3.2407269E-02 2.8658809E-02 2.5175363E-02
 2.1947270E-02 1.8964205E-02 1.6215283E-02 1.3689223E-02 1.1374468E-02
 9.2593534E-03 7.3322332E-03 5.5815848E-03 3.9961236E-03 2.5648465E-03
 1.2771053E-03 1.2264620E-04 -9.0832834E-04 -1.8251891E-03 -2.6367975E-03
 -3.3515370E-03 -3.9773313E-03 -4.5215967E-03 -4.9913032E-03 -5.3929449E-03
 -5.7325806E-03 -6.0158568E-03 -6.2479959E-03 -6.4338529E-03 -6.5779085E-03
 -6.6843010E-03 -6.7568473E-03 -6.7990581E-03 -6.8141622E-03 -6.8051233E-03
 -6.7746551E-03 -6.7252428E-03 -6.6591608E-03 -6.5784832E-03 -6.4850994E-03
 -6.3807359E-03 -6.2669548E-03 -6.1451816E-03 -6.0167043E-03 -5.8826869E-03
 -5.7441909E-03 -5.6021628E-03 -5.4574618E-03 -5.3108539E-03 -5.1630344E-03
 -5.0146156E-03 -4.8661483E-03 -4.7181249E-03 -4.5709740E-03 -4.4250810E-03
 -4.2807804E-03
 0.8981099 0.8843524 0.8705780 0.8568262 0.8431273
 0.8295171 0.8160212 0.8026708 0.7894861 0.7764934
 0.7637084 0.7511519 0.7385954 0.7260389 0.7134824
 0.7009259 0.6883695 0.6758130 0.6632565 0.6507000
 0.6381435 0.6255870 0.6130305 0.6004740 0.5879175
 0.5753610 0.5628045 0.5502480 0.5376915 0.5251350
 0.5125785 0.5000221 0.4874656 0.4749091 0.4623527
 0.4497962 0.4372397 0.4246833 0.4121268 0.3995703
 0.3870139 0.3744574 0.3619010 0.3493445 0.3371395
 0.3252750 0.3137458 0.3025487 0.2916788 0.2811320
 0.2709056 0.2609963 0.2514003 0.2421139 0.2331328
 0.2244525 0.2160680 0.2079742 0.2001651 0.1926350
 0.1853775 0.1783859 0.1716534 0.1651730 0.1589375
 0.1529396 0.1471719 0.1416272 0.1362978 0.1311767
 0.1262564 0.1215298 0.1169898 0.1126295 0.1084421
 0.1044210 0.1005597 9.6851900E-02 9.3291566E-02 8.9872777E-02
 8.6589858E-02 8.3437227E-02 8.0409609E-02 7.7501841E-02 7.4708991E-02
 7.2026327E-02 6.9449238E-02 6.6973366E-02 6.4594470E-02 6.2308498E-02
 6.0111608E-02 5.8000021E-02 5.5970233E-02 5.4018773E-02 5.2142415E-02
 5.0337981E-02 4.8602495E-02 4.6933107E-02 4.5327034E-02 4.3781683E-02
 4.2294506E-02
 0.3276384 0.3184141 0.3094987 0.3009198 0.2926705
 0.2847754 0.2772224 0.2700343 0.2631946 0.2567245
 0.2506044 0.2448537 0.2391031 0.2333525 0.2276019
 0.2218512 0.2161006 0.2103500 0.2045994 0.1988487
 0.1930981 0.1873475 0.1815969 0.1758462 0.1700956
 0.1643450 0.1585944 0.1528437 0.1470931 0.1413425
 0.1355918 0.1298412 0.1240906 0.1183400 0.1125894
 0.1068387 0.1010881 9.5337503E-02 8.9586884E-02 8.3836265E-02
 7.8085646E-02 7.2335027E-02 6.6584408E-02 6.0833789E-02 5.5374943E-02
 5.0208762E-02 4.5334183E-02 4.0749840E-02 3.6451023E-02 3.2432541E-02
 2.8686682E-02 2.5204992E-02 2.1978125E-02 1.8995814E-02 1.6247217E-02
 1.3721130E-02 1.1406042E-02 9.2903534E-03 7.3624789E-03 5.6109643E-03
 4.0245350E-03 2.5922111E-03 1.3033944E-03 1.4783142E-04 -8.8425790E-04
 -1.8022010E-03 -2.6148779E-03 -3.3306573E-03 -3.9574518E-03 -4.5026792E-03
 -4.9732919E-03 -5.3758002E-03 -5.7162545E-03 -6.0003009E-03 -6.2331674E-03
 -6.4197024E-03 -6.5643946E-03 -6.6713807E-03 -6.7444826E-03 -6.7872121E-03
 -6.8027996E-03 -6.7942091E-03 -6.7641614E-03 -6.7151403E-03 -6.6494215E-03
 -6.5690842E-03 -6.4760181E-03 -6.3719503E-03 -6.2584467E-03 -6.1369315E-03
 -6.0086972E-03 -5.8749085E-03 -5.7366267E-03 -5.5948007E-03 -5.4502897E-03
 -5.3038625E-03 -5.1562120E-03 -5.0079562E-03 -4.8596440E-03 -4.7117667E-03
 -4.5647561E-03
 0.8916391 0.8785763 0.8654968 0.8524399 0.8394358
 0.8265206 0.8137196 0.8010642 0.7885745 0.7762769
 0.7641871 0.7523258 0.7404644 0.7286031 0.7167418
 0.7048805 0.6930192 0.6811578 0.6692965 0.6574352
 0.6455739 0.6337125 0.6218512 0.6099899 0.5981286
 0.5862672 0.5744059 0.5625446 0.5506833 0.5388219
 0.5269606 0.5150993 0.5032380 0.4913767 0.4795154
 0.4676541 0.4557928 0.4439315 0.4320702 0.4202089
 0.4083476 0.3964863 0.3846250 0.3727637 0.3609024
 0.3490411 0.3371798 0.3253185 0.3137903 0.3025940
 0.2917251 0.2811791 0.2709540 0.2610456 0.2514506
 0.2421650 0.2331847 0.2245049 0.2161207 0.2080270
 0.2002181 0.1926878 0.1854300 0.1784379 0.1717049
 0.1652238 0.1589875 0.1529888 0.1472202 0.1416744
 0.1363441 0.1312218 0.1263004 0.1215727 0.1170315
 0.1126701 0.1084815 0.1044593 0.1005968 9.6887887E-02
 9.3326472E-02 8.9906573E-02 8.6622573E-02 8.3468884E-02 8.0440208E-02
 7.7531449E-02 7.4737608E-02 7.2053984E-02 6.9475956E-02 6.6999152E-02
 6.4619385E-02 6.2332563E-02 6.0134839E-02 5.8022454E-02 5.5991884E-02
 5.4039672E-02 5.2162558E-02 5.0357442E-02 4.8621278E-02 4.6951231E-02
 4.5344520E-02
 0.3122508 0.3036173 0.2952927 0.2873047 0.2796463
 0.2723421 0.2653800 0.2587829 0.2525342 0.2466551
 0.2411259 0.2359663 0.2308066 0.2256470 0.2204874
 0.2153278 0.2101681 0.2050085 0.1998489 0.1946892
 0.1895296 0.1843700 0.1792103 0.1740507 0.1688911
 0.1637314 0.1585718 0.1534122 0.1482525 0.1430929
 0.1379333 0.1327737 0.1276140 0.1224544 0.1172948
 0.1121351 0.1069755 0.1018159 9.6656233E-02 9.1496602E-02
 8.6336970E-02 8.1177339E-02 7.6017708E-02 7.0858076E-02 6.5698445E-02
 6.0538813E-02 5.5379186E-02 5.0219558E-02 4.5350533E-02 4.0770199E-02
 3.6474284E-02 3.2458279E-02 2.8713949E-02 2.5233796E-02 2.2007724E-02
 1.9025849E-02 1.6277310E-02 1.3750938E-02 1.1435335E-02 9.3189897E-03
 7.3903217E-03 5.6378823E-03 4.0504769E-03 2.6171275E-03 1.3272488E-03
 1.7063842E-04 -8.6249766E-04 -1.7814717E-03 -2.5951490E-03 -3.3119004E-03
 -3.9396146E-03 -4.4857264E-03 -4.9571777E-03 -5.3604799E-03 -5.7016863E-03
 -5.9864321E-03 -6.2199580E-03 -6.4071110E-03 -6.5523791E-03 -6.6599040E-03
 -6.7335060E-03 -6.7767021E-03 -6.7927237E-03 -6.7845378E-03 -6.7548649E-03
 -6.7061940E-03 -6.6408021E-03 -6.5607675E-03 -6.4679841E-03 -6.3641788E-03
 -6.2509221E-03 -6.1296364E-03 -6.0016182E-03 -5.8680326E-03 -5.7299407E-03
 -5.5882921E-03 -5.4439488E-03 -5.2976822E-03 -5.1501826E-03 -5.0020684E-03
 -4.8538917E-03
 0.8990343 0.8863052 0.8735594 0.8608362 0.8481659
 0.8355845 0.8231173 0.8107958 0.7986400 0.7866764
 0.7749206 0.7633933 0.7518660 0.7403387 0.7288114
 0.7172841 0.7057568 0.6942295 0.6827022 0.6711749
 0.6596476 0.6481203 0.6365930 0.6250657 0.6135384
 0.6020111 0.5904838 0.5789565 0.5674292 0.5559019
 0.5443746 0.5328473 0.5213200 0.5097927 0.4982654
 0.4867381 0.4752109 0.4636836 0.4521563 0.4406291
 0.4291018 0.4175745 0.4060473 0.3945200 0.3829927
 0.3714654 0.3599382 0.3484109 0.3368836 0.3253564
 0.3138291 0.3026336 0.2917657 0.2812214 0.2709967
 0.2610894 0.2514953 0.2422106 0.2332308 0.2245515
 0.2161678 0.2080742 0.2002653 0.1927349 0.1854768
 0.1784844 0.1717508 0.1652692 0.1590322 0.1530326
 0.1472633 0.1417166 0.1363853 0.1312621 0.1263397
 0.1216110 0.1170688 0.1127063 0.1085167 0.1044934
 0.1006300 9.6920013E-02 9.3357600E-02 8.9936718E-02 8.6651720E-02
 8.3497107E-02 8.0467507E-02 7.7557839E-02 7.4763119E-02 7.2078615E-02
 6.9499768E-02 6.7022152E-02 6.4641602E-02 6.2354010E-02 6.0155544E-02
 5.8042441E-02 5.6011155E-02 5.4058291E-02 5.2180529E-02 5.0374784E-02
 4.8638009E-02
 0.3081518 0.2998128 0.2917827 0.2840892 0.2767252
 0.2697156 0.2630481 0.2567454 0.2507913 0.2452067
 0.2399721 0.2351071 0.2302420 0.2253769 0.2205119
 0.2156468 0.2107818 0.2059167 0.2010516 0.1961866
 0.1913215 0.1864564 0.1815914 0.1767263 0.1718612
 0.1669962 0.1621311 0.1572660 0.1524010 0.1475359
 0.1426708 0.1378058 0.1329407 0.1280756 0.1232106
 0.1183455 0.1134805 0.1086154 0.1037504 9.8885335E-02
 9.4020285E-02 8.9155234E-02 8.4290184E-02 7.9425134E-02 7.4560083E-02
 6.9695033E-02 6.4829983E-02 5.9964936E-02 5.5099893E-02 5.0234850E-02
 4.5369808E-02 4.0791247E-02 3.6498327E-02 3.2483563E-02 2.8740920E-02
 2.5261322E-02 2.2035833E-02 1.9054061E-02 1.6305318E-02 1.3778605E-02
 1.1462406E-02 9.3453098E-03 7.4158120E-03 5.6624617E-03 4.0740827E-03
 2.6397572E-03 1.3488739E-03 1.9126176E-04 -8.4286113E-04 -1.7628054E-03
 -2.5774059E-03 -3.2950526E-03 -3.9236206E-03 -4.4705444E-03 -4.9427710E-03
 -5.3467937E-03 -5.6886817E-03 -5.9740669E-03 -6.2081916E-03 -6.3959039E-03
 -6.5416917E-03 -6.6497019E-03 -6.7237560E-03 -6.7673712E-03 -6.7837830E-03
 -6.7759599E-03 -6.7466241E-03 -6.6982666E-03 -6.6331648E-03 -6.5534008E-03
 -6.4608702E-03 -6.3572992E-03 -6.2442622E-03 -6.1231819E-03 -5.9953546E-03
 -5.8619487E-03 -5.7240231E-03 -5.5825347E-03 -5.4383399E-03 -5.2922121E-03
 -5.1448462E-03

XFOILinterface/XFOIL/orrs/osnew/ai.03

3.00000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 0.000000
 0.40000 0.000000
 0.50000 0.000000
 0.60000 0.000000
 0.70000 0.000000
 0.80000 0.000000
 0.90000 0.000000
 1.00000 -0.017903
 1.10000 -0.031943
 1.20000 -0.024618
 1.30000 -0.017929
 1.40000 -0.011872
 1.50000 -0.006436
 1.60000 -0.001662
 1.70000 0.002402
 1.80000 0.005668
 1.90000 0.008060
 2.00000 0.009500
 2.10000 0.009971
 2.20000 0.009600
 2.30000 0.008722
 2.40000 0.007926
 2.50000 0.007605
 2.60000 0.007698
 2.70000 0.007942
 2.80000 0.008139
 2.90000 0.008243
 3.00000 0.008300
 3.10000 0.008342
 3.20000 0.008377
 3.30000 0.008403
 3.40000 0.008423
 3.50000 0.008437
 3.60000 0.008447
 3.70000 0.008453
 3.80000 0.008458
 3.90000 0.008455
 4.00000 0.008462

XFOILinterface/XFOIL/orrs/osm.0300

 256 3.000000
 0.0000000E+00 8.5867168E-03 1.7259302E-02 2.6018610E-02 3.4865513E-02
 4.3800887E-02 5.2825615E-02 6.1940584E-02 7.1146704E-02 8.0444887E-02
 8.9836054E-02 9.9321127E-02 0.1089011 0.1185768 0.1283493
 0.1382195 0.1481884 0.1582570 0.1684263 0.1786973
 0.1890710 0.1995484 0.2101306 0.2208186 0.2316135
 0.2425164 0.2535282 0.2646503 0.2758835 0.2872290
 0.2986880 0.3102616 0.3219509 0.3337571 0.3456814
 0.3577250 0.3698889 0.3821745 0.3945830 0.4071155
 0.4197734 0.4325578 0.4454702 0.4585116 0.4716834
 0.4849869 0.4984235 0.5119945 0.5257012 0.5395449
 0.5535270 0.5676490 0.5819122 0.5963180 0.6108680
 0.6255633 0.6404057 0.6553965 0.6705372 0.6858292
 0.7012742 0.7168736 0.7326291 0.7485421 0.7646142
 0.7808470 0.7972422 0.8138013 0.8305261 0.8474181
 0.8644789 0.8817104 0.8991143 0.9166921 0.9344457
 0.9523768 0.9704872 0.9887789 1.007253 1.025913
 1.044758 1.063793 1.083017 1.102434 1.122045
 1.141852 1.161858 1.182063 1.202470 1.223082
 1.243899 1.264925 1.286161 1.307609 1.329272
 1.351151 1.373249 1.395569 1.418111 1.440879
 1.463874 1.487100 1.510557 1.534250 1.558179
 1.582347 1.606758 1.631412 1.656313 1.681463
 1.706864 1.732519 1.758431 1.784602 1.811035
 1.837732 1.864696 1.891929 1.919435 1.947216
 1.975275 2.003615 2.032238 2.061146 2.090345
 2.119835 2.149620 2.179703 2.210087 2.240774
 2.271769 2.303073 2.334691 2.366624 2.398877
 2.431453 2.464354 2.497584 2.531147 2.565045
 2.599282 2.633861 2.668787 2.704061 2.739688
 2.775672 2.812015 2.848722 2.885796 2.923241
 2.961060 2.999257 3.037836 3.076802 3.116156
 3.155905 3.196050 3.236598 3.277550 3.318912
 3.360688 3.402882 3.445497 3.488539 3.532011
 3.575918 3.620263 3.665053 3.710290 3.755980
 3.802126 3.848734 3.895808 3.943353 3.991373
 4.039873 4.088859 4.138334 4.188304 4.238774
 4.289749 4.341233 4.393232 4.445751 4.498795
 4.552370 4.606480 4.661131 4.716329 4.772079
 4.828386 4.885257 4.942697 5.000710 5.059304
 5.118484 5.178256 5.238625 5.299597 5.361180
 5.423379 5.486199 5.549648 5.613731 5.678455
 5.743826 5.809851 5.876536 5.943889 6.011914
 6.080620 6.150013 6.220099 6.290887 6.362382
 6.434593 6.507525 6.581188 6.655586 6.730729
 6.806623 6.883276 6.960695 7.038888 7.117863
 7.197629 7.278192 7.359560 7.441743 7.524746
 7.608581 7.693253 7.778772 7.865147 7.952385
 8.040495 8.129487 8.219369 8.310149 8.401837
 8.494442 8.587973 8.682440 8.777850 8.874216
 8.971545 9.069846 9.169132 9.269409 9.370690
 9.472983 9.576299 9.680650 9.786042 9.892488
 10.00000
 0.0000000E+00 1.0493435E-03 2.1124072E-03 3.1893929E-03 4.2805062E-03
 5.3859558E-03 6.5059536E-03 7.6407143E-03 8.7904576E-03 9.9554062E-03
 1.1135787E-02 1.2331828E-02 1.3543766E-02 1.4771835E-02 1.6016278E-02
 1.7277339E-02 1.8555271E-02 1.9850323E-02 2.1162754E-02 2.2492828E-02
 2.3840806E-02 2.5206964E-02 2.6591573E-02 2.7994912E-02 2.9417265E-02
 3.0858926E-02 3.2320179E-02 3.3801332E-02 3.5302676E-02 3.6824524E-02
 3.8367189E-02 3.9930992E-02 4.1516252E-02 4.3123297E-02 4.4752460E-02
 4.6404086E-02 4.8078507E-02 4.9776085E-02 5.1497165E-02 5.3242117E-02
 5.5011299E-02 5.6805089E-02 5.8623869E-02 6.0468014E-02 6.2337916E-02
 6.4233981E-02 6.6156603E-02 6.8106197E-02 7.0083171E-02 7.2087951E-02
 7.4120961E-02 7.6182649E-02 7.8273438E-02 8.0393784E-02 8.2544170E-02
 8.4725007E-02 8.6936794E-02 8.9180008E-02 9.1455132E-02 9.3762636E-02
 9.6103027E-02 9.8476827E-02 0.1008845 0.1033267 0.1058037
 0.1083163 0.1108649 0.1134500 0.1160723 0.1187323
 0.1214306 0.1241677 0.1269442 0.1297607 0.1326179
 0.1355163 0.1384565 0.1414391 0.1444649 0.1475344
 0.1506482 0.1538071 0.1570117 0.1602625 0.1635604
 0.1669060 0.1702999 0.1737428 0.1772355 0.1807786
 0.1843729 0.1880190 0.1917176 0.1954695 0.1992754
 0.2031360 0.2070521 0.2110243 0.2150534 0.2191401
 0.2232851 0.2274892 0.2317532 0.2360776 0.2404633
 0.2449110 0.2494214 0.2539952 0.2586330 0.2633357
 0.2681039 0.2729383 0.2778395 0.2828082 0.2878452
 0.2929508 0.2981259 0.3033710 0.3086866 0.3140734
 0.3195318 0.3250624 0.3306657 0.3363419 0.3420918
 0.3479155 0.3538135 0.3597859 0.3658333 0.3719556
 0.3781532 0.3844260 0.3907742 0.3971979 0.4036968
 0.4102710 0.4169202 0.4236443 0.4304428 0.4373154
 0.4442616 0.4512807 0.4583722 0.4655352 0.4727690
 0.4800725 0.4874447 0.4948844 0.5023903 0.5099609
 0.5175948 0.5252901 0.5330452 0.5408581 0.5487267
 0.5566486 0.5646216 0.5726432 0.5807104 0.5888206
 0.5969707 0.6051574 0.6133775 0.6216273 0.6299033
 0.6382014 0.6465175 0.6548476 0.6631873 0.6715318
 0.6798765 0.6882165 0.6965467 0.7048619 0.7131566
 0.7214255 0.7296629 0.7378629 0.7460197 0.7541272
 0.7621795 0.7701702 0.7780933 0.7859423 0.7937111
 0.8013933 0.8089824 0.8164724 0.8238568 0.8311295
 0.8382846 0.8453160 0.8522180 0.8589846 0.8656108
 0.8720911 0.8784205 0.8845942 0.8906079 0.8964575
 0.9021391 0.9076494 0.9129851 0.9181439 0.9231233
 0.9279217 0.9325376 0.9369701 0.9412190 0.9452841
 0.9491661 0.9528658 0.9563848 0.9597250 0.9628888
 0.9658789 0.9686987 0.9713517 0.9738420 0.9761739
 0.9783521 0.9803817 0.9822679 0.9840161 0.9856321
 0.9871217 0.9884909 0.9897457 0.9908924 0.9919370
 0.9928855 0.9937442 0.9945189 0.9952155 0.9958397
 0.9963971 0.9968930 0.9973327 0.9977210 0.9980625
 0.9983617 0.9986229 0.9988498 0.9990461 0.9992154
 0.9993604 0.9994844 0.9995896 0.9996786 0.9997535
 0.9998162 0.9998684 0.9999116 0.9999472 0.9999763
 1.000000
 0.1220203 0.1223905 0.1227644 0.1231421 0.1235235
 0.1239087 0.1242977 0.1246906 0.1250874 0.1254882
 0.1258928 0.1263015 0.1267143 0.1271311 0.1275519
 0.1279770 0.1284062 0.1288395 0.1292772 0.1297190
 0.1301652 0.1306157 0.1310706 0.1315299 0.1319935
 0.1324617 0.1329343 0.1334115 0.1338932 0.1343795
 0.1348704 0.1353659 0.1358661 0.1363710 0.1368806
 0.1373949 0.1379140 0.1384380 0.1389667 0.1395003
 0.1400387 0.1405820 0.1411303 0.1416834 0.1422415
 0.1428045 0.1433726 0.1439456 0.1445236 0.1451066
 0.1456946 0.1462876 0.1468856 0.1474887 0.1480967
 0.1487098 0.1493279 0.1499511 0.1505792 0.1512122
 0.1518503 0.1524932 0.1531411 0.1537939 0.1544515
 0.1551140 0.1557812 0.1564532 0.1571299 0.1578112
 0.1584971 0.1591875 0.1598824 0.1605816 0.1612852
 0.1619930 0.1627048 0.1634207 0.1641405 0.1648641
 0.1655914 0.1663222 0.1670564 0.1677939 0.1685345
 0.1692780 0.1700243 0.1707731 0.1715243 0.1722777
 0.1730330 0.1737900 0.1745485 0.1753082 0.1760688
 0.1768300 0.1775916 0.1783532 0.1791144 0.1798750
 0.1806345 0.1813926 0.1821488 0.1829028 0.1836541
 0.1844021 0.1851465 0.1858867 0.1866222 0.1873523
 0.1880766 0.1887944 0.1895051 0.1902080 0.1909025
 0.1915877 0.1922630 0.1929276 0.1935806 0.1942212
 0.1948486 0.1954618 0.1960599 0.1966419 0.1972068
 0.1977535 0.1982810 0.1987881 0.1992737 0.1997365
 0.2001754 0.2005890 0.2009760 0.2013351 0.2016649
 0.2019640 0.2022308 0.2024638 0.2026616 0.2028225
 0.2029449 0.2030271 0.2030675 0.2030644 0.2030159
 0.2029204 0.2027759 0.2025807 0.2023330 0.2020308
 0.2016724 0.2012557 0.2007790 0.2002403 0.1996377
 0.1989695 0.1982336 0.1974284 0.1965520 0.1956027
 0.1945786 0.1934783 0.1923001 0.1910424 0.1897038
 0.1882831 0.1867789 0.1851901 0.1835157 0.1817549
 0.1799070 0.1779713 0.1759475 0.1738355 0.1716352
 0.1693468 0.1669708 0.1645078 0.1619588 0.1593249
 0.1566076 0.1538086 0.1509298 0.1479736 0.1449426
 0.1418395 0.1386677 0.1354306 0.1321321 0.1287762
 0.1253672 0.1219101 0.1184095 0.1148710 0.1113000
 0.1077022 0.1040835 0.1004503 9.6808873E-02 9.3165621E-02
 8.9527264E-02 8.5900523E-02 8.2292154E-02 7.8708932E-02 7.5157709E-02
 7.1645163E-02 6.8177909E-02 6.4762503E-02 6.1405245E-02 5.8112316E-02
 5.4889508E-02 5.1742442E-02 4.8676401E-02 4.5696251E-02 4.2806484E-02
 4.0011197E-02 3.7314001E-02 3.4718059E-02 3.2226078E-02 2.9840158E-02
 2.7561991E-02 2.5392683E-02 2.3332855E-02 2.1382596E-02 1.9541482E-02
 1.7808592E-02 1.6182581E-02 1.4661595E-02 1.3243373E-02 1.1925303E-02
 1.0704353E-02 9.5772073E-03 8.5402587E-03 7.5896652E-03 6.7213732E-03
 5.9311874E-03 5.2147736E-03 4.5677475E-03 3.9856830E-03 3.4641519E-03
 2.9987730E-03 2.5852337E-03 2.2193228E-03 1.8969754E-03 1.6142605E-03
 1.3674381E-03 1.1529548E-03 9.6745143E-04 8.0779748E-04 6.7106739E-04
 5.5456604E-04 4.5581424E-04 3.7254908E-04 3.0272521E-04 2.4449616E-04
 1.9621162E-04
 91 71
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000 5.050000 5.100000 5.150000 5.200000
 5.250000 5.300000 5.350000 5.400000 5.450000
 5.500000
 -2.499999 -2.449999 -2.399999 -2.349999 -2.299999
 -2.249999 -2.199999 -2.149999 -2.099999 -2.049999
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -0.1000000 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 0.1000000 0.1500000 0.2000000
 0.2500000 0.3000000 0.3500000 0.4000000 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 2.7360773E-02 2.6825050E-02 2.6171863E-02 2.5418418E-02 2.4580734E-02
 2.3673775E-02 2.2711352E-02 2.1706101E-02 2.0669458E-02 1.9611692E-02
 1.8541936E-02 1.7468207E-02 1.6397482E-02 1.5335722E-02 1.4287977E-02
 1.3258420E-02 1.2250407E-02 1.1266582E-02 1.0308876E-02 9.3786223E-03
 8.4765917E-03 7.6030432E-03 6.7578079E-03 5.9404182E-03 5.1502306E-03
 4.3868492E-03 3.6508557E-03 2.9454529E-03 2.2797012E-03 1.6732268E-03
 1.1573453E-03 7.6072832E-04 4.8615978E-04 3.1034931E-04 2.0344400E-04
 1.4140534E-04 1.0780586E-04 9.2011302E-05 8.7207678E-05 8.9014909E-05
 9.4602430E-05 1.0213322E-04 1.1042120E-04 1.1870930E-04 1.2652812E-04
 1.3359907E-04 1.3977310E-04 1.4498718E-04 1.4923493E-04 1.5254592E-04
 1.5497245E-04 1.5657919E-04 1.5743714E-04 1.5761812E-04 1.5719282E-04
 1.5622874E-04 1.5478872E-04 1.5293120E-04 1.5070970E-04 1.4817361E-04
 1.4536819E-04 1.4233525E-04 1.3911346E-04 1.3573872E-04 1.3224463E-04
 1.2866195E-04 1.2501929E-04 1.2134259E-04 1.1765524E-04 1.1397831E-04
 1.1033025E-04 1.0672704E-04 1.0318258E-04 9.9708348E-05 9.6313874E-05
 9.3006878E-05 8.9792891E-05 8.6675995E-05 8.3658459E-05 8.0741265E-05
 7.7924371E-05 7.5206612E-05 7.2586474E-05 7.0061869E-05 6.7630346E-05
 6.5289190E-05 6.3035535E-05 6.0866369E-05 5.8778573E-05 5.6769080E-05
 5.4834873E-05
 7.9828180E-02 7.5009272E-02 7.0429482E-02 6.6085897E-02 6.1974186E-02
 5.8088854E-02 5.4423399E-02 5.0970521E-02 4.7722217E-02 4.4669978E-02
 4.1804977E-02 3.9118081E-02 3.6600076E-02 3.4241669E-02 3.2033607E-02
 2.9966764E-02 2.8032109E-02 2.6220812E-02 2.4524188E-02 2.2933709E-02
 2.1440970E-02 2.0037586E-02 1.8715074E-02 1.7464681E-02 1.6277043E-02
 1.5141768E-02 1.4046835E-02 1.2978018E-02 1.1919223E-02 1.0856414E-02
 9.7889891E-03 8.7418798E-03 7.7555990E-03 6.8596951E-03 6.0630990E-03
 5.3615142E-03 4.7455258E-03 4.2047962E-03 3.7296605E-03 3.3115703E-03
 2.9431346E-03 2.6180013E-03 2.3307153E-03 2.0765837E-03 1.8515597E-03
 1.6521361E-03 1.4752691E-03 1.3183067E-03 1.1789328E-03 1.0551206E-03
 9.4509037E-04 8.4727787E-04 7.6030486E-04 6.8295473E-04 6.1415322E-04
 5.5294804E-04 4.9849489E-04 4.5004376E-04 4.0692755E-04 3.6855225E-04
 3.3438829E-04 3.0396282E-04 2.7685467E-04 2.5268766E-04 2.3112699E-04
 2.1187487E-04 1.9466622E-04 1.7926643E-04 1.6546738E-04 1.5308549E-04
 1.4195853E-04 1.3194322E-04 1.2291347E-04 1.1475779E-04 1.0737779E-04
 1.0068664E-04 9.4607341E-05 8.9072018E-05 8.4020394E-05 7.9399448E-05
 7.5162498E-05 7.1268187E-05 6.7680354E-05 6.4366999E-05 6.1299877E-05
 5.8453883E-05 5.5807006E-05 5.3339681E-05 5.1034538E-05 4.8876271E-05
 4.6851292E-05
 2.7473958E-02 2.6936574E-02 2.6281765E-02 2.5526777E-02 2.4687622E-02
 2.3779286E-02 2.2815602E-02 2.1809198E-02 2.0771544E-02 1.9712904E-02
 1.8642446E-02 1.7568182E-02 1.6497111E-02 1.5435226E-02 1.4387584E-02
 1.3358393E-02 1.2351047E-02 1.1368223E-02 1.0411915E-02 9.4835237E-03
 8.5839024E-03 7.7134338E-03 6.8721091E-03 6.0596587E-03 5.2757245E-03
 4.5202435E-03 3.7941744E-03 3.1009237E-03 2.4489735E-03 1.8553814E-03
 1.3462518E-03 9.4597257E-04 6.5911829E-04 4.6772428E-04 3.4565583E-04
 2.7022682E-04 2.2516715E-04 1.9960628E-04 1.8643336E-04 1.8100072E-04
 1.8026319E-04 1.8221648E-04 1.8554524E-04 1.8938967E-04 1.9320058E-04
 1.9663534E-04 1.9949241E-04 2.0166527E-04 2.0311166E-04 2.0383035E-04
 2.0384740E-04 2.0320465E-04 2.0195312E-04 2.0014743E-04 1.9784318E-04
 1.9509540E-04 1.9195629E-04 1.8847585E-04 1.8470148E-04 1.8067790E-04
 1.7644750E-04 1.7205026E-04 1.6752414E-04 1.6290440E-04 1.5822409E-04
 1.5351363E-04 1.4880054E-04 1.4410961E-04 1.3946272E-04 1.3487895E-04
 1.3037474E-04 1.2596385E-04 1.2165771E-04 1.1746508E-04 1.1339276E-04
 1.0944535E-04 1.0562524E-04 1.0193363E-04 9.8369885E-05 9.4932650E-05
 9.1619688E-05 8.8428111E-05 8.5354790E-05 8.2396291E-05 7.9548743E-05
 7.6808268E-05 7.4170981E-05 7.1632916E-05 6.9190137E-05 6.6838911E-05
 6.4575426E-05
 7.9696000E-02 7.4876495E-02 7.0296228E-02 6.5952301E-02 6.1840344E-02
 5.7954874E-02 5.4289371E-02 5.0836518E-02 4.7588307E-02 4.4536225E-02
 4.1671418E-02 3.8984753E-02 3.6466993E-02 3.4108847E-02 3.1901054E-02
 2.9834466E-02 2.7900053E-02 2.6088981E-02 2.4392555E-02 2.2802252E-02
 2.1309681E-02 1.9906489E-02 1.8584246E-02 1.7334310E-02 1.6147522E-02
 1.5013871E-02 1.3922052E-02 1.2859098E-02 1.1810957E-02 1.0765878E-02
 9.7232219E-03 8.7026879E-03 7.7380068E-03 6.8564364E-03 6.0683833E-03
 5.3716558E-03 4.7583617E-03 4.2190771E-03 3.7446646E-03 3.3268789E-03
 2.9585052E-03 2.6332971E-03 2.3458637E-03 2.0915510E-03 1.8663370E-03
 1.6667300E-03 1.4896969E-03 1.3325912E-03 1.1930994E-03 1.0691972E-03
 9.5910399E-04 8.6125382E-04 7.7426649E-04 6.9692143E-04 6.2813953E-04
 5.6696334E-04 5.1254261E-04 4.6412094E-04 4.2102489E-04 3.8265492E-04
 3.4847614E-04 3.1801205E-04 2.9083889E-04 2.6657904E-04 2.4489779E-04
 2.2549844E-04 2.0811806E-04 1.9252476E-04 1.7851336E-04 1.6590330E-04
 1.5453545E-04 1.4426892E-04 1.3497997E-04 1.2655857E-04 1.1890798E-04
 1.1194254E-04 1.0558616E-04 9.9772384E-05 9.4441981E-05 8.9543202E-05
 8.5030289E-05 8.0862847E-05 7.7005352E-05 7.3426367E-05 7.0097987E-05
 6.6995584E-05 6.4097301E-05 6.1383980E-05 5.8838261E-05 5.6445180E-05
 5.4190983E-05
 2.7601356E-02 2.7062118E-02 2.6405513E-02 2.5648810E-02 2.4808025E-02
 2.3898173E-02 2.2933086E-02 2.1925421E-02 2.0886650E-02 1.9827066E-02
 1.8755836E-02 1.7681001E-02 1.6609577E-02 1.5547578E-02 1.4500086E-02
 1.3471337E-02 1.2464769E-02 1.1483099E-02 1.0528389E-02 9.6020978E-03
 8.7051913E-03 7.8381700E-03 7.0011886E-03 6.1941873E-03 5.4170815E-03
 4.6701333E-03 3.9546238E-03 3.2740682E-03 2.6363081E-03 2.0559474E-03
 1.5543611E-03 1.1517340E-03 8.5348130E-04 6.4634142E-04 5.0816109E-04
 4.1806695E-04 3.6022998E-04 3.2366722E-04 3.0100800E-04 2.8734203E-04
 2.7939797E-04 2.7498999E-04 2.7265796E-04 2.7142843E-04 2.7065998E-04
 2.6993593E-04 2.6899381E-04 2.6767782E-04 2.6590261E-04 2.6363146E-04
 2.6085987E-04 2.5760324E-04 2.5389018E-04 2.4975665E-04 2.4524276E-04
 2.4039080E-04 2.3524371E-04 2.2984458E-04 2.2423585E-04 2.1845939E-04
 2.1255552E-04 2.0656313E-04 2.0051909E-04 1.9445751E-04 1.8841012E-04
 1.8240538E-04 1.7646847E-04 1.7062180E-04 1.6488436E-04 1.5927224E-04
 1.5379865E-04 1.4847388E-04 1.4330550E-04 1.3829849E-04 1.3345567E-04
 1.2877776E-04 1.2426368E-04 1.1991140E-04 1.1571758E-04 1.1167872E-04
 1.0779042E-04 1.0404811E-04 1.0044690E-04 9.6981668E-05 9.3647381E-05
 9.0439054E-05 8.7351575E-05 8.4380103E-05 8.1519778E-05 7.8766221E-05
 7.6114731E-05
 7.9547495E-02 7.4727319E-02 7.0146523E-02 6.5802209E-02 6.1689995E-02
 5.7804380E-02 5.4138828E-02 5.0686024E-02 4.7437929E-02 4.4386033E-02
 4.1521464E-02 3.8835075E-02 3.6317624E-02 3.3959802E-02 3.1752340E-02
 2.9686084E-02 2.7751995E-02 2.5941232E-02 2.4245104E-02 2.2655096E-02
 2.1162832E-02 1.9759996E-02 1.8438233E-02 1.7189030E-02 1.6003462E-02
 1.4871933E-02 1.3783881E-02 1.2727599E-02 1.1690955E-02 1.0664255E-02
 9.6468944E-03 8.6541437E-03 7.7132969E-03 6.8485811E-03 6.0711871E-03
 5.3808661E-03 4.7713420E-03 4.2342455E-03 3.7610745E-03 3.3439654E-03
 2.9759286E-03 2.6508553E-03 2.3634413E-03 2.1090861E-03 1.8838021E-03
 1.6841199E-03 1.5070196E-03 1.3498635E-03 1.2103429E-03 1.0864339E-03
 9.7635551E-04 8.7853923E-04 7.9159939E-04 7.1431015E-04 6.4558542E-04
 5.8446050E-04 5.3007744E-04 4.8167308E-04 4.3856812E-04 4.0015797E-04
 3.6590500E-04 3.3533096E-04 3.0801233E-04 2.8357303E-04 2.6168121E-04
 2.4204342E-04 2.2440053E-04 2.0852468E-04 1.9421433E-04 1.8129210E-04
 1.6960166E-04 1.5900443E-04 1.4937804E-04 1.4061462E-04 1.3261841E-04
 1.2530542E-04 1.1860110E-04 1.1244033E-04 1.0676518E-04 1.0152527E-04
 9.6675431E-05 9.2176189E-05 8.7992405E-05 8.4092862E-05 8.0450329E-05
 7.7040524E-05 7.3841671E-05 7.0834765E-05 6.8002584E-05 6.5330147E-05
 6.2803760E-05
 2.7744798E-02 2.7203508E-02 2.6544921E-02 2.5786309E-02 2.4943726E-02
 2.4032198E-02 2.3065569E-02 2.2056514E-02 2.1016527E-02 1.9955914E-02
 1.8883852E-02 1.7808415E-02 1.6736630E-02 1.5674537E-02 1.4627252E-02
 1.3599043E-02 1.2593382E-02 1.1613047E-02 1.0660152E-02 9.7362483E-03
 8.8423956E-03 7.9792272E-03 7.1470612E-03 6.3460553E-03 5.5763801E-03
 4.8385975E-03 4.1342480E-03 3.4668769E-03 2.8435960E-03 2.2767070E-03
 1.7833564E-03 1.3797566E-03 1.0713428E-03 8.4872759E-04 6.9377740E-04
 5.8785168E-04 5.1590329E-04 4.6702047E-04 4.3364771E-04 4.1063345E-04
 3.9447972E-04 3.8280908E-04 3.7400320E-04 3.6696173E-04 3.6093904E-04
 3.5543388E-04 3.5011483E-04 3.4476700E-04 3.3925610E-04 3.3350516E-04
 3.2747447E-04 3.2115070E-04 3.1453904E-04 3.0765601E-04 3.0052755E-04
 2.9318471E-04 2.8566271E-04 2.7799903E-04 2.7023291E-04 2.6240357E-04
 2.5454932E-04 2.4670662E-04 2.3891006E-04 2.3119101E-04 2.2357792E-04
 2.1609553E-04 2.0876544E-04 2.0160590E-04 1.9463144E-04 1.8785361E-04
 1.8128069E-04 1.7491785E-04 1.6876777E-04 1.6283021E-04 1.5710352E-04
 1.5158441E-04 1.4626856E-04 1.4115068E-04 1.3622505E-04 1.3148574E-04
 1.2692614E-04 1.2253982E-04 1.1831999E-04 1.1426030E-04 1.1035417E-04
 1.0659523E-04 1.0297754E-04 9.9495082E-05 9.6142161E-05 9.2913397E-05
 8.9803500E-05
 7.9380631E-02 7.4559703E-02 6.9978327E-02 6.5633588E-02 6.1521087E-02
 5.7635315E-02 5.3969730E-02 5.0516982E-02 4.7269043E-02 4.4217374E-02
 4.1353092E-02 3.8667046E-02 3.6149971E-02 3.3792552E-02 3.1585507E-02
 2.9519677E-02 2.7586021E-02 2.5775682E-02 2.4079988E-02 2.2490427E-02
 2.0998651E-02 1.9596394E-02 1.8275389E-02 1.7027276E-02 1.5843388E-02
 1.4714587E-02 1.3631064E-02 1.2582355E-02 1.1558095E-02 1.0550400E-02
 9.5587410E-03 8.5947076E-03 7.6797493E-03 6.8345233E-03 6.0702297E-03
 5.3882366E-03 4.7838925E-03 4.2499988E-03 3.7788064E-03 3.3629164E-03
 2.9956284E-03 2.6710138E-03 2.3838810E-03 2.1297031E-03 1.9045393E-03
 1.7049500E-03 1.5279342E-03 1.3708656E-03 1.2314401E-03 1.1076354E-03
 9.9766813E-04 8.9996436E-04 8.1313198E-04 7.3593698E-04 6.6728552E-04
 6.0620473E-04 5.5182964E-04 5.0339178E-04 4.6020831E-04 4.2167341E-04
 3.8724963E-04 3.5646107E-04 3.2888772E-04 3.0415782E-04 2.8194458E-04
 2.6195939E-04 2.4394793E-04 2.2768632E-04 2.1297656E-04 1.9964424E-04
 1.8753513E-04 1.7651271E-04 1.6645684E-04 1.5726096E-04 1.4883168E-04
 1.4108661E-04 1.3395323E-04 1.2736730E-04 1.2127259E-04 1.1561904E-04
 1.1036241E-04 1.0546378E-04 1.0088830E-04 9.6605647E-05 9.2588409E-05
 8.8812492E-05 8.5256601E-05 8.1901424E-05 7.8729878E-05 7.5726923E-05
 7.2878858E-05
 2.7906392E-02 2.7362822E-02 2.6702039E-02 2.5941322E-02 2.5096757E-02
 2.4183376E-02 2.3215054E-02 2.2204483E-02 2.1163171E-02 2.0101439E-02
 1.9028496E-02 1.7952425E-02 1.6880283E-02 1.5818138E-02 1.4771129E-02
 1.3743571E-02 1.2738980E-02 1.1760183E-02 1.0809366E-02 9.8881684E-03
 8.9977467E-03 8.1388764E-03 7.3120398E-03 6.5176021E-03 5.7559782E-03
 5.0279871E-03 4.3353662E-03 3.6815810E-03 3.0729538E-03 2.5196490E-03
 2.0351040E-03 1.6318854E-03 1.3148332E-03 1.0774977E-03 9.0552826E-04
 7.8283361E-04 6.9550955E-04 6.3295511E-04 5.8755168E-04 5.5395649E-04
 5.2846118E-04 5.0849357E-04 4.9226824E-04 4.7854587E-04 4.6646598E-04
 4.5543115E-04 4.4503083E-04 4.3498448E-04 4.2510306E-04 4.1526431E-04
 4.0539104E-04 3.9544085E-04 3.8539508E-04 3.7525324E-04 3.6502772E-04
 3.5474086E-04 3.4442107E-04 3.3410106E-04 3.2381571E-04 3.1360055E-04
 3.0348971E-04 2.9351574E-04 2.8370813E-04 2.7409324E-04 2.6469392E-04
 2.5552977E-04 2.4661617E-04 2.3796500E-04 2.2958462E-04 2.2147979E-04
 2.1365230E-04 2.0610083E-04 1.9882202E-04 1.9181093E-04 1.8506126E-04
 1.7856558E-04 1.7231662E-04 1.6630582E-04 1.6052483E-04 1.5496499E-04
 1.4961760E-04 1.4447427E-04 1.3952635E-04 1.3476594E-04 1.3018500E-04
 1.2577609E-04 1.2153172E-04 1.1744499E-04 1.1350921E-04 1.0971788E-04
 1.0606501E-04
 7.9193108E-02 7.4371338E-02 6.9789313E-02 6.5444104E-02 6.1331302E-02
 5.7445373E-02 5.3779759E-02 5.0327104E-02 4.7079355E-02 4.4027966E-02
 4.1164037E-02 3.8478404E-02 3.5961796E-02 3.3604879E-02 3.1398363E-02
 2.9333085E-02 2.7399994E-02 2.5590241E-02 2.3895154E-02 2.2306241E-02
 2.0815196E-02 1.9413812E-02 1.8093925E-02 1.6847352E-02 1.5665721E-02
 1.4540369E-02 1.3462262E-02 1.2422124E-02 1.1411188E-02 1.0423112E-02
 9.4574438E-03 8.5227983E-03 7.6354844E-03 6.8123639E-03 6.0638743E-03
 5.3925156E-03 4.7951522E-03 4.2658187E-03 3.7976252E-03 3.3837317E-03
 3.0177969E-03 2.6941225E-03 2.4076658E-03 2.1539961E-03 1.9292360E-03
 1.7299866E-03 1.5532708E-03 1.3964768E-03 1.2573063E-03 1.1337376E-03
 1.0239830E-03 9.2646270E-04 8.3977694E-04 7.6268410E-04 6.9408241E-04
 6.3299417E-04 5.7855085E-04 5.2998279E-04 4.8660851E-04 4.4782541E-04
 4.1310058E-04 3.8196446E-04 3.5400296E-04 3.2885114E-04 3.0618784E-04
 2.8573017E-04 2.6722802E-04 2.5046131E-04 2.3523510E-04 2.2137757E-04
 2.0873696E-04 1.9717928E-04 1.8658678E-04 1.7685542E-04 1.6789400E-04
 1.5962143E-04 1.5196718E-04 1.4486791E-04 1.3826777E-04 1.3211825E-04
 1.2637509E-04 1.2100032E-04 1.1595910E-04 1.1122155E-04 1.0676042E-04
 1.0255178E-04 9.8574012E-05 9.4808165E-05 9.1236863E-05 8.7844965E-05
 8.4618630E-05
 2.8088514E-02 2.7542433E-02 2.6879214E-02 2.6116179E-02 2.5269434E-02
 2.4354026E-02 2.3383852E-02 2.2371626E-02 2.1328874E-02 2.0265948E-02
 1.9192068E-02 1.8115344E-02 1.7042862E-02 1.5980717E-02 1.4934083E-02
 1.3907316E-02 1.2903982E-02 1.1926965E-02 1.0978526E-02 1.0060389E-02
 9.1738254E-03 8.3197411E-03 7.4987854E-03 6.7115179E-03 5.9585716E-03
 5.2409796E-03 4.5605870E-03 3.9206878E-03 3.3267741E-03 2.7870301E-03
 2.3116956E-03 1.9101107E-03 1.5861184E-03 1.3352807E-03 1.1465584E-03
 1.0065214E-03 9.0274529E-04 8.2521653E-04 7.6642219E-04 7.2091719E-04
 6.8482111E-04 6.5537717E-04 6.3063297E-04 6.0920289E-04 5.9010187E-04
 5.7262863E-04 5.5628549E-04 5.4072012E-04 5.2568491E-04 5.1101024E-04
 4.9658213E-04 4.8232931E-04 4.6821177E-04 4.5421300E-04 4.4033377E-04
 4.2658707E-04 4.1299401E-04 3.9958052E-04 3.8637483E-04 3.7340558E-04
 3.6069966E-04 3.4828248E-04 3.3617570E-04 3.2439781E-04 3.1296341E-04
 3.0188388E-04 2.9116581E-04 2.8081259E-04 2.7082374E-04 2.6119559E-04
 2.5192247E-04 2.4299639E-04 2.3440832E-04 2.2614830E-04 2.1820530E-04
 2.1056873E-04 2.0322679E-04 1.9616811E-04 1.8938129E-04 1.8285497E-04
 1.7657867E-04 1.7054146E-04 1.6473296E-04 1.5914359E-04 1.5376383E-04
 1.4858462E-04 1.4359746E-04 1.3879410E-04 1.3416655E-04 1.2970752E-04
 1.2540985E-04
 7.8982323E-02 7.4159622E-02 6.9576882E-02 6.5231159E-02 6.1118029E-02
 5.7231937E-02 5.3566318E-02 5.0113786E-02 4.6866283E-02 4.3815240E-02
 4.0951751E-02 3.8266633E-02 3.5750601E-02 3.3394311E-02 3.1188468E-02
 2.9123897E-02 2.7191548E-02 2.5382578E-02 2.3688333E-02 2.2100339E-02
 2.0610340E-02 1.9210203E-02 1.7891899E-02 1.6647439E-02 1.5468772E-02
 1.4347736E-02 1.3276066E-02 1.2245598E-02 1.1248984E-02 1.0281152E-02
 9.3416870E-03 8.4368261E-03 7.5785550E-03 6.7799720E-03 6.0501262E-03
 5.3920583E-03 4.8038941E-03 4.2808866E-03 3.8170719E-03 3.4062567E-03
 3.0425352E-03 2.7204964E-03 2.4352884E-03 2.1826059E-03 1.9586531E-03
 1.7600846E-03 1.5839550E-03 1.4276702E-03 1.2889402E-03 1.1657439E-03
 1.0562919E-03 9.5899840E-04 8.7245909E-04 7.9542864E-04 7.2680326E-04
 6.6560536E-04 6.1096973E-04 5.6213193E-04 5.1841722E-04 4.7923092E-04
 4.4404902E-04 4.1241033E-04 3.8390857E-04 3.5818591E-04 3.3492697E-04
 3.1385379E-04 2.9472043E-04 2.7731020E-04 2.6143176E-04 2.4691623E-04
 2.3361531E-04 2.2139793E-04 2.1014910E-04 1.9976730E-04 1.9016252E-04
 1.8125617E-04 1.7297755E-04 1.6526505E-04 1.5806370E-04 1.5132483E-04
 1.4500588E-04 1.3906838E-04 1.3347817E-04 1.2820485E-04 1.2322175E-04
 1.1850481E-04 1.1403226E-04 1.0978514E-04 1.0574586E-04 1.0189875E-04
 9.8230077E-05
 2.8293900E-02 2.7745046E-02 2.7079154E-02 2.6313569E-02 2.5464425E-02
 2.4546802E-02 2.3574606E-02 2.2560591E-02 2.1516290E-02 2.0452086E-02
 1.9377226E-02 1.8299846E-02 1.7227054E-02 1.6164983E-02 1.5118852E-02
 1.4093050E-02 1.3091200E-02 1.2116245E-02 1.1170527E-02 1.0255856E-02
 9.3736202E-03 8.5248519E-03 7.7103642E-03 6.9308872E-03 6.1872452E-03
 5.4806145E-03 4.8128767E-03 4.1870507E-03 3.6077655E-03 3.0814132E-03
 2.6155079E-03 2.2166276E-03 1.8874271E-03 1.6246854E-03 1.4200142E-03
 1.2625554E-03 1.1415797E-03 1.0479351E-03 9.7442378E-04 9.1562705E-04
 8.6755678E-04 8.2731014E-04 7.9277775E-04 7.6242961E-04 7.3515525E-04
 7.1014441E-04 6.8681041E-04 6.6472724E-04 6.4358907E-04 6.2318007E-04
 6.0335104E-04 5.8400392E-04 5.6507834E-04 5.4654141E-04 5.2838097E-04
 5.1059842E-04 4.9320352E-04 4.7621192E-04 4.5964058E-04 4.4350690E-04
 4.2782762E-04 4.1261606E-04 3.9788312E-04 3.8363558E-04 3.6987616E-04
 3.5660501E-04 3.4381676E-04 3.3150459E-04 3.1965750E-04 3.0826352E-04
 2.9730948E-04 2.8678076E-04 2.7666267E-04 2.6693952E-04 2.5759611E-04
 2.4861746E-04 2.3998777E-04 2.3169233E-04 2.2371692E-04 2.1604737E-04
 2.0867078E-04 2.0157377E-04 1.9474466E-04 1.8817137E-04 1.8184274E-04
 1.7574846E-04 1.6987803E-04 1.6422209E-04 1.5877158E-04 1.5351792E-04
 1.4845250E-04
 7.8745335E-02 7.3921606E-02 6.9338083E-02 6.4991809E-02 6.0878322E-02
 5.6992073E-02 5.3326465E-02 4.9874112E-02 4.6626925E-02 4.3576319E-02
 4.0713374E-02 3.8028896E-02 3.5513580E-02 3.3158079E-02 3.0953091E-02
 2.8889433E-02 2.6958061E-02 2.5150141E-02 2.3457032E-02 2.1870308E-02
 2.0381769E-02 1.8983373E-02 1.7667241E-02 1.6425606E-02 1.5250764E-02
 1.4135069E-02 1.3071007E-02 1.2051432E-02 1.1070204E-02 1.0123263E-02
 9.2101749E-03 8.3352821E-03 7.5070485E-03 6.7351097E-03 6.0267034E-03
 5.3848238E-03 4.8084767E-03 4.2939992E-03 3.8363638E-03 3.4300869E-03
 3.0697633E-03 2.7503283E-03 2.4671666E-03 2.2161312E-03 1.9935304E-03
 1.7960878E-03 1.6208999E-03 1.4653972E-03 1.3273041E-03 1.2046058E-03
 1.0955156E-03 9.9845091E-04 9.1201020E-04 8.3495234E-04 7.6618150E-04
 7.0472859E-04 6.4973946E-04 6.0046132E-04 5.5623153E-04 5.1646668E-04
 4.8065401E-04 4.4834122E-04 4.1913029E-04 3.9267013E-04 3.6865109E-04
 3.4680017E-04 3.2687551E-04 3.0866571E-04 2.9198264E-04 2.7666197E-04
 2.6255922E-04 2.4954611E-04 2.3750993E-04 2.2635063E-04 2.1598028E-04
 2.0632139E-04 1.9730443E-04 1.8886835E-04 1.8095943E-04 1.7352894E-04
 1.6653493E-04 1.5993850E-04 1.5370644E-04 1.4780795E-04 1.4221626E-04
 1.3690708E-04 1.3185864E-04 1.2705120E-04 1.2246762E-04 1.1809170E-04
 1.1390943E-04
 2.8525667E-02 2.7973764E-02 2.7304936E-02 2.6536563E-02 2.5684802E-02
 2.4764759E-02 2.3790380E-02 2.2774436E-02 2.1728482E-02 2.0662935E-02
 1.9587064E-02 1.8509032E-02 1.7435996E-02 1.6374107E-02 1.5328630E-02
 1.4304004E-02 1.3303905E-02 1.2331347E-02 1.1388742E-02 1.0477999E-02
 9.6006058E-03 8.7577328E-03 7.9503227E-03 7.1792696E-03 6.4455299E-03
 5.7503679E-03 5.0956067E-03 4.4839042E-03 3.9190096E-03 3.4057153E-03
 2.9492562E-03 2.5539033E-03 2.2211098E-03 1.9482613E-03 1.7289333E-03
 1.5545178E-03 1.4160462E-03 1.3054393E-03 1.2160268E-03 1.1425726E-03
 1.0810890E-03 1.0285818E-03 9.8282180E-04 9.4215351E-04 9.0534874E-04
 8.7149785E-04 8.3992915E-04 8.1014779E-04 7.8179332E-04 7.5460732E-04
 7.2840753E-04 7.0306892E-04 6.7850866E-04 6.5467483E-04 6.3153723E-04
 6.0908060E-04 5.8729819E-04 5.6618836E-04 5.4575299E-04 5.2599364E-04
 5.0691044E-04 4.8850075E-04 4.7075970E-04 4.5367840E-04 4.3724495E-04
 4.2144459E-04 4.0625938E-04 3.9167079E-04 3.7765809E-04 3.6420109E-04
 3.5127843E-04 3.3886838E-04 3.2695031E-04 3.1550322E-04 3.0450628E-04
 2.9394042E-04 2.8378578E-04 2.7402461E-04 2.6463903E-04 2.5561167E-04
 2.4692752E-04 2.3857047E-04 2.3052678E-04 2.2278198E-04 2.1532307E-04
 2.0813827E-04 2.0121544E-04 1.9454329E-04 1.8811125E-04 1.8190926E-04
 1.7592832E-04
 7.8478850E-02 7.3653981E-02 6.9069587E-02 6.4722702E-02 6.0608853E-02
 5.6722466E-02 5.3056918E-02 4.9604800E-02 4.6358019E-02 4.3307964E-02
 4.0445704E-02 3.7762016E-02 3.5247605E-02 3.2893103E-02 3.0689206E-02
 2.8626727E-02 2.6696630E-02 2.4890102E-02 2.3198526E-02 2.1613531E-02
 2.0126982E-02 1.8730957E-02 1.7417742E-02 1.6179824E-02 1.5009858E-02
 1.3900714E-02 1.2845594E-02 1.1838261E-02 1.0873574E-02 9.9482229E-03
 9.0616904E-03 8.2168086E-03 7.4192360E-03 6.6756122E-03 5.9912088E-03
 5.3684697E-03 4.8068459E-03 4.3035131E-03 3.8543011E-03 3.4544410E-03
 3.0990748E-03 2.7835330E-03 2.5034775E-03 2.2549548E-03 2.0344050E-03
 1.8386380E-03 1.6648106E-03 1.5103911E-03 1.3731312E-03 1.2510361E-03
 1.1423357E-03 1.0454642E-03 9.5903547E-04 8.8182651E-04 8.1275898E-04
 7.5088325E-04 6.9536187E-04 6.4545934E-04 6.0052815E-04 5.5999873E-04
 5.2336953E-04 4.9019750E-04 4.6009314E-04 4.3271249E-04 4.0775203E-04
 3.8494519E-04 3.6405577E-04 3.4487789E-04 3.2722819E-04 3.1094643E-04
 2.9589084E-04 2.8193556E-04 2.6897050E-04 2.5689750E-04 2.4562961E-04
 2.3509080E-04 2.2521234E-04 2.1593436E-04 2.0720290E-04 1.9896966E-04
 1.9119322E-04 1.8383419E-04 1.7685982E-04 1.7023875E-04 1.6394415E-04
 1.5795167E-04 1.5223921E-04 1.4678657E-04 1.4157564E-04 1.3659068E-04
 1.3181716E-04
 2.8787412E-02 2.8232163E-02 2.7560126E-02 2.6788704E-02 2.5934102E-02
 2.5011443E-02 2.4034709E-02 2.3016693E-02 2.1969000E-02 2.0902054E-02
 1.9825164E-02 1.8746529E-02 1.7673334E-02 1.6611770E-02 1.5567150E-02
 1.4543959E-02 1.3545935E-02 1.2576159E-02 1.1637115E-02 1.0730808E-02
 9.8588280E-03 9.0224585E-03 8.2227690E-03 7.4607613E-03 6.7374841E-03
 6.0542119E-03 5.4126149E-03 4.8149289E-03 4.2640278E-03 3.7632836E-03
 3.3160490E-03 2.9247361E-03 2.5897047E-03 2.3085305E-03 2.0761378E-03
 1.8857251E-03 1.7299642E-03 1.6019465E-03 1.4957029E-03 1.4063455E-03
 1.3300128E-03 1.2637113E-03 1.2051514E-03 1.1525940E-03 1.1047245E-03
 1.0605518E-03 1.0193342E-03 9.8051946E-04 9.4369985E-04 9.0857648E-04
 8.7493355E-04 8.4261614E-04 8.1151468E-04 7.8155153E-04 7.5267133E-04
 7.2483544E-04 6.9801265E-04 6.7218067E-04 6.4731663E-04 6.2340131E-04
 6.0041272E-04 5.7832710E-04 5.5711955E-04 5.3676241E-04 5.1722670E-04
 4.9848261E-04 4.8049938E-04 4.6324683E-04 4.4669383E-04 4.3081099E-04
 4.1556873E-04 4.0093841E-04 3.8689209E-04 3.7340279E-04 3.6044544E-04
 3.4799540E-04 3.3602884E-04 3.2452392E-04 3.1345931E-04 3.0281546E-04
 2.9257312E-04 2.8271379E-04 2.7322111E-04 2.6407826E-04 2.5527112E-04
 2.4678404E-04 2.3860428E-04 2.3071805E-04 2.2311360E-04 2.1577894E-04
 2.0870328E-04
 7.8179099E-02 7.3352985E-02 6.8767637E-02 6.4420111E-02 6.0305890E-02
 5.6419384E-02 5.2753948E-02 4.9302161E-02 4.6055902E-02 4.3006547E-02
 4.0145140E-02 3.7462462E-02 3.4949191E-02 3.2595959E-02 3.0393453E-02
 2.8332500E-02 2.6404075E-02 2.4599386E-02 2.2909857E-02 2.1327181E-02
 1.9843312E-02 1.8450463E-02 1.7141107E-02 1.5908005E-02 1.4744177E-02
 1.3643012E-02 1.2598358E-02 1.1604768E-02 1.0657881E-02 9.7549139E-03
 8.8951765E-03 8.0802850E-03 7.3137088E-03 6.5996102E-03 5.9413700E-03
 5.3405627E-03 4.7966610E-03 4.3073660E-03 3.8691941E-03 3.4780302E-03
 3.1295568E-03 2.8195244E-03 2.5439046E-03 2.2989695E-03 2.0813199E-03
 1.8878803E-03 1.7158916E-03 1.5628856E-03 1.4266637E-03 1.3052726E-03
 1.1969807E-03 1.1002563E-03 1.0137478E-03 9.3626190E-04 8.6674938E-04
 8.0428657E-04 7.4805930E-04 6.9735240E-04 6.5153517E-04 6.1005325E-04
 5.7241647E-04 5.3819310E-04 5.0700334E-04 4.7851139E-04 4.5242292E-04
 4.2847777E-04 4.0644768E-04 3.8613097E-04 3.6734907E-04 3.4994571E-04
 3.3378162E-04 3.1873438E-04 3.0469487E-04 2.9156657E-04 2.7926511E-04
 2.6771455E-04 2.5684730E-04 2.4660322E-04 2.3692954E-04 2.2777839E-04
 2.1910720E-04 2.1087758E-04 2.0305552E-04 1.9561025E-04 1.8851494E-04
 1.8174367E-04 1.7527454E-04 1.6908687E-04 1.6316285E-04 1.5748512E-04
 1.5203909E-04
 2.9083254E-02 2.8524365E-02 2.7848827E-02 2.7074102E-02 2.6216423E-02
 2.5290949E-02 2.4311703E-02 2.3291508E-02 2.2241989E-02 2.1173617E-02
 2.0095732E-02 1.9016569E-02 1.7943341E-02 1.6882295E-02 1.5838787E-02
 1.4817351E-02 1.3821783E-02 1.2855235E-02 1.1920268E-02 1.1018966E-02
 1.0153016E-02 9.3237925E-03 8.5324598E-03 7.7800942E-03 7.0677679E-03
 6.3966857E-03 5.7682921E-03 5.1843282E-03 4.6468265E-03 4.1579148E-03
 3.7194272E-03 3.3323066E-03 2.9959856E-03 2.7080195E-03 2.4641827E-03
 2.2590247E-03 2.0866019E-03 1.9411438E-03 1.8174736E-03 1.7111874E-03
 1.6186812E-03 1.5370749E-03 1.4641065E-03 1.3980160E-03 1.3374496E-03
 1.2813722E-03 1.2289952E-03 1.1797228E-03 1.1331062E-03 1.0888102E-03
 1.0465810E-03 1.0062294E-03 9.6761226E-04 9.3061791E-04 8.9515938E-04
 8.6116546E-04 8.2857482E-04 7.9733320E-04 7.6739141E-04 7.3869934E-04
 7.1120955E-04 6.8487390E-04 6.5964484E-04 6.3547469E-04 6.1231735E-04
 5.9012749E-04 5.6886120E-04 5.4847525E-04 5.2892847E-04 5.1018165E-04
 4.9219542E-04 4.7493426E-04 4.5836304E-04 4.4244906E-04 4.2716053E-04
 4.1246854E-04 3.9834471E-04 3.8476236E-04 3.7169701E-04 3.5912436E-04
 3.4702200E-04 3.3536946E-04 3.2414691E-04 3.1333466E-04 3.0291584E-04
 2.9287292E-04 2.8319069E-04 2.7385328E-04 2.6484710E-04 2.5615786E-04
 2.4777354E-04
 7.7841856E-02 7.3014349E-02 6.8427987E-02 6.4079776E-02 5.9965197E-02
 5.6078617E-02 5.2413389E-02 4.8962045E-02 4.5716465E-02 4.2668004E-02
 3.9807685E-02 3.7126280E-02 3.4614459E-02 3.2262847E-02 3.0062135E-02
 2.8003162E-02 2.6076922E-02 2.4274658E-02 2.2587849E-02 2.1008257E-02
 1.9527955E-02 1.8139305E-02 1.6834989E-02 1.5608053E-02 1.4451891E-02
 1.3360376E-02 1.2327935E-02 1.1349764E-02 1.0422084E-02 9.5424205E-03
 8.7098414E-03 7.9249563E-03 7.1895365E-03 6.5057678E-03 5.8753625E-03
 5.2988967E-03 4.7755474E-03 4.3032239E-03 3.8788957E-03 3.4989659E-03
 3.1596008E-03 2.8569545E-03 2.5873238E-03 2.3472290E-03 2.1334623E-03
 1.9430999E-03 1.7734990E-03 1.6222881E-03 1.4873500E-03 1.3668028E-03
 1.2589756E-03 1.1623930E-03 1.0757515E-03 9.9790224E-04 9.2783337E-04
 8.6465251E-04 8.0757373E-04 7.5590413E-04 7.0903375E-04 6.6642405E-04
 6.2760041E-04 5.9214450E-04 5.5968855E-04 5.2990776E-04 5.0251675E-04
 4.7726394E-04 4.5392686E-04 4.3230920E-04 4.1223771E-04 3.9355893E-04
 3.7613703E-04 3.5985213E-04 3.4459730E-04 3.3027827E-04 3.1681091E-04
 3.0411995E-04 2.9213930E-04 2.8080918E-04 2.7007709E-04 2.5989412E-04
 2.5021817E-04 2.4101134E-04 2.3223927E-04 2.2386984E-04 2.1587616E-04
 2.0823210E-04 2.0091563E-04 1.9390517E-04 1.8718230E-04 1.8072895E-04
 1.7453020E-04
 2.9417966E-02 2.8855119E-02 2.8175803E-02 2.7397515E-02 2.6536534E-02
 2.5608066E-02 2.4626162E-02 2.3603681E-02 2.2552295E-02 2.1482509E-02
 2.0403691E-02 1.9324122E-02 1.8251056E-02 1.7190780E-02 1.6148701E-02
 1.5129407E-02 1.4136752E-02 1.3173951E-02 1.2243632E-02 1.1347959E-02
 1.0488690E-02 9.6672690E-03 8.8849161E-03 8.1427237E-03 7.4417270E-03
 6.7829797E-03 6.1676223E-03 5.5968636E-03 5.0719362E-03 4.5938967E-03
 4.1633653E-03 3.7801599E-03 3.4429792E-03 3.1492696E-03 2.8953291E-03
 2.6766537E-03 2.4883903E-03 2.3257674E-03 2.1843994E-03 2.0604441E-03
 1.9506672E-03 1.8524097E-03 1.7635329E-03 1.6823396E-03 1.6074947E-03
 1.5379607E-03 1.4729303E-03 1.4117811E-03 1.3540321E-03 1.2993115E-03
 1.2473265E-03 1.1978481E-03 1.1506920E-03 1.1057066E-03 1.0627634E-03
 1.0217541E-03 9.8257838E-04 9.4514590E-04 9.0937142E-04 8.7517523E-04
 8.4247976E-04 8.1121159E-04 7.8130001E-04 7.5267797E-04 7.2528125E-04
 6.9904909E-04 6.7392160E-04 6.4984331E-04 6.2676216E-04 6.0462765E-04
 5.8339298E-04 5.6301331E-04 5.4344529E-04 5.2465085E-04 5.0659088E-04
 4.8923219E-04 4.7253977E-04 4.5648360E-04 4.4103336E-04 4.2616102E-04
 4.1184254E-04 3.9805120E-04 3.8476384E-04 3.7195988E-04 3.5961802E-04
 3.4771804E-04 3.3624136E-04 3.2517163E-04 3.1449134E-04 3.0418453E-04
 2.9423684E-04
 7.7462323E-02 7.2633304E-02 6.8045840E-02 6.3696928E-02 5.9582006E-02
 5.5695429E-02 5.2030519E-02 4.8579793E-02 4.5335103E-02 4.2287793E-02
 3.9428867E-02 3.6749087E-02 3.4239117E-02 3.1889588E-02 2.9691197E-02
 2.7634799E-02 2.5711419E-02 2.3912348E-02 2.2229131E-02 2.0653626E-02
 1.9178031E-02 1.7794879E-02 1.6497081E-02 1.5277968E-02 1.4131307E-02
 1.3051401E-02 1.2033176E-02 1.1072317E-02 1.0165433E-02 9.3101775E-03
 8.5053034E-03 7.7505684E-03 7.0464108E-03 6.3934778E-03 5.7920860E-03
 5.2418401E-03 4.7414438E-03 4.2887502E-03 3.8809497E-03 3.5147881E-03
 3.1868101E-03 2.8935252E-03 2.6315406E-03 2.3976404E-03 2.1888388E-03
 2.0023938E-03 1.8358186E-03 1.6868742E-03 1.5535575E-03 1.4340851E-03
 1.3268716E-03 1.2305146E-03 1.1437737E-03 1.0655532E-03 9.9488616E-04
 9.3091954E-04 8.7289826E-04 8.2015793E-04 7.7211158E-04 7.2824291E-04
 6.8809540E-04 6.5126654E-04 6.1740348E-04 5.8619323E-04 5.5736006E-04
 5.3066149E-04 5.0588010E-04 4.8282670E-04 4.6133250E-04 4.4124853E-04
 4.2244254E-04 4.0479662E-04 3.8820604E-04 3.7257854E-04 3.5782988E-04
 3.4388795E-04 3.3068523E-04 3.1816389E-04 3.0626947E-04 2.9495504E-04
 2.8417879E-04 2.7390083E-04 2.6408632E-04 2.5470453E-04 2.4572702E-04
 2.3712734E-04 2.2888205E-04 2.2097031E-04 2.1337245E-04 2.0606969E-04
 1.9904689E-04
 2.9797086E-02 2.9229969E-02 2.8546588E-02 2.7764497E-02 2.6900006E-02
 2.5968380E-02 2.4983702E-02 2.3958879E-02 2.2905624E-02 2.1834478E-02
 2.0754850E-02 1.9675061E-02 1.8602416E-02 1.7543243E-02 1.6502993E-02
 1.5486307E-02 1.4497099E-02 1.3538634E-02 1.2613607E-02 1.1724228E-02
 1.0872311E-02 1.0059334E-02 9.2865247E-03 8.5549327E-03 7.8654755E-03
 7.2189854E-03 6.6162320E-03 6.0578696E-03 5.5443877E-03 5.0759455E-03
 4.6521970E-03 4.2721201E-03 3.9338740E-03 3.6347967E-03 3.3715148E-03
 3.1401815E-03 2.9367683E-03 2.7573286E-03 2.5981942E-03 2.4561053E-03
 2.3282566E-03 2.2122946E-03 2.1062877E-03 2.0086665E-03 1.9181779E-03
 1.8338161E-03 1.7547888E-03 1.6804632E-03 1.6103307E-03 1.5439901E-03
 1.4811078E-03 1.4214122E-03 1.3646728E-03 1.3106934E-03 1.2593014E-03
 1.2103426E-03 1.1636749E-03 1.1191703E-03 1.0767070E-03 1.0361733E-03
 9.9746371E-04 9.6047716E-04 9.2512363E-04 8.9131179E-04 8.5895980E-04
 8.2799169E-04 7.9833163E-04 7.6991314E-04 7.4266980E-04 7.1654032E-04
 6.9146871E-04 6.6740182E-04 6.4428971E-04 6.2208402E-04 6.0074165E-04
 5.8022025E-04 5.6048133E-04 5.4148945E-04 5.2320800E-04 5.0560647E-04
 4.8865401E-04 4.7232065E-04 4.5658124E-04 4.4141020E-04 4.2678131E-04
 4.1267340E-04 3.9906419E-04 3.8593423E-04 3.7326253E-04 3.6103209E-04
 3.4922530E-04
 7.7035047E-02 7.2204404E-02 6.7615777E-02 6.3266158E-02 5.9150957E-02
 5.5264495E-02 5.1600073E-02 4.8150189E-02 4.4906680E-02 4.1860856E-02
 3.9003730E-02 3.6326043E-02 3.3818465E-02 3.1471625E-02 2.9276246E-02
 2.7223211E-02 2.5303578E-02 2.3508707E-02 2.1830225E-02 2.0260097E-02
 1.8790677E-02 1.7414674E-02 1.6125236E-02 1.4915984E-02 1.3781020E-02
 1.2715029E-02 1.1713322E-02 1.0771926E-02 9.8876618E-03 9.0581430E-03
 8.2817581E-03 7.5575085E-03 6.8847695E-03 6.2629869E-03 5.6913528E-03
 5.1686047E-03 4.6929168E-03 4.2619337E-03 3.8728709E-03 3.5226645E-03
 3.2081138E-03 2.9260158E-03 2.6732595E-03 2.4468903E-03 2.2441600E-03
 2.0625337E-03 1.8997113E-03 1.7536149E-03 1.6223781E-03 1.5043403E-03
 1.3980172E-03 1.3020947E-03 1.2154051E-03 1.1369156E-03 1.0657128E-03
 1.0009876E-03 9.4202411E-04 8.8819169E-04 8.3893246E-04 7.9375511E-04
 7.5222610E-04 7.1395963E-04 6.7862018E-04 6.4590626E-04 6.1555259E-04
 5.8732677E-04 5.6101975E-04 5.3644879E-04 5.1345048E-04 4.9187860E-04
 4.7160557E-04 4.5251686E-04 4.3451114E-04 4.1749494E-04 4.0138885E-04
 3.8611854E-04 3.7161919E-04 3.5783293E-04 3.4470524E-04 3.3218999E-04
 3.2024385E-04 3.0882732E-04 2.9790649E-04 2.8744971E-04 2.7742589E-04
 2.6781039E-04 2.5857851E-04 2.4970906E-04 2.4118053E-04 2.3297536E-04
 2.2507657E-04
 3.0227052E-02 2.9655375E-02 2.8967673E-02 2.8181544E-02 2.7313374E-02
 2.6378458E-02 2.5390944E-02 2.4363777E-02 2.3308711E-02 2.2236330E-02
 2.1156097E-02 2.0076364E-02 1.9004481E-02 1.7946834E-02 1.6908903E-02
 1.5895385E-02 1.4910237E-02 1.3956769E-02 1.3037723E-02 1.2155334E-02
 1.1311426E-02 1.0507475E-02 9.7446479E-03 9.0238908E-03 8.3459290E-03
 7.7113057E-03 7.1203634E-03 6.5732067E-03 6.0696388E-03 5.6090779E-03
 5.1904405E-03 4.8120972E-03 4.4718408E-03 4.1669472E-03 3.8942916E-03
 3.6505118E-03 3.4322126E-03 3.2361066E-03 3.0591560E-03 2.8986435E-03
 2.7522075E-03 2.6178330E-03 2.4938365E-03 2.3788267E-03 2.2716613E-03
 2.1714047E-03 2.0772938E-03 1.9886987E-03 1.9051001E-03 1.8260645E-03
 1.7512268E-03 1.6802691E-03 1.6129181E-03 1.5489318E-03 1.4880897E-03
 1.4301955E-03 1.3750670E-03 1.3225392E-03 1.2724547E-03 1.2246730E-03
 1.1790597E-03 1.1354899E-03 1.0938490E-03 1.0540268E-03 1.0159250E-03
 9.7944716E-04 9.4450469E-04 9.1101736E-04 8.7890791E-04 8.4810203E-04
 8.1853586E-04 7.9014449E-04 7.6286960E-04 7.3665677E-04 7.1145408E-04
 6.8721257E-04 6.6388969E-04 6.4143946E-04 6.1982457E-04 5.9900671E-04
 5.7895156E-04 5.5962295E-04 5.4099230E-04 5.2302820E-04 5.0570373E-04
 4.8899325E-04 4.7286873E-04 4.5730756E-04 4.4228783E-04 4.2778859E-04
 4.1378703E-04
 7.6553904E-02 7.1721502E-02 6.7131668E-02 6.2781379E-02 5.8665998E-02
 5.4779828E-02 5.1116135E-02 4.7667414E-02 4.4425461E-02 4.1381594E-02
 3.8526811E-02 3.5851840E-02 3.3347368E-02 3.1004034E-02 2.8812591E-02
 2.6763951E-02 2.4849253E-02 2.3059908E-02 2.1387655E-02 1.9824589E-02
 1.8363215E-02 1.6996451E-02 1.5717672E-02 1.4520765E-02 1.3400136E-02
 1.2350760E-02 1.1368223E-02 1.0448745E-02 9.5891887E-03 8.7869968E-03
 8.0401311E-03 7.3469100E-03 6.7058317E-03 6.1153858E-03 5.5738678E-03
 5.0792852E-03 4.6293135E-03 4.2213248E-03 3.8524652E-03 3.5197423E-03
 3.2201279E-03 2.9506402E-03 2.7084118E-03 2.4907344E-03 2.2950929E-03
 2.1191742E-03 1.9608708E-03 1.8182786E-03 1.6896854E-03 1.5735598E-03
 1.4685312E-03 1.3733809E-03 1.2870238E-03 1.2084985E-03 1.1369486E-03
 1.0716196E-03 1.0118401E-03 9.5701916E-04 9.0663054E-04 8.6021191E-04
 8.1735401E-04 7.7769137E-04 7.4090430E-04 7.0670655E-04 6.7484792E-04
 6.4510258E-04 6.1727175E-04 5.9118069E-04 5.6667131E-04 5.4360298E-04
 5.2185310E-04 5.0130807E-04 4.8186997E-04 4.6344902E-04 4.4596579E-04
 4.2934762E-04 4.1353234E-04 3.9845897E-04 3.8407728E-04 3.7033894E-04
 3.5720263E-04 3.4462658E-04 3.3257788E-04 3.2102232E-04 3.0993210E-04
 2.9928054E-04 2.8904158E-04 2.7919293E-04 2.6971451E-04 2.6058752E-04
 2.5179252E-04
 3.0715406E-02 3.0138902E-02 2.9446652E-02 2.8656319E-02 2.7784340E-02
 2.6846081E-02 2.5855733E-02 2.4826292E-02 2.3769561E-02 2.2696171E-02
 2.1615630E-02 2.0536331E-02 1.9465668E-02 1.8410062E-02 1.7375048E-02
 1.6365349E-02 1.5384956E-02 1.4437204E-02 1.3524842E-02 1.2650105E-02
 1.1814787E-02 1.1020292E-02 1.0267665E-02 9.5576756E-03 8.8907825E-03
 8.2671773E-03 7.6867454E-03 7.1490570E-03 6.6533252E-03 6.1983508E-03
 5.7825167E-03 5.4037902E-03 5.0597582E-03 4.7477158E-03 4.4647758E-03
 4.2079845E-03 3.9744559E-03 3.7614498E-03 3.5664698E-03 3.3872763E-03
 3.2219090E-03 3.0686855E-03 2.9261748E-03 2.7931612E-03 2.6686329E-03
 2.5517293E-03 2.4417280E-03 2.3380141E-03 2.2400636E-03 2.1474189E-03
 2.0596844E-03 1.9765049E-03 1.8975682E-03 1.8225885E-03 1.7513089E-03
 1.6834916E-03 1.6189216E-03 1.5573956E-03 1.4987298E-03 1.4427532E-03
 1.3893077E-03 1.3382463E-03 1.2894295E-03 1.2427304E-03 1.1980314E-03
 1.1552221E-03 1.1141995E-03 1.0748679E-03 1.0371363E-03 1.0009253E-03
 9.6615480E-04 9.3275373E-04 9.0065412E-04 8.6979108E-04 8.4010710E-04
 8.1154658E-04 7.8405580E-04 7.5758743E-04 7.3209580E-04 7.0753606E-04
 6.8386825E-04 6.6105358E-04 6.3905708E-04 6.1784318E-04 5.9737969E-04
 5.7763600E-04 5.5858155E-04 5.4019107E-04 5.2243669E-04 5.0529244E-04
 4.8873672E-04
 7.6011896E-02 7.1177661E-02 6.6586621E-02 6.2235735E-02 5.8120344E-02
 5.4234721E-02 5.0572116E-02 4.7124989E-02 4.3885134E-02 4.0843852E-02
 3.7992138E-02 3.5320733E-02 3.2820329E-02 3.0481596E-02 2.8295321E-02
 2.6252478E-02 2.4344269E-02 2.2562206E-02 2.0898143E-02 1.9344315E-02
 1.7893398E-02 1.6538508E-02 1.5273235E-02 1.4091704E-02 1.2988544E-02
 1.1958937E-02 1.0998613E-02 1.0103825E-02 9.2713255E-03 8.4982775E-03
 7.7821612E-03 7.1206545E-03 6.5115071E-03 5.9524337E-03 5.4410147E-03
 4.9746726E-03 4.5506591E-03 4.1660997E-03 3.8180475E-03 3.5035433E-03
 3.2196790E-03 2.9636531E-03 2.7328089E-03 2.5246616E-03 2.3369133E-03
 2.1674575E-03 2.0143776E-03 1.8759412E-03 1.7505863E-03 1.6369120E-03
 1.5336659E-03 1.4397263E-03 1.3540967E-03 1.2758883E-03 1.2043137E-03
 1.1386707E-03 1.0783402E-03 1.0227686E-03 9.7146863E-04 9.2400692E-04
 8.7999942E-04 8.3910592E-04 8.0102216E-04 7.6548004E-04 7.3224190E-04
 7.0109451E-04 6.7184935E-04 6.4433814E-04 6.1840942E-04 5.9393106E-04
 5.7078188E-04 5.4885593E-04 5.2805548E-04 5.0829432E-04 4.8949465E-04
 4.7158697E-04 4.5450771E-04 4.3819926E-04 4.2261067E-04 4.0769423E-04
 3.9340788E-04 3.7971264E-04 3.6657267E-04 3.5395657E-04 3.4183342E-04
 3.3017719E-04 3.1896113E-04 3.0816413E-04 2.9776371E-04 2.8773982E-04
 2.7807531E-04
 3.1271022E-02 3.0689480E-02 2.9992538E-02 2.9197887E-02 2.8322067E-02
 2.7380489E-02 2.6387412E-02 2.5355875E-02 2.4297744E-02 2.3223687E-02
 2.2143260E-02 2.1064896E-02 1.9996034E-02 1.8943120E-02 1.7911712E-02
 1.6906559E-02 1.5931658E-02 1.4990342E-02 1.4085324E-02 1.3218787E-02
 1.2392438E-02 1.1607537E-02 1.0864942E-02 1.0165160E-02 9.5083266E-03
 8.8942330E-03 8.3223078E-03 7.7916230E-03 7.3008952E-03 6.8484726E-03
 6.4323801E-03 6.0503664E-03 5.6999740E-03 5.3786109E-03 5.0836620E-03
 4.8125526E-03 4.5628455E-03 4.3322672E-03 4.1187713E-03 3.9205160E-03
 3.7358950E-03 3.5635040E-03 3.4021249E-03 3.2507109E-03 3.1083561E-03
 2.9742785E-03 2.8477949E-03 2.7283044E-03 2.6152804E-03 2.5082536E-03
 2.4067985E-03 2.3105363E-03 2.2191203E-03 2.1322307E-03 2.0495770E-03
 1.9708914E-03 1.8959288E-03 1.8244584E-03 1.7562706E-03 1.6911684E-03
 1.6289732E-03 1.5695116E-03 1.5126318E-03 1.4581883E-03 1.4060427E-03
 1.3560725E-03 1.3081611E-03 1.2621989E-03 1.2180851E-03 1.1757243E-03
 1.1350303E-03 1.0959202E-03 1.0583184E-03 1.0221491E-03 9.8734815E-04
 9.5385191E-04 9.2159922E-04 8.9053484E-04 8.6060964E-04 8.3176838E-04
 8.0396852E-04 7.7716244E-04 7.5131189E-04 7.2637474E-04 7.0231588E-04
 6.7909830E-04 6.5668911E-04 6.3505524E-04 6.1416568E-04 5.9399387E-04
 5.7451159E-04
 7.5401150E-02 7.0565023E-02 6.5972827E-02 6.1621524E-02 5.7506401E-02
 5.3621709E-02 4.9960695E-02 4.6515781E-02 4.3278761E-02 4.0240932E-02
 3.7393291E-02 3.4726601E-02 3.2231573E-02 2.9898921E-02 2.7719481E-02
 2.5684301E-02 2.3784667E-02 2.2012208E-02 2.0358900E-02 1.8817132E-02
 1.7379748E-02 1.6040035E-02 1.4791777E-02 1.3629263E-02 1.2547263E-02
 1.1541046E-02 1.0606341E-02 9.7392816E-03 8.9363772E-03 8.1943981E-03
 7.5103128E-03 6.8811891E-03 6.3041286E-03 5.7762167E-03 5.2944785E-03
 4.8558903E-03 4.4573969E-03 4.0959436E-03 3.7685269E-03 3.4722264E-03
 3.2042477E-03 2.9619476E-03 2.7428539E-03 2.5446785E-03 2.3653191E-03
 2.2028561E-03 2.0555458E-03 1.9218107E-03 1.8002318E-03 1.6895345E-03
 1.5885736E-03 1.4963294E-03 1.4118880E-03 1.3344383E-03 1.2632547E-03
 1.1976950E-03 1.1371872E-03 1.0812220E-03 1.0293472E-03 9.8116056E-04
 9.3630597E-04 8.9446438E-04 8.5535494E-04 8.1872562E-04 7.8435068E-04
 7.5203204E-04 7.2159065E-04 6.9286744E-04 6.6571892E-04 6.4001785E-04
 6.1565038E-04 5.9251295E-04 5.7051395E-04 5.4956769E-04 5.2960060E-04
 5.1054463E-04 4.9233739E-04 4.7492306E-04 4.5825302E-04 4.4227755E-04
 4.2695709E-04 4.1225119E-04 3.9812646E-04 3.8454906E-04 3.7149017E-04
 3.5892200E-04 3.4681975E-04 3.3515960E-04 3.2391865E-04 3.1307887E-04
 3.0262169E-04
 3.1904399E-02 3.1317711E-02 3.0616017E-02 2.9817069E-02 2.8937479E-02
 2.7992744E-02 2.6997168E-02 2.5963867E-02 2.4904741E-02 2.3830513E-02
 2.2750771E-02 2.1673990E-02 2.0607626E-02 1.9558147E-02 1.8531118E-02
 1.7531276E-02 1.6562585E-02 1.5628329E-02 1.4731132E-02 1.3873065E-02
 1.3055665E-02 1.2279979E-02 1.1546602E-02 1.0855716E-02 1.0207080E-02
 9.6000740E-03 9.0336986E-03 8.5066129E-03 8.0171563E-03 7.5633992E-03
 7.1431962E-03 6.7542475E-03 6.3941935E-03 6.0606641E-03 5.7513490E-03
 5.4640509E-03 5.1967297E-03 4.9475101E-03 4.7147064E-03 4.4968086E-03
 4.2924793E-03 4.1005346E-03 3.9199279E-03 3.7497412E-03 3.5891565E-03
 3.4374497E-03 3.2939636E-03 3.1581202E-03 3.0293853E-03 2.9072813E-03
 2.7913670E-03 2.6812360E-03 2.5765176E-03 2.4768692E-03 2.3819758E-03
 2.2915455E-03 2.2053022E-03 2.1229968E-03 2.0443997E-03 1.9692902E-03
 1.8974688E-03 1.8287497E-03 1.7629605E-03 1.6999359E-03 1.6395319E-03
 1.5816061E-03 1.5260271E-03 1.4726771E-03 1.4214428E-03 1.3722162E-03
 1.3249029E-03 1.2794066E-03 1.2356438E-03 1.1935319E-03 1.1529977E-03
 1.1139669E-03 1.0763720E-03 1.0401526E-03 1.0052468E-03 9.7159873E-04
 9.3915768E-04 9.0786832E-04 8.7768777E-04 8.4856752E-04 8.2046678E-04
 7.9334324E-04 7.6716079E-04 7.4188138E-04 7.1746879E-04 6.9389091E-04
 6.7111308E-04
 7.4712738E-02 6.9874749E-02 6.5281563E-02 6.0930129E-02 5.6815714E-02
 5.2932534E-02 4.9273822E-02 4.5832001E-02 4.2598855E-02 3.9565686E-02
 3.6723509E-02 3.4063116E-02 3.1575255E-02 2.9250698E-02 2.7080351E-02
 2.5055347E-02 2.3167074E-02 2.1407278E-02 1.9768074E-02 1.8241992E-02
 1.6822014E-02 1.5501575E-02 1.4274564E-02 1.3135357E-02 1.2078742E-02
 1.1099932E-02 1.0194496E-02 9.3583148E-03 8.5875224E-03 7.8784293E-03
 7.2274688E-03 6.6311546E-03 6.0860426E-03 5.5887266E-03 5.1358314E-03
 4.7240336E-03 4.3500876E-03 4.0108548E-03 3.7033316E-03 3.4246680E-03
 3.1721883E-03 2.9434003E-03 2.7360013E-03 2.5478753E-03 2.3770933E-03
 2.2218972E-03 2.0806943E-03 1.9520505E-03 1.8346704E-03 1.7273939E-03
 1.6291807E-03 1.5390984E-03 1.4563155E-03 1.3800892E-03 1.3097583E-03
 1.2447352E-03 1.1844918E-03 1.1285609E-03 1.0765276E-03 1.0280201E-03
 9.8270806E-04 9.4029732E-04 9.0052525E-04 8.6315698E-04 8.2798430E-04
 7.9481932E-04 7.6349388E-04 7.3385914E-04 7.0578017E-04 6.7913497E-04
 6.5381674E-04 6.2972523E-04 6.0677360E-04 5.8488105E-04 5.6397595E-04
 5.4399198E-04 5.2486832E-04 5.0655362E-04 4.8899598E-04 4.7215115E-04
 4.5597809E-04 4.4043743E-04 4.2549591E-04 4.1112045E-04 3.9728207E-04
 3.8395266E-04 3.7110865E-04 3.5872494E-04 3.4677991E-04 3.3525418E-04
 3.2412692E-04
 3.2628063E-02 3.2036256E-02 3.1329896E-02 3.0526811E-02 2.9643709E-02
 2.8696146E-02 2.7698502E-02 2.6663937E-02 2.5604408E-02 2.4530677E-02
 2.3452353E-02 2.2377936E-02 2.1314880E-02 2.0269640E-02 1.9247754E-02
 1.8253900E-02 1.7291959E-02 1.6365100E-02 1.5475792E-02 1.4625900E-02
 1.3816726E-02 1.3049030E-02 1.2323070E-02 1.1638662E-02 1.0995194E-02
 1.0391659E-02 9.8267226E-03 9.2987474E-03 8.8058738E-03 8.3460733E-03
 7.9172021E-03 7.5170924E-03 7.1435906E-03 6.7946175E-03 6.4681964E-03
 6.1624800E-03 5.8757789E-03 5.6065363E-03 5.3533576E-03 5.1149824E-03
 4.8902710E-03 4.6782061E-03 4.4778613E-03 4.2884061E-03 4.1090907E-03
 3.9392207E-03 3.7781731E-03 3.6253706E-03 3.4802775E-03 3.3424068E-03
 3.2113050E-03 3.0865469E-03 2.9677479E-03 2.8545409E-03 2.7465902E-03
 2.6435833E-03 2.5452331E-03 2.4512645E-03 2.3614264E-03 2.2754883E-03
 2.1932302E-03 2.1144517E-03 2.0389620E-03 1.9665877E-03 1.8971661E-03
 1.8305422E-03 1.7665768E-03 1.7051343E-03 1.6460901E-03 1.5893322E-03
 1.5347471E-03 1.4822345E-03 1.4317001E-03 1.3830505E-03 1.3362045E-03
 1.2910797E-03 1.2476034E-03 1.2057029E-03 1.1653102E-03 1.1263627E-03
 1.0888013E-03 1.0525688E-03 1.0176117E-03 9.8387734E-04 9.5131813E-04
 9.1988500E-04 8.8953908E-04 8.6023199E-04 8.3193067E-04 8.0459198E-04
 7.7818183E-04
 7.3936626E-02 6.9096923E-02 6.4503059E-02 6.0151991E-02 5.6038946E-02
 5.2158143E-02 4.8502788E-02 4.5065306E-02 4.1837506E-02 3.8810693E-02
 3.5975914E-02 3.3324014E-02 3.0845789E-02 2.8532084E-02 2.6373891E-02
 2.4362437E-02 2.2489224E-02 2.0746110E-02 1.9125324E-02 1.7619507E-02
 1.6221732E-02 1.4925485E-02 1.3724678E-02 1.2613628E-02 1.1587001E-02
 1.0639791E-02 9.7672651E-03 8.9649195E-03 8.2284370E-03 7.5536338E-03
 6.9364491E-03 6.3729207E-03 5.8591873E-03 5.3915023E-03 4.9662367E-03
 4.5799110E-03 4.2292015E-03 3.9109685E-03 3.6222695E-03 3.3603518E-03
 3.1226710E-03 2.9068843E-03 2.7108425E-03 2.5325837E-03 2.3703300E-03
 2.2224649E-03 2.0875300E-03 1.9642126E-03 1.8513298E-03 1.7478223E-03
 1.6527401E-03 1.5652321E-03 1.4845402E-03 1.4099857E-03 1.3409627E-03
 1.2769316E-03 1.2174123E-03 1.1619733E-03 1.1102327E-03 1.0618486E-03
 1.0165158E-03 9.7396265E-04 9.3394477E-04 8.9624553E-04 8.6066988E-04
 8.2704215E-04 7.9520716E-04 7.6502271E-04 7.3636265E-04 7.0911407E-04
 6.8317173E-04 6.5844413E-04 6.3484814E-04 6.1230583E-04 5.9074827E-04
 5.7011272E-04 5.5034203E-04 5.3138367E-04 5.1318877E-04 4.9571478E-04
 4.7892128E-04 4.6277000E-04 4.4722910E-04 4.3226482E-04 4.1784864E-04
 4.0395322E-04 3.9055536E-04 3.7762898E-04 3.6515493E-04 3.5311116E-04
 3.4147958E-04
 3.3457037E-02 3.2860339E-02 3.2149639E-02 3.1342808E-02 3.0456657E-02
 2.9506829E-02 2.8507760E-02 2.7472656E-02 2.6413513E-02 2.5341110E-02
 2.4265075E-02 2.3193879E-02 2.2134956E-02 2.1094693E-02 2.0078538E-02
 1.9091047E-02 1.8135948E-02 1.7216207E-02 1.6334055E-02 1.5491081E-02
 1.4688266E-02 1.3926027E-02 1.3204280E-02 1.2522483E-02 1.1879703E-02
 1.1274660E-02 1.0705817E-02 1.0171426E-02 9.6696103E-03 9.1984151E-03
 8.7558776E-03 8.3400561E-03 7.9490906E-03 7.5812102E-03 7.2347694E-03
 6.9082272E-03 6.6001727E-03 6.3093062E-03 6.0344446E-03 5.7745054E-03
 5.5284924E-03 5.2954932E-03 5.0746691E-03 4.8652487E-03 4.6665138E-03
 4.4778036E-03 4.2984989E-03 4.1280240E-03 3.9658435E-03 3.8114591E-03
 3.6644062E-03 3.5242471E-03 3.3905772E-03 3.2630151E-03 3.1412109E-03
 3.0248365E-03 2.9135798E-03 2.8071550E-03 2.7052972E-03 2.6077584E-03
 2.5143065E-03 2.4247211E-03 2.3388015E-03 2.2563608E-03 2.1772194E-03
 2.1012165E-03 2.0281957E-03 1.9580119E-03 1.8905314E-03 1.8256231E-03
 1.7631747E-03 1.7030673E-03 1.6451983E-03 1.5894673E-03 1.5357805E-03
 1.4840530E-03 1.4341982E-03 1.3861337E-03 1.3397919E-03 1.2950945E-03
 1.2519802E-03 1.2103815E-03 1.1702375E-03 1.1314945E-03 1.0940948E-03
 1.0579834E-03 1.0231131E-03 9.8943862E-04 9.5691124E-04 9.2548638E-04
 8.9512806E-04
 7.3061533E-02 6.8220466E-02 6.3626498E-02 5.9276592E-02 5.5165954E-02
 5.1288802E-02 4.7638338E-02 4.4207022E-02 4.0986650E-02 3.7968591E-02
 3.5143942E-02 3.2503583E-02 3.0038398E-02 2.7739312E-02 2.5597408E-02
 2.3604007E-02 2.1750702E-02 2.0029437E-02 1.8432500E-02 1.6952567E-02
 1.5582701E-02 1.4316320E-02 1.3147198E-02 1.2069448E-02 1.1077439E-02
 1.0165815E-02 9.3294242E-03 8.5633053E-03 7.8626741E-03 7.2228988E-03
 6.6395057E-03 6.1081876E-03 5.6248112E-03 5.1854374E-03 4.7863252E-03
 4.4239494E-03 4.0950095E-03 3.7964277E-03 3.5253586E-03 3.2791754E-03
 3.0554701E-03 2.8520403E-03 2.6668804E-03 2.4981704E-03 2.3442616E-03
 2.2036659E-03 2.0750400E-03 1.9571767E-03 1.8489922E-03 1.7495153E-03
 1.6578760E-03 1.5732941E-03 1.4950754E-03 1.4225965E-03 1.3553046E-03
 1.2927038E-03 1.2343511E-03 1.1798515E-03 1.1288526E-03 1.0810398E-03
 1.0361318E-03 9.9387532E-04 9.5404568E-04 9.1644045E-04 8.8087789E-04
 8.4719644E-04 8.1524876E-04 7.8490382E-04 7.5604208E-04 7.2855578E-04
 7.0234889E-04 6.7733345E-04 6.5342855E-04 6.3056278E-04 6.0866988E-04
 5.8769039E-04 5.6756911E-04 5.4825441E-04 5.2970275E-04 5.1186839E-04
 4.9471593E-04 4.7820658E-04 4.6230867E-04 4.4699159E-04 4.3222599E-04
 4.1798592E-04 4.0424595E-04 3.9098519E-04 3.7818047E-04 3.6581166E-04
 3.5386055E-04
 3.4409512E-02 3.3808444E-02 3.3094000E-02 3.2284096E-02 3.1395666E-02
 3.0444408E-02 2.9444806E-02 2.8410116E-02 2.7352326E-02 2.6282217E-02
 2.5209371E-02 2.4142200E-02 2.3088038E-02 2.2053143E-02 2.1042794E-02
 2.0061342E-02 1.9112257E-02 1.8198224E-02 1.7321156E-02 1.6482314E-02
 1.5682327E-02 1.4921279E-02 1.4198774E-02 1.3514026E-02 1.2865907E-02
 1.2253041E-02 1.1673879E-02 1.1126744E-02 1.0609915E-02 1.0121664E-02
 9.6602915E-03 9.2241568E-03 8.8117039E-03 8.4214583E-03 8.0520529E-03
 7.7021890E-03 7.3706838E-03 7.0564165E-03 6.7583560E-03 6.4755366E-03
 6.2070508E-03 5.9520649E-03 5.7097832E-03 5.4794722E-03 5.2604303E-03
 5.0520063E-03 4.8535843E-03 4.6645906E-03 4.4844784E-03 4.3127434E-03
 4.1489014E-03 3.9925077E-03 3.8431427E-03 3.7004109E-03 3.5639415E-03
 3.4333954E-03 3.3084475E-03 3.1887956E-03 3.0741608E-03 2.9642796E-03
 2.8589002E-03 2.7578007E-03 2.6607616E-03 2.5675762E-03 2.4780640E-03
 2.3920406E-03 2.3093417E-03 2.2298151E-03 2.1533109E-03 2.0796868E-03
 2.0088234E-03 1.9405858E-03 1.8748678E-03 1.8115557E-03 1.7505446E-03
 1.6917431E-03 1.6350528E-03 1.5803899E-03 1.5276717E-03 1.4768146E-03
 1.4277472E-03 1.3803955E-03 1.3346972E-03 1.2905811E-03 1.2479892E-03
 1.2068629E-03 1.1671475E-03 1.1287823E-03 1.0917252E-03 1.0559218E-03
 1.0213290E-03
 7.2074920E-02 6.7233168E-02 6.2640063E-02 5.8292594E-02 5.4185953E-02
 5.0314367E-02 4.6671059E-02 4.3248516E-02 4.0038593E-02 3.7032694E-02
 3.4221981E-02 3.1597413E-02 2.9149946E-02 2.6870584E-02 2.4750479E-02
 2.2781009E-02 2.0953804E-02 1.9260814E-02 1.7694283E-02 1.6246786E-02
 1.4911224E-02 1.3680781E-02 1.2548931E-02 1.1509415E-02 1.0556188E-02
 9.6834395E-03 8.8855634E-03 8.1571573E-03 7.4930396E-03 6.8882294E-03
 6.3379803E-03 5.8377841E-03 5.3833793E-03 4.9707652E-03 4.5962017E-03
 4.2562070E-03 3.9475607E-03 3.6672938E-03 3.4126844E-03 3.1812403E-03
 2.9706857E-03 2.7789599E-03 2.6041849E-03 2.4446677E-03 2.2988783E-03
 2.1654384E-03 2.0431071E-03 1.9307699E-03 1.8274292E-03 1.7321905E-03
 1.6442514E-03 1.5628975E-03 1.4874884E-03 1.4174508E-03 1.3522755E-03
 1.2915066E-03 1.2347357E-03 1.1815976E-03 1.1317687E-03 1.0849579E-03
 1.0409015E-03 9.9936919E-04 9.6015108E-04 9.2305779E-04 8.8792166E-04
 8.5459038E-04 8.2292693E-04 7.9280976E-04 7.6412491E-04 7.3677266E-04
 7.1066263E-04 6.8570924E-04 6.6184049E-04 6.3898438E-04 6.1707996E-04
 5.9607119E-04 5.7590340E-04 5.5653014E-04 5.3790718E-04 5.1999226E-04
 5.0274981E-04 4.8614386E-04 4.7014345E-04 4.5471822E-04 4.3984025E-04
 4.2548534E-04 4.1162808E-04 3.9824573E-04 3.8531920E-04 3.7282857E-04
 3.6075359E-04
 3.5507668E-02 3.4903135E-02 3.4185931E-02 3.3373997E-02 3.2484371E-02
 3.1532817E-02 3.0533835E-02 2.9500658E-02 2.8445259E-02 2.7378337E-02
 2.6309378E-02 2.5246639E-02 2.4197273E-02 2.3167310E-02 2.2161759E-02
 2.1184672E-02 2.0239187E-02 1.9327639E-02 1.8451607E-02 1.7612008E-02
 1.6809195E-02 1.6043006E-02 1.5312888E-02 1.4617975E-02 1.3957152E-02
 1.3329132E-02 1.2732539E-02 1.2165924E-02 1.1627843E-02 1.1116858E-02
 1.0631578E-02 1.0170655E-02 9.7328071E-03 9.3168151E-03 8.9215180E-03
 8.5458122E-03 8.1886631E-03 7.8490712E-03 7.5261076E-03 7.2188755E-03
 6.9265342E-03 6.6482760E-03 6.3833343E-03 6.1309915E-03 5.8905501E-03
 5.6613632E-03 5.4428093E-03 5.2343048E-03 5.0352938E-03 4.8452569E-03
 4.6637035E-03 4.4901720E-03 4.3242285E-03 4.1654604E-03 4.0134848E-03
 3.8679501E-03 3.7285071E-03 3.5948507E-03 3.4666790E-03 3.3437144E-03
 3.2256979E-03 3.1123881E-03 3.0035484E-03 2.8989692E-03 2.7984481E-03
 2.7017952E-03 2.6088296E-03 2.5193810E-03 2.4332956E-03 2.3504219E-03
 2.2706178E-03 2.1937494E-03 2.1196955E-03 2.0483288E-03 1.9795410E-03
 1.9132277E-03 1.8492782E-03 1.7876043E-03 1.7281087E-03 1.6707103E-03
 1.6153204E-03 1.5618609E-03 1.5102571E-03 1.4604346E-03 1.4123311E-03
 1.3658744E-03 1.3210056E-03 1.2776656E-03 1.2357949E-03 1.1953363E-03
 1.1562433E-03
 7.0963010E-02 6.6121794E-02 6.1531156E-02 5.7188116E-02 5.3087890E-02
 4.9224738E-02 4.5591921E-02 4.2181972E-02 3.8986810E-02 3.5997901E-02
 3.3206463E-02 3.0603532E-02 2.8180098E-02 2.5927212E-02 2.3836022E-02
 2.1897886E-02 2.0104336E-02 1.8447187E-02 1.6918467E-02 1.5510479E-02
 1.4215773E-02 1.3027140E-02 1.1937601E-02 1.0940427E-02 1.0029114E-02
 9.1974037E-03 8.4392913E-03 7.7490304E-03 7.1211676E-03 6.5505211E-03
 6.0322178E-03 5.5616819E-03 5.1346486E-03 4.7471542E-03 4.3955338E-03
 4.0764078E-03 3.7866724E-03 3.5234911E-03 3.2842734E-03 3.0666620E-03
 2.8685157E-03 2.6878973E-03 2.5230525E-03 2.3724015E-03 2.2345178E-03
 2.1081229E-03 1.9920638E-03 1.8853103E-03 1.7869363E-03 1.6961164E-03
 1.6121088E-03 1.5342537E-03 1.4619589E-03 1.3946954E-03 1.3319907E-03
 1.2734248E-03 1.2186186E-03 1.1672369E-03 1.1189776E-03 1.0735693E-03
 1.0307716E-03 9.9036738E-04 9.5216103E-04 9.1597682E-04 8.8166056E-04
 8.4906718E-04 8.1807049E-04 7.8855379E-04 7.6041283E-04 7.3355349E-04
 7.0788921E-04 6.8334135E-04 6.5984088E-04 6.3731970E-04 6.1572081E-04
 5.9499068E-04 5.7507580E-04 5.5593398E-04 5.3752214E-04 5.1980134E-04
 5.0273648E-04 4.8629291E-04 4.7044081E-04 4.5515012E-04 4.4039730E-04
 4.2615496E-04 4.1240180E-04 3.9911550E-04 3.8627558E-04 3.7386239E-04
 3.6185925E-04
 3.6779005E-02 3.6172315E-02 3.5453640E-02 3.4641109E-02 3.3751722E-02
 3.2801237E-02 3.1804107E-02 3.0773517E-02 2.9721297E-02 2.8658003E-02
 2.7592901E-02 2.6534002E-02 2.5488151E-02 2.4461055E-02 2.3457380E-02
 2.2480797E-02 2.1534098E-02 2.0619299E-02 1.9737696E-02 1.8889995E-02
 1.8076409E-02 1.7296754E-02 1.6550517E-02 1.5836962E-02 1.5155180E-02
 1.4504150E-02 1.3882775E-02 1.3289934E-02 1.2724486E-02 1.2185305E-02
 1.1671269E-02 1.1181285E-02 1.0714293E-02 1.0269252E-02 9.8451637E-03
 9.4410470E-03 9.0559609E-03 8.6889854E-03 8.3392505E-03 8.0058966E-03
 7.6881023E-03 7.3850858E-03 7.0960876E-03 6.8203793E-03 6.5572732E-03
 6.3061039E-03 6.0662483E-03 5.8371057E-03 5.6181056E-03 5.4087234E-03
 5.2084429E-03 5.0167893E-03 4.8333118E-03 4.6575889E-03 4.4892207E-03
 4.3278327E-03 4.1730665E-03 4.0245983E-03 3.8821162E-03 3.7453207E-03
 3.6139444E-03 3.4877218E-03 3.3664107E-03 3.2497856E-03 3.1376309E-03
 3.0297372E-03 2.9259161E-03 2.8259887E-03 2.7297756E-03 2.6371263E-03
 2.5478790E-03 2.4618921E-03 2.3790260E-03 2.2991518E-03 2.2221487E-03
 2.1478962E-03 2.0762822E-03 2.0072036E-03 1.9405531E-03 1.8762428E-03
 1.8141725E-03 1.7542625E-03 1.6964250E-03 1.6405807E-03 1.5866542E-03
 1.5345690E-03 1.4842640E-03 1.4356638E-03 1.3887107E-03 1.3433403E-03
 1.2994942E-03
 6.9710836E-02 6.4872257E-02 6.0286827E-02 5.5951349E-02 5.1861241E-02
 4.8010807E-02 4.4393387E-02 4.1001562E-02 3.7827302E-02 3.4862127E-02
 3.2097287E-02 2.9523812E-02 2.7132688E-02 2.4914853E-02 2.2861341E-02
 2.0963289E-02 1.9211970E-02 1.7598843E-02 1.6115531E-02 1.4753874E-02
 1.3505938E-02 1.2363994E-02 1.1320574E-02 1.0368494E-02 9.5008379E-03
 8.7110065E-03 7.9927249E-03 7.3400559E-03 6.7474195E-03 6.2095812E-03
 5.7216631E-03 5.2791345E-03 4.8778048E-03 4.5138192E-03 4.1836272E-03
 3.8839842E-03 3.6119230E-03 3.3647406E-03 3.1399860E-03 2.9354305E-03
 2.7490563E-03 2.5790443E-03 2.4237500E-03 2.2816949E-03 2.1515482E-03
 2.0321161E-03 1.9223280E-03 1.8212242E-03 1.7279423E-03 1.6417186E-03
 1.5618633E-03 1.4877623E-03 1.4188674E-03 1.3546878E-03 1.2947859E-03
 1.2387704E-03 1.1862888E-03 1.1370301E-03 1.0907151E-03 1.0470884E-03
 1.0059283E-03 9.6703117E-04 9.3021488E-04 8.9531636E-04 8.6219003E-04
 8.3070068E-04 8.0073037E-04 7.7217066E-04 7.4492150E-04 7.1889657E-04
 6.9401291E-04 6.7019754E-04 6.4738328E-04 6.2550919E-04 6.0451968E-04
 5.8436248E-04 5.6499086E-04 5.4636179E-04 5.2843388E-04 5.1117316E-04
 4.9454148E-04 4.7851153E-04 4.6305152E-04 4.4813441E-04 4.3373488E-04
 4.1982962E-04 4.0639727E-04 3.9341554E-04 3.8086562E-04 3.6872976E-04
 3.5699052E-04
 3.8256925E-02 3.7650071E-02 3.6931891E-02 3.6120545E-02 3.5232991E-02
 3.4284901E-02 3.3290610E-02 3.2263104E-02 3.1213989E-02 3.0153519E-02
 2.9090628E-02 2.8032968E-02 2.6986992E-02 2.5958033E-02 2.4950374E-02
 2.3967380E-02 2.3011586E-02 2.2084819E-02 2.1188302E-02 2.0322753E-02
 1.9488489E-02 1.8685518E-02 1.7913586E-02 1.7172256E-02 1.6460961E-02
 1.5779011E-02 1.5125659E-02 1.4500091E-02 1.3901467E-02 1.3328902E-02
 1.2781509E-02 1.2258381E-02 1.1758605E-02 1.1281279E-02 1.0825481E-02
 1.0390317E-02 9.9748988E-03 9.5783435E-03 9.1998037E-03 8.8384328E-03
 8.4934244E-03 8.1639802E-03 7.8493403E-03 7.5487751E-03 7.2615687E-03
 6.9870590E-03 6.7245946E-03 6.4735576E-03 6.2333760E-03 6.0034860E-03
 5.7833707E-03 5.5725356E-03 5.3705066E-03 5.1768431E-03 4.9911360E-03
 4.8129866E-03 4.6420293E-03 4.4779116E-03 4.3203076E-03 4.1689067E-03
 4.0234216E-03 3.8835702E-03 3.7491021E-03 3.6197687E-03 3.4953379E-03
 3.3755896E-03 3.2603277E-03 3.1493451E-03 3.0424641E-03 2.9395069E-03
 2.8403094E-03 2.7447175E-03 2.6525739E-03 2.5637427E-03 2.4780848E-03
 2.3954751E-03 2.3157904E-03 2.2389148E-03 2.1647364E-03 2.0931512E-03
 2.0240562E-03 1.9573588E-03 1.8929595E-03 1.8307788E-03 1.7707288E-03
 1.7127283E-03 1.6566971E-03 1.6025717E-03 1.5502763E-03 1.4997380E-03
 1.4508981E-03
 6.8303637E-02 6.3471027E-02 5.8894750E-02 5.4571677E-02 5.0497282E-02
 4.6665948E-02 4.3071058E-02 3.9705221E-02 3.6560424E-02 3.3628151E-02
 3.0899586E-02 2.8365612E-02 2.6016995E-02 2.3844406E-02 2.1838505E-02
 1.9989999E-02 1.8289655E-02 1.6728397E-02 1.5297281E-02 1.3987580E-02
 1.2790827E-02 1.1698813E-02 1.0703645E-02 9.7977966E-03 8.9740865E-03
 8.2257371E-03 7.5463615E-03 6.9299792E-03 6.3710217E-03 5.8643101E-03
 5.4050530E-03 4.9888333E-03 4.6115890E-03 4.2696018E-03 3.9594667E-03
 3.6780809E-03 3.4226170E-03 3.1905097E-03 2.9794355E-03 2.7872880E-03
 2.6121677E-03 2.4523600E-03 2.3063205E-03 2.1726617E-03 2.0501383E-03
 1.9376356E-03 1.8341483E-03 1.7387820E-03 1.6507345E-03 1.5692896E-03
 1.4938065E-03 1.4237136E-03 1.3584984E-03 1.2977028E-03 1.2409213E-03
 1.1877860E-03 1.1379736E-03 1.0911884E-03 1.0471704E-03 1.0056859E-03
 9.6652273E-04 9.2949154E-04 8.9442480E-04 8.6116878E-04 8.2958472E-04
 7.9954817E-04 7.7094918E-04 7.4368209E-04 7.1765808E-04 6.9279235E-04
 6.6900859E-04 6.4623897E-04 6.2441838E-04 6.0349074E-04 5.8340124E-04
 5.6410290E-04 5.4555177E-04 5.2770536E-04 5.1052700E-04 4.9398129E-04
 4.7803612E-04 4.6266310E-04 4.4783091E-04 4.3351611E-04 4.1969595E-04
 4.0634553E-04 3.9344357E-04 3.8097278E-04 3.6891483E-04 3.5724984E-04
 3.4596340E-04
 3.9983481E-02 3.9378900E-02 3.8663384E-02 3.7855014E-02 3.6970586E-02
 3.6025554E-02 3.5033990E-02 3.4008533E-02 3.2960400E-02 3.1899445E-02
 3.0834166E-02 2.9771818E-02 2.8718475E-02 2.7679160E-02 2.6657932E-02
 2.5658036E-02 2.4681984E-02 2.3731705E-02 2.2808606E-02 2.1913677E-02
 2.1047570E-02 2.0210659E-02 1.9403076E-02 1.8624784E-02 1.7875569E-02
 1.7155092E-02 1.6462911E-02 1.5798472E-02 1.5161167E-02 1.4550306E-02
 1.3965151E-02 1.3404913E-02 1.2868773E-02 1.2355903E-02 1.1865431E-02
 1.1396490E-02 1.0948218E-02 1.0519738E-02 1.0110201E-02 9.7187581E-03
 9.3445899E-03 8.9868875E-03 8.6448696E-03 8.3177863E-03 8.0049150E-03
 7.7055548E-03 7.4190493E-03 7.1447603E-03 6.8820785E-03 6.6304379E-03
 6.3892892E-03 6.1581223E-03 5.9364452E-03 5.7237968E-03 5.5197440E-03
 5.3238738E-03 5.1357970E-03 4.9551474E-03 4.7815735E-03 4.6147569E-03
 4.4543813E-03 4.3001589E-03 4.1518155E-03 4.0090852E-03 3.8717173E-03
 3.7394897E-03 3.6121728E-03 3.4895581E-03 3.3714466E-03 3.2576486E-03
 3.1479818E-03 3.0422821E-03 2.9403875E-03 2.8421336E-03 2.7473830E-03
 2.6559932E-03 2.5678272E-03 2.4827626E-03 2.4006758E-03 2.3214531E-03
 2.2449808E-03 2.1711532E-03 2.0998733E-03 2.0310385E-03 1.9645619E-03
 1.9003479E-03 1.8383196E-03 1.7783910E-03 1.7204875E-03 1.6645292E-03
 1.6104530E-03
 6.6726729E-02 6.1905574E-02 5.7344884E-02 5.3041607E-02 4.8991293E-02
 4.5188323E-02 4.1626062E-02 3.8297061E-02 3.5193164E-02 3.2305632E-02
 2.9625341E-02 2.7142782E-02 2.4848243E-02 2.2731831E-02 2.0783588E-02
 1.8993571E-02 1.7351890E-02 1.5848827E-02 1.4474861E-02 1.3220740E-02
 1.2077564E-02 1.1036781E-02 1.0090247E-02 9.2302617E-03 8.4495656E-03
 7.7413507E-03 7.0992657E-03 6.5174038E-03 5.9903003E-03 5.5129030E-03
 5.0805644E-03 4.6890178E-03 4.3343538E-03 4.0130047E-03 3.7217147E-03
 3.4575241E-03 3.2177442E-03 2.9999365E-03 2.8018996E-03 2.6216411E-03
 2.4573659E-03 2.3074560E-03 2.1704591E-03 2.0450687E-03 1.9301160E-03
 1.8245495E-03 1.7274322E-03 1.6379236E-03 1.5552712E-03 1.4788053E-03
 1.4079254E-03 1.3420979E-03 1.2808414E-03 1.2237297E-03 1.1703804E-03
 1.1204524E-03 1.0736400E-03 1.0296686E-03 9.8829390E-04 9.4929751E-04
 9.1247959E-04 8.7766425E-04 8.4469304E-04 8.1342168E-04 7.8372093E-04
 7.5547554E-04 7.2857842E-04 7.0293428E-04 6.7845662E-04 6.5506820E-04
 6.3269574E-04 6.1127311E-04 5.9074577E-04 5.7105406E-04 5.5215141E-04
 5.3399184E-04 5.1653228E-04 4.9973460E-04 4.8356457E-04 4.6798727E-04
 4.5297435E-04 4.3849688E-04 4.2452849E-04 4.1104542E-04 3.9802390E-04
 3.8544388E-04 3.7328573E-04 3.6152947E-04 3.5016052E-04 3.3916027E-04
 3.2851563E-04
 4.2010557E-02 4.1410796E-02 4.0699799E-02 3.9895386E-02 3.9014015E-02
 3.8070753E-02 3.7079211E-02 3.6051556E-02 3.4998547E-02 3.3929590E-02
 3.2852829E-02 3.1775214E-02 3.0702684E-02 2.9640200E-02 2.8591916E-02
 2.7561279E-02 2.6551114E-02 2.5563721E-02 2.4600944E-02 2.3664230E-02
 2.2754703E-02 2.1873165E-02 2.1020170E-02 2.0196050E-02 1.9400915E-02
 1.8634714E-02 1.7897226E-02 1.7188095E-02 1.6506867E-02 1.5852967E-02
 1.5225735E-02 1.4624463E-02 1.4048368E-02 1.3496635E-02 1.2968419E-02
 1.2462854E-02 1.1979058E-02 1.1516154E-02 1.1073267E-02 1.0649531E-02
 1.0244098E-02 9.8561430E-03 9.4848555E-03 9.1294581E-03 8.7892050E-03
 8.4633715E-03 8.1512704E-03 7.8522377E-03 7.5656478E-03 7.2909086E-03
 7.0274454E-03 6.7747189E-03 6.5322197E-03 6.2994622E-03 6.0759941E-03
 5.8613811E-03 5.6552077E-03 5.4570893E-03 5.2666548E-03 5.0835637E-03
 4.9074884E-03 4.7381083E-03 4.5751361E-03 4.4182898E-03 4.2673037E-03
 4.1219327E-03 3.9819297E-03 3.8470733E-03 3.7171477E-03 3.5919487E-03
 3.4712837E-03 3.3549648E-03 3.2428207E-03 3.1346709E-03 3.0303707E-03
 2.9297618E-03 2.8326961E-03 2.7390402E-03 2.6486532E-03 2.5614162E-03
 2.4772051E-03 2.3959053E-03 2.3174032E-03 2.2415961E-03 2.1683821E-03
 2.0976604E-03 2.0293405E-03 1.9633339E-03 1.8995567E-03 1.8379220E-03
 1.7783571E-03
 6.4968526E-02 6.0167477E-02 5.5632263E-02 5.1359821E-02 4.7345649E-02
 4.3584008E-02 4.0068042E-02 3.6789969E-02 3.3741195E-02 3.0912446E-02
 2.8293939E-02 2.5875451E-02 2.3646494E-02 2.1596385E-02 1.9714393E-02
 1.7989846E-02 1.6412212E-02 1.4971218E-02 1.3656895E-02 1.2459654E-02
 1.1370357E-02 1.0380312E-02 9.4813183E-03 8.6656837E-03 7.9262042E-03
 7.2561773E-03 6.6493768E-03 6.1000474E-03 5.6028860E-03 5.1530022E-03
 4.7459183E-03 4.3775272E-03 4.0440825E-03 3.7421677E-03 3.4686730E-03
 3.2207740E-03 2.9959108E-03 2.7917665E-03 2.6062506E-03 2.4374733E-03
 2.2837343E-03 2.1435071E-03 2.0154160E-03 1.8982313E-03 1.7908489E-03
 1.6922785E-03 1.6016383E-03 1.5181362E-03 1.4410678E-03 1.3698019E-03
 1.3037733E-03 1.2424798E-03 1.1854718E-03 1.1323474E-03 1.0827483E-03
 1.0363533E-03 9.9287485E-04 9.5205742E-04 9.1366807E-04 8.7750336E-04
 8.4337796E-04 8.1112288E-04 7.8059116E-04 7.5164682E-04 7.2416809E-04
 6.9804699E-04 6.7318184E-04 6.4948545E-04 6.2687456E-04 6.0527620E-04
 5.8462401E-04 5.6485622E-04 5.4591667E-04 5.2775413E-04 5.1032245E-04
 4.9358024E-04 4.7748556E-04 4.6200532E-04 4.4710291E-04 4.3274974E-04
 4.1891736E-04 4.0557884E-04 3.9271015E-04 3.8028829E-04 3.6829369E-04
 3.5670307E-04 3.4550033E-04 3.3466966E-04 3.2419327E-04 3.1405620E-04
 3.0424411E-04
 4.4401519E-02 4.3808162E-02 4.3101832E-02 4.2299848E-02 4.1418131E-02
 4.0471192E-02 3.9472137E-02 3.8432680E-02 3.7363220E-02 3.6272947E-02
 3.5169948E-02 3.4061264E-02 3.2953061E-02 3.1850677E-02 3.0758737E-02
 2.9681209E-02 2.8621491E-02 2.7582457E-02 2.6566500E-02 2.5575586E-02
 2.4611294E-02 2.3674848E-02 2.2767141E-02 2.1888807E-02 2.1040194E-02
 2.0221435E-02 1.9432461E-02 1.8673038E-02 1.7942775E-02 1.7241154E-02
 1.6567560E-02 1.5921278E-02 1.5301540E-02 1.4707523E-02 1.4138361E-02
 1.3593155E-02 1.3071011E-02 1.2571010E-02 1.2092248E-02 1.1633830E-02
 1.1194874E-02 1.0774513E-02 1.0371917E-02 9.9862628E-03 9.6167838E-03
 9.2627173E-03 8.9233490E-03 8.5979821E-03 8.2859723E-03 7.9866787E-03
 7.6995208E-03 7.4239238E-03 7.1593490E-03 6.9052940E-03 6.6612693E-03
 6.4268229E-03 6.2015154E-03 5.9849359E-03 5.7766968E-03 5.5764290E-03
 5.3837770E-03 5.1984135E-03 5.0200280E-03 4.8483065E-03 4.6829763E-03
 4.5237681E-03 4.3704174E-03 4.2226845E-03 4.0803365E-03 3.9431546E-03
 3.8109240E-03 3.6834469E-03 3.5605365E-03 3.4420032E-03 3.3276761E-03
 3.2173940E-03 3.1109904E-03 3.0083142E-03 2.9092254E-03 2.8135884E-03
 2.7212659E-03 2.6321253E-03 2.5460583E-03 2.4629424E-03 2.3826677E-03
 2.3051293E-03 2.2302184E-03 2.1578479E-03 2.0879146E-03 2.0203355E-03
 1.9550247E-03
 6.3023940E-02 5.8256298E-02 5.3761147E-02 4.9535234E-02 4.5573711E-02
 4.1870367E-02 3.8417716E-02 3.5207227E-02 3.2229442E-02 2.9474141E-02
 2.6930569E-02 2.4587536E-02 2.2433642E-02 2.0457378E-02 1.8647291E-02
 1.6992137E-02 1.5480928E-02 1.4103073E-02 1.2848397E-02 1.1707213E-02
 1.0670358E-02 9.7291963E-03 8.8756233E-03 8.1020817E-03 7.4015292E-03
 6.7674359E-03 6.1937645E-03 5.6749387E-03 5.2058413E-03 4.7817589E-03
 4.3983855E-03 4.0517789E-03 3.7383446E-03 3.4548133E-03 3.1982108E-03
 2.9658410E-03 2.7552622E-03 2.5642663E-03 2.3908638E-03 2.2332605E-03
 2.0898427E-03 1.9591593E-03 1.8399106E-03 1.7309282E-03 1.6311705E-03
 1.5397018E-03 1.4556871E-03 1.3783793E-03 1.3071127E-03 1.2412900E-03
 1.1803819E-03 1.1239129E-03 1.0714584E-03 1.0226403E-03 9.7711885E-04
 9.3459495E-04 8.9479587E-04 8.5747865E-04 8.2242797E-04 7.8944850E-04
 7.5836596E-04 7.2902377E-04 7.0128188E-04 6.7501230E-04 6.5010088E-04
 6.2644412E-04 6.0394948E-04 5.8253336E-04 5.6211738E-04 5.4263312E-04
 5.2401808E-04 5.0621317E-04 4.8916991E-04 4.7283791E-04 4.5717155E-04
 4.4213535E-04 4.2768978E-04 4.1380018E-04 4.0043742E-04 3.8757338E-04
 3.7518138E-04 3.6323452E-04 3.5171219E-04 3.4059354E-04 3.2985859E-04
 3.1948992E-04 3.0946897E-04 2.9978095E-04 2.9041062E-04 2.8134431E-04
 2.7257085E-04
 4.7231257E-02 4.6642635E-02 4.5936722E-02 4.5130193E-02 4.4238389E-02
 4.3275382E-02 4.2253956E-02 4.1185752E-02 4.0081255E-02 3.8949963E-02
 3.7800424E-02 3.6640283E-02 3.5476405E-02 3.4314845E-02 3.3160981E-02
 3.2019496E-02 3.0894453E-02 2.9789321E-02 2.8707029E-02 2.7649993E-02
 2.6620165E-02 2.5619073E-02 2.4647865E-02 2.3707353E-02 2.2798033E-02
 2.1920137E-02 2.1073671E-02 2.0258427E-02 1.9474037E-02 1.8719988E-02
 1.7995644E-02 1.7300272E-02 1.6633069E-02 1.5993174E-02 1.5379682E-02
 1.4791658E-02 1.4228153E-02 1.3688206E-02 1.3170873E-02 1.2675216E-02
 1.2200301E-02 1.1745228E-02 1.1309125E-02 1.0891137E-02 1.0490445E-02
 1.0106258E-02 9.7378278E-03 9.3844244E-03 9.0453606E-03 8.7199789E-03
 8.4076505E-03 8.1077758E-03 7.8197960E-03 7.5431620E-03 7.2773723E-03
 7.0219343E-03 6.7763869E-03 6.5402971E-03 6.3132434E-03 6.0948399E-03
 5.8847032E-03 5.6824787E-03 5.4878346E-03 5.3004455E-03 5.1200050E-03
 4.9462253E-03 4.7788261E-03 4.6175472E-03 4.4621374E-03 4.3123518E-03
 4.1679731E-03 4.0287753E-03 3.8945524E-03 3.7651134E-03 3.6402624E-03
 3.5198182E-03 3.4036131E-03 3.2914849E-03 3.1832692E-03 3.0788151E-03
 2.9779826E-03 2.8806357E-03 2.7866319E-03 2.6958562E-03 2.6081852E-03
 2.5234986E-03 2.4416866E-03 2.3626473E-03 2.2862684E-03 2.2124611E-03
 2.1411283E-03
 6.0900036E-02 5.6185067E-02 5.1750217E-02 4.7591522E-02 4.3703251E-02
 4.0078130E-02 3.6707517E-02 3.3581648E-02 3.0689817E-02 2.8020637E-02
 2.5562277E-02 2.3302604E-02 2.1229448E-02 1.9330701E-02 1.7594485E-02
 1.6009262E-02 1.4563901E-02 1.3247762E-02 1.2050713E-02 1.0963169E-02
 9.9761263E-03 9.0811159E-03 8.2702413E-03 7.5361524E-03 6.8720169E-03
 6.2715127E-03 5.7288036E-03 5.2385116E-03 4.7956980E-03 4.3958318E-03
 4.0347651E-03 3.7087130E-03 3.4142239E-03 3.1481662E-03 2.9076866E-03
 2.6902086E-03 2.4933945E-03 2.3151403E-03 2.1535438E-03 2.0068984E-03
 1.8736626E-03 1.7524592E-03 1.6420522E-03 1.5413319E-03 1.4493072E-03
 1.3650907E-03 1.2878927E-03 1.2170019E-03 1.1517896E-03 1.0916899E-03
 1.0361997E-03 9.8487025E-04 9.3729992E-04 8.9312904E-04 8.5203943E-04
 8.1374380E-04 7.7798695E-04 7.4453821E-04 7.1319519E-04 6.8377279E-04
 6.5610616E-04 6.3004636E-04 6.0546154E-04 5.8223354E-04 5.6025194E-04
 5.3942035E-04 5.1965227E-04 5.0086627E-04 4.8299384E-04 4.6596455E-04
 4.4972394E-04 4.3421600E-04 4.1939126E-04 4.0520856E-04 3.9162353E-04
 3.7859977E-04 3.6610293E-04 3.5410377E-04 3.4257121E-04 3.3147982E-04
 3.2080396E-04 3.1052312E-04 3.0061419E-04 2.9105903E-04 2.8184042E-04
 2.7294044E-04 2.6434500E-04 2.5603850E-04 2.4800753E-04 2.4023882E-04
 2.3272300E-04
 5.0582759E-02 4.9989950E-02 4.9271818E-02 4.8444588E-02 4.7523465E-02
 4.6522599E-02 4.5455188E-02 4.4333465E-02 4.3168750E-02 4.1971471E-02
 4.0751155E-02 3.9516471E-02 3.8275238E-02 3.7034418E-02 3.5800189E-02
 3.4577932E-02 3.3372305E-02 3.2187287E-02 3.1026196E-02 2.9891763E-02
 2.8786203E-02 2.7711216E-02 2.6668087E-02 2.5657708E-02 2.4680635E-02
 2.3737112E-02 2.2827148E-02 2.1950513E-02 2.1106817E-02 2.0295497E-02
 1.9515865E-02 1.8767137E-02 1.8048458E-02 1.7358897E-02 1.6697498E-02
 1.6063260E-02 1.5455182E-02 1.4872247E-02 1.4313458E-02 1.3777813E-02
 1.3264338E-02 1.2772088E-02 1.2300128E-02 1.1847565E-02 1.1413539E-02
 1.0997220E-02 1.0597804E-02 1.0214540E-02 9.8466882E-03 9.4935605E-03
 9.1544930E-03 8.8288523E-03 8.5160369E-03 8.2154730E-03 7.9266177E-03
 7.6489607E-03 7.3820055E-03 7.1252794E-03 6.8783518E-03 6.6407849E-03
 6.4121904E-03 6.1921822E-03 5.9803994E-03 5.7764854E-03 5.5801263E-03
 5.3909980E-03 5.2088089E-03 5.0332728E-03 4.8641139E-03 4.7010775E-03
 4.5439233E-03 4.3924013E-03 4.2463001E-03 4.1053980E-03 3.9694919E-03
 3.8383820E-03 3.7118930E-03 3.5898304E-03 3.4720316E-03 3.3583313E-03
 3.2485782E-03 3.1426086E-03 3.0402883E-03 2.9414815E-03 2.8460461E-03
 2.7538673E-03 2.6648180E-03 2.5787824E-03 2.4956481E-03 2.4153125E-03
 2.3376637E-03
 5.8623016E-02 5.3986348E-02 4.9637035E-02 4.5569640E-02 4.1776840E-02
 3.8249742E-02 3.4978133E-02 3.1950802E-02 2.9155802E-02 2.6580693E-02
 2.4212847E-02 2.2039546E-02 2.0048235E-02 1.8226599E-02 1.6562698E-02
 1.5045032E-02 1.3662592E-02 1.2404918E-02 1.1262094E-02 1.0224779E-02
 9.2842067E-03 8.4321629E-03 7.6609883E-03 6.9635720E-03 6.3333013E-03
 5.7640686E-03 5.2502342E-03 4.7866073E-03 4.3684253E-03 3.9913179E-03
 3.6512893E-03 3.3446962E-03 3.0682203E-03 2.8188473E-03 2.5938421E-03
 2.3907272E-03 2.2072659E-03 2.0414393E-03 1.8914301E-03 1.7556037E-03
 1.6324896E-03 1.5207712E-03 1.4192694E-03 1.3269262E-03 1.2427969E-03
 1.1660374E-03 1.0958905E-03 1.0316878E-03 9.7282487E-04 9.1876456E-04
 8.6902978E-04 8.2319306E-04 7.8087050E-04 7.4172457E-04 7.0544932E-04
 6.7177432E-04 6.4045668E-04 6.1127637E-04 5.8404420E-04 5.5858050E-04
 5.3473219E-04 5.1235897E-04 4.9133465E-04 4.7154355E-04 4.5288826E-04
 4.3527351E-04 4.1861835E-04 4.0284786E-04 3.8789262E-04 3.7369286E-04
 3.6019561E-04 3.4734519E-04 3.3509958E-04 3.2341611E-04 3.1225709E-04
 3.0158486E-04 2.9137431E-04 2.8158948E-04 2.7220621E-04 2.6320334E-04
 2.5455531E-04 2.4624090E-04 2.3824106E-04 2.3054010E-04 2.2312079E-04
 2.1596847E-04 2.0906878E-04 2.0240944E-04 1.9597674E-04 1.8976105E-04
 1.8375099E-04
 5.4538094E-02 5.3919863E-02 5.3164303E-02 5.2288134E-02 5.1307384E-02
 5.0237343E-02 4.9092513E-02 4.7886543E-02 4.6632178E-02 4.5341194E-02
 4.4024386E-02 4.2691518E-02 4.1351385E-02 4.0011764E-02 3.8679499E-02
 3.7360523E-02 3.6059923E-02 3.4781992E-02 3.3530295E-02 3.2307755E-02
 3.1116670E-02 2.9958831E-02 2.8835539E-02 2.7747691E-02 2.6695808E-02
 2.5680102E-02 2.4700526E-02 2.3756780E-02 2.2848401E-02 2.1974755E-02
 2.1135073E-02 2.0328501E-02 1.9554084E-02 1.8810840E-02 1.8097717E-02
 1.7413653E-02 1.6757580E-02 1.6128400E-02 1.5525061E-02 1.4946500E-02
 1.4391684E-02 1.3859601E-02 1.3349271E-02 1.2859748E-02 1.2390119E-02
 1.1939504E-02 1.1507064E-02 1.1091988E-02 1.0693501E-02 1.0310866E-02
 9.9433837E-03 9.5903771E-03 9.2512099E-03 8.9252703E-03 8.6119799E-03
 8.3107902E-03 8.0211740E-03 7.7426326E-03 7.4746823E-03 7.2168768E-03
 6.9687911E-03 6.7300033E-03 6.5001352E-03 6.2788036E-03 6.0656541E-03
 5.8603599E-03 5.6625851E-03 5.4720361E-03 5.2884077E-03 5.1114233E-03
 4.9408213E-03 4.7763386E-03 4.6177385E-03 4.4647851E-03 4.3172557E-03
 4.1749412E-03 4.0376326E-03 3.9051408E-03 3.7772751E-03 3.6538576E-03
 3.5347214E-03 3.4197012E-03 3.3086480E-03 3.2013976E-03 3.0978143E-03
 2.9977651E-03 2.9011094E-03 2.8077257E-03 2.7174938E-03 2.6302966E-03
 2.5460196E-03
 5.6244235E-02 5.1715318E-02 4.7478124E-02 4.3525055E-02 3.9846797E-02
 3.6432721E-02 3.3271171E-02 3.0349838E-02 2.7655980E-02 2.5176656E-02
 2.2898957E-02 2.0810090E-02 1.8897569E-02 1.7149244E-02 1.5553409E-02
 1.4098850E-02 1.2774854E-02 1.1571270E-02 1.0478490E-02 9.4874622E-03
 8.5896971E-03 7.7772504E-03 7.0427055E-03 6.3791783E-03 5.7802745E-03
 5.2400795E-03 4.7531365E-03 4.3144282E-03 3.9193453E-03 3.5636660E-03
 3.2435320E-03 2.9554244E-03 2.6961425E-03 2.4627789E-03 2.2526982E-03
 2.0635191E-03 1.8930881E-03 1.7394654E-03 1.6009047E-03 1.4758389E-03
 1.3628579E-03 1.2606991E-03 1.1682316E-03 1.0844435E-03 1.0084327E-03
 9.3938870E-04 8.7659282E-04 8.1939797E-04 7.6723041E-04 7.1957952E-04
 6.7598670E-04 6.3604332E-04 5.9938553E-04 5.6568882E-04 5.3466245E-04
 5.0604803E-04 4.7961398E-04 4.5515367E-04 4.3248004E-04 4.1142770E-04
 3.9185045E-04 3.7361204E-04 3.5659529E-04 3.4069203E-04 3.2580411E-04
 3.1184711E-04 2.9874023E-04 2.8641586E-04 2.7480788E-04 2.6385838E-04
 2.5351695E-04 2.4373530E-04 2.3447022E-04 2.2568411E-04 2.1734143E-04
 2.0940995E-04 2.0185779E-04 1.9466208E-04 1.8779536E-04 1.8123555E-04
 1.7496414E-04 1.6896057E-04 1.6321022E-04 1.5769337E-04 1.5239674E-04
 1.4730921E-04 1.4241546E-04 1.3770627E-04 1.3316901E-04 1.2879728E-04
 1.2457772E-04
 5.9163902E-02 5.8483221E-02 5.7651054E-02 5.6686040E-02 5.5606272E-02
 5.4429132E-02 5.3171098E-02 5.1847652E-02 5.0473128E-02 4.9060680E-02
 4.7622249E-02 4.6168551E-02 4.4709116E-02 4.3252315E-02 4.1805439E-02
 4.0374741E-02 3.8965538E-02 3.7582289E-02 3.6228649E-02 3.4907557E-02
 3.3621345E-02 3.2371748E-02 3.1160017E-02 2.9986991E-02 2.8853092E-02
 2.7758451E-02 2.6702905E-02 2.5686065E-02 2.4707366E-02 2.3766061E-02
 2.2861291E-02 2.1992091E-02 2.1157419E-02 2.0356197E-02 1.9587286E-02
 1.8849539E-02 1.8141797E-02 1.7462896E-02 1.6811704E-02 1.6187089E-02
 1.5587947E-02 1.5013208E-02 1.4461827E-02 1.3932790E-02 1.3425136E-02
 1.2937932E-02 1.2470274E-02 1.2021304E-02 1.1590206E-02 1.1176188E-02
 1.0778504E-02 1.0396433E-02 1.0029299E-02 9.6764434E-03 9.3372539E-03
 9.0111354E-03 8.6975256E-03 8.3958851E-03 8.1057083E-03 7.8265117E-03
 7.5578257E-03 7.2992048E-03 7.0502390E-03 6.8105171E-03 6.5796627E-03
 6.3573131E-03 6.1431061E-03 5.9367297E-03 5.7378467E-03 5.5461666E-03
 5.3614029E-03 5.1832669E-03 5.0115059E-03 4.8458632E-03 4.6860939E-03
 4.5319763E-03 4.3832823E-03 4.2398013E-03 4.1013374E-03 3.9676917E-03
 3.8386851E-03 3.7141338E-03 3.5938721E-03 3.4777403E-03 3.3655742E-03
 3.2572285E-03 3.1525656E-03 3.0514428E-03 2.9537261E-03 2.8592986E-03
 2.7680336E-03
 5.3839564E-02 4.9445156E-02 4.5341231E-02 4.1518118E-02 3.7964944E-02
 3.4669969E-02 3.1620879E-02 2.8805027E-02 2.6209602E-02 2.3821797E-02
 2.1628974E-02 1.9618692E-02 1.7778851E-02 1.6097719E-02 1.4563994E-02
 1.3166852E-02 1.1895963E-02 1.0741515E-02 9.6942196E-03 8.7453183E-03
 7.8865970E-03 7.1103503E-03 6.4093885E-03 5.7770354E-03 5.2070832E-03
 4.6937931E-03 4.2318702E-03 3.8164433E-03 3.4430430E-03 3.1075743E-03
 2.8062984E-03 2.5358070E-03 2.2930005E-03 2.0750684E-03 1.8794634E-03
 1.7038812E-03 1.5462475E-03 1.4046888E-03 1.2775232E-03 1.1632385E-03
 1.0604785E-03 9.6802734E-04 8.8479969E-04 8.0981950E-04 7.4222009E-04
 6.8122440E-04 6.2613963E-04 5.7634455E-04 5.3129264E-04 4.9048715E-04
 4.5349216E-04 4.1991347E-04 3.8940474E-04 3.6165072E-04 3.3637744E-04
 3.1333335E-04 2.9229745E-04 2.7307108E-04 2.5547817E-04 2.3935983E-04
 2.2457348E-04 2.1099077E-04 1.9849962E-04 1.8699667E-04 1.7639046E-04
 1.6659852E-04 1.5754385E-04 1.4916425E-04 1.4139428E-04 1.3418244E-04
 1.2748089E-04 1.2124145E-04 1.1542649E-04 1.0999994E-04 1.0492650E-04
 1.0017785E-04 9.5726551E-05 9.1547656E-05 8.7619759E-05 8.3921084E-05
 8.0434751E-05 7.7142395E-05 7.4029093E-05 7.1081267E-05 6.8283800E-05
 6.5626431E-05 6.3100371E-05 6.0691898E-05 5.8393554E-05 5.6199529E-05
 5.4099612E-05
 6.4498276E-02 6.3704014E-02 6.2745705E-02 6.1645005E-02 6.0422763E-02
 5.9098747E-02 5.7691470E-02 5.6218080E-02 5.4694254E-02 5.3134207E-02
 5.1550716E-02 4.9955089E-02 4.8357330E-02 4.6766110E-02 4.5188937E-02
 4.3632194E-02 4.2101249E-02 4.0600568E-02 3.9133769E-02 3.7703730E-02
 3.6312684E-02 3.4962267E-02 3.3653617E-02 3.2387428E-02 3.1164007E-02
 2.9983340E-02 2.8845146E-02 2.7748896E-02 2.6693888E-02 2.5679262E-02
 2.4704022E-02 2.3767101E-02 2.2867342E-02 2.2003554E-02 2.1174502E-02
 2.0378936E-02 1.9615605E-02 1.8883266E-02 1.8180685E-02 1.7506661E-02
 1.6860012E-02 1.6239591E-02 1.5644280E-02 1.5073007E-02 1.4524744E-02
 1.3998483E-02 1.3493273E-02 1.3008199E-02 1.2542371E-02 1.2094967E-02
 1.1665172E-02 1.1252224E-02 1.0855391E-02 1.0473970E-02 1.0107306E-02
 9.7547639E-03 9.4157346E-03 9.0896413E-03 8.7759355E-03 8.4740957E-03
 8.1836162E-03 7.9040322E-03 7.6348782E-03 7.3757232E-03 7.1261558E-03
 6.8857828E-03 6.6542309E-03 6.4311367E-03 6.2161479E-03 6.0089524E-03
 5.8092298E-03 5.6166835E-03 5.4310272E-03 5.2519827E-03 5.0792927E-03
 4.9127140E-03 4.7519961E-03 4.5969170E-03 4.4472595E-03 4.3028048E-03
 4.1633667E-03 4.0287431E-03 3.8987561E-03 3.7732238E-03 3.6519831E-03
 3.5348677E-03 3.4217287E-03 3.3124154E-03 3.2067832E-03 3.1047000E-03
 3.0060268E-03
 5.1497243E-02 4.7252752E-02 4.3290887E-02 3.9601073E-02 3.6172044E-02
 3.2992087E-02 3.0049171E-02 2.7331125E-02 2.4825698E-02 2.2520699E-02
 2.0404078E-02 1.8463986E-02 1.6688867E-02 1.5067481E-02 1.3588983E-02
 1.2242953E-02 1.1019424E-02 9.9089090E-03 8.9024082E-03 7.9914285E-03
 7.1679843E-03 6.4245793E-03 5.7542212E-03 5.1504024E-03 4.6070768E-03
 4.1186530E-03 3.6799726E-03 3.2862891E-03 2.9332521E-03 2.6168744E-03
 2.3335174E-03 2.0798699E-03 1.8529186E-03 1.6499340E-03 1.4684438E-03
 1.3062169E-03 1.1612375E-03 1.0316945E-03 9.1595796E-04 8.1256632E-04
 7.2020665E-04 6.3770439E-04 5.6400773E-04 4.9817818E-04 4.3937628E-04
 3.8685021E-04 3.3993210E-04 2.9802480E-04 2.6059381E-04 2.2716814E-04
 1.9732006E-04 1.7067368E-04 1.4689127E-04 1.2567131E-04 1.0674755E-04
 8.9880086E-05 7.4853284E-05 6.1478000E-05 4.9582093E-05 3.9014027E-05
 2.9634826E-05 2.1325393E-05 1.3973124E-05 7.4808513E-06 1.7606716E-06
 -3.2676483E-06 -7.6715996E-06 -1.1518016E-05 -1.4867196E-05 -1.7765396E-05
 -2.0262434E-05 -2.2397937E-05 -2.4212741E-05 -2.5739630E-05 -2.7009433E-05
 -2.8048085E-05 -2.8884595E-05 -2.9539126E-05 -3.0032184E-05 -3.0384716E-05
 -3.0609728E-05 -3.0724954E-05 -3.0743355E-05 -3.0678053E-05 -3.0539282E-05
 -3.0338468E-05 -3.0082616E-05 -2.9781262E-05 -2.9442093E-05 -2.9069926E-05
 -2.8675106E-05
 7.0549026E-02 6.9583401E-02 6.8446361E-02 6.7162670E-02 6.5755673E-02
 6.4247116E-02 6.2657051E-02 6.1003797E-02 5.9303891E-02 5.7572201E-02
 5.5821911E-02 5.4064646E-02 5.2310564E-02 5.0568439E-02 4.8845783E-02
 4.7148939E-02 4.5483209E-02 4.3852936E-02 4.2261619E-02 4.0711980E-02
 3.9206095E-02 3.7745439E-02 3.6330979E-02 3.4963243E-02 3.3642374E-02
 3.2368183E-02 3.1140221E-02 2.9957816E-02 2.8820114E-02 2.7726103E-02
 2.6674652E-02 2.5664551E-02 2.4694523E-02 2.3763252E-02 2.2869393E-02
 2.2011580E-02 2.1188460E-02 2.0398686E-02 1.9640937E-02 1.8913912E-02
 1.8216345E-02 1.7547004E-02 1.6904697E-02 1.6288271E-02 1.5696619E-02
 1.5128676E-02 1.4583413E-02 1.4059847E-02 1.3557033E-02 1.3074085E-02
 1.2610129E-02 1.2164345E-02 1.1735952E-02 1.1324200E-02 1.0928365E-02
 1.0547780E-02 1.0181781E-02 9.8297531E-03 9.4911000E-03 9.1652619E-03
 8.8516967E-03 8.5498868E-03 8.2593514E-03 7.9796137E-03 7.7102277E-03
 7.4507785E-03 7.2008437E-03 6.9600441E-03 6.7280000E-03 6.5043680E-03
 6.2888069E-03 6.0809832E-03 5.8806059E-03 5.6873569E-03 5.5009718E-03
 5.3211763E-03 5.1477067E-03 4.9803234E-03 4.8187822E-03 4.6628625E-03
 4.5123436E-03 4.3670218E-03 4.2266934E-03 4.0911790E-03 3.9602830E-03
 3.8338383E-03 3.7116786E-03 3.5936439E-03 3.4795776E-03 3.3693297E-03
 3.2627655E-03
 4.9297486E-02 4.5201324E-02 4.1375164E-02 3.7809063E-02 3.4492634E-02
 3.1415146E-02 2.8565563E-02 2.5932664E-02 2.3505101E-02 2.1271463E-02
 1.9220429E-02 1.7340751E-02 1.5621436E-02 1.4051702E-02 1.2621119E-02
 1.1319622E-02 1.0137548E-02 9.0656821E-03 8.0952607E-03 7.2179954E-03
 6.4260927E-03 5.7122237E-03 5.0695431E-03 4.4916891E-03 3.9727394E-03
 3.5072214E-03 3.0900866E-03 2.7166938E-03 2.3827865E-03 2.0844676E-03
 1.8181844E-03 1.5807007E-03 1.3690785E-03 1.1806556E-03 1.0130242E-03
 8.6400897E-04 7.3164771E-04 6.1417936E-04 5.1001768E-04 4.1774201E-04
 3.3607552E-04 2.6387747E-04 2.0012632E-04 1.4390878E-04 9.4409261E-05
 5.0900053E-05 1.2729794E-05 -2.0680644E-05 -4.9851049E-05 -7.5238611E-05
 -9.7258497E-05 -1.1627831E-04 -1.3262323E-04 -1.4658562E-04 -1.5842971E-04
 -1.6838363E-04 -1.7665903E-04 -1.8343984E-04 -1.8889226E-04 -1.9316438E-04
 -1.9639057E-04 -1.9868888E-04 -2.0016350E-04 -2.0091173E-04 -2.0101995E-04
 -2.0056052E-04 -1.9960650E-04 -1.9821711E-04 -1.9645013E-04 -1.9435117E-04
 -1.9196684E-04 -1.8933948E-04 -1.8650018E-04 -1.8348664E-04 -1.8032316E-04
 -1.7703758E-04 -1.7365435E-04 -1.7019214E-04 -1.6667193E-04 -1.6310910E-04
 -1.5952044E-04 -1.5591648E-04 -1.5231351E-04 -1.4871625E-04 -1.4514038E-04
 -1.4159067E-04 -1.3807465E-04 -1.3459921E-04 -1.3117003E-04 -1.2779440E-04
 -1.2447333E-04
 7.7306859E-02 7.6114163E-02 7.4749365E-02 7.3239483E-02 7.1609572E-02
 6.9882601E-02 6.8079494E-02 6.6219173E-02 6.4318582E-02 6.2392823E-02
 6.0455203E-02 5.8517382E-02 5.6589488E-02 5.4680191E-02 5.2796878E-02
 5.0945751E-02 4.9131911E-02 4.7359530E-02 4.5631893E-02 4.3951519E-02
 4.2320285E-02 4.0739443E-02 3.9209753E-02 3.7731551E-02 3.6304761E-02
 3.4929015E-02 3.3603687E-02 3.2327905E-02 3.1100648E-02 2.9920744E-02
 2.8786903E-02 2.7697764E-02 2.6651900E-02 2.5647875E-02 2.4684191E-02
 2.3759376E-02 2.2871954E-02 2.2020463E-02 2.1203479E-02 2.0419596E-02
 1.9667447E-02 1.8945709E-02 1.8253101E-02 1.7588381E-02 1.6950360E-02
 1.6337894E-02 1.5749874E-02 1.5185243E-02 1.4642999E-02 1.4122167E-02
 1.3621829E-02 1.3141085E-02 1.2679099E-02 1.2235064E-02 1.1808207E-02
 1.1397797E-02 1.1003125E-02 1.0623523E-02 1.0258353E-02 9.9070044E-03
 9.5688980E-03 9.2434762E-03 8.9302091E-03 8.6285891E-03 8.3381357E-03
 8.0583906E-03 7.7889091E-03 7.5292820E-03 7.2790915E-03 7.0379633E-03
 6.8055373E-03 6.5814499E-03 6.3653816E-03 6.1570066E-03 5.9560146E-03
 5.7621272E-03 5.5750520E-03 5.3945249E-03 5.2203019E-03 5.0521200E-03
 4.8897648E-03 4.7330000E-03 4.5816149E-03 4.4354075E-03 4.2941752E-03
 4.1577378E-03 4.0259096E-03 3.8985172E-03 3.7754003E-03 3.6564008E-03
 3.5413608E-03
 4.7296055E-02 4.3330446E-02 3.9620861E-02 3.6159121E-02 3.2936413E-02
 2.9943449E-02 2.7170440E-02 2.4607243E-02 2.2243414E-02 2.0068320E-02
 1.8071277E-02 1.6241593E-02 1.4568712E-02 1.3042244E-02 1.1652070E-02
 1.0388404E-02 9.2418073E-03 8.2032653E-03 7.2641885E-03 6.4164409E-03
 5.6523597E-03 4.9647428E-03 4.3468564E-03 3.7924377E-03 3.2956637E-03
 2.8511512E-03 2.4539363E-03 2.0994542E-03 1.7835266E-03 1.5023247E-03
 1.2523643E-03 1.0304708E-03 8.3376182E-04 6.5963430E-04 5.0572457E-04
 3.6990590E-04 2.5026090E-04 1.4506420E-04 5.2765852E-05 -2.8023462E-05
 -9.8552227E-05 -1.5993415E-04 -2.1316941E-04 -2.5915049E-04 -2.9867445E-04
 -3.3245370E-04 -3.6112536E-04 -3.8525826E-04 -4.0535524E-04 -4.2187230E-04
 -4.3520881E-04 -4.4572938E-04 -4.5375369E-04 -4.5956695E-04 -4.6342611E-04
 -4.6555954E-04 -4.6617311E-04 -4.6544761E-04 -4.6354535E-04 -4.6061462E-04
 -4.5678421E-04 -4.5217076E-04 -4.4687983E-04 -4.4100377E-04 -4.3462648E-04
 -4.2782351E-04 -4.2066126E-04 -4.1319799E-04 -4.0549162E-04 -3.9758810E-04
 -3.8952968E-04 -3.8135762E-04 -3.7310342E-04 -3.6479824E-04 -3.5647216E-04
 -3.4814543E-04 -3.3984415E-04 -3.3158678E-04 -3.2338538E-04 -3.1526320E-04
 -3.0722638E-04 -2.9928982E-04 -2.9146447E-04 -2.8375621E-04 -2.7617608E-04
 -2.6872699E-04 -2.6141666E-04 -2.5425100E-04 -2.4723011E-04 -2.4035799E-04
 -2.3363878E-04
 8.4764779E-02 8.3296381E-02 8.1661165E-02 7.9887375E-02 7.8000836E-02
 7.6025069E-02 7.3981322E-02 7.1888678E-02 6.9764122E-02 6.7622721E-02
 6.5477706E-02 6.3340552E-02 6.1221242E-02 5.9128229E-02 5.7068672E-02
 5.5048533E-02 5.3072676E-02 5.1145021E-02 4.9268592E-02 4.7445673E-02
 4.5677871E-02 4.3966211E-02 4.2311203E-02 4.0712949E-02 3.9171148E-02
 3.7685223E-02 3.6254320E-02 3.4877378E-02 3.3553187E-02 3.2280371E-02
 3.1057481E-02 2.9882982E-02 2.8755292E-02 2.7672807E-02 2.6633907E-02
 2.5636958E-02 2.4680367E-02 2.3762532E-02 2.2881921E-02 2.2037005E-02
 2.1226311E-02 2.0448411E-02 1.9701911E-02 1.8985486E-02 1.8297845E-02
 1.7637754E-02 1.7004026E-02 1.6395519E-02 1.5811142E-02 1.5249858E-02
 1.4710666E-02 1.4192604E-02 1.3694769E-02 1.3216282E-02 1.2756317E-02
 1.2314077E-02 1.1888805E-02 1.1479779E-02 1.1086301E-02 1.0707727E-02
 1.0343416E-02 9.9927681E-03 9.6552223E-03 9.3302196E-03 9.0172440E-03
 8.7158009E-03 8.4254118E-03 8.1456304E-03 7.8760106E-03 7.6161465E-03
 7.3656440E-03 7.1241232E-03 6.8912324E-03 6.6666151E-03 6.4499439E-03
 6.2409183E-03 6.0392194E-03 5.8445744E-03 5.6566996E-03 5.4753302E-03
 5.3002238E-03 5.1311348E-03 4.9678283E-03 4.8100934E-03 4.6577095E-03
 4.5104800E-03 4.3682088E-03 4.2307158E-03 4.0978170E-03 3.9693415E-03
 3.8451308E-03
 4.5521189E-02 4.1657448E-02 3.8037479E-02 3.4655139E-02 3.1503346E-02
 2.8574221E-02 2.5859121E-02 2.3348842E-02 2.1033701E-02 1.8903678E-02
 1.6948584E-02 1.5158132E-02 1.3522082E-02 1.2030303E-02 1.0672897E-02
 9.4402479E-03 8.3230641E-03 7.3124552E-03 6.3999365E-03 5.5774702E-03
 4.8374706E-03 4.1728164E-03 3.5768454E-03 3.0433601E-03 2.5665986E-03
 2.1412433E-03 1.7623851E-03 1.4255167E-03 1.1265111E-03 8.6159172E-04
 6.2732166E-04 4.2057238E-04 2.3850561E-04 7.8552934E-05 -6.1606748E-05
 -1.8407016E-04 -2.9072395E-04 -3.8326488E-04 -4.6321622E-04 -5.3194753E-04
 -5.9068715E-04 -6.4053119E-04 -6.8246474E-04 -7.1736559E-04 -7.4602198E-04
 -7.6913513E-04 -7.8733405E-04 -8.0117933E-04 -8.1117166E-04 -8.1775751E-04
 -8.2133611E-04 -8.2226633E-04 -8.2086574E-04 -8.1741897E-04 -8.1218051E-04
 -8.0537878E-04 -7.9721533E-04 -7.8787189E-04 -7.7751285E-04 -7.6628011E-04
 -7.5430813E-04 -7.4171077E-04 -7.2859146E-04 -7.1504468E-04 -7.0115307E-04
 -6.8699190E-04 -6.7262608E-04 -6.5811438E-04 -6.4351346E-04 -6.2886800E-04
 -6.1422150E-04 -5.9961015E-04 -5.8506627E-04 -5.7062157E-04 -5.5630319E-04
 -5.4212881E-04 -5.2812416E-04 -5.1430264E-04 -5.0068187E-04 -4.8727624E-04
 -4.7409386E-04 -4.6114501E-04 -4.4844096E-04 -4.3598379E-04 -4.2378265E-04
 -4.1183917E-04 -4.0015779E-04 -3.8873919E-04 -3.7758655E-04 -3.6670043E-04
 -3.5607920E-04
 9.2932157E-02 9.1147020E-02 8.9204632E-02 8.7133609E-02 8.4959969E-02
 8.2707293E-02 8.0396779E-02 7.8047387E-02 7.5675972E-02 7.3297366E-02
 7.0924588E-02 6.8568863E-02 6.6239901E-02 6.3945875E-02 6.1693661E-02
 5.9488937E-02 5.7336271E-02 5.5239279E-02 5.3200711E-02 5.1222540E-02
 4.9306117E-02 4.7452170E-02 4.5660947E-02 4.3932293E-02 4.2265657E-02
 4.0660206E-02 3.9114863E-02 3.7628334E-02 3.6199201E-02 3.4825884E-02
 3.3506729E-02 3.2240018E-02 3.1023994E-02 2.9856876E-02 2.8736882E-02
 2.7662223E-02 2.6631160E-02 2.5641944E-02 2.4692914E-02 2.3782400E-02
 2.2908814E-02 2.2070605E-02 2.1266269E-02 2.0494360E-02 1.9753501E-02
 1.9042343E-02 1.8359609E-02 1.7704070E-02 1.7074540E-02 1.6469898E-02
 1.5889063E-02 1.5331009E-02 1.4794738E-02 1.4279320E-02 1.3783851E-02
 1.3307483E-02 1.2849382E-02 1.2408776E-02 1.1984918E-02 1.1577094E-02
 1.1184632E-02 1.0806881E-02 1.0443226E-02 1.0093068E-02 9.7558573E-03
 9.4310530E-03 9.1181351E-03 8.8166278E-03 8.5260561E-03 8.2459748E-03
 7.9759695E-03 7.7156173E-03 7.4645425E-03 7.2223665E-03 6.9887433E-03
 6.7633279E-03 6.5458003E-03 6.3358550E-03 6.1331866E-03 5.9375186E-03
 5.7485839E-03 5.5661150E-03 5.3898734E-03 5.2196160E-03 5.0551160E-03
 4.8961616E-03 4.7425372E-03 4.5940522E-03 4.4505089E-03 4.3117274E-03
 4.1775345E-03
 4.3981642E-02 4.0185738E-02 3.6624786E-02 3.3294447E-02 3.0189078E-02
 2.7301921E-02 2.4625218E-02 2.2150455E-02 1.9868471E-02 1.7769665E-02
 1.5844153E-02 1.4081884E-02 1.2472803E-02 1.1006922E-02 9.6744364E-03
 8.4658107E-03 7.3718191E-03 6.3836183E-03 5.4927645E-03 4.6912525E-03
 3.9715348E-03 3.3265180E-03 2.7495688E-03 2.2345225E-03 1.7756493E-03
 1.3676592E-03 1.0056769E-03 6.8522565E-04 4.0220754E-04 1.5287839E-04
 -6.6171546E-05 -2.5804399E-04 -4.2554995E-04 -5.7123578E-04 -6.9739972E-04
 -8.0611877E-04 -8.9926011E-04 -9.7850792E-04 -1.0453718E-03 -1.1012087E-03
 -1.1472360E-03 -1.1845450E-03 -1.2141115E-03 -1.2368107E-03 -1.2534250E-03
 -1.2646556E-03 -1.2711280E-03 -1.2734025E-03 -1.2719798E-03 -1.2673088E-03
 -1.2597892E-03 -1.2497787E-03 -1.2376009E-03 -1.2235384E-03 -1.2078503E-03
 -1.1907627E-03 -1.1724865E-03 -1.1532017E-03 -1.1330718E-03 -1.1122489E-03
 -1.0908588E-03 -1.0690216E-03 -1.0468421E-03 -1.0244165E-03 -1.0018251E-03
 -9.7914541E-04 -9.5644529E-04 -9.3378115E-04 -9.1120705E-04 -8.8877045E-04
 -8.6650974E-04 -8.4446569E-04 -8.2266878E-04 -8.0114661E-04 -7.7992253E-04
 -7.5902132E-04 -7.3845795E-04 -7.1824709E-04 -6.9840590E-04 -6.7894254E-04
 -6.5986544E-04 -6.4118387E-04 -6.2290044E-04 -6.0502108E-04 -5.8754918E-04
 -5.7048281E-04 -5.5382488E-04 -5.3757313E-04 -5.2172720E-04 -5.0628395E-04
 -4.9123919E-04
 0.1018408 9.9703297E-02 9.7420804E-02 9.5021792E-02 9.2532150E-02
 8.9975245E-02 8.7372065E-02 8.4741339E-02 8.2099639E-02 7.9461530E-02
 7.6839730E-02 7.4245162E-02 7.1687214E-02 6.9173753E-02 6.6711329E-02
 6.4305283E-02 6.1959855E-02 5.9678342E-02 5.7463173E-02 5.5316012E-02
 5.3237870E-02 5.1229194E-02 4.9289923E-02 4.7419611E-02 4.5617439E-02
 4.3882292E-02 4.2212848E-02 4.0607553E-02 3.9064746E-02 3.7582632E-02
 3.6159333E-02 3.4792922E-02 3.3481430E-02 3.2222901E-02 3.1015364E-02
 2.9856855E-02 2.8745465E-02 2.7679294E-02 2.6656518E-02 2.5675330E-02
 2.4733994E-02 2.3830839E-02 2.2964220E-02 2.2132581E-02 2.1334421E-02
 2.0568287E-02 1.9832790E-02 1.9126596E-02 1.8448435E-02 1.7797088E-02
 1.7171387E-02 1.6570218E-02 1.5992513E-02 1.5437257E-02 1.4903482E-02
 1.4390265E-02 1.3896711E-02 1.3421985E-02 1.2965281E-02 1.2525834E-02
 1.2102908E-02 1.1695807E-02 1.1303876E-02 1.0926460E-02 1.0562961E-02
 1.0212810E-02 9.8754494E-03 9.5503535E-03 9.2370147E-03 8.9349607E-03
 8.6437389E-03 8.3629023E-03 8.0920374E-03 7.8307437E-03 7.5786444E-03
 7.3353811E-03 7.1005952E-03 6.8739611E-03 6.6551608E-03 6.4438838E-03
 6.2398515E-03 6.0427762E-03 5.8524054E-03 5.6684650E-03 5.4907310E-03
 5.3189564E-03 5.1529221E-03 4.9924189E-03 4.8372359E-03 4.6871789E-03
 4.5420607E-03
 4.2677753E-02 3.8913786E-02 3.5379969E-02 3.2073297E-02 2.8989132E-02
 2.6121467E-02 2.3463115E-02 2.1005956E-02 1.8741127E-02 1.6659223E-02
 1.4750490E-02 1.3004958E-02 1.1412608E-02 9.9634696E-03 8.6477352E-03
 7.4558556E-03 6.3785831E-03 5.4070507E-03 4.5327889E-03 3.7477722E-03
 3.0444360E-03 2.4156696E-03 1.8548309E-03 1.3557456E-03 9.1268419E-04
 5.2035350E-04 1.7388190E-04 -1.3120343E-04 -3.9899402E-04 -6.3322630E-04
 -8.3730533E-04 -1.0143250E-03 -1.1670898E-03 -1.2981377E-03 -1.4097648E-03
 -1.5040437E-03 -1.5828405E-03 -1.6478344E-03 -1.7005383E-03 -1.7423094E-03
 -1.7743675E-03 -1.7978046E-03 -1.8136043E-03 -1.8226446E-03 -1.8257147E-03
 -1.8235198E-03 -1.8166938E-03 -1.8058051E-03 -1.7913574E-03 -1.7738092E-03
 -1.7535661E-03 -1.7309928E-03 -1.7064186E-03 -1.6801351E-03 -1.6524041E-03
 -1.6234602E-03 -1.5935162E-03 -1.5627587E-03 -1.5313557E-03 -1.4994615E-03
 -1.4672093E-03 -1.4347188E-03 -1.4020962E-03 -1.3694407E-03 -1.3368382E-03
 -1.3043626E-03 -1.2720800E-03 -1.2400533E-03 -1.2083336E-03 -1.1769667E-03
 -1.1459921E-03 -1.1154478E-03 -1.0853646E-03 -1.0557662E-03 -1.0266763E-03
 -9.9811167E-04 -9.7009190E-04 -9.4262703E-04 -9.1572694E-04 -8.8940316E-04
 -8.6365762E-04 -8.3849469E-04 -8.1391487E-04 -7.8992336E-04 -7.6651352E-04
 -7.4368663E-04 -7.2143797E-04 -6.9976354E-04 -6.7865761E-04 -6.5811421E-04
 -6.3812523E-04
 0.1115450 0.1090225 0.1063686 0.1036116 0.1007771
 9.7888187E-02 9.4965659E-02 9.2027940E-02 8.9091294E-02 8.6170025E-02
 8.3276495E-02 8.0421336E-02 7.7613592E-02 7.4860781E-02 7.2169103E-02
 6.9543570E-02 6.6988036E-02 6.4505473E-02 6.2097944E-02 5.9766769E-02
 5.7512611E-02 5.5335592E-02 5.3235315E-02 5.1211022E-02 4.9261581E-02
 4.7385585E-02 4.5581415E-02 4.3847248E-02 4.2181164E-02 4.0581096E-02
 3.9044932E-02 3.7570506E-02 3.6155637E-02 3.4798149E-02 3.3495858E-02
 3.2246619E-02 3.1048324E-02 2.9898901E-02 2.8796358E-02 2.7738724E-02
 2.6724115E-02 2.5750691E-02 2.4816696E-02 2.3920419E-02 2.3060236E-02
 2.2234580E-02 2.1441936E-02 2.0680875E-02 1.9950006E-02 1.9248018E-02
 1.8573647E-02 1.7925691E-02 1.7302999E-02 1.6704468E-02 1.6129062E-02
 1.5575776E-02 1.5043658E-02 1.4531795E-02 1.4039319E-02 1.3565416E-02
 1.3109284E-02 1.2670178E-02 1.2247382E-02 1.1840213E-02 1.1448012E-02
 1.1070172E-02 1.0706087E-02 1.0355198E-02 1.0016963E-02 9.6908668E-03
 9.3764188E-03 9.0731503E-03 8.7806173E-03 8.4983828E-03 8.2260408E-03
 7.9632076E-03 7.7095064E-03 7.4645779E-03 7.2280802E-03 6.9996892E-03
 6.7791003E-03 6.5660030E-03 6.3601201E-03 6.1611743E-03 5.9689120E-03
 5.7830671E-03 5.6034140E-03 5.4297205E-03 5.2617616E-03 5.0993310E-03
 4.9422220E-03
 4.1610446E-02 3.7841942E-02 3.4302790E-02 3.0990809E-02 2.7901947E-02
 2.5030591E-02 2.2369800E-02 1.9911606E-02 1.7647201E-02 1.5567179E-02
 1.3661749E-02 1.1920866E-02 1.0334420E-02 8.8923387E-03 7.5847120E-03
 6.4018792E-03 5.3344937E-03 4.3735900E-03 3.5106121E-03 2.7374530E-03
 2.0464775E-03 1.4305115E-03 8.8285783E-04 3.9729537E-04 -3.1946307E-05
 -4.1019527E-04 -7.4235233E-04 -1.0329165E-03 -1.2860004E-03 -1.5053633E-03
 -1.6944270E-03 -1.8562997E-03 -1.9938035E-03 -2.1094934E-03 -2.2056806E-03
 -2.2844509E-03 -2.3476877E-03 -2.3970860E-03 -2.4341727E-03 -2.4603237E-03
 -2.4767723E-03 -2.4846322E-03 -2.4848955E-03 -2.4784645E-03 -2.4661394E-03
 -2.4486419E-03 -2.4266243E-03 -2.4006634E-03 -2.3712851E-03 -2.3389561E-03
 -2.3040969E-03 -2.2670859E-03 -2.2282598E-03 -2.1879231E-03 -2.1463456E-03
 -2.1037741E-03 -2.0604248E-03 -2.0164945E-03 -1.9721591E-03 -1.9275721E-03
 -1.8828767E-03 -1.8381943E-03 -1.7936381E-03 -1.7493025E-03 -1.7052797E-03
 -1.6616426E-03 -1.6184611E-03 -1.5757955E-03 -1.5336956E-03 -1.4922071E-03
 -1.4513716E-03 -1.4112184E-03 -1.3717781E-03 -1.3330737E-03 -1.2951256E-03
 -1.2579483E-03 -1.2215525E-03 -1.1859502E-03 -1.1511488E-03 -1.1171469E-03
 -1.0839490E-03 -1.0515556E-03 -1.0199626E-03 -9.8916551E-04 -9.5915794E-04
 -9.2993648E-04 -9.0148958E-04 -8.7380869E-04 -8.4688485E-04 -8.2070660E-04
 -7.9526269E-04
 0.1221205 0.1191809 0.1161242 0.1129785 0.1097692
 0.1065192 0.1032490 9.9976920E-02 9.6718863E-02 9.3488872E-02
 9.0299040E-02 8.7159656E-02 8.4079422E-02 8.1065528E-02 7.8123808E-02
 7.5258866E-02 7.2474226E-02 6.9772460E-02 6.7155249E-02 6.4623527E-02
 6.2177606E-02 5.9817225E-02 5.7541639E-02 5.5349726E-02 5.3240020E-02
 5.1210787E-02 4.9260084E-02 4.7385782E-02 4.5585666E-02 4.3857396E-02
 4.2198569E-02 4.0606774E-02 3.9079573E-02 3.7614554E-02 3.6209311E-02
 3.4861475E-02 3.3568736E-02 3.2328829E-02 3.1139566E-02 2.9998804E-02
 2.8904481E-02 2.7854610E-02 2.6847266E-02 2.5880607E-02 2.4952861E-02
 2.4062326E-02 2.3207376E-02 2.2386450E-02 2.1598052E-02 2.0840768E-02
 2.0113228E-02 1.9414129E-02 1.8742235E-02 1.8096359E-02 1.7475376E-02
 1.6878210E-02 1.6303830E-02 1.5751254E-02 1.5219554E-02 1.4707843E-02
 1.4215273E-02 1.3741026E-02 1.3284343E-02 1.2844482E-02 1.2420743E-02
 1.2012469E-02 1.1619002E-02 1.1239756E-02 1.0874134E-02 1.0521590E-02
 1.0181597E-02 9.8536480E-03 9.5372666E-03 9.2319855E-03 8.9373672E-03
 8.6529981E-03 8.3784740E-03 8.1134094E-03 7.8574363E-03 7.6102079E-03
 7.3713935E-03 7.1406593E-03 6.9177132E-03 6.7022522E-03 6.4939992E-03
 6.2926793E-03 6.0980343E-03 5.9098285E-03 5.7278187E-03 5.5517727E-03
 5.3814785E-03
 4.0787354E-02 3.6977094E-02 3.3399191E-02 3.0051850E-02 2.6931230E-02
 2.4031792E-02 2.1346577E-02 1.8867519E-02 1.6585670E-02 1.4491439E-02
 1.2574832E-02 1.0825592E-02 9.2333909E-03 7.7879420E-03 6.4791241E-03
 5.2970839E-03 4.2322860E-03 3.2755972E-03 2.4183034E-03 1.6521533E-03
 9.6938520E-04 3.6270730E-04 -1.7467883E-04 -6.4908830E-04 -1.0663760E-03
 -1.4319414E-03 -1.7507563E-03 -2.0273793E-03 -2.2659800E-03 -2.4703688E-03
 -2.6440148E-03 -2.7900753E-03 -2.9114124E-03 -3.0106241E-03 -3.0900601E-03
 -3.1518447E-03 -3.1978986E-03 -3.2299517E-03 -3.2495672E-03 -3.2581533E-03
 -3.2569782E-03 -3.2471828E-03 -3.2297953E-03 -3.2057385E-03 -3.1758479E-03
 -3.1408693E-03 -3.1014758E-03 -3.0582726E-03 -3.0118029E-03 -2.9625553E-03
 -2.9109712E-03 -2.8574420E-03 -2.8023231E-03 -2.7459301E-03 -2.6885499E-03
 -2.6304375E-03 -2.5718191E-03 -2.5129027E-03 -2.4538664E-03 -2.3948757E-03
 -2.3360730E-03 -2.2775899E-03 -2.2195368E-03 -2.1620158E-03 -2.1051159E-03
 -2.0489125E-03 -1.9934771E-03 -1.9388635E-03 -1.8851253E-03 -1.8323053E-03
 -1.7804398E-03 -1.7295568E-03 -1.6796842E-03 -1.6308398E-03 -1.5830400E-03
 -1.5362951E-03 -1.4906115E-03 -1.4459962E-03 -1.4024482E-03 -1.3599679E-03
 -1.3185469E-03 -1.2781856E-03 -1.2388706E-03 -1.2005939E-03 -1.1633442E-03
 -1.1271094E-03 -1.0918765E-03 -1.0576280E-03 -1.0243469E-03 -9.9202199E-04
 -9.6063234E-04
 0.1336629 0.1302734 0.1267812 0.1232144 0.1195984
 0.1159561 0.1123078 0.1086716 0.1050633 0.1014968
 9.7983718E-02 9.4534203E-02 9.1156594E-02 8.7857693E-02 8.4642984E-02
 8.1516705E-02 7.8481942E-02 7.5540870E-02 7.2694771E-02 6.9944166E-02
 6.7288958E-02 6.4728484E-02 6.2261593E-02 5.9886795E-02 5.7602230E-02
 5.5405822E-02 5.3295255E-02 5.1268071E-02 4.9321722E-02 4.7453556E-02
 4.5660879E-02 4.3940976E-02 4.2291146E-02 4.0708702E-02 3.9191008E-02
 3.7735444E-02 3.6339480E-02 3.5000626E-02 3.3716500E-02 3.2484762E-02
 3.1303167E-02 3.0169554E-02 2.9081827E-02 2.8037990E-02 2.7036123E-02
 2.6074382E-02 2.5151011E-02 2.4264319E-02 2.3412686E-02 2.2594588E-02
 2.1808548E-02 2.1053163E-02 2.0327093E-02 1.9629067E-02 1.8957861E-02
 1.8312326E-02 1.7691353E-02 1.7093880E-02 1.6518909E-02 1.5965486E-02
 1.5432696E-02 1.4919663E-02 1.4425571E-02 1.3949618E-02 1.3491050E-02
 1.3049165E-02 1.2623260E-02 1.2212690E-02 1.1816826E-02 1.1435071E-02
 1.1066873E-02 1.0711667E-02 1.0368954E-02 1.0038227E-02 9.7190151E-03
 9.4108749E-03 9.1133630E-03 8.8260807E-03 8.5486192E-03 8.2806060E-03
 8.0216853E-03 7.7715032E-03 7.5297402E-03 7.2960681E-03 7.0701898E-03
 6.8518133E-03 6.6406587E-03 6.4364667E-03 6.2389742E-03 6.0479408E-03
 5.8631268E-03
 4.0227193E-02 3.6336284E-02 3.2684371E-02 2.9269699E-02 2.6088314E-02
 2.3134490E-02 2.0401016E-02 1.7879518E-02 1.5560712E-02 1.3434659E-02
 1.1491014E-02 9.7191604E-03 8.1084343E-03 6.6482164E-03 5.3280741E-03
 4.1378606E-03 3.0677677E-03 2.1084114E-03 1.2508446E-03 4.8660600E-04
 -1.9226286E-04 -7.9322810E-04 -1.3232504E-03 -1.7887909E-03 -2.1958384E-03
 -2.5499174E-03 -2.8561093E-03 -3.1190799E-03 -3.3430955E-03 -3.5320562E-03
 -3.6895184E-03 -3.8187159E-03 -3.9225924E-03 -4.0038126E-03 -4.0647956E-03
 -4.1077328E-03 -4.1346038E-03 -4.1471985E-03 -4.1471375E-03 -4.1358792E-03
 -4.1147443E-03 -4.0849182E-03 -4.0474762E-03 -4.0033828E-03 -3.9535100E-03
 -3.8986437E-03 -3.8394856E-03 -3.7766770E-03 -3.7107866E-03 -3.6423283E-03
 -3.5717678E-03 -3.4995186E-03 -3.4259555E-03 -3.3514078E-03 -3.2761809E-03
 -3.2005403E-03 -3.1247230E-03 -3.0489478E-03 -2.9733989E-03 -2.8982502E-03
 -2.8236485E-03 -2.7497273E-03 -2.6766020E-03 -2.6043726E-03 -2.5331317E-03
 -2.4629545E-03 -2.3939044E-03 -2.3260426E-03 -2.2594128E-03 -2.1940584E-03
 -2.1300081E-03 -2.0672909E-03 -2.0059242E-03 -1.9459224E-03 -1.8872971E-03
 -1.8300518E-03 -1.7741898E-03 -1.7197063E-03 -1.6665983E-03 -1.6148575E-03
 -1.5644728E-03 -1.5154305E-03 -1.4677163E-03 -1.4213128E-03 -1.3762050E-03
 -1.3323693E-03 -1.2897883E-03 -1.2484364E-03 -1.2082950E-03 -1.1693392E-03
 -1.1315455E-03
 0.1462868 0.1424129 0.1384505 0.1344281 0.1303711
 0.1263026 0.1222429 0.1182103 0.1142202 0.1102865
 0.1064207 0.1026325 9.8929971E-02 9.5319599E-02 9.1806471E-02
 8.8394411E-02 8.5086107E-02 8.1883296E-02 7.8786805E-02 7.5796716E-02
 7.2912492E-02 7.0133030E-02 6.7456745E-02 6.4881727E-02 6.2405702E-02
 6.0026184E-02 5.7740480E-02 5.5545751E-02 5.3439096E-02 5.1417522E-02
 4.9477994E-02 4.7617488E-02 4.5833010E-02 4.4121586E-02 4.2480297E-02
 4.0906280E-02 3.9396748E-02 3.7948992E-02 3.6560398E-02 3.5228420E-02
 3.3950619E-02 3.2724638E-02 3.1548213E-02 3.0419176E-02 2.9335445E-02
 2.8295031E-02 2.7296023E-02 2.6336601E-02 2.5415024E-02 2.4529632E-02
 2.3678841E-02 2.2861138E-02 2.2075076E-02 2.1319278E-02 2.0592442E-02
 1.9893315E-02 1.9220706E-02 1.8573476E-02 1.7950546E-02 1.7350888E-02
 1.6773518E-02 1.6217498E-02 1.5681945E-02 1.5165990E-02 1.4668834E-02
 1.4189705E-02 1.3727851E-02 1.3282586E-02 1.2853224E-02 1.2439126E-02
 1.2039689E-02 1.1654312E-02 1.1282455E-02 1.0923567E-02 1.0577152E-02
 1.0242715E-02 9.9197915E-03 9.6079390E-03 9.3067270E-03 9.0157511E-03
 8.7346220E-03 8.4629627E-03 8.2004238E-03 7.9466524E-03 7.7013341E-03
 7.4641425E-03 7.2347783E-03 7.0129656E-03 6.7984145E-03 6.5908702E-03
 6.3900705E-03
 3.9963640E-02 3.5950232E-02 3.2186050E-02 2.8669076E-02 2.5395026E-02
 2.2357753E-02 1.9549577E-02 1.6961629E-02 1.4584119E-02 1.2406601E-02
 1.0418219E-02 8.6078653E-03 6.9644046E-03 5.4767653E-03 4.1340939E-03
 2.9258428E-03 1.8418349E-03 8.7233790E-04 8.0896325E-06 -7.5966772E-04
 -1.4391624E-03 -2.0381105E-03 -2.5637022E-03 -3.0226128E-03 -3.4210244E-03
 -3.7646457E-03 -4.0587266E-03 -4.3080878E-03 -4.5171469E-03 -4.6899389E-03
 -4.8301476E-03 -4.9411296E-03 -5.0259409E-03 -5.0873552E-03 -5.1278905E-03
 -5.1498339E-03 -5.1552546E-03 -5.1460247E-03 -5.1238439E-03 -5.0902436E-03
 -5.0466098E-03 -4.9941964E-03 -4.9341335E-03 -4.8674406E-03 -4.7950414E-03
 -4.7177621E-03 -4.6363533E-03 -4.5514912E-03 -4.4637742E-03 -4.3737558E-03
 -4.2819208E-03 -4.1887104E-03 -4.0945187E-03 -3.9996994E-03 -3.9045669E-03
 -3.8094036E-03 -3.7144597E-03 -3.6199614E-03 -3.5260988E-03 -3.4330550E-03
 -3.3409786E-03 -3.2500052E-03 -3.1602518E-03 -3.0718232E-03 -2.9848027E-03
 -2.8992705E-03 -2.8152876E-03 -2.7329051E-03 -2.6521673E-03 -2.5731106E-03
 -2.4957603E-03 -2.4201376E-03 -2.3462540E-03 -2.2741188E-03 -2.2037318E-03
 -2.1350964E-03 -2.0682015E-03 -2.0030404E-03 -1.9395972E-03 -1.8778575E-03
 -1.8178031E-03 -1.7594127E-03 -1.7026630E-03 -1.6475294E-03 -1.5939854E-03
 -1.5420029E-03 -1.4915565E-03 -1.4426125E-03 -1.3951438E-03 -1.3491181E-03
 -1.3045033E-03
 0.1601254 0.1557308 0.1512613 0.1467460 0.1422110
 0.1376796 0.1331725 0.1287079 0.1243015 0.1199669
 0.1157156 0.1115570 0.1074990 0.1035476 9.9707566E-02
 9.5982343E-02 9.2374146E-02 8.8884257E-02 8.5513033E-02 8.2260072E-02
 7.9124361E-02 7.6104313E-02 7.3197886E-02 7.0402704E-02 6.7716040E-02
 6.5134980E-02 6.2656403E-02 6.0277067E-02 5.7993684E-02 5.5802885E-02
 5.3701282E-02 5.1685516E-02 4.9752254E-02 4.7898237E-02 4.6120230E-02
 4.4415109E-02 4.2779826E-02 4.1211408E-02 3.9707012E-02 3.8263876E-02
 3.6879335E-02 3.5550836E-02 3.4275930E-02 3.3052251E-02 3.1877570E-02
 3.0749716E-02 2.9666631E-02 2.8626347E-02 2.7626984E-02 2.6666746E-02
 2.5743926E-02 2.4856897E-02 2.4004089E-02 2.3184022E-02 2.2395287E-02
 2.1636538E-02 2.0906486E-02 2.0203905E-02 1.9527633E-02 1.8876560E-02
 1.8249623E-02 1.7645804E-02 1.7064160E-02 1.6503751E-02 1.5963713E-02
 1.5443211E-02 1.4941438E-02 1.4457647E-02 1.3991102E-02 1.3541106E-02
 1.3107016E-02 1.2688179E-02 1.2284009E-02 1.1893915E-02 1.1517346E-02
 1.1153786E-02 1.0802726E-02 1.0463683E-02 1.0136195E-02 9.8198196E-03
 9.5141390E-03 9.2187459E-03 8.9332564E-03 8.6572934E-03 8.3905105E-03
 8.1325639E-03 7.8831194E-03 7.6418808E-03 7.4085337E-03 7.1827988E-03
 6.9643953E-03
 4.0049721E-02 3.5867561E-02 3.1948503E-02 2.8290087E-02 2.4887482E-02
 2.1733938E-02 1.8821126E-02 1.6139513E-02 1.3678631E-02 1.1427348E-02
 9.3741594E-03 7.5073126E-03 5.8150580E-03 4.2857421E-03 2.9079539E-03
 1.6706311E-03 5.6310464E-04 -4.2480760E-04 -1.3027942E-03 -2.0800044E-03
 -2.7650315E-03 -3.3659320E-03 -3.8902105E-03 -4.3448326E-03 -4.7362563E-03
 -5.0704377E-03 -5.3528673E-03 -5.5885836E-03 -5.7822089E-03 -5.9379712E-03
 -6.0597314E-03 -6.1510154E-03 -6.2150336E-03 -6.2547056E-03 -6.2726871E-03
 -6.2713893E-03 -6.2530013E-03 -6.2195011E-03 -6.1726929E-03 -6.1141979E-03
 -6.0454914E-03 -5.9679062E-03 -5.8826399E-03 -5.7907826E-03 -5.6933141E-03
 -5.5911187E-03 -5.4849950E-03 -5.3756577E-03 -5.2637523E-03 -5.1498604E-03
 -5.0345017E-03 -4.9181408E-03 -4.8011974E-03 -4.6840427E-03 -4.5670113E-03
 -4.4503952E-03 -4.3344600E-03 -4.2194366E-03 -4.1055270E-03 -3.9929152E-03
 -3.8817551E-03 -3.7721850E-03 -3.6643215E-03 -3.5582641E-03 -3.4540996E-03
 -3.3519017E-03 -3.2517263E-03 -3.1536222E-03 -3.0576263E-03 -2.9637683E-03
 -2.8720670E-03 -2.7825346E-03 -2.6951765E-03 -2.6099929E-03 -2.5269787E-03
 -2.4461215E-03 -2.3674055E-03 -2.2908146E-03 -2.2163249E-03 -2.1439106E-03
 -2.0735448E-03 -2.0051955E-03 -1.9388335E-03 -1.8744229E-03 -1.8119290E-03
 -1.7513124E-03 -1.6925405E-03 -1.6355704E-03 -1.5803656E-03 -1.5268864E-03
 -1.4750927E-03
 0.1753299 0.1703765 0.1653609 0.1603132 0.1552603
 0.1502264 0.1452324 0.1402971 0.1354363 0.1306636
 0.1259905 0.1214262 0.1169785 0.1126529 0.1084540
 0.1043846 0.1004466 9.6640743E-02 9.2966937E-02 8.9424260E-02
 8.6011179E-02 8.2725599E-02 7.9564996E-02 7.6526470E-02 7.3606834E-02
 7.0802696E-02 6.8110496E-02 6.5526560E-02 6.3047163E-02 6.0668558E-02
 5.8386967E-02 5.6198671E-02 5.4099992E-02 5.2087337E-02 5.0157167E-02
 4.8306055E-02 4.6530671E-02 4.4827770E-02 4.3194272E-02 4.1627150E-02
 4.0123530E-02 3.8680635E-02 3.7295800E-02 3.5966478E-02 3.4690239E-02
 3.3464748E-02 3.2287769E-02 3.1157179E-02 3.0070940E-02 2.9027119E-02
 2.8023869E-02 2.7059415E-02 2.6132088E-02 2.5240270E-02 2.4382446E-02
 2.3557156E-02 2.2763010E-02 2.1998685E-02 2.1262916E-02 2.0554507E-02
 1.9872313E-02 1.9215232E-02 1.8582236E-02 1.7972313E-02 1.7384527E-02
 1.6817978E-02 1.6271787E-02 1.5745146E-02 1.5237252E-02 1.4747366E-02
 1.4274773E-02 1.3818779E-02 1.3378732E-02 1.2954008E-02 1.2544001E-02
 1.2148155E-02 1.1765909E-02 1.1396747E-02 1.1040161E-02 1.0695679E-02
 1.0362843E-02 1.0041203E-02 9.7303512E-03 9.4298813E-03 9.1394028E-03
 8.8585457E-03 8.5869618E-03 8.3243074E-03 8.0702528E-03 7.8244926E-03
 7.5867218E-03
 4.0563364E-02 3.6160242E-02 3.2037936E-02 2.8193407E-02 2.4621140E-02
 2.1313630E-02 1.8261736E-02 1.5455096E-02 1.2882385E-02 1.0531638E-02
 8.3905086E-03 6.4464496E-03 4.6869307E-03 3.0995598E-03 1.6722227E-03
 3.9318900E-04 -7.4883300E-04 -1.7646160E-03 -2.6643979E-03 -3.4578417E-03
 -4.1540214E-03 -4.7614397E-03 -5.2880202E-03 -5.7411152E-03 -6.1275451E-03
 -6.4536049E-03 -6.7250961E-03 -6.9473507E-03 -7.1252598E-03 -7.2633065E-03
 -7.3655876E-03 -7.4358461E-03 -7.4774916E-03 -7.4936338E-03 -7.4871001E-03
 -7.4604601E-03 -7.4160513E-03 -7.3559885E-03 -7.2821956E-03 -7.1964115E-03
 -7.1002119E-03 -6.9950246E-03 -6.8821339E-03 -6.7627053E-03 -6.6377865E-03
 -6.5083280E-03 -6.3751796E-03 -6.2391097E-03 -6.1008022E-03 -5.9608831E-03
 -5.8198995E-03 -5.6783506E-03 -5.5366755E-03 -5.3952709E-03 -5.2544833E-03
 -5.1146257E-03 -4.9759704E-03 -4.8387591E-03 -4.7031995E-03 -4.5694802E-03
 -4.4377572E-03 -4.3081692E-03 -4.1808304E-03 -4.0558418E-03 -3.9332830E-03
 -3.8132230E-03 -3.6957127E-03 -3.5807963E-03 -3.4685028E-03 -3.3588493E-03
 -3.2518522E-03 -3.1475115E-03 -3.0458265E-03 -2.9467815E-03 -2.8503670E-03
 -2.7565577E-03 -2.6653290E-03 -2.5766534E-03 -2.4904965E-03 -2.4068211E-03
 -2.3255923E-03 -2.2467673E-03 -2.1703034E-03 -2.0961545E-03 -2.0242773E-03
 -1.9546251E-03 -1.8871474E-03 -1.8217999E-03 -1.7585316E-03 -1.6972924E-03
 -1.6380337E-03
 0.1920671 0.1865161 0.1809140 0.1752924 0.1696794
 0.1641003 0.1585770 0.1531287 0.1477717 0.1425199
 0.1373847 0.1323754 0.1274994 0.1227623 0.1181680
 0.1137192 0.1094172 0.1052623 0.1012538 9.7390376E-02
 9.3669906E-02 9.0089798E-02 8.6646967E-02 8.3338030E-02 8.0159284E-02
 7.7106841E-02 7.4176669E-02 7.1364634E-02 6.8666585E-02 6.6078328E-02
 6.3595705E-02 6.1214592E-02 5.8930956E-02 5.6740843E-02 5.4640386E-02
 5.2625831E-02 5.0693549E-02 4.8840016E-02 4.7061861E-02 4.5355808E-02
 4.3718725E-02 4.2147603E-02 4.0639549E-02 3.9191801E-02 3.7801724E-02
 3.6466789E-02 3.5184573E-02 3.3952780E-02 3.2769196E-02 3.1631727E-02
 3.0538376E-02 2.9487224E-02 2.8476454E-02 2.7504317E-02 2.6569175E-02
 2.5669439E-02 2.4803605E-02 2.3970239E-02 2.3167970E-02 2.2395497E-02
 2.1651583E-02 2.0935027E-02 2.0244718E-02 1.9579552E-02 1.8938515E-02
 1.8320629E-02 1.7724941E-02 1.7150572E-02 1.6596653E-02 1.6062368E-02
 1.5546949E-02 1.5049637E-02 1.4569732E-02 1.4106540E-02 1.3659415E-02
 1.3227738E-02 1.2810912E-02 1.2408367E-02 1.2019549E-02 1.1643947E-02
 1.1281059E-02 1.0930402E-02 1.0591519E-02 1.0263969E-02 9.9473335E-03
 9.6412087E-03 9.3452046E-03 9.0589551E-03 8.7821027E-03 8.5143037E-03
 8.2552275E-03
 4.1614369E-02 3.6930572E-02 3.2549351E-02 2.8467059E-02 2.4677420E-02
 2.1172058E-02 1.7940896E-02 1.4972566E-02 1.2254731E-02 9.7743990E-03
 7.5182118E-03 5.4726275E-03 3.6241566E-03 1.9594776E-03 4.6559327E-04
 -8.7006565E-04 -2.0595880E-03 -3.1144931E-03 -4.0457249E-03 -4.8636063E-03
 -5.5778273E-03 -6.1974702E-03 -6.7309947E-03 -7.1862545E-03 -7.5705354E-03
 -7.8905663E-03 -8.1525529E-03 -8.3621982E-03 -8.5247410E-03 -8.6449813E-03
 -8.7273130E-03 -8.7757502E-03 -8.7939566E-03 -8.7852692E-03 -8.7527307E-03
 -8.6991033E-03 -8.6269015E-03 -8.5384026E-03 -8.4356805E-03 -8.3206063E-03
 -8.1948768E-03 -8.0600297E-03 -7.9174479E-03 -7.7683856E-03 -7.6139723E-03
 -7.4552270E-03 -7.2930623E-03 -7.1283001E-03 -6.9616791E-03 -6.7938599E-03
 -6.6254321E-03 -6.4569237E-03 -6.2888009E-03 -6.1214818E-03 -5.9553334E-03
 -5.7906853E-03 -5.6278170E-03 -5.4669785E-03 -5.3083892E-03 -5.1522385E-03
 -4.9986830E-03 -4.8478600E-03 -4.6998877E-03 -4.5548584E-03 -4.4128471E-03
 -4.2739213E-03 -4.1381205E-03 -4.0054810E-03 -3.8760242E-03 -3.7497610E-03
 -3.6266928E-03 -3.5068113E-03 -3.3901050E-03 -3.2765490E-03 -3.1661191E-03
 -3.0587814E-03 -2.9544982E-03 -2.8532287E-03 -2.7549311E-03 -2.6595516E-03
 -2.5670456E-03 -2.4773572E-03 -2.3904343E-03 -2.3062197E-03 -2.2246563E-03
 -2.1456846E-03 -2.0692486E-03 -1.9952874E-03 -1.9237406E-03 -1.8545495E-03
 -1.7876548E-03
 0.2105153 0.2043290 0.1980999 0.1918618 0.1856449
 0.1794758 0.1733778 0.1673709 0.1614722 0.1556960
 0.1500540 0.1445557 0.1392084 0.1340174 0.1289865
 0.1241180 0.1194127 0.1148705 0.1104902 0.1062701
 0.1022073 9.8298863E-02 9.4541095E-02 9.0930104E-02 8.7461665E-02
 8.4131375E-02 8.0934718E-02 7.7867061E-02 7.4923821E-02 7.2100341E-02
 6.9392033E-02 6.6794373E-02 6.4302929E-02 6.1913367E-02 5.9621476E-02
 5.7423145E-02 5.5314418E-02 5.3291444E-02 5.1350575E-02 4.9488232E-02
 4.7701020E-02 4.5985661E-02 4.4339012E-02 4.2758077E-02 4.1239992E-02
 3.9782006E-02 3.8381502E-02 3.7035968E-02 3.5743009E-02 3.4500360E-02
 3.3305831E-02 3.2157347E-02 3.1052936E-02 2.9990699E-02 2.8968843E-02
 2.7985649E-02 2.7039485E-02 2.6128782E-02 2.5252050E-02 2.4407879E-02
 2.3594914E-02 2.2811852E-02 2.2057481E-02 2.1330602E-02 2.0630104E-02
 1.9954924E-02 1.9304020E-02 1.8676434E-02 1.8071217E-02 1.7487487E-02
 1.6924400E-02 1.6381122E-02 1.5856894E-02 1.5350958E-02 1.4862605E-02
 1.4391167E-02 1.3935980E-02 1.3496425E-02 1.3071907E-02 1.2661844E-02
 1.2265710E-02 1.1882961E-02 1.1513107E-02 1.1155664E-02 1.0810169E-02
 1.0476181E-02 1.0153273E-02 9.8410528E-03 9.5391106E-03 9.2470907E-03
 8.9646159E-03
 4.3353036E-02 3.8319852E-02 3.3615217E-02 2.9234964E-02 2.5172072E-02
 2.1417256E-02 1.7959384E-02 1.4785969E-02 1.1883478E-02 9.2377085E-03
 6.8340870E-03 4.6578627E-03 2.6943686E-03 9.2914066E-04 -6.5191515E-04
 -2.0624180E-03 -3.3154490E-03 -4.4234712E-03 -5.3983126E-03 -6.2511293E-03
 -6.9923927E-03 -7.6319072E-03 -8.1788134E-03 -8.6415960E-03 -9.0281265E-03
 -9.3456749E-03 -9.6009467E-03 -9.8001119E-03 -9.9488348E-03 -1.0052310E-02
 -1.0115293E-02 -1.0142132E-02 -1.0136792E-02 -1.0102893E-02 -1.0043730E-02
 -9.9622980E-03 -9.8613221E-03 -9.7432714E-03 -9.6103931E-03 -9.4647156E-03
 -9.3080802E-03 -9.1421455E-03 -8.9684147E-03 -8.7882411E-03 -8.6028483E-03
 -8.4133288E-03 -8.2206735E-03 -8.0257645E-03 -7.8293933E-03 -7.6322709E-03
 -7.4350289E-03 -7.2382255E-03 -7.0423633E-03 -6.8478785E-03 -6.6551641E-03
 -6.4645605E-03 -6.2763635E-03 -6.0908333E-03 -5.9081940E-03 -5.7286355E-03
 -5.5523226E-03 -5.3793904E-03 -5.2099503E-03 -5.0440910E-03 -4.8818872E-03
 -4.7233943E-03 -4.5686448E-03 -4.4176695E-03 -4.2704763E-03 -4.1270647E-03
 -3.9874283E-03 -3.8515457E-03 -3.7193927E-03 -3.5909330E-03 -3.4661288E-03
 -3.3449351E-03 -3.2272972E-03 -3.1131671E-03 -3.0024827E-03 -2.8951862E-03
 -2.7912122E-03 -2.6904959E-03 -2.5929695E-03 -2.4985641E-03 -2.4072116E-03
 -2.3188395E-03 -2.2333788E-03 -2.1507568E-03 -2.0709024E-03 -1.9937430E-03
 -1.9192102E-03
 0.2308559 0.2239999 0.2171056 0.2102097 0.2033448
 0.1965397 0.1898195 0.1832056 0.1767163 0.1703665
 0.1641688 0.1581326 0.1522656 0.1465731 0.1410588
 0.1357245 0.1305709 0.1255976 0.1208028 0.1161842
 0.1117387 0.1074627 0.1033519 9.9402010E-02 9.5608227E-02
 9.1965653E-02 8.8469245E-02 8.5113898E-02 8.1894517E-02 7.8806005E-02
 7.5843312E-02 7.3001482E-02 7.0275649E-02 6.7661092E-02 6.5153196E-02
 6.2747486E-02 6.0439643E-02 5.8225472E-02 5.6100983E-02 5.4062299E-02
 5.2105706E-02 5.0227642E-02 4.8424691E-02 4.6693578E-02 4.5031197E-02
 4.3434542E-02 4.1900765E-02 4.0427130E-02 3.9011031E-02 3.7649993E-02
 3.6341637E-02 3.5083700E-02 3.3874024E-02 3.2710537E-02 3.1591296E-02
 3.0514417E-02 2.9478109E-02 2.8480673E-02 2.7520478E-02 2.6595982E-02
 2.5705699E-02 2.4848213E-02 2.4022192E-02 2.3226326E-02 2.2459403E-02
 2.1720257E-02 2.1007745E-02 2.0320822E-02 1.9658448E-02 1.9019654E-02
 1.8403517E-02 1.7809125E-02 1.7235646E-02 1.6682241E-02 1.6148148E-02
 1.5632620E-02 1.5134927E-02 1.4654405E-02 1.4190386E-02 1.3742243E-02
 1.3309389E-02 1.2891229E-02 1.2487232E-02 1.2096851E-02 1.1719593E-02
 1.1354968E-02 1.1002505E-02 1.0661772E-02 1.0332323E-02 1.0013756E-02
 9.7056767E-03
 4.5979924E-02 4.0518466E-02 3.5415690E-02 3.0667175E-02 2.6265314E-02
 2.2199970E-02 1.8458940E-02 1.5028514E-02 1.1893833E-02 9.0392930E-03
 6.4488924E-03 4.1064420E-03 1.9958578E-03 1.0129005E-04 -1.5926991E-03
 -3.1010131E-03 -4.4379611E-03 -5.6171701E-03 -6.6515631E-03 -7.5533264E-03
 -8.3338935E-03 -9.0039754E-03 -9.5735434E-03 -1.0051862E-02 -1.0447521E-02
 -1.0768459E-02 -1.1021994E-02 -1.1214864E-02 -1.1353248E-02 -1.1442822E-02
 -1.1488779E-02 -1.1495864E-02 -1.1468411E-02 -1.1410372E-02 -1.1325344E-02
 -1.1216599E-02 -1.1087111E-02 -1.0939577E-02 -1.0776446E-02 -1.0599934E-02
 -1.0412041E-02 -1.0214584E-02 -1.0009191E-02 -9.7973356E-03 -9.5803458E-03
 -9.3594138E-03 -9.1356039E-03 -8.9098755E-03 -8.6830808E-03 -8.4559871E-03
 -8.2292715E-03 -8.0035347E-03 -7.7793123E-03 -7.5570685E-03 -7.3372168E-03
 -7.1201213E-03 -6.9060889E-03 -6.6953949E-03 -6.4882622E-03 -6.2848954E-03
 -6.0854545E-03 -5.8900742E-03 -5.6988657E-03 -5.5119139E-03 -5.3292844E-03
 -5.1510260E-03 -4.9771657E-03 -4.8077186E-03 -4.6426845E-03 -4.4820537E-03
 -4.3258043E-03 -4.1739037E-03 -4.0263133E-03 -3.8829844E-03 -3.7438618E-03
 -3.6088913E-03 -3.4780048E-03 -3.3511338E-03 -3.2282064E-03 -3.1091471E-03
 -2.9938805E-03 -2.8823249E-03 -2.7744002E-03 -2.6700227E-03 -2.5691101E-03
 -2.4715769E-03 -2.3773417E-03 -2.2863178E-03 -2.1984219E-03 -2.1135702E-03
 -2.0316779E-03
 0.2532594 0.2457069 0.2381148 0.2305236 0.2229692
 0.2154832 0.2080932 0.2008227 0.1936913 0.1867156
 0.1799088 0.1732814 0.1668414 0.1605942 0.1545437
 0.1486918 0.1430389 0.1375842 0.1323259 0.1272610
 0.1223862 0.1176972 0.1131894 0.1088580 0.1046976
 0.1007028 9.6868061E-02 9.3187809E-02 8.9656428E-02 8.6268328E-02
 8.3017990E-02 7.9899974E-02 7.6908998E-02 7.4039869E-02 7.1287580E-02
 6.8647213E-02 6.6114083E-02 6.3683599E-02 6.1351422E-02 5.9113298E-02
 5.6965191E-02 5.4903213E-02 5.2923623E-02 5.1022861E-02 4.9197517E-02
 4.7444329E-02 4.5760170E-02 4.4142053E-02 4.2587128E-02 4.1092690E-02
 3.9656140E-02 3.8274996E-02 3.6946900E-02 3.5669588E-02 3.4440912E-02
 3.3258829E-02 3.2121371E-02 3.1026669E-02 2.9972941E-02 2.8958488E-02
 2.7981689E-02 2.7040983E-02 2.6134908E-02 2.5262030E-02 2.4421012E-02
 2.3610575E-02 2.2829467E-02 2.2076529E-02 2.1350631E-02 2.0650694E-02
 1.9975705E-02 1.9324666E-02 1.8696658E-02 1.8090760E-02 1.7506126E-02
 1.6941940E-02 1.6397398E-02 1.5871761E-02 1.5364301E-02 1.4874324E-02
 1.4401173E-02 1.3944210E-02 1.3502837E-02 1.3076458E-02 1.2664519E-02
 1.2266489E-02 1.1881842E-02 1.1510099E-02 1.1150778E-02 1.0803431E-02
 1.0467613E-02
 4.9755916E-02 4.3776732E-02 3.8189959E-02 3.2991488E-02 2.8173508E-02
 2.3725275E-02 1.9633632E-02 1.5883651E-02 1.2459064E-02 9.3427338E-03
 6.5170373E-03 3.9641233E-03 1.6662457E-03 -3.9409474E-04 -2.2339385E-03
 -3.8697370E-03 -5.3172861E-03 -6.5916181E-03 -7.7069923E-03 -8.6768474E-03
 -9.5137926E-03 -1.0229629E-02 -1.0835350E-02 -1.1341167E-02 -1.1756541E-02
 -1.2090218E-02 -1.2350260E-02 -1.2544085E-02 -1.2678507E-02 -1.2759769E-02
 -1.2793591E-02 -1.2785199E-02 -1.2739364E-02 -1.2660434E-02 -1.2552369E-02
 -1.2418767E-02 -1.2262904E-02 -1.2087738E-02 -1.1895964E-02 -1.1690008E-02
 -1.1472081E-02 -1.1244159E-02 -1.1008036E-02 -1.0765322E-02 -1.0517468E-02
 -1.0265773E-02 -1.0011404E-02 -9.7554000E-03 -9.4986912E-03 -9.2421072E-03
 -8.9863781E-03 -8.7321540E-03 -8.4800087E-03 -8.2304431E-03 -7.9838987E-03
 -7.7407588E-03 -7.5013489E-03 -7.2659561E-03 -7.0348149E-03 -6.8081343E-03
 -6.5860772E-03 -6.3687791E-03 -6.1563477E-03 -5.9488644E-03 -5.7463888E-03
 -5.5489605E-03 -5.3565977E-03 -5.1693060E-03 -4.9870717E-03 -4.8098722E-03
 -4.6376754E-03 -4.4704331E-03 -4.3080905E-03 -4.1505857E-03 -3.9978512E-03
 -3.8498128E-03 -3.7063884E-03 -3.5674965E-03 -3.4330462E-03 -3.3029495E-03
 -3.1771150E-03 -3.0554442E-03 -2.9378429E-03 -2.8242124E-03 -2.7144582E-03
 -2.6084762E-03 -2.5061737E-03 -2.4074507E-03 -2.3122069E-03 -2.2203496E-03
 -2.1317811E-03
 0.2778621 0.2695991 0.2612876 0.2529725 0.2446938
 0.2364869 0.2283823 0.2204066 0.2125817 0.2049262
 0.1974548 0.1901792 0.1831083 0.1762484 0.1696037
 0.1631764 0.1569669 0.1509745 0.1451970 0.1396316
 0.1342742 0.1291205 0.1241653 0.1194034 0.1148289
 0.1104360 0.1062186 0.1021706 9.8285854E-02 9.4558351E-02
 9.0982042E-02 8.7550998E-02 8.4259436E-02 8.1101730E-02 7.8072377E-02
 7.5166039E-02 7.2377570E-02 6.9701985E-02 6.7134514E-02 6.4670525E-02
 6.2305611E-02 6.0035501E-02 5.7856116E-02 5.5763543E-02 5.3754058E-02
 5.1824082E-02 4.9970187E-02 4.8189111E-02 4.6477709E-02 4.4833023E-02
 4.3252192E-02 4.1732494E-02 4.0271334E-02 3.8866233E-02 3.7514828E-02
 3.6214858E-02 3.4964167E-02 3.3760697E-02 3.2602485E-02 3.1487659E-02
 3.0414434E-02 2.9381093E-02 2.8386012E-02 2.7427617E-02 2.6504433E-02
 2.5615048E-02 2.4758074E-02 2.3932243E-02 2.3136290E-02 2.2369029E-02
 2.1629350E-02 2.0916140E-02 2.0228375E-02 1.9565051E-02 1.8925222E-02
 1.8307986E-02 1.7712457E-02 1.7137812E-02 1.6583238E-02 1.6047979E-02
 1.5531304E-02 1.5032502E-02 1.4550900E-02 1.4085853E-02 1.3636741E-02
 1.3202969E-02 1.2783964E-02 1.2379183E-02 1.1988097E-02 1.1610204E-02
 1.1245026E-02
 5.5010106E-02 4.8414335E-02 4.2246930E-02 3.6505032E-02 3.1181375E-02
 2.6265115E-02 2.1742508E-02 1.7597614E-02 1.3812832E-02 1.0369459E-02
 7.2481413E-03 4.4292021E-03 1.8930124E-03 -3.7981235E-04 -2.4081760E-03
 -4.2103459E-03 -5.8038719E-03 -7.2054574E-03 -8.4309531E-03 -9.4952947E-03
 -1.0412500E-02 -1.1195686E-02 -1.1857074E-02 -1.2408005E-02 -1.2858997E-02
 -1.3219767E-02 -1.3499273E-02 -1.3705753E-02 -1.3846774E-02 -1.3929275E-02
 -1.3959602E-02 -1.3943560E-02 -1.3886443E-02 -1.3793075E-02 -1.3667853E-02
 -1.3514764E-02 -1.3337434E-02 -1.3139150E-02 -1.2922892E-02 -1.2691350E-02
 -1.2446958E-02 -1.2191908E-02 -1.1928177E-02 -1.1657543E-02 -1.1381606E-02
 -1.1101792E-02 -1.0819382E-02 -1.0535521E-02 -1.0251219E-02 -9.9673895E-03
 -9.6848253E-03 -9.4042355E-03 -9.1262385E-03 -8.8513773E-03 -8.5801249E-03
 -8.3128922E-03 -8.0500282E-03 -7.7918321E-03 -7.5385543E-03 -7.2904089E-03
 -7.0475624E-03 -6.8101524E-03 -6.5782880E-03 -6.3520409E-03 -6.1314660E-03
 -5.9165955E-03 -5.7074367E-03 -5.5039842E-03 -5.3062136E-03 -5.1140869E-03
 -4.9275584E-03 -4.7465633E-03 -4.5710350E-03 -4.4008936E-03 -4.2360541E-03
 -4.0764273E-03 -3.9219148E-03 -3.7724185E-03 -3.6278339E-03 -3.4880517E-03
 -3.3529655E-03 -3.2224630E-03 -3.0964352E-03 -2.9747651E-03 -2.8573440E-03
 -2.7440540E-03 -2.6347854E-03 -2.5294267E-03 -2.4278658E-03 -2.3299926E-03
 -2.2356971E-03
 0.3047321 0.2957647 0.2867298 0.2776777 0.2686529
 0.2596954 0.2508399 0.2421165 0.2335506 0.2251634
 0.2169721 0.2089904 0.2012288 0.1936948 0.1863936
 0.1793282 0.1724995 0.1659070 0.1595489 0.1534221
 0.1475226 0.1418457 0.1363862 0.1311382 0.1260958
 0.1212524 0.1166017 0.1121371 0.1078518 0.1037395
 9.9793427E-02 9.6007265E-02 9.2374690E-02 8.8889591E-02 8.5545950E-02
 8.2337961E-02 7.9260007E-02 7.6306626E-02 7.3472612E-02 7.0752904E-02
 6.8142645E-02 6.5637171E-02 6.3232005E-02 6.0922857E-02 5.8705635E-02
 5.6576394E-02 5.4531381E-02 5.2566990E-02 5.0679773E-02 4.8866466E-02
 4.7123913E-02 4.5449112E-02 4.3839205E-02 4.2291444E-02 4.0803231E-02
 3.9372064E-02 3.7995558E-02 3.6671437E-02 3.5397522E-02 3.4171749E-02
 3.2992136E-02 3.1856775E-02 3.0763872E-02 2.9711675E-02 2.8698551E-02
 2.7722921E-02 2.6783261E-02 2.5878144E-02 2.5006166E-02 2.4166021E-02
 2.3356451E-02 2.2576226E-02 2.1824215E-02 2.1099282E-02 2.0400383E-02
 1.9726506E-02 1.9076662E-02 1.8449940E-02 1.7845426E-02 1.7262271E-02
 1.6699668E-02 1.6156817E-02 1.5632970E-02 1.5127403E-02 1.4639422E-02
 1.4168362E-02 1.3713590E-02 1.3274497E-02 1.2850481E-02 1.2441001E-02
 1.2045494E-02
 6.2141363E-02 5.4824796E-02 4.7972139E-02 4.1583207E-02 3.5652462E-02
 3.0169953E-02 2.5122065E-02 2.0492407E-02 1.6262384E-02 1.2411941E-02
 8.9200623E-03 5.7652160E-03 2.9257901E-03 3.8035004E-04 -1.8920825E-03
 -3.9118240E-03 -5.6984313E-03 -7.2705415E-03 -8.6458568E-03 -9.8410761E-03
 -1.0871875E-02 -1.1752930E-02 -1.2497919E-02 -1.3119539E-02 -1.3629571E-02
 -1.4038892E-02 -1.4357531E-02 -1.4594721E-02 -1.4758934E-02 -1.4857939E-02
 -1.4898844E-02 -1.4888147E-02 -1.4831772E-02 -1.4735123E-02 -1.4603110E-02
 -1.4440200E-02 -1.4250447E-02 -1.4037517E-02 -1.3804740E-02 -1.3555119E-02
 -1.3291367E-02 -1.3015928E-02 -1.2731002E-02 -1.2438563E-02 -1.2140389E-02
 -1.1838062E-02 -1.1533001E-02 -1.1226468E-02 -1.0919583E-02 -1.0613344E-02
 -1.0308628E-02 -1.0006207E-02 -9.7067589E-03 -9.4108731E-03 -9.1190627E-03
 -8.8317683E-03 -8.5493680E-03 -8.2721766E-03 -8.0004623E-03 -7.7344449E-03
 -7.4742991E-03 -7.2201630E-03 -6.9721439E-03 -6.7303097E-03 -6.4947102E-03
 -6.2653688E-03 -6.0422830E-03 -5.8254343E-03 -5.6147864E-03 -5.4102885E-03
 -5.2118795E-03 -5.0194808E-03 -4.8330100E-03 -4.6523726E-03 -4.4774665E-03
 -4.3081879E-03 -4.1444236E-03 -3.9860574E-03 -3.8329698E-03 -3.6850402E-03
 -3.5421457E-03 -3.4041579E-03 -3.2709560E-03 -3.1424093E-03 -3.0183962E-03
 -2.8987871E-03 -2.7834580E-03 -2.6722872E-03 -2.5651534E-03 -2.4619319E-03
 -2.3625069E-03
 0.3338223 0.3241835 0.3144474 0.3046688 0.2948976
 0.2851788 0.2755518 0.2660516 0.2567076 0.2475450
 0.2385842 0.2298421 0.2213315 0.2130622 0.2050411
 0.1972724 0.1897584 0.1824994 0.1754940 0.1687397
 0.1622326 0.1559682 0.1499410 0.1441453 0.1385746
 0.1332224 0.1280816 0.1231454 0.1184066 0.1138582
 0.1094932 0.1053046 0.1012856 9.7429611E-02 9.3730047E-02
 9.0180613E-02 8.6775169E-02 8.3507746E-02 8.0372654E-02 7.7364340E-02
 7.4477486E-02 7.1706980E-02 6.9047876E-02 6.6495471E-02 6.4045250E-02
 6.1692864E-02 5.9434164E-02 5.7265181E-02 5.5182084E-02 5.3181268E-02
 5.1259238E-02 4.9412660E-02 4.7638368E-02 4.5933295E-02 4.4294566E-02
 4.2719390E-02 4.1205116E-02 3.9749194E-02 3.8349207E-02 3.7002843E-02
 3.5707880E-02 3.4462191E-02 3.3263780E-02 3.2110672E-02 3.1001030E-02
 2.9933093E-02 2.8905151E-02 2.7915597E-02 2.6962858E-02 2.6045464E-02
 2.5162006E-02 2.4311097E-02 2.3491465E-02 2.2701839E-02 2.1941030E-02
 2.1207916E-02 2.0501381E-02 1.9820388E-02 1.9163925E-02 1.8531034E-02
 1.7920807E-02 1.7332338E-02 1.6764803E-02 1.6217377E-02 1.5689285E-02
 1.5179788E-02 1.4688171E-02 1.4213748E-02 1.3755865E-02 1.3313883E-02
 1.2887212E-02
 7.1605541E-02 6.3467376E-02 5.5824023E-02 4.8679810E-02 4.2032663E-02
 3.5875041E-02 3.0194750E-02 2.4975985E-02 2.0199994E-02 1.5845954E-02
 1.1891625E-02 8.3138719E-03 5.0892262E-03 2.1942148E-03 -3.9427372E-04
 -2.6987472E-03 -4.7409437E-03 -6.5416545E-03 -8.1206691E-03 -9.4966982E-03
 -1.0687334E-02 -1.1709067E-02 -1.2577284E-02 -1.3306282E-02 -1.3909335E-02
 -1.4398702E-02 -1.4785701E-02 -1.5080746E-02 -1.5293395E-02 -1.5432420E-02
 -1.5505846E-02 -1.5521004E-02 -1.5484584E-02 -1.5402680E-02 -1.5280833E-02
 -1.5124078E-02 -1.4936983E-02 -1.4723683E-02 -1.4487919E-02 -1.4233073E-02
 -1.3962191E-02 -1.3678015E-02 -1.3383015E-02 -1.3079399E-02 -1.2769153E-02
 -1.2454046E-02 -1.2135656E-02 -1.1815387E-02 -1.1494484E-02 -1.1174050E-02
 -1.0855054E-02 -1.0538346E-02 -1.0224670E-02 -9.9146720E-03 -9.6089114E-03
 -9.3078669E-03 -9.0119448E-03 -8.7214885E-03 -8.4367786E-03 -8.1580542E-03
 -7.8855017E-03 -7.6192580E-03 -7.3594386E-03 -7.1061091E-03 -6.8593211E-03
 -6.6190935E-03 -6.3854158E-03 -6.1582699E-03 -5.9376089E-03 -5.7233754E-03
 -5.5155014E-03 -5.3139003E-03 -5.1184832E-03 -4.9291435E-03 -4.7457763E-03
 -4.5682685E-03 -4.3964968E-03 -4.2303442E-03 -4.0696790E-03 -3.9143744E-03
 -3.7643020E-03 -3.6193307E-03 -3.4793289E-03 -3.3441635E-03 -3.2137085E-03
 -3.0878263E-03 -2.9663914E-03 -2.8492787E-03 -2.7363587E-03 -2.6275096E-03
 -2.5226059E-03
 0.3649088 0.3546649 0.3442829 0.3338213 0.3233346
 0.3128725 0.3024800 0.2921969 0.2820579 0.2720930
 0.2623273 0.2527815 0.2434723 0.2344126 0.2256120
 0.2170773 0.2088125 0.2008196 0.1930985 0.1856476
 0.1784639 0.1715433 0.1648808 0.1584707 0.1523065
 0.1463817 0.1406890 0.1352212 0.1299710 0.1249308
 0.1200932 0.1154508 0.1109962 0.1067223 0.1026221
 9.8688640E-02 9.4915271E-02 9.1295496E-02 8.7823100E-02 8.4491976E-02
 8.1296287E-02 7.8230396E-02 7.5288869E-02 7.2466470E-02 6.9758236E-02
 6.7159325E-02 6.4665124E-02 6.2271215E-02 5.9973340E-02 5.7767466E-02
 5.5649672E-02 5.3616248E-02 5.1663622E-02 4.9788374E-02 4.7987252E-02
 4.6257120E-02 4.4594996E-02 4.2998001E-02 4.1463412E-02 3.9988615E-02
 3.8571104E-02 3.7208468E-02 3.5898443E-02 3.4638807E-02 3.3427484E-02
 3.2262478E-02 3.1141842E-02 3.0063773E-02 2.9026495E-02 2.8028335E-02
 2.7067706E-02 2.6143046E-02 2.5252912E-02 2.4395872E-02 2.3570599E-02
 2.2775814E-02 2.2010267E-02 2.1272797E-02 2.0562276E-02 1.9877613E-02
 1.9217795E-02 1.8581819E-02 1.7968759E-02 1.7377688E-02 1.6807757E-02
 1.6258128E-02 1.5728004E-02 1.5216641E-02 1.4723296E-02 1.4247279E-02
 1.3787919E-02
 8.3875097E-02 7.4833527E-02 6.6307090E-02 5.8306731E-02 5.0835878E-02
 4.3891445E-02 3.7464611E-02 3.1541824E-02 2.6105665E-02 2.1135774E-02
 1.6609663E-02 1.2503355E-02 8.7920818E-03 5.4507051E-03 2.4542005E-03
 -2.2202614E-04 -2.6019013E-03 -4.7084433E-03 -6.5636714E-03 -8.1884926E-03
 -9.6026259E-03 -1.0824608E-02 -1.1871778E-02 -1.2760280E-02 -1.3505118E-02
 -1.4120183E-02 -1.4618300E-02 -1.5011283E-02 -1.5309987E-02 -1.5524373E-02
 -1.5663559E-02 -1.5735876E-02 -1.5748924E-02 -1.5709624E-02 -1.5624268E-02
 -1.5498573E-02 -1.5337717E-02 -1.5146386E-02 -1.4928820E-02 -1.4688839E-02
 -1.4429888E-02 -1.4155060E-02 -1.3867136E-02 -1.3568605E-02 -1.3261697E-02
 -1.2948398E-02 -1.2630477E-02 -1.2309504E-02 -1.1986869E-02 -1.1663807E-02
 -1.1341398E-02 -1.1020590E-02 -1.0702212E-02 -1.0386986E-02 -1.0075535E-02
 -9.7683975E-03 -9.4660278E-03 -9.1688139E-03 -8.8770781E-03 -8.5910903E-03
 -8.3110677E-03 -8.0371806E-03 -7.7695632E-03 -7.5083096E-03 -7.2534853E-03
 -7.0051341E-03 -6.7632636E-03 -6.5278704E-03 -6.2989225E-03 -6.0763811E-03
 -5.8601899E-03 -5.6502749E-03 -5.4465588E-03 -5.2489503E-03 -5.0573526E-03
 -4.8716641E-03 -4.6917750E-03 -4.5175701E-03 -4.3489304E-03 -4.1857408E-03
 -4.0278775E-03 -3.8752151E-03 -3.7276293E-03 -3.5849942E-03 -3.4471855E-03
 -3.3140767E-03 -3.1855439E-03 -3.0614629E-03 -2.9417097E-03 -2.8261682E-03
 -2.7147084E-03
 0.3975272 0.3867768 0.3758402 0.3647772 0.3536447
 0.3424962 0.3313809 0.3203439 0.3094253 0.2986604
 0.2880799 0.2777095 0.2675709 0.2576815 0.2480549
 0.2387014 0.2296282 0.2208399 0.2123387 0.2041249
 0.1961971 0.1885522 0.1811863 0.1740942 0.1672702
 0.1607076 0.1543997 0.1483389 0.1425180 0.1369290
 0.1315643 0.1264160 0.1214764 0.1167378 0.1121925
 0.1078333 0.1036528 9.9643990E-02 9.5799938E-02 9.2113987E-02
 8.8579684E-02 8.5190758E-02 8.1941172E-02 7.8825109E-02 7.5836964E-02
 7.2971359E-02 7.0223078E-02 6.7587160E-02 6.5058783E-02 6.2633380E-02
 6.0306557E-02 5.8074057E-02 5.5931862E-02 5.3876072E-02 5.1902991E-02
 5.0009072E-02 4.8190903E-02 4.6445232E-02 4.4768948E-02 4.3159090E-02
 4.1612804E-02 4.0127371E-02 3.8700208E-02 3.7328809E-02 3.6010813E-02
 3.4743968E-02 3.3526089E-02 3.2355122E-02 3.1229079E-02 3.0146072E-02
 2.9104324E-02 2.8102078E-02 2.7137717E-02 2.6209645E-02 2.5316371E-02
 2.4456475E-02 2.3628563E-02 2.2831339E-02 2.2063544E-02 2.1323983E-02
 2.0611523E-02 1.9925054E-02 1.9263545E-02 1.8625986E-02 1.8011428E-02
 1.7418955E-02 1.6847687E-02 1.6296800E-02 1.5765483E-02 1.5252980E-02
 1.4758538E-02
 9.9350236E-02 8.9366414E-02 7.9900764E-02 7.0972182E-02 6.2591620E-02
 5.4762647E-02 4.7482084E-02 4.0741049E-02 3.4525651E-02 2.8818037E-02
 2.3597257E-02 1.8840000E-02 1.4521487E-02 1.0615888E-02 7.0970384E-03
 3.9388211E-03 1.1154989E-03 -1.3979449E-03 -3.6256453E-03 -5.5906912E-03
 -7.3149963E-03 -8.8192578E-03 -1.0122923E-02 -1.1244163E-02 -1.2199925E-02
 -1.3005923E-02 -1.3676706E-02 -1.4225694E-02 -1.4665232E-02 -1.5006657E-02
 -1.5260357E-02 -1.5435823E-02 -1.5541715E-02 -1.5585918E-02 -1.5575602E-02
 -1.5517274E-02 -1.5416828E-02 -1.5279598E-02 -1.5110400E-02 -1.4913579E-02
 -1.4693046E-02 -1.4452321E-02 -1.4194557E-02 -1.3922586E-02 -1.3638943E-02
 -1.3345890E-02 -1.3045444E-02 -1.2739407E-02 -1.2429371E-02 -1.2116755E-02
 -1.1802815E-02 -1.1488656E-02 -1.1175252E-02 -1.0863457E-02 -1.0554025E-02
 -1.0247604E-02 -9.9447630E-03 -9.6459910E-03 -9.3517024E-03 -9.0622585E-03
 -8.7779621E-03 -8.4990608E-03 -8.2257651E-03 -7.9582362E-03 -7.6966127E-03
 -7.4409936E-03 -7.1914438E-03 -6.9480189E-03 -6.7107342E-03 -6.4795995E-03
 -6.2546004E-03 -6.0357060E-03 -5.8228797E-03 -5.6160591E-03 -5.4151821E-03
 -5.2201785E-03 -5.0309608E-03 -4.8474441E-03 -4.6695294E-03 -4.4971197E-03
 -4.3301121E-03 -4.1683963E-03 -4.0118657E-03 -3.8604033E-03 -3.7138993E-03
 -3.5722353E-03 -3.4352969E-03 -3.3029681E-03 -3.1751306E-03 -3.0516735E-03
 -2.9324747E-03
 0.4309321 0.4197914 0.4084168 0.3968657 0.3851942
 0.3734567 0.3617046 0.3499864 0.3383466 0.3268257
 0.3154597 0.3042805 0.2933151 0.2825868 0.2721143
 0.2619130 0.2519945 0.2423674 0.2330376 0.2240082
 0.2152805 0.2068539 0.1987258 0.1908929 0.1833504
 0.1760926 0.1691132 0.1624051 0.1559612 0.1497735
 0.1438342 0.1381352 0.1326682 0.1274253 0.1223982
 0.1175788 0.1129593 0.1085319 0.1042889 0.1002230
 9.6326888E-02 9.2593558E-02 8.9016236E-02 8.5588336E-02 8.2303524E-02
 7.9155691E-02 7.6138936E-02 7.3247589E-02 7.0476204E-02 6.7819566E-02
 6.5272667E-02 6.2830687E-02 6.0489036E-02 5.8243297E-02 5.6089267E-02
 5.4022927E-02 5.2040417E-02 5.0138060E-02 4.8312329E-02 4.6559889E-02
 4.4877537E-02 4.3262199E-02 4.1710984E-02 4.0221073E-02 3.8789831E-02
 3.7414741E-02 3.6093347E-02 3.4823377E-02 3.3602610E-02 3.2428950E-02
 3.1300418E-02 3.0215068E-02 2.9171113E-02 2.8166778E-02 2.7200423E-02
 2.6270473E-02 2.5375392E-02 2.4513761E-02 2.3684181E-02 2.2885337E-02
 2.2115994E-02 2.1374922E-02 2.0660996E-02 1.9973101E-02 1.9310208E-02
 1.8671298E-02 1.8055422E-02 1.7461671E-02 1.6889151E-02 1.6337046E-02
 1.5804539E-02
 0.1181898 0.1073000 9.6908234E-02 8.7041140E-02 7.7717744E-02
 6.8949752E-02 6.0741805E-02 5.3092137E-02 4.5993134E-02 3.9432250E-02
 3.3392757E-02 2.7854595E-02 2.2795144E-02 1.8189907E-02 1.4013230E-02
 1.0238850E-02 6.8403147E-03 3.7914657E-03 1.0666980E-03 -1.3587805E-03
 -3.5087606E-03 -5.4059015E-03 -7.0716501E-03 -8.5261716E-03 -9.7883679E-03
 -1.0875854E-02 -1.1804976E-02 -1.2590879E-02 -1.3247510E-02 -1.3787722E-02
 -1.4223302E-02 -1.4565037E-02 -1.4822788E-02 -1.5005540E-02 -1.5121480E-02
 -1.5178049E-02 -1.5181995E-02 -1.5139443E-02 -1.5055929E-02 -1.4936471E-02
 -1.4785594E-02 -1.4607389E-02 -1.4405537E-02 -1.4183364E-02 -1.3943860E-02
 -1.3689715E-02 -1.3423346E-02 -1.3146923E-02 -1.2862390E-02 -1.2571496E-02
 -1.2275799E-02 -1.1976694E-02 -1.1675425E-02 -1.1373099E-02 -1.1070703E-02
 -1.0769112E-02 -1.0469096E-02 -1.0171337E-02 -9.8764338E-03 -9.5849130E-03
 -9.2972303E-03 -9.0137785E-03 -8.7349014E-03 -8.4608858E-03 -8.1919786E-03
 -7.9283863E-03 -7.6702712E-03 -7.4177724E-03 -7.1709892E-03 -6.9300020E-03
 -6.6948668E-03 -6.4656097E-03 -6.2422487E-03 -6.0247737E-03 -5.8131674E-03
 -5.6073954E-03 -5.4074125E-03 -5.2131591E-03 -5.0245705E-03 -4.8415721E-03
 -4.6640835E-03 -4.4920146E-03 -4.3252748E-03 -4.1637626E-03 -4.0073805E-03
 -3.8560214E-03 -3.7095782E-03 -3.5679440E-03 -3.4310070E-03 -3.2986612E-03
 -3.1707818E-03
 0.4641708 0.4527290 0.4410183 0.4290904 0.4169969
 0.4047888 0.3925161 0.3802273 0.3679682 0.3557824
 0.3437099 0.3317873 0.3200474 0.3085191 0.2972273
 0.2861933 0.2754342 0.2649641 0.2547938 0.2449309
 0.2353804 0.2261452 0.2172257 0.2086209 0.2003279
 0.1923425 0.1846596 0.1772729 0.1701757 0.1633603
 0.1568188 0.1505429 0.1445241 0.1387536 0.1332228
 0.1279228 0.1228450 0.1179807 0.1133216 0.1088592
 0.1045856 0.1004928 9.6573152E-02 9.2819326E-02 8.9224175E-02
 8.5780770E-02 8.2482487E-02 7.9322942E-02 7.6295979E-02 7.3395759E-02
 7.0616640E-02 6.7953221E-02 6.5400355E-02 6.2953092E-02 6.0606752E-02
 5.8356822E-02 5.6199003E-02 5.4129206E-02 5.2143499E-02 5.0238196E-02
 4.8409712E-02 4.6654660E-02 4.4969827E-02 4.3352097E-02 4.1798566E-02
 4.0306434E-02 3.8873017E-02 3.7495788E-02 3.6172301E-02 3.4900259E-02
 3.3677477E-02 3.2501813E-02 3.1371307E-02 3.0284012E-02 2.9238120E-02
 2.8231904E-02 2.7263680E-02 2.6331890E-02 2.5434999E-02 2.4571577E-02
 2.3740254E-02 2.2939691E-02 2.2168662E-02 2.1425942E-02 2.0710399E-02
 2.0020925E-02 1.9356480E-02 1.8716069E-02 1.8098725E-02 1.7503543E-02
 1.6929626E-02
 0.1400355 0.1283833 0.1171844 0.1064698 9.6264549E-02
 8.6587809E-02 7.7452414E-02 6.8865299E-02 6.0827464E-02 5.3334594E-02
 4.6377487E-02 3.9942652E-02 3.4013085E-02 2.8568819E-02 2.3587633E-02
 1.9045785E-02 1.4918421E-02 1.1180251E-02 7.8058792E-03 4.7701718E-03
 2.0486114E-03 -3.8251444E-04 -2.5459647E-03 -4.4633537E-03 -6.1551551E-03
 -7.6406091E-03 -8.9377156E-03 -1.0063260E-02 -1.1032815E-02 -1.1860806E-02
 -1.2560554E-02 -1.3144322E-02 -1.3623383E-02 -1.4008076E-02 -1.4307881E-02
 -1.4531462E-02 -1.4686745E-02 -1.4780960E-02 -1.4820700E-02 -1.4811975E-02
 -1.4760255E-02 -1.4670516E-02 -1.4547286E-02 -1.4394671E-02 -1.4216404E-02
 -1.4015869E-02 -1.3796131E-02 -1.3559969E-02 -1.3309891E-02 -1.3048171E-02
 -1.2776855E-02 -1.2497794E-02 -1.2212646E-02 -1.1922908E-02 -1.1629922E-02
 -1.1334890E-02 -1.1038886E-02 -1.0742867E-02 -1.0447685E-02 -1.0154095E-02
 -9.8627685E-03 -9.5742904E-03 -9.2891781E-03 -9.0078758E-03 -8.7307766E-03
 -8.4582167E-03 -8.1904773E-03 -7.9278024E-03 -7.6703914E-03 -7.4184071E-03
 -7.1719820E-03 -6.9312160E-03 -6.6961846E-03 -6.4669363E-03 -6.2434995E-03
 -6.0258866E-03 -5.8140880E-03 -5.6080809E-03 -5.4078298E-03 -5.2132821E-03
 -5.0243856E-03 -4.8410650E-03 -4.6632499E-03 -4.4908514E-03 -4.3237847E-03
 -4.1619516E-03 -4.0052533E-03 -3.8535909E-03 -3.7068548E-03 -3.5649443E-03
 -3.4277411E-03
 0.4964591 0.4846889 0.4726419 0.4603637 0.4478998
 0.4352951 0.4225940 0.4098405 0.3970772 0.3843459
 0.3716868 0.3591379 0.3467349 0.3345105 0.3224946
 0.3107136 0.2991903 0.2879443 0.2769918 0.2663455
 0.2560152 0.2460076 0.2363271 0.2269754 0.2179524
 0.2092559 0.2008823 0.1928266 0.1850827 0.1776435
 0.1705014 0.1636479 0.1570743 0.1507716 0.1447305
 0.1389418 0.1333961 0.1280841 0.1229967 0.1181249
 0.1134598 0.1089928 0.1047156 0.1006200 9.6698217E-02
 9.2942722E-02 8.9346185E-02 8.5901618E-02 8.2602262E-02 7.9441711E-02
 7.6413751E-02 7.3512472E-02 7.0732214E-02 6.8067551E-02 6.5513328E-02
 6.3064612E-02 6.0716689E-02 5.8465041E-02 5.6305394E-02 5.4233674E-02
 5.2245963E-02 5.0338540E-02 4.8507892E-02 4.6750590E-02 4.5063447E-02
 4.3443404E-02 4.1887507E-02 4.0392987E-02 3.8957175E-02 3.7577532E-02
 3.6251672E-02 3.4977254E-02 3.3752114E-02 3.2574121E-02 3.1441305E-02
 3.0351756E-02 2.9303642E-02 2.8295245E-02 2.7324889E-02 2.6391003E-02
 2.5492091E-02 2.4626682E-02 2.3793429E-02 2.2990998E-02 2.2218140E-02
 2.1473654E-02 2.0756392E-02 2.0065269E-02 1.9399218E-02 1.8757263E-02
 1.8138416E-02
 0.1637043 0.1515402 0.1397668 0.1284136 0.1175066
 0.1070680 9.7116284E-02 8.7665543E-02 7.8725487E-02 7.0301458E-02
 6.2394198E-02 5.5000167E-02 4.8111785E-02 4.1717753E-02 3.5803642E-02
 3.0352328E-02 2.5344502E-02 2.0759365E-02 1.6574932E-02 1.2768542E-02
 9.3173357E-03 6.1984845E-03 3.3895257E-03 8.6858479E-04 -1.3854920E-03
 -3.3929860E-03 -5.1732110E-03 -6.7444770E-03 -8.1240274E-03 -9.3280869E-03
 -1.0371823E-02 -1.1269385E-02 -1.2033936E-02 -1.2677679E-02 -1.3211921E-02
 -1.3647105E-02 -1.3992859E-02 -1.4258050E-02 -1.4450821E-02 -1.4578651E-02
 -1.4648392E-02 -1.4666319E-02 -1.4638164E-02 -1.4569163E-02 -1.4464094E-02
 -1.4327307E-02 -1.4162760E-02 -1.3974053E-02 -1.3764448E-02 -1.3536914E-02
 -1.3294128E-02 -1.3038518E-02 -1.2772275E-02 -1.2497375E-02 -1.2215598E-02
 -1.1928544E-02 -1.1637648E-02 -1.1344193E-02 -1.1049330E-02 -1.0754084E-02
 -1.0459364E-02 -1.0165974E-02 -9.8746307E-03 -9.5859552E-03 -9.3005011E-03
 -9.0187490E-03 -8.7411040E-03 -8.4679341E-03 -8.1995325E-03 -7.9361629E-03
 -7.6780361E-03 -7.4253259E-03 -7.1781762E-03 -6.9366903E-03 -6.7009493E-03
 -6.4710141E-03 -6.2469095E-03 -6.0286545E-03 -5.8162389E-03 -5.6096436E-03
 -5.4088333E-03 -5.2137589E-03 -5.0243624E-03 -4.8405724E-03 -4.6623168E-03
 -4.4895075E-03 -4.3220553E-03 -4.1598664E-03 -4.0028389E-03 -3.8508764E-03
 -3.7038589E-03
 0.5279776 0.5156419 0.5030547 0.4902617 0.4773068
 0.4642308 0.4510721 0.4378677 0.4246531 0.4114632
 0.3983323 0.3852936 0.3723798 0.3596217 0.3470487
 0.3346881 0.3225647 0.3107005 0.2991148 0.2878237
 0.2768405 0.2661757 0.2558365 0.2458283 0.2361533
 0.2268122 0.2178034 0.2091238 0.2007689 0.1927330
 0.1850093 0.1775904 0.1704679 0.1636335 0.1570780
 0.1507922 0.1447669 0.1389925 0.1334598 0.1281594
 0.1230823 0.1182195 0.1135621 0.1091016 0.1048298
 0.1007387 9.6820369E-02 9.3067460E-02 8.9472704E-02 8.6029209E-02
 8.2730308E-02 7.9569615E-02 7.6541014E-02 7.3638640E-02 7.0856899E-02
 6.8190455E-02 6.5634146E-02 6.3183106E-02 6.0832649E-02 5.8578335E-02
 5.6415901E-02 5.4341279E-02 5.2350614E-02 5.0440185E-02 4.8606481E-02
 4.6846166E-02 4.5155991E-02 4.3532941E-02 4.1974071E-02 4.0476613E-02
 3.9037935E-02 3.7655473E-02 3.6326855E-02 3.5049751E-02 3.3821978E-02
 3.2641456E-02 3.1506170E-02 3.0414226E-02 2.9363796E-02 2.8353145E-02
 2.7380634E-02 2.6444659E-02 2.5543727E-02 2.4676373E-02 2.3841247E-02
 2.3037011E-02 2.2262409E-02 2.1516256E-02 2.0797387E-02 2.0104723E-02
 1.9437190E-02
 0.1873011 0.1748681 0.1627634 0.1510118 0.1396344
 0.1286505 0.1180776 0.1079322 9.8228745E-02 8.8979609E-02
 8.0194801E-02 7.1881227E-02 6.4042710E-02 5.6679610E-02 4.9788918E-02
 4.3364290E-02 3.7396222E-02 3.1872533E-02 2.6778521E-02 2.2097487E-02
 1.7811159E-02 1.3900100E-02 1.0344040E-02 7.1223322E-03 4.2141802E-03
 1.5989325E-03 -7.4366754E-04 -2.8333515E-03 -4.6891137E-03 -6.3291821E-03
 -7.7709057E-03 -9.0307016E-03 -1.0124041E-02 -1.1065436E-02 -1.1868453E-02
 -1.2545732E-02 -1.3109011E-02 -1.3569159E-02 -1.3936218E-02 -1.4219444E-02
 -1.4427356E-02 -1.4567774E-02 -1.4647868E-02 -1.4674196E-02 -1.4652754E-02
 -1.4589015E-02 -1.4487962E-02 -1.4354133E-02 -1.4191650E-02 -1.4004257E-02
 -1.3795346E-02 -1.3567992E-02 -1.3324969E-02 -1.3068787E-02 -1.2801709E-02
 -1.2525769E-02 -1.2242799E-02 -1.1954438E-02 -1.1662161E-02 -1.1367282E-02
 -1.1070974E-02 -1.0774280E-02 -1.0478128E-02 -1.0183332E-02 -9.8906169E-03
 -9.6006235E-03 -9.3138954E-03 -9.0309232E-03 -8.7521169E-03 -8.4778387E-03
 -8.2083941E-03 -7.9440344E-03 -7.6849763E-03 -7.4313898E-03 -7.1834116E-03
 -6.9411579E-03 -6.7046955E-03 -6.4740847E-03 -6.2493519E-03 -6.0305102E-03
 -5.8175512E-03 -5.6104483E-03 -5.4091671E-03 -5.2136565E-03 -5.0238562E-03
 -4.8396918E-03 -4.6610897E-03 -4.4879629E-03 -4.3202178E-03 -4.1577644E-03
 -4.0004882E-03
 0.5603374 0.5470861 0.5336244 0.5200096 0.5062952
 0.4925253 0.4787371 0.4649630 0.4512312 0.4375678
 0.4239971 0.4105421 0.3972250 0.3840675 0.3710909
 0.3583159 0.3457621 0.3334486 0.3213926 0.3096101
 0.2981151 0.2869195 0.2760332 0.2654639 0.2552174
 0.2452970 0.2357046 0.2264398 0.2175011 0.2088852
 0.2005876 0.1926030 0.1849247 0.1775458 0.1704583
 0.1636541 0.1571247 0.1508610 0.1448543 0.1390955
 0.1335756 0.1282855 0.1232165 0.1183598 0.1137069
 0.1092496 0.1049796 0.1008891 9.6970640E-02 9.3216754E-02
 8.9620396E-02 8.6174734E-02 8.2873225E-02 7.9709560E-02 7.6677702E-02
 7.3771879E-02 7.0986524E-02 6.8316326E-02 6.5756202E-02 6.3301310E-02
 6.0947008E-02 5.8688853E-02 5.6522623E-02 5.4444250E-02 5.2449889E-02
 5.0535880E-02 4.8698664E-02 4.6934921E-02 4.5241427E-02 4.3615140E-02
 4.2053163E-02 4.0552691E-02 3.9111100E-02 3.7725836E-02 3.6394499E-02
 3.5114795E-02 3.3884518E-02 3.2701582E-02 3.1563979E-02 3.0469794E-02
 2.9417235E-02 2.8404528E-02 2.7430046E-02 2.6492173E-02 2.5589418E-02
 2.4720322E-02 2.3883512E-02 2.3077669E-02 2.2301529E-02 2.1553904E-02
 2.0833610E-02
 0.2093101 0.1966356 0.1842446 0.1721657 0.1604167
 0.1490107 0.1379604 0.1272791 0.1169805 0.1070783
 9.7586051E-02 8.8516071E-02 7.9879336E-02 7.1684755E-02 6.3938625E-02
 5.6644369E-02 4.9802002E-02 4.3408528E-02 3.7457667E-02 3.1940054E-02
 2.6843719E-02 2.2154277E-02 1.7855408E-02 1.3929339E-02 1.0357110E-02
 7.1190558E-03 4.1951579E-03 1.5652891E-03 -7.9043017E-04 -2.8915228E-03
 -4.7569233E-03 -6.4048436E-03 -7.8526968E-03 -9.1169951E-03 -1.0213355E-02
 -1.1156451E-02 -1.1960007E-02 -1.2636829E-02 -1.3198799E-02 -1.3656944E-02
 -1.4021434E-02 -1.4301655E-02 -1.4506231E-02 -1.4643079E-02 -1.4719448E-02
 -1.4741971E-02 -1.4716702E-02 -1.4649158E-02 -1.4544369E-02 -1.4406896E-02
 -1.4240893E-02 -1.4050116E-02 -1.3837971E-02 -1.3607536E-02 -1.3361599E-02
 -1.3102667E-02 -1.2832998E-02 -1.2554626E-02 -1.2269374E-02 -1.1978885E-02
 -1.1684620E-02 -1.1387885E-02 -1.1089849E-02 -1.0791545E-02 -1.0493892E-02
 -1.0197706E-02 -9.9036954E-03 -9.6124951E-03 -9.3246456E-03 -9.0406267E-03
 -8.7608527E-03 -8.4856693E-03 -8.2153818E-03 -7.9502352E-03 -7.6904423E-03
 -7.4361749E-03 -7.1875621E-03 -6.9447118E-03 -6.7076939E-03 -6.4765639E-03
 -6.2513477E-03 -6.0320529E-03 -5.8186706E-03 -5.6111738E-03 -5.4095243E-03
 -5.2136676E-03 -5.0235447E-03 -4.8390841E-03 -4.6602008E-03 -4.4868211E-03
 -4.3188347E-03
 0.5956044 0.5812955 0.5667811 0.5521483 0.5374781
 0.5228274 0.5082349 0.4937306 0.4793381 0.4650774
 0.4509645 0.4370131 0.4232351 0.4096419 0.3962446
 0.3830544 0.3700831 0.3573428 0.3448459 0.3326044
 0.3206304 0.3089352 0.2975291 0.2864214 0.2756197
 0.2651302 0.2549575 0.2451047 0.2355730 0.2263625
 0.2174713 0.2088968 0.2006347 0.1926802 0.1850272
 0.1776691 0.1705985 0.1638076 0.1572884 0.1510324
 0.1450310 0.1392756 0.1337572 0.1284674 0.1233975
 0.1185389 0.1138833 0.1094226 0.1051488 0.1010542
 9.7131193E-02 9.3372621E-02 8.9771442E-02 8.6320892E-02 8.3014466E-02
 7.9845928E-02 7.6809235E-02 7.3898628E-02 7.1108587E-02 6.8433821E-02
 6.5869264E-02 6.3410051E-02 6.1051581E-02 5.8789365E-02 5.6619212E-02
 5.4537091E-02 5.2539103E-02 5.0621595E-02 4.8781022E-02 4.7014035E-02
 4.5317456E-02 4.3688189E-02 4.2123362E-02 4.0620141E-02 3.9175905E-02
 3.7788127E-02 3.6454365E-02 3.5172343E-02 3.3939831E-02 3.2754753E-02
 3.1615101E-02 3.0518949E-02 2.9464502E-02 2.8449982E-02 2.7473761E-02
 2.6534218E-02 2.5629854E-02 2.4759231E-02 2.3920942E-02 2.3113701E-02
 2.2336200E-02
 0.2296456 0.2165663 0.2037372 0.1912251 0.1790516
 0.1672215 0.1557388 0.1446112 0.1338472 0.1234565
 0.1134488 0.1038340 9.4622083E-02 8.5822262E-02 7.7442825E-02
 6.9490738E-02 6.1970688E-02 5.4885194E-02 4.8234019E-02 4.2014129E-02
 3.6219727E-02 3.0842330E-02 2.5870951E-02 2.1292418E-02 1.7091680E-02
 1.3252180E-02 9.7562196E-03 6.5853009E-03 3.7204991E-03 1.1426859E-03
 -1.1671832E-03 -3.2278313E-03 -5.0575058E-03 -6.6738096E-03 -8.0936411E-03
 -9.3330843E-03 -1.0407358E-02 -1.1330806E-02 -1.2116855E-02 -1.2778061E-02
 -1.3326103E-02 -1.3771804E-02 -1.4125179E-02 -1.4395461E-02 -1.4591145E-02
 -1.4720036E-02 -1.4789280E-02 -1.4805419E-02 -1.4774428E-02 -1.4701753E-02
 -1.4592352E-02 -1.4450737E-02 -1.4281003E-02 -1.4086864E-02 -1.3871683E-02
 -1.3638506E-02 -1.3390079E-02 -1.3128886E-02 -1.2857156E-02 -1.2576904E-02
 -1.2289933E-02 -1.1997861E-02 -1.1702141E-02 -1.1404061E-02 -1.1104779E-02
 -1.0805322E-02 -1.0506594E-02 -1.0209405E-02 -9.9144569E-03 -9.6223755E-03
 -9.3337046E-03 -9.0489099E-03 -8.7684048E-03 -8.4925340E-03 -8.2215946E-03
 -7.9558380E-03 -7.6954649E-03 -7.4406494E-03 -7.1915174E-03 -6.9481735E-03
 -6.7106956E-03 -6.4791264E-03 -6.2534953E-03 -6.0338103E-03 -5.8200569E-03
 -5.6122113E-03 -5.4102312E-03 -5.2140662E-03 -5.0236508E-03 -4.8389253E-03
 -4.6597845E-03
 0.6349846 0.6198879 0.6043770 0.5886638 0.5729291
 0.5572699 0.5417283 0.5263293 0.5110949 0.4960436
 0.4811899 0.4665438 0.4521124 0.4379013 0.4239147
 0.4101569 0.3966328 0.3833478 0.3703084 0.3575217
 0.3449958 0.3327392 0.3207604 0.3090679 0.2976697
 0.2865730 0.2757840 0.2653075 0.2551475 0.2453062
 0.2357846 0.2265823 0.2176976 0.2091276 0.2008685
 0.1929152 0.1852620 0.1779023 0.1708290 0.1640346
 0.1575110 0.1512500 0.1452431 0.1394817 0.1339573
 0.1286612 0.1235849 0.1187199 0.1140579 0.1095909
 0.1053108 0.1012101 9.7281232E-02 9.3516879E-02 8.9910105E-02
 8.6454168E-02 8.3142534E-02 7.9968944E-02 7.6927394E-02 7.4012130E-02
 7.1217611E-02 6.8538524E-02 6.5969840E-02 6.3506648E-02 6.1144333E-02
 5.8878485E-02 5.6704819E-02 5.4619327E-02 5.2618105E-02 5.0697483E-02
 4.8853949E-02 4.7084104E-02 4.5384794E-02 4.3752901E-02 4.2185530E-02
 4.0679909E-02 3.9233353E-02 3.7843350E-02 3.6507450E-02 3.5223361E-02
 3.3988900E-02 3.2801930E-02 3.1660467E-02 3.0562580E-02 2.9506458E-02
 2.8490335E-02 2.7512562E-02 2.6571555E-02 2.5665771E-02 2.4793809E-02
 2.3954215E-02
 0.2493820 0.2358080 0.2224006 0.2093797 0.1967745
 0.1845542 0.1726961 0.1611965 0.1500587 0.1392870
 0.1288853 0.1188580 0.1092106 9.9949151E-02 9.1080092E-02
 8.2609922E-02 7.4544489E-02 6.6888660E-02 5.9645750E-02 5.2817218E-02
 4.6402406E-02 4.0398218E-02 3.4799214E-02 2.9597634E-02 2.4783431E-02
 2.0344567E-02 1.6267296E-02 1.2536390E-02 9.1355825E-03 6.0477047E-03
 3.2550944E-03 7.3986780E-04 -1.5158820E-03 -3.5298241E-03 -5.3192731E-03
 -6.9010062E-03 -8.2911579E-03 -9.5051546E-03 -1.0557620E-02 -1.1462389E-02
 -1.2232452E-02 -1.2879975E-02 -1.3416297E-02 -1.3851958E-02 -1.4196714E-02
 -1.4459591E-02 -1.4648899E-02 -1.4772284E-02 -1.4836759E-02 -1.4848754E-02
 -1.4814141E-02 -1.4738288E-02 -1.4626083E-02 -1.4481979E-02 -1.4310021E-02
 -1.4113883E-02 -1.3896894E-02 -1.3662066E-02 -1.3412127E-02 -1.3149537E-02
 -1.2876514E-02 -1.2595053E-02 -1.2306950E-02 -1.2013813E-02 -1.1717084E-02
 -1.1418053E-02 -1.1117866E-02 -1.0817546E-02 -1.0517997E-02 -1.0220020E-02
 -9.9243242E-03 -9.6315267E-03 -9.3421713E-03 -9.0567237E-03 -8.7755891E-03
 -8.4991222E-03 -8.2276110E-03 -7.9613095E-03 -7.7004172E-03 -7.4451021E-03
 -7.1955007E-03 -6.9517074E-03 -6.7138015E-03 -6.4818258E-03 -6.2558101E-03
 -6.0357586E-03 -5.8216588E-03 -5.6134867E-03 -5.4111974E-03 -5.2147508E-03
 -5.0240615E-03
 0.6779374 0.6633169 0.6470038 0.6300222 0.6129782
 0.5961109 0.5794477 0.5629776 0.5467104 0.5306696
 0.5148728 0.4993305 0.4840488 0.4690301 0.4542746
 0.4397824 0.4255524 0.4115848 0.3978803 0.3844408
 0.3712697 0.3583713 0.3457509 0.3334147 0.3213690
 0.3096202 0.2981747 0.2870380 0.2762151 0.2657098
 0.2555248 0.2456618 0.2361211 0.2269017 0.2180017
 0.2094178 0.2011458 0.1931805 0.1855161 0.1781459
 0.1710627 0.1642588 0.1577262 0.1514566 0.1454415
 0.1396723 0.1341404 0.1288371 0.1237538 0.1188822
 0.1142139 0.1097407 0.1054549 0.1013485 9.7414158E-02
 9.3644634E-02 9.0032868E-02 8.6572118E-02 8.3255850E-02 8.0077834E-02
 7.7032037E-02 7.4112661E-02 7.1314223E-02 6.8631351E-02 6.6059001E-02
 6.3592345E-02 6.1226685E-02 5.8957610E-02 5.6780852E-02 5.4692362E-02
 5.2688301E-02 5.0764937E-02 4.8918772E-02 4.7146402E-02 4.5444641E-02
 4.3810431E-02 4.2240825E-02 4.0733054E-02 3.9284438E-02 3.7892438E-02
 3.6554657E-02 3.5268750E-02 3.4032527E-02 3.2843877E-02 3.1700801E-02
 3.0601364E-02 2.9543746E-02 2.8526211E-02 2.7547067E-02 2.6604777E-02
 2.5697736E-02
 0.2707995 0.2563329 0.2419092 0.2282097 0.2152060
 0.2026957 0.1905498 0.1787419 0.1672819 0.1561755
 0.1454234 0.1350255 0.1249837 0.1153010 0.1059815
 9.7030625E-02 8.8454336E-02 8.0258623E-02 7.2449036E-02 6.5030165E-02
 5.8005441E-02 5.1376458E-02 4.5142781E-02 3.9301954E-02 3.3849213E-02
 2.8777624E-02 2.4078177E-02 1.9739939E-02 1.5750356E-02 1.2095405E-02
 8.7599568E-03 5.7280371E-03 2.9830877E-03 5.0827896E-04 -1.7133467E-03
 -3.6986051E-03 -5.4640220E-03 -7.0256875E-03 -8.3991038E-03 -9.5991697E-03
 -1.0640061E-02 -1.1535211E-02 -1.2297277E-02 -1.2938139E-02 -1.3468888E-02
 -1.3899868E-02 -1.4240675E-02 -1.4500190E-02 -1.4686613E-02 -1.4807496E-02
 -1.4869779E-02 -1.4879829E-02 -1.4843473E-02 -1.4766035E-02 -1.4652376E-02
 -1.4506924E-02 -1.4333703E-02 -1.4136371E-02 -1.3918250E-02 -1.3682343E-02
 -1.3431367E-02 -1.3167780E-02 -1.2893798E-02 -1.2611407E-02 -1.2322406E-02
 -1.2028406E-02 -1.1730839E-02 -1.1431000E-02 -1.1130030E-02 -1.0828953E-02
 -1.0528678E-02 -1.0229998E-02 -9.9336300E-03 -9.6401814E-03 -9.3501965E-03
 -9.0641510E-03 -8.7824427E-03 -8.5054245E-03 -8.2333870E-03 -7.9665780E-03
 -7.7052061E-03 -7.4494318E-03 -7.1993931E-03 -6.9551831E-03 -6.7168814E-03
 -6.4845299E-03 -6.2581552E-03 -6.0377647E-03 -5.8233440E-03 -5.6148814E-03
 -5.4123048E-03
 0.7267337 0.7129071 0.6953186 0.6761689 0.6569898
 0.6384852 0.6205392 0.6028655 0.5854047 0.5682013
 0.5512919 0.5346913 0.5184041 0.5024319 0.4867723
 0.4714211 0.4563732 0.4416232 0.4271666 0.4129999
 0.3991212 0.3855298 0.3722267 0.3592141 0.3464955
 0.3340750 0.3219574 0.3101475 0.2986501 0.2874694
 0.2766093 0.2660725 0.2558607 0.2459748 0.2364145
 0.2271783 0.2182635 0.2096665 0.2013829 0.1934072
 0.1857332 0.1783543 0.1712629 0.1644514 0.1579116
 0.1516351 0.1456134 0.1398380 0.1342999 0.1289908
 0.1239019 0.1190248 0.1143512 0.1098729 0.1055821
 0.1014710 9.7532019E-02 9.3758009E-02 9.0141892E-02 8.6676963E-02
 8.3356678E-02 8.0174752E-02 7.7125214E-02 7.4202217E-02 7.1400255E-02
 6.8714060E-02 6.6138476E-02 6.3668706E-02 6.1300047E-02 5.9028078E-02
 5.6848574E-02 5.4757431E-02 5.2750822E-02 5.0825007E-02 4.8976466E-02
 4.7201857E-02 4.5497928E-02 4.3861631E-02 4.2290028E-02 4.0780328E-02
 3.9329879E-02 3.7936118E-02 3.6596637E-02 3.5309102E-02 3.4071323E-02
 3.2881174E-02 3.1736650E-02 3.0635843E-02 2.9576905E-02 2.8558148E-02
 2.7577782E-02
 0.3036291 0.2814379 0.2635277 0.2482046 0.2347288
 0.2222013 0.2099587 0.1979093 0.1861537 0.1747370
 0.1636595 0.1529121 0.1424930 0.1324025 0.1226430
 0.1132184 0.1041348 9.5398530E-02 8.7017000E-02 7.8997530E-02
 7.1346909E-02 6.4070888E-02 5.7173811E-02 5.0658446E-02 4.4525322E-02
 3.8772900E-02 3.3397440E-02 2.8392928E-02 2.3751348E-02 1.9462720E-02
 1.5515328E-02 1.1896053E-02 8.5905679E-03 5.5836975E-03 2.8595733E-03
 4.0196296E-04 -1.8055000E-03 -3.7791564E-03 -5.5350643E-03 -7.0889485E-03
 -8.4560104E-03 -9.6508684E-03 -1.0687479E-02 -1.1579084E-02 -1.2338182E-02
 -1.2976534E-02 -1.3505136E-02 -1.3934247E-02 -1.4273401E-02 -1.4531429E-02
 -1.4716491E-02 -1.4836112E-02 -1.4897207E-02 -1.4906128E-02 -1.4868688E-02
 -1.4790203E-02 -1.4675529E-02 -1.4529086E-02 -1.4354898E-02 -1.4156622E-02
 -1.3937577E-02 -1.3700764E-02 -1.3448908E-02 -1.3184456E-02 -1.2909629E-02
 -1.2626421E-02 -1.2336622E-02 -1.2041843E-02 -1.1743522E-02 -1.1442948E-02
 -1.1141272E-02 -1.0839510E-02 -1.0538573E-02 -1.0239256E-02 -9.9422680E-03
 -9.6482299E-03 -9.3576759E-03 -9.0710828E-03 -8.7888511E-03 -8.5113263E-03
 -8.2388110E-03 -7.9715410E-03 -7.7097300E-03 -7.4535366E-03 -7.2030979E-03
 -6.9585065E-03 -6.7198412E-03 -6.4871470E-03 -6.2604444E-03 -6.0397587E-03
 -5.8250455E-03
 0.7982776 0.7763766 0.7533712 0.7292765 0.7050564
 0.6829773 0.6638955 0.6452840 0.6265441 0.6079962
 0.5898082 0.5720054 0.5545800 0.5375319 0.5208586
 0.5045522 0.4886035 0.4730024 0.4577383 0.4428020
 0.4281854 0.4138817 0.3998860 0.3861956 0.3728090
 0.3597264 0.3469495 0.3344807 0.3223232 0.3104807
 0.2989565 0.2877540 0.2768759 0.2663243 0.2561004
 0.2462042 0.2366350 0.2273910 0.2184692 0.2098660
 0.2015764 0.1935951 0.1859156 0.1785313 0.1714347
 0.1646180 0.1580731 0.1517915 0.1457648 0.1399844
 0.1344414 0.1291274 0.1240338 0.1191520 0.1144738
 0.1099911 0.1056959 0.1015805 9.7637400E-02 9.3859382E-02
 9.0239421E-02 8.6770713E-02 8.3446808E-02 8.0261379E-02 7.7208430E-02
 7.4282199E-02 7.1477108E-02 6.8787880E-02 6.6209391E-02 6.3736804E-02
 6.1365481E-02 5.9090931E-02 5.6908946E-02 5.4815423E-02 5.2806504E-02
 5.0878514E-02 4.9027868E-02 4.7251236E-02 4.5545362E-02 4.3907195E-02
 4.2333819E-02 4.0822405E-02 3.9370317E-02 3.7974980E-02 3.6633987E-02
 3.5344999E-02 3.4105819E-02 3.2914344E-02 3.1768546E-02 3.0666580E-02
 2.9606458E-02
 0.3393019 0.3105839 0.2867974 0.2677049 0.2529723
 0.2417250 0.2305506 0.2183516 0.2062284 0.1945123
 0.1831576 0.1721101 0.1613578 0.1509021 0.1407418
 0.1308797 0.1213206 0.1120715 0.1031408 9.4537988E-02
 8.6272717E-02 7.8354374E-02 7.0791587E-02 6.3591942E-02 5.6761224E-02
 5.0303280E-02 4.4219851E-02 3.8510296E-02 3.3171702E-02 2.8198816E-02
 2.3584230E-02 1.9318519E-02 1.5390527E-02 1.1787632E-02 8.4959129E-03
 5.5005308E-03 2.7859863E-03 3.3632913E-04 -1.8645199E-03 -3.8326769E-03
 -5.5840276E-03 -7.1341125E-03 -8.4980009E-03 -9.6901869E-03 -1.0724522E-02
 -1.1614169E-02 -1.2371568E-02 -1.3008415E-02 -1.3535671E-02 -1.3963554E-02
 -1.4301571E-02 -1.4558534E-02 -1.4742588E-02 -1.4861242E-02 -1.4921404E-02
 -1.4929416E-02 -1.4891089E-02 -1.4811735E-02 -1.4696204E-02 -1.4548920E-02
 -1.4373907E-02 -1.4174816E-02 -1.3954972E-02 -1.3717373E-02 -1.3464741E-02
 -1.3199537E-02 -1.2923967E-02 -1.2640037E-02 -1.2349531E-02 -1.2054062E-02
 -1.1755074E-02 -1.1453846E-02 -1.1151540E-02 -1.0849166E-02 -1.0547633E-02
 -1.0247746E-02 -9.9502038E-03 -9.6556339E-03 -9.3645686E-03 -9.0774810E-03
 -8.7947771E-03 -8.5167978E-03 -8.2438467E-03 -7.9761622E-03 -7.7139530E-03
 -7.4573797E-03 -7.2065741E-03 -6.9616423E-03 -6.7226454E-03 -6.4896508E-03
 -6.2626535E-03
 0.8554183 0.8303703 0.8036374 0.7759337 0.7479681
 0.7210854 0.7050164 0.6907381 0.6707043 0.6502768
 0.6305193 0.6113654 0.5926657 0.5744058 0.5565956
 0.5392237 0.5222792 0.5057453 0.4896064 0.4738473
 0.4584525 0.4434088 0.4287044 0.4143294 0.4002765
 0.3865403 0.3731174 0.3600062 0.3472070 0.3347210
 0.3225503 0.3106976 0.2991655 0.2879568 0.2770738
 0.2665181 0.2562905 0.2463909 0.2368185 0.2275712
 0.2186462 0.2100394 0.2017462 0.1937610 0.1860776
 0.1786892 0.1715883 0.1647673 0.1582179 0.1519319
 0.1459008 0.1401159 0.1345685 0.1292501 0.1241521
 0.1192661 0.1145838 0.1100970 0.1057978 0.1016786
 9.7731747E-02 9.3950078E-02 9.0326615E-02 8.6854517E-02 8.3527304E-02
 8.0338746E-02 7.7282749E-02 7.4353583E-02 7.1545668E-02 6.8853706E-02
 6.6272631E-02 6.3797534E-02 6.1423808E-02 5.9146944E-02 5.6962710E-02
 5.4867078E-02 5.2856114E-02 5.0926160E-02 4.9073629E-02 4.7295175E-02
 4.5587588E-02 4.3947760E-02 4.2372789E-02 4.0859848E-02 3.9406296E-02
 3.8009554E-02 3.6667198E-02 3.5376929E-02 3.4136511E-02 3.2943945E-02
 3.1796999E-02
 0.5012704 0.4549032 0.4114347 0.3707650 0.3324390
 0.2953323 0.2569808 0.2404878 0.2266287 0.2143917
 0.2029090 0.1916792 0.1806744 0.1699321 0.1594569
 0.1492428 0.1392938 0.1296163 0.1202178 0.1111093
 0.1023014 9.3806155E-02 8.5635193E-02 7.7799536E-02 7.0309415E-02
 6.3173600E-02 5.6398842E-02 4.9989920E-02 4.3949347E-02 3.8277138E-02
 3.2970991E-02 2.8026117E-02 2.3435641E-02 1.9190598E-02 1.5280226E-02
 1.1692219E-02 8.4130419E-03 5.4281563E-03 2.7223772E-03 2.8000647E-04
 -1.9148336E-03 -3.8780335E-03 -5.6253094E-03 -7.1720472E-03 -8.5331677E-03
 -9.7230654E-03 -1.0755495E-02 -1.1643538E-02 -1.2399574E-02 -1.3035238E-02
 -1.3561451E-02 -1.3988397E-02 -1.4325558E-02 -1.4581718E-02 -1.4765012E-02
 -1.4882932E-02 -1.4942379E-02 -1.4949689E-02 -1.4910667E-02 -1.4830625E-02
 -1.4714411E-02 -1.4566444E-02 -1.4390753E-02 -1.4190987E-02 -1.3970470E-02
 -1.3732210E-02 -1.3478923E-02 -1.3213069E-02 -1.2936863E-02 -1.2652301E-02
 -1.2361181E-02 -1.2065106E-02 -1.1765530E-02 -1.1463729E-02 -1.1160859E-02
 -1.0857943E-02 -1.0555884E-02 -1.0255486E-02 -9.9574523E-03 -9.6624009E-03
 -9.3708774E-03 -9.0833474E-03 -8.8002179E-03 -8.5218316E-03 -8.2484866E-03
 -7.9804268E-03 -7.7178553E-03 -7.4609406E-03 -7.2098095E-03 -6.9645736E-03
 -6.7252829E-03
 0.7498928 0.7364456 0.7229984 0.7095512 0.6961039
 0.6826567 0.6692095 0.6557623 0.6423150 0.6288678
 0.6154206 0.6019734 0.5885261 0.5750789 0.5616317
 0.5481845 0.5347372 0.5212900 0.5078428 0.4943956
 0.4809484 0.4675012 0.4540540 0.4406068 0.4271596
 0.4137124 0.4002652 0.3868180 0.3733708 0.3602408
 0.3474268 0.3349292 0.3227496 0.3108899 0.2993524
 0.2881393 0.2772526 0.2666934 0.2564628 0.2465604
 0.2369851 0.2277348 0.2188065 0.2101964 0.2018998
 0.1939110 0.1862239 0.1788316 0.1717268 0.1649017
 0.1583483 0.1520582 0.1460230 0.1402339 0.1346825
 0.1293601 0.1242582 0.1193683 0.1146822 0.1101917
 0.1058890 0.1017663 9.7816087E-02 9.4031155E-02 9.0404496E-02
 8.6929373E-02 8.3599217E-02 8.0407813E-02 7.7349082E-02 7.4417256E-02
 7.1606837E-02 6.8912432E-02 6.6329032E-02 6.3851684E-02 6.1475765E-02
 5.9196848E-02 5.7010636E-02 5.4913096E-02 5.2900303E-02 5.0968576E-02
 4.9114384E-02 4.7334317E-02 4.5625180E-02 4.3983873E-02 4.2407479E-02
 4.0893175E-02 3.9438304E-02 3.8040318E-02 3.6696762E-02 3.5405479E-02
 3.4163948E-02
 0.2440216 0.2373079 0.2305943 0.2238806 0.2171670
 0.2104534 0.2037397 0.1970261 0.1903124 0.1835988
 0.1768851 0.1701715 0.1634579 0.1567442 0.1500306
 0.1433169 0.1366033 0.1298896 0.1231760 0.1164624
 0.1097487 0.1030351 9.6321456E-02 8.9607820E-02 8.2894184E-02
 7.6180547E-02 6.9466911E-02 6.2753275E-02 5.6039639E-02 4.9683999E-02
 4.3689687E-02 3.8057409E-02 3.2785479E-02 2.7869835E-02 2.3304073E-02
 1.9079790E-02 1.5186721E-02 1.1613039E-02 8.3456635E-03 5.3704279E-03
 2.6724550E-03 2.3637175E-04 -1.9534433E-03 -3.9126528E-03 -5.6567588E-03
 -7.2009889E-03 -8.5601388E-03 -9.7484738E-03 -1.0779664E-02 -1.1666705E-02
 -1.2421913E-02 -1.3056881E-02 -1.3582485E-02 -1.4008886E-02 -1.4345535E-02
 -1.4601205E-02 -1.4784015E-02 -1.4901453E-02 -1.4960411E-02 -1.4967224E-02
 -1.4927694E-02 -1.4847132E-02 -1.4730387E-02 -1.4581882E-02 -1.4405642E-02
 -1.4205327E-02 -1.3984255E-02 -1.3745437E-02 -1.3491592E-02 -1.3225182E-02
 -1.2948426E-02 -1.2663321E-02 -1.2371664E-02 -1.2075063E-02 -1.1774963E-02
 -1.1472658E-02 -1.1169293E-02 -1.0865895E-02 -1.0563366E-02 -1.0262510E-02
 -9.9640377E-03 -9.6685607E-03 -9.3766255E-03 -9.0886978E-03 -8.8051865E-03
 -8.5264333E-03 -8.2527334E-03 -7.9843374E-03 -7.7214432E-03 -7.4642254E-03
 -7.2128014E-03
 0.7777842 0.7643119 0.7508395 0.7373671 0.7238947
 0.7104223 0.6969500 0.6834776 0.6700052 0.6565328
 0.6430604 0.6295881 0.6161157 0.6026433 0.5891709
 0.5756986 0.5622262 0.5487538 0.5352814 0.5218090
 0.5083367 0.4948643 0.4813919 0.4679195 0.4544472
 0.4409748 0.4275024 0.4140300 0.4005576 0.3870853
 0.3736129 0.3604627 0.3476328 0.3351229 0.3229335
 0.3110662 0.2995227 0.2883048 0.2774141 0.2668517
 0.2566181 0.2467128 0.2371346 0.2278815 0.2189504
 0.2103373 0.2020375 0.1940455 0.1863550 0.1789592
 0.1718509 0.1650222 0.1584651 0.1521713 0.1461323
 0.1403397 0.1347846 0.1294586 0.1243531 0.1194598
 0.1147703 0.1102765 0.1059706 0.1018447 9.7891420E-02
 9.4103582E-02 9.0474077E-02 8.6996213E-02 8.3663411E-02 8.0469429E-02
 7.7408269E-02 7.4474081E-02 7.1661390E-02 6.8964809E-02 6.6379271E-02
 6.3899942E-02 6.1522100E-02 5.9241332E-02 5.7053339E-02 5.4954074E-02
 5.2939668E-02 5.1006369E-02 4.9150676E-02 4.7369171E-02 4.5658652E-02
 4.4016019E-02 4.2438347E-02 4.0922839E-02 3.9466802E-02 3.8067698E-02
 3.6723074E-02
 0.2556380 0.2489754 0.2423128 0.2356502 0.2289877
 0.2223251 0.2156625 0.2089999 0.2023374 0.1956748
 0.1890122 0.1823496 0.1756870 0.1690245 0.1623619
 0.1556993 0.1490367 0.1423742 0.1357116 0.1290490
 0.1223864 0.1157239 0.1090613 0.1023987 9.5736146E-02
 8.9073576E-02 8.2411006E-02 7.5748436E-02 6.9085866E-02 6.2423300E-02
 5.5760738E-02 4.9449284E-02 4.3492910E-02 3.7893008E-02 3.2648548E-02
 2.7755942E-02 2.3209451E-02 1.9001095E-02 1.5121131E-02 1.1558111E-02
 8.2993284E-03 5.3309430E-03 2.6383789E-03 2.0651302E-04 -1.9800267E-03
 -3.9367303E-03 -5.6789462E-03 -7.2217644E-03 -8.5798753E-03 -9.7674364E-03
 -1.0798051E-02 -1.1684663E-02 -1.2439534E-02 -1.3074231E-02 -1.3599594E-02
 -1.4025762E-02 -1.4362178E-02 -1.4617603E-02 -1.4800147E-02 -1.4917294E-02
 -1.4975940E-02 -1.4982412E-02 -1.4942518E-02 -1.4861568E-02 -1.4744416E-02
 -1.4595485E-02 -1.4418804E-02 -1.4218036E-02 -1.3996501E-02 -1.3757212E-02
 -1.3502895E-02 -1.3236009E-02 -1.2958780E-02 -1.2673200E-02 -1.2381073E-02
 -1.2084010E-02 -1.1783455E-02 -1.1480704E-02 -1.1176900E-02 -1.0873072E-02
 -1.0570130E-02 -1.0268868E-02 -9.9700019E-03 -9.6741440E-03 -9.3818419E-03
 -9.0935584E-03 -8.8097015E-03 -8.5306223E-03 -8.2566068E-03 -7.9879081E-03
 -7.7247219E-03
 0.8055494 0.7920576 0.7785658 0.7650740 0.7515822
 0.7380904 0.7245986 0.7111068 0.6976150 0.6841232
 0.6706313 0.6571395 0.6436477 0.6301559 0.6166641
 0.6031723 0.5896805 0.5761887 0.5626969 0.5492051
 0.5357133 0.5222214 0.5087296 0.4952378 0.4817460
 0.4682543 0.4547625 0.4412707 0.4277789 0.4142871
 0.4007954 0.3873036 0.3738118 0.3606464 0.3478049
 0.3352859 0.3230897 0.3112171 0.2996696 0.2884486
 0.2775553 0.2669907 0.2567549 0.2468475 0.2372673
 0.2280120 0.2190786 0.2104630 0.2021606 0.1941657
 0.1864723 0.1790735 0.1719620 0.1651300 0.1585697
 0.1522726 0.1462304 0.1404344 0.1348760 0.1295468
 0.1244381 0.1195416 0.1148491 0.1103523 0.1060434
 0.1019147 9.7958766E-02 9.4168290E-02 9.0536229E-02 8.7055862E-02
 8.3720714E-02 8.0524445E-02 7.7461086E-02 7.4524783E-02 7.1710028E-02
 6.9011517E-02 6.6424109E-02 6.3942976E-02 6.1563399E-02 5.9280954E-02
 5.7091393E-02 5.4990605E-02 5.2974738E-02 5.1040038E-02 4.9183004E-02
 4.7400210E-02 4.5688447E-02 4.4044647E-02 4.2465840E-02 4.0949252E-02
 3.9492171E-02
 0.2675587 0.2609338 0.2543088 0.2476838 0.2410589
 0.2344339 0.2278090 0.2211840 0.2145591 0.2079341
 0.2013092 0.1946842 0.1880593 0.1814343 0.1748094
 0.1681844 0.1615595 0.1549345 0.1483096 0.1416846
 0.1350597 0.1284347 0.1218098 0.1151848 0.1085599
 0.1019349 9.5309980E-02 8.8685036E-02 8.2060091E-02 7.5435147E-02
 6.8810202E-02 6.2185258E-02 5.5560313E-02 4.9281504E-02 4.3353122E-02
 3.7777070E-02 3.2552719E-02 2.7676979E-02 2.3144487E-02 1.8947665E-02
 1.5077055E-02 1.1521567E-02 8.2687158E-03 5.3049671E-03 2.6159764E-03
 1.8680519E-04 -1.9977589E-03 -3.9530448E-03 -5.6942906E-03 -7.2364630E-03
 -8.5941609E-03 -9.7814966E-03 -1.0811999E-02 -1.1698578E-02 -1.2453456E-02
 -1.3088166E-02 -1.3613541E-02 -1.4039702E-02 -1.4376082E-02 -1.4631435E-02
 -1.4813870E-02 -1.4930871E-02 -1.4989331E-02 -1.4995582E-02 -1.4955434E-02
 -1.4874199E-02 -1.4756735E-02 -1.4607470E-02 -1.4430434E-02 -1.4229292E-02
 -1.4007374E-02 -1.3767688E-02 -1.3512970E-02 -1.3245676E-02 -1.2968033E-02
 -1.2682046E-02 -1.2389508E-02 -1.2092041E-02 -1.1791086E-02 -1.1487936E-02
 -1.1183749E-02 -1.0879540E-02 -1.0576228E-02 -1.0274607E-02 -9.9753896E-03
 -9.6791917E-03 -9.3865609E-03 -9.0979608E-03 -8.8137994E-03 -8.5344240E-03
 -8.2601253E-03
 0.8331309 0.8196262 0.8061215 0.7926168 0.7791122
 0.7656075 0.7521028 0.7385981 0.7250934 0.7115887
 0.6980841 0.6845794 0.6710747 0.6575700 0.6440653
 0.6305606 0.6170560 0.6035513 0.5900466 0.5765419
 0.5630372 0.5495325 0.5360278 0.5225232 0.5090185
 0.4955138 0.4820091 0.4685045 0.4549998 0.4414952
 0.4279905 0.4144859 0.4009812 0.3874766 0.3739719
 0.3607966 0.3479474 0.3354227 0.3232223 0.3113466
 0.2997967 0.2885739 0.2776791 0.2671130 0.2568758
 0.2469671 0.2373853 0.2281283 0.2191929 0.2105752
 0.2022705 0.1942732 0.1865772 0.1791757 0.1720614
 0.1652266 0.1586633 0.1523632 0.1463180 0.1405190
 0.1349577 0.1296256 0.1245141 0.1196148 0.1149194
 0.1104200 0.1061085 0.1019773 9.8018914E-02 9.4226018E-02
 9.0591706E-02 8.7109134E-02 8.3771855E-02 8.0573529E-02 7.7508166E-02
 7.4570000E-02 7.1753420E-02 6.9053158E-02 6.6464067E-02 6.3981302E-02
 6.1600208E-02 5.9316281E-02 5.7125300E-02 5.5023145E-02 5.3005975E-02
 5.1070027E-02 4.9211774E-02 4.7427852E-02 4.5714989E-02 4.4070136E-02
 4.2490322E-02
 0.2796241 0.2730295 0.2664349 0.2598403 0.2532457
 0.2466511 0.2400565 0.2334620 0.2268674 0.2202728
 0.2136783 0.2070837 0.2004891 0.1938946 0.1873000
 0.1807054 0.1741108 0.1675163 0.1609217 0.1543271
 0.1477326 0.1411380 0.1345434 0.1279489 0.1213543
 0.1147597 0.1081652 0.1015706 9.4976023E-02 8.8381454E-02
 8.1786886E-02 7.5192317E-02 6.8597749E-02 6.2003180E-02 5.5408612E-02
 4.9155716E-02 4.3249588E-02 3.7692357E-02 3.2483850E-02 2.7621282E-02
 2.3099620E-02 1.8911542E-02 1.5047911E-02 1.1497887E-02 8.2492717E-03
 5.2887159E-03 2.6020433E-03 1.7451393E-04 -2.0089727E-03 -3.9635869E-03
 -5.7044765E-03 -7.2465311E-03 -8.6042760E-03 -9.7917682E-03 -1.0822486E-02
 -1.1709301E-02 -1.2464419E-02 -1.3099353E-02 -1.3624922E-02 -1.4051233E-02
 -1.4387716E-02 -1.4643125E-02 -1.4825565E-02 -1.4942525E-02 -1.5000897E-02
 -1.5007017E-02 -1.4966699E-02 -1.4885261E-02 -1.4767558E-02 -1.4618032E-02
 -1.4440710E-02 -1.4239262E-02 -1.4017021E-02 -1.3777001E-02 -1.3521937E-02
 -1.3254294E-02 -1.2976296E-02 -1.2689953E-02 -1.2397058E-02 -1.2099233E-02
 -1.1797928E-02 -1.1494430E-02 -1.1189899E-02 -1.0885356E-02 -1.0581715E-02
 -1.0279773E-02 -9.9802427E-03 -9.6837450E-03 -9.3908189E-03 -9.1019385E-03
 -8.8175014E-03
 0.8606215 0.8471071 0.8335928 0.8200784 0.8065641
 0.7930498 0.7795354 0.7660211 0.7525067 0.7389924
 0.7254781 0.7119637 0.6984494 0.6849350 0.6714207
 0.6579064 0.6443920 0.6308777 0.6173633 0.6038490
 0.5903347 0.5768203 0.5633060 0.5497916 0.5362773
 0.5227630 0.5092486 0.4957343 0.4822199 0.4687056
 0.4551913 0.4416769 0.4281626 0.4146482 0.4011339
 0.3876196 0.3741052 0.3609226 0.3480681 0.3355397
 0.3233365 0.3114589 0.2999077 0.2886837 0.2777880
 0.2672211 0.2569830 0.2470732 0.2374902 0.2282318
 0.2192949 0.2106754 0.2023688 0.1943693 0.1866710
 0.1792671 0.1721503 0.1653129 0.1587470 0.1524443
 0.1463964 0.1405948 0.1350309 0.1296961 0.1245820
 0.1196802 0.1149824 0.1104806 0.1061667 0.1020332
 9.8072626E-02 9.4277598E-02 9.0641238E-02 8.7156683E-02 8.3817460E-02
 8.0617331E-02 7.7550203E-02 7.4610330E-02 7.1792126E-02 6.9090270E-02
 6.6499710E-02 6.4015500E-02 6.1633021E-02 5.9347767E-02 5.7155516E-02
 5.5052150E-02 5.3033795E-02 5.1096749E-02 4.9237426E-02 4.7452476E-02
 4.5738634E-02
 0.2918188 0.2852486 0.2786785 0.2721084 0.2655382
 0.2589681 0.2523980 0.2458279 0.2392577 0.2326876
 0.2261175 0.2195474 0.2129773 0.2064072 0.1998370
 0.1932669 0.1866968 0.1801267 0.1735566 0.1669865
 0.1604163 0.1538462 0.1472761 0.1407060 0.1341359
 0.1275658 0.1209957 0.1144256 0.1078555 0.1012854
 9.4715260E-02 8.8145159E-02 8.1575058E-02 7.5004958E-02 6.8434857E-02
 6.1864756E-02 5.5294659E-02 4.9062770E-02 4.3174319E-02 3.7632138E-02
 3.2436024E-02 2.7583655E-02 2.3070214E-02 1.8888675E-02 1.5030172E-02
 1.1484055E-02 8.2383156E-03 5.2798092E-03 2.5944994E-03 1.6780844E-04
 -2.0152368E-03 -3.9697406E-03 -5.7107392E-03 -7.2530671E-03 -8.6111818E-03
 -9.7990902E-03 -1.0830251E-02 -1.1717500E-02 -1.2473030E-02 -1.3108330E-02
 -1.3634210E-02 -1.4060785E-02 -1.4397468E-02 -1.4653023E-02 -1.4835553E-02
 -1.4952545E-02 -1.5010900E-02 -1.5016958E-02 -1.4976533E-02 -1.4894952E-02
 -1.4777075E-02 -1.4627340E-02 -1.4449789E-02 -1.4248091E-02 -1.4025579E-02
 -1.3785280E-02 -1.3529921E-02 -1.3261977E-02 -1.2983671E-02 -1.2697014E-02
 -1.2403809E-02 -1.2105673E-02 -1.1804056E-02 -1.1500252E-02 -1.1195419E-02
 -1.0890579E-02 -1.0586642E-02 -1.0284418E-02 -9.9846106E-03 -9.6878447E-03
 -9.3946569E-03
 0.8880035 0.8744828 0.8609620 0.8474413 0.8339206
 0.8203999 0.8068792 0.7933584 0.7798377 0.7663170
 0.7527963 0.7392756 0.7257549 0.7122341 0.6987134
 0.6851927 0.6716720 0.6581513 0.6446306 0.6311098
 0.6175891 0.6040684 0.5905477 0.5770270 0.5635062
 0.5499855 0.5364648 0.5229441 0.5094234 0.4959027
 0.4823820 0.4688613 0.4553406 0.4418199 0.4282992
 0.4147786 0.4012579 0.3877372 0.3742165 0.3610288
 0.3481707 0.3356397 0.3234350 0.3115563 0.3000044
 0.2887800 0.2778839 0.2673166 0.2570780 0.2471675
 0.2375836 0.2283241 0.2193858 0.2107648 0.2024564
 0.1944552 0.1867549 0.1793488 0.1722298 0.1653901
 0.1588219 0.1525168 0.1464665 0.1406625 0.1350962
 0.1297591 0.1246427 0.1197386 0.1150386 0.1105346
 0.1062187 0.1020831 9.8120570E-02 9.4323643E-02 9.0685397E-02
 8.7199099E-02 8.3858177E-02 8.0656402E-02 7.7587686E-02 7.4646272E-02
 7.1826637E-02 6.9123380E-02 6.6531472E-02 6.4045973E-02 6.1662264E-02
 5.9375826E-02 5.7182424E-02 5.5077989E-02 5.3058594E-02 5.1120549E-02
 4.9260274E-02
 0.3041366 0.2975859 0.2910352 0.2844846 0.2779339
 0.2713832 0.2648326 0.2582819 0.2517312 0.2451805
 0.2386299 0.2320792 0.2255285 0.2189779 0.2124272
 0.2058765 0.1993259 0.1927752 0.1862245 0.1796739
 0.1731232 0.1665725 0.1600218 0.1534712 0.1469205
 0.1403698 0.1338192 0.1272685 0.1207178 0.1141672
 0.1076165 0.1010658 9.4515182E-02 8.7964520E-02 8.1413858E-02
 7.4863195E-02 6.8312533E-02 6.1761871E-02 5.5211212E-02 4.8995912E-02
 4.3121397E-02 3.7590805E-02 3.2404415E-02 2.7559789E-02 2.3052514E-02
 1.8875839E-02 1.5020958E-02 1.1477525E-02 8.2336282E-03 5.2763158E-03
 2.5916833E-03 1.6524765E-04 -2.0178522E-03 -3.9726421E-03 -5.7140817E-03
 -7.2569381E-03 -8.6156391E-03 -9.8041538E-03 -1.0835913E-02 -1.1723726E-02
 -1.2479763E-02 -1.3115525E-02 -1.3641802E-02 -1.4068712E-02 -1.4405666E-02
 -1.4661423E-02 -1.4844098E-02 -1.4961178E-02 -1.5019568E-02 -1.5025612E-02
 -1.4985132E-02 -1.4903454E-02 -1.4785447E-02 -1.4635553E-02 -1.4457815E-02
 -1.4255910E-02 -1.4033175E-02 -1.3792636E-02 -1.3537025E-02 -1.3268818E-02
 -1.2990249E-02 -1.2703320E-02 -1.2409842E-02 -1.2111431E-02 -1.1809542E-02
 -1.1505466E-02 -1.1200362E-02 -1.0895260E-02 -1.0591066E-02 -1.0288591E-02
 -9.9885371E-03
 0.9153469 0.9018209 0.8882949 0.8747690 0.8612430
 0.8477170 0.8341911 0.8206651 0.8071392 0.7936132
 0.7800872 0.7665613 0.7530353 0.7395093 0.7259834
 0.7124574 0.6989315 0.6854055 0.6718795 0.6583536
 0.6448276 0.6313016 0.6177757 0.6042497 0.5907238
 0.5771978 0.5636718 0.5501459 0.5366199 0.5230939
 0.5095680 0.4960420 0.4825161 0.4689902 0.4554643
 0.4419384 0.4284125 0.4148866 0.4013607 0.3878348
 0.3743089 0.3611184 0.3482579 0.3357255 0.3235200
 0.3116411 0.3000891 0.2888647 0.2779685 0.2674011
 0.2571622 0.2472513 0.2376667 0.2284062 0.2194669
 0.2108446 0.2025348 0.1945319 0.1868298 0.1794218
 0.1723008 0.1654591 0.1588888 0.1525816 0.1465291
 0.1407230 0.1351545 0.1298154 0.1246969 0.1197908
 0.1150888 0.1105828 0.1062651 0.1021277 9.8163322E-02
 9.4364733E-02 9.0724841E-02 8.7236956E-02 8.3894499E-02 8.0691218E-02
 7.7621125E-02 7.4678347E-02 7.1857400E-02 6.9152907E-02 6.6559792E-02
 6.4073145E-02 6.1688308E-02 5.9400834E-02 5.7206418E-02 5.5101011E-02
 5.3080693E-02
 0.3165567 0.3100215 0.3034863 0.2969511 0.2904160
 0.2838808 0.2773456 0.2708105 0.2642753 0.2577401
 0.2512049 0.2446698 0.2381346 0.2315995 0.2250644
 0.2185292 0.2119941 0.2054589 0.1989238 0.1923886
 0.1858535 0.1793184 0.1727832 0.1662481 0.1597129
 0.1531778 0.1466426 0.1401075 0.1335724 0.1270372
 0.1205021 0.1139669 0.1074318 0.1008967 9.4361566E-02
 8.7826438E-02 8.1291310E-02 7.4756183E-02 6.8221055E-02 6.1685927E-02
 5.5150799E-02 4.8948787E-02 4.3085385E-02 3.7563961E-02 3.2384813E-02
 2.7546221E-02 2.3043564E-02 1.8870372E-02 1.5018013E-02 1.1476319E-02
 8.2335183E-03 5.2767675E-03 2.5922854E-03 1.6567709E-04 -2.0178242E-03
 -3.9731567E-03 -5.7152524E-03 -7.2588255E-03 -8.6182645E-03 -9.8074991E-03
 -1.0839940E-02 -1.1728394E-02 -1.2485013E-02 -1.3121293E-02 -1.3648021E-02
 -1.4075302E-02 -1.4412568E-02 -1.4668569E-02 -1.4851425E-02 -1.4968631E-02
 -1.5027091E-02 -1.5033157E-02 -1.4992655E-02 -1.4910918E-02 -1.4792817E-02
 -1.4642800E-02 -1.4464912E-02 -1.4262837E-02 -1.4039913E-02 -1.3799167E-02
 -1.3543344E-02 -1.3274913E-02 -1.2996111E-02 -1.2708946E-02 -1.2415228E-02
 -1.2116577E-02 -1.1814442E-02 -1.1510131E-02 -1.1204791E-02 -1.0899457E-02
 -1.0595033E-02
 0.9425902 0.9290616 0.9155329 0.9020043 0.8884757
 0.8749470 0.8614184 0.8478897 0.8343611 0.8208324
 0.8073038 0.7937751 0.7802465 0.7667179 0.7531892
 0.7396606 0.7261319 0.7126033 0.6990746 0.6855460
 0.6720173 0.6584887 0.6449600 0.6314314 0.6179028
 0.6043741 0.5908455 0.5773168 0.5637882 0.5502595
 0.5367309 0.5232022 0.5096736 0.4961450 0.4826163
 0.4690877 0.4555590 0.4420304 0.4285017 0.4149731
 0.4014444 0.3879158 0.3743871 0.3611938 0.3483323
 0.3357995 0.3235938 0.3117150 0.3001632 0.2889391
 0.2780432 0.2674759 0.2572370 0.2473256 0.2377406
 0.2284795 0.2195392 0.2109158 0.2026046 0.1946003
 0.1868967 0.1794870 0.1723643 0.1655208 0.1589485
 0.1526394 0.1465851 0.1407771 0.1352067 0.1298656
 0.1247453 0.1198374 0.1151336 0.1106259 0.1063064
 0.1021675 9.8201521E-02 9.4401397E-02 9.0760030E-02 8.7270692E-02
 8.3926901E-02 8.0722302E-02 7.7650934E-02 7.4706949E-02 7.1884841E-02
 6.9179215E-02 6.6585012E-02 6.4097360E-02 6.1711542E-02 5.9423119E-02
 5.7227802E-02
 0.3291209 0.3225968 0.3160727 0.3095486 0.3030244
 0.2965003 0.2899762 0.2834521 0.2769280 0.2704039
 0.2638797 0.2573556 0.2508315 0.2443074 0.2377833
 0.2312592 0.2247351 0.2182110 0.2116869 0.2051628
 0.1986387 0.1921146 0.1855905 0.1790664 0.1725423
 0.1660182 0.1594941 0.1529700 0.1464459 0.1399218
 0.1333977 0.1268736 0.1203495 0.1138254 0.1073013
 0.1007772 9.4253108E-02 8.7729014E-02 8.1204921E-02 7.4680828E-02
 6.8156734E-02 6.1632644E-02 5.5108558E-02 4.8916928E-02 4.3062117E-02
 3.7547689E-02 3.2374352E-02 2.7540196E-02 2.3040989E-02 1.8870257E-02
 1.5019593E-02 1.1478935E-02 8.2366653E-03 5.2799974E-03 2.5952926E-03
 1.6823798E-04 -2.0158899E-03 -3.9719674E-03 -5.7148715E-03 -7.2592688E-03
 -8.6195134E-03 -9.8095406E-03 -1.0842716E-02 -1.1731853E-02 -1.2489094E-02
 -1.3125911E-02 -1.3653114E-02 -1.4080796E-02 -1.4418394E-02 -1.4674664E-02
 -1.4857723E-02 -1.4975075E-02 -1.5033631E-02 -1.5039745E-02 -1.4999247E-02
 -1.4917478E-02 -1.4799310E-02 -1.4649199E-02 -1.4471193E-02 -1.4268975E-02
 -1.4045893E-02 -1.3804974E-02 -1.3548966E-02 -1.3280340E-02 -1.3001337E-02
 -1.2713964E-02 -1.2420034E-02 -1.2121172E-02 -1.1818826E-02 -1.1514306E-02
 -1.1208755E-02
 0.9698444 0.9563128 0.9427812 0.9292495 0.9157179
 0.9021863 0.8886546 0.8751230 0.8615914 0.8480598
 0.8345281 0.8209965 0.8074649 0.7939333 0.7804016
 0.7668700 0.7533384 0.7398068 0.7262751 0.7127435
 0.6992119 0.6856803 0.6721486 0.6586170 0.6450854
 0.6315538 0.6180221 0.6044905 0.5909589 0.5774273
 0.5638956 0.5503640 0.5368324 0.5233008 0.5097691
 0.4962375 0.4827059 0.4691743 0.4556427 0.4421111
 0.4285795 0.4150479 0.4015163 0.3879848 0.3744532
 0.3612588 0.3483962 0.3358633 0.3236578 0.3117795
 0.3002284 0.2890048 0.2781093 0.2675421 0.2573032
 0.2473918 0.2378064 0.2285447 0.2196036 0.2109793
 0.2026670 0.1946614 0.1869564 0.1795453 0.1724209
 0.1655758 0.1590019 0.1526911 0.1466351 0.1408253
 0.1352533 0.1299105 0.1247885 0.1198790 0.1151736
 0.1106644 0.1063434 0.1022030 9.8235600E-02 9.4434068E-02
 9.0791427E-02 8.7300807E-02 8.3955787E-02 8.0750026E-02 7.7677526E-02
 7.4732453E-02 7.1909279E-02 6.9202676E-02 6.6607513E-02 6.4118937E-02
 6.1732244E-02
 0.3416274 0.3351150 0.3286025 0.3220901 0.3155777
 0.3090652 0.3025528 0.2960404 0.2895279 0.2830155
 0.2765031 0.2699906 0.2634782 0.2569658 0.2504533
 0.2439409 0.2374285 0.2309161 0.2244036 0.2178912
 0.2113788 0.2048664 0.1983540 0.1918415 0.1853291
 0.1788167 0.1723043 0.1657919 0.1592795 0.1527670
 0.1462546 0.1397422 0.1332298 0.1267174 0.1202049
 0.1136925 0.1071801 0.1006677 9.4155304E-02 8.7642893E-02
 8.1130482E-02 7.4618071E-02 6.8105660E-02 6.1593249E-02 5.5080842E-02
 4.8896603E-02 4.3048427E-02 3.7539721E-02 3.2370619E-02 2.7539721E-02
 2.3042975E-02 1.8873973E-02 1.5024362E-02 1.1484198E-02 8.2420157E-03
 5.2851462E-03 2.5999723E-03 1.7225281E-04 -2.0126668E-03 -3.9695958E-03
 -5.7133692E-03 -7.2586560E-03 -8.6197592E-03 -9.8106023E-03 -1.0844551E-02
 -1.1734377E-02 -1.2492241E-02 -1.3129613E-02 -1.3657294E-02 -1.4085392E-02
 -1.4423326E-02 -1.4679872E-02 -1.4863147E-02 -1.4980661E-02 -1.5039327E-02
 -1.5045506E-02 -1.5005032E-02 -1.4923250E-02 -1.4805038E-02 -1.4654852E-02
 -1.4476751E-02 -1.4274417E-02 -1.4051201E-02 -1.3810134E-02 -1.3553967E-02
 -1.3285170E-02 -1.3005988E-02 -1.2718438E-02 -1.2424322E-02 -1.2125279E-02
 -1.1822745E-02
 0.9814634 0.9682687 0.9550740 0.9418793 0.9286847
 0.9154900 0.9022953 0.8891006 0.8759059 0.8627113
 0.8495166 0.8363219 0.8231272 0.8099325 0.7967378
 0.7835432 0.7703485 0.7571538 0.7439591 0.7307644
 0.7175698 0.7043751 0.6911804 0.6779857 0.6647910
 0.6515964 0.6384017 0.6252070 0.6120123 0.5988176
 0.5856230 0.5724283 0.5592336 0.5460389 0.5328442
 0.5196496 0.5064549 0.4932602 0.4800656 0.4668710
 0.4536764 0.4404818 0.4272871 0.4140925 0.4008979
 0.3877033 0.3745086 0.3613140 0.3484512 0.3359182
 0.3237134 0.3118360 0.3002856 0.2890626 0.2781676
 0.2676009 0.2573621 0.2474506 0.2378649 0.2286027
 0.2196610 0.2110359 0.2027227 0.1947159 0.1870097
 0.1795973 0.1724716 0.1656250 0.1590496 0.1527373
 0.1466797 0.1408684 0.1352949 0.1299506 0.1248271
 0.1199161 0.1152093 0.1106987 0.1063764 0.1022346
 9.8266006E-02 9.4463252E-02 9.0819418E-02 8.7327674E-02 8.3981566E-02
 8.0774739E-02 7.7701211E-02 7.4755199E-02 7.1931086E-02 6.9223583E-02
 6.6627569E-02
 0.3392100 0.3330329 0.3268557 0.3206786 0.3145014
 0.3083242 0.3021471 0.2959699 0.2897928 0.2836156
 0.2774385 0.2712613 0.2650841 0.2589070 0.2527298
 0.2465527 0.2403755 0.2341984 0.2280212 0.2218441
 0.2156670 0.2094898 0.2033127 0.1971355 0.1909584
 0.1847813 0.1786041 0.1724270 0.1662498 0.1600727
 0.1538955 0.1477184 0.1415413 0.1353641 0.1291870
 0.1230098 0.1168327 0.1106556 0.1044785 9.8301329E-02
 9.2124201E-02 8.5947074E-02 7.9769947E-02 7.3592819E-02 6.7415692E-02
 6.1238568E-02 5.5061448E-02 4.8884328E-02 4.3041721E-02 3.7537001E-02
 3.2371540E-02 2.7543316E-02 2.3048162E-02 1.8880187E-02 1.5031246E-02
 1.1491239E-02 8.2488870E-03 5.2915388E-03 2.6056971E-03 1.7720019E-04
 -2.0085734E-03 -3.9664214E-03 -5.7111159E-03 -7.2573107E-03 -8.6192992E-03
 -9.8109506E-03 -1.0845655E-02 -1.1736171E-02 -1.2494659E-02 -1.3132582E-02
 -1.3660735E-02 -1.4089237E-02 -1.4427511E-02 -1.4684336E-02 -1.4867833E-02
 -1.4985512E-02 -1.5044296E-02 -1.5050550E-02 -1.5010113E-02 -1.4928332E-02
 -1.4810093E-02 -1.4659853E-02 -1.4481673E-02 -1.4279241E-02 -1.4055913E-02
 -1.3814719E-02 -1.3558410E-02 -1.3289471E-02 -1.3010136E-02 -1.2722432E-02
 -1.2428154E-02

XFOILinterface/XFOIL/orrs/osm.0320

 256 3.200002
 0.0000000E+00 8.5867168E-03 1.7259302E-02 2.6018610E-02 3.4865513E-02
 4.3800887E-02 5.2825615E-02 6.1940584E-02 7.1146704E-02 8.0444887E-02
 8.9836054E-02 9.9321127E-02 0.1089011 0.1185768 0.1283493
 0.1382195 0.1481884 0.1582570 0.1684263 0.1786973
 0.1890710 0.1995484 0.2101306 0.2208186 0.2316135
 0.2425164 0.2535282 0.2646503 0.2758835 0.2872290
 0.2986880 0.3102616 0.3219509 0.3337571 0.3456814
 0.3577250 0.3698889 0.3821745 0.3945830 0.4071155
 0.4197734 0.4325578 0.4454702 0.4585116 0.4716834
 0.4849869 0.4984235 0.5119945 0.5257012 0.5395449
 0.5535270 0.5676490 0.5819122 0.5963180 0.6108680
 0.6255633 0.6404057 0.6553965 0.6705372 0.6858292
 0.7012742 0.7168736 0.7326291 0.7485421 0.7646142
 0.7808470 0.7972422 0.8138013 0.8305261 0.8474181
 0.8644789 0.8817104 0.8991143 0.9166921 0.9344457
 0.9523768 0.9704872 0.9887789 1.007253 1.025913
 1.044758 1.063793 1.083017 1.102434 1.122045
 1.141852 1.161858 1.182063 1.202470 1.223082
 1.243899 1.264925 1.286161 1.307609 1.329272
 1.351151 1.373249 1.395569 1.418111 1.440879
 1.463874 1.487100 1.510557 1.534250 1.558179
 1.582347 1.606758 1.631412 1.656313 1.681463
 1.706864 1.732519 1.758431 1.784602 1.811035
 1.837732 1.864696 1.891929 1.919435 1.947216
 1.975275 2.003615 2.032238 2.061146 2.090345
 2.119835 2.149620 2.179703 2.210087 2.240774
 2.271769 2.303073 2.334691 2.366624 2.398877
 2.431453 2.464354 2.497584 2.531147 2.565045
 2.599282 2.633861 2.668787 2.704061 2.739688
 2.775672 2.812015 2.848722 2.885796 2.923241
 2.961060 2.999257 3.037836 3.076802 3.116156
 3.155905 3.196050 3.236598 3.277550 3.318912
 3.360688 3.402882 3.445497 3.488539 3.532011
 3.575918 3.620263 3.665053 3.710290 3.755980
 3.802126 3.848734 3.895808 3.943353 3.991373
 4.039873 4.088859 4.138334 4.188304 4.238774
 4.289749 4.341233 4.393232 4.445751 4.498795
 4.552370 4.606480 4.661131 4.716329 4.772079
 4.828386 4.885257 4.942697 5.000710 5.059304
 5.118484 5.178256 5.238625 5.299597 5.361180
 5.423379 5.486199 5.549648 5.613731 5.678455
 5.743826 5.809851 5.876536 5.943889 6.011914
 6.080620 6.150013 6.220099 6.290887 6.362382
 6.434593 6.507525 6.581188 6.655586 6.730729
 6.806623 6.883276 6.960695 7.038888 7.117863
 7.197629 7.278192 7.359560 7.441743 7.524746
 7.608581 7.693253 7.778772 7.865147 7.952385
 8.040495 8.129487 8.219369 8.310149 8.401837
 8.494442 8.587973 8.682440 8.777850 8.874216
 8.971545 9.069846 9.169132 9.269409 9.370690
 9.472983 9.576299 9.680650 9.786042 9.892488
 10.00000
 0.0000000E+00 7.5271004E-04 1.5169993E-03 2.2930650E-03 3.0811082E-03
 3.8813332E-03 4.6939482E-03 5.5191647E-03 6.3571990E-03 7.2082714E-03
 8.0726044E-03 8.9504272E-03 9.8419711E-03 1.0747472E-02 1.1667171E-02
 1.2601311E-02 1.3550146E-02 1.4513926E-02 1.5492911E-02 1.6487364E-02
 1.7497553E-02 1.8523751E-02 1.9566234E-02 2.0625288E-02 2.1701200E-02
 2.2794263E-02 2.3904776E-02 2.5033046E-02 2.6179377E-02 2.7344085E-02
 2.8527495E-02 2.9729929E-02 3.0951725E-02 3.2193221E-02 3.3454757E-02
 3.4736693E-02 3.6039371E-02 3.7363172E-02 3.8708456E-02 4.0075604E-02
 4.1464996E-02 4.2877026E-02 4.4312097E-02 4.5770600E-02 4.7252957E-02
 4.8759583E-02 5.0290912E-02 5.1847368E-02 5.3429399E-02 5.5037450E-02
 5.6671977E-02 5.8333460E-02 6.0022358E-02 6.1739154E-02 6.3484356E-02
 6.5258428E-02 6.7061909E-02 6.8895303E-02 7.0759140E-02 7.2653934E-02
 7.4580245E-02 7.6538630E-02 7.8529641E-02 8.0553845E-02 8.2611822E-02
 8.4704161E-02 8.6831465E-02 8.8994354E-02 9.1193430E-02 9.3429334E-02
 9.5702685E-02 9.8014139E-02 0.1003644 0.1027540 0.1051838
 0.1076543 0.1101664 0.1127207 0.1153178 0.1179587
 0.1206439 0.1233743 0.1261506 0.1289736 0.1318441
 0.1347627 0.1377305 0.1407481 0.1438164 0.1469362
 0.1501084 0.1533337 0.1566131 0.1599475 0.1633377
 0.1667845 0.1702890 0.1738519 0.1774742 0.1811568
 0.1849007 0.1887066 0.1925757 0.1965088 0.2005068
 0.2045707 0.2087014 0.2129000 0.2171673 0.2215042
 0.2259118 0.2303910 0.2349426 0.2395677 0.2442672
 0.2490420 0.2538930 0.2588211 0.2638272 0.2689122
 0.2740769 0.2793222 0.2846490 0.2900579 0.2955498
 0.3011255 0.3067856 0.3125308 0.3183620 0.3242795
 0.3302840 0.3363760 0.3425560 0.3488245 0.3551817
 0.3616281 0.3681639 0.3747892 0.3815042 0.3883089
 0.3952034 0.4021873 0.4092606 0.4164229 0.4236738
 0.4310128 0.4384392 0.4459523 0.4535512 0.4612350
 0.4690022 0.4768519 0.4847825 0.4927924 0.5008800
 0.5090432 0.5172800 0.5255881 0.5339651 0.5424083
 0.5509149 0.5594820 0.5681061 0.5767840 0.5855119
 0.5942860 0.6031020 0.6119559 0.6208431 0.6297587
 0.6386977 0.6476551 0.6566252 0.6656026 0.6745813
 0.6835551 0.6925182 0.7014636 0.7103848 0.7192751
 0.7281274 0.7369345 0.7456892 0.7543840 0.7630116
 0.7715642 0.7800342 0.7884140 0.7966958 0.8048720
 0.8129351 0.8208774 0.8286915 0.8363700 0.8439059
 0.8512921 0.8585220 0.8655890 0.8724872 0.8792107
 0.8857539 0.8921119 0.8982801 0.9042543 0.9100307
 0.9156064 0.9209785 0.9261451 0.9311047 0.9358562
 0.9403992 0.9447342 0.9488618 0.9527836 0.9565015
 0.9600180 0.9633364 0.9664603 0.9693938 0.9721416
 0.9747089 0.9771010 0.9793240 0.9813839 0.9832873
 0.9850411 0.9866520 0.9881272 0.9894738 0.9906991
 0.9918104 0.9928148 0.9937196 0.9945316 0.9952577
 0.9959047 0.9964790 0.9969866 0.9974337 0.9978257
 0.9981681 0.9984658 0.9987236 0.9989457 0.9991363
 0.9992990 0.9994372 0.9995540 0.9996523 0.9997346
 0.9998029 0.9998596 0.9999061 0.9999442 0.9999751
 1.000000
 8.7427355E-02 8.7892272E-02 8.8361837E-02 8.8836096E-02 8.9315094E-02
 8.9798868E-02 9.0287469E-02 9.0780936E-02 9.1279328E-02 9.1782674E-02
 9.2291035E-02 9.2804447E-02 9.3322963E-02 9.3846627E-02 9.4375484E-02
 9.4909579E-02 9.5448971E-02 9.5993698E-02 9.6543811E-02 9.7099356E-02
 9.7660378E-02 9.8226927E-02 9.8799057E-02 9.9376813E-02 9.9960238E-02
 0.1005494 0.1011443 0.1017450 0.1023516 0.1029641
 0.1035826 0.1042071 0.1048376 0.1054743 0.1061170
 0.1067660 0.1074213 0.1080828 0.1087506 0.1094249
 0.1101055 0.1107927 0.1114863 0.1121865 0.1128933
 0.1136068 0.1143269 0.1150537 0.1157873 0.1165277
 0.1172749 0.1180290 0.1187900 0.1195579 0.1203327
 0.1211146 0.1219034 0.1226994 0.1235023 0.1243124
 0.1251295 0.1259538 0.1267852 0.1276237 0.1284694
 0.1293222 0.1301822 0.1310494 0.1319236 0.1328051
 0.1336936 0.1345892 0.1354919 0.1364017 0.1373185
 0.1382422 0.1391729 0.1401104 0.1410548 0.1420060
 0.1429638 0.1439283 0.1448992 0.1458767 0.1468604
 0.1478504 0.1488465 0.1498485 0.1508564 0.1518700
 0.1528890 0.1539135 0.1549430 0.1559776 0.1570169
 0.1580607 0.1591088 0.1601609 0.1612168 0.1622761
 0.1633386 0.1644038 0.1654716 0.1665415 0.1676130
 0.1686859 0.1697597 0.1708339 0.1719081 0.1729817
 0.1740541 0.1751250 0.1761936 0.1772593 0.1783215
 0.1793796 0.1804327 0.1814801 0.1825211 0.1835549
 0.1845805 0.1855972 0.1866038 0.1875996 0.1885833
 0.1895541 0.1905107 0.1914520 0.1923768 0.1932838
 0.1941718 0.1950394 0.1958851 0.1967076 0.1975053
 0.1982767 0.1990201 0.1997338 0.2004162 0.2010655
 0.2016798 0.2022572 0.2027958 0.2032936 0.2037485
 0.2041585 0.2045213 0.2048348 0.2050968 0.2053049
 0.2054569 0.2055503 0.2055828 0.2055519 0.2054552
 0.2052902 0.2050544 0.2047454 0.2043607 0.2038977
 0.2033542 0.2027275 0.2020153 0.2012152 0.2003250
 0.1993425 0.1982655 0.1970920 0.1958200 0.1944477
 0.1929735 0.1913958 0.1897133 0.1879249 0.1860296
 0.1840266 0.1819155 0.1796961 0.1773683 0.1749326
 0.1723894 0.1697400 0.1669854 0.1641275 0.1611681
 0.1581098 0.1549553 0.1517078 0.1483708 0.1449485
 0.1414451 0.1378656 0.1342150 0.1304991 0.1267239
 0.1228957 0.1190212 0.1151076 0.1111621 0.1071924
 0.1032064 9.9212267E-02 9.5218174E-02 9.1232494E-02 8.7263785E-02
 8.3320476E-02 7.9411037E-02 7.5543925E-02 7.1727388E-02 6.7969590E-02
 6.4278319E-02 6.0661178E-02 5.7125442E-02 5.3677917E-02 5.0324991E-02
 4.7072593E-02 4.3926083E-02 4.0890273E-02 3.7969418E-02 3.5167038E-02
 3.2486122E-02 2.9928917E-02 2.7497048E-02 2.5191450E-02 2.3012383E-02
 2.0959448E-02 1.9031676E-02 1.7227422E-02 1.5544483E-02 1.3980166E-02
 1.2531212E-02 1.1193958E-02 9.9643301E-03 8.8379150E-03 7.8099975E-03
 6.8756444E-03 6.0297148E-03 5.2669733E-03 4.5821057E-03 3.9697699E-03
 3.4246647E-03 2.9415570E-03 2.5153283E-03 2.1410312E-03 1.8138802E-03
 1.5293222E-03 1.2830341E-03 1.0709346E-03 8.8922511E-04 7.3436456E-04
 6.0309871E-04 4.9244339E-04 3.9968456E-04 3.2237815E-04 2.5832784E-04
 2.0557993E-04
 91 71
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000 5.050000 5.100000 5.150000 5.200000
 5.250000 5.300000 5.350000 5.400000 5.450000
 5.500000
 -2.499999 -2.449999 -2.399999 -2.349999 -2.299999
 -2.249999 -2.199999 -2.149999 -2.099999 -2.049999
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -0.1000000 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 0.1000000 0.1500000 0.2000000
 0.2500000 0.3000000 0.3500000 0.4000000 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 3.3707760E-02 3.2949917E-02 3.2081176E-02 3.1119572E-02 3.0081935E-02
 2.8983865E-02 2.7839657E-02 2.6662335E-02 2.5463609E-02 2.4253929E-02
 2.3042537E-02 2.1837495E-02 2.0645779E-02 1.9473329E-02 1.8325139E-02
 1.7205345E-02 1.6117278E-02 1.5063574E-02 1.4046224E-02 1.3066655E-02
 1.2125822E-02 1.1224232E-02 1.0362038E-02 9.5390994E-03 8.7550031E-03
 8.0091627E-03 7.3008477E-03 6.6292430E-03 5.9935441E-03 5.3930050E-03
 4.8270654E-03 4.2954697E-03 3.7984427E-03 3.3368545E-03 2.9123325E-03
 2.5272004E-03 2.1840108E-03 1.8846169E-03 1.6290868E-03 1.4150793E-03
 1.2381566E-03 1.0927534E-03 9.7320497E-04 8.7441178E-04 7.9210824E-04
 7.2287506E-04 6.6402997E-04 6.1349198E-04 5.6964706E-04 5.3124398E-04
 4.9730518E-04 4.6706229E-04 4.3990737E-04 4.1535479E-04 3.9301385E-04
 3.7256771E-04 3.5375741E-04 3.3636915E-04 3.2022668E-04 3.0518291E-04
 2.9111461E-04 2.7791894E-04 2.6550933E-04 2.5381130E-04 2.4276324E-04
 2.3231228E-04 2.2241236E-04 2.1302456E-04 2.0411403E-04 1.9565047E-04
 1.8760658E-04 1.7995735E-04 1.7267976E-04 1.6575237E-04 1.5915556E-04
 1.5287078E-04 1.4688016E-04 1.4116761E-04 1.3571764E-04 1.3051566E-04
 1.2554838E-04 1.2080253E-04 1.1626654E-04 1.1192864E-04 1.0777843E-04
 1.0380572E-04 1.0000120E-04 9.6356278E-05 9.2862414E-05 8.9512112E-05
 8.6297863E-05
 7.3829681E-02 6.9088042E-02 6.4596385E-02 6.0350936E-02 5.6346394E-02
 5.2576341E-02 4.9033329E-02 4.5709126E-02 4.2594876E-02 3.9681252E-02
 3.6958661E-02 3.4417301E-02 3.2047369E-02 2.9839072E-02 2.7782775E-02
 2.5869055E-02 2.4088737E-02 2.2432970E-02 2.0893231E-02 1.9461354E-02
 1.8129552E-02 1.6890403E-02 1.5736848E-02 1.4662202E-02 1.3660110E-02
 1.2724531E-02 1.1849727E-02 1.1030214E-02 1.0260751E-02 9.5362887E-03
 8.8519715E-03 8.2031442E-03 7.5854124E-03 6.9948388E-03 6.4282408E-03
 5.8837146E-03 5.3611654E-03 4.8625581E-03 4.3914528E-03 3.9518080E-03
 3.5466573E-03 3.1773597E-03 2.8435730E-03 2.5436867E-03 2.2753351E-03
 2.0358129E-03 1.8223522E-03 1.6322845E-03 1.4631198E-03 1.3125878E-03
 1.1786351E-03 1.0594226E-03 9.5331093E-04 8.5883820E-04 7.7470805E-04
 6.9976720E-04 6.3299050E-04 5.7346810E-04 5.2039069E-04 4.7303911E-04
 4.3077362E-04 3.9302517E-04 3.5928850E-04 3.2911278E-04 3.0209887E-04
 2.7789170E-04 2.5617509E-04 2.3666954E-04 2.1912598E-04 2.0332387E-04
 1.8906791E-04 1.7618459E-04 1.6452043E-04 1.5393962E-04 1.4432262E-04
 1.3556353E-04 1.2756827E-04 1.2025482E-04 1.1354996E-04 1.0738892E-04
 1.0171533E-04 9.6478128E-05 9.1633250E-05 8.7140783E-05 8.2966100E-05
 7.9077981E-05 7.5449083E-05 7.2055336E-05 6.8874659E-05 6.5888082E-05
 6.3078223E-05
 3.3827025E-02 3.3067338E-02 3.2196790E-02 3.1233432E-02 3.0194107E-02
 2.9094422E-02 2.7948698E-02 2.6769951E-02 2.5569908E-02 2.4359031E-02
 2.3146564E-02 2.1940580E-02 2.0748062E-02 1.9574957E-02 1.8426271E-02
 1.7306138E-02 1.6217912E-02 1.5164232E-02 1.4147099E-02 1.3167965E-02
 1.2227795E-02 1.1327112E-02 1.0466103E-02 9.6446443E-03 8.8623613E-03
 8.1187030E-03 7.4129733E-03 6.7444094E-03 6.1122468E-03 5.5157770E-03
 4.9544540E-03 4.4279993E-03 3.9365171E-03 3.4806167E-03 3.0614748E-03
 2.6807212E-03 2.3400879E-03 2.0407294E-03 1.7824610E-03 1.5632594E-03
 1.3794224E-03 1.2262102E-03 1.0986292E-03 9.9201966E-04 9.0235652E-04
 8.2631782E-04 7.6124084E-04 7.0501748E-04 6.5598963E-04 6.1285333E-04
 5.7457929E-04 5.4035214E-04 5.0952029E-04 4.8156097E-04 4.5605120E-04
 4.3264616E-04 4.1106340E-04 3.9107085E-04 3.7247513E-04 3.5511682E-04
 3.3886166E-04 3.2359749E-04 3.0923009E-04 2.9567943E-04 2.8287765E-04
 2.7076650E-04 2.5929487E-04 2.4841915E-04 2.3809896E-04 2.2829947E-04
 2.1898797E-04 2.1013462E-04 2.0171248E-04 1.9369558E-04 1.8606006E-04
 1.7878444E-04 1.7184769E-04 1.6523074E-04 1.5891543E-04 1.5288468E-04
 1.4712301E-04 1.4161512E-04 1.3634743E-04 1.3130689E-04 1.2648114E-04
 1.2185889E-04 1.1742912E-04 1.1318253E-04 1.0910923E-04 1.0520073E-04
 1.0144871E-04
 7.3695719E-02 6.8953507E-02 6.4461432E-02 6.0215719E-02 5.6211051E-02
 5.2441008E-02 4.8898116E-02 4.5574155E-02 4.2460237E-02 3.9547037E-02
 3.6824949E-02 3.4284171E-02 3.1914879E-02 2.9707279E-02 2.7651731E-02
 2.5738804E-02 2.3959318E-02 2.2304427E-02 2.0765601E-02 1.9334668E-02
 1.8003853E-02 1.6765738E-02 1.5613271E-02 1.4539791E-02 1.3538960E-02
 1.2604775E-02 1.1731545E-02 1.0913851E-02 1.0146552E-02 9.4247311E-03
 8.7437071E-03 8.0990586E-03 7.4866884E-03 6.9029774E-03 6.3450332E-03
 5.8110626E-03 5.3007216E-03 4.8152595E-03 4.3571922E-03 3.9294465E-03
 3.5343950E-03 3.1731965E-03 2.8456578E-03 2.5504734E-03 2.2856151E-03
 2.0486710E-03 1.8371125E-03 1.6484488E-03 1.4803262E-03 1.3305679E-03
 1.1971919E-03 1.0784080E-03 9.7261136E-04 8.7836559E-04 7.9439144E-04
 7.1954622E-04 6.5281359E-04 5.9328874E-04 5.4016622E-04 4.9272936E-04
 4.5034109E-04 4.1243411E-04 3.7850530E-04 3.4810611E-04 3.2083981E-04
 2.9635371E-04 2.7433410E-04 2.5450395E-04 2.3661630E-04 2.2045391E-04
 2.0582361E-04 1.9255414E-04 1.8049545E-04 1.6951405E-04 1.5949215E-04
 1.5032649E-04 1.4192483E-04 1.3420638E-04 1.2709918E-04 1.2054003E-04
 1.1447308E-04 1.0884850E-04 1.0362258E-04 9.8756485E-05 9.4215487E-05
 8.9969093E-05 8.5989675E-05 8.2254002E-05 7.8739839E-05 7.5428274E-05
 7.2302144E-05
 3.3961304E-02 3.3199560E-02 3.2327008E-02 3.1361703E-02 3.0320503E-02
 2.9219035E-02 2.8071625E-02 2.6891304E-02 2.5689814E-02 2.4477620E-02
 2.3263972E-02 2.2056958E-02 2.0863568E-02 1.9689757E-02 1.8540537E-02
 1.7420059E-02 1.6331682E-02 1.5278053E-02 1.4261196E-02 1.3282569E-02
 1.2343158E-02 1.1443514E-02 1.0583838E-02 9.7640324E-03 8.9837639E-03
 8.2425047E-03 7.5396067E-03 6.8743434E-03 6.2459828E-03 5.6538451E-03
 5.0973836E-03 4.5762644E-03 4.0904661E-03 3.6403388E-03 3.2266108E-03
 2.8502962E-03 2.5124040E-03 2.2134513E-03 1.9529589E-03 1.7290880E-03
 1.5387081E-03 1.3778043E-03 1.2420451E-03 1.1272586E-03 1.0297223E-03
 9.4627379E-04 8.7431236E-04 8.1173552E-04 7.5685763E-04 7.0833554E-04
 6.6509494E-04 6.2627497E-04 5.9118337E-04 5.5926002E-04 5.3005014E-04
 5.0318154E-04 4.7834814E-04 4.5529843E-04 4.3382338E-04 4.1374980E-04
 3.9493199E-04 3.7724854E-04 3.6059585E-04 3.4488642E-04 3.3004404E-04
 3.1600415E-04 3.0270815E-04 2.9010483E-04 2.7814799E-04 2.6679531E-04
 2.5600888E-04 2.4575286E-04 2.3599502E-04 2.2670461E-04 2.1785438E-04
 2.0941802E-04 2.0137179E-04 1.9369273E-04 1.8636005E-04 1.7935396E-04
 1.7265634E-04 1.6624985E-04 1.6011887E-04 1.5424807E-04 1.4862396E-04
 1.4323350E-04 1.3806438E-04 1.3310541E-04 1.2834607E-04 1.2377661E-04
 1.1938722E-04
 7.3545240E-02 6.8802394E-02 6.4309858E-02 6.0063854E-02 5.6059059E-02
 5.2289031E-02 4.8746292E-02 4.5422606E-02 4.2309079E-02 3.9396375E-02
 3.6674876E-02 3.4134764E-02 3.1766217E-02 2.9559430E-02 2.7504755E-02
 2.5592754E-02 2.3814246E-02 2.2160381E-02 2.0622624E-02 1.9192817E-02
 1.7863177E-02 1.6626298E-02 1.5475144E-02 1.4403071E-02 1.3403768E-02
 1.2471273E-02 1.1599949E-02 1.0784452E-02 1.0019739E-02 9.3010273E-03
 8.6238198E-03 7.9839202E-03 7.3774946E-03 6.8012150E-03 6.2524308E-03
 5.7294234E-03 5.2316301E-03 4.7596968E-03 4.3152370E-03 3.9002395E-03
 3.5163835E-03 3.1645154E-03 2.8444598E-03 2.5551282E-03 2.2947821E-03
 2.0612928E-03 1.8523749E-03 1.6657350E-03 1.4991662E-03 1.3506069E-03
 1.2181558E-03 1.1000851E-03 9.9483249E-04 9.0099458E-04 8.1731431E-04
 7.4266596E-04 6.7604502E-04 6.1655685E-04 5.6340283E-04 5.1587314E-04
 4.7333559E-04 4.3522895E-04 4.0105393E-04 3.7036755E-04 3.4277618E-04
 3.1793228E-04 2.9552568E-04 2.7528315E-04 2.5696223E-04 2.4034896E-04
 2.2525415E-04 2.1151033E-04 1.9897005E-04 1.8750277E-04 1.7699366E-04
 1.6734077E-04 1.5845445E-04 1.5025487E-04 1.4267203E-04 1.3564348E-04
 1.2911441E-04 1.2303583E-04 1.1736468E-04 1.1206215E-04 1.0709449E-04
 1.0243156E-04 9.8045857E-05 9.3913550E-05 9.0013273E-05 8.6325890E-05
 8.2834093E-05
 3.4112535E-02 3.3348519E-02 3.2473743E-02 3.1506278E-02 3.0463006E-02
 2.9359564E-02 2.8210290E-02 2.7028238E-02 2.5825152E-02 2.4611510E-02
 2.3396576E-02 2.2188440E-02 2.0994106E-02 1.9819539E-02 1.8669758E-02
 1.7548928E-02 1.6460411E-02 1.5406881E-02 1.4390364E-02 1.3412336E-02
 1.2473803E-02 1.1575337E-02 1.0717158E-02 9.8992037E-03 9.1211619E-03
 8.3825458E-03 7.6827337E-03 7.0210304E-03 6.3967369E-03 5.8091762E-03
 5.2577881E-03 4.7421674E-03 4.2621423E-03 3.8177972E-03 3.4094518E-03
 3.0375684E-03 2.7025188E-03 2.4042721E-03 2.1420436E-03 1.9140725E-03
 1.7176411E-03 1.5493379E-03 1.4054434E-03 1.2822790E-03 1.1764743E-03
 1.0850807E-03 1.0056085E-03 9.3599845E-04 8.7456818E-04 8.1995199E-04
 7.7104353E-04 7.2694605E-04 6.8693177E-04 6.5040728E-04 6.1688846E-04
 5.8597716E-04 5.5734598E-04 5.3072383E-04 5.0588470E-04 4.8264230E-04
 4.6083759E-04 4.4033746E-04 4.2102780E-04 4.0280979E-04 3.8559834E-04
 3.6931859E-04 3.5390232E-04 3.3929019E-04 3.2542710E-04 3.1226358E-04
 2.9975415E-04 2.8785755E-04 2.7653575E-04 2.6575272E-04 2.5547633E-04
 2.4567603E-04 2.3632382E-04 2.2739384E-04 2.1886086E-04 2.1070350E-04
 2.0289978E-04 1.9543074E-04 1.8827840E-04 1.8142493E-04 1.7485548E-04
 1.6855463E-04 1.6250885E-04 1.5670559E-04 1.5113245E-04 1.4577861E-04
 1.4063307E-04
 7.3376201E-02 6.8632632E-02 6.4139605E-02 5.9893280E-02 5.5888351E-02
 5.2118354E-02 4.8575804E-02 4.5252446E-02 4.2139377E-02 3.9227251E-02
 3.6506429E-02 3.3967104E-02 3.1599425E-02 2.9393585E-02 2.7339928E-02
 2.5429016E-02 2.3651661E-02 2.1999003E-02 2.0462517E-02 1.9034045E-02
 1.7705813E-02 1.6470421E-02 1.5320851E-02 1.4250482E-02 1.3253037E-02
 1.2322596E-02 1.1453583E-02 1.0640732E-02 9.8791076E-03 9.1640679E-03
 8.4912814E-03 7.8567686E-03 7.2569409E-03 6.6887136E-03 6.1496254E-03
 5.6380024E-03 5.1530800E-03 4.6949964E-03 4.2646080E-03 3.8630776E-03
 3.4914117E-03 3.1500657E-03 2.8387709E-03 2.5565480E-03 2.3018792E-03
 2.0728859E-03 1.8675150E-03 1.6836714E-03 1.5193112E-03 1.3724954E-03
 1.2414205E-03 1.1244295E-03 1.0200150E-03 9.2681486E-04 8.4360264E-04
 7.6927687E-04 7.0285291E-04 6.4344978E-04 5.9028273E-04 5.4265326E-04
 4.9993914E-04 4.6158707E-04 4.2710672E-04 3.9606148E-04 3.6806561E-04
 3.4277773E-04 3.1989338E-04 2.9914582E-04 2.8029704E-04 2.6313888E-04
 2.4748614E-04 2.3317560E-04 2.2006400E-04 2.0802306E-04 1.9694050E-04
 1.8671696E-04 1.7726413E-04 1.6850494E-04 1.6036921E-04 1.5279697E-04
 1.4573328E-04 1.3913079E-04 1.3294682E-04 1.2714282E-04 1.2168556E-04
 1.1654430E-04 1.1169264E-04 1.0710673E-04 1.0276494E-04 9.8647884E-05
 9.4738032E-05
 3.4282967E-02 3.3516426E-02 3.2639179E-02 3.1669326E-02 3.0623768E-02
 2.9518140E-02 2.8366821E-02 2.7182860E-02 2.5978025E-02 2.4762800E-02
 2.3546465E-02 2.2337114E-02 2.1141768E-02 1.9966396E-02 1.8816033E-02
 1.7694851E-02 1.6606227E-02 1.5552843E-02 1.4536745E-02 1.3559428E-02
 1.2621906E-02 1.1724776E-02 1.0868286E-02 1.0052394E-02 9.2768157E-03
 8.5410895E-03 7.8446232E-03 7.1867476E-03 6.5667671E-03 5.9840055E-03
 5.4378617E-03 4.9278452E-03 4.4536158E-03 4.0149926E-03 3.6119153E-03
 3.2443593E-03 2.9121623E-03 2.6148164E-03 2.3512593E-03 2.1197298E-03
 1.9177967E-03 1.7425194E-03 1.5906981E-03 1.4591301E-03 1.3448114E-03
 1.2450459E-03 1.1575049E-03 1.0802130E-03 1.0115242E-03 9.5007784E-04
 8.9475588E-04 8.4464019E-04 7.9897884E-04 7.5715274E-04 7.1865279E-04
 6.8305904E-04 6.5002363E-04 6.1925763E-04 5.9051794E-04 5.6360132E-04
 5.3833501E-04 5.1457144E-04 4.9218233E-04 4.7105658E-04 4.5109596E-04
 4.3221348E-04 4.1433019E-04 3.9737715E-04 3.8128873E-04 3.6600872E-04
 3.5148315E-04 3.3766395E-04 3.2450582E-04 3.1196832E-04 3.0001369E-04
 2.8860648E-04 2.7771355E-04 2.6730579E-04 2.5735502E-04 2.4783611E-04
 2.3872357E-04 2.2999660E-04 2.2163348E-04 2.1361557E-04 2.0592516E-04
 1.9854443E-04 1.9145837E-04 1.8465308E-04 1.7811416E-04 1.7182899E-04
 1.6578546E-04
 7.3186256E-02 6.8441920E-02 6.3948318E-02 5.9701666E-02 5.5696603E-02
 5.1926661E-02 4.8384342E-02 4.5061380E-02 4.1948851E-02 3.9037399E-02
 3.6317378E-02 3.3778969E-02 3.1412303E-02 2.9207578E-02 2.7155124E-02
 2.5245488E-02 2.3469491E-02 2.1818273E-02 2.0283304E-02 1.8856427E-02
 1.7529884E-02 1.6296290E-02 1.5148639E-02 1.4080342E-02 1.3085159E-02
 1.2157218E-02 1.1291008E-02 1.0481350E-02 9.7234156E-03 9.0126973E-03
 8.3450368E-03 7.7166418E-03 7.1241371E-03 6.5646409E-03 6.0358280E-03
 5.5360375E-03 5.0643128E-03 4.6203621E-03 4.2044162E-03 3.8169352E-03
 3.4583060E-03 3.1285696E-03 2.8272700E-03 2.5534444E-03 2.3057084E-03
 2.0823756E-03 1.8815993E-03 1.7014709E-03 1.5401068E-03 1.3957018E-03
 1.2665566E-03 1.1510995E-03 1.0478888E-03 9.5561333E-04 8.7308814E-04
 7.9924538E-04 7.3312764E-04 6.7387888E-04 6.2073214E-04 5.7300681E-04
 5.3009554E-04 4.9145852E-04 4.5661736E-04 4.2514675E-04 3.9667025E-04
 3.7085541E-04 3.4740637E-04 3.2606450E-04 3.0659782E-04 2.8880476E-04
 2.7250519E-04 2.5754012E-04 2.4376887E-04 2.3106832E-04 2.1932850E-04
 2.0845236E-04 1.9835305E-04 1.8895541E-04 1.8019142E-04 1.7200210E-04
 1.6433248E-04 1.5713688E-04 1.5037232E-04 1.4400165E-04 1.3799133E-04
 1.3231087E-04 1.2693359E-04 1.2183651E-04 1.1699720E-04 1.1239650E-04
 1.0801702E-04
 3.4475110E-02 3.3705786E-02 3.2825816E-02 3.1853329E-02 3.0805238E-02
 2.9697219E-02 2.8543646E-02 2.7357599E-02 2.6150849E-02 2.4933903E-02
 2.3716049E-02 2.2505395E-02 2.1308964E-02 2.0132748E-02 1.8981788E-02
 1.7860269E-02 1.6771579E-02 1.5718414E-02 1.4702830E-02 1.3726347E-02
 1.2789993E-02 1.1894388E-02 1.1039789E-02 1.0226188E-02 9.4533209E-03
 8.7207444E-03 8.0278860E-03 7.3740873E-03 6.7586508E-03 6.1808741E-03
 5.6400937E-03 5.1357136E-03 4.6672160E-03 4.2341612E-03 3.8361407E-03
 3.4727028E-03 3.1432416E-03 2.8468568E-03 2.5822369E-03 2.3475927E-03
 2.1406747E-03 1.9588908E-03 1.7994650E-03 1.6596135E-03 1.5366840E-03
 1.4282590E-03 1.3321965E-03 1.2466476E-03 1.1700379E-03 1.1010446E-03
 1.0385636E-03 9.8167465E-04 9.2961628E-04 8.8175543E-04 8.3756755E-04
 7.9661352E-04 7.5852819E-04 7.2300388E-04 6.8978092E-04 6.5863825E-04
 6.2938622E-04 6.0185941E-04 5.7591463E-04 5.5142457E-04 5.2827719E-04
 5.0637248E-04 4.8562005E-04 4.6593798E-04 4.4725221E-04 4.2949704E-04
 4.1260995E-04 3.9653521E-04 3.8122089E-04 3.6662008E-04 3.5268840E-04
 3.3938556E-04 3.2667592E-04 3.1452329E-04 3.0289669E-04 2.9176645E-04
 2.8110534E-04 2.7088862E-04 2.6109221E-04 2.5169432E-04 2.4267400E-04
 2.3401339E-04 2.2569402E-04 2.1769955E-04 2.1001432E-04 2.0262443E-04
 1.9551512E-04
 7.2972827E-02 6.8227611E-02 6.3733414E-02 5.9486393E-02 5.5481207E-02
 5.1711351E-02 4.8169319E-02 4.4846825E-02 4.1734941E-02 3.8824290E-02
 3.6105216E-02 3.3567872E-02 3.1202411E-02 2.8998995E-02 2.6947955E-02
 2.5039839E-02 2.3265459E-02 2.1615950E-02 2.0082796E-02 1.8657845E-02
 1.7333344E-02 1.6101923E-02 1.4956614E-02 1.3890843E-02 1.2898420E-02
 1.1973526E-02 1.1110722E-02 1.0304915E-02 9.5513873E-03 8.8457623E-03
 8.1840372E-03 7.5625931E-03 6.9782296E-03 6.4282157E-03 5.9103169E-03
 5.4228506E-03 4.9646716E-03 4.5351256E-03 4.1339244E-03 3.7609474E-03
 3.4160404E-03 3.0988348E-03 2.8086454E-03 2.5444389E-03 2.3048846E-03
 2.0884238E-03 1.8933648E-03 1.7179634E-03 1.5604850E-03 1.4192546E-03
 1.2926857E-03 1.1792976E-03 1.0777260E-03 9.8672253E-04 9.0515590E-04
 8.3200162E-04 7.6634053E-04 7.0734706E-04 6.5428362E-04 6.0649257E-04
 5.6338799E-04 5.2444823E-04 4.8921170E-04 4.5726763E-04 4.2825320E-04
 4.0184759E-04 3.7776638E-04 3.5575803E-04 3.3559997E-04 3.1709683E-04
 3.0007385E-04 2.8437772E-04 2.6987231E-04 2.5643734E-04 2.4396577E-04
 2.3236353E-04 2.2154753E-04 2.1144205E-04 2.0198188E-04 1.9310789E-04
 1.8476803E-04 1.7691610E-04 1.6950976E-04 1.6251244E-04 1.5589013E-04
 1.4961402E-04 1.4365718E-04 1.3799532E-04 1.3260679E-04 1.2747297E-04
 1.2257497E-04
 3.4691885E-02 3.3919491E-02 3.3036519E-02 3.2061130E-02 3.1010261E-02
 2.9899610E-02 2.8743574E-02 2.7555251E-02 2.6346421E-02 2.5127608E-02
 2.3908118E-02 2.2696065E-02 2.1498498E-02 2.0321405E-02 1.9169845E-02
 1.8048016E-02 1.6959317E-02 1.5906459E-02 1.4891515E-02 1.3916015E-02
 1.2981005E-02 1.2087123E-02 1.1234649E-02 1.0423585E-02 9.6536838E-03
 8.9245178E-03 8.2355207E-03 7.5860284E-03 6.9753206E-03 6.4026541E-03
 5.8672833E-03 5.3684851E-03 4.9055554E-03 4.4778013E-03 4.0844982E-03
 3.7248346E-03 3.3978419E-03 3.1022993E-03 2.8366984E-03 2.5992009E-03
 2.3876810E-03 2.1997972E-03 2.0331019E-03 1.8851594E-03 1.7536381E-03
 1.6363892E-03 1.5314767E-03 1.4372066E-03 1.3521072E-03 1.2749243E-03
 1.2045928E-03 1.1402147E-03 1.0810369E-03 1.0264235E-03 9.7584183E-04
 9.2884246E-04 8.8504545E-04 8.4412587E-04 8.0580468E-04 7.6984521E-04
 7.3603709E-04 7.0419832E-04 6.7416835E-04 6.4580358E-04 6.1897677E-04
 5.9357454E-04 5.6949310E-04 5.4664013E-04 5.2493019E-04 5.0428632E-04
 4.8463920E-04 4.6592424E-04 4.4808182E-04 4.3105838E-04 4.1480386E-04
 3.9927321E-04 3.8442240E-04 3.7021350E-04 3.5661066E-04 3.4357983E-04
 3.3109103E-04 3.1911425E-04 3.0762353E-04 2.9659402E-04 2.8600293E-04
 2.7582800E-04 2.6604941E-04 2.5664776E-04 2.4760657E-04 2.3890854E-04
 2.3053747E-04
 7.2732948E-02 6.7986779E-02 6.3491918E-02 5.9244525E-02 5.5239215E-02
 5.1469486E-02 4.7927819E-02 4.4605892E-02 4.1494779E-02 3.8585074E-02
 3.5867121E-02 3.3331055E-02 3.0967008E-02 2.8765148E-02 2.6715793E-02
 2.4809487E-02 2.3037037E-02 2.1389591E-02 1.9858621E-02 1.8435992E-02
 1.7113972E-02 1.5885204E-02 1.4742747E-02 1.3680069E-02 1.2691023E-02
 1.1769851E-02 1.0911186E-02 1.0110024E-02 9.3617588E-03 8.6621344E-03
 8.0072889E-03 7.3937471E-03 6.8184449E-03 6.2787561E-03 5.7724877E-03
 5.2978983E-03 4.8536616E-03 4.4388054E-03 4.0526176E-03 3.6944954E-03
 3.3638305E-03 3.0598834E-03 2.7817213E-03 2.5281915E-03 2.2979504E-03
 2.0895018E-03 1.9012591E-03 1.7316041E-03 1.5789306E-03 1.4416840E-03
 1.3183885E-03 1.2076607E-03 1.1082211E-03 1.0188945E-03 9.3861250E-04
 8.6640468E-04 8.0139999E-04 7.4281351E-04 6.8994192E-04 6.4216007E-04
 5.9890869E-04 5.5969117E-04 5.2406598E-04 4.9164164E-04 4.6207086E-04
 4.3504813E-04 4.1029998E-04 3.8758627E-04 3.6669383E-04 3.4743320E-04
 3.2963793E-04 3.1316010E-04 2.9786851E-04 2.8364663E-04 2.7039141E-04
 2.5801218E-04 2.4642560E-04 2.3556086E-04 2.2535327E-04 2.1574509E-04
 2.0668554E-04 1.9812805E-04 1.9003227E-04 1.8236185E-04 1.7508365E-04
 1.6816783E-04 1.6158751E-04 1.5531863E-04 1.4934050E-04 1.4363279E-04
 1.3817716E-04
 3.4936629E-02 3.4160841E-02 3.3274580E-02 3.2296006E-02 3.1242093E-02
 3.0128570E-02 2.8969847E-02 2.7779046E-02 2.6567964E-02 2.5347147E-02
 2.4125904E-02 2.2912374E-02 2.1713614E-02 2.0535627E-02 1.9383483E-02
 1.8261390E-02 1.7172767E-02 1.6120329E-02 1.5106172E-02 1.4131828E-02
 1.3198367E-02 1.2306436E-02 1.1456326E-02 1.0648051E-02 9.8813754E-03
 9.1558713E-03 8.4709628E-03 7.8259613E-03 7.2201127E-03 6.6526020E-03
 6.1225826E-03 5.6291898E-03 5.1715262E-03 4.7486611E-03 4.3595885E-03
 4.0031918E-03 3.6782047E-03 3.3831694E-03 3.1164207E-03 2.8760871E-03
 2.6601199E-03 2.4663652E-03 2.2926307E-03 2.1367567E-03 1.9966930E-03
 1.8705353E-03 1.7565544E-03 1.6532186E-03 1.5591820E-03 1.4732823E-03
 1.3945142E-03 1.3220230E-03 1.2550772E-03 1.1930518E-03 1.1354170E-03
 1.0817163E-03 1.0315585E-03 9.8460377E-04 9.4056001E-04 8.9917029E-04
 8.6020754E-04 8.2347280E-04 7.8878878E-04 7.5599574E-04 7.2495214E-04
 6.9553073E-04 6.6761312E-04 6.4109720E-04 6.1588583E-04 5.9189327E-04
 5.6903850E-04 5.4724957E-04 5.2646105E-04 5.0661003E-04 4.8764053E-04
 4.6950186E-04 4.5214541E-04 4.3552788E-04 4.1960739E-04 4.0434682E-04
 3.8971144E-04 3.7566767E-04 3.6218675E-04 3.4924044E-04 3.3680091E-04
 3.2484520E-04 3.1335067E-04 3.0229392E-04 2.9165702E-04 2.8141879E-04
 2.7156359E-04
 7.2463296E-02 6.7716084E-02 6.3220508E-02 5.8972728E-02 5.4967329E-02
 5.1197793E-02 4.7656573E-02 4.4335347E-02 4.1225158E-02 3.8316593E-02
 3.5599973E-02 3.3065423E-02 3.0703072E-02 2.8503068E-02 2.6455728E-02
 2.4551593E-02 2.2781471E-02 2.1136507E-02 1.9608187E-02 1.8188389E-02
 1.6869392E-02 1.5643869E-02 1.4504912E-02 1.3446030E-02 1.2461124E-02
 1.1544501E-02 1.0690870E-02 9.8953182E-03 9.1533344E-03 8.4607815E-03
 7.8139091E-03 7.2093611E-03 6.6441623E-03 6.1157458E-03 5.6219157E-03
 5.1608398E-03 4.7310097E-03 4.3311710E-03 3.9602527E-03 3.6172634E-03
 3.3012128E-03 3.0110423E-03 2.7455834E-03 2.5035434E-03 2.2835224E-03
 2.0840392E-03 1.9035654E-03 1.7405709E-03 1.5935522E-03 1.4610626E-03
 1.3417276E-03 1.2342610E-03 1.1374707E-03 1.0502612E-03 9.7163406E-04
 9.0068288E-04 8.3658943E-04 7.7861757E-04 7.2610803E-04 6.7847170E-04
 6.3518254E-04 5.9577212E-04 5.5982586E-04 5.2697223E-04 4.9688393E-04
 4.6927054E-04 4.4387297E-04 4.2046382E-04 3.9883921E-04 3.7882023E-04
 3.6024628E-04 3.4297648E-04 3.2688552E-04 3.1186178E-04 2.9780506E-04
 2.8462816E-04 2.7225204E-04 2.6060740E-04 2.4963031E-04 2.3926576E-04
 2.2946295E-04 2.2017754E-04 2.1136993E-04 2.0300399E-04 1.9504514E-04
 1.8746647E-04 1.8024072E-04 1.7334337E-04 1.6675348E-04 1.6045003E-04
 1.5441704E-04
 3.5213161E-02 3.4433663E-02 3.3543792E-02 3.2561731E-02 3.1504501E-02
 3.0387849E-02 2.9226214E-02 2.8032731E-02 2.6819233E-02 2.5596272E-02
 2.4373176E-02 2.3158105E-02 2.1958113E-02 2.0779235E-02 1.9626545E-02
 1.8504266E-02 1.7415822E-02 1.6363947E-02 1.5350741E-02 1.4377756E-02
 1.3446067E-02 1.2556328E-02 1.1708837E-02 1.0903611E-02 1.0140404E-02
 9.4187781E-03 8.7381331E-03 8.0977427E-03 7.4967849E-03 6.9343569E-03
 6.4094933E-03 5.9211715E-03 5.4683024E-03 5.0497297E-03 4.6641985E-03
 4.3103476E-03 3.9866786E-03 3.6915513E-03 3.4232032E-03 3.1797327E-03
 2.9591706E-03 2.7595104E-03 2.5787540E-03 2.4149732E-03 2.2663481E-03
 2.1311932E-03 2.0079727E-03 1.8953176E-03 1.7920096E-03 1.6969857E-03
 1.6093197E-03 1.5282065E-03 1.4529472E-03 1.3829415E-03 1.3176651E-03
 1.2566615E-03 1.1995345E-03 1.1459361E-03 1.0955581E-03 1.0481304E-03
 1.0034107E-03 9.6118555E-04 9.2126138E-04 8.8346453E-04 8.4764010E-04
 8.1364706E-04 7.8135694E-04 7.5065350E-04 7.2142918E-04 6.9358828E-04
 6.6704542E-04 6.4171350E-04 6.1752315E-04 5.9440453E-04 5.7229312E-04
 5.5113400E-04 5.3087214E-04 5.1145698E-04 4.9284514E-04 4.7499334E-04
 4.5786251E-04 4.4141524E-04 4.2561756E-04 4.1043773E-04 3.9584708E-04
 3.8181737E-04 3.6832181E-04 3.5533536E-04 3.4283850E-04 3.3080555E-04
 3.1921925E-04
 7.2160125E-02 6.7411780E-02 6.2915452E-02 5.8667272E-02 5.4661825E-02
 5.0892562E-02 4.7351915E-02 4.4031553E-02 4.0922485E-02 3.8015295E-02
 3.5300277E-02 3.2767553E-02 3.0407235E-02 2.8209468E-02 2.6164558E-02
 2.4263049E-02 2.2495745E-02 2.0853803E-02 1.9328717E-02 1.7912380E-02
 1.6597092E-02 1.5375565E-02 1.4240913E-02 1.3186702E-02 1.2206884E-02
 1.1295833E-02 1.0448328E-02 9.6595446E-03 8.9250626E-03 8.2408385E-03
 7.6032118E-03 7.0089032E-03 6.4549921E-03 5.9389165E-03 5.4584360E-03
 5.0116037E-03 4.5967200E-03 4.2122742E-03 3.8568906E-03 3.5292536E-03
 3.2280616E-03 2.9519862E-03 2.6996515E-03 2.4696267E-03 2.2604391E-03
 2.0705932E-03 1.8985906E-03 1.7429634E-03 1.6022859E-03 1.4752005E-03
 1.3604267E-03 1.2567686E-03 1.1631195E-03 1.0784658E-03 1.0018826E-03
 9.3252893E-04 8.6964649E-04 8.1255316E-04 7.6063548E-04 7.1334717E-04
 6.7019701E-04 6.3075079E-04 5.9461861E-04 5.6145608E-04 5.3095515E-04
 5.0284411E-04 4.7687994E-04 4.5284737E-04 4.3055497E-04 4.0983246E-04
 3.9053147E-04 3.7251375E-04 3.5566278E-04 3.3987191E-04 3.2504508E-04
 3.1109934E-04 2.9795818E-04 2.8555389E-04 2.7382726E-04 2.6272336E-04
 2.5219421E-04 2.4219505E-04 2.3268729E-04 2.2363517E-04 2.1500756E-04
 2.0677510E-04 1.9891087E-04 1.9139115E-04 1.8419628E-04 1.7730372E-04
 1.7069728E-04
 3.5525903E-02 3.4742355E-02 3.3848539E-02 3.2862693E-02 3.1801857E-02
 3.0681817E-02 2.9517040E-02 2.8320689E-02 2.7104609E-02 2.5879379E-02
 2.4654342E-02 2.3437671E-02 2.2236446E-02 2.1056699E-02 1.9903528E-02
 1.8781161E-02 1.7693033E-02 1.6641892E-02 1.5629843E-02 1.4658439E-02
 1.3728764E-02 1.2841463E-02 1.1996840E-02 1.1194898E-02 1.0435370E-02
 9.7177848E-03 9.0414984E-03 8.4057208E-03 7.8095449E-03 7.2519588E-03
 6.7318603E-03 6.2480597E-03 5.7992809E-03 5.3841621E-03 5.0012409E-03
 4.6489504E-03 4.3256273E-03 4.0295115E-03 3.7587739E-03 3.5115341E-03
 3.2858870E-03 3.0799548E-03 2.8919145E-03 2.7200298E-03 2.5626754E-03
 2.4183507E-03 2.2856949E-03 2.1634842E-03 2.0506270E-03 1.9461564E-03
 1.8492247E-03 1.7590754E-03 1.6750576E-03 1.5965881E-03 1.5231610E-03
 1.4543228E-03 1.3896772E-03 1.3288681E-03 1.2715827E-03 1.2175386E-03
 1.1664822E-03 1.1181852E-03 1.0724441E-03 1.0290730E-03 9.8790380E-04
 9.4878272E-04 9.1157370E-04 8.7614573E-04 8.4238540E-04 8.1018714E-04
 7.7945390E-04 7.5009529E-04 7.2203297E-04 6.9518579E-04 6.6948787E-04
 6.4487767E-04 6.2129024E-04 5.9867464E-04 5.7697977E-04 5.5615610E-04
 5.3616101E-04 5.1695365E-04 4.9849646E-04 4.8075261E-04 4.6368840E-04
 4.4727285E-04 4.3147791E-04 4.1627407E-04 4.0163557E-04 3.8753735E-04
 3.7395942E-04
 7.1819209E-02 6.7069635E-02 6.2572517E-02 5.8323961E-02 5.4318532E-02
 5.0549660E-02 4.7009755E-02 4.3690450E-02 4.0582761E-02 3.7677240E-02
 3.4964170E-02 3.2433663E-02 3.0075807E-02 2.7880747E-02 2.5838794E-02
 2.3940481E-02 2.2176623E-02 2.0538380E-02 1.9017266E-02 1.7605191E-02
 1.6294485E-02 1.5077888E-02 1.3948563E-02 1.2900114E-02 1.1926559E-02
 1.1022334E-02 1.0182288E-02 9.4016707E-03 8.6761378E-03 8.0017140E-03
 7.3748003E-03 6.7921556E-03 6.2508606E-03 5.7483227E-03 5.2822107E-03
 4.8504365E-03 4.4511063E-03 4.0824707E-03 3.7428874E-03 3.4307702E-03
 3.1445611E-03 2.8827139E-03 2.6436772E-03 2.4259028E-03 2.2278510E-03
 2.0480030E-03 1.8848802E-03 1.7370577E-03 1.6031764E-03 1.4819528E-03
 1.3721909E-03 1.2727744E-03 1.1826830E-03 1.1009767E-03 1.0268040E-03
 9.5939077E-04 8.9803810E-04 8.4211805E-04 7.9106633E-04 7.4437965E-04
 7.0160517E-04 6.6233921E-04 6.2622473E-04 5.9294025E-04 5.6220085E-04
 5.3375226E-04 5.0737103E-04 4.8285429E-04 4.6002411E-04 4.3872121E-04
 4.1880421E-04 4.0014629E-04 3.8263621E-04 3.6617104E-04 3.5066210E-04
 3.3603111E-04 3.2220164E-04 3.0911330E-04 2.9670660E-04 2.8492924E-04
 2.7373474E-04 2.6308061E-04 2.5292963E-04 2.4324609E-04 2.3399919E-04
 2.2515999E-04 2.1670450E-04 2.0860737E-04 2.0084740E-04 1.9340463E-04
 1.8626296E-04
 3.5879962E-02 3.5092004E-02 3.4193914E-02 3.3203963E-02 3.2139245E-02
 3.1015566E-02 2.9847424E-02 2.8648017E-02 2.7429212E-02 2.6201604E-02
 2.4974566E-02 2.3756275E-02 2.2553831E-02 2.1373281E-02 2.0219725E-02
 1.9097408E-02 1.8009771E-02 1.6959561E-02 1.5948884E-02 1.4979300E-02
 1.4051879E-02 1.3167262E-02 1.2325725E-02 1.1527248E-02 1.0771523E-02
 1.0058034E-02 9.3860608E-03 8.7547237E-03 8.1630154E-03 7.6097911E-03
 7.0938007E-03 6.6136881E-03 6.1679967E-03 5.7551912E-03 5.3736279E-03
 5.0215996E-03 4.6973294E-03 4.3989914E-03 4.1247420E-03 3.8727380E-03
 3.6411670E-03 3.4282778E-03 3.2323957E-03 3.0519527E-03 2.8854909E-03
 2.7316757E-03 2.5892898E-03 2.4572394E-03 2.3345381E-03 2.2203107E-03
 2.1137719E-03 2.0142244E-03 1.9210493E-03 1.8336934E-03 1.7516611E-03
 1.6745100E-03 1.6018483E-03 1.5333157E-03 1.4685928E-03 1.4073938E-03
 1.3494533E-03 1.2945381E-03 1.2424313E-03 1.1929371E-03 1.1458776E-03
 1.1010937E-03 1.0584322E-03 1.0177585E-03 9.7895064E-04 9.4189192E-04
 9.0648065E-04 8.7261543E-04 8.4021082E-04 8.0918311E-04 7.7945803E-04
 7.5096503E-04 7.2363758E-04 6.9741398E-04 6.7224266E-04 6.4806861E-04
 6.2484265E-04 6.0251768E-04 5.8105466E-04 5.6041288E-04 5.4055260E-04
 5.2144047E-04 5.0304114E-04 4.8532712E-04 4.6826751E-04 4.5183217E-04
 4.3599692E-04
 7.1435779E-02 6.6684894E-02 6.2186968E-02 5.7938073E-02 5.3932764E-02
 5.0164435E-02 4.6625488E-02 4.3307524E-02 4.0201541E-02 3.7298068E-02
 3.4587383E-02 3.2059576E-02 2.9704737E-02 2.7512999E-02 2.5474664E-02
 2.3580279E-02 2.1820661E-02 2.0186985E-02 1.8670784E-02 1.7263990E-02
 1.5958967E-02 1.4748488E-02 1.3625764E-02 1.2584450E-02 1.1618616E-02
 1.0722754E-02 9.8917801E-03 9.1210017E-03 8.4061231E-03 7.7432129E-03
 7.1286904E-03 6.5593049E-03 6.0321037E-03 5.5444054E-03 5.0937622E-03
 4.6779201E-03 4.2947838E-03 3.9423816E-03 3.6188369E-03 3.3223364E-03
 3.0511178E-03 2.8034591E-03 2.5776788E-03 2.3721356E-03 2.1852423E-03
 2.0154680E-03 1.8613517E-03 1.7215098E-03 1.5946402E-03 1.4795298E-03
 1.3750526E-03 1.2801733E-03 1.1939412E-03 1.1154928E-03 1.0440410E-03
 9.7887556E-04 9.1935688E-04 8.6490746E-04 8.1501069E-04 7.6920469E-04
 7.2707323E-04 6.8824831E-04 6.5239909E-04 6.1923009E-04 5.8847858E-04
 5.5991299E-04 5.3332176E-04 5.0851965E-04 4.8534211E-04 4.6363971E-04
 4.4328172E-04 4.2414866E-04 4.0613578E-04 3.8914863E-04 3.7310275E-04
 3.5792237E-04 3.4354001E-04 3.2989169E-04 3.1692590E-04 3.0459170E-04
 2.9284350E-04 2.8163978E-04 2.7094650E-04 2.6072891E-04 2.5095607E-04
 2.4160136E-04 2.3263793E-04 2.2404491E-04 2.1580089E-04 2.0788424E-04
 2.0027928E-04
 3.6281276E-02 3.5488553E-02 3.4585856E-02 3.3591501E-02 3.2522611E-02
 3.1395048E-02 3.0223345E-02 2.9020723E-02 2.7799066E-02 2.6569013E-02
 2.5339935E-02 2.4120040E-02 2.2916432E-02 2.1735175E-02 2.0581374E-02
 1.9459274E-02 1.8372325E-02 1.7323265E-02 1.6314197E-02 1.5346666E-02
 1.4421717E-02 1.3539973E-02 1.2701670E-02 1.1906734E-02 1.1154801E-02
 1.0445273E-02 9.7773420E-03 9.1500161E-03 8.5621607E-03 8.0124876E-03
 7.4995924E-03 7.0219594E-03 6.5779788E-03 6.1659617E-03 5.7841437E-03
 5.4307268E-03 5.1038703E-03 4.8017404E-03 4.5225243E-03 4.2644469E-03
 4.0257997E-03 3.8049622E-03 3.6004032E-03 3.4107033E-03 3.2345504E-03
 3.0707438E-03 2.9181892E-03 2.7758987E-03 2.6429784E-03 2.5186227E-03
 2.4021079E-03 2.2927797E-03 2.1900490E-03 2.0933866E-03 2.0023123E-03
 1.9163977E-03 1.8352473E-03 1.7585042E-03 1.6858521E-03 1.6169903E-03
 1.5516573E-03 1.4896094E-03 1.4306195E-03 1.3744906E-03 1.3210305E-03
 1.2700758E-03 1.2214612E-03 1.1750526E-03 1.1307114E-03 1.0883184E-03
 1.0477604E-03 1.0089345E-03 9.7174698E-04 9.3610585E-04 9.0193201E-04
 8.6914480E-04 8.3767826E-04 8.0746500E-04 7.7843945E-04 7.5054966E-04
 7.2373886E-04 6.9795852E-04 6.7315914E-04 6.4929551E-04 6.2633015E-04
 6.0422142E-04 5.8292889E-04 5.6242256E-04 5.4266758E-04 5.2363210E-04
 5.0528784E-04
 7.1004450E-02 6.6252187E-02 6.1753459E-02 5.7504311E-02 5.3499270E-02
 4.9731709E-02 4.6194006E-02 4.2877745E-02 3.9773893E-02 3.6872972E-02
 3.4165233E-02 3.1640768E-02 2.9289650E-02 2.7102010E-02 2.5068156E-02
 2.3178641E-02 2.1424284E-02 1.9796288E-02 1.8286204E-02 1.6885992E-02
 1.5588053E-02 1.4385196E-02 1.3270678E-02 1.2238199E-02 1.1281882E-02
 1.0396264E-02 9.5763011E-03 8.8173375E-03 8.1150988E-03 7.4656522E-03
 6.8653966E-03 6.3110227E-03 5.7994947E-03 5.3280108E-03 4.8939665E-03
 4.4949246E-03 4.1285972E-03 3.7928030E-03 3.4854652E-03 3.2045841E-03
 2.9482390E-03 2.7145816E-03 2.5018377E-03 2.3083102E-03 2.1323871E-03
 1.9725428E-03 1.8273428E-03 1.6954467E-03 1.5756094E-03 1.4666833E-03
 1.3676103E-03 1.2774237E-03 1.1952419E-03 1.1202665E-03 1.0517735E-03
 9.8911009E-04 9.3168888E-04 8.7898108E-04 8.3051651E-04 7.8586681E-04
 7.4465631E-04 7.0654659E-04 6.7123125E-04 6.3844508E-04 6.0794182E-04
 5.7951082E-04 5.5295718E-04 5.2811153E-04 5.0481863E-04 4.8294233E-04
 4.6236019E-04 4.4296248E-04 4.2465181E-04 4.0733919E-04 3.9094585E-04
 3.7539969E-04 3.6063776E-04 3.4660273E-04 3.3324046E-04 3.2050608E-04
 3.0835596E-04 2.9675127E-04 2.8565578E-04 2.7503908E-04 2.6487172E-04
 2.5512674E-04 2.4577766E-04 2.3680525E-04 2.2818743E-04 2.1990502E-04
 2.1194149E-04
 3.6736764E-02 3.5938941E-02 3.5031311E-02 3.4032252E-02 3.2958943E-02
 3.1827282E-02 3.0651841E-02 2.9445868E-02 2.8221292E-02 2.6988750E-02
 2.5757650E-02 2.4536205E-02 2.3331536E-02 2.2149710E-02 2.0995833E-02
 1.9874154E-02 1.8788101E-02 1.7740414E-02 1.6733166E-02 1.5767869E-02
 1.4845544E-02 1.3966755E-02 1.3131678E-02 1.2340168E-02 1.1591773E-02
 1.0885791E-02 1.0221296E-02 9.5971711E-03 9.0121338E-03 8.4647583E-03
 7.9534855E-03 7.4766683E-03 7.0325653E-03 6.6193934E-03 6.2353122E-03
 5.8784806E-03 5.5470648E-03 5.2392688E-03 4.9533444E-03 4.6876161E-03
 4.4404948E-03 4.2104833E-03 3.9961869E-03 3.7963199E-03 3.6096892E-03
 3.4352106E-03 3.2718906E-03 3.1188254E-03 2.9751903E-03 2.8402375E-03
 2.7132896E-03 2.5937289E-03 2.4809963E-03 2.3745743E-03 2.2740010E-03
 2.1788513E-03 2.0887400E-03 2.0033107E-03 1.9222390E-03 1.8452334E-03
 1.7720201E-03 1.7023458E-03 1.6359921E-03 1.5727396E-03 1.5124005E-03
 1.4547998E-03 1.3997686E-03 1.3471635E-03 1.2968371E-03 1.2486698E-03
 1.2025351E-03 1.1583277E-03 1.1159457E-03 1.0752897E-03 1.0362753E-03
 9.9881715E-04 9.6284330E-04 9.2827668E-04 8.9505489E-04 8.6311088E-04
 8.3239190E-04 8.0283324E-04 7.7439012E-04 7.4701227E-04 7.2065211E-04
 6.9526408E-04 6.7081186E-04 6.4725289E-04 6.2454911E-04 6.0266850E-04
 5.8157631E-04
 7.0519172E-02 6.5765485E-02 6.1266001E-02 5.7016738E-02 5.3012196E-02
 4.9245719E-02 4.5709651E-02 4.2395573E-02 3.9294418E-02 3.6396697E-02
 3.3692654E-02 3.1172350E-02 2.8825877E-02 2.6643356E-02 2.4615096E-02
 2.2731658E-02 2.0983895E-02 1.9363012E-02 1.7860593E-02 1.6468627E-02
 1.5179552E-02 1.3986213E-02 1.2881907E-02 1.1860372E-02 1.0915757E-02
 1.0042636E-02 9.2359763E-03 8.4911194E-03 7.8037716E-03 7.1699540E-03
 6.5859919E-03 6.0484782E-03 5.5542411E-03 5.1003271E-03 4.6839565E-03
 4.3025087E-03 3.9535044E-03 3.6345841E-03 3.3435053E-03 3.0781291E-03
 2.8364228E-03 2.6164551E-03 2.4164005E-03 2.2345404E-03 2.0692633E-03
 1.9190661E-03 1.7825532E-03 1.6584345E-03 1.5455225E-03 1.4427307E-03
 1.3490667E-03 1.2636281E-03 1.1855977E-03 1.1142330E-03 1.0488690E-03
 9.8890346E-04 9.3379884E-04 8.8306988E-04 8.3628262E-04 7.9305074E-04
 7.5302651E-04 7.1589730E-04 6.8139081E-04 6.4925483E-04 6.1927078E-04
 5.9124164E-04 5.6498923E-04 5.4035737E-04 5.1720295E-04 4.9540290E-04
 4.7483976E-04 4.5541485E-04 4.3703726E-04 4.1962252E-04 4.0309873E-04
 3.8739841E-04 3.7246317E-04 3.5823681E-04 3.4467227E-04 3.3172336E-04
 3.1935133E-04 3.0751637E-04 2.9618762E-04 2.8533523E-04 2.7492846E-04
 2.6494358E-04 2.5535590E-04 2.4614495E-04 2.3728877E-04 2.2877142E-04
 2.2057426E-04
 3.7254553E-02 3.6451288E-02 3.5538446E-02 3.4534421E-02 3.3456475E-02
 3.2320544E-02 3.1141238E-02 2.9931841E-02 2.8704310E-02 2.7469302E-02
 2.6236244E-02 2.5013356E-02 2.3807768E-02 2.2625543E-02 2.1471785E-02
 2.0350723E-02 1.9265771E-02 1.8219627E-02 1.7214332E-02 1.6251350E-02
 1.5331632E-02 1.4455667E-02 1.3623549E-02 1.2835026E-02 1.2089538E-02
 1.1386251E-02 1.0724107E-02 1.0101845E-02 9.5180534E-03 8.9711603E-03
 8.4594898E-03 7.9812948E-03 7.5347540E-03 7.1180305E-03 6.7292824E-03
 6.3666869E-03 6.0284561E-03 5.7128649E-03 5.4182778E-03 5.1431255E-03
 4.8859417E-03 4.6453569E-03 4.4200956E-03 4.2089783E-03 4.0109279E-03
 3.8249434E-03 3.6501074E-03 3.4855849E-03 3.3306072E-03 3.1844701E-03
 3.0465359E-03 2.9162040E-03 2.7929386E-03 2.6762430E-03 2.5656617E-03
 2.4607780E-03 2.3612059E-03 2.2665896E-03 2.1766112E-03 2.0909659E-03
 2.0093850E-03 1.9316142E-03 1.8574176E-03 1.7865781E-03 1.7189051E-03
 1.6542100E-03 1.5923223E-03 1.5330884E-03 1.4763590E-03 1.4220029E-03
 1.3698931E-03 1.3199153E-03 1.2719547E-03 1.2259156E-03 1.1817020E-03
 1.1392271E-03 1.0984070E-03 1.0591610E-03 1.0214229E-03 9.8511868E-04
 9.5018593E-04 9.1656449E-04 8.8419660E-04 8.5303100E-04 8.2301209E-04
 7.9409673E-04 7.6623156E-04 7.3938223E-04 7.1350363E-04 6.8855489E-04
 6.6449784E-04
 6.9973104E-02 6.5218024E-02 6.0717903E-02 5.6468748E-02 5.2465025E-02
 4.8700068E-02 4.5166183E-02 4.1854940E-02 3.8757239E-02 3.5863586E-02
 3.3164207E-02 3.0649168E-02 2.8308542E-02 2.6132468E-02 2.4111263E-02
 2.2235500E-02 2.0496042E-02 1.8884126E-02 1.7391363E-02 1.6009767E-02
 1.4731805E-02 1.3550358E-02 1.2458740E-02 1.1450711E-02 1.0520425E-02
 9.6624484E-03 8.8717230E-03 8.1435470E-03 7.4735498E-03 6.8576592E-03
 6.2920777E-03 5.7732542E-03 5.2978536E-03 4.8627495E-03 4.4649793E-03
 4.1017514E-03 3.7704196E-03 3.4684835E-03 3.1935773E-03 2.9434708E-03
 2.7160619E-03 2.5093823E-03 2.3215925E-03 2.1509787E-03 1.9959561E-03
 1.8550594E-03 1.7269395E-03 1.6103638E-03 1.5042047E-03 1.4074348E-03
 1.3191255E-03 1.2384328E-03 1.1645962E-03 1.0969291E-03 1.0348167E-03
 9.7770523E-04 9.2509732E-04 8.7654771E-04 8.3165983E-04 7.9007726E-04
 7.5148232E-04 7.1559119E-04 6.8214856E-04 6.5092638E-04 6.2172482E-04
 5.9436174E-04 5.6867336E-04 5.4451614E-04 5.2175904E-04 5.0028565E-04
 4.7999260E-04 4.6078590E-04 4.4257776E-04 4.2529579E-04 4.0886962E-04
 3.9323856E-04 3.7834540E-04 3.6413965E-04 3.5057569E-04 3.3761025E-04
 3.2520690E-04 3.1333041E-04 3.0194956E-04 2.9103429E-04 2.8055842E-04
 2.7049836E-04 2.6082946E-04 2.5153262E-04 2.4258914E-04 2.3397942E-04
 2.2568797E-04
 3.7844189E-02 3.7035219E-02 3.6116917E-02 3.5107736E-02 3.4024991E-02
 3.2884680E-02 3.1701442E-02 3.0488608E-02 2.9258151E-02 2.8020754E-02
 2.6785854E-02 2.5561677E-02 2.4355343E-02 2.3172902E-02 2.2019444E-02
 2.0899156E-02 1.9815417E-02 1.8770868E-02 1.7767482E-02 1.6806649E-02
 1.5889220E-02 1.5015593E-02 1.4185730E-02 1.3399259E-02 1.2655487E-02
 1.1953431E-02 1.1291906E-02 1.0669512E-02 1.0084716E-02 9.5358482E-03
 9.0211555E-03 8.5388366E-03 8.0870623E-03 7.6639988E-03 7.2678542E-03
 6.8968623E-03 6.5493453E-03 6.2236679E-03 5.9183147E-03 5.6318403E-03
 5.3628911E-03 5.1102112E-03 4.8726290E-03 4.6490640E-03 4.4385097E-03
 4.2400453E-03 4.0528164E-03 3.8760321E-03 3.7089647E-03 3.5509448E-03
 3.4013540E-03 3.2596195E-03 3.1252205E-03 2.9976643E-03 2.8765041E-03
 2.7613272E-03 2.6517515E-03 2.5474264E-03 2.4480219E-03 2.3532365E-03
 2.2627977E-03 2.1764417E-03 2.0939333E-03 2.0150545E-03 1.9395951E-03
 1.8673696E-03 1.7982024E-03 1.7319296E-03 1.6683948E-03 1.6074615E-03
 1.5489978E-03 1.4928791E-03 1.4389900E-03 1.3872240E-03 1.3374764E-03
 1.2896567E-03 1.2436750E-03 1.1994487E-03 1.1568997E-03 1.1159484E-03
 1.0765333E-03 1.0385803E-03 1.0020320E-03 9.6682546E-04 9.3291007E-04
 9.0023037E-04 8.6873327E-04 8.3837437E-04 8.0910191E-04 7.8088208E-04
 7.5366854E-04
 6.9358610E-02 6.4602211E-02 6.0101680E-02 5.5852991E-02 5.1850580E-02
 4.8087757E-02 4.4556811E-02 4.1249275E-02 3.8156055E-02 3.5267629E-02
 3.2574225E-02 3.0065900E-02 2.7732732E-02 2.5564866E-02 2.3552625E-02
 2.1686606E-02 1.9957686E-02 1.8357130E-02 1.6876562E-02 1.5508024E-02
 1.4243990E-02 1.3077352E-02 1.2001424E-02 1.1009944E-02 1.0097035E-02
 9.2572104E-03 8.4853275E-03 7.7765868E-03 7.1264938E-03 6.5308292E-03
 5.9856339E-03 5.4871826E-03 5.0319657E-03 4.6166782E-03 4.2381990E-03
 3.8935882E-03 3.5800752E-03 3.2950572E-03 3.0360976E-03 2.8009161E-03
 2.5873894E-03 2.3935449E-03 2.2175587E-03 2.0577502E-03 1.9125745E-03
 1.7806173E-03 1.6605877E-03 1.5513083E-03 1.4517141E-03 1.3608381E-03
 1.2778072E-03 1.2018352E-03 1.1322151E-03 1.0683077E-03 1.0095448E-03
 9.5541467E-04 9.0545864E-04 8.5926912E-04 8.1647758E-04 7.7675859E-04
 7.3981861E-04 7.0539652E-04 6.7326042E-04 6.4320146E-04 6.1503082E-04
 5.8858423E-04 5.6371291E-04 5.4028159E-04 5.1817129E-04 4.9727241E-04
 4.7749182E-04 4.5874025E-04 4.4094070E-04 4.2402177E-04 4.0791882E-04
 3.9257584E-04 3.7793943E-04 3.6396403E-04 3.5060558E-04 3.3782300E-04
 3.2558382E-04 3.1385277E-04 3.0260059E-04 2.9180080E-04 2.8142752E-04
 2.7145748E-04 2.6186949E-04 2.5264450E-04 2.4376168E-04 2.3520683E-04
 2.2696395E-04
 3.8517002E-02 3.7702132E-02 3.6778212E-02 3.5763752E-02 3.4676135E-02
 3.3531409E-02 3.2344263E-02 3.1128056E-02 2.9894779E-02 2.8655125E-02
 2.7418543E-02 2.6193241E-02 2.4986321E-02 2.3803802E-02 2.2650728E-02
 2.1531230E-02 2.0448614E-02 1.9405439E-02 1.8403582E-02 1.7444311E-02
 1.6528364E-02 1.5655993E-02 1.4827034E-02 1.4040966E-02 1.3296945E-02
 1.2593872E-02 1.1930433E-02 1.1305125E-02 1.0716345E-02 1.0162372E-02
 9.6414397E-03 9.1517577E-03 8.6915381E-03 8.2590263E-03 7.8525050E-03
 7.4703232E-03 7.1109082E-03 6.7727556E-03 6.4544585E-03 6.1546843E-03
 5.8721905E-03 5.6058136E-03 5.3544692E-03 5.1171477E-03 4.8929118E-03
 4.6808929E-03 4.4802735E-03 4.2903079E-03 4.1102953E-03 3.9395904E-03
 3.7775922E-03 3.6237380E-03 3.4775133E-03 3.3384382E-03 3.2060705E-03
 3.0799997E-03 2.9598360E-03 2.8452305E-03 2.7358546E-03 2.6314016E-03
 2.5315941E-03 2.4361601E-03 2.3448642E-03 2.2574763E-03 2.1737863E-03
 2.0935999E-03 2.0167315E-03 1.9430114E-03 1.8722839E-03 1.8043955E-03
 1.7392130E-03 1.6765980E-03 1.6164375E-03 1.5586112E-03 1.5030153E-03
 1.4495472E-03 1.3981063E-03 1.3486088E-03 1.3009686E-03 1.2551087E-03
 1.2109475E-03 1.1684124E-03 1.1274434E-03 1.0879677E-03 1.0499280E-03
 1.0132643E-03 9.7792363E-04 9.4385206E-04 9.1099815E-04 8.7931682E-04
 8.4875606E-04
 6.8667114E-02 6.3909627E-02 5.9409071E-02 5.5161387E-02 5.1160999E-02
 4.7401182E-02 4.3874223E-02 4.0571619E-02 3.7484273E-02 3.4602653E-02
 3.1916976E-02 2.9417308E-02 2.7093735E-02 2.4936395E-02 2.2935640E-02
 2.1082066E-02 1.9366572E-02 1.7780427E-02 1.6315261E-02 1.4963116E-02
 1.3716451E-02 1.2568125E-02 1.1511402E-02 1.0539959E-02 9.6478211E-03
 8.8293860E-03 8.0793817E-03 7.3928507E-03 6.7651263E-03 6.1918111E-03
 5.6687621E-03 5.1920773E-03 4.7580767E-03 4.3633087E-03 4.0045213E-03
 3.6786716E-03 3.3829112E-03 3.1145841E-03 2.8712268E-03 2.6505510E-03
 2.4504438E-03 2.2689640E-03 2.1043238E-03 1.9548915E-03 1.8191767E-03
 1.6958240E-03 1.5836002E-03 1.4813930E-03 1.3881922E-03 1.3030907E-03
 1.2252721E-03 1.1539988E-03 1.0886129E-03 1.0285230E-03 9.7320048E-04
 9.2217169E-04 8.7501277E-04 8.3134568E-04 7.9083431E-04 7.5317442E-04
 7.1809982E-04 6.8536727E-04 6.5476401E-04 6.2609708E-04 5.9919315E-04
 5.7390227E-04 5.5008440E-04 5.2761601E-04 5.0638791E-04 4.8629980E-04
 4.6726322E-04 4.4919585E-04 4.3202835E-04 4.1569260E-04 4.0013070E-04
 3.8528923E-04 3.7111781E-04 3.5757324E-04 3.4461686E-04 3.3221144E-04
 3.2032211E-04 3.0891900E-04 2.9797442E-04 2.8746208E-04 2.7735907E-04
 2.6764220E-04 2.5829312E-04 2.4929203E-04 2.4062066E-04 2.3226539E-04
 2.2420850E-04
 3.9286491E-02 3.8465638E-02 3.7536051E-02 3.6516298E-02 3.5423845E-02
 3.4274783E-02 3.3083841E-02 3.1864397E-02 3.0628458E-02 2.9386722E-02
 2.8148603E-02 2.6922295E-02 2.5714850E-02 2.4532229E-02 2.3379387E-02
 2.2260383E-02 2.1178400E-02 2.0135885E-02 1.9134576E-02 1.8175596E-02
 1.7259542E-02 1.6386513E-02 1.5556194E-02 1.4767930E-02 1.4020757E-02
 1.3313472E-02 1.2644692E-02 1.2012882E-02 1.1416411E-02 1.0853590E-02
 1.0322698E-02 9.8220184E-03 9.3498547E-03 8.9045642E-03 8.4845517E-03
 8.0882842E-03 7.7143102E-03 7.3612425E-03 7.0277802E-03 6.7126951E-03
 6.4148274E-03 6.1330912E-03 5.8664689E-03 5.6140125E-03 5.3748288E-03
 5.1480788E-03 4.9329903E-03 4.7288360E-03 4.5349333E-03 4.3506511E-03
 4.1754018E-03 4.0086294E-03 3.8498302E-03 3.6985185E-03 3.5542548E-03
 3.4166237E-03 3.2852478E-03 3.1597596E-03 3.0398327E-03 2.9251557E-03
 2.8154396E-03 2.7104164E-03 2.6098408E-03 2.5134687E-03 2.4210904E-03
 2.3325039E-03 2.2475116E-03 2.1659420E-03 2.0876250E-03 2.0124069E-03
 1.9401382E-03 1.8706834E-03 1.8039137E-03 1.7397035E-03 1.6779444E-03
 1.6185211E-03 1.5613377E-03 1.5062930E-03 1.4532947E-03 1.4022581E-03
 1.3531018E-03 1.3057496E-03 1.2601247E-03 1.2161529E-03 1.1737775E-03
 1.1329235E-03 1.0935366E-03 1.0555577E-03 1.0189331E-03 9.8360784E-04
 9.4953255E-04
 6.7889117E-02 6.3130960E-02 5.8630992E-02 5.4385148E-02 5.0387818E-02
 4.6632271E-02 4.3110758E-02 3.9814778E-02 3.6735225E-02 3.3862550E-02
 3.1186981E-02 2.8698580E-02 2.6387433E-02 2.4243692E-02 2.2257704E-02
 2.0420063E-02 1.8721670E-02 1.7153768E-02 1.5707960E-02 1.4376244E-02
 1.3151004E-02 1.2025019E-02 1.0991442E-02 1.0043810E-02 9.1760019E-03
 8.3822384E-03 7.6570571E-03 6.9953031E-03 6.3921232E-03 5.8429264E-03
 5.3433962E-03 4.8894733E-03 4.4773468E-03 4.1034552E-03 3.7644668E-03
 3.4572843E-03 3.1790277E-03 2.9270351E-03 2.6988524E-03 2.4922187E-03
 2.3050616E-03 2.1354849E-03 1.9817583E-03 1.8423098E-03 1.7157114E-03
 1.6006674E-03 1.4960095E-03 1.4006830E-03 1.3137379E-03 1.2343206E-03
 1.1616662E-03 1.0950875E-03 1.0339699E-03 9.7776146E-04 9.2597300E-04
 8.7816437E-04 8.3394349E-04 7.9296064E-04 7.5490348E-04 7.1949285E-04
 6.8648206E-04 6.5564655E-04 6.2678987E-04 5.9973332E-04 5.7431887E-04
 5.5040582E-04 5.2786607E-04 5.0658570E-04 4.8646278E-04 4.6740615E-04
 4.4933311E-04 4.3216688E-04 4.1584446E-04 4.0030203E-04 3.8548591E-04
 3.7134552E-04 3.5783715E-04 3.4491942E-04 3.3255384E-04 3.2070608E-04
 3.0934723E-04 2.9844765E-04 2.8798010E-04 2.7792130E-04 2.6825018E-04
 2.5894432E-04 2.4998508E-04 2.4135633E-04 2.3304118E-04 2.2502404E-04
 2.1729167E-04
 4.0168829E-02 3.9342068E-02 3.8406927E-02 3.7382018E-02 3.6284894E-02
 3.5131678E-02 3.3937126E-02 3.2714631E-02 3.1476192E-02 3.0232484E-02
 2.8992869E-02 2.7765485E-02 2.6557302E-02 2.5374174E-02 2.4220951E-02
 2.3101546E-02 2.2019003E-02 2.0975610E-02 1.9972950E-02 1.9011984E-02
 1.8093148E-02 1.7216407E-02 1.6381327E-02 1.5587148E-02 1.4832852E-02
 1.4117192E-02 1.3438785E-02 1.2796122E-02 1.2187646E-02 1.1611744E-02
 1.1066807E-02 1.0551233E-02 1.0063455E-02 9.6019590E-03 9.1652777E-03
 8.7520014E-03 8.3607901E-03 7.9903584E-03 7.6394933E-03 7.3070535E-03
 6.9919457E-03 6.6931383E-03 6.4096688E-03 6.1406237E-03 5.8851433E-03
 5.6424211E-03 5.4116985E-03 5.1922607E-03 4.9834442E-03 4.7846222E-03
 4.5952094E-03 4.4146585E-03 4.2424621E-03 4.0781321E-03 3.9212308E-03
 3.7713454E-03 3.6280751E-03 3.4910627E-03 3.3599713E-03 3.2344817E-03
 3.1143050E-03 2.9991562E-03 2.8887796E-03 2.7829355E-03 2.6813974E-03
 2.5839554E-03 2.4904103E-03 2.4005719E-03 2.3142665E-03 2.2313332E-03
 2.1516159E-03 2.0749669E-03 2.0012478E-03 1.9303308E-03 1.8620919E-03
 1.7964187E-03 1.7331995E-03 1.6723269E-03 1.6137057E-03 1.5572394E-03
 1.5028436E-03 1.4504304E-03 1.3999182E-03 1.3512369E-03 1.3043067E-03
 1.2590582E-03 1.2154321E-03 1.1733569E-03 1.1327766E-03 1.0936327E-03
 1.0558709E-03
 6.7014158E-02 6.2256038E-02 5.7757657E-02 5.3514898E-02 4.9522147E-02
 4.5772657E-02 4.2258669E-02 3.8971670E-02 3.5902545E-02 3.3041745E-02
 3.0379498E-02 2.7905850E-02 2.5610885E-02 2.3484737E-02 2.1517739E-02
 1.9700449E-02 1.8023714E-02 1.6478715E-02 1.5056961E-02 1.3750332E-02
 1.2551087E-02 1.1451831E-02 1.0445534E-02 9.5255412E-03 8.6855087E-03
 7.9194484E-03 7.2216825E-03 6.5868543E-03 6.0099186E-03 5.4861242E-03
 5.0110114E-03 4.5804111E-03 4.1904300E-03 3.8374488E-03 3.5181101E-03
 3.2293040E-03 2.9681688E-03 2.7320688E-03 2.5185901E-03 2.3255260E-03
 2.1508576E-03 1.9927558E-03 1.8495545E-03 1.7197453E-03 1.6019655E-03
 1.4949867E-03 1.3977002E-03 1.3091094E-03 1.2283204E-03 1.1545314E-03
 1.0870249E-03 1.0251579E-03 9.6835749E-04 9.1611029E-04 8.6795975E-04
 8.2349801E-04 7.8235962E-04 7.4422103E-04 7.0879178E-04 6.7581562E-04
 6.4506213E-04 6.1632443E-04 5.8941962E-04 5.6418369E-04 5.4047082E-04
 5.1815010E-04 4.9710332E-04 4.7722543E-04 4.5842089E-04 4.4060618E-04
 4.2370422E-04 4.0764740E-04 3.9237202E-04 3.7782293E-04 3.6394809E-04
 3.5070343E-04 3.3804681E-04 3.2593834E-04 3.1434465E-04 3.0323357E-04
 2.9257734E-04 2.8234834E-04 2.7252195E-04 2.6307689E-04 2.5399216E-04
 2.4524733E-04 2.3682853E-04 2.2871548E-04 2.2089445E-04 2.1335210E-04
 2.0607577E-04
 4.1183550E-02 4.0351145E-02 3.9410733E-02 3.8380966E-02 3.7279442E-02
 3.6122333E-02 3.4924392E-02 3.3698995E-02 3.2458100E-02 3.1212309E-02
 2.9970918E-02 2.8741945E-02 2.7532227E-02 2.6347483E-02 2.5192399E-02
 2.4070710E-02 2.2985300E-02 2.1938274E-02 2.0931054E-02 1.9964462E-02
 1.9038813E-02 1.8153973E-02 1.7309453E-02 1.6504478E-02 1.5738031E-02
 1.5008928E-02 1.4315858E-02 1.3657427E-02 1.3032184E-02 1.2438661E-02
 1.1875383E-02 1.1340895E-02 1.0833768E-02 1.0352613E-02 9.8960800E-03
 9.4628725E-03 9.0517420E-03 8.6614890E-03 8.2909754E-03 7.9391124E-03
 7.6048523E-03 7.2872192E-03 6.9852709E-03 6.6981236E-03 6.4249388E-03
 6.1649196E-03 5.9173228E-03 5.6814435E-03 5.4566148E-03 5.2422229E-03
 5.0376705E-03 4.8424173E-03 4.6559437E-03 4.4777715E-03 4.3074414E-03
 4.1445405E-03 3.9886660E-03 3.8394509E-03 3.6965474E-03 3.5596308E-03
 3.4283949E-03 3.3025553E-03 3.1818491E-03 3.0660182E-03 2.9548316E-03
 2.8480627E-03 2.7455094E-03 2.6469762E-03 2.5522769E-03 2.4612306E-03
 2.3736854E-03 2.2894791E-03 2.2084678E-03 2.1305114E-03 2.0554760E-03
 1.9832454E-03 1.9136940E-03 1.8467137E-03 1.7821996E-03 1.7200449E-03
 1.6601575E-03 1.6024422E-03 1.5468204E-03 1.4931983E-03 1.4415019E-03
 1.3916589E-03 1.3435918E-03 1.2972290E-03 1.2525147E-03 1.2093752E-03
 1.1677545E-03
 6.6030875E-02 6.1274011E-02 5.6778751E-02 5.2540943E-02 4.8554990E-02
 4.4814128E-02 4.1310586E-02 3.8035847E-02 3.4980785E-02 3.2135837E-02
 2.9491201E-02 2.7036913E-02 2.4763003E-02 2.2659563E-02 2.0716837E-02
 1.8925300E-02 1.7275667E-02 1.5758976E-02 1.4366559E-02 1.3090098E-02
 1.1921631E-02 1.0853528E-02 9.8785134E-03 8.9896824E-03 8.1804562E-03
 7.4446187E-03 6.7762919E-03 6.1699403E-03 5.6203720E-03 5.1227184E-03
 4.6724393E-03 4.2653079E-03 3.8974017E-03 3.5651012E-03 3.2650616E-03
 2.9942088E-03 2.7497250E-03 2.5290314E-03 2.3297768E-03 2.1498210E-03
 1.9872165E-03 1.8402046E-03 1.7071876E-03 1.5867277E-03 1.4775280E-03
 1.3784210E-03 1.2883592E-03 1.2064035E-03 1.1317107E-03 1.0635287E-03
 1.0011826E-03 9.4407366E-04 8.9166331E-04 8.4347435E-04 7.9907954E-04
 7.5810082E-04 7.2019699E-04 6.8506744E-04 6.5244496E-04 6.2208826E-04
 5.9378380E-04 5.6734256E-04 5.4259296E-04 5.1938405E-04 4.9758103E-04
 4.7705937E-04 4.5771329E-04 4.3944511E-04 4.2216672E-04 4.0579878E-04
 3.9027259E-04 3.7552332E-04 3.6149312E-04 3.4813141E-04 3.3538949E-04
 3.2322769E-04 3.1160351E-04 3.0048512E-04 2.8983972E-04 2.7963700E-04
 2.6985013E-04 2.6045524E-04 2.5143189E-04 2.4275568E-04 2.3440929E-04
 2.2637790E-04 2.1864072E-04 2.1118515E-04 2.0399751E-04 1.9706272E-04
 1.9037130E-04
 4.2354304E-02 4.1516773E-02 4.0571559E-02 3.9537344E-02 3.8431775E-02
 3.7271000E-02 3.6069755E-02 3.4841347E-02 3.3597648E-02 3.2349147E-02
 3.1104995E-02 2.9873043E-02 2.8659962E-02 2.7471283E-02 2.6311496E-02
 2.5184162E-02 2.4091983E-02 2.3036927E-02 2.2020295E-02 2.1042828E-02
 2.0104798E-02 1.9206073E-02 1.8346192E-02 1.7524468E-02 1.6739983E-02
 1.5991678E-02 1.5278392E-02 1.4598883E-02 1.3951862E-02 1.3336019E-02
 1.2750028E-02 1.2192577E-02 1.1662356E-02 1.1158101E-02 1.0678555E-02
 1.0222509E-02 9.7887842E-03 9.3762474E-03 8.9838086E-03 8.6104106E-03
 8.2550552E-03 7.9167802E-03 7.5946604E-03 7.2878324E-03 6.9954582E-03
 6.7167585E-03 6.4509837E-03 6.1974288E-03 5.9554330E-03 5.7243663E-03
 5.5036377E-03 5.2927006E-03 5.0910236E-03 4.8981183E-03 4.7135302E-03
 4.5368224E-03 4.3675872E-03 4.2054495E-03 4.0500481E-03 3.9010490E-03
 3.7581376E-03 3.6210197E-03 3.4894098E-03 3.3630538E-03 3.2417029E-03
 3.1251267E-03 3.0131019E-03 2.9054191E-03 2.8018914E-03 2.7023356E-03
 2.6065665E-03 2.5144315E-03 2.4257666E-03 2.3404276E-03 2.2582707E-03
 2.1791689E-03 2.1029848E-03 2.0296087E-03 1.9589167E-03 1.8908100E-03
 1.8251775E-03 1.7619192E-03 1.7009451E-03 1.6421598E-03 1.5854848E-03
 1.5308311E-03 1.4781229E-03 1.4272847E-03 1.3782469E-03 1.3309312E-03
 1.2852876E-03
 6.4927295E-02 6.0173593E-02 5.5683803E-02 5.1453743E-02 4.7477815E-02
 4.3749254E-02 4.0260270E-02 3.7002329E-02 3.3966269E-02 3.1142490E-02
 2.8521122E-02 2.6092121E-02 2.3845416E-02 2.1770962E-02 1.9858837E-02
 1.8099330E-02 1.6482931E-02 1.5000423E-02 1.3642875E-02 1.2401680E-02
 1.1268589E-02 1.0235687E-02 9.2954272E-03 8.4406529E-03 7.6645645E-03
 6.9607506E-03 6.3231811E-03 5.7461984E-03 5.2245264E-03 4.7532436E-03
 4.3277829E-03 3.9439192E-03 3.5977571E-03 3.2857091E-03 3.0044864E-03
 2.7510794E-03 2.5227373E-03 2.3169548E-03 2.1314598E-03 1.9641847E-03
 1.8132615E-03 1.6770033E-03 1.5538861E-03 1.4425396E-03 1.3417323E-03
 1.2503567E-03 1.1674234E-03 1.0920457E-03 1.0234297E-03 9.6086727E-04
 9.0372714E-04 8.5144740E-04 8.0352265E-04 7.5950782E-04 7.1900495E-04
 6.8165892E-04 6.4715353E-04 6.1520824E-04 5.8557454E-04 5.5802771E-04
 5.3236994E-04 5.0842616E-04 4.8603633E-04 4.6506000E-04 4.4537283E-04
 4.2686149E-04 4.0942486E-04 3.9297165E-04 3.7742421E-04 3.6270733E-04
 3.4875682E-04 3.3551364E-04 3.2292452E-04 3.1094326E-04 2.9952457E-04
 2.8862985E-04 2.7822304E-04 2.6827274E-04 2.5874874E-04 2.4962606E-04
 2.4087788E-04 2.3248327E-04 2.2442086E-04 2.1667103E-04 2.0921860E-04
 2.0204415E-04 1.9513724E-04 1.8848124E-04 1.8206461E-04 1.7587372E-04
 1.6990045E-04
 4.3710068E-02 4.2868078E-02 4.1918535E-02 4.0880304E-02 3.9770897E-02
 3.8606424E-02 3.7401509E-02 3.6169343E-02 3.4921639E-02 3.3668719E-02
 3.2419529E-02 3.1181728E-02 2.9961774E-02 2.8764997E-02 2.7595727E-02
 2.6457373E-02 2.5352530E-02 2.4283104E-02 2.3250382E-02 2.2255125E-02
 2.1297675E-02 2.0378018E-02 1.9495834E-02 1.8650588E-02 1.7841548E-02
 1.7067844E-02 1.6328488E-02 1.5622417E-02 1.4948516E-02 1.4305622E-02
 1.3692546E-02 1.3108094E-02 1.2551073E-02 1.2020288E-02 1.1514576E-02
 1.1032784E-02 1.0573776E-02 1.0136461E-02 9.7197844E-03 9.3227103E-03
 8.9442469E-03 8.5834507E-03 8.2394099E-03 7.9112491E-03 7.5981440E-03
 7.2992984E-03 7.0139724E-03 6.7414497E-03 6.4810547E-03 6.2321634E-03
 5.9941658E-03 5.7665026E-03 5.5486346E-03 5.3400686E-03 5.1403339E-03
 4.9489755E-03 4.7655855E-03 4.5897635E-03 4.4211480E-03 4.2593800E-03
 4.1041439E-03 3.9551212E-03 3.8120232E-03 3.6745770E-03 3.5425278E-03
 3.4156204E-03 3.2936330E-03 3.1763464E-03 3.0635439E-03 2.9550456E-03
 2.8506538E-03 2.7501993E-03 2.6535068E-03 2.5604290E-03 2.4708095E-03
 2.3845066E-03 2.3013803E-03 2.2213091E-03 2.1441586E-03 2.0698213E-03
 1.9981756E-03 1.9291230E-03 1.8625578E-03 1.7983789E-03 1.7364976E-03
 1.6768195E-03 1.6192683E-03 1.5637515E-03 1.5101974E-03 1.4585319E-03
 1.4086766E-03
 6.3691325E-02 5.8943767E-02 5.4462958E-02 5.0244745E-02 4.6283506E-02
 4.2572435E-02 3.9103717E-02 3.5868745E-02 3.2858271E-02 3.0062580E-02
 2.7471662E-02 2.5075290E-02 2.2863176E-02 2.0825019E-02 1.8950619E-02
 1.7229939E-02 1.5653143E-02 1.4210667E-02 1.2893232E-02 1.1691907E-02
 1.0598124E-02 9.6036866E-03 8.7008039E-03 7.8821070E-03 7.1406350E-03
 6.4698495E-03 5.8636386E-03 5.3162924E-03 4.8225182E-03 4.3773996E-03
 3.9764061E-03 3.6153572E-03 3.2904167E-03 2.9980734E-03 2.7351130E-03
 2.4986076E-03 2.2858900E-03 2.0945424E-03 1.9223720E-03 1.7673951E-03
 1.6278203E-03 1.5020347E-03 1.3885871E-03 1.2861723E-03 1.1936210E-03
 1.1098858E-03 1.0340303E-03 9.6521527E-04 9.0269442E-04 8.4580260E-04
 7.9394464E-04 7.4659131E-04 7.0327282E-04 6.6357030E-04 6.2711339E-04
 5.9356674E-04 5.6263705E-04 5.3406454E-04 5.0761417E-04 4.8307853E-04
 4.6027373E-04 4.3903588E-04 4.1921649E-04 4.0068591E-04 3.8332847E-04
 3.6703818E-04 3.5172282E-04 3.3729940E-04 3.2369010E-04 3.1083258E-04
 2.9866397E-04 2.8713088E-04 2.7618126E-04 2.6577656E-04 2.5587316E-04
 2.4643724E-04 2.3743411E-04 2.2883662E-04 2.2061431E-04 2.1274819E-04
 2.0521000E-04 1.9798325E-04 1.9104789E-04 1.8438599E-04 1.7798401E-04
 1.7182549E-04 1.6589885E-04 1.6018878E-04 1.5468709E-04 1.4938215E-04
 1.4426305E-04
 4.5285571E-02 4.4439968E-02 4.3486699E-02 4.2444587E-02 4.1331045E-02
 4.0162042E-02 3.8952041E-02 3.7714038E-02 3.6459539E-02 3.5198625E-02
 3.3940040E-02 3.2691229E-02 3.1458482E-02 3.0247005E-02 2.9061025E-02
 2.7903924E-02 2.6778325E-02 2.5686197E-02 2.4628950E-02 2.3607509E-02
 2.2622412E-02 2.1673830E-02 2.0761685E-02 1.9885648E-02 1.9045210E-02
 1.8239694E-02 1.7468307E-02 1.6730154E-02 1.6024265E-02 1.5349604E-02
 1.4705099E-02 1.4089644E-02 1.3502120E-02 1.2941406E-02 1.2406365E-02
 1.1895887E-02 1.1408876E-02 1.0944252E-02 1.0500966E-02 1.0077998E-02
 9.6743619E-03 9.2891017E-03 8.9213029E-03 8.5700946E-03 8.2346285E-03
 7.9141166E-03 7.6077939E-03 7.3149321E-03 7.0348578E-03 6.7669125E-03
 6.5104892E-03 6.2650116E-03 6.0299220E-03 5.8047078E-03 5.5888891E-03
 5.3819991E-03 5.1836139E-03 4.9933135E-03 4.8107188E-03 4.6354644E-03
 4.4672154E-03 4.3056370E-03 4.1504311E-03 4.0013059E-03 3.8579891E-03
 3.7202176E-03 3.5877593E-03 3.4603686E-03 3.3378340E-03 3.2199426E-03
 3.1065017E-03 2.9973241E-03 2.8922220E-03 2.7910348E-03 2.6935947E-03
 2.5997523E-03 2.5093618E-03 2.4222792E-03 2.3383736E-03 2.2575222E-03
 2.1795931E-03 2.1044835E-03 2.0320707E-03 1.9622592E-03 1.8949412E-03
 1.8300223E-03 1.7674040E-03 1.7070097E-03 1.6487499E-03 1.5925356E-03
 1.5382960E-03
 6.2311456E-02 5.7574641E-02 5.3108130E-02 4.8907738E-02 4.4967789E-02
 4.1281402E-02 3.7840653E-02 3.4636777E-02 3.1660330E-02 2.8901346E-02
 2.6349539E-02 2.3994340E-02 2.1825098E-02 1.9831108E-02 1.8001758E-02
 1.6326591E-02 1.4795351E-02 1.3398090E-02 1.2125165E-02 1.0967323E-02
 9.9157188E-03 8.9619420E-03 8.0980202E-03 7.3164590E-03 6.6102161E-03
 5.9727114E-03 5.3978208E-03 4.8798569E-03 4.4135638E-03 3.9940896E-03
 3.6169714E-03 3.2781132E-03 2.9737658E-03 2.7005109E-03 2.4552275E-03
 2.2350792E-03 2.0374912E-03 1.8601328E-03 1.7008987E-03 1.5578850E-03
 1.4293790E-03 1.3138402E-03 1.2098850E-03 1.1162735E-03 1.0318946E-03
 9.5575483E-04 8.8696944E-04 8.2474411E-04 7.6837756E-04 7.1723788E-04
 6.7076943E-04 6.2847440E-04 5.8990892E-04 5.5468129E-04 5.2244344E-04
 4.9288443E-04 4.6572956E-04 4.4073313E-04 4.1767693E-04 3.9636806E-04
 3.7663587E-04 3.5832525E-04 3.4130079E-04 3.2544165E-04 3.1063738E-04
 2.9679257E-04 2.8382370E-04 2.7164834E-04 2.6020152E-04 2.4941957E-04
 2.3924795E-04 2.2963736E-04 2.2053930E-04 2.1191829E-04 2.0373429E-04
 1.9595627E-04 1.8855539E-04 1.8150246E-04 1.7477361E-04 1.6834876E-04
 1.6220410E-04 1.5632590E-04 1.5069291E-04 1.4529360E-04 1.4011074E-04
 1.3513310E-04 1.3034664E-04 1.2574378E-04 1.2131411E-04 1.1704470E-04
 1.1292997E-04
 4.7123455E-02 4.6274744E-02 4.5317657E-02 4.4270858E-02 4.3151576E-02
 4.1975565E-02 4.0757056E-02 3.9508794E-02 3.8242057E-02 3.6966730E-02
 3.5691381E-02 3.4423362E-02 3.3168912E-02 3.1933241E-02 3.0720674E-02
 2.9534727E-02 2.8378215E-02 2.7253333E-02 2.6161753E-02 2.5104661E-02
 2.4082864E-02 2.3096817E-02 2.2146672E-02 2.1232352E-02 2.0353548E-02
 1.9509774E-02 1.8700402E-02 1.7924663E-02 1.7181715E-02 1.6470613E-02
 1.5790360E-02 1.5139909E-02 1.4518177E-02 1.3924086E-02 1.3356522E-02
 1.2814386E-02 1.2296586E-02 1.1802048E-02 1.1329720E-02 1.0878567E-02
 1.0447598E-02 1.0035851E-02 9.6423887E-03 9.2663253E-03 8.9068096E-03
 8.5630175E-03 8.2341814E-03 7.9195574E-03 7.6184375E-03 7.3301634E-03
 7.0540966E-03 6.7896466E-03 6.5362439E-03 6.2933541E-03 6.0604694E-03
 5.8371201E-03 5.6228484E-03 5.4172296E-03 5.2198623E-03 5.0303638E-03
 4.8483768E-03 4.6735620E-03 4.5055915E-03 4.3441677E-03 4.1889907E-03
 4.0398007E-03 3.8963272E-03 3.7583301E-03 3.6255703E-03 3.4978278E-03
 3.3748904E-03 3.2565603E-03 3.1426477E-03 3.0329593E-03 2.9273336E-03
 2.8256017E-03 2.7276007E-03 2.6331891E-03 2.5422170E-03 2.4545528E-03
 2.3700579E-03 2.2886146E-03 2.2101011E-03 2.1343995E-03 2.0614052E-03
 1.9910084E-03 1.9231152E-03 1.8576233E-03 1.7944464E-03 1.7334883E-03
 1.6746774E-03
 6.0778547E-02 5.6059361E-02 5.1614843E-02 4.7440719E-02 4.3531150E-02
 3.9879069E-02 3.6476266E-02 3.3313666E-02 3.0381445E-02 2.7669197E-02
 2.5166156E-02 2.2861248E-02 2.0743299E-02 1.8801089E-02 1.7023506E-02
 1.5399625E-02 1.3918777E-02 1.2570648E-02 1.1345297E-02 1.0233228E-02
 9.2254188E-03 8.3133280E-03 7.4889124E-03 6.7446446E-03 6.0734842E-03
 5.4688845E-03 4.9247756E-03 4.4355448E-03 3.9960248E-03 3.6014542E-03
 3.2474708E-03 2.9300856E-03 2.6456499E-03 2.3908487E-03 2.1626600E-03
 1.9583458E-03 1.7754254E-03 1.6116572E-03 1.4650197E-03 1.3336886E-03
 1.2160266E-03 1.1105626E-03 1.0159784E-03 9.3109172E-04 8.5484999E-04
 7.8630907E-04 7.2463136E-04 6.6906650E-04 6.1894837E-04 5.7368388E-04
 5.3274649E-04 4.9566961E-04 4.6203373E-04 4.3147436E-04 4.0365808E-04
 3.7830073E-04 3.5513888E-04 3.3394500E-04 3.1451610E-04 2.9667141E-04
 2.8024963E-04 2.6510932E-04 2.5112159E-04 2.3817687E-04 2.2617006E-04
 2.1501596E-04 2.0463236E-04 1.9494833E-04 1.8589971E-04 1.7743111E-04
 1.6948875E-04 1.6203026E-04 1.5501352E-04 1.4839890E-04 1.4215754E-04
 1.3625695E-04 1.3067007E-04 1.2537527E-04 1.2034777E-04 1.1556931E-04
 1.1102063E-04 1.0668616E-04 1.0255161E-04 9.8601056E-05 9.4824987E-05
 9.1210350E-05 8.7748063E-05 8.4425417E-05 8.1238242E-05 7.8173507E-05
 7.5229800E-05
 4.9274471E-02 4.8422053E-02 4.7459450E-02 4.6405081E-02 4.5275915E-02
 4.4087432E-02 4.2853639E-02 4.1587081E-02 4.0298894E-02 3.8998913E-02
 3.7695728E-02 3.6396783E-02 3.5108499E-02 3.3836320E-02 3.2584861E-02
 3.1357974E-02 3.0158805E-02 2.8989904E-02 2.7853275E-02 2.6750447E-02
 2.5682520E-02 2.4650218E-02 2.3653934E-02 2.2693796E-02 2.1769678E-02
 2.0881237E-02 2.0027962E-02 1.9209180E-02 1.8424127E-02 1.7671913E-02
 1.6951572E-02 1.6262099E-02 1.5602420E-02 1.4971456E-02 1.4368105E-02
 1.3791257E-02 1.3239804E-02 1.2712660E-02 1.2208754E-02 1.1727040E-02
 1.1266497E-02 1.0826143E-02 1.0405022E-02 1.0002222E-02 9.6168667E-03
 9.2481188E-03 8.8951793E-03 8.5572740E-03 8.2336869E-03 7.9237325E-03
 7.6267496E-03 7.3421202E-03 7.0692496E-03 6.8075908E-03 6.5566148E-03
 6.3158255E-03 6.0847425E-03 5.8629261E-03 5.6499448E-03 5.4454072E-03
 5.2489345E-03 5.0601587E-03 4.8787463E-03 4.7043697E-03 4.5367209E-03
 4.3755174E-03 4.2204731E-03 4.0713260E-03 3.9278329E-03 3.7897509E-03
 3.6568597E-03 3.5289363E-03 3.4057819E-03 3.2871892E-03 3.1729895E-03
 3.0629965E-03 2.9570393E-03 2.8549586E-03 2.7565924E-03 2.6618040E-03
 2.5704452E-03 2.4823851E-03 2.3974904E-03 2.3156384E-03 2.2367132E-03
 2.1606002E-03 2.0871896E-03 2.0163795E-03 1.9480716E-03 1.8821657E-03
 1.8185764E-03
 5.9088066E-02 5.4396521E-02 4.9984828E-02 4.5848433E-02 4.1981161E-02
 3.8375501E-02 3.5022747E-02 3.1913247E-02 2.9036550E-02 2.6381610E-02
 2.3936998E-02 2.1691004E-02 1.9631850E-02 1.7747771E-02 1.6027167E-02
 1.4458715E-02 1.3031414E-02 1.1734696E-02 1.0558440E-02 9.4930287E-03
 8.5293790E-03 7.6589305E-03 6.8736630E-03 6.1661005E-03 5.5292766E-03
 4.9567372E-03 4.4425139E-03 3.9811046E-03 3.5674553E-03 3.1969203E-03
 2.8652549E-03 2.5685809E-03 2.3033603E-03 2.0663855E-03 1.8547369E-03
 1.6657733E-03 1.4971046E-03 1.3465786E-03 1.2122509E-03 1.0923783E-03
 9.8539097E-04 8.8988623E-04 8.0460164E-04 7.2841765E-04 6.6032779E-04
 5.9943908E-04 5.4495287E-04 4.9615861E-04 4.5242763E-04 4.1319878E-04
 3.7797380E-04 3.4631163E-04 3.1781825E-04 2.9214780E-04 2.6899215E-04
 2.4807849E-04 2.2916119E-04 2.1202952E-04 1.9648894E-04 1.8237339E-04
 1.6953259E-04 1.5783164E-04 1.4715322E-04 1.3739314E-04 1.2845613E-04
 1.2026114E-04 1.1273305E-04 1.0580528E-04 9.9421974E-05 9.3527982E-05
 8.8078850E-05 8.3030318E-05 7.8346471E-05 7.3991898E-05 6.9940193E-05
 6.6162953E-05 6.2634805E-05 5.9335191E-05 5.6241654E-05 5.3341060E-05
 5.0615054E-05 4.8049616E-05 4.5630888E-05 4.3347387E-05 4.1189840E-05
 3.9146344E-05 3.7209637E-05 3.5371009E-05 3.3623004E-05 3.1958858E-05
 3.0373765E-05
 5.1797628E-02 5.0938275E-02 4.9965207E-02 4.8896555E-02 4.7749050E-02
 4.6537999E-02 4.5277331E-02 4.3979626E-02 4.2656150E-02 4.1316956E-02
 3.9970968E-02 3.8626000E-02 3.7288900E-02 3.5965595E-02 3.4661151E-02
 3.3379868E-02 3.2125339E-02 3.0900508E-02 2.9707737E-02 2.8548868E-02
 2.7425280E-02 2.6337918E-02 2.5287379E-02 2.4273945E-02 2.3297606E-02
 2.2358118E-02 2.1455042E-02 2.0587768E-02 1.9755542E-02 1.8957499E-02
 1.8192699E-02 1.7460102E-02 1.6758649E-02 1.6087234E-02 1.5444732E-02
 1.4830007E-02 1.4241930E-02 1.3679381E-02 1.3141262E-02 1.2626495E-02
 1.2134031E-02 1.1662856E-02 1.1211984E-02 1.0780468E-02 1.0367407E-02
 9.9719344E-03 9.5932102E-03 9.2304498E-03 8.8829016E-03 8.5498411E-03
 8.2305958E-03 7.9245139E-03 7.6309773E-03 7.3494110E-03 7.0792558E-03
 6.8199970E-03 6.5711299E-03 6.3321861E-03 6.1027212E-03 5.8823116E-03
 5.6705503E-03 5.4670633E-03 5.2714935E-03 5.0834818E-03 4.9027116E-03
 4.7288779E-03 4.5616725E-03 4.4008228E-03 4.2460593E-03 4.0971306E-03
 3.9537894E-03 3.8158072E-03 3.6829689E-03 3.5550564E-03 3.4318741E-03
 3.3132301E-03 3.1989431E-03 3.0888289E-03 2.9827324E-03 2.8804948E-03
 2.7819579E-03 2.6869697E-03 2.5954058E-03 2.5071241E-03 2.4219984E-03
 2.3399079E-03 2.2607294E-03 2.1843601E-03 2.1106852E-03 2.0396046E-03
 1.9710218E-03
 5.7243548E-02 5.2593492E-02 4.8228990E-02 4.4144906E-02 4.0334407E-02
 3.6789197E-02 3.3499781E-02 3.0455654E-02 2.7645547E-02 2.5057631E-02
 2.2679741E-02 2.0499529E-02 1.8504670E-02 1.6682945E-02 1.5022410E-02
 1.3511480E-02 1.2138979E-02 1.0894237E-02 9.7670974E-03 8.7479455E-03
 7.8277476E-03 6.9980188E-03 6.2508392E-03 5.5788420E-03 4.9751853E-03
 4.4335430E-03 3.9480766E-03 3.5134130E-03 3.1246254E-03 2.7771960E-03
 2.4669981E-03 2.1902700E-03 1.9435866E-03 1.7238432E-03 1.5282190E-03
 1.3541700E-03 1.1993910E-03 1.0618129E-03 9.3956885E-04 8.3098758E-04
 7.3456549E-04 6.4895791E-04 5.7296501E-04 5.0551089E-04 4.4564274E-04
 3.9250846E-04 3.4534672E-04 3.0348662E-04 2.6632869E-04 2.3334021E-04
 2.0405291E-04 1.7804693E-04 1.5495102E-04 1.3443922E-04 1.1621830E-04
 1.0003345E-04 8.5654792E-05 7.2880270E-05 6.1532664E-05 5.1451047E-05
 4.2496198E-05 3.4544395E-05 2.7486723E-05 2.1221524E-05 1.5663791E-05
 1.0739112E-05 6.3741932E-06 2.5111160E-06 -9.0402619E-07 -3.9193869E-06
 -6.5794648E-06 -8.9207597E-06 -1.0976997E-05 -1.2779055E-05 -1.4353865E-05
 -1.5726650E-05 -1.6916098E-05 -1.7947099E-05 -1.8831106E-05 -1.9585519E-05
 -2.0224526E-05 -2.0763810E-05 -2.1209802E-05 -2.1574317E-05 -2.1866879E-05
 -2.2094531E-05 -2.2267333E-05 -2.2388396E-05 -2.2466034E-05 -2.2505203E-05
 -2.2509181E-05
 5.4758240E-02 5.3883743E-02 5.2889649E-02 5.1793981E-02 5.0613489E-02
 4.9363662E-02 4.8058722E-02 4.6711687E-02 4.5334347E-02 4.3937363E-02
 4.2530272E-02 4.1121554E-02 3.9718691E-02 3.8328175E-02 3.6955651E-02
 3.5605893E-02 3.4282926E-02 3.2990068E-02 3.1729985E-02 3.0504791E-02
 2.9316055E-02 2.8164903E-02 2.7052054E-02 2.5977878E-02 2.4942435E-02
 2.3945529E-02 2.2986736E-02 2.2065446E-02 2.1180915E-02 2.0332254E-02
 1.9518493E-02 1.8738572E-02 1.7991392E-02 1.7275808E-02 1.6590660E-02
 1.5934775E-02 1.5306975E-02 1.4706097E-02 1.4131007E-02 1.3580587E-02
 1.3053739E-02 1.2549412E-02 1.2066590E-02 1.1604284E-02 1.1161552E-02
 1.0737489E-02 1.0331232E-02 9.9419514E-03 9.5688598E-03 9.2112115E-03
 8.8682938E-03 8.5394187E-03 8.2239518E-03 7.9212729E-03 7.6308087E-03
 7.3520020E-03 7.0843250E-03 6.8272906E-03 6.5804124E-03 6.3432571E-03
 6.1153867E-03 5.8963960E-03 5.6859087E-03 5.4835533E-03 5.2889823E-03
 5.1018638E-03 4.9218801E-03 4.7487379E-03 4.5821448E-03 4.4218251E-03
 4.2675282E-03 4.1189981E-03 3.9760000E-03 3.8383154E-03 3.7057197E-03
 3.5780072E-03 3.4549874E-03 3.3364710E-03 3.2222751E-03 3.1122270E-03
 3.0061661E-03 2.9039378E-03 2.8053813E-03 2.7103650E-03 2.6187466E-03
 2.5303904E-03 2.4451728E-03 2.3629784E-03 2.2836777E-03 2.2071730E-03
 2.1333508E-03
 5.5260736E-02 5.0669938E-02 4.6370130E-02 4.2355165E-02 3.8617127E-02
 3.5146661E-02 3.1933215E-02 2.8965326E-02 2.6230846E-02 2.3717199E-02
 2.1411613E-02 1.9301264E-02 1.7373458E-02 1.5615737E-02 1.4016004E-02
 1.2562602E-02 1.1244358E-02 1.0050643E-02 8.9713791E-03 7.9970639E-03
 7.1187923E-03 6.3282182E-03 5.6175650E-03 4.9796179E-03 4.4076797E-03
 3.8955708E-03 3.4375933E-03 3.0285122E-03 2.6635306E-03 2.3382553E-03
 2.0486810E-03 1.7911560E-03 1.5623638E-03 1.3592979E-03 1.1792359E-03
 1.0197170E-03 8.7852415E-04 7.5366197E-04 6.4333685E-04 5.4594234E-04
 4.6003540E-04 3.8432851E-04 3.1767419E-04 2.5904455E-04 2.0752549E-04
 1.6230582E-04 1.2266335E-04 8.7954038E-05 5.7610185E-05 3.1126805E-05
 8.0572954E-06 -1.1996302E-05 -2.9384721E-05 -4.4418608E-05 -5.7371384E-05
 -6.8487709E-05 -7.7983728E-05 -8.6046719E-05 -9.2847957E-05 -9.8533856E-05
 -1.0323754E-04 -1.0707702E-04 -1.1015208E-04 -1.1255554E-04 -1.1436819E-04
 -1.1566187E-04 -1.1649986E-04 -1.1693700E-04 -1.1702418E-04 -1.1680715E-04
 -1.1632188E-04 -1.1560538E-04 -1.1468901E-04 -1.1359586E-04 -1.1235410E-04
 -1.1098618E-04 -1.0950818E-04 -1.0793866E-04 -1.0629267E-04 -1.0458488E-04
 -1.0282632E-04 -1.0102570E-04 -9.9197336E-05 -9.7344768E-05 -9.5477124E-05
 -9.3603136E-05 -9.1726528E-05 -8.9851361E-05 -8.7987239E-05 -8.6132946E-05
 -8.4295149E-05
 5.8223177E-02 5.7317406E-02 5.6283683E-02 5.5140402E-02 5.3904925E-02
 5.2593473E-02 5.1221121E-02 4.9801789E-02 4.8348188E-02 4.6871889E-02
 4.5383263E-02 4.3891571E-02 4.2404987E-02 4.0930614E-02 3.9474603E-02
 3.8042169E-02 3.6637690E-02 3.5264775E-02 3.3926327E-02 3.2624599E-02
 3.1361319E-02 3.0137690E-02 2.8954487E-02 2.7812114E-02 2.6710639E-02
 2.5649853E-02 2.4629317E-02 2.3648385E-02 2.2706274E-02 2.1802053E-02
 2.0934690E-02 2.0103082E-02 1.9306066E-02 1.8542448E-02 1.7811010E-02
 1.7110515E-02 1.6439741E-02 1.5797470E-02 1.5182514E-02 1.4593694E-02
 1.4029879E-02 1.3489966E-02 1.2972877E-02 1.2477594E-02 1.2003125E-02
 1.1548525E-02 1.1112876E-02 1.0695331E-02 1.0295045E-02 9.9112410E-03
 9.5431674E-03 9.1901049E-03 8.8513745E-03 8.5263290E-03 8.2143527E-03
 7.9148673E-03 7.6273135E-03 7.3511582E-03 7.0859105E-03 6.8310779E-03
 6.5862220E-03 6.3509000E-03 6.1247093E-03 5.9072473E-03 5.6981524E-03
 5.4970644E-03 5.3036483E-03 5.1175794E-03 4.9385512E-03 4.7662710E-03
 4.6004667E-03 4.4408571E-03 4.2872024E-03 4.1392501E-03 3.9967732E-03
 3.8595442E-03 3.7273641E-03 3.6000144E-03 3.4773124E-03 3.3590717E-03
 3.2451171E-03 3.1352697E-03 3.0293767E-03 2.9272824E-03 2.8288332E-03
 2.7338911E-03 2.6423233E-03 2.5539913E-03 2.4687762E-03 2.3865586E-03
 2.3072185E-03
 5.3171098E-02 4.8659906E-02 4.4443492E-02 4.0514320E-02 3.6863144E-02
 3.3479430E-02 3.0351589E-02 2.7467318E-02 2.4813814E-02 2.2378007E-02
 2.0146793E-02 1.8107129E-02 1.6246233E-02 1.4551633E-02 1.3011280E-02
 1.1613621E-02 1.0347608E-02 9.2027681E-03 8.1691882E-03 7.2375429E-03
 6.3990923E-03 5.6456658E-03 4.9696518E-03 4.3639988E-03 3.8221614E-03
 3.3381088E-03 2.9062838E-03 2.5215852E-03 2.1793428E-03 1.8752835E-03
 1.6055095E-03 1.3664833E-03 1.1549824E-03 9.6809719E-04 8.0319063E-04
 6.5788534E-04 5.3003960E-04 4.1772905E-04 3.1922699E-04 2.3298334E-04
 1.5761399E-04 9.1883099E-05 3.4685316E-05 -1.4959625E-05 -5.7929094E-05
 -9.4999290E-05 -1.2686328E-04 -1.5413029E-04 -1.7734552E-04 -1.9699009E-04
 -2.1348908E-04 -2.2722085E-04 -2.3852034E-04 -2.4768017E-04 -2.5496286E-04
 -2.6059774E-04 -2.6478904E-04 -2.6771682E-04 -2.6953805E-04 -2.7039732E-04
 -2.7041385E-04 -2.6970042E-04 -2.6835190E-04 -2.6645535E-04 -2.6408426E-04
 -2.6130711E-04 -2.5818092E-04 -2.5476015E-04 -2.5108896E-04 -2.4720826E-04
 -2.4315278E-04 -2.3895752E-04 -2.3464723E-04 -2.3024820E-04 -2.2578181E-04
 -2.2126980E-04 -2.1672380E-04 -2.1216524E-04 -2.0760314E-04 -2.0304965E-04
 -1.9851515E-04 -1.9401111E-04 -1.8954321E-04 -1.8511772E-04 -1.8074331E-04
 -1.7642316E-04 -1.7216067E-04 -1.6796358E-04 -1.6383210E-04 -1.5976955E-04
 -1.5578041E-04
 6.2253278E-02 6.1289899E-02 6.0188524E-02 5.8968790E-02 5.7649367E-02
 5.6247834E-02 5.4780595E-02 5.3262796E-02 5.1708318E-02 5.0129704E-02
 4.8538230E-02 4.6943888E-02 4.5355469E-02 4.3780599E-02 4.2225812E-02
 4.0696658E-02 3.9197762E-02 3.7732892E-02 3.6305085E-02 3.4916691E-02
 3.3569466E-02 3.2264631E-02 3.1002957E-02 2.9784821E-02 2.8610243E-02
 2.7478965E-02 2.6390491E-02 2.5344102E-02 2.4338948E-02 2.3374021E-02
 2.2448216E-02 2.1560358E-02 2.0709205E-02 1.9893497E-02 1.9111935E-02
 1.8363215E-02 1.7646054E-02 1.6959157E-02 1.6301282E-02 1.5671192E-02
 1.5067685E-02 1.4489604E-02 1.3935822E-02 1.3405260E-02 1.2896878E-02
 1.2409680E-02 1.1942708E-02 1.1495054E-02 1.1065839E-02 1.0654231E-02
 1.0259441E-02 9.8807095E-03 9.5173148E-03 9.1685737E-03 8.8338293E-03
 8.5124690E-03 8.2038986E-03 7.9075554E-03 7.6228976E-03 7.3494203E-03
 7.0866439E-03 6.8340972E-03 6.5913550E-03 6.3579832E-03 6.1335843E-03
 5.9177908E-03 5.7102256E-03 5.5105551E-03 5.3184419E-03 5.1335692E-03
 4.9556466E-03 4.7843759E-03 4.6194969E-03 4.4607390E-03 4.3078549E-03
 4.1606091E-03 4.0187691E-03 3.8821232E-03 3.7504553E-03 3.6235717E-03
 3.5012809E-03 3.3834006E-03 3.2697634E-03 3.1601889E-03 3.0545264E-03
 2.9526264E-03 2.8543295E-03 2.7595079E-03 2.6680250E-03 2.5797496E-03
 2.4945610E-03
 5.1022436E-02 4.6610393E-02 4.2493705E-02 3.8663391E-02 3.5109036E-02
 3.1819168E-02 2.8781541E-02 2.5983397E-02 2.3411663E-02 2.1053163E-02
 1.8894779E-02 1.6923552E-02 1.5126843E-02 1.3492349E-02 1.2008231E-02
 1.0663137E-02 9.4462363E-03 8.3472664E-03 7.3565193E-03 6.4648618E-03
 5.6637479E-03 4.9451781E-03 4.3017110E-03 3.7264503E-03 3.2130021E-03
 2.7554729E-03 2.3484372E-03 1.9869183E-03 1.6663630E-03 1.3826065E-03
 1.1318597E-03 9.1067521E-04 7.1592705E-04 5.4478814E-04 3.9470219E-04
 2.6336469E-04 1.4870483E-04 4.8860595E-05 -3.7836737E-05 -1.1287849E-04
 -1.7760324E-04 -2.3319953E-04 -2.8073124E-04 -3.2114246E-04 -3.5527401E-04
 -3.8387204E-04 -4.0759909E-04 -4.2704178E-04 -4.4272008E-04 -4.5509700E-04
 -4.6457746E-04 -4.7152286E-04 -4.7625270E-04 -4.7904637E-04 -4.8015546E-04
 -4.7979617E-04 -4.7816287E-04 -4.7542655E-04 -4.7173962E-04 -4.6723531E-04
 -4.6202843E-04 -4.5622475E-04 -4.4991207E-04 -4.4317439E-04 -4.3608370E-04
 -4.2869788E-04 -4.2107617E-04 -4.1326394E-04 -4.0530582E-04 -3.9724077E-04
 -3.8909930E-04 -3.8091329E-04 -3.7270540E-04 -3.6449940E-04 -3.5631584E-04
 -3.4817145E-04 -3.4008196E-04 -3.3205951E-04 -3.2411772E-04 -3.1626489E-04
 -3.0851117E-04 -3.0086303E-04 -2.9332482E-04 -2.8590747E-04 -2.7861228E-04
 -2.7144150E-04 -2.6440393E-04 -2.5749762E-04 -2.5072528E-04 -2.4408946E-04
 -2.3759079E-04
 6.6895463E-02 6.5837815E-02 6.4632408E-02 6.3300878E-02 6.1863761E-02
 6.0340371E-02 5.8748610E-02 5.7104930E-02 5.5424314E-02 5.3720221E-02
 5.2004654E-02 5.0288204E-02 4.8580121E-02 4.6888374E-02 4.5219772E-02
 4.3580037E-02 4.1973908E-02 4.0405251E-02 3.8877107E-02 3.7391823E-02
 3.5951138E-02 3.4556217E-02 3.3207763E-02 3.1906083E-02 3.0651100E-02
 2.9442485E-02 2.8279621E-02 2.7161708E-02 2.6087794E-02 2.5056774E-02
 2.4067447E-02 2.3118544E-02 2.2208726E-02 2.1336647E-02 2.0500923E-02
 1.9700171E-02 1.8933017E-02 1.8198093E-02 1.7494084E-02 1.6819676E-02
 1.6173605E-02 1.5554642E-02 1.4961605E-02 1.4393335E-02 1.3848750E-02
 1.3326792E-02 1.2826439E-02 1.2346731E-02 1.1886746E-02 1.1445593E-02
 1.1022438E-02 1.0616468E-02 1.0226927E-02 9.8530743E-03 9.4942264E-03
 9.1497153E-03 8.8189105E-03 8.5012065E-03 8.1960391E-03 7.9028625E-03
 7.6211579E-03 7.3504229E-03 7.0901955E-03 6.8400200E-03 6.5994738E-03
 6.3681495E-03 6.1456468E-03 5.9316121E-03 5.7256725E-03 5.5275010E-03
 5.3367801E-03 5.1531885E-03 4.9764416E-03 4.8062545E-03 4.6423594E-03
 4.4845045E-03 4.3324395E-03 4.1859308E-03 4.0447596E-03 3.9087073E-03
 3.7775771E-03 3.6511610E-03 3.5292800E-03 3.4117603E-03 3.2984186E-03
 3.1890986E-03 3.0836412E-03 2.9818993E-03 2.8837216E-03 2.7889805E-03
 2.6975397E-03
 4.8874114E-02 4.4575110E-02 4.0567901E-02 3.6842562E-02 3.3388074E-02
 3.0192658E-02 2.7243953E-02 2.4529258E-02 2.2035656E-02 1.9750195E-02
 1.7660031E-02 1.5752502E-02 1.4015250E-02 1.2436266E-02 1.1003978E-02
 9.7072972E-03 8.5356301E-03 7.4789408E-03 6.5277275E-03 5.6730513E-03
 4.9065384E-03 4.2203576E-03 3.6072193E-03 3.0603688E-03 2.5735472E-03
 2.1409856E-03 1.7573780E-03 1.4178552E-03 1.1179682E-03 8.5365231E-04
 6.2120863E-04 4.1727815E-04 2.3881490E-04 8.3067251E-05 -5.2450236E-05
 -1.6997321E-04 -2.7151505E-04 -3.5887997E-04 -4.3368337E-04 -4.9737206E-04
 -5.5123639E-04 -5.9642910E-04 -6.3397217E-04 -6.6478259E-04 -6.8966794E-04
 -7.0934615E-04 -7.2445930E-04 -7.3557039E-04 -7.4317836E-04 -7.4772973E-04
 -7.4961229E-04 -7.4917660E-04 -7.4672460E-04 -7.4252900E-04 -7.3682511E-04
 -7.2982552E-04 -7.2171557E-04 -7.1266014E-04 -7.0280023E-04 -6.9226447E-04
 -6.8116479E-04 -6.6960184E-04 -6.5766054E-04 -6.4541789E-04 -6.3294050E-04
 -6.2028889E-04 -6.0751667E-04 -5.9466565E-04 -5.8178144E-04 -5.6889589E-04
 -5.5603986E-04 -5.4324325E-04 -5.3052831E-04 -5.1791582E-04 -5.0542492E-04
 -4.9307011E-04 -4.8086629E-04 -4.6882653E-04 -4.5695770E-04 -4.4527117E-04
 -4.3377158E-04 -4.2246917E-04 -4.1136728E-04 -4.0046705E-04 -3.8977779E-04
 -3.7929814E-04 -3.6903084E-04 -3.5897703E-04 -3.4914011E-04 -3.3951647E-04
 -3.3010799E-04
 7.2179034E-02 7.0983164E-02 6.9632314E-02 6.8150461E-02 6.6560142E-02
 6.4882323E-02 6.3136265E-02 6.1339553E-02 5.9508007E-02 5.7655778E-02
 5.5795405E-02 5.3937830E-02 5.2092597E-02 5.0267857E-02 4.8470523E-02
 4.6706397E-02 4.4980202E-02 4.3295782E-02 4.1656137E-02 4.0063538E-02
 3.8519613E-02 3.7025440E-02 3.5581600E-02 3.4188274E-02 3.2845281E-02
 3.1552136E-02 3.0308124E-02 2.9112309E-02 2.7963612E-02 2.6860820E-02
 2.5802601E-02 2.4787581E-02 2.3814315E-02 2.2881344E-02 2.1987189E-02
 2.1130364E-02 2.0309402E-02 1.9522851E-02 1.8769303E-02 1.8047363E-02
 1.7355684E-02 1.6692970E-02 1.6057948E-02 1.5449405E-02 1.4866184E-02
 1.4307150E-02 1.3771236E-02 1.3257412E-02 1.2764683E-02 1.2292127E-02
 1.1838832E-02 1.1403946E-02 1.0986650E-02 1.0586160E-02 1.0201744E-02
 9.8326914E-03 9.4783222E-03 9.1379965E-03 8.8110957E-03 8.4970454E-03
 8.1952792E-03 7.9052765E-03 7.6265256E-03 7.3585408E-03 7.1008699E-03
 6.8530748E-03 6.6147321E-03 6.3854507E-03 6.1648348E-03 5.9525394E-03
 5.7482095E-03 5.5515156E-03 5.3621447E-03 5.1797880E-03 5.0041634E-03
 4.8350007E-03 4.6720267E-03 4.5149950E-03 4.3636733E-03 4.2178179E-03
 4.0772241E-03 3.9416729E-03 3.8109694E-03 3.6849191E-03 3.5633384E-03
 3.4460558E-03 3.3329022E-03 3.2237154E-03 3.1183427E-03 3.0166400E-03
 2.9184583E-03
 4.6787057E-02 4.2605091E-02 3.8707640E-02 3.5084732E-02 3.1725559E-02
 2.8618684E-02 2.5752164E-02 2.3113756E-02 2.0691009E-02 1.8471425E-02
 1.6442575E-02 1.4592179E-02 1.2908235E-02 1.1379047E-02 9.9933306E-03
 8.7402416E-03 7.6094223E-03 6.5910346E-03 5.6757601E-03 4.8548295E-03
 4.1200207E-03 3.4636434E-03 2.8785388E-03 2.3580703E-03 1.8960950E-03
 1.4869489E-03 1.1254256E-03 8.0675306E-04 5.2656932E-04 2.8089510E-04
 6.6109475E-05 -1.2107096E-04 -2.8362212E-04 -4.2422989E-04 -5.4531754E-04
 -6.4906472E-04 -7.3743204E-04 -8.1217365E-04 -8.7486190E-04 -9.2690106E-04
 -9.6954603E-04 -1.0039116E-03 -1.0309952E-03 -1.0516791E-03 -1.0667483E-03
 -1.0769023E-03 -1.0827567E-03 -1.0848581E-03 -1.0836942E-03 -1.0796897E-03
 -1.0732260E-03 -1.0646374E-03 -1.0542211E-03 -1.0422381E-03 -1.0289152E-03
 -1.0144588E-03 -9.9904928E-04 -9.8284299E-04 -9.6598093E-04 -9.4858551E-04
 -9.3076692E-04 -9.1261702E-04 -8.9422317E-04 -8.7565917E-04 -8.5698889E-04
 -8.3827123E-04 -8.1955461E-04 -8.0088392E-04 -7.8230223E-04 -7.6383713E-04
 -7.4552250E-04 -7.2738272E-04 -7.0944050E-04 -6.9171801E-04 -6.7422970E-04
 -6.5698940E-04 -6.4001337E-04 -6.2330998E-04 -6.0688698E-04 -5.9075624E-04
 -5.7491835E-04 -5.5938249E-04 -5.4415036E-04 -5.2922557E-04 -5.1461172E-04
 -5.0030672E-04 -4.8631238E-04 -4.7262933E-04 -4.5925711E-04 -4.4619304E-04
 -4.3343802E-04
 7.8119367E-02 7.6738812E-02 7.5200208E-02 7.3529631E-02 7.1751289E-02
 6.9887444E-02 6.7958392E-02 6.5982461E-02 6.3976049E-02 6.1953727E-02
 5.9928294E-02 5.7910919E-02 5.5911213E-02 5.3937387E-02 5.1996339E-02
 5.0093811E-02 4.8234459E-02 4.6422012E-02 4.4659358E-02 4.2948619E-02
 4.1291285E-02 3.9688271E-02 3.8140014E-02 3.6646530E-02 3.5207488E-02
 3.3822242E-02 3.2489922E-02 3.1209443E-02 2.9979587E-02 2.8798986E-02
 2.7666183E-02 2.6579663E-02 2.5537863E-02 2.4539197E-02 2.3582067E-02
 2.2664879E-02 2.1786055E-02 2.0944040E-02 2.0137327E-02 1.9364426E-02
 1.8623902E-02 1.7914351E-02 1.7234445E-02 1.6582869E-02 1.5958393E-02
 1.5359812E-02 1.4785978E-02 1.4235791E-02 1.3708194E-02 1.3202196E-02
 1.2716824E-02 1.2251166E-02 1.1804347E-02 1.1375532E-02 1.0963921E-02
 1.0568769E-02 1.0189335E-02 9.8249381E-03 9.4749164E-03 9.1386503E-03
 8.8155363E-03 8.5050045E-03 8.2065193E-03 7.9195546E-03 7.6436200E-03
 7.3782527E-03 7.1229930E-03 6.8774200E-03 6.6411179E-03 6.4137066E-03
 6.1948150E-03 5.9840768E-03 5.7811704E-03 5.5857557E-03 5.3975359E-03
 5.2162195E-03 5.0415122E-03 4.8731621E-03 4.7109001E-03 4.5544831E-03
 4.4036820E-03 4.2582699E-03 4.1180309E-03 3.9827679E-03 3.8522747E-03
 3.7263734E-03 3.6048810E-03 3.4876305E-03 3.3744529E-03 3.2651895E-03
 3.1596965E-03
 4.4813067E-02 4.0740650E-02 3.6943439E-02 3.3412304E-02 3.0137260E-02
 2.7107680E-02 2.4312366E-02 2.1739746E-02 1.9377969E-02 1.7215045E-02
 1.5239002E-02 1.3437936E-02 1.1800181E-02 1.0314322E-02 8.9693191E-03
 7.7545419E-03 6.6598151E-03 5.6754658E-03 4.7923210E-03 4.0017390E-03
 3.2956179E-03 2.6663768E-03 2.1069583E-03 1.6108218E-03 1.1719133E-03
 7.8465301E-04 4.4391636E-04 1.4500751E-04 -1.1636192E-04 -3.4410358E-04
 -5.4177130E-04 -7.1258715E-04 -8.5946830E-04 -9.8504662E-04 -1.0916938E-03
 -1.1815421E-03 -1.2565089E-03 -1.3183076E-03 -1.3684743E-03 -1.4083781E-03
 -1.4392457E-03 -1.4621650E-03 -1.4781046E-03 -1.4879289E-03 -1.4924024E-03
 -1.4922037E-03 -1.4879375E-03 -1.4801360E-03 -1.4692749E-03 -1.4557668E-03
 -1.4399871E-03 -1.4222615E-03 -1.4028779E-03 -1.3820926E-03 -1.3601333E-03
 -1.3371961E-03 -1.3134605E-03 -1.2890804E-03 -1.2641931E-03 -1.2389194E-03
 -1.2133680E-03 -1.1876319E-03 -1.1617938E-03 -1.1359270E-03 -1.1100975E-03
 -1.0843587E-03 -1.0587638E-03 -1.0333552E-03 -1.0081731E-03 -9.8324637E-04
 -9.5860707E-04 -9.3428284E-04 -9.1029063E-04 -8.8665442E-04 -8.6338632E-04
 -8.4050134E-04 -8.1801316E-04 -7.9592643E-04 -7.7425281E-04 -7.5299927E-04
 -7.3216832E-04 -7.1176363E-04 -6.9178944E-04 -6.7224365E-04 -6.5313088E-04
 -6.3444627E-04 -6.1619090E-04 -5.9836119E-04 -5.8095646E-04 -5.6397432E-04
 -5.4740807E-04
 8.4727310E-02 8.3117299E-02 8.1350707E-02 7.9455100E-02 7.7455834E-02
 7.5376019E-02 7.3236547E-02 7.1056202E-02 6.8851672E-02 6.6637695E-02
 6.4427182E-02 6.2231310E-02 6.0059674E-02 5.7920400E-02 5.5820283E-02
 5.3764928E-02 5.1758841E-02 4.9805589E-02 4.7907870E-02 4.6067618E-02
 4.4286150E-02 4.2564176E-02 4.0901933E-02 3.9299268E-02 3.7755638E-02
 3.6270220E-02 3.4841977E-02 3.3469632E-02 3.2151803E-02 3.0886965E-02
 2.9673498E-02 2.8509732E-02 2.7393956E-02 2.6324458E-02 2.5299493E-02
 2.4317341E-02 2.3376305E-02 2.2474708E-02 2.1610929E-02 2.0783370E-02
 1.9990487E-02 1.9230785E-02 1.8502828E-02 1.7805219E-02 1.7136628E-02
 1.6495772E-02 1.5881417E-02 1.5292382E-02 1.4727546E-02 1.4185828E-02
 1.3666207E-02 1.3167686E-02 1.2689331E-02 1.2230249E-02 1.1789585E-02
 1.1366526E-02 1.0960290E-02 1.0570141E-02 1.0195372E-02 9.8353084E-03
 9.4893165E-03 9.1567803E-03 8.8371169E-03 8.5297702E-03 8.2342150E-03
 7.9499464E-03 7.6764813E-03 7.4133691E-03 7.1601612E-03 6.9164461E-03
 6.6818325E-03 6.4559290E-03 6.2383846E-03 6.0288510E-03 5.8269938E-03
 5.6325085E-03 5.4450873E-03 5.2644410E-03 5.0903093E-03 4.9224133E-03
 4.7605201E-03 4.6043815E-03 4.4537717E-03 4.3084724E-03 4.1682725E-03
 4.0329825E-03 3.9023997E-03 3.7763475E-03 3.6546492E-03 3.5371457E-03
 3.4236696E-03
 4.2988710E-02 3.9008327E-02 3.5293911E-02 3.1837642E-02 2.8630685E-02
 2.5663383E-02 2.2925379E-02 2.0405782E-02 1.8093310E-02 1.5976446E-02
 1.4043601E-02 1.2283192E-02 1.0683805E-02 9.2342459E-03 7.9236478E-03
 6.7415354E-03 5.6778584E-03 4.7230530E-03 3.8680432E-03 3.1042758E-03
 2.4237288E-03 1.8188943E-03 1.2827849E-03 8.0892787E-04 3.9133045E-04
 2.4477340E-05 -2.9669862E-04 -5.7683530E-04 -8.2016637E-04 -1.0305498E-03
 -1.2114880E-03 -1.3661576E-03 -1.4974296E-03 -1.6078915E-03 -1.6998792E-03
 -1.7754870E-03 -1.8365973E-03 -1.8848933E-03 -1.9218840E-03 -1.9489137E-03
 -1.9671854E-03 -1.9777697E-03 -1.9816158E-03 -1.9795727E-03 -1.9723943E-03
 -1.9607460E-03 -1.9452233E-03 -1.9263536E-03 -1.9045979E-03 -1.8803739E-03
 -1.8540437E-03 -1.8259352E-03 -1.7963341E-03 -1.7654921E-03 -1.7336363E-03
 -1.7009653E-03 -1.6676547E-03 -1.6338599E-03 -1.5997182E-03 -1.5653518E-03
 -1.5308685E-03 -1.4963620E-03 -1.4619172E-03 -1.4276076E-03 -1.3934978E-03
 -1.3596467E-03 -1.3261016E-03 -1.2929068E-03 -1.2601035E-03 -1.2277233E-03
 -1.1957939E-03 -1.1643439E-03 -1.1333902E-03 -1.1029525E-03 -1.0730479E-03
 -1.0436864E-03 -1.0148803E-03 -9.8663894E-04 -9.5896219E-04 -9.3186239E-04
 -9.0533675E-04 -8.7938871E-04 -8.5402065E-04 -8.2922768E-04 -8.0501172E-04
 -7.8136474E-04 -7.5828843E-04 -7.3577691E-04 -7.1382319E-04 -6.9242081E-04
 -6.7156553E-04
 9.2019483E-02 9.0139024E-02 8.8107355E-02 8.5952953E-02 8.3701789E-02
 8.1377424E-02 7.9001054E-02 7.6591641E-02 7.4165940E-02 7.1738727E-02
 6.9322862E-02 6.6929407E-02 6.4567864E-02 6.2246189E-02 5.9970997E-02
 5.7747699E-02 5.5580594E-02 5.3473029E-02 5.1427476E-02 4.9445644E-02
 4.7528613E-02 4.5676876E-02 4.3890439E-02 4.2168919E-02 4.0511563E-02
 3.8917340E-02 3.7384987E-02 3.5913050E-02 3.4499940E-02 3.3143934E-02
 3.1843252E-02 3.0596046E-02 2.9400436E-02 2.8254544E-02 2.7156485E-02
 2.6104381E-02 2.5096405E-02 2.4130728E-02 2.3205616E-02 2.2319337E-02
 2.1470238E-02 2.0656705E-02 1.9877186E-02 1.9130189E-02 1.8414274E-02
 1.7728070E-02 1.7070251E-02 1.6439548E-02 1.5834752E-02 1.5254708E-02
 1.4698310E-02 1.4164495E-02 1.3652259E-02 1.3160640E-02 1.2688723E-02
 1.2235631E-02 1.1800534E-02 1.1382635E-02 1.0981173E-02 1.0595442E-02
 1.0224738E-02 9.8684123E-03 9.5258458E-03 9.1964379E-03 8.8796234E-03
 8.5748676E-03 8.2816519E-03 7.9994928E-03 7.7279136E-03 7.4664713E-03
 7.2147497E-03 6.9723330E-03 6.7388481E-03 6.5139141E-03 6.2971818E-03
 6.0883267E-03 5.8870129E-03 5.6929523E-03 5.5058389E-03 5.3253979E-03
 5.1513687E-03 4.9834922E-03 4.8215254E-03 4.6652406E-03 4.5144088E-03
 4.3688249E-03 4.2282813E-03 4.0925872E-03 3.9615533E-03 3.8350017E-03
 3.7127654E-03
 4.1335821E-02 3.7422884E-02 3.3768404E-02 3.0365955E-02 2.7207851E-02
 2.4285350E-02 2.1588806E-02 1.9107912E-02 1.6831836E-02 1.4749412E-02
 1.2849322E-02 1.1120198E-02 9.5507810E-03 8.1300065E-03 6.8471041E-03
 5.6916727E-03 4.6537239E-03 3.7237457E-03 2.8927065E-03 2.1520939E-03
 1.4939213E-03 9.1071776E-04 3.9553290E-04 -5.8073336E-05 -4.5605493E-04
 -8.0389151E-04 -1.1066137E-03 -1.3688235E-03 -1.5947201E-03 -1.7881265E-03
 -1.9525109E-03 -2.0910173E-03 -2.2064866E-03 -2.3014809E-03 -2.3783054E-03
 -2.4390342E-03 -2.4855251E-03 -2.5194457E-03 -2.5422848E-03 -2.5553734E-03
 -2.5599031E-03 -2.5569308E-03 -2.5474015E-03 -2.5321543E-03 -2.5119388E-03
 -2.4874185E-03 -2.4591850E-03 -2.4277628E-03 -2.3936173E-03 -2.3571621E-03
 -2.3187643E-03 -2.2787503E-03 -2.2374110E-03 -2.1950000E-03 -2.1517461E-03
 -2.1078533E-03 -2.0634970E-03 -2.0188370E-03 -1.9740143E-03 -1.9291505E-03
 -1.8843617E-03 -1.8397397E-03 -1.7953735E-03 -1.7513364E-03 -1.7076962E-03
 -1.6645131E-03 -1.6218346E-03 -1.5797047E-03 -1.5381661E-03 -1.4972501E-03
 -1.4569850E-03 -1.4173962E-03 -1.3785011E-03 -1.3403198E-03 -1.3028673E-03
 -1.2661482E-03 -1.2301785E-03 -1.1949573E-03 -1.1604936E-03 -1.1267894E-03
 -1.0938401E-03 -1.0616487E-03 -1.0302125E-03 -9.9952531E-04 -9.6958491E-04
 -9.4038196E-04 -9.1191218E-04 -8.8416546E-04 -8.5713482E-04 -8.3081279E-04
 -8.0518599E-04
 0.1000256 9.7837441E-02 9.5506370E-02 9.3061306E-02 9.0528511E-02
 8.7931715E-02 8.5292213E-02 8.2628958E-02 7.9958707E-02 7.7296108E-02
 7.4653909E-02 7.2043009E-02 6.9472708E-02 6.6950761E-02 6.4483546E-02
 6.2076241E-02 5.9732888E-02 5.7456572E-02 5.5249508E-02 5.3113136E-02
 5.1048271E-02 4.9055148E-02 4.7133505E-02 4.5282714E-02 4.3501768E-02
 4.1789390E-02 4.0144090E-02 3.8564164E-02 3.7047833E-02 3.5593148E-02
 3.4198120E-02 3.2860704E-02 3.1578843E-02 3.0350465E-02 2.9173516E-02
 2.8045952E-02 2.6965784E-02 2.5931038E-02 2.4939822E-02 2.3990273E-02
 2.3080599E-02 2.2209059E-02 2.1373983E-02 2.0573752E-02 1.9806834E-02
 1.9071732E-02 1.8367028E-02 1.7691363E-02 1.7043427E-02 1.6421976E-02
 1.5825827E-02 1.5253842E-02 1.4704935E-02 1.4178082E-02 1.3672290E-02
 1.3186634E-02 1.2720206E-02 1.2272161E-02 1.1841691E-02 1.1428018E-02
 1.1030413E-02 1.0648173E-02 1.0280636E-02 9.9271517E-03 9.5871314E-03
 9.2599951E-03 8.9451857E-03 8.6421883E-03 8.3505018E-03 8.0696512E-03
 7.7991895E-03 7.5386735E-03 7.2877025E-03 7.0458744E-03 6.8128230E-03
 6.5881857E-03 6.3716257E-03 6.1628204E-03 5.9614461E-03 5.7672164E-03
 5.5798511E-03 5.3990674E-03 5.2246191E-03 5.0562490E-03 4.8937271E-03
 4.7368221E-03 4.5853215E-03 4.4390201E-03 4.2977133E-03 4.1612200E-03
 4.0293494E-03
 3.9866451E-02 3.5991985E-02 3.2371219E-02 2.8998923E-02 2.5868332E-02
 2.2971408E-02 2.0299049E-02 1.7841334E-02 1.5587713E-02 1.3527221E-02
 1.1648676E-02 9.9407956E-03 8.3923740E-03 6.9923713E-03 5.7300264E-03
 4.5949360E-03 3.5771041E-03 2.6670052E-03 1.8555968E-03 1.1343563E-03
 4.9528934E-04 -6.9078407E-05 -5.6570116E-04 -1.0010138E-03 -1.3809655E-03
 -1.7110284E-03 -1.9962220E-03 -2.2411370E-03 -2.4499584E-03 -2.6264961E-03
 -2.7742039E-03 -2.8962144E-03 -2.9953534E-03 -3.0741740E-03 -3.1349694E-03
 -3.1798065E-03 -3.2105346E-03 -3.2288174E-03 -3.2361392E-03 -3.2338304E-03
 -3.2230802E-03 -3.2049492E-03 -3.1803811E-03 -3.1502226E-03 -3.1152233E-03
 -3.0760567E-03 -3.0333162E-03 -2.9875343E-03 -2.9391833E-03 -2.8886867E-03
 -2.8364158E-03 -2.7827050E-03 -2.7278520E-03 -2.6721174E-03 -2.6157384E-03
 -2.5589194E-03 -2.5018509E-03 -2.4446934E-03 -2.3875902E-03 -2.3306776E-03
 -2.2740627E-03 -2.2178476E-03 -2.1621212E-03 -2.1069651E-03 -2.0524412E-03
 -1.9986150E-03 -1.9455358E-03 -1.8932485E-03 -1.8417916E-03 -1.7911979E-03
 -1.7414934E-03 -1.6927043E-03 -1.6448480E-03 -1.5979387E-03 -1.5519866E-03
 -1.5070034E-03 -1.4629920E-03 -1.4199544E-03 -1.3778957E-03 -1.3368099E-03
 -1.2966935E-03 -1.2575469E-03 -1.2193582E-03 -1.1821202E-03 -1.1458265E-03
 -1.1104651E-03 -1.0760241E-03 -1.0424929E-03 -1.0098576E-03 -9.7810559E-04
 -9.4722246E-04
 0.1087923 0.1062618 0.1035986 0.1008319 9.7988017E-02
 9.5090747E-02 9.2161365E-02 8.9218795E-02 8.6279646E-02 8.3358467E-02
 8.0467798E-02 7.7618368E-02 7.4819244E-02 7.2077915E-02 6.9400519E-02
 6.6791929E-02 6.4255923E-02 6.1795268E-02 5.9411898E-02 5.7106957E-02
 5.4880947E-02 5.2733805E-02 5.0664987E-02 4.8673566E-02 4.6758253E-02
 4.4917502E-02 4.3149553E-02 4.1452456E-02 3.9824154E-02 3.8262483E-02
 3.6765214E-02 3.5330083E-02 3.3954807E-02 3.2637130E-02 3.1374786E-02
 3.0165548E-02 2.9007243E-02 2.7897730E-02 2.6834959E-02 2.5816903E-02
 2.4841622E-02 2.3907242E-02 2.3011949E-02 2.2154003E-02 2.1331746E-02
 2.0543573E-02 1.9787949E-02 1.9063406E-02 1.8368546E-02 1.7702036E-02
 1.7062597E-02 1.6449003E-02 1.5860103E-02 1.5294781E-02 1.4751989E-02
 1.4230725E-02 1.3730027E-02 1.3248983E-02 1.2786728E-02 1.2342438E-02
 1.1915326E-02 1.1504641E-02 1.1109681E-02 1.0729754E-02 1.0364219E-02
 1.0012466E-02 9.6739056E-03 9.3479799E-03 9.0341559E-03 8.7319259E-03
 8.4408196E-03 8.1603602E-03 7.8901174E-03 7.6296688E-03 7.3786192E-03
 7.1365922E-03 6.9032088E-03 6.6781417E-03 6.4610438E-03 6.2516010E-03
 6.0495208E-03 5.8545056E-03 5.6662872E-03 5.4845894E-03 5.3091738E-03
 5.1397877E-03 4.9762055E-03 4.8182080E-03 4.6655792E-03 4.5181173E-03
 4.3756333E-03
 3.8588952E-02 3.4721300E-02 3.1105772E-02 2.7738025E-02 2.4611933E-02
 2.1719901E-02 1.9053129E-02 1.6601883E-02 1.4355717E-02 1.2303699E-02
 1.0434641E-02 8.7372130E-03 7.2001508E-03 5.8123381E-03 4.5629283E-03
 3.4414367E-03 2.4377834E-03 1.5423670E-03 7.4607244E-04 4.0312494E-05
 -5.8296096E-04 -1.1312747E-03 -1.6116218E-03 -2.0304723E-03 -2.3938064E-03
 -2.7071191E-03 -2.9754485E-03 -3.2034016E-03 -3.3951798E-03 -3.5545989E-03
 -3.6851291E-03 -3.7899090E-03 -3.8717759E-03 -3.9332877E-03 -3.9767521E-03
 -4.0042438E-03 -4.0176255E-03 -4.0185694E-03 -4.0085758E-03 -3.9889868E-03
 -3.9610048E-03 -3.9257025E-03 -3.8840442E-03 -3.8368872E-03 -3.7850004E-03
 -3.7290656E-03 -3.6696978E-03 -3.6074431E-03 -3.5427862E-03 -3.4761627E-03
 -3.4079610E-03 -3.3385244E-03 -3.2681639E-03 -3.1971531E-03 -3.1257349E-03
 -3.0541259E-03 -2.9825212E-03 -2.9110922E-03 -2.8399872E-03 -2.7693452E-03
 -2.6992832E-03 -2.6299036E-03 -2.5612982E-03 -2.4935487E-03 -2.4267258E-03
 -2.3608883E-03 -2.2960855E-03 -2.2323686E-03 -2.1697695E-03 -2.1083201E-03
 -2.0480440E-03 -1.9889660E-03 -1.9311018E-03 -1.8744599E-03 -1.8190489E-03
 -1.7648711E-03 -1.7119347E-03 -1.6602301E-03 -1.6097585E-03 -1.5605141E-03
 -1.5124863E-03 -1.4656652E-03 -1.4200384E-03 -1.3755964E-03 -1.3323220E-03
 -1.2902011E-03 -1.2492167E-03 -1.2093516E-03 -1.1705884E-03 -1.1329091E-03
 -1.0962914E-03
 0.1183842 0.1154779 0.1124504 0.1093309 0.1061459
 0.1029191 9.9671990E-02 9.6423231E-02 9.3189403E-02 8.9984901E-02
 8.6822100E-02 8.3711468E-02 8.0661863E-02 7.7680491E-02 7.4773200E-02
 7.1944572E-02 6.9198035E-02 6.6536061E-02 6.3960232E-02 6.1471358E-02
 5.9069600E-02 5.6754574E-02 5.4525387E-02 5.2380804E-02 5.0319217E-02
 4.8338763E-02 4.6437386E-02 4.4612836E-02 4.2862795E-02 4.1184809E-02
 3.9576389E-02 3.8035035E-02 3.6558211E-02 3.5143435E-02 3.3788227E-02
 3.2490153E-02 3.1246832E-02 3.0055944E-02 2.8915253E-02 2.7822562E-02
 2.6775772E-02 2.5772847E-02 2.4811840E-02 2.3890862E-02 2.3008130E-02
 2.2161912E-02 2.1350559E-02 2.0572495E-02 1.9826209E-02 1.9110277E-02
 1.8423321E-02 1.7764032E-02 1.7131176E-02 1.6523553E-02 1.5940048E-02
 1.5379579E-02 1.4841127E-02 1.4323712E-02 1.3826407E-02 1.3348339E-02
 1.2888662E-02 1.2446577E-02 1.2021326E-02 1.1612182E-02 1.1218453E-02
 1.0839496E-02 1.0474670E-02 1.0123392E-02 9.7850841E-03 9.4592124E-03
 9.1452636E-03 8.8427439E-03 8.5511832E-03 8.2701361E-03 7.9991762E-03
 7.7379025E-03 7.4859220E-03 7.2428626E-03 7.0083695E-03 6.7821108E-03
 6.5637645E-03 6.3530104E-03 6.1495663E-03 5.9531420E-03 5.7634762E-03
 5.5803005E-03 5.4033692E-03 5.2324575E-03 5.0673266E-03 4.9077645E-03
 4.7535598E-03
 3.7513629E-02 3.3618961E-02 2.9978201E-02 2.6587537E-02 2.3441182E-02
 2.0531733E-02 1.7850446E-02 1.5387578E-02 1.3132596E-02 1.1074447E-02
 9.2017855E-03 7.5031132E-03 5.9669819E-03 4.5820940E-03 3.3374270E-03
 2.2223252E-03 1.2265485E-03 3.4034569E-04 -4.4553133E-04 -1.1397947E-03
 -1.7506039E-03 -2.2855825E-03 -2.7518128E-03 -3.1558459E-03 -3.5037287E-03
 -3.8010196E-03 -4.0528136E-03 -4.2637680E-03 -4.4381274E-03 -4.5797559E-03
 -4.6921605E-03 -4.7785160E-03 -4.8416960E-03 -4.8842975E-03 -4.9086586E-03
 -4.9168868E-03 -4.9108802E-03 -4.8923395E-03 -4.8627970E-03 -4.8236274E-03
 -4.7760606E-03 -4.7212020E-03 -4.6600406E-03 -4.5934645E-03 -4.5222645E-03
 -4.4471505E-03 -4.3687620E-03 -4.2876638E-03 -4.2043654E-03 -4.1193189E-03
 -4.0329336E-03 -3.9455704E-03 -3.8575495E-03 -3.7691626E-03 -3.6806613E-03
 -3.5922790E-03 -3.5042120E-03 -3.4166437E-03 -3.3297329E-03 -3.2436156E-03
 -3.1584189E-03 -3.0742458E-03 -2.9911951E-03 -2.9093428E-03 -2.8287640E-03
 -2.7495152E-03 -2.6716476E-03 -2.5952049E-03 -2.5202222E-03 -2.4467239E-03
 -2.3747373E-03 -2.3042739E-03 -2.2353497E-03 -2.1679664E-03 -2.1021306E-03
 -2.0378409E-03 -1.9750898E-03 -1.9138742E-03 -1.8541842E-03 -1.7960027E-03
 -1.7393206E-03 -1.6841203E-03 -1.6303837E-03 -1.5780901E-03 -1.5272197E-03
 -1.4777518E-03 -1.4296635E-03 -1.3829285E-03 -1.3375261E-03 -1.2934306E-03
 -1.2506169E-03
 0.1288847 0.1255691 0.1221444 0.1186399 0.1150823
 0.1114956 0.1079009 0.1043173 0.1007611 9.7246543E-02
 9.3785919E-02 9.0389475E-02 8.7065786E-02 8.3821803E-02 8.0663055E-02
 7.7593781E-02 7.4617073E-02 7.1735047E-02 6.8948895E-02 6.6259079E-02
 6.3665360E-02 6.1167005E-02 5.8762744E-02 5.6450963E-02 5.4229710E-02
 5.2096777E-02 5.0049763E-02 4.8086099E-02 4.6203144E-02 4.4398155E-02
 4.2668350E-02 4.1010939E-02 3.9423142E-02 3.7902202E-02 3.6445420E-02
 3.5050113E-02 3.3713698E-02 3.2433644E-02 3.1207519E-02 3.0032942E-02
 2.8907634E-02 2.7829409E-02 2.6796147E-02 2.5805824E-02 2.4856508E-02
 2.3946341E-02 2.3073548E-02 2.2236440E-02 2.1433393E-02 2.0662872E-02
 1.9923408E-02 1.9213598E-02 1.8532112E-02 1.7877679E-02 1.7249091E-02
 1.6645204E-02 1.6064920E-02 1.5507190E-02 1.4971032E-02 1.4455506E-02
 1.3959713E-02 1.3482789E-02 1.3023938E-02 1.2582376E-02 1.2157364E-02
 1.1748217E-02 1.1354247E-02 1.0974835E-02 1.0609360E-02 1.0257252E-02
 9.9179661E-03 9.5909666E-03 9.2757624E-03 8.9718672E-03 8.6788274E-03
 8.3962139E-03 8.1236092E-03 7.8606121E-03 7.6068458E-03 7.3619485E-03
 7.1255807E-03 6.8973983E-03 6.6771023E-03 6.4643780E-03 6.2589389E-03
 6.0605067E-03 5.8688130E-03 5.6836163E-03 5.5046678E-03 5.3317295E-03
 5.1645823E-03
 3.6657378E-02 3.2699462E-02 2.9000642E-02 2.5557321E-02 2.2363774E-02
 1.9412544E-02 1.6694736E-02 1.4200391E-02 1.1918726E-02 9.8383976E-03
 7.9477606E-03 6.2350133E-03 4.6884106E-03 3.2963571E-03 2.0475546E-03
 9.3108392E-04 -6.3539941E-05 -9.4629504E-04 -1.7266396E-03 -2.4134766E-03
 -3.0151396E-03 -3.5394123E-03 -3.9935196E-03 -4.3841433E-03 -4.7174520E-03
 -4.9991114E-03 -5.2343197E-03 -5.4278267E-03 -5.5839634E-03 -5.7066754E-03
 -5.7995426E-03 -5.8658179E-03 -5.9084394E-03 -5.9300698E-03 -5.9331092E-03
 -5.9197247E-03 -5.8918707E-03 -5.8513032E-03 -5.7996064E-03 -5.7382034E-03
 -5.6683738E-03 -5.5912645E-03 -5.5079074E-03 -5.4192250E-03 -5.3260545E-03
 -5.2291346E-03 -5.1291347E-03 -5.0266515E-03 -4.9222205E-03 -4.8163165E-03
 -4.7093723E-03 -4.6017668E-03 -4.4938396E-03 -4.3858928E-03 -4.2781979E-03
 -4.1709938E-03 -4.0644896E-03 -3.9588767E-03 -3.8543134E-03 -3.7509492E-03
 -3.6489076E-03 -3.5482990E-03 -3.4492188E-03 -3.3517450E-03 -3.2559498E-03
 -3.1618902E-03 -3.0696138E-03 -2.9791582E-03 -2.8905557E-03 -2.8038297E-03
 -2.7189958E-03 -2.6360650E-03 -2.5550427E-03 -2.4759297E-03 -2.3987205E-03
 -2.3234091E-03 -2.2499827E-03 -2.1784287E-03 -2.1087285E-03 -2.0408628E-03
 -1.9748088E-03 -1.9105464E-03 -1.8480439E-03 -1.7872772E-03 -1.7282213E-03
 -1.6708428E-03 -1.6151152E-03 -1.5610042E-03 -1.5084770E-03 -1.4575074E-03
 -1.4080588E-03
 0.1403958 0.1366366 0.1327804 0.1288571 0.1248936
 0.1209141 0.1169401 0.1129905 0.1090818 0.1052281
 0.1014416 9.7732291E-02 9.4108567E-02 9.0577058E-02 8.7142982E-02
 8.3810225E-02 8.0581494E-02 7.7458508E-02 7.4442074E-02 7.1532212E-02
 6.8728298E-02 6.6029154E-02 6.3433111E-02 6.0938165E-02 5.8541946E-02
 5.6241874E-02 5.4035168E-02 5.1918916E-02 4.9890108E-02 4.7945682E-02
 4.6082530E-02 4.4297561E-02 4.2587705E-02 4.0949937E-02 3.9381288E-02
 3.7878837E-02 3.6439762E-02 3.5061315E-02 3.3740841E-02 3.2475781E-02
 3.1263661E-02 3.0102113E-02 2.8988851E-02 2.7921701E-02 2.6898580E-02
 2.5917487E-02 2.4976522E-02 2.4073858E-02 2.3207765E-02 2.2376595E-02
 2.1578768E-02 2.0812785E-02 2.0077219E-02 1.9370710E-02 1.8691963E-02
 1.8039756E-02 1.7412914E-02 1.6810315E-02 1.6230905E-02 1.5673680E-02
 1.5137679E-02 1.4621978E-02 1.4125723E-02 1.3648073E-02 1.3188243E-02
 1.2745493E-02 1.2319098E-02 1.1908378E-02 1.1512685E-02 1.1131393E-02
 1.0763930E-02 1.0409715E-02 1.0068226E-02 9.7389389E-03 9.4213681E-03
 9.1150533E-03 8.8195400E-03 8.5344138E-03 8.2592536E-03 7.9936776E-03
 7.7373195E-03 7.4898149E-03 7.2508347E-03 7.0200437E-03 6.7971321E-03
 6.5818061E-03 6.3737743E-03 6.1727744E-03 5.9785340E-03 5.7908092E-03
 5.6093531E-03
 3.6048021E-02 3.1987451E-02 2.8194617E-02 2.4665894E-02 2.1395376E-02
 1.8375332E-02 1.5596522E-02 1.3048588E-02 1.0720321E-02 8.5999323E-03
 6.6753309E-03 4.9342746E-03 3.3645842E-03 1.9542603E-03 6.9160888E-04
 -4.3465634E-04 -1.4353618E-03 -2.3208051E-03 -3.1007405E-03 -3.7843415E-03
 -4.3801940E-03 -4.8963125E-03 -5.3401357E-03 -5.7185413E-03 -6.0378783E-03
 -6.3039828E-03 -6.5222052E-03 -6.6974442E-03 -6.8341638E-03 -6.9364379E-03
 -7.0079677E-03 -7.0521114E-03 -7.0719216E-03 -7.0701535E-03 -7.0493044E-03
 -7.0116306E-03 -6.9591650E-03 -6.8937428E-03 -6.8170256E-03 -6.7305001E-03
 -6.6355099E-03 -6.5332609E-03 -6.4248405E-03 -6.3112238E-03 -6.1932881E-03
 -6.0718190E-03 -5.9475205E-03 -5.8210278E-03 -5.6929020E-03 -5.5636489E-03
 -5.4337252E-03 -5.3035296E-03 -5.1734224E-03 -5.0437185E-03 -4.9147052E-03
 -4.7866302E-03 -4.6597118E-03 -4.5341481E-03 -4.4101053E-03 -4.2877323E-03
 -4.1671563E-03 -4.0484886E-03 -3.9318218E-03 -3.8172340E-03 -3.7047938E-03
 -3.5945557E-03 -3.4865562E-03 -3.3808365E-03 -3.2774168E-03 -3.1763173E-03
 -3.0775419E-03 -2.9811000E-03 -2.8869861E-03 -2.7951910E-03 -2.7057054E-03
 -2.6185107E-03 -2.5335876E-03 -2.4509127E-03 -2.3704604E-03 -2.2922016E-03
 -2.2161063E-03 -2.1421406E-03 -2.0702693E-03 -2.0004576E-03 -1.9326714E-03
 -1.8668667E-03 -1.8030100E-03 -1.7410582E-03 -1.6809736E-03 -1.6227154E-03
 -1.5662434E-03
 0.1530383 0.1487999 0.1444764 0.1400983 0.1356932
 0.1312857 0.1268978 0.1225484 0.1182542 0.1140295
 0.1098861 0.1058341 0.1018815 9.8034754E-02 9.4298676E-02
 9.0676807E-02 8.7171450E-02 8.3783910E-02 8.0514528E-02 7.7362888E-02
 7.4327916E-02 7.1407974E-02 6.8600938E-02 6.5904357E-02 6.3315444E-02
 6.0831193E-02 5.8448408E-02 5.6163773E-02 5.3973928E-02 5.1875435E-02
 4.9864847E-02 4.7938742E-02 4.6093740E-02 4.4326525E-02 4.2633839E-02
 4.1012507E-02 3.9459448E-02 3.7971675E-02 3.6546323E-02 3.5180610E-02
 3.3871867E-02 3.2617535E-02 3.1415157E-02 3.0262385E-02 2.9156974E-02
 2.8096780E-02 2.7079752E-02 2.6103938E-02 2.5167473E-02 2.4268588E-02
 2.3405595E-02 2.2576885E-02 2.1780919E-02 2.1016248E-02 2.0281484E-02
 1.9575309E-02 1.8896464E-02 1.8243760E-02 1.7616052E-02 1.7012266E-02
 1.6431374E-02 1.5872389E-02 1.5334392E-02 1.4816473E-02 1.4317804E-02
 1.3837578E-02 1.3375014E-02 1.2929399E-02 1.2500022E-02 1.2086220E-02
 1.1687369E-02 1.1302846E-02 1.0932096E-02 1.0574549E-02 1.0229690E-02
 9.8970151E-03 9.5760394E-03 9.2663104E-03 8.9673866E-03 8.6788489E-03
 8.4003005E-03 8.1313532E-03 7.8716455E-03 7.6208231E-03 7.3785563E-03
 7.1445135E-03 6.9183866E-03 6.6998941E-03 6.4887395E-03 6.2846630E-03
 6.0873949E-03
 3.5728917E-02 3.1522002E-02 2.7595060E-02 2.3944221E-02 2.0563219E-02
 1.7443860E-02 1.4576377E-02 1.1949840E-02 9.5524406E-03 7.3717870E-03
 5.3951833E-03 3.6097963E-03 2.0028804E-03 5.6188327E-04 -7.2540535E-04
 -1.8707586E-03 -2.8854664E-03 -3.7802558E-03 -4.5652781E-03 -5.2500810E-03
 -5.8435956E-03 -6.3541560E-03 -6.7894985E-03 -7.1567786E-03 -7.4625984E-03
 -7.7130366E-03 -7.9136631E-03 -8.0695814E-03 -8.1854546E-03 -8.2655326E-03
 -8.3136838E-03 -8.3334278E-03 -8.3279572E-03 -8.3001694E-03 -8.2526840E-03
 -8.1878789E-03 -8.1078969E-03 -8.0146715E-03 -7.9099610E-03 -7.7953367E-03
 -7.6722181E-03 -7.5418912E-03 -7.4055032E-03 -7.2640898E-03 -7.1185851E-03
 -6.9698193E-03 -6.8185446E-03 -6.6654314E-03 -6.5110736E-03 -6.3560144E-03
 -6.2007266E-03 -6.0456363E-03 -5.8911210E-03 -5.7375142E-03 -5.5851107E-03
 -5.4341750E-03 -5.2849315E-03 -5.1375804E-03 -4.9922904E-03 -4.8492188E-03
 -4.7084889E-03 -4.5702094E-03 -4.4344719E-03 -4.3013529E-03 -4.1709100E-03
 -4.0431982E-03 -3.9182487E-03 -3.7960878E-03 -3.6767311E-03 -3.5601901E-03
 -3.4464628E-03 -3.3355460E-03 -3.2274255E-03 -3.1220822E-03 -3.0194952E-03
 -2.9196392E-03 -2.8224811E-03 -2.7279900E-03 -2.6361258E-03 -2.5468508E-03
 -2.4601261E-03 -2.3759056E-03 -2.2941451E-03 -2.2147987E-03 -2.1378193E-03
 -2.0631573E-03 -1.9907693E-03 -1.9205981E-03 -1.8526022E-03 -1.7867265E-03
 -1.7229228E-03
 0.1669518 0.1621973 0.1573687 0.1524978 0.1476129
 0.1427396 0.1379001 0.1331141 0.1283984 0.1237672
 0.1192327 0.1148047 0.1104910 0.1062977 0.1022295
 9.8289505E-02 9.4479501E-02 9.0800405E-02 8.7252073E-02 8.3833613E-02
 8.0543458E-02 7.7379487E-02 7.4339084E-02 7.1419321E-02 6.8616949E-02
 6.5928496E-02 6.3350342E-02 6.0878750E-02 5.8509957E-02 5.6240123E-02
 5.4065444E-02 5.1982157E-02 4.9986538E-02 4.8074957E-02 4.6243858E-02
 4.4489779E-02 4.2809390E-02 4.1199427E-02 3.9656792E-02 3.8178485E-02
 3.6761615E-02 3.5403419E-02 3.4101255E-02 3.2852579E-02 3.1654991E-02
 3.0506171E-02 2.9403916E-02 2.8346134E-02 2.7330808E-02 2.6356049E-02
 2.5420029E-02 2.4521029E-02 2.3657396E-02 2.2827562E-02 2.2030046E-02
 2.1263430E-02 2.0526361E-02 1.9817553E-02 1.9135786E-02 1.8479904E-02
 1.7848793E-02 1.7241394E-02 1.6656715E-02 1.6093794E-02 1.5551716E-02
 1.5029626E-02 1.4526681E-02 1.4042108E-02 1.3575145E-02 1.3125075E-02
 1.2691225E-02 1.2272929E-02 1.1869580E-02 1.1480568E-02 1.1105325E-02
 1.0743322E-02 1.0394034E-02 1.0056961E-02 9.7316355E-03 9.4176000E-03
 9.1144266E-03 8.8216951E-03 8.5390126E-03 8.2659964E-03 8.0022858E-03
 7.7475351E-03 7.5013977E-03 7.2635710E-03 7.0337369E-03 6.8116034E-03
 6.5968875E-03
 3.5764385E-02 3.1361867E-02 2.7255334E-02 2.3440562E-02 1.9910771E-02
 1.6657149E-02 1.3669242E-02 1.0935376E-02 8.4429765E-03 6.1788703E-03
 4.1295942E-03 2.2815533E-03 6.2126922E-04 -8.6451502E-04 -2.1886842E-03
 -3.3636459E-03 -4.4012922E-03 -5.3129126E-03 -6.1091892E-03 -6.8001626E-03
 -7.3952232E-03 -7.9031382E-03 -8.3320402E-03 -8.6894566E-03 -8.9823399E-03
 -9.2170816E-03 -9.3995593E-03 -9.5351487E-03 -9.6287737E-03 -9.6849222E-03
 -9.7076800E-03 -9.7007779E-03 -9.6675949E-03 -9.6112043E-03 -9.5343888E-03
 -9.4396714E-03 -9.3293339E-03 -9.2054335E-03 -9.0698414E-03 -8.9242328E-03
 -8.7701250E-03 -8.6088851E-03 -8.4417379E-03 -8.2697868E-03 -8.0940276E-03
 -7.9153469E-03 -7.7345469E-03 -7.5523336E-03 -7.3693432E-03 -7.1861488E-03
 -7.0032519E-03 -6.8210983E-03 -6.6400883E-03 -6.4605707E-03 -6.2828520E-03
 -6.1072023E-03 -5.9338589E-03 -5.7630213E-03 -5.5948650E-03 -5.4295440E-03
 -5.2671800E-03 -5.1078834E-03 -4.9517374E-03 -4.7988100E-03 -4.6491576E-03
 -4.5028236E-03 -4.3598325E-03 -4.2202007E-03 -4.0839356E-03 -3.9510354E-03
 -3.8214896E-03 -3.6952810E-03 -3.5723848E-03 -3.4527723E-03 -3.3364093E-03
 -3.2232588E-03 -3.1132719E-03 -3.0064110E-03 -2.9026221E-03 -2.8018539E-03
 -2.7040567E-03 -2.6091703E-03 -2.5171423E-03 -2.4279135E-03 -2.3414239E-03
 -2.2576130E-03 -2.1764259E-03 -2.0977978E-03 -2.0216706E-03 -1.9479835E-03
 -1.8766768E-03
 0.1822932 0.1769850 0.1716125 0.1662087 0.1608036
 0.1554236 0.1500920 0.1448290 0.1396520 0.1345754
 0.1296115 0.1247700 0.1200589 0.1154838 0.1110492
 0.1067577 0.1026109 9.8609082E-02 9.4751678E-02 9.1037281E-02
 8.7463811E-02 8.4028639E-02 8.0728643E-02 7.7560388E-02 7.4520119E-02
 7.1603902E-02 6.8807647E-02 6.6127174E-02 6.3558273E-02 6.1096732E-02
 5.8738329E-02 5.6478936E-02 5.4314464E-02 5.2240960E-02 5.0254546E-02
 4.8351455E-02 4.6528060E-02 4.4780836E-02 4.3106426E-02 4.1501567E-02
 3.9963156E-02 3.8488202E-02 3.7073836E-02 3.5717342E-02 3.4416109E-02
 3.3167649E-02 3.1969581E-02 3.0819647E-02 2.9715687E-02 2.8655650E-02
 2.7637582E-02 2.6659615E-02 2.5719982E-02 2.4816982E-02 2.3949029E-02
 2.3114584E-02 2.2312194E-02 2.1540472E-02 2.0798098E-02 2.0083824E-02
 1.9396458E-02 1.8734846E-02 1.8097926E-02 1.7484643E-02 1.6894026E-02
 1.6325144E-02 1.5777085E-02 1.5249013E-02 1.4740099E-02 1.4249582E-02
 1.3776717E-02 1.3320793E-02 1.2881140E-02 1.2457115E-02 1.2048093E-02
 1.1653502E-02 1.1272766E-02 1.0905354E-02 1.0550747E-02 1.0208459E-02
 9.8780189E-03 9.5589729E-03 9.2508942E-03 8.9533664E-03 8.6659985E-03
 8.3884057E-03 8.1202323E-03 7.8611234E-03 7.6107453E-03 7.3687872E-03
 7.1349316E-03
 3.6246505E-02 3.1592105E-02 2.7253745E-02 2.3226777E-02 1.9503830E-02
 1.6075363E-02 1.2930083E-02 1.0055419E-02 7.4378471E-03 5.0632386E-03
 2.9171631E-03 9.8507688E-04 -7.4742548E-04 -2.2944913E-03 -3.6698624E-03
 -4.8867669E-03 -5.9578628E-03 -6.8951701E-03 -7.7100573E-03 -8.4132040E-03
 -9.0146009E-03 -9.5235733E-03 -9.9487761E-03 -1.0298219E-02 -1.0579301E-02
 -1.0798835E-02 -1.0963081E-02 -1.1077773E-02 -1.1148158E-02 -1.1179034E-02
 -1.1174765E-02 -1.1139337E-02 -1.1076362E-02 -1.0989132E-02 -1.0880627E-02
 -1.0753547E-02 -1.0610340E-02 -1.0453212E-02 -1.0284166E-02 -1.0105001E-02
 -9.9173421E-03 -9.7226538E-03 -9.5222518E-03 -9.3173143E-03 -9.1089057E-03
 -8.8979751E-03 -8.6853746E-03 -8.4718624E-03 -8.2581099E-03 -8.0447262E-03
 -7.8322385E-03 -7.6211239E-03 -7.4117947E-03 -7.2046192E-03 -6.9999150E-03
 -6.7979619E-03 -6.5990011E-03 -6.4032380E-03 -6.2108478E-03 -6.0219821E-03
 -5.8367625E-03 -5.6552915E-03 -5.4776459E-03 -5.3038895E-03 -5.1340689E-03
 -4.9682134E-03 -4.8063393E-03 -4.6484550E-03 -4.4945553E-03 -4.3446203E-03
 -4.1986331E-03 -4.0565585E-03 -3.9183646E-03 -3.7839995E-03 -3.6534236E-03
 -3.5265796E-03 -3.4034105E-03 -3.2838597E-03 -3.1678628E-03 -3.0553516E-03
 -2.9462636E-03 -2.8405271E-03 -2.7380737E-03 -2.6388287E-03 -2.5427244E-03
 -2.4496862E-03 -2.3596394E-03 -2.2725179E-03 -2.1882439E-03 -2.1067460E-03
 -2.0279523E-03
 0.1992339 0.1933351 0.1873792 0.1814016 0.1754338
 0.1695040 0.1636366 0.1578529 0.1521708 0.1466056
 0.1411695 0.1358727 0.1307229 0.1257259 0.1208855
 0.1162044 0.1116835 0.1073228 0.1031212 9.9076912E-02
 9.5187232E-02 9.1449007E-02 8.7858617E-02 8.4412105E-02 8.1105210E-02
 7.7933490E-02 7.4892372E-02 7.1977206E-02 6.9183342E-02 6.6506132E-02
 6.3940935E-02 6.1483212E-02 5.9128523E-02 5.6872543E-02 5.4711036E-02
 5.2639920E-02 5.0655250E-02 4.8753209E-02 4.6930145E-02 4.5182545E-02
 4.3507032E-02 4.1900367E-02 4.0359467E-02 3.8881373E-02 3.7463278E-02
 3.6102485E-02 3.4796432E-02 3.3542670E-02 3.2338861E-02 3.1182794E-02
 3.0072358E-02 2.9005529E-02 2.7980400E-02 2.6995134E-02 2.6048010E-02
 2.5137367E-02 2.4261627E-02 2.3419296E-02 2.2608943E-02 2.1829210E-02
 2.1078814E-02 2.0356501E-02 1.9661117E-02 1.8991524E-02 1.8346664E-02
 1.7725527E-02 1.7127126E-02 1.6550556E-02 1.5994914E-02 1.5459363E-02
 1.4943109E-02 1.4445373E-02 1.3965430E-02 1.3502568E-02 1.3056120E-02
 1.2625455E-02 1.2209955E-02 1.1809037E-02 1.1422131E-02 1.1048716E-02
 1.0688270E-02 1.0340302E-02 1.0004344E-02 9.6799461E-03 9.3666753E-03
 9.0641184E-03 8.7718749E-03 8.4895696E-03 8.2168384E-03 7.9533262E-03
 7.6986947E-03
 3.7303325E-02 3.2332338E-02 2.7701652E-02 2.3406286E-02 1.9438278E-02
 1.5787292E-02 1.2441093E-02 9.3860691E-03 6.6075698E-03 4.0903105E-03
 1.8186873E-03 -2.2301376E-04 -2.0503458E-03 -3.6785768E-03 -5.1225200E-03
 -6.3964324E-03 -7.5139520E-03 -8.4880199E-03 -9.3308762E-03 -1.0054015E-02
 -1.0668190E-02 -1.1183433E-02 -1.1609063E-02 -1.1953699E-02 -1.2225309E-02
 -1.2431228E-02 -1.2578196E-02 -1.2672393E-02 -1.2719474E-02 -1.2724606E-02
 -1.2692503E-02 -1.2627454E-02 -1.2533364E-02 -1.2413781E-02 -1.2271922E-02
 -1.2110698E-02 -1.1932751E-02 -1.1740462E-02 -1.1535993E-02 -1.1321279E-02
 -1.1098074E-02 -1.0867953E-02 -1.0632331E-02 -1.0392480E-02 -1.0149535E-02
 -9.9045178E-03 -9.6583385E-03 -9.4118025E-03 -9.1656325E-03 -8.9204675E-03
 -8.6768717E-03 -8.4353453E-03 -8.1963204E-03 -7.9601826E-03 -7.7272598E-03
 -7.4978461E-03 -7.2721825E-03 -7.0504765E-03 -6.8329070E-03 -6.6196211E-03
 -6.4107338E-03 -6.2063425E-03 -6.0065170E-03 -5.8113118E-03 -5.6207594E-03
 -5.4348828E-03 -5.2536805E-03 -5.0771483E-03 -4.9052653E-03 -4.7380035E-03
 -4.5753242E-03 -4.4171778E-03 -4.2635156E-03 -4.1142763E-03 -3.9693965E-03
 -3.8288063E-03 -3.6924325E-03 -3.5602001E-03 -3.4320292E-03 -3.3078371E-03
 -3.1875456E-03 -3.0710644E-03 -2.9583112E-03 -2.8492007E-03 -2.7436439E-03
 -2.6415519E-03 -2.5428415E-03 -2.4474259E-03 -2.3552149E-03 -2.2661272E-03
 -2.1800769E-03
 0.2179532 0.2114296 0.2048526 0.1982602 0.1916867
 0.1851622 0.1787128 0.1723613 0.1661268 0.1600253
 0.1540697 0.1482705 0.1426355 0.1371706 0.1318796
 0.1267647 0.1218268 0.1170653 0.1124789 0.1080650
 0.1038206 9.9742107E-02 9.5825255E-02 9.2065610E-02 8.8458389E-02
 8.4998637E-02 8.1681289E-02 7.8501195E-02 7.5453252E-02 7.2532326E-02
 6.9733351E-02 6.7051373E-02 6.4481534E-02 6.2019106E-02 5.9659503E-02
 5.7398275E-02 5.5231128E-02 5.3153906E-02 5.1162671E-02 4.9253590E-02
 4.7423009E-02 4.5667425E-02 4.3983474E-02 4.2367965E-02 4.0817846E-02
 3.9330199E-02 3.7902240E-02 3.6531318E-02 3.5214901E-02 3.3950586E-02
 3.2736082E-02 3.1569198E-02 3.0447861E-02 2.9370081E-02 2.8333981E-02
 2.7337762E-02 2.6379716E-02 2.5458213E-02 2.4571693E-02 2.3718694E-02
 2.2897804E-02 2.2107668E-02 2.1347031E-02 2.0614650E-02 1.9909373E-02
 1.9230098E-02 1.8575758E-02 1.7945349E-02 1.7337902E-02 1.6752500E-02
 1.6188277E-02 1.5644372E-02 1.5120002E-02 1.4614389E-02 1.4126803E-02
 1.3656553E-02 1.3202957E-02 1.2765382E-02 1.2343209E-02 1.1935849E-02
 1.1542752E-02 1.1163363E-02 1.0797177E-02 1.0443695E-02 1.0102440E-02
 9.7729610E-03 9.4548166E-03 9.1475984E-03 8.8508930E-03 8.5643232E-03
 8.2875118E-03
 3.9108571E-02 3.3746552E-02 2.8753331E-02 2.4123833E-02 1.9849628E-02
 1.5919633E-02 1.2320632E-02 9.0378541E-03 6.0553746E-03 3.3565511E-03
 9.2438323E-04 -1.2582547E-03 -3.2083150E-03 -4.9424400E-03 -6.4767688E-03
 -7.8268349E-03 -9.0074940E-03 -1.0032838E-02 -1.0916189E-02 -1.1670061E-02
 -1.2306156E-02 -1.2835390E-02 -1.3267901E-02 -1.3613067E-02 -1.3879557E-02
 -1.4075345E-02 -1.4207769E-02 -1.4283547E-02 -1.4308832E-02 -1.4289242E-02
 -1.4229901E-02 -1.4135482E-02 -1.4010224E-02 -1.3857987E-02 -1.3682266E-02
 -1.3486223E-02 -1.3272732E-02 -1.3044375E-02 -1.2803493E-02 -1.2552192E-02
 -1.2292367E-02 -1.2025725E-02 -1.1753792E-02 -1.1477944E-02 -1.1199404E-02
 -1.0919269E-02 -1.0638515E-02 -1.0358011E-02 -1.0078522E-02 -9.8007349E-03
 -9.5252441E-03 -9.2525743E-03 -8.9831883E-03 -8.7174820E-03 -8.4558018E-03
 -8.1984457E-03 -7.9456586E-03 -7.6976554E-03 -7.4546062E-03 -7.2166584E-03
 -6.9839205E-03 -6.7564789E-03 -6.5343971E-03 -6.3177110E-03 -6.1064437E-03
 -5.9006060E-03 -5.7001775E-03 -5.5051390E-03 -5.3154528E-03 -5.1310700E-03
 -4.9519371E-03 -4.7779884E-03 -4.6091527E-03 -4.4453479E-03 -4.2864969E-03
 -4.1325069E-03 -3.9832867E-03 -3.8387445E-03 -3.6987774E-03 -3.5632928E-03
 -3.4321835E-03 -3.3053497E-03 -3.1826883E-03 -3.0640929E-03 -2.9494648E-03
 -2.8386964E-03 -2.7316883E-03 -2.6283357E-03 -2.5285373E-03 -2.4321938E-03
 -2.3392043E-03
 0.2386267 0.2314502 0.2242187 0.2169738 0.2097528
 0.2025886 0.1955100 0.1885414 0.1817038 0.1750144
 0.1684872 0.1621332 0.1559610 0.1499765 0.1441837
 0.1385848 0.1331804 0.1279698 0.1229513 0.1181219
 0.1134781 0.1090159 0.1047306 0.1006172 9.6670337E-02
 9.2884630E-02 8.9254476E-02 8.5774228E-02 8.2438275E-02 7.9241015E-02
 7.6176904E-02 7.3240533E-02 7.0426606E-02 6.7729972E-02 6.5145634E-02
 6.2668741E-02 6.0294628E-02 5.8018778E-02 5.5836897E-02 5.3744826E-02
 5.1738583E-02 4.9814358E-02 4.7968511E-02 4.6197552E-02 4.4498175E-02
 4.2867191E-02 4.1301589E-02 3.9798472E-02 3.8355086E-02 3.6968820E-02
 3.5637178E-02 3.4357771E-02 3.3128340E-02 3.1946722E-02 3.0810865E-02
 2.9718811E-02 2.8668689E-02 2.7658727E-02 2.6687223E-02 2.5752576E-02
 2.4853237E-02 2.3987740E-02 2.3154700E-02 2.2352761E-02 2.1580663E-02
 2.0837197E-02 2.0121187E-02 1.9431543E-02 1.8767197E-02 1.8127136E-02
 1.7510414E-02 1.6916092E-02 1.6343301E-02 1.5791178E-02 1.5258932E-02
 1.4745791E-02 1.4251003E-02 1.3773880E-02 1.3313727E-02 1.2869900E-02
 1.2441789E-02 1.2028774E-02 1.1630308E-02 1.1245824E-02 1.0874806E-02
 1.0516752E-02 1.0171166E-02 9.8376004E-03 9.5155910E-03 9.2047248E-03
 8.9045847E-03
 4.1891787E-02 3.6053881E-02 3.0617077E-02 2.5576707E-02 2.0924225E-02
 1.6648000E-02 1.2733919E-02 9.1660330E-03 5.9270496E-03 2.9988035E-03
 3.6268315E-04 -2.0000874E-03 -4.1081267E-03 -5.9797205E-03 -7.6326220E-03
 -9.0839099E-03 -1.0349927E-02 -1.1446173E-02 -1.2387300E-02 -1.3187068E-02
 -1.3858343E-02 -1.4413125E-02 -1.4862553E-02 -1.5216932E-02 -1.5485780E-02
 -1.5677864E-02 -1.5801232E-02 -1.5863260E-02 -1.5870700E-02 -1.5829716E-02
 -1.5745930E-02 -1.5624458E-02 -1.5469953E-02 -1.5286640E-02 -1.5078345E-02
 -1.4848534E-02 -1.4600340E-02 -1.4336593E-02 -1.4059846E-02 -1.3772396E-02
 -1.3476309E-02 -1.3173442E-02 -1.2865455E-02 -1.2553837E-02 -1.2239918E-02
 -1.1924881E-02 -1.1609779E-02 -1.1295546E-02 -1.0983001E-02 -1.0672878E-02
 -1.0365811E-02 -1.0062356E-02 -9.7629987E-03 -9.4681513E-03 -9.1781747E-03
 -8.8933725E-03 -8.6139990E-03 -8.3402647E-03 -8.0723362E-03 -7.8103547E-03
 -7.5544207E-03 -7.3046079E-03 -7.0609646E-03 -6.8235151E-03 -6.5922644E-03
 -6.3672019E-03 -6.1482927E-03 -5.9354967E-03 -5.7287537E-03 -5.5279965E-03
 -5.3331479E-03 -5.1441197E-03 -4.9608205E-03 -4.7831503E-03 -4.6109990E-03
 -4.4442634E-03 -4.2828298E-03 -4.1265790E-03 -3.9753933E-03 -3.8291542E-03
 -3.6877410E-03 -3.5510338E-03 -3.4189082E-03 -3.2912432E-03 -3.1679200E-03
 -3.0488134E-03 -2.9338098E-03 -2.8227875E-03 -2.7156342E-03 -2.6122322E-03
 -2.5124659E-03
 0.2614072 0.2535608 0.2456503 0.2377218 0.2298166
 0.2219710 0.2142171 0.2065821 0.1990892 0.1917576
 0.1846029 0.1776374 0.1708705 0.1643089 0.1579570
 0.1518172 0.1458903 0.1401755 0.1346707 0.1293730
 0.1242784 0.1193825 0.1146801 0.1101659 0.1058340
 0.1016784 9.7693078E-02 9.3871884E-02 9.0208679E-02 8.6697355E-02
 8.3331868E-02 8.0106325E-02 7.7014953E-02 7.4052148E-02 7.1212448E-02
 6.8490580E-02 6.5881461E-02 6.3380167E-02 6.0982019E-02 5.8682475E-02
 5.6477204E-02 5.4362051E-02 5.2333035E-02 5.0386366E-02 4.8518416E-02
 4.6725724E-02 4.5004986E-02 4.3353043E-02 4.1766889E-02 4.0243667E-02
 3.8780645E-02 3.7375212E-02 3.6024895E-02 3.4727320E-02 3.3480242E-02
 3.2281514E-02 3.1129092E-02 3.0021017E-02 2.8955426E-02 2.7930556E-02
 2.6944710E-02 2.5996264E-02 2.5083698E-02 2.4205517E-02 2.3360327E-02
 2.2546798E-02 2.1763628E-02 2.1009609E-02 2.0283565E-02 1.9584373E-02
 1.8910976E-02 1.8262330E-02 1.7637480E-02 1.7035469E-02 1.6455408E-02
 1.5896443E-02 1.5357737E-02 1.4838521E-02 1.4338024E-02 1.3855527E-02
 1.3390338E-02 1.2941788E-02 1.2509249E-02 1.2092099E-02 1.1689753E-02
 1.1301654E-02 1.0927252E-02 1.0566038E-02 1.0217511E-02 9.8811965E-03
 9.5566288E-03
 4.5947380E-02 3.9538857E-02 3.3566393E-02 2.8026573E-02 2.2911401E-02
 1.8209184E-02 1.3905204E-02 9.9825170E-03 6.4224782E-03 3.2053438E-03
 3.1075443E-04 -2.2819219E-03 -4.5932112E-03 -6.6433139E-03 -8.4518697E-03
 -1.0037806E-02 -1.1419230E-02 -1.2613338E-02 -1.3636381E-02 -1.4503622E-02
 -1.5229338E-02 -1.5826836E-02 -1.6308472E-02 -1.6685668E-02 -1.6968980E-02
 -1.7168121E-02 -1.7292002E-02 -1.7348800E-02 -1.7345982E-02 -1.7290374E-02
 -1.7188191E-02 -1.7045090E-02 -1.6866213E-02 -1.6656220E-02 -1.6419336E-02
 -1.6159384E-02 -1.5879817E-02 -1.5583745E-02 -1.5273979E-02 -1.4953039E-02
 -1.4623194E-02 -1.4286474E-02 -1.3944698E-02 -1.3599487E-02 -1.3252290E-02
 -1.2904392E-02 -1.2556933E-02 -1.2210918E-02 -1.1867235E-02 -1.1526664E-02
 -1.1189883E-02 -1.0857479E-02 -1.0529961E-02 -1.0207765E-02 -9.8912604E-03
 -9.5807603E-03 -9.2765149E-03 -8.9787366E-03 -8.6875828E-03 -8.4031848E-03
 -8.1256321E-03 -7.8549832E-03 -7.5912671E-03 -7.3344898E-03 -7.0846379E-03
 -6.8416782E-03 -6.6055525E-03 -6.3762022E-03 -6.1535384E-03 -5.9374729E-03
 -5.7279090E-03 -5.5247308E-03 -5.3278264E-03 -5.1370687E-03 -4.9523339E-03
 -4.7734939E-03 -4.6004103E-03 -4.4329492E-03 -4.2709713E-03 -4.1143391E-03
 -3.9629200E-03 -3.8165660E-03 -3.6751442E-03 -3.5385164E-03 -3.4065512E-03
 -3.2791065E-03 -3.1560557E-03 -3.0372704E-03 -2.9226157E-03 -2.8119734E-03
 -2.7052148E-03
 0.2863957 0.2778792 0.2692805 0.2606502 0.2520343
 0.2434737 0.2350043 0.2266571 0.2184585 0.2104305
 0.2025912 0.1949546 0.1875319 0.1803310 0.1733572
 0.1666138 0.1601019 0.1538209 0.1477690 0.1419432
 0.1363393 0.1309526 0.1257777 0.1208089 0.1160397
 0.1114640 0.1070750 0.1028660 9.8830596E-02 9.4961993E-02
 9.1253683E-02 8.7699234E-02 8.4292367E-02 8.1027001E-02 7.7897176E-02
 7.4897140E-02 7.2021343E-02 6.9264419E-02 6.6621259E-02 6.4086899E-02
 6.1656602E-02 5.9325829E-02 5.7090219E-02 5.4945614E-02 5.2888054E-02
 5.0913732E-02 4.9019028E-02 4.7200482E-02 4.5454778E-02 4.3778785E-02
 4.2169489E-02 4.0624019E-02 3.9139651E-02 3.7713762E-02 3.6343884E-02
 3.5027631E-02 3.3762742E-02 3.2547053E-02 3.1378508E-02 3.0255130E-02
 2.9175049E-02 2.8136458E-02 2.7137658E-02 2.6176987E-02 2.5252895E-02
 2.4363898E-02 2.3508536E-02 2.2685464E-02 2.1893358E-02 2.1130968E-02
 2.0397112E-02 1.9690624E-02 1.9010419E-02 1.8355437E-02 1.7724678E-02
 1.7117186E-02 1.6532024E-02 1.5968325E-02 1.5425223E-02 1.4901924E-02
 1.4397646E-02 1.3911643E-02 1.3443206E-02 1.2991647E-02 1.2556313E-02
 1.2136574E-02 1.1731829E-02 1.1341502E-02 1.0965034E-02 1.0601902E-02
 1.0251595E-02
 5.1638372E-02 4.4557683E-02 3.7948299E-02 3.1809408E-02 2.6134646E-02
 2.0913148E-02 1.6130283E-02 1.1768566E-02 7.8083174E-03 4.2283572E-03
 1.0066009E-03 -1.8795171E-03 -4.4525755E-03 -6.7349006E-03 -8.7482762E-03
 -1.0513735E-02 -1.2051450E-02 -1.3380598E-02 -1.4519317E-02 -1.5484662E-02
 -1.6292585E-02 -1.6957968E-02 -1.7494619E-02 -1.7915314E-02 -1.8231854E-02
 -1.8455088E-02 -1.8594984E-02 -1.8660668E-02 -1.8660484E-02 -1.8602049E-02
 -1.8492298E-02 -1.8337537E-02 -1.8143494E-02 -1.7915359E-02 -1.7657831E-02
 -1.7375158E-02 -1.7071174E-02 -1.6749328E-02 -1.6412731E-02 -1.6064173E-02
 -1.5706150E-02 -1.5340904E-02 -1.4970432E-02 -1.4596513E-02 -1.4220729E-02
 -1.3844483E-02 -1.3469012E-02 -1.3095406E-02 -1.2724617E-02 -1.2357484E-02
 -1.1994726E-02 -1.1636970E-02 -1.1284747E-02 -1.0938510E-02 -1.0598642E-02
 -1.0265457E-02 -9.9392105E-03 -9.6201058E-03 -9.3082953E-03 -9.0038981E-03
 -8.7069888E-03 -8.4176082E-03 -8.1357770E-03 -7.8614745E-03 -7.5946706E-03
 -7.3353127E-03 -7.0833247E-03 -6.8386206E-03 -6.6011027E-03 -6.3706595E-03
 -6.1471709E-03 -5.9305085E-03 -5.7205437E-03 -5.5171293E-03 -5.3201276E-03
 -5.1293918E-03 -4.9447743E-03 -4.7661257E-03 -4.5932969E-03 -4.4261348E-03
 -4.2644935E-03 -4.1082194E-03 -3.9571710E-03 -3.8111943E-03 -3.6701516E-03
 -3.5338977E-03 -3.4022930E-03 -3.2751993E-03 -3.1524838E-03 -3.0340145E-03
 -2.9196579E-03
 0.3136007 0.3044381 0.2951640 0.2858340 0.2764991
 0.2672050 0.2579926 0.2488975 0.2399503 0.2311769
 0.2225985 0.2142324 0.2060921 0.1981877 0.1905262
 0.1831121 0.1759476 0.1690330 0.1623670 0.1559467
 0.1497684 0.1438271 0.1381175 0.1326335 0.1273685
 0.1223157 0.1174682 0.1128188 0.1083604 0.1040858
 9.9988051E-02 9.6060134E-02 9.2295222E-02 8.8686720E-02 8.5228138E-02
 8.1913196E-02 7.8735858E-02 7.5690240E-02 7.2770752E-02 6.9971956E-02
 6.7288674E-02 6.4715885E-02 6.2248819E-02 5.9882890E-02 5.7613742E-02
 5.5437166E-02 5.3349163E-02 5.1345903E-02 4.9423724E-02 4.7579143E-02
 4.5808818E-02 4.4109553E-02 4.2478316E-02 4.0912185E-02 3.9408401E-02
 3.7964299E-02 3.6577359E-02 3.5245147E-02 3.3965345E-02 3.2735761E-02
 3.1554278E-02 3.0418873E-02 2.9327625E-02 2.8278675E-02 2.7270272E-02
 2.6300739E-02 2.5368446E-02 2.4471870E-02 2.3609515E-02 2.2779990E-02
 2.1981947E-02 2.1214079E-02 2.0475181E-02 1.9764042E-02 1.9079549E-02
 1.8420627E-02 1.7786233E-02 1.7175386E-02 1.6587129E-02 1.6020559E-02
 1.5474820E-02 1.4949072E-02 1.4442526E-02 1.3954418E-02 1.3484017E-02
 1.3030630E-02 1.2593593E-02 1.2172268E-02 1.1766025E-02 1.1374307E-02
 1.0996524E-02
 5.9388556E-02 5.1534388E-02 4.4183232E-02 3.7338588E-02 3.0997405E-02
 2.5151042E-02 1.9786159E-02 1.4885710E-02 1.0429698E-02 6.3960548E-03
 2.7613074E-03 -4.9885490E-04 -3.4090159E-03 -5.9936745E-03 -8.2768863E-03
 -1.0281993E-02 -1.2031468E-02 -1.3546730E-02 -1.4848093E-02 -1.5954694E-02
 -1.6884448E-02 -1.7654091E-02 -1.8279165E-02 -1.8774059E-02 -1.9152056E-02
 -1.9425388E-02 -1.9605281E-02 -1.9702014E-02 -1.9724982E-02 -1.9682758E-02
 -1.9583141E-02 -1.9433226E-02 -1.9239442E-02 -1.9007618E-02 -1.8743018E-02
 -1.8450396E-02 -1.8134041E-02 -1.7797802E-02 -1.7445141E-02 -1.7079165E-02
 -1.6702646E-02 -1.6318060E-02 -1.5927615E-02 -1.5533263E-02 -1.5136749E-02
 -1.4739602E-02 -1.4343170E-02 -1.3948637E-02 -1.3557033E-02 -1.3169257E-02
 -1.2786085E-02 -1.2408178E-02 -1.2036103E-02 -1.1670333E-02 -1.1311274E-02
 -1.0959246E-02 -1.0614516E-02 -1.0277287E-02 -9.9477153E-03 -9.6259210E-03
 -9.3119685E-03 -9.0059005E-03 -8.7077273E-03 -8.4174294E-03 -8.1349621E-03
 -7.8602731E-03 -7.5932788E-03 -7.3338863E-03 -7.0819915E-03 -6.8374784E-03
 -6.6002263E-03 -6.3700974E-03 -6.1469572E-03 -5.9306608E-03 -5.7210615E-03
 -5.5180155E-03 -5.3213653E-03 -5.1309634E-03 -4.9466514E-03 -4.7682822E-03
 -4.5957011E-03 -4.4287550E-03 -4.2672963E-03 -4.1111736E-03 -3.9602430E-03
 -3.8143569E-03 -3.6733716E-03 -3.5371478E-03 -3.4055493E-03 -3.2784380E-03
 -3.1556813E-03
 0.3428876 0.3331319 0.3232247 0.3132255 0.3031898
 0.2931683 0.2832073 0.2733475 0.2636248 0.2540697
 0.2447083 0.2355618 0.2266474 0.2179782 0.2095641
 0.2014118 0.1935255 0.1859069 0.1785559 0.1714705
 0.1646475 0.1580826 0.1517705 0.1457051 0.1398799
 0.1342879 0.1289217 0.1237739 0.1188370 0.1141034
 0.1095654 0.1052157 0.1010468 9.7051546E-02 9.3222931E-02
 8.9554101E-02 8.6038448E-02 8.2669526E-02 7.9441197E-02 7.6347455E-02
 7.3382601E-02 7.0541084E-02 6.7817613E-02 6.5207094E-02 6.2704675E-02
 6.0305677E-02 5.8005620E-02 5.5800237E-02 5.3685389E-02 5.1657200E-02
 4.9711902E-02 4.7845904E-02 4.6055779E-02 4.4338234E-02 4.2690147E-02
 4.1108526E-02 3.9590500E-02 3.8133319E-02 3.6734384E-02 3.5391189E-02
 3.4101348E-02 3.2862566E-02 3.1672690E-02 3.0529609E-02 2.9431334E-02
 2.8375985E-02 2.7361725E-02 2.6386835E-02 2.5449634E-02 2.4548557E-02
 2.3682095E-02 2.2848779E-02 2.2047257E-02 2.1276187E-02 2.0534314E-02
 1.9820442E-02 1.9133409E-02 1.8472126E-02 1.7835526E-02 1.7222613E-02
 1.6632438E-02 1.6064057E-02 1.5516615E-02 1.4989257E-02 1.4481185E-02
 1.3991631E-02 1.3519862E-02 1.3065172E-02 1.2626889E-02 1.2204369E-02
 1.1796992E-02
 6.9651932E-02 6.0936172E-02 5.2746084E-02 4.5091495E-02 3.7974663E-02
 3.1391162E-02 2.5330767E-02 1.9778475E-02 1.4715368E-02 1.0119595E-02
 5.9671835E-03 2.2327341E-03 -1.1098948E-03 -4.0871114E-03 -6.7251152E-03
 -9.0495553E-03 -1.1085291E-02 -1.2856155E-02 -1.4384845E-02 -1.5692823E-02
 -1.6800249E-02 -1.7725989E-02 -1.8487606E-02 -1.9101372E-02 -1.9582337E-02
 -1.9944355E-02 -2.0200158E-02 -2.0361401E-02 -2.0438740E-02 -2.0441888E-02
 -2.0379683E-02 -2.0260155E-02 -2.0090574E-02 -1.9877523E-02 -1.9626943E-02
 -1.9344192E-02 -1.9034086E-02 -1.8700950E-02 -1.8348664E-02 -1.7980697E-02
 -1.7600141E-02 -1.7209757E-02 -1.6811995E-02 -1.6409025E-02 -1.6002767E-02
 -1.5594914E-02 -1.5186954E-02 -1.4780187E-02 -1.4375748E-02 -1.3974627E-02
 -1.3577675E-02 -1.3185620E-02 -1.2799093E-02 -1.2418618E-02 -1.2044643E-02
 -1.1677534E-02 -1.1317594E-02 -1.0965061E-02 -1.0620122E-02 -1.0282923E-02
 -9.9535622E-03 -9.6321013E-03 -9.3185781E-03 -9.0129888E-03 -8.7153204E-03
 -8.4255319E-03 -8.1435582E-03 -7.8693312E-03 -7.6027559E-03 -7.3437332E-03
 -7.0921541E-03 -6.8478985E-03 -6.6108424E-03 -6.3808491E-03 -6.1577847E-03
 -5.9415111E-03 -5.7318811E-03 -5.5287527E-03 -5.3319740E-03 -5.1413998E-03
 -4.9568806E-03 -4.7782692E-03 -4.6054176E-03 -4.4381740E-03 -4.2763986E-03
 -4.1199401E-03 -3.9686570E-03 -3.8224112E-03 -3.6810560E-03 -3.5444624E-03
 -3.4124865E-03
 0.3739258 0.3636590 0.3531927 0.3425884 0.3319042
 0.3211950 0.3105116 0.2999002 0.2894019 0.2790532
 0.2688855 0.2589252 0.2491944 0.2397108 0.2304882
 0.2215369 0.2128640 0.2044737 0.1963682 0.1885471
 0.1810087 0.1737496 0.1667652 0.1600500 0.1535979
 0.1474018 0.1414545 0.1357483 0.1302754 0.1250278
 0.1199975 0.1151765 0.1105569 0.1061310 0.1018910
 9.7829610E-02 9.3939409E-02 9.0213344E-02 8.6644642E-02 8.3226614E-02
 7.9952896E-02 7.6817304E-02 7.3813893E-02 7.0936948E-02 6.8180993E-02
 6.5540761E-02 6.3011169E-02 6.0587384E-02 5.8264747E-02 5.6038842E-02
 5.3905375E-02 5.1860292E-02 4.9899686E-02 4.8019826E-02 4.6217170E-02
 4.4488307E-02 4.2829990E-02 4.1239113E-02 3.9712708E-02 3.8247965E-02
 3.6842175E-02 3.5492759E-02 3.4197271E-02 3.2953348E-02 3.1758770E-02
 3.0611405E-02 2.9509200E-02 2.8450228E-02 2.7432630E-02 2.6454635E-02
 2.5514575E-02 2.4610817E-02 2.3741851E-02 2.2906184E-02 2.2102436E-02
 2.1329282E-02 2.0585425E-02 1.9869670E-02 1.9180844E-02 1.8517839E-02
 1.7879605E-02 1.7265122E-02 1.6673436E-02 1.6103603E-02 1.5554766E-02
 1.5026061E-02 1.4516685E-02 1.4025884E-02 1.3552903E-02 1.3097049E-02
 1.2657634E-02
 8.2844377E-02 7.3211707E-02 6.4111993E-02 5.5562947E-02 4.7574092E-02
 4.0147427E-02 3.3278137E-02 2.6955543E-02 2.1163903E-02 1.5883513E-02
 1.1091559E-02 6.7629120E-03 2.8709909E-03 -6.1167189E-04 -3.7128103E-03
 -6.4599682E-03 -8.8801524E-03 -1.0999498E-02 -1.2843109E-02 -1.4434871E-02
 -1.5797339E-02 -1.6951717E-02 -1.7917816E-02 -1.8714041E-02 -1.9357452E-02
 -1.9863788E-02 -2.0247515E-02 -2.0521900E-02 -2.0699067E-02 -2.0790074E-02
 -2.0804981E-02 -2.0752911E-02 -2.0642135E-02 -2.0480126E-02 -2.0273624E-02
 -2.0028699E-02 -1.9750806E-02 -1.9444836E-02 -1.9115178E-02 -1.8765746E-02
 -1.8400036E-02 -1.8021166E-02 -1.7631901E-02 -1.7234700E-02 -1.6831743E-02
 -1.6424952E-02 -1.6016023E-02 -1.5606450E-02 -1.5197539E-02 -1.4790442E-02
 -1.4386157E-02 -1.3985550E-02 -1.3589374E-02 -1.3198270E-02 -1.2812801E-02
 -1.2433433E-02 -1.2060559E-02 -1.1694511E-02 -1.1335558E-02 -1.0983925E-02
 -1.0639781E-02 -1.0303255E-02 -9.9744471E-03 -9.6534118E-03 -9.3401857E-03
 -9.0347817E-03 -8.7371795E-03 -8.4473491E-03 -8.1652338E-03 -7.8907693E-03
 -7.6238783E-03 -7.3644649E-03 -7.1124304E-03 -6.8676625E-03 -6.6300440E-03
 -6.3994522E-03 -6.1757579E-03 -5.9588267E-03 -5.7485197E-03 -5.5446993E-03
 -5.3472272E-03 -5.1559531E-03 -4.9707363E-03 -4.7914321E-03 -4.6178964E-03
 -4.4499803E-03 -4.2875456E-03 -4.1304450E-03 -3.9785365E-03 -3.8316851E-03
 -3.6897429E-03
 0.4061585 0.3954794 0.3845520 0.3734360 0.3621898
 0.3508695 0.3395287 0.3282175 0.3169819 0.3058636
 0.2949000 0.2841235 0.2735621 0.2632390 0.2531735
 0.2433807 0.2338721 0.2246560 0.2157376 0.2071197
 0.1988028 0.1907856 0.1830651 0.1756369 0.1684957
 0.1616351 0.1550482 0.1487273 0.1426647 0.1368522
 0.1312812 0.1259435 0.1208304 0.1159336 0.1112448
 0.1067557 0.1024582 9.8344564E-02 9.4407089E-02 9.0638332E-02
 8.7031089E-02 8.3578400E-02 8.0273531E-02 7.7110007E-02 7.4081607E-02
 7.1182340E-02 6.8406455E-02 6.5748438E-02 6.3202992E-02 6.0765091E-02
 5.8429889E-02 5.6192752E-02 5.4049283E-02 5.1995240E-02 5.0026622E-02
 4.8139583E-02 4.6330456E-02 4.4595748E-02 4.2932123E-02 4.1336425E-02
 3.9805621E-02 3.8336821E-02 3.6927298E-02 3.5574410E-02 3.4275681E-02
 3.3028740E-02 3.1831313E-02 3.0681254E-02 2.9576499E-02 2.8515089E-02
 2.7495181E-02 2.6514964E-02 2.5572775E-02 2.4666965E-02 2.3796009E-02
 2.2958448E-02 2.2152862E-02 2.1377921E-02 2.0632345E-02 1.9914916E-02
 1.9224482E-02 1.8559914E-02 1.7920174E-02 1.7304227E-02 1.6711121E-02
 1.6139923E-02 1.5589749E-02 1.5059768E-02 1.4549159E-02 1.4057165E-02
 1.3583023E-02
 9.9220887E-02 8.8673234E-02 7.8645088E-02 6.9162168E-02 6.0242202E-02
 5.1895231E-02 4.4124015E-02 3.6924690E-02 3.0287392E-02 2.4197211E-02
 1.8635016E-02 1.3578279E-02 9.0020439E-03 4.8795100E-03 1.1828576E-03
 -2.1162000E-03 -5.0459350E-03 -7.6341485E-03 -9.9078864E-03 -1.1893182E-02
 -1.3614849E-02 -1.5096378E-02 -1.6359866E-02 -1.7425954E-02 -1.8313847E-02
 -1.9041331E-02 -1.9624799E-02 -2.0079313E-02 -2.0418668E-02 -2.0655461E-02
 -2.0801164E-02 -2.0866200E-02 -2.0860020E-02 -2.0791171E-02 -2.0667376E-02
 -2.0495595E-02 -2.0282101E-02 -2.0032523E-02 -1.9751929E-02 -1.9444851E-02
 -1.9115357E-02 -1.8767085E-02 -1.8403284E-02 -1.8026855E-02 -1.7640390E-02
 -1.7246190E-02 -1.6846308E-02 -1.6442567E-02 -1.6036576E-02 -1.5629770E-02
 -1.5223409E-02 -1.4818606E-02 -1.4416343E-02 -1.4017472E-02 -1.3622745E-02
 -1.3232810E-02 -1.2848231E-02 -1.2469493E-02 -1.2097000E-02 -1.1731109E-02
 -1.1372108E-02 -1.1020232E-02 -1.0675681E-02 -1.0338596E-02 -1.0009100E-02
 -9.6872738E-03 -9.3731591E-03 -9.0667913E-03 -8.7681590E-03 -8.4772520E-03
 -8.1940284E-03 -7.9184286E-03 -7.6503926E-03 -7.3898267E-03 -7.1366397E-03
 -6.8907337E-03 -6.6519906E-03 -6.4202962E-03 -6.1955191E-03 -5.9775342E-03
 -5.7662074E-03 -5.5613983E-03 -5.3629694E-03 -5.1707742E-03 -4.9846745E-03
 -4.8045199E-03 -4.6301712E-03 -4.4614812E-03 -4.2983019E-03 -4.1404963E-03
 -3.9879186E-03
 0.4388454 0.4278385 0.4165440 0.4050168 0.3933114
 0.3814821 0.3695815 0.3576607 0.3457681 0.3339491
 0.3222455 0.3106954 0.2993326 0.2881867 0.2772830
 0.2666429 0.2562833 0.2462180 0.2364569 0.2270071
 0.2178727 0.2090555 0.2005551 0.1923691 0.1844939
 0.1769243 0.1696541 0.1626762 0.1559830 0.1495661
 0.1434170 0.1375266 0.1318861 0.1264862 0.1213179
 0.1163721 0.1116399 0.1071124 0.1027813 9.8637991E-02
 9.4674528E-02 9.0883002E-02 8.7255821E-02 8.3785683E-02 8.0465555E-02
 7.7288672E-02 7.4248560E-02 7.1338996E-02 6.8554014E-02 6.5887943E-02
 6.3335367E-02 6.0891069E-02 5.8550116E-02 5.6307763E-02 5.4159530E-02
 5.2101132E-02 5.0128475E-02 4.8237666E-02 4.6424992E-02 4.4686943E-02
 4.3020155E-02 4.1421425E-02 3.9887723E-02 3.8416125E-02 3.7003890E-02
 3.5648409E-02 3.4347150E-02 3.3097755E-02 3.1897943E-02 3.0745558E-02
 2.9638562E-02 2.8574964E-02 2.7552929E-02 2.6570646E-02 2.5626432E-02
 2.4718685E-02 2.3845840E-02 2.3006449E-02 2.2199083E-02 2.1422418E-02
 2.0675188E-02 1.9956149E-02 1.9264163E-02 1.8598095E-02 1.7956907E-02
 1.7339563E-02 1.6745107E-02 1.6172618E-02 1.5621195E-02 1.5090018E-02
 1.4578251E-02
 0.1186899 0.1073083 9.6410699E-02 8.6028300E-02 7.6185785E-02
 6.6901132E-02 5.8185477E-02 5.0043542E-02 4.2473685E-02 3.5468664E-02
 2.9016154E-02 2.3099449E-02 1.7698243E-02 1.2789332E-02 8.3474182E-03
 4.3457625E-03 7.5676694E-04 -2.4474114E-03 -5.2944529E-03 -7.8115044E-03
 -1.0024850E-02 -1.1959709E-02 -1.3640071E-02 -1.5088568E-02 -1.6326446E-02
 -1.7373523E-02 -1.8248180E-02 -1.8967424E-02 -1.9546896E-02 -2.0000974E-02
 -2.0342808E-02 -2.0584406E-02 -2.0736707E-02 -2.0809662E-02 -2.0812301E-02
 -2.0752814E-02 -2.0638617E-02 -2.0476414E-02 -2.0272268E-02 -2.0031646E-02
 -1.9759482E-02 -1.9460218E-02 -1.9137856E-02 -1.8795993E-02 -1.8437870E-02
 -1.8066384E-02 -1.7684139E-02 -1.7293472E-02 -1.6896458E-02 -1.6494971E-02
 -1.6090667E-02 -1.5685024E-02 -1.5279352E-02 -1.4874816E-02 -1.4472444E-02
 -1.4073138E-02 -1.3677689E-02 -1.3286791E-02 -1.2901040E-02 -1.2520963E-02
 -1.2146998E-02 -1.1779523E-02 -1.1418856E-02 -1.1065257E-02 -1.0718938E-02
 -1.0380075E-02 -1.0048790E-02 -9.7251832E-03 -9.4093084E-03 -9.1012036E-03
 -8.8008801E-03 -8.5083190E-03 -8.2234899E-03 -7.9463376E-03 -7.6767970E-03
 -7.4147861E-03 -7.1602133E-03 -6.9129742E-03 -6.6729588E-03 -6.4400444E-03
 -6.2141097E-03 -5.9950184E-03 -5.7826396E-03 -5.5768304E-03 -5.3774505E-03
 -5.1843557E-03 -4.9973978E-03 -4.8164362E-03 -4.6413206E-03 -4.4719060E-03
 -4.3080412E-03
 0.4712686 0.4599505 0.4483263 0.4364448 0.4243548
 0.4121050 0.3997437 0.3873188 0.3748771 0.3624637
 0.3501222 0.3378930 0.3258144 0.3139207 0.3022429
 0.2908083 0.2796400 0.2687576 0.2581769 0.2479098
 0.2379655 0.2283497 0.2190656 0.2101138 0.2014929
 0.1931996 0.1852292 0.1775755 0.1702313 0.1631888
 0.1564391 0.1499733 0.1437817 0.1378549 0.1321831
 0.1267563 0.1215650 0.1165996 0.1118506 0.1073089
 0.1029655 9.8811679E-02 9.4839133E-02 9.1039695E-02 8.7405622E-02
 8.3929382E-02 8.0603808E-02 7.7421993E-02 7.4377343E-02 7.1463585E-02
 6.8674684E-02 6.6004895E-02 6.3448757E-02 6.1001014E-02 5.8656722E-02
 5.6411132E-02 5.4259721E-02 5.2198201E-02 5.0222464E-02 4.8328642E-02
 4.6513014E-02 4.4772044E-02 4.3102399E-02 4.1500852E-02 3.9964382E-02
 3.8490102E-02 3.7075233E-02 3.5717178E-02 3.4413408E-02 3.3161562E-02
 3.1959388E-02 3.0804699E-02 2.9695470E-02 2.8629707E-02 2.7605567E-02
 2.6621271E-02 2.5675107E-02 2.4765477E-02 2.3890818E-02 2.3049666E-02
 2.2240624E-02 2.1462338E-02 2.0713547E-02 1.9993013E-02 1.9299585E-02
 1.8632133E-02 1.7989609E-02 1.7370993E-02 1.6775314E-02 1.6201658E-02
 1.5649104E-02
 0.1406087 0.1285550 0.1169327 0.1057739 9.5106222E-02
 8.4952660E-02 7.5330928E-02 6.6253863E-02 5.7728741E-02 4.9757726E-02
 4.2337924E-02 3.5461608E-02 2.9116854E-02 2.3287835E-02 1.7955502E-02
 1.3098320E-02 8.6926604E-03 4.7136284E-03 1.1354542E-03 -2.0679727E-03
 -4.9226442E-03 -7.4541289E-03 -9.6872905E-03 -1.1646020E-02 -1.3353152E-02
 -1.4830314E-02 -1.6097857E-02 -1.7174851E-02 -1.8079055E-02 -1.8826963E-02
 -1.9433834E-02 -1.9913729E-02 -2.0279588E-02 -2.0543266E-02 -2.0715632E-02
 -2.0806605E-02 -2.0825241E-02 -2.0779781E-02 -2.0677725E-02 -2.0525878E-02
 -2.0330418E-02 -2.0096943E-02 -1.9830512E-02 -1.9535704E-02 -1.9216655E-02
 -1.8877087E-02 -1.8520359E-02 -1.8149484E-02 -1.7767174E-02 -1.7375864E-02
 -1.6977727E-02 -1.6574711E-02 -1.6168548E-02 -1.5760778E-02 -1.5352778E-02
 -1.4945760E-02 -1.4540795E-02 -1.4138823E-02 -1.3740671E-02 -1.3347059E-02
 -1.2958611E-02 -1.2575863E-02 -1.2199280E-02 -1.1829242E-02 -1.1466085E-02
 -1.1110079E-02 -1.0761431E-02 -1.0420327E-02 -1.0086891E-02 -9.7612189E-03
 -9.4433762E-03 -9.1333911E-03 -8.8312756E-03 -8.5370066E-03 -8.2505522E-03
 -7.9718595E-03 -7.7008540E-03 -7.4374550E-03 -7.1815653E-03 -6.9330754E-03
 -6.6918777E-03 -6.4578443E-03 -6.2308470E-03 -6.0107531E-03 -5.7974234E-03
 -5.5907150E-03 -5.3904811E-03 -5.1965821E-03 -5.0088638E-03 -4.8271813E-03
 -4.6513835E-03
 0.5031708 0.4914313 0.4793948 0.4671068 0.4546118
 0.4419529 0.4291725 0.4163122 0.4034129 0.3905152
 0.3776588 0.3648824 0.3522232 0.3397165 0.3273956
 0.3152906 0.3034289 0.2918344 0.2805277 0.2695256
 0.2588419 0.2484868 0.2384674 0.2287879 0.2194503
 0.2104536 0.2017955 0.1934715 0.1854760 0.1778019
 0.1704412 0.1633854 0.1566252 0.1501509 0.1439527
 0.1380205 0.1323443 0.1269139 0.1217195 0.1167514
 0.1119999 0.1074557 0.1031099 9.8953694E-02 9.4978653E-02
 9.1176644E-02 8.7539859E-02 8.4060796E-02 8.0732256E-02 7.7547386E-02
 7.4499592E-02 7.1582600E-02 6.8790391E-02 6.6117242E-02 6.3557699E-02
 6.1106555E-02 5.8758859E-02 5.6509864E-02 5.4355074E-02 5.2290224E-02
 5.0311215E-02 4.8414160E-02 4.6595387E-02 4.4851325E-02 4.3178666E-02
 4.1574217E-02 4.0034913E-02 3.8557887E-02 3.7140366E-02 3.5779726E-02
 3.4473501E-02 3.3219270E-02 3.2014802E-02 3.0857904E-02 2.9746538E-02
 2.8678747E-02 2.7652647E-02 2.6666472E-02 2.5718503E-02 2.4807129E-02
 2.3930822E-02 2.3088073E-02 2.2277508E-02 2.1497764E-02 2.0747567E-02
 2.0025689E-02 1.9330965E-02 1.8662289E-02 1.8018577E-02 1.7398845E-02
 1.6802076E-02
 0.1637447 0.1512118 0.1390530 0.1272966 0.1159681
 0.1050905 9.4683848E-02 8.4765494E-02 7.5349413E-02 6.6446185E-02
 5.8062579E-02 5.0201435E-02 4.2861618E-02 3.6037929E-02 2.9721431E-02
 2.3899684E-02 1.8557074E-02 1.3675460E-02 9.2344526E-03 5.2120467E-03
 1.5851154E-03 -1.6701833E-03 -4.5779459E-03 -7.1621705E-03 -9.4464840E-03
 -1.1453871E-02 -1.3206478E-02 -1.4725483E-02 -1.6030967E-02 -1.7141894E-02
 -1.8076049E-02 -1.8850030E-02 -1.9479273E-02 -1.9978069E-02 -2.0359611E-02
 -2.0636048E-02 -2.0818522E-02 -2.0917244E-02 -2.0941541E-02 -2.0899918E-02
 -2.0800121E-02 -2.0649185E-02 -2.0453498E-02 -2.0218836E-02 -1.9950442E-02
 -1.9653039E-02 -1.9330891E-02 -1.8987838E-02 -1.8627340E-02 -1.8252498E-02
 -1.7866096E-02 -1.7470622E-02 -1.7068310E-02 -1.6661139E-02 -1.6250880E-02
 -1.5839107E-02 -1.5427209E-02 -1.5016415E-02 -1.4607800E-02 -1.4202327E-02
 -1.3800818E-02 -1.3403993E-02 -1.3012483E-02 -1.2626816E-02 -1.2247451E-02
 -1.1874784E-02 -1.1509121E-02 -1.1150741E-02 -1.0799846E-02 -1.0456609E-02
 -1.0121156E-02 -9.7935740E-03 -9.4739245E-03 -9.1622276E-03 -8.8584879E-03
 -8.5626896E-03 -8.2747834E-03 -7.9947151E-03 -7.7224104E-03 -7.4577779E-03
 -7.2007217E-03 -6.9511281E-03 -6.7088837E-03 -6.4738565E-03 -6.2459218E-03
 -6.0249376E-03 -5.8107628E-03 -5.6032548E-03 -5.4022665E-03 -5.2076490E-03
 -5.0192517E-03
 0.5352080 0.5228143 0.5101572 0.4972848 0.4842422
 0.4710711 0.4578097 0.4444938 0.4311570 0.4178318
 0.4045498 0.3913417 0.3782380 0.3652685 0.3524620
 0.3398464 0.3274477 0.3152904 0.3033964 0.2917852
 0.2804735 0.2694753 0.2588015 0.2484604 0.2384576
 0.2287961 0.2194767 0.2104980 0.2018570 0.1935489
 0.1855678 0.1779066 0.1705572 0.1635111 0.1567590
 0.1502913 0.1440983 0.1381699 0.1324963 0.1270675
 0.1218737 0.1169052 0.1121527 0.1076068 0.1032588
 9.9099845E-02 9.5121697E-02 9.1316268E-02 8.7675795E-02 8.4192872E-02
 8.0860361E-02 7.7671409E-02 7.4619494E-02 7.1698345E-02 6.8902001E-02
 6.6224784E-02 6.3661210E-02 6.1206125E-02 5.8854550E-02 5.6601800E-02
 5.4443374E-02 5.2374978E-02 5.0392561E-02 4.8492204E-02 4.6670232E-02
 4.4923138E-02 4.3247532E-02 4.1640256E-02 4.0098242E-02 3.8618609E-02
 3.7198607E-02 3.5835583E-02 3.4527071E-02 3.3270653E-02 3.2064077E-02
 3.0905185E-02 2.9791901E-02 2.8722273E-02 2.7694415E-02 2.6706545E-02
 2.5756976E-02 2.4844062E-02 2.3966273E-02 2.3122113E-02 2.2310194E-02
 2.1529149E-02 2.0777706E-02 2.0054642E-02 1.9358778E-02 1.8689027E-02
 1.8044267E-02
 0.1867059 0.1738105 0.1612418 0.1490240 0.1371784
 0.1257244 0.1146801 0.1040626 9.3888126E-02 8.4171385E-02
 7.4925542E-02 6.6161484E-02 5.7887521E-02 5.0108813E-02 4.2827070E-02
 3.6040477E-02 2.9743463E-02 2.3927031E-02 1.8578805E-02 1.3683505E-02
 9.2233615E-03 5.1785787E-03 1.5277844E-03 -1.7513935E-03 -4.6819835E-03
 -7.2872285E-03 -9.5902272E-03 -1.1613673E-02 -1.3379561E-02 -1.4909079E-02
 -1.6222432E-02 -1.7338749E-02 -1.8276026E-02 -1.9051105E-02 -1.9679677E-02
 -2.0176286E-02 -2.0554375E-02 -2.0826316E-02 -2.1003462E-02 -2.1096218E-02
 -2.1114077E-02 -2.1065693E-02 -2.0958934E-02 -2.0800946E-02 -2.0598203E-02
 -2.0356564E-02 -2.0081315E-02 -1.9777237E-02 -1.9448621E-02 -1.9099344E-02
 -1.8732870E-02 -1.8352313E-02 -1.7960468E-02 -1.7559819E-02 -1.7152596E-02
 -1.6740778E-02 -1.6326124E-02 -1.5910195E-02 -1.5494372E-02 -1.5079874E-02
 -1.4667772E-02 -1.4259002E-02 -1.3854385E-02 -1.3454628E-02 -1.3060347E-02
 -1.2672071E-02 -1.2290241E-02 -1.1915242E-02 -1.1547379E-02 -1.1186910E-02
 -1.0834049E-02 -1.0488947E-02 -1.0151731E-02 -9.8224776E-03 -9.5012384E-03
 -9.1880448E-03 -8.8828821E-03 -8.5857343E-03 -8.2965465E-03 -8.0152638E-03
 -7.7418080E-03 -7.4760825E-03 -7.2179874E-03 -6.9674118E-03 -6.7242333E-03
 -6.4883200E-03 -6.2595424E-03 -6.0377629E-03 -5.8228313E-03 -5.6146062E-03
 -5.4129381E-03
 0.5688182 0.5555418 0.5420452 0.5283831 0.5146072
 0.5007626 0.4868872 0.4730131 0.4591683 0.4453773
 0.4316624 0.4180443 0.4045433 0.3911790 0.3779715
 0.3649408 0.3521069 0.3394900 0.3271094 0.3149837
 0.3031301 0.2915644 0.2803003 0.2693494 0.2587212
 0.2484227 0.2384587 0.2288319 0.2195429 0.2105905
 0.2019715 0.1936818 0.1857154 0.1780658 0.1707252
 0.1636853 0.1569372 0.1504717 0.1442792 0.1383501
 0.1326746 0.1272430 0.1220456 0.1170730 0.1123160
 0.1077653 0.1034121 9.9247992E-02 9.5264532E-02 9.1453798E-02
 8.7808087E-02 8.4319972E-02 8.0982372E-02 7.7788442E-02 7.4731693E-02
 7.1805894E-02 6.9005050E-02 6.6323474E-02 6.3755721E-02 6.1296619E-02
 5.8941212E-02 5.6684781E-02 5.4522831E-02 5.2451063E-02 5.0465405E-02
 4.8561990E-02 4.6737075E-02 4.4987168E-02 4.3308876E-02 4.1699022E-02
 4.0154573E-02 3.8672596E-02 3.7250359E-02 3.5885204E-02 3.4574632E-02
 3.3316273E-02 3.2107830E-02 3.0947153E-02 2.9832162E-02 2.8760891E-02
 2.7731482E-02 2.6742116E-02 2.5791118E-02 2.4876835E-02 2.3997732E-02
 2.3152320E-02 2.2339189E-02 2.1557001E-02 2.0804457E-02 2.0080363E-02
 1.9383484E-02
 0.2087118 0.1954342 0.1824531 0.1697965 0.1574844
 0.1455331 0.1339566 0.1227686 0.1119827 0.1016127
 9.1671988E-02 8.2173303E-02 7.3128574E-02 6.4547978E-02 5.6439675E-02
 4.8809227E-02 4.1659094E-02 3.4988508E-02 2.8793208E-02 2.3065539E-02
 1.7794669E-02 1.2966766E-02 8.5654221E-03 4.5721806E-03 9.6681179E-04
 -2.2720711E-03 -5.1666209E-03 -7.7393698E-03 -1.0012800E-02 -1.2009130E-02
 -1.3750013E-02 -1.5256329E-02 -1.6548058E-02 -1.7644143E-02 -1.8562455E-02
 -1.9319737E-02 -1.9931601E-02 -2.0412527E-02 -2.0775892E-02 -2.1034030E-02
 -2.1198248E-02 -2.1278905E-02 -2.1285452E-02 -2.1226505E-02 -2.1109888E-02
 -2.0942707E-02 -2.0731395E-02 -2.0481771E-02 -2.0199083E-02 -1.9888073E-02
 -1.9553000E-02 -1.9197695E-02 -1.8825600E-02 -1.8439792E-02 -1.8043038E-02
 -1.7637800E-02 -1.7226277E-02 -1.6810423E-02 -1.6391980E-02 -1.5972493E-02
 -1.5553324E-02 -1.5135669E-02 -1.4720595E-02 -1.4309015E-02 -1.3901743E-02
 -1.3499482E-02 -1.3102826E-02 -1.2712303E-02 -1.2328342E-02 -1.1951319E-02
 -1.1581544E-02 -1.1219257E-02 -1.0864672E-02 -1.0517931E-02 -1.0179156E-02
 -9.8484270E-03 -9.5257862E-03 -9.2112590E-03 -8.9048287E-03 -8.6064748E-03
 -8.3161443E-03 -8.0337776E-03 -7.7592880E-03 -7.4925837E-03 -7.2335610E-03
 -6.9820979E-03 -6.7380788E-03 -6.5013729E-03 -6.2718391E-03 -6.0493373E-03
 -5.8337264E-03
 0.6054506 0.5912011 0.5767528 0.5621700 0.5475191
 0.5328549 0.5182183 0.5036411 0.4891485 0.4747609
 0.4604947 0.4463634 0.4323789 0.4185521 0.4048937
 0.3914154 0.3781291 0.3650482 0.3521867 0.3395590
 0.3271802 0.3150649 0.3032272 0.2916802 0.2804360
 0.2695045 0.2588942 0.2486115 0.2386609 0.2290449
 0.2197639 0.2108170 0.2022012 0.1939126 0.1859456
 0.1782936 0.1709494 0.1639048 0.1571512 0.1506796
 0.1444805 0.1385444 0.1328618 0.1274230 0.1222185
 0.1172389 0.1124748 0.1079173 0.1035576 9.9387057E-02
 9.5397480E-02 9.1580853E-02 8.7929480E-02 8.4435955E-02 8.1093185E-02
 7.7894345E-02 7.4832909E-02 7.1902618E-02 6.9097497E-02 6.6411853E-02
 6.3840248E-02 6.1377451E-02 5.9018549E-02 5.6758758E-02 5.4593604E-02
 5.2518822E-02 5.0530266E-02 4.8624087E-02 4.6796538E-02 4.5044102E-02
 4.3363430E-02 4.1751288E-02 4.0204655E-02 3.8720589E-02 3.7296347E-02
 3.5929296E-02 3.4616906E-02 3.3356812E-02 3.2146707E-02 3.0984433E-02
 2.9867927E-02 2.8795203E-02 2.7764402E-02 2.6773708E-02 2.5821436E-02
 2.4905935E-02 2.4025658E-02 2.3179140E-02 2.2364940E-02 2.1581760E-02
 2.0828234E-02
 0.2299001 0.2161870 0.2027457 0.1896284 0.1768611
 0.1644555 0.1524195 0.1407605 0.1294869 0.1186072
 0.1081303 9.8065637E-02 8.8422902E-02 7.9211727E-02 7.0441276E-02
 6.2119767E-02 5.4253727E-02 4.6847727E-02 3.9903753E-02 3.3420943E-02
 2.7395457E-02 2.1820363E-02 1.6685748E-02 1.1978968E-02 7.6848725E-03
 3.7862391E-03 2.6418033E-04 -2.9014759E-03 -5.7316874E-03 -8.2479082E-03
 -1.0471682E-02 -1.2424344E-02 -1.4126769E-02 -1.5599150E-02 -1.6860878E-02
 -1.7930400E-02 -1.8825132E-02 -1.9561438E-02 -2.0154580E-02 -2.0618761E-02
 -2.0967113E-02 -2.1211741E-02 -2.1363778E-02 -2.1433409E-02 -2.1429950E-02
 -2.1361889E-02 -2.1236949E-02 -2.1062139E-02 -2.0843815E-02 -2.0587722E-02
 -2.0299051E-02 -1.9982485E-02 -1.9642243E-02 -1.9282114E-02 -1.8905507E-02
 -1.8515473E-02 -1.8114742E-02 -1.7705763E-02 -1.7290708E-02 -1.6871525E-02
 -1.6449934E-02 -1.6027462E-02 -1.5605467E-02 -1.5185132E-02 -1.4767509E-02
 -1.4353517E-02 -1.3943950E-02 -1.3539506E-02 -1.3140775E-02 -1.2748277E-02
 -1.2362447E-02 -1.1983640E-02 -1.1612168E-02 -1.1248270E-02 -1.0892144E-02
 -1.0543948E-02 -1.0203785E-02 -9.8717380E-03 -9.5478417E-03 -9.2321159E-03
 -8.9245550E-03 -8.6251236E-03 -8.3337696E-03 -8.0504268E-03 -7.7750124E-03
 -7.5074290E-03 -7.2475690E-03 -6.9953152E-03 -6.7505431E-03 -6.5131155E-03
 -6.2829028E-03
 0.6459005 0.6307610 0.6153404 0.5997410 0.5840815
 0.5684460 0.5528857 0.5374328 0.5221138 0.5069484
 0.4919519 0.4771350 0.4625048 0.4480669 0.4338255
 0.4197849 0.4059500 0.3923267 0.3789226 0.3657462
 0.3528079 0.3401187 0.3276907 0.3155359 0.3036664
 0.2920934 0.2808273 0.2698771 0.2592504 0.2489529
 0.2389885 0.2293593 0.2200657 0.2111066 0.2024789
 0.1941786 0.1862001 0.1785370 0.1711819 0.1641268
 0.1573631 0.1508816 0.1446731 0.1387280 0.1330368
 0.1275898 0.1223774 0.1173903 0.1126192 0.1080549
 0.1036888 9.9512197E-02 9.5516846E-02 9.1694728E-02 8.8038154E-02
 8.4539704E-02 8.1192248E-02 7.7988952E-02 7.4923262E-02 7.1988948E-02
 6.9180004E-02 6.6490710E-02 6.3915655E-02 6.1449546E-02 5.9087474E-02
 5.6824721E-02 5.4656714E-02 5.2579209E-02 5.0588060E-02 4.8679397E-02
 4.6849508E-02 4.5094822E-02 4.3412011E-02 4.1797820E-02 4.0249217E-02
 3.8763300E-02 3.7337277E-02 3.5968527E-02 3.4654513E-02 3.3392850E-02
 3.2181274E-02 3.1017585E-02 2.9899724E-02 2.8825710E-02 2.7793664E-02
 2.6801785E-02 2.5848366E-02 2.4931792E-02 2.4050480E-02 2.3203010E-02
 2.2387858E-02
 0.2509892 0.2368973 0.2229909 0.2094219 0.1962370
 0.1834356 0.1710098 0.1589581 0.1472824 0.1359860
 0.1250726 0.1145464 0.1044132 9.4679661E-02 8.5353047E-02
 7.6441273E-02 6.7952089E-02 5.9892654E-02 5.2268989E-02 4.5085259E-02
 3.8343590E-02 3.2043546E-02 2.6181912E-02 2.0752747E-02 1.5747232E-02
 1.1153951E-02 6.9591375E-03 3.1469027E-03 -3.0022880E-04 -3.4011179E-03
 -6.1755134E-03 -8.6436998E-03 -1.0826167E-02 -1.2743287E-02 -1.4415110E-02
 -1.5861105E-02 -1.7100018E-02 -1.8149741E-02 -1.9027214E-02 -1.9748405E-02
 -2.0328242E-02 -2.0780636E-02 -2.1118481E-02 -2.1353686E-02 -2.1497210E-02
 -2.1559108E-02 -2.1548579E-02 -2.1474015E-02 -2.1343064E-02 -2.1162672E-02
 -2.0939136E-02 -2.0678163E-02 -2.0384908E-02 -2.0064021E-02 -1.9719698E-02
 -1.9355707E-02 -1.8975439E-02 -1.8581929E-02 -1.8177895E-02 -1.7765775E-02
 -1.7347734E-02 -1.6925706E-02 -1.6501408E-02 -1.6076356E-02 -1.5651898E-02
 -1.5229225E-02 -1.4809372E-02 -1.4393254E-02 -1.3981662E-02 -1.3575286E-02
 -1.3174722E-02 -1.2780474E-02 -1.2392977E-02 -1.2012583E-02 -1.1639595E-02
 -1.1274265E-02 -1.0916770E-02 -1.0567271E-02 -1.0225869E-02 -9.8926369E-03
 -9.5676230E-03 -9.2508290E-03 -8.9422539E-03 -8.6418558E-03 -8.3495863E-03
 -8.0653727E-03 -7.7891285E-03 -7.5207576E-03 -7.2601493E-03 -7.0071719E-03
 -6.7617274E-03
 0.6897554 0.6743267 0.6580518 0.6412940 0.6244171
 0.6076106 0.5909398 0.5744277 0.5580952 0.5419650
 0.5260543 0.5103738 0.4949296 0.4797237 0.4647564
 0.4500265 0.4355327 0.4212742 0.4072518 0.3934676
 0.3799257 0.3666318 0.3535935 0.3408195 0.3283196
 0.3161038 0.3041824 0.2925652 0.2812614 0.2702787
 0.2596237 0.2493013 0.2393150 0.2296662 0.2203551
 0.2113799 0.2027376 0.1944237 0.1864327 0.1787579
 0.1713919 0.1643265 0.1575530 0.1510624 0.1448452
 0.1388920 0.1331930 0.1277386 0.1225193 0.1175255
 0.1127481 0.1081779 0.1038061 9.9624045E-02 9.5623560E-02
 9.1796584E-02 8.8135377E-02 8.4632508E-02 8.1280835E-02 7.8073546E-02
 7.5004071E-02 7.2066128E-02 6.9253772E-02 6.6561200E-02 6.3982986E-02
 6.1513945E-02 5.9149057E-02 5.6883603E-02 5.4713041E-02 5.2633069E-02
 5.0639614E-02 4.8728731E-02 4.6896733E-02 4.5140028E-02 4.3455277E-02
 4.1839268E-02 4.0288918E-02 3.8801331E-02 3.7373718E-02 3.6003433E-02
 3.4687981E-02 3.3424936E-02 3.2212030E-02 3.1047074E-02 2.9928008E-02
 2.8852832E-02 2.7819678E-02 2.6826754E-02 2.5872324E-02 2.4954837E-02
 2.4072604E-02
 0.2730035 0.2586673 0.2441548 0.2300563 0.2164748
 0.2033426 0.1905946 0.1782085 0.1661841 0.1545228
 0.1432245 0.1322893 0.1217187 0.1115157 0.1016851
 9.2233293E-02 8.3167471E-02 7.4495830E-02 6.6226520E-02 5.8367155E-02
 5.0924417E-02 4.3903291E-02 3.7306733E-02 3.1135358E-02 2.5387054E-02
 2.0056995E-02 1.5137635E-02 1.0618787E-02 6.4879660E-03 2.7305146E-03
 -6.6994899E-04 -3.7311572E-03 -6.4718700E-03 -8.9114448E-03 -1.1069583E-02
 -1.2965974E-02 -1.4620053E-02 -1.6050776E-02 -1.7276442E-02 -1.8314581E-02
 -1.9181846E-02 -1.9893944E-02 -2.0465614E-02 -2.0910600E-02 -2.1241667E-02
 -2.1470619E-02 -2.1608336E-02 -2.1664804E-02 -2.1649176E-02 -2.1569801E-02
 -2.1434296E-02 -2.1249579E-02 -2.1021931E-02 -2.0757036E-02 -2.0460041E-02
 -2.0135587E-02 -1.9787854E-02 -1.9420605E-02 -1.9037221E-02 -1.8640732E-02
 -1.8233856E-02 -1.7819017E-02 -1.7398382E-02 -1.6973868E-02 -1.6547194E-02
 -1.6119884E-02 -1.5693266E-02 -1.5268530E-02 -1.4846707E-02 -1.4428709E-02
 -1.4015328E-02 -1.3607242E-02 -1.3205050E-02 -1.2809248E-02 -1.2420267E-02
 -1.2038467E-02 -1.1664136E-02 -1.1297522E-02 -1.0938810E-02 -1.0588145E-02
 -1.0245642E-02 -9.9113556E-03 -9.5853414E-03 -9.2675947E-03 -8.9581143E-03
 -8.6568557E-03 -8.3637638E-03 -8.0787707E-03 -7.8017851E-03 -7.5326911E-03
 -7.2714142E-03
 0.7333919 0.7217875 0.7051448 0.6868582 0.6682730
 0.6499584 0.6319760 0.6142376 0.5967198 0.5794489
 0.5624520 0.5457439 0.5293315 0.5132150 0.4973925
 0.4818587 0.4666072 0.4516314 0.4369253 0.4224840
 0.4083048 0.3943866 0.3807307 0.3673404 0.3542207
 0.3413782 0.3288209 0.3165570 0.3045954 0.2929444
 0.2816120 0.2706051 0.2599292 0.2495888 0.2395865
 0.2299236 0.2205996 0.2116126 0.2029594 0.1946353
 0.1866347 0.1789508 0.1715760 0.1645023 0.1577210
 0.1512228 0.1449983 0.1390381 0.1333324 0.1278717
 0.1226462 0.1176466 0.1128636 0.1082881 0.1039112
 9.9724345E-02 9.5719256E-02 9.1887876E-02 8.8222466E-02 8.4715620E-02
 8.1360176E-02 7.8149274E-02 7.5076386E-02 7.2135180E-02 6.9319688E-02
 6.6624202E-02 6.4043179E-02 6.1571464E-02 5.9204027E-02 5.6936134E-02
 5.4763287E-02 5.2681126E-02 5.0685585E-02 4.8772711E-02 4.6938796E-02
 4.5180310E-02 4.3493837E-02 4.1876182E-02 4.0324267E-02 3.8835179E-02
 3.7406154E-02 3.6034513E-02 3.4717761E-02 3.3453479E-02 3.2239396E-02
 3.1073309E-02 2.9953152E-02 2.8876957E-02 2.7842820E-02 2.6849030E-02
 2.5893699E-02
 0.3008446 0.2836499 0.2670510 0.2517528 0.2376428
 0.2242858 0.2113265 0.1986683 0.1863352 0.1743461
 0.1627018 0.1513969 0.1404285 0.1297964 0.1195019
 0.1095494 9.9944942E-02 9.0696312E-02 8.1812419E-02 7.3302999E-02
 6.5177858E-02 5.7446208E-02 5.0115988E-02 4.3193676E-02 3.6683481E-02
 3.0587181E-02 2.4903856E-02 1.9629765E-02 1.4758418E-02 1.0280640E-02
 6.1847703E-03 2.4570390E-03 -9.1818604E-04 -3.9579156E-03 -6.6803172E-03
 -9.1042407E-03 -1.1248910E-02 -1.3133641E-02 -1.4777511E-02 -1.6199216E-02
 -1.7416840E-02 -1.8447731E-02 -1.9308392E-02 -2.0014420E-02 -2.0580450E-02
 -2.1020165E-02 -2.1346269E-02 -2.1570530E-02 -2.1703787E-02 -2.1756005E-02
 -2.1736315E-02 -2.1653054E-02 -2.1513822E-02 -2.1325527E-02 -2.1094445E-02
 -2.0826258E-02 -2.0526098E-02 -2.0198606E-02 -1.9847954E-02 -1.9477906E-02
 -1.9091837E-02 -1.8692775E-02 -1.8283434E-02 -1.7866226E-02 -1.7443322E-02
 -1.7016644E-02 -1.6587896E-02 -1.6158598E-02 -1.5730079E-02 -1.5303525E-02
 -1.4879970E-02 -1.4460312E-02 -1.4045349E-02 -1.3635752E-02 -1.3232112E-02
 -1.2834937E-02 -1.2444641E-02 -1.2061587E-02 -1.1686062E-02 -1.1318306E-02
 -1.0958513E-02 -1.0606813E-02 -1.0263326E-02 -9.9281026E-03 -9.6011935E-03
 -9.2825983E-03 -8.9723067E-03 -8.6702798E-03 -8.3764549E-03 -8.0907336E-03
 -7.8130905E-03
 0.7979276 0.7797638 0.7598392 0.7381441 0.7160655
 0.6951462 0.6756439 0.6566699 0.6378512 0.6192694
 0.6010156 0.5831202 0.5655884 0.5484216 0.5316162
 0.5151650 0.4990569 0.4832806 0.4678236 0.4526743
 0.4378224 0.4232592 0.4089784 0.3949762 0.3812511
 0.3678039 0.3546378 0.3417575 0.3291693 0.3168803
 0.3048979 0.2932296 0.2818825 0.2708629 0.2601759
 0.2498254 0.2398138 0.2301421 0.2208097 0.2118147
 0.2031536 0.1948218 0.1868136 0.1791223 0.1717404
 0.1646597 0.1578715 0.1513667 0.1451358 0.1391694
 0.1334578 0.1279913 0.1227604 0.1177555 0.1129674
 0.1083871 0.1040056 9.9814370E-02 9.5805079E-02 9.1969728E-02
 8.8300556E-02 8.4790103E-02 8.1431247E-02 7.8217082E-02 7.5141072E-02
 7.2196953E-02 6.9378667E-02 6.6680513E-02 6.4096965E-02 6.1622825E-02
 5.9253119E-02 5.6983054E-02 5.4808140E-02 5.2724011E-02 5.0726574E-02
 4.8811939E-02 4.6976324E-02 4.5216218E-02 4.3528199E-02 4.1909069E-02
 4.0355768E-02 3.8865343E-02 3.7435044E-02 3.6062188E-02 3.4744281E-02
 3.3478890E-02 3.2263745E-02 3.1096656E-02 2.9975543E-02 2.8898528E-02
 2.7863508E-02
 0.3448872 0.3156690 0.2924374 0.2737013 0.2584166
 0.2453247 0.2326884 0.2199052 0.2072751 0.1949838
 0.1830388 0.1714151 0.1601021 0.1490964 0.1383964
 0.1280033 0.1179215 0.1081570 9.8718405E-02 8.9615948E-02
 8.0860980E-02 7.2464943E-02 6.4439394E-02 5.6795113E-02 4.9541444E-02
 4.2686034E-02 3.6234144E-02 3.0188469E-02 2.4549019E-02 1.9312823E-02
 1.4474063E-02 1.0024230E-02 5.9522809E-03 2.2450236E-03 -1.1126623E-03
 -4.1374047E-03 -6.8469234E-03 -9.2597529E-03 -1.1394775E-02 -1.3271053E-02
 -1.4907468E-02 -1.6322525E-02 -1.7534159E-02 -1.8559592E-02 -1.9415224E-02
 -2.0116579E-02 -2.0678233E-02 -2.1113815E-02 -2.1436000E-02 -2.1656517E-02
 -2.1786187E-02 -2.1834964E-02 -2.1811955E-02 -2.1725496E-02 -2.1583179E-02
 -2.1391908E-02 -2.1157952E-02 -2.0886987E-02 -2.0584147E-02 -2.0254072E-02
 -1.9900929E-02 -1.9528480E-02 -1.9140106E-02 -1.8738816E-02 -1.8327331E-02
 -1.7908076E-02 -1.7483195E-02 -1.7054623E-02 -1.6624060E-02 -1.6193014E-02
 -1.5762832E-02 -1.5334679E-02 -1.4909593E-02 -1.4488473E-02 -1.4072104E-02
 -1.3661174E-02 -1.3256256E-02 -1.2857860E-02 -1.2466397E-02 -1.2082228E-02
 -1.1705645E-02 -1.1336875E-02 -1.0976116E-02 -1.0623499E-02 -1.0279131E-02
 -9.9430755E-03 -9.6153663E-03 -9.2960186E-03 -8.9850025E-03 -8.6822379E-03
 -8.3877649E-03
 0.8818978 0.8560301 0.8290302 0.8009360 0.7719516
 0.7431095 0.7202283 0.7018850 0.6820132 0.6618773
 0.6421376 0.6228822 0.6040728 0.5857011 0.5677658
 0.5502593 0.5331690 0.5164785 0.5001711 0.4842283
 0.4686333 0.4533702 0.4384245 0.4237849 0.4094419
 0.3953892 0.3816234 0.3681435 0.3549511 0.3420497
 0.3294444 0.3171412 0.3051470 0.2934687 0.2821129
 0.2710853 0.2603908 0.2500332 0.2400147 0.2303362
 0.2209972 0.2119954 0.2033276 0.1949891 0.1869744
 0.1792766 0.1718883 0.1648013 0.1580069 0.1514962
 0.1452595 0.1392875 0.1335705 0.1280988 0.1228629
 0.1178532 0.1130606 0.1084759 0.1040902 9.9895053E-02
 9.5882021E-02 9.2043057E-02 8.8370487E-02 8.4856778E-02 8.1494801E-02
 7.8277737E-02 7.5198941E-02 7.2252169E-02 6.9431365E-02 6.6730797E-02
 6.4144999E-02 6.1668701E-02 5.9296947E-02 5.7024930E-02 5.4848131E-02
 5.2762255E-02 5.0763141E-02 4.8846908E-02 4.7009774E-02 4.5248203E-02
 4.3558825E-02 4.1938376E-02 4.0383823E-02 3.8892206E-02 3.7460770E-02
 3.6086831E-02 3.4767877E-02 3.3501513E-02 3.2285422E-02 3.1117570E-02
 2.9995594E-02
 0.3803648 0.3470034 0.3181539 0.2940798 0.2749865
 0.2616985 0.2540594 0.2418679 0.2285170 0.2157944
 0.2036082 0.1917474 0.1801634 0.1688610 0.1578379
 0.1470910 0.1366214 0.1264332 0.1165335 0.1069311
 9.7636960E-02 8.8662967E-02 8.0021903E-02 7.1727030E-02 6.3791052E-02
 5.6225765E-02 4.9041603E-02 4.2246986E-02 3.5848141E-02 2.9848497E-02
 2.4248712E-02 1.9046513E-02 1.4236780E-02 9.8116109E-03 5.7605547E-03
 2.0708961E-03 -1.2719722E-03 -4.2842347E-03 -6.9832150E-03 -9.3870843E-03
 -1.1514475E-02 -1.3384171E-02 -1.5014856E-02 -1.6424859E-02 -1.7631957E-02
 -1.8653270E-02 -1.9505117E-02 -2.0202938E-02 -2.0761264E-02 -2.1193678E-02
 -2.1512823E-02 -2.1730410E-02 -2.1857249E-02 -2.1903273E-02 -2.1877589E-02
 -2.1788528E-02 -2.1643676E-02 -2.1449938E-02 -2.1213580E-02 -2.0940285E-02
 -2.0635184E-02 -2.0302908E-02 -1.9947644E-02 -1.9573135E-02 -1.9182760E-02
 -1.8779555E-02 -1.8366214E-02 -1.7945172E-02 -1.7518569E-02 -1.7088341E-02
 -1.6656186E-02 -1.6223611E-02 -1.5791962E-02 -1.5362400E-02 -1.4935962E-02
 -1.4513553E-02 -1.4095949E-02 -1.3683832E-02 -1.3277784E-02 -1.2878300E-02
 -1.2485808E-02 -1.2100649E-02 -1.1723123E-02 -1.1353455E-02 -1.0991835E-02
 -1.0638398E-02 -1.0293247E-02 -9.9564511E-03 -9.6280333E-03 -9.3079302E-03
 -8.9962808E-03
 0.9261560 0.8996720 0.8720556 0.8433452 0.8137444
 0.7842860 0.7607886 0.7418292 0.7213413 0.7005893
 0.6802335 0.6603621 0.6409367 0.6219490 0.6033977
 0.5852753 0.5675691 0.5502626 0.5333393 0.5167807
 0.5005699 0.4846911 0.4691298 0.4538745 0.4389158
 0.4242475 0.4098661 0.3957705 0.3819625 0.3684455
 0.3552245 0.3423058 0.3296863 0.3173716 0.3053677
 0.2936811 0.2823178 0.2712834 0.2605826 0.2502189
 0.2401945 0.2305101 0.2211651 0.2121574 0.2034837
 0.1951394 0.1871188 0.1794152 0.1720211 0.1649285
 0.1581286 0.1516125 0.1453706 0.1393936 0.1336717
 0.1281953 0.1229549 0.1179409 0.1131442 0.1085555
 0.1041661 9.9967360E-02 9.5950939E-02 9.2108734E-02 8.8433050E-02
 8.4916443E-02 8.1551693E-02 7.8331985E-02 7.5250678E-02 7.2301500E-02
 6.9478452E-02 6.6775739E-02 6.4187907E-02 6.1709661E-02 5.9336040E-02
 5.7062291E-02 5.4883834E-02 5.2796375E-02 5.0795756E-02 4.8878070E-02
 4.7039591E-02 4.5276724E-02 4.3586109E-02 4.1964494E-02 4.0408820E-02
 3.8916137E-02 3.7483674E-02 3.6108777E-02 3.4788899E-02 3.3521656E-02
 3.2304727E-02
 0.4143779 0.3802586 0.3506514 0.3258195 0.3059685
 0.2919228 0.2835260 0.2705768 0.2564682 0.2429880
 0.2300441 0.2174257 0.2050840 0.1930241 0.1812433
 0.1697388 0.1585117 0.1475659 0.1369086 0.1265486
 0.1164970 0.1067654 9.7366855E-02 8.8314466E-02 7.9620972E-02
 7.1298182E-02 6.3356526E-02 5.5804428E-02 4.8648104E-02 4.1890986E-02
 3.5533730E-02 2.9574063E-02 2.4008255E-02 1.8834807E-02 1.4049198E-02
 9.6441554E-03 5.6098062E-03 1.9339519E-03 -1.3974971E-03 -4.4003348E-03
 -7.0915115E-03 -9.4888918E-03 -1.1610840E-02 -1.3475914E-02 -1.5102596E-02
 -1.6509071E-02 -1.7713010E-02 -1.8731441E-02 -1.9580601E-02 -2.0275882E-02
 -2.0831769E-02 -2.1261824E-02 -2.1578668E-02 -2.1794003E-02 -2.1918623E-02
 -2.1962464E-02 -2.1934632E-02 -2.1843452E-02 -2.1696517E-02 -2.1500735E-02
 -2.1262376E-02 -2.0987116E-02 -2.0680096E-02 -2.0345950E-02 -1.9988859E-02
 -1.9612582E-02 -1.9220492E-02 -1.8815620E-02 -1.8400671E-02 -1.7978063E-02
 -1.7549962E-02 -1.7118283E-02 -1.6684731E-02 -1.6250815E-02 -1.5817869E-02
 -1.5387070E-02 -1.4959442E-02 -1.4535890E-02 -1.4117191E-02 -1.3704022E-02
 -1.3296974E-02 -1.2896529E-02 -1.2503119E-02 -1.2117085E-02 -1.1738719E-02
 -1.1368251E-02 -1.1005865E-02 -1.0651702E-02 -1.0305856E-02 -9.9683963E-03
 -9.6393479E-03
 0.9717122 0.9446094 0.9163744 0.8870453 0.8568259
 0.8267490 0.8026331 0.7830552 0.7619488 0.7405784
 0.7196042 0.6991145 0.6790707 0.6594647 0.6402951
 0.6215543 0.6032298 0.5853052 0.5677637 0.5505869
 0.5337581 0.5172612 0.5010818 0.4852085 0.4696318
 0.4543454 0.4393460 0.4246324 0.4102063 0.3960714
 0.3822325 0.3686958 0.3554584 0.3425258 0.3298952
 0.3175713 0.3055599 0.2938667 0.2824977 0.2714581
 0.2607523 0.2503837 0.2403543 0.2306650 0.2213150
 0.2123022 0.2036234 0.1952740 0.1872481 0.1795394
 0.1721402 0.1650426 0.1582378 0.1517168 0.1454703
 0.1394887 0.1337624 0.1282818 0.1230373 0.1180195
 0.1132191 0.1086269 0.1042341 0.1000321 9.6012585E-02
 9.2167519E-02 8.8489056E-02 8.4969819E-02 8.1602566E-02 7.8380458E-02
 7.5296924E-02 7.2345600E-02 6.9520526E-02 6.6815875E-02 6.4226180E-02
 6.1746225E-02 5.9370954E-02 5.7095632E-02 5.4915685E-02 5.2826788E-02
 5.0824843E-02 4.8905876E-02 4.7066178E-02 4.5302153E-02 4.3610435E-02
 4.1987766E-02 4.0431082E-02 3.8937457E-02 3.7504084E-02 3.6128327E-02
 3.4807626E-02
 0.4498436 0.4149685 0.3846055 0.3590179 0.3384112
 0.3236097 0.3144573 0.3007524 0.2858881 0.2716523
 0.2579527 0.2445786 0.2314813 0.2186657 0.2061294
 0.1938693 0.1818866 0.1701853 0.1587724 0.1476569
 0.1368497 0.1263626 0.1162085 0.1064006 9.6951552E-02
 8.7873250E-02 7.9176091E-02 7.0868500E-02 6.2956691E-02 5.5444095E-02
 4.8331369E-02 4.1616231E-02 3.5294957E-02 2.9366042E-02 2.3826219E-02
 1.8674461E-02 1.3906904E-02 9.5167048E-03 5.4945587E-03 1.8286674E-03
 -1.4947120E-03 -4.4909855E-03 -7.1768416E-03 -9.5698722E-03 -1.1688202E-02
 -1.3550228E-02 -1.5174297E-02 -1.6578469E-02 -1.7780336E-02 -1.8796830E-02
 -1.9644149E-02 -2.0337651E-02 -2.0891793E-02 -2.1320120E-02 -2.1635240E-02
 -2.1848846E-02 -2.1971736E-02 -2.2013847E-02 -2.1984287E-02 -2.1891382E-02
 -2.1742733E-02 -2.1545252E-02 -2.1305213E-02 -2.1028297E-02 -2.0719647E-02
 -2.0383907E-02 -2.0025251E-02 -1.9647451E-02 -1.9253874E-02 -1.8847553E-02
 -1.8431203E-02 -1.8007237E-02 -1.7577823E-02 -1.7144872E-02 -1.6710091E-02
 -1.6274996E-02 -1.5840914E-02 -1.5409021E-02 -1.4980340E-02 -1.4555775E-02
 -1.4136110E-02 -1.3722014E-02 -1.3314075E-02 -1.2912781E-02 -1.2518555E-02
 -1.2131740E-02 -1.1752627E-02 -1.1381451E-02 -1.1018386E-02 -1.0663575E-02
 -1.0317110E-02
 1.018513 0.9907904 0.9619361 0.9319877 0.9011491
 0.8704530 0.8457179 0.8255209 0.8037954 0.7818059
 0.7602127 0.7391039 0.7184411 0.6982160 0.6784274
 0.6590677 0.6401243 0.6215808 0.6034206 0.5856250
 0.5681773 0.5510616 0.5342634 0.5177714 0.5015759
 0.4856709 0.4700528 0.4547206 0.4396760 0.4249224
 0.4104650 0.3963097 0.3824538 0.3689026 0.3556535
 0.3427112 0.3300729 0.3177427 0.3057261 0.2940285
 0.2826553 0.2716118 0.2609022 0.2505296 0.2404964
 0.2308029 0.2214487 0.2124316 0.2037483 0.1953944
 0.1873640 0.1796507 0.1722470 0.1651448 0.1583357
 0.1518104 0.1455597 0.1395740 0.1338438 0.1283594
 0.1231113 0.1180900 0.1132862 0.1086908 0.1042950
 0.1000901 9.6067816E-02 9.2220120E-02 8.8539168E-02 8.5017525E-02
 8.1648059E-02 7.8423806E-02 7.5338252E-02 7.2385006E-02 6.9558077E-02
 6.6851720E-02 6.4260386E-02 6.1778869E-02 5.9402112E-02 5.7125367E-02
 5.4944102E-02 5.2853938E-02 5.0850783E-02 4.8930671E-02 4.7089882E-02
 4.5324821E-02 4.3632101E-02 4.2008508E-02 4.0450931E-02 3.8956456E-02
 3.7522275E-02
 0.4867522 0.4511234 0.4200067 0.3936653 0.3723049
 0.3567497 0.3468435 0.3323849 0.3167670 0.3017774
 0.2873242 0.2731965 0.2593456 0.2457764 0.2324865
 0.2194729 0.2067366 0.1942817 0.1821153 0.1702462
 0.1586854 0.1474448 0.1365372 0.1259757 0.1157732
 0.1059415 9.6490815E-02 8.7429754E-02 7.8764483E-02 7.0498429E-02
 6.2632255E-02 5.5163670E-02 4.8088953E-02 4.1406594E-02 3.5113331E-02
 2.9208140E-02 2.3688152E-02 1.8552868E-02 1.3798852E-02 9.4197150E-03
 5.4064542E-03 1.7476788E-03 -1.5700497E-03 -4.5618694E-03 -7.2441758E-03
 -9.6343774E-03 -1.1750433E-02 -1.3610584E-02 -1.5233066E-02 -1.6635837E-02
 -1.7836409E-02 -1.8851683E-02 -1.9697804E-02 -2.0390112E-02 -2.0943036E-02
 -2.1370115E-02 -2.1683956E-02 -2.1896251E-02 -2.2017799E-02 -2.2058539E-02
 -2.2027588E-02 -2.1933278E-02 -2.1783218E-02 -2.1584319E-02 -2.1342866E-02
 -2.1064552E-02 -2.0754518E-02 -2.0417411E-02 -2.0057410E-02 -1.9678289E-02
 -1.9283427E-02 -1.8875849E-02 -1.8458279E-02 -1.8033125E-02 -1.7602554E-02
 -1.7168492E-02 -1.6732633E-02 -1.6296498E-02 -1.5861411E-02 -1.5428549E-02
 -1.4998944E-02 -1.4573485E-02 -1.4152964E-02 -1.3738044E-02 -1.3329316E-02
 -1.2927265E-02 -1.2532312E-02 -1.2144810E-02 -1.1765035E-02 -1.1393227E-02
 -1.1029556E-02
 1.066557 1.038214 1.008740 0.9781715 0.9467131
 0.9153973 0.8900425 0.8692258 0.8468807 0.8242716
 0.8020586 0.7803302 0.7590478 0.7382032 0.7177951
 0.6978160 0.6782532 0.6590903 0.6403106 0.6218957
 0.6038286 0.5860935 0.5686760 0.5515646 0.5347499
 0.5182256 0.5019883 0.4860369 0.4703732 0.4550005
 0.4399240 0.4251497 0.4106747 0.3965045 0.3826364
 0.3690751 0.3558178 0.3428687 0.3302252 0.3178909
 0.3058707 0.2941699 0.2827938 0.2717474 0.2610348
 0.2506592 0.2406227 0.2309259 0.2215680 0.2125472
 0.2038601 0.1955021 0.1874677 0.1797503 0.1723426
 0.1652365 0.1584234 0.1518942 0.1456397 0.1396504
 0.1339167 0.1284289 0.1231775 0.1181531 0.1133462
 0.1087480 0.1043494 0.1001420 9.6117221E-02 9.2267118E-02
 8.8583961E-02 8.5060194E-02 8.1688710E-02 7.8462541E-02 7.5375140E-02
 7.2420195E-02 6.9591634E-02 6.6883720E-02 6.4290911E-02 6.1807975E-02
 5.9429921E-02 5.7151910E-02 5.4969449E-02 5.2878149E-02 5.0873917E-02
 4.8952777E-02 4.7110993E-02 4.5345023E-02 4.3651428E-02 4.2026993E-02
 4.0468618E-02
 0.5250937 0.4887130 0.4568445 0.4297514 0.4076392
 0.3913323 0.3806744 0.3654641 0.3490945 0.3333532
 0.3181483 0.3032691 0.2886665 0.2743458 0.2603043
 0.2465391 0.2330514 0.2198450 0.2069270 0.1943065
 0.1819942 0.1700022 0.1583431 0.1470302 0.1360762
 0.1254930 0.1152910 0.1054786 9.6061938E-02 8.7044515E-02
 7.8426979E-02 7.0207037E-02 6.2380973E-02 5.4947276E-02 4.7902677E-02
 4.1246153E-02 3.4974832E-02 2.9088216E-02 2.3583692E-02 1.8461067E-02
 1.3717271E-02 9.3462961E-03 5.3394670E-03 1.6856707E-03 -1.6282212E-03
 -4.6171062E-03 -7.2972118E-03 -9.6857455E-03 -1.1800534E-02 -1.3659680E-02
 -1.5281323E-02 -1.6683362E-02 -1.7883243E-02 -1.8897831E-02 -1.9743241E-02
 -2.0434786E-02 -2.0986896E-02 -2.1413103E-02 -2.1726010E-02 -2.1937316E-02
 -2.2057826E-02 -2.2097481E-02 -2.2065412E-02 -2.1969955E-02 -2.1818725E-02
 -2.1618648E-02 -2.1376006E-02 -2.1096503E-02 -2.0785283E-02 -2.0446999E-02
 -2.0085845E-02 -1.9705582E-02 -1.9309603E-02 -1.8900931E-02 -1.8482288E-02
 -1.8056097E-02 -1.7624516E-02 -1.7189473E-02 -1.6752668E-02 -1.6315613E-02
 -1.5879646E-02 -1.5445929E-02 -1.5015502E-02 -1.4589253E-02 -1.4167971E-02
 -1.3752323E-02 -1.3342892E-02 -1.2940175E-02 -1.2544580E-02 -1.2156462E-02
 -1.1776099E-02
 1.115845 1.086882 1.056787 1.025598 0.9935195
 0.9615834 0.9356084 0.9141715 0.8912061 0.8679767
 0.8451436 0.8227951 0.8008926 0.7794280 0.7583999
 0.7378008 0.7176180 0.6978351 0.6784354 0.6594005
 0.6407135 0.6223584 0.6043210 0.5865898 0.5691552
 0.5520112 0.5351541 0.5185830 0.5022996 0.4863073
 0.4706112 0.4552175 0.4401230 0.4253334 0.4108458
 0.3966651 0.3827884 0.3692200 0.3559572 0.3430035
 0.3303564 0.3180194 0.3059968 0.2942938 0.2829157
 0.2718672 0.2611523 0.2507743 0.2407351 0.2310354
 0.2216745 0.2126504 0.2039599 0.1955985 0.1875605
 0.1798396 0.1724283 0.1653186 0.1585019 0.1519693
 0.1457115 0.1397188 0.1339820 0.1284911 0.1232368
 0.1182095 0.1134000 0.1087992 0.1043982 0.1001883
 9.6161395E-02 9.2309177E-02 8.8624015E-02 8.5098341E-02 8.1725009E-02
 7.8497157E-02 7.5408116E-02 7.2451629E-02 6.9621593E-02 6.6912271E-02
 6.4318173E-02 6.1833981E-02 5.9454732E-02 5.7175599E-02 5.4992061E-02
 5.2899748E-02 5.0894532E-02 4.8972491E-02 4.7129843E-02 4.5363039E-02
 4.3668654E-02
 0.5648686 0.5277379 0.4951194 0.4672763 0.4444142
 0.4273574 0.4159496 0.3999894 0.3828699 0.3663788
 0.3504241 0.3347950 0.3194427 0.3043723 0.2895811
 0.2750661 0.2608286 0.2468726 0.2332050 0.2198348
 0.2067729 0.1940312 0.1816225 0.1695600 0.1578564
 0.1465237 0.1355720 0.1250100 0.1148438 0.1050769
 9.5709778E-02 8.6740300E-02 7.8164712E-02 6.9981501E-02 6.2187400E-02
 5.4781381E-02 4.7760569E-02 4.1124467E-02 3.4870461E-02 2.8998354E-02
 2.3505708E-02 1.8392634E-02 1.3656416E-02 9.2913322E-03 5.2890140E-03
 1.6386027E-03 -1.6728407E-03 -4.6599847E-03 -7.3389066E-03 -9.7266352E-03
 -1.1840876E-02 -1.3699661E-02 -1.5321029E-02 -1.6722834E-02 -1.7922470E-02
 -1.8936759E-02 -1.9781815E-02 -2.0472931E-02 -2.1024536E-02 -2.1450153E-02
 -2.1762395E-02 -2.1972965E-02 -2.2092674E-02 -2.2131477E-02 -2.2098506E-02
 -2.2002112E-02 -2.1849912E-02 -2.1648845E-02 -2.1405200E-02 -2.1124681E-02
 -2.0812452E-02 -2.0473158E-02 -2.0111004E-02 -1.9729754E-02 -1.9332796E-02
 -1.8923175E-02 -1.8503597E-02 -1.8076496E-02 -1.7644027E-02 -1.7208120E-02
 -1.6770480E-02 -1.6332617E-02 -1.5895868E-02 -1.5461397E-02 -1.5030243E-02
 -1.4603294E-02 -1.4181335E-02 -1.3765044E-02 -1.3354993E-02 -1.2951680E-02
 -1.2555514E-02
 1.166367 1.136783 1.106068 1.074258 1.041559
 1.009002 0.9824062 0.9603488 0.9367630 0.9129133
 0.8894598 0.8664911 0.8439683 0.8218835 0.8002352
 0.7790158 0.7582127 0.7378097 0.7177898 0.6981347
 0.6788275 0.6598524 0.6411949 0.6228437 0.6047891
 0.5870251 0.5695481 0.5523570 0.5354537 0.5188416
 0.5025257 0.4865122 0.4707981 0.4553889 0.4402818
 0.4254816 0.4109854 0.3967975 0.3829152 0.3693421
 0.3560756 0.3431191 0.3304698 0.3181309 0.3061069
 0.2944027 0.2830231 0.2719731 0.2612565 0.2508765
 0.2408351 0.2311330 0.2217695 0.2127426 0.2040491
 0.1956846 0.1876436 0.1799194 0.1725049 0.1653920
 0.1585722 0.1520365 0.1457757 0.1397801 0.1340403
 0.1285468 0.1232898 0.1182600 0.1134481 0.1088450
 0.1044418 0.1002298 9.6200883E-02 9.2346773E-02 8.8659763E-02
 8.5132413E-02 8.1757456E-02 7.8528062E-02 7.5437568E-02 7.2479665E-02
 6.9648348E-02 6.6937774E-02 6.4342491E-02 6.1857179E-02 5.9476864E-02
 5.7196725E-02 5.5012211E-02 5.2919008E-02 5.0912932E-02 4.8990071E-02
 4.7146641E-02
 0.6060759 0.5681968 0.5348299 0.5062384 0.4826280
 0.4648229 0.4526668 0.4359584 0.4180907 0.4008515
 0.3841486 0.3677714 0.3516710 0.3358524 0.3203131
 0.3050500 0.2900645 0.2753604 0.2609448 0.2468267
 0.2330169 0.2195273 0.2063707 0.1935603 0.1811088
 0.1690282 0.1573287 0.1460187 0.1351047 0.1245898
 0.1144749 0.1047576 9.5434189E-02 8.6503148E-02 7.7961221E-02
 6.9807388E-02 6.2038764E-02 5.4654863E-02 4.7653060E-02 4.1033164E-02
 3.4792732E-02 2.8931871E-02 2.3448244E-02 1.8342299E-02 1.3611622E-02
 9.2507331E-03 5.2514533E-03 1.6031758E-03 -1.7068654E-03 -4.6931491E-03
 -7.3716040E-03 -9.7591551E-03 -1.1873401E-02 -1.3732290E-02 -1.5353796E-02
 -1.6755708E-02 -1.7955411E-02 -1.8969698E-02 -1.9814668E-02 -2.0505596E-02
 -2.1056918E-02 -2.1482164E-02 -2.1793943E-02 -2.2003975E-02 -2.2123074E-02
 -2.2161203E-02 -2.2127505E-02 -2.2030341E-02 -2.1877337E-02 -2.1675438E-02
 -2.1430943E-02 -2.1149565E-02 -2.0836463E-02 -2.0496301E-02 -2.0133277E-02
 -1.9751169E-02 -1.9353364E-02 -1.8942907E-02 -1.8522510E-02 -1.8094607E-02
 -1.7661363E-02 -1.7224696E-02 -1.6786320E-02 -1.6347742E-02 -1.5910303E-02
 -1.5475164E-02 -1.5043362E-02 -1.4615797E-02 -1.4193241E-02 -1.3776377E-02
 -1.3365774E-02
 1.218116 1.187912 1.156575 1.124144 1.090824
 1.057647 1.030431 1.007753 0.9835466 0.9590766
 0.9350030 0.9114140 0.8882710 0.8655659 0.8432973
 0.8214577 0.8000345 0.7790112 0.7583712 0.7380961
 0.7181689 0.6985738 0.6792963 0.6603250 0.6416505
 0.6232665 0.6051696 0.5873587 0.5698355 0.5526035
 0.5356678 0.5190346 0.5027007 0.4866719 0.4709451
 0.4555253 0.4404096 0.4256021 0.4111002 0.3969077
 0.3830216 0.3694456 0.3561768 0.3432184 0.3305679
 0.3182282 0.3062034 0.2944984 0.2831179 0.2720668
 0.2613489 0.2509674 0.2409242 0.2312200 0.2218542
 0.2128249 0.2041289 0.1957617 0.1877178 0.1799908
 0.1725735 0.1654577 0.1586351 0.1520966 0.1458330
 0.1398349 0.1340926 0.1285966 0.1233373 0.1183052
 0.1134911 0.1088859 0.1044807 0.1002669 9.6236132E-02
 9.2380360E-02 8.8691741E-02 8.5162856E-02 8.1786439E-02 7.8555636E-02
 7.5463861E-02 7.2504714E-02 6.9672219E-02 6.6960536E-02 6.4364195E-02
 6.1877880E-02 5.9496593E-02 5.7215568E-02 5.5030201E-02 5.2936181E-02
 5.0929334E-02
 0.6487148 0.6100888 0.5759751 0.5466368 0.5222796
 0.5037278 0.4908251 0.4733700 0.4547557 0.4367698
 0.4193204 0.4021966 0.3853497 0.3687845 0.3524987
 0.3364892 0.3207572 0.3053066 0.2901446 0.2752801
 0.2607238 0.2464878 0.2325848 0.2190280 0.2058302
 0.1930032 0.1805573 0.1685010 0.1568406 0.1455795
 0.1347182 0.1242545 0.1141848 0.1045074 9.5219150E-02
 8.6318985E-02 7.7804036E-02 6.9673814E-02 6.1925698E-02 5.4559492E-02
 4.7572754E-02 4.0965587E-02 3.4735654E-02 2.8883407E-02 2.3406595E-02
 1.8305961E-02 1.3579250E-02 9.2212148E-03 5.2238619E-03 1.5768001E-03
 -1.7325871E-03 -4.7186553E-03 -7.3971893E-03 -9.7850272E-03 -1.1899659E-02
 -1.3758962E-02 -1.5380884E-02 -1.6783169E-02 -1.7983168E-02 -1.8997656E-02
 -1.9842718E-02 -2.0533642E-02 -2.1084851E-02 -2.1509884E-02 -2.1821363E-02
 -2.2031002E-02 -2.2149637E-02 -2.2187237E-02 -2.2152955E-02 -2.2055157E-02
 -2.1901485E-02 -2.1698883E-02 -2.1453669E-02 -2.1171551E-02 -2.0857701E-02
 -2.0516789E-02 -2.0153010E-02 -1.9770155E-02 -1.9371608E-02 -1.8960416E-02
 -1.8539308E-02 -1.8110700E-02 -1.7676769E-02 -1.7239433E-02 -1.6800407E-02
 -1.6361197E-02 -1.5923142E-02 -1.5487419E-02 -1.5055046E-02 -1.4626931E-02
 -1.4203846E-02
 1.271092 1.240266 1.208309 1.175258 1.141317
 1.107519 1.079682 1.056384 1.031557 1.006467
 0.9817730 0.9575638 0.9338005 0.9104753 0.8875865
 0.8651267 0.8430834 0.8214400 0.8001800 0.7792848
 0.7587376 0.7385225 0.7186250 0.6990338 0.6797394
 0.6607355 0.6420188 0.6235880 0.6054451 0.5875933
 0.5700378 0.5527847 0.5358312 0.5191826 0.5028362
 0.4867967 0.4710614 0.4556343 0.4405129 0.4257007
 0.4111951 0.3969995 0.3831112 0.3695334 0.3562634
 0.3433042 0.3306532 0.3183132 0.3062880 0.2945826
 0.2832017 0.2721497 0.2614309 0.2510481 0.2410034
 0.2312975 0.2219298 0.2128984 0.2042000 0.1958304
 0.1877841 0.1800546 0.1726348 0.1655165 0.1586913
 0.1521505 0.1458844 0.1398840 0.1341394 0.1286411
 0.1233797 0.1183456 0.1135296 0.1089225 0.1045155
 0.1003000 9.6267663E-02 9.2410363E-02 8.8720299E-02 8.5190006E-02
 8.1812322E-02 7.8580283E-02 7.5487323E-02 7.2527073E-02 6.9693528E-02
 6.6980839E-02 6.4383529E-02 6.1896339E-02 5.9514206E-02 5.7232376E-02
 5.5046245E-02
 0.6927934 0.6534216 0.6185622 0.5884783 0.5633755
 0.5440781 0.5304298 0.5122292 0.4928694 0.4741381
 0.4559433 0.4380741 0.4204817 0.4031712 0.3861401
 0.3693853 0.3529080 0.3367121 0.3208047 0.3051949
 0.2898934 0.2749122 0.2602640 0.2459621 0.2320191
 0.2184470 0.2052560 0.1924547 0.1800492 0.1680429
 0.1564366 0.1452278 0.1344130 0.1239906 0.1139573
 0.1043121 9.5052101E-02 8.6176842E-02 7.7683695E-02 6.9572464E-02
 6.1840709E-02 5.4488529E-02 4.7513586E-02 4.0916335E-02 3.4694523E-02
 2.8848890E-02 2.3377150E-02 1.8280381E-02 1.3556415E-02 9.2002144E-03
 5.2039907E-03 1.5574415E-03 -1.7518576E-03 -4.7381772E-03 -7.4171722E-03
 -9.8055834E-03 -1.1920864E-02 -1.3780821E-02 -1.5403361E-02 -1.6806182E-02
 -1.8006617E-02 -1.9021451E-02 -1.9866738E-02 -2.0557782E-02 -2.1109005E-02
 -2.1533942E-02 -2.1845235E-02 -2.2054600E-02 -2.2172887E-02 -2.2210071E-02
 -2.2175316E-02 -2.2076998E-02 -2.1922767E-02 -2.1719577E-02 -2.1473741E-02
 -2.1190992E-02 -2.0876499E-02 -2.0534934E-02 -2.0170502E-02 -1.9786989E-02
 -1.9387798E-02 -1.8975968E-02 -1.8554227E-02 -1.8125001E-02 -1.7690465E-02
 -1.7252538E-02 -1.6812935E-02 -1.6373172E-02 -1.5934575E-02 -1.5498327E-02
 -1.5065450E-02
 1.325294 1.293847 1.261269 1.227597 1.193036
 1.158617 1.130160 1.106241 1.080793 1.055083
 1.029768 1.004939 0.9805553 0.9566098 0.9331009
 0.9100211 0.8873577 0.8650944 0.8432143 0.8216991
 0.8005319 0.7796969 0.7591795 0.7389684 0.7190542
 0.6994305 0.6800939 0.6610433 0.6422806 0.6238090
 0.6056339 0.5877611 0.5701879 0.5529196 0.5359535
 0.5192944 0.5029396 0.4868930 0.4711521 0.4557205
 0.4405955 0.4257806 0.4112729 0.3970757 0.3831865
 0.3696080 0.3563378 0.3433785 0.3307273 0.3183874
 0.3063624 0.2946569 0.2832757 0.2722233 0.2615037
 0.2511199 0.2410740 0.2313666 0.2219972 0.2129639
 0.2042636 0.1958919 0.1878434 0.1801117 0.1726895
 0.1655691 0.1587417 0.1521985 0.1459304 0.1399277
 0.1341811 0.1286809 0.1234176 0.1183817 0.1135639
 0.1089552 0.1045466 0.1003296 9.6295826E-02 9.2437118E-02
 8.8745803E-02 8.5214265E-02 8.1835419E-02 7.8602277E-02 7.5508274E-02
 7.2547026E-02 6.9712512E-02 6.6998966E-02 6.4400807E-02 6.1912809E-02
 5.9529919E-02
 0.7383180 0.6982014 0.6625972 0.6317685 0.6059210
 0.5858788 0.5714859 0.5525407 0.5324363 0.5129605
 0.4940212 0.4754076 0.4570709 0.4390160 0.4212405
 0.4037413 0.3865196 0.3695794 0.3529278 0.3365737
 0.3205280 0.3048025 0.2894101 0.2743639 0.2596768
 0.2453605 0.2314254 0.2178799 0.2047303 0.1919799
 0.1796295 0.1676766 0.1561177 0.1449512 0.1341738
 0.1237846 0.1137806 0.1041613 9.4924122E-02 8.6068884E-02
 7.7593125E-02 6.9496952E-02 6.1778024E-02 5.4436799E-02 4.7471017E-02
 4.0881414E-02 3.4665704E-02 2.8824968E-02 2.3357028E-02 1.8262958E-02
 1.3540842E-02 9.1857491E-03 5.1900242E-03 1.5434915E-03 -1.7661317E-03
 -4.7529964E-03 -7.4327090E-03 -9.8219225E-03 -1.1938033E-02 -1.3798784E-02
 -1.5422043E-02 -1.6825516E-02 -1.8026495E-02 -1.9041762E-02 -1.9887375E-02
 -2.0578619E-02 -2.1129938E-02 -2.1554871E-02 -2.1866063E-02 -2.2075245E-02
 -2.2193272E-02 -2.2230130E-02 -2.2194993E-02 -2.2096246E-02 -2.1941544E-02
 -2.1737853E-02 -2.1491494E-02 -2.1208199E-02 -2.0893147E-02 -2.0551013E-02
 -2.0186016E-02 -1.9801933E-02 -1.9402174E-02 -1.8989779E-02 -1.8567484E-02
 -1.8137714E-02 -1.7702639E-02 -1.7264195E-02 -1.6824085E-02 -1.6383827E-02
 -1.5944751E-02
 1.380722 1.348655 1.315456 1.281163 1.245981
 1.210941 1.181863 1.157324 1.131256 1.104925
 1.078991 1.053541 1.028537 1.003972 0.9798427
 0.9561428 0.9328594 0.9099761 0.8874760 0.8653409
 0.8435538 0.8220989 0.8009617 0.7801308 0.7595968
 0.7393532 0.7193969 0.6997265 0.6803441 0.6612528
 0.6424579 0.6239655 0.6057726 0.5878847 0.5702990
 0.5530204 0.5360459 0.5193799 0.5030195 0.4869685
 0.4712242 0.4557899 0.4406629 0.4258465 0.4113379
 0.3971402 0.3832507 0.3696722 0.3564019 0.3434427
 0.3307920 0.3184525 0.3064278 0.2947224 0.2833412
 0.2722885 0.2615684 0.2511838 0.2411368 0.2314281
 0.2220573 0.2130224 0.2043204 0.1959468 0.1878963
 0.1801627 0.1727385 0.1656160 0.1587866 0.1522415
 0.1459714 0.1399669 0.1342185 0.1287165 0.1234514
 0.1184139 0.1135946 0.1089844 0.1045744 0.1003560
 9.6320972E-02 9.2461050E-02 8.8768557E-02 8.5235931E-02 8.1856042E-02
 7.8621902E-02 7.5526938E-02 7.2564833E-02 6.9729477E-02 6.7015126E-02
 6.4416215E-02
 0.7852823 0.7444219 0.7080739 0.6765015 0.6499102
 0.6291244 0.6139878 0.5942990 0.5734510 0.5532317
 0.5335489 0.5141918 0.4951116 0.4763134 0.4577945
 0.4395519 0.4215869 0.4039034 0.3865085 0.3694111
 0.3526221 0.3361533 0.3200176 0.3042282 0.2887979
 0.2737384 0.2590601 0.2447715 0.2308788 0.2173854
 0.2042919 0.1915960 0.1792940 0.1673845 0.1558641
 0.1447319 0.1339849 0.1236227 0.1136426 0.1040444
 9.4825685E-02 8.5986570E-02 7.7524699E-02 6.9440536E-02 6.1731823E-02
 5.4399297E-02 4.7440663E-02 4.0857006E-02 3.4646150E-02 2.8809169E-02
 2.3343982E-02 1.8251784E-02 1.3530791E-02 9.1762114E-03 5.1805251E-03
 1.5336965E-03 -1.7765099E-03 -4.7641648E-03 -7.4447733E-03 -9.8349145E-03
 -1.1951935E-02 -1.3813570E-02 -1.5437627E-02 -1.6841816E-02 -1.8043406E-02
 -1.9059153E-02 -1.9905139E-02 -2.0596644E-02 -2.1148121E-02 -2.1573113E-02
 -2.1884266E-02 -2.2093333E-02 -2.2211168E-02 -2.2247773E-02 -2.2212327E-02
 -2.2113224E-02 -2.1958128E-02 -2.1754012E-02 -2.1507204E-02 -2.1223437E-02
 -2.0907903E-02 -2.0565277E-02 -2.0199779E-02 -1.9815197E-02 -1.9414941E-02
 -1.9002052E-02 -1.8579263E-02 -1.8149015E-02 -1.7713470E-02 -1.7274564E-02
 -1.6834004E-02

XFOILinterface/XFOIL/orrs/osm.0350

 256 3.500000
 0.0000000E+00 1.4196265E-03 2.8676454E-03 4.3446249E-03 5.8511435E-03
 7.3877932E-03 8.9551751E-03 1.0553905E-02 1.2184610E-02 1.3847928E-02
 1.5544512E-02 1.7275030E-02 1.9040156E-02 2.0840585E-02 2.2677023E-02
 2.4550190E-02 2.6460819E-02 2.8409662E-02 3.0397480E-02 3.2425057E-02
 3.4493186E-02 3.6602672E-02 3.8754351E-02 4.0949065E-02 4.3187667E-02
 4.5471046E-02 4.7800094E-02 5.0175719E-02 5.2598860E-02 5.5070467E-02
 5.7591498E-02 6.0162954E-02 6.2785834E-02 6.5461181E-02 6.8190031E-02
 7.0973456E-02 7.3812552E-02 7.6708429E-02 7.9662226E-02 8.2675092E-02
 8.5748225E-02 8.8882811E-02 9.2080094E-02 9.5341317E-02 9.8667763E-02
 0.1020608 0.1055216 0.1090516 0.1126523 0.1163250
 0.1200711 0.1238921 0.1277896 0.1317650 0.1358199
 0.1399560 0.1441747 0.1484778 0.1528670 0.1573439
 0.1619105 0.1665683 0.1713193 0.1761653 0.1811082
 0.1861500 0.1912926 0.1965381 0.2018885 0.2073459
 0.2129124 0.2185903 0.2243817 0.2302890 0.2363144
 0.2424603 0.2487291 0.2551233 0.2616454 0.2682979
 0.2750835 0.2820048 0.2890645 0.2962654 0.3036104
 0.3111022 0.3187439 0.3265384 0.3344887 0.3425981
 0.3508697 0.3593068 0.3679125 0.3766904 0.3856438
 0.3947763 0.4040914 0.4135929 0.4232844 0.4331697
 0.4432527 0.4535373 0.4640277 0.4747279 0.4856421
 0.4967745 0.5081296 0.5197119 0.5315257 0.5435758
 0.5558670 0.5684040 0.5811917 0.5942351 0.6075395
 0.6211098 0.6349517 0.6490703 0.6634713 0.6781603
 0.6931431 0.7084256 0.7240137 0.7399136 0.7561315
 0.7726737 0.7895468 0.8067573 0.8243122 0.8422180
 0.8604820 0.8791112 0.8981131 0.9174948 0.9372644
 0.9574292 0.9779974 0.9989769 1.020376 1.042203
 1.064467 1.087176 1.110339 1.133965 1.158064
 1.182645 1.207718 1.233292 1.259377 1.285984
 1.313123 1.340806 1.369041 1.397842 1.427218
 1.457182 1.487745 1.518920 1.550718 1.583152
 1.616234 1.649978 1.684398 1.719505 1.755315
 1.791841 1.829097 1.867099 1.905860 1.945397
 1.985724 2.026859 2.068815 2.111611 2.155263
 2.199788 2.245203 2.291527 2.338777 2.386972
 2.436131 2.486273 2.537418 2.589586 2.642798
 2.697073 2.752434 2.808903 2.866500 2.925250
 2.985174 3.046297 3.108643 3.172235 3.237099
 3.303261 3.370746 3.439580 3.509792 3.581407
 3.654455 3.728964 3.804962 3.882481 3.961551
 4.042201 4.124465 4.208373 4.293960 4.381258
 4.470304 4.561129 4.653771 4.748266 4.844651
 4.942964 5.043243 5.145527 5.249857 5.356273
 5.464818 5.575535 5.688465 5.803653 5.921146
 6.040989 6.163228 6.287912 6.415090 6.544811
 6.677126 6.812089 6.949750 7.090165 7.233388
 7.379475 7.528484 7.680473 7.835502 7.993632
 8.154923 8.319442 8.487250 8.658415 8.833003
 9.011082 9.192722 9.377996 9.566976 9.759734
 9.956348 10.15689 10.36145 10.57010 10.78292
 11.00000
 0.0000000E+00 6.6930625E-05 1.3533194E-04 2.0523874E-04 2.7668665E-04
 3.4971230E-04 4.2435320E-04 5.0064799E-04 5.7863619E-04 6.5835845E-04
 7.3985645E-04 8.2317321E-04 9.0835249E-04 9.9543959E-04 1.0844809E-03
 1.1755242E-03 1.2686182E-03 1.3638134E-03 1.4611614E-03 1.5607155E-03
 1.6625301E-03 1.7666613E-03 1.8731668E-03 1.9821059E-03 2.0935391E-03
 2.2075300E-03 2.3241423E-03 2.4434424E-03 2.5654982E-03 2.6903804E-03
 2.8181602E-03 2.9489126E-03 3.0827129E-03 3.2196408E-03 3.3597760E-03
 3.5032020E-03 3.6500045E-03 3.8002713E-03 3.9540930E-03 4.1115629E-03
 4.2727776E-03 4.4378350E-03 4.6068379E-03 4.7798906E-03 4.9571013E-03
 5.1385821E-03 5.3244461E-03 5.5148136E-03 5.7098037E-03 5.9095444E-03
 6.1141630E-03 6.3237948E-03 6.5385755E-03 6.7586480E-03 6.9841556E-03
 7.2152535E-03 7.4520926E-03 7.6948358E-03 7.9436470E-03 8.1986953E-03
 8.4601613E-03 8.7282211E-03 9.0030637E-03 9.2848837E-03 9.5738759E-03
 9.8702516E-03 1.0174219E-02 1.0485999E-02 1.0805818E-02 1.1133908E-02
 1.1470512E-02 1.1815878E-02 1.2170263E-02 1.2533933E-02 1.2907161E-02
 1.3290232E-02 1.3683441E-02 1.4087087E-02 1.4501481E-02 1.4926954E-02
 1.5363831E-02 1.5812460E-02 1.6273201E-02 1.6746420E-02 1.7232500E-02
 1.7731830E-02 1.8244825E-02 1.8771900E-02 1.9313496E-02 1.9870058E-02
 2.0442057E-02 2.1029972E-02 2.1634305E-02 2.2255566E-02 2.2894295E-02
 2.3551043E-02 2.4226379E-02 2.4920898E-02 2.5635209E-02 2.6369946E-02
 2.7125767E-02 2.7903346E-02 2.8703390E-02 2.9526627E-02 3.0373806E-02
 3.1245705E-02 3.2143135E-02 3.3066932E-02 3.4017961E-02 3.4997109E-02
 3.6005318E-02 3.7043538E-02 3.8112767E-02 3.9214041E-02 4.0348422E-02
 4.1517008E-02 4.2720959E-02 4.3961447E-02 4.5239713E-02 4.6557024E-02
 4.7914691E-02 4.9314100E-02 5.0756652E-02 5.2243806E-02 5.3777099E-02
 5.5358082E-02 5.6988399E-02 5.8669735E-02 6.0403839E-02 6.2192522E-02
 6.4037651E-02 6.5941177E-02 6.7905113E-02 6.9931522E-02 7.2022602E-02
 7.4180558E-02 7.6407723E-02 7.8706481E-02 8.1079312E-02 8.3528794E-02
 8.6057588E-02 8.8668413E-02 9.1364153E-02 9.4147764E-02 9.7022250E-02
 9.9990778E-02 0.1030566 0.1062231 0.1094938 0.1128722
 0.1163621 0.1199673 0.1236918 0.1275396 0.1315150
 0.1356222 0.1398659 0.1442506 0.1487810 0.1534620
 0.1582987 0.1632962 0.1684597 0.1737948 0.1793069
 0.1850018 0.1908852 0.1969631 0.2032415 0.2097265
 0.2164243 0.2233414 0.2304840 0.2378587 0.2454718
 0.2533300 0.2614396 0.2698072 0.2784390 0.2873415
 0.2965207 0.3059827 0.3157332 0.3257776 0.3361211
 0.3467685 0.3577240 0.3689912 0.3805733 0.3924726
 0.4046905 0.4172278 0.4300839 0.4432572 0.4567448
 0.4705423 0.4846437 0.4990413 0.5137258 0.5286853
 0.5439063 0.5593729 0.5750663 0.5909656 0.6070471
 0.6232840 0.6396472 0.6561042 0.6726199 0.6891562
 0.7056724 0.7221248 0.7384679 0.7546535 0.7706319
 0.7863522 0.8017626 0.8168108 0.8314453 0.8456155
 0.8592731 0.8723720 0.8848701 0.8967294 0.9079174
 0.9184074 0.9281791 0.9372196 0.9455234 0.9530924
 0.9599366 0.9660734 0.9715271 0.9763287 0.9805150
 0.9841273 0.9872108 0.9898133 0.9919838 0.9937715
 0.9952249 0.9963904 0.9973117 0.9980291 0.9985790
 0.9989935 0.9993008 0.9995243 0.9996839 0.9997957
 0.9998722 0.9999235 0.9999571 0.9999786 0.9999920
 1.000000
 4.7101475E-02 4.7191799E-02 4.7283933E-02 4.7377907E-02 4.7473758E-02
 4.7571529E-02 4.7671255E-02 4.7772974E-02 4.7876731E-02 4.7982559E-02
 4.8090506E-02 4.8200611E-02 4.8312917E-02 4.8427470E-02 4.8544314E-02
 4.8663497E-02 4.8785061E-02 4.8909057E-02 4.9035531E-02 4.9164537E-02
 4.9296122E-02 4.9430337E-02 4.9567237E-02 4.9706876E-02 4.9849305E-02
 4.9994584E-02 5.0142769E-02 5.0293919E-02 5.0448086E-02 5.0605342E-02
 5.0765738E-02 5.0929345E-02 5.1096223E-02 5.1266436E-02 5.1440053E-02
 5.1617146E-02 5.1797774E-02 5.1982015E-02 5.2169945E-02 5.2361630E-02
 5.2557144E-02 5.2756570E-02 5.2959986E-02 5.3167466E-02 5.3379096E-02
 5.3594954E-02 5.3815130E-02 5.4039709E-02 5.4268774E-02 5.4502424E-02
 5.4740738E-02 5.4983821E-02 5.5231761E-02 5.5484660E-02 5.5742610E-02
 5.6005716E-02 5.6274083E-02 5.6547813E-02 5.6827012E-02 5.7111789E-02
 5.7402261E-02 5.7698537E-02 5.8000732E-02 5.8308966E-02 5.8623355E-02
 5.8944028E-02 5.9271105E-02 5.9604716E-02 5.9944991E-02 6.0292061E-02
 6.0646061E-02 6.1007135E-02 6.1375413E-02 6.1751049E-02 6.2134180E-02
 6.2524959E-02 6.2923536E-02 6.3330069E-02 6.3744716E-02 6.4167634E-02
 6.4598985E-02 6.5038942E-02 6.5487675E-02 6.5945350E-02 6.6412151E-02
 6.6888258E-02 6.7373849E-02 6.7869119E-02 6.8374246E-02 6.8889439E-02
 6.9414884E-02 6.9950789E-02 7.0497356E-02 7.1054794E-02 7.1623318E-02
 7.2203144E-02 7.2794490E-02 7.3397577E-02 7.4012645E-02 7.4639916E-02
 7.5279631E-02 7.5932026E-02 7.6597348E-02 7.7275850E-02 7.7967785E-02
 7.8673400E-02 7.9392970E-02 8.0126755E-02 8.0875017E-02 8.1638038E-02
 8.2416102E-02 8.3209477E-02 8.4018461E-02 8.4843338E-02 8.5684411E-02
 8.6541958E-02 8.7416306E-02 8.8307746E-02 8.9216590E-02 9.0143159E-02
 9.1087759E-02 9.2050709E-02 9.3032345E-02 9.4032981E-02 9.5052943E-02
 9.6092559E-02 9.7152166E-02 9.8232098E-02 9.9332683E-02 0.1004543
 0.1015971 0.1027617 0.1039482 0.1051571 0.1063885
 0.1076430 0.1089207 0.1102220 0.1115472 0.1128966
 0.1142705 0.1156691 0.1170927 0.1185416 0.1200159
 0.1215160 0.1230419 0.1245938 0.1261719 0.1277763
 0.1294071 0.1310641 0.1327476 0.1344573 0.1361932
 0.1379551 0.1397428 0.1415559 0.1433941 0.1452568
 0.1471436 0.1490538 0.1509865 0.1529409 0.1549159
 0.1569104 0.1589230 0.1609521 0.1629961 0.1650531
 0.1671209 0.1691971 0.1712791 0.1733640 0.1754485
 0.1775291 0.1796019 0.1816625 0.1837063 0.1857282
 0.1877225 0.1896833 0.1916038 0.1934769 0.1952950
 0.1970497 0.1987319 0.2003322 0.2018402 0.2032448
 0.2045345 0.2056967 0.2067185 0.2075858 0.2082844
 0.2087989 0.2091138 0.2092128 0.2090793 0.2086961
 0.2080464 0.2071128 0.2058785 0.2043268 0.2024420
 0.2002090 0.1976143 0.1946459 0.1912939 0.1875507
 0.1834117 0.1788756 0.1739447 0.1686258 0.1629298
 0.1568730 0.1504764 0.1437667 0.1367758 0.1295413
 0.1221057 0.1145163 0.1068249 9.9086769E-02 9.1359600E-02
 8.3702818E-02 7.6176219E-02 6.8838485E-02 6.1745934E-02 5.4951236E-02
 4.8501737E-02 4.2438492E-02 3.6795177E-02 3.1597048E-02 2.6860654E-02
 2.2593401E-02 1.8793752E-02 1.5451632E-02 1.2549232E-02 1.0061979E-02
 7.9598418E-03 6.2086559E-03 4.7716550E-03 3.6108552E-03 2.6884135E-03
 1.9678285E-03 1.4148897E-03 9.9843682E-04 6.9083751E-04 4.6822216E-04
 3.1050915E-04 2.0124234E-04 1.2728763E-04 7.8444064E-05 4.7003818E-05
 2.7305194E-05
 91 71
 0.5000000 0.5500000 0.6000000 0.6500000 0.7000000
 0.7500000 0.8000000 0.8500000 0.9000000 0.9500000
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000 4.550000 4.600000 4.650000 4.700000
 4.750000 4.800000 4.850000 4.900000 4.950000
 5.000000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000000 -0.3500000 -0.3000000
 -0.2500000 -0.2000000 -0.1500000 -0.1000000 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1500001 0.2000000
 0.2500000 0.3000000 0.3499999 0.4000001 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 3.9801445E-02 4.1000616E-02 4.1875836E-02 4.2448148E-02 4.2739879E-02
 4.2774230E-02 4.2574830E-02 4.2165328E-02 4.1569222E-02 4.0809419E-02
 3.9908051E-02 3.8886257E-02 3.7764050E-02 3.6560170E-02 3.5291977E-02
 3.3975437E-02 3.2625061E-02 3.1253923E-02 2.9873678E-02 2.8494608E-02
 2.7125692E-02 2.5774665E-02 2.4448099E-02 2.3151517E-02 2.1889446E-02
 2.0665545E-02 1.9482655E-02 1.8342920E-02 1.7247858E-02 1.6198426E-02
 1.5195118E-02 1.4238006E-02 1.3326822E-02 1.2460997E-02 1.1639730E-02
 1.0862008E-02 1.0126663E-02 9.4324099E-03 8.7778699E-03 8.1615886E-03
 7.5820754E-03 7.0378166E-03 6.5272902E-03 6.0489769E-03 5.6013926E-03
 5.1830751E-03 4.7925874E-03 4.4285534E-03 4.0896405E-03 3.7745559E-03
 3.4820698E-03 3.2109977E-03 2.9601937E-03 2.7285647E-03 2.5150517E-03
 2.3186230E-03 2.1382805E-03 1.9730350E-03 1.8219114E-03 1.6839509E-03
 1.5582078E-03 1.4437477E-03 1.3396540E-03 1.2450449E-03 1.1590740E-03
 1.0809326E-03 1.0098636E-03 9.4516680E-04 8.8618981E-04 8.3235174E-04
 7.8311353E-04 7.3799695E-04 6.9657294E-04 6.5845862E-04 6.2331115E-04
 5.9083157E-04 5.6075020E-04 5.3283136E-04 5.0686515E-04 4.8266278E-04
 4.6006375E-04 4.3891757E-04 4.1909755E-04 4.0048445E-04 3.8297786E-04
 3.6648434E-04 3.5092197E-04 3.3621688E-04 3.2230196E-04 3.0911958E-04
 2.9661387E-04
 0.1246157 0.1176688 0.1109038 0.1043416 9.7999752E-02
 9.1892689E-02 8.6031646E-02 8.0425285E-02 7.5079046E-02 6.9995970E-02
 6.5176696E-02 6.0619742E-02 5.6321725E-02 5.2277602E-02 4.8480883E-02
 4.4923946E-02 4.1598164E-02 3.8494203E-02 3.5602149E-02 3.2911722E-02
 3.0412449E-02 2.8093766E-02 2.5945153E-02 2.3956262E-02 2.2116952E-02
 2.0417403E-02 1.8848147E-02 1.7400088E-02 1.6064581E-02 1.4833397E-02
 1.3698779E-02 1.2653396E-02 1.1690378E-02 1.0803304E-02 9.9861585E-03
 9.2333546E-03 8.5396972E-03 7.9003647E-03 7.3109027E-03 6.7671891E-03
 6.2654209E-03 5.8020977E-03 5.3740004E-03 4.9781748E-03 4.6119080E-03
 4.2727208E-03 3.9583500E-03 3.6667294E-03 3.3959816E-03 3.1444111E-03
 2.9104815E-03 2.6928156E-03 2.4901778E-03 2.3014699E-03 2.1257177E-03
 1.9620676E-03 1.8097570E-03 1.6681196E-03 1.5365584E-03 1.4145356E-03
 1.3015555E-03 1.1971500E-03 1.1008680E-03 1.0122678E-03 9.3090866E-04
 8.5634785E-04 7.8814733E-04 7.2586717E-04 6.6907308E-04 6.1734713E-04
 5.7027861E-04 5.2747468E-04 4.8856687E-04 4.5320374E-04 4.2105935E-04
 3.9183116E-04 3.6523945E-04 3.4102966E-04 3.1896657E-04 2.9883636E-04
 2.8044984E-04 2.6362989E-04 2.4822162E-04 2.3408173E-04 2.2108531E-04
 2.0911806E-04 1.9807804E-04 1.8787495E-04 1.7842615E-04 1.6966027E-04
 1.6151203E-04
 3.9946351E-02 4.1144468E-02 4.2018428E-02 4.2589277E-02 4.2879369E-02
 4.2911943E-02 4.2710666E-02 4.2299196E-02 4.1701071E-02 4.0939216E-02
 4.0035788E-02 3.9011944E-02 3.7887715E-02 3.6681850E-02 3.5411738E-02
 3.4093343E-02 3.2741185E-02 3.1368364E-02 2.9986525E-02 2.8605964E-02
 2.7235663E-02 2.5883354E-02 2.4555625E-02 2.3257995E-02 2.1994988E-02
 2.0770265E-02 1.9586677E-02 1.8446358E-02 1.7350830E-02 1.6301051E-02
 1.5297512E-02 1.4340292E-02 1.3429108E-02 1.2563406E-02 1.1742377E-02
 1.0965005E-02 1.0230133E-02 9.5364647E-03 8.8826166E-03 8.2671465E-03
 7.6885521E-03 7.1453149E-03 6.6359136E-03 6.1588250E-03 5.7125501E-03
 5.2956110E-03 4.9065743E-03 4.5440351E-03 4.2066365E-03 3.8930643E-03
 3.6020570E-03 3.3323816E-03 3.0828705E-03 2.8523717E-03 2.6397815E-03
 2.4440251E-03 2.2640482E-03 2.0988337E-03 1.9473763E-03 1.8087043E-03
 1.6818630E-03 1.5659281E-03 1.4600157E-03 1.3632713E-03 1.2748849E-03
 1.1940985E-03 1.1202019E-03 1.0525360E-03 9.9049543E-04 9.3353092E-04
 8.8114070E-04 8.3287392E-04 7.8832154E-04 7.4711832E-04 7.0894172E-04
 6.7349797E-04 6.4052589E-04 6.0979614E-04 5.8110314E-04 5.5426173E-04
 5.2910682E-04 5.0549151E-04 4.8328741E-04 4.6237482E-04 4.4265049E-04
 4.2401778E-04 4.0639468E-04 3.8970311E-04 3.7387459E-04 3.5884802E-04
 3.4456563E-04
 0.1244954 0.1175458 0.1107783 0.1042138 9.7869895E-02
 9.1760963E-02 8.5898288E-02 8.0290496E-02 7.4943066E-02 6.9859013E-02
 6.5038964E-02 6.0481433E-02 5.6183029E-02 5.2138694E-02 4.8341941E-02
 4.4785127E-02 4.1459609E-02 3.8356043E-02 3.5464518E-02 3.2774728E-02
 3.0276202E-02 2.7958354E-02 2.5810666E-02 2.3822775E-02 2.1984540E-02
 2.0286134E-02 1.8718068E-02 1.7271262E-02 1.5937055E-02 1.4707222E-02
 1.3573999E-02 1.2530054E-02 1.1568521E-02 1.0682971E-02 9.8673981E-03
 9.1162203E-03 8.4242355E-03 7.7866325E-03 7.1989680E-03 6.6571212E-03
 6.1573014E-03 5.6960168E-03 5.2700615E-03 4.8764888E-03 4.5126090E-03
 4.1759573E-03 3.8642802E-03 3.5755339E-03 3.3078582E-03 3.0595700E-03
 2.8291459E-03 2.6152174E-03 2.4165523E-03 2.2320463E-03 2.0607149E-03
 1.9016736E-03 1.7541291E-03 1.6173691E-03 1.4907388E-03 1.3736440E-03
 1.2655262E-03 1.1658537E-03 1.0741230E-03 9.8984235E-04 9.1253285E-04
 8.4172905E-04 7.7697140E-04 7.1781856E-04 6.6383806E-04 6.1461970E-04
 5.6976778E-04 5.2890897E-04 4.9168989E-04 4.5778279E-04 4.2688413E-04
 3.9870862E-04 3.7299833E-04 3.4951631E-04 3.2804595E-04 3.0838864E-04
 2.9036921E-04 2.7382394E-04 2.5861032E-04 2.4459561E-04 2.3166445E-04
 2.1971100E-04 2.0864136E-04 1.9836948E-04 1.8882149E-04 1.7992928E-04
 1.7163136E-04
 4.0109280E-02 4.1306254E-02 4.2178817E-02 4.2748023E-02 4.3036297E-02
 4.3066900E-02 4.2863540E-02 4.2449884E-02 4.1849513E-02 4.1085381E-02
 4.0179659E-02 3.9153539E-02 3.8027063E-02 3.6818996E-02 3.5546750E-02
 3.4226298E-02 3.2872178E-02 3.1497490E-02 3.0113893E-02 2.8731687E-02
 2.7359856E-02 2.6006145E-02 2.4677139E-02 2.3378354E-02 2.2114331E-02
 2.0888723E-02 1.9704377E-02 1.8563434E-02 1.7467415E-02 1.6417274E-02
 1.5413507E-02 1.4456181E-02 1.3545023E-02 1.2679478E-02 1.1858726E-02
 1.1081762E-02 1.0347414E-02 9.6543897E-03 9.0013081E-03 8.3867125E-03
 7.8091025E-03 7.2669531E-03 6.7587299E-03 6.2829028E-03 5.8379634E-03
 5.4224189E-03 5.0348113E-03 4.6737166E-03 4.3377550E-03 4.0255841E-03
 3.7358976E-03 3.4674383E-03 3.2189875E-03 2.9893552E-03 2.7774007E-03
 2.5820010E-03 2.4020828E-03 2.2365879E-03 2.0844995E-03 1.9448361E-03
 1.8166453E-03 1.6990249E-03 1.5911005E-03 1.4920539E-03 1.4011170E-03
 1.3175629E-03 1.2407227E-03 1.1699775E-03 1.1047624E-03 1.0445552E-03
 9.8888669E-04 9.3733263E-04 8.8950561E-04 8.4506144E-04 8.0368313E-04
 7.6509808E-04 7.2905322E-04 6.9532247E-04 6.6370278E-04 6.3401664E-04
 6.0610141E-04 5.7980919E-04 5.5501069E-04 5.3158787E-04 5.0943624E-04
 4.8845727E-04 4.6856690E-04 4.4968567E-04 4.3174418E-04 4.1467624E-04
 3.9842597E-04
 0.1243603 0.1174077 0.1106374 0.1040703 9.7724013E-02
 9.1613002E-02 8.5748486E-02 8.0139115E-02 7.4790351E-02 6.9705196E-02
 6.4884290E-02 6.0326125E-02 5.6027304E-02 5.1982757E-02 4.8185971E-02
 4.4629298E-02 4.1304104E-02 3.8201012E-02 3.5310097E-02 3.2621048E-02
 3.0123379E-02 2.7806500E-02 2.5659882E-02 2.3673151E-02 2.1836158E-02
 2.0139067E-02 1.8572394E-02 1.7127041E-02 1.5794350E-02 1.4566090E-02
 1.3434493E-02 1.2392236E-02 1.1432440E-02 1.0548686E-02 9.7349705E-03
 8.9857057E-03 8.2957037E-03 7.6601580E-03 7.0746238E-03 6.5349960E-03
 6.0374942E-03 5.5786339E-03 5.1552216E-03 4.7643255E-03 4.4032671E-03
 4.0695933E-03 3.7610719E-03 3.4756686E-03 3.2115313E-03 2.9669905E-03
 2.7405280E-03 2.5307729E-03 2.3364888E-03 2.1565605E-03 1.9899774E-03
 1.8358282E-03 1.6932813E-03 1.5615784E-03 1.4400135E-03 1.3279417E-03
 1.2247472E-03 1.1298521E-03 1.0427025E-03 9.6276973E-04 8.8954560E-04
 8.2254282E-04 7.6128863E-04 7.0533616E-04 6.5425795E-04 6.0764799E-04
 5.6512246E-04 5.2632682E-04 4.9092330E-04 4.5860340E-04 4.2907812E-04
 4.0208828E-04 3.7739120E-04 3.5476629E-04 3.3401322E-04 3.1495153E-04
 2.9741792E-04 2.8126332E-04 2.6635511E-04 2.5257259E-04 2.3980980E-04
 2.2796719E-04 2.1696140E-04 2.0671137E-04 1.9715089E-04 1.8821488E-04
 1.7984830E-04
 4.0292531E-02 4.1488238E-02 4.2359248E-02 4.2926658E-02 4.3212924E-02
 4.3241341E-02 4.3035649E-02 4.2619571E-02 4.2016711E-02 4.1250046E-02
 4.0341780E-02 3.9313126E-02 3.8184162E-02 3.6973666E-02 3.5699051E-02
 3.4376327E-02 3.3020038E-02 3.1643286E-02 3.0257748E-02 2.8873730E-02
 2.7500223E-02 2.6144974E-02 2.4814570E-02 2.3514537E-02 2.2249412E-02
 2.1022841E-02 1.9837689E-02 1.8696081E-02 1.7599542E-02 1.6549032E-02
 1.5545033E-02 1.4587619E-02 1.3676523E-02 1.2811168E-02 1.1990741E-02
 1.1214236E-02 1.0480473E-02 9.7881574E-03 9.1359010E-03 8.5222414E-03
 7.9456680E-03 7.4046473E-03 6.8976362E-03 6.4230864E-03 5.9794737E-03
 5.5652838E-03 5.1790378E-03 4.8192875E-03 4.4846153E-03 4.1736551E-03
 3.8850636E-03 3.6175456E-03 3.3698406E-03 3.1407271E-03 2.9290298E-03
 2.7335931E-03 2.5533203E-03 2.3871372E-03 2.2340226E-03 2.0929866E-03
 1.9630950E-03 1.8434566E-03 1.7332251E-03 1.6316130E-03 1.5378832E-03
 1.4513410E-03 1.3713617E-03 1.2973534E-03 1.2287840E-03 1.1651624E-03
 1.1060496E-03 1.0510375E-03 9.9976500E-04 9.5190055E-04 9.0714858E-04
 8.6524087E-04 8.2593015E-04 7.8900682E-04 7.5427111E-04 7.2154403E-04
 6.9066975E-04 6.6150125E-04 6.3391175E-04 6.0778111E-04 5.8300357E-04
 5.5948173E-04 5.3712906E-04 5.1586906E-04 4.9562380E-04 4.7633232E-04
 4.5793323E-04
 0.1242085 0.1172524 0.1104790 0.1039090 9.7560115E-02
 9.1446772E-02 8.5580207E-02 7.9969071E-02 7.4618809E-02 6.9532447E-02
 6.4710587E-02 6.0151722E-02 5.5852447E-02 5.1807668E-02 4.8010875E-02
 4.4454396E-02 4.1129578E-02 3.8027041E-02 3.5136838E-02 3.2448653E-02
 2.9951990E-02 2.7636236E-02 2.5490858E-02 2.3505474E-02 2.1669926E-02
 1.9974373E-02 1.8409315E-02 1.6965659E-02 1.5634742E-02 1.4408325E-02
 1.3278642E-02 1.2238365E-02 1.1280620E-02 1.0398986E-02 9.5874676E-03
 8.8404734E-03 8.1528313E-03 7.5197308E-03 6.9367411E-03 6.3997647E-03
 5.9050242E-03 5.4490552E-03 5.0286725E-03 4.6409518E-03 4.2832317E-03
 3.9530690E-03 3.6482401E-03 3.3667192E-03 3.1066644E-03 2.8664006E-03
 2.6444134E-03 2.4393201E-03 2.2498728E-03 2.0749313E-03 1.9134597E-03
 1.7645136E-03 1.6272161E-03 1.5007664E-03 1.3844154E-03 1.2774651E-03
 1.1792558E-03 1.0891674E-03 1.0066123E-03 9.3102967E-04 8.6189085E-04
 7.9868792E-04 7.4094569E-04 6.8821263E-04 6.4006425E-04 5.9610471E-04
 5.5596366E-04 5.1929546E-04 4.8578333E-04 4.5513303E-04 4.2707869E-04
 4.0137224E-04 3.7778885E-04 3.5612736E-04 3.3620207E-04 3.1784529E-04
 3.0090843E-04 2.8525409E-04 2.7076117E-04 2.5731983E-04 2.4483071E-04
 2.3320495E-04 2.2236406E-04 2.1223817E-04 2.0276055E-04 1.9387687E-04
 1.8553469E-04
 4.0498704E-02 4.1693024E-02 4.2562332E-02 4.3127738E-02 4.3411776E-02
 4.3437764E-02 4.3229502E-02 4.2810742E-02 4.2205114E-02 4.1435651E-02
 4.0524568E-02 3.9493117E-02 3.8361393E-02 3.7148200E-02 3.5870977E-02
 3.4545742E-02 3.3187050E-02 3.1808034E-02 3.0420359E-02 2.9034354E-02
 2.7659012E-02 2.6302086E-02 2.4970159E-02 2.3668770E-02 2.2402449E-02
 2.1174856E-02 1.9988833E-02 1.8846529E-02 1.7749451E-02 1.6698562E-02
 1.5694344E-02 1.4736870E-02 1.3825852E-02 1.2960729E-02 1.2140683E-02
 1.1364686E-02 1.0631562E-02 9.9400142E-03 9.2886314E-03 8.6759487E-03
 8.1004500E-03 7.5605744E-03 7.0547662E-03 6.5814634E-03 6.1391112E-03
 5.7261819E-03 5.3411582E-03 4.9825651E-03 4.6489574E-03 4.3389257E-03
 4.0510986E-03 3.7841431E-03 3.5367683E-03 3.3077183E-03 3.0957940E-03
 2.8998195E-03 2.7186833E-03 2.5512998E-03 2.3966557E-03 2.2537690E-03
 2.1217188E-03 1.9996322E-03 1.8867002E-03 1.7821584E-03 1.6852946E-03
 1.5954612E-03 1.5120561E-03 1.4345174E-03 1.3623491E-03 1.2950845E-03
 1.2323014E-03 1.1736184E-03 1.1186915E-03 1.0672038E-03 1.0188718E-03
 9.7343652E-04 9.3066710E-04 8.9035276E-04 8.5229723E-04 8.1633544E-04
 7.8230532E-04 7.5006561E-04 7.1949104E-04 6.9046067E-04 6.6286995E-04
 6.3662115E-04 6.1162678E-04 5.8780471E-04 5.6508189E-04 5.4339343E-04
 5.2267447E-04
 0.1240378 0.1170780 0.1103010 0.1037278 9.7375967E-02
 9.1260009E-02 8.5391156E-02 7.9778038E-02 7.4426129E-02 6.9338411E-02
 6.4515494E-02 5.9955861E-02 5.5656102E-02 5.1611084E-02 4.7814310E-02
 4.4258073E-02 4.0933713E-02 3.7831832E-02 3.4942470E-02 3.2255299E-02
 2.9759804E-02 2.7445368E-02 2.5301440E-02 2.3317629E-02 2.1483768E-02
 1.9790007E-02 1.8226847E-02 1.6785184E-02 1.5456345E-02 1.4232100E-02
 1.3104673E-02 1.2066739E-02 1.1111426E-02 1.0232314E-02 9.4234049E-03
 8.6791255E-03 7.9942970E-03 7.3641194E-03 6.7841751E-03 6.2503698E-03
 5.7589374E-03 5.3064222E-03 4.8896493E-03 4.5057079E-03 4.1519389E-03
 3.8259104E-03 3.5254019E-03 3.2483886E-03 2.9930298E-03 2.7576464E-03
 2.5407053E-03 2.3408148E-03 2.1566977E-03 1.9871886E-03 1.8312189E-03
 1.6878003E-03 1.5560219E-03 1.4350336E-03 1.3240471E-03 1.2223187E-03
 1.1291542E-03 1.0439013E-03 9.6594013E-04 8.9469174E-04 8.2960934E-04
 7.7017944E-04 7.1592379E-04 6.6639221E-04 6.2116678E-04 5.7986175E-04
 5.4211839E-04 5.0760829E-04 4.7602781E-04 4.4710169E-04 4.2057634E-04
 3.9622368E-04 3.7383550E-04 3.5322248E-04 3.3421550E-04 3.1666082E-04
 3.0041902E-04 2.8536670E-04 2.7139237E-04 2.5839516E-04 2.4628500E-04
 2.3498146E-04 2.2441127E-04 2.1450964E-04 2.0521834E-04 1.9648689E-04
 1.8826527E-04
 4.0730745E-02 4.1923538E-02 4.2790972E-02 4.3354183E-02 4.3635760E-02
 4.3659072E-02 4.3447968E-02 4.3026228E-02 4.2417549E-02 4.1644972E-02
 4.0730774E-02 3.9696231E-02 3.8561460E-02 3.7345286E-02 3.6065187E-02
 3.4737185E-02 3.3375863E-02 3.1994347E-02 3.0604342E-02 2.9216159E-02
 2.7838815E-02 2.6480060E-02 2.5146490E-02 2.3843639E-02 2.2576032E-02
 2.1347338E-02 2.0160405E-02 1.9017367E-02 1.7919734E-02 1.6868465E-02
 1.5864039E-02 1.4906521E-02 1.3995623E-02 1.3130776E-02 1.2311144E-02
 1.1535705E-02 1.0803274E-02 1.0112522E-02 9.4620492E-03 8.8503612E-03
 8.2759196E-03 7.7371588E-03 7.2324942E-03 6.7603406E-03 6.3191135E-03
 5.9072520E-03 5.5232146E-03 5.1654917E-03 4.8326035E-03 4.5231003E-03
 4.2355866E-03 3.9686942E-03 3.7211077E-03 3.4915498E-03 3.2787945E-03
 3.0816621E-03 2.8990426E-03 2.7298473E-03 2.5730683E-03 2.4277519E-03
 2.2929928E-03 2.1679453E-03 2.0518210E-03 1.9438927E-03 1.8434844E-03
 1.7499721E-03 1.6627768E-03 1.5813800E-03 1.5052987E-03 1.4340960E-03
 1.3673711E-03 1.3047551E-03 1.2459256E-03 1.1905719E-03 1.1384282E-03
 1.0892446E-03 1.0427941E-03 9.9887198E-04 9.5729431E-04 9.1788830E-04
 8.8050234E-04 8.4499991E-04 8.1124849E-04 7.7912910E-04 7.4854161E-04
 7.1938435E-04 6.9157116E-04 6.6501967E-04 6.3965388E-04 6.1540416E-04
 5.9220707E-04
 0.1238460 0.1168819 0.1101010 0.1035241 9.7169019E-02
 9.1050141E-02 8.5178718E-02 7.9563409E-02 7.4209653E-02 6.9120437E-02
 6.4296365E-02 5.9735894E-02 5.5435609E-02 5.1390368E-02 4.7593638E-02
 4.4037715E-02 4.0713910E-02 3.7612814E-02 3.4724452E-02 3.2038469E-02
 2.9544350E-02 2.7231457E-02 2.5089229E-02 2.3107266E-02 2.1275388E-02
 1.9583737E-02 1.8022813E-02 1.6583497E-02 1.5257121E-02 1.4035443E-02
 1.2910693E-02 1.1875547E-02 1.0923130E-02 1.0047027E-02 9.2412457E-03
 8.5002119E-03 7.8187576E-03 7.1920953E-03 6.6158036E-03 6.0858023E-03
 5.5983383E-03 5.1499563E-03 4.7374917E-03 4.3580369E-03 4.0089423E-03
 3.6877734E-03 3.3923076E-03 3.1205169E-03 2.8705476E-03 2.6407065E-03
 2.4294420E-03 2.2353341E-03 2.0570769E-03 1.8934680E-03 1.7434022E-03
 1.6058497E-03 1.4798588E-03 1.3645403E-03 1.2590641E-03 1.1626559E-03
 1.0745893E-03 9.9418790E-04 9.2081144E-04 8.5386942E-04 7.9280778E-04
 7.3710975E-04 6.8629865E-04 6.3993223E-04 5.9760310E-04 5.5893592E-04
 5.2358746E-04 4.9124210E-04 4.6161353E-04 4.3444213E-04 4.0949084E-04
 3.8654709E-04 3.6541437E-04 3.4592237E-04 3.2791207E-04 3.1124134E-04
 2.9578342E-04 2.8142650E-04 2.6806627E-04 2.5561143E-04 2.4398016E-04
 2.3309857E-04 2.2289835E-04 2.1332419E-04 2.0432036E-04 1.9583826E-04
 1.8783657E-04
 4.0992018E-02 4.2183153E-02 4.3048523E-02 4.3609317E-02 4.3888170E-02
 4.3908533E-02 4.3694288E-02 4.3269269E-02 4.2657208E-02 4.1881211E-02
 4.0963575E-02 3.9925616E-02 3.8787480E-02 3.7568036E-02 3.6284763E-02
 3.4953728E-02 3.3589516E-02 3.2205269E-02 3.0812711E-02 2.9422158E-02
 2.8042633E-02 2.6681904E-02 2.5346555E-02 2.4042124E-02 2.2773156E-02
 2.1543296E-02 2.0355400E-02 1.9211598E-02 1.8113397E-02 1.7061748E-02
 1.6057130E-02 1.5099593E-02 1.4188848E-02 1.3324303E-02 1.2505127E-02
 1.1730280E-02 1.0998550E-02 1.0308609E-02 9.6590267E-03 9.0482971E-03
 8.4748510E-03 7.9371016E-03 7.4334312E-03 6.9622244E-03 6.5218722E-03
 6.1107785E-03 5.7273638E-03 5.3700828E-03 5.0374209E-03 4.7279070E-03
 4.4401102E-03 4.1726418E-03 3.9241593E-03 3.6933774E-03 3.4790698E-03
 3.2800531E-03 3.0952133E-03 2.9234877E-03 2.7638874E-03 2.6154709E-03
 2.4773639E-03 2.3487527E-03 2.2288840E-03 2.1170469E-03 2.0126041E-03
 1.9149573E-03 1.8235602E-03 1.7379147E-03 1.6575565E-03 1.5820737E-03
 1.5110805E-03 1.4442333E-03 1.3812112E-03 1.3217203E-03 1.2655071E-03
 1.2123209E-03 1.1619492E-03 1.1141942E-03 1.0688670E-03 1.0258056E-03
 9.8485837E-04 9.4588508E-04 9.0875907E-04 8.7336823E-04 8.3960255E-04
 8.0736127E-04 7.7655952E-04 7.4710825E-04 7.1893504E-04 6.9197285E-04
 6.6615036E-04
 0.1236304 0.1166615 0.1098761 0.1032952 9.6936412E-02
 9.0814263E-02 8.4939986E-02 7.9322226E-02 7.3966421E-02 6.8875551E-02
 6.4050213E-02 5.9488844E-02 5.5188004E-02 5.1142547E-02 4.7345918E-02
 4.3790393E-02 4.0467270E-02 3.7367117E-02 3.4479938E-02 3.1795371E-02
 2.9302878E-02 2.6991809E-02 2.4851590E-02 2.2871809E-02 2.1042274E-02
 1.9353122E-02 1.7794842E-02 1.6358312E-02 1.5034862E-02 1.3816243E-02
 1.2694692E-02 1.1662876E-02 1.0713928E-02 9.8414375E-03 9.0394123E-03
 8.3022863E-03 7.6248995E-03 7.0024636E-03 6.4305714E-03 5.9051453E-03
 5.4224394E-03 4.9790032E-03 4.5716739E-03 4.1975453E-03 3.8539618E-03
 3.5384845E-03 3.2488846E-03 2.9831140E-03 2.7392989E-03 2.5157239E-03
 2.3108039E-03 2.1230883E-03 1.9512337E-03 1.7939992E-03 1.6502369E-03
 1.5188789E-03 1.3989346E-03 1.2894772E-03 1.1896471E-03 1.0986426E-03
 1.0157162E-03 9.4017480E-04 8.7136752E-04 8.0869853E-04 7.5161445E-04
 6.9960154E-04 6.5219251E-04 6.0895208E-04 5.6948658E-04 5.3343573E-04
 5.0046836E-04 4.7028999E-04 4.4262665E-04 4.1723350E-04 3.9389235E-04
 3.7240109E-04 3.5258027E-04 3.3427071E-04 3.1732474E-04 3.0161548E-04
 2.8702361E-04 2.7344641E-04 2.6078938E-04 2.4896787E-04 2.3791006E-04
 2.2754443E-04 2.1781212E-04 2.0865985E-04 2.0003799E-04 1.9190414E-04
 1.8421859E-04
 4.1286305E-02 4.2475633E-02 4.3338761E-02 4.3896906E-02 4.4172790E-02
 4.4189896E-02 4.3972194E-02 4.3543559E-02 4.2927783E-02 4.2148009E-02
 4.1226588E-02 4.0184870E-02 3.9043047E-02 3.7820008E-02 3.6533263E-02
 3.5198893E-02 3.3831518E-02 3.2444302E-02 3.1048963E-02 2.9655840E-02
 2.8273962E-02 2.6911093E-02 2.5573839E-02 2.4267731E-02 2.2997303E-02
 2.1766216E-02 2.0577313E-02 1.9432716E-02 1.8333938E-02 1.7281910E-02
 1.6277105E-02 1.5319568E-02 1.4408984E-02 1.3544764E-02 1.2726056E-02
 1.1951786E-02 1.1220745E-02 1.0531562E-02 9.8827947E-03 9.2728995E-03
 8.7002879E-03 8.1633339E-03 7.6603885E-03 7.1898019E-03 6.7499271E-03
 6.3391319E-03 5.9558060E-03 5.5983728E-03 5.2652839E-03 4.9550412E-03
 4.6661999E-03 4.3973476E-03 4.1471384E-03 3.9142896E-03 3.6975695E-03
 3.4958192E-03 3.3079332E-03 3.1328737E-03 2.9696652E-03 2.8174098E-03
 2.6752620E-03 2.5424266E-03 2.4181840E-03 2.3018643E-03 2.1928488E-03
 2.0905645E-03 1.9944962E-03 1.9041608E-03 1.8191230E-03 1.7389772E-03
 1.6633641E-03 1.5919436E-03 1.5244086E-03 1.4604853E-03 1.3999100E-03
 1.3424555E-03 1.2879082E-03 1.2360675E-03 1.1867578E-03 1.1398164E-03
 1.0950899E-03 1.0524426E-03 1.0117480E-03 9.7288686E-04 9.3575643E-04
 9.0025639E-04 8.6629443E-04 8.3378266E-04 8.0264796E-04 7.7281630E-04
 7.4421603E-04
 0.1233879 0.1164136 0.1096232 0.1030378 9.6674919E-02
 9.0549119E-02 8.4671661E-02 7.9051174E-02 7.3693097E-02 6.8600409E-02
 6.3773684E-02 5.9211344E-02 5.4909937E-02 5.0864298E-02 4.7067847E-02
 4.3512840E-02 4.0190555E-02 3.7091542E-02 3.4205787E-02 3.1522915E-02
 2.9032351E-02 2.6723456E-02 2.4585623E-02 2.2608429E-02 2.0781683E-02
 1.9095508E-02 1.7540380E-02 1.6107179E-02 1.4787227E-02 1.3572282E-02
 1.2454566E-02 1.1426757E-02 1.0481989E-02 9.6138529E-03 8.8163605E-03
 8.0839563E-03 7.4114762E-03 6.7941449E-03 6.2275538E-03 5.7076332E-03
 5.2306312E-03 4.7931010E-03 4.3918774E-03 4.0240418E-03 3.6869305E-03
 3.3780884E-03 3.0952594E-03 2.8363771E-03 2.5995348E-03 2.3829809E-03
 2.1850993E-03 2.0043922E-03 1.8394775E-03 1.6890748E-03 1.5519938E-03
 1.4271338E-03 1.3134675E-03 1.2100409E-03 1.1159714E-03 1.0304375E-03
 9.5267926E-04 8.8199420E-04 8.1773498E-04 7.5930450E-04 7.0615544E-04
 6.5778237E-04 6.1373156E-04 5.7358091E-04 5.3695036E-04 5.0349568E-04
 4.7290415E-04 4.4489247E-04 4.1920770E-04 3.9561943E-04 3.7391996E-04
 3.5392426E-04 3.3546821E-04 3.1839957E-04 3.0258662E-04 2.8790976E-04
 2.7425957E-04 2.6154297E-04 2.4967300E-04 2.3857236E-04 2.2817357E-04
 2.1841424E-04 2.0924129E-04 2.0060231E-04 1.9245352E-04 1.8475745E-04
 1.7747439E-04
 4.1617978E-02 4.2805359E-02 4.3666057E-02 4.4221301E-02 4.4493914E-02
 4.4507463E-02 4.4285968E-02 4.3853365E-02 4.3233503E-02 4.2449586E-02
 4.1524008E-02 4.0478174E-02 3.9332300E-02 3.8105324E-02 3.6814783E-02
 3.5476789E-02 3.4105975E-02 3.2715518E-02 3.1317167E-02 2.9921265E-02
 2.8536852E-02 2.7171697E-02 2.5832403E-02 2.4524504E-02 2.3252541E-02
 2.2020161E-02 2.0830207E-02 1.9684792E-02 1.8585417E-02 1.7533002E-02
 1.6528010E-02 1.5570463E-02 1.4660040E-02 1.3796121E-02 1.2977825E-02
 1.2204072E-02 1.1473614E-02 1.0785053E-02 1.0136911E-02 9.5276106E-03
 8.9555280E-03 8.4189959E-03 7.9163397E-03 7.4458593E-03 7.0058727E-03
 6.5947147E-03 6.2107453E-03 5.8523556E-03 5.5179801E-03 5.2061062E-03
 4.9152770E-03 4.6440740E-03 4.3911659E-03 4.1552642E-03 3.9351676E-03
 3.7297264E-03 3.5378654E-03 3.3585818E-03 3.1909263E-03 3.0340313E-03
 2.8870769E-03 2.7493115E-03 2.6200355E-03 2.4986102E-03 2.3844396E-03
 2.2769826E-03 2.1757381E-03 2.0802428E-03 1.9900827E-03 1.9048660E-03
 1.8242423E-03 1.7478849E-03 1.6755012E-03 1.6068150E-03 1.5415788E-03
 1.4795655E-03 1.4205609E-03 1.3643791E-03 1.3108404E-03 1.2597800E-03
 1.2110489E-03 1.1645117E-03 1.1200450E-03 1.0775222E-03 1.0368400E-03
 9.9789747E-04 9.6060225E-04 9.2486711E-04 8.9061196E-04 8.5775962E-04
 8.2624296E-04
 0.1231151 0.1161348 0.1093389 0.1027483 9.6380882E-02
 9.0251014E-02 8.4370002E-02 7.8746505E-02 7.3385924E-02 6.8291239E-02
 6.3463010E-02 5.8899645E-02 5.4597668E-02 5.0551899E-02 4.6755731E-02
 4.3201394E-02 3.9880157E-02 3.6782537E-02 3.3898506E-02 3.1217666E-02
 2.8729429E-02 2.6423123E-02 2.4288144E-02 2.2314062E-02 2.0490654E-02
 1.8808046E-02 1.7256707E-02 1.5827511E-02 1.4511772E-02 1.3301250E-02
 1.2188168E-02 1.1165207E-02 1.0225497E-02 9.3626371E-03 8.5706394E-03
 7.8439480E-03 7.1774046E-03 6.5662363E-03 6.0060346E-03 5.4927221E-03
 5.0225426E-03 4.5920420E-03 4.1980334E-03 3.8375903E-03 3.5080202E-03
 3.2068393E-03 2.9317639E-03 2.6806865E-03 2.4516620E-03 2.2428979E-03
 2.0527341E-03 1.8796299E-03 1.7221629E-03 1.5790123E-03 1.4489532E-03
 1.3308533E-03 1.2236588E-03 1.1263971E-03 1.0381708E-03 9.5815171E-04
 8.8557450E-04 8.1973971E-04 7.6000241E-04 7.0577359E-04 6.5651943E-04
 6.1174878E-04 5.7101931E-04 5.3392904E-04 5.0011510E-04 4.6924513E-04
 4.4102655E-04 4.1519312E-04 3.9150525E-04 3.6974868E-04 3.4972827E-04
 3.3127441E-04 3.1423321E-04 2.9846528E-04 2.8384963E-04 2.7027333E-04
 2.5764052E-04 2.4586084E-04 2.3485810E-04 2.2456178E-04 2.1490641E-04
 2.0583907E-04 1.9730879E-04 1.8926876E-04 1.8168148E-04 1.7450644E-04
 1.6771459E-04
 4.1991975E-02 4.3177288E-02 4.4035342E-02 4.4587445E-02 4.4856511E-02
 4.4866160E-02 4.4640519E-02 4.4203576E-02 4.3579243E-02 4.2790797E-02
 4.1860674E-02 4.0810335E-02 3.9660051E-02 3.8428780E-02 3.7134111E-02
 3.5792165E-02 3.4417622E-02 3.3023670E-02 3.1622075E-02 3.0223185E-02
 2.8836051E-02 2.7468450E-02 2.6126988E-02 2.4817199E-02 2.3543611E-02
 2.2309877E-02 2.1118818E-02 1.9972548E-02 1.8872539E-02 1.7819710E-02
 1.6814489E-02 1.5856888E-02 1.4946552E-02 1.4082839E-02 1.3264836E-02
 1.2491425E-02 1.1761325E-02 1.1073102E-02 1.0425234E-02 9.8161120E-03
 9.2440592E-03 8.7073771E-03 8.2043372E-03 7.7332128E-03 7.2922925E-03
 6.8798708E-03 6.4942883E-03 6.1339205E-03 5.7971906E-03 5.4825819E-03
 5.1886351E-03 4.9139541E-03 4.6572201E-03 4.4171661E-03 4.1926117E-03
 3.9824462E-03 3.7856195E-03 3.6011587E-03 3.4281572E-03 3.2657734E-03
 3.1132153E-03 2.9697693E-03 2.8347620E-03 2.7075799E-03 2.5876446E-03
 2.4744442E-03 2.3674883E-03 2.2663395E-03 2.1705902E-03 2.0798664E-03
 1.9938243E-03 1.9121475E-03 1.8345499E-03 1.7607618E-03 1.6905438E-03
 1.6236650E-03 1.5599210E-03 1.4991239E-03 1.4410957E-03 1.3856686E-03
 1.3327071E-03 1.2820594E-03 1.2335976E-03 1.1872150E-03 1.1427890E-03
 1.1002226E-03 1.0594185E-03 1.0202889E-03 9.8275242E-04 9.4672799E-04
 9.1214821E-04
 0.1228082 0.1158212 0.1090190 0.1024227 9.6050180E-02
 8.9915782E-02 8.4030844E-02 7.8403994E-02 7.3040664E-02 6.7943797E-02
 6.3113958E-02 5.8549527E-02 5.4247007E-02 5.0201185E-02 4.6405450E-02
 4.2852003E-02 3.9532077E-02 3.6436182E-02 3.3554249E-02 3.0875873E-02
 2.8390443E-02 2.6087279E-02 2.3955747E-02 2.1985402E-02 2.0166032E-02
 1.8487735E-02 1.6940974E-02 1.5516620E-02 1.4205993E-02 1.3000838E-02
 1.1893388E-02 1.0876314E-02 9.9427514E-03 9.0862969E-03 8.3009684E-03
 7.5812060E-03 6.9218483E-03 6.3181124E-03 5.7655824E-03 5.2601714E-03
 4.7981073E-03 4.3759090E-03 3.9903694E-03 3.6385274E-03 3.3176525E-03
 3.0252242E-03 2.7589134E-03 2.5165707E-03 2.2962017E-03 2.0959680E-03
 1.9141634E-03 1.7492066E-03 1.5996391E-03 1.4641010E-03 1.3413471E-03
 1.2302183E-03 1.1296452E-03 1.0386491E-03 9.5632451E-04 8.8184286E-04
 8.1444613E-04 7.5344043E-04 6.9819589E-04 6.4813707E-04 6.0274295E-04
 5.6154391E-04 5.2411167E-04 4.9006223E-04 4.5905149E-04 4.3076646E-04
 4.0492925E-04 3.8129088E-04 3.5962433E-04 3.3973198E-04 3.2143437E-04
 3.0457173E-04 2.8899993E-04 2.7459543E-04 2.6124140E-04 2.4883563E-04
 2.3729150E-04 2.2652753E-04 2.1646835E-04 2.0705353E-04 1.9822436E-04
 1.8992905E-04 1.8212353E-04 1.7476473E-04 1.6781747E-04 1.6124742E-04
 1.5502553E-04
 4.2414241E-02 4.3597274E-02 4.4452354E-02 4.5001049E-02 4.5266248E-02
 4.5271680E-02 4.5041468E-02 4.4599827E-02 4.3970641E-02 4.3177258E-02
 4.2242195E-02 4.1186962E-02 4.0031876E-02 3.8795948E-02 3.7496798E-02
 3.6150593E-02 3.4772020E-02 3.3374310E-02 3.1969223E-02 3.0567138E-02
 2.9177107E-02 2.7806908E-02 2.6463147E-02 2.5151357E-02 2.3876056E-02
 2.2640890E-02 2.1448655E-02 2.0301459E-02 1.9200752E-02 1.8147420E-02
 1.7141875E-02 1.6184092E-02 1.5273671E-02 1.4409949E-02 1.3591963E-02
 1.2818565E-02 1.2088412E-02 1.1400041E-02 1.0751875E-02 1.0142256E-02
 9.5694717E-03 9.0317838E-03 8.5274177E-03 8.0546234E-03 7.6116621E-03
 7.1968068E-03 6.8083908E-03 6.4447834E-03 6.1044116E-03 5.7857730E-03
 5.4874234E-03 5.2079908E-03 4.9461820E-03 4.7007659E-03 4.4705956E-03
 4.2545917E-03 4.0517417E-03 3.8611132E-03 3.6818178E-03 3.5130600E-03
 3.3540775E-03 3.2041771E-03 3.0627113E-03 2.9290884E-03 2.8027613E-03
 2.6832249E-03 2.5700063E-03 2.4626856E-03 2.3608620E-03 2.2641742E-03
 2.1722850E-03 2.0848885E-03 2.0017009E-03 1.9224555E-03 1.8469125E-03
 1.7748565E-03 1.7060742E-03 1.6403759E-03 1.5775866E-03 1.5175478E-03
 1.4600982E-03 1.4051100E-03 1.3524495E-03 1.3019906E-03 1.2536218E-03
 1.2072453E-03 1.1627522E-03 1.1200596E-03 1.0790761E-03 1.0397199E-03
 1.0019214E-03
 0.1224627 0.1154681 0.1086590 0.1020564 9.5678166E-02
 8.9538731E-02 8.3649538E-02 7.8018971E-02 7.2652601E-02 6.7553371E-02
 6.2721804E-02 5.8156278E-02 5.3853262E-02 4.9807530E-02 4.6012435E-02
 4.2460151E-02 3.9141886E-02 3.6048129E-02 3.3168793E-02 3.0493435E-02
 2.8011436E-02 2.5712086E-02 2.3584750E-02 2.1618966E-02 1.9804498E-02
 1.8131442E-02 1.6590264E-02 1.5171818E-02 1.3867417E-02 1.2668814E-02
 1.1568226E-02 1.0558330E-02 9.6322587E-03 8.7836022E-03 8.0063725E-03
 7.2949952E-03 6.6443039E-03 6.0494952E-03 5.5061360E-03 5.0101075E-03
 4.5576105E-03 4.1451277E-03 3.7694101E-03 3.4274505E-03 3.1164724E-03
 2.8339045E-03 2.5773644E-03 2.3446518E-03 2.1337257E-03 1.9426987E-03
 1.7698243E-03 1.6134862E-03 1.4721926E-03 1.3445643E-03 1.2293337E-03
 1.1253310E-03 1.0314859E-03 9.4681454E-04 8.7041914E-04 8.0148049E-04
 7.3925086E-04 6.8305380E-04 6.3227321E-04 5.8635412E-04 5.4479419E-04
 5.0714170E-04 4.7299042E-04 4.4197546E-04 4.1376858E-04 3.8807740E-04
 3.6463910E-04 3.4321932E-04 3.2361044E-04 3.0562413E-04 2.8909495E-04
 2.7387688E-04 2.5983632E-04 2.4685424E-04 2.3482916E-04 2.2366684E-04
 2.1328322E-04 2.0360718E-04 1.9457060E-04 1.8611709E-04 1.7819148E-04
 1.7074817E-04 1.6374652E-04 1.5714853E-04 1.5091962E-04 1.4503134E-04
 1.3945499E-04
 4.2890843E-02 4.4071555E-02 4.4923604E-02 4.5468662E-02 4.5729715E-02
 4.5730568E-02 4.5495473E-02 4.5048703E-02 4.4414245E-02 4.3615509E-02
 4.2675093E-02 4.1614559E-02 4.0454280E-02 3.9213330E-02 3.7909355E-02
 3.6558568E-02 3.5175677E-02 3.3773933E-02 3.2365128E-02 3.0959640E-02
 2.9566525E-02 2.8193571E-02 2.6847374E-02 2.5533460E-02 2.4256337E-02
 2.3019623E-02 2.1826109E-02 2.0677861E-02 1.9576307E-02 1.8522296E-02
 1.7516203E-02 1.6557960E-02 1.5647130E-02 1.4782991E-02 1.3964541E-02
 1.3190570E-02 1.2459693E-02 1.1770388E-02 1.1121046E-02 1.0509944E-02
 9.9353371E-03 9.3954531E-03 8.8884970E-03 8.4126843E-03 7.9662735E-03
 7.5475345E-03 7.1548088E-03 6.7864666E-03 6.4409645E-03 6.1168247E-03
 5.8126352E-03 5.5270577E-03 5.2588275E-03 5.0067613E-03 4.7697467E-03
 4.5467387E-03 4.3367692E-03 4.1389316E-03 3.9523793E-03 3.7763361E-03
 3.6100768E-03 3.4529206E-03 3.3042510E-03 3.1634974E-03 3.0301220E-03
 2.9036379E-03 2.7835895E-03 2.6695600E-03 2.5611604E-03 2.4580392E-03
 2.3598608E-03 2.2663276E-03 2.1771532E-03 2.0920832E-03 2.0108724E-03
 1.9333063E-03 1.8591719E-03 1.7882768E-03 1.7204535E-03 1.6555283E-03
 1.5933514E-03 1.5337849E-03 1.4766912E-03 1.4219411E-03 1.3694307E-03
 1.3190440E-03 1.2706743E-03 1.2242415E-03 1.1796406E-03 1.1367997E-03
 1.0956301E-03
 0.1220738 0.1150708 0.1082539 0.1016442 9.5259570E-02
 8.9114554E-02 8.3220549E-02 7.7585943E-02 7.2216302E-02 6.7114547E-02
 6.2281199E-02 5.7714608E-02 5.3411223E-02 4.9365785E-02 4.5571622E-02
 4.2020883E-02 3.8704753E-02 3.5613682E-02 3.2737564E-02 3.0065937E-02
 2.7588161E-02 2.5293505E-02 2.3171315E-02 2.1211114E-02 1.9402659E-02
 1.7736036E-02 1.6201694E-02 1.4790486E-02 1.3493720E-02 1.2303133E-02
 1.1210947E-02 1.0209821E-02 9.2928810E-03 8.4537026E-03 7.6862760E-03
 6.9850134E-03 6.3447161E-03 5.7605552E-03 5.2280491E-03 4.7430461E-03
 4.3016975E-03 3.9004330E-03 3.5359461E-03 3.2051746E-03 2.9052838E-03
 2.6336450E-03 2.3878200E-03 2.1655604E-03 1.9647744E-03 1.7835381E-03
 1.6200724E-03 1.4727310E-03 1.3400052E-03 1.2205036E-03 1.1129506E-03
 1.0161789E-03 9.2912070E-04 8.5080450E-04 7.8034319E-04 7.1693672E-04
 6.5985456E-04 6.0843927E-04 5.6209706E-04 5.2029395E-04 4.8255065E-04
 4.4843432E-04 4.1756037E-04 3.8958085E-04 3.6419102E-04 3.4111185E-04
 3.2009883E-04 3.0093495E-04 2.8342361E-04 2.6739357E-04 2.5268653E-04
 2.3917161E-04 2.2672302E-04 2.1523277E-04 2.0460694E-04 1.9475816E-04
 1.8561176E-04 1.7710056E-04 1.6916287E-04 1.6174400E-04 1.5480211E-04
 1.4829006E-04 1.4216857E-04 1.3640842E-04 1.3097726E-04 1.2584744E-04
 1.2099436E-04
 4.3429490E-02 4.4607826E-02 4.5456689E-02 4.5997884E-02 4.6254490E-02
 4.6250459E-02 4.6010099E-02 4.5557816E-02 4.4917669E-02 4.4113174E-02
 4.3166995E-02 4.2100754E-02 4.0934909E-02 3.9688561E-02 3.8379423E-02
 3.7023731E-02 3.5636239E-02 3.4230206E-02 3.2817438E-02 3.1408340E-02
 3.0011954E-02 2.8636070E-02 2.7287275E-02 2.5971077E-02 2.4691964E-02
 2.3453530E-02 2.2258533E-02 2.1108996E-02 2.0006312E-02 1.8951286E-02
 1.7944230E-02 1.6985033E-02 1.6073205E-02 1.5207957E-02 1.4388238E-02
 1.3612778E-02 1.2880133E-02 1.2188743E-02 1.1536936E-02 1.0922978E-02
 1.0345074E-02 9.8014353E-03 9.2902547E-03 8.8097481E-03 8.3581805E-03
 7.9338383E-03 7.5350683E-03 7.1603032E-03 6.8080104E-03 6.4767511E-03
 6.1651608E-03 5.8719409E-03 5.5958671E-03 5.3357980E-03 5.0906613E-03
 4.8594479E-03 4.6412274E-03 4.4351215E-03 4.2403168E-03 4.0560588E-03
 3.8816433E-03 3.7164257E-03 3.5597936E-03 3.4111908E-03 3.2701001E-03
 3.1360453E-03 3.0085740E-03 2.8872858E-03 2.7717957E-03 2.6617539E-03
 2.5568295E-03 2.4567281E-03 2.3611656E-03 2.2698850E-03 2.1826455E-03
 2.0992255E-03 2.0194179E-03 1.9430250E-03 1.8698743E-03 1.7997904E-03
 1.7326258E-03 1.6682291E-03 1.6064653E-03 1.5472107E-03 1.4903394E-03
 1.4357379E-03 1.3833067E-03 1.3329467E-03 1.2845575E-03 1.2380593E-03
 1.1933579E-03
 0.1216358 0.1146232 0.1077976 0.1011801 9.4788462E-02
 8.8637270E-02 8.2737975E-02 7.7098966E-02 7.1725793E-02 6.6621386E-02
 6.1786231E-02 5.7218660E-02 5.2915096E-02 4.8870254E-02 4.5077439E-02
 4.1528761E-02 3.8215380E-02 3.5127722E-02 3.2255653E-02 2.9588684E-02
 2.7116153E-02 2.4827313E-02 2.2711493E-02 2.0758195E-02 1.8957162E-02
 1.7298471E-02 1.5772557E-02 1.4370263E-02 1.3082880E-02 1.1902132E-02
 1.0820228E-02 9.8298071E-03 8.9239683E-03 8.0962572E-03 7.3406398E-03
 6.6514811E-03 6.0235388E-03 5.4519279E-03 4.9321181E-03 4.4598919E-03
 4.0313355E-03 3.6428147E-03 3.2909582E-03 2.9726357E-03 2.6849499E-03
 2.4252159E-03 2.1909466E-03 1.9798421E-03 1.7897802E-03 1.6188060E-03
 1.4651158E-03 1.3270564E-03 1.2031051E-03 1.0918723E-03 9.9209195E-04
 9.0260577E-04 8.2236016E-04 7.5040193E-04 6.8586576E-04 6.2797195E-04
 5.7601271E-04 5.2935712E-04 4.8743389E-04 4.4973241E-04 4.1579490E-04
 3.8521399E-04 3.5762161E-04 3.3269465E-04 3.1014322E-04 2.8970710E-04
 2.7115928E-04 2.5429510E-04 2.3893233E-04 2.2491132E-04 2.1208875E-04
 2.0034041E-04 1.8955313E-04 1.7962561E-04 1.7047295E-04 1.6201353E-04
 1.5418061E-04 1.4691088E-04 1.4014906E-04 1.3385114E-04 1.2796740E-04
 1.2246399E-04 1.1730415E-04 1.1245933E-04 1.0790080E-04 1.0360554E-04
 9.9549885E-05
 4.4038873E-02 4.5214798E-02 4.6060376E-02 4.6597525E-02 4.6849448E-02
 4.6840202E-02 4.6594247E-02 4.6136070E-02 4.5489855E-02 4.4679195E-02
 4.3726847E-02 4.2654522E-02 4.1482728E-02 4.0230636E-02 3.8916003E-02
 3.7555102E-02 3.6162715E-02 3.4752134E-02 3.3335172E-02 3.1922225E-02
 3.0522356E-02 2.9143328E-02 2.7791712E-02 2.6472995E-02 2.5191627E-02
 2.3951160E-02 2.2754319E-02 2.1603063E-02 2.0498734E-02 1.9442080E-02
 1.8433351E-02 1.7472368E-02 1.6558575E-02 1.5691122E-02 1.4868901E-02
 1.4090577E-02 1.3354676E-02 1.2659571E-02 1.2003575E-02 1.1384929E-02
 1.0801828E-02 1.0252479E-02 9.7350860E-03 9.2478832E-03 8.7891575E-03
 8.3572399E-03 7.9505155E-03 7.5674444E-03 7.2065517E-03 6.8664448E-03
 6.5458082E-03 6.2433733E-03 5.9579820E-03 5.6885150E-03 5.4339431E-03
 5.1932936E-03 4.9656648E-03 4.7502061E-03 4.5461333E-03 4.3527158E-03
 4.1692602E-03 3.9951415E-03 3.8297658E-03 3.6725921E-03 3.5231006E-03
 3.3808334E-03 3.2453444E-03 3.1162321E-03 2.9931138E-03 2.8756503E-03
 2.7635116E-03 2.6563983E-03 2.5540276E-03 2.4561433E-03 2.3624974E-03
 2.2728730E-03 2.1870560E-03 2.1048484E-03 2.0260697E-03 1.9505491E-03
 1.8781229E-03 1.8086430E-03 1.7419712E-03 1.6779713E-03 1.6165194E-03
 1.5575035E-03 1.5008049E-03 1.4463270E-03 1.3939680E-03 1.3436407E-03
 1.2952454E-03
 0.1211422 0.1141191 0.1072838 0.1006575 9.4258107E-02
 8.8100135E-02 8.2195051E-02 7.6551281E-02 7.1174368E-02 6.6067219E-02
 6.1230298E-02 5.6661930E-02 5.2358501E-02 4.8314709E-02 4.4523809E-02
 4.0977903E-02 3.7668109E-02 3.4584824E-02 3.1717885E-02 2.9056787E-02
 2.6590837E-02 2.4309264E-02 2.2201383E-02 2.0256672E-02 1.8464861E-02
 1.6816000E-02 1.5300509E-02 1.3909211E-02 1.2633376E-02 1.1464697E-02
 1.0395347E-02 9.4179334E-03 8.5255103E-03 7.7115791E-03 6.9700372E-03
 6.2951944E-03 5.6817397E-03 5.1247170E-03 4.6195174E-03 4.1618487E-03
 3.7477163E-03 3.3734103E-03 3.0354927E-03 2.7307642E-03 2.4562737E-03
 2.2092818E-03 1.9872612E-03 1.7878801E-03 1.6089941E-03 1.4486280E-03
 1.3049766E-03 1.1763828E-03 1.0613351E-03 9.5845544E-04 8.6649117E-04
 7.8430522E-04 7.1087218E-04 6.4525753E-04 5.8662408E-04 5.3421914E-04
 4.8736081E-04 4.4544725E-04 4.0792997E-04 3.7432404E-04 3.4419575E-04
 3.1716147E-04 2.9287080E-04 2.7102407E-04 2.5134563E-04 2.3359430E-04
 2.1755819E-04 2.0304797E-04 1.8989279E-04 1.7794730E-04 1.6707517E-04
 1.5716534E-04 1.4811264E-04 1.3982382E-04 1.3222135E-04 1.2523215E-04
 1.1879225E-04 1.1284696E-04 1.0734696E-04 1.0224358E-04 9.7504155E-05
 9.3092574E-05 8.8973211E-05 8.5123240E-05 8.1517159E-05 7.8134137E-05
 7.4951487E-05
 4.4729047E-02 4.5902643E-02 4.6744902E-02 4.7277857E-02 4.7524899E-02
 4.7510192E-02 4.7258329E-02 4.6793923E-02 4.6141278E-02 4.5324091E-02
 4.4365212E-02 4.3286435E-02 4.2108350E-02 4.0850177E-02 3.9529726E-02
 3.8163327E-02 3.6765758E-02 3.5350356E-02 3.3928923E-02 3.2511868E-02
 3.1108230E-02 2.9725751E-02 2.8370980E-02 2.7049348E-02 2.5765264E-02
 2.4522237E-02 2.3322904E-02 2.2169186E-02 2.1062346E-02 2.0003047E-02
 1.8991480E-02 1.8027389E-02 1.7110154E-02 1.6238872E-02 1.5412357E-02
 1.4629257E-02 1.3888040E-02 1.3187079E-02 1.2524664E-02 1.1899034E-02
 1.1308403E-02 1.0751004E-02 1.0225075E-02 9.7288843E-03 9.2607653E-03
 8.8190939E-03 8.4023122E-03 8.0089336E-03 7.6375329E-03 7.2867684E-03
 6.9553559E-03 6.6421023E-03 6.3458593E-03 6.0655624E-03 5.8002202E-03
 5.5488776E-03 5.3106635E-03 5.0847568E-03 4.8703854E-03 4.6668355E-03
 4.4734390E-03 4.2895772E-03 4.1146646E-03 3.9481670E-03 3.7895814E-03
 3.6384449E-03 3.4943167E-03 3.3567955E-03 3.2255098E-03 3.1001109E-03
 2.9802651E-03 2.8656807E-03 2.7560729E-03 2.6511739E-03 2.5507405E-03
 2.4545484E-03 2.3623703E-03 2.2740217E-03 2.1893054E-03 2.1080486E-03
 2.0300837E-03 1.9552563E-03 1.8834205E-03 1.8144378E-03 1.7481816E-03
 1.6845275E-03 1.6233573E-03 1.5645694E-03 1.5080502E-03 1.4537104E-03
 1.4014577E-03
 0.1205858 0.1135510 0.1067049 0.1000690 9.3660928E-02
 8.7495528E-02 8.1584200E-02 7.5935349E-02 7.0554525E-02 6.5444618E-02
 6.0606111E-02 5.6037270E-02 5.1734470E-02 4.7692370E-02 4.3904204E-02
 4.0362034E-02 3.7056949E-02 3.3979323E-02 3.1118957E-02 2.8465319E-02
 2.6007684E-02 2.3735262E-02 2.1637339E-02 1.9703366E-02 1.7923050E-02
 1.6286405E-02 1.4783823E-02 1.3406083E-02 1.2144413E-02 1.0990466E-02
 9.9363513E-03 8.9746164E-03 8.0982428E-03 7.3006512E-03 6.5756654E-03
 5.9175016E-03 5.3207567E-03 4.7803852E-03 4.2916867E-03 3.8502824E-03
 3.4520964E-03 3.0933444E-03 2.7705149E-03 2.4803614E-03 2.2198798E-03
 1.9862964E-03 1.7770582E-03 1.5898172E-03 1.4224190E-03 1.2728943E-03
 1.1394420E-03 1.0204209E-03 9.1433799E-04 8.1983750E-04 7.3569594E-04
 6.6080212E-04 5.9415773E-04 5.3486222E-04 4.8210824E-04 4.3516888E-04
 3.9339822E-04 3.5621552E-04 3.2310281E-04 2.9360002E-04 2.6729846E-04
 2.4383167E-04 2.2287616E-04 2.0414579E-04 1.8738833E-04 1.7237604E-04
 1.5891134E-04 1.4681763E-04 1.3594089E-04 1.2614165E-04 1.1729981E-04
 1.0930880E-04 1.0206993E-04 9.5504140E-05 8.9537069E-05 8.4103063E-05
 7.9142446E-05 7.4607036E-05 7.0451810E-05 6.6635213E-05 6.3124309E-05
 5.9887348E-05 5.6894045E-05 5.4123499E-05 5.1552233E-05 4.9161590E-05
 4.6935584E-05
 4.5511734E-02 4.6683181E-02 4.7522161E-02 4.8050933E-02 4.8292957E-02
 4.8272606E-02 4.8014600E-02 4.7543701E-02 4.6884336E-02 4.6060309E-02
 4.5094579E-02 4.4009041E-02 4.2824339E-02 4.1559778E-02 4.0233210E-02
 3.8860992E-02 3.7457943E-02 3.6037397E-02 3.4611166E-02 3.3189625E-02
 3.1781800E-02 3.0395387E-02 2.9036887E-02 2.7711675E-02 2.6424106E-02
 2.5177587E-02 2.3974704E-02 2.2817289E-02 2.1706514E-02 2.0642979E-02
 1.9626794E-02 1.8657638E-02 1.7734831E-02 1.6857414E-02 1.6024183E-02
 1.5233744E-02 1.4484576E-02 1.3775046E-02 1.3103473E-02 1.2468115E-02
 1.1867243E-02 1.1299114E-02 1.0762024E-02 1.0254313E-02 9.7743627E-03
 9.3206093E-03 8.8915527E-03 8.4857587E-03 8.1018563E-03 7.7385562E-03
 7.3946160E-03 7.0688762E-03 6.7602326E-03 6.4676562E-03 6.1901738E-03
 5.9268628E-03 5.6768749E-03 5.4393937E-03 5.2136756E-03 4.9990155E-03
 4.7947560E-03 4.6002814E-03 4.4150203E-03 4.2384421E-03 4.0700412E-03
 3.9093541E-03 3.7559534E-03 3.6094361E-03 3.4694113E-03 3.3355479E-03
 3.2075038E-03 3.0849758E-03 2.9676799E-03 2.8553414E-03 2.7477222E-03
 2.6445792E-03 2.5456913E-03 2.4508608E-03 2.3598848E-03 2.2725861E-03
 2.1887918E-03 2.1083413E-03 2.0310821E-03 1.9568712E-03 1.8855706E-03
 1.8170533E-03 1.7512002E-03 1.6878918E-03 1.6270210E-03 1.5684884E-03
 1.5121944E-03
 0.1199583 0.1129104 0.1060525 9.9405810E-02 9.2988417E-02
 8.6814955E-02 8.0896921E-02 7.5242735E-02 6.9857948E-02 6.4745449E-02
 5.9905685E-02 5.5336908E-02 5.1035471E-02 4.6996001E-02 4.3211706E-02
 3.9674606E-02 3.6375765E-02 3.3305511E-02 3.0453626E-02 2.7809532E-02
 2.5362484E-02 2.3101643E-02 2.1016259E-02 1.9095752E-02 1.7329769E-02
 1.5708292E-02 1.4221643E-02 1.2860541E-02 1.1616145E-02 1.0480021E-02
 9.4441939E-03 8.5011106E-03 7.6436563E-03 6.8651424E-03 6.1592823E-03
 5.5201817E-03 4.9423343E-03 4.4205883E-03 3.9501493E-03 3.5265484E-03
 3.1456365E-03 2.8035641E-03 2.4967694E-03 2.2219599E-03 1.9761065E-03
 1.7564157E-03 1.5603283E-03 1.3854986E-03 1.2297822E-03 1.0912247E-03
 9.6804759E-04 8.5863640E-04 7.6152722E-04 6.7539926E-04 5.9905584E-04
 5.3142756E-04 4.7154326E-04 4.1853910E-04 3.7164189E-04 3.3015484E-04
 2.9346318E-04 2.6101407E-04 2.3231885E-04 2.0694104E-04 1.8449177E-04
 1.6463136E-04 1.4705728E-04 1.3150180E-04 1.1772235E-04 1.0551661E-04
 9.4695999E-05 8.5096952E-05 7.6575903E-05 6.9008594E-05 6.2280858E-05
 5.6295077E-05 5.0964365E-05 4.6213394E-05 4.1973894E-05 3.8186907E-05
 3.4801200E-05 3.1769614E-05 2.9052260E-05 2.6615129E-05 2.4422736E-05
 2.2453325E-05 2.0675592E-05 1.9073048E-05 1.7624376E-05 1.6314136E-05
 1.5128822E-05
 4.6400663E-02 4.7570296E-02 4.8406243E-02 4.8930898E-02 4.9167935E-02
 4.9141873E-02 4.8877612E-02 4.8400041E-02 4.7733735E-02 4.6902634E-02
 4.5929812E-02 4.4837229E-02 4.3645639E-02 4.2374391E-02 4.1041385E-02
 3.9663017E-02 3.8254112E-02 3.6827996E-02 3.5396460E-02 3.3969857E-02
 3.2557160E-02 3.1166002E-02 2.9802820E-02 2.8472910E-02 2.7180536E-02
 2.5929026E-02 2.4720876E-02 2.3557819E-02 2.2440961E-02 2.1370823E-02
 2.0347444E-02 1.9370466E-02 1.8439164E-02 1.7552573E-02 1.6709475E-02
 1.5908500E-02 1.5148142E-02 1.4426805E-02 1.3742864E-02 1.3094639E-02
 1.2480452E-02 1.1898636E-02 1.1347555E-02 1.0825600E-02 1.0331232E-02
 9.8629519E-03 9.4193071E-03 8.9989202E-03 8.6004771E-03 8.2227113E-03
 7.8644436E-03 7.5245374E-03 7.2019203E-03 6.8955780E-03 6.6045704E-03
 6.3279932E-03 6.0650115E-03 5.8148191E-03 5.5766823E-03 5.3499136E-03
 5.1338463E-03 4.9278773E-03 4.7314386E-03 4.5439913E-03 4.3650395E-03
 4.1941232E-03 4.0307958E-03 3.8746546E-03 3.7253224E-03 3.5824408E-03
 3.4456803E-03 3.3147209E-03 3.1892732E-03 3.0690697E-03 2.9538441E-03
 2.8433609E-03 2.7373955E-03 2.6357276E-03 2.5381590E-03 2.4445055E-03
 2.3545802E-03 2.2682231E-03 2.1852697E-03 2.1055706E-03 2.0289845E-03
 1.9553732E-03 1.8846141E-03 1.8165760E-03 1.7511576E-03 1.6882343E-03
 1.6277132E-03
 0.1192503 0.1121880 0.1053169 9.8658554E-02 9.2230968E-02
 8.6048856E-02 8.0123775E-02 7.4464135E-02 6.9075510E-02 6.3960776E-02
 5.9120361E-02 5.4552510E-02 5.0253544E-02 4.6218060E-02 4.2439219E-02
 3.8909029E-02 3.5618495E-02 3.2557923E-02 2.9717041E-02 2.7085228E-02
 2.4651686E-02 2.2405533E-02 2.0335957E-02 1.8432304E-02 1.6684156E-02
 1.5081402E-02 1.3614275E-02 1.2273403E-02 1.1049813E-02 9.9349599E-03
 8.9207431E-03 7.9994779E-03 7.1639125E-03 6.4072288E-03 5.7230089E-03
 5.1052431E-03 4.5483052E-03 4.0469477E-03 3.5962875E-03 3.1917794E-03
 2.8292146E-03 2.5046989E-03 2.2146397E-03 1.9557262E-03 1.7249199E-03
 1.5194330E-03 1.3367160E-03 1.1744421E-03 1.0304928E-03 9.0294593E-04
 7.9005450E-04 6.9024082E-04 6.0208025E-04 5.2428612E-04 4.5570769E-04
 3.9530665E-04 3.4215514E-04 2.9542044E-04 2.5436448E-04 2.1832978E-04
 1.8672291E-04 1.5902420E-04 1.3477111E-04 1.1355231E-04 9.5005154E-05
 7.8808785E-05 6.4677290E-05 5.2360174E-05 4.1639334E-05 3.2319102E-05
 2.4226767E-05 1.7211289E-05 1.1141594E-05 5.9012305E-06 1.3851402E-06
 -2.4944554E-06 -5.8158817E-06 -8.6511518E-06 -1.1059426E-05 -1.3094991E-05
 -1.4805359E-05 -1.6230017E-05 -1.7406264E-05 -1.8364914E-05 -1.9134332E-05
 -1.9739051E-05 -2.0200241E-05 -2.0537313E-05 -2.0764670E-05 -2.0900041E-05
 -2.0953112E-05
 4.7411982E-02 4.8580393E-02 4.9413722E-02 4.9934570E-02 5.0166808E-02
 5.0135143E-02 4.9864635E-02 4.9380358E-02 4.8707034E-02 4.7868725E-02
 4.6888616E-02 4.5788780E-02 4.4590034E-02 4.3311790E-02 4.1971970E-02
 4.0586993E-02 3.9171681E-02 3.7739318E-02 3.6301684E-02 3.4869052E-02
 3.3450324E-02 3.2053068E-02 3.0683609E-02 2.9347163E-02 2.8047889E-02
 2.6789028E-02 2.5572978E-02 2.4401410E-02 2.3275351E-02 2.2195278E-02
 2.1161200E-02 2.0172745E-02 1.9229192E-02 1.8329596E-02 1.7472781E-02
 1.6657425E-02 1.5882084E-02 1.5145243E-02 1.4445338E-02 1.3780774E-02
 1.3149944E-02 1.2551267E-02 1.1983170E-02 1.1444136E-02 1.0932663E-02
 1.0447321E-02 9.9867098E-03 9.5495051E-03 9.1344286E-03 8.7402500E-03
 8.3658202E-03 8.0100298E-03 7.6718270E-03 7.3502236E-03 7.0442799E-03
 6.7531182E-03 6.4758905E-03 6.2118308E-03 5.9601907E-03 5.7202727E-03
 5.4914388E-03 5.2730697E-03 5.0645964E-03 4.8654829E-03 4.6752277E-03
 4.4933567E-03 4.3194322E-03 4.1530468E-03 3.9938022E-03 3.8413417E-03
 3.6953231E-03 3.5554259E-03 3.4213627E-03 3.2928335E-03 3.1695804E-03
 3.0513555E-03 2.9379204E-03 2.8290555E-03 2.7245532E-03 2.6242174E-03
 2.5278535E-03 2.4352951E-03 2.3463673E-03 2.2609157E-03 2.1787903E-03
 2.0998453E-03 2.0239512E-03 1.9509721E-03 1.8807914E-03 1.8132877E-03
 1.7483589E-03
 0.1184511 0.1113729 0.1044874 9.7816385E-02 9.1377862E-02
 8.5186660E-02 7.9254329E-02 7.3589355E-02 6.8197288E-02 6.3081026E-02
 5.8240984E-02 5.3675372E-02 4.9380500E-02 4.5350920E-02 4.1579772E-02
 3.8058996E-02 3.4779575E-02 3.1731740E-02 2.8905172E-02 2.6289178E-02
 2.3872884E-02 2.1645326E-02 1.9595586E-02 1.7712912E-02 1.5986755E-02
 1.4406888E-02 1.2963388E-02 1.1646731E-02 1.0447793E-02 9.3578668E-03
 8.3686849E-03 7.4723996E-03 6.6616083E-03 5.9293481E-03 5.2690669E-03
 4.6746358E-03 4.1403291E-03 3.6608123E-03 3.2311352E-03 2.8467013E-03
 2.5032721E-03 2.1969273E-03 1.9240710E-03 1.6813931E-03 1.4658720E-03
 1.2747416E-03 1.1054842E-03 9.5580693E-04 8.2363113E-04 7.0707075E-04
 6.0442742E-04 5.1416573E-04 4.3490285E-04 3.6539944E-04 3.0454213E-04
 2.5133803E-04 2.0489290E-04 1.6441902E-04 1.2920822E-04 9.8632241E-05
 7.2134811E-05 4.9222410E-05 2.9458372E-05 1.2456095E-05 -2.1262490E-06
 -1.4589480E-05 -2.5198893E-05 -3.4185392E-05 -4.1757896E-05 -4.8096404E-05
 -5.3359086E-05 -5.7686706E-05 -6.1196770E-05 -6.3999767E-05 -6.6190500E-05
 -6.7849789E-05 -6.9049493E-05 -6.9853879E-05 -7.0316310E-05 -7.0483955E-05
 -7.0403243E-05 -7.0105300E-05 -6.9626498E-05 -6.8992209E-05 -6.8228335E-05
 -6.7354631E-05 -6.6389555E-05 -6.5351553E-05 -6.4251974E-05 -6.3105050E-05
 -6.1917432E-05
 4.8564836E-02 4.9732905E-02 5.0564349E-02 5.1081967E-02 5.1309850E-02
 5.1272910E-02 5.0996389E-02 5.0505549E-02 4.9825244E-02 4.8979703E-02
 4.7992200E-02 4.6884913E-02 4.5678705E-02 4.4393037E-02 4.3045849E-02
 4.1653536E-02 4.0230900E-02 3.8791183E-02 3.7346069E-02 3.5905775E-02
 3.4479097E-02 3.3073500E-02 3.1695209E-02 3.0349346E-02 2.9039972E-02
 2.7770244E-02 2.6542509E-02 2.5358384E-02 2.4218880E-02 2.3124460E-02
 2.2075167E-02 2.1070639E-02 2.0110240E-02 1.9193074E-02 1.8318042E-02
 1.7483927E-02 1.6689362E-02 1.5932931E-02 1.5213152E-02 1.4528528E-02
 1.3877535E-02 1.3258667E-02 1.2670429E-02 1.2111353E-02 1.1580017E-02
 1.1075024E-02 1.0595028E-02 1.0138732E-02 9.7048879E-03 9.2923120E-03
 8.8998564E-03 8.5264361E-03 8.1710108E-03 7.8326035E-03 7.5102909E-03
 7.2031915E-03 6.9104703E-03 6.6313432E-03 6.3650720E-03 6.1109639E-03
 5.8683730E-03 5.6366674E-03 5.4152892E-03 5.2036806E-03 5.0013387E-03
 4.8077879E-03 4.6225730E-03 4.4452809E-03 4.2755101E-03 4.1128853E-03
 3.9570676E-03 3.8077193E-03 3.6645315E-03 3.5272138E-03 3.3954929E-03
 3.2691078E-03 3.1478165E-03 3.0313840E-03 2.9195896E-03 2.8122310E-03
 2.7091119E-03 2.6100485E-03 2.5148578E-03 2.4233831E-03 2.3354581E-03
 2.2509333E-03 2.1696691E-03 2.0915258E-03 2.0163760E-03 1.9440904E-03
 1.8745594E-03
 0.1175486 0.1104529 0.1035519 9.6867278E-02 9.0417258E-02
 8.4216706E-02 7.8277253E-02 7.2607405E-02 6.7212753E-02 6.2096182E-02
 5.7258107E-02 5.2696723E-02 4.8408300E-02 4.4387352E-02 4.0626973E-02
 3.7119046E-02 3.3854470E-02 3.0823404E-02 2.8015433E-02 2.5419749E-02
 2.3025364E-02 2.0821163E-02 1.8796092E-02 1.6939212E-02 1.5239808E-02
 1.3687448E-02 1.2272024E-02 1.0983798E-02 9.8134512E-03 8.7520769E-03
 7.7912202E-03 6.9228653E-03 6.1394456E-03 5.4338612E-03 4.7994456E-03
 4.2299684E-03 3.7196300E-03 3.2630381E-03 2.8552022E-03 2.4915123E-03
 2.1677141E-03 1.8799005E-03 1.6244880E-03 1.3982006E-03 1.1980482E-03
 1.0213043E-03 8.6549413E-04 7.2837411E-04 6.0791266E-04 5.0227717E-04
 4.0981511E-04 3.2904133E-04 2.5861993E-04 1.9735856E-04 1.4418870E-04
 9.8157667E-05 5.8415015E-05 2.4204193E-05 -5.1448187E-06 -3.0229758E-05
 -5.1571278E-05 -6.9643575E-05 -8.4851250E-05 -9.7561380E-05 -1.0809383E-04
 -1.1672790E-04 -1.2371427E-04 -1.2926734E-04 -1.3357960E-04 -1.3682072E-04
 -1.3913185E-04 -1.4064496E-04 -1.4147295E-04 -1.4171205E-04 -1.4144850E-04
 -1.4075731E-04 -1.3970252E-04 -1.3834290E-04 -1.3672696E-04 -1.3489877E-04
 -1.3289273E-04 -1.3074302E-04 -1.2847963E-04 -1.2612181E-04 -1.2369506E-04
 -1.2121641E-04 -1.1870033E-04 -1.1616157E-04 -1.1361022E-04 -1.1105774E-04
 -1.0851082E-04
 4.9882047E-02 5.1051121E-02 5.1881798E-02 5.2397124E-02 5.2621439E-02
 5.2579843E-02 5.2297793E-02 5.1800728E-02 5.1113669E-02 5.0260939E-02
 4.9265936E-02 4.8150904E-02 4.6936750E-02 4.5642946E-02 4.4287413E-02
 4.2886514E-02 4.1454975E-02 4.0005963E-02 3.8551074E-02 3.7100408E-02
 3.5662662E-02 3.4245200E-02 3.2854166E-02 3.1494584E-02 3.0170482E-02
 2.8884972E-02 2.7640389E-02 2.6438363E-02 2.5279943E-02 2.4165658E-02
 2.3095621E-02 2.2069572E-02 2.1086961E-02 2.0147018E-02 1.9248758E-02
 1.8391054E-02 1.7572666E-02 1.6792269E-02 1.6048493E-02 1.5339919E-02
 1.4665103E-02 1.4022610E-02 1.3411003E-02 1.2828881E-02 1.2274859E-02
 1.1747568E-02 1.1245714E-02 1.0768018E-02 1.0313252E-02 9.8802382E-03
 9.4678579E-03 9.0750223E-03 8.7007107E-03 8.3439359E-03 8.0037834E-03
 7.6793563E-03 7.3698307E-03 7.0744227E-03 6.7923721E-03 6.5229940E-03
 6.2656202E-03 6.0196286E-03 5.7844361E-03 5.5594835E-03 5.3442516E-03
 5.1382664E-03 4.9410504E-03 4.7521796E-03 4.5712413E-03 4.3978598E-03
 4.2316676E-03 4.0723276E-03 3.9195176E-03 3.7729347E-03 3.6322903E-03
 3.4973137E-03 3.3677518E-03 3.2433660E-03 3.1239190E-03 3.0091936E-03
 2.8989906E-03 2.7931121E-03 2.6913674E-03 2.5935888E-03 2.4995958E-03
 2.4092430E-03 2.3223674E-03 2.2388319E-03 2.1584926E-03 2.0812207E-03
 2.0068949E-03
 0.1165292 0.1094146 0.1024969 9.5797963E-02 8.9336127E-02
 8.3126381E-02 7.7180393E-02 7.1506746E-02 6.6111028E-02 6.0996145E-02
 5.6162499E-02 5.1608276E-02 4.7329679E-02 4.3321174E-02 3.9575774E-02
 3.6085270E-02 3.2840442E-02 2.9831324E-02 2.7047336E-02 2.4477499E-02
 2.2110624E-02 1.9935390E-02 1.7940497E-02 1.6114781E-02 1.4447263E-02
 1.2927265E-02 1.1544425E-02 1.0288773E-02 9.1507575E-03 8.1212632E-03
 7.1916492E-03 6.3537355E-03 5.5998242E-03 4.9226983E-03 4.3156026E-03
 3.7722501E-03 3.2867938E-03 2.8538245E-03 2.4683471E-03 2.1257573E-03
 1.8218262E-03 1.5526795E-03 1.3147731E-03 1.1048773E-03 9.2005252E-04
 7.5762573E-04 6.1517808E-04 4.9052312E-04 3.8168280E-04 2.8688146E-04
 2.0452027E-04 1.3316500E-04 7.1533272E-05 1.8476114E-05 -2.7027798E-05
 -6.5891079E-05 -9.8923570E-05 -1.2684375E-04 -1.5028992E-04 -1.6982445E-04
 -1.8594610E-04 -1.9909353E-04 -2.0965503E-04 -2.1797136E-04 -2.2434459E-04
 -2.2903275E-04 -2.3227086E-04 -2.3426006E-04 -2.3517810E-04 -2.3517860E-04
 -2.3439873E-04 -2.3295452E-04 -2.3094939E-04 -2.2847411E-04 -2.2560463E-04
 -2.2241195E-04 -2.1895117E-04 -2.1527393E-04 -2.1142642E-04 -2.0744638E-04
 -2.0336470E-04 -1.9920994E-04 -1.9500886E-04 -1.9077805E-04 -1.8654129E-04
 -1.8230715E-04 -1.7809242E-04 -1.7390680E-04 -1.6975935E-04 -1.6565833E-04
 -1.6160759E-04
 5.1391125E-02 5.2563064E-02 5.3394634E-02 5.3909112E-02 5.4131053E-02
 5.4085791E-02 5.3798985E-02 5.3296231E-02 5.2602693E-02 5.1742822E-02
 5.0740071E-02 4.9616717E-02 4.8393685E-02 4.7090407E-02 4.5724761E-02
 4.4313032E-02 4.2869855E-02 4.1408300E-02 3.9939847E-02 3.8474508E-02
 3.7020907E-02 3.5586324E-02 3.4176864E-02 3.2797545E-02 3.1452406E-02
 3.0144604E-02 2.8876539E-02 2.7649930E-02 2.6465954E-02 2.5325254E-02
 2.4228070E-02 2.3174293E-02 2.2163508E-02 2.1195086E-02 2.0268155E-02
 1.9381726E-02 1.8534662E-02 1.7725743E-02 1.6953681E-02 1.6217139E-02
 1.5514736E-02 1.4845099E-02 1.4206842E-02 1.3598586E-02 1.3018994E-02
 1.2466731E-02 1.1940492E-02 1.1439035E-02 1.0961132E-02 1.0505616E-02
 1.0071366E-02 9.6572991E-03 9.2623811E-03 8.8856341E-03 8.5261250E-03
 8.1829559E-03 7.8552943E-03 7.5423419E-03 7.2433343E-03 6.9575724E-03
 6.6843717E-03 6.4231013E-03 6.1731562E-03 5.9339800E-03 5.7050446E-03
 5.4858304E-03 5.2758795E-03 5.0747353E-03 4.8819794E-03 4.6972176E-03
 4.5200717E-03 4.3501887E-03 4.1872319E-03 4.0308847E-03 3.8808577E-03
 3.7368492E-03 3.5986039E-03 3.4658692E-03 3.3383872E-03 3.2159493E-03
 3.0983258E-03 2.9853126E-03 2.8767094E-03 2.7723378E-03 2.6720131E-03
 2.5755698E-03 2.4828413E-03 2.3936778E-03 2.3079277E-03 2.2254610E-03
 2.1461279E-03
 0.1153774 0.1082426 0.1013075 9.4593927E-02 8.8120550E-02
 8.1902400E-02 7.5951256E-02 7.0275739E-02 6.4881496E-02 5.9771426E-02
 5.4945901E-02 5.0403055E-02 4.6139035E-02 4.2148191E-02 3.8423408E-02
 3.4956302E-02 3.1737477E-02 2.8756738E-02 2.6003255E-02 2.3465777E-02
 2.1132821E-02 1.8992761E-02 1.7033983E-02 1.5245001E-02 1.3614536E-02
 1.2131605E-02 1.0785576E-02 9.5662279E-03 8.4637832E-03 7.4689384E-03
 6.5728948E-03 5.7673440E-03 5.0444887E-03 4.3970444E-03 3.8182144E-03
 3.3016859E-03 2.8416144E-03 2.4326011E-03 2.0696805E-03 1.7482863E-03
 1.4642366E-03 1.2137112E-03 9.9322409E-04 7.9960353E-04 6.2997593E-04
 4.8173225E-04 3.5251272E-04 2.4019554E-04 1.4286563E-04 5.8799440E-05
 -1.3539585E-05 -7.5534452E-05 -1.2841857E-04 -1.7329102E-04 -2.1112940E-04
 -2.4280639E-04 -2.6909102E-04 -2.9066636E-04 -3.0813809E-04 -3.2203857E-04
 -3.3284031E-04 -3.4095554E-04 -3.4675168E-04 -3.5054455E-04 -3.5261523E-04
 -3.5321337E-04 -3.5255044E-04 -3.5081743E-04 -3.4817640E-04 -3.4477143E-04
 -3.4072666E-04 -3.3615052E-04 -3.3113806E-04 -3.2577015E-04 -3.2011475E-04
 -3.1423927E-04 -3.0819050E-04 -3.0201528E-04 -2.9575615E-04 -2.8944065E-04
 -2.8310178E-04 -2.7676194E-04 -2.7044435E-04 -2.6416205E-04 -2.5793258E-04
 -2.5176688E-04 -2.4567670E-04 -2.3966904E-04 -2.3375238E-04 -2.2792831E-04
 -2.2220617E-04
 5.3125348E-02 5.4302819E-02 5.5137612E-02 5.5653255E-02 5.5874530E-02
 5.5826977E-02 5.5536438E-02 5.5028640E-02 5.4328859E-02 5.3461604E-02
 5.2450363E-02 5.1317409E-02 5.0083607E-02 4.8768342E-02 4.7389399E-02
 4.5962967E-02 4.4503588E-02 4.3024246E-02 4.1536357E-02 4.0049892E-02
 3.8573448E-02 3.7114345E-02 3.5678733E-02 3.4271736E-02 3.2897472E-02
 3.1559274E-02 3.0259691E-02 2.9000619E-02 2.7783403E-02 2.6608869E-02
 2.5477443E-02 2.4389166E-02 2.3343785E-02 2.2340806E-02 2.1379499E-02
 2.0458983E-02 1.9578217E-02 1.8736063E-02 1.7931318E-02 1.7162688E-02
 1.6428858E-02 1.5728487E-02 1.5060223E-02 1.4422708E-02 1.3814607E-02
 1.3234605E-02 1.2681414E-02 1.2153784E-02 1.1650476E-02 1.1170337E-02
 1.0712226E-02 1.0275049E-02 9.8577710E-03 9.4593931E-03 9.0789702E-03
 8.7155998E-03 8.3684269E-03 8.0366284E-03 7.7194502E-03 7.4161449E-03
 7.1260347E-03 6.8484717E-03 6.5828292E-03 6.3285232E-03 6.0850154E-03
 5.8517810E-03 5.6283348E-03 5.4142033E-03 5.2089528E-03 5.0121737E-03
 4.8234779E-03 4.6424819E-03 4.4688494E-03 4.3022358E-03 4.1423361E-03
 3.9888485E-03 3.8414956E-03 3.6999986E-03 3.5641110E-03 3.4335868E-03
 3.3081984E-03 3.1877297E-03 3.0719601E-03 2.9607064E-03 2.8537614E-03
 2.7509623E-03 2.6521315E-03 2.5570972E-03 2.4657077E-03 2.3778202E-03
 2.2932792E-03
 0.1140761 0.1069204 9.9967539E-02 9.3239859E-02 8.6756065E-02
 8.0531351E-02 7.4577615E-02 6.8903536E-02 6.3514777E-02 5.8414217E-02
 5.3602174E-02 4.9076680E-02 4.4833723E-02 4.0867478E-02 3.7170574E-02
 3.3734389E-02 3.0549182E-02 2.7604410E-02 2.4888895E-02 2.2390986E-02
 2.0098800E-02 1.8000314E-02 1.6083531E-02 1.4336606E-02 1.2747922E-02
 1.1306198E-02 1.0000535E-02 8.8204918E-03 7.7561061E-03 6.7979302E-03
 5.9370562E-03 5.1651043E-03 4.4742296E-03 3.8571283E-03 3.3070068E-03
 2.8175691E-03 2.3830067E-03 1.9979673E-03 1.6575400E-03 1.3572186E-03
 1.0928886E-03 8.6079806E-04 6.5753306E-04 4.7999286E-04 3.2537110E-04
 1.9113188E-04 7.4983254E-05 -2.5132931E-05 -1.1107140E-04 -1.8448867E-04
 -2.4687278E-04 -2.9954928E-04 -3.4370107E-04 -3.8038264E-04 -4.1052853E-04
 -4.3496609E-04 -4.5443213E-04 -4.6957686E-04 -4.8096909E-04 -4.8911880E-04
 -4.9446744E-04 -4.9740402E-04 -4.9827370E-04 -4.9737713E-04 -4.9497583E-04
 -4.9129920E-04 -4.8654637E-04 -4.8089531E-04 -4.7449619E-04 -4.6748124E-04
 -4.5996366E-04 -4.5204553E-04 -4.4381010E-04 -4.3533405E-04 -4.2667880E-04
 -4.1790071E-04 -4.0904433E-04 -4.0015337E-04 -3.9125947E-04 -3.8239252E-04
 -3.7357642E-04 -3.6483025E-04 -3.5617588E-04 -3.4762171E-04 -3.3918617E-04
 -3.3087211E-04 -3.2268945E-04 -3.1464631E-04 -3.0674646E-04 -2.9898994E-04
 -2.9138449E-04
 5.5125438E-02 5.6312069E-02 5.7153285E-02 5.7672806E-02 5.7895638E-02
 5.7847477E-02 5.7554293E-02 5.7041902E-02 5.6335635E-02 5.5459991E-02
 5.4438427E-02 5.3293150E-02 5.2044969E-02 5.0713163E-02 4.9315453E-02
 4.7867950E-02 4.6385176E-02 4.4880100E-02 4.3364182E-02 4.1847471E-02
 4.0338688E-02 3.8845304E-02 3.7373677E-02 3.5929114E-02 3.4515992E-02
 3.3137873E-02 3.1797539E-02 3.0497119E-02 2.9238181E-02 2.8021764E-02
 2.6848469E-02 2.5718510E-02 2.4631798E-02 2.3587948E-02 2.2586355E-02
 2.1626217E-02 2.0706594E-02 1.9826397E-02 1.8984467E-02 1.8179560E-02
 1.7410384E-02 1.6675610E-02 1.5973901E-02 1.5303911E-02 1.4664298E-02
 1.4053751E-02 1.3470962E-02 1.2914673E-02 1.2383647E-02 1.1876692E-02
 1.1392663E-02 1.0930450E-02 1.0488992E-02 1.0067278E-02 9.6643418E-03
 9.2792567E-03 8.9111477E-03 8.5591795E-03 8.2225576E-03 7.9005398E-03
 7.5924052E-03 7.2974903E-03 7.0151547E-03 6.7447955E-03 6.4858436E-03
 6.2377607E-03 6.0000364E-03 5.7721832E-03 5.5537485E-03 5.3443005E-03
 5.1434282E-03 4.9507432E-03 4.7658775E-03 4.5884815E-03 4.4182208E-03
 4.2547896E-03 4.0978845E-03 3.9472189E-03 3.8025256E-03 3.6635455E-03
 3.5300369E-03 3.4017689E-03 3.2785190E-03 3.1600685E-03 3.0462202E-03
 2.9367891E-03 2.8315787E-03 2.7304206E-03 2.6331539E-03 2.5396100E-03
 2.4496373E-03
 0.1126069 0.1054301 9.8460361E-02 9.1720209E-02 8.5228540E-02
 7.9000749E-02 7.3048793E-02 6.7381412E-02 6.2004216E-02 5.6920033E-02
 5.2129008E-02 4.7628965E-02 4.3415599E-02 3.9482769E-02 3.5822704E-02
 3.2426331E-02 2.9283455E-02 2.6383040E-02 2.3713391E-02 2.1262378E-02
 1.9017635E-02 1.6966699E-02 1.5097163E-02 1.3396827E-02 1.1853760E-02
 1.0456423E-02 9.1937138E-03 8.0550220E-03 7.0302747E-03 6.1099413E-03
 5.2850745E-03 4.5472700E-03 3.8886976E-03 3.3020785E-03 2.7806587E-03
 2.3182021E-03 1.9089624E-03 1.5476557E-03 1.2294468E-03 9.4990956E-04
 7.0500764E-04 4.9106777E-04 3.0475389E-04 1.4304374E-04 3.2064868E-06
 -1.1722323E-04 -2.2046609E-04 -3.0851545E-04 -3.8316112E-04 -4.4600311E-04
 -4.9847108E-04 -5.4184056E-04 -5.7724444E-04 -6.0569239E-04 -6.2807574E-04
 -6.4518693E-04 -6.5772393E-04 -6.6630490E-04 -6.7147362E-04 -6.7370525E-04
 -6.7342306E-04 -6.7099271E-04 -6.6673645E-04 -6.6093687E-04 -6.5383938E-04
 -6.4565864E-04 -6.3658122E-04 -6.2676962E-04 -6.1636395E-04 -6.0548593E-04
 -5.9424149E-04 -5.8272004E-04 -5.7100126E-04 -5.5915077E-04 -5.4722757E-04
 -5.3527899E-04 -5.2334607E-04 -5.1146577E-04 -4.9966678E-04 -4.8797490E-04
 -4.7641015E-04 -4.6498820E-04 -4.5372421E-04 -4.4263114E-04 -4.3171667E-04
 -4.2098513E-04 -4.1044646E-04 -4.0010290E-04 -3.8995440E-04 -3.8000516E-04
 -3.7025590E-04
 5.7441682E-02 5.8642250E-02 5.9493981E-02 6.0020763E-02 6.0247730E-02
 6.0200654E-02 5.9905533E-02 5.9388209E-02 5.8673937E-02 5.7787184E-02
 5.6751318E-02 5.5588484E-02 5.4319412E-02 5.2963369E-02 5.1538080E-02
 5.0059725E-02 4.8542943E-02 4.7000874E-02 4.5445200E-02 4.3886241E-02
 4.2333003E-02 4.0793303E-02 3.9273795E-02 3.7780140E-02 3.6317028E-02
 3.4888327E-02 3.3497095E-02 3.2145735E-02 3.0836025E-02 2.9569216E-02
 2.8346088E-02 2.7167009E-02 2.6031995E-02 2.4940787E-02 2.3892853E-02
 2.2887455E-02 2.1923700E-02 2.1000534E-02 2.0116827E-02 1.9271351E-02
 1.8462805E-02 1.7689874E-02 1.6951209E-02 1.6245443E-02 1.5571233E-02
 1.4927238E-02 1.4312132E-02 1.3724631E-02 1.3163477E-02 1.2627459E-02
 1.2115391E-02 1.1626147E-02 1.1158640E-02 1.0711827E-02 1.0284718E-02
 9.8763583E-03 9.4858482E-03 9.1123199E-03 8.7549621E-03 8.4130019E-03
 8.0857016E-03 7.7723600E-03 7.4723084E-03 7.1849301E-03 6.9096340E-03
 6.6458541E-03 6.3930517E-03 6.1507234E-03 5.9183901E-03 5.6956001E-03
 5.4819235E-03 5.2769436E-03 5.0802841E-03 4.8915693E-03 4.7104447E-03
 4.5365891E-03 4.3696733E-03 4.2094057E-03 4.0554926E-03 3.9076651E-03
 3.7656650E-03 3.6292421E-03 3.4981626E-03 3.3721912E-03 3.2511295E-03
 3.1347575E-03 3.0228875E-03 2.9153328E-03 2.8119064E-03 2.7124467E-03
 2.6167906E-03
 0.1109500 0.1037536 9.6769527E-02 9.0020545E-02 8.3525814E-02
 7.7300839E-02 7.1357653E-02 6.5704934E-02 6.0348161E-02 5.5289909E-02
 5.0530013E-02 4.6065867E-02 4.1892700E-02 3.8003791E-02 3.4390796E-02
 3.1044006E-02 2.7952593E-02 2.5104912E-02 2.2488678E-02 2.0091208E-02
 1.7899664E-02 1.5901146E-02 1.4082897E-02 1.2432417E-02 1.0937542E-02
 9.5865615E-03 8.3682463E-03 7.2719087E-03 6.2874351E-03 5.4052877E-03
 4.6165283E-03 3.9127986E-03 3.2863142E-03 2.7298660E-03 2.2367728E-03
 1.8008808E-03 1.4165263E-03 1.0785128E-03 7.8209519E-04 5.2293245E-04
 2.9707543E-04 1.0093659E-04 -6.8737689E-05 -2.1489042E-04 -3.4017721E-04
 -4.4698897E-04 -5.3747819E-04 -6.1357295E-04 -6.7700126E-04 -7.2930311E-04
 -7.7185902E-04 -8.0589001E-04 -8.3248439E-04 -8.5260766E-04 -8.6711295E-04
 -8.7675627E-04 -8.8220095E-04 -8.8403677E-04 -8.8277645E-04 -8.7887311E-04
 -8.7272300E-04 -8.6467445E-04 -8.5503253E-04 -8.4405852E-04 -8.3198294E-04
 -8.1900635E-04 -8.0530409E-04 -7.9102599E-04 -7.7630248E-04 -7.6124398E-04
 -7.4594829E-04 -7.3049933E-04 -7.1496563E-04 -6.9940859E-04 -6.8388117E-04
 -6.6842436E-04 -6.5307732E-04 -6.3786947E-04 -6.2282657E-04 -6.0796901E-04
 -5.9331453E-04 -5.7887757E-04 -5.6466780E-04 -5.5069750E-04 -5.3696748E-04
 -5.2348769E-04 -5.1025907E-04 -4.9728388E-04 -4.8456478E-04 -4.7209999E-04
 -4.5988770E-04
 6.0136475E-02 6.1357018E-02 6.2224228E-02 6.2762037E-02 6.2995531E-02
 6.2950455E-02 6.2652729E-02 6.2128074E-02 6.1401684E-02 6.0497921E-02
 5.9440136E-02 5.8250461E-02 5.6949742E-02 5.5557404E-02 5.4091398E-02
 5.2568242E-02 5.1002938E-02 4.9409058E-02 4.7798742E-02 4.6182774E-02
 4.4570647E-02 4.2970620E-02 4.1389797E-02 3.9834239E-02 3.8308997E-02
 3.6818251E-02 3.5365369E-02 3.3952981E-02 3.2583080E-02 3.1257086E-02
 2.9975930E-02 2.8740080E-02 2.7549651E-02 2.6404440E-02 2.5303971E-02
 2.4247538E-02 2.3234259E-02 2.2263093E-02 2.1332903E-02 2.0442445E-02
 1.9590411E-02 1.8775458E-02 1.7996207E-02 1.7251272E-02 1.6539274E-02
 1.5858831E-02 1.5208595E-02 1.4587246E-02 1.3993476E-02 1.3426056E-02
 1.2883761E-02 1.2365425E-02 1.1869925E-02 1.1396191E-02 1.0943197E-02
 1.0509950E-02 1.0095523E-02 9.6990187E-03 9.3195848E-03 8.9564230E-03
 8.6087612E-03 8.2758730E-03 7.9570673E-03 7.6516834E-03 7.3591108E-03
 7.0787445E-03 6.8100388E-03 6.5524583E-03 6.3054860E-03 6.0686581E-03
 5.8415146E-03 5.6236242E-03 5.4145781E-03 5.2139740E-03 5.0214529E-03
 4.8366641E-03 4.6592583E-03 4.4889185E-03 4.3253475E-03 4.1682501E-03
 4.0173517E-03 3.8723822E-03 3.7330964E-03 3.5992498E-03 3.4706113E-03
 3.3469654E-03 3.2281042E-03 3.1138272E-03 3.0039407E-03 2.8982654E-03
 2.7966194E-03
 0.1090862 0.1018740 9.4880886E-02 8.8129811E-02 8.1640147E-02
 7.5427413E-02 6.9503538E-02 6.3876942E-02 5.8552738E-02 5.3532992E-02
 4.8816923E-02 4.4401228E-02 4.0280372E-02 3.6446840E-02 3.2891497E-02
 2.9603861E-02 2.6572386E-02 2.3784762E-02 2.1228133E-02 1.8889323E-02
 1.6755076E-02 1.4812182E-02 1.3047615E-02 1.1448701E-02 1.0003156E-02
 8.6991927E-03 7.5255530E-03 6.4715534E-03 5.5271066E-03 4.6827272E-03
 3.9295456E-03 3.2592777E-03 2.6642296E-03 2.1372787E-03 1.6718435E-03
 1.2618630E-03 9.0177014E-04 5.8646983E-04 3.1130508E-04 7.2029092E-05
 -1.3521756E-04 -3.1393580E-04 -4.6729852E-04 -5.9816812E-04 -7.0912490E-04
 -8.0249034E-04 -8.8034826E-04 -9.4456121E-04 -9.9680317E-04 -1.0385546E-03
 -1.0711449E-03 -1.0957498E-03 -1.1134131E-03 -1.1250589E-03 -1.1315034E-03
 -1.1334687E-03 -1.1315881E-03 -1.1264202E-03 -1.1184552E-03 -1.1081209E-03
 -1.0957940E-03 -1.0818009E-03 -1.0664284E-03 -1.0499265E-03 -1.0325073E-03
 -1.0143637E-03 -9.9565322E-04 -9.7651489E-04 -9.5707434E-04 -9.3743124E-04
 -9.1767532E-04 -8.9788181E-04 -8.7811466E-04 -8.5843127E-04 -8.3887624E-04
 -8.1948529E-04 -8.0029661E-04 -7.8133424E-04 -7.6261879E-04 -7.4416946E-04
 -7.2600000E-04 -7.0812367E-04 -6.9054728E-04 -6.7327777E-04 -6.5632170E-04
 -6.3967961E-04 -6.2335446E-04 -6.0734613E-04 -5.9165526E-04 -5.7628012E-04
 -5.6122121E-04
 6.3287713E-02 6.4535268E-02 6.5423176E-02 6.5975182E-02 6.6216178E-02
 6.6171683E-02 6.5867469E-02 6.5329120E-02 6.4581797E-02 6.3649945E-02
 6.2557094E-02 6.1325707E-02 5.9977043E-02 5.8531057E-02 5.7006329E-02
 5.5420022E-02 5.3787839E-02 5.2124038E-02 5.0441448E-02 4.8751477E-02
 4.7064215E-02 4.5388449E-02 4.3731768E-02 4.2100627E-02 4.0500458E-02
 3.8935717E-02 3.7410028E-02 3.5926223E-02 3.4486458E-02 3.3092283E-02
 3.1744700E-02 3.0444268E-02 2.9191146E-02 2.7985143E-02 2.6825801E-02
 2.5712410E-02 2.4644069E-02 2.3619721E-02 2.2638198E-02 2.1698216E-02
 2.0798434E-02 1.9937461E-02 1.9113883E-02 1.8326256E-02 1.7573161E-02
 1.6853174E-02 1.6164891E-02 1.5506944E-02 1.4877989E-02 1.4276747E-02
 1.3701944E-02 1.3152377E-02 1.2626880E-02 1.2124337E-02 1.1643681E-02
 1.1183880E-02 1.0743967E-02 1.0323008E-02 9.9201119E-03 9.5344428E-03
 9.1651967E-03 8.8116042E-03 8.4729483E-03 8.1485333E-03 7.8377137E-03
 7.5398614E-03 7.2543798E-03 6.9807228E-03 6.7183385E-03 6.4667421E-03
 6.2254327E-03 5.9939572E-03 5.7718856E-03 5.5587948E-03 5.3542964E-03
 5.1580127E-03 4.9695815E-03 4.7886702E-03 4.6149450E-03 4.4480991E-03
 4.2878357E-03 4.1338741E-03 3.9859442E-03 3.8437990E-03 3.7071775E-03
 3.5758545E-03 3.4496072E-03 3.3282277E-03 3.2114990E-03 3.0992331E-03
 2.9912477E-03
 0.1069987 9.9778548E-02 9.2785969E-02 8.6044155E-02 7.9572357E-02
 7.3385894E-02 6.7496233E-02 6.1911155E-02 5.6635022E-02 5.1668976E-02
 4.7011260E-02 4.2657565E-02 3.8601343E-02 3.4834117E-02 3.1345870E-02
 2.8125346E-02 2.5160316E-02 2.2437919E-02 1.9944839E-02 1.7667562E-02
 1.5592575E-02 1.3706491E-02 1.1996184E-02 1.0448917E-02 9.0524023E-03
 7.7948719E-03 6.6651213E-03 5.6525324E-03 4.7471062E-03 3.9394479E-03
 3.2207873E-03 2.5829438E-03 2.0183281E-03 1.5199246E-03 1.0812549E-03
 6.9636101E-04 3.5977949E-04 6.6510649E-05 -1.8800505E-04 -4.0792412E-04
 -5.9701694E-04 -7.5870199E-04 -8.9606922E-04 -1.0119058E-03 -1.1087200E-03
 -1.1887643E-03 -1.2540597E-03 -1.3064095E-03 -1.3474291E-03 -1.3785486E-03
 -1.4010498E-03 -1.4160628E-03 -1.4245907E-03 -1.4275184E-03 -1.4256317E-03
 -1.4196183E-03 -1.4100833E-03 -1.3975599E-03 -1.3825133E-03 -1.3653510E-03
 -1.3464289E-03 -1.3260596E-03 -1.3045102E-03 -1.2820156E-03 -1.2587785E-03
 -1.2349765E-03 -1.2107611E-03 -1.1862604E-03 -1.1615895E-03 -1.1368400E-03
 -1.1120987E-03 -1.0874342E-03 -1.0629022E-03 -1.0385570E-03 -1.0144364E-03
 -9.9057774E-04 -9.6700992E-04 -9.4375550E-04 -9.2083414E-04 -8.9826254E-04
 -8.7605300E-04 -8.5421378E-04 -8.3275570E-04 -8.1167591E-04 -7.9098798E-04
 -7.7068585E-04 -7.5077434E-04 -7.3124975E-04 -7.1211596E-04 -6.9336902E-04
 -6.7500514E-04
 6.6992164E-02 6.8273716E-02 6.9186255E-02 6.9753043E-02 6.9998592E-02
 6.9948219E-02 6.9627576E-02 6.9062382E-02 6.8278126E-02 6.7299783E-02
 6.6151582E-02 6.4856842E-02 6.3437790E-02 6.1915379E-02 6.0309239E-02
 5.8637530E-02 5.6916922E-02 5.5162556E-02 5.3388052E-02 5.1605549E-02
 4.9825732E-02 4.8057932E-02 4.6310175E-02 4.4589289E-02 4.2900987E-02
 4.1249983E-02 3.9640076E-02 3.8074236E-02 3.6554731E-02 3.5083156E-02
 3.3660587E-02 3.2287575E-02 3.0964283E-02 2.9690517E-02 2.8465781E-02
 2.7289325E-02 2.6160214E-02 2.5077330E-02 2.4039451E-02 2.3045238E-02
 2.2093290E-02 2.1182153E-02 2.0310346E-02 1.9476373E-02 1.8678745E-02
 1.7915977E-02 1.7186614E-02 1.6489225E-02 1.5822409E-02 1.5184824E-02
 1.4575152E-02 1.3992135E-02 1.3434551E-02 1.2901237E-02 1.2391070E-02
 1.1902981E-02 1.1435946E-02 1.0989001E-02 1.0561196E-02 1.0151656E-02
 9.7595407E-03 9.3840389E-03 9.0243872E-03 8.6798565E-03 8.3497548E-03
 8.0334377E-03 7.7302679E-03 7.4396459E-03 7.1610217E-03 6.8938429E-03
 6.6376044E-03 6.3918158E-03 6.1560166E-03 5.9297569E-03 5.7126256E-03
 5.5042161E-03 5.3041494E-03 5.1120617E-03 4.9276012E-03 4.7504455E-03
 4.5802761E-03 4.4167861E-03 4.2596972E-03 4.1087330E-03 3.9636306E-03
 3.8241416E-03 3.6900365E-03 3.5610737E-03 3.4370492E-03 3.3177505E-03
 3.2029778E-03
 0.1046777 9.7463608E-02 9.0487555E-02 8.3772570E-02 7.7337384E-02
 7.1196504E-02 6.5360367E-02 5.9835605E-02 5.4625254E-02 4.9729146E-02
 4.5144241E-02 4.0865038E-02 3.6883906E-02 3.3191476E-02 2.9776936E-02
 2.6628437E-02 2.3733282E-02 2.1078276E-02 1.8649872E-02 1.6434420E-02
 1.4418336E-02 1.2588212E-02 1.0930956E-02 9.4338935E-03 8.0848122E-03
 6.8720398E-03 5.7844799E-03 4.8116250E-03 3.9435891E-03 3.1710959E-03
 2.4854857E-03 1.8786945E-03 1.3432439E-03 8.7222818E-04 4.5927282E-04
 9.8524091E-05 -2.1538341E-04 -4.8735531E-04 -7.2185759E-04 -9.2295883E-04
 -1.0943470E-03 -1.2393588E-03 -1.3610094E-03 -1.4620133E-03 -1.5448116E-03
 -1.6115934E-03 -1.6643184E-03 -1.7047344E-03 -1.7344049E-03 -1.7547141E-03
 -1.7668965E-03 -1.7720418E-03 -1.7711166E-03 -1.7649708E-03 -1.7543597E-03
 -1.7399407E-03 -1.7222954E-03 -1.7019290E-03 -1.6792910E-03 -1.6547665E-03
 -1.6286941E-03 -1.6013706E-03 -1.5730511E-03 -1.5439586E-03 -1.5142842E-03
 -1.4841924E-03 -1.4538276E-03 -1.4233142E-03 -1.3927518E-03 -1.3622366E-03
 -1.3318426E-03 -1.3016341E-03 -1.2716657E-03 -1.2419872E-03 -1.2126333E-03
 -1.1836401E-03 -1.1550306E-03 -1.1268278E-03 -1.0990520E-03 -1.0717153E-03
 -1.0448262E-03 -1.0183998E-03 -9.9243771E-04 -9.6694421E-04 -9.4192568E-04
 -9.1738050E-04 -8.9330709E-04 -8.6971105E-04 -8.4658590E-04 -8.2393026E-04
 -8.0174167E-04
 7.1368396E-02 7.2688222E-02 7.3624663E-02 7.4200384E-02 7.4439682E-02
 7.4367978E-02 7.4011408E-02 7.3396549E-02 7.2549984E-02 7.1498021E-02
 7.0266381E-02 6.8879917E-02 6.7362376E-02 6.5736167E-02 6.4022273E-02
 6.2240090E-02 6.0407363E-02 5.8540177E-02 5.6652959E-02 5.4758519E-02
 5.2868109E-02 5.0991505E-02 4.9137078E-02 4.7311962E-02 4.5522079E-02
 4.3772299E-02 4.2066533E-02 4.0407822E-02 3.8798459E-02 3.7240066E-02
 3.5733689E-02 3.4279868E-02 3.2878712E-02 3.1529970E-02 3.0233081E-02
 2.8987238E-02 2.7791420E-02 2.6644425E-02 2.5544966E-02 2.4491621E-02
 2.3482898E-02 2.2517266E-02 2.1593168E-02 2.0709028E-02 1.9863281E-02
 1.9054366E-02 1.8280752E-02 1.7540945E-02 1.6833469E-02 1.6156917E-02
 1.5509911E-02 1.4891117E-02 1.4299262E-02 1.3733120E-02 1.3191511E-02
 1.2673314E-02 1.2177451E-02 1.1702890E-02 1.1248651E-02 1.0813794E-02
 1.0397434E-02 9.9987183E-03 9.6168360E-03 9.2510153E-03 8.9005250E-03
 8.5646706E-03 8.2427831E-03 7.9342322E-03 7.6384102E-03 7.3547480E-03
 7.0827063E-03 6.8217539E-03 6.5714098E-03 6.3311947E-03 6.1006523E-03
 5.8793738E-03 5.6669358E-03 5.4629613E-03 5.2670739E-03 5.0789239E-03
 4.8981807E-03 4.7245100E-03 4.5576235E-03 4.3972176E-03 4.2430218E-03
 4.0947683E-03 3.9522047E-03 3.8150938E-03 3.6831992E-03 3.5563030E-03
 3.4342010E-03
 0.1021283 9.4942808E-02 8.8007487E-02 8.1344277E-02 7.4970506E-02
 6.8899035E-02 6.3138567E-02 5.7693947E-02 5.2566558E-02 4.7754742E-02
 4.3254148E-02 3.9058223E-02 3.5158530E-02 3.1545062E-02 2.8206600E-02
 2.5131006E-02 2.2305444E-02 1.9716654E-02 1.7351102E-02 1.5195198E-02
 1.3235457E-02 1.1458579E-02 9.8516075E-03 8.4019899E-03 7.0976592E-03
 5.9270747E-03 4.8792665E-03 3.9438615E-03 3.1110963E-03 2.3718118E-03
 1.7174658E-03 1.1401055E-03 6.3235959E-04 1.8742456E-04 -2.0097329E-04
 -5.3859269E-04 -8.3070621E-04 -1.0821315E-03 -1.2972493E-03 -1.4800475E-03
 -1.6341354E-03 -1.7627773E-03 -1.8689183E-03 -1.9552063E-03 -2.0240198E-03
 -2.0774901E-03 -2.1175216E-03 -2.1458131E-03 -2.1638779E-03 -2.1730580E-03
 -2.1745474E-03 -2.1694009E-03 -2.1585485E-03 -2.1428124E-03 -2.1229165E-03
 -2.0994951E-03 -2.0731066E-03 -2.0442379E-03 -2.0133159E-03 -1.9807138E-03
 -1.9467551E-03 -1.9117198E-03 -1.8758564E-03 -1.8393730E-03 -1.8024576E-03
 -1.7652638E-03 -1.7279296E-03 -1.6905707E-03 -1.6532912E-03 -1.6161763E-03
 -1.5792949E-03 -1.5427150E-03 -1.5064833E-03 -1.4706483E-03 -1.4352490E-03
 -1.4003115E-03 -1.3658652E-03 -1.3319312E-03 -1.2985250E-03 -1.2656619E-03
 -1.2333523E-03 -1.2016058E-03 -1.1704266E-03 -1.1398217E-03 -1.1097911E-03
 -1.0803365E-03 -1.0514603E-03 -1.0231598E-03 -9.9543517E-04 -9.6828147E-04
 -9.4169663E-04
 7.6556258E-02 7.7910520E-02 7.8859694E-02 7.9426453E-02 7.9635732E-02
 7.9514198E-02 7.9089738E-02 7.8390978E-02 7.7446774E-02 7.6285720E-02
 7.4935779E-02 7.3423885E-02 7.1775697E-02 7.0015319E-02 6.8165168E-02
 6.6245899E-02 6.4276278E-02 6.2273283E-02 6.0252018E-02 5.8225859E-02
 5.6206495E-02 5.4204032E-02 5.2227121E-02 5.0283048E-02 4.8377875E-02
 4.6516545E-02 4.4702999E-02 4.2940281E-02 4.1230660E-02 3.9575715E-02
 3.7976433E-02 3.6433265E-02 3.4946237E-02 3.3515021E-02 3.2138947E-02
 3.0817108E-02 2.9548375E-02 2.8331455E-02 2.7164949E-02 2.6047327E-02
 2.4977000E-02 2.3952344E-02 2.2971693E-02 2.2033378E-02 2.1135749E-02
 2.0277154E-02 1.9455973E-02 1.8670613E-02 1.7919542E-02 1.7201256E-02
 1.6514305E-02 1.5857289E-02 1.5228857E-02 1.4627701E-02 1.4052593E-02
 1.3502344E-02 1.2975803E-02 1.2471881E-02 1.1989548E-02 1.1527797E-02
 1.1085695E-02 1.0662329E-02 1.0256844E-02 9.8684179E-03 9.4962753E-03
 9.1396682E-03 8.7978914E-03 8.4702652E-03 8.1561534E-03 7.8549515E-03
 7.5660688E-03 7.2889514E-03 7.0230798E-03 6.7679430E-03 6.5230699E-03
 6.2880092E-03 6.0623111E-03 5.8455821E-03 5.6374134E-03 5.4374393E-03
 5.2453047E-03 5.0606574E-03 4.8831874E-03 4.7125774E-03 4.5485343E-03
 4.3907831E-03 4.2390455E-03 4.0930766E-03 3.9526261E-03 3.8174707E-03
 3.6873796E-03
 9.9381365E-02 9.2257760E-02 8.5396066E-02 7.8815863E-02 7.2531961E-02
 6.6554800E-02 6.0890812E-02 5.5542953E-02 5.0511047E-02 4.5792274E-02
 4.1381467E-02 3.7271529E-02 3.3453748E-02 2.9917993E-02 2.6653066E-02
 2.3646934E-02 2.0886933E-02 1.8359976E-02 1.6052740E-02 1.3951836E-02
 1.2043978E-02 1.0316062E-02 8.7552937E-03 7.3492979E-03 6.0861488E-03
 4.9544559E-03 3.9433753E-03 3.0426602E-03 2.2426590E-03 1.5343225E-03
 9.0921426E-04 3.5947777E-04 -1.2216292E-04 -5.4241798E-04 -9.0747565E-04
 -1.2230087E-03 -1.4942085E-03 -1.7258130E-03 -1.9221297E-03 -2.0870729E-03
 -2.2241829E-03 -2.3366571E-03 -2.4273787E-03 -2.4989373E-03 -2.5536560E-03
 -2.5936118E-03 -2.6206626E-03 -2.6364627E-03 -2.6424802E-03 -2.6400243E-03
 -2.6302494E-03 -2.6141785E-03 -2.5927143E-03 -2.5666533E-03 -2.5366955E-03
 -2.5034512E-03 -2.4674649E-03 -2.4292057E-03 -2.3890822E-03 -2.3474598E-03
 -2.3046476E-03 -2.2609206E-03 -2.2165144E-03 -2.1716335E-03 -2.1264567E-03
 -2.0811381E-03 -2.0358090E-03 -1.9905872E-03 -1.9455651E-03 -1.9008289E-03
 -1.8564536E-03 -1.8124998E-03 -1.7690198E-03 -1.7260558E-03 -1.6836456E-03
 -1.6418244E-03 -1.6006164E-03 -1.5600416E-03 -1.5201215E-03 -1.4808675E-03
 -1.4422900E-03 -1.4044025E-03 -1.3672089E-03 -1.3307128E-03 -1.2949192E-03
 -1.2598258E-03 -1.2254390E-03 -1.1917537E-03 -1.1587664E-03 -1.1264751E-03
 -1.0948774E-03
 8.2709111E-02 8.4077388E-02 8.5010186E-02 8.5532069E-02 8.5670605E-02
 8.5455641E-02 8.4918529E-02 8.4091313E-02 8.3006099E-02 8.1694491E-02
 8.0187090E-02 7.8513108E-02 7.6700151E-02 7.4773937E-02 7.2758242E-02
 7.0674777E-02 6.8543218E-02 6.6381194E-02 6.4204365E-02 6.2026504E-02
 5.9859622E-02 5.7714030E-02 5.5598512E-02 5.3520460E-02 5.1485948E-02
 4.9499936E-02 4.7566313E-02 4.5688074E-02 4.3867402E-02 4.2105775E-02
 4.0404081E-02 3.8762648E-02 3.7181389E-02 3.5659831E-02 3.4197185E-02
 3.2792408E-02 3.1444244E-02 3.0151274E-02 2.8911952E-02 2.7724646E-02
 2.6587628E-02 2.5499156E-02 2.4457460E-02 2.3460746E-02 2.2507258E-02
 2.1595232E-02 2.0722952E-02 1.9888734E-02 1.9090932E-02 1.8327963E-02
 1.7598283E-02 1.6900403E-02 1.6232891E-02 1.5594368E-02 1.4983522E-02
 1.4399075E-02 1.3839824E-02 1.3304613E-02 1.2792316E-02 1.2301903E-02
 1.1832348E-02 1.1382693E-02 1.0952023E-02 1.0539457E-02 1.0144181E-02
 9.7653884E-03 9.4023310E-03 9.0542864E-03 8.7205730E-03 8.4005445E-03
 8.0935685E-03 7.7990713E-03 7.5164852E-03 7.2452705E-03 6.9849249E-03
 6.7349644E-03 6.4949286E-03 6.2643783E-03 6.0428912E-03 5.8300784E-03
 5.6255558E-03 5.4289647E-03 5.2399673E-03 5.0582238E-03 4.8834342E-03
 4.7152960E-03 4.5535290E-03 4.3978635E-03 4.2480445E-03 4.1038222E-03
 3.9649676E-03
 9.6508130E-02 8.9488901E-02 8.2738839E-02 7.6273911E-02 7.0105799E-02
 6.4242423E-02 5.8688395E-02 5.3445436E-02 4.8512705E-02 4.3887075E-02
 3.9563417E-02 3.5534859E-02 3.1792998E-02 2.8328124E-02 2.5129449E-02
 2.2185346E-02 1.9483522E-02 1.7011242E-02 1.4755493E-02 1.2703151E-02
 1.0841164E-02 9.1566322E-03 7.6369443E-03 6.2698745E-03 5.0436370E-03
 3.9469586E-03 2.9691104E-03 2.0999415E-03 1.3298943E-03 6.5000885E-04
 5.1930241E-05 -4.7211858E-04 -9.2933542E-04 -1.3263602E-03 -1.6693063E-03
 -1.9637761E-03 -2.2148939E-03 -2.4273300E-03 -2.6053316E-03 -2.7527460E-03
 -2.8730591E-03 -2.9694110E-03 -3.0446302E-03 -3.1012548E-03 -3.1415618E-03
 -3.1675845E-03 -3.1811367E-03 -3.1838364E-03 -3.1771208E-03 -3.1622613E-03
 -3.1403855E-03 -3.1124915E-03 -3.0794595E-03 -3.0420637E-03 -3.0009842E-03
 -2.9568248E-03 -2.9101064E-03 -2.8612884E-03 -2.8107783E-03 -2.7589237E-03
 -2.7060322E-03 -2.6523722E-03 -2.5981769E-03 -2.5436506E-03 -2.4889635E-03
 -2.4342737E-03 -2.3797113E-03 -2.3253914E-03 -2.2714110E-03 -2.2178595E-03
 -2.1648069E-03 -2.1123148E-03 -2.0604420E-03 -2.0092321E-03 -1.9587243E-03
 -1.9089532E-03 -1.8599388E-03 -1.8117141E-03 -1.7642968E-03 -1.7176965E-03
 -1.6719300E-03 -1.6270048E-03 -1.5829273E-03 -1.5397053E-03 -1.4973379E-03
 -1.4558284E-03 -1.4151779E-03 -1.3753813E-03 -1.3364345E-03 -1.2983369E-03
 -1.2610818E-03
 8.9974284E-02 9.1310561E-02 9.2174277E-02 9.2594959E-02 9.2605434E-02
 9.2240714E-02 9.1536894E-02 9.0530254E-02 8.9256555E-02 8.7750442E-02
 8.6045042E-02 8.4171697E-02 8.2159638E-02 8.0035977E-02 7.7825539E-02
 7.5550884E-02 7.3232338E-02 7.0888035E-02 6.8533987E-02 6.6184245E-02
 6.3850969E-02 6.1544605E-02 5.9273966E-02 5.7046443E-02 5.4868072E-02
 5.2743733E-02 5.0677229E-02 4.8671432E-02 4.6728406E-02 4.4849474E-02
 4.3035373E-02 4.1286293E-02 3.9601959E-02 3.7981756E-02 3.6424730E-02
 3.4929674E-02 3.3495173E-02 3.2119643E-02 3.0801404E-02 2.9538659E-02
 2.8329542E-02 2.7172167E-02 2.6064627E-02 2.5004989E-02 2.3991378E-02
 2.3021908E-02 2.2094734E-02 2.1208065E-02 2.0360138E-02 1.9549267E-02
 1.8773798E-02 1.8032156E-02 1.7322803E-02 1.6644269E-02 1.5995156E-02
 1.5374108E-02 1.4779836E-02 1.4211093E-02 1.3666703E-02 1.3145549E-02
 1.2646542E-02 1.2168660E-02 1.1710929E-02 1.1272414E-02 1.0852227E-02
 1.0449532E-02 1.0063517E-02 9.6934177E-03 9.3385056E-03 8.9980960E-03
 8.6715184E-03 8.3581535E-03 8.0574043E-03 7.7687008E-03 7.4915038E-03
 7.2253086E-03 6.9696135E-03 6.7239637E-03 6.4879060E-03 6.2610353E-03
 6.0429447E-03 5.8332449E-03 5.6315907E-03 5.4376144E-03 5.2510081E-03
 5.0714444E-03 4.8986310E-03 4.7322870E-03 4.5721359E-03 4.4179214E-03
 4.2693946E-03
 9.3630545E-02 8.6759269E-02 8.0154225E-02 7.3827945E-02 6.7789935E-02
 6.2046979E-02 5.6603391E-02 5.1461160E-02 4.6620063E-02 4.2077824E-02
 3.7830211E-02 3.3871233E-02 3.0193338E-02 2.6787559E-02 2.3643771E-02
 2.0750904E-02 1.8097132E-02 1.5670117E-02 1.3457163E-02 1.1445408E-02
 9.6220141E-03 7.9742502E-03 6.4896457E-03 5.1560914E-03 3.9618989E-03
 2.8958796E-03 1.9473743E-03 1.1062982E-03 3.6315620E-04 -2.9095646E-04
 -8.6433900E-04 -1.3647139E-03 -1.7992263E-03 -2.1744606E-03 -2.4964777E-03
 -2.7708292E-03 -3.0025879E-03 -3.1963717E-03 -3.3563750E-03 -3.4864012E-03
 -3.5898874E-03 -3.6699267E-03 -3.7293064E-03 -3.7705277E-03 -3.7958245E-03
 -3.8071962E-03 -3.8064304E-03 -3.7951078E-03 -3.7746455E-03 -3.7462853E-03
 -3.7111435E-03 -3.6701923E-03 -3.6242981E-03 -3.5742270E-03 -3.5206457E-03
 -3.4641428E-03 -3.4052415E-03 -3.3443945E-03 -3.2820047E-03 -3.2184157E-03
 -3.1539383E-03 -3.0888407E-03 -3.0233529E-03 -2.9576812E-03 -2.8920053E-03
 -2.8264783E-03 -2.7612378E-03 -2.6964005E-03 -2.6320682E-03 -2.5683267E-03
 -2.5052608E-03 -2.4429308E-03 -2.3813937E-03 -2.3206989E-03 -2.2608880E-03
 -2.2019939E-03 -2.1440519E-03 -2.0870809E-03 -2.0311072E-03 -1.9761391E-03
 -1.9221939E-03 -1.8692818E-03 -1.8174065E-03 -1.7665761E-03 -1.7167871E-03
 -1.6680455E-03 -1.6203462E-03 -1.5736835E-03 -1.5280567E-03 -1.4834586E-03
 -1.4398798E-03
 9.8464251E-02 9.9694245E-02 0.1004144 0.1006620 0.1004769
 9.9899977E-02 9.8972261E-02 9.7734049E-02 9.6224345E-02 9.4480388E-02
 9.2537381E-02 9.0428263E-02 8.8183604E-02 8.5831471E-02 8.3397508E-02
 8.0904864E-02 7.8374296E-02 7.5824291E-02 7.3271073E-02 7.0728838E-02
 6.8209819E-02 6.5724455E-02 6.3281551E-02 6.0888413E-02 5.8550987E-02
 5.6274023E-02 5.4061159E-02 5.1915113E-02 4.9837776E-02 4.7830287E-02
 4.5893185E-02 4.4026460E-02 4.2229667E-02 4.0501978E-02 3.8842242E-02
 3.7249058E-02 3.5720840E-02 3.4255806E-02 3.2852091E-02 3.1507730E-02
 3.0220689E-02 2.8988909E-02 2.7810328E-02 2.6682863E-02 2.5604485E-02
 2.4573160E-02 2.3586914E-02 2.2643821E-02 2.1741992E-02 2.0879611E-02
 2.0054923E-02 1.9266218E-02 1.8511869E-02 1.7790295E-02 1.7100001E-02
 1.6439537E-02 1.5807522E-02 1.5202636E-02 1.4623610E-02 1.4069251E-02
 1.3538403E-02 1.3029980E-02 1.2542929E-02 1.2076261E-02 1.1629033E-02
 1.1200347E-02 1.0789345E-02 1.0395213E-02 1.0017172E-02 9.6545005E-03
 9.3064914E-03 8.9724762E-03 8.6518284E-03 8.3439397E-03 8.0482438E-03
 7.7641979E-03 7.4912836E-03 7.2290101E-03 6.9769137E-03 6.7345384E-03
 6.5014730E-03 6.2773111E-03 6.0616713E-03 5.8541857E-03 5.6545092E-03
 5.4623121E-03 5.2772779E-03 5.0991108E-03 4.9275206E-03 4.7622384E-03
 4.6030008E-03
 9.0916976E-02 8.4222518E-02 7.7777393E-02 7.1593396E-02 6.5680549E-02
 6.0047001E-02 5.4698832E-02 4.9639918E-02 4.4871904E-02 4.0394198E-02
 3.6204085E-02 3.2296859E-02 2.8666038E-02 2.5303567E-02 2.2200020E-02
 1.9344902E-02 1.6726838E-02 1.4333830E-02 1.2153449E-02 1.0173026E-02
 8.3798664E-03 6.7613497E-03 5.3050807E-03 3.9990074E-03 2.8314770E-03
 1.7913344E-03 8.6794759E-04 5.1250106E-05 -6.6823140E-04 -1.2993796E-03
 -1.8504728E-03 -2.3292063E-03 -2.7427019E-03 -3.0975146E-03 -3.3996748E-03
 -3.6547007E-03 -3.8676334E-03 -4.0430571E-03 -4.1851350E-03 -4.2976355E-03
 -4.3839645E-03 -4.4471822E-03 -4.4900491E-03 -4.5150379E-03 -4.5243572E-03
 -4.5199879E-03 -4.5036911E-03 -4.4770357E-03 -4.4414187E-03 -4.3980745E-03
 -4.3481039E-03 -4.2924765E-03 -4.2320518E-03 -4.1675908E-03 -4.0997579E-03
 -4.0291464E-03 -3.9562760E-03 -3.8816044E-03 -3.8055337E-03 -3.7284212E-03
 -3.6505761E-03 -3.5722691E-03 -3.4937446E-03 -3.4152085E-03 -3.3368510E-03
 -3.2588297E-03 -3.1812873E-03 -3.1043461E-03 -3.0281153E-03 -2.9526867E-03
 -2.8781402E-03 -2.8045482E-03 -2.7319717E-03 -2.6604615E-03 -2.5900612E-03
 -2.5208094E-03 -2.4527356E-03 -2.3858668E-03 -2.3202181E-03 -2.2558146E-03
 -2.1926651E-03 -2.1307752E-03 -2.0701531E-03 -2.0108025E-03 -1.9527205E-03
 -1.8959070E-03 -1.8403567E-03 -1.7860631E-03 -1.7330194E-03 -1.6812149E-03
 -1.6306388E-03
 0.1082347 0.1092656 0.1097575 0.1097558 0.1093069
 0.1084569 0.1072506 0.1057315 0.1039411 0.1019183
 9.9700004E-02 9.7320184E-02 9.4810374E-02 9.2199363E-02 8.9513309E-02
 8.6775802E-02 8.4007919E-02 8.1228316E-02 7.8453362E-02 7.5697303E-02
 7.2972380E-02 7.0288964E-02 6.7655787E-02 6.5080032E-02 6.2567472E-02
 6.0122687E-02 5.7749141E-02 5.5449326E-02 5.3224914E-02 5.1076822E-02
 4.9005371E-02 4.7010314E-02 4.5090955E-02 4.3246258E-02 4.1474834E-02
 3.9775062E-02 3.8145125E-02 3.6583032E-02 3.5086714E-02 3.3653989E-02
 3.2282636E-02 3.0970404E-02 2.9715044E-02 2.8514294E-02 2.7365958E-02
 2.6267840E-02 2.5217809E-02 2.4213776E-02 2.3253720E-02 2.2335690E-02
 2.1457789E-02 2.0618195E-02 1.9815149E-02 1.9046970E-02 1.8312044E-02
 1.7608825E-02 1.6935838E-02 1.6291661E-02 1.5674954E-02 1.5084432E-02
 1.4518873E-02 1.3977101E-02 1.3458011E-02 1.2960545E-02 1.2483697E-02
 1.2026515E-02 1.1588087E-02 1.1167549E-02 1.0764077E-02 1.0376903E-02
 1.0005273E-02 9.6484823E-03 9.3058730E-03 8.9767966E-03 8.6606536E-03
 8.3568702E-03 8.0648977E-03 7.7842260E-03 7.5143459E-03 7.2547984E-03
 7.0051332E-03 6.7649274E-03 6.5337797E-03 6.3112956E-03 6.0971160E-03
 5.8908910E-03 5.6922846E-03 5.5009900E-03 5.3166971E-03 5.1391195E-03
 4.9679819E-03
 8.8554494E-02 8.2034968E-02 7.5735949E-02 6.9672577E-02 6.3858651E-02
 5.8305990E-02 5.3024080E-02 4.8019767E-02 4.3297220E-02 3.8857959E-02
 3.4700971E-02 3.0822942E-02 2.7218472E-02 2.3880325E-02 2.0799728E-02
 1.7966662E-02 1.5370078E-02 1.2998228E-02 1.0838834E-02 8.8793244E-03
 7.1070571E-03 5.5094287E-03 4.0740389E-03 2.7888149E-03 1.6420818E-03
 6.2264880E-04 -2.8014759E-04 -1.0763993E-03 -1.7756089E-03 -2.3866775E-03
 -2.9178991E-03 -3.3769794E-03 -3.7710427E-03 -4.1066473E-03 -4.3898206E-03
 -4.6260720E-03 -4.8204316E-03 -4.9774740E-03 -5.1013506E-03 -5.1958156E-03
 -5.2642580E-03 -5.3097312E-03 -5.3349808E-03 -5.3424700E-03 -5.3343996E-03
 -5.3127422E-03 -5.2792542E-03 -5.2355016E-03 -5.1828837E-03 -5.1226313E-03
 -5.0558522E-03 -4.9835201E-03 -4.9064974E-03 -4.8255525E-03 -4.7413632E-03
 -4.6545304E-03 -4.5655807E-03 -4.4749863E-03 -4.3831584E-03 -4.2904620E-03
 -4.1972185E-03 -4.1037160E-03 -4.0102000E-03 -3.9168927E-03 -3.8239865E-03
 -3.7316568E-03 -3.6400454E-03 -3.5492852E-03 -3.4594932E-03 -3.3707623E-03
 -3.2831850E-03 -3.1968318E-03 -3.1117669E-03 -3.0280440E-03 -2.9457114E-03
 -2.8648076E-03 -2.7853595E-03 -2.7073936E-03 -2.6309355E-03 -2.5559950E-03
 -2.4825844E-03 -2.4107096E-03 -2.3403731E-03 -2.2715759E-03 -2.2043169E-03
 -2.1385839E-03 -2.0743764E-03 -2.0116773E-03 -1.9504782E-03 -1.8907667E-03
 -1.8325241E-03
 0.1192889 0.1200282 0.1202118 0.1198914 0.1191177
 0.1179403 0.1164066 0.1145621 0.1124498 0.1101101
 0.1075806 0.1048964 0.1020895 9.9189341E-02 9.6222460E-02
 9.3212761E-02 9.0181522E-02 8.7147564E-02 8.4127329E-02 8.1135064E-02
 7.8182966E-02 7.5281329E-02 7.2438724E-02 6.9662191E-02 6.6957302E-02
 6.4328425E-02 6.1778791E-02 5.9310637E-02 5.6925394E-02 5.4623697E-02
 5.2405600E-02 5.0270583E-02 4.8217688E-02 4.6245605E-02 4.4352680E-02
 4.2537026E-02 4.0796574E-02 3.9129082E-02 3.7532248E-02 3.6003649E-02
 3.4540836E-02 3.3141341E-02 3.1802703E-02 3.0522469E-02 2.9298240E-02
 2.8127635E-02 2.7008355E-02 2.5938140E-02 2.4914809E-02 2.3936255E-02
 2.3000443E-02 2.2105414E-02 2.1249278E-02 2.0430231E-02 1.9646553E-02
 1.8896578E-02 1.8178733E-02 1.7491508E-02 1.6833462E-02 1.6203225E-02
 1.5599492E-02 1.5021027E-02 1.4466640E-02 1.3935211E-02 1.3425673E-02
 1.2937014E-02 1.2468264E-02 1.2018508E-02 1.1586879E-02 1.1172544E-02
 1.0774729E-02 1.0392680E-02 1.0025692E-02 9.6730851E-03 9.3342289E-03
 9.0085147E-03 8.6953575E-03 8.3942171E-03 8.1045628E-03 7.8259045E-03
 7.5577768E-03 7.2997124E-03 7.0513003E-03 6.8121245E-03 6.5818052E-03
 6.3599613E-03 6.1462531E-03 5.9403479E-03 5.7419110E-03 5.5506555E-03
 5.3662793E-03
 8.6710468E-02 8.0327824E-02 7.4132070E-02 6.8144955E-02 6.2386084E-02
 5.6872174E-02 5.1616747E-02 4.6629965E-02 4.1918620E-02 3.7486318E-02
 3.3333663E-02 2.9458575E-02 2.5856577E-02 2.2521101E-02 1.9443847E-02
 1.6615108E-02 1.4024031E-02 1.1658955E-02 9.5076328E-03 7.5574666E-03
 5.7957494E-03 4.2097969E-03 2.7871130E-03 1.5155178E-03 3.8323432E-04
 -6.2103121E-04 -1.5080355E-03 -2.2879581E-03 -2.9703784E-03 -3.5642670E-03
 -4.0779752E-03 -4.5192596E-03 -4.8952908E-03 -5.2126567E-03 -5.4774140E-03
 -5.6950999E-03 -5.8707609E-03 -6.0089878E-03 -6.1139450E-03 -6.1893994E-03
 -6.2387488E-03 -6.2650605E-03 -6.2710908E-03 -6.2593115E-03 -6.2319366E-03
 -6.1909514E-03 -6.1381278E-03 -6.0750465E-03 -6.0031200E-03 -5.9236027E-03
 -5.8376151E-03 -5.7461495E-03 -5.6500891E-03 -5.5502225E-03 -5.4472405E-03
 -5.3417659E-03 -5.2343481E-03 -5.1254723E-03 -5.0155655E-03 -4.9050162E-03
 -4.7941571E-03 -4.6832860E-03 -4.5726686E-03 -4.4625364E-03 -4.3530930E-03
 -4.2445175E-03 -4.1369731E-03 -4.0305923E-03 -3.9254944E-03 -3.8217905E-03
 -3.7195648E-03 -3.6188953E-03 -3.5198492E-03 -3.4224826E-03 -3.3268407E-03
 -3.2329629E-03 -3.1408777E-03 -3.0506102E-03 -2.9621813E-03 -2.8755958E-03
 -2.7908664E-03 -2.7079957E-03 -2.6269828E-03 -2.5478192E-03 -2.4704991E-03
 -2.3950157E-03 -2.3213499E-03 -2.2494860E-03 -2.1794112E-03 -2.1111034E-03
 -2.0445392E-03
 0.1316085 0.1319798 0.1317901 0.1310942 0.1299453
 0.1283945 0.1264910 0.1242812 0.1218093 0.1191165
 0.1162414 0.1132196 0.1100838 0.1068638 0.1035866
 0.1002763 9.6954554E-02 9.3640201E-02 9.0349756E-02 8.7097466E-02
 8.3895475E-02 8.0753952E-02 7.7681325E-02 7.4684426E-02 7.1768612E-02
 6.8938002E-02 6.6195533E-02 6.3543186E-02 6.0982063E-02 5.8512516E-02
 5.6134272E-02 5.3846512E-02 5.1647954E-02 4.9536973E-02 4.7511619E-02
 4.5569707E-02 4.3708868E-02 4.1926581E-02 4.0220264E-02 3.8587227E-02
 3.7024774E-02 3.5530183E-02 3.4100763E-02 3.2733824E-02 3.1426772E-02
 3.0177010E-02 2.8982049E-02 2.7839443E-02 2.6746839E-02 2.5701972E-02
 2.4702646E-02 2.3746755E-02 2.2832273E-02 2.1957269E-02 2.1119896E-02
 2.0318385E-02 1.9551039E-02 1.8816262E-02 1.8112507E-02 1.7438322E-02
 1.6792322E-02 1.6173178E-02 1.5579640E-02 1.5010510E-02 1.4464658E-02
 1.3941013E-02 1.3438541E-02 1.2956277E-02 1.2493301E-02 1.2048732E-02
 1.1621742E-02 1.1211542E-02 1.0817382E-02 1.0438546E-02 1.0074357E-02
 9.7241811E-03 9.3873963E-03 9.0634245E-03 8.7517137E-03 8.4517431E-03
 8.1630088E-03 7.8850305E-03 7.6173642E-03 7.3595718E-03 7.1112500E-03
 6.8720030E-03 6.6414564E-03 6.4192624E-03 6.2050773E-03 5.9985793E-03
 5.7994556E-03
 8.5509412E-02 7.9197146E-02 7.3040955E-02 6.7070283E-02 6.1310947E-02
 5.5784624E-02 5.0508756E-02 4.5496583E-02 4.0757272E-02 3.6296245E-02
 3.2115459E-02 2.8213818E-02 2.4587534E-02 2.1230500E-02 1.8134682E-02
 1.5290494E-02 1.2687107E-02 1.0312795E-02 8.1551885E-03 6.2015369E-03
 4.4389479E-03 2.8545398E-03 1.4356149E-03 1.6980006E-04 -9.5487788E-04
 -1.9498854E-03 -2.8261493E-03 -3.5940001E-03 -4.2631566E-03 -4.8427153E-03
 -5.3411373E-03 -5.7662809E-03 -6.1253989E-03 -6.4251614E-03 -6.6716946E-03
 -6.8705953E-03 -7.0269685E-03 -7.1454551E-03 -7.2302637E-03 -7.2852089E-03
 -7.3137307E-03 -7.3189307E-03 -7.3036109E-03 -7.2702733E-03 -7.2211735E-03
 -7.1583367E-03 -7.0835627E-03 -6.9984747E-03 -6.9045164E-03 -6.8029766E-03
 -6.6950088E-03 -6.5816394E-03 -6.4637847E-03 -6.3422588E-03 -6.2177889E-03
 -6.0910168E-03 -5.9625222E-03 -5.8328114E-03 -5.7023377E-03 -5.5715046E-03
 -5.4406668E-03 -5.3101392E-03 -5.1801987E-03 -5.0510964E-03 -4.9230438E-03
 -4.7962288E-03 -4.6708244E-03 -4.5469697E-03 -4.4247895E-03 -4.3043969E-03
 -4.1858847E-03 -4.0693250E-03 -3.9547938E-03 -3.8423401E-03 -3.7320114E-03
 -3.6238434E-03 -3.5178626E-03 -3.4140933E-03 -3.3125435E-03 -3.2132233E-03
 -3.1161390E-03 -3.0212819E-03 -2.9286488E-03 -2.8382277E-03 -2.7500025E-03
 -2.6639563E-03 -2.5800725E-03 -2.4983231E-03 -2.4186871E-03 -2.3411342E-03
 -2.2656422E-03
 0.1451872 0.1451364 0.1445258 0.1434113 0.1418468
 0.1398843 0.1375737 0.1349625 0.1320956 0.1290152
 0.1257605 0.1223678 0.1188705 0.1152991 0.1116808
 0.1080402 0.1043990 0.1007765 9.7189143E-02 9.3651198E-02
 9.0174749E-02 8.6769864E-02 8.3444804E-02 8.0206171E-02 7.7059075E-02
 7.4007355E-02 7.1053639E-02 6.8199567E-02 6.5445922E-02 6.2792696E-02
 6.0239259E-02 5.7784427E-02 5.5426564E-02 5.3163707E-02 5.0993536E-02
 4.8913535E-02 4.6921007E-02 4.5013111E-02 4.3186948E-02 4.1439544E-02
 3.9767906E-02 3.8169045E-02 3.6640007E-02 3.5177868E-02 3.3779785E-02
 3.2442953E-02 3.1164657E-02 2.9942270E-02 2.8773252E-02 2.7655154E-02
 2.6585622E-02 2.5562394E-02 2.4583301E-02 2.3646271E-02 2.2749331E-02
 2.1890588E-02 2.1068243E-02 2.0280579E-02 1.9525958E-02 1.8802837E-02
 1.8109733E-02 1.7445242E-02 1.6808033E-02 1.6196832E-02 1.5610444E-02
 1.5047725E-02 1.4507588E-02 1.3989003E-02 1.3490989E-02 1.3012628E-02
 1.2553025E-02 1.2111354E-02 1.1686814E-02 1.1278651E-02 1.0886143E-02
 1.0508619E-02 1.0145419E-02 9.7959358E-03 9.4595756E-03 9.1357827E-03
 8.8240327E-03 8.5238162E-03 8.2346518E-03 7.9560829E-03 7.6876734E-03
 7.4290032E-03 7.1796910E-03 6.9393450E-03 6.7076068E-03 6.4841416E-03
 6.2686140E-03
 8.5037842E-02 7.8713864E-02 7.2522327E-02 6.6499777E-02 6.0677648E-02
 5.5082023E-02 4.9733784E-02 4.4648785E-02 3.9838206E-02 3.5308946E-02
 3.1064013E-02 2.7103033E-02 2.3422666E-02 2.0017033E-02 1.6878171E-02
 1.3996429E-02 1.1360817E-02 8.9593828E-03 6.7794886E-03 4.8080785E-03
 3.0319493E-03 1.4379009E-03 1.2922900E-05 -1.2556600E-03 -2.3801059E-03
 -3.3721530E-03 -4.2429753E-03 -5.0031361E-03 -5.6625661E-03 -6.2305504E-03
 -6.7157284E-03 -7.1261171E-03 -7.4691135E-03 -7.7515212E-03 -7.9795839E-03
 -8.1590125E-03 -8.2950108E-03 -8.3923163E-03 -8.4552271E-03 -8.4876381E-03
 -8.4930724E-03 -8.4747076E-03 -8.4354067E-03 -8.3777513E-03 -8.3040595E-03
 -8.2164118E-03 -8.1166793E-03 -8.0065327E-03 -7.8874733E-03 -7.7608437E-03
 -7.6278425E-03 -7.4895457E-03 -7.3469058E-03 -7.2007836E-03 -7.0519410E-03
 -6.9010537E-03 -6.7487317E-03 -6.5955115E-03 -6.4418735E-03 -6.2882402E-03
 -6.1349892E-03 -5.9824544E-03 -5.8309278E-03 -5.6806677E-03 -5.5319024E-03
 -5.3848331E-03 -5.2396278E-03 -5.0964411E-03 -4.9554030E-03 -4.8166215E-03
 -4.6801930E-03 -4.5461934E-03 -4.4146935E-03 -4.2857369E-03 -4.1593760E-03
 -4.0356377E-03 -3.9145439E-03 -3.7961127E-03 -3.6803507E-03 -3.5672558E-03
 -3.4568275E-03 -3.3490495E-03 -3.2439178E-03 -3.1414032E-03 -3.0414893E-03
 -2.9441467E-03 -2.8493456E-03 -2.7570575E-03 -2.6672494E-03 -2.5798799E-03
 -2.4949166E-03
 0.1600496 0.1595428 0.1584792 0.1569143 0.1549023
 0.1524957 0.1497453 0.1466993 0.1434037 0.1399015
 0.1362332 0.1324357 0.1285435 0.1245874 0.1205955
 0.1165928 0.1126015 0.1086408 0.1047276 0.1008761
 9.7098336E-02 9.3404353E-02 8.9802176E-02 8.6298205E-02 8.2897276E-02
 7.9602890E-02 7.6417364E-02 7.3341951E-02 7.0377052E-02 6.7522258E-02
 6.4776547E-02 6.2138323E-02 5.9605557E-02 5.7175882E-02 5.4846589E-02
 5.2614789E-02 5.0477412E-02 4.8431259E-02 4.6473097E-02 4.4599626E-02
 4.2807534E-02 4.1093543E-02 3.9454423E-02 3.7886970E-02 3.6388095E-02
 3.4954760E-02 3.3584036E-02 3.2273069E-02 3.1019125E-02 2.9819576E-02
 2.8671894E-02 2.7573645E-02 2.6522515E-02 2.5516279E-02 2.4552839E-02
 2.3630168E-02 2.2746345E-02 2.1899546E-02 2.1088021E-02 2.0310130E-02
 1.9564293E-02 1.8849023E-02 1.8162895E-02 1.7504560E-02 1.6872751E-02
 1.6266245E-02 1.5683895E-02 1.5124603E-02 1.4587331E-02 1.4071089E-02
 1.3574949E-02 1.3098015E-02 1.2639447E-02 1.2198436E-02 1.1774219E-02
 1.1366083E-02 1.0973322E-02 1.0595297E-02 1.0231368E-02 9.8809525E-03
 9.5434859E-03 9.2184246E-03 8.9052673E-03 8.6035132E-03 8.3127106E-03
 8.0324067E-03 7.7621802E-03 7.5016408E-03 7.2503942E-03 7.0080752E-03
 6.7743282E-03
 8.5365705E-02 7.8942403E-02 7.2635934E-02 6.6488862E-02 6.0537387E-02
 5.4811332E-02 4.9334500E-02 4.4124968E-02 3.9195582E-02 3.4554444E-02
 3.0205367E-02 2.6148465E-02 2.2380646E-02 1.8896053E-02 1.5686600E-02
 1.2742395E-02 1.0052114E-02 7.6034181E-03 5.3832391E-03 3.3780709E-03
 1.5742551E-03 -4.1862910E-05 -1.4837302E-03 -2.7644434E-03 -3.8966595E-03
 -4.8924917E-03 -5.7634665E-03 -6.5204683E-03 -7.1737291E-03 -7.7328095E-03
 -8.2066078E-03 -8.6033707E-03 -8.9307129E-03 -9.1956398E-03 -9.4045782E-03
 -9.5634088E-03 -9.6774949E-03 -9.7517222E-03 -9.7905267E-03 -9.7979363E-03
 -9.7775925E-03 -9.7327866E-03 -9.6664922E-03 -9.5813926E-03 -9.4798971E-03
 -9.3641812E-03 -9.2361933E-03 -9.0976879E-03 -8.9502344E-03 -8.7952465E-03
 -8.6339852E-03 -8.4675811E-03 -8.2970439E-03 -8.1232786E-03 -7.9470910E-03
 -7.7692014E-03 -7.5902492E-03 -7.4108089E-03 -7.2313789E-03 -7.0524151E-03
 -6.8743145E-03 -6.6974219E-03 -6.5220539E-03 -6.3484786E-03 -6.1769309E-03
 -6.0076234E-03 -5.8407285E-03 -5.6764041E-03 -5.5147791E-03 -5.3559681E-03
 -5.2000647E-03 -5.0471420E-03 -4.8972634E-03 -4.7504734E-03 -4.6068174E-03
 -4.4663125E-03 -4.3289792E-03 -4.1948226E-03 -4.0638414E-03 -3.9360304E-03
 -3.8113762E-03 -3.6898537E-03 -3.5714421E-03 -3.4561129E-03 -3.3438315E-03
 -3.2345620E-03 -3.1282639E-03 -3.0248957E-03 -2.9244092E-03 -2.8267656E-03
 -2.7319114E-03
 0.1762523 0.1752721 0.1737357 0.1716980 0.1692136
 0.1663357 0.1631160 0.1596040 0.1558471 0.1518896
 0.1477731 0.1435361 0.1392138 0.1348382 0.1304382
 0.1260394 0.1216644 0.1173331 0.1130624 0.1088667
 0.1047580 0.1007464 9.6839666E-02 9.3043961E-02 8.9363851E-02
 8.5802518E-02 8.2361877E-02 7.9042785E-02 7.5845219E-02 7.2768338E-02
 6.9810659E-02 6.6970162E-02 6.4244352E-02 6.1630435E-02 5.9125271E-02
 5.6725558E-02 5.4427821E-02 5.2228484E-02 5.0123930E-02 4.8110519E-02
 4.6184599E-02 4.4342577E-02 4.2580914E-02 4.0896133E-02 3.9284877E-02
 3.7743852E-02 3.6269885E-02 3.4859911E-02 3.3510979E-02 3.2220267E-02
 3.0985052E-02 2.9802743E-02 2.8670847E-02 2.7586995E-02 2.6548931E-02
 2.5554502E-02 2.4601659E-02 2.3688447E-02 2.2813004E-02 2.1973586E-02
 2.1168506E-02 2.0396179E-02 1.9655090E-02 1.8943805E-02 1.8260965E-02
 1.7605281E-02 1.6975520E-02 1.6370520E-02 1.5789172E-02 1.5230427E-02
 1.4693294E-02 1.4176811E-02 1.3680093E-02 1.3202273E-02 1.2742541E-02
 1.2300133E-02 1.1874304E-02 1.1464358E-02 1.1069630E-02 1.0689480E-02
 1.0323323E-02 9.9705644E-03 9.6306773E-03 9.3031237E-03 8.9874174E-03
 8.6830780E-03 8.3896611E-03 8.1067393E-03 7.8338869E-03 7.5707221E-03
 7.3168646E-03
 8.6568743E-02 7.9957955E-02 7.3455267E-02 6.7108318E-02 6.0957402E-02
 5.5035632E-02 4.9369399E-02 4.3978803E-02 3.8878147E-02 3.4076564E-02
 2.9578531E-02 2.5384502E-02 2.1491462E-02 1.7893445E-02 1.4582069E-02
 1.1547033E-02 8.7765260E-03 6.2576463E-03 3.9767320E-03 1.9196700E-03
 7.2187562E-05 -1.5799700E-03 -3.0508412E-03 -4.3540783E-03 -5.5028778E-03
 -6.5098512E-03 -7.3869992E-03 -8.1456499E-03 -8.7964395E-03 -9.3493164E-03
 -9.8135304E-03 -1.0197655E-02 -1.0509614E-02 -1.0756688E-02 -1.0945571E-02
 -1.1082384E-02 -1.1172718E-02 -1.1221669E-02 -1.1233867E-02 -1.1213522E-02
 -1.1164444E-02 -1.1090085E-02 -1.0993565E-02 -1.0877695E-02 -1.0745017E-02
 -1.0597824E-02 -1.0438167E-02 -1.0267898E-02 -1.0088678E-02 -9.9020060E-03
 -9.7092204E-03 -9.5115080E-03 -9.3099503E-03 -9.1055036E-03 -8.8990266E-03
 -8.6912792E-03 -8.4829405E-03 -8.2746139E-03 -8.0668386E-03 -7.8600831E-03
 -7.6547731E-03 -7.4512698E-03 -7.2499039E-03 -7.0509501E-03 -6.8546599E-03
 -6.6612447E-03 -6.4708851E-03 -6.2837387E-03 -6.0999347E-03 -5.9195864E-03
 -5.7427809E-03 -5.5695926E-03 -5.4000746E-03 -5.2342666E-03 -5.0722002E-03
 -4.9138912E-03 -4.7593429E-03 -4.6085571E-03 -4.4615166E-03 -4.3182084E-03
 -4.1785995E-03 -4.0426650E-03 -3.9103637E-03 -3.7816518E-03 -3.6564891E-03
 -3.5348185E-03 -3.4165927E-03 -3.3017513E-03 -3.1902429E-03 -3.0820023E-03
 -2.9769698E-03
 0.1938763 0.1924184 0.1903998 0.1878753 0.1849001
 0.1815286 0.1778138 0.1738072 0.1695578 0.1651118
 0.1605126 0.1558002 0.1510113 0.1461794 0.1413344
 0.1365028 0.1317081 0.1269706 0.1223075 0.1177337
 0.1132612 0.1089000 0.1046578 0.1005405 9.6552387E-02
 9.2696324E-02 8.8973828E-02 8.5385300E-02 8.1930280E-02 7.8607433E-02
 7.5414814E-02 7.2349913E-02 6.9409750E-02 6.6591062E-02 6.3890256E-02
 6.1303575E-02 5.8827106E-02 5.6456864E-02 5.4188851E-02 5.2019034E-02
 4.9943410E-02 4.7958046E-02 4.6059087E-02 4.4242751E-02 4.2505391E-02
 4.0843450E-02 3.9253499E-02 3.7732236E-02 3.6276482E-02 3.4883205E-02
 3.3549488E-02 3.2272544E-02 3.1049704E-02 2.9878436E-02 2.8756320E-02
 2.7681058E-02 2.6650453E-02 2.5662424E-02 2.4714988E-02 2.3806263E-02
 2.2934467E-02 2.2097897E-02 2.1294938E-02 2.0524060E-02 1.9783817E-02
 1.9072825E-02 1.8389769E-02 1.7733410E-02 1.7102564E-02 1.6496109E-02
 1.5912987E-02 1.5352174E-02 1.4812724E-02 1.4293700E-02 1.3794247E-02
 1.3313543E-02 1.2850787E-02 1.2405245E-02 1.1976195E-02 1.1562959E-02
 1.1164903E-02 1.0781392E-02 1.0411862E-02 1.0055737E-02 9.7124921E-03
 9.3816146E-03 9.0626208E-03 8.7550459E-03 8.4584542E-03 8.1724143E-03
 7.8965202E-03
 8.8744149E-02 8.1858896E-02 7.5077832E-02 6.8453133E-02 6.2028896E-02
 5.5841424E-02 4.9919657E-02 4.4285692E-02 3.8955327E-02 3.3938725E-02
 2.9241007E-02 2.4862919E-02 2.0801462E-02 1.7050443E-02 1.3601081E-02
 1.0442526E-02 7.5623123E-03 4.9468209E-03 2.5816199E-03 4.5181115E-04
 -1.4576670E-03 -3.1618522E-03 -4.6755383E-03 -6.0131117E-03 -7.1884636E-03
 -8.2148677E-03 -9.1049485E-03 -9.8706167E-03 -1.0523059E-02 -1.1072734E-02
 -1.1529364E-02 -1.1901968E-02 -1.2198876E-02 -1.2427755E-02 -1.2595644E-02
 -1.2708997E-02 -1.2773703E-02 -1.2795139E-02 -1.2778197E-02 -1.2727322E-02
 -1.2646542E-02 -1.2539513E-02 -1.2409539E-02 -1.2259606E-02 -1.2092412E-02
 -1.1910385E-02 -1.1715714E-02 -1.1510365E-02 -1.1296109E-02 -1.1074537E-02
 -1.0847069E-02 -1.0614986E-02 -1.0379425E-02 -1.0141409E-02 -9.9018486E-03
 -9.6615478E-03 -9.4212331E-03 -9.1815442E-03 -8.9430399E-03 -8.7062288E-03
 -8.4715439E-03 -8.2393726E-03 -8.0100503E-03 -7.7838711E-03 -7.5610867E-03
 -7.3419162E-03 -7.1265381E-03 -6.9151139E-03 -6.7077642E-03 -6.5046041E-03
 -6.3057099E-03 -6.1111432E-03 -5.9209568E-03 -5.7351799E-03 -5.5538267E-03
 -5.3769061E-03 -5.2044094E-03 -5.0363173E-03 -4.8726047E-03 -4.7132401E-03
 -4.5581786E-03 -4.4073765E-03 -4.2607766E-03 -4.1183238E-03 -3.9799549E-03
 -3.8455997E-03 -3.7151978E-03 -3.5886685E-03 -3.4659388E-03 -3.3469375E-03
 -3.2315813E-03
 0.2130158 0.2110877 0.2085877 0.2055711 0.2020939
 0.1982124 0.1939816 0.1894551 0.1846844 0.1797181
 0.1746019 0.1693779 0.1640850 0.1587583 0.1534291
 0.1481254 0.1428716 0.1376889 0.1325951 0.1276053
 0.1227320 0.1179851 0.1133722 0.1088992 0.1045700
 0.1003872 9.6351810E-02 9.2463858E-02 8.8722393E-02 8.5125595E-02
 8.1671007E-02 7.8355610E-02 7.5175926E-02 7.2128184E-02 6.9208317E-02
 6.6412069E-02 6.3735098E-02 6.1172966E-02 5.8721263E-02 5.6375548E-02
 5.4131445E-02 5.1984653E-02 4.9930982E-02 4.7966320E-02 4.6086725E-02
 4.4288341E-02 4.2567469E-02 4.0920548E-02 3.9344154E-02 3.7835032E-02
 3.6390036E-02 3.5006184E-02 3.3680603E-02 3.2410584E-02 3.1193534E-02
 3.0026982E-02 2.8908586E-02 2.7836107E-02 2.6807426E-02 2.5820527E-02
 2.4873504E-02 2.3964530E-02 2.3091882E-02 2.2253918E-02 2.1449085E-02
 2.0675903E-02 1.9932972E-02 1.9218963E-02 1.8532597E-02 1.7872680E-02
 1.7238077E-02 1.6627686E-02 1.6040493E-02 1.5475499E-02 1.4931778E-02
 1.4408451E-02 1.3904657E-02 1.3419605E-02 1.2952520E-02 1.2502674E-02
 1.2069374E-02 1.1651957E-02 1.1249786E-02 1.0862258E-02 1.0488800E-02
 1.0128859E-02 9.7819082E-03 9.4474489E-03 9.1249980E-03 8.8140965E-03
 8.5142991E-03
 9.2019856E-02 8.4775008E-02 7.7632800E-02 7.0649892E-02 6.3874371E-02
 5.7345919E-02 5.1096320E-02 4.5149948E-02 3.9524354E-02 3.4230940E-02
 2.9275617E-02 2.4659537E-02 2.0379741E-02 1.6429804E-02 1.2800475E-02
 9.4802482E-03 6.4558741E-03 3.7128446E-03 1.2357819E-03 -9.9119614E-04
 -2.9841454E-03 -4.7590900E-03 -6.3317856E-03 -7.7175596E-03 -8.9311963E-03
 -9.9868262E-03 -1.0897877E-02 -1.1677028E-02 -1.2336175E-02 -1.2886440E-02
 -1.3338170E-02 -1.3700959E-02 -1.3983669E-02 -1.4194463E-02 -1.4340840E-02
 -1.4429669E-02 -1.4467230E-02 -1.4459252E-02 -1.4410959E-02 -1.4327089E-02
 -1.4211948E-02 -1.4069443E-02 -1.3903100E-02 -1.3716114E-02 -1.3511373E-02
 -1.3291468E-02 -1.3058746E-02 -1.2815313E-02 -1.2563058E-02 -1.2303687E-02
 -1.2038717E-02 -1.1769513E-02 -1.1497294E-02 -1.1223142E-02 -1.0948034E-02
 -1.0672828E-02 -1.0398286E-02 -1.0125089E-02 -9.8538268E-03 -9.5850313E-03
 -9.3191583E-03 -9.0566110E-03 -8.7977340E-03 -8.5428311E-03 -8.2921591E-03
 -8.0459369E-03 -7.8043449E-03 -7.5675347E-03 -7.3356251E-03 -7.1087210E-03
 -6.8868892E-03 -6.6701821E-03 -6.4586373E-03 -6.2522669E-03 -6.0510719E-03
 -5.8550434E-03 -5.6641605E-03 -5.4783784E-03 -5.2976566E-03 -5.1219426E-03
 -4.9511790E-03 -4.7852905E-03 -4.6242103E-03 -4.4678566E-03 -4.3161497E-03
 -4.1689971E-03 -4.0263175E-03 -3.8880135E-03 -3.7539906E-03 -3.6241573E-03
 -3.4984131E-03
 0.2337647 0.2313859 0.2284167 0.2249127 0.2209317
 0.2165318 0.2117706 0.2067045 0.2013880 0.1958726
 0.1902070 0.1844362 0.1786014 0.1727401 0.1668858
 0.1610680 0.1553127 0.1496421 0.1440751 0.1386272
 0.1333114 0.1281378 0.1231142 0.1182462 0.1135377
 0.1089908 0.1046063 0.1003838 9.6321888E-02 9.2418186E-02
 8.8669755E-02 8.5073069E-02 8.1624113E-02 7.8318603E-02 7.5151958E-02
 7.2119445E-02 6.9216229E-02 6.6437423E-02 6.3778147E-02 6.1233565E-02
 5.8798879E-02 5.6469407E-02 5.4240588E-02 5.2107967E-02 5.0067261E-02
 4.8114311E-02 4.6245113E-02 4.4455826E-02 4.2742759E-02 4.1102402E-02
 3.9531372E-02 3.8026460E-02 3.6584571E-02 3.5202794E-02 3.3878345E-02
 3.2608572E-02 3.1390950E-02 3.0223083E-02 2.9102687E-02 2.8027603E-02
 2.6995780E-02 2.6005257E-02 2.5054187E-02 2.4140794E-02 2.3263426E-02
 2.2420483E-02 2.1610456E-02 2.0831915E-02 2.0083493E-02 1.9363903E-02
 1.8671911E-02 1.8006342E-02 1.7366098E-02 1.6750103E-02 1.6157353E-02
 1.5586905E-02 1.5037823E-02 1.4509252E-02 1.4000345E-02 1.3510324E-02
 1.3038434E-02 1.2583942E-02 1.2146168E-02 1.1724454E-02 1.1318165E-02
 1.0926702E-02 1.0549492E-02 1.0185984E-02 9.8356446E-03 9.4979750E-03
 9.1724908E-03
 9.6558690E-02 8.8872038E-02 8.1286237E-02 7.3862806E-02 6.6654257E-02
 5.9704278E-02 5.3048074E-02 4.6712887E-02 4.0718555E-02 3.5078205E-02
 2.9798919E-02 2.4882521E-02 2.0326307E-02 1.6123716E-02 1.2265041E-02
 8.7380949E-03 5.5287173E-03 2.6213757E-03 -4.4352754E-07 -2.3538165E-03
 -4.4560242E-03 -6.3243150E-03 -7.9756593E-03 -9.4265565E-03 -1.0692933E-02
 -1.1790001E-02 -1.2732219E-02 -1.3533234E-02 -1.4205852E-02 -1.4762051E-02
 -1.5212961E-02 -1.5568916E-02 -1.5839452E-02 -1.6033351E-02 -1.6158694E-02
 -1.6222870E-02 -1.6232649E-02 -1.6194195E-02 -1.6113130E-02 -1.5994566E-02
 -1.5843140E-02 -1.5663050E-02 -1.5458105E-02 -1.5231743E-02 -1.4987066E-02
 -1.4726877E-02 -1.4453694E-02 -1.4169780E-02 -1.3877170E-02 -1.3577692E-02
 -1.3272979E-02 -1.2964492E-02 -1.2653532E-02 -1.2341264E-02 -1.2028718E-02
 -1.1716814E-02 -1.1406360E-02 -1.1098075E-02 -1.0792579E-02 -1.0490430E-02
 -1.0192102E-02 -9.8980144E-03 -9.6085230E-03 -9.3239313E-03 -9.0444982E-03
 -8.7704444E-03 -8.5019395E-03 -8.2391296E-03 -7.9821227E-03 -7.7310079E-03
 -7.4858377E-03 -7.2466512E-03 -7.0134606E-03 -6.7862617E-03 -6.5650358E-03
 -6.3497503E-03 -6.1403532E-03 -5.9367921E-03 -5.7389936E-03 -5.5468809E-03
 -5.3603696E-03 -5.1793684E-03 -5.0037820E-03 -4.8334999E-03 -4.6684258E-03
 -4.5084432E-03 -4.3534418E-03 -4.2033079E-03 -4.0579252E-03 -3.9171781E-03
 -3.7809445E-03
 0.2562028 0.2534058 0.2499921 0.2460182 0.2415432
 0.2366274 0.2313314 0.2257145 0.2198347 0.2137472
 0.2075040 0.2011537 0.1947408 0.1883055 0.1818841
 0.1755085 0.1692064 0.1630017 0.1569146 0.1509618
 0.1451566 0.1395099 0.1340296 0.1287215 0.1235894
 0.1186352 0.1138594 0.1092612 0.1048389 0.1005896
 9.6509784E-02 9.2595503E-02 8.8842206E-02 8.5245080E-02 8.1799023E-02
 7.8498788E-02 7.5339042E-02 7.2314404E-02 6.9419540E-02 6.6649154E-02
 6.3998014E-02 6.1461020E-02 5.9033211E-02 5.6709755E-02 5.4486006E-02
 5.2357461E-02 5.0319795E-02 4.8368845E-02 4.6500627E-02 4.4711351E-02
 4.2997371E-02 4.1355208E-02 3.9781548E-02 3.8273238E-02 3.6827277E-02
 3.5440810E-02 3.4111109E-02 3.2835603E-02 3.1611819E-02 3.0437436E-02
 2.9310238E-02 2.8228112E-02 2.7189063E-02 2.6191177E-02 2.5232667E-02
 2.4311811E-02 2.3426972E-02 2.2576606E-02 2.1759229E-02 2.0973453E-02
 2.0217938E-02 1.9491408E-02 1.8792666E-02 1.8120542E-02 1.7473955E-02
 1.6851855E-02 1.6253239E-02 1.5677163E-02 1.5122707E-02 1.4589008E-02
 1.4075242E-02 1.3580606E-02 1.3104350E-02 1.2645740E-02 1.2204089E-02
 1.1778725E-02 1.1369023E-02 1.0974367E-02 1.0594165E-02 1.0227873E-02
 9.8749371E-03
 0.1025581 9.4352908E-02 8.6243823E-02 7.8297742E-02 7.0572391E-02
 6.3116260E-02 5.5968903E-02 4.9161334E-02 4.2716544E-02 3.6650147E-02
 3.0971074E-02 2.5682373E-02 2.0781999E-02 1.6263535E-02 1.2117001E-02
 8.3295600E-03 4.8861359E-03 1.7700449E-03 -1.0365286E-03 -3.5520676E-03
 -5.7953186E-03 -7.7850246E-03 -9.5396433E-03 -1.1077134E-02 -1.2414833E-02
 -1.3569308E-02 -1.4556312E-02 -1.5390699E-02 -1.6086422E-02 -1.6656518E-02
 -1.7113095E-02 -1.7467417E-02 -1.7729860E-02 -1.7909978E-02 -1.8016554E-02
 -1.8057628E-02 -1.8040562E-02 -1.7972056E-02 -1.7858218E-02 -1.7704599E-02
 -1.7516235E-02 -1.7297693E-02 -1.7053090E-02 -1.6786164E-02 -1.6500279E-02
 -1.6198464E-02 -1.5883444E-02 -1.5557671E-02 -1.5223343E-02 -1.4882426E-02
 -1.4536683E-02 -1.4187685E-02 -1.3836825E-02 -1.3485353E-02 -1.3134370E-02
 -1.2784850E-02 -1.2437654E-02 -1.2093535E-02 -1.1753149E-02 -1.1417080E-02
 -1.1085813E-02 -1.0759783E-02 -1.0439347E-02 -1.0124809E-02 -9.8164286E-03
 -9.5144128E-03 -9.2189219E-03 -8.9300871E-03 -8.6479979E-03 -8.3727231E-03
 -8.1042955E-03 -7.8427242E-03 -7.5880042E-03 -7.3401020E-03 -7.0989681E-03
 -6.8645510E-03 -6.6367616E-03 -6.4155227E-03 -6.2007327E-03 -5.9922896E-03
 -5.7900771E-03 -5.5939788E-03 -5.4038735E-03 -5.2196258E-03 -5.0411117E-03
 -4.8681926E-03 -4.7007320E-03 -4.5386003E-03 -4.3816576E-03 -4.2297668E-03
 -4.0827901E-03
 0.2803807 0.2772112 0.2733920 0.2689800 0.2640353
 0.2586205 0.2527985 0.2466320 0.2401826 0.2335094
 0.2266683 0.2197120 0.2126889 0.2056429 0.1986136
 0.1916358 0.1847400 0.1779523 0.1712946 0.1647852
 0.1584387 0.1522666 0.1462776 0.1404777 0.1348710
 0.1294595 0.1242434 0.1192217 0.1143923 0.1097520
 0.1052970 0.1010226 9.6923813E-02 9.2995383E-02 8.9231662E-02
 8.5626863E-02 8.2175151E-02 7.8870617E-02 7.5707458E-02 7.2679870E-02
 6.9782168E-02 6.7008793E-02 6.4354360E-02 6.1813612E-02 5.9381522E-02
 5.7053186E-02 5.4823924E-02 5.2689228E-02 5.0644778E-02 4.8686475E-02
 4.6810374E-02 4.5012705E-02 4.3289885E-02 4.1638497E-02 4.0055301E-02
 3.8537201E-02 3.7081253E-02 3.5684660E-02 3.4344755E-02 3.3059020E-02
 3.1825047E-02 3.0640548E-02 2.9503359E-02 2.8411403E-02 2.7362727E-02
 2.6355462E-02 2.5387831E-02 2.4458136E-02 2.3564769E-02 2.2706203E-02
 2.1880975E-02 2.1087684E-02 2.0325020E-02 1.9591693E-02 1.8886505E-02
 1.8208312E-02 1.7555995E-02 1.6928514E-02 1.6324852E-02 1.5744047E-02
 1.5185190E-02 1.4647385E-02 1.4129801E-02 1.3631621E-02 1.3152075E-02
 1.2690428E-02 1.2245964E-02 1.1818008E-02 1.1405909E-02 1.1009039E-02
 1.0626802E-02
 0.1102450 0.1014543 9.2749216E-02 8.4202684E-02 7.5878359E-02
 6.7830510E-02 6.0104150E-02 5.2735239E-02 4.5751084E-02 3.9170910E-02
 3.3006519E-02 2.7263066E-02 2.1939877E-02 1.7031241E-02 1.2527285E-02
 8.4147695E-03 4.6778033E-03 1.2985454E-03 -1.7422248E-03 -4.4645746E-03
 -6.8889526E-03 -9.0358583E-03 -1.0925530E-02 -1.2577693E-02 -1.4011402E-02
 -1.5244889E-02 -1.6295485E-02 -1.7179543E-02 -1.7912421E-02 -1.8508464E-02
 -1.8980989E-02 -1.9342406E-02 -1.9604106E-02 -1.9776598E-02 -1.9869527E-02
 -1.9891728E-02 -1.9851269E-02 -1.9755509E-02 -1.9611141E-02 -1.9424245E-02
 -1.9200332E-02 -1.8944399E-02 -1.8660955E-02 -1.8354071E-02 -1.8027421E-02
 -1.7684305E-02 -1.7327692E-02 -1.6960246E-02 -1.6584352E-02 -1.6202139E-02
 -1.5815513E-02 -1.5426164E-02 -1.5035597E-02 -1.4645145E-02 -1.4255990E-02
 -1.3869164E-02 -1.3485574E-02 -1.3106018E-02 -1.2731179E-02 -1.2361656E-02
 -1.1997956E-02 -1.1640509E-02 -1.1289678E-02 -1.0945759E-02 -1.0608997E-02
 -1.0279587E-02 -9.9576712E-03 -9.6433554E-03 -9.3367081E-03 -9.0377666E-03
 -8.7465411E-03 -8.4630111E-03 -8.1871366E-03 -7.9188542E-03 -7.6580900E-03
 -7.4047572E-03 -7.1587400E-03 -6.9199279E-03 -6.6881948E-03 -6.4634057E-03
 -6.2454240E-03 -6.0341060E-03 -5.8293031E-03 -5.6308587E-03 -5.4386300E-03
 -5.2524530E-03 -5.0721746E-03 -4.8976471E-03 -4.7287093E-03 -4.5652147E-03
 -4.4070054E-03
 0.3063044 0.3028196 0.2986473 0.2938442 0.2884707
 0.2825906 0.2762688 0.2695707 0.2625611 0.2553029
 0.2478563 0.2402782 0.2326216 0.2249347 0.2172610
 0.2096394 0.2021037 0.1946830 0.1874020 0.1802810
 0.1733366 0.1665815 0.1600257 0.1536760 0.1475370
 0.1416108 0.1358981 0.1303977 0.1251073 0.1200236
 0.1151422 0.1104582 0.1059662 0.1016603 9.7534403E-02
 9.3582220E-02 8.9797385E-02 8.6173460E-02 8.2704104E-02 7.9383031E-02
 7.6204024E-02 7.3161073E-02 7.0248291E-02 6.7459971E-02 6.4790651E-02
 6.2235009E-02 5.9787951E-02 5.7444584E-02 5.5200227E-02 5.3050406E-02
 5.0990842E-02 4.9017448E-02 4.7126319E-02 4.5313749E-02 4.3576214E-02
 4.1910332E-02 4.0312909E-02 3.8780887E-02 3.7311364E-02 3.5901587E-02
 3.4548935E-02 3.3250891E-02 3.2005087E-02 3.0809244E-02 2.9661229E-02
 2.8558971E-02 2.7500512E-02 2.6483987E-02 2.5507618E-02 2.4569711E-02
 2.3668641E-02 2.2802863E-02 2.1970911E-02 2.1171359E-02 2.0402867E-02
 1.9664159E-02 1.8953988E-02 1.8271191E-02 1.7614631E-02 1.6983239E-02
 1.6375991E-02 1.5791893E-02 1.5230014E-02 1.4689432E-02 1.4169305E-02
 1.3668794E-02 1.3187106E-02 1.2723500E-02 1.2277234E-02 1.1847622E-02
 1.1433995E-02
 0.1198639 0.1104362 0.1010757 9.1861501E-02 8.2863756E-02
 7.4143358E-02 6.5751858E-02 5.7731427E-02 5.0115075E-02 4.2927086E-02
 3.6183488E-02 2.9892808E-02 2.4056880E-02 1.8671622E-02 1.3728003E-02
 9.2129298E-03 5.1100384E-03 1.4005299E-03 -1.9361733E-03 -4.9217874E-03
 -7.5786118E-03 -9.9291326E-03 -1.1995640E-02 -1.3799922E-02 -1.5363083E-02
 -1.6705332E-02 -1.7845910E-02 -1.8802984E-02 -1.9593613E-02 -2.0233741E-02
 -2.0738149E-02 -2.1120651E-02 -2.1393880E-02 -2.1569500E-02 -2.1658208E-02
 -2.1669799E-02 -2.1613214E-02 -2.1496588E-02 -2.1327332E-02 -2.1112159E-02
 -2.0857157E-02 -2.0567831E-02 -2.0249149E-02 -1.9905590E-02 -1.9541189E-02
 -1.9159565E-02 -1.8763965E-02 -1.8357303E-02 -1.7942175E-02 -1.7520897E-02
 -1.7095536E-02 -1.6667917E-02 -1.6239662E-02 -1.5812196E-02 -1.5386778E-02
 -1.4964506E-02 -1.4546336E-02 -1.4133099E-02 -1.3725501E-02 -1.3324161E-02
 -1.2929590E-02 -1.2542218E-02 -1.2162402E-02 -1.1790423E-02 -1.1426510E-02
 -1.1070836E-02 -1.0723524E-02 -1.0384654E-02 -1.0054260E-02 -9.7323582E-03
 -9.4189271E-03 -9.1139199E-03 -8.8172657E-03 -8.5288752E-03 -8.2486449E-03
 -7.9764593E-03 -7.7121849E-03 -7.4556838E-03 -7.2068023E-03 -6.9653909E-03
 -6.7312936E-03 -6.5043401E-03 -6.2843678E-03 -6.0712090E-03 -5.8646942E-03
 -5.6646569E-03 -5.4709320E-03 -5.2833469E-03 -5.1017352E-03 -4.9259416E-03
 -4.7557973E-03
 0.3339223 0.3301863 0.3257235 0.3205892 0.3148435
 0.3085497 0.3017736 0.2945820 0.2870418 0.2792191
 0.2711779 0.2629791 0.2546802 0.2463345 0.2379901
 0.2296905 0.2214738 0.2133733 0.2054171 0.1976286
 0.1900272 0.1826279 0.1754424 0.1684791 0.1617435
 0.1552387 0.1489658 0.1429240 0.1371112 0.1315239
 0.1261577 0.1210073 0.1160670 0.1113305 0.1067913
 0.1024425 9.8277204E-02 9.4288573E-02 9.0469673E-02 8.6813666E-02
 8.3313815E-02 7.9963580E-02 7.6756567E-02 7.3686562E-02 7.0747621E-02
 6.7933939E-02 6.5239988E-02 6.2660418E-02 6.0190123E-02 5.7824228E-02
 5.5558056E-02 5.3387143E-02 5.1307216E-02 4.9314208E-02 4.7404263E-02
 4.5573670E-02 4.3818917E-02 4.2136643E-02 4.0523641E-02 3.8976878E-02
 3.7493449E-02 3.6070582E-02 3.4705635E-02 3.3396095E-02 3.2139562E-02
 3.0933751E-02 2.9776474E-02 2.8665643E-02 2.7599270E-02 2.6575459E-02
 2.5592396E-02 2.4648339E-02 2.3741651E-02 2.2870729E-02 2.2034073E-02
 2.1230249E-02 2.0457853E-02 1.9715589E-02 1.9002184E-02 1.8316431E-02
 1.7657192E-02 1.7023351E-02 1.6413871E-02 1.5827725E-02 1.5263970E-02
 1.4721673E-02 1.4199955E-02 1.3697987E-02 1.3214953E-02 1.2750086E-02
 1.2302654E-02
 0.1316580 0.1215635 0.1115085 0.1015780 9.1848463E-02
 8.2387842E-02 7.3254868E-02 6.4498983E-02 5.6160249E-02 4.8269480E-02
 4.0848583E-02 3.3911102E-02 2.7462894E-02 2.1502931E-02 1.6024228E-02
 1.1014832E-02 6.4586690E-03 2.3365284E-03 -1.3731722E-03 -4.6936213E-03
 -7.6489365E-03 -1.0263682E-02 -1.2562377E-02 -1.4569120E-02 -1.6307343E-02
 -1.7799566E-02 -1.9067265E-02 -2.0130757E-02 -2.1009143E-02 -2.1720212E-02
 -2.2280712E-02 -2.2705965E-02 -2.3010172E-02 -2.3206400E-02 -2.3306627E-02
 -2.3321809E-02 -2.3261938E-02 -2.3136109E-02 -2.2952583E-02 -2.2718849E-02
 -2.2441680E-02 -2.2127192E-02 -2.1780903E-02 -2.1407768E-02 -2.1012254E-02
 -2.0598348E-02 -2.0169633E-02 -1.9729288E-02 -1.9280167E-02 -1.8824793E-02
 -1.8365409E-02 -1.7903993E-02 -1.7442282E-02 -1.6981814E-02 -1.6523924E-02
 -1.6069772E-02 -1.5620366E-02 -1.5176571E-02 -1.4739121E-02 -1.4308644E-02
 -1.3885660E-02 -1.3470596E-02 -1.3063802E-02 -1.2665551E-02 -1.2276062E-02
 -1.1895489E-02 -1.1523931E-02 -1.1161457E-02 -1.0808081E-02 -1.0463798E-02
 -1.0128571E-02 -9.8023284E-03 -9.4849886E-03 -9.1764433E-03 -8.8765761E-03
 -8.5852537E-03 -8.3023328E-03 -8.0276597E-03 -7.7610724E-03 -7.5024106E-03
 -7.2515043E-03 -7.0081805E-03 -6.7722653E-03 -6.5435823E-03 -6.3219592E-03
 -6.1072144E-03 -5.8991779E-03 -5.6976760E-03 -5.5025360E-03 -5.3135878E-03
 -5.1306612E-03
 0.3631155 0.3591914 0.3545032 0.3491047 0.3430540
 0.3364129 0.3292460 0.3216197 0.3136014 0.3052585
 0.2966572 0.2878620 0.2789342 0.2699317 0.2609076
 0.2519107 0.2429841 0.2341660 0.2254892 0.2169815
 0.2086660 0.2005610 0.1926811 0.1850370 0.1776363
 0.1704835 0.1635808 0.1569285 0.1505248 0.1443667
 0.1384498 0.1327690 0.1273184 0.1220912 0.1170807
 0.1122797 0.1076808 0.1032764 9.9059276E-02 9.5021963E-02
 9.1157183E-02 8.7457821E-02 8.3916940E-02 8.0527760E-02 7.7283800E-02
 7.4178725E-02 7.1206465E-02 6.8361178E-02 6.5637238E-02 6.3029304E-02
 6.0532220E-02 5.8141060E-02 5.5851098E-02 5.3657841E-02 5.1557004E-02
 4.9544480E-02 4.7616348E-02 4.5768868E-02 4.3998454E-02 4.2301726E-02
 4.0675413E-02 3.9116420E-02 3.7621778E-02 3.6188655E-02 3.4814361E-02
 3.3496317E-02 3.2232057E-02 3.1019235E-02 2.9855609E-02 2.8739043E-02
 2.7667491E-02 2.6639000E-02 2.5651714E-02 2.4703840E-02 2.3793694E-02
 2.2919664E-02 2.2080183E-02 2.1273796E-02 2.0499071E-02 1.9754674E-02
 1.9039329E-02 1.8351790E-02 1.7690908E-02 1.7055545E-02 1.6444650E-02
 1.5857188E-02 1.5292195E-02 1.4748749E-02 1.4225940E-02 1.3722943E-02
 1.3238931E-02
 0.1458412 0.1350765 0.1243149 0.1136459 0.1031519
 9.2907004E-02 8.2977071E-02 7.3419102E-02 6.4280994E-02 5.5601303E-02
 4.7409333E-02 3.9725367E-02 3.2561172E-02 2.5920598E-02 1.9800462E-02
 1.4191501E-02 9.0792933E-03 4.4453158E-03 2.6783190E-04 -3.4772076E-03
 -6.8153557E-03 -9.7730374E-03 -1.2376950E-02 -1.4653591E-02 -1.6628893E-02
 -1.8327927E-02 -1.9774709E-02 -2.0992029E-02 -2.2001363E-02 -2.2822725E-02
 -2.3475075E-02 -2.3975678E-02 -2.4340577E-02 -2.4584521E-02 -2.4721039E-02
 -2.4762498E-02 -2.4720168E-02 -2.4604294E-02 -2.4424173E-02 -2.4188222E-02
 -2.3904037E-02 -2.3578471E-02 -2.3217686E-02 -2.2827215E-02 -2.2412017E-02
 -2.1976519E-02 -2.1524681E-02 -2.1060014E-02 -2.0585645E-02 -2.0104341E-02
 -1.9618541E-02 -1.9130396E-02 -1.8641787E-02 -1.8154360E-02 -1.7669555E-02
 -1.7188605E-02 -1.6712580E-02 -1.6242394E-02 -1.5778819E-02 -1.5322513E-02
 -1.4874018E-02 -1.4433781E-02 -1.4002162E-02 -1.3579447E-02 -1.3165856E-02
 -1.2761554E-02 -1.2366645E-02 -1.1981197E-02 -1.1605230E-02 -1.1238748E-02
 -1.0881707E-02 -1.0534044E-02 -1.0195685E-02 -9.8665142E-03 -9.5464252E-03
 -9.2352871E-03 -8.9329537E-03 -8.6392788E-03 -8.3541032E-03 -8.0772638E-03
 -7.8085987E-03 -7.5479266E-03 -7.2950809E-03 -7.0498805E-03 -6.8121483E-03
 -6.5817120E-03 -6.3583888E-03 -6.1420053E-03 -5.9323865E-03 -5.7293558E-03
 -5.5327392E-03
 0.3936982 0.3896365 0.3847797 0.3791794 0.3728916
 0.3659752 0.3584919 0.3505057 0.3420818 0.3332866
 0.3241864 0.3148467 0.3053315 0.2957018 0.2860153
 0.2763256 0.2666814 0.2571265 0.2476992 0.2384328
 0.2293552 0.2204897 0.2118546 0.2034644 0.1953298
 0.1874578 0.1798528 0.1725166 0.1654489 0.1586474
 0.1521086 0.1458276 0.1397985 0.1340150 0.1284698
 0.1231556 0.1180646 0.1131889 0.1085206 0.1040518
 9.9774562E-02 9.5681213E-02 9.1764189E-02 8.8016108E-02 8.4429853E-02
 8.0998458E-02 7.7715240E-02 7.4573725E-02 7.1567699E-02 6.8691209E-02
 6.5938525E-02 6.3304119E-02 6.0782731E-02 5.8369305E-02 5.6059040E-02
 5.3847305E-02 5.1729683E-02 4.9701951E-02 4.7760069E-02 4.5900200E-02
 4.4118654E-02 4.2411920E-02 4.0776648E-02 3.9209623E-02 3.7707809E-02
 3.6268286E-02 3.4888279E-02 3.3565126E-02 3.2296296E-02 3.1079393E-02
 2.9912116E-02 2.8792262E-02 2.7717754E-02 2.6686585E-02 2.5696864E-02
 2.4746794E-02 2.3834627E-02 2.2958739E-02 2.2117538E-02 2.1309549E-02
 2.0533344E-02 1.9787550E-02 1.9070895E-02 1.8382112E-02 1.7720051E-02
 1.7083567E-02 1.6471593E-02 1.5883116E-02 1.5317141E-02 1.4772750E-02
 1.4249036E-02
 0.1625625 0.1511513 0.1397009 0.1283039 0.1170463
 0.1060070 9.5257603E-02 8.4861726E-02 7.4874707E-02 6.5343097E-02
 5.6304350E-02 4.7786836E-02 3.9809905E-02 3.2384280E-02 2.5512703E-02
 1.9190719E-02 1.3407561E-02 8.1472164E-03 3.3893441E-03 -8.8966871E-04
 -4.7158008E-03 -8.1166103E-03 -1.1120488E-02 -1.3756028E-02 -1.6051583E-02
 -1.8034810E-02 -1.9732406E-02 -2.1169869E-02 -2.2371149E-02 -2.3359347E-02
 -2.4155460E-02 -2.4779191E-02 -2.5248751E-02 -2.5580913E-02 -2.5791047E-02
 -2.5893213E-02 -2.5900215E-02 -2.5823683E-02 -2.5674159E-02 -2.5461169E-02
 -2.5193296E-02 -2.4878277E-02 -2.4523040E-02 -2.4133796E-02 -2.3716107E-02
 -2.3274908E-02 -2.2814615E-02 -2.2339128E-02 -2.1851908E-02 -2.1356018E-02
 -2.0854147E-02 -2.0348661E-02 -1.9841630E-02 -1.9334856E-02 -1.8829925E-02
 -1.8328188E-02 -1.7830821E-02 -1.7338837E-02 -1.6853083E-02 -1.6374303E-02
 -1.5903099E-02 -1.5439985E-02 -1.4985376E-02 -1.4539612E-02 -1.4102962E-02
 -1.3675632E-02 -1.3257775E-02 -1.2849494E-02 -1.2450852E-02 -1.2061882E-02
 -1.1682572E-02 -1.1312889E-02 -1.0952785E-02 -1.0602175E-02 -1.0260963E-02
 -9.9290488E-03 -9.6062999E-03 -9.2925839E-03 -8.9877583E-03 -8.6916648E-03
 -8.4041562E-03 -8.1250593E-03 -7.8542056E-03 -7.5914273E-03 -7.3365453E-03
 -7.0893862E-03 -6.8497704E-03 -6.6175214E-03 -6.3924608E-03 -6.1744088E-03
 -5.9631928E-03
 0.4254284 0.4212556 0.4162648 0.4105069 0.4040357
 0.3969068 0.3891783 0.3809097 0.3721621 0.3629981
 0.3534811 0.3436749 0.3336431 0.3234478 0.3131491
 0.3028041 0.2924662 0.2821847 0.2720037 0.2619625
 0.2520953 0.2424310 0.2329937 0.2238028 0.2148733
 0.2062166 0.1978401 0.1897485 0.1819439 0.1744258
 0.1671921 0.1602390 0.1535612 0.1471530 0.1410072
 0.1351164 0.1294727 0.1240680 0.1188938 0.1139417
 0.1092032 0.1046701 0.1003340 9.6186787E-02 9.2220679E-02
 8.8427931E-02 8.4801093E-02 8.1332929E-02 7.8016467E-02 7.4845009E-02
 7.1812078E-02 6.8911470E-02 6.6137202E-02 6.3483551E-02 6.0945053E-02
 5.8516461E-02 5.6192752E-02 5.3969141E-02 5.1841021E-02 4.9804043E-02
 4.7854029E-02 4.5986984E-02 4.4199124E-02 4.2486813E-02 4.0846616E-02
 3.9275240E-02 3.7769560E-02 3.6326583E-02 3.4943476E-02 3.3617541E-02
 3.2346196E-02 3.1126991E-02 2.9957611E-02 2.8835811E-02 2.7759485E-02
 2.6726639E-02 2.5735334E-02 2.4783766E-02 2.3870176E-02 2.2992922E-02
 2.2150440E-02 2.1341205E-02 2.0563809E-02 1.9816872E-02 1.9099105E-02
 1.8409260E-02 1.7746165E-02 1.7108694E-02 1.6495761E-02 1.5906360E-02
 1.5339494E-02
 0.1818621 0.1698501 0.1577562 0.1456739 0.1336906
 0.1218873 0.1103387 9.9112555E-02 8.8269792E-02 7.7863432E-02
 6.7938454E-02 5.8531296E-02 4.9669705E-02 4.1372638E-02 3.3650670E-02
 2.6506439E-02 1.9935280E-02 1.3926153E-02 8.4624998E-03 3.5232622E-03
 -9.1606966E-04 -4.8826262E-03 -8.4052514E-03 -1.1513719E-02 -1.4238126E-02
 -1.6608316E-02 -1.8653460E-02 -2.0401398E-02 -2.1879686E-02 -2.3113439E-02
 -2.4126556E-02 -2.4941349E-02 -2.5578508E-02 -2.6057122E-02 -2.6394725E-02
 -2.6607357E-02 -2.6709635E-02 -2.6714833E-02 -2.6634980E-02 -2.6480936E-02
 -2.6262473E-02 -2.5988378E-02 -2.5666531E-02 -2.5303967E-02 -2.4906993E-02
 -2.4481194E-02 -2.4031555E-02 -2.3562497E-02 -2.3077924E-02 -2.2581305E-02
 -2.2075688E-02 -2.1563761E-02 -2.1047886E-02 -2.0530125E-02 -2.0012297E-02
 -1.9495975E-02 -1.8982533E-02 -1.8473161E-02 -1.7968886E-02 -1.7470591E-02
 -1.6979033E-02 -1.6494852E-02 -1.6018588E-02 -1.5550693E-02 -1.5091541E-02
 -1.4641437E-02 -1.4200613E-02 -1.3769261E-02 -1.3347511E-02 -1.2935462E-02
 -1.2533172E-02 -1.2140656E-02 -1.1757911E-02 -1.1384896E-02 -1.1021560E-02
 -1.0667827E-02 -1.0323595E-02 -9.9887634E-03 -9.6632019E-03 -9.3467748E-03
 -9.0393452E-03 -8.7407520E-03 -8.4508425E-03 -8.1694433E-03 -7.8963889E-03
 -7.6315054E-03 -7.3746121E-03 -7.1255378E-03 -6.8840934E-03 -6.6501028E-03
 -6.4233826E-03
 0.4580383 0.4537479 0.4486248 0.4427208 0.4360888
 0.4287826 0.4208565 0.4123652 0.4033645 0.3939115
 0.3840641 0.3738816 0.3634239 0.3527507 0.3419214
 0.3309940 0.3200242 0.3090649 0.2981650 0.2873698
 0.2767194 0.2662495 0.2559907 0.2459687 0.2362047
 0.2267154 0.2175131 0.2086071 0.2000030 0.1917034
 0.1837088 0.1760173 0.1686253 0.1615279 0.1547189
 0.1481911 0.1419369 0.1359478 0.1302152 0.1247302
 0.1194838 0.1144668 0.1096702 0.1050852 0.1007029
 9.6514747E-02 9.2512362E-02 8.8687614E-02 8.5032597E-02 8.1539735E-02
 7.8201689E-02 7.5011395E-02 7.1962059E-02 6.9047160E-02 6.6260524E-02
 6.3596159E-02 6.1048362E-02 5.8611713E-02 5.6281000E-02 5.4051302E-02
 5.1917884E-02 4.9876262E-02 4.7922153E-02 4.6051480E-02 4.4260383E-02
 4.2545173E-02 4.0902343E-02 3.9328564E-02 3.7820656E-02 3.6375627E-02
 3.4990594E-02 3.3662837E-02 3.2389779E-02 3.1168932E-02 2.9997971E-02
 2.8874675E-02 2.7796898E-02 2.6762651E-02 2.5769996E-02 2.4817107E-02
 2.3902265E-02 2.3023790E-02 2.2180125E-02 2.1369746E-02 2.0591244E-02
 1.9843237E-02 1.9124437E-02 1.8433606E-02 1.7769555E-02 1.7131163E-02
 1.6517345E-02
 0.2036197 0.1910623 0.1783874 0.1656876 0.1530489
 0.1405514 0.1282692 0.1162708 0.1046189 9.3369886E-02
 8.2573414E-02 7.2272114E-02 6.2500969E-02 5.3287003E-02 4.4649303E-02
 3.6599085E-02 2.9139912E-02 2.2268327E-02 1.5974348E-02 1.0242447E-02
 5.0523505E-03 3.7995202E-04 -3.8017405E-03 -7.5217332E-03 -1.0810290E-02
 -1.3698193E-02 -1.6215673E-02 -1.8393984E-02 -2.0261791E-02 -2.1847108E-02
 -2.3176493E-02 -2.4274921E-02 -2.5165716E-02 -2.5870493E-02 -2.6409198E-02
 -2.6800130E-02 -2.7060006E-02 -2.7204040E-02 -2.7246034E-02 -2.7198464E-02
 -2.7072575E-02 -2.6878489E-02 -2.6625289E-02 -2.6321108E-02 -2.5973223E-02
 -2.5588127E-02 -2.5171611E-02 -2.4728833E-02 -2.4264367E-02 -2.3782289E-02
 -2.3286212E-02 -2.2779327E-02 -2.2264462E-02 -2.1744115E-02 -2.1220498E-02
 -2.0695543E-02 -2.0170962E-02 -1.9648245E-02 -1.9128701E-02 -1.8613469E-02
 -1.8103542E-02 -1.7599771E-02 -1.7102895E-02 -1.6613541E-02 -1.6132247E-02
 -1.5659457E-02 -1.5195544E-02 -1.4740809E-02 -1.4295490E-02 -1.3859784E-02
 -1.3433826E-02 -1.3017709E-02 -1.2611495E-02 -1.2215201E-02 -1.1828819E-02
 -1.1452321E-02 -1.1085645E-02 -1.0728715E-02 -1.0381429E-02 -1.0043677E-02
 -9.7153326E-03 -9.3962550E-03 -9.0863006E-03 -8.7853055E-03 -8.4931124E-03
 -8.2095405E-03 -7.9344269E-03 -7.6675885E-03 -7.4088397E-03 -7.1580010E-03
 -6.9148871E-03
 0.4913002 0.4868522 0.4815606 0.4754805 0.4686667
 0.4611728 0.4530513 0.4443535 0.4351310 0.4254351
 0.4153180 0.4048327 0.3940332 0.3829741 0.3717104
 0.3602971 0.3487888 0.3372385 0.3256974 0.3142140
 0.3028335 0.2915972 0.2805422 0.2697006 0.2591015
 0.2487679 0.2387187 0.2289687 0.2195288 0.2104064
 0.2016055 0.1931278 0.1849720 0.1771353 0.1696129
 0.1623987 0.1554855 0.1488650 0.1425287 0.1364672
 0.1306709 0.1251301 0.1198349 0.1147755 0.1099423
 0.1053256 0.1009160 9.6704431E-02 9.2681982E-02 8.8840105E-02
 8.5170507E-02 8.1665203E-02 7.8316547E-02 7.5117178E-02 7.2060093E-02
 6.9138587E-02 6.6346221E-02 6.3676886E-02 6.1124749E-02 5.8684275E-02
 5.6350168E-02 5.4117396E-02 5.1981192E-02 4.9936991E-02 4.7980495E-02
 4.6107594E-02 4.4314384E-02 4.2597160E-02 4.0952399E-02 3.9376762E-02
 3.7867077E-02 3.6420308E-02 3.5033610E-02 3.3704225E-02 3.2429583E-02
 3.1207219E-02 3.0034781E-02 2.8910048E-02 2.7830889E-02 2.6795292E-02
 2.5801353E-02 2.4847217E-02 2.3931172E-02 2.3051538E-02 2.2206753E-02
 2.1395307E-02 2.0615768E-02 1.9866779E-02 1.9147031E-02 1.8455287E-02
 1.7790362E-02
 0.2274981 0.2144437 0.2012518 0.1880126 0.1748085
 0.1617152 0.1488026 0.1361355 0.1237739 0.1117730
 0.1001830 8.9048527E-02 7.8408435E-02 6.8295293E-02 5.8735162E-02
 4.9747344E-02 4.1344177E-02 3.3531319E-02 2.6307749E-02 1.9666333E-02
 1.3594343E-02 8.0741169E-03 3.0838826E-03 -1.4005688E-03 -5.4086642E-03
 -8.9686727E-03 -1.2110826E-02 -1.4865668E-02 -1.7263478E-02 -1.9333890E-02
 -2.1105465E-02 -2.2605455E-02 -2.3859624E-02 -2.4892103E-02 -2.5725357E-02
 -2.6380170E-02 -2.6875649E-02 -2.7229298E-02 -2.7457077E-02 -2.7573494E-02
 -2.7591703E-02 -2.7523581E-02 -2.7379856E-02 -2.7170172E-02 -2.6903210E-02
 -2.6586749E-02 -2.6227769E-02 -2.5832508E-02 -2.5406558E-02 -2.4954911E-02
 -2.4482016E-02 -2.3991842E-02 -2.3487924E-02 -2.2973400E-02 -2.2451071E-02
 -2.1923410E-02 -2.1392606E-02 -2.0860599E-02 -2.0329097E-02 -1.9799598E-02
 -1.9273419E-02 -1.8751713E-02 -1.8235477E-02 -1.7725574E-02 -1.7222755E-02
 -1.6727656E-02 -1.6240815E-02 -1.5762683E-02 -1.5293634E-02 -1.4833977E-02
 -1.4383952E-02 -1.3943741E-02 -1.3513486E-02 -1.3093270E-02 -1.2683152E-02
 -1.2283153E-02 -1.1893246E-02 -1.1513406E-02 -1.1143552E-02 -1.0783608E-02
 -1.0433469E-02 -1.0093011E-02 -9.7621055E-03 -9.4406018E-03 -9.1283461E-03
 -8.8251717E-03 -8.5309120E-03 -8.2453918E-03 -7.9684230E-03 -7.6998300E-03
 -7.4394192E-03
 0.5251544 0.5204862 0.5149583 0.5086314 0.5015649
 0.4938159 0.4854382 0.4764836 0.4670019 0.4570422
 0.4466527 0.4358817 0.4247775 0.4133885 0.4017638
 0.3899525 0.3780034 0.3659673 0.3538924 0.3418268
 0.3298168 0.3179067 0.3061377 0.2945478 0.2831713
 0.2720382 0.2611743 0.2506010 0.2403355 0.2303910
 0.2207768 0.2114987 0.2025595 0.1939594 0.1856959
 0.1777647 0.1701600 0.1628742 0.1558991 0.1492255
 0.1428437 0.1367433 0.1309140 0.1253452 0.1200265
 0.1149473 0.1100974 0.1054667 0.1010453 9.6823819E-02
 9.2793018E-02 8.8944018E-02 8.5268304E-02 8.1757717E-02 7.8404441E-02
 7.5201005E-02 7.2140276E-02 6.9215439E-02 6.6420011E-02 6.3747823E-02
 6.1193012E-02 5.8749989E-02 5.6413442E-02 5.4178309E-02 5.2039828E-02
 4.9993437E-02 4.8034802E-02 4.6159822E-02 4.4364586E-02 4.2645399E-02
 4.0998742E-02 3.9421257E-02 3.7909795E-02 3.6461297E-02 3.5072912E-02
 3.3741940E-02 3.2465745E-02 3.1241892E-02 3.0068021E-02 2.8941901E-02
 2.7861437E-02 2.6824571E-02 2.5829423E-02 2.4874125E-02 2.3956966E-02
 2.3076266E-02 2.2230458E-02 2.1418042E-02 2.0637568E-02 1.9887691E-02
 1.9167084E-02
 0.2529065 0.2393821 0.2257234 0.2120172 0.1983395
 0.1847586 0.1713362 0.1581298 0.1451925 0.1325739
 0.1203199 0.1084725 9.7069763E-02 8.6145230E-02 7.5728051E-02
 6.5842591E-02 5.6509446E-02 4.7739726E-02 3.9543062E-02 3.1922270E-02
 2.4874635E-02 1.8392168E-02 1.2461997E-02 7.0669572E-03 2.1860860E-03
 -2.2045593E-03 -6.1313058E-03 -9.6220728E-03 -1.2705689E-02 -1.5411389E-02
 -1.7768191E-02 -1.9804521E-02 -2.1547854E-02 -2.3024440E-02 -2.4259141E-02
 -2.5275316E-02 -2.6094735E-02 -2.6737589E-02 -2.7222488E-02 -2.7566528E-02
 -2.7785338E-02 -2.7893167E-02 -2.7902966E-02 -2.7826468E-02 -2.7674297E-02
 -2.7456041E-02 -2.7180346E-02 -2.6854981E-02 -2.6486941E-02 -2.6082499E-02
 -2.5647273E-02 -2.5186298E-02 -2.4704067E-02 -2.4204599E-02 -2.3691472E-02
 -2.3167871E-02 -2.2636626E-02 -2.2100246E-02 -2.1560950E-02 -2.1020705E-02
 -2.0481236E-02 -1.9944061E-02 -1.9410502E-02 -1.8881716E-02 -1.8358713E-02
 -1.7842356E-02 -1.7333383E-02 -1.6832430E-02 -1.6340027E-02 -1.5856624E-02
 -1.5382579E-02 -1.4918189E-02 -1.4463685E-02 -1.4019238E-02 -1.3584972E-02
 -1.3160977E-02 -1.2747281E-02 -1.2343898E-02 -1.1950798E-02 -1.1567931E-02
 -1.1195228E-02 -1.0832583E-02 -1.0479892E-02 -1.0137018E-02 -9.8038269E-03
 -9.4801579E-03 -9.1658551E-03 -8.8607436E-03 -8.5646482E-03 -8.2773892E-03
 -7.9987738E-03
 0.5599129 0.5549574 0.5491046 0.5424244 0.5349860
 0.5268546 0.5180907 0.5087509 0.4988885 0.4885549
 0.4777992 0.4666694 0.4552115 0.4434705 0.4314902
 0.4193141 0.4069850 0.3945460 0.3820398 0.3695092
 0.3569970 0.3445450 0.3321940 0.3199831 0.3079490
 0.2961259 0.2845442 0.2732309 0.2622093 0.2514982
 0.2411128 0.2310642 0.2213601 0.2120047 0.2029995
 0.1943429 0.1860316 0.1780600 0.1704212 0.1631069
 0.1561080 0.1494145 0.1430160 0.1369017 0.1310608
 0.1254823 0.1201553 0.1150690 0.1102129 0.1055767
 0.1011505 9.6924670E-02 9.2889830E-02 8.9037038E-02 8.5357778E-02
 8.1843808E-02 7.8487277E-02 7.5280704E-02 7.2216898E-02 6.9289088E-02
 6.6490777E-02 6.3815773E-02 6.1258223E-02 5.8812521E-02 5.6473382E-02
 5.4235768E-02 5.2094862E-02 5.0046135E-02 4.8085239E-02 4.6208091E-02
 4.4410784E-02 4.2689595E-02 4.1041031E-02 3.9461717E-02 3.7948482E-02
 3.6498327E-02 3.5108350E-02 3.3775844E-02 3.2498192E-02 3.1272937E-02
 3.0097751E-02 2.8970364E-02 2.7888689E-02 2.6850674E-02 2.5854422E-02
 2.4898073E-02 2.3979902E-02 2.3098255E-02 2.2251533E-02 2.1438245E-02
 2.0656940E-02
 0.2790664 0.2650785 0.2509859 0.2368689 0.2227944
 0.2088197 0.1949960 0.1813703 0.1679869 0.1548874
 0.1421104 0.1296922 0.1176658 0.1060617 9.4907641E-02
 8.4228449E-02 7.4045978E-02 6.4379089E-02 5.5242933E-02 4.6648961E-02
 3.8604494E-02 3.1112360E-02 2.4170905E-02 1.7773921E-02 1.1910720E-02
 6.5665673E-03 1.7230343E-03 -2.6414029E-03 -6.5506427E-03 -1.0030527E-02
 -1.3108041E-02 -1.5810812E-02 -1.8166579E-02 -2.0202713E-02 -2.1945890E-02
 -2.3421796E-02 -2.4654886E-02 -2.5668260E-02 -2.6483556E-02 -2.7120935E-02
 -2.7599040E-02 -2.7935058E-02 -2.8144738E-02 -2.8242474E-02 -2.8241374E-02
 -2.8153332E-02 -2.7989132E-02 -2.7758505E-02 -2.7470237E-02 -2.7132232E-02
 -2.6751585E-02 -2.6334671E-02 -2.5887191E-02 -2.5414245E-02 -2.4920387E-02
 -2.4409680E-02 -2.3885729E-02 -2.3351748E-02 -2.2810571E-02 -2.2264728E-02
 -2.1716433E-02 -2.1167647E-02 -2.0620087E-02 -2.0075252E-02 -1.9534459E-02
 -1.8998852E-02 -1.8469410E-02 -1.7946985E-02 -1.7432289E-02 -1.6925951E-02
 -1.6428476E-02 -1.5940290E-02 -1.5461746E-02 -1.4993108E-02 -1.4534602E-02
 -1.4086387E-02 -1.3648563E-02 -1.3221208E-02 -1.2804343E-02 -1.2397962E-02
 -1.2002035E-02 -1.1616495E-02 -1.1241264E-02 -1.0876226E-02 -1.0521269E-02
 -1.0176256E-02 -9.8410333E-03 -9.5154466E-03 -9.1993231E-03 -8.8924887E-03
 -8.5947597E-03
 0.5964164 0.5910995 0.5848086 0.5776326 0.5696583
 0.5609663 0.5516293 0.5417134 0.5312802 0.5203880
 0.5090924 0.4974459 0.4854978 0.4732940 0.4608774
 0.4482881 0.4355640 0.4227414 0.4098555 0.3969411
 0.3840326 0.3711646 0.3583713 0.3456869 0.3331450
 0.3207782 0.3086175 0.2966918 0.2850275 0.2736478
 0.2625728 0.2518190 0.2413992 0.2313230 0.2215966
 0.2122232 0.2032032 0.1945345 0.1862130 0.1782328
 0.1705866 0.1632658 0.1562609 0.1495619 0.1431583
 0.1370391 0.1311935 0.1256103 0.1202787 0.1151878
 0.1103273 0.1056867 0.1012562 9.7025990E-02 9.2986919E-02
 8.9130007E-02 8.5446708E-02 8.1928805E-02 7.8568451E-02 7.5358182E-02
 7.2290830E-02 6.9359601E-02 6.6558011E-02 6.3879855E-02 6.1319295E-02
 5.8870748E-02 5.6528889E-02 5.4288674E-02 5.2145295E-02 5.0094221E-02
 4.8131112E-02 4.6251852E-02 4.4452544E-02 4.2729452E-02 4.1079070E-02
 3.9498057E-02 3.7983198E-02 3.6531497E-02 3.5140045E-02 3.3806134E-02
 3.2527175E-02 3.1300656E-02 3.0124269E-02 2.8995745E-02 2.7912978E-02
 2.6873924E-02 2.5876673E-02 2.4919396E-02 2.4000326E-02 2.3117824E-02
 2.2270281E-02
 0.3053047 0.2908563 0.2763483 0.2618528 0.2474256
 0.2331105 0.2189462 0.2049688 0.1912140 0.1777166
 0.1645093 0.1516221 0.1390830 0.1269173 0.1151489
 0.1037998 9.2890635E-02 8.2440764E-02 7.2467938E-02 6.2988281E-02
 5.4015823E-02 4.5561943E-02 3.7634857E-02 3.0239033E-02 2.3374887E-02
 1.7038649E-02 1.1222275E-02 5.9136432E-03 1.0968924E-03 -3.2472177E-03
 -7.1406509E-03 -1.0607566E-02 -1.3673646E-02 -1.6365498E-02 -1.8710142E-02
 -2.0734476E-02 -2.2464897E-02 -2.3926958E-02 -2.5145102E-02 -2.6142519E-02
 -2.6940996E-02 -2.7560858E-02 -2.8020941E-02 -2.8338630E-02 -2.8529854E-02
 -2.8609183E-02 -2.8589875E-02 -2.8483963E-02 -2.8302338E-02 -2.8054826E-02
 -2.7750280E-02 -2.7396651E-02 -2.7001079E-02 -2.6569951E-02 -2.6108978E-02
 -2.5623262E-02 -2.5117345E-02 -2.4595264E-02 -2.4060607E-02 -2.3516560E-02
 -2.2965934E-02 -2.2411214E-02 -2.1854596E-02 -2.1297997E-02 -2.0743106E-02
 -2.0191398E-02 -1.9644156E-02 -1.9102490E-02 -1.8567355E-02 -1.8039582E-02
 -1.7519865E-02 -1.7008794E-02 -1.6506871E-02 -1.6014490E-02 -1.5531990E-02
 -1.5059631E-02 -1.4597609E-02 -1.4146074E-02 -1.3705118E-02 -1.3274797E-02
 -1.2855135E-02 -1.2446108E-02 -1.2047677E-02 -1.1659767E-02 -1.1282290E-02
 -1.0915132E-02 -1.0558165E-02 -1.0211248E-02 -9.8742219E-03 -9.5469253E-03
 -9.2291813E-03
 0.6358341 0.6300436 0.6231607 0.6153066 0.6065997
 0.5971458 0.5870346 0.5763423 0.5651391 0.5534918
 0.5414646 0.5291185 0.5165095 0.5036885 0.4907010
 0.4775875 0.4643836 0.4511215 0.4378297 0.4245345
 0.4112613 0.3980345 0.3848783 0.3718176 0.3588778
 0.3460847 0.3334645 0.3210432 0.3088464 0.2968981
 0.2852208 0.2738348 0.2627577 0.2520041 0.2415857
 0.2315111 0.2217860 0.2124130 0.2033925 0.1947224
 0.1863984 0.1784149 0.1707644 0.1634387 0.1564285
 0.1497237 0.1433139 0.1371884 0.1313363 0.1257467
 0.1204087 0.1153116 0.1104449 0.1057983 0.1013620
 9.7126335E-02 9.3081996E-02 8.9220084E-02 8.5532002E-02 8.2009606E-02
 7.8645013E-02 7.5430728E-02 7.2359599E-02 6.9424801E-02 6.6619858E-02
 6.3938573E-02 6.1375063E-02 5.8923721E-02 5.6579225E-02 5.4336540E-02
 5.2190855E-02 5.0137583E-02 4.8172418E-02 4.6291202E-02 4.4490036E-02
 4.2765222E-02 4.1113190E-02 3.9530616E-02 3.8014282E-02 3.6561169E-02
 3.5168406E-02 3.3833232E-02 3.2553073E-02 3.1325422E-02 3.0147949E-02
 2.9018393E-02 2.7934643E-02 2.6894666E-02 2.5896527E-02 2.4938401E-02
 2.4018528E-02
 0.3314773 0.3165547 0.3016135 0.2867249 0.2719339
 0.2572696 0.2427548 0.2284158 0.2142824 0.2003867
 0.1867592 0.1734282 0.1604184 0.1477520 0.1354490
 0.1235280 0.1120062 0.1009002 9.0226673E-02 8.0000974E-02
 7.0238516E-02 6.0953777E-02 5.2159760E-02 4.3867506E-02 3.6085375E-02
 2.8818607E-02 2.2068731E-02 1.5833328E-02 1.0105875E-02 4.8757875E-03
 1.2868986E-04 -4.1532335E-03 -7.9907132E-03 -1.1406774E-02 -1.4426172E-02
 -1.7074797E-02 -1.9379051E-02 -2.1365404E-02 -2.3059901E-02 -2.4487866E-02
 -2.5673598E-02 -2.6640177E-02 -2.7409311E-02 -2.8001288E-02 -2.8434915E-02
 -2.8727539E-02 -2.8895076E-02 -2.8952060E-02 -2.8911719E-02 -2.8786045E-02
 -2.8585877E-02 -2.8321002E-02 -2.8000208E-02 -2.7631395E-02 -2.7221642E-02
 -2.6777279E-02 -2.6303953E-02 -2.5806706E-02 -2.5290027E-02 -2.4757897E-02
 -2.4213858E-02 -2.3661040E-02 -2.3102207E-02 -2.2539811E-02 -2.1975998E-02
 -2.1412658E-02 -2.0851444E-02 -2.0293798E-02 -1.9740969E-02 -1.9194057E-02
 -1.8653989E-02 -1.8121563E-02 -1.7597467E-02 -1.7082265E-02 -1.6576439E-02
 -1.6080387E-02 -1.5594412E-02 -1.5118775E-02 -1.4653651E-02 -1.4199181E-02
 -1.3755456E-02 -1.3322514E-02 -1.2900374E-02 -1.2488998E-02 -1.2088345E-02
 -1.1698332E-02 -1.1318859E-02 -1.0949817E-02 -1.0591060E-02 -1.0242451E-02
 -9.9038165E-03
 0.6791101 0.6727020 0.6650440 0.6563082 0.6466680
 0.6362708 0.6252261 0.6136136 0.6015016 0.5889609
 0.5760619 0.5628744 0.5494624 0.5358830 0.5221859
 0.5084143 0.4946048 0.4807878 0.4669887 0.4532284
 0.4395251 0.4258951 0.4123524 0.3989125 0.3855908
 0.3724040 0.3593703 0.3465088 0.3338403 0.3213856
 0.3091663 0.2972033 0.2855162 0.2741234 0.2630409
 0.2522823 0.2418586 0.2317781 0.2220461 0.2126655
 0.2036364 0.1949569 0.1866232 0.1786294 0.1709686
 0.1636325 0.1566119 0.1498969 0.1434772 0.1373422
 0.1314811 0.1258828 0.1205366 0.1154317 0.1105578
 0.1059045 0.1014619 9.7220264E-02 9.3170397E-02 8.9303352E-02
 8.5610524E-02 8.2083672E-02 7.8714944E-02 7.5496793E-02 7.2422065E-02
 6.9483928E-02 6.6675857E-02 6.3991643E-02 6.1425377E-02 5.8971472E-02
 5.6624584E-02 5.4379638E-02 5.2231830E-02 5.0176557E-02 4.8209492E-02
 4.6326522E-02 4.4523682E-02 4.2797286E-02 4.1143764E-02 3.9559763E-02
 3.8042102E-02 3.6587723E-02 3.5193760E-02 3.3857450E-02 3.2576207E-02
 3.1347528E-02 3.0169073E-02 2.9038601E-02 2.7953967E-02 2.6913157E-02
 2.5914222E-02
 0.3580077 0.3425092 0.3270268 0.3116503 0.2964223
 0.2813506 0.2664319 0.2516759 0.2371084 0.2227651
 0.2086811 0.1948869 0.1814074 0.1682631 0.1554715
 0.1430476 0.1310045 0.1193545 0.1081093 9.7280547E-02
 8.6880185E-02 7.6920383E-02 6.7413770E-02 5.8372170E-02 4.9806815E-02
 4.1727565E-02 3.4142114E-02 2.7055459E-02 2.0469399E-02 1.4382050E-02
 8.7877521E-03 3.6769821E-03 -9.6351909E-04 -5.1502744E-03 -8.9028124E-03
 -1.2242998E-02 -1.5194501E-02 -1.7782222E-02 -2.0031674E-02 -2.1968564E-02
 -2.3618300E-02 -2.5005631E-02 -2.6154377E-02 -2.7087200E-02 -2.7825467E-02
 -2.8389154E-02 -2.8796818E-02 -2.9065572E-02 -2.9211132E-02 -2.9247852E-02
 -2.9188804E-02 -2.9045839E-02 -2.8829671E-02 -2.8549958E-02 -2.8215403E-02
 -2.7833801E-02 -2.7412146E-02 -2.6956696E-02 -2.6473025E-02 -2.5966125E-02
 -2.5440415E-02 -2.4899833E-02 -2.4347873E-02 -2.3787623E-02 -2.3221817E-02
 -2.2652868E-02 -2.2082897E-02 -2.1513756E-02 -2.0947080E-02 -2.0384291E-02
 -1.9826623E-02 -1.9275136E-02 -1.8730758E-02 -1.8194258E-02 -1.7666316E-02
 -1.7147489E-02 -1.6638232E-02 -1.6138939E-02 -1.5649898E-02 -1.5171357E-02
 -1.4703500E-02 -1.4246433E-02 -1.3800258E-02 -1.3364993E-02 -1.2940650E-02
 -1.2527191E-02 -1.2124564E-02 -1.1732685E-02 -1.1351443E-02 -1.0980722E-02
 -1.0620377E-02
 0.7223861 0.7153603 0.7069272 0.7011976 0.6904128
 0.6789140 0.6668375 0.6542445 0.6411697 0.6276675
 0.6138110 0.5996811 0.5853513 0.5708867 0.5563428
 0.5417669 0.5271996 0.5126734 0.4982138 0.4838407
 0.4695690 0.4554099 0.4413722 0.4274631 0.4136898
 0.4000603 0.3865837 0.3732712 0.3601350 0.3471907
 0.3344548 0.3219454 0.3096808 0.2976798 0.2859603
 0.2745390 0.2634310 0.2526489 0.2422035 0.2321025
 0.2223510 0.2129516 0.2039047 0.1952082 0.1868582
 0.1788491 0.1711738 0.1638239 0.1567905 0.1500635
 0.1436327 0.1374874 0.1316165 0.1260093 0.1206549
 0.1155424 0.1106614 0.1060016 0.1015529 9.7305797E-02
 9.3250811E-02 8.9378998E-02 8.5681759E-02 8.2150802E-02 7.8778267E-02
 7.5556599E-02 7.2478592E-02 6.9537379E-02 6.6726431E-02 6.4039536E-02
 6.1470784E-02 5.9014529E-02 5.6665458E-02 5.4418437E-02 5.2268676E-02
 5.0211608E-02 4.8242830E-02 4.6358243E-02 4.4553880E-02 4.2826034E-02
 4.1171167E-02 3.9585885E-02 3.8067020E-02 3.6611486E-02 3.5216443E-02
 3.3879101E-02 3.2596871E-02 3.1367280E-02 3.0187946E-02 2.9056644E-02
 2.7971217E-02
 0.3845381 0.3684637 0.3524402 0.3367452 0.3209798
 0.3054720 0.2901472 0.2749650 0.2599421 0.2451291
 0.2305764 0.2163220 0.2023911 0.1888017 0.1755683
 0.1627024 0.1502126 0.1381063 0.1263896 0.1150683
 0.1041492 9.3639642E-02 8.3547965E-02 7.3883645E-02 6.4656831E-02
 5.5877991E-02 4.7557171E-02 3.9704803E-02 3.2325912E-02 2.5426762E-02
 1.9009667E-02 1.3073563E-02 7.6138205E-03 2.6221669E-03 -1.9132907E-03
 -6.0077393E-03 -9.6792700E-03 -1.2948439E-02 -1.5837623E-02 -1.8370559E-02
 -2.0571766E-02 -2.2466013E-02 -2.4077894E-02 -2.5431486E-02 -2.6550004E-02
 -2.7455624E-02 -2.8169287E-02 -2.8710620E-02 -2.9097881E-02 -2.9347936E-02
 -2.9476287E-02 -2.9497124E-02 -2.9423364E-02 -2.9266732E-02 -2.9037837E-02
 -2.8746253E-02 -2.8400598E-02 -2.8008604E-02 -2.7577205E-02 -2.7112609E-02
 -2.6620349E-02 -2.6105365E-02 -2.5572050E-02 -2.5024306E-02 -2.4465600E-02
 -2.3898995E-02 -2.3327196E-02 -2.2752592E-02 -2.2177281E-02 -2.1603109E-02
 -2.1031685E-02 -2.0464404E-02 -1.9902496E-02 -1.9347003E-02 -1.8798834E-02
 -1.8258765E-02 -1.7727438E-02 -1.7205412E-02 -1.6693130E-02 -1.6190970E-02
 -1.5699228E-02 -1.5218126E-02 -1.4747839E-02 -1.4288479E-02 -1.3840126E-02
 -1.3402801E-02 -1.2976506E-02 -1.2561204E-02 -1.2156823E-02 -1.1763284E-02
 -1.1380470E-02
 0.7656621 0.7580186 0.7488104 0.7460870 0.7341576
 0.7254177 0.7121975 0.6986352 0.6846173 0.6701204
 0.6552232 0.6400353 0.6246563 0.6091622 0.5936159
 0.5780706 0.5625723 0.5471593 0.5318608 0.5166990
 0.5016891 0.4868411 0.4721605 0.4576505 0.4433120
 0.4291460 0.4151538 0.4013380 0.3877033 0.3742565
 0.3610073 0.3479663 0.3351491 0.3225705 0.3102469
 0.2981949 0.2864313 0.2749713 0.2638290 0.2530165
 0.2425435 0.2324173 0.2226429 0.2132225 0.2041562
 0.1954418 0.1870753 0.1790509 0.1713614 0.1639985
 0.1569530 0.1502149 0.1437738 0.1376189 0.1317393
 0.1261240 0.1207621 0.1156428 0.1107554 0.1060897
 0.1016356 9.7383365E-02 9.3323708E-02 8.9447550E-02 8.5746281E-02
 8.2211614E-02 7.8835614E-02 7.5610705E-02 7.2529674E-02 6.9585666E-02
 6.6772111E-02 6.4082764E-02 6.1511740E-02 5.9053339E-02 5.6702238E-02
 5.4453366E-02 5.2301839E-02 5.0243109E-02 4.8272770E-02 4.6386700E-02
 4.4580974E-02 4.2851821E-02 4.1195732E-02 3.9609287E-02 3.8089316E-02
 3.6632754E-02 3.5236716E-02 3.3898462E-02 3.2615349E-02 3.1384926E-02
 3.0204803E-02
 0.4110686 0.3944182 0.3778536 0.3618400 0.3455373
 0.3295104 0.3140065 0.2985611 0.2831554 0.2679009
 0.2529067 0.2382313 0.2238971 0.2099145 0.1962925
 0.1830397 0.1701613 0.1576603 0.1455383 0.1337958
 0.1224341 0.1114552 0.1008626 9.0661742E-02 8.0859587E-02
 7.1464613E-02 6.2486604E-02 5.3935856E-02 4.5822721E-02 3.8156774E-02
 3.0946249E-02 2.4199318E-02 1.7914951E-02 1.2095657E-02 6.7381351E-03
 1.8354838E-03 -2.6227112E-03 -6.6502700E-03 -1.0263893E-02 -1.3482886E-02
 -1.6328523E-02 -1.8823499E-02 -2.0991415E-02 -2.2856295E-02 -2.4442064E-02
 -2.5772264E-02 -2.6869660E-02 -2.7756065E-02 -2.8452128E-02 -2.8977234E-02
 -2.9349448E-02 -2.9585494E-02 -2.9700752E-02 -2.9709313E-02 -2.9624017E-02
 -2.9456522E-02 -2.9217388E-02 -2.8916145E-02 -2.8561359E-02 -2.8160745E-02
 -2.7721206E-02 -2.7248906E-02 -2.6749369E-02 -2.6227502E-02 -2.5687683E-02
 -2.5133790E-02 -2.4569275E-02 -2.3997173E-02 -2.3420176E-02 -2.2840660E-02
 -2.2260707E-02 -2.1682139E-02 -2.1106562E-02 -2.0535352E-02 -1.9969724E-02
 -1.9410720E-02 -1.8859224E-02 -1.8316008E-02 -1.7781703E-02 -1.7256852E-02
 -1.6741907E-02 -1.6237220E-02 -1.5743084E-02 -1.5259712E-02 -1.4787280E-02
 -1.4325886E-02 -1.3875599E-02 -1.3436453E-02 -1.3008427E-02 -1.2591484E-02
 -1.2185549E-02
 0.8089381 0.8006769 0.7906936 0.7909764 0.7779024
 0.7719213 0.7609588 0.7466615 0.7319689 0.7165288
 0.7004755 0.6840537 0.6674464 0.6507525 0.6340314
 0.6173390 0.6007278 0.5842432 0.5679222 0.5517909
 0.5358673 0.5201630 0.5046833 0.4894290 0.4743980
 0.4595861 0.4449882 0.4305997 0.4164173 0.4024394
 0.3886668 0.3751034 0.3617553 0.3486319 0.3357427
 0.3231045 0.3107304 0.2986353 0.2868344 0.2753421
 0.2641714 0.2533336 0.2428379 0.2326911 0.2228978
 0.2134601 0.2043778 0.1956485 0.1872681 0.1792307
 0.1715292 0.1641551 0.1570992 0.1503513 0.1439012
 0.1377379 0.1318505 0.1262280 0.1208593 0.1157338
 0.1108406 0.1061696 0.1017105 9.7453706E-02 9.3389779E-02
 8.9509688E-02 8.5804753E-02 8.2266666E-02 7.8887463E-02 7.5659610E-02
 7.2575845E-02 6.9629259E-02 6.6813327E-02 6.4121746E-02 6.1548602E-02
 5.9088286E-02 5.6735355E-02 5.4484770E-02 5.2331641E-02 5.0271381E-02
 4.8299648E-02 4.6412244E-02 4.4605270E-02 4.2874936E-02 4.1217733E-02
 3.9630242E-02 3.8109269E-02 3.6651786E-02 3.5254858E-02 3.3915769E-02
 3.2631867E-02
 0.4375990 0.4203728 0.4032670 0.3869348 0.3700948
 0.3535489 0.3378588 0.3228132 0.3071828 0.2914440
 0.2759696 0.2608927 0.2462073 0.2318861 0.2179230
 0.2043245 0.1910972 0.1782425 0.1657576 0.1536387
 0.1418825 0.1304862 0.1194487 0.1087707 9.8455682E-02
 8.8508740E-02 7.8937545E-02 6.9751486E-02 6.0961388E-02 5.2578688E-02
 4.4615030E-02 3.7081342E-02 2.9987169E-02 2.3339964E-02 1.7146502E-02
 1.1404073E-02 6.1129783E-03 1.2675798E-03 -3.1412882E-03 -7.1263192E-03
 -1.0703229E-02 -1.3890354E-02 -1.6708145E-02 -1.9178601E-02 -2.1324726E-02
 -2.3170020E-02 -2.4738051E-02 -2.6052009E-02 -2.7134420E-02 -2.8006878E-02
 -2.8689884E-02 -2.9202718E-02 -2.9563347E-02 -2.9788425E-02 -2.9893283E-02
 -2.9891968E-02 -2.9797282E-02 -2.9620867E-02 -2.9373253E-02 -2.9063947E-02
 -2.8701507E-02 -2.8293621E-02 -2.7847169E-02 -2.7368316E-02 -2.6862556E-02
 -2.6334792E-02 -2.5789382E-02 -2.5230186E-02 -2.4660638E-02 -2.4083773E-02
 -2.3502266E-02 -2.2918474E-02 -2.2334473E-02 -2.1752067E-02 -2.1172851E-02
 -2.0598207E-02 -2.0029318E-02 -1.9467225E-02 -1.8912805E-02 -1.8366812E-02
 -1.7829888E-02 -1.7302547E-02 -1.6785249E-02 -1.6278323E-02 -1.5782071E-02
 -1.5296693E-02 -1.4822355E-02 -1.4359163E-02 -1.3907171E-02 -1.3466403E-02
 -1.3036842E-02
 0.8522142 0.8433353 0.8325769 0.8358658 0.8216472
 0.8184250 0.8097200 0.7946879 0.7793205 0.7629372
 0.7457278 0.7280720 0.7136930 0.6956143 0.6775638
 0.6595580 0.6416556 0.6239200 0.6063961 0.5891175
 0.5721077 0.5553809 0.5389442 0.5227988 0.5069409
 0.4913634 0.4760568 0.4610106 0.4462144 0.4316587
 0.4173357 0.4032403 0.3893698 0.3757249 0.3623094
 0.3491300 0.3361961 0.3235167 0.3111096 0.2989866
 0.2871614 0.2756476 0.2644576 0.2536021 0.2430902
 0.2329282 0.2231206 0.2136693 0.2045741 0.1958326
 0.1874406 0.1793923 0.1716804 0.1642965 0.1572314
 0.1504749 0.1440167 0.1378459 0.1319514 0.1263224
 0.1209476 0.1158164 0.1109180 0.1062421 0.1017785
 9.7517498E-02 9.3449667E-02 8.9565955E-02 8.5857645E-02 8.2316436E-02
 7.8934364E-02 7.5703800E-02 7.2617546E-02 6.9668613E-02 6.6850469E-02
 6.4156882E-02 6.1581843E-02 5.9119746E-02 5.6765158E-02 5.4512993E-02
 5.2358426E-02 5.0296802E-02 4.8323784E-02 4.6435177E-02 4.4627063E-02
 4.2895664E-02 4.1237440E-02 3.9649013E-02 3.8127150E-02 3.6668818E-02
 3.5271097E-02
 0.4641295 0.4463273 0.4286804 0.4120297 0.3946523
 0.3775873 0.3617111 0.3470653 0.3312103 0.3149871
 0.2990326 0.2835541 0.2691389 0.2545733 0.2403185
 0.2264026 0.2128543 0.1996754 0.1868603 0.1744008
 0.1622892 0.1505186 0.1390844 0.1279830 0.1172134
 0.1067779 9.6680574E-02 8.6928673E-02 7.7531554E-02 6.8500213E-02
 5.9847180E-02 5.1585570E-02 4.3728475E-02 3.6288258E-02 2.9275740E-02
 2.2699594E-02 1.6565748E-02 1.0878758E-02 5.6336913E-03 8.2801422E-04
 -3.5466414E-03 -7.5021028E-03 -1.1053320E-02 -1.4218017E-02 -1.7016020E-02
 -1.9468872E-02 -2.1599168E-02 -2.3430085E-02 -2.4984905E-02 -2.6286608E-02
 -2.7357554E-02 -2.8219221E-02 -2.8892014E-02 -2.9395133E-02 -2.9746503E-02
 -2.9962735E-02 -3.0059136E-02 -3.0049734E-02 -2.9947313E-02 -2.9763496E-02
 -2.9508809E-02 -2.9192744E-02 -2.8823849E-02 -2.8409803E-02 -2.7957486E-02
 -2.7473042E-02 -2.6961960E-02 -2.6429130E-02 -2.5878895E-02 -2.5315123E-02
 -2.4741227E-02 -2.4160227E-02 -2.3574794E-02 -2.2987276E-02 -2.2399731E-02
 -2.1813981E-02 -2.1231581E-02 -2.0653915E-02 -2.0082163E-02 -1.9517349E-02
 -1.8960359E-02 -1.8411923E-02 -1.7872684E-02 -1.7343149E-02 -1.6823765E-02
 -1.6314866E-02 -1.5816739E-02 -1.5329588E-02 -1.4853564E-02 -1.4388775E-02
 -1.3935269E-02
 0.8954902 0.8859936 0.8744601 0.8807552 0.8653920
 0.8649287 0.8584813 0.8427142 0.8266721 0.8093457
 0.7909802 0.7720904 0.7599395 0.7404761 0.7210962
 0.7017770 0.6856079 0.6664416 0.6475401 0.6289439
 0.6106780 0.5927612 0.5752050 0.5580130 0.5411803
 0.5246996 0.5085585 0.4927425 0.4772359 0.4620228
 0.4470874 0.4324164 0.4179982 0.4038244 0.3898897
 0.3761921 0.3627334 0.3495184 0.3365549 0.3238531
 0.3114220 0.2992804 0.2874387 0.2759098 0.2647058
 0.2538372 0.2433126 0.2331385 0.2233191 0.2138565
 0.2047503 0.1959983 0.1875961 0.1795381 0.1718170
 0.1644244 0.1573510 0.1505868 0.1441213 0.1379436
 0.1320428 0.1264078 0.1210276 0.1158912 0.1109880
 0.1063076 0.1018399 9.7575136E-02 9.3503743E-02 8.9616746E-02
 8.5905403E-02 8.2361341E-02 7.8976639E-02 7.5743623E-02 7.2655052E-02
 6.9704026E-02 6.6883907E-02 6.4188473E-02 6.1611712E-02 5.9147976E-02
 5.6791902E-02 5.4538332E-02 5.2382447E-02 5.0319590E-02 4.8345409E-02
 4.6455711E-02 4.4646557E-02 4.2914212E-02 4.1255079E-02 3.9665800E-02
 3.8143132E-02
 0.4906599 0.4722818 0.4540938 0.4371245 0.4192098
 0.4016257 0.3855633 0.3713174 0.3552378 0.3385302
 0.3220955 0.3062155 0.2920705 0.2772606 0.2627141
 0.2484806 0.2350367 0.2215640 0.2084574 0.1956972
 0.1832732 0.1711767 0.1593995 0.1479336 0.1367752
 0.1259232 0.1153776 0.1051429 9.5225409E-02 8.5634090E-02
 7.6380007E-02 6.7475975E-02 5.8935806E-02 5.0774012E-02 4.3004841E-02
 3.5641737E-02 2.8696554E-02 2.2178877E-02 1.6095590E-02 1.0450191E-02
 5.2448278E-03 4.7106063E-04 -3.8762847E-03 -7.8083626E-03 -1.1339444E-02
 -1.4486683E-02 -1.7269431E-02 -1.9708792E-02 -2.1827005E-02 -2.3646940E-02
 -2.5191655E-02 -2.6483947E-02 -2.7546046E-02 -2.8399324E-02 -2.9064110E-02
 -2.9559545E-02 -2.9903535E-02 -3.0112658E-02 -3.0202204E-02 -3.0186186E-02
 -3.0077392E-02 -2.9887442E-02 -2.9626850E-02 -2.9305113E-02 -2.8930778E-02
 -2.8511519E-02 -2.8054202E-02 -2.7564980E-02 -2.7049329E-02 -2.6512140E-02
 -2.5957752E-02 -2.5390014E-02 -2.4812344E-02 -2.4227748E-02 -2.3638893E-02
 -2.3048131E-02 -2.2457497E-02 -2.1868804E-02 -2.1283615E-02 -2.0703293E-02
 -2.0129029E-02 -1.9561825E-02 -1.9002566E-02 -1.8451976E-02 -1.7910689E-02
 -1.7379217E-02 -1.6857985E-02 -1.6347347E-02 -1.5847558E-02 -1.5358836E-02
 -1.4881320E-02
 0.9387662 0.9286519 0.9163433 0.9256446 0.9091368
 0.9114323 0.9072425 0.8907405 0.8740237 0.8557541
 0.8362325 0.8161088 0.8061860 0.7853379 0.7646286
 0.7439960 0.7295602 0.7089632 0.6886841 0.6717665
 0.6520740 0.6327960 0.6139486 0.5955393 0.5775641
 0.5600176 0.5428858 0.5261531 0.5098001 0.4938063
 0.4781507 0.4628134 0.4477749 0.4330183 0.4185296
 0.4042976 0.3903152 0.3765785 0.3630877 0.3498462
 0.3368606 0.3241400 0.3116921 0.2995361 0.2876815
 0.2761407 0.2649255 0.2540460 0.2435108 0.2333264
 0.2234969 0.2140245 0.2049087 0.1961473 0.1877363
 0.1796697 0.1719404 0.1645399 0.1574591 0.1506879
 0.1442159 0.1380321 0.1321255 0.1264851 0.1210998
 0.1159588 0.1110513 0.1063669 0.1018954 9.7627163E-02
 9.3552582E-02 8.9662574E-02 8.5948467E-02 8.2401827E-02 7.9014696E-02
 7.5779490E-02 7.2688840E-02 6.9735892E-02 6.6913977E-02 6.4216845E-02
 6.1638545E-02 5.9173349E-02 5.6815922E-02 5.4561075E-02 5.2403994E-02
 5.0340012E-02 4.8364770E-02 4.6474107E-02 4.4664029E-02 4.2930815E-02
 4.1270867E-02
 0.5171904 0.4982363 0.4795072 0.4622194 0.4437673
 0.4256642 0.4094156 0.3955696 0.3792652 0.3620733
 0.3451585 0.3288769 0.3150021 0.2999478 0.2851096
 0.2705587 0.2572192 0.2434526 0.2300544 0.2172226
 0.2045435 0.1921812 0.1801242 0.1683607 0.1568849
 0.1456927 0.1347807 0.1241499 0.1138030 0.1037463
 9.3987934E-02 8.4538639E-02 7.5410999E-02 6.6619039E-02 5.8178030E-02
 5.0103474E-02 4.2410679E-02 3.5113990E-02 2.8226282E-02 2.1758055E-02
 1.5716968E-02 1.0107382E-02 4.9328296E-03 1.8451712E-04 -4.1413829E-03
 -8.0553684E-03 -1.1571145E-02 -1.4705302E-02 -1.7476751E-02 -1.9906171E-02
 -2.2015503E-02 -2.3827365E-02 -2.5364617E-02 -2.6649904E-02 -2.7705338E-02
 -2.8552217E-02 -2.9210821E-02 -2.9700253E-02 -3.0038400E-02 -3.0241830E-02
 -3.0325828E-02 -3.0304411E-02 -3.0190369E-02 -2.9995328E-02 -2.9729804E-02
 -2.9403303E-02 -2.9024368E-02 -2.8600674E-02 -2.8139096E-02 -2.7645782E-02
 -2.7126212E-02 -2.6585260E-02 -2.6027283E-02 -2.5456104E-02 -2.4875149E-02
 -2.4287431E-02 -2.3695594E-02 -2.3101985E-02 -2.2508645E-02 -2.1917375E-02
 -2.1329736E-02 -2.0747084E-02 -2.0170605E-02 -1.9601295E-02 -1.9040033E-02
 -1.8487545E-02 -1.7944446E-02 -1.7411262E-02 -1.6888406E-02 -1.6376216E-02
 -1.5874961E-02
 0.9869751 0.9763183 0.9634672 0.9722260 0.9551758
 0.9569288 0.9521967 0.9351522 0.9178931 0.8990811
 0.8790172 0.8583512 0.8478861 0.8264957 0.8052443
 0.7840694 0.7690915 0.7479523 0.7271311 0.7096713
 0.6894367 0.6696166 0.6502272 0.6312758 0.6127586
 0.5946702 0.5769964 0.5597219 0.5428270 0.5262914
 0.5100941 0.4942151 0.4786348 0.4633365 0.4483060
 0.4335324 0.4190083 0.4047299 0.3906974 0.3769143
 0.3633870 0.3501249 0.3371221 0.3243871 0.3119303
 0.2997633 0.2878985 0.2763480 0.2651233 0.2542347
 0.2436905 0.2334971 0.2236588 0.2141776 0.2050533
 0.1962835 0.1878644 0.1797900 0.1720532 0.1646456
 0.1575580 0.1507805 0.1443024 0.1381129 0.1322010
 0.1265557 0.1211659 0.1160205 0.1111090 0.1064209
 0.1019461 9.7674564E-02 9.3597032E-02 8.9704268E-02 8.5987575E-02
 8.2438603E-02 7.9049274E-02 7.5812012E-02 7.2719470E-02 6.9764718E-02
 6.6941179E-02 6.4242512E-02 6.1662786E-02 5.9196249E-02 5.6837570E-02
 5.4581553E-02 5.2423365E-02 5.0358385E-02 4.8382182E-02 4.6490617E-02
 4.4679698E-02
 0.5621264 0.5423521 0.5228028 0.5046948 0.4854226
 0.4664994 0.4494307 0.4347646 0.4176402 0.3996282
 0.3818933 0.3647917 0.3500969 0.3342227 0.3185646
 0.3031937 0.2890343 0.2744479 0.2602297 0.2465781
 0.2330792 0.2198970 0.2070201 0.1944368 0.1821412
 0.1701292 0.1583974 0.1469468 0.1357801 0.1249037
 0.1143255 0.1040565 9.4109096E-02 8.4497400E-02 7.5236663E-02
 6.6342391E-02 5.7829883E-02 4.9713485E-02 4.2006072E-02 3.4718141E-02
 2.7857354E-02 2.1428071E-02 1.5419895E-02 9.8379254E-03 4.6836529E-03
 -4.5325807E-05 -4.3552206E-03 -8.2558868E-03 -1.1760545E-02 -1.4885281E-02
 -1.7648624E-02 -2.0070948E-02 -2.2173917E-02 -2.3979956E-02 -2.5511738E-02
 -2.6791813E-02 -2.7842207E-02 -2.8684163E-02 -2.9337931E-02 -2.9822601E-02
 -3.0156039E-02 -3.0354828E-02 -3.0434256E-02 -3.0408354E-02 -3.0289914E-02
 -3.0090574E-02 -2.9820861E-02 -2.9490285E-02 -2.9107399E-02 -2.8679885E-02
 -2.8214619E-02 -2.7717749E-02 -2.7194759E-02 -2.6650524E-02 -2.6089389E-02
 -2.5515202E-02 -2.4931360E-02 -2.4340885E-02 -2.3746414E-02 -2.3150286E-02
 -2.2554552E-02 -2.1960996E-02 -2.1371184E-02 -2.0786462E-02 -2.0208010E-02
 -1.9636823E-02 -1.9073771E-02 -1.8519590E-02 -1.7974880E-02 -1.7440163E-02
 -1.6915848E-02
 1.036293 1.025092 1.011698 1.019913 1.002319
 1.003529 0.9982532 0.9806654 0.9628630 0.9435077
 0.9229006 0.9016914 0.8906831 0.8687496 0.8469551
 0.8252371 0.8097160 0.7880337 0.7666695 0.7486666
 0.7278891 0.7075260 0.6875936 0.6680993 0.6490393
 0.6304080 0.6121914 0.5943741 0.5769365 0.5598583
 0.5431183 0.5266966 0.5105737 0.4947330 0.4791601
 0.4638440 0.4487775 0.4339567 0.4193817 0.4050562
 0.3909866 0.3771820 0.3636369 0.3503596 0.3373445
 0.3245990 0.3121330 0.2999578 0.2880852 0.2765273
 0.2652954 0.2543995 0.2438480 0.2336472 0.2238015
 0.2143129 0.2051812 0.1964044 0.1879781 0.1798970
 0.1721536 0.1647398 0.1576462 0.1508630 0.1443796
 0.1381851 0.1322685 0.1266188 0.1212248 0.1160757
 0.1111606 0.1064692 0.1019913 9.7716920E-02 9.3636699E-02
 8.9741521E-02 8.6022541E-02 8.2471445E-02 7.9080150E-02 7.5841032E-02
 7.2746813E-02 6.9790483E-02 6.6965476E-02 6.4265430E-02 6.1684418E-02
 5.9216697E-02 5.6856882E-02 5.4599848E-02 5.2440681E-02 5.0374787E-02
 4.8397731E-02
 0.6086046 0.5880126 0.5676457 0.5487201 0.5286304
 0.5088896 0.4910033 0.4755196 0.4575777 0.4387482
 0.4201958 0.4022767 0.3867645 0.3700729 0.3535973
 0.3374091 0.3224322 0.3070285 0.2919930 0.2775240
 0.2632078 0.2492083 0.2355141 0.2221135 0.2090007
 0.1961714 0.1836223 0.1713544 0.1593705 0.1476769
 0.1362815 0.1251952 0.1144307 0.1040018 9.3923822E-02
 8.4212363E-02 7.4882671E-02 6.5949090E-02 5.7424501E-02 4.9319398E-02
 4.1641440E-02 3.4394991E-02 2.7569653E-02 2.1170525E-02 1.5187621E-02
 9.6266484E-03 4.4896798E-03 -2.2514666E-04 -4.5234929E-03 -8.4147230E-03
 -1.1911595E-02 -1.5029875E-02 -1.7787740E-02 -2.0205300E-02 -2.2303982E-02
 -2.4106048E-02 -2.5634062E-02 -2.6910469E-02 -2.7957251E-02 -2.8795592E-02
 -2.9445734E-02 -2.9926762E-02 -3.0256545E-02 -3.0451674E-02 -3.0527448E-02
 -3.0497912E-02 -3.0375879E-02 -3.0172994E-02 -2.9899798E-02 -2.9565815E-02
 -2.9179605E-02 -2.8748857E-02 -2.8280461E-02 -2.7780555E-02 -2.7254632E-02
 -2.6707584E-02 -2.6143737E-02 -2.5566947E-02 -2.4980607E-02 -2.4387730E-02
 -2.3790978E-02 -2.3192663E-02 -2.2594843E-02 -2.1999292E-02 -2.1407576E-02
 -2.0821042E-02 -2.0240862E-02 -1.9668039E-02 -1.9103423E-02 -1.8547753E-02
 -1.8001629E-02
 1.086694 1.074950 1.061011 1.068682 1.050544
 1.051210 1.045391 1.027259 1.008913 0.9890144
 0.9678639 0.9461113 0.9345597 0.9120829 0.8897449
 0.8674836 0.8514193 0.8291937 0.8072861 0.7887400
 0.7674193 0.7465131 0.7260376 0.7060003 0.6863972
 0.6672229 0.6484634 0.6301032 0.6121227 0.5945016
 0.5772188 0.5602543 0.5435886 0.5272050 0.5110893
 0.4952305 0.4796212 0.4642576 0.4491399 0.4342716
 0.4196593 0.4053121 0.3912243 0.3774044 0.3638466
 0.3505585 0.3375345 0.3247815 0.3123088 0.3001275
 0.2882492 0.2766855 0.2654478 0.2545458 0.2439882
 0.2337812 0.2239291 0.2144341 0.2052961 0.1965128
 0.1880804 0.1799932 0.1722440 0.1648246 0.1577257
 0.1509374 0.1444491 0.1382502 0.1323293 0.1266756
 0.1212780 0.1161254 0.1112071 0.1065127 0.1020319
 9.7755052E-02 9.3672439E-02 8.9775033E-02 8.6053990E-02 8.2500942E-02
 7.9107903E-02 7.5867124E-02 7.2771378E-02 6.9813617E-02 6.6987276E-02
 6.4285994E-02 6.1703809E-02 5.9235029E-02 5.6874204E-02 5.4616235E-02
 5.2456193E-02
 0.6566147 0.6352075 0.6140255 0.5942847 0.5733798
 0.5528238 0.5341225 0.5178237 0.4990667 0.4794222
 0.4600548 0.4413208 0.4249936 0.4074870 0.3901965
 0.3731934 0.3574016 0.3411830 0.3253326 0.3100488
 0.2949176 0.2801033 0.2655943 0.2513789 0.2374513
 0.2238073 0.2104435 0.1973608 0.1845622 0.1720538
 0.1598438 0.1479428 0.1363635 0.1251200 0.1142274
 0.1037013 9.3556985E-02 8.3808765E-02 7.4469544E-02 6.5549821E-02
 5.7057258E-02 4.8996214E-02 4.1356284E-02 3.4142569E-02 2.7345082E-02
 2.0969529E-02 1.5006114E-02 9.4611123E-03 4.3370328E-03 -3.6740061E-04
 -4.6574562E-03 -8.5420813E-03 -1.2033685E-02 -1.5147690E-02 -1.7901978E-02
 -2.0316446E-02 -2.2412350E-02 -2.4211805E-02 -2.5737286E-02 -2.7011152E-02
 -2.8055334E-02 -2.8891020E-02 -2.9538421E-02 -3.0016638E-02 -3.0343540E-02
 -3.0535733E-02 -3.0608542E-02 -3.0576024E-02 -3.0451003E-02 -3.0245151E-02
 -2.9969024E-02 -2.9632149E-02 -2.9243106E-02 -2.8809588E-02 -2.8338488E-02
 -2.7835969E-02 -2.7307512E-02 -2.6758011E-02 -2.6191805E-02 -2.5612734E-02
 -2.5024218E-02 -2.4429247E-02 -2.3830488E-02 -2.3230251E-02 -2.2630595E-02
 -2.2033289E-02 -2.1439895E-02 -2.0851769E-02 -2.0270061E-02 -1.9695785E-02
 -1.9129787E-02
 1.138184 1.125894 1.111411 1.118538 1.099855
 1.099977 1.093613 1.074937 1.056047 1.035604
 1.013909 0.9916131 0.9795178 0.9564972 0.9336156
 0.9108106 0.8942027 0.8714335 0.8489825 0.8298929
 0.8080287 0.7865791 0.7655602 0.7449794 0.7248331
 0.7051155 0.6858128 0.6669093 0.6483856 0.6302213
 0.6123953 0.5948877 0.5776788 0.5607521 0.5440932
 0.5276912 0.5115389 0.4956324 0.4799717 0.4645606
 0.4494053 0.4345152 0.4198846 0.4055218 0.3914212
 0.3775904 0.3640235 0.3507278 0.3376974 0.3249392
 0.3124619 0.3002761 0.2883933 0.2768251 0.2655827
 0.2546759 0.2441131 0.2339008 0.2240432 0.2145427
 0.2053990 0.1966102 0.1881723 0.1800797 0.1723253
 0.1649008 0.1577972 0.1510043 0.1445117 0.1383087
 0.1323841 0.1267268 0.1213258 0.1161701 0.1112489
 0.1065518 0.1020685 9.7789332E-02 9.3704559E-02 8.9805096E-02
 8.6082235E-02 8.2527459E-02 7.9132818E-02 7.5890549E-02 7.2793409E-02
 6.9834359E-02 6.7006797E-02 6.4304426E-02 6.1721191E-02 5.9251450E-02
 5.6889724E-02
 0.7061563 0.6839360 0.6619409 0.6413872 0.6196693
 0.5983005 0.5787862 0.5616746 0.5421049 0.5216477
 0.5014676 0.4819208 0.4647810 0.4464617 0.4283586
 0.4105428 0.3939385 0.3769072 0.3602442 0.3441477
 0.3282040 0.3125771 0.2972556 0.2822277 0.2674876
 0.2530311 0.2388548 0.2249597 0.2113487 0.1980279
 0.1850055 0.1722922 0.1599005 0.1478446 0.1361397
 0.1248013 0.1138446 0.1032841 9.3132511E-02 8.3400458E-02
 7.4095577E-02 6.5222226E-02 5.6769997E-02 4.8743986E-02 4.1134205E-02
 3.3946358E-02 2.7170647E-02 2.0813351E-02 1.4864815E-02 9.3318187E-03
 4.2172736E-03 -4.7972021E-04 -4.7640279E-03 -8.6442661E-03 -1.2132484E-02
 -1.5243829E-02 -1.7995989E-02 -2.0408640E-02 -2.2502914E-02 -2.4300784E-02
 -2.5824646E-02 -2.7096823E-02 -2.8139206E-02 -2.8972972E-02 -2.9618327E-02
 -3.0094378E-02 -3.0419013E-02 -3.0608857E-02 -3.0679252E-02 -3.0644275E-02
 -3.0516773E-02 -3.0308427E-02 -3.0029818E-02 -2.9690484E-02 -2.9299013E-02
 -2.8863117E-02 -2.8389692E-02 -2.7884906E-02 -2.7354250E-02 -2.6802612E-02
 -2.6234347E-02 -2.5653291E-02 -2.5062863E-02 -2.4466055E-02 -2.3865532E-02
 -2.3263603E-02 -2.2662325E-02 -2.2063477E-02 -2.1468604E-02 -2.0879066E-02
 -2.0296011E-02
 1.190750 1.177915 1.162887 1.169469 1.150242
 1.149819 1.142911 1.123691 1.104256 1.083269
 1.061030 1.038190 1.025551 1.001987 0.9785612
 0.9552125 0.9380609 0.9147481 0.8917534 0.8721203
 0.8497126 0.8277195 0.8061572 0.7850330 0.7643433
 0.7440824 0.7242364 0.7047896 0.6857226 0.6670150
 0.6486458 0.6305948 0.6128426 0.5953727 0.5781706
 0.5612255 0.5445300 0.5280803 0.5118766 0.4959225
 0.4802243 0.4647912 0.4496177 0.4347119 0.4200685
 0.4056948 0.3915851 0.3777466 0.3641735 0.3508725
 0.3378379 0.3250760 0.3125954 0.3004063 0.2885203
 0.2769486 0.2657024 0.2547916 0.2442244 0.2340076
 0.2241453 0.2146399 0.2054913 0.1966975 0.1882547
 0.1801573 0.1723983 0.1649694 0.1578614 0.1510644
 0.1445680 0.1383613 0.1324333 0.1267728 0.1213687
 0.1162103 0.1112865 0.1065869 0.1021014 9.7820081E-02
 9.3733400E-02 8.9832135E-02 8.6107589E-02 8.2551263E-02 7.9155162E-02
 7.5911559E-02 7.2813138E-02 6.9852956E-02 6.7024313E-02 6.4320937E-02
 6.1736777E-02
 0.7572300 0.7341989 0.7113929 0.6900282 0.6674995
 0.6453198 0.6249948 0.6070725 0.5866921 0.5654242
 0.5444334 0.5240760 0.5061255 0.4869956 0.4680819
 0.4494556 0.4320407 0.4141989 0.3967255 0.3798186
 0.3630644 0.3466271 0.3304951 0.3146568 0.2991062
 0.2838393 0.2688527 0.2541472 0.2397258 0.2255946
 0.2117618 0.1982382 0.1850362 0.1721699 0.1596547
 0.1475059 0.1357389 0.1243681 0.1134062 0.1028639
 9.2748716E-02 8.3065085E-02 7.3802575E-02 6.4966284E-02 5.6546237E-02
 4.8548125E-02 4.0962148E-02 3.3794593E-02 2.7035803E-02 2.0692553E-02
 1.4755348E-02 9.2312340E-03 4.1235606E-03 -5.6829565E-04 -4.8487773E-03
 -8.7262439E-03 -1.2212501E-02 -1.5322432E-02 -1.8073548E-02 -2.0485338E-02
 -2.2578800E-02 -2.4375852E-02 -2.5898799E-02 -2.7169937E-02 -2.8211128E-02
 -2.9043533E-02 -2.9687377E-02 -3.0161772E-02 -3.0484632E-02 -3.0672593E-02
 -3.0741023E-02 -3.0704012E-02 -3.0574439E-02 -3.0363997E-02 -3.0083278E-02
 -2.9741846E-02 -2.9348297E-02 -2.8910352E-02 -2.8434915E-02 -2.7928159E-02
 -2.7395589E-02 -2.6842095E-02 -2.6272029E-02 -2.5689235E-02 -2.5097128E-02
 -2.4498709E-02 -2.3896625E-02 -2.3293220E-02 -2.2690510E-02 -2.2090297E-02
 -2.1494118E-02
 1.244378 1.230999 1.215427 1.221465 1.201694
 1.200726 1.193274 1.173510 1.153531 1.132000
 1.109218 1.085834 1.072651 1.048543 1.024574
 1.000682 0.9829867 0.9591305 0.9355924 0.9154159
 0.8924649 0.8699285 0.8478230 0.8261556 0.8049227
 0.7841186 0.7637294 0.7437394 0.7241293 0.7048785
 0.6859661 0.6673720 0.6490768 0.6310638 0.6133187
 0.5958306 0.5785921 0.5615994 0.5448528 0.5283557
 0.5121146 0.4961386 0.4804223 0.4649738 0.4497876
 0.4348711 0.4202188 0.4058376 0.3917218 0.3778782
 0.3643011 0.3509966 0.3379592 0.3251949 0.3127120
 0.3005207 0.2886322 0.2770579 0.2658086 0.2548945
 0.2443237 0.2341029 0.2242366 0.2147268 0.2055739
 0.1967758 0.1883287 0.1802270 0.1724638 0.1650309
 0.1579191 0.1511184 0.1446186 0.1384086 0.1324775
 0.1268141 0.1214074 0.1162463 0.1113202 0.1066185
 0.1021310 9.7847708E-02 9.3759276E-02 8.9856386E-02 8.6130328E-02
 8.2572594E-02 7.9175174E-02 7.5930379E-02 7.2830848E-02 6.9869615E-02
 6.7040004E-02
 0.8098373 0.7859970 0.7623820 0.7402083 0.7168706
 0.6938820 0.6727481 0.6540169 0.6328276 0.6107508
 0.5889511 0.5677848 0.5490255 0.5290869 0.5093645
 0.4899295 0.4717060 0.4530556 0.4347735 0.4170580
 0.3994952 0.3822493 0.3653088 0.3486619 0.3323028
 0.3162273 0.3004321 0.2849181 0.2696882 0.2547485
 0.2401072 0.2257750 0.2117645 0.1980898 0.1847661
 0.1718088 0.1592334 0.1470541 0.1352838 0.1239330
 0.1130095 0.1025174 9.2446476E-02 8.2801774E-02 7.3573329E-02
 6.4766817E-02 5.6372449E-02 4.8396509E-02 4.0829334E-02 3.3677705E-02
 2.6932124E-02 2.0599637E-02 1.4670890E-02 9.1532487E-03 4.0503936E-03
 -6.3799031E-04 -4.9161296E-03 -8.7920763E-03 -1.2277430E-02 -1.5386855E-02
 -1.8137688E-02 -2.0549310E-02 -2.2642598E-02 -2.4439391E-02 -2.5961945E-02
 -2.7232517E-02 -2.8272960E-02 -2.9104445E-02 -2.9747194E-02 -3.0220335E-02
 -3.0541802E-02 -3.0728253E-02 -3.0795073E-02 -3.0756386E-02 -3.0625075E-02
 -3.0412862E-02 -3.0130353E-02 -2.9787125E-02 -2.9391788E-02 -2.8952066E-02
 -2.8474890E-02 -2.7966425E-02 -2.7432187E-02 -2.6877068E-02 -2.6305426E-02
 -2.5721105E-02 -2.5127521E-02 -2.4527686E-02 -2.3924239E-02 -2.3319518E-02
 -2.2715552E-02
 1.299076 1.285153 1.269036 1.274529 1.254213
 1.252702 1.244705 1.224397 1.203875 1.181800
 1.158473 1.134545 1.120819 1.096167 1.071654
 1.047219 1.028980 1.004580 0.9804987 0.9597791
 0.9362850 0.9132054 0.8905568 0.8683464 0.8465704
 0.8252233 0.8042910 0.7837580 0.7636048 0.7438110
 0.7243556 0.7052186 0.6863805 0.6678246 0.6495367
 0.6315057 0.6137244 0.5961889 0.5788994 0.5618595
 0.5450756 0.5285569 0.5122978 0.4963067 0.4805779
 0.4651189 0.4499240 0.4350004 0.4203421 0.4059561
 0.3918365 0.3779897 0.3644100 0.3511033 0.3380643
 0.3252985 0.3128142 0.3006214 0.2887311 0.2771547
 0.2659030 0.2549860 0.2444122 0.2341880 0.2243180
 0.2148046 0.2056479 0.1968459 0.1883949 0.1802895
 0.1725226 0.1650861 0.1579709 0.1511669 0.1446639
 0.1384510 0.1325171 0.1268512 0.1214420 0.1162787
 0.1113505 0.1066468 0.1021574 9.7872496E-02 9.3782477E-02
 8.9878127E-02 8.6150683E-02 8.2591720E-02 7.9193123E-02 7.5947247E-02
 7.2846703E-02
 0.8639818 0.8393341 0.8149118 0.7919308 0.7677859
 0.7439901 0.7220489 0.7025105 0.6805140 0.6576300
 0.6350232 0.6130498 0.5934833 0.5727376 0.5522081
 0.5319660 0.5129354 0.4934779 0.4743888 0.4558663
 0.4374965 0.4194436 0.4016961 0.3842421 0.3670761
 0.3501936 0.3335914 0.3172704 0.3012335 0.2854869
 0.2700386 0.2548996 0.2400822 0.2256007 0.2114701
 0.1977061 0.1843238 0.1713377 0.1587606 0.1466031
 0.1348727 0.1235739 0.1126961 0.1022447 9.2209443E-02
 8.2596153E-02 7.3395014E-02 6.4612307E-02 5.6238372E-02 4.8279990E-02
 4.0727656E-02 3.3588417E-02 2.6852919E-02 2.0528529E-02 1.4606069E-02
 9.0930769E-03 3.9934758E-03 -6.9275190E-04 -4.9696467E-03 -8.8449866E-03
 -1.2330187E-02 -1.5439760E-02 -1.8190891E-02 -2.0602839E-02 -2.2696400E-02
 -2.4493324E-02 -2.6015859E-02 -2.7286224E-02 -2.8326273E-02 -2.9157162E-02
 -2.9799130E-02 -3.0271331E-02 -3.0591706E-02 -3.0776946E-02 -3.0842453E-02
 -3.0802369E-02 -3.0669602E-02 -3.0455887E-02 -3.0171851E-02 -2.9827079E-02
 -2.9430199E-02 -2.8988946E-02 -2.8510256E-02 -2.8000299E-02 -2.7464606E-02
 -2.6908064E-02 -2.6335035E-02 -2.5749380E-02 -2.5154497E-02 -2.4553411E-02
 -2.3948759E-02
 1.354831 1.340364 1.323703 1.328652 1.307793
 1.305737 1.297197 1.276345 1.255279 1.232660
 1.208790 1.184319 1.170049 1.144854 1.119798
 1.094818 1.076036 1.051093 1.026469 1.005206
 0.9811687 0.9575464 0.9343550 0.9116017 0.8892829
 0.8673930 0.8459179 0.8248421 0.8041462 0.7838097
 0.7638117 0.7441320 0.7247513 0.7056528 0.6868222
 0.6682487 0.6499248 0.6318467 0.6140147 0.5964323
 0.5791058 0.5620446 0.5452430 0.5287095 0.5124384
 0.4964371 0.4807000 0.4652342 0.4500338 0.4351056
 0.4204440 0.4060550 0.3919332 0.3780844 0.3645033
 0.3511954 0.3381555 0.3253891 0.3129039 0.3007101
 0.2888185 0.2772405 0.2659868 0.2550675 0.2444910
 0.2342640 0.2243909 0.2148742 0.2057141 0.1969087
 0.1884543 0.1803455 0.1725753 0.1651356 0.1580172
 0.1512104 0.1447046 0.1384891 0.1325527 0.1268844
 0.1214731 0.1163077 0.1113776 0.1066721 0.1021812
 9.7894698E-02 9.3803234E-02 8.9897610E-02 8.6168937E-02 8.2608841E-02
 7.9209194E-02
 0.9196658 0.8942121 0.8689839 0.8451970 0.8202462
 0.7956444 0.7728974 0.7525530 0.7297507 0.7060609
 0.6826483 0.6598691 0.6394969 0.6179454 0.5966101
 0.5755622 0.5557259 0.5354629 0.5155682 0.4962401
 0.4770648 0.4582064 0.4396534 0.4213939 0.4034224
 0.3857344 0.3683267 0.3512003 0.3343579 0.3178059
 0.3015522 0.2856078 0.2699850 0.2546981 0.2397622
 0.2251929 0.2110053 0.1972139 0.1838315 0.1708686
 0.1583330 0.1462288 0.1345458 0.1232891 0.1124486
 0.1020300 9.2023648E-02 8.2435682E-02 7.3256500E-02 6.4492874E-02
 5.6135304E-02 4.8190832E-02 4.0650103E-02 3.3520486E-02 2.6792802E-02
 2.0474588E-02 1.4556656E-02 9.0468796E-03 3.9493474E-03 -7.3572272E-04
 -5.0121276E-03 -8.8875415E-03 -1.2373142E-02 -1.5483345E-02 -1.8235160E-02
 -2.0647768E-02 -2.2741897E-02 -2.4539256E-02 -2.6062045E-02 -2.7332459E-02
 -2.8372345E-02 -2.9202886E-02 -2.9844318E-02 -3.0315822E-02 -3.0635351E-02
 -3.0819617E-02 -3.0884048E-02 -3.0842800E-02 -3.0708805E-02 -3.0493813E-02
 -3.0208470E-02 -2.9862370E-02 -2.9464159E-02 -2.9021578E-02 -2.8541567E-02
 -2.8030312E-02 -2.7493335E-02 -2.6935553E-02 -2.6361307E-02 -2.5774475E-02
 -2.5178453E-02
 1.411636 1.396625 1.379420 1.383826 1.362424
 1.359825 1.350742 1.329347 1.307737 1.284576
 1.260163 1.235148 1.220335 1.194597 1.168998
 1.143476 1.124151 1.098665 1.073498 1.051692
 1.027113 1.002948 0.9792135 0.9559178 0.9330565
 0.9106241 0.8886067 0.8669886 0.8457505 0.8248717
 0.8043314 0.7841094 0.7641864 0.7445457 0.7251729
 0.7060571 0.6871911 0.6685708 0.6501966 0.6320720
 0.6142035 0.5966002 0.5792567 0.5621812 0.5453681
 0.5288249 0.5125459 0.4965383 0.4807960 0.4653260
 0.4501226 0.4351918 0.4205282 0.4061376 0.3920147
 0.3781651 0.3645834 0.3512752 0.3382350 0.3254682
 0.3129828 0.3007884 0.2888959 0.2773165 0.2660612
 0.2551400 0.2445613 0.2343318 0.2244559 0.2149364
 0.2057733 0.1969649 0.1885075 0.1803956 0.1726224
 0.1651799 0.1580588 0.1512494 0.1447411 0.1385232
 0.1325846 0.1269142 0.1215009 0.1163337 0.1114019
 0.1066949 0.1022024 9.7914591E-02 9.3821853E-02 8.9915045E-02
 8.6185284E-02
 0.9768929 0.9506346 0.9246016 0.9000100 0.8742545
 0.8488480 0.8252963 0.8041474 0.7805405 0.7560461
 0.7318289 0.7082451 0.6870682 0.6647122 0.6425724
 0.6207201 0.6000795 0.5790120 0.5583130 0.5381806
 0.5182010 0.4985383 0.4791810 0.4601173 0.4413415
 0.4228494 0.4046375 0.3867069 0.3690604 0.3517042
 0.3346464 0.3178978 0.3014709 0.2853799 0.2696400
 0.2542666 0.2392750 0.2246796 0.2104932 0.1967264
 0.1833867 0.1704786 0.1579917 0.1459310 0.1342865
 0.1230640 0.1122537 0.1018618 9.1878705E-02 8.2311153E-02
 7.3149659E-02 6.4401269E-02 5.6056634E-02 4.8123114E-02 4.0591531E-02
 3.3469420E-02 2.6747597E-02 2.0433934E-02 1.4519240E-02 9.0115946E-03
 3.9152829E-03 -7.6932850E-04 -5.0458568E-03 -8.9218123E-03 -1.2408212E-02
 -1.5519317E-02 -1.8272085E-02 -2.0685596E-02 -2.2780519E-02 -2.4578497E-02
 -2.6101705E-02 -2.7372349E-02 -2.8412264E-02 -2.9242637E-02 -2.9883727E-02
 -3.0354712E-02 -3.0673586E-02 -3.0857068E-02 -3.0920610E-02 -3.0878393E-02
 -3.0743361E-02 -3.0527284E-02 -3.0240817E-02 -2.9893573E-02 -2.9494204E-02
 -2.9050466E-02 -2.8569300E-02 -2.8056912E-02 -2.7518816E-02 -2.6959941E-02
 -2.6384629E-02
 1.469497 1.453943 1.436195 1.440058 1.418113
 1.414971 1.405345 1.383407 1.361255 1.337550
 1.312595 1.287038 1.271682 1.245401 1.219260
 1.193195 1.173328 1.147300 1.121590 1.099241
 1.074119 1.049412 1.025135 1.001297 0.9778933
 0.9549188 0.9323593 0.9101992 0.8884190 0.8669981
 0.8459159 0.8251519 0.8046870 0.7845042 0.7645895
 0.7449318 0.7255238 0.7063616 0.6874455 0.6687791
 0.6503688 0.6322238 0.6143386 0.5967214 0.5793667
 0.5622818 0.5454613 0.5289121 0.5126283 0.4966168
 0.4808719 0.4653996 0.4501945 0.4352624 0.4205980
 0.4062069 0.3920838 0.3782341 0.3646525 0.3513443
 0.3383044 0.3255377 0.3130522 0.3008574 0.2889643
 0.2773840 0.2661275 0.2552046 0.2446239 0.2343922
 0.2245141 0.2149919 0.2058263 0.1970151 0.1885550
 0.1804405 0.1726647 0.1652196 0.1580961 0.1512842
 0.1447738 0.1385537 0.1326132 0.1269409 0.1215259
 0.1163570 0.1114237 0.1067152 0.1022214 9.7932391E-02
 9.3838520E-02
 1.035668 1.008605 0.9817685 0.9563732 0.9298139
 0.9036039 0.8792485 0.8572959 0.8328853 0.8075873
 0.7825664 0.7581791 0.7361987 0.7130392 0.6900960
 0.6674403 0.6459962 0.6241254 0.6026230 0.5816872
 0.5609043 0.5404383 0.5202778 0.5004110 0.4808321
 0.4615368 0.4425219 0.4237882 0.4053386 0.3871793
 0.3693185 0.3517669 0.3345370 0.3176430 0.3011002
 0.2849238 0.2691294 0.2537311 0.2387419 0.2241723
 0.2100299 0.1963190 0.1830293 0.1701658 0.1577186
 0.1456934 0.1340804 0.1228858 0.1121000 0.1017298
 9.1765583E-02 8.2214527E-02 7.3067226E-02 6.4331047E-02 5.5996813E-02
 4.8072055E-02 4.0547587E-02 3.3431280E-02 2.6713941E-02 2.0403655E-02
 1.4491220E-02 8.9848805E-03 3.8891053E-03 -7.9559232E-04 -5.0726575E-03
 -8.9494297E-03 -1.2436866E-02 -1.5549106E-02 -1.8303009E-02 -2.0717561E-02
 -2.2813378E-02 -2.4612103E-02 -2.6135858E-02 -2.7406864E-02 -2.8446939E-02
 -2.9277273E-02 -2.9918151E-02 -3.0388769E-02 -3.0707132E-02 -3.0889986E-02
 -3.0952798E-02 -3.0909767E-02 -3.0773856E-02 -3.0556846E-02 -3.0269414E-02
 -2.9921181E-02 -2.9520806E-02 -2.9076060E-02 -2.8593889E-02 -2.8080504E-02
 -2.7541431E-02

XFOILinterface/XFOIL/orrs/osnew/ai.04

4.00000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 -0.045616
 0.40000 -0.072157
 0.50000 -0.076096
 0.60000 -0.063066
 0.70000 -0.050873
 0.80000 -0.039507
 0.90000 -0.028902
 1.00000 -0.019070
 1.10000 -0.009993
 1.20000 -0.001709
 1.30000 0.005759
 1.40000 0.012335
 1.50000 0.017959
 1.60000 0.022557
 1.70000 0.026117
 1.80000 0.028692
 1.90000 0.030455
 2.00000 0.031688
 2.10000 0.032671
 2.20000 0.033585
 2.30000 0.034462
 2.40000 0.035256
 2.50000 0.035934
 2.60000 0.036497
 2.70000 0.036966
 2.80000 0.037363
 2.90000 0.037699
 3.00000 0.037984
 3.10000 0.038227
 3.20000 0.038435
 3.30000 0.038613
 3.40000 0.038765
 3.50000 0.038897
 3.60000 0.039010
 3.70000 0.039108
 3.80000 0.039194
 3.90000 0.039259
 4.00000 0.039333

XFOILinterface/XFOIL/orrs/osm_gu.04

 2001 4.005147
 0.0000000E+00 0.0000000E+00 2.3111839E-02
 5.2346054E-02 1.2469620E-03 2.4531178E-02
 0.1046921 2.5699572E-03 2.6016863E-02
 0.1570382 3.9724996E-03 2.7570460E-02
 0.2093842 5.4581836E-03 2.9193472E-02
 0.2617303 7.0306794E-03 3.0887298E-02
 0.3140763 8.6937277E-03 3.2653268E-02
 0.3664224 1.0451139E-02 3.4492601E-02
 0.4187684 1.2306781E-02 3.6406413E-02
 0.4711145 1.4264579E-02 3.8395688E-02
 0.5234606 1.6328504E-02 4.0461268E-02
 0.5758066 1.8502569E-02 4.2603869E-02
 0.6281527 2.0790823E-02 4.4824056E-02
 0.6804987 2.3197336E-02 4.7122233E-02
 0.7328448 2.5726197E-02 4.9498621E-02
 0.7851909 2.8381502E-02 5.1953282E-02
 0.8375369 3.1167338E-02 5.4486059E-02
 0.8898830 3.4087796E-02 5.7096630E-02
 0.9422290 3.7146926E-02 5.9784416E-02
 0.9945751 4.0348753E-02 6.2548667E-02
 1.046921 4.3697257E-02 6.5388404E-02
 1.099267 4.7196347E-02 6.8302393E-02
 1.151613 5.0849885E-02 7.1289219E-02
 1.203959 5.4661632E-02 7.4347124E-02
 1.256305 5.8635253E-02 7.7474207E-02
 1.308651 6.2774323E-02 8.0668248E-02
 1.360997 6.7082264E-02 8.3926797E-02
 1.413344 7.1562417E-02 8.7247156E-02
 1.465690 7.6217897E-02 9.0626344E-02
 1.518036 8.1051722E-02 9.4061136E-02
 1.570382 8.6066723E-02 9.7548045E-02
 1.622728 9.1265500E-02 0.1010833
 1.675074 9.6650504E-02 0.1046629
 1.727420 0.1022239 0.1082827
 1.779766 0.1079878 0.1119380
 1.832112 0.1139438 0.1156242
 1.884458 0.1200934 0.1193362
 1.936804 0.1264379 0.1230690
 1.989150 0.1329781 0.1268170
 2.041496 0.1397149 0.1305746
 2.093842 0.1466484 0.1343361
 2.146188 0.1537787 0.1380954
 2.198534 0.1611057 0.1418464
 2.250880 0.1686286 0.1455828
 2.303226 0.1763465 0.1492981
 2.355572 0.1842582 0.1529858
 2.407919 0.1923620 0.1566392
 2.460265 0.2006560 0.1602516
 2.512611 0.2091378 0.1638162
 2.564957 0.2178048 0.1673262
 2.617303 0.2266539 0.1707747
 2.669649 0.2356818 0.1741549
 2.721995 0.2448846 0.1774600
 2.774341 0.2542583 0.1806832
 2.826687 0.2637984 0.1838178
 2.879033 0.2735001 0.1868573
 2.931379 0.2833582 0.1897951
 2.983725 0.2933673 0.1926249
 3.036071 0.3035215 0.1953406
 3.088417 0.3138147 0.1979362
 3.140764 0.3242406 0.2004059
 3.193110 0.3347922 0.2027442
 3.245456 0.3454627 0.2049457
 3.297801 0.3562447 0.2070054
 3.350147 0.3671307 0.2089186
 3.402493 0.3781129 0.2106810
 3.454840 0.3891834 0.2122882
 3.507186 0.4003337 0.2137367
 3.559532 0.4115556 0.2150230
 3.611878 0.4228406 0.2161440
 3.664224 0.4341798 0.2170971
 3.716570 0.4455644 0.2178801
 3.768916 0.4569857 0.2184910
 3.821262 0.4684342 0.2189284
 3.873608 0.4799012 0.2191913
 3.925954 0.4913773 0.2192790
 3.978300 0.5028533 0.2191913
 4.030646 0.5143203 0.2189284
 4.082992 0.5257689 0.2184910
 4.135339 0.5371901 0.2178801
 4.187685 0.5485747 0.2170971
 4.240031 0.5599139 0.2161440
 4.292377 0.5711989 0.2150230
 4.344723 0.5824208 0.2137367
 4.397069 0.5935712 0.2122882
 4.449415 0.6046416 0.2106810
 4.501761 0.6156237 0.2089186
 4.554107 0.6265097 0.2070054
 4.606453 0.6372917 0.2049457
 4.658799 0.6479621 0.2027442
 4.711145 0.6585138 0.2004059
 4.763491 0.6689397 0.1979362
 4.815837 0.6792329 0.1953406
 4.868183 0.6893871 0.1926249
 4.920529 0.6993963 0.1897951
 4.972875 0.7092544 0.1868573
 5.025221 0.7189561 0.1838178
 5.077568 0.7284962 0.1806832
 5.129914 0.7378699 0.1774600
 5.182260 0.7470727 0.1741549
 5.234606 0.7561005 0.1707747
 5.286952 0.7649497 0.1673262
 5.339298 0.7736167 0.1638162
 5.391644 0.7820985 0.1602516
 5.443990 0.7903925 0.1566392
 5.496336 0.7984963 0.1529858
 5.548682 0.8064080 0.1492981
 5.601028 0.8141260 0.1455828
 5.653374 0.8216489 0.1418464
 5.705720 0.8289758 0.1380954
 5.758066 0.8361062 0.1343361
 5.810412 0.8430397 0.1305746
 5.862758 0.8497764 0.1268170
 5.915104 0.8563167 0.1230690
 5.967450 0.8626612 0.1193362
 6.019796 0.8688108 0.1156242
 6.072143 0.8747668 0.1119380
 6.124488 0.8805306 0.1082827
 6.176835 0.8861040 0.1046629
 6.229181 0.8914891 0.1010833
 6.281527 0.8966879 9.7548023E-02
 6.333873 0.9017029 9.4061129E-02
 6.386219 0.9065367 9.0626337E-02
 6.438565 0.9111922 8.7247156E-02
 6.490911 0.9156723 8.3926797E-02
 6.543257 0.9199802 8.0668248E-02
 6.595603 0.9241193 7.7474207E-02
 6.647949 0.9280929 7.4347124E-02
 6.700295 0.9319047 7.1289219E-02
 6.752641 0.9355582 6.8302415E-02
 6.804987 0.9390573 6.5388419E-02
 6.857333 0.9424058 6.2548682E-02
 6.909680 0.9456077 5.9784397E-02
 6.962026 0.9486668 5.7096608E-02
 7.014372 0.9515872 5.4486059E-02
 7.066718 0.9543731 5.1953282E-02
 7.119064 0.9570284 4.9498621E-02
 7.171410 0.9595573 4.7122233E-02
 7.223756 0.9619638 4.4824056E-02
 7.276102 0.9642520 4.2603869E-02
 7.328448 0.9664261 4.0461268E-02
 7.380794 0.9684900 3.8395688E-02
 7.433140 0.9704478 3.6406420E-02
 7.485486 0.9723035 3.4492616E-02
 7.537832 0.9740609 3.2653257E-02
 7.590178 0.9757240 3.0887287E-02
 7.642524 0.9772965 2.9193467E-02
 7.694870 0.9787821 2.7570460E-02
 7.747216 0.9801847 2.6016863E-02
 7.799562 0.9815076 2.4531178E-02
 7.851909 0.9827546 2.3111839E-02
 7.904254 0.9839290 2.1757206E-02
 7.956601 0.9850340 2.0465592E-02
 8.008946 0.9860731 1.9235265E-02
 8.061293 0.9870493 1.8064441E-02
 8.113639 0.9879658 1.6951313E-02
 8.165984 0.9888254 1.5894057E-02
 8.218331 0.9896312 1.4890817E-02
 8.270678 0.9903858 1.3939754E-02
 8.323023 0.9910919 1.3038998E-02
 8.375369 0.9917521 1.2186696E-02
 8.427715 0.9923689 1.1380996E-02
 8.480062 0.9929448 1.0620063E-02
 8.532407 0.9934819 9.9020815E-03
 8.584753 0.9939826 9.2252577E-03
 8.637099 0.9944487 8.5878223E-03
 8.689445 0.9948826 7.9880375E-03
 8.741791 0.9952860 7.4242032E-03
 8.794137 0.9956607 6.8946485E-03
 8.846484 0.9960086 6.3977381E-03
 8.898829 0.9963314 5.9319003E-03
 8.951176 0.9966305 5.4955836E-03
 9.003522 0.9969075 5.0872876E-03
 9.055868 0.9971638 4.7055599E-03
 9.108213 0.9974008 4.3489952E-03
 9.160560 0.9976197 4.0162355E-03
 9.212906 0.9978218 3.7059695E-03
 9.265252 0.9980083 3.4169399E-03
 9.317598 0.9981800 3.1479301E-03
 9.369944 0.9983383 2.8977809E-03
 9.422290 0.9984839 2.6653775E-03
 9.474636 0.9986178 2.4496508E-03
 9.526982 0.9987408 2.2495827E-03
 9.579329 0.9988537 2.0642041E-03
 9.631675 0.9989573 1.8925868E-03
 9.684021 0.9990522 1.7338507E-03
 9.736366 0.9991391 1.5871580E-03
 9.788713 0.9992186 1.4517140E-03
 9.841059 0.9992914 1.3267671E-03
 9.893405 0.9993578 1.2116039E-03
 9.945750 0.9994184 1.1055522E-03
 9.998096 0.9994738 1.0079772E-03
 10.05044 0.9995242 9.1827835E-04
 10.10279 0.9995701 8.3589304E-04
 10.15514 0.9996119 7.6028984E-04
 10.20748 0.9996498 6.9097249E-04
 10.25983 0.9996843 6.2747241E-04
 10.31217 0.9997157 5.6935259E-04
 10.36452 0.9997441 5.1620306E-04
 10.41687 0.9997698 4.6764061E-04
 10.46921 0.9997931 4.2330808E-04
 10.52156 0.9998142 3.8287183E-04
 10.57390 0.9998333 3.4602141E-04
 10.62625 0.9998505 3.1246748E-04
 10.67860 0.9998661 2.8194176E-04
 10.73094 0.9998801 2.5419483E-04
 10.78329 0.9998927 2.2899515E-04
 10.83563 0.9999041 2.0612875E-04
 10.88798 0.9999143 1.8539729E-04
 10.94033 0.9999236 1.6661754E-04
 10.99267 0.9999319 1.4962038E-04
 11.04502 0.9999393 1.3424968E-04
 11.09736 0.9999459 1.2036171E-04
 11.14971 0.9999519 1.0782386E-04
 11.20206 0.9999573 9.6515061E-05
 11.25440 0.9999620 8.6323264E-05
 11.30675 0.9999663 7.7145953E-05
 11.35909 0.9999702 6.8889232E-05
 11.41144 0.9999736 6.1466948E-05
 11.46379 0.9999766 5.4800541E-05
 11.51613 0.9999793 4.8818016E-05
 11.56848 0.9999818 4.3453860E-05
 11.62082 0.9999838 3.8648184E-05
 11.67317 0.9999858 3.4346489E-05
 11.72552 0.9999875 3.0499203E-05
 11.77786 0.9999890 2.7061182E-05
 11.83021 0.9999903 2.3991528E-05
 11.88256 0.9999915 2.1253045E-05
 11.93490 0.9999925 1.8812105E-05
 11.98725 0.9999935 1.6638189E-05
 12.03959 0.9999943 1.4703721E-05
 12.09194 0.9999951 1.2983787E-05
 12.14429 0.9999957 1.1455858E-05
 12.19663 0.9999962 1.0099659E-05
 12.24898 0.9999967 8.8968845E-06
 12.30132 0.9999971 7.8310877E-06
 12.35367 0.9999976 6.8874551E-06
 12.40601 0.9999979 6.0526831E-06
 12.45836 0.9999982 5.3148174E-06
 12.51071 0.9999985 4.6631881E-06
 12.56305 0.9999986 4.0881764E-06
 12.61540 0.9999988 3.5812052E-06
 12.66775 0.9999990 3.1345942E-06
 12.72009 0.9999992 2.7414828E-06
 12.77244 0.9999993 2.3957587E-06
 12.82478 0.9999995 2.0919567E-06
 12.87713 0.9999995 1.8252183E-06
 12.92948 0.9999996 1.5912187E-06
 12.98182 0.9999996 1.3861079E-06
 13.03417 0.9999997 1.2064716E-06
 13.08651 0.9999998 1.0492757E-06
 13.13886 0.9999999 9.1183193E-07
 13.19121 0.9999999 7.9175783E-07
 13.24355 1.000000 6.8694646E-07
 13.29590 1.000000 5.9553247E-07
 13.34824 1.000000 5.1587085E-07
 13.40059 1.000000 4.4650781E-07
 13.45294 1.000000 3.8616167E-07
 13.50528 1.000000 3.3370492E-07
 13.55763 1.000000 2.8814304E-07
 13.60997 1.000000 2.4860290E-07
 13.66232 1.000000 2.1431728E-07
 13.71467 1.000000 1.8461215E-07
 13.76701 1.000000 1.5889661E-07
 13.81936 1.000000 1.3665424E-07
 13.87171 1.000000 1.1743137E-07
 13.92405 1.000000 1.0083183E-07
 13.97640 1.000000 8.6509552E-08
 14.02874 1.000000 7.4162195E-08
 14.08109 1.000000 6.3526365E-08
 14.13344 1.000000 5.4372286E-08
 14.18578 1.000000 4.6500116E-08
 14.23813 1.000000 3.9735898E-08
 14.29047 1.000000 3.3928487E-08
 14.34282 1.000000 2.8946687E-08
 14.39517 1.000000 2.4676604E-08
 14.44751 1.000000 2.1019597E-08
 14.49986 1.000000 1.7890244E-08
 14.55220 1.000000 1.5214621E-08
 14.60455 1.000000 1.2928795E-08
 14.65690 1.000000 1.0977592E-08
 14.70924 1.000000 9.3134158E-09
 14.76159 1.000000 7.8952134E-09
 14.81393 1.000000 6.6876082E-09
 14.86628 1.000000 5.6601865E-09
 14.91863 1.000000 4.7867807E-09
 14.97097 1.000000 4.0449057E-09
 15.02332 1.000000 3.4152730E-09
 15.07566 1.000000 2.8813341E-09
 15.12801 1.000000 2.4289384E-09
 15.18036 1.000000 2.0459330E-09
 15.23270 1.000000 1.7219448E-09
 15.28505 1.000000 1.4481021E-09
 15.33739 1.000000 1.2168359E-09
 15.38974 1.000000 1.0216867E-09
 15.44209 1.000000 8.5714758E-10
 15.49443 1.000000 7.1853251E-10
 15.54678 1.000000 6.0185146E-10
 15.59912 1.000000 5.0371524E-10
 15.65147 1.000000 4.2124326E-10
 15.70382 1.000000 3.5199282E-10
 15.75616 1.000000 2.9389186E-10
 15.80851 1.000000 2.4518473E-10
 15.86086 1.000000 2.0438608E-10
 15.91320 1.000000 1.7024054E-10
 15.96555 1.000000 1.4168566E-10
 16.01789 1.000000 1.1782639E-10
 16.07024 1.000000 9.7906461E-11
 16.12259 1.000000 8.1289087E-11
 16.17493 1.000000 6.7438208E-11
 16.22728 1.000000 5.5902696E-11
 16.27962 1.000000 4.6303256E-11
 16.33197 1.000000 3.8321568E-11
 16.38432 1.000000 3.1690234E-11
 16.43666 1.000000 2.6185578E-11
 16.48901 1.000000 2.1619808E-11
 16.54136 1.000000 1.7835840E-11
 16.59370 1.000000 1.4702371E-11
 16.64605 1.000000 1.2109722E-11
 16.69839 1.000000 9.9662978E-12
 16.75074 1.000000 8.1957080E-12
 16.80308 1.000000 6.7342802E-12
 16.85543 1.000000 5.5290173E-12
 16.90778 1.000000 4.5358396E-12
 16.96012 1.000000 3.7180935E-12
 17.01247 1.000000 3.0453348E-12
 17.06481 1.000000 2.4923134E-12
 17.11716 1.000000 2.0380856E-12
 17.16951 1.000000 1.6653099E-12
 17.22185 1.000000 1.3596297E-12
 17.27420 1.000000 1.1091706E-12
 17.32654 1.000000 9.0412421E-13
 17.37889 1.000000 7.3639499E-13
 17.43124 1.000000 5.9930294E-13
 17.48358 1.000000 4.8734324E-13
 17.53593 1.000000 3.9598208E-13
 17.58827 1.000000 3.2149061E-13
 17.64062 1.000000 2.6080380E-13
 17.69297 1.000000 2.1140244E-13
 17.74531 1.000000 1.7122242E-13
 17.79766 1.000000 1.3856840E-13
 17.85001 1.000000 1.1205207E-13
 17.90235 1.000000 9.0537481E-14
 17.95470 1.000000 7.3095379E-14
 18.00704 1.000000 5.8966253E-14
 18.05939 1.000000 4.7530153E-14
 18.11174 1.000000 3.8281474E-14
 18.16408 1.000000 3.0807706E-14
 18.21643 1.000000 2.4773296E-14
 18.26877 1.000000 1.9904917E-14
 18.32112 1.000000 1.5980451E-14
 18.37347 1.000000 1.2819485E-14
 18.42581 1.000000 1.0275550E-14
 18.47816 1.000000 8.2298441E-15
 18.53050 1.000000 6.5861424E-15
 18.58285 1.000000 5.2665074E-15
 18.63520 1.000000 4.2079174E-15
 18.68754 1.000000 3.3594159E-15
 18.73989 1.000000 2.6798676E-15
 18.79223 1.000000 2.1360714E-15
 18.84458 1.000000 1.7012585E-15
 18.89692 1.000000 1.3538698E-15
 18.94927 1.000000 1.0765577E-15
 19.00162 1.000000 8.5535833E-16
 19.05396 1.000000 6.7906705E-16
 19.10631 1.000000 5.3867807E-16
 19.15866 1.000000 4.2697232E-16
 19.21100 1.000000 3.3815998E-16
 19.26335 1.000000 2.6760659E-16
 19.31569 1.000000 2.1160461E-16
 19.36804 1.000000 1.6718818E-16
 19.42039 1.000000 1.3198911E-16
 19.47273 1.000000 1.0411766E-16
 19.52508 1.000000 8.2065899E-17
 19.57743 1.000000 6.4632829E-17
 19.62977 1.000000 5.0862264E-17
 19.68212 1.000000 3.9993739E-17
 19.73446 1.000000 3.1422477E-17
 19.78681 1.000000 2.4668394E-17
 19.83916 1.000000 1.9350559E-17
 19.89150 1.000000 1.5167005E-17
 19.94385 1.000000 1.1878408E-17
 19.99619 1.000000 9.2954132E-18
 20.04854 1.000000 7.2683020E-18
 20.10089 1.000000 5.6787057E-18
 20.15323 1.000000 4.4332050E-18
 20.20558 1.000000 3.4581193E-18
 20.25792 1.000000 2.6953447E-18
 20.31027 1.000000 2.0991203E-18
 20.36262 1.000000 1.6334875E-18
 20.41496 1.000000 1.2701296E-18
 20.46731 1.000000 9.8680724E-19
 20.51966 1.000000 7.6607047E-19
 20.57200 1.000000 5.9423595E-19
 20.62435 1.000000 4.6057411E-19
 20.67669 1.000000 3.5669238E-19
 20.72904 1.000000 2.7602089E-19
 20.78139 1.000000 2.1342263E-19
 20.83373 1.000000 1.6488939E-19
 20.88608 1.000000 1.2729131E-19
 20.93842 1.000000 9.8187276E-20
 20.99077 1.000000 7.5676686E-20
 21.04311 1.000000 5.8281104E-20
 21.09546 1.000000 4.4847733E-20
 21.14781 1.000000 3.4483415E-20
 21.20015 1.000000 2.6492758E-20
 21.25250 1.000000 2.0337748E-20
 21.30485 1.000000 1.5600035E-20
 21.35719 1.000000 1.1956537E-20
 21.40954 1.000000 9.1565962E-21
 21.46188 1.000000 7.0067998E-21
 21.51423 1.000000 5.3573604E-21
 21.56657 1.000000 4.0930056E-21
 21.61892 1.000000 3.1245031E-21
 21.67127 1.000000 2.3832889E-21
 21.72361 1.000000 1.8164335E-21
 21.77596 1.000000 1.3833148E-21
 21.82831 1.000000 1.0526114E-21
 21.88065 1.000000 8.0033869E-22
 21.93300 1.000000 6.0803460E-22
 21.98534 1.000000 4.6157239E-22
 22.03769 1.000000 3.5010384E-22
 22.09003 1.000000 2.6534706E-22
 22.14238 1.000000 2.0094497E-22
 22.19473 1.000000 1.5205432E-22
 22.24707 1.000000 1.1496548E-22
 22.29942 1.000000 8.6853699E-23
 22.35177 1.000000 6.5564357E-23
 22.40411 1.000000 4.9453204E-23
 22.45646 1.000000 3.7271611E-23
 22.50880 1.000000 2.8067949E-23
 22.56115 1.000000 2.1120306E-23
 22.61350 1.000000 1.5879442E-23
 22.66584 1.000000 1.1929730E-23
 22.71819 1.000000 8.9551561E-24
 22.77053 1.000000 6.7169597E-24
 22.82288 1.000000 5.0340721E-24
 22.87523 1.000000 3.7698566E-24
 22.92757 1.000000 2.8208222E-24
 22.97992 1.000000 2.1090427E-24
 23.03226 1.000000 1.5755919E-24
 23.08461 1.000000 1.1761404E-24
 23.13696 1.000000 8.7724340E-25
 23.18930 1.000000 6.5379470E-25
 23.24165 1.000000 4.8686454E-25
 23.29399 1.000000 3.6227106E-25
 23.34634 1.000000 2.6934334E-25
 23.39869 1.000000 2.0009560E-25
 23.45103 1.000000 1.4853006E-25
 23.50338 1.000000 1.1016657E-25
 23.55573 1.000000 8.1645538E-26
 23.60807 1.000000 6.0459865E-26
 23.66042 1.000000 4.4736360E-26
 23.71276 1.000000 3.3075101E-26
 23.76511 1.000000 2.4434333E-26
 23.81746 1.000000 1.8036208E-26
 23.86980 1.000000 1.3302973E-26
 23.92215 1.000000 9.8039094E-27
 23.97449 1.000000 7.2195240E-27
 24.02684 1.000000 5.3120850E-27
 24.07919 1.000000 3.9055167E-27
 24.13153 1.000000 2.8690567E-27
 24.18388 1.000000 2.1060005E-27
 24.23623 1.000000 1.5446315E-27
 24.28857 1.000000 1.1320052E-27
 24.34092 1.000000 8.2893229E-28
 24.39326 1.000000 6.0652695E-28
 24.44561 1.000000 4.4342987E-28
 24.49795 1.000000 3.2393667E-28
 24.55030 1.000000 2.3645080E-28
 24.60265 1.000000 1.7245741E-28
 24.65499 1.000000 1.2568015E-28
 24.70734 1.000000 9.1519138E-29
 24.75969 1.000000 6.6589275E-29
 24.81203 1.000000 4.8412074E-29
 24.86438 1.000000 3.5168209E-29
 24.91672 1.000000 2.5527043E-29
 24.96907 1.000000 1.8514255E-29
 25.02142 1.000000 1.3417162E-29
 25.07376 1.000000 9.7156952E-30
 25.12611 1.000000 7.0296315E-30
 25.17845 1.000000 5.0822173E-30
 25.23080 1.000000 3.6712678E-30
 25.28314 1.000000 2.6499700E-30
 25.33549 1.000000 1.9112082E-30
 25.38784 1.000000 1.3773270E-30
 25.44018 1.000000 9.9177145E-31
 25.49253 1.000000 7.1358352E-31
 25.54488 1.000000 5.1301122E-31
 25.59722 1.000000 3.6852275E-31
 25.64957 1.000000 2.6451510E-31
 25.70191 1.000000 1.8971081E-31
 25.75426 1.000000 1.3595102E-31
 25.80660 1.000000 9.7349035E-32
 25.85895 1.000000 6.9650814E-32
 25.91130 1.000000 4.9794664E-32
 25.96364 1.000000 3.5569813E-32
 26.01599 1.000000 2.5388815E-32
 26.06834 1.000000 1.8106951E-32
 26.12068 1.000000 1.2903582E-32
 26.17303 1.000000 9.1879952E-33
 26.22538 1.000000 6.5370732E-33
 26.27772 1.000000 4.6473412E-33
 26.33007 1.000000 3.3012212E-33
 26.38241 1.000000 2.3431498E-33
 26.43476 1.000000 1.6617828E-33
 26.48710 1.000000 1.1776256E-33
 26.53945 1.000000 8.3384564E-34
 26.59180 1.000000 5.8996032E-34
 26.64414 1.000000 4.1706654E-34
 26.69649 1.000000 2.9461169E-34
 26.74883 1.000000 2.0793939E-34
 26.80118 1.000000 1.4665119E-34
 26.85353 1.000000 1.0334271E-34
 26.90587 1.000000 7.2766734E-35
 26.95822 1.000000 5.1195448E-35
 27.01056 1.000000 3.5990552E-35
 27.06291 1.000000 2.5281015E-35
 27.11526 1.000000 1.7744178E-35
 27.16760 1.000000 1.2444172E-35
 27.21995 1.000000 8.7203694E-36
 27.27229 1.000000 6.1058932E-36
 27.32464 1.000000 4.2719118E-36
 27.37699 1.000000 2.9863508E-36
 27.42933 1.000000 2.0860338E-36
 27.48168 1.000000 1.4559418E-36
 27.53403 1.000000 1.0153650E-36
 27.58637 1.000000 7.0755304E-37
 27.63872 1.000000 4.9264941E-37
 27.69106 1.000000 3.4275384E-37
 27.74341 1.000000 2.3826968E-37
 27.79576 1.000000 1.6550609E-37
 27.84810 1.000000 1.1487035E-37
 27.90045 1.000000 7.9663739E-38
 27.95280 1.000000 5.5202090E-38
 28.00514 1.000000 3.8221912E-38
 28.05749 1.000000 2.6443245E-38
 28.10983 1.000000 1.8280125E-38
 28.16218 1.000000 1.2626578E-38
 28.21452 1.000000 0.0000000E+00
 28.26687 1.000000 0.0000000E+00
 28.31922 1.000000 0.0000000E+00
 28.37156 1.000000 0.0000000E+00
 28.42391 1.000000 0.0000000E+00
 28.47626 1.000000 0.0000000E+00
 28.52860 1.000000 0.0000000E+00
 28.58095 1.000000 0.0000000E+00
 28.63329 1.000000 0.0000000E+00
 28.68564 1.000000 0.0000000E+00
 28.73798 1.000000 0.0000000E+00
 28.79033 1.000000 0.0000000E+00
 28.84268 1.000000 0.0000000E+00
 28.89502 1.000000 0.0000000E+00
 28.94737 1.000000 0.0000000E+00
 28.99972 1.000000 0.0000000E+00
 29.05206 1.000000 0.0000000E+00
 29.10441 1.000000 0.0000000E+00
 29.15675 1.000000 0.0000000E+00
 29.20910 1.000000 0.0000000E+00
 29.26145 1.000000 0.0000000E+00
 29.31379 1.000000 0.0000000E+00
 29.36614 1.000000 0.0000000E+00
 29.41848 1.000000 0.0000000E+00
 29.47083 1.000000 0.0000000E+00
 29.52317 1.000000 0.0000000E+00
 29.57552 1.000000 0.0000000E+00
 29.62787 1.000000 0.0000000E+00
 29.68021 1.000000 0.0000000E+00
 29.73256 1.000000 0.0000000E+00
 29.78491 1.000000 0.0000000E+00
 29.83725 1.000000 0.0000000E+00
 29.88960 1.000000 0.0000000E+00
 29.94194 1.000000 0.0000000E+00
 29.99429 1.000000 0.0000000E+00
 30.04663 1.000000 0.0000000E+00
 30.09898 1.000000 0.0000000E+00
 30.15133 1.000000 0.0000000E+00
 30.20367 1.000000 0.0000000E+00
 30.25602 1.000000 0.0000000E+00
 30.30837 1.000000 0.0000000E+00
 30.36071 1.000000 0.0000000E+00
 30.41306 1.000000 0.0000000E+00
 30.46541 1.000000 0.0000000E+00
 30.51775 1.000000 0.0000000E+00
 30.57010 1.000000 0.0000000E+00
 30.62244 1.000000 0.0000000E+00
 30.67479 1.000000 0.0000000E+00
 30.72713 1.000000 0.0000000E+00
 30.77948 1.000000 0.0000000E+00
 30.83183 1.000000 0.0000000E+00
 30.88417 1.000000 0.0000000E+00
 30.93652 1.000000 0.0000000E+00
 30.98886 1.000000 0.0000000E+00
 31.04121 1.000000 0.0000000E+00
 31.09356 1.000000 0.0000000E+00
 31.14590 1.000000 0.0000000E+00
 31.19825 1.000000 0.0000000E+00
 31.25060 1.000000 0.0000000E+00
 31.30294 1.000000 0.0000000E+00
 31.35529 1.000000 0.0000000E+00
 31.40763 1.000000 0.0000000E+00
 31.45998 1.000000 0.0000000E+00
 31.51233 1.000000 0.0000000E+00
 31.56467 1.000000 0.0000000E+00
 31.61702 1.000000 0.0000000E+00
 31.66936 1.000000 0.0000000E+00
 31.72171 1.000000 0.0000000E+00
 31.77406 1.000000 0.0000000E+00
 31.82640 1.000000 0.0000000E+00
 31.87875 1.000000 0.0000000E+00
 31.93109 1.000000 0.0000000E+00
 31.98344 1.000000 0.0000000E+00
 32.03579 1.000000 0.0000000E+00
 32.08813 1.000000 0.0000000E+00
 32.14048 1.000000 0.0000000E+00
 32.19283 1.000000 0.0000000E+00
 32.24517 1.000000 0.0000000E+00
 32.29752 1.000000 0.0000000E+00
 32.34986 1.000000 0.0000000E+00
 32.40221 1.000000 0.0000000E+00
 32.45456 1.000000 0.0000000E+00
 32.50690 1.000000 0.0000000E+00
 32.55925 1.000000 0.0000000E+00
 32.61160 1.000000 0.0000000E+00
 32.66394 1.000000 0.0000000E+00
 32.71629 1.000000 0.0000000E+00
 32.76863 1.000000 0.0000000E+00
 32.82098 1.000000 0.0000000E+00
 32.87333 1.000000 0.0000000E+00
 32.92567 1.000000 0.0000000E+00
 32.97802 1.000000 0.0000000E+00
 33.03036 1.000000 0.0000000E+00
 33.08271 1.000000 0.0000000E+00
 33.13505 1.000000 0.0000000E+00
 33.18740 1.000000 0.0000000E+00
 33.23975 1.000000 0.0000000E+00
 33.29209 1.000000 0.0000000E+00
 33.34444 1.000000 0.0000000E+00
 33.39679 1.000000 0.0000000E+00
 33.44913 1.000000 0.0000000E+00
 33.50148 1.000000 0.0000000E+00
 33.55382 1.000000 0.0000000E+00
 33.60617 1.000000 0.0000000E+00
 33.65851 1.000000 0.0000000E+00
 33.71086 1.000000 0.0000000E+00
 33.76321 1.000000 0.0000000E+00
 33.81555 1.000000 0.0000000E+00
 33.86790 1.000000 0.0000000E+00
 33.92025 1.000000 0.0000000E+00
 33.97259 1.000000 0.0000000E+00
 34.02494 1.000000 0.0000000E+00
 34.07729 1.000000 0.0000000E+00
 34.12963 1.000000 0.0000000E+00
 34.18198 1.000000 0.0000000E+00
 34.23432 1.000000 0.0000000E+00
 34.28667 1.000000 0.0000000E+00
 34.33901 1.000000 0.0000000E+00
 34.39136 1.000000 0.0000000E+00
 34.44371 1.000000 0.0000000E+00
 34.49605 1.000000 0.0000000E+00
 34.54840 1.000000 0.0000000E+00
 34.60074 1.000000 0.0000000E+00
 34.65309 1.000000 0.0000000E+00
 34.70544 1.000000 0.0000000E+00
 34.75778 1.000000 0.0000000E+00
 34.81013 1.000000 0.0000000E+00
 34.86247 1.000000 0.0000000E+00
 34.91482 1.000000 0.0000000E+00
 34.96716 1.000000 0.0000000E+00
 35.01951 1.000000 0.0000000E+00
 35.07186 1.000000 0.0000000E+00
 35.12420 1.000000 0.0000000E+00
 35.17655 1.000000 0.0000000E+00
 35.22890 1.000000 0.0000000E+00
 35.28124 1.000000 0.0000000E+00
 35.33359 1.000000 0.0000000E+00
 35.38594 1.000000 0.0000000E+00
 35.43828 1.000000 0.0000000E+00
 35.49063 1.000000 0.0000000E+00
 35.54297 1.000000 0.0000000E+00
 35.59532 1.000000 0.0000000E+00
 35.64766 1.000000 0.0000000E+00
 35.70001 1.000000 0.0000000E+00
 35.75236 1.000000 0.0000000E+00
 35.80470 1.000000 0.0000000E+00
 35.85705 1.000000 0.0000000E+00
 35.90940 1.000000 0.0000000E+00
 35.96174 1.000000 0.0000000E+00
 36.01409 1.000000 0.0000000E+00
 36.06643 1.000000 0.0000000E+00
 36.11878 1.000000 0.0000000E+00
 36.17112 1.000000 0.0000000E+00
 36.22347 1.000000 0.0000000E+00
 36.27582 1.000000 0.0000000E+00
 36.32816 1.000000 0.0000000E+00
 36.38051 1.000000 0.0000000E+00
 36.43285 1.000000 0.0000000E+00
 36.48520 1.000000 0.0000000E+00
 36.53755 1.000000 0.0000000E+00
 36.58989 1.000000 0.0000000E+00
 36.64224 1.000000 0.0000000E+00
 36.69459 1.000000 0.0000000E+00
 36.74693 1.000000 0.0000000E+00
 36.79928 1.000000 0.0000000E+00
 36.85162 1.000000 0.0000000E+00
 36.90397 1.000000 0.0000000E+00
 36.95631 1.000000 0.0000000E+00
 37.00866 1.000000 0.0000000E+00
 37.06101 1.000000 0.0000000E+00
 37.11335 1.000000 0.0000000E+00
 37.16570 1.000000 0.0000000E+00
 37.21805 1.000000 0.0000000E+00
 37.27039 1.000000 0.0000000E+00
 37.32274 1.000000 0.0000000E+00
 37.37508 1.000000 0.0000000E+00
 37.42743 1.000000 0.0000000E+00
 37.47977 1.000000 0.0000000E+00
 37.53212 1.000000 0.0000000E+00
 37.58447 1.000000 0.0000000E+00
 37.63681 1.000000 0.0000000E+00
 37.68916 1.000000 0.0000000E+00
 37.74151 1.000000 0.0000000E+00
 37.79385 1.000000 0.0000000E+00
 37.84620 1.000000 0.0000000E+00
 37.89854 1.000000 0.0000000E+00
 37.95089 1.000000 0.0000000E+00
 38.00324 1.000000 0.0000000E+00
 38.05558 1.000000 0.0000000E+00
 38.10793 1.000000 0.0000000E+00
 38.16027 1.000000 0.0000000E+00
 38.21262 1.000000 0.0000000E+00
 38.26497 1.000000 0.0000000E+00
 38.31731 1.000000 0.0000000E+00
 38.36966 1.000000 0.0000000E+00
 38.42200 1.000000 0.0000000E+00
 38.47435 1.000000 0.0000000E+00
 38.52670 1.000000 0.0000000E+00
 38.57904 1.000000 0.0000000E+00
 38.63139 1.000000 0.0000000E+00
 38.68373 1.000000 0.0000000E+00
 38.73608 1.000000 0.0000000E+00
 38.78843 1.000000 0.0000000E+00
 38.84077 1.000000 0.0000000E+00
 38.89312 1.000000 0.0000000E+00
 38.94547 1.000000 0.0000000E+00
 38.99781 1.000000 0.0000000E+00
 39.05016 1.000000 0.0000000E+00
 39.10250 1.000000 0.0000000E+00
 39.15485 1.000000 0.0000000E+00
 39.20720 1.000000 0.0000000E+00
 39.25954 1.000000 0.0000000E+00
 39.31189 1.000000 0.0000000E+00
 39.36423 1.000000 0.0000000E+00
 39.41658 1.000000 0.0000000E+00
 39.46893 1.000000 0.0000000E+00
 39.52127 1.000000 0.0000000E+00
 39.57362 1.000000 0.0000000E+00
 39.62597 1.000000 0.0000000E+00
 39.67831 1.000000 0.0000000E+00
 39.73066 1.000000 0.0000000E+00
 39.78300 1.000000 0.0000000E+00
 39.83535 1.000000 0.0000000E+00
 39.88770 1.000000 0.0000000E+00
 39.94004 1.000000 0.0000000E+00
 39.99239 1.000000 0.0000000E+00
 40.04473 1.000000 0.0000000E+00
 40.09708 1.000000 0.0000000E+00
 40.14943 1.000000 0.0000000E+00
 40.20177 1.000000 0.0000000E+00
 40.25412 1.000000 0.0000000E+00
 40.30646 1.000000 0.0000000E+00
 40.35881 1.000000 0.0000000E+00
 40.41116 1.000000 0.0000000E+00
 40.46350 1.000000 0.0000000E+00
 40.51585 1.000000 0.0000000E+00
 40.56820 1.000000 0.0000000E+00
 40.62054 1.000000 0.0000000E+00
 40.67289 1.000000 0.0000000E+00
 40.72523 1.000000 0.0000000E+00
 40.77758 1.000000 0.0000000E+00
 40.82993 1.000000 0.0000000E+00
 40.88227 1.000000 0.0000000E+00
 40.93462 1.000000 0.0000000E+00
 40.98696 1.000000 0.0000000E+00
 41.03931 1.000000 0.0000000E+00
 41.09165 1.000000 0.0000000E+00
 41.14400 1.000000 0.0000000E+00
 41.19635 1.000000 0.0000000E+00
 41.24869 1.000000 0.0000000E+00
 41.30104 1.000000 0.0000000E+00
 41.35339 1.000000 0.0000000E+00
 41.40573 1.000000 0.0000000E+00
 41.45808 1.000000 0.0000000E+00
 41.51042 1.000000 0.0000000E+00
 41.56277 1.000000 0.0000000E+00
 41.61511 1.000000 0.0000000E+00
 41.66746 1.000000 0.0000000E+00
 41.71981 1.000000 0.0000000E+00
 41.77215 1.000000 0.0000000E+00
 41.82450 1.000000 0.0000000E+00
 41.87685 1.000000 0.0000000E+00
 41.92919 1.000000 0.0000000E+00
 41.98154 1.000000 0.0000000E+00
 42.03388 1.000000 0.0000000E+00
 42.08623 1.000000 0.0000000E+00
 42.13858 1.000000 0.0000000E+00
 42.19092 1.000000 0.0000000E+00
 42.24327 1.000000 0.0000000E+00
 42.29561 1.000000 0.0000000E+00
 42.34796 1.000000 0.0000000E+00
 42.40031 1.000000 0.0000000E+00
 42.45265 1.000000 0.0000000E+00
 42.50500 1.000000 0.0000000E+00
 42.55735 1.000000 0.0000000E+00
 42.60969 1.000000 0.0000000E+00
 42.66203 1.000000 0.0000000E+00
 42.71438 1.000000 0.0000000E+00
 42.76673 1.000000 0.0000000E+00
 42.81908 1.000000 0.0000000E+00
 42.87142 1.000000 0.0000000E+00
 42.92377 1.000000 0.0000000E+00
 42.97611 1.000000 0.0000000E+00
 43.02846 1.000000 0.0000000E+00
 43.08080 1.000000 0.0000000E+00
 43.13315 1.000000 0.0000000E+00
 43.18550 1.000000 0.0000000E+00
 43.23784 1.000000 0.0000000E+00
 43.29019 1.000000 0.0000000E+00
 43.34253 1.000000 0.0000000E+00
 43.39488 1.000000 0.0000000E+00
 43.44723 1.000000 0.0000000E+00
 43.49958 1.000000 0.0000000E+00
 43.55192 1.000000 0.0000000E+00
 43.60426 1.000000 0.0000000E+00
 43.65661 1.000000 0.0000000E+00
 43.70896 1.000000 0.0000000E+00
 43.76130 1.000000 0.0000000E+00
 43.81365 1.000000 0.0000000E+00
 43.86600 1.000000 0.0000000E+00
 43.91834 1.000000 0.0000000E+00
 43.97068 1.000000 0.0000000E+00
 44.02303 1.000000 0.0000000E+00
 44.07538 1.000000 0.0000000E+00
 44.12773 1.000000 0.0000000E+00
 44.18007 1.000000 0.0000000E+00
 44.23242 1.000000 0.0000000E+00
 44.28476 1.000000 0.0000000E+00
 44.33711 1.000000 0.0000000E+00
 44.38945 1.000000 0.0000000E+00
 44.44180 1.000000 0.0000000E+00
 44.49415 1.000000 0.0000000E+00
 44.54649 1.000000 0.0000000E+00
 44.59884 1.000000 0.0000000E+00
 44.65118 1.000000 0.0000000E+00
 44.70353 1.000000 0.0000000E+00
 44.75588 1.000000 0.0000000E+00
 44.80823 1.000000 0.0000000E+00
 44.86057 1.000000 0.0000000E+00
 44.91291 1.000000 0.0000000E+00
 44.96526 1.000000 0.0000000E+00
 45.01761 1.000000 0.0000000E+00
 45.06995 1.000000 0.0000000E+00
 45.12230 1.000000 0.0000000E+00
 45.17465 1.000000 0.0000000E+00
 45.22699 1.000000 0.0000000E+00
 45.27934 1.000000 0.0000000E+00
 45.33168 1.000000 0.0000000E+00
 45.38403 1.000000 0.0000000E+00
 45.43638 1.000000 0.0000000E+00
 45.48872 1.000000 0.0000000E+00
 45.54107 1.000000 0.0000000E+00
 45.59341 1.000000 0.0000000E+00
 45.64576 1.000000 0.0000000E+00
 45.69810 1.000000 0.0000000E+00
 45.75045 1.000000 0.0000000E+00
 45.80280 1.000000 0.0000000E+00
 45.85515 1.000000 0.0000000E+00
 45.90749 1.000000 0.0000000E+00
 45.95984 1.000000 0.0000000E+00
 46.01218 1.000000 0.0000000E+00
 46.06453 1.000000 0.0000000E+00
 46.11688 1.000000 0.0000000E+00
 46.16922 1.000000 0.0000000E+00
 46.22157 1.000000 0.0000000E+00
 46.27391 1.000000 0.0000000E+00
 46.32626 1.000000 0.0000000E+00
 46.37860 1.000000 0.0000000E+00
 46.43095 1.000000 0.0000000E+00
 46.48330 1.000000 0.0000000E+00
 46.53564 1.000000 0.0000000E+00
 46.58799 1.000000 0.0000000E+00
 46.64034 1.000000 0.0000000E+00
 46.69268 1.000000 0.0000000E+00
 46.74503 1.000000 0.0000000E+00
 46.79737 1.000000 0.0000000E+00
 46.84972 1.000000 0.0000000E+00
 46.90207 1.000000 0.0000000E+00
 46.95441 1.000000 0.0000000E+00
 47.00676 1.000000 0.0000000E+00
 47.05910 1.000000 0.0000000E+00
 47.11145 1.000000 0.0000000E+00
 47.16380 1.000000 0.0000000E+00
 47.21614 1.000000 0.0000000E+00
 47.26849 1.000000 0.0000000E+00
 47.32084 1.000000 0.0000000E+00
 47.37318 1.000000 0.0000000E+00
 47.42553 1.000000 0.0000000E+00
 47.47787 1.000000 0.0000000E+00
 47.53022 1.000000 0.0000000E+00
 47.58257 1.000000 0.0000000E+00
 47.63491 1.000000 0.0000000E+00
 47.68726 1.000000 0.0000000E+00
 47.73960 1.000000 0.0000000E+00
 47.79195 1.000000 0.0000000E+00
 47.84430 1.000000 0.0000000E+00
 47.89664 1.000000 0.0000000E+00
 47.94899 1.000000 0.0000000E+00
 48.00134 1.000000 0.0000000E+00
 48.05368 1.000000 0.0000000E+00
 48.10602 1.000000 0.0000000E+00
 48.15837 1.000000 0.0000000E+00
 48.21072 1.000000 0.0000000E+00
 48.26307 1.000000 0.0000000E+00
 48.31541 1.000000 0.0000000E+00
 48.36776 1.000000 0.0000000E+00
 48.42010 1.000000 0.0000000E+00
 48.47245 1.000000 0.0000000E+00
 48.52480 1.000000 0.0000000E+00
 48.57714 1.000000 0.0000000E+00
 48.62949 1.000000 0.0000000E+00
 48.68184 1.000000 0.0000000E+00
 48.73418 1.000000 0.0000000E+00
 48.78652 1.000000 0.0000000E+00
 48.83887 1.000000 0.0000000E+00
 48.89122 1.000000 0.0000000E+00
 48.94357 1.000000 0.0000000E+00
 48.99591 1.000000 0.0000000E+00
 49.04826 1.000000 0.0000000E+00
 49.10060 1.000000 0.0000000E+00
 49.15295 1.000000 0.0000000E+00
 49.20529 1.000000 0.0000000E+00
 49.25764 1.000000 0.0000000E+00
 49.30999 1.000000 0.0000000E+00
 49.36233 1.000000 0.0000000E+00
 49.41468 1.000000 0.0000000E+00
 49.46702 1.000000 0.0000000E+00
 49.51937 1.000000 0.0000000E+00
 49.57172 1.000000 0.0000000E+00
 49.62406 1.000000 0.0000000E+00
 49.67641 1.000000 0.0000000E+00
 49.72875 1.000000 0.0000000E+00
 49.78110 1.000000 0.0000000E+00
 49.83345 1.000000 0.0000000E+00
 49.88579 1.000000 0.0000000E+00
 49.93814 1.000000 0.0000000E+00
 49.99049 1.000000 0.0000000E+00
 50.04283 1.000000 0.0000000E+00
 50.09517 1.000000 0.0000000E+00
 50.14752 1.000000 0.0000000E+00
 50.19987 1.000000 0.0000000E+00
 50.25222 1.000000 0.0000000E+00
 50.30456 1.000000 0.0000000E+00
 50.35691 1.000000 0.0000000E+00
 50.40925 1.000000 0.0000000E+00
 50.46160 1.000000 0.0000000E+00
 50.51394 1.000000 0.0000000E+00
 50.56629 1.000000 0.0000000E+00
 50.61864 1.000000 0.0000000E+00
 50.67098 1.000000 0.0000000E+00
 50.72333 1.000000 0.0000000E+00
 50.77567 1.000000 0.0000000E+00
 50.82802 1.000000 0.0000000E+00
 50.88037 1.000000 0.0000000E+00
 50.93271 1.000000 0.0000000E+00
 50.98506 1.000000 0.0000000E+00
 51.03741 1.000000 0.0000000E+00
 51.08975 1.000000 0.0000000E+00
 51.14210 1.000000 0.0000000E+00
 51.19444 1.000000 0.0000000E+00
 51.24679 1.000000 0.0000000E+00
 51.29914 1.000000 0.0000000E+00
 51.35148 1.000000 0.0000000E+00
 51.40383 1.000000 0.0000000E+00
 51.45617 1.000000 0.0000000E+00
 51.50852 1.000000 0.0000000E+00
 51.56087 1.000000 0.0000000E+00
 51.61321 1.000000 0.0000000E+00
 51.66556 1.000000 0.0000000E+00
 51.71790 1.000000 0.0000000E+00
 51.77025 1.000000 0.0000000E+00
 51.82259 1.000000 0.0000000E+00
 51.87494 1.000000 0.0000000E+00
 51.92729 1.000000 0.0000000E+00
 51.97964 1.000000 0.0000000E+00
 52.03198 1.000000 0.0000000E+00
 52.08432 1.000000 0.0000000E+00
 52.13667 1.000000 0.0000000E+00
 52.18902 1.000000 0.0000000E+00
 52.24136 1.000000 0.0000000E+00
 52.29371 1.000000 0.0000000E+00
 52.34606 1.000000 0.0000000E+00
 52.39840 1.000000 0.0000000E+00
 52.45075 1.000000 0.0000000E+00
 52.50309 1.000000 0.0000000E+00
 52.55544 1.000000 0.0000000E+00
 52.60779 1.000000 0.0000000E+00
 52.66013 1.000000 0.0000000E+00
 52.71248 1.000000 0.0000000E+00
 52.76482 1.000000 0.0000000E+00
 52.81717 1.000000 0.0000000E+00
 52.86952 1.000000 0.0000000E+00
 52.92186 1.000000 0.0000000E+00
 52.97421 1.000000 0.0000000E+00
 53.02655 1.000000 0.0000000E+00
 53.07890 1.000000 0.0000000E+00
 53.13124 1.000000 0.0000000E+00
 53.18359 1.000000 0.0000000E+00
 53.23594 1.000000 0.0000000E+00
 53.28829 1.000000 0.0000000E+00
 53.34063 1.000000 0.0000000E+00
 53.39297 1.000000 0.0000000E+00
 53.44532 1.000000 0.0000000E+00
 53.49767 1.000000 0.0000000E+00
 53.55001 1.000000 0.0000000E+00
 53.60236 1.000000 0.0000000E+00
 53.65471 1.000000 0.0000000E+00
 53.70705 1.000000 0.0000000E+00
 53.75940 1.000000 0.0000000E+00
 53.81174 1.000000 0.0000000E+00
 53.86409 1.000000 0.0000000E+00
 53.91644 1.000000 0.0000000E+00
 53.96879 1.000000 0.0000000E+00
 54.02113 1.000000 0.0000000E+00
 54.07347 1.000000 0.0000000E+00
 54.12582 1.000000 0.0000000E+00
 54.17817 1.000000 0.0000000E+00
 54.23051 1.000000 0.0000000E+00
 54.28286 1.000000 0.0000000E+00
 54.33521 1.000000 0.0000000E+00
 54.38755 1.000000 0.0000000E+00
 54.43990 1.000000 0.0000000E+00
 54.49224 1.000000 0.0000000E+00
 54.54459 1.000000 0.0000000E+00
 54.59694 1.000000 0.0000000E+00
 54.64928 1.000000 0.0000000E+00
 54.70163 1.000000 0.0000000E+00
 54.75397 1.000000 0.0000000E+00
 54.80632 1.000000 0.0000000E+00
 54.85867 1.000000 0.0000000E+00
 54.91101 1.000000 0.0000000E+00
 54.96336 1.000000 0.0000000E+00
 55.01571 1.000000 0.0000000E+00
 55.06805 1.000000 0.0000000E+00
 55.12040 1.000000 0.0000000E+00
 55.17274 1.000000 0.0000000E+00
 55.22509 1.000000 0.0000000E+00
 55.27744 1.000000 0.0000000E+00
 55.32978 1.000000 0.0000000E+00
 55.38213 1.000000 0.0000000E+00
 55.43447 1.000000 0.0000000E+00
 55.48682 1.000000 0.0000000E+00
 55.53917 1.000000 0.0000000E+00
 55.59151 1.000000 0.0000000E+00
 55.64386 1.000000 0.0000000E+00
 55.69621 1.000000 0.0000000E+00
 55.74855 1.000000 0.0000000E+00
 55.80090 1.000000 0.0000000E+00
 55.85324 1.000000 0.0000000E+00
 55.90559 1.000000 0.0000000E+00
 55.95793 1.000000 0.0000000E+00
 56.01028 1.000000 0.0000000E+00
 56.06263 1.000000 0.0000000E+00
 56.11497 1.000000 0.0000000E+00
 56.16732 1.000000 0.0000000E+00
 56.21966 1.000000 0.0000000E+00
 56.27201 1.000000 0.0000000E+00
 56.32436 1.000000 0.0000000E+00
 56.37671 1.000000 0.0000000E+00
 56.42905 1.000000 0.0000000E+00
 56.48140 1.000000 0.0000000E+00
 56.53374 1.000000 0.0000000E+00
 56.58609 1.000000 0.0000000E+00
 56.63843 1.000000 0.0000000E+00
 56.69078 1.000000 0.0000000E+00
 56.74313 1.000000 0.0000000E+00
 56.79548 1.000000 0.0000000E+00
 56.84782 1.000000 0.0000000E+00
 56.90016 1.000000 0.0000000E+00
 56.95251 1.000000 0.0000000E+00
 57.00486 1.000000 0.0000000E+00
 57.05720 1.000000 0.0000000E+00
 57.10955 1.000000 0.0000000E+00
 57.16190 1.000000 0.0000000E+00
 57.21424 1.000000 0.0000000E+00
 57.26658 1.000000 0.0000000E+00
 57.31893 1.000000 0.0000000E+00
 57.37128 1.000000 0.0000000E+00
 57.42363 1.000000 0.0000000E+00
 57.47597 1.000000 0.0000000E+00
 57.52832 1.000000 0.0000000E+00
 57.58066 1.000000 0.0000000E+00
 57.63301 1.000000 0.0000000E+00
 57.68536 1.000000 0.0000000E+00
 57.73770 1.000000 0.0000000E+00
 57.79005 1.000000 0.0000000E+00
 57.84239 1.000000 0.0000000E+00
 57.89474 1.000000 0.0000000E+00
 57.94708 1.000000 0.0000000E+00
 57.99943 1.000000 0.0000000E+00
 58.05178 1.000000 0.0000000E+00
 58.10413 1.000000 0.0000000E+00
 58.15647 1.000000 0.0000000E+00
 58.20881 1.000000 0.0000000E+00
 58.26116 1.000000 0.0000000E+00
 58.31351 1.000000 0.0000000E+00
 58.36585 1.000000 0.0000000E+00
 58.41820 1.000000 0.0000000E+00
 58.47055 1.000000 0.0000000E+00
 58.52289 1.000000 0.0000000E+00
 58.57523 1.000000 0.0000000E+00
 58.62758 1.000000 0.0000000E+00
 58.67993 1.000000 0.0000000E+00
 58.73228 1.000000 0.0000000E+00
 58.78462 1.000000 0.0000000E+00
 58.83697 1.000000 0.0000000E+00
 58.88931 1.000000 0.0000000E+00
 58.94166 1.000000 0.0000000E+00
 58.99401 1.000000 0.0000000E+00
 59.04635 1.000000 0.0000000E+00
 59.09870 1.000000 0.0000000E+00
 59.15104 1.000000 0.0000000E+00
 59.20339 1.000000 0.0000000E+00
 59.25573 1.000000 0.0000000E+00
 59.30808 1.000000 0.0000000E+00
 59.36043 1.000000 0.0000000E+00
 59.41278 1.000000 0.0000000E+00
 59.46512 1.000000 0.0000000E+00
 59.51746 1.000000 0.0000000E+00
 59.56981 1.000000 0.0000000E+00
 59.62216 1.000000 0.0000000E+00
 59.67450 1.000000 0.0000000E+00
 59.72685 1.000000 0.0000000E+00
 59.77920 1.000000 0.0000000E+00
 59.83154 1.000000 0.0000000E+00
 59.88389 1.000000 0.0000000E+00
 59.93623 1.000000 0.0000000E+00
 59.98858 1.000000 0.0000000E+00
 60.04093 1.000000 0.0000000E+00
 60.09327 1.000000 0.0000000E+00
 60.14562 1.000000 0.0000000E+00
 60.19796 1.000000 0.0000000E+00
 60.25031 1.000000 0.0000000E+00
 60.30266 1.000000 0.0000000E+00
 60.35500 1.000000 0.0000000E+00
 60.40735 1.000000 0.0000000E+00
 60.45970 1.000000 0.0000000E+00
 60.51204 1.000000 0.0000000E+00
 60.56438 1.000000 0.0000000E+00
 60.61673 1.000000 0.0000000E+00
 60.66908 1.000000 0.0000000E+00
 60.72143 1.000000 0.0000000E+00
 60.77377 1.000000 0.0000000E+00
 60.82612 1.000000 0.0000000E+00
 60.87846 1.000000 0.0000000E+00
 60.93081 1.000000 0.0000000E+00
 60.98315 1.000000 0.0000000E+00
 61.03550 1.000000 0.0000000E+00
 61.08785 1.000000 0.0000000E+00
 61.14019 1.000000 0.0000000E+00
 61.19254 1.000000 0.0000000E+00
 61.24488 1.000000 0.0000000E+00
 61.29723 1.000000 0.0000000E+00
 61.34958 1.000000 0.0000000E+00
 61.40192 1.000000 0.0000000E+00
 61.45427 1.000000 0.0000000E+00
 61.50661 1.000000 0.0000000E+00
 61.55896 1.000000 0.0000000E+00
 61.61131 1.000000 0.0000000E+00
 61.66365 1.000000 0.0000000E+00
 61.71600 1.000000 0.0000000E+00
 61.76835 1.000000 0.0000000E+00
 61.82069 1.000000 0.0000000E+00
 61.87304 1.000000 0.0000000E+00
 61.92538 1.000000 0.0000000E+00
 61.97773 1.000000 0.0000000E+00
 62.03008 1.000000 0.0000000E+00
 62.08242 1.000000 0.0000000E+00
 62.13477 1.000000 0.0000000E+00
 62.18711 1.000000 0.0000000E+00
 62.23946 1.000000 0.0000000E+00
 62.29181 1.000000 0.0000000E+00
 62.34415 1.000000 0.0000000E+00
 62.39650 1.000000 0.0000000E+00
 62.44885 1.000000 0.0000000E+00
 62.50119 1.000000 0.0000000E+00
 62.55354 1.000000 0.0000000E+00
 62.60588 1.000000 0.0000000E+00
 62.65823 1.000000 0.0000000E+00
 62.71058 1.000000 0.0000000E+00
 62.76292 1.000000 0.0000000E+00
 62.81527 1.000000 0.0000000E+00
 62.86761 1.000000 0.0000000E+00
 62.91996 1.000000 0.0000000E+00
 62.97231 1.000000 0.0000000E+00
 63.02465 1.000000 0.0000000E+00
 63.07700 1.000000 0.0000000E+00
 63.12934 1.000000 0.0000000E+00
 63.18169 1.000000 0.0000000E+00
 63.23404 1.000000 0.0000000E+00
 63.28638 1.000000 0.0000000E+00
 63.33873 1.000000 0.0000000E+00
 63.39107 1.000000 0.0000000E+00
 63.44342 1.000000 0.0000000E+00
 63.49577 1.000000 0.0000000E+00
 63.54811 1.000000 0.0000000E+00
 63.60046 1.000000 0.0000000E+00
 63.65281 1.000000 0.0000000E+00
 63.70515 1.000000 0.0000000E+00
 63.75750 1.000000 0.0000000E+00
 63.80984 1.000000 0.0000000E+00
 63.86219 1.000000 0.0000000E+00
 63.91454 1.000000 0.0000000E+00
 63.96688 1.000000 0.0000000E+00
 64.01923 1.000000 0.0000000E+00
 64.07157 1.000000 0.0000000E+00
 64.12392 1.000000 0.0000000E+00
 64.17627 1.000000 0.0000000E+00
 64.22861 1.000000 0.0000000E+00
 64.28095 1.000000 0.0000000E+00
 64.33331 1.000000 0.0000000E+00
 64.38565 1.000000 0.0000000E+00
 64.43800 1.000000 0.0000000E+00
 64.49034 1.000000 0.0000000E+00
 64.54269 1.000000 0.0000000E+00
 64.59503 1.000000 0.0000000E+00
 64.64738 1.000000 0.0000000E+00
 64.69972 1.000000 0.0000000E+00
 64.75207 1.000000 0.0000000E+00
 64.80442 1.000000 0.0000000E+00
 64.85677 1.000000 0.0000000E+00
 64.90911 1.000000 0.0000000E+00
 64.96146 1.000000 0.0000000E+00
 65.01380 1.000000 0.0000000E+00
 65.06615 1.000000 0.0000000E+00
 65.11849 1.000000 0.0000000E+00
 65.17084 1.000000 0.0000000E+00
 65.22319 1.000000 0.0000000E+00
 65.27554 1.000000 0.0000000E+00
 65.32787 1.000000 0.0000000E+00
 65.38023 1.000000 0.0000000E+00
 65.43257 1.000000 0.0000000E+00
 65.48492 1.000000 0.0000000E+00
 65.53726 1.000000 0.0000000E+00
 65.58961 1.000000 0.0000000E+00
 65.64195 1.000000 0.0000000E+00
 65.69431 1.000000 0.0000000E+00
 65.74665 1.000000 0.0000000E+00
 65.79899 1.000000 0.0000000E+00
 65.85134 1.000000 0.0000000E+00
 65.90369 1.000000 0.0000000E+00
 65.95603 1.000000 0.0000000E+00
 66.00838 1.000000 0.0000000E+00
 66.06072 1.000000 0.0000000E+00
 66.11307 1.000000 0.0000000E+00
 66.16542 1.000000 0.0000000E+00
 66.21776 1.000000 0.0000000E+00
 66.27010 1.000000 0.0000000E+00
 66.32246 1.000000 0.0000000E+00
 66.37480 1.000000 0.0000000E+00
 66.42715 1.000000 0.0000000E+00
 66.47949 1.000000 0.0000000E+00
 66.53184 1.000000 0.0000000E+00
 66.58418 1.000000 0.0000000E+00
 66.63653 1.000000 0.0000000E+00
 66.68887 1.000000 0.0000000E+00
 66.74122 1.000000 0.0000000E+00
 66.79357 1.000000 0.0000000E+00
 66.84592 1.000000 0.0000000E+00
 66.89826 1.000000 0.0000000E+00
 66.95061 1.000000 0.0000000E+00
 67.00295 1.000000 0.0000000E+00
 67.05530 1.000000 0.0000000E+00
 67.10764 1.000000 0.0000000E+00
 67.15999 1.000000 0.0000000E+00
 67.21233 1.000000 0.0000000E+00
 67.26469 1.000000 0.0000000E+00
 67.31702 1.000000 0.0000000E+00
 67.36938 1.000000 0.0000000E+00
 67.42172 1.000000 0.0000000E+00
 67.47407 1.000000 0.0000000E+00
 67.52641 1.000000 0.0000000E+00
 67.57876 1.000000 0.0000000E+00
 67.63110 1.000000 0.0000000E+00
 67.68345 1.000000 0.0000000E+00
 67.73579 1.000000 0.0000000E+00
 67.78814 1.000000 0.0000000E+00
 67.84049 1.000000 0.0000000E+00
 67.89284 1.000000 0.0000000E+00
 67.94518 1.000000 0.0000000E+00
 67.99753 1.000000 0.0000000E+00
 68.04987 1.000000 0.0000000E+00
 68.10222 1.000000 0.0000000E+00
 68.15457 1.000000 0.0000000E+00
 68.20691 1.000000 0.0000000E+00
 68.25925 1.000000 0.0000000E+00
 68.31161 1.000000 0.0000000E+00
 68.36395 1.000000 0.0000000E+00
 68.41630 1.000000 0.0000000E+00
 68.46864 1.000000 0.0000000E+00
 68.52099 1.000000 0.0000000E+00
 68.57333 1.000000 0.0000000E+00
 68.62568 1.000000 0.0000000E+00
 68.67802 1.000000 0.0000000E+00
 68.73037 1.000000 0.0000000E+00
 68.78272 1.000000 0.0000000E+00
 68.83506 1.000000 0.0000000E+00
 68.88741 1.000000 0.0000000E+00
 68.93976 1.000000 0.0000000E+00
 68.99210 1.000000 0.0000000E+00
 69.04445 1.000000 0.0000000E+00
 69.09679 1.000000 0.0000000E+00
 69.14914 1.000000 0.0000000E+00
 69.20148 1.000000 0.0000000E+00
 69.25383 1.000000 0.0000000E+00
 69.30618 1.000000 0.0000000E+00
 69.35853 1.000000 0.0000000E+00
 69.41087 1.000000 0.0000000E+00
 69.46322 1.000000 0.0000000E+00
 69.51556 1.000000 0.0000000E+00
 69.56791 1.000000 0.0000000E+00
 69.62025 1.000000 0.0000000E+00
 69.67260 1.000000 0.0000000E+00
 69.72495 1.000000 0.0000000E+00
 69.77729 1.000000 0.0000000E+00
 69.82964 1.000000 0.0000000E+00
 69.88199 1.000000 0.0000000E+00
 69.93433 1.000000 0.0000000E+00
 69.98668 1.000000 0.0000000E+00
 70.03902 1.000000 0.0000000E+00
 70.09137 1.000000 0.0000000E+00
 70.14371 1.000000 0.0000000E+00
 70.19606 1.000000 0.0000000E+00
 70.24841 1.000000 0.0000000E+00
 70.30076 1.000000 0.0000000E+00
 70.35310 1.000000 0.0000000E+00
 70.40544 1.000000 0.0000000E+00
 70.45779 1.000000 0.0000000E+00
 70.51014 1.000000 0.0000000E+00
 70.56248 1.000000 0.0000000E+00
 70.61483 1.000000 0.0000000E+00
 70.66718 1.000000 0.0000000E+00
 70.71952 1.000000 0.0000000E+00
 70.77187 1.000000 0.0000000E+00
 70.82421 1.000000 0.0000000E+00
 70.87656 1.000000 0.0000000E+00
 70.92891 1.000000 0.0000000E+00
 70.98125 1.000000 0.0000000E+00
 71.03360 1.000000 0.0000000E+00
 71.08595 1.000000 0.0000000E+00
 71.13829 1.000000 0.0000000E+00
 71.19064 1.000000 0.0000000E+00
 71.24298 1.000000 0.0000000E+00
 71.29533 1.000000 0.0000000E+00
 71.34768 1.000000 0.0000000E+00
 71.40002 1.000000 0.0000000E+00
 71.45236 1.000000 0.0000000E+00
 71.50471 1.000000 0.0000000E+00
 71.55706 1.000000 0.0000000E+00
 71.60941 1.000000 0.0000000E+00
 71.66175 1.000000 0.0000000E+00
 71.71410 1.000000 0.0000000E+00
 71.76644 1.000000 0.0000000E+00
 71.81879 1.000000 0.0000000E+00
 71.87113 1.000000 0.0000000E+00
 71.92348 1.000000 0.0000000E+00
 71.97583 1.000000 0.0000000E+00
 72.02818 1.000000 0.0000000E+00
 72.08052 1.000000 0.0000000E+00
 72.13287 1.000000 0.0000000E+00
 72.18521 1.000000 0.0000000E+00
 72.23756 1.000000 0.0000000E+00
 72.28991 1.000000 0.0000000E+00
 72.34225 1.000000 0.0000000E+00
 72.39459 1.000000 0.0000000E+00
 72.44695 1.000000 0.0000000E+00
 72.49929 1.000000 0.0000000E+00
 72.55164 1.000000 0.0000000E+00
 72.60398 1.000000 0.0000000E+00
 72.65633 1.000000 0.0000000E+00
 72.70867 1.000000 0.0000000E+00
 72.76102 1.000000 0.0000000E+00
 72.81336 1.000000 0.0000000E+00
 72.86571 1.000000 0.0000000E+00
 72.91806 1.000000 0.0000000E+00
 72.97040 1.000000 0.0000000E+00
 73.02275 1.000000 0.0000000E+00
 73.07510 1.000000 0.0000000E+00
 73.12744 1.000000 0.0000000E+00
 73.17979 1.000000 0.0000000E+00
 73.23213 1.000000 0.0000000E+00
 73.28448 1.000000 0.0000000E+00
 73.33682 1.000000 0.0000000E+00
 73.38918 1.000000 0.0000000E+00
 73.44151 1.000000 0.0000000E+00
 73.49387 1.000000 0.0000000E+00
 73.54621 1.000000 0.0000000E+00
 73.59856 1.000000 0.0000000E+00
 73.65090 1.000000 0.0000000E+00
 73.70325 1.000000 0.0000000E+00
 73.75559 1.000000 0.0000000E+00
 73.80795 1.000000 0.0000000E+00
 73.86028 1.000000 0.0000000E+00
 73.91263 1.000000 0.0000000E+00
 73.96498 1.000000 0.0000000E+00
 74.01733 1.000000 0.0000000E+00
 74.06967 1.000000 0.0000000E+00
 74.12202 1.000000 0.0000000E+00
 74.17436 1.000000 0.0000000E+00
 74.22671 1.000000 0.0000000E+00
 74.27905 1.000000 0.0000000E+00
 74.33140 1.000000 0.0000000E+00
 74.38374 1.000000 0.0000000E+00
 74.43610 1.000000 0.0000000E+00
 74.48843 1.000000 0.0000000E+00
 74.54079 1.000000 0.0000000E+00
 74.59313 1.000000 0.0000000E+00
 74.64548 1.000000 0.0000000E+00
 74.69782 1.000000 0.0000000E+00
 74.75017 1.000000 0.0000000E+00
 74.80251 1.000000 0.0000000E+00
 74.85486 1.000000 0.0000000E+00
 74.90721 1.000000 0.0000000E+00
 74.95955 1.000000 0.0000000E+00
 75.01190 1.000000 0.0000000E+00
 75.06425 1.000000 0.0000000E+00
 75.11659 1.000000 0.0000000E+00
 75.16894 1.000000 0.0000000E+00
 75.22128 1.000000 0.0000000E+00
 75.27363 1.000000 0.0000000E+00
 75.32597 1.000000 0.0000000E+00
 75.37832 1.000000 0.0000000E+00
 75.43066 1.000000 0.0000000E+00
 75.48302 1.000000 0.0000000E+00
 75.53536 1.000000 0.0000000E+00
 75.58770 1.000000 0.0000000E+00
 75.64005 1.000000 0.0000000E+00
 75.69240 1.000000 0.0000000E+00
 75.74474 1.000000 0.0000000E+00
 75.79709 1.000000 0.0000000E+00
 75.84943 1.000000 0.0000000E+00
 75.90178 1.000000 0.0000000E+00
 75.95413 1.000000 0.0000000E+00
 76.00648 1.000000 0.0000000E+00
 76.05882 1.000000 0.0000000E+00
 76.11117 1.000000 0.0000000E+00
 76.16351 1.000000 0.0000000E+00
 76.21586 1.000000 0.0000000E+00
 76.26820 1.000000 0.0000000E+00
 76.32055 1.000000 0.0000000E+00
 76.37289 1.000000 0.0000000E+00
 76.42525 1.000000 0.0000000E+00
 76.47758 1.000000 0.0000000E+00
 76.52993 1.000000 0.0000000E+00
 76.58228 1.000000 0.0000000E+00
 76.63463 1.000000 0.0000000E+00
 76.68697 1.000000 0.0000000E+00
 76.73932 1.000000 0.0000000E+00
 76.79166 1.000000 0.0000000E+00
 76.84401 1.000000 0.0000000E+00
 76.89635 1.000000 0.0000000E+00
 76.94870 1.000000 0.0000000E+00
 77.00105 1.000000 0.0000000E+00
 77.05340 1.000000 0.0000000E+00
 77.10574 1.000000 0.0000000E+00
 77.15809 1.000000 0.0000000E+00
 77.21043 1.000000 0.0000000E+00
 77.26278 1.000000 0.0000000E+00
 77.31512 1.000000 0.0000000E+00
 77.36747 1.000000 0.0000000E+00
 77.41982 1.000000 0.0000000E+00
 77.47217 1.000000 0.0000000E+00
 77.52451 1.000000 0.0000000E+00
 77.57685 1.000000 0.0000000E+00
 77.62920 1.000000 0.0000000E+00
 77.68155 1.000000 0.0000000E+00
 77.73389 1.000000 0.0000000E+00
 77.78624 1.000000 0.0000000E+00
 77.83858 1.000000 0.0000000E+00
 77.89093 1.000000 0.0000000E+00
 77.94328 1.000000 0.0000000E+00
 77.99562 1.000000 0.0000000E+00
 78.04797 1.000000 0.0000000E+00
 78.10032 1.000000 0.0000000E+00
 78.15266 1.000000 0.0000000E+00
 78.20501 1.000000 0.0000000E+00
 78.25735 1.000000 0.0000000E+00
 78.30970 1.000000 0.0000000E+00
 78.36205 1.000000 0.0000000E+00
 78.41439 1.000000 0.0000000E+00
 78.46674 1.000000 0.0000000E+00
 78.51908 1.000000 0.0000000E+00
 78.57143 1.000000 0.0000000E+00
 78.62378 1.000000 0.0000000E+00
 78.67612 1.000000 0.0000000E+00
 78.72847 1.000000 0.0000000E+00
 78.78082 1.000000 0.0000000E+00
 78.83316 1.000000 0.0000000E+00
 78.88551 1.000000 0.0000000E+00
 78.93785 1.000000 0.0000000E+00
 78.99020 1.000000 0.0000000E+00
 79.04255 1.000000 0.0000000E+00
 79.09489 1.000000 0.0000000E+00
 79.14724 1.000000 0.0000000E+00
 79.19958 1.000000 0.0000000E+00
 79.25193 1.000000 0.0000000E+00
 79.30428 1.000000 0.0000000E+00
 79.35662 1.000000 0.0000000E+00
 79.40897 1.000000 0.0000000E+00
 79.46132 1.000000 0.0000000E+00
 79.51366 1.000000 0.0000000E+00
 79.56600 1.000000 0.0000000E+00
 79.61835 1.000000 0.0000000E+00
 79.67070 1.000000 0.0000000E+00
 79.72305 1.000000 0.0000000E+00
 79.77539 1.000000 0.0000000E+00
 79.82774 1.000000 0.0000000E+00
 79.88008 1.000000 0.0000000E+00
 79.93243 1.000000 0.0000000E+00
 79.98477 1.000000 0.0000000E+00
 80.03712 1.000000 0.0000000E+00
 80.08947 1.000000 0.0000000E+00
 80.14182 1.000000 0.0000000E+00
 80.19416 1.000000 0.0000000E+00
 80.24651 1.000000 0.0000000E+00
 80.29885 1.000000 0.0000000E+00
 80.35120 1.000000 0.0000000E+00
 80.40354 1.000000 0.0000000E+00
 80.45589 1.000000 0.0000000E+00
 80.50823 1.000000 0.0000000E+00
 80.56059 1.000000 0.0000000E+00
 80.61292 1.000000 0.0000000E+00
 80.66528 1.000000 0.0000000E+00
 80.71762 1.000000 0.0000000E+00
 80.76997 1.000000 0.0000000E+00
 80.82231 1.000000 0.0000000E+00
 80.87466 1.000000 0.0000000E+00
 80.92700 1.000000 0.0000000E+00
 80.97935 1.000000 0.0000000E+00
 81.03169 1.000000 0.0000000E+00
 81.08404 1.000000 0.0000000E+00
 81.13639 1.000000 0.0000000E+00
 81.18874 1.000000 0.0000000E+00
 81.24108 1.000000 0.0000000E+00
 81.29343 1.000000 0.0000000E+00
 81.34577 1.000000 0.0000000E+00
 81.39812 1.000000 0.0000000E+00
 81.45046 1.000000 0.0000000E+00
 81.50281 1.000000 0.0000000E+00
 81.55515 1.000000 0.0000000E+00
 81.60751 1.000000 0.0000000E+00
 81.65985 1.000000 0.0000000E+00
 81.71219 1.000000 0.0000000E+00
 81.76454 1.000000 0.0000000E+00
 81.81689 1.000000 0.0000000E+00
 81.86923 1.000000 0.0000000E+00
 81.92158 1.000000 0.0000000E+00
 81.97392 1.000000 0.0000000E+00
 82.02627 1.000000 0.0000000E+00
 82.07862 1.000000 0.0000000E+00
 82.13096 1.000000 0.0000000E+00
 82.18330 1.000000 0.0000000E+00
 82.23566 1.000000 0.0000000E+00
 82.28800 1.000000 0.0000000E+00
 82.34035 1.000000 0.0000000E+00
 82.39269 1.000000 0.0000000E+00
 82.44504 1.000000 0.0000000E+00
 82.49738 1.000000 0.0000000E+00
 82.54974 1.000000 0.0000000E+00
 82.60207 1.000000 0.0000000E+00
 82.65443 1.000000 0.0000000E+00
 82.70677 1.000000 0.0000000E+00
 82.75912 1.000000 0.0000000E+00
 82.81146 1.000000 0.0000000E+00
 82.86381 1.000000 0.0000000E+00
 82.91615 1.000000 0.0000000E+00
 82.96850 1.000000 0.0000000E+00
 83.02084 1.000000 0.0000000E+00
 83.07319 1.000000 0.0000000E+00
 83.12554 1.000000 0.0000000E+00
 83.17789 1.000000 0.0000000E+00
 83.23022 1.000000 0.0000000E+00
 83.28258 1.000000 0.0000000E+00
 83.33492 1.000000 0.0000000E+00
 83.38727 1.000000 0.0000000E+00
 83.43961 1.000000 0.0000000E+00
 83.49196 1.000000 0.0000000E+00
 83.54430 1.000000 0.0000000E+00
 83.59666 1.000000 0.0000000E+00
 83.64899 1.000000 0.0000000E+00
 83.70134 1.000000 0.0000000E+00
 83.75369 1.000000 0.0000000E+00
 83.80604 1.000000 0.0000000E+00
 83.85838 1.000000 0.0000000E+00
 83.91073 1.000000 0.0000000E+00
 83.96308 1.000000 0.0000000E+00
 84.01542 1.000000 0.0000000E+00
 84.06776 1.000000 0.0000000E+00
 84.12011 1.000000 0.0000000E+00
 84.17245 1.000000 0.0000000E+00
 84.22481 1.000000 0.0000000E+00
 84.27715 1.000000 0.0000000E+00
 84.32950 1.000000 0.0000000E+00
 84.38184 1.000000 0.0000000E+00
 84.43418 1.000000 0.0000000E+00
 84.48653 1.000000 0.0000000E+00
 84.53888 1.000000 0.0000000E+00
 84.59122 1.000000 0.0000000E+00
 84.64357 1.000000 0.0000000E+00
 84.69592 1.000000 0.0000000E+00
 84.74827 1.000000 0.0000000E+00
 84.80061 1.000000 0.0000000E+00
 84.85295 1.000000 0.0000000E+00
 84.90530 1.000000 0.0000000E+00
 84.95765 1.000000 0.0000000E+00
 85.00999 1.000000 0.0000000E+00
 85.06234 1.000000 0.0000000E+00
 85.11469 1.000000 0.0000000E+00
 85.16704 1.000000 0.0000000E+00
 85.21938 1.000000 0.0000000E+00
 85.27173 1.000000 0.0000000E+00
 85.32407 1.000000 0.0000000E+00
 85.37641 1.000000 0.0000000E+00
 85.42876 1.000000 0.0000000E+00
 85.48111 1.000000 0.0000000E+00
 85.53345 1.000000 0.0000000E+00
 85.58581 1.000000 0.0000000E+00
 85.63815 1.000000 0.0000000E+00
 85.69050 1.000000 0.0000000E+00
 85.74284 1.000000 0.0000000E+00
 85.79518 1.000000 0.0000000E+00
 85.84753 1.000000 0.0000000E+00
 85.89988 1.000000 0.0000000E+00
 85.95222 1.000000 0.0000000E+00
 86.00457 1.000000 0.0000000E+00
 86.05692 1.000000 0.0000000E+00
 86.10927 1.000000 0.0000000E+00
 86.16161 1.000000 0.0000000E+00
 86.21395 1.000000 0.0000000E+00
 86.26630 1.000000 0.0000000E+00
 86.31865 1.000000 0.0000000E+00
 86.37099 1.000000 0.0000000E+00
 86.42334 1.000000 0.0000000E+00
 86.47569 1.000000 0.0000000E+00
 86.52804 1.000000 0.0000000E+00
 86.58038 1.000000 0.0000000E+00
 86.63272 1.000000 0.0000000E+00
 86.68507 1.000000 0.0000000E+00
 86.73741 1.000000 0.0000000E+00
 86.78976 1.000000 0.0000000E+00
 86.84211 1.000000 0.0000000E+00
 86.89445 1.000000 0.0000000E+00
 86.94680 1.000000 0.0000000E+00
 86.99915 1.000000 0.0000000E+00
 87.05149 1.000000 0.0000000E+00
 87.10384 1.000000 0.0000000E+00
 87.15618 1.000000 0.0000000E+00
 87.20853 1.000000 0.0000000E+00
 87.26088 1.000000 0.0000000E+00
 87.31322 1.000000 0.0000000E+00
 87.36557 1.000000 0.0000000E+00
 87.41792 1.000000 0.0000000E+00
 87.47025 1.000000 0.0000000E+00
 87.52261 1.000000 0.0000000E+00
 87.57495 1.000000 0.0000000E+00
 87.62730 1.000000 0.0000000E+00
 87.67964 1.000000 0.0000000E+00
 87.73199 1.000000 0.0000000E+00
 87.78434 1.000000 0.0000000E+00
 87.83669 1.000000 0.0000000E+00
 87.88903 1.000000 0.0000000E+00
 87.94137 1.000000 0.0000000E+00
 87.99372 1.000000 0.0000000E+00
 88.04607 1.000000 0.0000000E+00
 88.09841 1.000000 0.0000000E+00
 88.15076 1.000000 0.0000000E+00
 88.20311 1.000000 0.0000000E+00
 88.25546 1.000000 0.0000000E+00
 88.30780 1.000000 0.0000000E+00
 88.36014 1.000000 0.0000000E+00
 88.41248 1.000000 0.0000000E+00
 88.46484 1.000000 0.0000000E+00
 88.51718 1.000000 0.0000000E+00
 88.56953 1.000000 0.0000000E+00
 88.62187 1.000000 0.0000000E+00
 88.67422 1.000000 0.0000000E+00
 88.72657 1.000000 0.0000000E+00
 88.77891 1.000000 0.0000000E+00
 88.83125 1.000000 0.0000000E+00
 88.88360 1.000000 0.0000000E+00
 88.93595 1.000000 0.0000000E+00
 88.98830 1.000000 0.0000000E+00
 89.04064 1.000000 0.0000000E+00
 89.09299 1.000000 0.0000000E+00
 89.14534 1.000000 0.0000000E+00
 89.19769 1.000000 0.0000000E+00
 89.25002 1.000000 0.0000000E+00
 89.30237 1.000000 0.0000000E+00
 89.35471 1.000000 0.0000000E+00
 89.40707 1.000000 0.0000000E+00
 89.45941 1.000000 0.0000000E+00
 89.51176 1.000000 0.0000000E+00
 89.56410 1.000000 0.0000000E+00
 89.61646 1.000000 0.0000000E+00
 89.66879 1.000000 0.0000000E+00
 89.72114 1.000000 0.0000000E+00
 89.77348 1.000000 0.0000000E+00
 89.82583 1.000000 0.0000000E+00
 89.87818 1.000000 0.0000000E+00
 89.93053 1.000000 0.0000000E+00
 89.98287 1.000000 0.0000000E+00
 90.03522 1.000000 0.0000000E+00
 90.08755 1.000000 0.0000000E+00
 90.13991 1.000000 0.0000000E+00
 90.19225 1.000000 0.0000000E+00
 90.24460 1.000000 0.0000000E+00
 90.29694 1.000000 0.0000000E+00
 90.34930 1.000000 0.0000000E+00
 90.40164 1.000000 0.0000000E+00
 90.45399 1.000000 0.0000000E+00
 90.50634 1.000000 0.0000000E+00
 90.55867 1.000000 0.0000000E+00
 90.61102 1.000000 0.0000000E+00
 90.66337 1.000000 0.0000000E+00
 90.71571 1.000000 0.0000000E+00
 90.76807 1.000000 0.0000000E+00
 90.82041 1.000000 0.0000000E+00
 90.87276 1.000000 0.0000000E+00
 90.92510 1.000000 0.0000000E+00
 90.97744 1.000000 0.0000000E+00
 91.02979 1.000000 0.0000000E+00
 91.08214 1.000000 0.0000000E+00
 91.13448 1.000000 0.0000000E+00
 91.18683 1.000000 0.0000000E+00
 91.23918 1.000000 0.0000000E+00
 91.29153 1.000000 0.0000000E+00
 91.34387 1.000000 0.0000000E+00
 91.39621 1.000000 0.0000000E+00
 91.44855 1.000000 0.0000000E+00
 91.50091 1.000000 0.0000000E+00
 91.55325 1.000000 0.0000000E+00
 91.60560 1.000000 0.0000000E+00
 91.65794 1.000000 0.0000000E+00
 91.71030 1.000000 0.0000000E+00
 91.76264 1.000000 0.0000000E+00
 91.81499 1.000000 0.0000000E+00
 91.86732 1.000000 0.0000000E+00
 91.91967 1.000000 0.0000000E+00
 91.97202 1.000000 0.0000000E+00
 92.02437 1.000000 0.0000000E+00
 92.07671 1.000000 0.0000000E+00
 92.12906 1.000000 0.0000000E+00
 92.18141 1.000000 0.0000000E+00
 92.23376 1.000000 0.0000000E+00
 92.28609 1.000000 0.0000000E+00
 92.33844 1.000000 0.0000000E+00
 92.39079 1.000000 0.0000000E+00
 92.44314 1.000000 0.0000000E+00
 92.49548 1.000000 0.0000000E+00
 92.54783 1.000000 0.0000000E+00
 92.60017 1.000000 0.0000000E+00
 92.65253 1.000000 0.0000000E+00
 92.70486 1.000000 0.0000000E+00
 92.75721 1.000000 0.0000000E+00
 92.80956 1.000000 0.0000000E+00
 92.86190 1.000000 0.0000000E+00
 92.91425 1.000000 0.0000000E+00
 92.96660 1.000000 0.0000000E+00
 93.01894 1.000000 0.0000000E+00
 93.07129 1.000000 0.0000000E+00
 93.12364 1.000000 0.0000000E+00
 93.17598 1.000000 0.0000000E+00
 93.22832 1.000000 0.0000000E+00
 93.28067 1.000000 0.0000000E+00
 93.33302 1.000000 0.0000000E+00
 93.38537 1.000000 0.0000000E+00
 93.43771 1.000000 0.0000000E+00
 93.49006 1.000000 0.0000000E+00
 93.54240 1.000000 0.0000000E+00
 93.59474 1.000000 0.0000000E+00
 93.64709 1.000000 0.0000000E+00
 93.69944 1.000000 0.0000000E+00
 93.75179 1.000000 0.0000000E+00
 93.80413 1.000000 0.0000000E+00
 93.85648 1.000000 0.0000000E+00
 93.90883 1.000000 0.0000000E+00
 93.96117 1.000000 0.0000000E+00
 94.01351 1.000000 0.0000000E+00
 94.06586 1.000000 0.0000000E+00
 94.11821 1.000000 0.0000000E+00
 94.17056 1.000000 0.0000000E+00
 94.22290 1.000000 0.0000000E+00
 94.27525 1.000000 0.0000000E+00
 94.32760 1.000000 0.0000000E+00
 94.37994 1.000000 0.0000000E+00
 94.43229 1.000000 0.0000000E+00
 94.48463 1.000000 0.0000000E+00
 94.53697 1.000000 0.0000000E+00
 94.58932 1.000000 0.0000000E+00
 94.64167 1.000000 0.0000000E+00
 94.69402 1.000000 0.0000000E+00
 94.74636 1.000000 0.0000000E+00
 94.79871 1.000000 0.0000000E+00
 94.85106 1.000000 0.0000000E+00
 94.90340 1.000000 0.0000000E+00
 94.95574 1.000000 0.0000000E+00
 95.00809 1.000000 0.0000000E+00
 95.06044 1.000000 0.0000000E+00
 95.11279 1.000000 0.0000000E+00
 95.16513 1.000000 0.0000000E+00
 95.21748 1.000000 0.0000000E+00
 95.26983 1.000000 0.0000000E+00
 95.32217 1.000000 0.0000000E+00
 95.37451 1.000000 0.0000000E+00
 95.42686 1.000000 0.0000000E+00
 95.47920 1.000000 0.0000000E+00
 95.53156 1.000000 0.0000000E+00
 95.58390 1.000000 0.0000000E+00
 95.63625 1.000000 0.0000000E+00
 95.68859 1.000000 0.0000000E+00
 95.74094 1.000000 0.0000000E+00
 95.79328 1.000000 0.0000000E+00
 95.84563 1.000000 0.0000000E+00
 95.89797 1.000000 0.0000000E+00
 95.95032 1.000000 0.0000000E+00
 96.00267 1.000000 0.0000000E+00
 96.05502 1.000000 0.0000000E+00
 96.10736 1.000000 0.0000000E+00
 96.15971 1.000000 0.0000000E+00
 96.21204 1.000000 0.0000000E+00
 96.26440 1.000000 0.0000000E+00
 96.31674 1.000000 0.0000000E+00
 96.36909 1.000000 0.0000000E+00
 96.42144 1.000000 0.0000000E+00
 96.47379 1.000000 0.0000000E+00
 96.52613 1.000000 0.0000000E+00
 96.57848 1.000000 0.0000000E+00
 96.63081 1.000000 0.0000000E+00
 96.68316 1.000000 0.0000000E+00
 96.73551 1.000000 0.0000000E+00
 96.78786 1.000000 0.0000000E+00
 96.84020 1.000000 0.0000000E+00
 96.89256 1.000000 0.0000000E+00
 96.94490 1.000000 0.0000000E+00
 96.99725 1.000000 0.0000000E+00
 97.04959 1.000000 0.0000000E+00
 97.10193 1.000000 0.0000000E+00
 97.15428 1.000000 0.0000000E+00
 97.20663 1.000000 0.0000000E+00
 97.25897 1.000000 0.0000000E+00
 97.31132 1.000000 0.0000000E+00
 97.36367 1.000000 0.0000000E+00
 97.41602 1.000000 0.0000000E+00
 97.46836 1.000000 0.0000000E+00
 97.52070 1.000000 0.0000000E+00
 97.57304 1.000000 0.0000000E+00
 97.62540 1.000000 0.0000000E+00
 97.67774 1.000000 0.0000000E+00
 97.73009 1.000000 0.0000000E+00
 97.78243 1.000000 0.0000000E+00
 97.83479 1.000000 0.0000000E+00
 97.88713 1.000000 0.0000000E+00
 97.93947 1.000000 0.0000000E+00
 97.99181 1.000000 0.0000000E+00
 98.04416 1.000000 0.0000000E+00
 98.09651 1.000000 0.0000000E+00
 98.14886 1.000000 0.0000000E+00
 98.20120 1.000000 0.0000000E+00
 98.25355 1.000000 0.0000000E+00
 98.30590 1.000000 0.0000000E+00
 98.35825 1.000000 0.0000000E+00
 98.41058 1.000000 0.0000000E+00
 98.46293 1.000000 0.0000000E+00
 98.51527 1.000000 0.0000000E+00
 98.56763 1.000000 0.0000000E+00
 98.61997 1.000000 0.0000000E+00
 98.67232 1.000000 0.0000000E+00
 98.72466 1.000000 0.0000000E+00
 98.77702 1.000000 0.0000000E+00
 98.82935 1.000000 0.0000000E+00
 98.88170 1.000000 0.0000000E+00
 98.93404 1.000000 0.0000000E+00
 98.98639 1.000000 0.0000000E+00
 99.03874 1.000000 0.0000000E+00
 99.09109 1.000000 0.0000000E+00
 99.14343 1.000000 0.0000000E+00
 99.19578 1.000000 0.0000000E+00
 99.24812 1.000000 0.0000000E+00
 99.30047 1.000000 0.0000000E+00
 99.35281 1.000000 0.0000000E+00
 99.40516 1.000000 0.0000000E+00
 99.45750 1.000000 0.0000000E+00
 99.50986 1.000000 0.0000000E+00
 99.56220 1.000000 0.0000000E+00
 99.61455 1.000000 0.0000000E+00
 99.66689 1.000000 0.0000000E+00
 99.71923 1.000000 0.0000000E+00
 99.77158 1.000000 0.0000000E+00
 99.82393 1.000000 0.0000000E+00
 99.87627 1.000000 0.0000000E+00
 99.92862 1.000000 0.0000000E+00
 99.98097 1.000000 0.0000000E+00
 100.0333 1.000000 0.0000000E+00
 100.0857 1.000000 0.0000000E+00
 100.1380 1.000000 0.0000000E+00
 100.1903 1.000000 0.0000000E+00
 100.2427 1.000000 0.0000000E+00
 100.2950 1.000000 0.0000000E+00
 100.3474 1.000000 0.0000000E+00
 100.3997 1.000000 0.0000000E+00
 100.4521 1.000000 0.0000000E+00
 100.5044 1.000000 0.0000000E+00
 100.5568 1.000000 0.0000000E+00
 100.6091 1.000000 0.0000000E+00
 100.6615 1.000000 0.0000000E+00
 100.7138 1.000000 0.0000000E+00
 100.7662 1.000000 0.0000000E+00
 100.8185 1.000000 0.0000000E+00
 100.8708 1.000000 0.0000000E+00
 100.9232 1.000000 0.0000000E+00
 100.9755 1.000000 0.0000000E+00
 101.0279 1.000000 0.0000000E+00
 101.0802 1.000000 0.0000000E+00
 101.1326 1.000000 0.0000000E+00
 101.1849 1.000000 0.0000000E+00
 101.2373 1.000000 0.0000000E+00
 101.2896 1.000000 0.0000000E+00
 101.3420 1.000000 0.0000000E+00
 101.3943 1.000000 0.0000000E+00
 101.4467 1.000000 0.0000000E+00
 101.4990 1.000000 0.0000000E+00
 101.5513 1.000000 0.0000000E+00
 101.6037 1.000000 0.0000000E+00
 101.6560 1.000000 0.0000000E+00
 101.7084 1.000000 0.0000000E+00
 101.7607 1.000000 0.0000000E+00
 101.8131 1.000000 0.0000000E+00
 101.8654 1.000000 0.0000000E+00
 101.9178 1.000000 0.0000000E+00
 101.9701 1.000000 0.0000000E+00
 102.0225 1.000000 0.0000000E+00
 102.0748 1.000000 0.0000000E+00
 102.1272 1.000000 0.0000000E+00
 102.1795 1.000000 0.0000000E+00
 102.2318 1.000000 0.0000000E+00
 102.2842 1.000000 0.0000000E+00
 102.3365 1.000000 0.0000000E+00
 102.3889 1.000000 0.0000000E+00
 102.4412 1.000000 0.0000000E+00
 102.4936 1.000000 0.0000000E+00
 102.5459 1.000000 0.0000000E+00
 102.5983 1.000000 0.0000000E+00
 102.6506 1.000000 0.0000000E+00
 102.7030 1.000000 0.0000000E+00
 102.7553 1.000000 0.0000000E+00
 102.8077 1.000000 0.0000000E+00
 102.8600 1.000000 0.0000000E+00
 102.9123 1.000000 0.0000000E+00
 102.9647 1.000000 0.0000000E+00
 103.0170 1.000000 0.0000000E+00
 103.0694 1.000000 0.0000000E+00
 103.1217 1.000000 0.0000000E+00
 103.1741 1.000000 0.0000000E+00
 103.2264 1.000000 0.0000000E+00
 103.2788 1.000000 0.0000000E+00
 103.3311 1.000000 0.0000000E+00
 103.3835 1.000000 0.0000000E+00
 103.4358 1.000000 0.0000000E+00
 103.4882 1.000000 0.0000000E+00
 103.5405 1.000000 0.0000000E+00
 103.5928 1.000000 0.0000000E+00
 103.6452 1.000000 0.0000000E+00
 103.6975 1.000000 0.0000000E+00
 103.7499 1.000000 0.0000000E+00
 103.8022 1.000000 0.0000000E+00
 103.8546 1.000000 0.0000000E+00
 103.9069 1.000000 0.0000000E+00
 103.9593 1.000000 0.0000000E+00
 104.0116 1.000000 0.0000000E+00
 104.0640 1.000000 0.0000000E+00
 104.1163 1.000000 0.0000000E+00
 104.1686 1.000000 0.0000000E+00
 104.2210 1.000000 0.0000000E+00
 104.2733 1.000000 0.0000000E+00
 104.3257 1.000000 0.0000000E+00
 104.3780 1.000000 0.0000000E+00
 104.4304 1.000000 0.0000000E+00
 104.4827 1.000000 0.0000000E+00
 104.5351 1.000000 0.0000000E+00
 104.5874 1.000000 0.0000000E+00
 104.6398 1.000000 0.0000000E+00
 104.6921 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osm.0400

 256 4.000000
 0.0000000E+00 1.0304060E-02 2.0711161E-02 3.1222334E-02 4.1838616E-02
 5.2561063E-02 6.3390732E-02 7.4328698E-02 8.5376047E-02 9.6533872E-02
 0.1078033 0.1191854 0.1306813 0.1422922 0.1540191
 0.1658634 0.1778261 0.1899084 0.2021115 0.2144367
 0.2268852 0.2394581 0.2521567 0.2649823 0.2779362
 0.2910196 0.3042339 0.3175803 0.3310601 0.3446748
 0.3584256 0.3723139 0.3863411 0.4005086 0.4148177
 0.4292699 0.4438667 0.4586094 0.4734996 0.4885386
 0.5037280 0.5190694 0.5345641 0.5502139 0.5660201
 0.5819843 0.5981082 0.6143934 0.6308414 0.6474538
 0.6642324 0.6811788 0.6982946 0.7155817 0.7330415
 0.7506760 0.7684869 0.7864758 0.8046446 0.8229951
 0.8415291 0.8602484 0.8791549 0.8982506 0.9175370
 0.9370164 0.9566907 0.9765615 0.9966313 1.016902
 1.037375 1.058052 1.078937 1.100031 1.121335
 1.142852 1.164585 1.186535 1.208704 1.231095
 1.253710 1.276551 1.299621 1.322921 1.346454
 1.370223 1.394229 1.418476 1.442964 1.467698
 1.492679 1.517910 1.543393 1.569131 1.595126
 1.621382 1.647899 1.674682 1.701733 1.729055
 1.756649 1.784520 1.812669 1.841100 1.869815
 1.898817 1.928109 1.957694 1.987575 2.017755
 2.048237 2.079023 2.110117 2.141522 2.173242
 2.205278 2.237635 2.270315 2.303323 2.336660
 2.370331 2.404338 2.438685 2.473376 2.508414
 2.543802 2.579544 2.615644 2.652104 2.688929
 2.726123 2.763688 2.801629 2.839949 2.878653
 2.917743 2.957224 2.997101 3.037376 3.078054
 3.119138 3.160634 3.202544 3.244873 3.287626
 3.330806 3.374418 3.418467 3.462955 3.507889
 3.553272 3.599109 3.645404 3.692162 3.739388
 3.787086 3.835260 3.883917 3.933060 3.982695
 4.032826 4.083458 4.134597 4.186247 4.238413
 4.291101 4.344316 4.398064 4.452348 4.507175
 4.562551 4.618481 4.674970 4.732023 4.789648
 4.847848 4.906631 4.966001 5.025965 5.086529
 5.147698 5.209479 5.271878 5.334901 5.398554
 5.462843 5.527776 5.593358 5.659595 5.726495
 5.794064 5.862309 5.931236 6.000852 6.071165
 6.142181 6.213907 6.286350 6.359517 6.433416
 6.508055 6.583439 6.659577 6.736478 6.814146
 6.892591 6.971821 7.051844 7.132666 7.214297
 7.296744 7.380015 7.464119 7.549064 7.634859
 7.721511 7.809030 7.897425 7.986703 8.076875
 8.167947 8.259931 8.352834 8.446666 8.541436
 8.637155 8.733829 8.831471 8.930091 9.029696
 9.130297 9.231904 9.334527 9.438176 9.542862
 9.648594 9.755384 9.863242 9.972178 10.08220
 10.19333 10.30557 10.41893 10.53342 10.64906
 10.76585 10.88382 11.00296 11.12329 11.24483
 11.36758 11.49156 11.61678 11.74325 11.87099
 12.00000
 0.0000000E+00 2.4052626E-05 5.5691937E-05 9.5141455E-05 1.4262990E-04
 1.9839134E-04 2.6266521E-04 3.3569653E-04 4.1773601E-04 5.0904014E-04
 6.0987117E-04 7.2049757E-04 8.4119401E-04 9.7224134E-04 1.1139264E-03
 1.2665438E-03 1.4303937E-03 1.6057831E-03 1.7930273E-03 1.9924473E-03
 2.2043718E-03 2.4291372E-03 2.6670871E-03 2.9185745E-03 3.1839565E-03
 3.4636029E-03 3.7578887E-03 4.0671993E-03 4.3919245E-03 4.7324696E-03
 5.0892429E-03 5.4626656E-03 5.8531673E-03 6.2611848E-03 6.6871694E-03
 7.1315765E-03 7.5948765E-03 8.0775470E-03 8.5800793E-03 9.1029704E-03
 9.6467352E-03 1.0211895E-02 1.0798984E-02 1.1408548E-02 1.2041141E-02
 1.2697337E-02 1.3377715E-02 1.4082870E-02 1.4813415E-02 1.5569960E-02
 1.6353147E-02 1.7163621E-02 1.8002044E-02 1.8869093E-02 1.9765457E-02
 2.0691840E-02 2.1648968E-02 2.2637567E-02 2.3658393E-02 2.4712209E-02
 2.5799802E-02 2.6921969E-02 2.8079526E-02 2.9273311E-02 3.0504158E-02
 3.1772949E-02 3.3080574E-02 3.4427918E-02 3.5815928E-02 3.7245523E-02
 3.8717676E-02 4.0233351E-02 4.1793574E-02 4.3399345E-02 4.5051701E-02
 4.6751697E-02 4.8500434E-02 5.0299000E-02 5.2148528E-02 5.4050148E-02
 5.6005027E-02 5.8014356E-02 6.0079359E-02 6.2201254E-02 6.4381279E-02
 6.6620760E-02 6.8920955E-02 7.1283206E-02 7.3708855E-02 7.6199271E-02
 7.8755848E-02 8.1380017E-02 8.4073178E-02 8.6836845E-02 8.9672476E-02
 9.2581578E-02 9.5565699E-02 9.8626375E-02 0.1017652 0.1049838
 0.1082837 0.1116666 0.1151342 0.1186882 0.1223301
 0.1260619 0.1298852 0.1338017 0.1378133 0.1419216
 0.1461286 0.1504360 0.1548456 0.1593593 0.1639789
 0.1687062 0.1735431 0.1784913 0.1835528 0.1887293
 0.1940228 0.1994348 0.2049673 0.2106221 0.2164008
 0.2223051 0.2283368 0.2344975 0.2407887 0.2472121
 0.2537690 0.2604609 0.2672892 0.2742550 0.2813597
 0.2886042 0.2959896 0.3035168 0.3111864 0.3189992
 0.3269556 0.3350559 0.3433002 0.3516886 0.3602209
 0.3688966 0.3777151 0.3866757 0.3957771 0.4050180
 0.4143969 0.4239118 0.4335605 0.4433405 0.4532490
 0.4632827 0.4734382 0.4837115 0.4940982 0.5045938
 0.5151931 0.5258904 0.5366801 0.5475554 0.5585096
 0.5695354 0.5806251 0.5917703 0.6029623 0.6141920
 0.6254497 0.6367255 0.6480088 0.6592885 0.6705536
 0.6817921 0.6929922 0.7041413 0.7152268 0.7262359
 0.7371552 0.7479718 0.7586719 0.7692424 0.7796698
 0.7899406 0.8000418 0.8099602 0.8196833 0.8291987
 0.8384944 0.8475592 0.8563821 0.8649530 0.8732627
 0.8813024 0.8890643 0.8965418 0.9037289 0.9106210
 0.9172145 0.9235066 0.9294960 0.9351824 0.9405665
 0.9456505 0.9504375 0.9549318 0.9591386 0.9630641
 0.9667157 0.9701014 0.9732302 0.9761118 0.9787564
 0.9811747 0.9833780 0.9853778 0.9871861 0.9888145
 0.9902750 0.9915795 0.9927397 0.9937670 0.9946727
 0.9954674 0.9961615 0.9967648 0.9972867 0.9977357
 0.9981202 0.9984477 0.9987251 0.9989587 0.9991544
 0.9993174 0.9994523 0.9995633 0.9996541 0.9997278
 0.9997874 0.9998351 0.9998732 0.9999033 0.9999269
 0.9999453 0.9999595 0.9999704 0.9999787 0.9999850
 0.9999897 0.9999932 0.9999958 0.9999977 0.9999990
 1.000000
 1.9831026E-03 2.6854698E-03 3.3948610E-03 4.1113459E-03 4.8349956E-03
 5.5658817E-03 6.3040769E-03 7.0496537E-03 7.8026862E-03 8.5632484E-03
 9.3314163E-03 1.0107266E-02 1.0890873E-02 1.1682316E-02 1.2481670E-02
 1.3289019E-02 1.4104440E-02 1.4928011E-02 1.5759818E-02 1.6599940E-02
 1.7448461E-02 1.8305462E-02 1.9171029E-02 2.0045249E-02 2.0928202E-02
 2.1819979E-02 2.2720667E-02 2.3630355E-02 2.4549125E-02 2.5477072E-02
 2.6414284E-02 2.7360853E-02 2.8316874E-02 2.9282432E-02 3.0257626E-02
 3.1242546E-02 3.2237288E-02 3.3241943E-02 3.4256611E-02 3.5281383E-02
 3.6316365E-02 3.7361644E-02 3.8417324E-02 3.9483503E-02 4.0560275E-02
 4.1647740E-02 4.2746000E-02 4.3855149E-02 4.4975303E-02 4.6106536E-02
 4.7248967E-02 4.8402689E-02 4.9567807E-02 5.0744418E-02 5.1932622E-02
 5.3132519E-02 5.4344214E-02 5.5567797E-02 5.6803372E-02 5.8051031E-02
 5.9310880E-02 6.0583007E-02 6.1867513E-02 6.3164495E-02 6.4474031E-02
 6.5796226E-02 6.7131169E-02 6.8478934E-02 6.9839627E-02 7.1213312E-02
 7.2600082E-02 7.4000008E-02 7.5413167E-02 7.6839641E-02 7.8279473E-02
 7.9732738E-02 8.1199504E-02 8.2679816E-02 8.4173732E-02 8.5681282E-02
 8.7202512E-02 8.8737451E-02 9.0286128E-02 9.1848552E-02 9.3424730E-02
 9.5014676E-02 9.6618369E-02 9.8235801E-02 9.9866927E-02 0.1015117
 0.1031701 0.1048420 0.1065274 0.1082262 0.1099382
 0.1116633 0.1134015 0.1151524 0.1169160 0.1186920
 0.1204801 0.1222803 0.1240920 0.1259152 0.1277493
 0.1295941 0.1314492 0.1333141 0.1351883 0.1370713
 0.1389627 0.1408617 0.1427679 0.1446804 0.1465985
 0.1485215 0.1504486 0.1523787 0.1543110 0.1562445
 0.1581780 0.1601104 0.1620404 0.1639668 0.1658881
 0.1678029 0.1697096 0.1716066 0.1734921 0.1753642
 0.1772211 0.1790607 0.1808809 0.1826793 0.1844536
 0.1862012 0.1879197 0.1896062 0.1912579 0.1928717
 0.1944447 0.1959734 0.1974546 0.1988846 0.2002600
 0.2015768 0.2028312 0.2040192 0.2051366 0.2061791
 0.2071423 0.2080218 0.2088129 0.2095110 0.2101113
 0.2106090 0.2109993 0.2112771 0.2114376 0.2114758
 0.2113869 0.2111660 0.2108082 0.2103090 0.2096637
 0.2088680 0.2079176 0.2068086 0.2055374 0.2041005
 0.2024950 0.2007181 0.1987677 0.1966421 0.1943402
 0.1918612 0.1892053 0.1863731 0.1833659 0.1801859
 0.1768360 0.1733197 0.1696418 0.1658074 0.1618229
 0.1576954 0.1534328 0.1490440 0.1445387 0.1399274
 0.1352214 0.1304328 0.1255744 0.1206595 0.1157020
 0.1107164 0.1057173 0.1007197 9.5738702E-02 9.0789534E-02
 8.5887179E-02 8.1046619E-02 7.6282158E-02 7.1607821E-02 6.7037113E-02
 6.2582627E-02 5.8256123E-02 5.4068543E-02 5.0029710E-02 4.6148308E-02
 4.2431831E-02 3.8886521E-02 3.5517331E-02 3.2327898E-02 2.9320478E-02
 2.6496122E-02 2.3854528E-02 2.1394160E-02 1.9112354E-02 1.7005345E-02
 1.5068371E-02 1.3295713E-02 1.1680932E-02 1.0216870E-02 8.8958228E-03
 7.7096466E-03 6.6498993E-03 5.7079182E-03 4.8749633E-03 4.1423393E-03
 3.5014413E-03 2.9438878E-03 2.4615806E-03 2.0467679E-03 1.6921039E-03
 1.3906915E-03 1.1361032E-03 9.2241762E-04 7.4421044E-04 5.9656304E-04
 4.7505449E-04 3.7573965E-04 2.9513176E-04 2.3017358E-04 1.7820857E-04
 1.3694810E-04 1.0443678E-04 7.9018864E-05 5.9304995E-05 4.4139852E-05
 3.2571294E-05 2.3821496E-05 1.7261505E-05 1.2387270E-05 8.7987592E-06
 6.1816895E-06
 81 81
 0.5000006 0.5500005 0.6000005 0.6500005 0.7000004
 0.7500004 0.8000003 0.8500003 0.9000002 0.9500002
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000 4.050000 4.100000 4.150000 4.200000
 4.250000 4.300000 4.350000 4.400000 4.450000
 4.500000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000000 -0.8500000 -0.8000000
 -0.7500000 -0.7000000 -0.6500000 -0.6000000 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -9.9999905E-02 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1500001 0.2000000
 0.2500000 0.3000000 0.3499999 0.4000001 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 4.7864780E-02 4.8598789E-02 4.9019434E-02 4.9149297E-02 4.9012244E-02
 4.8632942E-02 4.8036341E-02 4.7247376E-02 4.6290524E-02 4.5189489E-02
 4.3966990E-02 4.2644504E-02 4.1242141E-02 3.9778505E-02 3.8270637E-02
 3.6733977E-02 3.5182357E-02 3.3628050E-02 3.2081801E-02 3.0552898E-02
 2.9049292E-02 2.7577655E-02 2.6143499E-02 2.4751285E-02 2.3404505E-02
 2.2105826E-02 2.0857131E-02 1.9659663E-02 1.8514087E-02 1.7420569E-02
 1.6378861E-02 1.5388363E-02 1.4448160E-02 1.3557138E-02 1.2713948E-02
 1.1917111E-02 1.1165033E-02 1.0456025E-02 9.7883539E-03 9.1602448E-03
 8.5699139E-03 8.0155805E-03 7.4954773E-03 7.0078718E-03 6.5510590E-03
 6.1233900E-03 5.7232552E-03 5.3491122E-03 4.9994616E-03 4.6728752E-03
 4.3679830E-03 4.0834788E-03 3.8181134E-03 3.5706912E-03 3.3401013E-03
 3.1252645E-03 2.9251669E-03 2.7388663E-03 2.5654428E-03 2.4040544E-03
 2.2538994E-03 2.1142114E-03 1.9842878E-03 1.8634598E-03 1.7510868E-03
 1.6465916E-03 1.5494077E-03 1.4590250E-03 1.3749489E-03 1.2967223E-03
 1.2239201E-03 1.1561478E-03 1.0930231E-03 1.0342005E-03 9.7935623E-04
 9.2818309E-04 8.8040053E-04 8.3575631E-04 7.9399598E-04 7.5490150E-04
 7.1827130E-04
 0.1091358 0.1024821 9.6026413E-02 8.9788593E-02 8.3785355E-02
 7.8029931E-02 7.2532460E-02 6.7299761E-02 6.2335812E-02 5.7641886E-02
 5.3216826E-02 4.9057323E-02 4.5158163E-02 4.1512541E-02 3.8112320E-02
 3.4948308E-02 3.2010458E-02 2.9288167E-02 2.6770405E-02 2.4445938E-02
 2.2303496E-02 2.0331871E-02 1.8520040E-02 1.6857289E-02 1.5333234E-02
 1.3937917E-02 1.2661822E-02 1.1495908E-02 1.0431638E-02 9.4609642E-03
 8.5763494E-03 7.7707358E-03 7.0375521E-03 6.3706934E-03 5.7644974E-03
 5.2137235E-03 4.7135386E-03 4.2594858E-03 3.8474740E-03 3.4737389E-03
 3.1348309E-03 2.8275896E-03 2.5491281E-03 2.2968031E-03 2.0682130E-03
 1.8611570E-03 1.6736368E-03 1.5038316E-03 1.3500862E-03 1.2108984E-03
 1.0849014E-03 9.7085466E-04 8.6763827E-04 7.7423133E-04 6.8971259E-04
 6.1324827E-04 5.4408226E-04 4.8152945E-04 4.2497402E-04 3.7385829E-04
 3.2767528E-04 2.8597287E-04 2.4833682E-04 2.1439506E-04 1.8381259E-04
 1.5628409E-04 1.3153662E-04 1.0932019E-04 8.9407637E-05 7.1596616E-05
 5.5699860E-05 4.1547144E-05 2.8982093E-05 1.7866421E-05 8.0684194E-06
 -5.3148375E-07 -8.0423442E-06 -1.4567426E-05 -2.0197349E-05 -2.5019159E-05
 -2.9113369E-05
 4.7914606E-02 4.8648234E-02 4.9068414E-02 4.9197737E-02 4.9060076E-02
 4.8680123E-02 4.8082821E-02 4.7293127E-02 4.6335526E-02 4.5233730E-02
 4.4010464E-02 4.2687211E-02 4.1284092E-02 3.9819710E-02 3.8311116E-02
 3.6773756E-02 3.5221465E-02 3.3666510E-02 3.2119647E-02 3.0590158E-02
 2.9086009E-02 2.7613856E-02 2.6179222E-02 2.4786562E-02 2.3439374E-02
 2.2140320E-02 2.0891286E-02 1.9693512E-02 1.8547660E-02 1.7453898E-02
 1.6411979E-02 1.5421296E-02 1.4480938E-02 1.3589790E-02 1.2746496E-02
 1.1949584E-02 1.1197449E-02 1.0488408E-02 9.8207267E-03 9.1926279E-03
 8.6023277E-03 8.0480417E-03 7.5280024E-03 7.0404718E-03 6.5837521E-03
 6.1561880E-03 5.7561710E-03 5.3821523E-03 5.0326344E-03 4.7061914E-03
 4.4014454E-03 4.1170898E-03 3.8518715E-03 3.6046007E-03 3.3741600E-03
 3.1594629E-03 2.9595080E-03 2.7733303E-03 2.6000207E-03 2.4387394E-03
 2.2886666E-03 2.1490424E-03 2.0191628E-03 1.8983439E-03 1.7859606E-03
 1.6814233E-03 1.5841632E-03 1.4936669E-03 1.4094373E-03 1.3310247E-03
 1.2579904E-03 1.1899379E-03 1.1264947E-03 1.0673143E-03 1.0120644E-03
 9.6045143E-04 9.1218838E-04 8.6701958E-04 8.2470704E-04 7.8503252E-04
 7.4778683E-04
 0.1090963 0.1024417 9.5985018E-02 8.9746356E-02 8.3742373E-02
 7.7986255E-02 7.2488196E-02 6.7254998E-02 6.2290609E-02 5.7596330E-02
 5.3170998E-02 4.9011286E-02 4.5111991E-02 4.1466307E-02 3.8066074E-02
 3.4902107E-02 3.1964358E-02 2.9242214E-02 2.6724642E-02 2.4400406E-02
 2.2258230E-02 2.0286895E-02 1.8475391E-02 1.6812989E-02 1.5289307E-02
 1.3894374E-02 1.2618687E-02 1.1453192E-02 1.0389355E-02 9.4191218E-03
 8.5349558E-03 7.7298009E-03 6.9970805E-03 6.3306899E-03 5.7249675E-03
 5.1746685E-03 4.6749627E-03 4.2213928E-03 3.8098651E-03 3.4366143E-03
 3.0981936E-03 2.7914410E-03 2.5134720E-03 2.2616421E-03 2.0335501E-03
 1.8269930E-03 1.6399776E-03 1.4706812E-03 1.3174496E-03 1.1787813E-03
 1.0533113E-03 9.3980139E-04 8.3712663E-04 7.4427301E-04 6.6031731E-04
 5.8442703E-04 5.1584537E-04 4.5389339E-04 3.9795009E-04 3.4745925E-04
 3.0191769E-04 2.6086951E-04 2.2390147E-04 1.9064359E-04 1.6075777E-04
 1.3393938E-04 1.0991099E-04 8.8423709E-05 6.9249574E-05 5.2182120E-05
 3.7029498E-05 2.3623481E-05 1.1802282E-05 1.4239081E-06 -7.6464976E-06
 -1.5529222E-05 -2.2338960E-05 -2.8178230E-05 -3.3143697E-05 -3.7322665E-05
 -4.0797364E-05
 4.7970563E-02 4.8703767E-02 4.9123421E-02 4.9252141E-02 4.9113803E-02
 4.8733111E-02 4.8135035E-02 4.7344528E-02 4.6386085E-02 4.5283437E-02
 4.4059310E-02 4.2735200E-02 4.1331235E-02 3.9866026E-02 3.8356621E-02
 3.6818478E-02 3.5265431E-02 3.3709757E-02 3.2162201E-02 3.0632066E-02
 2.9127305E-02 2.7654577E-02 2.6219411E-02 2.4826260E-02 2.3478620E-02
 2.2179145E-02 2.0929733E-02 1.9731620E-02 1.8585464E-02 1.7491436E-02
 1.6449282E-02 1.5458398E-02 1.4517873E-02 1.3626581E-02 1.2783179E-02
 1.1986185E-02 1.1233992E-02 1.0524920E-02 9.8572318E-03 9.2291497E-03
 8.6388811E-03 8.0846511E-03 7.5646848E-03 7.0772478E-03 6.6206302E-03
 6.1931829E-03 5.7932925E-03 5.4194159E-03 5.0700433E-03 4.7437539E-03
 4.4391654E-03 4.1549667E-03 3.8899044E-03 3.6427942E-03 3.4124961E-03
 3.1979410E-03 2.9981171E-03 2.8120507E-03 2.6388480E-03 2.4776412E-03
 2.3276177E-03 2.1880262E-03 2.0581433E-03 1.9372888E-03 1.8248357E-03
 1.7201818E-03 1.6227688E-03 1.5320781E-03 1.4476053E-03 1.3689017E-03
 1.2955301E-03 1.2270954E-03 1.1632185E-03 1.1035562E-03 1.0477835E-03
 9.9560630E-04 9.4673818E-04 9.0092974E-04 8.5794524E-04 8.1756426E-04
 7.7958801E-04
 0.1090519 0.1023962 9.5938548E-02 8.9698955E-02 8.3694115E-02
 7.7937260E-02 7.2438531E-02 6.7204751E-02 6.2239882E-02 5.7545215E-02
 5.3119566E-02 4.8959628E-02 4.5060184E-02 4.1414421E-02 3.8014185E-02
 3.4850273E-02 3.1912640E-02 2.9190663E-02 2.6673308E-02 2.4349334E-02
 2.2207454E-02 2.0236460E-02 1.8425321E-02 1.6763316E-02 1.5240050E-02
 1.3845568E-02 1.2570340E-02 1.1405320E-02 1.0341974E-02 9.3722446E-03
 8.4885946E-03 7.6839603E-03 6.9517698E-03 6.2859156E-03 5.6807348E-03
 5.1309825E-03 4.6318290E-03 4.1788132E-03 3.7678424E-03 3.3951544E-03
 3.0572976E-03 2.7511136E-03 2.4737162E-03 2.2224623E-03 1.9949505E-03
 1.7889818E-03 1.6025592E-03 1.4338614E-03 1.2812379E-03 1.1431851E-03
 1.0183395E-03 9.0546370E-04 8.0343807E-04 7.1124104E-04 6.2795845E-04
 5.5275403E-04 4.8487357E-04 4.2363754E-04 3.6842475E-04 3.1868278E-04
 2.7390561E-04 2.3363640E-04 1.9746288E-04 1.6501381E-04 1.3594850E-04
 1.0996218E-04 8.6775217E-05 6.6136105E-05 4.7812809E-05 3.1596279E-05
 1.7294900E-05 4.7299209E-06 -6.2563518E-06 -1.5814252E-05 -2.4079251E-05
 -3.1177558E-05 -3.7222992E-05 -4.2322979E-05 -4.6575562E-05 -5.0069990E-05
 -5.2890700E-05
 4.8033398E-02 4.8766132E-02 4.9185202E-02 4.9313243E-02 4.9174152E-02
 4.8792645E-02 4.8193693E-02 4.7402274E-02 4.6442896E-02 4.5339298E-02
 4.4114206E-02 4.2789139E-02 4.1384224E-02 3.9918084E-02 3.8407780E-02
 3.6868758E-02 3.5314869E-02 3.3758391E-02 3.2210071E-02 3.0679213E-02
 2.9173763E-02 2.7700404E-02 2.6264643E-02 2.4870941E-02 2.3522796E-02
 2.2222864E-02 2.0973032E-02 1.9774541E-02 1.8628052E-02 1.7533727E-02
 1.6491314E-02 1.5500208E-02 1.4559501E-02 1.3668060E-02 1.2824539E-02
 1.2027458E-02 1.1275209E-02 1.0566110E-02 9.8984130E-03 9.2703523E-03
 8.6801285E-03 8.1259646E-03 7.6060807E-03 7.1187429E-03 6.6622444E-03
 6.2349290E-03 5.8351802E-03 5.4614539E-03 5.1122378E-03 4.7861128E-03
 4.4816863E-03 4.1976492E-03 3.9327508E-03 3.6857892E-03 3.4556345E-03
 3.2412142E-03 3.0414974E-03 2.8555247E-03 2.6823881E-03 2.5212166E-03
 2.3712092E-03 2.2315877E-03 2.1016335E-03 1.9806728E-03 1.8680659E-03
 1.7632071E-03 1.6655431E-03 1.5745425E-03 1.4897136E-03 1.4105999E-03
 1.3367607E-03 1.2678119E-03 1.2033669E-03 1.1430896E-03 1.0866550E-03
 1.0337722E-03 9.8416407E-04 9.3758159E-04 8.9378958E-04 8.5258065E-04
 8.1375608E-04
 0.1090021 0.1023452 9.5886394E-02 8.9645758E-02 8.3639964E-02
 7.7882260E-02 7.2382785E-02 6.7148365E-02 6.2182955E-02 5.7487842E-02
 5.3061854E-02 4.8901662E-02 4.5002054E-02 4.1356210E-02 3.7955962E-02
 3.4792118E-02 3.1854618E-02 2.9132834E-02 2.6615726E-02 2.4292044E-02
 2.2150513E-02 2.0179899E-02 1.8369179E-02 1.6707627E-02 1.5184839E-02
 1.3790858E-02 1.2516154E-02 1.1351683E-02 1.0288896E-02 9.3197422E-03
 8.4366798E-03 7.6326435E-03 6.9010598E-03 6.2358212E-03 5.6312620E-03
 5.0821379E-03 4.5836200E-03 4.1312431E-03 3.7209191E-03 3.3488816E-03
 3.0116818E-03 2.7061594E-03 2.4294299E-03 2.1788515E-03 1.9520214E-03
 1.7467408E-03 1.5610162E-03 1.3930280E-03 1.2411227E-03 1.1037989E-03
 9.7969698E-04 8.6757826E-04 7.6632248E-04 6.7491247E-04 5.9243251E-04
 5.1804719E-04 4.5100489E-04 3.9062320E-04 3.3628341E-04 2.8743205E-04
 2.4356175E-04 2.0421426E-04 1.6897944E-04 1.3747938E-04 1.0937483E-04
 8.4356470E-05 6.2141546E-05 4.2475676E-05 2.5124544E-05 9.8734581E-06
 -3.4751793E-06 -1.5097774E-05 -2.5161571E-05 -3.3817625E-05 -4.1205018E-05
 -4.7451547E-05 -5.2678304E-05 -5.6991230E-05 -6.0489972E-05 -6.3264022E-05
 -6.5398250E-05
 4.8103984E-02 4.8836179E-02 4.9254604E-02 4.9381889E-02 4.9241956E-02
 4.8859533E-02 4.8259605E-02 4.7467172E-02 4.6506736E-02 4.5402076E-02
 4.4175908E-02 4.2849779E-02 4.1443802E-02 3.9976627E-02 3.8465310E-02
 3.6925308E-02 3.5370480E-02 3.3813100E-02 3.2263931E-02 3.0732261E-02
 2.9226057E-02 2.7751988E-02 2.6315566E-02 2.4921251E-02 2.3572545E-02
 2.2272103E-02 2.1021813E-02 1.9822907E-02 1.8676044E-02 1.7581394E-02
 1.6538704E-02 1.5547356E-02 1.4606447E-02 1.3714843E-02 1.2871197E-02
 1.2074028E-02 1.1321719E-02 1.0612591E-02 9.9448944E-03 9.3168626E-03
 8.7266918E-03 8.1725987E-03 7.6528131E-03 7.1655889E-03 6.7092162E-03
 6.2820455E-03 5.8824499E-03 5.5088853E-03 5.1598367E-03 4.8338766E-03
 4.5296154E-03 4.2457459E-03 3.9809956E-03 3.7341756E-03 3.5041496E-03
 3.2898281E-03 3.0901926E-03 2.9042757E-03 2.7311526E-03 2.5699635E-03
 2.4198920E-03 2.2801650E-03 2.1500580E-03 2.0288879E-03 1.9160133E-03
 1.8108315E-03 1.7127913E-03 1.6213487E-03 1.5360202E-03 1.4563437E-03
 1.3818917E-03 1.3122708E-03 1.2471003E-03 1.1860537E-03 1.1288045E-03
 1.0750639E-03 1.0245655E-03 9.7706623E-04 9.3232776E-04 8.9014991E-04
 8.5034932E-04
 0.1089462 0.1022879 9.5827848E-02 8.9586034E-02 8.3579183E-02
 7.7820525E-02 7.2320215E-02 6.7085080E-02 6.2119067E-02 5.7423461E-02
 5.2997086E-02 4.8836615E-02 4.4936821E-02 4.1290887E-02 3.7890643E-02
 3.4726877E-02 3.1789523E-02 2.9067961E-02 2.6551137E-02 2.4227798E-02
 2.2086656E-02 2.0116476E-02 1.8306237E-02 1.6645195E-02 1.5122958E-02
 1.3729550E-02 1.2455444E-02 1.1291592E-02 1.0229449E-02 9.2609543E-03
 8.3785625E-03 7.5752144E-03 6.8443259E-03 6.1797956E-03 5.5759540E-03
 5.0275563E-03 4.5297700E-03 4.0781349E-03 3.6685632E-03 3.2972812E-03
 2.9608461E-03 2.6560982E-03 2.3801497E-03 2.1303636E-03 1.9043356E-03
 1.6998691E-03 1.5149701E-03 1.3478186E-03 1.1967660E-03 1.0603112E-03
 9.3709491E-04 8.2587567E-04 7.2554045E-04 6.3507067E-04 5.5354781E-04
 4.8014091E-04 4.1409634E-04 3.5473128E-04 3.0142925E-04 2.5363185E-04
 2.1083103E-04 1.7257083E-04 1.3843134E-04 1.0803760E-04 8.1045015E-05
 5.7140132E-05 3.6036479E-05 1.7476721E-05 1.2183929E-06 -1.2953647E-05
 -2.5241608E-05 -3.5828954E-05 -4.4884528E-05 -5.2562813E-05 -5.9004753E-05
 -6.4345499E-05 -6.8701665E-05 -7.2181785E-05 -7.4888623E-05 -7.6912693E-05
 -7.8336496E-05
 4.8183266E-02 4.8914872E-02 4.9332570E-02 4.9459010E-02 4.9318142E-02
 4.8934694E-02 4.8333682E-02 4.7540106E-02 4.6578504E-02 4.5472648E-02
 4.4245284E-02 4.2917956E-02 4.1510798E-02 4.0042467E-02 3.8530022E-02
 3.6988929E-02 3.5433050E-02 3.3874672E-02 3.2324545E-02 3.0791981E-02
 2.9284932E-02 2.7810074E-02 2.6372919E-02 2.4977930E-02 2.3628604E-02
 2.2327593E-02 2.1076791E-02 1.9877426E-02 1.8730164E-02 1.7635154E-02
 1.6592154E-02 1.5600546E-02 1.4659423E-02 1.3767641E-02 1.2923863E-02
 1.2126596E-02 1.1374228E-02 1.0665072E-02 9.9973874E-03 9.3693882E-03
 8.7792762E-03 8.2252733E-03 7.7055921E-03 7.2184890E-03 6.7622606E-03
 6.3352417E-03 5.9358058E-03 5.5624060E-03 5.2135275E-03 4.8877364E-03
 4.5836372E-03 4.2999126E-03 4.0352982E-03 3.7885963E-03 3.5586557E-03
 3.3443954E-03 3.1447904E-03 2.9588572E-03 2.7856769E-03 2.6243879E-03
 2.4741543E-03 2.3342089E-03 2.2038256E-03 2.0823171E-03 1.9690350E-03
 1.8633904E-03 1.7648072E-03 1.6727594E-03 1.5867632E-03 1.5063541E-03
 1.4311142E-03 1.3606405E-03 1.2945761E-03 1.2325854E-03 1.1743497E-03
 1.1195911E-03 1.0680441E-03 1.0194655E-03 9.7363489E-04 9.3035353E-04
 8.8944013E-04
 0.1088835 0.1022237 9.5762134E-02 8.9519009E-02 8.3510958E-02
 7.7751234E-02 7.2249986E-02 6.7014046E-02 6.2047362E-02 5.7351202E-02
 5.2924402E-02 4.8763622E-02 4.4863634E-02 4.1217595E-02 3.7817352E-02
 3.4653679E-02 3.1716507E-02 2.8995197E-02 2.6478695E-02 2.4155745E-02
 2.2015044E-02 2.0045368E-02 1.8235672E-02 1.6575217E-02 1.5053602E-02
 1.3660854E-02 1.2387437E-02 1.1224297E-02 1.0162886E-02 9.1951452E-03
 8.3135264E-03 7.5109676E-03 6.7808819E-03 6.1171707E-03 5.5141561E-03
 4.9665989E-03 4.4696657E-03 4.0188935E-03 3.6101898E-03 3.2397921E-03
 2.9042538E-03 2.6004112E-03 2.3253825E-03 2.0765304E-03 1.8514469E-03
 1.6479428E-03 1.4640224E-03 1.2978673E-03 1.1478293E-03 1.0124071E-03
 8.9024269E-04 7.8010140E-04 6.8086211E-04 5.9151143E-04 5.1113125E-04
 4.3888771E-04 3.7402814E-04 3.1586818E-04 2.6379019E-04 2.1723211E-04
 1.7568724E-04 1.3869198E-04 1.0582537E-04 7.6705270E-05 5.0985313E-05
 2.8346141E-05 8.4989151E-06 -8.8240231E-06 -2.3864699E-05 -3.6845831E-05
 -4.7972520E-05 -5.7435635E-05 -6.5401611E-05 -7.2033079E-05 -7.7472738E-05
 -8.1853446E-05 -8.5294581E-05 -8.7907385E-05 -8.9793124E-05 -9.1039641E-05
 -9.1730952E-05
 4.8272341E-02 4.9003288E-02 4.9420174E-02 4.9545683E-02 4.9403757E-02
 4.9019169E-02 4.8416942E-02 4.7622096E-02 4.6659190E-02 4.5552000E-02
 4.4323299E-02 4.2994633E-02 4.1586161E-02 4.0116537E-02 3.8602829E-02
 3.7060529E-02 3.5503477E-02 3.3943988E-02 3.2392800E-02 3.0859234E-02
 2.9351246E-02 2.7875511E-02 2.6437545E-02 2.5041809E-02 2.3691796E-02
 2.2390161E-02 2.1138797E-02 1.9938925E-02 1.8791214E-02 1.7695818E-02
 1.6652483E-02 1.5660590E-02 1.4719229E-02 1.3827263E-02 1.2983345E-02
 1.2185974E-02 1.1433548E-02 1.0724371E-02 1.0056693E-02 9.4287377E-03
 8.8386983E-03 8.2847839E-03 7.7652181E-03 7.2782533E-03 6.8221716E-03
 6.3953036E-03 5.9960387E-03 5.6228028E-03 5.2740849E-03 4.9484461E-03
 4.6444871E-03 4.3608863E-03 4.0963730E-03 3.8497341E-03 3.6198271E-03
 3.4055631E-03 3.2058996E-03 3.0198602E-03 2.8465225E-03 2.6850032E-03
 2.5344775E-03 2.3941784E-03 2.2633609E-03 2.1413437E-03 2.0274862E-03
 1.9211853E-03 1.8218756E-03 1.7290325E-03 1.6421669E-03 1.5608262E-03
 1.4845998E-03 1.4130832E-03 1.3459317E-03 1.2828053E-03 1.2234048E-03
 1.1674522E-03 1.1146847E-03 1.0648720E-03 1.0177982E-03 9.7326504E-04
 9.3109300E-04
 0.1088131 0.1021515 9.5688365E-02 8.9443758E-02 8.3434373E-02
 7.7673458E-02 7.2171167E-02 6.6934317E-02 6.1966877E-02 5.7270110E-02
 5.2842833E-02 4.8681706E-02 4.4781495E-02 4.1135363E-02 3.7735127E-02
 3.4571558E-02 3.1634595E-02 2.8913578E-02 2.6397452E-02 2.4074947E-02
 2.1934761E-02 1.9965654E-02 1.8156579E-02 1.6496794E-02 1.4975895E-02
 1.3583898E-02 1.2311266E-02 1.1148947E-02 1.0088379E-02 9.1215083E-03
 8.2407780E-03 7.4391291E-03 6.7099747E-03 6.0472065E-03 5.4451511E-03
 4.8985723E-03 4.4026272E-03 3.9528599E-03 3.5451786E-03 3.1758146E-03
 2.8413262E-03 2.5385506E-03 2.2646072E-03 2.0168540E-03 1.7928920E-03
 1.5905303E-03 1.4077696E-03 1.2427985E-03 1.0939685E-03 9.5977838E-04
 8.3887053E-04 7.3000923E-04 6.3207716E-04 5.4405822E-04 4.6503276E-04
 3.9416883E-04 3.3070930E-04 2.7396940E-04 2.2332568E-04 1.7821720E-04
 1.3812704E-04 1.0259161E-04 7.1184062E-05 4.3517561E-05 1.9237164E-05
 -1.9804029E-06 -2.0429505E-05 -3.6382291E-05 -5.0086808E-05 -6.1772625E-05
 -7.1646056E-05 -7.9899255E-05 -8.6706743E-05 -9.2229697E-05 -9.6612588E-05
 -9.9988778E-05 -1.0247970E-04 -1.0419572E-04 -1.0523240E-04 -1.0568029E-04
 -1.0562205E-04
 4.8372421E-02 4.9102645E-02 4.9518637E-02 4.9643092E-02 4.9499996E-02
 4.9114138E-02 4.8510551E-02 4.7714293E-02 4.6749927E-02 4.5641251E-02
 4.4411056E-02 4.3080904E-02 4.1670959E-02 4.0199894E-02 3.8684785E-02
 3.7141126E-02 3.5582781E-02 3.4022044E-02 3.2469679E-02 3.0935008E-02
 2.9425973E-02 2.7949268E-02 2.6510401E-02 2.5113834E-02 2.3763064E-02
 2.2460742E-02 2.1208756E-02 2.0008335E-02 1.8860133E-02 1.7764308E-02
 1.6720608E-02 1.5728408E-02 1.4786800E-02 1.3894630E-02 1.3050559E-02
 1.2253086E-02 1.1500601E-02 1.0791399E-02 1.0123737E-02 9.4958302E-03
 8.9058643E-03 8.3520524E-03 7.8326110E-03 7.3457779E-03 6.8898415E-03
 6.4631379E-03 6.0640234E-03 5.6909337E-03 5.3423611E-03 5.0168447E-03
 4.7129840E-03 4.4294605E-03 4.1649779E-03 3.9183381E-03 3.6883790E-03
 3.4740015E-03 3.2741658E-03 3.0878941E-03 2.9142434E-03 2.7523395E-03
 2.6013574E-03 2.4605079E-03 2.3290627E-03 2.2063411E-03 2.0916921E-03
 1.9845115E-03 1.8842542E-03 1.7903921E-03 1.7024353E-03 1.6199463E-03
 1.5425148E-03 1.4697425E-03 1.4012955E-03 1.3368363E-03 1.2760782E-03
 1.2187414E-03 1.1645816E-03 1.1133659E-03 1.0648845E-03 1.0189526E-03
 9.7538921E-04
 0.1087340 0.1020705 9.5605545E-02 8.9359283E-02 8.3348401E-02
 7.7586144E-02 7.2082683E-02 6.6844828E-02 6.1876547E-02 5.7179097E-02
 5.2751288E-02 4.8589785E-02 4.4689331E-02 4.1043088E-02 3.7642874E-02
 3.4479443E-02 3.1542718E-02 2.8822038E-02 2.6306342E-02 2.3984348E-02
 2.1844750E-02 1.9876299E-02 1.8067943E-02 1.6408930E-02 1.4888846E-02
 1.3497715E-02 1.2225988E-02 1.1064606E-02 1.0005014E-02 9.0391431E-03
 8.1594437E-03 7.3588463E-03 6.6307662E-03 5.9690955E-03 5.3681610E-03
 4.8227184E-03 4.3279296E-03 3.8793406E-03 3.4728535E-03 3.1047070E-03
 2.7714558E-03 2.4699396E-03 2.1972742E-03 1.9508281E-03 1.7281962E-03
 1.5271868E-03 1.3458101E-03 1.1822502E-03 1.0348551E-03 9.0213248E-04
 7.8272127E-04 6.7538361E-04 5.7900307E-04 4.9256260E-04 4.1514070E-04
 3.4590095E-04 2.8408418E-04 2.2900262E-04 1.8002870E-04 1.3659231E-04
 9.8175937E-05 6.4306652E-05 3.4552118E-05 8.5193269E-06 -1.4151817E-05
 -3.3792763E-05 -5.0703042E-05 -6.5161767E-05 -7.7420278E-05 -8.7710738E-05
 -9.6244679E-05 -1.0321730E-04 -1.0880367E-04 -1.1316414E-04 -1.1644729E-04
 -1.1878326E-04 -1.2029170E-04 -1.2108294E-04 -1.2125078E-04 -1.2088335E-04
 -1.2005906E-04
 4.8484907E-02 4.9214315E-02 4.9629308E-02 4.9752604E-02 4.9608205E-02
 4.9220923E-02 4.8615828E-02 4.7817986E-02 4.6851989E-02 4.5741659E-02
 4.4509802E-02 4.3177988E-02 4.1766409E-02 4.0293735E-02 3.8777072E-02
 3.7231907E-02 3.5672110E-02 3.4109991E-02 3.2556321E-02 3.1020412E-02
 2.9510226E-02 2.8032448E-02 2.6592581E-02 2.5195098E-02 2.3843491E-02
 2.2540407E-02 2.1287745E-02 2.0086715E-02 1.8937983E-02 1.7841695E-02
 1.6797597E-02 1.5805064E-02 1.4863182E-02 1.3970802E-02 1.3126573E-02
 1.2328986E-02 1.1576435E-02 1.0867213E-02 1.0199571E-02 9.5717087E-03
 8.9818239E-03 8.4281145E-03 7.9087866E-03 7.4220882E-03 6.9662943E-03
 6.5397201E-03 6.1407369E-03 5.7677715E-03 5.4192920E-03 5.0938409E-03
 4.7900220E-03 4.5064837E-03 4.2419420E-03 3.9951866E-03 3.7650422E-03
 3.5504131E-03 3.3502518E-03 3.1635615E-03 2.9894130E-03 2.8269237E-03
 2.6752553E-03 2.5336347E-03 2.4013305E-03 2.2776476E-03 2.1619543E-03
 2.0536555E-03 1.9521976E-03 1.8570555E-03 1.7677669E-03 1.6838906E-03
 1.6050063E-03 1.5307526E-03 1.4607904E-03 1.3947871E-03 1.3324708E-03
 1.2735588E-03 1.2178242E-03 1.1650326E-03 1.1149851E-03 1.0674951E-03
 1.0223882E-03
 0.1086452 0.1019795 9.5512562E-02 8.9264438E-02 8.3251871E-02
 7.7488132E-02 7.1983360E-02 6.6744387E-02 6.1775163E-02 5.7076946E-02
 5.2648555E-02 4.8486631E-02 4.4585913E-02 4.0939562E-02 3.7539378E-02
 3.4376107E-02 3.1439662E-02 2.8719379E-02 2.6204180E-02 2.3882778E-02
 2.1743855E-02 1.9776154E-02 1.7968625E-02 1.6310500E-02 1.4791362E-02
 1.3401227E-02 1.2130542E-02 1.0970245E-02 9.9117765E-03 8.9470660E-03
 8.0685578E-03 7.2691846E-03 6.5423558E-03 5.8819638E-03 5.2823322E-03
 4.7382209E-03 4.2447895E-03 3.7975805E-03 3.3925010E-03 3.0257904E-03
 2.6939996E-03 2.3939728E-03 2.1228297E-03 1.8779299E-03 1.6568786E-03
 1.4574836E-03 1.2777520E-03 1.1158679E-03 9.7018579E-04 8.3920860E-04
 7.2157197E-04 6.1604148E-04 5.2149710E-04 4.3691546E-04 3.6137746E-04
 2.9403690E-04 2.3413305E-04 1.8097086E-04 1.3391682E-04 9.2394643E-05
 5.5878467E-05 2.3887400E-05 -4.0158229E-06 -2.8234630E-05 -4.9133083E-05
 -6.7050372E-05 -8.2291212E-05 -9.5139396E-05 -1.0585003E-04 -1.1465755E-04
 -1.2177974E-04 -1.2740622E-04 -1.3171813E-04 -1.3487364E-04 -1.3701670E-04
 -1.3828136E-04 -1.3878255E-04 -1.3862737E-04 -1.3790917E-04 -1.3671168E-04
 -1.3510970E-04
 4.8611350E-02 4.9339857E-02 4.9753744E-02 4.9875740E-02 4.9729891E-02
 4.9341030E-02 4.8734248E-02 4.7934651E-02 4.6966840E-02 4.5854665E-02
 4.4620950E-02 4.3287292E-02 4.1873891E-02 4.0399428E-02 3.8881030E-02
 3.7334185E-02 3.5772786E-02 3.4209136E-02 3.2654013E-02 3.1116733E-02
 2.9605269E-02 2.8126298E-02 2.6685331E-02 2.5286842E-02 2.3934312E-02
 2.2630397E-02 2.1376984E-02 2.0175289E-02 1.9025978E-02 1.7929185E-02
 1.6884658E-02 1.5891764E-02 1.4949592E-02 1.4056980E-02 1.3212579E-02
 1.2414876E-02 1.1662262E-02 1.0953010E-02 1.0285379E-02 9.6575627E-03
 9.0677515E-03 8.5141314E-03 7.9949116E-03 7.5083254E-03 7.0526348E-03
 6.6261650E-03 6.2272660E-03 5.8543519E-03 5.5058934E-03 5.1804301E-03
 4.8765340E-03 4.5928620E-03 4.3281242E-03 4.0810890E-03 3.8505851E-03
 3.6355141E-03 3.4348052E-03 3.2474773E-03 3.0725894E-03 2.9092492E-03
 2.7566338E-03 2.6139661E-03 2.4805097E-03 2.3555907E-03 2.2385730E-03
 2.1288635E-03 2.0259172E-03 1.9292327E-03 1.8383409E-03 1.7527994E-03
 1.6722260E-03 1.5962541E-03 1.5245319E-03 1.4567688E-03 1.3926841E-03
 1.3320015E-03 1.2745046E-03 1.2199588E-03 1.1681772E-03 1.1189703E-03
 1.0721752E-03
 0.1085455 0.1018774 9.5408157E-02 8.9157954E-02 8.3143510E-02
 7.7378094E-02 7.1871862E-02 6.6631630E-02 6.1661359E-02 5.6962300E-02
 5.2533258E-02 4.8370868E-02 4.4469874E-02 4.0823411E-02 3.7423268E-02
 3.4260195E-02 3.1324085E-02 2.8604260E-02 2.6089637E-02 2.3768920E-02
 2.1630777E-02 1.9663950E-02 1.7857371E-02 1.6200267E-02 1.4682225E-02
 1.3293240E-02 1.2023763E-02 1.0864725E-02 9.8075569E-03 8.8441931E-03
 7.9670735E-03 7.1691242E-03 6.4437557E-03 5.7848585E-03 5.1867557E-03
 4.6442067E-03 4.1523688E-03 3.7067907E-03 3.3033737E-03 2.9383604E-03
 2.6082993E-03 2.3100420E-03 2.0407024E-03 1.7976455E-03 1.5784752E-03
 1.3809993E-03 1.2032244E-03 1.0433393E-03 8.9969049E-04 7.7077938E-04
 6.5524457E-04 5.5184669E-04 4.5945786E-04 3.7705520E-04 3.0370941E-04
 2.3857242E-04 1.8087344E-04 1.2990921E-04 8.5039312E-05 4.5678171E-05
 1.1291162E-05 -1.8607980E-05 -4.4468346E-05 -6.6697648E-05 -8.5667460E-05
 -1.0172338E-04 -1.1517471E-04 -1.2630761E-04 -1.3538013E-04 -1.4263052E-04
 -1.4827501E-04 -1.5250285E-04 -1.5549548E-04 -1.5740821E-04 -1.5838309E-04
 -1.5855172E-04 -1.5802364E-04 -1.5690619E-04 -1.5528550E-04 -1.5324440E-04
 -1.5085282E-04
 4.8753515E-02 4.9481034E-02 4.9893685E-02 5.0014243E-02 4.9866781E-02
 4.9476154E-02 4.8867509E-02 4.8065953E-02 4.7096126E-02 4.5981899E-02
 4.4746116E-02 4.3410398E-02 4.1994967E-02 4.0518526E-02 3.8998194E-02
 3.7449487E-02 3.5886303E-02 3.4320951E-02 3.2764226E-02 3.1225434E-02
 2.9712552E-02 2.8232265E-02 2.6790090E-02 2.5390482E-02 2.4036942E-02
 2.2732116E-02 2.1477884E-02 2.0275464E-02 1.9125516E-02 1.8028175E-02
 1.6983181E-02 1.5989901E-02 1.5047407E-02 1.4154551E-02 1.3309964E-02
 1.2512132E-02 1.1759434E-02 1.1050149E-02 1.0382520E-02 9.7547323E-03
 9.1649713E-03 8.6114155E-03 8.0922684E-03 7.6057464E-03 7.1501145E-03
 6.7236754E-03 6.3247727E-03 5.9518199E-03 5.6032715E-03 5.2776462E-03
 4.9735201E-03 4.6895463E-03 4.4244085E-03 4.1768788E-03 3.9457837E-03
 3.7300026E-03 3.5284793E-03 3.3402287E-03 3.1642921E-03 2.9998012E-03
 2.8459232E-03 2.7018799E-03 2.5669541E-03 2.4404742E-03 2.3218025E-03
 2.2103724E-03 2.1056356E-03 2.0071026E-03 1.9143107E-03 1.8268425E-03
 1.7443117E-03 1.6663519E-03 1.5926487E-03 1.5229009E-03 1.4568189E-03
 1.3941654E-03 1.3347103E-03 1.2782319E-03 1.2245452E-03 1.1734635E-03
 1.1248303E-03
 0.1084336 0.1017628 9.5290974E-02 8.9038439E-02 8.3021894E-02
 7.7254601E-02 7.1746722E-02 6.6505082E-02 6.1533637E-02 5.6833640E-02
 5.2403875E-02 4.8240971E-02 4.4339675E-02 4.0693097E-02 3.7293024E-02
 3.4130190E-02 3.1194469E-02 2.8475188E-02 2.5961235E-02 2.3641311E-02
 2.1504074E-02 1.9538259E-02 1.7732779E-02 1.6076867E-02 1.4560088E-02
 1.3172437E-02 1.1904363E-02 1.0746786E-02 9.6911388E-03 8.7293442E-03
 7.8538442E-03 7.0575592E-03 6.3339039E-03 5.6767608E-03 5.0804568E-03
 4.5397491E-03 4.0497943E-03 3.6061401E-03 3.2046919E-03 2.8416922E-03
 2.5136895E-03 2.2175338E-03 1.9503407E-03 1.7094784E-03 1.4925456E-03
 1.2973518E-03 1.1219040E-03 9.6438458E-04 8.2314142E-04 6.9667416E-04
 5.8361166E-04 4.8271019E-04 3.9283841E-04 3.1296493E-04 2.4215011E-04
 1.7953903E-04 1.2435173E-04 7.5873904E-05 3.3457618E-05 -3.4922045E-06
 -3.5521833E-05 -6.3124789E-05 -8.6757791E-05 -1.0683386E-04 -1.2373443E-04
 -1.3780392E-04 -1.4935847E-04 -1.5868654E-04 -1.6604575E-04 -1.7167510E-04
 -1.7578635E-04 -1.7857329E-04 -1.8020833E-04 -1.8084692E-04 -1.8062974E-04
 -1.7967923E-04 -1.7810505E-04 -1.7600825E-04 -1.7347190E-04 -1.7057291E-04
 -1.6737965E-04
 4.8913401E-02 4.9639825E-02 5.0051104E-02 5.0170071E-02 5.0020818E-02
 4.9628247E-02 4.9017511E-02 4.8213776E-02 4.7241706E-02 4.6125200E-02
 4.4887122E-02 4.3549120E-02 4.2131435E-02 4.0652785E-02 3.9130315E-02
 3.7579540E-02 3.6014378E-02 3.4447148E-02 3.2888640E-02 3.1348176E-02
 2.9833738E-02 2.8352002E-02 2.6908491E-02 2.5507659E-02 2.4153011E-02
 2.2847179E-02 2.1592053E-02 2.0388847E-02 1.9238204E-02 1.8140268E-02
 1.7094765E-02 1.6101062E-02 1.5158230E-02 1.4265095E-02 1.3420299E-02
 1.2622314E-02 1.1869515E-02 1.1160169E-02 1.0492514E-02 9.8647205E-03
 9.2749717E-03 8.7214289E-03 8.2022911E-03 7.7157551E-03 7.2600846E-03
 6.8335650E-03 6.4345337E-03 6.0613896E-03 5.7125660E-03 5.3865905E-03
 5.0820243E-03 4.7974922E-03 4.5316932E-03 4.2833854E-03 4.0513882E-03
 3.8345791E-03 3.6319059E-03 3.4423703E-03 3.2650339E-03 3.0990189E-03
 2.9435100E-03 2.7977307E-03 2.6609728E-03 2.5325632E-03 2.4118929E-03
 2.2983951E-03 2.1915382E-03 2.0908422E-03 1.9958504E-03 1.9061608E-03
 1.8213901E-03 1.7411951E-03 1.6652560E-03 1.5932729E-03 1.5249910E-03
 1.4601607E-03 1.3985463E-03 1.3399473E-03 1.2841836E-03 1.2310607E-03
 1.1804326E-03
 0.1083079 0.1016339 9.5159315E-02 8.8904180E-02 8.2885280E-02
 7.7115893E-02 7.1606182E-02 6.6362984E-02 6.1390243E-02 5.6689207E-02
 5.2258652E-02 4.8095200E-02 4.4193584E-02 4.0546905E-02 3.7146933E-02
 3.3984389E-02 3.1049136E-02 2.8330490E-02 2.5817323E-02 2.3498328E-02
 2.1362146E-02 1.9397499E-02 1.7593302E-02 1.5938772E-02 1.4423463E-02
 1.3037372E-02 1.1770932E-02 1.0615060E-02 9.5611895E-03 8.6012324E-03
 7.7276295E-03 6.9333026E-03 6.2116589E-03 5.5565862E-03 4.9624043E-03
 4.4238726E-03 3.9361496E-03 3.4947817E-03 3.0956722E-03 2.7350634E-03
 2.4095078E-03 2.1158557E-03 1.8512171E-03 1.6129637E-03 1.3986905E-03
 1.2062056E-03 1.0335125E-03 8.7879010E-04 7.4038166E-04 6.1677699E-04
 5.0660170E-04 4.0860314E-04 3.2163947E-04 2.4466962E-04 1.7674491E-04
 1.1699714E-04 6.4636253E-05 1.8938810E-05 -2.0757572E-05 -5.5055967E-05
 -8.4509658E-05 -1.0962408E-04 -1.3085823E-04 -1.4863540E-04 -1.6333748E-04
 -1.7531351E-04 -1.8488093E-04 -1.9232425E-04 -1.9790672E-04 -2.0186069E-04
 -2.0439738E-04 -2.0570456E-04 -2.0595331E-04 -2.0529318E-04 -2.0385961E-04
 -2.0177210E-04 -1.9913565E-04 -1.9604537E-04 -1.9257783E-04 -1.8881065E-04
 -1.8480456E-04
 4.9093265E-02 4.9818482E-02 5.0228260E-02 5.0345462E-02 5.0194219E-02
 4.9799472E-02 4.9186435E-02 4.8380282E-02 4.7405716E-02 4.6286676E-02
 4.5046054E-02 4.3705519E-02 4.2285331E-02 4.0804233E-02 3.9279386E-02
 3.7726332E-02 3.6158979E-02 3.4589667E-02 3.3029191E-02 3.1486884E-02
 2.9970724E-02 2.8487394E-02 2.7042417E-02 2.5640247E-02 2.4284380E-02
 2.2977455E-02 2.1721354E-02 2.0517280E-02 1.9365884E-02 1.8267298E-02
 1.7221238E-02 1.6227072E-02 1.5283855E-02 1.4390411E-02 1.3545373E-02
 1.2747201E-02 1.1994264E-02 1.1284811E-02 1.0617075E-02 9.9892169E-03
 9.3994038E-03 8.8457838E-03 8.3265444E-03 7.8398716E-03 7.3840152E-03
 6.9572451E-03 6.5578870E-03 6.1843246E-03 5.8349911E-03 5.5083875E-03
 5.2030748E-03 4.9176738E-03 4.6508722E-03 4.4014198E-03 4.1681388E-03
 3.9499081E-03 3.7456709E-03 3.5544403E-03 3.3752839E-03 3.2073315E-03
 3.0497680E-03 2.9018377E-03 2.7628406E-03 2.6321206E-03 2.5090752E-03
 2.3931430E-03 2.2838167E-03 2.1806199E-03 2.0831120E-03 1.9908971E-03
 1.9036053E-03 1.8209037E-03 1.7424673E-03 1.6680248E-03 1.5973066E-03
 1.5300767E-03 1.4661120E-03 1.4052131E-03 1.3471798E-03 1.2918537E-03
 1.2390766E-03
 0.1081667 0.1014893 9.5011450E-02 8.8753395E-02 8.2731858E-02
 7.6960139E-02 7.1448401E-02 6.6203460E-02 6.1229277E-02 5.6527097E-02
 5.2095670E-02 4.7931623E-02 4.4029675E-02 4.0382907E-02 3.6983076E-02
 3.3820890E-02 3.0886205E-02 2.8168306E-02 2.5656063E-02 2.3338154E-02
 2.1203209E-02 1.9239934E-02 1.7437231E-02 1.5784310E-02 1.4270724E-02
 1.2886455E-02 1.1621925E-02 1.0468057E-02 9.4162673E-03 8.4584700E-03
 7.5871064E-03 6.7950864E-03 6.0758214E-03 5.4231966E-03 4.8315306E-03
 4.2955810E-03 3.8105082E-03 3.3718562E-03 2.9755288E-03 2.6177694E-03
 2.2951271E-03 2.0044507E-03 1.7428516E-03 1.5076946E-03 1.2965738E-03
 1.1072911E-03 9.3784404E-04 7.8640651E-04 6.5130985E-04 5.3103879E-04
 4.2420530E-04 3.2954550E-04 2.4590720E-04 1.7223576E-04 1.0756926E-04
 5.1028659E-05 1.8075810E-06 -4.0826129E-05 -7.7544748E-05 -1.0896291E-04
 -1.3564076E-04 -1.5809029E-04 -1.7677675E-04 -1.9212508E-04 -2.0451844E-04
 -2.1430985E-04 -2.2181080E-04 -2.2730906E-04 -2.3106068E-04 -2.3329468E-04
 -2.3421997E-04 -2.3401697E-04 -2.3285429E-04 -2.3087331E-04 -2.2820616E-04
 -2.2496510E-04 -2.2125001E-04 -2.1714866E-04 -2.1274014E-04 -2.0808869E-04
 -2.0325251E-04
 4.9295679E-02 5.0019562E-02 5.0427683E-02 5.0542932E-02 5.0389498E-02
 4.9992353E-02 4.9376749E-02 4.8567913E-02 4.7590587E-02 4.6468738E-02
 4.5225285E-02 4.3881942E-02 4.2458981E-02 4.0975180E-02 3.9447710E-02
 3.7892122E-02 3.6322352E-02 3.4750745E-02 3.3188101E-02 3.1643763E-02
 3.0125709E-02 2.8640628E-02 2.7194040E-02 2.5790397E-02 2.4433199E-02
 2.3125080E-02 2.1867910E-02 2.0662893E-02 1.9510673E-02 1.8411368E-02
 1.7364701E-02 1.6370015E-02 1.5426361E-02 1.4532559E-02 1.3687222E-02
 1.2888804E-02 1.2135656E-02 1.1426027E-02 1.0758121E-02 1.0130087E-02
 9.5400838E-03 8.9862449E-03 8.4667373E-03 7.9797339E-03 7.5234701E-03
 7.0962030E-03 6.6962428E-03 6.3219578E-03 5.9717693E-03 5.6441799E-03
 5.3377314E-03 5.0510475E-03 4.7828015E-03 4.5317593E-03 4.2967317E-03
 4.0766043E-03 3.8703319E-03 3.6769283E-03 3.4954716E-03 3.3251096E-03
 3.1650360E-03 3.0145096E-03 2.8728363E-03 2.7393878E-03 2.6135577E-03
 2.4948139E-03 2.3826519E-03 2.2766036E-03 2.1762536E-03 2.0812056E-03
 1.9910980E-03 1.9056090E-03 1.8244255E-03 1.7472683E-03 1.6738845E-03
 1.6040422E-03 1.5375211E-03 1.4741118E-03 1.4136455E-03 1.3559387E-03
 1.3008423E-03
 0.1080080 0.1013267 9.4845362E-02 8.8584043E-02 8.2559571E-02
 7.6785237E-02 7.1271226E-02 6.6024356E-02 6.1048578E-02 5.6345128E-02
 5.1912762E-02 4.7748078E-02 4.3845784E-02 4.0198948E-02 3.6799315E-02
 3.3637580E-02 3.0703574E-02 2.7986566E-02 2.5475420E-02 2.3158785E-02
 2.1025289E-02 1.9063625E-02 1.7262679E-02 1.5611656E-02 1.4100084E-02
 1.2717953E-02 1.1455676E-02 1.0304164E-02 9.2548272E-03 8.2995845E-03
 7.4308622E-03 6.6415761E-03 5.9251334E-03 5.2754120E-03 4.6867360E-03
 4.1538603E-03 3.6719416E-03 3.2365243E-03 2.8435120E-03 2.4891437E-03
 2.1699676E-03 1.8828282E-03 1.6248320E-03 1.3933398E-03 1.1859358E-03
 1.0004182E-03 8.3477225E-04 6.8716076E-04 5.5590551E-04 4.3947381E-04
 3.3646793E-04 2.4560664E-04 1.6572478E-04 9.5751842E-05 3.4711458E-05
 -1.8288607E-05 -6.4065607E-05 -1.0336586E-04 -1.3686968E-04 -1.6519929E-04
 -1.8892203E-04 -2.0855210E-04 -2.2455973E-04 -2.3736648E-04 -2.4736224E-04
 -2.5488931E-04 -2.6026226E-04 -2.6376132E-04 -2.6563884E-04 -2.6611809E-04
 -2.6540004E-04 -2.6366301E-04 -2.6106491E-04 -2.5774320E-04 -2.5382426E-04
 -2.4941080E-04 -2.4460084E-04 -2.3947751E-04 -2.3410794E-04 -2.2855756E-04
 -2.2287869E-04
 4.9523540E-02 5.0245982E-02 5.0652273E-02 5.0765373E-02 5.0609507E-02
 5.0209709E-02 4.9591273E-02 4.8779473E-02 4.7799088E-02 4.6674121E-02
 4.5427550E-02 4.4081092E-02 4.2655069E-02 4.1168272E-02 3.9637897E-02
 3.8079523E-02 3.6507085E-02 3.4932949E-02 3.3367917E-02 3.1821348E-02
 3.0301213E-02 2.8814211E-02 2.7365854E-02 2.5960604E-02 2.4601953E-02
 2.3292515E-02 2.2034181E-02 2.0828132E-02 1.9675000E-02 1.8574903E-02
 1.7527552E-02 1.6532270E-02 1.5588110E-02 1.4693868E-02 1.3848144E-02
 1.3049386E-02 1.2295919E-02 1.1585980E-02 1.0917758E-02 1.0289388E-02
 9.6990010E-03 9.1447169E-03 8.6246906E-03 8.1370799E-03 7.6800887E-03
 7.2519705E-03 6.8510231E-03 6.4756074E-03 6.1241332E-03 5.7950802E-03
 5.4870076E-03 5.1985215E-03 4.9283151E-03 4.6751420E-03 4.4378168E-03
 4.2152517E-03 4.0063937E-03 3.8102812E-03 3.6260048E-03 3.4527152E-03
 3.2896295E-03 3.1360202E-03 2.9912137E-03 2.8545856E-03 2.7255553E-03
 2.6036033E-03 2.4882203E-03 2.3789713E-03 2.2754360E-03 2.1772331E-03
 2.0840131E-03 1.9954497E-03 1.9112433E-03 1.8311319E-03 1.7548444E-03
 1.6821673E-03 1.6128742E-03 1.5467716E-03 1.4836804E-03 1.4234169E-03
 1.3658416E-03
 0.1078297 0.1011442 9.4658792E-02 8.8393815E-02 8.2366064E-02
 7.6588824E-02 7.1072280E-02 6.5823272E-02 6.0845733E-02 5.6140888E-02
 5.1707495E-02 4.7542132E-02 4.3639496E-02 3.9992638E-02 3.6593281E-02
 3.3432100E-02 3.0498911E-02 2.7782975E-02 2.5273129E-02 2.2958007E-02
 2.0826224E-02 1.8866455E-02 1.7067585E-02 1.5418791E-02 1.3909604E-02
 1.2530001E-02 1.1270382E-02 1.0121655E-02 9.0752272E-03 8.1230104E-03
 7.2574252E-03 6.4713899E-03 5.7583004E-03 5.1120408E-03 4.5269285E-03
 3.9977147E-03 3.5195567E-03 3.0879944E-03 2.6989290E-03 2.3485927E-03
 2.0335310E-03 1.7505807E-03 1.4968402E-03 1.2696604E-03 1.0666163E-03
 8.8549132E-04 7.2425697E-04 5.8106106E-04 4.5420919E-04 3.4215496E-04
 2.4347797E-04 1.5688526E-04 8.1191356E-05 1.5310585E-05 -4.1746996E-05
 -9.0887952E-05 -1.3293973E-04 -1.6865978E-04 -1.9873447E-04 -2.2379206E-04
 -2.4440247E-04 -2.6108258E-04 -2.7430020E-04 -2.8447708E-04 -2.9199501E-04
 -2.9719630E-04 -3.0038977E-04 -3.0184712E-04 -3.0181365E-04 -3.0050744E-04
 -2.9812101E-04 -2.9482591E-04 -2.9077270E-04 -2.8609156E-04 -2.8090159E-04
 -2.7529983E-04 -2.6937734E-04 -2.6321047E-04 -2.5686281E-04 -2.5039603E-04
 -2.4385439E-04
 4.9780168E-02 5.0501026E-02 5.0905325E-02 5.1016059E-02 5.0857522E-02
 5.0454795E-02 4.9833227E-02 4.9018145E-02 4.8034377E-02 4.6905980E-02
 4.5655951E-02 4.4306058E-02 4.2876661E-02 4.1386560E-02 3.9852981E-02
 3.8291533E-02 3.6716156E-02 3.5139237E-02 3.3571586E-02 3.2022558E-02
 3.0500149E-02 2.9011043E-02 2.7560752E-02 2.6153741E-02 2.4793487E-02
 2.3482615E-02 2.2222994E-02 2.1015799E-02 1.9861657E-02 1.8760668E-02
 1.7712526E-02 1.6716551E-02 1.5771771E-02 1.4876966E-02 1.4030728E-02
 1.3231473E-02 1.2477513E-02 1.1767070E-02 1.1098308E-02 1.0469338E-02
 9.8782806E-03 9.3232319E-03 8.8023255E-03 8.3136987E-03 7.8555513E-03
 7.4261208E-03 7.0236842E-03 6.6465940E-03 6.2932675E-03 5.9621809E-03
 5.6518773E-03 5.3609754E-03 5.0881780E-03 4.8322440E-03 4.5920075E-03
 4.3663806E-03 4.1543338E-03 3.9549205E-03 3.7672406E-03 3.5904741E-03
 3.4238489E-03 3.2666498E-03 3.1182212E-03 2.9779535E-03 2.8452876E-03
 2.7197008E-03 2.6007134E-03 2.4878948E-03 2.3808249E-03 2.2791435E-03
 2.1825009E-03 2.0905731E-03 2.0030832E-03 1.9197472E-03 1.8403196E-03
 1.7645801E-03 1.6923023E-03 1.6233019E-03 1.5573847E-03 1.4943952E-03
 1.4341720E-03
 0.1076294 0.1009390 9.4449177E-02 8.8180132E-02 8.2148716E-02
 7.6368228E-02 7.0848882E-02 6.5597504E-02 6.0618017E-02 5.5911656E-02
 5.1477153E-02 4.7311082E-02 4.3408111E-02 3.9761283E-02 3.6362309E-02
 3.3201825E-02 3.0269640E-02 2.7554991E-02 2.5046695E-02 2.2733381E-02
 2.0603631E-02 1.8646115E-02 1.6849698E-02 1.5203550E-02 1.3697192E-02
 1.2320584E-02 1.1064121E-02 9.9187093E-03 8.8757398E-03 7.9271263E-03
 7.0652803E-03 6.2831184E-03 5.5740331E-03 4.9319044E-03 4.3510413E-03
 3.8261989E-03 3.3525242E-03 2.9255524E-03 2.5411763E-03 2.1956242E-03
 1.8854279E-03 1.6074141E-03 1.3586679E-03 1.1365280E-03 9.3855028E-04
 7.6250080E-04 6.0633500E-04 4.6818002E-04 3.4631995E-04 2.3918807E-04
 1.4534900E-04 6.3487649E-05 -7.6005567E-06 -6.9013215E-05 -1.2175535E-04
 -1.6674443E-04 -2.0481851E-04 -2.3673908E-04 -2.6319889E-04 -2.8482644E-04
 -3.0219246E-04 -3.1581250E-04 -3.2614931E-04 -3.3362108E-04 -3.3860153E-04
 -3.4142716E-04 -3.4239754E-04 -3.4177618E-04 -3.3980209E-04 -3.3668353E-04
 -3.3260541E-04 -3.2772974E-04 -3.2219905E-04 -3.1613861E-04 -3.0965661E-04
 -3.0284614E-04 -2.9579169E-04 -2.8856122E-04 -2.8121797E-04 -2.7381035E-04
 -2.6638381E-04
 5.0069325E-02 5.0788473E-02 5.1190589E-02 5.1298734E-02 5.1137261E-02
 5.0731316E-02 5.0106302E-02 4.9287606E-02 4.8300114E-02 4.7167920E-02
 4.5914084E-02 4.4560406E-02 4.3127276E-02 4.1633539E-02 4.0096447E-02
 3.8531613E-02 3.6953010E-02 3.5373032E-02 3.3802506E-02 3.2250796E-02
 3.0725883E-02 2.9234463E-02 2.7782060E-02 2.6373116E-02 2.5011107E-02
 2.3698654E-02 2.2437600E-02 2.1229126E-02 2.0073833E-02 1.8971818E-02
 1.7922744E-02 1.6925920E-02 1.5980352E-02 1.5084809E-02 1.4237842E-02
 1.3437857E-02 1.2683148E-02 1.1971898E-02 1.1302255E-02 1.0672320E-02
 1.0080174E-02 9.5239012E-03 9.0016173E-03 8.5114436E-03 8.0515612E-03
 7.6201973E-03 7.2156307E-03 6.8362094E-03 6.4803362E-03 6.1464962E-03
 5.8332467E-03 5.5392226E-03 5.2631157E-03 5.0037061E-03 4.7598574E-03
 4.5304857E-03 4.3145898E-03 4.1112360E-03 3.9195418E-03 3.7387083E-03
 3.5679755E-03 3.4066574E-03 3.2541053E-03 3.1097212E-03 2.9729630E-03
 2.8433204E-03 2.7203283E-03 2.6035544E-03 2.4926011E-03 2.3871013E-03
 2.2867187E-03 2.1911408E-03 2.1000772E-03 2.0132575E-03 1.9304433E-03
 1.8514078E-03 1.7759284E-03 1.7038214E-03 1.6348896E-03 1.5689830E-03
 1.5059269E-03
 0.1074043 0.1007085 9.4213657E-02 8.7940060E-02 8.1904553E-02
 7.6120466E-02 7.0598014E-02 6.5344006E-02 6.0362387E-02 5.5654380E-02
 5.1218692E-02 4.7051892E-02 4.3148626E-02 3.9501917E-02 3.6103446E-02
 3.2943845E-02 3.0012894E-02 2.7299808E-02 2.4793383E-02 2.2482226E-02
 2.0354912E-02 1.8400084E-02 1.6606592E-02 1.4963599E-02 1.3460611E-02
 1.2087571E-02 1.0834882E-02 9.6934224E-03 8.6545888E-03 7.7102766E-03
 6.8529025E-03 6.0753711E-03 5.3710742E-03 4.7338768E-03 4.1580917E-03
 3.6384591E-03 3.1701198E-03 2.7485983E-03 2.3697787E-03 2.0298697E-03
 1.7253925E-03 1.4531546E-03 1.2102252E-03 9.9391770E-04 8.0177042E-04
 6.3152518E-04 4.8111347E-04 3.4863889E-04 2.3236343E-04 1.3070012E-04
 4.2189149E-05 -3.4501067E-05 -1.0058803E-04 -1.5718752E-04 -2.0531348E-04
 -2.4589247E-04 -2.7976753E-04 -3.0770089E-04 -3.3038881E-04 -3.4845693E-04
 -3.6247142E-04 -3.7294035E-04 -3.8032368E-04 -3.8502846E-04 -3.8742161E-04
 -3.8782891E-04 -3.8653921E-04 -3.8381020E-04 -3.7986832E-04 -3.7491176E-04
 -3.6911870E-04 -3.6263856E-04 -3.5560870E-04 -3.4814610E-04 -3.4034959E-04
 -3.3230754E-04 -3.2409604E-04 -3.1577857E-04 -3.0741273E-04 -2.9904061E-04
 -2.9070795E-04
 5.0395310E-02 5.1112622E-02 5.1512372E-02 5.1617689E-02 5.1452998E-02
 5.1043518E-02 5.0414722E-02 4.9592052E-02 4.8600458E-02 4.7464099E-02
 4.6206072E-02 4.4848233E-02 4.3411005E-02 4.1913271E-02 4.0372312E-02
 3.8803764E-02 3.7221625E-02 3.5638299E-02 3.4064621E-02 3.2509964E-02
 3.0982314E-02 2.9488366E-02 2.8033635E-02 2.6622558E-02 2.5258610E-02
 2.3944391E-02 2.2681737E-02 2.1471800E-02 2.0315181E-02 1.9211939E-02
 1.8161729E-02 1.7163834E-02 1.6217228E-02 1.5320654E-02 1.4472650E-02
 1.3671594E-02 1.2915739E-02 1.2203250E-02 1.1532256E-02 1.0900819E-02
 1.0307008E-02 9.7488966E-03 9.2245694E-03 8.7321419E-03 8.2697868E-03
 7.8357244E-03 7.4282307E-03 7.0456527E-03 6.6864118E-03 6.3489955E-03
 6.0319821E-03 5.7339980E-03 5.4537766E-03 5.1901150E-03 4.9418849E-03
 4.7080363E-03 4.4875788E-03 4.2796014E-03 4.0832465E-03 3.8977263E-03
 3.7223089E-03 3.5563158E-03 3.3991111E-03 3.2501216E-03 3.1088113E-03
 2.9746755E-03 2.8472641E-03 2.7261507E-03 2.6109470E-03 2.5012931E-03
 2.3968467E-03 2.2973069E-03 2.2023888E-03 2.1118235E-03 2.0253637E-03
 1.9427895E-03 1.8638840E-03 1.7884573E-03 1.7163145E-03 1.6472930E-03
 1.5812351E-03
 0.1071512 0.1004494 9.3948983E-02 8.7670304E-02 8.1630252E-02
 7.5842179E-02 7.0316270E-02 6.5059379E-02 6.0075443E-02 5.5365648E-02
 5.0928716E-02 4.6761185E-02 4.2857684E-02 3.9211214E-02 3.5813440E-02
 3.2654960E-02 2.9725531E-02 2.7014349E-02 2.4510192E-02 2.2201639E-02
 2.0077249E-02 1.8125648E-02 1.6335668E-02 1.4696456E-02 1.3197504E-02
 1.1828748E-02 1.0580571E-02 9.4438512E-03 8.4099695E-03 7.4708206E-03
 6.6188043E-03 5.8468175E-03 5.1482441E-03 4.5169438E-03 3.9472114E-03
 3.4337740E-03 2.9717642E-03 2.5566872E-03 2.1844062E-03 1.8511151E-03
 1.5533075E-03 1.2877680E-03 1.0515417E-03 8.4191363E-04 6.5639574E-04
 4.9270218E-04 3.4873805E-04 2.2258019E-04 1.1246932E-04 1.6791666E-05
 -6.5927015E-05 -1.3703713E-04 -1.9776986E-04 -2.4924855E-04 -2.9249673E-04
 -3.2844310E-04 -3.5793099E-04 -3.8172427E-04 -4.0051085E-04 -4.1491346E-04
 -4.2548886E-04 -4.3273691E-04 -4.3710665E-04 -4.3899554E-04 -4.3875873E-04
 -4.3671238E-04 -4.3313217E-04 -4.2826610E-04 -4.2232734E-04 -4.1550800E-04
 -4.0797290E-04 -3.9986541E-04 -3.9131055E-04 -3.8241813E-04 -3.7328241E-04
 -3.6398155E-04 -3.5458565E-04 -3.4515298E-04 -3.3573472E-04 -3.2637190E-04
 -3.1709758E-04
 5.0763045E-02 5.1478401E-02 5.1875588E-02 5.1977836E-02 5.1809635E-02
 5.1396299E-02 5.0763354E-02 4.9936328E-02 4.8940238E-02 4.7799304E-02
 4.6536684E-02 4.5174278E-02 4.3732557E-02 4.2230442E-02 4.0685248E-02
 3.9112639E-02 3.7526626E-02 3.5939630E-02 3.4362502E-02 3.2804612E-02
 3.1273957E-02 2.9777231E-02 2.8319933E-02 2.6906492E-02 2.5540372E-02
 2.4224162E-02 2.2959666E-02 2.1748036E-02 2.0589828E-02 1.9485084E-02
 1.8433433E-02 1.7434126E-02 1.6486110E-02 1.5588105E-02 1.4738602E-02
 1.3935954E-02 1.3178398E-02 1.2464059E-02 1.1791042E-02 1.1157388E-02
 1.0561153E-02 1.0000382E-02 9.4731553E-03 8.9775864E-03 8.5118422E-03
 8.0741411E-03 7.6627685E-03 7.2760805E-03 6.9125164E-03 6.5705753E-03
 6.2488578E-03 5.9460145E-03 5.6607975E-03 5.3920206E-03 5.1385928E-03
 4.8994767E-03 4.6737054E-03 4.4603930E-03 4.2586951E-03 4.0678503E-03
 3.8871411E-03 3.7159000E-03 3.5535097E-03 3.3994105E-03 3.2530620E-03
 3.1139927E-03 2.9817428E-03 2.8558953E-03 2.7360653E-03 2.6219001E-03
 2.5130662E-03 2.4092626E-03 2.3101908E-03 2.2156027E-03 2.1252418E-03
 2.0388861E-03 1.9563192E-03 1.8773502E-03 1.8017945E-03 1.7294704E-03
 1.6602185E-03
 0.1068667 0.1001581 9.3651503E-02 8.7367184E-02 8.1322081E-02
 7.5529568E-02 6.9999866E-02 6.4739823E-02 5.9753358E-02 5.5041663E-02
 5.0603442E-02 4.6435203E-02 4.2531576E-02 3.8885523E-02 3.5488680E-02
 3.2331627E-02 2.9404102E-02 2.6695263E-02 2.4193872E-02 2.1888485E-02
 1.9767631E-02 1.7819922E-02 1.6034175E-02 1.4399521E-02 1.2905432E-02
 1.1541828E-02 1.0299085E-02 9.1680605E-03 8.1401337E-03 7.2071771E-03
 6.3615865E-03 5.5962428E-03 4.9045100E-03 4.2802356E-03 3.7176991E-03
 3.2116054E-03 2.7570594E-03 2.3495485E-03 1.9849092E-03 1.6593025E-03
 1.3691954E-03 1.1113401E-03 8.8274799E-04 6.8067294E-04 5.0259527E-04
 3.4619865E-04 2.0935871E-04 9.0128902E-05 -1.3274931E-05 -1.0248584E-04
 -1.7899361E-04 -2.4416120E-04 -2.9922809E-04 -3.4532492E-04 -3.8347291E-04
 -4.1460301E-04 -4.3955338E-04 -4.5907847E-04 -4.7386199E-04 -4.8451420E-04
 -4.9158034E-04 -4.9554947E-04 -4.9685821E-04 -4.9588934E-04 -4.9298821E-04
 -4.8845325E-04 -4.8255292E-04 -4.7551937E-04 -4.6755854E-04 -4.5884759E-04
 -4.4954135E-04 -4.3977500E-04 -4.2966742E-04 -4.1931527E-04 -4.0880707E-04
 -3.9821537E-04 -3.8760385E-04 -3.7702383E-04 -3.6651740E-04 -3.5612681E-04
 -3.4588136E-04
 5.1178157E-02 5.1891435E-02 5.2285887E-02 5.2384816E-02 5.2212812E-02
 5.1795270E-02 5.1157802E-02 5.0326027E-02 4.9325023E-02 4.8179090E-02
 4.6911445E-02 4.5544043E-02 4.4097409E-02 4.2590506E-02 4.1040674E-02
 3.9463617E-02 3.7873365E-02 3.6282353E-02 3.4701448E-02 3.3140015E-02
 3.1606052E-02 3.0106243E-02 2.8646085E-02 2.7230002E-02 2.5861412E-02
 2.4542902E-02 2.3276255E-02 2.2062583E-02 2.0902416E-02 1.9795768E-02
 1.8742232E-02 1.7741026E-02 1.6791061E-02 1.5891021E-02 1.5039367E-02
 1.4234419E-02 1.3474371E-02 1.2757349E-02 1.2081415E-02 1.1444606E-02
 1.0844949E-02 1.0280484E-02 9.7492998E-03 9.2494944E-03 8.7792529E-03
 8.3368020E-03 7.9204412E-03 7.5285528E-03 7.1595791E-03 6.8120626E-03
 6.4846100E-03 6.1759111E-03 5.8847484E-03 5.6099524E-03 5.3504519E-03
 5.1052356E-03 4.8733680E-03 4.6539777E-03 4.4462429E-03 4.2494116E-03
 4.0627816E-03 3.8857078E-03 3.7175827E-03 3.5578483E-03 3.4059857E-03
 3.2615173E-03 3.1239945E-03 2.9930100E-03 2.8681804E-03 2.7491462E-03
 2.6355833E-03 2.5271853E-03 2.4236685E-03 2.3247721E-03 2.2302433E-03
 2.1398561E-03 2.0533928E-03 1.9706609E-03 1.8914703E-03 1.8156396E-03
 1.7430169E-03
 0.1065468 9.9830687E-02 9.3317129E-02 8.7026522E-02 8.0975823E-02
 7.5178422E-02 6.9644548E-02 6.4381063E-02 5.9391882E-02 5.4678183E-02
 5.0238658E-02 4.6069797E-02 4.2166200E-02 3.8520802E-02 3.5125222E-02
 3.1970005E-02 2.9044863E-02 2.6338929E-02 2.3840934E-02 2.1539407E-02
 1.9422865E-02 1.7479889E-02 1.5699277E-02 1.4070133E-02 1.2581923E-02
 1.1224546E-02 9.9883564E-03 8.8641988E-03 7.8434367E-03 6.9179209E-03
 6.0800295E-03 5.3226198E-03 4.6390411E-03 4.0231096E-03 3.4690779E-03
 2.9716212E-03 2.5258185E-03 2.1271126E-03 1.7713103E-03 1.4545317E-03
 1.1732096E-03 9.2405564E-04 7.0404366E-04 5.1039294E-04 3.4054861E-04
 1.9216427E-04 6.3087631E-05 -4.8650581E-05 -1.4485560E-04 -2.2717117E-04
 -2.9710287E-04 -3.5601878E-04 -4.0515931E-04 -4.4565467E-04 -4.7852393E-04
 -5.0468871E-04 -5.2497891E-04 -5.4013880E-04 -5.5083702E-04 -5.5767101E-04
 -5.6117354E-04 -5.6181697E-04 -5.6002178E-04 -5.5615947E-04 -5.5055699E-04
 -5.4350292E-04 -5.3525105E-04 -5.2601885E-04 -5.1600166E-04 -5.0536654E-04
 -4.9425801E-04 -4.8280164E-04 -4.7110402E-04 -4.5925658E-04 -4.4733996E-04
 -4.3541985E-04 -4.2355279E-04 -4.1178477E-04 -4.0015462E-04 -3.8869842E-04
 -3.7743707E-04
 5.1647138E-02 5.2358240E-02 5.2749779E-02 5.2845150E-02 5.2669041E-02
 5.2246943E-02 5.1604569E-02 5.0767619E-02 4.9761269E-02 4.8609883E-02
 4.7336757E-02 4.5963913E-02 4.4511918E-02 4.2999785E-02 4.1444898E-02
 3.9862983E-02 3.8268097E-02 3.6672685E-02 3.5087619E-02 3.3522278E-02
 3.1984646E-02 3.0481402E-02 2.9018022E-02 2.7598906E-02 2.6227467E-02
 2.4906242E-02 2.3636987E-02 2.2420786E-02 2.1258129E-02 2.0148991E-02
 1.9092929E-02 1.8089114E-02 1.7136423E-02 1.6233504E-02 1.5378784E-02
 1.4570559E-02 1.3806988E-02 1.3086174E-02 1.2406166E-02 1.1764987E-02
 1.1160666E-02 1.0591250E-02 1.0054812E-02 9.5494809E-03 9.0734549E-03
 8.6249756E-03 8.2023777E-03 7.8040501E-03 7.4284817E-03 7.0742350E-03
 6.7399438E-03 6.4243367E-03 6.1262031E-03 5.8444217E-03 5.5779377E-03
 5.3257719E-03 5.0869919E-03 4.8607504E-03 4.6462496E-03 4.4427584E-03
 4.2495732E-03 4.0660645E-03 3.8916327E-03 3.7257345E-03 3.5678535E-03
 3.4175168E-03 3.2742820E-03 3.1377457E-03 3.0075153E-03 2.8832522E-03
 2.7646155E-03 2.6513014E-03 2.5430289E-03 2.4395313E-03 2.3405585E-03
 2.2458807E-03 2.1552811E-03 2.0685564E-03 1.9855117E-03 1.9059763E-03
 1.8297732E-03
 0.1061870 9.9462494E-02 9.2941217E-02 8.6643644E-02 8.0586754E-02
 7.4783981E-02 6.9245555E-02 6.3978344E-02 5.8986269E-02 5.4270502E-02
 4.9829710E-02 4.5660365E-02 4.1757036E-02 3.8112640E-02 3.4718759E-02
 3.1565920E-02 2.8643787E-02 2.5941471E-02 2.3447674E-02 2.1150900E-02
 1.9039633E-02 1.7102433E-02 1.5328073E-02 1.3705635E-02 1.2224556E-02
 1.0874717E-02 9.6464502E-03 8.5305749E-03 7.5184251E-03 6.6018342E-03
 5.7731415E-03 5.0251815E-03 4.3512648E-03 3.7451729E-03 3.2011187E-03
 2.7137361E-03 2.2780593E-03 1.8894894E-03 1.5437846E-03 1.2370228E-03
 9.6558803E-04 7.2615081E-04 5.1564624E-04 3.3125648E-04 1.7039242E-04
 3.0681600E-05 -9.0052898E-05 -1.9379870E-04 -2.8237310E-04 -3.5743081E-04
 -4.2048018E-04 -4.7288582E-04 -5.1588990E-04 -5.5061094E-04 -5.7805912E-04
 -5.9914152E-04 -6.1467738E-04 -6.2539347E-04 -6.3194288E-04 -6.3490414E-04
 -6.3479511E-04 -6.3207099E-04 -6.2713533E-04 -6.2034302E-04 -6.1200623E-04
 -6.0239871E-04 -5.9175870E-04 -5.8029254E-04 -5.6818430E-04 -5.5558642E-04
 -5.4263568E-04 -5.2944705E-04 -5.1611895E-04 -5.0273497E-04 -4.8936642E-04
 -4.7607371E-04 -4.6290565E-04 -4.4990538E-04 -4.3710609E-04 -4.2453504E-04
 -4.1221629E-04
 5.2177433E-02 5.2886311E-02 5.3274788E-02 5.3366382E-02 5.3185865E-02
 5.2758873E-02 5.2111190E-02 5.1268645E-02 5.0256494E-02 4.9099196E-02
 4.7820117E-02 4.6441346E-02 4.4983517E-02 4.3465689E-02 4.1905284E-02
 4.0318057E-02 3.8718086E-02 3.7117839E-02 3.5528179E-02 3.3958495E-02
 3.2416746E-02 3.0909603E-02 2.9442521E-02 2.8019875E-02 2.6645031E-02
 2.5320500E-02 2.4048002E-02 2.2828571E-02 2.1662654E-02 2.0550188E-02
 1.9490676E-02 1.8483257E-02 1.7526770E-02 1.6619818E-02 1.5760811E-02
 1.4948002E-02 1.4179547E-02 1.3453528E-02 1.2767999E-02 1.2120973E-02
 1.1510482E-02 1.0934594E-02 1.0391404E-02 9.8790629E-03 9.3957856E-03
 8.9398446E-03 8.5096145E-03 8.1035094E-03 7.7200527E-03 7.3578390E-03
 7.0155417E-03 6.6918996E-03 6.3857455E-03 6.0959761E-03 5.8215624E-03
 5.5615366E-03 5.3150044E-03 5.0811321E-03 4.8591266E-03 4.6482598E-03
 4.4478662E-03 4.2573074E-03 4.0759938E-03 3.9033878E-03 3.7389752E-03
 3.5822911E-03 3.4328923E-03 3.2903734E-03 3.1543493E-03 3.0244722E-03
 2.9004030E-03 2.7818459E-03 2.6685041E-03 2.5601091E-03 2.4564106E-03
 2.3571751E-03 2.2621879E-03 2.1712324E-03 2.0841165E-03 2.0006630E-03
 1.9206933E-03
 0.1057822 9.9048391E-02 9.2518575E-02 8.6213291E-02 8.0149598E-02
 7.4340925E-02 6.8797566E-02 6.3526370E-02 5.8531269E-02 5.3813420E-02
 4.9371470E-02 4.5201872E-02 4.1299175E-02 3.7656255E-02 3.4264665E-02
 3.1114899E-02 2.8196592E-02 2.5498815E-02 2.3010245E-02 2.0719342E-02
 1.8614572E-02 1.6684456E-02 1.4917737E-02 1.3303469E-02 1.1831059E-02
 1.0490357E-02 9.2716590E-03 8.1657544E-03 7.1639405E-03 6.2580048E-03
 5.4402519E-03 4.7034682E-03 4.0409141E-03 3.4463231E-03 2.9138529E-03
 2.4380875E-03 2.0140039E-03 1.6369483E-03 1.3026248E-03 1.0070616E-03
 7.4659626E-04 5.1785330E-04 3.1772902E-04 1.4337100E-04 -7.8354369E-06
 -1.3828768E-04 -2.5017737E-04 -3.4550371E-04 -4.2608930E-04 -4.9358851E-04
 -5.4950616E-04 -5.9520092E-04 -6.3190033E-04 -6.6071172E-04 -6.8262796E-04
 -6.9854187E-04 -7.0924987E-04 -7.1545981E-04 -7.1780721E-04 -7.1685220E-04
 -7.1308971E-04 -7.0695812E-04 -6.9884374E-04 -6.8908313E-04 -6.7797408E-04
 -6.6577271E-04 -6.5270410E-04 -6.3896412E-04 -6.2471902E-04 -6.1011466E-04
 -5.9527578E-04 -5.8030622E-04 -5.6529813E-04 -5.5032643E-04 -5.3545565E-04
 -5.2073854E-04 -5.0621800E-04 -4.9193209E-04 -4.7790908E-04 -4.6417167E-04
 -4.5073923E-04
 5.2777674E-02 5.3484328E-02 5.3869639E-02 5.3957243E-02 5.3772055E-02
 5.3339824E-02 5.2686453E-02 5.1837884E-02 5.0819471E-02 4.9655780E-02
 4.8370253E-02 4.6985056E-02 4.5520887E-02 4.3996856E-02 4.2430423E-02
 4.0837377E-02 3.9231814E-02 3.7626203E-02 3.6031421E-02 3.4456834E-02
 3.2910392E-02 3.1398743E-02 2.9927300E-02 2.8500406E-02 2.7121395E-02
 2.5792725E-02 2.4516063E-02 2.3292398E-02 2.2122134E-02 2.1005156E-02
 1.9940924E-02 1.8928539E-02 1.7966801E-02 1.7054293E-02 1.6189391E-02
 1.5370344E-02 1.4595293E-02 1.3862331E-02 1.3169505E-02 1.2514861E-02
 1.1896441E-02 1.1312341E-02 1.0760680E-02 1.0239647E-02 9.7474931E-03
 9.2825377E-03 8.8431621E-03 8.4278444E-03 8.0351308E-03 7.6636416E-03
 7.3120901E-03 6.9792476E-03 6.6639641E-03 6.3651674E-03 6.0818428E-03
 5.8130501E-03 5.5579003E-03 5.3155725E-03 5.0852937E-03 4.8663551E-03
 4.6580713E-03 4.4598286E-03 4.2710397E-03 4.0911660E-03 3.9196997E-03
 3.7561755E-03 3.6001443E-03 3.4512072E-03 3.3089796E-03 3.1731017E-03
 3.0432416E-03 2.9190886E-03 2.8003526E-03 2.6867599E-03 2.5780550E-03
 2.4739944E-03 2.3743552E-03 2.2789305E-03 2.1875203E-03 2.0999322E-03
 2.0159956E-03
 0.1053268 9.8582633E-02 9.2043348E-02 8.5729577E-02 7.9658404E-02
 7.3843352E-02 6.8294682E-02 6.3019283E-02 5.8021072E-02 5.3301215E-02
 4.8858326E-02 4.4688851E-02 4.0787291E-02 3.7146505E-02 3.3758007E-02
 3.0612236E-02 2.7698817E-02 2.5006767E-02 2.2524729E-02 2.0241123E-02
 1.8144377E-02 1.6222971E-02 1.4465613E-02 1.2861316E-02 1.1399442E-02
 1.0069797E-02 8.8626323E-03 7.7686855E-03 6.7792013E-03 5.8859098E-03
 5.0810608E-03 4.3573719E-03 3.7080427E-03 3.1267400E-03 2.6075570E-03
 2.1450089E-03 1.7340102E-03 1.3698451E-03 1.0481620E-03 7.6493400E-04
 5.1645230E-04 2.9930208E-04 1.1034645E-04 -5.3296193E-05 -1.9425957E-04
 -3.1495452E-04 -4.1758100E-04 -5.0413841E-04 -5.7644653E-04 -6.3615275E-04
 -6.8474695E-04 -7.2357396E-04 -7.5384474E-04 -7.7664468E-04 -7.9294713E-04
 -8.0362137E-04 -8.0944225E-04 -8.1109803E-04 -8.0919784E-04 -8.0428086E-04
 -7.9682458E-04 -7.8724499E-04 -7.7591051E-04 -7.6313969E-04 -7.4921304E-04
 -7.3437195E-04 -7.1882957E-04 -7.0276356E-04 -6.8633002E-04 -6.6966488E-04
 -6.5288210E-04 -6.3607562E-04 -6.1932957E-04 -6.0271082E-04 -5.8627600E-04
 -5.7007390E-04 -5.5414083E-04 -5.3850777E-04 -5.2319781E-04 -5.0823187E-04
 -4.9362303E-04
 5.3457879E-02 5.4162372E-02 5.4544467E-02 5.4627944E-02 5.4437850E-02
 5.4000068E-02 5.3340640E-02 5.2485615E-02 5.1460486E-02 5.0289907E-02
 4.8997413E-02 4.7605257E-02 4.6134200E-02 4.4603404E-02 4.3030359E-02
 4.1430898E-02 3.9819118E-02 3.8207501E-02 3.6606912E-02 3.5026696E-02
 3.3474784E-02 3.1957775E-02 3.0481055E-02 2.9048918E-02 2.7664635E-02
 2.6330622E-02 2.5048504E-02 2.3819199E-02 2.2643071E-02 2.1519955E-02
 2.0449284E-02 1.9430120E-02 1.8461235E-02 1.7541200E-02 1.6668385E-02
 1.5841041E-02 1.5057323E-02 1.4315323E-02 1.3613133E-02 1.2948816E-02
 1.2320453E-02 1.1726178E-02 1.1164146E-02 1.0632591E-02 1.0129796E-02
 9.6541271E-03 9.2040077E-03 8.7779509E-03 8.3745271E-03 7.9924045E-03
 7.6303165E-03 7.2870543E-03 6.9615091E-03 6.6526094E-03 6.3593681E-03
 6.0808584E-03 5.8162031E-03 5.5645905E-03 5.3252592E-03 5.0974968E-03
 4.8806383E-03 4.6740654E-03 4.4771903E-03 4.2894795E-03 4.1104192E-03
 3.9395471E-03 3.7764146E-03 3.6206134E-03 3.4717550E-03 3.3294836E-03
 3.1934548E-03 3.0633628E-03 2.9389004E-03 2.8197973E-03 2.7057857E-03
 2.5966293E-03 2.4920921E-03 2.3919533E-03 2.2960131E-03 2.2040792E-03
 2.1159681E-03
 0.1048144 9.8058693E-02 9.1508977E-02 8.5185893E-02 7.9106599E-02
 7.3284663E-02 6.7730352E-02 6.2450599E-02 5.7449322E-02 5.2727655E-02
 4.8284221E-02 4.4115417E-02 4.0215731E-02 3.6577977E-02 3.3193626E-02
 3.0053096E-02 2.7145939E-02 2.4461143E-02 2.1987295E-02 1.9712782E-02
 1.7625963E-02 1.5715286E-02 1.3969396E-02 1.2377243E-02 1.0928144E-02
 9.6118292E-03 8.4184837E-03 7.3387842E-03 6.3638911E-03 5.4854653E-03
 4.6956693E-03 3.9871451E-03 3.3530123E-03 2.7868543E-03 2.2826872E-03
 1.8349543E-03 1.4384983E-03 1.0885433E-03 7.8067806E-04 5.1082874E-04
 2.7524511E-04 7.0479895E-05 -1.0662965E-04 -2.5898000E-04 -3.8921609E-04
 -4.9975101E-04 -5.9278141E-04 -6.7029858E-04 -7.3410984E-04 -7.8584388E-04
 -8.2697166E-04 -8.5881760E-04 -8.8256440E-04 -8.9927705E-04 -9.0990210E-04
 -9.1528223E-04 -9.1616804E-04 -9.1322250E-04 -9.0703135E-04 -8.9811179E-04
 -8.8691653E-04 -8.7384350E-04 -8.5924036E-04 -8.4340834E-04 -8.2661229E-04
 -8.0907636E-04 -7.9099933E-04 -7.7254639E-04 -7.5386465E-04 -7.3507481E-04
 -7.1628130E-04 -6.9757050E-04 -6.7901768E-04 -6.6068111E-04 -6.4261327E-04
 -6.2485319E-04 -6.0743210E-04 -5.9037900E-04 -5.7371100E-04 -5.5744260E-04
 -5.4158346E-04
 5.4229729E-02 5.4932229E-02 5.5311158E-02 5.5390421E-02 5.5195238E-02
 5.4751642E-02 5.4085799E-02 5.3223923E-02 5.2191611E-02 5.1013637E-02
 4.9713638E-02 4.8313938E-02 4.6835374E-02 4.5297157E-02 4.3716814E-02
 4.2110197E-02 4.0491421E-02 3.8872950E-02 3.7265632E-02 3.5678785E-02
 3.4120310E-02 3.2596748E-02 3.1113440E-02 2.9674627E-02 2.8283531E-02
 2.6942501E-02 2.5653103E-02 2.4416225E-02 2.3232184E-02 2.2100778E-02
 2.1021409E-02 1.9993125E-02 1.9014701E-02 1.8084703E-02 1.7201515E-02
 1.6363405E-02 1.5568561E-02 1.4815117E-02 1.4101184E-02 1.3424881E-02
 1.2784342E-02 1.2177728E-02 1.1603259E-02 1.1059198E-02 1.0543892E-02
 1.0055724E-02 9.5931645E-03 9.1547687E-03 8.7391334E-03 8.3449613E-03
 7.9709971E-03 7.6160696E-03 7.2790822E-03 6.9589741E-03 6.6547799E-03
 6.3655772E-03 6.0905111E-03 5.8287606E-03 5.5795717E-03 5.3422390E-03
 5.1160944E-03 4.9005202E-03 4.6949368E-03 4.4987998E-03 4.3116026E-03
 4.1328585E-03 3.9621405E-03 3.7990143E-03 3.6431006E-03 3.4940294E-03
 3.3514528E-03 3.2150599E-03 3.0845373E-03 2.9596086E-03 2.8400002E-03
 2.7254673E-03 2.6157603E-03 2.5106675E-03 2.4099716E-03 2.3134728E-03
 2.2209862E-03
 0.1042376 9.7469285E-02 9.0908125E-02 8.4574908E-02 7.8486852E-02
 7.2657570E-02 6.7097403E-02 6.1813280E-02 5.6809112E-02 5.2086040E-02
 4.7642671E-02 4.3475367E-02 3.9578579E-02 3.5945088E-02 3.2566320E-02
 2.9432623E-02 2.6533518E-02 2.3857931E-02 2.1394389E-02 1.9131206E-02
 1.7056683E-02 1.5159192E-02 1.3427304E-02 1.1849893E-02 1.0416182E-02
 9.1158217E-03 7.9389075E-03 6.8760077E-03 5.9181941E-03 5.0570215E-03
 4.2845593E-03 3.5933487E-03 2.9764122E-03 2.4272457E-03 1.9397840E-03
 1.5083895E-03 1.1278379E-03 7.9329632E-04 5.0030375E-04 2.4474584E-04
 2.2842398E-05 -1.6887474E-04 -3.3358042E-04 -4.7417669E-04 -5.9330516E-04
 -6.9337088E-04 -7.7655516E-04 -8.4483199E-04 -8.9998549E-04 -9.4361947E-04
 -9.7717973E-04 -1.0019602E-03 -1.0191171E-03 -1.0296849E-03 -1.0345811E-03
 -1.0346206E-03 -1.0305247E-03 -1.0229325E-03 -1.0124041E-03 -9.9943148E-04
 -9.8444696E-04 -9.6782640E-04 -9.4989740E-04 -9.3094405E-04 -9.1121270E-04
 -8.9091650E-04 -8.7023340E-04 -8.4932381E-04 -8.2831574E-04 -8.0732285E-04
 -7.8644109E-04 -7.6574506E-04 -7.4530271E-04 -7.2516483E-04 -7.0537784E-04
 -6.8597385E-04 -6.6698174E-04 -6.4842030E-04 -6.3030375E-04 -6.1264494E-04
 -5.9544895E-04
 5.5106882E-02 5.5807728E-02 5.6183636E-02 5.6258719E-02 5.6058347E-02
 5.5608720E-02 5.4936174E-02 5.4067053E-02 5.3027097E-02 5.1841192E-02
 5.0533090E-02 4.9125187E-02 4.7638386E-02 4.6091951E-02 4.4503439E-02
 4.2888708E-02 4.1261874E-02 3.9635383E-02 3.8020052E-02 3.6425166E-02
 3.4858570E-02 3.3326760E-02 3.1835020E-02 3.0387521E-02 2.8987439E-02
 2.7637077E-02 2.6337950E-02 2.5090918E-02 2.3896260E-02 2.2753775E-02
 2.1662854E-02 2.0622551E-02 1.9631660E-02 1.8688768E-02 1.7792299E-02
 1.6940564E-02 1.6131788E-02 1.5364162E-02 1.4635856E-02 1.3945031E-02
 1.3289875E-02 1.2668604E-02 1.2079475E-02 1.1520820E-02 1.0991003E-02
 1.0488469E-02 1.0011714E-02 9.5593175E-03 9.1299126E-03 8.7222243E-03
 8.3350167E-03 7.9671340E-03 7.6174806E-03 7.2850375E-03 6.9688316E-03
 6.6679399E-03 6.3815201E-03 6.1087478E-03 5.8488776E-03 5.6012007E-03
 5.3650467E-03 5.1397970E-03 4.9248622E-03 4.7196997E-03 4.5237900E-03
 4.3366575E-03 4.1578426E-03 3.9869351E-03 3.8235185E-03 3.6672398E-03
 3.5177353E-03 3.3746795E-03 3.2377625E-03 3.1066819E-03 2.9811775E-03
 2.8609845E-03 2.7458514E-03 2.6355584E-03 2.5298712E-03 2.4285989E-03
 2.3315379E-03
 0.1035884 9.6806221E-02 9.0232611E-02 8.3888456E-02 7.7791072E-02
 7.1954139E-02 6.6388026E-02 6.1099693E-02 5.6093063E-02 5.1369280E-02
 4.6926904E-02 4.2762283E-02 3.8869832E-02 3.5242267E-02 3.1870969E-02
 2.8746225E-02 2.5857475E-02 2.3193575E-02 2.0742966E-02 1.8493883E-02
 1.6434528E-02 1.4553172E-02 1.2838280E-02 1.1278617E-02 9.8632909E-03
 8.5818311E-03 7.4242107E-03 6.3808705E-03 5.4427651E-03 4.6013277E-03
 3.8485080E-03 3.1767394E-03 2.5789440E-03 2.0485257E-03 1.5793326E-03
 1.1656597E-03 8.0222392E-04 4.8414068E-04 2.0691418E-04 -3.3596374E-05
 -2.4118606E-04 -4.1933058E-04 -5.7120417E-04 -6.9969689E-04 -8.0743781E-04
 -8.9681090E-04 -9.6997269E-04 -1.0288692E-03 -1.0752553E-03 -1.1107022E-03
 -1.1366231E-03 -1.1542793E-03 -1.1647957E-03 -1.1691699E-03 -1.1682906E-03
 -1.1629438E-03 -1.1538197E-03 -1.1415314E-03 -1.1266111E-03 -1.1095282E-03
 -1.0906925E-03 -1.0704574E-03 -1.0491322E-03 -1.0269817E-03 -1.0042381E-03
 -9.8109699E-04 -9.5772644E-04 -9.3426759E-04 -9.1084471E-04 -8.8755519E-04
 -8.6448743E-04 -8.4170763E-04 -8.1927597E-04 -7.9723797E-04 -7.7562965E-04
 -7.5447891E-04 -7.3380914E-04 -7.1363238E-04 -6.9396407E-04 -6.7480566E-04
 -6.5616018E-04
 5.6105439E-02 5.6805115E-02 5.7178348E-02 5.7249404E-02 5.7043850E-02
 5.6588072E-02 5.5908561E-02 5.5031829E-02 5.3983748E-02 5.2789334E-02
 5.1472429E-02 5.0055519E-02 4.8559565E-02 4.7003865E-02 4.5406006E-02
 4.3781843E-02 4.2145468E-02 4.0509313E-02 3.8884144E-02 3.7279204E-02
 3.5702284E-02 3.4159824E-02 3.2657053E-02 3.1198094E-02 2.9786086E-02
 2.8423289E-02 2.7111204E-02 2.5850672E-02 2.4641987E-02 2.3484951E-02
 2.2378976E-02 2.1323165E-02 2.0316342E-02 1.9357156E-02 1.8444078E-02
 1.7575480E-02 1.6749656E-02 1.5964840E-02 1.5219280E-02 1.4511190E-02
 1.3838814E-02 1.3200413E-02 1.2594311E-02 1.2018850E-02 1.1472462E-02
 1.0953612E-02 1.0460828E-02 9.9927215E-03 9.5479414E-03 9.1252197E-03
 8.7233474E-03 8.3411857E-03 7.9776449E-03 7.6316898E-03 7.3023732E-03
 6.9887703E-03 6.6900346E-03 6.4053447E-03 6.1339457E-03 5.8751353E-03
 5.6282296E-03 5.3926022E-03 5.1676636E-03 4.9528610E-03 4.7476692E-03
 4.5515988E-03 4.3641925E-03 4.1850186E-03 4.0136660E-03 3.8497548E-03
 3.6929324E-03 3.5428465E-03 3.3991856E-03 3.2616497E-03 3.1299437E-03
 3.0038124E-03 2.8829966E-03 2.7672530E-03 2.6563574E-03 2.5500965E-03
 2.4482566E-03
 0.1028577 9.6060462E-02 8.9473419E-02 8.3117612E-02 7.7010468E-02
 7.1165748E-02 6.5593854E-02 6.0301773E-02 5.5293467E-02 5.0570041E-02
 4.6130057E-02 4.1969810E-02 3.8083661E-02 3.4464266E-02 3.1102931E-02
 2.7989853E-02 2.5114382E-02 2.2465264E-02 2.0030832E-02 1.7799189E-02
 1.5758414E-02 1.3896636E-02 1.2202173E-02 1.0663643E-02 9.2699975E-03
 8.0106156E-03 6.8753124E-03 5.8543887E-03 4.9386472E-03 4.1193897E-03
 3.3884435E-03 2.7381286E-03 2.1612663E-03 1.6511722E-03 1.2016254E-03
 8.0686196E-04 4.6155142E-04 1.6078120E-04 -9.9967903E-05 -3.2484336E-04
 -5.1764090E-04 -6.8182766E-04 -8.2055974E-04 -9.3670725E-04 -1.0328707E-03
 -1.1114031E-03 -1.1744282E-03 -1.2238553E-03 -1.2614024E-03 -1.2886055E-03
 -1.3068394E-03 -1.3173250E-03 -1.3211543E-03 -1.3192930E-03 -1.3125924E-03
 -1.3018080E-03 -1.2876005E-03 -1.2705550E-03 -1.2511774E-03 -1.2299112E-03
 -1.2071454E-03 -1.1832130E-03 -1.1584032E-03 -1.1329646E-03 -1.1071108E-03
 -1.0810244E-03 -1.0548598E-03 -1.0287456E-03 -1.0027941E-03 -9.7709498E-04
 -9.5172215E-04 -9.2674088E-04 -9.0219843E-04 -8.7813253E-04 -8.5457671E-04
 -8.3155307E-04 -8.0907397E-04 -7.8715448E-04 -7.6579832E-04 -7.4500573E-04
 -7.2477909E-04
 5.7244431E-02 5.7943709E-02 5.8314800E-02 5.8382161E-02 5.8171581E-02
 5.7709608E-02 5.7022929E-02 5.6138203E-02 5.5081461E-02 5.3877819E-02
 5.2551232E-02 5.1124256E-02 4.9617894E-02 4.8051484E-02 4.6442609E-02
 4.4807117E-02 4.3159083E-02 4.1510895E-02 3.9873276E-02 3.8255420E-02
 3.6665071E-02 3.5108633E-02 3.3591285E-02 3.2117140E-02 3.0689312E-02
 2.9310063E-02 2.7980911E-02 2.6702721E-02 2.5475817E-02 2.4300048E-02
 2.3174888E-02 2.2099506E-02 2.1072786E-02 2.0093458E-02 1.9160060E-02
 1.8271044E-02 1.7424759E-02 1.6619524E-02 1.5853632E-02 1.5125372E-02
 1.4433023E-02 1.3774913E-02 1.3149385E-02 1.2554844E-02 1.1989738E-02
 1.1452558E-02 1.0941858E-02 1.0456266E-02 9.9944482E-03 9.5551498E-03
 9.1371657E-03 8.7393560E-03 8.3606401E-03 7.9999892E-03 7.6564373E-03
 7.3290737E-03 7.0170267E-03 6.7195026E-03 6.4357142E-03 6.1649457E-03
 5.9065288E-03 5.6598163E-03 5.4242038E-03 5.1991353E-03 4.9840757E-03
 4.7785230E-03 4.5820088E-03 4.3940903E-03 4.2143525E-03 4.0423963E-03
 3.8778533E-03 3.7203764E-03 3.5696400E-03 3.4253155E-03 3.2871214E-03
 3.1547772E-03 3.0280114E-03 2.9065837E-03 2.7902487E-03 2.6787883E-03
 2.5719814E-03
 0.1020355 9.5221952E-02 8.8620625E-02 8.2252651E-02 7.6135568E-02
 7.0283234E-02 6.4706095E-02 5.9411198E-02 5.4402489E-02 4.9681090E-02
 4.5245498E-02 4.1091967E-02 3.7214786E-02 3.3606526E-02 3.0258372E-02
 2.7160415E-02 2.4301862E-02 2.1671312E-02 1.9256935E-02 1.7046666E-02
 1.5028400E-02 1.3190079E-02 1.1519834E-02 1.0006085E-02 8.6375978E-03
 7.4035651E-03 6.2936251E-03 5.2979132E-03 4.4070813E-03 3.6122936E-03
 2.9052543E-03 2.2781761E-03 1.7237987E-03 1.2353627E-03 8.0659415E-04
 4.3168958E-04 1.0529481E-04 -1.7751640E-04 -4.2126377E-04 -6.3008571E-04
 -8.0776092E-04 -9.5773139E-04 -1.0831250E-03 -1.1867766E-03 -1.2712489E-03
 -1.3388557E-03 -1.3916787E-03 -1.4315856E-03 -1.4602509E-03 -1.4791705E-03
 -1.4896768E-03 -1.4929542E-03 -1.4900543E-03 -1.4819052E-03 -1.4693281E-03
 -1.4530434E-03 -1.4336857E-03 -1.4118034E-03 -1.3878834E-03 -1.3623468E-03
 -1.3355528E-03 -1.3078182E-03 -1.2794135E-03 -1.2505697E-03 -1.2214837E-03
 -1.1923267E-03 -1.1632363E-03 -1.1343310E-03 -1.1057113E-03 -1.0774590E-03
 -1.0496393E-03 -1.0223046E-03 -9.9549687E-04 -9.6925086E-04 -9.4358879E-04
 -9.1852731E-04 -8.9407968E-04 -8.7024941E-04 -8.4703701E-04 -8.2444138E-04
 -8.0245984E-04
 5.8546495E-02 5.9246462E-02 5.9616216E-02 5.9680447E-02 5.9465121E-02
 5.8997009E-02 5.8302954E-02 5.7409793E-02 5.6343686E-02 5.5129867E-02
 5.3792369E-02 5.2353814E-02 5.0835248E-02 4.9256012E-02 4.7633700E-02
 4.5984130E-02 4.4321358E-02 4.2657740E-02 4.1003961E-02 3.9369196E-02
 3.7761156E-02 3.6186237E-02 3.4649622E-02 3.3155449E-02 3.1706840E-02
 3.0306119E-02 2.8954856E-02 2.7653979E-02 2.6403897E-02 2.5204534E-02
 2.4055457E-02 2.2955908E-02 2.1904888E-02 2.0901183E-02 1.9943425E-02
 1.9030143E-02 1.8159764E-02 1.7330667E-02 1.6541205E-02 1.5789712E-02
 1.5074528E-02 1.4394005E-02 1.3746535E-02 1.3130538E-02 1.2544491E-02
 1.1986907E-02 1.1456352E-02 1.0951453E-02 1.0470890E-02 1.0013415E-02
 9.5778182E-03 9.1629652E-03 8.7677594E-03 8.3911754E-03 8.0322428E-03
 7.6900413E-03 7.3636901E-03 7.0523736E-03 6.7553027E-03 6.4717615E-03
 6.2010563E-03 5.9425244E-03 5.6955684E-03 5.4596011E-03 5.2340785E-03
 5.0184918E-03 4.8123524E-03 4.6152086E-03 4.4266307E-03 4.2462093E-03
 4.0735644E-03 3.9083292E-03 3.7501645E-03 3.5987438E-03 3.4537623E-03
 3.3149289E-03 3.1819667E-03 3.0546123E-03 2.9326128E-03 2.8157441E-03
 2.7037712E-03
 0.1011105 9.4279774E-02 8.7663569E-02 8.1283234E-02 7.5156443E-02
 6.9297165E-02 6.3715905E-02 5.8419742E-02 5.3412635E-02 4.8695665E-02
 4.4267293E-02 4.0123682E-02 3.6259007E-02 3.2665711E-02 2.9334825E-02
 2.6256263E-02 2.3419036E-02 2.0811532E-02 1.8421706E-02 1.6237253E-02
 1.4245839E-02 1.2435155E-02 1.0793106E-02 9.3078781E-03 7.9680206E-03
 6.7625204E-03 5.6808302E-03 4.7129155E-03 3.8492784E-03 3.0809594E-03
 2.3995545E-03 1.7971954E-03 1.2665472E-03 8.0080953E-04 3.9367686E-04
 3.9328203E-05 -2.6759339E-04 -5.3200516E-04 -7.5840863E-04 -9.5091644E-04
 -1.1132736E-03 -1.2488855E-03 -1.3608368E-03 -1.4519185E-03 -1.5246476E-03
 -1.5812896E-03 -1.6238798E-03 -1.6542389E-03 -1.6739964E-03 -1.6846010E-03
 -1.6873439E-03 -1.6833675E-03 -1.6736859E-03 -1.6591900E-03 -1.6406648E-03
 -1.6187984E-03 -1.5941948E-03 -1.5673805E-03 -1.5388100E-03 -1.5088809E-03
 -1.4779334E-03 -1.4462646E-03 -1.4141222E-03 -1.3817261E-03 -1.3492535E-03
 -1.3168635E-03 -1.2846817E-03 -1.2528149E-03 -1.2213514E-03 -1.1903640E-03
 -1.1599081E-03 -1.1300303E-03 -1.1007683E-03 -1.0721412E-03 -1.0441714E-03
 -1.0168680E-03 -9.9023897E-04 -9.6428429E-04 -9.3900354E-04 -9.1438292E-04
 -8.9042366E-04
 6.0038757E-02 6.0740884E-02 6.1110444E-02 6.1172310E-02 6.0952682E-02
 6.0478497E-02 5.9776790E-02 5.8874536E-02 5.7798024E-02 5.6572590E-02
 5.5222336E-02 5.3769939E-02 5.2236464E-02 5.0641268E-02 4.9001940E-02
 4.7334295E-02 4.5652378E-02 4.3968536E-02 4.2293474E-02 4.0636368E-02
 3.9004955E-02 3.7405692E-02 3.5843819E-02 3.4323528E-02 3.2848056E-02
 3.1419814E-02 3.0040473E-02 2.8711073E-02 2.7432127E-02 2.6203685E-02
 2.5025416E-02 2.3896666E-02 2.2816520E-02 2.1783875E-02 2.0797446E-02
 1.9855823E-02 1.8957505E-02 1.8100932E-02 1.7284505E-02 1.6506607E-02
 1.5765602E-02 1.5059885E-02 1.4387853E-02 1.3747960E-02 1.3138690E-02
 1.2558551E-02 1.2006134E-02 1.1480058E-02 1.0979001E-02 1.0501700E-02
 1.0046959E-02 9.6136145E-03 9.2005776E-03 8.8068042E-03 8.4313108E-03
 8.0731576E-03 7.7314652E-03 7.4053979E-03 7.0941467E-03 6.7969854E-03
 6.5132002E-03 6.2421230E-03 5.9831310E-03 5.7356204E-03 5.4990402E-03
 5.2728625E-03 5.0565824E-03 4.8497324E-03 4.6518599E-03 4.4625574E-03
 4.2814133E-03 4.1080546E-03 3.9421315E-03 3.7832945E-03 3.6312288E-03
 3.4856254E-03 3.3461985E-03 3.2126771E-03 3.0847893E-03 2.9622896E-03
 2.8449504E-03
 0.1000709 9.3222253E-02 8.6591005E-02 8.0198653E-02 7.4063033E-02
 6.8198226E-02 6.2614776E-02 5.7319824E-02 5.2317291E-02 4.7608200E-02
 4.3190919E-02 3.9061476E-02 3.5213873E-02 3.1640362E-02 2.8331747E-02
 2.5277682E-02 2.2466915E-02 1.9887550E-02 1.7527236E-02 1.5373384E-02
 1.3413356E-02 1.1634570E-02 1.0024653E-02 8.5715447E-03 7.2635598E-03
 6.0894811E-03 5.0385818E-03 4.1006748E-03 3.2661317E-03 2.5258905E-03
 1.8714672E-03 1.2949356E-03 7.8892615E-04 3.4661414E-04 -3.8311293E-05
 -3.7166162E-04 -6.5877411E-04 -9.0453937E-04 -1.1134219E-03 -1.2894934E-03
 -1.4364538E-03 -1.5576566E-03 -1.6561386E-03 -1.7346363E-03 -1.7956124E-03
 -1.8412846E-03 -1.8736316E-03 -1.8944273E-03 -1.9052500E-03 -1.9075070E-03
 -1.9024397E-03 -1.8911525E-03 -1.8746172E-03 -1.8536880E-03 -1.8291177E-03
 -1.8015623E-03 -1.7715939E-03 -1.7397099E-03 -1.7063463E-03 -1.6718709E-03
 -1.6366070E-03 -1.6008276E-03 -1.5647669E-03 -1.5286255E-03 -1.4925704E-03
 -1.4567378E-03 -1.4212508E-03 -1.3861996E-03 -1.3516659E-03 -1.3177091E-03
 -1.2843797E-03 -1.2517149E-03 -1.2197408E-03 -1.1884795E-03 -1.1579401E-03
 -1.1281311E-03 -1.0990528E-03 -1.0706987E-03 -1.0430661E-03 -1.0161445E-03
 -9.8992023E-04
 6.1753839E-02 6.2460076E-02 6.2830903E-02 6.2891394E-02 6.2667929E-02
 6.2187646E-02 6.1477706E-02 6.0565233E-02 5.9476618E-02 5.8237281E-02
 5.6871388E-02 5.5401657E-02 5.3849190E-02 5.2233368E-02 5.0571810E-02
 4.8880380E-02 4.7173154E-02 4.5462541E-02 4.3759316E-02 4.2072747E-02
 4.0410701E-02 3.8779728E-02 3.7185214E-02 3.5631496E-02 3.4121957E-02
 3.2659154E-02 3.1244902E-02 2.9880386E-02 2.8566271E-02 2.7302714E-02
 2.6089512E-02 2.4926122E-02 2.3811724E-02 2.2745304E-02 2.1725642E-02
 2.0751394E-02 1.9821132E-02 1.8933322E-02 1.8086415E-02 1.7278813E-02
 1.6508905E-02 1.5775101E-02 1.5075820E-02 1.4409504E-02 1.3774643E-02
 1.3169759E-02 1.2593412E-02 1.2044223E-02 1.1520861E-02 1.1022056E-02
 1.0546582E-02 1.0093277E-02 9.6610226E-03 9.2487680E-03 8.8555058E-03
 8.4802806E-03 8.1221936E-03 7.7803871E-03 7.4540395E-03 7.1424064E-03
 6.8447436E-03 6.5603750E-03 6.2886439E-03 6.0289497E-03 5.7807150E-03
 5.5433782E-03 5.3164354E-03 5.0993892E-03 4.8917788E-03 4.6931636E-03
 4.5031309E-03 4.3212818E-03 4.1472446E-03 3.9806678E-03 3.8212140E-03
 3.6685553E-03 3.5223938E-03 3.3824416E-03 3.2484129E-03 3.1200571E-03
 2.9971150E-03
 9.8903738E-02 9.2037253E-02 8.5391551E-02 7.8988411E-02 7.2845817E-02
 6.6977963E-02 6.1395448E-02 5.6105390E-02 5.1111665E-02 4.6415173E-02
 4.2014103E-02 3.7904281E-02 3.4079451E-02 3.0531552E-02 2.7251080E-02
 2.4227330E-02 2.1448702E-02 1.8902922E-02 1.6577289E-02 1.4458857E-02
 1.2534657E-02 1.0791795E-02 9.2176199E-03 7.7998210E-03 6.5264953E-03
 5.3862389E-03 4.3681697E-03 3.4619793E-03 2.6579425E-03 1.9469291E-03
 1.3204085E-03 7.7042839E-04 2.8961044E-04 -1.2886192E-04 -4.9127929E-04
 -8.0342405E-04 -1.0705955E-03 -1.2976371E-03 -1.4889644E-03 -1.6485944E-03
 -1.7801713E-03 -1.8869905E-03 -1.9720299E-03 -2.0379683E-03 -2.0872133E-03
 -2.1219200E-03 -2.1440221E-03 -2.1552357E-03 -2.1570916E-03 -2.1509465E-03
 -2.1380021E-03 -2.1193181E-03 -2.0958269E-03 -2.0683473E-03 -2.0375971E-03
 -2.0042022E-03 -1.9687030E-03 -1.9315723E-03 -1.8932204E-03 -1.8539923E-03
 -1.8141920E-03 -1.7740730E-03 -1.7338566E-03 -1.6937186E-03 -1.6538142E-03
 -1.6142754E-03 -1.5752004E-03 -1.5366781E-03 -1.4987737E-03 -1.4615454E-03
 -1.4250284E-03 -1.3892564E-03 -1.3542499E-03 -1.3200205E-03 -1.2865717E-03
 -1.2539137E-03 -1.2220363E-03 -1.1909325E-03 -1.1605959E-03 -1.1310080E-03
 -1.1021621E-03
 6.3731194E-02 6.4443968E-02 6.4817816E-02 6.4877994E-02 6.4651020E-02
 6.4164132E-02 6.3444763E-02 6.2520005E-02 6.1416391E-02 6.0159415E-02
 5.8773331E-02 5.7280913E-02 5.5703357E-02 5.4060135E-02 5.2368969E-02
 5.0645832E-02 4.8904970E-02 4.7158949E-02 4.5418713E-02 4.3693744E-02
 4.1992098E-02 4.0320534E-02 3.8684666E-02 3.7089024E-02 3.5537176E-02
 3.4031890E-02 3.2575149E-02 3.1168303E-02 2.9812152E-02 2.8506992E-02
 2.7252749E-02 2.6048953E-02 2.4894886E-02 2.3789605E-02 2.2731949E-02
 2.1720637E-02 2.0754252E-02 1.9831307E-02 1.8950272E-02 1.8109553E-02
 1.7307557E-02 1.6542692E-02 1.5813379E-02 1.5118044E-02 1.4455164E-02
 1.3823243E-02 1.3220842E-02 1.2646559E-02 1.2099032E-02 1.1576982E-02
 1.1079161E-02 1.0604376E-02 1.0151496E-02 9.7194351E-03 9.3071694E-03
 8.9137265E-03 8.5381735E-03 8.1796246E-03 7.8372583E-03 7.5102691E-03
 7.1979249E-03 6.8995133E-03 6.6143563E-03 6.3418187E-03 6.0813106E-03
 5.8322530E-03 5.5941162E-03 5.3663752E-03 5.1485561E-03 4.9401955E-03
 4.7408659E-03 4.5501404E-03 4.3676300E-03 4.1929656E-03 4.0257890E-03
 3.8657568E-03 3.7125598E-03 3.5658816E-03 3.4254338E-03 3.2909384E-03
 3.1621298E-03
 9.7596236E-02 9.0712853E-02 8.4054463E-02 7.7643044E-02 7.1496747E-02
 6.5629862E-02 6.0052954E-02 5.4773070E-02 4.9793951E-02 4.5116264E-02
 4.0737923E-02 3.6654409E-02 3.2859083E-02 2.9343477E-02 2.6097635E-02
 2.3110429E-02 2.0369789E-02 1.7863028E-02 1.5577037E-02 1.3498490E-02
 1.1614081E-02 9.9106133E-03 8.3751716E-03 6.9952221E-03 5.7586818E-03
 4.6539996E-03 3.6701814E-03 2.7968343E-03 2.0241821E-03 1.3430596E-03
 7.4492471E-04 2.2183271E-04 -2.3357553E-04 -6.2808424E-04 -9.6794340E-04
 -1.2588862E-03 -1.5061570E-03 -1.7145423E-03 -1.8883942E-03 -2.0316700E-03
 -2.1479463E-03 -2.2404571E-03 -2.3121152E-03 -2.3655402E-03 -2.4030800E-03
 -2.4268341E-03 -2.4386744E-03 -2.4402663E-03 -2.4330961E-03 -2.4184657E-03
 -2.3975382E-03 -2.3713291E-03 -2.3407328E-03 -2.3065337E-03 -2.2694150E-03
 -2.2299679E-03 -2.1887114E-03 -2.1460922E-03 -2.1024882E-03 -2.0582350E-03
 -2.0136067E-03 -1.9688415E-03 -1.9241417E-03 -1.8796772E-03 -1.8355808E-03
 -1.7919746E-03 -1.7489434E-03 -1.7065707E-03 -1.6649108E-03 -1.6240095E-03
 -1.5838975E-03 -1.5446031E-03 -1.5061394E-03 -1.4685125E-03 -1.4317258E-03
 -1.3957807E-03 -1.3606612E-03 -1.3263653E-03 -1.2928776E-03 -1.2601822E-03
 -1.2282644E-03
 6.6018686E-02 6.6740826E-02 6.7119546E-02 6.7180194E-02 6.6949412E-02
 6.6454530E-02 6.5723099E-02 6.4782307E-02 6.3658796E-02 6.2378190E-02
 6.0964867E-02 5.9441783E-02 5.7830326E-02 5.6150176E-02 5.4419313E-02
 5.2653983E-02 5.0868712E-02 4.9076378E-02 4.7288246E-02 4.5514084E-02
 4.3762259E-02 4.2039823E-02 4.0352654E-02 3.8705532E-02 3.7102275E-02
 3.5545837E-02 3.4038395E-02 3.2581456E-02 3.1175965E-02 2.9822346E-02
 2.8520597E-02 2.7270360E-02 2.6070973E-02 2.4921538E-02 2.3820946E-02
 2.2767929E-02 2.1761108E-02 2.0798994E-02 1.9880055E-02 1.9002702E-02
 1.8165331E-02 1.7366331E-02 1.6604101E-02 1.5877059E-02 1.5183651E-02
 1.4522359E-02 1.3891713E-02 1.3290287E-02 1.2716695E-02 1.2169616E-02
 1.1647777E-02 1.1149962E-02 1.0675002E-02 1.0221790E-02 9.7892685E-03
 9.3764244E-03 8.9823101E-03 8.6060138E-03 8.2466640E-03 7.9034539E-03
 7.5755995E-03 7.2623687E-03 6.9630621E-03 6.6770208E-03 6.4036120E-03
 6.1422475E-03 5.8923573E-03 5.6534070E-03 5.4248869E-03 5.2063148E-03
 4.9972362E-03 4.7972077E-03 4.6058181E-03 4.4226758E-03 4.2473953E-03
 4.0796315E-03 3.9190357E-03 3.7652894E-03 3.6180755E-03 3.4771059E-03
 3.3420948E-03
 9.6136138E-02 8.9238480E-02 8.2570903E-02 7.6155610E-02 7.0010863E-02
 6.4150929E-02 5.8586277E-02 5.3323746E-02 4.8366752E-02 4.3715619E-02
 3.9367806E-02 3.5318300E-02 3.1559937E-02 2.8083712E-02 2.4879133E-02
 2.1934552E-02 1.9237410E-02 1.6774559E-02 1.4532490E-02 1.2497514E-02
 1.0656011E-02 8.9945355E-03 7.4999477E-03 6.1595486E-03 4.9611232E-03
 3.8930268E-03 2.9442017E-03 2.1042167E-03 1.3632807E-03 7.1223313E-04
 1.4255333E-04 -3.5367275E-04 -7.8375847E-04 -1.1544373E-03 -1.4719019E-03
 -1.7418222E-03 -1.9693766E-03 -2.1592842E-03 -2.3158302E-03 -2.4428989E-03
 -2.5440028E-03 -2.6223070E-03 -2.6806621E-03 -2.7216198E-03 -2.7474689E-03
 -2.7602513E-03 -2.7617833E-03 -2.7536806E-03 -2.7373717E-03 -2.7141233E-03
 -2.6850472E-03 -2.6511205E-03 -2.6132013E-03 -2.5720361E-03 -2.5282777E-03
 -2.4824920E-03 -2.4351645E-03 -2.3867160E-03 -2.3375091E-03 -2.2878491E-03
 -2.2379993E-03 -2.1881778E-03 -2.1385716E-03 -2.0893309E-03 -2.0405850E-03
 -1.9924378E-03 -1.9449709E-03 -1.8982508E-03 -1.8523262E-03 -1.8072369E-03
 -1.7630089E-03 -1.7196611E-03 -1.6772057E-03 -1.6356400E-03 -1.5949724E-03
 -1.5551910E-03 -1.5162869E-03 -1.4782487E-03 -1.4410645E-03 -1.4047200E-03
 -1.3691951E-03
 6.8674356E-02 6.9408745E-02 6.9793731E-02 6.9854707E-02 6.9618367E-02
 6.9112167E-02 6.8363659E-02 6.7400314E-02 6.6248931E-02 6.4935394E-02
 6.3484371E-02 6.1919201E-02 6.0261637E-02 5.8531798E-02 5.6748126E-02
 5.4927316E-02 5.3084366E-02 5.1232599E-02 4.9383711E-02 4.7547884E-02
 4.5733854E-02 4.3949038E-02 4.2199589E-02 4.0490583E-02 3.8826063E-02
 3.7209190E-02 3.5642315E-02 3.4127090E-02 3.2664575E-02 3.1255290E-02
 2.9899314E-02 2.8596343E-02 2.7345750E-02 2.6146671E-02 2.4998017E-02
 2.3898512E-02 2.2846773E-02 2.1841310E-02 2.0880561E-02 1.9962933E-02
 1.9086774E-02 1.8250460E-02 1.7452352E-02 1.6690822E-02 1.5964299E-02
 1.5271224E-02 1.4610076E-02 1.3979401E-02 1.3377773E-02 1.2803837E-02
 1.2256277E-02 1.1733837E-02 1.1235316E-02 1.0759563E-02 1.0305494E-02
 9.8720593E-03 9.4582643E-03 9.0631619E-03 8.6858599E-03 8.3255107E-03
 7.9812985E-03 7.6524555E-03 7.3382468E-03 7.0379833E-03 6.7510130E-03
 6.4767068E-03 6.2144683E-03 5.9637330E-03 5.7239640E-03 5.4946565E-03
 5.2753272E-03 5.0655040E-03 4.8647597E-03 4.6726703E-03 4.4888379E-03
 4.3128910E-03 4.1444595E-03 3.9832038E-03 3.8287982E-03 3.6809274E-03
 3.5392989E-03
 9.4513625E-02 8.7606676E-02 8.0935970E-02 7.4523814E-02 6.8388402E-02
 6.2543884E-02 5.7000350E-02 5.1764272E-02 4.6838570E-02 4.2222977E-02
 3.7914325E-02 3.3906952E-02 3.0193062E-02 2.6763020E-02 2.3605753E-02
 2.0709068E-02 1.8059932E-02 1.5644789E-02 1.3449753E-02 1.1460853E-02
 9.6642291E-03 8.0462294E-03 6.5935859E-03 5.2934848E-03 4.1336450E-03
 3.1023764E-03 2.1886048E-03 1.3819032E-03 6.7249971E-04 5.1269286E-05
 -4.9026572E-04 -9.5996354E-04 -1.3650795E-03 -1.7122803E-03 -2.0076893E-03
 -2.2569057E-03 -2.4650362E-03 -2.6367276E-03 -2.7761902E-03 -2.8872392E-03
 -2.9733162E-03 -3.0375184E-03 -3.0826272E-03 -3.1111382E-03 -3.1252746E-03
 -3.1270208E-03 -3.1181413E-03 -3.1001982E-03 -3.0745750E-03 -3.0424888E-03
 -3.0050105E-03 -2.9630812E-03 -2.9175193E-03 -2.8690400E-03 -2.8182631E-03
 -2.7657263E-03 -2.7118914E-03 -2.6571562E-03 -2.6018589E-03 -2.5462860E-03
 -2.4906839E-03 -2.4352558E-03 -2.3801730E-03 -2.3255767E-03 -2.2715796E-03
 -2.2182749E-03 -2.1657418E-03 -2.1140347E-03 -2.0632010E-03 -2.0132693E-03
 -1.9642639E-03 -1.9161991E-03 -1.8690828E-03 -1.8229157E-03 -1.7776983E-03
 -1.7334182E-03 -1.6900715E-03 -1.6476454E-03 -1.6061233E-03 -1.5654915E-03
 -1.5257366E-03
 7.1768202E-02 7.2516970E-02 7.2908156E-02 7.2967142E-02 7.2720684E-02
 7.2196357E-02 7.1422011E-02 7.0425428E-02 6.9233872E-02 6.7873739E-02
 6.6370301E-02 6.4747535E-02 6.3027881E-02 6.1232165E-02 5.9379481E-02
 5.7487212E-02 5.5570953E-02 5.3644627E-02 5.1720444E-02 4.9809050E-02
 4.7919620E-02 4.6059888E-02 4.4236358E-02 4.2454343E-02 4.0718123E-02
 3.9031018E-02 3.7395541E-02 3.5813455E-02 3.4285896E-02 3.2813452E-02
 3.1396247E-02 3.0034002E-02 2.8726105E-02 2.7471686E-02 2.6269635E-02
 2.5118673E-02 2.4017377E-02 2.2964232E-02 2.1957641E-02 2.0995945E-02
 2.0077484E-02 1.9200560E-02 1.8363496E-02 1.7564619E-02 1.6802307E-02
 1.6074941E-02 1.5380967E-02 1.4718872E-02 1.4087184E-02 1.3484498E-02
 1.2909458E-02 1.2360756E-02 1.1837144E-02 1.1337431E-02 1.0860479E-02
 1.0405200E-02 9.9705551E-03 9.5555643E-03 9.1592893E-03 8.7808305E-03
 8.4193470E-03 8.0740312E-03 7.7441097E-03 7.4288589E-03 7.1275798E-03
 6.8396186E-03 6.5643471E-03 6.3011684E-03 6.0495147E-03 5.8088494E-03
 5.5786530E-03 5.3584455E-03 5.1477626E-03 4.9461531E-03 4.7532017E-03
 4.5685107E-03 4.3916903E-03 4.2223847E-03 4.0602414E-03 3.9049394E-03
 3.7561562E-03
 9.2723839E-02 8.5816033E-02 7.9151653E-02 7.2752856E-02 6.6637553E-02
 6.0819451E-02 5.5308044E-02 5.0109114E-02 4.5224849E-02 4.0654209E-02
 3.6393262E-02 3.2435611E-02 2.8772766E-02 2.5394479E-02 2.2289133E-02
 1.9444061E-02 1.6845845E-02 1.4480592E-02 1.2334169E-02 1.0392400E-02
 8.6412635E-03 7.0670154E-03 5.6563015E-03 4.3962738E-03 3.2746287E-03
 2.2796842E-03 1.4003842E-03 6.2633853E-04 -5.2182197E-05 -6.4424687E-04
 -1.1582717E-03 -1.6020493E-03 -1.9827648E-03 -2.3070120E-03 -2.5808406E-03
 -2.8097751E-03 -2.9988468E-03 -3.1526254E-03 -3.2752524E-03 -3.3704701E-03
 -3.4416486E-03 -3.4918194E-03 -3.5236995E-03 -3.5397219E-03 -3.5420512E-03
 -3.5326160E-03 -3.5131290E-03 -3.4851024E-03 -3.4498700E-03 -3.4086097E-03
 -3.3623523E-03 -3.3119970E-03 -3.2583319E-03 -3.2020400E-03 -3.1437117E-03
 -3.0838584E-03 -3.0229206E-03 -2.9612698E-03 -2.8992258E-03 -2.8370628E-03
 -2.7750058E-03 -2.7132446E-03 -2.6519438E-03 -2.5912276E-03 -2.5312058E-03
 -2.4719641E-03 -2.4135704E-03 -2.3560759E-03 -2.2995234E-03 -2.2439400E-03
 -2.1893533E-03 -2.1357643E-03 -2.0831875E-03 -2.0316243E-03 -1.9810689E-03
 -1.9315183E-03 -1.8829636E-03 -1.8353945E-03 -1.7887987E-03 -1.7431624E-03
 -1.6984757E-03
 7.5383343E-02 7.6146282E-02 7.6540314E-02 7.6590866E-02 7.6324902E-02
 7.5770430E-02 7.4955903E-02 7.3909841E-02 7.2660357E-02 7.1234807E-02
 6.9659479E-02 6.7959353E-02 6.6157870E-02 6.4276792E-02 6.2336128E-02
 6.0354061E-02 5.8346923E-02 5.6329269E-02 5.4313891E-02 5.2311912E-02
 5.0332911E-02 4.8384972E-02 4.6474874E-02 4.4608168E-02 4.2789299E-02
 4.1021742E-02 3.9308101E-02 3.7650209E-02 3.6049262E-02 3.4505870E-02
 3.3020161E-02 3.1591848E-02 3.0220302E-02 2.8904613E-02 2.7643641E-02
 2.6436061E-02 2.5280394E-02 2.4175059E-02 2.3118420E-02 2.2108749E-02
 2.1144316E-02 2.0223368E-02 1.9344162E-02 1.8504964E-02 1.7704083E-02
 1.6939849E-02 1.6210636E-02 1.5514869E-02 1.4851020E-02 1.4217633E-02
 1.3613275E-02 1.3036598E-02 1.2486294E-02 1.1961119E-02 1.1459880E-02
 1.0981435E-02 1.0524701E-02 1.0088645E-02 9.6722757E-03 9.2746578E-03
 8.8948980E-03 8.5321404E-03 8.1855804E-03 7.8544430E-03 7.5380034E-03
 7.2355526E-03 6.9464338E-03 6.6700191E-03 6.4056995E-03 6.1529153E-03
 5.9111151E-03 5.6797788E-03 5.4584257E-03 5.2465838E-03 5.0438042E-03
 4.8496691E-03 4.6637696E-03 4.4857296E-03 4.3151798E-03 4.1517708E-03
 3.9951829E-03
 9.0771027E-02 8.3875254E-02 7.7230722E-02 7.0859052E-02 6.4777479E-02
 5.8998872E-02 5.3531799E-02 4.8381146E-02 4.3548167E-02 3.9030954E-02
 3.4824803E-02 3.0922620E-02 2.7315322E-02 2.3992160E-02 2.0941114E-02
 1.8149192E-02 1.5602719E-02 1.3287622E-02 1.1189618E-02 9.2944363E-03
 7.5879977E-03 6.0565211E-03 4.6866443E-03 3.4655242E-03 2.3808850E-03
 1.4210728E-03 5.7508401E-04 -1.6742235E-04 -8.1611297E-04 -1.3799958E-03
 -1.8674178E-03 -2.2861008E-03 -2.6431547E-03 -2.9451028E-03 -3.1979179E-03
 -3.4070499E-03 -3.5774575E-03 -3.7136388E-03 -3.8196582E-03 -3.8991950E-03
 -3.9555486E-03 -3.9916881E-03 -4.0102680E-03 -4.0136576E-03 -4.0039723E-03
 -3.9830818E-03 -3.9526494E-03 -3.9141420E-03 -3.8688532E-03 -3.8179117E-03
 -3.7623169E-03 -3.7029316E-03 -3.6405143E-03 -3.5757141E-03 -3.5091008E-03
 -3.4411619E-03 -3.3723104E-03 -3.3029083E-03 -3.2332554E-03 -3.1636092E-03
 -3.0941837E-03 -3.0251651E-03 -2.9566963E-03 -2.8889054E-03 -2.8218906E-03
 -2.7557355E-03 -2.6905059E-03 -2.6262493E-03 -2.5630081E-03 -2.5008081E-03
 -2.4396749E-03 -2.3796214E-03 -2.3206510E-03 -2.2627723E-03 -2.2059807E-03
 -2.1502769E-03 -2.0956551E-03 -2.0421059E-03 -1.9896172E-03 -1.9381840E-03
 -1.8877928E-03
 7.9615735E-02 8.0387622E-02 8.0775090E-02 8.0803990E-02 8.0501996E-02
 7.9898119E-02 7.9022057E-02 7.7903673E-02 7.6572530E-02 7.5057447E-02
 7.3386155E-02 7.1584985E-02 6.9678649E-02 6.7690037E-02 6.5640181E-02
 6.3548148E-02 6.1431047E-02 5.9304077E-02 5.7180572E-02 5.5072118E-02
 5.2988648E-02 5.0938562E-02 4.8928853E-02 4.6965253E-02 4.5052335E-02
 4.3193668E-02 4.1391905E-02 3.9648917E-02 3.7965901E-02 3.6343444E-02
 3.4781657E-02 3.3280194E-02 3.1838387E-02 3.0455261E-02 2.9129609E-02
 2.7860023E-02 2.6644956E-02 2.5482750E-02 2.4371680E-02 2.3309944E-02
 2.2295728E-02 2.1327199E-02 2.0402528E-02 1.9519910E-02 1.8677570E-02
 1.7873760E-02 1.7106781E-02 1.6374988E-02 1.5676774E-02 1.5010610E-02
 1.4375004E-02 1.3768535E-02 1.3189826E-02 1.2637571E-02 1.2110516E-02
 1.1607459E-02 1.1127254E-02 1.0668819E-02 1.0231094E-02 9.8131076E-03
 9.4139064E-03 9.0325866E-03 8.6682923E-03 8.3202086E-03 7.9875570E-03
 7.6696076E-03 7.3656528E-03 7.0750173E-03 6.7970813E-03 6.5312260E-03
 6.2768860E-03 6.0335118E-03 5.8005904E-03 5.5776159E-03 5.3641321E-03
 5.1596840E-03 4.9638553E-03 4.7762380E-03 4.5964494E-03 4.4241254E-03
 4.2589293E-03
 8.8674054E-02 8.1808224E-02 7.5201072E-02 6.8873167E-02 6.2840573E-02
 5.7114974E-02 5.1703840E-02 4.6611048E-02 4.1836970E-02 3.7378948E-02
 3.3231672E-02 2.9387575E-02 2.5837207E-02 2.2569546E-02 1.9572372E-02
 1.6832555E-02 1.4336336E-02 1.2069579E-02 1.0017981E-02 8.1672631E-03
 6.5033548E-03 5.0124926E-03 3.6813482E-03 2.4971156E-03 1.4475649E-03
 5.2109192E-04 -2.9325124E-04 -1.0057498E-03 -1.6260067E-03 -2.1629657E-03
 -2.6249059E-03 -3.0194831E-03 -3.3537350E-03 -3.6341154E-03 -3.8665268E-03
 -4.0563494E-03 -4.2084726E-03 -4.3273228E-03 -4.4169016E-03 -4.4808192E-03
 -4.5223152E-03 -4.5442963E-03 -4.5493580E-03 -4.5398152E-03 -4.5177303E-03
 -4.4849245E-03 -4.4430154E-03 -4.3934225E-03 -4.3374011E-03 -4.2760470E-03
 -4.2103222E-03 -4.1410606E-03 -4.0689898E-03 -3.9947401E-03 -3.9188555E-03
 -3.8418036E-03 -3.7639870E-03 -3.6857422E-03 -3.6073681E-03 -3.5291049E-03
 -3.4511650E-03 -3.3737207E-03 -3.2969196E-03 -3.2208809E-03 -3.1457061E-03
 -3.0714714E-03 -2.9982438E-03 -2.9260805E-03 -2.8550138E-03 -2.7850845E-03
 -2.7163122E-03 -2.6487133E-03 -2.5822984E-03 -2.5170802E-03 -2.4530548E-03
 -2.3902296E-03 -2.3285958E-03 -2.2681516E-03 -2.2088930E-03 -2.1508092E-03
 -2.0938914E-03
 8.4570847E-02 8.5337631E-02 8.5699715E-02 8.5684210E-02 8.5320480E-02
 8.4639437E-02 8.3672866E-02 8.2452722E-02 8.1010595E-02 7.9377227E-02
 7.7582113E-02 7.5653166E-02 7.3616482E-02 7.1496189E-02 6.9314338E-02
 6.7090884E-02 6.4843655E-02 6.2588453E-02 6.0339119E-02 5.8107600E-02
 5.5904154E-02 5.3737402E-02 5.1614497E-02 4.9541309E-02 4.7522467E-02
 4.5561589E-02 4.3661334E-02 4.1823551E-02 4.0049393E-02 3.8339399E-02
 3.6693610E-02 3.5111610E-02 3.3592626E-02 3.2135606E-02 3.0739231E-02
 2.9402006E-02 2.8122285E-02 2.6898285E-02 2.5728198E-02 2.4610117E-02
 2.3542115E-02 2.2522267E-02 2.1548642E-02 2.0619338E-02 1.9732481E-02
 1.8886233E-02 1.8078811E-02 1.7308466E-02 1.6573519E-02 1.5872352E-02
 1.5203391E-02 1.4565129E-02 1.3956121E-02 1.3374983E-02 1.2820388E-02
 1.2291068E-02 1.1785814E-02 1.1303466E-02 1.0842919E-02 1.0403126E-02
 9.9830851E-03 9.5818387E-03 9.1984849E-03 8.8321548E-03 8.4820269E-03
 8.1473216E-03 7.8272969E-03 7.5212470E-03 7.2284951E-03 6.9484063E-03
 6.6803801E-03 6.4238342E-03 6.1782296E-03 5.9430394E-03 5.7177674E-03
 5.5019623E-03 5.2951612E-03 5.0969562E-03 4.9069365E-03 4.7247256E-03
 4.5499643E-03
 8.6472824E-02 7.9659075E-02 7.3109195E-02 6.6842213E-02 6.0872756E-02
 5.5211291E-02 4.9864326E-02 4.4834964E-02 4.0123023E-02 3.5725489E-02
 3.1636812E-02 2.7849298E-02 2.4353437E-02 2.1138208E-02 1.8191408E-02
 1.5499959E-02 1.3050143E-02 1.0827887E-02 8.8189337E-03 7.0090583E-03
 5.3842375E-03 3.9307554E-03 2.6353314E-03 1.4852056E-03 4.6819248E-04
 -4.2726178E-04 -1.2120605E-03 -1.8964307E-03 -2.4899254E-03 -3.0014298E-03
 -3.4391677E-03 -3.8107333E-03 -4.1231047E-03 -4.3826713E-03 -4.5952764E-03
 -4.7662351E-03 -4.9003740E-03 -5.0020590E-03 -5.0752303E-03 -5.1234406E-03
 -5.1498692E-03 -5.1573687E-03 -5.1484839E-03 -5.1254774E-03 -5.0903647E-03
 -5.0449269E-03 -4.9907337E-03 -4.9291742E-03 -4.8614633E-03 -4.7886684E-03
 -4.7117225E-03 -4.6314378E-03 -4.5485161E-03 -4.4635721E-03 -4.3771318E-03
 -4.2896499E-03 -4.2015179E-03 -4.1130702E-03 -4.0245866E-03 -3.9363173E-03
 -3.8484645E-03 -3.7612016E-03 -3.6746748E-03 -3.5890054E-03 -3.5042975E-03
 -3.4206349E-03 -3.3380832E-03 -3.2567012E-03 -3.1765371E-03 -3.0976275E-03
 -3.0199965E-03 -2.9436701E-03 -2.8686614E-03 -2.7949840E-03 -2.7226517E-03
 -2.6516546E-03 -2.5820066E-03 -2.5137002E-03 -2.4467346E-03 -2.3811024E-03
 -2.3167988E-03
 9.0355948E-02 9.1090746E-02 9.1396339E-02 9.1302529E-02 9.0841591E-02
 9.0047382E-02 8.8954613E-02 8.7597862E-02 8.6011179E-02 8.4227458E-02
 8.2278103E-02 8.0192648E-02 7.7998586E-02 7.5721204E-02 7.3383525E-02
 7.1006291E-02 6.8607993E-02 6.6204950E-02 6.3811392E-02 6.1439604E-02
 5.9100050E-02 5.6801524E-02 5.4551296E-02 5.2355267E-02 5.0218113E-02
 4.8143413E-02 4.6133801E-02 4.4191051E-02 4.2316243E-02 4.0509820E-02
 3.8771711E-02 3.7101392E-02 3.5497960E-02 3.3960246E-02 3.2486800E-02
 3.1076003E-02 2.9726068E-02 2.8435096E-02 2.7201142E-02 2.6022172E-02
 2.4896141E-02 2.3820996E-02 2.2794694E-02 2.1815199E-02 2.0880545E-02
 1.9988770E-02 1.9137979E-02 1.8326327E-02 1.7552033E-02 1.6813371E-02
 1.6108686E-02 1.5436374E-02 1.4794904E-02 1.4182794E-02 1.3598654E-02
 1.3041134E-02 1.2508941E-02 1.2000850E-02 1.1515697E-02 1.1052364E-02
 1.0609786E-02 1.0186956E-02 9.7829113E-03 9.3967346E-03 9.0275640E-03
 8.6745713E-03 8.3369715E-03 8.0140140E-03 7.7049979E-03 7.4092555E-03
 7.1261437E-03 6.8550548E-03 6.5954230E-03 6.3466942E-03 6.1083641E-03
 5.8799335E-03 5.6609334E-03 5.4509379E-03 5.2495105E-03 5.0562643E-03
 4.8708241E-03
 8.4233724E-02 7.7494949E-02 7.1020551E-02 6.4827986E-02 5.8930743E-02
 5.3338576E-02 4.8057638E-02 4.3090899E-02 3.8438227E-02 3.4096789E-02
 3.0061267E-02 2.6324222E-02 2.2876397E-02 1.9707004E-02 1.6804045E-02
 1.4154612E-02 1.1745131E-02 9.5616318E-03 7.5899544E-03 5.8159376E-03
 4.2256159E-03 2.8053164E-03 1.5417918E-03 4.2231809E-04 -5.6526437E-04
 -1.4324732E-03 -2.1901848E-03 -2.8485891E-03 -3.4172030E-03 -3.9048737E-03
 -4.3197791E-03 -4.6694712E-03 -4.9608783E-03 -5.2003409E-03 -5.3936522E-03
 -5.5460716E-03 -5.6623742E-03 -5.7468782E-03 -5.8034658E-03 -5.8356421E-03
 -5.8465372E-03 -5.8389548E-03 -5.8153979E-03 -5.7780864E-03 -5.7289945E-03
 -5.6698667E-03 -5.6022424E-03 -5.5274791E-03 -5.4467674E-03 -5.3611486E-03
 -5.2715400E-03 -5.1787319E-03 -5.0834161E-03 -4.9861968E-03 -4.8875897E-03
 -4.7880458E-03 -4.6879533E-03 -4.5876438E-03 -4.4873999E-03 -4.3874718E-03
 -4.2880657E-03 -4.1893604E-03 -4.0915068E-03 -3.9946325E-03 -3.8988448E-03
 -3.8042362E-03 -3.7108823E-03 -3.6188511E-03 -3.5281850E-03 -3.4389321E-03
 -3.3511284E-03 -3.2648020E-03 -3.1799723E-03 -3.0966566E-03 -3.0148644E-03
 -2.9346077E-03 -2.8558902E-03 -2.7787099E-03 -2.7030697E-03 -2.6289627E-03
 -2.5563862E-03
 9.7068861E-02 9.7729772E-02 9.7935051E-02 9.7718686E-02 9.7116947E-02
 9.6167527E-02 9.4908305E-02 9.3376808E-02 9.1609605E-02 8.9641750E-02
 8.7506443E-02 8.5234731E-02 8.2855411E-02 8.0394782E-02 7.7876739E-02
 7.5322710E-02 7.2751731E-02 7.0180550E-02 6.7623727E-02 6.5093763E-02
 6.2601306E-02 6.0155246E-02 5.7762887E-02 5.5430144E-02 5.3161647E-02
 5.0960924E-02 4.8830509E-02 4.6772070E-02 4.4786576E-02 4.2874318E-02
 4.1035086E-02 3.9268207E-02 3.7572626E-02 3.5947002E-02 3.4389742E-02
 3.2899048E-02 3.1472988E-02 3.0109497E-02 2.8806482E-02 2.7561750E-02
 2.6373111E-02 2.5238357E-02 2.4155309E-02 2.3121797E-02 2.2135710E-02
 2.1194965E-02 2.0297535E-02 1.9441463E-02 1.8624838E-02 1.7845832E-02
 1.7102676E-02 1.6393663E-02 1.5717169E-02 1.5071622E-02 1.4455535E-02
 1.3867470E-02 1.3306064E-02 1.2770013E-02 1.2258081E-02 1.1769081E-02
 1.1301893E-02 1.0855446E-02 1.0428723E-02 1.0020757E-02 9.6306335E-03
 9.2574814E-03 8.9004757E-03 8.5588284E-03 8.2317982E-03 7.9186838E-03
 7.6188133E-03 7.3315501E-03 7.0562963E-03 6.7924820E-03 6.5395618E-03
 6.2970282E-03 6.0643884E-03 5.8411928E-03 5.6269951E-03 5.4213805E-03
 5.2239597E-03
 8.2049936E-02 7.5403504E-02 6.9015115E-02 6.2901586E-02 5.7076383E-02
 5.1549535E-02 4.6327900E-02 4.1415129E-02 3.6811862E-02 3.2515991E-02
 2.8522853E-02 2.4825588E-02 2.1415418E-02 1.8281937E-02 1.5413445E-02
 1.2797270E-02 1.0420002E-02 8.2677919E-03 6.3265539E-03 4.5821797E-03
 3.0207264E-03 1.6285371E-03 3.9236902E-04 -7.0050493E-04 -1.6622421E-03
 -2.5043639E-03 -3.2377385E-03 -3.8725538E-03 -4.4183135E-03 -4.8838458E-03
 -5.2773105E-03 -5.6062294E-03 -5.8775018E-03 -6.0974383E-03 -6.2717935E-03
 -6.4057880E-03 -6.5041608E-03 -6.5711834E-03 -6.6107083E-03 -6.6261943E-03
 -6.6207359E-03 -6.5971031E-03 -6.5577626E-03 -6.5049045E-03 -6.4404742E-03
 -6.3661905E-03 -6.2835761E-03 -6.1939619E-03 -6.0985289E-03 -5.9983060E-03
 -5.8941962E-03 -5.7869898E-03 -5.6773731E-03 -5.5659465E-03 -5.4532290E-03
 -5.3396756E-03 -5.2256798E-03 -5.1115789E-03 -4.9976613E-03 -4.8841876E-03
 -4.7713695E-03 -4.6593971E-03 -4.5484318E-03 -4.4386080E-03 -4.3300460E-03
 -4.2228466E-03 -4.1170912E-03 -4.0128543E-03 -3.9101928E-03 -3.8091592E-03
 -3.7097915E-03 -3.6121262E-03 -3.5161907E-03 -3.4219981E-03 -3.3295727E-03
 -3.2389218E-03 -3.1500531E-03 -3.0629679E-03 -2.9776639E-03 -2.8941443E-03
 -2.8124005E-03
 0.1047868 0.1053188 0.1053705 0.1049807 0.1041903
 0.1030407 0.1015731 9.9827752E-02 9.7843468E-02 9.5657244E-02
 9.3303896E-02 9.0815827E-02 8.8222906E-02 8.5552372E-02 8.2828835E-02
 8.0074333E-02 7.7308342E-02 7.4547984E-02 7.1808040E-02 6.9101222E-02
 6.6438250E-02 6.3828073E-02 6.1277989E-02 5.8793873E-02 5.6380253E-02
 5.4040566E-02 5.1777203E-02 4.9591690E-02 4.7484815E-02 4.5456707E-02
 4.3506961E-02 4.1634716E-02 3.9838724E-02 3.8117457E-02 3.6469117E-02
 3.4891713E-02 3.3383120E-02 3.1941090E-02 3.0563338E-02 2.9247493E-02
 2.7991181E-02 2.6792033E-02 2.5647700E-02 2.4555845E-02 2.3514207E-02
 2.2520555E-02 2.1572717E-02 2.0668594E-02 1.9806145E-02 1.8983427E-02
 1.8198537E-02 1.7449664E-02 1.6735081E-02 1.6053101E-02 1.5402156E-02
 1.4780716E-02 1.4187333E-02 1.3620621E-02 1.3079267E-02 1.2562031E-02
 1.2067710E-02 1.1595182E-02 1.1143375E-02 1.0711269E-02 1.0297897E-02
 9.9023506E-03 9.5237531E-03 9.1612842E-03 8.8141635E-03 8.4816534E-03
 8.1630517E-03 7.8576906E-03 7.5649475E-03 7.2842208E-03 7.0149451E-03
 6.7565939E-03 6.5086470E-03 6.2706303E-03 6.0420823E-03 5.8225761E-03
 5.6117023E-03
 8.0034159E-02 7.3484175E-02 6.7178704E-02 6.1135728E-02 5.5370260E-02
 4.9894050E-02 4.4715572E-02 3.9840009E-02 3.5269342E-02 3.1002607E-02
 2.7036084E-02 2.3363670E-02 1.9977165E-02 1.6866609E-02 1.4020619E-02
 1.1426734E-02 9.0716816E-03 6.9416887E-03 5.0227009E-03 3.3006002E-03
 1.7614247E-03 3.9147126E-04 -8.2254567E-04 -1.8934037E-03 -2.8333049E-03
 -3.6538122E-03 -4.3658302E-03 -4.9795746E-03 -5.5045681E-03 -5.9496542E-03
 -6.3229953E-03 -6.6321143E-03 -6.8839029E-03 -7.0846574E-03 -7.2401157E-03
 -7.3554828E-03 -7.4354773E-03 -7.4843466E-03 -7.5059151E-03 -7.5036245E-03
 -7.4805501E-03 -7.4394369E-03 -7.3827310E-03 -7.3126159E-03 -7.2310190E-03
 -7.1396464E-03 -7.0400159E-03 -6.9334581E-03 -6.8211500E-03 -6.7041186E-03
 -6.5832757E-03 -6.4594140E-03 -6.3332268E-03 -6.2053283E-03 -6.0762474E-03
 -5.9464471E-03 -5.8163363E-03 -5.6862626E-03 -5.5565396E-03 -5.4274229E-03
 -5.2991537E-03 -5.1719286E-03 -5.0459201E-03 -4.9212761E-03 -4.7981283E-03
 -4.6765832E-03 -4.5567406E-03 -4.4386759E-03 -4.3224539E-03 -4.2081368E-03
 -4.0957690E-03 -3.9853896E-03 -3.8770272E-03 -3.7707060E-03 -3.6664447E-03
 -3.5642546E-03 -3.4641449E-03 -3.3661155E-03 -3.2701732E-03 -3.1763066E-03
 -3.0845113E-03
 0.1135621 0.1139038 0.1137451 0.1131298 0.1121028
 0.1107087 0.1089916 0.1069939 0.1047565 0.1023181
 9.9714696E-02 9.6979991E-02 9.4144806E-02 9.1237165E-02 8.8282332E-02
 8.5302882E-02 8.2318671E-02 7.9347126E-02 7.6403245E-02 7.3499858E-02
 7.0647769E-02 6.7855895E-02 6.5131515E-02 6.2480394E-02 5.9906956E-02
 5.7414468E-02 5.5005141E-02 5.2680314E-02 5.0440568E-02 4.8285801E-02
 4.6215396E-02 4.4228245E-02 4.2322878E-02 4.0497527E-02 3.8750153E-02
 3.7078544E-02 3.5480347E-02 3.3953089E-02 3.2494254E-02 3.1101279E-02
 2.9771572E-02 2.8502569E-02 2.7291730E-02 2.6136536E-02 2.5034552E-02
 2.3983369E-02 2.2980664E-02 2.2024184E-02 2.1111749E-02 2.0241270E-02
 1.9410728E-02 1.8618189E-02 1.7861797E-02 1.7139778E-02 1.6450455E-02
 1.5792204E-02 1.5163491E-02 1.4562857E-02 1.3988907E-02 1.3440323E-02
 1.2915850E-02 1.2414302E-02 1.1934538E-02 1.1475496E-02 1.1036159E-02
 1.0615567E-02 1.0212805E-02 9.8270075E-03 9.4573591E-03 9.1030877E-03
 8.7634595E-03 8.4377714E-03 8.1253788E-03 7.8256438E-03 7.5379810E-03
 7.2618336E-03 6.9966675E-03 6.7419838E-03 6.4973058E-03 6.2621757E-03
 6.0361726E-03
 7.8304596E-02 7.1836241E-02 6.5593667E-02 5.9598085E-02 5.3867593E-02
 4.8416726E-02 4.3256380E-02 3.8393788E-02 3.3832628E-02 2.9573282E-02
 2.5613092E-02 2.1946745E-02 1.8566631E-02 1.5463189E-02 1.2625299E-02
 1.0040645E-02 7.6960195E-03 5.5776378E-03 3.6713972E-03 1.9630992E-03
 4.3867630E-04 -9.1567996E-04 -2.1133714E-03 -3.1672837E-03 -4.0897224E-03
 -4.8923451E-03 -5.5861389E-03 -6.1813900E-03 -6.6876854E-03 -7.1139121E-03
 -7.4682776E-03 -7.7583320E-03 -7.9909898E-03 -8.1725651E-03 -8.3088027E-03
 -8.4049152E-03 -8.4656216E-03 -8.4951706E-03 -8.4973946E-03 -8.4757255E-03
 -8.4332405E-03 -8.3726877E-03 -8.2965177E-03 -8.2069123E-03 -8.1058079E-03
 -7.9949284E-03 -7.8757890E-03 -7.7497405E-03 -7.6179728E-03 -7.4815289E-03
 -7.3413393E-03 -7.1982127E-03 -7.0528672E-03 -6.9059324E-03 -6.7579569E-03
 -6.6094291E-03 -6.4607696E-03 -6.3123512E-03 -6.1645000E-03 -6.0174991E-03
 -5.8715972E-03 -5.7270024E-03 -5.5839135E-03 -5.4424838E-03 -5.3028571E-03
 -5.1651532E-03 -5.0294767E-03 -4.8959134E-03 -4.7645369E-03 -4.6354108E-03
 -4.5085838E-03 -4.3841009E-03 -4.2619919E-03 -4.1422839E-03 -4.0249955E-03
 -3.9101401E-03 -3.7977218E-03 -3.6877438E-03 -3.5802007E-03 -3.4750928E-03
 -3.3724082E-03
 0.1234287 0.1235205 0.1230978 0.1222083 0.1208999
 0.1192199 0.1172143 0.1149276 0.1124023 0.1096783
 0.1067931 0.1037813 0.1006747 9.7501986E-02 9.4289146E-02
 9.1059186E-02 8.7832399E-02 8.4626473E-02 8.1456587E-02 7.8335680E-02
 7.5274587E-02 7.2282203E-02 6.9365725E-02 6.6530786E-02 6.3781656E-02
 6.1121389E-02 5.8551997E-02 5.6074556E-02 5.3689405E-02 5.1396176E-02
 4.9193971E-02 4.7081418E-02 4.5056753E-02 4.3117933E-02 4.1262656E-02
 3.9488424E-02 3.7792619E-02 3.6172520E-02 3.4625355E-02 3.3148311E-02
 3.1738572E-02 3.0393345E-02 2.9109877E-02 2.7885439E-02 2.6717411E-02
 2.5603192E-02 2.4540298E-02 2.3526296E-02 2.2558860E-02 2.1635756E-02
 2.0754829E-02 1.9914018E-02 1.9111345E-02 1.8344937E-02 1.7612997E-02
 1.6913816E-02 1.6245771E-02 1.5607310E-02 1.4996968E-02 1.4413356E-02
 1.3855148E-02 1.3321090E-02 1.2809993E-02 1.2320732E-02 1.1852240E-02
 1.1403508E-02 1.0973582E-02 1.0561554E-02 1.0166560E-02 9.7878017E-03
 9.4245020E-03 9.0759322E-03 8.7414095E-03 8.4202737E-03 8.1119109E-03
 7.8157382E-03 7.5311973E-03 7.2577717E-03 6.9949501E-03 6.7422707E-03
 6.4992844E-03
 7.6971121E-02 7.0549779E-02 6.4333797E-02 5.8349036E-02 5.2617688E-02
 4.7157697E-02 4.1982781E-02 3.7102442E-02 3.2522153E-02 2.8243681E-02
 2.4265403E-02 2.0582750E-02 1.7188607E-02 1.4073726E-02 1.1227140E-02
 8.6365752E-03 6.2887692E-03 4.1698338E-03 2.2655076E-03 5.6141196E-04
 -9.5671130E-04 -2.3028697E-03 -3.4906587E-03 -4.5331479E-03 -5.4428149E-03
 -6.2314738E-03 -6.9102538E-03 -7.4895658E-03 -7.9791071E-03 -8.3878646E-03
 -8.7241204E-03 -8.9955023E-03 -9.2089809E-03 -9.3709268E-03 -9.4871288E-03
 -9.5628360E-03 -9.6028037E-03 -9.6113132E-03 -9.5922258E-03 -9.5490050E-03
 -9.4847502E-03 -9.4022425E-03 -9.3039591E-03 -9.1921138E-03 -9.0686688E-03
 -8.9353779E-03 -8.7937946E-03 -8.6452914E-03 -8.4910952E-03 -8.3322786E-03
 -8.1698038E-03 -8.0045126E-03 -7.8371512E-03 -7.6683741E-03 -7.4987649E-03
 -7.3288325E-03 -7.1590259E-03 -6.9897412E-03 -6.8213237E-03 -6.6540772E-03
 -6.4882641E-03 -6.3241208E-03 -6.1618495E-03 -6.0016192E-03 -5.8435863E-03
 -5.6878817E-03 -5.5346098E-03 -5.3838706E-03 -5.2357414E-03 -5.0902879E-03
 -4.9475650E-03 -4.8076152E-03 -4.6704719E-03 -4.5361612E-03 -4.4046980E-03
 -4.2760973E-03 -4.1503566E-03 -4.0274761E-03 -3.9074523E-03 -3.7902729E-03
 -3.6759218E-03
 0.1344152 0.1342059 0.1334732 0.1322672 0.1306379
 0.1286343 0.1263043 0.1236938 0.1208468 0.1178045
 0.1146056 0.1112858 0.1078778 0.1044111 0.1009123
 9.7404957E-02 9.3909763E-02 9.0444699E-02 8.7025173E-02 8.3664209E-02
 8.0372676E-02 7.7159412E-02 7.4031509E-02 7.0994444E-02 6.8052270E-02
 6.5207832E-02 6.2462851E-02 5.9818126E-02 5.7273693E-02 5.4828860E-02
 5.2482422E-02 5.0232664E-02 4.8077501E-02 4.6014573E-02 4.4041254E-02
 4.2154729E-02 4.0352095E-02 3.8630303E-02 3.6986329E-02 3.5417076E-02
 3.3919469E-02 3.2490462E-02 3.1127071E-02 2.9826347E-02 2.8585454E-02
 2.7401598E-02 2.6272109E-02 2.5194379E-02 2.4165921E-02 2.3184344E-02
 2.2247355E-02 2.1352760E-02 2.0498460E-02 1.9682456E-02 1.8902861E-02
 1.8157857E-02 1.7445724E-02 1.6764835E-02 1.6113635E-02 1.5490659E-02
 1.4894515E-02 1.4323881E-02 1.3777507E-02 1.3254213E-02 1.2752878E-02
 1.2272441E-02 1.1811894E-02 1.1370291E-02 1.0946732E-02 1.0540365E-02
 1.0150389E-02 9.7760363E-03 9.4165923E-03 9.0713613E-03 8.7397099E-03
 8.4210224E-03 8.1147132E-03 7.8202402E-03 7.5370772E-03 7.2647347E-03
 7.0027504E-03
 7.6129280E-02 6.9704026E-02 6.3465178E-02 5.7444047E-02 5.1667150E-02
 4.6156049E-02 4.0927347E-02 3.5992835E-02 3.1359743E-02 2.7031140E-02
 2.3006346E-02 1.9281419E-02 1.5849624E-02 1.2701893E-02 9.8272888E-03
 7.2134444E-03 4.8469179E-03 2.7135864E-03 7.9891318E-04 -9.1177557E-04
 -2.4330420E-03 -3.7791897E-03 -4.9641035E-03 -6.0011260E-03 -6.9029923E-03
 -7.6817474E-03 -8.3487369E-03 -8.9145619E-03 -9.3890931E-03 -9.7814733E-03
 -1.0100123E-02 -1.0352788E-02 -1.0546561E-02 -1.0687901E-02 -1.0782692E-02
 -1.0836268E-02 -1.0853455E-02 -1.0838612E-02 -1.0795667E-02 -1.0728143E-02
 -1.0639208E-02 -1.0531699E-02 -1.0408151E-02 -1.0270835E-02 -1.0121770E-02
 -9.9627618E-03 -9.7954106E-03 -9.6211471E-03 -9.4412379E-03 -9.2568099E-03
 -9.0688635E-03 -8.8782832E-03 -8.6858515E-03 -8.4922640E-03 -8.2981326E-03
 -8.1040002E-03 -7.9103447E-03 -7.7175866E-03 -7.5260932E-03 -7.3361932E-03
 -7.1481667E-03 -6.9622626E-03 -6.7786979E-03 -6.5976568E-03 -6.4193001E-03
 -6.2437686E-03 -6.0711782E-03 -5.9016282E-03 -5.7351990E-03 -5.5719619E-03
 -5.4119676E-03 -5.2552610E-03 -5.1018707E-03 -4.9518230E-03 -4.8051272E-03
 -4.6617910E-03 -4.5218109E-03 -4.3851817E-03 -4.2518857E-03 -4.1219038E-03
 -3.9952160E-03
 0.1465583 0.1460085 0.1449292 0.1433719 0.1413877
 0.1390271 0.1363395 0.1333724 0.1301709 0.1267779
 0.1232333 0.1195738 0.1158333 0.1120423 0.1082280
 0.1044146 0.1006233 9.6872523E-02 9.3177781E-02 8.9552268E-02
 8.6006872E-02 8.2550406E-02 7.9189815E-02 7.5930402E-02 7.2775982E-02
 6.9729105E-02 6.6791192E-02 6.3962705E-02 6.1243333E-02 5.8632009E-02
 5.6127150E-02 5.3726673E-02 5.1428121E-02 4.9228761E-02 4.7125597E-02
 4.5115482E-02 4.3195151E-02 4.1361243E-02 3.9610412E-02 3.7939262E-02
 3.6344435E-02 3.4822624E-02 3.3370584E-02 3.1985130E-02 3.0663198E-02
 2.9401792E-02 2.8198039E-02 2.7049150E-02 2.5952473E-02 2.4905449E-02
 2.3905640E-02 2.2950713E-02 2.2038441E-02 2.1166708E-02 2.0333508E-02
 1.9536925E-02 1.8775135E-02 1.8046428E-02 1.7349154E-02 1.6681775E-02
 1.6042827E-02 1.5430914E-02 1.4844724E-02 1.4283009E-02 1.3744595E-02
 1.3228370E-02 1.2733271E-02 1.2258308E-02 1.1802535E-02 1.1365057E-02
 1.0945031E-02 1.0541659E-02 1.0154185E-02 9.7818868E-03 9.4240904E-03
 9.0801595E-03 8.7494776E-03 8.4314737E-03 8.1255985E-03 7.8313434E-03
 7.5482111E-03
 7.5863905E-02 6.9372550E-02 6.3052192E-02 5.6939494E-02 5.1065311E-02
 4.5454763E-02 4.0127259E-02 3.5096794E-02 3.0372255E-02 2.5957931E-02
 2.1853965E-02 1.8056929E-02 1.4560342E-02 1.1355184E-02 8.4304046E-03
 5.7734009E-03 3.3704187E-03 1.2069506E-03 -7.3194521E-04 -2.4613694E-03
 -3.9963112E-03 -5.3514978E-03 -6.5412126E-03 -7.5791809E-03 -8.4784944E-03
 -9.2515294E-03 -9.9099288E-03 -1.0464574E-02 -1.0925592E-02 -1.1302351E-02
 -1.1603485E-02 -1.1836932E-02 -1.2009953E-02 -1.2129173E-02 -1.2200623E-02
 -1.2229773E-02 -1.2221583E-02 -1.2180523E-02 -1.2110637E-02 -1.2015555E-02
 -1.1898543E-02 -1.1762531E-02 -1.1610150E-02 -1.1443751E-02 -1.1265437E-02
 -1.1077086E-02 -1.0880374E-02 -1.0676794E-02 -1.0467677E-02 -1.0254211E-02
 -1.0037446E-02 -9.8183192E-03 -9.5976610E-03 -9.3762018E-03 -9.1546010E-03
 -8.9334268E-03 -8.7131942E-03 -8.4943455E-03 -8.2772756E-03 -8.0623329E-03
 -7.8498144E-03 -7.6399860E-03 -7.4330727E-03 -7.2292737E-03 -7.0287581E-03
 -6.8316655E-03 -6.6381251E-03 -6.4482312E-03 -6.2620668E-03 -6.0797022E-03
 -5.9011877E-03 -5.7265572E-03 -5.5558421E-03 -5.3890538E-03 -5.2262004E-03
 -5.0672782E-03 -4.9122735E-03 -4.7611734E-03 -4.6139420E-03 -4.4705528E-03
 -4.3309731E-03
 0.1599104 0.1589930 0.1575402 0.1556040 0.1532366
 0.1504899 0.1474145 0.1440595 0.1404719 0.1366959
 0.1327729 0.1287413 0.1246360 0.1204886 0.1163274
 0.1121772 0.1080600 0.1039944 9.9996455E-02 9.6079454E-02
 9.2254348E-02 8.8529885E-02 8.4912904E-02 8.1408471E-02 7.8020148E-02
 7.4750185E-02 7.1599633E-02 6.8568565E-02 6.5656260E-02 6.2861264E-02
 6.0181536E-02 5.7614598E-02 5.5157553E-02 5.2807271E-02 5.0560340E-02
 4.8413232E-02 4.6362307E-02 4.4403851E-02 4.2534176E-02 4.0749557E-02
 3.9046340E-02 3.7420925E-02 3.5869792E-02 3.4389518E-02 3.2976791E-02
 3.1628400E-02 3.0341251E-02 2.9112384E-02 2.7938945E-02 2.6818225E-02
 2.5747625E-02 2.4724659E-02 2.3746973E-02 2.2812314E-02 2.1918565E-02
 2.1063695E-02 2.0245785E-02 1.9463014E-02 1.8713649E-02 1.7996073E-02
 1.7308731E-02 1.6650155E-02 1.6018968E-02 1.5413849E-02 1.4833570E-02
 1.4276955E-02 1.3742894E-02 1.3230335E-02 1.2738287E-02 1.2265816E-02
 1.1812031E-02 1.1376090E-02 1.0957205E-02 1.0554614E-02 1.0167610E-02
 9.7955205E-03 9.4376979E-03 9.0935454E-03 8.7624788E-03 8.4439572E-03
 8.1374664E-03
 7.6258779E-02 6.9632284E-02 6.3165419E-02 5.6899890E-02 5.0870784E-02
 4.5106634E-02 3.9629627E-02 3.4455895E-02 2.9595958E-02 2.5055263E-02
 2.0834712E-02 1.6931303E-02 1.3338710E-02 1.0047837E-02 7.0473896E-03
 4.3243910E-03 1.8646142E-03 -3.4696693E-04 -2.3258624E-03 -4.0877527E-03
 -5.6481999E-03 -7.0224940E-03 -8.2254615E-03 -9.2713386E-03 -1.0173697E-02
 -1.0945363E-02 -1.1598402E-02 -1.2144077E-02 -1.2592866E-02 -1.2954467E-02
 -1.3237816E-02 -1.3451125E-02 -1.3601912E-02 -1.3697037E-02 -1.3742748E-02
 -1.3744718E-02 -1.3708095E-02 -1.3637522E-02 -1.3537203E-02 -1.3410924E-02
 -1.3262093E-02 -1.3093770E-02 -1.2908706E-02 -1.2709363E-02 -1.2497959E-02
 -1.2276459E-02 -1.2046636E-02 -1.1810063E-02 -1.1568148E-02 -1.1322148E-02
 -1.1073175E-02 -1.0822224E-02 -1.0570173E-02 -1.0317808E-02 -1.0065819E-02
 -9.8148147E-03 -9.5653404E-03 -9.3178675E-03 -9.0728141E-03 -8.8305445E-03
 -8.5913772E-03 -8.3555914E-03 -8.1234183E-03 -7.8950664E-03 -7.6707089E-03
 -7.4504926E-03 -7.2345375E-03 -7.0229438E-03 -6.8157897E-03 -6.6131353E-03
 -6.4150281E-03 -6.2214932E-03 -6.0325498E-03 -5.8481959E-03 -5.6684297E-03
 -5.4932320E-03 -5.3225732E-03 -5.1564211E-03 -4.9947309E-03 -4.8374548E-03
 -4.6845372E-03
 0.1745404 0.1732401 0.1713963 0.1690613 0.1662885
 0.1631307 0.1596406 0.1558688 0.1518644 0.1476735
 0.1433393 0.1389020 0.1343980 0.1298603 0.1253185
 0.1207984 0.1163226 0.1119105 0.1075784 0.1033399
 9.9206172E-02 9.5185831E-02 9.1285616E-02 8.7510392E-02 8.3863437E-02
 8.0346629E-02 7.6960653E-02 7.3705144E-02 7.0578955E-02 6.7580134E-02
 6.4706206E-02 6.1954208E-02 5.9320796E-02 5.6802373E-02 5.4395106E-02
 5.2095041E-02 4.9898129E-02 4.7800284E-02 4.5797434E-02 4.3885533E-02
 4.2060584E-02 4.0318687E-02 3.8656045E-02 3.7068948E-02 3.5553847E-02
 3.4107290E-02 3.2725975E-02 3.1406719E-02 3.0146489E-02 2.8942393E-02
 2.7791668E-02 2.6691673E-02 2.5639905E-02 2.4633978E-02 2.3671646E-02
 2.2750756E-02 2.1869279E-02 2.1025293E-02 2.0216966E-02 1.9442586E-02
 1.8700508E-02 1.7989198E-02 1.7307185E-02 1.6653089E-02 1.6025607E-02
 1.5423501E-02 1.4845604E-02 1.4290810E-02 1.3758067E-02 1.3246392E-02
 1.2754850E-02 1.2282550E-02 1.1828660E-02 1.1392375E-02 1.0972941E-02
 1.0569663E-02 1.0181837E-02 9.8088374E-03 9.4500445E-03 9.1048786E-03
 8.7727876E-03
 7.7407740E-02 7.0573106E-02 6.3890234E-02 5.7405569E-02 5.1158369E-02
 4.5180641E-02 3.9497402E-02 3.4127023E-02 2.9081726E-02 2.4368167E-02
 1.9988032E-02 1.5938727E-02 1.2214025E-02 8.8046715E-03 5.6990129E-03
 2.8835663E-03 3.4348300E-04 -1.9369561E-03 -3.9739972E-03 -5.7840683E-03
 -7.3834895E-03 -8.7882821E-03 -1.0013987E-02 -1.1075513E-02 -1.1987074E-02
 -1.2762099E-02 -1.3413206E-02 -1.3952185E-02 -1.4389996E-02 -1.4736783E-02
 -1.5001892E-02 -1.5193920E-02 -1.5320732E-02 -1.5389517E-02 -1.5406817E-02
 -1.5378585E-02 -1.5310220E-02 -1.5206604E-02 -1.5072159E-02 -1.4910864E-02
 -1.4726315E-02 -1.4521737E-02 -1.4300040E-02 -1.4063828E-02 -1.3815443E-02
 -1.3556974E-02 -1.3290297E-02 -1.3017087E-02 -1.2738835E-02 -1.2456878E-02
 -1.2172399E-02 -1.1886457E-02 -1.1599984E-02 -1.1313814E-02 -1.1028680E-02
 -1.0745231E-02 -1.0464041E-02 -1.0185611E-02 -9.9103767E-03 -9.6387230E-03
 -9.3709826E-03 -9.1074351E-03 -8.8483337E-03 -8.5938834E-03 -8.3442535E-03
 -8.0995960E-03 -7.8600189E-03 -7.6256162E-03 -7.3964568E-03 -7.1725924E-03
 -6.9540520E-03 -6.7408467E-03 -6.5329759E-03 -6.3304249E-03 -6.1331680E-03
 -5.9411628E-03 -5.7543619E-03 -5.5727107E-03 -5.3961379E-03 -5.2245706E-03
 -5.0579365E-03
 0.1905303 0.1888433 0.1866007 0.1838553 0.1806611
 0.1770729 0.1731451 0.1689305 0.1644805 0.1598436
 0.1550654 0.1501881 0.1452502 0.1402865 0.1353280
 0.1304019 0.1255319 0.1207380 0.1160373 0.1114438
 0.1069686 0.1026206 9.8406449E-02 9.4330713E-02 9.0396434E-02
 8.6605132E-02 8.2957067E-02 7.9451449E-02 7.6086625E-02 7.2860166E-02
 6.9769092E-02 6.6809937E-02 6.3978866E-02 6.1271790E-02 5.8684416E-02
 5.6212336E-02 5.3851075E-02 5.1596135E-02 4.9443055E-02 4.7387425E-02
 4.5424901E-02 4.3551259E-02 4.1762389E-02 4.0054306E-02 3.8423188E-02
 3.6865331E-02 3.5377197E-02 3.3955388E-02 3.2596663E-02 3.1297941E-02
 3.0056264E-02 2.8868845E-02 2.7733000E-02 2.6646217E-02 2.5606098E-02
 2.4610365E-02 2.3656871E-02 2.2743572E-02 2.1868531E-02 2.1029936E-02
 2.0226054E-02 1.9455250E-02 1.8715976E-02 1.8006776E-02 1.7326258E-02
 1.6673129E-02 1.6046148E-02 1.5444134E-02 1.4865991E-02 1.4310667E-02
 1.3777169E-02 1.3264548E-02 1.2771925E-02 1.2298440E-02 1.1843288E-02
 1.1405720E-02 1.0984994E-02 1.0580423E-02 1.0191348E-02 9.8171383E-03
 9.4572036E-03
 7.9424210E-02 7.2306514E-02 6.5334700E-02 5.8560107E-02 5.2026276E-02
 4.5768932E-02 3.9816193E-02 3.4188967E-02 2.8901428E-02 2.3961661E-02
 1.9372284E-02 1.5131205E-02 1.1232327E-02 7.6662088E-03 4.4207657E-03
 1.4818818E-03 -1.1660543E-03 -3.5396351E-03 -5.6560305E-03 -7.5326310E-03
 -9.1867130E-03 -1.0635246E-02 -1.1894694E-02 -1.2980840E-02 -1.3908738E-02
 -1.4692606E-02 -1.5345799E-02 -1.5880797E-02 -1.6309200E-02 -1.6641738E-02
 -1.6888311E-02 -1.7058015E-02 -1.7159184E-02 -1.7199429E-02 -1.7185688E-02
 -1.7124269E-02 -1.7020898E-02 -1.6880764E-02 -1.6708555E-02 -1.6508507E-02
 -1.6284436E-02 -1.6039783E-02 -1.5777642E-02 -1.5500785E-02 -1.5211706E-02
 -1.4912639E-02 -1.4605576E-02 -1.4292306E-02 -1.3974418E-02 -1.3653337E-02
 -1.3330328E-02 -1.3006510E-02 -1.2682881E-02 -1.2360321E-02 -1.2039610E-02
 -1.1721436E-02 -1.1406397E-02 -1.1095016E-02 -1.0787757E-02 -1.0485011E-02
 -1.0187124E-02 -9.8943813E-03 -9.6070329E-03 -9.3252752E-03 -9.0492852E-03
 -8.7791895E-03 -8.5150916E-03 -8.2570715E-03 -8.0051739E-03 -7.7594328E-03
 -7.5198528E-03 -7.2864252E-03 -7.0591234E-03 -6.8379017E-03 -6.6227103E-03
 -6.4134826E-03 -6.2101339E-03 -6.0125873E-03 -5.8207437E-03 -5.6345020E-03
 -5.4537575E-03
 0.2079670 0.2059013 0.2032628 0.2001045 0.1964816
 0.1924506 0.1880679 0.1833890 0.1784680 0.1733562
 0.1681021 0.1627506 0.1573427 0.1519154 0.1465018
 0.1411308 0.1358273 0.1306127 0.1255048 0.1205180
 0.1156641 0.1109519 0.1063882 0.1019773 9.7722188E-02
 9.3623884E-02 8.9682311E-02 8.5896194E-02 8.2263403E-02 7.8780994E-02
 7.5445466E-02 7.2252817E-02 6.9198698E-02 6.6278517E-02 6.3487485E-02
 6.0820710E-02 5.8273260E-02 5.5840202E-02 5.3516671E-02 5.1297858E-02
 4.9179051E-02 4.7155663E-02 4.5223281E-02 4.3377593E-02 4.1614499E-02
 3.9930016E-02 3.8320355E-02 3.6781877E-02 3.5311121E-02 3.3904791E-02
 3.2559741E-02 3.1272989E-02 3.0041691E-02 2.8863166E-02 2.7734857E-02
 2.6654357E-02 2.5619375E-02 2.4627740E-02 2.3677407E-02 2.2766437E-02
 2.1893000E-02 2.1055358E-02 2.0251865E-02 1.9480972E-02 1.8741207E-02
 1.8031187E-02 1.7349586E-02 1.6695155E-02 1.6066715E-02 1.5463141E-02
 1.4883371E-02 1.4326388E-02 1.3791242E-02 1.3277000E-02 1.2782804E-02
 1.2307827E-02 1.1851265E-02 1.1412382E-02 1.0990446E-02 1.0584766E-02
 1.0194701E-02
 8.2448073E-02 7.4972130E-02 6.7636430E-02 6.0497452E-02 5.3603459E-02
 4.6994373E-02 4.0701970E-02 3.4750208E-02 2.9155722E-02 2.3928447E-02
 1.9072281E-02 1.4585884E-02 1.0463445E-02 6.6954102E-03 3.2692465E-03
 1.7013731E-04 -2.6184418E-03 -5.1141260E-03 -7.3352279E-03 -9.3003269E-03
 -1.1027910E-02 -1.2536150E-02 -1.3842678E-02 -1.4964415E-02 -1.5917487E-02
 -1.6717130E-02 -1.7377660E-02 -1.7912442E-02 -1.8333906E-02 -1.8653555E-02
 -1.8881984E-02 -1.9028941E-02 -1.9103354E-02 -1.9113377E-02 -1.9066438E-02
 -1.8969305E-02 -1.8828109E-02 -1.8648406E-02 -1.8435229E-02 -1.8193116E-02
 -1.7926157E-02 -1.7638037E-02 -1.7332073E-02 -1.7011244E-02 -1.6678212E-02
 -1.6335372E-02 -1.5984865E-02 -1.5628589E-02 -1.5268262E-02 -1.4905391E-02
 -1.4541324E-02 -1.4177262E-02 -1.3814257E-02 -1.3453241E-02 -1.3095041E-02
 -1.2740372E-02 -1.2389861E-02 -1.2044059E-02 -1.1703426E-02 -1.1368377E-02
 -1.1039246E-02 -1.0716319E-02 -1.0399837E-02 -1.0089987E-02 -9.7869234E-03
 -9.4907554E-03 -9.2015658E-03 -8.9194039E-03 -8.6442893E-03 -8.3762277E-03
 -8.1151901E-03 -7.8611337E-03 -7.6140021E-03 -7.3737199E-03 -7.1401955E-03
 -6.9133360E-03 -6.6930288E-03 -6.4791534E-03 -6.2715868E-03 -6.0702013E-03
 -5.8748606E-03
 0.2269325 0.2245088 0.2214893 0.2179272 0.2138787
 0.2094019 0.2045554 0.1993978 0.1939859 0.1883746
 0.1826156 0.1767571 0.1708432 0.1649140 0.1590048
 0.1531470 0.1473674 0.1416888 0.1361302 0.1307070
 0.1254315 0.1203130 0.1153583 0.1105719 0.1059565
 0.1015129 9.7240604E-02 9.3137972E-02 8.9202374E-02 8.5430354E-02
 8.1817880E-02 7.8360416E-02 7.5053066E-02 7.1890719E-02 6.8868063E-02
 6.5979704E-02 6.3220218E-02 6.0584214E-02 5.8066387E-02 5.5661500E-02
 5.3364441E-02 5.1170260E-02 4.9074173E-02 4.7071543E-02 4.5157947E-02
 4.3329112E-02 4.1580968E-02 3.9909612E-02 3.8311336E-02 3.6782619E-02
 3.5320099E-02 3.3920582E-02 3.2581039E-02 3.1298596E-02 3.0070545E-02
 2.8894305E-02 2.7767437E-02 2.6687624E-02 2.5652686E-02 2.4660552E-02
 2.3709271E-02 2.2796975E-02 2.1921918E-02 2.1082425E-02 2.0276926E-02
 1.9503931E-02 1.8762011E-02 1.8049825E-02 1.7366089E-02 1.6709587E-02
 1.6079165E-02 1.5473713E-02 1.4892194E-02 1.4333595E-02 1.3796963E-02
 1.3281394E-02 1.2786005E-02 1.2309979E-02 1.1852507E-02 1.1412832E-02
 1.0990228E-02
 8.6649626E-02 7.8742348E-02 7.0967831E-02 6.3388072E-02 5.6056634E-02
 4.9018361E-02 4.2309467E-02 3.5957802E-02 2.9983230E-02 2.4398237E-02
 1.9208608E-02 1.4414239E-02 1.0009950E-02 5.9862933E-03 2.3303982E-03
 -9.7326312E-04 -3.9422065E-03 -6.5952814E-03 -8.9521557E-03 -1.1032856E-02
 -1.2857359E-02 -1.4445340E-02 -1.5815895E-02 -1.6987380E-02 -1.7977286E-02
 -1.8802142E-02 -1.9477477E-02 -2.0017799E-02 -2.0436583E-02 -2.0746298E-02
 -2.0958439E-02 -2.1083564E-02 -2.1131346E-02 -2.1110611E-02 -2.1029411E-02
 -2.0895058E-02 -2.0714194E-02 -2.0492820E-02 -2.0236380E-02 -1.9949773E-02
 -1.9637419E-02 -1.9303296E-02 -1.8950978E-02 -1.8583670E-02 -1.8204253E-02
 -1.7815294E-02 -1.7419087E-02 -1.7017683E-02 -1.6612902E-02 -1.6206371E-02
 -1.5799519E-02 -1.5393618E-02 -1.4989786E-02 -1.4589000E-02 -1.4192126E-02
 -1.3799910E-02 -1.3412994E-02 -1.3031940E-02 -1.2657214E-02 -1.2289225E-02
 -1.1928297E-02 -1.1574701E-02 -1.1228656E-02 -1.0890327E-02 -1.0559838E-02
 -1.0237268E-02 -9.9226693E-03 -9.6160499E-03 -9.3173962E-03 -9.0266773E-03
 -8.7438263E-03 -8.4687648E-03 -8.2013998E-03 -7.9416148E-03 -7.6892884E-03
 -7.4442932E-03 -7.2064856E-03 -6.9757155E-03 -6.7518293E-03 -6.5346714E-03
 -6.3240891E-03
 0.2474906 0.2447426 0.2413706 0.2374274 0.2329697
 0.2280567 0.2227495 0.2171090 0.2111955 0.2050673
 0.1987801 0.1923857 0.1859324 0.1794634 0.1730176
 0.1666291 0.1603274 0.1541374 0.1480798 0.1421714
 0.1364255 0.1308522 0.1254586 0.1202495 0.1152276
 0.1103936 0.1057467 0.1012849 9.7005256E-02 9.2903726E-02
 8.8975787E-02 8.5216388E-02 8.1620082E-02 7.8181200E-02 7.4893892E-02
 7.1752228E-02 6.8750300E-02 6.5882199E-02 6.3142136E-02 6.0524438E-02
 5.8023553E-02 5.5634130E-02 5.3350978E-02 5.1169101E-02 4.9083732E-02
 4.7090270E-02 4.5184333E-02 4.3361727E-02 4.1618474E-02 3.9950784E-02
 3.8355064E-02 3.6827877E-02 3.5365984E-02 3.3966299E-02 3.2625925E-02
 3.1342082E-02 3.0112155E-02 2.8933665E-02 2.7804252E-02 2.6721699E-02
 2.5683889E-02 2.4688816E-02 2.3734583E-02 2.2819376E-02 2.1941492E-02
 2.1099301E-02 2.0291246E-02 1.9515859E-02 1.8771727E-02 1.8057520E-02
 1.7371966E-02 1.6713835E-02 1.6081981E-02 1.5475280E-02 1.4892682E-02
 1.4333178E-02 1.3795791E-02 1.3279607E-02 1.2783727E-02 1.2307315E-02
 1.1849567E-02
 9.2228666E-02 8.3822973E-02 7.5538345E-02 6.7442708E-02 5.9595559E-02
 5.2047513E-02 4.4840239E-02 3.8006518E-02 3.1570535E-02 2.5548367E-02
 1.9948604E-02 1.4773169E-02 1.0018159E-02 5.6746923E-03 1.7298603E-03
 -1.8324245E-03 -5.0306614E-03 -7.8849988E-03 -1.0416650E-02 -1.2647338E-02
 -1.4598830E-02 -1.6292617E-02 -1.7749617E-02 -1.8989950E-02 -2.0032817E-02
 -2.0896358E-02 -2.1597633E-02 -2.2152562E-02 -2.2575943E-02 -2.2881452E-02
 -2.3081692E-02 -2.3188245E-02 -2.3211693E-02 -2.3161704E-02 -2.3047075E-02
 -2.2875801E-02 -2.2655129E-02 -2.2391612E-02 -2.2091174E-02 -2.1759152E-02
 -2.1400357E-02 -2.1019105E-02 -2.0619271E-02 -2.0204335E-02 -1.9777402E-02
 -1.9341247E-02 -1.8898344E-02 -1.8450890E-02 -1.8000837E-02 -1.7549917E-02
 -1.7099652E-02 -1.6651385E-02 -1.6206289E-02 -1.5765386E-02 -1.5329566E-02
 -1.4899598E-02 -1.4476134E-02 -1.4059730E-02 -1.3650843E-02 -1.3249866E-02
 -1.2857100E-02 -1.2472792E-02 -1.2097122E-02 -1.1730229E-02 -1.1372192E-02
 -1.1023058E-02 -1.0682833E-02 -1.0351493E-02 -1.0028981E-02 -9.7152237E-03
 -9.4101215E-03 -9.1135595E-03 -8.8254036E-03 -8.5455161E-03 -8.2737375E-03
 -8.0099115E-03 -7.7538667E-03 -7.5054346E-03 -7.2644404E-03 -7.0306952E-03
 -6.8040364E-03
 0.2696730 0.2666472 0.2629651 0.2586783 0.2538433
 0.2485198 0.2427701 0.2366573 0.2302448 0.2235943
 0.2167654 0.2098144 0.2027937 0.1957510 0.1887291
 0.1817661 0.1748946 0.1681427 0.1615335 0.1550858
 0.1488146 0.1427311 0.1368435 0.1311572 0.1256749
 0.1203978 0.1153249 0.1104539 0.1057816 0.1013035
 9.7014800E-02 9.2909746E-02 8.8982426E-02 8.5226610E-02 8.1635922E-02
 7.8203849E-02 7.4923947E-02 7.1789779E-02 6.8795063E-02 6.5933615E-02
 6.3199416E-02 6.0586654E-02 5.8089722E-02 5.5703219E-02 5.3421978E-02
 5.1241037E-02 4.9155664E-02 4.7161341E-02 4.5253765E-02 4.3428864E-02
 4.1682743E-02 4.0011704E-02 3.8412251E-02 3.6881045E-02 3.5414949E-02
 3.4010962E-02 3.2666236E-02 3.1378090E-02 3.0143946E-02 2.8961388E-02
 2.7828109E-02 2.6741903E-02 2.5700688E-02 2.4702474E-02 2.3745380E-02
 2.2827603E-02 2.1947421E-02 2.1103203E-02 2.0293389E-02 1.9516489E-02
 1.8771088E-02 1.8055823E-02 1.7369406E-02 1.6710591E-02 1.6078206E-02
 1.5471124E-02 1.4888260E-02 1.4328593E-02 1.3791130E-02 1.3274931E-02
 1.2779108E-02
 9.9408664E-02 9.0448610E-02 8.1591517E-02 7.2911426E-02 6.4474240E-02
 5.6337096E-02 4.8548136E-02 4.1146267E-02 3.4161303E-02 2.7614266E-02
 2.1517847E-02 1.5877191E-02 1.0690687E-02 5.9508635E-03 1.6453861E-03
 -2.2419670E-03 -5.7304432E-03 -8.8414336E-03 -1.1597767E-02 -1.4023047E-02
 -1.6141089E-02 -1.7975533E-02 -1.9549467E-02 -2.0885160E-02 -2.2003887E-02
 -2.2925789E-02 -2.3669798E-02 -2.4253597E-02 -2.4693608E-02 -2.5005016E-02
 -2.5201792E-02 -2.5296761E-02 -2.5301650E-02 -2.5227144E-02 -2.5082963E-02
 -2.4877924E-02 -2.4620015E-02 -2.4316447E-02 -2.3973726E-02 -2.3597710E-02
 -2.3193659E-02 -2.2766300E-02 -2.2319857E-02 -2.1858109E-02 -2.1384435E-02
 -2.0901831E-02 -2.0412967E-02 -1.9920198E-02 -1.9425619E-02 -1.8931065E-02
 -1.8438146E-02 -1.7948272E-02 -1.7462665E-02 -1.6982382E-02 -1.6508332E-02
 -1.6041286E-02 -1.5581894E-02 -1.5130696E-02 -1.4688139E-02 -1.4254579E-02
 -1.3830291E-02 -1.3415488E-02 -1.3010317E-02 -1.2614871E-02 -1.2229197E-02
 -1.1853305E-02 -1.1487160E-02 -1.1130701E-02 -1.0783841E-02 -1.0446473E-02
 -1.0118468E-02 -9.7996760E-03 -9.4899517E-03 -9.1891196E-03 -8.8970019E-03
 -8.6134281E-03 -8.3382018E-03 -8.0711376E-03 -7.8120469E-03 -7.5607323E-03
 -7.3170103E-03
 0.2934657 0.2902181 0.2862801 0.2817016 0.2765373
 0.2708462 0.2646908 0.2581352 0.2512445 0.2440834
 0.2367151 0.2292001 0.2215954 0.2139536 0.2063226
 0.1987448 0.1912574 0.1838924 0.1766765 0.1696315
 0.1627749 0.1561199 0.1496763 0.1434505 0.1374464
 0.1316653 0.1261067 0.1207683 0.1156467 0.1107374
 0.1060349 0.1015332 9.7225845E-02 9.3106106E-02 8.9167021E-02
 8.5401535E-02 8.1802629E-02 7.8363307E-02 7.5076737E-02 7.1936190E-02
 6.8935141E-02 6.6067278E-02 6.3326515E-02 6.0706973E-02 5.8203068E-02
 5.5809397E-02 5.3520832E-02 5.1332463E-02 4.9239617E-02 4.7237858E-02
 4.5322958E-02 4.3490879E-02 4.1737802E-02 4.0060081E-02 3.8454279E-02
 3.6917102E-02 3.5445422E-02 3.4036271E-02 3.2686818E-02 3.1394381E-02
 3.0156396E-02 2.8970424E-02 2.7834142E-02 2.6745332E-02 2.5701892E-02
 2.4701810E-02 2.3743160E-02 2.2824118E-02 2.1942932E-02 2.1097949E-02
 2.0287575E-02 1.9510288E-02 1.8764650E-02 1.8049276E-02 1.7362846E-02
 1.6704114E-02 1.6071871E-02 1.5464982E-02 1.4882348E-02 1.4322929E-02
 1.3785738E-02
 0.1084233 9.8870069E-02 8.9393832E-02 8.0074407E-02 7.0984073E-02
 6.2186874E-02 5.3738091E-02 4.5683816E-02 3.8060829E-02 3.0896571E-02
 2.4209477E-02 1.8009502E-02 1.2298821E-02 7.0726932E-03 2.3204847E-03
 -1.9733110E-03 -5.8280691E-03 -9.2660384E-03 -1.2311480E-02 -1.4989882E-02
 -1.7327253E-02 -1.9349623E-02 -2.1082573E-02 -2.2550892E-02 -2.3778344E-02
 -2.4787460E-02 -2.5599467E-02 -2.6234187E-02 -2.6710050E-02 -2.7044082E-02
 -2.7251950E-02 -2.7348014E-02 -2.7345393E-02 -2.7256029E-02 -2.7090771E-02
 -2.6859442E-02 -2.6570922E-02 -2.6233215E-02 -2.5853533E-02 -2.5438348E-02
 -2.4993457E-02 -2.4524054E-02 -2.4034772E-02 -2.3529742E-02 -2.3012633E-02
 -2.2486698E-02 -2.1954812E-02 -2.1419510E-02 -2.0883014E-02 -2.0347280E-02
 -1.9814000E-02 -1.9284643E-02 -1.8760478E-02 -1.8242585E-02 -1.7731884E-02
 -1.7229151E-02 -1.6735030E-02 -1.6250050E-02 -1.5774621E-02 -1.5309089E-02
 -1.4853702E-02 -1.4408639E-02 -1.3974023E-02 -1.3549913E-02 -1.3136338E-02
 -1.2733275E-02 -1.2340672E-02 -1.1958441E-02 -1.1586473E-02 -1.1224645E-02
 -1.0872813E-02 -1.0530814E-02 -1.0198481E-02 -9.8756282E-03 -9.5620751E-03
 -9.2576351E-03 -8.9620994E-03 -8.6752800E-03 -8.3969701E-03 -8.1269685E-03
 -7.8650871E-03
 0.3187984 0.3153882 0.3112553 0.3064465 0.3010141
 0.2950148 0.2885092 0.2815607 0.2742347 0.2665970
 0.2587132 0.2506472 0.2424604 0.2342102 0.2259498
 0.2177273 0.2095851 0.2015604 0.1936846 0.1859839
 0.1784793 0.1711874 0.1641202 0.1572865 0.1506916
 0.1443380 0.1382260 0.1323538 0.1267183 0.1213147
 0.1161376 0.1111806 0.1064369 0.1018994 9.7560413E-02
 9.3412451E-02 8.9447901E-02 8.5659161E-02 8.2038812E-02 7.8579560E-02
 7.5274289E-02 7.2116114E-02 6.9098413E-02 6.6214755E-02 6.3459046E-02
 6.0825374E-02 5.8308125E-02 5.5901896E-02 5.3601574E-02 5.1402263E-02
 4.9299296E-02 4.7288224E-02 4.5364808E-02 4.3525007E-02 4.1764997E-02
 4.0081110E-02 3.8469851E-02 3.6927912E-02 3.5452109E-02 3.4039449E-02
 3.2687049E-02 3.1392168E-02 3.0152198E-02 2.8964648E-02 2.7827153E-02
 2.6737453E-02 2.5693389E-02 2.4692912E-02 2.3734063E-02 2.2814982E-02
 2.1933893E-02 2.1089096E-02 2.0278992E-02 1.9502027E-02 1.8756745E-02
 1.8041763E-02 1.7355734E-02 1.6697403E-02 1.6065557E-02 1.5459045E-02
 1.4876785E-02
 0.1194948 0.1093322 9.9212714E-02 8.9220807E-02 7.9434469E-02
 6.9924176E-02 6.0752328E-02 5.1972657E-02 4.3629754E-02 3.5758842E-02
 2.8385695E-02 2.1526892E-02 1.5190350E-02 9.3759093E-03 4.0763556E-03
 -7.2158244E-04 -5.0361999E-03 -8.8896547E-03 -1.2307006E-02 -1.5315231E-02
 -1.7942375E-02 -2.0216892E-02 -2.2167044E-02 -2.3820421E-02 -2.5203638E-02
 -2.6342038E-02 -2.7259564E-02 -2.7978627E-02 -2.8520076E-02 -2.8903194E-02
 -2.9145718E-02 -2.9263899E-02 -2.9272566E-02 -2.9185202E-02 -2.9014036E-02
 -2.8770115E-02 -2.8463414E-02 -2.8102893E-02 -2.7696602E-02 -2.7251754E-02
 -2.6774775E-02 -2.6271412E-02 -2.5746772E-02 -2.5205376E-02 -2.4651237E-02
 -2.4087885E-02 -2.3518434E-02 -2.2945600E-02 -2.2371763E-02 -2.1798996E-02
 -2.1229086E-02 -2.0663574E-02 -2.0103777E-02 -1.9550815E-02 -1.9005636E-02
 -1.8469026E-02 -1.7941635E-02 -1.7423993E-02 -1.6916521E-02 -1.6419550E-02
 -1.5933331E-02 -1.5458029E-02 -1.4993772E-02 -1.4540611E-02 -1.4098570E-02
 -1.3667625E-02 -1.3247719E-02 -1.2838766E-02 -1.2440654E-02 -1.2053263E-02
 -1.1676444E-02 -1.1310034E-02 -1.0953867E-02 -1.0607757E-02 -1.0271518E-02
 -9.9449614E-03 -9.6278796E-03 -9.3200812E-03 -9.0213493E-03 -8.7314835E-03
 -8.4502846E-03
 0.3455419 0.3420222 0.3377521 0.3327756 0.3271413
 0.3209024 0.3141162 0.3068430 0.2991460 0.2910900
 0.2827406 0.2741633 0.2654222 0.2565790 0.2476915
 0.2388136 0.2299940 0.2212757 0.2126964 0.2042877
 0.1960760 0.1880823 0.1803228 0.1728094 0.1655502
 0.1585498 0.1518102 0.1453308 0.1391090 0.1331409
 0.1274210 0.1219431 0.1167000 0.1116842 0.1068878
 0.1023027 9.7920783E-02 9.3733750E-02 8.9733586E-02 8.5912332E-02
 8.2262218E-02 7.8775711E-02 7.5445510E-02 7.2264567E-02 6.9226123E-02
 6.6323645E-02 6.3550897E-02 6.0901895E-02 5.8370896E-02 5.5952467E-02
 5.3641368E-02 5.1432617E-02 4.9321439E-02 4.7303297E-02 4.5373879E-02
 4.3529041E-02 4.1764852E-02 4.0077560E-02 3.8463581E-02 3.6919527E-02
 3.5442144E-02 3.4028348E-02 3.2675188E-02 3.1379864E-02 3.0139720E-02
 2.8952209E-02 2.7814919E-02 2.6725549E-02 2.5681907E-02 2.4681922E-02
 2.3723613E-02 2.2805087E-02 2.1924570E-02 2.1080334E-02 2.0270770E-02
 1.9494344E-02 1.8749565E-02 1.8035056E-02 1.7349474E-02 1.6691551E-02
 1.6060099E-02
 0.1328046 0.1220419 0.1112822 0.1006131 9.0116806E-02
 7.9868659E-02 6.9937102E-02 6.0382791E-02 5.1258046E-02 4.2606302E-02
 3.4461737E-02 2.6849141E-02 1.9784117E-02 1.3273308E-02 7.3151956E-03
 1.9009635E-03 -2.9845762E-03 -7.3617515E-03 -1.1255005E-02 -1.4691744E-02
 -1.7701313E-02 -2.0314176E-02 -2.2561083E-02 -2.4472479E-02 -2.6078019E-02
 -2.7406169E-02 -2.8483981E-02 -2.9336888E-02 -2.9988619E-02 -3.0461157E-02
 -3.0774746E-02 -3.0947942E-02 -3.0997662E-02 -3.0939274E-02 -3.0786691E-02
 -3.0552467E-02 -3.0247893E-02 -2.9883100E-02 -2.9467147E-02 -2.9008131E-02
 -2.8513247E-02 -2.7988886E-02 -2.7440719E-02 -2.6873738E-02 -2.6292356E-02
 -2.5700441E-02 -2.5101384E-02 -2.4498139E-02 -2.3893282E-02 -2.3289040E-02
 -2.2687342E-02 -2.2089835E-02 -2.1497933E-02 -2.0912835E-02 -2.0335555E-02
 -1.9766934E-02 -1.9207682E-02 -1.8658370E-02 -1.8119458E-02 -1.7591324E-02
 -1.7074242E-02 -1.6568428E-02 -1.6074022E-02 -1.5591117E-02 -1.5119760E-02
 -1.4659956E-02 -1.4211662E-02 -1.3774825E-02 -1.3349343E-02 -1.2935116E-02
 -1.2532008E-02 -1.2139870E-02 -1.1758544E-02 -1.1387850E-02 -1.1027612E-02
 -1.0677641E-02 -1.0337732E-02 -1.0007691E-02 -9.6873017E-03 -9.3763573E-03
 -9.0746544E-03
 0.3735171 0.3699240 0.3655597 0.3604657 0.3546876
 0.3482746 0.3412794 0.3337575 0.3257677 0.3173709
 0.3086301 0.2996092 0.2903724 0.2809831 0.2715025
 0.2619890 0.2524969 0.2430759 0.2337701 0.2246184
 0.2156537 0.2069032 0.1983889 0.1901277 0.1821319
 0.1744097 0.1669659 0.1598023 0.1529180 0.1463102
 0.1399743 0.1339045 0.1280938 0.1225347 0.1172189
 0.1121379 0.1072831 0.1026455 9.8216489E-02 9.3987346E-02
 8.9949526E-02 8.6094685E-02 8.2414754E-02 7.8901842E-02 7.5548410E-02
 7.2347134E-02 6.9290981E-02 6.6373199E-02 6.3587323E-02 6.0927182E-02
 5.8386844E-02 5.5960644E-02 5.3643174E-02 5.1429275E-02 4.9314048E-02
 4.7292795E-02 4.5361057E-02 4.3514576E-02 4.1749299E-02 4.0061396E-02
 3.8447186E-02 3.6903188E-02 3.5426103E-02 3.4012768E-02 3.2660209E-02
 3.1365573E-02 3.0126164E-02 2.8939415E-02 2.7802888E-02 2.6714275E-02
 2.5671374E-02 2.4672091E-02 2.3714451E-02 2.2796551E-02 2.1916609E-02
 2.1072926E-02 2.0263864E-02 1.9487899E-02 1.8743549E-02 1.8029425E-02
 1.7344208E-02
 0.1484593 0.1371290 0.1257592 0.1144391 0.1032525
 9.2277654E-02 8.1586584E-02 7.1244873E-02 6.1310928E-02 5.1835366E-02
 4.2860467E-02 3.4419723E-02 2.6537610E-02 1.9229462E-02 1.2501822E-02
 6.3529438E-03 7.7352719E-04 -4.2522964E-03 -8.7459330E-03 -1.2733141E-02
 -1.6242905E-02 -1.9306399E-02 -2.1956023E-02 -2.4224525E-02 -2.6144372E-02
 -2.7747164E-02 -2.9063225E-02 -3.0121321E-02 -3.0948440E-02 -3.1569708E-02
 -3.2008320E-02 -3.2285582E-02 -3.2420930E-02 -3.2432016E-02 -3.2334805E-02
 -3.2143686E-02 -3.1871572E-02 -3.1530023E-02 -3.1129345E-02 -3.0678721E-02
 -3.0186294E-02 -2.9659269E-02 -2.9104017E-02 -2.8526142E-02 -2.7930580E-02
 -2.7321646E-02 -2.6703119E-02 -2.6078299E-02 -2.5450045E-02 -2.4820853E-02
 -2.4192873E-02 -2.3567960E-02 -2.2947701E-02 -2.2333460E-02 -2.1726402E-02
 -2.1127505E-02 -2.0537596E-02 -1.9957362E-02 -1.9387368E-02 -1.8828083E-02
 -1.8279877E-02 -1.7743032E-02 -1.7217774E-02 -1.6704256E-02 -1.6202584E-02
 -1.5712813E-02 -1.5234957E-02 -1.4768990E-02 -1.4314857E-02 -1.3872485E-02
 -1.3441762E-02 -1.3022561E-02 -1.2614743E-02 -1.2218145E-02 -1.1832590E-02
 -1.1457904E-02 -1.1093887E-02 -1.0740340E-02 -1.0397054E-02 -1.0063807E-02
 -9.7404066E-03
 0.4025190 0.3988616 0.3944192 0.3892324 0.3833449
 0.3768026 0.3696538 0.3619490 0.3537410 0.3450851
 0.3360386 0.3266610 0.3170131 0.3071563 0.2971520
 0.2870604 0.2769394 0.2668437 0.2568240 0.2469261
 0.2371905 0.2276521 0.2183403 0.2092788 0.2004861
 0.1919760 0.1837579 0.1758372 0.1682164 0.1608949
 0.1538699 0.1471368 0.1406894 0.1345205 0.1286218
 0.1229848 0.1176001 0.1124585 0.1075504 0.1028662
 9.8396622E-02 9.4132319E-02 9.0064220E-02 8.6183473E-02 8.2481548E-02
 7.8950129E-02 7.5581260E-02 7.2367236E-02 6.9300681E-02 6.6374570E-02
 6.3582152E-02 6.0916953E-02 5.8372822E-02 5.5943884E-02 5.3624582E-02
 5.1409569E-02 4.9293805E-02 4.7272470E-02 4.5340981E-02 4.3495029E-02
 4.1730478E-02 4.0043414E-02 3.8430136E-02 3.6887102E-02 3.5410989E-02
 3.3998627E-02 3.2647002E-02 3.1353261E-02 3.0114694E-02 2.8928742E-02
 2.7792960E-02 2.6705030E-02 2.5662765E-02 2.4664063E-02 2.3706950E-02
 2.2789553E-02 2.1910064E-02 2.1066796E-02 2.0258119E-02 1.9482493E-02
 1.8738477E-02
 0.1664542 0.1546040 0.1426750 0.1307560 0.1189305
 0.1072766 9.5867045E-02 8.4769227E-02 7.4044555E-02 6.3748069E-02
 5.3927932E-02 4.4624887E-02 3.5871744E-02 2.7692936E-02 2.0104451E-02
 1.3113804E-02 6.7203287E-03 9.1582461E-04 -4.3148240E-03 -8.9925304E-03
 -1.3143010E-02 -1.6795658E-02 -1.9982459E-02 -2.2736911E-02 -2.5093179E-02
 -2.7085273E-02 -2.8746439E-02 -3.0108666E-02 -3.1202311E-02 -3.2055885E-02
 -3.2695897E-02 -3.3146795E-02 -3.3430979E-02 -3.3568826E-02 -3.3578787E-02
 -3.3477500E-02 -3.3279892E-02 -3.2999311E-02 -3.2647666E-02 -3.2235537E-02
 -3.1772308E-02 -3.1266276E-02 -3.0724779E-02 -3.0154267E-02 -2.9560428E-02
 -2.8948242E-02 -2.8322088E-02 -2.7685778E-02 -2.7042663E-02 -2.6395656E-02
 -2.5747292E-02 -2.5099771E-02 -2.4455003E-02 -2.3814628E-02 -2.3180081E-02
 -2.2552565E-02 -2.1933123E-02 -2.1322643E-02 -2.0721858E-02 -2.0131396E-02
 -1.9551765E-02 -1.8983385E-02 -1.8426582E-02 -1.7881615E-02 -1.7348679E-02
 -1.6827900E-02 -1.6319368E-02 -1.5823109E-02 -1.5339119E-02 -1.4867368E-02
 -1.4407775E-02 -1.3960245E-02 -1.3524663E-02 -1.3100879E-02 -1.2688735E-02
 -1.2288066E-02 -1.1898676E-02 -1.1520373E-02 -1.1152945E-02 -1.0796173E-02
 -1.0449864E-02
 0.4323589 0.4286157 0.4240775 0.4187864 0.4127865
 0.4061223 0.3988395 0.3909846 0.3826052 0.3737506
 0.3644715 0.3548208 0.3448530 0.3346244 0.3241920
 0.3136140 0.3029479 0.2922504 0.2815755 0.2709747
 0.2604953 0.2501799 0.2400660 0.2301856 0.2205653
 0.2112262 0.2021844 0.1934513 0.1850340 0.1769361
 0.1691581 0.1616974 0.1545497 0.1477089 0.1411673
 0.1349163 0.1289466 0.1232483 0.1178111 0.1126248
 0.1076789 0.1029630 9.8467052E-02 9.4180994E-02 9.0095192E-02
 8.6200215E-02 8.2487002E-02 7.8946792E-02 7.5571217E-02 7.2352245E-02
 6.9282196E-02 6.6353746E-02 6.3559897E-02 6.0894005E-02 5.8349770E-02
 5.5921163E-02 5.3602483E-02 5.1388327E-02 4.9273539E-02 4.7253277E-02
 4.5322917E-02 4.3478079E-02 4.1714620E-02 4.0028602E-02 3.8416315E-02
 3.6874231E-02 3.5399001E-02 3.3987451E-02 3.2636575E-02 3.1343535E-02
 3.0105609E-02 2.8920243E-02 2.7785005E-02 2.6697570E-02 2.5655756E-02
 2.4657488E-02 2.3700770E-02 2.2783734E-02 2.1904582E-02 2.1061616E-02
 2.0253241E-02
 0.1866418 0.1743220 0.1618929 0.1494414 0.1370490
 0.1247912 0.1127386 0.1009568 8.9506447E-02 7.8443147E-02
 6.7817092E-02 5.7672795E-02 4.8048571E-02 3.8976029E-02 3.0479688E-02
 2.2576679E-02 1.5276436E-02 8.5808253E-03 2.4842895E-03 -3.0255525E-03
 -7.9672392E-03 -1.2364591E-02 -1.6245639E-02 -1.9641580E-02 -2.2585750E-02
 -2.5112586E-02 -2.7256805E-02 -2.9052654E-02 -3.0533288E-02 -3.1730384E-02
 -3.2673765E-02 -3.3391256E-02 -3.3908553E-02 -3.4249201E-02 -3.4434631E-02
 -3.4484256E-02 -3.4415543E-02 -3.4244172E-02 -3.3984158E-02 -3.3647984E-02
 -3.3246756E-02 -3.2790303E-02 -3.2287359E-02 -3.1745613E-02 -3.1171875E-02
 -3.0572135E-02 -2.9951667E-02 -2.9315112E-02 -2.8666543E-02 -2.8009536E-02
 -2.7347224E-02 -2.6682343E-02 -2.6017280E-02 -2.5354119E-02 -2.4694670E-02
 -2.4040494E-02 -2.3392944E-02 -2.2753179E-02 -2.2122186E-02 -2.1500811E-02
 -2.0889755E-02 -2.0289607E-02 -1.9700849E-02 -1.9123865E-02 -1.8558964E-02
 -1.8006379E-02 -1.7466271E-02 -1.6938752E-02 -1.6423875E-02 -1.5921656E-02
 -1.5432076E-02 -1.4955059E-02 -1.4490527E-02 -1.4038353E-02 -1.3598404E-02
 -1.3170522E-02 -1.2754524E-02 -1.2350228E-02 -1.1957425E-02 -1.1575893E-02
 -1.1205448E-02
 0.4629317 0.4590534 0.4543687 0.4489237 0.4427651
 0.4359390 0.4284913 0.4204673 0.4119120 0.4028706
 0.3933888 0.3835131 0.3732913 0.3627723 0.3520066
 0.3410459 0.3299433 0.3187521 0.3075258 0.2963170
 0.2851763 0.2741518 0.2632876 0.2526239 0.2421954
 0.2320321 0.2221582 0.2125927 0.2033498 0.1944389
 0.1858653 0.1776306 0.1697335 0.1621700 0.1549340
 0.1480177 0.1414122 0.1351074 0.1290928 0.1233574
 0.1178898 0.1126788 0.1077130 0.1029815 9.8473355E-02
 9.4178006E-02 9.0085268E-02 8.6185269E-02 8.2468569E-02 7.8926116E-02
 7.5549267E-02 7.2329752E-02 6.9259696E-02 6.6331625E-02 6.3538462E-02
 6.0873449E-02 5.8330189E-02 5.5902623E-02 5.3584993E-02 5.1371880E-02
 4.9258117E-02 4.7238819E-02 4.5309365E-02 4.3465372E-02 4.1702706E-02
 4.0017437E-02 3.8405839E-02 3.6864389E-02 3.5389736E-02 3.3978730E-02
 3.2628369E-02 3.1335790E-02 3.0098312E-02 2.8913349E-02 2.7778488E-02
 2.6691422E-02 2.5649948E-02 2.4651999E-02 2.3695575E-02 2.2778805E-02
 2.1899926E-02
 0.2087143 0.1959640 0.1830870 0.1701680 0.1572847
 0.1445085 0.1319052 0.1195359 0.1074572 9.5721364E-02
 8.4376425E-02 7.3466256E-02 6.3030310E-02 5.3103227E-02 4.3714710E-02
 3.4888960E-02 2.6644284E-02 1.8992724E-02 1.1939708E-02 5.4840180E-03
 -3.8210422E-04 -5.6726662E-03 -1.0407271E-02 -1.4610334E-02 -1.8310189E-02
 -2.1538075E-02 -2.4327137E-02 -2.6711488E-02 -2.8725326E-02 -3.0402316E-02
 -3.1774938E-02 -3.2874115E-02 -3.3728909E-02 -3.4366332E-02 -3.4811292E-02
 -3.5086561E-02 -3.5212837E-02 -3.5208829E-02 -3.5091370E-02 -3.4875561E-02
 -3.4574881E-02 -3.4201365E-02 -3.3765707E-02 -3.3277400E-02 -3.2744870E-02
 -3.2175560E-02 -3.1576067E-02 -3.0952191E-02 -3.0309070E-02 -2.9651225E-02
 -2.8982617E-02 -2.8306741E-02 -2.7626649E-02 -2.6945017E-02 -2.6264179E-02
 -2.5586169E-02 -2.4912745E-02 -2.4245430E-02 -2.3585528E-02 -2.2934170E-02
 -2.2292301E-02 -2.1660719E-02 -2.1040101E-02 -2.0430988E-02 -1.9833835E-02
 -1.9248998E-02 -1.8676741E-02 -1.8117266E-02 -1.7570708E-02 -1.7037148E-02
 -1.6516617E-02 -1.6009100E-02 -1.5514551E-02 -1.5032874E-02 -1.4563965E-02
 -1.4107693E-02 -1.3663886E-02 -1.3232380E-02 -1.2812975E-02 -1.2405452E-02
 -1.2009637E-02
 0.4943075 0.4902280 0.4853216 0.4796407 0.4732375
 0.4661627 0.4584660 0.4501951 0.4413964 0.4321148
 0.4223944 0.4122787 0.4018106 0.3910331 0.3799899
 0.3687251 0.3572839 0.3457130 0.3340597 0.3223724
 0.3106997 0.2990896 0.2875888 0.2762417 0.2650894
 0.2541689 0.2435127 0.2331481 0.2230973 0.2133773
 0.2040001 0.1949733 0.1863004 0.1779813 0.1700129
 0.1623896 0.1551040 0.1481468 0.1415080 0.1351763
 0.1291402 0.1233877 0.1179069 0.1126857 0.1077123
 0.1029751 9.8462924E-02 9.4164789E-02 9.0070203E-02 8.6169131E-02
 8.2451925E-02 7.8909360E-02 7.5532667E-02 7.2313502E-02 6.9243945E-02
 6.6316471E-02 6.3523926E-02 6.0859550E-02 5.8316913E-02 5.5889968E-02
 5.3572956E-02 5.1360410E-02 4.9247198E-02 4.7228415E-02 4.5299459E-02
 4.3455951E-02 4.1693743E-02 4.0008903E-02 3.8397711E-02 3.6856651E-02
 3.5382386E-02 3.3971738E-02 3.2621723E-02 3.1329472E-02 3.0092295E-02
 2.8907647E-02 2.7773073E-02 2.6686281E-02 2.5645066E-02 2.4647336E-02
 2.3691162E-02
 0.2322216 0.2190605 0.2057707 0.1924339 0.1791229
 0.1659034 0.1528354 0.1399736 0.1273686 0.1150670
 0.1031116 9.1542229E-02 8.0395147E-02 6.9703683E-02 5.9497964E-02
 4.9804881E-02 4.0647637E-02 3.2045547E-02 2.4013240E-02 1.6560407E-02
 9.6912403E-03 3.4041125E-03 -2.3084644E-03 -7.4597010E-03 -1.2068137E-02
 -1.6156962E-02 -1.9753259E-02 -2.2887046E-02 -2.5590286E-02 -2.7896080E-02
 -2.9837729E-02 -3.1448085E-02 -3.2758955E-02 -3.3800662E-02 -3.4601782E-02
 -3.5188906E-02 -3.5586581E-02 -3.5817284E-02 -3.5901465E-02 -3.5857622E-02
 -3.5702426E-02 -3.5450827E-02 -3.5116199E-02 -3.4710478E-02 -3.4244273E-02
 -3.3727020E-02 -3.3167072E-02 -3.2571826E-02 -3.1947818E-02 -3.1300820E-02
 -3.0635908E-02 -2.9957550E-02 -2.9269671E-02 -2.8575700E-02 -2.7878651E-02
 -2.7181143E-02 -2.6485454E-02 -2.5793565E-02 -2.5107179E-02 -2.4427766E-02
 -2.3756584E-02 -2.3094699E-02 -2.2443013E-02 -2.1802278E-02 -2.1173120E-02
 -2.0556046E-02 -1.9951461E-02 -1.9359678E-02 -1.8780934E-02 -1.8215394E-02
 -1.7663170E-02 -1.7124301E-02 -1.6598800E-02 -1.6086619E-02 -1.5587693E-02
 -1.5101921E-02 -1.4629159E-02 -1.4169267E-02 -1.3722058E-02 -1.3287328E-02
 -1.2864913E-02
 0.5268236 0.5224706 0.5172527 0.5112316 0.5044683
 0.4970221 0.4889496 0.4803051 0.4711403 0.4615043
 0.4514442 0.4410044 0.4302277 0.4191545 0.4078241
 0.3962749 0.3845446 0.3726715 0.3606943 0.3486525
 0.3365873 0.3245405 0.3125545 0.3006720 0.2889346
 0.2773823 0.2660522 0.2549782 0.2441896 0.2337113
 0.2235631 0.2137603 0.2043129 0.1952270 0.1865046
 0.1781443 0.1701419 0.1624907 0.1551823 0.1482068
 0.1415531 0.1352096 0.1291640 0.1234041 0.1179175
 0.1126917 0.1077147 0.1029748 9.8460443E-02 9.4160661E-02
 9.0064839E-02 8.6162806E-02 8.2444862E-02 7.8901738E-02 7.5524651E-02
 7.2305217E-02 6.9235489E-02 6.6307917E-02 6.3515328E-02 6.0850974E-02
 5.8308423E-02 5.5881586E-02 5.3564716E-02 5.1352341E-02 4.9239315E-02
 4.7220763E-02 4.5292042E-02 4.3448769E-02 4.1686799E-02 4.0002212E-02
 3.8391285E-02 3.6850479E-02 3.5376471E-02 3.3966068E-02 3.2616284E-02
 3.1324290E-02 3.0087344E-02 2.8902920E-02 2.7768562E-02 2.6681948E-02
 2.5640948E-02
 0.2566643 0.2430945 0.2294074 0.2156802 0.2019797
 0.1883651 0.1748899 0.1616024 0.1485471 0.1357644
 0.1232915 0.1111624 9.9408716E-02 8.8059358E-02 7.7141412E-02
 6.6680148E-02 5.6699153E-02 4.7220193E-02 3.8262796E-02 2.9843887E-02
 2.1977089E-02 1.4672026E-02 7.9336343E-03 1.7617252E-03 -3.8494093E-03
 -8.9109894E-03 -1.3439561E-02 -1.7456459E-02 -2.0987049E-02 -2.4059944E-02
 -2.6705993E-02 -2.8957406E-02 -3.0846873E-02 -3.2406799E-02 -3.3668753E-02
 -3.4662925E-02 -3.5417829E-02 -3.5960086E-02 -3.6314286E-02 -3.6502980E-02
 -3.6546689E-02 -3.6463987E-02 -3.6271602E-02 -3.5984531E-02 -3.5616178E-02
 -3.5178486E-02 -3.4682069E-02 -3.4136329E-02 -3.3549599E-02 -3.2929234E-02
 -3.2281708E-02 -3.1612732E-02 -3.0927308E-02 -3.0229837E-02 -2.9524164E-02
 -2.8813647E-02 -2.8101219E-02 -2.7389418E-02 -2.6680449E-02 -2.5976226E-02
 -2.5278378E-02 -2.4588313E-02 -2.3907224E-02 -2.3236120E-02 -2.2575853E-02
 -2.1927128E-02 -2.1290516E-02 -2.0666489E-02 -2.0055406E-02 -1.9457558E-02
 -1.8873140E-02 -1.8302293E-02 -1.7745091E-02 -1.7201563E-02 -1.6671684E-02
 -1.6155409E-02 -1.5652632E-02 -1.5163241E-02 -1.4687080E-02 -1.4223956E-02
 -1.3773743E-02
 0.5610946 0.5563885 0.5507576 0.5442776 0.5370227
 0.5290638 0.5204682 0.5112996 0.5016182 0.4914809
 0.4809411 0.4700486 0.4588493 0.4473855 0.4356959
 0.4238162 0.4117793 0.3996166 0.3873581 0.3750338
 0.3626740 0.3503103 0.3379755 0.3257042 0.3135316
 0.3014944 0.2896286 0.2779694 0.2665502 0.2554015
 0.2445500 0.2340186 0.2238253 0.2139841 0.2045040
 0.1953900 0.1866436 0.1782627 0.1702427 0.1625763
 0.1552549 0.1482680 0.1416046 0.1352527 0.1291999
 0.1234337 0.1179416 0.1127111 0.1077300 0.1029866
 9.8469175E-02 9.4166771E-02 9.0068698E-02 8.6164728E-02 8.2445167E-02
 7.8900695E-02 7.5522490E-02 7.2302140E-02 6.9231644E-02 6.6303469E-02
 6.3510440E-02 6.0845733E-02 5.8302935E-02 5.5875927E-02 5.3558957E-02
 5.1346559E-02 4.9233556E-02 4.7215052E-02 4.5286398E-02 4.3443244E-02
 4.1681413E-02 3.9996963E-02 3.8386196E-02 3.6845550E-02 3.5371698E-02
 3.3961479E-02 3.2611869E-02 3.1320039E-02 3.0083265E-02 2.8898964E-02
 2.7764782E-02
 0.2816648 0.2676771 0.2535904 0.2394755 0.2253926
 0.2113943 0.1975280 0.1838370 0.1703608 0.1571358
 0.1441949 0.1315678 0.1192816 0.1073608 9.5828235E-02
 8.4705524E-02 7.4013226E-02 6.3771516E-02 5.3999882E-02 4.4717178E-02
 3.5941206E-02 2.7687991E-02 1.9971101E-02 1.2800818E-02 6.1831954E-03
 1.1953685E-04 -5.3942227E-03 -1.0367621E-02 -1.4815507E-02 -1.8757768E-02
 -2.2218531E-02 -2.5225384E-02 -2.7808454E-02 -2.9999387E-02 -3.1830549E-02
 -3.3334192E-02 -3.4541793E-02 -3.5483565E-02 -3.6188077E-02 -3.6682021E-02
 -3.6990069E-02 -3.7134834E-02 -3.7136886E-02 -3.7014812E-02 -3.6785346E-02
 -3.6463454E-02 -3.6062498E-02 -3.5594344E-02 -3.5069536E-02 -3.4497388E-02
 -3.3886116E-02 -3.3242978E-02 -3.2574341E-02 -3.1885795E-02 -3.1182256E-02
 -3.0468006E-02 -2.9746791E-02 -2.9021876E-02 -2.8296096E-02 -2.7571920E-02
 -2.6851472E-02 -2.6136581E-02 -2.5428824E-02 -2.4729537E-02 -2.4039866E-02
 -2.3360770E-02 -2.2693049E-02 -2.2037366E-02 -2.1394257E-02 -2.0764157E-02
 -2.0147400E-02 -1.9544233E-02 -1.8954841E-02 -1.8379323E-02 -1.7817747E-02
 -1.7270120E-02 -1.6736386E-02 -1.6216492E-02 -1.5710315E-02 -1.5217688E-02
 -1.4738523E-02
 0.5978638 0.5927073 0.5865487 0.5794840 0.5716046
 0.5629959 0.5537372 0.5439026 0.5335622 0.5227817
 0.5116224 0.5001410 0.4883895 0.4764140 0.4642558
 0.4519510 0.4395308 0.4270224 0.4144500 0.4018356
 0.3891998 0.3765633 0.3639475 0.3513757 0.3388727
 0.3264659 0.3141846 0.3020595 0.2901223 0.2784044
 0.2669361 0.2557455 0.2448577 0.2342941 0.2240722
 0.2142049 0.2047010 0.1955653 0.1867990 0.1783999
 0.1703632 0.1626817 0.1553465 0.1483473 0.1416728
 0.1353109 0.1292493 0.1234753 0.1179763 0.1127398
 0.1077535 0.1030055 9.8484181E-02 9.4178379E-02 9.0077423E-02
 8.6171031E-02 8.2449406E-02 7.8903206E-02 7.5523548E-02 7.2301999E-02
 6.9230549E-02 6.6301584E-02 6.3507922E-02 6.0842708E-02 5.8299515E-02
 5.5872228E-02 5.3555049E-02 5.1342502E-02 4.9229395E-02 4.7210839E-02
 4.5282193E-02 4.3439049E-02 4.1677270E-02 3.9992884E-02 3.8382180E-02
 3.6841638E-02 3.5367887E-02 3.3957776E-02 3.2608274E-02 3.1316511E-02
 3.0079870E-02
 0.3071159 0.2926850 0.2781730 0.2636451 0.2491548
 0.2347479 0.2204676 0.2063536 0.1924435 0.1787722
 0.1653707 0.1522670 0.1394856 0.1270481 0.1149737
 0.1032799 9.1982976E-02 8.1098959E-02 7.0643619E-02 6.0633183E-02
 5.1084131E-02 4.2013012E-02 3.3435974E-02 2.5368163E-02 1.7822728E-02
 1.0810063E-02 4.3367548E-03 -1.5951166E-03 -6.9884919E-03 -1.1851792E-02
 -1.6198693E-02 -2.0047924E-02 -2.3422621E-02 -2.6349464E-02 -2.8857846E-02
 -3.0978868E-02 -3.2744437E-02 -3.4186464E-02 -3.5336170E-02 -3.6223579E-02
 -3.6877103E-02 -3.7323300E-02 -3.7586719E-02 -3.7689835E-02 -3.7653092E-02
 -3.7494957E-02 -3.7232000E-02 -3.6879059E-02 -3.6449336E-02 -3.5954565E-02
 -3.5405125E-02 -3.4810200E-02 -3.4177866E-02 -3.3515245E-02 -3.2828584E-02
 -3.2123357E-02 -3.1404372E-02 -3.0675808E-02 -2.9941315E-02 -2.9204084E-02
 -2.8466871E-02 -2.7732063E-02 -2.7001726E-02 -2.6277630E-02 -2.5561295E-02
 -2.4854017E-02 -2.4156895E-02 -2.3470838E-02 -2.2796609E-02 -2.2134846E-02
 -2.1486055E-02 -2.0850630E-02 -2.0228893E-02 -1.9621056E-02 -1.9027280E-02
 -1.8447662E-02 -1.7882230E-02 -1.7330978E-02 -1.6793849E-02 -1.6270708E-02
 -1.5761530E-02
 0.6377757 0.6320549 0.6252477 0.6174783 0.6088580
 0.5994872 0.5894554 0.5788450 0.5677340 0.5561956
 0.5442988 0.5321072 0.5196788 0.5070652 0.4943120
 0.4814576 0.4685347 0.4555699 0.4425848 0.4295967
 0.4166203 0.4036678 0.3907514 0.3778833 0.3650776
 0.3523502 0.3397201 0.3272091 0.3148417 0.3026449
 0.2906469 0.2788766 0.2673622 0.2561303 0.2452051
 0.2346071 0.2243533 0.2144563 0.2049251 0.1957641
 0.1869745 0.1785541 0.1704980 0.1627989 0.1554480
 0.1484347 0.1417477 0.1353748 0.1293035 0.1235210
 0.1180146 0.1127717 0.1077799 0.1030271 9.8501690E-02
 9.4192423E-02 9.0088494E-02 8.6179592E-02 8.2455821E-02 7.8907840E-02
 7.5526692E-02 7.2303884E-02 6.9231391E-02 6.6301547E-02 6.3507169E-02
 6.0841393E-02 5.8297742E-02 5.5870071E-02 5.3552583E-02 5.1339805E-02
 4.9226541E-02 4.7207858E-02 4.5279138E-02 4.3435939E-02 4.1674118E-02
 3.9989755E-02 3.8379069E-02 3.6838561E-02 3.5364859E-02 3.3954743E-02
 3.2605324E-02
 0.3331400 0.3182044 0.3032105 0.2882183 0.2732732
 0.2584145 0.2436804 0.2291089 0.2147379 0.2006024
 0.1867342 0.1731609 0.1599061 0.1469897 0.1344278
 0.1222344 0.1104212 9.8998889E-02 8.7977991E-02 7.7369243E-02
 6.7184396E-02 5.7436060E-02 4.8137933E-02 3.9304502E-02 3.0950440E-02
 2.3089904E-02 1.5735667E-02 8.8981204E-03 2.5843449E-03 -3.2028363E-03
 -8.4653627E-03 -1.3210460E-02 -1.7450603E-02 -2.1203242E-02 -2.4490330E-02
 -2.7337495E-02 -2.9773150E-02 -3.1827584E-02 -3.3531994E-02 -3.4917708E-02
 -3.6015477E-02 -3.6854915E-02 -3.7464082E-02 -3.7869245E-02 -3.8094677E-02
 -3.8162638E-02 -3.8093347E-02 -3.7905071E-02 -3.7614211E-02 -3.7235428E-02
 -3.6781769E-02 -3.6264826E-02 -3.5694838E-02 -3.5080854E-02 -3.4430847E-02
 -3.3751830E-02 -3.3049941E-02 -3.2330580E-02 -3.1598445E-02 -3.0857662E-02
 -3.0111806E-02 -2.9363994E-02 -2.8616922E-02 -2.7872929E-02 -2.7134029E-02
 -2.6401948E-02 -2.5678162E-02 -2.4963921E-02 -2.4260284E-02 -2.3568142E-02
 -2.2888230E-02 -2.2221137E-02 -2.1567360E-02 -2.0927262E-02 -2.0301135E-02
 -1.9689193E-02 -1.9091561E-02 -1.8508323E-02 -1.7939489E-02 -1.7384980E-02
 -1.6844850E-02
 0.6812962 0.6748947 0.6673238 0.6587423 0.6492887
 0.6390738 0.6281909 0.6167246 0.6047560 0.5923643
 0.5796249 0.5666078 0.5533776 0.5399923 0.5265028
 0.5129529 0.4993787 0.4858095 0.4722677 0.4587701
 0.4453285 0.4319513 0.4186444 0.4054124 0.3922601
 0.3791935 0.3662206 0.3533525 0.3406036 0.3279918
 0.3155382 0.3032670 0.2912040 0.2793763 0.2678106
 0.2565323 0.2455650 0.2349284 0.2246394 0.2147103
 0.2051495 0.1959618 0.1871479 0.1787056 0.1706299
 0.1629134 0.1555469 0.1485199 0.1418208 0.1354373
 0.1293568 0.1235662 0.1180528 0.1128038 0.1078068
 0.1030495 9.8520242E-02 9.4207644E-02 9.0100847E-02 8.6189501E-02
 8.2463682E-02 7.8913920E-02 7.5531267E-02 7.2307177E-02 6.9233604E-02
 6.6302873E-02 6.3507743E-02 6.0841329E-02 5.8297135E-02 5.5869043E-02
 5.3551216E-02 5.1338151E-02 4.9224667E-02 4.7205802E-02 4.5276929E-02
 4.3433651E-02 4.1671764E-02 3.9987352E-02 3.8376644E-02 3.6836047E-02
 3.5362370E-02
 0.3598691 0.3443217 0.3287650 0.3132519 0.2978147
 0.2824771 0.2672691 0.2522264 0.2373876 0.2227889
 0.2084632 0.1944381 0.1807367 0.1673772 0.1543738
 0.1417370 0.1294744 0.1175919 0.1060943 9.4986439E-02
 8.4273994E-02 7.3963836E-02 6.4064518E-02 5.4586381E-02 4.5541447E-02
 3.6943130E-02 2.8805515E-02 2.1142637E-02 1.3967626E-02 7.2914818E-03
 1.1222522E-03 -4.5360145E-03 -9.6839629E-03 -1.4327280E-02 -1.8476980E-02
 -2.2149110E-02 -2.5364244E-02 -2.8146818E-02 -3.0524157E-02 -3.2525644E-02
 -3.4181736E-02 -3.5523146E-02 -3.6580108E-02 -3.7381824E-02 -3.7956033E-02
 -3.8328726E-02 -3.8523965E-02 -3.8563810E-02 -3.8468331E-02 -3.8255647E-02
 -3.7942033E-02 -3.7542038E-02 -3.7068609E-02 -3.6533225E-02 -3.5946060E-02
 -3.5316061E-02 -3.4651134E-02 -3.3958204E-02 -3.3243347E-02 -3.2511897E-02
 -3.1768501E-02 -3.1017207E-02 -3.0261550E-02 -2.9504586E-02 -2.8748980E-02
 -2.7997022E-02 -2.7250679E-02 -2.6511641E-02 -2.5781346E-02 -2.5061026E-02
 -2.4351703E-02 -2.3654234E-02 -2.2969333E-02 -2.2297567E-02 -2.1639399E-02
 -2.0995198E-02 -2.0365214E-02 -1.9749653E-02 -1.9148618E-02 -1.8562106E-02
 -1.7990276E-02
 0.7288626 0.7216586 0.7131889 0.7036759 0.6932962
 0.6821656 0.6703657 0.6579695 0.6450555 0.6317087
 0.6180114 0.6040420 0.5898722 0.5755672 0.5611853
 0.5467771 0.5323849 0.5180429 0.5037770 0.4896066
 0.4755443 0.4615976 0.4477698 0.4340612 0.4204705
 0.4069963 0.3936374 0.3803948 0.3672722 0.3542766
 0.3414190 0.3287140 0.3161802 0.3038394 0.2917155
 0.2798341 0.2682205 0.2568992 0.2458929 0.2352211
 0.2249000 0.2149416 0.2053543 0.1961425 0.1873069
 0.1788450 0.1707518 0.1630196 0.1556392 0.1486000
 0.1418900 0.1354969 0.1294080 0.1236100 0.1180902
 0.1128357 0.1078338 0.1030723 9.8539293E-02 9.4223544E-02
 9.0114042E-02 8.6200342E-02 8.2472488E-02 7.8920983E-02 7.5536832E-02
 7.2311498E-02 6.9236837E-02 6.6305183E-02 6.3509256E-02 6.0842186E-02
 5.8297455E-02 5.5868883E-02 5.3550687E-02 5.1337294E-02 4.9223527E-02
 4.7204480E-02 4.5275431E-02 4.3432020E-02 4.1670032E-02 3.9985418E-02
 3.8374681E-02
 0.3872744 0.3709660 0.3547630 0.3387103 0.3227978
 0.3070113 0.2913578 0.2758688 0.2605869 0.2455520
 0.2307979 0.2163513 0.2022350 0.1884663 0.1750578
 0.1620181 0.1493512 0.1370593 0.1251425 0.1136005
 0.1024332 9.1641627E-02 8.1228614E-02 7.1199112E-02 6.1560422E-02
 5.2322317E-02 4.3496698E-02 3.5097152E-02 2.7138490E-02 1.9635590E-02
 1.2602690E-02 6.0521178E-03 -6.6797511E-06 -5.5680685E-03 -1.0631120E-02
 -1.5199998E-02 -1.9284198E-02 -2.2898376E-02 -2.6061846E-02 -2.8797958E-02
 -3.1133173E-02 -3.3096116E-02 -3.4716658E-02 -3.6025062E-02 -3.7051205E-02
 -3.7824050E-02 -3.8371138E-02 -3.8718317E-02 -3.8889538E-02 -3.8906772E-02
 -3.8790017E-02 -3.8557328E-02 -3.8224921E-02 -3.7807278E-02 -3.7317302E-02
 -3.6766414E-02 -3.6164723E-02 -3.5521138E-02 -3.4843490E-02 -3.4138672E-02
 -3.3412710E-02 -3.2670870E-02 -3.1917766E-02 -3.1157397E-02 -3.0393258E-02
 -2.9628374E-02 -2.8865358E-02 -2.8106466E-02 -2.7353635E-02 -2.6608530E-02
 -2.5872558E-02 -2.5146915E-02 -2.4432609E-02 -2.3730466E-02 -2.3041179E-02
 -2.2365309E-02 -2.1703286E-02 -2.1055464E-02 -2.0422081E-02 -1.9803226E-02
 -1.9199196E-02
 0.7811229 0.7729442 0.7633186 0.7526283 0.7411577
 0.7290280 0.7162563 0.7028562 0.6888937 0.6744695
 0.6596801 0.6446167 0.6293573 0.6139749 0.5985367
 0.5831009 0.5677178 0.5524285 0.5372645 0.5222496
 0.5073999 0.4927244 0.4782265 0.4639054 0.4497567
 0.4357739 0.4219497 0.4082769 0.3947499 0.3813651
 0.3681225 0.3550255 0.3420821 0.3293042 0.3167081
 0.3043135 0.2921427 0.2802195 0.2685686 0.2572137
 0.2461766 0.2354765 0.2251292 0.2151468 0.2055375
 0.1963053 0.1874512 0.1789725 0.1708640 0.1631181
 0.1557254 0.1486751 0.1419553 0.1355536 0.1294569
 0.1236523 0.1181265 0.1128668 0.1078603 0.1030948
 9.8558448E-02 9.4239689E-02 9.0127587E-02 8.6211614E-02 8.2481809E-02
 7.8928642E-02 7.5543053E-02 7.2316460E-02 6.9240719E-02 6.6308156E-02
 6.3511454E-02 6.0843706E-02 5.8298424E-02 5.5869367E-02 5.3550739E-02
 5.1337037E-02 4.9222987E-02 4.7203701E-02 4.5274463E-02 4.3430731E-02
 4.1668639E-02
 0.4151670 0.3978698 0.3809272 0.3643833 0.3481387
 0.3320370 0.3160256 0.3001371 0.2844462 0.2690080
 0.2538584 0.2390207 0.2245167 0.2103636 0.1965743
 0.1831560 0.1701111 0.1574390 0.1451365 0.1331990
 0.1216220 0.1104018 9.9535726E-02 8.9023612E-02 7.8867584E-02
 6.9072634E-02 5.9646592E-02 5.0599944E-02 4.1945722E-02 3.3698715E-02
 2.5875010E-02 1.8490929E-02 1.1562079E-02 5.1023411E-03 -8.7738706E-04
 -6.3700443E-03 -1.1373213E-02 -1.5889768E-02 -1.9927878E-02 -2.3501106E-02
 -2.6627818E-02 -2.9330535E-02 -3.1635050E-02 -3.3569485E-02 -3.5163309E-02
 -3.6446508E-02 -3.7448782E-02 -3.8198948E-02 -3.8724471E-02 -3.9051130E-02
 -3.9202847E-02 -3.9201565E-02 -3.9067261E-02 -3.8817957E-02 -3.8469855E-02
 -3.8037408E-02 -3.7533484E-02 -3.6969472E-02 -3.6355443E-02 -3.5700273E-02
 -3.5011765E-02 -3.4296755E-02 -3.3561241E-02 -3.2810450E-02 -3.2048963E-02
 -3.1280749E-02 -3.0509260E-02 -2.9737489E-02 -2.8968021E-02 -2.8203091E-02
 -2.7444601E-02 -2.6694190E-02 -2.5953248E-02 -2.5222942E-02 -2.4504256E-02
 -2.3798015E-02 -2.3104878E-02 -2.2425391E-02 -2.1759970E-02 -2.1108834E-02
 -2.0472458E-02
 0.8392670 0.8297916 0.8183836 0.8058005 0.7928240
 0.7796536 0.7659901 0.7515905 0.7364835 0.7208354
 0.7048033 0.6884990 0.6720037 0.6553911 0.6387358
 0.6221074 0.6055651 0.5891575 0.5729247 0.5568956
 0.5410910 0.5255235 0.5101989 0.4951169 0.4802724
 0.4656566 0.4512583 0.4370650 0.4230638 0.4092427
 0.3955918 0.3821038 0.3687752 0.3556065 0.3426029
 0.3297742 0.3171347 0.3047022 0.2924979 0.2805447
 0.2688663 0.2574857 0.2464246 0.2357019 0.2253334
 0.2153311 0.2057030 0.1964535 0.1875832 0.1790897
 0.1709677 0.1632095 0.1558057 0.1487454 0.1420168
 0.1356071 0.1295034 0.1236926 0.1181613 0.1128967
 0.1078861 0.1031169 9.8577268E-02 9.4255671E-02 9.0141103E-02
 8.6223021E-02 8.2491361E-02 7.8936584E-02 7.5549573E-02 7.2321780E-02
 6.9245018E-02 6.6311546E-02 6.3514091E-02 6.0845681E-02 5.8299802E-02
 5.5870298E-02 5.3551260E-02 5.1337205E-02 4.9222868E-02 4.7203112E-02
 4.5273703E-02
 0.4433962 0.4245180 0.4065143 0.3896336 0.3735007
 0.3575095 0.3413087 0.3250358 0.3089085 0.2930731
 0.2775559 0.2623587 0.2474906 0.2329704 0.2188154
 0.2050337 0.1916268 0.1785930 0.1659259 0.1536186
 0.1416630 0.1300518 0.1187782 0.1078377 9.7227640E-02
 8.6948298E-02 7.7002831E-02 6.7397289E-02 5.8140956E-02 4.9245674E-02
 4.0725812E-02 3.2597601E-02 2.4878355E-02 1.7585771E-02 1.0736701E-02
 4.3462222E-03 -1.5734904E-03 -7.0141987E-03 -1.1972291E-02 -1.6449515E-02
 -2.0453095E-02 -2.3995632E-02 -2.7094716E-02 -2.9772216E-02 -3.2053385E-02
 -3.3965942E-02 -3.5539091E-02 -3.6802594E-02 -3.7786029E-02 -3.8518120E-02
 -3.9026294E-02 -3.9336320E-02 -3.9472103E-02 -3.9455589E-02 -3.9306749E-02
 -3.9043617E-02 -3.8682371E-02 -3.8237471E-02 -3.7721757E-02 -3.7146613E-02
 -3.6522083E-02 -3.5857026E-02 -3.5159204E-02 -3.4435436E-02 -3.3691693E-02
 -3.2933183E-02 -3.2164440E-02 -3.1389419E-02 -3.0611539E-02 -2.9833775E-02
 -2.9058687E-02 -2.8288478E-02 -2.7525043E-02 -2.6769986E-02 -2.6024679E-02
 -2.5290288E-02 -2.4567759E-02 -2.3857908E-02 -2.3161378E-02 -2.2478551E-02
 -2.1810142E-02
 0.9054528 0.8948030 0.8804951 0.8634339 0.8466356
 0.8329794 0.8195415 0.8046049 0.7882668 0.7711214
 0.7536155 0.7359276 0.7180756 0.7000993 0.6820797
 0.6641011 0.6462401 0.6285527 0.6110857 0.5938767
 0.5769516 0.5603277 0.5440140 0.5280125 0.5123191
 0.4969248 0.4818167 0.4669790 0.4523948 0.4380459
 0.4239151 0.4099864 0.3962462 0.3826843 0.3692944
 0.3560748 0.3430285 0.3301634 0.3174925 0.3050324
 0.2928032 0.2808270 0.2691270 0.2577260 0.2466453
 0.2359038 0.2255173 0.2154979 0.2058535 0.1965887
 0.1877042 0.1791976 0.1710635 0.1632942 0.1558804
 0.1488111 0.1420743 0.1356574 0.1295473 0.1237307
 0.1181944 0.1129254 0.1079108 0.1031381 9.8595500E-02
 9.4271287E-02 9.0154409E-02 8.6234301E-02 8.2500875E-02 7.8944564E-02
 7.5556256E-02 7.2327301E-02 6.9249555E-02 6.6315219E-02 6.3516982E-02
 6.0847964E-02 5.8301531E-02 5.5871554E-02 5.3552110E-02 5.1337406E-02
 4.9222808E-02
 0.4724253 0.4504337 0.4295349 0.4115272 0.3974776
 0.3836958 0.3676872 0.3506923 0.3337652 0.3174282
 0.3016031 0.2861220 0.2709314 0.2560635 0.2415579
 0.2274306 0.2136819 0.2003067 0.1872975 0.1746460
 0.1623419 0.1503743 0.1387343 0.1274136 0.1164061
 0.1057076 9.5316775E-02 8.5235290E-02 7.5467862E-02 6.6021875E-02
 5.6908008E-02 4.8139434E-02 3.9731722E-02 3.1702287E-02 2.4069592E-02
 1.6852317E-02 1.0068472E-02 3.7341225E-03 -2.1374165E-03 -7.5368378E-03
 -1.2459563E-02 -1.6906327E-02 -2.0883404E-02 -2.4402600E-02 -2.7480759E-02
 -3.0139174E-02 -3.2402642E-02 -3.4298528E-02 -3.5855778E-02 -3.7103985E-02
 -3.8072620E-02 -3.8790379E-02 -3.9284654E-02 -3.9581221E-02 -3.9704002E-02
 -3.9674956E-02 -3.9514080E-02 -3.9239410E-02 -3.8867146E-02 -3.8411748E-02
 -3.7886057E-02 -3.7301447E-02 -3.6667954E-02 -3.5994418E-02 -3.5288598E-02
 -3.4557294E-02 -3.3806447E-02 -3.3041246E-02 -3.2266207E-02 -3.1485271E-02
 -3.0701831E-02 -2.9918838E-02 -2.9138844E-02 -2.8364018E-02 -2.7596241E-02
 -2.6837116E-02 -2.6087981E-02 -2.5349990E-02 -2.4624079E-02 -2.3910854E-02
 -2.3211343E-02
 0.9828980 0.9731277 0.9579576 0.9366221 0.8923059
 0.8854820 0.8780919 0.8638790 0.8458971 0.8261341
 0.8063047 0.7870628 0.7678959 0.7485005 0.7289751
 0.7094916 0.6901550 0.6710296 0.6521680 0.6336146
 0.6154026 0.5975542 0.5800823 0.5629927 0.5462833
 0.5299464 0.5139694 0.4983355 0.4830256 0.4680186
 0.4532924 0.4388251 0.4245956 0.4105850 0.3967770
 0.3831591 0.3697229 0.3564646 0.3433860 0.3304935
 0.3177987 0.3053173 0.2930687 0.2810742 0.2693569
 0.2579391 0.2468421 0.2360848 0.2256828 0.2156485
 0.2059900 0.1967119 0.1878148 0.1792963 0.1711514
 0.1633722 0.1559494 0.1488719 0.1421278 0.1357043
 0.1295883 0.1237665 0.1182255 0.1129524 0.1079341
 0.1031583 9.8612897E-02 9.4286218E-02 9.0167172E-02 8.6245194E-02
 8.2510144E-02 7.8952387E-02 7.5562835E-02 7.2332792E-02 6.9254071E-02
 6.6318944E-02 6.3520007E-02 6.0850367E-02 5.8303412E-02 5.5872556E-02
 5.3552762E-02
 0.5050343 0.4777237 0.4499888 0.4227214 0.4033122
 0.4199740 0.3990182 0.3781494 0.3586601 0.3411365
 0.3253182 0.3100029 0.2946463 0.2794271 0.2645711
 0.2501290 0.2360738 0.2223924 0.2090771 0.1961171
 0.1835011 0.1712174 0.1592536 0.1475998 0.1362460
 0.1251858 0.1144139 0.1039283 9.3728915E-02 8.3819143E-02
 7.4205101E-02 6.4895868E-02 5.5903260E-02 4.7241822E-02 3.8928282E-02
 3.0981086E-02 2.3419758E-02 1.6263980E-02 9.5327608E-03 3.2432119E-03
 -2.5904567E-03 -7.9579456E-03 -1.2853691E-02 -1.7277563E-02 -2.1234944E-02
 -2.4736939E-02 -2.7799757E-02 -3.0444162E-02 -3.2694560E-02 -3.4577984E-02
 -3.6123190E-02 -3.7359647E-02 -3.8316768E-02 -3.9023209E-02 -3.9506372E-02
 -3.9792053E-02 -3.9904214E-02 -3.9864846E-02 -3.9693967E-02 -3.9409660E-02
 -3.9028130E-02 -3.8563851E-02 -3.8029686E-02 -3.7436999E-02 -3.6795836E-02
 -3.6115028E-02 -3.5402317E-02 -3.4664497E-02 -3.3907495E-02 -3.3136494E-02
 -3.2355987E-02 -3.1569891E-02 -3.0781606E-02 -2.9994044E-02 -2.9209742E-02
 -2.8430881E-02 -2.7659299E-02 -2.6896594E-02 -2.6144093E-02 -2.5402684E-02
 -2.4673807E-02
 0.4970437 0.5608659 0.6179505 0.6682975 0.7119070
 0.7487788 0.7789131 0.8023098 0.8189688 0.8288903
 0.8320742 0.8402849 0.8216021 0.8012004 0.7799457
 0.7586942 0.7377164 0.7170032 0.6965876 0.6765231
 0.6568545 0.6376082 0.6188044 0.6004512 0.5825494
 0.5650946 0.5480754 0.5314758 0.5152764 0.4994549
 0.4839871 0.4688474 0.4540101 0.4394502 0.4251439
 0.4110699 0.3972098 0.3835489 0.3700774 0.3567901
 0.3436871 0.3307739 0.3180611 0.3055635 0.2932998
 0.2812911 0.2695598 0.2581283 0.2470177 0.2362469
 0.2258319 0.2157847 0.2061138 0.1968238 0.1879155
 0.1793867 0.1712320 0.1634439 0.1560129 0.1489280
 0.1421772 0.1357477 0.1296264 0.1237997 0.1182546
 0.1129777 0.1079561 0.1031774 9.8629318E-02 9.4300367E-02
 9.0179361E-02 8.6255610E-02 8.2519047E-02 7.8959949E-02 7.5569205E-02
 7.2338171E-02 6.9258563E-02 6.6322662E-02 6.3523062E-02 6.0852267E-02
 5.8304857E-02
 0.2580315 0.2787720 0.2966330 0.3116144 0.3237164
 0.3329388 0.3392818 0.3427452 0.3433291 0.3410335
 0.3358585 0.3339111 0.3191213 0.3030562 0.2876194
 0.2728977 0.2586286 0.2447037 0.2311334 0.2179156
 0.2050365 0.1924846 0.1802445 0.1683032 0.1566520
 0.1452803 0.1341806 0.1233485 0.1127809 0.1024776
 9.2440851E-02 8.2675613E-02 7.3189721E-02 6.3993752E-02 5.5100936E-02
 4.6527006E-02 3.8289785E-02 3.0408707E-02 2.2904314E-02 1.5797190E-02
 9.1071613E-03 2.8521947E-03 -2.9525857E-03 -8.2960697E-03 -1.3171840E-02
 -1.7578976E-02 -2.1522196E-02 -2.5011919E-02 -2.8063830E-02 -3.0698214E-02
 -3.2939136E-02 -3.4813412E-02 -3.6349624E-02 -3.7577141E-02 -3.8525332E-02
 -3.9222851E-02 -3.9697137E-02 -3.9974015E-02 -4.0077489E-02 -4.0029593E-02
 -3.9850395E-02 -3.9558001E-02 -3.9168660E-02 -3.8696859E-02 -3.8155466E-02
 -3.7555881E-02 -3.6908135E-02 -3.6221057E-02 -3.5502397E-02 -3.4758937E-02
 -3.3996601E-02 -3.3220548E-02 -3.2435283E-02 -3.1644687E-02 -3.0852148E-02
 -3.0060595E-02 -2.9272527E-02 -2.8490115E-02 -2.7715188E-02 -2.6949018E-02
 -2.6193565E-02
 0.5395709 0.6029967 0.6596850 0.7096356 0.7528487
 0.7893242 0.8190621 0.8420624 0.8583251 0.8678502
 0.8706379 0.8784523 0.8593733 0.8385753 0.8169243
 0.7952766 0.7739026 0.7527931 0.7319813 0.7115207
 0.6914558 0.6718134 0.6526135 0.6338642 0.6155663
 0.5977154 0.5803002 0.5633045 0.5467092 0.5304918
 0.5146281 0.4990925 0.4838594 0.4689038 0.4542017
 0.4397319 0.4254761 0.4114195 0.3975523 0.3838694
 0.3703707 0.3570620 0.3439411 0.3310128 0.3182866
 0.3057769 0.2935017 0.2814818 0.2697393 0.2582965
 0.2471745 0.2363924 0.2259660 0.2159076 0.2062259
 0.1969254 0.1880072 0.1794690 0.1713057 0.1635096
 0.1560712 0.1489797 0.1422228 0.1357878 0.1296616
 0.1238306 0.1182816 0.1130012 0.1079766 0.1031951
 9.8644748E-02 9.4313696E-02 9.0190858E-02 8.6265489E-02 8.2527474E-02
 7.8967169E-02 7.5575344E-02 7.2343357E-02 6.9262922E-02 6.6326275E-02
 6.3526064E-02
 0.3039872 0.3239132 0.3409598 0.3551269 0.3664145
 0.3748225 0.3803511 0.3830002 0.3827698 0.3796600
 0.3736706 0.3709089 0.3553049 0.3384255 0.3221745
 0.3066385 0.2915553 0.2768162 0.2624318 0.2483999
 0.2347066 0.2213406 0.2082863 0.1955309 0.1830657
 0.1708798 0.1589660 0.1473199 0.1359382 0.1248208
 0.1139701 0.1033908 9.3090914E-02 8.3080932E-02 7.3374107E-02
 6.3986175E-02 5.4934949E-02 4.6239868E-02 3.7921477E-02 3.0000355E-02
 2.2496328E-02 1.5427364E-02 8.7693380E-03 2.5409327E-03 -3.2420065E-03
 -8.5676285E-03 -1.3428859E-02 -1.7824063E-02 -2.1757372E-02 -2.5238587E-02
 -2.8282946E-02 -3.0910375E-02 -3.3144630E-02 -3.5012331E-02 -3.6541905E-02
 -3.7762679E-02 -3.8703982E-02 -3.9394502E-02 -3.9861698E-02 -4.0131442E-02
 -4.0227797E-02 -4.0172849E-02 -3.9986704E-02 -3.9687514E-02 -3.9291561E-02
 -3.8813360E-02 -3.8265809E-02 -3.7660297E-02 -3.7006881E-02 -3.6314394E-02
 -3.5590589E-02 -3.4842230E-02 -3.4075256E-02 -3.3294801E-02 -3.2505367E-02
 -3.1710844E-02 -3.0914592E-02 -3.0119533E-02 -2.9328156E-02 -2.8542615E-02
 -2.7764754E-02
 0.5829061 0.6459348 0.7022260 0.7517796 0.7945955
 0.8306739 0.8600147 0.8826180 0.8984838 0.9076120
 0.9100026 0.9174201 0.8979441 0.8767492 0.8547012
 0.8326566 0.8108856 0.7893792 0.7681705 0.7473130
 0.7268513 0.7068120 0.6872153 0.6680692 0.6493746
 0.6311270 0.6133151 0.5959228 0.5789308 0.5623168
 0.5460567 0.5301246 0.5144951 0.4991432 0.4840448
 0.4691789 0.4545268 0.4400741 0.4258107 0.4117316
 0.3978368 0.3841318 0.3706149 0.3572904 0.3441566
 0.3312172 0.3184813 0.3059624 0.2936784 0.2816497
 0.2698982 0.2584462 0.2473147 0.2365228 0.2260866
 0.2160185 0.2063272 0.1970175 0.1880905 0.1795440
 0.1713728 0.1635695 0.1561246 0.1490269 0.1422646
 0.1358247 0.1296940 0.1238591 0.1183065 0.1130230
 0.1079956 0.1032117 9.8659106E-02 9.4326124E-02 9.0201549E-02
 8.6274743E-02 8.2535423E-02 7.8973971E-02 7.5581148E-02 7.2348252E-02
 6.9267087E-02
 0.3514474 0.3705623 0.3867978 0.4001537 0.4106302
 0.4182272 0.4229448 0.4247829 0.4237415 0.4198206
 0.4130202 0.4094476 0.3930326 0.3753422 0.3582804
 0.3419335 0.3260394 0.3104894 0.2952942 0.2804513
 0.2659473 0.2517704 0.2379052 0.2243390 0.2110630
 0.1980663 0.1853417 0.1728848 0.1606924 0.1487643
 0.1371028 0.1257128 0.1146022 0.1037815 9.3263984E-02
 8.3065361E-02 7.3203452E-02 6.3697696E-02 5.4568633E-02 4.5836844E-02
 3.7522148E-02 2.9642522E-02 2.2173835E-02 1.5134769E-02 8.5015232E-03
 2.2933786E-03 -3.4732181E-03 -8.7858094E-03 -1.3636705E-02 -1.8023653E-02
 -2.1950245E-02 -2.5425842E-02 -2.8465252E-02 -3.1088077E-02 -3.3317804E-02
 -3.5180885E-02 -3.6705665E-02 -3.7921403E-02 -3.8857441E-02 -3.9542470E-02
 -4.0004000E-02 -4.0267967E-02 -4.0358473E-02 -4.0297668E-02 -4.0105708E-02
 -3.9800793E-02 -3.9399229E-02 -3.8915575E-02 -3.8362734E-02 -3.7752133E-02
 -3.7093826E-02 -3.6396656E-02 -3.5668384E-02 -3.4915771E-02 -3.4144741E-02
 -3.3360455E-02 -3.2567378E-02 -3.1769414E-02 -3.0969901E-02 -3.0171750E-02
 -2.9377474E-02
 0.6270320 0.6896634 0.7455572 0.7947135 0.8371322
 0.8728133 0.9017569 0.9239630 0.9394315 0.9481625
 0.9501560 0.9571762 0.9373030 0.9157109 0.8932658
 0.8708240 0.8486559 0.8267524 0.8051466 0.7838920
 0.7630333 0.7425970 0.7226033 0.7030603 0.6839687
 0.6653242 0.6471154 0.6293263 0.6119376 0.5949269
 0.5782701 0.5619413 0.5459152 0.5301667 0.5146718
 0.4994093 0.4843608 0.4695115 0.4548517 0.4403761
 0.4260849 0.4119835 0.3980701 0.3843492 0.3708191
 0.3574834 0.3443403 0.3313930 0.3186499 0.3061243
 0.2938336 0.2817980 0.2700392 0.2585794 0.2474399
 0.2366397 0.2261950 0.2161184 0.2064187 0.1971008
 0.1881660 0.1796120 0.1714339 0.1636241 0.1561732
 0.1490701 0.1423028 0.1358585 0.1297237 0.1238852
 0.1183294 0.1130430 0.1080131 0.1032269 9.8672345E-02
 9.4337657E-02 9.0211548E-02 8.6283371E-02 8.2542852E-02 7.8980312E-02
 7.5586595E-02
 0.4004078 0.4187147 0.4341421 0.4466901 0.4563586
 0.4631476 0.4670572 0.4680873 0.4662379 0.4615091
 0.4539008 0.4495203 0.4322975 0.4137993 0.3959296
 0.3787749 0.3620729 0.3457151 0.3297120 0.3140613
 0.2987494 0.2837648 0.2690919 0.2547179 0.2406341
 0.2268298 0.2132974 0.2000328 0.1870327 0.1742969
 0.1618277 0.1496300 0.1377117 0.1260833 0.1147582
 0.1037519 9.3082383E-02 8.2768999E-02 7.2832316E-02 6.3292913E-02
 5.4170616E-02 4.5483388E-02 3.7207101E-02 2.9360441E-02 2.1919604E-02
 1.4903868E-02 8.2896361E-03 2.0967545E-03 -3.6578586E-03 -8.9611337E-03
 -1.3804890E-02 -1.8186394E-02 -2.2108763E-02 -2.5580948E-02 -2.8617352E-02
 -3.1237325E-02 -3.3464152E-02 -3.5324134E-02 -3.6845531E-02 -3.8057573E-02
 -3.8989600E-02 -3.9670341E-02 -4.0127352E-02 -4.0386628E-02 -4.0472321E-02
 -4.0406644E-02 -4.0209807E-02 -3.9900042E-02 -3.9493706E-02 -3.9005384E-02
 -3.8448006E-02 -3.7833013E-02 -3.7170477E-02 -3.6469243E-02 -3.5737079E-02
 -3.4980759E-02 -3.4206197E-02 -3.3418551E-02 -3.2622285E-02 -3.1821288E-02
 -3.1018922E-02
 0.6719424 0.7341764 0.7896728 0.8384317 0.8804530
 0.9157368 0.9442831 0.9660918 0.9811630 0.9894967
 0.9910929 0.9977158 0.9774453 0.9554559 0.9326136
 0.9097745 0.8872092 0.8649086 0.8429056 0.8212539
 0.7999980 0.7791647 0.7587739 0.7388338 0.7193453
 0.7003039 0.6816983 0.6635123 0.6457268 0.6283193
 0.6112658 0.5945403 0.5781175 0.5619723 0.5460807
 0.5304216 0.5149764 0.4997306 0.4846742 0.4698021
 0.4551143 0.4406164 0.4263065 0.4121891 0.3982625
 0.3845302 0.3709907 0.3576470 0.3444974 0.3315445
 0.3187964 0.3062660 0.2939702 0.2819290 0.2701643
 0.2586982 0.2475518 0.2367445 0.2262924 0.2162083
 0.2065012 0.1971761 0.1882343 0.1796736 0.1714893
 0.1636737 0.1562174 0.1491094 0.1423376 0.1358892
 0.1297509 0.1239091 0.1183504 0.1130614 0.1080291
 0.1032410 9.8684587E-02 9.4348297E-02 9.0220772E-02 8.6291306E-02
 8.2549736E-02
 0.4508708 0.4683722 0.4829942 0.4947367 0.5035998
 0.5095835 0.5126877 0.5129125 0.5102578 0.5047237
 0.4963102 0.4911245 0.4730964 0.4537930 0.4351182
 0.4171583 0.3996512 0.3824883 0.3656800 0.3492243
 0.3331073 0.3173175 0.3018396 0.2866606 0.2717718
 0.2571624 0.2428251 0.2287555 0.2149505 0.2014097
 0.1881356 0.1751330 0.1624098 0.1499766 0.1378465
 0.1260354 0.1145610 0.1034427 9.2701174E-02 8.2356907E-02
 7.2429754E-02 6.2937669E-02 5.3856537E-02 4.5205038E-02 3.6959361E-02
 2.9138789E-02 2.1719722E-02 1.4722006E-02 8.1222206E-03 1.9406903E-03
 -3.8052322E-03 -9.1020670E-03 -1.3941165E-02 -1.8319381E-02 -2.2239374E-02
 -2.5709732E-02 -2.8744610E-02 -3.1363059E-02 -3.3588219E-02 -3.5446245E-02
 -3.6965337E-02 -3.8174707E-02 -3.9103713E-02 -3.9781120E-02 -4.0234525E-02
 -4.0489979E-02 -4.0571705E-02 -4.0501963E-02 -4.0301010E-02 -3.9987136E-02
 -3.9576732E-02 -3.9084401E-02 -3.8523115E-02 -3.7904322E-02 -3.7238114E-02
 -3.6533359E-02 -3.5797805E-02 -3.5038244E-02 -3.4260590E-02 -3.3469990E-02
 -3.2670937E-02
 0.7176427 0.7794786 0.8345770 0.8829378 0.9245611
 0.9594468 0.9875951 1.009006 1.023679 1.031615
 1.032813 1.039038 1.018370 0.9959835 0.9727438
 0.9495075 0.9265449 0.9038470 0.8814468 0.8593979
 0.8377448 0.8165143 0.7957265 0.7753894 0.7555038
 0.7360654 0.7170630 0.6984801 0.6802977 0.6624934
 0.6450430 0.6279207 0.6111012 0.5945591 0.5782708
 0.5622149 0.5463730 0.5307305 0.5152775 0.5000088
 0.4849244 0.4700300 0.4553235 0.4408096 0.4264865
 0.4123577 0.3984218 0.3846816 0.3711356 0.3577863
 0.3446324 0.3316758 0.3189241 0.3063900 0.2940904
 0.2820450 0.2702755 0.2588041 0.2476519 0.2368384
 0.2263799 0.2162893 0.2065756 0.1972440 0.1882959
 0.1797294 0.1715395 0.1637187 0.1562575 0.1491451
 0.1423693 0.1359173 0.1297757 0.1239309 0.1183695
 0.1130782 0.1080439 0.1032539 9.8695815E-02 9.4358020E-02
 9.0229258E-02
 0.5028390 0.5195373 0.5333561 0.5442955 0.5523555
 0.5575361 0.5598372 0.5592588 0.5558011 0.5494639
 0.5402474 0.5342587 0.5154277 0.4953215 0.4758439
 0.4570813 0.4387714 0.4208058 0.4031948 0.3859364
 0.3690167 0.3524243 0.3361438 0.3201621 0.3044707
 0.2890587 0.2739188 0.2590467 0.2444392 0.2300959
 0.2160193 0.2022143 0.1886886 0.1754528 0.1625203
 0.1499068 0.1376299 0.1257092 0.1141653 0.1030186
 9.2289135E-02 8.1994697E-02 7.2111212E-02 6.2657371E-02 5.3609364E-02
 4.4986464E-02 3.6765072E-02 2.8965034E-02 2.1562928E-02 1.4579078E-02
 7.9902168E-03 1.8169933E-03 -3.9228420E-03 -9.2154611E-03 -1.4051758E-02
 -1.8428234E-02 -2.2347223E-02 -2.5816981E-02 -2.8851405E-02 -3.1469319E-02
 -3.3693697E-02 -3.5550624E-02 -3.7068233E-02 -3.8275737E-02 -3.9202496E-02
 -3.9877307E-02 -4.0327832E-02 -4.0580180E-02 -4.0658619E-02 -4.0585477E-02
 -4.0381055E-02 -4.0063679E-02 -3.9649788E-02 -3.9154012E-02 -3.8589347E-02
 -3.7967268E-02 -3.7297871E-02 -3.6590036E-02 -3.5851523E-02 -3.5089120E-02
 -3.4308765E-02
 0.7641236 0.8255614 0.8802617 0.9282245 0.9694498
 1.003937 1.031688 1.052701 1.066976 1.074514
 1.075315 1.081142 1.060076 1.037292 1.013655
 0.9900210 0.9666611 0.9435658 0.9207684 0.8983222
 0.8762719 0.8546442 0.8334593 0.8127251 0.7924426
 0.7726071 0.7532077 0.7342278 0.7156485 0.6974473
 0.6796000 0.6620808 0.6448643 0.6279254 0.6112402
 0.5947875 0.5785488 0.5625096 0.5466599 0.5309946
 0.5155137 0.5002227 0.4851199 0.4702096 0.4554901
 0.4409651 0.4266328 0.4124964 0.3985540 0.3848085
 0.3712583 0.3579055 0.3447487 0.3317896 0.3190356
 0.3064990 0.2941965 0.2821477 0.2703743 0.2588984
 0.2477413 0.2369224 0.2264583 0.2163620 0.2066425
 0.1973052 0.1883516 0.1797798 0.1715848 0.1637593
 0.1562939 0.1491775 0.1423981 0.1359427 0.1297981
 0.1239507 0.1183870 0.1130936 0.1080573 0.1032656
 9.8706067E-02
 0.5563046 0.5722021 0.5852202 0.5953589 0.6026182
 0.6069980 0.6084984 0.6071194 0.6028610 0.5957232
 0.5857061 0.5789168 0.5592854 0.5383788 0.5181007
 0.4985377 0.4794275 0.4606614 0.4422502 0.4241914
 0.4064714 0.3890787 0.3719978 0.3552159 0.3387242
 0.3225120 0.3065719 0.2908995 0.2754918 0.2603483
 0.2454715 0.2308663 0.2165404 0.2025045 0.1887719
 0.1753582 0.1622812 0.1495604 0.1372163 0.1252696
 0.1137400 0.1026454 9.1961868E-02 8.1707947E-02 7.1859859E-02
 6.2436879E-02 5.3415414E-02 4.4815306E-02 3.6613133E-02 2.8829223E-02
 2.1440307E-02 1.4467032E-02 7.8862766E-03 1.7189820E-03 -4.0167496E-03
 -9.3067428E-03 -1.4141638E-02 -1.8517554E-02 -2.2436550E-02 -2.5906580E-02
 -2.8941300E-02 -3.1559382E-02 -3.3783656E-02 -3.5640124E-02 -3.7156872E-02
 -3.8363095E-02 -3.9288197E-02 -3.9961010E-02 -4.0409241E-02 -4.0659048E-02
 -4.0734768E-02 -4.0658765E-02 -4.0451400E-02 -4.0131040E-02 -3.9714150E-02
 -3.9215408E-02 -3.8647819E-02 -3.8022883E-02 -3.7350707E-02 -3.6640178E-02
 -3.5899084E-02
 0.8113772 0.8724172 0.9267195 0.9742844 1.015112
 1.049202 1.076554 1.097169 1.111047 1.118187
 1.118590 1.124020 1.102557 1.079375 1.055340
 1.031309 1.007552 0.9840595 0.9608650 0.9380217
 0.9155745 0.8935499 0.8719680 0.8508369 0.8301575
 0.8099253 0.7901289 0.7707523 0.7517762 0.7331782
 0.7149341 0.6970181 0.6794049 0.6620693 0.6449875
 0.6281381 0.6115029 0.5950672 0.5788211 0.5627593
 0.5468820 0.5311946 0.5156955 0.5003889 0.4852732
 0.4703520 0.4556235 0.4410909 0.4267525 0.4126109
 0.3986646 0.3849157 0.3713628 0.3580076 0.3448491
 0.3318886 0.3191332 0.3065949 0.2942902 0.2822388
 0.2704622 0.2589825 0.2478212 0.2369977 0.2265286
 0.2164272 0.2067027 0.1973603 0.1884017 0.1798251
 0.1716257 0.1637960 0.1563267 0.1492068 0.1424241
 0.1359658 0.1298185 0.1239687 0.1184028 0.1131075
 0.1080695
 0.6112760 0.6263747 0.6385940 0.6479338 0.6543943
 0.6579754 0.6586770 0.6564993 0.6514423 0.6435059
 0.6326902 0.6251023 0.6046723 0.5829671 0.5618905
 0.5415289 0.5216202 0.5020558 0.4828462 0.4639890
 0.4454708 0.4272797 0.4094006 0.3918204 0.3745304
 0.3575200 0.3407816 0.3243110 0.3081049 0.2921633
 0.2764882 0.2610848 0.2459607 0.2311267 0.2165959
 0.2023840 0.1885089 0.1749899 0.1618477 0.1491028
 0.1367751 0.1248824 0.1134008 0.1023488 9.1702595E-02
 8.1481546E-02 7.1662024E-02 6.2263869E-02 5.3263657E-02 4.4681709E-02
 3.6494758E-02 2.8723449E-02 2.1344662E-02 1.4379335E-02 7.8045493E-03
 1.6414188E-03 -4.0916954E-03 -9.3803219E-03 -1.4214837E-02 -1.8591041E-02
 -2.2510726E-02 -2.5981637E-02 -2.9017210E-02 -3.1635970E-02 -3.3860613E-02
 -3.5717066E-02 -3.7233405E-02 -3.8438819E-02 -3.9362729E-02 -4.0034000E-02
 -4.0480401E-02 -4.0728129E-02 -4.0801581E-02 -4.0723171E-02 -4.0513303E-02
 -4.0190391E-02 -3.9770924E-02 -3.9269615E-02 -3.8699489E-02 -3.8072053E-02
 -3.7397463E-02
 0.8594078 0.9200497 0.9739541 1.021121 1.061550
 1.095243 1.122197 1.142414 1.155894 1.162637
 1.162642 1.167675 1.145814 1.122235 1.097803
 1.073375 1.049220 1.025331 1.001739 0.9784985
 0.9556544 0.9332328 0.9112542 0.8897262 0.8686500
 0.8480209 0.8278278 0.8080544 0.7886815 0.7696867
 0.7510459 0.7327332 0.7147233 0.6969911 0.6795127
 0.6622669 0.6452352 0.6284031 0.6117606 0.5953024
 0.5790287 0.5629450 0.5470496 0.5313468 0.5158350
 0.5005178 0.4853934 0.4704649 0.4557305 0.4411930
 0.4268508 0.4127060 0.3987572 0.3850062 0.3714519
 0.3580956 0.3449363 0.3319751 0.3192187 0.3066793
 0.2943731 0.2823196 0.2705403 0.2590575 0.2478925
 0.2370650 0.2265917 0.2164858 0.2067567 0.1974098
 0.1884468 0.1798660 0.1716626 0.1638292 0.1563563
 0.1492332 0.1424476 0.1359867 0.1298370 0.1239850
 0.1184172
 0.6677504 0.6820520 0.6934744 0.7020172 0.7076808
 0.7104649 0.7103697 0.7073951 0.7015413 0.6928081
 0.6811956 0.6728110 0.6515841 0.6290822 0.6072089
 0.5860507 0.5653455 0.5449845 0.5249785 0.5053248
 0.4860101 0.4670227 0.4483471 0.4299705 0.4118841
 0.3940772 0.3765424 0.3592754 0.3422730 0.3255349
 0.3090636 0.2928638 0.2769434 0.2613131 0.2459860
 0.2309778 0.2163064 0.2019911 0.1880527 0.1745115
 0.1613875 0.1486987 0.1364208 0.1245725 0.1131302
 0.1021129 9.1497190E-02 8.1302837E-02 7.1506433E-02 6.2128305E-02
 5.3145178E-02 4.4577692E-02 3.6402728E-02 2.8641229E-02 2.1270271E-02
 1.4310968E-02 7.7404436E-03 1.5800991E-03 -4.1515469E-03 -9.4397217E-03
 -1.4274553E-02 -1.8651644E-02 -2.2572516E-02 -2.6044732E-02 -2.9081529E-02
 -3.1701278E-02 -3.3926614E-02 -3.5783395E-02 -3.7299670E-02 -3.8504612E-02
 -3.9427675E-02 -4.0097773E-02 -4.0542707E-02 -4.0788736E-02 -4.0860292E-02
 -4.0779851E-02 -4.0567853E-02 -4.0242743E-02 -3.9821055E-02 -3.9317515E-02
 -3.8745183E-02
 0.9082035 0.9684477 1.021954 1.068724 1.108756
 1.142050 1.168607 1.188427 1.201510 1.207855
 1.207464 1.212099 1.189841 1.165865 1.141036
 1.116210 1.091659 1.067372 1.043383 1.019746
 0.9965054 0.9736872 0.9513119 0.9293875 0.9079146
 0.8868890 0.8662994 0.8461294 0.8263600 0.8069688
 0.7879316 0.7692226 0.7508163 0.7326879 0.7148133
 0.6971713 0.6797434 0.6625151 0.6454765 0.6286222
 0.6119525 0.5954728 0.5791815 0.5630829 0.5471753
 0.5314623 0.5159422 0.5006179 0.4854878 0.4705546
 0.4558167 0.4412762 0.4269318 0.4127851 0.3988351
 0.3850832 0.3715282 0.3581715 0.3450119 0.3320505
 0.3192939 0.3067538 0.2944465 0.2823913 0.2706098
 0.2591243 0.2479563 0.2371253 0.2266481 0.2165383
 0.2068052 0.1974543 0.1884874 0.1799028 0.1716958
 0.1638590 0.1563831 0.1492571 0.1424688 0.1360054
 0.1298537
 0.7257342 0.7392403 0.7498673 0.7576148 0.7624830
 0.7644718 0.7635814 0.7598116 0.7531625 0.7436340
 0.7312263 0.7220465 0.7000245 0.6767275 0.6540592
 0.6321061 0.6106059 0.5894500 0.5686490 0.5482004
 0.5280908 0.5083085 0.4888381 0.4696666 0.4507853
 0.4321836 0.4138540 0.3957922 0.3779950 0.3604621
 0.3431960 0.3262014 0.3094862 0.2930612 0.2769393
 0.2611365 0.2456704 0.2305605 0.2158274 0.2014916
 0.1875730 0.1740895 0.1610170 0.1483741 0.1361371
 0.1243253 0.1129150 0.1019261 9.1335081E-02 8.1162386E-02
 7.1384698E-02 6.2022656E-02 5.3053141E-02 4.4497091E-02 3.6331587E-02
 2.8577736E-02 2.1212664E-02 1.4257771E-02 7.6902211E-03 1.5316064E-03
 -4.1993321E-03 -9.4877118E-03 -1.4323385E-02 -1.8701777E-02 -2.2624163E-02
 -2.6097925E-02 -2.9136166E-02 -3.1757146E-02 -3.3983409E-02 -3.5840739E-02
 -3.7357163E-02 -3.8561899E-02 -3.9484382E-02 -4.0153589E-02 -4.0597353E-02
 -4.0841985E-02 -4.0911961E-02 -4.0829796E-02 -4.0615972E-02 -4.0288970E-02
 -3.9865360E-02
 0.9577742 1.017621 1.070730 1.117102 1.156736
 1.189634 1.215794 1.235216 1.247902 1.253850
 1.253061 1.257300 1.234645 1.210271 1.185045
 1.159823 1.134874 1.110191 1.085805 1.061771
 1.038133 1.014919 0.9921466 0.9698256 0.9479562
 0.9265341 0.9055479 0.8849815 0.8648157 0.8450281
 0.8255945 0.8064893 0.7876869 0.7691622 0.7508914
 0.7328532 0.7150292 0.6974049 0.6799702 0.6627200
 0.6456544 0.6287789 0.6120918 0.5955974 0.5792940
 0.5631853 0.5472693 0.5315494 0.5160236 0.5006949
 0.4855615 0.4706256 0.4558858 0.4413437 0.4269983
 0.4128510 0.3989007 0.3851486 0.3715938 0.3582371
 0.3450778 0.3321166 0.3193600 0.3068195 0.2945114
 0.2824550 0.2706718 0.2591840 0.2480132 0.2371791
 0.2266987 0.2165853 0.2068487 0.1974942 0.1885238
 0.1799359 0.1717256 0.1638859 0.1564071 0.1492785
 0.1424879
 0.7852322 0.7979442 0.8077770 0.8147305 0.8188046
 0.8199994 0.8183149 0.8137510 0.8063079 0.7959855
 0.7827838 0.7728101 0.7499943 0.7259036 0.7024415
 0.6796947 0.6574007 0.6354510 0.6138563 0.5926141
 0.5717108 0.5511349 0.5308710 0.5109060 0.4912314
 0.4718363 0.4527133 0.4338581 0.4152675 0.3969413
 0.3788818 0.3610940 0.3435855 0.3263671 0.3094520
 0.2928559 0.2765966 0.2606935 0.2451672 0.2300383
 0.2153265 0.2010498 0.1871842 0.1737482 0.1607180
 0.1481131 0.1359096 0.1241276 0.1127436 0.1017778
 9.1207072E-02 8.1051968E-02 7.1289398E-02 6.1940297E-02 5.2981742E-02
 4.4434842E-02 3.6276720E-02 2.8528778E-02 2.1168180E-02 1.4216518E-02
 7.6510296E-03 1.4933635E-03 -4.2375270E-03 -9.5265824E-03 -1.4363455E-02
 -1.8743342E-02 -2.2667434E-02 -2.6142912E-02 -2.9182764E-02 -3.1805094E-02
 -3.4032390E-02 -3.5890419E-02 -3.7407167E-02 -3.8611874E-02 -3.9533999E-02
 -4.0202528E-02 -4.0645357E-02 -4.0888831E-02 -4.0957477E-02 -4.0873848E-02
 -4.0658459E-02

XFOILinterface/XFOIL/orrs/osnew/ai.05

5.00000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 -0.035565
 0.40000 -0.056631
 0.50000 -0.059176
 0.60000 -0.047099
 0.70000 -0.035374
 0.80000 -0.024148
 0.90000 -0.013455
 1.00000 -0.003423
 1.10000 0.005877
 1.20000 0.014292
 1.30000 0.021737
 1.40000 0.028082
 1.50000 0.033325
 1.60000 0.037506
 1.70000 0.040818
 1.80000 0.043490
 1.90000 0.045754
 2.00000 0.047733
 2.10000 0.049483
 2.20000 0.050991
 2.30000 0.052270
 2.40000 0.053338
 2.50000 0.054237
 2.60000 0.054992
 2.70000 0.055638
 2.80000 0.056182
 2.90000 0.056645
 3.00000 0.057036
 3.10000 0.057377
 3.20000 0.057658
 3.30000 0.057886
 3.40000 0.058088
 3.50000 0.058270
 3.60000 0.058424
 3.70000 0.058558
 3.80000 0.058674
 3.90000 0.058761
 4.00000 0.029657

XFOILinterface/XFOIL/orrs/osm_gu.05

 2001 5.067592
 0.0000000E+00 0.0000000E+00 4.0984224E-03
 5.0544985E-02 2.1573647E-04 4.4379914E-03
 0.1010900 4.4925034E-04 4.8018526E-03
 0.1516349 7.0180459E-04 5.1913923E-03
 0.2021799 9.7473327E-04 5.6080450E-03
 0.2527249 1.2694444E-03 6.0532913E-03
 0.3032699 1.5874215E-03 6.5286621E-03
 0.3538149 1.9302276E-03 7.0357346E-03
 0.4043599 2.2995058E-03 7.5761261E-03
 0.4549049 2.6969824E-03 8.1515023E-03
 0.5054498 3.1244678E-03 8.7635601E-03
 0.5559948 3.5838610E-03 9.4140405E-03
 0.6065398 4.0771486E-03 1.0104714E-02
 0.6570848 4.6064071E-03 1.0837387E-02
 0.7076298 5.1738075E-03 1.1613892E-02
 0.7581748 5.7816105E-03 1.2436081E-02
 0.8087198 6.4321719E-03 1.3305822E-02
 0.8592647 7.1279448E-03 1.4225014E-02
 0.9098098 7.8714760E-03 1.5195542E-02
 0.9603547 8.6654071E-03 1.6219305E-02
 1.010900 9.5124776E-03 1.7298192E-02
 1.061445 1.0415521E-02 1.8434096E-02
 1.111990 1.1377468E-02 1.9628890E-02
 1.162535 1.2401341E-02 2.0884393E-02
 1.213080 1.3490251E-02 2.2202438E-02
 1.263625 1.4647408E-02 2.3584791E-02
 1.314170 1.5876105E-02 2.5033174E-02
 1.364715 1.7179724E-02 2.6549261E-02
 1.415260 1.8561721E-02 2.8134651E-02
 1.465804 2.0025643E-02 2.9790869E-02
 1.516350 2.1575108E-02 3.1519365E-02
 1.566895 2.3213796E-02 3.3321474E-02
 1.617440 2.4945464E-02 3.5198446E-02
 1.667985 2.6773931E-02 3.7151430E-02
 1.718529 2.8703049E-02 3.9181404E-02
 1.769074 3.0736743E-02 4.1289255E-02
 1.819620 3.2878969E-02 4.3475695E-02
 1.870164 3.5133701E-02 4.5741320E-02
 1.920709 3.7504964E-02 4.8086528E-02
 1.971254 3.9996780E-02 5.0511546E-02
 2.021799 4.2613197E-02 5.3016439E-02
 2.072344 4.5358229E-02 5.5601038E-02
 2.122889 4.8235904E-02 5.8265019E-02
 2.173434 5.1250231E-02 6.1007824E-02
 2.223979 5.4405160E-02 6.3828647E-02
 2.274524 5.7704609E-02 6.6726491E-02
 2.325069 6.1152458E-02 6.9700129E-02
 2.375614 6.4752474E-02 7.2748058E-02
 2.426159 6.8508387E-02 7.5868540E-02
 2.476704 7.2423816E-02 7.9059608E-02
 2.527249 7.6502256E-02 8.2319014E-02
 2.577794 8.0747105E-02 8.5644245E-02
 2.628339 8.5161619E-02 8.9032546E-02
 2.678884 8.9748912E-02 9.2480883E-02
 2.729429 9.4511956E-02 9.5985986E-02
 2.779974 9.9453494E-02 9.9544235E-02
 2.830519 0.1045761 0.1031518
 2.881064 0.1098822 0.1068047
 2.931609 0.1153740 0.1104985
 2.982154 0.1210534 0.1142286
 3.032699 0.1269222 0.1179903
 3.083244 0.1329818 0.1217783
 3.133789 0.1392333 0.1255874
 3.184334 0.1456778 0.1294121
 3.234879 0.1523158 0.1332467
 3.285424 0.1591477 0.1370851
 3.335969 0.1661737 0.1409214
 3.386514 0.1733933 0.1447491
 3.437059 0.1808060 0.1485620
 3.487604 0.1884108 0.1523533
 3.538149 0.1962066 0.1561164
 3.588694 0.2041917 0.1598446
 3.639239 0.2123643 0.1635309
 3.689784 0.2207219 0.1671685
 3.740329 0.2292619 0.1707503
 3.790874 0.2379814 0.1742693
 3.841419 0.2468770 0.1777187
 3.891964 0.2559450 0.1810914
 3.942509 0.2651814 0.1843806
 3.993054 0.2745818 0.1875794
 4.043599 0.2841414 0.1906810
 4.094144 0.2938551 0.1936790
 4.144689 0.3037176 0.1965668
 4.195234 0.3137231 0.1993380
 4.245779 0.3238655 0.2019867
 4.296324 0.3341387 0.2045070
 4.346869 0.3445358 0.2068931
 4.397414 0.3550500 0.2091396
 4.447958 0.3656740 0.2112415
 4.498504 0.3764006 0.2131939
 4.549048 0.3872219 0.2149923
 4.599594 0.3981302 0.2166324
 4.650139 0.4091173 0.2181105
 4.700684 0.4201748 0.2194232
 4.751228 0.4312944 0.2205671
 4.801774 0.4424676 0.2215398
 4.852318 0.4536855 0.2223387
 4.902864 0.4649394 0.2229622
 4.953409 0.4762203 0.2234085
 5.003953 0.4875192 0.2236768
 5.054499 0.4988272 0.2237663
 5.105043 0.5101352 0.2236768
 5.155588 0.5214342 0.2234085
 5.206133 0.5327151 0.2229622
 5.256678 0.5439689 0.2223387
 5.307223 0.5551868 0.2215398
 5.357768 0.5663600 0.2205671
 5.408314 0.5774798 0.2194232
 5.458858 0.5885374 0.2181105
 5.509404 0.5995244 0.2166324
 5.559948 0.6104326 0.2149923
 5.610493 0.6212538 0.2131939
 5.661038 0.6319804 0.2112415
 5.711583 0.6426044 0.2091396
 5.762128 0.6531186 0.2068931
 5.812673 0.6635157 0.2045070
 5.863218 0.6737888 0.2019868
 5.913763 0.6839313 0.1993380
 5.964308 0.6939368 0.1965668
 6.014853 0.7037994 0.1936790
 6.065398 0.7135131 0.1906810
 6.115943 0.7230727 0.1875793
 6.166488 0.7324730 0.1843806
 6.217033 0.7417094 0.1810914
 6.267578 0.7507775 0.1777187
 6.318123 0.7596731 0.1742693
 6.368668 0.7683926 0.1707503
 6.419213 0.7769327 0.1671685
 6.469758 0.7852902 0.1635309
 6.520303 0.7934627 0.1598446
 6.570848 0.8014478 0.1561164
 6.621393 0.8092436 0.1523533
 6.671938 0.8168486 0.1485619
 6.722483 0.8242612 0.1447491
 6.773028 0.8314809 0.1409214
 6.823573 0.8385068 0.1370851
 6.874118 0.8453388 0.1332467
 6.924663 0.8519768 0.1294121
 6.975208 0.8584213 0.1255874
 7.025753 0.8646728 0.1217783
 7.076298 0.8707324 0.1179903
 7.126842 0.8766012 0.1142287
 7.177388 0.8822805 0.1104985
 7.227932 0.8877723 0.1068047
 7.278478 0.8930785 0.1031518
 7.329023 0.8982011 9.9544212E-02
 7.379568 0.9031427 9.5985964E-02
 7.430113 0.9079057 9.2480883E-02
 7.480658 0.9124930 8.9032546E-02
 7.531203 0.9169075 8.5644245E-02
 7.581748 0.9211523 8.2319014E-02
 7.632293 0.9252307 7.9059608E-02
 7.682837 0.9291462 7.5868540E-02
 7.733383 0.9329021 7.2748058E-02
 7.783927 0.9365021 6.9700129E-02
 7.834472 0.9399499 6.6726506E-02
 7.885017 0.9432494 6.3828655E-02
 7.935563 0.9464044 6.1007805E-02
 7.986108 0.9494187 5.8265019E-02
 8.036653 0.9522963 5.5601038E-02
 8.087197 0.9550414 5.3016439E-02
 8.137743 0.9576578 5.0511546E-02
 8.188288 0.9601496 4.8086528E-02
 8.238832 0.9625209 4.5741320E-02
 8.289377 0.9647756 4.3475695E-02
 8.339922 0.9669179 4.1289255E-02
 8.390468 0.9689515 3.9181404E-02
 8.441012 0.9708807 3.7151430E-02
 8.491557 0.9727092 3.5198461E-02
 8.542103 0.9744408 3.3321463E-02
 8.592648 0.9760795 3.1519353E-02
 8.643192 0.9776290 2.9790869E-02
 8.693737 0.9790929 2.8134651E-02
 8.744283 0.9804749 2.6549261E-02
 8.794827 0.9817785 2.5033174E-02
 8.845372 0.9830072 2.3584791E-02
 8.895917 0.9841644 2.2202438E-02
 8.946463 0.9852532 2.0884393E-02
 8.997007 0.9862771 1.9628890E-02
 9.047552 0.9872391 1.8434104E-02
 9.098097 0.9881421 1.7298199E-02
 9.148642 0.9889891 1.6219309E-02
 9.199187 0.9897830 1.5195538E-02
 9.249732 0.9905266 1.4225012E-02
 9.300278 0.9912224 1.3305822E-02
 9.350822 0.9918729 1.2436081E-02
 9.401367 0.9924808 1.1613892E-02
 9.451912 0.9930481 1.0837387E-02
 9.502457 0.9935774 1.0104714E-02
 9.553002 0.9940707 9.4140405E-03
 9.603547 0.9945301 8.7635601E-03
 9.654092 0.9949575 8.1515023E-03
 9.704637 0.9953550 7.5761289E-03
 9.755181 0.9957243 7.0357374E-03
 9.805727 0.9960671 6.5286593E-03
 9.856272 0.9963851 6.0532885E-03
 9.906817 0.9966798 5.6080432E-03
 9.957362 0.9969528 5.1913923E-03
 10.00791 0.9972053 4.8018526E-03
 10.05845 0.9974388 4.4379914E-03
 10.10900 0.9976546 4.0984224E-03
 10.15954 0.9978538 3.7818071E-03
 10.21009 0.9980375 3.4868629E-03
 10.26063 0.9982067 3.2123481E-03
 10.31118 0.9983627 2.9570798E-03
 10.36172 0.9985061 2.7199206E-03
 10.41227 0.9986380 2.4997795E-03
 10.46281 0.9987592 2.2956193E-03
 10.51336 0.9988705 2.1064472E-03
 10.56390 0.9989725 1.9313180E-03
 10.61445 0.9990661 1.7693333E-03
 10.66499 0.9991516 1.6196385E-03
 10.71554 0.9992301 1.4814227E-03
 10.76608 0.9993017 1.3539157E-03
 10.81663 0.9993672 1.2363965E-03
 10.86717 0.9994269 1.1281748E-03
 10.91772 0.9994814 1.0286025E-03
 10.96826 0.9995311 9.3706872E-04
 11.01881 0.9995764 8.5299759E-04
 11.06935 0.9996176 7.7584817E-04
 11.11990 0.9996549 7.0511235E-04
 11.17044 0.9996889 6.4031279E-04
 11.22099 0.9997198 5.8100361E-04
 11.27153 0.9997478 5.2676647E-04
 11.32208 0.9997731 4.7721024E-04
 11.37262 0.9997962 4.3197052E-04
 11.42317 0.9998169 3.9070679E-04
 11.47371 0.9998357 3.5310225E-04
 11.52426 0.9998527 3.1886171E-04
 11.57480 0.9998680 2.8771133E-04
 11.62535 0.9998818 2.5939656E-04
 11.67589 0.9998943 2.3368125E-04
 11.72644 0.9999055 2.1034690E-04
 11.77698 0.9999156 1.8919120E-04
 11.82753 0.9999247 1.7002714E-04
 11.87807 0.9999328 1.5268214E-04
 11.92862 0.9999402 1.3699692E-04
 11.97916 0.9999467 1.2282474E-04
 12.02971 0.9999526 1.1003032E-04
 12.08025 0.9999579 9.8490113E-05
 12.13080 0.9999626 8.8089750E-05
 12.18134 0.9999669 7.8724639E-05
 12.23189 0.9999706 7.0298956E-05
 12.28243 0.9999740 6.2724779E-05
 12.33298 0.9999769 5.5921962E-05
 12.38352 0.9999796 4.9817016E-05
 12.43407 0.9999820 4.4343087E-05
 12.48461 0.9999841 3.9439066E-05
 12.53516 0.9999860 3.5049343E-05
 12.58570 0.9999877 3.1123327E-05
 12.63625 0.9999892 2.7614951E-05
 12.68679 0.9999905 2.4482481E-05
 12.73734 0.9999917 2.1687960E-05
 12.78788 0.9999927 1.9197068E-05
 12.83843 0.9999936 1.6978667E-05
 12.88897 0.9999944 1.5004613E-05
 12.93952 0.9999952 1.3249482E-05
 12.99006 0.9999958 1.1690286E-05
 13.04061 0.9999963 1.0306336E-05
 13.09115 0.9999968 9.0789472E-06
 13.14170 0.9999971 7.9913407E-06
 13.19224 0.9999976 7.0283972E-06
 13.24279 0.9999979 6.1765427E-06
 13.29333 0.9999982 5.4235779E-06
 13.34388 0.9999985 4.7586136E-06
 13.39442 0.9999986 4.1718354E-06
 13.44497 0.9999989 3.6544895E-06
 13.49551 0.9999990 3.1987395E-06
 13.54606 0.9999992 2.7975834E-06
 13.59660 0.9999993 2.4447845E-06
 13.64715 0.9999995 2.1347657E-06
 13.69769 0.9999995 1.8625691E-06
 13.74824 0.9999996 1.6237808E-06
 13.79878 0.9999996 1.4144726E-06
 13.84933 0.9999997 1.2311604E-06
 13.89987 0.9999998 1.0707479E-06
 13.95042 0.9999999 9.3049130E-07
 14.00096 0.9999999 8.0796013E-07
 14.05151 1.000000 7.0100384E-07
 14.10205 1.000000 6.0771924E-07
 14.15260 1.000000 5.2642747E-07
 14.20314 1.000000 4.5564497E-07
 14.25368 1.000000 3.9406390E-07
 14.30423 1.000000 3.4053375E-07
 14.35478 1.000000 2.9403949E-07
 14.40532 1.000000 2.5369025E-07
 14.45586 1.000000 2.1870302E-07
 14.50641 1.000000 1.8838999E-07
 14.55696 1.000000 1.6214821E-07
 14.60750 1.000000 1.3945069E-07
 14.65805 1.000000 1.1983443E-07
 14.70859 1.000000 1.0289521E-07
 14.75914 1.000000 8.8279855E-08
 14.80968 1.000000 7.5679829E-08
 14.86023 1.000000 6.4826352E-08
 14.91077 1.000000 5.5484939E-08
 14.96132 1.000000 4.7451678E-08
 15.01186 1.000000 4.0549040E-08
 15.06241 1.000000 3.4622786E-08
 15.11295 1.000000 2.9539041E-08
 15.16350 1.000000 2.5181578E-08
 15.21404 1.000000 2.1449734E-08
 15.26459 1.000000 1.8256344E-08
 15.31513 1.000000 1.5525968E-08
 15.36567 1.000000 1.3193365E-08
 15.41622 1.000000 1.1202234E-08
 15.46677 1.000000 9.5040029E-09
 15.51731 1.000000 8.0567784E-09
 15.56785 1.000000 6.8244610E-09
 15.61840 1.000000 5.7760143E-09
 15.66894 1.000000 4.8847357E-09
 15.71949 1.000000 4.1276791E-09
 15.77003 1.000000 3.4851619E-09
 15.82058 1.000000 2.9402967E-09
 15.87113 1.000000 2.4786433E-09
 15.92167 1.000000 2.0878002E-09
 15.97222 1.000000 1.7571821E-09
 16.02276 1.000000 1.4777355E-09
 16.07331 1.000000 1.2417367E-09
 16.12385 1.000000 1.0425942E-09
 16.17439 1.000000 8.7468804E-10
 16.22494 1.000000 7.3323631E-10
 16.27549 1.000000 6.1416755E-10
 16.32603 1.000000 5.1402310E-10
 16.37658 1.000000 4.2986345E-10
 16.42712 1.000000 3.5919590E-10
 16.47766 1.000000 2.9990596E-10
 16.52821 1.000000 2.5020208E-10
 16.57875 1.000000 2.0856855E-10
 16.62930 1.000000 1.7372428E-10
 16.67984 1.000000 1.4458507E-10
 16.73039 1.000000 1.2023756E-10
 16.78094 1.000000 9.9909990E-11
 16.83148 1.000000 8.2952561E-11
 16.88202 1.000000 6.8818236E-11
 16.93257 1.000000 5.7046663E-11
 16.98311 1.000000 4.7250790E-11
 17.03366 1.000000 3.9105764E-11
 17.08421 1.000000 3.2338732E-11
 17.13475 1.000000 2.6721429E-11
 17.18530 1.000000 2.2062227E-11
 17.23584 1.000000 1.8200826E-11
 17.28638 1.000000 1.5003237E-11
 17.33693 1.000000 1.2357532E-11
 17.38747 1.000000 1.0170245E-11
 17.43802 1.000000 8.3634211E-12
 17.48857 1.000000 6.8720880E-12
 17.53911 1.000000 5.6421612E-12
 17.58965 1.000000 4.6286594E-12
 17.64020 1.000000 3.7941789E-12
 17.69074 1.000000 3.1076535E-12
 17.74129 1.000000 2.5433154E-12
 17.79183 1.000000 2.0797923E-12
 17.84238 1.000000 1.6993882E-12
 17.89293 1.000000 1.3874528E-12
 17.94347 1.000000 1.1318683E-12
 17.99401 1.000000 9.2262591E-13
 18.04456 1.000000 7.5146427E-13
 18.09510 1.000000 6.1156684E-13
 18.14565 1.000000 4.9731606E-13
 18.19619 1.000000 4.0408532E-13
 18.24674 1.000000 3.2806947E-13
 18.29728 1.000000 2.6614079E-13
 18.34783 1.000000 2.1572850E-13
 18.39837 1.000000 1.7472625E-13
 18.44892 1.000000 1.4140401E-13
 18.49946 1.000000 1.1434506E-13
 18.55001 1.000000 9.2390214E-14
 18.60056 1.000000 7.4591178E-14
 18.65110 1.000000 6.0172922E-14
 18.70164 1.000000 4.8502794E-14
 18.75219 1.000000 3.9064855E-14
 18.80273 1.000000 3.1438146E-14
 18.85328 1.000000 2.5280251E-14
 18.90382 1.000000 2.0312245E-14
 18.95437 1.000000 1.6307470E-14
 19.00491 1.000000 1.3081817E-14
 19.05546 1.000000 1.0485825E-14
 19.10600 1.000000 8.3982563E-15
 19.15655 1.000000 6.7209189E-15
 19.20709 1.000000 5.3742792E-15
 19.25764 1.000000 4.2940267E-15
 19.30818 1.000000 3.4281619E-15
 19.35873 1.000000 2.7347075E-15
 19.40927 1.000000 2.1797832E-15
 19.45982 1.000000 1.7360724E-15
 19.51036 1.000000 1.3815750E-15
 19.56091 1.000000 1.0985880E-15
 19.61145 1.000000 8.7286205E-16
 19.66200 1.000000 6.9296321E-16
 19.71254 1.000000 5.4970141E-16
 19.76309 1.000000 4.3570972E-16
 19.81363 1.000000 3.4507995E-16
 19.86418 1.000000 2.7308279E-16
 19.91472 1.000000 2.1593481E-16
 19.96527 1.000000 1.7060947E-16
 20.01581 1.000000 1.3469008E-16
 20.06636 1.000000 1.0624829E-16
 20.11690 1.000000 8.3745267E-17
 20.16745 1.000000 6.5955458E-17
 20.21799 1.000000 5.1903092E-17
 20.26854 1.000000 4.0811847E-17
 20.31908 1.000000 3.2065498E-17
 20.36963 1.000000 2.5173009E-17
 20.42017 1.000000 1.9746542E-17
 20.47072 1.000000 1.5477317E-17
 20.52126 1.000000 1.2121483E-17
 20.57181 1.000000 9.4855961E-18
 20.62235 1.000000 7.4170390E-18
 20.67290 1.000000 5.7948907E-18
 20.72344 1.000000 4.5239244E-18
 20.77399 1.000000 3.5288580E-18
 20.82453 1.000000 2.7505011E-18
 20.87508 1.000000 2.1420760E-18
 20.92562 1.000000 1.6669274E-18
 20.97617 1.000000 1.2961211E-18
 21.02671 1.000000 1.0070086E-18
 21.07726 1.000000 7.8174715E-19
 21.12780 1.000000 6.0639851E-19
 21.17835 1.000000 4.6999911E-19
 21.22889 1.000000 3.6399439E-19
 21.27944 1.000000 2.8166929E-19
 21.32998 1.000000 2.1779169E-19
 21.38053 1.000000 1.6826363E-19
 21.43107 1.000000 1.2989666E-19
 21.48162 1.000000 1.0019655E-19
 21.53216 1.000000 7.7225311E-20
 21.58271 1.000000 5.9473743E-20
 21.63326 1.000000 4.5765480E-20
 21.68380 1.000000 3.5189074E-20
 21.73434 1.000000 2.7034897E-20
 21.78489 1.000000 2.0753932E-20
 21.83543 1.000000 1.5919270E-20
 21.88598 1.000000 1.2201212E-20
 21.93652 1.000000 9.3439736E-21
 21.98707 1.000000 7.1501848E-21
 22.03761 1.000000 5.4669914E-21
 22.08816 1.000000 4.1767633E-21
 22.13870 1.000000 3.1884422E-21
 22.18925 1.000000 2.4320596E-21
 22.23979 1.000000 1.8536043E-21
 22.29034 1.000000 1.4116225E-21
 22.34088 1.000000 1.0741516E-21
 22.39143 1.000000 8.1671645E-22
 22.44197 1.000000 6.2047724E-22
 22.49252 1.000000 4.7101787E-22
 22.54306 1.000000 3.5726824E-22
 22.59361 1.000000 2.7077705E-22
 22.64415 1.000000 2.0505703E-22
 22.69470 1.000000 1.5516590E-22
 22.74524 1.000000 1.1731809E-22
 22.79579 1.000000 8.8631041E-23
 22.84633 1.000000 6.6906045E-23
 22.89688 1.000000 5.0465199E-23
 22.94742 1.000000 3.8034323E-23
 22.99797 1.000000 2.8642318E-23
 23.04851 1.000000 2.1552504E-23
 23.09906 1.000000 1.6204393E-23
 23.14960 1.000000 1.2173857E-23
 23.20015 1.000000 9.1384116E-24
 23.25069 1.000000 6.8544132E-24
 23.30124 1.000000 5.1370875E-24
 23.35178 1.000000 3.8470021E-24
 23.40233 1.000000 2.8785467E-24
 23.45287 1.000000 2.1522015E-24
 23.50342 1.000000 1.6078343E-24
 23.55396 1.000000 1.2002086E-24
 23.60451 1.000000 8.9519502E-25
 23.65505 1.000000 6.6717374E-25
 23.70560 1.000000 4.9682756E-25
 23.75614 1.000000 3.6968445E-25
 23.80669 1.000000 2.7485509E-25
 23.85723 1.000000 2.0419027E-25
 23.90778 1.000000 1.5156953E-25
 23.95832 1.000000 1.1242099E-25
 24.00887 1.000000 8.3316309E-26
 24.05941 1.000000 6.1697095E-26
 24.10996 1.000000 4.5651827E-26
 24.16050 1.000000 3.3751938E-26
 24.21105 1.000000 2.4934348E-26
 24.26159 1.000000 1.8405294E-26
 24.31214 1.000000 1.3575199E-26
 24.36268 1.000000 1.0004534E-26
 24.41323 1.000000 7.3672621E-27
 24.46377 1.000000 5.4207898E-27
 24.51432 1.000000 3.9854382E-27
 24.56486 1.000000 2.9277681E-27
 24.61541 1.000000 2.1490969E-27
 24.66595 1.000000 1.5762404E-27
 24.71650 1.000000 1.1551701E-27
 24.76704 1.000000 8.4589530E-28
 24.81759 1.000000 6.1893871E-28
 24.86813 1.000000 4.5250408E-28
 24.91868 1.000000 3.3056563E-28
 24.96922 1.000000 2.4128946E-28
 25.01977 1.000000 1.7598652E-28
 25.07031 1.000000 1.2825203E-28
 25.12086 1.000000 9.3391954E-29
 25.17140 1.000000 6.7951936E-29
 25.22195 1.000000 4.9402766E-29
 25.27249 1.000000 3.5887878E-29
 25.32304 1.000000 2.6049421E-29
 25.37358 1.000000 1.8893123E-29
 25.42413 1.000000 1.3691726E-29
 25.47467 1.000000 9.9145136E-30
 25.52522 1.000000 7.1734827E-30
 25.57576 1.000000 5.1862179E-30
 25.62631 1.000000 3.7463953E-30
 25.67685 1.000000 2.7041979E-30
 25.72740 1.000000 1.9503183E-30
 25.77794 1.000000 1.4055122E-30
 25.82849 1.000000 1.0120667E-30
 25.87903 1.000000 7.2818607E-31
 25.92958 1.000000 5.2350928E-31
 25.98012 1.000000 3.7606406E-31
 26.03067 1.000000 2.6992806E-31
 26.08121 1.000000 1.9359299E-31
 26.13176 1.000000 1.3873309E-31
 26.18230 1.000000 9.9341157E-32
 26.23285 1.000000 7.1076125E-32
 26.28339 1.000000 5.0813641E-32
 26.33394 1.000000 3.6297699E-32
 26.38448 1.000000 2.5908363E-32
 26.43503 1.000000 1.8477485E-32
 26.48557 1.000000 1.3167636E-32
 26.53612 1.000000 9.3760148E-33
 26.58666 1.000000 6.6708452E-33
 26.63721 1.000000 4.7424431E-33
 26.68775 1.000000 3.3687762E-33
 26.73830 1.000000 2.3910991E-33
 26.78884 1.000000 1.6957891E-33
 26.83939 1.000000 1.2017241E-33
 26.88993 1.000000 8.5090914E-34
 26.94048 1.000000 6.0203301E-34
 26.99102 1.000000 4.2560128E-34
 27.04157 1.000000 3.0064053E-34
 27.09211 1.000000 2.1219462E-34
 27.14266 1.000000 1.4965221E-34
 27.19320 1.000000 1.0545749E-34
 27.24375 1.000000 7.4255800E-35
 27.29429 1.000000 5.2243096E-35
 27.34484 1.000000 3.6727053E-35
 27.39538 1.000000 2.5798356E-35
 27.44592 1.000000 1.8107288E-35
 27.49647 1.000000 1.2698826E-35
 27.54702 1.000000 8.8988201E-36
 27.59756 1.000000 6.2308418E-36
 27.64811 1.000000 4.3593306E-36
 27.69865 1.000000 3.0474623E-36
 27.74920 1.000000 2.1287217E-36
 27.79974 1.000000 1.4857357E-36
 27.85029 1.000000 1.0361430E-36
 27.90083 1.000000 7.2203215E-37
 27.95138 1.000000 5.0273082E-37
 28.00192 1.000000 3.4976782E-37
 28.05247 1.000000 2.4314555E-37
 28.10301 1.000000 1.6889294E-37
 28.15356 1.000000 1.1722103E-37
 28.20410 1.000000 8.1293948E-38
 28.25465 1.000000 5.6331727E-38
 28.30519 1.000000 3.9004069E-38
 28.35574 1.000000 2.6984367E-38
 28.40628 1.000000 1.8654201E-38
 28.45683 1.000000 1.2884965E-38
 28.50737 1.000000 0.0000000E+00
 28.55792 1.000000 0.0000000E+00
 28.60846 1.000000 0.0000000E+00
 28.65901 1.000000 0.0000000E+00
 28.70955 1.000000 0.0000000E+00
 28.76010 1.000000 0.0000000E+00
 28.81064 1.000000 0.0000000E+00
 28.86119 1.000000 0.0000000E+00
 28.91173 1.000000 0.0000000E+00
 28.96228 1.000000 0.0000000E+00
 29.01282 1.000000 0.0000000E+00
 29.06337 1.000000 0.0000000E+00
 29.11391 1.000000 0.0000000E+00
 29.16446 1.000000 0.0000000E+00
 29.21500 1.000000 0.0000000E+00
 29.26554 1.000000 0.0000000E+00
 29.31609 1.000000 0.0000000E+00
 29.36664 1.000000 0.0000000E+00
 29.41718 1.000000 0.0000000E+00
 29.46773 1.000000 0.0000000E+00
 29.51827 1.000000 0.0000000E+00
 29.56882 1.000000 0.0000000E+00
 29.61936 1.000000 0.0000000E+00
 29.66990 1.000000 0.0000000E+00
 29.72045 1.000000 0.0000000E+00
 29.77100 1.000000 0.0000000E+00
 29.82154 1.000000 0.0000000E+00
 29.87209 1.000000 0.0000000E+00
 29.92263 1.000000 0.0000000E+00
 29.97318 1.000000 0.0000000E+00
 30.02372 1.000000 0.0000000E+00
 30.07426 1.000000 0.0000000E+00
 30.12481 1.000000 0.0000000E+00
 30.17535 1.000000 0.0000000E+00
 30.22590 1.000000 0.0000000E+00
 30.27645 1.000000 0.0000000E+00
 30.32699 1.000000 0.0000000E+00
 30.37754 1.000000 0.0000000E+00
 30.42808 1.000000 0.0000000E+00
 30.47863 1.000000 0.0000000E+00
 30.52917 1.000000 0.0000000E+00
 30.57972 1.000000 0.0000000E+00
 30.63026 1.000000 0.0000000E+00
 30.68081 1.000000 0.0000000E+00
 30.73135 1.000000 0.0000000E+00
 30.78190 1.000000 0.0000000E+00
 30.83244 1.000000 0.0000000E+00
 30.88299 1.000000 0.0000000E+00
 30.93353 1.000000 0.0000000E+00
 30.98408 1.000000 0.0000000E+00
 31.03462 1.000000 0.0000000E+00
 31.08517 1.000000 0.0000000E+00
 31.13571 1.000000 0.0000000E+00
 31.18626 1.000000 0.0000000E+00
 31.23680 1.000000 0.0000000E+00
 31.28735 1.000000 0.0000000E+00
 31.33789 1.000000 0.0000000E+00
 31.38844 1.000000 0.0000000E+00
 31.43898 1.000000 0.0000000E+00
 31.48952 1.000000 0.0000000E+00
 31.54007 1.000000 0.0000000E+00
 31.59062 1.000000 0.0000000E+00
 31.64116 1.000000 0.0000000E+00
 31.69171 1.000000 0.0000000E+00
 31.74225 1.000000 0.0000000E+00
 31.79280 1.000000 0.0000000E+00
 31.84334 1.000000 0.0000000E+00
 31.89388 1.000000 0.0000000E+00
 31.94443 1.000000 0.0000000E+00
 31.99497 1.000000 0.0000000E+00
 32.04552 1.000000 0.0000000E+00
 32.09607 1.000000 0.0000000E+00
 32.14661 1.000000 0.0000000E+00
 32.19715 1.000000 0.0000000E+00
 32.24770 1.000000 0.0000000E+00
 32.29824 1.000000 0.0000000E+00
 32.34879 1.000000 0.0000000E+00
 32.39933 1.000000 0.0000000E+00
 32.44988 1.000000 0.0000000E+00
 32.50042 1.000000 0.0000000E+00
 32.55097 1.000000 0.0000000E+00
 32.60151 1.000000 0.0000000E+00
 32.65206 1.000000 0.0000000E+00
 32.70260 1.000000 0.0000000E+00
 32.75315 1.000000 0.0000000E+00
 32.80369 1.000000 0.0000000E+00
 32.85424 1.000000 0.0000000E+00
 32.90479 1.000000 0.0000000E+00
 32.95533 1.000000 0.0000000E+00
 33.00587 1.000000 0.0000000E+00
 33.05642 1.000000 0.0000000E+00
 33.10696 1.000000 0.0000000E+00
 33.15751 1.000000 0.0000000E+00
 33.20806 1.000000 0.0000000E+00
 33.25860 1.000000 0.0000000E+00
 33.30915 1.000000 0.0000000E+00
 33.35969 1.000000 0.0000000E+00
 33.41024 1.000000 0.0000000E+00
 33.46078 1.000000 0.0000000E+00
 33.51133 1.000000 0.0000000E+00
 33.56187 1.000000 0.0000000E+00
 33.61242 1.000000 0.0000000E+00
 33.66296 1.000000 0.0000000E+00
 33.71350 1.000000 0.0000000E+00
 33.76405 1.000000 0.0000000E+00
 33.81459 1.000000 0.0000000E+00
 33.86514 1.000000 0.0000000E+00
 33.91568 1.000000 0.0000000E+00
 33.96623 1.000000 0.0000000E+00
 34.01677 1.000000 0.0000000E+00
 34.06732 1.000000 0.0000000E+00
 34.11786 1.000000 0.0000000E+00
 34.16841 1.000000 0.0000000E+00
 34.21896 1.000000 0.0000000E+00
 34.26950 1.000000 0.0000000E+00
 34.32005 1.000000 0.0000000E+00
 34.37059 1.000000 0.0000000E+00
 34.42113 1.000000 0.0000000E+00
 34.47168 1.000000 0.0000000E+00
 34.52222 1.000000 0.0000000E+00
 34.57277 1.000000 0.0000000E+00
 34.62331 1.000000 0.0000000E+00
 34.67386 1.000000 0.0000000E+00
 34.72440 1.000000 0.0000000E+00
 34.77495 1.000000 0.0000000E+00
 34.82549 1.000000 0.0000000E+00
 34.87604 1.000000 0.0000000E+00
 34.92658 1.000000 0.0000000E+00
 34.97713 1.000000 0.0000000E+00
 35.02767 1.000000 0.0000000E+00
 35.07822 1.000000 0.0000000E+00
 35.12877 1.000000 0.0000000E+00
 35.17931 1.000000 0.0000000E+00
 35.22985 1.000000 0.0000000E+00
 35.28040 1.000000 0.0000000E+00
 35.33094 1.000000 0.0000000E+00
 35.38149 1.000000 0.0000000E+00
 35.43203 1.000000 0.0000000E+00
 35.48258 1.000000 0.0000000E+00
 35.53313 1.000000 0.0000000E+00
 35.58367 1.000000 0.0000000E+00
 35.63422 1.000000 0.0000000E+00
 35.68476 1.000000 0.0000000E+00
 35.73531 1.000000 0.0000000E+00
 35.78585 1.000000 0.0000000E+00
 35.83640 1.000000 0.0000000E+00
 35.88694 1.000000 0.0000000E+00
 35.93748 1.000000 0.0000000E+00
 35.98803 1.000000 0.0000000E+00
 36.03857 1.000000 0.0000000E+00
 36.08912 1.000000 0.0000000E+00
 36.13966 1.000000 0.0000000E+00
 36.19021 1.000000 0.0000000E+00
 36.24075 1.000000 0.0000000E+00
 36.29130 1.000000 0.0000000E+00
 36.34184 1.000000 0.0000000E+00
 36.39239 1.000000 0.0000000E+00
 36.44293 1.000000 0.0000000E+00
 36.49348 1.000000 0.0000000E+00
 36.54403 1.000000 0.0000000E+00
 36.59457 1.000000 0.0000000E+00
 36.64511 1.000000 0.0000000E+00
 36.69566 1.000000 0.0000000E+00
 36.74620 1.000000 0.0000000E+00
 36.79675 1.000000 0.0000000E+00
 36.84729 1.000000 0.0000000E+00
 36.89784 1.000000 0.0000000E+00
 36.94838 1.000000 0.0000000E+00
 36.99893 1.000000 0.0000000E+00
 37.04947 1.000000 0.0000000E+00
 37.10002 1.000000 0.0000000E+00
 37.15056 1.000000 0.0000000E+00
 37.20111 1.000000 0.0000000E+00
 37.25165 1.000000 0.0000000E+00
 37.30220 1.000000 0.0000000E+00
 37.35274 1.000000 0.0000000E+00
 37.40329 1.000000 0.0000000E+00
 37.45383 1.000000 0.0000000E+00
 37.50438 1.000000 0.0000000E+00
 37.55492 1.000000 0.0000000E+00
 37.60547 1.000000 0.0000000E+00
 37.65601 1.000000 0.0000000E+00
 37.70656 1.000000 0.0000000E+00
 37.75710 1.000000 0.0000000E+00
 37.80765 1.000000 0.0000000E+00
 37.85819 1.000000 0.0000000E+00
 37.90874 1.000000 0.0000000E+00
 37.95929 1.000000 0.0000000E+00
 38.00983 1.000000 0.0000000E+00
 38.06038 1.000000 0.0000000E+00
 38.11092 1.000000 0.0000000E+00
 38.16146 1.000000 0.0000000E+00
 38.21201 1.000000 0.0000000E+00
 38.26255 1.000000 0.0000000E+00
 38.31310 1.000000 0.0000000E+00
 38.36364 1.000000 0.0000000E+00
 38.41419 1.000000 0.0000000E+00
 38.46473 1.000000 0.0000000E+00
 38.51528 1.000000 0.0000000E+00
 38.56582 1.000000 0.0000000E+00
 38.61637 1.000000 0.0000000E+00
 38.66691 1.000000 0.0000000E+00
 38.71746 1.000000 0.0000000E+00
 38.76801 1.000000 0.0000000E+00
 38.81855 1.000000 0.0000000E+00
 38.86909 1.000000 0.0000000E+00
 38.91964 1.000000 0.0000000E+00
 38.97018 1.000000 0.0000000E+00
 39.02073 1.000000 0.0000000E+00
 39.07127 1.000000 0.0000000E+00
 39.12182 1.000000 0.0000000E+00
 39.17236 1.000000 0.0000000E+00
 39.22291 1.000000 0.0000000E+00
 39.27345 1.000000 0.0000000E+00
 39.32400 1.000000 0.0000000E+00
 39.37454 1.000000 0.0000000E+00
 39.42509 1.000000 0.0000000E+00
 39.47563 1.000000 0.0000000E+00
 39.52618 1.000000 0.0000000E+00
 39.57672 1.000000 0.0000000E+00
 39.62727 1.000000 0.0000000E+00
 39.67781 1.000000 0.0000000E+00
 39.72836 1.000000 0.0000000E+00
 39.77890 1.000000 0.0000000E+00
 39.82945 1.000000 0.0000000E+00
 39.87999 1.000000 0.0000000E+00
 39.93054 1.000000 0.0000000E+00
 39.98108 1.000000 0.0000000E+00
 40.03163 1.000000 0.0000000E+00
 40.08217 1.000000 0.0000000E+00
 40.13272 1.000000 0.0000000E+00
 40.18326 1.000000 0.0000000E+00
 40.23381 1.000000 0.0000000E+00
 40.28435 1.000000 0.0000000E+00
 40.33490 1.000000 0.0000000E+00
 40.38544 1.000000 0.0000000E+00
 40.43599 1.000000 0.0000000E+00
 40.48653 1.000000 0.0000000E+00
 40.53708 1.000000 0.0000000E+00
 40.58762 1.000000 0.0000000E+00
 40.63817 1.000000 0.0000000E+00
 40.68871 1.000000 0.0000000E+00
 40.73926 1.000000 0.0000000E+00
 40.78980 1.000000 0.0000000E+00
 40.84035 1.000000 0.0000000E+00
 40.89089 1.000000 0.0000000E+00
 40.94144 1.000000 0.0000000E+00
 40.99198 1.000000 0.0000000E+00
 41.04253 1.000000 0.0000000E+00
 41.09307 1.000000 0.0000000E+00
 41.14362 1.000000 0.0000000E+00
 41.19416 1.000000 0.0000000E+00
 41.24471 1.000000 0.0000000E+00
 41.29525 1.000000 0.0000000E+00
 41.34580 1.000000 0.0000000E+00
 41.39634 1.000000 0.0000000E+00
 41.44689 1.000000 0.0000000E+00
 41.49743 1.000000 0.0000000E+00
 41.54798 1.000000 0.0000000E+00
 41.59852 1.000000 0.0000000E+00
 41.64907 1.000000 0.0000000E+00
 41.69961 1.000000 0.0000000E+00
 41.75016 1.000000 0.0000000E+00
 41.80070 1.000000 0.0000000E+00
 41.85125 1.000000 0.0000000E+00
 41.90179 1.000000 0.0000000E+00
 41.95234 1.000000 0.0000000E+00
 42.00288 1.000000 0.0000000E+00
 42.05342 1.000000 0.0000000E+00
 42.10397 1.000000 0.0000000E+00
 42.15452 1.000000 0.0000000E+00
 42.20506 1.000000 0.0000000E+00
 42.25560 1.000000 0.0000000E+00
 42.30615 1.000000 0.0000000E+00
 42.35670 1.000000 0.0000000E+00
 42.40724 1.000000 0.0000000E+00
 42.45779 1.000000 0.0000000E+00
 42.50833 1.000000 0.0000000E+00
 42.55888 1.000000 0.0000000E+00
 42.60942 1.000000 0.0000000E+00
 42.65997 1.000000 0.0000000E+00
 42.71051 1.000000 0.0000000E+00
 42.76106 1.000000 0.0000000E+00
 42.81160 1.000000 0.0000000E+00
 42.86214 1.000000 0.0000000E+00
 42.91269 1.000000 0.0000000E+00
 42.96324 1.000000 0.0000000E+00
 43.01378 1.000000 0.0000000E+00
 43.06433 1.000000 0.0000000E+00
 43.11487 1.000000 0.0000000E+00
 43.16542 1.000000 0.0000000E+00
 43.21596 1.000000 0.0000000E+00
 43.26651 1.000000 0.0000000E+00
 43.31705 1.000000 0.0000000E+00
 43.36760 1.000000 0.0000000E+00
 43.41814 1.000000 0.0000000E+00
 43.46869 1.000000 0.0000000E+00
 43.51923 1.000000 0.0000000E+00
 43.56977 1.000000 0.0000000E+00
 43.62032 1.000000 0.0000000E+00
 43.67087 1.000000 0.0000000E+00
 43.72141 1.000000 0.0000000E+00
 43.77196 1.000000 0.0000000E+00
 43.82250 1.000000 0.0000000E+00
 43.87305 1.000000 0.0000000E+00
 43.92359 1.000000 0.0000000E+00
 43.97414 1.000000 0.0000000E+00
 44.02468 1.000000 0.0000000E+00
 44.07523 1.000000 0.0000000E+00
 44.12577 1.000000 0.0000000E+00
 44.17632 1.000000 0.0000000E+00
 44.22686 1.000000 0.0000000E+00
 44.27741 1.000000 0.0000000E+00
 44.32795 1.000000 0.0000000E+00
 44.37849 1.000000 0.0000000E+00
 44.42904 1.000000 0.0000000E+00
 44.47959 1.000000 0.0000000E+00
 44.53013 1.000000 0.0000000E+00
 44.58067 1.000000 0.0000000E+00
 44.63122 1.000000 0.0000000E+00
 44.68177 1.000000 0.0000000E+00
 44.73232 1.000000 0.0000000E+00
 44.78286 1.000000 0.0000000E+00
 44.83340 1.000000 0.0000000E+00
 44.88395 1.000000 0.0000000E+00
 44.93449 1.000000 0.0000000E+00
 44.98503 1.000000 0.0000000E+00
 45.03558 1.000000 0.0000000E+00
 45.08613 1.000000 0.0000000E+00
 45.13667 1.000000 0.0000000E+00
 45.18721 1.000000 0.0000000E+00
 45.23776 1.000000 0.0000000E+00
 45.28831 1.000000 0.0000000E+00
 45.33885 1.000000 0.0000000E+00
 45.38939 1.000000 0.0000000E+00
 45.43994 1.000000 0.0000000E+00
 45.49049 1.000000 0.0000000E+00
 45.54103 1.000000 0.0000000E+00
 45.59158 1.000000 0.0000000E+00
 45.64212 1.000000 0.0000000E+00
 45.69267 1.000000 0.0000000E+00
 45.74321 1.000000 0.0000000E+00
 45.79376 1.000000 0.0000000E+00
 45.84430 1.000000 0.0000000E+00
 45.89484 1.000000 0.0000000E+00
 45.94539 1.000000 0.0000000E+00
 45.99594 1.000000 0.0000000E+00
 46.04648 1.000000 0.0000000E+00
 46.09703 1.000000 0.0000000E+00
 46.14757 1.000000 0.0000000E+00
 46.19812 1.000000 0.0000000E+00
 46.24866 1.000000 0.0000000E+00
 46.29921 1.000000 0.0000000E+00
 46.34975 1.000000 0.0000000E+00
 46.40030 1.000000 0.0000000E+00
 46.45084 1.000000 0.0000000E+00
 46.50138 1.000000 0.0000000E+00
 46.55193 1.000000 0.0000000E+00
 46.60248 1.000000 0.0000000E+00
 46.65302 1.000000 0.0000000E+00
 46.70356 1.000000 0.0000000E+00
 46.75411 1.000000 0.0000000E+00
 46.80466 1.000000 0.0000000E+00
 46.85520 1.000000 0.0000000E+00
 46.90574 1.000000 0.0000000E+00
 46.95629 1.000000 0.0000000E+00
 47.00684 1.000000 0.0000000E+00
 47.05738 1.000000 0.0000000E+00
 47.10793 1.000000 0.0000000E+00
 47.15847 1.000000 0.0000000E+00
 47.20901 1.000000 0.0000000E+00
 47.25956 1.000000 0.0000000E+00
 47.31010 1.000000 0.0000000E+00
 47.36065 1.000000 0.0000000E+00
 47.41120 1.000000 0.0000000E+00
 47.46174 1.000000 0.0000000E+00
 47.51228 1.000000 0.0000000E+00
 47.56283 1.000000 0.0000000E+00
 47.61338 1.000000 0.0000000E+00
 47.66392 1.000000 0.0000000E+00
 47.71446 1.000000 0.0000000E+00
 47.76501 1.000000 0.0000000E+00
 47.81556 1.000000 0.0000000E+00
 47.86610 1.000000 0.0000000E+00
 47.91664 1.000000 0.0000000E+00
 47.96719 1.000000 0.0000000E+00
 48.01773 1.000000 0.0000000E+00
 48.06828 1.000000 0.0000000E+00
 48.11883 1.000000 0.0000000E+00
 48.16937 1.000000 0.0000000E+00
 48.21991 1.000000 0.0000000E+00
 48.27046 1.000000 0.0000000E+00
 48.32101 1.000000 0.0000000E+00
 48.37155 1.000000 0.0000000E+00
 48.42210 1.000000 0.0000000E+00
 48.47264 1.000000 0.0000000E+00
 48.52319 1.000000 0.0000000E+00
 48.57373 1.000000 0.0000000E+00
 48.62428 1.000000 0.0000000E+00
 48.67482 1.000000 0.0000000E+00
 48.72537 1.000000 0.0000000E+00
 48.77591 1.000000 0.0000000E+00
 48.82645 1.000000 0.0000000E+00
 48.87700 1.000000 0.0000000E+00
 48.92755 1.000000 0.0000000E+00
 48.97809 1.000000 0.0000000E+00
 49.02863 1.000000 0.0000000E+00
 49.07918 1.000000 0.0000000E+00
 49.12973 1.000000 0.0000000E+00
 49.18027 1.000000 0.0000000E+00
 49.23081 1.000000 0.0000000E+00
 49.28136 1.000000 0.0000000E+00
 49.33191 1.000000 0.0000000E+00
 49.38245 1.000000 0.0000000E+00
 49.43299 1.000000 0.0000000E+00
 49.48354 1.000000 0.0000000E+00
 49.53408 1.000000 0.0000000E+00
 49.58463 1.000000 0.0000000E+00
 49.63517 1.000000 0.0000000E+00
 49.68572 1.000000 0.0000000E+00
 49.73627 1.000000 0.0000000E+00
 49.78681 1.000000 0.0000000E+00
 49.83735 1.000000 0.0000000E+00
 49.88790 1.000000 0.0000000E+00
 49.93845 1.000000 0.0000000E+00
 49.98899 1.000000 0.0000000E+00
 50.03953 1.000000 0.0000000E+00
 50.09008 1.000000 0.0000000E+00
 50.14063 1.000000 0.0000000E+00
 50.19117 1.000000 0.0000000E+00
 50.24171 1.000000 0.0000000E+00
 50.29226 1.000000 0.0000000E+00
 50.34280 1.000000 0.0000000E+00
 50.39335 1.000000 0.0000000E+00
 50.44389 1.000000 0.0000000E+00
 50.49444 1.000000 0.0000000E+00
 50.54498 1.000000 0.0000000E+00
 50.59553 1.000000 0.0000000E+00
 50.64608 1.000000 0.0000000E+00
 50.69662 1.000000 0.0000000E+00
 50.74717 1.000000 0.0000000E+00
 50.79771 1.000000 0.0000000E+00
 50.84826 1.000000 0.0000000E+00
 50.89880 1.000000 0.0000000E+00
 50.94934 1.000000 0.0000000E+00
 50.99989 1.000000 0.0000000E+00
 51.05044 1.000000 0.0000000E+00
 51.10098 1.000000 0.0000000E+00
 51.15152 1.000000 0.0000000E+00
 51.20207 1.000000 0.0000000E+00
 51.25262 1.000000 0.0000000E+00
 51.30316 1.000000 0.0000000E+00
 51.35370 1.000000 0.0000000E+00
 51.40425 1.000000 0.0000000E+00
 51.45480 1.000000 0.0000000E+00
 51.50534 1.000000 0.0000000E+00
 51.55588 1.000000 0.0000000E+00
 51.60643 1.000000 0.0000000E+00
 51.65697 1.000000 0.0000000E+00
 51.70752 1.000000 0.0000000E+00
 51.75806 1.000000 0.0000000E+00
 51.80861 1.000000 0.0000000E+00
 51.85915 1.000000 0.0000000E+00
 51.90970 1.000000 0.0000000E+00
 51.96024 1.000000 0.0000000E+00
 52.01079 1.000000 0.0000000E+00
 52.06134 1.000000 0.0000000E+00
 52.11188 1.000000 0.0000000E+00
 52.16242 1.000000 0.0000000E+00
 52.21297 1.000000 0.0000000E+00
 52.26352 1.000000 0.0000000E+00
 52.31406 1.000000 0.0000000E+00
 52.36460 1.000000 0.0000000E+00
 52.41515 1.000000 0.0000000E+00
 52.46569 1.000000 0.0000000E+00
 52.51624 1.000000 0.0000000E+00
 52.56678 1.000000 0.0000000E+00
 52.61733 1.000000 0.0000000E+00
 52.66787 1.000000 0.0000000E+00
 52.71842 1.000000 0.0000000E+00
 52.76896 1.000000 0.0000000E+00
 52.81951 1.000000 0.0000000E+00
 52.87005 1.000000 0.0000000E+00
 52.92060 1.000000 0.0000000E+00
 52.97114 1.000000 0.0000000E+00
 53.02169 1.000000 0.0000000E+00
 53.07224 1.000000 0.0000000E+00
 53.12278 1.000000 0.0000000E+00
 53.17332 1.000000 0.0000000E+00
 53.22387 1.000000 0.0000000E+00
 53.27441 1.000000 0.0000000E+00
 53.32496 1.000000 0.0000000E+00
 53.37551 1.000000 0.0000000E+00
 53.42605 1.000000 0.0000000E+00
 53.47659 1.000000 0.0000000E+00
 53.52714 1.000000 0.0000000E+00
 53.57769 1.000000 0.0000000E+00
 53.62823 1.000000 0.0000000E+00
 53.67877 1.000000 0.0000000E+00
 53.72932 1.000000 0.0000000E+00
 53.77987 1.000000 0.0000000E+00
 53.83041 1.000000 0.0000000E+00
 53.88095 1.000000 0.0000000E+00
 53.93150 1.000000 0.0000000E+00
 53.98204 1.000000 0.0000000E+00
 54.03259 1.000000 0.0000000E+00
 54.08313 1.000000 0.0000000E+00
 54.13368 1.000000 0.0000000E+00
 54.18422 1.000000 0.0000000E+00
 54.23477 1.000000 0.0000000E+00
 54.28531 1.000000 0.0000000E+00
 54.33586 1.000000 0.0000000E+00
 54.38641 1.000000 0.0000000E+00
 54.43695 1.000000 0.0000000E+00
 54.48749 1.000000 0.0000000E+00
 54.53804 1.000000 0.0000000E+00
 54.58858 1.000000 0.0000000E+00
 54.63913 1.000000 0.0000000E+00
 54.68967 1.000000 0.0000000E+00
 54.74022 1.000000 0.0000000E+00
 54.79076 1.000000 0.0000000E+00
 54.84131 1.000000 0.0000000E+00
 54.89185 1.000000 0.0000000E+00
 54.94240 1.000000 0.0000000E+00
 54.99294 1.000000 0.0000000E+00
 55.04349 1.000000 0.0000000E+00
 55.09403 1.000000 0.0000000E+00
 55.14458 1.000000 0.0000000E+00
 55.19512 1.000000 0.0000000E+00
 55.24567 1.000000 0.0000000E+00
 55.29621 1.000000 0.0000000E+00
 55.34676 1.000000 0.0000000E+00
 55.39730 1.000000 0.0000000E+00
 55.44785 1.000000 0.0000000E+00
 55.49839 1.000000 0.0000000E+00
 55.54893 1.000000 0.0000000E+00
 55.59948 1.000000 0.0000000E+00
 55.65003 1.000000 0.0000000E+00
 55.70058 1.000000 0.0000000E+00
 55.75112 1.000000 0.0000000E+00
 55.80166 1.000000 0.0000000E+00
 55.85221 1.000000 0.0000000E+00
 55.90276 1.000000 0.0000000E+00
 55.95330 1.000000 0.0000000E+00
 56.00384 1.000000 0.0000000E+00
 56.05439 1.000000 0.0000000E+00
 56.10493 1.000000 0.0000000E+00
 56.15548 1.000000 0.0000000E+00
 56.20602 1.000000 0.0000000E+00
 56.25657 1.000000 0.0000000E+00
 56.30711 1.000000 0.0000000E+00
 56.35765 1.000000 0.0000000E+00
 56.40820 1.000000 0.0000000E+00
 56.45875 1.000000 0.0000000E+00
 56.50929 1.000000 0.0000000E+00
 56.55984 1.000000 0.0000000E+00
 56.61038 1.000000 0.0000000E+00
 56.66093 1.000000 0.0000000E+00
 56.71148 1.000000 0.0000000E+00
 56.76202 1.000000 0.0000000E+00
 56.81256 1.000000 0.0000000E+00
 56.86311 1.000000 0.0000000E+00
 56.91365 1.000000 0.0000000E+00
 56.96420 1.000000 0.0000000E+00
 57.01474 1.000000 0.0000000E+00
 57.06529 1.000000 0.0000000E+00
 57.11583 1.000000 0.0000000E+00
 57.16638 1.000000 0.0000000E+00
 57.21692 1.000000 0.0000000E+00
 57.26747 1.000000 0.0000000E+00
 57.31801 1.000000 0.0000000E+00
 57.36856 1.000000 0.0000000E+00
 57.41910 1.000000 0.0000000E+00
 57.46965 1.000000 0.0000000E+00
 57.52019 1.000000 0.0000000E+00
 57.57074 1.000000 0.0000000E+00
 57.62128 1.000000 0.0000000E+00
 57.67183 1.000000 0.0000000E+00
 57.72237 1.000000 0.0000000E+00
 57.77292 1.000000 0.0000000E+00
 57.82346 1.000000 0.0000000E+00
 57.87400 1.000000 0.0000000E+00
 57.92455 1.000000 0.0000000E+00
 57.97510 1.000000 0.0000000E+00
 58.02564 1.000000 0.0000000E+00
 58.07619 1.000000 0.0000000E+00
 58.12673 1.000000 0.0000000E+00
 58.17728 1.000000 0.0000000E+00
 58.22783 1.000000 0.0000000E+00
 58.27837 1.000000 0.0000000E+00
 58.32891 1.000000 0.0000000E+00
 58.37946 1.000000 0.0000000E+00
 58.43000 1.000000 0.0000000E+00
 58.48055 1.000000 0.0000000E+00
 58.53109 1.000000 0.0000000E+00
 58.58164 1.000000 0.0000000E+00
 58.63218 1.000000 0.0000000E+00
 58.68272 1.000000 0.0000000E+00
 58.73327 1.000000 0.0000000E+00
 58.78382 1.000000 0.0000000E+00
 58.83436 1.000000 0.0000000E+00
 58.88491 1.000000 0.0000000E+00
 58.93545 1.000000 0.0000000E+00
 58.98600 1.000000 0.0000000E+00
 59.03654 1.000000 0.0000000E+00
 59.08709 1.000000 0.0000000E+00
 59.13763 1.000000 0.0000000E+00
 59.18818 1.000000 0.0000000E+00
 59.23872 1.000000 0.0000000E+00
 59.28926 1.000000 0.0000000E+00
 59.33981 1.000000 0.0000000E+00
 59.39036 1.000000 0.0000000E+00
 59.44090 1.000000 0.0000000E+00
 59.49145 1.000000 0.0000000E+00
 59.54199 1.000000 0.0000000E+00
 59.59254 1.000000 0.0000000E+00
 59.64308 1.000000 0.0000000E+00
 59.69363 1.000000 0.0000000E+00
 59.74417 1.000000 0.0000000E+00
 59.79472 1.000000 0.0000000E+00
 59.84526 1.000000 0.0000000E+00
 59.89581 1.000000 0.0000000E+00
 59.94635 1.000000 0.0000000E+00
 59.99689 1.000000 0.0000000E+00
 60.04744 1.000000 0.0000000E+00
 60.09799 1.000000 0.0000000E+00
 60.14853 1.000000 0.0000000E+00
 60.19908 1.000000 0.0000000E+00
 60.24962 1.000000 0.0000000E+00
 60.30017 1.000000 0.0000000E+00
 60.35071 1.000000 0.0000000E+00
 60.40126 1.000000 0.0000000E+00
 60.45180 1.000000 0.0000000E+00
 60.50235 1.000000 0.0000000E+00
 60.55289 1.000000 0.0000000E+00
 60.60344 1.000000 0.0000000E+00
 60.65398 1.000000 0.0000000E+00
 60.70453 1.000000 0.0000000E+00
 60.75507 1.000000 0.0000000E+00
 60.80561 1.000000 0.0000000E+00
 60.85616 1.000000 0.0000000E+00
 60.90671 1.000000 0.0000000E+00
 60.95725 1.000000 0.0000000E+00
 61.00779 1.000000 0.0000000E+00
 61.05834 1.000000 0.0000000E+00
 61.10889 1.000000 0.0000000E+00
 61.15943 1.000000 0.0000000E+00
 61.20998 1.000000 0.0000000E+00
 61.26052 1.000000 0.0000000E+00
 61.31107 1.000000 0.0000000E+00
 61.36161 1.000000 0.0000000E+00
 61.41216 1.000000 0.0000000E+00
 61.46270 1.000000 0.0000000E+00
 61.51324 1.000000 0.0000000E+00
 61.56379 1.000000 0.0000000E+00
 61.61433 1.000000 0.0000000E+00
 61.66488 1.000000 0.0000000E+00
 61.71543 1.000000 0.0000000E+00
 61.76597 1.000000 0.0000000E+00
 61.81651 1.000000 0.0000000E+00
 61.86706 1.000000 0.0000000E+00
 61.91761 1.000000 0.0000000E+00
 61.96815 1.000000 0.0000000E+00
 62.01870 1.000000 0.0000000E+00
 62.06924 1.000000 0.0000000E+00
 62.11979 1.000000 0.0000000E+00
 62.17033 1.000000 0.0000000E+00
 62.22088 1.000000 0.0000000E+00
 62.27142 1.000000 0.0000000E+00
 62.32196 1.000000 0.0000000E+00
 62.37251 1.000000 0.0000000E+00
 62.42306 1.000000 0.0000000E+00
 62.47360 1.000000 0.0000000E+00
 62.52415 1.000000 0.0000000E+00
 62.57469 1.000000 0.0000000E+00
 62.62524 1.000000 0.0000000E+00
 62.67578 1.000000 0.0000000E+00
 62.72633 1.000000 0.0000000E+00
 62.77687 1.000000 0.0000000E+00
 62.82742 1.000000 0.0000000E+00
 62.87796 1.000000 0.0000000E+00
 62.92850 1.000000 0.0000000E+00
 62.97905 1.000000 0.0000000E+00
 63.02960 1.000000 0.0000000E+00
 63.08014 1.000000 0.0000000E+00
 63.13068 1.000000 0.0000000E+00
 63.18123 1.000000 0.0000000E+00
 63.23178 1.000000 0.0000000E+00
 63.28232 1.000000 0.0000000E+00
 63.33286 1.000000 0.0000000E+00
 63.38341 1.000000 0.0000000E+00
 63.43396 1.000000 0.0000000E+00
 63.48450 1.000000 0.0000000E+00
 63.53505 1.000000 0.0000000E+00
 63.58559 1.000000 0.0000000E+00
 63.63614 1.000000 0.0000000E+00
 63.68668 1.000000 0.0000000E+00
 63.73722 1.000000 0.0000000E+00
 63.78777 1.000000 0.0000000E+00
 63.83832 1.000000 0.0000000E+00
 63.88886 1.000000 0.0000000E+00
 63.93940 1.000000 0.0000000E+00
 63.98995 1.000000 0.0000000E+00
 64.04050 1.000000 0.0000000E+00
 64.09104 1.000000 0.0000000E+00
 64.14159 1.000000 0.0000000E+00
 64.19213 1.000000 0.0000000E+00
 64.24268 1.000000 0.0000000E+00
 64.29322 1.000000 0.0000000E+00
 64.34377 1.000000 0.0000000E+00
 64.39431 1.000000 0.0000000E+00
 64.44485 1.000000 0.0000000E+00
 64.49540 1.000000 0.0000000E+00
 64.54594 1.000000 0.0000000E+00
 64.59649 1.000000 0.0000000E+00
 64.64703 1.000000 0.0000000E+00
 64.69758 1.000000 0.0000000E+00
 64.74813 1.000000 0.0000000E+00
 64.79867 1.000000 0.0000000E+00
 64.84921 1.000000 0.0000000E+00
 64.89976 1.000000 0.0000000E+00
 64.95031 1.000000 0.0000000E+00
 65.00085 1.000000 0.0000000E+00
 65.05139 1.000000 0.0000000E+00
 65.10194 1.000000 0.0000000E+00
 65.15249 1.000000 0.0000000E+00
 65.20303 1.000000 0.0000000E+00
 65.25357 1.000000 0.0000000E+00
 65.30412 1.000000 0.0000000E+00
 65.35467 1.000000 0.0000000E+00
 65.40520 1.000000 0.0000000E+00
 65.45576 1.000000 0.0000000E+00
 65.50630 1.000000 0.0000000E+00
 65.55685 1.000000 0.0000000E+00
 65.60738 1.000000 0.0000000E+00
 65.65794 1.000000 0.0000000E+00
 65.70848 1.000000 0.0000000E+00
 65.75903 1.000000 0.0000000E+00
 65.80957 1.000000 0.0000000E+00
 65.86012 1.000000 0.0000000E+00
 65.91066 1.000000 0.0000000E+00
 65.96120 1.000000 0.0000000E+00
 66.01175 1.000000 0.0000000E+00
 66.06229 1.000000 0.0000000E+00
 66.11284 1.000000 0.0000000E+00
 66.16338 1.000000 0.0000000E+00
 66.21393 1.000000 0.0000000E+00
 66.26447 1.000000 0.0000000E+00
 66.31502 1.000000 0.0000000E+00
 66.36556 1.000000 0.0000000E+00
 66.41611 1.000000 0.0000000E+00
 66.46665 1.000000 0.0000000E+00
 66.51720 1.000000 0.0000000E+00
 66.56774 1.000000 0.0000000E+00
 66.61829 1.000000 0.0000000E+00
 66.66883 1.000000 0.0000000E+00
 66.71938 1.000000 0.0000000E+00
 66.76993 1.000000 0.0000000E+00
 66.82047 1.000000 0.0000000E+00
 66.87101 1.000000 0.0000000E+00
 66.92155 1.000000 0.0000000E+00
 66.97211 1.000000 0.0000000E+00
 67.02265 1.000000 0.0000000E+00
 67.07320 1.000000 0.0000000E+00
 67.12374 1.000000 0.0000000E+00
 67.17429 1.000000 0.0000000E+00
 67.22483 1.000000 0.0000000E+00
 67.27538 1.000000 0.0000000E+00
 67.32592 1.000000 0.0000000E+00
 67.37646 1.000000 0.0000000E+00
 67.42701 1.000000 0.0000000E+00
 67.47755 1.000000 0.0000000E+00
 67.52810 1.000000 0.0000000E+00
 67.57864 1.000000 0.0000000E+00
 67.62919 1.000000 0.0000000E+00
 67.67973 1.000000 0.0000000E+00
 67.73028 1.000000 0.0000000E+00
 67.78082 1.000000 0.0000000E+00
 67.83137 1.000000 0.0000000E+00
 67.88191 1.000000 0.0000000E+00
 67.93246 1.000000 0.0000000E+00
 67.98300 1.000000 0.0000000E+00
 68.03355 1.000000 0.0000000E+00
 68.08410 1.000000 0.0000000E+00
 68.13464 1.000000 0.0000000E+00
 68.18518 1.000000 0.0000000E+00
 68.23573 1.000000 0.0000000E+00
 68.28628 1.000000 0.0000000E+00
 68.33682 1.000000 0.0000000E+00
 68.38736 1.000000 0.0000000E+00
 68.43791 1.000000 0.0000000E+00
 68.48846 1.000000 0.0000000E+00
 68.53900 1.000000 0.0000000E+00
 68.58955 1.000000 0.0000000E+00
 68.64009 1.000000 0.0000000E+00
 68.69064 1.000000 0.0000000E+00
 68.74118 1.000000 0.0000000E+00
 68.79173 1.000000 0.0000000E+00
 68.84227 1.000000 0.0000000E+00
 68.89281 1.000000 0.0000000E+00
 68.94336 1.000000 0.0000000E+00
 68.99390 1.000000 0.0000000E+00
 69.04445 1.000000 0.0000000E+00
 69.09499 1.000000 0.0000000E+00
 69.14554 1.000000 0.0000000E+00
 69.19608 1.000000 0.0000000E+00
 69.24663 1.000000 0.0000000E+00
 69.29717 1.000000 0.0000000E+00
 69.34772 1.000000 0.0000000E+00
 69.39826 1.000000 0.0000000E+00
 69.44881 1.000000 0.0000000E+00
 69.49935 1.000000 0.0000000E+00
 69.54990 1.000000 0.0000000E+00
 69.60045 1.000000 0.0000000E+00
 69.65099 1.000000 0.0000000E+00
 69.70153 1.000000 0.0000000E+00
 69.75208 1.000000 0.0000000E+00
 69.80263 1.000000 0.0000000E+00
 69.85316 1.000000 0.0000000E+00
 69.90371 1.000000 0.0000000E+00
 69.95426 1.000000 0.0000000E+00
 70.00481 1.000000 0.0000000E+00
 70.05534 1.000000 0.0000000E+00
 70.10590 1.000000 0.0000000E+00
 70.15644 1.000000 0.0000000E+00
 70.20699 1.000000 0.0000000E+00
 70.25753 1.000000 0.0000000E+00
 70.30807 1.000000 0.0000000E+00
 70.35862 1.000000 0.0000000E+00
 70.40916 1.000000 0.0000000E+00
 70.45971 1.000000 0.0000000E+00
 70.51025 1.000000 0.0000000E+00
 70.56080 1.000000 0.0000000E+00
 70.61134 1.000000 0.0000000E+00
 70.66189 1.000000 0.0000000E+00
 70.71243 1.000000 0.0000000E+00
 70.76298 1.000000 0.0000000E+00
 70.81352 1.000000 0.0000000E+00
 70.86407 1.000000 0.0000000E+00
 70.91461 1.000000 0.0000000E+00
 70.96516 1.000000 0.0000000E+00
 71.01570 1.000000 0.0000000E+00
 71.06625 1.000000 0.0000000E+00
 71.11679 1.000000 0.0000000E+00
 71.16734 1.000000 0.0000000E+00
 71.21788 1.000000 0.0000000E+00
 71.26843 1.000000 0.0000000E+00
 71.31897 1.000000 0.0000000E+00
 71.36951 1.000000 0.0000000E+00
 71.42007 1.000000 0.0000000E+00
 71.47061 1.000000 0.0000000E+00
 71.52115 1.000000 0.0000000E+00
 71.57170 1.000000 0.0000000E+00
 71.62225 1.000000 0.0000000E+00
 71.67279 1.000000 0.0000000E+00
 71.72333 1.000000 0.0000000E+00
 71.77388 1.000000 0.0000000E+00
 71.82442 1.000000 0.0000000E+00
 71.87497 1.000000 0.0000000E+00
 71.92551 1.000000 0.0000000E+00
 71.97606 1.000000 0.0000000E+00
 72.02660 1.000000 0.0000000E+00
 72.07715 1.000000 0.0000000E+00
 72.12769 1.000000 0.0000000E+00
 72.17824 1.000000 0.0000000E+00
 72.22878 1.000000 0.0000000E+00
 72.27933 1.000000 0.0000000E+00
 72.32987 1.000000 0.0000000E+00
 72.38042 1.000000 0.0000000E+00
 72.43096 1.000000 0.0000000E+00
 72.48151 1.000000 0.0000000E+00
 72.53205 1.000000 0.0000000E+00
 72.58260 1.000000 0.0000000E+00
 72.63314 1.000000 0.0000000E+00
 72.68369 1.000000 0.0000000E+00
 72.73424 1.000000 0.0000000E+00
 72.78477 1.000000 0.0000000E+00
 72.83532 1.000000 0.0000000E+00
 72.88586 1.000000 0.0000000E+00
 72.93642 1.000000 0.0000000E+00
 72.98695 1.000000 0.0000000E+00
 73.03750 1.000000 0.0000000E+00
 73.08805 1.000000 0.0000000E+00
 73.13860 1.000000 0.0000000E+00
 73.18913 1.000000 0.0000000E+00
 73.23969 1.000000 0.0000000E+00
 73.29023 1.000000 0.0000000E+00
 73.34077 1.000000 0.0000000E+00
 73.39132 1.000000 0.0000000E+00
 73.44186 1.000000 0.0000000E+00
 73.49241 1.000000 0.0000000E+00
 73.54295 1.000000 0.0000000E+00
 73.59350 1.000000 0.0000000E+00
 73.64404 1.000000 0.0000000E+00
 73.69459 1.000000 0.0000000E+00
 73.74513 1.000000 0.0000000E+00
 73.79568 1.000000 0.0000000E+00
 73.84622 1.000000 0.0000000E+00
 73.89677 1.000000 0.0000000E+00
 73.94731 1.000000 0.0000000E+00
 73.99786 1.000000 0.0000000E+00
 74.04840 1.000000 0.0000000E+00
 74.09895 1.000000 0.0000000E+00
 74.14949 1.000000 0.0000000E+00
 74.20004 1.000000 0.0000000E+00
 74.25058 1.000000 0.0000000E+00
 74.30112 1.000000 0.0000000E+00
 74.35167 1.000000 0.0000000E+00
 74.40222 1.000000 0.0000000E+00
 74.45276 1.000000 0.0000000E+00
 74.50330 1.000000 0.0000000E+00
 74.55386 1.000000 0.0000000E+00
 74.60440 1.000000 0.0000000E+00
 74.65495 1.000000 0.0000000E+00
 74.70548 1.000000 0.0000000E+00
 74.75603 1.000000 0.0000000E+00
 74.80658 1.000000 0.0000000E+00
 74.85712 1.000000 0.0000000E+00
 74.90767 1.000000 0.0000000E+00
 74.95821 1.000000 0.0000000E+00
 75.00876 1.000000 0.0000000E+00
 75.05930 1.000000 0.0000000E+00
 75.10985 1.000000 0.0000000E+00
 75.16039 1.000000 0.0000000E+00
 75.21094 1.000000 0.0000000E+00
 75.26148 1.000000 0.0000000E+00
 75.31203 1.000000 0.0000000E+00
 75.36257 1.000000 0.0000000E+00
 75.41312 1.000000 0.0000000E+00
 75.46366 1.000000 0.0000000E+00
 75.51421 1.000000 0.0000000E+00
 75.56475 1.000000 0.0000000E+00
 75.61530 1.000000 0.0000000E+00
 75.66584 1.000000 0.0000000E+00
 75.71638 1.000000 0.0000000E+00
 75.76693 1.000000 0.0000000E+00
 75.81747 1.000000 0.0000000E+00
 75.86802 1.000000 0.0000000E+00
 75.91857 1.000000 0.0000000E+00
 75.96911 1.000000 0.0000000E+00
 76.01965 1.000000 0.0000000E+00
 76.07021 1.000000 0.0000000E+00
 76.12075 1.000000 0.0000000E+00
 76.17129 1.000000 0.0000000E+00
 76.22184 1.000000 0.0000000E+00
 76.27238 1.000000 0.0000000E+00
 76.32293 1.000000 0.0000000E+00
 76.37347 1.000000 0.0000000E+00
 76.42402 1.000000 0.0000000E+00
 76.47456 1.000000 0.0000000E+00
 76.52511 1.000000 0.0000000E+00
 76.57565 1.000000 0.0000000E+00
 76.62620 1.000000 0.0000000E+00
 76.67674 1.000000 0.0000000E+00
 76.72729 1.000000 0.0000000E+00
 76.77783 1.000000 0.0000000E+00
 76.82838 1.000000 0.0000000E+00
 76.87892 1.000000 0.0000000E+00
 76.92947 1.000000 0.0000000E+00
 76.98001 1.000000 0.0000000E+00
 77.03056 1.000000 0.0000000E+00
 77.08110 1.000000 0.0000000E+00
 77.13165 1.000000 0.0000000E+00
 77.18219 1.000000 0.0000000E+00
 77.23273 1.000000 0.0000000E+00
 77.28328 1.000000 0.0000000E+00
 77.33382 1.000000 0.0000000E+00
 77.38438 1.000000 0.0000000E+00
 77.43491 1.000000 0.0000000E+00
 77.48546 1.000000 0.0000000E+00
 77.53601 1.000000 0.0000000E+00
 77.58656 1.000000 0.0000000E+00
 77.63709 1.000000 0.0000000E+00
 77.68764 1.000000 0.0000000E+00
 77.73819 1.000000 0.0000000E+00
 77.78873 1.000000 0.0000000E+00
 77.83927 1.000000 0.0000000E+00
 77.88982 1.000000 0.0000000E+00
 77.94037 1.000000 0.0000000E+00
 77.99091 1.000000 0.0000000E+00
 78.04145 1.000000 0.0000000E+00
 78.09200 1.000000 0.0000000E+00
 78.14255 1.000000 0.0000000E+00
 78.19309 1.000000 0.0000000E+00
 78.24364 1.000000 0.0000000E+00
 78.29418 1.000000 0.0000000E+00
 78.34473 1.000000 0.0000000E+00
 78.39527 1.000000 0.0000000E+00
 78.44582 1.000000 0.0000000E+00
 78.49636 1.000000 0.0000000E+00
 78.54691 1.000000 0.0000000E+00
 78.59745 1.000000 0.0000000E+00
 78.64799 1.000000 0.0000000E+00
 78.69854 1.000000 0.0000000E+00
 78.74908 1.000000 0.0000000E+00
 78.79963 1.000000 0.0000000E+00
 78.85017 1.000000 0.0000000E+00
 78.90072 1.000000 0.0000000E+00
 78.95126 1.000000 0.0000000E+00
 79.00181 1.000000 0.0000000E+00
 79.05236 1.000000 0.0000000E+00
 79.10290 1.000000 0.0000000E+00
 79.15344 1.000000 0.0000000E+00
 79.20399 1.000000 0.0000000E+00
 79.25454 1.000000 0.0000000E+00
 79.30508 1.000000 0.0000000E+00
 79.35562 1.000000 0.0000000E+00
 79.40617 1.000000 0.0000000E+00
 79.45672 1.000000 0.0000000E+00
 79.50726 1.000000 0.0000000E+00
 79.55781 1.000000 0.0000000E+00
 79.60835 1.000000 0.0000000E+00
 79.65890 1.000000 0.0000000E+00
 79.70944 1.000000 0.0000000E+00
 79.75999 1.000000 0.0000000E+00
 79.81053 1.000000 0.0000000E+00
 79.86108 1.000000 0.0000000E+00
 79.91162 1.000000 0.0000000E+00
 79.96217 1.000000 0.0000000E+00
 80.01271 1.000000 0.0000000E+00
 80.06326 1.000000 0.0000000E+00
 80.11380 1.000000 0.0000000E+00
 80.16434 1.000000 0.0000000E+00
 80.21489 1.000000 0.0000000E+00
 80.26543 1.000000 0.0000000E+00
 80.31598 1.000000 0.0000000E+00
 80.36652 1.000000 0.0000000E+00
 80.41707 1.000000 0.0000000E+00
 80.46761 1.000000 0.0000000E+00
 80.51817 1.000000 0.0000000E+00
 80.56870 1.000000 0.0000000E+00
 80.61925 1.000000 0.0000000E+00
 80.66979 1.000000 0.0000000E+00
 80.72034 1.000000 0.0000000E+00
 80.77088 1.000000 0.0000000E+00
 80.82143 1.000000 0.0000000E+00
 80.87198 1.000000 0.0000000E+00
 80.92252 1.000000 0.0000000E+00
 80.97307 1.000000 0.0000000E+00
 81.02361 1.000000 0.0000000E+00
 81.07416 1.000000 0.0000000E+00
 81.12469 1.000000 0.0000000E+00
 81.17524 1.000000 0.0000000E+00
 81.22579 1.000000 0.0000000E+00
 81.27634 1.000000 0.0000000E+00
 81.32688 1.000000 0.0000000E+00
 81.37743 1.000000 0.0000000E+00
 81.42797 1.000000 0.0000000E+00
 81.47852 1.000000 0.0000000E+00
 81.52905 1.000000 0.0000000E+00
 81.57961 1.000000 0.0000000E+00
 81.63015 1.000000 0.0000000E+00
 81.68069 1.000000 0.0000000E+00
 81.73124 1.000000 0.0000000E+00
 81.78178 1.000000 0.0000000E+00
 81.83233 1.000000 0.0000000E+00
 81.88288 1.000000 0.0000000E+00
 81.93342 1.000000 0.0000000E+00
 81.98396 1.000000 0.0000000E+00
 82.03451 1.000000 0.0000000E+00
 82.08505 1.000000 0.0000000E+00
 82.13560 1.000000 0.0000000E+00
 82.18615 1.000000 0.0000000E+00
 82.23669 1.000000 0.0000000E+00
 82.28724 1.000000 0.0000000E+00
 82.33778 1.000000 0.0000000E+00
 82.38832 1.000000 0.0000000E+00
 82.43887 1.000000 0.0000000E+00
 82.48941 1.000000 0.0000000E+00
 82.53996 1.000000 0.0000000E+00
 82.59051 1.000000 0.0000000E+00
 82.64105 1.000000 0.0000000E+00
 82.69160 1.000000 0.0000000E+00
 82.74214 1.000000 0.0000000E+00
 82.79268 1.000000 0.0000000E+00
 82.84322 1.000000 0.0000000E+00
 82.89378 1.000000 0.0000000E+00
 82.94432 1.000000 0.0000000E+00
 82.99487 1.000000 0.0000000E+00
 83.04541 1.000000 0.0000000E+00
 83.09595 1.000000 0.0000000E+00
 83.14650 1.000000 0.0000000E+00
 83.19704 1.000000 0.0000000E+00
 83.24759 1.000000 0.0000000E+00
 83.29813 1.000000 0.0000000E+00
 83.34868 1.000000 0.0000000E+00
 83.39922 1.000000 0.0000000E+00
 83.44977 1.000000 0.0000000E+00
 83.50032 1.000000 0.0000000E+00
 83.55087 1.000000 0.0000000E+00
 83.60141 1.000000 0.0000000E+00
 83.65195 1.000000 0.0000000E+00
 83.70249 1.000000 0.0000000E+00
 83.75304 1.000000 0.0000000E+00
 83.80358 1.000000 0.0000000E+00
 83.85413 1.000000 0.0000000E+00
 83.90468 1.000000 0.0000000E+00
 83.95522 1.000000 0.0000000E+00
 84.00577 1.000000 0.0000000E+00
 84.05630 1.000000 0.0000000E+00
 84.10685 1.000000 0.0000000E+00
 84.15739 1.000000 0.0000000E+00
 84.20795 1.000000 0.0000000E+00
 84.25849 1.000000 0.0000000E+00
 84.30904 1.000000 0.0000000E+00
 84.35958 1.000000 0.0000000E+00
 84.41013 1.000000 0.0000000E+00
 84.46066 1.000000 0.0000000E+00
 84.51121 1.000000 0.0000000E+00
 84.56176 1.000000 0.0000000E+00
 84.61230 1.000000 0.0000000E+00
 84.66285 1.000000 0.0000000E+00
 84.71339 1.000000 0.0000000E+00
 84.76394 1.000000 0.0000000E+00
 84.81448 1.000000 0.0000000E+00
 84.86504 1.000000 0.0000000E+00
 84.91557 1.000000 0.0000000E+00
 84.96612 1.000000 0.0000000E+00
 85.01666 1.000000 0.0000000E+00
 85.06721 1.000000 0.0000000E+00
 85.11775 1.000000 0.0000000E+00
 85.16830 1.000000 0.0000000E+00
 85.21885 1.000000 0.0000000E+00
 85.26939 1.000000 0.0000000E+00
 85.31993 1.000000 0.0000000E+00
 85.37048 1.000000 0.0000000E+00
 85.42102 1.000000 0.0000000E+00
 85.47157 1.000000 0.0000000E+00
 85.52212 1.000000 0.0000000E+00
 85.57266 1.000000 0.0000000E+00
 85.62321 1.000000 0.0000000E+00
 85.67375 1.000000 0.0000000E+00
 85.72429 1.000000 0.0000000E+00
 85.77483 1.000000 0.0000000E+00
 85.82538 1.000000 0.0000000E+00
 85.87593 1.000000 0.0000000E+00
 85.92648 1.000000 0.0000000E+00
 85.97702 1.000000 0.0000000E+00
 86.02757 1.000000 0.0000000E+00
 86.07811 1.000000 0.0000000E+00
 86.12865 1.000000 0.0000000E+00
 86.17919 1.000000 0.0000000E+00
 86.22974 1.000000 0.0000000E+00
 86.28029 1.000000 0.0000000E+00
 86.33083 1.000000 0.0000000E+00
 86.38138 1.000000 0.0000000E+00
 86.43192 1.000000 0.0000000E+00
 86.48248 1.000000 0.0000000E+00
 86.53302 1.000000 0.0000000E+00
 86.58356 1.000000 0.0000000E+00
 86.63410 1.000000 0.0000000E+00
 86.68465 1.000000 0.0000000E+00
 86.73519 1.000000 0.0000000E+00
 86.78574 1.000000 0.0000000E+00
 86.83629 1.000000 0.0000000E+00
 86.88683 1.000000 0.0000000E+00
 86.93738 1.000000 0.0000000E+00
 86.98792 1.000000 0.0000000E+00
 87.03846 1.000000 0.0000000E+00
 87.08900 1.000000 0.0000000E+00
 87.13955 1.000000 0.0000000E+00
 87.19010 1.000000 0.0000000E+00
 87.24065 1.000000 0.0000000E+00
 87.29119 1.000000 0.0000000E+00
 87.34174 1.000000 0.0000000E+00
 87.39228 1.000000 0.0000000E+00
 87.44282 1.000000 0.0000000E+00
 87.49336 1.000000 0.0000000E+00
 87.54391 1.000000 0.0000000E+00
 87.59446 1.000000 0.0000000E+00
 87.64500 1.000000 0.0000000E+00
 87.69555 1.000000 0.0000000E+00
 87.74609 1.000000 0.0000000E+00
 87.79664 1.000000 0.0000000E+00
 87.84718 1.000000 0.0000000E+00
 87.89773 1.000000 0.0000000E+00
 87.94827 1.000000 0.0000000E+00
 87.99882 1.000000 0.0000000E+00
 88.04936 1.000000 0.0000000E+00
 88.09991 1.000000 0.0000000E+00
 88.15046 1.000000 0.0000000E+00
 88.20100 1.000000 0.0000000E+00
 88.25154 1.000000 0.0000000E+00
 88.30209 1.000000 0.0000000E+00
 88.35263 1.000000 0.0000000E+00
 88.40318 1.000000 0.0000000E+00
 88.45372 1.000000 0.0000000E+00
 88.50427 1.000000 0.0000000E+00
 88.55482 1.000000 0.0000000E+00
 88.60536 1.000000 0.0000000E+00
 88.65591 1.000000 0.0000000E+00
 88.70644 1.000000 0.0000000E+00
 88.75699 1.000000 0.0000000E+00
 88.80753 1.000000 0.0000000E+00
 88.85809 1.000000 0.0000000E+00
 88.90863 1.000000 0.0000000E+00
 88.95918 1.000000 0.0000000E+00
 89.00972 1.000000 0.0000000E+00
 89.06026 1.000000 0.0000000E+00
 89.11080 1.000000 0.0000000E+00
 89.16135 1.000000 0.0000000E+00
 89.21190 1.000000 0.0000000E+00
 89.26244 1.000000 0.0000000E+00
 89.31299 1.000000 0.0000000E+00
 89.36353 1.000000 0.0000000E+00
 89.41408 1.000000 0.0000000E+00
 89.46463 1.000000 0.0000000E+00
 89.51516 1.000000 0.0000000E+00
 89.56571 1.000000 0.0000000E+00
 89.61626 1.000000 0.0000000E+00
 89.66680 1.000000 0.0000000E+00
 89.71735 1.000000 0.0000000E+00
 89.76789 1.000000 0.0000000E+00
 89.81844 1.000000 0.0000000E+00
 89.86899 1.000000 0.0000000E+00
 89.91953 1.000000 0.0000000E+00
 89.97007 1.000000 0.0000000E+00
 90.02061 1.000000 0.0000000E+00
 90.07116 1.000000 0.0000000E+00
 90.12170 1.000000 0.0000000E+00
 90.17226 1.000000 0.0000000E+00
 90.22280 1.000000 0.0000000E+00
 90.27335 1.000000 0.0000000E+00
 90.32389 1.000000 0.0000000E+00
 90.37443 1.000000 0.0000000E+00
 90.42497 1.000000 0.0000000E+00
 90.47552 1.000000 0.0000000E+00
 90.52607 1.000000 0.0000000E+00
 90.57661 1.000000 0.0000000E+00
 90.62716 1.000000 0.0000000E+00
 90.67770 1.000000 0.0000000E+00
 90.72825 1.000000 0.0000000E+00
 90.77879 1.000000 0.0000000E+00
 90.82933 1.000000 0.0000000E+00
 90.87988 1.000000 0.0000000E+00
 90.93043 1.000000 0.0000000E+00
 90.98097 1.000000 0.0000000E+00
 91.03152 1.000000 0.0000000E+00
 91.08206 1.000000 0.0000000E+00
 91.13261 1.000000 0.0000000E+00
 91.18316 1.000000 0.0000000E+00
 91.23370 1.000000 0.0000000E+00
 91.28424 1.000000 0.0000000E+00
 91.33479 1.000000 0.0000000E+00
 91.38533 1.000000 0.0000000E+00
 91.43587 1.000000 0.0000000E+00
 91.48643 1.000000 0.0000000E+00
 91.53697 1.000000 0.0000000E+00
 91.58752 1.000000 0.0000000E+00
 91.63805 1.000000 0.0000000E+00
 91.68860 1.000000 0.0000000E+00
 91.73914 1.000000 0.0000000E+00
 91.78969 1.000000 0.0000000E+00
 91.84024 1.000000 0.0000000E+00
 91.89079 1.000000 0.0000000E+00
 91.94133 1.000000 0.0000000E+00
 91.99187 1.000000 0.0000000E+00
 92.04241 1.000000 0.0000000E+00
 92.09296 1.000000 0.0000000E+00
 92.14350 1.000000 0.0000000E+00
 92.19405 1.000000 0.0000000E+00
 92.24460 1.000000 0.0000000E+00
 92.29514 1.000000 0.0000000E+00
 92.34569 1.000000 0.0000000E+00
 92.39623 1.000000 0.0000000E+00
 92.44678 1.000000 0.0000000E+00
 92.49731 1.000000 0.0000000E+00
 92.54787 1.000000 0.0000000E+00
 92.59841 1.000000 0.0000000E+00
 92.64896 1.000000 0.0000000E+00
 92.69950 1.000000 0.0000000E+00
 92.75005 1.000000 0.0000000E+00
 92.80060 1.000000 0.0000000E+00
 92.85114 1.000000 0.0000000E+00
 92.90168 1.000000 0.0000000E+00
 92.95222 1.000000 0.0000000E+00
 93.00277 1.000000 0.0000000E+00
 93.05331 1.000000 0.0000000E+00
 93.10386 1.000000 0.0000000E+00
 93.15441 1.000000 0.0000000E+00
 93.20496 1.000000 0.0000000E+00
 93.25550 1.000000 0.0000000E+00
 93.30604 1.000000 0.0000000E+00
 93.35658 1.000000 0.0000000E+00
 93.40713 1.000000 0.0000000E+00
 93.45767 1.000000 0.0000000E+00
 93.50822 1.000000 0.0000000E+00
 93.55877 1.000000 0.0000000E+00
 93.60931 1.000000 0.0000000E+00
 93.65986 1.000000 0.0000000E+00
 93.71040 1.000000 0.0000000E+00
 93.76094 1.000000 0.0000000E+00
 93.81149 1.000000 0.0000000E+00
 93.86204 1.000000 0.0000000E+00
 93.91258 1.000000 0.0000000E+00
 93.96313 1.000000 0.0000000E+00
 94.01367 1.000000 0.0000000E+00
 94.06422 1.000000 0.0000000E+00
 94.11477 1.000000 0.0000000E+00
 94.16530 1.000000 0.0000000E+00
 94.21585 1.000000 0.0000000E+00
 94.26640 1.000000 0.0000000E+00
 94.31694 1.000000 0.0000000E+00
 94.36749 1.000000 0.0000000E+00
 94.41803 1.000000 0.0000000E+00
 94.46858 1.000000 0.0000000E+00
 94.51913 1.000000 0.0000000E+00
 94.56966 1.000000 0.0000000E+00
 94.62021 1.000000 0.0000000E+00
 94.67075 1.000000 0.0000000E+00
 94.72130 1.000000 0.0000000E+00
 94.77184 1.000000 0.0000000E+00
 94.82240 1.000000 0.0000000E+00
 94.87294 1.000000 0.0000000E+00
 94.92348 1.000000 0.0000000E+00
 94.97403 1.000000 0.0000000E+00
 95.02457 1.000000 0.0000000E+00
 95.07511 1.000000 0.0000000E+00
 95.12566 1.000000 0.0000000E+00
 95.17621 1.000000 0.0000000E+00
 95.22675 1.000000 0.0000000E+00
 95.27730 1.000000 0.0000000E+00
 95.32784 1.000000 0.0000000E+00
 95.37839 1.000000 0.0000000E+00
 95.42892 1.000000 0.0000000E+00
 95.47947 1.000000 0.0000000E+00
 95.53002 1.000000 0.0000000E+00
 95.58057 1.000000 0.0000000E+00
 95.63111 1.000000 0.0000000E+00
 95.68166 1.000000 0.0000000E+00
 95.73220 1.000000 0.0000000E+00
 95.78275 1.000000 0.0000000E+00
 95.83328 1.000000 0.0000000E+00
 95.88383 1.000000 0.0000000E+00
 95.93438 1.000000 0.0000000E+00
 95.98492 1.000000 0.0000000E+00
 96.03547 1.000000 0.0000000E+00
 96.08601 1.000000 0.0000000E+00
 96.13657 1.000000 0.0000000E+00
 96.18711 1.000000 0.0000000E+00
 96.23766 1.000000 0.0000000E+00
 96.28819 1.000000 0.0000000E+00
 96.33874 1.000000 0.0000000E+00
 96.38928 1.000000 0.0000000E+00
 96.43983 1.000000 0.0000000E+00
 96.49038 1.000000 0.0000000E+00
 96.54092 1.000000 0.0000000E+00
 96.59147 1.000000 0.0000000E+00
 96.64201 1.000000 0.0000000E+00
 96.69255 1.000000 0.0000000E+00
 96.74310 1.000000 0.0000000E+00
 96.79364 1.000000 0.0000000E+00
 96.84419 1.000000 0.0000000E+00
 96.89474 1.000000 0.0000000E+00
 96.94528 1.000000 0.0000000E+00
 96.99583 1.000000 0.0000000E+00
 97.04637 1.000000 0.0000000E+00
 97.09691 1.000000 0.0000000E+00
 97.14745 1.000000 0.0000000E+00
 97.19801 1.000000 0.0000000E+00
 97.24855 1.000000 0.0000000E+00
 97.29910 1.000000 0.0000000E+00
 97.34964 1.000000 0.0000000E+00
 97.40018 1.000000 0.0000000E+00
 97.45074 1.000000 0.0000000E+00
 97.50128 1.000000 0.0000000E+00
 97.55182 1.000000 0.0000000E+00
 97.60236 1.000000 0.0000000E+00
 97.65291 1.000000 0.0000000E+00
 97.70345 1.000000 0.0000000E+00
 97.75400 1.000000 0.0000000E+00
 97.80455 1.000000 0.0000000E+00
 97.85509 1.000000 0.0000000E+00
 97.90564 1.000000 0.0000000E+00
 97.95618 1.000000 0.0000000E+00
 98.00672 1.000000 0.0000000E+00
 98.05727 1.000000 0.0000000E+00
 98.10781 1.000000 0.0000000E+00
 98.15836 1.000000 0.0000000E+00
 98.20891 1.000000 0.0000000E+00
 98.25945 1.000000 0.0000000E+00
 98.31000 1.000000 0.0000000E+00
 98.36053 1.000000 0.0000000E+00
 98.41108 1.000000 0.0000000E+00
 98.46162 1.000000 0.0000000E+00
 98.51218 1.000000 0.0000000E+00
 98.56272 1.000000 0.0000000E+00
 98.61327 1.000000 0.0000000E+00
 98.66381 1.000000 0.0000000E+00
 98.71436 1.000000 0.0000000E+00
 98.76491 1.000000 0.0000000E+00
 98.81544 1.000000 0.0000000E+00
 98.86599 1.000000 0.0000000E+00
 98.91653 1.000000 0.0000000E+00
 98.96708 1.000000 0.0000000E+00
 99.01762 1.000000 0.0000000E+00
 99.06817 1.000000 0.0000000E+00
 99.11872 1.000000 0.0000000E+00
 99.16927 1.000000 0.0000000E+00
 99.21980 1.000000 0.0000000E+00
 99.27035 1.000000 0.0000000E+00
 99.32089 1.000000 0.0000000E+00
 99.37144 1.000000 0.0000000E+00
 99.42198 1.000000 0.0000000E+00
 99.47253 1.000000 0.0000000E+00
 99.52308 1.000000 0.0000000E+00
 99.57362 1.000000 0.0000000E+00
 99.62416 1.000000 0.0000000E+00
 99.67471 1.000000 0.0000000E+00
 99.72525 1.000000 0.0000000E+00
 99.77579 1.000000 0.0000000E+00
 99.82635 1.000000 0.0000000E+00
 99.87689 1.000000 0.0000000E+00
 99.92744 1.000000 0.0000000E+00
 99.97798 1.000000 0.0000000E+00
 100.0285 1.000000 0.0000000E+00
 100.0791 1.000000 0.0000000E+00
 100.1296 1.000000 0.0000000E+00
 100.1802 1.000000 0.0000000E+00
 100.2307 1.000000 0.0000000E+00
 100.2813 1.000000 0.0000000E+00
 100.3318 1.000000 0.0000000E+00
 100.3823 1.000000 0.0000000E+00
 100.4329 1.000000 0.0000000E+00
 100.4834 1.000000 0.0000000E+00
 100.5340 1.000000 0.0000000E+00
 100.5845 1.000000 0.0000000E+00
 100.6351 1.000000 0.0000000E+00
 100.6856 1.000000 0.0000000E+00
 100.7362 1.000000 0.0000000E+00
 100.7867 1.000000 0.0000000E+00
 100.8372 1.000000 0.0000000E+00
 100.8878 1.000000 0.0000000E+00
 100.9383 1.000000 0.0000000E+00
 100.9889 1.000000 0.0000000E+00
 101.0394 1.000000 0.0000000E+00
 101.0900 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osm_ns.0500

 256 5.085148
 0.0000000E+00 1.2953190E-02 2.6035914E-02 3.9249465E-02 5.2595150E-02
 6.6074297E-02 7.9688236E-02 9.3438305E-02 0.1073259 0.1213523
 0.1355190 0.1498274 0.1642789 0.1788749 0.1936168
 0.2085062 0.2235444 0.2387331 0.2540736 0.2695675
 0.2852164 0.3010217 0.3169851 0.3331082 0.3493925
 0.3658396 0.3824512 0.3992289 0.4161743 0.4332893
 0.4505754 0.4680343 0.4856679 0.5034778 0.5214657
 0.5396335 0.5579831 0.5765161 0.5952345 0.6141400
 0.6332346 0.6525201 0.6719984 0.6916717 0.7115416
 0.7316102 0.7518795 0.7723515 0.7930281 0.8139116
 0.8350039 0.8563071 0.8778235 0.8995548 0.9215036
 0.9436718 0.9660617 0.9886755 1.011515 1.034584
 1.057883 1.081415 1.105182 1.129187 1.153432
 1.177920 1.202652 1.227632 1.252861 1.278343
 1.304080 1.330074 1.356327 1.382844 1.409625
 1.436675 1.463995 1.491588 1.519457 1.547605
 1.576034 1.604747 1.633748 1.663039 1.692622
 1.722502 1.752680 1.783160 1.813945 1.845037
 1.876441 1.908159 1.940193 1.972548 2.005227
 2.038233 2.071568 2.105237 2.139242 2.173588
 2.208277 2.243313 2.278699 2.314439 2.350537
 2.386995 2.423818 2.461010 2.498573 2.536512
 2.574830 2.613532 2.652620 2.692100 2.731974
 2.772247 2.812922 2.854005 2.895498 2.937406
 2.979733 3.022484 3.065662 3.109272 3.153317
 3.197804 3.242735 3.288116 3.333950 3.380243
 3.426998 3.474221 3.521917 3.570089 3.618743
 3.667884 3.717516 3.767644 3.818273 3.869409
 3.921056 3.973220 4.025905 4.079118 4.132862
 4.187144 4.241968 4.297341 4.353268 4.409753
 4.466805 4.524426 4.582623 4.641402 4.700769
 4.760729 4.821290 4.882456 4.944234 5.006629
 5.069648 5.133298 5.197584 5.262513 5.328091
 5.394325 5.461222 5.528788 5.597029 5.665952
 5.735565 5.805873 5.876885 5.948607 6.021047
 6.094210 6.168105 6.242740 6.318120 6.394254
 6.471150 6.548815 6.627255 6.706481 6.786499
 6.867317 6.948944 7.031386 7.114654 7.198753
 7.283693 7.369483 7.456131 7.543646 7.632035
 7.721308 7.811475 7.902543 7.994522 8.087420
 8.181249 8.276013 8.371727 8.468397 8.566035
 8.664649 8.764248 8.864843 8.966445 9.069063
 9.172706 9.277387 9.383113 9.489897 9.597750
 9.706681 9.816701 9.927821 10.04005 10.15341
 10.26789 10.38352 10.50031 10.61827 10.73740
 10.85773 10.97926 11.10201 11.22598 11.35119
 11.47766 11.60539 11.73440 11.86469 11.99629
 12.12921 12.26345 12.39904 12.53598 12.67430
 12.81399 12.95509 13.09759 13.24152 13.38689
 13.53371 13.68200 13.83177 13.98304 14.13583
 14.29014 14.44599 14.60340 14.76239 14.92297
 15.08515
 0.0000000E+00 -3.7845448E-04 -7.5361010E-04 -1.1252918E-03 -1.4933198E-03
 -1.8575098E-03 -2.2176732E-03 -2.5736161E-03 -2.9251401E-03 -3.2720417E-03
 -3.6141123E-03 -3.9511379E-03 -4.2828997E-03 -4.6091736E-03 -4.9297288E-03
 -5.2443300E-03 -5.5527356E-03 -5.8546984E-03 -6.1499649E-03 -6.4382753E-03
 -6.7193634E-03 -6.9929571E-03 -7.2587770E-03 -7.5165364E-03 -7.7659432E-03
 -8.0066966E-03 -8.2384888E-03 -8.4610041E-03 -8.6739203E-03 -8.8769048E-03
 -9.0696188E-03 -9.2517138E-03 -9.4228331E-03 -9.5826099E-03 -9.7306697E-03
 -9.8666251E-03 -9.9900831E-03 -1.0100635E-02 -1.0197864E-02 -1.0281344E-02
 -1.0350632E-02 -1.0405277E-02 -1.0444812E-02 -1.0468762E-02 -1.0476630E-02
 -1.0467909E-02 -1.0442078E-02 -1.0398595E-02 -1.0336905E-02 -1.0256434E-02
 -1.0156587E-02 -1.0036753E-02 -9.8962933E-03 -9.7345551E-03 -9.5508555E-03
 -9.3444893E-03 -9.1147218E-03 -8.8607920E-03 -8.5819075E-03 -8.2772421E-03
 -7.9459362E-03 -7.5870920E-03 -7.1997694E-03 -6.7829899E-03 -6.3357218E-03
 -5.8568898E-03 -5.3453580E-03 -4.7999364E-03 -4.2193704E-03 -3.6023343E-03
 -2.9474297E-03 -2.2531766E-03 -1.5180061E-03 -7.4025284E-04 8.1853199E-05
 9.5007510E-04 1.8660658E-03 2.8314593E-03 3.8479448E-03 4.9172682E-03
 6.0412344E-03 7.2217076E-03 8.4606158E-03 9.7599477E-03 1.1121755E-02
 1.2548164E-02 1.4041359E-02 1.5603596E-02 1.7237205E-02 1.8944582E-02
 2.0728199E-02 2.2590602E-02 2.4534408E-02 2.6562309E-02 2.8677084E-02
 3.0881569E-02 3.3178691E-02 3.5571452E-02 3.8062923E-02 4.0656257E-02
 4.3354686E-02 4.6161503E-02 4.9080089E-02 5.2113883E-02 5.5266410E-02
 5.8541238E-02 6.1942022E-02 6.5472469E-02 6.9136344E-02 7.2937459E-02
 7.6879688E-02 8.0966935E-02 8.5203141E-02 8.9592285E-02 9.4138354E-02
 9.8845392E-02 0.1037174 0.1087584 0.1139724 0.1193633
 0.1249352 0.1306919 0.1366372 0.1427750 0.1491088
 0.1556423 0.1623788 0.1693218 0.1764742 0.1838392
 0.1914193 0.1992173 0.2072353 0.2154754 0.2239394
 0.2326286 0.2415443 0.2506871 0.2600573 0.2696550
 0.2794797 0.2895303 0.2998056 0.3103035 0.3210216
 0.3319569 0.3431058 0.3544641 0.3660271 0.3777893
 0.3897446 0.4018863 0.4142069 0.4266984 0.4393520
 0.4521582 0.4651068 0.4781870 0.4913871 0.5046950
 0.5180976 0.5315816 0.5451327 0.5587361 0.5723764
 0.5860379 0.5997041 0.6133583 0.6269832 0.6405612
 0.6540747 0.6675054 0.6808353 0.6940461 0.7071195
 0.7200372 0.7327814 0.7453341 0.7576782 0.7697963
 0.7816722 0.7932898 0.8046342 0.8156909 0.8264461
 0.8368876 0.8470039 0.8567843 0.8662198 0.8753024
 0.8840254 0.8923833 0.9003724 0.9079902 0.9152353
 0.9221081 0.9286104 0.9347451 0.9405169 0.9459314
 0.9509958 0.9557182 0.9601077 0.9641752 0.9679314
 0.9713888 0.9745599 0.9774582 0.9800975 0.9824920
 0.9846562 0.9866045 0.9883513 0.9899113 0.9912984
 0.9925266 0.9936092 0.9945593 0.9953891 0.9961106
 0.9967348 0.9972723 0.9977326 0.9981249 0.9984574
 0.9987379 0.9989730 0.9991691 0.9993316 0.9994656
 0.9995754 0.9996647 0.9997371 0.9997951 0.9998415
 0.9998782 0.9999073 0.9999299 0.9999474 0.9999609
 0.9999712 0.9999790 0.9999849 0.9999892 0.9999924
 0.9999947 0.9999964 0.9999975 0.9999984 0.9999990
 0.9999993 0.9999996 0.9999998 0.9999999 0.9999999
 1.000000
 -2.9486461E-02 -2.8947717E-02 -2.8403599E-02 -2.7854053E-02 -2.7299052E-02
 -2.6738534E-02 -2.6172461E-02 -2.5600789E-02 -2.5023468E-02 -2.4440456E-02
 -2.3851700E-02 -2.3257164E-02 -2.2656793E-02 -2.2050537E-02 -2.1438353E-02
 -2.0820186E-02 -2.0195983E-02 -1.9565700E-02 -1.8929273E-02 -1.8286655E-02
 -1.7637782E-02 -1.6982598E-02 -1.6321043E-02 -1.5653053E-02 -1.4978561E-02
 -1.4297498E-02 -1.3609794E-02 -1.2915370E-02 -1.2214148E-02 -1.1506048E-02
 -1.0790978E-02 -1.0068844E-02 -9.3395496E-03 -8.6029880E-03 -7.8590484E-03
 -7.1076108E-03 -6.3485503E-03 -5.5817277E-03 -4.8069991E-03 -4.0242104E-03
 -3.2331925E-03 -2.4337664E-03 -1.6257397E-03 -8.0890494E-04 1.6961529E-05
 8.5210014E-04 1.6967702E-03 2.5512520E-03 3.4158472E-03 4.2908825E-03
 5.1767095E-03 6.0737100E-03 6.9822967E-03 7.9029128E-03 8.8360449E-03
 9.7822128E-03 1.0741984E-02 1.1715973E-02 1.2704841E-02 1.3709312E-02
 1.4730172E-02 1.5768267E-02 1.6824523E-02 1.7899940E-02 1.8995615E-02
 2.0112734E-02 2.1252586E-02 2.2416588E-02 2.3606271E-02 2.4823310E-02
 2.6069541E-02 2.7346944E-02 2.8657712E-02 3.0004228E-02 3.1389102E-02
 3.2806117E-02 3.4250509E-02 3.5722993E-02 3.7224278E-02 3.8755074E-02
 4.0316131E-02 4.1908152E-02 4.3531869E-02 4.5188010E-02 4.6877287E-02
 4.8600413E-02 5.0358109E-02 5.2151047E-02 5.3979907E-02 5.5845361E-02
 5.7748049E-02 5.9688579E-02 6.1667528E-02 6.3685477E-02 6.5742910E-02
 6.7840338E-02 6.9978170E-02 7.2156802E-02 7.4376546E-02 7.6637670E-02
 7.8940377E-02 8.1284761E-02 8.3670907E-02 8.6098738E-02 8.8568121E-02
 9.1078825E-02 9.3630515E-02 9.6222721E-02 9.8854870E-02 0.1015262
 0.1042360 0.1069831 0.1097665 0.1125849 0.1154366
 0.1183202 0.1212337 0.1241752 0.1271423 0.1301327
 0.1331436 0.1361722 0.1392154 0.1422699 0.1453319
 0.1483978 0.1514634 0.1545245 0.1575763 0.1606141
 0.1636327 0.1666269 0.1695910 0.1725193 0.1754055
 0.1782435 0.1810267 0.1837483 0.1864014 0.1889788
 0.1914733 0.1938775 0.1961837 0.1983843 0.2004716
 0.2024376 0.2042747 0.2059750 0.2075306 0.2089340
 0.2101775 0.2112537 0.2121554 0.2128756 0.2134075
 0.2137448 0.2138815 0.2138119 0.2135310 0.2130340
 0.2123170 0.2113765 0.2102095 0.2088141 0.2071887
 0.2053325 0.2032461 0.2009303 0.1983867 0.1956182
 0.1926285 0.1894223 0.1860049 0.1823830 0.1785639
 0.1745562 0.1703690 0.1660128 0.1614985 0.1568382
 0.1520446 0.1471314 0.1421127 0.1370037 0.1318195
 0.1265761 0.1212899 0.1159773 0.1106552 0.1053402
 0.1000492 9.4798841E-02 8.9605354E-02 8.4484436E-02 7.9451501E-02
 7.4521221E-02 6.9707327E-02 6.5022849E-02 6.0479738E-02 5.6089226E-02
 5.1860899E-02 4.7802906E-02 4.3922596E-02 4.0226292E-02 3.6717910E-02
 3.3400703E-02 3.0276673E-02 2.7346050E-02 2.4608161E-02 2.2060812E-02
 1.9700360E-02 1.7522719E-02 1.5522756E-02 1.3694031E-02 1.2029041E-02
 1.0520540E-02 9.1600232E-03 7.9393825E-03 6.8492307E-03 5.8803759E-03
 5.0242683E-03 4.2711901E-03 3.6123754E-03 3.0394734E-03 2.5435488E-03
 2.1171300E-03 1.7525012E-03 1.4423237E-03 1.1801581E-03 9.5965690E-04
 7.7577366E-04 6.2328984E-04 4.9735024E-04 3.9441281E-04 3.1043205E-04
 2.4292133E-04 1.8863658E-04 1.4529176E-04 1.1082358E-04 8.4177933E-05
 6.3392967E-05 4.7364574E-05 3.4846100E-05 2.5430583E-05 1.8324585E-05
 1.3289405E-05 9.3194976E-06 6.5106838E-06 4.5131565E-06 3.0238468E-06
 2.0292762E-06 1.2361309E-06 8.9608614E-07 3.8345638E-07 3.6794921E-07
 3.4435138E-07
 71 81
 0.4999993 0.5499994 0.5999994 0.6499995 0.6999996
 0.7499996 0.7999997 0.8499998 0.8999999 0.9499999
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000001 -0.8499999 -0.8000000
 -0.7500000 -0.7000000 -0.6500001 -0.5999999 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -9.9999905E-02 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1500001 0.2000000
 0.2500000 0.3000000 0.3499999 0.4000001 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 5.4249059E-02 5.4336529E-02 5.4142375E-02 5.3690244E-02 5.3004973E-02
 5.2112110E-02 5.1037379E-02 4.9806178E-02 4.8443209E-02 4.6972085E-02
 4.5415062E-02 4.3792844E-02 4.2124435E-02 4.0427048E-02 3.8716074E-02
 3.7005119E-02 3.5306033E-02 3.3629026E-02 3.1982724E-02 3.0374322E-02
 2.8809706E-02 2.7293554E-02 2.5829492E-02 2.4420209E-02 2.3067547E-02
 2.1772658E-02 2.0536067E-02 1.9357771E-02 1.8237343E-02 1.7173966E-02
 1.6166547E-02 1.5213725E-02 1.4313940E-02 1.3465500E-02 1.2666558E-02
 1.1915191E-02 1.1209400E-02 1.0547118E-02 9.9262623E-03 9.3446970E-03
 8.8002915E-03 8.2909148E-03 7.8144437E-03 7.3687839E-03 6.9519058E-03
 6.5618115E-03 6.1966050E-03 5.8544851E-03 5.5337558E-03 5.2328184E-03
 4.9502128E-03 4.6845907E-03 4.4346978E-03 4.1994136E-03 3.9777085E-03
 3.7686347E-03 3.5713429E-03 3.3850591E-03 3.2090594E-03 3.0427016E-03
 2.8853884E-03 2.7365589E-03 2.5957176E-03 2.4623871E-03 2.3361295E-03
 2.2165480E-03 2.1032556E-03 1.9959069E-03 1.8941631E-03 1.7977154E-03
 1.7062770E-03
 8.1651129E-02 7.5772449E-02 7.0101812E-02 6.4657345E-02 5.9453525E-02
 5.4501351E-02 4.9808383E-02 4.5378927E-02 4.1214276E-02 3.7312958E-02
 3.3671115E-02 3.0282805E-02 2.7140351E-02 2.4234677E-02 2.1555623E-02
 1.9092256E-02 1.6833100E-02 1.4766390E-02 1.2880265E-02 1.1162926E-02
 9.6027991E-03 8.1886183E-03 6.9095260E-03 5.7551330E-03 4.7155712E-03
 3.7815082E-03 2.9441719E-03 2.1953552E-03 1.5274144E-03 9.3325775E-04
 4.0632725E-04 -5.9416896E-05 -4.6952293E-04 -8.2906388E-04 -1.1426766E-03
 -1.4145795E-03 -1.6486067E-03 -1.8482357E-03 -2.0166228E-03 -2.1566313E-03
 -2.2708718E-03 -2.3617286E-03 -2.4313924E-03 -2.4818894E-03 -2.5151046E-03
 -2.5328046E-03 -2.5366487E-03 -2.5281995E-03 -2.5089215E-03 -2.4802031E-03
 -2.4433285E-03 -2.3994914E-03 -2.3498044E-03 -2.2952729E-03 -2.2368180E-03
 -2.1752696E-03 -2.1113742E-03 -2.0457834E-03 -1.9790910E-03 -1.9118023E-03
 -1.8443634E-03 -1.7771607E-03 -1.7105181E-03 -1.6447193E-03 -1.5799981E-03
 -1.5165468E-03 -1.4545287E-03 -1.3940667E-03 -1.3352685E-03 -1.2782065E-03
 -1.2229367E-03
 5.4307733E-02 5.4394774E-02 5.4200076E-02 5.3747315E-02 5.3061344E-02
 5.2167717E-02 5.1092174E-02 4.9860127E-02 4.8496291E-02 4.7024295E-02
 4.5466397E-02 4.3843329E-02 4.2174086E-02 4.0475890E-02 3.8764153E-02
 3.7052471E-02 3.5352714E-02 3.3675075E-02 3.2028198E-02 3.0419279E-02
 2.8854202E-02 2.7337646E-02 2.5873234E-02 2.4463652E-02 2.3110751E-02
 2.1815686E-02 2.0578954E-02 1.9400576E-02 1.8280100E-02 1.7216714E-02
 1.6209321E-02 1.5256540E-02 1.4356819E-02 1.3508444E-02 1.2709551E-02
 1.1958213E-02 1.1252403E-02 1.0590049E-02 9.9690482E-03 9.3872529E-03
 8.8425195E-03 8.3326939E-03 7.8556603E-03 7.4093188E-03 6.9916286E-03
 6.6006160E-03 6.2344060E-03 5.8911922E-03 5.5692918E-03 5.2671400E-03
 4.9832934E-03 4.7163973E-03 4.4652373E-03 4.2286958E-03 4.0057437E-03
 3.7954499E-03 3.5969776E-03 3.4095389E-03 3.2324269E-03 3.0650019E-03
 2.9066559E-03 2.7568426E-03 2.6150590E-03 2.4808215E-03 2.3537078E-03
 2.2333011E-03 2.1192245E-03 2.0111250E-03 1.9086644E-03 1.8115410E-03
 1.7194520E-03
 8.1607290E-02 7.5727426E-02 7.0055693E-02 6.4610213E-02 5.9405502E-02
 5.4452520E-02 4.9758866E-02 4.5328844E-02 4.1163720E-02 3.7262052E-02
 3.3619959E-02 3.0231491E-02 2.7088985E-02 2.4183352E-02 2.1504423E-02
 1.9041263E-02 1.6782384E-02 1.4716031E-02 1.2830327E-02 1.1113470E-02
 9.5538870E-03 8.1403097E-03 6.8618762E-03 5.7082046E-03 4.6694120E-03
 3.7361723E-03 2.8997215E-03 2.1518448E-03 1.4849101E-03 8.9182222E-04
 3.6602878E-04 -9.8505363E-05 -5.0732895E-04 -8.6551037E-04 -1.1776818E-03
 -1.4480642E-03 -1.6804942E-03 -1.8784545E-03 -2.0451085E-03 -2.1833344E-03
 -2.2957558E-03 -2.3847753E-03 -2.4526042E-03 -2.5012922E-03 -2.5327455E-03
 -2.5487503E-03 -2.5509812E-03 -2.5410168E-03 -2.5203365E-03 -2.4903265E-03
 -2.4522732E-03 -2.4073785E-03 -2.3567406E-03 -2.3013633E-03 -2.2421626E-03
 -2.1799621E-03 -2.1154904E-03 -2.0494070E-03 -1.9822849E-03 -1.9146234E-03
 -1.8468711E-03 -1.7794006E-03 -1.7125302E-03 -1.6465437E-03 -1.5816631E-03
 -1.5180836E-03 -1.4559617E-03 -1.3954185E-03 -1.3365551E-03 -1.2794434E-03
 -1.2241422E-03
 5.4373644E-02 5.4460205E-02 5.4264903E-02 5.3811446E-02 5.3124685E-02
 5.2230205E-02 5.1153749E-02 4.9920764E-02 4.8555959E-02 4.7082979E-02
 4.5524113E-02 4.3900084E-02 4.2229913E-02 4.0530823E-02 3.8818225E-02
 3.7105732E-02 3.5405215E-02 3.3726882E-02 3.2079365E-02 3.0469863E-02
 2.8904263E-02 2.7387254E-02 2.5922453E-02 2.4512546E-02 2.3159377E-02
 2.1864090E-02 2.0627208E-02 1.9448727E-02 1.8328188E-02 1.7264787E-02
 1.6257400E-02 1.5304650E-02 1.4404976E-02 1.3556633E-02 1.2757769E-02
 1.2006426E-02 1.1300556E-02 1.0638080E-02 1.0016865E-02 9.4347596E-03
 8.8895978E-03 8.3792293E-03 7.9015130E-03 7.4543562E-03 7.0357365E-03
 6.6436795E-03 6.2763053E-03 5.9318473E-03 5.6086462E-03 5.3051398E-03
 5.0198948E-03 4.7515905E-03 4.4990289E-03 4.2610844E-03 4.0367534E-03
 3.8251157E-03 3.6253307E-03 3.4366199E-03 3.2582874E-03 3.0896778E-03
 2.9301923E-03 2.7792966E-03 2.6364664E-03 2.5012351E-03 2.3731638E-03
 2.2518516E-03 2.1369064E-03 2.0279780E-03 1.9247278E-03 1.8268470E-03
 1.7340356E-03
 8.1558093E-02 7.5676903E-02 7.0003934E-02 6.4557329E-02 5.9351604E-02
 5.4397743E-02 4.9703319E-02 4.5272648E-02 4.1107010E-02 3.7204951E-02
 3.3562578E-02 3.0173950E-02 2.7031390E-02 2.4125800E-02 2.1447018E-02
 1.8984098E-02 1.6725549E-02 1.4659598E-02 1.2774376E-02 1.1058075E-02
 9.4991187E-03 8.0862325E-03 6.8085534E-03 5.6556971E-03 4.6177870E-03
 3.6854984E-03 2.8500573E-03 2.1032591E-03 1.4374750E-03 8.4560848E-04
 3.2111607E-04 -1.4203782E-04 -5.4939819E-04 -9.0602826E-04 -1.2165634E-03
 -1.4852250E-03 -1.7158497E-03 -1.9119307E-03 -2.0766407E-03 -2.2128720E-03
 -2.3232666E-03 -2.4102475E-03 -2.4760494E-03 -2.5227440E-03 -2.5522616E-03
 -2.5664088E-03 -2.5668817E-03 -2.5552681E-03 -2.5330556E-03 -2.5016393E-03
 -2.4623116E-03 -2.4162633E-03 -2.3645919E-03 -2.3082974E-03 -2.2482865E-03
 -2.1853715E-03 -2.1202746E-03 -2.0536489E-03 -1.9860542E-03 -1.9179924E-03
 -1.8498936E-03 -1.7821230E-03 -1.7150050E-03 -1.6488089E-03 -1.5837557E-03
 -1.5200323E-03 -1.4577915E-03 -1.3971545E-03 -1.3382196E-03 -1.2810543E-03
 -1.2257141E-03
 5.4447696E-02 5.4533713E-02 5.4337751E-02 5.3883504E-02 5.3195868E-02
 5.2300435E-02 5.1222965E-02 4.9988918E-02 4.8623033E-02 4.7148969E-02
 4.5589015E-02 4.3963913E-02 4.2292703E-02 4.0592603E-02 3.8879052E-02
 3.7165660E-02 3.5464294E-02 3.3785176E-02 3.2136943E-02 3.0526794E-02
 2.8960617E-02 2.7443096E-02 2.5977856E-02 2.4567576E-02 2.3214102E-02
 2.1918580E-02 2.0681515E-02 1.9502897E-02 1.8382283E-02 1.7318843E-02
 1.6311444E-02 1.5358713E-02 1.4459047E-02 1.3610716E-02 1.2811840E-02
 1.2060440E-02 1.1354451E-02 1.0691781E-02 1.0070267E-02 9.4877519E-03
 8.9420537E-03 8.4310099E-03 7.9524778E-03 7.5043715E-03 7.0846588E-03
 6.6913841E-03 6.3227066E-03 5.9768497E-03 5.6521674E-03 5.3471411E-03
 5.0603496E-03 4.7904854E-03 4.5363549E-03 4.2968597E-03 4.0710140E-03
 3.8578932E-03 3.6566567E-03 3.4665456E-03 3.2868574E-03 3.1169446E-03
 2.9562141E-03 2.8041140E-03 2.6601332E-03 2.5238052E-03 2.3946848E-03
 2.2723626E-03 2.1564611E-03 2.0466123E-03 1.9424856E-03 1.8437717E-03
 1.7501612E-03
 8.1502885E-02 7.5620204E-02 6.9945849E-02 6.4497992E-02 5.9291132E-02
 5.4336276E-02 4.9640998E-02 4.5209613E-02 4.1043401E-02 3.7140898E-02
 3.3498220E-02 3.0109417E-02 2.6966801E-02 2.4061281E-02 2.1382671E-02
 1.8920029E-02 1.6661851E-02 1.4596372E-02 1.2711705E-02 1.0996042E-02
 9.4378013E-03 8.0257114E-03 6.7488984E-03 5.5969832E-03 4.5600850E-03
 3.6288793E-03 2.7945985E-03 2.0490433E-03 1.3845747E-03 7.9410680E-04
 2.7110387E-04 -1.9047450E-04 -5.9616187E-04 -9.5102639E-04 -1.2597028E-03
 -1.5264135E-03 -1.7549996E-03 -1.9489666E-03 -2.1114957E-03 -2.2455005E-03
 -2.3536396E-03 -2.4383615E-03 -2.5019269E-03 -2.5464301E-03 -2.5738294E-03
 -2.5859498E-03 -2.5845033E-03 -2.5710959E-03 -2.5472245E-03 -2.5142881E-03
 -2.4735727E-03 -2.4262753E-03 -2.3734858E-03 -2.3161958E-03 -2.2553026E-03
 -2.1916099E-03 -2.1258369E-03 -2.0586210E-03 -1.9905120E-03 -1.9220089E-03
 -1.8535273E-03 -1.7854337E-03 -1.7180417E-03 -1.6516100E-03 -1.5863625E-03
 -1.5224797E-03 -1.4601066E-03 -1.3993678E-03 -1.3403510E-03 -1.2831221E-03
 -1.2277369E-03
 5.4530900E-02 5.4616317E-02 5.4419611E-02 5.3964496E-02 5.3275883E-02
 5.2379381E-02 5.1300779E-02 5.0065555E-02 4.8698459E-02 4.7223173E-02
 4.5662005E-02 4.4035714E-02 4.2363334E-02 4.0662121E-02 3.8947497E-02
 3.7233096E-02 3.5530787E-02 3.3850793E-02 3.2201760E-02 3.0590890E-02
 2.9024065E-02 2.7505979E-02 2.6040241E-02 2.4629541E-02 2.3275722E-02
 2.1979922E-02 2.0742644E-02 1.9563871E-02 1.8443149E-02 1.7379636E-02
 1.6372202E-02 1.5419446E-02 1.4519762E-02 1.3671399E-02 1.2872451E-02
 1.2120922E-02 1.1414744E-02 1.0751775E-02 1.0129862E-02 9.5468201E-03
 9.0004429E-03 8.4885722E-03 8.0090696E-03 7.5598373E-03 7.1388595E-03
 6.7442046E-03 6.3740178E-03 6.0265721E-03 5.7002432E-03 5.3935181E-03
 5.1049939E-03 4.8333914E-03 4.5775371E-03 4.3363343E-03 4.1088057E-03
 3.8940411E-03 3.6912127E-03 3.4995626E-03 3.3183822E-03 3.1470300E-03
 2.9849245E-03 2.8314977E-03 2.6862565E-03 2.5487116E-03 2.4184324E-03
 2.2950037E-03 2.1780427E-03 2.0671838E-03 1.9620946E-03 1.8624525E-03
 1.7679649E-03
 8.1440926E-02 7.5556569E-02 6.9880672E-02 6.4431407E-02 5.9223279E-02
 5.4267310E-02 4.9571078E-02 4.5138896E-02 4.0972043E-02 3.7069056E-02
 3.3426050E-02 3.0037051E-02 2.6894387E-02 2.3988949E-02 2.1310549E-02
 1.8848231E-02 1.6590493E-02 1.4525550E-02 1.2641524E-02 1.0926595E-02
 9.3691805E-03 7.9579987E-03 6.6821855E-03 5.5313515E-03 4.4956198E-03
 3.5656607E-03 2.7327137E-03 1.9885772E-03 1.3256217E-03 7.3676492E-04
 2.1546577E-04 -2.4430701E-04 -6.4808666E-04 -1.0009410E-03 -1.3075033E-03
 -1.5720015E-03 -1.7982885E-03 -1.9898757E-03 -2.1499651E-03 -2.2814858E-03
 -2.3871232E-03 -2.4693497E-03 -2.5304519E-03 -2.5725535E-03 -2.5976375E-03
 -2.6075486E-03 -2.6040191E-03 -2.5886693E-03 -2.5629997E-03 -2.5284148E-03
 -2.4862059E-03 -2.4375604E-03 -2.3835588E-03 -2.3251921E-03 -2.2633458E-03
 -2.1988160E-03 -2.1323059E-03 -2.0644430E-03 -1.9957782E-03 -1.9267921E-03
 -1.8578923E-03 -1.7894463E-03 -1.7217502E-03 -1.6550629E-03 -1.5895999E-03
 -1.5255376E-03 -1.4630193E-03 -1.4021620E-03 -1.3430486E-03 -1.2857498E-03
 -1.2303091E-03
 5.4624416E-02 5.4709166E-02 5.4511633E-02 5.4055545E-02 5.3365838E-02
 5.2468143E-02 5.1388282E-02 5.0151739E-02 4.8783299E-02 4.7306649E-02
 4.5744129E-02 4.4116501E-02 4.2442825E-02 4.0740363E-02 3.9024547E-02
 3.7309013E-02 3.5605654E-02 3.3924688E-02 3.2274760E-02 3.0663073E-02
 2.9095527E-02 2.7576804E-02 2.6110513E-02 2.4699342E-02 2.3345128E-02
 2.2049004E-02 2.0811467E-02 1.9632502E-02 1.8511636E-02 1.7448019E-02
 1.6440505E-02 1.5487681E-02 1.4587928E-02 1.3739461E-02 1.2940370E-02
 1.2188633E-02 1.1482151E-02 1.0818772E-02 1.0196325E-02 9.6125929E-03
 9.0653757E-03 8.5525066E-03 8.0718342E-03 7.6212762E-03 7.1988376E-03
 6.8025845E-03 6.4306920E-03 6.0814586E-03 5.7532690E-03 5.4446375E-03
 5.1541990E-03 4.8806756E-03 4.6228981E-03 4.3798080E-03 4.1504293E-03
 3.9338563E-03 3.7292771E-03 3.5359228E-03 3.3531045E-03 3.1801809E-03
 3.0165538E-03 2.8616739E-03 2.7150353E-03 2.5761572E-03 2.4446037E-03
 2.3199555E-03 2.2018263E-03 2.0898532E-03 1.9837008E-03 1.8830401E-03
 1.7875817E-03
 8.1371382E-02 7.5485162E-02 6.9807529E-02 6.4356677E-02 5.9147142E-02
 5.4189935E-02 4.9492635E-02 4.5059573E-02 4.0892005E-02 3.6988486E-02
 3.3345114E-02 2.9955920E-02 2.6813211E-02 2.3907874E-02 2.1229722E-02
 1.8767787E-02 1.6510554E-02 1.4446242E-02 1.2562958E-02 1.0848878E-02
 9.2924144E-03 7.8822812E-03 6.6076163E-03 5.4580267E-03 4.4236332E-03
 3.4951151E-03 2.6637064E-03 1.9212050E-03 1.2599888E-03 6.7297684E-04
 1.5363352E-04 -3.0407018E-04 -7.0567115E-04 -1.0562311E-03 -1.3603924E-03
 -1.6223880E-03 -1.8460803E-03 -2.0349957E-03 -2.1923569E-03 -2.3211131E-03
 -2.4239784E-03 -2.5034528E-03 -2.5618521E-03 -2.6013292E-03 -2.6238875E-03
 -2.6314014E-03 -2.6256188E-03 -2.6081649E-03 -2.5805586E-03 -2.5441998E-03
 -2.5003764E-03 -2.4502745E-03 -2.3949747E-03 -2.3354467E-03 -2.2725717E-03
 -2.2071323E-03 -2.1398247E-03 -2.0712661E-03 -2.0019964E-03 -1.9324804E-03
 -1.8631320E-03 -1.7942943E-03 -1.7262638E-03 -1.6592960E-03 -1.5935948E-03
 -1.5293341E-03 -1.4666532E-03 -1.4056605E-03 -1.3464394E-03 -1.2890586E-03
 -1.2335535E-03
 5.4729525E-02 5.4813541E-02 5.4615084E-02 5.4157920E-02 5.3466994E-02
 5.2567977E-02 5.1486704E-02 5.0248694E-02 4.8878748E-02 4.7400583E-02
 4.5836549E-02 4.4207435E-02 4.2532310E-02 4.0828452E-02 3.9111301E-02
 3.7394520E-02 3.5689980E-02 3.4007926E-02 3.2357000E-02 3.0744411E-02
 2.9176055E-02 2.7656609E-02 2.6189690E-02 2.4777982E-02 2.3423322E-02
 2.2126824E-02 2.0888986E-02 1.9709773E-02 1.8588714E-02 1.7524939E-02
 1.6517295E-02 1.5564336E-02 1.4664432E-02 1.3815785E-02 1.3016452E-02
 1.2264383E-02 1.1557469E-02 1.0893535E-02 1.0270368E-02 9.6857641E-03
 9.1375103E-03 8.6234175E-03 8.1413575E-03 7.6892483E-03 7.2651119E-03
 6.8670232E-03 6.4932038E-03 6.1419457E-03 5.8116713E-03 5.5009238E-03
 5.2083428E-03 4.9326783E-03 4.6727955E-03 4.4276221E-03 4.1962001E-03
 3.9776410E-03 3.7711281E-03 3.5759055E-03 3.3912894E-03 3.2166287E-03
 3.0513355E-03 2.8948644E-03 2.7466912E-03 2.6063432E-03 2.4733876E-03
 2.3473969E-03 2.2279830E-03 2.1147844E-03 2.0074614E-03 1.9056810E-03
 1.8091549E-03
 8.1293337E-02 7.5405024E-02 6.9725454E-02 6.4272836E-02 5.9061721E-02
 5.4103121E-02 4.9404636E-02 4.4970587E-02 4.0802237E-02 3.6898129E-02
 3.3254363E-02 2.9864954E-02 2.6722217E-02 2.3817018E-02 2.1139164E-02
 1.8677672E-02 1.6421035E-02 1.4357454E-02 1.2475025E-02 1.0761929E-02
 9.2065642E-03 7.7976505E-03 6.5243118E-03 5.3761606E-03 4.3433132E-03
 3.4164530E-03 2.5868141E-03 1.8462022E-03 1.1869899E-03 6.0210185E-04
 8.5002554E-05 -3.7033195E-04 -7.6943904E-04 -1.1173879E-03 -1.4188233E-03
 -1.6779861E-03 -1.8987558E-03 -2.0846766E-03 -2.2389912E-03 -2.3646792E-03
 -2.4644805E-03 -2.5409285E-03 -2.5963699E-03 -2.6329828E-03 -2.6528027E-03
 -2.6577211E-03 -2.6495012E-03 -2.6297853E-03 -2.6000931E-03 -2.5618249E-03
 -2.5162718E-03 -2.4646113E-03 -2.4079089E-03 -2.3471350E-03 -2.2831534E-03
 -2.2167352E-03 -2.1485686E-03 -2.0792577E-03 -2.0093273E-03 -1.9392446E-03
 -1.8694007E-03 -1.8001350E-03 -1.7317440E-03 -1.6644645E-03 -1.5985006E-03
 -1.5340202E-03 -1.4711550E-03 -1.4100132E-03 -1.3506709E-03 -1.2931919E-03
 -1.2376114E-03
 5.4847702E-02 5.4930910E-02 5.4731432E-02 5.4273061E-02 5.3580787E-02
 5.2680295E-02 5.1597446E-02 5.0357800E-02 4.8986178E-02 4.7506321E-02
 4.5940600E-02 4.4309825E-02 4.2633086E-02 4.0927675E-02 3.9209042E-02
 3.7490852E-02 3.5785004E-02 3.4101736E-02 3.2449692E-02 3.0836098E-02
 2.9266827E-02 2.7746575E-02 2.6278956E-02 2.4866633E-02 2.3511447E-02
 2.2214508E-02 2.0976309E-02 1.9796792E-02 1.8675473E-02 1.7611472E-02
 1.6603613E-02 1.5650436E-02 1.4750287E-02 1.3901336E-02 1.3101623E-02
 1.2349077E-02 1.1641561E-02 1.0976867E-02 1.0352786E-02 9.7670872E-03
 9.2175454E-03 8.7019866E-03 8.2182791E-03 7.7643553E-03 7.3382421E-03
 6.9380645E-03 6.5620430E-03 6.2084999E-03 5.8758981E-03 5.5627855E-03
 5.2678254E-03 4.9898042E-03 4.7275797E-03 4.4801096E-03 4.2464482E-03
 4.0257024E-03 3.8170647E-03 3.6197992E-03 3.4332017E-03 3.2566376E-03
 3.0895206E-03 2.9312896E-03 2.7814351E-03 2.6394855E-03 2.5049823E-03
 2.3775173E-03 2.2566984E-03 2.1421509E-03 2.0335373E-03 1.9305267E-03
 1.8328235E-03
 8.1205741E-02 7.5315073E-02 6.9633335E-02 6.4178757E-02 5.8965873E-02
 5.4005727E-02 4.9305927E-02 4.4870775E-02 4.0701561E-02 3.6796808E-02
 3.3152610E-02 2.9762989E-02 2.6620233E-02 2.3715209E-02 2.1037715E-02
 1.8576758E-02 1.6320815E-02 1.4258081E-02 1.2376653E-02 1.0664694E-02
 9.1106091E-03 7.7031027E-03 6.4313007E-03 5.2848137E-03 4.2537595E-03
 3.3288188E-03 2.5012237E-03 1.7627880E-03 1.1058868E-03 5.2344491E-04
 8.9265986E-06 -4.4369293E-04 -8.3995127E-04 -1.1849237E-03 -1.4832641E-03
 -1.7392279E-03 -1.9567113E-03 -2.1392794E-03 -2.2902032E-03 -2.4124929E-03
 -2.5089183E-03 -2.5820471E-03 -2.6342582E-03 -2.6677637E-03 -2.6846172E-03
 -2.6867350E-03 -2.6758937E-03 -2.6537480E-03 -2.6218167E-03 -2.5815063E-03
 -2.5341017E-03 -2.4807693E-03 -2.4225705E-03 -2.3604585E-03 -2.2952885E-03
 -2.2278209E-03 -2.1587305E-03 -2.0886057E-03 -2.0179688E-03 -1.9472651E-03
 -1.8768841E-03 -1.8071588E-03 -1.7383684E-03 -1.6707471E-03 -1.6044956E-03
 -1.5397713E-03 -1.4767017E-03 -1.4153904E-03 -1.3559120E-03 -1.2983211E-03
 -1.2426530E-03
 5.4980610E-02 5.5062920E-02 5.4862309E-02 5.4402605E-02 5.3708825E-02
 5.2806690E-02 5.1722091E-02 5.0480623E-02 4.9107131E-02 4.7625389E-02
 4.6057791E-02 4.4425163E-02 4.2746630E-02 4.1039478E-02 3.9319195E-02
 3.7599448E-02 3.5892133E-02 3.4207504E-02 3.2554220E-02 3.0939488E-02
 2.9369200E-02 2.7848044E-02 2.6379617E-02 2.4966598E-02 2.3610808E-02
 2.2313347E-02 2.1074699E-02 1.9894795E-02 1.8773131E-02 1.7708810E-02
 1.6700633E-02 1.5747117E-02 1.4846588E-02 1.3997181E-02 1.3196921E-02
 1.2443697E-02 1.1735355E-02 1.1069674E-02 1.0444422E-02 9.8573463E-03
 9.3062371E-03 8.7889154E-03 8.3032520E-03 7.8472095E-03 7.4188313E-03
 7.0162551E-03 6.6377311E-03 6.2816334E-03 5.9464108E-03 5.6306645E-03
 5.3330790E-03 5.0524403E-03 4.7876341E-03 4.5376415E-03 4.3015038E-03
 4.0783607E-03 3.8674029E-03 3.6678845E-03 3.4791199E-03 3.3004740E-03
 3.1313496E-03 2.9711963E-03 2.8195048E-03 2.6757852E-03 2.5395935E-03
 2.4105192E-03 2.2881506E-03 2.1721218E-03 2.0620949E-03 1.9577385E-03
 1.8587342E-03
 8.1107423E-02 7.5214125E-02 6.9529966E-02 6.4073175E-02 5.8858324E-02
 5.3896464E-02 4.9195189E-02 4.4758830E-02 4.0588658E-02 3.6683202E-02
 3.3038545E-02 2.9648704E-02 2.6505955E-02 2.3601163E-02 2.0924099E-02
 1.8463772E-02 1.6208649E-02 1.4146913E-02 1.2266650E-02 1.0556019E-02
 9.0034166E-03 7.5975438E-03 6.3275285E-03 5.1829722E-03 4.1539948E-03
 3.2312768E-03 2.4060525E-03 1.6701343E-03 1.0159005E-03 4.3627483E-04
 -7.5276905E-05 -5.2478252E-04 -9.1778766E-04 -1.2593722E-03 -1.5542060E-03
 -1.8065610E-03 -2.0203539E-03 -2.1991804E-03 -2.3463396E-03 -2.4648744E-03
 -2.5575941E-03 -2.6270968E-03 -2.6757969E-03 -2.7059335E-03 -2.7195853E-03
 -2.7186905E-03 -2.7050420E-03 -2.6802938E-03 -2.6459731E-03 -2.6034850E-03
 -2.5541005E-03 -2.4989848E-03 -2.4391883E-03 -2.3756453E-03 -2.3092078E-03
 -2.2406164E-03 -2.1705308E-03 -2.0995373E-03 -2.0281333E-03 -1.9567620E-03
 -1.8858021E-03 -1.8155732E-03 -1.7463469E-03 -1.6783556E-03 -1.6117860E-03
 -1.5467893E-03 -1.4834931E-03 -1.4219939E-03 -1.3623569E-03 -1.3046381E-03
 -1.2488735E-03
 5.5130135E-02 5.5211443E-02 5.5009577E-02 5.4548394E-02 5.3852942E-02
 5.2948982E-02 5.1862441E-02 5.0618939E-02 4.9243368E-02 4.7759522E-02
 4.6189837E-02 4.4555154E-02 4.2874612E-02 4.1165531E-02 3.9443407E-02
 3.7721913E-02 3.6012970E-02 3.4326829E-02 3.2672152E-02 3.1056145E-02
 2.9484715E-02 2.7962524E-02 2.6493186E-02 2.5079366E-02 2.3722863E-02
 2.2424782E-02 2.1185579E-02 2.0005180E-02 1.8883059E-02 1.7818291E-02
 1.6809655E-02 1.5855644E-02 1.4954552E-02 1.4104494E-02 1.3303459E-02
 1.2549313E-02 1.1839882E-02 1.1172915E-02 1.0546171E-02 9.9574029E-03
 9.4043892E-03 8.8849505E-03 8.3969897E-03 7.9384809E-03 7.5074816E-03
 7.1021728E-03 6.7208344E-03 6.3618445E-03 6.0237008E-03 5.7050325E-03
 5.4045250E-03 5.1209969E-03 4.8533543E-03 4.6005780E-03 4.3617315E-03
 4.1359589E-03 3.9224476E-03 3.7204702E-03 3.5293354E-03 3.3484038E-03
 3.1770859E-03 3.0148313E-03 2.8611193E-03 2.7154696E-03 2.5774336E-03
 2.4465823E-03 2.3225197E-03 2.2048792E-03 2.0933028E-03 1.9874587E-03
 1.8870435E-03
 8.0997065E-02 7.5100832E-02 6.9413967E-02 6.3954718E-02 5.8737665E-02
 5.3773884E-02 4.9070977E-02 4.4633284E-02 4.0462058E-02 3.6555842E-02
 3.2910697E-02 2.9520638E-02 2.6377933E-02 2.3473429E-02 2.0796893E-02
 1.8337322E-02 1.6083164E-02 1.4022597E-02 1.2143699E-02 1.0434621E-02
 8.8837473E-03 7.4797850E-03 6.2118457E-03 5.0695324E-03 4.0429714E-03
 3.1228333E-03 2.3003574E-03 1.5673542E-03 9.1619964E-04 3.3982139E-04
 -1.6832049E-04 -6.1425875E-04 -1.0035480E-03 -1.3412837E-03 -1.6321507E-03
 -1.8804428E-03 -2.0901074E-03 -2.2647672E-03 -2.4077590E-03 -2.5221631E-03
 -2.6108243E-03 -2.6763792E-03 -2.7212726E-03 -2.7477744E-03 -2.7579891E-03
 -2.7538675E-03 -2.7372150E-03 -2.7096933E-03 -2.6728290E-03 -2.6280174E-03
 -2.5765314E-03 -2.5195205E-03 -2.4580215E-03 -2.3929586E-03 -2.3251681E-03
 -2.2553722E-03 -2.1842283E-03 -2.1122964E-03 -2.0400723E-03 -1.9679854E-03
 -1.8963967E-03 -1.8256223E-03 -1.7559259E-03 -1.6875264E-03 -1.6206063E-03
 -1.5553145E-03 -1.4917665E-03 -1.4300508E-03 -1.3702387E-03 -1.3123761E-03
 -1.2564900E-03
 5.5298377E-02 5.5378601E-02 5.5175353E-02 5.4712530E-02 5.4015223E-02
 5.3109232E-02 5.2020531E-02 5.0774775E-02 4.9396895E-02 4.7910713E-02
 4.6338696E-02 4.4701725E-02 4.3018952E-02 4.1307721E-02 3.9583541E-02
 3.7860107E-02 3.6149345E-02 3.4461509E-02 3.2805271E-02 3.1187845E-02
 2.9615115E-02 2.8091758E-02 2.6621377E-02 2.5206614E-02 2.3849277E-02
 2.2550451E-02 2.1310557E-02 2.0129519E-02 1.9006781E-02 1.7941399E-02
 1.6932119E-02 1.5977407E-02 1.5075517E-02 1.4224551E-02 1.3422458E-02
 1.2667081E-02 1.1956221E-02 1.1287614E-02 1.0659015E-02 1.0068158E-02
 9.5128333E-03 8.9908894E-03 8.5002305E-03 8.0388496E-03 7.6048574E-03
 7.1964422E-03 6.8119047E-03 6.4496808E-03 6.1082882E-03 5.7863509E-03
 5.4826159E-03 5.1959092E-03 4.9251355E-03 4.6693017E-03 4.4274866E-03
 4.1988268E-03 3.9825276E-03 3.7778607E-03 3.5841272E-03 3.4007032E-03
 3.2269917E-03 3.0624347E-03 2.9065197E-03 2.7587591E-03 2.6186991E-03
 2.4859135E-03 2.3600028E-03 2.2405903E-03 2.1273177E-03 2.0198592E-03
 1.9178942E-03
 8.0873191E-02 7.4973680E-02 6.9283783E-02 6.3821785E-02 5.8602288E-02
 5.3636383E-02 4.8931669E-02 4.4492494E-02 4.0320121E-02 3.6413077E-02
 3.2767426E-02 2.9377162E-02 2.6234549E-02 2.3330417E-02 2.0654526E-02
 1.8195856E-02 1.5942842E-02 1.3883659E-02 1.2006361E-02 1.0299101E-02
 8.7502534E-03 7.3485188E-03 6.0830014E-03 4.9433112E-03 3.9195586E-03
 3.0024189E-03 2.1831358E-03 1.4535089E-03 8.0591813E-04 2.3328305E-04
 -2.7094048E-04 -7.1279710E-04 -1.0978518E-03 -1.4312194E-03 -1.7176098E-03
 -1.9613428E-03 -2.1663988E-03 -2.3364364E-03 -2.4748335E-03 -2.5847079E-03
 -2.6689433E-03 -2.7302173E-03 -2.7710027E-03 -2.7935980E-03 -2.8001305E-03
 -2.7925647E-03 -2.7727154E-03 -2.7422449E-03 -2.7026790E-03 -2.6554090E-03
 -2.6016943E-03 -2.5426708E-03 -2.4793667E-03 -2.4126912E-03 -2.3434579E-03
 -2.2723880E-03 -2.2001120E-03 -2.1271778E-03 -2.0540764E-03 -1.9812151E-03
 -1.9089513E-03 -1.8375892E-03 -1.7673806E-03 -1.6985371E-03 -1.6312357E-03
 -1.5656145E-03 -1.5017855E-03 -1.4398341E-03 -1.3798221E-03 -1.3217910E-03
 -1.2657667E-03
 5.5487778E-02 5.5566803E-02 5.5362027E-02 5.4897398E-02 5.4198034E-02
 5.3289797E-02 5.2198697E-02 5.0950442E-02 4.9569983E-02 4.8081208E-02
 4.6506602E-02 4.4867083E-02 4.3181825E-02 4.1468203E-02 3.9741736E-02
 3.8016137E-02 3.6303349E-02 3.4613617E-02 3.2955624E-02 3.1336591E-02
 2.9762400E-02 2.8237712E-02 2.6766123E-02 2.5350267E-02 2.3991935E-02
 2.2692183E-02 2.1451434E-02 2.0269576E-02 1.9146020E-02 1.8079795E-02
 1.7069625E-02 1.6113933E-02 1.5210956E-02 1.4358748E-02 1.3555236E-02
 1.2798240E-02 1.2085542E-02 1.1414863E-02 1.0783958E-02 1.0190561E-02
 9.6324775E-03 9.1075571E-03 8.6137448E-03 8.1490558E-03 7.7116233E-03
 7.2996779E-03 6.9115544E-03 6.5457048E-03 6.2006731E-03 5.8751330E-03
 5.5678291E-03 5.2776029E-03 5.0033927E-03 4.7442098E-03 4.4991369E-03
 4.2673182E-03 4.0479717E-03 3.8403592E-03 3.6437954E-03 3.4576475E-03
 3.2813228E-03 3.1142582E-03 2.9559401E-03 2.8058726E-03 2.6636056E-03
 2.5287119E-03 2.4007771E-03 2.2794332E-03 2.1643150E-03 2.0550857E-03
 1.9514266E-03
 8.0734149E-02 7.4830972E-02 6.9137692E-02 6.3672632E-02 5.8450419E-02
 5.3482141E-02 4.8775434E-02 4.4334635E-02 4.0161010E-02 3.6253076E-02
 3.2606900E-02 2.9216459E-02 2.6074005E-02 2.3170358E-02 2.0495255E-02
 1.8037667E-02 1.5786020E-02 1.3728468E-02 1.1853063E-02 1.0147939E-02
 8.6014681E-03 7.2023422E-03 5.9396620E-03 4.8030303E-03 3.7825548E-03
 2.8689117E-03 2.0533330E-03 1.3276192E-03 6.8414776E-04 1.1582676E-04
 -3.8390033E-04 -8.2108949E-04 -1.2013277E-03 -1.5297530E-03 -1.8111045E-03
 -2.0497360E-03 -2.2496667E-03 -2.4145970E-03 -2.5479461E-03 -2.6528742E-03
 -2.7323083E-03 -2.7889558E-03 -2.8253263E-03 -2.8437411E-03 -2.8463451E-03
 -2.8351175E-03 -2.8118750E-03 -2.7782822E-03 -2.7358606E-03 -2.6859909E-03
 -2.6299208E-03 -2.5687737E-03 -2.5035599E-03 -2.4351750E-03 -2.3644178E-03
 -2.2919909E-03 -2.2185084E-03 -2.1445130E-03 -2.0704682E-03 -1.9967817E-03
 -1.9237901E-03 -1.8517905E-03 -1.7810267E-03 -1.7117026E-03 -1.6439823E-03
 -1.5780007E-03 -1.5138621E-03 -1.4516438E-03 -1.3914073E-03 -1.3331850E-03
 -1.2770048E-03
 5.5701070E-02 5.5778794E-02 5.5572342E-02 5.5105709E-02 5.4404080E-02
 5.3493351E-02 5.2399591E-02 5.1148556E-02 4.9765248E-02 4.8273589E-02
 4.6696112E-02 4.5053758E-02 4.3365739E-02 4.1649453E-02 3.9920438E-02
 3.8192425E-02 3.6477361E-02 3.4785509E-02 3.3125557E-02 3.1504702E-02
 2.9928837E-02 2.8402621E-02 2.6929630E-02 2.5512483E-02 2.4152948E-02
 2.2852063E-02 2.1610236E-02 2.0427300E-02 1.9302659E-02 1.8235309E-02
 1.7223919E-02 1.6266899E-02 1.5362444E-02 1.4508577E-02 1.3703204E-02
 1.2944117E-02 1.2229088E-02 1.1555828E-02 1.0922090E-02 1.0325619E-02
 9.7642420E-03 9.2358263E-03 8.7383455E-03 8.2698418E-03 7.8284917E-03
 7.4125482E-03 7.0203873E-03 6.6504842E-03 6.3014198E-03 5.9718746E-03
 5.6606303E-03 5.3665433E-03 5.0885631E-03 4.8257052E-03 4.5770649E-03
 4.3417984E-03 4.1191219E-03 3.9082943E-03 3.7086452E-03 3.5195297E-03
 3.3403509E-03 3.1705508E-03 3.0096127E-03 2.8570383E-03 2.7123692E-03
 2.5751709E-03 2.4450379E-03 2.3215886E-03 2.2044543E-03 2.0932974E-03
 1.9878002E-03
 8.0578059E-02 7.4670792E-02 6.8973750E-02 6.3505277E-02 5.8280043E-02
 5.3309150E-02 4.8600245E-02 4.4157661E-02 3.9982680E-02 3.6073808E-02
 3.2427099E-02 2.9036526E-02 2.5894322E-02 2.2991290E-02 2.0317160E-02
 1.7860882E-02 1.5610863E-02 1.3555253E-02 1.1682082E-02 9.9794837E-03
 8.4358118E-03 7.0397481E-03 5.7803923E-03 4.6473402E-03 3.6306942E-03
 2.7211246E-03 1.9098514E-03 1.1886797E-03 5.4996618E-04 -1.3393897E-05
 -5.0796487E-04 -9.3983172E-04 -1.3146054E-03 -1.6374557E-03 -1.9131569E-03
 -2.1461055E-03 -2.3403612E-03 -2.4996726E-03 -2.6275022E-03 -2.7270550E-03
 -2.8012968E-03 -2.8529696E-03 -2.8846152E-03 -2.8985727E-03 -2.8970055E-03
 -2.8818974E-03 -2.8550702E-03 -2.8181826E-03 -2.7727506E-03 -2.7201427E-03
 -2.6615912E-03 -2.5982051E-03 -2.5309771E-03 -2.4607906E-03 -2.3884212E-03
 -2.3145566E-03 -2.2397975E-03 -2.1646696E-03 -2.0896224E-03 -2.0150484E-03
 -1.9412797E-03 -1.8685972E-03 -1.7972317E-03 -1.7273823E-03 -1.6592053E-03
 -1.5928281E-03 -1.5283462E-03 -1.4658326E-03 -1.4053414E-03 -1.3469049E-03
 -1.2905394E-03
 5.5941388E-02 5.6017686E-02 5.5809401E-02 5.5340569E-02 5.4636434E-02
 5.3722955E-02 5.2626252E-02 5.1372137E-02 4.9985666E-02 4.8490811E-02
 4.6910137E-02 4.5264635E-02 4.3573551E-02 4.1854296E-02 4.0122442E-02
 3.8391732E-02 3.6674123E-02 3.4979891E-02 3.3317715E-02 3.1694796E-02
 3.0117024E-02 2.8589031E-02 2.7114388E-02 2.5695696E-02 2.4334705E-02
 2.3032418E-02 2.1789202E-02 2.0604873E-02 1.9478800E-02 1.8409934E-02
 1.7396918E-02 1.6438123E-02 1.5531697E-02 1.4675659E-02 1.3867869E-02
 1.3106120E-02 1.2388160E-02 1.1711716E-02 1.1074525E-02 1.0474377E-02
 9.9090990E-03 9.3765939E-03 8.8748690E-03 8.4019974E-03 7.9561928E-03
 7.5357384E-03 7.1390481E-03 6.7646271E-03 6.4110798E-03 6.0771150E-03
 5.7615256E-03 5.4631876E-03 5.1810695E-03 4.9141929E-03 4.6616606E-03
 4.4226279E-03 4.1963169E-03 3.9819935E-03 3.7789752E-03 3.5866241E-03
 3.4043444E-03 3.2315720E-03 3.0677794E-03 2.9124725E-03 2.7651917E-03
 2.6254929E-03 2.4929696E-03 2.3672290E-03 2.2479054E-03 2.1346640E-03
 2.0271658E-03
 8.0402859E-02 7.4491017E-02 6.8789780E-02 6.3317522E-02 5.8088932E-02
 5.3115144E-02 4.8403818E-02 4.3959297E-02 3.9782856E-02 3.5872996E-02
 3.2225769E-02 2.8835133E-02 2.5693299E-02 2.2791063E-02 2.0118134E-02
 1.7663442E-02 1.5415384E-02 1.3362085E-02 1.1491572E-02 9.7919563E-03
 8.2515860E-03 6.8591302E-03 5.6036846E-03 4.4748266E-03 3.4626550E-03
 2.5578307E-03 1.7515694E-03 1.0356571E-03 4.0243127E-04 -1.5522409E-04
 -6.4390368E-04 -1.0697203E-03 -1.4383148E-03 -1.7549010E-03 -2.0242932E-03
 -2.2509377E-03 -2.4389392E-03 -2.5920987E-03 -2.7139229E-03 -2.8076607E-03
 -2.8763176E-03 -2.9226684E-03 -2.9492769E-03 -2.9585047E-03 -2.9525231E-03
 -2.9333220E-03 -2.9027192E-03 -2.8623678E-03 -2.8137721E-03 -2.7582888E-03
 -2.6971309E-03 -2.6313968E-03 -2.5620523E-03 -2.4899626E-03 -2.4158945E-03
 -2.3405124E-03 -2.2644002E-03 -2.1880718E-03 -2.1119588E-03 -2.0364430E-03
 -1.9618394E-03 -1.8884189E-03 -1.8164086E-03 -1.7459901E-03 -1.6773153E-03
 -1.6105010E-03 -1.5456395E-03 -1.4827974E-03 -1.4220227E-03 -1.3633356E-03
 -1.3067593E-03
 5.6212287E-02 5.6287050E-02 5.6076758E-02 5.5605508E-02 5.4898620E-02
 5.3982101E-02 5.2882150E-02 5.1624630E-02 5.0234653E-02 4.8736252E-02
 4.7152039E-02 4.5503039E-02 4.3808538E-02 4.2085983E-02 4.0350959E-02
 3.8617231E-02 3.6896769E-02 3.5199847E-02 3.3535149E-02 3.1909876E-02
 3.0329892E-02 2.8799832E-02 2.7323233E-02 2.5902674E-02 2.4539884E-02
 2.3235820E-02 2.1990839E-02 2.0804705E-02 1.9676741E-02 1.8605867E-02
 1.7590696E-02 1.6629543E-02 1.5720556E-02 1.4861699E-02 1.4050829E-02
 1.3285727E-02 1.2564144E-02 1.1883796E-02 1.1242460E-02 1.0637927E-02
 1.0068065E-02 9.5308013E-03 9.0241870E-03 8.5463328E-03 8.0954786E-03
 7.6699522E-03 7.2681955E-03 6.8887509E-03 6.5302369E-03 6.1913831E-03
 5.8710175E-03 5.5680228E-03 5.2813683E-03 5.0100987E-03 4.7533093E-03
 4.5101740E-03 4.2799059E-03 4.0617730E-03 3.8550976E-03 3.6592314E-03
 3.4735764E-03 3.2975716E-03 3.1306827E-03 2.9724159E-03 2.8222932E-03
 2.6798854E-03 2.5447633E-03 2.4165397E-03 2.2948473E-03 2.1793367E-03
 2.0696763E-03
 8.0206186E-02 7.4289255E-02 6.8583347E-02 6.3106880E-02 5.7874586E-02
 5.2897613E-02 4.8183635E-02 4.3737009E-02 3.9559010E-02 3.5648137E-02
 3.2000426E-02 2.8609825E-02 2.5468534E-02 2.2567319E-02 1.9895876E-02
 1.7443115E-02 1.5197414E-02 1.3146888E-02 1.1279538E-02 9.5834611E-03
 8.0469958E-03 6.6587967E-03 5.4079457E-03 4.2840107E-03 3.2770748E-03
 2.3777892E-03 1.5773439E-03 8.6750963E-04 2.4060697E-04 -3.1051235E-04
 -7.9248054E-04 -1.2114383E-03 -1.5730803E-03 -1.8826600E-03 -2.1450436E-03
 -2.3647305E-03 -2.5458790E-03 -2.6923371E-03 -2.8076605E-03 -2.8951431E-03
 -2.9578223E-03 -2.9985043E-03 -3.0197720E-03 -3.0239997E-03 -3.0133664E-03
 -2.9898626E-03 -2.9552977E-03 -2.9113153E-03 -2.8594101E-03 -2.8009140E-03
 -2.7370304E-03 -2.6688322E-03 -2.5972691E-03 -2.5231857E-03 -2.4473304E-03
 -2.3703477E-03 -2.2928100E-03 -2.2152076E-03 -2.1379611E-03 -2.0614397E-03
 -1.9859448E-03 -1.9117363E-03 -1.8390284E-03 -1.7679924E-03 -1.6987771E-03
 -1.6314824E-03 -1.5662045E-03 -1.5029961E-03 -1.4418981E-03 -1.3829333E-03
 -1.3261100E-03
 5.6517843E-02 5.6590945E-02 5.6378473E-02 5.5904586E-02 5.5194665E-02
 5.4274805E-02 5.3171262E-02 5.1909976E-02 5.0516129E-02 4.9013797E-02
 4.7425650E-02 4.5772765E-02 4.4074472E-02 4.2348236E-02 4.0609665E-02
 3.8872551E-02 3.7148871E-02 3.5448905E-02 3.3781331E-02 3.2153338E-02
 3.0570783E-02 2.9038275E-02 2.7559331E-02 2.6136504E-02 2.4771469E-02
 2.3465170E-02 2.2217913E-02 2.1029424E-02 1.9898990E-02 1.8825479E-02
 1.7807474E-02 1.6843269E-02 1.5930964E-02 1.5068518E-02 1.4253771E-02
 1.3484499E-02 1.2758461E-02 1.2073399E-02 1.1427104E-02 1.0817393E-02
 1.0242173E-02 9.6994145E-03 9.1871973E-03 8.7036705E-03 8.2471212E-03
 7.8159142E-03 7.4085109E-03 7.0234756E-03 6.6594728E-03 6.3152555E-03
 5.9896368E-03 5.6815273E-03 5.3899195E-03 5.1138476E-03 4.8524262E-03
 4.6048211E-03 4.3702438E-03 4.1479743E-03 3.9373217E-03 3.7376422E-03
 3.5483323E-03 3.3688191E-03 3.1985745E-03 3.0370913E-03 2.8838993E-03
 2.7385498E-03 2.6006189E-03 2.4697180E-03 2.3454595E-03 2.2274991E-03
 2.1155034E-03
 7.9985410E-02 7.4062824E-02 6.8351723E-02 6.2870599E-02 5.7634216E-02
 5.2653737E-02 4.7936875E-02 4.3487988E-02 3.9308351E-02 3.5396460E-02
 3.1748336E-02 2.8357917E-02 2.5217377E-02 2.2317477E-02 1.9647883E-02
 1.7197486E-02 1.4954640E-02 1.2907436E-02 1.1043862E-02 9.3519995E-03
 7.8201620E-03 6.4369915E-03 5.1915501E-03 4.0733898E-03 3.0725773E-03
 2.1797370E-03 1.3860374E-03 6.8322278E-04 6.3575462E-05 -4.8008584E-04
 -9.5443474E-04 -1.3656642E-03 -1.7195160E-03 -2.0213032E-03 -2.2759449E-03
 -2.4879978E-03 -2.6616764E-03 -2.8008784E-03 -2.9092075E-03 -2.9899946E-03
 -3.0463089E-03 -3.0809804E-03 -3.0966087E-03 -3.0955775E-03 -3.0800642E-03
 -3.0520514E-03 -3.0133440E-03 -2.9655751E-03 -2.9102105E-03 -2.8485698E-03
 -2.7818382E-03 -2.7110653E-03 -2.6371826E-03 -2.5610118E-03 -2.4832792E-03
 -2.4046153E-03 -2.3255732E-03 -2.2466250E-03 -2.1681804E-03 -2.0905880E-03
 -2.0141401E-03 -1.9390841E-03 -1.8656263E-03 -1.7939259E-03 -1.7241177E-03
 -1.6563036E-03 -1.5905612E-03 -1.5269405E-03 -1.4654848E-03 -1.4062019E-03
 -1.3490976E-03
 5.6862708E-02 5.6934040E-02 5.6719203E-02 5.6242440E-02 5.5529203E-02
 5.4605667E-02 5.3498175E-02 5.2232735E-02 5.0834600E-02 4.9327914E-02
 4.7735412E-02 4.6078213E-02 4.4375680E-02 4.2645324E-02 4.0902790E-02
 3.9161868E-02 3.7434537E-02 3.5731100E-02 3.4060217E-02 3.2429062E-02
 3.0843480E-02 2.9308043E-02 2.7826259E-02 2.6400620E-02 2.5032781E-02
 2.3723645E-02 2.2473454E-02 2.1281909E-02 2.0148251E-02 1.9071320E-02
 1.8049648E-02 1.7081505E-02 1.6164977E-02 1.5298009E-02 1.4478439E-02
 1.3704044E-02 1.2972611E-02 1.2281895E-02 1.1629718E-02 1.1013944E-02
 1.0432509E-02 9.8834308E-03 9.3648238E-03 8.8748904E-03 8.4119383E-03
 7.9743704E-03 7.5606834E-03 7.1694781E-03 6.7994222E-03 6.4492798E-03
 6.1179092E-03 5.8042207E-03 5.5071977E-03 5.2258903E-03 4.9594212E-03
 4.7069555E-03 4.4677067E-03 4.2409441E-03 4.0259785E-03 3.8221672E-03
 3.6288905E-03 3.4455888E-03 3.2717146E-03 3.1067580E-03 2.9502437E-03
 2.8017187E-03 2.6607574E-03 2.5269561E-03 2.3999375E-03 2.2793384E-03
 2.1648291E-03
 7.9737596E-02 7.3808715E-02 6.8091869E-02 6.2605597E-02 5.7364706E-02
 5.2380413E-02 4.7660422E-02 4.3209121E-02 3.9027780E-02 3.5114903E-02
 3.1466488E-02 2.8076455E-02 2.4936968E-02 2.2038758E-02 1.9371465E-02
 1.6923957E-02 1.4684576E-02 1.2641376E-02 1.0782324E-02 9.0954807E-03
 7.5691352E-03 6.1919098E-03 4.9528368E-03 3.8414509E-03 2.8477851E-03
 1.9624338E-03 1.1765378E-03 4.8179450E-04 -1.2955299E-04 -6.6473946E-04
 -1.1304901E-03 -1.5330552E-03 -1.8782350E-03 -2.1714042E-03 -2.4175483E-03
 -2.6212786E-03 -2.7868669E-03 -2.9182602E-03 -3.0191052E-03 -3.0927663E-03
 -3.1423380E-03 -3.1706726E-03 -3.1803746E-03 -3.1738305E-03 -3.1532149E-03
 -3.1205011E-03 -3.0774800E-03 -3.0257595E-03 -2.9667963E-03 -2.9018859E-03
 -2.8321880E-03 -2.7587297E-03 -2.6824232E-03 -2.6040699E-03 -2.5243741E-03
 -2.4439457E-03 -2.3633193E-03 -2.2829510E-03 -2.2032377E-03 -2.1245065E-03
 -2.0470463E-03 -1.9710828E-03 -1.8968139E-03 -1.8243932E-03 -1.7539412E-03
 -1.6855556E-03 -1.6193029E-03 -1.5552304E-03 -1.4933663E-03 -1.4337230E-03
 -1.3762960E-03
 5.7252232E-02 5.7321686E-02 5.7104308E-02 5.6624416E-02 5.5907555E-02
 5.4979991E-02 5.3868152E-02 5.2598134E-02 5.1195260E-02 4.9683765E-02
 4.8086420E-02 4.6424415E-02 4.4717163E-02 4.2982195E-02 4.1235182E-02
 3.9489944E-02 3.7758462E-02 3.6051035E-02 3.4376301E-02 3.2741435E-02
 3.1152239E-02 2.9613277E-02 2.8127993E-02 2.6698858E-02 2.5327481E-02
 2.4014713E-02 2.2760760E-02 2.1565268E-02 2.0427454E-02 1.9346103E-02
 1.8319732E-02 1.7346593E-02 1.6424751E-02 1.5552153E-02 1.4726648E-02
 1.3946042E-02 1.3208120E-02 1.2510689E-02 1.1851613E-02 1.1228784E-02
 1.0640186E-02 1.0083886E-02 9.5580369E-03 9.0608774E-03 8.5907578E-03
 8.1461091E-03 7.7254586E-03 7.3274225E-03 6.9506997E-03 6.5940730E-03
 6.2564048E-03 5.9366059E-03 5.6336834E-03 5.3466866E-03 5.0747343E-03
 4.8169903E-03 4.5726709E-03 4.3410426E-03 4.1214107E-03 3.9131250E-03
 3.7155696E-03 3.5281684E-03 3.3503727E-03 3.1816717E-03 3.0215816E-03
 2.8696365E-03 2.7254105E-03 2.5884970E-03 2.4585067E-03 2.3350839E-03
 2.2178737E-03
 7.9459451E-02 7.3523581E-02 6.7800380E-02 6.2308446E-02 5.7062622E-02
 5.2074172E-02 4.7350824E-02 4.2896982E-02 3.8713917E-02 3.4800127E-02
 3.1151604E-02 2.7762245E-02 2.4624193E-02 2.1728151E-02 1.9063737E-02
 1.6619790E-02 1.4384615E-02 1.2346242E-02 1.0492618E-02 8.8117579E-03
 7.2919363E-03 5.9217331E-03 4.6901572E-03 3.5867002E-03 2.6013593E-03
 1.7246872E-03 9.4777672E-04 2.6227502E-04 -3.3963594E-04 -8.6524454E-04
 -1.3213461E-03 -1.7142567E-03 -2.0498480E-03 -2.3335563E-03 -2.5704340E-03
 -2.7651528E-03 -2.9220358E-03 -3.0450781E-03 -3.1379636E-03 -3.2040819E-03
 -3.2465544E-03 -3.2682337E-03 -3.2717355E-03 -3.2594400E-03 -3.2335119E-03
 -3.1959077E-03 -3.1484044E-03 -3.0925893E-03 -3.0298887E-03 -2.9615813E-03
 -2.8887994E-03 -2.8125506E-03 -2.7337198E-03 -2.6530887E-03 -2.5713383E-03
 -2.4890592E-03 -2.4067692E-03 -2.3249050E-03 -2.2438436E-03 -2.1639098E-03
 -2.0853640E-03 -2.0084325E-03 -1.9332932E-03 -1.8600894E-03 -1.7889361E-03
 -1.7199243E-03 -1.6531076E-03 -1.5885270E-03 -1.5262067E-03 -1.4661486E-03
 -1.4083503E-03
 5.7692554E-02 5.7760045E-02 5.7539944E-02 5.7056669E-02 5.6335874E-02
 5.5403903E-02 5.4287288E-02 5.3012218E-02 5.1604126E-02 5.0087281E-02
 4.8484564E-02 4.6817202E-02 4.5104649E-02 4.3364495E-02 4.1612428E-02
 3.9862264E-02 3.8126007E-02 3.6413934E-02 3.4734689E-02 3.3095401E-02
 3.1501859E-02 2.9958574E-02 2.8468957E-02 2.7035439E-02 2.5659572E-02
 2.4342163E-02 2.3083381E-02 2.1882830E-02 2.0739676E-02 1.9652693E-02
 1.8620376E-02 1.7640961E-02 1.6712520E-02 1.5833009E-02 1.5000293E-02
 1.4212205E-02 1.3466576E-02 1.2761253E-02 1.2094121E-02 1.1463154E-02
 1.0866363E-02 1.0301853E-02 9.7678229E-03 9.2625609E-03 8.7844459E-03
 8.3319331E-03 7.9035833E-03 7.4980282E-03 7.1139871E-03 6.7502572E-03
 6.4056977E-03 6.0792542E-03 5.7699112E-03 5.4767262E-03 5.1988205E-03
 4.9353582E-03 4.6855500E-03 4.4486583E-03 4.2239833E-03 4.0108697E-03
 3.8086937E-03 3.6168762E-03 3.4348613E-03 3.2621317E-03 3.0981922E-03
 2.9425817E-03 2.7948578E-03 2.6546072E-03 2.5214390E-03 2.3949889E-03
 2.2749023E-03
 7.9147279E-02 7.3203690E-02 6.7473486E-02 6.1975330E-02 5.6724131E-02
 5.1731192E-02 4.7004282E-02 4.2547807E-02 3.8363047E-02 3.4448501E-02
 3.0800140E-02 2.7411843E-02 2.4275731E-02 2.1382475E-02 1.8721659E-02
 1.6282097E-02 1.4052046E-02 1.2019513E-02 1.0172394E-02 8.4986789E-03
 6.9865934E-03 5.6246817E-03 4.4019036E-03 3.3077025E-03 2.3320247E-03
 1.4653656E-03 6.9875293E-04 2.3768633E-05 -5.6747103E-04 -1.0823342E-03
 -1.5276872E-03 -1.9099225E-03 -2.2349844E-03 -2.5083823E-03 -2.7352311E-03
 -2.9202593E-03 -3.0678413E-03 -3.1820096E-03 -3.2664791E-03 -3.3246635E-03
 -3.3596910E-03 -3.3744231E-03 -3.3714671E-03 -3.3531927E-03 -3.3217520E-03
 -3.2790825E-03 -3.2269333E-03 -3.1668753E-03 -3.1003077E-03 -3.0284806E-03
 -2.9525019E-03 -2.8733516E-03 -2.7918969E-03 -2.7088902E-03 -2.6249941E-03
 -2.5407795E-03 -2.4567407E-03 -2.3732998E-03 -2.2908195E-03 -2.2096047E-03
 -2.1299045E-03 -2.0519318E-03 -1.9758553E-03 -1.9018038E-03 -1.8298883E-03
 -1.7601819E-03 -1.6927385E-03 -1.6275914E-03 -1.5647546E-03 -1.5042267E-03
 -1.4459960E-03
 5.8190770E-02 5.8256228E-02 5.8033243E-02 5.7546332E-02 5.6821253E-02
 5.5884473E-02 5.4762624E-02 5.3482004E-02 5.2068122E-02 5.0545357E-02
 4.8936643E-02 4.7263280E-02 4.5544773E-02 4.3798745E-02 4.2040896E-02
 4.0285069E-02 3.8543262E-02 3.6825735E-02 3.5141118E-02 3.3496514E-02
 3.1897664E-02 3.0349040E-02 2.8854012E-02 2.7414966E-02 2.6033392E-02
 2.4710070E-02 2.3445118E-02 2.2238113E-02 2.1088183E-02 1.9994095E-02
 1.8954333E-02 1.7967138E-02 1.7030593E-02 1.6142685E-02 1.5301301E-02
 1.4504323E-02 1.3749615E-02 1.3035077E-02 1.2358654E-02 1.1718347E-02
 1.1112224E-02 1.0538435E-02 9.9952267E-03 9.4809113E-03 8.9939032E-03
 8.5326917E-03 8.0958493E-03 7.6820343E-03 7.2899763E-03 6.9184769E-03
 6.5664165E-03 6.2327264E-03 5.9164129E-03 5.6165229E-03 5.3321715E-03
 5.0625205E-03 4.8067821E-03 4.5642112E-03 4.3340996E-03 4.1157845E-03
 3.9086388E-03 3.7120734E-03 3.5255291E-03 3.3484742E-03 3.1804130E-03
 3.0208752E-03 2.8694095E-03 2.7256010E-03 2.5890514E-03 2.4593798E-03
 2.3362373E-03
 7.8796983E-02 7.2844878E-02 6.7106977E-02 6.1602037E-02 5.6345019E-02
 5.1347289E-02 4.6616636E-02 4.2157497E-02 3.7971158E-02 3.4056097E-02
 3.0408291E-02 2.7021585E-02 2.3888074E-02 2.0998385E-02 1.8342081E-02
 1.5907913E-02 1.3684116E-02 1.1658637E-02 9.8193269E-03 8.1541231E-03
 6.6512031E-03 5.2990490E-03 4.0865615E-03 3.0031174E-03 2.0385992E-03
 1.1834212E-03 4.2853571E-04 -2.3455772E-04 -8.1382471E-04 -1.3167195E-03
 -1.7501935E-03 -2.1207188E-03 -2.4343154E-03 -2.6965644E-03 -2.9126389E-03
 -3.0873243E-03 -3.2250343E-03 -3.3298351E-03 -3.4054634E-03 -3.4553434E-03
 -3.4826088E-03 -3.4901155E-03 -3.4804603E-03 -3.4559981E-03 -3.4188549E-03
 -3.3709521E-03 -3.3140092E-03 -3.2495679E-03 -3.1790019E-03 -3.1035335E-03
 -3.0242463E-03 -2.9420913E-03 -2.8579074E-03 -2.7724288E-03 -2.6862910E-03
 -2.6000498E-03 -2.5141758E-03 -2.4290758E-03 -2.3450924E-03 -2.2625159E-03
 -2.1815870E-03 -2.1024956E-03 -2.0254045E-03 -1.9504369E-03 -1.8776834E-03
 -1.8072135E-03 -1.7390731E-03 -1.6732863E-03 -1.6098595E-03 -1.5487900E-03
 -1.4900562E-03
 5.8755077E-02 5.8818471E-02 5.8592450E-02 5.8101647E-02 5.7371937E-02
 5.6429919E-02 5.5302333E-02 5.4015588E-02 5.2595302E-02 5.1065937E-02
 4.9450517E-02 4.7770400E-02 4.6045147E-02 4.4292398E-02 4.2527895E-02
 4.0765479E-02 3.9017141E-02 3.7293132E-02 3.5602041E-02 3.3950951E-02
 3.2345552E-02 3.0790288E-02 2.9288460E-02 2.7842408E-02 2.6453599E-02
 2.5122762E-02 2.3849975E-02 2.2634802E-02 2.1476362E-02 2.0373411E-02
 1.9324448E-02 1.8327724E-02 1.7381351E-02 1.6483355E-02 1.5631666E-02
 1.4824220E-02 1.4058922E-02 1.3333730E-02 1.2646635E-02 1.1995689E-02
 1.1379012E-02 1.0794804E-02 1.0241328E-02 9.7169382E-03 9.2200879E-03
 8.7492717E-03 8.3030984E-03 7.8802304E-03 7.4794050E-03 7.0994422E-03
 6.7392159E-03 6.3976618E-03 6.0737827E-03 5.7666311E-03 5.4753125E-03
 5.1989928E-03 4.9368595E-03 4.6881679E-03 4.4522076E-03 4.2283111E-03
 4.0158331E-03 3.8141820E-03 3.6227847E-03 3.4411079E-03 3.2686472E-03
 3.1049210E-03 2.9494732E-03 2.8018833E-03 2.6617378E-03 2.5286602E-03
 2.4022851E-03
 7.8403980E-02 7.2442532E-02 6.6696227E-02 6.1183926E-02 5.5920672E-02
 5.0917875E-02 4.6183378E-02 4.1721627E-02 3.7533924E-02 3.3618748E-02
 2.9972037E-02 2.6587630E-02 2.3457564E-02 2.0572448E-02 1.7921783E-02
 1.5494269E-02 1.3278087E-02 1.1261121E-02 9.4311628E-03 7.7760802E-03
 6.2839761E-03 4.9432572E-03 3.7427486E-03 2.6717400E-03 1.7200196E-03
 8.7791344E-04 1.3628116E-04 -5.1347743E-04 -1.0794251E-03 -1.5691094E-03
 -1.9895686E-03 -2.3473592E-03 -2.6485757E-03 -2.8988670E-03 -3.1034620E-03
 -3.2671872E-03 -3.3944931E-03 -3.4894675E-03 -3.5558597E-03 -3.5970972E-03
 -3.6163069E-03 -3.6163342E-03 -3.5997583E-03 -3.5689098E-03 -3.5258916E-03
 -3.4725959E-03 -3.4107133E-03 -3.3417551E-03 -3.2670659E-03 -3.1878392E-03
 -3.1051266E-03 -3.0198591E-03 -2.9328454E-03 -2.8447947E-03 -2.7563199E-03
 -2.6679535E-03 -2.5801533E-03 -2.4933016E-03 -2.4077285E-03 -2.3237029E-03
 -2.2414548E-03 -2.1611622E-03 -2.0829749E-03 -2.0070015E-03 -1.9333274E-03
 -1.8620105E-03 -1.7930882E-03 -1.7265746E-03 -1.6624754E-03 -1.6007730E-03
 -1.5414431E-03
 5.9394993E-02 5.9456322E-02 5.9227157E-02 5.8732204E-02 5.7997502E-02
 5.7049781E-02 5.5915900E-02 5.4622393E-02 5.3194992E-02 5.1658250E-02
 5.0035272E-02 4.8347488E-02 4.6614505E-02 4.4854004E-02 4.3081738E-02
 4.1311558E-02 3.9555434E-02 3.7823606E-02 3.6124632E-02 3.4465548E-02
 3.2852001E-02 3.1288397E-02 2.9777998E-02 2.8323099E-02 2.6925134E-02
 2.5584793E-02 2.4302153E-02 2.3076765E-02 2.1907741E-02 2.0793866E-02
 1.9733649E-02 1.8725386E-02 1.7767236E-02 1.6857259E-02 1.5993450E-02
 1.5173787E-02 1.4396239E-02 1.3658815E-02 1.2959569E-02 1.2296593E-02
 1.1668045E-02 1.1072169E-02 1.0507269E-02 9.9717258E-03 9.4640059E-03
 8.9826323E-03 8.5262284E-03 8.0934586E-03 7.6830792E-03 7.2939056E-03
 6.9248173E-03 6.5747458E-03 6.2426850E-03 5.9276922E-03 5.6288606E-03
 5.3453422E-03 5.0763348E-03 4.8210798E-03 4.5788465E-03 4.3489607E-03
 4.1307826E-03 3.9236946E-03 3.7271245E-03 3.5405278E-03 3.3633832E-03
 3.1952127E-03 3.0355465E-03 2.8839514E-03 2.7400113E-03 2.6033404E-03
 2.4735625E-03
 7.7963233E-02 7.1991563E-02 6.6236176E-02 6.0715929E-02 5.5446062E-02
 5.0437998E-02 4.5699649E-02 4.1235473E-02 3.7046783E-02 3.3132046E-02
 2.9487193E-02 2.6106006E-02 2.2980498E-02 2.0101212E-02 1.7457580E-02
 1.5038256E-02 1.2831330E-02 1.0824612E-02 9.0058129E-03 7.3627075E-03
 5.8833030E-03 4.5559122E-03 3.3692489E-03 2.3125024E-03 1.3753455E-03
 5.4799812E-04 -1.7879628E-04 -8.1374432E-04 -1.3650128E-03 -1.8402487E-03
 -2.2465799E-03 -2.5906458E-03 -2.8786142E-03 -3.1161874E-03 -3.3086420E-03
 -3.4608422E-03 -3.5772575E-03 -3.6619890E-03 -3.7187859E-03 -3.7510747E-03
 -3.7619653E-03 -3.7542817E-03 -3.7305797E-03 -3.6931648E-03 -3.6441078E-03
 -3.5852699E-03 -3.5183055E-03 -3.4447005E-03 -3.3657660E-03 -3.2826620E-03
 -3.1964118E-03 -3.1079191E-03 -3.0179673E-03 -2.9272372E-03 -2.8363268E-03
 -2.7457385E-03 -2.6559089E-03 -2.5672058E-03 -2.4799407E-03 -2.3943719E-03
 -2.3107058E-03 -2.2291136E-03 -2.1497302E-03 -2.0726523E-03 -1.9979575E-03
 -1.9256901E-03 -1.8558814E-03 -1.7885392E-03 -1.7236547E-03 -1.6612081E-03
 -1.6011714E-03
 6.0121585E-02 6.0180940E-02 5.9948523E-02 5.9449181E-02 5.8709111E-02
 5.7755172E-02 5.6614369E-02 5.5313367E-02 5.3877998E-02 5.2332941E-02
 5.0701376E-02 4.9004804E-02 4.7262870E-02 4.5493301E-02 4.3711856E-02
 4.1932393E-02 4.0166862E-02 3.8425479E-02 3.6716774E-02 3.5047747E-02
 3.3424009E-02 3.1849924E-02 3.0328719E-02 2.8862663E-02 2.7453169E-02
 2.6100928E-02 2.4806002E-02 2.3567954E-02 2.2385936E-02 2.1258751E-02
 2.0184949E-02 1.9162888E-02 1.8190766E-02 1.7266711E-02 1.6388776E-02
 1.5554992E-02 1.4763393E-02 1.4012045E-02 1.3299039E-02 1.2622529E-02
 1.1980706E-02 1.1371845E-02 1.0794283E-02 1.0246421E-02 9.7267479E-03
 9.2338091E-03 8.7662153E-03 8.3226608E-03 7.9018883E-03 7.5027165E-03
 7.1240258E-03 6.7647411E-03 6.4238547E-03 6.1004083E-03 5.7934965E-03
 5.5022542E-03 5.2258717E-03 4.9635754E-03 4.7146375E-03 4.4783680E-03
 4.2541018E-03 4.0412312E-03 3.8391626E-03 3.6473412E-03 3.4652441E-03
 3.2923731E-03 3.1282490E-03 2.9724406E-03 2.8245137E-03 2.6840731E-03
 2.5507349E-03
 7.7469155E-02 7.1486391E-02 6.5721206E-02 6.0192548E-02 5.4915767E-02
 4.9902372E-02 4.5160305E-02 4.0694073E-02 3.6504988E-02 3.2591496E-02
 2.8949503E-02 2.5572756E-02 2.2453200E-02 1.9581307E-02 1.6946439E-02
 1.4537142E-02 1.2341425E-02 1.0346990E-02 8.5414322E-03 6.9124126E-03
 5.4478170E-03 4.1358294E-03 2.9650398E-03 1.9245003E-03 1.0037592E-03
 1.9290243E-04 -5.1744393E-04 -1.1361059E-03 -1.6713619E-03 -2.1309552E-03
 -2.5221021E-03 -2.8515190E-03 -3.1254306E-03 -3.3495892E-03 -3.5293086E-03
 -3.6694722E-03 -3.7745626E-03 -3.8486798E-03 -3.8955684E-03 -3.9186333E-03
 -3.9209658E-03 -3.9053615E-03 -3.8743515E-03 -3.8302003E-03 -3.7749517E-03
 -3.7104250E-03 -3.6382517E-03 -3.5598685E-03 -3.4765622E-03 -3.3894633E-03
 -3.2995620E-03 -3.2077287E-03 -3.1147250E-03 -3.0212069E-03 -2.9277424E-03
 -2.8348188E-03 -2.7428507E-03 -2.6521871E-03 -2.5631196E-03 -2.4758885E-03
 -2.3906922E-03 -2.3076830E-03 -2.2269841E-03 -2.1486827E-03 -2.0728412E-03
 -1.9994979E-03 -1.9286739E-03 -1.8603639E-03 -1.7945566E-03 -1.7312230E-03
 -1.6703267E-03
 6.0947821E-02 6.1005324E-02 6.0769595E-02 6.0265642E-02 5.9519790E-02
 5.8559056E-02 5.7410598E-02 5.6101214E-02 5.4656863E-02 5.3102329E-02
 5.1460877E-02 4.9754079E-02 4.8001636E-02 4.6221294E-02 4.4428833E-02
 4.2638101E-02 4.0861055E-02 3.9107870E-02 3.7387066E-02 3.5705604E-02
 3.4069076E-02 3.2481812E-02 3.0947026E-02 2.9466989E-02 2.8043101E-02
 2.6676072E-02 2.5365997E-02 2.4112459E-02 2.2914657E-02 2.1771450E-02
 2.0681443E-02 1.9643050E-02 1.8654540E-02 1.7714102E-02 1.6819855E-02
 1.5969893E-02 1.5162308E-02 1.4395203E-02 1.3666733E-02 1.2975081E-02
 1.2318478E-02 1.1695232E-02 1.1103693E-02 1.0542293E-02 1.0009515E-02
 9.5039271E-03 9.0241442E-03 8.5688578E-03 8.1368089E-03 7.7268179E-03
 7.3377555E-03 6.9685346E-03 6.6181496E-03 6.2856236E-03 5.9700357E-03
 5.6705228E-03 5.3862548E-03 5.1164450E-03 4.8603546E-03 4.6172845E-03
 4.3865591E-03 4.1675535E-03 3.9596641E-03 3.7623288E-03 3.5750016E-03
 3.3971863E-03 3.2283880E-03 3.0681563E-03 2.9160571E-03 2.7716768E-03
 2.6346310E-03
 7.6915666E-02 7.0920981E-02 6.5145358E-02 5.9607901E-02 5.4324057E-02
 4.9305432E-02 4.4560008E-02 4.0092327E-02 3.5903711E-02 3.1992581E-02
 2.8354803E-02 2.4984052E-02 2.1872202E-02 1.9009633E-02 1.6385594E-02
 1.3988527E-02 1.1806295E-02 9.8264730E-03 8.0365064E-03 6.4239143E-03
 4.9764267E-03 3.6820720E-03 2.5292858E-03 1.5069700E-03 6.0452503E-04
 -1.8810408E-04 -8.8042382E-04 -1.4813780E-03 -1.9993540E-03 -2.4421893E-03
 -2.8171784E-03 -3.1311021E-03 -3.3902323E-03 -3.6003620E-03 -3.7668194E-03
 -3.8945014E-03 -3.9878879E-03 -4.0510707E-03 -4.0877718E-03 -4.1013733E-03
 -4.0949383E-03 -4.0712282E-03 -4.0327371E-03 -3.9816974E-03 -3.9201099E-03
 -3.8497595E-03 -3.7722385E-03 -3.6889524E-03 -3.6011534E-03 -3.5099334E-03
 -3.4162544E-03 -3.3209601E-03 -3.2247794E-03 -3.1283470E-03 -3.0322075E-03
 -2.9368224E-03 -2.8425865E-03 -2.7498310E-03 -2.6588270E-03 -2.5698014E-03
 -2.4829365E-03 -2.3983675E-03 -2.3162067E-03 -2.2365262E-03 -2.1593855E-03
 -2.0848026E-03 -2.0127920E-03 -1.9433429E-03 -1.8764308E-03 -1.8120237E-03
 -1.7500707E-03
 6.1888851E-02 6.1944742E-02 6.1705701E-02 6.1196875E-02 6.0444772E-02
 5.9476558E-02 5.8319550E-02 5.7000685E-02 5.5546060E-02 5.3980567E-02
 5.2327558E-02 5.0608680E-02 4.8843674E-02 4.7050335E-02 4.5244455E-02
 4.3439887E-02 4.1648574E-02 3.9880700E-02 3.8144752E-02 3.6447696E-02
 3.4795117E-02 3.3191342E-02 3.1639595E-02 3.0142164E-02 2.8700475E-02
 2.7315289E-02 2.5986727E-02 2.4714457E-02 2.3497729E-02 2.2335449E-02
 2.1226320E-02 2.0168815E-02 1.9161277E-02 1.8201966E-02 1.7289048E-02
 1.6420690E-02 1.5595030E-02 1.4810230E-02 1.4064469E-02 1.3355972E-02
 1.2682996E-02 1.2043872E-02 1.1436974E-02 1.0860726E-02 1.0313639E-02
 9.7942706E-03 9.3012396E-03 8.8332314E-03 8.3889896E-03 7.9673193E-03
 7.5670723E-03 7.1871756E-03 6.8265861E-03 6.4843227E-03 6.1594648E-03
 5.8511156E-03 5.5584409E-03 5.2806400E-03 5.0169583E-03 4.7666747E-03
 4.5291153E-03 4.3036304E-03 4.0896041E-03 3.8864608E-03 3.6936486E-03
 3.5106472E-03 3.3369567E-03 3.1721066E-03 3.0156567E-03 2.8671799E-03
 2.7262717E-03
 7.6296195E-02 7.0288852E-02 6.4502306E-02 5.8955818E-02 5.3664979E-02
 4.8641477E-02 4.3893356E-02 3.9425183E-02 3.5238262E-02 3.1330992E-02
 2.7699174E-02 2.4336392E-02 2.1234421E-02 1.8383503E-02 1.5772752E-02
 1.3390454E-02 1.1224304E-02 9.2617013E-03 7.4899173E-03 5.8962754E-03
 4.4683274E-03 3.1939216E-03 2.0613144E-03 1.0592383E-03 1.7693653E-04
 -5.9579348E-04 -1.2685881E-03 -1.8505118E-03 -2.3500493E-03 -2.7751194E-03
 -3.1330865E-03 -3.4307784E-03 -3.6745041E-03 -3.8700707E-03 -4.0228209E-03
 -4.1376431E-03 -4.2190072E-03 -4.2709783E-03 -4.2972551E-03 -4.3011871E-03
 -4.2857993E-03 -4.2538159E-03 -4.2076884E-03 -4.1496111E-03 -4.0815463E-03
 -4.0052370E-03 -3.9222380E-03 -3.8339174E-03 -3.7414872E-03 -3.6460126E-03
 -3.5484252E-03 -3.4495301E-03 -3.3500385E-03 -3.2505516E-03 -3.1515877E-03
 -3.0535925E-03 -2.9569361E-03 -2.8619296E-03 -2.7688274E-03 -2.6778395E-03
 -2.5891298E-03 -2.5028221E-03 -2.4190126E-03 -2.3377622E-03 -2.2591141E-03
 -2.1830816E-03 -2.1096668E-03 -2.0388495E-03 -1.9705968E-03 -1.9048656E-03
 -1.8416055E-03
 6.2962532E-02 6.3017122E-02 6.2774777E-02 6.2260799E-02 6.1501864E-02
 6.0525306E-02 5.9358608E-02 5.8028847E-02 5.6562264E-02 5.4983858E-02
 5.3317089E-02 5.1583670E-02 4.9803413E-02 4.7994144E-02 4.6171691E-02
 4.4349927E-02 4.2540818E-02 4.0754545E-02 3.8999632E-02 3.7283048E-02
 3.5610404E-02 3.3986066E-02 3.2413304E-02 3.0894445E-02 2.9430991E-02
 2.8023746E-02 2.6672926E-02 2.5378259E-02 2.4139073E-02 2.2954376E-02
 2.1822928E-02 2.0743284E-02 1.9713860E-02 1.8732971E-02 1.7798863E-02
 1.6909737E-02 1.6063791E-02 1.5259214E-02 1.4494233E-02 1.3767085E-02
 1.3076061E-02 1.2419489E-02 1.1795753E-02 1.1203301E-02 1.0640628E-02
 1.0106295E-02 9.5989099E-03 9.1171525E-03 8.6597493E-03 8.2255062E-03
 7.8132534E-03 7.4219001E-03 7.0503880E-03 6.6977306E-03 6.3629858E-03
 6.0452288E-03 5.7436288E-03 5.4573538E-03 5.1856353E-03 4.9277390E-03
 4.6829721E-03 4.4506681E-03 4.2301994E-03 4.0209698E-03 3.8224144E-03
 3.6339902E-03 3.4551937E-03 3.2855377E-03 3.1245563E-03 2.9718166E-03
 2.8269000E-03
 7.5603776E-02 6.9583192E-02 6.3785456E-02 5.8230001E-02 5.2932553E-02
 4.7904894E-02 4.3155126E-02 3.8687836E-02 3.4504302E-02 3.0602867E-02
 2.6979223E-02 2.3626851E-02 2.0537367E-02 1.7700851E-02 1.5106226E-02
 1.2741572E-02 1.0594379E-02 8.6518293E-03 6.9009676E-03 5.3289067E-03
 3.9229845E-03 2.6708415E-03 1.5605425E-03 5.8064336E-04 -2.7977611E-04
 -1.0310599E-03 -1.6829739E-03 -2.2446860E-03 -2.7247677E-03 -3.1312068E-03
 -3.4714171E-03 -3.7522560E-03 -3.9800545E-03 -4.1606254E-03 -4.2993017E-03
 -4.4009550E-03 -4.4700326E-03 -4.5105671E-03 -4.5262203E-03 -4.5203022E-03
 -4.4957981E-03 -4.4553881E-03 -4.4014826E-03 -4.3362272E-03 -4.2615444E-03
 -4.1791373E-03 -4.0905168E-03 -3.9970186E-03 -3.8998178E-03 -3.7999391E-03
 -3.6982850E-03 -3.5956353E-03 -3.4926664E-03 -3.3899539E-03 -3.2879908E-03
 -3.1872056E-03 -3.0879378E-03 -2.9904819E-03 -2.8950775E-03 -2.8019119E-03
 -2.7111333E-03 -2.6228530E-03 -2.5371497E-03 -2.4540755E-03 -2.3736579E-03
 -2.2959039E-03 -2.2207976E-03 -2.1483125E-03 -2.0784112E-03 -2.0110388E-03
 -1.9461398E-03
 6.4189918E-02 6.4243600E-02 6.3997939E-02 6.3478425E-02 6.2711872E-02
 6.1725810E-02 6.0547877E-02 5.9205323E-02 5.7724513E-02 5.6130588E-02
 5.4447103E-02 5.2695870E-02 5.0896779E-02 4.9067728E-02 4.7224596E-02
 4.5381319E-02 4.3549903E-02 4.1740593E-02 3.9961949E-02 3.8221020E-02
 3.6523484E-02 3.4873765E-02 3.3275221E-02 3.1730261E-02 3.0240487E-02
 2.8806780E-02 2.7429456E-02 2.6108326E-02 2.4842827E-02 2.3632042E-02
 2.2474801E-02 2.1369752E-02 2.0315362E-02 1.9310027E-02 1.8352030E-02
 1.7439624E-02 1.6571041E-02 1.5744502E-02 1.4958251E-02 1.4210551E-02
 1.3499699E-02 1.2824030E-02 1.2181932E-02 1.1571837E-02 1.0992248E-02
 1.0441707E-02 9.9188145E-03 9.4222380E-03 8.9506889E-03 8.5029425E-03
 8.0778291E-03 7.6742317E-03 7.2910762E-03 6.9273473E-03 6.5820855E-03
 6.2543615E-03 5.9433081E-03 5.6480751E-03 5.3678816E-03 5.1019769E-03
 4.8496355E-03 4.6101781E-03 4.3829600E-03 4.1673668E-03 3.9628106E-03
 3.7687386E-03 3.5846171E-03 3.4099477E-03 3.2442482E-03 3.0870652E-03
 2.9379705E-03
 7.4831173E-02 6.8797082E-02 6.2988237E-02 5.7424270E-02 5.2121047E-02
 4.7090441E-02 4.2340614E-02 3.7876122E-02 3.3698209E-02 2.9805109E-02
 2.6192388E-02 2.2853352E-02 1.9779416E-02 1.6960438E-02 1.4385101E-02
 1.2041231E-02 9.9160615E-03 7.9965107E-03 6.2693739E-03 4.7215163E-03
 3.3400382E-03 2.1123677E-03 1.0263696E-03 7.0420232E-05 -7.6655782E-04
 -1.4950401E-03 -2.1249042E-03 -2.6654073E-03 -3.1251900E-03 -3.5122891E-03
 -3.8341507E-03 -4.0976480E-03 -4.3091108E-03 -4.4743447E-03 -4.5986599E-03
 -4.6869032E-03 -4.7434811E-03 -4.7723954E-03 -4.7772587E-03 -4.7613382E-03
 -4.7275703E-03 -4.6785907E-03 -4.6167606E-03 -4.5441887E-03 -4.4627427E-03
 -4.3740859E-03 -4.2796931E-03 -4.1808556E-03 -4.0787100E-03 -3.9742556E-03
 -3.8683545E-03 -3.7617530E-03 -3.6551044E-03 -3.5489579E-03 -3.4437785E-03
 -3.3399670E-03 -3.2378437E-03 -3.1376898E-03 -3.0397153E-03 -2.9440895E-03
 -2.8509523E-03 -2.7603945E-03 -2.6724804E-03 -2.5872488E-03 -2.5047164E-03
 -2.4248760E-03 -2.3477077E-03 -2.2731738E-03 -2.2012265E-03 -2.1318074E-03
 -2.0648479E-03
 6.5595858E-02 6.5649055E-02 6.5399989E-02 6.4874306E-02 6.4099021E-02
 6.3101806E-02 6.1910503E-02 6.0552511E-02 5.9054371E-02 5.7441358E-02
 5.5737179E-02 5.3963769E-02 5.2141126E-02 5.0287269E-02 4.8418183E-02
 4.6547901E-02 4.4688541E-02 4.2850457E-02 4.1042313E-02 3.9271276E-02
 3.7543122E-02 3.5862409E-02 3.4232598E-02 3.2656226E-02 3.1135002E-02
 2.9669922E-02 2.8261410E-02 2.6909381E-02 2.5613356E-02 2.4372509E-02
 2.3185749E-02 2.2051796E-02 2.0969173E-02 1.9936325E-02 1.8951586E-02
 1.8013235E-02 1.7119532E-02 1.6268719E-02 1.5459053E-02 1.4688805E-02
 1.3956262E-02 1.3259767E-02 1.2597689E-02 1.1968466E-02 1.1370573E-02
 1.0802539E-02 1.0262945E-02 9.7504426E-03 9.2637222E-03 8.8015348E-03
 8.3626881E-03 7.9460423E-03 7.5505017E-03 7.1750293E-03 6.8186303E-03
 6.4803646E-03 6.1593270E-03 5.8546672E-03 5.5655651E-03 5.2912417E-03
 5.0309612E-03 4.7840164E-03 4.5497422E-03 4.3274947E-03 4.1166763E-03
 3.9166990E-03 3.7270188E-03 3.5471125E-03 3.3764776E-03 3.2146408E-03
 3.0611479E-03
 7.3971190E-02 6.7923769E-02 6.2104419E-02 5.6532968E-02 5.1225409E-02
 4.6193708E-02 4.1446030E-02 3.6986899E-02 3.2817457E-02 2.8935786E-02
 2.5337262E-02 2.2014949E-02 1.8960010E-02 1.6162014E-02 1.3609348E-02
 1.1289530E-02 9.1894967E-03 7.2958707E-03 5.5951676E-03 4.0739859E-03
 2.7191865E-03 1.5179766E-03 4.5802828E-04 -4.7244990E-04 -1.2846751E-03
 -1.9892408E-03 -2.5961152E-03 -3.1146251E-03 -3.5534590E-03 -3.9206827E-03
 -4.2237537E-03 -4.4695460E-03 -4.6643768E-03 -4.8140250E-03 -4.9237702E-03
 -4.9984199E-03 -5.0423406E-03 -5.0594830E-03 -5.0534140E-03 -5.0273519E-03
 -4.9841828E-03 -4.9264929E-03 -4.8565953E-03 -4.7765458E-03 -4.6881749E-03
 -4.5931004E-03 -4.4927509E-03 -4.3883817E-03 -4.2810901E-03 -4.1718404E-03
 -4.0614591E-03 -3.9506676E-03 -3.8400816E-03 -3.7302249E-03 -3.6215424E-03
 -3.5144032E-03 -3.4091161E-03 -3.3059232E-03 -3.2050260E-03 -3.1065817E-03
 -3.0106979E-03 -2.9174613E-03 -2.8269193E-03 -2.7391003E-03 -2.6540016E-03
 -2.5716166E-03 -2.4919091E-03 -2.4148349E-03 -2.3403424E-03 -2.2683677E-03
 -2.1988400E-03
 6.7209773E-02 6.7262806E-02 6.7009978E-02 6.6477090E-02 6.5691315E-02
 6.4680547E-02 6.3472793E-02 6.2095664E-02 6.0575891E-02 5.8938950E-02
 5.7208732E-02 5.5407364E-02 5.3555027E-02 5.1669922E-02 4.9768209E-02
 4.7864106E-02 4.5969907E-02 4.4096131E-02 4.2251617E-02 4.0443700E-02
 3.8678318E-02 3.6960188E-02 3.5292923E-02 3.3679198E-02 3.2120850E-02
 3.0619007E-02 2.9174199E-02 2.7786450E-02 2.6455369E-02 2.5180208E-02
 2.3959953E-02 2.2793368E-02 2.1679042E-02 2.0615449E-02 1.9600945E-02
 1.8633842E-02 1.7712411E-02 1.6834898E-02 1.5999559E-02 1.5204657E-02
 1.4448482E-02 1.3729351E-02 1.3045629E-02 1.2395717E-02 1.1778085E-02
 1.1191229E-02 1.0633715E-02 1.0104151E-02 9.6012084E-03 9.1236206E-03
 8.6701568E-03 8.2396483E-03 7.8309728E-03 7.4430639E-03 7.0749056E-03
 6.7255273E-03 6.3939886E-03 6.0794130E-03 5.7809507E-03 5.4978044E-03
 5.2292082E-03 4.9744230E-03 4.7327597E-03 4.5035491E-03 4.2861649E-03
 4.0800017E-03 3.8844817E-03 3.6990617E-03 3.5232196E-03 3.3564561E-03
 3.1983024E-03
 7.3017135E-02 6.6957250E-02 6.1128717E-02 5.5551562E-02 5.0241891E-02
 4.5211699E-02 4.0469140E-02 3.6018629E-02 3.1861141E-02 2.7994541E-02
 2.4413941E-02 2.1112099E-02 1.8079845E-02 1.5306407E-02 1.2779824E-02
 1.0487273E-02 8.4153479E-03 6.5503623E-03 4.8785382E-03 3.3862083E-03
 2.0599973E-03 8.8690448E-04 -1.4557815E-04 -1.0493830E-03 -1.8358520E-03
 -2.5156704E-03 -3.0988751E-03 -3.5948372E-03 -4.0122760E-03 -4.3592644E-03
 -4.6432582E-03 -4.8711137E-03 -5.0491160E-03 -5.1830160E-03 -5.2780504E-03
 -5.3389762E-03 -5.3701145E-03 -5.3753625E-03 -5.3582373E-03 -5.3219018E-03
 -5.2691884E-03 -5.2026371E-03 -5.1245033E-03 -5.0368025E-03 -4.9413107E-03
 -4.8396075E-03 -4.7330740E-03 -4.6229279E-03 -4.5102313E-03 -4.3959045E-03
 -4.2807478E-03 -4.1654469E-03 -4.0505887E-03 -3.9366684E-03 -3.8241041E-03
 -3.7132378E-03 -3.6043585E-03 -3.4976904E-03 -3.3934147E-03 -3.2916628E-03
 -3.1925337E-03 -3.0960981E-03 -3.0023898E-03 -2.9114243E-03 -2.8231926E-03
 -2.7376770E-03 -2.6548358E-03 -2.5746196E-03 -2.4969683E-03 -2.4218215E-03
 -2.3491003E-03
 6.9066346E-02 6.9119230E-02 6.8861745E-02 6.8319835E-02 6.7520864E-02
 6.6492930E-02 6.5264300E-02 6.3862823E-02 6.2315498E-02 6.0648073E-02
 5.8884747E-02 5.7047900E-02 5.5158023E-02 5.3233571E-02 5.1291015E-02
 4.9344804E-02 4.7407504E-02 4.5489896E-02 4.3601040E-02 4.1748479E-02
 3.9938379E-02 3.8175639E-02 3.6464036E-02 3.4806415E-02 3.3204746E-02
 3.1660289E-02 3.0173685E-02 2.8745044E-02 2.7374063E-02 2.6060062E-02
 2.4802087E-02 2.3598935E-02 2.2449233E-02 2.1351473E-02 2.0304034E-02
 1.9305227E-02 1.8353323E-02 1.7446565E-02 1.6583191E-02 1.5761452E-02
 1.4979612E-02 1.4235972E-02 1.3528868E-02 1.2856671E-02 1.2217813E-02
 1.1610770E-02 1.1034063E-02 1.0486281E-02 9.9660624E-03 9.4720852E-03
 9.0031037E-03 8.5579054E-03 8.1353392E-03 7.7343066E-03 7.3537445E-03
 6.9926581E-03 6.6500753E-03 6.3250791E-03 6.0167941E-03 5.7243872E-03
 5.4470506E-03 5.1840344E-03 4.9346029E-03 4.6980618E-03 4.4737551E-03
 4.2610513E-03 4.0593441E-03 3.8680658E-03 3.6866663E-03 3.5146256E-03
 3.3514488E-03
 7.1963504E-02 6.5892965E-02 6.0057554E-02 5.4477438E-02 4.9168788E-02
 4.4143591E-02 3.9409891E-02 3.4971930E-02 3.0830432E-02 2.6982963E-02
 2.3424279E-02 2.0146785E-02 1.7140906E-02 1.4395491E-02 1.1898184E-02
 9.6358005E-03 7.5945891E-03 5.7605449E-03 4.1196034E-03 2.6578514E-03
 1.3616893E-03 2.1793424E-04 -7.8607030E-04 -1.6623833E-03 -2.4224373E-03
 -3.0769871E-03 -3.6361138E-03 -4.1092159E-03 -4.5050164E-03 -4.8315865E-03
 -5.0963592E-03 -5.3061605E-03 -5.4672412E-03 -5.5853040E-03 -5.6655402E-03
 -5.7126540E-03 -5.7309116E-03 -5.7241553E-03 -5.6958483E-03 -5.6490963E-03
 -5.5866791E-03 -5.5110808E-03 -5.4245088E-03 -5.3289286E-03 -5.2260691E-03
 -5.1174629E-03 -5.0044530E-03 -4.8882104E-03 -4.7697565E-03 -4.6499856E-03
 -4.5296554E-03 -4.4094222E-03 -4.2898403E-03 -4.1713784E-03 -4.0544295E-03
 -3.9393115E-03 -3.8262883E-03 -3.7155664E-03 -3.6073020E-03 -3.5016199E-03
 -3.3986049E-03 -3.2983031E-03 -3.2007478E-03 -3.1059405E-03 -3.0138681E-03
 -2.9245021E-03 -2.8378025E-03 -2.7537127E-03 -2.6721752E-03 -2.5931250E-03
 -2.5164920E-03
 7.1206257E-02 7.1258336E-02 7.0994310E-02 7.0440285E-02 6.9623858E-02
 6.8573423E-02 6.7317553E-02 6.5884478E-02 6.4301580E-02 6.2595017E-02
 6.0789399E-02 5.8907542E-02 5.6970328E-02 5.4996651E-02 5.3003322E-02
 5.1005214E-02 4.9015198E-02 4.7044378E-02 4.5102105E-02 4.3196194E-02
 4.1333038E-02 3.9517749E-02 3.7754294E-02 3.6045667E-02 3.4393989E-02
 3.2800637E-02 3.1266343E-02 2.9791301E-02 2.8375283E-02 2.7017644E-02
 2.5717475E-02 2.4473596E-02 2.3284646E-02 2.2149134E-02 2.1065423E-02
 2.0031815E-02 1.9046571E-02 1.8107904E-02 1.7214037E-02 1.6363185E-02
 1.5553577E-02 1.4783479E-02 1.4051190E-02 1.3355046E-02 1.2693440E-02
 1.2064804E-02 1.1467622E-02 1.0900434E-02 1.0361832E-02 9.8504703E-03
 9.3650455E-03 8.9043099E-03 8.4670736E-03 8.0521833E-03 7.6585580E-03
 7.2851325E-03 6.9309222E-03 6.5949596E-03 6.2763239E-03 5.9741549E-03
 5.6876051E-03 5.4158824E-03 5.1582218E-03 4.9139000E-03 4.6822224E-03
 4.4625266E-03 4.2541800E-03 4.0565869E-03 3.8691736E-03 3.6913895E-03
 3.5227262E-03
 7.0807077E-02 6.4728945E-02 5.8890145E-02 5.3310927E-02 4.8007440E-02
 4.2991567E-02 3.8271151E-02 3.3850171E-02 2.9728999E-02 2.5904838E-02
 2.2372024E-02 1.9122537E-02 1.6146388E-02 1.3431999E-02 1.0966637E-02
 8.7367399E-03 6.7282333E-03 4.9268096E-03 3.3181491E-03 1.8881098E-03
 6.2290567E-04 -4.9079763E-04 -1.4657798E-03 -2.3141964E-03 -3.0475450E-03
 -3.6766268E-03 -4.2115459E-03 -4.6617086E-03 -5.0358288E-03 -5.3419573E-03
 -5.5874959E-03 -5.7792342E-03 -5.9233764E-03 -6.0255728E-03 -6.0909623E-03
 -6.1241970E-03 -6.1294823E-03 -6.1106035E-03 -6.0709678E-03 -6.0136225E-03
 -5.9412946E-03 -5.8564129E-03 -5.7611386E-03 -5.6573753E-03 -5.5468157E-03
 -5.4309391E-03 -5.3110495E-03 -5.1882765E-03 -5.0636050E-03 -4.9378867E-03
 -4.8118499E-03 -4.6861162E-03 -4.5612119E-03 -4.4375765E-03 -4.3155770E-03
 -4.1955169E-03 -4.0776259E-03 -3.9621005E-03 -3.8490833E-03 -3.7386762E-03
 -3.6309564E-03 -3.5259638E-03 -3.4237199E-03 -3.3242202E-03 -3.2274493E-03
 -3.1333773E-03 -3.0419612E-03 -2.9531466E-03 -2.8668738E-03 -2.7830873E-03
 -2.7017142E-03
 7.3676795E-02 7.3726095E-02 7.3451951E-02 7.2880723E-02 7.2040349E-02
 7.0959635E-02 6.9667630E-02 6.8193123E-02 6.6564046E-02 6.4807184E-02
 6.2947713E-02 6.1009064E-02 5.9012685E-02 5.6978002E-02 5.4922335E-02
 5.2860998E-02 5.0807312E-02 4.8772730E-02 4.6766944E-02 4.4798065E-02
 4.2872727E-02 4.0996257E-02 3.9172817E-02 3.7405554E-02 3.5696704E-02
 3.4047745E-02 3.2459497E-02 3.0932220E-02 2.9465707E-02 2.8059365E-02
 2.6712291E-02 2.5423311E-02 2.4191052E-02 2.3014011E-02 2.1890525E-02
 2.0818885E-02 1.9797301E-02 1.8823951E-02 1.7897028E-02 1.7014686E-02
 1.6175123E-02 1.5376552E-02 1.4617226E-02 1.3895427E-02 1.3209494E-02
 1.2557810E-02 1.1938814E-02 1.1350997E-02 1.0792881E-02 1.0263087E-02
 9.7602559E-03 9.2830900E-03 8.8303415E-03 8.4008239E-03 7.9933871E-03
 7.6069417E-03 7.2404342E-03 6.8928609E-03 6.5632672E-03 6.2507270E-03
 5.9543727E-03 5.6733657E-03 5.4068966E-03 5.1542111E-03 4.9145813E-03
 4.6873121E-03 4.4717439E-03 4.2672493E-03 4.0732226E-03 3.8891032E-03
 3.7143482E-03
 6.9548368E-02 6.3467212E-02 5.7629839E-02 5.2056521E-02 4.6763234E-02
 4.1761655E-02 3.7059322E-02 3.2659847E-02 2.8563216E-02 2.4766183E-02
 2.1262662E-02 1.8044189E-02 1.5100352E-02 1.2419180E-02 9.9875648E-03
 7.7916202E-03 5.8169691E-03 4.0490464E-03 2.4733110E-03 1.0754322E-03
 -1.5852618E-04 -1.2420253E-03 -2.1879361E-03 -3.0084839E-03 -3.7152099E-03
 -4.3189414E-03 -4.8297914E-03 -5.2571571E-03 -5.6097363E-03 -5.8955452E-03
 -6.1219535E-03 -6.2957024E-03 -6.4229476E-03 -6.5092836E-03 -6.5597966E-03
 -6.5790783E-03 -6.5712784E-03 -6.5401224E-03 -6.4889574E-03 -6.4207804E-03
 -6.3382583E-03 -6.2437654E-03 -6.1394088E-03 -6.0270489E-03 -5.9083290E-03
 -5.7846829E-03 -5.6573665E-03 -5.5274721E-03 -5.3959498E-03 -5.2636093E-03
 -5.1311492E-03 -4.9991598E-03 -4.8681400E-03 -4.7385013E-03 -4.6105948E-03
 -4.4846912E-03 -4.3610153E-03 -4.2397436E-03 -4.1210009E-03 -4.0048920E-03
 -3.8914732E-03 -3.7807836E-03 -3.6728429E-03 -3.5676444E-03 -3.4651726E-03
 -3.3653954E-03 -3.2682747E-03 -3.1737608E-03 -3.0818060E-03 -2.9923480E-03
 -2.9053269E-03
 7.6532006E-02 7.6574281E-02 7.6283835E-02 7.5687416E-02 7.4813515E-02
 7.3691562E-02 7.2351374E-02 7.0822492E-02 6.9133721E-02 6.7312635E-02
 6.5385237E-02 6.3375726E-02 6.1306287E-02 5.9196983E-02 5.7065766E-02
 5.4928470E-02 5.2798897E-02 5.0688911E-02 4.8608560E-02 4.6566244E-02
 4.4568866E-02 4.2621937E-02 4.0729806E-02 3.8895741E-02 3.7122089E-02
 3.5410415E-02 3.3761583E-02 3.2175880E-02 3.0653134E-02 2.9192748E-02
 2.7793802E-02 2.6455112E-02 2.5175275E-02 2.3952745E-02 2.2785831E-02
 2.1672759E-02 2.0611703E-02 1.9600781E-02 1.8638119E-02 1.7721830E-02
 1.6850043E-02 1.6020905E-02 1.5232608E-02 1.4483370E-02 1.3771474E-02
 1.3095236E-02 1.2453029E-02 1.1843280E-02 1.1264465E-02 1.0715120E-02
 1.0193834E-02 9.6992543E-03 9.2300717E-03 8.7850336E-03 8.3629480E-03
 7.9626571E-03 7.5830650E-03 7.2231139E-03 6.8817926E-03 6.5581375E-03
 6.2512290E-03 5.9601869E-03 5.6841709E-03 5.4223770E-03 5.1740482E-03
 4.9384600E-03 4.7149169E-03 4.5027644E-03 4.3013738E-03 4.1101654E-03
 3.9285640E-03
 6.8193555E-02 6.2115539E-02 5.6285698E-02 5.0724141E-02 4.5446575E-02
 4.0464364E-02 3.5784669E-02 3.1410705E-02 2.7342036E-02 2.3575000E-02
 2.0103097E-02 1.6917460E-02 1.4007309E-02 1.1360332E-02 8.9631109E-03
 6.8014781E-03 4.8608086E-03 3.1263304E-03 1.5833161E-03 2.1728908E-04
 -9.8580925E-04 -2.0395312E-03 -2.9568244E-03 -3.7499592E-03 -4.4305064E-03
 -5.0093113E-03 -5.4964786E-03 -5.9013921E-03 -6.2327250E-03 -6.4984630E-03
 -6.7059253E-03 -6.8618138E-03 -6.9722296E-03 -7.0427186E-03 -7.0783035E-03
 -7.0835240E-03 -7.0624645E-03 -7.0187990E-03 -6.9558173E-03 -6.8764542E-03
 -6.7833266E-03 -6.6787535E-03 -6.5647936E-03 -6.4432556E-03 -6.3157342E-03
 -6.1836219E-03 -6.0481317E-03 -5.9103169E-03 -5.7710889E-03 -5.6312284E-03
 -5.4913997E-03 -5.3521660E-03 -5.2140020E-03 -5.0773020E-03 -4.9423869E-03
 -4.8095249E-03 -4.6789180E-03 -4.5507355E-03 -4.4251010E-03 -4.3021031E-03
 -4.1818041E-03 -4.0642391E-03 -3.9494266E-03 -3.8373680E-03 -3.7280470E-03
 -3.6214420E-03 -3.5175160E-03 -3.4162316E-03 -3.3175426E-03 -3.2213964E-03
 -3.1277465E-03
 7.9832040E-02 7.9859592E-02 7.9542898E-02 7.8909419E-02 7.7988490E-02
 7.6810561E-02 7.5406492E-02 7.3806971E-02 7.2041869E-02 7.0139863E-02
 6.8127967E-02 6.6031322E-02 6.3872971E-02 6.1673742E-02 5.9452277E-02
 5.7224985E-02 5.5006173E-02 5.2808132E-02 5.0641261E-02 4.8514266E-02
 4.6434257E-02 4.4406973E-02 4.2436872E-02 4.0527347E-02 3.8680810E-02
 3.6898877E-02 3.5182435E-02 3.3531789E-02 3.1946737E-02 3.0426672E-02
 2.8970631E-02 2.7577391E-02 2.6245486E-02 2.4973320E-02 2.3759136E-02
 2.2601089E-02 2.1497279E-02 2.0445755E-02 1.9444570E-02 1.8491756E-02
 1.7585358E-02 1.6723460E-02 1.5904168E-02 1.5125622E-02 1.4386025E-02
 1.3683625E-02 1.3016707E-02 1.2383625E-02 1.1782783E-02 1.1212649E-02
 1.0671733E-02 1.0158611E-02 9.6719107E-03 9.2103137E-03 8.7725576E-03
 8.3574308E-03 7.9637747E-03 7.5904708E-03 7.2364639E-03 6.9007413E-03
 6.5823295E-03 6.2803077E-03 5.9937905E-03 5.7219435E-03 5.4639704E-03
 5.2191149E-03 4.9866545E-03 4.7659036E-03 4.5562172E-03 4.3569831E-03
 4.1676187E-03
 6.6756725E-02 6.0689326E-02 5.4873858E-02 4.9330104E-02 4.4073455E-02
 3.9114904E-02 3.4461278E-02 3.0115426E-02 2.6076568E-02 2.2340707E-02
 1.8901022E-02 1.5748357E-02 1.2871647E-02 1.0258323E-02 7.8947237E-03
 5.7664737E-03 3.8587572E-03 2.1566332E-03 6.4523402E-04 -6.9003779E-04
 -1.8633374E-03 -2.8882970E-03 -3.7779175E-03 -4.5445096E-03 -5.1996689E-03
 -5.7542399E-03 -6.2183323E-03 -6.6013099E-03 -6.9118184E-03 -7.1578105E-03
 -7.3465682E-03 -7.4847410E-03 -7.5783907E-03 -7.6329983E-03 -7.6535395E-03
 -7.6444964E-03 -7.6098978E-03 -7.5533637E-03 -7.4781198E-03 -7.3870532E-03
 -7.2827274E-03 -7.1674059E-03 -7.0431009E-03 -6.9115711E-03 -6.7743706E-03
 -6.6328426E-03 -6.4881714E-03 -6.3413698E-03 -6.1933142E-03 -6.0447576E-03
 -5.8963401E-03 -5.7486021E-03 -5.6019975E-03 -5.4569053E-03 -5.3136358E-03
 -5.1724422E-03 -5.0335266E-03 -4.8970529E-03 -4.7631380E-03 -4.6318751E-03
 -4.5033284E-03 -4.3775383E-03 -4.2545325E-03 -4.1343123E-03 -4.0168744E-03
 -3.9022011E-03 -3.7902691E-03 -3.6810492E-03 -3.5745041E-03 -3.4705899E-03
 -3.3692687E-03
 8.3641693E-02 8.3641991E-02 8.3284244E-02 8.2597084E-02 8.1611179E-02
 8.0358379E-02 7.8871019E-02 7.7181190E-02 7.5320192E-02 7.3317960E-02
 7.1202710E-02 6.9000669E-02 6.6735826E-02 6.4429849E-02 6.2102087E-02
 5.9769578E-02 5.7447109E-02 5.5147421E-02 5.2881248E-02 5.0657544E-02
 4.8483666E-02 4.6365470E-02 4.4307552E-02 4.2313367E-02 4.0385380E-02
 3.8525205E-02 3.6733739E-02 3.5011247E-02 3.3357486E-02 3.1771794E-02
 3.0253155E-02 2.8800255E-02 2.7411563E-02 2.6085392E-02 2.4819896E-02
 2.3613140E-02 2.2463126E-02 2.1367822E-02 2.0325165E-02 1.9333100E-02
 1.8389581E-02 1.7492585E-02 1.6640125E-02 1.5830250E-02 1.5061073E-02
 1.4330731E-02 1.3637435E-02 1.2979442E-02 1.2355072E-02 1.1762703E-02
 1.1200771E-02 1.0667765E-02 1.0162238E-02 9.6827988E-03 9.2281168E-03
 8.7969070E-03 8.3879568E-03 8.0000851E-03 7.6321843E-03 7.2831777E-03
 6.9520618E-03 6.6378615E-03 6.3396548E-03 6.0565704E-03 5.7877735E-03
 5.5324808E-03 5.2899416E-03 5.0594448E-03 4.8403209E-03 4.6319403E-03
 4.4337022E-03
 6.5261990E-02 5.9213087E-02 5.3418435E-02 4.7897484E-02 4.2665344E-02
 3.7732780E-02 3.3106394E-02 2.8788866E-02 2.4779236E-02 2.1073353E-02
 1.7664226E-02 1.4542541E-02 1.1697068E-02 9.1150748E-03 6.7827455E-03
 4.6855449E-03 2.8085203E-03 1.1365914E-03 -3.4522588E-04 -1.6516299E-03
 -2.7968679E-03 -3.7946380E-03 -4.6580001E-03 -5.3993012E-03 -6.0301642E-03
 -6.5614451E-03 -7.0032505E-03 -7.3649329E-03 -7.6551214E-03 -7.8817345E-03
 -8.0520213E-03 -8.1725931E-03 -8.2494598E-03 -8.2880612E-03 -8.2933186E-03
 -8.2696611E-03 -8.2210675E-03 -8.1510944E-03 -8.0629308E-03 -7.9594022E-03
 -7.8430213E-03 -7.7160094E-03 -7.5803269E-03 -7.4376962E-03 -7.2896238E-03
 -7.1374248E-03 -6.9822422E-03 -6.8250648E-03 -6.6667376E-03 -6.5079969E-03
 -6.3494598E-03 -6.1916541E-03 -6.0350201E-03 -5.8799288E-03 -5.7266867E-03
 -5.5755447E-03 -5.4267072E-03 -5.2803373E-03 -5.1365565E-03 -4.9954699E-03
 -4.8571466E-03 -4.7216341E-03 -4.5889723E-03 -4.4591697E-03 -4.3322393E-03
 -4.2081731E-03 -4.0869578E-03 -3.9685727E-03 -3.8529921E-03 -3.7401838E-03
 -3.6301196E-03
 8.8027626E-02 8.7982170E-02 8.7562986E-02 8.6800463E-02 8.5727081E-02
 8.4376544E-02 8.2782984E-02 8.0980219E-02 7.9001129E-02 7.6877125E-02
 7.4637733E-02 7.2310321E-02 6.9919899E-02 6.7489006E-02 6.5037705E-02
 6.2583655E-02 6.0142152E-02 5.7726312E-02 5.5347200E-02 5.3014018E-02
 5.0734282E-02 4.8513982E-02 4.6357784E-02 4.4269189E-02 4.2250652E-02
 4.0303782E-02 3.8429417E-02 3.6627769E-02 3.4898520E-02 3.3240922E-02
 3.1653848E-02 3.0135892E-02 2.8685419E-02 2.7300617E-02 2.5979530E-02
 2.4720108E-02 2.3520233E-02 2.2377739E-02 2.1290466E-02 2.0256229E-02
 1.9272856E-02 1.8338213E-02 1.7450202E-02 1.6606750E-02 1.5805861E-02
 1.5045566E-02 1.4323968E-02 1.3639218E-02 1.2989535E-02 1.2373207E-02
 1.1788571E-02 1.1234032E-02 1.0708062E-02 1.0209187E-02 9.7360006E-03
 9.2871543E-03 8.8613629E-03 8.4573897E-03 8.0740685E-03 7.7102785E-03
 7.3649581E-03 7.0370920E-03 6.7257271E-03 6.4299479E-03 6.1488943E-03
 5.8817472E-03 5.6277262E-03 5.3861090E-03 5.1561981E-03 4.9373447E-03
 4.7289259E-03
 6.3744947E-02 5.7721093E-02 5.1951535E-02 4.6455611E-02 4.1248415E-02
 3.6340777E-02 3.1739403E-02 2.7447067E-02 2.3462920E-02 1.9782852E-02
 1.6399918E-02 1.3304779E-02 1.0486162E-02 7.9312604E-03 5.6261588E-03
 3.5562126E-03 1.7063490E-03 6.1375074E-05 -1.3938114E-03 -2.6740120E-03
 -3.7935681E-03 -4.7662593E-03 -5.6052068E-03 -6.3228160E-03 -6.9307396E-03
 -7.4398643E-03 -7.8603011E-03 -8.2014082E-03 -8.4718009E-03 -8.6793816E-03
 -8.8313688E-03 -8.9343423E-03 -8.9942738E-03 -9.0165660E-03 -9.0060886E-03
 -8.9672282E-03 -8.9039151E-03 -8.8196639E-03 -8.7176068E-03 -8.6005302E-03
 -8.4709022E-03 -8.3309030E-03 -8.1824539E-03 -8.0272388E-03 -7.8667337E-03
 -7.7022277E-03 -7.5348355E-03 -7.3655257E-03 -7.1951333E-03 -7.0243706E-03
 -6.8538538E-03 -6.6841026E-03 -6.5155542E-03 -6.3485787E-03 -6.1834920E-03
 -6.0205478E-03 -5.8599538E-03 -5.7018884E-03 -5.5464813E-03 -5.3938483E-03
 -5.2440749E-03 -5.0972211E-03 -4.9533327E-03 -4.8124422E-03 -4.6745655E-03
 -4.5397137E-03 -4.4078827E-03 -4.2790631E-03 -4.1532405E-03 -4.0303944E-03
 -3.9105034E-03
 9.3055189E-02 9.2939138E-02 9.2432626E-02 9.1568343E-02 9.0381026E-02
 8.8906549E-02 8.7181091E-02 8.5240364E-02 8.3118960E-02 8.0849849E-02
 7.8463927E-02 7.5989746E-02 7.3453359E-02 7.0878156E-02 6.8284959E-02
 6.5692000E-02 6.3115075E-02 6.0567662E-02 5.8061115E-02 5.5604845E-02
 5.3206507E-02 5.0872188E-02 4.8606586E-02 4.6413191E-02 4.4294439E-02
 4.2251866E-02 4.0286236E-02 3.8397655E-02 3.6585707E-02 3.4849491E-02
 3.3187784E-02 3.1599026E-02 3.0081434E-02 2.8633062E-02 2.7251799E-02
 2.5935449E-02 2.4681749E-02 2.3488380E-02 2.2353038E-02 2.1273393E-02
 2.0247133E-02 1.9271983E-02 1.8345702E-02 1.7466092E-02 1.6631024E-02
 1.5838398E-02 1.5086198E-02 1.4372467E-02 1.3695307E-02 1.3052898E-02
 1.2443480E-02 1.1865367E-02 1.1316937E-02 1.0796634E-02 1.0302979E-02
 9.8345522E-03 9.3899975E-03 8.9680245E-03 8.5674049E-03 8.1869736E-03
 7.8256195E-03 7.4822917E-03 7.1559902E-03 6.8457685E-03 6.5507335E-03
 6.2700431E-03 6.0028983E-03 5.7485397E-03 5.5062636E-03 5.2753910E-03
 5.0552995E-03
 6.2252607E-02 5.6256551E-02 5.0511982E-02 4.5038603E-02 3.9852023E-02
 3.4963612E-02 3.0380605E-02 2.6106259E-02 2.2140108E-02 1.8478354E-02
 1.5114253E-02 1.2038592E-02 9.2401430E-03 6.7060837E-03 4.4224332E-03
 2.3744574E-03 5.4696121E-04 -1.0753757E-03 -2.5077842E-03 -3.7651958E-03
 -4.8620650E-03 -5.8122785E-03 -6.6290502E-03 -7.3248548E-03 -7.9114102E-03
 -8.3996439E-03 -8.7996991E-03 -9.1209514E-03 -9.3720183E-03 -9.5608039E-03
 -9.6945064E-03 -9.7796936E-03 -9.8223034E-03 -9.8277060E-03 -9.8007424E-03
 -9.7457599E-03 -9.6666487E-03 -9.5668901E-03 -9.4495732E-03 -9.3174521E-03
 -9.1729602E-03 -9.0182461E-03 -8.8552041E-03 -8.6854920E-03 -8.5105691E-03
 -8.3317058E-03 -8.1500048E-03 -7.9664225E-03 -7.7817901E-03 -7.5968248E-03
 -7.4121389E-03 -7.2282567E-03 -7.0456266E-03 -6.8646274E-03 -6.6855843E-03
 -6.5087662E-03 -6.3343979E-03 -6.1626667E-03 -5.9937248E-03 -5.8277026E-03
 -5.6646937E-03 -5.5047818E-03 -5.3480277E-03 -5.1944740E-03 -5.0441562E-03
 -4.8970920E-03 -4.7532916E-03 -4.6127606E-03 -4.4754879E-03 -4.3414705E-03
 -4.2106849E-03
 9.8785542E-02 9.8568536E-02 9.7944401E-02 9.6948460E-02 9.5617943E-02
 9.3991041E-02 9.2106067E-02 9.0000689E-02 8.7711275E-02 8.5272357E-02
 8.2716219E-02 8.0072641E-02 7.7368699E-02 7.4628673E-02 7.1874090E-02
 6.9123782E-02 6.6393994E-02 6.3698575E-02 6.1049145E-02 5.8455270E-02
 5.5924736E-02 5.3463671E-02 5.1076759E-02 4.8767466E-02 4.6538144E-02
 4.4390239E-02 4.2324383E-02 4.0340547E-02 3.8438145E-02 3.6616147E-02
 3.4873117E-02 3.3207346E-02 3.1616867E-02 3.0099552E-02 2.8653102E-02
 2.7275145E-02 2.5963238E-02 2.4714880E-02 2.3527594E-02 2.2398878E-02
 2.1326248E-02 2.0307271E-02 1.9339537E-02 1.8420709E-02 1.7548498E-02
 1.6720673E-02 1.5935086E-02 1.5189644E-02 1.4482333E-02 1.3811227E-02
 1.3174457E-02 1.2570231E-02 1.1996844E-02 1.1452657E-02 1.0936111E-02
 1.0445710E-02 9.9800415E-03 9.5377527E-03 9.1175605E-03 8.7182485E-03
 8.3386665E-03 7.9777166E-03 7.6343687E-03 7.3076403E-03 6.9966135E-03
 6.7004175E-03 6.4182305E-03 6.1492748E-03 5.8928225E-03 5.6481874E-03
 5.4147271E-03
 6.0841434E-02 5.4869425E-02 4.9143147E-02 4.3683447E-02 3.8507115E-02
 3.3626653E-02 2.9050304E-02 2.4782173E-02 2.0822484E-02 1.7167952E-02
 1.3812183E-02 1.0746187E-02 7.9588378E-03 5.4373182E-03 3.1675892E-03
 1.1347956E-03 -6.7639962E-04 -2.2814807E-03 -3.6958489E-03 -4.9346066E-03
 -6.0123648E-03 -6.9431551E-03 -7.7403188E-03 -8.4164422E-03 -8.9833373E-03
 -9.4520021E-03 -9.8326420E-03 -1.0134671E-02 -1.0366738E-02 -1.0536755E-02
 -1.0651938E-02 -1.0718839E-02 -1.0743392E-02 -1.0730949E-02 -1.0686334E-02
 -1.0613869E-02 -1.0517421E-02 -1.0400447E-02 -1.0266016E-02 -1.0116858E-02
 -9.9553913E-03 -9.7837448E-03 -9.6038021E-03 -9.4172144E-03 -9.2254328E-03
 -9.0297284E-03 -8.8312011E-03 -8.6308224E-03 -8.4294258E-03 -8.2277348E-03
 -8.0263820E-03 -7.8259083E-03 -7.6267766E-03 -7.4293860E-03 -7.2340798E-03
 -7.0411451E-03 -6.8508289E-03 -6.6633378E-03 -6.4788419E-03 -6.2974915E-03
 -6.1193993E-03 -5.9446632E-03 -5.7733608E-03 -5.6055500E-03 -5.4412792E-03
 -5.2805804E-03 -5.1234732E-03 -4.9699694E-03 -4.8200772E-03 -4.6737907E-03
 -4.5310990E-03
 0.1052746 0.1049228 0.1041483 0.1029890 0.1014847
 9.9675722E-02 9.7602613E-02 9.5304921E-02 9.2820793E-02 9.0186320E-02
 8.7435216E-02 8.4598474E-02 8.1704237E-02 7.8777656E-02 7.5841017E-02
 7.2913721E-02 7.0012487E-02 6.7151509E-02 6.4342633E-02 6.1595604E-02
 5.8918264E-02 5.6316756E-02 5.3795744E-02 5.1358599E-02 4.9007561E-02
 4.6743922E-02 4.4568151E-02 4.2480033E-02 4.0478785E-02 3.8563158E-02
 3.6731523E-02 3.4981932E-02 3.3312201E-02 3.1719979E-02 3.0202754E-02
 2.8757926E-02 2.7382834E-02 2.6074776E-02 2.4831062E-02 2.3648990E-02
 2.2525888E-02 2.1459127E-02 2.0446131E-02 1.9484384E-02 1.8571433E-02
 1.7704910E-02 1.6882505E-02 1.6101999E-02 1.5361256E-02 1.4658222E-02
 1.3990927E-02 1.3357482E-02 1.2756086E-02 1.2185011E-02 1.1642627E-02
 1.1127370E-02 1.0637755E-02 1.0172375E-02 9.7298967E-03 9.3090488E-03
 8.9086480E-03 8.5275527E-03 8.1647020E-03 7.8190807E-03 7.4897413E-03
 7.1757925E-03 6.8763895E-03 6.5907328E-03 6.3180868E-03 6.0577486E-03
 5.8090617E-03
 5.9573993E-02 5.3613581E-02 4.7890741E-02 4.2428363E-02 3.7245143E-02
 3.2355275E-02 2.7768461E-02 2.3489986E-02 1.9520994E-02 1.5858874E-02
 1.2497697E-02 9.4287321E-03 6.6409693E-03 4.1215830E-03 1.8564345E-03
 -1.6949158E-04 -1.9717349E-03 -3.5660092E-03 -4.9679498E-03 -6.1928839E-03
 -7.2556445E-03 -8.1704641E-03 -8.9508640E-03 -9.6095903E-03 -1.0158589E-02
 -1.0608972E-02 -1.0971041E-02 -1.1254281E-02 -1.1467400E-02 -1.1618362E-02
 -1.1714400E-02 -1.1762095E-02 -1.1767394E-02 -1.1735652E-02 -1.1671695E-02
 -1.1579844E-02 -1.1463968E-02 -1.1327513E-02 -1.1173554E-02 -1.1004819E-02
 -1.0823723E-02 -1.0632402E-02 -1.0432750E-02 -1.0226424E-02 -1.0014895E-02
 -9.7994376E-03 -9.5811840E-03 -9.3611162E-03 -9.1400938E-03 -8.9188674E-03
 -8.6980900E-03 -8.4783277E-03 -8.2600694E-03 -8.0437437E-03 -7.8297136E-03
 -7.6182936E-03 -7.4097551E-03 -7.2043263E-03 -7.0021986E-03 -6.8035428E-03
 -6.6084885E-03 -6.4171539E-03 -6.2296255E-03 -6.0459822E-03 -5.8662812E-03
 -5.6905625E-03 -5.5188611E-03 -5.3511951E-03 -5.1875706E-03 -5.0279917E-03
 -4.8724473E-03
 0.1125743 0.1120534 0.1110956 0.1097414 0.1080327
 0.1060120 0.1037219 0.1012038 9.8497577E-02 9.5640965E-02
 9.2669107E-02 8.9614280E-02 8.6505733E-02 8.3369575E-02 8.0228843E-02
 7.7103570E-02 7.4010946E-02 7.0965514E-02 6.7979366E-02 6.5062352E-02
 6.2222406E-02 5.9465628E-02 5.6796614E-02 5.4218613E-02 5.1733691E-02
 4.9342960E-02 4.7046665E-02 4.4844344E-02 4.2734988E-02 4.0717062E-02
 3.8788687E-02 3.6947649E-02 3.5191491E-02 3.3517592E-02 3.1923182E-02
 3.0405402E-02 2.8961336E-02 2.7588043E-02 2.6282595E-02 2.5042057E-02
 2.3863548E-02 2.2744233E-02 2.1681340E-02 2.0672159E-02 1.9714080E-02
 1.8804561E-02 1.7941143E-02 1.7121475E-02 1.6343277E-02 1.5604383E-02
 1.4902716E-02 1.4236279E-02 1.3603182E-02 1.3001615E-02 1.2429871E-02
 1.1886315E-02 1.1369399E-02 1.0877660E-02 1.0409713E-02 9.9642491E-03
 9.5400289E-03 9.1358842E-03 8.7507181E-03 8.3834874E-03 8.0332225E-03
 7.6990011E-03 7.3799687E-03 7.0753046E-03 6.7842528E-03 6.5061064E-03
 6.2401909E-03
 5.8515541E-02 5.2544456E-02 4.6801422E-02 4.1312173E-02 3.6097940E-02
 3.1175101E-02 2.6555175E-02 2.2244895E-02 1.8246496E-02 1.4558160E-02
 1.1174458E-02 8.0869468E-03 5.2846977E-03 2.7548287E-03 4.8303913E-04
 -1.5459296E-03 -3.3479077E-03 -4.9389172E-03 -6.3349153E-03 -7.5515420E-03
 -8.6039258E-03 -9.5065730E-03 -1.0273254E-02 -1.0916936E-02 -1.1449758E-02
 -1.1882998E-02 -1.2227098E-02 -1.2491667E-02 -1.2685508E-02 -1.2816661E-02
 -1.2892434E-02 -1.2919459E-02 -1.2903722E-02 -1.2850627E-02 -1.2765026E-02
 -1.2651268E-02 -1.2513247E-02 -1.2354438E-02 -1.2177939E-02 -1.1986502E-02
 -1.1782571E-02 -1.1568314E-02 -1.1345652E-02 -1.1116274E-02 -1.0881679E-02
 -1.0643183E-02 -1.0401951E-02 -1.0158997E-02 -9.9152178E-03 -9.6714012E-03
 -9.4282320E-03 -9.1863116E-03 -8.9461608E-03 -8.7082339E-03 -8.4729297E-03
 -8.2405908E-03 -8.0115106E-03 -7.7859424E-03 -7.5640976E-03 -7.3461682E-03
 -7.1323016E-03 -6.9226297E-03 -6.7172577E-03 -6.5162708E-03 -6.3197329E-03
 -6.1276993E-03 -5.9401989E-03 -5.7572620E-03 -5.5788895E-03 -5.4050847E-03
 -5.2358336E-03
 0.1207366 0.1200142 0.1188424 0.1172633 0.1153209
 0.1130597 0.1105241 0.1077573 0.1048012 0.1016950
 9.8475568E-02 9.5176481E-02 9.1828227E-02 8.8457935E-02 8.5089497E-02
 8.1743643E-02 7.8438066E-02 7.5187691E-02 7.2004832E-02 6.8899512E-02
 6.5879650E-02 6.2951349E-02 6.0119051E-02 5.7385858E-02 5.4753616E-02
 5.2223187E-02 4.9794544E-02 4.7466934E-02 4.5239039E-02 4.3109011E-02
 4.1074652E-02 3.9133418E-02 3.7282545E-02 3.5519097E-02 3.3839997E-02
 3.2242090E-02 3.0722173E-02 2.9277023E-02 2.7903458E-02 2.6598290E-02
 2.5358396E-02 2.4180720E-02 2.3062281E-02 2.2000175E-02 2.0991610E-02
 2.0033866E-02 1.9124338E-02 1.8260526E-02 1.7440017E-02 1.6660532E-02
 1.5919870E-02 1.5215940E-02 1.4546761E-02 1.3910436E-02 1.3305184E-02
 1.2729302E-02 1.2181182E-02 1.1659304E-02 1.1162228E-02 1.0688609E-02
 1.0237165E-02 9.8066917E-03 9.3960622E-03 9.0042017E-03 8.6301267E-03
 8.2728816E-03 7.9315966E-03 7.6054344E-03 7.2936248E-03 6.9954395E-03
 6.7101968E-03
 5.7732284E-02 5.1718581E-02 4.5923136E-02 4.0375169E-02 3.5098929E-02
 3.0113377E-02 2.5432117E-02 2.1063533E-02 1.7011110E-02 1.3273878E-02
 9.8469546E-03 6.7221490E-03 3.8885719E-03 1.3332159E-03 -9.5848320E-04
 -3.0021293E-03 -4.8139491E-03 -6.4103897E-03 -7.8078392E-03 -9.0223514E-03
 -1.0069454E-02 -1.0964019E-02 -1.1720157E-02 -1.2351133E-02 -1.2869353E-02
 -1.3286331E-02 -1.3612713E-02 -1.3858283E-02 -1.4031998E-02 -1.4142029E-02
 -1.4195802E-02 -1.4200049E-02 -1.4160845E-02 -1.4083668E-02 -1.3973447E-02
 -1.3834594E-02 -1.3671071E-02 -1.3486410E-02 -1.3283764E-02 -1.3065946E-02
 -1.2835459E-02 -1.2594519E-02 -1.2345103E-02 -1.2088957E-02 -1.1827631E-02
 -1.1562493E-02 -1.1294753E-02 -1.1025479E-02 -1.0755617E-02 -1.0485988E-02
 -1.0217329E-02 -9.9502774E-03 -9.6853878E-03 -9.4231563E-03 -9.1640064E-03
 -8.9083090E-03 -8.6563863E-03 -8.4085139E-03 -8.1649274E-03 -7.9258280E-03
 -7.6913843E-03 -7.4617369E-03 -7.2369981E-03 -7.0172646E-03 -6.8025994E-03
 -6.5930588E-03 -6.3886731E-03 -6.1894632E-03 -5.9954235E-03 -5.8065522E-03
 -5.6228209E-03
 0.1298170 0.1288656 0.1274525 0.1256217 0.1234185
 0.1208894 0.1180805 0.1150372 0.1118029 0.1084191
 0.1049240 0.1013531 9.7738050E-02 9.4107278E-02 9.0485632E-02
 8.6894631E-02 8.3352558E-02 7.9874769E-02 7.6473854E-02 7.3159963E-02
 6.9941059E-02 6.6823132E-02 6.3810512E-02 6.0906071E-02 5.8111396E-02
 5.5427030E-02 5.2852616E-02 5.0387051E-02 4.8028644E-02 4.5775179E-02
 4.3624070E-02 4.1572414E-02 3.9617069E-02 3.7754744E-02 3.5982013E-02
 3.4295384E-02 3.2691341E-02 3.1166350E-02 2.9716937E-02 2.8339656E-02
 2.7031118E-02 2.5788033E-02 2.4607206E-02 2.3485513E-02 2.2419982E-02
 2.1407716E-02 2.0445952E-02 1.9532036E-02 1.8663429E-02 1.7837720E-02
 1.7052602E-02 1.6305888E-02 1.5595493E-02 1.4919443E-02 1.4275881E-02
 1.3663036E-02 1.3079240E-02 1.2522920E-02 1.1992587E-02 1.1486846E-02
 1.1004385E-02 1.0543964E-02 1.0104415E-02 9.6846474E-03 9.2836386E-03
 8.9004273E-03 8.5341055E-03 8.1838267E-03 7.8487946E-03 7.5282613E-03
 7.2215321E-03
 5.7292249E-02 5.1195238E-02 4.5307290E-02 3.9661527E-02 3.4285624E-02
 2.9201403E-02 2.4424830E-02 1.9966146E-02 1.5830204E-02 1.2016982E-02
 8.5221501E-03 5.3377631E-03 2.4529134E-03 -1.4563520E-04 -2.4728151E-03
 -4.5447047E-03 -6.3780616E-03 -7.9899002E-03 -9.3971631E-03 -1.0616468E-02
 -1.1663862E-02 -1.2554702E-02 -1.3303544E-02 -1.3924063E-02 -1.4429023E-02
 -1.4830267E-02 -1.5138725E-02 -1.5364432E-02 -1.5516580E-02 -1.5603532E-02
 -1.5632898E-02 -1.5611564E-02 -1.5545754E-02 -1.5441081E-02 -1.5302588E-02
 -1.5134806E-02 -1.4941803E-02 -1.4727211E-02 -1.4494279E-02 -1.4245909E-02
 -1.3984688E-02 -1.3712919E-02 -1.3432655E-02 -1.3145715E-02 -1.2853722E-02
 -1.2558114E-02 -1.2260160E-02 -1.1960990E-02 -1.1661600E-02 -1.1362871E-02
 -1.1065580E-02 -1.0770406E-02 -1.0477952E-02 -1.0188740E-02 -9.9032307E-03
 -9.6218204E-03 -9.3448507E-03 -9.0726214E-03 -8.8053821E-03 -8.5433507E-03
 -8.2866987E-03 -8.0355722E-03 -7.7900910E-03 -7.5503415E-03 -7.3163905E-03
 -7.0882780E-03 -6.8660285E-03 -6.6496436E-03 -6.4391065E-03 -6.2343949E-03
 -6.0354555E-03
 0.1398788 0.1386768 0.1370006 0.1348951 0.1324073
 0.1295849 0.1264763 0.1231288 0.1195881 0.1158976
 0.1120978 0.1082258 0.1043151 0.1003954 9.6492723E-02
 9.2629634E-02 8.8825092E-02 8.5094973E-02 8.1452183E-02 7.7907048E-02
 7.4467547E-02 7.1139589E-02 6.7927308E-02 6.4833313E-02 6.1858874E-02
 5.9004165E-02 5.6268442E-02 5.3650174E-02 5.1147241E-02 4.8756994E-02
 4.6476409E-02 4.4302166E-02 4.2230692E-02 4.0258300E-02 3.8381174E-02
 3.6595456E-02 3.4897279E-02 3.3282783E-02 3.1748179E-02 3.0289726E-02
 2.8903779E-02 2.7586786E-02 2.6335321E-02 2.5146056E-02 2.4015810E-02
 2.2941515E-02 2.1920241E-02 2.0949179E-02 2.0025659E-02 1.9147143E-02
 1.8311210E-02 1.7515568E-02 1.6758045E-02 1.6036583E-02 1.5349246E-02
 1.4694195E-02 1.4069704E-02 1.3474143E-02 1.2905978E-02 1.2363764E-02
 1.1846149E-02 1.1351855E-02 1.0879689E-02 1.0428518E-02 9.9972924E-03
 9.5850211E-03 9.1907689E-03 8.8136587E-03 8.4528681E-03 8.1076249E-03
 7.7771931E-03
 5.7268623E-02 5.1040202E-02 4.5012571E-02 3.9223127E-02 3.3703279E-02
 2.8478052E-02 2.3566069E-02 1.8979672E-02 1.4725278E-02 1.0803927E-02
 7.2119208E-03 3.9415490E-03 9.8183355E-04 -1.6807778E-03 -4.0617166E-03
 -6.1776796E-03 -8.0461241E-03 -9.6847918E-03 -1.1111367E-02 -1.2343180E-02
 -1.3396962E-02 -1.4288712E-02 -1.5033581E-02 -1.5645774E-02 -1.6138554E-02
 -1.6524196E-02 -1.6814031E-02 -1.7018452E-02 -1.7146967E-02 -1.7208228E-02
 -1.7210102E-02 -1.7159713E-02 -1.7063498E-02 -1.6927268E-02 -1.6756244E-02
 -1.6555130E-02 -1.6328141E-02 -1.6079053E-02 -1.5811259E-02 -1.5527777E-02
 -1.5231314E-02 -1.4924280E-02 -1.4608833E-02 -1.4286883E-02 -1.3960144E-02
 -1.3630130E-02 -1.3298186E-02 -1.2965511E-02 -1.2633159E-02 -1.2302067E-02
 -1.1973064E-02 -1.1646872E-02 -1.1324132E-02 -1.1005397E-02 -1.0691158E-02
 -1.0381835E-02 -1.0077785E-02 -9.7793229E-03 -9.4867023E-03 -9.2001483E-03
 -8.9198314E-03 -8.6458940E-03 -8.3784433E-03 -8.1175510E-03 -7.8632729E-03
 -7.6156277E-03 -7.3746182E-03 -7.1402215E-03 -6.9123921E-03 -6.6910759E-03
 -6.4761997E-03
 0.1509940 0.1495275 0.1475727 0.1451749 0.1423824
 0.1392446 0.1358118 0.1321336 0.1282584 0.1242318
 0.1200968 0.1158928 0.1116552 0.1074155 0.1032014
 9.9036336E-02 9.4940327E-02 9.0929873E-02 8.7018296E-02 8.3216138E-02
 7.9531416E-02 7.5969957E-02 7.2535679E-02 6.9230884E-02 6.6056468E-02
 6.3012190E-02 6.0096845E-02 5.7308417E-02 5.4644298E-02 5.2101340E-02
 4.9676038E-02 4.7364578E-02 4.5162935E-02 4.3066986E-02 4.1072477E-02
 3.9175153E-02 3.7370764E-02 3.5655100E-02 3.4024041E-02 3.2473542E-02
 3.0999670E-02 2.9598612E-02 2.8266691E-02 2.7000364E-02 2.5796250E-02
 2.4651088E-02 2.3561783E-02 2.2525366E-02 2.1539027E-02 2.0600105E-02
 1.9706061E-02 1.8854501E-02 1.8043149E-02 1.7269876E-02 1.6532654E-02
 1.5829585E-02 1.5158869E-02 1.4518828E-02 1.3907867E-02 1.3324495E-02
 1.2767311E-02 1.2234996E-02 1.1726307E-02 1.1240081E-02 1.0775218E-02
 1.0330692E-02 9.9055236E-03 9.4987964E-03 9.1096479E-03 8.7372614E-03
 8.3808620E-03
 5.7744984E-02 5.1330958E-02 4.5110170E-02 3.9124612E-02 3.3409830E-02
 2.7994482E-02 2.2900254E-02 1.8141955E-02 1.3727873E-02 9.6603418E-03
 5.9364201E-03 2.5487002E-03 -5.1388802E-04 -3.2652952E-03 -5.7215826E-03
 -7.9002362E-03 -9.8195989E-03 -1.1498354E-02 -1.2955135E-02 -1.4208197E-02
 -1.5275165E-02 -1.6172875E-02 -1.6917251E-02 -1.7523220E-02 -1.8004689E-02
 -1.8374536E-02 -1.8644623E-02 -1.8825829E-02 -1.8928101E-02 -1.8960485E-02
 -1.8931208E-02 -1.8847719E-02 -1.8716754E-02 -1.8544393E-02 -1.8336104E-02
 -1.8096814E-02 -1.7830951E-02 -1.7542480E-02 -1.7234959E-02 -1.6911574E-02
 -1.6575180E-02 -1.6228314E-02 -1.5873261E-02 -1.5512044E-02 -1.5146472E-02
 -1.4778156E-02 -1.4408517E-02 -1.4038827E-02 -1.3670211E-02 -1.3303657E-02
 -1.2940042E-02 -1.2580129E-02 -1.2224596E-02 -1.1874018E-02 -1.1528913E-02
 -1.1189704E-02 -1.0856770E-02 -1.0530417E-02 -1.0210896E-02 -9.8984260E-03
 -9.5931636E-03 -9.2952307E-03 -9.0047149E-03 -8.7216636E-03 -8.4460964E-03
 -8.1780078E-03 -7.9173641E-03 -7.6641082E-03 -7.4181631E-03 -7.1794339E-03
 -6.9478154E-03
 0.1632424 0.1615066 0.1592654 0.1565644 0.1534528
 0.1499816 0.1462034 0.1421701 0.1379330 0.1335408
 0.1290392 0.1244705 0.1198725 0.1152791 0.1107197
 0.1062193 0.1017990 9.7476378E-02 9.3265139E-02 8.9176200E-02
 8.5217670E-02 8.1395313E-02 7.7712812E-02 7.4172162E-02 7.0773832E-02
 6.7517124E-02 6.4400293E-02 6.1420802E-02 5.8575492E-02 5.5860661E-02
 5.3272262E-02 5.0805960E-02 4.8457216E-02 4.6221420E-02 4.4093862E-02
 4.2069856E-02 4.0144745E-02 3.8313936E-02 3.6572967E-02 3.4917451E-02
 3.3343162E-02 3.1846013E-02 3.0422077E-02 2.9067563E-02 2.7778892E-02
 2.6552597E-02 2.5385415E-02 2.4274211E-02 2.3216035E-02 2.2208082E-02
 2.1247702E-02 2.0332390E-02 1.9459767E-02 1.8627606E-02 1.7833814E-02
 1.7076399E-02 1.6353499E-02 1.5663361E-02 1.5004322E-02 1.4374841E-02
 1.3773453E-02 1.3198776E-02 1.2649518E-02 1.2124448E-02 1.1622416E-02
 1.1142336E-02 1.0683171E-02 1.0243949E-02 9.8237451E-03 9.4216801E-03
 9.0369293E-03
 5.8821350E-02 5.2162796E-02 4.5689866E-02 3.9449535E-02 3.3482008E-02
 2.7820161E-02 2.2489343E-02 1.7507399E-02 1.2884972E-02 8.6260866E-03
 4.7288346E-03 1.1862660E-03 -2.0127285E-03 -4.8825452E-03 -7.4399957E-03
 -9.7035412E-03 -1.1692638E-02 -1.3427155E-02 -1.4926938E-02 -1.6211446E-02
 -1.7299451E-02 -1.8208886E-02 -1.8956693E-02 -1.9558739E-02 -2.0029800E-02
 -2.0383531E-02 -2.0632517E-02 -2.0788277E-02 -2.0861344E-02 -2.0861300E-02
 -2.0796839E-02 -2.0675849E-02 -2.0505454E-02 -2.0292083E-02 -2.0041529E-02
 -1.9759007E-02 -1.9449204E-02 -1.9116323E-02 -1.8764140E-02 -1.8396035E-02
 -1.8015033E-02 -1.7623829E-02 -1.7224850E-02 -1.6820243E-02 -1.6411928E-02
 -1.6001614E-02 -1.5590809E-02 -1.5180860E-02 -1.4772949E-02 -1.4368122E-02
 -1.3967296E-02 -1.3571267E-02 -1.3180736E-02 -1.2796297E-02 -1.2418470E-02
 -1.2047684E-02 -1.1684305E-02 -1.1328626E-02 -1.0980890E-02 -1.0641280E-02
 -1.0309923E-02 -9.9869175E-03 -9.6723037E-03 -9.3661007E-03 -9.0682851E-03
 -8.7788096E-03 -8.4975986E-03 -8.2245581E-03 -7.9595661E-03 -7.7024982E-03
 -7.4532074E-03
 0.1767084 0.1747088 0.1721832 0.1691769 0.1657394
 0.1619234 0.1577833 0.1533742 0.1487502 0.1439637
 0.1390639 0.1340963 0.1291021 0.1241180 0.1191757
 0.1143023 0.1095205 0.1048489 0.1003021 9.5891602E-02
 9.1625616E-02 8.7509923E-02 8.3548047E-02 7.9741620E-02 7.6090708E-02
 7.2594084E-02 6.9249459E-02 6.6053703E-02 6.3003056E-02 6.0093217E-02
 5.7319541E-02 5.4677118E-02 5.2160867E-02 4.9765639E-02 4.7486238E-02
 4.5317501E-02 4.3254346E-02 4.1291766E-02 3.9424922E-02 3.7649088E-02
 3.5959706E-02 3.4352403E-02 3.2822974E-02 3.1367399E-02 2.9981852E-02
 2.8662678E-02 2.7406408E-02 2.6209755E-02 2.5069602E-02 2.3983004E-02
 2.2947181E-02 2.1959499E-02 2.1017477E-02 2.0118780E-02 1.9261213E-02
 1.8442696E-02 1.7661273E-02 1.6915111E-02 1.6202461E-02 1.5521697E-02
 1.4871274E-02 1.4249729E-02 1.3655691E-02 1.3087848E-02 1.2544975E-02
 1.2025898E-02 1.1529509E-02 1.1054751E-02 1.0600624E-02 1.0166182E-02
 9.7505171E-03
 6.0620271E-02 5.3655259E-02 4.6866864E-02 4.0307511E-02 3.4022726E-02
 2.8050400E-02 2.2420386E-02 1.7154399E-02 1.2266209E-02 7.7621653E-03
 3.6418906E-03 -1.0077342E-04 -3.4767990E-03 -6.5009971E-03 -9.1910185E-03
 -1.1566480E-02 -1.3648204E-02 -1.5457554E-02 -1.7015910E-02 -1.8344270E-02
 -1.9462898E-02 -2.0391142E-02 -2.1147272E-02 -2.1748392E-02 -2.2210402E-02
 -2.2547994E-02 -2.2774685E-02 -2.2902843E-02 -2.2943759E-02 -2.2907704E-02
 -2.2803992E-02 -2.2641057E-02 -2.2426521E-02 -2.2167267E-02 -2.1869479E-02
 -2.1538733E-02 -2.1180030E-02 -2.0797865E-02 -2.0396268E-02 -1.9978844E-02
 -1.9548817E-02 -1.9109065E-02 -1.8662162E-02 -1.8210394E-02 -1.7755805E-02
 -1.7300190E-02 -1.6845157E-02 -1.6392112E-02 -1.5942292E-02 -1.5496791E-02
 -1.5056552E-02 -1.4622395E-02 -1.4195020E-02 -1.3775026E-02 -1.3362925E-02
 -1.2959122E-02 -1.2563964E-02 -1.2177709E-02 -1.1800567E-02 -1.1432677E-02
 -1.1074130E-02 -1.0724973E-02 -1.0385206E-02 -1.0054794E-02 -9.7336713E-03
 -9.4217481E-03 -9.1189006E-03 -8.8249948E-03 -8.5398741E-03 -8.2633682E-03
 -7.9953019E-03
 0.1914732 0.1892278 0.1864319 0.1831294 0.1793699
 0.1752069 0.1706968 0.1658971 0.1608659 0.1556591
 0.1503304 0.1449293 0.1395012 0.1340863 0.1287194
 0.1234305 0.1182443 0.1131812 0.1082569 0.1034837
 9.8870277E-02 9.4422534E-02 9.0143882E-02 8.6035691E-02 8.2097612E-02
 7.8327894E-02 7.4723676E-02 7.1281187E-02 6.7996033E-02 6.4863242E-02
 6.1877556E-02 5.9033424E-02 5.6325171E-02 5.3747080E-02 5.1293410E-02
 4.8958499E-02 4.6736784E-02 4.4622827E-02 4.2611383E-02 4.0697347E-02
 3.8875822E-02 3.7142109E-02 3.5491720E-02 3.3920363E-02 3.2423969E-02
 3.0998662E-02 2.9640771E-02 2.8346810E-02 2.7113488E-02 2.5937704E-02
 2.4816521E-02 2.3747165E-02 2.2727020E-02 2.1753618E-02 2.0824643E-02
 1.9937892E-02 1.9091295E-02 1.8282894E-02 1.7510841E-02 1.6773392E-02
 1.6068885E-02 1.5395757E-02 1.4752517E-02 1.4137757E-02 1.3550142E-02
 1.2988396E-02 1.2451311E-02 1.1937736E-02 1.1446573E-02 1.0976783E-02
 1.0527378E-02
 6.3291818E-02 5.5958003E-02 4.8788555E-02 4.1841846E-02 3.5169497E-02
 2.8815364E-02 2.2814929E-02 1.7194944E-02 1.1973422E-02 7.1600457E-03
 2.7567998E-03 -1.2410657E-03 -4.8439917E-03 -8.0670118E-03 -1.0928613E-02
 -1.3449717E-02 -1.5652779E-02 -1.7560991E-02 -1.9197671E-02 -2.0585764E-02
 -2.1747453E-02 -2.2703920E-02 -2.3475155E-02 -2.4079859E-02 -2.4535401E-02
 -2.4857812E-02 -2.5061814E-02 -2.5160870E-02 -2.5167249E-02 -2.5092093E-02
 -2.4945501E-02 -2.4736602E-02 -2.4473635E-02 -2.4164036E-02 -2.3814471E-02
 -2.3430953E-02 -2.3018865E-02 -2.2583030E-02 -2.2127781E-02 -2.1656973E-02
 -2.1174062E-02 -2.0682117E-02 -2.0183876E-02 -1.9681770E-02 -1.9177955E-02
 -1.8674327E-02 -1.8172566E-02 -1.7674135E-02 -1.7180316E-02 -1.6692223E-02
 -1.6210815E-02 -1.5736910E-02 -1.5271195E-02 -1.4814252E-02 -1.4366556E-02
 -1.3928485E-02 -1.3500335E-02 -1.3082328E-02 -1.2674608E-02 -1.2277278E-02
 -1.1890373E-02 -1.1513884E-02 -1.1147764E-02 -1.0791931E-02 -1.0446270E-02
 -1.0110648E-02 -9.7849043E-03 -9.4688572E-03 -9.1623245E-03 -8.8651069E-03
 -8.5769938E-03
 0.2076048 0.2051455 0.2021076 0.1985327 0.1944692
 0.1899704 0.1850938 0.1798996 0.1744488 0.1688020
 0.1630174 0.1571497 0.1512493 0.1453610 0.1395239
 0.1337718 0.1281323 0.1226282 0.1172772 0.1120926
 0.1070840 0.1022577 9.7617261E-02 9.3163878E-02 8.8896826E-02
 8.4813885E-02 8.0911599E-02 7.7185564E-02 7.3630683E-02 7.0241332E-02
 6.7011520E-02 6.3935041E-02 6.1005551E-02 5.8216725E-02 5.5562239E-02
 5.3035866E-02 5.0631531E-02 4.8343312E-02 4.6165522E-02 4.4092648E-02
 4.2119410E-02 4.0240750E-02 3.8451876E-02 3.6748182E-02 3.5125334E-02
 3.3579201E-02 3.2105863E-02 3.0701624E-02 2.9362982E-02 2.8086636E-02
 2.6869455E-02 2.5708498E-02 2.4600966E-02 2.3544224E-02 2.2535788E-02
 2.1573301E-02 2.0654531E-02 1.9777365E-02 1.8939801E-02 1.8139947E-02
 1.7376002E-02 1.6646251E-02 1.5949070E-02 1.5282918E-02 1.4646324E-02
 1.4037892E-02 1.3456297E-02 1.2900271E-02 1.2368608E-02 1.1860167E-02
 1.1373866E-02
 6.7016169E-02 5.9254698E-02 5.1639959E-02 4.4236582E-02 3.7102945E-02
 3.0289922E-02 2.3839926E-02 1.7786248E-02 1.2152690E-02 6.9537549E-03
 2.1951008E-03 -2.1255489E-03 -6.0173213E-03 -9.4949929E-03 -1.2577683E-02
 -1.5287642E-02 -1.7649174E-02 -1.9687656E-02 -2.1428788E-02 -2.2897972E-02
 -2.4119820E-02 -2.5117861E-02 -2.5914306E-02 -2.6529916E-02 -2.6983956E-02
 -2.7294179E-02 -2.7476858E-02 -2.7546849E-02 -2.7517665E-02 -2.7401553E-02
 -2.7209586E-02 -2.6951762E-02 -2.6637085E-02 -2.6273649E-02 -2.5868723E-02
 -2.5428819E-02 -2.4959778E-02 -2.4466811E-02 -2.3954578E-02 -2.3427229E-02
 -2.2888461E-02 -2.2341549E-02 -2.1789407E-02 -2.1234594E-02 -2.0679383E-02
 -2.0125752E-02 -1.9575441E-02 -1.9029951E-02 -1.8490588E-02 -1.7958470E-02
 -1.7434545E-02 -1.6919607E-02 -1.6414316E-02 -1.5919212E-02 -1.5434723E-02
 -1.4961175E-02 -1.4498810E-02 -1.4047798E-02 -1.3608227E-02 -1.3180143E-02
 -1.2763529E-02 -1.2358325E-02 -1.1964443E-02 -1.1581745E-02 -1.1210089E-02
 -1.0849297E-02 -1.0499175E-02 -1.0159518E-02 -9.8301079E-03 -9.5107257E-03
 -9.2011373E-03
 0.2251446 0.2225175 0.2192817 0.2154753 0.2111436
 0.2063380 0.2011159 0.1955386 0.1896699 0.1835743
 0.1773153 0.1709533 0.1645446 0.1581402 0.1517848
 0.1455171 0.1393692 0.1333673 0.1275318 0.1218783
 0.1164177 0.1111573 0.1061009 0.1012499 9.6603386E-02
 9.2158750E-02 8.7911986E-02 8.3858036E-02 7.9991125E-02 7.6304875E-02
 7.2792560E-02 6.9447249E-02 6.6261873E-02 6.3229442E-02 6.0342956E-02
 5.7595592E-02 5.4980688E-02 5.2491799E-02 5.0122719E-02 4.7867488E-02
 4.5720384E-02 4.3675959E-02 4.1729029E-02 3.9874654E-02 3.8108174E-02
 3.6425140E-02 3.4821350E-02 3.3292830E-02 3.1835813E-02 3.0446744E-02
 2.9122252E-02 2.7859150E-02 2.6654415E-02 2.5505183E-02 2.4408761E-02
 2.3362568E-02 2.2364169E-02 2.1411257E-02 2.0501625E-02 1.9633198E-02
 1.8803991E-02 1.8012118E-02 1.7255787E-02 1.6533291E-02 1.5843019E-02
 1.5183427E-02 1.4553054E-02 1.3950501E-02 1.3374452E-02 1.2823648E-02
 1.2296899E-02
 7.2001584E-02 6.3762754E-02 5.5645470E-02 4.7720484E-02 4.0053219E-02
 3.2702383E-02 2.5718616E-02 1.9143403E-02 1.3008288E-02 7.3346137E-03
 2.1336647E-03 -2.5926302E-03 -6.8506980E-03 -1.0654035E-02 -1.4021773E-02
 -1.6977230E-02 -1.9546602E-02 -2.1757737E-02 -2.3639167E-02 -2.5219303E-02
 -2.6525801E-02 -2.7585175E-02 -2.8422469E-02 -2.9061090E-02 -2.9522743E-02
 -2.9827377E-02 -2.9993266E-02 -3.0037036E-02 -2.9973775E-02 -2.9817121E-02
 -2.9579373E-02 -2.9271601E-02 -2.8903736E-02 -2.8484689E-02 -2.8022436E-02
 -2.7524093E-02 -2.6996020E-02 -2.6443873E-02 -2.5872689E-02 -2.5286933E-02
 -2.4690559E-02 -2.4087060E-02 -2.3479512E-02 -2.2870606E-02 -2.2262717E-02
 -2.1657884E-02 -2.1057891E-02 -2.0464258E-02 -1.9878292E-02 -1.9301094E-02
 -1.8733582E-02 -1.8176518E-02 -1.7630514E-02 -1.7096052E-02 -1.6573513E-02
 -1.6063172E-02 -1.5565211E-02 -1.5079744E-02 -1.4606814E-02 -1.4146415E-02
 -1.3698486E-02 -1.3262929E-02 -1.2839613E-02 -1.2428373E-02 -1.2029031E-02
 -1.1641383E-02 -1.1265211E-02 -1.0900290E-02 -1.0546378E-02 -1.0203239E-02
 -9.8706214E-03
 0.2440924 0.2413555 0.2379810 0.2340015 0.2294572
 0.2243959 0.2188718 0.2129454 0.2066814 0.2001472
 0.1934108 0.1865387 0.1795941 0.1726352 0.1657142
 0.1588764 0.1521601 0.1455967 0.1392109 0.1330214
 0.1270419 0.1212811 0.1157440 0.1104326 0.1053460
 0.1004814 9.5834397E-02 9.1399364E-02 8.7169819E-02 8.3138607E-02
 7.9298258E-02 7.5641006E-02 7.2159022E-02 6.8844527E-02 6.5689802E-02
 6.2687322E-02 5.9829790E-02 5.7110105E-02 5.4521509E-02 5.2057479E-02
 4.9711779E-02 4.7478486E-02 4.5351963E-02 4.3326832E-02 4.1398026E-02
 3.9560709E-02 3.7810307E-02 3.6142480E-02 3.4553118E-02 3.3038337E-02
 3.1594448E-02 3.0217942E-02 2.8905502E-02 2.7653970E-02 2.6460368E-02
 2.5321856E-02 2.4235737E-02 2.3199443E-02 2.2210538E-02 2.1266721E-02
 2.0365795E-02 1.9505665E-02 1.8684352E-02 1.7899966E-02 1.7150726E-02
 1.6434936E-02 1.5750974E-02 1.5097320E-02 1.4472510E-02 1.3875170E-02
 1.3304002E-02
 7.8475416E-02 6.9725581E-02 6.1063126E-02 5.2563921E-02 4.4300016E-02
 3.6338020E-02 2.8737577E-02 2.1549810E-02 1.4816035E-02 8.5668806E-03
 2.8218925E-03 -2.4102279E-03 -7.1308725E-03 -1.1350388E-02 -1.5086527E-02
 -1.8362805E-02 -2.1206923E-02 -2.3649206E-02 -2.5721343E-02 -2.7455293E-02
 -2.8882431E-02 -3.0032992E-02 -3.0935606E-02 -3.1617068E-02 -3.2102190E-02
 -3.2413773E-02 -3.2572635E-02 -3.2597672E-02 -3.2505978E-02 -3.2312945E-02
 -3.2032412E-02 -3.1676773E-02 -3.1257112E-02 -3.0783331E-02 -3.0264245E-02
 -2.9707689E-02 -2.9120630E-02 -2.8509224E-02 -2.7878935E-02 -2.7234565E-02
 -2.6580343E-02 -2.5919983E-02 -2.5256725E-02 -2.4593387E-02 -2.3932418E-02
 -2.3275919E-02 -2.2625698E-02 -2.1983286E-02 -2.1349967E-02 -2.0726828E-02
 -2.0114750E-02 -1.9514453E-02 -1.8926501E-02 -1.8351335E-02 -1.7789291E-02
 -1.7240591E-02 -1.6705377E-02 -1.6183726E-02 -1.5675640E-02 -1.5181082E-02
 -1.4699960E-02 -1.4232149E-02 -1.3777493E-02 -1.3335805E-02 -1.2906892E-02
 -1.2490526E-02 -1.2086477E-02 -1.1694498E-02 -1.1314337E-02 -1.0945739E-02
 -1.0588440E-02
 0.2643936 0.2616113 0.2581672 0.2540873 0.2494049
 0.2441610 0.2384043 0.2321907 0.2255830 0.2186484
 0.2114576 0.2040821 0.1965919 0.1890535 0.1815277
 0.1740689 0.1667238 0.1595312 0.1525224 0.1457213
 0.1391456 0.1328072 0.1267132 0.1208668 0.1152679
 0.1099139 0.1048003 9.9920936E-02 9.5268734E-02 9.0835810E-02
 8.6613826E-02 8.2594179E-02 7.8768164E-02 7.5127125E-02 7.1662501E-02
 6.8365961E-02 6.5229408E-02 6.2245023E-02 5.9405312E-02 5.6703102E-02
 5.4131508E-02 5.1684003E-02 4.9354356E-02 4.7136653E-02 4.5025282E-02
 4.3014910E-02 4.1100472E-02 3.9277151E-02 3.7540399E-02 3.5885889E-02
 3.4309521E-02 3.2807391E-02 3.1375792E-02 3.0011212E-02 2.8710326E-02
 2.7469965E-02 2.6287116E-02 2.5158925E-02 2.4082679E-02 2.3055812E-02
 2.2075888E-02 2.1140579E-02 2.0247698E-02 1.9395156E-02 1.8580988E-02
 1.7803313E-02 1.7060360E-02 1.6350448E-02 1.5671980E-02 1.5023444E-02
 1.4403420E-02
 8.6666457E-02 7.7394970E-02 6.8167716E-02 5.9063878E-02 5.0160430E-02
 4.1530773E-02 3.3243112E-02 2.5358675E-02 1.7929962E-02 1.0999182E-02
 4.5971186E-03 -1.2573717E-03 -6.5572304E-03 -1.1306496E-02 -1.5518891E-02
 -1.9216154E-02 -2.2426182E-02 -2.5181130E-02 -2.7515721E-02 -2.9465778E-02
 -3.1067003E-02 -3.2354128E-02 -3.3360258E-02 -3.4116458E-02 -3.4651540E-02
 -3.4991946E-02 -3.5161778E-02 -3.5182860E-02 -3.5074845E-02 -3.4855381E-02
 -3.4540232E-02 -3.4143474E-02 -3.3677623E-02 -3.3153780E-02 -3.2581791E-02
 -3.1970348E-02 -3.1327128E-02 -3.0658873E-02 -2.9971523E-02 -2.9270263E-02
 -2.8559625E-02 -2.7843554E-02 -2.7125461E-02 -2.6408298E-02 -2.5694599E-02
 -2.4986526E-02 -2.4285911E-02 -2.3594303E-02 -2.2912977E-02 -2.2243014E-02
 -2.1585269E-02 -2.0940444E-02 -2.0309076E-02 -1.9691581E-02 -1.9088261E-02
 -1.8499328E-02 -1.7924901E-02 -1.7365035E-02 -1.6819714E-02 -1.6288890E-02
 -1.5772454E-02 -1.5270276E-02 -1.4782183E-02 -1.4307979E-02 -1.3847456E-02
 -1.3400383E-02 -1.2966511E-02 -1.2545583E-02 -1.2137333E-02 -1.1741490E-02
 -1.1357773E-02
 0.2859335 0.2831667 0.2797225 0.2756200 0.2708844
 0.2655481 0.2596509 0.2532409 0.2463741 0.2391135
 0.2315283 0.2236917 0.2156785 0.2075627 0.1994145
 0.1912990 0.1832736 0.1753878 0.1676820 0.1601885
 0.1529316 0.1459284 0.1391900 0.1327222 0.1265267
 0.1206020 0.1149438 0.1095458 0.1044007 9.9499710E-02
 9.4833799E-02 9.0393394E-02 8.6168788E-02 8.2150340E-02 7.8328498E-02
 7.4693903E-02 7.1237527E-02 6.7950606E-02 6.4824767E-02 6.1851967E-02
 5.9024494E-02 5.6335036E-02 5.3776607E-02 5.1342566E-02 4.9026612E-02
 4.6822742E-02 4.4725269E-02 4.2728782E-02 4.0828135E-02 3.9018486E-02
 3.7295192E-02 3.5653871E-02 3.4090362E-02 3.2600712E-02 3.1181190E-02
 2.9828237E-02 2.8538492E-02 2.7308768E-02 2.6136031E-02 2.5017433E-02
 2.3950258E-02 2.2931939E-02 2.1960046E-02 2.1032272E-02 2.0146446E-02
 1.9300507E-02 1.8492499E-02 1.7720571E-02 1.6982974E-02 1.6278047E-02
 1.5604235E-02
 9.6778587E-02 8.7002225E-02 7.7220291E-02 6.7512594E-02 5.7958305E-02
 4.8634920E-02 3.9617036E-02 3.0974543E-02 2.2770807E-02 1.5060604E-02
 7.8882650E-03 1.2862503E-03 -4.7257510E-03 -1.0140953E-02 -1.4964730E-02
 -1.9213272E-02 -2.2911737E-02 -2.6092054E-02 -2.8790845E-02 -3.1047385E-02
 -3.2901898E-02 -3.4394242E-02 -3.5562873E-02 -3.6444139E-02 -3.7071902E-02
 -3.7477292E-02 -3.7688650E-02 -3.7731573E-02 -3.7629057E-02 -3.7401639E-02
 -3.7067585E-02 -3.6643095E-02 -3.6142495E-02 -3.5578415E-02 -3.4961961E-02
 -3.4302887E-02 -3.3609737E-02 -3.2889958E-02 -3.2150067E-02 -3.1395700E-02
 -3.0631756E-02 -2.9862458E-02 -2.9091444E-02 -2.8321829E-02 -2.7556274E-02
 -2.6797032E-02 -2.6046004E-02 -2.5304787E-02 -2.4574699E-02 -2.3856837E-02
 -2.3152083E-02 -2.2461146E-02 -2.1784585E-02 -2.1122817E-02 -2.0476162E-02
 -1.9844834E-02 -1.9228961E-02 -1.8628599E-02 -1.8043749E-02 -1.7474363E-02
 -1.6920332E-02 -1.6381525E-02 -1.5857769E-02 -1.5348868E-02 -1.4854606E-02
 -1.4374742E-02 -1.3909020E-02 -1.3457171E-02 -1.3018914E-02 -1.2593964E-02
 -1.2182022E-02
 0.3085435 0.3058375 0.3024494 0.2983926 0.2936844
 0.2883482 0.2824134 0.2759170 0.2689041 0.2614284
 0.2535516 0.2453429 0.2368769 0.2282312 0.2194837
 0.2107098 0.2019791 0.1933543 0.1848889 0.1766270
 0.1686032 0.1608433 0.1533652 0.1461798 0.1392926
 0.1327043 0.1264121 0.1204102 0.1146912 0.1092461
 0.1040649 9.9137127E-02 9.4451971E-02 8.9998618E-02 8.5766286E-02
 8.1744410E-02 7.7922732E-02 7.4291296E-02 7.0840582E-02 6.7561418E-02
 6.4445041E-02 6.1483093E-02 5.8667626E-02 5.5991042E-02 5.3446181E-02
 5.1026184E-02 4.8724577E-02 4.6535194E-02 4.4452198E-02 4.2470068E-02
 4.0583570E-02 3.8787719E-02 3.7077826E-02 3.5449438E-02 3.3898350E-02
 3.2420583E-02 3.1012360E-02 2.9670123E-02 2.8390499E-02 2.7170310E-02
 2.6006542E-02 2.4896353E-02 2.3837049E-02 2.2826085E-02 2.1861061E-02
 2.0939706E-02 2.0059863E-02 1.9219499E-02 1.8416686E-02 1.7649595E-02
 1.6916523E-02
 0.1089595 9.8721944E-02 8.8426664E-02 7.8151360E-02 6.7974038E-02
 5.7972606E-02 4.8224051E-02 3.8803291E-02 2.9781582E-02 2.1224512E-02
 1.3189867E-02 5.7254294E-03 -1.1329413E-03 -7.3627364E-03 -1.2955280E-02
 -1.7915368E-02 -2.2260055E-02 -2.6016660E-02 -2.9220438E-02 -3.1912085E-02
 -3.4135364E-02 -3.5935130E-02 -3.7355691E-02 -3.8439620E-02 -3.9226964E-02
 -3.9754741E-02 -4.0056746E-02 -4.0163506E-02 -4.0102370E-02 -3.9897665E-02
 -3.9570939E-02 -3.9141178E-02 -3.8625069E-02 -3.8037218E-02 -3.7390381E-02
 -3.6695685E-02 -3.5962779E-02 -3.5200048E-02 -3.4414746E-02 -3.3613130E-02
 -3.2800585E-02 -3.1981740E-02 -3.1160563E-02 -3.0340418E-02 -2.9524202E-02
 -2.8714335E-02 -2.7912866E-02 -2.7121522E-02 -2.6341723E-02 -2.5574662E-02
 -2.4821298E-02 -2.4082413E-02 -2.3358624E-02 -2.2650415E-02 -2.1958143E-02
 -2.1282064E-02 -2.0622345E-02 -1.9979080E-02 -1.9352281E-02 -1.8741926E-02
 -1.8147929E-02 -1.7570155E-02 -1.7008444E-02 -1.6462596E-02 -1.5932396E-02
 -1.5417597E-02 -1.4917932E-02 -1.4433119E-02 -1.3962860E-02 -1.3506860E-02
 -1.3064803E-02
 0.3320215 0.3293951 0.3260928 0.3221241 0.3175009
 0.3122386 0.3063570 0.2998815 0.2928442 0.2852854
 0.2772540 0.2688080 0.2600141 0.2509463 0.2416838
 0.2323079 0.2228990 0.2135331 0.2042791 0.1951969
 0.1863359 0.1777354 0.1694243 0.1614228 0.1537429
 0.1463903 0.1393655 0.1326648 0.1262815 0.1202067
 0.1144300 0.1089401 0.1037249 9.8772235E-02 9.4069891E-02
 8.9605771E-02 8.5368089E-02 8.1345372E-02 7.7526629E-02 7.3901258E-02
 7.0459120E-02 6.7190550E-02 6.4086363E-02 6.1137799E-02 5.8336597E-02
 5.5674866E-02 5.3145166E-02 5.0740443E-02 4.8454020E-02 4.6279602E-02
 4.4211231E-02 4.2243272E-02 4.0370412E-02 3.8587619E-02 3.6890183E-02
 3.5273612E-02 3.3733699E-02 3.2266464E-02 3.0868135E-02 2.9535193E-02
 2.8264279E-02 2.7052237E-02 2.5896084E-02 2.4793001E-02 2.3740338E-02
 2.2735575E-02 2.1776339E-02 2.0860380E-02 1.9985572E-02 1.9149901E-02
 1.8351490E-02
 0.1232711 0.1126360 0.1018941 9.1118783E-02 8.0384023E-02
 6.9764286E-02 5.9334435E-02 4.9169265E-02 3.9342545E-02 2.9925751E-02
 2.0986190E-02 1.2584859E-02 4.7739660E-03 -2.4055492E-03 -8.9259166E-03
 -1.4773850E-02 -1.9950805E-02 -2.4472080E-02 -2.8365098E-02 -3.1666834E-02
 -3.4421049E-02 -3.6675535E-02 -3.8479667E-02 -3.9882369E-02 -4.0930681E-02
 -4.1668724E-02 -4.2137124E-02 -4.2372741E-02 -4.2408630E-02 -4.2274177E-02
 -4.1995309E-02 -4.1594788E-02 -4.1092478E-02 -4.0505685E-02 -3.9849427E-02
 -3.9136693E-02 -3.8378712E-02 -3.7585154E-02 -3.6764354E-02 -3.5923459E-02
 -3.5068590E-02 -3.4205008E-02 -3.3337187E-02 -3.2468949E-02 -3.1603545E-02
 -3.0743724E-02 -2.9891817E-02 -2.9049773E-02 -2.8219232E-02 -2.7401561E-02
 -2.6597876E-02 -2.5809102E-02 -2.5035964E-02 -2.4279052E-02 -2.3538819E-02
 -2.2815591E-02 -2.2109594E-02 -2.1420974E-02 -2.0749792E-02 -2.0096049E-02
 -1.9459682E-02 -1.8840574E-02 -1.8238580E-02 -1.7653499E-02 -1.7085113E-02
 -1.6533174E-02 -1.5997401E-02 -1.5477509E-02 -1.4973182E-02 -1.4484108E-02
 -1.4009953E-02
 0.3561646 0.3536044 0.3503821 0.3465064 0.3419864
 0.3368331 0.3310591 0.3246804 0.3177177 0.3101971
 0.3021523 0.2936253 0.2846679 0.2753415 0.2657165
 0.2558713 0.2458890 0.2358541 0.2258492 0.2159507
 0.2062265 0.1967340 0.1875189 0.1786159 0.1700489
 0.1618327 0.1539744 0.1464749 0.1393304 0.1325331
 0.1260731 0.1199384 0.1141160 0.1085923 0.1033535
 9.8385572E-02 9.3674935E-02 8.9208268E-02 8.4972747E-02 8.0955990E-02
 7.7146173E-02 7.3532037E-02 7.0102893E-02 6.6848554E-02 6.3759439E-02
 6.0826451E-02 5.8041010E-02 5.5395003E-02 5.2880794E-02 5.0491191E-02
 4.8219424E-02 4.6059091E-02 4.4004172E-02 4.2049009E-02 4.0188279E-02
 3.8416956E-02 3.6730312E-02 3.5123892E-02 3.3593498E-02 3.2135185E-02
 3.0745227E-02 2.9420108E-02 2.8156513E-02 2.6951309E-02 2.5801554E-02
 2.4704464E-02 2.3657396E-02 2.2657866E-02 2.1703513E-02 2.0792114E-02
 1.9921588E-02
 0.1396677 0.1287071 0.1175984 0.1064096 9.5208727E-02
 8.4064178E-02 7.3044986E-02 6.2220994E-02 5.1662654E-02 4.1440606E-02
 3.1624723E-02 2.2282688E-02 1.3478030E-02 5.2674841E-03 -2.3016268E-03
 -9.1940612E-03 -1.5388959E-02 -2.0880837E-02 -2.5679732E-02 -2.9809805E-02
 -3.3307035E-02 -3.6216293E-02 -3.8588092E-02 -4.0475648E-02 -4.1932367E-02
 -4.3009892E-02 -4.3756798E-02 -4.4217780E-02 -4.4433258E-02 -4.4439316E-02
 -4.4267844E-02 -4.3946795E-02 -4.3500513E-02 -4.2950120E-02 -4.2313859E-02
 -4.1607447E-02 -4.0844396E-02 -4.0036313E-02 -3.9193135E-02 -3.8323376E-02
 -3.7434313E-02 -3.6532171E-02 -3.5622254E-02 -3.4709089E-02 -3.3796523E-02
 -3.2887831E-02 -3.1985782E-02 -3.1092713E-02 -3.0210590E-02 -2.9341061E-02
 -2.8485499E-02 -2.7645024E-02 -2.6820550E-02 -2.6012808E-02 -2.5222382E-02
 -2.4449699E-02 -2.3695083E-02 -2.2958737E-02 -2.2240782E-02 -2.1541262E-02
 -2.0860147E-02 -2.0197345E-02 -1.9552719E-02 -1.8926084E-02 -1.8317223E-02
 -1.7725883E-02 -1.7151779E-02 -1.6594615E-02 -1.6054066E-02 -1.5529809E-02
 -1.5021489E-02
 0.3808118 0.3782729 0.3750890 0.3712704 0.3668268
 0.3617679 0.3561032 0.3498437 0.3430019 0.3355938
 0.3276398 0.3191659 0.3102064 0.3008043 0.2910130
 0.2808962 0.2705277 0.2599891 0.2493668 0.2387484
 0.2282179 0.2178522 0.2077183 0.1978709 0.1883522
 0.1791926 0.1704111 0.1620179 0.1540153 0.1463998
 0.1391633 0.1322946 0.1257806 0.1196063 0.1137564
 0.1082151 0.1029667 9.7995743E-02 9.3287319E-02 8.8826969E-02
 8.4600873E-02 8.0595873E-02 7.6799519E-02 7.3199965E-02 6.9786094E-02
 6.6547386E-02 6.3473940E-02 6.0556430E-02 5.7786115E-02 5.5154782E-02
 5.2654702E-02 5.0278619E-02 4.8019703E-02 4.5871556E-02 4.3828182E-02
 4.1883908E-02 4.0033437E-02 3.8271762E-02 3.6594179E-02 3.4996271E-02
 3.3473868E-02 3.2023046E-02 3.0640110E-02 2.9321570E-02 2.8064145E-02
 2.6864724E-02 2.5720388E-02 2.4628362E-02 2.3586037E-02 2.2590928E-02
 2.1640744E-02
 0.1579892 0.1467710 0.1353739 0.1238604 0.1122920
 0.1007297 8.9234963E-02 7.7869587E-02 6.6696562E-02 5.5780057E-02
 4.5185450E-02 3.4978900E-02 2.5226498E-02 1.5992578E-02 7.3375804E-03
 -6.8469392E-04 -8.0303382E-03 -1.4668242E-02 -2.0582484E-02 -2.5773505E-02
 -3.0257834E-02 -3.4066468E-02 -3.7242040E-02 -3.9835386E-02 -4.1902073E-02
 -4.3499209E-02 -4.4682942E-02 -4.5506570E-02 -4.6019390E-02 -4.6266083E-02
 -4.6286497E-02 -4.6115771E-02 -4.5784593E-02 -4.5319580E-02 -4.4743702E-02
 -4.4076715E-02 -4.3335572E-02 -4.2534754E-02 -4.1686673E-02 -4.0801909E-02
 -3.9889496E-02 -3.8957141E-02 -3.8011409E-02 -3.7057899E-02 -3.6101371E-02
 -3.5145864E-02 -3.4194812E-02 -3.3251110E-02 -3.2317195E-02 -3.1395134E-02
 -3.0486619E-02 -2.9593073E-02 -2.8715644E-02 -2.7855271E-02 -2.7012698E-02
 -2.6188500E-02 -2.5383104E-02 -2.4596810E-02 -2.3829808E-02 -2.3082204E-02
 -2.2354012E-02 -2.1645172E-02 -2.0955572E-02 -2.0285042E-02 -1.9633371E-02
 -1.9000318E-02 -1.8385597E-02 -1.7788898E-02 -1.7209899E-02 -1.6648265E-02
 -1.6103620E-02
 0.4058876 0.4033011 0.4000849 0.3962531 0.3918186
 0.3867929 0.3811864 0.3750091 0.3682709 0.3609823
 0.3531556 0.3448059 0.3359528 0.3266218 0.3168465
 0.3066699 0.2961461 0.2853403 0.2743282 0.2631938
 0.2520260 0.2409143 0.2299438 0.2191913 0.2087222
 0.1985887 0.1888293 0.1794702 0.1705258 0.1620017
 0.1538957 0.1462001 0.1389033 0.1319906 0.1254460
 0.1192520 0.1133913 0.1078460 0.1025992 9.7634003E-02
 9.2934437E-02 8.8485226E-02 8.4271871E-02 8.0280647E-02 7.6498665E-02
 7.2913766E-02 6.9514535E-02 6.6290252E-02 6.3230865E-02 6.0326993E-02
 5.7569806E-02 5.4951023E-02 5.2462906E-02 5.0098177E-02 4.7850054E-02
 4.5712121E-02 4.3678395E-02 4.1743234E-02 3.9901339E-02 3.8147751E-02
 3.6477789E-02 3.4887042E-02 3.3371378E-02 3.1926882E-02 3.0549888E-02
 2.9236931E-02 2.7984742E-02 2.6790231E-02 2.5650492E-02 2.4562756E-02
 2.3524484E-02
 0.1779703 0.1665488 0.1549292 0.1431682 0.1313208
 0.1194407 0.1075812 9.5795512E-02 8.4137499E-02 7.2662137E-02
 6.1426003E-02 5.0487716E-02 3.9907940E-02 2.9749013E-02 2.0074127E-02
 1.0945564E-02 2.4221798E-03 -5.4435446E-03 -1.2609320E-02 -1.9046126E-02
 -2.4740962E-02 -2.9698094E-02 -3.3938613E-02 -3.7498418E-02 -4.0425051E-02
 -4.2773820E-02 -4.4604067E-02 -4.5975801E-02 -4.6947144E-02 -4.7572579E-02
 -4.7901884E-02 -4.7979672E-02 -4.7845356E-02 -4.7533356E-02 -4.7073483E-02
 -4.6491422E-02 -4.5809187E-02 -4.5045596E-02 -4.4216715E-02 -4.3336220E-02
 -4.2415753E-02 -4.1465219E-02 -4.0493038E-02 -3.9506350E-02 -3.8511243E-02
 -3.7512854E-02 -3.6515541E-02 -3.5522979E-02 -3.4538258E-02 -3.3563990E-02
 -3.2602336E-02 -3.1655092E-02 -3.0723730E-02 -2.9809447E-02 -2.8913219E-02
 -2.8035792E-02 -2.7177744E-02 -2.6339503E-02 -2.5521353E-02 -2.4723480E-02
 -2.3945959E-02 -2.3188788E-02 -2.2451889E-02 -2.1735119E-02 -2.1038296E-02
 -2.0361178E-02 -1.9703498E-02 -1.9064952E-02 -1.8445205E-02 -1.7843923E-02
 -1.7260721E-02
 0.4314438 0.4287260 0.4253877 0.4214489 0.4169277
 0.4118401 0.4062004 0.4000213 0.3933143 0.3860896
 0.3783570 0.3701265 0.3614095 0.3522195 0.3425743
 0.3324980 0.3220224 0.3111893 0.3000520 0.2886758
 0.2771367 0.2655198 0.2539152 0.2424130 0.2310986
 0.2200480 0.2093245 0.1989776 0.1890422 0.1795404
 0.1704825 0.1618698 0.1536963 0.1459509 0.1386185
 0.1316820 0.1251228 0.1189217 0.1130594 0.1075172
 0.1022765 9.7319931E-02 9.2630677E-02 8.8192917E-02 8.3991744E-02
 8.0013104E-02 7.6243825E-02 7.2671562E-02 6.9284759E-02 6.6072613E-02
 6.3025013E-02 6.0132496E-02 5.7386201E-02 5.4777846E-02 5.2299693E-02
 4.9944468E-02 4.7705356E-02 4.5575988E-02 4.3550357E-02 4.1622866E-02
 3.9788224E-02 3.8041476E-02 3.6377959E-02 3.4793284E-02 3.3283331E-02
 3.1844221E-02 3.0472280E-02 2.9164070E-02 2.7916331E-02 2.6725970E-02
 2.5590159E-02
 0.1992713 0.1876853 0.1758918 0.1639419 0.1518840
 0.1397651 0.1276309 0.1155268 0.1034980 9.1590382E-02
 7.9850823E-02 6.8328239E-02 5.7073995E-02 4.6142347E-02 3.5590600E-02
 2.5478909E-02 1.5869072E-02 6.8228478E-03 -1.6009191E-03 -9.3496107E-03
 -1.6380871E-02 -2.2666322E-02 -2.8194429E-02 -3.2971814E-02 -3.7022818E-02
 -4.0387094E-02 -4.3116082E-02 -4.5268804E-02 -4.6907753E-02 -4.8095476E-02
 -4.8891924E-02 -4.9352754E-02 -4.9528357E-02 -4.9463533E-02 -4.9197543E-02
 -4.8764430E-02 -4.8193503E-02 -4.7509842E-02 -4.6734832E-02 -4.5886654E-02
 -4.4980746E-02 -4.4030171E-02 -4.3046016E-02 -4.2037643E-02 -4.1012976E-02
 -3.9978709E-02 -3.8940474E-02 -3.7903022E-02 -3.6870334E-02 -3.5845757E-02
 -3.4832075E-02 -3.3831600E-02 -3.2846227E-02 -3.1877514E-02 -3.0926721E-02
 -2.9994851E-02 -2.9082678E-02 -2.8190805E-02 -2.7319644E-02 -2.6469503E-02
 -2.5640547E-02 -2.4832850E-02 -2.4046393E-02 -2.3281077E-02 -2.2536758E-02
 -2.1813231E-02 -2.1110233E-02 -2.0427477E-02 -1.9764638E-02 -1.9121382E-02
 -1.8497322E-02
 0.4576826 0.4547407 0.4511793 0.4470260 0.4423063
 0.4370428 0.4312559 0.4249638 0.4181823 0.4109250
 0.4032037 0.3950282 0.3864072 0.3773487 0.3678616
 0.3579566 0.3476486 0.3369580 0.3259138 0.3145549
 0.3029326 0.2911102 0.2791632 0.2671762 0.2552394
 0.2434429 0.2318714 0.2205998 0.2096898 0.1991881
 0.1891265 0.1795237 0.1703866 0.1617132 0.1534944
 0.1457161 0.1383611 0.1314102 0.1248429 0.1186389
 0.1127775 0.1072390 0.1020044 9.7055383E-02 9.2374906E-02
 8.7946698E-02 8.3755560E-02 7.9787210E-02 7.6028317E-02 7.2466418E-02
 6.9089852E-02 6.5887734E-02 6.2849879E-02 5.9966791E-02 5.7229608E-02
 5.4630011E-02 5.2160230E-02 4.9813002E-02 4.7581498E-02 4.5459367E-02
 4.3440614E-02 4.1519623E-02 3.9691135E-02 3.7950188E-02 3.6292151E-02
 3.4712646E-02 3.3207562E-02 3.1773027E-02 3.0405382E-02 2.9101167E-02
 2.7857237E-02
 0.2215329 0.2098081 0.1978737 0.1857747 0.1735531
 0.1612497 0.1489039 0.1365545 0.1242397 0.1119980
 9.9868156E-02 8.7890290E-02 7.6106414E-02 6.4561099E-02 5.3302336E-02
 4.2381905E-02 3.1855512E-02 2.1782476E-02 1.2224491E-02 3.2437099E-03
 -5.1001641E-03 -1.2753732E-02 -1.9674169E-02 -2.5833182E-02 -3.1220265E-02
 -3.5844009E-02 -3.9731525E-02 -4.2925861E-02 -4.5481965E-02 -4.7462273E-02
 -4.8932254E-02 -4.9956862E-02 -5.0597839E-02 -5.0912019E-02 -5.0950497E-02
 -5.0758354E-02 -5.0374825E-02 -4.9833704E-02 -4.9163900E-02 -4.8390005E-02
 -4.7532856E-02 -4.6610061E-02 -4.5636479E-02 -4.4624615E-02 -4.3585021E-02
 -4.2526539E-02 -4.1456614E-02 -4.0381473E-02 -3.9306339E-02 -3.8235586E-02
 -3.7172843E-02 -3.6121126E-02 -3.5082925E-02 -3.4060288E-02 -3.3054881E-02
 -3.2068044E-02 -3.1100839E-02 -3.0154096E-02 -2.9228434E-02 -2.8324315E-02
 -2.7442046E-02 -2.6581800E-02 -2.5743652E-02 -2.4927579E-02 -2.4133490E-02
 -2.3361230E-02 -2.2610566E-02 -2.1881239E-02 -2.1172941E-02 -2.0485351E-02
 -1.9818082E-02
 0.4849400 0.4816722 0.4777785 0.4732963 0.4682599
 0.4627003 0.4566454 0.4501202 0.4431467 0.4357440
 0.4279278 0.4197107 0.4111026 0.4021104 0.3927393
 0.3829933 0.3728769 0.3623961 0.3515610 0.3403878
 0.3289009 0.3171358 0.3051405 0.2929762 0.2807169
 0.2684466 0.2562551 0.2442323 0.2324629 0.2210209
 0.2099666 0.1993447 0.1891849 0.1795032 0.1703039
 0.1615823 0.1533271 0.1455222 0.1381486 0.1311853
 0.1246109 0.1184036 0.1125422 0.1070061 0.1017758
 9.6832626E-02 9.2158958E-02 8.7738305E-02 8.3555214E-02 7.9595260E-02
 7.5844929E-02 7.2291628E-02 6.8923585E-02 6.5729842E-02 6.2700197E-02
 5.9825089E-02 5.7095598E-02 5.4503407E-02 5.2040715E-02 4.9700268E-02
 4.7475241E-02 4.5359254E-02 4.3346334E-02 4.1430864E-02 3.9607599E-02
 3.7871603E-02 3.6218233E-02 3.4643125E-02 3.3142176E-02 3.1711478E-02
 3.0347519E-02
 0.2444414 0.2325935 0.2205383 0.2083141 0.1959569
 0.1835019 0.1709836 0.1584358 0.1458921 0.1333856
 0.1209492 0.1086165 9.6421972E-02 8.4401868E-02 7.2594985E-02
 6.1043415E-02 4.9793128E-02 3.8894586E-02 2.8402634E-02 1.8376164E-02
 8.8769998E-03 -3.2362084E-05 -8.2916906E-03 -1.5847096E-02 -2.2655532E-02
 -2.8689107E-02 -3.3938423E-02 -3.8414046E-02 -4.2145696E-02 -4.5179542E-02
 -4.7573775E-02 -4.9393885E-02 -5.0708000E-02 -5.1583152E-02 -5.2082602E-02
 -5.2264169E-02 -5.2179452E-02 -5.1873654E-02 -5.1385872E-02 -5.0749566E-02
 -4.9993169E-02 -4.9140718E-02 -4.8212465E-02 -4.7225412E-02 -4.6193838E-02
 -4.5129690E-02 -4.4042967E-02 -4.2942014E-02 -4.1833807E-02 -4.0724177E-02
 -3.9617945E-02 -3.8519137E-02 -3.7431072E-02 -3.6356475E-02 -3.5297606E-02
 -3.4256272E-02 -3.3233937E-02 -3.2231767E-02 -3.1250659E-02 -3.0291298E-02
 -2.9354190E-02 -2.8439658E-02 -2.7547922E-02 -2.6679054E-02 -2.5833059E-02
 -2.5009835E-02 -2.4209222E-02 -2.3430998E-02 -2.2674883E-02 -2.1940593E-02
 -2.1227743E-02
 0.5136241 0.5099180 0.5055763 0.5006483 0.4951781
 0.4892054 0.4827660 0.4758919 0.4686114 0.4609494
 0.4529265 0.4445592 0.4358600 0.4268374 0.4174958
 0.4078373 0.3978611 0.3875658 0.3769500 0.3660146
 0.3547645 0.3432111 0.3313748 0.3192876 0.3069947
 0.2945556 0.2820431 0.2695409 0.2571389 0.2449276
 0.2329916 0.2214049 0.2102269 0.1995013 0.1892558
 0.1795045 0.1702497 0.1614847 0.1531963 0.1453666
 0.1379751 0.1309997 0.1244177 0.1182065 0.1123441
 0.1068094 0.1015822 9.6643463E-02 9.1975227E-02 8.7560765E-02
 8.3384395E-02 7.9431444E-02 7.5688288E-02 7.2142199E-02 6.8781368E-02
 6.5594733E-02 6.2572040E-02 5.9703678E-02 5.6980703E-02 5.4394789E-02
 5.1938131E-02 4.9603444E-02 4.7383908E-02 4.5273133E-02 4.3265168E-02
 4.1354414E-02 3.9535604E-02 3.7803810E-02 3.6154408E-02 3.4582973E-02
 3.3085570E-02
 0.2677680 0.2558016 0.2436335 0.2312953 0.2188172
 0.2062297 0.1935636 0.1808497 0.1681184 0.1553994
 0.1427218 0.1301146 0.1176067 0.1052277 9.3008891E-02
 8.0983572E-02 6.9188066E-02 5.7662472E-02 4.6451036E-02 3.5602856E-02
 2.5171814E-02 1.5216184E-02 5.7973308E-03 -3.0222330E-03 -1.1182199E-02
 -1.8628502E-02 -2.5318138E-02 -3.1223657E-02 -3.6336597E-02 -4.0669177E-02
 -4.4253360E-02 -4.7137860E-02 -4.9383588E-02 -5.1058475E-02 -5.2232780E-02
 -5.2975144E-02 -5.3349935E-02 -5.3415589E-02 -5.3223938E-02 -5.2820127E-02
 -5.2242946E-02 -5.1525414E-02 -5.0695434E-02 -4.9776465E-02 -4.8788179E-02
 -4.7746997E-02 -4.6666641E-02 -4.5558538E-02 -4.4432208E-02 -4.3295566E-02
 -4.2155195E-02 -4.1016541E-02 -3.9884120E-02 -3.8761657E-02 -3.7652217E-02
 -3.6558297E-02 -3.5481934E-02 -3.4424759E-02 -3.3388067E-02 -3.2372873E-02
 -3.1379949E-02 -3.0409852E-02 -2.9462980E-02 -2.8539566E-02 -2.7639741E-02
 -2.6763508E-02 -2.5910789E-02 -2.5081433E-02 -2.4275210E-02 -2.3491887E-02
 -2.2731090E-02
 0.5441407 0.5398755 0.5349686 0.5294816 0.5234679
 0.5169742 0.5100428 0.5027117 0.4950148 0.4869821
 0.4786391 0.4700065 0.4611001 0.4519307 0.4425046
 0.4328236 0.4228860 0.4126873 0.4022208 0.3914794
 0.3804567 0.3691486 0.3575558 0.3456860 0.3335565
 0.3211965 0.3086492 0.2959729 0.2832401 0.2705345
 0.2579467 0.2455678 0.2334830 0.2217664 0.2104771
 0.1996576 0.1893344 0.1795198 0.1702144 0.1614098
 0.1530908 0.1452384 0.1378304 0.1308436 0.1242545
 0.1180395 0.1121759 0.1066420 0.1014173 9.6482135E-02
 9.1818459E-02 8.7409176E-02 8.3238415E-02 7.9291351E-02 7.5554252E-02
 7.2014287E-02 6.8659551E-02 6.5478936E-02 6.2462099E-02 5.9599459E-02
 5.6882028E-02 5.4301437E-02 5.1849894E-02 4.9520086E-02 4.7305211E-02
 4.5198899E-02 4.3195158E-02 4.1288409E-02 3.9473381E-02 3.7745085E-02
 3.6099087E-02
 0.2913430 0.2792491 0.2669663 0.2545186 0.2419305
 0.2292281 0.2164394 0.2035925 0.1907157 0.1778362
 0.1649801 0.1521727 0.1394385 0.1268018 0.1142876
 0.1019219 8.9732781E-02 7.7750966E-02 6.6010363E-02 5.4549064E-02
 4.3409780E-02 3.2640193E-02 2.2293160E-02 1.2426258E-02 3.1004923E-03
 -5.6216298E-03 -1.3679608E-02 -2.1019025E-02 -2.7596474E-02 -3.3384494E-02
 -3.8375087E-02 -4.2581439E-02 -4.6037100E-02 -4.8792653E-02 -5.0911050E-02
 -5.2462168E-02 -5.3517863E-02 -5.4148011E-02 -5.4417774E-02 -5.4386027E-02
 -5.4104697E-02 -5.3618796E-02 -5.2966807E-02 -5.2181330E-02 -5.1289804E-02
 -5.0315179E-02 -4.9276620E-02 -4.8190065E-02 -4.7068771E-02 -4.5923747E-02
 -4.4764109E-02 -4.3597411E-02 -4.2429909E-02 -4.1266747E-02 -4.0112190E-02
 -3.8969714E-02 -3.7842169E-02 -3.6731858E-02 -3.5640642E-02 -3.4570005E-02
 -3.3521101E-02 -3.2494813E-02 -3.1491812E-02 -3.0512545E-02 -2.9557329E-02
 -2.8626321E-02 -2.7719567E-02 -2.6837014E-02 -2.5978519E-02 -2.5143923E-02
 -2.4332879E-02
 0.5768675 0.5719198 0.5663339 0.5601815 0.5535216
 0.5464051 0.5388781 0.5309828 0.5227579 0.5142380
 0.5054534 0.4964294 0.4871859 0.4777369 0.4680915
 0.4582534 0.4482217 0.4379917 0.4275555 0.4169028
 0.4060221 0.3949015 0.3835306 0.3719018 0.3600127
 0.3478681 0.3354828 0.3228841 0.3101138 0.2972292
 0.2843024 0.2714176 0.2586656 0.2461386 0.2339222
 0.2220907 0.2107028 0.1998003 0.1894085 0.1795381
 0.1701882 0.1613487 0.1530030 0.1451305 0.1377081
 0.1307114 0.1241159 0.1178974 0.1120326 0.1064993
 0.1012765 9.6344426E-02 9.1684513E-02 8.7279536E-02 8.3113484E-02
 7.9171397E-02 7.5439401E-02 7.1904600E-02 6.8554990E-02 6.5379456E-02
 6.2367618E-02 5.9509818E-02 5.6797087E-02 5.4221015E-02 5.1773809E-02
 4.9448177E-02 4.7237284E-02 4.5134757E-02 4.3134611E-02 4.1231144E-02
 3.9419383E-02
 0.3149779 0.3027411 0.2903440 0.2777995 0.2651246
 0.2523399 0.2394690 0.2265374 0.2135707 0.2005937
 0.1876290 0.1746985 0.1618226 0.1490209 0.1363128
 0.1237186 0.1112596 9.8958962E-02 8.6842112E-02 7.4937731E-02
 6.3278228E-02 5.1900256E-02 4.0845431E-02 3.0160720E-02 1.9898398E-02
 1.0115909E-02 8.7441428E-04 -7.7631832E-03 -1.5735487E-02 -2.2987239E-02
 -2.9474165E-02 -3.5168137E-02 -4.0061053E-02 -4.4166490E-02 -4.7518980E-02
 -5.0170571E-02 -5.2185792E-02 -5.3636134E-02 -5.4594830E-02 -5.5132844E-02
 -5.5316072E-02 -5.5203810E-02 -5.4848138E-02 -5.4293994E-02 -5.3579673E-02
 -5.2737463E-02 -5.1794428E-02 -5.0773140E-02 -4.9692355E-02 -4.8567638E-02
 -4.7411870E-02 -4.6235707E-02 -4.5047943E-02 -4.3855838E-02 -4.2665377E-02
 -4.1481469E-02 -4.0308148E-02 -3.9148685E-02 -3.8005751E-02 -3.6881503E-02
 -3.5777651E-02 -3.4695540E-02 -3.3636216E-02 -3.2600455E-02 -3.1588826E-02
 -3.0601721E-02 -2.9639356E-02 -2.8701827E-02 -2.7789116E-02 -2.6901180E-02
 -2.6037717E-02
 0.6121920 0.6064319 0.6000513 0.5931236 0.5857095
 0.5778607 0.5696244 0.5610450 0.5521656 0.5430261
 0.5336622 0.5241050 0.5143790 0.5045029 0.4944890
 0.4843441 0.4740692 0.4636612 0.4531126 0.4424129
 0.4315490 0.4205060 0.4092686 0.3978214 0.3861509
 0.3742467 0.3621037 0.3497244 0.3371215 0.3243203
 0.3113612 0.2983005 0.2852097 0.2721730 0.2592820
 0.2466291 0.2343006 0.2223710 0.2108988 0.1999253
 0.1894746 0.1795563 0.1701681 0.1612985 0.1529297
 0.1450399 0.1376048 0.1305994 0.1239982 0.1177766
 0.1119107 0.1063778 0.1011565 9.6226752E-02 9.1569945E-02
 8.7168582E-02 8.3006464E-02 7.9068542E-02 7.5340815E-02 7.1810365E-02
 6.8465121E-02 6.5293878E-02 6.2286261E-02 5.9432566E-02 5.6723814E-02
 5.4151610E-02 5.1708113E-02 4.9386024E-02 4.7178514E-02 4.5079038E-02
 4.3081995E-02
 0.3383969 0.3260201 0.3135340 0.3009337 0.2882242
 0.2754156 0.2625262 0.2495771 0.2365913 0.2235903
 0.2105939 0.1976202 0.1846851 0.1718041 0.1589918
 0.1462633 0.1336348 0.1211234 0.1087485 9.6531637E-02
 8.4497340E-02 7.2673500E-02 6.1091915E-02 4.9789004E-02 3.8806193E-02
 2.8190430E-02 1.7994275E-02 8.2754493E-03 -9.0411276E-04 -9.4806310E-03
 -1.7391613E-02 -2.4580546E-02 -3.1002034E-02 -3.6627021E-02 -4.1446950E-02
 -4.5475602E-02 -4.8748210E-02 -5.1318016E-02 -5.3250991E-02 -5.4620083E-02
 -5.5499870E-02 -5.5962376E-02 -5.6074258E-02 -5.5895284E-02 -5.5477764E-02
 -5.4866683E-02 -5.4100197E-02 -5.3210407E-02 -5.2224096E-02 -5.1163539E-02
 -5.0047182E-02 -4.8890274E-02 -4.7705382E-02 -4.6502881E-02 -4.5291316E-02
 -4.4077691E-02 -4.2867761E-02 -4.1666236E-02 -4.0476955E-02 -3.9303042E-02
 -3.8147017E-02 -3.7010882E-02 -3.5896238E-02 -3.4804318E-02 -3.3736076E-02
 -3.2692205E-02 -3.1673197E-02 -3.0679351E-02 -2.9710835E-02 -2.8767770E-02
 -2.7849933E-02
 0.6505508 0.6438161 0.6365023 0.6286621 0.6203631
 0.6116506 0.6025707 0.5931675 0.5834877 0.5735776
 0.5634799 0.5532326 0.5428670 0.5324063 0.5218673
 0.5112601 0.5005884 0.4898508 0.4790412 0.4681499
 0.4571637 0.4460671 0.4348430 0.4234728 0.4119377
 0.4002196 0.3883020 0.3761721 0.3638223 0.3512528
 0.3384740 0.3255095 0.3123980 0.2991947 0.2859706
 0.2728098 0.2598041 0.2470466 0.2346244 0.2226123
 0.2110689 0.2000349 0.1895339 0.1795745 0.1701533
 0.1612577 0.1528688 0.1449639 0.1375178 0.1305046
 0.1238984 0.1176738 0.1118067 0.1062739 0.1010537
 9.6125998E-02 9.1471739E-02 8.7073356E-02 8.2914501E-02 7.8980066E-02
 7.5255983E-02 7.1729191E-02 6.8387628E-02 6.5220028E-02 6.2215984E-02
 5.9365809E-02 5.6660458E-02 5.4091532E-02 5.1651184E-02 4.9331885E-02
 4.7127303E-02
 0.3612180 0.3487526 0.3362545 0.3236781 0.3110163
 0.2982657 0.2854391 0.2725510 0.2596226 0.2466749
 0.2337255 0.2207876 0.2078740 0.1949947 0.1821605
 0.1693816 0.1566697 0.1440375 0.1314999 0.1190736
 0.1067777 9.4634131E-02 8.2667731E-02 7.0906900E-02 5.9383921E-02
 4.8135635E-02 3.7203901E-02 2.6636083E-02 1.6485253E-02 6.8097031E-03
 -2.3279469E-03 -1.0863001E-02 -1.8732004E-02 -2.5877181E-02 -3.2252084E-02
 -3.7826784E-02 -4.2592213E-02 -4.6562213E-02 -4.9772564E-02 -5.2277561E-02
 -5.4144491E-02 -5.5447649E-02 -5.6262847E-02 -5.6663126E-02 -5.6715902E-02
 -5.6481436E-02 -5.6012303E-02 -5.5353560E-02 -5.4543324E-02 -5.3613544E-02
 -5.2590810E-02 -5.1497150E-02 -5.0350759E-02 -4.9166624E-02 -4.7957093E-02
 -4.6732288E-02 -4.5500528E-02 -4.4268623E-02 -4.3042134E-02 -4.1825615E-02
 -4.0622748E-02 -3.9436508E-02 -3.8269293E-02 -3.7122991E-02 -3.5999108E-02
 -3.4898795E-02 -3.3822905E-02 -3.2772068E-02 -3.1746693E-02 -3.0747157E-02
 -2.9773347E-02
 0.6923319 0.6844453 0.6760150 0.6671230 0.6577750
 0.6480323 0.6379662 0.6275931 0.6169544 0.6061096
 0.5951119 0.5840090 0.5728388 0.5616309 0.5504072
 0.5391818 0.5279607 0.5167443 0.5055276 0.4943015
 0.4830531 0.4717668 0.4604247 0.4490071 0.4374929
 0.4258606 0.4140883 0.4021552 0.3900425 0.3777348
 0.3652225 0.3525035 0.3395863 0.3264929 0.3132604
 0.2999430 0.2866112 0.2733490 0.2602488 0.2474046
 0.2349038 0.2228220 0.2112179 0.2001321 0.1895879
 0.1795931 0.1701432 0.1612249 0.1528185 0.1449002
 0.1374443 0.1304243 0.1238135 0.1175862 0.1117179
 0.1061850 0.1009658 9.6039578E-02 9.1387369E-02 8.6991459E-02
 8.2835376E-02 7.8903861E-02 7.5182818E-02 7.1659125E-02 6.8320669E-02
 6.5156184E-02 6.2155202E-02 5.9308000E-02 5.6605540E-02 5.4039087E-02
 5.1601477E-02
 0.3829417 0.3705640 0.3581603 0.3457022 0.3331845
 0.3205962 0.3079287 0.2951782 0.2823801 0.2695626
 0.2567391 0.2439184 0.2311088 0.2183155 0.2055443
 0.1928004 0.1800910 0.1674253 0.1548143 0.1422715
 0.1298127 0.1174561 0.1052223 9.3134366E-02 8.1218489E-02
 6.9503926E-02 5.8023687E-02 4.6815127E-02 3.5920586E-02 2.5387730E-02
 1.5269894E-02 5.6257648E-03 -3.4816102E-03 -1.1986824E-02 -1.9825557E-02
 -2.6939131E-02 -3.3279993E-02 -3.8817372E-02 -4.3541588E-02 -4.7466379E-02
 -5.0627980E-02 -5.3081494E-02 -5.4895297E-02 -5.6144889E-02 -5.6907188E-02
 -5.7256173E-02 -5.7259973E-02 -5.6979328E-02 -5.6467086E-02 -5.5768427E-02
 -5.4921459E-02 -5.3958032E-02 -5.2904584E-02 -5.1782958E-02 -5.0611164E-02
 -4.9403980E-02 -4.8173539E-02 -4.6929788E-02 -4.5680847E-02 -4.4433381E-02
 -4.3192785E-02 -4.1963466E-02 -4.0748984E-02 -3.9552193E-02 -3.8375389E-02
 -3.7220385E-02 -3.6088578E-02 -3.4981042E-02 -3.3898570E-02 -3.2841876E-02
 -3.1811029E-02
 0.7374097 0.7282329 0.7190263 0.7089583 0.6982732
 0.6872158 0.6760495 0.6646202 0.6528711 0.6409133
 0.6288362 0.6167010 0.6045552 0.5924326 0.5803596
 0.5683570 0.5564322 0.5445884 0.5328196 0.5211172
 0.5094674 0.4978543 0.4862589 0.4746610 0.4630384
 0.4513680 0.4396257 0.4277871 0.4158283 0.4037261
 0.3914598 0.3790122 0.3663716 0.3535345 0.3405078
 0.3273117 0.3139823 0.3005728 0.2871535 0.2738082
 0.2606298 0.2477129 0.2351459 0.2230048 0.2113489
 0.2002188 0.1896372 0.1796116 0.1701368 0.1611988
 0.1527770 0.1448470 0.1373824 0.1303561 0.1237412
 0.1175115 0.1116419 0.1061089 0.1008902 9.5965259E-02
 9.1314778E-02 8.6920902E-02 8.2767107E-02 7.8838050E-02 7.5119570E-02
 7.1598522E-02 6.8262726E-02 6.5100871E-02 6.2102474E-02 5.9257369E-02
 5.6557424E-02
 0.4026210 0.3912038 0.3790201 0.3664634 0.3541526
 0.3419442 0.3295889 0.3170688 0.3044489 0.2918224
 0.2792106 0.2666001 0.2539910 0.2413816 0.2287731
 0.2161652 0.2035598 0.1909611 0.1783769 0.1658181
 0.1532982 0.1408330 0.1284409 0.1161424 0.1039599
 9.1917917E-02 8.0043793E-02 6.8367481E-02 5.6922693E-02 4.5747027E-02
 3.4883048E-02 2.4378538E-02 1.4286948E-02 4.6672574E-03 -4.4171605E-03
 -1.2900393E-02 -2.0717284E-02 -2.7808271E-02 -3.4124680E-02 -3.9634828E-02
 -4.4328421E-02 -4.8218913E-02 -5.1342748E-02 -5.3755678E-02 -5.5526994E-02
 -5.6733228E-02 -5.7452310E-02 -5.7759069E-02 -5.7722311E-02 -5.7403222E-02
 -5.6854956E-02 -5.6122821E-02 -5.5244956E-02 -5.4253154E-02 -5.3173762E-02
 -5.2028473E-02 -5.0835136E-02 -4.9608376E-02 -4.8360150E-02 -4.7100257E-02
 -4.5836680E-02 -4.4575918E-02 -4.3323264E-02 -4.2082984E-02 -4.0858544E-02
 -3.9652713E-02 -3.8467687E-02 -3.7305187E-02 -3.6166549E-02 -3.5053000E-02
 -3.3964846E-02
 0.7871115 0.7802421 0.7717223 0.7619066 0.7510647
 0.7393644 0.7268483 0.7133349 0.6985607 0.6823811
 0.6650337 0.6516897 0.6383805 0.6251605 0.6120622
 0.5991082 0.5863159 0.5736861 0.5612128 0.5488866
 0.5366920 0.5246111 0.5126230 0.5007067 0.4888387
 0.4769949 0.4651503 0.4532790 0.4413552 0.4293523
 0.4172447 0.4050077 0.3926190 0.3800600 0.3673176
 0.3543866 0.3412727 0.3279946 0.3145876 0.3011039
 0.2876133 0.2741998 0.2609566 0.2479788 0.2353560
 0.2231646 0.2114644 0.2002961 0.1896822 0.1796299
 0.1701334 0.1611781 0.1527427 0.1448023 0.1373301
 0.1302983 0.1236796 0.1174476 0.1115768 0.1060435
 0.1008252 9.5901258E-02 9.1252156E-02 8.6859949E-02 8.2708068E-02
 7.8781106E-02 7.5064808E-02 7.1545988E-02 6.8212420E-02 6.5052196E-02
 6.2056068E-02
 0.3350542 0.3358187 0.3332771 0.3301330 0.3267473
 0.3229652 0.3186489 0.3138711 0.3089303 0.3043238
 0.3006114 0.2883425 0.2760437 0.2637391 0.2514184
 0.2390735 0.2266984 0.2142937 0.2018604 0.1894058
 0.1769424 0.1644836 0.1520471 0.1396521 0.1273198
 0.1150731 0.1029358 9.0934284E-02 7.9096466E-02 6.7453079E-02
 5.6038275E-02 4.4889979E-02 3.4050819E-02 2.3568800E-02 1.3497448E-02
 3.8958928E-03 -5.1721255E-03 -1.3640186E-02 -2.1442359E-02 -2.8518150E-02
 -3.4818005E-02 -4.0309224E-02 -4.4980764E-02 -4.8845779E-02 -5.1940762E-02
 -5.4321963E-02 -5.6059469E-02 -5.7230718E-02 -5.7914536E-02 -5.8186542E-02
 -5.8116153E-02 -5.7765033E-02 -5.7186604E-02 -5.6426339E-02 -5.5522434E-02
 -5.4506667E-02 -5.3405296E-02 -5.2239925E-02 -5.1028270E-02 -4.9784832E-02
 -4.8521452E-02 -4.7247779E-02 -4.5971677E-02 -4.4699531E-02 -4.3436531E-02
 -4.2186856E-02 -4.0953867E-02 -3.9740253E-02 -3.8548131E-02 -3.7379462E-02
 -3.6234930E-02
 0.8398112 0.8339019 0.8257139 0.8158808 0.8047144
 0.7923288 0.7786443 0.7633104 0.7456557 0.7250164
 0.7040406 0.6893728 0.6747812 0.6602437 0.6459128
 0.6318161 0.6179705 0.6043689 0.5910209 0.5779094
 0.5650154 0.5523170 0.5397918 0.5274144 0.5151606
 0.5030042 0.4909191 0.4788790 0.4668567 0.4548248
 0.4427556 0.4306214 0.4183951 0.4060509 0.3935651
 0.3809180 0.3680951 0.3550900 0.3419072 0.3285644
 0.3150955 0.3015522 0.2880038 0.2745343 0.2612374
 0.2482089 0.2355389 0.2233047 0.2115665 0.2003652
 0.1897234 0.1796478 0.1701324 0.1611618 0.1527145
 0.1447650 0.1372859 0.1302492 0.1236271 0.1173928
 0.1115209 0.1059872 0.1007693 9.5846020E-02 9.1198035E-02
 8.6807266E-02 8.2656987E-02 7.8731760E-02 7.5017281E-02 7.1499482E-02
 6.8167910E-02
 0.2854903 0.2837396 0.2881365 0.2940440 0.2997385
 0.3045202 0.3081703 0.3108365 0.3130774 0.3159310
 0.3202297 0.3086288 0.2967645 0.2848796 0.2730038
 0.2610840 0.2490918 0.2370375 0.2249079 0.2127062
 0.2004409 0.1881219 0.1757683 0.1633999 0.1510369
 0.1387030 0.1264220 0.1142190 0.1021197 9.0151265E-02
 7.8342877E-02 6.6725977E-02 5.5334877E-02 4.4207916E-02 3.3387817E-02
 2.2922590E-02 1.2865919E-02 3.2769931E-03 -5.7800529E-03 -1.4238350E-02
 -2.2031460E-02 -2.9097989E-02 -3.5387393E-02 -4.0866107E-02 -4.5522328E-02
 -4.9368788E-02 -5.2442010E-02 -5.4798607E-02 -5.6509327E-02 -5.7652388E-02
 -5.8307435E-02 -5.8550812E-02 -5.8452524E-02 -5.8074661E-02 -5.7470933E-02
 -5.6686990E-02 -5.5761088E-02 -5.4725014E-02 -5.3604975E-02 -5.2422520E-02
 -5.1195260E-02 -4.9937587E-02 -4.8661236E-02 -4.7375754E-02 -4.6088912E-02
 -4.4807006E-02 -4.3535110E-02 -4.2277347E-02 -4.1036982E-02 -3.9817058E-02
 -3.8618803E-02
 0.8961008 0.8898404 0.8813508 0.8711882 0.8595834
 0.8465918 0.8320897 0.8156067 0.7957353 0.7679879
 0.7164847 0.7295510 0.7147597 0.6982108 0.6822873
 0.6668795 0.6517821 0.6370000 0.6225797 0.6084924
 0.5947255 0.5812465 0.5680321 0.5550477 0.5422657
 0.5296560 0.5171921 0.5048455 0.4925885 0.4803924
 0.4682290 0.4560695 0.4438849 0.4316468 0.4193268
 0.4068980 0.3943360 0.3816196 0.3687337 0.3556707
 0.3424339 0.3290400 0.3155220 0.3019310 0.2883359
 0.2748206 0.2614792 0.2484082 0.2356982 0.2234275
 0.2116567 0.2004270 0.1897609 0.1796650 0.1701330
 0.1611491 0.1526912 0.1447336 0.1372484 0.1302072
 0.1235820 0.1173458 0.1114728 0.1059387 0.1007208
 9.5798202E-02 9.1151133E-02 8.6761519E-02 8.2612567E-02 7.8687578E-02
 7.4974768E-02
 0.2155050 0.2255130 0.2414851 0.2581682 0.2736424
 0.2872066 0.2986755 0.3082271 0.3166116 0.3260932
 0.3439407 0.3295943 0.3158878 0.3041081 0.2930008
 0.2816873 0.2702586 0.2587242 0.2470900 0.2353225
 0.2234256 0.2114092 0.1992910 0.1870914 0.1748314
 0.1625368 0.1502345 0.1379498 0.1257102 0.1135420
 0.1014724 8.9530312E-02 7.7745207E-02 6.6148937E-02 5.4776363E-02
 4.3665785E-02 3.2860070E-02 2.2407202E-02 1.2360961E-02 2.7806561E-03
 -6.2694871E-03 -1.4722216E-02 -2.2510435E-02 -2.9572070E-02 -3.5855636E-02
 -4.1326698E-02 -4.5972761E-02 -4.9806092E-02 -5.2863151E-02 -5.5200793E-02
 -5.6890331E-02 -5.8010705E-02 -5.8642276E-02 -5.8862045E-02 -5.8740560E-02
 -5.8340322E-02 -5.7715327E-02 -5.6911387E-02 -5.5966850E-02 -5.4913525E-02
 -5.3777609E-02 -5.2580569E-02 -5.1339965E-02 -5.0070096E-02 -4.8782624E-02
 -4.7487017E-02 -4.6190940E-02 -4.4900618E-02 -4.3621060E-02 -4.2356871E-02
 -4.1110124E-02
 0.9559802 0.9480081 0.9386607 0.9279376 0.9158392
 0.9023653 0.8875159 0.8712911 0.8536908 0.8347151
 0.8145118 0.7745405 0.7695351 0.7426694 0.7193524
 0.7047333 0.6883284 0.6720500 0.6562562 0.6409852
 0.6261474 0.6116995 0.5976247 0.5838770 0.5704160
 0.5572138 0.5442323 0.5314416 0.5188138 0.5063174
 0.4939249 0.4816061 0.4693310 0.4570706 0.4447951
 0.4324749 0.4200812 0.4075860 0.3949643 0.3821940
 0.3692590 0.3561508 0.3428718 0.3294377 0.3158810
 0.3022519 0.2886190 0.2750662 0.2616878 0.2485811
 0.2358374 0.2235355 0.2117366 0.2004822 0.1897950
 0.1796815 0.1701348 0.1611392 0.1526720 0.1447072
 0.1372165 0.1301713 0.1235433 0.1173053 0.1114312
 0.1058967 0.1006789 9.5756739E-02 9.1110386E-02 8.6719930E-02
 8.2572281E-02
 0.1250984 0.1613221 0.1941229 0.2235010 0.2494561
 0.2719885 0.2910980 0.3067847 0.3190486 0.3278896
 0.3237017 0.3769006 0.3338757 0.3145519 0.3111462
 0.3009000 0.2897171 0.2788367 0.2678315 0.2567420
 0.2454221 0.2339106 0.2222244 0.2103686 0.1983751
 0.1862706 0.1740844 0.1618507 0.1495976 0.1373526
 0.1251457 0.1130050 0.1009595 8.9038156E-02 7.7271447E-02
 6.5691546E-02 5.4333445E-02 4.3235436E-02 3.2440580E-02 2.1996789E-02
 1.1957761E-02 2.3828705E-03 -6.6634356E-03 -1.5113635E-02 -2.2900082E-02
 -2.9960005E-02 -3.6241189E-02 -4.1708320E-02 -4.6348196E-02 -5.0172579E-02
 -5.3217813E-02 -5.5540986E-02 -5.7213869E-02 -5.8316004E-02 -5.8928400E-02
 -5.9128672E-02 -5.8987867E-02 -5.8568869E-02 -5.7925943E-02 -5.7105083E-02
 -5.6144726E-02 -5.5076711E-02 -5.3927224E-02 -5.2717708E-02 -5.1465660E-02
 -5.0185338E-02 -4.8888307E-02 -4.7583967E-02 -4.6279922E-02 -4.4983126E-02
 -4.3696918E-02
 0.9703885 0.9627109 0.9536579 0.9432293 0.9314255
 0.9182462 0.9036915 0.8877614 0.8704559 0.8517749
 0.8318665 0.7921901 0.7874795 0.7609087 0.7378866
 0.7235625 0.7074527 0.6914693 0.6759706 0.6609947
 0.6464521 0.6322995 0.6185200 0.6050676 0.5919020
 0.5789951 0.5663091 0.5538139 0.5414817 0.5292810
 0.5171841 0.5051610 0.4931818 0.4812172 0.4692375
 0.4572132 0.4451153 0.4329161 0.4205902 0.4081159
 0.3954768 0.3826646 0.3696914 0.3565482 0.3432364
 0.3297711 0.3161838 0.3025243 0.2888607 0.2752772
 0.2618683 0.2487315 0.2359591 0.2236305 0.2118075
 0.2005317 0.1898262 0.1796971 0.1701376 0.1611316
 0.1526562 0.1446849 0.1371894 0.1301406 0.1235101
 0.1172704 0.1113953 0.1058603 0.1006426 9.5720701E-02
 9.1074981E-02
 0.1797584 0.2151190 0.2470568 0.2755718 0.3006640
 0.3223334 0.3405799 0.3554037 0.3668046 0.3747827
 0.3697319 0.4220679 0.3781801 0.3579935 0.3537250
 0.3426160 0.3305703 0.3188270 0.3069590 0.2950068
 0.2828241 0.2704499 0.2579011 0.2451826 0.2323264
 0.2193593 0.2063105 0.1932141 0.1800984 0.1669908
 0.1539213 0.1409180 0.1280099 0.1152260 0.1025967
 9.0154238E-02 7.7933587E-02 6.5973029E-02 5.4315630E-02 4.3009300E-02
 3.2107737E-02 2.1670317E-02 1.1636017E-02 2.0641887E-03 -6.9805435E-03
 -1.5430374E-02 -2.3217293E-02 -3.0277863E-02 -3.6559165E-02 -4.2025045E-02
 -4.6661634E-02 -5.0480273E-02 -5.3517122E-02 -5.5829402E-02 -5.7489239E-02
 -5.8576740E-02 -5.9173483E-02 -5.9357643E-02 -5.9200719E-02 -5.8765959E-02
 -5.8107894E-02 -5.7272673E-02 -5.6298845E-02 -5.5218279E-02 -5.4057181E-02
 -5.2836969E-02 -5.1575098E-02 -5.0285757E-02 -4.8980478E-02 -4.7668602E-02
 -4.6357688E-02
 0.9840820 0.9767014 0.9679455 0.9578140 0.9463074
 0.9334254 0.9191679 0.9035351 0.8865269 0.8681434
 0.8485323 0.8091533 0.8047401 0.7784668 0.7557422
 0.7417156 0.7259034 0.7102177 0.6950167 0.6803386
 0.6660938 0.6522390 0.6387573 0.6256028 0.6127352
 0.6001263 0.5877384 0.5755413 0.5635074 0.5516049
 0.5398063 0.5280816 0.5164007 0.5047345 0.4930533
 0.4813274 0.4695280 0.4576272 0.4455998 0.4334240
 0.4210835 0.4085698 0.3958952 0.3830505 0.3700481
 0.3568780 0.3435409 0.3300512 0.3164398 0.3027561
 0.2890679 0.2754592 0.2620247 0.2488626 0.2360658
 0.2237143 0.2118703 0.2005760 0.1898544 0.1797117
 0.1701410 0.1611257 0.1526431 0.1446661 0.1371662
 0.1301142 0.1234814 0.1172402 0.1113641 0.1058287
 0.1006109
 0.2361495 0.2706483 0.3017242 0.3293774 0.3536077
 0.3744153 0.3918000 0.4057620 0.4163012 0.4234175
 0.4175050 0.4689793 0.4242299 0.4031816 0.3980515
 0.3860809 0.3731735 0.3605687 0.3478392 0.3350254
 0.3219812 0.3087455 0.2953352 0.2817553 0.2680377
 0.2542092 0.2402990 0.2263413 0.2123643 0.1983954
 0.1844646 0.1705999 0.1568305 0.1431853 0.1296947
 0.1163909 0.1033090 9.0487167E-02 7.7968501E-02 6.5800913E-02
 5.4038104E-02 4.2739443E-02 3.1843908E-02 2.1410841E-02 1.1379410E-02
 1.8089509E-03 -7.2358521E-03 -1.5686978E-02 -2.3476021E-02 -3.0538937E-02
 -3.6822114E-02 -4.2288739E-02 -4.6924289E-02 -5.0739624E-02 -5.3770673E-02
 -5.6074783E-02 -5.7724424E-02 -5.8800153E-02 -5.9384085E-02 -5.9554867E-02
 -5.9384447E-02 -5.8936398E-02 -5.8265496E-02 -5.7418052E-02 -5.6432709E-02
 -5.5341404E-02 -5.4170337E-02 -5.2940916E-02 -5.1670562E-02 -5.0373446E-02
 -4.9061049E-02
 0.9970707 0.9899892 0.9815325 0.9717004 0.9604930
 0.9479103 0.9339522 0.9186189 0.9019101 0.8838259
 0.8645143 0.8254348 0.8213211 0.7953474 0.7729224
 0.7591955 0.7436830 0.7282971 0.7133959 0.6990176
 0.6850727 0.6715178 0.6583362 0.6454818 0.6329142
 0.6206055 0.6085178 0.5966210 0.5848874 0.5732853
 0.5617871 0.5503628 0.5389823 0.5276166 0.5162359
 0.5048106 0.4933117 0.4817116 0.4699848 0.4581096
 0.4460697 0.4338567 0.4214828 0.4089389 0.3962373
 0.3833678 0.3703429 0.3571522 0.3437956 0.3302872
 0.3166570 0.3029541 0.2892458 0.2756163 0.2621606
 0.2489772 0.2361595 0.2237883 0.2119262 0.2006157
 0.1898800 0.1797253 0.1701447 0.1611214 0.1526322
 0.1446502 0.1371464 0.1300915 0.1234566 0.1172139
 0.1113371
 0.2942439 0.3278823 0.3580979 0.3848907 0.4082608
 0.4282080 0.4447325 0.4578342 0.4675131 0.4737693
 0.4669966 0.5176107 0.4720011 0.4500927 0.4441025
 0.4312718 0.4175044 0.4040395 0.3904499 0.3767762
 0.3628720 0.3487763 0.3345061 0.3200662 0.3054888
 0.2908004 0.2760304 0.2612129 0.2463761 0.2315473
 0.2167567 0.2020323 0.1874031 0.1728980 0.1585477
 0.1443841 0.1304425 0.1167609 0.1033825 9.0355143E-02
 7.7732600E-02 6.5574214E-02 5.3818952E-02 4.2526167E-02 3.1635020E-02
 2.1204852E-02 1.1174882E-02 1.6045057E-03 -7.4416064E-03 -1.5895110E-02
 -2.3687307E-02 -3.0753687E-02 -3.7040025E-02 -4.2508841E-02 -4.7144905E-02
 -5.0958697E-02 -5.3985961E-02 -5.6284070E-02 -5.7925783E-02 -5.8992054E-02
 -5.9565477E-02 -5.9725154E-02 -5.9543408E-02 -5.9084129E-02 -5.8402311E-02
 -5.7544436E-02 -5.6549240E-02 -5.5448703E-02 -5.4269049E-02 -5.3031687E-02
 -5.1754020E-02
 1.009368 1.002588 0.9944316 0.9849004 0.9739939
 0.9617122 0.9480550 0.9330226 0.9166148 0.8988317
 0.8798212 0.8410428 0.8372303 0.8115578 0.7894341
 0.7760085 0.7607974 0.7457129 0.7311131 0.7170364
 0.7033930 0.6901397 0.6772597 0.6647070 0.6524412
 0.6404344 0.6286486 0.6170537 0.6056221 0.5943218
 0.5831257 0.5720034 0.5609249 0.5498613 0.5387827
 0.5276595 0.5164629 0.5051649 0.4937404 0.4821675
 0.4704299 0.4585193 0.4464477 0.4342062 0.4218069
 0.4092399 0.3965174 0.3836291 0.3705871 0.3573807
 0.3440094 0.3304865 0.3168417 0.3031234 0.2893989
 0.2757523 0.2622788 0.2490774 0.2362419 0.2238536
 0.2119758 0.2006512 0.1899032 0.1797380 0.1701486
 0.1611181 0.1526232 0.1446367 0.1371294 0.1300719
 0.1234352
 0.3540251 0.3868046 0.4161614 0.4420953 0.4646065
 0.4836949 0.4993606 0.5116035 0.5204237 0.5258211
 0.5181897 0.5679451 0.5214769 0.4987100 0.4918612
 0.4781720 0.4635462 0.4492229 0.4347748 0.4202427
 0.4054801 0.3905261 0.3753975 0.3600993 0.3446636
 0.3291169 0.3134886 0.2978128 0.2821177 0.2664307
 0.2507819 0.2351992 0.2197118 0.2043486 0.1891400
 0.1741183 0.1593185 0.1447788 0.1305422 0.1166568
 0.1031761 9.0159632E-02 7.7546269E-02 6.5395385E-02 5.3646144E-02
 4.2357888E-02 3.1469833E-02 2.1041371E-02 1.1011805E-02 1.4406046E-03
 -7.6075182E-03 -1.6064130E-02 -2.3860209E-02 -3.0930834E-02 -3.7221130E-02
 -4.2692997E-02 -4.7330733E-02 -5.1144309E-02 -5.4169305E-02 -5.6463085E-02
 -5.8098648E-02 -5.9157331E-02 -5.9722126E-02 -5.9872545E-02 -5.9681267E-02
 -5.9212461E-02 -5.8521349E-02 -5.7654545E-02 -5.6650877E-02 -5.5542395E-02
 -5.4355342E-02
 1.020985 1.014507 1.006653 0.9974236 0.9868193
 0.9748397 0.9614847 0.9467546 0.9306490 0.9131683
 0.8944601 0.8559842 0.8524742 0.8271042 0.8052830
 0.7921600 0.7772515 0.7624696 0.7481726 0.7343987
 0.7210581 0.7081078 0.6955307 0.6832811 0.6713184
 0.6596146 0.6481320 0.6368402 0.6257117 0.6147147
 0.6038218 0.5930028 0.5822277 0.5714674 0.5606921
 0.5498723 0.5389791 0.5279846 0.5168636 0.5055942
 0.4941602 0.4825532 0.4707854 0.4588476 0.4467520
 0.4344887 0.4220700 0.4094854 0.3967473 0.3838447
 0.3707899 0.3575718 0.3441893 0.3306553 0.3169991
 0.3032686 0.2895311 0.2758704 0.2623820 0.2491651
 0.2363144 0.2239115 0.2120200 0.2006830 0.1899241
 0.1797497 0.1701526 0.1611158 0.1526157 0.1446252
 0.1371148
 0.4154742 0.4473965 0.4758961 0.5009730 0.5226271
 0.5408584 0.5556671 0.5670530 0.5750162 0.5795567
 0.5710683 0.6199669 0.5726418 0.5490180 0.5413124
 0.5267664 0.5112837 0.4961036 0.4807989 0.4654100
 0.4497908 0.4339801 0.4179949 0.4018401 0.3855477
 0.3691445 0.3526596 0.3361271 0.3195755 0.3030319
 0.2865264 0.2700872 0.2537433 0.2375235 0.2214584
 0.2055801 0.1899238 0.1745275 0.1594345 0.1446926
 0.1303554 0.1164824 0.1030126 9.0005212E-02 7.7399500E-02
 6.5254778E-02 5.3510260E-02 4.2225342E-02 3.1339325E-02 2.0911677E-02
 1.0881894E-02 1.3092504E-03 -7.7414471E-03 -1.6201671E-02 -2.4002034E-02
 -3.1077256E-02 -3.7371989E-02 -4.2847559E-02 -4.7487732E-02 -5.1302046E-02
 -5.4325867E-02 -5.6616612E-02 -5.8247447E-02 -5.9300035E-02 -5.9857730E-02
 -6.0000416E-02 -5.9801094E-02 -5.9324197E-02 -5.8625132E-02 -5.7750665E-02
 -5.6739718E-02
 1.031930 1.025754 1.018203 1.009277 0.9989757
 0.9872993 0.9742476 0.9598207 0.9440185 0.9268411
 0.9084364 0.8702639 0.8670574 0.8419909 0.8204734
 0.8076540 0.7930492 0.7785711 0.7645779 0.7511078
 0.7380711 0.7254248 0.7131518 0.7012061 0.6895475
 0.6781479 0.6669694 0.6559818 0.6451575 0.6344647
 0.6238761 0.6133614 0.6028906 0.5924346 0.5819637
 0.5714483 0.5608594 0.5501694 0.5393530 0.5283881
 0.5172588 0.5059565 0.4944934 0.4828603 0.4710695
 0.4591110 0.4469971 0.4347174 0.4222840 0.4096862
 0.3969364 0.3840231 0.3709589 0.3577319 0.3443411
 0.3307987 0.3171336 0.3033936 0.2896454 0.2759731
 0.2624721 0.2492422 0.2363784 0.2239626 0.2120592
 0.2007115 0.1899431 0.1797605 0.1701565 0.1611140
 0.1526095
 0.4785860 0.5096527 0.5372966 0.5615178 0.5823162
 0.5996920 0.6136451 0.6241755 0.6312832 0.6349683
 0.6256245 0.6736676 0.6254870 0.6010079 0.5924469
 0.5770454 0.5607074 0.5446720 0.5285119 0.5122678
 0.4957933 0.4791276 0.4622873 0.4452775 0.4281300
 0.4108717 0.3935318 0.3761443 0.3587376 0.3413390
 0.3239785 0.3066843 0.2894853 0.2724106 0.2554905
 0.2387574 0.2222461 0.2059950 0.1900471 0.1744502
 0.1592582 0.1445304 0.1302056 0.1163434 0.1028829
 8.9883335E-02 7.7283993E-02 6.5144256E-02 5.3403426E-02 4.2120975E-02
 3.1236390E-02 2.0808944E-02 1.0778320E-02 1.2038026E-03 -7.8497743E-03
 -1.6313752E-02 -2.4118612E-02 -3.1198634E-02 -3.7498087E-02 -4.2977698E-02
 -4.7620755E-02 -5.1436465E-02 -5.4459959E-02 -5.6748658E-02 -5.8375880E-02
 -5.9423555E-02 -5.9975401E-02 -6.0111605E-02 -5.9905473E-02 -5.9421673E-02
 -5.8715798E-02
 1.042204 1.036332 1.029085 1.020463 1.010466
 0.9990938 0.9863462 0.9722236 0.9567257 0.9398525
 0.9217522 0.8838841 0.8809820 0.8562200 0.8350070
 0.8224922 0.8081920 0.7940186 0.7803301 0.7671648
 0.7544331 0.7420916 0.7301235 0.7184829 0.7071292
 0.6960346 0.6851611 0.6744785 0.6639594 0.6535717
 0.6432882 0.6330786 0.6229130 0.6127623 0.6025966
 0.5923865 0.5821031 0.5717185 0.5612075 0.5505482
 0.5397244 0.5287277 0.5175701 0.5062426 0.4947574
 0.4831045 0.4712963 0.4593222 0.4471945 0.4349025
 0.4224583 0.4098508 0.3970923 0.3841711 0.3710999
 0.3578665 0.3444696 0.3309209 0.3172490 0.3035013
 0.2897446 0.2760626 0.2625510 0.2493100 0.2364347
 0.2240080 0.2120942 0.2007369 0.1899602 0.1797704
 0.1701603
 0.5433578 0.5735701 0.6003596 0.6237264 0.6436705
 0.6601920 0.6732908 0.6829669 0.6892204 0.6920512
 0.6818531 0.7290420 0.6800073 0.6546739 0.6452587
 0.6290031 0.6118109 0.5949214 0.5779073 0.5608093
 0.5434809 0.5259613 0.5082672 0.4904037 0.4724026
 0.4542907 0.4360971 0.4178561 0.3995958 0.3813436
 0.3631296 0.3449818 0.3269293 0.3090010 0.2912275
 0.2736409 0.2562762 0.2391716 0.2223703 0.2059201
 0.1898747 0.1742935 0.1591154 0.1443999 0.1300860
 0.1162332 0.1027806 8.9787535E-02 7.7193424E-02 6.5057702E-02
 5.3319842E-02 4.2039126E-02 3.1155230E-02 2.0727446E-02 1.0695714E-02
 1.1191482E-03 -7.9374593E-03 -1.6405297E-02 -2.4214700E-02 -3.1299576E-02
 -3.7603762E-02 -4.3087576E-02 -4.7733825E-02 -5.1551372E-02 -5.4575145E-02
 -5.6862514E-02 -5.8486991E-02 -5.9530724E-02 -6.0077727E-02 -6.0208488E-02
 -5.9996575E-02
 1.051821 1.046253 1.039310 1.030993 1.021300
 1.010232 0.9977894 0.9839717 0.9687787 0.9522105
 0.9344152 0.8968521 0.8942552 0.8697984 0.8488905
 0.8366811 0.8226863 0.8088182 0.7954352 0.7825754
 0.7701492 0.7581133 0.7464507 0.7351156 0.7240676
 0.7132787 0.7027109 0.6923341 0.6821206 0.6720387
 0.6620610 0.6521572 0.6422975 0.6324527 0.6225930
 0.6126889 0.6027115 0.5926330 0.5824282 0.5720750
 0.5615574 0.5508668 0.5400155 0.5289942 0.5178153
 0.5064687 0.4949667 0.4832989 0.4714776 0.4594918
 0.4473540 0.4350529 0.4226008 0.4099860 0.3972211
 0.3842942 0.3712180 0.3579801 0.3445786 0.3310252
 0.3173482 0.3035945 0.2898307 0.2761406 0.2626202
 0.2493696 0.2364846 0.2240482 0.2121252 0.2007597
 0.1899756
 0.6097698 0.6391292 0.6650659 0.6875800 0.7066713
 0.7223401 0.7345862 0.7434096 0.7488104 0.7507885
 0.7397378 0.7860740 0.7361867 0.7100007 0.6997329
 0.6826248 0.6645801 0.6468382 0.6289717 0.6110213
 0.5928406 0.5744688 0.5559225 0.5372068 0.5183535
 0.4993895 0.4803439 0.4612508 0.4421385 0.4230343
 0.4039683 0.3849686 0.3660642 0.3472840 0.3286585
 0.3102199 0.2920033 0.2740469 0.2563937 0.2390916
 0.2221944 0.2057614 0.1897315 0.1741642 0.1589986
 0.1442940 0.1299896 0.1161449 0.1026991 8.9711636E-02
 7.7122077E-02 6.4989671E-02 5.3254090E-02 4.1974623E-02 3.1091206E-02
 2.0662962E-02 1.0629867E-02 1.0511099E-03 -8.0085853E-03 -1.6480280E-02
 -2.4294091E-02 -3.1383734E-02 -3.7692614E-02 -4.3180667E-02 -4.7830243E-02
 -5.1649865E-02 -5.4674324E-02 -5.6960948E-02 -5.8583360E-02 -5.9623919E-02
 -6.0166903E-02
 1.060800 1.055537 1.048899 1.040886 1.031498
 1.020735 1.008597 0.9950842 0.9801963 0.9639333
 0.9464432 0.9091855 0.9068938 0.8827425 0.8621401
 0.8502362 0.8365470 0.8229845 0.8099072 0.7973530
 0.7852325 0.7735022 0.7621455 0.7511162 0.7403740
 0.7298908 0.7196289 0.7095580 0.6996504 0.6898745
 0.6802027 0.6706050 0.6610513 0.6515126 0.6419591
 0.6323613 0.6226901 0.6129179 0.6030193 0.5929725
 0.5827612 0.5723770 0.5618320 0.5511171 0.5402446
 0.5292045 0.5180091 0.5066479 0.4951333 0.4834543
 0.4716232 0.4596288 0.4474835 0.4351754 0.4227175
 0.4100974 0.3973280 0.3843970 0.3713171 0.3580761
 0.3446715 0.3311147 0.3174337 0.3036752 0.2899057
 0.2762089 0.2626809 0.2494221 0.2365286 0.2240839
 0.2121529
 0.6778178 0.7063259 0.7314113 0.7530740 0.7713141
 0.7861316 0.7975264 0.8054987 0.8100482 0.8111751
 0.7992732 0.8447582 0.7940197 0.7669826 0.7558638
 0.7379047 0.7190090 0.7004162 0.6816989 0.6628976
 0.6438662 0.6246436 0.6052465 0.5856800 0.5659761
 0.5461614 0.5262653 0.5063216 0.4863588 0.4664041
 0.4464877 0.4266375 0.4068827 0.3872520 0.3677761
 0.3484872 0.3294201 0.3106133 0.2921097 0.2739572
 0.2562096 0.2389263 0.2220461 0.2056285 0.1896126
 0.1740577 0.1589030 0.1442080 0.1299120 0.1160743
 0.1026345 8.9651830E-02 7.7066004E-02 6.4936303E-02 5.3202659E-02
 4.1924197E-02 3.1040888E-02 2.0611919E-02 1.0577315E-02 9.9630712E-04
 -8.0663618E-03 -1.6541788E-02 -2.4359889E-02 -3.1454153E-02 -3.7767593E-02
 -4.3259751E-02 -4.7912654E-02 -5.1734533E-02 -5.4759976E-02 -5.7046264E-02
 -5.8667123E-02
 1.069129 1.064170 1.057837 1.050130 1.041047
 1.030590 1.018757 1.005550 0.9909675 0.9750102
 0.9578258 0.9208738 0.9188880 0.8950425 0.8747461
 0.8631482 0.8497649 0.8365085 0.8237372 0.8114891
 0.7996747 0.7882506 0.7772000 0.7664769 0.7560409
 0.7458640 0.7359083 0.7261437 0.7165425 0.7070729
 0.6977076 0.6884164 0.6791692 0.6699371 0.6606902
 0.6513990 0.6420345 0.6325689 0.6229770 0.6132369
 0.6033323 0.5932549 0.5830167 0.5726086 0.5620431
 0.5513099 0.5404215 0.5293674 0.5181598 0.5067880
 0.4952641 0.4835770 0.4717389 0.4597382 0.4475876
 0.4352749 0.4228128 0.4101892 0.3974167 0.3844829
 0.3714008 0.3581576 0.3447508 0.3311915 0.3175075
 0.3037454 0.2899712 0.2762688 0.2627343 0.2494684
 0.2365676
 0.7474987 0.7751569 0.7993923 0.8202051 0.8375952
 0.8515628 0.8621077 0.8692300 0.8729296 0.8732067
 0.8604549 0.9050902 0.8535019 0.8256152 0.8136467
 0.7948380 0.7750928 0.7556505 0.7360836 0.7164329
 0.6965520 0.6764799 0.6562335 0.6358176 0.6152644
 0.5946005 0.5738551 0.5530622 0.5322502 0.5114465
 0.4906810 0.4699817 0.4493778 0.4288981 0.4085732
 0.3884352 0.3685191 0.3488632 0.3295106 0.3105091
 0.2919125 0.2737802 0.2560511 0.2387846 0.2219198
 0.2055160 0.1895125 0.1739687 0.1588238 0.1441372
 0.1298486 0.1160172 0.1025825 8.9604057E-02 7.7021636E-02
 6.4894401E-02 5.3162325E-02 4.1884597E-02 3.1001240E-02 2.0571480E-02
 1.0535422E-02 9.5219736E-04 -8.1134094E-03 -1.6592443E-02 -2.4414636E-02
 -3.1513214E-02 -3.7831001E-02 -4.3327153E-02 -4.7983363E-02 -5.1807534E-02
 -5.4834101E-02

XFOILinterface/XFOIL/orrs/osnew/ai.06

6.00000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 -0.026478
 0.40000 -0.042037
 0.50000 -0.042541
 0.60000 -0.030784
 0.70000 -0.019257
 0.80000 -0.008244
 0.90000 0.002164
 1.00000 0.011745
 1.10000 0.020394
 1.20000 0.027935
 1.30000 0.034371
 1.40000 0.039707
 1.50000 0.044126
 1.60000 0.047792
 1.70000 0.050916
 1.80000 0.053598
 1.90000 0.055923
 2.00000 0.057898
 2.10000 0.059567
 2.20000 0.060952
 2.30000 0.062112
 2.40000 0.063076
 2.50000 0.063888
 2.60000 0.064563
 2.70000 0.065131
 2.80000 0.065604
 2.90000 0.066007
 3.00000 0.066343
 3.10000 0.066629
 3.20000 0.066873
 3.30000 0.067092
 3.40000 0.067271
 3.50000 0.067425
 3.60000 0.067554
 3.70000 0.067667
 3.80000 0.067763
 3.90000 0.067829
 4.00000 0.034194

XFOILinterface/XFOIL/orrs/osm_gu.06

 2001 6.026436
 0.0000000E+00 0.0000000E+00 7.0851622E-04
 5.0201733E-02 3.7352846E-05 7.7959348E-04
 0.1004035 7.8435667E-05 8.5711543E-04
 0.1506052 1.2358479E-04 9.4159239E-04
 0.2008069 1.7316303E-04 1.0335681E-03
 0.2510087 2.2756137E-04 1.1336211E-03
 0.3012104 2.8720067E-04 1.2423651E-03
 0.3514121 3.5253368E-04 1.3604537E-03
 0.4016139 4.2404671E-04 1.4885730E-03
 0.4518156 5.0226174E-04 1.6274558E-03
 0.5020173 5.8773841E-04 1.7778731E-03
 0.5522191 6.8107632E-04 1.9406397E-03
 0.6024208 7.8291685E-04 2.1166140E-03
 0.6526225 8.9394581E-04 2.3066993E-03
 0.7028243 1.0148955E-03 2.5118447E-03
 0.7530260 1.1465469E-03 2.7330471E-03
 0.8032277 1.2897322E-03 2.9713523E-03
 0.8534295 1.4453378E-03 3.2278525E-03
 0.9036312 1.6143055E-03 3.5036961E-03
 0.9538329 1.7976362E-03 3.8000641E-03
 1.004035 1.9963917E-03 4.1182074E-03
 1.054236 2.2116974E-03 4.4594142E-03
 1.104438 2.4447453E-03 4.8250337E-03
 1.154640 2.6967954E-03 5.2164542E-03
 1.204842 2.9691791E-03 5.6351162E-03
 1.255043 3.2633017E-03 6.0825106E-03
 1.305245 3.5806440E-03 6.5601766E-03
 1.355447 3.9227661E-03 7.0696962E-03
 1.405649 4.2913062E-03 7.6126959E-03
 1.455850 4.6879891E-03 8.1908479E-03
 1.506052 5.1146219E-03 8.8058626E-03
 1.556254 5.5730972E-03 9.4594825E-03
 1.606455 6.0653999E-03 1.0153490E-02
 1.656657 6.5936032E-03 1.0889705E-02
 1.706859 7.1598697E-03 1.1669959E-02
 1.757061 7.7664587E-03 1.2496116E-02
 1.807262 8.4157232E-03 1.3370057E-02
 1.857464 9.1101071E-03 1.4293683E-02
 1.907666 9.8521532E-03 1.5268895E-02
 1.957868 1.0644498E-02 1.6297596E-02
 2.008069 1.1489879E-02 1.7381694E-02
 2.058271 1.2391118E-02 1.8523077E-02
 2.108473 1.3351143E-02 1.9723628E-02
 2.158674 1.4372973E-02 2.0985208E-02
 2.208876 1.5459709E-02 2.2309612E-02
 2.259078 1.6614554E-02 2.3698637E-02
 2.309280 1.7840801E-02 2.5154024E-02
 2.359482 1.9141816E-02 2.6677430E-02
 2.409683 2.0521054E-02 2.8270472E-02
 2.459885 2.1982057E-02 2.9934688E-02
 2.510087 2.3528425E-02 3.1671513E-02
 2.560288 2.5163842E-02 3.3482324E-02
 2.610490 2.6892053E-02 3.5368361E-02
 2.660692 2.8716864E-02 3.7330758E-02
 2.710894 3.0642141E-02 3.9370541E-02
 2.761095 3.2671772E-02 4.1488562E-02
 2.811297 3.4809716E-02 4.3685567E-02
 2.861499 3.7059948E-02 4.5962129E-02
 2.911700 3.9426476E-02 4.8318654E-02
 2.961902 4.1913316E-02 5.0755378E-02
 3.012104 4.4524513E-02 5.3272378E-02
 3.062306 4.7264062E-02 5.5869456E-02
 3.112508 5.0135996E-02 5.8546290E-02
 3.162709 5.3144295E-02 6.1302323E-02
 3.212911 5.6292921E-02 6.4136766E-02
 3.263113 5.9585787E-02 6.7048602E-02
 3.313314 6.3026756E-02 7.0036598E-02
 3.363516 6.6619590E-02 7.3099233E-02
 3.413718 7.0367992E-02 7.6234780E-02
 3.463920 7.4275590E-02 7.9441257E-02
 3.514121 7.8345887E-02 8.2716383E-02
 3.564323 8.2582258E-02 8.6057678E-02
 3.614525 8.6987980E-02 8.9462355E-02
 3.664727 9.1566116E-02 9.2927337E-02
 3.714928 9.6319631E-02 9.6449330E-02
 3.765130 0.1012513 0.1000248
 3.815332 0.1063637 0.1036498
 3.865533 0.1116592 0.1073203
 3.915735 0.1171400 0.1110319
 3.965937 0.1228082 0.1147801
 4.016139 0.1286652 0.1185599
 4.066340 0.1347126 0.1223662
 4.116542 0.1409517 0.1261937
 4.166744 0.1473833 0.1300368
 4.216946 0.1540081 0.1338899
 4.267148 0.1608264 0.1377469
 4.317349 0.1678383 0.1416017
 4.367551 0.1750435 0.1454479
 4.417753 0.1824414 0.1492791
 4.467954 0.1900311 0.1530887
 4.518156 0.1978113 0.1568701
 4.568358 0.2057805 0.1606162
 4.618559 0.2139367 0.1643203
 4.668761 0.2222776 0.1679755
 4.718963 0.2308006 0.1715745
 4.769165 0.2395027 0.1751106
 4.819366 0.2483806 0.1785766
 4.869568 0.2574305 0.1819656
 4.919770 0.2666485 0.1852707
 4.969972 0.2760301 0.1884849
 5.020174 0.2855705 0.1916015
 5.070375 0.2952648 0.1946140
 5.120577 0.3051076 0.1975157
 5.170778 0.3150931 0.2003003
 5.220980 0.3252153 0.2029618
 5.271182 0.3354679 0.2054942
 5.321383 0.3458443 0.2078918
 5.371586 0.3563375 0.2101492
 5.421787 0.3669404 0.2122613
 5.471989 0.3776456 0.2142231
 5.522191 0.3884453 0.2160302
 5.572392 0.3993317 0.2176782
 5.622594 0.4102968 0.2191635
 5.672796 0.4213323 0.2204824
 5.722998 0.4324297 0.2216319
 5.773199 0.4435806 0.2226092
 5.823401 0.4547761 0.2234121
 5.873602 0.4660075 0.2240385
 5.923804 0.4772658 0.2244870
 5.974007 0.4885424 0.2247566
 6.024208 0.4998278 0.2248465
 6.074410 0.5111132 0.2247566
 6.124612 0.5223897 0.2244870
 6.174813 0.5336480 0.2240385
 6.225015 0.5448794 0.2234121
 6.275217 0.5560749 0.2226093
 6.325418 0.5672257 0.2216319
 6.375620 0.5783232 0.2204824
 6.425822 0.5893587 0.2191635
 6.476023 0.6003237 0.2176782
 6.526225 0.6112102 0.2160302
 6.576427 0.6220099 0.2142231
 6.626629 0.6327151 0.2122613
 6.676831 0.6433179 0.2101492
 6.727033 0.6538111 0.2078919
 6.777234 0.6641875 0.2054942
 6.827436 0.6744400 0.2029619
 6.877637 0.6845623 0.2003004
 6.927839 0.6945478 0.1975157
 6.978041 0.7043906 0.1946140
 7.028243 0.7140850 0.1916016
 7.078444 0.7236254 0.1884849
 7.128646 0.7330070 0.1852707
 7.178848 0.7422249 0.1819657
 7.229050 0.7512749 0.1785767
 7.279252 0.7601528 0.1751106
 7.329453 0.7688549 0.1715746
 7.379655 0.7773780 0.1679755
 7.429857 0.7857188 0.1643204
 7.480058 0.7938750 0.1606162
 7.530260 0.8018442 0.1568701
 7.580462 0.8096244 0.1530888
 7.630663 0.8172141 0.1492792
 7.680865 0.8246120 0.1454479
 7.731067 0.8318172 0.1416017
 7.781269 0.8388291 0.1377469
 7.831470 0.8456475 0.1338900
 7.881672 0.8522723 0.1300368
 7.931874 0.8587039 0.1261937
 7.982076 0.8649430 0.1223662
 8.032277 0.8709905 0.1185599
 8.082479 0.8768475 0.1147801
 8.132681 0.8825155 0.1110320
 8.182882 0.8879964 0.1073203
 8.233085 0.8932919 0.1036498
 8.283286 0.8984043 0.1000248
 8.333488 0.9033359 9.6449375E-02
 8.383689 0.9080895 9.2927381E-02
 8.433891 0.9126676 8.9462399E-02
 8.484094 0.9170734 8.6057693E-02
 8.534295 0.9213097 8.2716413E-02
 8.584496 0.9253800 7.9441272E-02
 8.634698 0.9292876 7.6234795E-02
 8.684900 0.9330360 7.3099248E-02
 8.735102 0.9366288 7.0036612E-02
 8.785303 0.9400698 6.7048632E-02
 8.835505 0.9433627 6.4136788E-02
 8.885707 0.9465113 6.1302360E-02
 8.935908 0.9495196 5.8546327E-02
 8.986110 0.9523915 5.5869486E-02
 9.036312 0.9551311 5.3272400E-02
 9.086514 0.9577423 5.0755426E-02
 9.136716 0.9602292 4.8318669E-02
 9.186917 0.9625956 4.5962136E-02
 9.237119 0.9648459 4.3685578E-02
 9.287321 0.9669839 4.1488577E-02
 9.337523 0.9690135 3.9370555E-02
 9.387724 0.9709387 3.7330776E-02
 9.437926 0.9727636 3.5368379E-02
 9.488128 0.9744918 3.3482347E-02
 9.538329 0.9761272 3.1671539E-02
 9.588531 0.9776736 2.9934699E-02
 9.638733 0.9791346 2.8270487E-02
 9.688934 0.9805138 2.6677446E-02
 9.739137 0.9818149 2.5154024E-02
 9.789338 0.9830411 2.3698647E-02
 9.839540 0.9841959 2.2309620E-02
 9.889742 0.9852827 2.0985212E-02
 9.939943 0.9863045 1.9723648E-02
 9.990145 0.9872645 1.8523097E-02
 10.04035 0.9881657 1.7381707E-02
 10.09055 0.9890111 1.6297607E-02
 10.14075 0.9898035 1.5268906E-02
 10.19095 0.9905455 1.4293693E-02
 10.24115 0.9912399 1.3370070E-02
 10.29136 0.9918891 1.2496125E-02
 10.34156 0.9924957 1.1669967E-02
 10.39176 0.9930620 1.0889716E-02
 10.44196 0.9935902 1.0153505E-02
 10.49216 0.9940825 9.4594937E-03
 10.54236 0.9945410 8.8058729E-03
 10.59257 0.9949676 8.1908610E-03
 10.64277 0.9953643 7.6127094E-03
 10.69297 0.9957328 7.0696962E-03
 10.74317 0.9960750 6.5601766E-03
 10.79337 0.9963923 6.0825106E-03
 10.84357 0.9966865 5.6351162E-03
 10.89378 0.9969589 5.2164542E-03
 10.94398 0.9972109 4.8250337E-03
 10.99418 0.9974440 4.4594160E-03
 11.04438 0.9976593 4.1182074E-03
 11.09458 0.9978580 3.8000641E-03
 11.14478 0.9980413 3.5036961E-03
 11.19499 0.9982103 3.2278560E-03
 11.24519 0.9983659 2.9713553E-03
 11.29539 0.9985090 2.7330511E-03
 11.34559 0.9986407 2.5118473E-03
 11.39579 0.9987617 2.3067016E-03
 11.44600 0.9988727 2.1166161E-03
 11.49620 0.9989746 1.9406416E-03
 11.54640 0.9990679 1.7778748E-03
 11.59660 0.9991534 1.6274574E-03
 11.64680 0.9992316 1.4885743E-03
 11.69700 0.9993031 1.3604549E-03
 11.74720 0.9993684 1.2423682E-03
 11.79741 0.9994280 1.1336239E-03
 11.84761 0.9994825 1.0335706E-03
 11.89781 0.9995320 9.4159471E-04
 11.94801 0.9995772 8.5711543E-04
 11.99821 0.9996183 7.7959348E-04
 12.04842 0.9996557 7.0851622E-04
 12.09862 0.9996896 6.4340391E-04
 12.14882 0.9997204 5.8380840E-04
 12.19902 0.9997483 5.2930944E-04
 12.24922 0.9997736 4.7951395E-04
 12.29943 0.9997966 4.3405587E-04
 12.34963 0.9998173 3.9259295E-04
 12.39983 0.9998360 3.5480686E-04
 12.45003 0.9998530 3.2040101E-04
 12.50023 0.9998683 2.8910025E-04
 12.55043 0.9998820 2.6064881E-04
 12.60063 0.9998945 2.3480934E-04
 12.65084 0.9999056 2.1136236E-04
 12.70104 0.9999158 1.9010453E-04
 12.75124 0.9999248 1.7084795E-04
 12.80144 0.9999330 1.5341923E-04
 12.85164 0.9999403 1.3765828E-04
 12.90184 0.9999468 1.2341769E-04
 12.95205 0.9999527 1.1056181E-04
 13.00225 0.9999580 9.8965866E-05
 13.05245 0.9999627 8.8515262E-05
 13.10265 0.9999669 7.9104902E-05
 13.15285 0.9999707 7.0638467E-05
 13.20306 0.9999740 6.3027583E-05
 13.25326 0.9999770 5.6191926E-05
 13.30346 0.9999797 5.0057504E-05
 13.35366 0.9999821 4.4557153E-05
 13.40386 0.9999841 3.9629460E-05
 13.45407 0.9999860 3.5218545E-05
 13.50427 0.9999877 3.1273579E-05
 13.55447 0.9999892 2.7748263E-05
 13.60467 0.9999905 2.4600673E-05
 13.65487 0.9999917 2.1792659E-05
 13.70507 0.9999927 1.9289742E-05
 13.75527 0.9999936 1.7060631E-05
 13.80548 0.9999944 1.5077047E-05
 13.85568 0.9999952 1.3313444E-05
 13.90588 0.9999958 1.1746721E-05
 13.95608 0.9999963 1.0356090E-05
 14.00628 0.9999968 9.1227766E-06
 14.05649 0.9999972 8.0299187E-06
 14.10669 0.9999976 7.0623273E-06
 14.15689 0.9999979 6.2063600E-06
 14.20709 0.9999982 5.4497759E-06
 14.25729 0.9999985 4.7816002E-06
 14.30749 0.9999986 4.1919870E-06
 14.35770 0.9999989 3.6721424E-06
 14.40790 0.9999990 3.2141907E-06
 14.45810 0.9999992 2.8110892E-06
 14.50830 0.9999993 2.4565868E-06
 14.55850 0.9999995 2.1450714E-06
 14.60870 0.9999995 1.8715606E-06
 14.65891 0.9999996 1.6316197E-06
 14.70911 0.9999996 1.4213011E-06
 14.75931 0.9999997 1.2371039E-06
 14.80951 0.9999998 1.0759169E-06
 14.85971 0.9999999 9.3498323E-07
 14.90991 0.9999999 8.1186050E-07
 14.96012 1.000000 7.0438796E-07
 15.01032 1.000000 6.1065299E-07
 15.06052 1.000000 5.2896883E-07
 15.11072 1.000000 4.5784461E-07
 15.16092 1.000000 3.9596628E-07
 15.21113 1.000000 3.4217766E-07
 15.26133 1.000000 2.9545899E-07
 15.31153 1.000000 2.5491494E-07
 15.36173 1.000000 2.1975880E-07
 15.41193 1.000000 1.8929944E-07
 15.46213 1.000000 1.6293160E-07
 15.51233 1.000000 1.4012441E-07
 15.56254 1.000000 1.2041340E-07
 15.61274 1.000000 1.0339233E-07
 15.66294 1.000000 8.8706280E-08
 15.71314 1.000000 7.6045175E-08
 15.76334 1.000000 6.5139304E-08
 15.81355 1.000000 5.5752796E-08
 15.86375 1.000000 4.7680754E-08
 15.91395 1.000000 4.0744791E-08
 15.96415 1.000000 3.4789931E-08
 16.01435 1.000000 2.9681644E-08
 16.06455 1.000000 2.5303141E-08
 16.11476 1.000000 2.1553284E-08
 16.16496 1.000000 1.8344478E-08
 16.21516 1.000000 1.5600920E-08
 16.26536 1.000000 1.3257057E-08
 16.31556 1.000000 1.1256312E-08
 16.36576 1.000000 9.5498836E-09
 16.41597 1.000000 8.0956717E-09
 16.46617 1.000000 6.8574066E-09
 16.51637 1.000000 5.8038978E-09
 16.56657 1.000000 4.9083169E-09
 16.61677 1.000000 4.1476058E-09
 16.66698 1.000000 3.5019865E-09
 16.71718 1.000000 2.9545026E-09
 16.76738 1.000000 2.4906182E-09
 16.81758 1.000000 2.0978870E-09
 16.86778 1.000000 1.7656717E-09
 16.91798 1.000000 1.4848749E-09
 16.96819 1.000000 1.2477313E-09
 17.01839 1.000000 1.0476273E-09
 17.06859 1.000000 8.7891056E-10
 17.11879 1.000000 7.3677603E-10
 17.16899 1.000000 6.1713240E-10
 17.21919 1.000000 5.1650456E-10
 17.26940 1.000000 4.3193862E-10
 17.31960 1.000000 3.6092990E-10
 17.36980 1.000000 3.0135375E-10
 17.42000 1.000000 2.5140995E-10
 17.47020 1.000000 2.0957543E-10
 17.52040 1.000000 1.7456295E-10
 17.57061 1.000000 1.4528305E-10
 17.62081 1.000000 1.2081799E-10
 17.67101 1.000000 1.0039231E-10
 17.72121 1.000000 8.3353012E-11
 17.77141 1.000000 6.9150456E-11
 17.82162 1.000000 5.7322060E-11
 17.87182 1.000000 4.7478896E-11
 17.92202 1.000000 3.9294550E-11
 17.97222 1.000000 3.2494972E-11
 18.02242 1.000000 2.6850530E-11
 18.07262 1.000000 2.2168819E-11
 18.12283 1.000000 1.8288761E-11
 18.17303 1.000000 1.5075751E-11
 18.22323 1.000000 1.2417188E-11
 18.27343 1.000000 1.0219342E-11
 18.32363 1.000000 8.4037959E-12
 18.37383 1.000000 6.9052633E-12
 18.42404 1.000000 5.6693990E-12
 18.47424 1.000000 4.6510040E-12
 18.52444 1.000000 3.8124955E-12
 18.57464 1.000000 3.1226558E-12
 18.62484 1.000000 2.5555933E-12
 18.67505 1.000000 2.0898324E-12
 18.72525 1.000000 1.7075921E-12
 18.77545 1.000000 1.3941506E-12
 18.82565 1.000000 1.1373323E-12
 18.87585 1.000000 9.2707992E-13
 18.92605 1.000000 7.5509195E-13
 18.97626 1.000000 6.1451923E-13
 19.02646 1.000000 4.9971686E-13
 19.07666 1.000000 4.0603607E-13
 19.12686 1.000000 3.2965322E-13
 19.17706 1.000000 2.6742557E-13
 19.22726 1.000000 2.1677118E-13
 19.27747 1.000000 1.7557075E-13
 19.32767 1.000000 1.4208746E-13
 19.37787 1.000000 1.1489772E-13
 19.42807 1.000000 9.2836769E-14
 19.47827 1.000000 7.4951276E-14
 19.52847 1.000000 6.0463407E-14
 19.57868 1.000000 4.8736941E-14
 19.62888 1.000000 3.9253438E-14
 19.67908 1.000000 3.1589911E-14
 19.72928 1.000000 2.5402289E-14
 19.77948 1.000000 2.0410301E-14
 19.82969 1.000000 1.6386195E-14
 19.87989 1.000000 1.3144971E-14
 19.93009 1.000000 1.0536445E-14
 19.98029 1.000000 8.4387995E-15
 20.03049 1.000000 6.7533645E-15
 20.08069 1.000000 5.4002234E-15
 20.13090 1.000000 4.3147312E-15
 20.18110 1.000000 3.4447115E-15
 20.23130 1.000000 2.7478988E-15
 20.28150 1.000000 2.1903061E-15
 20.33170 1.000000 1.7444467E-15
 20.38190 1.000000 1.3882445E-15
 20.43211 1.000000 1.1038872E-15
 20.48231 1.000000 8.7707916E-16
 20.53251 1.000000 6.9630852E-16
 20.58271 1.000000 5.5235934E-16
 20.63291 1.000000 4.3781315E-16
 20.68311 1.000000 3.4674847E-16
 20.73332 1.000000 2.7440111E-16
 20.78352 1.000000 2.1697890E-16
 20.83372 1.000000 1.7143309E-16
 20.88392 1.000000 1.3534135E-16
 20.93412 1.000000 1.0676120E-16
 20.98432 1.000000 8.4149871E-17
 21.03453 1.000000 6.6273856E-17
 21.08473 1.000000 5.2153857E-17
 21.13493 1.000000 4.1009180E-17
 21.18513 1.000000 3.2220415E-17
 21.23533 1.000000 2.5294723E-17
 21.28553 1.000000 1.9842018E-17
 21.33574 1.000000 1.5552094E-17
 21.38594 1.000000 1.2179953E-17
 21.43614 1.000000 9.5314244E-18
 21.48634 1.000000 7.4528163E-18
 21.53654 1.000000 5.8228875E-18
 21.58675 1.000000 4.5457467E-18
 21.63695 1.000000 3.5459206E-18
 21.68715 1.000000 2.7637581E-18
 21.73735 1.000000 2.1524333E-18
 21.78755 1.000000 1.6749616E-18
 21.83775 1.000000 1.3023880E-18
 21.88796 1.000000 1.0118622E-18
 21.93816 1.000000 7.8552700E-19
 21.98836 1.000000 6.0932357E-19
 22.03856 1.000000 4.7227164E-19
 22.08876 1.000000 3.6574879E-19
 22.13896 1.000000 2.8303011E-19
 22.18917 1.000000 2.1884144E-19
 22.23937 1.000000 1.6907722E-19
 22.28957 1.000000 1.3052323E-19
 22.33977 1.000000 1.0068102E-19
 22.38997 1.000000 7.7598712E-20
 22.44017 1.000000 5.9761079E-20
 22.49038 1.000000 4.5986589E-20
 22.54058 1.000000 3.5359083E-20
 22.59078 1.000000 2.7165616E-20
 22.64098 1.000000 2.0853962E-20
 22.69118 1.000000 1.5996180E-20
 22.74139 1.000000 1.2260020E-20
 22.79159 1.000000 9.3891171E-21
 22.84179 1.000000 7.1846468E-21
 22.89199 1.000000 5.4934252E-21
 22.94219 1.000000 4.1968951E-21
 22.99239 1.000000 3.2038468E-21
 23.04260 1.000000 2.4437817E-21
 23.09280 1.000000 1.8625597E-21
 23.14300 1.000000 1.4184264E-21
 23.19320 1.000000 1.0793454E-21
 23.24340 1.000000 8.2065606E-22
 23.29360 1.000000 6.2347492E-22
 23.34381 1.000000 4.7328812E-22
 23.39401 1.000000 3.5899573E-22
 23.44421 1.000000 2.7208214E-22
 23.49441 1.000000 2.0604855E-22
 23.54461 1.000000 1.5591378E-22
 23.59481 1.000000 1.1788535E-22
 23.64502 1.000000 8.9059588E-23
 23.69522 1.000000 6.7229547E-23
 23.74542 1.000000 5.0709210E-23
 23.79562 1.000000 3.8218228E-23
 23.84582 1.000000 2.8780703E-23
 23.89603 1.000000 2.1656384E-23
 23.94623 1.000000 1.6282744E-23
 23.99643 1.000000 1.2232532E-23
 24.04663 1.000000 9.1825618E-24
 24.09683 1.000000 6.8874507E-24
 24.14703 1.000000 5.1619263E-24
 24.19724 1.000000 3.8655439E-24
 24.24744 1.000000 2.8924652E-24
 24.29764 1.000000 2.1625827E-24
 24.34784 1.000000 1.6156022E-24
 24.39804 1.000000 1.2059934E-24
 24.44824 1.000000 8.9952350E-25
 24.49845 1.000000 6.7038943E-25
 24.54865 1.000000 4.9922979E-25
 24.59885 1.000000 3.7146624E-25
 24.64905 1.000000 2.7618407E-25
 24.69925 1.000000 2.0517448E-25
 24.74945 1.000000 1.5230238E-25
 24.79966 1.000000 1.1296284E-25
 24.84986 1.000000 8.3719158E-26
 24.90006 1.000000 6.1995420E-26
 24.95026 1.000000 4.5872564E-26
 25.00046 1.000000 3.3915136E-26
 25.05066 1.000000 2.5054910E-26
 25.10087 1.000000 1.8494288E-26
 25.15107 1.000000 1.3640630E-26
 25.20127 1.000000 1.0052907E-26
 25.25147 1.000000 7.4027717E-27
 25.30167 1.000000 5.4469794E-27
 25.35188 1.000000 4.0046474E-27
 25.40208 1.000000 2.9419244E-27
 25.45228 1.000000 2.1594551E-27
 25.50248 1.000000 1.5838557E-27
 25.55268 1.000000 1.1607379E-27
 25.60288 1.000000 8.4998540E-28
 25.65309 1.000000 6.2192188E-28
 25.70329 1.000000 4.5469198E-28
 25.75349 1.000000 3.3215888E-28
 25.80369 1.000000 2.4245614E-28
 25.85389 1.000000 1.7683473E-28
 25.90409 1.000000 1.2887216E-28
 25.95430 1.000000 9.3842086E-29
 26.00450 1.000000 6.8280494E-29
 26.05470 1.000000 4.9640880E-29
 26.10490 1.000000 3.6061401E-29
 26.15510 1.000000 2.6175175E-29
 26.20530 1.000000 1.8984620E-29
 26.25551 1.000000 1.3758034E-29
 26.30571 1.000000 9.9623759E-30
 26.35591 1.000000 7.2081133E-30
 26.40611 1.000000 5.2111748E-30
 26.45631 1.000000 3.7645389E-30
 26.50652 1.000000 2.7172526E-30
 26.55672 1.000000 1.9597338E-30
 26.60692 1.000000 1.4122757E-30
 26.65712 1.000000 1.0169679E-30
 26.70732 1.000000 7.3170141E-31
 26.75752 1.000000 5.2603654E-31
 26.80773 1.000000 3.7787371E-31
 26.85793 1.000000 2.7123528E-31
 26.90813 1.000000 1.9452755E-31
 26.95833 1.000000 1.3940283E-31
 27.00853 1.000000 9.9819195E-32
 27.05873 1.000000 7.1420339E-32
 27.10894 1.000000 5.1058949E-32
 27.15914 1.000000 3.6472927E-32
 27.20934 1.000000 2.6032839E-32
 27.25954 1.000000 1.8566970E-32
 27.30974 1.000000 1.3231204E-32
 27.35994 1.000000 9.4212779E-33
 27.41015 1.000000 6.7030486E-33
 27.46035 1.000000 4.7654460E-33
 27.51055 1.000000 3.3850906E-33
 27.56075 1.000000 2.4026423E-33
 27.61095 1.000000 1.7039755E-33
 27.66116 1.000000 1.2075070E-33
 27.71136 1.000000 8.5502989E-34
 27.76156 1.000000 6.0493938E-34
 27.81176 1.000000 4.2765587E-34
 27.86196 1.000000 3.0208729E-34
 27.91216 1.000000 2.1322221E-34
 27.96237 1.000000 1.5037466E-34
 28.01257 1.000000 1.0596658E-34
 28.06277 1.000000 7.4613138E-35
 28.11297 1.000000 5.2496097E-35
 28.16317 1.000000 3.6904352E-35
 28.21337 1.000000 2.5922899E-35
 28.26358 1.000000 1.8194424E-35
 28.31378 1.000000 1.2760324E-35
 28.36398 1.000000 8.9417790E-36
 28.41418 1.000000 6.2609215E-36
 28.46438 1.000000 4.3803085E-36
 28.51458 1.000000 3.0622209E-36
 28.56479 1.000000 2.1389981E-36
 28.61499 1.000000 1.4929081E-36
 28.66519 1.000000 1.0411450E-36
 28.71539 1.000000 7.2552880E-37
 28.76559 1.000000 5.0516931E-37
 28.81579 1.000000 3.5145633E-37
 28.86600 1.000000 2.4431935E-37
 28.91620 1.000000 1.6970569E-37
 28.96640 1.000000 1.1778870E-37
 29.01660 1.000000 8.1686401E-38
 29.06680 1.000000 5.6603669E-38
 29.11701 1.000000 3.9191765E-38
 29.16721 1.000000 2.7115257E-38
 29.21741 1.000000 1.8744256E-38
 29.26761 1.000000 1.2947167E-38
 29.31781 1.000000 0.0000000E+00
 29.36801 1.000000 0.0000000E+00
 29.41822 1.000000 0.0000000E+00
 29.46842 1.000000 0.0000000E+00
 29.51862 1.000000 0.0000000E+00
 29.56882 1.000000 0.0000000E+00
 29.61902 1.000000 0.0000000E+00
 29.66922 1.000000 0.0000000E+00
 29.71943 1.000000 0.0000000E+00
 29.76963 1.000000 0.0000000E+00
 29.81983 1.000000 0.0000000E+00
 29.87003 1.000000 0.0000000E+00
 29.92023 1.000000 0.0000000E+00
 29.97043 1.000000 0.0000000E+00
 30.02064 1.000000 0.0000000E+00
 30.07084 1.000000 0.0000000E+00
 30.12104 1.000000 0.0000000E+00
 30.17124 1.000000 0.0000000E+00
 30.22144 1.000000 0.0000000E+00
 30.27165 1.000000 0.0000000E+00
 30.32185 1.000000 0.0000000E+00
 30.37205 1.000000 0.0000000E+00
 30.42225 1.000000 0.0000000E+00
 30.47245 1.000000 0.0000000E+00
 30.52265 1.000000 0.0000000E+00
 30.57286 1.000000 0.0000000E+00
 30.62306 1.000000 0.0000000E+00
 30.67326 1.000000 0.0000000E+00
 30.72346 1.000000 0.0000000E+00
 30.77366 1.000000 0.0000000E+00
 30.82386 1.000000 0.0000000E+00
 30.87407 1.000000 0.0000000E+00
 30.92427 1.000000 0.0000000E+00
 30.97447 1.000000 0.0000000E+00
 31.02467 1.000000 0.0000000E+00
 31.07487 1.000000 0.0000000E+00
 31.12507 1.000000 0.0000000E+00
 31.17528 1.000000 0.0000000E+00
 31.22548 1.000000 0.0000000E+00
 31.27568 1.000000 0.0000000E+00
 31.32588 1.000000 0.0000000E+00
 31.37608 1.000000 0.0000000E+00
 31.42629 1.000000 0.0000000E+00
 31.47649 1.000000 0.0000000E+00
 31.52669 1.000000 0.0000000E+00
 31.57689 1.000000 0.0000000E+00
 31.62709 1.000000 0.0000000E+00
 31.67729 1.000000 0.0000000E+00
 31.72750 1.000000 0.0000000E+00
 31.77770 1.000000 0.0000000E+00
 31.82790 1.000000 0.0000000E+00
 31.87810 1.000000 0.0000000E+00
 31.92830 1.000000 0.0000000E+00
 31.97850 1.000000 0.0000000E+00
 32.02871 1.000000 0.0000000E+00
 32.07891 1.000000 0.0000000E+00
 32.12911 1.000000 0.0000000E+00
 32.17931 1.000000 0.0000000E+00
 32.22952 1.000000 0.0000000E+00
 32.27971 1.000000 0.0000000E+00
 32.32992 1.000000 0.0000000E+00
 32.38012 1.000000 0.0000000E+00
 32.43032 1.000000 0.0000000E+00
 32.48052 1.000000 0.0000000E+00
 32.53072 1.000000 0.0000000E+00
 32.58092 1.000000 0.0000000E+00
 32.63113 1.000000 0.0000000E+00
 32.68133 1.000000 0.0000000E+00
 32.73153 1.000000 0.0000000E+00
 32.78173 1.000000 0.0000000E+00
 32.83193 1.000000 0.0000000E+00
 32.88214 1.000000 0.0000000E+00
 32.93234 1.000000 0.0000000E+00
 32.98254 1.000000 0.0000000E+00
 33.03274 1.000000 0.0000000E+00
 33.08294 1.000000 0.0000000E+00
 33.13314 1.000000 0.0000000E+00
 33.18335 1.000000 0.0000000E+00
 33.23355 1.000000 0.0000000E+00
 33.28375 1.000000 0.0000000E+00
 33.33395 1.000000 0.0000000E+00
 33.38415 1.000000 0.0000000E+00
 33.43435 1.000000 0.0000000E+00
 33.48456 1.000000 0.0000000E+00
 33.53476 1.000000 0.0000000E+00
 33.58496 1.000000 0.0000000E+00
 33.63516 1.000000 0.0000000E+00
 33.68536 1.000000 0.0000000E+00
 33.73557 1.000000 0.0000000E+00
 33.78577 1.000000 0.0000000E+00
 33.83597 1.000000 0.0000000E+00
 33.88617 1.000000 0.0000000E+00
 33.93637 1.000000 0.0000000E+00
 33.98657 1.000000 0.0000000E+00
 34.03678 1.000000 0.0000000E+00
 34.08698 1.000000 0.0000000E+00
 34.13718 1.000000 0.0000000E+00
 34.18738 1.000000 0.0000000E+00
 34.23758 1.000000 0.0000000E+00
 34.28778 1.000000 0.0000000E+00
 34.33799 1.000000 0.0000000E+00
 34.38819 1.000000 0.0000000E+00
 34.43839 1.000000 0.0000000E+00
 34.48859 1.000000 0.0000000E+00
 34.53879 1.000000 0.0000000E+00
 34.58899 1.000000 0.0000000E+00
 34.63920 1.000000 0.0000000E+00
 34.68940 1.000000 0.0000000E+00
 34.73960 1.000000 0.0000000E+00
 34.78980 1.000000 0.0000000E+00
 34.84000 1.000000 0.0000000E+00
 34.89021 1.000000 0.0000000E+00
 34.94041 1.000000 0.0000000E+00
 34.99061 1.000000 0.0000000E+00
 35.04081 1.000000 0.0000000E+00
 35.09101 1.000000 0.0000000E+00
 35.14121 1.000000 0.0000000E+00
 35.19142 1.000000 0.0000000E+00
 35.24162 1.000000 0.0000000E+00
 35.29182 1.000000 0.0000000E+00
 35.34202 1.000000 0.0000000E+00
 35.39222 1.000000 0.0000000E+00
 35.44242 1.000000 0.0000000E+00
 35.49263 1.000000 0.0000000E+00
 35.54283 1.000000 0.0000000E+00
 35.59303 1.000000 0.0000000E+00
 35.64323 1.000000 0.0000000E+00
 35.69343 1.000000 0.0000000E+00
 35.74363 1.000000 0.0000000E+00
 35.79383 1.000000 0.0000000E+00
 35.84404 1.000000 0.0000000E+00
 35.89424 1.000000 0.0000000E+00
 35.94444 1.000000 0.0000000E+00
 35.99464 1.000000 0.0000000E+00
 36.04485 1.000000 0.0000000E+00
 36.09505 1.000000 0.0000000E+00
 36.14525 1.000000 0.0000000E+00
 36.19545 1.000000 0.0000000E+00
 36.24565 1.000000 0.0000000E+00
 36.29585 1.000000 0.0000000E+00
 36.34605 1.000000 0.0000000E+00
 36.39626 1.000000 0.0000000E+00
 36.44646 1.000000 0.0000000E+00
 36.49666 1.000000 0.0000000E+00
 36.54686 1.000000 0.0000000E+00
 36.59706 1.000000 0.0000000E+00
 36.64727 1.000000 0.0000000E+00
 36.69747 1.000000 0.0000000E+00
 36.74767 1.000000 0.0000000E+00
 36.79787 1.000000 0.0000000E+00
 36.84807 1.000000 0.0000000E+00
 36.89827 1.000000 0.0000000E+00
 36.94847 1.000000 0.0000000E+00
 36.99868 1.000000 0.0000000E+00
 37.04888 1.000000 0.0000000E+00
 37.09908 1.000000 0.0000000E+00
 37.14928 1.000000 0.0000000E+00
 37.19948 1.000000 0.0000000E+00
 37.24969 1.000000 0.0000000E+00
 37.29989 1.000000 0.0000000E+00
 37.35009 1.000000 0.0000000E+00
 37.40029 1.000000 0.0000000E+00
 37.45049 1.000000 0.0000000E+00
 37.50069 1.000000 0.0000000E+00
 37.55090 1.000000 0.0000000E+00
 37.60110 1.000000 0.0000000E+00
 37.65130 1.000000 0.0000000E+00
 37.70150 1.000000 0.0000000E+00
 37.75171 1.000000 0.0000000E+00
 37.80191 1.000000 0.0000000E+00
 37.85211 1.000000 0.0000000E+00
 37.90231 1.000000 0.0000000E+00
 37.95251 1.000000 0.0000000E+00
 38.00271 1.000000 0.0000000E+00
 38.05291 1.000000 0.0000000E+00
 38.10312 1.000000 0.0000000E+00
 38.15332 1.000000 0.0000000E+00
 38.20352 1.000000 0.0000000E+00
 38.25372 1.000000 0.0000000E+00
 38.30392 1.000000 0.0000000E+00
 38.35412 1.000000 0.0000000E+00
 38.40433 1.000000 0.0000000E+00
 38.45453 1.000000 0.0000000E+00
 38.50473 1.000000 0.0000000E+00
 38.55493 1.000000 0.0000000E+00
 38.60513 1.000000 0.0000000E+00
 38.65533 1.000000 0.0000000E+00
 38.70554 1.000000 0.0000000E+00
 38.75574 1.000000 0.0000000E+00
 38.80594 1.000000 0.0000000E+00
 38.85614 1.000000 0.0000000E+00
 38.90634 1.000000 0.0000000E+00
 38.95655 1.000000 0.0000000E+00
 39.00675 1.000000 0.0000000E+00
 39.05695 1.000000 0.0000000E+00
 39.10715 1.000000 0.0000000E+00
 39.15735 1.000000 0.0000000E+00
 39.20755 1.000000 0.0000000E+00
 39.25776 1.000000 0.0000000E+00
 39.30796 1.000000 0.0000000E+00
 39.35816 1.000000 0.0000000E+00
 39.40836 1.000000 0.0000000E+00
 39.45856 1.000000 0.0000000E+00
 39.50876 1.000000 0.0000000E+00
 39.55897 1.000000 0.0000000E+00
 39.60917 1.000000 0.0000000E+00
 39.65937 1.000000 0.0000000E+00
 39.70957 1.000000 0.0000000E+00
 39.75977 1.000000 0.0000000E+00
 39.80997 1.000000 0.0000000E+00
 39.86018 1.000000 0.0000000E+00
 39.91038 1.000000 0.0000000E+00
 39.96058 1.000000 0.0000000E+00
 40.01078 1.000000 0.0000000E+00
 40.06098 1.000000 0.0000000E+00
 40.11118 1.000000 0.0000000E+00
 40.16139 1.000000 0.0000000E+00
 40.21159 1.000000 0.0000000E+00
 40.26179 1.000000 0.0000000E+00
 40.31199 1.000000 0.0000000E+00
 40.36219 1.000000 0.0000000E+00
 40.41240 1.000000 0.0000000E+00
 40.46260 1.000000 0.0000000E+00
 40.51280 1.000000 0.0000000E+00
 40.56300 1.000000 0.0000000E+00
 40.61320 1.000000 0.0000000E+00
 40.66341 1.000000 0.0000000E+00
 40.71360 1.000000 0.0000000E+00
 40.76381 1.000000 0.0000000E+00
 40.81401 1.000000 0.0000000E+00
 40.86421 1.000000 0.0000000E+00
 40.91441 1.000000 0.0000000E+00
 40.96461 1.000000 0.0000000E+00
 41.01482 1.000000 0.0000000E+00
 41.06502 1.000000 0.0000000E+00
 41.11522 1.000000 0.0000000E+00
 41.16542 1.000000 0.0000000E+00
 41.21562 1.000000 0.0000000E+00
 41.26583 1.000000 0.0000000E+00
 41.31602 1.000000 0.0000000E+00
 41.36623 1.000000 0.0000000E+00
 41.41643 1.000000 0.0000000E+00
 41.46663 1.000000 0.0000000E+00
 41.51683 1.000000 0.0000000E+00
 41.56704 1.000000 0.0000000E+00
 41.61724 1.000000 0.0000000E+00
 41.66744 1.000000 0.0000000E+00
 41.71764 1.000000 0.0000000E+00
 41.76784 1.000000 0.0000000E+00
 41.81804 1.000000 0.0000000E+00
 41.86825 1.000000 0.0000000E+00
 41.91845 1.000000 0.0000000E+00
 41.96865 1.000000 0.0000000E+00
 42.01885 1.000000 0.0000000E+00
 42.06905 1.000000 0.0000000E+00
 42.11926 1.000000 0.0000000E+00
 42.16945 1.000000 0.0000000E+00
 42.21966 1.000000 0.0000000E+00
 42.26986 1.000000 0.0000000E+00
 42.32006 1.000000 0.0000000E+00
 42.37026 1.000000 0.0000000E+00
 42.42046 1.000000 0.0000000E+00
 42.47066 1.000000 0.0000000E+00
 42.52087 1.000000 0.0000000E+00
 42.57107 1.000000 0.0000000E+00
 42.62127 1.000000 0.0000000E+00
 42.67147 1.000000 0.0000000E+00
 42.72168 1.000000 0.0000000E+00
 42.77188 1.000000 0.0000000E+00
 42.82208 1.000000 0.0000000E+00
 42.87228 1.000000 0.0000000E+00
 42.92248 1.000000 0.0000000E+00
 42.97269 1.000000 0.0000000E+00
 43.02288 1.000000 0.0000000E+00
 43.07309 1.000000 0.0000000E+00
 43.12329 1.000000 0.0000000E+00
 43.17349 1.000000 0.0000000E+00
 43.22369 1.000000 0.0000000E+00
 43.27390 1.000000 0.0000000E+00
 43.32410 1.000000 0.0000000E+00
 43.37430 1.000000 0.0000000E+00
 43.42450 1.000000 0.0000000E+00
 43.47470 1.000000 0.0000000E+00
 43.52490 1.000000 0.0000000E+00
 43.57511 1.000000 0.0000000E+00
 43.62531 1.000000 0.0000000E+00
 43.67551 1.000000 0.0000000E+00
 43.72571 1.000000 0.0000000E+00
 43.77591 1.000000 0.0000000E+00
 43.82611 1.000000 0.0000000E+00
 43.87631 1.000000 0.0000000E+00
 43.92652 1.000000 0.0000000E+00
 43.97672 1.000000 0.0000000E+00
 44.02692 1.000000 0.0000000E+00
 44.07712 1.000000 0.0000000E+00
 44.12732 1.000000 0.0000000E+00
 44.17752 1.000000 0.0000000E+00
 44.22773 1.000000 0.0000000E+00
 44.27793 1.000000 0.0000000E+00
 44.32813 1.000000 0.0000000E+00
 44.37833 1.000000 0.0000000E+00
 44.42854 1.000000 0.0000000E+00
 44.47873 1.000000 0.0000000E+00
 44.52894 1.000000 0.0000000E+00
 44.57914 1.000000 0.0000000E+00
 44.62934 1.000000 0.0000000E+00
 44.67954 1.000000 0.0000000E+00
 44.72974 1.000000 0.0000000E+00
 44.77995 1.000000 0.0000000E+00
 44.83015 1.000000 0.0000000E+00
 44.88035 1.000000 0.0000000E+00
 44.93055 1.000000 0.0000000E+00
 44.98075 1.000000 0.0000000E+00
 45.03096 1.000000 0.0000000E+00
 45.08115 1.000000 0.0000000E+00
 45.13136 1.000000 0.0000000E+00
 45.18156 1.000000 0.0000000E+00
 45.23176 1.000000 0.0000000E+00
 45.28197 1.000000 0.0000000E+00
 45.33216 1.000000 0.0000000E+00
 45.38237 1.000000 0.0000000E+00
 45.43257 1.000000 0.0000000E+00
 45.48277 1.000000 0.0000000E+00
 45.53297 1.000000 0.0000000E+00
 45.58317 1.000000 0.0000000E+00
 45.63338 1.000000 0.0000000E+00
 45.68358 1.000000 0.0000000E+00
 45.73378 1.000000 0.0000000E+00
 45.78398 1.000000 0.0000000E+00
 45.83418 1.000000 0.0000000E+00
 45.88439 1.000000 0.0000000E+00
 45.93459 1.000000 0.0000000E+00
 45.98479 1.000000 0.0000000E+00
 46.03499 1.000000 0.0000000E+00
 46.08519 1.000000 0.0000000E+00
 46.13539 1.000000 0.0000000E+00
 46.18559 1.000000 0.0000000E+00
 46.23580 1.000000 0.0000000E+00
 46.28600 1.000000 0.0000000E+00
 46.33620 1.000000 0.0000000E+00
 46.38640 1.000000 0.0000000E+00
 46.43660 1.000000 0.0000000E+00
 46.48680 1.000000 0.0000000E+00
 46.53701 1.000000 0.0000000E+00
 46.58721 1.000000 0.0000000E+00
 46.63741 1.000000 0.0000000E+00
 46.68761 1.000000 0.0000000E+00
 46.73782 1.000000 0.0000000E+00
 46.78801 1.000000 0.0000000E+00
 46.83822 1.000000 0.0000000E+00
 46.88842 1.000000 0.0000000E+00
 46.93862 1.000000 0.0000000E+00
 46.98882 1.000000 0.0000000E+00
 47.03902 1.000000 0.0000000E+00
 47.08923 1.000000 0.0000000E+00
 47.13943 1.000000 0.0000000E+00
 47.18963 1.000000 0.0000000E+00
 47.23983 1.000000 0.0000000E+00
 47.29003 1.000000 0.0000000E+00
 47.34024 1.000000 0.0000000E+00
 47.39043 1.000000 0.0000000E+00
 47.44064 1.000000 0.0000000E+00
 47.49084 1.000000 0.0000000E+00
 47.54104 1.000000 0.0000000E+00
 47.59124 1.000000 0.0000000E+00
 47.64145 1.000000 0.0000000E+00
 47.69165 1.000000 0.0000000E+00
 47.74185 1.000000 0.0000000E+00
 47.79205 1.000000 0.0000000E+00
 47.84225 1.000000 0.0000000E+00
 47.89245 1.000000 0.0000000E+00
 47.94266 1.000000 0.0000000E+00
 47.99286 1.000000 0.0000000E+00
 48.04306 1.000000 0.0000000E+00
 48.09326 1.000000 0.0000000E+00
 48.14346 1.000000 0.0000000E+00
 48.19366 1.000000 0.0000000E+00
 48.24387 1.000000 0.0000000E+00
 48.29407 1.000000 0.0000000E+00
 48.34427 1.000000 0.0000000E+00
 48.39447 1.000000 0.0000000E+00
 48.44467 1.000000 0.0000000E+00
 48.49487 1.000000 0.0000000E+00
 48.54508 1.000000 0.0000000E+00
 48.59528 1.000000 0.0000000E+00
 48.64548 1.000000 0.0000000E+00
 48.69568 1.000000 0.0000000E+00
 48.74588 1.000000 0.0000000E+00
 48.79609 1.000000 0.0000000E+00
 48.84628 1.000000 0.0000000E+00
 48.89649 1.000000 0.0000000E+00
 48.94669 1.000000 0.0000000E+00
 48.99689 1.000000 0.0000000E+00
 49.04710 1.000000 0.0000000E+00
 49.09729 1.000000 0.0000000E+00
 49.14750 1.000000 0.0000000E+00
 49.19770 1.000000 0.0000000E+00
 49.24790 1.000000 0.0000000E+00
 49.29810 1.000000 0.0000000E+00
 49.34830 1.000000 0.0000000E+00
 49.39851 1.000000 0.0000000E+00
 49.44871 1.000000 0.0000000E+00
 49.49891 1.000000 0.0000000E+00
 49.54911 1.000000 0.0000000E+00
 49.59931 1.000000 0.0000000E+00
 49.64952 1.000000 0.0000000E+00
 49.69971 1.000000 0.0000000E+00
 49.74992 1.000000 0.0000000E+00
 49.80012 1.000000 0.0000000E+00
 49.85032 1.000000 0.0000000E+00
 49.90052 1.000000 0.0000000E+00
 49.95073 1.000000 0.0000000E+00
 50.00093 1.000000 0.0000000E+00
 50.05113 1.000000 0.0000000E+00
 50.10133 1.000000 0.0000000E+00
 50.15153 1.000000 0.0000000E+00
 50.20173 1.000000 0.0000000E+00
 50.25194 1.000000 0.0000000E+00
 50.30214 1.000000 0.0000000E+00
 50.35234 1.000000 0.0000000E+00
 50.40254 1.000000 0.0000000E+00
 50.45274 1.000000 0.0000000E+00
 50.50294 1.000000 0.0000000E+00
 50.55314 1.000000 0.0000000E+00
 50.60335 1.000000 0.0000000E+00
 50.65355 1.000000 0.0000000E+00
 50.70375 1.000000 0.0000000E+00
 50.75395 1.000000 0.0000000E+00
 50.80415 1.000000 0.0000000E+00
 50.85435 1.000000 0.0000000E+00
 50.90456 1.000000 0.0000000E+00
 50.95476 1.000000 0.0000000E+00
 51.00496 1.000000 0.0000000E+00
 51.05516 1.000000 0.0000000E+00
 51.10537 1.000000 0.0000000E+00
 51.15556 1.000000 0.0000000E+00
 51.20577 1.000000 0.0000000E+00
 51.25597 1.000000 0.0000000E+00
 51.30617 1.000000 0.0000000E+00
 51.35637 1.000000 0.0000000E+00
 51.40657 1.000000 0.0000000E+00
 51.45678 1.000000 0.0000000E+00
 51.50698 1.000000 0.0000000E+00
 51.55718 1.000000 0.0000000E+00
 51.60738 1.000000 0.0000000E+00
 51.65759 1.000000 0.0000000E+00
 51.70779 1.000000 0.0000000E+00
 51.75799 1.000000 0.0000000E+00
 51.80819 1.000000 0.0000000E+00
 51.85839 1.000000 0.0000000E+00
 51.90859 1.000000 0.0000000E+00
 51.95880 1.000000 0.0000000E+00
 52.00900 1.000000 0.0000000E+00
 52.05920 1.000000 0.0000000E+00
 52.10940 1.000000 0.0000000E+00
 52.15960 1.000000 0.0000000E+00
 52.20980 1.000000 0.0000000E+00
 52.26000 1.000000 0.0000000E+00
 52.31021 1.000000 0.0000000E+00
 52.36041 1.000000 0.0000000E+00
 52.41061 1.000000 0.0000000E+00
 52.46081 1.000000 0.0000000E+00
 52.51101 1.000000 0.0000000E+00
 52.56121 1.000000 0.0000000E+00
 52.61142 1.000000 0.0000000E+00
 52.66162 1.000000 0.0000000E+00
 52.71182 1.000000 0.0000000E+00
 52.76202 1.000000 0.0000000E+00
 52.81223 1.000000 0.0000000E+00
 52.86242 1.000000 0.0000000E+00
 52.91263 1.000000 0.0000000E+00
 52.96283 1.000000 0.0000000E+00
 53.01303 1.000000 0.0000000E+00
 53.06323 1.000000 0.0000000E+00
 53.11343 1.000000 0.0000000E+00
 53.16364 1.000000 0.0000000E+00
 53.21384 1.000000 0.0000000E+00
 53.26404 1.000000 0.0000000E+00
 53.31424 1.000000 0.0000000E+00
 53.36444 1.000000 0.0000000E+00
 53.41465 1.000000 0.0000000E+00
 53.46484 1.000000 0.0000000E+00
 53.51505 1.000000 0.0000000E+00
 53.56525 1.000000 0.0000000E+00
 53.61545 1.000000 0.0000000E+00
 53.66565 1.000000 0.0000000E+00
 53.71585 1.000000 0.0000000E+00
 53.76606 1.000000 0.0000000E+00
 53.81626 1.000000 0.0000000E+00
 53.86646 1.000000 0.0000000E+00
 53.91666 1.000000 0.0000000E+00
 53.96686 1.000000 0.0000000E+00
 54.01707 1.000000 0.0000000E+00
 54.06727 1.000000 0.0000000E+00
 54.11747 1.000000 0.0000000E+00
 54.16767 1.000000 0.0000000E+00
 54.21787 1.000000 0.0000000E+00
 54.26808 1.000000 0.0000000E+00
 54.31828 1.000000 0.0000000E+00
 54.36848 1.000000 0.0000000E+00
 54.41868 1.000000 0.0000000E+00
 54.46888 1.000000 0.0000000E+00
 54.51908 1.000000 0.0000000E+00
 54.56928 1.000000 0.0000000E+00
 54.61949 1.000000 0.0000000E+00
 54.66969 1.000000 0.0000000E+00
 54.71989 1.000000 0.0000000E+00
 54.77009 1.000000 0.0000000E+00
 54.82029 1.000000 0.0000000E+00
 54.87049 1.000000 0.0000000E+00
 54.92069 1.000000 0.0000000E+00
 54.97090 1.000000 0.0000000E+00
 55.02110 1.000000 0.0000000E+00
 55.07130 1.000000 0.0000000E+00
 55.12150 1.000000 0.0000000E+00
 55.17170 1.000000 0.0000000E+00
 55.22191 1.000000 0.0000000E+00
 55.27211 1.000000 0.0000000E+00
 55.32231 1.000000 0.0000000E+00
 55.37251 1.000000 0.0000000E+00
 55.42271 1.000000 0.0000000E+00
 55.47292 1.000000 0.0000000E+00
 55.52312 1.000000 0.0000000E+00
 55.57332 1.000000 0.0000000E+00
 55.62352 1.000000 0.0000000E+00
 55.67372 1.000000 0.0000000E+00
 55.72393 1.000000 0.0000000E+00
 55.77412 1.000000 0.0000000E+00
 55.82433 1.000000 0.0000000E+00
 55.87453 1.000000 0.0000000E+00
 55.92473 1.000000 0.0000000E+00
 55.97493 1.000000 0.0000000E+00
 56.02514 1.000000 0.0000000E+00
 56.07534 1.000000 0.0000000E+00
 56.12554 1.000000 0.0000000E+00
 56.17574 1.000000 0.0000000E+00
 56.22594 1.000000 0.0000000E+00
 56.27614 1.000000 0.0000000E+00
 56.32635 1.000000 0.0000000E+00
 56.37654 1.000000 0.0000000E+00
 56.42675 1.000000 0.0000000E+00
 56.47695 1.000000 0.0000000E+00
 56.52715 1.000000 0.0000000E+00
 56.57735 1.000000 0.0000000E+00
 56.62756 1.000000 0.0000000E+00
 56.67776 1.000000 0.0000000E+00
 56.72796 1.000000 0.0000000E+00
 56.77816 1.000000 0.0000000E+00
 56.82836 1.000000 0.0000000E+00
 56.87856 1.000000 0.0000000E+00
 56.92877 1.000000 0.0000000E+00
 56.97897 1.000000 0.0000000E+00
 57.02917 1.000000 0.0000000E+00
 57.07937 1.000000 0.0000000E+00
 57.12957 1.000000 0.0000000E+00
 57.17978 1.000000 0.0000000E+00
 57.22997 1.000000 0.0000000E+00
 57.28018 1.000000 0.0000000E+00
 57.33038 1.000000 0.0000000E+00
 57.38058 1.000000 0.0000000E+00
 57.43078 1.000000 0.0000000E+00
 57.48098 1.000000 0.0000000E+00
 57.53119 1.000000 0.0000000E+00
 57.58139 1.000000 0.0000000E+00
 57.63159 1.000000 0.0000000E+00
 57.68179 1.000000 0.0000000E+00
 57.73199 1.000000 0.0000000E+00
 57.78220 1.000000 0.0000000E+00
 57.83240 1.000000 0.0000000E+00
 57.88260 1.000000 0.0000000E+00
 57.93280 1.000000 0.0000000E+00
 57.98300 1.000000 0.0000000E+00
 58.03321 1.000000 0.0000000E+00
 58.08340 1.000000 0.0000000E+00
 58.13361 1.000000 0.0000000E+00
 58.18381 1.000000 0.0000000E+00
 58.23401 1.000000 0.0000000E+00
 58.28421 1.000000 0.0000000E+00
 58.33442 1.000000 0.0000000E+00
 58.38462 1.000000 0.0000000E+00
 58.43482 1.000000 0.0000000E+00
 58.48502 1.000000 0.0000000E+00
 58.53522 1.000000 0.0000000E+00
 58.58542 1.000000 0.0000000E+00
 58.63563 1.000000 0.0000000E+00
 58.68583 1.000000 0.0000000E+00
 58.73603 1.000000 0.0000000E+00
 58.78623 1.000000 0.0000000E+00
 58.83643 1.000000 0.0000000E+00
 58.88663 1.000000 0.0000000E+00
 58.93683 1.000000 0.0000000E+00
 58.98704 1.000000 0.0000000E+00
 59.03724 1.000000 0.0000000E+00
 59.08744 1.000000 0.0000000E+00
 59.13764 1.000000 0.0000000E+00
 59.18784 1.000000 0.0000000E+00
 59.23804 1.000000 0.0000000E+00
 59.28825 1.000000 0.0000000E+00
 59.33845 1.000000 0.0000000E+00
 59.38865 1.000000 0.0000000E+00
 59.43885 1.000000 0.0000000E+00
 59.48906 1.000000 0.0000000E+00
 59.53925 1.000000 0.0000000E+00
 59.58946 1.000000 0.0000000E+00
 59.63966 1.000000 0.0000000E+00
 59.68986 1.000000 0.0000000E+00
 59.74006 1.000000 0.0000000E+00
 59.79026 1.000000 0.0000000E+00
 59.84047 1.000000 0.0000000E+00
 59.89067 1.000000 0.0000000E+00
 59.94087 1.000000 0.0000000E+00
 59.99107 1.000000 0.0000000E+00
 60.04128 1.000000 0.0000000E+00
 60.09148 1.000000 0.0000000E+00
 60.14167 1.000000 0.0000000E+00
 60.19188 1.000000 0.0000000E+00
 60.24208 1.000000 0.0000000E+00
 60.29228 1.000000 0.0000000E+00
 60.34249 1.000000 0.0000000E+00
 60.39268 1.000000 0.0000000E+00
 60.44289 1.000000 0.0000000E+00
 60.49309 1.000000 0.0000000E+00
 60.54329 1.000000 0.0000000E+00
 60.59349 1.000000 0.0000000E+00
 60.64369 1.000000 0.0000000E+00
 60.69390 1.000000 0.0000000E+00
 60.74410 1.000000 0.0000000E+00
 60.79430 1.000000 0.0000000E+00
 60.84450 1.000000 0.0000000E+00
 60.89470 1.000000 0.0000000E+00
 60.94490 1.000000 0.0000000E+00
 60.99511 1.000000 0.0000000E+00
 61.04531 1.000000 0.0000000E+00
 61.09551 1.000000 0.0000000E+00
 61.14571 1.000000 0.0000000E+00
 61.19591 1.000000 0.0000000E+00
 61.24611 1.000000 0.0000000E+00
 61.29632 1.000000 0.0000000E+00
 61.34652 1.000000 0.0000000E+00
 61.39672 1.000000 0.0000000E+00
 61.44692 1.000000 0.0000000E+00
 61.49712 1.000000 0.0000000E+00
 61.54733 1.000000 0.0000000E+00
 61.59753 1.000000 0.0000000E+00
 61.64773 1.000000 0.0000000E+00
 61.69793 1.000000 0.0000000E+00
 61.74813 1.000000 0.0000000E+00
 61.79834 1.000000 0.0000000E+00
 61.84853 1.000000 0.0000000E+00
 61.89874 1.000000 0.0000000E+00
 61.94894 1.000000 0.0000000E+00
 61.99914 1.000000 0.0000000E+00
 62.04934 1.000000 0.0000000E+00
 62.09954 1.000000 0.0000000E+00
 62.14975 1.000000 0.0000000E+00
 62.19995 1.000000 0.0000000E+00
 62.25015 1.000000 0.0000000E+00
 62.30035 1.000000 0.0000000E+00
 62.35055 1.000000 0.0000000E+00
 62.40076 1.000000 0.0000000E+00
 62.45095 1.000000 0.0000000E+00
 62.50116 1.000000 0.0000000E+00
 62.55136 1.000000 0.0000000E+00
 62.60156 1.000000 0.0000000E+00
 62.65176 1.000000 0.0000000E+00
 62.70197 1.000000 0.0000000E+00
 62.75217 1.000000 0.0000000E+00
 62.80237 1.000000 0.0000000E+00
 62.85257 1.000000 0.0000000E+00
 62.90277 1.000000 0.0000000E+00
 62.95297 1.000000 0.0000000E+00
 63.00318 1.000000 0.0000000E+00
 63.05338 1.000000 0.0000000E+00
 63.10358 1.000000 0.0000000E+00
 63.15378 1.000000 0.0000000E+00
 63.20398 1.000000 0.0000000E+00
 63.25418 1.000000 0.0000000E+00
 63.30438 1.000000 0.0000000E+00
 63.35459 1.000000 0.0000000E+00
 63.40479 1.000000 0.0000000E+00
 63.45499 1.000000 0.0000000E+00
 63.50519 1.000000 0.0000000E+00
 63.55539 1.000000 0.0000000E+00
 63.60560 1.000000 0.0000000E+00
 63.65580 1.000000 0.0000000E+00
 63.70600 1.000000 0.0000000E+00
 63.75620 1.000000 0.0000000E+00
 63.80640 1.000000 0.0000000E+00
 63.85661 1.000000 0.0000000E+00
 63.90680 1.000000 0.0000000E+00
 63.95701 1.000000 0.0000000E+00
 64.00721 1.000000 0.0000000E+00
 64.05741 1.000000 0.0000000E+00
 64.10761 1.000000 0.0000000E+00
 64.15781 1.000000 0.0000000E+00
 64.20802 1.000000 0.0000000E+00
 64.25822 1.000000 0.0000000E+00
 64.30843 1.000000 0.0000000E+00
 64.35862 1.000000 0.0000000E+00
 64.40882 1.000000 0.0000000E+00
 64.45903 1.000000 0.0000000E+00
 64.50923 1.000000 0.0000000E+00
 64.55943 1.000000 0.0000000E+00
 64.60963 1.000000 0.0000000E+00
 64.65984 1.000000 0.0000000E+00
 64.71004 1.000000 0.0000000E+00
 64.76023 1.000000 0.0000000E+00
 64.81044 1.000000 0.0000000E+00
 64.86064 1.000000 0.0000000E+00
 64.91084 1.000000 0.0000000E+00
 64.96104 1.000000 0.0000000E+00
 65.01125 1.000000 0.0000000E+00
 65.06145 1.000000 0.0000000E+00
 65.11165 1.000000 0.0000000E+00
 65.16185 1.000000 0.0000000E+00
 65.21205 1.000000 0.0000000E+00
 65.26225 1.000000 0.0000000E+00
 65.31245 1.000000 0.0000000E+00
 65.36266 1.000000 0.0000000E+00
 65.41286 1.000000 0.0000000E+00
 65.46306 1.000000 0.0000000E+00
 65.51326 1.000000 0.0000000E+00
 65.56347 1.000000 0.0000000E+00
 65.61366 1.000000 0.0000000E+00
 65.66386 1.000000 0.0000000E+00
 65.71407 1.000000 0.0000000E+00
 65.76427 1.000000 0.0000000E+00
 65.81447 1.000000 0.0000000E+00
 65.86468 1.000000 0.0000000E+00
 65.91488 1.000000 0.0000000E+00
 65.96508 1.000000 0.0000000E+00
 66.01527 1.000000 0.0000000E+00
 66.06548 1.000000 0.0000000E+00
 66.11568 1.000000 0.0000000E+00
 66.16589 1.000000 0.0000000E+00
 66.21609 1.000000 0.0000000E+00
 66.26629 1.000000 0.0000000E+00
 66.31649 1.000000 0.0000000E+00
 66.36669 1.000000 0.0000000E+00
 66.41689 1.000000 0.0000000E+00
 66.46709 1.000000 0.0000000E+00
 66.51730 1.000000 0.0000000E+00
 66.56750 1.000000 0.0000000E+00
 66.61771 1.000000 0.0000000E+00
 66.66790 1.000000 0.0000000E+00
 66.71810 1.000000 0.0000000E+00
 66.76830 1.000000 0.0000000E+00
 66.81851 1.000000 0.0000000E+00
 66.86871 1.000000 0.0000000E+00
 66.91891 1.000000 0.0000000E+00
 66.96912 1.000000 0.0000000E+00
 67.01932 1.000000 0.0000000E+00
 67.06951 1.000000 0.0000000E+00
 67.11972 1.000000 0.0000000E+00
 67.16992 1.000000 0.0000000E+00
 67.22012 1.000000 0.0000000E+00
 67.27032 1.000000 0.0000000E+00
 67.32053 1.000000 0.0000000E+00
 67.37073 1.000000 0.0000000E+00
 67.42093 1.000000 0.0000000E+00
 67.47113 1.000000 0.0000000E+00
 67.52133 1.000000 0.0000000E+00
 67.57153 1.000000 0.0000000E+00
 67.62173 1.000000 0.0000000E+00
 67.67194 1.000000 0.0000000E+00
 67.72214 1.000000 0.0000000E+00
 67.77234 1.000000 0.0000000E+00
 67.82254 1.000000 0.0000000E+00
 67.87275 1.000000 0.0000000E+00
 67.92294 1.000000 0.0000000E+00
 67.97314 1.000000 0.0000000E+00
 68.02335 1.000000 0.0000000E+00
 68.07355 1.000000 0.0000000E+00
 68.12375 1.000000 0.0000000E+00
 68.17395 1.000000 0.0000000E+00
 68.22416 1.000000 0.0000000E+00
 68.27436 1.000000 0.0000000E+00
 68.32455 1.000000 0.0000000E+00
 68.37476 1.000000 0.0000000E+00
 68.42496 1.000000 0.0000000E+00
 68.47517 1.000000 0.0000000E+00
 68.52537 1.000000 0.0000000E+00
 68.57557 1.000000 0.0000000E+00
 68.62577 1.000000 0.0000000E+00
 68.67597 1.000000 0.0000000E+00
 68.72617 1.000000 0.0000000E+00
 68.77637 1.000000 0.0000000E+00
 68.82658 1.000000 0.0000000E+00
 68.87678 1.000000 0.0000000E+00
 68.92698 1.000000 0.0000000E+00
 68.97718 1.000000 0.0000000E+00
 69.02738 1.000000 0.0000000E+00
 69.07758 1.000000 0.0000000E+00
 69.12779 1.000000 0.0000000E+00
 69.17799 1.000000 0.0000000E+00
 69.22819 1.000000 0.0000000E+00
 69.27840 1.000000 0.0000000E+00
 69.32860 1.000000 0.0000000E+00
 69.37879 1.000000 0.0000000E+00
 69.42899 1.000000 0.0000000E+00
 69.47920 1.000000 0.0000000E+00
 69.52940 1.000000 0.0000000E+00
 69.57960 1.000000 0.0000000E+00
 69.62981 1.000000 0.0000000E+00
 69.68001 1.000000 0.0000000E+00
 69.73021 1.000000 0.0000000E+00
 69.78041 1.000000 0.0000000E+00
 69.83061 1.000000 0.0000000E+00
 69.88081 1.000000 0.0000000E+00
 69.93102 1.000000 0.0000000E+00
 69.98122 1.000000 0.0000000E+00
 70.03142 1.000000 0.0000000E+00
 70.08162 1.000000 0.0000000E+00
 70.13182 1.000000 0.0000000E+00
 70.18202 1.000000 0.0000000E+00
 70.23222 1.000000 0.0000000E+00
 70.28242 1.000000 0.0000000E+00
 70.33263 1.000000 0.0000000E+00
 70.38284 1.000000 0.0000000E+00
 70.43303 1.000000 0.0000000E+00
 70.48323 1.000000 0.0000000E+00
 70.53344 1.000000 0.0000000E+00
 70.58364 1.000000 0.0000000E+00
 70.63383 1.000000 0.0000000E+00
 70.68404 1.000000 0.0000000E+00
 70.73425 1.000000 0.0000000E+00
 70.78445 1.000000 0.0000000E+00
 70.83464 1.000000 0.0000000E+00
 70.88485 1.000000 0.0000000E+00
 70.93505 1.000000 0.0000000E+00
 70.98525 1.000000 0.0000000E+00
 71.03545 1.000000 0.0000000E+00
 71.08566 1.000000 0.0000000E+00
 71.13586 1.000000 0.0000000E+00
 71.18606 1.000000 0.0000000E+00
 71.23626 1.000000 0.0000000E+00
 71.28646 1.000000 0.0000000E+00
 71.33666 1.000000 0.0000000E+00
 71.38686 1.000000 0.0000000E+00
 71.43707 1.000000 0.0000000E+00
 71.48727 1.000000 0.0000000E+00
 71.53747 1.000000 0.0000000E+00
 71.58767 1.000000 0.0000000E+00
 71.63788 1.000000 0.0000000E+00
 71.68807 1.000000 0.0000000E+00
 71.73827 1.000000 0.0000000E+00
 71.78848 1.000000 0.0000000E+00
 71.83868 1.000000 0.0000000E+00
 71.88888 1.000000 0.0000000E+00
 71.93909 1.000000 0.0000000E+00
 71.98929 1.000000 0.0000000E+00
 72.03949 1.000000 0.0000000E+00
 72.08969 1.000000 0.0000000E+00
 72.13989 1.000000 0.0000000E+00
 72.19009 1.000000 0.0000000E+00
 72.24030 1.000000 0.0000000E+00
 72.29050 1.000000 0.0000000E+00
 72.34070 1.000000 0.0000000E+00
 72.39090 1.000000 0.0000000E+00
 72.44110 1.000000 0.0000000E+00
 72.49130 1.000000 0.0000000E+00
 72.54150 1.000000 0.0000000E+00
 72.59171 1.000000 0.0000000E+00
 72.64191 1.000000 0.0000000E+00
 72.69211 1.000000 0.0000000E+00
 72.74231 1.000000 0.0000000E+00
 72.79251 1.000000 0.0000000E+00
 72.84272 1.000000 0.0000000E+00
 72.89292 1.000000 0.0000000E+00
 72.94312 1.000000 0.0000000E+00
 72.99332 1.000000 0.0000000E+00
 73.04353 1.000000 0.0000000E+00
 73.09373 1.000000 0.0000000E+00
 73.14392 1.000000 0.0000000E+00
 73.19413 1.000000 0.0000000E+00
 73.24433 1.000000 0.0000000E+00
 73.29453 1.000000 0.0000000E+00
 73.34473 1.000000 0.0000000E+00
 73.39494 1.000000 0.0000000E+00
 73.44514 1.000000 0.0000000E+00
 73.49534 1.000000 0.0000000E+00
 73.54554 1.000000 0.0000000E+00
 73.59574 1.000000 0.0000000E+00
 73.64594 1.000000 0.0000000E+00
 73.69614 1.000000 0.0000000E+00
 73.74635 1.000000 0.0000000E+00
 73.79655 1.000000 0.0000000E+00
 73.84675 1.000000 0.0000000E+00
 73.89695 1.000000 0.0000000E+00
 73.94715 1.000000 0.0000000E+00
 73.99735 1.000000 0.0000000E+00
 74.04755 1.000000 0.0000000E+00
 74.09776 1.000000 0.0000000E+00
 74.14796 1.000000 0.0000000E+00
 74.19816 1.000000 0.0000000E+00
 74.24837 1.000000 0.0000000E+00
 74.29857 1.000000 0.0000000E+00
 74.34877 1.000000 0.0000000E+00
 74.39896 1.000000 0.0000000E+00
 74.44917 1.000000 0.0000000E+00
 74.49937 1.000000 0.0000000E+00
 74.54958 1.000000 0.0000000E+00
 74.59978 1.000000 0.0000000E+00
 74.64998 1.000000 0.0000000E+00
 74.70018 1.000000 0.0000000E+00
 74.75038 1.000000 0.0000000E+00
 74.80058 1.000000 0.0000000E+00
 74.85078 1.000000 0.0000000E+00
 74.90099 1.000000 0.0000000E+00
 74.95119 1.000000 0.0000000E+00
 75.00139 1.000000 0.0000000E+00
 75.05159 1.000000 0.0000000E+00
 75.10179 1.000000 0.0000000E+00
 75.15199 1.000000 0.0000000E+00
 75.20219 1.000000 0.0000000E+00
 75.25240 1.000000 0.0000000E+00
 75.30260 1.000000 0.0000000E+00
 75.35281 1.000000 0.0000000E+00
 75.40301 1.000000 0.0000000E+00
 75.45320 1.000000 0.0000000E+00
 75.50341 1.000000 0.0000000E+00
 75.55361 1.000000 0.0000000E+00
 75.60381 1.000000 0.0000000E+00
 75.65401 1.000000 0.0000000E+00
 75.70422 1.000000 0.0000000E+00
 75.75442 1.000000 0.0000000E+00
 75.80462 1.000000 0.0000000E+00
 75.85482 1.000000 0.0000000E+00
 75.90502 1.000000 0.0000000E+00
 75.95522 1.000000 0.0000000E+00
 76.00542 1.000000 0.0000000E+00
 76.05563 1.000000 0.0000000E+00
 76.10583 1.000000 0.0000000E+00
 76.15603 1.000000 0.0000000E+00
 76.20623 1.000000 0.0000000E+00
 76.25643 1.000000 0.0000000E+00
 76.30663 1.000000 0.0000000E+00
 76.35683 1.000000 0.0000000E+00
 76.40704 1.000000 0.0000000E+00
 76.45724 1.000000 0.0000000E+00
 76.50744 1.000000 0.0000000E+00
 76.55764 1.000000 0.0000000E+00
 76.60785 1.000000 0.0000000E+00
 76.65805 1.000000 0.0000000E+00
 76.70824 1.000000 0.0000000E+00
 76.75845 1.000000 0.0000000E+00
 76.80865 1.000000 0.0000000E+00
 76.85886 1.000000 0.0000000E+00
 76.90906 1.000000 0.0000000E+00
 76.95926 1.000000 0.0000000E+00
 77.00946 1.000000 0.0000000E+00
 77.05966 1.000000 0.0000000E+00
 77.10986 1.000000 0.0000000E+00
 77.16006 1.000000 0.0000000E+00
 77.21027 1.000000 0.0000000E+00
 77.26047 1.000000 0.0000000E+00
 77.31067 1.000000 0.0000000E+00
 77.36087 1.000000 0.0000000E+00
 77.41107 1.000000 0.0000000E+00
 77.46127 1.000000 0.0000000E+00
 77.51147 1.000000 0.0000000E+00
 77.56168 1.000000 0.0000000E+00
 77.61188 1.000000 0.0000000E+00
 77.66209 1.000000 0.0000000E+00
 77.71228 1.000000 0.0000000E+00
 77.76248 1.000000 0.0000000E+00
 77.81268 1.000000 0.0000000E+00
 77.86289 1.000000 0.0000000E+00
 77.91309 1.000000 0.0000000E+00
 77.96329 1.000000 0.0000000E+00
 78.01350 1.000000 0.0000000E+00
 78.06370 1.000000 0.0000000E+00
 78.11390 1.000000 0.0000000E+00
 78.16410 1.000000 0.0000000E+00
 78.21430 1.000000 0.0000000E+00
 78.26450 1.000000 0.0000000E+00
 78.31470 1.000000 0.0000000E+00
 78.36491 1.000000 0.0000000E+00
 78.41511 1.000000 0.0000000E+00
 78.46531 1.000000 0.0000000E+00
 78.51551 1.000000 0.0000000E+00
 78.56571 1.000000 0.0000000E+00
 78.61591 1.000000 0.0000000E+00
 78.66611 1.000000 0.0000000E+00
 78.71632 1.000000 0.0000000E+00
 78.76652 1.000000 0.0000000E+00
 78.81672 1.000000 0.0000000E+00
 78.86692 1.000000 0.0000000E+00
 78.91713 1.000000 0.0000000E+00
 78.96732 1.000000 0.0000000E+00
 79.01752 1.000000 0.0000000E+00
 79.06773 1.000000 0.0000000E+00
 79.11794 1.000000 0.0000000E+00
 79.16814 1.000000 0.0000000E+00
 79.21833 1.000000 0.0000000E+00
 79.26854 1.000000 0.0000000E+00
 79.31874 1.000000 0.0000000E+00
 79.36894 1.000000 0.0000000E+00
 79.41914 1.000000 0.0000000E+00
 79.46935 1.000000 0.0000000E+00
 79.51955 1.000000 0.0000000E+00
 79.56975 1.000000 0.0000000E+00
 79.61995 1.000000 0.0000000E+00
 79.67015 1.000000 0.0000000E+00
 79.72035 1.000000 0.0000000E+00
 79.77055 1.000000 0.0000000E+00
 79.82076 1.000000 0.0000000E+00
 79.87096 1.000000 0.0000000E+00
 79.92116 1.000000 0.0000000E+00
 79.97136 1.000000 0.0000000E+00
 80.02156 1.000000 0.0000000E+00
 80.07176 1.000000 0.0000000E+00
 80.12196 1.000000 0.0000000E+00
 80.17217 1.000000 0.0000000E+00
 80.22237 1.000000 0.0000000E+00
 80.27257 1.000000 0.0000000E+00
 80.32278 1.000000 0.0000000E+00
 80.37298 1.000000 0.0000000E+00
 80.42318 1.000000 0.0000000E+00
 80.47338 1.000000 0.0000000E+00
 80.52358 1.000000 0.0000000E+00
 80.57378 1.000000 0.0000000E+00
 80.62398 1.000000 0.0000000E+00
 80.67419 1.000000 0.0000000E+00
 80.72439 1.000000 0.0000000E+00
 80.77459 1.000000 0.0000000E+00
 80.82479 1.000000 0.0000000E+00
 80.87499 1.000000 0.0000000E+00
 80.92520 1.000000 0.0000000E+00
 80.97540 1.000000 0.0000000E+00
 81.02560 1.000000 0.0000000E+00
 81.07580 1.000000 0.0000000E+00
 81.12600 1.000000 0.0000000E+00
 81.17620 1.000000 0.0000000E+00
 81.22641 1.000000 0.0000000E+00
 81.27661 1.000000 0.0000000E+00
 81.32681 1.000000 0.0000000E+00
 81.37701 1.000000 0.0000000E+00
 81.42721 1.000000 0.0000000E+00
 81.47741 1.000000 0.0000000E+00
 81.52761 1.000000 0.0000000E+00
 81.57782 1.000000 0.0000000E+00
 81.62802 1.000000 0.0000000E+00
 81.67822 1.000000 0.0000000E+00
 81.72842 1.000000 0.0000000E+00
 81.77863 1.000000 0.0000000E+00
 81.82882 1.000000 0.0000000E+00
 81.87903 1.000000 0.0000000E+00
 81.92923 1.000000 0.0000000E+00
 81.97943 1.000000 0.0000000E+00
 82.02963 1.000000 0.0000000E+00
 82.07983 1.000000 0.0000000E+00
 82.13004 1.000000 0.0000000E+00
 82.18024 1.000000 0.0000000E+00
 82.23044 1.000000 0.0000000E+00
 82.28064 1.000000 0.0000000E+00
 82.33084 1.000000 0.0000000E+00
 82.38104 1.000000 0.0000000E+00
 82.43124 1.000000 0.0000000E+00
 82.48145 1.000000 0.0000000E+00
 82.53165 1.000000 0.0000000E+00
 82.58186 1.000000 0.0000000E+00
 82.63205 1.000000 0.0000000E+00
 82.68225 1.000000 0.0000000E+00
 82.73245 1.000000 0.0000000E+00
 82.78265 1.000000 0.0000000E+00
 82.83286 1.000000 0.0000000E+00
 82.88306 1.000000 0.0000000E+00
 82.93327 1.000000 0.0000000E+00
 82.98347 1.000000 0.0000000E+00
 83.03367 1.000000 0.0000000E+00
 83.08386 1.000000 0.0000000E+00
 83.13407 1.000000 0.0000000E+00
 83.18427 1.000000 0.0000000E+00
 83.23447 1.000000 0.0000000E+00
 83.28468 1.000000 0.0000000E+00
 83.33488 1.000000 0.0000000E+00
 83.38509 1.000000 0.0000000E+00
 83.43529 1.000000 0.0000000E+00
 83.48548 1.000000 0.0000000E+00
 83.53568 1.000000 0.0000000E+00
 83.58588 1.000000 0.0000000E+00
 83.63609 1.000000 0.0000000E+00
 83.68629 1.000000 0.0000000E+00
 83.73650 1.000000 0.0000000E+00
 83.78670 1.000000 0.0000000E+00
 83.83690 1.000000 0.0000000E+00
 83.88709 1.000000 0.0000000E+00
 83.93729 1.000000 0.0000000E+00
 83.98750 1.000000 0.0000000E+00
 84.03770 1.000000 0.0000000E+00
 84.08791 1.000000 0.0000000E+00
 84.13811 1.000000 0.0000000E+00
 84.18831 1.000000 0.0000000E+00
 84.23851 1.000000 0.0000000E+00
 84.28871 1.000000 0.0000000E+00
 84.33891 1.000000 0.0000000E+00
 84.38911 1.000000 0.0000000E+00
 84.43932 1.000000 0.0000000E+00
 84.48952 1.000000 0.0000000E+00
 84.53972 1.000000 0.0000000E+00
 84.58992 1.000000 0.0000000E+00
 84.64013 1.000000 0.0000000E+00
 84.69033 1.000000 0.0000000E+00
 84.74052 1.000000 0.0000000E+00
 84.79073 1.000000 0.0000000E+00
 84.84093 1.000000 0.0000000E+00
 84.89113 1.000000 0.0000000E+00
 84.94133 1.000000 0.0000000E+00
 84.99154 1.000000 0.0000000E+00
 85.04174 1.000000 0.0000000E+00
 85.09194 1.000000 0.0000000E+00
 85.14214 1.000000 0.0000000E+00
 85.19234 1.000000 0.0000000E+00
 85.24254 1.000000 0.0000000E+00
 85.29275 1.000000 0.0000000E+00
 85.34295 1.000000 0.0000000E+00
 85.39315 1.000000 0.0000000E+00
 85.44335 1.000000 0.0000000E+00
 85.49355 1.000000 0.0000000E+00
 85.54375 1.000000 0.0000000E+00
 85.59395 1.000000 0.0000000E+00
 85.64416 1.000000 0.0000000E+00
 85.69436 1.000000 0.0000000E+00
 85.74456 1.000000 0.0000000E+00
 85.79476 1.000000 0.0000000E+00
 85.84496 1.000000 0.0000000E+00
 85.89517 1.000000 0.0000000E+00
 85.94537 1.000000 0.0000000E+00
 85.99557 1.000000 0.0000000E+00
 86.04577 1.000000 0.0000000E+00
 86.09597 1.000000 0.0000000E+00
 86.14617 1.000000 0.0000000E+00
 86.19637 1.000000 0.0000000E+00
 86.24658 1.000000 0.0000000E+00
 86.29678 1.000000 0.0000000E+00
 86.34698 1.000000 0.0000000E+00
 86.39718 1.000000 0.0000000E+00
 86.44738 1.000000 0.0000000E+00
 86.49758 1.000000 0.0000000E+00
 86.54779 1.000000 0.0000000E+00
 86.59799 1.000000 0.0000000E+00
 86.64819 1.000000 0.0000000E+00
 86.69839 1.000000 0.0000000E+00
 86.74860 1.000000 0.0000000E+00
 86.79881 1.000000 0.0000000E+00
 86.84899 1.000000 0.0000000E+00
 86.89920 1.000000 0.0000000E+00
 86.94940 1.000000 0.0000000E+00
 86.99960 1.000000 0.0000000E+00
 87.04980 1.000000 0.0000000E+00
 87.10001 1.000000 0.0000000E+00
 87.15022 1.000000 0.0000000E+00
 87.20042 1.000000 0.0000000E+00
 87.25061 1.000000 0.0000000E+00
 87.30081 1.000000 0.0000000E+00
 87.35101 1.000000 0.0000000E+00
 87.40121 1.000000 0.0000000E+00
 87.45142 1.000000 0.0000000E+00
 87.50163 1.000000 0.0000000E+00
 87.55183 1.000000 0.0000000E+00
 87.60203 1.000000 0.0000000E+00
 87.65222 1.000000 0.0000000E+00
 87.70242 1.000000 0.0000000E+00
 87.75262 1.000000 0.0000000E+00
 87.80283 1.000000 0.0000000E+00
 87.85303 1.000000 0.0000000E+00
 87.90324 1.000000 0.0000000E+00
 87.95344 1.000000 0.0000000E+00
 88.00364 1.000000 0.0000000E+00
 88.05385 1.000000 0.0000000E+00
 88.10404 1.000000 0.0000000E+00
 88.15424 1.000000 0.0000000E+00
 88.20444 1.000000 0.0000000E+00
 88.25465 1.000000 0.0000000E+00
 88.30485 1.000000 0.0000000E+00
 88.35505 1.000000 0.0000000E+00
 88.40526 1.000000 0.0000000E+00
 88.45546 1.000000 0.0000000E+00
 88.50565 1.000000 0.0000000E+00
 88.55585 1.000000 0.0000000E+00
 88.60606 1.000000 0.0000000E+00
 88.65626 1.000000 0.0000000E+00
 88.70647 1.000000 0.0000000E+00
 88.75667 1.000000 0.0000000E+00
 88.80687 1.000000 0.0000000E+00
 88.85707 1.000000 0.0000000E+00
 88.90726 1.000000 0.0000000E+00
 88.95747 1.000000 0.0000000E+00
 89.00767 1.000000 0.0000000E+00
 89.05788 1.000000 0.0000000E+00
 89.10808 1.000000 0.0000000E+00
 89.15828 1.000000 0.0000000E+00
 89.20848 1.000000 0.0000000E+00
 89.25868 1.000000 0.0000000E+00
 89.30889 1.000000 0.0000000E+00
 89.35909 1.000000 0.0000000E+00
 89.40929 1.000000 0.0000000E+00
 89.45949 1.000000 0.0000000E+00
 89.50969 1.000000 0.0000000E+00
 89.55989 1.000000 0.0000000E+00
 89.61010 1.000000 0.0000000E+00
 89.66030 1.000000 0.0000000E+00
 89.71050 1.000000 0.0000000E+00
 89.76070 1.000000 0.0000000E+00
 89.81090 1.000000 0.0000000E+00
 89.86110 1.000000 0.0000000E+00
 89.91130 1.000000 0.0000000E+00
 89.96151 1.000000 0.0000000E+00
 90.01171 1.000000 0.0000000E+00
 90.06191 1.000000 0.0000000E+00
 90.11211 1.000000 0.0000000E+00
 90.16231 1.000000 0.0000000E+00
 90.21251 1.000000 0.0000000E+00
 90.26272 1.000000 0.0000000E+00
 90.31292 1.000000 0.0000000E+00
 90.36312 1.000000 0.0000000E+00
 90.41332 1.000000 0.0000000E+00
 90.46352 1.000000 0.0000000E+00
 90.51373 1.000000 0.0000000E+00
 90.56393 1.000000 0.0000000E+00
 90.61413 1.000000 0.0000000E+00
 90.66433 1.000000 0.0000000E+00
 90.71453 1.000000 0.0000000E+00
 90.76473 1.000000 0.0000000E+00
 90.81493 1.000000 0.0000000E+00
 90.86514 1.000000 0.0000000E+00
 90.91534 1.000000 0.0000000E+00
 90.96555 1.000000 0.0000000E+00
 91.01574 1.000000 0.0000000E+00
 91.06594 1.000000 0.0000000E+00
 91.11614 1.000000 0.0000000E+00
 91.16634 1.000000 0.0000000E+00
 91.21655 1.000000 0.0000000E+00
 91.26675 1.000000 0.0000000E+00
 91.31696 1.000000 0.0000000E+00
 91.36716 1.000000 0.0000000E+00
 91.41735 1.000000 0.0000000E+00
 91.46755 1.000000 0.0000000E+00
 91.51776 1.000000 0.0000000E+00
 91.56796 1.000000 0.0000000E+00
 91.61816 1.000000 0.0000000E+00
 91.66837 1.000000 0.0000000E+00
 91.71857 1.000000 0.0000000E+00
 91.76878 1.000000 0.0000000E+00
 91.81898 1.000000 0.0000000E+00
 91.86917 1.000000 0.0000000E+00
 91.91937 1.000000 0.0000000E+00
 91.96957 1.000000 0.0000000E+00
 92.01978 1.000000 0.0000000E+00
 92.06998 1.000000 0.0000000E+00
 92.12019 1.000000 0.0000000E+00
 92.17039 1.000000 0.0000000E+00
 92.22059 1.000000 0.0000000E+00
 92.27078 1.000000 0.0000000E+00
 92.32098 1.000000 0.0000000E+00
 92.37119 1.000000 0.0000000E+00
 92.42139 1.000000 0.0000000E+00
 92.47160 1.000000 0.0000000E+00
 92.52180 1.000000 0.0000000E+00
 92.57200 1.000000 0.0000000E+00
 92.62220 1.000000 0.0000000E+00
 92.67239 1.000000 0.0000000E+00
 92.72260 1.000000 0.0000000E+00
 92.77280 1.000000 0.0000000E+00
 92.82301 1.000000 0.0000000E+00
 92.87321 1.000000 0.0000000E+00
 92.92341 1.000000 0.0000000E+00
 92.97361 1.000000 0.0000000E+00
 93.02382 1.000000 0.0000000E+00
 93.07402 1.000000 0.0000000E+00
 93.12421 1.000000 0.0000000E+00
 93.17442 1.000000 0.0000000E+00
 93.22462 1.000000 0.0000000E+00
 93.27482 1.000000 0.0000000E+00
 93.32502 1.000000 0.0000000E+00
 93.37523 1.000000 0.0000000E+00
 93.42543 1.000000 0.0000000E+00
 93.47563 1.000000 0.0000000E+00
 93.52583 1.000000 0.0000000E+00
 93.57603 1.000000 0.0000000E+00
 93.62623 1.000000 0.0000000E+00
 93.67644 1.000000 0.0000000E+00
 93.72664 1.000000 0.0000000E+00
 93.77684 1.000000 0.0000000E+00
 93.82704 1.000000 0.0000000E+00
 93.87724 1.000000 0.0000000E+00
 93.92744 1.000000 0.0000000E+00
 93.97764 1.000000 0.0000000E+00
 94.02785 1.000000 0.0000000E+00
 94.07805 1.000000 0.0000000E+00
 94.12825 1.000000 0.0000000E+00
 94.17845 1.000000 0.0000000E+00
 94.22865 1.000000 0.0000000E+00
 94.27886 1.000000 0.0000000E+00
 94.32906 1.000000 0.0000000E+00
 94.37926 1.000000 0.0000000E+00
 94.42946 1.000000 0.0000000E+00
 94.47966 1.000000 0.0000000E+00
 94.52986 1.000000 0.0000000E+00
 94.58006 1.000000 0.0000000E+00
 94.63027 1.000000 0.0000000E+00
 94.68047 1.000000 0.0000000E+00
 94.73067 1.000000 0.0000000E+00
 94.78087 1.000000 0.0000000E+00
 94.83107 1.000000 0.0000000E+00
 94.88127 1.000000 0.0000000E+00
 94.93148 1.000000 0.0000000E+00
 94.98168 1.000000 0.0000000E+00
 95.03188 1.000000 0.0000000E+00
 95.08208 1.000000 0.0000000E+00
 95.13229 1.000000 0.0000000E+00
 95.18248 1.000000 0.0000000E+00
 95.23268 1.000000 0.0000000E+00
 95.28289 1.000000 0.0000000E+00
 95.33309 1.000000 0.0000000E+00
 95.38329 1.000000 0.0000000E+00
 95.43349 1.000000 0.0000000E+00
 95.48370 1.000000 0.0000000E+00
 95.53391 1.000000 0.0000000E+00
 95.58411 1.000000 0.0000000E+00
 95.63430 1.000000 0.0000000E+00
 95.68450 1.000000 0.0000000E+00
 95.73470 1.000000 0.0000000E+00
 95.78490 1.000000 0.0000000E+00
 95.83511 1.000000 0.0000000E+00
 95.88531 1.000000 0.0000000E+00
 95.93552 1.000000 0.0000000E+00
 95.98572 1.000000 0.0000000E+00
 96.03591 1.000000 0.0000000E+00
 96.08611 1.000000 0.0000000E+00
 96.13631 1.000000 0.0000000E+00
 96.18652 1.000000 0.0000000E+00
 96.23672 1.000000 0.0000000E+00
 96.28693 1.000000 0.0000000E+00
 96.33713 1.000000 0.0000000E+00
 96.38733 1.000000 0.0000000E+00
 96.43752 1.000000 0.0000000E+00
 96.48773 1.000000 0.0000000E+00
 96.53793 1.000000 0.0000000E+00
 96.58813 1.000000 0.0000000E+00
 96.63834 1.000000 0.0000000E+00
 96.68854 1.000000 0.0000000E+00
 96.73874 1.000000 0.0000000E+00
 96.78895 1.000000 0.0000000E+00
 96.83915 1.000000 0.0000000E+00
 96.88934 1.000000 0.0000000E+00
 96.93954 1.000000 0.0000000E+00
 96.98975 1.000000 0.0000000E+00
 97.03995 1.000000 0.0000000E+00
 97.09016 1.000000 0.0000000E+00
 97.14036 1.000000 0.0000000E+00
 97.19056 1.000000 0.0000000E+00
 97.24076 1.000000 0.0000000E+00
 97.29095 1.000000 0.0000000E+00
 97.34116 1.000000 0.0000000E+00
 97.39136 1.000000 0.0000000E+00
 97.44157 1.000000 0.0000000E+00
 97.49177 1.000000 0.0000000E+00
 97.54197 1.000000 0.0000000E+00
 97.59217 1.000000 0.0000000E+00
 97.64237 1.000000 0.0000000E+00
 97.69257 1.000000 0.0000000E+00
 97.74277 1.000000 0.0000000E+00
 97.79298 1.000000 0.0000000E+00
 97.84318 1.000000 0.0000000E+00
 97.89338 1.000000 0.0000000E+00
 97.94358 1.000000 0.0000000E+00
 97.99379 1.000000 0.0000000E+00
 98.04399 1.000000 0.0000000E+00
 98.09419 1.000000 0.0000000E+00
 98.14439 1.000000 0.0000000E+00
 98.19459 1.000000 0.0000000E+00
 98.24479 1.000000 0.0000000E+00
 98.29499 1.000000 0.0000000E+00
 98.34520 1.000000 0.0000000E+00
 98.39540 1.000000 0.0000000E+00
 98.44560 1.000000 0.0000000E+00
 98.49580 1.000000 0.0000000E+00
 98.54600 1.000000 0.0000000E+00
 98.59620 1.000000 0.0000000E+00
 98.64641 1.000000 0.0000000E+00
 98.69661 1.000000 0.0000000E+00
 98.74681 1.000000 0.0000000E+00
 98.79701 1.000000 0.0000000E+00
 98.84721 1.000000 0.0000000E+00
 98.89742 1.000000 0.0000000E+00
 98.94761 1.000000 0.0000000E+00
 98.99782 1.000000 0.0000000E+00
 99.04802 1.000000 0.0000000E+00
 99.09822 1.000000 0.0000000E+00
 99.14842 1.000000 0.0000000E+00
 99.19862 1.000000 0.0000000E+00
 99.24883 1.000000 0.0000000E+00
 99.29903 1.000000 0.0000000E+00
 99.34924 1.000000 0.0000000E+00
 99.39943 1.000000 0.0000000E+00
 99.44963 1.000000 0.0000000E+00
 99.49983 1.000000 0.0000000E+00
 99.55003 1.000000 0.0000000E+00
 99.60024 1.000000 0.0000000E+00
 99.65044 1.000000 0.0000000E+00
 99.70065 1.000000 0.0000000E+00
 99.75085 1.000000 0.0000000E+00
 99.80104 1.000000 0.0000000E+00
 99.85124 1.000000 0.0000000E+00
 99.90145 1.000000 0.0000000E+00
 99.95165 1.000000 0.0000000E+00
 100.0019 1.000000 0.0000000E+00
 100.0521 1.000000 0.0000000E+00
 100.1023 1.000000 0.0000000E+00
 100.1525 1.000000 0.0000000E+00
 100.2027 1.000000 0.0000000E+00
 100.2529 1.000000 0.0000000E+00
 100.3031 1.000000 0.0000000E+00
 100.3533 1.000000 0.0000000E+00
 100.4035 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osm_ns.0600

 256 6.142108
 0.0000000E+00 1.3860772E-02 2.7860155E-02 4.1999530E-02 5.6280296E-02
 7.0703879E-02 8.5271694E-02 9.9985175E-02 0.1148458 0.1298550
 0.1450144 0.1603253 0.1757893 0.1914080 0.2071828
 0.2231154 0.2392074 0.2554602 0.2718756 0.2884551
 0.3052004 0.3221132 0.3391951 0.3564478 0.3738731
 0.3914726 0.4092481 0.4272014 0.4453342 0.4636483
 0.4821455 0.5008278 0.5196968 0.5387546 0.5580029
 0.5774437 0.5970789 0.6169105 0.6369404 0.6571705
 0.6776029 0.6982398 0.7190830 0.7401345 0.7613967
 0.7828714 0.8045609 0.8264673 0.8485928 0.8709395
 0.8935096 0.9163054 0.9393292 0.9625834 0.9860699
 1.009791 1.033750 1.057948 1.082389 1.107073
 1.132005 1.157186 1.182618 1.208305 1.234249
 1.260452 1.286917 1.313647 1.340645 1.367912
 1.395452 1.423267 1.451360 1.479735 1.508393
 1.537337 1.566572 1.596098 1.625920 1.656040
 1.686461 1.717186 1.748219 1.779562 1.811218
 1.843191 1.875484 1.908099 1.941041 1.974312
 2.007916 2.041856 2.076135 2.110758 2.145726
 2.181044 2.216715 2.252743 2.289131 2.325883
 2.363003 2.400494 2.438359 2.476604 2.515230
 2.554244 2.593647 2.633444 2.673639 2.714236
 2.755239 2.796653 2.838480 2.880725 2.923393
 2.966488 3.010013 3.053974 3.098375 3.143219
 3.188512 3.234258 3.280462 3.327127 3.374259
 3.421862 3.469941 3.518502 3.567548 3.617084
 3.667115 3.717647 3.768684 3.820232 3.872295
 3.924879 3.977988 4.031629 4.085805 4.140524
 4.195790 4.251609 4.307986 4.364927 4.422436
 4.480522 4.539187 4.598440 4.658285 4.718728
 4.779777 4.841435 4.903710 4.966608 5.030135
 5.094296 5.159100 5.224552 5.290658 5.357426
 5.424860 5.492970 5.561760 5.631238 5.701411
 5.772285 5.843870 5.916169 5.989192 6.062944
 6.137434 6.212669 6.288657 6.365404 6.442919
 6.521209 6.600281 6.680145 6.760807 6.842276
 6.924559 7.007666 7.091603 7.176379 7.262004
 7.348485 7.435831 7.524050 7.613151 7.703144
 7.794035 7.885837 7.978555 8.072201 8.166784
 8.262312 8.358796 8.456245 8.554669 8.654077
 8.754478 8.855884 8.958303 9.061747 9.166225
 9.271749 9.378326 9.485970 9.594690 9.704498
 9.815404 9.927419 10.04055 10.15482 10.27023
 10.38679 10.50452 10.62343 10.74352 10.86482
 10.98733 11.11106 11.23603 11.36225 11.48973
 11.61849 11.74854 11.87988 12.01254 12.14653
 12.28186 12.41854 12.55658 12.69601 12.83683
 12.97906 13.12271 13.26780 13.41433 13.56234
 13.71182 13.86280 14.01529 14.16930 14.32486
 14.48197 14.64065 14.80091 14.96278 15.12627
 15.29139 15.45817 15.62661 15.79674 15.96857
 16.14211
 0.0000000E+00 -3.6316656E-04 -7.2552351E-04 -1.0869735E-03 -1.4474164E-03
 -1.8067491E-03 -2.1648663E-03 -2.5216588E-03 -2.8770149E-03 -3.2308206E-03
 -3.5829570E-03 -3.9333035E-03 -4.2817355E-03 -4.6281260E-03 -4.9723429E-03
 -5.3142523E-03 -5.6537162E-03 -5.9905932E-03 -6.3247369E-03 -6.6559990E-03
 -6.9842264E-03 -7.3092622E-03 -7.6309452E-03 -7.9491111E-03 -8.2635907E-03
 -8.5742092E-03 -8.8807913E-03 -9.1831526E-03 -9.4811078E-03 -9.7744642E-03
 -1.0063028E-02 -1.0346597E-02 -1.0624964E-02 -1.0897920E-02 -1.1165247E-02
 -1.1426725E-02 -1.1682128E-02 -1.1931221E-02 -1.2173767E-02 -1.2409522E-02
 -1.2638235E-02 -1.2859653E-02 -1.3073509E-02 -1.3279536E-02 -1.3477459E-02
 -1.3666992E-02 -1.3847848E-02 -1.4019729E-02 -1.4182328E-02 -1.4335334E-02
 -1.4478425E-02 -1.4611272E-02 -1.4733536E-02 -1.4844868E-02 -1.4944912E-02
 -1.5033301E-02 -1.5109656E-02 -1.5173589E-02 -1.5224700E-02 -1.5262577E-02
 -1.5286794E-02 -1.5296915E-02 -1.5292486E-02 -1.5273042E-02 -1.5238099E-02
 -1.5187163E-02 -1.5119710E-02 -1.5035210E-02 -1.4933107E-02 -1.4812826E-02
 -1.4673768E-02 -1.4515310E-02 -1.4336803E-02 -1.4137571E-02 -1.3916908E-02
 -1.3674076E-02 -1.3408302E-02 -1.3118776E-02 -1.2804644E-02 -1.2465017E-02
 -1.2098946E-02 -1.1705443E-02 -1.1283454E-02 -1.0831868E-02 -1.0349507E-02
 -9.8351175E-03 -9.2873629E-03 -8.7048262E-03 -8.0859866E-03 -7.4292165E-03
 -6.7327712E-03 -5.9947735E-03 -5.2132001E-03 -4.3858676E-03 -3.5104102E-03
 -2.5842609E-03 -1.6046297E-03 -5.6847249E-04 5.2753574E-04 1.6864591E-03
 2.9109917E-03 4.2039324E-03 5.5681984E-03 7.0068282E-03 8.5229864E-03
 1.0119968E-02 1.1801200E-02 1.3570244E-02 1.5430809E-02 1.7386736E-02
 1.9442024E-02 2.1600805E-02 2.3867378E-02 2.6246186E-02 2.8741825E-02
 3.1359054E-02 3.4102775E-02 3.6978062E-02 3.9990127E-02 4.3144349E-02
 4.6446249E-02 4.9901500E-02 5.3515911E-02 5.7295453E-02 6.1246190E-02
 6.5374345E-02 6.9686234E-02 7.4188292E-02 7.8887030E-02 8.3789051E-02
 8.8901035E-02 9.4229676E-02 9.9781699E-02 0.1055639 0.1115829
 0.1178455 0.1243583 0.1311277 0.1381602 0.1454621
 0.1530392 0.1608974 0.1690422 0.1774788 0.1862120
 0.1952462 0.2045853 0.2142327 0.2241913 0.2344632
 0.2450501 0.2559527 0.2671710 0.2787043 0.2905509
 0.3027080 0.3151720 0.3279381 0.3410006 0.3543524
 0.3679854 0.3818902 0.3960561 0.4104713 0.4251223
 0.4399948 0.4550729 0.4703394 0.4857756 0.5013621
 0.5170777 0.5329002 0.5488064 0.5647719 0.5807712
 0.5967782 0.6127656 0.6287057 0.6445704 0.6603308
 0.6759580 0.6914228 0.7066965 0.7217499 0.7365551
 0.7510840 0.7653098 0.7792066 0.7927495 0.8059152
 0.8186818 0.8310292 0.8429391 0.8543954 0.8653839
 0.8758929 0.8859132 0.8954377 0.9044620 0.9129843
 0.9210054 0.9285284 0.9355589 0.9421050 0.9481770
 0.9537872 0.9589500 0.9636814 0.9679993 0.9719226
 0.9754716 0.9786671 0.9815308 0.9840850 0.9863517
 0.9883530 0.9901112 0.9916472 0.9929820 0.9941354
 0.9951265 0.9959731 0.9966919 0.9972986 0.9978074
 0.9982315 0.9985827 0.9988716 0.9991075 0.9992990
 0.9994533 0.9995767 0.9996747 0.9997519 0.9998122
 0.9998592 0.9998952 0.9999227 0.9999436 0.9999592
 0.9999708 0.9999792 0.9999855 0.9999900 0.9999931
 0.9999954 0.9999970 0.9999980 0.9999987 0.9999992
 0.9999995 0.9999997 0.9999999 0.9999999 0.9999999
 1.000000
 -2.6358865E-02 -2.6043195E-02 -2.5724366E-02 -2.5402354E-02 -2.5077125E-02
 -2.4748644E-02 -2.4416886E-02 -2.4081817E-02 -2.3743410E-02 -2.3401629E-02
 -2.3056444E-02 -2.2707829E-02 -2.2355748E-02 -2.2000173E-02 -2.1641072E-02
 -2.1278413E-02 -2.0912167E-02 -2.0542301E-02 -2.0168785E-02 -1.9791590E-02
 -1.9410681E-02 -1.9026030E-02 -1.8637603E-02 -1.8245365E-02 -1.7849294E-02
 -1.7449351E-02 -1.7045505E-02 -1.6637724E-02 -1.6225973E-02 -1.5810221E-02
 -1.5390435E-02 -1.4966576E-02 -1.4538614E-02 -1.4106508E-02 -1.3670227E-02
 -1.3229726E-02 -1.2784970E-02 -1.2335917E-02 -1.1882526E-02 -1.1424753E-02
 -1.0962551E-02 -1.0495872E-02 -1.0024667E-02 -9.5488830E-03 -9.0684639E-03
 -8.5833510E-03 -8.0934828E-03 -7.5987889E-03 -7.0992038E-03 -6.5946467E-03
 -6.0850396E-03 -5.5702929E-03 -5.0503151E-03 -4.5250049E-03 -3.9942544E-03
 -3.4579467E-03 -2.9159554E-03 -2.3681447E-03 -1.8143670E-03 -1.2544622E-03
 -6.8825809E-04 -1.1556687E-04 4.6381491E-04 1.0501080E-03 1.6435523E-03
 2.2444082E-03 2.8529600E-03 3.4695137E-03 4.0944065E-03 4.7280034E-03
 5.3707003E-03 6.0229306E-03 6.6851662E-03 7.3579215E-03 8.0417581E-03
 8.7372884E-03 9.4451802E-03 1.0166164E-02 1.0901043E-02 1.1650687E-02
 1.2416055E-02 1.3198198E-02 1.3998264E-02 1.4817517E-02 1.5657349E-02
 1.6519284E-02 1.7405003E-02 1.8316366E-02 1.9255415E-02 2.0224418E-02
 2.1225892E-02 2.2262610E-02 2.3337672E-02 2.4454508E-02 2.5616961E-02
 2.6829312E-02 2.8096337E-02 2.9423382E-02 3.0816428E-02 3.2250706E-02
 3.3727024E-02 3.5246786E-02 3.6811385E-02 3.8422231E-02 4.0080745E-02
 4.1788358E-02 4.3546483E-02 4.5356538E-02 4.7219928E-02 4.9138032E-02
 5.1112209E-02 5.3143781E-02 5.5234022E-02 5.7384159E-02 5.9595358E-02
 6.1868723E-02 6.4205259E-02 6.6605866E-02 6.9071360E-02 7.1602434E-02
 7.4199617E-02 7.6863311E-02 7.9593748E-02 8.2390964E-02 8.5254811E-02
 8.8184915E-02 9.1180667E-02 9.4241194E-02 9.7365327E-02 0.1005517
 0.1037984 0.1071036 0.1104646 0.1138787 0.1173426
 0.1208527 0.1244050 0.1279950 0.1316177 0.1352675
 0.1389386 0.1426245 0.1463182 0.1500122 0.1536985
 0.1573685 0.1610132 0.1646231 0.1681880 0.1716973
 0.1751401 0.1785048 0.1817796 0.1849521 0.1880099
 0.1909399 0.1937292 0.1963644 0.1988321 0.2011189
 0.2032115 0.2050966 0.2067611 0.2081922 0.2093778
 0.2103059 0.2109653 0.2113457 0.2114372 0.2112311
 0.2107199 0.2098969 0.2087569 0.2072960 0.2055114
 0.2034025 0.2009698 0.1982158 0.1951446 0.1917620
 0.1880758 0.1840956 0.1798326 0.1753002 0.1705138
 0.1654898 0.1602467 0.1548048 0.1491854 0.1434114
 0.1375068 0.1314967 0.1254069 0.1192639 0.1130943
 0.1069248 0.1007828 9.4694078E-02 8.8684320E-02 8.2778819E-02
 7.7001058E-02 7.1372986E-02 6.5915711E-02 6.0647856E-02 5.5586297E-02
 5.0745279E-02 4.6137448E-02 4.1772678E-02 3.7658349E-02 3.3799734E-02
 3.0198816E-02 2.6856124E-02 2.3769656E-02 2.0935180E-02 1.8346112E-02
 1.5994653E-02 1.3871418E-02 1.1965261E-02 1.0263764E-02 8.7548895E-03
 7.4244360E-03 6.2592500E-03 5.2449037E-03 4.3680714E-03 3.6150236E-03
 2.9727193E-03 2.4282378E-03 1.9702108E-03 1.5876859E-03 1.2704796E-03
 1.0093419E-03 7.9632906E-04 6.2326994E-04 4.8422231E-04 3.7338168E-04
 2.8541868E-04 2.1651994E-04 1.6294289E-04 1.2139713E-04 8.9579975E-05
 6.5383720E-05 4.7456182E-05 3.4030760E-05 2.4072571E-05 1.6967726E-05
 1.1706375E-05 7.9284709E-06 5.3403037E-06 3.5961136E-06 2.1450744E-06
 1.4491488E-06 9.7555960E-07 3.3378421E-07 3.5614957E-07 3.4158842E-07
 3.1121021E-07
 71 81
 0.5000006 0.5500005 0.6000005 0.6500005 0.7000004
 0.7500004 0.8000003 0.8500003 0.9000002 0.9500002
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000001 -0.8499999 -0.8000000
 -0.7500000 -0.7000000 -0.6500001 -0.5999999 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -9.9999905E-02 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1500001 0.2000000
 0.2500000 0.3000000 0.3499999 0.4000001 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 5.4758944E-02 5.4119769E-02 5.3249270E-02 5.2174844E-02 5.0924134E-02
 4.9524464E-02 4.8002265E-02 4.6382643E-02 4.4689059E-02 4.2943098E-02
 4.1164298E-02 3.9370138E-02 3.7576016E-02 3.5795279E-02 3.4039378E-02
 3.2317944E-02 3.0638946E-02 2.9008858E-02 2.7432777E-02 2.5914593E-02
 2.4457147E-02 2.3062337E-02 2.1731261E-02 2.0464331E-02 1.9261342E-02
 1.8121609E-02 1.7043991E-02 1.6026990E-02 1.5068810E-02 1.4167368E-02
 1.3320387E-02 1.2525419E-02 1.1779874E-02 1.1081108E-02 1.0426406E-02
 9.8130731E-03 9.2384499E-03 8.6999638E-03 8.1951469E-03 7.7216597E-03
 7.2773239E-03 6.8600914E-03 6.4680744E-03 6.0995379E-03 5.7529043E-03
 5.4266895E-03 5.1195547E-03 4.8302738E-03 4.5577111E-03 4.3008192E-03
 4.0586409E-03 3.8302713E-03 3.6148923E-03 3.4117252E-03 3.2200585E-03
 3.0392136E-03 2.8685669E-03 2.7075349E-03 2.5555578E-03 2.4121215E-03
 2.2767419E-03 2.1489509E-03 2.0283274E-03 1.9144601E-03 1.8069661E-03
 1.7054867E-03 1.6096768E-03 1.5192175E-03 1.4338043E-03 1.3531490E-03
 1.2769884E-03
 5.8693986E-02 5.3591713E-02 4.8729368E-02 4.4119179E-02 3.9769419E-02
 3.5684507E-02 3.1865388E-02 2.8309923E-02 2.5013266E-02 2.1968335E-02
 1.9166227E-02 1.6596626E-02 1.4248191E-02 1.2108881E-02 1.0166254E-02
 8.4077343E-03 6.8207919E-03 5.3931340E-03 4.1128295E-03 2.9684093E-03
 1.9489593E-03 1.0441446E-03 2.4426274E-04 -4.5974852E-04 -1.0763059E-03
 -1.6131945E-03 -2.0775811E-03 -2.4760508E-03 -2.8146317E-03 -3.0988397E-03
 -3.3337306E-03 -3.5239365E-03 -3.6737304E-03 -3.7870496E-03 -3.8675617E-03
 -3.9186808E-03 -3.9436053E-03 -3.9453288E-03 -3.9266525E-03 -3.8901954E-03
 -3.8383882E-03 -3.7734783E-03 -3.6975401E-03 -3.6124478E-03 -3.5199104E-03
 -3.4214703E-03 -3.3184958E-03 -3.2122040E-03 -3.1036623E-03 -2.9938137E-03
 -2.8834699E-03 -2.7733354E-03 -2.6640068E-03 -2.5559971E-03 -2.4497311E-03
 -2.3455652E-03 -2.2437896E-03 -2.1446329E-03 -2.0482845E-03 -1.9548805E-03
 -1.8645205E-03 -1.7772798E-03 -1.6931905E-03 -1.6122692E-03 -1.5345135E-03
 -1.4598981E-03 -1.3883854E-03 -1.3199223E-03 -1.2544494E-03 -1.1918993E-03
 -1.1321936E-03
 5.4826315E-02 5.4186486E-02 5.3315219E-02 5.2239936E-02 5.0988305E-02
 4.9587671E-02 4.8064481E-02 4.6443857E-02 4.4749286E-02 4.3002360E-02
 4.1222636E-02 3.9427601E-02 3.7632652E-02 3.5851154E-02 3.4094561E-02
 3.2372504E-02 3.0692955E-02 2.9062381E-02 2.7485879E-02 2.5967339E-02
 2.4509598E-02 2.3114540E-02 2.1783249E-02 2.0516124E-02 1.9312954E-02
 1.8173035E-02 1.7095195E-02 1.6077932E-02 1.5119406E-02 1.4217535E-02
 1.3370024E-02 1.2574387E-02 1.1828055E-02 1.1128356E-02 1.0472582E-02
 9.8580522E-03 9.2821196E-03 8.7422244E-03 8.2359295E-03 7.7609178E-03
 7.3150066E-03 6.8961848E-03 6.5025943E-03 6.1325026E-03 5.7843262E-03
 5.4566152E-03 5.1480397E-03 4.8573609E-03 4.5834528E-03 4.3252716E-03
 4.0818597E-03 3.8523178E-03 3.6358163E-03 3.4315798E-03 3.2388992E-03
 3.0570892E-03 2.8855295E-03 2.7236238E-03 2.5708177E-03 2.4266003E-03
 2.2904726E-03 2.1619741E-03 2.0406772E-03 1.9261696E-03 1.8180687E-03
 1.7160091E-03 1.6196497E-03 1.5286679E-03 1.4427537E-03 1.3616290E-03
 1.2850133E-03
 5.8644667E-02 5.3541072E-02 4.8677541E-02 4.4066317E-02 3.9715677E-02
 3.5630036E-02 3.1810354E-02 2.8254477E-02 2.4957562E-02 2.1912523E-02
 1.9110441E-02 1.6540999E-02 1.4192857E-02 1.2053963E-02 1.0111870E-02
 8.3539952E-03 6.7678047E-03 5.3410120E-03 4.0616784E-03 2.9183363E-03
 1.9000706E-03 9.9654950E-04 1.9807166E-04 -5.0442066E-04 -1.1193479E-03
 -1.6544960E-03 -2.1170317E-03 -2.5135514E-03 -2.8500878E-03 -3.1321789E-03
 -3.3648952E-03 -3.5528953E-03 -3.7004743E-03 -3.8116011E-03 -3.8899712E-03
 -3.9390260E-03 -3.9619841E-03 -3.9618597E-03 -3.9414661E-03 -3.9034311E-03
 -3.8501883E-03 -3.7839876E-03 -3.7068846E-03 -3.6207619E-03 -3.5273186E-03
 -3.4280790E-03 -3.3244020E-03 -3.2175023E-03 -3.1084348E-03 -2.9981332E-03
 -2.8873975E-03 -2.7769289E-03 -2.6673183E-03 -2.5590693E-03 -2.4526021E-03
 -2.3482705E-03 -2.2463538E-03 -2.1470899E-03 -2.0506522E-03 -1.9571793E-03
 -1.8667703E-03 -1.7794928E-03 -1.6953802E-03 -1.6144494E-03 -1.5366938E-03
 -1.4620848E-03 -1.3905895E-03 -1.3221477E-03 -1.2567034E-03 -1.1941857E-03
 -1.1345184E-03
 5.4902028E-02 5.4261461E-02 5.3389341E-02 5.2313101E-02 5.1060438E-02
 4.9658723E-02 4.8134424E-02 4.6512689E-02 4.4817012E-02 4.3069005E-02
 4.1288245E-02 3.9492223E-02 3.7696354E-02 3.5914011E-02 3.4156635E-02
 3.2433875E-02 3.0753704E-02 2.9122584E-02 2.7545607E-02 2.6026655E-02
 2.4568556E-02 2.3173202E-02 2.1841653E-02 2.0574290E-02 1.9370887E-02
 1.8230714E-02 1.7152593E-02 1.6134989E-02 1.5176040E-02 1.4273642E-02
 1.3425475E-02 1.2629053E-02 1.1881788E-02 1.1180996E-02 1.0523993E-02
 9.9080997E-03 9.3306769E-03 8.7892003E-03 8.2812374E-03 7.8045051E-03
 7.3568434E-03 6.9362656E-03 6.5409141E-03 6.1690812E-03 5.8192103E-03
 5.4898453E-03 5.1796576E-03 4.8874281E-03 4.6120356E-03 4.3524290E-03
 4.1076499E-03 3.8768032E-03 3.6590563E-03 3.4536431E-03 3.2598325E-03
 3.0769538E-03 2.9043788E-03 2.7415045E-03 2.5877869E-03 2.4426926E-03
 2.3057351E-03 2.1764538E-03 2.0544108E-03 1.9391895E-03 1.8304134E-03
 1.7277115E-03 1.6307377E-03 1.5391748E-03 1.4527069E-03 1.3710528E-03
 1.2939362E-03
 5.8589343E-02 5.3484261E-02 4.8619404E-02 4.4007026E-02 3.9655402E-02
 3.5568956E-02 3.1748645E-02 2.8192312E-02 2.4895117E-02 2.1849966E-02
 1.9047925E-02 1.6478680E-02 1.4130881E-02 1.1992463E-02 1.0050980E-02
 8.2938513E-03 6.7085270E-03 5.2827229E-03 4.0044994E-03 2.8623897E-03
 1.8454790E-03 9.4343262E-04 1.4655490E-04 -5.5421365E-04 -1.1672927E-03
 -1.7004664E-03 -2.1609142E-03 -2.5552372E-03 -2.8894802E-03 -3.1691988E-03
 -3.3994887E-03 -3.5850324E-03 -3.7301539E-03 -3.8388583E-03 -3.9148624E-03
 -3.9616437E-03 -3.9824415E-03 -3.9802920E-03 -3.9580171E-03 -3.9182543E-03
 -3.8634434E-03 -3.7958215E-03 -3.7174516E-03 -3.6302025E-03 -3.5357606E-03
 -3.4356413E-03 -3.3312000E-03 -3.2236297E-03 -3.1139818E-03 -3.0031770E-03
 -2.8920132E-03 -2.7811774E-03 -2.6712522E-03 -2.5627350E-03 -2.4560462E-03
 -2.3515271E-03 -2.2494576E-03 -2.1500706E-03 -2.0535314E-03 -1.9599814E-03
 -1.8695154E-03 -1.7821951E-03 -1.6980571E-03 -1.6171132E-03 -1.5393533E-03
 -1.4647553E-03 -1.3932751E-03 -1.3248570E-03 -1.2594443E-03 -1.1969613E-03
 -1.1373353E-03
 5.4987125E-02 5.4345742E-02 5.3472668E-02 5.2395359E-02 5.1141545E-02
 4.9738623E-02 4.8213080E-02 4.6590094E-02 4.4893179E-02 4.3143973E-02
 4.1362051E-02 3.9564930E-02 3.7768029E-02 3.5984728E-02 3.4226477E-02
 3.2502927E-02 3.0822050E-02 2.9190307E-02 2.7612785E-02 2.6093367E-02
 2.4634859E-02 2.3239141E-02 2.1907266E-02 2.0639606E-02 1.9435909E-02
 1.8295415E-02 1.7216926E-02 1.6198875E-02 1.5239401E-02 1.4336349E-02
 1.3487392E-02 1.2690037E-02 1.1941658E-02 1.1239603E-02 1.0581186E-02
 9.9637285E-03 9.3846172E-03 8.8413516E-03 8.3315186E-03 7.8528570E-03
 7.4032471E-03 6.9807074E-03 6.5833991E-03 6.2096496E-03 5.8578863E-03
 5.5266833E-03 5.2147233E-03 4.9207830E-03 4.6437341E-03 4.3825484E-03
 4.1362597E-03 3.9039692E-03 3.6848513E-03 3.4781245E-03 3.2830676E-03
 3.0990089E-03 2.9253014E-03 2.7613589E-03 2.6066226E-03 2.4605624E-03
 2.3226892E-03 2.1925322E-03 2.0696600E-03 1.9536493E-03 1.8441244E-03
 1.7407070E-03 1.6430543E-03 1.5508415E-03 1.4637610E-03 1.3815220E-03
 1.3038435E-03
 5.8527272E-02 5.3420536E-02 4.8554193E-02 4.3940526E-02 3.9587803E-02
 3.5500463E-02 3.1679455E-02 2.8122628E-02 2.4825128E-02 2.1779858E-02
 1.8977880E-02 1.6408874E-02 1.4061471E-02 1.1923612E-02 9.9828392E-03
 8.2265623E-03 6.6422368E-03 5.2175666E-03 3.9406167E-03 2.7999154E-03
 1.7845512E-03 8.8419102E-04 8.9137699E-05 -6.0966931E-04 -1.2206504E-03
 -1.7515917E-03 -2.2096813E-03 -2.6015248E-03 -2.9331935E-03 -3.2102587E-03
 -3.4378415E-03 -3.6206541E-03 -3.7630573E-03 -3.8690809E-03 -3.9424840E-03
 -3.9867698E-03 -4.0052026E-03 -4.0008309E-03 -3.9765029E-03 -3.9348532E-03
 -3.8783241E-03 -3.8091582E-03 -3.7294030E-03 -3.6409181E-03 -3.5453856E-03
 -3.4443093E-03 -3.3390252E-03 -3.2307217E-03 -3.1204389E-03 -3.0090841E-03
 -2.8974442E-03 -2.7862003E-03 -2.6759277E-03 -2.5671166E-03 -2.4601817E-03
 -2.3554522E-03 -2.2532139E-03 -2.1536849E-03 -2.0570343E-03 -1.9633980E-03
 -1.8728633E-03 -1.7854964E-03 -1.7013265E-03 -1.6203668E-03 -1.5426010E-03
 -1.4680097E-03 -1.3965446E-03 -1.3281549E-03 -1.2627729E-03 -1.2003294E-03
 -1.1407449E-03
 5.5082783E-02 5.4440491E-02 5.3566355E-02 5.2487850E-02 5.1232759E-02
 4.9828485E-02 4.8301555E-02 4.6677176E-02 4.4978883E-02 4.3228317E-02
 4.1445103E-02 3.9646752E-02 3.7848692E-02 3.6064316E-02 3.4305081E-02
 3.2580644E-02 3.0898968E-02 2.9266514E-02 2.7688364E-02 2.6168402E-02
 2.4709417E-02 2.3313269E-02 2.1981003E-02 2.0712957E-02 1.9508868E-02
 1.8367961E-02 1.7289005E-02 1.6270399E-02 1.5310248E-02 1.4406397E-02
 1.3556492E-02 1.2758004E-02 1.2008334E-02 1.1304812E-02 1.0644750E-02
 1.0025500E-02 9.4444817E-03 8.8991849E-03 8.3872564E-03 7.9064481E-03
 7.4546561E-03 7.0299259E-03 6.6304607E-03 6.2545734E-03 5.9007220E-03
 5.5674915E-03 5.2535613E-03 4.9577183E-03 4.6788580E-03 4.4159228E-03
 4.1679582E-03 3.9340770E-03 3.7134369E-03 3.5052591E-03 3.3088280E-03
 3.1234524E-03 2.9485002E-03 2.7833763E-03 2.6275106E-03 2.4803784E-03
 2.3414888E-03 2.2103654E-03 2.0865707E-03 1.9696860E-03 1.8593302E-03
 1.7551193E-03 1.6567191E-03 1.5637864E-03 1.4760242E-03 1.3931304E-03
 1.3148339E-03
 5.8457643E-02 5.3349052E-02 4.8481058E-02 4.3865945E-02 3.9511997E-02
 3.5423666E-02 3.1601891E-02 2.8044516E-02 2.4746694E-02 2.1701310E-02
 1.8899424E-02 1.6330695E-02 1.3983765E-02 1.1846557E-02 9.9066077E-03
 8.1513142E-03 6.5681357E-03 5.1447721E-03 3.8692851E-03 2.7301966E-03
 1.7166026E-03 8.1816723E-04 2.5193134E-05 -6.7137857E-04 -1.2799730E-03
 -1.8083848E-03 -2.2638105E-03 -2.6528703E-03 -2.9816481E-03 -3.2557484E-03
 -3.4803152E-03 -3.6600998E-03 -3.7994944E-03 -3.9025664E-03 -3.9731134E-03
 -4.0146615E-03 -4.0305043E-03 -4.0237135E-03 -3.9971443E-03 -3.9534401E-03
 -3.8950418E-03 -3.8241912E-03 -3.7429230E-03 -3.6530970E-03 -3.5563766E-03
 -3.4542491E-03 -3.3480483E-03 -3.2389427E-03 -3.1279577E-03 -3.0159964E-03
 -2.9038375E-03 -2.7921426E-03 -2.6814889E-03 -2.5723537E-03 -2.4651375E-03
 -2.3601823E-03 -2.2577534E-03 -2.1580644E-03 -2.0612907E-03 -1.9675535E-03
 -1.8769441E-03 -1.7895213E-03 -1.7053161E-03 -1.6243350E-03 -1.5465610E-03
 -1.4719764E-03 -1.4005264E-03 -1.3321621E-03 -1.2668121E-03 -1.2044102E-03
 -1.1448739E-03
 5.5190343E-02 5.4547045E-02 5.3671721E-02 5.2591894E-02 5.1335368E-02
 4.9929585E-02 4.8401114E-02 4.6775170E-02 4.5075331E-02 4.3323264E-02
 4.1538592E-02 3.9738856E-02 3.7939500E-02 3.6153924E-02 3.4393586E-02
 3.2668140E-02 3.0985555E-02 2.9352292E-02 2.7773431E-02 2.6252821E-02
 2.4793264E-02 2.3396602E-02 2.2063846E-02 2.0795329E-02 1.9590747E-02
 1.8449297E-02 1.7369734E-02 1.6350424E-02 1.5389448E-02 1.4484604E-02
 1.3633534E-02 1.2833710E-02 1.2082517E-02 1.1377276E-02 1.0715327E-02
 1.0094041E-02 9.5108394E-03 8.9632645E-03 8.4489807E-03 7.9657594E-03
 7.5115343E-03 7.0843883E-03 6.6825119E-03 6.3042589E-03 5.9481030E-03
 5.6126267E-03 5.2965200E-03 4.9985936E-03 4.7177123E-03 4.4528493E-03
 4.2030457E-03 3.9673978E-03 3.7450753E-03 3.5353007E-03 3.3373435E-03
 3.1505201E-03 2.9741914E-03 2.8077513E-03 2.6506407E-03 2.5023276E-03
 2.3623095E-03 2.2301136E-03 2.1053019E-03 1.9874531E-03 1.8761690E-03
 1.7710836E-03 1.6718501E-03 1.5781245E-03 1.4896058E-03 1.4059908E-03
 1.3270086E-03
 5.8379535E-02 5.3268868E-02 4.8399027E-02 4.3782301E-02 3.9427001E-02
 3.5337567E-02 3.1514943E-02 2.7956979E-02 2.4658807E-02 2.1613315E-02
 1.8811554E-02 1.6243173E-02 1.3896800E-02 1.1760346E-02 9.8213488E-03
 8.0672009E-03 6.4853476E-03 5.0634868E-03 3.7896771E-03 2.6524484E-03
 1.6408827E-03 7.4464944E-04 -4.5948655E-05 -7.3997711E-04 -1.3458614E-03
 -1.8714088E-03 -2.3238244E-03 -2.7097478E-03 -3.0352918E-03 -3.3060792E-03
 -3.5272932E-03 -3.7037227E-03 -3.8397976E-03 -3.9396291E-03 -4.0070396E-03
 -4.0455963E-03 -4.0586158E-03 -4.0491885E-03 -4.0201820E-03 -3.9742435E-03
 -3.9138179E-03 -3.8411350E-03 -3.7582300E-03 -3.6669453E-03 -3.5689261E-03
 -3.4656581E-03 -3.3584565E-03 -3.2484697E-03 -3.1367242E-03 -3.0241015E-03
 -2.9113656E-03 -2.7991813E-03 -2.6881031E-03 -2.5786066E-03 -2.4710903E-03
 -2.3658781E-03 -2.2632338E-03 -2.1633722E-03 -2.0664558E-03 -1.9726055E-03
 -1.8819104E-03 -1.7944257E-03 -1.7101754E-03 -1.6291671E-03 -1.5513870E-03
 -1.4768043E-03 -1.4053673E-03 -1.3370307E-03 -1.2717143E-03 -1.2093553E-03
 -1.1498665E-03
 5.5311333E-02 5.4666907E-02 5.3790260E-02 5.2708954E-02 5.1450826E-02
 5.0043363E-02 4.8513163E-02 4.6885479E-02 4.5183916E-02 4.3430157E-02
 4.1643865E-02 3.9842587E-02 3.8041770E-02 3.6254838E-02 3.4493256E-02
 3.2766677E-02 3.1083057E-02 2.9448872E-02 2.7869176E-02 2.6347820E-02
 2.4887582E-02 2.3490286E-02 2.2156926E-02 2.0887803E-02 1.9682599E-02
 1.8540470E-02 1.7460130E-02 1.6439924E-02 1.5477908E-02 1.4571858E-02
 1.3719395E-02 1.2917968E-02 1.2164968E-02 1.1457734E-02 1.0793617E-02
 1.0169988E-02 9.5843198E-03 9.0341717E-03 8.5172374E-03 8.0313291E-03
 7.5744051E-03 7.1445564E-03 6.7400136E-03 6.3591455E-03 6.0004382E-03
 5.6624790E-03 5.3439816E-03 5.0437450E-03 4.7606402E-03 4.4936524E-03
 4.2418116E-03 4.0042233E-03 3.7800493E-03 3.5685075E-03 3.3688669E-03
 3.1804426E-03 3.0025891E-03 2.8347033E-03 2.6762171E-03 2.5265936E-03
 2.3853267E-03 2.2519520E-03 2.1260146E-03 2.0070912E-03 1.8947937E-03
 1.7887397E-03 1.6885772E-03 1.5939756E-03 1.5046212E-03 1.4202107E-03
 1.3404740E-03
 5.8291916E-02 5.3178933E-02 4.8307028E-02 4.3688513E-02 3.9331708E-02
 3.5241053E-02 3.1417497E-02 2.7858891E-02 2.4560355E-02 2.1514770E-02
 1.8713176E-02 1.6145213E-02 1.3799497E-02 1.1663935E-02 9.7260494E-03
 7.9732221E-03 6.3929050E-03 4.9727801E-03 3.7009085E-03 2.5658112E-03
 1.5565754E-03 6.6286797E-04 -1.2501844E-04 -8.1614486E-04 -1.4189550E-03
 -1.9412567E-03 -2.3902766E-03 -2.7726768E-03 -3.0945954E-03 -3.3616922E-03
 -3.5791874E-03 -3.7519101E-03 -3.8843299E-03 -3.9805989E-03 -4.0445854E-03
 -4.0798816E-03 -4.0898290E-03 -4.0775393E-03 -4.0458883E-03 -3.9975317E-03
 -3.9349068E-03 -3.8602448E-03 -3.7755661E-03 -3.6826925E-03 -3.5832699E-03
 -3.4787641E-03 -3.3704676E-03 -3.2595280E-03 -3.1469488E-03 -3.0336019E-03
 -2.9202404E-03 -2.8075122E-03 -2.6959693E-03 -2.5860781E-03 -2.4782254E-03
 -2.3727270E-03 -2.2698494E-03 -2.1697937E-03 -2.0727166E-03 -1.9787422E-03
 -1.8879491E-03 -1.8003876E-03 -1.7160872E-03 -1.6350496E-03 -1.5572519E-03
 -1.4826674E-03 -1.4112488E-03 -1.3429336E-03 -1.2776518E-03 -1.2153371E-03
 -1.1558991E-03
 5.5447444E-02 5.4801773E-02 5.3923659E-02 5.2840710E-02 5.1580798E-02
 5.0171457E-02 4.8639331E-02 4.7009703E-02 4.5306209E-02 4.3550566E-02
 4.1762453E-02 3.9959438E-02 3.8156997E-02 3.6368545E-02 3.4605552E-02
 3.2877680E-02 3.1192895E-02 2.9557640E-02 2.7976977E-02 2.6454745E-02
 2.4993688E-02 2.3595620E-02 2.2261512E-02 2.0991631E-02 1.9785618E-02
 1.8642612E-02 1.7561294E-02 1.6539970E-02 1.5576662E-02 1.4669131E-02
 1.3814977E-02 1.3011650E-02 1.2256538E-02 1.1546978E-02 1.0880347E-02
 1.0254052E-02 9.6655861E-03 9.1125378E-03 8.5926354E-03 8.1037199E-03
 7.6437872E-03 7.2109480E-03 6.8034595E-03 6.4196968E-03 6.0581635E-03
 5.7174703E-03 5.3963331E-03 5.0935415E-03 4.8080012E-03 4.5386716E-03
 4.2845835E-03 4.0448559E-03 3.8186403E-03 3.6051548E-03 3.4036606E-03
 3.2134720E-03 3.0339379E-03 2.8644565E-03 2.7044499E-03 2.5533787E-03
 2.4107459E-03 2.2760611E-03 2.1488778E-03 2.0287768E-03 1.9153522E-03
 1.8082288E-03 1.7070491E-03 1.6114814E-03 1.5211977E-03 1.4359131E-03
 1.3553405E-03
 5.8193635E-02 5.3078067E-02 4.8203863E-02 4.3583356E-02 3.9224882E-02
 3.5132878E-02 3.1308308E-02 2.7749004E-02 2.4450088E-02 2.1404434E-02
 1.8603066E-02 1.6035615E-02 1.3690680E-02 1.1556164E-02 9.6195759E-03
 7.8682937E-03 6.2897499E-03 4.8716352E-03 3.6019976E-03 2.4693585E-03
 1.4628018E-03 5.7198503E-04 -2.1279807E-04 -9.0062112E-04 -1.4999312E-03
 -2.0185604E-03 -2.4637536E-03 -2.8422002E-03 -3.1600681E-03 -3.4230596E-03
 -3.6364333E-03 -3.8050655E-03 -3.9334726E-03 -4.0258495E-03 -4.0860991E-03
 -4.1178479E-03 -4.1244640E-03 -4.1090753E-03 -4.0745679E-03 -4.0235985E-03
 -3.9586010E-03 -3.8817953E-03 -3.7951951E-03 -3.7006128E-03 -3.5996721E-03
 -3.4938224E-03 -3.3843424E-03 -3.2723676E-03 -3.1588795E-03 -3.0447408E-03
 -2.9306957E-03 -2.8173767E-03 -2.7053249E-03 -2.5949951E-03 -2.4867693E-03
 -2.3809620E-03 -2.2778215E-03 -2.1775465E-03 -2.0802941E-03 -1.9861776E-03
 -1.8952707E-03 -1.8076261E-03 -1.7232666E-03 -1.6421879E-03 -1.5643735E-03
 -1.4897843E-03 -1.4183737E-03 -1.3500808E-03 -1.2848392E-03 -1.2225668E-03
 -1.1631800E-03
 5.5600639E-02 5.4953583E-02 5.4073837E-02 5.2989051E-02 5.1727161E-02
 5.0315734E-02 4.8781451E-02 4.7149651E-02 4.5444001E-02 4.3686252E-02
 4.1896105E-02 4.0091146E-02 3.8286872E-02 3.6496699E-02 3.4732118E-02
 3.3002783E-02 3.1316653E-02 2.9680170E-02 2.8098384E-02 2.6575100E-02
 2.5113063E-02 2.3714054E-02 2.2379007E-02 2.1108162E-02 1.9901136E-02
 1.8757012E-02 1.7674454E-02 1.6651724E-02 1.5686819E-02 1.4777482E-02
 1.3921295E-02 1.3115703E-02 1.2358100E-02 1.1645846E-02 1.0976332E-02
 1.0346987E-02 9.7553432E-03 9.1990326E-03 8.6758053E-03 8.1835398E-03
 7.7202548E-03 7.2840992E-03 6.8733431E-03 6.4863875E-03 6.1217481E-03
 5.7780412E-03 5.4539843E-03 5.1484029E-03 4.8601646E-03 4.5882510E-03
 4.3317075E-03 4.0896223E-03 3.8611565E-03 3.6455321E-03 3.4419938E-03
 3.2498632E-03 3.0684823E-03 2.8972402E-03 2.7355587E-03 2.5829019E-03
 2.4387517E-03 2.3026280E-03 2.1740799E-03 2.0526727E-03 1.9380066E-03
 1.8297076E-03 1.7274073E-03 1.6307681E-03 1.5394742E-03 1.4532240E-03
 1.3717237E-03
 5.8083400E-02 5.2964948E-02 4.8088189E-02 4.3465473E-02 3.9105140E-02
 3.5011660E-02 3.1185977E-02 2.7625928E-02 2.4326630E-02 2.1280937E-02
 1.8479869E-02 1.5913043E-02 1.3569043E-02 1.1435762E-02 9.5006954E-03
 7.7512087E-03 6.1747320E-03 4.7589452E-03 3.4918911E-03 2.3620888E-03
 1.3586088E-03 4.7111211E-04 -3.1012215E-04 -9.9417742E-04 -1.5895189E-03
 -2.1039925E-03 -2.5448769E-03 -2.9188893E-03 -3.2322388E-03 -3.4906701E-03
 -3.6994917E-03 -3.8636262E-03 -3.9876378E-03 -4.0757665E-03 -4.1319546E-03
 -4.1598608E-03 -4.1628759E-03 -4.1441424E-03 -4.1065533E-03 -4.0527689E-03
 -3.9852178E-03 -3.9061066E-03 -3.8174419E-03 -3.7210132E-03 -3.6184320E-03
 -3.5111320E-03 -3.4003751E-03 -3.2872707E-03 -3.1728023E-03 -3.0578077E-03
 -2.9430122E-03 -2.8290472E-03 -2.7164379E-03 -2.6056296E-03 -2.4970002E-03
 -2.3908447E-03 -2.2874125E-03 -2.1868974E-03 -2.0894457E-03 -1.9951672E-03
 -1.9041369E-03 -1.8163959E-03 -1.7319631E-03 -1.6508381E-03 -1.5729968E-03
 -1.4983995E-03 -1.4269948E-03 -1.3587259E-03 -1.2935129E-03 -1.2312817E-03
 -1.1719543E-03
 5.5773113E-02 5.5124529E-02 5.4242969E-02 5.3156152E-02 5.1892046E-02
 5.0478287E-02 4.8941616E-02 4.7307391E-02 4.5599330E-02 4.3839220E-02
 4.2046789E-02 4.0239654E-02 3.8433317E-02 3.6641210E-02 3.4874830E-02
 3.3143822E-02 3.1456154E-02 2.9818244E-02 2.8235128E-02 2.6710598E-02
 2.5247376E-02 2.3847200E-02 2.2510979E-02 2.1238932E-02 2.0030605E-02
 1.8885070E-02 1.7800942E-02 1.6776457E-02 1.5809588E-02 1.4898054E-02
 1.4039428E-02 1.3231148E-02 1.2470630E-02 1.1755245E-02 1.1082411E-02
 1.0449592E-02 9.8543586E-03 9.2943665E-03 8.7674158E-03 8.2714129E-03
 7.8044091E-03 7.3645767E-03 6.9502103E-03 6.5597328E-03 6.1916616E-03
 5.8446391E-03 5.5173868E-03 5.2087139E-03 4.9175229E-03 4.6427832E-03
 4.3835249E-03 4.1388515E-03 3.9079175E-03 3.6899350E-03 3.4841581E-03
 3.2898944E-03 3.1064793E-03 2.9333045E-03 2.7697876E-03 2.6153722E-03
 2.4695576E-03 2.3318513E-03 2.2017958E-03 2.0789602E-03 1.9629300E-03
 1.8533345E-03 1.7498002E-03 1.6519903E-03 1.5595842E-03 1.4722669E-03
 1.3897640E-03
 5.7959765E-02 5.2838102E-02 4.7958497E-02 4.3333329E-02 3.8970955E-02
 3.4875844E-02 3.1048955E-02 2.7488122E-02 2.4188440E-02 2.1142766E-02
 1.8342094E-02 1.5776034E-02 1.3433154E-02 1.1301332E-02 9.3680490E-03
 7.6206671E-03 6.0465969E-03 4.6335147E-03 3.3694541E-03 2.2429244E-03
 1.2429898E-03 3.5930067E-04 -4.1787422E-04 -1.0976389E-03 -1.6884726E-03
 -2.1982556E-03 -2.6342927E-03 -3.0033442E-03 -3.3116664E-03 -3.5650488E-03
 -3.7688536E-03 -3.9280546E-03 -4.0472690E-03 -4.1307802E-03 -4.1825660E-03
 -4.2063175E-03 -4.2054504E-03 -4.1831178E-03 -4.1422192E-03 -4.0854155E-03
 -4.0151202E-03 -3.9335391E-03 -3.8426537E-03 -3.7442411E-03 -3.6398994E-03
 -3.5310357E-03 -3.4188991E-03 -3.3045828E-03 -3.1890492E-03 -3.0731189E-03
 -2.9575170E-03 -2.8428470E-03 -2.7296320E-03 -2.6183012E-03 -2.5092217E-03
 -2.4026849E-03 -2.2989323E-03 -2.1981478E-03 -2.1004735E-03 -2.0060167E-03
 -1.9148423E-03 -1.8269895E-03 -1.7424767E-03 -1.6612913E-03 -1.5834169E-03
 -1.5088029E-03 -1.4374028E-03 -1.3691490E-03 -1.3039645E-03 -1.2417808E-03
 -1.1824992E-03
 5.5967368E-02 5.5317096E-02 5.4433536E-02 5.3344455E-02 5.2077889E-02
 5.0661545E-02 4.9122192E-02 4.7485262E-02 4.5774516E-02 4.4011768E-02
 4.2216782E-02 4.0407196E-02 3.8598534E-02 3.6804240E-02 3.5035811E-02
 3.3302892E-02 3.1613439E-02 2.9973865E-02 2.8389186E-02 2.6863165E-02
 2.5398491E-02 2.3996871E-02 2.2659194E-02 2.1385605E-02 2.0175641E-02
 1.9028330E-02 1.7942235E-02 1.6915573E-02 1.5946290E-02 1.5032085E-02
 1.4170533E-02 1.3359082E-02 1.2595144E-02 1.1876134E-02 1.1199491E-02
 1.0562716E-02 9.9634212E-03 9.3992939E-03 8.8681793E-03 8.3680172E-03
 7.8968853E-03 7.4529783E-03 7.0346287E-03 6.6402643E-03 6.2684217E-03
 5.9177494E-03 5.5869757E-03 5.2749258E-03 4.9804896E-03 4.7026360E-03
 4.4404068E-03 4.1928957E-03 3.9592520E-03 3.7386834E-03 3.5304476E-03
 3.3338368E-03 3.1481921E-03 2.9728981E-03 2.8073546E-03 2.6510237E-03
 2.5033834E-03 2.3639351E-03 2.2322275E-03 2.1078193E-03 1.9902973E-03
 1.8792814E-03 1.7743915E-03 1.6753009E-03 1.5816697E-03 1.4931957E-03
 1.4095923E-03
 5.7821125E-02 5.2695889E-02 4.7813121E-02 4.3185238E-02 3.8820613E-02
 3.4723725E-02 3.0895539E-02 2.7333874E-02 2.4033828E-02 2.0988241E-02
 1.8188093E-02 1.5622973E-02 1.3281440E-02 1.1151351E-02 9.2201717E-03
 7.4752537E-03 5.9039937E-03 4.4940570E-03 3.2334642E-03 2.1107164E-03
 1.1148676E-03 2.3555108E-04 -5.3698715E-04 -1.2118625E-03 -1.7975896E-03
 -2.3020818E-03 -2.7326823E-03 -3.0961980E-03 -3.3989369E-03 -3.6467435E-03
 -3.8450379E-03 -3.9988477E-03 -4.1128406E-03 -4.1913441E-03 -4.2383769E-03
 -4.2576576E-03 -4.2526205E-03 -4.2264285E-03 -4.1819876E-03 -4.1219462E-03
 -4.0487209E-03 -3.9644958E-03 -3.8712339E-03 -3.7707004E-03 -3.6644670E-03
 -3.5539260E-03 -3.4403072E-03 -3.3246842E-03 -3.2079984E-03 -3.0910661E-03
 -2.9745859E-03 -2.8591512E-03 -2.7452719E-03 -2.6333716E-03 -2.5238006E-03
 -2.4168461E-03 -2.3127396E-03 -2.2116562E-03 -2.1137369E-03 -2.0190747E-03
 -1.9277370E-03 -1.8397603E-03 -1.7551490E-03 -1.6738959E-03 -1.5959729E-03
 -1.5213354E-03 -1.4499328E-03 -1.3816869E-03 -1.3165306E-03 -1.2543803E-03
 -1.1951466E-03
 5.6186266E-02 5.5534132E-02 5.4648358E-02 5.3556763E-02 5.2287474E-02
 5.0868243E-02 4.9325906E-02 4.7685962E-02 4.5972206E-02 4.4206504E-02
 4.2408649E-02 4.0596306E-02 3.8785018E-02 3.6988243E-02 3.5217471E-02
 3.3482358E-02 3.1790841E-02 3.0149309E-02 2.8562760E-02 2.7034936E-02
 2.5568493E-02 2.4165092E-02 2.2825571E-02 2.1550048E-02 2.0338029E-02
 1.9188467E-02 1.8099921E-02 1.7070573E-02 1.6098330E-02 1.5180910E-02
 1.4315867E-02 1.3500664E-02 1.2732747E-02 1.2009541E-02 1.1328534E-02
 1.0687259E-02 1.0083371E-02 9.5146056E-03 8.9788400E-03 8.4740445E-03
 7.9983352E-03 7.5499336E-03 7.1271909E-03 6.7285388E-03 6.3525522E-03
 5.9978720E-03 5.6632399E-03 5.3474810E-03 5.0494792E-03 4.7682258E-03
 4.5027365E-03 4.2521106E-03 4.0155044E-03 3.7921029E-03 3.5811667E-03
 3.3819901E-03 3.1939016E-03 3.0162784E-03 2.8485227E-03 2.6900868E-03
 2.5404436E-03 2.3990974E-03 2.2655798E-03 2.1394442E-03 2.0202899E-03
 1.9077199E-03 1.8013563E-03 1.7008610E-03 1.6058941E-03 1.5161603E-03
 1.4313539E-03
 5.7665665E-02 5.2536454E-02 4.7650188E-02 4.3019306E-02 3.8652211E-02
 3.4553386E-02 3.0723810E-02 2.7161293E-02 2.3860920E-02 2.0815518E-02
 1.8016055E-02 1.5452098E-02 1.3112186E-02 1.0984159E-02 9.0554683E-03
 7.3134420E-03 5.7454677E-03 4.3391944E-03 3.0826309E-03 1.9642580E-03
 9.7311230E-04 9.8807657E-05 -6.6842634E-04 -1.3377452E-03 -1.9176975E-03
 -2.4162321E-03 -2.8407474E-03 -3.1981030E-03 -3.4946627E-03 -3.7363365E-03
 -3.9285976E-03 -4.0765335E-03 -4.1848631E-03 -4.2579621E-03 -4.2998795E-03
 -4.3143644E-03 -4.3048607E-03 -4.2745480E-03 -4.2263228E-03 -4.1628345E-03
 -4.0864851E-03 -3.9994377E-03 -3.9036409E-03 -3.8008417E-03 -3.6925876E-03
 -3.5802512E-03 -3.4650413E-03 -3.3480146E-03 -3.2300972E-03 -3.1120770E-03
 -2.9946472E-03 -2.8783849E-03 -2.7637861E-03 -2.6512649E-03 -2.5411593E-03
 -2.4337480E-03 -2.3292494E-03 -2.2278386E-03 -2.1296428E-03 -2.0347559E-03
 -1.9432325E-03 -1.8551064E-03 -1.7703811E-03 -1.6890467E-03 -1.6110654E-03
 -1.5363931E-03 -1.4649724E-03 -1.3967280E-03 -1.3315921E-03 -1.2694704E-03
 -1.2102807E-03
 5.6433063E-02 5.5778880E-02 5.4890648E-02 5.3796280E-02 5.2523959E-02
 5.1101513E-02 4.9555860E-02 4.7912549E-02 4.6195425E-02 4.4426411E-02
 4.2625338E-02 4.0809888E-02 3.8995620E-02 3.7196022E-02 3.5422571E-02
 3.3684913E-02 3.1990979E-02 3.0347137E-02 2.8758358E-02 2.7228339E-02
 2.5759704E-02 2.4354080E-02 2.3012266E-02 2.1734314E-02 2.0519692E-02
 1.9367326E-02 1.8275740E-02 1.7243074E-02 1.6267247E-02 1.5345948E-02
 1.4476753E-02 1.3657147E-02 1.2884584E-02 1.2156543E-02 1.1470544E-02
 1.0824171E-02 1.0215111E-02 9.6411407E-03 9.1001811E-03 8.5902438E-03
 8.1094652E-03 7.6560955E-03 7.2285021E-03 6.8251449E-03 6.4446018E-03
 6.0855257E-03 5.7466622E-03 5.4268362E-03 5.1249429E-03 4.8399549E-03
 4.5709028E-03 4.3168752E-03 4.0770140E-03 3.8505234E-03 3.6366391E-03
 3.4346539E-03 3.2438906E-03 3.0637197E-03 2.8935487E-03 2.7328122E-03
 2.5809784E-03 2.4375499E-03 2.3020566E-03 2.1740478E-03 2.0531092E-03
 1.9388407E-03 1.8308754E-03 1.7288511E-03 1.6324393E-03 1.5413279E-03
 1.4552209E-03
 5.7491384E-02 5.2357763E-02 4.7467619E-02 4.2833436E-02 3.8463637E-02
 3.4362726E-02 3.0531673E-02 2.6968289E-02 2.3667658E-02 2.0622578E-02
 1.7824003E-02 1.5261482E-02 1.2923531E-02 1.0797963E-02 8.8722156E-03
 7.1335961E-03 5.5694715E-03 4.1674729E-03 2.9155836E-03 1.8022720E-03
 8.1654493E-04 -5.2008541E-05 -8.1319985E-04 -1.4762112E-03 -2.0496417E-03
 -2.5414925E-03 -2.9592193E-03 -3.3097402E-03 -3.5994882E-03 -3.8344320E-03
 -4.0201149E-03 -4.1616797E-03 -4.2638937E-03 -4.3311771E-03 -4.3676104E-03
 -4.3769670E-03 -4.3627028E-03 -4.3280004E-03 -4.2757532E-03 -4.2086015E-03
 -4.1289264E-03 -4.0388838E-03 -3.9403955E-03 -3.8351824E-03 -3.7247767E-03
 -3.6105253E-03 -3.4936166E-03 -3.3750876E-03 -3.2558420E-03 -3.1366597E-03
 -3.0182044E-03 -2.9010479E-03 -2.7856727E-03 -2.6724758E-03 -2.5617837E-03
 -2.4538708E-03 -2.3489452E-03 -2.2471717E-03 -2.1486692E-03 -2.0535269E-03
 -1.9617956E-03 -1.8735009E-03 -1.7886419E-03 -1.7072026E-03 -1.6291502E-03
 -1.5544292E-03 -1.4829750E-03 -1.4147249E-03 -1.3495920E-03 -1.2874900E-03
 -1.2283297E-03
 5.6711465E-02 5.6055039E-02 5.5164106E-02 5.4066658E-02 5.2790970E-02
 5.1364955E-02 4.9815599E-02 4.8168521E-02 4.6447635E-02 4.4674911E-02
 4.2870197E-02 4.1051235E-02 3.9233591E-02 3.7430760E-02 3.5654210E-02
 3.3913594E-02 3.2216817E-02 3.0570228E-02 2.8978750E-02 2.7446054E-02
 2.5974724E-02 2.4566326E-02 2.3221619E-02 2.1940624E-02 2.0722752E-02
 1.9566899E-02 1.8471545E-02 1.7434830E-02 1.6454656E-02 1.5528717E-02
 1.4654613E-02 1.3829838E-02 1.3051888E-02 1.2318289E-02 1.1626598E-02
 1.0974441E-02 1.0359558E-02 9.7797709E-03 9.2330230E-03 8.7173786E-03
 8.2309926E-03 7.7721425E-03 7.3392191E-03 6.9306931E-03 6.5451497E-03
 6.1812536E-03 5.8377557E-03 5.5134818E-03 5.2073305E-03 4.9182656E-03
 4.6453159E-03 4.3875687E-03 4.1441647E-03 3.9142924E-03 3.6971865E-03
 3.4921337E-03 3.2984556E-03 3.1155110E-03 2.9426976E-03 2.7794514E-03
 2.6252342E-03 2.4795423E-03 2.3418935E-03 2.2118420E-03 2.0889665E-03
 1.9728590E-03 1.8631418E-03 1.7594666E-03 1.6614906E-03 1.5689024E-03
 1.4813932E-03
 5.7296030E-02 5.2157521E-02 4.7263104E-02 4.2625301E-02 3.8252559E-02
 3.4149401E-02 3.0316805E-02 2.6752582E-02 2.3451786E-02 2.0407209E-02
 1.7609792E-02 1.5049045E-02 1.2713466E-02 1.0590844E-02 8.6685913E-03
 6.9339862E-03 5.3743743E-03 3.9773602E-03 2.7309044E-03 1.6234402E-03
 6.4394582E-04 -2.1802649E-04 -9.7233069E-04 -1.6282045E-03 -2.1942954E-03
 -2.6786712E-03 -3.0888482E-03 -3.4318180E-03 -3.7140816E-03 -3.9416822E-03
 -4.1202195E-03 -4.2548976E-03 -4.3505370E-03 -4.4115884E-03 -4.4421675E-03
 -4.4460632E-03 -4.4267410E-03 -4.3873796E-03 -4.3308730E-03 -4.2598397E-03
 -4.1766465E-03 -4.0834267E-03 -3.9820815E-03 -3.8743117E-03 -3.7616184E-03
 -3.6453314E-03 -3.5266136E-03 -3.4064793E-03 -3.2858169E-03 -3.1653836E-03
 -3.0458309E-03 -2.9277157E-03 -2.8114961E-03 -2.6975647E-03 -2.5862397E-03
 -2.4777772E-03 -2.3723789E-03 -2.2702042E-03 -2.1713637E-03 -2.0759348E-03
 -1.9839660E-03 -1.8954750E-03 -1.8104616E-03 -1.7289006E-03 -1.6507502E-03
 -1.5759597E-03 -1.5044634E-03 -1.4361823E-03 -1.3710376E-03 -1.3089351E-03
 -1.2497868E-03
 5.7025734E-02 5.6366846E-02 5.5472929E-02 5.4372083E-02 5.3092662E-02
 5.1662676E-02 5.0109189E-02 4.8457906E-02 4.6732798E-02 4.4955887E-02
 4.3147076E-02 4.1324127E-02 3.9502624E-02 3.7696064E-02 3.5915930E-02
 3.4171846E-02 3.2471702E-02 3.0821806E-02 2.9227054E-02 2.7691079E-02
 2.6216399E-02 2.4804549E-02 2.3456233E-02 2.2171421E-02 2.0949498E-02
 1.9789312E-02 1.8689342E-02 1.7647700E-02 1.6662292E-02 1.5730832E-02
 1.4850928E-02 1.4020124E-02 1.3235955E-02 1.2495981E-02 1.1797813E-02
 1.1139127E-02 1.0517705E-02 9.9314097E-03 9.3782358E-03 8.8562611E-03
 8.3636809E-03 7.8987954E-03 7.4600102E-03 7.0458101E-03 6.6547892E-03
 6.2856171E-03 5.9370524E-03 5.6079240E-03 5.2971155E-03 5.0035976E-03
 4.7263997E-03 4.4645974E-03 4.2173243E-03 3.9837677E-03 3.7631537E-03
 3.5547635E-03 3.3579050E-03 3.1719403E-03 2.9962587E-03 2.8302814E-03
 2.6734723E-03 2.5253193E-03 2.3853385E-03 2.2530740E-03 2.1280975E-03
 2.0100002E-03 1.8984027E-03 1.7929454E-03 1.6932796E-03 1.5990989E-03
 1.5100907E-03
 5.7077110E-02 5.1933210E-02 4.7034089E-02 4.2392325E-02 3.8016401E-02
 3.3910856E-02 3.0076670E-02 2.6511649E-02 2.3210848E-02 2.0167025E-02
 1.7371094E-02 1.4812543E-02 1.2479845E-02 1.0360755E-02 8.4426505E-03
 6.7127836E-03 5.1584668E-03 3.7672711E-03 2.5271217E-03 1.4264096E-03
 4.5407578E-04 -4.0038358E-04 -1.1468710E-03 -1.7946861E-03 -2.3525492E-03
 -2.8285924E-03 -3.2304130E-03 -3.5650767E-03 -3.8391619E-03 -4.0587741E-03
 -4.2295880E-03 -4.3568606E-03 -4.4454527E-03 -4.4998568E-03 -4.5242119E-03
 -4.5223129E-03 -4.4976380E-03 -4.4533545E-03 -4.3923459E-03 -4.3172161E-03
 -4.2303102E-03 -4.1337376E-03 -4.0293755E-03 -3.9188978E-03 -3.8037833E-03
 -3.6853375E-03 -3.5646965E-03 -3.4428558E-03 -3.3206816E-03 -3.1989147E-03
 -3.0781853E-03 -2.9590325E-03 -2.8419069E-03 -2.7271840E-03 -2.6151703E-03
 -2.5061083E-03 -2.4001952E-03 -2.2975754E-03 -2.1983536E-03 -2.1026037E-03
 -2.0103646E-03 -1.9216504E-03 -1.8364502E-03 -1.7547376E-03 -1.6764678E-03
 -1.6015826E-03 -1.5300137E-03 -1.4616805E-03 -1.3965002E-03 -1.3343747E-03
 -1.2752091E-03
 5.7380736E-02 5.6719162E-02 5.5821974E-02 5.4717362E-02 5.3433802E-02
 5.1999394E-02 5.0441299E-02 4.8785303E-02 4.7055449E-02 4.5273814E-02
 4.3460354E-02 4.1632850E-02 3.9806921E-02 3.7996050E-02 3.6211722E-02
 3.4463547E-02 3.2759368E-02 3.1105485E-02 2.9506737E-02 2.7966706E-02
 2.6487876E-02 2.5071723E-02 2.3718895E-02 2.2429341E-02 2.1202385E-02
 2.0036876E-02 1.8931262E-02 1.7883660E-02 1.6891992E-02 1.5953982E-02
 1.5067285E-02 1.4229480E-02 1.3438145E-02 1.2690885E-02 1.1985373E-02
 1.1319326E-02 1.0690574E-02 1.0097028E-02 9.5367096E-03 9.0077333E-03
 8.5083218E-03 8.0367932E-03 7.5915670E-03 7.1711466E-03 6.7741345E-03
 6.3992026E-03 6.0451045E-03 5.7106670E-03 5.3947885E-03 5.0964300E-03
 4.8146015E-03 4.5483792E-03 4.2968979E-03 4.0593329E-03 3.8349037E-03
 3.6228839E-03 3.4225753E-03 3.2333329E-03 3.0545325E-03 2.8856029E-03
 2.7259896E-03 2.5751709E-03 2.4326683E-03 2.2980112E-03 2.1707718E-03
 2.0505337E-03 1.9369139E-03 1.8295435E-03 1.7280797E-03 1.6321952E-03
 1.5415869E-03
 5.6831863E-02 5.1682014E-02 4.6777740E-02 4.2131670E-02 3.7752327E-02
 3.3644266E-02 2.9808488E-02 2.6242781E-02 2.2942180E-02 1.9899437E-02
 1.7105423E-02 1.4549602E-02 1.2220397E-02 1.0105543E-02 8.1923734E-03
 6.4681005E-03 4.9199946E-03 3.5355820E-03 2.3027414E-03 1.2098149E-03
 2.4568068E-04 -6.0022261E-04 -1.3378664E-03 -1.9766276E-03 -2.5253007E-03
 -2.9921059E-03 -3.3847168E-03 -3.7102904E-03 -3.9754738E-03 -4.1864514E-03
 -4.3489560E-03 -4.4682976E-03 -4.5493795E-03 -4.5967246E-03 -4.6144831E-03
 -4.6064658E-03 -4.5761443E-03 -4.5266775E-03 -4.4609313E-03 -4.3814932E-03
 -4.2906818E-03 -4.1905800E-03 -4.0830406E-03 -3.9697094E-03 -3.8520379E-03
 -3.7313052E-03 -3.6086282E-03 -3.4849795E-03 -3.3611958E-03 -3.2380007E-03
 -3.1160139E-03 -2.9957525E-03 -2.8776519E-03 -2.7620718E-03 -2.6493084E-03
 -2.5395947E-03 -2.4331154E-03 -2.3300028E-03 -2.2303604E-03 -2.1342475E-03
 -2.0416980E-03 -1.9527219E-03 -1.8673012E-03 -1.7854031E-03 -1.7069798E-03
 -1.6319660E-03 -1.5602910E-03 -1.4918705E-03 -1.4266160E-03 -1.3644305E-03
 -1.3052132E-03
 5.7782076E-02 5.7117574E-02 5.6216784E-02 5.5108018E-02 5.3819865E-02
 5.2380536E-02 5.0817285E-02 4.9156003E-02 4.7420796E-02 4.5633812E-02
 4.3815050E-02 4.1982323E-02 4.0151265E-02 3.8335361E-02 3.6546092E-02
 3.4793042E-02 3.3084024E-02 3.1425286E-02 2.9821631E-02 2.8276596E-02
 2.6792597E-02 2.5371077E-02 2.4012649E-02 2.2717206E-02 2.1484055E-02
 2.0312032E-02 1.9199569E-02 1.8144812E-02 1.7145690E-02 1.6199974E-02
 1.5305341E-02 1.4459432E-02 1.3659872E-02 1.2904333E-02 1.2190512E-02
 1.1516191E-02 1.0879250E-02 1.0277631E-02 9.7093927E-03 9.1726854E-03
 8.6657479E-03 8.1869215E-03 7.7346354E-03 7.3074107E-03 6.9038440E-03
 6.5226178E-03 6.1624865E-03 5.8222795E-03 5.5008759E-03 5.1972345E-03
 4.9103750E-03 4.6393620E-03 4.3833139E-03 4.1413945E-03 3.9128275E-03
 3.6968731E-03 3.4928299E-03 3.3000370E-03 3.1178705E-03 2.9457461E-03
 2.7830999E-03 2.6294179E-03 2.4841996E-03 2.3469757E-03 2.2173084E-03
 2.0947771E-03 1.9789962E-03 1.8695862E-03 1.7662046E-03 1.6685156E-03
 1.5762121E-03
 5.6557223E-02 5.1400848E-02 4.6490952E-02 4.1840233E-02 3.7457246E-02
 3.3346590E-02 2.9509256E-02 2.5943032E-02 2.2642938E-02 1.9601692E-02
 1.6810134E-02 1.4257689E-02 1.1932744E-02 9.8229749E-03 7.9156728E-03
 6.1979941E-03 4.6571665E-03 3.2806480E-03 2.0562615E-03 9.7228028E-04
 1.7510998E-05 -8.1868761E-04 -1.5463729E-03 -2.1750052E-03 -2.7134712E-03
 -3.1700828E-03 -3.5526077E-03 -3.8682795E-03 -4.1238330E-03 -4.3255184E-03
 -4.4791298E-03 -4.5900233E-03 -4.6631359E-03 -4.7030114E-03 -4.7138189E-03
 -4.6993615E-03 -4.6631084E-03 -4.6082018E-03 -4.5374888E-03 -4.4535319E-03
 -4.3586260E-03 -4.2548208E-03 -4.1439454E-03 -4.0276111E-03 -3.9072502E-03
 -3.7841089E-03 -3.6592800E-03 -3.5337107E-03 -3.4082194E-03 -3.2835139E-03
 -3.1601810E-03 -3.0387295E-03 -2.9195794E-03 -2.8030747E-03 -2.6895001E-03
 -2.5790748E-03 -2.4719706E-03 -2.3683149E-03 -2.2681989E-03 -2.1716750E-03
 -2.0787725E-03 -1.9894855E-03 -1.9037981E-03 -1.8216706E-03 -1.7430465E-03
 -1.6678608E-03 -1.5960323E-03 -1.5274785E-03 -1.4620990E-03 -1.3998029E-03
 -1.3404803E-03
 5.8236197E-02 5.7568517E-02 5.6663781E-02 5.5550426E-02 5.4257166E-02
 5.2812338E-02 5.1243316E-02 4.9576070E-02 4.7834799E-02 4.6041723E-02
 4.4216875E-02 4.2378113E-02 4.0541079E-02 3.8719267E-02 3.6924120E-02
 3.5165213E-02 3.3450324E-02 3.1785648E-02 3.0175954E-02 2.8624717E-02
 2.7134309E-02 2.5706129E-02 2.4340753E-02 2.3038045E-02 2.1797311E-02
 2.0617368E-02 1.9496663E-02 1.8433360E-02 1.7425433E-02 1.6470689E-02
 1.5566848E-02 1.4711613E-02 1.3902659E-02 1.3137708E-02 1.2414525E-02
 1.1730944E-02 1.1084863E-02 1.0474276E-02 9.8972805E-03 9.3520423E-03
 8.8368300E-03 8.3500007E-03 7.8899888E-03 7.4553220E-03 7.0446054E-03
 6.6565219E-03 6.2898197E-03 5.9433253E-03 5.6159222E-03 5.3065540E-03
 5.0142393E-03 4.7380193E-03 4.4770185E-03 4.2303950E-03 3.9973548E-03
 3.7771501E-03 3.5690677E-03 3.3724485E-03 3.1866545E-03 3.0110904E-03
 2.8451954E-03 2.6884365E-03 2.5403069E-03 2.4003391E-03 2.2680827E-03
 2.1431118E-03 2.0250329E-03 1.9134643E-03 1.8080524E-03 1.7084650E-03
 1.6143833E-03
 5.6249816E-02 5.1086310E-02 4.6170320E-02 4.1514613E-02 3.7127808E-02
 3.3014514E-02 2.9175734E-02 2.5609257E-02 2.2310078E-02 1.9270878E-02
 1.6482461E-02 1.3934198E-02 1.1614421E-02 9.5107527E-03 7.6104207E-03
 5.9005199E-03 4.3681976E-03 3.0008464E-03 1.7862028E-03 7.1245944E-04
 -2.3166824E-04 -1.0569169E-03 -1.7734419E-03 -2.3908082E-03 -2.9180038E-03
 -3.3634380E-03 -3.7349721E-03 -4.0399320E-03 -4.2851246E-03 -4.4768690E-03
 -4.6210131E-03 -4.7229477E-03 -4.7876458E-03 -4.8196609E-03 -4.8231669E-03
 -4.8019597E-03 -4.7594965E-03 -4.6989052E-03 -4.6230014E-03 -4.5343218E-03
 -4.4351318E-03 -4.3274523E-03 -4.2130826E-03 -4.0936032E-03 -3.9704149E-03
 -3.8447399E-03 -3.7176420E-03 -3.5900462E-03 -3.4627477E-03 -3.3364284E-03
 -3.2116624E-03 -3.0889406E-03 -2.9686631E-03 -2.8511609E-03 -2.7367028E-03
 -2.6254964E-03 -2.5177076E-03 -2.4134472E-03 -2.3127974E-03 -2.2158041E-03
 -2.1224872E-03 -2.0328343E-03 -1.9468247E-03 -1.8644070E-03 -1.7855249E-03
 -1.7101030E-03 -1.6380579E-03 -1.5693004E-03 -1.5037317E-03 -1.4412454E-03
 -1.3817335E-03
 5.8750536E-02 5.8079418E-02 5.7170350E-02 5.6051917E-02 5.4752983E-02
 5.3301997E-02 5.1726468E-02 5.0052471E-02 4.8304297E-02 4.6504226E-02
 4.4672351E-02 4.2826559E-02 4.0982496E-02 3.9153654E-02 3.7351478E-02
 3.5585485E-02 3.3863429E-02 3.2191474E-02 3.0574312E-02 2.9015392E-02
 2.7517043E-02 2.6080633E-02 2.4706688E-02 2.3395091E-02 2.2145122E-02
 2.0955618E-02 1.9825062E-02 1.8751638E-02 1.7733363E-02 1.6768098E-02
 1.5853630E-02 1.4987711E-02 1.4168071E-02 1.3392500E-02 1.2658796E-02
 1.1964846E-02 1.1308602E-02 1.0688092E-02 1.0101419E-02 9.5467968E-03
 9.0225004E-03 8.5268971E-03 8.0584390E-03 7.6156529E-03 7.1971486E-03
 6.8016043E-03 6.4277635E-03 6.0744481E-03 5.7405340E-03 5.4249619E-03
 5.1267277E-03 4.8448890E-03 4.5785373E-03 4.3268288E-03 4.0889620E-03
 3.8641803E-03 3.6517580E-03 3.4510277E-03 3.2613394E-03 3.0820952E-03
 2.9127202E-03 2.7526757E-03 2.6014491E-03 2.4585640E-03 2.3235581E-03
 2.1960069E-03 2.0755003E-03 1.9616594E-03 1.8541198E-03 1.7525419E-03
 1.6565996E-03
 5.5905957E-02 5.0734695E-02 4.5812145E-02 4.1151155E-02 3.6760386E-02
 3.2644495E-02 2.8804492E-02 2.5238145E-02 2.1940425E-02 1.8903978E-02
 1.6119547E-02 1.3576448E-02 1.1262947E-02 9.1665853E-03 7.2745159E-03
 5.5737481E-03 4.0513403E-03 2.6945849E-03 1.4911252E-03 4.2904163E-04
 -5.0305779E-04 -1.3160254E-03 -2.0201269E-03 -2.6250435E-03 -3.1398726E-03
 -3.5731299E-03 -3.9327727E-03 -4.2262115E-03 -4.4603269E-03 -4.6414970E-03
 -4.7756145E-03 -4.8681041E-03 -4.9239569E-03 -4.9477345E-03 -4.9436041E-03
 -4.9153524E-03 -4.8664166E-03 -4.7998950E-03 -4.7185854E-03 -4.6249847E-03
 -4.5213304E-03 -4.4096112E-03 -4.2915898E-03 -4.1688210E-03 -4.0426692E-03
 -3.9143306E-03 -3.7848477E-03 -3.6551133E-03 -3.5259000E-03 -3.3978708E-03
 -3.2715816E-03 -3.1474950E-03 -3.0260058E-03 -2.9074233E-03 -2.7920050E-03
 -2.6799426E-03 -2.5713914E-03 -2.4664530E-03 -2.3651980E-03 -2.2676636E-03
 -2.1738582E-03 -2.0837665E-03 -1.9973558E-03 -1.9145716E-03 -1.8353496E-03
 -1.7596077E-03 -1.6872601E-03 -1.6182048E-03 -1.5523442E-03 -1.4895626E-03
 -1.4297559E-03
 5.9333716E-02 5.8658868E-02 5.7745047E-02 5.6620989E-02 5.5315703E-02
 5.3857800E-02 5.2274905E-02 5.0593212E-02 4.8837110E-02 4.7028955E-02
 4.5188881E-02 4.3334812E-02 4.1482408E-02 3.9645161E-02 3.7834473E-02
 3.6059860E-02 3.4329027E-02 3.2648079E-02 3.1021707E-02 2.9453285E-02
 2.7945127E-02 2.6498571E-02 2.5114153E-02 2.3791738E-02 2.2530619E-02
 2.1329675E-02 2.0187411E-02 1.9102080E-02 1.8071730E-02 1.7094297E-02
 1.6167620E-02 1.5289516E-02 1.4457777E-02 1.3670244E-02 1.2924766E-02
 1.2219273E-02 1.1551751E-02 1.0920255E-02 1.0322934E-02 9.7580012E-03
 9.2237489E-03 8.7185577E-03 8.2408823E-03 7.7892481E-03 7.3622726E-03
 6.9586202E-03 6.5770335E-03 6.2163272E-03 5.8753681E-03 5.5530882E-03
 5.2484707E-03 4.9605607E-03 4.6884487E-03 4.4312701E-03 4.1882163E-03
 3.9585214E-03 3.7414501E-03 3.5363152E-03 3.3424711E-03 3.1593032E-03
 2.9862237E-03 2.8226906E-03 2.6681831E-03 2.5222092E-03 2.3843073E-03
 2.2540390E-03 2.1309888E-03 2.0147655E-03 1.9050019E-03 1.8013491E-03
 1.7034755E-03
 5.5521626E-02 5.0341997E-02 4.5412447E-02 4.0745921E-02 3.6351148E-02
 3.2232806E-02 2.8391916E-02 2.4826238E-02 2.1530703E-02 1.8497895E-02
 1.5718507E-02 1.3181766E-02 1.0875856E-02 8.7882178E-03 6.9059115E-03
 5.2158306E-03 3.7049183E-03 2.3603537E-03 1.1696491E-03 1.2076002E-04
 -7.9783681E-04 -1.5971222E-03 -2.2874933E-03 -2.8787528E-03 -3.3801123E-03
 -3.8002010E-03 -4.1470616E-03 -4.4281925E-03 -4.6505365E-03 -4.8205266E-03
 -4.9440875E-03 -5.0266706E-03 -5.0732717E-03 -5.0884527E-03 -5.0763679E-03
 -5.0407900E-03 -4.9851290E-03 -4.9124528E-03 -4.8255250E-03 -4.7268118E-03
 -4.6185157E-03 -4.5025907E-03 -4.3807654E-03 -4.2545605E-03 -4.1253110E-03
 -3.9941836E-03 -3.8621922E-03 -3.7302016E-03 -3.5989662E-03 -3.4691202E-03
 -3.3412026E-03 -3.2156594E-03 -3.0928601E-03 -2.9731055E-03 -2.8566350E-03
 -2.7436269E-03 -2.6342238E-03 -2.5285184E-03 -2.4265677E-03 -2.3283979E-03
 -2.2340135E-03 -2.1433863E-03 -2.0564739E-03 -1.9732169E-03 -1.8935438E-03
 -1.8173639E-03 -1.7445878E-03 -1.6751103E-03 -1.6088216E-03 -1.5456083E-03
 -1.4853515E-03
 5.9995703E-02 5.9316821E-02 5.8397766E-02 5.7267442E-02 5.5955026E-02
 5.4489288E-02 5.2897993E-02 5.1207457E-02 4.9442172E-02 4.7624569E-02
 4.5774840E-02 4.3910936E-02 4.2048540E-02 4.0201124E-02 3.8380094E-02
 3.6594920E-02 3.4853283E-02 3.3161268E-02 3.1523503E-02 2.9943373E-02
 2.8423162E-02 2.6964206E-02 2.5567044E-02 2.4231561E-02 2.2957096E-02
 2.1742556E-02 2.0586500E-02 1.9487239E-02 1.8442905E-02 1.7451469E-02
 1.6510857E-02 1.5618932E-02 1.4773548E-02 1.3972594E-02 1.3213977E-02
 1.2495661E-02 1.1815658E-02 1.1172060E-02 1.0563022E-02 9.9867824E-03
 9.4416430E-03 8.9259921E-03 8.4382705E-03 7.9770209E-03 7.5408476E-03
 7.1284035E-03 6.7384406E-03 6.3697440E-03 6.0211783E-03 5.6916638E-03
 5.3801732E-03 5.0857365E-03 4.8074322E-03 4.5443890E-03 4.2957822E-03
 4.0608309E-03 3.8387955E-03 3.6289799E-03 3.4307116E-03 3.2433791E-03
 3.0663842E-03 2.8991671E-03 2.7411964E-03 2.5919778E-03 2.4510347E-03
 2.3179234E-03 2.1922144E-03 2.0735133E-03 1.9614326E-03 1.8556233E-03
 1.7557368E-03
 5.5092495E-02 4.9903914E-02 4.4966996E-02 4.0294778E-02 3.5896063E-02
 3.1775564E-02 2.7934311E-02 2.4370028E-02 2.1077607E-02 1.8049568E-02
 1.5276506E-02 1.2747555E-02 1.0450781E-02 8.3735175E-03 6.5026805E-03
 4.8250295E-03 3.3273718E-03 1.9967305E-03 8.2047237E-04 -2.1359828E-04
 -1.1171540E-03 -1.9013215E-03 -2.5766394E-03 -3.1530345E-03 -3.6398440E-03
 -4.0457905E-03 -4.3790191E-03 -4.6470892E-03 -4.8570093E-03 -5.0152452E-03
 -5.1277536E-03 -5.1999958E-03 -5.2369679E-03 -5.2432190E-03 -5.2228891E-03
 -5.1797177E-03 -5.1170890E-03 -5.0380402E-03 -4.9452945E-03 -4.8412853E-03
 -4.7281729E-03 -4.6078782E-03 -4.4820965E-03 -4.3523107E-03 -4.2198240E-03
 -4.0857783E-03 -3.9511463E-03 -3.8167806E-03 -3.6834015E-03 -3.5516249E-03
 -3.4219690E-03 -3.2948556E-03 -3.1706416E-03 -3.0496046E-03 -2.9319734E-03
 -2.8179130E-03 -2.7075491E-03 -2.6009604E-03 -2.4981992E-03 -2.3992751E-03
 -2.3041838E-03 -2.2128886E-03 -2.1253417E-03 -2.0414707E-03 -1.9611961E-03
 -1.8844263E-03 -1.8110550E-03 -1.7409773E-03 -1.6740803E-03 -1.6102395E-03
 -1.5493387E-03
 6.0748093E-02 6.0064826E-02 5.9139982E-02 5.8002636E-02 5.6682147E-02
 5.5207457E-02 5.3606484E-02 5.1905680E-02 5.0129645E-02 4.8300881E-02
 4.6439659E-02 4.4563953E-02 4.2689461E-02 4.0829673E-02 3.8995981E-02
 3.7197832E-02 3.5442889E-02 3.3737220E-02 3.2085456E-02 3.0490959E-02
 2.8956018E-02 2.7481994E-02 2.6069455E-02 2.4718329E-02 2.3427997E-02
 2.2197429E-02 2.1025253E-02 1.9909842E-02 1.8849386E-02 1.7841943E-02
 1.6885495E-02 1.5977962E-02 1.5117257E-02 1.4301318E-02 1.3528088E-02
 1.2795562E-02 1.2101788E-02 1.1444869E-02 1.0822993E-02 1.0234385E-02
 9.6773626E-03 9.1503123E-03 8.6516831E-03 8.1799980E-03 7.7338563E-03
 7.3119118E-03 6.9128932E-03 6.5355781E-03 6.1788224E-03 5.8415290E-03
 5.5226618E-03 5.2212332E-03 4.9363063E-03 4.6669976E-03 4.4124667E-03
 4.1719228E-03 3.9446158E-03 3.7298270E-03 3.5268862E-03 3.3351546E-03
 3.1540331E-03 2.9829401E-03 2.8213421E-03 2.6687279E-03 2.5246092E-03
 2.3885265E-03 2.2600500E-03 2.1387660E-03 2.0242813E-03 1.9162293E-03
 1.8142574E-03
 5.4613966E-02 4.9415920E-02 4.4471357E-02 3.9793428E-02 3.5391007E-02
 3.1268843E-02 2.7427955E-02 2.3866044E-02 2.0577924E-02 1.7556030E-02
 1.4790842E-02 1.2271371E-02 9.9855391E-03 7.9205194E-03 6.0630641E-03
 4.3997737E-03 2.9172676E-03 1.6024018E-03 4.4236443E-04 -5.7521055E-04
 -1.4621636E-03 -2.2297769E-03 -2.8887317E-03 -3.4490926E-03 -3.9203055E-03
 -4.3111970E-03 -4.6299850E-03 -4.8842989E-03 -5.0811861E-03 -5.2271481E-03
 -5.3281472E-03 -5.3896504E-03 -5.4166424E-03 -5.4136580E-03 -5.3848042E-03
 -5.3337966E-03 -5.2639754E-03 -5.1783477E-03 -5.0795907E-03 -4.9701030E-03
 -4.8520076E-03 -4.7271824E-03 -4.5972853E-03 -4.4637700E-03 -4.3279068E-03
 -4.1907998E-03 -4.0533966E-03 -3.9165234E-03 -3.7808728E-03 -3.6470369E-03
 -3.5155083E-03 -3.3866980E-03 -3.2609375E-03 -3.1384889E-03 -3.0195646E-03
 -2.9043138E-03 -2.7928466E-03 -2.6852314E-03 -2.5815051E-03 -2.4816701E-03
 -2.3857050E-03 -2.2935718E-03 -2.2052045E-03 -2.1205265E-03 -2.0394519E-03
 -1.9618759E-03 -1.8876923E-03 -1.8167852E-03 -1.7490356E-03 -1.6843184E-03
 -1.6225083E-03
 6.1604369E-02 6.0916312E-02 5.9984993E-02 5.8839694E-02 5.7509966E-02
 5.6024931E-02 5.4412685E-02 5.2699804E-02 5.0911017E-02 4.9068924E-02
 4.7193862E-02 4.5303859E-02 4.3414637E-02 4.1539699E-02 3.9690442E-02
 3.7876327E-02 3.6105011E-02 3.4382571E-02 3.2713640E-02 3.1101614E-02
 2.9548809E-02 2.8056635E-02 2.6625695E-02 2.5255982E-02 2.3946954E-02
 2.2697644E-02 2.1506753E-02 2.0372728E-02 1.9293835E-02 1.8268196E-02
 1.7293846E-02 1.6368778E-02 1.5490943E-02 1.4658323E-02 1.3868893E-02
 1.3120681E-02 1.2411746E-02 1.1740224E-02 1.1104283E-02 1.0502182E-02
 9.9322191E-03 9.3927868E-03 8.8823196E-03 8.3993357E-03 7.9424288E-03
 7.5102332E-03 7.1014552E-03 6.7148823E-03 6.3493340E-03 6.0037035E-03
 5.6769401E-03 5.3680409E-03 5.0760508E-03 4.8000752E-03 4.5392574E-03
 4.2927871E-03 4.0599001E-03 3.8398709E-03 3.6320039E-03 3.4356501E-03
 3.2501929E-03 3.0750502E-03 2.9096594E-03 2.7534964E-03 2.6060676E-03
 2.4668996E-03 2.3355365E-03 2.2115626E-03 2.0945678E-03 1.9841769E-03
 1.8800180E-03
 5.4081250E-02 4.8873357E-02 4.3921027E-02 3.9237555E-02 3.4831882E-02
 3.0708784E-02 2.6869269E-02 2.3310978E-02 2.0028640E-02 1.7014563E-02
 1.4259083E-02 1.1751047E-02 9.4781928E-03 7.4275043E-03 5.5855326E-03
 3.9386642E-03 2.4733234E-03 1.1761548E-03 3.4148750E-05 -9.6524856E-04
 -1.8340553E-03 -2.5837165E-03 -3.2250604E-03 -3.7682764E-03 -4.2229216E-03
 -4.5979079E-03 -4.9015242E-03 -5.1414450E-03 -5.3247539E-03 -5.4579643E-03
 -5.5470467E-03 -5.5974564E-03 -5.6141559E-03 -5.6016524E-03 -5.5640247E-03
 -5.5049444E-03 -5.4277251E-03 -5.3353151E-03 -5.2303649E-03 -5.1152213E-03
 -4.9919724E-03 -4.8624519E-03 -4.7282851E-03 -4.5908871E-03 -4.4514905E-03
 -4.3111695E-03 -4.1708513E-03 -4.0313173E-03 -3.8932448E-03 -3.7572011E-03
 -3.6236513E-03 -3.4929877E-03 -3.3655220E-03 -3.2414990E-03 -3.1211097E-03
 -3.0044920E-03 -2.8917394E-03 -2.7829041E-03 -2.6780129E-03 -2.5770555E-03
 -2.4800012E-03 -2.3867905E-03 -2.2973600E-03 -2.2116215E-03 -2.1294763E-03
 -2.0508172E-03 -1.9755312E-03 -1.9034923E-03 -1.8345811E-03 -1.7686646E-03
 -1.7056192E-03
 6.2580235E-02 6.1886866E-02 6.0948212E-02 5.9793778E-02 5.8453318E-02
 5.6956161E-02 5.5330575E-02 5.3603310E-02 5.1799219E-02 4.9941022E-02
 4.8049141E-02 4.6141662E-02 4.4234376E-02 4.2340815E-02 4.0472411E-02
 3.8638659E-02 3.6847249E-02 3.5104290E-02 3.3414468E-02 3.1781215E-02
 3.0206919E-02 2.8693043E-02 2.7240273E-02 2.5848683E-02 2.4517795E-02
 2.3246735E-02 2.2034286E-02 2.0878954E-02 1.9779090E-02 1.8732872E-02
 1.7738404E-02 1.6793715E-02 1.5896805E-02 1.5045679E-02 1.4238358E-02
 1.3472876E-02 1.2747312E-02 1.2059794E-02 1.1408516E-02 1.0791717E-02
 1.0207701E-02 9.6548405E-03 9.1315694E-03 8.6363899E-03 8.1678694E-03
 7.7246455E-03 7.3053990E-03 6.9088936E-03 6.5339305E-03 6.1793993E-03
 5.8442191E-03 5.5273683E-03 5.2278847E-03 4.9448418E-03 4.6773739E-03
 4.4246498E-03 4.1858880E-03 3.9603403E-03 3.7473065E-03 3.5461138E-03
 3.3561250E-03 3.1767415E-03 3.0073903E-03 2.8475323E-03 2.6966459E-03
 2.5542488E-03 2.4198752E-03 2.2930852E-03 2.1734547E-03 2.0605884E-03
 1.9541113E-03
 5.3489495E-02 4.8271537E-02 4.3311555E-02 3.8622960E-02 3.4214772E-02
 3.0091787E-02 2.6254969E-02 2.2701874E-02 1.9427111E-02 1.6422825E-02
 1.3679170E-02 1.1184777E-02 8.9271590E-03 6.8930616E-03 5.0687976E-03
 3.4405123E-03 1.9943903E-03 7.1684836E-04 -4.0533859E-04 -1.3849257E-03
 -2.2341143E-03 -2.9645103E-03 -3.5870853E-03 -4.1121445E-03 -4.5493441E-03
 -4.9076690E-03 -5.1954621E-03 -5.4204338E-03 -5.5896835E-03 -5.7097315E-03
 -5.7865349E-03 -5.8255331E-03 -5.8316579E-03 -5.8093844E-03 -5.7627521E-03
 -5.6953919E-03 -5.6105657E-03 -5.5111889E-03 -5.3998609E-03 -5.2788868E-03
 -5.1503098E-03 -5.0159274E-03 -4.8773200E-03 -4.7358703E-03 -4.5927772E-03
 -4.4490742E-03 -4.3056635E-03 -4.1632988E-03 -4.0226285E-03 -3.8841916E-03
 -3.7484341E-03 -3.6157246E-03 -3.4863472E-03 -3.3605378E-03 -3.2384659E-03
 -3.1202510E-03 -3.0059679E-03 -2.8956621E-03 -2.7893367E-03 -2.6869751E-03
 -2.5885329E-03 -2.4939463E-03 -2.4031315E-03 -2.3159927E-03 -2.2324326E-03
 -2.1523314E-03 -2.0755685E-03 -2.0020180E-03 -1.9315523E-03 -1.8640452E-03
 -1.7993635E-03
 6.3693985E-02 6.2994577E-02 6.2047459E-02 6.0882326E-02 5.9529193E-02
 5.8017582E-02 5.6375988E-02 5.4631338E-02 5.2808654E-02 5.0930794E-02
 4.9018286E-02 4.7089342E-02 4.5159820E-02 4.3243345E-02 4.1351415E-02
 3.9493594E-02 3.7677642E-02 3.5909742E-02 3.4194663E-02 3.2535914E-02
 3.0935979E-02 2.9396394E-02 2.7917959E-02 2.6500816E-02 2.5144583E-02
 2.3848480E-02 2.2611348E-02 2.1431798E-02 2.0308230E-02 1.9238872E-02
 1.8221883E-02 1.7255338E-02 1.6337266E-02 1.5465711E-02 1.4638683E-02
 1.3854246E-02 1.3110477E-02 1.2405516E-02 1.1737537E-02 1.1104776E-02
 1.0505526E-02 9.9381497E-03 9.4010644E-03 8.8927476E-03 8.4117549E-03
 7.9566929E-03 7.5262352E-03 7.1191173E-03 6.7341244E-03 6.3701165E-03
 6.0259900E-03 5.7007177E-03 5.3932993E-03 5.1027951E-03 4.8283171E-03
 4.5690131E-03 4.3240809E-03 4.0927539E-03 3.8743052E-03 3.6680428E-03
 3.4733207E-03 3.2895110E-03 3.1160167E-03 2.9522839E-03 2.7977773E-03
 2.6519906E-03 2.5144371E-03 2.3846584E-03 2.2622247E-03 2.1467148E-03
 2.0377375E-03
 5.2833967E-02 4.7606021E-02 4.2638794E-02 3.7945837E-02 3.3536218E-02
 2.9414739E-02 2.5582295E-02 2.2036320E-02 1.8771250E-02 1.5779022E-02
 1.3049554E-02 1.0571212E-02 8.3312402E-03 6.3160998E-03 4.5118243E-03
 2.9042861E-03 1.4794039E-03 2.2335543E-04 -8.7731791E-04 -1.8355756E-03
 -2.6637977E-03 -3.3737470E-03 -3.9765243E-03 -4.4825431E-03 -4.9015363E-03
 -5.2425489E-03 -5.5139665E-03 -5.7235132E-03 -5.8783009E-03 -5.9848325E-03
 -6.0490509E-03 -6.0763601E-03 -6.0716663E-03 -6.0393922E-03 -5.9835408E-03
 -5.9076981E-03 -5.8150780E-03 -5.7085454E-03 -5.5906540E-03 -5.4636672E-03
 -5.3295819E-03 -5.1901513E-03 -5.0469190E-03 -4.9012289E-03 -4.7542430E-03
 -4.6069645E-03 -4.4602565E-03 -4.3148496E-03 -4.1713584E-03 -4.0302994E-03
 -3.8920969E-03 -3.7570859E-03 -3.6255398E-03 -3.4976697E-03 -3.3736196E-03
 -3.2535016E-03 -3.1373687E-03 -3.0252524E-03 -2.9171428E-03 -2.8130091E-03
 -2.7127953E-03 -2.6164234E-03 -2.5238118E-03 -2.4348509E-03 -2.3494319E-03
 -2.2674338E-03 -2.1887345E-03 -2.1132058E-03 -2.0407173E-03 -1.9711370E-03
 -1.9043392E-03
 6.4966850E-02 6.4260393E-02 6.3303225E-02 6.2125307E-02 6.0756892E-02
 5.9227765E-02 5.7566661E-02 5.5800728E-02 5.3955201E-02 5.2053124E-02
 5.0115205E-02 4.8159793E-02 4.6202898E-02 4.4258267E-02 4.2337522E-02
 4.0450346E-02 3.8604625E-02 3.6806650E-02 3.5061292E-02 3.3372194E-02
 3.1741932E-02 3.0172171E-02 2.8663797E-02 2.7217060E-02 2.5831681E-02
 2.4506938E-02 2.3241766E-02 2.2034841E-02 2.0884609E-02 1.9789366E-02
 1.8747300E-02 1.7756514E-02 1.6815064E-02 1.5920995E-02 1.5072345E-02
 1.4267162E-02 1.3503538E-02 1.2779581E-02 1.2093473E-02 1.1443429E-02
 1.0827724E-02 1.0244694E-02 9.6927369E-03 9.1703171E-03 8.6759571E-03
 8.2082357E-03 7.7658137E-03 7.3473933E-03 6.9517335E-03 6.5776780E-03
 6.2240879E-03 5.8899084E-03 5.5741207E-03 5.2757640E-03 4.9939160E-03
 4.7277058E-03 4.4763032E-03 4.2389161E-03 4.0147984E-03 3.8032301E-03
 3.6035420E-03 3.4150768E-03 3.2372295E-03 3.0694150E-03 2.9110713E-03
 2.7616776E-03 2.6207233E-03 2.4877412E-03 2.3622664E-03 2.2438737E-03
 2.1321501E-03
 5.2110385E-02 4.6872884E-02 4.1899219E-02 3.7203047E-02 3.2793496E-02
 2.8675310E-02 2.4849283E-02 2.1312676E-02 1.8059701E-02 1.5082033E-02
 1.2369286E-02 9.9095227E-03 7.6896627E-03 5.6958422E-03 3.9137877E-03
 2.3290680E-03 9.2732394E-04 -3.0552212E-04 -1.3831566E-03 -2.3187408E-03
 -3.1248264E-03 -3.8133201E-03 -4.3954360E-03 -4.8816777E-03 -5.2818432E-03
 -5.6050173E-03 -5.8596069E-03 -6.0533485E-03 -6.1933370E-03 -6.2860623E-03
 -6.3374355E-03 -6.3528232E-03 -6.3370890E-03 -6.2946156E-03 -6.2293494E-03
 -6.1448324E-03 -6.0442253E-03 -5.9303455E-03 -5.8056992E-03 -5.6724995E-03
 -5.5327024E-03 -5.3880177E-03 -5.2399468E-03 -5.0897910E-03 -4.9386774E-03
 -4.7875806E-03 -4.6373210E-03 -4.4886018E-03 -4.3420112E-03 -4.1980324E-03
 -4.0570674E-03 -3.9194287E-03 -3.7853681E-03 -3.6550667E-03 -3.5286590E-03
 -3.4062311E-03 -3.2878295E-03 -3.1734612E-03 -3.0631039E-03 -2.9567229E-03
 -2.8542413E-03 -2.7555795E-03 -2.6606447E-03 -2.5693222E-03 -2.4815018E-03
 -2.3970602E-03 -2.3158696E-03 -2.2378019E-03 -2.1627303E-03 -2.0905246E-03
 -2.0210617E-03
 6.6423476E-02 6.5708444E-02 6.4739011E-02 6.3545398E-02 6.2158186E-02
 6.0607456E-02 5.8922227E-02 5.7129968E-02 5.5256162E-02 5.3324126E-02
 5.1354799E-02 4.9366761E-02 4.7376227E-02 4.5397148E-02 4.3441322E-02
 4.1518610E-02 3.9637052E-02 3.7803106E-02 3.6021791E-02 3.4296885E-02
 3.2631103E-02 3.1026216E-02 2.9483227E-02 2.8002489E-02 2.6583809E-02
 2.5226550E-02 2.3929715E-02 2.2692017E-02 2.1511976E-02 2.0387910E-02
 1.9318027E-02 1.8300459E-02 1.7333262E-02 1.6414499E-02 1.5542191E-02
 1.4714385E-02 1.3929150E-02 1.3184586E-02 1.2478849E-02 1.1810135E-02
 1.1176695E-02 1.0576837E-02 1.0008932E-02 9.4714053E-03 8.9627635E-03
 8.4815575E-03 8.0264024E-03 7.5959763E-03 7.1890214E-03 6.8043252E-03
 6.4407415E-03 6.0971784E-03 5.7725846E-03 5.4659634E-03 5.1763728E-03
 4.9029095E-03 4.6447134E-03 4.4009639E-03 4.1708816E-03 3.9537270E-03
 3.7487959E-03 3.5554082E-03 3.3729319E-03 3.2007545E-03 3.0382948E-03
 2.8850096E-03 2.7403659E-03 2.6038664E-03 2.4750433E-03 2.3534484E-03
 2.2386543E-03
 5.1315315E-02 4.6069175E-02 4.1090343E-02 3.6392577E-02 3.1985000E-02
 2.7872276E-02 2.4055038E-02 2.0530308E-02 1.7292023E-02 1.4331525E-02
 1.1638086E-02 9.1994060E-03 7.0020356E-03 5.0317659E-03 3.2739821E-03
 1.7139391E-03 3.3700114E-04 -8.7117363E-04 -1.9244902E-03 -2.8362952E-03
 -3.6192997E-03 -4.2855386E-03 -4.8463196E-03 -5.3122183E-03 -5.6930790E-03
 -5.9980135E-03 -6.2354370E-03 -6.4130765E-03 -6.5380130E-03 -6.6167009E-03
 -6.6550178E-03 -6.6582854E-03 -6.6313189E-03 -6.5784534E-03 -6.5035829E-03
 -6.4101946E-03 -6.3014016E-03 -6.1799698E-03 -6.0483534E-03 -5.9087174E-03
 -5.7629705E-03 -5.6127789E-03 -5.4596048E-03 -5.3047063E-03 -5.1491740E-03
 -4.9939412E-03 -4.8398003E-03 -4.6874234E-03 -4.5373589E-03 -4.3900744E-03
 -4.2459355E-03 -4.1052322E-03 -3.9681932E-03 -3.8349845E-03 -3.7057146E-03
 -3.5804529E-03 -3.4592280E-03 -3.3420394E-03 -3.2288528E-03 -3.1196123E-03
 -3.0142462E-03 -2.9126664E-03 -2.8147658E-03 -2.7204370E-03 -2.6295639E-03
 -2.5420196E-03 -2.4576883E-03 -2.3764360E-03 -2.2981428E-03 -2.2226826E-03
 -2.1499365E-03
 6.8092190E-02 6.7366287E-02 6.6381395E-02 6.5168098E-02 6.3757330E-02
 6.2179562E-02 6.0464215E-02 5.8639120E-02 5.6730155E-02 5.4760981E-02
 5.2752882E-02 5.0724756E-02 4.8693102E-02 4.6672136E-02 4.4673927E-02
 4.2708542E-02 4.0784251E-02 3.8907696E-02 3.7084065E-02 3.5317305E-02
 3.3610258E-02 3.1964835E-02 3.0382141E-02 2.8862629E-02 2.7406180E-02
 2.6012231E-02 2.4679840E-02 2.3407763E-02 2.2194538E-02 2.1038514E-02
 1.9937910E-02 1.8890869E-02 1.7895430E-02 1.6949652E-02 1.6051542E-02
 1.5199126E-02 1.4390450E-02 1.3623588E-02 1.2896667E-02 1.2207852E-02
 1.1555352E-02 1.0937450E-02 1.0352476E-02 9.7988313E-03 9.2749717E-03
 8.7794196E-03 8.3107576E-03 7.8676185E-03 7.4487082E-03 7.0527834E-03
 6.6786637E-03 6.3252104E-03 5.9913415E-03 5.6760288E-03 5.3782873E-03
 5.0971848E-03 4.8318198E-03 4.5813462E-03 4.3449472E-03 4.1218540E-03
 3.9113257E-03 3.7126616E-03 3.5251982E-03 3.3482905E-03 3.1813462E-03
 3.0237786E-03 2.8750508E-03 2.7346422E-03 2.6020629E-03 2.4768442E-03
 2.3585467E-03
 5.0446786E-02 4.5193475E-02 4.0211257E-02 3.5513964E-02 3.1110654E-02
 2.7005862E-02 2.3199987E-02 1.9689767E-02 1.6468782E-02 1.3528011E-02
 1.0856323E-02 8.4410151E-03 6.2682573E-03 4.3234667E-03 2.5916786E-03
 1.0578423E-03 -2.9296879E-04 -1.4753308E-03 -2.5033567E-03 -3.3905688E-03
 -4.1498141E-03 -4.7932337E-03 -5.3322152E-03 -5.7773874E-03 -6.1386223E-03
 -6.4250482E-03 -6.6450746E-03 -6.8064095E-03 -6.9161030E-03 -6.9805789E-03
 -7.0056650E-03 -6.9966386E-03 -6.9582625E-03 -6.8948185E-03 -6.8101464E-03
 -6.7076809E-03 -6.5904772E-03 -6.4612534E-03 -6.3224067E-03 -6.1760587E-03
 -6.0240682E-03 -5.8680587E-03 -5.7094428E-03 -5.5494397E-03 -5.3891060E-03
 -5.2293311E-03 -5.0708735E-03 -4.9143736E-03 -4.7603506E-03 -4.6092407E-03
 -4.4613811E-03 -4.3170433E-03 -4.1764276E-03 -4.0396797E-03 -3.9068963E-03
 -3.7781259E-03 -3.6533875E-03 -3.5326635E-03 -3.4159117E-03 -3.3030736E-03
 -3.1940718E-03 -3.0888084E-03 -2.9871808E-03 -2.8890839E-03 -2.7943975E-03
 -2.7030059E-03 -2.6147887E-03 -2.5296253E-03 -2.4473991E-03 -2.3679917E-03
 -2.2912906E-03
 7.0005342E-02 6.9265060E-02 6.8260171E-02 6.7021661E-02 6.5580942E-02
 6.3969009E-02 6.2215790E-02 6.0349647E-02 5.8396958E-02 5.6381874E-02
 5.4326121E-02 5.2249022E-02 5.0167464E-02 4.8096012E-02 4.6047043E-02
 4.4030908E-02 4.2056128E-02 4.0129565E-02 3.8256600E-02 3.6441341E-02
 3.4686781E-02 3.2994948E-02 3.1367049E-02 2.9803624E-02 2.8304614E-02
 2.6869509E-02 2.5497403E-02 2.4187081E-02 2.2937095E-02 2.1745792E-02
 2.0611398E-02 1.9532021E-02 1.8505711E-02 1.7530479E-02 1.6604317E-02
 1.5725221E-02 1.4891190E-02 1.4100268E-02 1.3350540E-02 1.2640129E-02
 1.1967206E-02 1.1330009E-02 1.0726826E-02 1.0156008E-02 9.6159792E-03
 9.1052046E-03 8.6222263E-03 8.1656361E-03 7.7340929E-03 7.3263147E-03
 6.9410685E-03 6.5771774E-03 6.2335171E-03 5.9090140E-03 5.6026485E-03
 5.3134440E-03 5.0404584E-03 4.7828099E-03 4.5396425E-03 4.3101544E-03
 4.0935744E-03 3.8891688E-03 3.6962370E-03 3.5141220E-03 3.3421919E-03
 3.1798459E-03 3.0265201E-03 2.8816795E-03 2.7448130E-03 2.6154402E-03
 2.4931142E-03
 4.9505010E-02 4.4246580E-02 3.9263252E-02 3.4568854E-02 3.0172352E-02
 2.6078066E-02 2.2286115E-02 1.8792896E-02 1.5591600E-02 1.2672786E-02
 1.0024905E-02 7.6348390E-03 5.4883533E-03 3.5704924E-03 1.8659567E-03
 3.5938955E-04 -9.6439634E-04 -2.1202075E-03 -3.1223446E-03 -3.9844806E-03
 -4.7195805E-03 -5.3398758E-03 -5.8568153E-03 -6.2810616E-03 -6.6225105E-03
 -6.8902872E-03 -7.0927856E-03 -7.2376900E-03 -7.3320162E-03 -7.3821428E-03
 -7.3938523E-03 -7.3723709E-03 -7.3224041E-03 -7.2481814E-03 -7.1534868E-03
 -7.0416932E-03 -6.9158105E-03 -6.7784945E-03 -6.6320980E-03 -6.4786868E-03
 -6.3200709E-03 -6.1578285E-03 -5.9933281E-03 -5.8277482E-03 -5.6620971E-03
 -5.4972367E-03 -5.3338869E-03 -5.1726522E-03 -5.0140247E-03 -4.8584067E-03
 -4.7061169E-03 -4.5573991E-03 -4.4124378E-03 -4.2713550E-03 -4.1342340E-03
 -4.0011103E-03 -3.8719948E-03 -3.7468609E-03 -3.6256642E-03 -3.5083373E-03
 -3.3948054E-03 -3.2849703E-03 -3.1787392E-03 -3.0760004E-03 -2.9766462E-03
 -2.8805672E-03 -2.7876485E-03 -2.6977793E-03 -2.6108474E-03 -2.5267499E-03
 -2.4453769E-03
 7.2199300E-02 7.1439482E-02 7.0408158E-02 6.9136925E-02 6.7657813E-02
 6.6002510E-02 6.4201638E-02 6.2284257E-02 6.0277421E-02 5.8205888E-02
 5.6091998E-02 5.3955581E-02 5.1814012E-02 4.9682267E-02 4.7573112E-02
 4.5497209E-02 4.3463353E-02 4.1478649E-02 3.9548673E-02 3.7677694E-02
 3.5868850E-02 3.4124270E-02 3.2445252E-02 3.0832399E-02 2.9285705E-02
 2.7804676E-02 2.6388435E-02 2.5035769E-02 2.3745218E-02 2.2515122E-02
 2.1343680E-02 2.0228971E-02 1.9169010E-02 1.8161772E-02 1.7205203E-02
 1.6297247E-02 1.5435866E-02 1.4619051E-02 1.3844833E-02 1.3111282E-02
 1.2416523E-02 1.1758737E-02 1.1136159E-02 1.0547083E-02 9.9898791E-03
 9.4629619E-03 8.9648180E-03 8.4939860E-03 8.0490736E-03 7.6287440E-03
 7.2317142E-03 6.8567540E-03 6.5026926E-03 6.1684130E-03 5.8528366E-03
 5.5549475E-03 5.2737617E-03 5.0083543E-03 4.7578374E-03 4.5213588E-03
 4.2981245E-03 4.0873620E-03 3.8883511E-03 3.7003942E-03 3.5228408E-03
 3.3550758E-03 3.1965065E-03 3.0465829E-03 2.9047790E-03 2.7705997E-03
 2.6435857E-03
 4.8493296E-02 4.3232299E-02 3.8250428E-02 3.3561479E-02 2.9174253E-02
 2.5092825E-02 2.1317005E-02 1.7842807E-02 1.4663016E-02 1.1767772E-02
 9.1450941E-03 6.7814542E-03 4.6622297E-03 2.7721124E-03 1.0954731E-03
 -3.8332428E-04 -1.6797113E-03 -2.8087010E-03 -3.7847585E-03 -4.6216939E-03
 -5.3325747E-03 -5.9297020E-03 -6.4245756E-03 -6.8278858E-03 -7.1495338E-03
 -7.3986384E-03 -7.5835707E-03 -7.7119870E-03 -7.7908630E-03 -7.8265313E-03
 -7.8247245E-03 -7.7906144E-03 -7.7288514E-03 -7.6436098E-03 -7.5386129E-03
 -7.4171843E-03 -7.2822701E-03 -7.1364730E-03 -6.9820969E-03 -6.8211537E-03
 -6.6554025E-03 -6.4863740E-03 -6.3153934E-03 -6.1435970E-03 -5.9719537E-03
 -5.8012852E-03 -5.6322766E-03 -5.4655052E-03 -5.3014276E-03 -5.1404270E-03
 -4.9827932E-03 -4.8287529E-03 -4.6784719E-03 -4.5320592E-03 -4.3895910E-03
 -4.2510894E-03 -4.1165617E-03 -3.9859810E-03 -3.8592988E-03 -3.7364538E-03
 -3.6173686E-03 -3.5019615E-03 -3.3901327E-03 -3.2817887E-03 -3.1768286E-03
 -3.0751466E-03 -2.9766455E-03 -2.8812184E-03 -2.7887688E-03 -2.6992010E-03
 -2.6124176E-03
 7.4714258E-02 7.3927447E-02 7.2860867E-02 7.1546927E-02 7.0018537E-02
 6.8308271E-02 6.6447698E-02 6.4466767E-02 6.2393367E-02 6.0253065E-02
 5.8068905E-02 5.5861358E-02 5.3648345E-02 5.1445350E-02 4.9265526E-02
 4.7119915E-02 4.5017578E-02 4.2965863E-02 4.0970549E-02 3.9036058E-02
 3.7165642E-02 3.5361517E-02 3.3625051E-02 3.1956881E-02 3.0357029E-02
 2.8825015E-02 2.7359942E-02 2.5960576E-02 2.4625445E-02 2.3352839E-02
 2.2140916E-02 2.0987712E-02 1.9891180E-02 1.8849250E-02 1.7859802E-02
 1.6920721E-02 1.6029907E-02 1.5185287E-02 1.4384828E-02 1.3626534E-02
 1.2908462E-02 1.2228725E-02 1.1585496E-02 1.0977006E-02 1.0401554E-02
 9.8574981E-03 9.3432516E-03 8.8572949E-03 8.3981697E-03 7.9644797E-03
 7.5548822E-03 7.1680946E-03 6.8028844E-03 6.4580748E-03 6.1325505E-03
 5.8252309E-03 5.5351020E-03 5.2611837E-03 5.0025475E-03 4.7583166E-03
 4.5276484E-03 4.3097488E-03 4.1038631E-03 3.9092712E-03 3.7253008E-03
 3.5513155E-03 3.3867045E-03 3.2309021E-03 3.0833711E-03 2.9436045E-03
 2.8111280E-03
 4.7419004E-02 4.2158183E-02 3.7180278E-02 3.2499012E-02 2.8123008E-02
 2.4056103E-02 2.0297786E-02 1.6843718E-02 1.3686297E-02 1.0815254E-02
 8.2182195E-03 5.8812760E-03 3.7894426E-03 1.9270745E-03 2.7825101E-04
 -1.1729310E-03 -2.4421210E-03 -3.5445229E-03 -4.4947518E-03 -5.3067398E-03
 -5.9936414E-03 -6.5678232E-03 -7.0408229E-03 -7.4233562E-03 -7.7253236E-03
 -7.9558324E-03 -8.1232339E-03 -8.2351519E-03 -8.2985116E-03 -8.3196098E-03
 -8.3041228E-03 -8.2571702E-03 -8.1833489E-03 -8.0867717E-03 -7.9711042E-03
 -7.8396164E-03 -7.6951957E-03 -7.5403908E-03 -7.3774508E-03 -7.2083361E-03
 -7.0347590E-03 -6.8582026E-03 -6.6799461E-03 -6.5010851E-03 -6.3225487E-03
 -6.1451229E-03 -5.9694652E-03 -5.7961163E-03 -5.6255152E-03 -5.4580173E-03
 -5.2939015E-03 -5.1333718E-03 -4.9765841E-03 -4.8236451E-03 -4.6746163E-03
 -4.5295316E-03 -4.3883845E-03 -4.2511579E-03 -4.1178088E-03 -3.9882818E-03
 -3.8625088E-03 -3.7404122E-03 -3.6219109E-03 -3.5069189E-03 -3.3953437E-03
 -3.2870953E-03 -3.1820885E-03 -3.0802249E-03 -2.9814164E-03 -2.8855836E-03
 -2.7926357E-03
 7.7593699E-02 7.6769546E-02 7.5655974E-02 7.4286520E-02 7.2695211E-02
 7.0915833E-02 6.8981119E-02 6.6922128E-02 6.4767778E-02 6.2544592E-02
 6.0276423E-02 5.7984494E-02 5.5687346E-02 5.3400986E-02 5.1139016E-02
 4.8912831E-02 4.6731800E-02 4.4603493E-02 4.2533860E-02 4.0527470E-02
 3.8587656E-02 3.6716715E-02 3.4916036E-02 3.3186279E-02 3.1527448E-02
 2.9939052E-02 2.8420158E-02 2.6969487E-02 2.5585514E-02 2.4266470E-02
 2.3010453E-02 2.1815417E-02 2.0679254E-02 1.9599810E-02 1.8574892E-02
 1.7602306E-02 1.6679874E-02 1.5805434E-02 1.4976884E-02 1.4192137E-02
 1.3449174E-02 1.2746031E-02 1.2080799E-02 1.1451626E-02 1.0856735E-02
 1.0294402E-02 9.7629754E-03 9.2608575E-03 8.7865153E-03 8.3384849E-03
 7.9153590E-03 7.5157830E-03 7.1384702E-03 6.7821890E-03 6.4457566E-03
 6.1280597E-03 5.8280211E-03 5.5446238E-03 5.2769040E-03 5.0239367E-03
 4.7848569E-03 4.5588361E-03 4.3450939E-03 4.1428911E-03 3.9515309E-03
 3.7703582E-03 3.5987485E-03 3.4361242E-03 3.2819335E-03 3.1356623E-03
 2.9968298E-03
 4.6294421E-02 4.1036144E-02 3.6064003E-02 3.1391680E-02 2.7027678E-02
 2.2975650E-02 1.9234842E-02 1.5800616E-02 1.2665052E-02 9.8175351E-03
 7.2453478E-03 4.9342327E-03 2.8688805E-03 1.0333463E-03 -5.8856671E-04
 -2.0129995E-03 -3.2558171E-03 -4.3323948E-03 -5.2574938E-03 -6.0451585E-03
 -6.7086299E-03 -7.2603379E-03 -7.7118599E-03 -8.0739269E-03 -8.3564464E-03
 -8.5685169E-03 -8.7184617E-03 -8.8138720E-03 -8.8616423E-03 -8.8680163E-03
 -8.8386210E-03 -8.7785255E-03 -8.6922692E-03 -8.5839098E-03 -8.4570581E-03
 -8.3149225E-03 -8.1603378E-03 -7.9957992E-03 -7.8234980E-03 -7.6453532E-03
 -7.4630207E-03 -7.2779409E-03 -7.0913509E-03 -6.9043087E-03 -6.7177108E-03
 -6.5323110E-03 -6.3487352E-03 -6.1675059E-03 -5.9890407E-03 -5.8136825E-03
 -5.6416914E-03 -5.4732729E-03 -5.3085750E-03 -5.1476988E-03 -4.9907160E-03
 -4.8376541E-03 -4.6885256E-03 -4.5433166E-03 -4.4019893E-03 -4.2645079E-03
 -4.1308119E-03 -4.0008388E-03 -3.8745198E-03 -3.7517778E-03 -3.6325410E-03
 -3.5167302E-03 -3.4042657E-03 -3.2950684E-03 -3.1890627E-03 -3.0861741E-03
 -2.9863236E-03
 8.0883555E-02 8.0008298E-02 7.8832775E-02 7.7391900E-02 7.5721234E-02
 7.3855996E-02 7.1830355E-02 6.9676667E-02 6.7425087E-02 6.5103173E-02
 6.2735736E-02 6.0344789E-02 5.7949573E-02 5.5566635E-02 5.3210031E-02
 5.0891522E-02 4.8620760E-02 4.6405531E-02 4.4251941E-02 4.2164654E-02
 4.0147077E-02 3.8201533E-02 3.6329430E-02 3.4531381E-02 3.2807380E-02
 3.1156868E-02 2.9578861E-02 2.8071996E-02 2.6634675E-02 2.5265042E-02
 2.3961097E-02 2.2720711E-02 2.1541676E-02 2.0421740E-02 1.9358609E-02
 1.8349990E-02 1.7393613E-02 1.6487205E-02 1.5628567E-02 1.4815523E-02
 1.4045949E-02 1.3317778E-02 1.2629012E-02 1.1977705E-02 1.1361991E-02
 1.0780052E-02 1.0230151E-02 9.7106071E-03 9.2198076E-03 8.7562110E-03
 8.3183376E-03 7.9047661E-03 7.5141424E-03 7.1451720E-03 6.7966278E-03
 6.4673298E-03 6.1561689E-03 5.8620786E-03 5.5840518E-03 5.3211418E-03
 5.0724423E-03 4.8371041E-03 4.6143173E-03 4.4033257E-03 4.2034169E-03
 4.0139174E-03 3.8341896E-03 3.6636479E-03 3.5017279E-03 3.3479151E-03
 3.2017133E-03
 4.5137357E-02 3.9882720E-02 3.4916539E-02 3.0252600E-02 2.5899434E-02
 2.1860654E-02 1.8135387E-02 1.4718843E-02 1.1602855E-02 8.7765623E-03
 6.2269531E-03 3.9394796E-03 1.8985352E-03 8.7898516E-05 -1.5088880E-03
 -2.9081998E-03 -4.1261087E-03 -5.1781642E-03 -6.0792775E-03 -6.8436083E-03
 -7.4844975E-03 -8.0144312E-03 -8.4450366E-03 -8.7870723E-03 -9.0504531E-03
 -9.2442697E-03 -9.3768304E-03 -9.4556976E-03 -9.4877323E-03 -9.4791315E-03
 -9.4354795E-03 -9.3617942E-03 -9.2625599E-03 -9.1417776E-03 -9.0030096E-03
 -8.8494066E-03 -8.6837467E-03 -8.5084764E-03 -8.3257398E-03 -8.1374003E-03
 -7.9450784E-03 -7.7501694E-03 -7.5538796E-03 -7.3572262E-03 -7.1610827E-03
 -6.9661802E-03 -6.7731212E-03 -6.5824147E-03 -6.3944678E-03 -6.2096156E-03
 -6.0281162E-03 -5.8501759E-03 -5.6759445E-03 -5.5055381E-03 -5.3390227E-03
 -5.1764511E-03 -5.0178370E-03 -4.8631844E-03 -4.7124750E-03 -4.5656790E-03
 -4.4227596E-03 -4.2836634E-03 -4.1483375E-03 -4.0167253E-03 -3.8887602E-03
 -3.7643781E-03 -3.6435162E-03 -3.5261021E-03 -3.4120749E-03 -3.3013616E-03
 -3.1939028E-03
 8.4631115E-02 8.3687425E-02 8.2431689E-02 8.0900557E-02 7.9131380E-02
 7.7161133E-02 7.5025581E-02 7.2758615E-02 7.0391722E-02 6.7953646E-02
 6.5470226E-02 6.2964328E-02 6.0455889E-02 5.7962049E-02 5.5497326E-02
 5.3073823E-02 5.0701458E-02 4.8388205E-02 4.6140295E-02 4.3962475E-02
 4.1858170E-02 3.9829709E-02 3.7878450E-02 3.6004979E-02 3.4209196E-02
 3.2490473E-02 3.0847706E-02 2.9279457E-02 2.7783990E-02 2.6359346E-02
 2.5003409E-02 2.3713928E-02 2.2488564E-02 2.1324949E-02 2.0220663E-02
 1.9173292E-02 1.8180432E-02 1.7239705E-02 1.6348779E-02 1.5505364E-02
 1.4707210E-02 1.3952153E-02 1.3238073E-02 1.2562915E-02 1.1924708E-02
 1.1321541E-02 1.0751571E-02 1.0213029E-02 9.7042182E-03 9.2235086E-03
 8.7693492E-03 8.3402507E-03 7.9347845E-03 7.5516049E-03 7.1894219E-03
 6.8470151E-03 6.5232222E-03 6.2169381E-03 5.9271269E-03 5.6528039E-03
 5.3930380E-03 5.1469542E-03 4.9137203E-03 4.6925680E-03 4.4827652E-03
 4.2836238E-03 4.0945089E-03 3.9148070E-03 3.7439654E-03 3.5814550E-03
 3.4267826E-03
 4.3971259E-02 3.8718894E-02 3.3756211E-02 2.9097321E-02 2.4751058E-02
 2.0721223E-02 1.7007036E-02 1.3603675E-02 1.0502888E-02 7.6936255E-03
 5.1626563E-03 2.8951720E-03 8.7529729E-04 -9.1346499E-04 -2.4878348E-03
 -3.8644297E-03 -5.0595426E-03 -6.0889130E-03 -6.9676195E-03 -7.7099539E-03
 -8.3293598E-03 -8.8384133E-03 -9.2487996E-03 -9.5713129E-03 -9.8158857E-03
 -9.9916169E-03 -1.0106808E-02 -1.0168996E-02 -1.0185014E-02 -1.0161024E-02
 -1.0102568E-02 -1.0014615E-02 -9.9016055E-03 -9.7674895E-03 -9.6157752E-03
 -9.4495630E-03 -9.2715872E-03 -9.0842471E-03 -8.8896370E-03 -8.6895842E-03
 -8.4856749E-03 -8.2792696E-03 -8.0715427E-03 -7.8634992E-03 -7.6559838E-03
 -7.4497131E-03 -7.2452910E-03 -7.0432145E-03 -6.8438901E-03 -6.6476599E-03
 -6.4547849E-03 -6.2654810E-03 -6.0799127E-03 -5.8982028E-03 -5.7204417E-03
 -5.5466928E-03 -5.3769918E-03 -5.2113566E-03 -5.0497856E-03 -4.8922687E-03
 -4.7387821E-03 -4.5892959E-03 -4.4437689E-03 -4.3021552E-03 -4.1644061E-03
 -4.0304731E-03 -3.9002921E-03 -3.7738155E-03 -3.6509770E-03 -3.5317179E-03
 -3.4159813E-03
 8.8884398E-02 8.7851629E-02 8.6494438E-02 8.4851570E-02 8.2962401E-02
 8.0865860E-02 7.8599527E-02 7.6198936E-02 7.3697045E-02 7.1123883E-02
 6.8506353E-02 6.5868251E-02 6.3230246E-02 6.0610063E-02 5.8022667E-02
 5.5480529E-02 5.2993774E-02 5.0570562E-02 4.8217211E-02 4.5938492E-02
 4.3737847E-02 4.1617535E-02 3.9578866E-02 3.7622318E-02 3.5747688E-02
 3.3954211E-02 3.2240666E-02 3.0605467E-02 2.9046724E-02 2.7562339E-02
 2.6150038E-02 2.4807416E-02 2.3531981E-02 2.2321217E-02 2.1172544E-02
 2.0083403E-02 1.9051239E-02 1.8073527E-02 1.7147794E-02 1.6271600E-02
 1.5442581E-02 1.4658418E-02 1.3916874E-02 1.3215773E-02 1.2553026E-02
 1.1926611E-02 1.1334580E-02 1.0775070E-02 1.0246290E-02 9.7465347E-03
 9.2741651E-03 8.8276193E-03 8.4054172E-03 8.0061378E-03 7.6284553E-03
 7.2710901E-03 6.9328435E-03 6.6125710E-03 6.3092061E-03 6.0217339E-03
 5.7491991E-03 5.4907091E-03 5.2454136E-03 5.0125280E-03 4.7913073E-03
 4.5810593E-03 4.3811309E-03 4.1909153E-03 4.0098461E-03 3.8373962E-03
 3.6730703E-03
 4.2824749E-02 3.7569538E-02 3.2604054E-02 2.7943164E-02 2.3596352E-02
 1.9567890E-02 1.5857320E-02 1.2459976E-02 9.3676131E-03 6.5690940E-03
 4.0510041E-03 1.7982888E-03 -2.0519603E-04 -1.9762428E-03 -3.5318551E-03
 -4.8889248E-03 -6.0639973E-03 -7.0730392E-03 -7.9313200E-03 -8.6532980E-03
 -9.2525510E-03 -9.7417636E-03 -1.0132698E-02 -1.0436207E-02 -1.0662265E-02
 -1.0819986E-02 -1.0917676E-02 -1.0962863E-02 -1.0962363E-02 -1.0922310E-02
 -1.0848210E-02 -1.0744997E-02 -1.0617071E-02 -1.0468335E-02 -1.0302259E-02
 -1.0121897E-02 -9.9299513E-03 -9.7287754E-03 -9.5204366E-03 -9.3067354E-03
 -9.0892231E-03 -8.8692456E-03 -8.6479643E-03 -8.4263664E-03 -8.2052983E-03
 -7.9854745E-03 -7.7675018E-03 -7.5518792E-03 -7.3390300E-03 -7.1293022E-03
 -6.9229798E-03 -6.7202961E-03 -6.5214275E-03 -6.3265241E-03 -6.1356942E-03
 -5.9490199E-03 -5.7665575E-03 -5.5883494E-03 -5.4144096E-03 -5.2447487E-03
 -5.0793574E-03 -4.9182205E-03 -4.7613150E-03 -4.6086060E-03 -4.4600572E-03
 -4.3156235E-03 -4.1752607E-03 -4.0389169E-03 -3.9065341E-03 -3.7780576E-03
 -3.6534241E-03
 9.3691818E-02 9.2546687E-02 9.1064557E-02 8.9286461E-02 8.7253995E-02
 8.5008182E-02 8.2588568E-02 8.0032468E-02 7.7374391E-02 7.4645758E-02
 7.1874626E-02 6.9085740E-02 6.6300541E-02 6.3537367E-02 6.0811624E-02
 5.8136113E-02 5.5521201E-02 5.2975155E-02 5.0504364E-02 4.8113599E-02
 4.5806244E-02 4.3584481E-02 4.1449498E-02 3.9401636E-02 3.7440538E-02
 3.5565272E-02 3.3774443E-02 3.2066271E-02 3.0438691E-02 2.8889414E-02
 2.7415967E-02 2.6015760E-02 2.4686120E-02 2.3424327E-02 2.2227634E-02
 2.1093290E-02 2.0018570E-02 1.9000774E-02 1.8037258E-02 1.7125433E-02
 1.6262766E-02 1.5446799E-02 1.4675156E-02 1.3945522E-02 1.3255689E-02
 1.2603514E-02 1.1986949E-02 1.1404018E-02 1.0852846E-02 1.0331638E-02
 9.8386826E-03 9.3723489E-03 8.9310911E-03 8.5134394E-03 8.1180101E-03
 7.7434848E-03 7.3886225E-03 7.0522521E-03 6.7332746E-03 6.4306487E-03
 6.1434042E-03 5.8706184E-03 5.6114448E-03 5.3650704E-03 5.1307529E-03
 4.9077845E-03 4.6955114E-03 4.4933232E-03 4.3006428E-03 4.1169464E-03
 3.9417353E-03
 4.1730724E-02 3.6462530E-02 3.1483151E-02 2.6808709E-02 2.2449739E-02
 1.8411320E-02 1.4693533E-02 1.1292041E-02 8.1987195E-03 5.4023843E-03
 2.8894537E-03 6.4462301E-04 -1.3485636E-03 -3.1072269E-03 -4.6487153E-03
 -5.9902491E-03 -7.1486710E-03 -8.1402315E-03 -8.9804381E-03 -9.6839592E-03
 -1.0264551E-02 -1.0735035E-02 -1.1107284E-02 -1.1392245E-02 -1.1599944E-02
 -1.1739538E-02 -1.1819356E-02 -1.1846934E-02 -1.1829085E-02 -1.1771925E-02
 -1.1680947E-02 -1.1561055E-02 -1.1416616E-02 -1.1251514E-02 -1.1069182E-02
 -1.0872652E-02 -1.0664595E-02 -1.0447342E-02 -1.0222951E-02 -9.9931965E-03
 -9.7596273E-03 -9.5235901E-03 -9.2862351E-03 -9.0485625E-03 -8.8114254E-03
 -8.5755493E-03 -8.3415546E-03 -8.1099672E-03 -7.8812251E-03 -7.6556997E-03
 -7.4337027E-03 -7.2154854E-03 -7.0012547E-03 -6.7911781E-03 -6.5853964E-03
 -6.3840104E-03 -6.1870962E-03 -5.9947199E-03 -5.8069131E-03 -5.6237048E-03
 -5.4451018E-03 -5.2711009E-03 -5.1016896E-03 -4.9368436E-03 -4.7765346E-03
 -4.6207248E-03 -4.4693677E-03 -4.3224134E-03 -4.1798069E-03 -4.0414892E-03
 -3.9073918E-03
 9.9102952E-02 9.7820632E-02 9.6188739E-02 9.4250664E-02 9.2050321E-02
 8.9630961E-02 8.7034225E-02 8.4299311E-02 8.1462458E-02 7.8556530E-02
 7.5610846E-02 7.2651170E-02 6.9699779E-02 6.6775605E-02 6.3894562E-02
 6.1069746E-02 5.8311746E-02 5.5628918E-02 5.3027686E-02 5.0512772E-02
 4.8087467E-02 4.5753825E-02 4.3512866E-02 4.1364737E-02 3.9308883E-02
 3.7344154E-02 3.5468921E-02 3.3681173E-02 3.1978626E-02 3.0358732E-02
 2.8818810E-02 2.7356021E-02 2.5967468E-02 2.4650211E-02 2.3401283E-02
 2.2217721E-02 2.1096593E-02 2.0035004E-02 1.9030128E-02 1.8079188E-02
 1.7179476E-02 1.6328389E-02 1.5523387E-02 1.4762025E-02 1.4041957E-02
 1.3360918E-02 1.2716754E-02 1.2107393E-02 1.1530858E-02 1.0985279E-02
 1.0468869E-02 9.9799288E-03 9.5168594E-03 9.0781283E-03 8.6623169E-03
 8.2680602E-03 7.8940876E-03 7.5391969E-03 7.2022611E-03 6.8822210E-03
 6.5780864E-03 6.2889275E-03 6.0138707E-03 5.7521081E-03 5.5028764E-03
 5.2654706E-03 5.0392300E-03 4.8235310E-03 4.6178061E-03 4.4215149E-03
 4.2341650E-03
 4.0725436E-02 3.5428159E-02 3.0418213E-02 2.5713557E-02 2.1326192E-02
 1.7262314E-02 1.3522785E-02 1.0103730E-02 6.9972239E-03 4.1920613E-03
 1.6744799E-03 -5.7112821E-04 -2.5615920E-03 -4.3144384E-03 -5.8474387E-03
 -7.1782139E-03 -8.3239991E-03 -9.3013849E-03 -1.0126193E-02 -1.0813360E-02
 -1.1376862E-02 -1.1829724E-02 -1.2183963E-02 -1.2450648E-02 -1.2639897E-02
 -1.2760944E-02 -1.2822154E-02 -1.2831109E-02 -1.2794625E-02 -1.2718840E-02
 -1.2609232E-02 -1.2470709E-02 -1.2307626E-02 -1.2123859E-02 -1.1922830E-02
 -1.1707561E-02 -1.1480720E-02 -1.1244641E-02 -1.1001370E-02 -1.0752700E-02
 -1.0500190E-02 -1.0245191E-02 -9.9888789E-03 -9.7322697E-03 -9.4762454E-03
 -9.2215575E-03 -8.9688515E-03 -8.7186815E-03 -8.4715188E-03 -8.2277656E-03
 -7.9877600E-03 -7.7517829E-03 -7.5200717E-03 -7.2928215E-03 -7.0701931E-03
 -6.8523143E-03 -6.6392855E-03 -6.4311847E-03 -6.2280623E-03 -6.0299635E-03
 -5.8369027E-03 -5.6488910E-03 -5.4659187E-03 -5.2879662E-03 -5.1150098E-03
 -4.9470044E-03 -4.7839023E-03 -4.6256525E-03 -4.4721863E-03 -4.3234350E-03
 -4.1793184E-03
 0.1051700 0.1037255 0.1019187 9.9795371E-02 9.7401857E-02
 9.4783746E-02 9.1984883E-02 8.9046560E-02 8.6006880E-02 8.2900308E-02
 7.9757541E-02 7.6605491E-02 7.3467292E-02 7.0362598E-02 6.7307793E-02
 6.4316310E-02 6.1398935E-02 5.8564104E-02 5.5818219E-02 5.3165924E-02
 5.0610375E-02 4.8153426E-02 4.5795873E-02 4.3537632E-02 4.1377865E-02
 3.9315157E-02 3.7347600E-02 3.5472896E-02 3.3688460E-02 3.1991474E-02
 3.0378966E-02 2.8847827E-02 2.7394887E-02 2.6016949E-02 2.4710784E-02
 2.3473196E-02 2.2301024E-02 2.1191144E-02 2.0140531E-02 1.9146206E-02
 1.8205289E-02 1.7314995E-02 1.6472630E-02 1.5675606E-02 1.4921442E-02
 1.4207758E-02 1.3532284E-02 1.2892848E-02 1.2287391E-02 1.1713956E-02
 1.1170690E-02 1.0655830E-02 1.0167716E-02 9.7047789E-03 9.2655513E-03
 8.8486355E-03 8.4527228E-03 8.0765951E-03 7.7190949E-03 7.3791486E-03
 7.0557487E-03 6.7479489E-03 6.4548701E-03 6.1756871E-03 5.9096338E-03
 5.6559932E-03 5.4140990E-03 5.1833210E-03 4.9630771E-03 4.7528236E-03
 4.5520519E-03
 3.9848153E-02 3.4499038E-02 2.9435799E-02 2.4678718E-02 2.0241689E-02
 1.6132334E-02 1.2352510E-02 8.8989343E-03 5.7639224E-03 2.9362524E-03
 4.0192419E-04 -1.8550472E-03 -3.8519592E-03 -5.6068632E-03 -7.1380492E-03
 -8.4636677E-03 -9.6014300E-03 -1.0568378E-02 -1.1380724E-02 -1.2053756E-02
 -1.2601749E-02 -1.3037971E-02 -1.3374656E-02 -1.3623041E-02 -1.3793382E-02
 -1.3895017E-02 -1.3936401E-02 -1.3925175E-02 -1.3868212E-02 -1.3771675E-02
 -1.3641084E-02 -1.3481361E-02 -1.3296883E-02 -1.3091537E-02 -1.2868772E-02
 -1.2631628E-02 -1.2382783E-02 -1.2124602E-02 -1.1859157E-02 -1.1588267E-02
 -1.1313521E-02 -1.1036305E-02 -1.0757834E-02 -1.0479155E-02 -1.0201191E-02
 -9.9247303E-03 -9.6504586E-03 -9.3789678E-03 -9.1107646E-03 -8.8462830E-03
 -8.5859010E-03 -8.3299279E-03 -8.0786301E-03 -7.8322282E-03 -7.5909072E-03
 -7.3548146E-03 -7.1240705E-03 -6.8987631E-03 -6.6789608E-03 -6.4647109E-03
 -6.2560374E-03 -6.0529499E-03 -5.8554397E-03 -5.6634848E-03 -5.4770508E-03
 -5.2960860E-03 -5.1205349E-03 -4.9503222E-03 -4.7853724E-03 -4.6255980E-03
 -4.4709020E-03
 0.1119500 0.1103193 0.1083131 0.1059796 0.1033674
 0.1005247 9.7497717E-02 9.4330102E-02 9.1062009E-02 8.7729760E-02
 8.4365606E-02 8.0997728E-02 7.7650294E-02 7.4343711E-02 7.1094915E-02
 6.7917690E-02 6.4823009E-02 6.1819382E-02 5.8913156E-02 5.6108851E-02
 5.3409409E-02 5.0816443E-02 4.8330471E-02 4.5951083E-02 4.3677129E-02
 4.1506834E-02 3.9437950E-02 3.7467830E-02 3.5593547E-02 3.3811934E-02
 3.2119699E-02 3.0513404E-02 2.8989565E-02 2.7544690E-02 2.6175270E-02
 2.4877839E-02 2.3648968E-02 2.2485310E-02 2.1383610E-02 2.0340685E-02
 1.9353462E-02 1.8418979E-02 1.7534379E-02 1.6696932E-02 1.5904021E-02
 1.5153149E-02 1.4441932E-02 1.3768107E-02 1.3129526E-02 1.2524161E-02
 1.1950085E-02 1.1405484E-02 1.0888643E-02 1.0397947E-02 9.9318903E-03
 9.4890390E-03 9.0680672E-03 8.6677168E-03 8.2868226E-03 7.9242811E-03
 7.5790733E-03 7.2502363E-03 6.9368812E-03 6.6381642E-03 6.3533103E-03
 6.0815867E-03 5.8223116E-03 5.5748401E-03 5.3385813E-03 5.1129670E-03
 4.8974738E-03
 3.9141580E-02 3.3711031E-02 2.8565373E-02 2.3727749E-02 1.9214366E-02
 1.5034594E-02 1.1191495E-02 7.6824948E-03 4.5002103E-03 1.6333614E-03
 -9.3235477E-04 -3.2134135E-03 -5.2277166E-03 -6.9939685E-03 -8.5311411E-03
 -9.8580448E-03 -1.0993008E-02 -1.1953638E-02 -1.2756667E-02 -1.3417818E-02
 -1.3951767E-02 -1.4372109E-02 -1.4691359E-02 -1.4920991E-02 -1.5071457E-02
 -1.5152253E-02 -1.5171975E-02 -1.5138368E-02 -1.5058399E-02 -1.4938316E-02
 -1.4783697E-02 -1.4599530E-02 -1.4390247E-02 -1.4159787E-02 -1.3911650E-02
 -1.3648923E-02 -1.3374341E-02 -1.3090313E-02 -1.2798968E-02 -1.2502175E-02
 -1.2201570E-02 -1.1898600E-02 -1.1594526E-02 -1.1290447E-02 -1.0987339E-02
 -1.0686032E-02 -1.0387261E-02 -1.0091662E-02 -9.7997794E-03 -9.5120883E-03
 -9.2289932E-03 -8.9508370E-03 -8.6779119E-03 -8.4104640E-03 -8.1486935E-03
 -7.8927660E-03 -7.6428074E-03 -7.3989201E-03 -7.1611684E-03 -6.9296071E-03
 -6.7042504E-03 -6.4851027E-03 -6.2721432E-03 -6.0653384E-03 -5.8646360E-03
 -5.6699696E-03 -5.4812608E-03 -5.2984185E-03 -5.1213368E-03 -4.9499073E-03
 -4.7840108E-03
 0.1195067 0.1176683 0.1154400 0.1128722 0.1100162
 0.1069228 0.1036409 0.1002168 9.6693106E-02 9.3108237E-02
 8.9496307E-02 8.5886978E-02 8.2305647E-02 7.8773603E-02 7.5308397E-02
 7.1924239E-02 6.8632290E-02 6.5441117E-02 6.2356986E-02 5.9384223E-02
 5.6525532E-02 5.3782199E-02 5.1154371E-02 4.8641272E-02 4.6241324E-02
 4.3952361E-02 4.1771702E-02 3.9696287E-02 3.7722789E-02 3.5847638E-02
 3.4067158E-02 3.2377545E-02 3.0774968E-02 2.9255593E-02 2.7815606E-02
 2.6451237E-02 2.5158800E-02 2.3934679E-02 2.2775387E-02 2.1677529E-02
 2.0637834E-02 1.9653153E-02 1.8720480E-02 1.7836927E-02 1.6999749E-02
 1.6206333E-02 1.5454182E-02 1.4740951E-02 1.4064401E-02 1.3422430E-02
 1.2813052E-02 1.2234393E-02 1.1684692E-02 1.1162290E-02 1.0665645E-02
 1.0193289E-02 9.7438674E-03 9.3160952E-03 8.9087794E-03 8.5208043E-03
 8.1511233E-03 7.7987523E-03 7.4627805E-03 7.1423496E-03 6.8366593E-03
 6.5449537E-03 6.2665278E-03 6.0007176E-03 5.7468954E-03 5.5044773E-03
 5.2729063E-03
 3.8653743E-02 3.3105191E-02 2.7841346E-02 2.2888765E-02 1.8266426E-02
 1.3985813E-02 1.0051459E-02 6.4616487E-03 3.2093497E-03 2.8320606E-04
 -2.3314864E-03 -4.6518217E-03 -6.6964705E-03 -8.4849829E-03 -1.0037187E-02
 -1.1372731E-02 -1.2510743E-02 -1.3469554E-02 -1.4266548E-02 -1.4918039E-02
 -1.5439204E-02 -1.5844079E-02 -1.6145561E-02 -1.6355438E-02 -1.6484445E-02
 -1.6542310E-02 -1.6537823E-02 -1.6478911E-02 -1.6372684E-02 -1.6225524E-02
 -1.6043132E-02 -1.5830599E-02 -1.5592459E-02 -1.5332748E-02 -1.5055049E-02
 -1.4762539E-02 -1.4458032E-02 -1.4144024E-02 -1.3822712E-02 -1.3496043E-02
 -1.3165729E-02 -1.2833279E-02 -1.2500023E-02 -1.2167122E-02 -1.1835605E-02
 -1.1506358E-02 -1.1180171E-02 -1.0857712E-02 -1.0539576E-02 -1.0226268E-02
 -9.9182231E-03 -9.6158125E-03 -9.3193455E-03 -9.0290811E-03 -8.7452317E-03
 -8.4679695E-03 -8.1974193E-03 -7.9336837E-03 -7.6768165E-03 -7.4268607E-03
 -7.1838140E-03 -6.9476664E-03 -6.7183771E-03 -6.4958883E-03 -6.2801181E-03
 -6.0709831E-03 -5.8683679E-03 -5.6721601E-03 -5.4822285E-03 -5.2984324E-03
 -5.1206318E-03
 0.1279125 0.1258487 0.1233785 0.1205544 0.1174303
 0.1140601 0.1104959 0.1067869 0.1029786 9.9112004E-02
 9.5223464E-02 9.1344483E-02 8.7501891E-02 8.3718069E-02 8.0011345E-02
 7.6396391E-02 7.2884619E-02 6.9484651E-02 6.6202618E-02 6.3042648E-02
 6.0007080E-02 5.7096835E-02 5.4311622E-02 5.1650189E-02 4.9110468E-02
 4.6689801E-02 4.4385016E-02 4.2192567E-02 4.0108658E-02 3.8129270E-02
 3.6250282E-02 3.4467489E-02 3.2776661E-02 3.1173617E-02 2.9654190E-02
 2.8214298E-02 2.6849965E-02 2.5557309E-02 2.4332602E-02 2.3172220E-02
 2.2072690E-02 2.1030694E-02 2.0043049E-02 1.9106725E-02 1.8218851E-02
 1.7376682E-02 1.6577637E-02 1.5819266E-02 1.5099252E-02 1.4415426E-02
 1.3765735E-02 1.3148244E-02 1.2561152E-02 1.2002750E-02 1.1471455E-02
 1.0965769E-02 1.0484294E-02 1.0025718E-02 9.5888171E-03 9.1724405E-03
 8.7755146E-03 8.3970269E-03 8.0360314E-03 7.6916362E-03 7.3630097E-03
 7.0493594E-03 6.7499480E-03 6.4640720E-03 6.1910688E-03 5.9303162E-03
 5.6812204E-03
 3.8441073E-02 3.2730989E-02 2.7306268E-02 2.2197511E-02 1.7427038E-02
 1.3008934E-02 8.9495406E-03 5.2482490E-03 1.8984776E-03 -1.1112003E-03
 -3.7959807E-03 -6.1737364E-03 -8.2641020E-03 -1.0087693E-02 -1.1665432E-02
 -1.3018034E-02 -1.4165644E-02 -1.5127528E-02 -1.5921915E-02 -1.6565878E-02
 -1.7075256E-02 -1.7464668E-02 -1.7747510E-02 -1.7936016E-02 -1.8041298E-02
 -1.8073408E-02 -1.8041432E-02 -1.7953539E-02 -1.7817073E-02 -1.7638607E-02
 -1.7424027E-02 -1.7178588E-02 -1.6906971E-02 -1.6613357E-02 -1.6301453E-02
 -1.5974566E-02 -1.5635625E-02 -1.5287220E-02 -1.4931662E-02 -1.4570989E-02
 -1.4206999E-02 -1.3841281E-02 -1.3475241E-02 -1.3110111E-02 -1.2746976E-02
 -1.2386779E-02 -1.2030355E-02 -1.1678416E-02 -1.1331593E-02 -1.0990413E-02
 -1.0655342E-02 -1.0326758E-02 -1.0004980E-02 -9.6902773E-03 -9.3828579E-03
 -9.0828808E-03 -8.7904707E-03 -8.5056983E-03 -8.2286103E-03 -7.9592196E-03
 -7.6975008E-03 -7.4434150E-03 -7.1968846E-03 -6.9578285E-03 -6.7261318E-03
 -6.5016747E-03 -6.2843161E-03 -6.0739103E-03 -5.8702957E-03 -5.6733121E-03
 -5.4827887E-03
 0.1372492 0.1349478 0.1322200 0.1291205 0.1257062
 0.1220341 0.1181598 0.1141364 0.1100127 0.1058329
 0.1016361 9.7456098E-02 9.3321584E-02 8.9256279E-02 8.5279502E-02
 8.1406519E-02 7.7649049E-02 7.4015774E-02 7.0512719E-02 6.7143701E-02
 6.3910708E-02 6.0814161E-02 5.7853248E-02 5.5026166E-02 5.2330282E-02
 4.9762346E-02 4.7318626E-02 4.4995021E-02 4.2787202E-02 4.0690638E-02
 3.8700726E-02 3.6812805E-02 3.5022236E-02 3.3324428E-02 3.1714857E-02
 3.0189112E-02 2.8742904E-02 2.7372079E-02 2.6072651E-02 2.4840776E-02
 2.3672771E-02 2.2565130E-02 2.1514514E-02 2.0517733E-02 1.9571792E-02
 1.8673826E-02 1.7821152E-02 1.7011225E-02 1.6241649E-02 1.5510174E-02
 1.4814684E-02 1.4153189E-02 1.3523822E-02 1.2924826E-02 1.2354570E-02
 1.1811511E-02 1.1294202E-02 1.0801292E-02 1.0331505E-02 9.8836515E-03
 9.4566112E-03 9.0493215E-03 8.6607961E-03 8.2900897E-03 7.9363212E-03
 7.5986618E-03 7.2763101E-03 6.9685234E-03 6.6745924E-03 6.3938424E-03
 6.1256392E-03
 3.8572751E-02 3.2650754E-02 2.7015248E-02 2.1701673E-02 1.6736453E-02
 1.2136932E-02 7.9118181E-03 4.0619755E-03 5.8149878E-04 -2.5410529E-03
 -5.3214198E-03 -7.7784210E-03 -9.9328868E-03 -1.1806767E-02 -1.3422372E-02
 -1.4801781E-02 -1.5966432E-02 -1.6936811E-02 -1.7732235E-02 -1.8370759E-02
 -1.8869098E-02 -1.9242637E-02 -1.9505451E-02 -1.9670354E-02 -1.9748975E-02
 -1.9751824E-02 -1.9688375E-02 -1.9567156E-02 -1.9395817E-02 -1.9181209E-02
 -1.8929472E-02 -1.8646086E-02 -1.8335938E-02 -1.8003402E-02 -1.7652353E-02
 -1.7286250E-02 -1.6908174E-02 -1.6520847E-02 -1.6126700E-02 -1.5727876E-02
 -1.5326275E-02 -1.4923573E-02 -1.4521255E-02 -1.4120620E-02 -1.3722813E-02
 -1.3328834E-02 -1.2939545E-02 -1.2555703E-02 -1.2177953E-02 -1.1806847E-02
 -1.1442850E-02 -1.1086347E-02 -1.0737654E-02 -1.0397025E-02 -1.0064650E-02
 -9.7406702E-03 -9.4251782E-03 -9.1182208E-03 -8.8198073E-03 -8.5299201E-03
 -8.2484959E-03 -7.9754554E-03 -7.7106934E-03 -7.4540842E-03 -7.2054798E-03
 -6.9647264E-03 -6.7316554E-03 -6.5060873E-03 -6.2878341E-03 -6.0767140E-03
 -5.8725253E-03
 0.1476070 0.1450631 0.1420683 0.1386795 0.1349561
 0.1309589 0.1267477 0.1223796 0.1179080 0.1133810
 0.1088411 0.1043251 9.9863909E-02 9.5483199E-02 9.1203488E-02
 8.7040879E-02 8.3007537E-02 7.9112254E-02 7.5360924E-02 7.1757078E-02
 6.8302222E-02 6.4996250E-02 6.1837748E-02 5.8824245E-02 5.5952460E-02
 5.3218480E-02 5.0617937E-02 4.8146088E-02 4.5798019E-02 4.3568630E-02
 4.1452784E-02 3.9445337E-02 3.7541177E-02 3.5735302E-02 3.4022793E-02
 3.2398894E-02 3.0858995E-02 2.9398650E-02 2.8013613E-02 2.6699796E-02
 2.5453314E-02 2.4270462E-02 2.3147734E-02 2.2081790E-02 2.1069495E-02
 2.0107871E-02 1.9194108E-02 1.8325571E-02 1.7499769E-02 1.6714374E-02
 1.5967188E-02 1.5256150E-02 1.4579321E-02 1.3934885E-02 1.3321134E-02
 1.2736468E-02 1.2179378E-02 1.1648444E-02 1.1142331E-02 1.0659783E-02
 1.0199612E-02 9.7606992E-03 9.3419859E-03 8.9424690E-03 8.5612014E-03
 8.1972890E-03 7.8498768E-03 7.5181592E-03 7.2013712E-03 6.8987850E-03
 6.6097109E-03
 3.9136134E-02 3.2945313E-02 2.7041739E-02 2.1466659E-02 1.6251639E-02
 1.1418251E-02 6.9783940E-03 2.9350377E-03 -7.1663951E-04 -3.9878921E-03
 -6.8950006E-03 -9.4578667E-03 -1.1698771E-02 -1.3641325E-02 -1.5309586E-02
 -1.6727379E-02 -1.7917817E-02 -1.8902941E-02 -1.9703496E-02 -2.0338828E-02
 -2.0826790E-02 -2.1183783E-02 -2.1424778E-02 -2.1563368E-02 -2.1611871E-02
 -2.1581398E-02 -2.1481957E-02 -2.1322539E-02 -2.1111216E-02 -2.0855207E-02
 -2.0560976E-02 -2.0234300E-02 -1.9880332E-02 -1.9503675E-02 -1.9108424E-02
 -1.8698229E-02 -1.8276330E-02 -1.7845610E-02 -1.7408632E-02 -1.6967662E-02
 -1.6524695E-02 -1.6081503E-02 -1.5639642E-02 -1.5200476E-02 -1.4765201E-02
 -1.4334848E-02 -1.3910322E-02 -1.3492385E-02 -1.3081693E-02 -1.2678798E-02
 -1.2284159E-02 -1.1898140E-02 -1.1521039E-02 -1.1153074E-02 -1.0794410E-02
 -1.0445151E-02 -1.0105346E-02 -9.7750034E-03 -9.4540901E-03 -9.1425441E-03
 -8.8402657E-03 -8.5471282E-03 -8.2629910E-03 -7.9876883E-03 -7.7210451E-03
 -7.4628713E-03 -7.2129671E-03 -6.9711301E-03 -6.7371475E-03 -6.5108105E-03
 -6.2919077E-03
 0.1590813 0.1562999 0.1530379 0.1493531 0.1453078
 0.1409664 0.1363935 0.1316514 0.1267984 0.1218877
 0.1169663 0.1120749 0.1072475 0.1025122 9.7891212E-02
 9.3401857E-02 8.9056917E-02 8.4865473E-02 8.0833323E-02 7.6963678E-02
 7.3257573E-02 6.9714285E-02 6.6331692E-02 6.3106619E-02 6.0035013E-02
 5.7112236E-02 5.4333173E-02 5.1692400E-02 4.9184326E-02 4.6803232E-02
 4.4543412E-02 4.2399161E-02 4.0364888E-02 3.8435135E-02 3.6604576E-02
 3.4868065E-02 3.3220664E-02 3.1657610E-02 3.0174382E-02 2.8766651E-02
 2.7430300E-02 2.6161425E-02 2.4956334E-02 2.3811525E-02 2.2723716E-02
 2.1689786E-02 2.0706808E-02 1.9772023E-02 1.8882835E-02 1.8036814E-02
 1.7231662E-02 1.6465221E-02 1.5735464E-02 1.5040482E-02 1.4378478E-02
 1.3747760E-02 1.3146730E-02 1.2573887E-02 1.2027803E-02 1.1507135E-02
 1.1010616E-02 1.0537038E-02 1.0085260E-02 9.6542044E-03 9.2428457E-03
 8.8502159E-03 8.4753865E-03 8.1174886E-03 7.7756909E-03 7.4492083E-03
 7.1372958E-03
 4.0242821E-02 3.3720747E-02 2.7484745E-02 2.1583105E-02 1.6053881E-02
 1.0924255E-02 6.2105441E-03 1.9188587E-03 -1.9537976E-03 -5.4180482E-03
 -8.4905550E-03 -1.1192366E-02 -1.3547469E-02 -1.5581513E-02 -1.7320748E-02
 -1.8791230E-02 -2.0018220E-02 -2.1025784E-02 -2.1836540E-02 -2.2471510E-02
 -2.2950055E-02 -2.3289910E-02 -2.3507215E-02 -2.3616597E-02 -2.3631277E-02
 -2.3563154E-02 -2.3422934E-02 -2.3220209E-02 -2.2963589E-02 -2.2660758E-02
 -2.2318598E-02 -2.1943245E-02 -2.1540178E-02 -2.1114284E-02 -2.0669900E-02
 -2.0210898E-02 -1.9740714E-02 -1.9262390E-02 -1.8778630E-02 -1.8291818E-02
 -1.7804060E-02 -1.7317200E-02 -1.6832866E-02 -1.6352465E-02 -1.5877232E-02
 -1.5408220E-02 -1.4946338E-02 -1.4492348E-02 -1.4046897E-02 -1.3610514E-02
 -1.3183627E-02 -1.2766571E-02 -1.2359600E-02 -1.1962888E-02 -1.1576560E-02
 -1.1200664E-02 -1.0835206E-02 -1.0480147E-02 -1.0135406E-02 -9.8008774E-03
 -9.4764158E-03 -9.1618598E-03 -8.8570276E-03 -8.5617229E-03 -8.2757389E-03
 -7.9988558E-03 -7.7308542E-03 -7.4715037E-03 -7.2205733E-03 -6.9778361E-03
 -6.7430628E-03
 0.1717657 0.1687653 0.1652481 0.1612722 0.1569017
 0.1522047 0.1472505 0.1421074 0.1368399 0.1315075
 0.1261630 0.1208522 0.1156133 0.1104778 0.1054705
 0.1006102 9.5910981E-02 9.1382243E-02 8.7029919E-02 8.2856953E-02
 7.8863882E-02 7.5049326E-02 7.1410418E-02 6.7943163E-02 6.4642668E-02
 6.1503462E-02 5.8519620E-02 5.5684935E-02 5.2993089E-02 5.0437663E-02
 4.8012316E-02 4.5710761E-02 4.3526851E-02 4.1454647E-02 3.9488368E-02
 3.7622463E-02 3.5851624E-02 3.4170754E-02 3.2575037E-02 3.1059865E-02
 2.9620873E-02 2.8253935E-02 2.6955154E-02 2.5720835E-02 2.4547521E-02
 2.3431931E-02 2.2370985E-02 2.1361776E-02 2.0401571E-02 1.9487802E-02
 1.8618040E-02 1.7790006E-02 1.7001539E-02 1.6250607E-02 1.5535300E-02
 1.4853799E-02 1.4204394E-02 1.3585465E-02 1.2995474E-02 1.2432971E-02
 1.1896580E-02 1.1384991E-02 1.0896977E-02 1.0431350E-02 9.9870153E-03
 9.5629040E-03 9.1580264E-03 8.7714288E-03 8.4022135E-03 8.0495281E-03
 7.7125723E-03
 4.2034626E-02 3.5115540E-02 2.8477129E-02 2.2176044E-02 1.6258527E-02
 1.0759172E-02 5.7005566E-03 1.0935309E-03 -3.0618026E-03 -6.7745573E-03
 -1.0061294E-02 -1.2944117E-02 -1.5448884E-02 -1.7603682E-02 -1.9437488E-02
 -2.0979173E-02 -2.2256788E-02 -2.3297032E-02 -2.4124956E-02 -2.4763789E-02
 -2.5234878E-02 -2.5557697E-02 -2.5749926E-02 -2.5827538E-02 -2.5804928E-02
 -2.5695011E-02 -2.5509378E-02 -2.5258394E-02 -2.4951335E-02 -2.4596473E-02
 -2.4201186E-02 -2.3772057E-02 -2.3314940E-02 -2.2835040E-02 -2.2336993E-02
 -2.1824898E-02 -2.1302398E-02 -2.0772707E-02 -2.0238670E-02 -1.9702785E-02
 -1.9167243E-02 -1.8633960E-02 -1.8104609E-02 -1.7580628E-02 -1.7063262E-02
 -1.6553566E-02 -1.6052432E-02 -1.5560604E-02 -1.5078687E-02 -1.4607176E-02
 -1.4146453E-02 -1.3696799E-02 -1.3258422E-02 -1.2831439E-02 -1.2415920E-02
 -1.2011865E-02 -1.1619227E-02 -1.1237918E-02 -1.0867815E-02 -1.0508765E-02
 -1.0160591E-02 -9.8230951E-03 -9.4960611E-03 -9.1792680E-03 -8.8724783E-03
 -8.5754562E-03 -8.2879523E-03 -8.0097262E-03 -7.7405227E-03 -7.4801054E-03
 -7.2282231E-03
 0.1857416 0.1825568 0.1788133 0.1745672 0.1698831
 0.1648315 0.1594864 0.1539221 0.1482106 0.1424190
 0.1366076 0.1308290 0.1251273 0.1195388 0.1140919
 0.1088081 0.1037030 9.8787151E-02 9.4066739E-02 8.9544646E-02
 8.5220978E-02 8.1093691E-02 7.7159122E-02 7.3412381E-02 6.9847658E-02
 6.6458553E-02 6.3238226E-02 6.0179591E-02 5.7275526E-02 5.4518834E-02
 5.1902454E-02 4.9419452E-02 4.7063075E-02 4.4826832E-02 4.2704448E-02
 4.0689912E-02 3.8777500E-02 3.6961753E-02 3.5237499E-02 3.3599816E-02
 3.2044061E-02 3.0565830E-02 2.9160986E-02 2.7825607E-02 2.6556011E-02
 2.5348712E-02 2.4200430E-02 2.3108067E-02 2.2068713E-02 2.1079611E-02
 2.0138165E-02 1.9241922E-02 1.8388556E-02 1.7575877E-02 1.6801817E-02
 1.6064405E-02 1.5361782E-02 1.4692189E-02 1.4053950E-02 1.3445491E-02
 1.2865310E-02 1.2311984E-02 1.1784169E-02 1.1280581E-02 1.0800023E-02
 1.0341341E-02 9.9034561E-03 9.4853370E-03 9.0860100E-03 8.7045589E-03
 8.3401119E-03
 4.4687681E-02 3.7306726E-02 3.0193724E-02 2.3414880E-02 1.7026395E-02
 1.1072556E-02 5.5846381E-03 5.8063661E-04 -3.9341510E-03 -7.9657184E-03
 -1.1529471E-02 -1.4648034E-02 -1.7349117E-02 -1.9663544E-02 -2.1623593E-02
 -2.3261687E-02 -2.4609424E-02 -2.5696935E-02 -2.6552454E-02 -2.7202128E-02
 -2.7669879E-02 -2.7977487E-02 -2.8144637E-02 -2.8189054E-02 -2.8126635E-02
 -2.7971607E-02 -2.7736684E-02 -2.7433194E-02 -2.7071241E-02 -2.6659805E-02
 -2.6206870E-02 -2.5719533E-02 -2.5204079E-02 -2.4666097E-02 -2.4110515E-02
 -2.3541702E-02 -2.2963502E-02 -2.2379298E-02 -2.1792069E-02 -2.1204412E-02
 -2.0618591E-02 -2.0036565E-02 -1.9460030E-02 -1.8890427E-02 -1.8329000E-02
 -1.7776771E-02 -1.7234601E-02 -1.6703183E-02 -1.6183084E-02 -1.5674738E-02
 -1.5178470E-02 -1.4694508E-02 -1.4222996E-02 -1.3764003E-02 -1.3317539E-02
 -1.2883560E-02 -1.2461970E-02 -1.2052636E-02 -1.1655402E-02 -1.1270075E-02
 -1.0896451E-02 -1.0534300E-02 -1.0183382E-02 -9.8434519E-03 -9.5142554E-03
 -9.1955326E-03 -8.8870171E-03 -8.5884482E-03 -8.2995603E-03 -8.0200909E-03
 -7.7497787E-03
 0.2010626 0.1977465 0.1938256 0.1893516 0.1843865
 0.1790011 0.1732725 0.1672805 0.1611049 0.1548216
 0.1485006 0.1422033 0.1359822 0.1298802 0.1239314
 0.1181613 0.1125884 0.1072249 0.1020780 9.7150803E-02
 9.2443138E-02 8.7952428E-02 8.3674170E-02 7.9602554E-02 7.5730741E-02
 7.2051309E-02 6.8556391E-02 6.5237924E-02 6.2087834E-02 5.9098057E-02
 5.6260724E-02 5.3568136E-02 5.1012862E-02 4.8587777E-02 4.6286020E-02
 4.4101067E-02 4.2026691E-02 4.0057000E-02 3.8186405E-02 3.6409620E-02
 3.4721624E-02 3.3117697E-02 3.1593390E-02 3.0144472E-02 2.8766986E-02
 2.7457178E-02 2.6211506E-02 2.5026625E-02 2.3899373E-02 2.2826770E-02
 2.1805992E-02 2.0834364E-02 1.9909360E-02 1.9028578E-02 1.8189762E-02
 1.7390762E-02 1.6629541E-02 1.5904173E-02 1.5212835E-02 1.4553798E-02
 1.3925423E-02 1.3326163E-02 1.2754546E-02 1.2209184E-02 1.1688768E-02
 1.1192051E-02 1.0717856E-02 1.0265070E-02 9.8326355E-03 9.4195642E-03
 9.0249106E-03
 4.8411857E-02 4.0511943E-02 3.2856461E-02 2.5521649E-02 1.8575087E-02
 1.2073028E-02 6.0584308E-03 5.5970240E-04 -4.4094599E-03 -8.8491533E-03
 -1.2771536E-02 -1.6198419E-02 -1.9158743E-02 -2.1686099E-02 -2.3816541E-02
 -2.5586795E-02 -2.7032979E-02 -2.8189637E-02 -2.9089171E-02 -2.9761538E-02
 -3.0234085E-02 -3.0531613E-02 -3.0676438E-02 -3.0688554E-02 -3.0585812E-02
 -3.0384118E-02 -3.0097596E-02 -2.9738784E-02 -2.9318802E-02 -2.8847488E-02
 -2.8333550E-02 -2.7784677E-02 -2.7207663E-02 -2.6608502E-02 -2.5992455E-02
 -2.5364157E-02 -2.4727665E-02 -2.4086522E-02 -2.3443820E-02 -2.2802239E-02
 -2.2164097E-02 -2.1531368E-02 -2.0905755E-02 -2.0288687E-02 -1.9681364E-02
 -1.9084778E-02 -1.8499736E-02 -1.7926881E-02 -1.7366717E-02 -1.6819622E-02
 -1.6285863E-02 -1.5765617E-02 -1.5258967E-02 -1.4765937E-02 -1.4286497E-02
 -1.3820552E-02 -1.3367977E-02 -1.2928607E-02 -1.2502244E-02 -1.2088680E-02
 -1.1687680E-02 -1.1298993E-02 -1.0922363E-02 -1.0557520E-02 -1.0204190E-02
 -9.8620970E-03 -9.5309578E-03 -9.2104897E-03 -8.9004133E-03 -8.6004464E-03
 -8.3103087E-03
 0.2177364 0.2143589 0.2103308 0.2056958 0.2005095
 0.1948390 0.1887609 0.1823584 0.1757177 0.1689242
 0.1620588 0.1551947 0.1483953 0.1417137 0.1351919
 0.1288621 0.1227475 0.1168634 0.1112191 0.1058184
 0.1006616 9.5745571E-02 9.1065153E-02 8.6613573E-02 8.2382895E-02
 7.8364536E-02 7.4549481E-02 7.0928529E-02 6.7492522E-02 6.4232379E-02
 6.1139263E-02 5.8204595E-02 5.5420116E-02 5.2777950E-02 5.0270539E-02
 4.7890704E-02 4.5631647E-02 4.3486897E-02 4.1450363E-02 3.9516274E-02
 3.7679158E-02 3.5933867E-02 3.4275543E-02 3.2699566E-02 3.1201625E-02
 2.9777605E-02 2.8423628E-02 2.7136022E-02 2.5911324E-02 2.4746260E-02
 2.3637725E-02 2.2582775E-02 2.1578632E-02 2.0622661E-02 1.9712375E-02
 1.8845413E-02 1.8019542E-02 1.7232649E-02 1.6482731E-02 1.5767906E-02
 1.5086380E-02 1.4436466E-02 1.3816559E-02 1.3225148E-02 1.2660810E-02
 1.2122190E-02 1.1608009E-02 1.1117065E-02 1.0648206E-02 1.0200356E-02
 9.7724972E-03
 5.3441688E-02 4.4982776E-02 3.6731210E-02 2.8772254E-02 2.1184979E-02
 1.4039100E-02 7.3920176E-03 1.2863709E-03 -4.2513781E-03 -9.2111165E-03
 -1.3597980E-02 -1.7430125E-02 -2.0735910E-02 -2.3550903E-02 -2.5914935E-02
 -2.7869690E-02 -2.9456777E-02 -3.0716365E-02 -3.1686269E-02 -3.2401457E-02
 -3.2893814E-02 -3.3192128E-02 -3.3322193E-02 -3.3306990E-02 -3.3166919E-02
 -3.2920033E-02 -3.2582272E-02 -3.2167688E-02 -3.1688668E-02 -3.1156089E-02
 -3.0579520E-02 -2.9967364E-02 -2.9326977E-02 -2.8664812E-02 -2.7986495E-02
 -2.7296938E-02 -2.6600409E-02 -2.5900608E-02 -2.5200734E-02 -2.4503531E-02
 -2.3811346E-02 -2.3126172E-02 -2.2449691E-02 -2.1783305E-02 -2.1128181E-02
 -2.0485260E-02 -1.9855302E-02 -1.9238895E-02 -1.8636493E-02 -1.8048422E-02
 -1.7474907E-02 -1.6916070E-02 -1.6371965E-02 -1.5842577E-02 -1.5327839E-02
 -1.4827629E-02 -1.4341795E-02 -1.3870149E-02 -1.3412471E-02 -1.2968535E-02
 -1.2538081E-02 -1.2120839E-02 -1.1716541E-02 -1.1324890E-02 -1.0945600E-02
 -1.0578373E-02 -1.0222903E-02 -9.8788934E-03 -9.5460331E-03 -9.2240339E-03
 -8.9125829E-03
 0.2357091 0.2323504 0.2283015 0.2235952 0.2182764
 0.2124031 0.2060460 0.1992862 0.1922128 0.1849186
 0.1774954 0.1700298 0.1625999 0.1552721 0.1481010
 0.1411290 0.1343868 0.1278959 0.1216690 0.1157125
 0.1100275 0.1046111 9.9457681E-02 9.4559588E-02 8.9907773E-02
 8.5492373E-02 8.1303038E-02 7.7329248E-02 7.3560558E-02 6.9986641E-02
 6.6597499E-02 6.3383475E-02 6.0335279E-02 5.7444099E-02 5.4701500E-02
 5.2099485E-02 4.9630489E-02 4.7287345E-02 4.5063283E-02 4.2951908E-02
 4.0947169E-02 3.9043356E-02 3.7235077E-02 3.5517234E-02 3.3885028E-02
 3.2333899E-02 3.0859547E-02 2.9457910E-02 2.8125133E-02 2.6857600E-02
 2.5651857E-02 2.4504660E-02 2.3412932E-02 2.2373760E-02 2.1384411E-02
 2.0442281E-02 1.9544913E-02 1.8689992E-02 1.7875321E-02 1.7098840E-02
 1.6358592E-02 1.5652727E-02 1.4979504E-02 1.4337277E-02 1.3724486E-02
 1.3139669E-02 1.2581424E-02 1.2048445E-02 1.1539483E-02 1.1053363E-02
 1.0588980E-02
 6.0015596E-02 5.0984614E-02 4.2109776E-02 3.3482425E-02 2.5191007E-02
 1.7317943E-02 9.9361958E-03 3.1057114E-03 -3.1295582E-03 -8.7435609E-03
 -1.3728522E-02 -1.8093677E-02 -2.1862781E-02 -2.5070738E-02 -2.7759958E-02
 -2.9976977E-02 -3.1769652E-02 -3.3185001E-02 -3.4267738E-02 -3.5059415E-02
 -3.5597898E-02 -3.5917316E-02 -3.6048111E-02 -3.6017235E-02 -3.5848469E-02
 -3.5562687E-02 -3.5178181E-02 -3.4710947E-02 -3.4174971E-02 -3.3582430E-02
 -3.2943949E-02 -3.2268777E-02 -3.1564940E-02 -3.0839421E-02 -3.0098258E-02
 -2.9346671E-02 -2.8589161E-02 -2.7829587E-02 -2.7071264E-02 -2.6317000E-02
 -2.5569182E-02 -2.4829810E-02 -2.4100566E-02 -2.3382824E-02 -2.2677729E-02
 -2.1986187E-02 -2.1308923E-02 -2.0646492E-02 -1.9999312E-02 -1.9367680E-02
 -1.8751785E-02 -1.8151736E-02 -1.7567551E-02 -1.6999198E-02 -1.6446590E-02
 -1.5909592E-02 -1.5388026E-02 -1.4881691E-02 -1.4390354E-02 -1.3913762E-02
 -1.3451648E-02 -1.3003720E-02 -1.2569686E-02 -1.2149231E-02 -1.1742050E-02
 -1.1347820E-02 -1.0966217E-02 -1.0596919E-02 -1.0239595E-02 -9.8939296E-03
 -9.5595904E-03
 0.2548594 0.2515970 0.2476175 0.2429411 0.2375994
 0.2316365 0.2251104 0.2180926 0.2106675 0.2029290
 0.1949760 0.1869078 0.1788183 0.1707916 0.1628997
 0.1552002 0.1477369 0.1405411 0.1336327 0.1270228
 0.1207152 0.1147084 0.1089970 0.1035726 9.8425277E-02
 9.3543723E-02 8.8916108E-02 8.4530339E-02 8.0374382E-02 7.6436400E-02
 7.2704941E-02 6.9168940E-02 6.5817833E-02 6.2641576E-02 5.9630610E-02
 5.6775868E-02 5.4068800E-02 5.1501296E-02 4.9065754E-02 4.6754938E-02
 4.4562042E-02 4.2480648E-02 4.0504694E-02 3.8628448E-02 3.6846533E-02
 3.5153829E-02 3.3545535E-02 3.2017093E-02 3.0564213E-02 2.9182855E-02
 2.7869189E-02 2.6619606E-02 2.5430690E-02 2.4299232E-02 2.3222202E-02
 2.2196736E-02 2.1220136E-02 2.0289855E-02 1.9403478E-02 1.8558754E-02
 1.7753541E-02 1.6985813E-02 1.6253673E-02 1.5555309E-02 1.4889034E-02
 1.4253238E-02 1.3646406E-02 1.3067101E-02 1.2513963E-02 1.1985705E-02
 1.1481131E-02
 6.8343699E-02 5.8760956E-02 4.9272284E-02 3.9970465E-02 3.0948622E-02
 2.2297893E-02 1.4104377E-02 6.4453031E-03 -6.1511045E-04 -7.0294188E-03
 -1.2769625E-02 -1.7828090E-02 -2.2216514E-02 -2.5963215E-02 -2.9109169E-02
 -3.1703696E-02 -3.3800468E-02 -3.5454083E-02 -3.6717642E-02 -3.7641048E-02
 -3.8270094E-02 -3.8646054E-02 -3.8805641E-02 -3.8781226E-02 -3.8601130E-02
 -3.8290042E-02 -3.7869394E-02 -3.7357759E-02 -3.6771197E-02 -3.6123578E-02
 -3.5426874E-02 -3.4691401E-02 -3.3926032E-02 -3.3138402E-02 -3.2335054E-02
 -3.1521592E-02 -3.0702805E-02 -2.9882757E-02 -2.9064920E-02 -2.8252205E-02
 -2.7447062E-02 -2.6651544E-02 -2.5867352E-02 -2.5095876E-02 -2.4338264E-02
 -2.3595423E-02 -2.2868067E-02 -2.2156753E-02 -2.1461884E-02 -2.0783760E-02
 -2.0122558E-02 -1.9478379E-02 -1.8851239E-02 -1.8241093E-02 -1.7647849E-02
 -1.7071355E-02 -1.6511431E-02 -1.5967855E-02 -1.5440380E-02 -1.4928740E-02
 -1.4432641E-02 -1.3951777E-02 -1.3485831E-02 -1.3034469E-02 -1.2597359E-02
 -1.2174153E-02 -1.1764507E-02 -1.1368068E-02 -1.0984486E-02 -1.0613419E-02
 -1.0254510E-02
 0.2750116 0.2719042 0.2680688 0.2635151 0.2582609
 0.2523346 0.2457767 0.2386419 0.2310002 0.2229359
 0.2145456 0.2059339 0.1972074 0.1884688 0.1798110
 0.1713134 0.1630395 0.1550369 0.1473385 0.1399646
 0.1329253 0.1262226 0.1198527 0.1138076 0.1080767
 0.1026474 9.7506233E-02 9.2639238E-02 8.8032492E-02 8.3672225E-02
 7.9545110E-02 7.5638339E-02 7.1939625E-02 6.8437345E-02 6.5120444E-02
 6.1978485E-02 5.9001613E-02 5.6180526E-02 5.3506479E-02 5.0971232E-02
 4.8566990E-02 4.6286449E-02 4.4122715E-02 4.2069290E-02 4.0120073E-02
 3.8269304E-02 3.6511559E-02 3.4841724E-02 3.3254988E-02 3.1746842E-02
 3.0313006E-02 2.8949469E-02 2.7652442E-02 2.6418366E-02 2.5243895E-02
 2.4125867E-02 2.3061303E-02 2.2047406E-02 2.1081522E-02 2.0161178E-02
 1.9284017E-02 1.8447822E-02 1.7650511E-02 1.6890101E-02 1.6164741E-02
 1.5472666E-02 1.4812214E-02 1.4181817E-02 1.3579980E-02 1.3005299E-02
 1.2456463E-02
 7.8571588E-02 6.8489350E-02 5.8435060E-02 4.8497997E-02 3.8769927E-02
 2.9343968E-02 2.0312784E-02 1.1765681E-02 3.7847119E-03 -3.5600048E-03
 -1.0214926E-02 -1.6146885E-02 -2.1345081E-02 -2.5820816E-02 -2.9604791E-02
 -3.2742795E-02 -3.5290655E-02 -3.7309300E-02 -3.8860664E-02 -4.0004626E-02
 -4.0797029E-02 -4.1288633E-02 -4.1524682E-02 -4.1544966E-02 -4.1384131E-02
 -4.1072141E-02 -4.0634770E-02 -4.0094133E-02 -3.9469160E-02 -3.8776014E-02
 -3.8028482E-02 -3.7238341E-02 -3.6415592E-02 -3.5568763E-02 -3.4705091E-02
 -3.3830721E-02 -3.2950848E-02 -3.2069866E-02 -3.1191478E-02 -3.0318789E-02
 -2.9454397E-02 -2.8600464E-02 -2.7758773E-02 -2.6930794E-02 -2.6117722E-02
 -2.5320509E-02 -2.4539912E-02 -2.3776516E-02 -2.3030747E-02 -2.2302926E-02
 -2.1593243E-02 -2.0901814E-02 -2.0228654E-02 -1.9573722E-02 -1.8936921E-02
 -1.8318098E-02 -1.7717058E-02 -1.7133567E-02 -1.6567361E-02 -1.6018152E-02
 -1.5485631E-02 -1.4969468E-02 -1.4469317E-02 -1.3984823E-02 -1.3515622E-02
 -1.3061351E-02 -1.2621630E-02 -1.2196083E-02 -1.1784336E-02 -1.1386016E-02
 -1.1000742E-02
 0.2959668 0.2930406 0.2893910 0.2850207 0.2799375
 0.2741560 0.2676995 0.2606028 0.2529144 0.2446985
 0.2360359 0.2270225 0.2177657 0.2083790 0.1989744
 0.1896558 0.1805128 0.1716182 0.1630262 0.1547741
 0.1468844 0.1393672 0.1322238 0.1254485 0.1190312
 0.1129587 0.1072158 0.1017867 9.6655056E-02 9.1804832E-02
 8.7220304E-02 8.2886361E-02 7.8788526E-02 7.4913114E-02 7.1247146E-02
 6.7778371E-02 6.4495288E-02 6.1387032E-02 5.8443476E-02 5.5655047E-02
 5.3012777E-02 5.0508238E-02 4.8133545E-02 4.5881268E-02 4.3744471E-02
 4.1716605E-02 3.9791547E-02 3.7963532E-02 3.6227152E-02 3.4577347E-02
 3.3009347E-02 3.1518668E-02 3.0101100E-02 2.8752690E-02 2.7469732E-02
 2.6248721E-02 2.5086371E-02 2.3979586E-02 2.2925448E-02 2.1921216E-02
 2.0964304E-02 2.0052271E-02 1.9182814E-02 1.8353762E-02 1.7563073E-02
 1.6808812E-02 1.6089149E-02 1.5402355E-02 1.4746802E-02 1.4120934E-02
 1.3523316E-02
 9.0751581E-02 8.0243483E-02 6.9701031E-02 5.9206657E-02 4.8845645E-02
 3.8706191E-02 2.8879009E-02 1.9456089E-02 1.0528410E-02 2.1822944E-03
 -5.5053798E-03 -1.2472546E-02 -1.8677168E-02 -2.4100915E-02 -2.8750198E-02
 -3.2654352E-02 -3.5861362E-02 -3.8432065E-02 -4.0434238E-02 -4.1937411E-02
 -4.3008927E-02 -4.3711461E-02 -4.4101585E-02 -4.4229314E-02 -4.4138167E-02
 -4.3865610E-02 -4.3443657E-02 -4.2899501E-02 -4.2256203E-02 -4.1533221E-02
 -4.0746987E-02 -3.9911367E-02 -3.9038021E-02 -3.8136795E-02 -3.7215956E-02
 -3.6282457E-02 -3.5342161E-02 -3.4399960E-02 -3.3459980E-02 -3.2525651E-02
 -3.1599842E-02 -3.0684926E-02 -2.9782875E-02 -2.8895298E-02 -2.8023517E-02
 -2.7168585E-02 -2.6331341E-02 -2.5512431E-02 -2.4712352E-02 -2.3931451E-02
 -2.3169961E-02 -2.2428010E-02 -2.1705637E-02 -2.1002803E-02 -2.0319413E-02
 -1.9655308E-02 -1.9010279E-02 -1.8384080E-02 -1.7776426E-02 -1.7187012E-02
 -1.6615503E-02 -1.6061543E-02 -1.5524764E-02 -1.5004780E-02 -1.4501207E-02
 -1.4013646E-02 -1.3541694E-02 -1.3084946E-02 -1.2642998E-02 -1.2215461E-02
 -1.1801915E-02
 0.3175471 0.3147907 0.3113261 0.3071536 0.3022759
 0.2966992 0.2904345 0.2834998 0.2759227 0.2677432
 0.2590163 0.2498147 0.2402287 0.2303643 0.2203384
 0.2102716 0.2002791 0.1904642 0.1809120 0.1716871
 0.1628347 0.1543818 0.1463409 0.1387135 0.1314929
 0.1246670 0.1182200 0.1121342 0.1063910 0.1009714
 9.5857091E-02 9.1029875E-02 8.6472578E-02 8.2168870E-02 7.8103311E-02
 7.4261375E-02 7.0629440E-02 6.7194730E-02 6.3945346E-02 6.0870104E-02
 5.7958573E-02 5.5201009E-02 5.2588303E-02 5.0111931E-02 4.7763959E-02
 4.5536932E-02 4.3423895E-02 4.1418333E-02 3.9514143E-02 3.7705641E-02
 3.5987470E-02 3.4354623E-02 3.2802396E-02 3.1326380E-02 2.9922444E-02
 2.8586704E-02 2.7315505E-02 2.6105415E-02 2.4953192E-02 2.3855813E-02
 2.2810409E-02 2.1814281E-02 2.0864887E-02 1.9959826E-02 1.9096846E-02
 1.8273806E-02 1.7488694E-02 1.6739601E-02 1.6024733E-02 1.5342379E-02
 1.4690959E-02
 0.1048333 9.3978010E-02 8.3035842E-02 7.2081298E-02 6.1190695E-02
 5.0443031E-02 3.9920442E-02 2.9708430E-02 1.9895429E-02 1.0571358E-02
 1.8248480E-03 -6.2610977E-03 -1.3614796E-02 -2.0182265E-02 -2.5932703E-02
 -3.0861866E-02 -3.4992114E-02 -3.8368933E-02 -4.1055057E-02 -4.3123484E-02
 -4.4650923E-02 -4.5712680E-02 -4.6379130E-02 -4.6713758E-02 -4.6772402E-02
 -4.6603285E-02 -4.6247523E-02 -4.5739874E-02 -4.5109551E-02 -4.4381004E-02
 -4.3574654E-02 -4.2707551E-02 -4.1793905E-02 -4.0845580E-02 -3.9872460E-02
 -3.8882792E-02 -3.7883453E-02 -3.6880180E-02 -3.5877768E-02 -3.4880195E-02
 -3.3890761E-02 -3.2912217E-02 -3.1946823E-02 -3.0996433E-02 -3.0062573E-02
 -2.9146455E-02 -2.8249050E-02 -2.7371112E-02 -2.6513211E-02 -2.5675766E-02
 -2.4859052E-02 -2.4063231E-02 -2.3288358E-02 -2.2534411E-02 -2.1801291E-02
 -2.1088833E-02 -2.0396819E-02 -1.9724995E-02 -1.9073043E-02 -1.8440649E-02
 -1.7827446E-02 -1.7233055E-02 -1.6657086E-02 -1.6099120E-02 -1.5558744E-02
 -1.5035536E-02 -1.4529063E-02 -1.4038892E-02 -1.3564588E-02 -1.3105735E-02
 -1.2661885E-02
 0.3396373 0.3370067 0.3336872 0.3296804 0.3249890
 0.3196163 0.3135681 0.3068526 0.2994832 0.2914802
 0.2828741 0.2737086 0.2640442 0.2539604 0.2435556
 0.2329445 0.2222516 0.2116026 0.2011145 0.1908880
 0.1810025 0.1715146 0.1624598 0.1538556 0.1457056
 0.1380031 0.1307347 0.1238823 0.1174255 0.1113429
 0.1056126 0.1002134 9.5124632E-02 9.0326764E-02 8.5801296E-02
 8.1530862E-02 7.7499241E-02 7.3691271E-02 7.0092879E-02 6.6690937E-02
 6.3473210E-02 6.0428359E-02 5.7545830E-02 5.4815777E-02 5.2229088E-02
 4.9777225E-02 4.7452264E-02 4.5246787E-02 4.3153901E-02 4.1167159E-02
 3.9280534E-02 3.7488393E-02 3.5785448E-02 3.4166764E-02 3.2627728E-02
 3.1163977E-02 2.9771449E-02 2.8446311E-02 2.7184954E-02 2.5984017E-02
 2.4840308E-02 2.3750830E-02 2.2712763E-02 2.1723442E-02 2.0780375E-02
 1.9881191E-02 1.9023662E-02 1.8205684E-02 1.7425263E-02 1.6680516E-02
 1.5969701E-02
 0.1206766 0.1095427 9.8281518E-02 8.6960167E-02 7.5646199E-02
 6.4408451E-02 5.3317897E-02 4.2448670E-02 3.1878605E-02 2.1689698E-02
 1.1967647E-02 2.8001736E-03 -5.7261540E-03 -1.3531225E-02 -2.0547884E-02
 -2.6729189E-02 -3.2054368E-02 -3.6531717E-02 -4.0197499E-02 -4.3110903E-02
 -4.5346595E-02 -4.6986893E-02 -4.8114851E-02 -4.8809297E-02 -4.9141876E-02
 -4.9175642E-02 -4.8964884E-02 -4.8555613E-02 -4.7986407E-02 -4.7289398E-02
 -4.6491217E-02 -4.5613904E-02 -4.4675644E-02 -4.3691497E-02 -4.2673886E-02
 -4.1633084E-02 -4.0577609E-02 -3.9514497E-02 -3.8449585E-02 -3.7387714E-02
 -3.6332861E-02 -3.5288330E-02 -3.4256835E-02 -3.3240583E-02 -3.2241397E-02
 -3.1260714E-02 -3.0299697E-02 -2.9359238E-02 -2.8440023E-02 -2.7542552E-02
 -2.6667165E-02 -2.5814062E-02 -2.4983330E-02 -2.4174958E-02 -2.3388859E-02
 -2.2624865E-02 -2.1882746E-02 -2.1162231E-02 -2.0462997E-02 -1.9784700E-02
 -1.9126954E-02 -1.8489351E-02 -1.7871480E-02 -1.7272893E-02 -1.6693151E-02
 -1.6131798E-02 -1.5588375E-02 -1.5062422E-02 -1.4553471E-02 -1.4061080E-02
 -1.3584768E-02
 0.3622139 0.3596433 0.3564015 0.3524943 0.3479276
 0.3427069 0.3368378 0.3303263 0.3231798 0.3154081
 0.3070254 0.2980533 0.2885237 0.2784829 0.2679949
 0.2571444 0.2460361 0.2347916 0.2235408 0.2124128
 0.2015245 0.1909730 0.1808311 0.1711471 0.1619472
 0.1532401 0.1450213 0.1372770 0.1299877 0.1231306
 0.1166812 0.1106149 0.1049074 9.9535488E-02 9.4476916E-02
 8.9710943E-02 8.5218161E-02 8.0980502E-02 7.6981232E-02 7.3204815E-02
 6.9636866E-02 6.6264078E-02 6.3074142E-02 6.0055617E-02 5.7197962E-02
 5.4491337E-02 5.1926650E-02 4.9495406E-02 4.7189735E-02 4.5002308E-02
 4.2926285E-02 4.0955283E-02 3.9083332E-02 3.7304863E-02 3.5614673E-02
 3.4007877E-02 3.2479897E-02 3.1026445E-02 2.9643487E-02 2.8327255E-02
 2.7074188E-02 2.5880951E-02 2.4744397E-02 2.3661561E-02 2.2629671E-02
 2.1646097E-02 2.0708360E-02 1.9814128E-02 1.8961193E-02 1.8147459E-02
 1.7371012E-02
 0.1380809 0.1267186 0.1151997 0.1035855 9.1935895E-02
 8.0311097E-02 6.8771727E-02 5.7380147E-02 4.6201397E-02 3.5304323E-02
 2.4762455E-02 1.4654427E-02 5.0636488E-03 -3.9237426E-03 -1.2222511E-02
 -1.9754270E-02 -2.6455248E-02 -3.2284230E-02 -3.7228908E-02 -4.1308291E-02
 -4.4570360E-02 -4.7085606E-02 -4.8938263E-02 -5.0217658E-02 -5.1011272E-02
 -5.1400013E-02 -5.1455799E-02 -5.1240716E-02 -5.0807316E-02 -5.0199460E-02
 -4.9453452E-02 -4.8599161E-02 -4.7661074E-02 -4.6659272E-02 -4.5610182E-02
 -4.4527274E-02 -4.3421589E-02 -4.2302188E-02 -4.1176520E-02 -4.0050689E-02
 -3.8929716E-02 -3.7817702E-02 -3.6718015E-02 -3.5633385E-02 -3.4566030E-02
 -3.3517718E-02 -3.2489866E-02 -3.1483557E-02 -3.0499630E-02 -2.9538698E-02
 -2.8601186E-02 -2.7687360E-02 -2.6797343E-02 -2.5931155E-02 -2.5088722E-02
 -2.4269881E-02 -2.3474406E-02 -2.2702008E-02 -2.1952359E-02 -2.1225093E-02
 -2.0519804E-02 -1.9836066E-02 -1.9173432E-02 -1.8531440E-02 -1.7909614E-02
 -1.7307475E-02 -1.6724534E-02 -1.6160296E-02 -1.5614270E-02 -1.5085985E-02
 -1.4574922E-02
 0.3853564 0.3827695 0.3795240 0.3756317 0.3711042
 0.3659516 0.3601836 0.3538087 0.3468344 0.3392681
 0.3311179 0.3223935 0.3131088 0.3032849 0.2929536
 0.2821616 0.2709751 0.2594819 0.2477913 0.2360292
 0.2243297 0.2128233 0.2016256 0.1908292 0.1805000
 0.1706781 0.1613815 0.1526108 0.1443545 0.1365927
 0.1293010 0.1224527 0.1160201 0.1099762 0.1042949
 9.8951332E-02 9.3922362E-02 8.9186370E-02 8.4723398E-02 8.0514960E-02
 7.6543994E-02 7.2794773E-02 6.9252826E-02 6.5904737E-02 6.2738210E-02
 5.9741814E-02 5.6904987E-02 5.4217950E-02 5.1671632E-02 4.9257632E-02
 4.6968121E-02 4.4795811E-02 4.2733915E-02 4.0776096E-02 3.8916472E-02
 3.7149500E-02 3.5470027E-02 3.3873219E-02 3.2354534E-02 3.0909739E-02
 2.9534845E-02 2.8226109E-02 2.6980015E-02 2.5793256E-02 2.4662729E-02
 2.3585504E-02 2.2558821E-02 2.1580085E-02 2.0646840E-02 1.9756759E-02
 1.8907713E-02
 0.1568244 0.1452647 0.1335277 0.1216699 0.1097459
 9.7808957E-02 8.5911572E-02 7.4106589E-02 6.2447987E-02 5.0991967E-02
 3.9798081E-02 2.8930575E-02 1.8459450E-02 8.4608542E-03 -9.8331005E-04
 -9.7874161E-03 -1.7866563E-02 -2.5143210E-02 -3.1555917E-02 -3.7068076E-02
 -4.1674506E-02 -4.5403410E-02 -4.8312820E-02 -5.0482661E-02 -5.2004952E-02
 -5.2974530E-02 -5.3482082E-02 -5.3609822E-02 -5.3429525E-02 -5.3002201E-02
 -5.2378770E-02 -5.1601216E-02 -5.0703902E-02 -4.9714804E-02 -4.8656657E-02
 -4.7547929E-02 -4.6403605E-02 -4.5235846E-02 -4.4054564E-02 -4.2867802E-02
 -4.1682087E-02 -4.0502738E-02 -3.9334051E-02 -3.8179509E-02 -3.7041906E-02
 -3.5923477E-02 -3.4825981E-02 -3.3750787E-02 -3.2698944E-02 -3.1671233E-02
 -3.0668203E-02 -2.9690208E-02 -2.8737444E-02 -2.7809976E-02 -2.6907763E-02
 -2.6030662E-02 -2.5178451E-02 -2.4350848E-02 -2.3547510E-02 -2.2768065E-02
 -2.2012092E-02 -2.1279139E-02 -2.0568741E-02 -1.9880407E-02 -1.9213637E-02
 -1.8567925E-02 -1.7942749E-02 -1.7337585E-02 -1.6751911E-02 -1.6185235E-02
 -1.5636986E-02
 0.4092371 0.4065545 0.4032195 0.3992513 0.3946682
 0.3894873 0.3837238 0.3773914 0.3705018 0.3630648
 0.3550883 0.3465794 0.3375447 0.3279922 0.3179335
 0.3073874 0.2963836 0.2849683 0.2732075 0.2611906
 0.2490299 0.2368547 0.2248014 0.2130012 0.2015674
 0.1905882 0.1801230 0.1702046 0.1608435 0.1520336
 0.1437575 0.1359906 0.1287044 0.1218693 0.1154552
 0.1094334 0.1037762 9.8457992E-02 9.3454845E-02 8.8744633E-02
 8.4306978E-02 8.0123149E-02 7.6175936E-02 7.2449476E-02 6.8929255E-02
 6.5601833E-02 6.2454883E-02 5.9476975E-02 5.6657575E-02 5.3986963E-02
 5.1456090E-02 4.9056575E-02 4.6780631E-02 4.4621009E-02 4.2570997E-02
 4.0624291E-02 3.8775027E-02 3.7017729E-02 3.5347264E-02 3.3758856E-02
 3.2248009E-02 3.0810503E-02 2.9442396E-02 2.8139969E-02 2.6899753E-02
 2.5718464E-02 2.4593022E-02 2.3520524E-02 2.2498235E-02 2.1523550E-02
 2.0594116E-02
 0.1767001 0.1649586 0.1530251 0.1409527 0.1287915
 0.1165900 0.1043949 9.2252433E-02 8.0208428E-02 6.8309404E-02
 5.6603540E-02 4.5141779E-02 3.3979338E-02 2.3176847E-02 1.2801656E-02
 2.9283629E-03 -6.3617746E-03 -1.4983033E-02 -2.2850320E-02 -2.9886400E-02
 -3.6031563E-02 -4.1253179E-02 -4.5552395E-02 -4.8965532E-02 -5.1559422E-02
 -5.3422157E-02 -5.4652251E-02 -5.5349015E-02 -5.5605587E-02 -5.5505011E-02
 -5.5118702E-02 -5.4506563E-02 -5.3717989E-02 -5.2793276E-02 -5.1765036E-02
 -5.0659589E-02 -4.9498115E-02 -4.8297636E-02 -4.7071867E-02 -4.5831822E-02
 -4.4586346E-02 -4.3342579E-02 -4.2106234E-02 -4.0881883E-02 -3.9673209E-02
 -3.8483098E-02 -3.7313852E-02 -3.6167242E-02 -3.5044633E-02 -3.3947062E-02
 -3.2875258E-02 -3.1829730E-02 -3.0810775E-02 -2.9818540E-02 -2.8853050E-02
 -2.7914191E-02 -2.7001772E-02 -2.6115524E-02 -2.5255106E-02 -2.4420142E-02
 -2.3610201E-02 -2.2824816E-02 -2.2063501E-02 -2.1325745E-02 -2.0611024E-02
 -1.9918798E-02 -1.9248523E-02 -1.8599642E-02 -1.7971603E-02 -1.7363893E-02
 -1.6775889E-02
 0.4340952 0.4312371 0.4277267 0.4235918 0.4188583
 0.4135507 0.4076912 0.4012996 0.3943931 0.3869860
 0.3790901 0.3707140 0.3618639 0.3525439 0.3427572
 0.3325081 0.3218046 0.3106615 0.2991056 0.2871807
 0.2749522 0.2625104 0.2499695 0.2374613 0.2251244
 0.2130901 0.2014700 0.1903479 0.1797777 0.1697859
 0.1603768 0.1515388 0.1432496 0.1354808 0.1282010
 0.1213780 0.1149800 0.1089768 0.1033399 9.8042957E-02
 9.3061335E-02 8.8372566E-02 8.3956011E-02 7.9792716E-02 7.5865358E-02
 7.2157979E-02 6.8655975E-02 6.5345898E-02 6.2215373E-02 5.9253015E-02
 5.6448303E-02 5.3791504E-02 5.1273610E-02 4.8886266E-02 4.6621744E-02
 4.4472825E-02 4.2432807E-02 4.0495440E-02 3.8654894E-02 3.6905736E-02
 3.5242870E-02 3.3661541E-02 3.2157287E-02 3.0725917E-02 2.9363530E-02
 2.8066441E-02 2.6831185E-02 2.5654513E-02 2.4533365E-02 2.3464816E-02
 2.2446254E-02
 0.1975413 0.1856230 0.1735027 0.1612301 0.1488526
 0.1364149 0.1239601 0.1115299 9.9164903E-02 8.6905152E-02
 7.4790716E-02 6.2862821E-02 5.1164676E-02 3.9742939E-02 2.8649095E-02
 1.7940994E-02 7.6839379E-03 -2.0485811E-03 -1.1175635E-02 -1.9611303E-02
 -2.7269984E-02 -3.4074634E-02 -3.9967034E-02 -4.4918027E-02 -4.8934411E-02
 -5.2059729E-02 -5.4368541E-02 -5.5955950E-02 -5.6925926E-02 -5.7381365E-02
 -5.7417218E-02 -5.7116929E-02 -5.6551322E-02 -5.5779122E-02 -5.4848205E-02
 -5.3797211E-02 -5.2657127E-02 -5.1452707E-02 -5.0203692E-02 -4.8925791E-02
 -4.7631517E-02 -4.6330832E-02 -4.5031663E-02 -4.3740302E-02 -4.2461753E-02
 -4.1199952E-02 -3.9957993E-02 -3.8738295E-02 -3.7542704E-02 -3.6372639E-02
 -3.5229132E-02 -3.4112904E-02 -3.3024441E-02 -3.1964023E-02 -3.0931761E-02
 -2.9927624E-02 -2.8951466E-02 -2.8003052E-02 -2.7082060E-02 -2.6188120E-02
 -2.5320802E-02 -2.4479635E-02 -2.3664117E-02 -2.2873711E-02 -2.2107879E-02
 -2.1366056E-02 -2.0647665E-02 -1.9952130E-02 -1.9278860E-02 -1.8627321E-02
 -1.7996846E-02
 0.4602022 0.4570889 0.4533185 0.4489280 0.4439520
 0.4384224 0.4323683 0.4258158 0.4187880 0.4113046
 0.4033818 0.3950323 0.3862649 0.3770849 0.3674943
 0.3574927 0.3470787 0.3362518 0.3250151 0.3133794
 0.3013681 0.2890225 0.2764071 0.2636127 0.2507554
 0.2379696 0.2253958 0.2131658 0.2013898 0.1901481
 0.1794900 0.1694365 0.1599869 0.1511249 0.1428243
 0.1350534 0.1277784 0.1209649 0.1145800 0.1085923
 0.1029722 9.7692870E-02 9.2729211E-02 8.8058390E-02 8.3659559E-02
 7.9513542E-02 7.5602874E-02 7.1911536E-02 6.8424851E-02 6.5129362E-02
 6.2012680E-02 5.9063416E-02 5.6271043E-02 5.3625852E-02 5.1118881E-02
 4.8741795E-02 4.6486877E-02 4.4346951E-02 4.2315338E-02 4.0385839E-02
 3.8552646E-02 3.6810346E-02 3.5153881E-02 3.3578511E-02 3.2079820E-02
 3.0653650E-02 2.9296098E-02 2.8003512E-02 2.6772447E-02 2.5599618E-02
 2.4482118E-02
 0.2192252 0.2071280 0.1948228 0.1823572 0.1697756
 0.1571203 0.1444319 0.1317491 0.1191091 0.1065478
 9.4100043E-02 8.1800327E-02 6.9683507E-02 5.7785712E-02 4.6145737E-02
 3.4806404E-02 2.3815950E-02 1.3229731E-02 3.1112877E-03 -6.4668651E-03
 -1.5423927E-02 -2.3673669E-02 -3.1129947E-02 -3.7715584E-02 -4.3373417E-02
 -4.8077114E-02 -5.1838201E-02 -5.4706395E-02 -5.6762747E-02 -5.8108248E-02
 -5.8851320E-02 -5.9097625E-02 -5.8943354E-02 -5.8471989E-02 -5.7753589E-02
 -5.6845602E-02 -5.5794429E-02 -5.4637138E-02 -5.3403214E-02 -5.2115984E-02
 -5.0793860E-02 -4.9451400E-02 -4.8100080E-02 -4.6748932E-02 -4.5405101E-02
 -4.4074159E-02 -4.2760491E-02 -4.1467503E-02 -4.0197819E-02 -3.8953457E-02
 -3.7735905E-02 -3.6546264E-02 -3.5385281E-02 -3.4253452E-02 -3.3151053E-02
 -3.2078169E-02 -3.1034749E-02 -3.0020615E-02 -2.9035494E-02 -2.8079042E-02
 -2.7150841E-02 -2.6250422E-02 -2.5377277E-02 -2.4530863E-02 -2.3710620E-02
 -2.2915971E-02 -2.2146303E-02 -2.1401018E-02 -2.0679500E-02 -1.9981194E-02
 -1.9305374E-02
 0.4878362 0.4843870 0.4802724 0.4755394 0.4702310
 0.4643864 0.4580410 0.4512271 0.4439731 0.4363041
 0.4282413 0.4198018 0.4109985 0.4018398 0.3923301
 0.3824695 0.3722552 0.3616817 0.3507423 0.3394318
 0.3277489 0.3157004 0.3033065 0.2906064 0.2776637
 0.2645700 0.2514429 0.2384194 0.2256422 0.2132437
 0.2013331 0.1899880 0.1792535 0.1691463 0.1596612
 0.1507778 0.1424668 0.1346935 0.1274220 0.1206165
 0.1142425 0.1082675 0.1026616 9.7397044E-02 9.2448503E-02
 8.7792821E-02 8.3408877E-02 7.9277396E-02 7.5380750E-02 7.1702905E-02
 6.8229124E-02 6.4945906E-02 6.1840855E-02 5.8902577E-02 5.6120582E-02
 5.3485181E-02 5.0987393E-02 4.8618939E-02 4.6372097E-02 4.4239752E-02
 4.2215239E-02 4.0292367E-02 3.8465377E-02 3.6728859E-02 3.5077795E-02
 3.3507481E-02 3.2013502E-02 3.0591719E-02 2.9238256E-02 2.7949404E-02
 2.6721906E-02
 0.2416551 0.2293716 0.2168806 0.2042268 0.1914520
 0.1785962 0.1656975 0.1527923 0.1399156 0.1271002
 0.1143774 0.1017772 8.9328699E-02 7.7060670E-02 6.5002888E-02
 5.3186987E-02 4.1647676E-02 3.0424397E-02 1.9562604E-02 9.1155358E-03
 -8.5455884E-04 -1.0275817E-02 -1.9067392E-02 -2.7142303E-02 -3.4413509E-02
 -4.0803142E-02 -4.6254378E-02 -5.0742768E-02 -5.4283421E-02 -5.6930985E-02
 -5.8771860E-02 -5.9911814E-02 -6.0462862E-02 -6.0532823E-02 -6.0218755E-02
 -5.9604004E-02 -5.8757834E-02 -5.7736512E-02 -5.6585107E-02 -5.5339333E-02
 -5.4027323E-02 -5.2671190E-02 -5.1288258E-02 -4.9892083E-02 -4.8493285E-02
 -4.7100130E-02 -4.5719080E-02 -4.4355139E-02 -4.3012172E-02 -4.1693162E-02
 -4.0400334E-02 -3.9135359E-02 -3.7899442E-02 -3.6693405E-02 -3.5517797E-02
 -3.4372896E-02 -3.3258803E-02 -3.2175452E-02 -3.1122651E-02 -3.0100111E-02
 -2.9107450E-02 -2.8144218E-02 -2.7209926E-02 -2.6304025E-02 -2.5425946E-02
 -2.4575094E-02 -2.3750845E-02 -2.2952575E-02 -2.2179641E-02 -2.1431478E-02
 -2.0707294E-02
 0.5172755 0.5134068 0.5088621 0.5036983 0.4979664
 0.4917123 0.4849774 0.4777991 0.4705645 0.4622439
 0.4539233 0.4452712 0.4363050 0.4270373 0.4174760
 0.4076245 0.3974817 0.3870426 0.3762991 0.3652409
 0.3538568 0.3421372 0.3300768 0.3176793 0.3049617
 0.2919615 0.2787414 0.2653933 0.2520366 0.2388103
 0.2258591 0.2133163 0.2012903 0.1898565 0.1790564
 0.1689031 0.1593875 0.1504857 0.1421655 0.1343901
 0.1271216 0.1203226 0.1139576 0.1079934 0.1023993
 9.7147107E-02 9.2211232E-02 8.7568216E-02 8.3196737E-02 7.9077430E-02
 7.5192600E-02 7.1526073E-02 6.8063110E-02 6.4790174E-02 6.1694905E-02
 5.8765884E-02 5.5992629E-02 5.3365454E-02 5.0875399E-02 4.8514206E-02
 4.6274200E-02 4.4148244E-02 4.2129721E-02 4.0212445E-02 3.8390689E-02
 3.6659081E-02 3.5012599E-02 3.3446558E-02 3.1956557E-02 3.0538391E-02
 2.9188419E-02
 0.2647322 0.2522528 0.2395760 0.2267424 0.2137899
 0.2007549 0.1876727 0.1745771 0.1614225 0.1484741
 0.1355257 0.1226821 0.1099683 9.7408310E-02 8.5025437E-02
 7.2843663E-02 6.0888287E-02 4.9187146E-02 3.7771787E-02 2.6679039E-02
 1.5952462E-02 5.6439764E-03 -4.1849576E-03 -1.3462453E-02 -2.2107048E-02
 -3.0030616E-02 -3.7144653E-02 -4.3370061E-02 -4.8649486E-02 -5.2959453E-02
 -5.6317657E-02 -5.8782559E-02 -6.0444932E-02 -6.1414495E-02 -6.1806284E-02
 -6.1729938E-02 -6.1283249E-02 -6.0549449E-02 -5.9597153E-02 -5.8481671E-02
 -5.7246938E-02 -5.5927537E-02 -5.4550540E-02 -5.3137027E-02 -5.1703427E-02
 -5.0262481E-02 -4.8824076E-02 -4.7395859E-02 -4.5983728E-02 -4.4592220E-02
 -4.3224782E-02 -4.1884001E-02 -4.0571798E-02 -3.9289556E-02 -3.8038246E-02
 -3.6818471E-02 -3.5630584E-02 -3.4474701E-02 -3.3350773E-02 -3.2258611E-02
 -3.1197913E-02 -3.0168278E-02 -2.9169243E-02 -2.8200280E-02 -2.7260827E-02
 -2.6350282E-02 -2.5468018E-02 -2.4613384E-02 -2.3785722E-02 -2.2984467E-02
 -2.2208745E-02
 0.5488092 0.5444298 0.5393612 0.5336707 0.5274171
 0.5206521 0.5134224 0.5057706 0.4977353 0.4893515
 0.4806504 0.4716588 0.4623988 0.4528873 0.4431365
 0.4331537 0.4229409 0.4124962 0.4018131 0.3908818
 0.3796895 0.3682213 0.3564623 0.3443989 0.3320225
 0.3193336 0.3063465 0.2930966 0.2796458 0.2660859
 0.2525376 0.2391416 0.2260442 0.2133800 0.2012567
 0.1897478 0.1788922 0.1686996 0.1591579 0.1502405
 0.1419123 0.1341349 0.1268685 0.1200748 0.1137172
 0.1077619 0.1021776 9.6935771E-02 9.2010438E-02 8.7378003E-02
 8.3016992E-02 7.8907877E-02 7.5032912E-02 7.1375862E-02 6.7921981E-02
 6.4657718E-02 6.1570674E-02 5.8649447E-02 5.5883531E-02 5.3263288E-02
 5.0779771E-02 4.8424717E-02 4.6190474E-02 4.4069916E-02 4.2056456E-02
 4.0143937E-02 3.8326621E-02 3.6599167E-02 3.4956560E-02 3.3394005E-02
 3.1907413E-02
 0.2883302 0.2756475 0.2627907 0.2497932 0.2366865
 0.2235011 0.2102681 0.1970180 0.1837806 0.1705842
 0.1574548 0.1444165 0.1314910 0.1186986 0.1060586
 9.3589701E-02 8.1310809E-02 6.9242239E-02 5.7406101E-02 4.5827761E-02
 3.4536943E-02 2.3568990E-02 1.2966516E-02 2.7809695E-03 -6.9262027E-03
 -1.6082598E-02 -2.4605779E-02 -3.2406181E-02 -3.9393436E-02 -4.5486890E-02
 -5.0628249E-02 -5.4794323E-02 -5.8004655E-02 -6.0320724E-02 -6.1836936E-02
 -6.2666424E-02 -6.2926866E-02 -6.2729552E-02 -6.2172975E-02 -6.1340388E-02
 -6.0299911E-02 -5.9106089E-02 -5.7801984E-02 -5.6421250E-02 -5.4990072E-02
 -5.3528707E-02 -5.2052822E-02 -5.0574485E-02 -4.9102992E-02 -4.7645468E-02
 -4.6207361E-02 -4.4792786E-02 -4.3404844E-02 -4.2045817E-02 -4.0717371E-02
 -3.9420653E-02 -3.8156413E-02 -3.6925089E-02 -3.5726864E-02 -3.4561727E-02
 -3.3429515E-02 -3.2329913E-02 -3.1262539E-02 -3.0226896E-02 -2.9222460E-02
 -2.8248642E-02 -2.7304808E-02 -2.6390312E-02 -2.5504475E-02 -2.4646755E-02
 -2.3816178E-02
 0.5827543 0.5777537 0.5720498 0.5657209 0.5588334
 0.5514447 0.5436056 0.5353626 0.5267591 0.5178352
 0.5086269 0.4991661 0.4894798 0.4795896 0.4695121
 0.4592582 0.4488339 0.4382405 0.4274743 0.4165281
 0.4053904 0.3940469 0.3824803 0.3706722 0.3586037
 0.3462579 0.3336230 0.3206962 0.3074898 0.2940368
 0.2803979 0.2666648 0.2529587 0.2394223 0.2262034
 0.2134375 0.2012322 0.1896596 0.1787568 0.1685307
 0.1589666 0.1500353 0.1417000 0.1339203 0.1266555
 0.1198660 0.1135144 0.1075663 0.1019901 9.6756794E-02
 9.1840260E-02 8.7216645E-02 8.2864352E-02 7.8763753E-02 7.4897058E-02
 7.1247995E-02 6.7801759E-02 6.4544782E-02 6.1464641E-02 5.8549978E-02
 5.5790283E-02 5.3175896E-02 5.0697904E-02 4.8348032E-02 4.6118662E-02
 4.4002697E-02 4.1993536E-02 4.0085044E-02 3.8271494E-02 3.6547378E-02
 3.4908097E-02
 0.3122794 0.2993902 0.2863677 0.2732322 0.2600037
 0.2467045 0.2333594 0.2199948 0.2066375 0.1933133
 0.1800461 0.1668575 0.1537670 0.1407920 0.1279487
 0.1152521 0.1027171 9.0359211E-02 7.8194536E-02 6.6241272E-02
 5.4520104E-02 4.3055274E-02 3.1875707E-02 2.1016348E-02 1.0519576E-02
 4.3687268E-04 -9.1699520E-03 -1.8227912E-02 -2.6653392E-02 -3.4355409E-02
 -4.1241925E-02 -4.7230542E-02 -5.2261893E-02 -5.6312699E-02 -5.9403729E-02
 -6.1598953E-02 -6.2995777E-02 -6.3710287E-02 -6.3862495E-02 -6.3565180E-02
 -6.2917568E-02 -6.2002979E-02 -6.0889211E-02 -5.9630197E-02 -5.8268312E-02
 -5.6836452E-02 -5.5360071E-02 -5.3858750E-02 -5.2347530E-02 -5.0837938E-02
 -4.9338769E-02 -4.7856718E-02 -4.6396837E-02 -4.4962913E-02 -4.3557771E-02
 -4.2183433E-02 -4.0841337E-02 -3.9532430E-02 -3.8257297E-02 -3.7016235E-02
 -3.5809297E-02 -3.4636348E-02 -3.3497121E-02 -3.2391220E-02 -3.1318180E-02
 -3.0277452E-02 -2.9268429E-02 -2.8290471E-02 -2.7342901E-02 -2.6425216E-02
 -2.5536332E-02
 0.6194677 0.6137009 0.6072204 0.6001188 0.5924683
 0.5843301 0.5757568 0.5667977 0.5574996 0.5479071
 0.5380615 0.5280002 0.5177551 0.5073527 0.4968136
 0.4861529 0.4753799 0.4644988 0.4535092 0.4424061
 0.4311806 0.4198200 0.4083084 0.3966272 0.3847555
 0.3726711 0.3603520 0.3477783 0.3349351 0.3218170
 0.3084340 0.2948171 0.2810258 0.2671514 0.2533159
 0.2396633 0.2263430 0.2134915 0.2012167 0.1895901
 0.1786467 0.1683915 0.1588076 0.1498640 0.1415221
 0.1337402 0.1264762 0.1196898 0.1133430 0.1074009
 0.1018313 9.6605048E-02 9.1695771E-02 8.7079473E-02 8.2734473E-02
 7.8641035E-02 7.4781276E-02 7.1138918E-02 6.7699075E-02 6.4448245E-02
 6.1373968E-02 5.8464840E-02 5.5710390E-02 5.3100955E-02 5.0627634E-02
 4.8282180E-02 4.6056956E-02 4.3944880E-02 4.1939363E-02 4.0034045E-02
 3.8223729E-02
 0.3363447 0.3232516 0.3100871 0.2968493 0.2835416
 0.2701743 0.2567630 0.2433295 0.2298975 0.2164908
 0.2031315 0.1898389 0.1766305 0.1635211 0.1505244
 0.1376529 0.1249185 0.1123335 9.9910542E-02 8.7663330E-02
 7.5607307E-02 6.3759841E-02 5.2141301E-02 4.0775735E-02 2.9691964E-02
 1.8924890E-02 8.5169617E-03 -1.4802429E-03 -1.1004490E-02 -1.9982245E-02
 -2.8328992E-02 -3.5952449E-02 -4.2759046E-02 -4.8664711E-02 -5.3608853E-02
 -5.7567820E-02 -6.0563173E-02 -6.2660761E-02 -6.3960470E-02 -6.4580925E-02
 -6.4644180E-02 -6.4264387E-02 -6.3541457E-02 -6.2558882E-02 -6.1384216E-02
 -6.0070973E-02 -5.8660936E-02 -5.7186425E-02 -5.5672288E-02 -5.4137569E-02
 -5.2596793E-02 -5.1061030E-02 -4.9538657E-02 -4.8036009E-02 -4.6557847E-02
 -4.5107678E-02 -4.3688059E-02 -4.2300828E-02 -4.0947214E-02 -3.9628029E-02
 -3.8343713E-02 -3.7094414E-02 -3.5880093E-02 -3.4700520E-02 -3.3555344E-02
 -3.2444105E-02 -3.1366251E-02 -3.0321183E-02 -2.9308243E-02 -2.8327001E-02
 -2.7376240E-02
 0.6593612 0.6526220 0.6451873 0.6371526 0.6285915
 0.6195652 0.6101254 0.6003203 0.5901972 0.5798038
 0.5691879 0.5583918 0.5474540 0.5364055 0.5252714
 0.5140704 0.5028149 0.4915118 0.4801629 0.4687653
 0.4573121 0.4457926 0.4341927 0.4224954 0.4106806
 0.3987262 0.3866080 0.3743009 0.3617800 0.3490230
 0.3360124 0.3227408 0.3092156 0.2954666 0.2815519
 0.2675623 0.2536205 0.2398714 0.2264663 0.2135427
 0.2012089 0.1895358 0.1785573 0.1682768 0.1586756
 0.1497210 0.1413730 0.1335887 0.1263250 0.1195409
 0.1131979 0.1072605 0.1016964 9.6475936E-02 9.1572724E-02
 8.6962558E-02 8.2623653E-02 7.8536205E-02 7.4682258E-02 7.1045533E-02
 6.7611143E-02 6.4365484E-02 6.1296150E-02 5.8391709E-02 5.5641707E-02
 5.3036492E-02 5.0567150E-02 4.8225440E-02 4.6003729E-02 4.3894634E-02
 4.1892260E-02
 0.3601892 0.3469036 0.3336322 0.3203451 0.3070160
 0.2936395 0.2802209 0.2667745 0.2533221 0.2398863
 0.2264885 0.2131462 0.1998746 0.1866862 0.1735920
 0.1606022 0.1477263 0.1349743 0.1223565 0.1098839
 9.7568922E-02 8.5425138E-02 7.3467940E-02 6.1714970E-02 5.0186716E-02
 3.8907412E-02 2.7905958E-02 1.7217327E-02 6.8841237E-03 -3.0419368E-03
 -1.2498373E-02 -2.1411099E-02 -2.9694926E-02 -3.7256304E-02 -4.4000275E-02
 -4.9841221E-02 -5.4717168E-02 -5.8603864E-02 -6.1523233E-02 -6.3542530E-02
 -6.4763725E-02 -6.5307580E-02 -6.5297954E-02 -6.4850256E-02 -6.4065091E-02
 -6.3026160E-02 -6.1800893E-02 -6.0442485E-02 -5.8992278E-02 -5.7482135E-02
 -5.5936430E-02 -5.4373737E-02 -5.2808177E-02 -5.1250428E-02 -4.9708568E-02
 -4.8188612E-02 -4.6695061E-02 -4.5231190E-02 -4.3799363E-02 -4.2401239E-02
 -4.1037906E-02 -3.9710023E-02 -3.8417913E-02 -3.7161633E-02 -3.5941049E-02
 -3.4755856E-02 -3.3605617E-02 -3.2489821E-02 -3.1407855E-02 -3.0359417E-02
 -2.9343130E-02
 0.7028800 0.6949197 0.6863079 0.6771411 0.6675104
 0.6574404 0.6469979 0.6362140 0.6251325 0.6138012
 0.6022752 0.5906051 0.5788347 0.5670019 0.5551361
 0.5432596 0.5313873 0.5195286 0.5076865 0.4958598
 0.4840427 0.4722261 0.4603972 0.4485404 0.4366375
 0.4246676 0.4126077 0.4004325 0.3881154 0.3756288
 0.3629456 0.3500414 0.3368967 0.3235019 0.3098630
 0.2960078 0.2819934 0.2679101 0.2538810 0.2400521
 0.2265760 0.2135914 0.2012073 0.1894942 0.1784854
 0.1681827 0.1585661 0.1496016 0.1412479 0.1334610
 0.1261973 0.1194149 0.1130749 0.1071413 0.1015815
 9.6365929E-02 9.1467723E-02 8.6862676E-02 8.2528837E-02 7.8446433E-02
 7.4597418E-02 7.0965447E-02 6.7535631E-02 6.4294353E-02 6.1229199E-02
 5.8328763E-02 5.5582549E-02 5.2980911E-02 5.0514940E-02 4.8175965E-02
 4.5957305E-02
 0.3833003 0.3698508 0.3565624 0.3432977 0.3300343
 0.3167384 0.3033964 0.2900124 0.2766079 0.2632094
 0.2498401 0.2365161 0.2232508 0.2100533 0.1969310
 0.1838919 0.1709428 0.1580917 0.1453466 0.1327170
 0.1202136 0.1078479 9.5632754E-02 8.3582543E-02 7.1713299E-02
 6.0043197E-02 4.8593111E-02 3.7387505E-02 2.6455671E-02 1.5832679E-02
 5.5612582E-03 -4.3066726E-03 -1.3708429E-02 -2.2569451E-02 -3.0803857E-02
 -3.8317192E-02 -4.5013104E-02 -5.0804496E-02 -5.5627979E-02 -5.9458505E-02
 -6.2318139E-02 -6.4275160E-02 -6.5433197E-02 -6.5914869E-02 -6.5845646E-02
 -6.5342113E-02 -6.4505525E-02 -6.3419856E-02 -6.2152494E-02 -6.0756430E-02
 -5.9272677E-02 -5.7732712E-02 -5.6160532E-02 -5.4574348E-02 -5.2987959E-02
 -5.1411729E-02 -4.9853444E-02 -4.8318893E-02 -4.6812337E-02 -4.5336895E-02
 -4.3894749E-02 -4.2487402E-02 -4.1115820E-02 -3.9780550E-02 -3.8481817E-02
 -3.7219610E-02 -3.5993692E-02 -3.4803700E-02 -3.3649139E-02 -3.2529902E-02
 -3.1444415E-02
 0.7505573 0.7408746 0.7309036 0.7205392 0.7095470
 0.6982705 0.6866748 0.6747921 0.6626286 0.6502206
 0.6376328 0.6249371 0.6121841 0.5994188 0.5866754
 0.5739806 0.5613520 0.5488002 0.5363295 0.5239391
 0.5116239 0.4993749 0.4871802 0.4750253 0.4628929
 0.4507637 0.4386160 0.4264261 0.4141684 0.4018154
 0.3893383 0.3767078 0.3638947 0.3508729 0.3376213
 0.3241285 0.3103989 0.2964587 0.2823641 0.2682050
 0.2541043 0.2402093 0.2266737 0.2136374 0.2012103
 0.1894629 0.1784277 0.1681055 0.1584752 0.1495017
 0.1411427 0.1333534 0.1260892 0.1193080 0.1129702
 0.1070397 0.1014836 9.6271940E-02 9.1377884E-02 8.6777091E-02
 8.2447559E-02 7.8369379E-02 7.4524507E-02 7.0896544E-02 6.7470603E-02
 6.4233072E-02 6.1171487E-02 5.8274437E-02 5.5531431E-02 5.2932221E-02
 5.0469190E-02
 0.4047672 0.3914421 0.3783938 0.3651813 0.3521027
 0.3389834 0.3258782 0.3126609 0.2993898 0.2861066
 0.2728490 0.2596315 0.2464593 0.2333412 0.2202806
 0.2072800 0.1943433 0.1814758 0.1686833 0.1559741
 0.1433576 0.1308443 0.1184464 0.1061770 9.4050169E-02
 8.2081437E-02 7.0287749E-02 5.8687925E-02 4.7303524E-02 3.6159363E-02
 2.5285004E-02 1.4715735E-02 4.4944026E-03 -5.3268527E-03 -1.4685183E-02
 -2.3505753E-02 -3.1702053E-02 -3.9178848E-02 -4.5838494E-02 -5.1592525E-02
 -5.6376275E-02 -6.0163729E-02 -6.2976822E-02 -6.4884588E-02 -6.5992020E-02
 -6.6423334E-02 -6.6305436E-02 -6.5755971E-02 -6.4876877E-02 -6.3752398E-02
 -6.2449992E-02 -6.1022475E-02 -5.9510630E-02 -5.7945635E-02 -5.6351218E-02
 -5.4745279E-02 -5.3141333E-02 -5.1549509E-02 -4.9977340E-02 -4.8430443E-02
 -4.6912894E-02 -4.5427632E-02 -4.3976720E-02 -4.2561535E-02 -4.1182939E-02
 -3.9841391E-02 -3.8537025E-02 -3.7269745E-02 -3.6039263E-02 -3.4845784E-02
 -3.3687513E-02
 0.8162999 0.8054689 0.7934931 0.7806281 0.7671285
 0.7532633 0.7391463 0.7248318 0.7103246 0.6955870
 0.6805032 0.6647912 0.6478198 0.6339555 0.6201749
 0.6065069 0.5929715 0.5795816 0.5663415 0.5532500
 0.5403014 0.5274864 0.5147924 0.5022049 0.4897074
 0.4772806 0.4649043 0.4525560 0.4402115 0.4278449
 0.4154286 0.4029332 0.3903282 0.3775828 0.3646664
 0.3515512 0.3382148 0.3246444 0.3108427 0.2968349
 0.2826760 0.2684554 0.2542963 0.2403464 0.2267608
 0.2136810 0.2012170 0.1894399 0.1783815 0.1680422
 0.1583998 0.1494182 0.1410542 0.1332623 0.1259975
 0.1192170 0.1128810 0.1069530 0.1013997 9.6191391E-02
 9.1300830E-02 8.6703613E-02 8.2377680E-02 7.8303039E-02 7.4461676E-02
 7.0837140E-02 6.7414500E-02 6.4180136E-02 6.1121568E-02 5.8226530E-02
 5.5486351E-02
 0.4381410 0.4222965 0.4074059 0.3927846 0.3783566
 0.3640689 0.3499203 0.3358864 0.3219917 0.3082788
 0.2948114 0.2816940 0.2691328 0.2562049 0.2433183
 0.2304694 0.2176539 0.2048738 0.1921336 0.1794384
 0.1667973 0.1542210 0.1417212 0.1293113 0.1170055
 0.1048189 9.2767164E-02 8.0866925E-02 6.9136344E-02 5.7594851E-02
 4.6264570E-02 3.5170820E-02 2.4343269E-02 1.3817496E-02 3.6364568E-03
 -6.1477129E-03 -1.5471952E-02 -2.4261244E-02 -3.2428548E-02 -3.9877899E-02
 -4.6510726E-02 -5.2237205E-02 -5.6991339E-02 -6.0746174E-02 -6.3523337E-02
 -6.5392368E-02 -6.6459388E-02 -6.6849977E-02 -6.6692337E-02 -6.6105090E-02
 -6.5190814E-02 -6.4034082E-02 -6.2702410E-02 -6.1248560E-02 -5.9713140E-02
 -5.8127116E-02 -5.6513954E-02 -5.4891344E-02 -5.3272560E-02 -5.1667526E-02
 -5.0083611E-02 -4.8526239E-02 -4.6999346E-02 -4.5505732E-02 -4.4047367E-02
 -4.2625509E-02 -4.1240934E-02 -3.9894015E-02 -3.8584821E-02 -3.7314042E-02
 -3.6079638E-02
 0.8824291 0.8712078 0.8569717 0.8413516 0.8250758
 0.8085079 0.7918152 0.7750639 0.7582512 0.7412992
 0.7240019 0.7059045 0.6861064 0.6709550 0.6559433
 0.6411316 0.6265258 0.6121419 0.5979811 0.5840448
 0.5703236 0.5568069 0.5434802 0.5303286 0.5173336
 0.5044767 0.4917370 0.4790929 0.4665213 0.4539975
 0.4414955 0.4289876 0.4164444 0.4038353 0.3911286
 0.3782919 0.3652936 0.3521045 0.3387012 0.3250695
 0.3112109 0.2971494 0.2829392 0.2686688 0.2544617
 0.2404664 0.2268390 0.2137219 0.2012263 0.1894234
 0.1783449 0.1679905 0.1583372 0.1493482 0.1409796
 0.1331853 0.1259197 0.1191396 0.1128048 0.1068787
 0.1013279 9.6122287E-02 9.1234617E-02 8.6640365E-02 8.2317449E-02
 7.8245863E-02 7.4407458E-02 7.0785820E-02 6.7365974E-02 6.4133041E-02
 6.1077174E-02
 0.4679409 0.4521967 0.4361489 0.4201947 0.4044700
 0.3890154 0.3738476 0.3589727 0.3444119 0.3302054
 0.3164239 0.3032002 0.2907965 0.2781972 0.2656332
 0.2530815 0.2405268 0.2279674 0.2154053 0.2028428
 0.1902891 0.1777529 0.1652475 0.1527877 0.1403889
 0.1280670 0.1158390 0.1037215 9.1732129E-02 7.9888642E-02
 6.8209954E-02 5.6716353E-02 4.5430288E-02 3.4377504E-02 2.3587881E-02
 1.3097059E-02 2.9481060E-03 -6.8068448E-03 -1.6104585E-02 -2.4869876E-02
 -3.3015478E-02 -4.0444754E-02 -4.7058180E-02 -5.2764799E-02 -5.7497319E-02
 -6.1227813E-02 -6.3977517E-02 -6.5816283E-02 -6.6851154E-02 -6.7208864E-02
 -6.7018762E-02 -6.6400409E-02 -6.5456972E-02 -6.4273357E-02 -6.2917225E-02
 -6.1441280E-02 -5.9886027E-02 -5.8282264E-02 -5.6653261E-02 -5.5016540E-02
 -5.3385183E-02 -5.1768947E-02 -5.0175041E-02 -4.8608746E-02 -4.7073893E-02
 -4.5573175E-02 -4.4108436E-02 -4.2680871E-02 -4.1291170E-02 -3.9940793E-02
 -3.8627435E-02
 0.9554663 0.9399616 0.9218345 0.9027305 0.8833151
 0.8638772 0.8445424 0.8253575 0.8063171 0.7873567
 0.7683008 0.7487186 0.7275159 0.7108836 0.6943170
 0.6781600 0.6623226 0.6467693 0.6315266 0.6165843
 0.6019456 0.5875864 0.5734918 0.5596418 0.5460184
 0.5326009 0.5193675 0.5062961 0.4933638 0.4805463
 0.4678187 0.4551548 0.4425269 0.4299062 0.4172620
 0.4045625 0.3917750 0.3788659 0.3658029 0.3525558
 0.3390998 0.3254199 0.3115166 0.2974126 0.2831613
 0.2688508 0.2546045 0.2405715 0.2269087 0.2137600
 0.2012372 0.1894119 0.1783157 0.1679479 0.1582849
 0.1492892 0.1409164 0.1331197 0.1258532 0.1190733
 0.1127395 0.1068150 0.1012661 9.6062720E-02 9.1177456E-02
 8.6585753E-02 8.2265399E-02 7.8196354E-02 7.4360467E-02 7.0739456E-02
 6.7322172E-02
 0.4996488 0.4824007 0.4647982 0.4473749 0.4303134
 0.4136750 0.3974819 0.3817448 0.3664780 0.3517068
 0.3374786 0.3238863 0.3111210 0.2987373 0.2866694
 0.2746429 0.2625265 0.2503515 0.2381266 0.2258530
 0.2135292 0.2011644 0.1887748 0.1763761 0.1639868
 0.1516258 0.1393115 0.1270629 0.1148990 0.1028385
 9.0900265E-02 7.9103149E-02 6.7466825E-02 5.6012183E-02 4.4762000E-02
 3.3742283E-02 2.2983100E-02 1.2520139E-02 2.3965826E-03 -7.3354305E-03
 -1.6612740E-02 -2.5359990E-02 -3.3489626E-02 -4.0904522E-02 -4.7504328E-02
 -5.3197041E-02 -5.7914183E-02 -6.1626859E-02 -6.4355813E-02 -6.6171050E-02
 -6.7180365E-02 -6.7511536E-02 -6.7294911E-02 -6.6650897E-02 -6.5683246E-02
 -6.4477198E-02 -6.3100539E-02 -6.1606009E-02 -6.0034014E-02 -5.8415245E-02
 -5.6772839E-02 -5.5124134E-02 -5.3482089E-02 -5.1856305E-02 -5.0253883E-02
 -4.8679989E-02 -4.7138333E-02 -4.5631528E-02 -4.4161327E-02 -4.2730436E-02
 -4.1336294E-02
 1.035412 1.011338 0.9876742 0.9644206 0.9415770
 0.9191434 0.8971199 0.8755064 0.8543030 0.8335096
 0.8131262 0.7931529 0.7747874 0.7552409 0.7356930
 0.7177274 0.7006345 0.6838081 0.6672889 0.6511575
 0.6354339 0.6200882 0.6050816 0.5903959 0.5760090
 0.5618975 0.5480413 0.5344146 0.5209933 0.5077520
 0.4946661 0.4817104 0.4688584 0.4560826 0.4433545
 0.4306440 0.4179195 0.4051483 0.3922968 0.3793308
 0.3662169 0.3529241 0.3394270 0.3257094 0.3117709
 0.2976335 0.2833495 0.2690067 0.2547281 0.2406636
 0.2269712 0.2137955 0.2012492 0.1894043 0.1782926
 0.1679130 0.1582413 0.1492396 0.1408629 0.1330639
 0.1257964 0.1190165 0.1126834 0.1067601 0.1012129
 9.6011318E-02 9.1128081E-02 8.6538494E-02 8.2220286E-02 7.8150652E-02
 7.4317187E-02
 0.5332647 0.5129589 0.4932685 0.4741934 0.4557337
 0.4378893 0.4206603 0.4040466 0.3880483 0.3726652
 0.3578976 0.3437453 0.3312152 0.3165030 0.3049804
 0.2944607 0.2832208 0.2715537 0.2598237 0.2480280
 0.2361322 0.2241175 0.2119922 0.1997959 0.1875429
 0.1752607 0.1629698 0.1506902 0.1384455 0.1262562
 0.1141447 0.1021304 9.0233691E-02 7.8474358E-02 6.6872343E-02
 5.5449110E-02 4.4227868E-02 3.3234641E-02 2.2499783E-02 1.2059034E-02
 1.9554221E-03 -7.7588609E-03 -1.7020609E-02 -2.5754469E-02 -3.3872593E-02
 -4.1277502E-02 -4.7868174E-02 -5.3551611E-02 -5.8258254E-02 -6.1958168E-02
 -6.4671613E-02 -6.6468693E-02 -6.7457773E-02 -6.7767523E-02 -6.7529216E-02
 -6.6864006E-02 -6.5876193E-02 -6.4651363E-02 -6.3257448E-02 -6.1747231E-02
 -6.0161080E-02 -5.8529589E-02 -5.6875776E-02 -5.5216871E-02 -5.3565703E-02
 -5.1931784E-02 -5.0322082E-02 -4.8741672E-02 -4.7194179E-02 -4.5684289E-02
 -4.4209342E-02
 1.050659 1.026866 1.003483 0.9805098 0.9579470
 0.9357941 0.9140514 0.8927187 0.8717961 0.8512836
 0.8311812 0.8114889 0.7934044 0.7741390 0.7548723
 0.7371879 0.7203761 0.7038310 0.6875930 0.6717429
 0.6563005 0.6412361 0.6265109 0.6121067 0.5980013
 0.5841714 0.5705968 0.5572518 0.5441120 0.5311524
 0.5183483 0.5056744 0.4931042 0.4806103 0.4681641
 0.4557355 0.4432929 0.4308036 0.4182341 0.4055500
 0.3927180 0.3797072 0.3665534 0.3532249 0.3396955
 0.3259485 0.3119824 0.2978185 0.2835083 0.2691393
 0.2548348 0.2407444 0.2270271 0.2138284 0.2012619
 0.1894001 0.1782747 0.1678845 0.1582050 0.1491978
 0.1408174 0.1330163 0.1257478 0.1189677 0.1126352
 0.1067128 0.1011669 9.5966868E-02 9.1085300E-02 8.6497501E-02
 8.2181163E-02
 0.5817933 0.5607779 0.5403779 0.5205932 0.5014240
 0.4828700 0.4649316 0.4476085 0.4309008 0.4148083
 0.3993313 0.3844696 0.3712302 0.3558086 0.3435768
 0.3323478 0.3203986 0.3080223 0.2955830 0.2830781
 0.2704732 0.2577493 0.2449148 0.2320093 0.2190472
 0.2060558 0.1930557 0.1800670 0.1671132 0.1542148
 0.1413942 0.1286708 0.1160650 0.1035965 9.1285445E-02
 7.9153135E-02 6.7222819E-02 5.5520516E-02 4.4076588E-02 3.2926772E-02
 2.2114094E-02 1.1690748E-02 1.6026754E-03 -8.0980211E-03 -1.7348126E-02
 -2.6072210E-02 -3.4182306E-02 -4.1580491E-02 -4.8165161E-02 -5.3842444E-02
 -5.8541924E-02 -6.2232900E-02 -6.4935081E-02 -6.6718452E-02 -6.7691758E-02
 -6.7984380E-02 -6.7728415E-02 -6.7045718E-02 -6.6041127E-02 -6.4800546E-02
 -6.3392103E-02 -6.1868619E-02 -6.0270458E-02 -5.8628134E-02 -5.6964602E-02
 -5.5296995E-02 -5.3638037E-02 -5.1997136E-02 -5.0381184E-02 -4.8795186E-02
 -4.7242694E-02
 1.065324 1.041812 1.018710 0.9960177 0.9737362
 0.9518646 0.9304032 0.9093519 0.8887108 0.8684797
 0.8486589 0.8292481 0.8114452 0.7924615 0.7734765
 0.7560737 0.7395437 0.7232803 0.7073240 0.6917557
 0.6765953 0.6618128 0.6473696 0.6332474 0.6194240
 0.6058763 0.5925837 0.5795209 0.5666633 0.5539860
 0.5414640 0.5290724 0.5167845 0.5045731 0.4924093
 0.4802631 0.4681031 0.4558962 0.4436091 0.4312075
 0.4186580 0.4059296 0.3930583 0.3800122 0.3668273
 0.3534711 0.3399169 0.3261470 0.3121595 0.2979750
 0.2836442 0.2692541 0.2549279 0.2408157 0.2270771
 0.2138586 0.2012746 0.1893979 0.1782604 0.1678609
 0.1581745 0.1491623 0.1407787 0.1329755 0.1257060
 0.1189257 0.1125935 0.1066719 0.1011270 9.5928259E-02
 9.1048151E-02
 0.6317835 0.6100585 0.5889488 0.5684547 0.5485759
 0.5293124 0.5106645 0.4926319 0.4752148 0.4584130
 0.4422266 0.4266556 0.4127069 0.3965761 0.3836350
 0.3716967 0.3590383 0.3459527 0.3328043 0.3195902
 0.3062760 0.2928429 0.2792993 0.2656847 0.2520134
 0.2383130 0.2246038 0.2109060 0.1972431 0.1836357
 0.1701061 0.1566736 0.1433588 0.1301814 0.1171613
 0.1043200 9.1680653E-02 7.9269350E-02 6.7116432E-02 5.5257630E-02
 4.3735977E-02 3.2603659E-02 2.1806620E-02 1.1396956E-02 1.3210023E-03
 -8.3692539E-03 -1.7610677E-02 -2.6327811E-02 -3.4432605E-02 -4.1826762E-02
 -4.8408158E-02 -5.4082226E-02 -5.8777612E-02 -6.2462751E-02 -6.5156765E-02
 -6.6929586E-02 -6.7890331E-02 -6.8169042E-02 -6.7898519E-02 -6.7201279E-02
 -6.6182621E-02 -6.4928778E-02 -6.3508041E-02 -6.1973285E-02 -6.0364887E-02
 -5.8713339E-02 -5.7041500E-02 -5.5366430E-02 -5.3700775E-02 -5.2053880E-02
 -5.0432567E-02
 1.079416 1.056185 1.033364 1.010953 0.9889532
 0.9673632 0.9461834 0.9254136 0.9050542 0.8851048
 0.8655657 0.8464366 0.8289156 0.8102137 0.7915105
 0.7743896 0.7581414 0.7421599 0.7264857 0.7111994
 0.6963211 0.6818208 0.6676597 0.6538197 0.6402786
 0.6270131 0.6140029 0.6012224 0.5886472 0.5762522
 0.5640128 0.5519036 0.5398983 0.5279694 0.5160882
 0.5042247 0.4923472 0.4804231 0.4684187 0.4562998
 0.4440330 0.4315873 0.4189987 0.4062354 0.3933332
 0.3802598 0.3670506 0.3536730 0.3400995 0.3263121
 0.3123081 0.2981074 0.2837602 0.2693530 0.2550090
 0.2408785 0.2271219 0.2138864 0.2012871 0.1893973
 0.1782493 0.1678415 0.1581489 0.1491322 0.1407455
 0.1329405 0.1256701 0.1188894 0.1125574 0.1066364
 0.1010924
 0.6832124 0.6607782 0.6389594 0.6177561 0.5971681
 0.5771955 0.5578384 0.5390968 0.5209706 0.5034598
 0.4865644 0.4702845 0.4556268 0.4387872 0.4251372
 0.4124900 0.3991228 0.3853284 0.3714710 0.3575481
 0.3435252 0.3293833 0.3151309 0.3008075 0.2864275
 0.2720183 0.2576003 0.2431938 0.2288222 0.2145061
 0.2002678 0.1861266 0.1721031 0.1582170 0.1444883
 0.1309383 0.1175903 0.1044704 9.1608815E-02 7.9041377E-02
 6.6811100E-02 5.4970164E-02 4.3464512E-02 3.2346234E-02 2.1561673E-02
 1.1162812E-02 1.0961670E-03 -8.5862158E-03 -1.7821372E-02 -2.6533712E-02
 -3.4635164E-02 -4.2027202E-02 -4.8607279E-02 -5.4280117E-02 -5.8973469E-02
 -6.2655002E-02 -6.5343313E-02 -6.7108206E-02 -6.8059102E-02 -6.8326578E-02
 -6.8044104E-02 -6.7334764E-02 -6.6304319E-02 -6.5039270E-02 -6.3608095E-02
 -6.2063761E-02 -6.0446635E-02 -5.8787178E-02 -5.7108201E-02 -5.5426724E-02
 -5.3755328E-02
 1.092944 1.069993 1.047453 1.025324 1.003605
 0.9822962 0.9613979 0.9409097 0.9208319 0.9011642
 0.8819067 0.8630594 0.8458201 0.8273999 0.8089784
 0.7921394 0.7761731 0.7604735 0.7450812 0.7300770
 0.7154807 0.7012625 0.6873836 0.6738258 0.6605669
 0.6475836 0.6348556 0.6223574 0.6100645 0.5979519
 0.5859948 0.5741681 0.5624452 0.5507988 0.5392001
 0.5276191 0.5160242 0.5043827 0.4926610 0.4808249
 0.4688409 0.4566780 0.4443722 0.4318917 0.4192724
 0.4064818 0.3935555 0.3804608 0.3672328 0.3538387
 0.3402505 0.3264496 0.3124329 0.2982195 0.2838594
 0.2694385 0.2550797 0.2409340 0.2271619 0.2139117
 0.2012992 0.1893980 0.1782406 0.1678254 0.1581272
 0.1491066 0.1407171 0.1329104 0.1256389 0.1188579
 0.1125261
 0.7360706 0.7129275 0.6903998 0.6684875 0.6471907
 0.6265092 0.6064433 0.5869928 0.5681578 0.5499381
 0.5323340 0.5153455 0.4999792 0.4824310 0.4680725
 0.4547169 0.4406412 0.4261383 0.4115725 0.3969412
 0.3822098 0.3673595 0.3523987 0.3373668 0.3222784
 0.3071608 0.2920345 0.2769196 0.2618397 0.2468154
 0.2318688 0.2170195 0.2022878 0.1876935 0.1732566
 0.1589984 0.1449423 0.1311142 0.1175444 0.1042689
 9.1330431E-02 7.8781351E-02 6.6567563E-02 5.4741152E-02 4.3248463E-02
 3.2141477E-02 2.1366708E-02 1.0976203E-02 9.1666158E-04 -8.7598721E-03
 -1.7990472E-02 -2.6699673E-02 -3.4799311E-02 -4.2190712E-02 -4.8770834E-02
 -5.4443803E-02 -5.9136655E-02 -6.2816285E-02 -6.5500788E-02 -6.7259803E-02
 -6.8202965E-02 -6.8461366E-02 -6.8169050E-02 -6.7449622E-02 -6.6409245E-02
 -6.5134726E-02 -6.3694678E-02 -6.2142156E-02 -6.0517542E-02 -5.8851302E-02
 -5.7166211E-02
 1.105899 1.083230 1.060971 1.039123 1.017686
 0.9966589 0.9760423 0.9558357 0.9360396 0.9166535
 0.8976778 0.8791122 0.8621546 0.8440163 0.8258767
 0.8093195 0.7936352 0.7782177 0.7631075 0.7483854
 0.7340712 0.7201352 0.7065384 0.6932628 0.6802861
 0.6675851 0.6551394 0.6429236 0.6309131 0.6190829
 0.6074083 0.5958641 0.5844237 0.5730597 0.5617436
 0.5504452 0.5391330 0.5277742 0.5163352 0.5047818
 0.4930806 0.4812006 0.4691776 0.4569800 0.4446435
 0.4321358 0.4194924 0.4066805 0.3937354 0.3806242
 0.3673819 0.3539752 0.3403757 0.3265646 0.3125381
 0.2983150 0.2839446 0.2695126 0.2551416 0.2409829
 0.2271978 0.2139349 0.2013108 0.1893995 0.1782338
 0.1678121 0.1581089 0.1490847 0.1406927 0.1328844
 0.1256121
 0.7903417 0.7664903 0.7432543 0.7206338 0.6986287
 0.6772390 0.6564648 0.6363061 0.6167629 0.5978352
 0.5795230 0.5618265 0.5457522 0.5274961 0.5124297
 0.4983661 0.4835823 0.4683715 0.4530978 0.4377585
 0.4223192 0.4067609 0.3910922 0.3753524 0.3595561
 0.3437306 0.3278965 0.3120738 0.2962861 0.2805539
 0.2648997 0.2493427 0.2339034 0.2186015 0.2034569
 0.1884911 0.1737274 0.1591917 0.1449144 0.1309313
 0.1172853 0.1040287 9.1107436E-02 7.8573518E-02 6.6373326E-02
 5.4558843E-02 4.3076582E-02 3.1978589E-02 2.1211559E-02 1.0827539E-02
 7.7347574E-04 -8.8987527E-03 -1.8126249E-02 -2.6833635E-02 -3.4932561E-02
 -4.2324275E-02 -4.8905428E-02 -5.4579545E-02 -5.9273031E-02 -6.2952012E-02
 -6.5634109E-02 -6.7388818E-02 -6.8325952E-02 -6.8577029E-02 -6.8276584E-02
 -6.7548722E-02 -6.6499978E-02 -6.5217406E-02 -6.3769780E-02 -6.2210247E-02
 -6.0579222E-02
 1.118289 1.095901 1.073924 1.052357 1.031201
 1.010456 0.9901206 0.9701957 0.9506811 0.9315767
 0.9128826 0.8945987 0.8779228 0.8600663 0.8422086
 0.8259333 0.8105310 0.7953954 0.7805672 0.7661272
 0.7520950 0.7384411 0.7251264 0.7121330 0.6994386
 0.6870198 0.6748564 0.6629229 0.6511948 0.6396469
 0.6282547 0.6169928 0.6058348 0.5947534 0.5837198
 0.5727039 0.5616743 0.5505980 0.5394416 0.5281709
 0.5167524 0.5051550 0.4934148 0.4814999 0.4694462
 0.4572213 0.4448606 0.4323316 0.4196693 0.4068409
 0.3938814 0.3807575 0.3675041 0.3540877 0.3404798
 0.3266609 0.3126270 0.2983964 0.2840178 0.2695768
 0.2551958 0.2410262 0.2272299 0.2139560 0.2013217
 0.1894017 0.1782287 0.1678011 0.1580934 0.1490659
 0.1406717
 0.8460138 0.8214546 0.7975107 0.7741825 0.7514696
 0.7293722 0.7078903 0.6870240 0.6667733 0.6471380
 0.6281183 0.6097143 0.5929325 0.5739689 0.5581951
 0.5434242 0.5279332 0.5120152 0.4960342 0.4799877
 0.4638412 0.4475757 0.4311997 0.4147528 0.3982494
 0.3817168 0.3651756 0.3486458 0.3321511 0.3157119
 0.2993507 0.2830868 0.2669406 0.2509318 0.2350803
 0.2194077 0.2039371 0.1886946 0.1737104 0.1590205
 0.1446677 0.1307043 0.1170762 0.1038355 9.0928547E-02
 7.8407302E-02 6.6218279E-02 5.4413531E-02 4.2939749E-02 3.1848982E-02
 2.1088170E-02 1.0709192E-02 6.5920147E-04 -9.0099797E-03 -1.8235436E-02
 -2.6941823E-02 -3.5040893E-02 -4.2433649E-02 -4.9016517E-02 -5.4692496E-02
 -5.9387319E-02 -6.3066557E-02 -6.5747328E-02 -6.7498967E-02 -6.8431407E-02
 -6.8676539E-02 -6.8369381E-02 -6.7634448E-02 -6.6578612E-02 -6.5289177E-02
 -6.3835077E-02
 1.130123 1.108017 1.086320 1.065035 1.044160
 1.023695 1.003641 0.9839974 0.9647641 0.9459410
 0.9275283 0.9095259 0.8931316 0.8755566 0.8579804
 0.8419868 0.8268661 0.8120123 0.7974657 0.7833074
 0.7695571 0.7561849 0.7431521 0.7304406 0.7180281
 0.7058913 0.6940098 0.6823583 0.6709121 0.6596463
 0.6485362 0.6375564 0.6266807 0.6158814 0.6051300
 0.5943964 0.5836490 0.5728549 0.5619808 0.5509924
 0.5398563 0.5285413 0.5170836 0.5054513 0.4936802
 0.4817380 0.4696600 0.4574136 0.4450340 0.4324883
 0.4198116 0.4069704 0.3939998 0.3808661 0.3676045
 0.3541809 0.3405665 0.3267419 0.3127024 0.2984660
 0.2840810 0.2696327 0.2552434 0.2410645 0.2272585
 0.2139751 0.2013320 0.1894042 0.1782246 0.1677919
 0.1580803
 0.9030755 0.8778092 0.8531584 0.8291231 0.8057032
 0.7828989 0.7607102 0.7391371 0.7181795 0.6978375
 0.6781110 0.6590002 0.6415118 0.6218416 0.6053612
 0.5898837 0.5736862 0.5570617 0.5403743 0.5236213
 0.5067683 0.4897964 0.4727141 0.4555609 0.4383511
 0.4211122 0.4038648 0.3866288 0.3694279 0.3522826
 0.3352152 0.3182451 0.3013927 0.2846777 0.2681201
 0.2517414 0.2355647 0.2196161 0.2039259 0.1885298
 0.1734710 0.1588015 0.1444674 0.1305206 0.1169076
 0.1036803 9.0785287E-02 7.8274511E-02 6.6094711E-02 5.4297924E-02
 4.2831093E-02 3.1746097E-02 2.0990094E-02 1.0614904E-02 5.6796585E-04
 -9.0990337E-03 -1.8323250E-02 -2.7029362E-02 -3.5129156E-02 -4.2523440E-02
 -4.9108431E-02 -5.4786697E-02 -5.9483420E-02 -6.3163549E-02 -6.5843783E-02
 -6.7593262E-02 -6.8522066E-02 -6.8762399E-02 -6.8449661E-02 -6.7708775E-02
 -6.6646926E-02
 1.141392 1.119566 1.098150 1.077146 1.056552
 1.036368 1.016595 0.9972324 0.9782804 0.9597386
 0.9416073 0.9238863 0.9077734 0.8904800 0.8731853
 0.8574733 0.8426341 0.8280619 0.8137971 0.7999204
 0.7864518 0.7733614 0.7606105 0.7481807 0.7360501
 0.7241951 0.7125956 0.7012259 0.6900618 0.6790780
 0.6682499 0.6575522 0.6469585 0.6364413 0.6259721
 0.6155205 0.6050553 0.5945435 0.5839517 0.5732455
 0.5623917 0.5513592 0.5401839 0.5288342 0.5173456
 0.5056859 0.4938905 0.4819267 0.4698298 0.4575667
 0.4451725 0.4326140 0.4199261 0.4070750 0.3940960
 0.3809551 0.3676871 0.3542582 0.3406391 0.3268102
 0.3127666 0.2985257 0.2841358 0.2696814 0.2552851
 0.2410985 0.2272841 0.2139924 0.2013415 0.1894068
 0.1782216
 0.9615211 0.9355486 0.9101915 0.8854500 0.8613240
 0.8378136 0.8149188 0.7926396 0.7709760 0.7499279
 0.7294955 0.7096788 0.6914846 0.6711085 0.6539223
 0.6377391 0.6208358 0.6035054 0.5861123 0.5686536
 0.5510950 0.5334175 0.5156296 0.4977707 0.4798554
 0.4619111 0.4439581 0.4260167 0.4081103 0.3902595
 0.3724867 0.3548112 0.3372534 0.3198330 0.3025700
 0.2854858 0.2686038 0.2519498 0.2355543 0.2194529
 0.2036887 0.1883140 0.1732745 0.1586224 0.1443041
 0.1303716 0.1167713 0.1035552 9.0670213E-02 7.8168191E-02
 6.5996125E-02 5.4205902E-02 4.2744678E-02 3.1664267E-02 2.0912111E-02
 1.0539898E-02 4.9515854E-04 -9.1703571E-03 -1.8393992E-02 -2.7100340E-02
 -3.5201173E-02 -4.2597327E-02 -4.9184699E-02 -5.4865558E-02 -5.9564482E-02
 -6.3245915E-02 -6.5926179E-02 -6.7674235E-02 -6.8600252E-02 -6.8836667E-02
 -6.8519294E-02
 1.152106 1.130561 1.109426 1.088701 1.068388
 1.048485 1.028993 1.009912 0.9912407 0.9729800
 0.9551298 0.9376900 0.9218583 0.9048460 0.8878326
 0.8724018 0.8578439 0.8435531 0.8295696 0.8159744
 0.8027872 0.7899783 0.7775088 0.7653606 0.7535114
 0.7419381 0.7306201 0.7195321 0.7086497 0.6979476
 0.6874012 0.6769853 0.6666734 0.6564379 0.6462505
 0.6360808 0.6258975 0.6156676 0.6053577 0.5949336
 0.5843619 0.5736116 0.5627185 0.5516509 0.5404445
 0.5290670 0.5175538 0.5058723 0.4940577 0.4820770
 0.4699653 0.4576892 0.4452837 0.4327150 0.4200184
 0.4071599 0.3941744 0.3810280 0.3677554 0.3543225
 0.3407001 0.3268680 0.3128213 0.2985770 0.2841831
 0.2697239 0.2553218 0.2411285 0.2273069 0.2140080
 0.2013503
 1.021348 0.9946703 0.9686076 0.9431607 0.9183292
 0.8941133 0.8705130 0.8475284 0.8251594 0.8034061
 0.7822684 0.7617465 0.7428470 0.7217658 0.7038743
 0.6869859 0.6693775 0.6513421 0.6332439 0.6150802
 0.5968165 0.5784339 0.5599410 0.5413771 0.5227569
 0.5041077 0.4854499 0.4668038 0.4481927 0.4296372
 0.4111597 0.3927794 0.3745169 0.3563919 0.3384242
 0.3206354 0.3030487 0.2856901 0.2685900 0.2517841
 0.2353154 0.2192360 0.2034921 0.1881355 0.1731127
 0.1584756 0.1441708 0.1302503 0.1166608 0.1034543
 9.0577811E-02 7.8083135E-02 6.5917462E-02 5.4132603E-02 4.2676002E-02
 3.1599347E-02 2.0850169E-02 1.0480215E-02 4.3699075E-04 -9.2276353E-03
 -1.8451013E-02 -2.7157929E-02 -3.5260089E-02 -4.2658299E-02 -4.9248222E-02
 -5.4931749E-02 -5.9633054E-02 -6.3316092E-02 -6.5996818E-02 -6.7743972E-02
 -6.8667814E-02
 1.162263 1.140997 1.120142 1.099698 1.079665
 1.060042 1.040831 1.022030 1.003639 0.9856594
 0.9680901 0.9509313 0.9353805 0.9186493 0.9019169
 0.8867673 0.8724905 0.8584808 0.8447785 0.8314645
 0.8185586 0.8060310 0.7938428 0.7819759 0.7704082
 0.7591162 0.7480797 0.7372732 0.7266722 0.7162516
 0.7059868 0.6958523 0.6858220 0.6758682 0.6659624
 0.6560744 0.6461728 0.6362247 0.6261967 0.6160546
 0.6057648 0.5952964 0.5846852 0.5738996 0.5629752
 0.5518797 0.5406486 0.5292493 0.5177168 0.5060184
 0.4941890 0.4821952 0.4700720 0.4577858 0.4453715
 0.4327955 0.4200924 0.4072285 0.3942383 0.3810879
 0.3678119 0.3543762 0.3407513 0.3269170 0.3128680
 0.2986213 0.2842243 0.2697612 0.2553541 0.2411551
 0.2273274
 1.082555 1.055172 1.028404 1.002252 0.9767155
 0.9517948 0.9274898 0.9038004 0.8807268 0.8582688
 0.8364265 0.8152000 0.7955959 0.7738101 0.7552142
 0.7376212 0.7193084 0.7005685 0.6817659 0.6628976
 0.6439295 0.6248426 0.6056453 0.5863771 0.5670527
 0.5476992 0.5283371 0.5089868 0.4896716 0.4704120
 0.4512305 0.4321462 0.4131797 0.3943506 0.3756790
 0.3571862 0.3388956 0.3208331 0.3030291 0.2855192
 0.2683467 0.2515635 0.2351157 0.2190554 0.2033288
 0.1879880 0.1729794 0.1583551 0.1440619 0.1301517
 0.1165714 0.1033730 9.0503663E-02 7.8015096E-02 6.5854788E-02
 5.4074436E-02 4.2621560E-02 3.1547911E-02 2.0800993E-02 1.0432674E-02
 3.9057396E-04 -9.2735533E-03 -1.8497072E-02 -2.7204819E-02 -3.5308469E-02
 -4.2708732E-02 -4.9301215E-02 -5.4987490E-02 -5.9691217E-02 -6.3376054E-02
 -6.6057488E-02

XFOILinterface/XFOIL/orrs/osm_gu.07

 2001 7.019107
 0.0000000E+00 0.0000000E+00 8.8606575E-05
 5.0134525E-02 4.7044859E-06 9.9067947E-05
 0.1002690 9.9621884E-06 1.1067585E-04
 0.1504036 1.5833466E-05 1.2354505E-04
 0.2005381 2.2384678E-05 1.3780028E-04
 0.2506726 2.9688723E-05 1.5357749E-04
 0.3008071 3.7825601E-05 1.7102427E-04
 0.3509417 4.6883037E-05 1.9030088E-04
 0.4010762 5.6957106E-05 2.1158069E-04
 0.4512108 6.8152964E-05 2.3505188E-04
 0.5013453 8.0585574E-05 2.6091805E-04
 0.5514798 9.4380506E-05 2.8939889E-04
 0.6016143 1.0967482E-04 3.2073195E-04
 0.6517488 1.2661792E-04 3.5517337E-04
 0.7018834 1.4537254E-04 3.9299848E-04
 0.7520179 1.6611577E-04 4.3450421E-04
 0.8021524 1.8904010E-04 4.8000927E-04
 0.8522869 2.1435467E-04 5.2985619E-04
 0.9024215 2.4228633E-04 5.8441143E-04
 0.9525560 2.7308095E-04 6.4406852E-04
 1.002691 3.0700493E-04 7.0924882E-04
 1.052825 3.4434628E-04 7.8039960E-04
 1.102960 3.8541656E-04 8.5800170E-04
 1.153094 4.3055188E-04 9.4256597E-04
 1.203229 4.8011492E-04 1.0346372E-03
 1.253363 5.3449662E-04 1.1347932E-03
 1.303498 5.9411762E-04 1.2436497E-03
 1.353632 6.5943075E-04 1.3618590E-03
 1.403767 7.3092175E-04 1.4901106E-03
 1.453901 8.0911262E-04 1.6291369E-03
 1.504036 8.9456333E-04 1.7797112E-03
 1.554170 9.8787260E-04 1.9426460E-03
 1.604305 1.0896819E-03 2.1188026E-03
 1.654439 1.2006770E-03 2.3090842E-03
 1.704574 1.3215895E-03 2.5144417E-03
 1.754708 1.4532005E-03 2.7358744E-03
 1.804843 1.5963423E-03 2.9744245E-03
 1.854977 1.7518998E-03 3.2311901E-03
 1.905112 1.9208157E-03 3.5073149E-03
 1.955246 2.1040898E-03 3.8039894E-03
 2.005381 2.3027847E-03 4.1224617E-03
 2.055516 2.5180241E-03 4.4640223E-03
 2.105650 2.7510000E-03 4.8300182E-03
 2.155785 3.0029733E-03 5.2218433E-03
 2.205919 3.2752734E-03 5.6409384E-03
 2.256054 3.5693054E-03 6.0887970E-03
 2.306188 3.8865511E-03 6.5669594E-03
 2.356323 4.2285677E-03 7.0770052E-03
 2.406457 4.5969957E-03 7.6205670E-03
 2.456592 4.9935570E-03 8.1993146E-03
 2.506726 5.4200580E-03 8.8149626E-03
 2.556861 5.8783931E-03 9.4692577E-03
 2.606995 6.3705444E-03 1.0163983E-02
 2.657130 6.8985838E-03 1.0900954E-02
 2.707264 7.4646804E-03 1.1682017E-02
 2.757399 8.0710836E-03 1.2509027E-02
 2.807534 8.7201465E-03 1.3383873E-02
 2.857668 9.4143171E-03 1.4308451E-02
 2.907802 1.0156135E-02 1.5284671E-02
 2.957937 1.0948238E-02 1.6314438E-02
 3.008072 1.1793363E-02 1.7399661E-02
 3.058206 1.2694326E-02 1.8542230E-02
 3.108341 1.3654057E-02 1.9744022E-02
 3.158475 1.4675570E-02 2.1006890E-02
 3.208610 1.5761971E-02 2.2332665E-02
 3.258744 1.6916463E-02 2.3723127E-02
 3.308879 1.8142339E-02 2.5180018E-02
 3.359013 1.9442953E-02 2.6704997E-02
 3.409148 2.0821767E-02 2.8299682E-02
 3.459282 2.2282317E-02 2.9965613E-02
 3.509417 2.3828210E-02 3.1704240E-02
 3.559551 2.5463125E-02 3.3516921E-02
 3.609686 2.7190816E-02 3.5404913E-02
 3.659821 2.9015066E-02 3.7369337E-02
 3.709955 3.0939741E-02 3.9411221E-02
 3.760089 3.2968752E-02 4.1531432E-02
 3.810224 3.5106037E-02 4.3730702E-02
 3.860358 3.7355579E-02 4.6009615E-02
 3.910493 3.9721377E-02 4.8368577E-02
 3.960628 4.2207468E-02 5.0807837E-02
 4.010762 4.4817854E-02 5.3327419E-02
 4.060897 4.7556564E-02 5.5927180E-02
 4.111031 5.0427612E-02 5.8606785E-02
 4.161166 5.3434990E-02 6.1365657E-02
 4.211300 5.6582652E-02 6.4203031E-02
 4.261435 5.9874520E-02 6.7117885E-02
 4.311569 6.3314423E-02 7.0108958E-02
 4.361704 6.6906147E-02 7.3174760E-02
 4.411839 7.0653409E-02 7.6313548E-02
 4.461973 7.4559815E-02 7.9523332E-02
 4.512107 7.8628860E-02 8.2801849E-02
 4.562242 8.2863957E-02 8.6146608E-02
 4.612377 8.7268308E-02 8.9554779E-02
 4.662511 9.1845036E-02 9.3023352E-02
 4.712646 9.6597090E-02 9.6548989E-02
 4.762780 0.1015272 0.1001281
 4.812914 0.1066381 0.1037569
 4.863049 0.1119320 0.1074312
 4.913184 0.1174111 0.1111467
 4.963318 0.1230775 0.1148987
 5.013453 0.1289327 0.1186823
 5.063587 0.1349783 0.1224926
 5.113722 0.1412154 0.1263240
 5.163856 0.1476451 0.1301712
 5.213991 0.1542678 0.1340282
 5.264125 0.1610840 0.1378892
 5.314260 0.1680938 0.1417479
 5.364395 0.1752968 0.1455982
 5.414529 0.1826925 0.1494334
 5.464664 0.1902798 0.1532469
 5.514798 0.1980576 0.1570321
 5.564932 0.2060244 0.1607822
 5.615067 0.2141781 0.1644901
 5.665202 0.2225164 0.1681490
 5.715336 0.2310368 0.1717518
 5.765471 0.2397362 0.1752915
 5.815605 0.2486113 0.1787611
 5.865739 0.2576584 0.1821536
 5.915874 0.2668735 0.1854621
 5.966009 0.2762524 0.1886796
 6.016143 0.2857899 0.1917995
 6.066278 0.2954813 0.1948150
 6.116412 0.3053210 0.1977197
 6.166547 0.3153035 0.2005073
 6.216681 0.3254226 0.2031715
 6.266816 0.3356721 0.2057065
 6.316950 0.3460452 0.2081066
 6.367085 0.3565352 0.2103663
 6.417219 0.3671348 0.2124805
 6.467354 0.3778366 0.2144444
 6.517488 0.3886330 0.2162533
 6.567623 0.3995161 0.2179031
 6.617758 0.4104780 0.2193899
 6.667892 0.4215101 0.2207102
 6.718027 0.4326041 0.2218609
 6.768161 0.4437515 0.2228392
 6.818295 0.4549436 0.2236429
 6.868430 0.4661715 0.2242699
 6.918565 0.4774264 0.2247189
 6.968699 0.4886994 0.2249888
 7.018834 0.4999813 0.2250787
 7.068968 0.5112633 0.2249888
 7.119102 0.5225362 0.2247189
 7.169237 0.5337911 0.2242699
 7.219372 0.5450192 0.2236429
 7.269506 0.5562113 0.2228392
 7.319641 0.5673587 0.2218608
 7.369776 0.5784528 0.2207102
 7.419910 0.5894849 0.2193899
 7.470045 0.6004466 0.2179031
 7.520179 0.6113297 0.2162533
 7.570313 0.6221260 0.2144444
 7.620448 0.6328279 0.2124805
 7.670582 0.6434274 0.2103663
 7.720717 0.6539174 0.2081066
 7.770852 0.6642905 0.2057065
 7.820986 0.6745400 0.2031715
 7.871121 0.6846592 0.2005072
 7.921256 0.6946416 0.1977197
 7.971390 0.7044814 0.1948150
 8.021524 0.7141728 0.1917994
 8.071659 0.7237104 0.1886796
 8.121794 0.7330890 0.1854621
 8.171927 0.7423041 0.1821536
 8.222062 0.7513513 0.1787611
 8.272197 0.7602264 0.1752915
 8.322331 0.7689258 0.1717518
 8.372466 0.7774463 0.1681490
 8.422600 0.7857845 0.1644901
 8.472735 0.7939383 0.1607821
 8.522870 0.8019050 0.1570321
 8.573004 0.8096829 0.1532469
 8.623138 0.8172703 0.1494333
 8.673273 0.8246659 0.1455981
 8.723408 0.8318689 0.1417479
 8.773542 0.8388786 0.1378892
 8.823677 0.8456949 0.1340282
 8.873811 0.8523176 0.1301712
 8.923945 0.8587472 0.1263240
 8.974080 0.8649844 0.1224926
 9.024215 0.8710300 0.1186823
 9.074349 0.8768852 0.1148987
 9.124484 0.8825516 0.1111466
 9.174619 0.8880308 0.1074312
 9.224753 0.8933247 0.1037568
 9.274887 0.8984355 0.1001281
 9.325022 0.9033657 9.6548960E-02
 9.375156 0.9081177 9.3023323E-02
 9.425291 0.9126945 8.9554764E-02
 9.475426 0.9170988 8.6146593E-02
 9.525560 0.9213338 8.2801849E-02
 9.575694 0.9254028 7.9523332E-02
 9.625829 0.9293092 7.6313548E-02
 9.675963 0.9330565 7.3174760E-02
 9.726098 0.9366483 7.0108928E-02
 9.776233 0.9400882 6.7117862E-02
 9.826367 0.9433801 6.4203009E-02
 9.876502 0.9465277 6.1365645E-02
 9.926637 0.9495351 5.8606770E-02
 9.976770 0.9524061 5.5927169E-02
 10.02691 0.9551449 5.3327408E-02
 10.07704 0.9577553 5.0807819E-02
 10.12717 0.9602414 4.8368577E-02
 10.17731 0.9626071 4.6009615E-02
 10.22744 0.9648567 4.3730702E-02
 10.27758 0.9669940 4.1531432E-02
 10.32771 0.9690230 3.9411221E-02
 10.37785 0.9709477 3.7369337E-02
 10.42798 0.9727719 3.5404913E-02
 10.47812 0.9744996 3.3516932E-02
 10.52825 0.9761345 3.1704254E-02
 10.57838 0.9776804 2.9965622E-02
 10.62852 0.9791410 2.8299687E-02
 10.67865 0.9805198 2.6704963E-02
 10.72879 0.9818205 2.5179988E-02
 10.77892 0.9830463 2.3723109E-02
 10.82906 0.9842008 2.2332648E-02
 10.87919 0.9852872 2.1006875E-02
 10.92933 0.9863087 1.9744001E-02
 10.97946 0.9872684 1.8542210E-02
 11.02960 0.9881694 1.7399646E-02
 11.07973 0.9890145 1.6314430E-02
 11.12986 0.9898066 1.5284667E-02
 11.18000 0.9905484 1.4308448E-02
 11.23013 0.9912426 1.3383867E-02
 11.28027 0.9918916 1.2509024E-02
 11.33040 0.9924980 1.1682014E-02
 11.38054 0.9930642 1.0900954E-02
 11.43067 0.9935922 1.0163983E-02
 11.48081 0.9940844 9.4692577E-03
 11.53094 0.9945427 8.8149626E-03
 11.58108 0.9949691 8.1993146E-03
 11.63121 0.9953657 7.6205670E-03
 11.68134 0.9957342 7.0770052E-03
 11.73148 0.9960762 6.5669594E-03
 11.78161 0.9963934 6.0887993E-03
 11.83175 0.9966875 5.6409412E-03
 11.88188 0.9969598 5.2218460E-03
 11.93202 0.9972118 4.8300130E-03
 11.98215 0.9974447 4.4640182E-03
 12.03229 0.9976600 4.1224575E-03
 12.08242 0.9978586 3.8039861E-03
 12.13256 0.9980419 3.5073117E-03
 12.18269 0.9982108 3.2311869E-03
 12.23282 0.9983664 2.9744217E-03
 12.28296 0.9985095 2.7358704E-03
 12.33309 0.9986411 2.5144394E-03
 12.38323 0.9987621 2.3090821E-03
 12.43336 0.9988731 2.1188003E-03
 12.48350 0.9989749 1.9426441E-03
 12.53363 0.9990682 1.7797095E-03
 12.58377 0.9991536 1.6291369E-03
 12.63390 0.9992318 1.4901106E-03
 12.68404 0.9993033 1.3618590E-03
 12.73417 0.9993687 1.2436497E-03
 12.78430 0.9994282 1.1347932E-03
 12.83444 0.9994826 1.0346372E-03
 12.88457 0.9995322 9.4256597E-04
 12.93471 0.9995773 8.5800170E-04
 12.98484 0.9996184 7.8039960E-04
 13.03498 0.9996558 7.0924882E-04
 13.08511 0.9996896 6.4406946E-04
 13.13525 0.9997205 5.8441225E-04
 13.18538 0.9997484 5.2985549E-04
 13.23552 0.9997737 4.8000886E-04
 13.28565 0.9997966 4.3450360E-04
 13.33578 0.9998173 3.9299807E-04
 13.38592 0.9998361 3.5517287E-04
 13.43605 0.9998530 3.2073169E-04
 13.48619 0.9998683 2.8939859E-04
 13.53632 0.9998821 2.6091767E-04
 13.58646 0.9998946 2.3505154E-04
 13.63659 0.9999057 2.1158038E-04
 13.68673 0.9999158 1.9030063E-04
 13.73686 0.9999249 1.7102427E-04
 13.78699 0.9999330 1.5357749E-04
 13.83713 0.9999403 1.3780028E-04
 13.88726 0.9999469 1.2354505E-04
 13.93740 0.9999527 1.1067585E-04
 13.98753 0.9999580 9.9067947E-05
 14.03767 0.9999627 8.8606575E-05
 14.08780 0.9999669 7.9186510E-05
 14.13794 0.9999707 7.0711350E-05
 14.18807 0.9999740 6.3092746E-05
 14.23820 0.9999770 5.6250017E-05
 14.28834 0.9999797 5.0109305E-05
 14.33847 0.9999821 4.4603261E-05
 14.38861 0.9999841 3.9670467E-05
 14.43874 0.9999860 3.5254892E-05
 14.48888 0.9999877 3.1305819E-05
 14.53901 0.9999892 2.7776872E-05
 14.58915 0.9999905 2.4626035E-05
 14.63928 0.9999917 2.1815151E-05
 14.68942 0.9999927 1.9309649E-05
 14.73955 0.9999936 1.7078239E-05
 14.78969 0.9999944 1.5092608E-05
 14.83982 0.9999952 1.3327171E-05
 14.88995 0.9999958 1.1758832E-05
 14.94009 0.9999963 1.0366767E-05
 14.99022 0.9999968 9.1321908E-06
 15.04036 0.9999972 8.0381978E-06
 15.09049 0.9999976 7.0696083E-06
 15.14063 0.9999979 6.2127651E-06
 15.19076 0.9999982 5.4553998E-06
 15.24090 0.9999985 4.7865296E-06
 15.29103 0.9999986 4.1963131E-06
 15.34116 0.9999989 3.6759288E-06
 15.39130 0.9999990 3.2175046E-06
 15.44143 0.9999992 2.8139982E-06
 15.49157 0.9999993 2.4591268E-06
 15.54170 0.9999995 2.1472893E-06
 15.59184 0.9999995 1.8734974E-06
 15.64197 0.9999996 1.6333066E-06
 15.69211 0.9999996 1.4227679E-06
 15.74224 0.9999997 1.2383794E-06
 15.79238 0.9999998 1.0770262E-06
 15.84251 0.9999999 9.3594718E-07
 15.89264 0.9999999 8.1269837E-07
 15.94278 1.000000 7.0511425E-07
 15.99291 1.000000 6.1128270E-07
 16.04305 1.000000 5.2951418E-07
 16.09318 1.000000 4.5831669E-07
 16.14332 1.000000 3.9637490E-07
 16.19345 1.000000 3.4253048E-07
 16.24359 1.000000 2.9576361E-07
 16.29372 1.000000 2.5517775E-07
 16.34385 1.000000 2.1998537E-07
 16.39399 1.000000 1.8949461E-07
 16.44412 1.000000 1.6309959E-07
 16.49426 1.000000 1.4026888E-07
 16.54439 1.000000 1.2053755E-07
 16.59453 1.000000 1.0349893E-07
 16.64466 1.000000 8.8797734E-08
 16.69480 1.000000 7.6123868E-08
 16.74493 1.000000 6.5206649E-08
 16.79507 1.000000 5.5810492E-08
 16.84520 1.000000 4.7730097E-08
 16.89533 1.000000 4.0786954E-08
 16.94547 1.000000 3.4825799E-08
 16.99561 1.000000 2.9712249E-08
 17.04574 1.000000 2.5329276E-08
 17.09587 1.000000 2.1575463E-08
 17.14601 1.000000 1.8363426E-08
 17.19614 1.000000 1.5616974E-08
 17.24628 1.000000 1.3270751E-08
 17.29641 1.000000 1.1267897E-08
 17.34655 1.000000 9.5597477E-09
 17.39668 1.000000 8.1040046E-09
 17.44682 1.000000 6.8644894E-09
 17.49695 1.000000 5.8098713E-09
 17.54708 1.000000 4.9133866E-09
 17.59722 1.000000 4.1518660E-09
 17.64735 1.000000 3.5056038E-09
 17.69749 1.000000 2.9575431E-09
 17.74762 1.000000 2.4931910E-09
 17.79776 1.000000 2.1000459E-09
 17.84789 1.000000 1.7674955E-09
 17.89803 1.000000 1.4864031E-09
 17.94816 1.000000 1.2490249E-09
 17.99829 1.000000 1.0487095E-09
 18.04843 1.000000 8.7982183E-10
 18.09856 1.000000 7.3753703E-10
 18.14870 1.000000 6.1777228E-10
 18.19883 1.000000 5.1703808E-10
 18.24897 1.000000 4.3238316E-10
 18.29910 1.000000 3.6130274E-10
 18.34924 1.000000 3.0166333E-10
 18.39937 1.000000 2.5166963E-10
 18.44951 1.000000 2.0979110E-10
 18.49964 1.000000 1.7474326E-10
 18.54977 1.000000 1.4543257E-10
 18.59991 1.000000 1.2094280E-10
 18.65004 1.000000 1.0049543E-10
 18.70018 1.000000 8.3439117E-11
 18.75031 1.000000 6.9221628E-11
 18.80045 1.000000 5.7381266E-11
 18.85058 1.000000 4.7527760E-11
 18.90072 1.000000 3.9335136E-11
 18.95085 1.000000 3.2528414E-11
 19.00099 1.000000 2.6878267E-11
 19.05112 1.000000 2.2191632E-11
 19.10125 1.000000 1.8307652E-11
 19.15139 1.000000 1.5091237E-11
 19.20152 1.000000 1.2430086E-11
 19.25166 1.000000 1.0229899E-11
 19.30179 1.000000 8.4125094E-12
 19.35193 1.000000 6.9123960E-12
 19.40206 1.000000 5.6752875E-12
 19.45220 1.000000 4.6558087E-12
 19.50233 1.000000 3.8164120E-12
 19.55247 1.000000 3.1258811E-12
 19.60260 1.000000 2.5582184E-12
 19.65273 1.000000 2.0919913E-12
 19.70287 1.000000 1.7093494E-12
 19.75300 1.000000 1.3955908E-12
 19.80314 1.000000 1.1385006E-12
 19.85327 1.000000 9.2803759E-13
 19.90341 1.000000 7.5586905E-13
 19.95354 1.000000 6.1515398E-13
 20.00368 1.000000 5.0023017E-13
 20.05381 1.000000 4.0645547E-13
 20.10395 1.000000 3.2999184E-13
 20.15408 1.000000 2.6770182E-13
 20.20422 1.000000 2.1699384E-13
 20.25435 1.000000 1.7575210E-13
 20.30448 1.000000 1.4223341E-13
 20.35462 1.000000 1.1501641E-13
 20.40475 1.000000 9.2932132E-14
 20.45489 1.000000 7.5028979E-14
 20.50502 1.000000 6.0525864E-14
 20.55515 1.000000 4.8787563E-14
 20.60529 1.000000 3.9293987E-14
 20.65542 1.000000 3.1622721E-14
 20.70556 1.000000 2.5428530E-14
 20.75569 1.000000 2.0431463E-14
 20.80583 1.000000 1.6403120E-14
 20.85596 1.000000 1.3158624E-14
 20.90610 1.000000 1.0547329E-14
 20.95623 1.000000 8.4475655E-15
 21.00637 1.000000 6.7603398E-15
 21.05650 1.000000 5.4058329E-15
 21.10664 1.000000 4.3192133E-15
 21.15677 1.000000 3.4482893E-15
 21.20691 1.000000 2.7507478E-15
 21.25704 1.000000 2.1925770E-15
 21.30717 1.000000 1.7462553E-15
 21.35731 1.000000 1.3896732E-15
 21.40744 1.000000 1.1050317E-15
 21.45758 1.000000 8.7798178E-16
 21.50771 1.000000 6.9703045E-16
 21.55785 1.000000 5.5292564E-16
 21.60798 1.000000 4.3826866E-16
 21.65812 1.000000 3.4710402E-16
 21.70825 1.000000 2.7468664E-16
 21.75838 1.000000 2.1720138E-16
 21.80852 1.000000 1.7161147E-16
 21.85865 1.000000 1.3548011E-16
 21.90879 1.000000 1.0687189E-16
 21.95892 1.000000 8.4236467E-17
 22.00906 1.000000 6.6342565E-17
 22.05919 1.000000 5.2207531E-17
 22.10933 1.000000 4.1051697E-17
 22.15946 1.000000 3.2253575E-17
 22.20959 1.000000 2.5320950E-17
 22.25973 1.000000 1.9862363E-17
 22.30986 1.000000 1.5568277E-17
 22.36000 1.000000 1.2192581E-17
 22.41013 1.000000 9.5413423E-18
 22.46027 1.000000 7.4605429E-18
 22.51040 1.000000 5.8289470E-18
 22.56054 1.000000 4.5504591E-18
 22.61067 1.000000 3.5495565E-18
 22.66081 1.000000 2.7666340E-18
 22.71094 1.000000 2.1546403E-18
 22.76107 1.000000 1.6767047E-18
 22.81121 1.000000 1.3037235E-18
 22.86134 1.000000 1.0129152E-18
 22.91148 1.000000 7.8633242E-19
 22.96161 1.000000 6.0995533E-19
 23.01175 1.000000 4.7275590E-19
 23.06188 1.000000 3.6612937E-19
 23.11202 1.000000 2.8332141E-19
 23.16215 1.000000 2.1906914E-19
 23.21229 1.000000 1.6925058E-19
 23.26242 1.000000 1.3065855E-19
 23.31256 1.000000 1.0078424E-19
 23.36269 1.000000 7.7679161E-20
 23.41282 1.000000 5.9822587E-20
 23.46296 1.000000 4.6034440E-20
 23.51309 1.000000 3.5395472E-20
 23.56323 1.000000 2.7193782E-20
 23.61336 1.000000 2.0875664E-20
 23.66350 1.000000 1.6012826E-20
 23.71363 1.000000 1.2272778E-20
 23.76377 1.000000 9.3988874E-21
 23.81390 1.000000 7.1921238E-21
 23.86404 1.000000 5.4990579E-21
 23.91417 1.000000 4.2012624E-21
 23.96430 1.000000 3.2071436E-21
 24.01444 1.000000 2.4463249E-21
 24.06457 1.000000 1.8644766E-21
 24.11471 1.000000 1.4199023E-21
 24.16484 1.000000 1.0804521E-21
 24.21498 1.000000 8.2150692E-22
 24.26511 1.000000 6.2411656E-22
 24.31524 1.000000 4.7378062E-22
 24.36538 1.000000 3.5936378E-22
 24.41551 1.000000 2.7236525E-22
 24.46565 1.000000 2.0625979E-22
 24.51578 1.000000 1.5607602E-22
 24.56592 1.000000 1.1800622E-22
 24.61605 1.000000 8.9152257E-23
 24.66619 1.000000 6.7298481E-23
 24.71632 1.000000 5.0761779E-23
 24.76646 1.000000 3.8257416E-23
 24.81659 1.000000 2.8810652E-23
 24.86673 1.000000 2.1678920E-23
 24.91686 1.000000 1.6299689E-23
 24.96700 1.000000 1.2245262E-23
 25.01713 1.000000 9.1921173E-24
 25.06726 1.000000 6.8946175E-24
 25.11740 1.000000 5.1672188E-24
 25.16753 1.000000 3.8695663E-24
 25.21767 1.000000 2.8954305E-24
 25.26780 1.000000 2.1648250E-24
 25.31794 1.000000 1.6172649E-24
 25.36807 1.000000 1.2072484E-24
 25.41821 1.000000 9.0044577E-25
 25.46834 1.000000 6.7108703E-25
 25.51847 1.000000 4.9974171E-25
 25.56861 1.000000 3.7185281E-25
 25.61874 1.000000 2.7646725E-25
 25.66888 1.000000 2.0538796E-25
 25.71901 1.000000 1.5245855E-25
 25.76915 1.000000 1.1308039E-25
 25.81928 1.000000 8.3805002E-26
 25.86942 1.000000 6.2059928E-26
 25.91955 1.000000 4.5919599E-26
 25.96968 1.000000 3.3950429E-26
 26.01982 1.000000 2.5080600E-26
 26.06995 1.000000 1.8513532E-26
 26.12009 1.000000 1.3654825E-26
 26.17022 1.000000 1.0063368E-26
 26.22036 1.000000 7.4104746E-27
 26.27049 1.000000 5.4526478E-27
 26.32063 1.000000 4.0088143E-27
 26.37076 1.000000 2.9449406E-27
 26.42089 1.000000 2.1617025E-27
 26.47103 1.000000 1.5854857E-27
 26.52116 1.000000 1.1619457E-27
 26.57130 1.000000 8.5085678E-28
 26.62143 1.000000 6.2256904E-28
 26.67157 1.000000 4.5515820E-28
 26.72170 1.000000 3.3250453E-28
 26.77184 1.000000 2.4270470E-28
 26.82197 1.000000 1.7701876E-28
 26.87211 1.000000 1.2900429E-28
 26.92224 1.000000 9.3939737E-29
 26.97238 1.000000 6.8350507E-29
 27.02251 1.000000 4.9692534E-29
 27.07265 1.000000 3.6098376E-29
 27.12278 1.000000 2.6202611E-29
 27.17291 1.000000 1.9003941E-29
 27.22305 1.000000 1.3772245E-29
 27.27318 1.000000 9.9726669E-30
 27.32332 1.000000 7.2156696E-30
 27.37345 1.000000 5.2166378E-30
 27.42359 1.000000 3.7684272E-30
 27.47372 1.000000 2.7200593E-30
 27.52385 1.000000 1.9617878E-30
 27.57399 1.000000 1.4137561E-30
 27.62412 1.000000 1.0180029E-30
 27.67426 1.000000 7.3245716E-31
 27.72439 1.000000 5.2657990E-31
 27.77453 1.000000 3.7826985E-31
 27.82466 1.000000 2.7151131E-31
 27.87480 1.000000 1.9472852E-31
 27.92493 1.000000 1.3954681E-31
 27.97507 1.000000 9.9923826E-32
 28.02520 1.000000 7.1493020E-32
 28.07533 1.000000 5.1111688E-32
 28.12547 1.000000 3.6510605E-32
 28.17560 1.000000 2.6060325E-32
 28.22574 1.000000 1.8585865E-32
 28.27587 1.000000 1.3244871E-32
 28.32601 1.000000 9.4310095E-33
 28.37614 1.000000 6.7100751E-33
 28.42628 1.000000 4.7702593E-33
 28.47641 1.000000 3.3885873E-33
 28.52655 1.000000 2.4051241E-33
 28.57668 1.000000 1.7057617E-33
 28.62682 1.000000 1.2087728E-33
 28.67695 1.000000 8.5591316E-34
 28.72708 1.000000 6.0556423E-34
 28.77722 1.000000 4.2810416E-34
 28.82735 1.000000 3.0240393E-34
 28.87749 1.000000 2.1343922E-34
 28.92762 1.000000 1.5052998E-34
 28.97776 1.000000 1.0607605E-34
 29.02789 1.000000 7.4691347E-35
 29.07803 1.000000 5.2549522E-35
 29.12816 1.000000 3.6942473E-35
 29.17830 1.000000 2.5949675E-35
 29.22843 1.000000 1.8213496E-35
 29.27856 1.000000 1.2773310E-35
 29.32870 1.000000 8.9510157E-36
 29.37883 1.000000 6.2673888E-36
 29.42897 1.000000 4.3848999E-36
 29.47910 1.000000 3.0653372E-36
 29.52924 1.000000 2.1412076E-36
 29.57937 1.000000 1.4944503E-36
 29.62951 1.000000 1.0422364E-36
 29.67964 1.000000 7.2626721E-37
 29.72977 1.000000 5.0569113E-37
 29.77991 1.000000 3.5181939E-37
 29.83004 1.000000 2.4457546E-37
 29.88018 1.000000 1.6988359E-37
 29.93031 1.000000 1.1791036E-37
 29.98045 1.000000 8.1770771E-38
 30.03058 1.000000 5.6663437E-38
 30.08072 1.000000 3.9232845E-38
 30.13085 1.000000 2.7142644E-38
 30.18098 1.000000 1.8763618E-38
 30.23112 1.000000 1.2960541E-38
 30.28125 1.000000 0.0000000E+00
 30.33139 1.000000 0.0000000E+00
 30.38152 1.000000 0.0000000E+00
 30.43166 1.000000 0.0000000E+00
 30.48179 1.000000 0.0000000E+00
 30.53193 1.000000 0.0000000E+00
 30.58206 1.000000 0.0000000E+00
 30.63220 1.000000 0.0000000E+00
 30.68233 1.000000 0.0000000E+00
 30.73247 1.000000 0.0000000E+00
 30.78260 1.000000 0.0000000E+00
 30.83274 1.000000 0.0000000E+00
 30.88287 1.000000 0.0000000E+00
 30.93300 1.000000 0.0000000E+00
 30.98314 1.000000 0.0000000E+00
 31.03327 1.000000 0.0000000E+00
 31.08341 1.000000 0.0000000E+00
 31.13354 1.000000 0.0000000E+00
 31.18367 1.000000 0.0000000E+00
 31.23381 1.000000 0.0000000E+00
 31.28394 1.000000 0.0000000E+00
 31.33408 1.000000 0.0000000E+00
 31.38421 1.000000 0.0000000E+00
 31.43435 1.000000 0.0000000E+00
 31.48448 1.000000 0.0000000E+00
 31.53462 1.000000 0.0000000E+00
 31.58475 1.000000 0.0000000E+00
 31.63489 1.000000 0.0000000E+00
 31.68502 1.000000 0.0000000E+00
 31.73516 1.000000 0.0000000E+00
 31.78529 1.000000 0.0000000E+00
 31.83542 1.000000 0.0000000E+00
 31.88556 1.000000 0.0000000E+00
 31.93569 1.000000 0.0000000E+00
 31.98583 1.000000 0.0000000E+00
 32.03596 1.000000 0.0000000E+00
 32.08610 1.000000 0.0000000E+00
 32.13623 1.000000 0.0000000E+00
 32.18637 1.000000 0.0000000E+00
 32.23650 1.000000 0.0000000E+00
 32.28664 1.000000 0.0000000E+00
 32.33677 1.000000 0.0000000E+00
 32.38691 1.000000 0.0000000E+00
 32.43704 1.000000 0.0000000E+00
 32.48717 1.000000 0.0000000E+00
 32.53731 1.000000 0.0000000E+00
 32.58744 1.000000 0.0000000E+00
 32.63758 1.000000 0.0000000E+00
 32.68771 1.000000 0.0000000E+00
 32.73785 1.000000 0.0000000E+00
 32.78798 1.000000 0.0000000E+00
 32.83812 1.000000 0.0000000E+00
 32.88825 1.000000 0.0000000E+00
 32.93839 1.000000 0.0000000E+00
 32.98852 1.000000 0.0000000E+00
 33.03865 1.000000 0.0000000E+00
 33.08879 1.000000 0.0000000E+00
 33.13892 1.000000 0.0000000E+00
 33.18906 1.000000 0.0000000E+00
 33.23919 1.000000 0.0000000E+00
 33.28933 1.000000 0.0000000E+00
 33.33946 1.000000 0.0000000E+00
 33.38960 1.000000 0.0000000E+00
 33.43973 1.000000 0.0000000E+00
 33.48986 1.000000 0.0000000E+00
 33.54000 1.000000 0.0000000E+00
 33.59013 1.000000 0.0000000E+00
 33.64027 1.000000 0.0000000E+00
 33.69040 1.000000 0.0000000E+00
 33.74054 1.000000 0.0000000E+00
 33.79067 1.000000 0.0000000E+00
 33.84081 1.000000 0.0000000E+00
 33.89094 1.000000 0.0000000E+00
 33.94107 1.000000 0.0000000E+00
 33.99121 1.000000 0.0000000E+00
 34.04134 1.000000 0.0000000E+00
 34.09148 1.000000 0.0000000E+00
 34.14161 1.000000 0.0000000E+00
 34.19175 1.000000 0.0000000E+00
 34.24188 1.000000 0.0000000E+00
 34.29202 1.000000 0.0000000E+00
 34.34215 1.000000 0.0000000E+00
 34.39228 1.000000 0.0000000E+00
 34.44242 1.000000 0.0000000E+00
 34.49255 1.000000 0.0000000E+00
 34.54269 1.000000 0.0000000E+00
 34.59282 1.000000 0.0000000E+00
 34.64296 1.000000 0.0000000E+00
 34.69309 1.000000 0.0000000E+00
 34.74323 1.000000 0.0000000E+00
 34.79336 1.000000 0.0000000E+00
 34.84349 1.000000 0.0000000E+00
 34.89363 1.000000 0.0000000E+00
 34.94376 1.000000 0.0000000E+00
 34.99390 1.000000 0.0000000E+00
 35.04403 1.000000 0.0000000E+00
 35.09417 1.000000 0.0000000E+00
 35.14430 1.000000 0.0000000E+00
 35.19444 1.000000 0.0000000E+00
 35.24457 1.000000 0.0000000E+00
 35.29471 1.000000 0.0000000E+00
 35.34484 1.000000 0.0000000E+00
 35.39497 1.000000 0.0000000E+00
 35.44511 1.000000 0.0000000E+00
 35.49524 1.000000 0.0000000E+00
 35.54538 1.000000 0.0000000E+00
 35.59551 1.000000 0.0000000E+00
 35.64565 1.000000 0.0000000E+00
 35.69578 1.000000 0.0000000E+00
 35.74592 1.000000 0.0000000E+00
 35.79605 1.000000 0.0000000E+00
 35.84619 1.000000 0.0000000E+00
 35.89632 1.000000 0.0000000E+00
 35.94646 1.000000 0.0000000E+00
 35.99659 1.000000 0.0000000E+00
 36.04673 1.000000 0.0000000E+00
 36.09686 1.000000 0.0000000E+00
 36.14700 1.000000 0.0000000E+00
 36.19713 1.000000 0.0000000E+00
 36.24726 1.000000 0.0000000E+00
 36.29740 1.000000 0.0000000E+00
 36.34753 1.000000 0.0000000E+00
 36.39767 1.000000 0.0000000E+00
 36.44780 1.000000 0.0000000E+00
 36.49794 1.000000 0.0000000E+00
 36.54807 1.000000 0.0000000E+00
 36.59821 1.000000 0.0000000E+00
 36.64834 1.000000 0.0000000E+00
 36.69847 1.000000 0.0000000E+00
 36.74861 1.000000 0.0000000E+00
 36.79874 1.000000 0.0000000E+00
 36.84888 1.000000 0.0000000E+00
 36.89901 1.000000 0.0000000E+00
 36.94915 1.000000 0.0000000E+00
 36.99928 1.000000 0.0000000E+00
 37.04942 1.000000 0.0000000E+00
 37.09955 1.000000 0.0000000E+00
 37.14968 1.000000 0.0000000E+00
 37.19982 1.000000 0.0000000E+00
 37.24995 1.000000 0.0000000E+00
 37.30009 1.000000 0.0000000E+00
 37.35022 1.000000 0.0000000E+00
 37.40036 1.000000 0.0000000E+00
 37.45049 1.000000 0.0000000E+00
 37.50063 1.000000 0.0000000E+00
 37.55076 1.000000 0.0000000E+00
 37.60089 1.000000 0.0000000E+00
 37.65103 1.000000 0.0000000E+00
 37.70116 1.000000 0.0000000E+00
 37.75130 1.000000 0.0000000E+00
 37.80143 1.000000 0.0000000E+00
 37.85157 1.000000 0.0000000E+00
 37.90170 1.000000 0.0000000E+00
 37.95184 1.000000 0.0000000E+00
 38.00197 1.000000 0.0000000E+00
 38.05210 1.000000 0.0000000E+00
 38.10224 1.000000 0.0000000E+00
 38.15237 1.000000 0.0000000E+00
 38.20251 1.000000 0.0000000E+00
 38.25264 1.000000 0.0000000E+00
 38.30278 1.000000 0.0000000E+00
 38.35291 1.000000 0.0000000E+00
 38.40305 1.000000 0.0000000E+00
 38.45318 1.000000 0.0000000E+00
 38.50331 1.000000 0.0000000E+00
 38.55345 1.000000 0.0000000E+00
 38.60358 1.000000 0.0000000E+00
 38.65372 1.000000 0.0000000E+00
 38.70385 1.000000 0.0000000E+00
 38.75399 1.000000 0.0000000E+00
 38.80412 1.000000 0.0000000E+00
 38.85426 1.000000 0.0000000E+00
 38.90439 1.000000 0.0000000E+00
 38.95453 1.000000 0.0000000E+00
 39.00466 1.000000 0.0000000E+00
 39.05479 1.000000 0.0000000E+00
 39.10493 1.000000 0.0000000E+00
 39.15506 1.000000 0.0000000E+00
 39.20520 1.000000 0.0000000E+00
 39.25533 1.000000 0.0000000E+00
 39.30547 1.000000 0.0000000E+00
 39.35560 1.000000 0.0000000E+00
 39.40574 1.000000 0.0000000E+00
 39.45587 1.000000 0.0000000E+00
 39.50601 1.000000 0.0000000E+00
 39.55614 1.000000 0.0000000E+00
 39.60628 1.000000 0.0000000E+00
 39.65641 1.000000 0.0000000E+00
 39.70655 1.000000 0.0000000E+00
 39.75668 1.000000 0.0000000E+00
 39.80682 1.000000 0.0000000E+00
 39.85695 1.000000 0.0000000E+00
 39.90708 1.000000 0.0000000E+00
 39.95722 1.000000 0.0000000E+00
 40.00735 1.000000 0.0000000E+00
 40.05748 1.000000 0.0000000E+00
 40.10762 1.000000 0.0000000E+00
 40.15776 1.000000 0.0000000E+00
 40.20789 1.000000 0.0000000E+00
 40.25802 1.000000 0.0000000E+00
 40.30816 1.000000 0.0000000E+00
 40.35830 1.000000 0.0000000E+00
 40.40843 1.000000 0.0000000E+00
 40.45856 1.000000 0.0000000E+00
 40.50870 1.000000 0.0000000E+00
 40.55883 1.000000 0.0000000E+00
 40.60897 1.000000 0.0000000E+00
 40.65910 1.000000 0.0000000E+00
 40.70924 1.000000 0.0000000E+00
 40.75937 1.000000 0.0000000E+00
 40.80951 1.000000 0.0000000E+00
 40.85964 1.000000 0.0000000E+00
 40.90977 1.000000 0.0000000E+00
 40.95991 1.000000 0.0000000E+00
 41.01004 1.000000 0.0000000E+00
 41.06018 1.000000 0.0000000E+00
 41.11031 1.000000 0.0000000E+00
 41.16045 1.000000 0.0000000E+00
 41.21058 1.000000 0.0000000E+00
 41.26071 1.000000 0.0000000E+00
 41.31085 1.000000 0.0000000E+00
 41.36098 1.000000 0.0000000E+00
 41.41112 1.000000 0.0000000E+00
 41.46125 1.000000 0.0000000E+00
 41.51139 1.000000 0.0000000E+00
 41.56152 1.000000 0.0000000E+00
 41.61166 1.000000 0.0000000E+00
 41.66179 1.000000 0.0000000E+00
 41.71193 1.000000 0.0000000E+00
 41.76206 1.000000 0.0000000E+00
 41.81219 1.000000 0.0000000E+00
 41.86233 1.000000 0.0000000E+00
 41.91246 1.000000 0.0000000E+00
 41.96260 1.000000 0.0000000E+00
 42.01273 1.000000 0.0000000E+00
 42.06287 1.000000 0.0000000E+00
 42.11300 1.000000 0.0000000E+00
 42.16314 1.000000 0.0000000E+00
 42.21327 1.000000 0.0000000E+00
 42.26341 1.000000 0.0000000E+00
 42.31354 1.000000 0.0000000E+00
 42.36367 1.000000 0.0000000E+00
 42.41381 1.000000 0.0000000E+00
 42.46394 1.000000 0.0000000E+00
 42.51408 1.000000 0.0000000E+00
 42.56421 1.000000 0.0000000E+00
 42.61435 1.000000 0.0000000E+00
 42.66448 1.000000 0.0000000E+00
 42.71462 1.000000 0.0000000E+00
 42.76475 1.000000 0.0000000E+00
 42.81488 1.000000 0.0000000E+00
 42.86502 1.000000 0.0000000E+00
 42.91516 1.000000 0.0000000E+00
 42.96529 1.000000 0.0000000E+00
 43.01542 1.000000 0.0000000E+00
 43.06556 1.000000 0.0000000E+00
 43.11570 1.000000 0.0000000E+00
 43.16582 1.000000 0.0000000E+00
 43.21596 1.000000 0.0000000E+00
 43.26610 1.000000 0.0000000E+00
 43.31623 1.000000 0.0000000E+00
 43.36636 1.000000 0.0000000E+00
 43.41650 1.000000 0.0000000E+00
 43.46664 1.000000 0.0000000E+00
 43.51677 1.000000 0.0000000E+00
 43.56690 1.000000 0.0000000E+00
 43.61704 1.000000 0.0000000E+00
 43.66717 1.000000 0.0000000E+00
 43.71731 1.000000 0.0000000E+00
 43.76744 1.000000 0.0000000E+00
 43.81757 1.000000 0.0000000E+00
 43.86771 1.000000 0.0000000E+00
 43.91785 1.000000 0.0000000E+00
 43.96798 1.000000 0.0000000E+00
 44.01811 1.000000 0.0000000E+00
 44.06825 1.000000 0.0000000E+00
 44.11839 1.000000 0.0000000E+00
 44.16852 1.000000 0.0000000E+00
 44.21865 1.000000 0.0000000E+00
 44.26879 1.000000 0.0000000E+00
 44.31892 1.000000 0.0000000E+00
 44.36906 1.000000 0.0000000E+00
 44.41919 1.000000 0.0000000E+00
 44.46933 1.000000 0.0000000E+00
 44.51946 1.000000 0.0000000E+00
 44.56960 1.000000 0.0000000E+00
 44.61973 1.000000 0.0000000E+00
 44.66986 1.000000 0.0000000E+00
 44.72000 1.000000 0.0000000E+00
 44.77013 1.000000 0.0000000E+00
 44.82026 1.000000 0.0000000E+00
 44.87040 1.000000 0.0000000E+00
 44.92054 1.000000 0.0000000E+00
 44.97067 1.000000 0.0000000E+00
 45.02080 1.000000 0.0000000E+00
 45.07094 1.000000 0.0000000E+00
 45.12107 1.000000 0.0000000E+00
 45.17121 1.000000 0.0000000E+00
 45.22134 1.000000 0.0000000E+00
 45.27148 1.000000 0.0000000E+00
 45.32161 1.000000 0.0000000E+00
 45.37175 1.000000 0.0000000E+00
 45.42188 1.000000 0.0000000E+00
 45.47202 1.000000 0.0000000E+00
 45.52215 1.000000 0.0000000E+00
 45.57228 1.000000 0.0000000E+00
 45.62242 1.000000 0.0000000E+00
 45.67255 1.000000 0.0000000E+00
 45.72269 1.000000 0.0000000E+00
 45.77282 1.000000 0.0000000E+00
 45.82296 1.000000 0.0000000E+00
 45.87309 1.000000 0.0000000E+00
 45.92323 1.000000 0.0000000E+00
 45.97336 1.000000 0.0000000E+00
 46.02350 1.000000 0.0000000E+00
 46.07363 1.000000 0.0000000E+00
 46.12376 1.000000 0.0000000E+00
 46.17390 1.000000 0.0000000E+00
 46.22403 1.000000 0.0000000E+00
 46.27417 1.000000 0.0000000E+00
 46.32430 1.000000 0.0000000E+00
 46.37444 1.000000 0.0000000E+00
 46.42457 1.000000 0.0000000E+00
 46.47471 1.000000 0.0000000E+00
 46.52484 1.000000 0.0000000E+00
 46.57497 1.000000 0.0000000E+00
 46.62511 1.000000 0.0000000E+00
 46.67525 1.000000 0.0000000E+00
 46.72538 1.000000 0.0000000E+00
 46.77551 1.000000 0.0000000E+00
 46.82565 1.000000 0.0000000E+00
 46.87579 1.000000 0.0000000E+00
 46.92591 1.000000 0.0000000E+00
 46.97605 1.000000 0.0000000E+00
 47.02619 1.000000 0.0000000E+00
 47.07632 1.000000 0.0000000E+00
 47.12645 1.000000 0.0000000E+00
 47.17659 1.000000 0.0000000E+00
 47.22672 1.000000 0.0000000E+00
 47.27686 1.000000 0.0000000E+00
 47.32699 1.000000 0.0000000E+00
 47.37712 1.000000 0.0000000E+00
 47.42726 1.000000 0.0000000E+00
 47.47740 1.000000 0.0000000E+00
 47.52753 1.000000 0.0000000E+00
 47.57766 1.000000 0.0000000E+00
 47.62780 1.000000 0.0000000E+00
 47.67794 1.000000 0.0000000E+00
 47.72807 1.000000 0.0000000E+00
 47.77820 1.000000 0.0000000E+00
 47.82834 1.000000 0.0000000E+00
 47.87848 1.000000 0.0000000E+00
 47.92861 1.000000 0.0000000E+00
 47.97874 1.000000 0.0000000E+00
 48.02888 1.000000 0.0000000E+00
 48.07901 1.000000 0.0000000E+00
 48.12915 1.000000 0.0000000E+00
 48.17928 1.000000 0.0000000E+00
 48.22941 1.000000 0.0000000E+00
 48.27955 1.000000 0.0000000E+00
 48.32969 1.000000 0.0000000E+00
 48.37982 1.000000 0.0000000E+00
 48.42995 1.000000 0.0000000E+00
 48.48009 1.000000 0.0000000E+00
 48.53022 1.000000 0.0000000E+00
 48.58035 1.000000 0.0000000E+00
 48.63049 1.000000 0.0000000E+00
 48.68063 1.000000 0.0000000E+00
 48.73076 1.000000 0.0000000E+00
 48.78089 1.000000 0.0000000E+00
 48.83103 1.000000 0.0000000E+00
 48.88116 1.000000 0.0000000E+00
 48.93130 1.000000 0.0000000E+00
 48.98143 1.000000 0.0000000E+00
 49.03157 1.000000 0.0000000E+00
 49.08170 1.000000 0.0000000E+00
 49.13184 1.000000 0.0000000E+00
 49.18197 1.000000 0.0000000E+00
 49.23211 1.000000 0.0000000E+00
 49.28224 1.000000 0.0000000E+00
 49.33237 1.000000 0.0000000E+00
 49.38251 1.000000 0.0000000E+00
 49.43264 1.000000 0.0000000E+00
 49.48278 1.000000 0.0000000E+00
 49.53291 1.000000 0.0000000E+00
 49.58305 1.000000 0.0000000E+00
 49.63318 1.000000 0.0000000E+00
 49.68332 1.000000 0.0000000E+00
 49.73345 1.000000 0.0000000E+00
 49.78358 1.000000 0.0000000E+00
 49.83372 1.000000 0.0000000E+00
 49.88385 1.000000 0.0000000E+00
 49.93399 1.000000 0.0000000E+00
 49.98412 1.000000 0.0000000E+00
 50.03426 1.000000 0.0000000E+00
 50.08439 1.000000 0.0000000E+00
 50.13453 1.000000 0.0000000E+00
 50.18466 1.000000 0.0000000E+00
 50.23480 1.000000 0.0000000E+00
 50.28493 1.000000 0.0000000E+00
 50.33506 1.000000 0.0000000E+00
 50.38520 1.000000 0.0000000E+00
 50.43534 1.000000 0.0000000E+00
 50.48547 1.000000 0.0000000E+00
 50.53560 1.000000 0.0000000E+00
 50.58574 1.000000 0.0000000E+00
 50.63587 1.000000 0.0000000E+00
 50.68600 1.000000 0.0000000E+00
 50.73614 1.000000 0.0000000E+00
 50.78628 1.000000 0.0000000E+00
 50.83641 1.000000 0.0000000E+00
 50.88654 1.000000 0.0000000E+00
 50.93668 1.000000 0.0000000E+00
 50.98681 1.000000 0.0000000E+00
 51.03695 1.000000 0.0000000E+00
 51.08708 1.000000 0.0000000E+00
 51.13721 1.000000 0.0000000E+00
 51.18735 1.000000 0.0000000E+00
 51.23749 1.000000 0.0000000E+00
 51.28762 1.000000 0.0000000E+00
 51.33775 1.000000 0.0000000E+00
 51.38789 1.000000 0.0000000E+00
 51.43803 1.000000 0.0000000E+00
 51.48816 1.000000 0.0000000E+00
 51.53829 1.000000 0.0000000E+00
 51.58843 1.000000 0.0000000E+00
 51.63857 1.000000 0.0000000E+00
 51.68870 1.000000 0.0000000E+00
 51.73883 1.000000 0.0000000E+00
 51.78897 1.000000 0.0000000E+00
 51.83910 1.000000 0.0000000E+00
 51.88924 1.000000 0.0000000E+00
 51.93937 1.000000 0.0000000E+00
 51.98950 1.000000 0.0000000E+00
 52.03964 1.000000 0.0000000E+00
 52.08978 1.000000 0.0000000E+00
 52.13990 1.000000 0.0000000E+00
 52.19004 1.000000 0.0000000E+00
 52.24018 1.000000 0.0000000E+00
 52.29031 1.000000 0.0000000E+00
 52.34044 1.000000 0.0000000E+00
 52.39058 1.000000 0.0000000E+00
 52.44072 1.000000 0.0000000E+00
 52.49085 1.000000 0.0000000E+00
 52.54098 1.000000 0.0000000E+00
 52.59112 1.000000 0.0000000E+00
 52.64125 1.000000 0.0000000E+00
 52.69139 1.000000 0.0000000E+00
 52.74152 1.000000 0.0000000E+00
 52.79166 1.000000 0.0000000E+00
 52.84179 1.000000 0.0000000E+00
 52.89193 1.000000 0.0000000E+00
 52.94206 1.000000 0.0000000E+00
 52.99219 1.000000 0.0000000E+00
 53.04233 1.000000 0.0000000E+00
 53.09246 1.000000 0.0000000E+00
 53.14260 1.000000 0.0000000E+00
 53.19273 1.000000 0.0000000E+00
 53.24287 1.000000 0.0000000E+00
 53.29300 1.000000 0.0000000E+00
 53.34314 1.000000 0.0000000E+00
 53.39327 1.000000 0.0000000E+00
 53.44341 1.000000 0.0000000E+00
 53.49354 1.000000 0.0000000E+00
 53.54367 1.000000 0.0000000E+00
 53.59381 1.000000 0.0000000E+00
 53.64394 1.000000 0.0000000E+00
 53.69408 1.000000 0.0000000E+00
 53.74421 1.000000 0.0000000E+00
 53.79435 1.000000 0.0000000E+00
 53.84448 1.000000 0.0000000E+00
 53.89462 1.000000 0.0000000E+00
 53.94475 1.000000 0.0000000E+00
 53.99489 1.000000 0.0000000E+00
 54.04502 1.000000 0.0000000E+00
 54.09515 1.000000 0.0000000E+00
 54.14529 1.000000 0.0000000E+00
 54.19543 1.000000 0.0000000E+00
 54.24556 1.000000 0.0000000E+00
 54.29569 1.000000 0.0000000E+00
 54.34583 1.000000 0.0000000E+00
 54.39596 1.000000 0.0000000E+00
 54.44609 1.000000 0.0000000E+00
 54.49623 1.000000 0.0000000E+00
 54.54636 1.000000 0.0000000E+00
 54.59650 1.000000 0.0000000E+00
 54.64663 1.000000 0.0000000E+00
 54.69677 1.000000 0.0000000E+00
 54.74690 1.000000 0.0000000E+00
 54.79704 1.000000 0.0000000E+00
 54.84717 1.000000 0.0000000E+00
 54.89730 1.000000 0.0000000E+00
 54.94744 1.000000 0.0000000E+00
 54.99758 1.000000 0.0000000E+00
 55.04771 1.000000 0.0000000E+00
 55.09784 1.000000 0.0000000E+00
 55.14798 1.000000 0.0000000E+00
 55.19812 1.000000 0.0000000E+00
 55.24825 1.000000 0.0000000E+00
 55.29838 1.000000 0.0000000E+00
 55.34852 1.000000 0.0000000E+00
 55.39865 1.000000 0.0000000E+00
 55.44879 1.000000 0.0000000E+00
 55.49892 1.000000 0.0000000E+00
 55.54905 1.000000 0.0000000E+00
 55.59919 1.000000 0.0000000E+00
 55.64933 1.000000 0.0000000E+00
 55.69946 1.000000 0.0000000E+00
 55.74959 1.000000 0.0000000E+00
 55.79973 1.000000 0.0000000E+00
 55.84986 1.000000 0.0000000E+00
 55.89999 1.000000 0.0000000E+00
 55.95013 1.000000 0.0000000E+00
 56.00027 1.000000 0.0000000E+00
 56.05040 1.000000 0.0000000E+00
 56.10053 1.000000 0.0000000E+00
 56.15067 1.000000 0.0000000E+00
 56.20081 1.000000 0.0000000E+00
 56.25094 1.000000 0.0000000E+00
 56.30107 1.000000 0.0000000E+00
 56.35121 1.000000 0.0000000E+00
 56.40134 1.000000 0.0000000E+00
 56.45148 1.000000 0.0000000E+00
 56.50161 1.000000 0.0000000E+00
 56.55175 1.000000 0.0000000E+00
 56.60188 1.000000 0.0000000E+00
 56.65202 1.000000 0.0000000E+00
 56.70215 1.000000 0.0000000E+00
 56.75228 1.000000 0.0000000E+00
 56.80242 1.000000 0.0000000E+00
 56.85255 1.000000 0.0000000E+00
 56.90269 1.000000 0.0000000E+00
 56.95282 1.000000 0.0000000E+00
 57.00296 1.000000 0.0000000E+00
 57.05309 1.000000 0.0000000E+00
 57.10323 1.000000 0.0000000E+00
 57.15336 1.000000 0.0000000E+00
 57.20350 1.000000 0.0000000E+00
 57.25363 1.000000 0.0000000E+00
 57.30376 1.000000 0.0000000E+00
 57.35390 1.000000 0.0000000E+00
 57.40403 1.000000 0.0000000E+00
 57.45417 1.000000 0.0000000E+00
 57.50430 1.000000 0.0000000E+00
 57.55444 1.000000 0.0000000E+00
 57.60457 1.000000 0.0000000E+00
 57.65471 1.000000 0.0000000E+00
 57.70484 1.000000 0.0000000E+00
 57.75498 1.000000 0.0000000E+00
 57.80511 1.000000 0.0000000E+00
 57.85524 1.000000 0.0000000E+00
 57.90538 1.000000 0.0000000E+00
 57.95551 1.000000 0.0000000E+00
 58.00565 1.000000 0.0000000E+00
 58.05578 1.000000 0.0000000E+00
 58.10592 1.000000 0.0000000E+00
 58.15605 1.000000 0.0000000E+00
 58.20618 1.000000 0.0000000E+00
 58.25632 1.000000 0.0000000E+00
 58.30645 1.000000 0.0000000E+00
 58.35659 1.000000 0.0000000E+00
 58.40672 1.000000 0.0000000E+00
 58.45686 1.000000 0.0000000E+00
 58.50699 1.000000 0.0000000E+00
 58.55713 1.000000 0.0000000E+00
 58.60726 1.000000 0.0000000E+00
 58.65739 1.000000 0.0000000E+00
 58.70753 1.000000 0.0000000E+00
 58.75767 1.000000 0.0000000E+00
 58.80780 1.000000 0.0000000E+00
 58.85793 1.000000 0.0000000E+00
 58.90807 1.000000 0.0000000E+00
 58.95821 1.000000 0.0000000E+00
 59.00834 1.000000 0.0000000E+00
 59.05847 1.000000 0.0000000E+00
 59.10861 1.000000 0.0000000E+00
 59.15874 1.000000 0.0000000E+00
 59.20888 1.000000 0.0000000E+00
 59.25901 1.000000 0.0000000E+00
 59.30914 1.000000 0.0000000E+00
 59.35928 1.000000 0.0000000E+00
 59.40942 1.000000 0.0000000E+00
 59.45955 1.000000 0.0000000E+00
 59.50968 1.000000 0.0000000E+00
 59.55982 1.000000 0.0000000E+00
 59.60995 1.000000 0.0000000E+00
 59.66008 1.000000 0.0000000E+00
 59.71022 1.000000 0.0000000E+00
 59.76036 1.000000 0.0000000E+00
 59.81049 1.000000 0.0000000E+00
 59.86062 1.000000 0.0000000E+00
 59.91076 1.000000 0.0000000E+00
 59.96090 1.000000 0.0000000E+00
 60.01103 1.000000 0.0000000E+00
 60.06116 1.000000 0.0000000E+00
 60.11130 1.000000 0.0000000E+00
 60.16143 1.000000 0.0000000E+00
 60.21157 1.000000 0.0000000E+00
 60.26170 1.000000 0.0000000E+00
 60.31183 1.000000 0.0000000E+00
 60.36197 1.000000 0.0000000E+00
 60.41211 1.000000 0.0000000E+00
 60.46224 1.000000 0.0000000E+00
 60.51237 1.000000 0.0000000E+00
 60.56251 1.000000 0.0000000E+00
 60.61264 1.000000 0.0000000E+00
 60.66278 1.000000 0.0000000E+00
 60.71291 1.000000 0.0000000E+00
 60.76305 1.000000 0.0000000E+00
 60.81318 1.000000 0.0000000E+00
 60.86332 1.000000 0.0000000E+00
 60.91345 1.000000 0.0000000E+00
 60.96358 1.000000 0.0000000E+00
 61.01372 1.000000 0.0000000E+00
 61.06385 1.000000 0.0000000E+00
 61.11399 1.000000 0.0000000E+00
 61.16412 1.000000 0.0000000E+00
 61.21426 1.000000 0.0000000E+00
 61.26439 1.000000 0.0000000E+00
 61.31452 1.000000 0.0000000E+00
 61.36466 1.000000 0.0000000E+00
 61.41479 1.000000 0.0000000E+00
 61.46493 1.000000 0.0000000E+00
 61.51507 1.000000 0.0000000E+00
 61.56520 1.000000 0.0000000E+00
 61.61533 1.000000 0.0000000E+00
 61.66547 1.000000 0.0000000E+00
 61.71560 1.000000 0.0000000E+00
 61.76574 1.000000 0.0000000E+00
 61.81587 1.000000 0.0000000E+00
 61.86600 1.000000 0.0000000E+00
 61.91614 1.000000 0.0000000E+00
 61.96627 1.000000 0.0000000E+00
 62.01641 1.000000 0.0000000E+00
 62.06654 1.000000 0.0000000E+00
 62.11668 1.000000 0.0000000E+00
 62.16681 1.000000 0.0000000E+00
 62.21695 1.000000 0.0000000E+00
 62.26708 1.000000 0.0000000E+00
 62.31722 1.000000 0.0000000E+00
 62.36735 1.000000 0.0000000E+00
 62.41748 1.000000 0.0000000E+00
 62.46762 1.000000 0.0000000E+00
 62.51776 1.000000 0.0000000E+00
 62.56789 1.000000 0.0000000E+00
 62.61802 1.000000 0.0000000E+00
 62.66816 1.000000 0.0000000E+00
 62.71829 1.000000 0.0000000E+00
 62.76843 1.000000 0.0000000E+00
 62.81856 1.000000 0.0000000E+00
 62.86869 1.000000 0.0000000E+00
 62.91883 1.000000 0.0000000E+00
 62.96897 1.000000 0.0000000E+00
 63.01910 1.000000 0.0000000E+00
 63.06923 1.000000 0.0000000E+00
 63.11937 1.000000 0.0000000E+00
 63.16951 1.000000 0.0000000E+00
 63.21964 1.000000 0.0000000E+00
 63.26977 1.000000 0.0000000E+00
 63.31991 1.000000 0.0000000E+00
 63.37004 1.000000 0.0000000E+00
 63.42017 1.000000 0.0000000E+00
 63.47031 1.000000 0.0000000E+00
 63.52045 1.000000 0.0000000E+00
 63.57058 1.000000 0.0000000E+00
 63.62071 1.000000 0.0000000E+00
 63.67085 1.000000 0.0000000E+00
 63.72098 1.000000 0.0000000E+00
 63.77112 1.000000 0.0000000E+00
 63.82125 1.000000 0.0000000E+00
 63.87139 1.000000 0.0000000E+00
 63.92152 1.000000 0.0000000E+00
 63.97166 1.000000 0.0000000E+00
 64.02179 1.000000 0.0000000E+00
 64.07192 1.000000 0.0000000E+00
 64.12206 1.000000 0.0000000E+00
 64.17220 1.000000 0.0000000E+00
 64.22233 1.000000 0.0000000E+00
 64.27246 1.000000 0.0000000E+00
 64.32259 1.000000 0.0000000E+00
 64.37273 1.000000 0.0000000E+00
 64.42287 1.000000 0.0000000E+00
 64.47300 1.000000 0.0000000E+00
 64.52313 1.000000 0.0000000E+00
 64.57327 1.000000 0.0000000E+00
 64.62341 1.000000 0.0000000E+00
 64.67354 1.000000 0.0000000E+00
 64.72367 1.000000 0.0000000E+00
 64.77381 1.000000 0.0000000E+00
 64.82394 1.000000 0.0000000E+00
 64.87408 1.000000 0.0000000E+00
 64.92421 1.000000 0.0000000E+00
 64.97435 1.000000 0.0000000E+00
 65.02448 1.000000 0.0000000E+00
 65.07462 1.000000 0.0000000E+00
 65.12475 1.000000 0.0000000E+00
 65.17488 1.000000 0.0000000E+00
 65.22502 1.000000 0.0000000E+00
 65.27515 1.000000 0.0000000E+00
 65.32529 1.000000 0.0000000E+00
 65.37542 1.000000 0.0000000E+00
 65.42556 1.000000 0.0000000E+00
 65.47569 1.000000 0.0000000E+00
 65.52583 1.000000 0.0000000E+00
 65.57596 1.000000 0.0000000E+00
 65.62610 1.000000 0.0000000E+00
 65.67623 1.000000 0.0000000E+00
 65.72636 1.000000 0.0000000E+00
 65.77650 1.000000 0.0000000E+00
 65.82664 1.000000 0.0000000E+00
 65.87677 1.000000 0.0000000E+00
 65.92690 1.000000 0.0000000E+00
 65.97704 1.000000 0.0000000E+00
 66.02717 1.000000 0.0000000E+00
 66.07731 1.000000 0.0000000E+00
 66.12744 1.000000 0.0000000E+00
 66.17757 1.000000 0.0000000E+00
 66.22771 1.000000 0.0000000E+00
 66.27785 1.000000 0.0000000E+00
 66.32798 1.000000 0.0000000E+00
 66.37811 1.000000 0.0000000E+00
 66.42825 1.000000 0.0000000E+00
 66.47839 1.000000 0.0000000E+00
 66.52852 1.000000 0.0000000E+00
 66.57865 1.000000 0.0000000E+00
 66.62878 1.000000 0.0000000E+00
 66.67892 1.000000 0.0000000E+00
 66.72906 1.000000 0.0000000E+00
 66.77919 1.000000 0.0000000E+00
 66.82932 1.000000 0.0000000E+00
 66.87946 1.000000 0.0000000E+00
 66.92960 1.000000 0.0000000E+00
 66.97973 1.000000 0.0000000E+00
 67.02986 1.000000 0.0000000E+00
 67.07999 1.000000 0.0000000E+00
 67.13013 1.000000 0.0000000E+00
 67.18027 1.000000 0.0000000E+00
 67.23040 1.000000 0.0000000E+00
 67.28053 1.000000 0.0000000E+00
 67.33067 1.000000 0.0000000E+00
 67.38080 1.000000 0.0000000E+00
 67.43094 1.000000 0.0000000E+00
 67.48107 1.000000 0.0000000E+00
 67.53121 1.000000 0.0000000E+00
 67.58134 1.000000 0.0000000E+00
 67.63148 1.000000 0.0000000E+00
 67.68161 1.000000 0.0000000E+00
 67.73174 1.000000 0.0000000E+00
 67.78188 1.000000 0.0000000E+00
 67.83202 1.000000 0.0000000E+00
 67.88215 1.000000 0.0000000E+00
 67.93228 1.000000 0.0000000E+00
 67.98242 1.000000 0.0000000E+00
 68.03255 1.000000 0.0000000E+00
 68.08269 1.000000 0.0000000E+00
 68.13282 1.000000 0.0000000E+00
 68.18296 1.000000 0.0000000E+00
 68.23309 1.000000 0.0000000E+00
 68.28323 1.000000 0.0000000E+00
 68.33336 1.000000 0.0000000E+00
 68.38350 1.000000 0.0000000E+00
 68.43362 1.000000 0.0000000E+00
 68.48376 1.000000 0.0000000E+00
 68.53390 1.000000 0.0000000E+00
 68.58403 1.000000 0.0000000E+00
 68.63416 1.000000 0.0000000E+00
 68.68430 1.000000 0.0000000E+00
 68.73444 1.000000 0.0000000E+00
 68.78457 1.000000 0.0000000E+00
 68.83470 1.000000 0.0000000E+00
 68.88484 1.000000 0.0000000E+00
 68.93497 1.000000 0.0000000E+00
 68.98511 1.000000 0.0000000E+00
 69.03525 1.000000 0.0000000E+00
 69.08537 1.000000 0.0000000E+00
 69.13551 1.000000 0.0000000E+00
 69.18565 1.000000 0.0000000E+00
 69.23579 1.000000 0.0000000E+00
 69.28591 1.000000 0.0000000E+00
 69.33605 1.000000 0.0000000E+00
 69.38618 1.000000 0.0000000E+00
 69.43632 1.000000 0.0000000E+00
 69.48645 1.000000 0.0000000E+00
 69.53659 1.000000 0.0000000E+00
 69.58672 1.000000 0.0000000E+00
 69.63686 1.000000 0.0000000E+00
 69.68699 1.000000 0.0000000E+00
 69.73713 1.000000 0.0000000E+00
 69.78726 1.000000 0.0000000E+00
 69.83739 1.000000 0.0000000E+00
 69.88753 1.000000 0.0000000E+00
 69.93766 1.000000 0.0000000E+00
 69.98780 1.000000 0.0000000E+00
 70.03793 1.000000 0.0000000E+00
 70.08807 1.000000 0.0000000E+00
 70.13820 1.000000 0.0000000E+00
 70.18834 1.000000 0.0000000E+00
 70.23847 1.000000 0.0000000E+00
 70.28860 1.000000 0.0000000E+00
 70.33874 1.000000 0.0000000E+00
 70.38888 1.000000 0.0000000E+00
 70.43901 1.000000 0.0000000E+00
 70.48914 1.000000 0.0000000E+00
 70.53928 1.000000 0.0000000E+00
 70.58942 1.000000 0.0000000E+00
 70.63955 1.000000 0.0000000E+00
 70.68968 1.000000 0.0000000E+00
 70.73981 1.000000 0.0000000E+00
 70.78995 1.000000 0.0000000E+00
 70.84009 1.000000 0.0000000E+00
 70.89022 1.000000 0.0000000E+00
 70.94035 1.000000 0.0000000E+00
 70.99049 1.000000 0.0000000E+00
 71.04063 1.000000 0.0000000E+00
 71.09076 1.000000 0.0000000E+00
 71.14089 1.000000 0.0000000E+00
 71.19102 1.000000 0.0000000E+00
 71.24117 1.000000 0.0000000E+00
 71.29130 1.000000 0.0000000E+00
 71.34143 1.000000 0.0000000E+00
 71.39156 1.000000 0.0000000E+00
 71.44170 1.000000 0.0000000E+00
 71.49184 1.000000 0.0000000E+00
 71.54197 1.000000 0.0000000E+00
 71.59210 1.000000 0.0000000E+00
 71.64223 1.000000 0.0000000E+00
 71.69238 1.000000 0.0000000E+00
 71.74251 1.000000 0.0000000E+00
 71.79264 1.000000 0.0000000E+00
 71.84277 1.000000 0.0000000E+00
 71.89291 1.000000 0.0000000E+00
 71.94305 1.000000 0.0000000E+00
 71.99318 1.000000 0.0000000E+00
 72.04331 1.000000 0.0000000E+00
 72.09345 1.000000 0.0000000E+00
 72.14359 1.000000 0.0000000E+00
 72.19372 1.000000 0.0000000E+00
 72.24385 1.000000 0.0000000E+00
 72.29399 1.000000 0.0000000E+00
 72.34412 1.000000 0.0000000E+00
 72.39426 1.000000 0.0000000E+00
 72.44439 1.000000 0.0000000E+00
 72.49452 1.000000 0.0000000E+00
 72.54466 1.000000 0.0000000E+00
 72.59480 1.000000 0.0000000E+00
 72.64493 1.000000 0.0000000E+00
 72.69506 1.000000 0.0000000E+00
 72.74520 1.000000 0.0000000E+00
 72.79533 1.000000 0.0000000E+00
 72.84547 1.000000 0.0000000E+00
 72.89560 1.000000 0.0000000E+00
 72.94574 1.000000 0.0000000E+00
 72.99587 1.000000 0.0000000E+00
 73.04601 1.000000 0.0000000E+00
 73.09614 1.000000 0.0000000E+00
 73.14628 1.000000 0.0000000E+00
 73.19641 1.000000 0.0000000E+00
 73.24654 1.000000 0.0000000E+00
 73.29668 1.000000 0.0000000E+00
 73.34681 1.000000 0.0000000E+00
 73.39695 1.000000 0.0000000E+00
 73.44708 1.000000 0.0000000E+00
 73.49722 1.000000 0.0000000E+00
 73.54735 1.000000 0.0000000E+00
 73.59749 1.000000 0.0000000E+00
 73.64762 1.000000 0.0000000E+00
 73.69775 1.000000 0.0000000E+00
 73.74789 1.000000 0.0000000E+00
 73.79803 1.000000 0.0000000E+00
 73.84815 1.000000 0.0000000E+00
 73.89829 1.000000 0.0000000E+00
 73.94843 1.000000 0.0000000E+00
 73.99857 1.000000 0.0000000E+00
 74.04870 1.000000 0.0000000E+00
 74.09883 1.000000 0.0000000E+00
 74.14896 1.000000 0.0000000E+00
 74.19910 1.000000 0.0000000E+00
 74.24924 1.000000 0.0000000E+00
 74.29937 1.000000 0.0000000E+00
 74.34950 1.000000 0.0000000E+00
 74.39964 1.000000 0.0000000E+00
 74.44978 1.000000 0.0000000E+00
 74.49991 1.000000 0.0000000E+00
 74.55004 1.000000 0.0000000E+00
 74.60017 1.000000 0.0000000E+00
 74.65031 1.000000 0.0000000E+00
 74.70044 1.000000 0.0000000E+00
 74.75058 1.000000 0.0000000E+00
 74.80071 1.000000 0.0000000E+00
 74.85085 1.000000 0.0000000E+00
 74.90098 1.000000 0.0000000E+00
 74.95112 1.000000 0.0000000E+00
 75.00125 1.000000 0.0000000E+00
 75.05138 1.000000 0.0000000E+00
 75.10152 1.000000 0.0000000E+00
 75.15166 1.000000 0.0000000E+00
 75.20179 1.000000 0.0000000E+00
 75.25192 1.000000 0.0000000E+00
 75.30206 1.000000 0.0000000E+00
 75.35220 1.000000 0.0000000E+00
 75.40233 1.000000 0.0000000E+00
 75.45246 1.000000 0.0000000E+00
 75.50260 1.000000 0.0000000E+00
 75.55273 1.000000 0.0000000E+00
 75.60287 1.000000 0.0000000E+00
 75.65300 1.000000 0.0000000E+00
 75.70314 1.000000 0.0000000E+00
 75.75327 1.000000 0.0000000E+00
 75.80341 1.000000 0.0000000E+00
 75.85354 1.000000 0.0000000E+00
 75.90367 1.000000 0.0000000E+00
 75.95380 1.000000 0.0000000E+00
 76.00394 1.000000 0.0000000E+00
 76.05408 1.000000 0.0000000E+00
 76.10421 1.000000 0.0000000E+00
 76.15434 1.000000 0.0000000E+00
 76.20448 1.000000 0.0000000E+00
 76.25462 1.000000 0.0000000E+00
 76.30475 1.000000 0.0000000E+00
 76.35488 1.000000 0.0000000E+00
 76.40501 1.000000 0.0000000E+00
 76.45515 1.000000 0.0000000E+00
 76.50529 1.000000 0.0000000E+00
 76.55543 1.000000 0.0000000E+00
 76.60555 1.000000 0.0000000E+00
 76.65569 1.000000 0.0000000E+00
 76.70583 1.000000 0.0000000E+00
 76.75596 1.000000 0.0000000E+00
 76.80609 1.000000 0.0000000E+00
 76.85623 1.000000 0.0000000E+00
 76.90636 1.000000 0.0000000E+00
 76.95650 1.000000 0.0000000E+00
 77.00663 1.000000 0.0000000E+00
 77.05677 1.000000 0.0000000E+00
 77.10690 1.000000 0.0000000E+00
 77.15704 1.000000 0.0000000E+00
 77.20717 1.000000 0.0000000E+00
 77.25730 1.000000 0.0000000E+00
 77.30744 1.000000 0.0000000E+00
 77.35757 1.000000 0.0000000E+00
 77.40771 1.000000 0.0000000E+00
 77.45784 1.000000 0.0000000E+00
 77.50798 1.000000 0.0000000E+00
 77.55811 1.000000 0.0000000E+00
 77.60825 1.000000 0.0000000E+00
 77.65838 1.000000 0.0000000E+00
 77.70852 1.000000 0.0000000E+00
 77.75865 1.000000 0.0000000E+00
 77.80878 1.000000 0.0000000E+00
 77.85892 1.000000 0.0000000E+00
 77.90906 1.000000 0.0000000E+00
 77.95919 1.000000 0.0000000E+00
 78.00932 1.000000 0.0000000E+00
 78.05946 1.000000 0.0000000E+00
 78.10959 1.000000 0.0000000E+00
 78.15973 1.000000 0.0000000E+00
 78.20986 1.000000 0.0000000E+00
 78.25999 1.000000 0.0000000E+00
 78.31013 1.000000 0.0000000E+00
 78.36027 1.000000 0.0000000E+00
 78.41040 1.000000 0.0000000E+00
 78.46053 1.000000 0.0000000E+00
 78.51067 1.000000 0.0000000E+00
 78.56081 1.000000 0.0000000E+00
 78.61094 1.000000 0.0000000E+00
 78.66107 1.000000 0.0000000E+00
 78.71120 1.000000 0.0000000E+00
 78.76134 1.000000 0.0000000E+00
 78.81148 1.000000 0.0000000E+00
 78.86161 1.000000 0.0000000E+00
 78.91174 1.000000 0.0000000E+00
 78.96188 1.000000 0.0000000E+00
 79.01202 1.000000 0.0000000E+00
 79.06215 1.000000 0.0000000E+00
 79.11228 1.000000 0.0000000E+00
 79.16241 1.000000 0.0000000E+00
 79.21255 1.000000 0.0000000E+00
 79.26269 1.000000 0.0000000E+00
 79.31282 1.000000 0.0000000E+00
 79.36295 1.000000 0.0000000E+00
 79.41309 1.000000 0.0000000E+00
 79.46323 1.000000 0.0000000E+00
 79.51336 1.000000 0.0000000E+00
 79.56349 1.000000 0.0000000E+00
 79.61363 1.000000 0.0000000E+00
 79.66376 1.000000 0.0000000E+00
 79.71390 1.000000 0.0000000E+00
 79.76403 1.000000 0.0000000E+00
 79.81416 1.000000 0.0000000E+00
 79.86430 1.000000 0.0000000E+00
 79.91444 1.000000 0.0000000E+00
 79.96457 1.000000 0.0000000E+00
 80.01470 1.000000 0.0000000E+00
 80.06484 1.000000 0.0000000E+00
 80.11497 1.000000 0.0000000E+00
 80.16511 1.000000 0.0000000E+00
 80.21524 1.000000 0.0000000E+00
 80.26538 1.000000 0.0000000E+00
 80.31551 1.000000 0.0000000E+00
 80.36565 1.000000 0.0000000E+00
 80.41579 1.000000 0.0000000E+00
 80.46591 1.000000 0.0000000E+00
 80.51604 1.000000 0.0000000E+00
 80.56618 1.000000 0.0000000E+00
 80.61632 1.000000 0.0000000E+00
 80.66645 1.000000 0.0000000E+00
 80.71659 1.000000 0.0000000E+00
 80.76672 1.000000 0.0000000E+00
 80.81686 1.000000 0.0000000E+00
 80.86699 1.000000 0.0000000E+00
 80.91712 1.000000 0.0000000E+00
 80.96726 1.000000 0.0000000E+00
 81.01740 1.000000 0.0000000E+00
 81.06753 1.000000 0.0000000E+00
 81.11767 1.000000 0.0000000E+00
 81.16780 1.000000 0.0000000E+00
 81.21793 1.000000 0.0000000E+00
 81.26807 1.000000 0.0000000E+00
 81.31820 1.000000 0.0000000E+00
 81.36833 1.000000 0.0000000E+00
 81.41847 1.000000 0.0000000E+00
 81.46861 1.000000 0.0000000E+00
 81.51874 1.000000 0.0000000E+00
 81.56888 1.000000 0.0000000E+00
 81.61901 1.000000 0.0000000E+00
 81.66915 1.000000 0.0000000E+00
 81.71928 1.000000 0.0000000E+00
 81.76941 1.000000 0.0000000E+00
 81.81955 1.000000 0.0000000E+00
 81.86968 1.000000 0.0000000E+00
 81.91982 1.000000 0.0000000E+00
 81.96996 1.000000 0.0000000E+00
 82.02009 1.000000 0.0000000E+00
 82.07022 1.000000 0.0000000E+00
 82.12035 1.000000 0.0000000E+00
 82.17049 1.000000 0.0000000E+00
 82.22062 1.000000 0.0000000E+00
 82.27076 1.000000 0.0000000E+00
 82.32089 1.000000 0.0000000E+00
 82.37103 1.000000 0.0000000E+00
 82.42117 1.000000 0.0000000E+00
 82.47130 1.000000 0.0000000E+00
 82.52142 1.000000 0.0000000E+00
 82.57156 1.000000 0.0000000E+00
 82.62170 1.000000 0.0000000E+00
 82.67184 1.000000 0.0000000E+00
 82.72197 1.000000 0.0000000E+00
 82.77210 1.000000 0.0000000E+00
 82.82224 1.000000 0.0000000E+00
 82.87238 1.000000 0.0000000E+00
 82.92251 1.000000 0.0000000E+00
 82.97264 1.000000 0.0000000E+00
 83.02277 1.000000 0.0000000E+00
 83.07291 1.000000 0.0000000E+00
 83.12305 1.000000 0.0000000E+00
 83.17318 1.000000 0.0000000E+00
 83.22331 1.000000 0.0000000E+00
 83.27345 1.000000 0.0000000E+00
 83.32359 1.000000 0.0000000E+00
 83.37371 1.000000 0.0000000E+00
 83.42385 1.000000 0.0000000E+00
 83.47398 1.000000 0.0000000E+00
 83.52412 1.000000 0.0000000E+00
 83.57426 1.000000 0.0000000E+00
 83.62439 1.000000 0.0000000E+00
 83.67453 1.000000 0.0000000E+00
 83.72466 1.000000 0.0000000E+00
 83.77479 1.000000 0.0000000E+00
 83.82493 1.000000 0.0000000E+00
 83.87506 1.000000 0.0000000E+00
 83.92519 1.000000 0.0000000E+00
 83.97533 1.000000 0.0000000E+00
 84.02547 1.000000 0.0000000E+00
 84.07560 1.000000 0.0000000E+00
 84.12574 1.000000 0.0000000E+00
 84.17587 1.000000 0.0000000E+00
 84.22600 1.000000 0.0000000E+00
 84.27614 1.000000 0.0000000E+00
 84.32627 1.000000 0.0000000E+00
 84.37641 1.000000 0.0000000E+00
 84.42654 1.000000 0.0000000E+00
 84.47668 1.000000 0.0000000E+00
 84.52682 1.000000 0.0000000E+00
 84.57695 1.000000 0.0000000E+00
 84.62708 1.000000 0.0000000E+00
 84.67722 1.000000 0.0000000E+00
 84.72735 1.000000 0.0000000E+00
 84.77748 1.000000 0.0000000E+00
 84.82762 1.000000 0.0000000E+00
 84.87775 1.000000 0.0000000E+00
 84.92789 1.000000 0.0000000E+00
 84.97803 1.000000 0.0000000E+00
 85.02815 1.000000 0.0000000E+00
 85.07829 1.000000 0.0000000E+00
 85.12843 1.000000 0.0000000E+00
 85.17856 1.000000 0.0000000E+00
 85.22870 1.000000 0.0000000E+00
 85.27883 1.000000 0.0000000E+00
 85.32896 1.000000 0.0000000E+00
 85.37910 1.000000 0.0000000E+00
 85.42924 1.000000 0.0000000E+00
 85.47936 1.000000 0.0000000E+00
 85.52950 1.000000 0.0000000E+00
 85.57964 1.000000 0.0000000E+00
 85.62977 1.000000 0.0000000E+00
 85.67991 1.000000 0.0000000E+00
 85.73004 1.000000 0.0000000E+00
 85.78017 1.000000 0.0000000E+00
 85.83031 1.000000 0.0000000E+00
 85.88044 1.000000 0.0000000E+00
 85.93057 1.000000 0.0000000E+00
 85.98071 1.000000 0.0000000E+00
 86.03085 1.000000 0.0000000E+00
 86.08099 1.000000 0.0000000E+00
 86.13112 1.000000 0.0000000E+00
 86.18125 1.000000 0.0000000E+00
 86.23139 1.000000 0.0000000E+00
 86.28152 1.000000 0.0000000E+00
 86.33165 1.000000 0.0000000E+00
 86.38179 1.000000 0.0000000E+00
 86.43192 1.000000 0.0000000E+00
 86.48206 1.000000 0.0000000E+00
 86.53220 1.000000 0.0000000E+00
 86.58233 1.000000 0.0000000E+00
 86.63246 1.000000 0.0000000E+00
 86.68260 1.000000 0.0000000E+00
 86.73273 1.000000 0.0000000E+00
 86.78286 1.000000 0.0000000E+00
 86.83300 1.000000 0.0000000E+00
 86.88313 1.000000 0.0000000E+00
 86.93327 1.000000 0.0000000E+00
 86.98341 1.000000 0.0000000E+00
 87.03354 1.000000 0.0000000E+00
 87.08368 1.000000 0.0000000E+00
 87.13380 1.000000 0.0000000E+00
 87.18394 1.000000 0.0000000E+00
 87.23408 1.000000 0.0000000E+00
 87.28421 1.000000 0.0000000E+00
 87.33434 1.000000 0.0000000E+00
 87.38448 1.000000 0.0000000E+00
 87.43462 1.000000 0.0000000E+00
 87.48476 1.000000 0.0000000E+00
 87.53488 1.000000 0.0000000E+00
 87.58501 1.000000 0.0000000E+00
 87.63515 1.000000 0.0000000E+00
 87.68529 1.000000 0.0000000E+00
 87.73542 1.000000 0.0000000E+00
 87.78556 1.000000 0.0000000E+00
 87.83569 1.000000 0.0000000E+00
 87.88583 1.000000 0.0000000E+00
 87.93597 1.000000 0.0000000E+00
 87.98609 1.000000 0.0000000E+00
 88.03622 1.000000 0.0000000E+00
 88.08636 1.000000 0.0000000E+00
 88.13650 1.000000 0.0000000E+00
 88.18663 1.000000 0.0000000E+00
 88.23677 1.000000 0.0000000E+00
 88.28690 1.000000 0.0000000E+00
 88.33704 1.000000 0.0000000E+00
 88.38717 1.000000 0.0000000E+00
 88.43730 1.000000 0.0000000E+00
 88.48743 1.000000 0.0000000E+00
 88.53757 1.000000 0.0000000E+00
 88.58771 1.000000 0.0000000E+00
 88.63785 1.000000 0.0000000E+00
 88.68798 1.000000 0.0000000E+00
 88.73811 1.000000 0.0000000E+00
 88.78824 1.000000 0.0000000E+00
 88.83838 1.000000 0.0000000E+00
 88.88851 1.000000 0.0000000E+00
 88.93865 1.000000 0.0000000E+00
 88.98878 1.000000 0.0000000E+00
 89.03892 1.000000 0.0000000E+00
 89.08906 1.000000 0.0000000E+00
 89.13919 1.000000 0.0000000E+00
 89.18933 1.000000 0.0000000E+00
 89.23946 1.000000 0.0000000E+00
 89.28959 1.000000 0.0000000E+00
 89.33972 1.000000 0.0000000E+00
 89.38986 1.000000 0.0000000E+00
 89.43999 1.000000 0.0000000E+00
 89.49014 1.000000 0.0000000E+00
 89.54027 1.000000 0.0000000E+00
 89.59040 1.000000 0.0000000E+00
 89.64053 1.000000 0.0000000E+00
 89.69067 1.000000 0.0000000E+00
 89.74080 1.000000 0.0000000E+00
 89.79094 1.000000 0.0000000E+00
 89.84107 1.000000 0.0000000E+00
 89.89120 1.000000 0.0000000E+00
 89.94135 1.000000 0.0000000E+00
 89.99148 1.000000 0.0000000E+00
 90.04160 1.000000 0.0000000E+00
 90.09174 1.000000 0.0000000E+00
 90.14188 1.000000 0.0000000E+00
 90.19201 1.000000 0.0000000E+00
 90.24215 1.000000 0.0000000E+00
 90.29228 1.000000 0.0000000E+00
 90.34242 1.000000 0.0000000E+00
 90.39256 1.000000 0.0000000E+00
 90.44269 1.000000 0.0000000E+00
 90.49281 1.000000 0.0000000E+00
 90.54295 1.000000 0.0000000E+00
 90.59309 1.000000 0.0000000E+00
 90.64323 1.000000 0.0000000E+00
 90.69336 1.000000 0.0000000E+00
 90.74349 1.000000 0.0000000E+00
 90.79363 1.000000 0.0000000E+00
 90.84377 1.000000 0.0000000E+00
 90.89389 1.000000 0.0000000E+00
 90.94403 1.000000 0.0000000E+00
 90.99416 1.000000 0.0000000E+00
 91.04430 1.000000 0.0000000E+00
 91.09444 1.000000 0.0000000E+00
 91.14457 1.000000 0.0000000E+00
 91.19471 1.000000 0.0000000E+00
 91.24484 1.000000 0.0000000E+00
 91.29497 1.000000 0.0000000E+00
 91.34510 1.000000 0.0000000E+00
 91.39524 1.000000 0.0000000E+00
 91.44537 1.000000 0.0000000E+00
 91.49551 1.000000 0.0000000E+00
 91.54565 1.000000 0.0000000E+00
 91.59578 1.000000 0.0000000E+00
 91.64592 1.000000 0.0000000E+00
 91.69605 1.000000 0.0000000E+00
 91.74618 1.000000 0.0000000E+00
 91.79632 1.000000 0.0000000E+00
 91.84645 1.000000 0.0000000E+00
 91.89658 1.000000 0.0000000E+00
 91.94672 1.000000 0.0000000E+00
 91.99686 1.000000 0.0000000E+00
 92.04700 1.000000 0.0000000E+00
 92.09713 1.000000 0.0000000E+00
 92.14725 1.000000 0.0000000E+00
 92.19739 1.000000 0.0000000E+00
 92.24753 1.000000 0.0000000E+00
 92.29766 1.000000 0.0000000E+00
 92.34780 1.000000 0.0000000E+00
 92.39793 1.000000 0.0000000E+00
 92.44807 1.000000 0.0000000E+00
 92.49821 1.000000 0.0000000E+00
 92.54833 1.000000 0.0000000E+00
 92.59846 1.000000 0.0000000E+00
 92.64861 1.000000 0.0000000E+00
 92.69874 1.000000 0.0000000E+00
 92.74887 1.000000 0.0000000E+00
 92.79901 1.000000 0.0000000E+00
 92.84914 1.000000 0.0000000E+00
 92.89928 1.000000 0.0000000E+00
 92.94942 1.000000 0.0000000E+00
 92.99954 1.000000 0.0000000E+00
 93.04967 1.000000 0.0000000E+00
 93.09982 1.000000 0.0000000E+00
 93.14995 1.000000 0.0000000E+00
 93.20009 1.000000 0.0000000E+00
 93.25022 1.000000 0.0000000E+00
 93.30035 1.000000 0.0000000E+00
 93.35049 1.000000 0.0000000E+00
 93.40062 1.000000 0.0000000E+00
 93.45075 1.000000 0.0000000E+00
 93.50089 1.000000 0.0000000E+00
 93.55103 1.000000 0.0000000E+00
 93.60116 1.000000 0.0000000E+00
 93.65130 1.000000 0.0000000E+00
 93.70143 1.000000 0.0000000E+00
 93.75157 1.000000 0.0000000E+00
 93.80170 1.000000 0.0000000E+00
 93.85183 1.000000 0.0000000E+00
 93.90196 1.000000 0.0000000E+00
 93.95210 1.000000 0.0000000E+00
 94.00224 1.000000 0.0000000E+00
 94.05238 1.000000 0.0000000E+00
 94.10251 1.000000 0.0000000E+00
 94.15264 1.000000 0.0000000E+00
 94.20278 1.000000 0.0000000E+00
 94.25291 1.000000 0.0000000E+00
 94.30304 1.000000 0.0000000E+00
 94.35318 1.000000 0.0000000E+00
 94.40331 1.000000 0.0000000E+00
 94.45345 1.000000 0.0000000E+00
 94.50359 1.000000 0.0000000E+00
 94.55372 1.000000 0.0000000E+00
 94.60386 1.000000 0.0000000E+00
 94.65398 1.000000 0.0000000E+00
 94.70412 1.000000 0.0000000E+00
 94.75425 1.000000 0.0000000E+00
 94.80439 1.000000 0.0000000E+00
 94.85452 1.000000 0.0000000E+00
 94.90466 1.000000 0.0000000E+00
 94.95480 1.000000 0.0000000E+00
 95.00493 1.000000 0.0000000E+00
 95.05506 1.000000 0.0000000E+00
 95.10519 1.000000 0.0000000E+00
 95.15533 1.000000 0.0000000E+00
 95.20547 1.000000 0.0000000E+00
 95.25560 1.000000 0.0000000E+00
 95.30573 1.000000 0.0000000E+00
 95.35587 1.000000 0.0000000E+00
 95.40601 1.000000 0.0000000E+00
 95.45615 1.000000 0.0000000E+00
 95.50627 1.000000 0.0000000E+00
 95.55640 1.000000 0.0000000E+00
 95.60654 1.000000 0.0000000E+00
 95.65668 1.000000 0.0000000E+00
 95.70681 1.000000 0.0000000E+00
 95.75695 1.000000 0.0000000E+00
 95.80708 1.000000 0.0000000E+00
 95.85722 1.000000 0.0000000E+00
 95.90735 1.000000 0.0000000E+00
 95.95748 1.000000 0.0000000E+00
 96.00761 1.000000 0.0000000E+00
 96.05775 1.000000 0.0000000E+00
 96.10789 1.000000 0.0000000E+00
 96.15802 1.000000 0.0000000E+00
 96.20816 1.000000 0.0000000E+00
 96.25829 1.000000 0.0000000E+00
 96.30842 1.000000 0.0000000E+00
 96.35856 1.000000 0.0000000E+00
 96.40869 1.000000 0.0000000E+00
 96.45882 1.000000 0.0000000E+00
 96.50896 1.000000 0.0000000E+00
 96.55910 1.000000 0.0000000E+00
 96.60924 1.000000 0.0000000E+00
 96.65937 1.000000 0.0000000E+00
 96.70950 1.000000 0.0000000E+00
 96.75964 1.000000 0.0000000E+00
 96.80977 1.000000 0.0000000E+00
 96.85990 1.000000 0.0000000E+00
 96.91004 1.000000 0.0000000E+00
 96.96017 1.000000 0.0000000E+00
 97.01031 1.000000 0.0000000E+00
 97.06045 1.000000 0.0000000E+00
 97.11058 1.000000 0.0000000E+00
 97.16071 1.000000 0.0000000E+00
 97.21085 1.000000 0.0000000E+00
 97.26098 1.000000 0.0000000E+00
 97.31112 1.000000 0.0000000E+00
 97.36125 1.000000 0.0000000E+00
 97.41138 1.000000 0.0000000E+00
 97.46152 1.000000 0.0000000E+00
 97.51166 1.000000 0.0000000E+00
 97.56178 1.000000 0.0000000E+00
 97.61192 1.000000 0.0000000E+00
 97.66206 1.000000 0.0000000E+00
 97.71219 1.000000 0.0000000E+00
 97.76233 1.000000 0.0000000E+00
 97.81246 1.000000 0.0000000E+00
 97.86259 1.000000 0.0000000E+00
 97.91273 1.000000 0.0000000E+00
 97.96287 1.000000 0.0000000E+00
 98.01299 1.000000 0.0000000E+00
 98.06313 1.000000 0.0000000E+00
 98.11327 1.000000 0.0000000E+00
 98.16341 1.000000 0.0000000E+00
 98.21354 1.000000 0.0000000E+00
 98.26367 1.000000 0.0000000E+00
 98.31381 1.000000 0.0000000E+00
 98.36395 1.000000 0.0000000E+00
 98.41407 1.000000 0.0000000E+00
 98.46421 1.000000 0.0000000E+00
 98.51434 1.000000 0.0000000E+00
 98.56448 1.000000 0.0000000E+00
 98.61462 1.000000 0.0000000E+00
 98.66475 1.000000 0.0000000E+00
 98.71488 1.000000 0.0000000E+00
 98.76502 1.000000 0.0000000E+00
 98.81515 1.000000 0.0000000E+00
 98.86528 1.000000 0.0000000E+00
 98.91542 1.000000 0.0000000E+00
 98.96555 1.000000 0.0000000E+00
 99.01569 1.000000 0.0000000E+00
 99.06583 1.000000 0.0000000E+00
 99.11596 1.000000 0.0000000E+00
 99.16610 1.000000 0.0000000E+00
 99.21623 1.000000 0.0000000E+00
 99.26636 1.000000 0.0000000E+00
 99.31650 1.000000 0.0000000E+00
 99.36663 1.000000 0.0000000E+00
 99.41676 1.000000 0.0000000E+00
 99.46690 1.000000 0.0000000E+00
 99.51704 1.000000 0.0000000E+00
 99.56717 1.000000 0.0000000E+00
 99.61731 1.000000 0.0000000E+00
 99.66743 1.000000 0.0000000E+00
 99.71757 1.000000 0.0000000E+00
 99.76771 1.000000 0.0000000E+00
 99.81784 1.000000 0.0000000E+00
 99.86798 1.000000 0.0000000E+00
 99.91811 1.000000 0.0000000E+00
 99.96825 1.000000 0.0000000E+00
 100.0184 1.000000 0.0000000E+00
 100.0685 1.000000 0.0000000E+00
 100.1186 1.000000 0.0000000E+00
 100.1688 1.000000 0.0000000E+00
 100.2189 1.000000 0.0000000E+00
 100.2691 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osnew/ai.08

8.00000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 -0.013930
 0.40000 -0.021765
 0.50000 -0.019454
 0.60000 -0.008320
 0.70000 0.002531
 0.80000 0.012597
 0.90000 0.021788
 1.00000 0.029866
 1.10000 0.036913
 1.20000 0.042906
 1.30000 0.048076
 1.40000 0.052465
 1.50000 0.056267
 1.60000 0.059480
 1.70000 0.062228
 1.80000 0.064506
 1.90000 0.066423
 2.00000 0.067988
 2.10000 0.069302
 2.20000 0.070369
 2.30000 0.071270
 2.40000 0.071997
 2.50000 0.072614
 2.60000 0.073109
 2.70000 0.073536
 2.80000 0.073875
 2.90000 0.074172
 3.00000 0.074406
 3.10000 0.074619
 3.20000 0.074777
 3.30000 0.074925
 3.40000 0.075036
 3.50000 0.075146
 3.60000 0.075224
 3.70000 0.075306
 3.80000 0.075361
 3.90000 0.075398
 4.00000 0.038600

XFOILinterface/XFOIL/orrs/osm_gu.08

 2001 8.020064
 0.0000000E+00 0.0000000E+00 8.0394020E-06
 5.0125290E-02 4.3039981E-07 9.1335587E-06
 0.1002506 9.1916849E-07 1.0368320E-05
 0.1503759 1.4737776E-06 1.1760594E-05
 0.2005012 2.1025935E-06 1.3329168E-05
 0.2506265 2.8149750E-06 1.5094868E-05
 0.3007517 3.6213821E-06 1.7080796E-05
 0.3508770 4.5334964E-06 1.9312560E-05
 0.4010023 5.5643472E-06 2.1818438E-05
 0.4511276 6.7284632E-06 2.4629773E-05
 0.5012529 8.0420177E-06 2.7781087E-05
 0.5513782 9.5230107E-06 3.1310570E-05
 0.6015035 1.1191450E-05 3.5260204E-05
 0.6516288 1.3069558E-05 3.9676335E-05
 0.7017541 1.5181994E-05 4.4609860E-05
 0.7518794 1.7556094E-05 5.0116720E-05
 0.8020046 2.0222134E-05 5.6258395E-05
 0.8521300 2.3213628E-05 6.3102139E-05
 0.9022553 2.6567615E-05 7.0721886E-05
 0.9523805 3.0325007E-05 7.9198260E-05
 1.002506 3.4530975E-05 8.8619840E-05
 1.052631 3.9235292E-05 9.9082783E-05
 1.102756 4.4492819E-05 1.1069243E-04
 1.152882 5.0363895E-05 1.2356354E-04
 1.203007 5.6914872E-05 1.3782093E-04
 1.253132 6.4218664E-05 1.5360050E-04
 1.303258 7.2355258E-05 1.7104989E-04
 1.353383 8.1412392E-05 1.9032913E-04
 1.403508 9.1486094E-05 2.1161207E-04
 1.453633 1.0268154E-04 2.3508674E-04
 1.503759 1.1511373E-04 2.6095714E-04
 1.553884 1.2890818E-04 2.8944222E-04
 1.604009 1.4420196E-04 3.2078003E-04
 1.654135 1.6114452E-04 3.5522657E-04
 1.704260 1.7989847E-04 3.9305736E-04
 1.754385 2.0064098E-04 4.3456932E-04
 1.804511 2.2356458E-04 4.8008116E-04
 1.854636 2.4887823E-04 5.2993558E-04
 1.904761 2.7680892E-04 5.8449898E-04
 1.954886 3.0760243E-04 6.4416497E-04
 2.005012 3.4152527E-04 7.0935435E-04
 2.055137 3.7886531E-04 7.8051566E-04
 2.105262 4.1993405E-04 8.5812935E-04
 2.155388 4.6506786E-04 9.4270625E-04
 2.205513 5.1462912E-04 1.0347907E-03
 2.255638 5.6900881E-04 1.1349621E-03
 2.305763 6.2862784E-04 1.2438360E-03
 2.355889 6.9393852E-04 1.3620630E-03
 2.406014 7.6542707E-04 1.4903338E-03
 2.456139 8.4361550E-04 1.6293809E-03
 2.506265 9.2906295E-04 1.7799761E-03
 2.556390 1.0223689E-03 1.9429351E-03
 2.606515 1.1241746E-03 2.1191176E-03
 2.656640 1.2351656E-03 2.3094281E-03
 2.706766 1.3560746E-03 2.5148185E-03
 2.756891 1.4876809E-03 2.7362842E-03
 2.807016 1.6308175E-03 2.9748701E-03
 2.857142 1.7863697E-03 3.2316740E-03
 2.907267 1.9552796E-03 3.5078404E-03
 2.957392 2.1385476E-03 3.8045591E-03
 3.007518 2.3372362E-03 4.1230791E-03
 3.057643 2.5524681E-03 4.4646910E-03
 3.107768 2.7854359E-03 4.8307413E-03
 3.157893 3.0373996E-03 5.2226246E-03
 3.208019 3.3096902E-03 5.6417822E-03
 3.258144 3.6037117E-03 6.0897055E-03
 3.308270 3.9209477E-03 6.5679397E-03
 3.358395 4.2629521E-03 7.0780623E-03
 3.408520 4.6313666E-03 7.6217046E-03
 3.458645 5.0279135E-03 8.2005402E-03
 3.508770 5.4544001E-03 8.8162785E-03
 3.558896 5.9127188E-03 9.4706723E-03
 3.609021 6.4048553E-03 1.0165505E-02
 3.659146 6.9328770E-03 1.0902587E-02
 3.709272 7.4989502E-03 1.1683763E-02
 3.759397 8.1053320E-03 1.2510898E-02
 3.809522 8.7543726E-03 1.3385872E-02
 3.859648 9.4485190E-03 1.4310592E-02
 3.909773 1.0190312E-02 1.5286955E-02
 3.959898 1.0982391E-02 1.6316881E-02
 4.010024 1.1827481E-02 1.7402258E-02
 4.060149 1.2728414E-02 1.8544996E-02
 4.110274 1.3688112E-02 1.9746969E-02
 4.160399 1.4709589E-02 2.1010032E-02
 4.210525 1.5795954E-02 2.2336002E-02
 4.260650 1.6950414E-02 2.3726679E-02
 4.310775 1.8176237E-02 2.5183778E-02
 4.360900 1.9476807E-02 2.6708987E-02
 4.411026 2.0855574E-02 2.8303914E-02
 4.461151 2.2316074E-02 2.9970096E-02
 4.511276 2.3861913E-02 3.1708978E-02
 4.561402 2.5496781E-02 3.3521943E-02
 4.611527 2.7224401E-02 3.5410207E-02
 4.661652 2.9048588E-02 3.7374929E-02
 4.711778 3.0973198E-02 3.9417110E-02
 4.761903 3.3002134E-02 4.1537639E-02
 4.812028 3.5139348E-02 4.3737244E-02
 4.862154 3.7388828E-02 4.6016507E-02
 4.912279 3.9754547E-02 4.8375823E-02
 4.962404 4.2240541E-02 5.0815430E-02
 5.012529 4.4850834E-02 5.3335395E-02
 5.062654 4.7589447E-02 5.5935543E-02
 5.112780 5.0460402E-02 5.8615543E-02
 5.162905 5.3467672E-02 6.1374839E-02
 5.213030 5.6615222E-02 6.4212628E-02
 5.263155 5.9906963E-02 6.7127913E-02
 5.313281 6.3346736E-02 7.0119426E-02
 5.363407 6.6938385E-02 7.3185720E-02
 5.413532 7.0685513E-02 7.6324977E-02
 5.463657 7.4591786E-02 7.9535246E-02
 5.513782 7.8660689E-02 8.2814254E-02
 5.563908 8.2895614E-02 8.6159497E-02
 5.614033 8.7299816E-02 8.9568175E-02
 5.664158 9.1876380E-02 9.3037255E-02
 5.714283 9.6628271E-02 9.6563421E-02
 5.764409 0.1015583 0.1001431
 5.814534 0.1066689 0.1037724
 5.864659 0.1119626 0.1074472
 5.914784 0.1174416 0.1111633
 5.964910 0.1231078 0.1149159
 6.015035 0.1289628 0.1187001
 6.065161 0.1350082 0.1225109
 6.115286 0.1412451 0.1263430
 6.165411 0.1476745 0.1301907
 6.215536 0.1542971 0.1340483
 6.265662 0.1611130 0.1379098
 6.315787 0.1681225 0.1417692
 6.365912 0.1753252 0.1456199
 6.416037 0.1827206 0.1494557
 6.466163 0.1903077 0.1532698
 6.516288 0.1980853 0.1570556
 6.566413 0.2060517 0.1608062
 6.616539 0.2142052 0.1645148
 6.666664 0.2225433 0.1681742
 6.716789 0.2310634 0.1717775
 6.766914 0.2397625 0.1753178
 6.817040 0.2486373 0.1787879
 6.867165 0.2576841 0.1821809
 6.917290 0.2668989 0.1854898
 6.967415 0.2762773 0.1887078
 7.017541 0.2858145 0.1918282
 7.067666 0.2955055 0.1948442
 7.117791 0.3053449 0.1977493
 7.167916 0.3153270 0.2005372
 7.218042 0.3254459 0.2032019
 7.268167 0.3356950 0.2057373
 7.318293 0.3460678 0.2081378
 7.368418 0.3565574 0.2103978
 7.418543 0.3671567 0.2125124
 7.468668 0.3778582 0.2144765
 7.518794 0.3886542 0.2162857
 7.568919 0.3995369 0.2179357
 7.619044 0.4104983 0.2194227
 7.669169 0.4215300 0.2207432
 7.719295 0.4326236 0.2218941
 7.769420 0.4437706 0.2228726
 7.819545 0.4549623 0.2236764
 7.869671 0.4661900 0.2243035
 7.919796 0.4774445 0.2247526
 7.969922 0.4887171 0.2250225
 8.020047 0.4999987 0.2251125
 8.070172 0.5112802 0.2250225
 8.120297 0.5225528 0.2247526
 8.170423 0.5338073 0.2243035
 8.220548 0.5450349 0.2236764
 8.270673 0.5562266 0.2228726
 8.320798 0.5673736 0.2218941
 8.370924 0.5784672 0.2207432
 8.421049 0.5894990 0.2194227
 8.471174 0.6004604 0.2179357
 8.521300 0.6113431 0.2162857
 8.571425 0.6221392 0.2144765
 8.621551 0.6328406 0.2125124
 8.671676 0.6434398 0.2103978
 8.721801 0.6539294 0.2081378
 8.771926 0.6643022 0.2057373
 8.822051 0.6745512 0.2032019
 8.872176 0.6846700 0.2005373
 8.922302 0.6946522 0.1977493
 8.972427 0.7044916 0.1948442
 9.022552 0.7141826 0.1918282
 9.072678 0.7237198 0.1887079
 9.122804 0.7330983 0.1854898
 9.172929 0.7423131 0.1821809
 9.223054 0.7513600 0.1787879
 9.273179 0.7602348 0.1753178
 9.323304 0.7689340 0.1717775
 9.373429 0.7774540 0.1681742
 9.423555 0.7857921 0.1645148
 9.473680 0.7939455 0.1608063
 9.523806 0.8019120 0.1570557
 9.573931 0.8096895 0.1532699
 9.624056 0.8172767 0.1494557
 9.674181 0.8246720 0.1456200
 9.724307 0.8318748 0.1417692
 9.774432 0.8388843 0.1379098
 9.824557 0.8457003 0.1340483
 9.874682 0.8523228 0.1301907
 9.924808 0.8587523 0.1263430
 9.974934 0.8649892 0.1225109
 10.02506 0.8710346 0.1187001
 10.07518 0.8768896 0.1149159
 10.12531 0.8825557 0.1111633
 10.17543 0.8880347 0.1074473
 10.22556 0.8933284 0.1037724
 10.27568 0.8984390 0.1001431
 10.32581 0.9033691 9.6563466E-02
 10.37594 0.9081209 9.3037300E-02
 10.42606 0.9126975 8.9568220E-02
 10.47619 0.9171017 8.6159527E-02
 10.52631 0.9213366 8.2814291E-02
 10.57644 0.9254055 7.9535283E-02
 10.62656 0.9293118 7.6325014E-02
 10.67669 0.9330590 7.3185682E-02
 10.72681 0.9366506 7.0119426E-02
 10.77694 0.9400904 6.7127913E-02
 10.82706 0.9433821 6.4212628E-02
 10.87719 0.9465296 6.1374839E-02
 10.92731 0.9495369 5.8615543E-02
 10.97744 0.9524078 5.5935543E-02
 11.02756 0.9551465 5.3335395E-02
 11.07769 0.9577568 5.0815430E-02
 11.12782 0.9602428 4.8375823E-02
 11.17794 0.9626085 4.6016507E-02
 11.22807 0.9648579 4.3737251E-02
 11.27819 0.9669952 4.1537654E-02
 11.32832 0.9690241 3.9417125E-02
 11.37844 0.9709488 3.7374936E-02
 11.42857 0.9727730 3.5410218E-02
 11.47869 0.9745006 3.3521950E-02
 11.52882 0.9761354 3.1709000E-02
 11.57894 0.9776813 2.9970108E-02
 11.62907 0.9791418 2.8303925E-02
 11.67919 0.9805205 2.6709003E-02
 11.72932 0.9818211 2.5183793E-02
 11.77944 0.9830469 2.3726698E-02
 11.82957 0.9842014 2.2336025E-02
 11.87969 0.9852877 2.1010051E-02
 11.92982 0.9863092 1.9746959E-02
 11.97995 0.9872689 1.8544989E-02
 12.03007 0.9881698 1.7402254E-02
 12.08020 0.9890149 1.6316874E-02
 12.13032 0.9898070 1.5286955E-02
 12.18045 0.9905487 1.4310592E-02
 12.23057 0.9912429 1.3385872E-02
 12.28070 0.9918919 1.2510898E-02
 12.33082 0.9924983 1.1683763E-02
 12.38095 0.9930644 1.0902587E-02
 12.43107 0.9935924 1.0165505E-02
 12.48120 0.9940845 9.4706770E-03
 12.53132 0.9945428 8.8162823E-03
 12.58145 0.9949693 8.2005430E-03
 12.63157 0.9953659 7.6217083E-03
 12.68170 0.9957343 7.0780651E-03
 12.73182 0.9960763 6.5679434E-03
 12.78195 0.9963936 6.0897116E-03
 12.83207 0.9966876 5.6417859E-03
 12.88220 0.9969599 5.2226279E-03
 12.93233 0.9972119 4.8307464E-03
 12.98245 0.9974449 4.4646952E-03
 13.03258 0.9976600 4.1230829E-03
 13.08270 0.9978588 3.8045628E-03
 13.13283 0.9980420 3.5078437E-03
 13.18295 0.9982109 3.2316709E-03
 13.23308 0.9983665 2.9748671E-03
 13.28320 0.9985096 2.7362800E-03
 13.33333 0.9986412 2.5148161E-03
 13.38345 0.9987621 2.3094281E-03
 13.43358 0.9988731 2.1191176E-03
 13.48370 0.9989749 1.9429351E-03
 13.53383 0.9990682 1.7799761E-03
 13.58395 0.9991536 1.6293809E-03
 13.63408 0.9992319 1.4903338E-03
 13.68421 0.9993033 1.3620630E-03
 13.73433 0.9993687 1.2438360E-03
 13.78446 0.9994283 1.1349631E-03
 13.83458 0.9994826 1.0347922E-03
 13.88471 0.9995322 9.4270718E-04
 13.93483 0.9995773 8.5813022E-04
 13.98496 0.9996185 7.8051642E-04
 14.03508 0.9996558 7.0935505E-04
 14.08521 0.9996897 6.4416596E-04
 14.13533 0.9997205 5.8449979E-04
 14.18546 0.9997484 5.2993611E-04
 14.23558 0.9997737 4.8008186E-04
 14.28571 0.9997966 4.3456972E-04
 14.33583 0.9998173 3.9305788E-04
 14.38596 0.9998361 3.5522692E-04
 14.43608 0.9998530 3.2077971E-04
 14.48621 0.9998683 2.8944193E-04
 14.53633 0.9998821 2.6095676E-04
 14.58646 0.9998946 2.3508674E-04
 14.63659 0.9999057 2.1161207E-04
 14.68671 0.9999158 1.9032913E-04
 14.73684 0.9999249 1.7104989E-04
 14.78696 0.9999330 1.5360050E-04
 14.83709 0.9999403 1.3782093E-04
 14.88721 0.9999469 1.2356354E-04
 14.93734 0.9999527 1.1069243E-04
 14.98746 0.9999580 9.9082783E-05
 15.03759 0.9999627 8.8619840E-05
 15.08771 0.9999669 7.9198369E-05
 15.13784 0.9999707 7.0721951E-05
 15.18796 0.9999740 6.3102198E-05
 15.23809 0.9999770 5.6258446E-05
 15.28821 0.9999797 5.0116811E-05
 15.33834 0.9999821 4.4609944E-05
 15.38846 0.9999841 3.9676412E-05
 15.43859 0.9999860 3.5260269E-05
 15.48872 0.9999877 3.1310599E-05
 15.53884 0.9999892 2.7781112E-05
 15.58897 0.9999905 2.4629793E-05
 15.63909 0.9999917 2.1818480E-05
 15.68922 0.9999927 1.9312542E-05
 15.73934 0.9999936 1.7080796E-05
 15.78947 0.9999944 1.5094868E-05
 15.83959 0.9999952 1.3329168E-05
 15.88972 0.9999958 1.1760594E-05
 15.93984 0.9999963 1.0368320E-05
 15.98997 0.9999968 9.1335587E-06
 16.04009 0.9999972 8.0394020E-06
 16.09022 0.9999976 7.0706678E-06
 16.14034 0.9999979 6.2136955E-06
 16.19047 0.9999982 5.4562170E-06
 16.24059 0.9999985 4.7872468E-06
 16.29072 0.9999986 4.1969415E-06
 16.34085 0.9999989 3.6764793E-06
 16.39097 0.9999990 3.2179867E-06
 16.44110 0.9999992 2.8144195E-06
 16.49122 0.9999993 2.4594951E-06
 16.54135 0.9999995 2.1476108E-06
 16.59147 0.9999995 1.8737778E-06
 16.64160 0.9999996 1.6335513E-06
 16.69172 0.9999996 1.4229851E-06
 16.74185 0.9999997 1.2385696E-06
 16.79197 0.9999998 1.0771917E-06
 16.84210 0.9999999 9.3609106E-07
 16.89222 0.9999999 8.1282241E-07
 16.94235 1.000000 7.0521980E-07
 16.99248 1.000000 6.1137422E-07
 17.04260 1.000000 5.2959348E-07
 17.09273 1.000000 4.5838533E-07
 17.14285 1.000000 3.9643427E-07
 17.19298 1.000000 3.4258179E-07
 17.24310 1.000000 2.9580792E-07
 17.29323 1.000000 2.5521598E-07
 17.34335 1.000000 2.2001832E-07
 17.39348 1.000000 1.8952301E-07
 17.44360 1.000000 1.6312403E-07
 17.49373 1.000000 1.4028990E-07
 17.54385 1.000000 1.2055561E-07
 17.59398 1.000000 1.0351445E-07
 17.64410 1.000000 8.8811042E-08
 17.69423 1.000000 7.6135272E-08
 17.74435 1.000000 6.5216419E-08
 17.79448 1.000000 5.5818852E-08
 17.84460 1.000000 4.7737245E-08
 17.89473 1.000000 4.0793065E-08
 17.94485 1.000000 3.4831146E-08
 17.99498 1.000000 2.9716809E-08
 18.04510 1.000000 2.5333119E-08
 18.09523 1.000000 2.1578860E-08
 18.14536 1.000000 1.8366178E-08
 18.19548 1.000000 1.5619312E-08
 18.24561 1.000000 1.3272738E-08
 18.29573 1.000000 1.1269584E-08
 18.34586 1.000000 9.5611803E-09
 18.39598 1.000000 8.1052187E-09
 18.44611 1.000000 6.8655179E-09
 18.49623 1.000000 5.8107412E-09
 18.54636 1.000000 4.9141229E-09
 18.59648 1.000000 4.1524877E-09
 18.64661 1.000000 3.5061292E-09
 18.69673 1.000000 2.9579861E-09
 18.74686 1.000000 2.4935645E-09
 18.79698 1.000000 2.1003606E-09
 18.84711 1.000000 1.7677603E-09
 18.89724 1.000000 1.4866257E-09
 18.94736 1.000000 1.2492120E-09
 18.99749 1.000000 1.0488665E-09
 19.04761 1.000000 8.7995361E-10
 19.09774 1.000000 7.3764755E-10
 19.14786 1.000000 6.1786481E-10
 19.19799 1.000000 5.1711552E-10
 19.24811 1.000000 4.3245119E-10
 19.29824 1.000000 3.6135686E-10
 19.34836 1.000000 3.0171138E-10
 19.39849 1.000000 2.5170735E-10
 19.44861 1.000000 2.0982253E-10
 19.49874 1.000000 1.7476942E-10
 19.54886 1.000000 1.4545436E-10
 19.59899 1.000000 1.2096091E-10
 19.64911 1.000000 1.0051048E-10
 19.69924 1.000000 8.3451614E-11
 19.74936 1.000000 6.9231995E-11
 19.79949 1.000000 5.7389864E-11
 19.84962 1.000000 4.7534875E-11
 19.89974 1.000000 3.9341030E-11
 19.94987 1.000000 3.2533285E-11
 19.99999 1.000000 2.6882292E-11
 20.05012 1.000000 2.2194956E-11
 20.10024 1.000000 1.8310220E-11
 20.15037 1.000000 1.5093496E-11
 20.20049 1.000000 1.2431828E-11
 20.25062 1.000000 1.0231430E-11
 20.30075 1.000000 8.4136899E-12
 20.35087 1.000000 6.9134312E-12
 20.40100 1.000000 5.6760837E-12
 20.45112 1.000000 4.6565061E-12
 20.50125 1.000000 3.8169841E-12
 20.55137 1.000000 3.1263494E-12
 20.60150 1.000000 2.5586018E-12
 20.65162 1.000000 2.0923046E-12
 20.70175 1.000000 1.7096054E-12
 20.75187 1.000000 1.3957998E-12
 20.80200 1.000000 1.1386712E-12
 20.85212 1.000000 9.2817648E-13
 20.90225 1.000000 7.5598230E-13
 20.95237 1.000000 6.1524614E-13
 21.00250 1.000000 5.0030509E-13
 21.05262 1.000000 4.0651637E-13
 21.10275 1.000000 3.3004128E-13
 21.15287 1.000000 2.6774194E-13
 21.20300 1.000000 2.1702636E-13
 21.25312 1.000000 1.7577843E-13
 21.30325 1.000000 1.4225471E-13
 21.35338 1.000000 1.1503254E-13
 21.40350 1.000000 9.2946050E-14
 21.45363 1.000000 7.5039503E-14
 21.50375 1.000000 6.0534924E-14
 21.55388 1.000000 4.8794404E-14
 21.60400 1.000000 3.9299872E-14
 21.65413 1.000000 3.1627160E-14
 21.70425 1.000000 2.5432339E-14
 21.75438 1.000000 2.0434328E-14
 21.80450 1.000000 1.6405576E-14
 21.85463 1.000000 1.3160444E-14
 21.90475 1.000000 1.0548909E-14
 21.95488 1.000000 8.4487335E-15
 22.00500 1.000000 6.7613528E-15
 22.05513 1.000000 5.4065804E-15
 22.10525 1.000000 4.3198600E-15
 22.15538 1.000000 3.4487664E-15
 22.20550 1.000000 2.7511598E-15
 22.25563 1.000000 2.1928887E-15
 22.30575 1.000000 1.7465168E-15
 22.35588 1.000000 1.3898813E-15
 22.40600 1.000000 1.1051973E-15
 22.45613 1.000000 8.7811329E-16
 22.50625 1.000000 6.9713485E-16
 22.55638 1.000000 5.5300844E-16
 22.60651 1.000000 4.3832936E-16
 22.65663 1.000000 3.4715600E-16
 22.70676 1.000000 2.7472465E-16
 22.75688 1.000000 2.1723392E-16
 22.80701 1.000000 1.7163521E-16
 22.85713 1.000000 1.3550040E-16
 22.90726 1.000000 1.0688666E-16
 22.95738 1.000000 8.4249087E-17
 23.00751 1.000000 6.6351744E-17
 23.05763 1.000000 5.2215349E-17
 23.10776 1.000000 4.1057378E-17
 23.15788 1.000000 3.2258406E-17
 23.20801 1.000000 2.5324454E-17
 23.25813 1.000000 1.9865340E-17
 23.30826 1.000000 1.5570431E-17
 23.35839 1.000000 1.2194407E-17
 23.40851 1.000000 9.5426633E-18
 23.45864 1.000000 7.4616596E-18
 23.50876 1.000000 5.8297535E-18
 23.55889 1.000000 4.5511407E-18
 23.60901 1.000000 3.5500880E-18
 23.65914 1.000000 2.7670484E-18
 23.70926 1.000000 2.1549631E-18
 23.75939 1.000000 1.6769559E-18
 23.80951 1.000000 1.3039186E-18
 23.85964 1.000000 1.0130515E-18
 23.90976 1.000000 7.8645019E-19
 23.95989 1.000000 6.1003965E-19
 24.01002 1.000000 4.7282667E-19
 24.06014 1.000000 3.6618004E-19
 24.11027 1.000000 2.8336382E-19
 24.16039 1.000000 2.1909946E-19
 24.21052 1.000000 1.6927592E-19
 24.26064 1.000000 1.3067662E-19
 24.31077 1.000000 1.0079934E-19
 24.36089 1.000000 7.7689908E-20
 24.41102 1.000000 5.9831551E-20
 24.46114 1.000000 4.6040812E-20
 24.51127 1.000000 3.5400774E-20
 24.56139 1.000000 2.7197543E-20
 24.61152 1.000000 2.0878790E-20
 24.66164 1.000000 1.6015041E-20
 24.71177 1.000000 1.2274616E-20
 24.76189 1.000000 9.4001879E-21
 24.81202 1.000000 7.1932014E-21
 24.86214 1.000000 5.4998815E-21
 24.91227 1.000000 4.2018917E-21
 24.96239 1.000000 3.2076239E-21
 25.01252 1.000000 2.4466912E-21
 25.06265 1.000000 1.8647559E-21
 25.11277 1.000000 1.4200933E-21
 25.16290 1.000000 1.0806138E-21
 25.21302 1.000000 8.2162047E-22
 25.26315 1.000000 6.2421006E-22
 25.31327 1.000000 4.7384434E-22
 25.36340 1.000000 3.5941762E-22
 25.41352 1.000000 2.7240190E-22
 25.46365 1.000000 2.0629069E-22
 25.51377 1.000000 1.5609761E-22
 25.56390 1.000000 1.1802389E-22
 25.61403 1.000000 8.9164248E-23
 25.66415 1.000000 6.7308560E-23
 25.71428 1.000000 5.0768803E-23
 25.76440 1.000000 3.8263143E-23
 25.81453 1.000000 2.8814637E-23
 25.86465 1.000000 2.1682165E-23
 25.91478 1.000000 1.6301880E-23
 25.96490 1.000000 1.2247096E-23
 26.01503 1.000000 9.1933889E-24
 26.06515 1.000000 6.8956501E-24
 26.11528 1.000000 5.1679931E-24
 26.16540 1.000000 3.8701457E-24
 26.21553 1.000000 2.8958646E-24
 26.26565 1.000000 2.1651493E-24
 26.31578 1.000000 1.6175073E-24
 26.36591 1.000000 1.2074107E-24
 26.41603 1.000000 9.0058067E-25
 26.46616 1.000000 6.7117730E-25
 26.51628 1.000000 4.9981650E-25
 26.56641 1.000000 3.7190283E-25
 26.61653 1.000000 2.7650866E-25
 26.66666 1.000000 2.0541558E-25
 26.71678 1.000000 1.5248139E-25
 26.76691 1.000000 1.1309560E-25
 26.81703 1.000000 8.3817544E-26
 26.86716 1.000000 6.2068272E-26
 26.91728 1.000000 4.5926477E-26
 26.96741 1.000000 3.3954995E-26
 27.01753 1.000000 2.5084356E-26
 27.06766 1.000000 1.8516021E-26
 27.11778 1.000000 1.3656869E-26
 27.16791 1.000000 1.0064721E-26
 27.21803 1.000000 7.4115847E-27
 27.26816 1.000000 5.4534020E-27
 27.31828 1.000000 4.0094148E-27
 27.36841 1.000000 2.9453819E-27
 27.41853 1.000000 2.1620262E-27
 27.46866 1.000000 1.5857232E-27
 27.51878 1.000000 1.1621198E-27
 27.56891 1.000000 8.5098428E-28
 27.61904 1.000000 6.2265281E-28
 27.66916 1.000000 4.5522638E-28
 27.71929 1.000000 3.3254929E-28
 27.76941 1.000000 2.4274106E-28
 27.81954 1.000000 1.7704257E-28
 27.86966 1.000000 1.2902361E-28
 27.91979 1.000000 9.3952376E-29
 27.96991 1.000000 6.8360745E-29
 28.02004 1.000000 4.9699221E-29
 28.07016 1.000000 3.6103784E-29
 28.12029 1.000000 2.6206138E-29
 28.17041 1.000000 1.9006787E-29
 28.22054 1.000000 1.3774097E-29
 28.27066 1.000000 9.9741610E-30
 28.32079 1.000000 7.2166393E-30
 28.37091 1.000000 5.2174187E-30
 28.42104 1.000000 3.7689339E-30
 28.47116 1.000000 2.7204667E-30
 28.52129 1.000000 1.9620519E-30
 28.57141 1.000000 1.4139679E-30
 28.62154 1.000000 1.0181555E-30
 28.67167 1.000000 7.3256690E-31
 28.72179 1.000000 5.2665876E-31
 28.77192 1.000000 3.7832653E-31
 28.82204 1.000000 2.7155196E-31
 28.87217 1.000000 1.9475471E-31
 28.92229 1.000000 1.3956771E-31
 28.97242 1.000000 9.9937274E-32
 29.02254 1.000000 7.1503729E-32
 29.07267 1.000000 5.1118176E-32
 29.12280 1.000000 3.6516074E-32
 29.17292 1.000000 2.6063631E-32
 29.22305 1.000000 1.8588648E-32
 29.27317 1.000000 1.3246653E-32
 29.32330 1.000000 9.4324223E-33
 29.37342 1.000000 6.7109781E-33
 29.42355 1.000000 4.7709741E-33
 29.47367 1.000000 3.3890432E-33
 29.52380 1.000000 2.4054844E-33
 29.57392 1.000000 1.7059911E-33
 29.62405 1.000000 1.2089539E-33
 29.67417 1.000000 8.5602832E-34
 29.72430 1.000000 6.0565491E-34
 29.77442 1.000000 4.2816174E-34
 29.82455 1.000000 3.0244923E-34
 29.87467 1.000000 2.1347120E-34
 29.92480 1.000000 1.5055253E-34
 29.97492 1.000000 1.0609194E-34
 30.02505 1.000000 7.4702540E-35
 30.07518 1.000000 5.2557397E-35
 30.12530 1.000000 3.6947443E-35
 30.17543 1.000000 2.5953564E-35
 30.22555 1.000000 1.8215945E-35
 30.27568 1.000000 1.2775223E-35
 30.32580 1.000000 8.9522196E-36
 30.37593 1.000000 6.2683272E-36
 30.42605 1.000000 4.3854897E-36
 30.47618 1.000000 3.0657964E-36
 30.52630 1.000000 2.1414793E-36
 30.57643 1.000000 1.4946741E-36
 30.62655 1.000000 1.0423766E-36
 30.67668 1.000000 7.2637604E-37
 30.72680 1.000000 5.0575530E-37
 30.77693 1.000000 3.5187208E-37
 30.82705 1.000000 2.4460835E-37
 30.87718 1.000000 1.6990903E-37
 30.92731 1.000000 1.1792624E-37
 30.97743 1.000000 8.1783024E-38
 31.02756 1.000000 5.6670629E-38
 31.07768 1.000000 3.9238722E-38
 31.12781 1.000000 2.7146711E-38
 31.17793 1.000000 1.8766429E-38
 31.22806 1.000000 1.2962482E-38
 31.27818 1.000000 0.0000000E+00
 31.32831 1.000000 0.0000000E+00
 31.37843 1.000000 0.0000000E+00
 31.42856 1.000000 0.0000000E+00
 31.47869 1.000000 0.0000000E+00
 31.52881 1.000000 0.0000000E+00
 31.57894 1.000000 0.0000000E+00
 31.62906 1.000000 0.0000000E+00
 31.67919 1.000000 0.0000000E+00
 31.72931 1.000000 0.0000000E+00
 31.77944 1.000000 0.0000000E+00
 31.82956 1.000000 0.0000000E+00
 31.87969 1.000000 0.0000000E+00
 31.92981 1.000000 0.0000000E+00
 31.97994 1.000000 0.0000000E+00
 32.03006 1.000000 0.0000000E+00
 32.08019 1.000000 0.0000000E+00
 32.13031 1.000000 0.0000000E+00
 32.18044 1.000000 0.0000000E+00
 32.23056 1.000000 0.0000000E+00
 32.28069 1.000000 0.0000000E+00
 32.33081 1.000000 0.0000000E+00
 32.38094 1.000000 0.0000000E+00
 32.43106 1.000000 0.0000000E+00
 32.48119 1.000000 0.0000000E+00
 32.53131 1.000000 0.0000000E+00
 32.58144 1.000000 0.0000000E+00
 32.63157 1.000000 0.0000000E+00
 32.68169 1.000000 0.0000000E+00
 32.73182 1.000000 0.0000000E+00
 32.78194 1.000000 0.0000000E+00
 32.83207 1.000000 0.0000000E+00
 32.88219 1.000000 0.0000000E+00
 32.93232 1.000000 0.0000000E+00
 32.98244 1.000000 0.0000000E+00
 33.03257 1.000000 0.0000000E+00
 33.08269 1.000000 0.0000000E+00
 33.13282 1.000000 0.0000000E+00
 33.18294 1.000000 0.0000000E+00
 33.23307 1.000000 0.0000000E+00
 33.28319 1.000000 0.0000000E+00
 33.33332 1.000000 0.0000000E+00
 33.38345 1.000000 0.0000000E+00
 33.43357 1.000000 0.0000000E+00
 33.48370 1.000000 0.0000000E+00
 33.53382 1.000000 0.0000000E+00
 33.58395 1.000000 0.0000000E+00
 33.63407 1.000000 0.0000000E+00
 33.68420 1.000000 0.0000000E+00
 33.73432 1.000000 0.0000000E+00
 33.78445 1.000000 0.0000000E+00
 33.83457 1.000000 0.0000000E+00
 33.88470 1.000000 0.0000000E+00
 33.93482 1.000000 0.0000000E+00
 33.98495 1.000000 0.0000000E+00
 34.03507 1.000000 0.0000000E+00
 34.08520 1.000000 0.0000000E+00
 34.13532 1.000000 0.0000000E+00
 34.18545 1.000000 0.0000000E+00
 34.23557 1.000000 0.0000000E+00
 34.28570 1.000000 0.0000000E+00
 34.33582 1.000000 0.0000000E+00
 34.38595 1.000000 0.0000000E+00
 34.43607 1.000000 0.0000000E+00
 34.48620 1.000000 0.0000000E+00
 34.53633 1.000000 0.0000000E+00
 34.58645 1.000000 0.0000000E+00
 34.63658 1.000000 0.0000000E+00
 34.68670 1.000000 0.0000000E+00
 34.73683 1.000000 0.0000000E+00
 34.78695 1.000000 0.0000000E+00
 34.83708 1.000000 0.0000000E+00
 34.88720 1.000000 0.0000000E+00
 34.93733 1.000000 0.0000000E+00
 34.98745 1.000000 0.0000000E+00
 35.03758 1.000000 0.0000000E+00
 35.08770 1.000000 0.0000000E+00
 35.13783 1.000000 0.0000000E+00
 35.18795 1.000000 0.0000000E+00
 35.23808 1.000000 0.0000000E+00
 35.28820 1.000000 0.0000000E+00
 35.33833 1.000000 0.0000000E+00
 35.38845 1.000000 0.0000000E+00
 35.43858 1.000000 0.0000000E+00
 35.48870 1.000000 0.0000000E+00
 35.53883 1.000000 0.0000000E+00
 35.58896 1.000000 0.0000000E+00
 35.63908 1.000000 0.0000000E+00
 35.68921 1.000000 0.0000000E+00
 35.73933 1.000000 0.0000000E+00
 35.78946 1.000000 0.0000000E+00
 35.83958 1.000000 0.0000000E+00
 35.88971 1.000000 0.0000000E+00
 35.93983 1.000000 0.0000000E+00
 35.98996 1.000000 0.0000000E+00
 36.04008 1.000000 0.0000000E+00
 36.09021 1.000000 0.0000000E+00
 36.14034 1.000000 0.0000000E+00
 36.19046 1.000000 0.0000000E+00
 36.24059 1.000000 0.0000000E+00
 36.29071 1.000000 0.0000000E+00
 36.34084 1.000000 0.0000000E+00
 36.39096 1.000000 0.0000000E+00
 36.44109 1.000000 0.0000000E+00
 36.49121 1.000000 0.0000000E+00
 36.54134 1.000000 0.0000000E+00
 36.59146 1.000000 0.0000000E+00
 36.64159 1.000000 0.0000000E+00
 36.69172 1.000000 0.0000000E+00
 36.74184 1.000000 0.0000000E+00
 36.79197 1.000000 0.0000000E+00
 36.84209 1.000000 0.0000000E+00
 36.89222 1.000000 0.0000000E+00
 36.94234 1.000000 0.0000000E+00
 36.99247 1.000000 0.0000000E+00
 37.04259 1.000000 0.0000000E+00
 37.09272 1.000000 0.0000000E+00
 37.14284 1.000000 0.0000000E+00
 37.19297 1.000000 0.0000000E+00
 37.24309 1.000000 0.0000000E+00
 37.29322 1.000000 0.0000000E+00
 37.34334 1.000000 0.0000000E+00
 37.39347 1.000000 0.0000000E+00
 37.44359 1.000000 0.0000000E+00
 37.49372 1.000000 0.0000000E+00
 37.54384 1.000000 0.0000000E+00
 37.59397 1.000000 0.0000000E+00
 37.64410 1.000000 0.0000000E+00
 37.69422 1.000000 0.0000000E+00
 37.74435 1.000000 0.0000000E+00
 37.79447 1.000000 0.0000000E+00
 37.84460 1.000000 0.0000000E+00
 37.89472 1.000000 0.0000000E+00
 37.94485 1.000000 0.0000000E+00
 37.99497 1.000000 0.0000000E+00
 38.04510 1.000000 0.0000000E+00
 38.09522 1.000000 0.0000000E+00
 38.14535 1.000000 0.0000000E+00
 38.19547 1.000000 0.0000000E+00
 38.24560 1.000000 0.0000000E+00
 38.29572 1.000000 0.0000000E+00
 38.34585 1.000000 0.0000000E+00
 38.39597 1.000000 0.0000000E+00
 38.44610 1.000000 0.0000000E+00
 38.49622 1.000000 0.0000000E+00
 38.54635 1.000000 0.0000000E+00
 38.59647 1.000000 0.0000000E+00
 38.64660 1.000000 0.0000000E+00
 38.69672 1.000000 0.0000000E+00
 38.74685 1.000000 0.0000000E+00
 38.79697 1.000000 0.0000000E+00
 38.84710 1.000000 0.0000000E+00
 38.89723 1.000000 0.0000000E+00
 38.94735 1.000000 0.0000000E+00
 38.99748 1.000000 0.0000000E+00
 39.04760 1.000000 0.0000000E+00
 39.09773 1.000000 0.0000000E+00
 39.14785 1.000000 0.0000000E+00
 39.19798 1.000000 0.0000000E+00
 39.24810 1.000000 0.0000000E+00
 39.29823 1.000000 0.0000000E+00
 39.34835 1.000000 0.0000000E+00
 39.39848 1.000000 0.0000000E+00
 39.44860 1.000000 0.0000000E+00
 39.49873 1.000000 0.0000000E+00
 39.54885 1.000000 0.0000000E+00
 39.59898 1.000000 0.0000000E+00
 39.64911 1.000000 0.0000000E+00
 39.69923 1.000000 0.0000000E+00
 39.74936 1.000000 0.0000000E+00
 39.79948 1.000000 0.0000000E+00
 39.84961 1.000000 0.0000000E+00
 39.89973 1.000000 0.0000000E+00
 39.94986 1.000000 0.0000000E+00
 39.99998 1.000000 0.0000000E+00
 40.05011 1.000000 0.0000000E+00
 40.10023 1.000000 0.0000000E+00
 40.15036 1.000000 0.0000000E+00
 40.20049 1.000000 0.0000000E+00
 40.25061 1.000000 0.0000000E+00
 40.30074 1.000000 0.0000000E+00
 40.35086 1.000000 0.0000000E+00
 40.40099 1.000000 0.0000000E+00
 40.45111 1.000000 0.0000000E+00
 40.50124 1.000000 0.0000000E+00
 40.55136 1.000000 0.0000000E+00
 40.60149 1.000000 0.0000000E+00
 40.65161 1.000000 0.0000000E+00
 40.70174 1.000000 0.0000000E+00
 40.75186 1.000000 0.0000000E+00
 40.80199 1.000000 0.0000000E+00
 40.85211 1.000000 0.0000000E+00
 40.90224 1.000000 0.0000000E+00
 40.95237 1.000000 0.0000000E+00
 41.00249 1.000000 0.0000000E+00
 41.05261 1.000000 0.0000000E+00
 41.10274 1.000000 0.0000000E+00
 41.15287 1.000000 0.0000000E+00
 41.20299 1.000000 0.0000000E+00
 41.25311 1.000000 0.0000000E+00
 41.30324 1.000000 0.0000000E+00
 41.35337 1.000000 0.0000000E+00
 41.40349 1.000000 0.0000000E+00
 41.45362 1.000000 0.0000000E+00
 41.50374 1.000000 0.0000000E+00
 41.55387 1.000000 0.0000000E+00
 41.60399 1.000000 0.0000000E+00
 41.65412 1.000000 0.0000000E+00
 41.70424 1.000000 0.0000000E+00
 41.75437 1.000000 0.0000000E+00
 41.80449 1.000000 0.0000000E+00
 41.85462 1.000000 0.0000000E+00
 41.90474 1.000000 0.0000000E+00
 41.95487 1.000000 0.0000000E+00
 42.00500 1.000000 0.0000000E+00
 42.05512 1.000000 0.0000000E+00
 42.10524 1.000000 0.0000000E+00
 42.15537 1.000000 0.0000000E+00
 42.20550 1.000000 0.0000000E+00
 42.25562 1.000000 0.0000000E+00
 42.30574 1.000000 0.0000000E+00
 42.35587 1.000000 0.0000000E+00
 42.40600 1.000000 0.0000000E+00
 42.45612 1.000000 0.0000000E+00
 42.50624 1.000000 0.0000000E+00
 42.55637 1.000000 0.0000000E+00
 42.60650 1.000000 0.0000000E+00
 42.65662 1.000000 0.0000000E+00
 42.70675 1.000000 0.0000000E+00
 42.75687 1.000000 0.0000000E+00
 42.80700 1.000000 0.0000000E+00
 42.85712 1.000000 0.0000000E+00
 42.90725 1.000000 0.0000000E+00
 42.95737 1.000000 0.0000000E+00
 43.00750 1.000000 0.0000000E+00
 43.05763 1.000000 0.0000000E+00
 43.10775 1.000000 0.0000000E+00
 43.15788 1.000000 0.0000000E+00
 43.20800 1.000000 0.0000000E+00
 43.25813 1.000000 0.0000000E+00
 43.30825 1.000000 0.0000000E+00
 43.35838 1.000000 0.0000000E+00
 43.40850 1.000000 0.0000000E+00
 43.45863 1.000000 0.0000000E+00
 43.50875 1.000000 0.0000000E+00
 43.55888 1.000000 0.0000000E+00
 43.60900 1.000000 0.0000000E+00
 43.65913 1.000000 0.0000000E+00
 43.70926 1.000000 0.0000000E+00
 43.75938 1.000000 0.0000000E+00
 43.80951 1.000000 0.0000000E+00
 43.85963 1.000000 0.0000000E+00
 43.90976 1.000000 0.0000000E+00
 43.95988 1.000000 0.0000000E+00
 44.01001 1.000000 0.0000000E+00
 44.06013 1.000000 0.0000000E+00
 44.11026 1.000000 0.0000000E+00
 44.16039 1.000000 0.0000000E+00
 44.21051 1.000000 0.0000000E+00
 44.26063 1.000000 0.0000000E+00
 44.31076 1.000000 0.0000000E+00
 44.36089 1.000000 0.0000000E+00
 44.41101 1.000000 0.0000000E+00
 44.46113 1.000000 0.0000000E+00
 44.51126 1.000000 0.0000000E+00
 44.56139 1.000000 0.0000000E+00
 44.61151 1.000000 0.0000000E+00
 44.66164 1.000000 0.0000000E+00
 44.71176 1.000000 0.0000000E+00
 44.76189 1.000000 0.0000000E+00
 44.81201 1.000000 0.0000000E+00
 44.86214 1.000000 0.0000000E+00
 44.91226 1.000000 0.0000000E+00
 44.96239 1.000000 0.0000000E+00
 45.01251 1.000000 0.0000000E+00
 45.06264 1.000000 0.0000000E+00
 45.11276 1.000000 0.0000000E+00
 45.16289 1.000000 0.0000000E+00
 45.21302 1.000000 0.0000000E+00
 45.26314 1.000000 0.0000000E+00
 45.31326 1.000000 0.0000000E+00
 45.36339 1.000000 0.0000000E+00
 45.41352 1.000000 0.0000000E+00
 45.46364 1.000000 0.0000000E+00
 45.51376 1.000000 0.0000000E+00
 45.56389 1.000000 0.0000000E+00
 45.61402 1.000000 0.0000000E+00
 45.66414 1.000000 0.0000000E+00
 45.71427 1.000000 0.0000000E+00
 45.76439 1.000000 0.0000000E+00
 45.81452 1.000000 0.0000000E+00
 45.86464 1.000000 0.0000000E+00
 45.91477 1.000000 0.0000000E+00
 45.96489 1.000000 0.0000000E+00
 46.01502 1.000000 0.0000000E+00
 46.06514 1.000000 0.0000000E+00
 46.11527 1.000000 0.0000000E+00
 46.16539 1.000000 0.0000000E+00
 46.21552 1.000000 0.0000000E+00
 46.26564 1.000000 0.0000000E+00
 46.31577 1.000000 0.0000000E+00
 46.36589 1.000000 0.0000000E+00
 46.41602 1.000000 0.0000000E+00
 46.46615 1.000000 0.0000000E+00
 46.51627 1.000000 0.0000000E+00
 46.56639 1.000000 0.0000000E+00
 46.61652 1.000000 0.0000000E+00
 46.66665 1.000000 0.0000000E+00
 46.71677 1.000000 0.0000000E+00
 46.76690 1.000000 0.0000000E+00
 46.81702 1.000000 0.0000000E+00
 46.86715 1.000000 0.0000000E+00
 46.91727 1.000000 0.0000000E+00
 46.96740 1.000000 0.0000000E+00
 47.01752 1.000000 0.0000000E+00
 47.06765 1.000000 0.0000000E+00
 47.11777 1.000000 0.0000000E+00
 47.16790 1.000000 0.0000000E+00
 47.21803 1.000000 0.0000000E+00
 47.26815 1.000000 0.0000000E+00
 47.31828 1.000000 0.0000000E+00
 47.36840 1.000000 0.0000000E+00
 47.41853 1.000000 0.0000000E+00
 47.46865 1.000000 0.0000000E+00
 47.51878 1.000000 0.0000000E+00
 47.56890 1.000000 0.0000000E+00
 47.61903 1.000000 0.0000000E+00
 47.66916 1.000000 0.0000000E+00
 47.71928 1.000000 0.0000000E+00
 47.76940 1.000000 0.0000000E+00
 47.81953 1.000000 0.0000000E+00
 47.86966 1.000000 0.0000000E+00
 47.91978 1.000000 0.0000000E+00
 47.96990 1.000000 0.0000000E+00
 48.02003 1.000000 0.0000000E+00
 48.07016 1.000000 0.0000000E+00
 48.12028 1.000000 0.0000000E+00
 48.17040 1.000000 0.0000000E+00
 48.22053 1.000000 0.0000000E+00
 48.27066 1.000000 0.0000000E+00
 48.32078 1.000000 0.0000000E+00
 48.37091 1.000000 0.0000000E+00
 48.42103 1.000000 0.0000000E+00
 48.47116 1.000000 0.0000000E+00
 48.52129 1.000000 0.0000000E+00
 48.57141 1.000000 0.0000000E+00
 48.62153 1.000000 0.0000000E+00
 48.67166 1.000000 0.0000000E+00
 48.72179 1.000000 0.0000000E+00
 48.77191 1.000000 0.0000000E+00
 48.82203 1.000000 0.0000000E+00
 48.87216 1.000000 0.0000000E+00
 48.92229 1.000000 0.0000000E+00
 48.97241 1.000000 0.0000000E+00
 49.02253 1.000000 0.0000000E+00
 49.07266 1.000000 0.0000000E+00
 49.12279 1.000000 0.0000000E+00
 49.17291 1.000000 0.0000000E+00
 49.22303 1.000000 0.0000000E+00
 49.27316 1.000000 0.0000000E+00
 49.32329 1.000000 0.0000000E+00
 49.37341 1.000000 0.0000000E+00
 49.42354 1.000000 0.0000000E+00
 49.47366 1.000000 0.0000000E+00
 49.52379 1.000000 0.0000000E+00
 49.57392 1.000000 0.0000000E+00
 49.62404 1.000000 0.0000000E+00
 49.67416 1.000000 0.0000000E+00
 49.72429 1.000000 0.0000000E+00
 49.77442 1.000000 0.0000000E+00
 49.82454 1.000000 0.0000000E+00
 49.87466 1.000000 0.0000000E+00
 49.92479 1.000000 0.0000000E+00
 49.97492 1.000000 0.0000000E+00
 50.02504 1.000000 0.0000000E+00
 50.07516 1.000000 0.0000000E+00
 50.12529 1.000000 0.0000000E+00
 50.17542 1.000000 0.0000000E+00
 50.22554 1.000000 0.0000000E+00
 50.27567 1.000000 0.0000000E+00
 50.32579 1.000000 0.0000000E+00
 50.37592 1.000000 0.0000000E+00
 50.42604 1.000000 0.0000000E+00
 50.47617 1.000000 0.0000000E+00
 50.52629 1.000000 0.0000000E+00
 50.57642 1.000000 0.0000000E+00
 50.62655 1.000000 0.0000000E+00
 50.67667 1.000000 0.0000000E+00
 50.72680 1.000000 0.0000000E+00
 50.77692 1.000000 0.0000000E+00
 50.82705 1.000000 0.0000000E+00
 50.87717 1.000000 0.0000000E+00
 50.92730 1.000000 0.0000000E+00
 50.97742 1.000000 0.0000000E+00
 51.02755 1.000000 0.0000000E+00
 51.07767 1.000000 0.0000000E+00
 51.12780 1.000000 0.0000000E+00
 51.17793 1.000000 0.0000000E+00
 51.22805 1.000000 0.0000000E+00
 51.27817 1.000000 0.0000000E+00
 51.32830 1.000000 0.0000000E+00
 51.37843 1.000000 0.0000000E+00
 51.42855 1.000000 0.0000000E+00
 51.47868 1.000000 0.0000000E+00
 51.52880 1.000000 0.0000000E+00
 51.57893 1.000000 0.0000000E+00
 51.62905 1.000000 0.0000000E+00
 51.67918 1.000000 0.0000000E+00
 51.72930 1.000000 0.0000000E+00
 51.77943 1.000000 0.0000000E+00
 51.82955 1.000000 0.0000000E+00
 51.87968 1.000000 0.0000000E+00
 51.92980 1.000000 0.0000000E+00
 51.97993 1.000000 0.0000000E+00
 52.03005 1.000000 0.0000000E+00
 52.08018 1.000000 0.0000000E+00
 52.13030 1.000000 0.0000000E+00
 52.18043 1.000000 0.0000000E+00
 52.23056 1.000000 0.0000000E+00
 52.28068 1.000000 0.0000000E+00
 52.33080 1.000000 0.0000000E+00
 52.38093 1.000000 0.0000000E+00
 52.43106 1.000000 0.0000000E+00
 52.48118 1.000000 0.0000000E+00
 52.53130 1.000000 0.0000000E+00
 52.58143 1.000000 0.0000000E+00
 52.63156 1.000000 0.0000000E+00
 52.68168 1.000000 0.0000000E+00
 52.73181 1.000000 0.0000000E+00
 52.78193 1.000000 0.0000000E+00
 52.83206 1.000000 0.0000000E+00
 52.88218 1.000000 0.0000000E+00
 52.93231 1.000000 0.0000000E+00
 52.98243 1.000000 0.0000000E+00
 53.03256 1.000000 0.0000000E+00
 53.08268 1.000000 0.0000000E+00
 53.13281 1.000000 0.0000000E+00
 53.18293 1.000000 0.0000000E+00
 53.23306 1.000000 0.0000000E+00
 53.28319 1.000000 0.0000000E+00
 53.33331 1.000000 0.0000000E+00
 53.38343 1.000000 0.0000000E+00
 53.43356 1.000000 0.0000000E+00
 53.48369 1.000000 0.0000000E+00
 53.53381 1.000000 0.0000000E+00
 53.58393 1.000000 0.0000000E+00
 53.63406 1.000000 0.0000000E+00
 53.68419 1.000000 0.0000000E+00
 53.73431 1.000000 0.0000000E+00
 53.78444 1.000000 0.0000000E+00
 53.83456 1.000000 0.0000000E+00
 53.88469 1.000000 0.0000000E+00
 53.93481 1.000000 0.0000000E+00
 53.98494 1.000000 0.0000000E+00
 54.03506 1.000000 0.0000000E+00
 54.08519 1.000000 0.0000000E+00
 54.13531 1.000000 0.0000000E+00
 54.18544 1.000000 0.0000000E+00
 54.23557 1.000000 0.0000000E+00
 54.28569 1.000000 0.0000000E+00
 54.33582 1.000000 0.0000000E+00
 54.38594 1.000000 0.0000000E+00
 54.43607 1.000000 0.0000000E+00
 54.48619 1.000000 0.0000000E+00
 54.53632 1.000000 0.0000000E+00
 54.58644 1.000000 0.0000000E+00
 54.63657 1.000000 0.0000000E+00
 54.68669 1.000000 0.0000000E+00
 54.73682 1.000000 0.0000000E+00
 54.78695 1.000000 0.0000000E+00
 54.83707 1.000000 0.0000000E+00
 54.88720 1.000000 0.0000000E+00
 54.93732 1.000000 0.0000000E+00
 54.98745 1.000000 0.0000000E+00
 55.03757 1.000000 0.0000000E+00
 55.08770 1.000000 0.0000000E+00
 55.13782 1.000000 0.0000000E+00
 55.18795 1.000000 0.0000000E+00
 55.23808 1.000000 0.0000000E+00
 55.28820 1.000000 0.0000000E+00
 55.33832 1.000000 0.0000000E+00
 55.38845 1.000000 0.0000000E+00
 55.43858 1.000000 0.0000000E+00
 55.48870 1.000000 0.0000000E+00
 55.53882 1.000000 0.0000000E+00
 55.58895 1.000000 0.0000000E+00
 55.63908 1.000000 0.0000000E+00
 55.68920 1.000000 0.0000000E+00
 55.73932 1.000000 0.0000000E+00
 55.78945 1.000000 0.0000000E+00
 55.83958 1.000000 0.0000000E+00
 55.88970 1.000000 0.0000000E+00
 55.93983 1.000000 0.0000000E+00
 55.98995 1.000000 0.0000000E+00
 56.04008 1.000000 0.0000000E+00
 56.09020 1.000000 0.0000000E+00
 56.14033 1.000000 0.0000000E+00
 56.19045 1.000000 0.0000000E+00
 56.24058 1.000000 0.0000000E+00
 56.29070 1.000000 0.0000000E+00
 56.34083 1.000000 0.0000000E+00
 56.39095 1.000000 0.0000000E+00
 56.44108 1.000000 0.0000000E+00
 56.49121 1.000000 0.0000000E+00
 56.54133 1.000000 0.0000000E+00
 56.59145 1.000000 0.0000000E+00
 56.64158 1.000000 0.0000000E+00
 56.69171 1.000000 0.0000000E+00
 56.74183 1.000000 0.0000000E+00
 56.79195 1.000000 0.0000000E+00
 56.84208 1.000000 0.0000000E+00
 56.89221 1.000000 0.0000000E+00
 56.94233 1.000000 0.0000000E+00
 56.99246 1.000000 0.0000000E+00
 57.04258 1.000000 0.0000000E+00
 57.09271 1.000000 0.0000000E+00
 57.14283 1.000000 0.0000000E+00
 57.19296 1.000000 0.0000000E+00
 57.24308 1.000000 0.0000000E+00
 57.29321 1.000000 0.0000000E+00
 57.34333 1.000000 0.0000000E+00
 57.39346 1.000000 0.0000000E+00
 57.44358 1.000000 0.0000000E+00
 57.49371 1.000000 0.0000000E+00
 57.54383 1.000000 0.0000000E+00
 57.59396 1.000000 0.0000000E+00
 57.64408 1.000000 0.0000000E+00
 57.69421 1.000000 0.0000000E+00
 57.74434 1.000000 0.0000000E+00
 57.79446 1.000000 0.0000000E+00
 57.84459 1.000000 0.0000000E+00
 57.89471 1.000000 0.0000000E+00
 57.94484 1.000000 0.0000000E+00
 57.99496 1.000000 0.0000000E+00
 58.04509 1.000000 0.0000000E+00
 58.09521 1.000000 0.0000000E+00
 58.14534 1.000000 0.0000000E+00
 58.19546 1.000000 0.0000000E+00
 58.24559 1.000000 0.0000000E+00
 58.29572 1.000000 0.0000000E+00
 58.34584 1.000000 0.0000000E+00
 58.39596 1.000000 0.0000000E+00
 58.44609 1.000000 0.0000000E+00
 58.49622 1.000000 0.0000000E+00
 58.54634 1.000000 0.0000000E+00
 58.59647 1.000000 0.0000000E+00
 58.64659 1.000000 0.0000000E+00
 58.69672 1.000000 0.0000000E+00
 58.74685 1.000000 0.0000000E+00
 58.79697 1.000000 0.0000000E+00
 58.84709 1.000000 0.0000000E+00
 58.89722 1.000000 0.0000000E+00
 58.94735 1.000000 0.0000000E+00
 58.99747 1.000000 0.0000000E+00
 59.04759 1.000000 0.0000000E+00
 59.09772 1.000000 0.0000000E+00
 59.14785 1.000000 0.0000000E+00
 59.19797 1.000000 0.0000000E+00
 59.24809 1.000000 0.0000000E+00
 59.29822 1.000000 0.0000000E+00
 59.34835 1.000000 0.0000000E+00
 59.39847 1.000000 0.0000000E+00
 59.44859 1.000000 0.0000000E+00
 59.49872 1.000000 0.0000000E+00
 59.54885 1.000000 0.0000000E+00
 59.59897 1.000000 0.0000000E+00
 59.64910 1.000000 0.0000000E+00
 59.69922 1.000000 0.0000000E+00
 59.74935 1.000000 0.0000000E+00
 59.79948 1.000000 0.0000000E+00
 59.84960 1.000000 0.0000000E+00
 59.89972 1.000000 0.0000000E+00
 59.94985 1.000000 0.0000000E+00
 59.99998 1.000000 0.0000000E+00
 60.05010 1.000000 0.0000000E+00
 60.10022 1.000000 0.0000000E+00
 60.15035 1.000000 0.0000000E+00
 60.20048 1.000000 0.0000000E+00
 60.25060 1.000000 0.0000000E+00
 60.30072 1.000000 0.0000000E+00
 60.35085 1.000000 0.0000000E+00
 60.40098 1.000000 0.0000000E+00
 60.45110 1.000000 0.0000000E+00
 60.50122 1.000000 0.0000000E+00
 60.55135 1.000000 0.0000000E+00
 60.60148 1.000000 0.0000000E+00
 60.65160 1.000000 0.0000000E+00
 60.70173 1.000000 0.0000000E+00
 60.75185 1.000000 0.0000000E+00
 60.80198 1.000000 0.0000000E+00
 60.85211 1.000000 0.0000000E+00
 60.90223 1.000000 0.0000000E+00
 60.95235 1.000000 0.0000000E+00
 61.00248 1.000000 0.0000000E+00
 61.05261 1.000000 0.0000000E+00
 61.10273 1.000000 0.0000000E+00
 61.15285 1.000000 0.0000000E+00
 61.20298 1.000000 0.0000000E+00
 61.25311 1.000000 0.0000000E+00
 61.30323 1.000000 0.0000000E+00
 61.35336 1.000000 0.0000000E+00
 61.40348 1.000000 0.0000000E+00
 61.45361 1.000000 0.0000000E+00
 61.50373 1.000000 0.0000000E+00
 61.55386 1.000000 0.0000000E+00
 61.60398 1.000000 0.0000000E+00
 61.65411 1.000000 0.0000000E+00
 61.70424 1.000000 0.0000000E+00
 61.75436 1.000000 0.0000000E+00
 61.80449 1.000000 0.0000000E+00
 61.85461 1.000000 0.0000000E+00
 61.90474 1.000000 0.0000000E+00
 61.95486 1.000000 0.0000000E+00
 62.00499 1.000000 0.0000000E+00
 62.05511 1.000000 0.0000000E+00
 62.10524 1.000000 0.0000000E+00
 62.15536 1.000000 0.0000000E+00
 62.20549 1.000000 0.0000000E+00
 62.25561 1.000000 0.0000000E+00
 62.30574 1.000000 0.0000000E+00
 62.35586 1.000000 0.0000000E+00
 62.40599 1.000000 0.0000000E+00
 62.45612 1.000000 0.0000000E+00
 62.50624 1.000000 0.0000000E+00
 62.55636 1.000000 0.0000000E+00
 62.60649 1.000000 0.0000000E+00
 62.65662 1.000000 0.0000000E+00
 62.70674 1.000000 0.0000000E+00
 62.75687 1.000000 0.0000000E+00
 62.80699 1.000000 0.0000000E+00
 62.85712 1.000000 0.0000000E+00
 62.90724 1.000000 0.0000000E+00
 62.95737 1.000000 0.0000000E+00
 63.00749 1.000000 0.0000000E+00
 63.05762 1.000000 0.0000000E+00
 63.10774 1.000000 0.0000000E+00
 63.15787 1.000000 0.0000000E+00
 63.20799 1.000000 0.0000000E+00
 63.25812 1.000000 0.0000000E+00
 63.30824 1.000000 0.0000000E+00
 63.35837 1.000000 0.0000000E+00
 63.40849 1.000000 0.0000000E+00
 63.45862 1.000000 0.0000000E+00
 63.50875 1.000000 0.0000000E+00
 63.55887 1.000000 0.0000000E+00
 63.60899 1.000000 0.0000000E+00
 63.65912 1.000000 0.0000000E+00
 63.70925 1.000000 0.0000000E+00
 63.75937 1.000000 0.0000000E+00
 63.80949 1.000000 0.0000000E+00
 63.85962 1.000000 0.0000000E+00
 63.90975 1.000000 0.0000000E+00
 63.95987 1.000000 0.0000000E+00
 64.01000 1.000000 0.0000000E+00
 64.06012 1.000000 0.0000000E+00
 64.11024 1.000000 0.0000000E+00
 64.16038 1.000000 0.0000000E+00
 64.21050 1.000000 0.0000000E+00
 64.26062 1.000000 0.0000000E+00
 64.31075 1.000000 0.0000000E+00
 64.36088 1.000000 0.0000000E+00
 64.41100 1.000000 0.0000000E+00
 64.46112 1.000000 0.0000000E+00
 64.51125 1.000000 0.0000000E+00
 64.56138 1.000000 0.0000000E+00
 64.61150 1.000000 0.0000000E+00
 64.66163 1.000000 0.0000000E+00
 64.71175 1.000000 0.0000000E+00
 64.76188 1.000000 0.0000000E+00
 64.81200 1.000000 0.0000000E+00
 64.86213 1.000000 0.0000000E+00
 64.91225 1.000000 0.0000000E+00
 64.96238 1.000000 0.0000000E+00
 65.01250 1.000000 0.0000000E+00
 65.06263 1.000000 0.0000000E+00
 65.11275 1.000000 0.0000000E+00
 65.16288 1.000000 0.0000000E+00
 65.21301 1.000000 0.0000000E+00
 65.26313 1.000000 0.0000000E+00
 65.31326 1.000000 0.0000000E+00
 65.36338 1.000000 0.0000000E+00
 65.41351 1.000000 0.0000000E+00
 65.46363 1.000000 0.0000000E+00
 65.51376 1.000000 0.0000000E+00
 65.56388 1.000000 0.0000000E+00
 65.61401 1.000000 0.0000000E+00
 65.66413 1.000000 0.0000000E+00
 65.71426 1.000000 0.0000000E+00
 65.76438 1.000000 0.0000000E+00
 65.81451 1.000000 0.0000000E+00
 65.86464 1.000000 0.0000000E+00
 65.91476 1.000000 0.0000000E+00
 65.96488 1.000000 0.0000000E+00
 66.01501 1.000000 0.0000000E+00
 66.06514 1.000000 0.0000000E+00
 66.11526 1.000000 0.0000000E+00
 66.16538 1.000000 0.0000000E+00
 66.21551 1.000000 0.0000000E+00
 66.26564 1.000000 0.0000000E+00
 66.31576 1.000000 0.0000000E+00
 66.36588 1.000000 0.0000000E+00
 66.41602 1.000000 0.0000000E+00
 66.46614 1.000000 0.0000000E+00
 66.51627 1.000000 0.0000000E+00
 66.56638 1.000000 0.0000000E+00
 66.61652 1.000000 0.0000000E+00
 66.66664 1.000000 0.0000000E+00
 66.71677 1.000000 0.0000000E+00
 66.76689 1.000000 0.0000000E+00
 66.81702 1.000000 0.0000000E+00
 66.86714 1.000000 0.0000000E+00
 66.91727 1.000000 0.0000000E+00
 66.96739 1.000000 0.0000000E+00
 67.01752 1.000000 0.0000000E+00
 67.06764 1.000000 0.0000000E+00
 67.11777 1.000000 0.0000000E+00
 67.16789 1.000000 0.0000000E+00
 67.21802 1.000000 0.0000000E+00
 67.26814 1.000000 0.0000000E+00
 67.31827 1.000000 0.0000000E+00
 67.36839 1.000000 0.0000000E+00
 67.41852 1.000000 0.0000000E+00
 67.46864 1.000000 0.0000000E+00
 67.51877 1.000000 0.0000000E+00
 67.56889 1.000000 0.0000000E+00
 67.61902 1.000000 0.0000000E+00
 67.66914 1.000000 0.0000000E+00
 67.71927 1.000000 0.0000000E+00
 67.76939 1.000000 0.0000000E+00
 67.81952 1.000000 0.0000000E+00
 67.86964 1.000000 0.0000000E+00
 67.91977 1.000000 0.0000000E+00
 67.96990 1.000000 0.0000000E+00
 68.02002 1.000000 0.0000000E+00
 68.07014 1.000000 0.0000000E+00
 68.12027 1.000000 0.0000000E+00
 68.17040 1.000000 0.0000000E+00
 68.22052 1.000000 0.0000000E+00
 68.27065 1.000000 0.0000000E+00
 68.32077 1.000000 0.0000000E+00
 68.37090 1.000000 0.0000000E+00
 68.42102 1.000000 0.0000000E+00
 68.47115 1.000000 0.0000000E+00
 68.52128 1.000000 0.0000000E+00
 68.57140 1.000000 0.0000000E+00
 68.62152 1.000000 0.0000000E+00
 68.67165 1.000000 0.0000000E+00
 68.72178 1.000000 0.0000000E+00
 68.77190 1.000000 0.0000000E+00
 68.82202 1.000000 0.0000000E+00
 68.87215 1.000000 0.0000000E+00
 68.92228 1.000000 0.0000000E+00
 68.97240 1.000000 0.0000000E+00
 69.02253 1.000000 0.0000000E+00
 69.07265 1.000000 0.0000000E+00
 69.12278 1.000000 0.0000000E+00
 69.17290 1.000000 0.0000000E+00
 69.22303 1.000000 0.0000000E+00
 69.27316 1.000000 0.0000000E+00
 69.32328 1.000000 0.0000000E+00
 69.37341 1.000000 0.0000000E+00
 69.42353 1.000000 0.0000000E+00
 69.47366 1.000000 0.0000000E+00
 69.52378 1.000000 0.0000000E+00
 69.57391 1.000000 0.0000000E+00
 69.62403 1.000000 0.0000000E+00
 69.67416 1.000000 0.0000000E+00
 69.72428 1.000000 0.0000000E+00
 69.77441 1.000000 0.0000000E+00
 69.82453 1.000000 0.0000000E+00
 69.87466 1.000000 0.0000000E+00
 69.92478 1.000000 0.0000000E+00
 69.97491 1.000000 0.0000000E+00
 70.02503 1.000000 0.0000000E+00
 70.07516 1.000000 0.0000000E+00
 70.12528 1.000000 0.0000000E+00
 70.17541 1.000000 0.0000000E+00
 70.22553 1.000000 0.0000000E+00
 70.27567 1.000000 0.0000000E+00
 70.32578 1.000000 0.0000000E+00
 70.37591 1.000000 0.0000000E+00
 70.42603 1.000000 0.0000000E+00
 70.47617 1.000000 0.0000000E+00
 70.52628 1.000000 0.0000000E+00
 70.57641 1.000000 0.0000000E+00
 70.62654 1.000000 0.0000000E+00
 70.67667 1.000000 0.0000000E+00
 70.72678 1.000000 0.0000000E+00
 70.77691 1.000000 0.0000000E+00
 70.82704 1.000000 0.0000000E+00
 70.87717 1.000000 0.0000000E+00
 70.92728 1.000000 0.0000000E+00
 70.97741 1.000000 0.0000000E+00
 71.02754 1.000000 0.0000000E+00
 71.07767 1.000000 0.0000000E+00
 71.12778 1.000000 0.0000000E+00
 71.17792 1.000000 0.0000000E+00
 71.22804 1.000000 0.0000000E+00
 71.27817 1.000000 0.0000000E+00
 71.32829 1.000000 0.0000000E+00
 71.37842 1.000000 0.0000000E+00
 71.42854 1.000000 0.0000000E+00
 71.47867 1.000000 0.0000000E+00
 71.52879 1.000000 0.0000000E+00
 71.57892 1.000000 0.0000000E+00
 71.62904 1.000000 0.0000000E+00
 71.67917 1.000000 0.0000000E+00
 71.72929 1.000000 0.0000000E+00
 71.77942 1.000000 0.0000000E+00
 71.82954 1.000000 0.0000000E+00
 71.87967 1.000000 0.0000000E+00
 71.92979 1.000000 0.0000000E+00
 71.97992 1.000000 0.0000000E+00
 72.03004 1.000000 0.0000000E+00
 72.08017 1.000000 0.0000000E+00
 72.13029 1.000000 0.0000000E+00
 72.18042 1.000000 0.0000000E+00
 72.23055 1.000000 0.0000000E+00
 72.28067 1.000000 0.0000000E+00
 72.33080 1.000000 0.0000000E+00
 72.38092 1.000000 0.0000000E+00
 72.43105 1.000000 0.0000000E+00
 72.48117 1.000000 0.0000000E+00
 72.53130 1.000000 0.0000000E+00
 72.58142 1.000000 0.0000000E+00
 72.63155 1.000000 0.0000000E+00
 72.68167 1.000000 0.0000000E+00
 72.73180 1.000000 0.0000000E+00
 72.78193 1.000000 0.0000000E+00
 72.83205 1.000000 0.0000000E+00
 72.88217 1.000000 0.0000000E+00
 72.93230 1.000000 0.0000000E+00
 72.98243 1.000000 0.0000000E+00
 73.03255 1.000000 0.0000000E+00
 73.08267 1.000000 0.0000000E+00
 73.13280 1.000000 0.0000000E+00
 73.18293 1.000000 0.0000000E+00
 73.23305 1.000000 0.0000000E+00
 73.28318 1.000000 0.0000000E+00
 73.33331 1.000000 0.0000000E+00
 73.38343 1.000000 0.0000000E+00
 73.43355 1.000000 0.0000000E+00
 73.48368 1.000000 0.0000000E+00
 73.53381 1.000000 0.0000000E+00
 73.58393 1.000000 0.0000000E+00
 73.63405 1.000000 0.0000000E+00
 73.68418 1.000000 0.0000000E+00
 73.73431 1.000000 0.0000000E+00
 73.78443 1.000000 0.0000000E+00
 73.83456 1.000000 0.0000000E+00
 73.88468 1.000000 0.0000000E+00
 73.93481 1.000000 0.0000000E+00
 73.98493 1.000000 0.0000000E+00
 74.03506 1.000000 0.0000000E+00
 74.08518 1.000000 0.0000000E+00
 74.13531 1.000000 0.0000000E+00
 74.18543 1.000000 0.0000000E+00
 74.23556 1.000000 0.0000000E+00
 74.28568 1.000000 0.0000000E+00
 74.33581 1.000000 0.0000000E+00
 74.38593 1.000000 0.0000000E+00
 74.43606 1.000000 0.0000000E+00
 74.48618 1.000000 0.0000000E+00
 74.53631 1.000000 0.0000000E+00
 74.58643 1.000000 0.0000000E+00
 74.63656 1.000000 0.0000000E+00
 74.68668 1.000000 0.0000000E+00
 74.73681 1.000000 0.0000000E+00
 74.78693 1.000000 0.0000000E+00
 74.83706 1.000000 0.0000000E+00
 74.88718 1.000000 0.0000000E+00
 74.93731 1.000000 0.0000000E+00
 74.98743 1.000000 0.0000000E+00
 75.03757 1.000000 0.0000000E+00
 75.08768 1.000000 0.0000000E+00
 75.13781 1.000000 0.0000000E+00
 75.18793 1.000000 0.0000000E+00
 75.23807 1.000000 0.0000000E+00
 75.28819 1.000000 0.0000000E+00
 75.33831 1.000000 0.0000000E+00
 75.38844 1.000000 0.0000000E+00
 75.43857 1.000000 0.0000000E+00
 75.48869 1.000000 0.0000000E+00
 75.53881 1.000000 0.0000000E+00
 75.58894 1.000000 0.0000000E+00
 75.63907 1.000000 0.0000000E+00
 75.68919 1.000000 0.0000000E+00
 75.73931 1.000000 0.0000000E+00
 75.78944 1.000000 0.0000000E+00
 75.83957 1.000000 0.0000000E+00
 75.88969 1.000000 0.0000000E+00
 75.93982 1.000000 0.0000000E+00
 75.98994 1.000000 0.0000000E+00
 76.04007 1.000000 0.0000000E+00
 76.09019 1.000000 0.0000000E+00
 76.14032 1.000000 0.0000000E+00
 76.19044 1.000000 0.0000000E+00
 76.24057 1.000000 0.0000000E+00
 76.29070 1.000000 0.0000000E+00
 76.34082 1.000000 0.0000000E+00
 76.39095 1.000000 0.0000000E+00
 76.44107 1.000000 0.0000000E+00
 76.49120 1.000000 0.0000000E+00
 76.54132 1.000000 0.0000000E+00
 76.59145 1.000000 0.0000000E+00
 76.64157 1.000000 0.0000000E+00
 76.69170 1.000000 0.0000000E+00
 76.74182 1.000000 0.0000000E+00
 76.79195 1.000000 0.0000000E+00
 76.84207 1.000000 0.0000000E+00
 76.89220 1.000000 0.0000000E+00
 76.94232 1.000000 0.0000000E+00
 76.99245 1.000000 0.0000000E+00
 77.04257 1.000000 0.0000000E+00
 77.09270 1.000000 0.0000000E+00
 77.14283 1.000000 0.0000000E+00
 77.19295 1.000000 0.0000000E+00
 77.24307 1.000000 0.0000000E+00
 77.29320 1.000000 0.0000000E+00
 77.34333 1.000000 0.0000000E+00
 77.39345 1.000000 0.0000000E+00
 77.44357 1.000000 0.0000000E+00
 77.49370 1.000000 0.0000000E+00
 77.54383 1.000000 0.0000000E+00
 77.59395 1.000000 0.0000000E+00
 77.64407 1.000000 0.0000000E+00
 77.69421 1.000000 0.0000000E+00
 77.74433 1.000000 0.0000000E+00
 77.79446 1.000000 0.0000000E+00
 77.84457 1.000000 0.0000000E+00
 77.89471 1.000000 0.0000000E+00
 77.94483 1.000000 0.0000000E+00
 77.99496 1.000000 0.0000000E+00
 78.04508 1.000000 0.0000000E+00
 78.09521 1.000000 0.0000000E+00
 78.14533 1.000000 0.0000000E+00
 78.19546 1.000000 0.0000000E+00
 78.24558 1.000000 0.0000000E+00
 78.29571 1.000000 0.0000000E+00
 78.34583 1.000000 0.0000000E+00
 78.39596 1.000000 0.0000000E+00
 78.44608 1.000000 0.0000000E+00
 78.49621 1.000000 0.0000000E+00
 78.54633 1.000000 0.0000000E+00
 78.59646 1.000000 0.0000000E+00
 78.64658 1.000000 0.0000000E+00
 78.69671 1.000000 0.0000000E+00
 78.74683 1.000000 0.0000000E+00
 78.79696 1.000000 0.0000000E+00
 78.84708 1.000000 0.0000000E+00
 78.89721 1.000000 0.0000000E+00
 78.94733 1.000000 0.0000000E+00
 78.99746 1.000000 0.0000000E+00
 79.04758 1.000000 0.0000000E+00
 79.09771 1.000000 0.0000000E+00
 79.14783 1.000000 0.0000000E+00
 79.19796 1.000000 0.0000000E+00
 79.24809 1.000000 0.0000000E+00
 79.29821 1.000000 0.0000000E+00
 79.34834 1.000000 0.0000000E+00
 79.39846 1.000000 0.0000000E+00
 79.44859 1.000000 0.0000000E+00
 79.49871 1.000000 0.0000000E+00
 79.54884 1.000000 0.0000000E+00
 79.59896 1.000000 0.0000000E+00
 79.64909 1.000000 0.0000000E+00
 79.69921 1.000000 0.0000000E+00
 79.74934 1.000000 0.0000000E+00
 79.79947 1.000000 0.0000000E+00
 79.84959 1.000000 0.0000000E+00
 79.89971 1.000000 0.0000000E+00
 79.94984 1.000000 0.0000000E+00
 79.99997 1.000000 0.0000000E+00
 80.05009 1.000000 0.0000000E+00
 80.10021 1.000000 0.0000000E+00
 80.15034 1.000000 0.0000000E+00
 80.20047 1.000000 0.0000000E+00
 80.25060 1.000000 0.0000000E+00
 80.30072 1.000000 0.0000000E+00
 80.35085 1.000000 0.0000000E+00
 80.40097 1.000000 0.0000000E+00
 80.45109 1.000000 0.0000000E+00
 80.50121 1.000000 0.0000000E+00
 80.55135 1.000000 0.0000000E+00
 80.60147 1.000000 0.0000000E+00
 80.65160 1.000000 0.0000000E+00
 80.70172 1.000000 0.0000000E+00
 80.75185 1.000000 0.0000000E+00
 80.80197 1.000000 0.0000000E+00
 80.85209 1.000000 0.0000000E+00
 80.90222 1.000000 0.0000000E+00
 80.95235 1.000000 0.0000000E+00
 81.00247 1.000000 0.0000000E+00
 81.05260 1.000000 0.0000000E+00
 81.10272 1.000000 0.0000000E+00
 81.15285 1.000000 0.0000000E+00
 81.20298 1.000000 0.0000000E+00
 81.25310 1.000000 0.0000000E+00
 81.30322 1.000000 0.0000000E+00
 81.35335 1.000000 0.0000000E+00
 81.40347 1.000000 0.0000000E+00
 81.45360 1.000000 0.0000000E+00
 81.50372 1.000000 0.0000000E+00
 81.55386 1.000000 0.0000000E+00
 81.60398 1.000000 0.0000000E+00
 81.65411 1.000000 0.0000000E+00
 81.70422 1.000000 0.0000000E+00
 81.75435 1.000000 0.0000000E+00
 81.80447 1.000000 0.0000000E+00
 81.85460 1.000000 0.0000000E+00
 81.90473 1.000000 0.0000000E+00
 81.95486 1.000000 0.0000000E+00
 82.00498 1.000000 0.0000000E+00
 82.05511 1.000000 0.0000000E+00
 82.10522 1.000000 0.0000000E+00
 82.15535 1.000000 0.0000000E+00
 82.20547 1.000000 0.0000000E+00
 82.25560 1.000000 0.0000000E+00
 82.30573 1.000000 0.0000000E+00
 82.35586 1.000000 0.0000000E+00
 82.40598 1.000000 0.0000000E+00
 82.45611 1.000000 0.0000000E+00
 82.50623 1.000000 0.0000000E+00
 82.55635 1.000000 0.0000000E+00
 82.60648 1.000000 0.0000000E+00
 82.65661 1.000000 0.0000000E+00
 82.70673 1.000000 0.0000000E+00
 82.75686 1.000000 0.0000000E+00
 82.80698 1.000000 0.0000000E+00
 82.85711 1.000000 0.0000000E+00
 82.90723 1.000000 0.0000000E+00
 82.95735 1.000000 0.0000000E+00
 83.00748 1.000000 0.0000000E+00
 83.05761 1.000000 0.0000000E+00
 83.10773 1.000000 0.0000000E+00
 83.15786 1.000000 0.0000000E+00
 83.20798 1.000000 0.0000000E+00
 83.25811 1.000000 0.0000000E+00
 83.30824 1.000000 0.0000000E+00
 83.35836 1.000000 0.0000000E+00
 83.40849 1.000000 0.0000000E+00
 83.45861 1.000000 0.0000000E+00
 83.50874 1.000000 0.0000000E+00
 83.55886 1.000000 0.0000000E+00
 83.60899 1.000000 0.0000000E+00
 83.65912 1.000000 0.0000000E+00
 83.70924 1.000000 0.0000000E+00
 83.75936 1.000000 0.0000000E+00
 83.80949 1.000000 0.0000000E+00
 83.85961 1.000000 0.0000000E+00
 83.90974 1.000000 0.0000000E+00
 83.95986 1.000000 0.0000000E+00
 84.00999 1.000000 0.0000000E+00
 84.06012 1.000000 0.0000000E+00
 84.11024 1.000000 0.0000000E+00
 84.16037 1.000000 0.0000000E+00
 84.21049 1.000000 0.0000000E+00
 84.26061 1.000000 0.0000000E+00
 84.31074 1.000000 0.0000000E+00
 84.36086 1.000000 0.0000000E+00
 84.41100 1.000000 0.0000000E+00
 84.46112 1.000000 0.0000000E+00
 84.51125 1.000000 0.0000000E+00
 84.56137 1.000000 0.0000000E+00
 84.61149 1.000000 0.0000000E+00
 84.66161 1.000000 0.0000000E+00
 84.71174 1.000000 0.0000000E+00
 84.76187 1.000000 0.0000000E+00
 84.81200 1.000000 0.0000000E+00
 84.86212 1.000000 0.0000000E+00
 84.91225 1.000000 0.0000000E+00
 84.96237 1.000000 0.0000000E+00
 85.01249 1.000000 0.0000000E+00
 85.06261 1.000000 0.0000000E+00
 85.11275 1.000000 0.0000000E+00
 85.16287 1.000000 0.0000000E+00
 85.21300 1.000000 0.0000000E+00
 85.26312 1.000000 0.0000000E+00
 85.31325 1.000000 0.0000000E+00
 85.36337 1.000000 0.0000000E+00
 85.41351 1.000000 0.0000000E+00
 85.46362 1.000000 0.0000000E+00
 85.51375 1.000000 0.0000000E+00
 85.56387 1.000000 0.0000000E+00
 85.61400 1.000000 0.0000000E+00
 85.66412 1.000000 0.0000000E+00
 85.71425 1.000000 0.0000000E+00
 85.76438 1.000000 0.0000000E+00
 85.81451 1.000000 0.0000000E+00
 85.86462 1.000000 0.0000000E+00
 85.91475 1.000000 0.0000000E+00
 85.96487 1.000000 0.0000000E+00
 86.01500 1.000000 0.0000000E+00
 86.06512 1.000000 0.0000000E+00
 86.11526 1.000000 0.0000000E+00
 86.16538 1.000000 0.0000000E+00
 86.21551 1.000000 0.0000000E+00
 86.26563 1.000000 0.0000000E+00
 86.31575 1.000000 0.0000000E+00
 86.36588 1.000000 0.0000000E+00
 86.41600 1.000000 0.0000000E+00
 86.46613 1.000000 0.0000000E+00
 86.51626 1.000000 0.0000000E+00
 86.56638 1.000000 0.0000000E+00
 86.61651 1.000000 0.0000000E+00
 86.66663 1.000000 0.0000000E+00
 86.71675 1.000000 0.0000000E+00
 86.76688 1.000000 0.0000000E+00
 86.81700 1.000000 0.0000000E+00
 86.86713 1.000000 0.0000000E+00
 86.91726 1.000000 0.0000000E+00
 86.96738 1.000000 0.0000000E+00
 87.01751 1.000000 0.0000000E+00
 87.06763 1.000000 0.0000000E+00
 87.11775 1.000000 0.0000000E+00
 87.16788 1.000000 0.0000000E+00
 87.21801 1.000000 0.0000000E+00
 87.26814 1.000000 0.0000000E+00
 87.31826 1.000000 0.0000000E+00
 87.36839 1.000000 0.0000000E+00
 87.41851 1.000000 0.0000000E+00
 87.46864 1.000000 0.0000000E+00
 87.51875 1.000000 0.0000000E+00
 87.56889 1.000000 0.0000000E+00
 87.61901 1.000000 0.0000000E+00
 87.66914 1.000000 0.0000000E+00
 87.71926 1.000000 0.0000000E+00
 87.76939 1.000000 0.0000000E+00
 87.81951 1.000000 0.0000000E+00
 87.86964 1.000000 0.0000000E+00
 87.91977 1.000000 0.0000000E+00
 87.96989 1.000000 0.0000000E+00
 88.02001 1.000000 0.0000000E+00
 88.07014 1.000000 0.0000000E+00
 88.12026 1.000000 0.0000000E+00
 88.17039 1.000000 0.0000000E+00
 88.22051 1.000000 0.0000000E+00
 88.27065 1.000000 0.0000000E+00
 88.32077 1.000000 0.0000000E+00
 88.37089 1.000000 0.0000000E+00
 88.42101 1.000000 0.0000000E+00
 88.47114 1.000000 0.0000000E+00
 88.52126 1.000000 0.0000000E+00
 88.57139 1.000000 0.0000000E+00
 88.62152 1.000000 0.0000000E+00
 88.67165 1.000000 0.0000000E+00
 88.72177 1.000000 0.0000000E+00
 88.77189 1.000000 0.0000000E+00
 88.82201 1.000000 0.0000000E+00
 88.87214 1.000000 0.0000000E+00
 88.92226 1.000000 0.0000000E+00
 88.97240 1.000000 0.0000000E+00
 89.02252 1.000000 0.0000000E+00
 89.07265 1.000000 0.0000000E+00
 89.12277 1.000000 0.0000000E+00
 89.17290 1.000000 0.0000000E+00
 89.22301 1.000000 0.0000000E+00
 89.27314 1.000000 0.0000000E+00
 89.32327 1.000000 0.0000000E+00
 89.37340 1.000000 0.0000000E+00
 89.42352 1.000000 0.0000000E+00
 89.47365 1.000000 0.0000000E+00
 89.52377 1.000000 0.0000000E+00
 89.57390 1.000000 0.0000000E+00
 89.62402 1.000000 0.0000000E+00
 89.67414 1.000000 0.0000000E+00
 89.72427 1.000000 0.0000000E+00
 89.77440 1.000000 0.0000000E+00
 89.82452 1.000000 0.0000000E+00
 89.87465 1.000000 0.0000000E+00
 89.92477 1.000000 0.0000000E+00
 89.97491 1.000000 0.0000000E+00
 90.02502 1.000000 0.0000000E+00
 90.07515 1.000000 0.0000000E+00
 90.12527 1.000000 0.0000000E+00
 90.17540 1.000000 0.0000000E+00
 90.22552 1.000000 0.0000000E+00
 90.27565 1.000000 0.0000000E+00
 90.32578 1.000000 0.0000000E+00
 90.37591 1.000000 0.0000000E+00
 90.42603 1.000000 0.0000000E+00
 90.47615 1.000000 0.0000000E+00
 90.52628 1.000000 0.0000000E+00
 90.57640 1.000000 0.0000000E+00
 90.62653 1.000000 0.0000000E+00
 90.67665 1.000000 0.0000000E+00
 90.72678 1.000000 0.0000000E+00
 90.77691 1.000000 0.0000000E+00
 90.82703 1.000000 0.0000000E+00
 90.87715 1.000000 0.0000000E+00
 90.92728 1.000000 0.0000000E+00
 90.97740 1.000000 0.0000000E+00
 91.02753 1.000000 0.0000000E+00
 91.07766 1.000000 0.0000000E+00
 91.12778 1.000000 0.0000000E+00
 91.17791 1.000000 0.0000000E+00
 91.22803 1.000000 0.0000000E+00
 91.27815 1.000000 0.0000000E+00
 91.32828 1.000000 0.0000000E+00
 91.37840 1.000000 0.0000000E+00
 91.42854 1.000000 0.0000000E+00
 91.47866 1.000000 0.0000000E+00
 91.52879 1.000000 0.0000000E+00
 91.57891 1.000000 0.0000000E+00
 91.62904 1.000000 0.0000000E+00
 91.67916 1.000000 0.0000000E+00
 91.72928 1.000000 0.0000000E+00
 91.77940 1.000000 0.0000000E+00
 91.82954 1.000000 0.0000000E+00
 91.87966 1.000000 0.0000000E+00
 91.92979 1.000000 0.0000000E+00
 91.97991 1.000000 0.0000000E+00
 92.03004 1.000000 0.0000000E+00
 92.08017 1.000000 0.0000000E+00
 92.13028 1.000000 0.0000000E+00
 92.18041 1.000000 0.0000000E+00
 92.23054 1.000000 0.0000000E+00
 92.28066 1.000000 0.0000000E+00
 92.33079 1.000000 0.0000000E+00
 92.38091 1.000000 0.0000000E+00
 92.43104 1.000000 0.0000000E+00
 92.48117 1.000000 0.0000000E+00
 92.53129 1.000000 0.0000000E+00
 92.58141 1.000000 0.0000000E+00
 92.63154 1.000000 0.0000000E+00
 92.68166 1.000000 0.0000000E+00
 92.73179 1.000000 0.0000000E+00
 92.78191 1.000000 0.0000000E+00
 92.83205 1.000000 0.0000000E+00
 92.88217 1.000000 0.0000000E+00
 92.93230 1.000000 0.0000000E+00
 92.98241 1.000000 0.0000000E+00
 93.03254 1.000000 0.0000000E+00
 93.08266 1.000000 0.0000000E+00
 93.13279 1.000000 0.0000000E+00
 93.18292 1.000000 0.0000000E+00
 93.23305 1.000000 0.0000000E+00
 93.28317 1.000000 0.0000000E+00
 93.33330 1.000000 0.0000000E+00
 93.38342 1.000000 0.0000000E+00
 93.43354 1.000000 0.0000000E+00
 93.48367 1.000000 0.0000000E+00
 93.53380 1.000000 0.0000000E+00
 93.58392 1.000000 0.0000000E+00
 93.63405 1.000000 0.0000000E+00
 93.68417 1.000000 0.0000000E+00
 93.73430 1.000000 0.0000000E+00
 93.78442 1.000000 0.0000000E+00
 93.83454 1.000000 0.0000000E+00
 93.88467 1.000000 0.0000000E+00
 93.93480 1.000000 0.0000000E+00
 93.98492 1.000000 0.0000000E+00
 94.03505 1.000000 0.0000000E+00
 94.08517 1.000000 0.0000000E+00
 94.13530 1.000000 0.0000000E+00
 94.18543 1.000000 0.0000000E+00
 94.23554 1.000000 0.0000000E+00
 94.28568 1.000000 0.0000000E+00
 94.33580 1.000000 0.0000000E+00
 94.38593 1.000000 0.0000000E+00
 94.43605 1.000000 0.0000000E+00
 94.48618 1.000000 0.0000000E+00
 94.53630 1.000000 0.0000000E+00
 94.58643 1.000000 0.0000000E+00
 94.63655 1.000000 0.0000000E+00
 94.68668 1.000000 0.0000000E+00
 94.73680 1.000000 0.0000000E+00
 94.78693 1.000000 0.0000000E+00
 94.83705 1.000000 0.0000000E+00
 94.88718 1.000000 0.0000000E+00
 94.93731 1.000000 0.0000000E+00
 94.98743 1.000000 0.0000000E+00
 95.03755 1.000000 0.0000000E+00
 95.08768 1.000000 0.0000000E+00
 95.13780 1.000000 0.0000000E+00
 95.18793 1.000000 0.0000000E+00
 95.23805 1.000000 0.0000000E+00
 95.28819 1.000000 0.0000000E+00
 95.33831 1.000000 0.0000000E+00
 95.38844 1.000000 0.0000000E+00
 95.43856 1.000000 0.0000000E+00
 95.48868 1.000000 0.0000000E+00
 95.53880 1.000000 0.0000000E+00
 95.58893 1.000000 0.0000000E+00
 95.63905 1.000000 0.0000000E+00
 95.68919 1.000000 0.0000000E+00
 95.73931 1.000000 0.0000000E+00
 95.78944 1.000000 0.0000000E+00
 95.83956 1.000000 0.0000000E+00
 95.88968 1.000000 0.0000000E+00
 95.93980 1.000000 0.0000000E+00
 95.98993 1.000000 0.0000000E+00
 96.04006 1.000000 0.0000000E+00
 96.09019 1.000000 0.0000000E+00
 96.14031 1.000000 0.0000000E+00
 96.19044 1.000000 0.0000000E+00
 96.24056 1.000000 0.0000000E+00
 96.29068 1.000000 0.0000000E+00
 96.34081 1.000000 0.0000000E+00
 96.39094 1.000000 0.0000000E+00
 96.44106 1.000000 0.0000000E+00
 96.49119 1.000000 0.0000000E+00
 96.54131 1.000000 0.0000000E+00
 96.59144 1.000000 0.0000000E+00
 96.64156 1.000000 0.0000000E+00
 96.69170 1.000000 0.0000000E+00
 96.74181 1.000000 0.0000000E+00
 96.79194 1.000000 0.0000000E+00
 96.84206 1.000000 0.0000000E+00
 96.89219 1.000000 0.0000000E+00
 96.94231 1.000000 0.0000000E+00
 96.99244 1.000000 0.0000000E+00
 97.04257 1.000000 0.0000000E+00
 97.09270 1.000000 0.0000000E+00
 97.14281 1.000000 0.0000000E+00
 97.19294 1.000000 0.0000000E+00
 97.24306 1.000000 0.0000000E+00
 97.29319 1.000000 0.0000000E+00
 97.34332 1.000000 0.0000000E+00
 97.39345 1.000000 0.0000000E+00
 97.44357 1.000000 0.0000000E+00
 97.49370 1.000000 0.0000000E+00
 97.54382 1.000000 0.0000000E+00
 97.59394 1.000000 0.0000000E+00
 97.64407 1.000000 0.0000000E+00
 97.69419 1.000000 0.0000000E+00
 97.74432 1.000000 0.0000000E+00
 97.79445 1.000000 0.0000000E+00
 97.84457 1.000000 0.0000000E+00
 97.89470 1.000000 0.0000000E+00
 97.94482 1.000000 0.0000000E+00
 97.99494 1.000000 0.0000000E+00
 98.04507 1.000000 0.0000000E+00
 98.09519 1.000000 0.0000000E+00
 98.14532 1.000000 0.0000000E+00
 98.19545 1.000000 0.0000000E+00
 98.24557 1.000000 0.0000000E+00
 98.29570 1.000000 0.0000000E+00
 98.34583 1.000000 0.0000000E+00
 98.39594 1.000000 0.0000000E+00
 98.44607 1.000000 0.0000000E+00
 98.49620 1.000000 0.0000000E+00
 98.54633 1.000000 0.0000000E+00
 98.59645 1.000000 0.0000000E+00
 98.64658 1.000000 0.0000000E+00
 98.69670 1.000000 0.0000000E+00
 98.74683 1.000000 0.0000000E+00
 98.79694 1.000000 0.0000000E+00
 98.84708 1.000000 0.0000000E+00
 98.89720 1.000000 0.0000000E+00
 98.94733 1.000000 0.0000000E+00
 98.99745 1.000000 0.0000000E+00
 99.04758 1.000000 0.0000000E+00
 99.09770 1.000000 0.0000000E+00
 99.14783 1.000000 0.0000000E+00
 99.19796 1.000000 0.0000000E+00
 99.24808 1.000000 0.0000000E+00
 99.29820 1.000000 0.0000000E+00
 99.34833 1.000000 0.0000000E+00
 99.39845 1.000000 0.0000000E+00
 99.44858 1.000000 0.0000000E+00
 99.49871 1.000000 0.0000000E+00
 99.54884 1.000000 0.0000000E+00
 99.59896 1.000000 0.0000000E+00
 99.64908 1.000000 0.0000000E+00
 99.69920 1.000000 0.0000000E+00
 99.74933 1.000000 0.0000000E+00
 99.79945 1.000000 0.0000000E+00
 99.84958 1.000000 0.0000000E+00
 99.89971 1.000000 0.0000000E+00
 99.94984 1.000000 0.0000000E+00
 99.99996 1.000000 0.0000000E+00
 100.0501 1.000000 0.0000000E+00
 100.1002 1.000000 0.0000000E+00
 100.1503 1.000000 0.0000000E+00
 100.2005 1.000000 0.0000000E+00
 100.2506 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osm_ns.0800

 256 8.187558
 0.0000000E+00 1.5617143E-02 3.1390458E-02 4.7321506E-02 6.3411862E-02
 7.9663128E-02 9.6076898E-02 0.1126548 0.1293985 0.1463096
 0.1633899 0.1806409 0.1980645 0.2156622 0.2334360
 0.2513875 0.2695186 0.2878309 0.3063263 0.3250067
 0.3438739 0.3629298 0.3821763 0.4016152 0.4212485
 0.4410781 0.4611060 0.4813342 0.5017647 0.5223995
 0.5432407 0.5642902 0.5855503 0.6070229 0.6287103
 0.6506146 0.6727379 0.6950824 0.7176503 0.7404439
 0.7634655 0.7867173 0.8102016 0.8339208 0.8578772
 0.8820730 0.9065109 0.9311932 0.9561223 0.9813006
 1.006731 1.032415 1.058357 1.084557 1.111020
 1.137747 1.164742 1.192006 1.219544 1.247356
 1.275447 1.303818 1.332474 1.361416 1.390647
 1.420171 1.449989 1.480106 1.510525 1.541247
 1.572276 1.603616 1.635270 1.667239 1.699529
 1.732141 1.765080 1.798348 1.831948 1.865885
 1.900161 1.934780 1.969744 2.005059 2.040727
 2.076751 2.113136 2.149884 2.187001 2.224488
 2.262350 2.300590 2.339213 2.378222 2.417622
 2.457415 2.497607 2.538200 2.579199 2.620608
 2.662431 2.704672 2.747336 2.790426 2.833948
 2.877904 2.922301 2.967141 3.012429 3.058171
 3.104370 3.151030 3.198158 3.245757 3.293831
 3.342387 3.391428 3.440959 3.490986 3.541513
 3.592545 3.644088 3.696146 3.748724 3.801829
 3.855464 3.909636 3.964349 4.019609 4.075423
 4.131794 4.188729 4.246234 4.304313 4.362973
 4.422220 4.482059 4.542497 4.603539 4.665191
 4.727460 4.790352 4.853873 4.918029 4.982826
 5.048272 5.114371 5.181132 5.248560 5.316663
 5.385447 5.454918 5.525084 5.595952 5.667528
 5.739820 5.812836 5.886582 5.961064 6.036292
 6.112272 6.189012 6.266519 6.344801 6.423867
 6.503722 6.584377 6.665837 6.748113 6.831212
 6.915141 6.999908 7.085525 7.171997 7.259335
 7.347544 7.436637 7.526620 7.617504 7.709296
 7.802006 7.895643 7.990217 8.085735 8.182210
 8.279650 8.378063 8.477461 8.577852 8.679248
 8.781658 8.885091 8.989559 9.095071 9.201639
 9.309272 9.417982 9.527780 9.638675 9.750679
 9.863803 9.978059 10.09346 10.21001 10.32773
 10.44662 10.56670 10.68799 10.81048 10.93420
 11.05916 11.18537 11.31284 11.44159 11.57162
 11.70296 11.83560 11.96957 12.10489 12.24155
 12.37959 12.51900 12.65981 12.80202 12.94566
 13.09073 13.23726 13.38525 13.53472 13.68568
 13.83815 13.99215 14.14769 14.30478 14.46345
 14.62370 14.78555 14.94903 15.11413 15.28089
 15.44932 15.61943 15.79124 15.96477 16.14003
 16.31705 16.49584 16.67641 16.85879 17.04300
 17.22904 17.41695 17.60674 17.79842 17.99202
 18.18756
 0.0000000E+00 -2.9270869E-04 -5.8606069E-04 -8.8001642E-04 -1.1745351E-03
 -1.4695744E-03 -1.7650910E-03 -2.0610394E-03 -2.3573735E-03 -2.6540447E-03
 -2.9510041E-03 -3.2481998E-03 -3.5455795E-03 -3.8430889E-03 -4.1406713E-03
 -4.4382694E-03 -4.7358233E-03 -5.0332714E-03 -5.3305505E-03 -5.6275963E-03
 -5.9243403E-03 -6.2207147E-03 -6.5166480E-03 -6.8120668E-03 -7.1068960E-03
 -7.4010585E-03 -7.6944749E-03 -7.9870624E-03 -8.2787387E-03 -8.5694166E-03
 -8.8590067E-03 -9.1474187E-03 -9.4345585E-03 -9.7203301E-03 -1.0004634E-02
 -1.0287371E-02 -1.0568435E-02 -1.0847720E-02 -1.1125117E-02 -1.1400512E-02
 -1.1673791E-02 -1.1944836E-02 -1.2213524E-02 -1.2479735E-02 -1.2743336E-02
 -1.3004200E-02 -1.3262191E-02 -1.3517172E-02 -1.3769004E-02 -1.4017541E-02
 -1.4262637E-02 -1.4504140E-02 -1.4741894E-02 -1.4975742E-02 -1.5205518E-02
 -1.5431060E-02 -1.5652195E-02 -1.5868746E-02 -1.6080538E-02 -1.6287385E-02
 -1.6489100E-02 -1.6685490E-02 -1.6876359E-02 -1.7061502E-02 -1.7240716E-02
 -1.7413786E-02 -1.7580496E-02 -1.7740622E-02 -1.7893936E-02 -1.8040204E-02
 -1.8179186E-02 -1.8310633E-02 -1.8434294E-02 -1.8549908E-02 -1.8657207E-02
 -1.8755918E-02 -1.8845759E-02 -1.8926438E-02 -1.8997658E-02 -1.9059110E-02
 -1.9110478E-02 -1.9151434E-02 -1.9181645E-02 -1.9200755E-02 -1.9208413E-02
 -1.9204240E-02 -1.9187855E-02 -1.9158857E-02 -1.9116832E-02 -1.9061351E-02
 -1.8991968E-02 -1.8908216E-02 -1.8809611E-02 -1.8695649E-02 -1.8565798E-02
 -1.8419510E-02 -1.8256202E-02 -1.8075271E-02 -1.7876074E-02 -1.7657941E-02
 -1.7420163E-02 -1.7161991E-02 -1.6882634E-02 -1.6581250E-02 -1.6256951E-02
 -1.5908787E-02 -1.5535744E-02 -1.5136744E-02 -1.4710627E-02 -1.4256155E-02
 -1.3771991E-02 -1.3256694E-02 -1.2708715E-02 -1.2126367E-02 -1.1507823E-02
 -1.0851096E-02 -1.0154017E-02 -9.4142081E-03 -8.6290678E-03 -7.7957283E-03
 -6.9110240E-03 -5.9714518E-03 -4.9731173E-03 -3.9116777E-03 -2.7822761E-03
 -1.5794567E-03 -2.9706789E-04 1.0714583E-03 2.5320379E-03 4.0900335E-03
 5.7511143E-03 7.5212731E-03 9.4068348E-03 1.1414477E-02 1.3551234E-02
 1.5824521E-02 1.8242134E-02 2.0812269E-02 2.3543533E-02 2.6444949E-02
 2.9525965E-02 3.2796454E-02 3.6266733E-02 3.9947543E-02 4.3850057E-02
 4.7985885E-02 5.2367039E-02 5.7005946E-02 6.1915405E-02 6.7108579E-02
 7.2598971E-02 7.8400351E-02 8.4526770E-02 9.0992451E-02 9.7811759E-02
 0.1049992 0.1125691 0.1205359 0.1289138 0.1377165
 0.1469577 0.1566502 0.1668063 0.1774374 0.1885540
 0.2001655 0.2122799 0.2249037 0.2380418 0.2516973
 0.2658710 0.2805617 0.2957657 0.3114766 0.3276852
 0.3443794 0.3615440 0.3791606 0.3972071 0.4156584
 0.4344857 0.4536566 0.4731353 0.4928825 0.5128555
 0.5330086 0.5532928 0.5736566 0.5940458 0.6144043
 0.6346743 0.6547965 0.6747110 0.6943578 0.7136770
 0.7326098 0.7510991 0.7690896 0.7865292 0.8033690
 0.8195645 0.8350753 0.8498664 0.8639085 0.8771780
 0.8896574 0.9013357 0.9122087 0.9222783 0.9315530
 0.9400471 0.9477810 0.9547803 0.9610753 0.9667004
 0.9716936 0.9760957 0.9799494 0.9832984 0.9861872
 0.9886600 0.9907602 0.9925294 0.9940075 0.9952320
 0.9962376 0.9970562 0.9977165 0.9982443 0.9986623
 0.9989901 0.9992447 0.9994406 0.9995896 0.9997020
 0.9997858 0.9998477 0.9998928 0.9999255 0.9999488
 0.9999652 0.9999766 0.9999845 0.9999899 0.9999936
 0.9999959 0.9999975 0.9999985 0.9999990 0.9999994
 0.9999996 0.9999998 0.9999999 0.9999999 0.9999999
 1.000000
 -1.8814815E-02 -1.8670749E-02 -1.8525239E-02 -1.8378271E-02 -1.8229827E-02
 -1.8079896E-02 -1.7928457E-02 -1.7775496E-02 -1.7620998E-02 -1.7464943E-02
 -1.7307315E-02 -1.7148100E-02 -1.6987277E-02 -1.6824836E-02 -1.6660754E-02
 -1.6495017E-02 -1.6327608E-02 -1.6158514E-02 -1.5987709E-02 -1.5815184E-02
 -1.5640914E-02 -1.5464893E-02 -1.5287093E-02 -1.5107506E-02 -1.4926111E-02
 -1.4742889E-02 -1.4557830E-02 -1.4370909E-02 -1.4182113E-02 -1.3991428E-02
 -1.3798832E-02 -1.3604313E-02 -1.3407849E-02 -1.3209429E-02 -1.3009034E-02
 -1.2806649E-02 -1.2602256E-02 -1.2395838E-02 -1.2187382E-02 -1.1976870E-02
 -1.1764284E-02 -1.1549611E-02 -1.1332830E-02 -1.1113932E-02 -1.0892896E-02
 -1.0669707E-02 -1.0444350E-02 -1.0216806E-02 -9.9870609E-03 -9.7550983E-03
 -9.5208986E-03 -9.2844488E-03 -9.0457294E-03 -8.8047218E-03 -8.5614119E-03
 -8.3157765E-03 -8.0678016E-03 -7.8174621E-03 -7.5647426E-03 -7.3096175E-03
 -7.0520677E-03 -6.7920694E-03 -6.5295971E-03 -6.2646274E-03 -5.9971297E-03
 -5.7270764E-03 -5.4544378E-03 -5.1791789E-03 -4.9012648E-03 -4.6206578E-03
 -4.3373168E-03 -4.0511969E-03 -3.7622517E-03 -3.4704285E-03 -3.1756726E-03
 -2.8779218E-03 -2.5771116E-03 -2.2731696E-03 -1.9660185E-03 -1.6555736E-03
 -1.3417429E-03 -1.0244262E-03 -7.0351420E-04 -3.7888781E-04 -5.0416977E-05
 2.8203992E-04 6.1863736E-04 9.5954433E-04 1.3049449E-03 1.6550400E-03
 2.0100495E-03 2.3702136E-03 2.7357945E-03 3.1070786E-03 3.4843809E-03
 3.8680437E-03 4.2584422E-03 4.6559907E-03 5.0611375E-03 5.4743788E-03
 5.8962572E-03 6.3273711E-03 6.7683742E-03 7.2199884E-03 7.6830089E-03
 8.1583112E-03 8.6468617E-03 9.1497330E-03 9.6681053E-03 1.0203294E-02
 1.0756754E-02 1.1330108E-02 1.1925163E-02 1.2543934E-02 1.3188682E-02
 1.3861940E-02 1.4566553E-02 1.5305740E-02 1.6083123E-02 1.6902829E-02
 1.7769538E-02 1.8688602E-02 1.9666150E-02 2.0709226E-02 2.1825964E-02
 2.3025772E-02 2.4319550E-02 2.5705688E-02 2.7155861E-02 2.8673088E-02
 3.0260483E-02 3.1921230E-02 3.3658568E-02 3.5475794E-02 3.7376244E-02
 3.9363276E-02 4.1440252E-02 4.3610543E-02 4.5877442E-02 4.8244216E-02
 5.0714020E-02 5.3289909E-02 5.5974733E-02 5.8771208E-02 6.1681759E-02
 6.4708538E-02 6.7853361E-02 7.1117640E-02 7.4502327E-02 7.8007899E-02
 8.1634209E-02 8.5380495E-02 8.9245215E-02 9.3226105E-02 9.7319990E-02
 0.1015228 0.1058292 0.1102332 0.1147273 0.1193028
 0.1239497 0.1286567 0.1334111 0.1381986 0.1430034
 0.1478083 0.1525944 0.1573416 0.1620280 0.1666304
 0.1711243 0.1754838 0.1796821 0.1836913 0.1874826
 0.1910268 0.1942945 0.1972558 0.1998814 0.2021426
 0.2040113 0.2054609 0.2064662 0.2070043 0.2070547
 0.2065997 0.2056246 0.2041188 0.2020752 0.1994913
 0.1963691 0.1927150 0.1885415 0.1838647 0.1787069
 0.1730953 0.1670620 0.1606437 0.1538814 0.1468207
 0.1395103 0.1320020 0.1243498 0.1166091 0.1088362
 0.1010875 9.3417898E-02 8.5880369E-02 7.8526042E-02 7.1401373E-02
 6.4549610E-02 5.8008276E-02 5.1809382E-02 4.5979444E-02 4.0538710E-02
 3.5500649E-02 3.0872570E-02 2.6655585E-02 2.2845089E-02 1.9431219E-02
 1.6398797E-02 1.3729147E-02 1.1400023E-02 9.3870033E-03 7.6629939E-03
 6.2005059E-03 4.9726898E-03 3.9517167E-03 3.1108484E-03 2.4262271E-03
 1.8738165E-03 1.4327007E-03 1.0848508E-03 8.1316376E-04 6.0323696E-04
 4.4281513E-04 3.2176162E-04 2.3108491E-04 1.6402159E-04 1.1524602E-04
 8.0001875E-05 5.4686850E-05 3.7218349E-05 2.5036550E-05 1.6355149E-05
 1.0502593E-05 6.5770791E-06 4.1896037E-06 2.5020981E-06 1.1860053E-06
 8.8467499E-07 5.5465807E-07 2.9806733E-07 3.2208212E-07 3.1745444E-07
 3.2250139E-07
 71 81
 0.4999993 0.5499994 0.5999994 0.6499995 0.6999996
 0.7499996 0.7999997 0.8499998 0.8999999 0.9499999
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000001 -0.8499999 -0.8000000
 -0.7500000 -0.7000000 -0.6500001 -0.5999999 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -9.9999905E-02 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1500001 0.2000000
 0.2500000 0.3000000 0.3499999 0.4000001 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 4.7342923E-02 4.6073575E-02 4.4675536E-02 4.3174922E-02 4.1596219E-02
 3.9961953E-02 3.8292479E-02 3.6605924E-02 3.4918126E-02 3.3242784E-02
 3.1591486E-02 2.9973963E-02 2.8398169E-02 2.6870470E-02 2.5395835E-02
 2.3977978E-02 2.2619504E-02 2.1322045E-02 2.0086369E-02 1.8912498E-02
 1.7799824E-02 1.6747186E-02 1.5752967E-02 1.4815177E-02 1.3931552E-02
 1.3099620E-02 1.2316789E-02 1.1580421E-02 1.0887890E-02 1.0236611E-02
 9.6240975E-03 9.0479972E-03 8.5060652E-03 7.9962043E-03 7.5164633E-03
 7.0650065E-03 6.6401302E-03 6.2402519E-03 5.8638928E-03 5.5096629E-03
 5.1762806E-03 4.8625330E-03 4.5672753E-03 4.2894529E-03 4.0280619E-03
 3.7821496E-03 3.5508347E-03 3.3332692E-03 3.1286655E-03 2.9362764E-03
 2.7553865E-03 2.5853354E-03 2.4254946E-03 2.2752620E-03 2.1340800E-03
 2.0014122E-03 1.8767645E-03 1.7596532E-03 1.6496392E-03 1.5462982E-03
 1.4492327E-03 1.3580647E-03 1.2724455E-03 1.1920400E-03 1.1165327E-03
 1.0456301E-03 9.7905018E-04 9.1653195E-04 8.5783127E-04 8.0271479E-04
 7.5096410E-04
 3.1939521E-02 2.8256522E-02 2.4817500E-02 2.1622660E-02 1.8668972E-02
 1.5950710E-02 1.3459996E-02 1.1187323E-02 9.1220150E-03 7.2526149E-03
 5.5672531E-03 4.0539205E-03 2.7006902E-03 1.4959073E-03 4.2831161E-04
 -5.1284948E-04 -1.3377760E-03 -2.0560632E-03 -2.6766991E-03 -3.2080696E-03
 -3.6579825E-03 -4.0336964E-03 -4.3419763E-03 -4.5891278E-03 -4.7810483E-03
 -4.9232612E-03 -5.0209514E-03 -5.0789877E-03 -5.1019271E-03 -5.0940365E-03
 -5.0592874E-03 -5.0013508E-03 -4.9236123E-03 -4.8291697E-03 -4.7208294E-03
 -4.6011363E-03 -4.4723642E-03 -4.3365415E-03 -4.1954750E-03 -4.0507433E-03
 -3.9037254E-03 -3.7556305E-03 -3.6074969E-03 -3.4602110E-03 -3.3145288E-03
 -3.1710889E-03 -3.0304152E-03 -2.8929505E-03 -2.7590378E-03 -2.6289544E-03
 -2.5029178E-03 -2.3810831E-03 -2.2635553E-03 -2.1504003E-03 -2.0416479E-03
 -1.9372950E-03 -1.8373117E-03 -1.7416519E-03 -1.6502383E-03 -1.5629908E-03
 -1.4798130E-03 -1.4005940E-03 -1.3252198E-03 -1.2535655E-03 -1.1855100E-03
 -1.1209234E-03 -1.0596724E-03 -1.0016315E-03 -9.4666658E-04 -8.9464744E-04
 -8.4544596E-04
 4.7423944E-02 4.6153490E-02 4.4754285E-02 4.3252468E-02 4.1672558E-02
 4.0037107E-02 3.8366489E-02 3.6678843E-02 3.4990028E-02 3.3313729E-02
 3.1661548E-02 3.0043209E-02 2.8466655E-02 2.6938252E-02 2.5462948E-02
 2.4044441E-02 2.2685297E-02 2.1387136E-02 2.0150695E-02 1.8975979E-02
 1.7862357E-02 1.6808633E-02 1.5813183E-02 1.4874016E-02 1.3988861E-02
 1.3155254E-02 1.2370623E-02 1.1632348E-02 1.0937822E-02 1.0284488E-02
 9.6699037E-03 9.0917079E-03 8.5476991E-03 8.0357911E-03 7.5540505E-03
 7.1006441E-03 6.6738925E-03 6.2721968E-03 5.8941008E-03 5.5382168E-03
 5.2032508E-03 4.8879921E-03 4.5913123E-03 4.3121320E-03 4.0494497E-03
 3.8023205E-03 3.5698474E-03 3.3511908E-03 3.1455557E-03 2.9521845E-03
 2.7703731E-03 2.5994533E-03 2.4387839E-03 2.2877671E-03 2.1458480E-03
 2.0124826E-03 1.8871705E-03 1.7694345E-03 1.6588300E-03 1.5549279E-03
 1.4573321E-03 1.3656643E-03 1.2795698E-03 1.1987141E-03 1.1227798E-03
 1.0514759E-03 9.8451599E-04 9.2163909E-04 8.6259953E-04 8.0715923E-04
 7.5510371E-04
 3.1879935E-02 2.8195798E-02 2.4755899E-02 2.1560427E-02 1.8606359E-02
 1.5887953E-02 1.3397336E-02 1.1124988E-02 9.0602199E-03 7.1915770E-03
 5.5071712E-03 3.9949925E-03 2.6431140E-03 1.4398672E-03 3.7399185E-04
 -5.6527433E-04 -1.3881341E-03 -2.1041997E-03 -2.7224738E-03 -3.2513633E-03
 -3.6986973E-03 -4.0717735E-03 -4.3773842E-03 -4.6218736E-03 -4.8111747E-03
 -4.9508498E-03 -5.0461153E-03 -5.1018554E-03 -5.1226583E-03 -5.1127956E-03
 -5.0762412E-03 -5.0166762E-03 -4.9374709E-03 -4.8417184E-03 -4.7322162E-03
 -4.6114991E-03 -4.4818274E-03 -4.3452210E-03 -4.2034644E-03 -4.0581333E-03
 -3.9106011E-03 -3.7620610E-03 -3.6135395E-03 -3.4659235E-03 -3.3199626E-03
 -3.1762833E-03 -3.0354117E-03 -2.8977762E-03 -2.7637214E-03 -2.6335267E-03
 -2.5073974E-03 -2.3854873E-03 -2.2679057E-03 -2.1547130E-03 -2.0459341E-03
 -1.9415647E-03 -1.8415831E-03 -1.7459282E-03 -1.6545267E-03 -1.5673038E-03
 -1.4841519E-03 -1.4049686E-03 -1.3296322E-03 -1.2580255E-03 -1.1900191E-03
 -1.1254841E-03 -1.0642911E-03 -1.0063103E-03 -9.5140474E-04 -8.9945161E-04
 -8.5031957E-04
 4.7515057E-02 4.6243366E-02 4.4842854E-02 4.3339692E-02 4.1758426E-02
 4.0121641E-02 3.8449742E-02 3.6760867E-02 3.5070896E-02 3.3393510E-02
 3.1740330E-02 3.0121060E-02 2.8543642E-02 2.7014419E-02 2.5538327E-02
 2.4119040E-02 2.2759112E-02 2.1460120E-02 2.0222774E-02 1.9047052E-02
 1.7932296E-02 1.6877307E-02 1.5880430E-02 1.4939663E-02 1.4052751E-02
 1.3217238E-02 1.2430571E-02 1.1690135E-02 1.0993372E-02 1.0337745E-02
 9.7208284E-03 9.1403024E-03 8.5939802E-03 8.0797952E-03 7.5958269E-03
 7.1402583E-03 6.7114192E-03 6.3077169E-03 5.9276964E-03 5.5699698E-03
 5.2332459E-03 4.9163178E-03 4.6180473E-03 4.3373592E-03 4.0732515E-03
 3.8247667E-03 3.5910134E-03 3.3711465E-03 3.1643584E-03 2.9699055E-03
 2.7870710E-03 2.6151738E-03 2.4535875E-03 2.3017095E-03 2.1589666E-03
 2.0248217E-03 1.8987764E-03 1.7803491E-03 1.6690845E-03 1.5645606E-03
 1.4663783E-03 1.3741528E-03 1.2875348E-03 1.2061807E-03 1.1297782E-03
 1.0580273E-03 9.9064922E-04 9.2737447E-04 8.6795836E-04 8.1216427E-04
 7.5977878E-04
 3.1813148E-02 2.8127756E-02 2.4686877E-02 2.1490714E-02 1.8536234E-02
 1.5817696E-02 1.3327205E-02 1.1055241E-02 8.9911073E-03 7.1233395E-03
 5.4400326E-03 3.9291810E-03 2.5788422E-03 1.3773491E-03 3.1342878E-04
 -6.2368473E-04 -1.4442109E-03 -2.1577696E-03 -2.7733846E-03 -3.2994929E-03
 -3.7439479E-03 -4.1140788E-03 -4.4167247E-03 -4.6582650E-03 -4.8446758E-03
 -4.9815509E-03 -5.0741415E-03 -5.1273624E-03 -5.1458185E-03 -5.1337895E-03
 -5.0952602E-03 -5.0339019E-03 -4.9530896E-03 -4.8559015E-03 -4.7451290E-03
 -4.6232860E-03 -4.4926205E-03 -4.3551493E-03 -4.2126346E-03 -4.0666442E-03
 -3.9185425E-03 -3.7695074E-03 -3.6205619E-03 -3.4725824E-03 -3.3263064E-03
 -3.1823628E-03 -3.0412655E-03 -2.9034417E-03 -2.7692332E-03 -2.6389109E-03
 -2.5126759E-03 -2.3906878E-03 -2.2730455E-03 -2.1598034E-03 -2.0509944E-03
 -1.9466132E-03 -1.8466234E-03 -1.7509732E-03 -1.6595937E-03 -1.5723935E-03
 -1.4892736E-03 -1.4101288E-03 -1.3348359E-03 -1.2632800E-03 -1.1953297E-03
 -1.1308549E-03 -1.0697226E-03 -1.0118096E-03 -9.5697638E-04 -9.0509572E-04
 -8.5603696E-04
 4.7617551E-02 4.6344478E-02 4.4942498E-02 4.3437824E-02 4.1855045E-02
 4.0216770E-02 3.8543418E-02 3.6853157E-02 3.5161875E-02 3.3483271E-02
 3.1828944E-02 3.0208610E-02 2.8630182E-02 2.7100008E-02 2.5622996E-02
 2.4202788E-02 2.2841921E-02 2.1541933E-02 2.0303508E-02 1.9126596E-02
 1.8010510E-02 1.6954023E-02 1.5955480E-02 1.5012871E-02 1.4123944E-02
 1.3286247E-02 1.2497257E-02 1.1754396E-02 1.1055116E-02 1.0396913E-02
 9.7773941E-03 9.1942754E-03 8.6453725E-03 8.1286589E-03 7.6422184E-03
 7.1842540E-03 6.7530945E-03 6.3471682E-03 5.9650089E-03 5.6052404E-03
 5.2665742E-03 4.9477960E-03 4.6477593E-03 4.3654065E-03 4.0997118E-03
 3.8497294E-03 3.6145565E-03 3.3933404E-03 3.1852822E-03 2.9896267E-03
 2.8056488E-03 2.6326769E-03 2.4700772E-03 2.3172300E-03 2.1735751E-03
 2.0385745E-03 1.9117157E-03 1.7925134E-03 1.6805230E-03 1.5753137E-03
 1.4764756E-03 1.3836373E-03 1.2964372E-03 1.2145326E-03 1.1376125E-03
 1.0653734E-03 9.9752599E-04 9.3381642E-04 8.7399117E-04 8.1780949E-04
 7.6505414E-04
 3.1738307E-02 2.8051516E-02 2.4609560E-02 2.1412641E-02 1.8457724E-02
 1.5739053E-02 1.3248738E-02 1.0977238E-02 8.9138467E-03 7.0470856E-03
 5.3650509E-03 3.8557197E-03 2.5071485E-03 1.3076549E-03 2.4595982E-04
 -6.8871444E-04 -1.5065959E-03 -2.2173317E-03 -2.8299594E-03 -3.3529473E-03
 -3.7941856E-03 -4.1610436E-03 -4.4603948E-03 -4.6986723E-03 -4.8818910E-03
 -5.0156880E-03 -5.1053432E-03 -5.1558013E-03 -5.1716813E-03 -5.1572854E-03
 -5.1165922E-03 -5.0532762E-03 -4.9707037E-03 -4.8719444E-03 -4.7597727E-03
 -4.6366961E-03 -4.5049493E-03 -4.3665180E-03 -4.2231749E-03 -4.0764622E-03
 -3.9277254E-03 -3.7781447E-03 -3.6287326E-03 -3.4803445E-03 -3.3337248E-03
 -3.1894860E-03 -3.0481394E-03 -2.9101095E-03 -2.7757261E-03 -2.6452590E-03
 -2.5189132E-03 -2.3968320E-03 -2.2791168E-03 -2.1658291E-03 -2.0569889E-03
 -1.9525851E-03 -1.8525927E-03 -1.7569518E-03 -1.6655868E-03 -1.5784099E-03
 -1.4953297E-03 -1.4162275E-03 -1.3409854E-03 -1.2694848E-03 -1.2015945E-03
 -1.1371858E-03 -1.0761293E-03 -1.0182890E-03 -9.6353254E-04 -9.1173378E-04
 -8.6275837E-04
 4.7732875E-02 4.6458255E-02 4.5054637E-02 4.3548271E-02 4.1963790E-02
 4.0323835E-02 3.8648851E-02 3.6957033E-02 3.5264269E-02 3.3584267E-02
 3.1928636E-02 3.0307068E-02 2.8727481E-02 2.7196199E-02 2.5718093E-02
 2.4296798E-02 2.2934800E-02 2.1633619E-02 2.0393904E-02 1.9215576E-02
 1.8097913E-02 1.7039675E-02 1.6039189E-02 1.5094446E-02 1.4203197E-02
 1.3363018E-02 1.2571401E-02 1.1825789E-02 1.1123677E-02 1.0462590E-02
 9.8401736E-03 9.2541529E-03 8.7023880E-03 8.1828656E-03 7.6936791E-03
 7.2330576E-03 6.7993314E-03 6.3909367E-03 6.0064122E-03 5.6443890E-03
 5.3035654E-03 4.9827341E-03 4.6807565E-03 4.3965499E-03 4.1290992E-03
 3.8774563E-03 3.6407078E-03 3.4180053E-03 3.2085388E-03 3.0115445E-03
 2.8263084E-03 2.6521462E-03 2.4884110E-03 2.3345004E-03 2.1898404E-03
 2.0538825E-03 1.9261187E-03 1.8060687E-03 1.6932733E-03 1.5872988E-03
 1.4877442E-03 1.3942285E-03 1.3063808E-03 1.2238710E-03 1.1463788E-03
 1.0735965E-03 1.0052484E-03 9.4105973E-04 8.8077696E-04 8.2417479E-04
 7.7102613E-04
 3.1654447E-02 2.7966110E-02 2.4522969E-02 2.1325227E-02 1.8369846E-02
 1.5651068E-02 1.3160979E-02 1.0890034E-02 8.8275131E-03 6.9619296E-03
 5.2813631E-03 3.7737822E-03 2.4272313E-03 1.2300198E-03 1.7085848E-04
 -7.6104316E-04 -1.5759359E-03 -2.2834828E-03 -2.8927554E-03 -3.4122507E-03
 -3.8498996E-03 -4.2131161E-03 -4.5088213E-03 -4.7434969E-03 -4.9232016E-03
 -5.0536119E-03 -5.1400503E-03 -5.1874868E-03 -5.2005579E-03 -5.1835743E-03
 -5.1405169E-03 -5.0750673E-03 -4.9905730E-03 -4.8900945E-03 -4.7764005E-03
 -4.6519726E-03 -4.5190323E-03 -4.3795616E-03 -4.2353030E-03 -4.0877885E-03
 -3.9383611E-03 -3.7881813E-03 -3.6382461E-03 -3.4894133E-03 -3.3424122E-03
 -3.1978444E-03 -3.0562240E-03 -2.9179589E-03 -2.7833828E-03 -2.6527580E-03
 -2.5262842E-03 -2.4041026E-03 -2.2863110E-03 -2.1729646E-03 -2.0640860E-03
 -1.9596636E-03 -1.8596654E-03 -1.7640296E-03 -1.6726822E-03 -1.5855414E-03
 -1.5024991E-03 -1.4234416E-03 -1.3482582E-03 -1.2768200E-03 -1.2089963E-03
 -1.1446622E-03 -1.0836818E-03 -1.0259233E-03 -9.7125582E-04 -9.1954600E-04
 -8.7066152E-04
 4.7862682E-02 4.6586338E-02 4.5180880E-02 4.3672618E-02 4.2086229E-02
 4.0444382E-02 3.8767565E-02 3.7073977E-02 3.5379536E-02 3.3697948E-02
 3.2040816E-02 3.0417826E-02 2.8836893E-02 2.7304297E-02 2.5824906E-02
 2.4402311E-02 2.3038967E-02 2.1736355E-02 2.0495100E-02 1.9315073E-02
 1.8195542E-02 1.7135242E-02 1.6132491E-02 1.5185277E-02 1.4291363E-02
 1.3448345E-02 1.2653744E-02 1.1905033E-02 1.1199743E-02 1.0535424E-02
 9.9097630E-03 9.3205171E-03 8.7655727E-03 8.2429228E-03 7.7506993E-03
 7.2871386E-03 6.8505686E-03 6.4394451E-03 6.0523115E-03 5.6877825E-03
 5.3445757E-03 5.0214822E-03 4.7173472E-03 4.4310922E-03 4.1617048E-03
 3.9082207E-03 3.6697299E-03 3.4453815E-03 3.2343534E-03 3.0358857E-03
 2.8492531E-03 2.6737675E-03 2.5087860E-03 2.3536952E-03 2.2079162E-03
 2.0709080E-03 1.9421474E-03 1.8211568E-03 1.7074700E-03 1.6006576E-03
 1.5003105E-03 1.4060384E-03 1.3174894E-03 1.2343144E-03 1.1561902E-03
 1.0828176E-03 1.0139095E-03 9.4919815E-04 8.8842661E-04 8.3136110E-04
 7.7778072E-04
 3.1560507E-02 2.7870463E-02 2.4426023E-02 2.1227391E-02 1.8271528E-02
 1.5552659E-02 1.3062867E-02 1.0792595E-02 8.7311016E-03 6.8668849E-03
 5.1880172E-03 3.6824530E-03 2.3382213E-03 1.1436220E-03 8.7348155E-05
 -8.4140745E-04 -1.6529197E-03 -2.3568729E-03 -2.9623779E-03 -3.4779685E-03
 -3.9116186E-03 -4.2707925E-03 -4.5624687E-03 -4.7931722E-03 -4.9690139E-03
 -5.0957194E-03 -5.1786392E-03 -5.2227760E-03 -5.2327830E-03 -5.2129803E-03
 -5.1673572E-03 -5.0995788E-03 -5.0129900E-03 -4.9106437E-03 -4.7952845E-03
 -4.6693818E-03 -4.5351465E-03 -4.3945308E-03 -4.2492691E-03 -4.1008829E-03
 -3.9506955E-03 -3.7998487E-03 -3.6493442E-03 -3.5000199E-03 -3.3525929E-03
 -3.2076682E-03 -3.0657402E-03 -2.9272158E-03 -2.7924259E-03 -2.6616245E-03
 -2.5350053E-03 -2.4127113E-03 -2.2948352E-03 -2.1814243E-03 -2.0725038E-03
 -1.9680578E-03 -1.8680529E-03 -1.7724244E-03 -1.6811017E-03 -1.5939906E-03
 -1.5109896E-03 -1.4319904E-03 -1.3568652E-03 -1.2854919E-03 -1.2177476E-03
 -1.1534954E-03 -1.0925997E-03 -1.0349309E-03 -9.8035729E-04 -9.2874380E-04
 -8.7996060E-04
 4.8008848E-02 4.6730570E-02 4.5323055E-02 4.3812670E-02 4.2224132E-02
 4.0580153E-02 3.8901269E-02 3.7205685E-02 3.5509333E-02 3.3825919E-02
 3.2167073E-02 3.0542446E-02 2.8959932E-02 2.7425792E-02 2.5944876E-02
 2.4520721E-02 2.3155756E-02 2.1851437E-02 2.0608323E-02 1.9426277E-02
 1.8304532E-02 1.7241798E-02 1.6236402E-02 1.5286329E-02 1.4389349E-02
 1.3543098E-02 1.2745110E-02 1.1992899E-02 1.1284031E-02 1.0616107E-02
 9.9868299E-03 9.3939891E-03 8.8355038E-03 8.3094006E-03 7.8138132E-03
 7.3469882E-03 6.9072810E-03 6.4931414E-03 6.1031152E-03 5.7358290E-03
 5.3899954E-03 5.0643925E-03 4.7578751E-03 4.4693630E-03 4.1978327E-03
 3.9423145E-03 3.7019039E-03 3.4757296E-03 3.2629780E-03 3.0628787E-03
 2.8747057E-03 2.6977644E-03 2.5314034E-03 2.3750083E-03 2.2279981E-03
 2.0898278E-03 1.9599658E-03 1.8379380E-03 1.7232668E-03 1.6155303E-03
 1.5143078E-03 1.4192156E-03 1.3298903E-03 1.2459813E-03 1.1671719E-03
 1.0931551E-03 1.0236376E-03 9.5835613E-04 8.9705142E-04 8.3949079E-04
 7.8544061E-04
 3.1455297E-02 2.7763372E-02 2.4317510E-02 2.1117924E-02 1.8161563E-02
 1.5442652E-02 1.2953247E-02 1.0683782E-02 8.6234976E-03 6.7608780E-03
 5.0839852E-03 3.5807434E-03 2.2391784E-03 1.0475649E-03 -5.4183856E-06
 -9.3060301E-04 -1.7382886E-03 -2.4381967E-03 -3.0394746E-03 -3.5507013E-03
 -3.9799064E-03 -4.3346020E-03 -4.6218289E-03 -4.8481673E-03 -5.0197784E-03
 -5.1424317E-03 -5.2215173E-03 -5.2620610E-03 -5.2687344E-03 -5.2458728E-03
 -5.1974589E-03 -5.1271543E-03 -5.0382982E-03 -4.9339170E-03 -4.8167477E-03
 -4.6892422E-03 -4.5535886E-03 -4.4117272E-03 -4.2653712E-03 -4.1160272E-03
 -3.9650025E-03 -3.8134353E-03 -3.6623024E-03 -3.5124349E-03 -3.3645420E-03
 -3.2192196E-03 -3.0769524E-03 -2.9381446E-03 -2.8031156E-03 -2.6721184E-03
 -2.5453400E-03 -2.4229195E-03 -2.3049435E-03 -2.1914637E-03 -2.0824971E-03
 -1.9780232E-03 -1.8780095E-03 -1.7823884E-03 -1.6910897E-03 -1.6040126E-03
 -1.5210609E-03 -1.4421151E-03 -1.3670565E-03 -1.2957620E-03 -1.2280990E-03
 -1.1639305E-03 -1.1031295E-03 -1.0455588E-03 -9.9108473E-04 -9.3957299E-04
 -8.9089945E-04
 4.8173502E-02 4.6893060E-02 4.5483239E-02 4.3970473E-02 4.2379517E-02
 4.0733151E-02 3.9051916E-02 3.7354063E-02 3.5655539E-02 3.3970043E-02
 3.2309204E-02 3.0682668E-02 2.9098304E-02 2.7562350E-02 2.6079601E-02
 2.4653578E-02 2.3286674E-02 2.1980280E-02 2.0734945E-02 1.9550489E-02
 1.8426109E-02 1.7360527E-02 1.6352039E-02 1.5398651E-02 1.4498161E-02
 1.3648211E-02 1.2846381E-02 1.2090224E-02 1.1377342E-02 1.0705373E-02
 1.0072066E-02 9.4752349E-03 8.9128297E-03 8.3828904E-03 7.8835767E-03
 7.4131512E-03 6.9699753E-03 6.5525072E-03 6.1592907E-03 5.7889554E-03
 5.4402198E-03 5.1118555E-03 4.8027141E-03 4.5117070E-03 4.2378129E-03
 3.9800545E-03 3.7375179E-03 3.5093343E-03 3.2946826E-03 3.0927865E-03
 2.9029085E-03 2.7243579E-03 2.5564765E-03 2.3986464E-03 2.2502793E-03
 2.1108233E-03 1.9797543E-03 1.8565797E-03 1.7408343E-03 1.6320777E-03
 1.5299002E-03 1.4339077E-03 1.3437303E-03 1.2590257E-03 1.1794636E-03
 1.1047419E-03 1.0345677E-03 9.6867175E-04 9.0679532E-04 8.4869599E-04
 7.9414953E-04
 3.1337507E-02 2.7643509E-02 2.4196101E-02 2.0995494E-02 1.8038638E-02
 1.5319733E-02 1.2830833E-02 1.0562347E-02 8.5034966E-03 6.6427477E-03
 4.9681421E-03 3.4675885E-03 2.1290842E-03 9.4089081E-04 -1.0833974E-04
 -1.0294715E-03 -1.8328326E-03 -2.5281892E-03 -3.1247311E-03 -3.6310940E-03
 -4.0553603E-03 -4.4051120E-03 -4.6874378E-03 -4.9089906E-03 -5.0759753E-03
 -5.1942114E-03 -5.2691242E-03 -5.3057736E-03 -5.3088376E-03 -5.2826595E-03
 -5.2312226E-03 -5.1581855E-03 -5.0668665E-03 -4.9602855E-03 -4.8411554E-03
 -4.7119088E-03 -4.5747133E-03 -4.4314945E-03 -4.2839483E-03 -4.1335621E-03
 -3.9816252E-03 -3.8292627E-03 -3.6774380E-03 -3.5269782E-03 -3.3785722E-03
 -3.2328092E-03 -3.0901718E-03 -2.9510488E-03 -2.8157555E-03 -2.6845403E-03
 -2.5575869E-03 -2.4350260E-03 -2.3169422E-03 -2.2033839E-03 -2.0943605E-03
 -1.9898561E-03 -1.8898316E-03 -1.7942177E-03 -1.7029409E-03 -1.6159042E-03
 -1.5330032E-03 -1.4541176E-03 -1.3791334E-03 -1.3079147E-03 -1.2403384E-03
 -1.1762643E-03 -1.1155623E-03 -1.0580928E-03 -1.0037225E-03 -9.5232070E-04
 -9.0375461E-04
 4.8359055E-02 4.7076203E-02 4.5663804E-02 4.4148352E-02 4.2554688E-02
 4.0905610E-02 3.9221719E-02 3.7521288E-02 3.5820272E-02 3.4132387E-02
 3.2469247E-02 3.0840479E-02 2.9253932E-02 2.7715808E-02 2.6230881E-02
 2.4802621E-02 2.3433367E-02 2.2124482E-02 2.0876482E-02 1.9689133E-02
 1.8561643E-02 1.7492702E-02 1.6480608E-02 1.5523387E-02 1.4618852E-02
 1.3764682E-02 1.2958500E-02 1.2197896E-02 1.1480512E-02 1.0804027E-02
 1.0166228E-02 9.5649622E-03 8.9982077E-03 8.4640244E-03 7.9605943E-03
 7.4861967E-03 7.0391893E-03 6.6180462E-03 6.2213149E-03 5.8476282E-03
 5.4956884E-03 5.1642824E-03 4.8522460E-03 4.5584943E-03 4.2819944E-03
 4.0217685E-03 3.7768946E-03 3.5464952E-03 3.3297464E-03 3.1258683E-03
 2.9341204E-03 2.7537963E-03 2.5842423E-03 2.4248336E-03 2.2749710E-03
 2.1341059E-03 2.0017107E-03 1.8772804E-03 1.7603576E-03 1.6504884E-03
 1.5472609E-03 1.4502842E-03 1.3591825E-03 1.2736085E-03 1.1932332E-03
 1.1177507E-03 1.0468661E-03 9.8030630E-04 9.1781316E-04 8.5914147E-04
 8.0407114E-04
 3.1205671E-02 2.7509404E-02 2.4060322E-02 2.0858640E-02 1.7901292E-02
 1.5182480E-02 1.2694231E-02 1.0426931E-02 8.3697839E-03 6.5112258E-03
 4.8392820E-03 3.3418338E-03 2.0068551E-03 8.2257733E-04 -2.2238123E-04
 -1.1389131E-03 -1.9373940E-03 -2.6276344E-03 -3.2188825E-03 -3.7198300E-03
 -4.1386271E-03 -4.4829235E-03 -4.7598737E-03 -4.9761860E-03 -5.1381304E-03
 -5.2515701E-03 -5.3219600E-03 -5.3543895E-03 -5.3535514E-03 -5.3237961E-03
 -5.2690972E-03 -5.1931096E-03 -5.0991341E-03 -4.9901749E-03 -4.8689223E-03
 -4.7377879E-03 -4.5989268E-03 -4.4542379E-03 -4.3053962E-03 -4.1538719E-03
 -4.0009413E-03 -3.8477117E-03 -3.6951380E-03 -3.5440219E-03 -3.3950571E-03
 -3.2488110E-03 -3.1057610E-03 -2.9662915E-03 -2.8307098E-03 -2.6992543E-03
 -2.5721048E-03 -2.4493858E-03 -2.3311821E-03 -2.2175307E-03 -2.1084487E-03
 -2.0039098E-03 -1.9038678E-03 -1.8082622E-03 -1.7170056E-03 -1.6300081E-03
 -1.5471588E-03 -1.4683371E-03 -1.3934247E-03 -1.3222911E-03 -1.2548052E-03
 -1.1908299E-03 -1.1302276E-03 -1.0728627E-03 -1.0185983E-03 -9.6730579E-04
 -9.1884489E-04
 4.8568275E-02 4.7282722E-02 4.5867424E-02 4.4348959E-02 4.2752232E-02
 4.1100100E-02 3.9413203E-02 3.7709821E-02 3.6005951E-02 3.4315303E-02
 3.2649484E-02 3.1018103E-02 2.9428968E-02 2.7888263E-02 2.6400717E-02
 2.4969747E-02 2.3597667E-02 2.2285786E-02 2.1034570E-02 1.9843785E-02
 1.8712604E-02 1.7639706E-02 1.6623411E-02 1.5661759E-02 1.4752580E-02
 1.3893608E-02 1.3082491E-02 1.2316871E-02 1.1594441E-02 1.0912916E-02
 1.0270115E-02 9.6639255E-03 9.0923496E-03 8.5534789E-03 8.0455076E-03
 7.5667151E-03 7.1154931E-03 6.6903066E-03 6.2897056E-03 5.9123207E-03
 5.5568633E-03 5.2221068E-03 4.9068877E-03 4.6101166E-03 4.3307492E-03
 4.0678093E-03 3.8203618E-03 3.5875295E-03 3.3684804E-03 3.1624234E-03
 2.9686119E-03 2.7863486E-03 2.6149536E-03 2.4538080E-03 2.3023118E-03
 2.1599040E-03 2.0260506E-03 1.9002518E-03 1.7820353E-03 1.6709524E-03
 1.5665870E-03 1.4685369E-03 1.3764314E-03 1.2899223E-03 1.2086674E-03
 1.1323668E-03 1.0607181E-03 9.9345006E-04 9.3030086E-04 8.7102875E-04
 8.1540068E-04
 3.1058172E-02 2.7359433E-02 2.3908552E-02 2.0705746E-02 1.7747944E-02
 1.5029329E-02 1.2541912E-02 1.0276055E-02 8.2209324E-03 6.3649509E-03
 4.6961061E-03 3.2022500E-03 1.8713273E-03 6.9153053E-04 -3.4855632E-04
 -1.2598765E-03 -2.0528536E-03 -2.7373559E-03 -3.3226942E-03 -3.8176286E-03
 -4.2303861E-03 -4.5686816E-03 -4.8397477E-03 -5.0503504E-03 -5.2068182E-03
 -5.3150584E-03 -5.3805639E-03 -5.4084403E-03 -5.4034013E-03 -5.3697908E-03
 -5.3115860E-03 -5.2324212E-03 -5.1355888E-03 -5.0240653E-03 -4.9005263E-03
 -4.7673616E-03 -4.6266974E-03 -4.4804122E-03 -4.3301661E-03 -4.1774125E-03
 -4.0234006E-03 -3.8692288E-03 -3.7158320E-03 -3.5640039E-03 -3.4144258E-03
 -3.2676526E-03 -3.1241528E-03 -2.9842991E-03 -2.8483961E-03 -2.7166754E-03
 -2.5893101E-03 -2.4664134E-03 -2.3480768E-03 -2.2343264E-03 -2.1251719E-03
 -2.0205872E-03 -1.9205298E-03 -1.8249252E-03 -1.7336899E-03 -1.6467306E-03
 -1.5639302E-03 -1.4851765E-03 -1.4103393E-03 -1.3392861E-03 -1.2718904E-03
 -1.2080087E-03 -1.1475057E-03 -1.0902444E-03 -1.0360825E-03 -9.8488748E-04
 -9.3652436E-04
 4.8804298E-02 4.7515724E-02 4.6097178E-02 4.4575326E-02 4.2975135E-02
 4.1319534E-02 3.9629199E-02 3.7922461E-02 3.6215309E-02 3.4521449E-02
 3.2852493E-02 3.1218022E-02 2.9625827E-02 2.8082035E-02 2.6591329E-02
 2.5157092E-02 2.3781586E-02 2.2466086E-02 2.1211030E-02 2.0016141E-02
 1.8880589E-02 1.7803049E-02 1.6781863E-02 1.5815085E-02 1.4900592E-02
 1.4036143E-02 1.3219444E-02 1.2448187E-02 1.1720098E-02 1.1032941E-02
 1.0384577E-02 9.7729331E-03 9.1960179E-03 8.6519709E-03 8.1389835E-03
 7.6553654E-03 7.1994965E-03 6.7698560E-03 6.3649989E-03 5.9835599E-03
 5.6242314E-03 5.2857916E-03 4.9670795E-03 4.6669873E-03 4.3844758E-03
 4.1185548E-03 3.8682830E-03 3.6327806E-03 3.4112004E-03 3.2027562E-03
 3.0066899E-03 2.8222906E-03 2.6488847E-03 2.4858394E-03 2.3325544E-03
 2.1884574E-03 2.0530191E-03 1.9257261E-03 1.8061041E-03 1.6937046E-03
 1.5881025E-03 1.4888939E-03 1.3957078E-03 1.3081832E-03 1.2259888E-03
 1.1488134E-03 1.0763528E-03 1.0083343E-03 9.4449654E-04 8.8458555E-04
 8.2837406E-04
 3.0893238E-02 2.7191814E-02 2.3739008E-02 2.0535044E-02 1.7576853E-02
 1.4858588E-02 1.2372236E-02 1.0108131E-02 8.0554113E-03 6.2024603E-03
 4.5372322E-03 3.0475336E-03 1.7212752E-03 5.4660806E-04 -4.8793701E-04
 -1.3933568E-03 -2.1801388E-03 -2.8582164E-03 -3.4369756E-03 -3.9252560E-03
 -4.3313601E-03 -4.6630786E-03 -4.9277213E-03 -5.1321187E-03 -5.2826568E-03
 -5.3852857E-03 -5.4455288E-03 -5.4685138E-03 -5.4589636E-03 -5.4212208E-03
 -5.3592562E-03 -5.2766837E-03 -5.1767854E-03 -5.0625112E-03 -4.9365163E-03
 -4.8011607E-03 -4.6585556E-03 -4.5105536E-03 -4.3587936E-03 -4.2046993E-03
 -4.0495195E-03 -3.8943258E-03 -3.7400364E-03 -3.5874352E-03 -3.4371822E-03
 -3.2898320E-03 -3.1458389E-03 -3.0055668E-03 -2.8693120E-03 -2.7372958E-03
 -2.6096865E-03 -2.4866024E-03 -2.3681112E-03 -2.2542449E-03 -2.1450096E-03
 -2.0403736E-03 -1.9402864E-03 -1.8446792E-03 -1.7534633E-03 -1.6665326E-03
 -1.5837805E-03 -1.5050870E-03 -1.4303185E-03 -1.3593448E-03 -1.2920332E-03
 -1.2282380E-03 -1.1678257E-03 -1.1106521E-03 -1.0565779E-03 -1.0054705E-03
 -9.5718610E-04
 4.9070723E-02 4.7778763E-02 4.6356566E-02 4.4830885E-02 4.3226779E-02
 4.1567240E-02 3.9872978E-02 3.8162366E-02 3.6451411E-02 3.4753818E-02
 3.3081178E-02 3.1443052E-02 2.9847192E-02 2.8299687E-02 2.6805181E-02
 2.5366992E-02 2.3987357E-02 2.2667492E-02 2.1407818E-02 2.0208044E-02
 1.9067327E-02 1.7984351E-02 1.6957471E-02 1.5984785E-02 1.5064200E-02
 1.4193526E-02 1.3370523E-02 1.2592921E-02 1.1858501E-02 1.1165070E-02
 1.0510528E-02 9.8928306E-03 9.3100285E-03 8.7602595E-03 8.2417503E-03
 7.7528069E-03 7.2918320E-03 6.8573016E-03 6.4477767E-03 6.0618748E-03
 5.6983028E-03 5.3558261E-03 5.0332849E-03 4.7295531E-03 4.4435887E-03
 4.1743987E-03 3.9210352E-03 3.6826064E-03 3.4582620E-03 3.2472021E-03
 3.0486658E-03 2.8619370E-03 2.6863350E-03 2.5212180E-03 2.3659810E-03
 2.2200495E-03 2.0828831E-03 1.9539671E-03 1.8328269E-03 1.7190013E-03
 1.6120633E-03 1.5116112E-03 1.4172656E-03 1.3286568E-03 1.2454623E-03
 1.1673572E-03 1.0940415E-03 1.0252341E-03 9.6066843E-04 9.0010103E-04
 8.4328867E-04
 3.0708909E-02 2.7004581E-02 2.3549743E-02 2.0344622E-02 1.7386133E-02
 1.4668411E-02 1.2183418E-02 9.9214455E-03 7.8715961E-03 6.0222074E-03
 4.3611899E-03 2.8763078E-03 1.5554191E-03 3.8661159E-04 -6.4163964E-04
 -1.5403957E-03 -2.3202184E-03 -2.9911241E-03 -3.5625803E-03 -4.0435144E-03
 -4.4423118E-03 -4.7668503E-03 -5.0245109E-03 -5.2221911E-03 -5.3663310E-03
 -5.4629208E-03 -5.5175186E-03 -5.5352636E-03 -5.5208867E-03 -5.4787258E-03
 -5.4127411E-03 -5.3265323E-03 -5.2233520E-03 -5.1061343E-03 -4.9775080E-03
 -4.8398087E-03 -4.6951175E-03 -4.5452686E-03 -4.3918733E-03 -4.2363442E-03
 -4.0799007E-03 -3.9235973E-03 -3.7683360E-03 -3.6148939E-03 -3.4639149E-03
 -3.3159356E-03 -3.1713999E-03 -3.0306694E-03 -2.8940255E-03 -2.7616841E-03
 -2.6338103E-03 -2.5105076E-03 -2.3918422E-03 -2.2778471E-03 -2.1685136E-03
 -2.0638139E-03 -1.9636878E-03 -1.8680666E-03 -1.7768540E-03 -1.6899484E-03
 -1.6072369E-03 -1.5285905E-03 -1.4538799E-03 -1.3829743E-03 -1.3157292E-03
 -1.2520038E-03 -1.1916606E-03 -1.1345530E-03 -1.0805392E-03 -1.0294815E-03
 -9.8123809E-04
 4.9371652E-02 4.8075888E-02 4.6649579E-02 4.5119576E-02 4.3511022E-02
 4.1846979E-02 4.0148221E-02 3.8433146E-02 3.6717758E-02 3.5015788E-02
 3.3338800E-02 3.1696320E-02 3.0096067E-02 2.8544089E-02 2.7044978E-02
 2.5602022E-02 2.4217390E-02 2.2892276E-02 2.1627085E-02 2.0421498E-02
 1.9274680E-02 1.8185345E-02 1.7151868E-02 1.6172372E-02 1.5244828E-02
 1.4367090E-02 1.3536964E-02 1.2752235E-02 1.2010743E-02 1.1310326E-02
 1.0648925E-02 1.0024533E-02 9.4352197E-03 8.8791475E-03 8.3545586E-03
 7.8597702E-03 7.3931878E-03 6.9532921E-03 6.5386365E-03 6.1478508E-03
 5.7796310E-03 5.4327310E-03 5.1059881E-03 4.7982736E-03 4.5085377E-03
 4.2357771E-03 3.9790305E-03 3.7374040E-03 3.5100367E-03 3.2961241E-03
 3.0948941E-03 2.9056282E-03 2.7276324E-03 2.5602642E-03 2.4029117E-03
 2.2549874E-03 2.1159523E-03 1.9852866E-03 1.8625048E-03 1.7471464E-03
 1.6387794E-03 1.5369948E-03 1.4414081E-03 1.3516586E-03 1.2673999E-03
 1.1883148E-03 1.1141029E-03 1.0444706E-03 9.7915251E-04 9.1789966E-04
 8.6046977E-04
 3.0503046E-02 2.6795611E-02 2.3338648E-02 2.0132395E-02 1.7173754E-02
 1.4456836E-02 1.1973561E-02 9.7141797E-03 7.6677524E-03 5.8225566E-03
 4.1664494E-03 2.6871404E-03 1.3724153E-03 2.1029834E-04 -8.1081135E-04
 -1.7020608E-03 -2.4740940E-03 -3.1370192E-03 -3.7003988E-03 -4.1732555E-03
 -4.5640627E-03 -4.8807897E-03 -5.1308884E-03 -5.3213229E-03 -5.4585850E-03
 -5.5487058E-03 -5.5972654E-03 -5.6094215E-03 -5.5898973E-03 -5.5430299E-03
 -5.4727658E-03 -5.3826794E-03 -5.2760057E-03 -5.1556518E-03 -5.0242133E-03
 -4.8840065E-03 -4.7370843E-03 -4.5852554E-03 -4.4301115E-03 -4.2730318E-03
 -4.1152257E-03 -3.9577275E-03 -3.8014224E-03 -3.6470660E-03 -3.4952944E-03
 -3.3466278E-03 -3.2015070E-03 -3.0602729E-03 -2.9232006E-03 -2.7905018E-03
 -2.6623278E-03 -2.5387809E-03 -2.4199223E-03 -2.3057722E-03 -2.1963248E-03
 -2.0915389E-03 -1.9913588E-03 -1.8957061E-03 -1.8044817E-03 -1.7175835E-03
 -1.6348885E-03 -1.5562722E-03 -1.4815985E-03 -1.4107291E-03 -1.3435251E-03
 -1.2798384E-03 -1.2195250E-03 -1.1624409E-03 -1.1084444E-03 -1.0573847E-03
 -1.0091269E-03
 4.9711794E-02 4.8411760E-02 4.6980798E-02 4.5445886E-02 4.3832261E-02
 4.2163059E-02 4.0459111E-02 3.8738839E-02 3.7018273E-02 3.5311155E-02
 3.3628993E-02 3.1981315E-02 3.0375781E-02 2.8818404E-02 2.7313724E-02
 2.5864983E-02 2.4474328E-02 2.3142919E-02 2.1871129E-02 2.0658653E-02
 1.9504674E-02 1.8407909E-02 1.7366784E-02 1.6379474E-02 1.5443984E-02
 1.4558232E-02 1.3720081E-02 1.2927371E-02 1.2177979E-02 1.1469790E-02
 1.0800792E-02 1.0168991E-02 9.5724948E-03 9.0094861E-03 8.4782150E-03
 7.9770070E-03 7.5042727E-03 7.0584947E-03 6.6382266E-03 6.2420932E-03
 5.8687846E-03 5.5170534E-03 5.1857247E-03 4.8736613E-03 4.5798058E-03
 4.3031401E-03 4.0427097E-03 3.7975966E-03 3.5669375E-03 3.3499191E-03
 3.1457653E-03 2.9537396E-03 2.7731485E-03 2.6033451E-03 2.4436966E-03
 2.2936263E-03 2.1525803E-03 2.0200328E-03 1.8954912E-03 1.7784978E-03
 1.6686069E-03 1.5654071E-03 1.4685125E-03 1.3775504E-03 1.2921772E-03
 1.2120721E-03 1.1369199E-03 1.0664333E-03 1.0003444E-03 9.3838386E-04
 8.8032091E-04
 3.0273329E-02 2.6562583E-02 2.3103438E-02 1.9896131E-02 1.6937546E-02
 1.4221761E-02 1.1740658E-02 9.4844298E-03 7.4420688E-03 5.6018112E-03
 3.9514280E-03 2.4785521E-03 1.1708938E-03 1.6392498E-05 -9.9664438E-04
 -1.8794590E-03 -2.6428029E-03 -3.2968807E-03 -3.8513660E-03 -4.3153744E-03
 -4.6974840E-03 -5.0057448E-03 -5.2476902E-03 -5.4303431E-03 -5.5602449E-03
 -5.6434614E-03 -5.6855930E-03 -5.6918007E-03 -5.6668129E-03 -5.6149522E-03
 -5.5401428E-03 -5.4459437E-03 -5.3355596E-03 -5.2118688E-03 -5.0774408E-03
 -4.9345638E-03 -4.7852625E-03 -4.6313186E-03 -4.4742962E-03 -4.3155630E-03
 -4.1562933E-03 -3.9975080E-03 -3.8400737E-03 -3.6847319E-03 -3.5320995E-03
 -3.3826900E-03 -3.2369248E-03 -3.0951379E-03 -2.9575974E-03 -2.8245011E-03
 -2.6959949E-03 -2.5721728E-03 -2.4530869E-03 -2.3387547E-03 -2.2291651E-03
 -2.1242681E-03 -2.0240073E-03 -1.9282962E-03 -1.8370335E-03 -1.7501089E-03
 -1.6674013E-03 -1.5887779E-03 -1.5141005E-03 -1.4432282E-03 -1.3760149E-03
 -1.3123133E-03 -1.2519761E-03 -1.1948516E-03 -1.1407941E-03 -1.0896591E-03
 -1.0413023E-03
 5.0096542E-02 4.8791680E-02 4.7355451E-02 4.5814950E-02 4.4195514E-02
 4.2520363E-02 4.0810391E-02 3.9084058E-02 3.7357405E-02 3.5644170E-02
 3.3955842E-02 3.2301910E-02 3.0690012E-02 2.9126104E-02 2.7614677E-02
 2.6158961E-02 2.4761040E-02 2.3422079E-02 2.2142440E-02 2.0921828E-02
 1.9759437E-02 1.8654037E-02 1.7604085E-02 1.6607808E-02 1.5663279E-02
 1.4768465E-02 1.3921280E-02 1.3119631E-02 1.2361427E-02 1.1644619E-02
 1.0967202E-02 1.0327226E-02 9.7228242E-03 9.1521805E-03 8.6135678E-03
 8.1053218E-03 7.6258495E-03 7.1736369E-03 6.7472290E-03 6.3452548E-03
 5.9663919E-03 5.6093861E-03 5.2730525E-03 4.9562496E-03 4.6579032E-03
 4.3769940E-03 4.1125505E-03 3.8636476E-03 3.6294186E-03 3.4090332E-03
 3.2017052E-03 3.0066962E-03 2.8233074E-03 2.6508698E-03 2.4887598E-03
 2.3363843E-03 2.1931792E-03 2.0586217E-03 1.9322089E-03 1.8134756E-03
 1.7019726E-03 1.5972806E-03 1.4990080E-03 1.4067788E-03 1.3202477E-03
 1.2390737E-03 1.1629546E-03 1.0915850E-03 1.0246936E-03 9.6201303E-04
 9.0329692E-04
 3.0017242E-02 2.6303019E-02 2.2841675E-02 1.9633450E-02 1.6675206E-02
 1.3960983E-02 1.1482601E-02 9.2302002E-03 7.1926890E-03 5.3582257E-03
 3.7144911E-03 2.2490330E-03 9.4945414E-04 -1.9640324E-04 -1.2003457E-03
 -2.0737303E-03 -2.8274148E-03 -3.4717289E-03 -4.0164590E-03 -4.4708247E-03
 -4.8435060E-03 -5.1426399E-03 -5.3758309E-03 -5.5501652E-03 -5.6722239E-03
 -5.7481006E-03 -5.7834154E-03 -5.7833246E-03 -5.7525579E-03 -5.6954105E-03
 -5.6157983E-03 -5.5172467E-03 -5.4029366E-03 -5.2757137E-03 -5.1381141E-03
 -4.9924017E-03 -4.8405719E-03 -4.6843728E-03 -4.5253518E-03 -4.3648435E-03
 -4.2040087E-03 -4.0438413E-03 -3.8851921E-03 -3.7287853E-03 -3.5752242E-03
 -3.4250063E-03 -3.2785386E-03 -3.1361482E-03 -2.9980890E-03 -2.8645480E-03
 -2.7356667E-03 -2.6115279E-03 -2.4921782E-03 -2.3776267E-03 -2.2678541E-03
 -2.1628097E-03 -2.0624262E-03 -1.9666150E-03 -1.8752707E-03 -1.7882742E-03
 -1.7055008E-03 -1.6268149E-03 -1.5520724E-03 -1.4811282E-03 -1.4138316E-03
 -1.3500353E-03 -1.2895848E-03 -1.2323238E-03 -1.1781065E-03 -1.1267842E-03
 -1.0782069E-03
 5.0532069E-02 4.9221754E-02 4.7779519E-02 4.6232607E-02 4.4606473E-02
 4.2924438E-02 4.1207429E-02 3.9473969E-02 3.7740108E-02 3.6019579E-02
 3.4323860E-02 3.2662407E-02 3.1042805E-02 2.9470988E-02 2.7951412E-02
 2.6487267E-02 2.5080621E-02 2.3732640E-02 2.2443684E-02 2.1213483E-02
 2.0041268E-02 1.8925853E-02 1.7865740E-02 1.6859220E-02 1.5904421E-02
 1.4999378E-02 1.4142060E-02 1.3330418E-02 1.2562416E-02 1.1836031E-02
 1.1149307E-02 1.0500321E-02 9.8872129E-03 9.3081882E-03 8.7615307E-03
 8.2455715E-03 7.7587338E-03 7.2994833E-03 6.8663820E-03 6.4580352E-03
 6.0731135E-03 5.7103648E-03 5.3685810E-03 5.0466242E-03 4.7434010E-03
 4.4578859E-03 4.1890871E-03 3.9360863E-03 3.6979904E-03 3.4739634E-03
 3.2632172E-03 3.0649984E-03 2.8785937E-03 2.7033361E-03 2.5385853E-03
 2.3837467E-03 2.2382478E-03 2.1015559E-03 1.9731608E-03 1.8525902E-03
 1.7393879E-03 1.6331326E-03 1.5334215E-03 1.4398737E-03 1.3521315E-03
 1.2698579E-03 1.1927340E-03 1.1204551E-03 1.0527360E-03 9.8930916E-04
 9.2991436E-04
 2.9732112E-02 2.6014280E-02 2.2550782E-02 1.9341856E-02 1.6384337E-02
 1.3672207E-02 1.1197232E-02 8.9494586E-03 6.9177044E-03 5.0900290E-03
 3.4540070E-03 1.9970641E-03 7.0669281E-04 -4.2940027E-04 -1.4231416E-03
 -2.2860225E-03 -3.0290335E-03 -3.6626309E-03 -4.1967146E-03 -4.6406281E-03
 -5.0031426E-03 -5.2924822E-03 -5.5163228E-03 -5.6818030E-03 -5.7955375E-03
 -5.8636484E-03 -5.8917566E-03 -5.8850250E-03 -5.8481614E-03 -5.7854531E-03
 -5.7007782E-03 -5.5976403E-03 -5.4791858E-03 -5.3482330E-03 -5.2072844E-03
 -5.0585731E-03 -4.9040564E-03 -4.7454685E-03 -4.5843166E-03 -4.4219196E-03
 -4.2594094E-03 -4.0977625E-03 -3.9378107E-03 -3.7802586E-03 -3.6256895E-03
 -3.4745901E-03 -3.3273573E-03 -3.1842978E-03 -3.0456600E-03 -2.9116233E-03
 -2.7823125E-03 -2.6578046E-03 -2.5381413E-03 -2.4233169E-03 -2.3133107E-03
 -2.2080611E-03 -2.1074975E-03 -2.0115222E-03 -1.9200282E-03 -1.8328889E-03
 -1.7499730E-03 -1.6711382E-03 -1.5962375E-03 -1.5251227E-03 -1.4576367E-03
 -1.3936289E-03 -1.3329365E-03 -1.2754091E-03 -1.2208889E-03 -1.1692251E-03
 -1.1202724E-03
 5.1025495E-02 4.9708955E-02 4.8259839E-02 4.6705544E-02 4.5071647E-02
 4.3381553E-02 4.1656278E-02 3.9914388E-02 3.8171947E-02 3.6442678E-02
 3.4738060E-02 3.3067510E-02 3.1438593E-02 2.9857207E-02 2.8327785E-02
 2.6853489E-02 2.5436405E-02 2.4077687E-02 2.2777721E-02 2.1536278E-02
 2.0352622E-02 1.9225623E-02 1.8153857E-02 1.7135665E-02 1.6169239E-02
 1.5252678E-02 1.4383998E-02 1.3561214E-02 1.2782319E-02 1.2045342E-02
 1.1348344E-02 1.0689430E-02 1.0066750E-02 9.4785411E-03 8.9230686E-03
 8.3986819E-03 7.9037948E-03 7.4368748E-03 6.9964696E-03 6.5811849E-03
 6.1896802E-03 5.8206865E-03 5.4729939E-03 5.1454408E-03 4.8369351E-03
 4.5464300E-03 4.2729317E-03 4.0154993E-03 3.7732350E-03 3.5452950E-03
 3.3308771E-03 3.1292129E-03 2.9395865E-03 2.7613176E-03 2.5937571E-03
 2.4363031E-03 2.2883737E-03 2.1494261E-03 2.0189434E-03 1.8964445E-03
 1.7814684E-03 1.6735815E-03 1.5723713E-03 1.4774544E-03 1.3884611E-03
 1.3050424E-03 1.2268770E-03 1.1536478E-03 1.0850680E-03 1.0208532E-03
 9.6074078E-04
 2.9415095E-02 2.5693588E-02 2.2228066E-02 1.9018758E-02 1.6062461E-02
 1.3353102E-02 1.0882351E-02 8.6401477E-03 6.6152057E-03 4.7954582E-03
 3.1683366E-03 1.7211360E-03 4.4119917E-04 -6.8391074E-04 -1.6662763E-03
 -2.5175284E-03 -3.2488091E-03 -3.8707033E-03 -4.3932456E-03 -4.8258863E-03
 -5.1774974E-03 -5.4563829E-03 -5.6702830E-03 -5.8263829E-03 -5.9313290E-03
 -5.9912549E-03 -6.0117859E-03 -5.9980717E-03 -5.9548118E-03 -5.8862600E-03
 -5.7962728E-03 -5.6883167E-03 -5.5655083E-03 -5.4306267E-03 -5.2861501E-03
 -5.1342715E-03 -4.9769194E-03 -4.8157983E-03 -4.6523893E-03 -4.4879778E-03
 -4.3236832E-03 -4.1604522E-03 -3.9991005E-03 -3.8403093E-03 -3.6846509E-03
 -3.5325957E-03 -3.3845184E-03 -3.2407232E-03 -3.1014383E-03 -2.9668345E-03
 -2.8370235E-03 -2.7120793E-03 -2.5920286E-03 -2.4768584E-03 -2.3665417E-03
 -2.2610112E-03 -2.1601811E-03 -2.0639517E-03 -1.9722090E-03 -1.8848197E-03
 -1.8016434E-03 -1.7225376E-03 -1.6473504E-03 -1.5759204E-03 -1.5080938E-03
 -1.4437104E-03 -1.3826098E-03 -1.3246337E-03 -1.2696234E-03 -1.2174255E-03
 -1.1678949E-03
 5.1584955E-02 5.0261285E-02 4.8804235E-02 4.7241356E-02 4.5598373E-02
 4.3898802E-02 4.2163756E-02 4.0411815E-02 3.8659088E-02 3.6919311E-02
 3.5203945E-02 3.3522386E-02 3.1882200E-02 3.0289248E-02 2.8747959E-02
 2.7261505E-02 2.5831958E-02 2.4460515E-02 2.3147600E-02 2.1893019E-02
 2.0696102E-02 1.9555775E-02 1.8470682E-02 1.7439229E-02 1.6459674E-02
 1.5530170E-02 1.4648800E-02 1.3813606E-02 1.3022631E-02 1.2273950E-02
 1.1565627E-02 1.0895794E-02 1.0262622E-02 9.6643399E-03 9.0992358E-03
 8.5656485E-03 8.0619846E-03 7.5867116E-03 7.1383654E-03 6.7155412E-03
 6.3168886E-03 5.9411339E-03 5.5870372E-03 5.2534374E-03 4.9392255E-03
 4.6433387E-03 4.3647764E-03 4.1025816E-03 3.8558459E-03 3.6237084E-03
 3.4053605E-03 3.2000258E-03 3.0069684E-03 2.8255014E-03 2.6549711E-03
 2.4947547E-03 2.3442630E-03 2.2029460E-03 2.0702814E-03 1.9457693E-03
 1.8289379E-03 1.7193500E-03 1.6165816E-03 1.5202384E-03 1.4299385E-03
 1.3453283E-03 1.2660724E-03 1.1918443E-03 1.1223428E-03 1.0572827E-03
 9.9638687E-04
 2.9063258E-02 2.5338087E-02 2.1870770E-02 1.8661525E-02 1.5707096E-02
 1.3001326E-02 1.0535769E-02 8.3002485E-03 6.2833284E-03 4.4727814E-03
 2.8558846E-03 1.4197624E-03 1.5158513E-04 -9.6125377E-04 -1.9310083E-03
 -2.7694709E-03 -3.4879395E-03 -4.0971437E-03 -4.6072435E-03 -5.0278027E-03
 -5.3677871E-03 -5.6355773E-03 -5.8389679E-03 -5.9851808E-03 -6.0808882E-03
 -6.1322264E-03 -6.1448193E-03 -6.1238026E-03 -6.0738479E-03 -5.9991837E-03
 -5.9036333E-03 -5.7906364E-03 -5.6632645E-03 -5.5242684E-03 -5.3760819E-03
 -5.2208672E-03 -5.0605265E-03 -4.8967274E-03 -4.7309245E-03 -4.5643798E-03
 -4.3981811E-03 -4.2332541E-03 -4.0703975E-03 -3.9102705E-03 -3.7534272E-03
 -3.6003196E-03 -3.4513122E-03 -3.3066878E-03 -3.1666683E-03 -3.0314098E-03
 -2.9010139E-03 -2.7755371E-03 -2.6550002E-03 -2.5393865E-03 -2.4286497E-03
 -2.3227192E-03 -2.2215028E-03 -2.1248891E-03 -2.0327542E-03 -1.9449634E-03
 -1.8613710E-03 -1.7818239E-03 -1.7061636E-03 -1.6342268E-03 -1.5658564E-03
 -1.5008847E-03 -1.4391501E-03 -1.3804924E-03 -1.3247547E-03 -1.2717781E-03
 -1.2214204E-03
 5.2219819E-02 5.0887898E-02 4.9421601E-02 4.7848668E-02 4.6194986E-02
 4.4484183E-02 4.2737462E-02 4.0973466E-02 3.9208379E-02 3.7455905E-02
 3.5727534E-02 3.4032661E-02 3.2378845E-02 3.0771948E-02 2.9216414E-02
 2.7715422E-02 2.6271092E-02 2.4884649E-02 2.3556566E-02 2.2286713E-02
 2.1074489E-02 1.9918891E-02 1.8818611E-02 1.7772151E-02 1.6777815E-02
 1.5833816E-02 1.4938281E-02 1.4089301E-02 1.3284966E-02 1.2523356E-02
 1.1802569E-02 1.1120758E-02 1.0476090E-02 9.8668067E-03 9.2911841E-03
 8.7475684E-03 8.2343547E-03 7.7500055E-03 7.2930441E-03 6.8620453E-03
 6.4556571E-03 6.0725822E-03 5.7115722E-03 5.3714551E-03 5.0510992E-03
 4.7494341E-03 4.4654380E-03 4.1981414E-03 3.9466247E-03 3.7100173E-03
 3.4874876E-03 3.2782510E-03 3.0815641E-03 2.8967215E-03 2.7230561E-03
 2.5599392E-03 2.4067650E-03 2.2629714E-03 2.1280190E-03 2.0014059E-03
 1.8826462E-03 1.7712859E-03 1.6668885E-03 1.5690465E-03 1.4773761E-03
 1.3915023E-03 1.3110788E-03 1.2357699E-03 1.1652674E-03 1.0992648E-03
 1.0374867E-03
 2.8673606E-02 2.4944890E-02 2.1476148E-02 1.8267561E-02 1.5315799E-02
 1.2614602E-02 1.0155389E-02 7.9278070E-03 5.9202709E-03 4.1203452E-03
 2.5151146E-03 1.0915012E-03 -1.6351811E-04 -1.2627472E-03 -2.2186236E-03
 -3.0431240E-03 -3.7477000E-03 -4.3432345E-03 -4.8400145E-03 -5.2477098E-03
 -5.5753742E-03 -5.8314572E-03 -6.0237925E-03 -6.1596390E-03 -6.2456769E-03
 -6.2880469E-03 -6.2923576E-03 -6.2637283E-03 -6.2067956E-03 -6.1257621E-03
 -6.0244156E-03 -5.9061516E-03 -5.7740123E-03 -5.6307041E-03 -5.4786308E-03
 -5.3199171E-03 -5.1564304E-03 -4.9898047E-03 -4.8214695E-03 -4.6526571E-03
 -4.4844286E-03 -4.3176878E-03 -4.1532102E-03 -3.9916337E-03 -3.8334923E-03
 -3.6792234E-03 -3.5291745E-03 -3.3836141E-03 -3.2427455E-03 -3.1067159E-03
 -2.9756080E-03 -2.8494759E-03 -2.7283225E-03 -2.6121186E-03 -2.5008123E-03
 -2.3943186E-03 -2.2925425E-03 -2.1953597E-03 -2.1026412E-03 -2.0142426E-03
 -1.9300109E-03 -1.8497874E-03 -1.7734141E-03 -1.7007175E-03 -1.6315370E-03
 -1.5657041E-03 -1.5030582E-03 -1.4434338E-03 -1.3866727E-03 -1.3326254E-03
 -1.2811406E-03
 5.2940805E-02 5.1599242E-02 5.0122075E-02 4.8537254E-02 4.6870843E-02
 4.5146618E-02 4.3385886E-02 4.1607384E-02 3.9827332E-02 3.8059503E-02
 3.6315385E-02 3.4604415E-02 3.2934155E-02 3.1310510E-02 2.9737936E-02
 2.8219672E-02 2.6757872E-02 2.5353825E-02 2.4008082E-02 2.2720564E-02
 2.1490753E-02 2.0317711E-02 1.9200217E-02 1.8136820E-02 1.7125888E-02
 1.6165694E-02 1.5254404E-02 1.4390155E-02 1.3571056E-02 1.2795210E-02
 1.2060734E-02 1.1365790E-02 1.0708553E-02 1.0087262E-02 9.5001841E-03
 8.9456607E-03 8.4220795E-03 7.9278862E-03 7.4615898E-03 7.0217610E-03
 6.6070179E-03 6.2160571E-03 5.8476110E-03 5.5004852E-03 5.1735425E-03
 4.8656873E-03 4.5758854E-03 4.3031536E-03 4.0465514E-03 3.8051978E-03
 3.5782401E-03 3.3648857E-03 3.1643691E-03 2.9759770E-03 2.7990206E-03
 2.6328631E-03 2.4768820E-03 2.3304964E-03 2.1931590E-03 2.0643480E-03
 1.9435637E-03 1.8303375E-03 1.7242216E-03 1.6247914E-03 1.5316516E-03
 1.4444096E-03 1.3627078E-03 1.2862001E-03 1.2145635E-03 1.1474886E-03
 1.0846838E-03
 2.8243186E-02 2.4511190E-02 2.1041535E-02 1.7834367E-02 1.4886257E-02
 1.2190798E-02 9.7392397E-03 7.5210300E-03 5.5243704E-03 3.7365910E-03
 2.1445553E-03 7.3495141E-04 -5.0547137E-04 -1.5897268E-03 -2.5304635E-03
 -3.3398364E-03 -4.0294728E-03 -4.6103951E-03 -5.0930153E-03 -5.4871044E-03
 -5.8017964E-03 -6.0455911E-03 -6.2263673E-03 -6.3513974E-03 -6.4273691E-03
 -6.4604133E-03 -6.4561223E-03 -6.4195818E-03 -6.3554044E-03 -6.2677520E-03
 -6.1603780E-03 -6.0366355E-03 -5.8995262E-03 -5.7517164E-03 -5.5955769E-03
 -5.4331934E-03 -5.2663963E-03 -5.0967927E-03 -4.9257739E-03 -4.7545503E-03
 -4.5841536E-03 -4.4154632E-03 -4.2492268E-03 -4.0860665E-03 -3.9264956E-03
 -3.7709302E-03 -3.6197002E-03 -3.4730567E-03 -3.3311907E-03 -3.1942290E-03
 -3.0622517E-03 -2.9352836E-03 -2.8133269E-03 -2.6963379E-03 -2.5842525E-03
 -2.4769765E-03 -2.3744039E-03 -2.2764034E-03 -2.1828369E-03 -2.0935514E-03
 -2.0083946E-03 -1.9271969E-03 -1.8497927E-03 -1.7760182E-03 -1.7056976E-03
 -1.6386689E-03 -1.5747692E-03 -1.5138349E-03 -1.4557105E-03 -1.4002476E-03
 -1.3472984E-03
 5.3760167E-02 5.2407198E-02 5.0917111E-02 4.9318105E-02 4.7636427E-02
 4.5896038E-02 4.4118393E-02 4.2322334E-02 4.0524162E-02 3.8737722E-02
 3.6974564E-02 3.5244171E-02 3.3554152E-02 3.1910464E-02 3.0317631E-02
 2.8778939E-02 2.7296631E-02 2.5872059E-02 2.4505839E-02 2.3197995E-02
 2.1948071E-02 2.0755211E-02 1.9618254E-02 1.8535813E-02 1.7506318E-02
 1.6528083E-02 1.5599313E-02 1.4718170E-02 1.3882798E-02 1.3091305E-02
 1.2341834E-02 1.1632529E-02 1.0961567E-02 1.0327194E-02 9.7276606E-03
 9.1613019E-03 8.6264852E-03 8.1216432E-03 7.6452699E-03 7.1959193E-03
 6.7721871E-03 6.3727498E-03 5.9963251E-03 5.6417026E-03 5.3077205E-03
 4.9932641E-03 4.6972893E-03 4.4187852E-03 4.1567977E-03 3.9104219E-03
 3.6787989E-03 3.4611055E-03 3.2565696E-03 3.0644529E-03 2.8840522E-03
 2.7147033E-03 2.5557801E-03 2.4066812E-03 2.2668382E-03 2.1357078E-03
 2.0127806E-03 1.8975689E-03 1.7896076E-03 1.6884557E-03 1.5936986E-03
 1.5049387E-03 1.4218028E-03 1.3439270E-03 1.2709789E-03 1.2026384E-03
 1.1386005E-03
 2.7769215E-02 2.4034364E-02 2.0564500E-02 1.7359693E-02 1.4416389E-02
 1.1728006E-02 9.2855664E-03 7.0782853E-03 5.0941054E-03 3.3200874E-03
 1.7428281E-03 3.4875670E-04 -8.7562681E-04 -1.9435748E-03 -2.8679383E-03
 -3.6610765E-03 -4.3347767E-03 -4.9002026E-03 -5.3678853E-03 -5.7476852E-03
 -6.0488028E-03 -6.2797843E-03 -6.4485371E-03 -6.5623396E-03 -6.6278810E-03
 -6.6512660E-03 -6.6380682E-03 -6.5933461E-03 -6.5216678E-03 -6.4271633E-03
 -6.3135345E-03 -6.1841034E-03 -6.0418253E-03 -5.8893268E-03 -5.7289377E-03
 -5.5627064E-03 -5.3924313E-03 -5.2196798E-03 -5.0458186E-03 -4.8720180E-03
 -4.6992917E-03 -4.5284908E-03 -4.3603382E-03 -4.1954294E-03 -4.0342552E-03
 -3.8772188E-03 -3.7246235E-03 -3.5767106E-03 -3.4336424E-03 -3.2955429E-03
 -3.1624616E-03 -3.0344268E-03 -2.9114122E-03 -2.7933707E-03 -2.6802239E-03
 -2.5718689E-03 -2.4681867E-03 -2.3690378E-03 -2.2742816E-03 -2.1837573E-03
 -2.0973044E-03 -2.0147499E-03 -1.9359358E-03 -1.8606823E-03 -1.7888281E-03
 -1.7202034E-03 -1.6546493E-03 -1.5920089E-03 -1.5321295E-03 -1.4748645E-03
 -1.4200782E-03
 5.4691870E-02 5.3325240E-02 5.1819634E-02 5.0203513E-02 4.8503384E-02
 4.6743430E-02 4.4945266E-02 4.3127906E-02 4.1307773E-02 3.9498817E-02
 3.7712682E-02 3.5958938E-02 3.4245275E-02 3.2577742E-02 3.0960938E-02
 2.9398257E-02 2.7891992E-02 2.6443610E-02 2.5053810E-02 2.3722695E-02
 2.2449877E-02 2.1234585E-02 2.0075716E-02 1.8971946E-02 1.7921746E-02
 1.6923469E-02 1.5975351E-02 1.5075576E-02 1.4222309E-02 1.3413657E-02
 1.2647769E-02 1.1922790E-02 1.1236886E-02 1.0588293E-02 9.9752536E-03
 9.3960771E-03 8.8491198E-03 8.3327871E-03 7.8455657E-03 7.3859701E-03
 6.9525950E-03 6.5440834E-03 6.1591375E-03 5.7965154E-03 5.4550385E-03
 5.1335776E-03 4.8310542E-03 4.5464472E-03 4.2787725E-03 4.0271110E-03
 3.7905753E-03 3.5683280E-03 3.3595695E-03 3.1635410E-03 2.9795216E-03
 2.8068267E-03 2.6448050E-03 2.4928343E-03 2.3503299E-03 2.2167256E-03
 2.0914907E-03 1.9741203E-03 1.8641314E-03 1.7610687E-03 1.6645010E-03
 1.5740093E-03 1.4892098E-03 1.4097339E-03 1.3352286E-03 1.2653711E-03
 1.1998452E-03
 2.7249249E-02 2.3512153E-02 2.0042952E-02 1.6841628E-02 1.3904454E-02
 1.1224616E-02 8.7928865E-03 6.5981774E-03 4.6281344E-03 2.8695134E-03
 1.3086094E-03 -6.8435533E-05 -1.2753917E-03 -2.3257541E-03 -3.2326011E-03
 -4.0084724E-03 -4.6653254E-03 -5.2144597E-03 -5.6665014E-03 -6.0314010E-03
 -6.3184109E-03 -6.5361112E-03 -6.6924281E-03 -6.7946347E-03 -6.8494086E-03
 -6.8628360E-03 -6.8404591E-03 -6.7872955E-03 -6.7078751E-03 -6.6062887E-03
 -6.4861933E-03 -6.3508628E-03 -6.2032132E-03 -6.0458304E-03 -5.8809998E-03
 -5.7107322E-03 -5.5367900E-03 -5.3607086E-03 -5.1838136E-03 -5.0072563E-03
 -4.8320079E-03 -4.6588955E-03 -4.4886209E-03 -4.3217535E-03 -4.1587632E-03
 -4.0000221E-03 -3.8458207E-03 -3.6963781E-03 -3.5518433E-03 -3.4123140E-03
 -3.2778326E-03 -3.1484051E-03 -3.0239993E-03 -2.9045488E-03 -2.7899679E-03
 -2.6801419E-03 -2.5749407E-03 -2.4742277E-03 -2.3778477E-03 -2.2856374E-03
 -2.1974335E-03 -2.1130703E-03 -2.0323778E-03 -1.9551862E-03 -1.8813306E-03
 -1.8106552E-03 -1.7429976E-03 -1.6782077E-03 -1.6161406E-03 -1.5566599E-03
 -1.4996288E-03
 5.5751707E-02 5.4368526E-02 5.2844070E-02 5.1207148E-02 4.9484577E-02
 4.7700811E-02 4.5877703E-02 4.4034492E-02 4.2187754E-02 4.0351614E-02
 3.8537852E-02 3.6756177E-02 3.5014391E-02 3.3318657E-02 3.1673688E-02
 3.0082971E-02 2.8548924E-02 2.7073091E-02 2.5656266E-02 2.4298636E-02
 2.2999890E-02 2.1759320E-02 2.0575879E-02 1.9448292E-02 1.8375071E-02
 1.7354593E-02 1.6385121E-02 1.5464854E-02 1.4591943E-02 1.3764518E-02
 1.2980713E-02 1.2238664E-02 1.1536528E-02 1.0872512E-02 1.0244853E-02
 9.6518351E-03 9.0917833E-03 8.5630976E-03 8.0642235E-03 7.5936601E-03
 7.1499674E-03 6.7317709E-03 6.3377442E-03 5.9666187E-03 5.6172004E-03
 5.2883197E-03 4.9788775E-03 4.6878266E-03 4.4141649E-03 4.1569392E-03
 3.9152368E-03 3.6882001E-03 3.4749997E-03 3.2748498E-03 3.0870147E-03
 2.9107700E-03 2.7454505E-03 2.5904083E-03 2.4450258E-03 2.3087286E-03
 2.1809624E-03 2.0611908E-03 1.9489265E-03 1.8436895E-03 1.7450290E-03
 1.6525252E-03 1.5657679E-03 1.4843827E-03 1.4080056E-03 1.3363069E-03
 1.2689619E-03
 2.6681382E-02 2.2942819E-02 1.9475333E-02 1.6278757E-02 1.3349148E-02
 1.0679424E-02 8.2600191E-03 6.0795564E-03 4.1252961E-03 2.3836594E-03
 8.4061420E-04 -5.1801058E-04 -1.7062594E-03 -2.7378865E-03 -3.6261834E-03
 -4.3838839E-03 -5.0230930E-03 -5.5552376E-03 -5.9910398E-03 -6.3405135E-03
 -6.6129579E-03 -6.8169739E-03 -6.9604921E-03 -7.0507806E-03 -7.0944945E-03
 -7.0976936E-03 -7.0658801E-03 -7.0040319E-03 -6.9166454E-03 -6.8077529E-03
 -6.6809733E-03 -6.5395311E-03 -6.3863010E-03 -6.2238239E-03 -6.0543441E-03
 -5.8798310E-03 -5.7020122E-03 -5.5223806E-03 -5.3422316E-03 -5.1626796E-03
 -4.9846731E-03 -4.8090061E-03 -4.6363492E-03 -4.4672508E-03 -4.3021492E-03
 -4.1413982E-03 -3.9852727E-03 -3.8339579E-03 -3.6875918E-03 -3.5462505E-03
 -3.4099687E-03 -3.2787258E-03 -3.1524857E-03 -3.0311658E-03 -2.9146667E-03
 -2.8028747E-03 -2.6956510E-03 -2.5928498E-03 -2.4943126E-03 -2.3998853E-03
 -2.3093948E-03 -2.2226803E-03 -2.1395755E-03 -2.0599146E-03 -1.9835443E-03
 -1.9103023E-03 -1.8400479E-03 -1.7726299E-03 -1.7079177E-03 -1.6457727E-03
 -1.5860770E-03
 5.6957465E-02 5.5553969E-02 5.4006424E-02 5.2344054E-02 5.0594062E-02
 4.8781261E-02 4.6927817E-02 4.5053255E-02 4.3174393E-02 4.1305576E-02
 3.9458774E-02 3.7643868E-02 3.5868827E-02 3.4139957E-02 3.2462098E-02
 3.0838853E-02 2.9272761E-02 2.7765460E-02 2.6317839E-02 2.4930155E-02
 2.3602176E-02 2.2333238E-02 2.1122349E-02 1.9968268E-02 1.8869529E-02
 1.7824534E-02 1.6831553E-02 1.5888784E-02 1.4994379E-02 1.4146464E-02
 1.3343146E-02 1.2582549E-02 1.1862817E-02 1.1182121E-02 1.0538680E-02
 9.9307476E-03 9.3566319E-03 8.8146860E-03 8.3033340E-03 7.8210505E-03
 7.3663658E-03 6.9378610E-03 6.5341960E-03 6.1540627E-03 5.7962299E-03
 5.4595154E-03 5.1427772E-03 4.8449356E-03 4.5649619E-03 4.3018740E-03
 4.0547261E-03 3.8226300E-03 3.6047229E-03 3.4002019E-03 3.2082843E-03
 3.0282321E-03 2.8593442E-03 2.7009470E-03 2.5524066E-03 2.4131159E-03
 2.2824989E-03 2.1600060E-03 2.0451269E-03 1.9373622E-03 1.8362518E-03
 1.7413582E-03 1.6522632E-03 1.5685824E-03 1.4899465E-03 1.4160089E-03
 1.3464523E-03
 2.6064498E-02 2.2325398E-02 1.8860780E-02 1.5670288E-02 1.2749720E-02
 1.0091658E-02 7.6861819E-03 5.5215289E-03 3.5845716E-03 1.8613639E-03
 3.3751866E-04 -1.0014542E-03 -2.1698934E-03 -3.1817979E-03 -4.0506860E-03
 -4.7894609E-03 -5.4103751E-03 -5.9249667E-03 -6.3440371E-03 -6.6776583E-03
 -6.9351569E-03 -7.1251551E-03 -7.2555705E-03 -7.3336647E-03 -7.3660612E-03
 -7.3587848E-03 -7.3173032E-03 -7.2465474E-03 -7.1509653E-03 -7.0345448E-03
 -6.9008567E-03 -6.7530810E-03 -6.5940418E-03 -6.4262399E-03 -6.2518730E-03
 -6.0728686E-03 -5.8909128E-03 -5.7074674E-03 -5.5237901E-03 -5.3409557E-03
 -5.1598810E-03 -4.9813371E-03 -4.8059542E-03 -4.6342574E-03 -4.4666654E-03
 -4.3035005E-03 -4.1450136E-03 -3.9913775E-03 -3.8427042E-03 -3.6990526E-03
 -3.5604420E-03 -3.4268426E-03 -3.2982004E-03 -3.1744279E-03 -3.0554191E-03
 -2.9410520E-03 -2.8311822E-03 -2.7256713E-03 -2.6243571E-03 -2.5270812E-03
 -2.4336865E-03 -2.3440116E-03 -2.2578959E-03 -2.1751837E-03 -2.0957277E-03
 -2.0193798E-03 -1.9460012E-03 -1.8754520E-03 -1.8076114E-03 -1.7423587E-03
 -1.6795732E-03
 5.8328960E-02 5.6900304E-02 5.5324286E-02 5.3630646E-02 5.1847097E-02
 4.9998876E-02 4.8108615E-02 4.6196163E-02 4.4278678E-02 4.2370785E-02
 4.0484704E-02 3.8630538E-02 3.6816441E-02 3.5048891E-02 3.3332877E-02
 3.1672139E-02 3.0069318E-02 2.8526152E-02 2.7043615E-02 2.5622034E-02
 2.4261236E-02 2.2960590E-02 2.1719154E-02 2.0535693E-02 1.9408761E-02
 1.8336765E-02 1.7317973E-02 1.6350573E-02 1.5432705E-02 1.4562463E-02
 1.3737950E-02 1.2957258E-02 1.2218489E-02 1.1519807E-02 1.0859377E-02
 1.0235424E-02 9.6462201E-03 9.0900976E-03 8.5654277E-03 8.0706589E-03
 7.6042800E-03 7.1648411E-03 6.7509562E-03 6.3612871E-03 5.9945704E-03
 5.6495732E-03 5.3251255E-03 5.0201169E-03 4.7334693E-03 4.4641700E-03
 4.2112414E-03 3.9737523E-03 3.7508151E-03 3.5415813E-03 3.3452401E-03
 3.1610280E-03 2.9882086E-03 2.8260851E-03 2.6739943E-03 2.5313052E-03
 2.3974222E-03 2.2717793E-03 2.1538392E-03 2.0430991E-03 1.9390803E-03
 1.8413340E-03 1.7494366E-03 1.6629890E-03 1.5816251E-03 1.5049917E-03
 1.4327599E-03
 2.5398552E-02 2.1659896E-02 1.8199295E-02 1.5016175E-02 1.2106010E-02
 9.4610006E-03 7.0708701E-03 4.9233851E-03 3.0050222E-03 1.3014394E-03
 -2.0211418E-04 -1.5204572E-03 -2.6682187E-03 -3.6596484E-03 -4.5084674E-03
 -5.2277497E-03 -5.8298795E-03 -6.3264929E-03 -6.7284671E-03 -7.0459088E-03
 -7.2881742E-03 -7.4638873E-03 -7.5809569E-03 -7.6466235E-03 -7.6674772E-03
 -7.6495041E-03 -7.5981314E-03 -7.5182421E-03 -7.4142381E-03 -7.2900578E-03
 -7.1492223E-03 -6.9948607E-03 -6.8297526E-03 -6.6563487E-03 -6.4768060E-03
 -6.2930104E-03 -6.1066048E-03 -5.9190039E-03 -5.7314397E-03 -5.5449447E-03
 -5.3604012E-03 -5.1785475E-03 -4.9999882E-03 -4.8252158E-03 -4.6546217E-03
 -4.4885073E-03 -4.3270988E-03 -4.1705482E-03 -4.0189498E-03 -3.8723501E-03
 -3.7307476E-03 -3.5941091E-03 -3.4623651E-03 -3.3354284E-03 -3.2131921E-03
 -3.0955232E-03 -2.9822879E-03 -2.8733409E-03 -2.7685319E-03 -2.6677118E-03
 -2.5707236E-03 -2.4774158E-03 -2.3876438E-03 -2.3012580E-03 -2.2181158E-03
 -2.1380894E-03 -2.0610432E-03 -1.9868575E-03 -1.9154098E-03 -1.8465910E-03
 -1.7802987E-03
 5.9888031E-02 5.8428042E-02 5.6816790E-02 5.5084690E-02 5.3260081E-02
 5.1368814E-02 4.9434014E-02 4.7476001E-02 4.5512352E-02 4.3558035E-02
 4.1625585E-02 3.9725348E-02 3.7865710E-02 3.6053322E-02 3.4293350E-02
 3.2589648E-02 3.0944966E-02 2.9361155E-02 2.7839230E-02 2.6379593E-02
 2.4982100E-02 2.3646155E-02 2.2370832E-02 2.1154899E-02 1.9996915E-02
 1.8895270E-02 1.7848216E-02 1.6853919E-02 1.5910499E-02 1.5016015E-02
 1.4168534E-02 1.3366109E-02 1.2606817E-02 1.1888766E-02 1.1210091E-02
 1.0568974E-02 9.9636447E-03 9.3923844E-03 8.8535314E-03 8.3454838E-03
 7.8666862E-03 7.4156467E-03 6.9909408E-03 6.5911813E-03 6.2150545E-03
 5.8612865E-03 5.5286735E-03 5.2160504E-03 4.9222969E-03 4.6463632E-03
 4.3872283E-03 4.1439175E-03 3.9155115E-03 3.7011181E-03 3.4999007E-03
 3.3110576E-03 3.1338218E-03 2.9674692E-03 2.8113176E-03 2.6647018E-03
 2.5270213E-03 2.3976807E-03 2.2761330E-03 2.1618595E-03 2.0543768E-03
 1.9532191E-03 1.8579651E-03 1.7682051E-03 1.6835697E-03 1.6037048E-03
 1.5282842E-03
 2.4684858E-02 2.0947501E-02 1.7491888E-02 1.4317174E-02 1.1418485E-02
 8.7876162E-03 6.4138551E-03 4.2845295E-03 2.3856764E-03 7.0255378E-04
 -7.7996490E-04 -2.0770265E-03 -3.2035455E-03 -4.1740113E-03 -5.0023408E-03
 -5.7017729E-03 -6.2848129E-03 -6.7631816E-03 -7.1478155E-03 -7.4488637E-03
 -7.6756915E-03 -7.8369249E-03 -7.9404572E-03 -7.9934960E-03 -8.0026044E-03
 -7.9737287E-03 -7.9122428E-03 -7.8229923E-03 -7.7103171E-03 -7.5781150E-03
 -7.4298517E-03 -7.2686095E-03 -7.0971134E-03 -6.9177737E-03 -6.7326943E-03
 -6.5437201E-03 -6.3524493E-03 -6.1602583E-03 -5.9683342E-03 -5.7776775E-03
 -5.5891341E-03 -5.4034078E-03 -5.2210726E-03 -5.0425939E-03 -4.8683356E-03
 -4.6985806E-03 -4.5335228E-03 -4.3733036E-03 -4.2180051E-03 -4.0676538E-03
 -3.9222445E-03 -3.7817392E-03 -3.6460592E-03 -3.5151185E-03 -3.3888107E-03
 -3.2670049E-03 -3.1495802E-03 -3.0363929E-03 -2.9273003E-03 -2.8221663E-03
 -2.7208435E-03 -2.6231960E-03 -2.5290814E-03 -2.4383720E-03 -2.3509338E-03
 -2.2666499E-03 -2.1853982E-03 -2.1070640E-03 -2.0315391E-03 -1.9587236E-03
 -1.8885222E-03
 6.1658546E-02 6.0159426E-02 5.8504574E-02 5.6725256E-02 5.4850619E-02
 5.2907232E-02 5.0918873E-02 4.8906449E-02 4.6888005E-02 4.4878945E-02
 4.2892139E-02 4.0938236E-02 3.9025858E-02 3.7161861E-02 3.5351545E-02
 3.3598907E-02 3.1906806E-02 3.0277140E-02 2.8710999E-02 2.7208814E-02
 2.5770465E-02 2.4395369E-02 2.3082580E-02 2.1830872E-02 2.0638779E-02
 1.9504661E-02 1.8426744E-02 1.7403163E-02 1.6431978E-02 1.5511225E-02
 1.4638912E-02 1.3813056E-02 1.3031670E-02 1.2292828E-02 1.1594605E-02
 1.0935131E-02 1.0312584E-02 9.7251944E-03 9.1712493E-03 8.6490912E-03
 8.1571089E-03 7.6937638E-03 7.2575700E-03 6.8470924E-03 6.4609600E-03
 6.0978616E-03 5.7565216E-03 5.4357327E-03 5.1343357E-03 4.8512188E-03
 4.5853220E-03 4.3356302E-03 4.1011781E-03 3.8810400E-03 3.6743404E-03
 3.4802468E-03 3.2979667E-03 3.1267451E-03 2.9658726E-03 2.8146796E-03
 2.6725293E-03 2.5388231E-03 2.4130007E-03 2.2945330E-03 2.1829237E-03
 2.0777101E-03 1.9784628E-03 1.8847695E-03 1.7962577E-03 1.7125779E-03
 1.6334017E-03
 2.3926288E-02 2.0190729E-02 1.6740618E-02 1.3574841E-02 1.0688163E-02
 8.0719544E-03 5.7150559E-03 3.6043355E-03 1.7253991E-03 6.3088046E-05
 -1.3980912E-03 -2.6736148E-03 -3.7786728E-03 -4.7279978E-03 -5.5356929E-03
 -6.2151472E-03 -6.7789778E-03 -7.2389930E-03 -7.6061832E-03 -7.8907227E-03
 -8.1019923E-03 -8.2486067E-03 -8.3384486E-03 -8.3786938E-03 -8.3758654E-03
 -8.3358726E-03 -8.2640415E-03 -8.1651602E-03 -8.0435351E-03 -7.9029948E-03
 -7.7469624E-03 -7.5784638E-03 -7.4001811E-03 -7.2144638E-03 -7.0233783E-03
 -6.8287174E-03 -6.6320389E-03 -6.4346739E-03 -6.2377695E-03 -6.0422895E-03
 -5.8490466E-03 -5.6587048E-03 -5.4718168E-03 -5.2888156E-03 -5.1100468E-03
 -4.9357619E-03 -4.7661499E-03 -4.6013352E-03 -4.4413819E-03 -4.2863195E-03
 -4.1361330E-03 -3.9907829E-03 -3.8501970E-03 -3.7142900E-03 -3.5829616E-03
 -3.4560945E-03 -3.3335723E-03 -3.2152641E-03 -3.1010460E-03 -2.9907874E-03
 -2.8843577E-03 -2.7816321E-03 -2.6824845E-03 -2.5867971E-03 -2.4944542E-03
 -2.4053417E-03 -2.3193520E-03 -2.2363800E-03 -2.1563328E-03 -2.0791106E-03
 -2.0046239E-03
 6.3666217E-02 6.2118333E-02 6.0409751E-02 5.8572773E-02 5.6637526E-02
 5.4631475E-02 5.2579187E-02 5.0502237E-02 4.8419259E-02 4.6346113E-02
 4.4296078E-02 4.2280108E-02 4.0307075E-02 3.8384024E-02 3.6516424E-02
 3.4708370E-02 3.2962795E-02 3.1281665E-02 2.9666098E-02 2.8116537E-02
 2.6632860E-02 2.5214465E-02 2.3860399E-02 2.2569390E-02 2.1339938E-02
 2.0170357E-02 1.9058825E-02 1.8003417E-02 1.7002152E-02 1.6052989E-02
 1.5153896E-02 1.4302818E-02 1.3497708E-02 1.2736577E-02 1.2017434E-02
 1.1338351E-02 1.0697438E-02 1.0092867E-02 9.5228534E-03 8.9856712E-03
 8.4796594E-03 8.0032088E-03 7.5547644E-03 7.1328348E-03 6.7359903E-03
 6.3628471E-03 6.0120900E-03 5.6824419E-03 5.3726933E-03 5.0816829E-03
 4.8083034E-03 4.5514954E-03 4.3102428E-03 4.0835971E-03 3.8706406E-03
 3.6705113E-03 3.4823883E-03 3.3054973E-03 3.1391073E-03 2.9825300E-03
 2.8351133E-03 2.6962520E-03 2.5653751E-03 2.4419450E-03 2.3254622E-03
 2.2154651E-03 2.1115127E-03 2.0132042E-03 1.9201605E-03 1.8320364E-03
 1.7485120E-03
 2.3127496E-02 1.9393476E-02 1.5948586E-02 1.2791453E-02 9.9164657E-03
 7.3146564E-03 4.9743457E-03 2.8819733E-03 1.0227057E-03 -6.1902555E-04
 -2.0590820E-03 -3.3132669E-03 -4.3970509E-03 -5.3253924E-03 -6.1125914E-03
 -6.7721773E-03 -7.3168827E-03 -7.7585950E-03 -8.1083551E-03 -8.3763683E-03
 -8.5720252E-03 -8.7039350E-03 -8.7799570E-03 -8.8072419E-03 -8.7922793E-03
 -8.7409252E-03 -8.6584650E-03 -8.5496409E-03 -8.4186988E-03 -8.2694208E-03
 -8.1051746E-03 -7.9289321E-03 -7.7433283E-03 -7.5506587E-03 -7.3529417E-03
 -7.1519222E-03 -6.9491118E-03 -6.7458008E-03 -6.5430989E-03 -6.3419319E-03
 -6.1430749E-03 -5.9471708E-03 -5.7547349E-03 -5.5661816E-03 -5.3818398E-03
 -5.2019465E-03 -5.0266739E-03 -4.8561431E-03 -4.6904101E-03 -4.5295083E-03
 -4.3734247E-03 -4.2221206E-03 -4.0755393E-03 -3.9335992E-03 -3.7962159E-03
 -3.6632854E-03 -3.5347012E-03 -3.4103554E-03 -3.2901294E-03 -3.1739143E-03
 -3.0615926E-03 -2.9530514E-03 -2.8481837E-03 -2.7468789E-03 -2.6490334E-03
 -2.5545463E-03 -2.4633165E-03 -2.3752514E-03 -2.2902573E-03 -2.2082480E-03
 -2.1291317E-03
 6.5938570E-02 6.4330317E-02 6.2555954E-02 6.0649071E-02 5.8640979E-02
 5.6560200E-02 5.4432217E-02 5.2279390E-02 5.0120991E-02 4.7973413E-02
 4.5850340E-02 4.3763071E-02 4.1720722E-02 3.9730523E-02 3.7798077E-02
 3.5927571E-02 3.4122001E-02 3.2383353E-02 3.0712748E-02 2.9110620E-02
 2.7576817E-02 2.6110716E-02 2.4711287E-02 2.3377227E-02 2.2106957E-02
 2.0898735E-02 1.9750670E-02 1.8660763E-02 1.7626958E-02 1.6647145E-02
 1.5719211E-02 1.4841023E-02 1.4010464E-02 1.3225454E-02 1.2483939E-02
 1.1783904E-02 1.1123384E-02 1.0500468E-02 9.9132964E-03 9.3600694E-03
 8.8390466E-03 8.3485413E-03 7.8869322E-03 7.4526491E-03 7.0442003E-03
 6.6601322E-03 6.2990580E-03 5.9596500E-03 5.6406423E-03 5.3408197E-03
 5.0590225E-03 4.7941487E-03 4.5451485E-03 4.3110298E-03 4.0908488E-03
 3.8837122E-03 3.6887769E-03 3.5052530E-03 3.3323886E-03 3.1694833E-03
 3.0158751E-03 2.8709532E-03 2.7341342E-03 2.6048839E-03 2.4827030E-03
 2.3671172E-03 2.2576980E-03 2.1540448E-03 2.0557784E-03 1.9625609E-03
 1.8740692E-03
 2.2294911E-02 1.8560980E-02 1.5119811E-02 1.1969834E-02 9.1051320E-03
 6.5163495E-03 4.1913791E-03 2.1162166E-03 2.7558883E-04 -1.3464759E-03
 -2.7662220E-03 -3.9997706E-03 -5.0628907E-03 -5.9707700E-03 -6.7379000E-03
 -7.3779696E-03 -7.9038227E-03 -8.3274283E-03 -8.6598881E-03 -8.9114355E-03
 -9.0914769E-03 -9.2086121E-03 -9.2706885E-03 -9.2848251E-03 -9.2574768E-03
 -9.1944598E-03 -9.1010109E-03 -8.9818193E-03 -8.8410834E-03 -8.6825332E-03
 -8.5094767E-03 -8.3248373E-03 -8.1311949E-03 -7.9307994E-03 -7.7256151E-03
 -7.5173401E-03 -7.3074489E-03 -7.0971875E-03 -6.8876254E-03 -6.6796602E-03
 -6.4740344E-03 -6.2713651E-03 -6.0721501E-03 -5.8767898E-03 -5.6855902E-03
 -5.4987888E-03 -5.3165550E-03 -5.1390035E-03 -4.9662036E-03 -4.7981874E-03
 -4.6349550E-03 -4.4764825E-03 -4.3227193E-03 -4.1736048E-03 -4.0290700E-03
 -3.8890287E-03 -3.7533904E-03 -3.6220616E-03 -3.4949444E-03 -3.3719377E-03
 -3.2529507E-03 -3.1378753E-03 -3.0266210E-03 -2.9190849E-03 -2.8151744E-03
 -2.7147972E-03 -2.6178579E-03 -2.5242704E-03 -2.4339426E-03 -2.3467909E-03
 -2.2627257E-03
 6.8504930E-02 6.6822626E-02 6.4968511E-02 6.2977701E-02 6.0882866E-02
 5.8713775E-02 5.6496941E-02 5.4255590E-02 5.2009728E-02 4.9776305E-02
 4.7569454E-02 4.5400787E-02 4.3279681E-02 4.1213531E-02 3.9208051E-02
 3.7267491E-02 3.5394870E-02 3.3592176E-02 3.1860504E-02 3.0200243E-02
 2.8611189E-02 2.7092637E-02 2.5643498E-02 2.4262374E-02 2.2947613E-02
 2.1697376E-02 2.0509677E-02 1.9382432E-02 1.8313486E-02 1.7300636E-02
 1.6341668E-02 1.5434356E-02 1.4576487E-02 1.3765890E-02 1.3000409E-02
 1.2277935E-02 1.1596410E-02 1.0953824E-02 1.0348236E-02 9.7777490E-03
 9.2405360E-03 8.7348223E-03 8.2589043E-03 7.8111384E-03 7.3899478E-03
 6.9938130E-03 6.6212858E-03 6.2709688E-03 5.9415381E-03 5.6317309E-03
 5.3403401E-03 5.0662225E-03 4.8082913E-03 4.5655216E-03 4.3369420E-03
 4.1216384E-03 3.9187493E-03 3.7274635E-03 3.5470228E-03 3.3767102E-03
 3.2158694E-03 3.0638699E-03 2.9201400E-03 2.7841348E-03 2.6553546E-03
 2.5333385E-03 2.4176501E-03 2.3078921E-03 2.2036943E-03 2.1047168E-03
 2.0106451E-03
 2.1436661E-02 1.7699640E-02 1.4259016E-02 1.1113102E-02 8.2558207E-03
 5.6773964E-03 3.3653448E-03 1.3052274E-03 -5.1867391E-04 -2.1227540E-03
 -3.5236375E-03 -4.7378056E-03 -5.7813171E-03 -6.6696163E-03 -7.4174060E-03
 -8.0385404E-03 -8.5459882E-03 -8.9518195E-03 -9.2671914E-03 -9.5023839E-03
 -9.6668182E-03 -9.7690998E-03 -9.8170592E-03 -9.8177930E-03 -9.7777210E-03
 -9.7026220E-03 -9.5976852E-03 -9.4675533E-03 -9.3163680E-03 -9.1478107E-03
 -8.9651365E-03 -8.7712193E-03 -8.5685821E-03 -8.3594276E-03 -8.1456704E-03
 -7.9289768E-03 -7.7107702E-03 -7.4922643E-03 -7.2745006E-03 -7.0583434E-03
 -6.8445182E-03 -6.6336221E-03 -6.4261439E-03 -6.2224744E-03 -6.0229171E-03
 -5.8277082E-03 -5.6370283E-03 -5.4509989E-03 -5.2696960E-03 -5.0931722E-03
 -4.9214414E-03 -4.7544953E-03 -4.5923064E-03 -4.4348324E-03 -4.2820182E-03
 -4.1338019E-03 -3.9901086E-03 -3.8508605E-03 -3.7159806E-03 -3.5853821E-03
 -3.4589788E-03 -3.3366848E-03 -3.2184087E-03 -3.1040655E-03 -2.9935639E-03
 -2.8868152E-03 -2.7837323E-03 -2.6842211E-03 -2.5881948E-03 -2.4955668E-03
 -2.4062421E-03
 7.1396574E-02 6.9624558E-02 6.7674853E-02 6.5584317E-02 6.3387215E-02
 6.1114684E-02 5.8794428E-02 5.6450631E-02 5.4104071E-02 5.1772308E-02
 4.9469918E-02 4.7208861E-02 4.4998724E-02 4.2847067E-02 4.0759668E-02
 3.8740825E-02 3.6793545E-02 3.4919772E-02 3.3120543E-02 3.1396165E-02
 2.9746352E-02 2.8170286E-02 2.6666779E-02 2.5234317E-02 2.3871133E-02
 2.2575278E-02 2.1344643E-02 2.0177016E-02 1.9070139E-02 1.8021677E-02
 1.7029298E-02 1.6090669E-02 1.5203449E-02 1.4365347E-02 1.3574099E-02
 1.2827481E-02 1.2123323E-02 1.1459507E-02 1.0833982E-02 1.0244752E-02
 9.6898843E-03 9.1675185E-03 8.6758547E-03 8.2131661E-03 7.7777994E-03
 7.3681567E-03 6.9827260E-03 6.6200509E-03 6.2787486E-03 5.9575108E-03
 5.6550829E-03 5.3702886E-03 5.1020086E-03 4.8491880E-03 4.6108356E-03
 4.3860185E-03 4.1738576E-03 3.9735325E-03 3.7842740E-03 3.6053674E-03
 3.4361403E-03 3.2759721E-03 3.1242827E-03 2.9805314E-03 2.8442226E-03
 2.7148905E-03 2.5921066E-03 2.4754764E-03 2.3646296E-03 2.2592302E-03
 2.1589608E-03
 2.0562394E-02 1.6816802E-02 1.3371402E-02 1.0224541E-02 7.3699984E-03
 4.7977096E-03 2.4948032E-03 4.4639333E-04 -1.3636873E-03 -2.9522888E-03
 -4.3364591E-03 -5.5330554E-03 -6.5584723E-03 -7.4284435E-03 -8.1579015E-03
 -8.7608909E-03 -9.2505356E-03 -9.6390126E-03 -9.9375620E-03 -1.0156519E-02
 -1.0305327E-02 -1.0392609E-02 -1.0426184E-02 -1.0413134E-02 -1.0359846E-02
 -1.0272066E-02 -1.0154937E-02 -1.0013060E-02 -9.8505225E-03 -9.6709589E-03
 -9.4775772E-03 -9.2731947E-03 -9.0602916E-03 -8.8410312E-03 -8.6172810E-03
 -8.3906678E-03 -8.1625851E-03 -7.9342239E-03 -7.7065993E-03 -7.4805599E-03
 -7.2568180E-03 -7.0359698E-03 -6.8184957E-03 -6.6047907E-03 -6.3951733E-03
 -6.1898860E-03 -5.9891203E-03 -5.7930197E-03 -5.6016790E-03 -5.4151672E-03
 -5.2335258E-03 -5.0567635E-03 -4.8848763E-03 -4.7178408E-03 -4.5556258E-03
 -4.3981820E-03 -4.2454572E-03 -4.0973891E-03 -3.9539081E-03 -3.8149464E-03
 -3.6804255E-03 -3.5502610E-03 -3.4243769E-03 -3.3026859E-03 -3.1851002E-03
 -3.0715293E-03 -2.9618845E-03 -2.8560692E-03 -2.7539902E-03 -2.6555490E-03
 -2.5606491E-03
 7.4647240E-02 7.2768040E-02 7.0705153E-02 6.8497412E-02 6.6180907E-02
 6.3788302E-02 6.1348610E-02 5.8887091E-02 5.6425340E-02 5.3981569E-02
 5.1570818E-02 4.9205363E-02 4.6895023E-02 4.4647466E-02 4.2468522E-02
 4.0362481E-02 3.8332302E-02 3.6379851E-02 3.4506064E-02 3.2711126E-02
 3.0994616E-02 2.9355589E-02 2.7792705E-02 2.6304310E-02 2.4888480E-02
 2.3543116E-02 2.2265961E-02 2.1054661E-02 1.9906798E-02 1.8819898E-02
 1.7791478E-02 1.6819056E-02 1.5900163E-02 1.5032358E-02 1.4213245E-02
 1.3440462E-02 1.2711714E-02 1.2024760E-02 1.1377426E-02 1.0767607E-02
 1.0193259E-02 9.6524199E-03 9.1432007E-03 8.6637819E-03 8.2124323E-03
 7.7874912E-03 7.3873652E-03 7.0105535E-03 6.6556172E-03 6.3211992E-03
 6.0060187E-03 5.7088593E-03 5.4285727E-03 5.1640882E-03 4.9143913E-03
 4.6785339E-03 4.4556339E-03 4.2448556E-03 4.0454315E-03 3.8566373E-03
 3.6778026E-03 3.5083038E-03 3.3475619E-03 3.1950385E-03 3.0502356E-03
 2.9126930E-03 2.7819821E-03 2.6577050E-03 2.5394929E-03 2.4270066E-03
 2.3199294E-03
 1.9683015E-02 1.5920527E-02 1.2462383E-02 9.3072345E-03 6.4487192E-03
 3.8765557E-03 1.5774894E-03 -4.6383118E-04 -2.2640747E-03 -3.8405976E-03
 -5.2109198E-03 -6.3923388E-03 -7.4016373E-03 -8.2548764E-03 -8.9672664E-03
 -9.5530860E-03 -1.0025635E-02 -1.0397233E-02 -1.0679221E-02 -1.0882001E-02
 -1.1015073E-02 -1.1087072E-02 -1.1105823E-02 -1.1078400E-02 -1.1011171E-02
 -1.0909846E-02 -1.0779534E-02 -1.0624795E-02 -1.0449676E-02 -1.0257757E-02
 -1.0052212E-02 -9.8358132E-03 -9.6109984E-03 -9.3798982E-03 -9.1443518E-03
 -8.9059593E-03 -8.6660916E-03 -8.4259221E-03 -8.1864567E-03 -7.9485467E-03
 -7.7129002E-03 -7.4801184E-03 -7.2506992E-03 -7.0250495E-03 -6.8035009E-03
 -6.5863202E-03 -6.3737230E-03 -6.1658756E-03 -5.9628971E-03 -5.7648821E-03
 -5.5718925E-03 -5.3839646E-03 -5.2011143E-03 -5.0233393E-03 -4.8506260E-03
 -4.6829432E-03 -4.5202510E-03 -4.3624998E-03 -4.2096325E-03 -4.0615820E-03
 -3.9182785E-03 -3.7796458E-03 -3.6455982E-03 -3.5160466E-03 -3.3909068E-03
 -3.2700764E-03 -3.1534606E-03 -3.0409519E-03 -2.9324489E-03 -2.8278416E-03
 -2.7270224E-03
 7.8293920E-02 7.6288454E-02 7.4093200E-02 7.1749203E-02 6.9294564E-02
 6.6763684E-02 6.4187057E-02 6.1591078E-02 5.8998287E-02 5.6427550E-02
 5.3894404E-02 5.1411461E-02 4.8988719E-02 4.6633936E-02 4.4352956E-02
 4.2150024E-02 4.0028002E-02 3.7988625E-02 3.6032688E-02 3.4160208E-02
 3.2370582E-02 3.0662691E-02 2.9035004E-02 2.7485671E-02 2.6012586E-02
 2.4613459E-02 2.3285855E-02 2.2027222E-02 2.0834964E-02 1.9706428E-02
 1.8638961E-02 1.7629903E-02 1.6676610E-02 1.5776496E-02 1.4926989E-02
 1.4125587E-02 1.3369854E-02 1.2657398E-02 1.1985932E-02 1.1353217E-02
 1.0757107E-02 1.0195529E-02 9.6665053E-03 9.1681248E-03 8.6985845E-03
 8.2561467E-03 7.8391712E-03 7.4460898E-03 7.0754294E-03 6.7257928E-03
 6.3958610E-03 6.0843956E-03 5.7902229E-03 5.5122566E-03 5.2494686E-03
 5.0009037E-03 4.7656647E-03 4.5429152E-03 4.3318802E-03 4.1318373E-03
 3.9421106E-03 3.7620782E-03 3.5911608E-03 3.4288140E-03 3.2745446E-03
 3.1278883E-03 2.9884079E-03 2.8557067E-03 2.7294073E-03 2.6091647E-03
 2.4946500E-03
 1.8810585E-02 1.5019476E-02 1.1537638E-02 8.3641000E-03 5.4925517E-03
 2.9124932E-03 6.1026198E-04 -1.4300068E-03 -3.2255654E-03 -4.7943499E-03
 -6.1544483E-03 -7.3236749E-03 -8.3192680E-03 -9.1576958E-03 -9.8545095E-03
 -1.0424260E-02 -1.0880476E-02 -1.1235646E-02 -1.1501253E-02 -1.1687791E-02
 -1.1804824E-02 -1.1861030E-02 -1.1864254E-02 -1.1821572E-02 -1.1739338E-02
 -1.1623246E-02 -1.1478375E-02 -1.1309252E-02 -1.1119893E-02 -1.0913848E-02
 -1.0694250E-02 -1.0463849E-02 -1.0225053E-02 -9.9799680E-03 -9.7304238E-03
 -9.4780037E-03 -9.2240721E-03 -8.9698127E-03 -8.7162293E-03 -8.4641809E-03
 -8.2144020E-03 -7.9675056E-03 -7.7240136E-03 -7.4843564E-03 -7.2488957E-03
 -7.0179296E-03 -6.7916922E-03 -6.5703862E-03 -6.3541546E-03 -6.1431197E-03
 -5.9373635E-03 -5.7369499E-03 -5.5419104E-03 -5.3522638E-03 -5.1680091E-03
 -4.9891272E-03 -4.8155878E-03 -4.6473467E-03 -4.4843475E-03 -4.3265326E-03
 -4.1738232E-03 -4.0261354E-03 -3.8833877E-03 -3.7454804E-03 -3.6123116E-03
 -3.4837716E-03 -3.3597527E-03 -3.2401355E-03 -3.1248021E-03 -3.0136262E-03
 -2.9064885E-03
 8.2377896E-02 8.0225848E-02 7.7877596E-02 7.5376734E-02 7.2763637E-02
 7.0074677E-02 6.7341954E-02 6.4593211E-02 6.1851975E-02 5.9137873E-02
 5.6466948E-02 5.3852137E-02 5.1303618E-02 4.8829202E-02 4.6434715E-02
 4.4124287E-02 4.1900642E-02 3.9765339E-02 3.7718959E-02 3.5761300E-02
 3.3891540E-02 3.2108307E-02 3.0409841E-02 2.8794056E-02 2.7258607E-02
 2.5800973E-02 2.4418481E-02 2.3108365E-02 2.1867801E-02 2.0693926E-02
 1.9583879E-02 1.8534796E-02 1.7543849E-02 1.6608253E-02 1.5725272E-02
 1.4892240E-02 1.4106550E-02 1.3365677E-02 1.2667196E-02 1.2008741E-02
 1.1388051E-02 1.0802960E-02 1.0251388E-02 9.7313477E-03 9.2409635E-03
 8.7784315E-03 8.3420612E-03 7.9302359E-03 7.5414437E-03 7.1742511E-03
 6.8273148E-03 6.4993734E-03 6.1892364E-03 5.8958000E-03 5.6180269E-03
 5.3549516E-03 5.1056715E-03 4.8693460E-03 4.6451935E-03 4.4324873E-03
 4.2305500E-03 4.0387549E-03 3.8565143E-03 3.6832853E-03 3.5185630E-03
 3.3618680E-03 3.2127684E-03 3.0708457E-03 2.9357183E-03 2.8070223E-03
 2.6844179E-03
 1.7958431E-02 1.4123031E-02 1.0603042E-02 7.3979688E-03 4.5016669E-03
 1.9034280E-03 -4.1086404E-04 -2.4576855E-03 -4.2549740E-03 -5.8213756E-03
 -7.1756598E-03 -8.3362674E-03 -9.3210079E-03 -1.0146839E-02 -1.0829726E-02
 -1.1384573E-02 -1.1825184E-02 -1.2164274E-02 -1.2413500E-02 -1.2583491E-02
 -1.2683897E-02 -1.2723465E-02 -1.2710077E-02 -1.2650832E-02 -1.2552090E-02
 -1.2419540E-02 -1.2258252E-02 -1.2072733E-02 -1.1866988E-02 -1.1644542E-02
 -1.1408517E-02 -1.1161651E-02 -1.0906345E-02 -1.0644699E-02 -1.0378550E-02
 -1.0109484E-02 -9.8388856E-03 -9.5679490E-03 -9.2977034E-03 -9.0290373E-03
 -8.7627107E-03 -8.4993653E-03 -8.2395598E-03 -7.9837553E-03 -7.7323471E-03
 -7.4856654E-03 -7.2439788E-03 -7.0075123E-03 -6.7764395E-03 -6.5509081E-03
 -6.3310224E-03 -6.1168573E-03 -5.9084673E-03 -5.7058777E-03 -5.5090967E-03
 -5.3181127E-03 -5.1328954E-03 -4.9533988E-03 -4.7795670E-03 -4.6113273E-03
 -4.4485992E-03 -4.2912909E-03 -4.1392967E-03 -3.9925082E-03 -3.8508063E-03
 -3.7140707E-03 -3.5821695E-03 -3.4549718E-03 -3.3323404E-03 -3.2141332E-03
 -3.1002176E-03
 8.6946361E-02 8.4626414E-02 8.2103297E-02 7.9423487E-02 7.6629907E-02
 7.3761240E-02 7.0851453E-02 6.7929797E-02 6.5020971E-02 6.2145401E-02
 5.9319705E-02 5.6557156E-02 5.3868089E-02 5.1260356E-02 4.8739683E-02
 4.6310071E-02 4.3974012E-02 4.1732840E-02 3.9586857E-02 3.7535571E-02
 3.5577875E-02 3.3712089E-02 3.1936161E-02 3.0247716E-02 2.8644107E-02
 2.7122535E-02 2.5680054E-02 2.4313617E-02 2.3020152E-02 2.1796541E-02
 2.0639680E-02 1.9546485E-02 1.8513907E-02 1.7538967E-02 1.6618723E-02
 1.5750339E-02 1.4931049E-02 1.4158178E-02 1.3429150E-02 1.2741490E-02
 1.2092827E-02 1.1480886E-02 1.0903506E-02 1.0358621E-02 9.8442920E-03
 9.3586566E-03 8.8999746E-03 8.4665902E-03 8.0569535E-03 7.6696053E-03
 7.3031788E-03 6.9563864E-03 6.6280318E-03 6.3169897E-03 6.0222181E-03
 5.7427362E-03 5.4776389E-03 5.2260696E-03 4.9872426E-03 4.7604260E-03
 4.5449305E-03 4.3401150E-03 4.1453857E-03 3.9601838E-03 3.7839897E-03
 3.6163207E-03 3.4567101E-03 3.3047351E-03 3.1599877E-03 3.0220929E-03
 2.8906916E-03
 1.7141625E-02 1.3241876E-02 9.6652107E-03 6.4119301E-03 3.4761166E-03
 8.4683503E-04 -1.4905627E-03 -3.5532918E-03 -5.3601339E-03 -6.9305995E-03
 -8.2843024E-03 -9.4404742E-03 -1.0417614E-02 -1.1233296E-02 -1.1904011E-02
 -1.2445087E-02 -1.2870695E-02 -1.3193836E-02 -1.3426389E-02 -1.3579158E-02
 -1.3661933E-02 -1.3683549E-02 -1.3651967E-02 -1.3574326E-02 -1.3457022E-02
 -1.3305761E-02 -1.3125625E-02 -1.2921134E-02 -1.2696292E-02 -1.2454639E-02
 -1.2199298E-02 -1.1933024E-02 -1.1658230E-02 -1.1377038E-02 -1.1091310E-02
 -1.0802657E-02 -1.0512503E-02 -1.0222066E-02 -9.9324267E-03 -9.6445056E-03
 -9.3590952E-03 -9.0768924E-03 -8.7984810E-03 -8.5243667E-03 -8.2549835E-03
 -7.9906844E-03 -7.7317758E-03 -7.4785040E-03 -7.2310688E-03 -6.9896332E-03
 -6.7543187E-03 -6.5252148E-03 -6.3023758E-03 -6.0858363E-03 -5.8755991E-03
 -5.6716558E-03 -5.4739644E-03 -5.2824714E-03 -5.0971080E-03 -4.9177879E-03
 -4.7444166E-03 -4.5768740E-03 -4.4150497E-03 -4.2588077E-03 -4.1080122E-03
 -3.9625233E-03 -3.8221909E-03 -3.6868656E-03 -3.5563945E-03 -3.4306219E-03
 -3.3093947E-03
 9.2053995E-02 8.9544214E-02 8.6823270E-02 8.3940886E-02 8.0943033E-02
 7.7871040E-02 7.4761115E-02 7.1644299E-02 6.8546601E-02 6.5489434E-02
 6.2490046E-02 5.9562068E-02 5.6715999E-02 5.3959671E-02 5.1298693E-02
 4.8736833E-02 4.6276323E-02 4.3918155E-02 4.1662291E-02 3.9507881E-02
 3.7453435E-02 3.5496917E-02 3.3635903E-02 3.1867642E-02 3.0189166E-02
 2.8597312E-02 2.7088810E-02 2.5660312E-02 2.4308434E-02 2.3029778E-02
 2.1820975E-02 2.0678686E-02 1.9599628E-02 1.8580601E-02 1.7618474E-02
 1.6710216E-02 1.5852898E-02 1.5043694E-02 1.4279893E-02 1.3558905E-02
 1.2878238E-02 1.2235536E-02 1.1628555E-02 1.1055158E-02 1.0513340E-02
 1.0001197E-02 9.5169302E-03 9.0588611E-03 8.6253993E-03 8.2150586E-03
 7.8264540E-03 7.4582743E-03 7.1093077E-03 6.7784134E-03 6.4645335E-03
 6.1666742E-03 5.8839135E-03 5.6153876E-03 5.3602904E-03 5.1178718E-03
 4.8874267E-03 4.6682982E-03 4.4598710E-03 4.2615649E-03 4.0728408E-03
 3.8931866E-03 3.7221212E-03 3.5591945E-03 3.4039731E-03 3.2560627E-03
 3.1150791E-03
 1.6378051E-02 1.2388784E-02 8.7323394E-03 5.4100906E-03 2.4164547E-03
 -2.5973402E-04 -2.6337702E-03 -4.7237789E-03 -6.5495851E-03 -8.1317844E-03
 -9.4910460E-03 -1.0647570E-02 -1.1620748E-02 -1.2428911E-02 -1.3089208E-02
 -1.3617524E-02 -1.4028481E-02 -1.4335447E-02 -1.4550602E-02 -1.4684984E-02
 -1.4748568E-02 -1.4750332E-02 -1.4698344E-02 -1.4599839E-02 -1.4461270E-02
 -1.4288405E-02 -1.4086370E-02 -1.3859722E-02 -1.3612504E-02 -1.3348293E-02
 -1.3070251E-02 -1.2781171E-02 -1.2483506E-02 -1.2179434E-02 -1.1870850E-02
 -1.1559422E-02 -1.1246619E-02 -1.0933713E-02 -1.0621832E-02 -1.0311940E-02
 -1.0004886E-02 -9.7014038E-03 -9.4021205E-03 -9.1075804E-03 -8.8182418E-03
 -8.5344985E-03 -8.2566729E-03 -7.9850340E-03 -7.7197962E-03 -7.4611325E-03
 -7.2091701E-03 -6.9639981E-03 -6.7256731E-03 -6.4942171E-03 -6.2696314E-03
 -6.0518826E-03 -5.8409222E-03 -5.6366795E-03 -5.4390570E-03 -5.2479571E-03
 -5.0632530E-03 -4.8848125E-03 -4.7124960E-03 -4.5461482E-03 -4.3856143E-03
 -4.2307302E-03 -4.0813298E-03 -3.9372486E-03 -3.7983132E-03 -3.6643627E-03
 -3.5352276E-03
 9.7764805E-02 9.5043175E-02 9.2100561E-02 8.8990510E-02 8.5762613E-02
 8.2461409E-02 7.9125822E-02 7.5789012E-02 7.2478637E-02 6.9217265E-02
 6.6022880E-02 6.2909544E-02 5.9887893E-02 5.6965724E-02 5.4148465E-02
 5.1439583E-02 4.8840944E-02 4.6353128E-02 4.3975655E-02 4.1707225E-02
 3.9545879E-02 3.7489142E-02 3.5534132E-02 3.3677679E-02 3.1916384E-02
 3.0246697E-02 2.8664967E-02 2.7167479E-02 2.5750525E-02 2.4410388E-02
 2.3143403E-02 2.1945961E-02 2.0814527E-02 1.9745685E-02 1.8736091E-02
 1.7782524E-02 1.6881894E-02 1.6031221E-02 1.5227674E-02 1.4468531E-02
 1.3751207E-02 1.3073260E-02 1.2432364E-02 1.1826320E-02 1.1253059E-02
 1.0710631E-02 1.0197201E-02 9.7110420E-03 9.2505356E-03 8.8141728E-03
 8.4005306E-03 8.0082892E-03 7.6362011E-03 7.2831078E-03 6.9479304E-03
 6.6296523E-03 6.3273278E-03 6.0400669E-03 5.7670414E-03 5.5074738E-03
 5.2606338E-03 5.0258324E-03 4.8024268E-03 4.5898096E-03 4.3874066E-03
 4.1946806E-03 4.0111234E-03 3.8362476E-03 3.6696068E-03 3.5107683E-03
 3.3593373E-03
 1.5690278E-02 1.1580380E-02 7.8156181E-03 4.3987734E-03 1.3247649E-03
 -1.4178033E-03 -3.8449992E-03 -5.9760604E-03 -7.8321183E-03 -9.4351238E-03
 -1.0807076E-02 -1.1969415E-02 -1.2942629E-02 -1.3746031E-02 -1.4397600E-02
 -1.4913918E-02 -1.5310196E-02 -1.5600282E-02 -1.5796743E-02 -1.5910938E-02
 -1.5953094E-02 -1.5932396E-02 -1.5857084E-02 -1.5734527E-02 -1.5571296E-02
 -1.5373258E-02 -1.5145625E-02 -1.4893038E-02 -1.4619613E-02 -1.4329000E-02
 -1.4024431E-02 -1.3708769E-02 -1.3384544E-02 -1.3053983E-02 -1.2719064E-02
 -1.2381519E-02 -1.2042871E-02 -1.1704464E-02 -1.1367467E-02 -1.1032911E-02
 -1.0701687E-02 -1.0374566E-02 -1.0052218E-02 -9.7352192E-03 -9.4240522E-03
 -9.1191297E-03 -8.8207908E-03 -8.5293110E-03 -8.2449140E-03 -7.9677673E-03
 -7.6979953E-03 -7.4356748E-03 -7.1808482E-03 -6.9335229E-03 -6.6936752E-03
 -6.4612599E-03 -6.2361928E-03 -6.0183839E-03 -5.8077076E-03 -5.6040403E-03
 -5.4072337E-03 -5.2171284E-03 -5.0335601E-03 -4.8563541E-03 -4.6853335E-03
 -4.5203199E-03 -4.3611280E-03 -4.2075762E-03 -4.0594828E-03 -3.9166701E-03
 -3.7789585E-03
 0.1041541 0.1011992 9.8010547E-02 9.4646357E-02 9.1160573E-02
 8.7601684E-02 8.4011957E-02 8.0427259E-02 7.6877266E-02 7.3385984E-02
 6.9972314E-02 6.6650815E-02 6.3432314E-02 6.0324524E-02 5.7332613E-02
 5.4459680E-02 5.1707115E-02 4.9074981E-02 4.6562251E-02 4.4167064E-02
 4.1886903E-02 3.9718740E-02 3.7659172E-02 3.5704508E-02 3.3850875E-02
 3.2094255E-02 3.0430580E-02 2.8855732E-02 2.7365623E-02 2.5956202E-02
 2.4623491E-02 2.3363596E-02 2.2172719E-02 2.1047207E-02 1.9983513E-02
 1.8978233E-02 1.8028103E-02 1.7130001E-02 1.6280962E-02 1.5478159E-02
 1.4718907E-02 1.4000676E-02 1.3321057E-02 1.2677794E-02 1.2068762E-02
 1.1491952E-02 1.0945488E-02 1.0427598E-02 9.9366326E-03 9.4710393E-03
 9.0293633E-03 8.6102542E-03 8.2124295E-03 7.8346962E-03 7.4759452E-03
 7.1351212E-03 6.8112430E-03 6.5033915E-03 6.2106932E-03 5.9323357E-03
 5.6675514E-03 5.4156114E-03 5.1758387E-03 4.9475878E-03 4.7302442E-03
 4.5232414E-03 4.3260357E-03 4.1381144E-03 3.9589913E-03 3.7882146E-03
 3.6253505E-03
 1.5108168E-02 1.0839642E-02 6.9315047E-03 3.3884936E-03 2.0631909E-04
 -2.6265797E-03 -5.1271576E-03 -7.3160208E-03 -9.2159165E-03 -1.0850520E-02
 -1.2243493E-02 -1.3417853E-02 -1.4395505E-02 -1.5196997E-02 -1.5841374E-02
 -1.6346125E-02 -1.6727209E-02 -1.6999107E-02 -1.7174898E-02 -1.7266368E-02
 -1.7284093E-02 -1.7237553E-02 -1.7135227E-02 -1.6984690E-02 -1.6792692E-02
 -1.6565254E-02 -1.6307728E-02 -1.6024880E-02 -1.5720949E-02 -1.5399684E-02
 -1.5064430E-02 -1.4718146E-02 -1.4363447E-02 -1.4002662E-02 -1.3637833E-02
 -1.3270780E-02 -1.2903092E-02 -1.2536176E-02 -1.2171262E-02 -1.1809424E-02
 -1.1451598E-02 -1.1098593E-02 -1.0751106E-02 -1.0409727E-02 -1.0074966E-02
 -9.7472342E-03 -9.4268750E-03 -9.1141621E-03 -8.8093029E-03 -8.5124569E-03
 -8.2237301E-03 -7.9431748E-03 -7.6708109E-03 -7.4066184E-03 -7.1505443E-03
 -6.9025117E-03 -6.6624107E-03 -6.4301174E-03 -6.2054843E-03 -5.9883553E-03
 -5.7785525E-03 -5.5759023E-03 -5.3802109E-03 -5.1912870E-03 -5.0089355E-03
 -4.8329611E-03 -4.6631675E-03 -4.4993539E-03 -4.3413327E-03 -4.1889101E-03
 -4.0419069E-03
 0.1113099 0.1081019 0.1046432 0.1009974 9.7223803E-02
 9.3375854E-02 8.9500092E-02 8.5635826E-02 8.1815369E-02 7.8064546E-02
 7.4403480E-02 7.0847355E-02 6.7407236E-02 6.4090721E-02 6.0902681E-02
 5.7845715E-02 5.4920636E-02 5.2126866E-02 4.9462706E-02 4.6925616E-02
 4.4512399E-02 4.2219389E-02 4.0042549E-02 3.7977614E-02 3.6020134E-02
 3.4165598E-02 3.2409441E-02 3.0747114E-02 2.9174125E-02 2.7686056E-02
 2.6278598E-02 2.4947559E-02 2.3688875E-02 2.2498650E-02 2.1373125E-02
 2.0308711E-02 1.9301973E-02 1.8349649E-02 1.7448639E-02 1.6596006E-02
 1.5788959E-02 1.5024878E-02 1.4301283E-02 1.3615844E-02 1.2966364E-02
 1.2350785E-02 1.1767169E-02 1.1213697E-02 1.0688663E-02 1.0190473E-02
 9.7176284E-03 9.2687141E-03 8.8424115E-03 8.4374808E-03 8.0527589E-03
 7.6871417E-03 7.3396042E-03 7.0091658E-03 6.6949162E-03 6.3959900E-03
 6.1115660E-03 5.8408808E-03 5.5832020E-03 5.3378441E-03 5.1041590E-03
 4.8815371E-03 4.6693939E-03 4.4671893E-03 4.2744032E-03 4.0905513E-03
 3.9151800E-03
 1.4673009E-02 1.0199673E-02 6.1051478E-03 2.3969824E-03 -9.2779758E-04
 -3.8807192E-03 -6.4796954E-03 -8.7469527E-03 -1.0707261E-02 -1.2386439E-02
 -1.3810307E-02 -1.5003872E-02 -1.5990870E-02 -1.6793439E-02 -1.7432008E-02
 -1.7925236E-02 -1.8290067E-02 -1.8541800E-02 -1.8694205E-02 -1.8759627E-02
 -1.8749129E-02 -1.8672578E-02 -1.8538801E-02 -1.8355655E-02 -1.8130144E-02
 -1.7868506E-02 -1.7576292E-02 -1.7258441E-02 -1.6919350E-02 -1.6562922E-02
 -1.6192619E-02 -1.5811531E-02 -1.5422383E-02 -1.5027598E-02 -1.4629314E-02
 -1.4229422E-02 -1.3829588E-02 -1.3431270E-02 -1.3035756E-02 -1.2644157E-02
 -1.2257439E-02 -1.1876432E-02 -1.1501852E-02 -1.1134292E-02 -1.0774262E-02
 -1.0422164E-02 -1.0078330E-02 -9.7430162E-03 -9.4164032E-03 -9.0986257E-03
 -8.7897554E-03 -8.4898183E-03 -8.1987977E-03 -7.9166386E-03 -7.6432563E-03
 -7.3785391E-03 -7.1223434E-03 -6.8745180E-03 -6.6348845E-03 -6.4032632E-03
 -6.1794515E-03 -5.9632519E-03 -5.7544531E-03 -5.5528479E-03 -5.3582252E-03
 -5.1703746E-03 -4.9890853E-03 -4.8141507E-03 -4.6453676E-03 -4.4825380E-03
 -4.3254630E-03
 0.1193338 0.1158566 0.1121056 0.1081505 0.1040573
 9.9885836E-02 9.5688149E-02 9.1508083E-02 8.7381408E-02 8.3336465E-02
 7.9394951E-02 7.5572938E-02 7.1881831E-02 6.8329155E-02 6.4919375E-02
 6.1654504E-02 5.8534648E-02 5.5558458E-02 5.2723411E-02 5.0026145E-02
 4.7462691E-02 4.5028601E-02 4.2719118E-02 4.0529300E-02 3.8454078E-02
 3.6488358E-02 3.4627050E-02 3.2865118E-02 3.1197650E-02 2.9619820E-02
 2.8126979E-02 2.6714619E-02 2.5378393E-02 2.4114165E-02 2.2917952E-02
 2.1785967E-02 2.0714609E-02 1.9700455E-02 1.8740274E-02 1.7831001E-02
 1.6969744E-02 1.6153775E-02 1.5380532E-02 1.4647586E-02 1.3952681E-02
 1.3293672E-02 1.2668547E-02 1.2075423E-02 1.1512530E-02 1.0978197E-02
 1.0470862E-02 9.9890465E-03 9.5313620E-03 9.0965023E-03 8.6832400E-03
 8.2904082E-03 7.9169143E-03 7.5617176E-03 7.2238483E-03 6.9023799E-03
 6.5964432E-03 6.3052131E-03 6.0279160E-03 5.7638101E-03 5.5122124E-03
 5.2724625E-03 5.0439485E-03 4.8260852E-03 4.6183220E-03 4.4201463E-03
 4.2310636E-03
 1.4443141E-02 9.7091766E-03 5.3754780E-03 1.4537585E-03 -2.0567006E-03
 -5.1669232E-03 -7.8957127E-03 -1.0267166E-02 -1.2308507E-02 -1.4048286E-02
 -1.5515052E-02 -1.6736416E-02 -1.7738465E-02 -1.8545426E-02 -1.9179525E-02
 -1.9660961E-02 -2.0007964E-02 -2.0236924E-02 -2.0362511E-02 -2.0397831E-02
 -2.0354576E-02 -2.0243153E-02 -2.0072833E-02 -1.9851862E-02 -1.9587582E-02
 -1.9286517E-02 -1.8954473E-02 -1.8596614E-02 -1.8217526E-02 -1.7821295E-02
 -1.7411536E-02 -1.6991466E-02 -1.6563939E-02 -1.6131476E-02 -1.5696304E-02
 -1.5260387E-02 -1.4825453E-02 -1.4393005E-02 -1.3964366E-02 -1.3540676E-02
 -1.3122909E-02 -1.2711908E-02 -1.2308378E-02 -1.1912905E-02 -1.1525977E-02
 -1.1147974E-02 -1.0779205E-02 -1.0419879E-02 -1.0070154E-02 -9.7301221E-03
 -9.3998145E-03 -9.0792198E-03 -8.7682828E-03 -8.4669087E-03 -8.1749810E-03
 -7.8923497E-03 -7.6188454E-03 -7.3542865E-03 -7.0984662E-03 -6.8511842E-03
 -6.6122189E-03 -6.3813520E-03 -6.1583593E-03 -5.9430134E-03 -5.7350914E-03
 -5.5343700E-03 -5.3406274E-03 -5.1536448E-03 -4.9732085E-03 -4.7991099E-03
 -4.6311384E-03
 0.1283397 0.1245843 0.1205227 0.1162322 0.1117870
 0.1072548 0.1026949 9.8157406E-02 9.3682744E-02 8.9302726E-02
 8.5041322E-02 8.0915928E-02 7.6938458E-02 7.3116422E-02 6.9453873E-02
 6.5952137E-02 6.2610462E-02 5.9426572E-02 5.6396965E-02 5.3517319E-02
 5.0782721E-02 4.8187844E-02 4.5727093E-02 4.3394763E-02 4.1185070E-02
 3.9092273E-02 3.7110705E-02 3.5234798E-02 3.3459172E-02 3.1778581E-02
 3.0187996E-02 2.8682569E-02 2.7257666E-02 2.5908874E-02 2.4631981E-02
 2.3422984E-02 2.2278098E-02 2.1193728E-02 2.0166490E-02 1.9193176E-02
 1.8270772E-02 1.7396422E-02 1.6567450E-02 1.5781334E-02 1.5035699E-02
 1.4328307E-02 1.3657062E-02 1.3019974E-02 1.2415180E-02 1.1840926E-02
 1.1295557E-02 1.0777502E-02 1.0285294E-02 9.8175388E-03 9.3729263E-03
 8.9502120E-03 8.5482225E-03 8.1658559E-03 7.8020603E-03 7.4558519E-03
 7.1262992E-03 6.8125157E-03 6.5136780E-03 6.2289909E-03 5.9577287E-03
 5.6991815E-03 5.4526981E-03 5.2176528E-03 4.9934611E-03 4.7795693E-03
 4.5754598E-03
 1.4501617E-02 9.4402051E-03 4.8026829E-03 6.0706359E-04 -3.1435145E-03
 -6.4585819E-03 -9.3574468E-03 -1.1866206E-02 -1.4015020E-02 -1.5835842E-02
 -1.7360741E-02 -1.8620705E-02 -1.9644918E-02 -2.0460349E-02 -2.1091610E-02
 -2.1560919E-02 -2.1888224E-02 -2.2091344E-02 -2.2186143E-02 -2.2186730E-02
 -2.2105621E-02 -2.1953927E-02 -2.1741506E-02 -2.1477105E-02 -2.1168483E-02
 -2.0822531E-02 -2.0445358E-02 -2.0042395E-02 -1.9618461E-02 -1.9177832E-02
 -1.8724294E-02 -1.8261204E-02 -1.7791528E-02 -1.7317884E-02 -1.6842581E-02
 -1.6367640E-02 -1.5894832E-02 -1.5425689E-02 -1.4961549E-02 -1.4503558E-02
 -1.4052687E-02 -1.3609757E-02 -1.3175454E-02 -1.2750333E-02 -1.2334847E-02
 -1.1929339E-02 -1.1534068E-02 -1.1149208E-02 -1.0774871E-02 -1.0411100E-02
 -1.0057888E-02 -9.7151771E-03 -9.3828747E-03 -9.0608550E-03 -8.7489597E-03
 -8.4470147E-03 -8.1548244E-03 -7.8721726E-03 -7.5988406E-03 -7.3346053E-03
 -7.0792260E-03 -6.8324707E-03 -6.5940940E-03 -6.3638631E-03 -6.1415350E-03
 -5.9268801E-03 -5.7196557E-03 -5.5196360E-03 -5.3265924E-03 -5.1403055E-03
 -4.9605523E-03
 0.1384496 0.1344185 0.1300371 0.1253904 0.1205622
 0.1156304 0.1106640 0.1057213 0.1008496 9.6085563E-02
 9.1456644E-02 8.6982198E-02 8.2675114E-02 7.8543030E-02 7.4589603E-02
 7.0815407E-02 6.7218699E-02 6.3796081E-02 6.0542919E-02 5.7453752E-02
 5.4522566E-02 5.1742993E-02 4.9108483E-02 4.6612434E-02 4.4248272E-02
 4.2009525E-02 3.9889861E-02 3.7883140E-02 3.5983451E-02 3.4185074E-02
 3.2482572E-02 3.0870717E-02 2.9344553E-02 2.7899370E-02 2.6530676E-02
 2.5234239E-02 2.4006050E-02 2.2842312E-02 2.1739459E-02 2.0694114E-02
 1.9703096E-02 1.8763401E-02 1.7872212E-02 1.7026857E-02 1.6224835E-02
 1.5463781E-02 1.4741460E-02 1.4055770E-02 1.3404722E-02 1.2786447E-02
 1.2199178E-02 1.1641235E-02 1.1111040E-02 1.0607103E-02 1.0128014E-02
 9.6724425E-03 9.2391260E-03 8.8268807E-03 8.4345778E-03 8.0611650E-03
 7.7056414E-03 7.3670619E-03 7.0445389E-03 6.7372322E-03 6.4443508E-03
 6.1651547E-03 5.8989306E-03 5.6450195E-03 5.4027969E-03 5.1716655E-03
 4.9510757E-03
 1.4965734E-02 9.4985198E-03 4.4787689E-03 -6.6000714E-05 -4.1260812E-03
 -7.7075860E-03 -1.0829305E-02 -1.3519105E-02 -1.5810469E-02 -1.7739546E-02
 -1.9342903E-02 -2.0655954E-02 -2.1711983E-02 -2.2541620E-02 -2.3172641E-02
 -2.3629986E-02 -2.3935867E-02 -2.4110010E-02 -2.4169853E-02 -2.4130808E-02
 -2.4006478E-02 -2.3808874E-02 -2.3548596E-02 -2.3235010E-02 -2.2876395E-02
 -2.2480074E-02 -2.2052523E-02 -2.1599470E-02 -2.1125980E-02 -2.0636540E-02
 -2.0135101E-02 -1.9625161E-02 -1.9109784E-02 -1.8591678E-02 -1.8073203E-02
 -1.7556414E-02 -1.7043112E-02 -1.6534833E-02 -1.6032903E-02 -1.5538455E-02
 -1.5052424E-02 -1.4575606E-02 -1.4108636E-02 -1.3652030E-02 -1.3206190E-02
 -1.2771413E-02 -1.2347899E-02 -1.1935781E-02 -1.1535114E-02 -1.1145903E-02
 -1.0768099E-02 -1.0401599E-02 -1.0046282E-02 -9.7019793E-03 -9.3685156E-03
 -9.0456838E-03 -8.7332632E-03 -8.4310230E-03 -8.1387246E-03 -7.8561231E-03
 -7.5829639E-03 -7.3189987E-03 -7.0639690E-03 -6.8176240E-03 -6.5797088E-03
 -6.3499771E-03 -6.1281752E-03 -5.9140618E-03 -5.7073915E-03 -5.5079339E-03
 -5.3154533E-03
 0.1497824 0.1454973 0.1408026 0.1357905 0.1305551
 0.1251866 0.1197666 0.1143652 0.1090392 0.1038328
 9.8778427E-02 9.3898855E-02 8.9208663E-02 8.4716082E-02 8.0424488E-02
 7.6333694E-02 7.2440833E-02 6.8741225E-02 6.5228879E-02 6.1896984E-02
 5.8738232E-02 5.5745032E-02 5.2909710E-02 5.0224632E-02 4.7682285E-02
 4.5275357E-02 4.2996768E-02 4.0839698E-02 3.8797636E-02 3.6864325E-02
 3.5033844E-02 3.3300545E-02 3.1659067E-02 3.0104360E-02 2.8631609E-02
 2.7236298E-02 2.5914146E-02 2.4661103E-02 2.3473382E-02 2.2347383E-02
 2.1279713E-02 2.0267183E-02 1.9306779E-02 1.8395655E-02 1.7531130E-02
 1.6710680E-02 1.5931899E-02 1.5192538E-02 1.4490452E-02 1.3823634E-02
 1.3190175E-02 1.2588276E-02 1.2016227E-02 1.1472430E-02 1.0955364E-02
 1.0463593E-02 9.9957641E-03 9.5506022E-03 9.1269016E-03 8.7235272E-03
 8.3394051E-03 7.9735275E-03 7.6249419E-03 7.2927466E-03 6.9760950E-03
 6.6741891E-03 6.3862763E-03 6.1116419E-03 5.8496147E-03 5.5995602E-03
 5.3608832E-03
 1.5997335E-02 1.0036139E-02 4.5414870E-03 -4.4515438E-04 -4.9031866E-03
 -8.8318074E-03 -1.2246976E-02 -1.5177255E-02 -1.7659448E-02 -1.9734634E-02
 -2.1445069E-02 -2.2831952E-02 -2.3934023E-02 -2.4786847E-02 -2.5422480E-02
 -2.5869507E-02 -2.6153207E-02 -2.6295835E-02 -2.6316917E-02 -2.6233574E-02
 -2.6060812E-02 -2.5811778E-02 -2.5498012E-02 -2.5129637E-02 -2.4715560E-02
 -2.4263602E-02 -2.3780655E-02 -2.3272770E-02 -2.2745287E-02 -2.2202889E-02
 -2.1649690E-02 -2.1089314E-02 -2.0524912E-02 -1.9959241E-02 -1.9394699E-02
 -1.8833362E-02 -1.8277010E-02 -1.7727168E-02 -1.7185137E-02 -1.6651997E-02
 -1.6128646E-02 -1.5615823E-02 -1.5114115E-02 -1.4623975E-02 -1.4145752E-02
 -1.3679683E-02 -1.3225927E-02 -1.2784559E-02 -1.2355593E-02 -1.1938989E-02
 -1.1534660E-02 -1.1142475E-02 -1.0762272E-02 -1.0393867E-02 -1.0037053E-02
 -9.6916035E-03 -9.3572764E-03 -9.0338197E-03 -8.7209810E-03 -8.4184939E-03
 -8.1260940E-03 -7.8435056E-03 -7.5704632E-03 -7.3066917E-03 -7.0519289E-03
 -6.8059028E-03 -6.5683504E-03 -6.3390112E-03 -6.1176266E-03 -5.9039467E-03
 -5.6977216E-03
 0.1624346 0.1579447 0.1529694 0.1476045 0.1419536
 0.1361205 0.1302027 0.1242857 0.1184405 0.1127225
 0.1071726 0.1018189 9.6679121E-02 9.1763072E-02 8.7074257E-02
 8.2611799E-02 7.8371659E-02 7.4347690E-02 7.0532285E-02 6.6917047E-02
 6.3493095E-02 6.0251378E-02 5.7182867E-02 5.4278690E-02 5.1530223E-02
 4.8929147E-02 4.6467487E-02 4.4137616E-02 4.1932296E-02 3.9844628E-02
 3.7868116E-02 3.5996582E-02 3.4224197E-02 3.2545470E-02 3.0955210E-02
 2.9448517E-02 2.8020777E-02 2.6667628E-02 2.5384985E-02 2.4168968E-02
 2.3015924E-02 2.1922402E-02 2.0885158E-02 1.9901114E-02 1.8967375E-02
 1.8081201E-02 1.7239997E-02 1.6441323E-02 1.5682859E-02 1.4962433E-02
 1.4277980E-02 1.3627550E-02 1.3009301E-02 1.2421500E-02 1.1862515E-02
 1.1330795E-02 1.0824887E-02 1.0343411E-02 9.8850811E-03 9.4486699E-03
 9.0330299E-03 8.6370744E-03 8.2597807E-03 7.9001850E-03 7.5573749E-03
 7.2304965E-03 6.9187325E-03 6.6213221E-03 6.3375407E-03 6.0667051E-03
 5.8081746E-03
 1.7810084E-02 1.1263304E-02 5.1901694E-03 -3.4861921E-04 -5.3154216E-03
 -9.6966373E-03 -1.3500747E-02 -1.6754117E-02 -1.9495729E-02 -2.1771859E-02
 -2.3631645E-02 -2.5123732E-02 -2.6294161E-02 -2.7185168E-02 -2.7834674E-02
 -2.8276244E-02 -2.8539319E-02 -2.8649572E-02 -2.8629320E-02 -2.8497947E-02
 -2.8272269E-02 -2.7966896E-02 -2.7594533E-02 -2.7166240E-02 -2.6691660E-02
 -2.6179204E-02 -2.5636220E-02 -2.5069118E-02 -2.4483513E-02 -2.3884293E-02
 -2.3275718E-02 -2.2661513E-02 -2.2044888E-02 -2.1428643E-02 -2.0815177E-02
 -2.0206546E-02 -1.9604515E-02 -1.9010559E-02 -1.8425930E-02 -1.7851651E-02
 -1.7288566E-02 -1.6737346E-02 -1.6198521E-02 -1.5672486E-02 -1.5159531E-02
 -1.4659845E-02 -1.4173536E-02 -1.3700636E-02 -1.3241120E-02 -1.2794914E-02
 -1.2361894E-02 -1.1941905E-02 -1.1534763E-02 -1.1140252E-02 -1.0758151E-02
 -1.0388206E-02 -1.0030158E-02 -9.6837413E-03 -9.3486747E-03 -9.0246825E-03
 -8.7114712E-03 -8.4087560E-03 -8.1162471E-03 -7.8336531E-03 -7.5606895E-03
 -7.2970688E-03 -7.0425114E-03 -6.7967339E-03 -6.5594637E-03 -6.3304347E-03
 -6.1093769E-03
 0.1764509 0.1718394 0.1666533 0.1609848 0.1549416
 0.1486393 0.1421928 0.1357079 0.1292753 0.1229675
 0.1168387 0.1109266 0.1052551 9.9836990E-02 9.4676986E-02
 8.9773990E-02 8.5122824E-02 8.0715716E-02 7.6543190E-02 7.2594903E-02
 6.8860069E-02 6.5327838E-02 6.1987497E-02 5.8828659E-02 5.5841312E-02
 5.3015899E-02 5.0343316E-02 4.7814939E-02 4.5422640E-02 4.3158717E-02
 4.1015930E-02 3.8987461E-02 3.7066869E-02 3.5248123E-02 3.3525523E-02
 3.1893712E-02 3.0347632E-02 2.8882528E-02 2.7493928E-02 2.6177602E-02
 2.4929561E-02 2.3746045E-02 2.2623507E-02 2.1558587E-02 2.0548135E-02
 1.9589156E-02 1.8678833E-02 1.7814500E-02 1.6993646E-02 1.6213898E-02
 1.5473022E-02 1.4768908E-02 1.4099555E-02 1.3463101E-02 1.2857773E-02
 1.2281903E-02 1.1733917E-02 1.1212342E-02 1.0715779E-02 1.0242916E-02
 9.7925132E-03 9.3633970E-03 8.9544738E-03 8.5646939E-03 8.1930868E-03
 7.8387186E-03 7.5007221E-03 7.1782637E-03 6.8705729E-03 6.5768994E-03
 6.2965634E-03
 2.0666068E-02 1.3452383E-02 6.6973791E-03 4.8527244E-04 -5.1221699E-03
 -1.0090008E-02 -1.4411036E-02 -1.8103069E-02 -2.1203419E-02 -2.3762217E-02
 -2.5836019E-02 -2.7482677E-02 -2.8757825E-02 -2.9712761E-02 -3.0393494E-02
 -3.0840514E-02 -3.1089028E-02 -3.1169424E-02 -3.1107815E-02 -3.0926617E-02
 -3.0645048E-02 -3.0279620E-02 -2.9844521E-02 -2.9351968E-02 -2.8812507E-02
 -2.8235236E-02 -2.7628029E-02 -2.6997689E-02 -2.6350120E-02 -2.5690408E-02
 -2.5022963E-02 -2.4351580E-02 -2.3679523E-02 -2.3009598E-02 -2.2344187E-02
 -2.1685321E-02 -2.1034710E-02 -2.0393776E-02 -1.9763714E-02 -1.9145485E-02
 -1.8539865E-02 -1.7947467E-02 -1.7368760E-02 -1.6804090E-02 -1.6253695E-02
 -1.5717715E-02 -1.5196225E-02 -1.4689215E-02 -1.4196627E-02 -1.3718361E-02
 -1.3254266E-02 -1.2804162E-02 -1.2367839E-02 -1.1945064E-02 -1.1535586E-02
 -1.1139135E-02 -1.0755434E-02 -1.0384187E-02 -1.0025098E-02 -9.6778637E-03
 -9.3421740E-03 -9.0177236E-03 -8.7041929E-03 -8.4012793E-03 -8.1086699E-03
 -7.8260619E-03 -7.5531504E-03 -7.2896373E-03 -7.0352284E-03 -6.7896429E-03
 -6.5525873E-03
 0.1917916 0.1871740 0.1818898 0.1760165 0.1696551
 0.1629249 0.1559546 0.1488717 0.1417925 0.1348146
 0.1280138 0.1214442 0.1151408 0.1091233 0.1033999
 9.7970143E-02 9.2828348E-02 8.7965049E-02 8.3368614E-02 7.9026371E-02
 7.4925154E-02 7.1051821E-02 6.7393549E-02 6.3937977E-02 6.0673341E-02
 5.7588473E-02 5.4672848E-02 5.1916547E-02 4.9310293E-02 4.6845347E-02
 4.4513535E-02 4.2307183E-02 4.0219083E-02 3.8242500E-02 3.6371090E-02
 3.4598887E-02 3.2920297E-02 3.1330049E-02 2.9823195E-02 2.8395064E-02
 2.7041260E-02 2.5757629E-02 2.4540275E-02 2.3385508E-02 2.2289868E-02
 2.1250077E-02 2.0263048E-02 1.9325871E-02 1.8435812E-02 1.7590286E-02
 1.6786864E-02 1.6023254E-02 1.5297296E-02 1.4606956E-02 1.3950332E-02
 1.3325614E-02 1.2731102E-02 1.2165203E-02 1.1626402E-02 1.1113287E-02
 1.0624513E-02 1.0158822E-02 9.7150188E-03 9.2919776E-03 8.8886423E-03
 8.5040126E-03 8.1371367E-03 7.7871252E-03 7.4531296E-03 7.1343537E-03
 6.8300511E-03
 2.4851328E-02 1.6920583E-02 9.4024381E-03 2.4041818E-03 -3.9836857E-03
 -9.6956817E-03 -1.4697163E-02 -1.8985728E-02 -2.2587908E-02 -2.5552211E-02
 -2.7940730E-02 -2.9821308E-02 -3.1261541E-02 -3.2324873E-02 -3.3068512E-02
 -3.3542715E-02 -3.3790860E-02 -3.3849988E-02 -3.3751544E-02 -3.3522148E-02
 -3.3184305E-02 -3.2757062E-02 -3.2256577E-02 -3.1696562E-02 -3.1088687E-02
 -3.0442910E-02 -2.9767727E-02 -2.9070405E-02 -2.8357167E-02 -2.7633326E-02
 -2.6903426E-02 -2.6171345E-02 -2.5440382E-02 -2.4713341E-02 -2.3992585E-02
 -2.3280103E-02 -2.2577550E-02 -2.1886300E-02 -2.1207480E-02 -2.0541994E-02
 -1.9890562E-02 -1.9253742E-02 -1.8631956E-02 -1.8025499E-02 -1.7434575E-02
 -1.6859287E-02 -1.6299672E-02 -1.5755694E-02 -1.5227264E-02 -1.4714260E-02
 -1.4216501E-02 -1.3733787E-02 -1.3265880E-02 -1.2812519E-02 -1.2373437E-02
 -1.1948334E-02 -1.1536907E-02 -1.1138839E-02 -1.0753805E-02 -1.0381478E-02
 -1.0021525E-02 -9.6736103E-03 -9.3373992E-03 -9.0125566E-03 -8.6987559E-03
 -8.3956653E-03 -8.1029581E-03 -7.8203185E-03 -7.5474274E-03 -7.2839865E-03
 -7.0296815E-03
 0.2083153 0.2038215 0.1985835 0.1926541 0.1861128
 0.1790664 0.1716441 0.1639879 0.1562404 0.1485313
 0.1409684 0.1336334 0.1265820 0.1198480 0.1134475
 0.1073839 0.1016523 9.6241869E-02 9.1138840E-02 8.6327709E-02
 8.1792362E-02 7.7516742E-02 7.3485240E-02 6.9682956E-02 6.6095755E-02
 6.2710397E-02 5.9514455E-02 5.6496322E-02 5.3645208E-02 5.0951000E-02
 4.8404321E-02 4.5996372E-02 4.3718960E-02 4.1564438E-02 3.9525628E-02
 3.7595816E-02 3.5768710E-02 3.4038402E-02 3.2399364E-02 3.0846387E-02
 2.9374573E-02 2.7979324E-02 2.6656322E-02 2.5401492E-02 2.4211016E-02
 2.3081293E-02 2.2008942E-02 2.0990774E-02 2.0023799E-02 1.9105198E-02
 1.8232325E-02 1.7402688E-02 1.6613938E-02 1.5863867E-02 1.5150405E-02
 1.4471595E-02 1.3825591E-02 1.3210660E-02 1.2625168E-02 1.2067579E-02
 1.1536433E-02 1.1030363E-02 1.0548078E-02 1.0088356E-02 9.6500497E-03
 9.2320722E-03 8.8333925E-03 8.4530432E-03 8.0901068E-03 7.7437186E-03
 7.4130609E-03
 3.0625734E-02 2.1979457E-02 1.3667351E-02 5.8116624E-03 -1.4718954E-03
 -8.0838660E-03 -1.3951261E-02 -1.9035667E-02 -2.3336187E-02 -2.6886167E-02
 -2.9744871E-02 -3.1986982E-02 -3.3692837E-02 -3.4941092E-02 -3.5804197E-02
 -3.6346227E-02 -3.6622368E-02 -3.6679361E-02 -3.6556397E-02 -3.6286157E-02
 -3.5895836E-02 -3.5408072E-02 -3.4841735E-02 -3.4212582E-02 -3.3533800E-02
 -3.2816477E-02 -3.2069918E-02 -3.1301979E-02 -3.0519292E-02 -2.9727437E-02
 -2.8931141E-02 -2.8134381E-02 -2.7340511E-02 -2.6552342E-02 -2.5772227E-02
 -2.5002118E-02 -2.4243640E-02 -2.3498103E-02 -2.2766598E-02 -2.2049984E-02
 -2.1348929E-02 -2.0663954E-02 -1.9995440E-02 -1.9343646E-02 -1.8708741E-02
 -1.8090803E-02 -1.7489834E-02 -1.6905772E-02 -1.6338499E-02 -1.5787864E-02
 -1.5253661E-02 -1.4735661E-02 -1.4233591E-02 -1.3747172E-02 -1.3276099E-02
 -1.2820047E-02 -1.2378681E-02 -1.1951657E-02 -1.1538619E-02 -1.1139215E-02
 -1.0753082E-02 -1.0379859E-02 -1.0019183E-02 -9.6706925E-03 -9.3340361E-03
 -9.0088584E-03 -8.6948117E-03 -8.3915526E-03 -8.0987420E-03 -7.8160595E-03
 -7.5431676E-03
 0.2257983 0.2215410 0.2164922 0.2106770 0.2041436
 0.1969683 0.1892586 0.1811498 0.1727963 0.1643570
 0.1559789 0.1477847 0.1398659 0.1322834 0.1250713
 0.1182435 0.1117993 0.1057288 0.1000165 9.4643757E-02
 8.9590997E-02 8.4838398E-02 8.0366716E-02 7.6157652E-02 7.2193958E-02
 6.8459570E-02 6.4939514E-02 6.1619941E-02 5.8488041E-02 5.5531908E-02
 5.2740533E-02 5.0103702E-02 4.7611918E-02 4.5256369E-02 4.3028831E-02
 4.0921636E-02 3.8927641E-02 3.7040144E-02 3.5252921E-02 3.3560116E-02
 3.1956248E-02 3.0436182E-02 2.8995117E-02 2.7628532E-02 2.6332211E-02
 2.5102181E-02 2.3934716E-02 2.2826320E-02 2.1773707E-02 2.0773806E-02
 1.9823711E-02 1.8920708E-02 1.8062234E-02 1.7245879E-02 1.6469389E-02
 1.5730629E-02 1.5027591E-02 1.4358387E-02 1.3721237E-02 1.3114466E-02
 1.2536493E-02 1.1985823E-02 1.1461053E-02 1.0960850E-02 1.0483967E-02
 1.0029221E-02 9.5954910E-03 9.1817239E-03 8.7869186E-03 8.4101316E-03
 8.0504827E-03
 3.8160738E-02 2.8857941E-02 1.9790130E-02 1.1080579E-02 2.8563070E-03
 -4.7587506E-03 -1.1653886E-02 -1.7744049E-02 -2.2981167E-02 -2.7360106E-02
 -3.0916914E-02 -3.3719644E-02 -3.5855539E-02 -3.7418615E-02 -3.8500216E-02
 -3.9183419E-02 -3.9540529E-02 -3.9632708E-02 -3.9510805E-02 -3.9216649E-02
 -3.8784478E-02 -3.8242269E-02 -3.7612893E-02 -3.6915094E-02 -3.6164254E-02
 -3.5373062E-02 -3.4551993E-02 -3.3709720E-02 -3.2853451E-02 -3.1989187E-02
 -3.1121900E-02 -3.0255752E-02 -2.9394181E-02 -2.8540062E-02 -2.7695764E-02
 -2.6863232E-02 -2.6044076E-02 -2.5239589E-02 -2.4450822E-02 -2.3678606E-02
 -2.2923579E-02 -2.2186229E-02 -2.1466902E-02 -2.0765832E-02 -2.0083155E-02
 -1.9418918E-02 -1.8773088E-02 -1.8145572E-02 -1.7536225E-02 -1.6944854E-02
 -1.6371224E-02 -1.5815064E-02 -1.5276077E-02 -1.4753944E-02 -1.4248325E-02
 -1.3758858E-02 -1.3285179E-02 -1.2826911E-02 -1.2383660E-02 -1.1955050E-02
 -1.1540682E-02 -1.1140167E-02 -1.0753112E-02 -1.0379130E-02 -1.0017840E-02
 -9.6688569E-03 -9.3318140E-03 -9.0063335E-03 -8.6920587E-03 -8.3886478E-03
 -8.0957301E-03
 0.2439944 0.2400395 0.2352807 0.2297213 0.2233802
 0.2162970 0.2085397 0.2002091 0.1914402 0.1823952
 0.1732488 0.1641684 0.1552969 0.1467420 0.1385740
 0.1308314 0.1235274 0.1166581 0.1102090 0.1041593
 9.8485671E-02 9.3163736E-02 8.8169605E-02 8.3480455E-02 7.9074867E-02
 7.4932963E-02 7.1036384E-02 6.7368209E-02 6.3912958E-02 6.0656320E-02
 5.7585176E-02 5.4687437E-02 5.1951926E-02 4.9368367E-02 4.6927195E-02
 4.4619568E-02 4.2437285E-02 4.0372696E-02 3.8418721E-02 3.6568746E-02
 3.4816593E-02 3.3156507E-02 3.1583115E-02 3.0091390E-02 2.8676646E-02
 2.7334481E-02 2.6060782E-02 2.4851693E-02 2.3703596E-02 2.2613112E-02
 2.1577053E-02 2.0592440E-02 1.9656461E-02 1.8766481E-02 1.7920030E-02
 1.7114770E-02 1.6348504E-02 1.5619172E-02 1.4924819E-02 1.4263626E-02
 1.3633855E-02 1.3033883E-02 1.2462164E-02 1.1917258E-02 1.1397793E-02
 1.0902480E-02 1.0430096E-02 9.9794893E-03 9.5495703E-03 9.1393050E-03
 8.7477332E-03
 4.7498636E-02 3.7638254E-02 2.7912362E-02 1.8433068E-02 9.3214381E-03
 7.0553814E-04 -7.2846478E-03 -1.4526847E-02 -2.0920107E-02 -2.6399653E-02
 -3.0947791E-02 -3.4595840E-02 -3.7415963E-02 -3.9506346E-02 -4.0975288E-02
 -4.1928653E-02 -4.2462256E-02 -4.2658579E-02 -4.2586323E-02 -4.2301610E-02
 -4.1849740E-02 -4.1267082E-02 -4.0582787E-02 -3.9820224E-02 -3.8998194E-02
 -3.8131844E-02 -3.7233442E-02 -3.6312941E-02 -3.5378467E-02 -3.4436647E-02
 -3.3492904E-02 -3.2551695E-02 -3.1616662E-02 -3.0690802E-02 -2.9776566E-02
 -2.8875943E-02 -2.7990555E-02 -2.7121704E-02 -2.6270427E-02 -2.5437539E-02
 -2.4623653E-02 -2.3829233E-02 -2.3054592E-02 -2.2299929E-02 -2.1565344E-02
 -2.0850845E-02 -2.0156363E-02 -1.9481761E-02 -1.8826852E-02 -1.8191403E-02
 -1.7575132E-02 -1.6977733E-02 -1.6398864E-02 -1.5838154E-02 -1.5295235E-02
 -1.4769711E-02 -1.4261166E-02 -1.3769190E-02 -1.3293359E-02 -1.2833253E-02
 -1.2388444E-02 -1.1958508E-02 -1.1543022E-02 -1.1141568E-02 -1.0753735E-02
 -1.0379107E-02 -1.0017286E-02 -9.6678743E-03 -9.3304822E-03 -9.0047419E-03
 -8.6902594E-03
 0.2627077 0.2590650 0.2546317 0.2494006 0.2433722
 0.2365584 0.2289889 0.2207180 0.2118330 0.2024591
 0.1927576 0.1829137 0.1731157 0.1635317 0.1542923
 0.1454851 0.1371575 0.1293256 0.1219840 0.1151140
 0.1086900 0.1026829 9.7063318E-02 9.1802746E-02 8.6874217E-02
 8.2252771E-02 7.7915423E-02 7.3841207E-02 7.0010990E-02 6.6407293E-02
 6.3014224E-02 5.9817236E-02 5.6802999E-02 5.3959344E-02 5.1275041E-02
 4.8739776E-02 4.6344034E-02 4.4079017E-02 4.1936621E-02 3.9909292E-02
 3.7990045E-02 3.6172375E-02 3.4450252E-02 3.2818031E-02 3.1270493E-02
 2.9802723E-02 2.8410155E-02 2.7088510E-02 2.5833782E-02 2.4642242E-02
 2.3510361E-02 2.2434859E-02 2.1412633E-02 2.0440783E-02 1.9516589E-02
 1.8637488E-02 1.7801063E-02 1.7005047E-02 1.6247302E-02 1.5525826E-02
 1.4838720E-02 1.4184194E-02 1.3560567E-02 1.2966247E-02 1.2399743E-02
 1.1859638E-02 1.1344594E-02 1.0853350E-02 1.0384711E-02 9.9375444E-03
 9.5108096E-03
 5.8559220E-02 4.8248753E-02 3.7986733E-02 2.7869252E-02 1.8001003E-02
 8.4964624E-03 -5.2005291E-04 -8.9172162E-03 -1.6564010E-02 -2.3342723E-02
 -2.9166164E-02 -3.3994224E-02 -3.7842542E-02 -4.0778667E-02 -4.2906940E-02
 -4.4348981E-02 -4.5226701E-02 -4.5651216E-02 -4.5717821E-02 -4.5505043E-02
 -4.5076050E-02 -4.4480942E-02 -4.3759171E-02 -4.2941753E-02 -4.2053036E-02
 -4.1112233E-02 -4.0134542E-02 -3.9132010E-02 -3.8114265E-02 -3.7088998E-02
 -3.6062393E-02 -3.5039429E-02 -3.4024123E-02 -3.3019718E-02 -3.2028820E-02
 -3.1053530E-02 -3.0095538E-02 -2.9156161E-02 -2.8236464E-02 -2.7337234E-02
 -2.6459070E-02 -2.5602400E-02 -2.4767505E-02 -2.3954531E-02 -2.3163540E-02
 -2.2394480E-02 -2.1647230E-02 -2.0921610E-02 -2.0217367E-02 -1.9534223E-02
 -1.8871844E-02 -1.8229870E-02 -1.7607907E-02 -1.7005548E-02 -1.6422369E-02
 -1.5857920E-02 -1.5311761E-02 -1.4783430E-02 -1.4272462E-02 -1.3778402E-02
 -1.3300782E-02 -1.2839143E-02 -1.2393027E-02 -1.1961977E-02 -1.1545548E-02
 -1.1143300E-02 -1.0754798E-02 -1.0379614E-02 -1.0017331E-02 -9.6675530E-03
 -9.3298545E-03
 0.2818415 0.2784759 0.2743454 0.2694414 0.2637582
 0.2572948 0.2500579 0.2420665 0.2333600 0.2240064
 0.2141118 0.2038244 0.1933290 0.1828289 0.1725187
 0.1625594 0.1530642 0.1440977 0.1356843 0.1278202
 0.1204841 0.1136453 0.1072693 0.1013211 9.5766827E-02
 9.0574823E-02 8.5716046E-02 8.1164010E-02 7.6894768E-02 7.2886594E-02
 6.9119886E-02 6.5576889E-02 6.2241480E-02 5.9099045E-02 5.6136232E-02
 5.3340871E-02 5.0701816E-02 4.8208833E-02 4.5852549E-02 4.3624297E-02
 4.1516069E-02 3.9520487E-02 3.7630700E-02 3.5840351E-02 3.4143545E-02
 3.2534789E-02 3.1008963E-02 2.9561281E-02 2.8187288E-02 2.6882822E-02
 2.5643984E-02 2.4467112E-02 2.3348782E-02 2.2285782E-02 2.1275103E-02
 2.0313909E-02 1.9399544E-02 1.8529505E-02 1.7701430E-02 1.6913118E-02
 1.6162477E-02 1.5447539E-02 1.4766458E-02 1.4117483E-02 1.3498973E-02
 1.2909371E-02 1.2347208E-02 1.1811104E-02 1.1299741E-02 1.0811880E-02
 1.0346372E-02
 7.1187012E-02 6.0516708E-02 4.9828909E-02 3.9205264E-02 2.8732961E-02
 1.8506739E-02 8.6310562E-03 -7.7838317E-04 -9.5948465E-03 -1.7684665E-02
 -2.4917211E-02 -3.1181620E-02 -3.6407486E-02 -4.0582087E-02 -4.3754905E-02
 -4.6026818E-02 -4.7528505E-02 -4.8397969E-02 -4.8764184E-02 -4.8738576E-02
 -4.8412625E-02 -4.7859143E-02 -4.7135018E-02 -4.6284243E-02 -4.5340743E-02
 -4.4330645E-02 -4.3274131E-02 -4.2186841E-02 -4.1080967E-02 -3.9966006E-02
 -3.8849443E-02 -3.7737168E-02 -3.6633819E-02 -3.5543088E-02 -3.4467876E-02
 -3.3410471E-02 -3.2372676E-02 -3.1355880E-02 -3.0361151E-02 -2.9389288E-02
 -2.8440854E-02 -2.7516231E-02 -2.6615648E-02 -2.5739197E-02 -2.4886867E-02
 -2.4058545E-02 -2.3254042E-02 -2.2473108E-02 -2.1715425E-02 -2.0980651E-02
 -2.0268392E-02 -1.9578220E-02 -1.8909693E-02 -1.8262343E-02 -1.7635690E-02
 -1.7029244E-02 -1.6442500E-02 -1.5874961E-02 -1.5326111E-02 -1.4795449E-02
 -1.4282472E-02 -1.3786674E-02 -1.3307559E-02 -1.2844630E-02 -1.2397409E-02
 -1.1965420E-02 -1.1548189E-02 -1.1145259E-02 -1.0756181E-02 -1.0380532E-02
 -1.0017845E-02
 0.3014053 0.2982568 0.2943709 0.2897429 0.2843689
 0.2782460 0.2713735 0.2637545 0.2554002 0.2463352
 0.2366067 0.2262952 0.2155240 0.2044622 0.1933148
 0.1822970 0.1716033 0.1613821 0.1517253 0.1426744
 0.1342328 0.1263793 0.1190796 0.1122937 0.1059805
 0.1001003 9.4616316E-02 8.9494713E-02 8.4705107E-02 8.0220073E-02
 7.6015070E-02 7.2068058E-02 6.8359204E-02 6.4870723E-02 6.1586495E-02
 5.8491949E-02 5.5573869E-02 5.2820195E-02 5.0219949E-02 4.7763072E-02
 4.5440301E-02 4.3243147E-02 4.1163776E-02 3.9194934E-02 3.7329931E-02
 3.5562538E-02 3.3886980E-02 3.2297883E-02 3.0790232E-02 2.9359372E-02
 2.8000928E-02 2.6710827E-02 2.5485249E-02 2.4320615E-02 2.3213593E-02
 2.2161027E-02 2.1159971E-02 2.0207657E-02 1.9301472E-02 1.8438978E-02
 1.7617866E-02 1.6835967E-02 1.6091239E-02 1.5381748E-02 1.4705686E-02
 1.4061343E-02 1.3447098E-02 1.2861424E-02 1.2302884E-02 1.1770098E-02
 1.1261818E-02
 8.5207514E-02 7.4240245E-02 6.3207567E-02 5.2180707E-02 4.1233279E-02
 3.0442873E-02 1.9893244E-02 9.6768048E-03 -1.0281566E-04 -9.3290582E-03
 -1.7873093E-02 -2.5599357E-02 -3.2378532E-02 -3.8108412E-02 -4.2737607E-02
 -4.6281654E-02 -4.8822589E-02 -5.0490152E-02 -5.1435087E-02 -5.1805563E-02
 -5.1732678E-02 -5.1324900E-02 -5.0668228E-02 -4.9829140E-02 -4.8858285E-02
 -4.7794025E-02 -4.6665348E-02 -4.5494180E-02 -4.4297200E-02 -4.3087076E-02
 -4.1873518E-02 -4.0663987E-02 -3.9464213E-02 -3.8278624E-02 -3.7110627E-02
 -3.5962828E-02 -3.4837231E-02 -3.3735327E-02 -3.2658238E-02 -3.1606745E-02
 -3.0581390E-02 -2.9582493E-02 -2.8610215E-02 -2.7664568E-02 -2.6745463E-02
 -2.5852697E-02 -2.4986001E-02 -2.4145035E-02 -2.3329411E-02 -2.2538703E-02
 -2.1772441E-02 -2.1030132E-02 -2.0311261E-02 -1.9615293E-02 -1.8941691E-02
 -1.8289905E-02 -1.7659374E-02 -1.7049542E-02 -1.6459845E-02 -1.5889732E-02
 -1.5338647E-02 -1.4806044E-02 -1.4291383E-02 -1.3794124E-02 -1.3313749E-02
 -1.2849738E-02 -1.2401585E-02 -1.1968790E-02 -1.1550871E-02 -1.1147383E-02
 -1.0757806E-02
 0.3214945 0.3184943 0.3147806 0.3103545 0.3052174
 0.2993709 0.2928158 0.2855531 0.2775846 0.2689158
 0.2595597 0.2495444 0.2389233 0.2277875 0.2162758
 0.2045758 0.1929085 0.1814963 0.1705282 0.1601356
 0.1503891 0.1413080 0.1328770 0.1250610 0.1178152
 0.1110926 0.1048472 9.9036306E-02 9.3620889E-02 8.8565961E-02
 8.3840288E-02 7.9416037E-02 7.5268410E-02 7.1375318E-02 6.7716978E-02
 6.4275667E-02 6.1035410E-02 5.7981782E-02 5.5101760E-02 5.2383453E-02
 4.9816027E-02 4.7389586E-02 4.5095053E-02 4.2924061E-02 4.0868934E-02
 3.8922556E-02 3.7078340E-02 3.5330180E-02 3.3672407E-02 3.2099761E-02
 3.0607322E-02 2.9190507E-02 2.7845038E-02 2.6566910E-02 2.5352392E-02
 2.4197973E-02 2.3100367E-02 2.2056494E-02 2.1063449E-02 2.0118527E-02
 1.9219164E-02 1.8362956E-02 1.7547641E-02 1.6771082E-02 1.6031278E-02
 1.5326334E-02 1.4654464E-02 1.4013980E-02 1.3403293E-02 1.2820881E-02
 1.2265370E-02
 0.1004682 8.9241877E-02 7.7915475E-02 6.6553727E-02 5.5221308E-02
 4.3983921E-02 3.2909837E-02 2.2071870E-02 1.1549866E-02 1.4336293E-03
 -8.1741726E-03 -1.7156063E-02 -2.5381038E-02 -3.2711878E-02 -3.9021347E-02
 -4.4217099E-02 -4.8267908E-02 -5.1217441E-02 -5.3177450E-02 -5.4301638E-02
 -5.4755174E-02 -5.4691520E-02 -5.4240629E-02 -5.3506248E-02 -5.2568264E-02
 -5.1486898E-02 -5.0307058E-02 -4.9062073E-02 -4.7776677E-02 -4.6469230E-02
 -4.5153413E-02 -4.3839436E-02 -4.2534936E-02 -4.1245636E-02 -3.9975811E-02
 -3.8728628E-02 -3.7506439E-02 -3.6310930E-02 -3.5143320E-02 -3.4004409E-02
 -3.2894704E-02 -3.1814475E-02 -3.0763792E-02 -2.9742574E-02 -2.8750638E-02
 -2.7787670E-02 -2.6853302E-02 -2.5947096E-02 -2.5068561E-02 -2.4217181E-02
 -2.3392396E-02 -2.2593630E-02 -2.1820286E-02 -2.1071753E-02 -2.0347420E-02
 -1.9646667E-02 -1.8968867E-02 -1.8313404E-02 -1.7679652E-02 -1.7067008E-02
 -1.6474858E-02 -1.5902599E-02 -1.5349650E-02 -1.4815418E-02 -1.4299341E-02
 -1.3800859E-02 -1.3319418E-02 -1.2854485E-02 -1.2405531E-02 -1.1972084E-02
 -1.1553577E-02
 0.3422588 0.3393384 0.3357220 0.3314176 0.3264334
 0.3207773 0.3144557 0.3074736 0.2998345 0.2915403
 0.2825932 0.2729981 0.2627683 0.2519329 0.2405498
 0.2287190 0.2165931 0.2043757 0.1923006 0.1805929
 0.1694327 0.1589336 0.1491446 0.1400659 0.1316666
 0.1238998 0.1167132 0.1100544 0.1038741 9.8127410E-02
 9.2774138E-02 8.7778568E-02 8.3109029E-02 7.8737602E-02 7.4639469E-02
 7.0792578E-02 6.7177318E-02 6.3776061E-02 6.0573064E-02 5.7554062E-02
 5.4706153E-02 5.2017633E-02 4.9477838E-02 4.7076989E-02 4.4806175E-02
 4.2657152E-02 4.0622350E-02 3.8694769E-02 3.6867939E-02 3.5135854E-02
 3.3492949E-02 3.1934034E-02 3.0454278E-02 2.9049166E-02 2.7714513E-02
 2.6446372E-02 2.5241069E-02 2.4095153E-02 2.3005387E-02 2.1968750E-02
 2.0982388E-02 2.0043626E-02 1.9149944E-02 1.8298972E-02 1.7488491E-02
 1.6716395E-02 1.5980702E-02 1.5279549E-02 1.4611173E-02 1.3973889E-02
 1.3366185E-02
 0.1168571 0.1053917 9.3800731E-02 8.2145087E-02 7.0484221E-02
 5.8876541E-02 4.7380403E-02 3.6055449E-02 2.4964206E-02 1.4174423E-02
 3.7618780E-03 -6.1862180E-03 -1.5567969E-02 -2.4264941E-02 -3.2143790E-02
 -3.9065644E-02 -4.4905756E-02 -4.9582370E-02 -5.3084612E-02 -5.5482935E-02
 -5.6915376E-02 -5.7554848E-02 -5.7576351E-02 -5.7135221E-02 -5.6358293E-02
 -5.5343825E-02 -5.4165557E-02 -5.2877862E-02 -5.1520463E-02 -5.0122265E-02
 -4.8704281E-02 -4.7281783E-02 -4.5865875E-02 -4.4464644E-02 -4.3083940E-02
 -4.1727960E-02 -4.0399719E-02 -3.9101295E-02 -3.7834119E-02 -3.6599088E-02
 -3.5396714E-02 -3.4227215E-02 -3.3090588E-02 -3.1986643E-02 -3.0915078E-02
 -2.9875468E-02 -2.8867317E-02 -2.7890066E-02 -2.6943110E-02 -2.6025817E-02
 -2.5137521E-02 -2.4277549E-02 -2.3445198E-02 -2.2639772E-02 -2.1860575E-02
 -2.1106899E-02 -2.0378048E-02 -1.9673325E-02 -1.8992040E-02 -1.8333521E-02
 -1.7697098E-02 -1.7082106E-02 -1.6487906E-02 -1.5913855E-02 -1.5359336E-02
 -1.4823741E-02 -1.4306472E-02 -1.3806950E-02 -1.3324603E-02 -1.2858929E-02
 -1.2409295E-02
 0.3638742 0.3609679 0.3573765 0.3531150 0.3481988
 0.3426423 0.3364589 0.3296597 0.3222535 0.3142463
 0.3056412 0.2964390 0.2866397 0.2762459 0.2652687
 0.2537373 0.2417122 0.2293010 0.2166683 0.2040322
 0.1916358 0.1797052 0.1684093 0.1578440 0.1480393
 0.1389785 0.1306178 0.1229016 0.1157714 0.1091711
 0.1030490 9.7358778E-02 9.2059515E-02 8.7115094E-02 8.2493693E-02
 7.8167319E-02 7.4111238E-02 7.0303522E-02 6.6724695E-02 6.3357316E-02
 6.0185742E-02 5.7195880E-02 5.4374997E-02 5.1711500E-02 4.9194887E-02
 4.6815511E-02 4.4564556E-02 4.2433899E-02 4.0416077E-02 3.8504202E-02
 3.6691889E-02 3.4973223E-02 3.3342708E-02 3.1795226E-02 3.0326037E-02
 2.8930692E-02 2.7605049E-02 2.6345229E-02 2.5147595E-02 2.4008764E-02
 2.2925541E-02 2.1894939E-02 2.0914145E-02 1.9980516E-02 1.9091573E-02
 1.8244980E-02 1.7438537E-02 1.6670164E-02 1.5937906E-02 1.5239892E-02
 1.4574449E-02
 0.1343022 0.1226068 0.1107664 9.8840162E-02 8.6884655E-02
 7.4954130E-02 6.3101128E-02 5.1377289E-02 3.9834276E-02 2.8525274E-02
 1.7506868E-02 6.8416405E-03 -3.3985632E-03 -1.3129124E-02 -2.2248812E-02
 -3.0637838E-02 -3.8160425E-02 -4.4675909E-02 -5.0062101E-02 -5.4247968E-02
 -5.7241637E-02 -5.9138622E-02 -6.0099389E-02 -6.0311832E-02 -5.9957217E-02
 -5.9190501E-02 -5.8134325E-02 -5.6881249E-02 -5.5499177E-02 -5.4037113E-02
 -5.2530140E-02 -5.1003247E-02 -4.9474191E-02 -4.7955558E-02 -4.6456229E-02
 -4.4982415E-02 -4.3538429E-02 -4.2127173E-02 -4.0750571E-02 -3.9409779E-02
 -3.8105424E-02 -3.6837738E-02 -3.5606667E-02 -3.4411918E-02 -3.3253074E-02
 -3.2129567E-02 -3.1040771E-02 -2.9985975E-02 -2.8964441E-02 -2.7975399E-02
 -2.7018059E-02 -2.6091617E-02 -2.5195260E-02 -2.4328178E-02 -2.3489574E-02
 -2.2678645E-02 -2.1894602E-02 -2.1136664E-02 -2.0404061E-02 -1.9696042E-02
 -1.9011866E-02 -1.8350804E-02 -1.7712146E-02 -1.7095197E-02 -1.6499273E-02
 -1.5923720E-02 -1.5367883E-02 -1.4831133E-02 -1.4312854E-02 -1.3812507E-02
 -1.3329394E-02
 0.3865254 0.3835703 0.3799343 0.3756397 0.3707087
 0.3651626 0.3590213 0.3523025 0.3450213 0.3371897
 0.3288161 0.3199051 0.3104573 0.3004703 0.2899406
 0.2788670 0.2672573 0.2551394 0.2425757 0.2296799
 0.2166278 0.2036496 0.1909967 0.1788937 0.1674985
 0.1568907 0.1470833 0.1380455 0.1297232 0.1220538
 0.1149740 0.1084250 0.1023533 9.6711725E-02 9.1458693E-02
 8.6557835E-02 8.1977300E-02 7.7689067E-02 7.3668540E-02 6.9893904E-02
 6.6345781E-02 6.3006863E-02 5.9861690E-02 5.6896262E-02 5.4098014E-02
 5.1455483E-02 4.8958253E-02 4.6596803E-02 4.4362411E-02 4.2247083E-02
 4.0243436E-02 3.8344659E-02 3.6544442E-02 3.4836940E-02 3.3216748E-02
 3.1678807E-02 3.0218426E-02 2.8831216E-02 2.7513072E-02 2.6260184E-02
 2.5068957E-02 2.3936035E-02 2.2858268E-02 2.1832695E-02 2.0856550E-02
 1.9927215E-02 1.9042239E-02 1.8199302E-02 1.7396232E-02 1.6630935E-02
 1.5901564E-02
 0.1527618 0.1408387 0.1287560 0.1165722 0.1043423
 9.2118219E-02 7.9949260E-02 6.7882381E-02 5.5962831E-02 4.4235017E-02
 3.2743629E-02 2.1535259E-02 1.0660616E-02 1.7721896E-04 -9.8469518E-03
 -1.9329395E-02 -2.8169235E-02 -3.6245141E-02 -4.3418564E-02 -4.9546801E-02
 -5.4509699E-02 -5.8246020E-02 -6.0781620E-02 -6.2233813E-02 -6.2781878E-02
 -6.2625095E-02 -6.1948419E-02 -6.0905002E-02 -5.9612904E-02 -5.8159169E-02
 -5.6606315E-02 -5.4998577E-02 -5.3366940E-02 -5.1733006E-02 -5.0111726E-02
 -4.8513371E-02 -4.6944927E-02 -4.5411032E-02 -4.3914698E-02 -4.2457744E-02
 -4.1041169E-02 -3.9665353E-02 -3.8330287E-02 -3.7035625E-02 -3.5780851E-02
 -3.4565262E-02 -3.3388067E-02 -3.2248411E-02 -3.1145377E-02 -3.0078046E-02
 -2.9045468E-02 -2.8046696E-02 -2.7080771E-02 -2.6146758E-02 -2.5243733E-02
 -2.4370778E-02 -2.3526998E-02 -2.2711506E-02 -2.1923441E-02 -2.1161962E-02
 -2.0426245E-02 -1.9715481E-02 -1.9028887E-02 -1.8365700E-02 -1.7725173E-02
 -1.7106581E-02 -1.6509218E-02 -1.5932394E-02 -1.5375440E-02 -1.4837793E-02
 -1.4318657E-02
 0.4103972 0.4073317 0.4035831 0.3991812 0.3941547
 0.3885317 0.3823383 0.3755984 0.3683333 0.3605614
 0.3522971 0.3435510 0.3343291 0.3246329 0.3144590
 0.3038010 0.2926505 0.2810021 0.2688599 0.2562496
 0.2432349 0.2299347 0.2165346 0.2032755 0.1904153
 0.1781766 0.1667068 0.1560706 0.1462667 0.1372527
 0.1289659 0.1213380 0.1143022 0.1077975 0.1017690
 9.6168801E-02 9.0954989E-02 8.6090975E-02 8.1544906E-02 7.7288844E-02
 7.3298194E-02 6.9551289E-02 6.6028886E-02 6.2713794E-02 5.9590679E-02
 5.6645695E-02 5.3866345E-02 5.1241290E-02 4.8760209E-02 4.6413708E-02
 4.4193149E-02 4.2090595E-02 4.0098749E-02 3.8210865E-02 3.6420729E-02
 3.4722548E-02 3.3110958E-02 3.1580970E-02 3.0127920E-02 2.8747492E-02
 2.7435618E-02 2.6188513E-02 2.5002630E-02 2.3874637E-02 2.2801429E-02
 2.1780072E-02 2.0807819E-02 1.9882074E-02 1.9000409E-02 1.8160488E-02
 1.7360255E-02
 0.1722096 0.1600571 0.1477347 0.1353006 0.1228090
 0.1103103 9.7851746E-02 8.5477524E-02 7.3229112E-02 6.1145745E-02
 4.9265090E-02 3.7624232E-02 2.6260952E-02 1.5215495E-02 4.5329970E-03
 -5.7334616E-03 -1.5519141E-02 -2.4743160E-02 -3.3304561E-02 -4.1080024E-02
 -4.7927756E-02 -5.3702530E-02 -5.8285512E-02 -6.1623842E-02 -6.3758790E-02
 -6.4826384E-02 -6.5021254E-02 -6.4551242E-02 -6.3603230E-02 -6.2327929E-02
 -6.0838874E-02 -5.9218090E-02 -5.7523351E-02 -5.5794753E-02 -5.4059796E-02
 -5.2337203E-02 -5.0639573E-02 -4.8975237E-02 -4.7349617E-02 -4.5766037E-02
 -4.4226412E-02 -4.2731673E-02 -4.1282047E-02 -3.9877292E-02 -3.8516846E-02
 -3.7199911E-02 -3.5925560E-02 -3.4692749E-02 -3.3500396E-02 -3.2347396E-02
 -3.1232618E-02 -3.0154932E-02 -2.9113222E-02 -2.8106390E-02 -2.7133370E-02
 -2.6193099E-02 -2.5284551E-02 -2.4406729E-02 -2.3558648E-02 -2.2739366E-02
 -2.1947963E-02 -2.1183537E-02 -2.0445218E-02 -1.9732160E-02 -1.9043550E-02
 -1.8378582E-02 -1.7736487E-02 -1.7116513E-02 -1.6517928E-02 -1.5940135E-02
 -1.5382239E-02
 0.4356758 0.4324380 0.4285085 0.4239244 0.4187219
 0.4129353 0.4065967 0.3997361 0.3923806 0.3845544
 0.3762780 0.3675680 0.3584367 0.3488914 0.3389345
 0.3285632 0.3177696 0.3065425 0.2948686 0.2827378
 0.2701504 0.2571298 0.2437402 0.2301049 0.2164178
 0.2029283 0.1899006 0.1775544 0.1660277 0.1553726
 0.1455754 0.1365839 0.1283287 0.1207369 0.1137390
 0.1072718 0.1012799 9.5714621E-02 9.0533778E-02 8.5700721E-02
 8.1183523E-02 7.6954313E-02 7.2988629E-02 6.9264866E-02 6.5763913E-02
 6.2468711E-02 5.9363991E-02 5.6436025E-02 5.3672403E-02 5.1061906E-02
 4.8594303E-02 4.6260253E-02 4.4051193E-02 4.1959271E-02 3.9977264E-02
 3.8098477E-02 3.6316741E-02 3.4626327E-02 3.3021908E-02 3.1498548E-02
 3.0051634E-02 2.8676866E-02 2.7370226E-02 2.6127951E-02 2.4946533E-02
 2.3822680E-02 2.2753287E-02 2.1735458E-02 2.0766456E-02 1.9843658E-02
 1.8964788E-02
 0.1926225 0.1802362 0.1676741 0.1549940 0.1422491
 0.1294887 0.1167584 0.1041003 9.1553658E-02 7.9154499E-02
 6.6936336E-02 5.4930687E-02 4.3167826E-02 3.1677879E-02 2.0492308E-02
 9.6459221E-03 -8.2075410E-04 -1.0858175E-02 -2.0403931E-02 -2.9378032E-02
 -3.7678670E-02 -4.5180123E-02 -5.1737066E-02 -5.7201192E-02 -6.1454598E-02
 -6.4449809E-02 -6.6242553E-02 -6.6984080E-02 -6.6881523E-02 -6.6149183E-02
 -6.4974882E-02 -6.3506745E-02 -6.1854221E-02 -6.0094960E-02 -5.8282696E-02
 -5.6454021E-02 -5.4633539E-02 -5.2837566E-02 -5.1076755E-02 -4.9357854E-02
 -4.7684934E-02 -4.6060253E-02 -4.4484843E-02 -4.2958859E-02 -4.1481927E-02
 -4.0053260E-02 -3.8671847E-02 -3.7336506E-02 -3.6045969E-02 -3.4798935E-02
 -3.3594068E-02 -3.2430038E-02 -3.1305537E-02 -3.0219277E-02 -2.9170016E-02
 -2.8156525E-02 -2.7177619E-02 -2.6232159E-02 -2.5319025E-02 -2.4437154E-02
 -2.3585504E-02 -2.2763068E-02 -2.1968879E-02 -2.1201989E-02 -2.0461496E-02
 -1.9746525E-02 -1.9056218E-02 -1.8389756E-02 -1.7746335E-02 -1.7125331E-02
 -1.6525717E-02
 0.4625540 0.4590791 0.4548974 0.4500543 0.4445931
 0.4385549 0.4319780 0.4248981 0.4173479 0.4093569
 0.4009514 0.3921536 0.3829816 0.3734489 0.3635638
 0.3533296 0.3427440 0.3317994 0.3204833 0.3087791
 0.2966691 0.2841384 0.2711835 0.2578253 0.2441276
 0.2302174 0.2162952 0.2026183 0.1894552 0.1770235
 0.1654530 0.1547847 0.1449950 0.1360237 0.1277958
 0.1202347 0.1132686 0.1068330 0.1008717 9.5335513E-02
 9.0182133E-02 8.5374810E-02 8.0881640E-02 7.6674774E-02 7.2729863E-02
 6.9025382E-02 6.5542281E-02 6.2263601E-02 5.9174169E-02 5.6260359E-02
 5.3509846E-02 5.0911482E-02 4.8455082E-02 4.6131387E-02 4.3931920E-02
 4.1848872E-02 3.9875060E-02 3.8003854E-02 3.6229122E-02 3.4545191E-02
 3.2946773E-02 3.1428952E-02 2.9987164E-02 2.8617125E-02 2.7314860E-02
 2.6076647E-02 2.4898974E-02 2.3778582E-02 2.2712389E-02 2.1697434E-02
 2.0731183E-02
 0.2139717 0.2013444 0.1885405 0.1756166 0.1626246
 0.1496119 0.1366226 0.1236971 0.1108726 9.8183312E-02
 8.5660011E-02 7.3330931E-02 6.1222009E-02 4.9357560E-02 3.7761252E-02
 2.6457425E-02 1.5472501E-02 4.8370725E-03 -5.4116664E-03 -1.5226549E-02
 -2.4546387E-02 -3.3291332E-02 -4.1358322E-02 -4.8618894E-02 -5.4924022E-02
 -6.0122155E-02 -6.4095259E-02 -6.6800810E-02 -6.8305686E-02 -6.8774112E-02
 -6.8423375E-02 -6.7472838E-02 -6.6110715E-02 -6.4482771E-02 -6.2694892E-02
 -6.0821015E-02 -5.8911499E-02 -5.7000019E-02 -5.5108786E-02 -5.3252131E-02
 -5.1439069E-02 -4.9675025E-02 -4.7962993E-02 -4.6304334E-02 -4.4699337E-02
 -4.3147545E-02 -4.1648034E-02 -4.0199604E-02 -3.8800851E-02 -3.7450291E-02
 -3.6146384E-02 -3.4887582E-02 -3.3672355E-02 -3.2499190E-02 -3.1366646E-02
 -3.0273292E-02 -2.9217767E-02 -2.8198745E-02 -2.7214952E-02 -2.6265178E-02
 -2.5348237E-02 -2.4462998E-02 -2.3608368E-02 -2.2783296E-02 -2.1986773E-02
 -2.1217830E-02 -2.0475516E-02 -1.9758932E-02 -1.9067196E-02 -1.8399652E-02
 -1.7755115E-02
 0.4912378 0.4874559 0.4829454 0.4777612 0.4719550
 0.4655747 0.4586650 0.4512670 0.4434190 0.4351558
 0.4265087 0.4175053 0.4081689 0.3985183 0.3885677
 0.3783260 0.3677969 0.3569786 0.3458638 0.3344401
 0.3226898 0.3105917 0.2981232 0.2852653 0.2720105
 0.2583773 0.2444290 0.2302956 0.2161811 0.2023515
 0.1890785 0.1765778 0.1649723 0.1542942 0.1445114
 0.1355572 0.1273521 0.1198164 0.1128766 0.1064673
 0.1005312 9.5019199E-02 8.9888595E-02 8.5102588E-02 8.0629341E-02
 7.6441035E-02 7.2513364E-02 6.8824865E-02 6.5356568E-02 6.2091634E-02
 5.9014942E-02 5.6112915E-02 5.3373311E-02 5.0785016E-02 4.8337959E-02
 4.6022918E-02 4.3831445E-02 4.1755799E-02 3.9788824E-02 3.7923958E-02
 3.6155093E-02 3.4476578E-02 3.2883178E-02 3.1369995E-02 2.9932495E-02
 2.8566439E-02 2.7267857E-02 2.6033036E-02 2.4858510E-02 2.3740919E-02
 2.2677431E-02
 0.2362145 0.2233360 0.2102858 0.1971188 0.1838842
 0.1706270 0.1573889 0.1442086 0.1311216 0.1181602
 0.1053536 9.2727974E-02 8.0306552E-02 6.8110295E-02 5.6158472E-02
 4.4469569E-02 3.3062093E-02 2.1956107E-02 1.1174402E-02 7.4476091E-04
 -9.2976401E-03 -1.8906999E-02 -2.8022671E-02 -3.6564354E-02 -4.4427510E-02
 -5.1480997E-02 -5.7572246E-02 -6.2547140E-02 -6.6284969E-02 -6.8748824E-02
 -7.0014089E-02 -7.0255682E-02 -6.9699220E-02 -6.8568058E-02 -6.7050599E-02
 -6.5290548E-02 -6.3390799E-02 -6.1422192E-02 -5.9432294E-02 -5.7452396E-02
 -5.5502672E-02 -5.3595837E-02 -5.1739577E-02 -4.9938206E-02 -4.8193842E-02
 -4.6507098E-02 -4.4877630E-02 -4.3304484E-02 -4.1786298E-02 -4.0321514E-02
 -3.8908426E-02 -3.7545275E-02 -3.6230292E-02 -3.4961741E-02 -3.3737928E-02
 -3.2557208E-02 -3.1417985E-02 -3.0318743E-02 -2.9258009E-02 -2.8234391E-02
 -2.7246542E-02 -2.6293170E-02 -2.5373053E-02 -2.4484996E-02 -2.3627877E-02
 -2.2800604E-02 -2.2002133E-02 -2.1231458E-02 -2.0487607E-02 -1.9769907E-02
 -1.9076964E-02
 0.5219555 0.5177881 0.5128644 0.5072504 0.5010071
 0.4941899 0.4868499 0.4790338 0.4707850 0.4621433
 0.4531451 0.4438226 0.4342043 0.4243137 0.4141697
 0.4037864 0.3931724 0.3823316 0.3712620 0.3599567
 0.3484035 0.3365847 0.3244781 0.3120582 0.2992980
 0.2861746 0.2726771 0.2588213 0.2446698 0.2303547
 0.2160839 0.2021293 0.1887661 0.1762087 0.1645744
 0.1538880 0.1441106 0.1351702 0.1269836 0.1194688
 0.1125506 0.1061627 0.1002475 9.4755292E-02 8.9643456E-02
 8.4875084E-02 8.0418319E-02 7.6245368E-02 7.2331943E-02 6.8656713E-02
 6.5200754E-02 6.1947234E-02 5.8881111E-02 5.5988878E-02 5.3258356E-02
 5.0678484E-02 4.8239224E-02 4.5931395E-02 4.3746598E-02 4.1677132E-02
 3.9715897E-02 3.7856329E-02 3.6092374E-02 3.4418397E-02 3.2829199E-02
 3.1319920E-02 2.9886033E-02 2.8523313E-02 2.7227815E-02 2.5995720E-02
 2.4823857E-02
 0.2592881 0.2461434 0.2328400 0.2194293 0.2059561
 0.1924621 0.1789855 0.1655623 0.1522265 0.1390087
 0.1259367 0.1130350 0.1003254 8.7826587E-02 7.5555347E-02
 6.3526757E-02 5.1754959E-02 4.0254153E-02 2.9039303E-02 1.8127521E-02
 7.5394544E-03 -2.6987751E-03 -1.2553222E-02 -2.1978628E-02 -3.0914407E-02
 -3.9279636E-02 -4.6968274E-02 -5.3846732E-02 -5.9759155E-02 -6.4548485E-02
 -6.8092421E-02 -7.0356995E-02 -7.1424820E-02 -7.1479529E-02 -7.0753574E-02
 -6.9473580E-02 -6.7828096E-02 -6.5959103E-02 -6.3967064E-02 -6.1920278E-02
 -5.9864003E-02 -5.7827551E-02 -5.5829488E-02 -5.3881168E-02 -5.1989183E-02
 -5.0156951E-02 -4.8385832E-02 -4.6675842E-02 -4.5026120E-02 -4.3435294E-02
 -4.1901659E-02 -4.0423330E-02 -3.8998358E-02 -3.7624758E-02 -3.6300596E-02
 -3.5023961E-02 -3.3793025E-02 -3.2606017E-02 -3.1461246E-02 -3.0357100E-02
 -2.9292040E-02 -2.8264591E-02 -2.7273353E-02 -2.6316978E-02 -2.5394201E-02
 -2.4503795E-02 -2.3644589E-02 -2.2815466E-02 -2.2015348E-02 -2.1243537E-02
 -2.0498391E-02
 0.5549670 0.5503238 0.5448912 0.5387491 0.5319687
 0.5246137 0.5167413 0.5084036 0.4996489 0.4905217
 0.4810632 0.4713103 0.4612957 0.4510477 0.4405893
 0.4299389 0.4191092 0.4081085 0.3969396 0.3856004
 0.3740837 0.3623775 0.3504646 0.3383230 0.3259264
 0.3132453 0.3002492 0.2869114 0.2732186 0.2591838
 0.2448685 0.2304045 0.2160061 0.2019489 0.1885111
 0.1759062 0.1642473 0.1535533 0.1437796 0.1348500
 0.1266782 0.1191801 0.1122794 0.1059090 0.1000108
 9.4534941E-02 8.9438535E-02 8.4684692E-02 8.0241501E-02 7.6081254E-02
 7.2179683E-02 6.8515450E-02 6.5069705E-02 6.1825663E-02 5.8768351E-02
 5.5884294E-02 5.3161353E-02 5.0588511E-02 4.8155744E-02 4.5853954E-02
 4.3674756E-02 4.1610468E-02 3.9654035E-02 3.7798908E-02 3.6039073E-02
 3.4368929E-02 3.2783266E-02 3.1277269E-02 2.9846407E-02 2.8486323E-02
 2.7193448E-02
 0.2831005 0.2696684 0.2561019 0.2424463 0.2287403
 0.2150193 0.2013169 0.1876658 0.1740972 0.1606402
 0.1473213 0.1341638 0.1211881 0.1084117 9.5849387E-02
 8.3514363E-02 7.1418077E-02 5.9571467E-02 4.7985151E-02 3.6670491E-02
 2.5640367E-02 1.4910228E-02 4.4994750E-03 -5.5665909E-03 -1.5254525E-02
 -2.4519201E-02 -3.3299271E-02 -4.1514169E-02 -4.9056005E-02 -5.5789262E-02
 -6.1555240E-02 -6.6192567E-02 -6.9578491E-02 -7.1680643E-02 -7.2587281E-02
 -7.2489135E-02 -7.1624301E-02 -7.0222139E-02 -6.8471424E-02 -6.6512771E-02
 -6.4444669E-02 -6.2333375E-02 -6.0222290E-02 -5.8139108E-02 -5.6101080E-02
 -5.4118451E-02 -5.2196898E-02 -5.0339110E-02 -4.8545830E-02 -4.6816576E-02
 -4.5150083E-02 -4.3544598E-02 -4.1998141E-02 -4.0508568E-02 -3.9073728E-02
 -3.7691463E-02 -3.6359672E-02 -3.5076320E-02 -3.3839446E-02 -3.2647207E-02
 -3.1497814E-02 -3.0389583E-02 -2.9320905E-02 -2.8290253E-02 -2.7296176E-02
 -2.6337296E-02 -2.5412289E-02 -2.4519904E-02 -2.3658939E-02 -2.2828687E-02
 -2.2027176E-02
 0.5905786 0.5853509 0.5792975 0.5725146 0.5650858
 0.5570829 0.5485691 0.5396009 0.5302308 0.5205079
 0.5104773 0.5001810 0.4896559 0.4789342 0.4680433
 0.4570049 0.4458356 0.4345469 0.4231452 0.4116323
 0.4000051 0.3882560 0.3763729 0.3643391 0.3521332
 0.3397295 0.3270980 0.3142058 0.3010194 0.2875093
 0.2736593 0.2594806 0.2450332 0.2304497 0.2159472
 0.2018054 0.1883053 0.1756603 0.1639800 0.1532785
 0.1435070 0.1345854 0.1264252 0.1189404 0.1120538
 0.1056976 9.9813245E-02 9.4350688E-02 8.9266919E-02 8.4525026E-02
 8.0093078E-02 7.5943336E-02 7.2051555E-02 6.8396449E-02 6.4959206E-02
 6.1723076E-02 5.8673114E-02 5.5795878E-02 5.3079255E-02 5.0512284E-02
 4.8084985E-02 4.5788243E-02 4.3613739E-02 4.1553803E-02 3.9601393E-02
 3.7750021E-02 3.5993658E-02 3.4326728E-02 3.2744046E-02 3.1240573E-02
 2.9812297E-02
 0.3075206 0.2937712 0.2799290 0.2660293 0.2521004
 0.2381680 0.2242586 0.2104002 0.1966205 0.1829469
 0.1694043 0.1560150 0.1427983 0.1297704 0.1169450
 0.1043335 9.1945827E-02 7.9790801E-02 6.7876555E-02 5.6211274E-02
 4.4803701E-02 3.3663683E-02 2.2803010E-02 1.2236448E-02 1.9829141E-03
 -7.9322504E-03 -1.7476190E-02 -2.6603466E-02 -3.5252828E-02 -4.3341979E-02
 -5.0762296E-02 -5.7376400E-02 -6.3023075E-02 -6.7538045E-02 -7.0796713E-02
 -7.2767816E-02 -7.3543921E-02 -7.3321521E-02 -7.2343379E-02 -7.0841260E-02
 -6.9004185E-02 -6.6971801E-02 -6.4841032E-02 -6.2676512E-02 -6.0520146E-02
 -5.8398340E-02 -5.6327235E-02 -5.4316182E-02 -5.2370124E-02 -5.0491143E-02
 -4.8679490E-02 -4.6934258E-02 -4.5253824E-02 -4.3636162E-02 -4.2079046E-02
 -4.0580135E-02 -3.9137091E-02 -3.7747610E-02 -3.6409456E-02 -3.5120495E-02
 -3.3878688E-02 -3.2682076E-02 -3.1528823E-02 -3.0417167E-02 -2.9345462E-02
 -2.8312130E-02 -2.7315674E-02 -2.6354682E-02 -2.5427796E-02 -2.4534317E-02
 -2.3671862E-02
 0.6291613 0.6232135 0.6164004 0.6088422 0.6006364
 0.5918627 0.5825883 0.5728728 0.5627713 0.5523364
 0.5416173 0.5306601 0.5195063 0.5081926 0.4967499
 0.4852035 0.4735732 0.4618732 0.4501127 0.4382961
 0.4264235 0.4144903 0.4024883 0.3904049 0.3782237
 0.3659239 0.3534809 0.3408653 0.3280444 0.3149825
 0.3016435 0.2879955 0.2740199 0.2597262 0.2451729
 0.2304929 0.2159053 0.2016935 0.1881412 0.1754619
 0.1637625 0.1530537 0.1432828 0.1343670 0.1262155
 0.1187413 0.1118660 0.1055211 9.9648036E-02 9.4196349E-02
 8.9122988E-02 8.4390938E-02 7.9968236E-02 7.5827152E-02 7.1943514E-02
 6.8296008E-02 6.4865842E-02 6.1636306E-02 5.8592457E-02 5.5720929E-02
 5.3009618E-02 5.0447572E-02 4.8024844E-02 4.5732349E-02 4.3561783E-02
 4.1505516E-02 3.9556514E-02 3.7708294E-02 3.5954852E-02 3.4290314E-02
 3.2710183E-02
 0.3323641 0.3182571 0.3041247 0.2899866 0.2758530
 0.2617350 0.2476479 0.2336124 0.2196527 0.2057934
 0.1920581 0.1784683 0.1650420 0.1517945 0.1387381
 0.1258829 0.1132375 0.1008091 8.8604279E-02 7.6629430E-02
 6.4891018E-02 5.3395994E-02 4.2152312E-02 3.1169374E-02 2.0458752E-02
 1.0035083E-02 -8.2423736E-05 -9.8691387E-03 -1.9291177E-02 -2.8303120E-02
 -3.6843274E-02 -4.4828668E-02 -5.2149720E-02 -5.8667447E-02 -6.4218506E-02
 -6.8636008E-02 -7.1793325E-02 -7.3659629E-02 -7.4330755E-02 -7.4007854E-02
 -7.2937600E-02 -7.1353838E-02 -6.9445990E-02 -6.7352980E-02 -6.5170579E-02
 -6.2962130E-02 -6.0768321E-02 -5.8614533E-02 -5.6515999E-02 -5.4481372E-02
 -5.2514981E-02 -5.0618406E-02 -4.8791472E-02 -4.7032934E-02 -4.5340907E-02
 -4.3713115E-02 -4.2147119E-02 -4.0640421E-02 -3.9190523E-02 -3.7795018E-02
 -3.6451560E-02 -3.5157919E-02 -3.3911970E-02 -3.2711696E-02 -3.1555202E-02
 -3.0440686E-02 -2.9366439E-02 -2.8330849E-02 -2.7332386E-02 -2.6370374E-02
 -2.5441894E-02
 0.6711779 0.6643262 0.6565723 0.6480705 0.6389331
 0.6292474 0.6190803 0.6084906 0.5975341 0.5862632
 0.5747316 0.5629894 0.5510827 0.5390528 0.5269348
 0.5147576 0.5025436 0.4903098 0.4780673 0.4658225
 0.4535773 0.4413294 0.4290729 0.4167981 0.4044918
 0.3921376 0.3797155 0.3672009 0.3545665 0.3417805
 0.3288076 0.3156099 0.3021490 0.2883912 0.2743158
 0.2599304 0.2452925 0.2305344 0.2158774 0.2016077
 0.1880114 0.1753024 0.1635859 0.1528697 0.1430983
 0.1341865 0.1260417 0.1185756 0.1117092 0.1053735
 9.9509560E-02 9.4066739E-02 8.9001887E-02 8.4277906E-02 7.9862870E-02
 7.5729005E-02 7.1852118E-02 6.8210937E-02 6.4786658E-02 6.1562628E-02
 5.8523934E-02 5.5657186E-02 5.2950326E-02 5.0392412E-02 4.7973532E-02
 4.5684628E-02 4.3517396E-02 4.1464217E-02 3.9518081E-02 3.7672084E-02
 3.5921160E-02
 0.3573675 0.3428506 0.3284139 0.3140534 0.2997490
 0.2854889 0.2712695 0.2571037 0.2430079 0.2290057
 0.2151196 0.2013707 0.1877761 0.1743499 0.1611031
 0.1480443 0.1351806 0.1225179 0.1100616 9.7816817E-02
 8.5788779E-02 7.3983043E-02 6.2405653E-02 5.1063538E-02 3.9964709E-02
 2.9118778E-02 1.8537633E-02 8.2359985E-03 -1.7667392E-03 -1.1445254E-02
 -2.0765582E-02 -2.9681919E-02 -3.8132280E-02 -4.6032995E-02 -5.3273719E-02
 -5.9714314E-02 -6.5189593E-02 -6.9530316E-02 -7.2607674E-02 -7.4390776E-02
 -7.4977964E-02 -7.4574113E-02 -7.3429152E-02 -7.1778812E-02 -6.9812976E-02
 -6.7670129E-02 -6.5445147E-02 -6.3200377E-02 -6.0975555E-02 -5.8795232E-02
 -5.6673951E-02 -5.4619733E-02 -5.2636415E-02 -5.0725173E-02 -4.8885517E-02
 -4.7115903E-02 -4.5414202E-02 -4.3777954E-02 -4.2204533E-02 -4.0691324E-02
 -3.9235711E-02 -3.7835162E-02 -3.6487263E-02 -3.5189684E-02 -3.3940263E-02
 -3.2736924E-02 -3.1577710E-02 -3.0460780E-02 -2.9384384E-02 -2.8347913E-02
 -2.7347734E-02
 0.7172338 0.7092011 0.7002609 0.6905943 0.6803286
 0.6695634 0.6583536 0.6467526 0.6348076 0.6225700
 0.6100936 0.5974334 0.5846407 0.5717623 0.5588381
 0.5459008 0.5329762 0.5200829 0.5072343 0.4944376
 0.4816962 0.4690086 0.4563703 0.4437732 0.4312061
 0.4186553 0.4061036 0.3935310 0.3809147 0.3682276
 0.3554396 0.3425171 0.3294226 0.3161166 0.3025588
 0.2887138 0.2745592 0.2601011 0.2453958 0.2305751
 0.2158612 0.2015431 0.1879096 0.1751747 0.1634429
 0.1527195 0.1429466 0.1340373 0.1258973 0.1184375
 0.1115781 0.1052498 9.9393219E-02 9.3957603E-02 8.8899739E-02
 8.4182441E-02 7.9773739E-02 7.5645864E-02 7.1774572E-02 6.8138674E-02
 6.4719349E-02 6.1499938E-02 5.8465552E-02 5.5602811E-02 5.2899692E-02
 5.0345287E-02 4.7929663E-02 4.5643784E-02 4.3479357E-02 4.1428171E-02
 3.9484527E-02
 0.3821728 0.3671628 0.3524052 0.3378631 0.3234512
 0.3091185 0.2948426 0.2806146 0.2664472 0.2523608
 0.2383802 0.2245269 0.2108179 0.1972663 0.1838817
 0.1706707 0.1576387 0.1447901 0.1321290 0.1196594
 0.1073860 9.5313266E-02 8.3446927E-02 7.1792759E-02 6.0357392E-02
 4.9148355E-02 3.8174167E-02 2.7444929E-02 1.6973143E-02 6.7739994E-03
 -3.1328101E-03 -1.2721552E-02 -2.1957964E-02 -3.0795919E-02 -3.9173011E-02
 -4.7005266E-02 -5.4181639E-02 -6.0561098E-02 -6.5976962E-02 -7.0257828E-02
 -7.3272742E-02 -7.4990302E-02 -7.5510710E-02 -7.5041860E-02 -7.3836431E-02
 -7.2131835E-02 -7.0118487E-02 -6.7934625E-02 -6.5674461E-02 -6.3399628E-02
 -6.1149091E-02 -5.8946732E-02 -5.6806497E-02 -5.4735944E-02 -5.2738521E-02
 -5.0815057E-02 -4.8964769E-02 -4.7185890E-02 -4.5476090E-02 -4.3832757E-02
 -4.2253137E-02 -4.0734470E-02 -3.9274052E-02 -3.7869263E-02 -3.6517624E-02
 -3.5216752E-02 -3.3964414E-02 -3.2758482E-02 -3.1596970E-02 -3.0479373E-02
 -2.9401135E-02
 0.7755058 0.7675230 0.7578609 0.7469005 0.7349910
 0.7223595 0.7091138 0.6952606 0.6806921 0.6651346
 0.6480066 0.6342847 0.6204618 0.6065921 0.5927200
 0.5788842 0.5651134 0.5514287 0.5378448 0.5243699
 0.5110075 0.4977567 0.4846129 0.4715688 0.4586140
 0.4457358 0.4329191 0.4201462 0.4073972 0.3946496
 0.3818772 0.3690517 0.3561409 0.3431093 0.3299180
 0.3165258 0.3028912 0.2889771 0.2747601 0.2602448
 0.2454859 0.2306146 0.2158539 0.2014956 0.1878303
 0.1750731 0.1633273 0.1525967 0.1428218 0.1339137
 0.1257772 0.1183222 0.1114683 0.1051459 9.9295221E-02
 9.3865514E-02 8.8813372E-02 8.4101595E-02 7.9698116E-02 7.5575203E-02
 7.1708634E-02 6.8077140E-02 6.4661957E-02 6.1446413E-02 5.8415651E-02
 5.5556316E-02 5.2856367E-02 5.0304905E-02 4.7892023E-02 4.5607798E-02
 4.3445844E-02
 0.4086471 0.3931723 0.3778235 0.3626273 0.3475911
 0.3327182 0.3180169 0.3035066 0.2892237 0.2752229
 0.2615723 0.2476854 0.2339318 0.2203244 0.2068707
 0.1935746 0.1804394 0.1674676 0.1546611 0.1420230
 0.1295573 0.1172685 0.1051616 9.3242951E-02 8.1518747E-02
 6.9996126E-02 5.8682702E-02 4.7586739E-02 3.6717728E-02 2.6086299E-02
 1.5705710E-02 5.5915331E-03 -4.2361338E-03 -1.3751116E-02 -2.2918895E-02
 -3.1693086E-02 -4.0010955E-02 -4.7788281E-02 -5.4913446E-02 -6.1244775E-02
 -6.6614591E-02 -7.0849404E-02 -7.3815994E-02 -7.5482249E-02 -7.5949766E-02
 -7.5428858E-02 -7.4174553E-02 -7.2425745E-02 -7.0373431E-02 -6.8155766E-02
 -6.5866537E-02 -6.3566752E-02 -6.1294828E-02 -5.9074085E-02 -5.6918059E-02
 -5.4833870E-02 -5.2824650E-02 -5.0890949E-02 -4.9031746E-02 -4.7245104E-02
 -4.5528524E-02 -4.3879241E-02 -4.2294402E-02 -4.0771142E-02 -3.9306678E-02
 -3.7898336E-02 -3.6543544E-02 -3.5239890E-02 -3.3985075E-02 -3.2778814E-02
 -3.1615309E-02
 0.8352404 0.8275240 0.8167592 0.8041555 0.7903754
 0.7757697 0.7604814 0.7444838 0.7275657 0.7092696
 0.6888052 0.6738709 0.6588615 0.6438418 0.6288677
 0.6139817 0.5992172 0.5845987 0.5701421 0.5558561
 0.5417436 0.5278034 0.5140302 0.5004159 0.4869503
 0.4736206 0.4604122 0.4473086 0.4342916 0.4213407
 0.4084338 0.3955455 0.3826485 0.3697124 0.3567036
 0.3435851 0.3303169 0.3168563 0.3031610 0.2891926
 0.2749265 0.2603661 0.2455648 0.2306527 0.2158537
 0.2014616 0.1877692 0.1749924 0.1632338 0.1524964
 0.1427189 0.1338112 0.1256771 0.1182257 0.1113761
 0.1050583 9.9212453E-02 9.3787566E-02 8.8740118E-02 8.4032878E-02
 7.9633780E-02 7.5515017E-02 7.1652368E-02 6.8024561E-02 6.4612858E-02
 6.1400600E-02 5.8372904E-02 5.5516433E-02 5.2819148E-02 5.0268840E-02
 4.7858436E-02
 0.4349542 0.4190557 0.4030894 0.3872313 0.3715678
 0.3561459 0.3410004 0.3261712 0.3117181 0.2977348
 0.2843625 0.2705268 0.2568169 0.2432428 0.2298082
 0.2165148 0.2033615 0.1903477 0.1774738 0.1647403
 0.1521507 0.1397091 0.1274209 0.1152928 0.1033321
 9.1546379E-02 7.9943798E-02 6.8532668E-02 5.7321828E-02 4.6320513E-02
 3.5538644E-02 2.4988499E-02 1.4683027E-02 4.6386435E-03 -5.1242043E-03
 -1.4579099E-02 -2.3691172E-02 -3.2413848E-02 -4.0684130E-02 -4.8417531E-02
 -5.5502266E-02 -6.1796144E-02 -6.7130640E-02 -7.1330518E-02 -7.4260116E-02
 -7.5886436E-02 -7.6312177E-02 -7.5749680E-02 -7.4455887E-02 -7.2671048E-02
 -7.0586756E-02 -6.8341196E-02 -6.6027857E-02 -6.3707322E-02 -6.1417572E-02
 -5.9181500E-02 -5.7012245E-02 -5.4916643E-02 -5.2897517E-02 -5.0955221E-02
 -4.9088545E-02 -4.7295369E-02 -4.5573078E-02 -4.3918781E-02 -4.2329542E-02
 -4.0802419E-02 -3.9334550E-02 -3.7923191E-02 -3.6565732E-02 -3.5262235E-02
 -3.4005251E-02
 0.9004515 0.8905734 0.8774962 0.8625869 0.8465853
 0.8298625 0.8125582 0.7946275 0.7758173 0.7555729
 0.7328957 0.7165695 0.7001968 0.6838474 0.6675997
 0.6514957 0.6355749 0.6198662 0.6043874 0.5891475
 0.5741473 0.5593854 0.5448546 0.5305453 0.5164457
 0.5025421 0.4888198 0.4752619 0.4618508 0.4485670
 0.4353898 0.4222966 0.4092631 0.3962627 0.3832662
 0.3702419 0.3571550 0.3439675 0.3306382 0.3171237
 0.3033805 0.2893694 0.2750649 0.2604691 0.2456345
 0.2306896 0.2158588 0.2014382 0.1877225 0.1749284
 0.1631585 0.1524145 0.1426340 0.1337261 0.1255935
 0.1181447 0.1112984 0.1049844 9.9142388E-02 9.3721427E-02
 8.8677868E-02 8.3974406E-02 7.9578929E-02 7.5463608E-02 7.1604244E-02
 6.7979574E-02 6.4570799E-02 6.1361298E-02 5.8336180E-02 5.5480074E-02
 5.2785296E-02
 0.4617010 0.4450069 0.4282470 0.4116405 0.3953029
 0.3792973 0.3636675 0.3484596 0.3337426 0.3196357
 0.3063515 0.2926446 0.2790917 0.2656624 0.2523613
 0.2391818 0.2261192 0.2131702 0.2003301 0.1875975
 0.1749734 0.1624613 0.1500674 0.1377994 0.1256658
 0.1136760 0.1018395 9.0165958E-02 7.8665338E-02 6.7347206E-02
 5.6221448E-02 4.5298304E-02 3.4588326E-02 2.4104625E-02 1.3860663E-02
 3.8731496E-03 -5.8370605E-03 -1.5243283E-02 -2.4310388E-02 -3.2991569E-02
 -4.1223809E-02 -4.8922416E-02 -5.5975392E-02 -6.2240355E-02 -6.7548171E-02
 -7.1722016E-02 -7.4623689E-02 -7.6219112E-02 -7.6611951E-02 -7.6016247E-02
 -7.4690573E-02 -7.2876349E-02 -7.0765778E-02 -6.8497144E-02 -6.6163778E-02
 -6.3825965E-02 -6.1521310E-02 -5.9272397E-02 -5.7092037E-02 -5.4986835E-02
 -5.2959397E-02 -5.1009867E-02 -4.9136881E-02 -4.7338188E-02 -4.5611069E-02
 -4.3952551E-02 -4.2359591E-02 -4.0829189E-02 -3.9358422E-02 -3.7947930E-02
 -3.6588103E-02
 0.9711392 0.9568219 0.9400654 0.9221106 0.9035161
 0.8845368 0.8652613 0.8456505 0.8255034 0.8043090
 0.7807779 0.7628863 0.7448105 0.7269715 0.7092685
 0.6917639 0.6745026 0.6575273 0.6408643 0.6245132
 0.6084754 0.5927502 0.5773262 0.5621920 0.5473320
 0.5327312 0.5183729 0.5042396 0.4903127 0.4765730
 0.4630000 0.4495723 0.4362671 0.4230603 0.4099259
 0.3968360 0.3837602 0.3706656 0.3575167 0.3442745
 0.3308969 0.3173399 0.3035590 0.2895145 0.2751801
 0.2605570 0.2456963 0.2307248 0.2158673 0.2014225
 0.1876870 0.1748778 0.1630975 0.1523472 0.1425637
 0.1336551 0.1255233 0.1180765 0.1112328 0.1049216
 9.9082835E-02 9.3665078E-02 8.8624723E-02 8.3924375E-02 7.9531915E-02
 7.5419530E-02 7.1562938E-02 6.7940883E-02 6.4534582E-02 6.1324179E-02
 5.8301657E-02
 0.4888876 0.4710239 0.4532513 0.4357809 0.4187059
 0.4020729 0.3859127 0.3702571 0.3551568 0.3407140
 0.3271669 0.3134820 0.3002199 0.2871220 0.2741053
 0.2611755 0.2483463 0.2356013 0.2229251 0.2103176
 0.1977746 0.1853003 0.1729014 0.1605835 0.1483590
 0.1362385 0.1242358 0.1123616 0.1006289 8.9048736E-02
 7.7632390E-02 6.6390835E-02 5.5334896E-02 4.4475742E-02 3.3824440E-02
 2.3394894E-02 1.3200855E-02 3.2593957E-03 -6.4082285E-03 -1.5775139E-02
 -2.4806071E-02 -3.3454098E-02 -4.1656040E-02 -4.9327161E-02 -5.6355324E-02
 -6.2598087E-02 -6.7886159E-02 -7.2041132E-02 -7.4922010E-02 -7.6493591E-02
 -7.6860517E-02 -7.6238297E-02 -7.4886851E-02 -7.3048621E-02 -7.0916407E-02
 -6.8628669E-02 -6.6278622E-02 -6.3926362E-02 -6.1609212E-02 -5.9349503E-02
 -5.7159822E-02 -5.5046529E-02 -5.3012069E-02 -5.1056415E-02 -4.9178097E-02
 -4.7374751E-02 -4.5643549E-02 -4.3981437E-02 -4.2385325E-02 -4.0856797E-02
 -3.9383434E-02
 1.047303 1.025509 1.003833 0.9822738 0.9608318
 0.9395072 0.9182998 0.8972098 0.8762370 0.8553815
 0.8360091 0.8139307 0.7935188 0.7731718 0.7542293
 0.7351751 0.7163380 0.6979095 0.6798878 0.6622562
 0.6450114 0.6281658 0.6116990 0.5956003 0.5798471
 0.5644218 0.5493035 0.5344728 0.5199094 0.5055932
 0.4915037 0.4776192 0.4639171 0.4503747 0.4369675
 0.4236700 0.4104551 0.3972939 0.3841550 0.3710048
 0.3578067 0.3445211 0.3311055 0.3175149 0.3037046
 0.2896342 0.2752765 0.2606325 0.2457514 0.2307585
 0.2158785 0.2014130 0.1876602 0.1748378 0.1630482
 0.1522920 0.1425055 0.1335958 0.1254644 0.1180189
 0.1111772 0.1048684 9.9032104E-02 9.3616955E-02 8.8579230E-02
 8.3881512E-02 7.9491600E-02 7.5381644E-02 7.1527369E-02 6.7902297E-02
 6.4498797E-02
 0.5165139 0.4969495 0.4779535 0.4595259 0.4416666
 0.4243758 0.4076534 0.3914993 0.3759136 0.3608964
 0.3466540 0.3314191 0.3192550 0.3069361 0.2945425
 0.2819552 0.2695656 0.2572122 0.2448730 0.2325469
 0.2202322 0.2079355 0.1956622 0.1834147 0.1712061
 0.1590523 0.1469698 0.1349724 0.1230775 0.1112992
 9.9651732E-02 8.8148162E-02 7.6800771E-02 6.5621763E-02 5.4622848E-02
 4.3815713E-02 3.3211995E-02 2.2826232E-02 1.2672565E-02 2.7683792E-03
 -6.8649622E-03 -1.6200349E-02 -2.5202319E-02 -3.3823900E-02 -4.2001758E-02
 -4.9651165E-02 -5.6660082E-02 -6.2886067E-02 -6.8159893E-02 -7.2301768E-02
 -7.5167470E-02 -7.6720700E-02 -7.7067189E-02 -7.6423764E-02 -7.5051479E-02
 -7.3193640E-02 -7.1043566E-02 -6.8739943E-02 -6.6375978E-02 -6.4011604E-02
 -6.1683960E-02 -5.9415162E-02 -5.7217598E-02 -5.5097461E-02 -5.3057045E-02
 -5.1096227E-02 -4.9213387E-02 -4.7406077E-02 -4.5671407E-02 -4.4012588E-02
 -4.2413607E-02
 1.070342 1.048638 1.027052 1.005582 0.9842306
 0.9629962 0.9418791 0.9208794 0.8999969 0.8792318
 0.8599498 0.8379619 0.8176404 0.7973840 0.7785319
 0.7595682 0.7408216 0.7224836 0.7045524 0.6870114
 0.6698572 0.6531022 0.6367261 0.6207181 0.6050555
 0.5897210 0.5746934 0.5599535 0.5454809 0.5312555
 0.5172567 0.5034631 0.4898521 0.4764007 0.4630845
 0.4498779 0.4367541 0.4236839 0.4106361 0.3975770
 0.3844700 0.3712754 0.3580383 0.3447185 0.3312729
 0.3176560 0.3038220 0.2897297 0.2753506 0.2606859
 0.2457859 0.2307790 0.2158902 0.2014137 0.1876467
 0.1748106 0.1630108 0.1522481 0.1424578 0.1335466
 0.1254151 0.1179704 0.1111301 0.1048231 9.8988824E-02
 9.3575843E-02 8.8540308E-02 8.3844736E-02 7.9456925E-02 7.5349025E-02
 7.1496740E-02
 0.5572079 0.5371037 0.5175679 0.4986005 0.4802015
 0.4623710 0.4451089 0.4284151 0.4122898 0.3967330
 0.3819509 0.3661764 0.3534727 0.3406143 0.3276812
 0.3145543 0.3016253 0.2887323 0.2758537 0.2629882
 0.2501341 0.2372980 0.2244853 0.2116983 0.1989504
 0.1862573 0.1736354 0.1610987 0.1486644 0.1363468
 0.1241600 0.1121171 0.1002304 8.8512145E-02 7.6973945E-02
 6.5627538E-02 5.4484546E-02 4.3559514E-02 3.2866582E-02 2.2423137E-02
 1.2250538E-02 2.3758942E-03 -7.2303265E-03 -1.6540915E-02 -2.5520390E-02
 -3.4121785E-02 -4.2281985E-02 -4.9915895E-02 -5.6910411E-02 -6.3121572E-02
 -6.8378925E-02 -7.2502814E-02 -7.5354904E-02 -7.6899506E-02 -7.7235959E-02
 -7.6578692E-02 -7.5190447E-02 -7.3316589E-02 -7.1151584E-02 -6.8834595E-02
 -6.6458881E-02 -6.4084254E-02 -6.1747722E-02 -5.9471205E-02 -5.7266951E-02
 -5.5141017E-02 -5.3095561E-02 -5.1130328E-02 -4.9243633E-02 -4.7432959E-02
 -4.5695331E-02
 1.093258 1.071643 1.050146 1.028766 1.007503
 0.9863580 0.9653302 0.9444199 0.9236269 0.9029513
 0.8837589 0.8618605 0.8416286 0.8214616 0.8026991
 0.7838249 0.7651680 0.7469196 0.7290780 0.7116267
 0.6945622 0.6778969 0.6616105 0.6456922 0.6301195
 0.6148748 0.5999370 0.5852870 0.5709043 0.5567688
 0.5428600 0.5291563 0.5156353 0.5022739 0.4890476
 0.4759312 0.4628974 0.4499173 0.4369595 0.4239904
 0.4109735 0.3978691 0.3847221 0.3714924 0.3582245
 0.3448777 0.3314085 0.3177710 0.3039191 0.2898108
 0.2754176 0.2607398 0.2458268 0.2308063 0.2159034
 0.2014132 0.1876334 0.1747867 0.1629789 0.1522110
 0.1424176 0.1335049 0.1253732 0.1179290 0.1110898
 0.1047843 9.8951682E-02 9.3540467E-02 8.8506721E-02 8.3812974E-02
 7.9426974E-02
 0.5990487 0.5784037 0.5583271 0.5388190 0.5198792
 0.5015079 0.4837051 0.4664707 0.4498048 0.4337073
 0.4183847 0.4020696 0.3888254 0.3754264 0.3619528
 0.3482855 0.3348159 0.3213825 0.3079634 0.2945575
 0.2811630 0.2677865 0.2544335 0.2411062 0.2278181
 0.2145846 0.2014225 0.1883455 0.1753710 0.1625132
 0.1497861 0.1372030 0.1247761 0.1125176 0.1004392
 8.8552602E-02 7.6869413E-02 6.5404192E-02 5.4171074E-02 4.3187451E-02
 3.2474678E-02 2.2059862E-02 1.1913471E-02 2.0627147E-03 -7.5215120E-03
 -1.6811976E-02 -2.5773119E-02 -3.4358017E-02 -4.2503513E-02 -5.0124478E-02
 -5.7107646E-02 -6.3309252E-02 -6.8558663E-02 -7.2675191E-02 -7.5519152E-02
 -7.7054173E-02 -7.7379279E-02 -7.6709144E-02 -7.5307406E-02 -7.3420376E-02
 -7.1243107E-02 -6.8915047E-02 -6.6529512E-02 -6.4146288E-02 -6.1802249E-02
 -5.9519224E-02 -5.7309303E-02 -5.5178434E-02 -5.3128660E-02 -5.1159676E-02
 -4.9269706E-02
 1.116047 1.094520 1.073111 1.051819 1.030645
 1.009589 0.9886492 0.9678275 0.9471231 0.9265360
 0.9074322 0.8856223 0.8654790 0.8454007 0.8267268
 0.8079413 0.7893730 0.7712134 0.7534605 0.7360980
 0.7191222 0.7025458 0.6863483 0.6705188 0.6550350
 0.6398791 0.6250303 0.6104692 0.5961755 0.5821290
 0.5683092 0.5546946 0.5412626 0.5279903 0.5148533
 0.5018260 0.4888815 0.4759907 0.4631223 0.4502425
 0.4373150 0.4242998 0.4112422 0.3981019 0.3849234
 0.3716660 0.3583739 0.3450058 0.3315181 0.3178646
 0.3039988 0.2898783 0.2754740 0.2607861 0.2458631
 0.2308315 0.2159171 0.2014152 0.1876242 0.1747681
 0.1629533 0.1521804 0.1423841 0.1334698 0.1253376
 0.1178938 0.1110554 0.1047510 9.8919734E-02 9.3509987E-02
 8.8477783E-02
 0.6420334 0.6208466 0.6002283 0.5801784 0.5606971
 0.5417842 0.5234398 0.5056638 0.4884563 0.4718173
 0.4559532 0.4390966 0.4253109 0.4113705 0.3973554
 0.3831467 0.3691357 0.3551610 0.3412005 0.3272532
 0.3133174 0.2993996 0.2855054 0.2716369 0.2578075
 0.2440328 0.2303294 0.2167112 0.2031955 0.1897964
 0.1765282 0.1634039 0.1504358 0.1376361 0.1250166
 0.1125888 0.1003645 8.8358141E-02 7.6583900E-02 6.5059155E-02
 5.3805262E-02 4.2849332E-02 3.2161828E-02 2.1769961E-02 1.1644630E-02
 1.8130637E-03 -7.7536609E-03 -1.7028097E-02 -2.5974767E-02 -3.4546610E-02
 -4.2680576E-02 -5.0291564E-02 -5.7266187E-02 -6.3460730E-02 -6.8704709E-02
 -7.2816327E-02 -7.5654648E-02 -7.7182777E-02 -7.7499323E-02 -7.6819070E-02
 -7.5406447E-02 -7.3508568E-02 -7.1321107E-02 -6.8983749E-02 -6.6589952E-02
 -6.4199455E-02 -6.1849054E-02 -5.9560478E-02 -5.7345714E-02 -5.5210631E-02
 -5.3157199E-02
 1.138704 1.117265 1.095944 1.074739 1.053653
 1.032684 1.011832 0.9910979 0.9704812 0.9499819
 0.9309658 0.9092437 0.8891882 0.8691977 0.8506116
 0.8319140 0.8134336 0.7953619 0.7776970 0.7604225
 0.7435347 0.7270463 0.7109368 0.6951954 0.6797997
 0.6647320 0.6499713 0.6354984 0.6212928 0.6073346
 0.5936030 0.5800767 0.5667331 0.5535492 0.5405006
 0.5275618 0.5147058 0.5019035 0.4891237 0.4763325
 0.4634935 0.4505670 0.4375980 0.4245463 0.4114565
 0.3982878 0.3850843 0.3718050 0.3584936 0.3451089
 0.3316068 0.3179409 0.3040644 0.2899343 0.2755214
 0.2608260 0.2458953 0.2308548 0.2159305 0.2014187
 0.1876182 0.1747538 0.1629325 0.1521551 0.1423559
 0.1334402 0.1253075 0.1178637 0.1110259 0.1047224
 9.8892242E-02
 0.6861557 0.6644263 0.6432654 0.6226729 0.6026490
 0.5831935 0.5643066 0.5459881 0.5282382 0.5110568
 0.4946504 0.4772515 0.4629235 0.4484408 0.4338835
 0.4191326 0.4045794 0.3900625 0.3755599 0.3610705
 0.3465926 0.3321327 0.3176964 0.3032858 0.2889143
 0.2745976 0.2603521 0.2461919 0.2321341 0.2181931
 0.2043829 0.1907166 0.1772065 0.1638649 0.1507034
 0.1377337 0.1249674 0.1124192 0.1001030 8.8036373E-02
 7.6240584E-02 6.4742766E-02 5.3513382E-02 4.2579636E-02 3.1912431E-02
 2.1538995E-02 1.1430405E-02 1.6141030E-03 -7.9386951E-03 -1.7200401E-02
 -2.6135538E-02 -3.4697119E-02 -4.2822137E-02 -5.0425544E-02 -5.7393711E-02
 -6.3583046E-02 -6.8823576E-02 -7.2932191E-02 -7.5766727E-02 -7.7290021E-02
 -7.7600174E-02 -7.6911978E-02 -7.5490549E-02 -7.3583744E-02 -7.1387760E-02
 -6.9042608E-02 -6.6641822E-02 -6.4245142E-02 -6.1889313E-02 -5.9596002E-02
 -5.7377122E-02
 1.161230 1.139877 1.118642 1.097525 1.076525
 1.055643 1.034878 1.014230 0.9937006 0.9732883
 0.9543592 0.9327241 0.9127555 0.8928521 0.8743532
 0.8557426 0.8373494 0.8193648 0.8017871 0.7845997
 0.7677992 0.7513980 0.7353758 0.7197217 0.7044132
 0.6894329 0.6747595 0.6603740 0.6462559 0.6323850
 0.6187410 0.6053022 0.5920462 0.5789500 0.5659891
 0.5531380 0.5403697 0.5276552 0.5149632 0.5022599
 0.4895088 0.4766702 0.4637892 0.4508255 0.4378237
 0.4247430 0.4116275 0.3984362 0.3852129 0.3719163
 0.3585898 0.3451921 0.3316787 0.3180031 0.3041183
 0.2899810 0.2755616 0.2608605 0.2459238 0.2308760
 0.2159437 0.2014235 0.1876147 0.1747428 0.1629156
 0.1521341 0.1423323 0.1334151 0.1252817 0.1178380
 0.1110006
 0.7314036 0.7091309 0.6874267 0.6662909 0.6457238
 0.6257251 0.6062950 0.5874335 0.5691404 0.5514160
 0.5344667 0.5165249 0.5016541 0.4866286 0.4715285
 0.4562348 0.4411389 0.4260792 0.4110340 0.3960018
 0.3809813 0.3659787 0.3509997 0.3360464 0.3211323
 0.3062730 0.2914849 0.2767822 0.2621818 0.2476983
 0.2333455 0.2191368 0.2050842 0.1912001 0.1774961
 0.1639839 0.1506751 0.1375844 0.1247258 0.1121167
 9.9778451E-02 8.7738194E-02 7.5966373E-02 6.4490199E-02 5.3280570E-02
 4.2364709E-02 3.1713694E-02 2.1354971E-02 1.1259753E-02 1.4556284E-03
 -8.0859959E-03 -1.7337615E-02 -2.6263664E-02 -3.4817278E-02 -4.2935375E-02
 -5.0532985E-02 -5.7496320E-02 -6.3681915E-02 -6.8920508E-02 -7.3027581E-02
 -7.5859703E-02 -7.7379689E-02 -7.7685170E-02 -7.6990768E-02 -7.5562201E-02
 -7.3648021E-02 -7.1444921E-02 -6.9093183E-02 -6.6686444E-02 -6.4284511E-02
 -6.1924074E-02
 1.183619 1.162352 1.141203 1.120172 1.099258
 1.078462 1.057783 1.037222 1.016778 0.9964518
 0.9776090 0.9560602 0.9361781 0.9163610 0.8979484
 0.8794243 0.8611175 0.8432195 0.8257282 0.8086274
 0.7919134 0.7755988 0.7596632 0.7440957 0.7288738
 0.7139801 0.6993935 0.6850947 0.6710634 0.6572794
 0.6437222 0.6303704 0.6172014 0.6041921 0.5913182
 0.5785543 0.5658731 0.5532457 0.5406408 0.5280247
 0.5153609 0.5026096 0.4898158 0.4769394 0.4640249
 0.4510316 0.4380036 0.4248997 0.4117638 0.3985547
 0.3853157 0.3720055 0.3586672 0.3452592 0.3317371
 0.3180541 0.3041630 0.2900201 0.2755956 0.2608903
 0.2459493 0.2308953 0.2159562 0.2014289 0.1876128
 0.1747345 0.1629021 0.1521167 0.1423124 0.1333937
 0.1252597
 0.7777684 0.7549518 0.7327037 0.7110242 0.6899133
 0.6693709 0.6493971 0.6299920 0.6111555 0.5928875
 0.5753947 0.5569095 0.5414953 0.5259265 0.5102832
 0.4944463 0.4788074 0.4632047 0.4476163 0.4320412
 0.4164776 0.4009320 0.3854100 0.3699137 0.3544566
 0.3390543 0.3237234 0.3084777 0.2933344 0.2783079
 0.2634123 0.2486606 0.2340652 0.2196382 0.2053913
 0.1913362 0.1774846 0.1638510 0.1504495 0.1372976
 0.1244165 0.1118335 9.9518813E-02 8.7499820E-02 7.5747371E-02
 6.4288698E-02 5.3094871E-02 4.2193338E-02 3.1555310E-02 2.1208378E-02
 1.1123943E-02 1.3295172E-03 -8.2033034E-03 -1.7446954E-02 -2.6365839E-02
 -3.4913149E-02 -4.3025948E-02 -5.0619233E-02 -5.7579014E-02 -6.3761942E-02
 -6.8999723E-02 -7.3106349E-02 -7.5937070E-02 -7.7454895E-02 -7.7757001E-02
 -7.7057786E-02 -7.5623430E-02 -7.3703133E-02 -7.1494035E-02 -6.9136731E-02
 -6.6724978E-02
 1.205871 1.184690 1.163626 1.142680 1.121851
 1.101140 1.080547 1.060071 1.039713 1.019472
 1.000715 0.9792518 0.9594553 0.9397240 0.9213971
 0.9029588 0.8847378 0.8669255 0.8495201 0.8325051
 0.8158770 0.7996483 0.7837986 0.7683170 0.7531812
 0.7383735 0.7238730 0.7096603 0.6957151 0.6820174
 0.6685465 0.6552809 0.6421982 0.6292753 0.6164878
 0.6038103 0.5912155 0.5786746 0.5661562 0.5536266
 0.5410493 0.5283846 0.5156775 0.5028878 0.4900601
 0.4771537 0.4642125 0.4511956 0.4381466 0.4250244
 0.4118724 0.3986492 0.3853979 0.3720769 0.3587293
 0.3453134 0.3317846 0.3180960 0.3042000 0.2900529
 0.2756245 0.2609163 0.2459721 0.2309129 0.2159679
 0.2014348 0.1876124 0.1747282 0.1628909 0.1521021
 0.1422956
 0.8252478 0.8018870 0.7790947 0.7568710 0.7352159
 0.7141294 0.6936117 0.6736625 0.6542820 0.6354702
 0.6174335 0.5984046 0.5824466 0.5663341 0.5501469
 0.5337664 0.5175838 0.5014375 0.4853056 0.4691871
 0.4530801 0.4369911 0.4209256 0.4048861 0.3888856
 0.3729400 0.3570656 0.3412766 0.3255900 0.3100202
 0.2945813 0.2792864 0.2641477 0.2491775 0.2343874
 0.2197891 0.2053943 0.1912175 0.1772728 0.1635776
 0.1501534 0.1370271 0.1241693 0.1116072 9.9311583E-02
 8.7309778E-02 7.5572819E-02 6.4128153E-02 5.2946992E-02 4.2056929E-02
 3.1429365E-02 2.1091811E-02 1.1015865E-02 1.2290897E-03 -8.2966937E-03
 -1.7534006E-02 -2.6447253E-02 -3.4989681E-02 -4.3098472E-02 -5.0688580E-02
 -5.7645693E-02 -6.3826688E-02 -6.9064610E-02 -7.3171653E-02 -7.6001644E-02
 -7.7518135E-02 -7.7817909E-02 -7.7114969E-02 -7.5675830E-02 -7.3750481E-02
 -7.1536399E-02
 1.227984 1.206887 1.185908 1.165046 1.144302
 1.123676 1.103168 1.082777 1.062503 1.042347
 1.023675 1.002297 0.9825851 0.9629390 0.9446973
 0.9263442 0.9082084 0.8904814 0.8731613 0.8562316
 0.8396888 0.8235454 0.8077811 0.7923850 0.7773346
 0.7626125 0.7481975 0.7340705 0.7202110 0.7065989
 0.6932137 0.6800339 0.6670370 0.6541999 0.6414982
 0.6289065 0.6163977 0.6039427 0.5915102 0.5790666
 0.5665754 0.5539967 0.5413757 0.5286721 0.5159306
 0.5031104 0.4902556 0.4773250 0.4643624 0.4513266
 0.4382610 0.4251241 0.4119593 0.3987248 0.3854637
 0.3721343 0.3587794 0.3453574 0.3318233 0.3181304
 0.3042308 0.2900805 0.2756490 0.2609389 0.2459925
 0.2309289 0.2159789 0.2014407 0.1876124 0.1747231
 0.1628819
 0.8738279 0.8499229 0.8265865 0.8038187 0.7816196
 0.7599891 0.7389274 0.7184344 0.6985101 0.6791545
 0.6605740 0.6410013 0.6244996 0.6078433 0.5911124
 0.5741882 0.5574619 0.5407718 0.5240963 0.5074341
 0.4907834 0.4741508 0.4575418 0.4409586 0.4244146
 0.4079254 0.3915075 0.3751749 0.3589448 0.3428315
 0.3268491 0.3110107 0.2953286 0.2798150 0.2644814
 0.2493397 0.2344014 0.2196812 0.2051931 0.1909545
 0.1769868 0.1633172 0.1499160 0.1368105 0.1239715
 0.1114264 9.9146061E-02 8.7158039E-02 7.5433530E-02 6.4000122E-02
 5.2829225E-02 4.1948341E-02 3.1329069E-02 2.0998970E-02 1.0929862E-02
 1.1492270E-03 -8.3710197E-03 -1.7603286E-02 -2.6512146E-02 -3.5050835E-02
 -4.3156553E-02 -5.0744403E-02 -5.7699557E-02 -6.3879102E-02 -6.9117963E-02
 -7.3225997E-02 -7.6055698E-02 -7.7571444E-02 -7.7870093E-02 -7.7163838E-02
 -7.5720929E-02
 1.249953 1.228940 1.208045 1.187267 1.166607
 1.146065 1.125641 1.105334 1.085144 1.065072
 1.046484 1.025190 1.005564 0.9860021 0.9678452
 0.9495769 0.9315259 0.9138837 0.8966484 0.8798036
 0.8633457 0.8472873 0.8316080 0.8162969 0.8013317
 0.7866947 0.7723649 0.7583231 0.7445488 0.7310220
 0.7177221 0.7046277 0.6917161 0.6789644 0.6663482
 0.6538419 0.6414185 0.6290491 0.6167022 0.6043442
 0.5919386 0.5794455 0.5669101 0.5542922 0.5416365
 0.5289021 0.5161331 0.5032884 0.4904116 0.4774617
 0.4644820 0.4514311 0.4383522 0.4252036 0.4120286
 0.3987852 0.3855164 0.3721803 0.3588198 0.3453929
 0.3318550 0.3181588 0.3042565 0.2901038 0.2756697
 0.2609587 0.2460108 0.2309434 0.2159917 0.2014470
 0.1876134
 0.9235147 0.8990653 0.8751845 0.8518723 0.8291289
 0.8069542 0.7853483 0.7643111 0.7438427 0.7239429
 0.7048184 0.6847016 0.6676558 0.6504554 0.6331805
 0.6157122 0.5984418 0.5812077 0.5639881 0.5467818
 0.5295871 0.5124106 0.4952576 0.4781306 0.4610427
 0.4440096 0.4270479 0.4101715 0.3933976 0.3767406
 0.3602145 0.3438324 0.3276065 0.3115491 0.2956719
 0.2799865 0.2645046 0.2492407 0.2342090 0.2194269
 0.2049157 0.1907025 0.1767577 0.1631087 0.1497262
 0.1366375 0.1238136 0.1112821 9.9014066E-02 8.7037146E-02
 7.5322740E-02 6.3898347E-02 5.2735571E-02 4.1861966E-02 3.1249357E-02
 2.0925220E-02 1.0861470E-02 1.0857049E-03 -8.4301913E-03 -1.7658511E-02
 -2.6563844E-02 -3.5099670E-02 -4.3203123E-02 -5.0789442E-02 -5.7743177E-02
 -6.3921459E-02 -6.9161914E-02 -7.3271595E-02 -7.6101072E-02 -7.7618115E-02
 -7.7914380E-02
 1.271775 1.250846 1.230034 1.209340 1.188764
 1.168305 1.147964 1.127741 1.107635 1.087647
 1.069143 1.047933 1.028391 1.008913 0.9908407
 0.9726567 0.9546901 0.9371323 0.9199815 0.9032211
 0.8868478 0.8708739 0.8552793 0.8400529 0.8251724
 0.8106201 0.7963750 0.7824180 0.7687286 0.7552866
 0.7420716 0.7290621 0.7162355 0.7035688 0.6910375
 0.6786163 0.6662780 0.6539937 0.6417319 0.6294590
 0.6171386 0.6047307 0.5922806 0.5797480 0.5671777
 0.5545286 0.5418450 0.5290858 0.5162944 0.5034299
 0.4905357 0.4775704 0.4645771 0.4515141 0.4384247
 0.4252669 0.4120837 0.3988334 0.3855585 0.3722173
 0.3588524 0.3454219 0.3318809 0.3181824 0.3042780
 0.2901236 0.2756872 0.2609759 0.2460215 0.2309567
 0.2160016
 0.9743025 0.9493084 0.9248831 0.9010264 0.8777386
 0.8550195 0.8328692 0.8112877 0.7902749 0.7698308
 0.7501619 0.7295008 0.7119107 0.6941661 0.6763468
 0.6583342 0.6405195 0.6227411 0.6049773 0.5872267
 0.5694879 0.5517672 0.5340702 0.5163991 0.4987673
 0.4811902 0.4636846 0.4462642 0.4289464 0.4117455
 0.3946754 0.3777494 0.3609797 0.3443785 0.3279575
 0.3117282 0.2957025 0.2798948 0.2643193 0.2489934
 0.2339385 0.2191816 0.2046932 0.1905004 0.1765742
 0.1629418 0.1495743 0.1364991 0.1236874 0.1111669
 9.8908849E-02 8.6940832E-02 7.5234443E-02 6.3817225E-02 5.2661009E-02
 4.1793264E-02 3.1185906E-02 2.0866537E-02 1.0807042E-02 1.0351223E-03
 -8.4772250E-03 -1.7702423E-02 -2.6605040E-02 -3.5138752E-02 -4.3240581E-02
 -5.0825857E-02 -5.7778228E-02 -6.3956290E-02 -6.9197230E-02 -7.3304608E-02
 -7.6139294E-02

XFOILinterface/XFOIL/orrs/osm_gu.10

 2001 10.02486
 0.0000000E+00 0.0000000E+00 2.5333488E-08
 5.0124314E-02 1.3796899E-09 2.9717240E-08
 0.1002486 2.9974243E-09 3.4831654E-08
 0.1503729 4.8927578E-09 4.0793655E-08
 0.2004973 7.1115500E-09 4.7737938E-08
 0.2506216 9.7069277E-09 5.5819655E-08
 0.3007459 1.2740377E-08 6.5217421E-08
 0.3508702 1.6283012E-08 7.6136523E-08
 0.4009945 2.0416989E-08 8.8812492E-08
 0.4511189 2.5237163E-08 1.0351614E-07
 0.5012432 3.0852934E-08 1.2055759E-07
 0.5513675 3.7390393E-08 1.4029220E-07
 0.6014917 4.4994721E-08 1.6312670E-07
 0.6516161 5.3832963E-08 1.8952612E-07
 0.7017404 6.4097122E-08 2.2002193E-07
 0.7518647 7.6007723E-08 2.5522019E-07
 0.8019890 8.9817775E-08 2.9581278E-07
 0.8521134 1.0581747E-07 3.4258741E-07
 0.9022377 1.2433912E-07 3.9644118E-07
 0.9523620 1.4576311E-07 4.5839371E-07
 1.002486 1.7052446E-07 5.2960326E-07
 1.052611 1.9912007E-07 6.1138542E-07
 1.102735 2.3211737E-07 7.0523276E-07
 1.152859 2.7016344E-07 8.1283417E-07
 1.202983 3.1399557E-07 9.3610458E-07
 1.253108 3.6445354E-07 1.0772072E-06
 1.303232 4.2249229E-07 1.2385875E-06
 1.353357 4.8919770E-07 1.4230056E-06
 1.403481 5.6580217E-07 1.6335766E-06
 1.453605 6.5370466E-07 1.8738051E-06
 1.503729 7.5449105E-07 2.1476440E-06
 1.553854 8.6995675E-07 2.4595331E-06
 1.603978 1.0021342E-06 2.8144602E-06
 1.654102 1.1533220E-06 3.2180392E-06
 1.704227 1.3261150E-06 3.6765393E-06
 1.754351 1.5234430E-06 4.1970106E-06
 1.804475 1.7486102E-06 4.7873250E-06
 1.854600 2.0053376E-06 5.4563066E-06
 1.904724 2.2978154E-06 6.2137979E-06
 1.954848 2.6307553E-06 7.0707829E-06
 2.004973 3.0094532E-06 8.0395339E-06
 2.055097 3.4398513E-06 9.1337079E-06
 2.105221 3.9286178E-06 1.0368490E-05
 2.155346 4.4832268E-06 1.1760809E-05
 2.205470 5.1120410E-06 1.3329412E-05
 2.255594 5.8244209E-06 1.5095131E-05
 2.305718 6.6308280E-06 1.7081093E-05
 2.355843 7.5429380E-06 1.9312876E-05
 2.405967 8.5737856E-06 2.1818796E-05
 2.456091 9.7378988E-06 2.4630175E-05
 2.506216 1.1051449E-05 2.7781540E-05
 2.556340 1.2532437E-05 3.1311083E-05
 2.606464 1.4200870E-05 3.5260782E-05
 2.656589 1.6078970E-05 3.9676986E-05
 2.706713 1.8191409E-05 4.4610588E-05
 2.756837 2.0565498E-05 5.0117538E-05
 2.806962 2.3231529E-05 5.6259320E-05
 2.857086 2.6223006E-05 6.3103173E-05
 2.907210 2.9576977E-05 7.0723043E-05
 2.957335 3.3334356E-05 7.9199555E-05
 3.007459 3.7540332E-05 8.8621295E-05
 3.057583 4.2244636E-05 9.9084413E-05
 3.107708 4.7502137E-05 1.1069425E-04
 3.157832 5.3373184E-05 1.2356558E-04
 3.207956 5.9924147E-05 1.3782318E-04
 3.258080 6.7227906E-05 1.5360302E-04
 3.308205 7.5364529E-05 1.7105284E-04
 3.358329 8.4421612E-05 1.9033252E-04
 3.408453 9.4495299E-05 2.1161584E-04
 3.458578 1.0569072E-04 2.3509093E-04
 3.508702 1.1812285E-04 2.6096142E-04
 3.558826 1.3191726E-04 2.8944699E-04
 3.608951 1.4721109E-04 3.2078527E-04
 3.659075 1.6415353E-04 3.5523239E-04
 3.709199 1.8290743E-04 3.9306376E-04
 3.759324 2.0364988E-04 4.3457642E-04
 3.809448 2.2657333E-04 4.8008905E-04
 3.859572 2.5188693E-04 5.2994426E-04
 3.909696 2.7981750E-04 5.8450858E-04
 3.959821 3.1061113E-04 6.4417557E-04
 4.009945 3.4453376E-04 7.0936600E-04
 4.060070 3.8187369E-04 7.8052847E-04
 4.110194 4.2294231E-04 8.5814338E-04
 4.160318 4.6807583E-04 9.4272167E-04
 4.210443 5.1763695E-04 1.0348076E-03
 4.260567 5.7201681E-04 1.1349818E-03
 4.310691 6.3163560E-04 1.2438564E-03
 4.360816 6.9694605E-04 1.3620852E-03
 4.410940 7.6843437E-04 1.4903583E-03
 4.461064 8.4662240E-04 1.6294075E-03
 4.511188 9.3206955E-04 1.7800054E-03
 4.561313 1.0253758E-03 1.9429689E-03
 4.611437 1.1271812E-03 2.1191544E-03
 4.661561 1.2381719E-03 2.3094679E-03
 4.711686 1.3590798E-03 2.5148597E-03
 4.761810 1.4906859E-03 2.7363289E-03
 4.811934 1.6338220E-03 2.9749188E-03
 4.862059 1.7893746E-03 3.2317271E-03
 4.912183 1.9582841E-03 3.5078980E-03
 4.962307 2.1415513E-03 3.8046218E-03
 5.012432 2.3402383E-03 4.1231462E-03
 5.062556 2.5554695E-03 4.4647646E-03
 5.112680 2.7884366E-03 4.8308205E-03
 5.162804 3.0403994E-03 5.2227103E-03
 5.212929 3.3126890E-03 5.6418744E-03
 5.263053 3.6067099E-03 6.0898056E-03
 5.313177 3.9239428E-03 6.5680444E-03
 5.363302 4.2659505E-03 7.0781820E-03
 5.413426 4.6343640E-03 7.6218331E-03
 5.463551 5.0309100E-03 8.2006771E-03
 5.513675 5.4573948E-03 8.8164276E-03
 5.563799 5.9157126E-03 9.4708316E-03
 5.613923 6.4078453E-03 1.0165673E-02
 5.664048 6.9358652E-03 1.0902766E-02
 5.714172 7.5019365E-03 1.1683955E-02
 5.764296 8.1083160E-03 1.2511102E-02
 5.814420 8.7573547E-03 1.3386091E-02
 5.864545 9.4514992E-03 1.4310827E-02
 5.914669 1.0193290E-02 1.5287207E-02
 5.964794 1.0985372E-02 1.6317151E-02
 6.014918 1.1830459E-02 1.7402552E-02
 6.065042 1.2731390E-02 1.8545311E-02
 6.115167 1.3691084E-02 1.9747302E-02
 6.165291 1.4712558E-02 2.1010380E-02
 6.215415 1.5798921E-02 2.2336377E-02
 6.265539 1.6953368E-02 2.3727069E-02
 6.315664 1.8179189E-02 2.5184192E-02
 6.365788 1.9479753E-02 2.6709422E-02
 6.415912 2.0858517E-02 2.8304376E-02
 6.466036 2.2319013E-02 2.9970588E-02
 6.516160 2.3864849E-02 3.1709500E-02
 6.566285 2.5499700E-02 3.3522479E-02
 6.616410 2.7227335E-02 3.5410799E-02
 6.666534 2.9051516E-02 3.7375547E-02
 6.716659 3.0976120E-02 3.9417770E-02
 6.766783 3.3005055E-02 4.1538335E-02
 6.816907 3.5142262E-02 4.3737970E-02
 6.867031 3.7391718E-02 4.6017259E-02
 6.917155 3.9757427E-02 4.8376616E-02
 6.967280 4.2243414E-02 5.0816260E-02
 7.017404 4.4853698E-02 5.3336266E-02
 7.067528 4.7592308E-02 5.5936463E-02
 7.117652 5.0463248E-02 5.8616508E-02
 7.167777 5.3470515E-02 6.1375845E-02
 7.217902 5.6618094E-02 6.4213715E-02
 7.268026 5.9909824E-02 6.7129038E-02
 7.318150 6.3349597E-02 7.0120610E-02
 7.368275 6.6941187E-02 7.3186919E-02
 7.418399 7.0688307E-02 7.6326229E-02
 7.468523 7.4594565E-02 7.9536550E-02
 7.518647 7.8663453E-02 8.2815610E-02
 7.568771 8.2898371E-02 8.6160906E-02
 7.618896 8.7302558E-02 8.9569643E-02
 7.669020 9.1879107E-02 9.3038782E-02
 7.719144 9.6630983E-02 9.6565008E-02
 7.769269 0.1015610 0.1001447
 7.819393 0.1066716 0.1037741
 7.869518 0.1119654 0.1074490
 7.919642 0.1174443 0.1111651
 7.969766 0.1231104 0.1149178
 8.019891 0.1289654 0.1187021
 8.070015 0.1350108 0.1225129
 8.120139 0.1412477 0.1263450
 8.170263 0.1476771 0.1301928
 8.220387 0.1542996 0.1340505
 8.270512 0.1611155 0.1379121
 8.320636 0.1681250 0.1417715
 8.370760 0.1753277 0.1456223
 8.420885 0.1827230 0.1494582
 8.471009 0.1903102 0.1532724
 8.521133 0.1980877 0.1570582
 8.571258 0.2060542 0.1608089
 8.621383 0.2142075 0.1645174
 8.671507 0.2225456 0.1681769
 8.721631 0.2310656 0.1717803
 8.771755 0.2397647 0.1753207
 8.821879 0.2486395 0.1787908
 8.872004 0.2576863 0.1821839
 8.922128 0.2669010 0.1854929
 8.972252 0.2762794 0.1887109
 9.022376 0.2858166 0.1918313
 9.072501 0.2955076 0.1948474
 9.122625 0.3053471 0.1977526
 9.172750 0.3153292 0.2005406
 9.222874 0.3254479 0.2032053
 9.272999 0.3356970 0.2057407
 9.323123 0.3460697 0.2081412
 9.373247 0.3565593 0.2104013
 9.423371 0.3671585 0.2125158
 9.473495 0.3778600 0.2144800
 9.523620 0.3886560 0.2162892
 9.573744 0.3995387 0.2179393
 9.623868 0.4105000 0.2194263
 9.673992 0.4215317 0.2207468
 9.724117 0.4326254 0.2218977
 9.774241 0.4437724 0.2228762
 9.824366 0.4549640 0.2236800
 9.874490 0.4661916 0.2243072
 9.924615 0.4774460 0.2247563
 9.974739 0.4887186 0.2250261
 10.02486 0.5000001 0.2251162
 10.07499 0.5112816 0.2250261
 10.12511 0.5225542 0.2247563
 10.17524 0.5338086 0.2243072
 10.22536 0.5450361 0.2236800
 10.27548 0.5562278 0.2228762
 10.32561 0.5673748 0.2218977
 10.37573 0.5784684 0.2207468
 10.42586 0.5895002 0.2194263
 10.47598 0.6004615 0.2179393
 10.52611 0.6113441 0.2162893
 10.57623 0.6221401 0.2144800
 10.62635 0.6328415 0.2125159
 10.67648 0.6434410 0.2104013
 10.72660 0.6539305 0.2081411
 10.77673 0.6643033 0.2057407
 10.82685 0.6745523 0.2032052
 10.87698 0.6846711 0.2005405
 10.92710 0.6946532 0.1977525
 10.97723 0.7044926 0.1948474
 11.02735 0.7141836 0.1918313
 11.07747 0.7237208 0.1887109
 11.12760 0.7330991 0.1854929
 11.17772 0.7423139 0.1821839
 11.22785 0.7513607 0.1787908
 11.27797 0.7602355 0.1753207
 11.32810 0.7689346 0.1717803
 11.37822 0.7774547 0.1681769
 11.42834 0.7857926 0.1645174
 11.47847 0.7939461 0.1608089
 11.52859 0.8019125 0.1570582
 11.57872 0.8096901 0.1532724
 11.62884 0.8172771 0.1494582
 11.67896 0.8246725 0.1456224
 11.72909 0.8318752 0.1417715
 11.77921 0.8388847 0.1379121
 11.82934 0.8457007 0.1340505
 11.87946 0.8523232 0.1301929
 11.92959 0.8587527 0.1263450
 11.97971 0.8649896 0.1225129
 12.02984 0.8710350 0.1187020
 12.07996 0.8768900 0.1149177
 12.13008 0.8825561 0.1111651
 12.18021 0.8880350 0.1074490
 12.23033 0.8933287 0.1037741
 12.28046 0.8984393 0.1001447
 12.33058 0.9033694 9.6565008E-02
 12.38071 0.9081212 9.3038782E-02
 12.43083 0.9126978 8.9569643E-02
 12.48095 0.9171019 8.6160906E-02
 12.53108 0.9213368 8.2815610E-02
 12.58120 0.9254057 7.9536550E-02
 12.63133 0.9293120 7.6326229E-02
 12.68145 0.9330591 7.3186919E-02
 12.73158 0.9366507 7.0120610E-02
 12.78170 0.9400905 6.7129038E-02
 12.83182 0.9433822 6.4213715E-02
 12.88195 0.9465297 6.1375875E-02
 12.93207 0.9495370 5.8616538E-02
 12.98220 0.9524079 5.5936493E-02
 13.03232 0.9551466 5.3336293E-02
 13.08245 0.9577568 5.0816298E-02
 13.13257 0.9602429 4.8376642E-02
 13.18270 0.9626086 4.6017233E-02
 13.23282 0.9648581 4.3737940E-02
 13.28294 0.9669953 4.1538306E-02
 13.33307 0.9690242 3.9417747E-02
 13.38319 0.9709488 3.7375528E-02
 13.43332 0.9727730 3.5410780E-02
 13.48344 0.9745007 3.3522479E-02
 13.53357 0.9761356 3.1709500E-02
 13.58369 0.9776813 2.9970588E-02
 13.63381 0.9791418 2.8304376E-02
 13.68394 0.9805206 2.6709422E-02
 13.73406 0.9818211 2.5184192E-02
 13.78419 0.9830469 2.3727069E-02
 13.83431 0.9842014 2.2336377E-02
 13.88443 0.9852877 2.1010380E-02
 13.93456 0.9863092 1.9747302E-02
 13.98468 0.9872689 1.8545311E-02
 14.03481 0.9881698 1.7402552E-02
 14.08493 0.9890149 1.6317151E-02
 14.13506 0.9898070 1.5287218E-02
 14.18518 0.9905487 1.4310835E-02
 14.23530 0.9912429 1.3386105E-02
 14.28543 0.9918919 1.2511112E-02
 14.33555 0.9924983 1.1683963E-02
 14.38568 0.9930644 1.0902776E-02
 14.43580 0.9935924 1.0165665E-02
 14.48593 0.9940846 9.4708232E-03
 14.53605 0.9945428 8.8164192E-03
 14.58618 0.9949693 8.2006706E-03
 14.63630 0.9953659 7.6218257E-03
 14.68642 0.9957343 7.0781750E-03
 14.73655 0.9960763 6.5680444E-03
 14.78667 0.9963936 6.0898056E-03
 14.83680 0.9966876 5.6418744E-03
 14.88692 0.9969599 5.2227103E-03
 14.93705 0.9972119 4.8308205E-03
 14.98717 0.9974449 4.4647646E-03
 15.03729 0.9976601 4.1231462E-03
 15.08742 0.9978588 3.8046218E-03
 15.13754 0.9980420 3.5078980E-03
 15.18767 0.9982109 3.2317271E-03
 15.23779 0.9983665 2.9749188E-03
 15.28792 0.9985096 2.7363289E-03
 15.33804 0.9986412 2.5148597E-03
 15.38816 0.9987621 2.3094679E-03
 15.43829 0.9988731 2.1191544E-03
 15.48841 0.9989749 1.9429689E-03
 15.53854 0.9990682 1.7800070E-03
 15.58866 0.9991536 1.6294093E-03
 15.63879 0.9992319 1.4903597E-03
 15.68891 0.9993033 1.3620834E-03
 15.73904 0.9993687 1.2438552E-03
 15.78916 0.9994283 1.1349807E-03
 15.83928 0.9994827 1.0348076E-03
 15.88941 0.9995322 9.4272167E-04
 15.93953 0.9995773 8.5814338E-04
 15.98966 0.9996185 7.8052847E-04
 16.03978 0.9996558 7.0936600E-04
 16.08990 0.9996897 6.4417557E-04
 16.14003 0.9997205 5.8450858E-04
 16.19015 0.9997484 5.2994426E-04
 16.24028 0.9997737 4.8008905E-04
 16.29040 0.9997966 4.3457642E-04
 16.34053 0.9998173 3.9306376E-04
 16.39065 0.9998361 3.5523239E-04
 16.44077 0.9998530 3.2078527E-04
 16.49090 0.9998683 2.8944699E-04
 16.54102 0.9998821 2.6096142E-04
 16.59115 0.9998946 2.3509093E-04
 16.64127 0.9999057 2.1161584E-04
 16.69140 0.9999158 1.9033252E-04
 16.74152 0.9999249 1.7105284E-04
 16.79165 0.9999330 1.5360322E-04
 16.84177 0.9999403 1.3782337E-04
 16.89189 0.9999469 1.2356570E-04
 16.94202 0.9999527 1.1069409E-04
 16.99214 0.9999580 9.9084260E-05
 17.04227 0.9999627 8.8621164E-05
 17.09239 0.9999669 7.9199555E-05
 17.14252 0.9999707 7.0723043E-05
 17.19264 0.9999740 6.3103173E-05
 17.24277 0.9999770 5.6259320E-05
 17.29289 0.9999797 5.0117538E-05
 17.34301 0.9999821 4.4610588E-05
 17.39314 0.9999841 3.9676986E-05
 17.44326 0.9999860 3.5260782E-05
 17.49339 0.9999877 3.1311083E-05
 17.54351 0.9999892 2.7781540E-05
 17.59363 0.9999905 2.4630175E-05
 17.64376 0.9999917 2.1818796E-05
 17.69388 0.9999927 1.9312876E-05
 17.74401 0.9999936 1.7081093E-05
 17.79413 0.9999944 1.5095131E-05
 17.84426 0.9999952 1.3329412E-05
 17.89438 0.9999958 1.1760809E-05
 17.94450 0.9999963 1.0368510E-05
 17.99463 0.9999968 9.1337179E-06
 18.04475 0.9999972 8.0395494E-06
 18.09488 0.9999976 7.0707974E-06
 18.14500 0.9999979 6.2138033E-06
 18.19513 0.9999982 5.4562961E-06
 18.24525 0.9999985 4.7873209E-06
 18.29538 0.9999986 4.1970020E-06
 18.34550 0.9999989 3.6765357E-06
 18.39562 0.9999990 3.2180365E-06
 18.44575 0.9999992 2.8144602E-06
 18.49587 0.9999993 2.4595331E-06
 18.54600 0.9999995 2.1476440E-06
 18.59612 0.9999995 1.8738051E-06
 18.64625 0.9999996 1.6335766E-06
 18.69637 0.9999996 1.4230056E-06
 18.74649 0.9999997 1.2385875E-06
 18.79662 0.9999998 1.0772072E-06
 18.84674 0.9999999 9.3610458E-07
 18.89687 0.9999999 8.1283417E-07
 18.94699 1.000000 7.0523276E-07
 18.99712 1.000000 6.1138542E-07
 19.04724 1.000000 5.2960326E-07
 19.09736 1.000000 4.5839371E-07
 19.14749 1.000000 3.9644118E-07
 19.19761 1.000000 3.4258804E-07
 19.24774 1.000000 2.9581335E-07
 19.29786 1.000000 2.5522064E-07
 19.34798 1.000000 2.2002236E-07
 19.39811 1.000000 1.8952647E-07
 19.44823 1.000000 1.6312639E-07
 19.49836 1.000000 1.4029195E-07
 19.54848 1.000000 1.2055735E-07
 19.59861 1.000000 1.0351594E-07
 19.64873 1.000000 8.8812413E-08
 19.69886 1.000000 7.6136374E-08
 19.74898 1.000000 6.5217421E-08
 19.79910 1.000000 5.5819655E-08
 19.84923 1.000000 4.7737938E-08
 19.89935 1.000000 4.0793655E-08
 19.94948 1.000000 3.4831654E-08
 19.99960 1.000000 2.9717240E-08
 20.04973 1.000000 2.5333488E-08
 20.09985 1.000000 2.1579050E-08
 20.14997 1.000000 1.8366478E-08
 20.20010 1.000000 1.5619568E-08
 20.25022 1.000000 1.3272955E-08
 20.30035 1.000000 1.1269769E-08
 20.35047 1.000000 9.5613366E-09
 20.40060 1.000000 8.1053511E-09
 20.45072 1.000000 6.8656307E-09
 20.50084 1.000000 5.8108367E-09
 20.55097 1.000000 4.9142033E-09
 20.60109 1.000000 4.1525561E-09
 20.65122 1.000000 3.5061865E-09
 20.70134 1.000000 2.9580345E-09
 20.75146 1.000000 2.4936053E-09
 20.80159 1.000000 2.1003950E-09
 20.85172 1.000000 1.7677892E-09
 20.90184 1.000000 1.4866500E-09
 20.95196 1.000000 1.2492325E-09
 21.00209 1.000000 1.0488838E-09
 21.05221 1.000000 8.7996810E-10
 21.10234 1.000000 7.3765960E-10
 21.15246 1.000000 6.1787497E-10
 21.20259 1.000000 5.1712401E-10
 21.25271 1.000000 4.3245829E-10
 21.30283 1.000000 3.6136277E-10
 21.35296 1.000000 3.0171343E-10
 21.40308 1.000000 2.5171148E-10
 21.45321 1.000000 2.0982596E-10
 21.50333 1.000000 1.7477229E-10
 21.55346 1.000000 1.4545674E-10
 21.60358 1.000000 1.2096289E-10
 21.65371 1.000000 1.0051213E-10
 21.70383 1.000000 8.3452981E-11
 21.75395 1.000000 6.9233133E-11
 21.80408 1.000000 5.7390804E-11
 21.85420 1.000000 4.7535652E-11
 21.90433 1.000000 3.9341676E-11
 21.95445 1.000000 3.2533819E-11
 22.00457 1.000000 2.6882732E-11
 22.05470 1.000000 2.2195320E-11
 22.10482 1.000000 1.8310695E-11
 22.15495 1.000000 1.5093746E-11
 22.20507 1.000000 1.2432151E-11
 22.25520 1.000000 1.0231598E-11
 22.30532 1.000000 8.4139076E-12
 22.35544 1.000000 6.9135448E-12
 22.40557 1.000000 5.6762308E-12
 22.45569 1.000000 4.6565824E-12
 22.50582 1.000000 3.8170825E-12
 22.55594 1.000000 3.1264006E-12
 22.60607 1.000000 2.5586436E-12
 22.65619 1.000000 2.0923389E-12
 22.70632 1.000000 1.7096336E-12
 22.75644 1.000000 1.3958227E-12
 22.80656 1.000000 1.1386898E-12
 22.85669 1.000000 9.2819177E-13
 22.90681 1.000000 7.5599471E-13
 22.95694 1.000000 6.1525622E-13
 23.00706 1.000000 5.0031328E-13
 23.05718 1.000000 4.0652304E-13
 23.10731 1.000000 3.3004670E-13
 23.15743 1.000000 2.6774630E-13
 23.20756 1.000000 2.1702991E-13
 23.25768 1.000000 1.7578131E-13
 23.30781 1.000000 1.4225704E-13
 23.35793 1.000000 1.1503552E-13
 23.40806 1.000000 9.2947568E-14
 23.45818 1.000000 7.5041447E-14
 23.50830 1.000000 6.0535920E-14
 23.55843 1.000000 4.8795674E-14
 23.60855 1.000000 3.9300516E-14
 23.65868 1.000000 3.1627976E-14
 23.70880 1.000000 2.5432757E-14
 23.75892 1.000000 2.0434858E-14
 23.80905 1.000000 1.6405846E-14
 23.85917 1.000000 1.3160660E-14
 23.90930 1.000000 1.0549082E-14
 23.95942 1.000000 8.4488724E-15
 24.00955 1.000000 6.7614638E-15
 24.05967 1.000000 5.4066693E-15
 24.10979 1.000000 4.3199307E-15
 24.15992 1.000000 3.4488232E-15
 24.21004 1.000000 2.7512047E-15
 24.26017 1.000000 2.1929247E-15
 24.31029 1.000000 1.7465455E-15
 24.36042 1.000000 1.3899042E-15
 24.41054 1.000000 1.1052154E-15
 24.46067 1.000000 8.7812774E-16
 24.51079 1.000000 6.9714629E-16
 24.56091 1.000000 5.5301754E-16
 24.61104 1.000000 4.3834154E-16
 24.66116 1.000000 3.4716169E-16
 24.71129 1.000000 2.7473230E-16
 24.76141 1.000000 2.1723747E-16
 24.81153 1.000000 1.7164000E-16
 24.86166 1.000000 1.3550263E-16
 24.91178 1.000000 1.0688965E-16
 24.96191 1.000000 8.4250470E-17
 25.01203 1.000000 6.6353590E-17
 25.06216 1.000000 5.2216206E-17
 25.11228 1.000000 4.1058053E-17
 25.16241 1.000000 3.2258935E-17
 25.21253 1.000000 2.5324871E-17
 25.26266 1.000000 1.9865664E-17
 25.31278 1.000000 1.5570686E-17
 25.36290 1.000000 1.2194608E-17
 25.41303 1.000000 9.5428196E-18
 25.46315 1.000000 7.4617821E-18
 25.51328 1.000000 5.8298494E-18
 25.56340 1.000000 4.5512156E-18
 25.61353 1.000000 3.5501463E-18
 25.66365 1.000000 2.7670939E-18
 25.71377 1.000000 2.1549984E-18
 25.76390 1.000000 1.6769833E-18
 25.81402 1.000000 1.3039401E-18
 25.86415 1.000000 1.0130836E-18
 25.91427 1.000000 7.8646311E-19
 25.96439 1.000000 6.1005666E-19
 26.01452 1.000000 4.7283443E-19
 26.06464 1.000000 3.6619022E-19
 26.11477 1.000000 2.8336850E-19
 26.16489 1.000000 2.1910554E-19
 26.21502 1.000000 1.6927870E-19
 26.26514 1.000000 1.3068027E-19
 26.31527 1.000000 1.0080100E-19
 26.36539 1.000000 7.7691181E-20
 26.41551 1.000000 5.9832526E-20
 26.46564 1.000000 4.6041564E-20
 26.51576 1.000000 3.5401353E-20
 26.56589 1.000000 2.7197986E-20
 26.61601 1.000000 2.0879132E-20
 26.66614 1.000000 1.6015304E-20
 26.71626 1.000000 1.2274817E-20
 26.76638 1.000000 9.4003422E-21
 26.81651 1.000000 7.1933185E-21
 26.86663 1.000000 5.4999716E-21
 26.91676 1.000000 4.2019604E-21
 26.96688 1.000000 3.2076768E-21
 27.01701 1.000000 2.4467314E-21
 27.06713 1.000000 1.8647864E-21
 27.11725 1.000000 1.4201382E-21
 27.16738 1.000000 1.0806316E-21
 27.21750 1.000000 8.2164339E-22
 27.26763 1.000000 6.2422031E-22
 27.31775 1.000000 4.7385933E-22
 27.36788 1.000000 3.5942348E-22
 27.41800 1.000000 2.7241053E-22
 27.46812 1.000000 2.0629406E-22
 27.51825 1.000000 1.5610195E-22
 27.56837 1.000000 1.1802583E-22
 27.61850 1.000000 8.9165712E-23
 27.66862 1.000000 6.7309664E-23
 27.71875 1.000000 5.0769640E-23
 27.76887 1.000000 3.8263771E-23
 27.81900 1.000000 2.8815107E-23
 27.86912 1.000000 2.1682524E-23
 27.91924 1.000000 1.6302148E-23
 27.96937 1.000000 1.2247296E-23
 28.01949 1.000000 9.1935396E-24
 28.06962 1.000000 6.8957629E-24
 28.11974 1.000000 5.1680775E-24
 28.16986 1.000000 3.8702092E-24
 28.21999 1.000000 2.8959119E-24
 28.27011 1.000000 2.1651848E-24
 28.32024 1.000000 1.6175338E-24
 28.37036 1.000000 1.2074489E-24
 28.42049 1.000000 9.0059536E-25
 28.47061 1.000000 6.7119855E-25
 28.52073 1.000000 4.9982473E-25
 28.57086 1.000000 3.7191459E-25
 28.62098 1.000000 2.7651318E-25
 28.67111 1.000000 2.0542209E-25
 28.72123 1.000000 1.5248389E-25
 28.77136 1.000000 1.1309917E-25
 28.82148 1.000000 8.3818924E-26
 28.87161 1.000000 6.2069289E-26
 28.92173 1.000000 4.5927229E-26
 28.97186 1.000000 3.3955553E-26
 29.02198 1.000000 2.5084768E-26
 29.07210 1.000000 1.8516327E-26
 29.12223 1.000000 1.3657094E-26
 29.17235 1.000000 1.0064886E-26
 29.22248 1.000000 7.4117057E-27
 29.27260 1.000000 5.4534910E-27
 29.32272 1.000000 4.0094807E-27
 29.37285 1.000000 2.9454302E-27
 29.42297 1.000000 2.1620617E-27
 29.47310 1.000000 1.5857492E-27
 29.52322 1.000000 1.1621389E-27
 29.57335 1.000000 8.5099824E-28
 29.62347 1.000000 6.2267251E-28
 29.67360 1.000000 4.5523379E-28
 29.72372 1.000000 3.3255978E-28
 29.77384 1.000000 2.4274505E-28
 29.82397 1.000000 1.7704818E-28
 29.87409 1.000000 1.2902573E-28
 29.92422 1.000000 9.3955349E-29
 29.97434 1.000000 6.8361864E-29
 30.02446 1.000000 4.9700789E-29
 30.07459 1.000000 3.6104376E-29
 30.12471 1.000000 2.6206565E-29
 30.17484 1.000000 1.9007099E-29
 30.22496 1.000000 1.3774323E-29
 30.27509 1.000000 9.9743242E-30
 30.32521 1.000000 7.2167582E-30
 30.37533 1.000000 5.2175045E-30
 30.42546 1.000000 3.7689960E-30
 30.47558 1.000000 2.7205115E-30
 30.52571 1.000000 1.9620840E-30
 30.57583 1.000000 1.4139911E-30
 30.62596 1.000000 1.0181721E-30
 30.67608 1.000000 7.3257894E-31
 30.72621 1.000000 5.2666741E-31
 30.77633 1.000000 3.7833269E-31
 30.82645 1.000000 2.7155643E-31
 30.87658 1.000000 1.9476086E-31
 30.92670 1.000000 1.3957001E-31
 30.97683 1.000000 9.9940436E-32
 31.02695 1.000000 7.1504904E-32
 31.07707 1.000000 5.1120186E-32
 31.12720 1.000000 3.6516670E-32
 31.17732 1.000000 2.6064656E-32
 31.22745 1.000000 1.8588953E-32
 31.27757 1.000000 1.3247072E-32
 31.32770 1.000000 9.4325766E-33
 31.37782 1.000000 6.7110883E-33
 31.42795 1.000000 4.7710520E-33
 31.47807 1.000000 3.3890990E-33
 31.52819 1.000000 2.4055237E-33
 31.57832 1.000000 1.7060192E-33
 31.62844 1.000000 1.2089737E-33
 31.67857 1.000000 8.5604237E-34
 31.72869 1.000000 6.0566483E-34
 31.77882 1.000000 4.2816877E-34
 31.82894 1.000000 3.0245417E-34
 31.87906 1.000000 2.1347469E-34
 31.92919 1.000000 1.5055500E-34
 31.97931 1.000000 1.0609367E-34
 32.02944 1.000000 7.4703762E-35
 32.07956 1.000000 5.2558252E-35
 32.12968 1.000000 3.6948611E-35
 32.17981 1.000000 2.5953988E-35
 32.22993 1.000000 1.8216522E-35
 32.28006 1.000000 1.2775432E-35
 32.33018 1.000000 8.9525037E-36
 32.38031 1.000000 6.2684305E-36
 32.43043 1.000000 4.3856285E-36
 32.48056 1.000000 3.0658466E-36
 32.53068 1.000000 2.1415634E-36
 32.58080 1.000000 1.4946987E-36
 32.63093 1.000000 1.0423937E-36
 32.68105 1.000000 7.2638792E-37
 32.73118 1.000000 5.0576359E-37
 32.78130 1.000000 3.5187782E-37
 32.83143 1.000000 2.4461236E-37
 32.88155 1.000000 1.6991182E-37
 32.93167 1.000000 1.1792817E-37
 32.98180 1.000000 8.1784358E-38
 33.03193 1.000000 5.6671554E-38
 33.08205 1.000000 3.9239367E-38
 33.13217 1.000000 2.7147156E-38
 33.18230 1.000000 1.8766736E-38
 33.23242 1.000000 1.2962695E-38
 33.28254 1.000000 0.0000000E+00
 33.33267 1.000000 0.0000000E+00
 33.38279 1.000000 0.0000000E+00
 33.43292 1.000000 0.0000000E+00
 33.48304 1.000000 0.0000000E+00
 33.53317 1.000000 0.0000000E+00
 33.58329 1.000000 0.0000000E+00
 33.63342 1.000000 0.0000000E+00
 33.68354 1.000000 0.0000000E+00
 33.73367 1.000000 0.0000000E+00
 33.78379 1.000000 0.0000000E+00
 33.83391 1.000000 0.0000000E+00
 33.88404 1.000000 0.0000000E+00
 33.93416 1.000000 0.0000000E+00
 33.98429 1.000000 0.0000000E+00
 34.03441 1.000000 0.0000000E+00
 34.08453 1.000000 0.0000000E+00
 34.13466 1.000000 0.0000000E+00
 34.18478 1.000000 0.0000000E+00
 34.23491 1.000000 0.0000000E+00
 34.28503 1.000000 0.0000000E+00
 34.33516 1.000000 0.0000000E+00
 34.38528 1.000000 0.0000000E+00
 34.43541 1.000000 0.0000000E+00
 34.48553 1.000000 0.0000000E+00
 34.53565 1.000000 0.0000000E+00
 34.58578 1.000000 0.0000000E+00
 34.63590 1.000000 0.0000000E+00
 34.68603 1.000000 0.0000000E+00
 34.73615 1.000000 0.0000000E+00
 34.78627 1.000000 0.0000000E+00
 34.83640 1.000000 0.0000000E+00
 34.88652 1.000000 0.0000000E+00
 34.93665 1.000000 0.0000000E+00
 34.98677 1.000000 0.0000000E+00
 35.03690 1.000000 0.0000000E+00
 35.08702 1.000000 0.0000000E+00
 35.13715 1.000000 0.0000000E+00
 35.18727 1.000000 0.0000000E+00
 35.23740 1.000000 0.0000000E+00
 35.28752 1.000000 0.0000000E+00
 35.33764 1.000000 0.0000000E+00
 35.38777 1.000000 0.0000000E+00
 35.43789 1.000000 0.0000000E+00
 35.48801 1.000000 0.0000000E+00
 35.53814 1.000000 0.0000000E+00
 35.58826 1.000000 0.0000000E+00
 35.63839 1.000000 0.0000000E+00
 35.68851 1.000000 0.0000000E+00
 35.73864 1.000000 0.0000000E+00
 35.78876 1.000000 0.0000000E+00
 35.83889 1.000000 0.0000000E+00
 35.88901 1.000000 0.0000000E+00
 35.93913 1.000000 0.0000000E+00
 35.98926 1.000000 0.0000000E+00
 36.03938 1.000000 0.0000000E+00
 36.08950 1.000000 0.0000000E+00
 36.13963 1.000000 0.0000000E+00
 36.18975 1.000000 0.0000000E+00
 36.23988 1.000000 0.0000000E+00
 36.29000 1.000000 0.0000000E+00
 36.34013 1.000000 0.0000000E+00
 36.39025 1.000000 0.0000000E+00
 36.44038 1.000000 0.0000000E+00
 36.49050 1.000000 0.0000000E+00
 36.54063 1.000000 0.0000000E+00
 36.59075 1.000000 0.0000000E+00
 36.64087 1.000000 0.0000000E+00
 36.69100 1.000000 0.0000000E+00
 36.74112 1.000000 0.0000000E+00
 36.79125 1.000000 0.0000000E+00
 36.84137 1.000000 0.0000000E+00
 36.89149 1.000000 0.0000000E+00
 36.94162 1.000000 0.0000000E+00
 36.99174 1.000000 0.0000000E+00
 37.04187 1.000000 0.0000000E+00
 37.09200 1.000000 0.0000000E+00
 37.14212 1.000000 0.0000000E+00
 37.19224 1.000000 0.0000000E+00
 37.24237 1.000000 0.0000000E+00
 37.29249 1.000000 0.0000000E+00
 37.34261 1.000000 0.0000000E+00
 37.39274 1.000000 0.0000000E+00
 37.44286 1.000000 0.0000000E+00
 37.49299 1.000000 0.0000000E+00
 37.54311 1.000000 0.0000000E+00
 37.59324 1.000000 0.0000000E+00
 37.64336 1.000000 0.0000000E+00
 37.69349 1.000000 0.0000000E+00
 37.74361 1.000000 0.0000000E+00
 37.79373 1.000000 0.0000000E+00
 37.84386 1.000000 0.0000000E+00
 37.89398 1.000000 0.0000000E+00
 37.94411 1.000000 0.0000000E+00
 37.99423 1.000000 0.0000000E+00
 38.04436 1.000000 0.0000000E+00
 38.09448 1.000000 0.0000000E+00
 38.14460 1.000000 0.0000000E+00
 38.19473 1.000000 0.0000000E+00
 38.24485 1.000000 0.0000000E+00
 38.29498 1.000000 0.0000000E+00
 38.34510 1.000000 0.0000000E+00
 38.39523 1.000000 0.0000000E+00
 38.44535 1.000000 0.0000000E+00
 38.49547 1.000000 0.0000000E+00
 38.54560 1.000000 0.0000000E+00
 38.59572 1.000000 0.0000000E+00
 38.64585 1.000000 0.0000000E+00
 38.69597 1.000000 0.0000000E+00
 38.74609 1.000000 0.0000000E+00
 38.79622 1.000000 0.0000000E+00
 38.84634 1.000000 0.0000000E+00
 38.89647 1.000000 0.0000000E+00
 38.94659 1.000000 0.0000000E+00
 38.99672 1.000000 0.0000000E+00
 39.04684 1.000000 0.0000000E+00
 39.09697 1.000000 0.0000000E+00
 39.14709 1.000000 0.0000000E+00
 39.19722 1.000000 0.0000000E+00
 39.24734 1.000000 0.0000000E+00
 39.29746 1.000000 0.0000000E+00
 39.34759 1.000000 0.0000000E+00
 39.39771 1.000000 0.0000000E+00
 39.44783 1.000000 0.0000000E+00
 39.49796 1.000000 0.0000000E+00
 39.54808 1.000000 0.0000000E+00
 39.59821 1.000000 0.0000000E+00
 39.64833 1.000000 0.0000000E+00
 39.69846 1.000000 0.0000000E+00
 39.74858 1.000000 0.0000000E+00
 39.79871 1.000000 0.0000000E+00
 39.84883 1.000000 0.0000000E+00
 39.89896 1.000000 0.0000000E+00
 39.94908 1.000000 0.0000000E+00
 39.99920 1.000000 0.0000000E+00
 40.04933 1.000000 0.0000000E+00
 40.09945 1.000000 0.0000000E+00
 40.14958 1.000000 0.0000000E+00
 40.19970 1.000000 0.0000000E+00
 40.24982 1.000000 0.0000000E+00
 40.29995 1.000000 0.0000000E+00
 40.35007 1.000000 0.0000000E+00
 40.40020 1.000000 0.0000000E+00
 40.45032 1.000000 0.0000000E+00
 40.50045 1.000000 0.0000000E+00
 40.55057 1.000000 0.0000000E+00
 40.60070 1.000000 0.0000000E+00
 40.65082 1.000000 0.0000000E+00
 40.70094 1.000000 0.0000000E+00
 40.75107 1.000000 0.0000000E+00
 40.80119 1.000000 0.0000000E+00
 40.85131 1.000000 0.0000000E+00
 40.90144 1.000000 0.0000000E+00
 40.95156 1.000000 0.0000000E+00
 41.00169 1.000000 0.0000000E+00
 41.05181 1.000000 0.0000000E+00
 41.10194 1.000000 0.0000000E+00
 41.15206 1.000000 0.0000000E+00
 41.20219 1.000000 0.0000000E+00
 41.25231 1.000000 0.0000000E+00
 41.30243 1.000000 0.0000000E+00
 41.35256 1.000000 0.0000000E+00
 41.40269 1.000000 0.0000000E+00
 41.45281 1.000000 0.0000000E+00
 41.50293 1.000000 0.0000000E+00
 41.55306 1.000000 0.0000000E+00
 41.60318 1.000000 0.0000000E+00
 41.65331 1.000000 0.0000000E+00
 41.70343 1.000000 0.0000000E+00
 41.75356 1.000000 0.0000000E+00
 41.80368 1.000000 0.0000000E+00
 41.85381 1.000000 0.0000000E+00
 41.90393 1.000000 0.0000000E+00
 41.95405 1.000000 0.0000000E+00
 42.00418 1.000000 0.0000000E+00
 42.05430 1.000000 0.0000000E+00
 42.10442 1.000000 0.0000000E+00
 42.15455 1.000000 0.0000000E+00
 42.20467 1.000000 0.0000000E+00
 42.25480 1.000000 0.0000000E+00
 42.30492 1.000000 0.0000000E+00
 42.35505 1.000000 0.0000000E+00
 42.40517 1.000000 0.0000000E+00
 42.45530 1.000000 0.0000000E+00
 42.50542 1.000000 0.0000000E+00
 42.55554 1.000000 0.0000000E+00
 42.60567 1.000000 0.0000000E+00
 42.65579 1.000000 0.0000000E+00
 42.70592 1.000000 0.0000000E+00
 42.75604 1.000000 0.0000000E+00
 42.80616 1.000000 0.0000000E+00
 42.85629 1.000000 0.0000000E+00
 42.90641 1.000000 0.0000000E+00
 42.95654 1.000000 0.0000000E+00
 43.00666 1.000000 0.0000000E+00
 43.05679 1.000000 0.0000000E+00
 43.10691 1.000000 0.0000000E+00
 43.15703 1.000000 0.0000000E+00
 43.20716 1.000000 0.0000000E+00
 43.25729 1.000000 0.0000000E+00
 43.30741 1.000000 0.0000000E+00
 43.35753 1.000000 0.0000000E+00
 43.40766 1.000000 0.0000000E+00
 43.45778 1.000000 0.0000000E+00
 43.50791 1.000000 0.0000000E+00
 43.55803 1.000000 0.0000000E+00
 43.60815 1.000000 0.0000000E+00
 43.65828 1.000000 0.0000000E+00
 43.70840 1.000000 0.0000000E+00
 43.75853 1.000000 0.0000000E+00
 43.80865 1.000000 0.0000000E+00
 43.85878 1.000000 0.0000000E+00
 43.90890 1.000000 0.0000000E+00
 43.95903 1.000000 0.0000000E+00
 44.00915 1.000000 0.0000000E+00
 44.05927 1.000000 0.0000000E+00
 44.10940 1.000000 0.0000000E+00
 44.15952 1.000000 0.0000000E+00
 44.20964 1.000000 0.0000000E+00
 44.25977 1.000000 0.0000000E+00
 44.30989 1.000000 0.0000000E+00
 44.36002 1.000000 0.0000000E+00
 44.41014 1.000000 0.0000000E+00
 44.46027 1.000000 0.0000000E+00
 44.51039 1.000000 0.0000000E+00
 44.56052 1.000000 0.0000000E+00
 44.61064 1.000000 0.0000000E+00
 44.66076 1.000000 0.0000000E+00
 44.71089 1.000000 0.0000000E+00
 44.76101 1.000000 0.0000000E+00
 44.81113 1.000000 0.0000000E+00
 44.86126 1.000000 0.0000000E+00
 44.91138 1.000000 0.0000000E+00
 44.96151 1.000000 0.0000000E+00
 45.01163 1.000000 0.0000000E+00
 45.06176 1.000000 0.0000000E+00
 45.11189 1.000000 0.0000000E+00
 45.16201 1.000000 0.0000000E+00
 45.21214 1.000000 0.0000000E+00
 45.26226 1.000000 0.0000000E+00
 45.31238 1.000000 0.0000000E+00
 45.36251 1.000000 0.0000000E+00
 45.41263 1.000000 0.0000000E+00
 45.46275 1.000000 0.0000000E+00
 45.51288 1.000000 0.0000000E+00
 45.56300 1.000000 0.0000000E+00
 45.61313 1.000000 0.0000000E+00
 45.66325 1.000000 0.0000000E+00
 45.71338 1.000000 0.0000000E+00
 45.76350 1.000000 0.0000000E+00
 45.81363 1.000000 0.0000000E+00
 45.86375 1.000000 0.0000000E+00
 45.91387 1.000000 0.0000000E+00
 45.96400 1.000000 0.0000000E+00
 46.01412 1.000000 0.0000000E+00
 46.06424 1.000000 0.0000000E+00
 46.11437 1.000000 0.0000000E+00
 46.16449 1.000000 0.0000000E+00
 46.21462 1.000000 0.0000000E+00
 46.26474 1.000000 0.0000000E+00
 46.31487 1.000000 0.0000000E+00
 46.36499 1.000000 0.0000000E+00
 46.41512 1.000000 0.0000000E+00
 46.46524 1.000000 0.0000000E+00
 46.51536 1.000000 0.0000000E+00
 46.56549 1.000000 0.0000000E+00
 46.61562 1.000000 0.0000000E+00
 46.66574 1.000000 0.0000000E+00
 46.71586 1.000000 0.0000000E+00
 46.76599 1.000000 0.0000000E+00
 46.81611 1.000000 0.0000000E+00
 46.86624 1.000000 0.0000000E+00
 46.91636 1.000000 0.0000000E+00
 46.96648 1.000000 0.0000000E+00
 47.01661 1.000000 0.0000000E+00
 47.06673 1.000000 0.0000000E+00
 47.11686 1.000000 0.0000000E+00
 47.16698 1.000000 0.0000000E+00
 47.21711 1.000000 0.0000000E+00
 47.26723 1.000000 0.0000000E+00
 47.31735 1.000000 0.0000000E+00
 47.36748 1.000000 0.0000000E+00
 47.41760 1.000000 0.0000000E+00
 47.46773 1.000000 0.0000000E+00
 47.51785 1.000000 0.0000000E+00
 47.56797 1.000000 0.0000000E+00
 47.61810 1.000000 0.0000000E+00
 47.66822 1.000000 0.0000000E+00
 47.71835 1.000000 0.0000000E+00
 47.76847 1.000000 0.0000000E+00
 47.81860 1.000000 0.0000000E+00
 47.86872 1.000000 0.0000000E+00
 47.91885 1.000000 0.0000000E+00
 47.96897 1.000000 0.0000000E+00
 48.01909 1.000000 0.0000000E+00
 48.06922 1.000000 0.0000000E+00
 48.11934 1.000000 0.0000000E+00
 48.16946 1.000000 0.0000000E+00
 48.21959 1.000000 0.0000000E+00
 48.26971 1.000000 0.0000000E+00
 48.31984 1.000000 0.0000000E+00
 48.36996 1.000000 0.0000000E+00
 48.42009 1.000000 0.0000000E+00
 48.47021 1.000000 0.0000000E+00
 48.52034 1.000000 0.0000000E+00
 48.57046 1.000000 0.0000000E+00
 48.62059 1.000000 0.0000000E+00
 48.67071 1.000000 0.0000000E+00
 48.72084 1.000000 0.0000000E+00
 48.77096 1.000000 0.0000000E+00
 48.82108 1.000000 0.0000000E+00
 48.87121 1.000000 0.0000000E+00
 48.92133 1.000000 0.0000000E+00
 48.97146 1.000000 0.0000000E+00
 49.02158 1.000000 0.0000000E+00
 49.07170 1.000000 0.0000000E+00
 49.12183 1.000000 0.0000000E+00
 49.17196 1.000000 0.0000000E+00
 49.22208 1.000000 0.0000000E+00
 49.27220 1.000000 0.0000000E+00
 49.32233 1.000000 0.0000000E+00
 49.37245 1.000000 0.0000000E+00
 49.42257 1.000000 0.0000000E+00
 49.47270 1.000000 0.0000000E+00
 49.52282 1.000000 0.0000000E+00
 49.57295 1.000000 0.0000000E+00
 49.62307 1.000000 0.0000000E+00
 49.67319 1.000000 0.0000000E+00
 49.72332 1.000000 0.0000000E+00
 49.77345 1.000000 0.0000000E+00
 49.82357 1.000000 0.0000000E+00
 49.87369 1.000000 0.0000000E+00
 49.92382 1.000000 0.0000000E+00
 49.97394 1.000000 0.0000000E+00
 50.02406 1.000000 0.0000000E+00
 50.07419 1.000000 0.0000000E+00
 50.12431 1.000000 0.0000000E+00
 50.17444 1.000000 0.0000000E+00
 50.22457 1.000000 0.0000000E+00
 50.27468 1.000000 0.0000000E+00
 50.32481 1.000000 0.0000000E+00
 50.37494 1.000000 0.0000000E+00
 50.42506 1.000000 0.0000000E+00
 50.47519 1.000000 0.0000000E+00
 50.52531 1.000000 0.0000000E+00
 50.57544 1.000000 0.0000000E+00
 50.62556 1.000000 0.0000000E+00
 50.67568 1.000000 0.0000000E+00
 50.72581 1.000000 0.0000000E+00
 50.77593 1.000000 0.0000000E+00
 50.82606 1.000000 0.0000000E+00
 50.87618 1.000000 0.0000000E+00
 50.92630 1.000000 0.0000000E+00
 50.97643 1.000000 0.0000000E+00
 51.02655 1.000000 0.0000000E+00
 51.07668 1.000000 0.0000000E+00
 51.12680 1.000000 0.0000000E+00
 51.17693 1.000000 0.0000000E+00
 51.22705 1.000000 0.0000000E+00
 51.27717 1.000000 0.0000000E+00
 51.32730 1.000000 0.0000000E+00
 51.37742 1.000000 0.0000000E+00
 51.42755 1.000000 0.0000000E+00
 51.47767 1.000000 0.0000000E+00
 51.52779 1.000000 0.0000000E+00
 51.57792 1.000000 0.0000000E+00
 51.62804 1.000000 0.0000000E+00
 51.67817 1.000000 0.0000000E+00
 51.72829 1.000000 0.0000000E+00
 51.77842 1.000000 0.0000000E+00
 51.82854 1.000000 0.0000000E+00
 51.87867 1.000000 0.0000000E+00
 51.92879 1.000000 0.0000000E+00
 51.97891 1.000000 0.0000000E+00
 52.02904 1.000000 0.0000000E+00
 52.07917 1.000000 0.0000000E+00
 52.12928 1.000000 0.0000000E+00
 52.17941 1.000000 0.0000000E+00
 52.22954 1.000000 0.0000000E+00
 52.27966 1.000000 0.0000000E+00
 52.32978 1.000000 0.0000000E+00
 52.37991 1.000000 0.0000000E+00
 52.43003 1.000000 0.0000000E+00
 52.48016 1.000000 0.0000000E+00
 52.53028 1.000000 0.0000000E+00
 52.58041 1.000000 0.0000000E+00
 52.63053 1.000000 0.0000000E+00
 52.68066 1.000000 0.0000000E+00
 52.73078 1.000000 0.0000000E+00
 52.78090 1.000000 0.0000000E+00
 52.83103 1.000000 0.0000000E+00
 52.88115 1.000000 0.0000000E+00
 52.93128 1.000000 0.0000000E+00
 52.98140 1.000000 0.0000000E+00
 53.03152 1.000000 0.0000000E+00
 53.08165 1.000000 0.0000000E+00
 53.13177 1.000000 0.0000000E+00
 53.18190 1.000000 0.0000000E+00
 53.23202 1.000000 0.0000000E+00
 53.28215 1.000000 0.0000000E+00
 53.33227 1.000000 0.0000000E+00
 53.38239 1.000000 0.0000000E+00
 53.43252 1.000000 0.0000000E+00
 53.48264 1.000000 0.0000000E+00
 53.53277 1.000000 0.0000000E+00
 53.58289 1.000000 0.0000000E+00
 53.63301 1.000000 0.0000000E+00
 53.68314 1.000000 0.0000000E+00
 53.73327 1.000000 0.0000000E+00
 53.78339 1.000000 0.0000000E+00
 53.83351 1.000000 0.0000000E+00
 53.88364 1.000000 0.0000000E+00
 53.93377 1.000000 0.0000000E+00
 53.98389 1.000000 0.0000000E+00
 54.03401 1.000000 0.0000000E+00
 54.08414 1.000000 0.0000000E+00
 54.13426 1.000000 0.0000000E+00
 54.18439 1.000000 0.0000000E+00
 54.23451 1.000000 0.0000000E+00
 54.28463 1.000000 0.0000000E+00
 54.33476 1.000000 0.0000000E+00
 54.38488 1.000000 0.0000000E+00
 54.43501 1.000000 0.0000000E+00
 54.48513 1.000000 0.0000000E+00
 54.53526 1.000000 0.0000000E+00
 54.58538 1.000000 0.0000000E+00
 54.63550 1.000000 0.0000000E+00
 54.68563 1.000000 0.0000000E+00
 54.73575 1.000000 0.0000000E+00
 54.78588 1.000000 0.0000000E+00
 54.83600 1.000000 0.0000000E+00
 54.88612 1.000000 0.0000000E+00
 54.93625 1.000000 0.0000000E+00
 54.98637 1.000000 0.0000000E+00
 55.03650 1.000000 0.0000000E+00
 55.08662 1.000000 0.0000000E+00
 55.13675 1.000000 0.0000000E+00
 55.18687 1.000000 0.0000000E+00
 55.23700 1.000000 0.0000000E+00
 55.28712 1.000000 0.0000000E+00
 55.33724 1.000000 0.0000000E+00
 55.38737 1.000000 0.0000000E+00
 55.43750 1.000000 0.0000000E+00
 55.48761 1.000000 0.0000000E+00
 55.53774 1.000000 0.0000000E+00
 55.58787 1.000000 0.0000000E+00
 55.63799 1.000000 0.0000000E+00
 55.68811 1.000000 0.0000000E+00
 55.73824 1.000000 0.0000000E+00
 55.78836 1.000000 0.0000000E+00
 55.83849 1.000000 0.0000000E+00
 55.88861 1.000000 0.0000000E+00
 55.93874 1.000000 0.0000000E+00
 55.98886 1.000000 0.0000000E+00
 56.03899 1.000000 0.0000000E+00
 56.08911 1.000000 0.0000000E+00
 56.13923 1.000000 0.0000000E+00
 56.18936 1.000000 0.0000000E+00
 56.23948 1.000000 0.0000000E+00
 56.28960 1.000000 0.0000000E+00
 56.33973 1.000000 0.0000000E+00
 56.38985 1.000000 0.0000000E+00
 56.43998 1.000000 0.0000000E+00
 56.49010 1.000000 0.0000000E+00
 56.54023 1.000000 0.0000000E+00
 56.59035 1.000000 0.0000000E+00
 56.64048 1.000000 0.0000000E+00
 56.69060 1.000000 0.0000000E+00
 56.74072 1.000000 0.0000000E+00
 56.79085 1.000000 0.0000000E+00
 56.84097 1.000000 0.0000000E+00
 56.89110 1.000000 0.0000000E+00
 56.94122 1.000000 0.0000000E+00
 56.99134 1.000000 0.0000000E+00
 57.04147 1.000000 0.0000000E+00
 57.09159 1.000000 0.0000000E+00
 57.14172 1.000000 0.0000000E+00
 57.19184 1.000000 0.0000000E+00
 57.24197 1.000000 0.0000000E+00
 57.29210 1.000000 0.0000000E+00
 57.34221 1.000000 0.0000000E+00
 57.39234 1.000000 0.0000000E+00
 57.44247 1.000000 0.0000000E+00
 57.49259 1.000000 0.0000000E+00
 57.54271 1.000000 0.0000000E+00
 57.59284 1.000000 0.0000000E+00
 57.64296 1.000000 0.0000000E+00
 57.69309 1.000000 0.0000000E+00
 57.74321 1.000000 0.0000000E+00
 57.79333 1.000000 0.0000000E+00
 57.84346 1.000000 0.0000000E+00
 57.89359 1.000000 0.0000000E+00
 57.94371 1.000000 0.0000000E+00
 57.99383 1.000000 0.0000000E+00
 58.04396 1.000000 0.0000000E+00
 58.09408 1.000000 0.0000000E+00
 58.14421 1.000000 0.0000000E+00
 58.19433 1.000000 0.0000000E+00
 58.24445 1.000000 0.0000000E+00
 58.29458 1.000000 0.0000000E+00
 58.34470 1.000000 0.0000000E+00
 58.39482 1.000000 0.0000000E+00
 58.44495 1.000000 0.0000000E+00
 58.49508 1.000000 0.0000000E+00
 58.54520 1.000000 0.0000000E+00
 58.59532 1.000000 0.0000000E+00
 58.64545 1.000000 0.0000000E+00
 58.69557 1.000000 0.0000000E+00
 58.74570 1.000000 0.0000000E+00
 58.79582 1.000000 0.0000000E+00
 58.84594 1.000000 0.0000000E+00
 58.89607 1.000000 0.0000000E+00
 58.94620 1.000000 0.0000000E+00
 58.99632 1.000000 0.0000000E+00
 59.04644 1.000000 0.0000000E+00
 59.09657 1.000000 0.0000000E+00
 59.14669 1.000000 0.0000000E+00
 59.19682 1.000000 0.0000000E+00
 59.24694 1.000000 0.0000000E+00
 59.29707 1.000000 0.0000000E+00
 59.34719 1.000000 0.0000000E+00
 59.39732 1.000000 0.0000000E+00
 59.44744 1.000000 0.0000000E+00
 59.49756 1.000000 0.0000000E+00
 59.54769 1.000000 0.0000000E+00
 59.59781 1.000000 0.0000000E+00
 59.64793 1.000000 0.0000000E+00
 59.69806 1.000000 0.0000000E+00
 59.74818 1.000000 0.0000000E+00
 59.79831 1.000000 0.0000000E+00
 59.84843 1.000000 0.0000000E+00
 59.89856 1.000000 0.0000000E+00
 59.94868 1.000000 0.0000000E+00
 59.99881 1.000000 0.0000000E+00
 60.04893 1.000000 0.0000000E+00
 60.09905 1.000000 0.0000000E+00
 60.14918 1.000000 0.0000000E+00
 60.19930 1.000000 0.0000000E+00
 60.24943 1.000000 0.0000000E+00
 60.29955 1.000000 0.0000000E+00
 60.34967 1.000000 0.0000000E+00
 60.39980 1.000000 0.0000000E+00
 60.44992 1.000000 0.0000000E+00
 60.50005 1.000000 0.0000000E+00
 60.55017 1.000000 0.0000000E+00
 60.60030 1.000000 0.0000000E+00
 60.65042 1.000000 0.0000000E+00
 60.70054 1.000000 0.0000000E+00
 60.75067 1.000000 0.0000000E+00
 60.80080 1.000000 0.0000000E+00
 60.85092 1.000000 0.0000000E+00
 60.90104 1.000000 0.0000000E+00
 60.95117 1.000000 0.0000000E+00
 61.00129 1.000000 0.0000000E+00
 61.05142 1.000000 0.0000000E+00
 61.10154 1.000000 0.0000000E+00
 61.15166 1.000000 0.0000000E+00
 61.20179 1.000000 0.0000000E+00
 61.25191 1.000000 0.0000000E+00
 61.30204 1.000000 0.0000000E+00
 61.35216 1.000000 0.0000000E+00
 61.40229 1.000000 0.0000000E+00
 61.45241 1.000000 0.0000000E+00
 61.50254 1.000000 0.0000000E+00
 61.55266 1.000000 0.0000000E+00
 61.60278 1.000000 0.0000000E+00
 61.65291 1.000000 0.0000000E+00
 61.70303 1.000000 0.0000000E+00
 61.75315 1.000000 0.0000000E+00
 61.80328 1.000000 0.0000000E+00
 61.85340 1.000000 0.0000000E+00
 61.90353 1.000000 0.0000000E+00
 61.95365 1.000000 0.0000000E+00
 62.00378 1.000000 0.0000000E+00
 62.05390 1.000000 0.0000000E+00
 62.10403 1.000000 0.0000000E+00
 62.15415 1.000000 0.0000000E+00
 62.20427 1.000000 0.0000000E+00
 62.25440 1.000000 0.0000000E+00
 62.30452 1.000000 0.0000000E+00
 62.35464 1.000000 0.0000000E+00
 62.40477 1.000000 0.0000000E+00
 62.45490 1.000000 0.0000000E+00
 62.50502 1.000000 0.0000000E+00
 62.55514 1.000000 0.0000000E+00
 62.60527 1.000000 0.0000000E+00
 62.65540 1.000000 0.0000000E+00
 62.70552 1.000000 0.0000000E+00
 62.75565 1.000000 0.0000000E+00
 62.80577 1.000000 0.0000000E+00
 62.85589 1.000000 0.0000000E+00
 62.90602 1.000000 0.0000000E+00
 62.95614 1.000000 0.0000000E+00
 63.00626 1.000000 0.0000000E+00
 63.05639 1.000000 0.0000000E+00
 63.10651 1.000000 0.0000000E+00
 63.15664 1.000000 0.0000000E+00
 63.20676 1.000000 0.0000000E+00
 63.25689 1.000000 0.0000000E+00
 63.30701 1.000000 0.0000000E+00
 63.35714 1.000000 0.0000000E+00
 63.40726 1.000000 0.0000000E+00
 63.45738 1.000000 0.0000000E+00
 63.50751 1.000000 0.0000000E+00
 63.55763 1.000000 0.0000000E+00
 63.60775 1.000000 0.0000000E+00
 63.65788 1.000000 0.0000000E+00
 63.70800 1.000000 0.0000000E+00
 63.75813 1.000000 0.0000000E+00
 63.80825 1.000000 0.0000000E+00
 63.85838 1.000000 0.0000000E+00
 63.90850 1.000000 0.0000000E+00
 63.95863 1.000000 0.0000000E+00
 64.00875 1.000000 0.0000000E+00
 64.05888 1.000000 0.0000000E+00
 64.10900 1.000000 0.0000000E+00
 64.15913 1.000000 0.0000000E+00
 64.20925 1.000000 0.0000000E+00
 64.25937 1.000000 0.0000000E+00
 64.30949 1.000000 0.0000000E+00
 64.35962 1.000000 0.0000000E+00
 64.40974 1.000000 0.0000000E+00
 64.45987 1.000000 0.0000000E+00
 64.50999 1.000000 0.0000000E+00
 64.56012 1.000000 0.0000000E+00
 64.61024 1.000000 0.0000000E+00
 64.66036 1.000000 0.0000000E+00
 64.71049 1.000000 0.0000000E+00
 64.76061 1.000000 0.0000000E+00
 64.81074 1.000000 0.0000000E+00
 64.86086 1.000000 0.0000000E+00
 64.91099 1.000000 0.0000000E+00
 64.96111 1.000000 0.0000000E+00
 65.01124 1.000000 0.0000000E+00
 65.06136 1.000000 0.0000000E+00
 65.11148 1.000000 0.0000000E+00
 65.16161 1.000000 0.0000000E+00
 65.21174 1.000000 0.0000000E+00
 65.26186 1.000000 0.0000000E+00
 65.31198 1.000000 0.0000000E+00
 65.36211 1.000000 0.0000000E+00
 65.41223 1.000000 0.0000000E+00
 65.46236 1.000000 0.0000000E+00
 65.51248 1.000000 0.0000000E+00
 65.56261 1.000000 0.0000000E+00
 65.61273 1.000000 0.0000000E+00
 65.66286 1.000000 0.0000000E+00
 65.71297 1.000000 0.0000000E+00
 65.76310 1.000000 0.0000000E+00
 65.81322 1.000000 0.0000000E+00
 65.86335 1.000000 0.0000000E+00
 65.91348 1.000000 0.0000000E+00
 65.96360 1.000000 0.0000000E+00
 66.01373 1.000000 0.0000000E+00
 66.06385 1.000000 0.0000000E+00
 66.11397 1.000000 0.0000000E+00
 66.16409 1.000000 0.0000000E+00
 66.21422 1.000000 0.0000000E+00
 66.26434 1.000000 0.0000000E+00
 66.31447 1.000000 0.0000000E+00
 66.36459 1.000000 0.0000000E+00
 66.41472 1.000000 0.0000000E+00
 66.46484 1.000000 0.0000000E+00
 66.51497 1.000000 0.0000000E+00
 66.56509 1.000000 0.0000000E+00
 66.61521 1.000000 0.0000000E+00
 66.66534 1.000000 0.0000000E+00
 66.71546 1.000000 0.0000000E+00
 66.76559 1.000000 0.0000000E+00
 66.81571 1.000000 0.0000000E+00
 66.86584 1.000000 0.0000000E+00
 66.91596 1.000000 0.0000000E+00
 66.96608 1.000000 0.0000000E+00
 67.01620 1.000000 0.0000000E+00
 67.06634 1.000000 0.0000000E+00
 67.11646 1.000000 0.0000000E+00
 67.16658 1.000000 0.0000000E+00
 67.21671 1.000000 0.0000000E+00
 67.26683 1.000000 0.0000000E+00
 67.31696 1.000000 0.0000000E+00
 67.36708 1.000000 0.0000000E+00
 67.41721 1.000000 0.0000000E+00
 67.46733 1.000000 0.0000000E+00
 67.51746 1.000000 0.0000000E+00
 67.56757 1.000000 0.0000000E+00
 67.61770 1.000000 0.0000000E+00
 67.66782 1.000000 0.0000000E+00
 67.71795 1.000000 0.0000000E+00
 67.76807 1.000000 0.0000000E+00
 67.81820 1.000000 0.0000000E+00
 67.86832 1.000000 0.0000000E+00
 67.91845 1.000000 0.0000000E+00
 67.96857 1.000000 0.0000000E+00
 68.01869 1.000000 0.0000000E+00
 68.06882 1.000000 0.0000000E+00
 68.11894 1.000000 0.0000000E+00
 68.16907 1.000000 0.0000000E+00
 68.21919 1.000000 0.0000000E+00
 68.26932 1.000000 0.0000000E+00
 68.31944 1.000000 0.0000000E+00
 68.36957 1.000000 0.0000000E+00
 68.41969 1.000000 0.0000000E+00
 68.46981 1.000000 0.0000000E+00
 68.51994 1.000000 0.0000000E+00
 68.57006 1.000000 0.0000000E+00
 68.62019 1.000000 0.0000000E+00
 68.67031 1.000000 0.0000000E+00
 68.72044 1.000000 0.0000000E+00
 68.77056 1.000000 0.0000000E+00
 68.82068 1.000000 0.0000000E+00
 68.87081 1.000000 0.0000000E+00
 68.92094 1.000000 0.0000000E+00
 68.97106 1.000000 0.0000000E+00
 69.02119 1.000000 0.0000000E+00
 69.07130 1.000000 0.0000000E+00
 69.12143 1.000000 0.0000000E+00
 69.17155 1.000000 0.0000000E+00
 69.22168 1.000000 0.0000000E+00
 69.27180 1.000000 0.0000000E+00
 69.32193 1.000000 0.0000000E+00
 69.37206 1.000000 0.0000000E+00
 69.42218 1.000000 0.0000000E+00
 69.47230 1.000000 0.0000000E+00
 69.52242 1.000000 0.0000000E+00
 69.57255 1.000000 0.0000000E+00
 69.62267 1.000000 0.0000000E+00
 69.67280 1.000000 0.0000000E+00
 69.72292 1.000000 0.0000000E+00
 69.77305 1.000000 0.0000000E+00
 69.82317 1.000000 0.0000000E+00
 69.87329 1.000000 0.0000000E+00
 69.92342 1.000000 0.0000000E+00
 69.97354 1.000000 0.0000000E+00
 70.02367 1.000000 0.0000000E+00
 70.07379 1.000000 0.0000000E+00
 70.12392 1.000000 0.0000000E+00
 70.17404 1.000000 0.0000000E+00
 70.22417 1.000000 0.0000000E+00
 70.27429 1.000000 0.0000000E+00
 70.32441 1.000000 0.0000000E+00
 70.37453 1.000000 0.0000000E+00
 70.42467 1.000000 0.0000000E+00
 70.47479 1.000000 0.0000000E+00
 70.52491 1.000000 0.0000000E+00
 70.57504 1.000000 0.0000000E+00
 70.62516 1.000000 0.0000000E+00
 70.67529 1.000000 0.0000000E+00
 70.72541 1.000000 0.0000000E+00
 70.77554 1.000000 0.0000000E+00
 70.82566 1.000000 0.0000000E+00
 70.87579 1.000000 0.0000000E+00
 70.92590 1.000000 0.0000000E+00
 70.97603 1.000000 0.0000000E+00
 71.02615 1.000000 0.0000000E+00
 71.07628 1.000000 0.0000000E+00
 71.12640 1.000000 0.0000000E+00
 71.17653 1.000000 0.0000000E+00
 71.22665 1.000000 0.0000000E+00
 71.27678 1.000000 0.0000000E+00
 71.32690 1.000000 0.0000000E+00
 71.37702 1.000000 0.0000000E+00
 71.42715 1.000000 0.0000000E+00
 71.47727 1.000000 0.0000000E+00
 71.52740 1.000000 0.0000000E+00
 71.57752 1.000000 0.0000000E+00
 71.62765 1.000000 0.0000000E+00
 71.67777 1.000000 0.0000000E+00
 71.72790 1.000000 0.0000000E+00
 71.77802 1.000000 0.0000000E+00
 71.82814 1.000000 0.0000000E+00
 71.87827 1.000000 0.0000000E+00
 71.92839 1.000000 0.0000000E+00
 71.97852 1.000000 0.0000000E+00
 72.02864 1.000000 0.0000000E+00
 72.07877 1.000000 0.0000000E+00
 72.12889 1.000000 0.0000000E+00
 72.17901 1.000000 0.0000000E+00
 72.22913 1.000000 0.0000000E+00
 72.27927 1.000000 0.0000000E+00
 72.32939 1.000000 0.0000000E+00
 72.37951 1.000000 0.0000000E+00
 72.42963 1.000000 0.0000000E+00
 72.47976 1.000000 0.0000000E+00
 72.52988 1.000000 0.0000000E+00
 72.58001 1.000000 0.0000000E+00
 72.63013 1.000000 0.0000000E+00
 72.68026 1.000000 0.0000000E+00
 72.73038 1.000000 0.0000000E+00
 72.78051 1.000000 0.0000000E+00
 72.83063 1.000000 0.0000000E+00
 72.88075 1.000000 0.0000000E+00
 72.93088 1.000000 0.0000000E+00
 72.98100 1.000000 0.0000000E+00
 73.03113 1.000000 0.0000000E+00
 73.08125 1.000000 0.0000000E+00
 73.13138 1.000000 0.0000000E+00
 73.18150 1.000000 0.0000000E+00
 73.23162 1.000000 0.0000000E+00
 73.28175 1.000000 0.0000000E+00
 73.33187 1.000000 0.0000000E+00
 73.38200 1.000000 0.0000000E+00
 73.43212 1.000000 0.0000000E+00
 73.48225 1.000000 0.0000000E+00
 73.53237 1.000000 0.0000000E+00
 73.58250 1.000000 0.0000000E+00
 73.63261 1.000000 0.0000000E+00
 73.68274 1.000000 0.0000000E+00
 73.73286 1.000000 0.0000000E+00
 73.78299 1.000000 0.0000000E+00
 73.83311 1.000000 0.0000000E+00
 73.88324 1.000000 0.0000000E+00
 73.93336 1.000000 0.0000000E+00
 73.98349 1.000000 0.0000000E+00
 74.03362 1.000000 0.0000000E+00
 74.08373 1.000000 0.0000000E+00
 74.13387 1.000000 0.0000000E+00
 74.18399 1.000000 0.0000000E+00
 74.23412 1.000000 0.0000000E+00
 74.28423 1.000000 0.0000000E+00
 74.33436 1.000000 0.0000000E+00
 74.38448 1.000000 0.0000000E+00
 74.43461 1.000000 0.0000000E+00
 74.48473 1.000000 0.0000000E+00
 74.53486 1.000000 0.0000000E+00
 74.58498 1.000000 0.0000000E+00
 74.63511 1.000000 0.0000000E+00
 74.68523 1.000000 0.0000000E+00
 74.73535 1.000000 0.0000000E+00
 74.78548 1.000000 0.0000000E+00
 74.83560 1.000000 0.0000000E+00
 74.88573 1.000000 0.0000000E+00
 74.93585 1.000000 0.0000000E+00
 74.98598 1.000000 0.0000000E+00
 75.03610 1.000000 0.0000000E+00
 75.08622 1.000000 0.0000000E+00
 75.13634 1.000000 0.0000000E+00
 75.18647 1.000000 0.0000000E+00
 75.23660 1.000000 0.0000000E+00
 75.28672 1.000000 0.0000000E+00
 75.33685 1.000000 0.0000000E+00
 75.38697 1.000000 0.0000000E+00
 75.43710 1.000000 0.0000000E+00
 75.48722 1.000000 0.0000000E+00
 75.53734 1.000000 0.0000000E+00
 75.58746 1.000000 0.0000000E+00
 75.63759 1.000000 0.0000000E+00
 75.68772 1.000000 0.0000000E+00
 75.73784 1.000000 0.0000000E+00
 75.78796 1.000000 0.0000000E+00
 75.83809 1.000000 0.0000000E+00
 75.88821 1.000000 0.0000000E+00
 75.93833 1.000000 0.0000000E+00
 75.98846 1.000000 0.0000000E+00
 76.03859 1.000000 0.0000000E+00
 76.08871 1.000000 0.0000000E+00
 76.13883 1.000000 0.0000000E+00
 76.18896 1.000000 0.0000000E+00
 76.23908 1.000000 0.0000000E+00
 76.28921 1.000000 0.0000000E+00
 76.33933 1.000000 0.0000000E+00
 76.38946 1.000000 0.0000000E+00
 76.43958 1.000000 0.0000000E+00
 76.48971 1.000000 0.0000000E+00
 76.53983 1.000000 0.0000000E+00
 76.58995 1.000000 0.0000000E+00
 76.64008 1.000000 0.0000000E+00
 76.69020 1.000000 0.0000000E+00
 76.74033 1.000000 0.0000000E+00
 76.79045 1.000000 0.0000000E+00
 76.84058 1.000000 0.0000000E+00
 76.89070 1.000000 0.0000000E+00
 76.94083 1.000000 0.0000000E+00
 76.99094 1.000000 0.0000000E+00
 77.04107 1.000000 0.0000000E+00
 77.09119 1.000000 0.0000000E+00
 77.14132 1.000000 0.0000000E+00
 77.19144 1.000000 0.0000000E+00
 77.24157 1.000000 0.0000000E+00
 77.29169 1.000000 0.0000000E+00
 77.34182 1.000000 0.0000000E+00
 77.39194 1.000000 0.0000000E+00
 77.44206 1.000000 0.0000000E+00
 77.49219 1.000000 0.0000000E+00
 77.54232 1.000000 0.0000000E+00
 77.59244 1.000000 0.0000000E+00
 77.64256 1.000000 0.0000000E+00
 77.69269 1.000000 0.0000000E+00
 77.74281 1.000000 0.0000000E+00
 77.79294 1.000000 0.0000000E+00
 77.84306 1.000000 0.0000000E+00
 77.89319 1.000000 0.0000000E+00
 77.94331 1.000000 0.0000000E+00
 77.99344 1.000000 0.0000000E+00
 78.04356 1.000000 0.0000000E+00
 78.09368 1.000000 0.0000000E+00
 78.14381 1.000000 0.0000000E+00
 78.19393 1.000000 0.0000000E+00
 78.24406 1.000000 0.0000000E+00
 78.29418 1.000000 0.0000000E+00
 78.34431 1.000000 0.0000000E+00
 78.39443 1.000000 0.0000000E+00
 78.44455 1.000000 0.0000000E+00
 78.49467 1.000000 0.0000000E+00
 78.54480 1.000000 0.0000000E+00
 78.59492 1.000000 0.0000000E+00
 78.64505 1.000000 0.0000000E+00
 78.69518 1.000000 0.0000000E+00
 78.74530 1.000000 0.0000000E+00
 78.79543 1.000000 0.0000000E+00
 78.84554 1.000000 0.0000000E+00
 78.89567 1.000000 0.0000000E+00
 78.94579 1.000000 0.0000000E+00
 78.99592 1.000000 0.0000000E+00
 79.04604 1.000000 0.0000000E+00
 79.09617 1.000000 0.0000000E+00
 79.14629 1.000000 0.0000000E+00
 79.19642 1.000000 0.0000000E+00
 79.24654 1.000000 0.0000000E+00
 79.29666 1.000000 0.0000000E+00
 79.34679 1.000000 0.0000000E+00
 79.39692 1.000000 0.0000000E+00
 79.44704 1.000000 0.0000000E+00
 79.49716 1.000000 0.0000000E+00
 79.54729 1.000000 0.0000000E+00
 79.59741 1.000000 0.0000000E+00
 79.64754 1.000000 0.0000000E+00
 79.69766 1.000000 0.0000000E+00
 79.74779 1.000000 0.0000000E+00
 79.79791 1.000000 0.0000000E+00
 79.84804 1.000000 0.0000000E+00
 79.89816 1.000000 0.0000000E+00
 79.94828 1.000000 0.0000000E+00
 79.99841 1.000000 0.0000000E+00
 80.04853 1.000000 0.0000000E+00
 80.09866 1.000000 0.0000000E+00
 80.14878 1.000000 0.0000000E+00
 80.19891 1.000000 0.0000000E+00
 80.24903 1.000000 0.0000000E+00
 80.29916 1.000000 0.0000000E+00
 80.34928 1.000000 0.0000000E+00
 80.39941 1.000000 0.0000000E+00
 80.44952 1.000000 0.0000000E+00
 80.49965 1.000000 0.0000000E+00
 80.54977 1.000000 0.0000000E+00
 80.59990 1.000000 0.0000000E+00
 80.65002 1.000000 0.0000000E+00
 80.70015 1.000000 0.0000000E+00
 80.75027 1.000000 0.0000000E+00
 80.80040 1.000000 0.0000000E+00
 80.85052 1.000000 0.0000000E+00
 80.90064 1.000000 0.0000000E+00
 80.95077 1.000000 0.0000000E+00
 81.00089 1.000000 0.0000000E+00
 81.05102 1.000000 0.0000000E+00
 81.10114 1.000000 0.0000000E+00
 81.15127 1.000000 0.0000000E+00
 81.20139 1.000000 0.0000000E+00
 81.25151 1.000000 0.0000000E+00
 81.30164 1.000000 0.0000000E+00
 81.35176 1.000000 0.0000000E+00
 81.40189 1.000000 0.0000000E+00
 81.45201 1.000000 0.0000000E+00
 81.50214 1.000000 0.0000000E+00
 81.55226 1.000000 0.0000000E+00
 81.60239 1.000000 0.0000000E+00
 81.65251 1.000000 0.0000000E+00
 81.70263 1.000000 0.0000000E+00
 81.75275 1.000000 0.0000000E+00
 81.80288 1.000000 0.0000000E+00
 81.85300 1.000000 0.0000000E+00
 81.90313 1.000000 0.0000000E+00
 81.95325 1.000000 0.0000000E+00
 82.00338 1.000000 0.0000000E+00
 82.05350 1.000000 0.0000000E+00
 82.10362 1.000000 0.0000000E+00
 82.15375 1.000000 0.0000000E+00
 82.20387 1.000000 0.0000000E+00
 82.25400 1.000000 0.0000000E+00
 82.30412 1.000000 0.0000000E+00
 82.35425 1.000000 0.0000000E+00
 82.40437 1.000000 0.0000000E+00
 82.45450 1.000000 0.0000000E+00
 82.50462 1.000000 0.0000000E+00
 82.55474 1.000000 0.0000000E+00
 82.60487 1.000000 0.0000000E+00
 82.65499 1.000000 0.0000000E+00
 82.70512 1.000000 0.0000000E+00
 82.75525 1.000000 0.0000000E+00
 82.80537 1.000000 0.0000000E+00
 82.85550 1.000000 0.0000000E+00
 82.90562 1.000000 0.0000000E+00
 82.95573 1.000000 0.0000000E+00
 83.00586 1.000000 0.0000000E+00
 83.05599 1.000000 0.0000000E+00
 83.10612 1.000000 0.0000000E+00
 83.15624 1.000000 0.0000000E+00
 83.20637 1.000000 0.0000000E+00
 83.25649 1.000000 0.0000000E+00
 83.30662 1.000000 0.0000000E+00
 83.35674 1.000000 0.0000000E+00
 83.40686 1.000000 0.0000000E+00
 83.45699 1.000000 0.0000000E+00
 83.50711 1.000000 0.0000000E+00
 83.55724 1.000000 0.0000000E+00
 83.60736 1.000000 0.0000000E+00
 83.65749 1.000000 0.0000000E+00
 83.70761 1.000000 0.0000000E+00
 83.75773 1.000000 0.0000000E+00
 83.80785 1.000000 0.0000000E+00
 83.85798 1.000000 0.0000000E+00
 83.90810 1.000000 0.0000000E+00
 83.95823 1.000000 0.0000000E+00
 84.00835 1.000000 0.0000000E+00
 84.05848 1.000000 0.0000000E+00
 84.10860 1.000000 0.0000000E+00
 84.15873 1.000000 0.0000000E+00
 84.20885 1.000000 0.0000000E+00
 84.25897 1.000000 0.0000000E+00
 84.30910 1.000000 0.0000000E+00
 84.35922 1.000000 0.0000000E+00
 84.40935 1.000000 0.0000000E+00
 84.45947 1.000000 0.0000000E+00
 84.50960 1.000000 0.0000000E+00
 84.55972 1.000000 0.0000000E+00
 84.60984 1.000000 0.0000000E+00
 84.65997 1.000000 0.0000000E+00
 84.71009 1.000000 0.0000000E+00
 84.76022 1.000000 0.0000000E+00
 84.81034 1.000000 0.0000000E+00
 84.86047 1.000000 0.0000000E+00
 84.91059 1.000000 0.0000000E+00
 84.96072 1.000000 0.0000000E+00
 85.01083 1.000000 0.0000000E+00
 85.06096 1.000000 0.0000000E+00
 85.11108 1.000000 0.0000000E+00
 85.16121 1.000000 0.0000000E+00
 85.21133 1.000000 0.0000000E+00
 85.26146 1.000000 0.0000000E+00
 85.31158 1.000000 0.0000000E+00
 85.36171 1.000000 0.0000000E+00
 85.41183 1.000000 0.0000000E+00
 85.46195 1.000000 0.0000000E+00
 85.51208 1.000000 0.0000000E+00
 85.56220 1.000000 0.0000000E+00
 85.61233 1.000000 0.0000000E+00
 85.66245 1.000000 0.0000000E+00
 85.71258 1.000000 0.0000000E+00
 85.76270 1.000000 0.0000000E+00
 85.81283 1.000000 0.0000000E+00
 85.86295 1.000000 0.0000000E+00
 85.91307 1.000000 0.0000000E+00
 85.96320 1.000000 0.0000000E+00
 86.01332 1.000000 0.0000000E+00
 86.06345 1.000000 0.0000000E+00
 86.11357 1.000000 0.0000000E+00
 86.16370 1.000000 0.0000000E+00
 86.21383 1.000000 0.0000000E+00
 86.26394 1.000000 0.0000000E+00
 86.31406 1.000000 0.0000000E+00
 86.36419 1.000000 0.0000000E+00
 86.41431 1.000000 0.0000000E+00
 86.46445 1.000000 0.0000000E+00
 86.51457 1.000000 0.0000000E+00
 86.56470 1.000000 0.0000000E+00
 86.61482 1.000000 0.0000000E+00
 86.66495 1.000000 0.0000000E+00
 86.71507 1.000000 0.0000000E+00
 86.76519 1.000000 0.0000000E+00
 86.81532 1.000000 0.0000000E+00
 86.86544 1.000000 0.0000000E+00
 86.91557 1.000000 0.0000000E+00
 86.96569 1.000000 0.0000000E+00
 87.01582 1.000000 0.0000000E+00
 87.06594 1.000000 0.0000000E+00
 87.11606 1.000000 0.0000000E+00
 87.16618 1.000000 0.0000000E+00
 87.21631 1.000000 0.0000000E+00
 87.26643 1.000000 0.0000000E+00
 87.31656 1.000000 0.0000000E+00
 87.36668 1.000000 0.0000000E+00
 87.41681 1.000000 0.0000000E+00
 87.46693 1.000000 0.0000000E+00
 87.51705 1.000000 0.0000000E+00
 87.56718 1.000000 0.0000000E+00
 87.61730 1.000000 0.0000000E+00
 87.66743 1.000000 0.0000000E+00
 87.71755 1.000000 0.0000000E+00
 87.76768 1.000000 0.0000000E+00
 87.81780 1.000000 0.0000000E+00
 87.86793 1.000000 0.0000000E+00
 87.91805 1.000000 0.0000000E+00
 87.96817 1.000000 0.0000000E+00
 88.01830 1.000000 0.0000000E+00
 88.06842 1.000000 0.0000000E+00
 88.11855 1.000000 0.0000000E+00
 88.16867 1.000000 0.0000000E+00
 88.21880 1.000000 0.0000000E+00
 88.26892 1.000000 0.0000000E+00
 88.31905 1.000000 0.0000000E+00
 88.36916 1.000000 0.0000000E+00
 88.41929 1.000000 0.0000000E+00
 88.46941 1.000000 0.0000000E+00
 88.51954 1.000000 0.0000000E+00
 88.56966 1.000000 0.0000000E+00
 88.61979 1.000000 0.0000000E+00
 88.66991 1.000000 0.0000000E+00
 88.72004 1.000000 0.0000000E+00
 88.77016 1.000000 0.0000000E+00
 88.82028 1.000000 0.0000000E+00
 88.87041 1.000000 0.0000000E+00
 88.92053 1.000000 0.0000000E+00
 88.97066 1.000000 0.0000000E+00
 89.02078 1.000000 0.0000000E+00
 89.07091 1.000000 0.0000000E+00
 89.12103 1.000000 0.0000000E+00
 89.17116 1.000000 0.0000000E+00
 89.22128 1.000000 0.0000000E+00
 89.27140 1.000000 0.0000000E+00
 89.32153 1.000000 0.0000000E+00
 89.37165 1.000000 0.0000000E+00
 89.42178 1.000000 0.0000000E+00
 89.47190 1.000000 0.0000000E+00
 89.52203 1.000000 0.0000000E+00
 89.57216 1.000000 0.0000000E+00
 89.62227 1.000000 0.0000000E+00
 89.67239 1.000000 0.0000000E+00
 89.72252 1.000000 0.0000000E+00
 89.77264 1.000000 0.0000000E+00
 89.82277 1.000000 0.0000000E+00
 89.87290 1.000000 0.0000000E+00
 89.92303 1.000000 0.0000000E+00
 89.97315 1.000000 0.0000000E+00
 90.02326 1.000000 0.0000000E+00
 90.07339 1.000000 0.0000000E+00
 90.12352 1.000000 0.0000000E+00
 90.17365 1.000000 0.0000000E+00
 90.22377 1.000000 0.0000000E+00
 90.27390 1.000000 0.0000000E+00
 90.32402 1.000000 0.0000000E+00
 90.37415 1.000000 0.0000000E+00
 90.42427 1.000000 0.0000000E+00
 90.47439 1.000000 0.0000000E+00
 90.52451 1.000000 0.0000000E+00
 90.57464 1.000000 0.0000000E+00
 90.62476 1.000000 0.0000000E+00
 90.67489 1.000000 0.0000000E+00
 90.72501 1.000000 0.0000000E+00
 90.77514 1.000000 0.0000000E+00
 90.82526 1.000000 0.0000000E+00
 90.87538 1.000000 0.0000000E+00
 90.92551 1.000000 0.0000000E+00
 90.97563 1.000000 0.0000000E+00
 91.02576 1.000000 0.0000000E+00
 91.07588 1.000000 0.0000000E+00
 91.12601 1.000000 0.0000000E+00
 91.17613 1.000000 0.0000000E+00
 91.22626 1.000000 0.0000000E+00
 91.27637 1.000000 0.0000000E+00
 91.32650 1.000000 0.0000000E+00
 91.37663 1.000000 0.0000000E+00
 91.42675 1.000000 0.0000000E+00
 91.47688 1.000000 0.0000000E+00
 91.52700 1.000000 0.0000000E+00
 91.57713 1.000000 0.0000000E+00
 91.62725 1.000000 0.0000000E+00
 91.67738 1.000000 0.0000000E+00
 91.72749 1.000000 0.0000000E+00
 91.77762 1.000000 0.0000000E+00
 91.82774 1.000000 0.0000000E+00
 91.87787 1.000000 0.0000000E+00
 91.92799 1.000000 0.0000000E+00
 91.97812 1.000000 0.0000000E+00
 92.02824 1.000000 0.0000000E+00
 92.07837 1.000000 0.0000000E+00
 92.12849 1.000000 0.0000000E+00
 92.17861 1.000000 0.0000000E+00
 92.22874 1.000000 0.0000000E+00
 92.27886 1.000000 0.0000000E+00
 92.32899 1.000000 0.0000000E+00
 92.37911 1.000000 0.0000000E+00
 92.42924 1.000000 0.0000000E+00
 92.47936 1.000000 0.0000000E+00
 92.52948 1.000000 0.0000000E+00
 92.57961 1.000000 0.0000000E+00
 92.62973 1.000000 0.0000000E+00
 92.67986 1.000000 0.0000000E+00
 92.72998 1.000000 0.0000000E+00
 92.78011 1.000000 0.0000000E+00
 92.83023 1.000000 0.0000000E+00
 92.88036 1.000000 0.0000000E+00
 92.93048 1.000000 0.0000000E+00
 92.98060 1.000000 0.0000000E+00
 93.03072 1.000000 0.0000000E+00
 93.08085 1.000000 0.0000000E+00
 93.13097 1.000000 0.0000000E+00
 93.18110 1.000000 0.0000000E+00
 93.23123 1.000000 0.0000000E+00
 93.28136 1.000000 0.0000000E+00
 93.33148 1.000000 0.0000000E+00
 93.38159 1.000000 0.0000000E+00
 93.43172 1.000000 0.0000000E+00
 93.48184 1.000000 0.0000000E+00
 93.53197 1.000000 0.0000000E+00
 93.58210 1.000000 0.0000000E+00
 93.63223 1.000000 0.0000000E+00
 93.68235 1.000000 0.0000000E+00
 93.73248 1.000000 0.0000000E+00
 93.78259 1.000000 0.0000000E+00
 93.83272 1.000000 0.0000000E+00
 93.88284 1.000000 0.0000000E+00
 93.93297 1.000000 0.0000000E+00
 93.98309 1.000000 0.0000000E+00
 94.03322 1.000000 0.0000000E+00
 94.08334 1.000000 0.0000000E+00
 94.13347 1.000000 0.0000000E+00
 94.18359 1.000000 0.0000000E+00
 94.23371 1.000000 0.0000000E+00
 94.28384 1.000000 0.0000000E+00
 94.33396 1.000000 0.0000000E+00
 94.38409 1.000000 0.0000000E+00
 94.43421 1.000000 0.0000000E+00
 94.48434 1.000000 0.0000000E+00
 94.53446 1.000000 0.0000000E+00
 94.58459 1.000000 0.0000000E+00
 94.63470 1.000000 0.0000000E+00
 94.68483 1.000000 0.0000000E+00
 94.73495 1.000000 0.0000000E+00
 94.78508 1.000000 0.0000000E+00
 94.83521 1.000000 0.0000000E+00
 94.88533 1.000000 0.0000000E+00
 94.93546 1.000000 0.0000000E+00
 94.98558 1.000000 0.0000000E+00
 95.03570 1.000000 0.0000000E+00
 95.08582 1.000000 0.0000000E+00
 95.13595 1.000000 0.0000000E+00
 95.18607 1.000000 0.0000000E+00
 95.23620 1.000000 0.0000000E+00
 95.28632 1.000000 0.0000000E+00
 95.33645 1.000000 0.0000000E+00
 95.38657 1.000000 0.0000000E+00
 95.43670 1.000000 0.0000000E+00
 95.48682 1.000000 0.0000000E+00
 95.53694 1.000000 0.0000000E+00
 95.58707 1.000000 0.0000000E+00
 95.63719 1.000000 0.0000000E+00
 95.68732 1.000000 0.0000000E+00
 95.73744 1.000000 0.0000000E+00
 95.78757 1.000000 0.0000000E+00
 95.83769 1.000000 0.0000000E+00
 95.88781 1.000000 0.0000000E+00
 95.93793 1.000000 0.0000000E+00
 95.98806 1.000000 0.0000000E+00
 96.03819 1.000000 0.0000000E+00
 96.08831 1.000000 0.0000000E+00
 96.13844 1.000000 0.0000000E+00
 96.18856 1.000000 0.0000000E+00
 96.23869 1.000000 0.0000000E+00
 96.28880 1.000000 0.0000000E+00
 96.33893 1.000000 0.0000000E+00
 96.38905 1.000000 0.0000000E+00
 96.43918 1.000000 0.0000000E+00
 96.48930 1.000000 0.0000000E+00
 96.53943 1.000000 0.0000000E+00
 96.58955 1.000000 0.0000000E+00
 96.63969 1.000000 0.0000000E+00
 96.68981 1.000000 0.0000000E+00
 96.73992 1.000000 0.0000000E+00
 96.79005 1.000000 0.0000000E+00
 96.84017 1.000000 0.0000000E+00
 96.89030 1.000000 0.0000000E+00
 96.94043 1.000000 0.0000000E+00
 96.99055 1.000000 0.0000000E+00
 97.04068 1.000000 0.0000000E+00
 97.09081 1.000000 0.0000000E+00
 97.14091 1.000000 0.0000000E+00
 97.19104 1.000000 0.0000000E+00
 97.24117 1.000000 0.0000000E+00
 97.29130 1.000000 0.0000000E+00
 97.34142 1.000000 0.0000000E+00
 97.39155 1.000000 0.0000000E+00
 97.44167 1.000000 0.0000000E+00
 97.49180 1.000000 0.0000000E+00
 97.54192 1.000000 0.0000000E+00
 97.59204 1.000000 0.0000000E+00
 97.64217 1.000000 0.0000000E+00
 97.69229 1.000000 0.0000000E+00
 97.74242 1.000000 0.0000000E+00
 97.79254 1.000000 0.0000000E+00
 97.84267 1.000000 0.0000000E+00
 97.89279 1.000000 0.0000000E+00
 97.94292 1.000000 0.0000000E+00
 97.99303 1.000000 0.0000000E+00
 98.04316 1.000000 0.0000000E+00
 98.09328 1.000000 0.0000000E+00
 98.14341 1.000000 0.0000000E+00
 98.19353 1.000000 0.0000000E+00
 98.24366 1.000000 0.0000000E+00
 98.29379 1.000000 0.0000000E+00
 98.34391 1.000000 0.0000000E+00
 98.39403 1.000000 0.0000000E+00
 98.44415 1.000000 0.0000000E+00
 98.49428 1.000000 0.0000000E+00
 98.54440 1.000000 0.0000000E+00
 98.59453 1.000000 0.0000000E+00
 98.64465 1.000000 0.0000000E+00
 98.69478 1.000000 0.0000000E+00
 98.74490 1.000000 0.0000000E+00
 98.79502 1.000000 0.0000000E+00
 98.84515 1.000000 0.0000000E+00
 98.89527 1.000000 0.0000000E+00
 98.94540 1.000000 0.0000000E+00
 98.99552 1.000000 0.0000000E+00
 99.04565 1.000000 0.0000000E+00
 99.09577 1.000000 0.0000000E+00
 99.14590 1.000000 0.0000000E+00
 99.19602 1.000000 0.0000000E+00
 99.24614 1.000000 0.0000000E+00
 99.29626 1.000000 0.0000000E+00
 99.34639 1.000000 0.0000000E+00
 99.39651 1.000000 0.0000000E+00
 99.44664 1.000000 0.0000000E+00
 99.49677 1.000000 0.0000000E+00
 99.54689 1.000000 0.0000000E+00
 99.59702 1.000000 0.0000000E+00
 99.64713 1.000000 0.0000000E+00
 99.69726 1.000000 0.0000000E+00
 99.74738 1.000000 0.0000000E+00
 99.79751 1.000000 0.0000000E+00
 99.84763 1.000000 0.0000000E+00
 99.89776 1.000000 0.0000000E+00
 99.94788 1.000000 0.0000000E+00
 99.99801 1.000000 0.0000000E+00
 100.0481 1.000000 0.0000000E+00
 100.0983 1.000000 0.0000000E+00
 100.1484 1.000000 0.0000000E+00
 100.1985 1.000000 0.0000000E+00
 100.2486 1.000000 0.0000000E+00

XFOILinterface/XFOIL/runs/e387_09.100

 XFOIL Version 6.90

 Calculated polar for: Eppler 387 1 elements

 1 1 Reynolds number fixed Mach number fixed

 xtrf = 1.000 (top) 1.000 (bottom) element 1
 Mach = 0.000 Re = 0.100 e 6 Ncrit = 9.000

 alpha CL CD CDp CM Top Xtr Bot Xtr
 ------- -------- --------- --------- -------- ------- -------
 -3.000 0.1048 0.01946 0.01072 -0.1011 0.9086 0.0922
 -2.900 0.1145 0.01905 0.01039 -0.1009 0.9029 0.0999
 -2.800 0.1271 0.01856 0.00992 -0.1010 0.8993 0.1103
 -2.700 0.1402 0.01812 0.00956 -0.1013 0.8964 0.1268
 -2.600 0.1505 0.01776 0.00923 -0.1010 0.8914 0.1446
 -2.500 0.1617 0.01730 0.00895 -0.1011 0.8875 0.1717
 -2.400 0.1736 0.01670 0.00860 -0.1011 0.8845 0.2145
 -2.300 0.1837 0.01611 0.00840 -0.1011 0.8804 0.2881
 -2.200 0.1924 0.01544 0.00832 -0.1008 0.8761 0.4082
 -2.100 0.2001 0.01482 0.00828 -0.0998 0.8729 0.5607
 -2.000 0.2043 0.01437 0.00830 -0.0974 0.8701 0.7026
 -1.900 0.2064 0.01411 0.00836 -0.0945 0.8652 0.8362
 -1.800 0.2267 0.01386 0.00804 -0.0956 0.8620 1.0000
 -1.700 0.2383 0.01389 0.00790 -0.0955 0.8590 1.0000
 -1.600 0.2490 0.01398 0.00786 -0.0955 0.8547 1.0000
 -1.500 0.2599 0.01406 0.00781 -0.0955 0.8505 1.0000
 -1.400 0.2710 0.01411 0.00773 -0.0953 0.8474 1.0000
 -1.200 0.2926 0.01429 0.00768 -0.0953 0.8397 1.0000
 -1.000 0.3145 0.01440 0.00757 -0.0949 0.8337 1.0000
 -0.800 0.3359 0.01461 0.00763 -0.0949 0.8258 1.0000
 -0.600 0.3576 0.01473 0.00755 -0.0945 0.8204 1.0000
 -0.400 0.3791 0.01498 0.00767 -0.0946 0.8125 1.0000
 -0.200 0.4008 0.01510 0.00763 -0.0942 0.8075 1.0000
 0.000 0.4222 0.01538 0.00782 -0.0943 0.7998 1.0000
 0.200 0.4439 0.01551 0.00781 -0.0939 0.7950 1.0000
 0.400 0.4654 0.01581 0.00804 -0.0941 0.7874 1.0000
 0.600 0.4871 0.01596 0.00806 -0.0937 0.7827 1.0000
 0.800 0.5086 0.01628 0.00835 -0.0939 0.7755 1.0000
 1.000 0.5304 0.01644 0.00841 -0.0935 0.7706 1.0000
 1.200 0.5518 0.01678 0.00872 -0.0937 0.7638 1.0000
 1.400 0.5736 0.01697 0.00884 -0.0934 0.7588 1.0000
 1.600 0.5950 0.01730 0.00916 -0.0935 0.7525 1.0000
 1.800 0.6167 0.01754 0.00936 -0.0933 0.7471 1.0000
 2.000 0.6382 0.01784 0.00964 -0.0933 0.7416 1.0000
 2.200 0.6596 0.01813 0.00992 -0.0932 0.7355 1.0000
 2.400 0.6814 0.01834 0.01009 -0.0929 0.7311 1.0000
 2.600 0.7025 0.01875 0.01057 -0.0931 0.7240 1.0000
 2.800 0.7244 0.01891 0.01069 -0.0927 0.7198 1.0000
 3.000 0.7451 0.01938 0.01122 -0.0929 0.7124 1.0000
 3.200 0.7669 0.01953 0.01136 -0.0924 0.7077 1.0000
 3.400 0.7875 0.01998 0.01191 -0.0925 0.7003 1.0000
 3.600 0.8092 0.02011 0.01203 -0.0920 0.6953 1.0000
 3.800 0.8295 0.02053 0.01253 -0.0920 0.6875 1.0000
 4.000 0.8514 0.02053 0.01252 -0.0913 0.6820 1.0000
 4.100 0.8607 0.02079 0.01286 -0.0912 0.6764 1.0000
 4.200 0.8712 0.02078 0.01286 -0.0908 0.6724 1.0000
 4.300 0.8823 0.02067 0.01275 -0.0903 0.6695 1.0000
 4.400 0.8916 0.02091 0.01307 -0.0902 0.6636 1.0000
 4.500 0.9021 0.02088 0.01305 -0.0898 0.6596 1.0000
 4.600 0.9133 0.02079 0.01293 -0.0893 0.6568 1.0000
 4.700 0.9226 0.02106 0.01330 -0.0893 0.6512 1.0000
 4.800 0.9332 0.02110 0.01337 -0.0890 0.6475 1.0000
 4.900 0.9444 0.02106 0.01333 -0.0886 0.6448 1.0000
 5.000 0.9540 0.02130 0.01366 -0.0885 0.6400 1.0000
 5.100 0.9643 0.02140 0.01381 -0.0883 0.6358 1.0000
 5.200 0.9754 0.02136 0.01378 -0.0880 0.6328 1.0000
 5.300 0.9854 0.02152 0.01400 -0.0878 0.6284 1.0000
 5.400 0.9954 0.02162 0.01420 -0.0875 0.6234 1.0000
 5.500 1.0066 0.02145 0.01402 -0.0870 0.6197 1.0000
 5.600 1.0157 0.02157 0.01424 -0.0867 0.6130 1.0000
 5.700 1.0266 0.02137 0.01403 -0.0861 0.6079 1.0000
 5.800 1.0360 0.02136 0.01410 -0.0856 0.6009 1.0000
 5.900 1.0468 0.02109 0.01382 -0.0849 0.5951 1.0000
 6.000 1.0560 0.02107 0.01389 -0.0844 0.5873 1.0000
 6.100 1.0671 0.02078 0.01357 -0.0838 0.5817 1.0000
 6.200 1.0760 0.02080 0.01370 -0.0834 0.5735 1.0000
 6.300 1.0870 0.02056 0.01344 -0.0828 0.5676 1.0000
 6.400 1.0961 0.02053 0.01356 -0.0823 0.5593 1.0000
 6.500 1.1060 0.02045 0.01353 -0.0818 0.5519 1.0000
 6.600 1.1163 0.02029 0.01341 -0.0813 0.5450 1.0000
 6.700 1.1255 0.02029 0.01352 -0.0808 0.5365 1.0000
 6.800 1.1358 0.02015 0.01341 -0.0803 0.5292 1.0000
 6.900 1.1453 0.02008 0.01342 -0.0798 0.5203 1.0000
 7.000 1.1544 0.02003 0.01348 -0.0793 0.5104 1.0000
 7.100 1.1637 0.01995 0.01348 -0.0787 0.4999 1.0000
 7.200 1.1728 0.01985 0.01346 -0.0781 0.4882 1.0000
 7.300 1.1816 0.01977 0.01346 -0.0775 0.4749 1.0000
 7.400 1.1903 0.01971 0.01347 -0.0768 0.4599 1.0000
 7.500 1.1984 0.01965 0.01346 -0.0761 0.4411 1.0000
 7.600 1.2055 0.01965 0.01347 -0.0753 0.4143 1.0000
 7.700 1.2113 0.01978 0.01352 -0.0743 0.3772 1.0000
 7.800 1.2151 0.02018 0.01362 -0.0731 0.3296 1.0000
 7.900 1.2166 0.02093 0.01397 -0.0719 0.2827 1.0000
 8.000 1.2176 0.02184 0.01455 -0.0708 0.2438 1.0000
 8.100 1.2191 0.02276 0.01522 -0.0698 0.2131 1.0000
 8.200 1.2206 0.02367 0.01595 -0.0688 0.1885 1.0000
 8.300 1.2220 0.02459 0.01671 -0.0678 0.1669 1.0000
 8.400 1.2224 0.02557 0.01750 -0.0667 0.1477 1.0000
 8.500 1.2228 0.02655 0.01835 -0.0655 0.1267 1.0000
 8.600 1.2212 0.02767 0.01929 -0.0642 0.1086 1.0000

XFOILinterface/XFOIL/runs/e387_11.100

 XFOIL Version 6.90

 Calculated polar for: Eppler 387

 1 1 Reynolds number fixed Mach number fixed

 xtrf = 1.000 (top) 1.000 (bottom)
 Mach = 0.000 Re = 0.100 e 6 Ncrit = 11.000

 alpha CL CD CDp CM Top Xtr Bot Xtr
 ------- -------- --------- --------- -------- ------- -------
 -3.000 0.0560 0.02350 0.01498 -0.0988 0.9417 0.0994
 -2.900 0.0725 0.02284 0.01431 -0.0997 0.9384 0.1034
 -2.800 0.0920 0.02213 0.01360 -0.1013 0.9361 0.1128
 -2.700 0.1121 0.02138 0.01290 -0.1029 0.9341 0.1252
 -2.600 0.1330 0.02070 0.01217 -0.1045 0.9324 0.1443
 -2.400 0.1588 0.01962 0.01143 -0.1054 0.9245 0.1926
 -2.100 0.1963 0.01636 0.01058 -0.1056 0.9170 0.6517
 -1.900 0.2190 0.01570 0.01026 -0.1033 0.9104 1.0000
 -1.800 0.2368 0.01571 0.01006 -0.1045 0.9079 1.0000
 -1.700 0.2458 0.01589 0.01010 -0.1043 0.9028 1.0000
 -1.600 0.2595 0.01597 0.01003 -0.1048 0.8992 1.0000
 -1.500 0.2750 0.01599 0.00990 -0.1055 0.8965 1.0000
 -1.400 0.2863 0.01613 0.00992 -0.1057 0.8925 1.0000
 -1.300 0.2970 0.01627 0.00996 -0.1057 0.8882 1.0000
 -1.200 0.3107 0.01633 0.00990 -0.1061 0.8852 1.0000
 -1.100 0.3251 0.01635 0.00982 -0.1065 0.8829 1.0000
 -1.000 0.3331 0.01660 0.01000 -0.1063 0.8778 1.0000
 -0.900 0.3449 0.01670 0.01001 -0.1064 0.8743 1.0000
 -0.800 0.3581 0.01675 0.00997 -0.1066 0.8717 1.0000
 -0.700 0.3688 0.01690 0.01005 -0.1066 0.8682 1.0000
 -0.600 0.3785 0.01710 0.01017 -0.1066 0.8639 1.0000
 -0.500 0.3905 0.01718 0.01018 -0.1066 0.8609 1.0000
 -0.400 0.4031 0.01722 0.01015 -0.1066 0.8586 1.0000
 -0.300 0.4123 0.01748 0.01035 -0.1066 0.8543 1.0000
 -0.200 0.4227 0.01764 0.01047 -0.1066 0.8507 1.0000
 -0.100 0.4345 0.01772 0.01048 -0.1065 0.8479 1.0000
 0.000 0.4466 0.01777 0.01047 -0.1064 0.8458 1.0000
 0.100 0.4554 0.01808 0.01075 -0.1065 0.8412 1.0000
 0.200 0.4660 0.01824 0.01086 -0.1064 0.8378 1.0000
 0.300 0.4775 0.01832 0.01089 -0.1063 0.8353 1.0000
 0.400 0.4894 0.01837 0.01089 -0.1062 0.8333 1.0000
 0.500 0.4982 0.01873 0.01123 -0.1063 0.8286 1.0000
 0.600 0.5087 0.01890 0.01136 -0.1063 0.8254 1.0000
 0.700 0.5201 0.01898 0.01140 -0.1061 0.8229 1.0000
 0.800 0.5316 0.01903 0.01141 -0.1059 0.8209 1.0000
 0.900 0.5406 0.01942 0.01179 -0.1061 0.8164 1.0000
 1.000 0.5510 0.01961 0.01196 -0.1061 0.8132 1.0000
 1.100 0.5622 0.01970 0.01202 -0.1059 0.8107 1.0000
 1.200 0.5736 0.01976 0.01204 -0.1056 0.8087 1.0000
 1.300 0.5828 0.02015 0.01243 -0.1059 0.8045 1.0000
 1.400 0.5930 0.02037 0.01264 -0.1059 0.8011 1.0000
 1.500 0.6041 0.02048 0.01273 -0.1057 0.7986 1.0000
 1.600 0.6154 0.02054 0.01276 -0.1054 0.7966 1.0000
 1.700 0.6248 0.02092 0.01314 -0.1056 0.7928 1.0000
 1.800 0.6348 0.02119 0.01341 -0.1057 0.7893 1.0000
 1.900 0.6457 0.02131 0.01354 -0.1055 0.7867 1.0000
 2.000 0.6570 0.02137 0.01357 -0.1052 0.7846 1.0000
 2.100 0.6667 0.02171 0.01391 -0.1053 0.7812 1.0000
 2.200 0.6763 0.02204 0.01426 -0.1054 0.7774 1.0000
 2.300 0.6871 0.02218 0.01439 -0.1052 0.7746 1.0000
 2.400 0.6983 0.02223 0.01443 -0.1049 0.7725 1.0000
 2.500 0.7083 0.02250 0.01471 -0.1049 0.7695 1.0000
 2.600 0.7175 0.02292 0.01515 -0.1051 0.7653 1.0000
 2.700 0.7282 0.02305 0.01529 -0.1049 0.7625 1.0000
 2.800 0.7394 0.02309 0.01531 -0.1045 0.7603 1.0000
 2.900 0.7494 0.02335 0.01562 -0.1044 0.7572 1.0000
 3.000 0.7584 0.02378 0.01609 -0.1046 0.7528 1.0000
 3.100 0.7691 0.02389 0.01620 -0.1043 0.7499 1.0000
 3.200 0.7804 0.02389 0.01619 -0.1038 0.7476 1.0000
 3.300 0.7896 0.02428 0.01661 -0.1039 0.7437 1.0000
 3.400 0.7990 0.02461 0.01697 -0.1039 0.7396 1.0000
 3.500 0.8099 0.02464 0.01701 -0.1034 0.7368 1.0000
 3.600 0.8213 0.02456 0.01692 -0.1028 0.7346 1.0000
 3.700 0.8292 0.02516 0.01758 -0.1031 0.7292 1.0000
 3.800 0.8396 0.02523 0.01767 -0.1027 0.7255 1.0000
 3.900 0.8510 0.02505 0.01752 -0.1019 0.7228 1.0000
 4.000 0.8591 0.02546 0.01799 -0.1018 0.7172 1.0000
 4.100 0.8695 0.02542 0.01796 -0.1012 0.7129 1.0000
 4.200 0.8810 0.02512 0.01764 -0.1002 0.7100 1.0000
 4.300 0.8887 0.02559 0.01818 -0.1002 0.7036 1.0000
 4.400 0.8995 0.02546 0.01806 -0.0994 0.6998 1.0000
 4.500 0.9112 0.02517 0.01775 -0.0985 0.6972 1.0000
 4.600 0.9187 0.02575 0.01842 -0.0987 0.6906 1.0000
 4.700 0.9296 0.02564 0.01834 -0.0980 0.6871 1.0000
 4.800 0.9414 0.02542 0.01811 -0.0973 0.6848 1.0000
 5.000 0.9598 0.02594 0.01875 -0.0969 0.6748 1.0000
 5.100 0.9717 0.02568 0.01853 -0.0961 0.6724 1.0000
 5.300 0.9903 0.02610 0.01908 -0.0955 0.6620 1.0000
 5.400 0.9998 0.02619 0.01923 -0.0950 0.6569 1.0000
 5.500 1.0096 0.02612 0.01921 -0.0943 0.6511 1.0000
 5.600 1.0221 0.02551 0.01855 -0.0931 0.6476 1.0000
 5.700 1.0295 0.02575 0.01891 -0.0927 0.6392 1.0000
 5.800 1.0413 0.02518 0.01830 -0.0915 0.6343 1.0000
 5.900 1.0499 0.02511 0.01832 -0.0908 0.6261 1.0000
 6.000 1.0598 0.02484 0.01808 -0.0899 0.6194 1.0000
 6.100 1.0705 0.02445 0.01769 -0.0890 0.6128 1.0000
 6.200 1.0796 0.02434 0.01765 -0.0883 0.6050 1.0000
 6.300 1.0913 0.02379 0.01712 -0.0873 0.5992 1.0000
 6.400 1.0999 0.02374 0.01718 -0.0866 0.5905 1.0000
 6.500 1.1110 0.02333 0.01676 -0.0858 0.5843 1.0000
 6.600 1.1205 0.02315 0.01665 -0.0851 0.5761 1.0000
 6.700 1.1298 0.02301 0.01659 -0.0844 0.5678 1.0000
 6.800 1.1417 0.02253 0.01609 -0.0836 0.5615 1.0000
 6.900 1.1502 0.02244 0.01612 -0.0829 0.5516 1.0000
 7.000 1.1595 0.02224 0.01601 -0.0822 0.5420 1.0000
 7.100 1.1693 0.02193 0.01575 -0.0814 0.5321 1.0000
 7.200 1.1789 0.02159 0.01545 -0.0805 0.5213 1.0000
 7.300 1.1880 0.02127 0.01521 -0.0796 0.5087 1.0000
 7.400 1.1965 0.02097 0.01499 -0.0787 0.4940 1.0000
 7.500 1.2050 0.02057 0.01461 -0.0777 0.4767 1.0000
 7.600 1.2118 0.02025 0.01440 -0.0765 0.4529 1.0000
 7.700 1.2175 0.02003 0.01418 -0.0752 0.4195 1.0000
 7.800 1.2217 0.02007 0.01403 -0.0738 0.3744 1.0000
 7.900 1.2234 0.02059 0.01418 -0.0724 0.3208 1.0000
 8.000 1.2233 0.02152 0.01468 -0.0710 0.2748 1.0000
 8.100 1.2227 0.02261 0.01542 -0.0696 0.2392 1.0000
 8.200 1.2222 0.02371 0.01625 -0.0683 0.2104 1.0000
 8.300 1.2217 0.02480 0.01712 -0.0670 0.1860 1.0000
 8.400 1.2208 0.02592 0.01804 -0.0657 0.1637 1.0000
 8.500 1.2186 0.02714 0.01906 -0.0641 0.1423 1.0000
 9.000 1.2117 0.03330 0.02451 -0.0564 0.0811 1.0000

XFOILinterface/XFOIL/orrs/osm_ns.1000

 256 10.28630
 0.0000000E+00 1.7419264E-02 3.5012722E-02 5.2782111E-02 7.0729189E-02
 8.8855751E-02 0.1071636 0.1256545 0.1443303 0.1631928
 0.1822440 0.2014857 0.2209199 0.2405483 0.2603731
 0.2803961 0.3006193 0.3210447 0.3416744 0.3625104
 0.3835548 0.4048096 0.4262770 0.4479591 0.4698579
 0.4919758 0.5143148 0.5368772 0.5596653 0.5826812
 0.6059272 0.6294058 0.6531191 0.6770696 0.7012595
 0.7256914 0.7503676 0.7752905 0.8004627 0.8258865
 0.8515646 0.8774996 0.9036939 0.9301500 0.9568708
 0.9838588 1.011117 1.038647 1.066453 1.094537
 1.122901 1.151550 1.180484 1.209708 1.239225
 1.269036 1.299146 1.329557 1.360271 1.391293
 1.422626 1.454271 1.486233 1.518515 1.551119
 1.584049 1.617309 1.650901 1.684830 1.719097
 1.753707 1.788664 1.823969 1.859628 1.895644
 1.932019 1.968759 2.005866 2.043344 2.081196
 2.119427 2.158041 2.197041 2.236430 2.276214
 2.316395 2.356978 2.397968 2.439367 2.481179
 2.523411 2.566064 2.609144 2.652654 2.696601
 2.740985 2.785815 2.831092 2.876822 2.923010
 2.969659 3.016775 3.064362 3.112424 3.160968
 3.209997 3.259516 3.309530 3.360045 3.411065
 3.462595 3.514640 3.567205 3.620297 3.673919
 3.728077 3.782777 3.838024 3.893824 3.950181
 4.007102 4.064592 4.122658 4.181303 4.240536
 4.300360 4.360783 4.421810 4.483448 4.545702
 4.608578 4.672082 4.736222 4.801004 4.866433
 4.932517 4.999261 5.066673 5.134758 5.203525
 5.272980 5.343129 5.413980 5.485538 5.557813
 5.630810 5.704538 5.779003 5.854211 5.930172
 6.006893 6.084381 6.162644 6.241690 6.321526
 6.402160 6.483601 6.565856 6.648934 6.732842
 6.817590 6.903184 6.989636 7.076951 7.165141
 7.254211 7.344172 7.435033 7.526803 7.619490
 7.713104 7.807654 7.903150 7.999600 8.097016
 8.195405 8.294779 8.395144 8.496516 8.598901
 8.702309 8.806751 8.912238 9.018779 9.126386
 9.235069 9.344839 9.455706 9.567683 9.680779
 9.795005 9.910375 10.02690 10.14459 10.26345
 10.38350 10.50476 10.62722 10.75092 10.87585
 11.00202 11.12946 11.25818 11.38818 11.51948
 11.65209 11.78603 11.92131 12.05795 12.19594
 12.33532 12.47609 12.61827 12.76188 12.90691
 13.05340 13.20136 13.35079 13.50172 13.65415
 13.80811 13.96361 14.12067 14.27929 14.43951
 14.60132 14.76475 14.92982 15.09654 15.26492
 15.43499 15.60676 15.78024 15.95547 16.13244
 16.31118 16.49171 16.67405 16.85821 17.04421
 17.23207 17.42181 17.61345 17.80700 18.00249
 18.19994 18.39935 18.60077 18.80419 19.00965
 19.21717 19.42676 19.63845 19.85225 20.06819
 20.28629
 0.0000000E+00 -2.4013777E-04 -4.8125349E-04 -7.2332832E-04 -9.6634275E-04
 -1.2102760E-03 -1.4551074E-03 -1.7008141E-03 -1.9473739E-03 -2.1947625E-03
 -2.4429550E-03 -2.6919262E-03 -2.9416492E-03 -3.1920965E-03 -3.4432395E-03
 -3.6950479E-03 -3.9474922E-03 -4.2005396E-03 -4.4541582E-03 -4.7083134E-03
 -4.9629700E-03 -5.2180924E-03 -5.4736417E-03 -5.7295812E-03 -5.9858691E-03
 -6.2424652E-03 -6.4993263E-03 -6.7564091E-03 -7.0136674E-03 -7.2710551E-03
 -7.5285239E-03 -7.7860244E-03 -8.0435053E-03 -8.3009135E-03 -8.5581951E-03
 -8.8152941E-03 -9.0721538E-03 -9.3287136E-03 -9.5849149E-03 -9.8406933E-03
 -1.0095984E-02 -1.0350722E-02 -1.0604840E-02 -1.0858266E-02 -1.1110929E-02
 -1.1362757E-02 -1.1613671E-02 -1.1863596E-02 -1.2112451E-02 -1.2360153E-02
 -1.2606619E-02 -1.2851763E-02 -1.3095494E-02 -1.3337725E-02 -1.3578360E-02
 -1.3817302E-02 -1.4054456E-02 -1.4289719E-02 -1.4522989E-02 -1.4754161E-02
 -1.4983126E-02 -1.5209773E-02 -1.5433987E-02 -1.5655654E-02 -1.5874652E-02
 -1.6090859E-02 -1.6304152E-02 -1.6514400E-02 -1.6721474E-02 -1.6925238E-02
 -1.7125553E-02 -1.7322280E-02 -1.7515272E-02 -1.7704383E-02 -1.7889461E-02
 -1.8070348E-02 -1.8246887E-02 -1.8418916E-02 -1.8586267E-02 -1.8748768E-02
 -1.8906241E-02 -1.9058513E-02 -1.9205393E-02 -1.9346695E-02 -1.9482225E-02
 -1.9611783E-02 -1.9735167E-02 -1.9852161E-02 -1.9962557E-02 -2.0066129E-02
 -2.0162653E-02 -2.0251891E-02 -2.0333603E-02 -2.0407546E-02 -2.0473458E-02
 -2.0531077E-02 -2.0580133E-02 -2.0620344E-02 -2.0651422E-02 -2.0673065E-02
 -2.0684961E-02 -2.0686790E-02 -2.0678218E-02 -2.0658901E-02 -2.0628475E-02
 -2.0586565E-02 -2.0532783E-02 -2.0466719E-02 -2.0387949E-02 -2.0296026E-02
 -2.0190485E-02 -2.0070832E-02 -1.9936558E-02 -1.9787120E-02 -1.9621940E-02
 -1.9440420E-02 -1.9241920E-02 -1.9025765E-02 -1.8791236E-02 -1.8537568E-02
 -1.8263945E-02 -1.7969497E-02 -1.7653292E-02 -1.7314330E-02 -1.6951535E-02
 -1.6563751E-02 -1.6149726E-02 -1.5708108E-02 -1.5237424E-02 -1.4736079E-02
 -1.4202328E-02 -1.3634264E-02 -1.3029797E-02 -1.2386627E-02 -1.1702218E-02
 -1.0973761E-02 -1.0198138E-02 -9.3718776E-03 -8.4910989E-03 -7.5514424E-03
 -6.5480005E-03 -5.4752193E-03 -4.3267850E-03 -3.0954904E-03 -1.7730615E-03
 -3.4995540E-04 1.1842710E-03 2.8391853E-03 4.6235658E-03 6.5468191E-03
 8.6190142E-03 1.0850923E-02 1.3254053E-02 1.5840687E-02 1.8623916E-02
 2.1617673E-02 2.4836764E-02 2.8296893E-02 3.2014690E-02 3.6007725E-02
 4.0294517E-02 4.4894546E-02 4.9828231E-02 5.5116922E-02 6.0782861E-02
 6.6849150E-02 7.3339663E-02 8.0278970E-02 8.7692246E-02 9.5605128E-02
 0.1040435 0.1130336 0.1226011 0.1327719 0.1435709
 0.1550222 0.1671486 0.1799714 0.1935095 0.2077796
 0.2227954 0.2385671 0.2551008 0.2723984 0.2904567
 0.3092669 0.3288144 0.3490781 0.3700301 0.3916354
 0.4138512 0.4366277 0.4599069 0.4836233 0.5077040
 0.5320688 0.5566312 0.5812984 0.6059723 0.6305512
 0.6549297 0.6790010 0.7026578 0.7257942 0.7483069
 0.7700970 0.7910720 0.8111466 0.8302451 0.8483024
 0.8652649 0.8810920 0.8957566 0.9092449 0.9215578
 0.9327091 0.9427260 0.9516473 0.9595231 0.9664122
 0.9723813 0.9775023 0.9818513 0.9855061 0.9885440
 0.9910412 0.9930703 0.9946998 0.9959924 0.9970052
 0.9977888 0.9983873 0.9988384 0.9991737 0.9994198
 0.9995979 0.9997249 0.9998145 0.9998766 0.9999191
 0.9999477 0.9999667 0.9999791 0.9999871 0.9999923
 0.9999954 0.9999972 0.9999984 0.9999990 0.9999994
 0.9999996 0.9999998 0.9999999 0.9999999 0.9999999
 1.000000
 -1.3826008E-02 -1.3745504E-02 -1.3664197E-02 -1.3582076E-02 -1.3499129E-02
 -1.3415351E-02 -1.3330727E-02 -1.3245254E-02 -1.3158919E-02 -1.3071714E-02
 -1.2983631E-02 -1.2894654E-02 -1.2804780E-02 -1.2713999E-02 -1.2622296E-02
 -1.2529665E-02 -1.2436097E-02 -1.2341578E-02 -1.2246102E-02 -1.2149655E-02
 -1.2052233E-02 -1.1953820E-02 -1.1854409E-02 -1.1753988E-02 -1.1652549E-02
 -1.1550076E-02 -1.1446565E-02 -1.1342006E-02 -1.1236382E-02 -1.1129688E-02
 -1.1021914E-02 -1.0913046E-02 -1.0803076E-02 -1.0691994E-02 -1.0579788E-02
 -1.0466449E-02 -1.0351967E-02 -1.0236330E-02 -1.0119529E-02 -1.0001554E-02
 -9.8823933E-03 -9.7620403E-03 -9.6404795E-03 -9.5177041E-03 -9.3937051E-03
 -9.2684710E-03 -9.1419928E-03 -9.0142591E-03 -8.8852625E-03 -8.7549891E-03
 -8.6234361E-03 -8.4905867E-03 -8.3564352E-03 -8.2209725E-03 -8.0841864E-03
 -7.9460694E-03 -7.8066145E-03 -7.6658069E-03 -7.5236405E-03 -7.3801056E-03
 -7.2351922E-03 -7.0888931E-03 -6.9411956E-03 -6.7920922E-03 -6.6415709E-03
 -6.4896233E-03 -6.3362415E-03 -6.1814119E-03 -6.0251262E-03 -5.8673718E-03
 -5.7081399E-03 -5.5474159E-03 -5.3851907E-03 -5.2214502E-03 -5.0561815E-03
 -4.8893709E-03 -4.7210041E-03 -4.5510656E-03 -4.3795379E-03 -4.2064046E-03
 -4.0316456E-03 -3.8552429E-03 -3.6771726E-03 -3.4974129E-03 -3.3159384E-03
 -3.1327212E-03 -2.9477323E-03 -2.7609395E-03 -2.5723088E-03 -2.3818021E-03
 -2.1893783E-03 -1.9949924E-03 -1.7985972E-03 -1.6001385E-03 -1.3995596E-03
 -1.1967971E-03 -9.9178276E-04 -7.8444165E-04 -5.7469244E-04 -3.6244604E-04
 -1.4760536E-04 6.9935631E-05 2.9029269E-04 5.1359227E-04 7.3997269E-04
 9.6958439E-04 1.2025927E-03 1.4391777E-03 1.6795369E-03 1.9238859E-03
 2.1724605E-03 2.4255197E-03 2.6833476E-03 2.9462536E-03 3.2145791E-03
 3.4886992E-03 3.7690243E-03 4.0560067E-03 4.3501453E-03 4.6519870E-03
 4.9621402E-03 5.2812728E-03 5.6101265E-03 5.9495205E-03 6.3003660E-03
 6.6636764E-03 7.0405789E-03 7.4323309E-03 7.8403428E-03 8.2661910E-03
 8.7116472E-03 9.1787083E-03 9.6696336E-03 1.0186975E-02 1.0733638E-02
 1.1312934E-02 1.1928654E-02 1.2585150E-02 1.3287441E-02 1.4041341E-02
 1.4853619E-02 1.5732182E-02 1.6686339E-02 1.7727086E-02 1.8867489E-02
 2.0123141E-02 2.1495810E-02 2.2952568E-02 2.4498556E-02 2.6139146E-02
 2.7879898E-02 2.9726572E-02 3.1685092E-02 3.3761527E-02 3.5962064E-02
 3.8292974E-02 4.0760536E-02 4.3371022E-02 4.6130601E-02 4.9045291E-02
 5.2120835E-02 5.5362619E-02 5.8775596E-02 6.2364113E-02 6.6131771E-02
 7.0081279E-02 7.4214354E-02 7.8531414E-02 8.3031543E-02 8.7712139E-02
 9.2568778E-02 9.7595014E-02 0.1027821 0.1081190 0.1135917
 0.1191835 0.1248747 0.1306421 0.1364594 0.1422968
 0.1481211 0.1538955 0.1595798 0.1651310 0.1705026
 0.1756455 0.1805088 0.1850394 0.1891831 0.1928857
 0.1960929 0.1987521 0.2008121 0.2022260 0.2029507
 0.2029489 0.2021894 0.2006486 0.1983122 0.1951745
 0.1912409 0.1865274 0.1810613 0.1748808 0.1680364
 0.1605889 0.1526094 0.1441781 0.1353832 0.1263188
 0.1170835 0.1077779 9.8502710E-02 8.9355908E-02 8.0431893E-02
 7.1816787E-02 6.3588701E-02 5.5814803E-02 4.8550300E-02 4.1836981E-02
 3.5702810E-02 3.0163005E-02 2.5219109E-02 2.0860095E-02 1.7064083E-02
 1.3800609E-02 1.1031147E-02 8.7114917E-03 6.7956066E-03 5.2344208E-03
 3.9805174E-03 2.9874716E-03 2.2120946E-03 1.6161698E-03 1.1650359E-03
 8.2788104E-04 5.8035628E-04 4.0130384E-04 2.7324774E-04 1.8330877E-04
 1.2117915E-04 7.8981931E-05 5.0833780E-05 3.2227326E-05 1.9776719E-05
 1.1983073E-05 7.0817350E-06 4.0180403E-06 2.3632381E-06 1.0798532E-06
 9.7746886E-07 4.9095826E-07 1.1458281E-07 3.1225807E-07 2.8700933E-07
 3.5949864E-07
 71 81
 0.4999981 0.5499982 0.5999982 0.6499983 0.6999984
 0.7499985 0.7999985 0.8499986 0.8999987 0.9499987
 0.9999988 1.049999 1.099999 1.149999 1.199999
 1.249999 1.299999 1.349999 1.399999 1.449999
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000001 -0.8499999 -0.8000000
 -0.7500000 -0.7000000 -0.6500001 -0.5999999 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -9.9999905E-02 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1500001 0.2000000
 0.2500000 0.3000000 0.3499999 0.4000001 0.4500000
 0.5000000 0.5500000 0.5999999 0.6499999 0.6999998
 0.7499998 0.7999997 0.8499997 0.8999996 0.9499996
 0.9999995
 3.8842097E-02 3.7480209E-02 3.6060259E-02 3.4601755E-02 3.3121992E-02
 3.1636093E-02 3.0157074E-02 2.8695961E-02 2.7261937E-02 2.5862508E-02
 2.4503676E-02 2.3190107E-02 2.1925267E-02 2.0711547E-02 1.9550424E-02
 1.8442575E-02 1.7387962E-02 1.6385993E-02 1.5435571E-02 1.4535222E-02
 1.3683209E-02 1.2877594E-02 1.2116323E-02 1.1397279E-02 1.0718369E-02
 1.0077530E-02 9.4727501E-03 8.9021167E-03 8.3638122E-03 7.8560924E-03
 7.3773237E-03 6.9259573E-03 6.5005207E-03 6.0996334E-03 5.7219798E-03
 5.3663161E-03 5.0314562E-03 4.7162822E-03 4.4197235E-03 4.1407701E-03
 3.8784575E-03 3.6318605E-03 3.4001165E-03 3.1823905E-03 2.9778907E-03
 2.7858706E-03 2.6056191E-03 2.4364500E-03 2.2777284E-03 2.1288486E-03
 1.9892270E-03 1.8583181E-03 1.7356066E-03 1.6206033E-03 1.5128390E-03
 1.4118847E-03 1.3173278E-03 1.2287685E-03 1.1458505E-03 1.0682211E-03
 9.9555659E-04 9.2754670E-04 8.6390669E-04 8.0435746E-04 7.4864924E-04
 6.9653883E-04 6.4780412E-04 6.0222641E-04 5.5960874E-04 5.1976484E-04
 4.8252093E-04
 1.8098662E-02 1.5462643E-02 1.3036398E-02 1.0813656E-02 8.7864660E-03
 6.9456473E-03 5.2812421E-03 3.7828595E-03 2.4399627E-03 1.2420823E-03
 1.7897245E-04 -7.5925054E-04 -1.5820494E-03 -2.2984196E-03 -2.9168716E-03
 -3.4454283E-03 -3.8916531E-03 -4.2626797E-03 -4.5652306E-03 -4.8056617E-03
 -4.9899803E-03 -5.1238574E-03 -5.2126520E-03 -5.2614072E-03 -5.2748425E-03
 -5.2573653E-03 -5.2130637E-03 -5.1457053E-03 -5.0587333E-03 -4.9552992E-03
 -4.8382408E-03 -4.7101141E-03 -4.5732060E-03 -4.4295555E-03 -4.2809546E-03
 -4.1289860E-03 -3.9750347E-03 -3.8202934E-03 -3.6658028E-03 -3.5124470E-03
 -3.3609802E-03 -3.2120366E-03 -3.0661419E-03 -2.9237242E-03 -2.7851390E-03
 -2.6506553E-03 -2.5204802E-03 -2.3947721E-03 -2.2736315E-03 -2.1571156E-03
 -2.0452507E-03 -1.9380293E-03 -1.8354115E-03 -1.7373366E-03 -1.6437373E-03
 -1.5545125E-03 -1.4695546E-03 -1.3887555E-03 -1.3119837E-03 -1.2391094E-03
 -1.1700017E-03 -1.1045195E-03 -1.0425232E-03 -9.8387816E-04 -9.2843745E-04
 -8.7606756E-04 -8.2663115E-04 -7.7999395E-04 -7.3602475E-04 -6.9459807E-04
 -6.5558724E-04
 3.8934104E-02 3.7570819E-02 3.6149479E-02 3.4689598E-02 3.3208508E-02
 3.1721342E-02 3.0241111E-02 2.8778840E-02 2.7343694E-02 2.5943175E-02
 2.4583263E-02 2.3268588E-02 2.2002593E-02 2.0787645E-02 1.9625198E-02
 1.8515894E-02 1.7459685E-02 1.6455956E-02 1.5503614E-02 1.4601198E-02
 1.3746982E-02 1.2939033E-02 1.2175336E-02 1.1453815E-02 1.0772384E-02
 1.0129004E-02 9.5217079E-03 8.9485915E-03 8.4078554E-03 7.8977738E-03
 7.4167210E-03 6.9631524E-03 6.5356046E-03 6.1326968E-03 5.7531265E-03
 5.3956280E-03 5.0590318E-03 4.7422065E-03 4.4440888E-03 4.1636578E-03
 3.8999484E-03 3.6520360E-03 3.4190437E-03 3.2001359E-03 2.9945245E-03
 2.8014567E-03 2.6202120E-03 2.4501137E-03 2.2905124E-03 2.1408016E-03
 2.0003945E-03 1.8687517E-03 1.7453446E-03 1.6296845E-03 1.5213065E-03
 1.4197752E-03 1.3246674E-03 1.2355966E-03 1.1521981E-03 1.0741143E-03
 1.0010244E-03 9.3261572E-04 8.6860469E-04 8.0870779E-04 7.5267389E-04
 7.0026488E-04 6.5124809E-04 6.0541194E-04 5.6255620E-04 5.2249245E-04
 4.8504805E-04
 1.8030979E-02 1.5394456E-02 1.2968041E-02 1.0745453E-02 8.7187262E-03
 6.8786666E-03 5.2153100E-03 3.7182553E-03 2.3769431E-03 1.1808979E-03
 1.1985550E-04 -8.1607781E-04 -1.6363956E-03 -2.3501141E-03 -2.9657756E-03
 -3.4914385E-03 -3.9347121E-03 -4.3027638E-03 -4.6023657E-03 -4.8399149E-03
 -5.0214510E-03 -5.1526879E-03 -5.2390019E-03 -5.2854531E-03 -5.2967719E-03
 -5.2773692E-03 -5.2313297E-03 -5.1624086E-03 -5.0740498E-03 -4.9693827E-03
 -4.8512341E-03 -4.7221514E-03 -4.5844084E-03 -4.4400245E-03 -4.2907838E-03
 -4.1382634E-03 -3.9838264E-03 -3.8286748E-03 -3.6738245E-03 -3.5201609E-03
 -3.3684331E-03 -3.2192627E-03 -3.0731799E-03 -2.9306069E-03 -2.7918906E-03
 -2.6572978E-03 -2.5270395E-03 -2.4012660E-03 -2.2800714E-03 -2.1635201E-03
 -2.0516352E-03 -1.9443991E-03 -1.8417799E-03 -1.7437192E-03 -1.6501351E-03
 -1.5609341E-03 -1.4760146E-03 -1.3952532E-03 -1.3185253E-03 -1.2457028E-03
 -1.1766494E-03 -1.1112281E-03 -1.0492974E-03 -9.9071558E-04 -9.3534740E-04
 -8.8305137E-04 -8.3368947E-04 -7.8713195E-04 -7.4324181E-04 -7.0189673E-04
 -6.6296553E-04
 3.9037641E-02 3.7672784E-02 3.6249865E-02 3.4788445E-02 3.3305850E-02
 3.1817235E-02 3.0335620E-02 2.8872013E-02 2.7435575E-02 2.6033791E-02
 2.4672609E-02 2.3356641E-02 2.2089293E-02 2.0872900E-02 1.9708890E-02
 1.8597884E-02 1.7539818E-02 1.6534060E-02 1.5579516E-02 1.4674734E-02
 1.3818006E-02 1.3007428E-02 1.2241006E-02 1.1516689E-02 1.0832432E-02
 1.0186224E-02 9.5761251E-03 9.0002427E-03 8.4568029E-03 7.9440949E-03
 7.4605062E-03 7.0044966E-03 6.5746112E-03 6.1694677E-03 5.7877558E-03
 5.4282285E-03 5.0897086E-03 4.7710510E-03 4.4712042E-03 4.1891364E-03
 3.9238734E-03 3.6744941E-03 3.4401193E-03 3.2199088E-03 3.0130665E-03
 2.8188301E-03 2.6364876E-03 2.4653557E-03 2.3047787E-03 2.1541442E-03
 2.0128742E-03 1.8804144E-03 1.7562369E-03 1.6398543E-03 1.5307986E-03
 1.4286219E-03 1.3329138E-03 1.2432819E-03 1.1593465E-03 1.0807688E-03
 1.0072131E-03 9.3837106E-04 8.7394955E-04 8.1367634E-04 7.5729447E-04
 7.0455758E-04 6.5524166E-04 6.0912647E-04 5.6601950E-04 5.2572234E-04
 4.8806638E-04
 1.7955231E-02 1.5318174E-02 1.2891594E-02 1.0669210E-02 8.6430367E-03
 6.8038702E-03 5.1417258E-03 3.6461905E-03 2.3066944E-03 1.1127417E-03
 5.4049120E-05 -8.7930274E-04 -1.6968218E-03 -2.4075608E-03 -3.0201001E-03
 -3.5425336E-03 -3.9825216E-03 -4.3472792E-03 -4.6436181E-03 -4.8779878E-03
 -5.0564688E-03 -5.1848036E-03 -5.2683973E-03 -5.3123245E-03 -5.3213262E-03
 -5.2998150E-03 -5.2518682E-03 -5.1812413E-03 -5.0913594E-03 -4.9853399E-03
 -4.8659989E-03 -4.7358638E-03 -4.5971968E-03 -4.4520069E-03 -4.3020654E-03
 -4.1489294E-03 -3.9939610E-03 -3.8383487E-03 -3.6831019E-03 -3.5291000E-03
 -3.3770804E-03 -3.2276665E-03 -3.0813706E-03 -2.9386217E-03 -2.7997578E-03
 -2.6650485E-03 -2.5346947E-03 -2.4088437E-03 -2.2875967E-03 -2.1710065E-03
 -2.0590958E-03 -1.9518490E-03 -1.8492318E-03 -1.7511810E-03 -1.6576181E-03
 -1.5684499E-03 -1.4835659E-03 -1.4028453E-03 -1.3261725E-03 -1.2534066E-03
 -1.1844154E-03 -1.1190590E-03 -1.0572028E-03 -9.9869771E-04 -9.4340637E-04
 -8.9119124E-04 -8.4191281E-04 -7.9544156E-04 -7.5163896E-04 -7.1038277E-04
 -6.7154330E-04
 3.9154179E-02 3.7787553E-02 3.6362872E-02 3.4899686E-02 3.3415388E-02
 3.1925127E-02 3.0441919E-02 2.8976774E-02 2.7538842E-02 2.6135577E-02
 2.4772907E-02 2.3455417E-02 2.2186471E-02 2.0968381E-02 1.9802542E-02
 1.8689545E-02 1.7629312E-02 1.6621204E-02 1.5664127E-02 1.4756638E-02
 1.3897062E-02 1.3083504E-02 1.2314012E-02 1.1586562E-02 1.0899147E-02
 1.0249780E-02 9.6365493E-03 9.0575926E-03 8.5111521E-03 7.9955310E-03
 7.5091268E-03 7.0504113E-03 6.6179265E-03 6.2103071E-03 5.8262325E-03
 5.4644551E-03 5.1237945E-03 4.8031178E-03 4.5013516E-03 4.2174640E-03
 3.9504832E-03 3.6994827E-03 3.4635726E-03 3.2419160E-03 3.0337053E-03
 2.8381837E-03 2.6546277E-03 2.4823451E-03 2.3206887E-03 2.1690386E-03
 2.0268077E-03 1.8934462E-03 1.7684214E-03 1.6512382E-03 1.5414284E-03
 1.4385474E-03 1.3421801E-03 1.2519230E-03 1.1674081E-03 1.0882870E-03
 1.0142225E-03 9.4490789E-04 8.8004593E-04 8.1936736E-04 7.6260162E-04
 7.0951966E-04 6.5987860E-04 6.1346940E-04 5.7009561E-04 5.2955770E-04
 4.9168355E-04
 1.7870491E-02 1.5232869E-02 1.2806143E-02 1.0584028E-02 8.5585192E-03
 6.7203948E-03 5.0596595E-03 3.5658744E-03 2.2284552E-03 1.0368814E-03
 -1.9141953E-05 -9.4956858E-04 -1.7639346E-03 -2.4713317E-03 -3.0803785E-03
 -3.5992188E-03 -4.0355562E-03 -4.3966621E-03 -4.6894071E-03 -4.9202819E-03
 -5.0954064E-03 -5.2205632E-03 -5.3011761E-03 -5.3423452E-03 -5.3488151E-03
 -5.3250003E-03 -5.2749738E-03 -5.2024801E-03 -5.1109302E-03 -5.0034313E-03
 -4.8827836E-03 -4.7514960E-03 -4.6118172E-03 -4.4657392E-03 -4.3150219E-03
 -4.1612126E-03 -4.0056626E-03 -3.8495383E-03 -3.6938556E-03 -3.5394758E-03
 -3.3871343E-03 -3.2374449E-03 -3.0909188E-03 -2.9479722E-03 -2.8089483E-03
 -2.6741049E-03 -2.5436461E-03 -2.4177143E-03 -2.2964042E-03 -2.1797693E-03
 -2.0678320E-03 -1.9605733E-03 -1.8579586E-03 -1.7599211E-03 -1.6663838E-03
 -1.5772476E-03 -1.4924041E-03 -1.4117401E-03 -1.3351222E-03 -1.2624204E-03
 -1.1934995E-03 -1.1282194E-03 -1.0664394E-03 -1.0080147E-03 -9.5281348E-04
 -9.0068515E-04 -8.5150136E-04 -8.0512068E-04 -7.6141232E-04 -7.2024821E-04
 -6.8150304E-04
 3.9285406E-02 3.7916787E-02 3.6490094E-02 3.5024926E-02 3.3538692E-02
 3.2046538E-02 3.0561509E-02 2.9094588E-02 2.7654912E-02 2.6249915E-02
 2.4885500E-02 2.3566203E-02 2.2295373E-02 2.1075282E-02 1.9907279E-02
 1.8791949E-02 1.7729189E-02 1.6718362E-02 1.5758378E-02 1.4847801E-02
 1.3984978E-02 1.3168052E-02 1.2395102E-02 1.1664134E-02 1.0973185E-02
 1.0320296E-02 9.7035831E-03 9.1212112E-03 8.5714376E-03 8.0525801E-03
 7.5630574E-03 7.1013421E-03 6.6659860E-03 6.2556230E-03 5.8689308E-03
 5.5046678E-03 5.1616463E-03 4.8387242E-03 4.5348308E-03 4.2489371E-03
 3.9800555E-03 3.7272559E-03 3.4896515E-03 3.2663918E-03 3.0566680E-03
 2.8597270E-03 2.6748211E-03 2.5012738E-03 2.3384222E-03 2.1856474E-03
 2.0423627E-03 1.9080023E-03 1.7820387E-03 1.6639797E-03 1.5533426E-03
 1.4496886E-03 1.3525912E-03 1.2616568E-03 1.1765102E-03 1.0967924E-03
 1.0221787E-03 9.5234695E-04 8.8701228E-04 8.2588912E-04 7.6872151E-04
 7.1526592E-04 6.6528702E-04 6.1857275E-04 5.7491503E-04 5.3412822E-04
 4.9603515E-04
 1.7775737E-02 1.5137521E-02 1.2710680E-02 1.0488915E-02 8.4642004E-03
 6.6273049E-03 4.9681985E-03 3.4764309E-03 2.1413921E-03 9.5253455E-04
 -1.0045937E-04 -1.0275785E-03 -1.8383983E-03 -2.5420429E-03 -3.1471865E-03
 -3.6620263E-03 -4.0943231E-03 -4.4513987E-03 -4.7401818E-03 -4.9672150E-03
 -5.1386650E-03 -5.2603469E-03 -5.3377100E-03 -5.3758728E-03 -5.3795828E-03
 -5.3532594E-03 -5.3009656E-03 -5.2264351E-03 -5.1330719E-03 -5.0239582E-03
 -4.9018790E-03 -4.7693341E-03 -4.6285442E-03 -4.4814926E-03 -4.3299277E-03
 -4.1753771E-03 -4.0191794E-03 -3.8624988E-03 -3.7063318E-03 -3.5515360E-03
 -3.3988380E-03 -3.2488445E-03 -3.1020599E-03 -2.9589008E-03 -2.8196955E-03
 -2.6847054E-03 -2.5541298E-03 -2.4281039E-03 -2.3067251E-03 -2.1900467E-03
 -2.0780761E-03 -1.9708069E-03 -1.8681944E-03 -1.7701699E-03 -1.6766627E-03
 -1.5875638E-03 -1.5027717E-03 -1.4221614E-03 -1.3456042E-03 -1.2729763E-03
 -1.2041299E-03 -1.1389345E-03 -1.0772378E-03 -1.0189072E-03 -9.6379634E-04
 -9.1176375E-04 -8.6267199E-04 -8.1638916E-04 -7.7278051E-04 -7.3171168E-04
 -6.9305854E-04
 3.9433230E-02 3.8062360E-02 3.6633395E-02 3.5165969E-02 3.3677518E-02
 3.2183208E-02 3.0696068E-02 2.9227085E-02 2.7785381E-02 2.6378352E-02
 2.5011871E-02 2.3690443E-02 2.2417376E-02 2.1194909E-02 2.0024365E-02
 1.8906301E-02 1.7840602E-02 1.6826624E-02 1.5863284E-02 1.4949176E-02
 1.4082659E-02 1.3261929E-02 1.2485083E-02 1.1750175E-02 1.1055274E-02
 1.0398455E-02 9.7778700E-03 9.1917003E-03 8.6382339E-03 8.1157992E-03
 7.6228231E-03 7.1577830E-03 6.7192521E-03 6.3058515E-03 5.9162695E-03
 5.5492595E-03 5.2036173E-03 4.8782201E-03 4.5719813E-03 4.2838631E-03
 4.0128841E-03 3.7581003E-03 3.5186196E-03 3.2935864E-03 3.0821983E-03
 2.8836762E-03 2.6972890E-03 2.5223463E-03 2.3581779E-03 2.2041653E-03
 2.0597142E-03 1.9242542E-03 1.7972664E-03 1.6782396E-03 1.5666973E-03
 1.4621950E-03 1.3643045E-03 1.2726275E-03 1.1867853E-03 1.1064277E-03
 1.0312157E-03 9.6083403E-04 8.9498726E-04 8.3339389E-04 7.7579689E-04
 7.2194764E-04 6.7160965E-04 6.2457641E-04 5.8063166E-04 5.3959445E-04
 5.0127780E-04
 1.7669827E-02 1.5031000E-02 1.2604091E-02 1.0382784E-02 8.3590318E-03
 6.5235733E-03 4.8663630E-03 3.3769216E-03 2.0446097E-03 8.5885561E-04
 -1.9070256E-04 -1.1140839E-03 -1.9209054E-03 -2.6203527E-03 -3.2211435E-03
 -3.7315416E-03 -4.1593621E-03 -4.5119976E-03 -4.7964309E-03 -5.0192606E-03
 -5.1866970E-03 -5.3045871E-03 -5.3784167E-03 -5.4133064E-03 -5.4140189E-03
 -5.3849700E-03 -5.3302115E-03 -5.2534705E-03 -5.1581282E-03 -5.0472566E-03
 -4.9236198E-03 -4.7896989E-03 -4.6476987E-03 -4.4995863E-03 -4.3470883E-03
 -4.1917223E-03 -4.0348205E-03 -3.8775208E-03 -3.7208218E-03 -3.5655701E-03
 -3.4124756E-03 -3.2621464E-03 -3.1150803E-03 -2.9716813E-03 -2.8322791E-03
 -2.6971265E-03 -2.5664195E-03 -2.4402919E-03 -2.3188395E-03 -2.2021052E-03
 -2.0901051E-03 -1.9828232E-03 -1.8802097E-03 -1.7822054E-03 -1.6887265E-03
 -1.5996678E-03 -1.5149292E-03 -1.4343796E-03 -1.3578973E-03 -1.2853432E-03
 -1.2165830E-03 -1.1514705E-03 -1.0898666E-03 -1.0316309E-03 -9.7661593E-04
 -9.2468370E-04 -8.7569305E-04 -8.2950667E-04 -7.8599126E-04 -7.4501237E-04
 -7.0644636E-04
 3.9599810E-02 3.8226396E-02 3.6794852E-02 3.5324864E-02 3.3833876E-02
 3.2337081E-02 3.0847505E-02 2.9376121E-02 2.7932029E-02 2.6522605E-02
 2.5153685E-02 2.3829730E-02 2.2554014E-02 2.1328729E-02 2.0155190E-02
 1.9033911E-02 1.7964780E-02 1.6947154E-02 1.5979957E-02 1.5061810E-02
 1.4191103E-02 1.3366063E-02 1.2584832E-02 1.1845508E-02 1.1146186E-02
 1.0484998E-02 9.8601039E-03 9.2697218E-03 8.7121613E-03 8.1857601E-03
 7.6889633E-03 7.2202622E-03 6.7782192E-03 6.3614664E-03 5.9686881E-03
 5.5986363E-03 5.2501173E-03 4.9219825E-03 4.6131536E-03 4.3225861E-03
 4.0492872E-03 3.7923120E-03 3.5507632E-03 3.3237801E-03 3.1105464E-03
 2.9102918E-03 2.7222699E-03 2.5457854E-03 2.3801676E-03 2.2247923E-03
 2.0790589E-03 1.9424016E-03 1.8142805E-03 1.6941972E-03 1.5816643E-03
 1.4762365E-03 1.3774830E-03 1.2850031E-03 1.1984127E-03 1.1173619E-03
 1.0415060E-03 9.7053085E-04 9.0414187E-04 8.4205240E-04 7.8399951E-04
 7.2973827E-04 6.7903643E-04 6.3167093E-04 5.8743701E-04 5.4614444E-04
 5.0761102E-04
 1.7551521E-02 1.4912080E-02 1.2485172E-02 1.0264450E-02 8.2418537E-03
 6.4080916E-03 4.7530909E-03 3.2663343E-03 1.9371506E-03 7.5493177E-04
 -2.9072244E-04 -1.2098815E-03 -2.0122158E-03 -2.7069622E-03 -3.3029059E-03
 -3.8083780E-03 -4.2312611E-03 -4.5790132E-03 -4.8586843E-03 -5.0769211E-03
 -5.2399840E-03 -5.3537600E-03 -5.4237475E-03 -5.4550897E-03 -5.4525579E-03
 -5.4205516E-03 -5.3631263E-03 -5.2839871E-03 -5.1865024E-03 -5.0737215E-03
 -4.9483925E-03 -4.8129722E-03 -4.6696551E-03 -4.5203799E-03 -4.3668640E-03
 -4.2106099E-03 -4.0529296E-03 -3.8949584E-03 -3.7376739E-03 -3.5819151E-03
 -3.4283902E-03 -3.2776895E-03 -3.1303091E-03 -2.9866467E-03 -2.8470268E-03
 -2.7116979E-03 -2.5808455E-03 -2.4546061E-03 -2.3330674E-03 -2.2162758E-03
 -2.1042402E-03 -1.9969393E-03 -1.8943305E-03 -1.7963444E-03 -1.7028981E-03
 -1.6138840E-03 -1.5292008E-03 -1.4487167E-03 -1.3723093E-03 -1.2998349E-03
 -1.2311609E-03 -1.1661425E-03 -1.1046343E-03 -1.0464919E-03 -9.9157658E-04
 -9.3973806E-04 -8.9083990E-04 -8.4474403E-04 -8.0131384E-04 -7.6041493E-04
 -7.2192086E-04
 3.9787613E-02 3.8411323E-02 3.6976844E-02 3.5503924E-02 3.4010027E-02
 3.2510363E-02 3.1017959E-02 2.9543769E-02 2.8096877E-02 2.6684614E-02
 2.5312793E-02 2.3985829E-02 2.2706963E-02 2.1478347E-02 2.0301264E-02
 1.9176215E-02 1.8103084E-02 1.7081229E-02 1.6109599E-02 1.5186831E-02
 1.4311360E-02 1.3481453E-02 1.2695294E-02 1.1951017E-02 1.1246772E-02
 1.0580709E-02 9.9510327E-03 9.3559790E-03 8.7938821E-03 8.2631009E-03
 7.7620880E-03 7.2893342E-03 6.8434174E-03 6.4229639E-03 6.0266661E-03
 5.6532654E-03 5.3015635E-03 4.9704174E-03 4.6587321E-03 4.3654609E-03
 4.0896093E-03 3.8302233E-03 3.5863954E-03 3.3572640E-03 3.1420053E-03
 2.9398394E-03 2.7500186E-03 2.5718398E-03 2.4046341E-03 2.2477652E-03
 2.1006297E-03 1.9626529E-03 1.8333023E-03 1.7120637E-03 1.5984549E-03
 1.4920208E-03 1.3923307E-03 1.2989817E-03 1.2115869E-03 1.1297886E-03
 1.0532474E-03 9.8164473E-04 9.1467745E-04 8.5206656E-04 7.9354405E-04
 7.3885906E-04 6.8777479E-04 6.4007781E-04 5.9555355E-04 5.5400975E-04
 5.1526201E-04
 1.7419457E-02 1.4779410E-02 1.2352590E-02 1.0132625E-02 8.1114257E-03
 6.2796692E-03 4.6272343E-03 3.1435811E-03 1.8179885E-03 6.3980388E-04
 -4.0142523E-04 -1.3158212E-03 -2.1131178E-03 -2.8026155E-03 -3.3931802E-03
 -3.8932015E-03 -4.3106480E-03 -4.6530487E-03 -4.9275127E-03 -5.1407511E-03
 -5.2990657E-03 -5.4083779E-03 -5.4742107E-03 -5.5017229E-03 -5.4956777E-03
 -5.4604844E-03 -5.4001771E-03 -5.3184466E-03 -5.2186437E-03 -5.1037967E-03
 -4.9766279E-03 -4.8395856E-03 -4.6948320E-03 -4.5442958E-03 -4.3896721E-03
 -4.2324457E-03 -4.0739188E-03 -3.9152079E-03 -3.7572854E-03 -3.6009743E-03
 -3.4469720E-03 -3.2958651E-03 -3.1481409E-03 -3.0041863E-03 -2.8643238E-03
 -2.7287952E-03 -2.5977877E-03 -2.4714244E-03 -2.3497904E-03 -2.2329341E-03
 -2.1208550E-03 -2.0135371E-03 -1.9109289E-03 -1.8129596E-03 -1.7195453E-03
 -1.6305814E-03 -1.5459551E-03 -1.4655385E-03 -1.3892053E-03 -1.3168148E-03
 -1.2482250E-03 -1.1832963E-03 -1.1218789E-03 -1.0638285E-03 -1.0090002E-03
 -9.5724815E-04 -9.0843433E-04 -8.6241117E-04 -8.1904622E-04 -7.7820226E-04
 -7.3975109E-04
 3.9999444E-02 3.8619876E-02 3.7182059E-02 3.5705779E-02 3.4208536E-02
 3.2705545E-02 3.1209836E-02 2.9732361E-02 2.8282154E-02 2.6866537E-02
 2.5491260E-02 2.4160713E-02 2.2878094E-02 2.1645520E-02 2.0464255E-02
 1.9334788E-02 1.8256990E-02 1.7230239E-02 1.6253509E-02 1.5325467E-02
 1.4444589E-02 1.3609181E-02 1.2817476E-02 1.2067663E-02 1.1357917E-02
 1.0686432E-02 1.0051447E-02 9.4512273E-03 8.8841161E-03 8.3484910E-03
 7.8428229E-03 7.3656053E-03 6.9154170E-03 6.4908890E-03 6.0907090E-03
 5.7136239E-03 5.3584240E-03 5.0239563E-03 4.7091264E-03 4.4128839E-03
 4.1342219E-03 3.8721836E-03 3.6258518E-03 3.3943602E-03 3.1768756E-03
 2.9726138E-03 2.7808247E-03 2.6007907E-03 2.4318423E-03 2.2733379E-03
 2.1246686E-03 1.9852570E-03 1.8545662E-03 1.7320730E-03 1.6172967E-03
 1.5097741E-03 1.4090788E-03 1.3147946E-03 1.2265393E-03 1.1439467E-03
 1.0666783E-03 9.9441281E-04 9.2684187E-04 8.6368737E-04 8.0467539E-04
 7.4955646E-04 6.9809041E-04 6.5005699E-04 6.0524547E-04 5.6345487E-04
 5.2450586E-04
 1.7272145E-02 1.4631531E-02 1.2204924E-02 9.9859266E-03 7.9664094E-03
 6.1370172E-03 4.4875816E-03 3.0075086E-03 1.6860337E-03 5.1244406E-04
 -5.2377034E-04 -1.4328014E-03 -2.2244507E-03 -2.9081036E-03 -3.4926978E-03
 -3.9867121E-03 -4.3981923E-03 -4.7347415E-03 -5.0035380E-03 -5.2113482E-03
 -5.3645247E-03 -5.4690144E-03 -5.5303713E-03 -5.5537536E-03 -5.5439323E-03
 -5.5053048E-03 -5.4418906E-03 -5.3573679E-03 -5.2550640E-03 -5.1379865E-03
 -5.0088372E-03 -4.8700338E-03 -4.7237277E-03 -4.5718225E-03 -4.4159940E-03
 -4.2577107E-03 -4.0982589E-03 -3.9387466E-03 -3.7801235E-03 -3.6232055E-03
 -3.4686835E-03 -3.3171298E-03 -3.1690255E-03 -3.0247525E-03 -2.8846231E-03
 -2.7488773E-03 -2.6176902E-03 -2.4911882E-03 -2.3694548E-03 -2.2525212E-03
 -2.1403963E-03 -2.0330541E-03 -1.9304405E-03 -1.8324867E-03 -1.7391036E-03
 -1.6501835E-03 -1.5656104E-03 -1.4852616E-03 -1.4089971E-03 -1.3366842E-03
 -1.2681752E-03 -1.2033272E-03 -1.1419895E-03 -1.0840142E-03 -1.0292578E-03
 -9.7757322E-04 -9.2881062E-04 -8.8283169E-04 -8.3949551E-04 -7.9866970E-04
 -7.6021644E-04
 4.0238492E-02 3.8855195E-02 3.7413556E-02 3.5933405E-02 3.4432281E-02
 3.2925427E-02 3.1425852E-02 2.9944498E-02 2.8490368E-02 2.7070750E-02
 2.5691360E-02 2.4356544E-02 2.3069451E-02 2.1832179E-02 2.0645984E-02
 1.9511325E-02 1.8428097E-02 1.7395684E-02 1.6413089E-02 1.5479031E-02
 1.4592015E-02 1.3750403E-02 1.2952477E-02 1.2196464E-02 1.1480587E-02
 1.0803079E-02 1.0162206E-02 9.5562618E-03 8.9836121E-03 8.4426496E-03
 7.9318453E-03 7.4497089E-03 6.9948179E-03 6.5658130E-03 6.1613666E-03
 5.7802214E-03 5.4211724E-03 5.0830659E-03 4.7647851E-03 4.4652731E-03
 4.1835280E-03 3.9185761E-03 3.6694990E-03 3.4354178E-03 3.2154943E-03
 3.0089398E-03 2.8149926E-03 2.6329353E-03 2.4620867E-03 2.3017982E-03
 2.1514616E-03 2.0104935E-03 1.8783471E-03 1.7544993E-03 1.6384650E-03
 1.5297739E-03 1.4279955E-03 1.3327163E-03 1.2435445E-03 1.1601130E-03
 1.0820829E-03 1.0091215E-03 9.4092602E-04 8.7720872E-04 8.1769773E-04
 7.6213840E-04 7.1028748E-04 6.6192029E-04 6.1682391E-04 5.7479710E-04
 5.3564936E-04
 1.7107980E-02 1.4466860E-02 1.2040632E-02 9.8228622E-03 7.8053838E-03
 5.9787771E-03 4.3328395E-03 2.8569042E-03 1.5401482E-03 3.7179099E-04
 -6.5875327E-04 -1.5617515E-03 -2.3470933E-03 -3.0242545E-03 -3.6022498E-03
 -4.0896595E-03 -4.4946112E-03 -4.8247846E-03 -5.0874334E-03 -5.2893753E-03
 -5.4370044E-03 -5.5363062E-03 -5.5928500E-03 -5.6117973E-03 -5.5979248E-03
 -5.5556106E-03 -5.4888665E-03 -5.4013440E-03 -5.2963533E-03 -5.1768767E-03
 -5.0455909E-03 -4.9048932E-03 -4.7569084E-03 -4.6035186E-03 -4.4463854E-03
 -4.2869607E-03 -4.1265050E-03 -3.9661112E-03 -3.8067261E-03 -3.6491507E-03
 -3.4940573E-03 -3.3420178E-03 -3.1934970E-03 -3.0488716E-03 -2.9084510E-03
 -2.7724607E-03 -2.6410795E-03 -2.5144238E-03 -2.3925677E-03 -2.2755498E-03
 -2.1633676E-03 -2.0559912E-03 -1.9533671E-03 -1.8554222E-03 -1.7620603E-03
 -1.6731772E-03 -1.5886538E-03 -1.5083558E-03 -1.4321520E-03 -1.3599015E-03
 -1.2914534E-03 -1.2266663E-03 -1.1653835E-03 -1.1074577E-03 -1.0527392E-03
 -1.0010796E-03 -9.5232792E-04 -9.0634439E-04 -8.6298579E-04 -8.2211022E-04
 -7.8358920E-04
 4.0508378E-02 3.9120823E-02 3.7674792E-02 3.6190178E-02 3.4684550E-02
 3.3173170E-02 3.1669047E-02 3.0183099E-02 2.8724309E-02 2.7299922E-02
 2.5915617E-02 2.4575694E-02 2.3283279E-02 2.2040449E-02 2.0848423E-02
 1.9707683E-02 1.8618129E-02 1.7579177E-02 1.6589861E-02 1.5648937E-02
 1.4754961E-02 1.3906363E-02 1.3101454E-02 1.2338513E-02 1.1615813E-02
 1.0931619E-02 1.0284220E-02 9.6719516E-03 9.0931850E-03 8.5463366E-03
 8.0298781E-03 7.5423350E-03 7.0822770E-03 6.6483426E-03 6.2392089E-03
 5.8536185E-03 5.4903496E-03 5.1482371E-03 4.8261718E-03 4.5230878E-03
 4.2379615E-03 3.9698198E-03 3.7177345E-03 3.4808223E-03 3.2582371E-03
 3.0491771E-03 2.8528755E-03 2.6686140E-03 2.4956982E-03 2.3334774E-03
 2.1813333E-03 2.0386805E-03 1.9049665E-03 1.7796612E-03 1.6622747E-03
 1.5523367E-03 1.4494099E-03 1.3530727E-03 1.2629337E-03 1.1786239E-03
 1.0997960E-03 1.0261139E-03 9.5727562E-04 8.9298334E-04 8.3296292E-04
 7.7696075E-04 7.2472444E-04 6.7602861E-04 6.3065113E-04 5.8838743E-04
 5.4904580E-04
 1.6925229E-02 1.4283709E-02 1.1858074E-02 9.6418541E-03 7.6268306E-03
 5.8035217E-03 4.1616536E-03 2.6904952E-03 1.3791396E-03 2.1672649E-04
 -8.0741581E-04 -1.7036521E-03 -2.4819644E-03 -3.1519299E-03 -3.7226612E-03
 -4.2028348E-03 -4.6006702E-03 -4.9239285E-03 -5.1799282E-03 -5.3755441E-03
 -5.5172173E-03 -5.6109526E-03 -5.6623393E-03 -5.6765475E-03 -5.6583364E-03
 -5.6120832E-03 -5.5417772E-03 -5.4510473E-03 -5.3431778E-03 -5.2211271E-03
 -5.0875498E-03 -4.9448120E-03 -4.7950200E-03 -4.6400363E-03 -4.4814949E-03
 -4.3208259E-03 -4.1592843E-03 -3.9979429E-03 -3.8377300E-03 -3.6794320E-03
 -3.5237176E-03 -3.3711409E-03 -3.2221659E-03 -3.0771566E-03 -2.9364098E-03
 -2.8001533E-03 -2.6685514E-03 -2.5417202E-03 -2.4197295E-03 -2.3026066E-03
 -2.1903531E-03 -2.0829292E-03 -1.9802803E-03 -1.8823280E-03 -1.7889752E-03
 -1.7001134E-03 -1.6156146E-03 -1.5353520E-03 -1.4591850E-03 -1.3869673E-03
 -1.3185519E-03 -1.2537860E-03 -1.1925201E-03 -1.1345909E-03 -1.0798579E-03
 -1.0281618E-03 -9.7935577E-04 -9.3329046E-04 -8.8982529E-04 -8.4882037E-04
 -8.1013388E-04
 4.0813267E-02 3.9420810E-02 3.7969708E-02 3.6479909E-02 3.4969024E-02
 3.3452332E-02 3.1942829E-02 3.0451428E-02 2.8987078E-02 2.7556987E-02
 2.6166797E-02 2.4820777E-02 2.3522027E-02 2.2272604E-02 2.1073719E-02
 1.9925870E-02 1.8828973E-02 1.7782466E-02 1.6785445E-02 1.5836706E-02
 1.4934866E-02 1.4078384E-02 1.3265647E-02 1.2494985E-02 1.1764691E-02
 1.1073073E-02 1.0418467E-02 9.7992113E-03 9.2137009E-03 8.6603723E-03
 8.1376983E-03 7.6442100E-03 7.1784803E-03 6.7391414E-03 6.3248696E-03
 5.9343986E-03 5.5665039E-03 5.2200113E-03 4.8938086E-03 4.5868079E-03
 4.2979880E-03 4.0263645E-03 3.7710019E-03 3.5310001E-03 3.3055113E-03
 3.0937260E-03 2.8948719E-03 2.7082167E-03 2.5330579E-03 2.3687496E-03
 2.2146567E-03 2.0701950E-03 1.9347916E-03 1.8079317E-03 1.6891068E-03
 1.5778445E-03 1.4736988E-03 1.3762511E-03 1.2851019E-03 1.1998750E-03
 1.1202167E-03 1.0457970E-03 9.7629498E-04 9.1141911E-04 8.5088721E-04
 7.9443591E-04 7.4181147E-04 6.9277885E-04 6.4712082E-04 6.0461654E-04
 5.6507642E-04
 1.6722037E-02 1.4080268E-02 1.1655512E-02 9.4412453E-03 7.4291732E-03
 5.6097503E-03 3.9726216E-03 2.5069639E-03 1.2017759E-03 4.6101668E-05
 -9.7083900E-04 -1.8595133E-03 -2.6300235E-03 -3.2920460E-03 -3.8548110E-03
 -4.3270909E-03 -4.7171982E-03 -5.0329799E-03 -5.2818204E-03 -5.4706503E-03
 -5.6059412E-03 -5.6937342E-03 -5.7396218E-03 -5.7487735E-03 -5.7259449E-03
 -5.6754942E-03 -5.6013889E-03 -5.5072377E-03 -5.3962963E-03 -5.2714953E-03
 -5.1354631E-03 -4.9905432E-03 -4.8388136E-03 -4.6821092E-03 -4.5220521E-03
 -4.3600495E-03 -4.1973344E-03 -4.0349625E-03 -3.8738488E-03 -3.7147715E-03
 -3.5583796E-03 -3.4052222E-03 -3.2557433E-03 -3.1103087E-03 -2.9692054E-03
 -2.8326486E-03 -2.7007996E-03 -2.5737679E-03 -2.4516163E-03 -2.3343679E-03
 -2.2220188E-03 -2.1145269E-03 -2.0118307E-03 -1.9138453E-03 -1.8204728E-03
 -1.7315976E-03 -1.6470965E-03 -1.5668317E-03 -1.4906562E-03 -1.4184276E-03
 -1.3499879E-03 -1.2851860E-03 -1.2238629E-03 -1.1658651E-03 -1.1110316E-03
 -1.0592130E-03 -1.0102539E-03 -9.6400658E-04 -9.2032459E-04 -8.7906397E-04
 -8.4009115E-04
 4.1157849E-02 3.9759748E-02 3.8302761E-02 3.6806908E-02 3.5289854E-02
 3.3766877E-02 3.2251000E-02 3.0753091E-02 2.9282097E-02 2.7845182E-02
 2.6447950E-02 2.5094654E-02 2.3788365E-02 2.2531137E-02 2.1324197E-02
 2.0168042E-02 1.9062622E-02 1.8007426E-02 1.7001592E-02 1.6043968E-02
 1.5133233E-02 1.4267902E-02 1.3446406E-02 1.2667120E-02 1.1928390E-02
 1.1228560E-02 1.0565979E-02 9.9390158E-03 9.3460884E-03 8.7856250E-03
 8.2561234E-03 7.7561145E-03 7.2841663E-03 6.8389084E-03 6.4190128E-03
 6.0232026E-03 5.6502507E-03 5.2989745E-03 4.9682450E-03 4.6569780E-03
 4.3641306E-03 4.0887110E-03 3.8297796E-03 3.5864206E-03 3.3577832E-03
 3.1430428E-03 2.9414187E-03 2.7521795E-03 2.5746084E-03 2.4080514E-03
 2.2518665E-03 2.1054661E-03 1.9682660E-03 1.8397521E-03 1.7194026E-03
 1.6067446E-03 1.5013273E-03 1.4027141E-03 1.3105124E-03 1.2243334E-03
 1.1438250E-03 1.0686434E-03 9.9846523E-04 9.3299459E-04 8.7193731E-04
 8.1502460E-04 7.6200411E-04 7.1262830E-04 6.6666800E-04 6.2390737E-04
 5.8414118E-04
 1.6496452E-02 1.3854656E-02 1.1431131E-02 9.2192935E-03 7.2107702E-03
 5.3959284E-03 3.7642971E-03 2.3049605E-03 1.0067984E-03 -1.4126382E-04
 -1.1501291E-03 -2.0303875E-03 -2.7922704E-03 -3.4455634E-03 -3.9996235E-03
 -4.4633290E-03 -4.8450860E-03 -5.1528229E-03 -5.3939875E-03 -5.5755596E-03
 -5.7040513E-03 -5.7855165E-03 -5.8255601E-03 -5.8293450E-03 -5.8016153E-03
 -5.7467069E-03 -5.6685703E-03 -5.5707823E-03 -5.4565715E-03 -5.3288448E-03
 -5.1901969E-03 -5.0429436E-03 -4.8891394E-03 -4.7305976E-03 -4.5689107E-03
 -4.4054701E-03 -4.2414884E-03 -4.0780073E-03 -3.9159227E-03 -3.7559974E-03
 -3.5988679E-03 -3.4450737E-03 -3.2950446E-03 -3.1491404E-03 -3.0076371E-03
 -2.8707413E-03 -2.7386127E-03 -2.6113456E-03 -2.4889992E-03 -2.3715927E-03
 -2.2591136E-03 -2.1515149E-03 -2.0487329E-03 -1.9506764E-03 -1.8572424E-03
 -1.7683100E-03 -1.6837472E-03 -1.6034151E-03 -1.5271683E-03 -1.4548496E-03
 -1.3863076E-03 -1.3213789E-03 -1.2599042E-03 -1.2017252E-03 -1.1466793E-03
 -1.0946169E-03 -1.0453730E-03 -9.9880260E-04 -9.5475890E-04 -9.1309426E-04
 -8.7367778E-04
 4.1547503E-02 4.0142849E-02 3.8678989E-02 3.7176035E-02 3.5651695E-02
 3.4121271E-02 3.2597780E-02 3.1092107E-02 2.9613143E-02 2.8168043E-02
 2.6762396E-02 2.5400424E-02 2.4085185E-02 2.2818748E-02 2.1602346E-02
 2.0436512E-02 1.9321240E-02 1.8256065E-02 1.7240169E-02 1.6272470E-02
 1.5351696E-02 1.4476431E-02 1.3645144E-02 1.2856266E-02 1.2108171E-02
 1.1399246E-02 1.0727860E-02 1.0092413E-02 9.4913207E-03 8.9230305E-03
 8.3860457E-03 7.8788847E-03 7.4001262E-03 6.9483961E-03 6.5223575E-03
 6.1207223E-03 5.7422519E-03 5.3857579E-03 5.0501018E-03 4.7341832E-03
 4.4369576E-03 4.1574179E-03 3.8946103E-03 3.6476171E-03 3.4155699E-03
 3.1976423E-03 2.9930400E-03 2.8010153E-03 2.6208574E-03 2.4518936E-03
 2.2934787E-03 2.1450133E-03 2.0059152E-03 1.8756473E-03 1.7536948E-03
 1.6395749E-03 1.5328201E-03 1.4330019E-03 1.3397058E-03 1.2525498E-03
 1.1711627E-03 1.0951967E-03 1.0243251E-03 9.5823733E-04 8.9663651E-04
 8.3924213E-04 7.8579976E-04 7.3604716E-04 6.8975409E-04 6.4669503E-04
 6.0665258E-04
 1.6246434E-02 1.3604901E-02 1.1183057E-02 8.9742308E-03 6.9699562E-03
 5.1604803E-03 3.5352227E-03 2.0831202E-03 7.9293200E-04 -3.4656859E-04
 -1.3464171E-03 -2.2173505E-03 -2.9697355E-03 -3.6134862E-03 -4.1580866E-03
 -4.6125241E-03 -4.9852994E-03 -5.2844146E-03 -5.5173896E-03 -5.6912424E-03
 -5.8125146E-03 -5.8872751E-03 -5.9211319E-03 -5.9192386E-03 -5.8863279E-03
 -5.8267070E-03 -5.7443040E-03 -5.6426637E-03 -5.5249883E-03 -5.3941538E-03
 -5.2527250E-03 -5.1029916E-03 -4.9469755E-03 -4.7864681E-03 -4.6230387E-03
 -4.4580586E-03 -4.2927163E-03 -4.1280361E-03 -3.9649014E-03 -3.8040567E-03
 -3.6461251E-03 -3.4916303E-03 -3.3410005E-03 -3.1945726E-03 -3.0526188E-03
 -2.9153372E-03 -2.7828757E-03 -2.6553278E-03 -2.5327413E-03 -2.4151294E-03
 -2.3024685E-03 -2.1947136E-03 -2.0917859E-03 -1.9935924E-03 -1.9000238E-03
 -1.8109563E-03 -1.7262531E-03 -1.6457657E-03 -1.5693437E-03 -1.4968294E-03
 -1.4280617E-03 -1.3628795E-03 -1.3011195E-03 -1.2426105E-03 -1.1872000E-03
 -1.1347244E-03 -1.0850274E-03 -1.0379576E-03 -9.9336740E-04 -9.5111795E-04
 -9.1106660E-04
 4.1988332E-02 4.0576015E-02 3.9104085E-02 3.7592746E-02 3.6059752E-02
 3.4520451E-02 3.2987870E-02 3.1472877E-02 2.9984368E-02 2.8529463E-02
 2.7113747E-02 2.5741437E-02 2.4415605E-02 2.3138328E-02 2.1910859E-02
 2.0733790E-02 1.9607147E-02 1.8530533E-02 1.7503178E-02 1.6524076E-02
 1.5592006E-02 1.4705602E-02 1.3863390E-02 1.3063846E-02 1.2305380E-02
 1.1586403E-02 1.0905313E-02 1.0260525E-02 9.6504642E-03 9.0735964E-03
 8.5284077E-03 8.0134338E-03 7.5272350E-03 7.0684347E-03 6.6356915E-03
 6.2277066E-03 5.8432291E-03 5.4810620E-03 5.1400508E-03 4.8190900E-03
 4.5171143E-03 4.2331135E-03 3.9661173E-03 3.7152022E-03 3.4794831E-03
 3.2581259E-03 3.0503266E-03 2.8553260E-03 2.6724038E-03 2.5008779E-03
 2.3400974E-03 2.1894486E-03 2.0483495E-03 1.9162431E-03 1.7926136E-03
 1.6769634E-03 1.5688221E-03 1.4677478E-03 1.3733233E-03 1.2851509E-03
 1.2028547E-03 1.1260741E-03 1.0544766E-03 9.8773849E-04 9.2555792E-04
 8.6764398E-04 8.1372814E-04 7.6354382E-04 7.1685412E-04 6.7342009E-04
 6.3302397E-04
 1.5969895E-02 1.3329012E-02 1.0909395E-02 8.7042712E-03 6.7050555E-03
 4.9018543E-03 3.2839295E-03 1.8400797E-03 5.5888714E-04 -5.7102530E-04
 -1.5608636E-03 -2.4215283E-03 -3.1635067E-03 -3.7968841E-03 -4.3312595E-03
 -4.7757300E-03 -5.1388899E-03 -5.4288236E-03 -5.6530973E-03 -5.8187726E-03
 -5.9324158E-03 -6.0001048E-03 -6.0274387E-03 -6.0195648E-03 -5.9811920E-03
 -5.9166066E-03 -5.8297045E-03 -5.7240012E-03 -5.6026690E-03 -5.4685436E-03
 -5.3241691E-03 -5.1717996E-03 -5.0134342E-03 -4.8508369E-03 -4.6855463E-03
 -4.5189164E-03 -4.3521132E-03 -4.1861450E-03 -4.0218732E-03 -3.8600275E-03
 -3.7012219E-03 -3.5459585E-03 -3.3946563E-03 -3.2476422E-03 -3.1051773E-03
 -2.9674473E-03 -2.8345934E-03 -2.7067007E-03 -2.5838043E-03 -2.4659131E-03
 -2.3529991E-03 -2.2450010E-03 -2.1418403E-03 -2.0434193E-03 -1.9496136E-03
 -1.8602986E-03 -1.7753276E-03 -1.6945546E-03 -1.6178171E-03 -1.5449540E-03
 -1.4757989E-03 -1.4101897E-03 -1.3479531E-03 -1.2889312E-03 -1.2329499E-03
 -1.1798586E-03 -1.1294967E-03 -1.0817120E-03 -1.0363621E-03 -9.9330244E-04
 -9.5239677E-04
 4.2487249E-02 4.1065916E-02 3.9584450E-02 3.8063146E-02 3.6519840E-02
 3.4969918E-02 3.3426430E-02 3.1900253E-02 3.0400282E-02 2.8933642E-02
 2.7505917E-02 2.6121339E-02 2.4782993E-02 2.3492988E-02 2.2252625E-02
 2.1062545E-02 1.9922823E-02 1.8833131E-02 1.7792771E-02 1.6800787E-02
 1.5856024E-02 1.4957165E-02 1.4102783E-02 1.3291397E-02 1.2521452E-02
 1.1791389E-02 1.1099618E-02 1.0444567E-02 9.8246755E-03 9.2384024E-03
 8.6842487E-03 8.1607392E-03 7.6664253E-03 7.1999230E-03 6.7598820E-03
 6.3449922E-03 5.9539932E-03 5.5856653E-03 5.2388604E-03 4.9124388E-03
 4.6053333E-03 4.3165218E-03 4.0450180E-03 3.7898831E-03 3.5502287E-03
 3.3251976E-03 3.1139830E-03 2.9158182E-03 2.7299626E-03 2.5557240E-03
 2.3924464E-03 2.2395016E-03 2.0962968E-03 1.9622678E-03 1.8368849E-03
 1.7196432E-03 1.6100603E-03 1.5076837E-03 1.4120812E-03 1.3228481E-03
 1.2395933E-03 1.1619540E-03 1.0895770E-03 1.0221298E-03 9.5930108E-04
 9.0079202E-04 8.4632280E-04 7.9561648E-04 7.4842799E-04 7.0451264E-04
 6.6364399E-04
 1.5664745E-02 1.3024998E-02 1.0608269E-02 8.4076561E-03 6.4144214E-03
 4.6185013E-03 3.0089894E-03 1.5744857E-03 3.0338956E-04 -8.1586069E-04
 -1.7946506E-03 -2.6440567E-03 -3.3747293E-03 -3.9968961E-03 -4.5202821E-03
 -4.9540992E-03 -5.3070295E-03 -5.5872235E-03 -5.8023008E-03 -5.9593595E-03
 -6.0649752E-03 -6.1252299E-03 -6.1457204E-03 -6.1315689E-03 -6.0874680E-03
 -6.0176696E-03 -5.9260414E-03 -5.8160638E-03 -5.6908787E-03 -5.5532889E-03
 -5.4058027E-03 -5.2506458E-03 -5.0897882E-03 -4.9249632E-03 -4.7576912E-03
 -4.5892997E-03 -4.4209287E-03 -4.2535733E-03 -4.0880698E-03 -3.9251354E-03
 -3.7653658E-03 -3.6092519E-03 -3.4571989E-03 -3.3095160E-03 -3.1664555E-03
 -3.0281979E-03 -2.8948660E-03 -2.7665324E-03 -2.6432320E-03 -2.5249643E-03
 -2.4116829E-03 -2.3033272E-03 -2.1998084E-03 -2.1010179E-03 -2.0068295E-03
 -1.9171048E-03 -1.8316990E-03 -1.7504528E-03 -1.6732072E-03 -1.5997876E-03
 -1.5300333E-03 -1.4637696E-03 -1.4008270E-03 -1.3410436E-03 -1.2842511E-03
 -1.2302927E-03 -1.1790111E-03 -1.1302605E-03 -1.0838934E-03 -1.0397730E-03
 -9.9777244E-04
 4.3052092E-02 4.1620072E-02 4.0127251E-02 3.8594048E-02 3.7038390E-02
 3.5475716E-02 3.3919126E-02 3.2379515E-02 3.0865811E-02 2.9385153E-02
 2.7943134E-02 2.6544029E-02 2.5190957E-02 2.3886073E-02 2.2630733E-02
 2.1425631E-02 2.0270927E-02 1.9166345E-02 1.8111251E-02 1.7104756E-02
 1.6145758E-02 1.5232996E-02 1.4365090E-02 1.3540580E-02 1.2757959E-02
 1.2015674E-02 1.1312157E-02 1.0645852E-02 1.0015193E-02 9.4186477E-03
 8.8547049E-03 8.3218860E-03 7.8187352E-03 7.3438622E-03 6.8958947E-03
 6.4735175E-03 6.0754558E-03 5.7004718E-03 5.3473939E-03 5.0150896E-03
 4.7024656E-03 4.4084811E-03 4.1321442E-03 3.8724970E-03 3.6286362E-03
 3.3996946E-03 3.1848564E-03 2.9833291E-03 2.7943731E-03 2.6172809E-03
 2.4513784E-03 2.2960242E-03 2.1506199E-03 2.0145813E-03 1.8873723E-03
 1.7684647E-03 1.6573735E-03 1.5536288E-03 1.4567835E-03 1.3664202E-03
 1.2821408E-03 1.2035577E-03 1.1303135E-03 1.0620657E-03 9.9848653E-04
 9.3926839E-04 8.8411733E-04 8.3275617E-04 7.8492431E-04 7.4037065E-04
 6.9886650E-04
 1.5328933E-02 1.2690934E-02 1.0277870E-02 8.0826906E-03 6.0964711E-03
 4.3089497E-03 2.7090043E-03 1.2850127E-03 2.5169038E-05 -1.0823091E-03
 -2.0490107E-03 -2.8861642E-03 -3.6046219E-03 -4.2147511E-03 -4.7264048E-03
 -5.1489053E-03 -5.4910085E-03 -5.7609370E-03 -5.9663458E-03 -6.1143627E-03
 -6.2115737E-03 -6.2640533E-03 -6.2773847E-03 -6.2566772E-03 -6.2065832E-03
 -6.1313333E-03 -6.0347579E-03 -5.9202998E-03 -5.7910695E-03 -5.6498358E-03
 -5.4990714E-03 -5.3409715E-03 -5.1774764E-03 -5.0102896E-03 -4.8409076E-03
 -4.6706293E-03 -4.5005768E-03 -4.3317205E-03 -4.1648806E-03 -4.0007522E-03
 -3.8399182E-03 -3.6828511E-03 -3.5299386E-03 -3.3814835E-03 -3.2377227E-03
 -3.0988189E-03 -2.9648868E-03 -2.8359930E-03 -2.7121522E-03 -2.5933585E-03
 -2.4795551E-03 -2.3706760E-03 -2.2666173E-03 -2.1672670E-03 -2.0724852E-03
 -1.9821413E-03 -1.8960683E-03 -1.8141095E-03 -1.7360955E-03 -1.6618581E-03
 -1.5912274E-03 -1.5240281E-03 -1.4600954E-03 -1.3992598E-03 -1.3413634E-03
 -1.2862431E-03 -1.2337567E-03 -1.1837486E-03 -1.1360873E-03 -1.0906368E-03
 -1.0472743E-03
 4.3691691E-02 4.2246912E-02 4.0740497E-02 3.9193008E-02 3.7622493E-02
 3.6044486E-02 3.4472145E-02 3.2916423E-02 3.1386275E-02 2.9888902E-02
 2.8429940E-02 2.7013700E-02 2.5643369E-02 2.4321161E-02 2.3048494E-02
 2.1826141E-02 2.0654321E-02 1.9532824E-02 1.8461093E-02 1.7438298E-02
 1.6463386E-02 1.5535132E-02 1.4652218E-02 1.3813199E-02 1.3016589E-02
 1.2260864E-02 1.1544460E-02 1.0865824E-02 1.0223395E-02 9.6156392E-03
 9.0410337E-03 8.4980847E-03 7.9853376E-03 7.5013777E-03 7.0448280E-03
 6.6143498E-03 6.2086540E-03 5.8264928E-03 5.4666726E-03 5.1280432E-03
 4.8094979E-03 4.5099827E-03 4.2284792E-03 3.9640213E-03 3.7156958E-03
 3.4826107E-03 3.2639334E-03 3.0588682E-03 2.8666456E-03 2.6865527E-03
 2.5178927E-03 2.3600222E-03 2.2123097E-03 2.0741685E-03 1.9450367E-03
 1.8243799E-03 1.7116907E-03 1.6064843E-03 1.5083014E-03 1.4167096E-03
 1.3312867E-03 1.2516427E-03 1.1774013E-03 1.1082084E-03 1.0437240E-03
 9.8362821E-04 9.2762290E-04 8.7542174E-04 8.2674989E-04 7.8135816E-04
 7.3900673E-04
 1.4960553E-02 1.2325013E-02 9.9165114E-03 7.7277985E-03 5.7497281E-03
 3.9717946E-03 2.3826300E-03 9.7036432E-04 -2.7705487E-04 -1.3716365E-03
 -2.3251870E-03 -3.1491360E-03 -3.8545015E-03 -4.4518025E-03 -4.9510184E-03
 -5.3615649E-03 -5.6922864E-03 -5.9514488E-03 -6.1467509E-03 -6.2853280E-03
 -6.3737743E-03 -6.4181588E-03 -6.4240377E-03 -6.3964990E-03 -6.3401666E-03
 -6.2592328E-03 -6.1574914E-03 -6.0383556E-03 -5.9048906E-03 -5.7598324E-03
 -5.6056194E-03 -5.4444200E-03 -5.2781329E-03 -5.1084417E-03 -4.9368097E-03
 -4.7645108E-03 -4.5926468E-03 -4.4221622E-03 -4.2538592E-03 -4.0884102E-03
 -3.9263819E-03 -3.7682301E-03 -3.6143260E-03 -3.4649577E-03 -3.3203440E-03
 -3.1806398E-03 -3.0459459E-03 -2.9163084E-03 -2.7917428E-03 -2.6722203E-03
 -2.5576828E-03 -2.4480454E-03 -2.3432034E-03 -2.2430331E-03 -2.1473931E-03
 -2.0561363E-03 -1.9690942E-03 -1.8861137E-03 -1.8070153E-03 -1.7316303E-03
 -1.6597905E-03 -1.5913217E-03 -1.5260576E-03 -1.4638337E-03 -1.4044980E-03
 -1.3478914E-03 -1.2938712E-03 -1.2422986E-03 -1.1930407E-03 -1.1459718E-03
 -1.1009730E-03
 4.4415932E-02 4.2955827E-02 4.1433044E-02 3.9868344E-02 3.8279939E-02
 3.6683466E-02 3.5092197E-02 3.3517171E-02 3.1967409E-02 3.0450188E-02
 2.8971210E-02 2.7534859E-02 2.6144391E-02 2.4802096E-02 2.3509480E-02
 2.2267368E-02 2.1076068E-02 1.9935444E-02 1.8844986E-02 1.7803919E-02
 1.6811244E-02 1.5865792E-02 1.4966246E-02 1.4111212E-02 1.3299212E-02
 1.2528725E-02 1.1798204E-02 1.1106086E-02 1.0450816E-02 9.8308437E-03
 9.2446376E-03 8.6907009E-03 8.1675509E-03 7.6737646E-03 7.2079385E-03
 6.7687212E-03 6.3548093E-03 5.9649348E-03 5.5978824E-03 5.2524796E-03
 4.9276091E-03 4.6221907E-03 4.3351981E-03 4.0656417E-03 3.8125797E-03
 3.5751178E-03 3.3523988E-03 3.1436041E-03 2.9479524E-03 2.7647051E-03
 2.5931566E-03 2.4326358E-03 2.2824958E-03 2.1421318E-03 2.0109641E-03
 1.8884350E-03 1.7740206E-03 1.6672208E-03 1.5675570E-03 1.4745775E-03
 1.3878536E-03 1.3069699E-03 1.2315399E-03 1.1611986E-03 1.0955967E-03
 1.0344052E-03 9.7731210E-04 9.2402601E-04 8.7427057E-04 8.2778477E-04
 7.8433350E-04
 1.4557917E-02 1.1925657E-02 9.5227044E-03 7.3415725E-03 5.3728409E-03
 3.6057394E-03 2.0285957E-03 6.2927307E-04 -6.0455763E-04 -1.6851528E-03
 -2.6245471E-03 -3.4343689E-03 -4.1258149E-03 -4.7095488E-03 -5.1956708E-03
 -5.5936864E-03 -5.9125102E-03 -6.1604502E-03 -6.3452357E-03 -6.4740116E-03
 -6.5533672E-03 -6.5893517E-03 -6.5875049E-03 -6.5528788E-03 -6.4900662E-03
 -6.4032255E-03 -6.2961099E-03 -6.1720940E-03 -6.0342066E-03 -5.8851442E-03
 -5.7273149E-03 -5.5628428E-03 -5.3936052E-03 -5.2212491E-03 -5.0472114E-03
 -4.8727421E-03 -4.6989135E-03 -4.5266454E-03 -4.3567223E-03 -4.1897967E-03
 -4.0264102E-03 -3.8670013E-03 -3.7119261E-03 -3.5614544E-03 -3.4157911E-03
 -3.2750715E-03 -3.1393815E-03 -3.0087633E-03 -2.8832105E-03 -2.7626869E-03
 -2.6471200E-03 -2.5364233E-03 -2.4304755E-03 -2.3291472E-03 -2.2322934E-03
 -2.1397590E-03 -2.0513812E-03 -1.9669938E-03 -1.8864231E-03 -1.8095014E-03
 -1.7360614E-03 -1.6659298E-03 -1.5989527E-03 -1.5349678E-03 -1.4738237E-03
 -1.4153739E-03 -1.3594807E-03 -1.3060139E-03 -1.2548468E-03 -1.2058640E-03
 -1.1589510E-03
 4.5235876E-02 4.3757237E-02 4.2214673E-02 4.0629193E-02 3.9019197E-02
 3.7400518E-02 3.5786550E-02 3.4188457E-02 3.2615382E-02 3.1074690E-02
 2.9572180E-02 2.8112330E-02 2.6698487E-02 2.5333021E-02 2.4017511E-02
 2.2752889E-02 2.1539504E-02 2.0377299E-02 1.9265827E-02 1.8204352E-02
 1.7191922E-02 1.6227392E-02 1.5309476E-02 1.4436794E-02 1.3607879E-02
 1.2821218E-02 1.2075256E-02 1.1368433E-02 1.0699177E-02 1.0065929E-02
 9.4671408E-03 8.9012953E-03 8.3669005E-03 7.8625074E-03 7.3866895E-03
 6.9380817E-03 6.5153507E-03 6.1172107E-03 5.7424274E-03 5.3898059E-03
 5.0582001E-03 4.7465186E-03 4.4537019E-03 4.1787489E-03 3.9206902E-03
 3.6786117E-03 3.4516356E-03 3.2389169E-03 3.0396562E-03 2.8530890E-03
 2.6784891E-03 2.5151637E-03 2.3624401E-03 2.2196951E-03 2.0863237E-03
 1.9617514E-03 1.8454316E-03 1.7368459E-03 1.6354924E-03 1.5409086E-03
 1.4526438E-03 1.3702785E-03 1.2934059E-03 1.2216474E-03 1.1546505E-03
 1.0920720E-03 1.0336003E-03 9.7893330E-04 9.2779385E-04 8.7991689E-04
 8.3506329E-04
 1.4119637E-02 1.1491560E-02 9.0952013E-03 6.9227987E-03 4.9646297E-03
 3.2095839E-03 1.6456839E-03 2.6046898E-04 -9.5866580E-04 -2.0242645E-03
 -2.9485554E-03 -3.7434113E-03 -4.4201883E-03 -4.9896925E-03 -5.4621324E-03
 -5.8470997E-03 -6.1535672E-03 -6.3898796E-03 -6.5637832E-03 -6.6824267E-03
 -6.7523876E-03 -6.7796973E-03 -6.7698662E-03 -6.7279153E-03 -6.6583962E-03
 -6.5654316E-03 -6.4527346E-03 -6.3236398E-03 -6.1811339E-03 -6.0278820E-03
 -5.8662500E-03 -5.6983298E-03 -5.5259597E-03 -5.3507611E-03 -5.1741414E-03
 -4.9973167E-03 -4.8213378E-03 -4.6470999E-03 -4.4753598E-03 -4.3067480E-03
 -4.1417861E-03 -3.9808932E-03 -3.8244044E-03 -3.6725728E-03 -3.5255854E-03
 -3.3835624E-03 -3.2465728E-03 -3.1146433E-03 -2.9877597E-03 -2.8658707E-03
 -2.7488980E-03 -2.6367402E-03 -2.5292775E-03 -2.4263661E-03 -2.3278610E-03
 -2.2336098E-03 -2.1434433E-03 -2.0571947E-03 -1.9747033E-03 -1.8957945E-03
 -1.8203114E-03 -1.7480912E-03 -1.6789776E-03 -1.6128218E-03 -1.5494794E-03
 -1.4888142E-03 -1.4306970E-03 -1.3750022E-03 -1.3216130E-03 -1.2704217E-03
 -1.2213250E-03
 4.6163745E-02 4.4662606E-02 4.3096073E-02 4.1485474E-02 3.9849468E-02
 3.8204107E-02 3.6562998E-02 3.4937467E-02 3.3336796E-02 3.1768490E-02
 3.0238461E-02 2.8751301E-02 2.7310450E-02 2.5918379E-02 2.4576752E-02
 2.3286561E-02 2.2048250E-02 2.0861797E-02 1.9726805E-02 1.8642599E-02
 1.7608238E-02 1.6622605E-02 1.5684439E-02 1.4792358E-02 1.3944894E-02
 1.3140545E-02 1.2377736E-02 1.1654897E-02 1.0970443E-02 1.0322798E-02
 9.7103929E-03 9.1316849E-03 8.5851625E-03 8.0693504E-03 7.5828056E-03
 7.1241264E-03 6.6919657E-03 6.2850001E-03 5.9019788E-03 5.5416813E-03
 5.2029332E-03 4.8846141E-03 4.5856433E-03 4.3049892E-03 4.0416629E-03
 3.7947206E-03 3.5632460E-03 3.3463852E-03 3.1433078E-03 2.9532160E-03
 2.7753643E-03 2.6090208E-03 2.4535062E-03 2.3081603E-03 2.1723551E-03
 2.0454945E-03 1.9270129E-03 1.8163652E-03 1.7130434E-03 1.6165567E-03
 1.5264440E-03 1.4422712E-03 1.3636212E-03 1.2901090E-03 1.2213716E-03
 1.1570610E-03 1.0968579E-03 1.0404596E-03 9.8758657E-04 9.3797687E-04
 8.9138327E-04
 1.3644776E-02 1.1021787E-02 8.6330660E-03 6.4705145E-03 4.5240587E-03
 2.7822317E-03 1.2326965E-03 -1.3733272E-04 -1.3407842E-03 -2.3904638E-03
 -3.2988463E-03 -4.0780040E-03 -4.7394647E-03 -5.2941679E-03 -5.7524247E-03
 -6.1239004E-03 -6.4176163E-03 -6.6419505E-03 -6.8046558E-03 -6.9128745E-03
 -6.9731735E-03 -6.9915568E-03 -6.9735036E-03 -6.9239987E-03 -6.8475595E-03
 -6.7482553E-03 -6.6297692E-03 -6.4953910E-03 -6.3480679E-03 -6.1904239E-03
 -6.0247858E-03 -5.8532115E-03 -5.6775082E-03 -5.4992563E-03 -5.3198352E-03
 -5.1404350E-03 -4.9620736E-03 -4.7856187E-03 -4.6118032E-03 -4.4412320E-03
 -4.2744069E-03 -4.1117263E-03 -3.9535016E-03 -3.7999635E-03 -3.6512841E-03
 -3.5075690E-03 -3.3688736E-03 -3.2352100E-03 -3.1065466E-03 -2.9828276E-03
 -2.8639645E-03 -2.7498524E-03 -2.6403617E-03 -2.5353511E-03 -2.4346798E-03
 -2.3381847E-03 -2.2457067E-03 -2.1570905E-03 -2.0721660E-03 -1.9907777E-03
 -1.9127723E-03 -1.8379932E-03 -1.7662990E-03 -1.6975506E-03 -1.6316090E-03
 -1.5683505E-03 -1.5076513E-03 -1.4493994E-03 -1.3934840E-03 -1.3398090E-03
 -1.2882734E-03
 4.7212988E-02 4.5684468E-02 4.4088878E-02 4.2447936E-02 4.0780645E-02
 3.9103363E-02 3.7429940E-02 3.5771914E-02 3.4138769E-02 3.2538142E-02
 3.0976111E-02 2.9457375E-02 2.7985491E-02 2.6563020E-02 2.5191706E-02
 2.3872629E-02 2.2606261E-02 2.1392656E-02 2.0231448E-02 1.9121982E-02
 1.8063344E-02 1.7054439E-02 1.6093988E-02 1.5180626E-02 1.4312879E-02
 1.3489218E-02 1.2708067E-02 1.1967824E-02 1.1266899E-02 1.0603672E-02
 9.9765640E-03 9.3839988E-03 8.8244360E-03 8.2963714E-03 7.7983346E-03
 7.3288954E-03 6.8866704E-03 6.4703152E-03 6.0785417E-03 5.7100947E-03
 5.3637787E-03 5.0384398E-03 4.7329632E-03 4.4462872E-03 4.1773878E-03
 3.9252928E-03 3.6890577E-03 3.4677922E-03 3.2606260E-03 3.0667465E-03
 2.8853661E-03 2.7157345E-03 2.5571354E-03 2.4088803E-03 2.2703237E-03
 2.1408419E-03 2.0198505E-03 1.9067813E-03 1.8011087E-03 1.7023352E-03
 1.6099791E-03 1.5235932E-03 1.4427634E-03 1.3670847E-03 1.2961940E-03
 1.2297406E-03 1.1674004E-03 1.1088729E-03 1.0538775E-03 1.0021499E-03
 9.5345190E-04
 1.3132899E-02 1.0515832E-02 8.1356773E-03 5.9839720E-03 4.0502464E-03
 2.3226354E-03 7.8842492E-04 -5.6552904E-04 -1.7524821E-03 -2.7854834E-03
 -3.6772878E-03 -4.4401595E-03 -5.0857849E-03 -5.6252270E-03 -6.0688960E-03
 -6.4265183E-03 -6.7071635E-03 -6.9192243E-03 -7.0704604E-03 -7.1680057E-03
 -7.2184042E-03 -7.2276294E-03 -7.2011324E-03 -7.1438565E-03 -7.0602731E-03
 -6.9544199E-03 -6.8299295E-03 -6.6900514E-03 -6.5376889E-03 -6.3754269E-03
 -6.2055513E-03 -6.0300841E-03 -5.8507966E-03 -5.6692329E-03 -5.4867417E-03
 -5.3044748E-03 -5.1234267E-03 -4.9444344E-03 -4.7682039E-03 -4.5953169E-03
 -4.4262451E-03 -4.2613666E-03 -4.1009719E-03 -3.9452747E-03 -3.7944277E-03
 -3.6485172E-03 -3.5075920E-03 -3.3716438E-03 -3.2406379E-03 -3.1145113E-03
 -2.9931702E-03 -2.8765039E-03 -2.7643843E-03 -2.6566756E-03 -2.5532332E-03
 -2.4539030E-03 -2.3585341E-03 -2.2669749E-03 -2.1790690E-03 -2.0946711E-03
 -2.0136358E-03 -1.9358197E-03 -1.8610924E-03 -1.7893191E-03 -1.7203755E-03
 -1.6541521E-03 -1.5905291E-03 -1.5294072E-03 -1.4706795E-03 -1.4142585E-03
 -1.3600526E-03
 4.8398282E-02 4.6836443E-02 4.5205668E-02 4.3528177E-02 4.1823409E-02
 4.0108100E-02 3.8396399E-02 3.6700118E-02 3.5028953E-02 3.3390734E-02
 3.1791683E-02 3.0236654E-02 2.8729288E-02 2.7272249E-02 2.5867358E-02
 2.4515741E-02 2.3217939E-02 2.1974027E-02 2.0783670E-02 1.9646224E-02
 1.8560788E-02 1.7526260E-02 1.6541362E-02 1.5604710E-02 1.4714814E-02
 1.3870127E-02 1.3069045E-02 1.2309947E-02 1.1591198E-02 1.0911159E-02
 1.0268214E-02 9.6607525E-03 9.0872031E-03 8.5460236E-03 8.0357119E-03
 7.5547956E-03 7.1018636E-03 6.6755270E-03 6.2744650E-03 5.8973893E-03
 5.5430545E-03 5.2102767E-03 4.8979083E-03 4.6048388E-03 4.3300185E-03
 4.0724268E-03 3.8310899E-03 3.6050708E-03 3.3934771E-03 3.1954551E-03
 3.0101819E-03 2.8368777E-03 2.6747957E-03 2.5232225E-03 2.3814898E-03
 2.2489487E-03 2.1249901E-03 2.0090388E-03 1.9005467E-03 1.7989987E-03
 1.7039150E-03 1.6148371E-03 1.5313340E-03 1.4530141E-03 1.3794986E-03
 1.3104390E-03 1.2455118E-03 1.1844189E-03 1.1268765E-03 1.0726309E-03
 1.0214424E-03
 1.2584178E-02 9.9736443E-03 7.6027531E-03 5.4626320E-03 3.5423904E-03
 1.8297319E-03 3.1155034E-04 -1.0256703E-03 -2.1955122E-03 -3.2113118E-03
 -4.0860651E-03 -4.8322268E-03 -5.4616421E-03 -5.9854905E-03 -6.4142728E-03
 -6.7577767E-03 -7.0250989E-03 -7.2246557E-03 -7.3642014E-03 -7.4508563E-03
 -7.4911416E-03 -7.4910009E-03 -7.4558463E-03 -7.3905801E-03 -7.2996360E-03
 -7.1870047E-03 -7.0562735E-03 -6.9106482E-03 -6.7529911E-03 -6.5858434E-03
 -6.4114528E-03 -6.2317974E-03 -6.0486109E-03 -5.8634053E-03 -5.6774877E-03
 -5.4919831E-03 -5.3078509E-03 -5.1258961E-03 -4.9467986E-03 -4.7711153E-03
 -4.5992932E-03 -4.4316808E-03 -4.2685559E-03 -4.1101100E-03 -3.9564813E-03
 -3.8077417E-03 -3.6639264E-03 -3.5250261E-03 -3.3909951E-03 -3.2617662E-03
 -3.1372502E-03 -3.0173322E-03 -2.9018943E-03 -2.7908031E-03 -2.6839199E-03
 -2.5811070E-03 -2.4822159E-03 -2.3871122E-03 -2.2956505E-03 -2.2076969E-03
 -2.1231128E-03 -2.0417785E-03 -1.9635600E-03 -1.8883430E-03 -1.8160164E-03
 -1.7464679E-03 -1.6795994E-03 -1.6153108E-03 -1.5535090E-03 -1.4941067E-03
 -1.4370186E-03
 4.9735542E-02 4.8133235E-02 4.6459999E-02 4.4738680E-02 4.2989250E-02
 4.1228879E-02 3.9472111E-02 3.7731055E-02 3.6015656E-02 3.4333955E-02
 3.2692354E-02 3.1095799E-02 2.9548073E-02 2.8051911E-02 2.6609190E-02
 2.5221087E-02 2.3888176E-02 2.2610549E-02 2.1387879E-02 2.0219527E-02
 1.9104583E-02 1.8041926E-02 1.7030261E-02 1.6068179E-02 1.5154164E-02
 1.4286635E-02 1.3463952E-02 1.2684456E-02 1.1946478E-02 1.1248335E-02
 1.0588374E-02 9.9649392E-03 9.3764206E-03 8.8212350E-03 8.2978290E-03
 7.8046988E-03 7.3403763E-03 6.9034374E-03 6.4925114E-03 6.1062695E-03
 5.7434239E-03 5.4027340E-03 5.0830171E-03 4.7831177E-03 4.5019365E-03
 4.2384109E-03 3.9915298E-03 3.7603108E-03 3.5438256E-03 3.3411856E-03
 3.1515278E-03 2.9740457E-03 2.8079613E-03 2.6525380E-03 2.5070771E-03
 2.3709144E-03 2.2434259E-03 2.1240176E-03 2.0121303E-03 1.9072421E-03
 1.8088634E-03 1.7165266E-03 1.6298082E-03 1.5483007E-03 1.4716372E-03
 1.3994647E-03 1.3314654E-03 1.2673400E-03 1.2068142E-03 1.1496347E-03
 1.0955676E-03
 1.1999402E-02 9.3956217E-03 7.0342850E-03 4.9060900E-03 2.9996925E-03
 1.3023632E-03 -1.9942969E-04 -1.5195920E-03 -2.6719954E-03 -3.6703087E-03
 -4.5277528E-03 -5.2569713E-03 -5.8699641E-03 -6.3780257E-03 -6.7917388E-03
 -7.1209450E-03 -7.3747761E-03 -7.5616525E-03 -7.6893289E-03 -7.7649085E-03
 -7.7948878E-03 -7.7851783E-03 -7.7411523E-03 -7.6676700E-03 -7.5691221E-03
 -7.4494542E-03 -7.3122089E-03 -7.1605467E-03 -6.9972835E-03 -6.8249181E-03
 -6.6456557E-03 -6.4614322E-03 -6.2739407E-03 -6.0846573E-03 -5.8948533E-03
 -5.7056146E-03 -5.5178702E-03 -5.3323954E-03 -5.1498418E-03 -4.9707363E-03
 -4.7955019E-03 -4.6244729E-03 -4.4579012E-03 -4.2959661E-03 -4.1387910E-03
 -3.9864453E-03 -3.8389494E-03 -3.6962938E-03 -3.5584343E-03 -3.4253022E-03
 -3.2968123E-03 -3.1728635E-03 -3.0533415E-03 -2.9381239E-03 -2.8270881E-03
 -2.7201024E-03 -2.6170367E-03 -2.5177691E-03 -2.4221628E-03 -2.3301020E-03
 -2.2414625E-03 -2.1561296E-03 -2.0739851E-03 -1.9949267E-03 -1.9188479E-03
 -1.8456510E-03 -1.7752369E-03 -1.7075137E-03 -1.6423946E-03 -1.5797967E-03
 -1.5196326E-03
 5.1241957E-02 4.9590707E-02 4.7866505E-02 4.6092916E-02 4.4290561E-02
 4.2477146E-02 4.0667642E-02 3.8874511E-02 3.7107967E-02 3.5376277E-02
 3.3685990E-02 3.2042205E-02 3.0448785E-02 2.8908528E-02 2.7423363E-02
 2.5994498E-02 2.4622509E-02 2.3307491E-02 2.2049112E-02 2.0846711E-02
 1.9699356E-02 1.8605893E-02 1.7564993E-02 1.6575212E-02 1.5634984E-02
 1.4742692E-02 1.3896645E-02 1.3095136E-02 1.2336447E-02 1.1618851E-02
 1.0940636E-02 1.0300109E-02 9.6955933E-03 9.1254571E-03 8.5881036E-03
 8.0819614E-03 7.6055173E-03 7.1572964E-03 6.7358664E-03 6.3398485E-03
 5.9679025E-03 5.6187361E-03 5.2911080E-03 4.9838163E-03 4.6957135E-03
 4.4256896E-03 4.1726814E-03 3.9356747E-03 3.7136900E-03 3.5058043E-03
 3.3111267E-03 3.1288126E-03 2.9580640E-03 2.7981154E-03 2.6482488E-03
 2.5077863E-03 2.3760838E-03 2.2525410E-03 2.1365904E-03 2.0277002E-03
 1.9253787E-03 1.8291570E-03 1.7386074E-03 1.6533306E-03 1.5729582E-03
 1.4971378E-03 1.4255563E-03 1.3579221E-03 1.2939642E-03 1.2334376E-03
 1.1761086E-03
 1.1379974E-02 8.7825460E-03 6.4304564E-03 4.3139597E-03 2.4212471E-03
 7.3913636E-04 -7.4634136E-04 -2.0494717E-03 -3.1844713E-03 -4.1653053E-03
 -5.0054272E-03 -5.7176789E-03 -6.3142106E-03 -6.8064346E-03 -7.2050113E-03
 -7.5198342E-03 -7.7600651E-03 -7.9341372E-03 -8.0498001E-03 -8.1141395E-03
 -8.1336256E-03 -8.1141340E-03 -8.0610039E-03 -7.9790466E-03 -7.8726122E-03
 -7.7455975E-03 -7.6015000E-03 -7.4434332E-03 -7.2741699E-03 -7.0961593E-03
 -6.9115595E-03 -6.7222714E-03 -6.5299417E-03 -6.3360087E-03 -6.1417017E-03
 -5.9480802E-03 -5.7560341E-03 -5.5663106E-03 -5.3795357E-03 -5.1962063E-03
 -5.0167302E-03 -4.8414227E-03 -4.6705222E-03 -4.5041954E-03 -4.3425583E-03
 -4.1856770E-03 -4.0335753E-03 -3.8862401E-03 -3.7436390E-03 -3.6057101E-03
 -3.4723761E-03 -3.3435470E-03 -3.2191225E-03 -3.0989985E-03 -2.9830646E-03
 -2.8712009E-03 -2.7632986E-03 -2.6592419E-03 -2.5589173E-03 -2.4622160E-03
 -2.3690253E-03 -2.2792423E-03 -2.1927659E-03 -2.1094913E-03 -2.0293214E-03
 -1.9521692E-03 -1.8779358E-03 -1.8065358E-03 -1.7378789E-03 -1.6718812E-03
 -1.6084609E-03
 5.2936036E-02 5.1225986E-02 4.9440973E-02 4.7605470E-02 4.5740843E-02
 4.3865390E-02 4.1994587E-02 4.0141251E-02 3.8315918E-02 3.6527067E-02
 3.4781396E-02 3.3084132E-02 3.1439200E-02 2.9849457E-02 2.8316854E-02
 2.6842590E-02 2.5427241E-02 2.4070883E-02 2.2773145E-02 2.1533331E-02
 2.0350462E-02 1.9223338E-02 1.8150581E-02 1.7130692E-02 1.6162036E-02
 1.5242946E-02 1.4371679E-02 1.3546458E-02 1.2765508E-02 1.2027039E-02
 1.1329274E-02 1.0670453E-02 1.0048847E-02 9.4627505E-03 8.9105032E-03
 8.3904760E-03 7.9010902E-03 7.4407998E-03 7.0081120E-03 6.6015897E-03
 6.2198238E-03 5.8614658E-03 5.5252165E-03 5.2098180E-03 4.9140630E-03
 4.6367985E-03 4.3769134E-03 4.1333451E-03 3.9050796E-03 3.6911557E-03
 3.4906550E-03 3.3026990E-03 3.1264680E-03 2.9611795E-03 2.8060980E-03
 2.6605332E-03 2.5238257E-03 2.3953721E-03 2.2745982E-03 2.1609738E-03
 2.0539982E-03 1.9532098E-03 1.8581818E-03 1.7685165E-03 1.6838448E-03
 1.6038256E-03 1.5281491E-03 1.4565273E-03 1.3886956E-03 1.3244103E-03
 1.2634479E-03
 1.0727823E-02 8.1354743E-03 5.7915119E-03 3.6857431E-03 1.8058870E-03
 1.3829069E-04 -1.3314697E-03 -2.6180397E-03 -3.7360396E-03 -4.6997131E-03
 -5.5227657E-03 -6.2182457E-03 -6.7984574E-03 -7.2749318E-03 -7.6584094E-03
 -7.9588443E-03 -8.1854295E-03 -8.3466107E-03 -8.4501328E-03 -8.5030664E-03
 -8.5118525E-03 -8.4823407E-03 -8.4198229E-03 -8.3290730E-03 -8.2143955E-03
 -8.0796415E-03 -7.9282532E-03 -7.7633043E-03 -7.5875130E-03 -7.4032885E-03
 -7.2127427E-03 -7.0177279E-03 -6.8198522E-03 -6.6205175E-03 -6.4209113E-03
 -6.2220600E-03 -6.0248226E-03 -5.8299229E-03 -5.6379582E-03 -5.4494129E-03
 -5.2646729E-03 -5.0840448E-03 -4.9077524E-03 -4.7359690E-03 -4.5688068E-03
 -4.4063311E-03 -4.2485776E-03 -4.0955422E-03 -3.9471965E-03 -3.8035028E-03
 -3.6643937E-03 -3.5297987E-03 -3.3996284E-03 -3.2737982E-03 -3.1522147E-03
 -3.0347733E-03 -2.9213817E-03 -2.8119371E-03 -2.7063377E-03 -2.6044843E-03
 -2.5062810E-03 -2.4116286E-03 -2.3204316E-03 -2.2325970E-03 -2.1480289E-03
 -2.0666372E-03 -1.9883311E-03 -1.9130200E-03 -1.8406106E-03 -1.7710191E-03
 -1.7041545E-03
 5.4837860E-02 5.3057663E-02 5.1200658E-02 4.9292345E-02 4.7354922E-02
 4.5407414E-02 4.3465775E-02 4.1543279E-02 3.9650735E-02 3.7796851E-02
 3.5988472E-02 3.4230914E-02 3.2528162E-02 3.0883081E-02 2.9297622E-02
 2.7772965E-02 2.6309650E-02 2.4907697E-02 2.3566686E-02 2.2285854E-02
 2.1064164E-02 1.9900339E-02 1.8792931E-02 1.7740365E-02 1.6740944E-02
 1.5792912E-02 1.4894453E-02 1.4043722E-02 1.3238852E-02 1.2477987E-02
 1.1759274E-02 1.1080874E-02 1.0440966E-02 9.8377913E-03 9.2695951E-03
 8.7346742E-03 8.2313735E-03 7.7580768E-03 7.3132156E-03 6.8952776E-03
 6.5027867E-03 6.1343317E-03 5.7885456E-03 5.4641105E-03 5.1597715E-03
 4.8743146E-03 4.6065929E-03 4.3554930E-03 4.1199699E-03 3.8990313E-03
 3.6917212E-03 3.4971514E-03 3.3144758E-03 3.1428928E-03 2.9816597E-03
 2.8300746E-03 2.6874759E-03 2.5532513E-03 2.4268266E-03 2.3076693E-03
 2.1952819E-03 2.0892089E-03 1.9890219E-03 1.8943275E-03 1.8047605E-03
 1.7199920E-03 1.6397095E-03 1.5636280E-03 1.4914864E-03 1.4230473E-03
 1.3580832E-03
 1.0045261E-02 7.4555743E-03 5.1175836E-03 3.0206540E-03 1.1520252E-03
 -5.0246407E-04 -1.9576517E-03 -3.2286618E-03 -4.3304712E-03 -5.2776462E-03
 -6.0841637E-03 -6.7632855E-03 -7.3274863E-03 -7.7884272E-03 -8.1569450E-03
 -8.4430529E-03 -8.6559802E-03 -8.8041956E-03 -8.8954391E-03 -8.9367712E-03
 -8.9346087E-03 -8.8947648E-03 -8.8224988E-03 -8.7225409E-03 -8.5991472E-03
 -8.4561231E-03 -8.2968650E-03 -8.1243897E-03 -7.9413792E-03 -7.7501843E-03
 -7.5528780E-03 -7.3512662E-03 -7.1469233E-03 -6.9412035E-03 -6.7352685E-03
 -6.5301158E-03 -6.3265748E-03 -6.1253449E-03 -5.9270118E-03 -5.7320422E-03
 -5.5408208E-03 -5.3536412E-03 -5.1707393E-03 -4.9922834E-03 -4.8183990E-03
 -4.6491600E-03 -4.4846144E-03 -4.3247761E-03 -4.1696373E-03 -4.0191687E-03
 -3.8733268E-03 -3.7320617E-03 -3.5952986E-03 -3.4629731E-03 -3.3350054E-03
 -3.2113073E-03 -3.0918003E-03 -2.9763924E-03 -2.8649934E-03 -2.7575162E-03
 -2.6538663E-03 -2.5539533E-03 -2.4576858E-03 -2.3649670E-03 -2.2757051E-03
 -2.1898097E-03 -2.1071788E-03 -2.0277195E-03 -1.9513411E-03 -1.8779420E-03
 -1.8074262E-03
 5.6969307E-02 5.5106148E-02 5.3164568E-02 5.1171243E-02 4.9149346E-02
 4.7118630E-02 4.5095660E-02 4.3094117E-02 4.1125130E-02 3.9197601E-02
 3.7318517E-02 3.5493243E-02 3.3725798E-02 3.2019041E-02 3.0374879E-02
 2.8794436E-02 2.7278183E-02 2.5826069E-02 2.4437584E-02 2.3111882E-02
 2.1847824E-02 2.0644052E-02 1.9499015E-02 1.8411044E-02 1.7378354E-02
 1.6399086E-02 1.5471329E-02 1.4593141E-02 1.3762570E-02 1.2977651E-02
 1.2236442E-02 1.1537012E-02 1.0877449E-02 1.0255893E-02 9.6704997E-03
 9.1194818E-03 8.6010899E-03 8.1136255E-03 7.6554399E-03 7.2249351E-03
 6.8205721E-03 6.4408612E-03 6.0843737E-03 5.7497350E-03 5.4356279E-03
 5.1407991E-03 4.8640491E-03 4.6042372E-03 4.3602753E-03 4.1311486E-03
 3.9158817E-03 3.7135626E-03 3.5233283E-03 3.3443717E-03 3.1759411E-03
 3.0173238E-03 2.8678612E-03 2.7269355E-03 2.5939748E-03 2.4684500E-03
 2.3498642E-03 2.2377619E-03 2.1317222E-03 2.0313566E-03 1.9363031E-03
 1.8462337E-03 1.7608381E-03 1.6798329E-03 1.6029550E-03 1.5299679E-03
 1.4606401E-03
 9.3348231E-03 6.7439582E-03 4.4085234E-03 2.3174563E-03 4.5749042E-04
 -1.1860539E-03 -2.6285134E-03 -3.8854843E-03 -4.9723531E-03 -5.9040440E-03
 -6.6948324E-03 -7.3582237E-03 -7.9068830E-03 -8.3526215E-03 -8.7063815E-03
 -8.9782579E-03 -9.1775265E-03 -9.3126763E-03 -9.3914568E-03 -9.4209211E-03
 -9.4074626E-03 -9.3568675E-03 -9.2743561E-03 -9.1646211E-03 -9.0318676E-03
 -8.8798571E-03 -8.7119397E-03 -8.5310834E-03 -8.3399191E-03 -8.1407577E-03
 -7.9356264E-03 -7.7262926E-03 -7.5142924E-03 -7.3009501E-03 -7.0874016E-03
 -6.8746121E-03 -6.6634049E-03 -6.4544608E-03 -6.2483558E-03 -6.0455599E-03
 -5.8464496E-03 -5.6513362E-03 -5.4604560E-03 -5.2739922E-03 -5.0920886E-03
 -4.9148365E-03 -4.7423015E-03 -4.5745177E-03 -4.4115009E-03 -4.2532384E-03
 -4.0997122E-03 -3.9508804E-03 -3.8067005E-03 -3.6671113E-03 -3.5320544E-03
 -3.4014557E-03 -3.2752419E-03 -3.1533365E-03 -3.0356515E-03 -2.9221047E-03
 -2.8126067E-03 -2.7070651E-03 -2.6053865E-03 -2.5074729E-03 -2.4132289E-03
 -2.3225523E-03 -2.2353362E-03 -2.1514834E-03 -2.0708824E-03 -1.9934357E-03
 -1.9190256E-03
 5.9354573E-02 5.7394139E-02 5.5353981E-02 5.3262107E-02 5.1142782E-02
 4.9016561E-02 4.6900667E-02 4.4809222E-02 4.2753655E-02 4.0743060E-02
 3.8784526E-02 3.6883462E-02 3.5043865E-02 3.3268545E-02 3.1559341E-02
 2.9917277E-02 2.8342733E-02 2.6835533E-02 2.5395058E-02 2.4020337E-02
 2.2710115E-02 2.1462906E-02 2.0277044E-02 1.9150736E-02 1.8082071E-02
 1.7069079E-02 1.6109727E-02 1.5201952E-02 1.4343691E-02 1.3532854E-02
 1.2767395E-02 1.2045264E-02 1.1364440E-02 1.0722949E-02 1.0118854E-02
 9.5502576E-03 9.0153124E-03 8.5122278E-03 8.0392687E-03 7.5947572E-03
 7.1770693E-03 6.7846533E-03 6.4160139E-03 6.0697142E-03 5.7443990E-03
 5.4387590E-03 5.1515596E-03 4.8816265E-03 4.6278485E-03 4.3891817E-03
 4.1646380E-03 3.9532864E-03 3.7542596E-03 3.5667401E-03 3.3899662E-03
 3.2232290E-03 3.0658641E-03 2.9172599E-03 2.7768433E-03 2.6440839E-03
 2.5184937E-03 2.3996152E-03 2.2870344E-03 2.1803542E-03 2.0792240E-03
 1.9833047E-03 1.8922945E-03 1.8058984E-03 1.7238568E-03 1.6459154E-03
 1.5718462E-03
 8.5991239E-03 6.0015148E-03 3.6637452E-03 1.5743035E-03 -2.8063910E-04
 -1.9162638E-03 -3.3485400E-03 -4.5935647E-03 -5.6671994E-03 -6.5847724E-03
 -7.3609012E-03 -8.0093797E-03 -8.5430965E-03 -8.9740437E-03 -9.3132900E-03
 -9.5710261E-03 -9.7565874E-03 -9.8785004E-03 -9.9445358E-03 -9.9617345E-03
 -9.9364826E-03 -9.8745394E-03 -9.7810877E-03 -9.6607823E-03 -9.5177907E-03
 -9.3558226E-03 -9.1781868E-03 -8.9878077E-03 -8.7872688E-03 -8.5788444E-03
 -8.3645219E-03 -8.1460364E-03 -7.9248939E-03 -7.7023995E-03 -7.4796667E-03
 -7.2576534E-03 -7.0371693E-03 -6.8189008E-03 -6.6034212E-03 -6.3912082E-03
 -6.1826562E-03 -5.9780865E-03 -5.7777525E-03 -5.5818665E-03 -5.3905863E-03
 -5.2040284E-03 -5.0222827E-03 -4.8454041E-03 -4.6734279E-03 -4.5063696E-03
 -4.3442226E-03 -4.1869693E-03 -4.0345765E-03 -3.8870012E-03 -3.7441915E-03
 -3.6060882E-03 -3.4726178E-03 -3.3437104E-03 -3.2192811E-03 -3.0992432E-03
 -2.9835089E-03 -2.8719800E-03 -2.7645510E-03 -2.6611234E-03 -2.5615869E-03
 -2.4658311E-03 -2.3737412E-03 -2.2852046E-03 -2.2000996E-03 -2.1183128E-03
 -2.0397226E-03
 6.2020872E-02 5.9947323E-02 5.7793099E-02 5.5587713E-02 5.3356640E-02
 5.1121369E-02 4.8899785E-02 4.6706486E-02 4.4553213E-02 4.2449217E-02
 4.0401671E-02 3.8415980E-02 3.6496092E-02 3.4644715E-02 3.2863580E-02
 3.1153580E-02 2.9514935E-02 2.7947327E-02 2.6449976E-02 2.5021756E-02
 2.3661260E-02 2.2366837E-02 2.1136671E-02 1.9968817E-02 1.8861216E-02
 1.7811744E-02 1.6818227E-02 1.5878459E-02 1.4990232E-02 1.4151324E-02
 1.3359548E-02 1.2612718E-02 1.1908698E-02 1.1245388E-02 1.0620727E-02
 1.0032712E-02 9.4793895E-03 8.9588705E-03 8.4693339E-03 8.0090109E-03
 7.5762137E-03 7.1693100E-03 6.7867502E-03 6.4270478E-03 6.0887979E-03
 5.7706516E-03 5.4713478E-03 5.1896768E-03 4.9245125E-03 4.6747867E-03
 4.4394978E-03 4.2177103E-03 4.0085413E-03 3.8111748E-03 3.6248462E-03
 3.4488414E-03 3.2824990E-03 3.1252091E-03 2.9763915E-03 2.8355243E-03
 2.7021158E-03 2.5757113E-03 2.4558904E-03 2.3422574E-03 2.2344526E-03
 2.1321364E-03 2.0349943E-03 1.9427297E-03 1.8550681E-03 1.7717503E-03
 1.6925381E-03
 7.8407135E-03 5.2288026E-03 2.8820951E-03 7.8860606E-04 -1.0660832E-03
 -2.6978224E-03 -4.1232198E-03 -5.3589912E-03 -6.4215530E-03 -7.3267119E-03
 -8.0895070E-03 -8.7240571E-03 -9.2435302E-03 -9.6601238E-03 -9.9850781E-03
 -1.0228697E-02 -1.0400399E-02 -1.0508766E-02 -1.0561590E-02 -1.0565928E-02
 -1.0528151E-02 -1.0454003E-02 -1.0348637E-02 -1.0216676E-02 -1.0062248E-02
 -9.8890252E-03 -9.7002778E-03 -9.4988849E-03 -9.2874030E-03 -9.0680718E-03
 -8.8428510E-03 -8.6134570E-03 -8.3813760E-03 -8.1479009E-03 -7.9141445E-03
 -7.6810606E-03 -7.4494691E-03 -7.2200643E-03 -6.9934358E-03 -6.7700818E-03
 -6.5504150E-03 -6.3347812E-03 -6.1234655E-03 -5.9166951E-03 -5.7146577E-03
 -5.5174995E-03 -5.3253272E-03 -5.1382249E-03 -4.9562464E-03 -4.7794231E-03
 -4.6077692E-03 -4.4412799E-03 -4.2799274E-03 -4.1236836E-03 -3.9724987E-03
 -3.8263176E-03 -3.6850700E-03 -3.5486789E-03 -3.4170570E-03 -3.2901142E-03
 -3.1677489E-03 -3.0498549E-03 -2.9363176E-03 -2.8270253E-03 -2.7218531E-03
 -2.6206782E-03 -2.5233740E-03 -2.4298117E-03 -2.3398646E-03 -2.2534046E-03
 -2.1703029E-03
 6.4999267E-02 6.2795237E-02 6.0509887E-02 5.8174491E-02 5.5815846E-02
 5.3456530E-02 5.1115151E-02 4.8806813E-02 4.6543553E-02 4.4334784E-02
 4.2187717E-02 4.0107712E-02 3.8098618E-02 3.6162999E-02 3.4302413E-02
 3.2517578E-02 3.0808507E-02 2.9174684E-02 2.7615128E-02 2.6128510E-02
 2.4713226E-02 2.3367435E-02 2.2089116E-02 2.0876147E-02 1.9726278E-02
 1.8637205E-02 1.7606581E-02 1.6632022E-02 1.5711162E-02 1.4841611E-02
 1.4021025E-02 1.3247082E-02 1.2517491E-02 1.1830021E-02 1.1182495E-02
 1.0572781E-02 9.9988272E-03 9.4586415E-03 8.9503080E-03 8.4719900E-03
 8.0219191E-03 7.5984024E-03 7.1998346E-03 6.8246871E-03 6.4715077E-03
 6.1389222E-03 5.8256313E-03 5.5304156E-03 5.2521201E-03 4.9896664E-03
 4.7420440E-03 4.5083077E-03 4.2875707E-03 4.0790103E-03 3.8818589E-03
 3.6954035E-03 3.5189786E-03 3.3519696E-03 3.1938017E-03 3.0439412E-03
 2.9018959E-03 2.7672050E-03 2.6394399E-03 2.5181971E-03 2.4031065E-03
 2.2938177E-03 2.1900060E-03 2.0913584E-03 1.9975924E-03 1.9084362E-03
 1.8236345E-03
 7.0621376E-03 4.4260323E-03 2.0618241E-03 -4.3022035E-05 -1.9035576E-03
 -3.5364665E-03 -4.9591125E-03 -6.1889542E-03 -7.2430694E-03 -8.1378566E-03
 -8.8888407E-03 -9.5105618E-03 -1.0016515E-02 -1.0419167E-02 -1.0729954E-02
 -1.0959336E-02 -1.1116839E-02 -1.1211117E-02 -1.1250005E-02 -1.1240584E-02
 -1.1189230E-02 -1.1101673E-02 -1.0983054E-02 -1.0837967E-02 -1.0670512E-02
 -1.0484337E-02 -1.0282675E-02 -1.0068389E-02 -9.8440070E-03 -9.6117500E-03
 -9.3735708E-03 -9.1311727E-03 -8.8860458E-03 -8.6394874E-03 -8.3926162E-03
 -8.1464034E-03 -7.9016881E-03 -7.6591889E-03 -7.4195205E-03 -7.1832067E-03
 -6.9506913E-03 -6.7223501E-03 -6.4984947E-03 -6.2793824E-03 -6.0652294E-03
 -5.8562011E-03 -5.6524319E-03 -5.4540238E-03 -5.2610422E-03 -5.0735427E-03
 -4.8915395E-03 -4.7150417E-03 -4.5440309E-03 -4.3784701E-03 -4.2183208E-03
 -4.0635113E-03 -3.9139725E-03 -3.7696178E-03 -3.6303457E-03 -3.4960622E-03
 -3.3666419E-03 -3.2419697E-03 -3.1219176E-03 -3.0063528E-03 -2.8951450E-03
 -2.7881495E-03 -2.6852330E-03 -2.5862551E-03 -2.4910739E-03 -2.3995519E-03
 -2.3115561E-03
 6.8325929E-02 6.5972403E-02 6.3537151E-02 6.1053474E-02 5.8549751E-02
 5.6049749E-02 5.3572915E-02 5.1134899E-02 4.8748042E-02 4.6421908E-02
 4.4163693E-02 4.1978676E-02 3.9870534E-02 3.7841652E-02 3.5893336E-02
 3.4026064E-02 3.2239590E-02 3.0533148E-02 2.8905494E-02 2.7355051E-02
 2.5879955E-02 2.4478124E-02 2.3147315E-02 2.1885157E-02 2.0689182E-02
 1.9556876E-02 1.8485676E-02 1.7473012E-02 1.6516306E-02 1.5613005E-02
 1.4760580E-02 1.3956550E-02 1.3198475E-02 1.2483981E-02 1.1810763E-02
 1.1176568E-02 1.0579238E-02 1.0016684E-02 9.4869100E-03 8.9879949E-03
 8.5181128E-03 8.0755046E-03 7.6585268E-03 7.2655999E-03 6.8952437E-03
 6.5460531E-03 6.2167053E-03 5.9059593E-03 5.6126467E-03 5.3356807E-03
 5.0740344E-03 4.8267585E-03 4.5929612E-03 4.3718098E-03 4.1625332E-03
 3.9644167E-03 3.7767799E-03 3.5990120E-03 3.4305181E-03 3.2707639E-03
 3.1192454E-03 2.9754846E-03 2.8390395E-03 2.7095000E-03 2.5864714E-03
 2.4695958E-03 2.3585248E-03 2.2529361E-03 2.1525291E-03 2.0570178E-03
 1.9661360E-03
 6.2660831E-03 3.5931917E-03 1.2006469E-03 -9.2468364E-04 -2.7986923E-03
 -4.4389958E-03 -5.8639115E-03 -7.0917993E-03 -8.1405584E-03 -9.0273032E-03
 -9.7681740E-03 -1.0378214E-02 -1.0871336E-02 -1.1260327E-02 -1.1556884E-02
 -1.1771661E-02 -1.1914326E-02 -1.1993634E-02 -1.2017486E-02 -1.1993007E-02
 -1.1926590E-02 -1.1823978E-02 -1.1690307E-02 -1.1530161E-02 -1.1347628E-02
 -1.1146344E-02 -1.0929530E-02 -1.0700037E-02 -1.0460394E-02 -1.0212820E-02
 -9.9592758E-03 -9.7014736E-03 -9.4409175E-03 -9.1789318E-03 -8.9166556E-03
 -8.6550955E-03 -8.3951177E-03 -8.1374701E-03 -7.8828055E-03 -7.6316828E-03
 -7.3845731E-03 -7.1418872E-03 -6.9039660E-03 -6.6710939E-03 -6.4435089E-03
 -6.2213955E-03 -6.0049105E-03 -5.7941675E-03 -5.5892449E-03 -5.3902012E-03
 -5.1970575E-03 -5.0098221E-03 -4.8284717E-03 -4.6529723E-03 -4.4832579E-03
 -4.3192673E-03 -4.1609062E-03 -4.0080757E-03 -3.8606625E-03 -3.7185426E-03
 -3.5815910E-03 -3.4496684E-03 -3.3226272E-03 -3.2003252E-03 -3.0826130E-03
 -2.9693381E-03 -2.8603505E-03 -2.7555022E-03 -2.6546414E-03 -2.5576251E-03
 -2.4643117E-03
 7.2043508E-02 6.9519706E-02 6.6913880E-02 6.4261623E-02 6.1593290E-02
 5.8934007E-02 5.6304205E-02 5.3720132E-02 5.1194467E-02 4.8736885E-02
 4.6354547E-02 4.4052582E-02 4.1834451E-02 3.9702248E-02 3.7656978E-02
 3.5698798E-02 3.3827145E-02 3.2040905E-02 3.0338526E-02 2.8718106E-02
 2.7177481E-02 2.5714267E-02 2.4325935E-02 2.3009835E-02 2.1763245E-02
 2.0583391E-02 1.9467471E-02 1.8412683E-02 1.7416250E-02 1.6475406E-02
 1.5587443E-02 1.4749710E-02 1.3959602E-02 1.3214610E-02 1.2512282E-02
 1.1850270E-02 1.1226303E-02 1.0638198E-02 1.0083884E-02 9.5613617E-03
 9.0687526E-03 8.6042462E-03 8.1661548E-03 7.7528558E-03 7.3628435E-03
 6.9946814E-03 6.6470332E-03 6.3186339E-03 6.0083028E-03 5.7149380E-03
 5.4375031E-03 5.1750359E-03 4.9266326E-03 4.6914569E-03 4.4687237E-03
 4.2577009E-03 4.0577045E-03 3.8680965E-03 3.6882800E-03 3.5176959E-03
 3.3558195E-03 3.2021580E-03 3.0562533E-03 2.9176665E-03 2.7859928E-03
 2.6608522E-03 2.5418713E-03 2.4287223E-03 2.3210789E-03 2.2186392E-03
 2.1211233E-03
 5.4558599E-03 2.7303901E-03 2.9598965E-04 -1.8611285E-03 -3.7579411E-03
 -5.4131933E-03 -6.8463869E-03 -8.0770012E-03 -9.1239521E-03 -1.0005253E-02
 -1.0737803E-02 -1.1337277E-02 -1.1818103E-02 -1.2193484E-02 -1.2475440E-02
 -1.2674870E-02 -1.2801635E-02 -1.2864628E-02 -1.2871853E-02 -1.2830498E-02
 -1.2747009E-02 -1.2627158E-02 -1.2476101E-02 -1.2298438E-02 -1.2098264E-02
 -1.1879228E-02 -1.1644558E-02 -1.1397129E-02 -1.1139476E-02 -1.0873846E-02
 -1.0602225E-02 -1.0326358E-02 -1.0047782E-02 -9.7678537E-03 -9.4877593E-03
 -9.2085367E-03 -8.9310901E-03 -8.6562159E-03 -8.3845966E-03 -8.1168283E-03
 -7.8534139E-03 -7.5947950E-03 -7.3413341E-03 -7.0933430E-03 -6.8510706E-03
 -6.6147260E-03 -6.3844668E-03 -6.1604157E-03 -5.9426553E-03 -5.7312394E-03
 -5.5261850E-03 -5.3274911E-03 -5.1351287E-03 -4.9490365E-03 -4.7691530E-03
 -4.5953803E-03 -4.4276151E-03 -4.2657396E-03 -4.1096145E-03 -3.9591086E-03
 -3.8140693E-03 -3.6743388E-03 -3.5397650E-03 -3.4101834E-03 -3.2854315E-03
 -3.1653494E-03 -3.0497755E-03 -2.9385483E-03 -2.8315163E-03 -2.7285276E-03
 -2.6294275E-03
 7.6202787E-02 7.3486067E-02 7.0686720E-02 6.7843281E-02 6.4988397E-02
 6.2148880E-02 5.9346311E-02 5.6597669E-02 5.3916000E-02 5.1311072E-02
 4.8789971E-02 4.6357598E-02 4.4017110E-02 4.1770235E-02 3.9617587E-02
 3.7558910E-02 3.5593219E-02 3.3718999E-02 3.1934295E-02 3.0236801E-02
 2.8624004E-02 2.7093150E-02 2.5641363E-02 2.4265682E-02 2.2963073E-02
 2.1730479E-02 2.0564826E-02 1.9463068E-02 1.8422185E-02 1.7439207E-02
 1.6511234E-02 1.5635427E-02 1.4809033E-02 1.4029395E-02 1.3293934E-02
 1.2600191E-02 1.1945791E-02 1.1328466E-02 1.0746072E-02 1.0196546E-02
 9.6779438E-03 9.1884201E-03 8.7262327E-03 8.2897348E-03 7.8773862E-03
 7.4877236E-03 7.1193888E-03 6.7710942E-03 6.4416444E-03 6.1299172E-03
 5.8348635E-03 5.5554979E-03 5.2909050E-03 5.0402223E-03 4.8026564E-03
 4.5774407E-03 4.3638772E-03 4.1613081E-03 3.9691040E-03 3.7866852E-03
 3.6135034E-03 3.4490435E-03 3.2928144E-03 3.1443646E-03 3.0032601E-03
 2.8690947E-03 2.7414884E-03 2.6200810E-03 2.5045346E-03 2.3945312E-03
 2.2897699E-03
 4.6362323E-03 1.8385318E-03 -6.5443374E-04 -2.8573114E-03 -4.7883089E-03
 -6.4676199E-03 -7.9162242E-03 -9.1550071E-03 -1.0204175E-02 -1.1082855E-02
 -1.1808904E-02 -1.2398792E-02 -1.2867603E-02 -1.3229056E-02 -1.3495588E-02
 -1.3678426E-02 -1.3787674E-02 -1.3832415E-02 -1.3820807E-02 -1.3760145E-02
 -1.3656953E-02 -1.3517076E-02 -1.3345716E-02 -1.3147519E-02 -1.2926623E-02
 -1.2686712E-02 -1.2431054E-02 -1.2162561E-02 -1.1883818E-02 -1.1597115E-02
 -1.1304476E-02 -1.1007701E-02 -1.0708375E-02 -1.0407899E-02 -1.0107506E-02
 -9.8082796E-03 -9.5111746E-03 -9.2170155E-03 -8.9265257E-03 -8.6403340E-03
 -8.3589703E-03 -8.0828965E-03 -7.8124986E-03 -7.5480957E-03 -7.2899517E-03
 -7.0382780E-03 -6.7932331E-03 -6.5549337E-03 -6.3234568E-03 -6.0988455E-03
 -5.8811032E-03 -5.6702099E-03 -5.4661129E-03 -5.2687405E-03 -5.0780005E-03
 -4.8937802E-03 -4.7159498E-03 -4.5443694E-03 -4.3788864E-03 -4.2193453E-03
 -4.0655746E-03 -3.9174096E-03 -3.7746758E-03 -3.6371981E-03 -3.5048057E-03
 -3.3773293E-03 -3.2545940E-03 -3.1364397E-03 -3.0226978E-03 -2.9132124E-03
 -2.8078309E-03
 8.0864906E-02 7.7930570E-02 7.4912220E-02 7.1852155E-02 6.8785831E-02
 6.5742195E-02 6.2744260E-02 5.9809852E-02 5.6952477E-02 5.4181997E-02
 5.1505350E-02 4.8927147E-02 4.6450134E-02 4.4075560E-02 4.1803543E-02
 3.9633289E-02 3.7563305E-02 3.5591584E-02 3.3715654E-02 3.1932760E-02
 3.0239925E-02 2.8633976E-02 2.7111651E-02 2.5669612E-02 2.4304479E-02
 2.3012877E-02 2.1791440E-02 2.0636847E-02 1.9545846E-02 1.8515233E-02
 1.7541910E-02 1.6622864E-02 1.5755180E-02 1.4936055E-02 1.4162797E-02
 1.3432822E-02 1.2743671E-02 1.2092993E-02 1.1478563E-02 1.0898260E-02
 1.0350083E-02 9.8321373E-03 9.3426416E-03 8.8799130E-03 8.4423712E-03
 8.0285324E-03 7.6370025E-03 7.2664702E-03 6.9157155E-03 6.5835868E-03
 6.2690121E-03 5.9709763E-03 5.6885388E-03 5.4208073E-03 5.1669520E-03
 4.9261851E-03 4.6977745E-03 4.4810260E-03 4.2752833E-03 4.0799384E-03
 3.8944066E-03 3.7181471E-03 3.5506450E-03 3.3914114E-03 3.2399995E-03
 3.0959747E-03 2.9589338E-03 2.8284981E-03 2.7043100E-03 2.5860334E-03
 2.4733548E-03
 3.8148237E-03 9.2041149E-04 -1.6518766E-03 -3.9177202E-03 -5.8968375E-03
 -7.6112291E-03 -9.0837302E-03 -1.0337019E-02 -1.1392924E-02 -1.2272005E-02
 -1.2993327E-02 -1.3574373E-02 -1.4031055E-02 -1.4377764E-02 -1.4627466E-02
 -1.4791815E-02 -1.4881246E-02 -1.4905106E-02 -1.4871754E-02 -1.4788652E-02
 -1.4662459E-02 -1.4499126E-02 -1.4303949E-02 -1.4081659E-02 -1.3836463E-02
 -1.3572120E-02 -1.3291971E-02 -1.2998987E-02 -1.2695822E-02 -1.2384824E-02
 -1.2068087E-02 -1.1747465E-02 -1.1424603E-02 -1.1100951E-02 -1.0777799E-02
 -1.0456270E-02 -1.0137361E-02 -9.8219272E-03 -9.5107276E-03 -9.2044100E-03
 -8.9035314E-03 -8.6085573E-03 -8.3198855E-03 -8.0378382E-03 -7.7626808E-03
 -7.4946117E-03 -7.2337813E-03 -6.9802925E-03 -6.7342026E-03 -6.4955349E-03
 -6.2642694E-03 -6.0403654E-03 -5.8237403E-03 -5.6143031E-03 -5.4119322E-03
 -5.2164923E-03 -5.0278334E-03 -4.8457924E-03 -4.6702018E-03 -4.5008818E-03
 -4.3376568E-03 -4.1803382E-03 -4.0287455E-03 -3.8826922E-03 -3.7419961E-03
 -3.6064826E-03 -3.4759671E-03 -3.3502809E-03 -3.2292542E-03 -3.1127178E-03
 -3.0005111E-03
 8.6103581E-02 8.2924776E-02 7.9659134E-02 7.6353595E-02 7.3047347E-02
 6.9772035E-02 6.6552520E-02 6.3407756E-02 6.0351759E-02 5.7394527E-02
 5.4542799E-02 5.1800784E-02 4.9170695E-02 4.6653189E-02 4.4247735E-02
 4.1952904E-02 3.9766550E-02 3.7686035E-02 3.5708312E-02 3.3830058E-02
 3.2047763E-02 3.0357784E-02 2.8756389E-02 2.7239827E-02 2.5804343E-02
 2.4446202E-02 2.3161728E-02 2.1947317E-02 2.0799454E-02 1.9714717E-02
 1.8689796E-02 1.7721497E-02 1.6806750E-02 1.5942609E-02 1.5126252E-02
 1.4354996E-02 1.3626277E-02 1.2937664E-02 1.2286853E-02 1.1671665E-02
 1.1090036E-02 1.0540020E-02 1.0019789E-02 9.5276097E-03 9.0618702E-03
 8.6210435E-03 8.2036918E-03 7.8084767E-03 7.4341311E-03 7.0794690E-03
 6.7433789E-03 6.4248070E-03 6.1227693E-03 5.8363373E-03 5.5646389E-03
 5.3068465E-03 5.0621852E-03 4.8299264E-03 4.6093757E-03 4.3998868E-03
 4.2008427E-03 4.0116720E-03 3.8318268E-03 3.6607934E-03 3.4980956E-03
 3.3432734E-03 3.1959068E-03 3.0555911E-03 2.9219468E-03 2.7946187E-03
 2.6732772E-03
 3.0043733E-03 -1.7336730E-05 -2.6949472E-03 -5.0452091E-03 -7.0896894E-03
 -8.8526262E-03 -1.0359234E-02 -1.1634471E-02 -1.2702258E-02 -1.3584970E-02
 -1.4303250E-02 -1.4875872E-02 -1.5319813E-02 -1.5650328E-02 -1.5881088E-02
 -1.6024292E-02 -1.6090823E-02 -1.6090386E-02 -1.6031621E-02 -1.5922226E-02
 -1.5769053E-02 -1.5578217E-02 -1.5355154E-02 -1.5104720E-02 -1.4831237E-02
 -1.4538564E-02 -1.4230139E-02 -1.3909020E-02 -1.3577943E-02 -1.3239339E-02
 -1.2895364E-02 -1.2547946E-02 -1.2198776E-02 -1.1849375E-02 -1.1501060E-02
 -1.1155004E-02 -1.0812228E-02 -1.0473619E-02 -1.0139958E-02 -9.8118912E-03
 -9.4899917E-03 -9.1747288E-03 -8.8664917E-03 -8.5655889E-03 -8.2722753E-03
 -7.9867272E-03 -7.7090785E-03 -7.4394052E-03 -7.1777347E-03 -6.9240644E-03
 -6.6783479E-03 -6.4405119E-03 -6.2104505E-03 -5.9880433E-03 -5.7731471E-03
 -5.5655995E-03 -5.3652367E-03 -5.1718727E-03 -4.9853232E-03 -4.8053996E-03
 -4.6319058E-03 -4.4646449E-03 -4.3034265E-03 -4.1480530E-03 -3.9983406E-03
 -3.8540920E-03 -3.7151272E-03 -3.5812638E-03 -3.4523243E-03 -3.3281392E-03
 -3.2085336E-03
 9.2007913E-02 8.8555858E-02 8.5011430E-02 8.1427619E-02 7.7848479E-02
 7.4309289E-02 7.0837379E-02 6.7453198E-02 6.4171471E-02 6.1002359E-02
 5.7952363E-02 5.5025183E-02 5.2222360E-02 4.9543779E-02 4.6988133E-02
 4.4553157E-02 4.2235948E-02 4.0033106E-02 3.7940871E-02 3.5955273E-02
 3.4072183E-02 3.2287400E-02 3.0596679E-02 2.8995808E-02 2.7480604E-02
 2.6046965E-02 2.4690880E-02 2.3408428E-02 2.2195838E-02 2.1049449E-02
 1.9965740E-02 1.8941330E-02 1.7972972E-02 1.7057596E-02 1.6192239E-02
 1.5374104E-02 1.4600528E-02 1.3868987E-02 1.3177101E-02 1.2522610E-02
 1.1903383E-02 1.1317417E-02 1.0762816E-02 1.0237799E-02 9.7406935E-03
 9.2699192E-03 8.8239927E-03 8.4015094E-03 8.0011571E-03 7.6216962E-03
 7.2619598E-03 6.9208420E-03 6.5973094E-03 6.2903743E-03 5.9991237E-03
 5.7226755E-03 5.4602143E-03 5.2109603E-03 4.9741818E-03 4.7491919E-03
 4.5353416E-03 4.3320148E-03 4.1386401E-03 3.9546760E-03 3.7796071E-03
 3.6129539E-03 3.4542729E-03 3.3031306E-03 3.1591316E-03 3.0218957E-03
 2.8910767E-03
 2.2262793E-03 -9.6136390E-04 -3.7772360E-03 -6.2390808E-03 -8.3706276E-03
 -1.0198921E-02 -1.1752184E-02 -1.3058335E-02 -1.4143988E-02 -1.5033910E-02
 -1.5750758E-02 -1.6315015E-02 -1.6745040E-02 -1.7057221E-02 -1.7266136E-02
 -1.7384715E-02 -1.7424440E-02 -1.7395485E-02 -1.7306875E-02 -1.7166633E-02
 -1.6981876E-02 -1.6758937E-02 -1.6503450E-02 -1.6220437E-02 -1.5914364E-02
 -1.5589226E-02 -1.5248571E-02 -1.4895567E-02 -1.4533038E-02 -1.4163495E-02
 -1.3789172E-02 -1.3412053E-02 -1.3033890E-02 -1.2656232E-02 -1.2280447E-02
 -1.1907727E-02 -1.1539114E-02 -1.1175507E-02 -1.0817683E-02 -1.0466302E-02
 -1.0121915E-02 -9.7849788E-03 -9.4558662E-03 -9.1348672E-03 -8.8221990E-03
 -8.5180216E-03 -8.2224244E-03 -7.9354579E-03 -7.6571181E-03 -7.3873685E-03
 -7.1261334E-03 -6.8733087E-03 -6.6287643E-03 -6.3923500E-03 -6.1639044E-03
 -5.9432485E-03 -5.7301912E-03 -5.5245408E-03 -5.3260927E-03 -5.1346449E-03
 -4.9499949E-03 -4.7719344E-03 -4.6002590E-03 -4.4347644E-03 -4.2752540E-03
 -4.1215299E-03 -3.9733984E-03 -3.8306667E-03 -3.6931501E-03 -3.5606679E-03
 -3.4330429E-03
 9.8684676E-02 9.4929613E-02 9.1071829E-02 8.7172367E-02 8.3281927E-02
 7.9440780E-02 7.5679690E-02 7.2021186E-02 6.8481080E-02 6.5069772E-02
 6.1793488E-02 5.8655314E-02 5.5655960E-02 5.2794360E-02 5.0068196E-02
 4.7474250E-02 4.5008641E-02 4.2667072E-02 4.0444955E-02 3.8337544E-02
 3.6340002E-02 3.4447484E-02 3.2655180E-02 3.0958354E-02 2.9352369E-02
 2.7832707E-02 2.6394993E-02 2.5034990E-02 2.3748631E-02 2.2531999E-02
 2.1381356E-02 2.0293120E-02 1.9263871E-02 1.8290371E-02 1.7369527E-02
 1.6498405E-02 1.5674235E-02 1.4894387E-02 1.4156382E-02 1.3457871E-02
 1.2796639E-02 1.2170603E-02 1.1577792E-02 1.1016346E-02 1.0484519E-02
 9.9806599E-03 9.5032090E-03 9.0506962E-03 8.6217346E-03 8.2150204E-03
 7.8293150E-03 7.4634515E-03 7.1163238E-03 6.7868973E-03 6.4741899E-03
 6.1772713E-03 5.8952719E-03 5.6273639E-03 5.3727748E-03 5.1307715E-03
 4.9006636E-03 4.6818033E-03 4.4735814E-03 4.2754239E-03 4.0867859E-03
 3.9071660E-03 3.7360766E-03 3.5730721E-03 3.4177285E-03 3.2696431E-03
 3.1284427E-03
 1.5162287E-03 -1.8867629E-03 -4.8833387E-03 -7.4918927E-03 -9.7385515E-03
 -1.1653790E-02 -1.3269684E-02 -1.4617975E-02 -1.5728841E-02 -1.6630186E-02
 -1.7347345E-02 -1.7903030E-02 -1.8317439E-02 -1.8608453E-02 -1.8791847E-02
 -1.8881520E-02 -1.8889729E-02 -1.8827280E-02 -1.8703707E-02 -1.8527448E-02
 -1.8305968E-02 -1.8045891E-02 -1.7753087E-02 -1.7432787E-02 -1.7089630E-02
 -1.6727764E-02 -1.6350860E-02 -1.5962198E-02 -1.5564693E-02 -1.5160937E-02
 -1.4753225E-02 -1.4343588E-02 -1.3933820E-02 -1.3525504E-02 -1.3120015E-02
 -1.2718569E-02 -1.2322200E-02 -1.1931804E-02 -1.1548141E-02 -1.1171860E-02
 -1.0803482E-02 -1.0443437E-02 -1.0092063E-02 -9.7496165E-03 -9.4162812E-03
 -9.0921735E-03 -8.7773530E-03 -8.4718335E-03 -8.1755714E-03 -7.8885024E-03
 -7.6105245E-03 -7.3414962E-03 -7.0812744E-03 -6.8296827E-03 -6.5865419E-03
 -6.3516535E-03 -6.1248131E-03 -5.9058131E-03 -5.6944382E-03 -5.4904744E-03
 -5.2937069E-03 -5.1039169E-03 -4.9208929E-03 -4.7444152E-03 -4.5742807E-03
 -4.4102785E-03 -4.2522056E-03 -4.0998613E-03 -3.9530513E-03 -3.8115841E-03
 -3.6752741E-03
 0.1062602 0.1021733 9.7965367E-02 9.3708180E-02 8.9461632E-02
 8.5273117E-02 8.1178360E-02 7.7202998E-02 7.3364474E-02 6.9673710E-02
 6.6136703E-02 6.2755793E-02 5.9530672E-02 5.6459118E-02 5.3537577E-02
 5.0761633E-02 4.8126243E-02 4.5626037E-02 4.3255433E-02 4.1008767E-02
 3.8880397E-02 3.6864739E-02 3.4956332E-02 3.3149861E-02 3.1440165E-02
 2.9822277E-02 2.8291415E-02 2.6842982E-02 2.5472602E-02 2.4176072E-02
 2.2949401E-02 2.1788789E-02 2.0690616E-02 1.9651458E-02 1.8668061E-02
 1.7737348E-02 1.6856406E-02 1.6022472E-02 1.5232957E-02 1.4485395E-02
 1.3777465E-02 1.3106967E-02 1.2471841E-02 1.1870121E-02 1.1299970E-02
 1.0759634E-02 1.0247465E-02 9.7619072E-03 9.3014818E-03 8.8648023E-03
 8.4505538E-03 8.0574900E-03 7.6844334E-03 7.3302826E-03 6.9939909E-03
 6.6745696E-03 6.3710925E-03 6.0826824E-03 5.8085127E-03 5.5478108E-03
 5.2998411E-03 5.0639156E-03 4.8393891E-03 4.6256487E-03 4.4221194E-03
 4.2282650E-03 4.0435698E-03 3.8675608E-03 3.6997786E-03 3.5398020E-03
 3.3872311E-03
 9.3252986E-04 -2.7495117E-03 -5.9824567E-03 -8.7842746E-03 -1.1183404E-02
 -1.3214373E-02 -1.4914131E-02 -1.6319437E-02 -1.7465193E-02 -1.8383494E-02
 -1.9103272E-02 -1.9650232E-02 -2.0047031E-02 -2.0313518E-02 -2.0467069E-02
 -2.0522863E-02 -2.0494169E-02 -2.0392612E-02 -2.0228388E-02 -2.0010462E-02
 -1.9746728E-02 -1.9444158E-02 -1.9108916E-02 -1.8746465E-02 -1.8361645E-02
 -1.7958742E-02 -1.7541578E-02 -1.7113525E-02 -1.6677583E-02 -1.6236406E-02
 -1.5792336E-02 -1.5347440E-02 -1.4903529E-02 -1.4462195E-02 -1.4024816E-02
 -1.3592585E-02 -1.3166528E-02 -1.2747513E-02 -1.2336276E-02 -1.1933416E-02
 -1.1539427E-02 -1.1154694E-02 -1.0779517E-02 -1.0414101E-02 -1.0058595E-02
 -9.7130742E-03 -9.3775624E-03 -9.0520298E-03 -8.7364130E-03 -8.4306067E-03
 -8.1344862E-03 -7.8478958E-03 -7.5706583E-03 -7.3025892E-03 -7.0434813E-03
 -6.7931339E-03 -6.5513188E-03 -6.3178223E-03 -6.0924105E-03 -5.8748606E-03
 -5.6649456E-03 -5.4624304E-03 -5.2670967E-03 -5.0787139E-03 -4.8970613E-03
 -4.7219233E-03 -4.5530833E-03 -4.3903263E-03 -4.2334511E-03 -4.0822555E-03
 -3.9365394E-03
 0.1148788 0.1104371 0.1058427 0.1011820 9.6527688E-02
 9.1937587E-02 8.7454915E-02 8.3110176E-02 7.8923486E-02 7.4906819E-02
 7.1066111E-02 6.7402899E-02 6.3915670E-02 6.0600773E-02 5.7453152E-02
 5.4466914E-02 5.1635612E-02 4.8952565E-02 4.6410985E-02 4.4004150E-02
 4.1725446E-02 3.9568432E-02 3.7526883E-02 3.5594814E-02 3.3766471E-02
 3.2036364E-02 3.0399246E-02 2.8850107E-02 2.7384209E-02 2.5997022E-02
 2.4684267E-02 2.3441877E-02 2.2265993E-02 2.1152982E-02 2.0099387E-02
 1.9101951E-02 1.8157581E-02 1.7263364E-02 1.6416548E-02 1.5614526E-02
 1.4854833E-02 1.4135140E-02 1.3453250E-02 1.2807075E-02 1.2194652E-02
 1.1614117E-02 1.1063708E-02 1.0541757E-02 1.0046691E-02 9.5770201E-03
 9.1313459E-03 8.7083317E-03 8.3067296E-03 7.9253558E-03 7.5630965E-03
 7.2189025E-03 6.8917847E-03 6.5808077E-03 6.2850951E-03 6.0038222E-03
 5.7362122E-03 5.4815295E-03 5.2390839E-03 5.0082244E-03 4.7883410E-03
 4.5788614E-03 4.3792361E-03 4.1889558E-03 4.0075351E-03 3.8345209E-03
 3.6694871E-03
 5.6862208E-04 -3.4748206E-03 -7.0181750E-03 -1.0076450E-02 -1.2679477E-02
 -1.4866169E-02 -1.6679501E-02 -1.8162780E-02 -1.9357236E-02 -2.0300670E-02
 -2.1026894E-02 -2.1565704E-02 -2.1943074E-02 -2.2181528E-02 -2.2300567E-02
 -2.2317059E-02 -2.2245605E-02 -2.2098884E-02 -2.1887921E-02 -2.1622339E-02
 -2.1310557E-02 -2.0959955E-02 -2.0577023E-02 -2.0167485E-02 -1.9736374E-02
 -1.9288147E-02 -1.8826727E-02 -1.8355587E-02 -1.7877791E-02 -1.7396027E-02
 -1.6912667E-02 -1.6429784E-02 -1.5949182E-02 -1.5472444E-02 -1.5000920E-02
 -1.4535770E-02 -1.4077981E-02 -1.3628381E-02 -1.3187655E-02 -1.2756360E-02
 -1.2334935E-02 -1.1923718E-02 -1.1522957E-02 -1.1132822E-02 -1.0753414E-02
 -1.0384768E-02 -1.0026873E-02 -9.6796723E-03 -9.3430672E-03 -9.0169311E-03
 -8.7011131E-03 -8.3954418E-03 -8.0997227E-03 -7.8137489E-03 -7.5373035E-03
 -7.2701634E-03 -7.0120916E-03 -6.7628603E-03 -6.5222182E-03 -6.2899333E-03
 -6.0657593E-03 -5.8494555E-03 -5.6407829E-03 -5.4394985E-03 -5.2453745E-03
 -5.0581768E-03 -4.8776763E-03 -4.7036484E-03 -4.5358804E-03 -4.3741567E-03
 -4.2182682E-03
 0.1246949 0.1198899 0.1148802 0.1097702 0.1046510
 9.9595651E-02 9.4659090E-02 8.9879781E-02 8.5282482E-02 8.0881327E-02
 7.6682657E-02 7.2687306E-02 6.8892345E-02 6.5292403E-02 6.1880600E-02
 5.8649182E-02 5.5589974E-02 5.2694689E-02 4.9955066E-02 4.7363073E-02
 4.4910923E-02 4.2591155E-02 4.0396612E-02 3.8320526E-02 3.6356423E-02
 3.4498189E-02 3.2740016E-02 3.1076413E-02 2.9502198E-02 2.8012447E-02
 2.6602529E-02 2.5268059E-02 2.4004888E-02 2.2809111E-02 2.1677023E-02
 2.0605128E-02 1.9590130E-02 1.8628905E-02 1.7718500E-02 1.6856130E-02
 1.6039150E-02 1.5265065E-02 1.4531515E-02 1.3836256E-02 1.3177185E-02
 1.2552297E-02 1.1959700E-02 1.1397606E-02 1.0864330E-02 1.0358272E-02
 9.8779351E-03 9.4218925E-03 8.9888070E-03 8.5774157E-03 8.1865322E-03
 7.8150323E-03 7.4618640E-03 7.1260305E-03 6.8066008E-03 6.5026861E-03
 6.2134634E-03 5.9381430E-03 5.6759939E-03 5.4263226E-03 5.1884730E-03
 4.9618278E-03 4.7458066E-03 4.5398641E-03 4.3434761E-03 4.1561588E-03
 3.9774566E-03
 5.6977215E-04 -3.9399746E-03 -7.8924140E-03 -1.1294383E-02 -1.4174169E-02
 -1.6574383E-02 -1.8544950E-02 -2.0137561E-02 -2.1401946E-02 -2.2383731E-02
 -2.3123523E-02 -2.3656765E-02 -2.4014015E-02 -2.4221458E-02 -2.4301479E-02
 -2.4273191E-02 -2.4152951E-02 -2.3954792E-02 -2.3690794E-02 -2.3371382E-02
 -2.3005601E-02 -2.2601305E-02 -2.2165351E-02 -2.1703724E-02 -2.1221673E-02
 -2.0723792E-02 -2.0214112E-02 -1.9696167E-02 -1.9173054E-02 -1.8647486E-02
 -1.8121824E-02 -1.7598126E-02 -1.7078165E-02 -1.6563479E-02 -1.6055372E-02
 -1.5554956E-02 -1.5063161E-02 -1.4580751E-02 -1.4108357E-02 -1.3646482E-02
 -1.3195508E-02 -1.2755722E-02 -1.2327327E-02 -1.1910448E-02 -1.1505146E-02
 -1.1111422E-02 -1.0729235E-02 -1.0358498E-02 -9.9990871E-03 -9.6508600E-03
 -9.3136393E-03 -8.9872349E-03 -8.6714346E-03 -8.3660167E-03 -8.0707464E-03
 -7.7853836E-03 -7.5096814E-03 -7.2433832E-03 -6.9862334E-03 -6.7379777E-03
 -6.4983568E-03 -6.2671145E-03 -6.0439957E-03 -5.8287457E-03 -5.6211175E-03
 -5.4208688E-03 -5.2277497E-03 -5.0415318E-03 -4.8619793E-03 -4.6888744E-03
 -4.5219851E-03
 0.1358518 0.1307051 0.1252718 0.1196772 0.1140361
 0.1084443 0.1029755 9.7681247E-02 9.2594855E-02 8.7734886E-02
 8.3109207E-02 7.8718349E-02 7.4557938E-02 7.0620537E-02 6.6896990E-02
 6.3377246E-02 6.0050923E-02 5.6907691E-02 5.3937450E-02 5.1130515E-02
 4.8477639E-02 4.5970071E-02 4.3599527E-02 4.1358229E-02 3.9238833E-02
 3.7234448E-02 3.5338581E-02 3.3545129E-02 3.1848364E-02 3.0242883E-02
 2.8723605E-02 2.7285744E-02 2.5924785E-02 2.4636488E-02 2.3416828E-02
 2.2262026E-02 2.1168502E-02 2.0132871E-02 1.9151954E-02 1.8222723E-02
 1.7342323E-02 1.6508058E-02 1.5717370E-02 1.4967841E-02 1.4257201E-02
 1.3583289E-02 1.2944066E-02 1.2337612E-02 1.1762108E-02 1.1215849E-02
 1.0697219E-02 1.0204697E-02 9.7368462E-03 9.2923203E-03 8.8698473E-03
 8.4682303E-03 8.0863340E-03 7.7231047E-03 7.3775337E-03 7.0486832E-03
 6.7356648E-03 6.4376369E-03 6.1538131E-03 5.8834469E-03 5.6258407E-03
 5.3803329E-03 5.1462990E-03 4.9231513E-03 4.7103316E-03 4.5073172E-03
 4.3136165E-03
 1.1510259E-03 -3.9520171E-03 -8.4420424E-03 -1.2307937E-02 -1.5569359E-02
 -1.8269138E-02 -2.0463753E-02 -2.2214975E-02 -2.3583772E-02 -2.4626564E-02
 -2.5393516E-02 -2.5928073E-02 -2.6267275E-02 -2.6442435E-02 -2.6479913E-02
 -2.6401898E-02 -2.6227083E-02 -2.5971284E-02 -2.5647914E-02 -2.5268417E-02
 -2.4842579E-02 -2.4378814E-02 -2.3884378E-02 -2.3365550E-02 -2.2827772E-02
 -2.2275776E-02 -2.1713667E-02 -2.1145022E-02 -2.0572953E-02 -2.0000145E-02
 -1.9428931E-02 -1.8861324E-02 -1.8299036E-02 -1.7743543E-02 -1.7196085E-02
 -1.6657701E-02 -1.6129253E-02 -1.5611446E-02 -1.5104844E-02 -1.4609887E-02
 -1.4126909E-02 -1.3656142E-02 -1.3197752E-02 -1.2751818E-02 -1.2318368E-02
 -1.1897380E-02 -1.1488773E-02 -1.1092438E-02 -1.0708234E-02 -1.0335989E-02
 -9.9755116E-03 -9.6265879E-03 -9.2889871E-03 -8.9624655E-03 -8.6467750E-03
 -8.3416523E-03 -8.0468329E-03 -7.7620419E-03 -7.4870060E-03 -7.2214543E-03
 -6.9651082E-03 -6.7176931E-03 -6.4789378E-03 -6.2485756E-03 -6.0263397E-03
 -5.8119693E-03 -5.6052092E-03 -5.4058074E-03 -5.2135172E-03 -5.0281039E-03
 -4.8493291E-03
 0.1484397 0.1430237 0.1372025 0.1311189 0.1249150
 0.1187176 0.1126292 0.1067242 0.1010514 9.5638506E-02
 9.0497717E-02 8.5630387E-02 8.1030987E-02 7.6689787E-02 7.2594807E-02
 6.8733074E-02 6.5091357E-02 6.1656680E-02 5.8416549E-02 5.5359129E-02
 5.2473288E-02 4.9748607E-02 4.7175352E-02 4.4744458E-02 4.2447459E-02
 4.0276479E-02 3.8224157E-02 3.6283609E-02 3.4448415E-02 3.2712553E-02
 3.1070381E-02 2.9516606E-02 2.8046243E-02 2.6654627E-02 2.5337340E-02
 2.4090234E-02 2.2909394E-02 2.1791117E-02 2.0731930E-02 1.9728530E-02
 1.8777814E-02 1.7876839E-02 1.7022835E-02 1.6213184E-02 1.5445421E-02
 1.4717211E-02 1.4026360E-02 1.3370791E-02 1.2748554E-02 1.2157811E-02
 1.1596825E-02 1.1063964E-02 1.0557692E-02 1.0076555E-02 9.6191969E-03
 9.1843298E-03 8.7707387E-03 8.3772885E-03 8.0028987E-03 7.6465663E-03
 7.3073297E-03 6.9842921E-03 6.6766059E-03 6.3834703E-03 6.1041312E-03
 5.8378801E-03 5.5840439E-03 5.3419881E-03 5.1111146E-03 4.8908587E-03
 4.6806936E-03
 2.6060017E-03 -3.2275131E-03 -8.4106540E-03 -1.2899692E-02 -1.6691895E-02
 -1.9820377E-02 -2.2343645E-02 -2.4333443E-02 -2.5864638E-02 -2.7008342E-02
 -2.7828267E-02 -2.8379442E-02 -2.8708318E-02 -2.8853606E-02 -2.8847363E-02
 -2.8716093E-02 -2.8481726E-02 -2.8162487E-02 -2.7773563E-02 -2.7327694E-02
 -2.6835607E-02 -2.6306381E-02 -2.5747750E-02 -2.5166303E-02 -2.4567692E-02
 -2.3956763E-02 -2.3337692E-02 -2.2714062E-02 -2.2088964E-02 -2.1465044E-02
 -2.0844569E-02 -2.0229479E-02 -1.9621415E-02 -1.9021768E-02 -1.8431695E-02
 -1.7852161E-02 -1.7283950E-02 -1.6727699E-02 -1.6183911E-02 -1.5652969E-02
 -1.5135149E-02 -1.4630650E-02 -1.4139588E-02 -1.3662007E-02 -1.3197906E-02
 -1.2747223E-02 -1.2309862E-02 -1.1885684E-02 -1.1474520E-02 -1.1076177E-02
 -1.0690438E-02 -1.0317067E-02 -9.9558095E-03 -9.6064033E-03 -9.2685726E-03
 -8.9420350E-03 -8.6265048E-03 -8.3216866E-03 -8.0272853E-03 -7.7430070E-03
 -7.4685593E-03 -7.2036474E-03 -6.9479779E-03 -6.7012701E-03 -6.4632366E-03
 -6.2336018E-03 -6.0120956E-03 -5.7984465E-03 -5.5923918E-03 -5.3936886E-03
 -5.2020717E-03
 0.1624381 0.1568903 0.1507890 0.1442776 0.1375183
 0.1306730 0.1238844 0.1172641 0.1108896 0.1048072
 9.9039599E-02 9.3592189E-02 8.8459611E-02 8.3629988E-02 7.9088032E-02
 7.4817039E-02 7.0800021E-02 6.7020513E-02 6.3462794E-02 6.0112190E-02
 5.6955036E-02 5.3978711E-02 5.1171552E-02 4.8522819E-02 4.6022572E-02
 4.3661643E-02 4.1431546E-02 3.9324384E-02 3.7332859E-02 3.5450138E-02
 3.3669878E-02 3.1986121E-02 3.0393312E-02 2.8886244E-02 2.7460013E-02
 2.6110014E-02 2.4831932E-02 2.3621678E-02 2.2475438E-02 2.1389587E-02
 2.0360725E-02 1.9385643E-02 1.8461324E-02 1.7584918E-02 1.6753756E-02
 1.5965302E-02 1.5217187E-02 1.4507165E-02 1.3833132E-02 1.3193110E-02
 1.2585227E-02 1.2007723E-02 1.1458946E-02 1.0937330E-02 1.0441415E-02
 9.9698156E-03 9.5212245E-03 9.0944180E-03 8.6882329E-03 8.3015887E-03
 7.9334518E-03 7.5828535E-03 7.2488808E-03 6.9306679E-03 6.6274088E-03
 6.3383323E-03 6.0627121E-03 5.7998695E-03 5.5491542E-03 5.3099557E-03
 5.0817071E-03
 5.2832738E-03 -1.3954190E-03 -7.4306466E-03 -1.2731928E-02 -1.7253455E-02
 -2.0998461E-02 -2.4013024E-02 -2.6372245E-02 -2.8164862E-02 -2.9480509E-02
 -3.0401841E-02 -3.1000812E-02 -3.1337913E-02 -3.1462949E-02 -3.1416461E-02
 -3.1231312E-02 -3.0934125E-02 -3.0546552E-02 -3.0086247E-02 -2.9567724E-02
 -2.9002957E-02 -2.8401889E-02 -2.7772838E-02 -2.7122779E-02 -2.6457598E-02
 -2.5782267E-02 -2.5101008E-02 -2.4417404E-02 -2.3734501E-02 -2.3054877E-02
 -2.2380721E-02 -2.1713881E-02 -2.1055903E-02 -2.0408090E-02 -1.9771509E-02
 -1.9147040E-02 -1.8535396E-02 -1.7937144E-02 -1.7352721E-02 -1.6782455E-02
 -1.6226580E-02 -1.5685242E-02 -1.5158516E-02 -1.4646415E-02 -1.4148899E-02
 -1.3665874E-02 -1.3197215E-02 -1.2742749E-02 -1.2302280E-02 -1.1875588E-02
 -1.1462424E-02 -1.1062528E-02 -1.0675617E-02 -1.0301400E-02 -9.9395784E-03
 -9.5898462E-03 -9.2518860E-03 -8.9253830E-03 -8.6100204E-03 -8.3054844E-03
 -8.0114547E-03 -7.7276179E-03 -7.4536628E-03 -7.1892808E-03 -6.9341757E-03
 -6.6880491E-03 -6.4506088E-03 -6.2215696E-03 -6.0006524E-03 -5.7875938E-03
 -5.5821156E-03
 0.1776734 0.1721826 0.1659896 0.1592100 0.1519997
 0.1445407 0.1370180 0.1295953 0.1223984 0.1155109
 0.1089788 0.1028200 9.7033538E-02 9.1606833E-02 8.6521268E-02
 8.1755623E-02 7.7288032E-02 7.3097304E-02 6.9163345E-02 6.5467589E-02
 6.1992951E-02 5.8723796E-02 5.5645868E-02 5.2746169E-02 5.0012801E-02
 4.7434896E-02 4.5002457E-02 4.2706288E-02 4.0537935E-02 3.8489539E-02
 3.6553841E-02 3.4724072E-02 3.2993935E-02 3.1357564E-02 2.9809462E-02
 2.8344484E-02 2.6957817E-02 2.5644938E-02 2.4401616E-02 2.3223868E-02
 2.2107949E-02 2.1050353E-02 2.0047780E-02 1.9097116E-02 1.8195460E-02
 1.7340060E-02 1.6528340E-02 1.5757874E-02 1.5026379E-02 1.4331711E-02
 1.3671852E-02 1.3044899E-02 1.2449061E-02 1.1882653E-02 1.1344092E-02
 1.0831881E-02 1.0344614E-02 9.8809637E-03 9.4396751E-03 9.0195807E-03
 8.6195599E-03 8.2385708E-03 7.8756232E-03 7.5297817E-03 7.2001731E-03
 6.8859677E-03 6.5863752E-03 6.3006617E-03 6.0281237E-03 5.7680989E-03
 5.5199726E-03
 9.5098885E-03 1.9412600E-03 -5.0554080E-03 -1.1343434E-02 -1.6818343E-02
 -2.1425715E-02 -2.5169464E-02 -2.8106008E-02 -3.0327305E-02 -3.1940833E-02
 -3.3053275E-02 -3.3760820E-02 -3.4145180E-02 -3.4273326E-02 -3.4199022E-02
 -3.3964984E-02 -3.3605050E-02 -3.3146039E-02 -3.2609299E-02 -3.2011922E-02
 -3.1367674E-02 -3.0687725E-02 -2.9981185E-02 -2.9255565E-02 -2.8517047E-02
 -2.7770778E-02 -2.7021039E-02 -2.6271401E-02 -2.5524868E-02 -2.4783941E-02
 -2.4050713E-02 -2.3326928E-02 -2.2614036E-02 -2.1913236E-02 -2.1225506E-02
 -2.0551644E-02 -1.9892281E-02 -1.9247906E-02 -1.8618904E-02 -1.8005539E-02
 -1.7407987E-02 -1.6826348E-02 -1.6260654E-02 -1.5710868E-02 -1.5176914E-02
 -1.4658660E-02 -1.4155931E-02 -1.3668528E-02 -1.3196212E-02 -1.2738734E-02
 -1.2295806E-02 -1.1867135E-02 -1.1452410E-02 -1.1051302E-02 -1.0663493E-02
 -1.0288638E-02 -9.9263983E-03 -9.5764296E-03 -9.2383912E-03 -8.9119403E-03
 -8.5967341E-03 -8.2924413E-03 -7.9987207E-03 -7.7152494E-03 -7.4417000E-03
 -7.1777590E-03 -6.9231130E-03 -6.6774585E-03 -6.4404947E-03 -6.2119444E-03
 -5.9915064E-03
 0.1938467 0.1885985 0.1825410 0.1757403 0.1683086
 0.1604075 0.1522355 0.1440030 0.1359008 0.1280759
 0.1206239 0.1135940 0.1070010 0.1008375 9.5083550E-02
 8.9713290E-02 8.4698856E-02 8.0012783E-02 7.5629056E-02 7.1523704E-02
 6.7674898E-02 6.4062856E-02 6.0669754E-02 5.7479512E-02 5.4477576E-02
 5.1650789E-02 4.8987176E-02 4.6475813E-02 4.4106741E-02 4.1870784E-02
 3.9759513E-02 3.7765138E-02 3.5880446E-02 3.4098763E-02 3.2413866E-02
 3.0819969E-02 2.9311666E-02 2.7883923E-02 2.6532033E-02 2.5251588E-02
 2.4038464E-02 2.2888787E-02 2.1798948E-02 2.0765539E-02 1.9785384E-02
 1.8855486E-02 1.7973036E-02 1.7135391E-02 1.6340075E-02 1.5584755E-02
 1.4867238E-02 1.4185457E-02 1.3537472E-02 1.2921454E-02 1.2335688E-02
 1.1778546E-02 1.1248506E-02 1.0744127E-02 1.0264053E-02 9.8070120E-03
 9.3717985E-03 8.9572705E-03 8.5623665E-03 8.1860628E-03 7.8274189E-03
 7.4855243E-03 7.1595353E-03 6.8486431E-03 6.5520904E-03 6.2691565E-03
 5.9991749E-03
 1.5484081E-02 7.0792129E-03 -8.8077562E-04 -8.2371663E-03 -1.4837806E-02
 -2.0558666E-02 -2.5327671E-02 -2.9140141E-02 -3.2056727E-02 -3.4184419E-02
 -3.5650793E-02 -3.6582381E-02 -3.7091766E-02 -3.7272722E-02 -3.7200309E-02
 -3.6933318E-02 -3.6517292E-02 -3.5987414E-02 -3.5370905E-02 -3.4688920E-02
 -3.3958014E-02 -3.3191230E-02 -3.2398924E-02 -3.1589385E-02 -3.0769274E-02
 -2.9944004E-02 -2.9117979E-02 -2.8294792E-02 -2.7477413E-02 -2.6668267E-02
 -2.5869347E-02 -2.5082298E-02 -2.4308456E-02 -2.3548920E-02 -2.2804568E-02
 -2.2076095E-02 -2.1364054E-02 -2.0668849E-02 -1.9990789E-02 -1.9330073E-02
 -1.8686807E-02 -1.8061027E-02 -1.7452711E-02 -1.6861765E-02 -1.6288059E-02
 -1.5731407E-02 -1.5191593E-02 -1.4668362E-02 -1.4161438E-02 -1.3670518E-02
 -1.3195287E-02 -1.2735403E-02 -1.2290520E-02 -1.1860277E-02 -1.1444313E-02
 -1.1042258E-02 -1.0653742E-02 -1.0278388E-02 -9.9158203E-03 -9.5656775E-03
 -9.2275850E-03 -8.9011835E-03 -8.5861124E-03 -8.2820170E-03 -7.9885516E-03
 -7.7053783E-03 -7.4321576E-03 -7.1685696E-03 -6.9142897E-03 -6.6690245E-03
 -6.4324453E-03
 0.2106431 0.2057581 0.2000199 0.1934479 0.1860955
 0.1780628 0.1695053 0.1606296 0.1516695 0.1428479
 0.1343426 0.1262697 0.1186877 0.1116113 0.1050277
 9.8909430E-02 9.3222708E-02 8.7932341E-02 8.3004408E-02 7.8407504E-02
 7.4113175E-02 7.0095867E-02 6.6332772E-02 6.2803537E-02 5.9489977E-02
 5.6375828E-02 5.3446453E-02 5.0688643E-02 4.8090465E-02 4.5641035E-02
 4.3330442E-02 4.1149605E-02 3.9090171E-02 3.7144482E-02 3.5305418E-02
 3.3566423E-02 3.1921402E-02 3.0364694E-02 2.8891046E-02 2.7495548E-02
 2.6173620E-02 2.4920987E-02 2.3733662E-02 2.2607895E-02 2.1540198E-02
 2.0527285E-02 1.9566081E-02 1.8653695E-02 1.7787416E-02 1.6964698E-02
 1.6183155E-02 1.5440529E-02 1.4734705E-02 1.4063694E-02 1.3425620E-02
 1.2818724E-02 1.2241343E-02 1.1691911E-02 1.1168952E-02 1.0671079E-02
 1.0196985E-02 9.7454265E-03 9.3152458E-03 8.9053381E-03 8.5146679E-03
 8.1422562E-03 7.7871755E-03 7.4485526E-03 7.1255574E-03 6.8174079E-03
 6.5233763E-03
 2.3215428E-02 1.4102623E-02 5.2905069E-03 -3.0716497E-03 -1.0821407E-02
 -1.7793827E-02 -2.3842400E-02 -2.8867925E-02 -3.2844026E-02 -3.5824139E-02
 -3.7924372E-02 -3.9292186E-02 -4.0076885E-02 -4.0411305E-02 -4.0404633E-02
 -4.0142559E-02 -3.9690599E-02 -3.9098237E-02 -3.8402677E-02 -3.7631948E-02
 -3.6807273E-02 -3.5944808E-02 -3.5056967E-02 -3.4153346E-02 -3.3241440E-02
 -3.2327130E-02 -3.1415075E-02 -3.0508973E-02 -2.9611792E-02 -2.8725903E-02
 -2.7853211E-02 -2.6995251E-02 -2.6153240E-02 -2.5328156E-02 -2.4520755E-02
 -2.3731627E-02 -2.2961210E-02 -2.2209806E-02 -2.1477630E-02 -2.0764781E-02
 -2.0071285E-02 -1.9397097E-02 -1.8742109E-02 -1.8106163E-02 -1.7489051E-02
 -1.6890526E-02 -1.6310308E-02 -1.5748089E-02 -1.5203530E-02 -1.4676283E-02
 -1.4165977E-02 -1.3672230E-02 -1.3194646E-02 -1.2732827E-02 -1.2286372E-02
 -1.1854869E-02 -1.1437912E-02 -1.1035097E-02 -1.0646010E-02 -1.0270256E-02
 -9.9074319E-03 -9.5571466E-03 -9.2190141E-03 -8.8926489E-03 -8.5776811E-03
 -8.2737468E-03 -7.9804836E-03 -7.6975431E-03 -7.4245855E-03 -7.1612904E-03
 -6.9073043E-03
 0.2278462 0.2233600 0.2180268 0.2118404 0.2048113
 0.1969769 0.1884173 0.1792692 0.1697323 0.1600538
 0.1504894 0.1412567 0.1325049 0.1243110 0.1166955
 0.1096428 0.1031181 9.7079091E-02 9.1482341E-02 8.6286612E-02
 8.1454270E-02 7.6951638E-02 7.2748892E-02 6.8819709E-02 6.5140843E-02
 6.1691754E-02 5.8454175E-02 5.5411827E-02 5.2550167E-02 4.9856089E-02
 4.7317762E-02 4.4924457E-02 4.2666398E-02 4.0534675E-02 3.8521100E-02
 3.6618151E-02 3.4818903E-02 3.3116933E-02 3.1506345E-02 2.9981617E-02
 2.8537638E-02 2.7169647E-02 2.5873214E-02 2.4644185E-02 2.3478709E-02
 2.2373157E-02 2.1324141E-02 2.0328481E-02 1.9383201E-02 1.8485511E-02
 1.7632788E-02 1.6822563E-02 1.6052522E-02 1.5320487E-02 1.4624413E-02
 1.3962371E-02 1.3332549E-02 1.2733234E-02 1.2162815E-02 1.1619783E-02
 1.1102703E-02 1.0610227E-02 1.0141084E-02 9.6940761E-03 9.2680641E-03
 8.8619869E-03 8.4748277E-03 8.1056384E-03 7.7535119E-03 7.4175885E-03
 7.0970813E-03
 3.2564376E-02 2.2889240E-02 1.3389621E-02 4.1894424E-03 -4.5701377E-03
 -1.2730301E-02 -2.0120207E-02 -2.6573626E-02 -3.1958681E-02 -3.6212932E-02
 -3.9365355E-02 -4.1528694E-02 -4.2865932E-02 -4.3551162E-02 -4.3742012E-02
 -4.3567833E-02 -4.3128673E-02 -4.2499430E-02 -4.1735243E-02 -4.0876474E-02
 -3.9952654E-02 -3.8985495E-02 -3.7991039E-02 -3.6981247E-02 -3.5965089E-02
 -3.4949351E-02 -3.3939190E-02 -3.2938577E-02 -3.1950571E-02 -3.0977523E-02
 -3.0021263E-02 -2.9083205E-02 -2.8164426E-02 -2.7265763E-02 -2.6387814E-02
 -2.5531016E-02 -2.4695667E-02 -2.3881931E-02 -2.3089882E-02 -2.2319499E-02
 -2.1570696E-02 -2.0843307E-02 -2.0137127E-02 -1.9451898E-02 -1.8787328E-02
 -1.8143082E-02 -1.7518803E-02 -1.6914109E-02 -1.6328597E-02 -1.5761852E-02
 -1.5213449E-02 -1.4682944E-02 -1.4169891E-02 -1.3673847E-02 -1.3194357E-02
 -1.2730972E-02 -1.2283244E-02 -1.1850721E-02 -1.1432958E-02 -1.1029520E-02
 -1.0639973E-02 -1.0263891E-02 -9.9008530E-03 -9.5504466E-03 -9.2122722E-03
 -8.8859331E-03 -8.5710464E-03 -8.2672322E-03 -7.9741217E-03 -7.6913866E-03
 -7.4186302E-03
 0.2453812 0.2412664 0.2363355 0.2305752 0.2239779
 0.2165467 0.2083040 0.1993058 0.1896596 0.1795405
 0.1691903 0.1588880 0.1488957 0.1394092 0.1305388
 0.1223209 0.1147415 0.1077605 0.1013268 9.5387675E-02
 8.9893565E-02 8.4799536E-02 8.0065846E-02 7.5657703E-02 7.1544699E-02
 6.7700289E-02 6.4101189E-02 6.0726918E-02 5.7559412E-02 5.4582570E-02
 5.1782057E-02 4.9144991E-02 4.6659760E-02 4.4315878E-02 4.2103790E-02
 4.0014777E-02 3.8040869E-02 3.6174741E-02 3.4409646E-02 3.2739367E-02
 3.1158129E-02 2.9660594E-02 2.8241787E-02 2.6897084E-02 2.5622196E-02
 2.4413086E-02 2.3266006E-02 2.2177437E-02 2.1144088E-02 2.0162884E-02
 1.9230932E-02 1.8345522E-02 1.7504105E-02 1.6704287E-02 1.5943829E-02
 1.5220607E-02 1.4532638E-02 1.3878045E-02 1.3255063E-02 1.2662041E-02
 1.2097402E-02 1.1559676E-02 1.1047469E-02 1.0559466E-02 1.0094429E-02
 9.6511887E-03 9.2286374E-03 8.8257333E-03 8.4414845E-03 8.0749560E-03
 7.7252807E-03
 4.3336552E-02 3.3219062E-02 2.3183817E-02 1.3330418E-02 3.7709218E-03
 -5.3662620E-03 -1.3933090E-02 -2.1762371E-02 -2.8677277E-02 -3.4515869E-02
 -3.9170116E-02 -4.2624325E-02 -4.4967070E-02 -4.6364874E-02 -4.7014885E-02
 -4.7103968E-02 -4.6787698E-02 -4.6185844E-02 -4.5386605E-02 -4.4453457E-02
 -4.3431610E-02 -4.2353194E-02 -4.1241083E-02 -4.0111639E-02 -3.8976628E-02
 -3.7844572E-02 -3.6721662E-02 -3.5612416E-02 -3.4520164E-02 -3.3447333E-02
 -3.2395691E-02 -3.1366535E-02 -3.0360769E-02 -2.9379033E-02 -2.8421726E-02
 -2.7489083E-02 -2.6581200E-02 -2.5698047E-02 -2.4839526E-02 -2.4005443E-02
 -2.3195546E-02 -2.2409536E-02 -2.1647066E-02 -2.0907747E-02 -2.0191180E-02
 -1.9496921E-02 -1.8824516E-02 -1.8173488E-02 -1.7543357E-02 -1.6933629E-02
 -1.6343802E-02 -1.5773375E-02 -1.5221832E-02 -1.4688668E-02 -1.4173383E-02
 -1.3675468E-02 -1.3194428E-02 -1.2729766E-02 -1.2280994E-02 -1.1847634E-02
 -1.1429212E-02 -1.1025265E-02 -1.0635332E-02 -1.0258976E-02 -9.8957550E-03
 -9.5452433E-03 -9.2070261E-03 -8.8806981E-03 -8.5658617E-03 -8.2621612E-03
 -7.9691699E-03
 0.2632889 0.2594876 0.2549065 0.2495350 0.2433637
 0.2363860 0.2286004 0.2200173 0.2106701 0.2006324
 0.1900404 0.1791070 0.1681118 0.1573541 0.1470870
 0.1374727 0.1285790 0.1204039 0.1129054 0.1060243
 9.9698178E-02 9.3867756E-02 8.8479586E-02 8.3486840E-02 7.8848831E-02
 7.4530423E-02 7.0501193E-02 6.6734768E-02 6.3208148E-02 5.9901167E-02
 5.6796070E-02 5.3877104E-02 5.1130217E-02 4.8542857E-02 4.6103697E-02
 4.3802485E-02 4.1629925E-02 3.9577510E-02 3.7637506E-02 3.5802767E-02
 3.4066726E-02 3.2423314E-02 3.0866930E-02 2.9392360E-02 2.7994787E-02
 2.6669700E-02 2.5412913E-02 2.4220511E-02 2.3088828E-02 2.2014465E-02
 2.0994211E-02 2.0025067E-02 1.9104222E-02 1.8229028E-02 1.7397016E-02
 1.6605856E-02 1.5853355E-02 1.5137452E-02 1.4456203E-02 1.3807792E-02
 1.3190493E-02 1.2602684E-02 1.2042836E-02 1.1509507E-02 1.1001337E-02
 1.0517045E-02 1.0055411E-02 9.6152946E-03 9.1956099E-03 8.7953229E-03
 8.4134946E-03
 5.5357907E-02 4.4880498E-02 3.4420233E-02 2.4059637E-02 1.3887811E-02
 4.0036836E-03 -5.4796478E-03 -1.4430147E-02 -2.2693427E-02 -3.0094841E-02
 -3.6454190E-02 -4.1619468E-02 -4.5514911E-02 -4.8178092E-02 -4.9755786E-02
 -5.0458174E-02 -5.0503079E-02 -5.0079092E-02 -4.9332950E-02 -4.8371926E-02
 -4.7271810E-02 -4.6085261E-02 -4.4848610E-02 -4.3586910E-02 -4.2317435E-02
 -4.1052137E-02 -3.9799277E-02 -3.8564574E-02 -3.7351985E-02 -3.6164172E-02
 -3.5002965E-02 -3.3869524E-02 -3.2764554E-02 -3.1688455E-02 -3.0641364E-02
 -2.9623237E-02 -2.8633898E-02 -2.7673069E-02 -2.6740408E-02 -2.5835488E-02
 -2.4957856E-02 -2.4107007E-02 -2.3282435E-02 -2.2483578E-02 -2.1709893E-02
 -2.0960797E-02 -2.0235714E-02 -1.9534059E-02 -1.8855235E-02 -1.8198665E-02
 -1.7563751E-02 -1.6949911E-02 -1.6356558E-02 -1.5783112E-02 -1.5229008E-02
 -1.4693677E-02 -1.4176566E-02 -1.3677121E-02 -1.3194808E-02 -1.2729100E-02
 -1.2279472E-02 -1.1845421E-02 -1.1426453E-02 -1.1022075E-02 -1.0631825E-02
 -1.0255232E-02 -9.8918490E-03 -9.5412405E-03 -9.2029776E-03 -8.8766795E-03
 -8.5618757E-03
 0.2816780 0.2781235 0.2738215 0.2687676 0.2629577
 0.2563874 0.2490527 0.2409504 0.2320830 0.2224658
 0.2121413 0.2012007 0.1898082 0.1782135 0.1667275
 0.1556578 0.1452361 0.1355849 0.1267304 0.1186377
 0.1112427 0.1044728 9.8258048E-02 9.2534989E-02 8.7248296E-02
 8.2350336E-02 7.7800289E-02 7.3563196E-02 6.9609031E-02 6.5911822E-02
 6.2449008E-02 5.9200872E-02 5.6150042E-02 5.3281158E-02 5.0580520E-02
 4.8035860E-02 4.5636144E-02 4.3371364E-02 4.1232478E-02 3.9211202E-02
 3.7299946E-02 3.5491765E-02 3.3780254E-02 3.2159492E-02 3.0624019E-02
 2.9168755E-02 2.7788984E-02 2.6480317E-02 2.5238659E-02 2.4060203E-02
 2.2941381E-02 2.1878857E-02 2.0869495E-02 1.9910380E-02 1.8998764E-02
 1.8132068E-02 1.7307865E-02 1.6523888E-02 1.5777985E-02 1.5068148E-02
 1.4392480E-02 1.3749193E-02 1.3136601E-02 1.2553114E-02 1.1997233E-02
 1.1467555E-02 1.0962737E-02 1.0481516E-02 1.0022705E-02 9.5851673E-03
 9.1678659E-03
 6.8505503E-02 5.7719346E-02 4.6905171E-02 3.6135152E-02 2.5483781E-02
 1.5029734E-02 4.8588933E-03 -4.9316888E-03 -1.4228609E-02 -2.2896675E-02
 -3.0775439E-02 -3.7683498E-02 -4.3439656E-02 -4.7907174E-02 -5.1049009E-02
 -5.2958224E-02 -5.3833846E-02 -5.3917918E-02 -5.3437341E-02 -5.2574825E-02
 -5.1464837E-02 -5.0201420E-02 -4.8848592E-02 -4.7449350E-02 -4.6032388E-02
 -4.4616759E-02 -4.3215077E-02 -4.1835625E-02 -4.0483780E-02 -3.9162930E-02
 -3.7875146E-02 -3.6621574E-02 -3.5402730E-02 -3.4218725E-02 -3.3069361E-02
 -3.1954244E-02 -3.0872861E-02 -2.9824583E-02 -2.8808746E-02 -2.7824644E-02
 -2.6871528E-02 -2.5948662E-02 -2.5055287E-02 -2.4190651E-02 -2.3354007E-02
 -2.2544604E-02 -2.1761710E-02 -2.1004589E-02 -2.0272521E-02 -1.9564802E-02
 -1.8880732E-02 -1.8219622E-02 -1.7580794E-02 -1.6963582E-02 -1.6367344E-02
 -1.5791437E-02 -1.5235233E-02 -1.4698125E-02 -1.4179510E-02 -1.3678810E-02
 -1.3195449E-02 -1.2728874E-02 -1.2278538E-02 -1.1843912E-02 -1.1424485E-02
 -1.1019749E-02 -1.0629223E-02 -1.0252426E-02 -9.8889004E-03 -9.5382417E-03
 -9.1999304E-03
 0.3006868 0.2973129 0.2932166 0.2884007 0.2828677
 0.2766201 0.2696588 0.2619829 0.2535904 0.2444794
 0.2346534 0.2241307 0.2129612 0.2012527 0.1891972
 0.1770780 0.1652305 0.1539600 0.1434689 0.1338382
 0.1250573 0.1170643 0.1097789 0.1031192 9.7010262E-02
 9.1386631E-02 8.6192138E-02 8.1379071E-02 7.6906994E-02 7.2741374E-02
 6.8852738E-02 6.5215617E-02 6.1807957E-02 5.8610495E-02 5.5606261E-02
 5.2780241E-02 5.0119068E-02 4.7610760E-02 4.5244552E-02 4.3010682E-02
 4.0900283E-02 3.8905263E-02 3.7018232E-02 3.5232380E-02 3.3541467E-02
 3.1939697E-02 3.0421726E-02 2.8982593E-02 2.7617674E-02 2.6322702E-02
 2.5093660E-02 2.3926819E-02 2.2818683E-02 2.1765986E-02 2.0765686E-02
 1.9814899E-02 1.8910944E-02 1.8051293E-02 1.7233569E-02 1.6455544E-02
 1.5715117E-02 1.5010314E-02 1.4339266E-02 1.3700224E-02 1.3091533E-02
 1.2511632E-02 1.1959053E-02 1.1432398E-02 1.0930357E-02 1.0451672E-02
 9.9952091E-03
 8.2706302E-02 7.1641475E-02 6.0516395E-02 4.9397536E-02 3.8351003E-02
 2.7443459E-02 1.6743805E-02 6.3255560E-03 -3.7296379E-03 -1.3327358E-02
 -2.2354387E-02 -3.0672427E-02 -3.8114928E-02 -4.4494297E-02 -4.9630545E-02
 -5.3406242E-02 -5.5826772E-02 -5.7039045E-02 -5.7285659E-02 -5.6829333E-02
 -5.5897493E-02 -5.4662574E-02 -5.3245600E-02 -5.1727943E-02 -5.0163031E-02
 -4.8585463E-02 -4.7017399E-02 -4.5472857E-02 -4.3960545E-02 -4.2485666E-02
 -4.1051161E-02 -3.9658468E-02 -3.8308054E-02 -3.6999773E-02 -3.5733055E-02
 -3.4507096E-02 -3.3320930E-02 -3.2173507E-02 -3.1063754E-02 -2.9990569E-02
 -2.8952857E-02 -2.7949542E-02 -2.6979571E-02 -2.6041918E-02 -2.5135592E-02
 -2.4259614E-02 -2.3413053E-02 -2.2594986E-02 -2.1804532E-02 -2.1040833E-02
 -2.0303044E-02 -1.9590361E-02 -1.8901985E-02 -1.8237149E-02 -1.7595114E-02
 -1.6975146E-02 -1.6376538E-02 -1.5798610E-02 -1.5240679E-02 -1.4702108E-02
 -1.4182258E-02 -1.3680520E-02 -1.3196293E-02 -1.2728994E-02 -1.2278067E-02
 -1.1842961E-02 -1.1423144E-02 -1.1018105E-02 -1.0627337E-02 -1.0250420E-02
 -9.8867668E-03
 0.3204606 0.3172046 0.3132436 0.3085870 0.3032446
 0.2972257 0.2905385 0.2831890 0.2751802 0.2665120
 0.2571819 0.2471870 0.2365295 0.2252287 0.2133407
 0.2009888 0.1883915 0.1758627 0.1637548 0.1523630
 0.1418566 0.1322780 0.1235846 0.1156941 0.1085140
 0.1019562 9.5943138E-02 9.0408050E-02 8.5294776E-02 8.0555923E-02
 7.6151535E-02 7.2047696E-02 6.8215437E-02 6.4629875E-02 6.1269395E-02
 5.8115143E-02 5.5150542E-02 5.2360892E-02 4.9733143E-02 4.7255572E-02
 4.4917624E-02 4.2709749E-02 4.0623281E-02 3.8650289E-02 3.6783550E-02
 3.5016391E-02 3.3342682E-02 3.1756759E-02 3.0253373E-02 2.8827675E-02
 2.7475134E-02 2.6191544E-02 2.4972981E-02 2.3815779E-02 2.2716518E-02
 2.1671994E-02 2.0679202E-02 1.9735327E-02 1.8837722E-02 1.7983910E-02
 1.7171558E-02 1.6398473E-02 1.5662586E-02 1.4961948E-02 1.4294736E-02
 1.3659223E-02 1.3053771E-02 1.2476847E-02 1.1926999E-02 1.1402833E-02
 1.0903107E-02
 9.7923912E-02 8.6597241E-02 7.5186335E-02 6.3754871E-02 5.2364439E-02
 4.1075047E-02 2.9945897E-02 1.9036816E-02 8.4100552E-03 -1.8668481E-03
 -1.1717097E-02 -2.1049183E-02 -2.9750042E-02 -3.7678260E-02 -4.4661086E-02
 -5.0505012E-02 -5.5032760E-02 -5.8148865E-02 -5.9901845E-02 -6.0487725E-02
 -6.0183246E-02 -5.9262529E-02 -5.7947963E-02 -5.6399744E-02 -5.4725714E-02
 -5.2995726E-02 -5.1253948E-02 -4.9527790E-02 -4.7833923E-02 -4.6182122E-02
 -4.4577803E-02 -4.3023624E-02 -4.1520454E-02 -4.0068123E-02 -3.8665768E-02
 -3.7312135E-02 -3.6005754E-02 -3.4745052E-02 -3.3528440E-02 -3.2354321E-02
 -3.1221135E-02 -3.0127384E-02 -2.9071625E-02 -2.8052479E-02 -2.7068632E-02
 -2.6118819E-02 -2.5201844E-02 -2.4316553E-02 -2.3461843E-02 -2.2636667E-02
 -2.1840017E-02 -2.1070918E-02 -2.0328438E-02 -1.9611673E-02 -1.8919770E-02
 -1.8251885E-02 -1.7607214E-02 -1.6984979E-02 -1.6384425E-02 -1.5804827E-02
 -1.5245479E-02 -1.4705698E-02 -1.4184827E-02 -1.3682223E-02 -1.3197273E-02
 -1.2729377E-02 -1.2277951E-02 -1.1842439E-02 -1.1422291E-02 -1.1017062E-02
 -1.0626089E-02
 0.3411440 0.3379463 0.3340536 0.3294814 0.3242462
 0.3183641 0.3118502 0.3047179 0.2969774 0.2886357
 0.2796957 0.2701556 0.2600107 0.2492546 0.2378872
 0.2259272 0.2134358 0.2005506 0.1875147 0.1746687
 0.1623763 0.1509173 0.1404275 0.1309150 0.1223112
 0.1145179 0.1074339 0.1009673 9.5038503E-02 8.9580648E-02
 8.4537685E-02 7.9862736E-02 7.5516380E-02 7.1465321E-02 6.7681126E-02
 6.4139344E-02 6.0818844E-02 5.7701118E-02 5.4769952E-02 5.2010953E-02
 4.9411301E-02 4.6959508E-02 4.4645239E-02 4.2459119E-02 4.0392656E-02
 3.8438071E-02 3.6588255E-02 3.4836665E-02 3.3177279E-02 3.1604536E-02
 3.0113289E-02 2.8698755E-02 2.7356485E-02 2.6082341E-02 2.4872478E-02
 2.3723280E-02 2.2631383E-02 2.1593630E-02 2.0607058E-02 1.9668911E-02
 1.8776575E-02 1.7927608E-02 1.7119713E-02 1.6350718E-02 1.5618597E-02
 1.4921427E-02 1.4257398E-02 1.3624809E-02 1.3022047E-02 1.2447570E-02
 1.1899999E-02
 0.1141441 0.1025640 9.0881161E-02 7.9158105E-02 6.7454159E-02
 5.5825699E-02 4.4326674E-02 3.3009257E-02 2.1924842E-02 1.1125641E-02
 6.6676200E-04 -9.3904510E-03 -1.8973995E-02 -2.7995214E-02 -3.6341012E-02
 -4.3866415E-02 -5.0392259E-02 -5.5719294E-02 -5.9673786E-02 -6.2183071E-02
 -6.3336998E-02 -6.3374184E-02 -6.2596627E-02 -6.1283227E-02 -5.9648074E-02
 -5.7838868E-02 -5.5951342E-02 -5.4045245E-02 -5.2156854E-02 -5.0307561E-02
 -4.8509423E-02 -4.6768725E-02 -4.5088150E-02 -4.3468233E-02 -4.1908186E-02
 -4.0406451E-02 -3.8961075E-02 -3.7569895E-02 -3.6230706E-02 -3.4941301E-02
 -3.3699535E-02 -3.2503370E-02 -3.1350859E-02 -3.0240158E-02 -2.9169546E-02
 -2.8137378E-02 -2.7142119E-02 -2.6182309E-02 -2.5256582E-02 -2.4363637E-02
 -2.3502246E-02 -2.2671236E-02 -2.1869496E-02 -2.1095961E-02 -2.0349627E-02
 -1.9629521E-02 -1.8934717E-02 -1.8264325E-02 -1.7617485E-02 -1.6993383E-02
 -1.6391225E-02 -1.5810249E-02 -1.5249725E-02 -1.4708942E-02 -1.4187221E-02
 -1.3683903E-02 -1.3198349E-02 -1.2729947E-02 -1.2278100E-02 -1.1842340E-02
 -1.1421911E-02
 0.3628797 0.3596829 0.3557939 0.3512344 0.3460269
 0.3401941 0.3337573 0.3267365 0.3191492 0.3110097
 0.3023284 0.2931111 0.2833582 0.2730652 0.2622229
 0.2508211 0.2388559 0.2263445 0.2133521 0.2000293
 0.1866416 0.1735523 0.1611313 0.1496408 0.1391851
 0.1297426 0.1212239 0.1135187 0.1065200 0.1001329
 9.4277047E-02 8.8885508E-02 8.3902590E-02 7.9282016E-02 7.4984916E-02
 7.0978500E-02 6.7234829E-02 6.3729919E-02 6.0443018E-02 5.7355974E-02
 5.4452829E-02 5.1719464E-02 4.9143296E-02 4.6713028E-02 4.4418514E-02
 4.2250544E-02 4.0200744E-02 3.8261469E-02 3.6425721E-02 3.4687068E-02
 3.3039592E-02 3.1477802E-02 2.9996622E-02 2.8591344E-02 2.7257601E-02
 2.5991302E-02 2.4788650E-02 2.3646090E-02 2.2560291E-02 2.1528155E-02
 2.0546755E-02 1.9613361E-02 1.8725395E-02 1.7880445E-02 1.7076243E-02
 1.6310658E-02 1.5581665E-02 1.4887372E-02 1.4225988E-02 1.3595802E-02
 1.2995281E-02
 0.1313635 0.1195326 0.1075843 9.5580973E-02 8.3580732E-02
 7.1638070E-02 5.9803981E-02 4.8126414E-02 3.6650818E-02 2.5420966E-02
 1.4480117E-02 3.8727929E-03 -6.3526994E-03 -1.6140951E-02 -2.5424305E-02
 -3.4116179E-02 -4.2102933E-02 -4.9235646E-02 -5.5328451E-02 -6.0176391E-02
 -6.3609444E-02 -6.5577127E-02 -6.6207081E-02 -6.5773509E-02 -6.4596392E-02
 -6.2954850E-02 -6.1053496E-02 -5.9028279E-02 -5.6964286E-02 -5.4912657E-02
 -5.2903086E-02 -5.0951961E-02 -4.9067557E-02 -4.7253281E-02 -4.5509599E-02
 -4.3835282E-02 -4.2228159E-02 -4.0685557E-02 -3.9204616E-02 -3.7782427E-02
 -3.6416147E-02 -3.5103045E-02 -3.3840545E-02 -3.2626208E-02 -3.1457786E-02
 -3.0333143E-02 -2.9250311E-02 -2.8207436E-02 -2.7202789E-02 -2.6234768E-02
 -2.5301857E-02 -2.4402633E-02 -2.3535753E-02 -2.2699947E-02 -2.1894030E-02
 -2.1116858E-02 -2.0367360E-02 -1.9644503E-02 -1.8947309E-02 -1.8274849E-02
 -1.7626228E-02 -1.7000586E-02 -1.6397100E-02 -1.5814986E-02 -1.5253487E-02
 -1.4711875E-02 -1.4189444E-02 -1.3685525E-02 -1.3199462E-02 -1.2730762E-02
 -1.2278561E-02
 0.3858125 0.3825602 0.3786116 0.3739947 0.3687384
 0.3628711 0.3564203 0.3494120 0.3418699 0.3338150
 0.3252648 0.3162325 0.3067268 0.2967503 0.2863000
 0.2753669 0.2639371 0.2519956 0.2395339 0.2265673
 0.2131641 0.1994861 0.1858186 0.1725441 0.1600352
 0.1485356 0.1381215 0.1287466 0.1203051 0.1126776
 0.1057527 9.9433757E-02 9.3639985E-02 8.8304609E-02 8.3372422E-02
 7.8797601E-02 7.4541852E-02 7.0572838E-02 6.6863112E-02 6.3389055E-02
 6.0130212E-02 5.7068743E-02 5.4188963E-02 5.1476948E-02 4.8920330E-02
 4.6507984E-02 4.4229902E-02 4.2077001E-02 4.0041029E-02 3.8114466E-02
 3.6290407E-02 3.4562502E-02 3.2924894E-02 3.1372175E-02 2.9899351E-02
 2.8501760E-02 2.7175086E-02 2.5915289E-02 2.4718614E-02 2.3581559E-02
 2.2500832E-02 2.1473354E-02 2.0496242E-02 1.9566789E-02 1.8682456E-02
 1.7840853E-02 1.7039726E-02 1.6276969E-02 1.5550575E-02 1.4858638E-02
 1.4199465E-02
 0.1495824 0.1374988 0.1252864 0.1130074 0.1007196
 8.8476263E-02 7.6326646E-02 6.4316280E-02 5.2487276E-02 4.0878747E-02
 2.9527526E-02 1.8469123E-02 7.7391299E-03 -2.6249518E-03 -1.2580993E-02
 -2.2078337E-02 -3.1052677E-02 -3.9418813E-02 -4.7061808E-02 -5.3828429E-02
 -5.9525959E-02 -6.3943774E-02 -6.6915423E-02 -6.8410933E-02 -6.8591289E-02
 -6.7759752E-02 -6.6248678E-02 -6.4334892E-02 -6.2213551E-02 -6.0010105E-02
 -5.7800535E-02 -5.5628818E-02 -5.3519186E-02 -5.1483937E-02 -4.9528256E-02
 -4.7653172E-02 -4.5857329E-02 -4.4138048E-02 -4.2492032E-02 -4.0915694E-02
 -3.9405394E-02 -3.7957616E-02 -3.6568999E-02 -3.5236370E-02 -3.3956788E-02
 -3.2727506E-02 -3.1545989E-02 -3.0409874E-02 -2.9316986E-02 -2.8265309E-02
 -2.7252963E-02 -2.6278200E-02 -2.5339385E-02 -2.4434993E-02 -2.3563601E-02
 -2.2723863E-02 -2.1914510E-02 -2.1134349E-02 -2.0382239E-02 -1.9657120E-02
 -1.8957963E-02 -1.8283799E-02 -1.7633701E-02 -1.7006783E-02 -1.6402200E-02
 -1.5819144E-02 -1.5256833E-02 -1.4714526E-02 -1.4191500E-02 -1.3687246E-02
 -1.3200755E-02
 0.4100938 0.4067290 0.4026573 0.3979136 0.3925331
 0.3865503 0.3799983 0.3729089 0.3653114 0.3572326
 0.3486962 0.3397220 0.3303256 0.3205175 0.3103027
 0.2996799 0.2886414 0.2771732 0.2652560 0.2528697
 0.2400013 0.2266636 0.2129270 0.1989632 0.1850745
 0.1716591 0.1590902 0.1475941 0.1372227 0.1279094
 0.1195354 0.1119748 0.1051125 9.8851070E-02 9.3109451E-02
 8.7821104E-02 8.2931288E-02 7.8394637E-02 7.4173354E-02 7.0235536E-02
 6.6554047E-02 6.3105628E-02 5.9870113E-02 5.6829892E-02 5.3969514E-02
 5.1275238E-02 4.8734851E-02 4.6337366E-02 4.4072896E-02 4.1932501E-02
 3.9908018E-02 3.7992001E-02 3.6177624E-02 3.4458615E-02 3.2829195E-02
 3.1284012E-02 2.9818114E-02 2.8426901E-02 2.7106078E-02 2.5851682E-02
 2.4659980E-02 2.3527494E-02 2.2450972E-02 2.1427363E-02 2.0453818E-02
 1.9527648E-02 1.8646339E-02 1.7807517E-02 1.7008949E-02 1.6248498E-02
 1.5524283E-02
 0.1687996 0.1564574 0.1439779 0.1314233 0.1188508
 0.1063131 9.3858056E-02 8.1529804E-02 6.9368407E-02 5.7410292E-02
 4.5688715E-02 3.4234330E-02 2.3075957E-02 1.2241650E-02 1.7602684E-03
 -8.3364453E-03 -1.8011201E-02 -2.7216939E-02 -3.5891674E-02 -4.3950643E-02
 -5.1277071E-02 -5.7713263E-02 -6.3059874E-02 -6.7100801E-02 -6.9672659E-02
 -7.0763811E-02 -7.0563838E-02 -6.9399372E-02 -6.7611180E-02 -6.5472573E-02
 -6.3169949E-02 -6.0819726E-02 -5.8490224E-02 -5.6219537E-02 -5.4027393E-02
 -5.1922735E-02 -4.9908228E-02 -4.7982942E-02 -4.6144042E-02 -4.4387676E-02
 -4.2709574E-02 -4.1105401E-02 -3.9570902E-02 -3.8102031E-02 -3.6695015E-02
 -3.5346311E-02 -3.4052674E-02 -3.2811090E-02 -3.1618796E-02 -3.0473251E-02
 -2.9372109E-02 -2.8313197E-02 -2.7294518E-02 -2.6314201E-02 -2.5370538E-02
 -2.4461906E-02 -2.3586808E-02 -2.2743829E-02 -2.1931646E-02 -2.1149021E-02
 -2.0394769E-02 -1.9667780E-02 -1.8967001E-02 -1.8291427E-02 -1.7640108E-02
 -1.7012134E-02 -1.6406642E-02 -1.5822798E-02 -1.5259808E-02 -1.4717138E-02
 -1.4193615E-02
 0.4358867 0.4323507 0.4280910 0.4231501 0.4175699
 0.4113913 0.4046532 0.3973927 0.3896444 0.3814407
 0.3728102 0.3637786 0.3543673 0.3445932 0.3344682
 0.3239988 0.3131853 0.3020216 0.2904948 0.2785854
 0.2662692 0.2535206 0.2403224 0.2266848 0.2126797
 0.1984869 0.1844234 0.1709000 0.1582895 0.1468024
 0.1364712 0.1272116 0.1188952 0.1113907 0.1045809
 9.8367371E-02 9.2669077E-02 8.7419748E-02 8.2565077E-02 7.8060105E-02
 7.3867381E-02 6.9955371E-02 6.6297278E-02 6.2870085E-02 5.9653893E-02
 5.6631293E-02 5.3786986E-02 5.1107399E-02 4.8580445E-02 4.6195272E-02
 4.3942101E-02 4.1812070E-02 3.9797094E-02 3.7889805E-02 3.6083464E-02
 3.4371842E-02 3.2749213E-02 3.1210281E-02 2.9750124E-02 2.8364196E-02
 2.7048256E-02 2.5798341E-02 2.4610767E-02 2.3482077E-02 2.2409055E-02
 2.1388678E-02 2.0418098E-02 1.9494666E-02 1.8615870E-02 1.7779306E-02
 1.6982881E-02
 0.1890083 0.1763979 0.1636446 0.1508106 0.1379527
 0.1251224 0.1123667 9.9728405E-02 8.7246254E-02 7.4955039E-02
 6.2885918E-02 5.1066741E-02 3.9522659E-02 2.8276686E-02 1.7350681E-02
 6.7666415E-03 -3.4518945E-03 -1.3277591E-02 -2.2676649E-02 -3.1604528E-02
 -4.0000401E-02 -4.7779355E-02 -5.4822531E-02 -6.0967822E-02 -6.6009678E-02
 -6.9726832E-02 -7.1958378E-02 -7.2708376E-02 -7.2190434E-02 -7.0749402E-02
 -6.8732962E-02 -6.6409394E-02 -6.3957743E-02 -6.1486855E-02 -5.9058715E-02
 -5.6706533E-02 -5.4446410E-02 -5.2284539E-02 -5.0221521E-02 -4.8254859E-02
 -4.6380453E-02 -4.4593491E-02 -4.2888936E-02 -4.1261815E-02 -3.9707378E-02
 -3.8221147E-02 -3.6798980E-02 -3.5437047E-02 -3.4131832E-02 -3.2880127E-02
 -3.1678978E-02 -3.0525682E-02 -2.9417746E-02 -2.8352881E-02 -2.7328992E-02
 -2.6344121E-02 -2.5396466E-02 -2.4484344E-02 -2.3606189E-02 -2.2760544E-02
 -2.1946033E-02 -2.1161376E-02 -2.0405352E-02 -1.9676816E-02 -1.8974693E-02
 -1.8297955E-02 -1.7645624E-02 -1.7016772E-02 -1.6410515E-02 -1.5826304E-02
 -1.5262746E-02
 0.4633715 0.4596027 0.4550874 0.4498762 0.4440190
 0.4375632 0.4305539 0.4230337 0.4150422 0.4066165
 0.3977904 0.3885942 0.3790545 0.3691934 0.3590285
 0.3485721 0.3378316 0.3268081 0.3154968 0.3038865
 0.2919590 0.2796900 0.2670500 0.2540087 0.2405449
 0.2266664 0.2124460 0.1980700 0.1838678 0.1702607
 0.1576205 0.1461444 0.1358481 0.1266339 0.1183655
 0.1109075 0.1041410 9.7966939E-02 9.2304356E-02 8.7087236E-02
 8.2261518E-02 7.7782638E-02 7.3613465E-02 6.9722749E-02 6.6083975E-02
 6.2674336E-02 5.9474107E-02 5.6466058E-02 5.3635031E-02 5.0967600E-02
 4.8451770E-02 4.6076804E-02 4.3832976E-02 4.1711513E-02 3.9704423E-02
 3.7804388E-02 3.6004707E-02 3.4299210E-02 3.2682214E-02 3.1148469E-02
 2.9693099E-02 2.8311569E-02 2.6999678E-02 2.5753489E-02 2.4569349E-02
 2.3443835E-02 2.2373728E-02 2.1356037E-02 2.0387936E-02 1.9466711E-02
 1.8590026E-02
 0.2101929 0.1973003 0.1842632 0.1711436 0.1579970
 0.1448737 0.1318193 0.1188755 0.1060798 9.3465641E-02
 8.1062950E-02 6.8897903E-02 5.6993503E-02 4.5369886E-02 3.4045119E-02
 2.3036012E-02 1.2358926E-02 2.0311945E-03 -7.9275053E-03 -1.7492937E-02
 -2.6633488E-02 -3.5306089E-02 -4.3450467E-02 -5.0980981E-02 -5.7776589E-02
 -6.3671097E-02 -6.8453290E-02 -7.1897149E-02 -7.3843472E-02 -7.4309379E-02
 -7.3528282E-02 -7.1859688E-02 -6.9655590E-02 -6.7180306E-02 -6.4606428E-02
 -6.2036440E-02 -5.9527215E-02 -5.7107978E-02 -5.4791883E-02 -5.2582894E-02
 -5.0479900E-02 -4.8479114E-02 -4.6575442E-02 -4.4763256E-02 -4.3036912E-02
 -4.1390896E-02 -3.9820030E-02 -3.8319495E-02 -3.6884844E-02 -3.5512019E-02
 -3.4197289E-02 -3.2937258E-02 -3.1728819E-02 -3.0569131E-02 -2.9455606E-02
 -2.8385852E-02 -2.7357673E-02 -2.6369050E-02 -2.5418099E-02 -2.4503101E-02
 -2.3622433E-02 -2.2774586E-02 -2.1958154E-02 -2.1171810E-02 -2.0414319E-02
 -1.9684510E-02 -1.8981272E-02 -1.8303564E-02 -1.7650384E-02 -1.7021179E-02
 -1.6414283E-02
 0.4927511 0.4886835 0.4838399 0.4782812 0.4720657
 0.4652486 0.4578810 0.4500111 0.4416837 0.4329405
 0.4238199 0.4143566 0.4045816 0.3945215 0.3841983
 0.3736295 0.3628273 0.3517989 0.3405460 0.3290644
 0.3173442 0.3053689 0.2931156 0.2805554 0.2676544
 0.2543781 0.2407016 0.2266304 0.2122379 0.1977157
 0.1834030 0.1697300 0.1570675 0.1456017 0.1353346
 0.1261578 0.1179288 0.1105088 0.1037777 9.7635984E-02
 9.2002645E-02 8.6811863E-02 8.2009912E-02 7.7552445E-02 7.3402643E-02
 6.9529481E-02 6.5906622E-02 6.2511444E-02 5.9324376E-02 5.6328356E-02
 5.3508323E-02 5.0850946E-02 4.8344325E-02 4.5977782E-02 4.3741707E-02
 4.1627370E-02 3.9626818E-02 3.7732799E-02 3.5938643E-02 3.4238242E-02
 3.2625940E-02 3.1096509E-02 2.9645115E-02 2.8267246E-02 2.6958730E-02
 2.5715658E-02 2.4534391E-02 2.3411518E-02 2.2343848E-02 2.1328311E-02
 2.0362293E-02
 0.2323247 0.2191311 0.2057972 0.1923836 0.1789441
 0.1655268 0.1521755 0.1389299 0.1258263 0.1128972
 0.1001714 8.7673880E-02 7.5426266E-02 6.3446976E-02 5.1751859E-02
 4.0354751E-02 2.9268103E-02 1.8503975E-02 8.0747744E-03 -2.0054032E-03
 -1.1719328E-02 -2.1044670E-02 -2.9951071E-02 -3.8396098E-02 -4.6319399E-02
 -5.3634394E-02 -6.0217906E-02 -6.5900087E-02 -7.0464648E-02 -7.3681228E-02
 -7.5391695E-02 -7.5623646E-02 -7.4626558E-02 -7.2771579E-02 -7.0413999E-02
 -6.7814551E-02 -6.5140501E-02 -6.2489200E-02 -5.9913352E-02 -5.7438988E-02
 -5.5076823E-02 -5.2829005E-02 -5.0693076E-02 -4.8664160E-02 -4.6736363E-02
 -4.4903405E-02 -4.3159090E-02 -4.1497502E-02 -3.9913096E-02 -3.8400777E-02
 -3.6955856E-02 -3.5574060E-02 -3.4251489E-02 -3.2984592E-02 -3.1770151E-02
 -3.0605206E-02 -2.9487079E-02 -2.8413288E-02 -2.7381573E-02 -2.6389854E-02
 -2.5436196E-02 -2.4518823E-02 -2.3636071E-02 -2.2786403E-02 -2.1968378E-02
 -2.1180645E-02 -2.0421941E-02 -1.9691067E-02 -1.8986899E-02 -1.8308880E-02
 -1.7654991E-02
 0.5242587 0.5198194 0.5145678 0.5085773 0.5019163
 0.4946479 0.4868305 0.4785175 0.4697589 0.4606010
 0.4510866 0.4412545 0.4311399 0.4207733 0.4101807
 0.3993835 0.3883980 0.3772357 0.3659030 0.3544014
 0.3427271 0.3308708 0.3188175 0.3065463 0.2940300
 0.2812355 0.2681251 0.2546609 0.2408148 0.2265902
 0.2120605 0.1974216 0.1830205 0.1692948 0.1566146
 0.1451572 0.1349137 0.1257670 0.1175698 0.1101806
 0.1034781 9.7362652E-02 9.1753110E-02 8.6583830E-02 8.1801303E-02
 7.7361405E-02 7.3227502E-02 6.9368742E-02 6.5758951E-02 6.2375698E-02
 5.9199527E-02 5.6213431E-02 5.3402472E-02 5.0753400E-02 4.8254400E-02
 4.5894865E-02 4.3665227E-02 4.1556790E-02 3.9561667E-02 3.7672646E-02
 3.5883099E-02 3.4186941E-02 3.2578547E-02 3.1052709E-02 2.9604629E-02
 2.8229827E-02 2.6924133E-02 2.5683662E-02 2.4504790E-02 2.3384012E-02
 2.2318395E-02
 0.2553579 0.2418387 0.2281915 0.2144745 0.2007382
 0.1870269 0.1733815 0.1598394 0.1464350 0.1331996
 0.1201609 0.1073429 9.4766319E-02 8.2448348E-02 7.0403382E-02
 5.8643401E-02 4.7178570E-02 3.6017977E-02 2.5170071E-02 1.4643654E-02
 4.4487230E-03 -5.4025482E-03 -1.4894366E-02 -2.4005240E-02 -3.2705333E-02
 -4.0952262E-02 -4.8685282E-02 -5.5816792E-02 -6.2221583E-02 -6.7726620E-02
 -7.2111309E-02 -7.5141348E-02 -7.6659031E-02 -7.6700166E-02 -7.5527072E-02
 -7.3520131E-02 -7.1037367E-02 -6.8336464E-02 -6.5580413E-02 -6.2862441E-02
 -6.0231864E-02 -5.7712130E-02 -5.5312026E-02 -5.3032223E-02 -5.0869137E-02
 -4.8817046E-02 -4.6869356E-02 -4.5019258E-02 -4.3260120E-02 -4.1585688E-02
 -3.9990131E-02 -3.8468096E-02 -3.7014700E-02 -3.5625499E-02 -3.4296460E-02
 -3.3023909E-02 -3.1804517E-02 -3.0635243E-02 -2.9513305E-02 -2.8436188E-02
 -2.7401555E-02 -2.6407277E-02 -2.5451379E-02 -2.4532037E-02 -2.3647562E-02
 -2.2796389E-02 -2.1977043E-02 -2.1188155E-02 -2.0428434E-02 -1.9697335E-02
 -1.8992381E-02
 0.5581658 0.5532714 0.5475213 0.5410044 0.5338011
 0.5259839 0.5176180 0.5087627 0.4994727 0.4897988
 0.4797879 0.4694833 0.4589239 0.4481441 0.4371734
 0.4260365 0.4147532 0.4033384 0.3918019 0.3801491
 0.3683804 0.3564918 0.3444742 0.3323138 0.3199912
 0.3074815 0.2947539 0.2817717 0.2684942 0.2548803
 0.2408995 0.2265530 0.2119142 0.1971821 0.1827101
 0.1689415 0.1562444 0.1447950 0.1345699 0.1254471
 0.1172751 0.1099105 0.1032312 9.7136892E-02 9.1546655E-02
 8.6394891E-02 8.1628196E-02 7.7202655E-02 7.3081754E-02 6.9234833E-02
 6.5635830E-02 6.2262394E-02 5.9095182E-02 5.6117274E-02 5.3313833E-02
 5.0671656E-02 4.8178986E-02 4.5825262E-02 4.3600943E-02 4.1497428E-02
 3.9506834E-02 3.7621975E-02 3.5836268E-02 3.4143638E-02 3.2538503E-02
 3.1015685E-02 2.9570380E-02 2.8198138E-02 2.6894799E-02 2.5656357E-02
 2.4479508E-02
 0.2792236 0.2653468 0.2513659 0.2373353 0.2232994
 0.2092971 0.1953641 0.1815342 0.1678395 0.1543093
 0.1409702 0.1278456 0.1149550 0.1023149 8.9938365E-02
 7.7836297E-02 6.6017225E-02 5.4488424E-02 4.3256041E-02 3.2325953E-02
 2.1704335E-02 1.1398125E-02 1.4160071E-03 -8.2306629E-03 -1.7526641E-02
 -2.6450653E-02 -3.4972880E-02 -4.3050729E-02 -5.0622728E-02 -5.7600301E-02
 -6.3856512E-02 -6.9215626E-02 -7.3453419E-02 -7.6332070E-02 -7.7693768E-02
 -7.7580556E-02 -7.6263212E-02 -7.4134551E-02 -7.1549922E-02 -6.8766259E-02
 -6.5943100E-02 -6.3170418E-02 -6.0494866E-02 -5.7937790E-02 -5.5506431E-02
 -5.3200264E-02 -5.1014781E-02 -4.8943557E-02 -4.6979439E-02 -4.5115191E-02
 -4.3343831E-02 -4.1658793E-02 -4.0054016E-02 -3.8523953E-02 -3.7063565E-02
 -3.5668254E-02 -3.4333881E-02 -3.3056658E-02 -3.1833164E-02 -3.0660307E-02
 -2.9535232E-02 -2.8455356E-02 -2.7418314E-02 -2.6421910E-02 -2.5464151E-02
 -2.4543181E-02 -2.3657281E-02 -2.2804853E-02 -2.1984402E-02 -2.1195425E-02
 -2.0434842E-02
 0.5947942 0.5893450 0.5829895 0.5758359 0.5679802
 0.5595049 0.5504826 0.5409775 0.5310490 0.5207515
 0.5101364 0.4992509 0.4881379 0.4768355 0.4653767
 0.4537896 0.4420966 0.4303153 0.4184585 0.4065339
 0.3945453 0.3824916 0.3703681 0.3581656 0.3458705
 0.3334649 0.3209257 0.3082246 0.2953278 0.2821958
 0.2687852 0.2550526 0.2409649 0.2265220 0.2117968
 0.1969902 0.1824609 0.1686570 0.1559463 0.1445010
 0.1342898 0.1251856 0.1170335 0.1096885 0.1030276
 9.6950352E-02 9.1375701E-02 8.6238116E-02 8.1484303E-02 7.7070482E-02
 7.2960265E-02 6.9123060E-02 6.5532915E-02 6.2167563E-02 5.9007756E-02
 5.6036647E-02 5.3239431E-02 5.0602973E-02 4.8115540E-02 4.5766648E-02
 4.3546788E-02 4.1447360E-02 3.9460544E-02 3.7579156E-02 3.5796653E-02
 3.4106992E-02 3.2504588E-02 3.0984288E-02 2.9541306E-02 2.8170999E-02
 2.6869668E-02
 0.3038238 0.2895458 0.2752059 0.2608510 0.2465157
 0.2322301 0.2180218 0.2039190 0.1899499 0.1761420
 0.1625202 0.1491069 0.1359210 0.1229780 0.1102901
 9.7867101E-02 8.5716426E-02 7.3844001E-02 6.2254485E-02 5.0952025E-02
 3.9940614E-02 2.9224472E-02 1.8808594E-02 8.6992858E-03 -1.0952112E-03
 -1.0563686E-02 -1.9690845E-02 -2.8455324E-02 -3.6826875E-02 -4.4762492E-02
 -5.2200086E-02 -5.9050109E-02 -6.5184198E-02 -7.0424378E-02 -7.4543379E-02
 -7.7300385E-02 -7.8537039E-02 -7.8299895E-02 -7.6867208E-02 -7.4639082E-02
 -7.1971752E-02 -6.9120564E-02 -6.6242486E-02 -6.3424900E-02 -6.0712356E-02
 -5.8124542E-02 -5.5667404E-02 -5.3339463E-02 -5.1135466E-02 -4.9048431E-02
 -4.7070753E-02 -4.5194808E-02 -4.3413330E-02 -4.1719515E-02 -4.0107120E-02
 -3.8570426E-02 -3.7104249E-02 -3.5703890E-02 -3.4365084E-02 -3.3083994E-02
 -3.1857122E-02 -3.0681288E-02 -2.9553615E-02 -2.8471449E-02 -2.7432395E-02
 -2.6434241E-02 -2.5474938E-02 -2.4552613E-02 -2.3665516E-02 -2.2813207E-02
 -2.1991814E-02
 0.6345338 0.6284062 0.6213116 0.6133877 0.6047491
 0.5954905 0.5856908 0.5754184 0.5647351 0.5536988
 0.5423643 0.5307828 0.5190011 0.5070615 0.4950005
 0.4828494 0.4706333 0.4583724 0.4460810 0.4337694
 0.4214430 0.4091030 0.3967470 0.3843688 0.3719588
 0.3595032 0.3469849 0.3343824 0.3216696 0.3088155
 0.2957837 0.2825325 0.2690162 0.2551896 0.2410176
 0.2264985 0.2117049 0.1968388 0.1822631 0.1684297
 0.1557065 0.1442633 0.1340622 0.1249721 0.1168354
 0.1095058 0.1028596 9.6796043E-02 9.1233939E-02 8.6107850E-02
 8.1364550E-02 7.6960303E-02 7.2858803E-02 6.9029555E-02 6.5446720E-02
 6.2088061E-02 5.8934372E-02 5.5968888E-02 5.3176820E-02 5.0545111E-02
 4.8062064E-02 4.5717191E-02 4.3501042E-02 4.1405026E-02 3.9421357E-02
 3.7542894E-02 3.5763081E-02 3.4075893E-02 3.2475777E-02 3.0957285E-02
 2.9516295E-02
 0.3290206 0.3142816 0.2995491 0.2848590 0.2702304
 0.2556774 0.2412155 0.2268637 0.2126456 0.1985849
 0.1847054 0.1710286 0.1575723 0.1443514 0.1313773
 0.1186588 0.1062020 9.4012037E-02 8.2092308E-02 7.0445776E-02
 5.9075162E-02 4.7983162E-02 3.7172869E-02 2.6648015E-02 1.6413447E-02
 6.4755045E-03 -3.1574056E-03 -1.2473838E-02 -2.1458073E-02 -3.0088359E-02
 -3.8334023E-02 -4.6151500E-02 -5.3478159E-02 -6.0223538E-02 -6.6258132E-02
 -7.1402237E-02 -7.5426087E-02 -7.8086220E-02 -7.9223432E-02 -7.8887470E-02
 -7.7362046E-02 -7.5053744E-02 -7.2319336E-02 -6.9413103E-02 -6.6490062E-02
 -6.3635625E-02 -6.0892612E-02 -5.8279429E-02 -5.5800982E-02 -5.3455040E-02
 -5.1235747E-02 -4.9135625E-02 -4.7146697E-02 -4.5261052E-02 -4.3471199E-02
 -4.1770119E-02 -4.0151406E-02 -3.8609214E-02 -3.7138227E-02 -3.5733674E-02
 -3.4391209E-02 -3.3106908E-02 -3.1877220E-02 -3.0698918E-02 -2.9569075E-02
 -2.8485017E-02 -2.7444299E-02 -2.6444674E-02 -2.5484078E-02 -2.4562178E-02
 -2.3674047E-02
 0.6778687 0.6708989 0.6628930 0.6540272 0.6444453
 0.6342546 0.6235397 0.6123692 0.6008043 0.5889047
 0.5767270 0.5643256 0.5517524 0.5390534 0.5262693
 0.5134346 0.5005773 0.4877199 0.4748786 0.4620649
 0.4492855 0.4365430 0.4238362 0.4111606 0.3985086
 0.3858693 0.3732289 0.3605704 0.3478732 0.3351131
 0.3222616 0.3092854 0.2961461 0.2828002 0.2692004
 0.2552994 0.2410610 0.2264819 0.2116341 0.1967208
 0.1821072 0.1682490 0.1555140 0.1440712 0.1338772
 0.1247977 0.1166729 0.1093554 0.1027208 9.6668087E-02
 9.1116108E-02 8.5999332E-02 8.1264555E-02 7.6868102E-02 7.2773777E-02
 6.8951108E-02 6.5374285E-02 6.2021151E-02 5.8872528E-02 5.5911712E-02
 5.3123958E-02 5.0496206E-02 4.8016801E-02 4.5675281E-02 4.3462232E-02
 4.1369099E-02 3.9388075E-02 3.7512053E-02 3.5734490E-02 3.4048937E-02
 3.2450806E-02
 0.3546235 0.3393351 0.3241643 0.3091301 0.2942236
 0.2794339 0.2647551 0.2501931 0.2357635 0.2214870
 0.2073856 0.1934798 0.1797875 0.1663226 0.1530956
 0.1401143 0.1273836 0.1149076 0.1026886 9.0728752E-02
 7.9029866E-02 6.7593731E-02 5.6422498E-02 4.5518670E-02 3.4885474E-02
 2.4526980E-02 1.4448388E-02 4.6564653E-03 -4.8397738E-03 -1.4028452E-02
 -2.2893332E-02 -3.1412132E-02 -3.9553776E-02 -4.7274064E-02 -5.4509867E-02
 -6.1170079E-02 -6.7124248E-02 -7.2191343E-02 -7.6139510E-02 -7.8723080E-02
 -7.9781815E-02 -7.9367474E-02 -7.7767678E-02 -7.5394906E-02 -7.2606169E-02
 -6.9655083E-02 -6.6695198E-02 -6.3810423E-02 -6.1042275E-02 -5.8408126E-02
 -5.5912066E-02 -5.3551216E-02 -5.1319227E-02 -4.9208235E-02 -4.7209986E-02
 -4.5316301E-02 -4.3519486E-02 -4.1812375E-02 -4.0188406E-02 -3.8641643E-02
 -3.7166674E-02 -3.5758637E-02 -3.4413122E-02 -3.3126146E-02 -3.1894110E-02
 -3.0713761E-02 -2.9582117E-02 -2.8496474E-02 -2.7454358E-02 -2.6455598E-02
 -2.5493870E-02
 0.7277762 0.7212850 0.7129874 0.7033522 0.6927285
 0.6813617 0.6694236 0.6570370 0.6442942 0.6312688
 0.6180222 0.6046077 0.5910720 0.5774558 0.5637937
 0.5501148 0.5364423 0.5227937 0.5091805 0.4956080
 0.4820746 0.4685697 0.4550712 0.4415409 0.4279160
 0.4140964 0.3999153 0.3870667 0.3742419 0.3614210
 0.3485808 0.3356949 0.3227328 0.3096595 0.2964348
 0.2830139 0.2693479 0.2553883 0.2410977 0.2264716
 0.2115812 0.1966300 0.1819856 0.1681061 0.1553600
 0.1439164 0.1337271 0.1246552 0.1165394 0.1092313
 0.1026058 9.6561849E-02 9.1017984E-02 8.5908704E-02 8.1180871E-02
 7.6790832E-02 7.2702378E-02 6.8885118E-02 6.5313242E-02 6.1964694E-02
 5.8820304E-02 5.5863369E-02 5.3079195E-02 5.0454739E-02 4.7978379E-02
 4.5639694E-02 4.3429252E-02 4.1338518E-02 3.9359719E-02 3.7485041E-02
 3.5709482E-02
 0.3790419 0.3642692 0.3492351 0.3341750 0.3191724
 0.3042611 0.2894584 0.2747792 0.2602395 0.2458566
 0.2316479 0.2176296 0.2038158 0.1902181 0.1768454
 0.1637042 0.1507988 0.1381315 0.1257030 0.1135116
 0.1015527 8.9817330E-02 7.8288719E-02 6.6936344E-02 5.5703290E-02
 4.4476967E-02 3.3010591E-02 2.2793643E-02 1.2846773E-02 3.1774130E-03
 -6.2048635E-03 -1.5287504E-02 -2.4053782E-02 -3.2480866E-02 -4.0537175E-02
 -4.8178155E-02 -5.5340134E-02 -6.1931517E-02 -6.7821100E-02 -7.2826780E-02
 -7.6715216E-02 -7.9238772E-02 -8.0236003E-02 -7.9759851E-02 -7.8100517E-02
 -7.5676054E-02 -7.2843343E-02 -6.9855660E-02 -6.6865534E-02 -6.3955784E-02
 -6.1166894E-02 -5.8515385E-02 -5.6004707E-02 -5.3631462E-02 -5.1388923E-02
 -4.9268913E-02 -4.7262900E-02 -4.5362528E-02 -4.3559909E-02 -4.1847773E-02
 -4.0219437E-02 -3.8668860E-02 -3.7190571E-02 -3.5779621E-02 -3.4431558E-02
 -3.3142358E-02 -3.1908374E-02 -3.0726306E-02 -2.9593149E-02 -2.8508998E-02
 -2.7465630E-02
 0.7800034 0.7734775 0.7644193 0.7536657 0.7417548
 0.7290399 0.7157557 0.7020610 0.6880666 0.6738539
 0.6594853 0.6450109 0.6304722 0.6159039 0.6013348
 0.5867885 0.5722833 0.5578319 0.5434415 0.5291121
 0.5148351 0.5005898 0.4863382 0.4720156 0.4575182
 0.4426847 0.4272765 0.4141162 0.4010370 0.3880212
 0.3750492 0.3620985 0.3491443 0.3361582 0.3231081
 0.3099575 0.2966651 0.2831847 0.2694665 0.2554611
 0.2411295 0.2264665 0.2115425 0.1965612 0.1818914
 0.1679939 0.1552370 0.1437918 0.1336052 0.1245387
 0.1164297 0.1091288 0.1025105 9.6473366E-02 9.0936027E-02
 8.5832849E-02 8.1110671E-02 7.6725863E-02 7.2642222E-02 6.8829417E-02
 6.5261684E-02 6.1916932E-02 5.8776051E-02 5.5822346E-02 5.3041164E-02
 5.0419487E-02 4.7945701E-02 4.5609374E-02 4.3401118E-02 4.1311279E-02
 3.9334517E-02
 0.4044563 0.3894648 0.3743318 0.3591622 0.3440299
 0.3289795 0.3140382 0.2992258 0.2845587 0.2700520
 0.2557198 0.2415748 0.2276280 0.2138886 0.2003637
 0.1870584 0.1739757 0.1611167 0.1484803 0.1360618
 0.1238520 0.1118342 9.9978708E-02 8.8234693E-02 7.6514363E-02
 6.4667001E-02 5.2438017E-02 4.1836500E-02 3.1483773E-02 2.1385420E-02
 1.1548279E-02 1.9804791E-03 -7.3077488E-03 -1.6303211E-02 -2.4988666E-02
 -3.3340875E-02 -4.1327748E-02 -4.8904411E-02 -5.6006704E-02 -6.2542677E-02
 -6.8380669E-02 -7.3337764E-02 -7.7179357E-02 -7.9656191E-02 -8.0605567E-02
 -8.0080971E-02 -7.8373939E-02 -7.5908124E-02 -7.3039852E-02 -7.0022315E-02
 -6.7007393E-02 -6.4077020E-02 -6.1270934E-02 -5.8605000E-02 -5.6082170E-02
 -5.3698625E-02 -5.1447302E-02 -4.9319766E-02 -4.7307264E-02 -4.5401305E-02
 -4.3593861E-02 -4.1877523E-02 -4.0245540E-02 -3.8691770E-02 -3.7210699E-02
 -3.5797324E-02 -3.4447137E-02 -3.3156071E-02 -3.1920444E-02 -3.0740766E-02
 -2.9606216E-02
 0.8361804 0.8282024 0.8175465 0.8051364 0.7915849
 0.7772873 0.7624984 0.7473845 0.7320574 0.7165950
 0.7010541 0.6854783 0.6699018 0.6543527 0.6388531
 0.6234213 0.6080704 0.5928093 0.5776414 0.5625637
 0.5475639 0.5326165 0.5176761 0.5026650 0.4874564
 0.4718477 0.4555334 0.4419452 0.4284934 0.4151613
 0.4019306 0.3887815 0.3756920 0.3626381 0.3495930
 0.3365271 0.3234070 0.3101950 0.2968490 0.2833218
 0.2695625 0.2555209 0.2411574 0.2264656 0.2115152
 0.1965099 0.1818193 0.1679063 0.1551388 0.1436914
 0.1335062 0.1244434 0.1163394 0.1090438 0.1024312
 9.6399546E-02 9.0867430E-02 8.5769176E-02 8.1051581E-02 7.6671049E-02
 7.2591409E-02 6.8782300E-02 6.5217987E-02 6.1876375E-02 5.8738422E-02
 5.5787448E-02 5.3008780E-02 5.0389424E-02 4.7917783E-02 4.5581602E-02
 4.3375473E-02
 0.4300416 0.4148017 0.3994651 0.3841121 0.3688057
 0.3535886 0.3384892 0.3235271 0.3087175 0.2940730
 0.2796045 0.2653217 0.2512328 0.2373447 0.2236624
 0.2101898 0.1969288 0.1838795 0.1710396 0.1584032
 0.1459594 0.1336886 0.1215573 0.1095093 9.7452469E-02
 8.5238665E-02 7.2643876E-02 6.1697077E-02 5.0978318E-02 4.0492907E-02
 3.0246854E-02 2.0246679E-02 1.0499919E-02 1.0155283E-03 -8.1956685E-03
 -1.7120009E-02 -2.5739716E-02 -3.4031142E-02 -4.1961800E-02 -4.9486458E-02
 -5.6540776E-02 -6.3032433E-02 -6.8829402E-02 -7.3748238E-02 -7.7553339E-02
 -7.9994075E-02 -8.0906503E-02 -8.0344118E-02 -7.8598782E-02 -7.6100007E-02
 -7.3203057E-02 -7.0161156E-02 -6.7125805E-02 -6.4178377E-02 -6.1358027E-02
 -5.8680117E-02 -5.6147158E-02 -5.3755008E-02 -5.1496331E-02 -4.9362496E-02
 -4.7344591E-02 -4.5433957E-02 -4.3622460E-02 -4.1902594E-02 -4.0267553E-02
 -3.8711127E-02 -3.7227724E-02 -3.5812307E-02 -3.4460332E-02 -3.3172935E-02
 -3.1935737E-02
 0.8963073 0.8856049 0.8724279 0.8577486 0.8421610
 0.8260260 0.8095660 0.7929212 0.7761834 0.7594144
 0.7426579 0.7259462 0.7093043 0.6927517 0.6763039
 0.6599728 0.6437675 0.6276932 0.6117512 0.5959373
 0.5802400 0.5646362 0.5490844 0.5335122 0.5177948
 0.5017162 0.4849045 0.4707732 0.4568338 0.4430695
 0.4294625 0.4159936 0.4026423 0.3893869 0.3762039
 0.3630677 0.3499504 0.3368210 0.3236453 0.3103848
 0.2969963 0.2834320 0.2696405 0.2555706 0.2411821
 0.2264680 0.2114971 0.1964725 0.1817647 0.1678143
 0.1550607 0.1436108 0.1334259 0.1243654 0.1162648
 0.1089735 0.1023651 9.6337825E-02 9.0809852E-02 8.5715584E-02
 8.1001766E-02 7.6624759E-02 7.2548397E-02 6.8742320E-02 6.5180838E-02
 6.1841898E-02 5.8706392E-02 5.5757683E-02 5.2981127E-02 5.0360616E-02
 4.7891270E-02
 0.4557978 0.4402355 0.4246146 0.4090154 0.3934921
 0.3780801 0.3628027 0.3476759 0.3327112 0.3179178
 0.3033035 0.2888747 0.2746370 0.2605948 0.2467515
 0.2331097 0.2196703 0.2064329 0.1933953 0.1805522
 0.1678939 0.1554035 0.1430524 0.1307930 0.1185475
 0.1061913 9.3532644E-02 8.2284726E-02 7.1241960E-02 6.0410492E-02
 4.9796745E-02 3.9407317E-02 2.9248994E-02 1.9329317E-02 9.6565047E-03
 2.4009062E-04 -8.9084860E-03 -1.7775150E-02 -2.6341626E-02 -3.4583878E-02
 -4.2469226E-02 -4.9952134E-02 -5.6968000E-02 -6.3424341E-02 -6.9188841E-02
 -7.4077696E-02 -7.7854581E-02 -8.0267735E-02 -8.1151836E-02 -8.0552615E-02
 -7.8783929E-02 -7.6259024E-02 -7.3338941E-02 -7.0277140E-02 -6.7224979E-02
 -6.4263433E-02 -6.1431214E-02 -5.8743302E-02 -5.6201857E-02 -5.3802501E-02
 -5.1537681E-02 -4.9398568E-02 -4.7376111E-02 -4.5461539E-02 -4.3646637E-02
 -4.1923832E-02 -4.0286213E-02 -3.8727537E-02 -3.7242174E-02 -3.5832226E-02
 -3.4478478E-02
 0.9603842 0.9454820 0.9288116 0.9112690 0.8932846
 0.8750897 0.8568180 0.8385510 0.8203407 0.8022214
 0.7842168 0.7663445 0.7486175 0.7310458 0.7136376
 0.6963987 0.6793337 0.6624449 0.6457326 0.6291942
 0.6128225 0.5966038 0.5805129 0.5645044 0.5484944
 0.5323177 0.5156128 0.5008208 0.4862779 0.4719666
 0.4578684 0.4439642 0.4302336 0.4166558 0.4032086
 0.3898686 0.3766112 0.3634095 0.3502347 0.3370550
 0.3238353 0.3105362 0.2971142 0.2835207 0.2697039
 0.2556120 0.2412042 0.2264726 0.2114855 0.1964456
 0.1817238 0.1677558 0.1549981 0.1435457 0.1333604
 0.1243012 0.1162031 0.1089148 0.1023098 9.6285924E-02
 9.0761341E-02 8.5670292E-02 8.0959544E-02 7.6585419E-02 7.2511762E-02
 6.8708263E-02 6.5149158E-02 6.1812408E-02 5.8678973E-02 5.5726867E-02
 5.2952945E-02
 0.4817248 0.4657280 0.4497423 0.4338428 0.4180671
 0.4024369 0.3869658 0.3716625 0.3565335 0.3415836
 0.3268169 0.3122366 0.2978455 0.2836458 0.2696393
 0.2558271 0.2422096 0.2287865 0.2155565 0.2025163
 0.1896604 0.1769791 0.1644557 0.1520626 0.1397533
 0.1274464 0.1149890 0.1034941 9.2177004E-02 8.1045523E-02
 7.0107855E-02 5.9371453E-02 4.8844002E-02 3.8533106E-02 2.8446497E-02
 1.8592354E-02 8.9795850E-03 -3.8174409E-04 -9.4796754E-03 -1.8299667E-02
 -2.6823202E-02 -3.5025939E-02 -4.2874880E-02 -5.0324332E-02 -5.7309467E-02
 -6.3737698E-02 -6.9476604E-02 -7.4342042E-02 -7.8097329E-02 -8.0489509E-02
 -8.1352122E-02 -8.0727905E-02 -7.8936450E-02 -7.6390922E-02 -7.3452272E-02
 -7.0374250E-02 -6.7308232E-02 -6.4334959E-02 -6.1492831E-02 -5.8796544E-02
 -5.6248017E-02 -5.3842612E-02 -5.1572613E-02 -4.9429055E-02 -4.7402769E-02
 -4.5484900E-02 -4.3667134E-02 -4.1941822E-02 -4.0302049E-02 -3.8751405E-02
 -3.7264012E-02
 1.028411 1.007127 0.9860674 0.9652313 0.9446189
 0.9242303 0.9040654 0.8841243 0.8644069 0.8449134
 0.8256435 0.8065975 0.7877752 0.7691766 0.7508019
 0.7326508 0.7147235 0.6970200 0.6795403 0.6622843
 0.6452520 0.6284436 0.6118589 0.5954980 0.5793608
 0.5634473 0.5478907 0.5323151 0.5170496 0.5020742
 0.4873697 0.4729155 0.4586913 0.4446758 0.4308470
 0.4171826 0.4036591 0.3902518 0.3769352 0.3636816
 0.3504612 0.3372414 0.3239867 0.3106572 0.2972087
 0.2835924 0.2697557 0.2556467 0.2412238 0.2264789
 0.2114792 0.1964271 0.1816935 0.1677081 0.1549478
 0.1434932 0.1333070 0.1242484 0.1161519 0.1088659
 0.1022635 9.6242256E-02 9.0720348E-02 8.5631914E-02 8.0923662E-02
 7.6551951E-02 7.2480559E-02 6.8679154E-02 6.5122053E-02 6.1777957E-02
 5.8647770E-02
 0.5078227 0.4912094 0.4747839 0.4585463 0.4424967
 0.4266348 0.4109609 0.3954748 0.3801766 0.3650663
 0.3501438 0.3354093 0.3208625 0.3065037 0.2923328
 0.2783497 0.2645545 0.2509472 0.2375277 0.2242962
 0.2112525 0.1983967 0.1857287 0.1732486 0.1609564
 0.1488521 0.1368683 0.1251959 0.1136664 0.1022916
 9.1081299E-02 8.0045626E-02 6.9193989E-02 5.8535345E-02 4.8078261E-02
 3.7831232E-02 2.7802788E-02 1.8001692E-02 8.4374687E-03 -8.7932090E-04
 -9.9364165E-03 -1.8718917E-02 -2.7207954E-02 -3.5378978E-02 -4.3198738E-02
 -5.0621383E-02 -5.7582069E-02 -6.3988052E-02 -6.9706894E-02 -7.4554212E-02
 -7.8292973E-02 -8.0669411E-02 -8.1515841E-02 -8.0871195E-02 -7.9062060E-02
 -7.6500505E-02 -7.3547035E-02 -7.0455804E-02 -6.7378327E-02 -6.4395308E-02
 -6.1544921E-02 -5.8841612E-02 -5.6287106E-02 -5.3876605E-02 -5.1602237E-02
 -4.9454939E-02 -4.7425427E-02 -4.5504734E-02 -4.3684583E-02 -4.1970931E-02
 -4.0328812E-02
 1.058172 1.036811 1.015675 0.9947622 0.9740736
 0.9536088 0.9333677 0.9133505 0.8935571 0.8739874
 0.8546416 0.8355194 0.8166211 0.7979466 0.7794960
 0.7612692 0.7432661 0.7254868 0.7079313 0.6905997
 0.6734918 0.6566077 0.6399475 0.6235110 0.6072983
 0.5913093 0.5756772 0.5600262 0.5446852 0.5296345
 0.5148545 0.5003250 0.4860254 0.4719345 0.4580304
 0.4442907 0.4306919 0.4172094 0.4038175 0.3904887
 0.3771930 0.3638980 0.3506413 0.3373898 0.3241074
 0.3107541 0.2972853 0.2836518 0.2697990 0.2556713
 0.2412346 0.2264988 0.2114780 0.1964052 0.1816737
 0.1677160 0.1549233 0.1434549 0.1332642 0.1242051
 0.1161096 0.1088251 0.1022247 9.6205562E-02 9.0685785E-02
 8.5599475E-02 8.0893278E-02 7.6523505E-02 7.2453961E-02 6.8654321E-02
 6.5098859E-02
 0.5457112 0.5285988 0.5116744 0.4949379 0.4783893
 0.4620284 0.4458556 0.4298706 0.4140735 0.3984643
 0.3830430 0.3678096 0.3527641 0.3379065 0.3232368
 0.3087549 0.2944610 0.2803549 0.2664367 0.2527064
 0.2391640 0.2258096 0.2126430 0.1996643 0.1868735
 0.1742706 0.1617882 0.1496172 0.1375892 0.1257159
 0.1140070 0.1024728 9.1122620E-02 7.9965442E-02 6.9009826E-02
 5.8264274E-02 4.7737312E-02 3.7437700E-02 2.7374966E-02 1.7559670E-02
 8.0040684E-03 -1.2769359E-03 -1.0301185E-02 -1.9053508E-02 -2.7514745E-02
 -3.5660114E-02 -4.3456499E-02 -5.0858654E-02 -5.7802044E-02 -6.4192422E-02
 -6.9880314E-02 -7.4721314E-02 -7.8468718E-02 -8.0812268E-02 -8.1645578E-02
 -8.1005968E-02 -7.9184107E-02 -7.6602340E-02 -7.3631667E-02 -7.0526935E-02
 -6.7438729E-02 -6.4446956E-02 -6.1589327E-02 -5.8879945E-02 -5.6320321E-02
 -5.3905480E-02 -5.1627401E-02 -4.9476914E-02 -4.7444645E-02 -4.5521609E-02
 -4.3699365E-02
 1.088159 1.066721 1.045507 1.024517 1.003751
 0.9832087 0.9628903 0.9427956 0.9229249 0.9032779
 0.8838547 0.8646553 0.8456798 0.8269282 0.8084005
 0.7900966 0.7720165 0.7541602 0.7365277 0.7191192
 0.7019344 0.6849735 0.6682364 0.6517231 0.6354336
 0.6193678 0.6036590 0.5879313 0.5725136 0.5573862
 0.5425295 0.5279233 0.5135471 0.4993797 0.4853991
 0.4715828 0.4579075 0.4443485 0.4308801 0.4174747
 0.4041026 0.3907312 0.3773980 0.3640702 0.3507848
 0.3375082 0.3242039 0.3108316 0.2973468 0.2836986
 0.2698346 0.2556942 0.2412506 0.2265122 0.2114776
 0.1963948 0.1816586 0.1676932 0.1548938 0.1434213
 0.1332287 0.1241691 0.1160741 0.1087908 0.1021918
 9.6174337E-02 9.0656288E-02 8.5571706E-02 8.0867179E-02 7.6499037E-02
 7.2431073E-02
 0.5846794 0.5670664 0.5496415 0.5324045 0.5153553
 0.4984941 0.4818207 0.4653353 0.4490378 0.4329283
 0.4170066 0.4012729 0.3857270 0.3703691 0.3551991
 0.3402169 0.3254227 0.3108163 0.2963979 0.2821673
 0.2681247 0.2542701 0.2406033 0.2271245 0.2138336
 0.2007305 0.1877480 0.1750769 0.1625488 0.1501754
 0.1379664 0.1259321 0.1140819 0.1024247 9.0969093E-02
 7.9723522E-02 6.8696551E-02 5.7896931E-02 4.7334194E-02 3.7018895E-02
 2.6963290E-02 1.7182283E-02 7.6580341E-03 -1.5942892E-03 -1.0592221E-02
 -1.9320393E-02 -2.7759450E-02 -3.5884429E-02 -4.3662198E-02 -5.1047921E-02
 -5.7974916E-02 -6.4356506E-02 -7.0022427E-02 -7.4857913E-02 -7.8595109E-02
 -8.0931574E-02 -8.1754304E-02 -8.1106402E-02 -7.9273671E-02 -7.6680668E-02
 -7.3699512E-02 -7.0585437E-02 -6.7489147E-02 -6.4490438E-02 -6.1626907E-02
 -5.8912527E-02 -5.6348622E-02 -5.3930126E-02 -5.1648900E-02 -4.9495712E-02
 -4.7461130E-02
 1.118363 1.096846 1.075554 1.054485 1.033640
 1.013019 0.9926226 0.9724495 0.9525004 0.9327751
 0.9132736 0.8939961 0.8749424 0.8561127 0.8375068
 0.8191248 0.8009667 0.7830324 0.7653220 0.7478356
 0.7305729 0.7135341 0.6967191 0.6801280 0.6637607
 0.6476171 0.6318305 0.6160250 0.6005296 0.5853244
 0.5703900 0.5557062 0.5412524 0.5270073 0.5129492
 0.4990555 0.4853027 0.4716663 0.4581205 0.4446377
 0.4311882 0.4177394 0.4043290 0.3909239 0.3775612
 0.3642073 0.3508991 0.3376026 0.3242809 0.3108936
 0.2973967 0.2837369 0.2698641 0.2557140 0.2412623
 0.2265252 0.2114803 0.1963877 0.1816486 0.1676764
 0.1548708 0.1433944 0.1331997 0.1241392 0.1160444
 0.1087619 0.1021640 9.6147820E-02 9.0631127E-02 8.5547946E-02
 8.0844842E-02
 0.6247110 0.6065965 0.5886700 0.5709315 0.5533808
 0.5360181 0.5188433 0.5018564 0.4850575 0.4684464
 0.4520233 0.4357882 0.4197409 0.4038815 0.3882100
 0.3727265 0.3574308 0.3423231 0.3274032 0.3126713
 0.2981274 0.2837714 0.2696034 0.2556233 0.2418311
 0.2282268 0.2147430 0.2015706 0.1885412 0.1756666
 0.1629564 0.1504209 0.1380695 0.1259112 0.1139544
 0.1022077 9.0679623E-02 7.9378888E-02 6.8315037E-02 5.7498626E-02
 4.6941914E-02 3.6659803E-02 2.6634457E-02 1.6881036E-02 7.3820069E-03
 -1.8472617E-03 -1.0824165E-02 -1.9533033E-02 -2.7954396E-02 -3.6063146E-02
 -4.3826003E-02 -5.1198490E-02 -5.8113247E-02 -6.4487174E-02 -7.0134670E-02
 -7.4967541E-02 -7.8701869E-02 -8.1028245E-02 -8.1843302E-02 -8.1189930E-02
 -7.9348780E-02 -7.6746702E-02 -7.3756956E-02 -7.0635118E-02 -6.7532040E-02
 -6.4527512E-02 -6.1658997E-02 -5.8940355E-02 -5.6372810E-02 -5.3951200E-02
 -5.1667321E-02
 1.148777 1.127181 1.105808 1.084660 1.063736
 1.043036 1.022560 1.002307 0.9822786 0.9624742
 0.9428936 0.9235370 0.9044042 0.8854954 0.8668106
 0.8483497 0.8301126 0.8120995 0.7943103 0.7767450
 0.7594034 0.7422858 0.7253921 0.7087222 0.6922762
 0.6760539 0.6601886 0.6443044 0.6287304 0.6134465
 0.5984336 0.5836712 0.5691389 0.5548154 0.5406789
 0.5267068 0.5128757 0.4991610 0.4855370 0.4719761
 0.4584484 0.4449215 0.4314330 0.4179497 0.4045090
 0.3910771 0.3776909 0.3643164 0.3509900 0.3376777
 0.3243425 0.3109434 0.2974373 0.2837681 0.2698883
 0.2557308 0.2412727 0.2265395 0.2114843 0.1963822
 0.1816424 0.1676643 0.1548529 0.1433726 0.1331757
 0.1241144 0.1160195 0.1087375 0.1021403 9.6125178E-02
 9.0609618E-02
 0.6658002 0.6471831 0.6287540 0.6105129 0.5924597
 0.5745944 0.5569171 0.5394277 0.5221263 0.5050128
 0.4880873 0.4713497 0.4548000 0.4384383 0.4222645
 0.4062786 0.3904806 0.3748705 0.3594484 0.3442142
 0.3291681 0.3143098 0.2996396 0.2851572 0.2708628
 0.2567563 0.2427703 0.2290958 0.2155643 0.2021875
 0.1889752 0.1759377 0.1630842 0.1504237 0.1379649
 0.1257161 0.1136860 0.1018832 9.0317361E-02 7.8998923E-02
 6.7940183E-02 5.7156056E-02 4.6628695E-02 3.6373265E-02 2.6372226E-02
 1.6640948E-02 7.1620350E-03 -2.0488393E-03 -1.1008955E-02 -1.9702422E-02
 -2.8109569E-02 -3.6205336E-02 -4.3956257E-02 -5.1318649E-02 -5.8223225E-02
 -6.4595096E-02 -7.0221014E-02 -7.5055920E-02 -7.8789689E-02 -8.1107311E-02
 -8.1915952E-02 -8.1259623E-02 -7.9411961E-02 -7.6802552E-02 -7.3805705E-02
 -7.0677422E-02 -6.7568660E-02 -6.4559199E-02 -6.1686441E-02 -5.8964182E-02
 -5.6393556E-02
 1.179388 1.157711 1.136258 1.115030 1.094025
 1.073245 1.052688 1.032356 1.012247 0.9923628
 0.9727026 0.9532663 0.9340540 0.9150656 0.8963013
 0.8777609 0.8594444 0.8413519 0.8234832 0.8058385
 0.7884176 0.7712207 0.7542476 0.7374984 0.7209731
 0.7046715 0.6887270 0.6727635 0.6571103 0.6417474
 0.6266553 0.6118139 0.5972025 0.5828001 0.5685846
 0.5545336 0.5406237 0.5268301 0.5131273 0.4994876
 0.4858813 0.4722757 0.4587085 0.4451467 0.4316273
 0.4181169 0.4046520 0.3911990 0.3777940 0.3644032
 0.3510626 0.3377378 0.3243918 0.3109833 0.2974711
 0.2837934 0.2699082 0.2557456 0.2412816 0.2265550
 0.2114891 0.1963778 0.1816392 0.1676560 0.1548389
 0.1433551 0.1331561 0.1240938 0.1159986 0.1087168
 0.1021202
 0.7079390 0.6888185 0.6698860 0.6511415 0.6325849
 0.6142163 0.5960357 0.5780430 0.5602384 0.5426217
 0.5251930 0.5079523 0.4908994 0.4740346 0.4573577
 0.4408687 0.4245676 0.4084545 0.3925293 0.3767921
 0.3612429 0.3458817 0.3307085 0.3157232 0.3009258
 0.2863163 0.2718274 0.2576500 0.2436156 0.2297359
 0.2160208 0.2024804 0.1891240 0.1759607 0.1629990
 0.1502475 0.1377145 0.1254090 0.1133404 0.1015192
 8.9957699E-02 7.8670830E-02 6.7640737E-02 5.6882583E-02 4.6378825E-02
 3.6144834E-02 2.6163207E-02 1.6449625E-02 6.9868015E-03 -2.2093731E-03
 -1.1155999E-02 -1.9837188E-02 -2.8232977E-02 -3.6318585E-02 -4.4059768E-02
 -5.1414337E-02 -5.8310479E-02 -6.4686701E-02 -7.0284814E-02 -7.5127758E-02
 -7.8862399E-02 -8.1172317E-02 -8.1975058E-02 -8.1317984E-02 -7.9465322E-02
 -7.6849952E-02 -7.3847257E-02 -7.0713580E-02 -6.7599997E-02 -6.4586364E-02
 -6.1710022E-02
 1.210190 1.188433 1.166899 1.145590 1.124505
 1.103643 1.083006 1.062593 1.042404 1.022439
 1.002699 0.9831823 0.9638899 0.9448215 0.9259772
 0.9073567 0.8889602 0.8707876 0.8528390 0.8351144
 0.8176135 0.8003367 0.7832838 0.7664547 0.7498495
 0.7334681 0.7174438 0.7014006 0.6856678 0.6702251
 0.6550535 0.6401325 0.6254416 0.6109596 0.5966647
 0.5825342 0.5685449 0.5546719 0.5408898 0.5271708
 0.5134853 0.4998005 0.4861543 0.4725134 0.4589150
 0.4453255 0.4317816 0.4182495 0.4047655 0.3912956
 0.3778760 0.3644722 0.3511204 0.3377855 0.3244311
 0.3110155 0.2975010 0.2838141 0.2699242 0.2557594
 0.2412896 0.2265720 0.2114940 0.1963736 0.1816382
 0.1676508 0.1548282 0.1433409 0.1331400 0.1240765
 0.1159809
 0.7511146 0.7314903 0.7120539 0.6928056 0.6737452
 0.6548728 0.6361885 0.6176922 0.5993839 0.5812636
 0.5633312 0.5455869 0.5280305 0.5106620 0.4934815
 0.4764890 0.4596845 0.4430678 0.4266392 0.4103985
 0.3943458 0.3784812 0.3628045 0.3473158 0.3320149
 0.3169021 0.3019098 0.2872289 0.2726911 0.2583080
 0.2440895 0.2300457 0.2161860 0.2025194 0.1890544
 0.1757995 0.1627633 0.1499545 0.1373826 0.1250581
 0.1129934 0.1012032 8.9669891E-02 7.8408487E-02 6.7401491E-02
 5.6664266E-02 4.6179406E-02 3.5962597E-02 2.5996549E-02 1.6297156E-02
 6.8473136E-03 -2.3370911E-03 -1.1272988E-02 -1.9944467E-02 -2.8331138E-02
 -3.6408782E-02 -4.4141874E-02 -5.1490489E-02 -5.8379732E-02 -6.4770192E-02
 -7.0327975E-02 -7.5186893E-02 -7.8923129E-02 -8.1226178E-02 -8.2022794E-02
 -8.1367031E-02 -7.9510607E-02 -7.6890312E-02 -7.3882692E-02 -7.0744537E-02
 -6.7626923E-02
 1.241173 1.219334 1.197719 1.176329 1.155163
 1.134221 1.113503 1.093009 1.072740 1.052694
 1.032873 1.013276 0.9939032 0.9747545 0.9558297
 0.9371289 0.9186521 0.9003992 0.8823703 0.8645654
 0.8469843 0.8296273 0.8124941 0.7955849 0.7788996
 0.7624381 0.7463337 0.7302105 0.7143977 0.6988751
 0.6836236 0.6686227 0.6538520 0.6392902 0.6249155
 0.6107053 0.5966362 0.5826836 0.5688220 0.5550234
 0.5412583 0.5274941 0.5137684 0.5000480 0.4863702
 0.4727013 0.4590781 0.4454667 0.4319034 0.4183542
 0.4048554 0.3913723 0.3779412 0.3645271 0.3511664
 0.3378235 0.3244623 0.3110417 0.2975343 0.2838302
 0.2699426 0.2557792 0.2412980 0.2265903 0.2114981
 0.1963691 0.1816390 0.1676477 0.1548194 0.1433298
 0.1331266
 0.7953253 0.7751965 0.7552558 0.7355031 0.7159384
 0.6965618 0.6773732 0.6583727 0.6395601 0.6209356
 0.6024991 0.5842505 0.5661899 0.5483174 0.5306328
 0.5131363 0.4958277 0.4787072 0.4617747 0.4450301
 0.4284736 0.4121051 0.3959246 0.3799320 0.3641274
 0.3485107 0.3330145 0.3178298 0.3027882 0.2879013
 0.2731790 0.2586315 0.2442681 0.2300977 0.2161290
 0.2023705 0.1888305 0.1755180 0.1624424 0.1496143
 0.1370459 0.1247521 0.1127152 0.1009502 8.9439549E-02
 7.8198716E-02 6.7210257E-02 5.6489848E-02 4.6020206E-02 3.5817221E-02
 2.5863791E-02 1.6175803E-02 6.7363209E-03 -2.4387415E-03 -1.1366037E-02
 -2.0029875E-02 -2.8409149E-02 -3.6480840E-02 -4.4205803E-02 -5.1549762E-02
 -5.8436912E-02 -6.4774364E-02 -7.0350774E-02 -7.5236842E-02 -7.8974456E-02
 -8.1271589E-02 -8.2060553E-02 -8.1408508E-02 -7.9546772E-02 -7.6924205E-02
 -7.3913105E-02
 1.272322 1.250402 1.228706 1.207235 1.185988
 1.164965 1.144166 1.123592 1.103241 1.083115
 1.063213 1.043535 1.024082 1.004853 0.9858474
 0.9670662 0.9485089 0.9301757 0.9120664 0.8941811
 0.8765197 0.8590824 0.8418690 0.8248795 0.8081141
 0.7915725 0.7753880 0.7591848 0.7432919 0.7276894
 0.7123579 0.6972771 0.6824265 0.6677848 0.6533303
 0.6390403 0.6248916 0.6108593 0.5969179 0.5830398
 0.5691950 0.5553512 0.5415460 0.5277461 0.5139889
 0.5002407 0.4865381 0.4728475 0.4592050 0.4455766
 0.4319986 0.4184363 0.4049260 0.3914328 0.3779929
 0.3645709 0.3512032 0.3378531 0.3244885 0.3110635
 0.2975414 0.2838441 0.2699553 0.2557890 0.2413135
 0.2266194 0.2115101 0.1963534 0.1816325 0.1676373
 0.1548130
 0.8405527 0.8199195 0.7994744 0.7792174 0.7591483
 0.7392673 0.7195743 0.7000695 0.6807526 0.6616238
 0.6426830 0.6239302 0.6053653 0.5869886 0.5687998
 0.5507991 0.5329863 0.5153617 0.4979251 0.4806766
 0.4636161 0.4467436 0.4300592 0.4135626 0.3972540
 0.3811333 0.3651333 0.3494447 0.3338992 0.3185084
 0.3032822 0.2882308 0.2733636 0.2586894 0.2442169
 0.2299546 0.2159109 0.2020946 0.1885153 0.1751834
 0.1621112 0.1493137 0.1367731 0.1245044 0.1124901
 0.1007456 8.9253455E-02 7.8029387E-02 6.7056090E-02 5.6349456E-02
 4.5892384E-02 3.5700753E-02 2.5757629E-02 1.6078925E-02 6.6479868E-03
 -2.5194956E-03 -1.1439940E-02 -2.0098649E-02 -2.8471367E-02 -3.6535814E-02
 -4.4254821E-02 -5.1597979E-02 -5.8478821E-02 -6.4815864E-02 -7.0348158E-02
 -7.5279698E-02 -7.9009898E-02 -8.1299514E-02 -8.2117490E-02 -8.1440911E-02
 -7.9579167E-02
 1.303594 1.281593 1.259817 1.238265 1.216938
 1.195835 1.174955 1.154300 1.133870 1.113663
 1.093681 1.073923 1.054390 1.035081 1.015996
 0.9971346 0.9784977 0.9600848 0.9418959 0.9239311
 0.9061902 0.8886733 0.8713804 0.8543116 0.8374667
 0.8208458 0.8045821 0.7882996 0.7723274 0.7566457
 0.7412350 0.7260751 0.7111453 0.6964247 0.6818911
 0.6675222 0.6532945 0.6391833 0.6251630 0.6112060
 0.5972824 0.5833598 0.5694759 0.5555973 0.5417614
 0.5279346 0.5141534 0.5003842 0.4866631 0.4729563
 0.4592997 0.4456591 0.4320703 0.4184987 0.4049804
 0.3914800 0.3780339 0.3646055 0.3512321 0.3378780
 0.3245083 0.3110816 0.2975635 0.2838552 0.2699834
 0.2557752 0.2413311 0.2266040 0.2115099 0.1964157
 0.1816339
 0.8867577 0.8656206 0.8446715 0.8239107 0.8033377
 0.7829528 0.7627560 0.7427474 0.7229267 0.7032941
 0.6838495 0.6645930 0.6455244 0.6266440 0.6079515
 0.5894470 0.5711306 0.5530022 0.5350620 0.5173100
 0.4997461 0.4823702 0.4651824 0.4481825 0.4313706
 0.4147466 0.3982432 0.3820513 0.3660025 0.3501085
 0.3343790 0.3188244 0.3034539 0.2882766 0.2733009
 0.2585354 0.2439886 0.2296693 0.2155869 0.2017519
 0.1881768 0.1748762 0.1618325 0.1490608 0.1365435
 0.1242960 0.1123009 0.1005739 8.9097589E-02 7.7887975E-02
 6.6927932E-02 5.6233332E-02 4.5787245E-02 3.5605583E-02 2.5671693E-02
 1.6001258E-02 6.5778629E-03 -2.5837969E-03 -1.1498840E-02 -2.0152155E-02
 -2.8520342E-02 -3.6581058E-02 -4.4290468E-02 -5.1635593E-02 -5.8496177E-02
 -6.4886376E-02 -7.0505492E-02 -7.5262420E-02 -7.8997679E-02 -8.1338137E-02
 -8.2147405E-02
 1.335077 1.312995 1.291137 1.269504 1.248095
 1.226910 1.205949 1.185213 1.164701 1.144413
 1.124350 1.104511 1.084896 1.065506 1.046340
 1.027399 1.008681 0.9901877 0.9719185 0.9538733
 0.9360521 0.9184550 0.9010819 0.8839329 0.8670079
 0.8503069 0.8339630 0.8176005 0.8015484 0.7857866
 0.7702960 0.7550562 0.7400467 0.7252462 0.7106329
 0.6961842 0.6818767 0.6676858 0.6535859 0.6395493
 0.6255461 0.6115440 0.5975806 0.5836225 0.5697070
 0.5558007 0.5419401 0.5280914 0.5142909 0.5005047
 0.4867687 0.4730487 0.4593806 0.4457296 0.4321319
 0.4185522 0.4050269 0.3915191 0.3780664 0.3646331
 0.3512554 0.3378973 0.3245269 0.3110895 0.2975638
 0.2838728 0.2699655 0.2557423 0.2413377 0.2265536
 0.2115153
 0.9339958 0.9123543 0.8909009 0.8696356 0.8485584
 0.8276692 0.8069682 0.7864552 0.7661303 0.7459935
 0.7260447 0.7062840 0.6867113 0.6673266 0.6481299
 0.6291213 0.6103007 0.5916683 0.5732241 0.5549681
 0.5369002 0.5190206 0.5013289 0.4838252 0.4665096
 0.4493819 0.4323748 0.4156792 0.3991267 0.3827291
 0.3664960 0.3504377 0.3345636 0.3188826 0.3034034
 0.2881344 0.2730840 0.2582612 0.2436753 0.2293370
 0.2152583 0.2014544 0.1879073 0.1746321 0.1616114
 0.1488605 0.1363620 0.1241316 0.1121520 0.1004390
 8.8975549E-02 7.7777572E-02 6.6828117E-02 5.6143098E-02 4.5705847E-02
 3.5532054E-02 2.5605299E-02 1.5940279E-02 6.5218764E-03 -2.6348007E-03
 -1.1545336E-02 -2.0195639E-02 -2.8558696E-02 -3.6621485E-02 -4.4342309E-02
 -5.1685486E-02 -5.8532264E-02 -6.4902000E-02 -7.0530660E-02 -7.5325452E-02
 -7.9022020E-02

XFOILinterface/XFOIL/orrs/osnew/ai.12

12.00000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 -0.002317
 0.40000 -0.003857
 0.50000 -0.000153
 0.60000 0.009575
 0.70000 0.018930
 0.80000 0.027575
 0.90000 0.035517
 1.00000 0.042607
 1.10000 0.048967
 1.20000 0.054418
 1.30000 0.059196
 1.40000 0.063140
 1.50000 0.066545
 1.60000 0.069289
 1.70000 0.071645
 1.80000 0.073514
 1.90000 0.075111
 2.00000 0.076364
 2.10000 0.077431
 2.20000 0.078263
 2.30000 0.078972
 2.40000 0.079522
 2.50000 0.079991
 2.60000 0.080354
 2.70000 0.080664
 2.80000 0.080900
 2.90000 0.081107
 3.00000 0.081264
 3.10000 0.081403
 3.20000 0.081507
 3.30000 0.081605
 3.40000 0.081678
 3.50000 0.081751
 3.60000 0.081790
 3.70000 0.081848
 3.80000 0.081865
 3.90000 0.081891
 4.00000 0.042113

XFOILinterface/XFOIL/orrs/osm_gu.12

 501 12.53108
 0.0000000E+00 0.0000000E+00 3.1264010E-12
 5.0124314E-02 1.7401830E-13 3.8170682E-12
 0.1002486 3.8638629E-13 4.6565828E-12
 0.1503729 6.4534803E-13 5.6761987E-12
 0.2004973 9.6087418E-13 6.9135453E-12
 0.2506216 1.3450124E-12 8.4138755E-12
 0.3007459 1.8123082E-12 1.0231599E-11
 0.3508702 2.3803091E-12 1.2432081E-11
 0.4009945 3.0701656E-12 1.5093746E-11
 0.4511189 3.9073519E-12 1.8310626E-11
 0.5012432 4.9225181E-12 2.2195322E-11
 0.5513675 6.1525173E-12 2.6882632E-11
 0.6014917 7.6416217E-12 3.2533819E-11
 0.6516161 9.4429759E-12 3.9341679E-11
 0.7017404 1.1620315E-11 4.7535843E-11
 0.7518647 1.4250005E-11 5.7390811E-11
 0.8019890 1.7423478E-11 6.9233397E-11
 0.8521134 2.1250132E-11 8.3452981E-11
 0.9022377 2.5860709E-11 1.0051272E-10
 0.9523620 3.1411363E-11 1.2096291E-10
 1.002486 3.8088432E-11 1.4545730E-10
 1.052611 4.6114067E-11 1.7477231E-10
 1.102735 5.5752954E-11 2.0982678E-10
 1.152859 6.7320101E-11 2.5171148E-10
 1.202983 8.1190159E-11 3.0171518E-10
 1.253108 9.7808331E-11 3.6136280E-10
 1.303232 1.1770314E-10 4.3245671E-10
 1.353357 1.4150174E-10 5.1712401E-10
 1.403481 1.6994717E-10 6.1787259E-10
 1.453605 2.0391969E-10 7.3765966E-10
 1.503729 2.4446092E-10 8.7996471E-10
 1.553854 2.9280200E-10 1.0488839E-09
 1.603978 3.5039760E-10 1.2492277E-09
 1.654102 4.1896472E-10 1.4866502E-09
 1.704227 5.0052779E-10 1.7677826E-09
 1.754351 5.9747257E-10 2.1003952E-09
 1.804475 7.1260842E-10 2.4936055E-09
 1.854600 8.4923812E-10 2.9580347E-09
 1.904724 1.0112453E-09 3.5061869E-09
 1.954848 1.2031898E-09 4.1525565E-09
 2.004973 1.4304229E-09 4.9142037E-09
 2.055097 1.6992159E-09 5.8108593E-09
 2.105221 2.0169157E-09 6.8656312E-09
 2.155346 2.3921225E-09 8.1053821E-09
 2.205470 2.8348881E-09 9.5613375E-09
 2.255594 3.3569612E-09 1.1269814E-08
 2.305718 3.9720573E-09 1.3272957E-08
 2.355843 4.6961670E-09 1.5619632E-08
 2.405967 5.5479314E-09 1.8366480E-08
 2.456091 6.5490569E-09 2.1579133E-08
 2.506216 7.7247879E-09 2.5333488E-08
 2.556340 9.1044763E-09 2.9717240E-08
 2.606464 1.0722209E-08 3.4831654E-08
 2.656589 1.2617541E-08 4.0793658E-08
 2.706713 1.4836345E-08 4.7737938E-08
 2.756837 1.7431718E-08 5.5819662E-08
 2.806962 2.0465167E-08 6.5217428E-08
 2.857086 2.4007795E-08 7.6136381E-08
 2.907210 2.8141763E-08 8.8812421E-08
 2.957335 3.2961925E-08 1.0351595E-07
 3.007459 3.8577717E-08 1.2055759E-07
 3.057583 4.5115168E-08 1.4029222E-07
 3.107708 5.2719496E-08 1.6312670E-07
 3.157832 6.1557728E-08 1.8952612E-07
 3.207956 7.1821880E-08 2.2002196E-07
 3.258080 8.3732459E-08 2.5522019E-07
 3.308205 9.7542618E-08 2.9581335E-07
 3.358329 1.1354231E-07 3.4258807E-07
 3.408453 1.3206397E-07 3.9644118E-07
 3.458578 1.5348795E-07 4.5839371E-07
 3.508702 1.7824925E-07 5.2960326E-07
 3.558826 2.0684486E-07 6.1138542E-07
 3.608951 2.3984231E-07 7.0523282E-07
 3.659075 2.7788829E-07 8.1283429E-07
 3.709199 3.2172045E-07 9.3610464E-07
 3.759324 3.7217833E-07 1.0772072E-06
 3.809448 4.3021711E-07 1.2385876E-06
 3.859572 4.9692233E-07 1.4230058E-06
 3.909696 5.7352679E-07 1.6335766E-06
 3.959821 6.6142974E-07 1.8738053E-06
 4.009945 7.6221585E-07 2.1476442E-06
 4.060070 8.7768154E-07 2.4595331E-06
 4.110194 1.0098590E-06 2.8144605E-06
 4.160318 1.1610463E-06 3.2180365E-06
 4.210443 1.3338390E-06 3.6765362E-06
 4.260567 1.5311681E-06 4.1970106E-06
 4.310691 1.7563348E-06 4.7873255E-06
 4.360816 2.0130622E-06 5.4563070E-06
 4.410940 2.3055400E-06 6.2137983E-06
 4.461064 2.6384798E-06 7.0707838E-06
 4.511188 3.0171768E-06 8.0395339E-06
 4.561313 3.4475777E-06 9.1337179E-06
 4.611437 3.9363449E-06 1.0368511E-05
 4.661561 4.4909530E-06 1.1760810E-05
 4.711686 5.1197671E-06 1.3329412E-05
 4.761810 5.8321466E-06 1.5095131E-05
 4.811934 6.6385519E-06 1.7081094E-05
 4.862059 7.5506678E-06 1.9312878E-05
 4.912183 8.5815154E-06 2.1818796E-05
 4.962307 9.7456268E-06 2.4630179E-05
 5.012432 1.1059175E-05 2.7781543E-05
 5.062556 1.2540163E-05 3.1311087E-05
 5.112680 1.4208596E-05 3.5260786E-05
 5.162804 1.6086697E-05 3.9676990E-05
 5.212929 1.8199124E-05 4.4610591E-05
 5.263053 2.0573214E-05 5.0117545E-05
 5.313177 2.3239243E-05 5.6259320E-05
 5.363302 2.6230760E-05 6.3103238E-05
 5.413426 2.9584735E-05 7.0723108E-05
 5.463551 3.3342119E-05 7.9199672E-05
 5.513675 3.7548074E-05 8.8621302E-05
 5.563799 4.2252377E-05 9.9084413E-05
 5.613923 4.7509879E-05 1.1069425E-04
 5.664048 5.3380925E-05 1.2356558E-04
 5.714172 5.9931888E-05 1.3782320E-04
 5.764296 6.7235647E-05 1.5360303E-04
 5.814420 7.5372212E-05 1.7105270E-04
 5.864545 8.4429295E-05 1.9033227E-04
 5.914669 9.4502968E-05 2.1161557E-04
 5.964794 1.0569851E-04 2.3509095E-04
 6.014918 1.1813064E-04 2.6096142E-04
 6.065042 1.3192506E-04 2.8944699E-04
 6.115167 1.4721877E-04 3.2078530E-04
 6.165291 1.6416123E-04 3.5523242E-04
 6.215415 1.8291513E-04 3.9306382E-04
 6.265539 2.0365758E-04 4.3457648E-04
 6.315664 2.2658103E-04 4.8008907E-04
 6.365788 2.5189464E-04 5.2994426E-04
 6.415912 2.7982518E-04 5.8450864E-04
 6.466036 3.1061863E-04 6.4417557E-04
 6.516160 3.4454127E-04 7.0936605E-04
 6.566285 3.8188120E-04 7.8052859E-04
 6.616410 4.2295031E-04 8.5814431E-04
 6.666534 4.6808389E-04 9.4272266E-04
 6.716659 5.1764504E-04 1.0348093E-03
 6.766783 5.7202461E-04 1.1349819E-03
 6.816907 6.3164340E-04 1.2438565E-03
 6.867031 6.9695385E-04 1.3620853E-03
 6.917155 7.6844217E-04 1.4903584E-03
 6.967280 8.4663020E-04 1.6294078E-03
 7.017404 9.3207735E-04 1.7800054E-03
 7.067528 1.0253830E-03 1.9429672E-03
 7.117652 1.1271884E-03 2.1191526E-03
 7.167777 1.2381792E-03 2.3094660E-03
 7.217902 1.3590885E-03 2.5148599E-03
 7.268026 1.4906945E-03 2.7363291E-03
 7.318150 1.6338306E-03 2.9749190E-03
 7.368275 1.7893823E-03 3.2317273E-03
 7.418399 1.9582917E-03 3.5078980E-03
 7.468523 2.1415590E-03 3.8046218E-03
 7.518647 2.3402458E-03 4.1231466E-03
 7.568771 2.5554770E-03 4.4647646E-03
 7.618896 2.7884440E-03 4.8308210E-03
 7.669020 3.0404071E-03 5.2227108E-03
 7.719144 3.3126967E-03 5.6418749E-03
 7.769269 3.6067176E-03 6.0898061E-03
 7.819393 3.9239503E-03 6.5680444E-03
 7.869518 4.2659580E-03 7.0781824E-03
 7.919642 4.6343720E-03 7.6218341E-03
 7.969766 5.0309175E-03 8.2006771E-03
 8.019891 5.4574027E-03 8.8164276E-03
 8.070015 5.9157205E-03 9.4708325E-03
 8.120139 6.4078532E-03 1.0165673E-02
 8.170263 6.9358731E-03 1.0902767E-02
 8.220387 7.5019444E-03 1.1683956E-02
 8.270512 8.1083244E-03 1.2511102E-02
 8.320636 8.7573631E-03 1.3386093E-02
 8.370760 9.4515067E-03 1.4310827E-02
 8.420885 1.0193297E-02 1.5287207E-02
 8.471009 1.0985378E-02 1.6317153E-02
 8.521133 1.1830467E-02 1.7402554E-02
 8.571258 1.2731397E-02 1.8545311E-02
 8.621383 1.3691092E-02 1.9747304E-02
 8.671507 1.4712566E-02 2.1010382E-02
 8.721631 1.5798928E-02 2.2336377E-02
 8.771755 1.6953375E-02 2.3727071E-02
 8.821879 1.8179197E-02 2.5184192E-02
 8.872004 1.9479761E-02 2.6709426E-02
 8.922128 2.0858524E-02 2.8304379E-02
 8.972252 2.2319021E-02 2.9970588E-02
 9.022376 2.3864856E-02 3.1709500E-02
 9.072501 2.5499709E-02 3.3522479E-02
 9.122625 2.7227346E-02 3.5410799E-02
 9.172750 2.9051527E-02 3.7375551E-02
 9.222874 3.0976132E-02 3.9417773E-02
 9.272999 3.3005066E-02 4.1538335E-02
 9.323123 3.5142273E-02 4.3737970E-02
 9.373247 3.7391730E-02 4.6017263E-02
 9.423371 3.9757438E-02 4.8376620E-02
 9.473495 4.2243425E-02 5.0816268E-02
 9.523620 4.4853713E-02 5.3336266E-02
 9.573744 4.7592320E-02 5.5936463E-02
 9.623868 5.0463263E-02 5.8616508E-02
 9.673992 5.3470526E-02 6.1375845E-02
 9.724117 5.6618106E-02 6.4213715E-02
 9.774241 5.9909835E-02 6.7129038E-02
 9.824366 6.3349605E-02 7.0120610E-02
 9.874490 6.6941202E-02 7.3186927E-02
 9.924615 7.0688315E-02 7.6326236E-02
 9.974739 7.4594572E-02 7.9536557E-02
 10.02486 7.8663468E-02 8.2815617E-02
 10.07499 8.2898386E-02 8.6160913E-02
 10.12511 8.7302566E-02 8.9569651E-02
 10.17524 9.1879122E-02 9.3038790E-02
 10.22536 9.6630998E-02 9.6565016E-02
 10.27548 0.1015610 0.1001447
 10.32561 0.1066716 0.1037741
 10.37573 0.1119653 0.1074490
 10.42586 0.1174442 0.1111651
 10.47598 0.1231104 0.1149177
 10.52611 0.1289654 0.1187020
 10.57623 0.1350107 0.1225129
 10.62635 0.1412477 0.1263450
 10.67648 0.1476772 0.1301929
 10.72660 0.1542997 0.1340505
 10.77673 0.1611157 0.1379121
 10.82685 0.1681251 0.1417715
 10.87698 0.1753278 0.1456224
 10.92710 0.1827232 0.1494582
 10.97723 0.1903103 0.1532724
 11.02735 0.1980878 0.1570583
 11.07747 0.2060542 0.1608089
 11.12760 0.2142076 0.1645175
 11.17772 0.2225456 0.1681769
 11.22785 0.2310657 0.1717803
 11.27797 0.2397648 0.1753207
 11.32810 0.2486396 0.1787908
 11.37822 0.2576863 0.1821839
 11.42834 0.2669011 0.1854929
 11.47847 0.2762795 0.1887110
 11.52859 0.2858167 0.1918313
 11.57872 0.2955076 0.1948474
 11.62884 0.3053470 0.1977526
 11.67896 0.3153291 0.2005406
 11.72909 0.3254478 0.2032052
 11.77921 0.3356969 0.2057407
 11.82934 0.3460696 0.2081412
 11.87946 0.3565592 0.2104013
 11.92959 0.3671587 0.2125159
 11.97971 0.3778601 0.2144801
 12.02984 0.3886561 0.2162893
 12.07996 0.3995388 0.2179393
 12.13008 0.4105001 0.2194264
 12.18021 0.4215318 0.2207469
 12.23033 0.4326254 0.2218977
 12.28046 0.4437724 0.2228762
 12.33058 0.4549640 0.2236800
 12.38071 0.4661916 0.2243072
 12.43083 0.4774460 0.2247563
 12.48095 0.4887186 0.2250261
 12.53108 0.5000001 0.2251162
 12.58120 0.5112816 0.2250261
 12.63133 0.5225542 0.2247563
 12.68145 0.5338086 0.2243072
 12.73158 0.5450361 0.2236800
 12.78170 0.5562278 0.2228762
 12.83182 0.5673748 0.2218977
 12.88195 0.5784684 0.2207469
 12.93207 0.5895001 0.2194264
 12.98220 0.6004614 0.2179393
 13.03232 0.6113441 0.2162893
 13.08245 0.6221400 0.2144801
 13.13257 0.6328415 0.2125159
 13.18270 0.6434409 0.2104013
 13.23282 0.6539305 0.2081412
 13.28294 0.6643032 0.2057407
 13.33307 0.6745523 0.2032052
 13.38319 0.6846710 0.2005406
 13.43332 0.6946532 0.1977526
 13.48344 0.7044926 0.1948474
 13.53357 0.7141836 0.1918313
 13.58369 0.7237207 0.1887110
 13.63381 0.7330991 0.1854929
 13.68394 0.7423139 0.1821839
 13.73406 0.7513607 0.1787908
 13.78419 0.7602355 0.1753207
 13.83431 0.7689346 0.1717803
 13.88443 0.7774547 0.1681769
 13.93456 0.7857926 0.1645175
 13.98468 0.7939460 0.1608089
 14.03481 0.8019125 0.1570583
 14.08493 0.8096901 0.1532724
 14.13506 0.8172771 0.1494582
 14.18518 0.8246725 0.1456224
 14.23530 0.8318752 0.1417715
 14.28543 0.8388847 0.1379121
 14.33555 0.8457007 0.1340505
 14.38568 0.8523232 0.1301929
 14.43580 0.8587527 0.1263450
 14.48593 0.8649896 0.1225129
 14.53605 0.8710350 0.1187020
 14.58618 0.8768900 0.1149177
 14.63630 0.8825561 0.1111651
 14.68642 0.8880350 0.1074490
 14.73655 0.8933287 0.1037741
 14.78667 0.8984393 0.1001447
 14.83680 0.9033693 9.6565016E-02
 14.88692 0.9081212 9.3038790E-02
 14.93705 0.9126978 8.9569651E-02
 14.98717 0.9171019 8.6160913E-02
 15.03729 0.9213368 8.2815617E-02
 15.08742 0.9254057 7.9536557E-02
 15.13754 0.9293120 7.6326236E-02
 15.18767 0.9330591 7.3186927E-02
 15.23779 0.9366507 7.0120610E-02
 15.28792 0.9400905 6.7129038E-02
 15.33804 0.9433822 6.4213715E-02
 15.38816 0.9465297 6.1375882E-02
 15.43829 0.9495370 5.8616545E-02
 15.48841 0.9524079 5.5936497E-02
 15.53854 0.9551466 5.3336293E-02
 15.58866 0.9577568 5.0816298E-02
 15.63879 0.9602429 4.8376646E-02
 15.68891 0.9626086 4.6017237E-02
 15.73904 0.9648581 4.3737944E-02
 15.78916 0.9669953 4.1538306E-02
 15.83928 0.9690242 3.9417751E-02
 15.88941 0.9709488 3.7375532E-02
 15.93953 0.9727730 3.5410780E-02
 15.98966 0.9745007 3.3522479E-02
 16.03978 0.9761356 3.1709500E-02
 16.08990 0.9776813 2.9970588E-02
 16.14003 0.9791418 2.8304379E-02
 16.19015 0.9805206 2.6709426E-02
 16.24028 0.9818211 2.5184192E-02
 16.29040 0.9830469 2.3727071E-02
 16.34053 0.9842014 2.2336377E-02
 16.39065 0.9852877 2.1010382E-02
 16.44077 0.9863092 1.9747304E-02
 16.49090 0.9872689 1.8545311E-02
 16.54102 0.9881698 1.7402554E-02
 16.59115 0.9890149 1.6317153E-02
 16.64127 0.9898070 1.5287219E-02
 16.69140 0.9905487 1.4310837E-02
 16.74152 0.9912429 1.3386106E-02
 16.79165 0.9918919 1.2511112E-02
 16.84177 0.9924983 1.1683964E-02
 16.89189 0.9930644 1.0902777E-02
 16.94202 0.9935924 1.0165665E-02
 16.99214 0.9940846 9.4708232E-03
 17.04227 0.9945428 8.8164192E-03
 17.09239 0.9949693 8.2006715E-03
 17.14252 0.9953659 7.6218266E-03
 17.19264 0.9957343 7.0781750E-03
 17.24277 0.9960763 6.5680444E-03
 17.29289 0.9963936 6.0898061E-03
 17.34301 0.9966876 5.6418749E-03
 17.39314 0.9969599 5.2227108E-03
 17.44326 0.9972119 4.8308210E-03
 17.49339 0.9974449 4.4647646E-03
 17.54351 0.9976601 4.1231466E-03
 17.59363 0.9978588 3.8046218E-03
 17.64376 0.9980420 3.5078980E-03
 17.69388 0.9982109 3.2317273E-03
 17.74401 0.9983665 2.9749190E-03
 17.79413 0.9985096 2.7363291E-03
 17.84426 0.9986412 2.5148599E-03
 17.89438 0.9987621 2.3094681E-03
 17.94450 0.9988731 2.1191547E-03
 17.99463 0.9989749 1.9429690E-03
 18.04475 0.9990682 1.7800073E-03
 18.09488 0.9991536 1.6294093E-03
 18.14500 0.9992319 1.4903598E-03
 18.19513 0.9993033 1.3620834E-03
 18.24525 0.9993687 1.2438553E-03
 18.29538 0.9994283 1.1349807E-03
 18.34550 0.9994827 1.0348078E-03
 18.39562 0.9995322 9.4272173E-04
 18.44575 0.9995773 8.5814350E-04
 18.49587 0.9996185 7.8052859E-04
 18.54600 0.9996558 7.0936605E-04
 18.59612 0.9996897 6.4417557E-04
 18.64625 0.9997205 5.8450864E-04
 18.69637 0.9997484 5.2994426E-04
 18.74649 0.9997737 4.8008907E-04
 18.79662 0.9997966 4.3457648E-04
 18.84674 0.9998173 3.9306382E-04
 18.89687 0.9998361 3.5523242E-04
 18.94699 0.9998530 3.2078530E-04
 18.99712 0.9998683 2.8944699E-04
 19.04724 0.9998821 2.6096142E-04
 19.09736 0.9998946 2.3509095E-04
 19.14749 0.9999057 2.1161587E-04
 19.19761 0.9999158 1.9033253E-04
 19.24774 0.9999249 1.7105286E-04
 19.29786 0.9999330 1.5360324E-04
 19.34798 0.9999403 1.3782339E-04
 19.39811 0.9999469 1.2356570E-04
 19.44823 0.9999527 1.1069410E-04
 19.49836 0.9999580 9.9084275E-05
 19.54848 0.9999627 8.8621171E-05
 19.59861 0.9999669 7.9199563E-05
 19.64873 0.9999707 7.0723050E-05
 19.69886 0.9999740 6.3103180E-05
 19.74898 0.9999770 5.6259320E-05
 19.79910 0.9999797 5.0117545E-05
 19.84923 0.9999821 4.4610591E-05
 19.89935 0.9999841 3.9676990E-05
 19.94948 0.9999860 3.5260786E-05
 19.99960 0.9999877 3.1311087E-05
 20.04973 0.9999892 2.7781543E-05
 20.09985 0.9999905 2.4630108E-05
 20.14997 0.9999917 2.1818796E-05
 20.20010 0.9999927 1.9312823E-05
 20.25022 0.9999936 1.7081094E-05
 20.30035 0.9999944 1.5095089E-05
 20.35047 0.9999952 1.3329412E-05
 20.40060 0.9999958 1.1760776E-05
 20.45072 0.9999963 1.0368511E-05
 20.50084 0.9999968 9.1336924E-06
 20.55097 0.9999972 8.0395494E-06
 20.60109 0.9999976 7.0707770E-06
 20.65122 0.9999979 6.2138033E-06
 20.70134 0.9999982 5.4562965E-06
 20.75146 0.9999985 4.7873350E-06
 20.80159 0.9999986 4.1970025E-06
 20.85172 0.9999989 3.6765466E-06
 20.90184 0.9999990 3.2180365E-06
 20.95196 0.9999992 2.8144711E-06
 21.00209 0.9999993 2.4595331E-06
 21.05221 0.9999995 2.1476503E-06
 21.10234 0.9999995 1.8738053E-06
 21.15246 0.9999996 1.6335813E-06
 21.20259 0.9999996 1.4230058E-06
 21.25271 0.9999997 1.2385923E-06
 21.30283 0.9999998 1.0772072E-06
 21.35296 0.9999999 9.3610191E-07
 21.40308 0.9999999 8.1283429E-07
 21.45321 1.000000 7.0523009E-07
 21.50333 1.000000 6.1138542E-07
 21.55346 1.000000 5.2960121E-07
 21.60358 1.000000 4.5839371E-07
 21.65371 1.000000 3.9644004E-07
 21.70383 1.000000 3.4258807E-07
 21.75395 1.000000 2.9581221E-07
 21.80408 1.000000 2.5522067E-07
 21.85420 1.000000 2.2002152E-07
 21.90433 1.000000 1.8952649E-07
 21.95445 1.000000 1.6312640E-07
 22.00457 1.000000 1.4029247E-07
 22.05470 1.000000 1.2055736E-07
 22.10482 1.000000 1.0351634E-07
 22.15495 1.000000 8.8812421E-08
 22.20507 1.000000 7.6136665E-08
 22.25520 1.000000 6.5217428E-08
 22.30532 1.000000 5.5819878E-08
 22.35544 1.000000 4.7737938E-08
 22.40557 1.000000 4.0793811E-08
 22.45569 1.000000 3.4831654E-08
 22.50582 1.000000 2.9717357E-08
 22.55594 1.000000 2.5333488E-08
 22.60607 1.000000 2.1579050E-08
 22.65619 1.000000 1.8366480E-08
 22.70632 1.000000 1.5619570E-08
 22.75644 1.000000 1.3272957E-08
 22.80656 1.000000 1.1269770E-08
 22.85669 1.000000 9.5613375E-09
 22.90681 1.000000 8.1053511E-09
 22.95694 1.000000 6.8656312E-09
 23.00706 1.000000 5.8108371E-09
 23.05718 1.000000 4.9142037E-09
 23.10731 1.000000 4.1525565E-09
 23.15743 1.000000 3.5061869E-09
 23.20756 1.000000 2.9580347E-09
 23.25768 1.000000 2.4936055E-09
 23.30781 1.000000 2.1003952E-09
 23.35793 1.000000 1.7677895E-09
 23.40806 1.000000 1.4866502E-09
 23.45818 1.000000 1.2492325E-09
 23.50830 1.000000 1.0488839E-09
 23.55843 1.000000 8.7996810E-10
 23.60855 1.000000 7.3765966E-10
 23.65868 1.000000 6.1787497E-10
 23.70880 1.000000 5.1712401E-10
 23.75892 1.000000 4.3245835E-10
 23.80905 1.000000 3.6136280E-10
 23.85917 1.000000 3.0171346E-10
 23.90930 1.000000 2.5171148E-10
 23.95942 1.000000 2.0982598E-10
 24.00955 1.000000 1.7477231E-10
 24.05967 1.000000 1.4545676E-10
 24.10979 1.000000 1.2096291E-10
 24.15992 1.000000 1.0051214E-10
 24.21004 1.000000 8.3452981E-11
 24.26017 1.000000 6.9233133E-11
 24.31029 1.000000 5.7390811E-11
 24.36042 1.000000 4.7535659E-11
 24.41054 1.000000 3.9341679E-11
 24.46067 1.000000 3.2533819E-11
 24.51079 1.000000 2.6882734E-11
 24.56091 1.000000 2.2195322E-11
 24.61104 1.000000 1.8310697E-11
 24.66116 1.000000 1.5093746E-11
 24.71129 1.000000 1.2432151E-11
 24.76141 1.000000 1.0231599E-11
 24.81153 1.000000 8.4139085E-12
 24.86166 1.000000 6.9135453E-12
 24.91178 1.000000 5.6762312E-12
 24.96191 1.000000 4.6565828E-12
 25.01203 1.000000 3.8170829E-12
 25.06216 1.000000 3.1264010E-12

XFOILinterface/XFOIL/orrs/osm_ns.1200

 256 12.34920
 0.0000000E+00 1.9190617E-02 3.8573142E-02 5.8149487E-02 7.7921599E-02
 9.7891428E-02 0.1180610 0.1384322 0.1590071 0.1797878
 0.2007763 0.2219747 0.2433850 0.2650095 0.2868502
 0.3089093 0.3311891 0.3536916 0.3764191 0.3993739
 0.4225582 0.4459745 0.4696248 0.4935117 0.5176374
 0.5420044 0.5666151 0.5914719 0.6165772 0.6419336
 0.6675436 0.6934097 0.7195344 0.7459204 0.7725701
 0.7994864 0.8266720 0.8541293 0.8818612 0.9098704
 0.9381596 0.9667320 0.9955899 1.024736 1.054174
 1.083907 1.113936 1.144266 1.174900 1.205839
 1.237088 1.268650 1.300527 1.332723 1.365241
 1.398084 1.431255 1.464758 1.498597 1.532773
 1.567291 1.602155 1.637367 1.672931 1.708851
 1.745130 1.781772 1.818780 1.856159 1.893911
 1.932041 1.970552 2.009448 2.048733 2.088411
 2.128485 2.168961 2.209841 2.251130 2.292832
 2.334951 2.377491 2.420456 2.463851 2.507680
 2.551948 2.596658 2.641815 2.687424 2.733489
 2.780015 2.827005 2.874466 2.922401 2.970816
 3.019715 3.069102 3.118984 3.169364 3.220249
 3.271641 3.323548 3.375974 3.428925 3.482404
 3.536419 3.590974 3.646074 3.701726 3.757933
 3.814703 3.872041 3.929952 3.988442 4.047517
 4.107183 4.167445 4.228310 4.289784 4.351872
 4.414582 4.477918 4.541888 4.606497 4.671752
 4.737661 4.804228 4.871461 4.939366 5.007950
 5.077220 5.147183 5.217845 5.289215 5.361298
 5.434101 5.507633 5.581899 5.656909 5.732668
 5.809186 5.886468 5.964523 6.043359 6.122983
 6.203404 6.284628 6.366665 6.449522 6.533207
 6.617731 6.703098 6.789319 6.876403 6.964357
 7.053191 7.142914 7.233534 7.325060 7.417500
 7.510866 7.605165 7.700407 7.796602 7.893758
 7.991887 8.090996 8.191096 8.292198 8.394310
 8.497444 8.601609 8.706816 8.813075 8.920396
 9.028790 9.138268 9.248841 9.360521 9.473316
 9.587239 9.702304 9.818518 9.935892 10.05444
 10.17418 10.29511 10.41725 10.54061 10.66521
 10.79105 10.91815 11.04653 11.17618 11.30713
 11.43939 11.57298 11.70790 11.84417 11.98180
 12.12081 12.26121 12.40301 12.54624 12.69089
 12.83699 12.98455 13.13358 13.28411 13.43614
 13.58969 13.74478 13.90142 14.05962 14.21941
 14.38079 14.54379 14.70842 14.87470 15.04263
 15.21225 15.38356 15.55659 15.73135 15.90785
 16.08612 16.26617 16.44802 16.63169 16.81720
 17.00456 17.19380 17.38493 17.57796 17.77294
 17.96985 18.16875 18.36962 18.57251 18.77742
 18.98439 19.19342 19.40455 19.61778 19.83315
 20.05067 20.27037 20.49226 20.71638 20.94273
 21.17135 21.40225 21.63547 21.87101 22.10891
 22.34919
 0.0000000E+00 -2.0421857E-04 -4.0947559E-04 -6.1576121E-04 -8.2306523E-04
 -1.0313767E-03 -1.2406843E-03 -1.4509759E-03 -1.6622392E-03 -1.8744611E-03
 -2.0876278E-03 -2.3017251E-03 -2.5167377E-03 -2.7326501E-03 -2.9494467E-03
 -3.1671100E-03 -3.3856221E-03 -3.6049648E-03 -3.8251195E-03 -4.0460657E-03
 -4.2677829E-03 -4.4902503E-03 -4.7134450E-03 -4.9373442E-03 -5.1619238E-03
 -5.3871595E-03 -5.6130248E-03 -5.8394941E-03 -6.0665393E-03 -6.2941322E-03
 -6.5222434E-03 -6.7508421E-03 -6.9798976E-03 -7.2093764E-03 -7.4392459E-03
 -7.6694707E-03 -7.9000155E-03 -8.1308428E-03 -8.3619151E-03 -8.5931933E-03
 -8.8246372E-03 -9.0562031E-03 -9.2878500E-03 -9.5195333E-03 -9.7512072E-03
 -9.9828243E-03 -1.0214337E-02 -1.0445694E-02 -1.0676846E-02 -1.0907738E-02
 -1.1138318E-02 -1.1368530E-02 -1.1598317E-02 -1.1827619E-02 -1.2056375E-02
 -1.2284525E-02 -1.2512005E-02 -1.2738747E-02 -1.2964685E-02 -1.3189751E-02
 -1.3413873E-02 -1.3636978E-02 -1.3858993E-02 -1.4079840E-02 -1.4299440E-02
 -1.4517714E-02 -1.4734579E-02 -1.4949949E-02 -1.5163739E-02 -1.5375859E-02
 -1.5586217E-02 -1.5794722E-02 -1.6001275E-02 -1.6205780E-02 -1.6408138E-02
 -1.6608242E-02 -1.6805990E-02 -1.7001271E-02 -1.7193979E-02 -1.7383995E-02
 -1.7571207E-02 -1.7755494E-02 -1.7936734E-02 -1.8114805E-02 -1.8289579E-02
 -1.8460922E-02 -1.8628703E-02 -1.8792784E-02 -1.8953023E-02 -1.9109277E-02
 -1.9261399E-02 -1.9409237E-02 -1.9552633E-02 -1.9691436E-02 -1.9825472E-02
 -1.9954581E-02 -2.0078588E-02 -2.0197315E-02 -2.0310588E-02 -2.0418212E-02
 -2.0519996E-02 -2.0615749E-02 -2.0705262E-02 -2.0788329E-02 -2.0864733E-02
 -2.0934252E-02 -2.0996656E-02 -2.1051710E-02 -2.1099171E-02 -2.1138782E-02
 -2.1170281E-02 -2.1193398E-02 -2.1207850E-02 -2.1213343E-02 -2.1209577E-02
 -2.1196229E-02 -2.1172974E-02 -2.1139463E-02 -2.1095337E-02 -2.1040218E-02
 -2.0973712E-02 -2.0895403E-02 -2.0804856E-02 -2.0701610E-02 -2.0585181E-02
 -2.0455059E-02 -2.0310700E-02 -2.0151531E-02 -1.9976942E-02 -1.9786285E-02
 -1.9578870E-02 -1.9353952E-02 -1.9110747E-02 -1.8848402E-02 -1.8566009E-02
 -1.8262584E-02 -1.7937066E-02 -1.7588308E-02 -1.7215066E-02 -1.6815986E-02
 -1.6389593E-02 -1.5934277E-02 -1.5448269E-02 -1.4929627E-02 -1.4376216E-02
 -1.3785669E-02 -1.3155365E-02 -1.2482392E-02 -1.1763490E-02 -1.0995018E-02
 -1.0172877E-02 -9.2924414E-03 -8.3484650E-03 -7.3349760E-03 -6.2451391E-03
 -5.0710957E-03 -3.8037554E-03 -2.4325438E-03 -9.4508089E-04 6.7322154E-04
 2.4364945E-03 4.3574465E-03 6.4496142E-03 8.7276753E-03 1.1207527E-02
 1.3906363E-02 1.6842758E-02 2.0036740E-02 2.3509860E-02 2.7285278E-02
 3.1387802E-02 3.5843957E-02 4.0682014E-02 4.5932014E-02 5.1625751E-02
 5.7796765E-02 6.4480260E-02 7.1713030E-02 7.9533271E-02 8.7980472E-02
 9.7095020E-02 0.1069181 0.1174910 0.1288550 0.1410507
 0.1541171 0.1680915 0.1830081 0.1988975 0.2157857
 0.2336926 0.2526319 0.2726090 0.2936205 0.3156528
 0.3386810 0.3626684 0.3875650 0.4133073 0.4398176
 0.4670039 0.4947600 0.5229661 0.5514895 0.5801857
 0.6089004 0.6374713 0.6657311 0.6935099 0.7206381
 0.7469509 0.7722906 0.7965112 0.8194810 0.8410864
 0.8612341 0.8798543 0.8969012 0.9123548 0.9262202
 0.9385276 0.9493298 0.9587001 0.9667296 0.9735228
 0.9791945 0.9838649 0.9876563 0.9906889 0.9930778
 0.9949300 0.9963432 0.9974036 0.9981857 0.9987528
 0.9991567 0.9994393 0.9996335 0.9997644 0.9998513
 0.9999078 0.9999438 0.9999664 0.9999802 0.9999886
 0.9999936 0.9999964 0.9999980 0.9999988 0.9999993
 0.9999996 0.9999998 0.9999999 0.9999999 0.9999999
 1.000000
 -1.0667348E-02 -1.0615820E-02 -1.0563778E-02 -1.0511213E-02 -1.0458120E-02
 -1.0404496E-02 -1.0350332E-02 -1.0295624E-02 -1.0240364E-02 -1.0184549E-02
 -1.0128170E-02 -1.0071222E-02 -1.0013700E-02 -9.9555962E-03 -9.8969042E-03
 -9.8376200E-03 -9.7777350E-03 -9.7172409E-03 -9.6561359E-03 -9.5944107E-03
 -9.5320595E-03 -9.4690751E-03 -9.4054518E-03 -9.3411822E-03 -9.2762616E-03
 -9.2106797E-03 -9.1444310E-03 -9.0775099E-03 -9.0099080E-03 -8.9416197E-03
 -8.8726394E-03 -8.8029569E-03 -8.7325666E-03 -8.6614629E-03 -8.5896384E-03
 -8.5170837E-03 -8.4437933E-03 -8.3697634E-03 -8.2949819E-03 -8.2194461E-03
 -8.1431456E-03 -8.0660759E-03 -7.9882294E-03 -7.9095978E-03 -7.8301756E-03
 -7.7499566E-03 -7.6689320E-03 -7.5870967E-03 -7.5044432E-03 -7.4209622E-03
 -7.3366524E-03 -7.2515034E-03 -7.1655088E-03 -7.0786639E-03 -6.9909589E-03
 -6.9023906E-03 -6.8129511E-03 -6.7226323E-03 -6.6314307E-03 -6.5393387E-03
 -6.4463494E-03 -6.3524572E-03 -6.2576560E-03 -6.1619394E-03 -6.0653016E-03
 -5.9677348E-03 -5.8692349E-03 -5.7697953E-03 -5.6694099E-03 -5.5680717E-03
 -5.4657753E-03 -5.3625149E-03 -5.2582836E-03 -5.1530753E-03 -5.0468841E-03
 -4.9397033E-03 -4.8315264E-03 -4.7223461E-03 -4.6121562E-03 -4.5009493E-03
 -4.3887184E-03 -4.2754542E-03 -4.1611511E-03 -4.0457989E-03 -3.9293892E-03
 -3.8119126E-03 -3.6933597E-03 -3.5737192E-03 -3.4529809E-03 -3.3311313E-03
 -3.2081583E-03 -3.0840482E-03 -2.9587855E-03 -2.8323545E-03 -2.7047377E-03
 -2.5759153E-03 -2.4458678E-03 -2.3145722E-03 -2.1820045E-03 -2.0481383E-03
 -1.9129445E-03 -1.7763920E-03 -1.6384467E-03 -1.4990716E-03 -1.3582258E-03
 -1.2158653E-03 -1.0719415E-03 -9.2640199E-04 -7.7918917E-04 -6.3024060E-04
 -4.7948761E-04 -3.2685549E-04 -1.7226275E-04 -1.5620273E-05 1.4316919E-04
 3.0421198E-04 4.6762399E-04 6.3353224E-04 8.0207537E-04 9.7340503E-04
 1.1476870E-03 1.3251029E-03 1.5058517E-03 1.6901513E-03 1.8782399E-03
 2.0703804E-03 2.2668601E-03 2.4679953E-03 2.6741337E-03 2.8856588E-03
 3.1029927E-03 3.3266011E-03 3.5569996E-03 3.7947586E-03 4.0405095E-03
 4.2949542E-03 4.5588743E-03 4.8331385E-03 5.1187179E-03 5.4167011E-03
 5.7283058E-03 6.0549029E-03 6.3980380E-03 6.7594596E-03 7.1411491E-03
 7.5453576E-03 7.9746600E-03 8.4320009E-03 8.9207711E-03 9.4448775E-03
 1.0008865E-02 1.0618017E-02 1.1278525E-02 1.1997682E-02 1.2784126E-02
 1.3648148E-02 1.4602097E-02 1.5660908E-02 1.6842753E-02 1.8169863E-02
 1.9601526E-02 2.1140113E-02 2.2793522E-02 2.4570074E-02 2.6478503E-02
 2.8527908E-02 3.0727742E-02 3.3087749E-02 3.5617899E-02 3.8328309E-02
 4.1229147E-02 4.4330455E-02 4.7642060E-02 5.1173355E-02 5.4933071E-02
 5.8929078E-02 6.3168034E-02 6.7655124E-02 7.2393678E-02 7.7384785E-02
 8.2626849E-02 8.8115215E-02 9.3841575E-02 9.9793613E-02 0.1059544
 0.1123020 0.1188091 0.1254422 0.1321620 0.1389224
 0.1456709 0.1523484 0.1588895 0.1652224 0.1712704
 0.1769520 0.1821823 0.1868741 0.1909399 0.1942936
 0.1968522 0.1985386 0.1992840 0.1990296 0.1977298
 0.1953544 0.1918903 0.1873444 0.1817428 0.1751344
 0.1675873 0.1591935 0.1500614 0.1403193 0.1301077
 0.1195789 0.1088911 9.8204620E-02 8.7675519E-02 7.7451535E-02
 6.7668214E-02 5.8441918E-02 4.9869489E-02 4.2023428E-02 3.4952134E-02
 2.8678246E-02 2.3200730E-02 1.8496942E-02 1.4525165E-02 1.1229402E-02
 8.5428106E-03 6.3926885E-03 4.7030770E-03 3.4007696E-03 2.4160799E-03
 1.6861876E-03 1.1557145E-03 7.7777263E-04 5.1384309E-04 3.3336726E-04
 2.1231230E-04 1.3227602E-04 8.1380254E-05 4.8789061E-05 2.8825552E-05
 1.6807802E-05 9.2664604E-06 4.7247704E-06 2.7290787E-06 1.5080230E-06
 1.0182335E-06 4.6032034E-07 7.7449151E-08 2.8991772E-07 2.5093894E-07
 3.9503232E-07
 71 81
 0.4999981 0.5499982 0.5999982 0.6499983 0.6999984
 0.7499985 0.7999985 0.8499986 0.8999987 0.9499987
 0.9999988 1.049999 1.099999 1.149999 1.199999
 1.249999 1.299999 1.349999 1.399999 1.449999
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000001 -0.8499999 -0.8000000
 -0.7500000 -0.7000000 -0.6500001 -0.5999999 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -9.9999905E-02 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1500001 0.2000000
 0.2500000 0.3000000 0.3499999 0.3999999 0.4499998
 0.4999998 0.5499997 0.5999997 0.6499996 0.6999996
 0.7499995 0.7999995 0.8499994 0.8999994 0.9499993
 0.9999993
 3.2173142E-02 3.0903174E-02 2.9613333E-02 2.8317060E-02 2.7025841E-02
 2.5749346E-02 2.4495555E-02 2.3270963E-02 2.2080701E-02 2.0928705E-02
 1.9817863E-02 1.8750140E-02 1.7726706E-02 1.6748033E-02 1.5814032E-02
 1.4924153E-02 1.4077486E-02 1.3272827E-02 1.2508797E-02 1.1783881E-02
 1.1096517E-02 1.0445098E-02 9.8280534E-03 9.2438133E-03 8.6908769E-03
 8.1677921E-03 7.6731504E-03 7.2056218E-03 6.7639118E-03 6.3467850E-03
 5.9530623E-03 5.5816160E-03 5.2313325E-03 4.9011796E-03 4.5901486E-03
 4.2972690E-03 4.0216050E-03 3.7622706E-03 3.5184114E-03 3.2892004E-03
 3.0738504E-03 2.8716084E-03 2.6817506E-03 2.5035955E-03 2.3364804E-03
 2.1797821E-03 2.0329014E-03 1.8952725E-03 1.7663506E-03 1.6456289E-03
 1.5326231E-03 1.4268620E-03 1.3279201E-03 1.2353791E-03 1.1488496E-03
 1.0679632E-03 9.9237217E-04 9.2174893E-04 8.5578149E-04 7.9418108E-04
 7.3667115E-04 6.8299600E-04 6.3291332E-04 5.8619102E-04 5.4262107E-04
 5.0199626E-04 4.6413162E-04 4.2884980E-04 3.9598625E-04 3.6538247E-04
 3.3689471E-04
 1.0766152E-02 8.8167256E-03 7.0393565E-03 5.4259989E-03 3.9679399E-03
 2.6561196E-03 1.4813896E-03 4.3469729E-04 -4.9278460E-04 -1.3095763E-03
 -2.0238401E-03 -2.6433638E-03 -3.1755408E-03 -3.6274197E-03 -4.0056831E-03
 -4.3166983E-03 -4.5665223E-03 -4.7609238E-03 -4.9053640E-03 -5.0050407E-03
 -5.0648376E-03 -5.0893580E-03 -5.0828876E-03 -5.0494219E-03 -4.9926313E-03
 -4.9159005E-03 -4.8223054E-03 -4.7146413E-03 -4.5954306E-03 -4.4669323E-03
 -4.3311692E-03 -4.1899285E-03 -4.0447977E-03 -3.8971712E-03 -3.7482572E-03
 -3.5991147E-03 -3.4506542E-03 -3.3036522E-03 -3.1587693E-03 -3.0165610E-03
 -2.8774885E-03 -2.7419312E-03 -2.6101836E-03 -2.4824871E-03 -2.3590194E-03
 -2.2399039E-03 -2.1252278E-03 -2.0150344E-03 -1.9093327E-03 -1.8081068E-03
 -1.7113121E-03 -1.6188944E-03 -1.5307649E-03 -1.4468293E-03 -1.3669902E-03
 -1.2911250E-03 -1.2191155E-03 -1.1508309E-03 -1.0861462E-03 -1.0249192E-03
 -9.6701796E-04 -9.1231073E-04 -8.6065644E-04 -8.1192510E-04 -7.6598191E-04
 -7.2270259E-04 -6.8195054E-04 -6.4361165E-04 -6.0756109E-04 -5.7368289E-04
 -5.4186664E-04
 3.2274216E-02 3.1002678E-02 2.9711289E-02 2.8413497E-02 2.7120806E-02
 2.5842855E-02 2.4587618E-02 2.3361567E-02 2.2169797E-02 2.1016231E-02
 1.9903716E-02 1.8834198E-02 1.7808815E-02 1.6828038E-02 1.5891774E-02
 1.4999475E-02 1.4150236E-02 1.3342879E-02 1.2576055E-02 1.1848275E-02
 1.1158007E-02 1.0503676E-02 9.8837251E-03 9.2966231E-03 8.7408908E-03
 8.2150772E-03 7.7177975E-03 7.2477260E-03 6.8035759E-03 6.3841180E-03
 5.9881750E-03 5.6146011E-03 5.2623055E-03 4.9302406E-03 4.6174042E-03
 4.3228064E-03 4.0455312E-03 3.7846677E-03 3.5393636E-03 3.3087882E-03
 3.0921551E-03 2.8887026E-03 2.6977081E-03 2.5184751E-03 2.3503501E-03
 2.1926982E-03 2.0449215E-03 1.9064525E-03 1.7767409E-03 1.6552778E-03
 1.5415710E-03 1.4351619E-03 1.3356074E-03 1.2424915E-03 1.1554302E-03
 1.0740472E-03 9.9799375E-04 9.2693814E-04 8.6057151E-04 7.9860265E-04
 7.4075395E-04 6.8676716E-04 6.3639943E-04 5.8942183E-04 5.4561603E-04
 5.0478720E-04 4.6674002E-04 4.3129723E-04 3.9829468E-04 3.6757730E-04
 3.3899699E-04
 1.0693257E-02 8.7441253E-03 6.9674337E-03 5.3551160E-03 3.8984334E-03
 2.5883096E-03 1.4155754E-03 3.7115504E-04 -5.5380724E-04 -1.3678661E-03
 -2.0792175E-03 -2.6956878E-03 -3.2247275E-03 -3.6734173E-03 -4.0485058E-03
 -4.3563941E-03 -4.6031908E-03 -4.7946982E-03 -4.9364092E-03 -5.0335363E-03
 -5.0909836E-03 -5.1133553E-03 -5.1049418E-03 -5.0697224E-03 -5.0113662E-03
 -4.9332427E-03 -4.8384150E-03 -4.7296635E-03 -4.6094949E-03 -4.4801566E-03
 -4.3436573E-03 -4.2017805E-03 -4.0560942E-03 -3.9079832E-03 -3.7586489E-03
 -3.6091465E-03 -3.4603761E-03 -3.3131083E-03 -3.1679997E-03 -3.0256000E-03
 -2.8863656E-03 -2.7506726E-03 -2.6188171E-03 -2.4910318E-03 -2.3674960E-03
 -2.2483277E-03 -2.1336179E-03 -2.0233982E-03 -1.9176876E-03 -1.8164605E-03
 -1.7196804E-03 -1.6272777E-03 -1.5391735E-03 -1.4552772E-03 -1.3754768E-03
 -1.2996607E-03 -1.2277035E-03 -1.1594780E-03 -1.0948554E-03 -1.0336946E-03
 -9.7586884E-04 -9.2123204E-04 -8.6965400E-04 -8.2099938E-04 -7.7513553E-04
 -7.3193392E-04 -6.9126562E-04 -6.5300555E-04 -6.1703357E-04 -5.8323343E-04
 -5.5148872E-04
 3.2387991E-02 3.1114656E-02 2.9821500E-02 2.8521977E-02 2.7227579E-02
 2.5947938E-02 2.4691025E-02 2.3463260E-02 2.2269731E-02 2.1114320E-02
 1.9999847E-02 1.8928226E-02 1.7900584E-02 1.6917374E-02 1.5978504E-02
 1.5083431E-02 1.4231259E-02 1.3420855E-02 1.2650878E-02 1.1919876E-02
 1.1226352E-02 1.0568761E-02 9.9455798E-03 9.3552917E-03 8.7964376E-03
 8.2676001E-03 7.7673956E-03 7.2944988E-03 6.8476447E-03 6.4256005E-03
 6.0271868E-03 5.6512668E-03 5.2967439E-03 4.9625635E-03 4.6477169E-03
 4.3512252E-03 4.0721567E-03 3.8095985E-03 3.5626926E-03 3.3306123E-03
 3.1125539E-03 2.9077609E-03 2.7155036E-03 2.5350843E-03 2.3658385E-03
 2.2071360E-03 2.0583691E-03 1.9189706E-03 1.7883866E-03 1.6661013E-03
 1.5516311E-03 1.4445032E-03 1.3442775E-03 1.2505389E-03 1.1628950E-03
 1.0809661E-03 1.0044074E-03 9.3288592E-04 8.6609315E-04 8.0372620E-04
 7.4551592E-04 6.9120020E-04 6.4053026E-04 5.9328607E-04 5.4924114E-04
 5.0819869E-04 4.6996819E-04 4.3436734E-04 4.0123388E-04 3.7040759E-04
 3.4174087E-04
 1.0611842E-02 8.6630946E-03 6.8872082E-03 5.2760961E-03 3.8210028E-03
 2.5128247E-03 1.3423666E-03 3.0052420E-04 -6.2159495E-04 -1.4325735E-03
 -2.1406647E-03 -2.7537320E-03 -3.2792762E-03 -3.7244388E-03 -4.0960130E-03
 -4.4004614E-03 -4.6439376E-03 -4.8322659E-03 -4.9709901E-03 -5.0653340E-03
 -5.1202145E-03 -5.1402398E-03 -5.1296991E-03 -5.0925696E-03 -5.0325021E-03
 -4.9528526E-03 -4.8566735E-03 -4.7467314E-03 -4.6255114E-03 -4.4952547E-03
 -4.3579498E-03 -4.2153662E-03 -4.0690633E-03 -3.9204196E-03 -3.7706280E-03
 -3.6207251E-03 -3.4716111E-03 -3.3240474E-03 -3.1786885E-03 -3.0360767E-03
 -2.8966670E-03 -2.7608245E-03 -2.6288473E-03 -2.5009620E-03 -2.3773480E-03
 -2.2581264E-03 -2.1433749E-03 -2.0331324E-03 -1.9274090E-03 -1.8261852E-03
 -1.7294167E-03 -1.6370349E-03 -1.5489670E-03 -1.4651072E-03 -1.3853541E-03
 -1.3095909E-03 -1.2376970E-03 -1.1695371E-03 -1.1049791E-03 -1.0438948E-03
 -9.8614348E-04 -9.3158422E-04 -8.8008941E-04 -8.3151541E-04 -7.8573596E-04
 -7.4261380E-04 -7.0202764E-04 -6.6384731E-04 -6.2795309E-04 -5.9422554E-04
 -5.6255044E-04
 3.2516088E-02 3.1240713E-02 2.9945534E-02 2.8644014E-02 2.7347645E-02
 2.6066052E-02 2.4807168E-02 2.3577398E-02 2.2381803E-02 2.1224217E-02
 2.0107444E-02 1.9033371E-02 1.8003091E-02 1.7017068E-02 1.6075192E-02
 1.5176940E-02 1.4321440E-02 1.3507572E-02 1.2734037E-02 1.1999418E-02
 1.1302249E-02 1.0641016E-02 1.0014225E-02 9.4203986E-03 8.8580875E-03
 8.3258850E-03 7.8224353E-03 7.3464136E-03 6.8965619E-03 6.4716516E-03
 6.0705054E-03 5.6919875E-03 5.3349915E-03 4.9984702E-03 4.6814079E-03
 4.3828161E-03 4.1017593E-03 3.8373284E-03 3.5886541E-03 3.3549068E-03
 3.1352709E-03 2.9289962E-03 2.7353424E-03 2.5536108E-03 2.3831294E-03
 2.2232647E-03 2.0734093E-03 1.9329825E-03 1.8014418E-03 1.6782606E-03
 1.5629431E-03 1.4550323E-03 1.3540729E-03 1.2596495E-03 1.1713653E-03
 1.0888495E-03 1.0117481E-03 9.3972433E-04 8.7247067E-04 8.0968160E-04
 7.5108471E-04 6.9642393E-04 6.4544368E-04 5.9792015E-04 5.5363303E-04
 5.1237759E-04 4.7396464E-04 4.3821358E-04 4.0495628E-04 3.7403661E-04
 3.4530082E-04
 1.0520983E-02 8.5727135E-03 6.7977863E-03 5.1880819E-03 3.7348259E-03
 2.4288772E-03 1.2610139E-03 2.2209490E-04 -6.9681212E-04 -1.5043356E-03
 -2.2087698E-03 -2.8180424E-03 -3.3397060E-03 -3.7809690E-03 -4.1486719E-03
 -4.4493400E-03 -4.6891705E-03 -4.8740297E-03 -5.0094877E-03 -5.1007965E-03
 -5.1528816E-03 -5.1703542E-03 -5.1574968E-03 -5.1182816E-03 -5.0563477E-03
 -4.9750386E-03 -4.8773824E-03 -4.7661369E-03 -4.6437699E-03 -4.5125019E-03
 -4.3743132E-03 -4.2309551E-03 -4.0839813E-03 -3.9347494E-03 -3.7844467E-03
 -3.6341045E-03 -3.4846105E-03 -3.3367216E-03 -3.1910867E-03 -3.0482365E-03
 -2.9086322E-03 -2.7726239E-03 -2.6405149E-03 -2.5125202E-03 -2.3888252E-03
 -2.2695391E-03 -2.1547417E-03 -2.0444735E-03 -1.9387378E-03 -1.8375157E-03
 -1.7407646E-03 -1.6484075E-03 -1.5603711E-03 -1.4765575E-03 -1.3968605E-03
 -1.3211574E-03 -1.2493262E-03 -1.1812350E-03 -1.1167544E-03 -1.0557498E-03
 -9.9807512E-04 -9.4360323E-04 -8.9219073E-04 -8.4370043E-04 -7.9800555E-04
 -7.5496192E-04 -7.1445323E-04 -6.7634275E-04 -6.4051535E-04 -6.0684886E-04
 -5.7522580E-04
 3.2660358E-02 3.1382658E-02 3.0085154E-02 2.8781332E-02 2.7482681E-02
 2.6198799E-02 2.4937611E-02 2.3705488E-02 2.2507450E-02 2.1347307E-02
 2.0227833E-02 1.9150876E-02 1.8117530E-02 1.7128246E-02 1.6182909E-02
 1.5281018E-02 1.4421721E-02 1.3603930E-02 1.2826383E-02 1.2087703E-02
 1.1386449E-02 1.0721152E-02 1.0090351E-02 9.4925817E-03 8.9264307E-03
 8.3905011E-03 7.8834491E-03 7.4039754E-03 6.9508054E-03 6.5227253E-03
 6.1185551E-03 5.7371594E-03 5.3774337E-03 5.0383280E-03 4.7188071E-03
 4.4178981E-03 4.1346485E-03 3.8681445E-03 3.6175172E-03 3.3819214E-03
 3.1605519E-03 2.9526399E-03 2.7574466E-03 2.5742631E-03 2.4024209E-03
 2.2412781E-03 2.0902227E-03 1.9486736E-03 1.8160731E-03 1.6919066E-03
 1.5756752E-03 1.4669024E-03 1.3651431E-03 1.2699800E-03 1.1810083E-03
 1.0978578E-03 1.0201689E-03 9.4760663E-04 8.7986153E-04 8.1662706E-04
 7.5763132E-04 7.0260512E-04 6.5130589E-04 6.0349843E-04 5.5896683E-04
 5.1750231E-04 4.7891325E-04 4.4302375E-04 4.0965600E-04 3.7865565E-04
 3.4987062E-04
 1.0419655E-02 8.4719881E-03 6.6982014E-03 5.0901463E-03 3.6390091E-03
 2.3356215E-03 1.1707180E-03 1.3511242E-04 -7.8016613E-04 -1.5838060E-03
 -2.2841585E-03 -2.8892066E-03 -3.4065747E-03 -3.8435278E-03 -4.2069801E-03
 -4.5035002E-03 -4.7393446E-03 -4.9204212E-03 -5.0523276E-03 -5.1403339E-03
 -5.1893806E-03 -5.2040801E-03 -5.1887082E-03 -5.1472276E-03 -5.0832676E-03
 -5.0001480E-03 -4.9008867E-03 -4.7882157E-03 -4.6645948E-03 -4.5322268E-03
 -4.3930691E-03 -4.2488659E-03 -4.1011502E-03 -3.9512725E-03 -3.8004117E-03
 -3.6495838E-03 -3.4996709E-03 -3.3514251E-03 -3.2054817E-03 -3.0623763E-03
 -2.9225501E-03 -2.7863628E-03 -2.6541033E-03 -2.5259939E-03 -2.4022018E-03
 -2.2828453E-03 -2.1680021E-03 -2.0577032E-03 -1.9519577E-03 -1.8507388E-03
 -1.7539979E-03 -1.6616742E-03 -1.5736781E-03 -1.4899127E-03 -1.4102707E-03
 -1.3346305E-03 -1.2628675E-03 -1.1948545E-03 -1.1304512E-03 -1.0695235E-03
 -1.0119344E-03 -9.5754402E-04 -9.0621150E-04 -8.5780269E-04 -8.1218110E-04
 -7.6921028E-04 -7.2876376E-04 -6.9071451E-04 -6.5493322E-04 -6.2130200E-04
 -5.8970752E-04
 3.2822907E-02 3.1542528E-02 3.0242352E-02 2.8935866E-02 2.7634552E-02
 2.6347999E-02 2.5084097E-02 2.3849200E-02 2.2648282E-02 2.1485128E-02
 2.0362467E-02 1.9282134E-02 1.8245218E-02 1.7252136E-02 1.6302815E-02
 1.5396758E-02 1.4533138E-02 1.3710906E-02 1.2928838E-02 1.2185588E-02
 1.1479769E-02 1.0809943E-02 1.0174670E-02 9.5725274E-03 9.0021109E-03
 8.4620537E-03 7.9510221E-03 7.4677174E-03 7.0108850E-03 6.5793041E-03
 6.1718007E-03 5.7872226E-03 5.4244860E-03 5.0825160E-03 4.7602924E-03
 4.4568232E-03 4.1711493E-03 3.9023624E-03 3.6495768E-03 3.4119484E-03
 3.1886657E-03 2.9789505E-03 2.7820570E-03 2.5972815E-03 2.4239419E-03
 2.2613956E-03 2.1090202E-03 1.9662390E-03 1.8324881E-03 1.7072462E-03
 1.5900092E-03 1.4803023E-03 1.3776787E-03 1.2817103E-03 1.1919984E-03
 1.1081655E-03 1.0298515E-03 9.5672294E-04 8.8845583E-04 8.2475314E-04
 7.6533976E-04 7.0994307E-04 6.5831683E-04 6.1022636E-04 5.6545273E-04
 5.2378746E-04 4.8503649E-04 4.4901462E-04 4.1555541E-04 3.8449376E-04
 3.5567410E-04
 1.0306746E-02 8.3598401E-03 6.5874164E-03 4.9812910E-03 3.5326052E-03
 2.2321534E-03 1.0706214E-03 3.8774775E-05 -8.7241724E-04 -1.6717031E-03
 -2.3674984E-03 -2.9678573E-03 -3.4804740E-03 -3.9126826E-03 -4.2714681E-03
 -4.5634639E-03 -4.7949622E-03 -4.9719233E-03 -5.0999727E-03 -5.1844008E-03
 -5.2301548E-03 -5.2418485E-03 -5.2237567E-03 -5.1798224E-03 -5.1136613E-03
 -5.0285798E-03 -4.9275747E-03 -4.8133596E-03 -4.6883742E-03 -4.5547984E-03
 -4.4145845E-03 -4.2694579E-03 -4.1209310E-03 -3.9703497E-03 -3.8188740E-03
 -3.6675120E-03 -3.5171413E-03 -3.3684985E-03 -3.2222192E-03 -3.0788262E-03
 -2.9387588E-03 -2.8023717E-03 -2.6699500E-03 -2.5417102E-03 -2.4178175E-03
 -2.2983849E-03 -2.1834862E-03 -2.0731546E-03 -1.9673938E-03 -1.8661767E-03
 -1.7694532E-03 -1.6771617E-03 -1.5892028E-03 -1.5054879E-03 -1.4259062E-03
 -1.3503281E-03 -1.2786398E-03 -1.2106965E-03 -1.1463722E-03 -1.0855258E-03
 -1.0280142E-03 -9.7369554E-04 -9.2243549E-04 -8.7409187E-04 -8.2853163E-04
 -7.8561058E-04 -7.4520754E-04 -7.0718594E-04 -6.7142176E-04 -6.3779112E-04
 -6.0617918E-04
 3.3006098E-02 3.1722650E-02 3.0419383E-02 2.9109800E-02 2.7805375E-02
 2.6515681E-02 2.5248591E-02 2.4010403E-02 2.2806076E-02 2.1639355E-02
 2.0512946E-02 1.9428663E-02 1.8387567E-02 1.7390095E-02 1.6436186E-02
 1.5525350E-02 1.4656816E-02 1.3829553E-02 1.3042384E-02 1.2294016E-02
 1.1583091E-02 1.0908203E-02 1.0267965E-02 9.6609658E-03 9.0858266E-03
 8.5412050E-03 8.0257710E-03 7.5382362E-03 7.0773601E-03 6.6419109E-03
 6.2307203E-03 5.8426447E-03 5.4765823E-03 5.1314635E-03 4.8062531E-03
 4.4999593E-03 4.2116209E-03 3.9403155E-03 3.6851575E-03 3.4452935E-03
 3.2199011E-03 3.0082031E-03 2.8094510E-03 2.6229254E-03 2.4479425E-03
 2.2838542E-03 2.1300418E-03 1.9859129E-03 1.8509071E-03 1.7244921E-03
 1.6061643E-03 1.4954491E-03 1.3918882E-03 1.2950583E-03 1.2045539E-03
 1.1199934E-03 1.0410168E-03 9.6728688E-04 8.9847919E-04 8.3429454E-04
 7.7444804E-04 7.1867381E-04 6.6672068E-04 6.1835232E-04 5.7334237E-04
 5.3148670E-04 4.9258664E-04 4.5645618E-04 4.2291512E-04 3.9180645E-04
 3.6297334E-04
 1.0181061E-02 8.2351062E-03 6.4643091E-03 4.8604384E-03 3.4145941E-03
 2.1175111E-03 9.5982215E-04 -6.7770125E-05 -9.7436243E-04 -1.7687724E-03
 -2.4594932E-03 -3.0546586E-03 -3.5620355E-03 -3.9890385E-03 -4.3427204E-03
 -4.6297810E-03 -4.8565581E-03 -5.0290595E-03 -5.1529361E-03 -5.2334969E-03
 -5.2756970E-03 -5.2841497E-03 -5.2631176E-03 -5.2165319E-03 -5.1479968E-03
 -5.0607892E-03 -4.9578962E-03 -4.8420071E-03 -4.7155377E-03 -4.5806584E-03
 -4.4392934E-03 -4.2931554E-03 -4.1437442E-03 -3.9923890E-03 -3.8402404E-03
 -3.6882989E-03 -3.5374218E-03 -3.3883450E-03 -3.2416950E-03 -3.0979877E-03
 -2.9576556E-03 -2.8210480E-03 -2.6884445E-03 -2.5600591E-03 -2.4360539E-03
 -2.3165371E-03 -2.2015793E-03 -2.0912099E-03 -1.9854284E-03 -1.8842139E-03
 -1.7875066E-03 -1.6952381E-03 -1.6073243E-03 -1.5236577E-03 -1.4441286E-03
 -1.3686168E-03 -1.2969931E-03 -1.2291213E-03 -1.1648644E-03 -1.1040813E-03
 -1.0466333E-03 -9.9237845E-04 -9.4116916E-04 -8.9286588E-04 -8.4733457E-04
 -8.0443418E-04 -7.6403003E-04 -7.2599220E-04 -6.9019536E-04 -6.5651088E-04
 -6.2481908E-04
 3.3212643E-02 3.1925637E-02 3.0618787E-02 2.9305587E-02 2.7997512E-02
 2.6704123E-02 2.5433250E-02 2.4191171E-02 2.2982812E-02 2.1811871E-02
 2.0681033E-02 1.9592104E-02 1.8546145E-02 1.7543588E-02 1.6584385E-02
 1.5668096E-02 1.4793955E-02 1.3961008E-02 1.3168100E-02 1.2413986E-02
 1.1697353E-02 1.1016841E-02 1.0371079E-02 9.7586913E-03 9.1783293E-03
 8.6286552E-03 8.1083598E-03 7.6161581E-03 7.1508153E-03 6.7111086E-03
 6.2958654E-03 5.9039346E-03 5.5342070E-03 5.1856185E-03 4.8571215E-03
 4.5477245E-03 4.2564543E-03 3.9823810E-03 3.7246123E-03 3.4822889E-03
 3.2545852E-03 3.0407168E-03 2.8399192E-03 2.6514765E-03 2.4747006E-03
 2.3089338E-03 2.1535512E-03 2.0079564E-03 1.8715863E-03 1.7439020E-03
 1.6244008E-03 1.5125948E-03 1.4080328E-03 1.3102816E-03 1.2189322E-03
 1.1336061E-03 1.0539333E-03 9.7957265E-04 9.1020396E-04 8.4552087E-04
 7.8524032E-04 7.2908634E-04 6.7680958E-04 6.2816840E-04 5.8293471E-04
 5.4089830E-04 5.0186057E-04 4.6563032E-04 4.3202934E-04 4.0088949E-04
 3.7205193E-04
 1.0041302E-02 8.0965422E-03 6.3276859E-03 4.7264579E-03 3.2838993E-03
 1.9906790E-03 8.3736179E-04 -1.8541912E-04 -1.0868433E-03 -1.8758096E-03
 -2.5608926E-03 -3.1503160E-03 -3.6519370E-03 -4.0732427E-03 -4.4213631E-03
 -4.7030579E-03 -4.9247253E-03 -5.0924062E-03 -5.2117845E-03 -5.2881809E-03
 -5.3265556E-03 -5.3315172E-03 -5.3073224E-03 -5.2578854E-03 -5.1867883E-03
 -5.0972942E-03 -4.9923616E-03 -4.8746606E-03 -4.7465893E-03 -4.6102908E-03
 -4.4676787E-03 -4.3204413E-03 -4.1700704E-03 -4.0178746E-03 -3.8649924E-03
 -3.7124113E-03 -3.5609845E-03 -3.4114337E-03 -3.2643755E-03 -3.1203218E-03
 -2.9796993E-03 -2.8428468E-03 -2.7100455E-03 -2.5814965E-03 -2.4573638E-03
 -2.3377519E-03 -2.2227261E-03 -2.1123120E-03 -2.0065068E-03 -1.9052851E-03
 -1.8085871E-03 -1.7163433E-03 -1.6284616E-03 -1.5448366E-03 -1.4653594E-03
 -1.3899009E-03 -1.3183285E-03 -1.2505091E-03 -1.1863030E-03 -1.1255667E-03
 -1.0681546E-03 -1.0139256E-03 -9.6273067E-04 -9.1442832E-04 -8.6888106E-04
 -8.2594273E-04 -7.8548345E-04 -7.4736483E-04 -7.1146147E-04 -6.7764363E-04
 -6.4579590E-04
 3.3445574E-02 3.2154460E-02 3.0843420E-02 2.9525984E-02 2.8213615E-02
 2.6915854E-02 2.5640495E-02 2.4393799E-02 2.3180645E-02 2.2004716E-02
 2.0868666E-02 1.9774290E-02 1.8722655E-02 1.7714199E-02 1.6748914E-02
 1.5826374E-02 1.4945876E-02 1.4106495E-02 1.3307131E-02 1.2546581E-02
 1.1823580E-02 1.1136798E-02 1.0484901E-02 9.8665515E-03 9.2804115E-03
 8.7251579E-03 8.1994999E-03 7.7021620E-03 7.2319014E-03 6.7875017E-03
 6.3677970E-03 5.9716245E-03 5.5978736E-03 5.2454690E-03 4.9133678E-03
 4.6005622E-03 4.3060686E-03 4.0289592E-03 3.7683269E-03 3.5233106E-03
 3.2930777E-03 3.0768279E-03 2.8738000E-03 2.6832703E-03 2.5045362E-03
 2.3369405E-03 2.1798552E-03 2.0326721E-03 1.8948277E-03 1.7657772E-03
 1.6450110E-03 1.5320418E-03 1.4264123E-03 1.3276812E-03 1.2354453E-03
 1.1493111E-03 1.0689105E-03 9.9390314E-04 9.2395744E-04 8.5876900E-04
 7.9804723E-04 7.4151391E-04 6.8891927E-04 6.4001116E-04 5.9456541E-04
 5.5236142E-04 5.1319762E-04 4.7687665E-04 4.4321772E-04 4.1204770E-04
 3.8320469E-04
 9.8861121E-03 7.9428283E-03 6.1762910E-03 4.5781550E-03 3.1393913E-03
 1.8505949E-03 7.0224662E-04 -3.1510837E-04 -1.2107412E-03 -1.9936415E-03
 -2.6724837E-03 -3.2555861E-03 -3.7508940E-03 -4.1659870E-03 -4.5080725E-03
 -4.7839596E-03 -5.0001126E-03 -5.1626042E-03 -5.2771489E-03 -5.3490736E-03
 -5.3833448E-03 -5.3845667E-03 -5.3569800E-03 -5.3044846E-03 -5.2306368E-03
 -5.1386841E-03 -5.0315550E-03 -4.9119038E-03 -4.7821016E-03 -4.6442752E-03
 -4.5003085E-03 -4.3518818E-03 -4.2004664E-03 -4.0473575E-03 -3.8936767E-03
 -3.7404010E-03 -3.5883728E-03 -3.4383005E-03 -3.2907992E-03 -3.1463660E-03
 -3.0054222E-03 -2.8683026E-03 -2.7352797E-03 -2.6065500E-03 -2.4822752E-03
 -2.3625507E-03 -2.2474413E-03 -2.1369730E-03 -2.0311328E-03 -1.9298926E-03
 -1.8331952E-03 -1.7409639E-03 -1.6530999E-03 -1.5695025E-03 -1.4900524E-03
 -1.4146256E-03 -1.3430814E-03 -1.2752867E-03 -1.2110997E-03 -1.1503671E-03
 -1.0929492E-03 -1.0386952E-03 -9.8745909E-04 -9.3909411E-04 -8.9345651E-04
 -8.5040752E-04 -8.0980494E-04 -7.7151624E-04 -7.3541084E-04 -7.0136081E-04
 -6.6924421E-04
 3.3708360E-02 3.2412447E-02 3.1096511E-02 2.9774090E-02 2.8456641E-02
 2.7153686E-02 2.5873004E-02 2.4620820E-02 2.3401966E-02 2.2220129E-02
 2.1077940E-02 1.9977184E-02 1.8918931E-02 1.7903661E-02 1.6931379E-02
 1.6001707E-02 1.5113982E-02 1.4267333E-02 1.3460711E-02 1.2692963E-02
 1.1962855E-02 1.1269104E-02 1.0610413E-02 9.9854590E-03 9.3929311E-03
 8.8315271E-03 8.2999589E-03 7.7969604E-03 7.3212930E-03 6.8717394E-03
 6.4471266E-03 6.0462980E-03 5.6681284E-03 5.3115459E-03 4.9754898E-03
 4.6589398E-03 4.3609240E-03 4.0804911E-03 3.8167329E-03 3.5687727E-03
 3.3357756E-03 3.1169287E-03 2.9114711E-03 2.7186666E-03 2.5378109E-03
 2.3682371E-03 2.2093055E-03 2.0604115E-03 1.9209810E-03 1.7904671E-03
 1.6683526E-03 1.5541466E-03 1.4473824E-03 1.3476238E-03 1.2544538E-03
 1.1674792E-03 1.0863281E-03 1.0106544E-03 9.4012171E-04 8.7442226E-04
 8.1325532E-04 7.5635110E-04 7.0343819E-04 6.5427186E-04 6.0861715E-04
 5.6624925E-04 5.2695710E-04 4.9054623E-04 4.5682522E-04 4.2561450E-04
 3.9674342E-04
 9.7140316E-03 7.7725775E-03 6.0088015E-03 4.4142809E-03 2.9798979E-03
 1.6961592E-03 5.5344071E-04 -4.5780858E-04 -1.3469657E-03 -2.1231307E-03
 -2.7950883E-03 -3.3712522E-03 -3.8596736E-03 -4.2680171E-03 -4.6035671E-03
 -4.8731989E-03 -5.0834226E-03 -5.2403547E-03 -5.3497213E-03 -5.4168659E-03
 -5.4467544E-03 -5.4439805E-03 -5.4127681E-03 -5.3570005E-03 -5.2802134E-03
 -5.1856260E-03 -5.0761467E-03 -4.9543977E-03 -4.8227357E-03 -4.6832580E-03
 -4.5378385E-03 -4.3881284E-03 -4.2355834E-03 -4.0814779E-03 -3.9269314E-03
 -3.7729023E-03 -3.6202150E-03 -3.4695792E-03 -3.3215876E-03 -3.1767380E-03
 -3.0354394E-03 -2.8980246E-03 -2.7647507E-03 -2.6358210E-03 -2.5113809E-03
 -2.3915262E-03 -2.2763193E-03 -2.1657732E-03 -2.0598797E-03 -1.9586040E-03
 -1.8618824E-03 -1.7696379E-03 -1.6817696E-03 -1.5981699E-03 -1.5187172E-03
 -1.4432826E-03 -1.3717265E-03 -1.3039078E-03 -1.2396794E-03 -1.1788923E-03
 -1.1213975E-03 -1.0670441E-03 -1.0156826E-03 -9.6716353E-04 -9.2134089E-04
 -8.7807153E-04 -8.3721627E-04 -7.9863914E-04 -7.6221133E-04 -7.2779739E-04
 -6.9528259E-04
 3.4004893E-02 3.2703370E-02 3.1381678E-02 3.0053360E-02 2.8729884E-02
 2.7420759E-02 2.6133733E-02 2.4875002E-02 2.3649398E-02 2.2460563E-02
 2.1311143E-02 2.0202918E-02 1.9136978E-02 1.8113829E-02 1.7133512E-02
 1.6195705E-02 1.5299793E-02 1.4444945E-02 1.3630176E-02 1.2854369E-02
 1.2116347E-02 1.1414861E-02 1.0748637E-02 1.0116384E-02 9.5168119E-03
 8.9486251E-03 8.4105525E-03 7.9013342E-03 7.4197273E-03 6.9645196E-03
 6.5345257E-03 6.1285882E-03 5.7455837E-03 5.3844168E-03 5.0440272E-03
 4.7233952E-03 4.4215261E-03 4.1374629E-03 3.8702893E-03 3.6191249E-03
 3.3831177E-03 3.1614555E-03 2.9533592E-03 2.7580902E-03 2.5749393E-03
 2.4032302E-03 2.2423156E-03 2.0915871E-03 1.9504599E-03 1.8183872E-03
 1.6948396E-03 1.5793274E-03 1.4713734E-03 1.3705372E-03 1.2763964E-03
 1.1885521E-03 1.1066312E-03 1.0302747E-03 9.5914520E-04 8.9292886E-04
 8.3131815E-04 7.7403575E-04 7.2080502E-04 6.7137752E-04 6.2550337E-04
 5.8296230E-04 5.4353225E-04 5.0700823E-04 4.7319394E-04 4.4190951E-04
 4.1297337E-04
 9.5235603E-03 7.5843553E-03 5.8238572E-03 4.2335521E-03 2.8042144E-03
 1.5262371E-03 3.8988603E-04 -6.1451743E-04 -1.4964686E-03 -2.2651872E-03
 -2.9295748E-03 -3.4981617E-03 -3.9790962E-03 -4.3801391E-03 -4.7086482E-03
 -4.9715615E-03 -5.1754420E-03 -5.3264331E-03 -5.4302793E-03 -5.4923352E-03
 -5.5175568E-03 -5.5105276E-03 -5.4754582E-03 -5.4162061E-03 -5.3362814E-03
 -5.2388841E-03 -5.1268903E-03 -5.0029000E-03 -4.8692436E-03 -4.7279978E-03
 -4.5810114E-03 -4.4299164E-03 -4.2761532E-03 -4.1209804E-03 -3.9654938E-03
 -3.8106414E-03 -3.6572418E-03 -3.5059855E-03 -3.3574621E-03 -3.2121523E-03
 -3.0704623E-03 -2.9327127E-03 -2.7991631E-03 -2.6699994E-03 -2.5453661E-03
 -2.4253544E-03 -2.3100181E-03 -2.1993679E-03 -2.0933929E-03 -1.9920480E-03
 -1.8952709E-03 -1.8029738E-03 -1.7150569E-03 -1.6314060E-03 -1.5518970E-03
 -1.4763965E-03 -1.4047566E-03 -1.3368407E-03 -1.2724909E-03 -1.2115556E-03
 -1.1538869E-03 -1.0993249E-03 -1.0477225E-03 -9.9892449E-04 -9.5278566E-04
 -9.0916117E-04 -8.6791097E-04 -8.2889630E-04 -7.9198938E-04 -7.5706211E-04
 -7.2399538E-04
 3.4339588E-02 3.3031464E-02 3.1702958E-02 3.0367652E-02 2.9037008E-02
 2.7720518E-02 2.6425924E-02 2.5159415E-02 2.3925787E-02 2.2728689E-02
 2.1570761E-02 2.0453807E-02 1.9378943E-02 1.8346706E-02 1.7357189E-02
 1.6410116E-02 1.5504926E-02 1.4640850E-02 1.3816943E-02 1.3032146E-02
 1.2285315E-02 1.1575241E-02 1.0900683E-02 1.0260374E-02 9.6530346E-03
 9.0773860E-03 8.5321683E-03 8.0161132E-03 7.5279940E-03 7.0665870E-03
 6.6307005E-03 6.2191775E-03 5.8308784E-03 5.4647089E-03 5.1195933E-03
 4.7945017E-03 4.4884318E-03 4.2004171E-03 3.9295317E-03 3.6748808E-03
 3.4356141E-03 3.2108978E-03 2.9999556E-03 2.8020300E-03 2.6164060E-03
 2.4424039E-03 2.2793680E-03 2.1266814E-03 1.9837518E-03 1.8500276E-03
 1.7249715E-03 1.6080831E-03 1.4988865E-03 1.3969295E-03 1.3017852E-03
 1.2130463E-03 1.1303314E-03 1.0532762E-03 9.8153891E-04 9.1479346E-04
 8.5273036E-04 7.9505728E-04 7.4149738E-04 6.9178367E-04 6.4567506E-04
 6.0292607E-04 5.6331820E-04 5.2663527E-04 4.9267436E-04 4.6125153E-04
 4.3217992E-04
 9.3131391E-03 7.3766839E-03 5.6200693E-03 4.0346645E-03 2.6111135E-03
 1.3396797E-03 2.1049488E-04 -7.8626379E-04 -1.6602265E-03 -2.4207470E-03
 -3.0768560E-03 -3.6372009E-03 -4.1100397E-03 -4.5032273E-03 -4.8241797E-03
 -5.0799162E-03 -5.2770358E-03 -5.4217065E-03 -5.5196914E-03 -5.5763437E-03
 -5.5966210E-03 -5.5850814E-03 -5.5459188E-03 -5.4829675E-03 -5.3997147E-03
 -5.2993274E-03 -5.1846541E-03 -5.0582760E-03 -4.9224878E-03 -4.7793495E-03
 -4.6306830E-03 -4.4781030E-03 -4.3230271E-03 -4.1666999E-03 -4.0101991E-03
 -3.8544587E-03 -3.7002803E-03 -3.5483486E-03 -3.3992364E-03 -3.2534222E-03
 -3.1112940E-03 -2.9731730E-03 -2.8393019E-03 -2.7098639E-03 -2.5850034E-03
 -2.4647950E-03 -2.3492866E-03 -2.2384906E-03 -2.1323839E-03 -2.0309223E-03
 -1.9340313E-03 -1.8416215E-03 -1.7535896E-03 -1.6698131E-03 -1.5901629E-03
 -1.5145034E-03 -1.4426862E-03 -1.3745581E-03 -1.3099706E-03 -1.2487624E-03
 -1.1907818E-03 -1.1358688E-03 -1.0838704E-03 -1.0346370E-03 -9.8801602E-04
 -9.4386487E-04 -9.0204465E-04 -8.6241704E-04 -8.2485517E-04 -7.8923692E-04
 -7.5544178E-04
 3.4717407E-02 3.3401474E-02 3.2064885E-02 3.0721249E-02 2.9382046E-02
 2.8056769E-02 2.6753159E-02 2.5477374E-02 2.4234235E-02 2.3027387E-02
 2.1859478E-02 2.0732349E-02 1.9647144E-02 1.8604454E-02 1.7604414E-02
 1.6646808E-02 1.5731135E-02 1.4856680E-02 1.4022543E-02 1.3227720E-02
 1.2471099E-02 1.1751515E-02 1.1067742E-02 1.0418544E-02 9.8026553E-03
 9.2188139E-03 8.6657479E-03 8.1422031E-03 7.6469490E-03 7.1787545E-03
 6.7364317E-03 6.3188081E-03 5.9247361E-03 5.5531091E-03 5.2028447E-03
 4.8729004E-03 4.5622657E-03 4.2699617E-03 3.9950525E-03 3.7366333E-03
 3.4938373E-03 3.2658295E-03 3.0518228E-03 2.8510422E-03 2.6627770E-03
 2.4863265E-03 2.3210316E-03 2.1662670E-03 2.0214329E-03 1.8859693E-03
 1.7593276E-03 1.6410062E-03 1.5305139E-03 1.4273948E-03 1.3312086E-03
 1.2415483E-03 1.1580182E-03 1.0802442E-03 1.0078752E-03 9.4057957E-04
 8.7803422E-04 8.1994163E-04 7.6601200E-04 7.1597868E-04 6.6957419E-04
 6.2655925E-04 5.8670400E-04 5.4978370E-04 5.1559461E-04 4.8393442E-04
 4.5462049E-04
 9.0811979E-03 7.1480842E-03 5.3960430E-03 3.8163029E-03 2.3993663E-03
 1.1353322E-03 1.4167641E-05 -9.7409525E-04 -1.8392481E-03 -2.5907934E-03
 -3.2378957E-03 -3.7893262E-03 -4.2534489E-03 -4.6382137E-03 -4.9511082E-03
 -5.1992135E-03 -5.3891581E-03 -5.5271401E-03 -5.6189285E-03 -5.6698727E-03
 -5.6849224E-03 -5.6686192E-03 -5.6251362E-03 -5.5582752E-03 -5.4714973E-03
 -5.3679370E-03 -5.2504265E-03 -5.1215072E-03 -4.9834521E-03 -4.8382957E-03
 -4.6878364E-03 -4.5336620E-03 -4.3771770E-03 -4.2196042E-03 -4.0620067E-03
 -3.9053031E-03 -3.7502812E-03 -3.5976085E-03 -3.4478491E-03 -3.3014701E-03
 -3.1588539E-03 -3.0203061E-03 -2.8860585E-03 -2.7562990E-03 -2.6311479E-03
 -2.5106824E-03 -2.3949475E-03 -2.2839399E-03 -2.1776312E-03 -2.0759730E-03
 -1.9788851E-03 -1.8862702E-03 -1.7980238E-03 -1.7140101E-03 -1.6341027E-03
 -1.5581553E-03 -1.4860157E-03 -1.4175288E-03 -1.3525415E-03 -1.2908904E-03
 -1.2324210E-03 -1.1769716E-03 -1.1243875E-03 -1.0745173E-03 -1.0272164E-03
 -9.8233682E-04 -9.3974342E-04 -8.9930202E-04 -8.6088630E-04 -8.2437712E-04
 -7.8966114E-04
 3.5143919E-02 3.3818703E-02 3.2472476E-02 3.1118892E-02 2.9769462E-02
 2.8433688E-02 2.7119309E-02 2.5832513E-02 2.4578117E-02 2.3359783E-02
 2.2180198E-02 2.1041231E-02 1.9944077E-02 1.8889388E-02 1.7877346E-02
 1.6907798E-02 1.5980298E-02 1.5094186E-02 1.4248619E-02 1.3442630E-02
 1.2675149E-02 1.1945039E-02 1.1251102E-02 1.0592118E-02 9.9668317E-03
 9.3739815E-03 8.8123186E-03 8.2805818E-03 7.7775246E-03 7.3019238E-03
 6.8525751E-03 6.4282999E-03 6.0279402E-03 5.6503778E-03 5.2945246E-03
 4.9593160E-03 4.6437345E-03 4.3467884E-03 4.0675323E-03 3.8050455E-03
 3.5584553E-03 3.3269154E-03 3.1096169E-03 2.9057933E-03 2.7147077E-03
 2.5356605E-03 2.3679740E-03 2.2110175E-03 2.0641796E-03 1.9268894E-03
 1.7985965E-03 1.6787794E-03 1.5669403E-03 1.4626140E-03 1.3653534E-03
 1.2747304E-03 1.1903474E-03 1.1118188E-03 1.0387822E-03 9.7088725E-04
 9.0781000E-04 8.4923825E-04 7.9487218E-04 7.4443244E-04 6.9765170E-04
 6.5427489E-04 6.1406649E-04 5.7679263E-04 5.4224196E-04 5.1021588E-04
 4.8051809E-04
 8.8261925E-03 6.8970872E-03 5.1503996E-03 3.5771804E-03 2.1677485E-03
 9.1202435E-04 -2.0020115E-04 -1.1790851E-03 -2.0345850E-03 -2.7763608E-03
 -3.4137170E-03 -3.9555575E-03 -4.4103563E-03 -4.7861473E-03 -5.0904904E-03
 -5.3305142E-03 -5.5128848E-03 -5.6438134E-03 -5.7290769E-03 -5.7740207E-03
 -5.7835723E-03 -5.7622567E-03 -5.7142247E-03 -5.6432416E-03 -5.5527459E-03
 -5.4458426E-03 -5.3253295E-03 -5.1937150E-03 -5.0532557E-03 -4.9059517E-03
 -4.7535757E-03 -4.5977025E-03 -4.4397097E-03 -4.2807986E-03 -4.1220142E-03
 -3.9642621E-03 -3.8083177E-03 -3.6548292E-03 -3.5043505E-03 -3.3573392E-03
 -3.2141616E-03 -3.0751126E-03 -2.9404261E-03 -2.8102647E-03 -2.6847483E-03
 -2.5639469E-03 -2.4478920E-03 -2.3365754E-03 -2.2299637E-03 -2.1279943E-03
 -2.0305868E-03 -1.9376390E-03 -1.8490280E-03 -1.7646269E-03 -1.6842914E-03
 -1.6078767E-03 -1.5352278E-03 -1.4661849E-03 -1.4005898E-03 -1.3382818E-03
 -1.2790984E-03 -1.2228854E-03 -1.1694863E-03 -1.1187480E-03 -1.0705314E-03
 -1.0246936E-03 -9.8109711E-04 -9.3961810E-04 -9.0013357E-04 -8.6252810E-04
 -8.2669256E-04
 3.5625361E-02 3.4289058E-02 3.2931302E-02 3.1565811E-02 3.0204130E-02
 2.8855812E-02 2.7528614E-02 2.6228745E-02 2.4961056E-02 2.3729241E-02
 2.2536030E-02 2.1383340E-02 2.0272432E-02 1.9204004E-02 1.8178305E-02
 1.7195245E-02 1.6254432E-02 1.5355265E-02 1.4496943E-02 1.3678543E-02
 1.2899030E-02 1.2157286E-02 1.1452143E-02 1.0782396E-02 1.0146791E-02
 9.5440848E-03 8.9730127E-03 8.4323147E-03 7.9207467E-03 7.4370722E-03
 6.9800732E-03 6.5485677E-03 6.1413795E-03 5.7573789E-03 5.3954669E-03
 5.0545675E-03 4.7336402E-03 4.4316910E-03 4.1477568E-03 3.8809043E-03
 3.6302486E-03 3.3949299E-03 3.1741278E-03 2.9670664E-03 2.7729913E-03
 2.5911941E-03 2.4209886E-03 2.2617262E-03 2.1127898E-03 1.9735924E-03
 1.8435701E-03 1.7221941E-03 1.6089513E-03 1.5033629E-03 1.4049707E-03
 1.3133339E-03 1.2280397E-03 1.1486899E-03 1.0749105E-03 1.0063428E-03
 9.4264565E-04 8.8349462E-04 8.2858431E-04 7.7762327E-04 7.3033368E-04
 6.8645144E-04 6.4573821E-04 6.0795149E-04 5.7287613E-04 5.4030522E-04
 5.1004480E-04
 8.5466160E-03 6.6222893E-03 4.8818104E-03 3.3160334E-03 1.9150648E-03
 6.6861510E-04 -4.3373540E-04 -1.4023340E-03 -2.2473228E-03 -2.9785351E-03
 -3.6054235E-03 -4.1370159E-03 -4.5818998E-03 -4.9481788E-03 -5.2434937E-03
 -5.4750061E-03 -5.6494186E-03 -5.7729478E-03 -5.8513731E-03 -5.8900281E-03
 -5.8938195E-03 -5.8672563E-03 -5.8144485E-03 -5.7391431E-03 -5.6447405E-03
 -5.5343136E-03 -5.4106321E-03 -5.2761752E-03 -5.1331674E-03 -4.9835825E-03
 -4.8291739E-03 -4.6714828E-03 -4.5118686E-03 -4.3515181E-03 -4.1914503E-03
 -4.0325592E-03 -3.8755981E-03 -3.7212058E-03 -3.5699205E-03 -3.4221844E-03
 -3.2783558E-03 -3.1387149E-03 -3.0034839E-03 -2.8728193E-03 -2.7468293E-03
 -2.6255688E-03 -2.5090652E-03 -2.3973067E-03 -2.2902398E-03 -2.1878034E-03
 -2.0899053E-03 -1.9964324E-03 -1.9072632E-03 -1.8222627E-03 -1.7412816E-03
 -1.6641698E-03 -1.5907685E-03 -1.5209198E-03 -1.4544586E-03 -1.3912281E-03
 -1.3310650E-03 -1.2738201E-03 -1.2193364E-03 -1.1674688E-03 -1.1180743E-03
 -1.0710222E-03 -1.0261801E-03 -9.8342716E-04 -9.4264594E-04 -9.0372952E-04
 -8.6657575E-04
 3.6168657E-02 3.4819067E-02 3.3447478E-02 3.2067709E-02 3.0691385E-02
 2.9328093E-02 2.7985647E-02 2.6670311E-02 2.5386969E-02 2.4139376E-02
 2.2930324E-02 2.1761788E-02 2.0635085E-02 1.9550974E-02 1.8509785E-02
 1.7511480E-02 1.6555721E-02 1.5641948E-02 1.4769425E-02 1.3937253E-02
 1.3144425E-02 1.2389855E-02 1.1672381E-02 1.0990811E-02 1.0343904E-02
 9.7304089E-03 9.1490569E-03 8.5985903E-03 8.0777528E-03 7.5852945E-03
 7.1199890E-03 6.6806357E-03 6.2660482E-03 5.8750897E-03 5.5066328E-03
 5.1595904E-03 4.8329206E-03 4.5255953E-03 4.2366479E-03 3.9651277E-03
 3.7101305E-03 3.4707908E-03 3.2462734E-03 3.0357796E-03 2.8385501E-03
 2.6538556E-03 2.4809998E-03 2.3193199E-03 2.1681858E-03 2.0269882E-03
 1.8951567E-03 1.7721417E-03 1.6574179E-03 1.5504886E-03 1.4508847E-03
 1.3581484E-03 1.2718496E-03 1.1915795E-03 1.1169474E-03 1.0475786E-03
 9.8312681E-04 9.2324999E-04 8.6763839E-04 8.1598369E-04 7.6800317E-04
 7.2343118E-04 6.8201497E-04 6.4351223E-04 6.0770346E-04 5.7437958E-04
 5.4334069E-04
 8.2410844E-03 6.3223694E-03 4.5890235E-03 3.0316617E-03 1.6401482E-03
 4.0395634E-04 -6.8756158E-04 -1.6449749E-03 -2.4786170E-03 -3.1984940E-03
 -3.8142123E-03 -4.3349247E-03 -4.7693253E-03 -5.1255897E-03 -5.4114242E-03
 -5.6340252E-03 -5.8001131E-03 -5.9159193E-03 -5.9872060E-03 -6.0193017E-03
 -6.0170866E-03 -5.9850388E-03 -5.9272470E-03 -5.8474168E-03 -5.7489243E-03
 -5.6347991E-03 -5.5077854E-03 -5.3703329E-03 -5.2246316E-03 -5.0726291E-03
 -4.9160533E-03 -4.7564222E-03 -4.5950711E-03 -4.4331634E-03 -4.2717005E-03
 -4.1115587E-03 -3.9534708E-03 -3.7980643E-03 -3.6458557E-03 -3.4972788E-03
 -3.3526763E-03 -3.2123164E-03 -3.0764064E-03 -2.9450941E-03 -2.8184680E-03
 -2.6965903E-03 -2.5794622E-03 -2.4670595E-03 -2.3593381E-03 -2.2562137E-03
 -2.1575894E-03 -2.0633482E-03 -1.9733619E-03 -1.8874886E-03 -1.8055794E-03
 -1.7274776E-03 -1.6530250E-03 -1.5820641E-03 -1.5144319E-03 -1.4499689E-03
 -1.3885222E-03 -1.3299392E-03 -1.2740734E-03 -1.2207851E-03 -1.1699370E-03
 -1.1214016E-03 -1.0750548E-03 -1.0307857E-03 -9.8848226E-04 -9.4804307E-04
 -9.0937217E-04
 3.6781501E-02 3.5415921E-02 3.4027722E-02 3.2630842E-02 3.1236999E-02
 2.9855872E-02 2.8495353E-02 2.7161762E-02 2.5860073E-02 2.4594100E-02
 2.3366693E-02 2.2179909E-02 2.1035133E-02 1.9933198E-02 1.8874483E-02
 1.7859010E-02 1.6886506E-02 1.5956452E-02 1.5068147E-02 1.4220715E-02
 1.3413188E-02 1.2644492E-02 1.1913474E-02 1.1218943E-02 1.0559664E-02
 9.9343853E-03 9.3418304E-03 8.7807328E-03 8.2498128E-03 7.7478206E-03
 7.2735115E-03 6.8256771E-03 6.4031007E-03 6.0046334E-03 5.6291325E-03
 5.2754991E-03 4.9426639E-03 4.6295896E-03 4.3352880E-03 4.0587950E-03
 3.7991896E-03 3.5555852E-03 3.3271338E-03 3.1130186E-03 2.9124659E-03
 2.7247244E-03 2.5490851E-03 2.3848661E-03 2.2314140E-03 2.0881144E-03
 1.9543658E-03 1.8296047E-03 1.7132927E-03 1.6049111E-03 1.5039729E-03
 1.4100022E-03 1.3225565E-03 1.2412103E-03 1.1655540E-03 1.0952107E-03
 1.0298090E-03 9.6900709E-04 9.1247517E-04 8.5990533E-04 8.1100641E-04
 7.6550490E-04 7.2314189E-04 6.8367977E-04 6.4689072E-04 6.1256334E-04
 5.8050419E-04
 7.9083461E-03 5.9961299E-03 4.2708758E-03 2.7229225E-03 1.3418647E-03
 1.1690454E-04 -9.6285244E-04 -1.9082057E-03 -2.7297006E-03 -3.4375091E-03
 -4.0414017E-03 -4.5506558E-03 -4.9740402E-03 -5.3198268E-03 -5.5957641E-03
 -5.8090845E-03 -5.9665153E-03 -6.0742893E-03 -6.1381632E-03 -6.1634416E-03
 -6.1549842E-03 -6.1172326E-03 -6.0542449E-03 -5.9697037E-03 -5.8669308E-03
 -5.7489378E-03 -5.6184283E-03 -5.4778205E-03 -5.3292746E-03 -5.1747127E-03
 -5.0158286E-03 -4.8541175E-03 -4.6908949E-03 -4.5272931E-03 -4.3643052E-03
 -4.2027743E-03 -4.0434217E-03 -3.8868552E-03 -3.7335774E-03 -3.5840042E-03
 -3.4384595E-03 -3.2972055E-03 -3.1604273E-03 -3.0282626E-03 -2.9007967E-03
 -2.7780652E-03 -2.6600654E-03 -2.5467696E-03 -2.4381126E-03 -2.3340101E-03
 -2.2343548E-03 -2.1390296E-03 -2.0478948E-03 -1.9608105E-03 -1.8776231E-03
 -1.7981825E-03 -1.7223243E-03 -1.6498935E-03 -1.5807354E-03 -1.5146971E-03
 -1.4516236E-03 -1.3913747E-03 -1.3338079E-03 -1.2787925E-03 -1.2261993E-03
 -1.1759066E-03 -1.1278024E-03 -1.0817756E-03 -1.0377275E-03 -9.9556439E-04
 -9.5519680E-04
 3.7472330E-02 3.6087509E-02 3.4679353E-02 3.3261977E-02 3.1847231E-02
 3.0444920E-02 2.9063052E-02 2.7708024E-02 2.6384899E-02 2.5097586E-02
 2.3849016E-02 2.2641314E-02 2.1475939E-02 2.0353790E-02 1.9275311E-02
 1.8240584E-02 1.7249370E-02 1.6301190E-02 1.5395376E-02 1.4531083E-02
 1.3707356E-02 1.2923121E-02 1.2177251E-02 1.1468541E-02 1.0795752E-02
 1.0157626E-02 9.5528839E-03 8.9802304E-03 8.4383870E-03 7.9260748E-03
 7.4420427E-03 6.9850422E-03 6.5538664E-03 6.1473302E-03 5.7642739E-03
 5.4035801E-03 5.0641596E-03 4.7449530E-03 4.4449577E-03 4.1631842E-03
 3.8986979E-03 3.6505836E-03 3.4179818E-03 3.2000488E-03 2.9959942E-03
 2.8050439E-03 2.6264682E-03 2.4595633E-03 2.3036553E-03 2.1581072E-03
 2.0222976E-03 1.8956461E-03 1.7775857E-03 1.6675836E-03 1.5651290E-03
 1.4697323E-03 1.3809352E-03 1.2982902E-03 1.2213837E-03 1.1498153E-03
 1.0832100E-03 1.0212145E-03 9.6349319E-04 9.0973079E-04 8.5962948E-04
 8.1291248E-04 7.6932041E-04 7.2861207E-04 6.9056172E-04 6.5495935E-04
 6.2160927E-04
 7.5473567E-03 5.6425277E-03 3.9263126E-03 2.3887414E-03 1.0190989E-03
 -1.9369872E-04 -1.2608258E-03 -2.1933145E-03 -3.0019192E-03 -3.6970042E-03
 -4.2884722E-03 -4.7857361E-03 -5.1976400E-03 -5.5325343E-03 -5.7982039E-03
 -6.0019032E-03 -6.1503733E-03 -6.2498399E-03 -6.3060466E-03 -6.3242703E-03
 -6.3093430E-03 -6.2656836E-03 -6.1973017E-03 -6.1078500E-03 -6.0006203E-03
 -5.8785831E-03 -5.7444065E-03 -5.6004790E-03 -5.4489290E-03 -5.2916436E-03
 -5.1302938E-03 -4.9663503E-03 -4.8010922E-03 -4.6356390E-03 -4.4709556E-03
 -4.3078656E-03 -4.1470700E-03 -3.9891554E-03 -3.8346052E-03 -3.6838239E-03
 -3.5371152E-03 -3.3947239E-03 -3.2568246E-03 -3.1235402E-03 -2.9949371E-03
 -2.8710458E-03 -2.7518554E-03 -2.6373202E-03 -2.5273729E-03 -2.4219221E-03
 -2.3208547E-03 -2.2240472E-03 -2.1313664E-03 -2.0426612E-03 -1.9577912E-03
 -1.8765976E-03 -1.7989277E-03 -1.7246363E-03 -1.6535621E-03 -1.5855660E-03
 -1.5205058E-03 -1.4582424E-03 -1.3986453E-03 -1.3415909E-03 -1.2869627E-03
 -1.2346418E-03 -1.1845290E-03 -1.1365180E-03 -1.0905220E-03 -1.0464502E-03
 -1.0042196E-03
 3.8250398E-02 3.6842406E-02 3.5410304E-02 3.3968434E-02 3.2528829E-02
 3.1101458E-02 2.9694458E-02 2.8314369E-02 2.6966330E-02 2.5654366E-02
 2.4381489E-02 2.3149900E-02 2.1961138E-02 2.0816157E-02 1.9715464E-02
 1.8659180E-02 1.7647108E-02 1.6678810E-02 1.5753623E-02 1.4870727E-02
 1.4029174E-02 1.3227902E-02 1.2465765E-02 1.1741569E-02 1.1054060E-02
 1.0401961E-02 9.7839795E-03 9.1988053E-03 8.6451396E-03 8.1216898E-03
 7.6271668E-03 7.1603213E-03 6.7199068E-03 6.3047237E-03 5.9135905E-03
 5.5453605E-03 5.1989243E-03 4.8732059E-03 4.5671673E-03 4.2798044E-03
 4.0101497E-03 3.7572761E-03 3.5202876E-03 3.2983238E-03 3.0905637E-03
 2.8962118E-03 2.7145136E-03 2.5447370E-03 2.3861846E-03 2.2381945E-03
 2.1001233E-03 1.9713629E-03 1.8513291E-03 1.7394659E-03 1.6352437E-03
 1.5381579E-03 1.4477246E-03 1.3634912E-03 1.2850255E-03 1.2119212E-03
 1.1437932E-03 1.0802809E-03 1.0210377E-03 9.6574810E-04 9.1411412E-04
 8.6585688E-04 8.2071353E-04 7.7844271E-04 7.3882483E-04 7.0164929E-04
 6.6673162E-04
 7.1572876E-03 5.2606836E-03 3.5543898E-03 2.0280879E-03 6.7073043E-04
 -5.2907894E-04 -1.5827987E-03 -2.5017119E-03 -3.2967892E-03 -3.9785714E-03
 -4.5571183E-03 -5.0419201E-03 -5.4419464E-03 -5.7655866E-03 -6.0206624E-03
 -6.2144534E-03 -6.3536922E-03 -6.4446027E-03 -6.4929058E-03 -6.5038567E-03
 -6.4822529E-03 -6.4324788E-03 -6.3585122E-03 -6.2639620E-03 -6.1520874E-03
 -6.0258238E-03 -5.8878022E-03 -5.7403748E-03 -5.5856397E-03 -5.4254509E-03
 -5.2614524E-03 -5.0950805E-03 -4.9275942E-03 -4.7600851E-03 -4.5934925E-03
 -4.4286186E-03 -4.2661419E-03 -4.1066268E-03 -3.9505432E-03 -3.7982652E-03
 -3.6500916E-03 -3.5062430E-03 -3.3668815E-03 -3.2321126E-03 -3.1019978E-03
 -2.9765484E-03 -2.8557465E-03 -2.7395401E-03 -2.6278580E-03 -2.5206003E-03
 -2.4176573E-03 -2.3188987E-03 -2.2241967E-03 -2.1334062E-03 -2.0463825E-03
 -1.9629830E-03 -1.8830597E-03 -1.8064681E-03 -1.7330693E-03 -1.6627227E-03
 -1.5952982E-03 -1.5306670E-03 -1.4687103E-03 -1.4093154E-03 -1.3523657E-03
 -1.2977598E-03 -1.2454046E-03 -1.1952027E-03 -1.1470700E-03 -1.1009247E-03
 -1.0566880E-03
 3.9125789E-02 3.7689924E-02 3.6229160E-02 3.4758110E-02 3.3289071E-02
 3.1832188E-02 3.0395770E-02 2.8986497E-02 2.7609648E-02 2.6269330E-02
 2.4968660E-02 2.3709910E-02 2.2494687E-02 2.1324005E-02 2.0198418E-02
 1.9118082E-02 1.8082829E-02 1.7092239E-02 1.6145667E-02 1.5242294E-02
 1.4381175E-02 1.3561243E-02 1.2781344E-02 1.2040266E-02 1.1336740E-02
 1.0669478E-02 1.0037151E-02 9.4384449E-03 8.8720256E-03 8.3365701E-03
 7.8307847E-03 7.3533668E-03 6.9030705E-03 6.4786482E-03 6.0788975E-03
 5.7026478E-03 5.3487592E-03 5.0161276E-03 4.7036838E-03 4.4104028E-03
 4.1352813E-03 3.8773650E-03 3.6357306E-03 3.4094837E-03 3.1977729E-03
 2.9997765E-03 2.8147108E-03 2.6418145E-03 2.4803600E-03 2.3296585E-03
 2.1890437E-03 2.0578795E-03 1.9355615E-03 1.8215120E-03 1.7151836E-03
 1.6160500E-03 1.5236201E-03 1.4374285E-03 1.3570249E-03 1.2820018E-03
 1.2119638E-03 1.1465445E-03 1.0853971E-03 1.0282043E-03 9.7466551E-04
 9.2450262E-04 8.7745715E-04 8.3329383E-04 7.9178967E-04 7.5273914E-04
 7.1596738E-04
 6.7375586E-03 4.8498795E-03 3.1542380E-03 1.6399466E-03 2.9559471E-04
 -8.9054805E-04 -1.9302309E-03 -2.8349969E-03 -3.6160289E-03 -4.2840480E-03
 -4.8492514E-03 -5.3212410E-03 -5.7090572E-03 -6.0211457E-03 -6.2653613E-03
 -6.4489902E-03 -6.5787663E-03 -6.6608991E-03 -6.7010894E-03 -6.7045609E-03
 -6.6760825E-03 -6.6199973E-03 -6.5402482E-03 -6.4404076E-03 -6.3236952E-03
 -6.1930050E-03 -6.0509383E-03 -5.8998088E-03 -5.7416754E-03 -5.5783680E-03
 -5.4114908E-03 -5.2424576E-03 -5.0724926E-03 -4.9026641E-03 -4.7338842E-03
 -4.5669288E-03 -4.4024559E-03 -4.2410083E-03 -4.0830327E-03 -3.9288853E-03
 -3.7788399E-03 -3.6331112E-03 -3.4918424E-03 -3.3551247E-03 -3.2230089E-03
 -3.0955009E-03 -2.9725700E-03 -2.8541663E-03 -2.7402074E-03 -2.6306026E-03
 -2.5252367E-03 -2.4239921E-03 -2.3267360E-03 -2.2333362E-03 -2.1436526E-03
 -2.0575563E-03 -1.9749063E-03 -1.8955690E-03 -1.8194149E-03 -1.7463170E-03
 -1.6761558E-03 -1.6088132E-03 -1.5441804E-03 -1.4821492E-03 -1.4226187E-03
 -1.3654918E-03 -1.3106803E-03 -1.2581011E-03 -1.2076653E-03 -1.1593015E-03
 -1.1129332E-03
 4.0109407E-02 3.8640123E-02 3.7145168E-02 3.5639536E-02 3.4135785E-02
 3.2644324E-02 3.1173645E-02 2.9730592E-02 2.8320571E-02 2.6947808E-02
 2.5615489E-02 2.4325984E-02 2.3080949E-02 2.1881435E-02 2.0728042E-02
 1.9620933E-02 1.8559981E-02 1.7544761E-02 1.6574631E-02 1.5648771E-02
 1.4766218E-02 1.3925890E-02 1.3126628E-02 1.2367189E-02 1.1646283E-02
 1.0962594E-02 1.0314776E-02 9.7014643E-03 9.1213165E-03 8.5729761E-03
 8.0551039E-03 7.5663845E-03 7.1055223E-03 6.6712522E-03 6.2623331E-03
 5.8775567E-03 5.5157575E-03 5.1757889E-03 4.8565571E-03 4.5569930E-03
 4.2760652E-03 4.0127779E-03 3.7661775E-03 3.5353312E-03 3.3193601E-03
 3.1174039E-03 2.9286377E-03 2.7522813E-03 2.5875738E-03 2.4337973E-03
 2.2902545E-03 2.1562930E-03 2.0312830E-03 1.9146212E-03 1.8057526E-03
 1.7041321E-03 1.6092596E-03 1.5206509E-03 1.4378631E-03 1.3604693E-03
 1.2880731E-03 1.2203106E-03 1.1568298E-03 1.0973178E-03 1.0414717E-03
 9.8901906E-04 9.3970716E-04 8.9329924E-04 8.4958452E-04 8.0836413E-04
 7.6946191E-04
 6.2878313E-03 4.4095283E-03 2.7250387E-03 1.2232583E-03 -1.0758928E-04
 -1.2795913E-03 -2.3048003E-03 -3.1950118E-03 -3.9616353E-03 -4.6155709E-03
 -5.1671225E-03 -5.6260312E-03 -6.0013947E-03 -6.3017034E-03 -6.5348404E-03
 -6.7081046E-03 -6.8282196E-03 -6.9013825E-03 -6.9332640E-03 -6.9290614E-03
 -6.8935105E-03 -6.8309181E-03 -6.7451838E-03 -6.6398433E-03 -6.5180757E-03
 -6.3827382E-03 -6.2363907E-03 -6.0813110E-03 -5.9195277E-03 -5.7528256E-03
 -5.5827852E-03 -5.4107835E-03 -5.2380180E-03 -5.0655231E-03 -4.8941886E-03
 -4.7247619E-03 -4.5578731E-03 -4.3940512E-03 -4.2337128E-03 -4.0771984E-03
 -3.9247666E-03 -3.7766146E-03 -3.6328721E-03 -3.4936238E-03 -3.3589099E-03
 -3.2287266E-03 -3.1030511E-03 -2.9818225E-03 -2.8649659E-03 -2.7523951E-03
 -2.6439980E-03 -2.5396661E-03 -2.4392758E-03 -2.3427068E-03 -2.2498311E-03
 -2.1605233E-03 -2.0746635E-03 -1.9921279E-03 -1.9127966E-03 -1.8365573E-03
 -1.7632968E-03 -1.6929132E-03 -1.6253020E-03 -1.5603646E-03 -1.4980098E-03
 -1.4381490E-03 -1.3806944E-03 -1.3255668E-03 -1.2726844E-03 -1.2219739E-03
 -1.1733602E-03
 4.1213065E-02 3.9703861E-02 3.8168341E-02 3.6621913E-02 3.5077471E-02
 3.3545710E-02 3.2035343E-02 3.0553374E-02 2.9105367E-02 2.7695637E-02
 2.6327461E-02 2.5003260E-02 2.3724742E-02 2.2492995E-02 2.1308627E-02
 2.0171832E-02 1.9082453E-02 1.8040085E-02 1.7044062E-02 1.6093548E-02
 1.5187566E-02 1.4325012E-02 1.3504682E-02 1.2725315E-02 1.1985588E-02
 1.1284154E-02 1.0619623E-02 9.9906018E-03 9.3957121E-03 8.8335527E-03
 8.3027538E-03 7.8019616E-03 7.3298351E-03 6.8850736E-03 6.4663952E-03
 6.0725599E-03 5.7023452E-03 5.3545763E-03 5.0281123E-03 4.7218427E-03
 4.4346978E-03 4.1656387E-03 3.9136652E-03 3.6778199E-03 3.4571686E-03
 3.2508234E-03 3.0579255E-03 2.8776568E-03 2.7092283E-03 2.5518897E-03
 2.4049270E-03 2.2676585E-03 2.1394331E-03 2.0196401E-03 1.9076999E-03
 1.8030625E-03 1.7052124E-03 1.6136660E-03 1.5279684E-03 1.4476933E-03
 1.3724456E-03 1.3018566E-03 1.2355826E-03 1.1733058E-03 1.1147340E-03
 1.0595974E-03 1.0076480E-03 9.5865311E-04 9.1241259E-04 8.6872821E-04
 8.2743209E-04
 5.8079464E-03 3.9391126E-03 2.2659176E-03 7.7684241E-04 -5.4030004E-04
 -1.6979506E-03 -2.7084714E-03 -3.5839323E-03 -4.3359539E-03 -4.9756169E-03
 -5.5133593E-03 -5.9590191E-03 -6.3217669E-03 -6.6101360E-03 -6.8320390E-03
 -6.9947694E-03 -7.1050576E-03 -7.1690702E-03 -7.1924650E-03 -7.1803993E-03
 -7.1375757E-03 -7.0682559E-03 -6.9763134E-03 -6.8652336E-03 -6.7381584E-03
 -6.5979031E-03 -6.4469874E-03 -6.2876539E-03 -6.1218864E-03 -5.9514437E-03
 -5.7778652E-03 -5.6024948E-03 -5.4265005E-03 -5.2508861E-03 -5.0765090E-03
 -4.9040923E-03 -4.7342489E-03 -4.5674709E-03 -4.4041676E-03 -4.2446586E-03
 -4.0891860E-03 -3.9379331E-03 -3.7910268E-03 -3.6485381E-03 -3.5105126E-03
 -3.3769384E-03 -3.2478001E-03 -3.1230368E-03 -3.0025879E-03 -2.8863661E-03
 -2.7742782E-03 -2.6662205E-03 -2.5620856E-03 -2.4617666E-03 -2.3651489E-03
 -2.2721186E-03 -2.1825696E-03 -2.0963931E-03 -2.0134766E-03 -1.9337219E-03
 -1.8570259E-03 -1.7832944E-03 -1.7124310E-03 -1.6443448E-03 -1.5789503E-03
 -1.5161592E-03 -1.4558904E-03 -1.3980649E-03 -1.3425974E-03 -1.2894177E-03
 -1.2384430E-03
 4.2449541E-02 4.0892929E-02 3.9309535E-02 3.7715249E-02 3.6123380E-02
 3.4544922E-02 3.2988820E-02 3.1462267E-02 2.9970959E-02 2.8519299E-02
 2.7110640E-02 2.5747458E-02 2.4431475E-02 2.3163797E-02 2.1945041E-02
 2.0775380E-02 1.9654660E-02 1.8582430E-02 1.7558016E-02 1.6580548E-02
 1.5649013E-02 1.4762264E-02 1.3919066E-02 1.3118119E-02 1.2358055E-02
 1.1637476E-02 1.0954960E-02 1.0309073E-02 9.6983733E-03 9.1214254E-03
 8.5768150E-03 8.0631310E-03 7.5789965E-03 7.1230554E-03 6.6939835E-03
 6.2904796E-03 5.9112865E-03 5.5551701E-03 5.2209459E-03 4.9074539E-03
 4.6135751E-03 4.3382249E-03 4.0803608E-03 3.8389773E-03 3.6131032E-03
 3.4018103E-03 3.2042072E-03 3.0194346E-03 2.8466834E-03 2.6851781E-03
 2.5341706E-03 2.3929670E-03 2.2609022E-03 2.1373471E-03 2.0217109E-03
 1.9134370E-03 1.8120062E-03 1.7169256E-03 1.6277423E-03 1.5440295E-03
 1.4653952E-03 1.3914675E-03 1.3219145E-03 1.2564212E-03 1.1946963E-03
 1.1364815E-03 1.0815278E-03 1.0296152E-03 9.8054402E-04 9.3412015E-04
 8.9017965E-04
 5.2978648E-03 3.4380865E-03 1.7758788E-03 2.9928359E-04 -1.0043083E-03
 -2.1477072E-03 -3.1436039E-03 -4.0043448E-03 -4.7417777E-03 -5.3671342E-03
 -5.8910297E-03 -6.3233795E-03 -6.6734380E-03 -6.9497754E-03 -7.1603288E-03
 -7.3124012E-03 -7.4127084E-03 -7.4674096E-03 -7.4821291E-03 -7.4619935E-03
 -7.4116681E-03 -7.3353844E-03 -7.2369636E-03 -7.1198544E-03 -6.9871540E-03
 -6.8416414E-03 -6.6857915E-03 -6.5218052E-03 -6.3516316E-03 -6.1769877E-03
 -5.9993742E-03 -5.8201109E-03 -5.6403214E-03 -5.4609897E-03 -5.2829362E-03
 -5.1068682E-03 -4.9333633E-03 -4.7629024E-03 -4.5958781E-03 -4.4325907E-03
 -4.2732800E-03 -4.1181156E-03 -3.9672218E-03 -3.8206729E-03 -3.6785118E-03
 -3.5407373E-03 -3.4073349E-03 -3.2782645E-03 -3.1534641E-03 -3.0328671E-03
 -2.9163929E-03 -2.8039517E-03 -2.6954550E-03 -2.5908037E-03 -2.4898991E-03
 -2.3926492E-03 -2.2989477E-03 -2.2087041E-03 -2.1218208E-03 -2.0382036E-03
 -1.9577588E-03 -1.8803999E-03 -1.8060358E-03 -1.7345798E-03 -1.6659446E-03
 -1.6000500E-03 -1.5368049E-03 -1.4761323E-03 -1.4179458E-03 -1.3621630E-03
 -1.3087016E-03
 4.3832701E-02 4.2220131E-02 4.0580578E-02 3.8930513E-02 3.7283678E-02
 3.5651401E-02 3.4042880E-02 3.2465495E-02 3.0925032E-02 2.9426018E-02
 2.7971843E-02 2.6565002E-02 2.5207235E-02 2.3899637E-02 2.2642791E-02
 2.1436861E-02 2.0281643E-02 1.9176658E-02 1.8121181E-02 1.7114297E-02
 1.6154941E-02 1.5241926E-02 1.4373954E-02 1.3549677E-02 1.2767673E-02
 1.2026494E-02 1.1324651E-02 1.0660660E-02 1.0033027E-02 9.4402591E-03
 8.8808779E-03 8.3534261E-03 7.8564584E-03 7.3885685E-03 6.9483640E-03
 6.5344954E-03 6.1456449E-03 5.7805195E-03 5.4378766E-03 5.1165060E-03
 4.8152343E-03 4.5329258E-03 4.2684935E-03 4.0208795E-03 3.7890791E-03
 3.5721217E-03 3.3690829E-03 3.1790738E-03 3.0012557E-03 2.8348286E-03
 2.6790330E-03 2.5331534E-03 2.3965100E-03 2.2684662E-03 2.1484219E-03
 2.0358204E-03 1.9301352E-03 1.8308739E-03 1.7375849E-03 1.6498450E-03
 1.5672635E-03 1.4894765E-03 1.4161539E-03 1.3469851E-03 1.2816900E-03
 1.2200066E-03 1.1616986E-03 1.1065485E-03 1.0543485E-03 1.0049202E-03
 9.5808919E-04
 4.7575505E-03 2.9057660E-03 1.2536675E-03 -2.1117281E-04 -1.5017944E-03
 -2.6314084E-03 -3.6130457E-03 -4.4593532E-03 -5.1823859E-03 -5.7935966E-03
 -6.3037309E-03 -6.7228219E-03 -7.0601883E-03 -7.3244548E-03 -7.5235814E-03
 -7.6648830E-03 -7.7550714E-03 -7.8002838E-03 -7.8061176E-03 -7.7776737E-03
 -7.7195805E-03 -7.6360218E-03 -7.5307856E-03 -7.4072722E-03 -7.2685438E-03
 -7.1173250E-03 -6.9560558E-03 -6.7868917E-03 -6.6117463E-03 -6.4322953E-03
 -6.2500061E-03 -6.0661552E-03 -5.8818418E-03 -5.6980159E-03 -5.5154832E-03
 -5.3349123E-03 -5.1568779E-03 -4.9818372E-03 -4.8101698E-03 -4.6421718E-03
 -4.4780779E-03 -4.3180566E-03 -4.1622389E-03 -4.0106997E-03 -3.8634914E-03
 -3.7206328E-03 -3.5821113E-03 -3.4479052E-03 -3.3179701E-03 -3.1922527E-03
 -3.0706902E-03 -2.9532090E-03 -2.8397336E-03 -2.7301852E-03 -2.6244735E-03
 -2.5225189E-03 -2.4242350E-03 -2.3295342E-03 -2.2383276E-03 -2.1505293E-03
 -2.0660523E-03 -1.9848119E-03 -1.9067149E-03 -1.8316803E-03 -1.7596182E-03
 -1.6904400E-03 -1.6240560E-03 -1.5603779E-03 -1.4993163E-03 -1.4407786E-03
 -1.3846739E-03
 4.5377765E-02 4.3699555E-02 4.1994549E-02 4.0279839E-02 3.8569655E-02
 3.6875676E-02 3.5207361E-02 3.3572257E-02 3.1976268E-02 3.0423969E-02
 2.8918793E-02 2.7463226E-02 2.6058985E-02 2.4707140E-02 2.3408225E-02
 2.2162350E-02 2.0969259E-02 1.9828407E-02 1.8739011E-02 1.7700091E-02
 1.6710514E-02 1.5769020E-02 1.4874251E-02 1.4024788E-02 1.3219142E-02
 1.2455801E-02 1.1733200E-02 1.1049790E-02 1.0404008E-02 9.7942855E-03
 9.2190858E-03 8.6768717E-03 8.1661344E-03 7.6853898E-03 7.2331899E-03
 6.8081082E-03 6.4087594E-03 6.0337950E-03 5.6819040E-03 5.3518196E-03
 5.0423052E-03 4.7521871E-03 4.4803158E-03 4.2255973E-03 3.9869836E-03
 3.7634715E-03 3.5541002E-03 3.3579601E-03 3.1741841E-03 3.0019574E-03
 2.8405003E-03 2.6890875E-03 2.5470341E-03 2.4136875E-03 2.2884549E-03
 2.1707714E-03 2.0601109E-03 1.9559860E-03 1.8579433E-03 1.7655690E-03
 1.6784725E-03 1.5962993E-03 1.5187177E-03 1.4454249E-03 1.3761488E-03
 1.3106248E-03 1.2486168E-03 1.1899092E-03 1.1342973E-03 1.0815961E-03
 1.0316275E-03
 4.1868212E-03 2.3411717E-03 6.9762114E-04 -7.5676112E-04 -2.0354795E-03
 -3.1521707E-03 -4.1202386E-03 -4.9526459E-03 -5.6617083E-03 -6.2590837E-03
 -6.7556784E-03 -7.1616443E-03 -7.4863820E-03 -7.7385781E-03 -7.9262219E-03
 -8.0566388E-03 -8.1365425E-03 -8.1720501E-03 -8.1687402E-03 -8.1316791E-03
 -8.0654593E-03 -7.9742288E-03 -7.8617334E-03 -7.7313245E-03 -7.5860186E-03
 -7.4285041E-03 -7.2611719E-03 -7.0861396E-03 -6.9052768E-03 -6.7202235E-03
 -6.5324111E-03 -6.3430839E-03 -6.1533167E-03 -5.9640314E-03 -5.7760072E-03
 -5.5899089E-03 -5.4062838E-03 -5.2255890E-03 -5.0482010E-03 -4.8744110E-03
 -4.7044600E-03 -4.5385272E-03 -4.3767458E-03 -4.2192112E-03 -4.0659835E-03
 -3.9171032E-03 -3.7725735E-03 -3.6323853E-03 -3.4965232E-03 -3.3649406E-03
 -3.2375960E-03 -3.1144356E-03 -2.9953935E-03 -2.8804042E-03 -2.7693969E-03
 -2.6622962E-03 -2.5590251E-03 -2.4595014E-03 -2.3636445E-03 -2.2713745E-03
 -2.1825978E-03 -2.0972311E-03 -2.0151853E-03 -1.9363640E-03 -1.8606755E-03
 -1.7880281E-03 -1.7183187E-03 -1.6514525E-03 -1.5873325E-03 -1.5258563E-03
 -1.4669218E-03
 4.7101557E-02 4.5346886E-02 4.3566041E-02 4.1776832E-02 3.9994013E-02
 3.8229633E-02 3.6493417E-02 3.4793038E-02 3.3134524E-02 3.1522475E-02
 2.9960321E-02 2.8450517E-02 2.6994728E-02 2.5593961E-02 2.4248678E-02
 2.2958912E-02 2.1724313E-02 2.0544270E-02 1.9417899E-02 1.8344130E-02
 1.7321760E-02 1.6349429E-02 1.5425703E-02 1.4549071E-02 1.3717956E-02
 1.2930763E-02 1.2185852E-02 1.1481571E-02 1.0816288E-02 1.0188343E-02
 9.5961113E-03 9.0379855E-03 8.5123600E-03 8.0176806E-03 7.5524189E-03
 7.1150684E-03 6.7041777E-03 6.3183228E-03 5.9561296E-03 5.6162695E-03
 5.2974522E-03 4.9984460E-03 4.7180606E-03 4.4551585E-03 4.2086532E-03
 3.9775115E-03 3.7607464E-03 3.5574236E-03 3.3666601E-03 3.1876217E-03
 3.0195252E-03 2.8616274E-03 2.7132405E-03 2.5737174E-03 2.4424563E-03
 2.3188903E-03 2.2025048E-03 2.0928055E-03 1.9893523E-03 1.8917308E-03
 1.7995554E-03 1.7124698E-03 1.6301529E-03 1.5523004E-03 1.4786354E-03
 1.4088989E-03 1.3428502E-03 1.2802688E-03 1.2209481E-03 1.1646951E-03
 1.1113293E-03
 3.5852185E-03 1.7429052E-03 1.0554623E-04 -1.3403273E-03 -2.6087426E-03
 -3.7138090E-03 -4.6693571E-03 -5.4886681E-03 -6.1843838E-03 -6.7683868E-03
 -7.2517665E-03 -7.6448112E-03 -7.9570254E-03 -8.1971595E-03 -8.3732475E-03
 -8.4926309E-03 -8.5620275E-03 -8.5875411E-03 -8.5747354E-03 -8.5286414E-03
 -8.4538180E-03 -8.3543751E-03 -8.2340091E-03 -8.0960356E-03 -7.9434300E-03
 -7.7788290E-03 -7.6045832E-03 -7.4227699E-03 -7.2352220E-03 -7.0435451E-03
 -6.8491385E-03 -6.6532213E-03 -6.4568431E-03 -6.2609119E-03 -6.0661878E-03
 -5.8733271E-03 -5.6828787E-03 -5.4952987E-03 -5.3109610E-03 -5.1301802E-03
 -4.9531930E-03 -4.7802017E-03 -4.6113539E-03 -4.4467645E-03 -4.2865137E-03
 -4.1306540E-03 -3.9792168E-03 -3.8322140E-03 -3.6896360E-03 -3.5514694E-03
 -3.4176793E-03 -3.2882283E-03 -3.1630641E-03 -3.0421314E-03 -2.9253706E-03
 -2.8127094E-03 -2.7040786E-03 -2.5993972E-03 -2.4985871E-03 -2.4015591E-03
 -2.3082246E-03 -2.2184900E-03 -2.1322551E-03 -2.0494272E-03 -1.9698902E-03
 -1.8935531E-03 -1.8203023E-03 -1.7500300E-03 -1.6826284E-03 -1.6179915E-03
 -1.5560081E-03
 4.9023021E-02 4.7179803E-02 4.5311585E-02 4.3436948E-02 4.1571215E-02
 3.9726835E-02 3.7913769E-02 3.6139838E-02 3.4411144E-02 3.2732282E-02
 3.1106632E-02 2.9536596E-02 2.8023755E-02 2.6569005E-02 2.5172709E-02
 2.3834785E-02 2.2554779E-02 2.1331953E-02 2.0165315E-02 1.9053696E-02
 1.7995756E-02 1.6990054E-02 1.6035026E-02 1.5129064E-02 1.4270483E-02
 1.3457577E-02 1.2688612E-02 1.1961827E-02 1.1275486E-02 1.0627837E-02
 1.0017152E-02 9.4417185E-03 8.8998536E-03 8.3899060E-03 7.9102581E-03
 7.4593239E-03 7.0355730E-03 6.6375113E-03 6.2637012E-03 5.9127486E-03
 5.5833138E-03 5.2741105E-03 4.9839094E-03 4.7115339E-03 4.4558668E-03
 4.2158454E-03 3.9904634E-03 3.7787629E-03 3.5798510E-03 3.3928819E-03
 3.2170631E-03 3.0516530E-03 2.8959545E-03 2.7493201E-03 2.6111498E-03
 2.4808829E-03 2.3579970E-03 2.2420168E-03 2.1324917E-03 2.0290089E-03
 1.9311901E-03 1.8386819E-03 1.7511529E-03 1.6682977E-03 1.5898393E-03
 1.5155119E-03 1.4450698E-03 1.3782833E-03 1.3149393E-03 1.2548350E-03
 1.1977857E-03
 2.9518495E-03 1.1089880E-03 -5.2542781E-04 -1.9654748E-03 -3.2257698E-03
 -4.3209624E-03 -5.2653640E-03 -6.0726670E-03 -6.7558545E-03 -7.3270807E-03
 -7.7976538E-03 -8.1780246E-03 -8.4778192E-03 -8.7058721E-03 -8.8702682E-03
 -8.9783873E-03 -9.0369452E-03 -9.0520550E-03 -9.0292487E-03 -8.9735370E-03
 -8.8894451E-03 -8.7810410E-03 -8.6519886E-03 -8.5055558E-03 -8.3446754E-03
 -8.1719449E-03 -7.9896757E-03 -7.7999113E-03 -7.6044505E-03 -7.4048690E-03
 -7.2025429E-03 -6.9986763E-03 -6.7943004E-03 -6.5903151E-03 -6.3874791E-03
 -6.1864555E-03 -5.9877909E-03 -5.7919510E-03 -5.5993339E-03 -5.4102554E-03
 -5.2249874E-03 -5.0437404E-03 -4.8666894E-03 -4.6939650E-03 -4.5256778E-03
 -4.3618949E-03 -4.2026700E-03 -4.0480355E-03 -3.8979987E-03 -3.7525571E-03
 -3.6116936E-03 -3.4753832E-03 -3.3435789E-03 -3.2162357E-03 -3.0932941E-03
 -2.9746867E-03 -2.8603424E-03 -2.7501788E-03 -2.6441058E-03 -2.5420347E-03
 -2.4438677E-03 -2.3494945E-03 -2.2588130E-03 -2.1717118E-03 -2.0880741E-03
 -2.0077890E-03 -1.9307327E-03 -1.8567924E-03 -1.7858514E-03 -1.7177917E-03
 -1.6525020E-03
 5.1163737E-02 4.9218558E-02 4.7250152E-02 4.5277968E-02 4.3317959E-02
 4.1382965E-02 3.9483186E-02 3.7626594E-02 3.5819303E-02 3.4065872E-02
 3.2369614E-02 3.0732812E-02 2.9156910E-02 2.7642688E-02 2.6190337E-02
 2.4799637E-02 2.3469985E-02 2.2200497E-02 2.0990038E-02 1.9837283E-02
 1.8740769E-02 1.7698906E-02 1.6709998E-02 1.5772305E-02 1.4884014E-02
 1.4043287E-02 1.3248266E-02 1.2497070E-02 1.1787840E-02 1.1118705E-02
 1.0487836E-02 9.8934080E-03 9.3336264E-03 8.8067520E-03 8.3110733E-03
 7.8449231E-03 7.4066874E-03 6.9948044E-03 6.6077695E-03 6.2441300E-03
 5.9025027E-03 5.5815480E-03 5.2800030E-03 4.9966583E-03 4.7303704E-03
 4.4800513E-03 4.2446754E-03 4.0232786E-03 3.8149492E-03 3.6188399E-03
 3.4341479E-03 3.2601340E-03 3.0960937E-03 2.9413865E-03 2.7954106E-03
 2.6576032E-03 2.5274511E-03 2.4044681E-03 2.2882102E-03 2.1782622E-03
 2.0742388E-03 1.9757815E-03 1.8825553E-03 1.7942481E-03 1.7105716E-03
 1.6312543E-03 1.5560394E-03 1.4846887E-03 1.4169744E-03 1.3526890E-03
 1.2916384E-03
 2.2852886E-03 4.3675111E-04 -1.1989746E-03 -2.6366699E-03 -3.8916476E-03
 -4.9792058E-03 -5.9141903E-03 -6.7108152E-03 -7.3824609E-03 -7.9416018E-03
 -8.3998172E-03 -8.7677483E-03 -9.0551786E-03 -9.2710424E-03 -9.4234999E-03
 -9.5199710E-03 -9.5671946E-03 -9.5712813E-03 -9.5377546E-03 -9.4716027E-03
 -9.3773231E-03 -9.2589464E-03 -9.1200992E-03 -8.9640198E-03 -8.7935925E-03
 -8.6113922E-03 -8.4196907E-03 -8.2205059E-03 -8.0156121E-03 -7.8065689E-03
 -7.5947391E-03 -7.3813172E-03 -7.1673351E-03 -6.9536935E-03 -6.7411643E-03
 -6.5304171E-03 -6.3220211E-03 -6.1164554E-03 -5.9141396E-03 -5.7154200E-03
 -5.5205799E-03 -5.3298650E-03 -5.1434692E-03 -4.9615498E-03 -4.7842315E-03
 -4.6116109E-03 -4.4437572E-03 -4.2807143E-03 -4.1225115E-03 -3.9691515E-03
 -3.8206312E-03 -3.6769237E-03 -3.5379981E-03 -3.4037968E-03 -3.2742680E-03
 -3.1493355E-03 -3.0289197E-03 -2.9129342E-03 -2.8012798E-03 -2.6938498E-03
 -2.5905361E-03 -2.4912211E-03 -2.3957870E-03 -2.3041083E-03 -2.2160609E-03
 -2.1315173E-03 -2.0503504E-03 -1.9724395E-03 -1.8976533E-03 -1.8258787E-03
 -1.7569881E-03
 5.3548701E-02 5.1486664E-02 4.9403824E-02 4.7320619E-02 4.5253698E-02
 4.3216299E-02 4.1218903E-02 3.9269574E-02 3.7374396E-02 3.5537880E-02
 3.3763189E-02 3.2052450E-02 3.0406937E-02 2.8827216E-02 2.7313309E-02
 2.5864789E-02 2.4480864E-02 2.3160467E-02 2.1902265E-02 2.0704769E-02
 1.9566333E-02 1.8485194E-02 1.7459502E-02 1.6487345E-02 1.5566753E-02
 1.4695751E-02 1.3872312E-02 1.3094432E-02 1.2360104E-02 1.1667333E-02
 1.1014159E-02 1.0398646E-02 9.8188939E-03 9.2730587E-03 8.7593365E-03
 8.2759708E-03 7.8212833E-03 7.3936330E-03 6.9914609E-03 6.6132629E-03
 6.2575988E-03 5.9231026E-03 5.6084716E-03 5.3124679E-03 5.0339266E-03
 4.7717425E-03 4.5248773E-03 4.2923554E-03 4.0732515E-03 3.8667177E-03
 3.6719479E-03 3.4881942E-03 3.3147617E-03 3.1509993E-03 2.9963087E-03
 2.8501202E-03 2.7119203E-03 2.5812157E-03 2.4575575E-03 2.3405212E-03
 2.2297143E-03 2.1247680E-03 2.0253405E-03 1.9310991E-03 1.8417536E-03
 1.7570115E-03 1.6766061E-03 1.6002896E-03 1.5278248E-03 1.4589919E-03
 1.3935857E-03
 1.5835309E-03 -2.7723305E-04 -1.9196532E-03 -3.3593567E-03 -4.6124975E-03
 -5.6951125E-03 -6.6227787E-03 -7.4102823E-03 -8.0714924E-03 -8.6192954E-03
 -9.0655759E-03 -9.4212322E-03 -9.6962256E-03 -9.8996330E-03 -1.0039704E-02
 -1.0123918E-02 -1.0159049E-02 -1.0151218E-02 -1.0105951E-02 -1.0028221E-02
 -9.9224979E-03 -9.7927954E-03 -9.6427053E-03 -9.4754379E-03 -9.2938524E-03
 -9.1004921E-03 -8.8976203E-03 -8.6872289E-03 -8.4710894E-03 -8.2507534E-03
 -8.0275834E-03 -7.8027830E-03 -7.5773927E-03 -7.3523358E-03 -7.1283933E-03
 -6.9062631E-03 -6.6865352E-03 -6.4697224E-03 -6.2562618E-03 -6.0465322E-03
 -5.8408421E-03 -5.6394604E-03 -5.4426068E-03 -5.2504605E-03 -5.0631668E-03
 -4.8808372E-03 -4.7035571E-03 -4.5313793E-03 -4.3643438E-03 -4.2024632E-03
 -4.0457277E-03 -3.8941216E-03 -3.7475973E-03 -3.6061017E-03 -3.4695698E-03
 -3.3379181E-03 -3.2110545E-03 -3.0888733E-03 -2.9712694E-03 -2.8581175E-03
 -2.7492968E-03 -2.6446781E-03 -2.5441274E-03 -2.4475115E-03 -2.3546957E-03
 -2.2655390E-03 -2.1799123E-03 -2.0976835E-03 -2.0187178E-03 -1.9428941E-03
 -1.8700868E-03
 5.6207310E-02 5.4011799E-02 5.1798616E-02 4.9589325E-02 4.7401354E-02
 4.5248423E-02 4.3141242E-02 4.1087948E-02 3.9094590E-02 3.7165534E-02
 3.5303757E-02 3.3511162E-02 3.1788781E-02 3.0136935E-02 2.8555395E-02
 2.7043480E-02 2.5600158E-02 2.4224116E-02 2.2913806E-02 2.1667501E-02
 2.0483350E-02 1.9359384E-02 1.8293547E-02 1.7283738E-02 1.6327806E-02
 1.5423591E-02 1.4568906E-02 1.3761588E-02 1.2999472E-02 1.2280433E-02
 1.1602372E-02 1.0963232E-02 1.0361006E-02 9.7937481E-03 9.2595583E-03
 8.7566068E-03 8.2831345E-03 7.8374436E-03 7.4179135E-03 7.0229936E-03
 6.6512083E-03 6.3011511E-03 5.9714918E-03 5.6609688E-03 5.3683994E-03
 5.0926604E-03 4.8327018E-03 4.5875357E-03 4.3562367E-03 4.1379463E-03
 3.9318544E-03 3.7372077E-03 3.5533076E-03 3.3794963E-03 3.2151637E-03
 3.0597411E-03 2.9126934E-03 2.7735308E-03 2.6417810E-03 2.5170094E-03
 2.3988064E-03 2.2867962E-03 2.1806119E-03 2.0799169E-03 1.9843944E-03
 1.8937471E-03 1.8076909E-03 1.7259681E-03 1.6483263E-03 1.5745360E-03
 1.5043762E-03
 8.4400974E-04 -1.0371729E-03 -2.6929623E-03 -4.1400078E-03 -5.3954925E-03
 -6.4764060E-03 -7.3991665E-03 -8.1792902E-03 -8.8312514E-03 -9.3684299E-03
 -9.8031079E-03 -1.0146486E-02 -1.0408759E-02 -1.0599181E-02 -1.0726116E-02
 -1.0797136E-02 -1.0819063E-02 -1.0798049E-02 -1.0739629E-02 -1.0648778E-02
 -1.0529956E-02 -1.0387160E-02 -1.0223973E-02 -1.0043583E-02 -9.8488433E-03
 -9.6422853E-03 -9.4261654E-03 -9.2024794E-03 -8.9730006E-03 -8.7392936E-03
 -8.5027413E-03 -8.2645612E-03 -8.0258194E-03 -7.7874647E-03 -7.5503103E-03
 -7.3150778E-03 -7.0823897E-03 -6.8527921E-03 -6.6267499E-03 -6.4046634E-03
 -6.1868737E-03 -5.9736706E-03 -5.7652956E-03 -5.5619460E-03 -5.3637777E-03
 -5.1709176E-03 -4.9834582E-03 -4.8014605E-03 -4.6249619E-03 -4.4539720E-03
 -4.2884853E-03 -4.1284654E-03 -3.9738640E-03 -3.8246140E-03 -3.6806324E-03
 -3.5418223E-03 -3.4080751E-03 -3.2792739E-03 -3.1552929E-03 -3.0359959E-03
 -2.9212430E-03 -2.8108966E-03 -2.7048122E-03 -2.6028445E-03 -2.5048472E-03
 -2.4106794E-03 -2.3202007E-03 -2.2332699E-03 -2.1497563E-03 -2.0695264E-03
 -1.9924489E-03
 5.9174486E-02 5.6826912E-02 5.4465488E-02 5.2113172E-02 4.9788218E-02
 4.7504947E-02 4.5274299E-02 4.3104455E-02 4.1001365E-02 3.8969189E-02
 3.7010651E-02 3.5127349E-02 3.3320013E-02 3.1588629E-02 2.9932646E-02
 2.8351074E-02 2.6842574E-02 2.5405535E-02 2.4038123E-02 2.2738351E-02
 2.1504095E-02 2.0333143E-02 1.9223204E-02 1.8171959E-02 1.7177042E-02
 1.6236087E-02 1.5346739E-02 1.4506639E-02 1.3713484E-02 1.2964987E-02
 1.2258917E-02 1.1593100E-02 1.0965412E-02 1.0373808E-02 9.8163085E-03
 9.2910007E-03 8.7960530E-03 8.3297146E-03 7.8903148E-03 7.4762586E-03
 7.0860251E-03 6.7181867E-03 6.3713831E-03 6.0443319E-03 5.7358313E-03
 5.4447446E-03 5.1700096E-03 4.9106255E-03 4.6656621E-03 4.4342428E-03
 4.2155585E-03 4.0088394E-03 3.8133713E-03 3.6284891E-03 3.4535667E-03
 3.2880211E-03 3.1313025E-03 2.9828949E-03 2.8423152E-03 2.7091079E-03
 2.5828516E-03 2.4631373E-03 2.3495944E-03 2.2418606E-03 2.1396049E-03
 2.0425171E-03 1.9502983E-03 1.8626715E-03 1.7793794E-03 1.7001790E-03
 1.6248376E-03
 6.3800559E-05 -1.8479481E-03 -3.5252774E-03 -4.9861404E-03 -6.2489430E-03
 -7.3319087E-03 -8.2524903E-03 -9.0271179E-03 -9.6710166E-03 -1.0198179E-02
 -1.0621379E-02 -1.0952204E-02 -1.1201142E-02 -1.1377669E-02 -1.1490312E-02
 -1.1546757E-02 -1.1553908E-02 -1.1517968E-02 -1.1444505E-02 -1.1338514E-02
 -1.1204462E-02 -1.1046358E-02 -1.0867778E-02 -1.0671924E-02 -1.0461649E-02
 -1.0239499E-02 -1.0007744E-02 -9.7683985E-03 -9.5232567E-03 -9.2739109E-03
 -9.0217730E-03 -8.7680900E-03 -8.5139647E-03 -8.2603768E-03 -8.0081783E-03
 -7.7581187E-03 -7.5108577E-03 -7.2669638E-03 -7.0269378E-03 -6.7911977E-03
 -6.5601119E-03 -6.3339863E-03 -6.1130798E-03 -5.8975914E-03 -5.6877020E-03
 -5.4835342E-03 -5.2851746E-03 -5.0926874E-03 -4.9060993E-03 -4.7254176E-03
 -4.5506139E-03 -4.3816445E-03 -4.2184414E-03 -4.0609208E-03 -3.9089848E-03
 -3.7625113E-03 -3.6213829E-03 -3.4854610E-03 -3.3546027E-03 -3.2286658E-03
 -3.1074935E-03 -2.9909380E-03 -2.8788410E-03 -2.7710535E-03 -2.6674219E-03
 -2.5677995E-03 -2.4720370E-03 -2.3799923E-03 -2.2915250E-03 -2.2064990E-03
 -2.1247817E-03
 6.2492259E-02 5.9971649E-02 5.7441697E-02 5.4927032E-02 5.2446995E-02
 5.0016530E-02 4.7646850E-02 4.5346152E-02 4.3120220E-02 4.0972941E-02
 3.8906686E-02 3.6922667E-02 3.5021193E-02 3.3201851E-02 3.1463679E-02
 2.9805293E-02 2.8224971E-02 2.6720742E-02 2.5290431E-02 2.3931716E-02
 2.2642180E-02 2.1419309E-02 2.0260548E-02 1.9163316E-02 1.8125026E-02
 1.7143087E-02 1.6214939E-02 1.5338055E-02 1.4509949E-02 1.3728187E-02
 1.2990407E-02 1.2294312E-02 1.1637669E-02 1.1018339E-02 1.0434253E-02
 9.8834299E-03 9.3639735E-03 8.8740755E-03 8.4120156E-03 7.9761595E-03
 7.5649573E-03 7.1769389E-03 6.8107289E-03 6.4650183E-03 6.1385850E-03
 5.8302786E-03 5.5390182E-03 5.2637886E-03 5.0036418E-03 4.7576916E-03
 4.5250999E-03 4.3050833E-03 4.0969108E-03 3.8998921E-03 3.7133826E-03
 3.5367704E-03 3.3694871E-03 3.2109923E-03 3.0607765E-03 2.9183687E-03
 2.7833169E-03 2.6551983E-03 2.5336160E-03 2.4181977E-03 2.3085889E-03
 2.2044634E-03 2.1055113E-03 2.0114372E-03 1.9219737E-03 1.8368615E-03
 1.7558646E-03
 -7.6001446E-04 -2.7148516E-03 -4.4237184E-03 -5.9061614E-03 -7.1821972E-03
 -8.2715396E-03 -9.1929780E-03 -9.9640721E-03 -1.0601005E-02 -1.1118542E-02
 -1.1530066E-02 -1.1847659E-02 -1.2082187E-02 -1.2243402E-02 -1.2340056E-02
 -1.2379992E-02 -1.2370231E-02 -1.2317061E-02 -1.2226112E-02 -1.2102423E-02
 -1.1950504E-02 -1.1774388E-02 -1.1577687E-02 -1.1363625E-02 -1.1135082E-02
 -1.0894642E-02 -1.0644604E-02 -1.0387013E-02 -1.0123712E-02 -9.8563246E-03
 -9.5863054E-03 -9.3149384E-03 -9.0433666E-03 -8.7726042E-03 -8.5035432E-03
 -8.2369633E-03 -7.9735527E-03 -7.7139097E-03 -7.4585499E-03 -7.2079231E-03
 -6.9624018E-03 -6.7223087E-03 -6.4879041E-03 -6.2594032E-03 -6.0369661E-03
 -5.8207163E-03 -5.6107407E-03 -5.4070847E-03 -5.2097584E-03 -5.0187507E-03
 -4.8340196E-03 -4.6554976E-03 -4.4830972E-03 -4.3167155E-03 -4.1562309E-03
 -4.0015113E-03 -3.8524170E-03 -3.7087947E-03 -3.5704924E-03 -3.4373482E-03
 -3.3092021E-03 -3.1858929E-03 -3.0672576E-03 -2.9531394E-03 -2.8433753E-03
 -2.7378153E-03 -2.6363039E-03 -2.5386948E-03 -2.4448414E-03 -2.3546002E-03
 -2.2678426E-03
 6.6211656E-02 6.3494131E-02 6.0772430E-02 5.8073170E-02 5.5417154E-02
 5.2820046E-02 5.0293386E-02 4.7845341E-02 4.5481481E-02 4.3205298E-02
 4.1018721E-02 3.8922444E-02 3.6916252E-02 3.4999222E-02 3.3169869E-02
 3.1426325E-02 2.9766409E-02 2.8187707E-02 2.6687631E-02 2.5263483E-02
 2.3912480E-02 2.2631781E-02 2.1418527E-02 2.0269861E-02 1.9182926E-02
 1.8154914E-02 1.7183045E-02 1.6264601E-02 1.5396929E-02 1.4577447E-02
 1.3803649E-02 1.3073122E-02 1.2383522E-02 1.1732622E-02 1.1118266E-02
 1.0538404E-02 9.9910768E-03 9.4744191E-03 8.9866659E-03 8.5261390E-03
 8.0912570E-03 7.6805130E-03 7.2925072E-03 6.9258991E-03 6.5794513E-03
 6.2519787E-03 5.9423787E-03 5.6496202E-03 5.3727170E-03 5.1107625E-03
 4.8628929E-03 4.6282965E-03 4.4062091E-03 4.1959132E-03 3.9967340E-03
 3.8080313E-03 3.6292057E-03 3.4596869E-03 3.2989471E-03 3.1464805E-03
 3.0018147E-03 2.8645080E-03 2.7341377E-03 2.6103114E-03 2.4926632E-03
 2.3808405E-03 2.2745228E-03 2.1734033E-03 2.0771958E-03 1.9856268E-03
 1.8984481E-03
 -1.6296098E-03 -3.6430897E-03 -5.3957845E-03 -6.9092093E-03 -8.2054716E-03
 -9.3061766E-03 -1.0231807E-02 -1.1001367E-02 -1.1632252E-02 -1.2140207E-02
 -1.2539405E-02 -1.2842544E-02 -1.3060979E-02 -1.3204832E-02 -1.3283145E-02
 -1.3303974E-02 -1.3274512E-02 -1.3201176E-02 -1.3089700E-02 -1.2945206E-02
 -1.2772267E-02 -1.2574982E-02 -1.2357014E-02 -1.2121644E-02 -1.1871805E-02
 -1.1610127E-02 -1.1338959E-02 -1.1060404E-02 -1.0776340E-02 -1.0488445E-02
 -1.0198215E-02 -9.9069765E-03 -9.6159140E-03 -9.3260743E-03 -9.0383794E-03
 -8.7536406E-03 -8.4725684E-03 -8.1957793E-03 -7.9238089E-03 -7.6571079E-03
 -7.3960619E-03 -7.1409922E-03 -6.8921526E-03 -6.6497517E-03 -6.4139385E-03
 -6.1848261E-03 -5.9624729E-03 -5.7469117E-03 -5.5381279E-03 -5.3360877E-03
 -5.1407288E-03 -4.9519585E-03 -4.7696694E-03 -4.5937351E-03 -4.4240234E-03
 -4.2603798E-03 -4.1026515E-03 -3.9506755E-03 -3.8042807E-03 -3.6633043E-03
 -3.5275717E-03 -3.3969146E-03 -3.2711651E-03 -3.1501553E-03 -3.0337237E-03
 -2.9217054E-03 -2.8139441E-03 -2.7102851E-03 -2.6105782E-03 -2.5146781E-03
 -2.4224378E-03
 7.0394948E-02 6.7453153E-02 6.4512707E-02 6.1602980E-02 5.8746524E-02
 5.5960000E-02 5.3255308E-02 5.0640617E-02 4.8121147E-02 4.5699917E-02
 4.3378238E-02 4.1156173E-02 3.9032843E-02 3.7006650E-02 3.5075508E-02
 3.3236928E-02 3.1488184E-02 2.9826324E-02 2.8248290E-02 2.6750922E-02
 2.5331046E-02 2.3985444E-02 2.2710912E-02 2.1504296E-02 2.0362465E-02
 1.9282358E-02 1.8260976E-02 1.7295409E-02 1.6382825E-02 1.5520483E-02
 1.4705750E-02 1.3936076E-02 1.3209027E-02 1.2522268E-02 1.1873567E-02
 1.1260799E-02 1.0681937E-02 1.0135065E-02 9.6183643E-03 9.1301110E-03
 8.6686797E-03 8.2325321E-03 7.8202253E-03 7.4303877E-03 7.0617432E-03
 6.7130737E-03 6.3832463E-03 6.0711815E-03 5.7758684E-03 5.4963529E-03
 5.2317390E-03 4.9811755E-03 4.7438610E-03 4.5190398E-03 4.3060002E-03
 4.1040685E-03 3.9126128E-03 3.7310352E-03 3.5587705E-03 3.3952943E-03
 3.2401052E-03 3.0927332E-03 2.9527408E-03 2.8197137E-03 2.6932601E-03
 2.5730201E-03 2.4586432E-03 2.3498158E-03 2.2462301E-03 2.1476033E-03
 2.0536687E-03
 -2.5451474E-03 -4.6368088E-03 -6.4486042E-03 -8.0045955E-03 -9.3294950E-03
 -1.0447370E-02 -1.1380888E-02 -1.2150921E-02 -1.2776419E-02 -1.3274388E-02
 -1.3660019E-02 -1.3946811E-02 -1.4146735E-02 -1.4270420E-02 -1.4327281E-02
 -1.4325674E-02 -1.4273023E-02 -1.4175931E-02 -1.4040280E-02 -1.3871321E-02
 -1.3673733E-02 -1.3451708E-02 -1.3208986E-02 -1.2948929E-02 -1.2674540E-02
 -1.2388512E-02 -1.2093256E-02 -1.1790927E-02 -1.1483461E-02 -1.1172582E-02
 -1.0859831E-02 -1.0546572E-02 -1.0234021E-02 -9.9232541E-03 -9.6152211E-03
 -9.3107512E-03 -9.0105655E-03 -8.7152887E-03 -8.4254621E-03 -8.1415381E-03
 -7.8638894E-03 -7.5928285E-03 -7.3285992E-03 -7.0713810E-03 -6.8213111E-03
 -6.5784720E-03 -6.3429023E-03 -6.1146002E-03 -5.8935387E-03 -5.6796516E-03
 -5.4728515E-03 -5.2730255E-03 -5.0800475E-03 -4.8937784E-03 -4.7140587E-03
 -4.5407307E-03 -4.3736212E-03 -4.2125569E-03 -4.0573631E-03 -3.9078635E-03
 -3.7638766E-03 -3.6252278E-03 -3.4917418E-03 -3.3632391E-03 -3.2395558E-03
 -3.1205204E-03 -3.0059700E-03 -2.8957410E-03 -2.7896781E-03 -2.6876288E-03
 -2.5894437E-03
 7.5118743E-02 7.1921110E-02 6.8730317E-02 6.5579459E-02 6.2493484E-02
 5.9490368E-02 5.6582551E-02 5.3778149E-02 5.1081993E-02 4.8496444E-02
 4.6022043E-02 4.3658040E-02 4.1402712E-02 3.9253660E-02 3.7208006E-02
 3.5262555E-02 3.3413883E-02 3.1658452E-02 2.9992614E-02 2.8412711E-02
 2.6915105E-02 2.5496162E-02 2.4152312E-02 2.2880064E-02 2.1675996E-02
 2.0536784E-02 1.9459192E-02 1.8440103E-02 1.7476508E-02 1.6565500E-02
 1.5704302E-02 1.4890239E-02 1.4120761E-02 1.3393440E-02 1.2705949E-02
 1.2056086E-02 1.1441756E-02 1.0860977E-02 1.0311868E-02 9.7926557E-03
 9.3016569E-03 8.8372873E-03 8.3980495E-03 7.9825288E-03 7.5893942E-03
 7.2173849E-03 6.8653114E-03 6.5320493E-03 6.2165372E-03 5.9177727E-03
 5.6348122E-03 5.3667556E-03 5.1127598E-03 4.8720236E-03 4.6437988E-03
 4.4273711E-03 4.2220750E-03 4.0272758E-03 3.8423827E-03 3.6668365E-03
 3.5001100E-03 3.3417093E-03 3.1911738E-03 3.0480623E-03 2.9119682E-03
 2.7825059E-03 2.6593111E-03 2.5420471E-03 2.4303922E-03 2.3240433E-03
 2.2227222E-03
 -3.5026586E-03 -5.6975326E-03 -7.5878776E-03 -9.2009651E-03 -1.0564887E-02
 -1.1706905E-02 -1.2652542E-02 -1.3425115E-02 -1.4045601E-02 -1.4532660E-02
 -1.4902798E-02 -1.5170561E-02 -1.5348748E-02 -1.5448624E-02 -1.5480112E-02
 -1.5451966E-02 -1.5371921E-02 -1.5246836E-02 -1.5082801E-02 -1.4885229E-02
 -1.4658947E-02 -1.4408266E-02 -1.4137035E-02 -1.3848708E-02 -1.3546365E-02
 -1.3232773E-02 -1.2910414E-02 -1.2581492E-02 -1.2247994E-02 -1.1911686E-02
 -1.1574144E-02 -1.1236767E-02 -1.0900788E-02 -1.0567308E-02 -1.0237283E-02
 -9.9115493E-03 -9.5908307E-03 -9.2757475E-03 -8.9668268E-03 -8.6645046E-03
 -8.3691450E-03 -8.0810245E-03 -7.8003663E-03 -7.5273253E-03 -7.2620101E-03
 -7.0044678E-03 -6.7547113E-03 -6.5127183E-03 -6.2784222E-03 -6.0517434E-03
 -5.8325687E-03 -5.6207683E-03 -5.4161972E-03 -5.2186977E-03 -5.0281039E-03
 -4.8442404E-03 -4.6669291E-03 -4.4959788E-03 -4.3312158E-03 -4.1724439E-03
 -4.0194844E-03 -3.8721438E-03 -3.7302461E-03 -3.5936080E-03 -3.4620489E-03
 -3.3353923E-03 -3.2134694E-03 -3.0961102E-03 -2.9831508E-03 -2.8744333E-03
 -2.7697955E-03
 8.0477349E-02 7.6987386E-02 7.3508881E-02 7.0080139E-02 6.6729493E-02
 6.3476823E-02 6.0335364E-02 5.7313234E-02 5.4414749E-02 5.1641472E-02
 4.8992973E-02 4.6467435E-02 4.4062119E-02 4.1773599E-02 3.9598059E-02
 3.7531428E-02 3.5569478E-02 3.3707939E-02 3.1942517E-02 3.0268963E-02
 2.8683117E-02 2.7180886E-02 2.5758291E-02 2.4411462E-02 2.3136668E-02
 2.1930294E-02 2.0788854E-02 1.9709013E-02 1.8687552E-02 1.7721400E-02
 1.6807614E-02 1.5943395E-02 1.5126062E-02 1.4353068E-02 1.3621997E-02
 1.2930551E-02 1.2276554E-02 1.1657942E-02 1.1072762E-02 1.0519169E-02
 9.9954102E-03 9.4998321E-03 9.0308748E-03 8.5870530E-03 8.1669753E-03
 7.7693118E-03 7.3928079E-03 7.0362794E-03 6.6986079E-03 6.3787284E-03
 6.0756397E-03 5.7883961E-03 5.5160974E-03 5.2578985E-03 5.0130072E-03
 4.7806734E-03 4.5601805E-03 4.3508750E-03 4.1521192E-03 3.9633275E-03
 3.7839422E-03 3.6134475E-03 3.4513499E-03 3.2971867E-03 3.1505276E-03
 3.0109622E-03 2.8781078E-03 2.7516072E-03 2.6311157E-03 2.5163211E-03
 2.4069194E-03
 -4.4904323E-03 -6.8213707E-03 -8.8157421E-03 -1.0504834E-02 -1.1921114E-02
 -1.3096051E-02 -1.4058962E-02 -1.4836414E-02 -1.5452075E-02 -1.5926789E-02
 -1.6278807E-02 -1.6524054E-02 -1.6676407E-02 -1.6747979E-02 -1.6749356E-02
 -1.6689811E-02 -1.6577495E-02 -1.6419591E-02 -1.6222449E-02 -1.5991699E-02
 -1.5732342E-02 -1.5448833E-02 -1.5145142E-02 -1.4824821E-02 -1.4491039E-02
 -1.4146633E-02 -1.3794136E-02 -1.3435809E-02 -1.3073677E-02 -1.2709534E-02
 -1.2344978E-02 -1.1981426E-02 -1.1620121E-02 -1.1262166E-02 -1.0908511E-02
 -1.0559982E-02 -1.0217291E-02 -9.8810373E-03 -9.5517216E-03 -9.2297541E-03
 -8.9154625E-03 -8.6091012E-03 -8.3108507E-03 -8.0208387E-03 -7.7391355E-03
 -7.4657602E-03 -7.2007021E-03 -6.9439057E-03 -6.6952859E-03 -6.4547388E-03
 -6.2221303E-03 -5.9973216E-03 -5.7801474E-03 -5.5704378E-03 -5.3680134E-03
 -5.1726894E-03 -4.9842782E-03 -4.8025823E-03 -4.6274103E-03 -4.4585648E-03
 -4.2958525E-03 -4.1390741E-03 -3.9880439E-03 -3.8425662E-03 -3.7024589E-03
 -3.5675345E-03 -3.4376124E-03 -3.3125165E-03 -3.1920762E-03 -3.0761256E-03
 -2.9644957E-03
 8.6586744E-02 8.2762748E-02 7.8952193E-02 7.5201042E-02 7.1542628E-02
 6.7999721E-02 6.4586848E-02 6.1312281E-02 5.8179762E-02 5.5189855E-02
 5.2340887E-02 4.9629763E-02 4.7052402E-02 4.4604152E-02 4.2280030E-02
 4.0074896E-02 3.7983567E-02 3.6000904E-02 3.4121852E-02 3.2341495E-02
 3.0655056E-02 2.9057918E-02 2.7545637E-02 2.6113940E-02 2.4758724E-02
 2.3476059E-02 2.2262180E-02 2.1113491E-02 2.0026565E-02 1.8998126E-02
 1.8025057E-02 1.7104395E-02 1.6233318E-02 1.5409159E-02 1.4629368E-02
 1.3891544E-02 1.3193401E-02 1.2532774E-02 1.1907619E-02 1.1315996E-02
 1.0756063E-02 1.0226075E-02 9.7243842E-03 9.2494236E-03 8.7997196E-03
 8.3738584E-03 7.9705147E-03 7.5884308E-03 7.2264113E-03 6.8833311E-03
 6.5581277E-03 6.2497961E-03 5.9573841E-03 5.6799925E-03 5.4167868E-03
 5.1669655E-03 4.9297828E-03 4.7045345E-03 4.4905511E-03 4.2872173E-03
 4.0939394E-03 3.9101690E-03 3.7353863E-03 3.5691028E-03 3.4108572E-03
 3.2602199E-03 3.1167818E-03 2.9801584E-03 2.8499945E-03 2.7259446E-03
 2.6076939E-03
 -5.4830238E-03 -7.9943957E-03 -1.0127336E-02 -1.1918095E-02 -1.3404758E-02
 -1.4624422E-02 -1.5611500E-02 -1.6396958E-02 -1.7008102E-02 -1.7468717E-02
 -1.7799387E-02 -1.8017877E-02 -1.8139493E-02 -1.8177455E-02 -1.8143218E-02
 -1.8046720E-02 -1.7896637E-02 -1.7700559E-02 -1.7465159E-02 -1.7196314E-02
 -1.6899228E-02 -1.6578514E-02 -1.6238267E-02 -1.5882136E-02 -1.5513366E-02
 -1.5134856E-02 -1.4749184E-02 -1.4358647E-02 -1.3965287E-02 -1.3570911E-02
 -1.3177125E-02 -1.2785342E-02 -1.2396797E-02 -1.2012568E-02 -1.1633593E-02
 -1.1260666E-02 -1.0894469E-02 -1.0535563E-02 -1.0184414E-02 -9.8413983E-03
 -9.5067956E-03 -9.1808280E-03 -8.8636409E-03 -8.5553247E-03 -8.2559148E-03
 -7.9654129E-03 -7.6837684E-03 -7.4109077E-03 -7.1467278E-03 -6.8911053E-03
 -6.6438937E-03 -6.4049317E-03 -6.1740424E-03 -5.9510507E-03 -5.7357615E-03
 -5.5279774E-03 -5.3274999E-03 -5.1341257E-03 -4.9476451E-03 -4.7678575E-03
 -4.5945542E-03 -4.4275322E-03 -4.2665889E-03 -4.1115223E-03 -3.9621391E-03
 -3.8182447E-03 -3.6796480E-03 -3.5461641E-03 -3.4176155E-03 -3.2938258E-03
 -3.1746204E-03
 9.3587987E-02 8.9383781E-02 8.5189275E-02 8.1061639E-02 7.7042058E-02
 7.3158003E-02 6.9426216E-02 6.5855540E-02 6.2449157E-02 5.9206415E-02
 5.6124125E-02 5.3197529E-02 5.0420921E-02 4.7788076E-02 4.5292567E-02
 4.2927962E-02 4.0687889E-02 3.8566191E-02 3.6556892E-02 3.4654263E-02
 3.2852832E-02 3.1147353E-02 2.9532846E-02 2.8004551E-02 2.6557950E-02
 2.5188748E-02 2.3892842E-02 2.2666350E-02 2.1505585E-02 2.0407042E-02
 1.9367389E-02 1.8383479E-02 1.7452311E-02 1.6571064E-02 1.5737036E-02
 1.4947681E-02 1.4200587E-02 1.3493451E-02 1.2824116E-02 1.2190512E-02
 1.1590685E-02 1.1022784E-02 1.0485052E-02 9.9758171E-03 9.4935084E-03
 9.0366257E-03 8.6037479E-03 8.1935385E-03 7.8047281E-03 7.4361162E-03
 7.0865727E-03 6.7550330E-03 6.4404830E-03 6.1419732E-03 5.8586169E-03
 5.5895606E-03 5.3340201E-03 5.0912425E-03 4.8605283E-03 4.6412116E-03
 4.4326731E-03 4.2343270E-03 4.0456201E-03 3.8660304E-03 3.6950752E-03
 3.5322914E-03 3.3772457E-03 3.2295303E-03 3.0887602E-03 2.9545762E-03
 2.8266348E-03
 -6.4313072E-03 -9.1845347E-03 -1.1504775E-02 -1.3433686E-02 -1.5016574E-02
 -1.6298046E-02 -1.7319500E-02 -1.8117946E-02 -1.8725704E-02 -1.9170608E-02
 -1.9476417E-02 -1.9663367E-02 -1.9748673E-02 -1.9747026E-02 -1.9670989E-02
 -1.9531364E-02 -1.9337473E-02 -1.9097406E-02 -1.8818201E-02 -1.8506037E-02
 -1.8166322E-02 -1.7803837E-02 -1.7422788E-02 -1.7026920E-02 -1.6619535E-02
 -1.6203573E-02 -1.5781635E-02 -1.5356031E-02 -1.4928798E-02 -1.4501739E-02
 -1.4076440E-02 -1.3654280E-02 -1.3236471E-02 -1.2824054E-02 -1.2417916E-02
 -1.2018820E-02 -1.1627396E-02 -1.1244157E-02 -1.0869525E-02 -1.0503833E-02
 -1.0147321E-02 -9.8001678E-03 -9.4624842E-03 -9.1343243E-03 -8.8157048E-03
 -8.5065905E-03 -8.2069160E-03 -7.9165855E-03 -7.6354747E-03 -7.3634493E-03
 -7.1003400E-03 -6.8459800E-03 -6.6001783E-03 -6.3627423E-03 -6.1334651E-03
 -5.9121428E-03 -5.6985575E-03 -5.4924986E-03 -5.2937437E-03 -5.1020761E-03
 -4.9172821E-03 -4.7391434E-03 -4.5674476E-03 -4.4019804E-03 -4.2425417E-03
 -4.0889229E-03 -3.9409259E-03 -3.7983577E-03 -3.6610221E-03 -3.5287410E-03
 -3.4013311E-03
 0.1016479 9.7017013E-02 9.2379838E-02 8.7810919E-02 8.3364017E-02
 7.9074554E-02 7.4963450E-02 7.1040973E-02 6.7310013E-02 6.3768543E-02
 6.0411517E-02 5.7232074E-02 5.4222435E-02 5.1374376E-02 4.8679654E-02
 4.6130195E-02 4.3718178E-02 4.1436151E-02 3.9277021E-02 3.7234064E-02
 3.5300959E-02 3.3471711E-02 3.1740669E-02 3.0102516E-02 2.8552221E-02
 2.7085036E-02 2.5696477E-02 2.4382306E-02 2.3138521E-02 2.1961330E-02
 2.0847160E-02 1.9792618E-02 1.8794490E-02 1.7849743E-02 1.6955504E-02
 1.6109036E-02 1.5307759E-02 1.4549213E-02 1.3831078E-02 1.3151146E-02
 1.2507324E-02 1.1897620E-02 1.1320156E-02 1.0773143E-02 1.0254899E-02
 9.7638192E-03 9.2983888E-03 8.8571766E-03 8.4388312E-03 8.0420785E-03
 7.6657087E-03 7.3085940E-03 6.9696517E-03 6.6478834E-03 6.3423351E-03
 6.0521080E-03 5.7763625E-03 5.5143060E-03 5.2651833E-03 5.0283000E-03
 4.8029856E-03 4.5886226E-03 4.3846206E-03 4.1904240E-03 4.0055108E-03
 3.8293982E-03 3.6616146E-03 3.5017312E-03 3.3493345E-03 3.2040360E-03
 3.0654750E-03
 -7.2464361E-03 -1.0328385E-02 -1.2906678E-02 -1.5027962E-02 -1.6746214E-02
 -1.8115968E-02 -1.9188251E-02 -2.0008558E-02 -2.0616297E-02 -2.1044945E-02
 -2.1322699E-02 -2.1473194E-02 -2.1516234E-02 -2.1468451E-02 -2.1343879E-02
 -2.1154406E-02 -2.0910159E-02 -2.0619826E-02 -2.0290896E-02 -1.9929843E-02
 -1.9542316E-02 -1.9133242E-02 -1.8706946E-02 -1.8267229E-02 -1.7817438E-02
 -1.7360521E-02 -1.6899079E-02 -1.6435396E-02 -1.5971493E-02 -1.5509122E-02
 -1.5049830E-02 -1.4594948E-02 -1.4145628E-02 -1.3702856E-02 -1.3267466E-02
 -1.2840158E-02 -1.2421505E-02 -1.2011975E-02 -1.1611941E-02 -1.1221679E-02
 -1.0841398E-02 -1.0471233E-02 -1.0111265E-02 -9.7615235E-03 -9.4219903E-03
 -9.0926122E-03 -8.7733036E-03 -8.4639480E-03 -8.1644086E-03 -7.8745261E-03
 -7.5941272E-03 -7.3230206E-03 -7.0610065E-03 -6.8078716E-03 -6.5634013E-03
 -6.3273725E-03 -6.0995594E-03 -5.8797300E-03 -5.6676534E-03 -5.4631019E-03
 -5.2658436E-03 -5.0756503E-03 -4.8922966E-03 -4.7155619E-03 -4.5452225E-03
 -4.3810699E-03 -4.2228899E-03 -4.0704776E-03 -3.9236322E-03 -3.7821636E-03
 -3.6458741E-03
 0.1109510 0.1058576 0.1007183 9.5634088E-02 9.0679362E-02
 8.5903659E-02 8.1335954E-02 7.6990023E-02 7.2869226E-02 6.8970270E-02
 6.5285824E-02 6.1806396E-02 5.8521509E-02 5.5420373E-02 5.2492380E-02
 4.9727328E-02 4.7115527E-02 4.4647891E-02 4.2315889E-02 4.0111572E-02
 3.8027525E-02 3.6056817E-02 3.4192994E-02 3.2430008E-02 3.0762210E-02
 2.9184300E-02 2.7691314E-02 2.6278561E-02 2.4941666E-02 2.3676481E-02
 2.2479108E-02 2.1345858E-02 2.0273250E-02 1.9258000E-02 1.8296983E-02
 1.7387258E-02 1.6526021E-02 1.5710622E-02 1.4938560E-02 1.4207444E-02
 1.3515021E-02 1.2859150E-02 1.2237811E-02 1.1649080E-02 1.1091152E-02
 1.0562311E-02 1.0060936E-02 9.5854970E-03 9.1345506E-03 8.7067392E-03
 8.3007747E-03 7.9154475E-03 7.5496160E-03 7.2022015E-03 6.8722009E-03
 6.5586511E-03 6.2606572E-03 5.9773736E-03 5.7079969E-03 5.4517817E-03
 5.2080192E-03 4.9760463E-03 4.7552292E-03 4.5449776E-03 4.3447390E-03
 4.1539851E-03 3.9722221E-03 3.7989847E-03 3.6338284E-03 3.4763424E-03
 3.3261341E-03
 -7.7759535E-03 -1.1308907E-02 -1.4249934E-02 -1.6646940E-02 -1.8562548E-02
 -2.0063866E-02 -2.1215120E-02 -2.2073906E-02 -2.2689801E-02 -2.3104470E-02
 -2.3352444E-02 -2.3462161E-02 -2.3457026E-02 -2.3356332E-02 -2.3176054E-02
 -2.2929505E-02 -2.2627836E-02 -2.2280462E-02 -2.1895379E-02 -2.1479428E-02
 -2.1038486E-02 -2.0577637E-02 -2.0101286E-02 -1.9613281E-02 -1.9116970E-02
 -1.8615283E-02 -1.8110782E-02 -1.7605700E-02 -1.7101996E-02 -1.6601354E-02
 -1.6105251E-02 -1.5614938E-02 -1.5131496E-02 -1.4655842E-02 -1.4188738E-02
 -1.3730815E-02 -1.3282592E-02 -1.2844478E-02 -1.2416794E-02 -1.1999777E-02
 -1.1593590E-02 -1.1198342E-02 -1.0814078E-02 -1.0440798E-02 -1.0078466E-02
 -9.7270031E-03 -9.3863020E-03 -9.0562310E-03 -8.7366262E-03 -8.4273191E-03
 -8.1281131E-03 -7.8388043E-03 -7.5591719E-03 -7.2889864E-03 -7.0280195E-03
 -6.7760292E-03 -6.5327715E-03 -6.2980056E-03 -6.0714833E-03 -5.8529573E-03
 -5.6421882E-03 -5.4389299E-03 -5.2429456E-03 -5.0539998E-03 -4.8718606E-03
 -4.6962989E-03 -4.5270976E-03 -4.3640332E-03 -4.2068958E-03 -4.0554870E-03
 -3.9095925E-03
 0.1216713 0.1161141 0.1104297 0.1047560 9.9201314E-02
 9.3840294E-02 8.8717863E-02 8.3856009E-02 7.9260826E-02 7.4928351E-02
 7.0848800E-02 6.7009382E-02 6.3396081E-02 5.9994694E-02 5.6791477E-02
 5.3773399E-02 5.0928306E-02 4.8244946E-02 4.5712922E-02 4.3322667E-02
 4.1065376E-02 3.8932920E-02 3.6917787E-02 3.5013035E-02 3.3212211E-02
 3.1509321E-02 2.9898779E-02 2.8375354E-02 2.6934171E-02 2.5570640E-02
 2.4280459E-02 2.3059571E-02 2.1904144E-02 2.0810593E-02 1.9775501E-02
 1.8795641E-02 1.7867979E-02 1.6989619E-02 1.6157845E-02 1.5370076E-02
 1.4623867E-02 1.3916906E-02 1.3247017E-02 1.2612135E-02 1.2010312E-02
 1.1439709E-02 1.0898589E-02 1.0385319E-02 9.8983468E-03 9.4362237E-03
 8.9975763E-03 8.5811047E-03 8.1855981E-03 7.8098965E-03 7.4529285E-03
 7.1136681E-03 6.7911572E-03 6.4844857E-03 6.1928043E-03 5.9153084E-03
 5.6512426E-03 5.3998926E-03 5.1605827E-03 4.9326848E-03 4.7155963E-03
 4.5087561E-03 4.3116366E-03 4.1237315E-03 3.9445702E-03 3.7737023E-03
 3.6107185E-03
 -7.7748462E-03 -1.1923209E-02 -1.5379813E-02 -1.8181633E-02 -2.0395370E-02
 -2.2101542E-02 -2.3381595E-02 -2.4310311E-02 -2.4952279E-02 -2.5361300E-02
 -2.5581308E-02 -2.5647813E-02 -2.5589410E-02 -2.5429158E-02 -2.5185745E-02
 -2.4874402E-02 -2.4507623E-02 -2.4095761E-02 -2.3647439E-02 -2.3169909E-02
 -2.2669310E-02 -2.2150876E-02 -2.1619070E-02 -2.1077756E-02 -2.0530252E-02
 -1.9979430E-02 -1.9427773E-02 -1.8877432E-02 -1.8330265E-02 -1.7787864E-02
 -1.7251600E-02 -1.6722640E-02 -1.6201973E-02 -1.5690425E-02 -1.5188686E-02
 -1.4697319E-02 -1.4216776E-02 -1.3747408E-02 -1.3289494E-02 -1.2843223E-02
 -1.2408724E-02 -1.1986064E-02 -1.1575262E-02 -1.1176290E-02 -1.0789084E-02
 -1.0413541E-02 -1.0049534E-02 -9.6969027E-03 -9.3554677E-03 -9.0250317E-03
 -8.7053804E-03 -8.3962902E-03 -8.0975210E-03 -7.8088231E-03 -7.5299498E-03
 -7.2606388E-03 -7.0006349E-03 -6.7496686E-03 -6.5074819E-03 -6.2738145E-03
 -6.0484041E-03 -5.8309953E-03 -5.6213331E-03 -5.4191672E-03 -5.2242521E-03
 -5.0363485E-03 -4.8552188E-03 -4.6806345E-03 -4.5123678E-03 -4.3502096E-03
 -4.1939337E-03
 0.1339089 0.1279600 0.1217409 0.1154311 0.1091879
 0.1031294 9.7331934E-02 9.1836236E-02 8.6656921E-02 8.1791870E-02
 7.7229291E-02 7.2952531E-02 6.8943009E-02 6.5181926E-02 6.1651245E-02
 5.8334120E-02 5.5214997E-02 5.2279729E-02 4.9515396E-02 4.6910286E-02
 4.4453751E-02 4.2136066E-02 3.9948367E-02 3.7882529E-02 3.5931069E-02
 3.4087099E-02 3.2344237E-02 3.0696549E-02 2.9138541E-02 2.7665056E-02
 2.6271280E-02 2.4952708E-02 2.3705088E-02 2.2524446E-02 2.1407012E-02
 2.0349255E-02 1.9347835E-02 1.8399594E-02 1.7501574E-02 1.6650958E-02
 1.5845094E-02 1.5081494E-02 1.4357792E-02 1.3671764E-02 1.3021316E-02
 1.2404470E-02 1.1819356E-02 1.1264219E-02 1.0737402E-02 1.0237339E-02
 9.7625684E-03 9.3116919E-03 8.8834064E-03 8.4764780E-03 8.0897482E-03
 7.7221259E-03 7.3725721E-03 7.0401225E-03 6.7238598E-03 6.4229202E-03
 6.1364966E-03 5.8638118E-03 5.6041526E-03 5.3568338E-03 5.1212166E-03
 4.8966915E-03 4.6826913E-03 4.4786721E-03 4.2841267E-03 4.0985709E-03
 3.9215600E-03
 -6.8902662E-03 -1.1848228E-02 -1.6027246E-02 -1.9427530E-02 -2.2102173E-02
 -2.4138419E-02 -2.5636781E-02 -2.6695110E-02 -2.7400063E-02 -2.7823998E-02
 -2.8025359E-02 -2.8050510E-02 -2.7935948E-02 -2.7710367E-02 -2.7396424E-02
 -2.7012093E-02 -2.6571760E-02 -2.6087046E-02 -2.5567401E-02 -2.5020607E-02
 -2.4453107E-02 -2.3870287E-02 -2.3276677E-02 -2.2676114E-02 -2.2071850E-02
 -2.1466663E-02 -2.0862922E-02 -2.0262655E-02 -1.9667592E-02 -1.9079199E-02
 -1.8498732E-02 -1.7927244E-02 -1.7365616E-02 -1.6814593E-02 -1.6274773E-02
 -1.5746640E-02 -1.5230590E-02 -1.4726911E-02 -1.4235829E-02 -1.3757490E-02
 -1.3291976E-02 -1.2839322E-02 -1.2399508E-02 -1.1972474E-02 -1.1558123E-02
 -1.1156327E-02 -1.0766924E-02 -1.0389729E-02 -1.0024538E-02 -9.6711256E-03
 -9.3292575E-03 -8.9986781E-03 -8.6791264E-03 -8.3703343E-03 -8.0720335E-03
 -7.7839349E-03 -7.5057666E-03 -7.2372435E-03 -6.9780862E-03 -6.7280126E-03
 -6.4867474E-03 -6.2540164E-03 -6.0295486E-03 -5.8130785E-03 -5.6043412E-03
 -5.4030875E-03 -5.2090613E-03 -5.0220182E-03 -4.8417202E-03 -4.6679452E-03
 -4.5004478E-03
 0.1475995 0.1414377 0.1348023 0.1278939 0.1209208
 0.1140649 0.1074599 0.1011868 9.5283121E-02 8.9756280E-02
 8.4595390E-02 7.9780199E-02 7.5286552E-02 7.1089566E-02 6.7165308E-02
 6.3491583E-02 6.0048155E-02 5.6816846E-02 5.3781275E-02 5.0926805E-02
 4.8240282E-02 4.5709867E-02 4.3324865E-02 4.1075602E-02 3.8953245E-02
 3.6949728E-02 3.5057656E-02 3.3270203E-02 3.1581070E-02 2.9984392E-02
 2.8474743E-02 2.7047034E-02 2.5696516E-02 2.4418755E-02 2.3209574E-02
 2.2065064E-02 2.0981546E-02 1.9955559E-02 1.8983861E-02 1.8063383E-02
 1.7191242E-02 1.6364727E-02 1.5581285E-02 1.4838505E-02 1.4134122E-02
 1.3466008E-02 1.2832145E-02 1.2230641E-02 1.1659705E-02 1.1117662E-02
 1.0602929E-02 1.0114010E-02 9.6494984E-03 9.2080645E-03 8.7884692E-03
 8.3895279E-03 8.0101369E-03 7.6492480E-03 7.3058745E-03 6.9790939E-03
 6.6680238E-03 6.3718422E-03 6.0897716E-03 5.8210786E-03 5.5650678E-03
 5.3210887E-03 5.0885221E-03 4.8667872E-03 4.6553337E-03 4.4536404E-03
 4.2612241E-03
 -4.7044004E-03 -1.0641862E-02 -1.5774461E-02 -2.0031219E-02 -2.3413438E-02
 -2.5988061E-02 -2.7863922E-02 -2.9164180E-02 -3.0005896E-02 -3.0489663E-02
 -3.0697003E-02 -3.0691776E-02 -3.0523187E-02 -3.0228887E-02 -2.9837731E-02
 -2.9371928E-02 -2.8848698E-02 -2.8281525E-02 -2.7681062E-02 -2.7055828E-02
 -2.6412681E-02 -2.5757214E-02 -2.5094016E-02 -2.4426891E-02 -2.3758993E-02
 -2.3092970E-02 -2.2431048E-02 -2.1775084E-02 -2.1126663E-02 -2.0487096E-02
 -1.9857503E-02 -1.9238802E-02 -1.8631762E-02 -1.8037016E-02 -1.7455071E-02
 -1.6886333E-02 -1.6331118E-02 -1.5789645E-02 -1.5262086E-02 -1.4748525E-02
 -1.4248993E-02 -1.3763485E-02 -1.3291932E-02 -1.2834229E-02 -1.2390248E-02
 -1.1959814E-02 -1.1542738E-02 -1.1138797E-02 -1.0747754E-02 -1.0369359E-02
 -1.0003339E-02 -9.6494164E-03 -9.3073025E-03 -8.9767016E-03 -8.6573204E-03
 -8.3488524E-03 -8.0509977E-03 -7.7634491E-03 -7.4859085E-03 -7.2180703E-03
 -6.9596437E-03 -6.7103305E-03 -6.4698448E-03 -6.2378999E-03 -6.0142190E-03
 -5.7985294E-03 -5.5905613E-03 -5.3900559E-03 -5.1967590E-03 -5.0104340E-03
 -4.8308186E-03
 0.1624672 0.1563535 0.1495540 0.1422369 0.1346225
 0.1269503 0.1194348 0.1122332 0.1054370 9.9083319E-02
 9.3172751E-02 8.7685302E-02 8.2591467E-02 7.7858754E-02 7.3455267E-02
 6.9351353E-02 6.5520167E-02 6.1937820E-02 5.8583092E-02 5.5437241E-02
 5.2483674E-02 4.9707647E-02 4.7096010E-02 4.4636987E-02 4.2319968E-02
 4.0135358E-02 3.8074430E-02 3.6129199E-02 3.4292374E-02 3.2557201E-02
 3.0917475E-02 2.9367426E-02 2.7901689E-02 2.6515290E-02 2.5203567E-02
 2.3962170E-02 2.2787036E-02 2.1674344E-02 2.0620532E-02 1.9622246E-02
 1.8676335E-02 1.7779836E-02 1.6929977E-02 1.6124139E-02 1.5359874E-02
 1.4634858E-02 1.3946914E-02 1.3293999E-02 1.2674175E-02 1.2085631E-02
 1.1526654E-02 1.0995632E-02 1.0491043E-02 1.0011459E-02 9.5555354E-03
 9.1219964E-03 8.7096505E-03 8.3173616E-03 7.9440745E-03 7.5887791E-03
 7.2505390E-03 6.9284560E-03 6.6216928E-03 6.3294512E-03 6.0509858E-03
 5.7855942E-03 5.5325995E-03 5.2913772E-03 5.0613321E-03 4.8418986E-03
 4.6325531E-03
 -8.6898188E-04 -7.8455620E-03 -1.4095979E-02 -1.9468740E-02 -2.3871664E-02
 -2.7296601E-02 -2.9818015E-02 -3.1565528E-02 -3.2687742E-02 -3.3324588E-02
 -3.3593856E-02 -3.3588436E-02 -3.3379003E-02 -3.3018369E-02 -3.2545775E-02
 -3.1990409E-02 -3.1374104E-02 -3.0713344E-02 -3.0020665E-02 -2.9305737E-02
 -2.8576082E-02 -2.7837610E-02 -2.7095031E-02 -2.6352113E-02 -2.5611915E-02
 -2.4876919E-02 -2.4149165E-02 -2.3430329E-02 -2.2721797E-02 -2.2024712E-02
 -2.1340016E-02 -2.0668482E-02 -2.0010734E-02 -1.9367281E-02 -1.8738519E-02
 -1.8124748E-02 -1.7526189E-02 -1.6942980E-02 -1.6375210E-02 -1.5822895E-02
 -1.5286008E-02 -1.4764464E-02 -1.4258151E-02 -1.3766908E-02 -1.3290556E-02
 -1.2828873E-02 -1.2381626E-02 -1.1948549E-02 -1.1529368E-02 -1.1123792E-02
 -1.0731521E-02 -1.0352240E-02 -9.9856285E-03 -9.6313646E-03 -9.2891213E-03
 -8.9585716E-03 -8.6393803E-03 -8.3312243E-03 -8.0337729E-03 -7.7467095E-03
 -7.4697095E-03 -7.2024581E-03 -6.9446480E-03 -6.6959718E-03 -6.4561330E-03
 -6.2248437E-03 -6.0018133E-03 -5.7867621E-03 -5.5794227E-03 -5.3795441E-03
 -5.1868442E-03
 0.1781180 0.1722945 0.1656409 0.1582492 0.1502804
 0.1419641 0.1335690 0.1253492 0.1174966 0.1101227
 0.1032695 9.6932642E-02 9.1082938E-02 8.5680671E-02 8.0684014E-02
 7.6053113E-02 7.1751751E-02 6.7747883E-02 6.4013340E-02 6.0523581E-02
 5.7257153E-02 5.4195259E-02 5.1321361E-02 4.8620857E-02 4.6080727E-02
 4.3689352E-02 4.1436270E-02 3.9312016E-02 3.7308019E-02 3.5416424E-02
 3.3630054E-02 3.1942304E-02 3.0347070E-02 2.8838724E-02 2.7412035E-02
 2.6062133E-02 2.4784494E-02 2.3574889E-02 2.2429381E-02 2.1344274E-02
 2.0316109E-02 1.9341649E-02 1.8417856E-02 1.7541865E-02 1.6711012E-02
 1.5922772E-02 1.5174779E-02 1.4464803E-02 1.3790747E-02 1.3150646E-02
 1.2542639E-02 1.1964981E-02 1.1416024E-02 1.0894220E-02 1.0398109E-02
 9.9263163E-03 9.4775446E-03 9.0505723E-03 8.6442484E-03 8.2574850E-03
 7.8892605E-03 7.5386083E-03 7.2046160E-03 6.8864217E-03 6.5832175E-03
 6.2942356E-03 6.0187522E-03 5.7560825E-03 5.5055809E-03 5.2666324E-03
 5.0386731E-03
 4.7447686E-03 -3.1817998E-03 -1.0546817E-02 -1.7160708E-02 -2.2847392E-02
 -2.7483324E-02 -3.1035665E-02 -3.3573806E-02 -3.5243265E-02 -3.6219854E-02
 -3.6671065E-02 -3.6736507E-02 -3.6523905E-02 -3.6112968E-02 -3.5561468E-02
 -3.4910977E-02 -3.4191415E-02 -3.3424441E-02 -3.2625858E-02 -3.1807318E-02
 -3.0977473E-02 -3.0142846E-02 -2.9308399E-02 -2.8477939E-02 -2.7654417E-02
 -2.6840158E-02 -2.6036978E-02 -2.5246326E-02 -2.4469372E-02 -2.3707019E-02
 -2.2960011E-02 -2.2228926E-02 -2.1514215E-02 -2.0816214E-02 -2.0135177E-02
 -1.9471271E-02 -1.8824587E-02 -1.8195156E-02 -1.7582960E-02 -1.6987924E-02
 -1.6409922E-02 -1.5848801E-02 -1.5304369E-02 -1.4776397E-02 -1.4264643E-02
 -1.3768828E-02 -1.3288657E-02 -1.2823822E-02 -1.2373996E-02 -1.1938849E-02
 -1.1518032E-02 -1.1111200E-02 -1.0717988E-02 -1.0338043E-02 -9.9710068E-03
 -9.6165156E-03 -9.2742089E-03 -8.9437347E-03 -8.6247316E-03 -8.3168568E-03
 -8.0197612E-03 -7.7331117E-03 -7.4565699E-03 -7.1898066E-03 -6.9325105E-03
 -6.6843620E-03 -6.4450582E-03 -6.2143016E-03 -5.9918021E-03 -5.7772915E-03
 -5.5704671E-03
 0.1942239 0.1888252 0.1825467 0.1754128 0.1674951
 0.1589336 0.1499501 0.1408308 0.1318721 0.1233137
 0.1153009 0.1078903 0.1010767 9.4822504E-02 8.9076899E-02
 8.3787516E-02 7.8905284E-02 7.4386448E-02 7.0192784E-02 6.6291325E-02
 6.2653638E-02 5.9255153E-02 5.6074597E-02 5.3093418E-02 5.0295338E-02
 4.7666010E-02 4.5192674E-02 4.2863928E-02 4.0669560E-02 3.8600307E-02
 3.6647785E-02 3.4804344E-02 3.3062968E-02 3.1417251E-02 2.9861238E-02
 2.8389463E-02 2.6996844E-02 2.5678661E-02 2.4430534E-02 2.3248367E-02
 2.2128342E-02 2.1066884E-02 2.0060651E-02 1.9106509E-02 1.8201532E-02
 1.7342955E-02 1.6528195E-02 1.5754815E-02 1.5020538E-02 1.4323214E-02
 1.3660821E-02 1.3031462E-02 1.2433339E-02 1.1864771E-02 1.1324174E-02
 1.0810050E-02 1.0320993E-02 9.8556718E-03 9.4128391E-03 8.9913122E-03
 8.5899821E-03 8.2077961E-03 7.8437626E-03 7.4969451E-03 7.1664662E-03
 6.8514929E-03 6.5512303E-03 6.2649404E-03 5.9919199E-03 5.7314951E-03
 5.4830550E-03
 1.2032161E-02 3.3323138E-03 -4.9861697E-03 -1.2749709E-02 -1.9764565E-02
 -2.5834640E-02 -3.0799506E-02 -3.4584772E-02 -3.7234720E-02 -3.8898353E-02
 -3.9777100E-02 -4.0070876E-02 -3.9947394E-02 -3.9534360E-02 -3.8924009E-02
 -3.8181204E-02 -3.7351061E-02 -3.6464926E-02 -3.5544626E-02 -3.4605499E-02
 -3.3658359E-02 -3.2710906E-02 -3.1768687E-02 -3.0835709E-02 -2.9914888E-02
 -2.9008375E-02 -2.8117759E-02 -2.7244199E-02 -2.6388576E-02 -2.5551522E-02
 -2.4733499E-02 -2.3934830E-02 -2.3155723E-02 -2.2396309E-02 -2.1656632E-02
 -2.0936672E-02 -2.0236356E-02 -1.9555559E-02 -1.8894129E-02 -1.8251855E-02
 -1.7628506E-02 -1.7023815E-02 -1.6437497E-02 -1.5869232E-02 -1.5318701E-02
 -1.4785548E-02 -1.4269417E-02 -1.3769928E-02 -1.3286702E-02 -1.2819357E-02
 -1.2367491E-02 -1.1930708E-02 -1.1508607E-02 -1.1100788E-02 -1.0706857E-02
 -1.0326412E-02 -9.9590588E-03 -9.6044103E-03 -9.2620784E-03 -8.9316834E-03
 -8.6128553E-03 -8.3052246E-03 -8.0084326E-03 -7.7221263E-03 -7.4459645E-03
 -7.1796086E-03 -6.9227335E-03 -6.6750143E-03 -6.4361459E-03 -6.2058452E-03
 -5.9837746E-03
 0.2106296 0.2056804 0.1998650 0.1931756 0.1856242
 0.1772590 0.1681887 0.1586069 0.1487960 0.1390851
 0.1297712 0.1210530 0.1130168 0.1056653 9.8954633E-02
 9.2823006E-02 8.7205894E-02 8.2043499E-02 7.7283077E-02 7.2879232E-02
 6.8793297E-02 6.4992301E-02 6.1448105E-02 5.8136597E-02 5.5036917E-02
 5.2130967E-02 4.9402878E-02 4.6838664E-02 4.4425942E-02 4.2153616E-02
 4.0011760E-02 3.7991393E-02 3.6084361E-02 3.4283258E-02 3.2581273E-02
 3.0972179E-02 2.9450221E-02 2.8010078E-02 2.6646845E-02 2.5355944E-02
 2.4133122E-02 2.2974409E-02 2.1876112E-02 2.0834766E-02 1.9847143E-02
 1.8910209E-02 1.8021125E-02 1.7177215E-02 1.6375987E-02 1.5615085E-02
 1.4892307E-02 1.4205568E-02 1.3552914E-02 1.2932506E-02 1.2342621E-02
 1.1781620E-02 1.1247968E-02 1.0740222E-02 1.0257013E-02 9.7970609E-03
 9.3591474E-03 8.9421310E-03 8.5449321E-03 8.1665264E-03 7.8059579E-03
 7.4623176E-03 7.1347407E-03 6.8224221E-03 6.5245908E-03 6.2405192E-03
 5.9695332E-03
 2.0778328E-02 1.1480235E-02 2.4180792E-03 -6.2708994E-03 -1.4425286E-02
 -2.1857563E-02 -2.8362541E-02 -3.3746824E-02 -3.7882771E-02 -4.0764481E-02
 -4.2521194E-02 -4.3370474E-02 -4.3547578E-02 -4.3256063E-02 -4.2651016E-02
 -4.1842490E-02 -4.0905751E-02 -3.9891422E-02 -3.8833342E-02 -3.7754130E-02
 -3.6668938E-02 -3.5587918E-02 -3.4517907E-02 -3.3463486E-02 -3.2427713E-02
 -3.1412628E-02 -3.0419547E-02 -2.9449305E-02 -2.8502408E-02 -2.7579110E-02
 -2.6679512E-02 -2.5803585E-02 -2.4951214E-02 -2.4122229E-02 -2.3316393E-02
 -2.2533441E-02 -2.1773070E-02 -2.1034950E-02 -2.0318735E-02 -1.9624054E-02
 -1.8950518E-02 -1.8297721E-02 -1.7665258E-02 -1.7052695E-02 -1.6459605E-02
 -1.5885547E-02 -1.5330071E-02 -1.4792726E-02 -1.4273059E-02 -1.3770620E-02
 -1.3284948E-02 -1.2815591E-02 -1.2362094E-02 -1.1924010E-02 -1.1500893E-02
 -1.1092303E-02 -1.0697808E-02 -1.0316975E-02 -9.9493833E-03 -9.5946221E-03
 -9.2522819E-03 -8.9219669E-03 -8.6032869E-03 -8.2958592E-03 -7.9993168E-03
 -7.7132969E-03 -7.4374443E-03 -7.1714185E-03 -6.9148815E-03 -6.6675399E-03
 -6.4290226E-03
 0.2273327 0.2227938 0.2174270 0.2112174 0.2041561
 0.1962457 0.1875133 0.1780321 0.1679520 0.1575228
 0.1470815 0.1369796 0.1274879 0.1187464 0.1107810
 0.1035484 9.6976303E-02 9.0986967E-02 8.5507855E-02 8.0475546E-02
 7.5836040E-02 7.1543813E-02 6.7560561E-02 6.3853979E-02 6.0396619E-02
 5.7165034E-02 5.4139007E-02 5.1300991E-02 4.8635654E-02 4.6129465E-02
 4.3770429E-02 4.1547827E-02 3.9452039E-02 3.7474375E-02 3.5606951E-02
 3.3842560E-02 3.2174628E-02 3.0597094E-02 2.9104399E-02 2.7691381E-02
 2.6353264E-02 2.5085609E-02 2.3884300E-02 2.2745477E-02 2.1665569E-02
 2.0641210E-02 1.9669268E-02 1.8746795E-02 1.7871043E-02 1.7039428E-02
 1.6249523E-02 1.5499041E-02 1.4785848E-02 1.4107921E-02 1.3463371E-02
 1.2850413E-02 1.2267360E-02 1.1712636E-02 1.1184744E-02 1.0682278E-02
 1.0203918E-02 9.7484030E-03 9.3145603E-03 8.9012701E-03 8.5074855E-03
 8.1322100E-03 7.7745053E-03 7.4334852E-03 7.1083084E-03 6.7981747E-03
 6.5023545E-03
 3.0779889E-02 2.1014187E-02 1.1382514E-02 1.9912196E-03 -7.0374133E-03
 -1.5559153E-02 -2.3401927E-02 -3.0365659E-02 -3.6238100E-02 -4.0839631E-02
 -4.4092704E-02 -4.6072911E-02 -4.6990413E-02 -4.7111694E-02 -4.6683919E-02
 -4.5899585E-02 -4.4894520E-02 -4.3759588E-02 -4.2553976E-02 -4.1315764E-02
 -4.0069278E-02 -3.8829975E-02 -3.7607584E-02 -3.6408149E-02 -3.5235319E-02
 -3.4091197E-02 -3.2976873E-02 -3.1892791E-02 -3.0838994E-02 -2.9815238E-02
 -2.8821127E-02 -2.7856169E-02 -2.6919793E-02 -2.6011426E-02 -2.5130458E-02
 -2.4276271E-02 -2.3448262E-02 -2.2645824E-02 -2.1868359E-02 -2.1115270E-02
 -2.0385966E-02 -1.9679869E-02 -1.8996403E-02 -1.8334989E-02 -1.7695075E-02
 -1.7076092E-02 -1.6477490E-02 -1.5898714E-02 -1.5339225E-02 -1.4798487E-02
 -1.4275968E-02 -1.3771147E-02 -1.3283500E-02 -1.2812526E-02 -1.2357726E-02
 -1.1918602E-02 -1.1494676E-02 -1.1085473E-02 -1.0690529E-02 -1.0309389E-02
 -9.9416161E-03 -9.5867682E-03 -9.2444271E-03 -8.9141764E-03 -8.5956184E-03
 -8.2883583E-03 -7.9920208E-03 -7.7062277E-03 -7.4306242E-03 -7.1648983E-03
 -6.9086361E-03
 0.2444163 0.2402245 0.2352455 0.2294682 0.2228828
 0.2154813 0.2072611 0.1982334 0.1884397 0.1779796
 0.1670466 0.1559469 0.1450607 0.1347383 0.1252030
 0.1165303 0.1086916 0.1016083 9.5188677E-02 8.9345582E-02
 8.4002569E-02 7.9095088E-02 7.4569292E-02 7.0380449E-02 6.6491202E-02
 6.2870204E-02 5.9490912E-02 5.6330670E-02 5.3370006E-02 5.0591979E-02
 4.7981787E-02 4.5526382E-02 4.3214153E-02 4.1034762E-02 3.8978890E-02
 3.7038106E-02 3.5204779E-02 3.3471916E-02 3.1833142E-02 3.0282577E-02
 2.8814809E-02 2.7424827E-02 2.6107999E-02 2.4860000E-02 2.3676844E-02
 2.2554781E-02 2.1490326E-02 2.0480216E-02 1.9521400E-02 1.8611027E-02
 1.7746413E-02 1.6925048E-02 1.6144568E-02 1.5402754E-02 1.4697528E-02
 1.4026927E-02 1.3389098E-02 1.2782309E-02 1.2204921E-02 1.1655389E-02
 1.1132265E-02 1.0634171E-02 1.0159812E-02 9.7079678E-03 9.2774872E-03
 8.8672815E-03 8.4763179E-03 8.1036258E-03 7.7482867E-03 7.4094227E-03
 7.0862309E-03
 4.1894048E-02 3.1746339E-02 2.1663990E-02 1.1733525E-02 2.0493192E-03
 -7.2820978E-03 -1.6135914E-02 -2.4361698E-02 -3.1777244E-02 -3.8171232E-02
 -4.3329507E-02 -4.7097940E-02 -4.9463432E-02 -5.0587121E-02 -5.0746437E-02
 -5.0234910E-02 -4.9294621E-02 -4.8098769E-02 -4.6761923E-02 -4.5356762E-02
 -4.3928344E-02 -4.2504191E-02 -4.1100804E-02 -3.9727826E-02 -3.8390648E-02
 -3.7091978E-02 -3.5832912E-02 -3.4613527E-02 -3.3433314E-02 -3.2291409E-02
 -3.1186763E-02 -3.0118251E-02 -2.9084709E-02 -2.8085006E-02 -2.7118018E-02
 -2.6182678E-02 -2.5277965E-02 -2.4402890E-02 -2.3556532E-02 -2.2737995E-02
 -2.1946423E-02 -2.1180995E-02 -2.0440931E-02 -1.9725457E-02 -1.9033849E-02
 -1.8365389E-02 -1.7719384E-02 -1.7095162E-02 -1.6492067E-02 -1.5909458E-02
 -1.5346712E-02 -1.4803223E-02 -1.4278390E-02 -1.3771639E-02 -1.3282403E-02
 -1.2810127E-02 -1.2354271E-02 -1.1914312E-02 -1.1489732E-02 -1.1080034E-02
 -1.0684732E-02 -1.0303350E-02 -9.9354256E-03 -9.5805079E-03 -9.2381630E-03
 -8.9079663E-03 -8.5895043E-03 -8.2823802E-03 -7.9861991E-03 -7.7006356E-03
 -7.4252328E-03
 0.2619970 0.2580847 0.2534198 0.2479978 0.2418149
 0.2348667 0.2271482 0.2186554 0.2093897 0.1993688
 0.1886474 0.1773524 0.1657227 0.1541172 0.1429438
 0.1325310 0.1230423 0.1144913 0.1068049 9.9879459E-02
 9.3611106E-02 8.7907679E-02 8.2691476E-02 7.7898338E-02 7.3475458E-02
 6.9379300E-02 6.5573700E-02 6.2028397E-02 5.8717817E-02 5.5620112E-02
 5.2716512E-02 4.9990688E-02 4.7428329E-02 4.5016840E-02 4.2744998E-02
 4.0602762E-02 3.8581118E-02 3.6671877E-02 3.4867644E-02 3.3161622E-02
 3.1547599E-02 3.0019868E-02 2.8573168E-02 2.7202610E-02 2.5903700E-02
 2.4672229E-02 2.3504298E-02 2.2396265E-02 2.1344723E-02 2.0346509E-02
 1.9398648E-02 1.8498350E-02 1.7643003E-02 1.6830148E-02 1.6057497E-02
 1.5322881E-02 1.4624259E-02 1.3959721E-02 1.3327454E-02 1.2725776E-02
 1.2153071E-02 1.1607840E-02 1.1088655E-02 1.0594168E-02 1.0123122E-02
 9.6743125E-03 9.2466120E-03 8.8389516E-03 8.4503191E-03 8.0797514E-03
 7.7263713E-03
 5.4037064E-02 4.3560404E-02 3.3102144E-02 2.2737360E-02 1.2543861E-02
 2.6043798E-03 -6.9897519E-03 -1.6133284E-02 -2.4699790E-02 -3.2533035E-02
 -3.9440837E-02 -4.5202050E-02 -4.9605951E-02 -5.2534744E-02 -5.4048877E-02
 -5.4390099E-02 -5.3884521E-02 -5.2833807E-02 -5.1464226E-02 -4.9926534E-02
 -4.8314873E-02 -4.6685830E-02 -4.5072522E-02 -4.3493751E-02 -4.1959643E-02
 -4.0475145E-02 -3.9042082E-02 -3.7660487E-02 -3.6329344E-02 -3.5047062E-02
 -3.3811811E-02 -3.2621633E-02 -3.1474572E-02 -3.0368762E-02 -2.9302400E-02
 -2.8273799E-02 -2.7281383E-02 -2.6323661E-02 -2.5399271E-02 -2.4506927E-02
 -2.3645407E-02 -2.2813581E-02 -2.2010392E-02 -2.1234818E-02 -2.0485912E-02
 -1.9762756E-02 -1.9064484E-02 -1.8390261E-02 -1.7739281E-02 -1.7110785E-02
 -1.6504033E-02 -1.5918307E-02 -1.5352914E-02 -1.4807183E-02 -1.4280478E-02
 -1.3772164E-02 -1.3281636E-02 -1.2808303E-02 -1.2351592E-02 -1.1910954E-02
 -1.1485849E-02 -1.1075747E-02 -1.0680153E-02 -1.0298567E-02 -9.9305185E-03
 -9.5755430E-03 -9.2331935E-03 -8.9030359E-03 -8.5846474E-03 -8.2776835E-03
 -7.9816300E-03
 0.2801991 0.2765015 0.2720772 0.2669289 0.2610600
 0.2544730 0.2471693 0.2391480 0.2304064 0.2209418
 0.2107569 0.1998738 0.1883598 0.1763694 0.1641866
 0.1522166 0.1408795 0.1304657 0.1210764 0.1126706
 0.1051417 9.8369114E-02 9.2241861E-02 8.6665861E-02 8.1563696E-02
 7.6872326E-02 7.2540350E-02 6.8525575E-02 6.4793125E-02 6.1313752E-02
 5.8062807E-02 5.5019230E-02 5.2164871E-02 4.9483966E-02 4.6962671E-02
 4.4588778E-02 4.2351410E-02 4.0240820E-02 3.8248260E-02 3.6365777E-02
 3.4586150E-02 3.2902781E-02 3.1309620E-02 2.9801095E-02 2.8372079E-02
 2.7017819E-02 2.5733905E-02 2.4516240E-02 2.3361012E-02 2.2264671E-02
 2.1223893E-02 2.0235579E-02 1.9296816E-02 1.8404879E-02 1.7557215E-02
 1.6751425E-02 1.5985258E-02 1.5256597E-02 1.4563438E-02 1.3903914E-02
 1.3276258E-02 1.2678797E-02 1.2109970E-02 1.1568286E-02 1.1052355E-02
 1.0560858E-02 1.0092548E-02 9.6462471E-03 9.2208423E-03 8.8152727E-03
 8.4285736E-03
 6.7167208E-02 5.6393653E-02 4.5604955E-02 3.4870014E-02 2.4257418E-02
 1.3836456E-02 3.6790585E-03 -6.1374609E-03 -1.5525996E-02 -2.4383463E-02
 -3.2582253E-02 -3.9960343E-02 -4.6315506E-02 -5.1418170E-02 -5.5066243E-02
 -5.7186566E-02 -5.7915810E-02 -5.7564944E-02 -5.6490004E-02 -5.4987073E-02
 -5.3261373E-02 -5.1441416E-02 -4.9602967E-02 -4.7788955E-02 -4.6022628E-02
 -4.4315647E-02 -4.2672969E-02 -4.1095704E-02 -3.9582830E-02 -3.8132146E-02
 -3.6740936E-02 -3.5406254E-02 -3.4125142E-02 -3.2894760E-02 -3.1712405E-02
 -3.0575577E-02 -2.9481944E-02 -2.8429357E-02 -2.7415859E-02 -2.6439622E-02
 -2.5498968E-02 -2.4592355E-02 -2.3718338E-02 -2.2875579E-02 -2.2062838E-02
 -2.1278940E-02 -2.0522786E-02 -1.9793341E-02 -1.9089611E-02 -1.8410673E-02
 -1.7755643E-02 -1.7123664E-02 -1.6513927E-02 -1.5925657E-02 -1.5358104E-02
 -1.4810562E-02 -1.4282327E-02 -1.3772744E-02 -1.3281161E-02 -1.2806968E-02
 -1.2349565E-02 -1.1908370E-02 -1.1482829E-02 -1.1072398E-02 -1.0676562E-02
 -1.0294811E-02 -9.9266572E-03 -9.5716314E-03 -9.2292689E-03 -8.8992128E-03
 -8.5808812E-03
 0.2991452 0.2956014 0.2913487 0.2863960 0.2807535
 0.2744311 0.2674376 0.2597798 0.2514612 0.2424820
 0.2328390 0.2225284 0.2115525 0.1999358 0.1877574
 0.1751990 0.1625883 0.1503682 0.1389570 0.1285983
 0.1193336 0.1110779 0.1036997 9.7067840E-02 9.1067635E-02
 8.5604757E-02 8.0602869E-02 7.6000385E-02 7.1747437E-02 6.7803152E-02
 6.4133808E-02 6.0711175E-02 5.7511404E-02 5.4514151E-02 5.1701847E-02
 4.9059201E-02 4.6572808E-02 4.4230789E-02 4.2022604E-02 3.9938763E-02
 3.7970725E-02 3.6110755E-02 3.4351807E-02 3.2687437E-02 3.1111749E-02
 2.9619295E-02 2.8205056E-02 2.6864383E-02 2.5592964E-02 2.4386793E-02
 2.3242138E-02 2.2155514E-02 2.1123666E-02 2.0143555E-02 1.9212332E-02
 1.8327324E-02 1.7486025E-02 1.6686082E-02 1.5925277E-02 1.5201537E-02
 1.4512902E-02 1.3857528E-02 1.3233674E-02 1.2639702E-02 1.2074073E-02
 1.1535328E-02 1.1022092E-02 1.0533062E-02 1.0067014E-02 9.6227704E-03
 9.1992682E-03
 8.1268348E-02 7.0216462E-02 5.9124235E-02 4.8057359E-02 3.7079498E-02
 2.6252627E-02 1.5638031E-02 5.2976608E-03 -4.7035916E-03 -1.4294690E-02
 -2.3393372E-02 -3.1898923E-02 -3.9682437E-02 -4.6575848E-02 -5.2366897E-02
 -5.6818750E-02 -5.9742209E-02 -6.1113715E-02 -6.1143015E-02 -6.0195807E-02
 -5.8642343E-02 -5.6764819E-02 -5.4746065E-02 -5.2694205E-02 -5.0669275E-02
 -4.8702877E-02 -4.6810180E-02 -4.4997089E-02 -4.3264396E-02 -4.1610118E-02
 -4.0030897E-02 -3.8522765E-02 -3.7081581E-02 -3.5703301E-02 -3.4384061E-02
 -3.3120263E-02 -3.1908598E-02 -3.0746030E-02 -2.9629797E-02 -2.8557371E-02
 -2.7526446E-02 -2.6534913E-02 -2.5580851E-02 -2.4662483E-02 -2.3778189E-02
 -2.2926452E-02 -2.2105874E-02 -2.1315148E-02 -2.0553058E-02 -1.9818461E-02
 -1.9110277E-02 -1.8427493E-02 -1.7769147E-02 -1.7134320E-02 -1.6522152E-02
 -1.5931811E-02 -1.5362503E-02 -1.4813476E-02 -1.4283995E-02 -1.3773373E-02
 -1.3280932E-02 -1.2806035E-02 -1.2348063E-02 -1.1906412E-02 -1.1480513E-02
 -1.1069813E-02 -1.0673773E-02 -1.0291881E-02 -9.9236323E-03 -9.5686549E-03
 -9.2262803E-03
 0.3189561 0.3155089 0.3113628 0.3065327 0.3010348
 0.2948856 0.2881009 0.2806948 0.2726789 0.2640611
 0.2548451 0.2450296 0.2346091 0.2235767 0.2119325
 0.1997028 0.1869768 0.1739631 0.1610292 0.1486473
 0.1372230 0.1269501 0.1178176 0.1097055 0.1024654
 9.5959000E-02 9.0070494E-02 8.4706098E-02 7.9790957E-02 7.5265028E-02
 7.1079858E-02 6.7195863E-02 6.3580342E-02 6.0205989E-02 5.7049688E-02
 5.4091692E-02 5.1314954E-02 4.8704613E-02 4.6247639E-02 4.3932471E-02
 4.1748807E-02 3.9687395E-02 3.7739910E-02 3.5898767E-02 3.4157109E-02
 3.2508608E-02 3.0947488E-02 2.9468417E-02 2.8066466E-02 2.6737090E-02
 2.5476053E-02 2.4279421E-02 2.3143528E-02 2.2064952E-02 2.1040501E-02
 2.0067187E-02 1.9142207E-02 1.8262930E-02 1.7426893E-02 1.6631778E-02
 1.5875412E-02 1.5155745E-02 1.4470845E-02 1.3818895E-02 1.3198186E-02
 1.2607106E-02 1.2044124E-02 1.1507807E-02 1.0996795E-02 1.0509790E-02
 1.0045616E-02
 9.6338756E-02 8.5018098E-02 7.3637120E-02 6.2260125E-02 5.0948180E-02
 3.9759327E-02 2.8749038E-02 1.7971002E-02 7.4781924E-03 -2.6754804E-03
 -1.2432578E-02 -2.1728367E-02 -3.0485217E-02 -3.8604531E-02 -4.5955673E-02
 -5.2364063E-02 -5.7607237E-02 -6.1442342E-02 -6.3695997E-02 -6.4395651E-02
 -6.3816898E-02 -6.2365729E-02 -6.0415242E-02 -5.8229841E-02 -5.5970997E-02
 -5.3729054E-02 -5.1550977E-02 -4.9459092E-02 -4.7462087E-02 -4.5561235E-02
 -4.3753956E-02 -4.2035785E-02 -4.0401481E-02 -3.8845636E-02 -3.7362967E-02
 -3.5948496E-02 -3.4597620E-02 -3.3306122E-02 -3.2070186E-02 -3.0886332E-02
 -2.9751420E-02 -2.8662603E-02 -2.7617306E-02 -2.6613172E-02 -2.5648076E-02
 -2.4720058E-02 -2.3827320E-02 -2.2968216E-02 -2.2141207E-02 -2.1344893E-02
 -2.0577947E-02 -1.9839140E-02 -1.9127311E-02 -1.8441381E-02 -1.7780330E-02
 -1.7143186E-02 -1.6529031E-02 -1.5937001E-02 -1.5366253E-02 -1.4816013E-02
 -1.4285516E-02 -1.3774042E-02 -1.3280900E-02 -1.2805423E-02 -1.2346979E-02
 -1.1904957E-02 -1.1478761E-02 -1.1067832E-02 -1.0671621E-02 -1.0289732E-02
 -9.9214083E-03
 0.3397536 0.3363483 0.3322471 0.3274708 0.3220411
 0.3159806 0.3093111 0.3020533 0.2942259 0.2858444
 0.2769206 0.2674616 0.2574690 0.2469382 0.2358600
 0.2242232 0.2120246 0.1992909 0.1861209 0.1727477
 0.1595750 0.1470962 0.1356969 0.1255229 0.1165187
 0.1085379 0.1014200 9.5023014E-02 8.9230828E-02 8.3950832E-02
 7.9109669E-02 7.4648820E-02 7.0521101E-02 6.6688105E-02 6.3118063E-02
 5.9784405E-02 5.6664694E-02 5.3739686E-02 5.0992813E-02 4.8409577E-02
 4.5977242E-02 4.3684516E-02 4.1521337E-02 3.9478645E-02 3.7548289E-02
 3.5722848E-02 3.3995569E-02 3.2360256E-02 3.0811235E-02 2.9343270E-02
 2.7951520E-02 2.6631514E-02 2.5379073E-02 2.4190333E-02 2.3061695E-02
 2.1989785E-02 2.0971455E-02 2.0003760E-02 1.9083934E-02 1.8209398E-02
 1.7377712E-02 1.6586592E-02 1.5833894E-02 1.5117586E-02 1.4435775E-02
 1.3786666E-02 1.3168560E-02 1.2579865E-02 1.2019075E-02 1.1484748E-02
 1.0975584E-02
 0.1123844 0.1007979 8.9134723E-02 7.7458628E-02 6.5829456E-02
 5.4303110E-02 4.2931899E-02 3.1764977E-02 2.0848846E-02 1.0228400E-02
 -5.1882591E-05 -9.9459412E-03 -1.9403299E-02 -2.8365029E-02 -3.6757428E-02
 -4.4483170E-02 -5.1409297E-02 -5.7354331E-02 -6.2085722E-02 -6.5355539E-02
 -6.7007817E-02 -6.7119390E-02 -6.6022448E-02 -6.4150952E-02 -6.1873585E-02
 -5.9436008E-02 -5.6980819E-02 -5.4583117E-02 -5.2279226E-02 -5.0084017E-02
 -4.8000921E-02 -4.6027504E-02 -4.4158470E-02 -4.2387374E-02 -4.0707435E-02
 -3.9112050E-02 -3.7595008E-02 -3.6150560E-02 -3.4773502E-02 -3.3459112E-02
 -3.2203116E-02 -3.1001683E-02 -2.9851371E-02 -2.8749052E-02 -2.7691927E-02
 -2.6677439E-02 -2.5703279E-02 -2.4767332E-02 -2.3867670E-02 -2.3002524E-02
 -2.2170261E-02 -2.1369373E-02 -2.0598453E-02 -1.9856196E-02 -1.9141393E-02
 -1.8452894E-02 -1.7789632E-02 -1.7150590E-02 -1.6534809E-02 -1.5941391E-02
 -1.5369477E-02 -1.4818242E-02 -1.4286911E-02 -1.3774738E-02 -1.3281017E-02
 -1.2805067E-02 -1.2346234E-02 -1.1903900E-02 -1.1477455E-02 -1.1066500E-02
 -1.0670144E-02
 0.3616638 0.3582471 0.3541313 0.3493428 0.3439092
 0.3378583 0.3312177 0.3240139 0.3162715 0.3080126
 0.2992561 0.2900169 0.2803048 0.2701243 0.2594729
 0.2483422 0.2367177 0.2245833 0.2119319 0.1987897
 0.1852642 0.1716110 0.1582647 0.1457334 0.1343799
 0.1243058 0.1154195 0.1075545 0.1005424 9.4238944E-02
 8.8528551E-02 8.3319917E-02 7.8541100E-02 7.4134976E-02 7.0055537E-02
 6.6265300E-02 6.2733337E-02 5.9433736E-02 5.6344613E-02 5.3447191E-02
 5.0725229E-02 4.8164576E-02 4.5752767E-02 4.3478720E-02 4.1332580E-02
 3.9305460E-02 3.7389338E-02 3.5576925E-02 3.3861563E-02 3.2237187E-02
 3.0698197E-02 2.9239437E-02 2.7856128E-02 2.6543861E-02 2.5298540E-02
 2.4116337E-02 2.2993701E-02 2.1927297E-02 2.0914027E-02 1.9950978E-02
 1.9035423E-02 1.8164802E-02 1.7336713E-02 1.6548896E-02 1.5799230E-02
 1.5085716E-02 1.4406462E-02 1.3759699E-02 1.3143747E-02 1.2557009E-02
 1.1998042E-02
 0.1294142 0.1175598 0.1056148 9.3643323E-02 8.1704475E-02
 6.9853075E-02 5.8139652E-02 4.6610758E-02 3.5309378E-02 2.4275444E-02
 1.3546573E-02 3.1591393E-03 -6.8501425E-03 -1.6442349E-02 -2.5573062E-02
 -3.4187928E-02 -4.2216230E-02 -4.9561076E-02 -5.6086615E-02 -6.1604336E-02
 -6.5871909E-02 -6.8637192E-02 -6.9761932E-02 -6.9368556E-02 -6.7836218E-02
 -6.5617226E-02 -6.3071944E-02 -6.0428325E-02 -5.7812523E-02 -5.5287190E-02
 -5.2879959E-02 -5.0599683E-02 -4.8445575E-02 -4.6412226E-02 -4.4492163E-02
 -4.2677291E-02 -4.0959600E-02 -3.9331511E-02 -3.7786044E-02 -3.6316846E-02
 -3.4918170E-02 -3.3584878E-02 -3.2312345E-02 -3.1096434E-02 -2.9933443E-02
 -2.8820027E-02 -2.7753184E-02 -2.6730193E-02 -2.5748592E-02 -2.4806146E-02
 -2.3900816E-02 -2.3030726E-02 -2.2194158E-02 -2.1389520E-02 -2.0615350E-02
 -1.9870285E-02 -1.9153045E-02 -1.8462449E-02 -1.7797375E-02 -1.7156783E-02
 -1.6539678E-02 -1.5945129E-02 -1.5372248E-02 -1.4820199E-02 -1.4288182E-02
 -1.3775437E-02 -1.3281239E-02 -1.2804896E-02 -1.2345740E-02 -1.1903360E-02
 -1.1476709E-02
 0.3848221 0.3813410 0.3771518 0.3722866 0.3667791
 0.3606625 0.3539697 0.3467324 0.3389806 0.3307419
 0.3220411 0.3128995 0.3033340 0.2933568 0.2829742
 0.2721865 0.2609866 0.2493609 0.2372895 0.2247511
 0.2117343 0.1982647 0.1844571 0.1705869 0.1571158
 0.1445608 0.1332613 0.1232808 0.1144986 0.1067333
 9.9810898E-02 9.3586273E-02 8.7944455E-02 8.2795493E-02 7.8068756E-02
 7.3708251E-02 6.9669023E-02 6.5914378E-02 6.2414095E-02 5.9142835E-02
 5.6079134E-02 5.3204596E-02 5.0503336E-02 4.7961414E-02 4.5566630E-02
 4.3308090E-02 4.1176077E-02 3.9161850E-02 3.7257504E-02 3.5455871E-02
 3.3750396E-02 3.2135069E-02 3.0604374E-02 2.9153213E-02 2.7776890E-02
 2.6471036E-02 2.5231594E-02 2.4054797E-02 2.2937115E-02 2.1875273E-02
 2.0866187E-02 1.9906981E-02 1.8994957E-02 1.8127576E-02 1.7302467E-02
 1.6517388E-02 1.5770238E-02 1.5059030E-02 1.4381893E-02 1.3737055E-02
 1.3122897E-02
 0.1474377 0.1353089 0.1230781 0.1108096 9.8562442E-02
 8.6390823E-02 7.4344173E-02 6.2467489E-02 5.0801713E-02 3.9383966E-02
 2.8248085E-02 1.7425220E-02 6.9448645E-03 -3.1642155E-03 -1.2872119E-02
 -2.2145662E-02 -3.0945214E-02 -3.9219905E-02 -4.6900868E-02 -5.3890947E-02
 -6.0050942E-02 -6.5185450E-02 -6.9043018E-02 -7.1367942E-02 -7.2038867E-02
 -7.1218662E-02 -6.9324471E-02 -6.6820033E-02 -6.4055882E-02 -6.1244085E-02
 -5.8496982E-02 -5.5867091E-02 -5.3374995E-02 -5.1024709E-02 -4.8812091E-02
 -4.6729289E-02 -4.4767093E-02 -4.2916063E-02 -4.1167192E-02 -3.9512113E-02
 -3.7943192E-02 -3.6453560E-02 -3.5037067E-02 -3.3688199E-02 -3.2402057E-02
 -3.1174244E-02 -3.0000832E-02 -2.8878298E-02 -2.7803473E-02 -2.6773507E-02
 -2.5785817E-02 -2.4838049E-02 -2.3928076E-02 -2.3053935E-02 -2.2213843E-02
 -2.1406144E-02 -2.0629320E-02 -1.9881949E-02 -1.9162718E-02 -1.8470405E-02
 -1.7803853E-02 -1.7161988E-02 -1.6543798E-02 -1.5948316E-02 -1.5374647E-02
 -1.4821929E-02 -1.4289347E-02 -1.3776130E-02 -1.3281536E-02 -1.2805148E-02
 -1.2345723E-02
 0.4093757 0.4057767 0.4014547 0.3964485 0.3907977
 0.3845415 0.3777179 0.3703638 0.3625140 0.3542010
 0.3454548 0.3363016 0.3267642 0.3168610 0.3066054
 0.2960052 0.2850623 0.2737719 0.2621219 0.2500930
 0.2376603 0.2247971 0.2114882 0.1977582 0.1837281
 0.1696907 0.1561297 0.1435682 0.1323232 0.1224262
 0.1137334 0.1060521 9.9204682E-02 9.3045630E-02 8.7460756E-02
 8.2361244E-02 7.7677622E-02 7.3354878E-02 6.9348916E-02 6.5623760E-02
 6.2149696E-02 5.8901865E-02 5.5859197E-02 5.3003591E-02 5.0319444E-02
 4.7793046E-02 4.5412343E-02 4.3166615E-02 4.1046266E-02 3.9042704E-02
 3.7148114E-02 3.5355397E-02 3.3658084E-02 3.2050226E-02 3.0526388E-02
 2.9081523E-02 2.7710972E-02 2.6410421E-02 2.5175842E-02 2.4003511E-02
 2.2889940E-02 2.1831864E-02 2.0826241E-02 1.9870216E-02 1.8961117E-02
 1.8096427E-02 1.7273789E-02 1.6490981E-02 1.5745908E-02 1.5036595E-02
 1.4361227E-02
 0.1664618 0.1540483 0.1415238 0.1289530 0.1163950
 0.1039032 9.1526486E-02 7.9308771E-02 6.7289673E-02 5.5504635E-02
 4.3985263E-02 3.2759789E-02 2.1853674E-02 1.1290254E-02 1.0919010E-03
 -8.7187896E-03 -1.8117340E-02 -2.7074957E-02 -3.5555474E-02 -4.3510348E-02
 -5.0871547E-02 -5.7541024E-02 -6.3376151E-02 -6.8174951E-02 -7.1677640E-02
 -7.3625475E-02 -7.3912397E-02 -7.2736010E-02 -7.0543669E-02 -6.7805879E-02
 -6.4863034E-02 -6.1914340E-02 -5.9059922E-02 -5.6344364E-02 -5.3782590E-02
 -5.1374715E-02 -4.9113899E-02 -4.6990328E-02 -4.4993374E-02 -4.3112539E-02
 -4.1337956E-02 -3.9660610E-02 -3.8072359E-02 -3.6565892E-02 -3.5134729E-02
 -3.3773061E-02 -3.2475732E-02 -3.1238133E-02 -3.0056162E-02 -2.8926149E-02
 -2.7844789E-02 -2.6809106E-02 -2.5816418E-02 -2.4864288E-02 -2.3950512E-02
 -2.3073060E-02 -2.2230087E-02 -2.1419885E-02 -2.0640882E-02 -1.9891627E-02
 -1.9170769E-02 -1.8477045E-02 -1.7809283E-02 -1.7166374E-02 -1.6547291E-02
 -1.5951049E-02 -1.5376731E-02 -1.4823462E-02 -1.4290413E-02 -1.3777171E-02
 -1.3282247E-02
 0.4354884 0.4317164 0.4272005 0.4219870 0.4161225
 0.4096521 0.4026195 0.3950666 0.3870329 0.3785556
 0.3696688 0.3604037 0.3507876 0.3408437 0.3305909
 0.3200431 0.3092090 0.2980914 0.2866870 0.2749857
 0.2629703 0.2506164 0.2378940 0.2247719 0.2112310
 0.1972952 0.1830903 0.1689238 0.1552979 0.1427391
 0.1315446 0.1217193 0.1131016 0.1054901 9.8704606E-02
 9.2599541E-02 8.7061502E-02 8.2002647E-02 7.7354498E-02 7.3062867E-02
 6.9084294E-02 6.5383390E-02 6.1930932E-02 5.8702406E-02 5.5677071E-02
 5.2837111E-02 5.0167080E-02 4.7653478E-02 4.5284387E-02 4.3049231E-02
 4.0938545E-02 3.8943786E-02 3.7057236E-02 3.5271879E-02 3.3581309E-02
 3.1979647E-02 3.0461473E-02 2.9021814E-02 2.7656032E-02 2.6359864E-02
 2.5129316E-02 2.3960687E-02 2.2850515E-02 2.1795558E-02 2.0792807E-02
 1.9839427E-02 1.8932752E-02 1.8070294E-02 1.7249703E-02 1.6468754E-02
 1.5725425E-02
 0.1864880 0.1737760 0.1609470 0.1480659 0.1351917
 0.1223772 0.1096703 9.7114109E-02 8.4747329E-02 7.2604261E-02
 6.0715068E-02 4.9106203E-02 3.7800770E-02 2.6819030E-02 1.6179122E-02
 5.8980212E-03 -4.0075541E-03 -1.3519750E-02 -2.2618018E-02 -3.1276651E-02
 -3.9461587E-02 -4.7125567E-02 -5.4200735E-02 -6.0587645E-02 -6.6140279E-02
 -7.0650697E-02 -7.3851675E-02 -7.5481825E-02 -7.5448282E-02 -7.3977791E-02
 -7.1541414E-02 -6.8613522E-02 -6.5525383E-02 -6.2464882E-02 -5.9522767E-02
 -5.6737013E-02 -5.4118015E-02 -5.1662777E-02 -4.9362279E-02 -4.7205143E-02
 -4.5179550E-02 -4.3274131E-02 -4.1478362E-02 -3.9782669E-02 -3.8178504E-02
 -3.6658201E-02 -3.5214972E-02 -3.3842776E-02 -3.2536246E-02 -3.1290617E-02
 -3.0101631E-02 -2.8965481E-02 -2.7878756E-02 -2.6838383E-02 -2.5841607E-02
 -2.4885910E-02 -2.3969019E-02 -2.3088858E-02 -2.2243518E-02 -2.1431264E-02
 -2.0650482E-02 -1.9899683E-02 -1.9177489E-02 -1.8482611E-02 -1.7813852E-02
 -1.7170090E-02 -1.6550271E-02 -1.5953401E-02 -1.5378544E-02 -1.4825303E-02
 -1.4291863E-02
 0.4633445 0.4593412 0.4545669 0.4490767 0.4429249
 0.4361632 0.4288416 0.4210069 0.4127034 0.4039728
 0.3948534 0.3853804 0.3755853 0.3654954 0.3551340
 0.3445195 0.3336657 0.3225813 0.3112693 0.2997276
 0.2879474 0.2759136 0.2636043 0.2509904 0.2380373
 0.2247098 0.2109857 0.1968877 0.1825460 0.1682797
 0.1546063 0.1420542 0.1309038 0.1211386 0.1125828
 0.1050283 9.8293483E-02 9.2232481E-02 8.6732708E-02 8.1707135E-02
 7.7087998E-02 7.2821818E-02 6.8865694E-02 6.5184690E-02 6.1749976E-02
 5.8537338E-02 5.5526268E-02 5.2699156E-02 5.0040744E-02 4.7537688E-02
 4.5178186E-02 4.2951763E-02 4.0849026E-02 3.8861524E-02 3.6981627E-02
 3.5202358E-02 3.3517364E-02 3.1920813E-02 3.0407328E-02 2.8971970E-02
 2.7610151E-02 2.6317611E-02 2.5090402E-02 2.3924833E-02 2.2817478E-02
 2.1765126E-02 2.0764757E-02 1.9813569E-02 1.8908909E-02 1.8048281E-02
 1.7229401E-02
 0.2075100 0.1944817 0.1813344 0.1681331 0.1549358
 0.1417945 0.1287559 0.1158621 0.1031508 9.0655260E-02
 7.8404777E-02 6.6424593E-02 5.4736339E-02 4.3358322E-02 3.2306235E-02
 2.1593783E-02 1.1233374E-02 1.2370754E-03 -8.3824825E-03 -1.7610725E-02
 -2.6429553E-02 -3.4815129E-02 -4.2734548E-02 -5.0140966E-02 -5.6966111E-02
 -6.3108966E-02 -6.8420351E-02 -7.2687067E-02 -7.5635381E-02 -7.7001557E-02
 -7.6703735E-02 -7.4992470E-02 -7.2357409E-02 -6.9275051E-02 -6.6068761E-02
 -6.2917098E-02 -5.9903290E-02 -5.7059992E-02 -5.4394014E-02 -5.1899854E-02
 -4.9566690E-02 -4.7381889E-02 -4.5332704E-02 -4.3407038E-02 -4.1593824E-02
 -3.9883044E-02 -3.8265780E-02 -3.6734082E-02 -3.5280928E-02 -3.3900086E-02
 -3.2586008E-02 -3.1333789E-02 -3.0139038E-02 -2.8997848E-02 -2.7906727E-02
 -2.6862515E-02 -2.5862383E-02 -2.4903759E-02 -2.3984313E-02 -2.3101928E-02
 -2.2254657E-02 -2.1440722E-02 -2.0658478E-02 -1.9906409E-02 -1.9183114E-02
 -1.8487291E-02 -1.7817717E-02 -1.7173247E-02 -1.6552821E-02 -1.5956067E-02
 -1.5380757E-02
 0.4931525 0.4888552 0.4837531 0.4779116 0.4713939
 0.4642597 0.4565650 0.4483623 0.4397009 0.4306266
 0.4211821 0.4114064 0.4013348 0.3909984 0.3804239
 0.3696337 0.3586453 0.3474717 0.3361207 0.3245954
 0.3128936 0.3010077 0.2889242 0.2766235 0.2640793
 0.2512584 0.2381225 0.2246328 0.2107645 0.1965391
 0.1820902 0.1677467 0.1540377 0.1414933 0.1303799
 0.1206638 0.1121582 0.1046501 9.7956188E-02 9.1930985E-02
 8.6462289E-02 8.1463739E-02 7.6868251E-02 7.2622828E-02 6.8685062E-02
 6.5020375E-02 6.1600193E-02 5.8400575E-02 5.5401210E-02 5.2584674E-02
 4.9935848E-02 4.7441479E-02 4.5089874E-02 4.2870633E-02 4.0774465E-02
 3.8792983E-02 3.6918573E-02 3.5144340E-02 3.3463955E-02 3.1871635E-02
 3.0362044E-02 2.8930254E-02 2.7571714E-02 2.6282182E-02 2.5057744E-02
 2.3894733E-02 2.2789722E-02 2.1739522E-02 2.0741137E-02 1.9791745E-02
 1.8888773E-02
 0.2295096 0.2161426 0.2026602 0.1891269 0.1755991
 0.1621269 0.1487552 0.1355244 0.1224712 0.1096278
 9.7022600E-02 8.4679991E-02 7.2620586E-02 6.0861390E-02 4.9416546E-02
 3.8297717E-02 2.7514691E-02 1.7076248E-02 6.9906283E-03 -2.7334366E-03
 -1.2085848E-02 -2.1054003E-02 -2.9621191E-02 -3.7764374E-02 -4.5451067E-02
 -5.2634239E-02 -5.9244901E-02 -6.5180503E-02 -7.0288882E-02 -7.4352399E-02
 -7.7091821E-02 -7.8241214E-02 -7.7727586E-02 -7.5820655E-02 -7.3024541E-02
 -6.9816940E-02 -6.6514574E-02 -6.3288592E-02 -6.0216159E-02 -5.7325721E-02
 -5.4621160E-02 -5.2094962E-02 -4.9734917E-02 -4.7527336E-02 -4.5458723E-02
 -4.3516394E-02 -4.1688811E-02 -3.9965607E-02 -3.8337555E-02 -3.6796495E-02
 -3.5335194E-02 -3.3947237E-02 -3.2626960E-02 -3.1369314E-02 -3.0169833E-02
 -2.9024521E-02 -2.7929787E-02 -2.6882425E-02 -2.5879538E-02 -2.4918513E-02
 -2.3996979E-02 -2.3112766E-02 -2.2263907E-02 -2.1448586E-02 -2.0665141E-02
 -1.9912032E-02 -1.9187838E-02 -1.8491233E-02 -1.7820977E-02 -1.7176766E-02
 -1.6555822E-02
 0.5251523 0.5204916 0.5149847 0.5087097 0.5017407
 0.4941460 0.4859886 0.4773268 0.4682148 0.4587030
 0.4488381 0.4386631 0.4282170 0.4175343 0.4066451
 0.3955750 0.3843445 0.3729700 0.3614627 0.3498293
 0.3380721 0.3261887 0.3141716 0.3020087 0.2896821
 0.2771683 0.2644370 0.2514520 0.2381715 0.2245542
 0.2105726 0.1962475 0.1817147 0.1673109 0.1535747
 0.1410372 0.1299539 0.1202772 0.1118119 0.1043409
 9.7679995E-02 9.1683589E-02 8.6239979E-02 8.1263334E-02 7.6687045E-02
 7.2458550E-02 6.8535760E-02 6.4884372E-02 6.1476070E-02 5.8287140E-02
 5.5297408E-02 5.2489568E-02 4.9848605E-02 4.7361381E-02 4.5016285E-02
 4.2802997E-02 4.0712260E-02 3.8735740E-02 3.6865875E-02 3.5095807E-02
 3.3419251E-02 3.1830441E-02 3.0324075E-02 2.8895242E-02 2.7539423E-02
 2.6252409E-02 2.5030278E-02 2.3869384E-02 2.2766322E-02 2.1717884E-02
 2.0721165E-02
 0.2524536 0.2387191 0.2248812 0.2110025 0.1971368
 0.1833306 0.1696257 0.1560604 0.1426693 0.1294837
 0.1165308 0.1038344 9.1414183E-02 7.9286322E-02 6.7463785E-02
 5.5956870E-02 4.4773690E-02 3.3920921E-02 2.3404213E-02 1.3228934E-02
 3.4008545E-03 -6.0732337E-03 -1.5184642E-02 -2.3921607E-02 -3.2267932E-02
 -4.0200755E-02 -4.7687426E-02 -5.4680508E-02 -6.1110023E-02 -6.6871911E-02
 -7.1811624E-02 -7.5707659E-02 -7.8276247E-02 -7.9249471E-02 -7.8561187E-02
 -7.6496221E-02 -7.3570020E-02 -7.0260994E-02 -6.6880569E-02 -6.3594028E-02
 -6.0473621E-02 -5.7544488E-02 -5.4808218E-02 -5.2255668E-02 -4.9873482E-02
 -4.7647152E-02 -4.5562532E-02 -4.3606468E-02 -4.1767038E-02 -4.0033601E-02
 -3.8396686E-02 -3.6847919E-02 -3.5379898E-02 -3.3986092E-02 -3.2660712E-02
 -3.1398620E-02 -3.0195255E-02 -2.9046545E-02 -2.7948841E-02 -2.6898889E-02
 -2.5893746E-02 -2.4930749E-02 -2.4007494E-02 -2.3121778E-02 -2.2271611E-02
 -2.1455156E-02 -2.0670723E-02 -1.9916756E-02 -1.9191815E-02 -1.8495664E-02
 -1.7824832E-02
 0.5596222 0.5545189 0.5485196 0.5417184 0.5342025
 0.5260503 0.5173326 0.5081135 0.4984522 0.4884035
 0.4780183 0.4673434 0.4564214 0.4452906 0.4339842
 0.4225307 0.4109534 0.3992712 0.3874979 0.3756430
 0.3637116 0.3517046 0.3396188 0.3274467 0.3151765
 0.3027919 0.2902714 0.2775878 0.2647082 0.2515933
 0.2381989 0.2244811 0.2104107 0.1960076 0.1814093
 0.1669583 0.1532008 0.1406687 0.1296089 0.1199645
 0.1115301 0.1040886 9.7453952E-02 9.1480620E-02 8.6057223E-02
 8.1098281E-02 7.6537542E-02 7.2322778E-02 6.8412155E-02 6.4771645E-02
 6.1373096E-02 5.8192905E-02 5.5211067E-02 5.2410357E-02 4.9775884E-02
 4.7294561E-02 4.4954851E-02 4.2746473E-02 4.0660217E-02 3.8687807E-02
 3.6821716E-02 3.5055108E-02 3.3381727E-02 3.1795826E-02 3.0292138E-02
 2.8865783E-02 2.7512232E-02 2.6227305E-02 2.5007091E-02 2.3847912E-02
 2.2746503E-02
 0.2762889 0.2621496 0.2479304 0.2336913 0.2194807
 0.2053396 0.1913048 0.1774107 0.1636893 0.1501700
 0.1368792 0.1238397 0.1110704 9.8586887E-02 8.6401112E-02
 7.4522436E-02 6.2957697E-02 5.1712170E-02 4.0789779E-02 3.0193865E-02
 1.9927634E-02 9.9946018E-03 3.9923721E-04 -8.8524409E-03 -1.7752215E-02
 -2.6288452E-02 -3.4444910E-02 -4.2198505E-02 -4.9516026E-02 -5.6349449E-02
 -6.2627867E-02 -6.8245865E-02 -7.3046826E-02 -7.6806143E-02 -7.9236336E-02
 -8.0067657E-02 -7.9239085E-02 -7.7047184E-02 -7.4016228E-02 -7.0623770E-02
 -6.7181341E-02 -6.3845359E-02 -6.0685694E-02 -5.7724800E-02 -5.4962445E-02
 -5.2388202E-02 -4.9987774E-02 -4.7745973E-02 -4.5648146E-02 -4.3680754E-02
 -4.1831575E-02 -4.0089700E-02 -3.8445469E-02 -3.6890343E-02 -3.5416797E-02
 -3.4018178E-02 -3.2688599E-02 -3.1422842E-02 -3.0216273E-02 -2.9064767E-02
 -2.7964629E-02 -2.6912546E-02 -2.5905540E-02 -2.4940915E-02 -2.4016239E-02
 -2.3129294E-02 -2.2278050E-02 -2.1460656E-02 -2.0675402E-02 -1.9922195E-02
 -1.9196605E-02
 0.5968916 0.5912517 0.5846560 0.5772202 0.5690477
 0.5602289 0.5508429 0.5409594 0.5306422 0.5199499
 0.5089375 0.4976560 0.4861518 0.4744663 0.4626365
 0.4506936 0.4386636 0.4265676 0.4144214 0.4022365
 0.3900200 0.3777750 0.3655006 0.3531925 0.3408427
 0.3284394 0.3159669 0.3034054 0.2907305 0.2779123
 0.2649152 0.2516977 0.2382135 0.2244170 0.2102771
 0.1958132 0.1811637 0.1666754 0.1529008 0.1403724
 0.1293307 0.1197107 0.1113011 0.1038827 9.7268961E-02
 9.1314085E-02 8.5906886E-02 8.0962189E-02 7.6414004E-02 7.2210379E-02
 6.8309695E-02 6.4678051E-02 6.1287459E-02 5.8114432E-02 5.5139076E-02
 5.2344259E-02 4.9715135E-02 4.7238685E-02 4.4903409E-02 4.2699095E-02
 4.0616568E-02 3.8647566E-02 3.6784608E-02 3.5020865E-02 3.3350121E-02
 3.1766661E-02 3.0265210E-02 2.8840911E-02 2.7489252E-02 2.6205964E-02
 2.4987392E-02
 0.3009372 0.2863422 0.2717091 0.2570922 0.2425313
 0.2280584 0.2137020 0.1994905 0.1854519 0.1716130
 0.1579988 0.1446312 0.1315285 0.1187054 0.1061733
 9.3940519E-02 8.2013018E-02 7.0394941E-02 5.9088990E-02 4.8097104E-02
 3.7420917E-02 2.7062012E-02 1.7022436E-02 7.3051224E-03 -2.0858285E-03
 -1.1144438E-02 -1.9862294E-02 -2.8227570E-02 -3.6223490E-02 -4.3826502E-02
 -5.1002834E-02 -5.7703685E-02 -6.3857362E-02 -6.9357201E-02 -7.4044950E-02
 -7.7693596E-02 -8.0012575E-02 -8.0730513E-02 -7.9790033E-02 -7.7496663E-02
 -7.4381568E-02 -7.0922554E-02 -6.7428805E-02 -6.4052477E-02 -6.0860630E-02
 -5.7873655E-02 -5.5089816E-02 -5.2497678E-02 -5.0082181E-02 -4.7827609E-02
 -4.5718886E-02 -4.3742146E-02 -4.1884903E-02 -4.0136058E-02 -3.8485792E-02
 -3.6925424E-02 -3.5447322E-02 -3.4044731E-02 -3.2711685E-02 -3.1442907E-02
 -3.0233704E-02 -2.9079890E-02 -2.7977742E-02 -2.6923899E-02 -2.5915354E-02
 -2.4949394E-02 -2.4023548E-02 -2.3135582E-02 -2.2283442E-02 -2.1467229E-02
 -2.0681251E-02
 0.6329318 0.6281121 0.6215680 0.6138645 0.6052754
 0.5959699 0.5860696 0.5756695 0.5648474 0.5536698
 0.5421942 0.5304714 0.5185458 0.5064563 0.4942362
 0.4819136 0.4695111 0.4570462 0.4445311 0.4319727
 0.4193716 0.4067223 0.3940107 0.3812126 0.3682895
 0.3551838 0.3418107 0.3292228 0.3165891 0.3038870
 0.2910895 0.2781645 0.2650744 0.2517760 0.2382213
 0.2243630 0.2101689 0.1956575 0.1809680 0.1664505
 0.1526617 0.1401353 0.1291068 0.1195056 0.1111151
 0.1037149 9.7117610E-02 9.1177374E-02 8.5783094E-02 8.0849849E-02
 7.6311834E-02 7.2117247E-02 6.8224609E-02 6.4600185E-02 6.1216112E-02
 5.8048982E-02 5.5078957E-02 5.2288990E-02 4.9664259E-02 4.7191840E-02
 4.4860255E-02 4.2659309E-02 4.0579870E-02 3.8613699E-02 3.6753342E-02
 3.4992002E-02 3.3323467E-02 3.1742029E-02 3.0242441E-02 2.8819663E-02
 2.7469648E-02
 0.3200139 0.3061686 0.2917235 0.2771589 0.2626288
 0.2481945 0.2338897 0.2197396 0.2057666 0.1919916
 0.1784338 0.1651107 0.1520369 0.1392246 0.1266830
 0.1144189 0.1024367 9.0738215E-02 7.9323046E-02 6.8188049E-02
 5.7326566E-02 4.6726648E-02 3.6367580E-02 2.6212839E-02 1.6194949E-02
 6.1800722E-03 -4.1263909E-03 -1.3020624E-02 -2.1584798E-02 -2.9806525E-02
 -3.7668470E-02 -4.5146450E-02 -5.2206125E-02 -5.8797922E-02 -6.4849399E-02
 -7.0252977E-02 -7.4849039E-02 -7.8408696E-02 -8.0638960E-02 -8.1266940E-02
 -8.0237754E-02 -7.7863611E-02 -7.4681073E-02 -7.1168184E-02 -6.7632779E-02
 -6.4223520E-02 -6.1005257E-02 -5.7996791E-02 -5.5195224E-02 -5.2588299E-02
 -5.0160363E-02 -4.7895234E-02 -4.5777485E-02 -4.3792993E-02 -4.1929092E-02
 -4.0174488E-02 -3.8519222E-02 -3.6954530E-02 -3.5472646E-02 -3.4066770E-02
 -3.2730866E-02 -3.1459589E-02 -3.0248204E-02 -2.9092485E-02 -2.7988669E-02
 -2.6933376E-02 -2.5923567E-02 -2.4956495E-02 -2.4029676E-02 -2.3143489E-02
 -2.2290539E-02
 0.6722445 0.6666966 0.6596393 0.6513943 0.6422194
 0.6323056 0.6217962 0.6108013 0.5994081 0.5876874
 0.5756980 0.5634894 0.5511038 0.5385768 0.5259385
 0.5132134 0.5004209 0.4875750 0.4746843 0.4617513
 0.4487716 0.4357318 0.4226073 0.4093575 0.3959190
 0.3821954 0.3680468 0.3553051 0.3425760 0.3298412
 0.3170793 0.3042655 0.2913707 0.2783611 0.2651977
 0.2518354 0.2382253 0.2243186 0.2100823 0.1955341
 0.1808134 0.1662726 0.1524719 0.1399459 0.1289270
 0.1193400 0.1109641 0.1035780 9.6993521E-02 9.1064878E-02
 8.5680947E-02 8.0756895E-02 7.6227069E-02 7.2039776E-02 6.8153724E-02
 6.4535223E-02 6.1156485E-02 5.7994194E-02 5.5028547E-02 5.2242581E-02
 4.9621515E-02 4.7152430E-02 4.4823904E-02 4.2625751E-02 4.0548880E-02
 3.8585082E-02 3.6726907E-02 3.4967560E-02 3.3300865E-02 3.1720746E-02
 3.0222826E-02
 0.3414184 0.3265949 0.3118572 0.2971913 0.2826304
 0.2682011 0.2539227 0.2398116 0.2258833 0.2121528
 0.1986343 0.1853409 0.1722839 0.1594730 0.1469152
 0.1346156 0.1225766 0.1107982 9.9276908E-02 8.8005468E-02
 7.6970652E-02 6.6150434E-02 5.5508398E-02 4.4983704E-02 3.4472711E-02
 2.3796167E-02 1.2646949E-02 3.2760808E-03 -5.7910210E-03 -1.4547385E-02
 -2.2983400E-02 -3.1086005E-02 -3.8837329E-02 -4.6212427E-02 -5.3176414E-02
 -5.9679147E-02 -6.5647475E-02 -7.0973098E-02 -7.5495310E-02 -7.8983791E-02
 -8.1143692E-02 -8.1700772E-02 -8.0601655E-02 -7.8163438E-02 -7.4926928E-02
 -7.1370393E-02 -6.7801200E-02 -6.4364985E-02 -6.1124999E-02 -5.8098815E-02
 -5.5282619E-02 -5.2663464E-02 -5.0225217E-02 -4.7951318E-02 -4.5826104E-02
 -4.3835200E-02 -4.1965771E-02 -4.0206391E-02 -3.8546987E-02 -3.6978696E-02
 -3.5493698E-02 -3.4085102E-02 -3.2746825E-02 -3.1473476E-02 -3.0260280E-02
 -2.9102989E-02 -2.7997797E-02 -2.6941299E-02 -2.5930427E-02 -2.4965987E-02
 -2.4038244E-02
 0.7132505 0.7067904 0.6988983 0.6898540 0.6799021
 0.6692368 0.6580082 0.6463314 0.6342963 0.6219737
 0.6094208 0.5966844 0.5838030 0.5708086 0.5577275
 0.5445806 0.5313841 0.5181486 0.5048797 0.4915768
 0.4782315 0.4648260 0.4513292 0.4376912 0.4238334
 0.4096322 0.3948946 0.3818839 0.3689392 0.3560443
 0.3431814 0.3303298 0.3174661 0.3045636 0.2915918
 0.2785153 0.2652938 0.2518812 0.2382275 0.2242832
 0.2100140 0.1954371 0.1806922 0.1661328 0.1523220
 0.1397953 0.1287871 0.1192065 0.1108414 0.1034661
 9.6891746E-02 9.0972245E-02 8.5596517E-02 8.0679812E-02 7.6156586E-02
 7.1975261E-02 6.8094544E-02 6.4480886E-02 6.1106510E-02 5.7948206E-02
 5.4986201E-02 5.2203536E-02 4.9585503E-02 4.7119178E-02 4.4793189E-02
 4.2597387E-02 4.0522672E-02 3.8560838E-02 3.6704481E-02 3.4946088E-02
 3.3281114E-02
 0.3622651 0.3469352 0.3319192 0.3171186 0.3025005
 0.2880568 0.2737884 0.2597009 0.2458023 0.2321020
 0.2186096 0.2053345 0.1922850 0.1794682 0.1668892
 0.1545515 0.1424560 0.1306009 0.1189810 0.1075862
 9.6400142E-02 8.5396051E-02 7.4531876E-02 6.3740857E-02 5.2916024E-02
 4.1884933E-02 3.0373571E-02 2.0564726E-02 1.1039392E-02 1.8019631E-03
 -7.1416628E-03 -1.5783731E-02 -2.4113990E-02 -3.2118671E-02 -3.9779268E-02
 -4.7070365E-02 -5.3956453E-02 -6.0386885E-02 -6.6287927E-02 -7.1550645E-02
 -7.6013662E-02 -7.9445556E-02 -8.1550017E-02 -8.2051560E-02 -8.0897622E-02
 -7.8408808E-02 -7.5120039E-02 -7.1537174E-02 -6.7940548E-02 -6.4482272E-02
 -6.1224431E-02 -5.8183614E-02 -5.5355277E-02 -5.2725963E-02 -5.0279159E-02
 -4.7997996E-02 -4.5866560E-02 -4.3870337E-02 -4.1996300E-02 -4.0232956E-02
 -3.8570125E-02 -3.6998846E-02 -3.5511255E-02 -3.4100395E-02 -3.2760143E-02
 -3.1485081E-02 -3.0270390E-02 -2.9111786E-02 -2.8005442E-02 -2.6952775E-02
 -2.5940850E-02
 0.7559496 0.7483163 0.7393091 0.7292215 0.7182981
 0.7067314 0.6946681 0.6822199 0.6694719 0.6564903
 0.6433272 0.6300243 0.6166151 0.6031271 0.5895821
 0.5759975 0.5623860 0.5487555 0.5351092 0.5214445
 0.5077515 0.4940113 0.4801923 0.4662448 0.4520912
 0.4376054 0.4225618 0.4091725 0.3959004 0.3827305
 0.3696464 0.3566298 0.3436605 0.3307162 0.3177717
 0.3047989 0.2917660 0.2786365 0.2653691 0.2519171
 0.2382293 0.2242554 0.2099607 0.1953617 0.1805978
 0.1660237 0.1522042 0.1396759 0.1286728 0.1190990
 0.1107419 0.1033747 9.6808121E-02 9.0895750E-02 8.5526556E-02
 8.0615766E-02 7.6097868E-02 7.1921356E-02 6.8044990E-02 6.4435288E-02
 6.1064534E-02 5.7909507E-02 5.4950502E-02 5.2170571E-02 4.9555048E-02
 4.7091048E-02 4.4767190E-02 4.2573322E-02 4.0500410E-02 3.8538869E-02
 3.6684338E-02
 0.3825540 0.3669615 0.3517659 0.3368632 0.3221963
 0.3077370 0.2934731 0.2794012 0.2655230 0.2518432
 0.2383676 0.2251024 0.2120534 0.1992254 0.1866220
 0.1742453 0.1620950 0.1501684 0.1384598 0.1269584
 0.1156476 0.1045017 9.3482189E-02 8.2531802E-02 7.1565598E-02
 6.0453970E-02 4.8980121E-02 3.8767327E-02 2.8819950E-02 1.9141385E-02
 9.7359726E-03 6.0902006E-04 -8.2328292E-03 -1.6781019E-02 -2.5024658E-02
 -3.2949410E-02 -4.0536176E-02 -4.7759086E-02 -5.4582030E-02 -6.0953978E-02
 -6.6800795E-02 -7.2013058E-02 -7.6428838E-02 -7.9815939E-02 -8.1876919E-02
 -8.2335241E-02 -8.1138574E-02 -7.8609921E-02 -7.5284727E-02 -7.1674965E-02
 -6.8056136E-02 -6.4579792E-02 -6.1307199E-02 -5.8254238E-02 -5.5415843E-02
 -5.2778099E-02 -5.0324161E-02 -4.8036952E-02 -4.5900330E-02 -4.3899663E-02
 -4.2021815E-02 -4.0255159E-02 -3.8589459E-02 -3.7015691E-02 -3.5525933E-02
 -3.4113199E-02 -3.2771308E-02 -3.1494811E-02 -3.0278863E-02 -2.9125804E-02
 -2.8018229E-02
 0.8003418 0.7912160 0.7808004 0.7694246 0.7573376
 0.7447225 0.7317130 0.7184079 0.7048810 0.6911884
 0.6773735 0.6634703 0.6495060 0.6355023 0.6214764
 0.6074413 0.5934067 0.5793781 0.5653571 0.5513405
 0.5373188 0.5232755 0.5091839 0.4950045 0.4806812
 0.4661363 0.4512541 0.4373774 0.4236693 0.4101149
 0.3966982 0.3834018 0.3702070 0.3570937 0.3440400
 0.3310220 0.3180133 0.3049848 0.2919035 0.2787322
 0.2654287 0.2519455 0.2382309 0.2242341 0.2099196
 0.1953036 0.1805251 0.1659392 0.1521119 0.1395814
 0.1285819 0.1190124 0.1106610 0.1032998 9.6739225E-02
 9.0832479E-02 8.5468456E-02 8.0562390E-02 7.6048777E-02 7.1876168E-02
 6.8003386E-02 6.4396933E-02 6.1029147E-02 5.7876814E-02 5.4920301E-02
 5.2142669E-02 4.9529243E-02 4.7067158E-02 4.4745088E-02 4.2550310E-02
 4.0479444E-02
 0.4022851 0.3865909 0.3713197 0.3563718 0.3416845
 0.3272220 0.3129658 0.2989076 0.2850454 0.2713802
 0.2579153 0.2446542 0.2316008 0.2187580 0.2061283
 0.1937125 0.1815101 0.1695182 0.1577312 0.1461400
 0.1347302 0.1234811 0.1123633 0.1013386 9.0360597E-02
 7.9385228E-02 6.8391383E-02 5.7809792E-02 4.7475152E-02 3.7390903E-02
 2.7561115E-02 1.7990272E-02 8.6835837E-03 -3.5272047E-04 -9.1112796E-03
 -1.7582932E-02 -2.5756124E-02 -3.3616036E-02 -4.1143004E-02 -4.8310697E-02
 -5.5082727E-02 -6.1407611E-02 -6.7210868E-02 -7.2382785E-02 -7.6760985E-02
 -8.0112755E-02 -8.2139857E-02 -8.2564756E-02 -8.1334986E-02 -7.8775063E-02
 -7.5420007E-02 -7.1789041E-02 -6.8152234E-02 -6.4661048E-02 -6.1376277E-02
 -5.8313258E-02 -5.5466481E-02 -5.2821707E-02 -5.0361816E-02 -4.8069540E-02
 -4.5928609E-02 -4.3924227E-02 -4.2043183E-02 -4.0273752E-02 -3.8605660E-02
 -3.7029821E-02 -3.5538260E-02 -3.4123946E-02 -3.2780685E-02 -3.1512178E-02
 -3.0294787E-02
 0.8464271 0.8354056 0.8232517 0.8103388 0.7969052
 0.7831078 0.7690534 0.7548177 0.7404559 0.7260089
 0.7115079 0.6969773 0.6824362 0.6678997 0.6533795
 0.6388846 0.6244213 0.6099932 0.5956008 0.5812413
 0.5669077 0.5525879 0.5382631 0.5239080 0.5094928
 0.4950044 0.4805475 0.4665001 0.4524528 0.4384054
 0.4245478 0.4108625 0.3973310 0.3839341 0.3706515
 0.3574614 0.3443407 0.3312642 0.3182047 0.3051320
 0.2920124 0.2788080 0.2654759 0.2519682 0.2382327
 0.2242181 0.2098885 0.1952593 0.1804694 0.1658740
 0.1520402 0.1395068 0.1285098 0.1189428 0.1105952
 0.1032385 9.6682400E-02 9.0780027E-02 8.5420057E-02 8.0517769E-02
 7.6007642E-02 7.1838215E-02 6.7968346E-02 6.4364552E-02 6.0999203E-02
 5.7849150E-02 5.4894701E-02 5.2118946E-02 4.9507309E-02 4.7042143E-02
 4.4722505E-02
 0.4214583 0.4057974 0.3905502 0.3756198 0.3609478
 0.3465006 0.3322603 0.3182181 0.3043705 0.2907171
 0.2772591 0.2639984 0.2509373 0.2380776 0.2254205
 0.2129664 0.2007147 0.1886629 0.1768070 0.1651402
 0.1536522 0.1423289 0.1311516 0.1200985 0.1091530
 9.8334968E-02 8.7833717E-02 7.7380680E-02 6.6927642E-02 5.6474604E-02
 4.6256639E-02 3.6278501E-02 2.6545348E-02 1.7062778E-02 7.8367870E-03
 -1.1256830E-03 -9.8165739E-03 -1.8226177E-02 -2.6342342E-02 -3.4149785E-02
 -4.1628510E-02 -4.8751798E-02 -5.5482857E-02 -6.1769973E-02 -6.7538351E-02
 -7.2678044E-02 -7.7026449E-02 -8.0350511E-02 -8.2351357E-02 -8.2750604E-02
 -8.1495360E-02 -7.8911006E-02 -7.5531125E-02 -7.1883619E-02 -6.8232305E-02
 -6.4728968E-02 -6.1434112E-02 -5.8362726E-02 -5.5508941E-02 -5.2858286E-02
 -5.0393425E-02 -4.8096914E-02 -4.5952361E-02 -4.3944862E-02 -4.2061124E-02
 -4.0289398E-02 -3.8619298E-02 -3.7041705E-02 -3.5548639E-02 -3.4145873E-02
 -3.2800853E-02
 0.8942056 0.8807274 0.8664622 0.8517736 0.8368366
 0.8217499 0.8065749 0.7913538 0.7761158 0.7608832
 0.7456719 0.7304949 0.7153619 0.7002807 0.6852574
 0.6702963 0.6554008 0.6405724 0.6258113 0.6111161
 0.5964828 0.5819051 0.5673729 0.5528714 0.5383773
 0.5238411 0.5091015 0.4951254 0.4811493 0.4671732
 0.4531971 0.4392210 0.4252449 0.4114556 0.3978331
 0.3843565 0.3710041 0.3577529 0.3445790 0.3314562
 0.3183564 0.3052486 0.2920987 0.2788681 0.2655136
 0.2519867 0.2382349 0.2242064 0.2098650 0.1952259
 0.1804273 0.1658243 0.1519846 0.1394481 0.1284529
 0.1188869 0.1105417 0.1031881 9.6635379E-02 9.0736367E-02
 8.5379645E-02 8.0480374E-02 7.5973049E-02 7.1806200E-02 6.7938708E-02
 6.4337142E-02 6.0973827E-02 5.7825606E-02 5.4872941E-02 5.2090202E-02
 4.9481720E-02
 0.4400738 0.4245903 0.4094638 0.3946094 0.3799861
 0.3655724 0.3513569 0.3373341 0.3235015 0.3098584
 0.2964054 0.2831431 0.2700726 0.2571946 0.2445097
 0.2320181 0.2197192 0.2076118 0.1956938 0.1839614
 0.1724095 0.1610307 0.1498155 0.1387510 0.1278179
 0.1169679 0.1060076 9.5885344E-02 8.5763082E-02 7.5640820E-02
 6.5518558E-02 5.5396300E-02 4.5274045E-02 3.5382710E-02 2.5728475E-02
 1.6317680E-02 7.1572014E-03 -1.7454887E-03 -1.0381626E-02 -1.8741045E-02
 -2.6811235E-02 -3.4576476E-02 -4.2016424E-02 -4.9104027E-02 -5.5802234E-02
 -6.2059060E-02 -6.7799568E-02 -7.2913639E-02 -7.7238530E-02 -8.0540910E-02
 -8.2521543E-02 -8.2901247E-02 -8.1626520E-02 -7.9023138E-02 -7.5622328E-02
 -7.1962155E-02 -6.8299219E-02 -6.4785890E-02 -6.1482660E-02 -5.8404297E-02
 -5.5544674E-02 -5.2889083E-02 -5.0420046E-02 -4.8119966E-02 -4.5972362E-02
 -4.3962255E-02 -4.2076271E-02 -4.0302556E-02 -3.8630821E-02 -3.7070058E-02
 -3.5574745E-02
 0.9436773 0.9268363 0.9100960 0.8934566 0.8769178
 0.8604800 0.8441427 0.8279063 0.8117707 0.7957358
 0.7798017 0.7639683 0.7482357 0.7326039 0.7170728
 0.7016425 0.6863130 0.6710842 0.6559561 0.6409289
 0.6260024 0.6111766 0.5964516 0.5818275 0.5673040
 0.5528813 0.5383579 0.5242879 0.5102178 0.4961478
 0.4820779 0.4680079 0.4539379 0.4398679 0.4257980
 0.4119263 0.3982315 0.3846916 0.3712838 0.3579843
 0.3447681 0.3316085 0.3184767 0.3053411 0.2921672
 0.2789160 0.2655438 0.2520019 0.2382372 0.2241981
 0.2098478 0.1952011 0.1803958 0.1657865 0.1519417
 0.1394020 0.1284084 0.1188423 0.1104982 0.1031467
 9.6596427E-02 9.0699986E-02 8.5345782E-02 8.0448903E-02 7.5943835E-02
 7.1779132E-02 6.7913614E-02 6.4313851E-02 6.0952205E-02 5.7805672E-02
 5.4854382E-02
 0.4581315 0.4430263 0.4281051 0.4133680 0.3988149
 0.3844458 0.3702607 0.3562597 0.3424428 0.3288098
 0.3153609 0.3020960 0.2890152 0.2761184 0.2634056
 0.2508769 0.2385322 0.2263715 0.2143948 0.2026022
 0.1909936 0.1795691 0.1683286 0.1572721 0.1463996
 0.1357112 0.1248387 0.1147944 0.1047501 9.4705820E-02
 8.4661514E-02 7.4617207E-02 6.4572901E-02 5.4528598E-02 4.4484299E-02
 3.4663465E-02 2.5073158E-02 1.5720449E-02 6.6128983E-03 -2.2414448E-03
 -1.0833480E-02 -1.9152572E-02 -2.7185792E-02 -3.4917176E-02 -4.2325981E-02
 -4.9384959E-02 -5.6056846E-02 -6.2289502E-02 -6.8007827E-02 -7.3101535E-02
 -7.7407844E-02 -8.0693372E-02 -8.2658544E-02 -8.3023518E-02 -8.1734009E-02
 -7.9115897E-02 -7.5697064E-02 -7.2027430E-02 -6.8355203E-02 -6.4833716E-02
 -6.1523560E-02 -5.8439363E-02 -5.5574819E-02 -5.2915078E-02 -5.0442517E-02
 -4.8139453E-02 -4.5989286E-02 -4.3976970E-02 -4.2089075E-02 -4.0313639E-02
 -3.8640436E-02
 0.9775742 0.9605535 0.9436337 0.9268146 0.9100962
 0.8934788 0.8769621 0.8605462 0.8442311 0.8280168
 0.8119034 0.7958906 0.7799787 0.7641676 0.7484573
 0.7328477 0.7173390 0.7019310 0.6866238 0.6714174
 0.6563118 0.6413069 0.6264030 0.6115999 0.5968975
 0.5822960 0.5675938 0.5533450 0.5390962 0.5248476
 0.5105990 0.4963506 0.4821022 0.4678538 0.4536055
 0.4395554 0.4256823 0.4119640 0.3983779 0.3849002
 0.3715058 0.3581679 0.3449181 0.3317285 0.3185713
 0.3054140 0.2922218 0.2789564 0.2655740 0.2520142
 0.2382398 0.2241925 0.2098354 0.1951829 0.1803724
 0.1657583 0.1519158 0.1393633 0.1283571 0.1187971
 0.1104584 0.1031108 9.6563458E-02 9.0669461E-02 8.5317448E-02
 8.0422588E-02 7.5919375E-02 7.1756370E-02 6.7892425E-02 6.4294152E-02
 6.0933910E-02
 0.4950039 0.4794020 0.4639841 0.4487502 0.4337004
 0.4188347 0.4041530 0.3896553 0.3753417 0.3612122
 0.3472666 0.3335052 0.3199278 0.3065344 0.2933250
 0.2802997 0.2674585 0.2548012 0.2423281 0.2300390
 0.2179339 0.2060128 0.1942759 0.1827229 0.1713540
 0.1601691 0.1488001 0.1382594 0.1277186 0.1171778
 0.1066370 9.6096270E-02 8.5555516E-02 7.5014777E-02 6.4474046E-02
 5.4156791E-02 4.4070065E-02 3.4220938E-02 2.4616964E-02 1.5266201E-02
 6.1777453E-03 -2.6377663E-03 -1.1194373E-02 -1.9480901E-02 -2.7484126E-02
 -3.5187721E-02 -4.2570829E-02 -4.9607038E-02 -5.6258988E-02 -6.2473089E-02
 -6.8173692E-02 -7.3251277E-02 -7.7543020E-02 -8.0815502E-02 -8.2768932E-02
 -8.3122902E-02 -8.1835464E-02 -7.9195425E-02 -7.5787209E-02 -7.2091945E-02
 -6.8405941E-02 -6.4875513E-02 -6.1558735E-02 -5.8469258E-02 -5.5600408E-02
 -5.2937083E-02 -5.0461501E-02 -4.8155863E-02 -4.6003494E-02 -4.3989308E-02
 -4.2099815E-02
 1.011876 0.9946755 0.9775755 0.9605762 0.9436778
 0.9268803 0.9101835 0.8935876 0.8770926 0.8606983
 0.8444050 0.8282123 0.8121206 0.7961297 0.7802395
 0.7644502 0.7487617 0.7331740 0.7176870 0.7023010
 0.6870158 0.6718314 0.6567480 0.6417654 0.6268837
 0.6121027 0.5972213 0.5827932 0.5683652 0.5539374
 0.5395097 0.5250821 0.5106547 0.4962274 0.4818001
 0.4675712 0.4535191 0.4396220 0.4258570 0.4122005
 0.3986272 0.3851105 0.3716820 0.3583135 0.3450361
 0.3318242 0.3186469 0.3054718 0.2922655 0.2789875
 0.2655952 0.2520247 0.2382425 0.2241888 0.2098267
 0.1951699 0.1803556 0.1657374 0.1518932 0.1393343
 0.1283269 0.1187667 0.1104287 0.1030822 9.6536323E-02
 9.0643920E-02 8.5293494E-02 8.0400176E-02 7.5898431E-02 7.1736842E-02
 6.7874260E-02
 0.5329441 0.5168439 0.5009277 0.4851956 0.4696477
 0.4542838 0.4391040 0.4241082 0.4092965 0.3946689
 0.3802253 0.3659658 0.3518903 0.3379989 0.3242915
 0.3107682 0.2974289 0.2842737 0.2713026 0.2585155
 0.2459125 0.2334935 0.2212586 0.2092077 0.1973408
 0.1856580 0.1737911 0.1627524 0.1517137 0.1406750
 0.1296363 0.1185976 0.1075590 9.6520364E-02 8.5481741E-02
 7.4666597E-02 6.4081982E-02 5.3734966E-02 4.3633107E-02 3.3784464E-02
 2.4198135E-02 1.4884753E-02 5.8302763E-03 -2.9541214E-03 -1.1482415E-02
 -1.9742819E-02 -2.7722197E-02 -3.5403747E-02 -4.2767096E-02 -4.9785055E-02
 -5.6420263E-02 -6.2619209E-02 -6.8305768E-02 -7.3370621E-02 -7.7650927E-02
 -8.0913335E-02 -8.2857952E-02 -8.3203845E-02 -8.1912734E-02 -7.9260200E-02
 -7.5842477E-02 -7.2139181E-02 -6.8446226E-02 -6.4909868E-02 -6.1588120E-02
 -5.8494475E-02 -5.5622112E-02 -5.2955803E-02 -5.0477676E-02 -4.8169885E-02
 -4.6015691E-02
 1.046645 1.029262 1.011979 0.9947981 0.9777176
 0.9607381 0.9438593 0.9270815 0.9104045 0.8938283
 0.8773531 0.8609786 0.8447050 0.8285323 0.8124604
 0.7964892 0.7806190 0.7648496 0.7491810 0.7336134
 0.7181467 0.7027809 0.6875160 0.6723521 0.6572890
 0.6423268 0.6272640 0.6126547 0.5980456 0.5834366
 0.5688278 0.5542192 0.5396107 0.5250024 0.5103942
 0.4959843 0.4817514 0.4676733 0.4537275 0.4398901
 0.4261360 0.4124385 0.3988292 0.3852800 0.3718218
 0.3584292 0.3451305 0.3319002 0.3187068 0.3055176
 0.2923003 0.2790128 0.2656130 0.2520333 0.2382452
 0.2241868 0.2098208 0.1951609 0.1803436 0.1657221
 0.1518770 0.1393114 0.1283027 0.1187420 0.1104042
 0.1030585 9.6513644E-02 9.0622425E-02 8.5273206E-02 8.0381140E-02
 7.5880632E-02
 0.5719428 0.5553430 0.5389273 0.5226957 0.5066484
 0.4907851 0.4751060 0.4596109 0.4443000 0.4291731
 0.4142303 0.3994715 0.3848968 0.3705061 0.3562996
 0.3422771 0.3284386 0.3147843 0.3013140 0.2880278
 0.2749256 0.2620074 0.2492734 0.2367234 0.2243574
 0.2121754 0.1998094 0.1882716 0.1767338 0.1651960
 0.1536582 0.1421205 0.1305828 0.1190451 0.1075074
 9.6193247E-02 8.5109599E-02 7.4263550E-02 6.3662671E-02 5.3315010E-02
 4.3229669E-02 3.3417281E-02 2.3863800E-02 1.4580401E-02 5.5531058E-03
 -3.2062987E-03 -1.1711889E-02 -1.9951496E-02 -2.7911808E-02 -3.5575695E-02
 -4.2923033E-02 -4.9926694E-02 -5.6548472E-02 -6.2735520E-02 -6.8410911E-02
 -7.3465668E-02 -7.7737056E-02 -8.0991752E-02 -8.2929827E-02 -8.3269879E-02
 -8.1977896E-02 -7.9314493E-02 -7.5888932E-02 -7.2179072E-02 -6.8480350E-02
 -6.4939082E-02 -6.1613135E-02 -5.8515955E-02 -5.5640582E-02 -5.2971747E-02
 -5.0491486E-02
 1.081832 1.064265 1.046800 1.029436 1.012172
 0.9950098 0.9779481 0.9609874 0.9441276 0.9273686
 0.9107106 0.8941534 0.8776971 0.8613416 0.8450869
 0.8289332 0.8128804 0.7969285 0.7810774 0.7653274
 0.7496783 0.7341301 0.7186830 0.7033368 0.6880915
 0.6729471 0.6577022 0.6429108 0.6281196 0.6133286
 0.5985378 0.5837472 0.5689568 0.5541665 0.5393763
 0.5247846 0.5103699 0.4961101 0.4819827 0.4679636
 0.4540279 0.4401488 0.4263579 0.4126270 0.3989874
 0.3854132 0.3719329 0.3585210 0.3452053 0.3319603
 0.3187543 0.3055538 0.2923281 0.2790334 0.2656284
 0.2520406 0.2382480 0.2241859 0.2098171 0.1951549
 0.1803354 0.1657113 0.1518662 0.1392932 0.1282832
 0.1187219 0.1103840 0.1030387 9.6494548E-02 9.0604238E-02
 8.5256025E-02
 0.6119897 0.5948895 0.5779733 0.5612413 0.5446935
 0.5283299 0.5121505 0.4961552 0.4803441 0.4647170
 0.4492740 0.4340150 0.4189402 0.4040494 0.3893427
 0.3748201 0.3604816 0.3463271 0.3323567 0.3185703
 0.3049681 0.2915499 0.2783157 0.2652656 0.2523996
 0.2397176 0.2268516 0.2148138 0.2027760 0.1907383
 0.1787005 0.1666628 0.1546252 0.1425876 0.1305500
 0.1187359 0.1071524 9.5806450E-02 8.4705688E-02 7.3858157E-02
 6.3272946E-02 5.2960690E-02 4.2907342E-02 3.3124078E-02 2.3596924E-02
 1.4337663E-02 5.3322171E-03 -3.4072464E-03 -1.1894759E-02 -2.0117730E-02
 -2.8062591E-02 -3.5712235E-02 -4.3046899E-02 -5.0039485E-02 -5.6650341E-02
 -6.2828019E-02 -6.8494566E-02 -7.3541380E-02 -7.7805832E-02 -8.1054658E-02
 -8.2987942E-02 -8.3323881E-02 -8.2034372E-02 -7.9360269E-02 -7.5928077E-02
 -7.2212890E-02 -6.8509407E-02 -6.4963974E-02 -6.1634470E-02 -5.8534283E-02
 -5.5656385E-02
 1.117544 1.099791 1.082139 1.064588 1.047138
 1.029789 1.012541 0.9953946 0.9783489 0.9614041
 0.9445602 0.9278171 0.9111750 0.8946338 0.8781935
 0.8618541 0.8456158 0.8294783 0.8134418 0.7975063
 0.7816719 0.7659383 0.7503059 0.7347744 0.7193439
 0.7040143 0.6885843 0.6736078 0.6586314 0.6436554
 0.6286795 0.6137038 0.5987284 0.5837531 0.5687780
 0.5540014 0.5394019 0.5249573 0.5106450 0.4964412
 0.4823208 0.4682570 0.4542814 0.4403660 0.4265416
 0.4127828 0.3991179 0.3855214 0.3720210 0.3585915
 0.3452647 0.3320080 0.3187916 0.3055817 0.2923504
 0.2790506 0.2656420 0.2520468 0.2382506 0.2241858
 0.2098150 0.1951512 0.1803301 0.1657037 0.1518597
 0.1392786 0.1282675 0.1187054 0.1103673 0.1030221
 9.6478507E-02
 0.6531387 0.6355358 0.6181172 0.6008826 0.5838324
 0.5669663 0.5502845 0.5337869 0.5174735 0.5013442
 0.4853991 0.4696380 0.4540611 0.4386682 0.4234595
 0.4084347 0.3935941 0.3789376 0.3644651 0.3501768
 0.3360724 0.3221522 0.3084160 0.2948640 0.2814959
 0.2683120 0.2549440 0.2424042 0.2298644 0.2173247
 0.2047850 0.1922454 0.1797059 0.1671663 0.1546268
 0.1423109 0.1302255 0.1183777 0.1067750 9.5425650E-02
 8.4338583E-02 7.3524483E-02 6.2969290E-02 5.2684192E-02 4.2655207E-02
 3.2894116E-02 2.3386840E-02 1.4145546E-02 5.1562050E-03 -3.5685922E-03
 -1.2040308E-02 -2.0249989E-02 -2.8182369E-02 -3.5820615E-02 -4.3145265E-02
 -5.0129384E-02 -5.6731176E-02 -6.2901571E-02 -6.8561137E-02 -7.3601708E-02
 -7.7860743E-02 -8.1105150E-02 -8.3034992E-02 -8.3368130E-02 -8.2084671E-02
 -7.9399176E-02 -7.5961187E-02 -7.2241612E-02 -6.8534307E-02 -6.4985275E-02
 -6.1652750E-02
 1.153686 1.135745 1.117906 1.100168 1.082530
 1.064994 1.047559 1.030225 1.012992 0.9958603
 0.9788296 0.9618997 0.9450709 0.9283430 0.9117160
 0.8951901 0.8787652 0.8624412 0.8462182 0.8300963
 0.8140755 0.7981556 0.7823368 0.7666191 0.7510024
 0.7354866 0.7198703 0.7047077 0.6895452 0.6743830
 0.6592210 0.6440593 0.6288979 0.6137367 0.5985757
 0.5836132 0.5688277 0.5541973 0.5396993 0.5253097
 0.5110036 0.4967541 0.4825929 0.4684917 0.4544818
 0.4405373 0.4266868 0.4129047 0.3992187 0.3856035
 0.3720911 0.3586489 0.3453120 0.3320456 0.3188206
 0.3056029 0.2923684 0.2790650 0.2656546 0.2520519
 0.2382532 0.2241864 0.2098141 0.1951492 0.1803268
 0.1656988 0.1518567 0.1392669 0.1282577 0.1186924
 0.1103534
 0.6953464 0.6772401 0.6593180 0.6415800 0.6240264
 0.6066570 0.5894720 0.5724711 0.5556546 0.5390221
 0.5225738 0.5063095 0.4902294 0.4743334 0.4586215
 0.4430936 0.4277499 0.4125902 0.3976147 0.3828232
 0.3682158 0.3537925 0.3395532 0.3254981 0.3116270
 0.2979400 0.2840690 0.2710262 0.2579834 0.2449408
 0.2318982 0.2188556 0.2058131 0.1927707 0.1797283
 0.1669095 0.1543212 0.1419705 0.1298650 0.1180128
 0.1064229 9.5105998E-02 8.4048003E-02 7.3260114E-02 6.2728338E-02
 5.2464463E-02 4.2454407E-02 3.2710332E-02 2.3218213E-02 1.3990637E-02
 5.0161434E-03 -3.6963141E-03 -1.2156114E-02 -2.0355316E-02 -2.8277291E-02
 -3.5906319E-02 -4.3223269E-02 -5.0201382E-02 -5.6795213E-02 -6.2960081E-02
 -6.8614073E-02 -7.3649734E-02 -7.7904604E-02 -8.1145719E-02 -8.3073176E-02
 -8.3404496E-02 -8.2131565E-02 -7.9432510E-02 -7.5989716E-02 -7.2266623E-02
 -6.8555549E-02
 1.190246 1.172117 1.154089 1.136163 1.118337
 1.100613 1.082990 1.065468 1.048048 1.030728
 1.013510 0.9963925 0.9793763 0.9624609 0.9456466
 0.9289333 0.9123211 0.8958098 0.8793997 0.8630906
 0.8468826 0.8307756 0.8147698 0.7988650 0.7830613
 0.7673585 0.7515553 0.7362056 0.7208562 0.7055072
 0.6901584 0.6748099 0.6594617 0.6441138 0.6287661
 0.6136168 0.5986448 0.5838278 0.5691432 0.5545672
 0.5400745 0.5256385 0.5112908 0.4970033 0.4828070
 0.4686762 0.4546394 0.4406710 0.4267987 0.4129972
 0.3992985 0.3856699 0.3721468 0.3586942 0.3453496
 0.3320749 0.3188420 0.3056177 0.2923827 0.2790771
 0.2656666 0.2520564 0.2382557 0.2241874 0.2098140
 0.1951484 0.1803253 0.1656958 0.1518280 0.1392678
 0.1282480
 0.7386029 0.7199923 0.7015660 0.6833239 0.6652662
 0.6473927 0.6297037 0.6121988 0.5948783 0.5777417
 0.5607894 0.5440211 0.5274371 0.5110371 0.4948213
 0.4787895 0.4629419 0.4472783 0.4317989 0.4165036
 0.4013923 0.3864652 0.3717221 0.3571632 0.3427882
 0.3285975 0.3142227 0.3006761 0.2871297 0.2735833
 0.2600370 0.2464908 0.2329447 0.2193986 0.2058526
 0.1925301 0.1794382 0.1665840 0.1539749 0.1416191
 0.1295257 0.1177053 0.1061438 9.4852366E-02 8.3817080E-02
 7.3049702E-02 6.2536143E-02 5.2288570E-02 4.2292956E-02 3.2561891E-02
 2.3083907E-02 1.3867961E-02 4.9046772E-03 -3.7980066E-03 -1.2248241E-02
 -2.0439178E-02 -2.8352058E-02 -3.5974137E-02 -4.3285236E-02 -5.0259594E-02
 -5.6845844E-02 -6.3006565E-02 -6.8656169E-02 -7.3688015E-02 -7.7939689E-02
 -8.1178352E-02 -8.3104193E-02 -8.3434455E-02 -8.2109191E-02 -7.9450794E-02
 -7.6013714E-02
 1.227159 1.208841 1.190626 1.172511 1.154498
 1.136586 1.118775 1.101066 1.083458 1.065951
 1.048545 1.031240 1.014037 0.9969348 0.9799336
 0.9630335 0.9462346 0.9295366 0.9129398 0.8964441
 0.8800495 0.8637560 0.8475636 0.8314723 0.8154821
 0.7995928 0.7836031 0.7680671 0.7525314 0.7369960
 0.7214609 0.7059262 0.6903918 0.6748576 0.6593238
 0.6439884 0.6288303 0.6138273 0.5989566 0.5841946
 0.5695160 0.5548941 0.5403606 0.5258872 0.5115051
 0.4971884 0.4829659 0.4688118 0.4547538 0.4407666
 0.4268823 0.4130681 0.3993593 0.3857210 0.3721909
 0.3587306 0.3453800 0.3320963 0.3188545 0.3056255
 0.2923939 0.2790871 0.2656788 0.2520603 0.2382579
 0.2241887 0.2098147 0.1951486 0.1803247 0.1656941
 0.1518245
 0.7828656 0.7637509 0.7448205 0.7260743 0.7075127
 0.6891352 0.6709421 0.6529332 0.6351086 0.6174681
 0.6000118 0.5827396 0.5656517 0.5487478 0.5320281
 0.5154925 0.4991411 0.4829737 0.4669905 0.4511914
 0.4355764 0.4201455 0.4048987 0.3898360 0.3749574
 0.3602629 0.3453845 0.3313343 0.3172842 0.3032342
 0.2891843 0.2751345 0.2610848 0.2470352 0.2329856
 0.2191596 0.2055642 0.1922065 0.1790939 0.1662346
 0.1536377 0.1413138 0.1292488 0.1174540 0.1059153
 9.4644450E-02 8.3627470E-02 7.2876483E-02 6.2377471E-02 5.2143011E-02
 4.2161636E-02 3.2442302E-02 2.2975631E-02 1.3769563E-02 4.8159449E-03
 -3.8783744E-03 -1.2321455E-02 -2.0506624E-02 -2.8410554E-02 -3.6028050E-02
 -4.3334480E-02 -5.0307505E-02 -5.6885768E-02 -6.3043542E-02 -6.8689689E-02
 -7.3718503E-02 -7.7967718E-02 -8.1204623E-02 -8.3129458E-02 -8.3459206E-02
 -8.2133278E-02
 1.264234 1.245733 1.227333 1.209035 1.190838
 1.172742 1.154747 1.136854 1.119062 1.101372
 1.083783 1.066295 1.048908 1.031623 1.014438
 0.9973550 0.9803731 0.9634923 0.9467126 0.9300340
 0.9134566 0.8969802 0.8806050 0.8643309 0.8481579
 0.8320860 0.8159137 0.8001950 0.7844768 0.7687588
 0.7530411 0.7373239 0.7216070 0.7058905 0.6901742
 0.6746566 0.6593161 0.6441308 0.6290779 0.6141336
 0.5992728 0.5844688 0.5697531 0.5550976 0.5405333
 0.5260346 0.5116301 0.4972940 0.4830542 0.4688852
 0.4548190 0.4408230 0.4269324 0.4131123 0.3994004
 0.3857583 0.3722259 0.3587605 0.3454023 0.3321125
 0.3188802 0.3056552 0.2924020 0.2790945 0.2656916
 0.2520636 0.2382602 0.2241901 0.2098156 0.1951493
 0.1803252
 0.8281353 0.8085164 0.7890819 0.7698315 0.7507657
 0.7318841 0.7131869 0.6946739 0.6763452 0.6582006
 0.6402403 0.6224641 0.6048721 0.5874643 0.5702406
 0.5532011 0.5363457 0.5196745 0.5031875 0.4868847
 0.4707660 0.4548314 0.4390810 0.4235146 0.4081324
 0.3929344 0.3775524 0.3629986 0.3484450 0.3338915
 0.3193381 0.3047847 0.2902315 0.2756784 0.2611254
 0.2467960 0.2326972 0.2188361 0.2052201 0.1918575
 0.1787572 0.1659299 0.1533616 0.1410634 0.1290214
 0.1172472 0.1057270 9.4472691E-02 8.3470404E-02 7.2732672E-02
 6.2248029E-02 5.2025434E-02 4.2055503E-02 3.2346174E-02 2.2889299E-02
 1.3691723E-02 4.7453875E-03 -3.9430372E-03 -1.2380618E-02 -2.0559423E-02
 -2.8459026E-02 -3.6078457E-02 -4.3373715E-02 -5.0348178E-02 -5.6917243E-02
 -6.3072912E-02 -6.8716317E-02 -7.3742792E-02 -7.7990182E-02 -8.1225820E-02
 -8.3150074E-02
 1.301424 1.282743 1.264164 1.245687 1.227310
 1.209035 1.190862 1.172789 1.154819 1.136950
 1.119182 1.101515 1.083950 1.066485 1.049122
 1.031860 1.014700 0.9976404 0.9806821 0.9638250
 0.9470691 0.9304143 0.9138606 0.8974081 0.8810568
 0.8648065 0.8484559 0.8325590 0.8166624 0.8007662
 0.7848704 0.7689751 0.7530801 0.7371855 0.7212912
 0.7055956 0.6900771 0.6747139 0.6594831 0.6443610
 0.6293224 0.6143404 0.5994469 0.5846136 0.5698715
 0.5551952 0.5406129 0.5260992 0.5116817 0.4973350
 0.4830912 0.4689175 0.4548493 0.4408517 0.4269621
 0.4131424 0.3994325 0.3857895 0.3722537 0.3587864
 0.3454122 0.3321336 0.3188953 0.3056647 0.2924065
 0.2790980 0.2657059 0.2520664 0.2382621 0.2241916
 0.2098170
 0.8743419 0.8542202 0.8342828 0.8145297 0.7949610
 0.7755766 0.7563766 0.7373608 0.7185295 0.6998821
 0.6814191 0.6631402 0.6450456 0.6271352 0.6094089
 0.5918667 0.5745088 0.5573350 0.5403454 0.5235400
 0.5069188 0.4904818 0.4742290 0.4581603 0.4422757
 0.4265752 0.4106909 0.3956348 0.3805788 0.3655230
 0.3504672 0.3354116 0.3203561 0.3053008 0.2902455
 0.2754140 0.2608130 0.2464497 0.2323316 0.2184668
 0.2048644 0.1915350 0.1784645 0.1656642 0.1531201
 0.1408439 0.1288215 0.1170651 0.1055608 9.4320983E-02
 8.3334275E-02 7.2609626E-02 6.2137641E-02 5.1926266E-02 4.1967347E-02
 3.2267731E-02 2.2819357E-02 1.3628896E-02 4.6892813E-03 -3.9915591E-03
 -1.2427922E-02 -2.0599436E-02 -2.8494054E-02 -3.6113106E-02 -4.3405410E-02
 -5.0383702E-02 -5.6941755E-02 -6.3096248E-02 -6.8737537E-02 -7.3762186E-02
 -7.8008138E-02

XFOILinterface/XFOIL/orrs/osm_gu.15

 2001 15.03777
 0.0000000E+00 0.0000000E+00 5.2214535E-17
 4.5113329E-02 2.6390697E-18 6.4782800E-17
 9.0226658E-02 5.9121857E-18 8.0323579E-17
 0.1353400 9.9690525E-18 9.9528634E-17
 0.1804533 1.4994095E-17 1.2324560E-16
 0.2255667 2.1214342E-17 1.5251519E-16
 0.2706800 2.8909039E-17 1.8861223E-16
 0.3157933 3.8421553E-17 2.3310413E-16
 0.3609066 5.0173739E-17 2.8790335E-16
 0.4060200 6.4683532E-17 3.5535592E-16
 0.4511333 8.2586321E-17 4.3832414E-16
 0.4962467 1.0466120E-16 5.4031739E-16
 0.5413600 1.3186295E-16 6.6561157E-16
 0.5864733 1.6536050E-16 8.1942857E-16
 0.6315867 2.0658422E-16 1.0081336E-15
 0.6767000 2.5728327E-16 1.2394958E-15
 0.7218133 3.1959527E-16 1.5229724E-15
 0.7669266 3.9613065E-16 1.8700539E-15
 0.8120400 4.9007505E-16 2.2947630E-15
 0.8571534 6.0531404E-16 2.8141024E-15
 0.9022667 7.4658278E-16 3.4487323E-15
 0.9473799 9.1964792E-16 4.2237353E-15
 0.9924933 1.1315295E-15 5.1695628E-15
 1.037607 1.3907658E-15 6.3231018E-15
 1.082720 1.7077351E-15 7.7290283E-15
 1.127833 2.0950422E-15 9.4413977E-15
 1.172947 2.5679907E-15 1.1525711E-14
 1.218060 3.1451432E-15 1.4061068E-14
 1.263173 3.8490037E-15 1.7143019E-14
 1.308287 4.7068312E-15 2.0886852E-14
 1.353400 5.7516290E-15 2.5431942E-14
 1.398513 7.0233278E-15 3.0945993E-14
 1.443627 8.5701947E-15 3.7631167E-14
 1.488740 1.0450560E-14 4.5730587E-14
 1.533853 1.2734834E-14 5.5537660E-14
 1.578967 1.5507993E-14 6.7404165E-14
 1.624080 1.8872477E-14 8.1752794E-14
 1.669193 2.2951735E-14 9.9091979E-14
 1.714307 2.7894421E-14 1.2003105E-13
 1.759420 3.3879421E-14 1.4530047E-13
 1.804533 4.1121830E-14 1.7577569E-13
 1.849647 4.9880100E-14 2.1250410E-13
 1.894760 6.0464729E-14 2.5674187E-13
 1.939873 7.3248258E-14 3.0998763E-13
 1.984987 8.8677451E-14 3.7403126E-13
 2.030100 1.0728780E-13 4.5101726E-13
 2.075213 1.2972070E-13 5.4349553E-13
 2.120327 1.5674381E-13 6.5451382E-13
 2.165440 1.8927518E-13 7.8769234E-13
 2.210553 2.2841223E-13 9.4736241E-13
 2.255666 2.7546582E-13 1.1386599E-12
 2.300780 3.3200089E-13 1.3676983E-12
 2.345893 3.9988371E-13 1.6417357E-12
 2.391007 4.8133920E-13 1.9694103E-12
 2.436120 5.7901784E-13 2.3609584E-12
 2.481233 6.9607498E-13 2.8285070E-12
 2.526347 8.3626395E-13 3.3864615E-12
 2.571460 1.0040476E-12 4.0518574E-12
 2.616573 1.2047277E-12 4.8448441E-12
 2.661687 1.4445985E-12 5.7892914E-12
 2.706800 1.7311272E-12 6.9133241E-12
 2.751913 2.0731676E-12 8.2502746E-12
 2.797027 2.4812108E-12 9.8394105E-12
 2.842140 2.9676738E-12 1.1726987E-11
 2.887253 3.5472599E-12 1.3967668E-11
 2.932367 4.2373453E-12 1.6625722E-11
 2.977480 5.0584628E-12 1.9776699E-11
 3.022593 6.0348601E-12 2.3509705E-11
 3.067707 7.1951512E-12 2.7929225E-11
 3.112820 8.5730789E-12 3.3158108E-11
 3.157933 1.0208404E-11 3.9340416E-11
 3.203047 1.2147949E-11 4.6644980E-11
 3.248160 1.4446816E-11 5.5270184E-11
 3.293273 1.7169816E-11 6.5447946E-11
 3.338387 2.0393104E-11 7.7449366E-11
 3.383500 2.4206127E-11 9.1592470E-11
 3.428613 2.8713868E-11 1.0824824E-10
 3.473727 3.4039459E-11 1.2784986E-10
 3.518840 4.0327196E-11 1.5090305E-10
 3.563953 4.7746085E-11 1.7799692E-10
 3.609067 5.6493948E-11 2.0982006E-10
 3.654180 6.6802126E-11 2.4717281E-10
 3.699293 7.8941187E-11 2.9098535E-10
 3.744406 9.3226968E-11 3.4234304E-10
 3.789520 1.1002826E-10 4.0250484E-10
 3.834633 1.2977516E-10 4.7293058E-10
 3.879746 1.5296908E-10 5.5532057E-10
 3.924860 1.8019414E-10 6.5164107E-10
 3.969973 2.1213022E-10 7.6417417E-10
 4.015087 2.4956831E-10 8.9555968E-10
 4.060200 2.9342770E-10 1.0488502E-09
 4.105313 3.4477657E-10 1.2275875E-09
 4.150427 4.0485498E-10 1.4358550E-09
 4.195540 4.7510135E-10 1.6783613E-09
 4.240654 5.5718336E-10 1.9605606E-09
 4.285767 6.5303307E-10 2.2887245E-09
 4.330880 7.6488749E-10 2.6700901E-09
 4.375993 8.9533436E-10 3.1129830E-09
 4.421107 1.0473653E-09 3.6269723E-09
 4.466220 1.2244359E-09 4.2231112E-09
 4.511333 1.4305398E-09 4.9140461E-09
 4.556447 1.6702797E-09 5.7142837E-09
 4.601560 1.9489643E-09 6.6405801E-09
 4.646673 2.2727109E-09 7.7120133E-09
 4.691786 2.6485616E-09 8.9504955E-09
 4.736900 3.0846199E-09 1.0381173E-08
 4.782013 3.5902030E-09 1.2032728E-08
 4.827127 4.1760164E-09 1.3938015E-08
 4.872240 4.8543529E-09 1.6134527E-08
 4.917353 5.6393143E-09 1.8665006E-08
 4.962467 6.5470727E-09 2.1578442E-08
 5.007580 7.5961601E-09 2.4930513E-08
 5.052693 8.8077945E-09 2.8784580E-08
 5.097806 1.0206242E-08 3.3212913E-08
 5.142920 1.1819296E-08 3.8297777E-08
 5.188033 1.3678635E-08 4.4132420E-08
 5.233147 1.5820531E-08 5.0823139E-08
 5.278260 1.8286258E-08 5.8490158E-08
 5.323373 2.1123016E-08 6.7270356E-08
 5.368486 2.4384434E-08 7.7318347E-08
 5.413600 2.8131755E-08 8.8809649E-08
 5.458713 3.2434468E-08 1.0194271E-07
 5.503827 3.7371816E-08 1.1694224E-07
 5.548940 4.3033591E-08 1.3406151E-07
 5.594053 4.9522040E-08 1.5358769E-07
 5.639166 5.6952864E-08 1.7584362E-07
 5.684279 6.5457527E-08 2.0119410E-07
 5.729393 7.5185042E-08 2.3005067E-07
 5.774506 8.6303729E-08 2.6287498E-07
 5.819620 9.9004659E-08 3.0018859E-07
 5.864733 1.1350321E-07 3.4257644E-07
 5.909847 1.3004352E-07 3.9069653E-07
 5.954960 1.4890040E-07 4.4528696E-07
 6.000073 1.7038495E-07 5.0717659E-07
 6.045187 1.9484683E-07 5.7729369E-07
 6.090300 2.2268134E-07 6.5667905E-07
 6.135413 2.5433212E-07 7.4649671E-07
 6.180527 2.9030002E-07 8.4804981E-07
 6.225640 3.3114634E-07 9.6279359E-07
 6.270753 3.7750399E-07 1.0923561E-06
 6.315866 4.3008109E-07 1.2385480E-06
 6.360980 4.8967502E-07 1.4033984E-06
 6.406093 5.5717663E-07 1.5891565E-06
 6.451206 6.3358681E-07 1.7983391E-06
 6.496320 7.2002626E-07 2.0337393E-06
 6.541433 8.1774567E-07 2.2984595E-06
 6.586546 9.2814821E-07 2.5959580E-06
 6.631660 1.0527961E-06 2.9300622E-06
 6.676773 1.1934397E-06 3.3050251E-06
 6.721886 1.3520252E-06 3.7255522E-06
 6.767000 1.5307299E-06 4.1968760E-06
 6.812113 1.7319709E-06 4.7247536E-06
 6.857227 1.9584490E-06 5.3155886E-06
 6.902340 2.2131578E-06 5.9764316E-06
 6.947453 2.4994381E-06 6.7150813E-06
 6.992567 2.8209861E-06 7.5401335E-06
 7.037680 3.1819227E-06 8.4610738E-06
 7.082793 3.5867990E-06 9.4883417E-06
 7.127907 4.0406826E-06 1.0633444E-05
 7.173020 4.5491624E-06 1.1909017E-05
 7.218133 5.1184520E-06 1.3328985E-05
 7.263247 5.7553930E-06 1.4908562E-05
 7.308360 6.4675723E-06 1.6664537E-05
 7.353473 7.2633734E-06 1.8615296E-05
 7.398586 8.1520157E-06 2.0780928E-05
 7.443700 9.1437132E-06 2.3183486E-05
 7.488813 1.0249672E-05 2.5847019E-05
 7.533926 1.1482288E-05 2.8797940E-05
 7.579040 1.2855144E-05 3.2064963E-05
 7.624153 1.4383244E-05 3.5679503E-05
 7.669266 1.6082995E-05 3.9675717E-05
 7.714380 1.7972507E-05 4.4091004E-05
 7.759493 2.0071548E-05 4.8965885E-05
 7.804607 2.2401902E-05 5.4344539E-05
 7.849720 2.4987319E-05 6.0274917E-05
 7.894834 2.7853932E-05 6.6809174E-05
 7.939947 3.1030184E-05 7.4003714E-05
 7.985060 3.4547331E-05 8.1920116E-05
 8.030173 3.8439335E-05 9.0624439E-05
 8.075286 4.2743417E-05 1.0018868E-04
 8.120399 4.7500187E-05 1.1069071E-04
 8.165513 5.2753712E-05 1.2221419E-04
 8.210627 5.8552268E-05 1.3485011E-04
 8.255739 6.4948079E-05 1.4869595E-04
 8.300854 7.1998293E-05 1.6385734E-04
 8.345966 7.9764621E-05 1.8044740E-04
 8.391080 8.8314468E-05 1.9858871E-04
 8.436193 9.7720549E-05 2.1841208E-04
 8.481307 1.0806220E-04 2.4005886E-04
 8.526420 1.1942479E-04 2.6367983E-04
 8.571533 1.3190137E-04 2.8943774E-04
 8.616647 1.4559190E-04 3.1750568E-04
 8.661760 1.6060518E-04 3.4807017E-04
 8.706873 1.7705790E-04 3.8132939E-04
 8.751987 1.9507688E-04 4.1749663E-04
 8.797100 2.1479791E-04 4.5679734E-04
 8.842214 2.3636836E-04 4.9947435E-04
 8.887326 2.5994575E-04 5.4578419E-04
 8.932440 2.8570049E-04 5.9600174E-04
 8.977553 3.1381578E-04 6.5041840E-04
 9.022666 3.4448726E-04 7.0934329E-04
 9.067780 3.7792660E-04 7.7310577E-04
 9.112893 4.1435898E-04 8.4205356E-04
 9.158007 4.5402764E-04 9.1655669E-04
 9.203119 4.9719098E-04 9.9700468E-04
 9.248233 5.4412760E-04 1.0838126E-03
 9.293346 5.9513299E-04 1.1774136E-03
 9.338460 6.5052538E-04 1.2782715E-03
 9.383573 7.1064167E-04 1.3868685E-03
 9.428687 7.7584415E-04 1.5037184E-03
 9.473800 8.4651535E-04 1.6293555E-03
 9.518913 9.2306652E-04 1.7643478E-03
 9.564027 1.0059309E-03 1.9092845E-03
 9.609140 1.0955735E-03 2.0647910E-03
 9.654253 1.1924831E-03 2.2315148E-03
 9.699367 1.2971828E-03 2.4101383E-03
 9.744480 1.4102266E-03 2.6013758E-03
 9.789593 1.5321975E-03 2.8059673E-03
 9.834706 1.6637185E-03 3.0246903E-03
 9.879820 1.8054420E-03 3.2583475E-03
 9.924933 1.9580645E-03 3.5077857E-03
 9.970046 2.1223132E-03 3.7738672E-03
 10.01516 2.2989640E-03 4.0575066E-03
 10.06027 2.4888252E-03 4.3596351E-03
 10.10539 2.6927586E-03 4.6812296E-03
 10.15050 2.9116618E-03 5.0232909E-03
 10.19561 3.1464752E-03 5.3868457E-03
 10.24073 3.3982054E-03 5.7729804E-03
 10.28584 3.6678894E-03 6.1827851E-03
 10.33095 3.9566206E-03 6.6173929E-03
 10.37607 4.2655361E-03 7.0779487E-03
 10.42118 4.5958492E-03 7.5656669E-03
 10.46629 4.9488056E-03 8.0817537E-03
 10.51141 5.3257020E-03 8.6274408E-03
 10.55652 5.7279230E-03 9.2040179E-03
 10.60163 6.1568813E-03 9.8127695E-03
 10.64675 6.6140578E-03 1.0455008E-02
 10.69186 7.1009803E-03 1.1132044E-02
 10.73697 7.6192752E-03 1.1845266E-02
 10.78209 8.1705926E-03 1.2596019E-02
 10.82720 8.7566571E-03 1.3385677E-02
 10.87231 9.3792379E-03 1.4215599E-02
 10.91743 1.0040216E-02 1.5087226E-02
 10.96254 1.0741489E-02 1.6001921E-02
 11.00765 1.1485029E-02 1.6961079E-02
 11.05277 1.2272853E-02 1.7966054E-02
 11.09788 1.3107103E-02 1.9018279E-02
 11.14299 1.3989917E-02 2.0119082E-02
 11.18811 1.4923519E-02 2.1269821E-02
 11.23322 1.5910165E-02 2.2471778E-02
 11.27833 1.6952246E-02 2.3726311E-02
 11.32345 1.8052140E-02 2.5034651E-02
 11.36856 1.9212266E-02 2.6397990E-02
 11.41367 2.0435195E-02 2.7817577E-02
 11.45879 2.1723464E-02 2.9294526E-02
 11.50390 2.3079680E-02 3.0829899E-02
 11.54901 2.4506465E-02 3.2424685E-02
 11.59413 2.6006598E-02 3.4079921E-02
 11.63924 2.7582787E-02 3.5796449E-02
 11.68435 2.9237816E-02 3.7575081E-02
 11.72947 3.0974453E-02 3.9416488E-02
 11.77458 3.2795645E-02 4.1321397E-02
 11.81969 3.4704216E-02 4.3290310E-02
 11.86481 3.6703065E-02 4.5323659E-02
 11.90992 3.8795050E-02 4.7421712E-02
 11.95503 4.0983208E-02 4.9584810E-02
 12.00015 4.3270420E-02 5.1812991E-02
 12.04526 4.5659620E-02 5.4106221E-02
 12.09037 4.8153676E-02 5.6464285E-02
 12.13549 5.0755635E-02 5.8887012E-02
 12.18060 5.3468339E-02 6.1373916E-02
 12.22571 5.6294594E-02 6.3924335E-02
 12.27083 5.9237402E-02 6.6537678E-02
 12.31594 6.2299505E-02 6.9212995E-02
 12.36105 6.5483674E-02 7.1949244E-02
 12.40617 6.8792544E-02 7.4745134E-02
 12.45128 7.2228953E-02 7.7599458E-02
 12.49639 7.5795412E-02 8.0510587E-02
 12.54151 7.9494447E-02 8.3476827E-02
 12.58662 8.3328396E-02 8.6496174E-02
 12.63173 8.7299816E-02 8.9566782E-02
 12.67685 9.1410860E-02 9.2686310E-02
 12.72196 9.5663697E-02 9.5852353E-02
 12.76707 0.1000602 9.9062242E-02
 12.81219 0.1046026 0.1023134
 12.85730 0.1092926 0.1056028
 12.90241 0.1141315 0.1089272
 12.94753 0.1191214 0.1122837
 12.99264 0.1242632 0.1156685
 13.03775 0.1295584 0.1190782
 13.08287 0.1350077 0.1225090
 13.12798 0.1406123 0.1259570
 13.17309 0.1463727 0.1294182
 13.21821 0.1522895 0.1328883
 13.26332 0.1583628 0.1363630
 13.30843 0.1645931 0.1398380
 13.35355 0.1709799 0.1433086
 13.39866 0.1775232 0.1467703
 13.44377 0.1842221 0.1502181
 13.48889 0.1910764 0.1536474
 13.53400 0.1980848 0.1570532
 13.57911 0.2052462 0.1604305
 13.62423 0.2125591 0.1637742
 13.66934 0.2200221 0.1670793
 13.71445 0.2276332 0.1703407
 13.75957 0.2353901 0.1735532
 13.80468 0.2432910 0.1767119
 13.84979 0.2513330 0.1798114
 13.89491 0.2595134 0.1828468
 13.94002 0.2678290 0.1858129
 13.98513 0.2762769 0.1887049
 14.03025 0.2848536 0.1915178
 14.07536 0.2935552 0.1942466
 14.12047 0.3023777 0.1968867
 14.16559 0.3113174 0.1994334
 14.21070 0.3203698 0.2018823
 14.25581 0.3295304 0.2042287
 14.30093 0.3387942 0.2064686
 14.34604 0.3481568 0.2085979
 14.39115 0.3576128 0.2106126
 14.43627 0.3671571 0.2125091
 14.48138 0.3767840 0.2142836
 14.52649 0.3864883 0.2159331
 14.57161 0.3962642 0.2174543
 14.61672 0.4061054 0.2188443
 14.66183 0.4160066 0.2201006
 14.70695 0.4259614 0.2212207
 14.75206 0.4359636 0.2222024
 14.79717 0.4460067 0.2230439
 14.84229 0.4560848 0.2237436
 14.88740 0.4661913 0.2243000
 14.93251 0.4763195 0.2247122
 14.97763 0.4864629 0.2249793
 15.02274 0.4966153 0.2251009
 15.06785 0.5067698 0.2250765
 15.11297 0.5169200 0.2249065
 15.15808 0.5270590 0.2245909
 15.20319 0.5371807 0.2241305
 15.24831 0.5472785 0.2235262
 15.29342 0.5573456 0.2227791
 15.33853 0.5673757 0.2218906
 15.38365 0.5773628 0.2208626
 15.42876 0.5873004 0.2196968
 15.47387 0.5971821 0.2183957
 15.51899 0.6070024 0.2169616
 15.56410 0.6167550 0.2153974
 15.60921 0.6264342 0.2137058
 15.65433 0.6360340 0.2118903
 15.69944 0.6455495 0.2099540
 15.74455 0.6549749 0.2079007
 15.78967 0.6643053 0.2057341
 15.83478 0.6735351 0.2034582
 15.87989 0.6826602 0.2010771
 15.92501 0.6916755 0.1985952
 15.97012 0.7005767 0.1960168
 16.01523 0.7093593 0.1933466
 16.06035 0.7180197 0.1905892
 16.10546 0.7265538 0.1877495
 16.15057 0.7349579 0.1848323
 16.19569 0.7432289 0.1818425
 16.24080 0.7513635 0.1787851
 16.28591 0.7593588 0.1756653
 16.33103 0.7672118 0.1724882
 16.37614 0.7749205 0.1692588
 16.42125 0.7824826 0.1659822
 16.46637 0.7898958 0.1626636
 16.51148 0.7971582 0.1593082
 16.55659 0.8042688 0.1559209
 16.60171 0.8112260 0.1525067
 16.64682 0.8180286 0.1490707
 16.69193 0.8246756 0.1456177
 16.73705 0.8311668 0.1421525
 16.78216 0.8375015 0.1386799
 16.82727 0.8436795 0.1352045
 16.87239 0.8497006 0.1317309
 16.91750 0.8555652 0.1282632
 16.96261 0.8612736 0.1248060
 17.00773 0.8668263 0.1213633
 17.05284 0.8722242 0.1179391
 17.09795 0.8774681 0.1145373
 17.14307 0.8825592 0.1111615
 17.18818 0.8874984 0.1078154
 17.23329 0.8922877 0.1045023
 17.27841 0.8969283 0.1012253
 17.32352 0.9014218 9.7987540E-02
 17.36863 0.9057702 9.4791986E-02
 17.41375 0.9099755 9.1641173E-02
 17.45886 0.9140398 8.8537700E-02
 17.50397 0.9179652 8.5483909E-02
 17.54909 0.9217539 8.2482062E-02
 17.59420 0.9254085 7.9534009E-02
 17.63931 0.9289313 7.6641627E-02
 17.68443 0.9323249 7.3806591E-02
 17.72954 0.9355919 7.1030460E-02
 17.77465 0.9387351 6.8314396E-02
 17.81977 0.9417571 6.5659627E-02
 17.86488 0.9446607 6.3067220E-02
 17.90999 0.9474488 6.0537856E-02
 17.95511 0.9501243 5.8072291E-02
 18.00022 0.9526901 5.5671044E-02
 18.04533 0.9551488 5.3334583E-02
 18.09045 0.9575037 5.1063027E-02
 18.13556 0.9597575 4.8856549E-02
 18.18067 0.9619133 4.6715129E-02
 18.22579 0.9639739 4.4638690E-02
 18.27090 0.9659423 4.2626865E-02
 18.31601 0.9678215 4.0679343E-02
 18.36113 0.9696142 3.8795646E-02
 18.40624 0.9713233 3.6975253E-02
 18.45135 0.9729517 3.5217412E-02
 18.49647 0.9745023 3.3521406E-02
 18.54158 0.9759776 3.1886455E-02
 18.58669 0.9773806 3.0311551E-02
 18.63181 0.9787139 2.8795775E-02
 18.67692 0.9799801 2.7338065E-02
 18.72203 0.9811817 2.5937378E-02
 18.76715 0.9823215 2.4592482E-02
 18.81226 0.9834018 2.3302216E-02
 18.85737 0.9844252 2.2065341E-02
 18.90248 0.9853939 2.0880613E-02
 18.94760 0.9863104 1.9746670E-02
 18.99271 0.9871768 1.8662205E-02
 19.03783 0.9879953 1.7625874E-02
 19.08294 0.9887682 1.6636332E-02
 19.12805 0.9894974 1.5692150E-02
 19.17317 0.9901850 1.4791968E-02
 19.21828 0.9908329 1.3934391E-02
 19.26339 0.9914432 1.3118047E-02
 19.30851 0.9920174 1.2341513E-02
 19.35362 0.9925576 1.1603424E-02
 19.39873 0.9930652 1.0902428E-02
 19.44385 0.9935421 1.0237128E-02
 19.48896 0.9939896 9.6061984E-03
 19.53407 0.9944096 9.0083154E-03
 19.57919 0.9948031 8.4421858E-03
 19.62430 0.9951719 7.9064984E-03
 19.66941 0.9955172 7.4000033E-03
 19.71453 0.9958403 6.9214674E-03
 19.75964 0.9961423 6.4696963E-03
 19.80475 0.9964246 6.0434849E-03
 19.84987 0.9966881 5.6416942E-03
 19.89498 0.9969341 5.2632028E-03
 19.94009 0.9971635 4.9069338E-03
 19.98521 0.9973773 4.5718076E-03
 20.03032 0.9975765 4.2568110E-03
 20.07543 0.9977618 3.9609484E-03
 20.12055 0.9979343 3.6832707E-03
 20.16566 0.9980946 3.4228405E-03
 20.21077 0.9982435 3.1787499E-03
 20.25589 0.9983817 2.9501664E-03
 20.30100 0.9985099 2.7362348E-03
 20.34611 0.9986289 2.5361835E-03
 20.39123 0.9987390 2.3492351E-03
 20.43634 0.9988410 2.1746494E-03
 20.48145 0.9989355 2.0117420E-03
 20.52657 0.9990228 1.8598322E-03
 20.57168 0.9991035 1.7182734E-03
 20.61679 0.9991780 1.5864667E-03
 20.66191 0.9992468 1.4638162E-03
 20.70702 0.9993103 1.3497781E-03
 20.75213 0.9993688 1.2438184E-03
 20.79725 0.9994227 1.1454287E-03
 20.84236 0.9994723 1.0541436E-03
 20.88747 0.9995180 9.6950505E-04
 20.93259 0.9995599 8.9108042E-04
 20.97770 0.9995985 8.1847300E-04
 21.02281 0.9996338 7.5129472E-04
 21.06793 0.9996663 6.8918063E-04
 21.11304 0.9996961 6.3179503E-04
 21.15815 0.9997234 5.7880976E-04
 21.20327 0.9997485 5.2992732E-04
 21.24838 0.9997714 4.8485867E-04
 21.29349 0.9997922 4.4333347E-04
 21.33861 0.9998114 4.0510413E-04
 21.38372 0.9998289 3.6993163E-04
 21.42883 0.9998448 3.3759227E-04
 21.47395 0.9998594 3.0788203E-04
 21.51906 0.9998726 2.8060318E-04
 21.56417 0.9998847 2.5557689E-04
 21.60929 0.9998958 2.3263184E-04
 21.65440 0.9999058 2.1160857E-04
 21.69951 0.9999148 1.9236143E-04
 21.74463 0.9999231 1.7475165E-04
 21.78974 0.9999307 1.5865029E-04
 21.83485 0.9999375 1.4394001E-04
 21.87996 0.9999436 1.3050901E-04
 21.92508 0.9999492 1.1825404E-04
 21.97019 0.9999543 1.0708094E-04
 22.01531 0.9999589 9.6900221E-05
 22.06042 0.9999631 8.7631051E-05
 22.10553 0.9999669 7.9197249E-05
 22.15065 0.9999703 7.1528353E-05
 22.19576 0.9999734 6.4560612E-05
 22.24087 0.9999761 5.8233836E-05
 22.28599 0.9999786 5.2492709E-05
 22.33110 0.9999808 4.7287271E-05
 22.37621 0.9999828 4.2570136E-05
 22.42133 0.9999847 3.8298964E-05
 22.46644 0.9999863 3.4434030E-05
 22.51155 0.9999878 3.0938874E-05
 22.55667 0.9999891 2.7780654E-05
 22.60178 0.9999903 2.4928650E-05
 22.64689 0.9999914 2.2354827E-05
 22.69201 0.9999923 2.0033867E-05
 22.73712 0.9999932 1.7942251E-05
 22.78223 0.9999939 1.6058517E-05
 22.82734 0.9999946 1.4363304E-05
 22.87246 0.9999952 1.2838669E-05
 22.91757 0.9999958 1.1468495E-05
 22.96268 0.9999962 1.0237909E-05
 23.00780 0.9999967 9.1333986E-06
 23.05291 0.9999970 8.1428188E-06
 23.09802 0.9999974 7.2549692E-06
 23.14314 0.9999977 6.4596975E-06
 23.18825 0.9999980 5.7479110E-06
 23.23337 0.9999983 5.1112156E-06
 23.27848 0.9999985 4.5421261E-06
 23.32359 0.9999986 4.0337877E-06
 23.36871 0.9999989 3.5799935E-06
 23.41382 0.9999990 3.1752154E-06
 23.45893 0.9999991 2.8143811E-06
 23.50405 0.9999993 2.4929184E-06
 23.54916 0.9999994 2.2067588E-06
 23.59427 0.9999995 1.9521810E-06
 23.63939 0.9999995 1.7258409E-06
 23.68450 0.9999996 1.5247670E-06
 23.72961 0.9999996 1.3462362E-06
 23.77473 0.9999997 1.1878476E-06
 23.81984 0.9999998 1.0474156E-06
 23.86495 0.9999999 9.2298086E-07
 23.91007 0.9999999 8.1280820E-07
 23.95518 1.000000 7.1532310E-07
 24.00029 1.000000 6.2911698E-07
 24.04541 1.000000 5.5294595E-07
 24.09052 1.000000 4.8567915E-07
 24.13563 1.000000 4.2632175E-07
 24.18075 1.000000 3.7397643E-07
 24.22586 1.000000 3.2784342E-07
 24.27097 1.000000 2.8721718E-07
 24.31609 1.000000 2.5146244E-07
 24.36120 1.000000 2.2001448E-07
 24.40631 1.000000 1.9237608E-07
 24.45143 1.000000 1.6810061E-07
 24.49654 1.000000 1.4679219E-07
 24.54165 1.000000 1.2810268E-07
 24.58677 1.000000 1.1171962E-07
 24.63188 1.000000 9.7369274E-08
 24.67699 1.000000 8.4807276E-08
 24.72211 1.000000 7.3817588E-08
 24.76722 1.000000 6.4210816E-08
 24.81233 1.000000 5.5818091E-08
 24.85745 1.000000 4.8490552E-08
 24.90256 1.000000 4.2097994E-08
 24.94767 1.000000 3.6524202E-08
 24.99279 1.000000 3.1668112E-08
 25.03790 1.000000 2.7439864E-08
 25.08301 1.000000 2.3760565E-08
 25.12813 1.000000 2.0561485E-08
 25.17324 1.000000 1.7781556E-08
 25.21835 1.000000 1.5367419E-08
 25.26347 1.000000 1.3272532E-08
 25.30858 1.000000 1.1455787E-08
 25.35369 1.000000 9.8812336E-09
 25.39881 1.000000 8.5176524E-09
 25.44392 1.000000 7.3374249E-09
 25.48903 1.000000 6.3166841E-09
 25.53415 1.000000 5.4344276E-09
 25.57926 1.000000 4.6723208E-09
 25.62437 1.000000 4.0145234E-09
 25.66949 1.000000 3.4471053E-09
 25.71460 1.000000 2.9579399E-09
 25.75971 1.000000 2.5365685E-09
 25.80482 1.000000 2.1738136E-09
 25.84994 1.000000 1.8617140E-09
 25.89505 1.000000 1.5934049E-09
 25.94017 1.000000 1.3628698E-09
 25.98528 1.000000 1.1649419E-09
 26.03039 1.000000 9.9511344E-10
 26.07551 1.000000 8.4948687E-10
 26.12062 1.000000 7.2470707E-10
 26.16573 1.000000 6.1785516E-10
 26.21085 1.000000 5.2641214E-10
 26.25596 1.000000 4.4821630E-10
 26.30107 1.000000 3.8138573E-10
 26.34619 1.000000 3.2431188E-10
 26.39130 1.000000 2.7560079E-10
 26.43641 1.000000 2.3405203E-10
 26.48153 1.000000 1.9864001E-10
 26.52664 1.000000 1.6847686E-10
 26.57175 1.000000 1.4279994E-10
 26.61687 1.000000 1.2095903E-10
 26.66198 1.000000 1.0239221E-10
 26.70709 1.000000 8.6618497E-11
 26.75220 1.000000 7.3227938E-11
 26.79732 1.000000 6.1866734E-11
 26.84243 1.000000 5.2234821E-11
 26.88754 1.000000 4.4073974E-11
 26.93266 1.000000 3.7163658E-11
 26.97777 1.000000 3.1316796E-11
 27.02288 1.000000 2.6372743E-11
 27.06800 1.000000 2.2194611E-11
 27.11311 1.000000 1.8666436E-11
 27.15823 1.000000 1.5688853E-11
 27.20334 1.000000 1.3177791E-11
 27.24845 1.000000 1.1061481E-11
 27.29357 1.000000 9.2789344E-12
 27.33868 1.000000 7.7786727E-12
 27.38379 1.000000 6.5167641E-12
 27.42891 1.000000 5.4559803E-12
 27.47402 1.000000 4.5649500E-12
 27.51913 1.000000 3.8169606E-12
 27.56425 1.000000 3.1894392E-12
 27.60936 1.000000 2.6633825E-12
 27.65447 1.000000 2.2226288E-12
 27.69959 1.000000 1.8536288E-12
 27.74470 1.000000 1.5448913E-12
 27.78981 1.000000 1.2867293E-12
 27.83493 1.000000 1.0710235E-12
 27.88004 1.000000 8.9090215E-13
 27.92515 1.000000 7.4058408E-13
 27.97027 1.000000 6.1523654E-13
 28.01538 1.000000 5.1076840E-13
 28.06049 1.000000 4.2376917E-13
 28.10561 1.000000 3.5136052E-13
 28.15072 1.000000 2.9113257E-13
 28.19583 1.000000 2.4107441E-13
 28.24095 1.000000 1.9949438E-13
 28.28606 1.000000 1.6497708E-13
 28.33117 1.000000 1.3634520E-13
 28.37629 1.000000 1.1260957E-13
 28.42140 1.000000 9.2944593E-14
 28.46651 1.000000 7.6664850E-14
 28.51163 1.000000 6.3195000E-14
 28.55674 1.000000 5.2058594E-14
 28.60185 1.000000 4.2856794E-14
 28.64697 1.000000 3.5258350E-14
 28.69208 1.000000 2.8988568E-14
 28.73719 1.000000 2.3818301E-14
 28.78231 1.000000 1.9557266E-14
 28.82742 1.000000 1.6048294E-14
 28.87253 1.000000 1.3160238E-14
 28.91765 1.000000 1.0785048E-14
 28.96276 1.000000 8.8328054E-15
 29.00787 1.000000 7.2291738E-15
 29.05299 1.000000 5.9129316E-15
 29.09810 1.000000 4.8332068E-15
 29.14321 1.000000 3.9480379E-15
 29.18833 1.000000 3.2229278E-15
 29.23344 1.000000 2.6292932E-15
 29.27855 1.000000 2.1435856E-15
 29.32367 1.000000 1.7464895E-15
 29.36878 1.000000 1.4220163E-15
 29.41389 1.000000 1.1570925E-15
 29.45901 1.000000 9.4091056E-16
 29.50412 1.000000 7.6461643E-16
 29.54923 1.000000 6.2095572E-16
 29.59435 1.000000 5.0396173E-16
 29.63946 1.000000 4.0874080E-16
 29.68457 1.000000 3.3130018E-16
 29.72969 1.000000 2.6835544E-16
 29.77480 1.000000 2.1723052E-16
 29.81991 1.000000 1.7573218E-16
 29.86503 1.000000 1.4206709E-16
 29.91014 1.000000 1.1477852E-16
 29.95525 1.000000 9.2671499E-17
 30.00037 1.000000 7.4773044E-17
 30.04548 1.000000 6.0293056E-17
 30.09059 1.000000 4.8585826E-17
 30.13571 1.000000 3.9125835E-17
 30.18082 1.000000 3.1487818E-17
 30.22593 1.000000 2.5324060E-17
 30.27105 1.000000 2.0353963E-17
 30.31616 1.000000 1.6348694E-17
 30.36127 1.000000 1.3122922E-17
 30.40639 1.000000 1.0526920E-17
 30.45150 1.000000 8.4390215E-18
 30.49661 1.000000 6.7607473E-18
 30.54173 1.000000 5.4128032E-18
 30.58684 1.000000 4.3307500E-18
 30.63195 1.000000 3.4627867E-18
 30.67706 1.000000 2.7670054E-18
 30.72218 1.000000 2.2095609E-18
 30.76729 1.000000 1.7632964E-18
 30.81240 1.000000 1.4062516E-18
 30.85752 1.000000 1.1207680E-18
 30.90263 1.000000 8.9267181E-19
 30.94774 1.000000 7.1053357E-19
 30.99286 1.000000 5.6518734E-19
 31.03797 1.000000 4.4928667E-19
 31.08309 1.000000 3.5691773E-19
 31.12820 1.000000 2.8335943E-19
 31.17331 1.000000 2.2481427E-19
 31.21843 1.000000 1.7824819E-19
 31.26354 1.000000 1.4123741E-19
 31.30865 1.000000 1.1183844E-19
 31.35377 1.000000 8.8500855E-20
 31.39888 1.000000 6.9988572E-20
 31.44399 1.000000 5.5312954E-20
 31.48911 1.000000 4.3685599E-20
 31.53422 1.000000 3.4480594E-20
 31.57933 1.000000 2.7197120E-20
 31.62445 1.000000 2.1438581E-20
 31.66956 1.000000 1.6888366E-20
 31.71467 1.000000 1.3295127E-20
 31.75979 1.000000 1.0459736E-20
 31.80490 1.000000 8.2237012E-21
 31.85001 1.000000 6.4614353E-21
 31.89513 1.000000 5.0735539E-21
 31.94024 1.000000 3.9811694E-21
 31.98535 1.000000 3.1219961E-21
 32.03046 1.000000 2.4466530E-21
 32.07558 1.000000 1.9161340E-21
 32.12069 1.000000 1.4996939E-21
 32.16581 1.000000 1.1729994E-21
 32.21092 1.000000 9.1687044E-22
 32.25603 1.000000 7.1620901E-22
 32.30114 1.000000 5.5910286E-22
 32.34626 1.000000 4.3617117E-22
 32.39137 1.000000 3.4005216E-22
 32.43649 1.000000 2.6494001E-22
 32.48160 1.000000 2.0628747E-22
 32.52671 1.000000 1.6051595E-22
 32.57183 1.000000 1.2481745E-22
 32.61694 1.000000 9.6996784E-23
 32.66205 1.000000 7.5328233E-23
 32.70716 1.000000 5.8461491E-23
 32.75228 1.000000 4.5342665E-23
 32.79739 1.000000 3.5144517E-23
 32.84251 1.000000 2.7222820E-23
 32.88762 1.000000 2.1072950E-23
 32.93274 1.000000 1.6301628E-23
 32.97784 1.000000 1.2602641E-23
 33.02296 1.000000 9.7366711E-24
 33.06807 1.000000 7.5174894E-24
 33.11319 1.000000 5.8004079E-24
 33.15830 1.000000 4.4726429E-24
 33.20341 1.000000 3.4465270E-24
 33.24852 1.000000 2.6541314E-24
 33.29364 1.000000 2.0425684E-24
 33.33875 1.000000 1.5709260E-24
 33.38387 1.000000 1.2074104E-24
 33.42898 1.000000 9.2739375E-25
 33.47409 1.000000 7.1186621E-25
 33.51920 1.000000 5.4607540E-25
 33.56432 1.000000 4.1861865E-25
 33.60943 1.000000 3.2070783E-25
 33.65455 1.000000 2.4553434E-25
 33.69966 1.000000 1.8786244E-25
 33.74477 1.000000 1.4364350E-25
 33.78989 1.000000 1.0976033E-25
 33.83500 1.000000 8.3816243E-26
 33.88011 1.000000 6.3963314E-26
 33.92523 1.000000 4.8780419E-26
 33.97034 1.000000 3.7177770E-26
 34.01545 1.000000 2.8316606E-26
 34.06057 1.000000 2.1553235E-26
 34.10568 1.000000 1.6394836E-26
 34.15079 1.000000 1.2462734E-26
 34.19591 1.000000 9.4677406E-27
 34.24102 1.000000 7.1878279E-27
 34.28613 1.000000 5.4533165E-27
 34.33125 1.000000 4.1347293E-27
 34.37636 1.000000 3.1329507E-27
 34.42147 1.000000 2.3723203E-27
 34.46659 1.000000 1.7952148E-27
 34.51170 1.000000 1.3576037E-27
 34.55681 1.000000 1.0260129E-27
 34.60192 1.000000 7.7491260E-28
 34.64704 1.000000 5.8487666E-28
 34.69215 1.000000 4.4116483E-28
 34.73727 1.000000 3.3254914E-28
 34.78238 1.000000 2.5050855E-28
 34.82749 1.000000 1.8858878E-28
 34.87260 1.000000 1.4188154E-28
 34.91772 1.000000 1.0667172E-28
 34.96283 1.000000 8.0148929E-29
 35.00795 1.000000 6.0180785E-29
 35.05306 1.000000 4.5158862E-29
 35.09817 1.000000 3.3864640E-29
 35.14329 1.000000 2.5378349E-29
 35.18840 1.000000 1.9006491E-29
 35.23351 1.000000 1.4225325E-29
 35.27863 1.000000 1.0639817E-29
 35.32374 1.000000 7.9530021E-30
 35.36885 1.000000 5.9407291E-30
 35.41397 1.000000 4.4347937E-30
 35.45908 1.000000 3.3084569E-30
 35.50419 1.000000 2.4665462E-30
 35.54930 1.000000 1.8377143E-30
 35.59442 1.000000 1.3683224E-30
 35.63953 1.000000 1.0181396E-30
 35.68465 1.000000 7.5710201E-31
 35.72976 1.000000 5.6262192E-31
 35.77487 1.000000 4.1782448E-31
 35.81998 1.000000 3.1009360E-31
 35.86510 1.000000 2.2998883E-31
 35.91021 1.000000 1.7046912E-31
 35.95533 1.000000 1.2627083E-31
 36.00044 1.000000 9.3469251E-32
 36.04555 1.000000 6.9145322E-32
 36.09066 1.000000 5.1118547E-32
 36.13578 1.000000 3.7766144E-32
 36.18089 1.000000 2.7883790E-32
 36.22601 1.000000 2.0573709E-32
 36.27112 1.000000 1.5170450E-32
 36.31623 1.000000 1.1179078E-32
 36.36135 1.000000 8.2323131E-33
 36.40646 1.000000 6.0585151E-33
 36.45157 1.000000 4.4557973E-33
 36.49669 1.000000 3.2749133E-33
 36.54180 1.000000 2.4054468E-33
 36.58691 1.000000 1.7656858E-33
 36.63203 1.000000 1.2952180E-33
 36.67714 1.000000 9.4950501E-34
 36.72225 1.000000 6.9560608E-34
 36.76736 1.000000 5.0927756E-34
 36.81248 1.000000 3.7261812E-34
 36.85759 1.000000 2.7244899E-34
 36.90271 1.000000 1.9908175E-34
 36.94782 1.000000 1.4537820E-34
 36.99293 1.000000 1.0609028E-34
 37.03804 1.000000 7.7370763E-35
 37.08316 1.000000 5.6389704E-35
 37.12827 1.000000 4.1070613E-35
 37.17339 1.000000 2.9894472E-35
 37.21850 1.000000 2.1744978E-35
 37.26361 1.000000 1.5807216E-35
 37.30872 1.000000 1.1483391E-35
 37.35384 1.000000 8.3367474E-36
 37.39895 1.000000 6.0485060E-36
 37.44407 1.000000 4.3854886E-36
 37.48918 1.000000 3.1776025E-36
 37.53429 1.000000 2.3009445E-36
 37.57941 1.000000 1.6650391E-36
 37.62452 1.000000 1.2041143E-36
 37.66963 1.000000 8.7022724E-37
 37.71475 1.000000 6.2850111E-37
 37.75986 1.000000 4.5363623E-37
 37.80497 1.000000 3.2720842E-37
 37.85009 1.000000 2.3586104E-37
 37.89520 1.000000 1.6990639E-37
 37.94031 1.000000 1.2231644E-37
 37.98543 1.000000 8.7997777E-38
 38.03054 1.000000 6.3267919E-38
 38.07565 1.000000 4.5457321E-38
 38.12077 1.000000 3.2640168E-38
 38.16588 1.000000 2.3421926E-38
 38.21099 1.000000 1.6795822E-38
 38.25611 1.000000 1.2036630E-38
 38.30122 1.000000 0.0000000E+00
 38.34633 1.000000 0.0000000E+00
 38.39145 1.000000 0.0000000E+00
 38.43656 1.000000 0.0000000E+00
 38.48167 1.000000 0.0000000E+00
 38.52679 1.000000 0.0000000E+00
 38.57190 1.000000 0.0000000E+00
 38.61701 1.000000 0.0000000E+00
 38.66212 1.000000 0.0000000E+00
 38.70724 1.000000 0.0000000E+00
 38.75235 1.000000 0.0000000E+00
 38.79747 1.000000 0.0000000E+00
 38.84258 1.000000 0.0000000E+00
 38.88769 1.000000 0.0000000E+00
 38.93281 1.000000 0.0000000E+00
 38.97792 1.000000 0.0000000E+00
 39.02303 1.000000 0.0000000E+00
 39.06815 1.000000 0.0000000E+00
 39.11326 1.000000 0.0000000E+00
 39.15837 1.000000 0.0000000E+00
 39.20349 1.000000 0.0000000E+00
 39.24860 1.000000 0.0000000E+00
 39.29371 1.000000 0.0000000E+00
 39.33883 1.000000 0.0000000E+00
 39.38394 1.000000 0.0000000E+00
 39.42905 1.000000 0.0000000E+00
 39.47417 1.000000 0.0000000E+00
 39.51928 1.000000 0.0000000E+00
 39.56439 1.000000 0.0000000E+00
 39.60950 1.000000 0.0000000E+00
 39.65462 1.000000 0.0000000E+00
 39.69973 1.000000 0.0000000E+00
 39.74485 1.000000 0.0000000E+00
 39.78996 1.000000 0.0000000E+00
 39.83507 1.000000 0.0000000E+00
 39.88018 1.000000 0.0000000E+00
 39.92530 1.000000 0.0000000E+00
 39.97041 1.000000 0.0000000E+00
 40.01553 1.000000 0.0000000E+00
 40.06064 1.000000 0.0000000E+00
 40.10575 1.000000 0.0000000E+00
 40.15087 1.000000 0.0000000E+00
 40.19598 1.000000 0.0000000E+00
 40.24109 1.000000 0.0000000E+00
 40.28621 1.000000 0.0000000E+00
 40.33132 1.000000 0.0000000E+00
 40.37643 1.000000 0.0000000E+00
 40.42155 1.000000 0.0000000E+00
 40.46666 1.000000 0.0000000E+00
 40.51177 1.000000 0.0000000E+00
 40.55688 1.000000 0.0000000E+00
 40.60200 1.000000 0.0000000E+00
 40.64711 1.000000 0.0000000E+00
 40.69223 1.000000 0.0000000E+00
 40.73734 1.000000 0.0000000E+00
 40.78245 1.000000 0.0000000E+00
 40.82757 1.000000 0.0000000E+00
 40.87268 1.000000 0.0000000E+00
 40.91779 1.000000 0.0000000E+00
 40.96291 1.000000 0.0000000E+00
 41.00802 1.000000 0.0000000E+00
 41.05313 1.000000 0.0000000E+00
 41.09825 1.000000 0.0000000E+00
 41.14336 1.000000 0.0000000E+00
 41.18847 1.000000 0.0000000E+00
 41.23359 1.000000 0.0000000E+00
 41.27870 1.000000 0.0000000E+00
 41.32381 1.000000 0.0000000E+00
 41.36893 1.000000 0.0000000E+00
 41.41404 1.000000 0.0000000E+00
 41.45915 1.000000 0.0000000E+00
 41.50426 1.000000 0.0000000E+00
 41.54938 1.000000 0.0000000E+00
 41.59449 1.000000 0.0000000E+00
 41.63961 1.000000 0.0000000E+00
 41.68472 1.000000 0.0000000E+00
 41.72983 1.000000 0.0000000E+00
 41.77494 1.000000 0.0000000E+00
 41.82006 1.000000 0.0000000E+00
 41.86517 1.000000 0.0000000E+00
 41.91029 1.000000 0.0000000E+00
 41.95540 1.000000 0.0000000E+00
 42.00051 1.000000 0.0000000E+00
 42.04562 1.000000 0.0000000E+00
 42.09074 1.000000 0.0000000E+00
 42.13585 1.000000 0.0000000E+00
 42.18097 1.000000 0.0000000E+00
 42.22608 1.000000 0.0000000E+00
 42.27119 1.000000 0.0000000E+00
 42.31631 1.000000 0.0000000E+00
 42.36142 1.000000 0.0000000E+00
 42.40653 1.000000 0.0000000E+00
 42.45164 1.000000 0.0000000E+00
 42.49676 1.000000 0.0000000E+00
 42.54187 1.000000 0.0000000E+00
 42.58699 1.000000 0.0000000E+00
 42.63210 1.000000 0.0000000E+00
 42.67721 1.000000 0.0000000E+00
 42.72232 1.000000 0.0000000E+00
 42.76744 1.000000 0.0000000E+00
 42.81255 1.000000 0.0000000E+00
 42.85767 1.000000 0.0000000E+00
 42.90278 1.000000 0.0000000E+00
 42.94789 1.000000 0.0000000E+00
 42.99300 1.000000 0.0000000E+00
 43.03812 1.000000 0.0000000E+00
 43.08323 1.000000 0.0000000E+00
 43.12835 1.000000 0.0000000E+00
 43.17346 1.000000 0.0000000E+00
 43.21857 1.000000 0.0000000E+00
 43.26368 1.000000 0.0000000E+00
 43.30880 1.000000 0.0000000E+00
 43.35391 1.000000 0.0000000E+00
 43.39902 1.000000 0.0000000E+00
 43.44414 1.000000 0.0000000E+00
 43.48925 1.000000 0.0000000E+00
 43.53437 1.000000 0.0000000E+00
 43.57948 1.000000 0.0000000E+00
 43.62459 1.000000 0.0000000E+00
 43.66970 1.000000 0.0000000E+00
 43.71482 1.000000 0.0000000E+00
 43.75993 1.000000 0.0000000E+00
 43.80505 1.000000 0.0000000E+00
 43.85016 1.000000 0.0000000E+00
 43.89527 1.000000 0.0000000E+00
 43.94038 1.000000 0.0000000E+00
 43.98550 1.000000 0.0000000E+00
 44.03061 1.000000 0.0000000E+00
 44.07573 1.000000 0.0000000E+00
 44.12084 1.000000 0.0000000E+00
 44.16595 1.000000 0.0000000E+00
 44.21106 1.000000 0.0000000E+00
 44.25618 1.000000 0.0000000E+00
 44.30129 1.000000 0.0000000E+00
 44.34641 1.000000 0.0000000E+00
 44.39152 1.000000 0.0000000E+00
 44.43663 1.000000 0.0000000E+00
 44.48174 1.000000 0.0000000E+00
 44.52686 1.000000 0.0000000E+00
 44.57197 1.000000 0.0000000E+00
 44.61708 1.000000 0.0000000E+00
 44.66220 1.000000 0.0000000E+00
 44.70731 1.000000 0.0000000E+00
 44.75243 1.000000 0.0000000E+00
 44.79754 1.000000 0.0000000E+00
 44.84265 1.000000 0.0000000E+00
 44.88776 1.000000 0.0000000E+00
 44.93288 1.000000 0.0000000E+00
 44.97799 1.000000 0.0000000E+00
 45.02311 1.000000 0.0000000E+00
 45.06822 1.000000 0.0000000E+00
 45.11333 1.000000 0.0000000E+00
 45.15844 1.000000 0.0000000E+00
 45.20356 1.000000 0.0000000E+00
 45.24868 1.000000 0.0000000E+00
 45.29379 1.000000 0.0000000E+00
 45.33890 1.000000 0.0000000E+00
 45.38401 1.000000 0.0000000E+00
 45.42912 1.000000 0.0000000E+00
 45.47424 1.000000 0.0000000E+00
 45.51936 1.000000 0.0000000E+00
 45.56447 1.000000 0.0000000E+00
 45.60958 1.000000 0.0000000E+00
 45.65469 1.000000 0.0000000E+00
 45.69980 1.000000 0.0000000E+00
 45.74492 1.000000 0.0000000E+00
 45.79004 1.000000 0.0000000E+00
 45.83515 1.000000 0.0000000E+00
 45.88026 1.000000 0.0000000E+00
 45.92537 1.000000 0.0000000E+00
 45.97048 1.000000 0.0000000E+00
 46.01560 1.000000 0.0000000E+00
 46.06071 1.000000 0.0000000E+00
 46.10583 1.000000 0.0000000E+00
 46.15094 1.000000 0.0000000E+00
 46.19605 1.000000 0.0000000E+00
 46.24117 1.000000 0.0000000E+00
 46.28628 1.000000 0.0000000E+00
 46.33139 1.000000 0.0000000E+00
 46.37651 1.000000 0.0000000E+00
 46.42162 1.000000 0.0000000E+00
 46.46674 1.000000 0.0000000E+00
 46.51185 1.000000 0.0000000E+00
 46.55696 1.000000 0.0000000E+00
 46.60207 1.000000 0.0000000E+00
 46.64719 1.000000 0.0000000E+00
 46.69230 1.000000 0.0000000E+00
 46.73742 1.000000 0.0000000E+00
 46.78253 1.000000 0.0000000E+00
 46.82764 1.000000 0.0000000E+00
 46.87275 1.000000 0.0000000E+00
 46.91787 1.000000 0.0000000E+00
 46.96298 1.000000 0.0000000E+00
 47.00809 1.000000 0.0000000E+00
 47.05321 1.000000 0.0000000E+00
 47.09832 1.000000 0.0000000E+00
 47.14343 1.000000 0.0000000E+00
 47.18855 1.000000 0.0000000E+00
 47.23366 1.000000 0.0000000E+00
 47.27877 1.000000 0.0000000E+00
 47.32389 1.000000 0.0000000E+00
 47.36900 1.000000 0.0000000E+00
 47.41411 1.000000 0.0000000E+00
 47.45923 1.000000 0.0000000E+00
 47.50434 1.000000 0.0000000E+00
 47.54945 1.000000 0.0000000E+00
 47.59457 1.000000 0.0000000E+00
 47.63968 1.000000 0.0000000E+00
 47.68479 1.000000 0.0000000E+00
 47.72991 1.000000 0.0000000E+00
 47.77502 1.000000 0.0000000E+00
 47.82013 1.000000 0.0000000E+00
 47.86525 1.000000 0.0000000E+00
 47.91036 1.000000 0.0000000E+00
 47.95547 1.000000 0.0000000E+00
 48.00059 1.000000 0.0000000E+00
 48.04570 1.000000 0.0000000E+00
 48.09081 1.000000 0.0000000E+00
 48.13593 1.000000 0.0000000E+00
 48.18104 1.000000 0.0000000E+00
 48.22615 1.000000 0.0000000E+00
 48.27127 1.000000 0.0000000E+00
 48.31638 1.000000 0.0000000E+00
 48.36149 1.000000 0.0000000E+00
 48.40660 1.000000 0.0000000E+00
 48.45172 1.000000 0.0000000E+00
 48.49683 1.000000 0.0000000E+00
 48.54195 1.000000 0.0000000E+00
 48.58706 1.000000 0.0000000E+00
 48.63217 1.000000 0.0000000E+00
 48.67729 1.000000 0.0000000E+00
 48.72240 1.000000 0.0000000E+00
 48.76751 1.000000 0.0000000E+00
 48.81263 1.000000 0.0000000E+00
 48.85774 1.000000 0.0000000E+00
 48.90285 1.000000 0.0000000E+00
 48.94797 1.000000 0.0000000E+00
 48.99308 1.000000 0.0000000E+00
 49.03819 1.000000 0.0000000E+00
 49.08331 1.000000 0.0000000E+00
 49.12842 1.000000 0.0000000E+00
 49.17353 1.000000 0.0000000E+00
 49.21865 1.000000 0.0000000E+00
 49.26376 1.000000 0.0000000E+00
 49.30887 1.000000 0.0000000E+00
 49.35398 1.000000 0.0000000E+00
 49.39910 1.000000 0.0000000E+00
 49.44421 1.000000 0.0000000E+00
 49.48933 1.000000 0.0000000E+00
 49.53444 1.000000 0.0000000E+00
 49.57955 1.000000 0.0000000E+00
 49.62466 1.000000 0.0000000E+00
 49.66978 1.000000 0.0000000E+00
 49.71489 1.000000 0.0000000E+00
 49.76001 1.000000 0.0000000E+00
 49.80512 1.000000 0.0000000E+00
 49.85023 1.000000 0.0000000E+00
 49.89535 1.000000 0.0000000E+00
 49.94046 1.000000 0.0000000E+00
 49.98557 1.000000 0.0000000E+00
 50.03069 1.000000 0.0000000E+00
 50.07580 1.000000 0.0000000E+00
 50.12091 1.000000 0.0000000E+00
 50.16603 1.000000 0.0000000E+00
 50.21114 1.000000 0.0000000E+00
 50.25625 1.000000 0.0000000E+00
 50.30136 1.000000 0.0000000E+00
 50.34648 1.000000 0.0000000E+00
 50.39159 1.000000 0.0000000E+00
 50.43671 1.000000 0.0000000E+00
 50.48182 1.000000 0.0000000E+00
 50.52693 1.000000 0.0000000E+00
 50.57204 1.000000 0.0000000E+00
 50.61716 1.000000 0.0000000E+00
 50.66227 1.000000 0.0000000E+00
 50.70739 1.000000 0.0000000E+00
 50.75250 1.000000 0.0000000E+00
 50.79761 1.000000 0.0000000E+00
 50.84272 1.000000 0.0000000E+00
 50.88784 1.000000 0.0000000E+00
 50.93295 1.000000 0.0000000E+00
 50.97807 1.000000 0.0000000E+00
 51.02318 1.000000 0.0000000E+00
 51.06829 1.000000 0.0000000E+00
 51.11340 1.000000 0.0000000E+00
 51.15852 1.000000 0.0000000E+00
 51.20363 1.000000 0.0000000E+00
 51.24874 1.000000 0.0000000E+00
 51.29386 1.000000 0.0000000E+00
 51.33897 1.000000 0.0000000E+00
 51.38409 1.000000 0.0000000E+00
 51.42920 1.000000 0.0000000E+00
 51.47431 1.000000 0.0000000E+00
 51.51942 1.000000 0.0000000E+00
 51.56454 1.000000 0.0000000E+00
 51.60965 1.000000 0.0000000E+00
 51.65477 1.000000 0.0000000E+00
 51.69988 1.000000 0.0000000E+00
 51.74499 1.000000 0.0000000E+00
 51.79010 1.000000 0.0000000E+00
 51.83522 1.000000 0.0000000E+00
 51.88033 1.000000 0.0000000E+00
 51.92545 1.000000 0.0000000E+00
 51.97056 1.000000 0.0000000E+00
 52.01567 1.000000 0.0000000E+00
 52.06078 1.000000 0.0000000E+00
 52.10590 1.000000 0.0000000E+00
 52.15101 1.000000 0.0000000E+00
 52.19613 1.000000 0.0000000E+00
 52.24124 1.000000 0.0000000E+00
 52.28635 1.000000 0.0000000E+00
 52.33146 1.000000 0.0000000E+00
 52.37658 1.000000 0.0000000E+00
 52.42169 1.000000 0.0000000E+00
 52.46680 1.000000 0.0000000E+00
 52.51192 1.000000 0.0000000E+00
 52.55703 1.000000 0.0000000E+00
 52.60215 1.000000 0.0000000E+00
 52.64726 1.000000 0.0000000E+00
 52.69237 1.000000 0.0000000E+00
 52.73748 1.000000 0.0000000E+00
 52.78260 1.000000 0.0000000E+00
 52.82771 1.000000 0.0000000E+00
 52.87283 1.000000 0.0000000E+00
 52.91794 1.000000 0.0000000E+00
 52.96305 1.000000 0.0000000E+00
 53.00816 1.000000 0.0000000E+00
 53.05328 1.000000 0.0000000E+00
 53.09839 1.000000 0.0000000E+00
 53.14351 1.000000 0.0000000E+00
 53.18862 1.000000 0.0000000E+00
 53.23373 1.000000 0.0000000E+00
 53.27884 1.000000 0.0000000E+00
 53.32396 1.000000 0.0000000E+00
 53.36907 1.000000 0.0000000E+00
 53.41418 1.000000 0.0000000E+00
 53.45930 1.000000 0.0000000E+00
 53.50441 1.000000 0.0000000E+00
 53.54952 1.000000 0.0000000E+00
 53.59464 1.000000 0.0000000E+00
 53.63976 1.000000 0.0000000E+00
 53.68486 1.000000 0.0000000E+00
 53.72998 1.000000 0.0000000E+00
 53.77509 1.000000 0.0000000E+00
 53.82021 1.000000 0.0000000E+00
 53.86532 1.000000 0.0000000E+00
 53.91043 1.000000 0.0000000E+00
 53.95554 1.000000 0.0000000E+00
 54.00066 1.000000 0.0000000E+00
 54.04577 1.000000 0.0000000E+00
 54.09089 1.000000 0.0000000E+00
 54.13600 1.000000 0.0000000E+00
 54.18111 1.000000 0.0000000E+00
 54.22622 1.000000 0.0000000E+00
 54.27134 1.000000 0.0000000E+00
 54.31646 1.000000 0.0000000E+00
 54.36157 1.000000 0.0000000E+00
 54.40668 1.000000 0.0000000E+00
 54.45179 1.000000 0.0000000E+00
 54.49690 1.000000 0.0000000E+00
 54.54202 1.000000 0.0000000E+00
 54.58714 1.000000 0.0000000E+00
 54.63225 1.000000 0.0000000E+00
 54.67736 1.000000 0.0000000E+00
 54.72247 1.000000 0.0000000E+00
 54.76758 1.000000 0.0000000E+00
 54.81270 1.000000 0.0000000E+00
 54.85781 1.000000 0.0000000E+00
 54.90293 1.000000 0.0000000E+00
 54.94804 1.000000 0.0000000E+00
 54.99315 1.000000 0.0000000E+00
 55.03826 1.000000 0.0000000E+00
 55.08338 1.000000 0.0000000E+00
 55.12849 1.000000 0.0000000E+00
 55.17361 1.000000 0.0000000E+00
 55.21872 1.000000 0.0000000E+00
 55.26383 1.000000 0.0000000E+00
 55.30895 1.000000 0.0000000E+00
 55.35406 1.000000 0.0000000E+00
 55.39917 1.000000 0.0000000E+00
 55.44429 1.000000 0.0000000E+00
 55.48940 1.000000 0.0000000E+00
 55.53452 1.000000 0.0000000E+00
 55.57963 1.000000 0.0000000E+00
 55.62474 1.000000 0.0000000E+00
 55.66985 1.000000 0.0000000E+00
 55.71497 1.000000 0.0000000E+00
 55.76008 1.000000 0.0000000E+00
 55.80519 1.000000 0.0000000E+00
 55.85031 1.000000 0.0000000E+00
 55.89542 1.000000 0.0000000E+00
 55.94053 1.000000 0.0000000E+00
 55.98565 1.000000 0.0000000E+00
 56.03076 1.000000 0.0000000E+00
 56.07587 1.000000 0.0000000E+00
 56.12099 1.000000 0.0000000E+00
 56.16610 1.000000 0.0000000E+00
 56.21121 1.000000 0.0000000E+00
 56.25632 1.000000 0.0000000E+00
 56.30144 1.000000 0.0000000E+00
 56.34655 1.000000 0.0000000E+00
 56.39167 1.000000 0.0000000E+00
 56.43678 1.000000 0.0000000E+00
 56.48189 1.000000 0.0000000E+00
 56.52701 1.000000 0.0000000E+00
 56.57212 1.000000 0.0000000E+00
 56.61723 1.000000 0.0000000E+00
 56.66235 1.000000 0.0000000E+00
 56.70746 1.000000 0.0000000E+00
 56.75257 1.000000 0.0000000E+00
 56.79769 1.000000 0.0000000E+00
 56.84280 1.000000 0.0000000E+00
 56.88791 1.000000 0.0000000E+00
 56.93303 1.000000 0.0000000E+00
 56.97814 1.000000 0.0000000E+00
 57.02325 1.000000 0.0000000E+00
 57.06837 1.000000 0.0000000E+00
 57.11348 1.000000 0.0000000E+00
 57.15859 1.000000 0.0000000E+00
 57.20370 1.000000 0.0000000E+00
 57.24882 1.000000 0.0000000E+00
 57.29393 1.000000 0.0000000E+00
 57.33905 1.000000 0.0000000E+00
 57.38416 1.000000 0.0000000E+00
 57.42927 1.000000 0.0000000E+00
 57.47438 1.000000 0.0000000E+00
 57.51950 1.000000 0.0000000E+00
 57.56461 1.000000 0.0000000E+00
 57.60973 1.000000 0.0000000E+00
 57.65484 1.000000 0.0000000E+00
 57.69995 1.000000 0.0000000E+00
 57.74507 1.000000 0.0000000E+00
 57.79018 1.000000 0.0000000E+00
 57.83529 1.000000 0.0000000E+00
 57.88041 1.000000 0.0000000E+00
 57.92552 1.000000 0.0000000E+00
 57.97063 1.000000 0.0000000E+00
 58.01575 1.000000 0.0000000E+00
 58.06086 1.000000 0.0000000E+00
 58.10597 1.000000 0.0000000E+00
 58.15108 1.000000 0.0000000E+00
 58.19620 1.000000 0.0000000E+00
 58.24131 1.000000 0.0000000E+00
 58.28643 1.000000 0.0000000E+00
 58.33154 1.000000 0.0000000E+00
 58.37665 1.000000 0.0000000E+00
 58.42176 1.000000 0.0000000E+00
 58.46688 1.000000 0.0000000E+00
 58.51199 1.000000 0.0000000E+00
 58.55711 1.000000 0.0000000E+00
 58.60222 1.000000 0.0000000E+00
 58.64733 1.000000 0.0000000E+00
 58.69244 1.000000 0.0000000E+00
 58.73756 1.000000 0.0000000E+00
 58.78267 1.000000 0.0000000E+00
 58.82779 1.000000 0.0000000E+00
 58.87290 1.000000 0.0000000E+00
 58.91801 1.000000 0.0000000E+00
 58.96312 1.000000 0.0000000E+00
 59.00824 1.000000 0.0000000E+00
 59.05335 1.000000 0.0000000E+00
 59.09846 1.000000 0.0000000E+00
 59.14358 1.000000 0.0000000E+00
 59.18869 1.000000 0.0000000E+00
 59.23381 1.000000 0.0000000E+00
 59.27892 1.000000 0.0000000E+00
 59.32403 1.000000 0.0000000E+00
 59.36914 1.000000 0.0000000E+00
 59.41426 1.000000 0.0000000E+00
 59.45937 1.000000 0.0000000E+00
 59.50449 1.000000 0.0000000E+00
 59.54960 1.000000 0.0000000E+00
 59.59471 1.000000 0.0000000E+00
 59.63982 1.000000 0.0000000E+00
 59.68494 1.000000 0.0000000E+00
 59.73005 1.000000 0.0000000E+00
 59.77517 1.000000 0.0000000E+00
 59.82028 1.000000 0.0000000E+00
 59.86539 1.000000 0.0000000E+00
 59.91050 1.000000 0.0000000E+00
 59.95562 1.000000 0.0000000E+00
 60.00073 1.000000 0.0000000E+00
 60.04585 1.000000 0.0000000E+00
 60.09096 1.000000 0.0000000E+00
 60.13607 1.000000 0.0000000E+00
 60.18118 1.000000 0.0000000E+00
 60.22630 1.000000 0.0000000E+00
 60.27141 1.000000 0.0000000E+00
 60.31652 1.000000 0.0000000E+00
 60.36164 1.000000 0.0000000E+00
 60.40675 1.000000 0.0000000E+00
 60.45187 1.000000 0.0000000E+00
 60.49698 1.000000 0.0000000E+00
 60.54209 1.000000 0.0000000E+00
 60.58720 1.000000 0.0000000E+00
 60.63232 1.000000 0.0000000E+00
 60.67743 1.000000 0.0000000E+00
 60.72255 1.000000 0.0000000E+00
 60.76766 1.000000 0.0000000E+00
 60.81277 1.000000 0.0000000E+00
 60.85788 1.000000 0.0000000E+00
 60.90300 1.000000 0.0000000E+00
 60.94811 1.000000 0.0000000E+00
 60.99323 1.000000 0.0000000E+00
 61.03834 1.000000 0.0000000E+00
 61.08345 1.000000 0.0000000E+00
 61.12856 1.000000 0.0000000E+00
 61.17368 1.000000 0.0000000E+00
 61.21879 1.000000 0.0000000E+00
 61.26390 1.000000 0.0000000E+00
 61.30902 1.000000 0.0000000E+00
 61.35413 1.000000 0.0000000E+00
 61.39924 1.000000 0.0000000E+00
 61.44436 1.000000 0.0000000E+00
 61.48947 1.000000 0.0000000E+00
 61.53458 1.000000 0.0000000E+00
 61.57970 1.000000 0.0000000E+00
 61.62481 1.000000 0.0000000E+00
 61.66993 1.000000 0.0000000E+00
 61.71504 1.000000 0.0000000E+00
 61.76015 1.000000 0.0000000E+00
 61.80526 1.000000 0.0000000E+00
 61.85038 1.000000 0.0000000E+00
 61.89549 1.000000 0.0000000E+00
 61.94061 1.000000 0.0000000E+00
 61.98572 1.000000 0.0000000E+00
 62.03083 1.000000 0.0000000E+00
 62.07594 1.000000 0.0000000E+00
 62.12106 1.000000 0.0000000E+00
 62.16618 1.000000 0.0000000E+00
 62.21129 1.000000 0.0000000E+00
 62.25640 1.000000 0.0000000E+00
 62.30151 1.000000 0.0000000E+00
 62.34662 1.000000 0.0000000E+00
 62.39174 1.000000 0.0000000E+00
 62.43686 1.000000 0.0000000E+00
 62.48197 1.000000 0.0000000E+00
 62.52708 1.000000 0.0000000E+00
 62.57219 1.000000 0.0000000E+00
 62.61730 1.000000 0.0000000E+00
 62.66242 1.000000 0.0000000E+00
 62.70753 1.000000 0.0000000E+00
 62.75265 1.000000 0.0000000E+00
 62.79776 1.000000 0.0000000E+00
 62.84287 1.000000 0.0000000E+00
 62.88798 1.000000 0.0000000E+00
 62.93310 1.000000 0.0000000E+00
 62.97821 1.000000 0.0000000E+00
 63.02333 1.000000 0.0000000E+00
 63.06844 1.000000 0.0000000E+00
 63.11355 1.000000 0.0000000E+00
 63.15867 1.000000 0.0000000E+00
 63.20378 1.000000 0.0000000E+00
 63.24889 1.000000 0.0000000E+00
 63.29401 1.000000 0.0000000E+00
 63.33912 1.000000 0.0000000E+00
 63.38424 1.000000 0.0000000E+00
 63.42935 1.000000 0.0000000E+00
 63.47446 1.000000 0.0000000E+00
 63.51957 1.000000 0.0000000E+00
 63.56469 1.000000 0.0000000E+00
 63.60980 1.000000 0.0000000E+00
 63.65491 1.000000 0.0000000E+00
 63.70003 1.000000 0.0000000E+00
 63.74514 1.000000 0.0000000E+00
 63.79025 1.000000 0.0000000E+00
 63.83537 1.000000 0.0000000E+00
 63.88048 1.000000 0.0000000E+00
 63.92559 1.000000 0.0000000E+00
 63.97071 1.000000 0.0000000E+00
 64.01582 1.000000 0.0000000E+00
 64.06093 1.000000 0.0000000E+00
 64.10604 1.000000 0.0000000E+00
 64.15116 1.000000 0.0000000E+00
 64.19627 1.000000 0.0000000E+00
 64.24139 1.000000 0.0000000E+00
 64.28650 1.000000 0.0000000E+00
 64.33161 1.000000 0.0000000E+00
 64.37672 1.000000 0.0000000E+00
 64.42184 1.000000 0.0000000E+00
 64.46695 1.000000 0.0000000E+00
 64.51206 1.000000 0.0000000E+00
 64.55717 1.000000 0.0000000E+00
 64.60229 1.000000 0.0000000E+00
 64.64741 1.000000 0.0000000E+00
 64.69252 1.000000 0.0000000E+00
 64.73763 1.000000 0.0000000E+00
 64.78275 1.000000 0.0000000E+00
 64.82786 1.000000 0.0000000E+00
 64.87297 1.000000 0.0000000E+00
 64.91808 1.000000 0.0000000E+00
 64.96320 1.000000 0.0000000E+00
 65.00831 1.000000 0.0000000E+00
 65.05342 1.000000 0.0000000E+00
 65.09854 1.000000 0.0000000E+00
 65.14365 1.000000 0.0000000E+00
 65.18877 1.000000 0.0000000E+00
 65.23388 1.000000 0.0000000E+00
 65.27899 1.000000 0.0000000E+00
 65.32410 1.000000 0.0000000E+00
 65.36922 1.000000 0.0000000E+00
 65.41433 1.000000 0.0000000E+00
 65.45944 1.000000 0.0000000E+00
 65.50455 1.000000 0.0000000E+00
 65.54967 1.000000 0.0000000E+00
 65.59479 1.000000 0.0000000E+00
 65.63990 1.000000 0.0000000E+00
 65.68501 1.000000 0.0000000E+00
 65.73013 1.000000 0.0000000E+00
 65.77524 1.000000 0.0000000E+00
 65.82035 1.000000 0.0000000E+00
 65.86547 1.000000 0.0000000E+00
 65.91058 1.000000 0.0000000E+00
 65.95569 1.000000 0.0000000E+00
 66.00080 1.000000 0.0000000E+00
 66.04591 1.000000 0.0000000E+00
 66.09103 1.000000 0.0000000E+00
 66.13615 1.000000 0.0000000E+00
 66.18126 1.000000 0.0000000E+00
 66.22637 1.000000 0.0000000E+00
 66.27148 1.000000 0.0000000E+00
 66.31660 1.000000 0.0000000E+00
 66.36172 1.000000 0.0000000E+00
 66.40683 1.000000 0.0000000E+00
 66.45193 1.000000 0.0000000E+00
 66.49705 1.000000 0.0000000E+00
 66.54216 1.000000 0.0000000E+00
 66.58728 1.000000 0.0000000E+00
 66.63239 1.000000 0.0000000E+00
 66.67751 1.000000 0.0000000E+00
 66.72262 1.000000 0.0000000E+00
 66.76773 1.000000 0.0000000E+00
 66.81285 1.000000 0.0000000E+00
 66.85796 1.000000 0.0000000E+00
 66.90308 1.000000 0.0000000E+00
 66.94819 1.000000 0.0000000E+00
 66.99329 1.000000 0.0000000E+00
 67.03841 1.000000 0.0000000E+00
 67.08353 1.000000 0.0000000E+00
 67.12864 1.000000 0.0000000E+00
 67.17375 1.000000 0.0000000E+00
 67.21886 1.000000 0.0000000E+00
 67.26398 1.000000 0.0000000E+00
 67.30910 1.000000 0.0000000E+00
 67.35421 1.000000 0.0000000E+00
 67.39932 1.000000 0.0000000E+00
 67.44444 1.000000 0.0000000E+00
 67.48955 1.000000 0.0000000E+00
 67.53466 1.000000 0.0000000E+00
 67.57977 1.000000 0.0000000E+00
 67.62489 1.000000 0.0000000E+00
 67.67000 1.000000 0.0000000E+00
 67.71511 1.000000 0.0000000E+00
 67.76022 1.000000 0.0000000E+00
 67.80534 1.000000 0.0000000E+00
 67.85046 1.000000 0.0000000E+00
 67.89557 1.000000 0.0000000E+00
 67.94068 1.000000 0.0000000E+00
 67.98579 1.000000 0.0000000E+00
 68.03091 1.000000 0.0000000E+00
 68.07602 1.000000 0.0000000E+00
 68.12113 1.000000 0.0000000E+00
 68.16624 1.000000 0.0000000E+00
 68.21136 1.000000 0.0000000E+00
 68.25647 1.000000 0.0000000E+00
 68.30159 1.000000 0.0000000E+00
 68.34670 1.000000 0.0000000E+00
 68.39182 1.000000 0.0000000E+00
 68.43693 1.000000 0.0000000E+00
 68.48204 1.000000 0.0000000E+00
 68.52715 1.000000 0.0000000E+00
 68.57227 1.000000 0.0000000E+00
 68.61738 1.000000 0.0000000E+00
 68.66249 1.000000 0.0000000E+00
 68.70760 1.000000 0.0000000E+00
 68.75272 1.000000 0.0000000E+00
 68.79784 1.000000 0.0000000E+00
 68.84295 1.000000 0.0000000E+00
 68.88806 1.000000 0.0000000E+00
 68.93317 1.000000 0.0000000E+00
 68.97829 1.000000 0.0000000E+00
 69.02340 1.000000 0.0000000E+00
 69.06851 1.000000 0.0000000E+00
 69.11362 1.000000 0.0000000E+00
 69.15874 1.000000 0.0000000E+00
 69.20385 1.000000 0.0000000E+00
 69.24896 1.000000 0.0000000E+00
 69.29408 1.000000 0.0000000E+00
 69.33920 1.000000 0.0000000E+00
 69.38431 1.000000 0.0000000E+00
 69.42942 1.000000 0.0000000E+00
 69.47453 1.000000 0.0000000E+00
 69.51965 1.000000 0.0000000E+00
 69.56476 1.000000 0.0000000E+00
 69.60987 1.000000 0.0000000E+00
 69.65498 1.000000 0.0000000E+00
 69.70010 1.000000 0.0000000E+00
 69.74521 1.000000 0.0000000E+00
 69.79033 1.000000 0.0000000E+00
 69.83544 1.000000 0.0000000E+00
 69.88055 1.000000 0.0000000E+00
 69.92567 1.000000 0.0000000E+00
 69.97078 1.000000 0.0000000E+00
 70.01589 1.000000 0.0000000E+00
 70.06100 1.000000 0.0000000E+00
 70.10612 1.000000 0.0000000E+00
 70.15123 1.000000 0.0000000E+00
 70.19634 1.000000 0.0000000E+00
 70.24146 1.000000 0.0000000E+00
 70.28658 1.000000 0.0000000E+00
 70.33169 1.000000 0.0000000E+00
 70.37680 1.000000 0.0000000E+00
 70.42191 1.000000 0.0000000E+00
 70.46703 1.000000 0.0000000E+00
 70.51214 1.000000 0.0000000E+00
 70.55725 1.000000 0.0000000E+00
 70.60236 1.000000 0.0000000E+00
 70.64748 1.000000 0.0000000E+00
 70.69259 1.000000 0.0000000E+00
 70.73771 1.000000 0.0000000E+00
 70.78282 1.000000 0.0000000E+00
 70.82793 1.000000 0.0000000E+00
 70.87305 1.000000 0.0000000E+00
 70.91816 1.000000 0.0000000E+00
 70.96327 1.000000 0.0000000E+00
 71.00838 1.000000 0.0000000E+00
 71.05350 1.000000 0.0000000E+00
 71.09861 1.000000 0.0000000E+00
 71.14372 1.000000 0.0000000E+00
 71.18884 1.000000 0.0000000E+00
 71.23396 1.000000 0.0000000E+00
 71.27907 1.000000 0.0000000E+00
 71.32418 1.000000 0.0000000E+00
 71.36929 1.000000 0.0000000E+00
 71.41441 1.000000 0.0000000E+00
 71.45952 1.000000 0.0000000E+00
 71.50463 1.000000 0.0000000E+00
 71.54974 1.000000 0.0000000E+00
 71.59486 1.000000 0.0000000E+00
 71.63997 1.000000 0.0000000E+00
 71.68508 1.000000 0.0000000E+00
 71.73020 1.000000 0.0000000E+00
 71.77531 1.000000 0.0000000E+00
 71.82043 1.000000 0.0000000E+00
 71.86554 1.000000 0.0000000E+00
 71.91065 1.000000 0.0000000E+00
 71.95576 1.000000 0.0000000E+00
 72.00088 1.000000 0.0000000E+00
 72.04599 1.000000 0.0000000E+00
 72.09110 1.000000 0.0000000E+00
 72.13622 1.000000 0.0000000E+00
 72.18133 1.000000 0.0000000E+00
 72.22645 1.000000 0.0000000E+00
 72.27156 1.000000 0.0000000E+00
 72.31667 1.000000 0.0000000E+00
 72.36179 1.000000 0.0000000E+00
 72.40690 1.000000 0.0000000E+00
 72.45201 1.000000 0.0000000E+00
 72.49712 1.000000 0.0000000E+00
 72.54224 1.000000 0.0000000E+00
 72.58735 1.000000 0.0000000E+00
 72.63246 1.000000 0.0000000E+00
 72.67757 1.000000 0.0000000E+00
 72.72269 1.000000 0.0000000E+00
 72.76781 1.000000 0.0000000E+00
 72.81292 1.000000 0.0000000E+00
 72.85803 1.000000 0.0000000E+00
 72.90314 1.000000 0.0000000E+00
 72.94826 1.000000 0.0000000E+00
 72.99337 1.000000 0.0000000E+00
 73.03848 1.000000 0.0000000E+00
 73.08360 1.000000 0.0000000E+00
 73.12871 1.000000 0.0000000E+00
 73.17382 1.000000 0.0000000E+00
 73.21894 1.000000 0.0000000E+00
 73.26405 1.000000 0.0000000E+00
 73.30917 1.000000 0.0000000E+00
 73.35428 1.000000 0.0000000E+00
 73.39939 1.000000 0.0000000E+00
 73.44450 1.000000 0.0000000E+00
 73.48962 1.000000 0.0000000E+00
 73.53473 1.000000 0.0000000E+00
 73.57984 1.000000 0.0000000E+00
 73.62495 1.000000 0.0000000E+00
 73.67007 1.000000 0.0000000E+00
 73.71519 1.000000 0.0000000E+00
 73.76030 1.000000 0.0000000E+00
 73.80541 1.000000 0.0000000E+00
 73.85052 1.000000 0.0000000E+00
 73.89564 1.000000 0.0000000E+00
 73.94075 1.000000 0.0000000E+00
 73.98586 1.000000 0.0000000E+00
 74.03098 1.000000 0.0000000E+00
 74.07609 1.000000 0.0000000E+00
 74.12120 1.000000 0.0000000E+00
 74.16631 1.000000 0.0000000E+00
 74.21143 1.000000 0.0000000E+00
 74.25655 1.000000 0.0000000E+00
 74.30166 1.000000 0.0000000E+00
 74.34677 1.000000 0.0000000E+00
 74.39188 1.000000 0.0000000E+00
 74.43700 1.000000 0.0000000E+00
 74.48212 1.000000 0.0000000E+00
 74.52722 1.000000 0.0000000E+00
 74.57233 1.000000 0.0000000E+00
 74.61745 1.000000 0.0000000E+00
 74.66257 1.000000 0.0000000E+00
 74.70768 1.000000 0.0000000E+00
 74.75279 1.000000 0.0000000E+00
 74.79790 1.000000 0.0000000E+00
 74.84302 1.000000 0.0000000E+00
 74.88813 1.000000 0.0000000E+00
 74.93325 1.000000 0.0000000E+00
 74.97836 1.000000 0.0000000E+00
 75.02348 1.000000 0.0000000E+00
 75.06858 1.000000 0.0000000E+00
 75.11369 1.000000 0.0000000E+00
 75.15881 1.000000 0.0000000E+00
 75.20393 1.000000 0.0000000E+00
 75.24904 1.000000 0.0000000E+00
 75.29415 1.000000 0.0000000E+00
 75.33926 1.000000 0.0000000E+00
 75.38438 1.000000 0.0000000E+00
 75.42950 1.000000 0.0000000E+00
 75.47461 1.000000 0.0000000E+00
 75.51972 1.000000 0.0000000E+00
 75.56483 1.000000 0.0000000E+00
 75.60994 1.000000 0.0000000E+00
 75.65506 1.000000 0.0000000E+00
 75.70017 1.000000 0.0000000E+00
 75.74529 1.000000 0.0000000E+00
 75.79040 1.000000 0.0000000E+00
 75.83551 1.000000 0.0000000E+00
 75.88062 1.000000 0.0000000E+00
 75.92574 1.000000 0.0000000E+00
 75.97086 1.000000 0.0000000E+00
 76.01597 1.000000 0.0000000E+00
 76.06108 1.000000 0.0000000E+00
 76.10619 1.000000 0.0000000E+00
 76.15131 1.000000 0.0000000E+00
 76.19642 1.000000 0.0000000E+00
 76.24153 1.000000 0.0000000E+00
 76.28664 1.000000 0.0000000E+00
 76.33176 1.000000 0.0000000E+00
 76.37688 1.000000 0.0000000E+00
 76.42199 1.000000 0.0000000E+00
 76.46710 1.000000 0.0000000E+00
 76.51221 1.000000 0.0000000E+00
 76.55733 1.000000 0.0000000E+00
 76.60244 1.000000 0.0000000E+00
 76.64755 1.000000 0.0000000E+00
 76.69267 1.000000 0.0000000E+00
 76.73778 1.000000 0.0000000E+00
 76.78289 1.000000 0.0000000E+00
 76.82800 1.000000 0.0000000E+00
 76.87312 1.000000 0.0000000E+00
 76.91824 1.000000 0.0000000E+00
 76.96335 1.000000 0.0000000E+00
 77.00846 1.000000 0.0000000E+00
 77.05357 1.000000 0.0000000E+00
 77.09869 1.000000 0.0000000E+00
 77.14380 1.000000 0.0000000E+00
 77.18891 1.000000 0.0000000E+00
 77.23402 1.000000 0.0000000E+00
 77.27914 1.000000 0.0000000E+00
 77.32425 1.000000 0.0000000E+00
 77.36937 1.000000 0.0000000E+00
 77.41448 1.000000 0.0000000E+00
 77.45959 1.000000 0.0000000E+00
 77.50471 1.000000 0.0000000E+00
 77.54982 1.000000 0.0000000E+00
 77.59493 1.000000 0.0000000E+00
 77.64005 1.000000 0.0000000E+00
 77.68516 1.000000 0.0000000E+00
 77.73027 1.000000 0.0000000E+00
 77.77538 1.000000 0.0000000E+00
 77.82050 1.000000 0.0000000E+00
 77.86562 1.000000 0.0000000E+00
 77.91073 1.000000 0.0000000E+00
 77.95584 1.000000 0.0000000E+00
 78.00095 1.000000 0.0000000E+00
 78.04607 1.000000 0.0000000E+00
 78.09118 1.000000 0.0000000E+00
 78.13629 1.000000 0.0000000E+00
 78.18140 1.000000 0.0000000E+00
 78.22652 1.000000 0.0000000E+00
 78.27163 1.000000 0.0000000E+00
 78.31674 1.000000 0.0000000E+00
 78.36186 1.000000 0.0000000E+00
 78.40697 1.000000 0.0000000E+00
 78.45209 1.000000 0.0000000E+00
 78.49720 1.000000 0.0000000E+00
 78.54231 1.000000 0.0000000E+00
 78.58743 1.000000 0.0000000E+00
 78.63254 1.000000 0.0000000E+00
 78.67765 1.000000 0.0000000E+00
 78.72276 1.000000 0.0000000E+00
 78.76788 1.000000 0.0000000E+00
 78.81299 1.000000 0.0000000E+00
 78.85811 1.000000 0.0000000E+00
 78.90322 1.000000 0.0000000E+00
 78.94833 1.000000 0.0000000E+00
 78.99345 1.000000 0.0000000E+00
 79.03856 1.000000 0.0000000E+00
 79.08367 1.000000 0.0000000E+00
 79.12878 1.000000 0.0000000E+00
 79.17390 1.000000 0.0000000E+00
 79.21901 1.000000 0.0000000E+00
 79.26412 1.000000 0.0000000E+00
 79.30923 1.000000 0.0000000E+00
 79.35435 1.000000 0.0000000E+00
 79.39947 1.000000 0.0000000E+00
 79.44458 1.000000 0.0000000E+00
 79.48969 1.000000 0.0000000E+00
 79.53481 1.000000 0.0000000E+00
 79.57992 1.000000 0.0000000E+00
 79.62503 1.000000 0.0000000E+00
 79.67014 1.000000 0.0000000E+00
 79.71526 1.000000 0.0000000E+00
 79.76037 1.000000 0.0000000E+00
 79.80548 1.000000 0.0000000E+00
 79.85060 1.000000 0.0000000E+00
 79.89571 1.000000 0.0000000E+00
 79.94083 1.000000 0.0000000E+00
 79.98594 1.000000 0.0000000E+00
 80.03105 1.000000 0.0000000E+00
 80.07616 1.000000 0.0000000E+00
 80.12128 1.000000 0.0000000E+00
 80.16639 1.000000 0.0000000E+00
 80.21151 1.000000 0.0000000E+00
 80.25661 1.000000 0.0000000E+00
 80.30173 1.000000 0.0000000E+00
 80.34684 1.000000 0.0000000E+00
 80.39196 1.000000 0.0000000E+00
 80.43707 1.000000 0.0000000E+00
 80.48219 1.000000 0.0000000E+00
 80.52730 1.000000 0.0000000E+00
 80.57241 1.000000 0.0000000E+00
 80.61752 1.000000 0.0000000E+00
 80.66264 1.000000 0.0000000E+00
 80.70775 1.000000 0.0000000E+00
 80.75287 1.000000 0.0000000E+00
 80.79797 1.000000 0.0000000E+00
 80.84309 1.000000 0.0000000E+00
 80.88820 1.000000 0.0000000E+00
 80.93332 1.000000 0.0000000E+00
 80.97843 1.000000 0.0000000E+00
 81.02354 1.000000 0.0000000E+00
 81.06866 1.000000 0.0000000E+00
 81.11377 1.000000 0.0000000E+00
 81.15888 1.000000 0.0000000E+00
 81.20400 1.000000 0.0000000E+00
 81.24911 1.000000 0.0000000E+00
 81.29423 1.000000 0.0000000E+00
 81.33933 1.000000 0.0000000E+00
 81.38445 1.000000 0.0000000E+00
 81.42957 1.000000 0.0000000E+00
 81.47468 1.000000 0.0000000E+00
 81.51979 1.000000 0.0000000E+00
 81.56490 1.000000 0.0000000E+00
 81.61002 1.000000 0.0000000E+00
 81.65514 1.000000 0.0000000E+00
 81.70024 1.000000 0.0000000E+00
 81.74536 1.000000 0.0000000E+00
 81.79047 1.000000 0.0000000E+00
 81.83559 1.000000 0.0000000E+00
 81.88069 1.000000 0.0000000E+00
 81.92581 1.000000 0.0000000E+00
 81.97093 1.000000 0.0000000E+00
 82.01604 1.000000 0.0000000E+00
 82.06115 1.000000 0.0000000E+00
 82.10626 1.000000 0.0000000E+00
 82.15137 1.000000 0.0000000E+00
 82.19650 1.000000 0.0000000E+00
 82.24160 1.000000 0.0000000E+00
 82.28672 1.000000 0.0000000E+00
 82.33183 1.000000 0.0000000E+00
 82.37695 1.000000 0.0000000E+00
 82.42207 1.000000 0.0000000E+00
 82.46717 1.000000 0.0000000E+00
 82.51229 1.000000 0.0000000E+00
 82.55740 1.000000 0.0000000E+00
 82.60251 1.000000 0.0000000E+00
 82.64763 1.000000 0.0000000E+00
 82.69273 1.000000 0.0000000E+00
 82.73785 1.000000 0.0000000E+00
 82.78296 1.000000 0.0000000E+00
 82.82808 1.000000 0.0000000E+00
 82.87320 1.000000 0.0000000E+00
 82.91830 1.000000 0.0000000E+00
 82.96342 1.000000 0.0000000E+00
 83.00853 1.000000 0.0000000E+00
 83.05365 1.000000 0.0000000E+00
 83.09875 1.000000 0.0000000E+00
 83.14387 1.000000 0.0000000E+00
 83.18899 1.000000 0.0000000E+00
 83.23409 1.000000 0.0000000E+00
 83.27921 1.000000 0.0000000E+00
 83.32432 1.000000 0.0000000E+00
 83.36944 1.000000 0.0000000E+00
 83.41456 1.000000 0.0000000E+00
 83.45966 1.000000 0.0000000E+00
 83.50478 1.000000 0.0000000E+00
 83.54989 1.000000 0.0000000E+00
 83.59501 1.000000 0.0000000E+00
 83.64012 1.000000 0.0000000E+00
 83.68523 1.000000 0.0000000E+00
 83.73035 1.000000 0.0000000E+00
 83.77545 1.000000 0.0000000E+00
 83.82057 1.000000 0.0000000E+00
 83.86569 1.000000 0.0000000E+00
 83.91080 1.000000 0.0000000E+00
 83.95592 1.000000 0.0000000E+00
 84.00102 1.000000 0.0000000E+00
 84.04614 1.000000 0.0000000E+00
 84.09125 1.000000 0.0000000E+00
 84.13637 1.000000 0.0000000E+00
 84.18148 1.000000 0.0000000E+00
 84.22659 1.000000 0.0000000E+00
 84.27171 1.000000 0.0000000E+00
 84.31681 1.000000 0.0000000E+00
 84.36193 1.000000 0.0000000E+00
 84.40705 1.000000 0.0000000E+00
 84.45216 1.000000 0.0000000E+00
 84.49728 1.000000 0.0000000E+00
 84.54238 1.000000 0.0000000E+00
 84.58750 1.000000 0.0000000E+00
 84.63261 1.000000 0.0000000E+00
 84.67773 1.000000 0.0000000E+00
 84.72284 1.000000 0.0000000E+00
 84.76794 1.000000 0.0000000E+00
 84.81306 1.000000 0.0000000E+00
 84.85818 1.000000 0.0000000E+00
 84.90329 1.000000 0.0000000E+00
 84.94841 1.000000 0.0000000E+00
 84.99352 1.000000 0.0000000E+00
 85.03864 1.000000 0.0000000E+00
 85.08375 1.000000 0.0000000E+00
 85.12886 1.000000 0.0000000E+00
 85.17397 1.000000 0.0000000E+00
 85.21909 1.000000 0.0000000E+00
 85.26420 1.000000 0.0000000E+00
 85.30931 1.000000 0.0000000E+00
 85.35442 1.000000 0.0000000E+00
 85.39954 1.000000 0.0000000E+00
 85.44465 1.000000 0.0000000E+00
 85.48977 1.000000 0.0000000E+00
 85.53487 1.000000 0.0000000E+00
 85.57999 1.000000 0.0000000E+00
 85.62511 1.000000 0.0000000E+00
 85.67022 1.000000 0.0000000E+00
 85.71533 1.000000 0.0000000E+00
 85.76044 1.000000 0.0000000E+00
 85.80556 1.000000 0.0000000E+00
 85.85068 1.000000 0.0000000E+00
 85.89578 1.000000 0.0000000E+00
 85.94090 1.000000 0.0000000E+00
 85.98601 1.000000 0.0000000E+00
 86.03113 1.000000 0.0000000E+00
 86.07624 1.000000 0.0000000E+00
 86.12135 1.000000 0.0000000E+00
 86.16647 1.000000 0.0000000E+00
 86.21158 1.000000 0.0000000E+00
 86.25669 1.000000 0.0000000E+00
 86.30180 1.000000 0.0000000E+00
 86.34692 1.000000 0.0000000E+00
 86.39204 1.000000 0.0000000E+00
 86.43714 1.000000 0.0000000E+00
 86.48226 1.000000 0.0000000E+00
 86.52737 1.000000 0.0000000E+00
 86.57249 1.000000 0.0000000E+00
 86.61760 1.000000 0.0000000E+00
 86.66271 1.000000 0.0000000E+00
 86.70782 1.000000 0.0000000E+00
 86.75294 1.000000 0.0000000E+00
 86.79805 1.000000 0.0000000E+00
 86.84317 1.000000 0.0000000E+00
 86.88828 1.000000 0.0000000E+00
 86.93340 1.000000 0.0000000E+00
 86.97850 1.000000 0.0000000E+00
 87.02362 1.000000 0.0000000E+00
 87.06873 1.000000 0.0000000E+00
 87.11385 1.000000 0.0000000E+00
 87.15896 1.000000 0.0000000E+00
 87.20407 1.000000 0.0000000E+00
 87.24918 1.000000 0.0000000E+00
 87.29430 1.000000 0.0000000E+00
 87.33941 1.000000 0.0000000E+00
 87.38453 1.000000 0.0000000E+00
 87.42963 1.000000 0.0000000E+00
 87.47475 1.000000 0.0000000E+00
 87.51986 1.000000 0.0000000E+00
 87.56498 1.000000 0.0000000E+00
 87.61009 1.000000 0.0000000E+00
 87.65520 1.000000 0.0000000E+00
 87.70032 1.000000 0.0000000E+00
 87.74543 1.000000 0.0000000E+00
 87.79054 1.000000 0.0000000E+00
 87.83566 1.000000 0.0000000E+00
 87.88077 1.000000 0.0000000E+00
 87.92589 1.000000 0.0000000E+00
 87.97099 1.000000 0.0000000E+00
 88.01611 1.000000 0.0000000E+00
 88.06123 1.000000 0.0000000E+00
 88.10634 1.000000 0.0000000E+00
 88.15145 1.000000 0.0000000E+00
 88.19656 1.000000 0.0000000E+00
 88.24168 1.000000 0.0000000E+00
 88.28680 1.000000 0.0000000E+00
 88.33190 1.000000 0.0000000E+00
 88.37702 1.000000 0.0000000E+00
 88.42213 1.000000 0.0000000E+00
 88.46725 1.000000 0.0000000E+00
 88.51236 1.000000 0.0000000E+00
 88.55747 1.000000 0.0000000E+00
 88.60258 1.000000 0.0000000E+00
 88.64770 1.000000 0.0000000E+00
 88.69281 1.000000 0.0000000E+00
 88.73792 1.000000 0.0000000E+00
 88.78304 1.000000 0.0000000E+00
 88.82816 1.000000 0.0000000E+00
 88.87326 1.000000 0.0000000E+00
 88.91838 1.000000 0.0000000E+00
 88.96349 1.000000 0.0000000E+00
 89.00861 1.000000 0.0000000E+00
 89.05372 1.000000 0.0000000E+00
 89.09883 1.000000 0.0000000E+00
 89.14394 1.000000 0.0000000E+00
 89.18906 1.000000 0.0000000E+00
 89.23417 1.000000 0.0000000E+00
 89.27929 1.000000 0.0000000E+00
 89.32439 1.000000 0.0000000E+00
 89.36951 1.000000 0.0000000E+00
 89.41462 1.000000 0.0000000E+00
 89.45974 1.000000 0.0000000E+00
 89.50485 1.000000 0.0000000E+00
 89.54996 1.000000 0.0000000E+00
 89.59508 1.000000 0.0000000E+00
 89.64019 1.000000 0.0000000E+00
 89.68530 1.000000 0.0000000E+00
 89.73042 1.000000 0.0000000E+00
 89.77553 1.000000 0.0000000E+00
 89.82065 1.000000 0.0000000E+00
 89.86575 1.000000 0.0000000E+00
 89.91087 1.000000 0.0000000E+00
 89.95598 1.000000 0.0000000E+00
 90.00110 1.000000 0.0000000E+00
 90.04622 1.000000 0.0000000E+00
 90.09132 1.000000 0.0000000E+00
 90.13644 1.000000 0.0000000E+00
 90.18155 1.000000 0.0000000E+00
 90.22666 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osm_ns.1500

 256 15.25585
 0.0000000E+00 2.1686479E-02 4.3589830E-02 6.5712206E-02 8.8055812E-02
 0.1106228 0.1334155 0.1564362 0.1796871 0.2031704
 0.2268886 0.2508439 0.2750389 0.2994757 0.3241569
 0.3490850 0.3742624 0.3996915 0.4253748 0.4513151
 0.4775147 0.5039763 0.5307026 0.5576962 0.5849596
 0.6124956 0.6403071 0.6683966 0.6967671 0.7254212
 0.7543620 0.7835920 0.8131145 0.8429322 0.8730479
 0.9034649 0.9341860 0.9652143 0.9965529 1.028205
 1.060173 1.092462 1.125073 1.158010 1.191277
 1.224876 1.258811 1.293086 1.327703 1.362666
 1.397979 1.433646 1.469669 1.506052 1.542799
 1.579913 1.617399 1.655260 1.693499 1.732120
 1.771128 1.810526 1.850317 1.890507 1.931098
 1.972096 2.013503 2.055325 2.097564 2.140226
 2.183315 2.226835 2.270789 2.315184 2.360022
 2.405308 2.451048 2.497245 2.543904 2.591029
 2.638626 2.686699 2.735252 2.784291 2.833821
 2.883845 2.934370 2.985400 3.036941 3.088997
 3.141573 3.194676 3.248309 3.302478 3.357190
 3.412448 3.468259 3.524628 3.581561 3.639063
 3.697140 3.755797 3.815042 3.874878 3.935314
 3.996353 4.058003 4.120270 4.183159 4.246677
 4.310830 4.375625 4.441068 4.507165 4.573924
 4.641349 4.709449 4.778230 4.847699 4.917861
 4.988726 5.060300 5.132590 5.205602 5.279345
 5.353825 5.429049 5.505026 5.581763 5.659267
 5.737545 5.816608 5.896460 5.977111 6.058569
 6.140841 6.223936 6.307861 6.392626 6.478239
 6.564708 6.652041 6.740248 6.829337 6.919317
 7.010197 7.101985 7.194691 7.288324 7.382894
 7.478409 7.574880 7.672314 7.770724 7.870117
 7.970505 8.071897 8.174302 8.277731 8.382195
 8.487702 8.594266 8.701896 8.810600 8.920393
 9.031283 9.143282 9.256402 9.370653 9.486046
 9.602592 9.720304 9.839194 9.959273 10.08055
 10.20304 10.32676 10.45171 10.57792 10.70538
 10.83412 10.96415 11.09548 11.22812 11.36209
 11.49739 11.63406 11.77208 11.91149 12.05229
 12.19450 12.33813 12.48320 12.62972 12.77770
 12.92716 13.07812 13.23059 13.38458 13.54012
 13.69720 13.85586 14.01611 14.17795 14.34142
 14.50652 14.67327 14.84169 15.01180 15.18360
 15.35712 15.53238 15.70939 15.88817 16.06874
 16.25111 16.43531 16.62135 16.80925 16.99903
 17.19070 17.38429 17.57982 17.77731 17.97677
 18.17822 18.38169 18.58719 18.79475 19.00439
 19.21612 19.42997 19.64595 19.86410 20.08442
 20.30695 20.53171 20.75871 20.98798 21.21955
 21.45343 21.68965 21.92823 22.16920 22.41258
 22.65839 22.90667 23.15742 23.41068 23.66647
 23.92482 24.18575 24.44930 24.71548 24.98432
 25.25585
 0.0000000E+00 -1.7319243E-04 -3.4740742E-04 -5.2264094E-04 -6.9888867E-04
 -8.7614590E-04 -1.0544076E-03 -1.2336683E-03 -1.4139223E-03 -1.5951637E-03
 -1.7773855E-03 -1.9605814E-03 -2.1447439E-03 -2.3298650E-03 -2.5159372E-03
 -2.7029512E-03 -2.8908986E-03 -3.0797699E-03 -3.2695548E-03 -3.4602431E-03
 -3.6518245E-03 -3.8442870E-03 -4.0376186E-03 -4.2318068E-03 -4.4268393E-03
 -4.6227025E-03 -4.8193820E-03 -5.0168629E-03 -5.2151307E-03 -5.4141688E-03
 -5.6139617E-03 -5.8144918E-03 -6.0157408E-03 -6.2176911E-03 -6.4203227E-03
 -6.6236183E-03 -6.8275537E-03 -7.0321104E-03 -7.2372654E-03 -7.4429964E-03
 -7.6492797E-03 -7.8560915E-03 -8.0634058E-03 -8.2711969E-03 -8.4794387E-03
 -8.6881034E-03 -8.8971620E-03 -9.1065858E-03 -9.3163438E-03 -9.5264055E-03
 -9.7367382E-03 -9.9473074E-03 -1.0158083E-02 -1.0369025E-02 -1.0580099E-02
 -1.0791269E-02 -1.1002495E-02 -1.1213738E-02 -1.1424957E-02 -1.1636111E-02
 -1.1847156E-02 -1.2058048E-02 -1.2268743E-02 -1.2479193E-02 -1.2689348E-02
 -1.2899163E-02 -1.3108586E-02 -1.3317564E-02 -1.3526044E-02 -1.3733972E-02
 -1.3941292E-02 -1.4147943E-02 -1.4353870E-02 -1.4559012E-02 -1.4763304E-02
 -1.4966685E-02 -1.5169088E-02 -1.5370445E-02 -1.5570691E-02 -1.5769750E-02
 -1.5967553E-02 -1.6164027E-02 -1.6359093E-02 -1.6552674E-02 -1.6744690E-02
 -1.6935060E-02 -1.7123699E-02 -1.7310521E-02 -1.7495438E-02 -1.7678361E-02
 -1.7859194E-02 -1.8037844E-02 -1.8214215E-02 -1.8388204E-02 -1.8559711E-02
 -1.8728631E-02 -1.8894853E-02 -1.9058270E-02 -1.9218767E-02 -1.9376226E-02
 -1.9530533E-02 -1.9681558E-02 -1.9829180E-02 -1.9973267E-02 -2.0113688E-02
 -2.0250304E-02 -2.0382974E-02 -2.0511555E-02 -2.0635897E-02 -2.0755844E-02
 -2.0871241E-02 -2.0981926E-02 -2.1087725E-02 -2.1188468E-02 -2.1283975E-02
 -2.1374060E-02 -2.1458529E-02 -2.1537188E-02 -2.1609824E-02 -2.1676227E-02
 -2.1736175E-02 -2.1789435E-02 -2.1835772E-02 -2.1874934E-02 -2.1906657E-02
 -2.1930669E-02 -2.1946693E-02 -2.1954423E-02 -2.1953553E-02 -2.1943757E-02
 -2.1924689E-02 -2.1895994E-02 -2.1857286E-02 -2.1808168E-02 -2.1748217E-02
 -2.1676987E-02 -2.1594003E-02 -2.1498760E-02 -2.1390727E-02 -2.1269333E-02
 -2.1133970E-02 -2.0983994E-02 -2.0818710E-02 -2.0637367E-02 -2.0439174E-02
 -2.0223264E-02 -1.9988712E-02 -1.9734515E-02 -1.9459581E-02 -1.9162737E-02
 -1.8842693E-02 -1.8498056E-02 -1.8127292E-02 -1.7728731E-02 -1.7300529E-02
 -1.6840665E-02 -1.6346898E-02 -1.5816754E-02 -1.5247485E-02 -1.4636024E-02
 -1.3978951E-02 -1.3272427E-02 -1.2512132E-02 -1.1693185E-02 -1.0810055E-02
 -9.8564317E-03 -8.8251038E-03 -7.7077737E-03 -6.4948485E-03 -5.1751789E-03
 -3.7357190E-03 -2.1611094E-03 -4.3313086E-04 1.4688787E-03 3.5650071E-03
 5.8748499E-03 8.4200092E-03 1.1224275E-02 1.4313808E-02 1.7717334E-02
 2.1466326E-02 2.5595203E-02 3.0141493E-02 3.5146002E-02 4.0652938E-02
 4.6710018E-02 5.3368486E-02 6.0683135E-02 6.8712160E-02 7.7516980E-02
 8.7161891E-02 9.7713590E-02 0.1092405 0.1218122 0.1354977
 0.1503652 0.1664794 0.1839007 0.2026826 0.2228697
 0.2444953 0.2675785 0.2921216 0.3181078 0.3454979
 0.3742286 0.4042100 0.4353243 0.4674252 0.5003373
 0.5338581 0.5677592 0.6017901 0.6356829 0.6691573
 0.7019281 0.7337126 0.7642385 0.7932529 0.8205305
 0.8458808 0.8691548 0.8902507 0.9091160 0.9257486
 0.9401956 0.9525487 0.9629390 0.9715289 0.9785032
 0.9840599 0.9884008 0.9917232 0.9942124 0.9960369
 0.9973440 0.9982589 0.9988840 0.9993010 0.9995721
 0.9997442 0.9998506 0.9999149 0.9999526 0.9999743
 0.9999863 0.9999928 0.9999963 0.9999980 0.9999988
 0.9999993 0.9999996 0.9999998 0.9999999 0.9999999
 1.000000
 -8.0023073E-03 -7.9700835E-03 -7.9375366E-03 -7.9046628E-03 -7.8714639E-03
 -7.8379298E-03 -7.8040627E-03 -7.7698566E-03 -7.7353092E-03 -7.7004186E-03
 -7.6651787E-03 -7.6295882E-03 -7.5936434E-03 -7.5573395E-03 -7.5206757E-03
 -7.4836458E-03 -7.4462485E-03 -7.4084788E-03 -7.3703341E-03 -7.3318114E-03
 -7.2929068E-03 -7.2536166E-03 -7.2139367E-03 -7.1738632E-03 -7.1333959E-03
 -7.0925280E-03 -7.0512556E-03 -7.0095775E-03 -6.9674868E-03 -6.9249836E-03
 -6.8820617E-03 -6.8387189E-03 -6.7949500E-03 -6.7507527E-03 -6.7061228E-03
 -6.6610561E-03 -6.6155503E-03 -6.5696002E-03 -6.5232022E-03 -6.4763548E-03
 -6.4290510E-03 -6.3812891E-03 -6.3330648E-03 -6.2843747E-03 -6.2352149E-03
 -6.1855828E-03 -6.1354712E-03 -6.0848803E-03 -6.0338052E-03 -5.9822411E-03
 -5.9301858E-03 -5.8776340E-03 -5.8245840E-03 -5.7710297E-03 -5.7169693E-03
 -5.6623989E-03 -5.6073139E-03 -5.5517112E-03 -5.4955878E-03 -5.4389397E-03
 -5.3817616E-03 -5.3240522E-03 -5.2658063E-03 -5.2070213E-03 -5.1476932E-03
 -5.0878180E-03 -5.0273924E-03 -4.9664127E-03 -4.9048755E-03 -4.8427768E-03
 -4.7801128E-03 -4.7168811E-03 -4.6530752E-03 -4.5886943E-03 -4.5237327E-03
 -4.4581876E-03 -4.3920539E-03 -4.3253289E-03 -4.2580073E-03 -4.1900855E-03
 -4.1215597E-03 -4.0524253E-03 -3.9826771E-03 -3.9123124E-03 -3.8413245E-03
 -3.7697088E-03 -3.6974608E-03 -3.6245752E-03 -3.5510454E-03 -3.4768665E-03
 -3.4020322E-03 -3.3265355E-03 -3.2503700E-03 -3.1735282E-03 -3.0960029E-03
 -3.0177848E-03 -2.9388661E-03 -2.8592371E-03 -2.7788882E-03 -2.6978087E-03
 -2.6159864E-03 -2.5334102E-03 -2.4500636E-03 -2.3659386E-03 -2.2810162E-03
 -2.1952800E-03 -2.1087134E-03 -2.0212962E-03 -1.9330088E-03 -1.8438284E-03
 -1.7537307E-03 -1.6626903E-03 -1.5706785E-03 -1.4776655E-03 -1.3836180E-03
 -1.2885004E-03 -1.1922742E-03 -1.0948972E-03 -9.9632458E-04 -8.9650694E-04
 -7.9539104E-04 -6.9291919E-04 -5.8902864E-04 -4.8365147E-04 -3.7671370E-04
 -2.6813519E-04 -1.5782882E-04 -4.5699864E-05 6.8354697E-05 1.8444695E-04
 3.0269881E-04 4.2324321E-04 5.4622500E-04 6.7180221E-04 8.0014713E-04
 9.3144819E-04 1.0659113E-03 1.2037618E-03 1.3452467E-03 1.4906366E-03
 1.6402282E-03 1.7943488E-03 1.9533571E-03 2.1176494E-03 2.2876631E-03
 2.4638809E-03 2.6468383E-03 2.8371273E-03 3.0354084E-03 3.2424147E-03
 3.4589646E-03 3.6859738E-03 3.9244681E-03 4.1756001E-03 4.4406671E-03
 4.7211377E-03 5.0186710E-03 5.3351563E-03 5.6727477E-03 6.0339081E-03
 6.4214701E-03 6.8386965E-03 7.2893715E-03 7.7778935E-03 8.3094109E-03
 8.8899713E-03 9.5267305E-03 1.0228196E-02 1.1004554E-02 1.1868091E-02
 1.2833739E-02 1.3919792E-02 1.5148878E-02 1.6530612E-02 1.8036421E-02
 1.9677803E-02 2.1467132E-02 2.3417655E-02 2.5543489E-02 2.7859587E-02
 3.0381653E-02 3.3126064E-02 3.6109690E-02 3.9349698E-02 4.2863309E-02
 4.6667419E-02 5.0778199E-02 5.5210557E-02 5.9977584E-02 6.5089747E-02
 7.0554122E-02 7.6373428E-02 8.2545057E-02 8.9059860E-02 9.5901012E-02
 0.1030429 0.1104498 0.1180747 0.1258587 0.1337296
 0.1416021 0.1493773 0.1569433 0.1641762 0.1709416
 0.1770974 0.1824964 0.1869908 0.1904366 0.1926990
 0.1936580 0.1932139 0.1912950 0.1878605 0.1829076
 0.1764739 0.1686393 0.1595273 0.1493021 0.1381645
 0.1263458 0.1140977 0.1016851 8.9370713E-02 7.7406682E-02
 6.6020116E-02 5.5405252E-02 4.5715418E-02 3.7055574E-02 2.9482406E-02
 2.3005994E-02 1.7592229E-02 1.3172134E-02 9.6497675E-03 6.9116829E-03
 4.8362180E-03 3.3047074E-03 2.2033819E-03 1.4331407E-03 9.0902217E-04
 5.6247041E-04 3.3871311E-04 1.9926198E-04 1.1401850E-04 6.3751329E-05
 3.4568631E-05 1.8145871E-05 9.1744641E-06 4.6105270E-06 2.1681465E-06
 1.5261384E-06 7.3552087E-07 4.6127286E-07 3.3676351E-08 2.0717623E-07
 7.1219824E-07
 71 81
 0.5000000 0.5500000 0.6000000 0.6500000 0.7000000
 0.7500000 0.8000000 0.8500000 0.9000000 0.9500000
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000001 -0.8499999 -0.8000000
 -0.7500000 -0.7000000 -0.6500001 -0.5999999 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -9.9999905E-02 -4.9999952E-02
 0.0000000E+00 4.9999952E-02 9.9999905E-02 0.1499999 0.1999998
 0.2499998 0.2999997 0.3499997 0.3999996 0.4499996
 0.4999995 0.5499995 0.5999994 0.6499994 0.6999993
 0.7499993 0.7999992 0.8499992 0.8999991 0.9499991
 0.9999990
 2.5410509E-02 2.4330486E-02 2.3255222E-02 2.2192411E-02 2.1148337E-02
 2.0128008E-02 1.9135315E-02 1.8173192E-02 1.7243721E-02 1.6348280E-02
 1.5487627E-02 1.4662045E-02 1.3871413E-02 1.3115286E-02 1.2393007E-02
 1.1703743E-02 1.1046559E-02 1.0420442E-02 9.8243477E-03 9.2572188E-03
 8.7180175E-03 8.2056914E-03 7.7192318E-03 7.2576376E-03 6.8199295E-03
 6.4051603E-03 6.0123908E-03 5.6407130E-03 5.2892333E-03 4.9570808E-03
 4.6434095E-03 4.3473872E-03 4.0681986E-03 3.8050648E-03 3.5572133E-03
 3.3239070E-03 3.1044169E-03 2.8980486E-03 2.7041282E-03 2.5220094E-03
 2.3510614E-03 2.1906788E-03 2.0402917E-03 1.8993465E-03 1.7673093E-03
 1.6436815E-03 1.5279693E-03 1.4197241E-03 1.3185020E-03 1.2238896E-03
 1.1354950E-03 1.0529365E-03 9.7586802E-04 9.0394769E-04 8.3686295E-04
 7.7431288E-04 7.1601610E-04 6.6170504E-04 6.1112928E-04 5.6405296E-04
 5.2025530E-04 4.7952725E-04 4.4167051E-04 4.0650414E-04 3.7385154E-04
 3.4355285E-04 3.1545939E-04 2.8942109E-04 2.6531148E-04 2.4299712E-04
 2.2236782E-04
 5.2770497E-03 3.9370749E-03 2.7268270E-03 1.6387004E-03 6.6508987E-04
 -2.0148158E-04 -9.6827367E-04 -1.6422755E-03 -2.2301942E-03 -2.7384551E-03
 -3.1731871E-03 -3.5402784E-03 -3.8453473E-03 -4.0937802E-03 -4.2907195E-03
 -4.4410801E-03 -4.5495136E-03 -4.6204450E-03 -4.6580150E-03 -4.6661203E-03
 -4.6483823E-03 -4.6081557E-03 -4.5485250E-03 -4.4723232E-03 -4.3821298E-03
 -4.2802799E-03 -4.1688872E-03 -4.0498422E-03 -3.9248401E-03 -3.7953954E-03
 -3.6628393E-03 -3.5283437E-03 -3.3929495E-03 -3.2575463E-03 -3.1229120E-03
 -2.9897140E-03 -2.8585247E-03 -2.7298161E-03 -2.6039910E-03 -2.4813793E-03
 -2.3622382E-03 -2.2467833E-03 -2.1351611E-03 -2.0274920E-03 -1.9238477E-03
 -1.8242644E-03 -1.7287602E-03 -1.6373149E-03 -1.5498915E-03 -1.4664341E-03
 -1.3868775E-03 -1.3111352E-03 -1.2391083E-03 -1.1707016E-03 -1.1057991E-03
 -1.0442880E-03 -9.8605244E-04 -9.3096268E-04 -8.7890559E-04 -8.2974898E-04
 -7.8337238E-04 -7.3965453E-04 -6.9847592E-04 -6.5971073E-04 -6.2325044E-04
 -5.8897305E-04 -5.5676862E-04 -5.2653137E-04 -4.9815665E-04 -4.7153721E-04
 -4.4658294E-04
 2.5522342E-02 2.4440441E-02 2.3363287E-02 2.2298569E-02 2.1252541E-02
 2.0230178E-02 1.9235360E-02 1.8270986E-02 1.7339110E-02 1.6441109E-02
 1.5577731E-02 1.4749258E-02 1.3955588E-02 1.3196298E-02 1.2470745E-02
 1.1778145E-02 1.1117580E-02 1.0488074E-02 9.8886099E-03 9.3181608E-03
 8.7757027E-03 8.2602045E-03 7.7706738E-03 7.3061138E-03 6.8655605E-03
 6.4480649E-03 6.0526934E-03 5.6785331E-03 5.3246985E-03 4.9903099E-03
 4.6745203E-03 4.3764878E-03 4.0954039E-03 3.8304760E-03 3.5809323E-03
 3.3460266E-03 3.1250315E-03 2.9172485E-03 2.7219919E-03 2.5386144E-03
 2.3664876E-03 2.2050007E-03 2.0535744E-03 1.9116522E-03 1.7787032E-03
 1.6542202E-03 1.5377125E-03 1.4287251E-03 1.3268082E-03 1.2315544E-03
 1.1425593E-03 1.0594525E-03 9.8187407E-04 9.0948859E-04 8.4197713E-04
 7.7903847E-04 7.2039367E-04 6.6576927E-04 6.1491324E-04 5.6759355E-04
 5.2358402E-04 4.8267495E-04 4.4466768E-04 4.0938123E-04 3.7663683E-04
 3.4627458E-04 3.1814049E-04 2.9209061E-04 2.6799028E-04 2.4571101E-04
 2.2513571E-04
 5.2005998E-03 3.8620902E-03 2.6536931E-03 1.5677654E-03 5.9667259E-04
 -2.6710803E-04 -1.0308857E-03 -1.7016921E-03 -2.2862942E-03 -2.7911633E-03
 -3.2224951E-03 -3.5862215E-03 -3.8880163E-03 -4.1333041E-03 -4.3272669E-03
 -4.4748336E-03 -4.5806868E-03 -4.6492419E-03 -4.6846555E-03 -4.6908129E-03
 -4.6713250E-03 -4.6295370E-03 -4.5685228E-03 -4.4910973E-03 -4.3998198E-03
 -4.2970213E-03 -4.1847918E-03 -4.0650191E-03 -3.9393827E-03 -3.8093813E-03
 -3.6763402E-03 -3.5414293E-03 -3.4056725E-03 -3.2699567E-03 -3.1350579E-03
 -3.0016352E-03 -2.8702524E-03 -2.7413818E-03 -2.6154246E-03 -2.4927023E-03
 -2.3734749E-03 -2.2579478E-03 -2.1462762E-03 -2.0385699E-03 -1.9349041E-03
 -1.8353114E-03 -1.7398070E-03 -1.6483720E-03 -1.5609722E-03 -1.4775444E-03
 -1.3980244E-03 -1.3223236E-03 -1.2503493E-03 -1.1819935E-03 -1.1171504E-03
 -1.0556984E-03 -9.9752436E-04 -9.4250275E-04 -8.9050969E-04 -8.4141898E-04
 -7.9510990E-04 -7.5145630E-04 -7.1033527E-04 -6.7162898E-04 -6.3521694E-04
 -6.0098525E-04 -5.6882144E-04 -5.3861469E-04 -5.1025773E-04 -4.8364862E-04
 -4.5868914E-04
 2.5648162E-02 2.4564087E-02 2.3484740E-02 2.2417787E-02 2.1369467E-02
 2.0344723E-02 1.9347413E-02 1.8380398E-02 1.7445730E-02 1.6544757E-02
 1.5678233E-02 1.4846445E-02 1.4049307E-02 1.3286420E-02 1.2557181E-02
 1.1860818E-02 1.1196457E-02 1.0563162E-02 9.9599408E-03 9.3857888E-03
 8.8397134E-03 8.3206957E-03 7.8277551E-03 7.3599126E-03 6.9162073E-03
 6.4956928E-03 6.0974387E-03 5.7205372E-03 5.3640935E-03 5.0272290E-03
 4.7090910E-03 4.4088396E-03 4.1256561E-03 3.8587435E-03 3.6073308E-03
 3.3706587E-03 3.1480023E-03 2.9386498E-03 2.7419240E-03 2.5571636E-03
 2.3837325E-03 2.2210248E-03 2.0684537E-03 1.9254622E-03 1.7915106E-03
 1.6660906E-03 1.5487103E-03 1.4389092E-03 1.3362401E-03 1.2402870E-03
 1.1506469E-03 1.0669469E-03 9.8882220E-04 9.1593969E-04 8.4797578E-04
 7.8463124E-04 7.2561612E-04 6.7066774E-04 6.1952858E-04 5.7196198E-04
 5.2774220E-04 4.8665726E-04 4.4851270E-04 4.1311802E-04 3.8029786E-04
 3.4989079E-04 3.2173857E-04 2.9569736E-04 2.7163152E-04 2.4941203E-04
 2.2891414E-04
 5.1155440E-03 3.7787331E-03 2.5724582E-03 1.4890450E-03 5.2080001E-04
 -3.3983769E-04 -1.1002303E-03 -1.7674717E-03 -2.3483846E-03 -2.8495048E-03
 -3.2770848E-03 -3.6371178E-03 -3.9353245E-03 -4.1771773E-03 -4.3678894E-03
 -4.5124181E-03 -4.6154591E-03 -4.6814363E-03 -4.7145034E-03 -4.7185435E-03
 -4.6971538E-03 -4.6536718E-03 -4.5911451E-03 -4.5123794E-03 -4.4199252E-03
 -4.3160855E-03 -4.2029438E-03 -4.0823692E-03 -3.9560348E-03 -3.8254263E-03
 -3.6918549E-03 -3.5564841E-03 -3.4203285E-03 -3.2842725E-03 -3.1490766E-03
 -3.0154043E-03 -2.8838094E-03 -2.7547611E-03 -2.6286547E-03 -2.5058112E-03
 -2.3864871E-03 -2.2708846E-03 -2.1591554E-03 -2.0514093E-03 -1.9477205E-03
 -1.8481186E-03 -1.7526175E-03 -1.6611930E-03 -1.5738170E-03 -1.4904239E-03
 -1.4109415E-03 -1.3352863E-03 -1.2633619E-03 -1.1950650E-03 -1.1302788E-03
 -1.0688899E-03 -1.0107820E-03 -9.5582113E-04 -9.0389024E-04 -8.5486373E-04
 -8.0861239E-04 -7.6501275E-04 -7.2394096E-04 -6.8527478E-04 -6.4889615E-04
 -6.1468576E-04 -5.8253302E-04 -5.5232260E-04 -5.2395090E-04 -4.9731077E-04
 -4.7230232E-04
 2.5789751E-02 2.4703145E-02 2.3621233E-02 2.2551663E-02 2.1500649E-02
 2.0473113E-02 1.9472867E-02 1.8502759E-02 1.7564835E-02 1.6660409E-02
 1.5790254E-02 1.4954665E-02 1.4153567E-02 1.3386600E-02 1.2653185E-02
 1.1952591E-02 1.1283988E-02 1.0646450E-02 1.0039042E-02 9.4607724E-03
 8.9106746E-03 8.3877519E-03 7.8910384E-03 7.4195601E-03 6.9723628E-03
 6.5485132E-03 6.1470750E-03 5.7671373E-03 5.4078111E-03 5.0682086E-03
 4.7474806E-03 4.4447775E-03 4.1592731E-03 3.8901712E-03 3.6366899E-03
 3.3980731E-03 3.1735816E-03 2.9625015E-03 2.7641517E-03 2.5778692E-03
 2.4030025E-03 2.2389542E-03 2.0851293E-03 1.9409615E-03 1.8059117E-03
 1.6794688E-03 1.5611408E-03 1.4504528E-03 1.3469682E-03 1.2502593E-03
 1.1599244E-03 1.0755881E-03 9.9688151E-04 9.2347193E-04 8.5503317E-04
 7.9125928E-04 7.3186832E-04 6.7658786E-04 6.2516355E-04 5.7735073E-04
 5.3292996E-04 4.9168227E-04 4.5340753E-04 4.1792486E-04 3.8504999E-04
 3.5461824E-04 3.2647050E-04 3.0046422E-04 2.7645202E-04 2.5431070E-04
 2.3391204E-04
 5.0210236E-03 3.6861768E-03 2.4823418E-03 1.4017860E-03 4.3677189E-04
 -4.2032782E-04 -1.1769301E-03 -1.8401988E-03 -2.4170210E-03 -2.9139952E-03
 -3.3374531E-03 -3.6934370E-03 -3.9877272E-03 -4.2258380E-03 -4.4130171E-03
 -4.5542484E-03 -4.6542413E-03 -4.7174203E-03 -4.7479467E-03 -4.7496920E-03
 -4.7262381E-03 -4.6809115E-03 -4.6167448E-03 -4.5365267E-03 -4.4427859E-03
 -4.3378095E-03 -4.2236736E-03 -4.1022277E-03 -3.9751288E-03 -3.8438519E-03
 -3.7097009E-03 -3.5738258E-03 -3.4372327E-03 -3.3007977E-03 -3.1652793E-03
 -3.0313274E-03 -2.8994977E-03 -2.7702532E-03 -2.6439857E-03 -2.5210059E-03
 -2.4015766E-03 -2.2858924E-03 -2.1740987E-03 -2.0663114E-03 -1.9625949E-03
 -1.8629824E-03 -1.7674800E-03 -1.6760761E-03 -1.5887186E-03 -1.5053572E-03
 -1.4259171E-03 -1.3503096E-03 -1.2784356E-03 -1.2101928E-03 -1.1454670E-03
 -1.0841396E-03 -1.0260850E-03 -9.7118446E-04 -9.1930595E-04 -8.7032828E-04
 -8.2411797E-04 -7.8055332E-04 -7.3950406E-04 -7.0085417E-04 -6.6447427E-04
 -6.3024909E-04 -5.9806631E-04 -5.6780793E-04 -5.3936773E-04 -5.1264203E-04
 -4.8752403E-04
 2.5949102E-02 2.4859540E-02 2.3774620E-02 2.2701975E-02 2.1647790E-02
 2.0616954E-02 1.9613264E-02 1.8639542E-02 1.7697800E-02 1.6789369E-02
 1.5915025E-02 1.5075071E-02 1.4269459E-02 1.3497858E-02 1.2759728E-02
 1.2054383E-02 1.1381012E-02 1.0738744E-02 1.0126665E-02 9.5438249E-03
 8.9892615E-03 8.4620118E-03 7.9611223E-03 7.4856211E-03 7.0345723E-03
 6.6070259E-03 6.2020705E-03 5.8187894E-03 5.4562762E-03 5.1136562E-03
 4.7900663E-03 4.4846563E-03 4.1965954E-03 3.9250813E-03 3.6693234E-03
 3.4285598E-03 3.2020456E-03 2.9890684E-03 2.7889330E-03 2.6009718E-03
 2.4245377E-03 2.2590193E-03 2.1038188E-03 1.9583690E-03 1.8221237E-03
 1.6945670E-03 1.5752042E-03 1.4635623E-03 1.3591936E-03 1.2616736E-03
 1.1705991E-03 1.0855813E-03 1.0062613E-03 9.3229749E-04 8.6336082E-04
 7.9915003E-04 7.3937461E-04 6.8375922E-04 6.3204806E-04 5.8400229E-04
 5.3938630E-04 4.9798982E-04 4.5961147E-04 4.2405643E-04 3.9114413E-04
 3.6070935E-04 3.3258830E-04 3.0663030E-04 2.8269575E-04 2.6064448E-04
 2.4035395E-04
 4.9161087E-03 3.5835493E-03 2.3825099E-03 1.3052106E-03 3.4384700E-04
 -5.0927635E-04 -1.2616422E-03 -1.9204938E-03 -2.4927841E-03 -2.9852020E-03
 -3.4041354E-03 -3.7556947E-03 -4.0457193E-03 -4.2797644E-03 -4.4631190E-03
 -4.6007792E-03 -4.6974723E-03 -4.7576353E-03 -4.7854162E-03 -4.7846772E-03
 -4.7589960E-03 -4.7116764E-03 -4.6457318E-03 -4.5639342E-03 -4.4687968E-03
 -4.3625953E-03 -4.2473720E-03 -4.1249702E-03 -3.9970390E-03 -3.8650329E-03
 -3.7302438E-03 -3.5938141E-03 -3.4567423E-03 -3.3198949E-03 -3.1840231E-03
 -3.0497659E-03 -2.9176790E-03 -2.7882184E-03 -2.6617667E-03 -2.5386426E-03
 -2.4190936E-03 -2.3033156E-03 -2.1914560E-03 -2.0836180E-03 -1.9798696E-03
 -1.8802426E-03 -1.7847414E-03 -1.6933462E-03 -1.6060147E-03 -1.5226833E-03
 -1.4432787E-03 -1.3677151E-03 -1.2958908E-03 -1.2276956E-03 -1.1630191E-03
 -1.1017378E-03 -1.0437327E-03 -9.8887063E-04 -9.3702663E-04 -8.8807021E-04
 -8.4187428E-04 -7.9830975E-04 -7.5724628E-04 -7.1856490E-04 -6.8213680E-04
 -6.4784533E-04 -6.1557133E-04 -5.8519904E-04 -5.5662385E-04 -5.2973401E-04
 -5.0442904E-04
 2.6128460E-02 2.5035433E-02 2.3946978E-02 2.2870710E-02 2.1812774E-02
 2.0778053E-02 1.9770298E-02 1.8792329E-02 1.7846141E-02 1.6933069E-02
 1.6053881E-02 1.5208919E-02 1.4398161E-02 1.3621303E-02 1.2877854E-02
 1.2167157E-02 1.1488457E-02 1.0840910E-02 1.0223635E-02 9.6357064E-03
 9.0762014E-03 8.5441610E-03 8.0386428E-03 7.5586978E-03 7.1033910E-03
 6.6717830E-03 6.2629473E-03 5.8759674E-03 5.5099493E-03 5.1640072E-03
 4.8372685E-03 4.5288731E-03 4.2379987E-03 3.9638281E-03 3.7055642E-03
 3.4624413E-03 3.2337089E-03 3.0186470E-03 2.8165532E-03 2.6267583E-03
 2.4486091E-03 2.2814805E-03 2.1247803E-03 1.9779319E-03 1.8403888E-03
 1.7116254E-03 1.5911482E-03 1.4784773E-03 1.3731628E-03 1.2747775E-03
 1.1829103E-03 1.0971766E-03 1.0172109E-03 9.4266998E-04 8.7322481E-04
 8.0856192E-04 7.4839720E-04 6.9245044E-04 6.4046233E-04 5.9218815E-04
 5.4739631E-04 5.0586864E-04 4.6739550E-04 4.3178903E-04 3.9885772E-04
 3.6843814E-04 3.4035725E-04 3.1445938E-04 2.9060926E-04 2.6865615E-04
 2.4847177E-04
 4.7998317E-03 3.4699137E-03 2.2720853E-03 1.1984878E-03 2.4124615E-04
 -6.0741167E-04 -1.3550562E-03 -2.0090039E-03 -2.5763067E-03 -3.0637172E-03
 -3.4777061E-03 -3.8244491E-03 -4.1098404E-03 -4.3394882E-03 -4.5187022E-03
 -4.6525127E-03 -4.7456599E-03 -4.8025683E-03 -4.8273918E-03 -4.8239822E-03
 -4.7958973E-03 -4.7464245E-03 -4.6785641E-03 -4.5950636E-03 -4.4984138E-03
 -4.3908753E-03 -4.2744754E-03 -4.1510412E-03 -4.0222011E-03 -3.8893970E-03
 -3.7539145E-03 -3.6168820E-03 -3.4792852E-03 -3.3419824E-03 -3.2057201E-03
 -3.0711328E-03 -2.9387611E-03 -2.8090600E-03 -2.6824141E-03 -2.5591236E-03
 -2.4394423E-03 -2.3235604E-03 -2.2116222E-03 -2.1037261E-03 -1.9999419E-03
 -1.9002949E-03 -1.8047867E-03 -1.7133988E-03 -1.6260813E-03 -1.5427740E-03
 -1.4633995E-03 -1.3878697E-03 -1.3160796E-03 -1.2479193E-03 -1.1832735E-03
 -1.1220210E-03 -1.0640324E-03 -1.0091779E-03 -9.5733331E-04 -9.0836466E-04
 -8.6213567E-04 -8.1851915E-04 -7.7738648E-04 -7.3861278E-04 -7.0206681E-04
 -6.6762959E-04 -6.3518464E-04 -6.0461630E-04 -5.7581114E-04 -5.4866500E-04
 -5.2307534E-04
 2.6330350E-02 2.5233252E-02 2.4140628E-02 2.3060063E-02 2.1997703E-02
 2.0958381E-02 1.9945854E-02 1.8962894E-02 1.8011514E-02 1.7093047E-02
 1.6208280E-02 1.5357574E-02 1.4540941E-02 1.3758133E-02 1.3008685E-02
 1.2291983E-02 1.1607318E-02 1.0953881E-02 1.0330820E-02 9.7372578E-03
 9.1722701E-03 8.6349333E-03 8.1243124E-03 7.6394654E-03 7.1794582E-03
 6.7433645E-03 6.3302550E-03 5.9392108E-03 5.5693365E-03 5.2197301E-03
 4.8895250E-03 4.5778588E-03 4.2838920E-03 4.0068040E-03 3.7457903E-03
 3.5000793E-03 3.2689157E-03 3.0515715E-03 2.8473360E-03 2.6555350E-03
 2.4755094E-03 2.3066341E-03 2.1483053E-03 1.9999405E-03 1.8609916E-03
 1.7309323E-03 1.6092533E-03 1.4954801E-03 1.3891598E-03 1.2898520E-03
 1.1971515E-03 1.1106704E-03 1.0300323E-03 9.5489545E-04 8.8492589E-04
 8.1981189E-04 7.5925700E-04 7.0298370E-04 6.5072760E-04 6.0223904E-04
 5.5728282E-04 5.1563384E-04 4.7708710E-04 4.4143968E-04 4.0850468E-04
 3.7810337E-04 3.5006428E-04 3.2423189E-04 3.0044958E-04 2.7858140E-04
 2.5848689E-04
 4.6711559E-03 3.3443014E-03 2.1501479E-03 1.0807576E-03 1.2815864E-04
 -7.1550399E-04 -1.4578974E-03 -2.1064281E-03 -2.6682410E-03 -3.1501744E-03
 -3.5587768E-03 -3.9002928E-03 -4.1806800E-03 -4.4055772E-03 -4.5803408E-03
 -4.7100172E-03 -4.7993469E-03 -4.8527694E-03 -4.8744227E-03 -4.8681423E-03
 -4.8374785E-03 -4.7856909E-03 -4.7157668E-03 -4.6304297E-03 -4.5321519E-03
 -4.4231717E-03 -4.3054996E-03 -4.1809431E-03 -4.0511126E-03 -3.9174492E-03
 -3.7812104E-03 -3.6435190E-03 -3.5053485E-03 -3.3675490E-03 -3.2308623E-03
 -3.0959055E-03 -2.9632233E-03 -2.8332588E-03 -2.7063908E-03 -2.5829191E-03
 -2.4630928E-03 -2.3470910E-03 -2.2350631E-03 -2.1271002E-03 -2.0232650E-03
 -1.9235864E-03 -1.8280618E-03 -1.7366681E-03 -1.6493517E-03 -1.5660556E-03
 -1.4866942E-03 -1.4111731E-03 -1.3393961E-03 -1.2712439E-03 -1.2065957E-03
 -1.1453318E-03 -1.0873220E-03 -1.0324306E-03 -9.8052830E-04 -9.3148043E-04
 -8.8515441E-04 -8.4141339E-04 -8.0013007E-04 -7.6117140E-04 -7.2441634E-04
 -6.8973936E-04 -6.5701868E-04 -6.2614371E-04 -5.9700228E-04 -5.6948490E-04
 -5.4349058E-04
 2.6557604E-02 2.5455697E-02 2.4358137E-02 2.3272492E-02 2.2204885E-02
 2.1160135E-02 2.0141963E-02 1.9153157E-02 1.8195722E-02 1.7270995E-02
 1.6379798E-02 1.5522514E-02 1.4699201E-02 1.3909643E-02 1.3153428E-02
 1.2429995E-02 1.1738651E-02 1.1078658E-02 1.0449186E-02 9.8493649E-03
 9.2783142E-03 8.7351240E-03 8.2188668E-03 7.7286176E-03 7.2634406E-03
 6.8224119E-03 6.4046010E-03 6.0090874E-03 5.6349705E-03 5.2813450E-03
 4.9473424E-03 4.6320781E-03 4.3347189E-03 4.0544346E-03 3.7904128E-03
 3.5418735E-03 3.3080487E-03 3.0882081E-03 2.8816415E-03 2.6876575E-03
 2.5055972E-03 2.3348222E-03 2.1747297E-03 2.0247309E-03 1.8842662E-03
 1.7528147E-03 1.6298553E-03 1.5149117E-03 1.4075232E-03 1.3072463E-03
 1.2136763E-03 1.1264125E-03 1.0450826E-03 9.6933771E-04 8.9883682E-04
 8.3326688E-04 7.7232730E-04 7.1573514E-04 6.6321786E-04 6.1452383E-04
 5.6941283E-04 5.2765518E-04 4.8903696E-04 4.5334955E-04 4.2040515E-04
 3.9001487E-04 3.6200337E-04 3.3621039E-04 3.1247546E-04 2.9065245E-04
 2.7059967E-04
 4.5290203E-03 3.2057059E-03 2.0157509E-03 9.5111929E-04 3.7397726E-06
 -8.3435082E-04 -1.5709213E-03 -2.2134895E-03 -2.7692856E-03 -3.2452492E-03
 -3.6480085E-03 -3.9838795E-03 -4.2588683E-03 -4.4786707E-03 -4.6486626E-03
 -4.7739125E-03 -4.8591634E-03 -4.9088532E-03 -4.9271132E-03 -4.9177688E-03
 -4.8843422E-03 -4.8300782E-03 -4.7579417E-03 -4.6706302E-03 -4.5706015E-03
 -4.4600670E-03 -4.3410226E-03 -4.2152554E-03 -4.0843613E-03 -3.9497572E-03
 -3.8126966E-03 -3.6742887E-03 -3.5354956E-03 -3.3971565E-03 -3.2599994E-03
 -3.1246422E-03 -2.9916170E-03 -2.8613629E-03 -2.7342485E-03 -2.6105756E-03
 -2.4905789E-03 -2.3744430E-03 -2.2623045E-03 -2.1542539E-03 -2.0503555E-03
 -1.9506273E-03 -1.8550633E-03 -1.7636420E-03 -1.6763061E-03 -1.5929900E-03
 -1.5136095E-03 -1.4380710E-03 -1.3662626E-03 -1.2980695E-03 -1.2333713E-03
 -1.1720394E-03 -1.1139398E-03 -1.0589383E-03 -1.0069021E-03 -9.5769000E-04
 -9.1116922E-04 -8.6720398E-04 -8.2566304E-04 -7.8641099E-04 -7.4932596E-04
 -7.1428466E-04 -6.8116299E-04 -6.4985425E-04 -6.2023936E-04 -5.9222081E-04
 -5.6569465E-04
 2.6813388E-02 2.5705794E-02 2.4602368E-02 2.3510695E-02 2.2436863E-02
 2.1385688E-02 2.0360876E-02 1.9365214E-02 1.8400716E-02 1.7468741E-02
 1.6570138E-02 1.5705327E-02 1.4874415E-02 1.4077227E-02 1.3313396E-02
 1.2582410E-02 1.1883625E-02 1.1216330E-02 1.0579729E-02 9.9729812E-03
 9.3952361E-03 8.8455835E-03 8.3231181E-03 7.8269234E-03 7.3560532E-03
 6.9096037E-03 6.4866301E-03 6.0862135E-03 5.7074437E-03 5.3494140E-03
 5.0112437E-03 4.6920474E-03 4.3909745E-03 4.1071940E-03 3.8398842E-03
 3.5882541E-03 3.3515380E-03 3.1289884E-03 2.9198809E-03 2.7235299E-03
 2.5392650E-03 2.3664429E-03 2.2044482E-03 2.0526943E-03 1.9106173E-03
 1.7776722E-03 1.6533547E-03 1.5371710E-03 1.4286597E-03 1.3273733E-03
 1.2328972E-03 1.1448261E-03 1.0627883E-03 9.8642264E-04 9.1538567E-04
 8.4935850E-04 7.8803278E-04 7.3112192E-04 6.7834469E-04 6.2944880E-04
 5.8418064E-04 5.4230756E-04 5.0360599E-04 4.6786643E-04 4.3488917E-04
 4.0447927E-04 3.7646075E-04 3.5065686E-04 3.2691460E-04 3.0507596E-04
 2.8499661E-04
 4.3723234E-03 3.0530887E-03 1.8679167E-03 8.0865622E-04 -1.3288039E-04
 -9.6477952E-04 -1.6949247E-03 -2.3309453E-03 -2.8801828E-03 -3.3496695E-03
 -3.7461149E-03 -4.0759090E-03 -4.3451134E-03 -4.5594596E-03 -4.7243582E-03
 -4.8448867E-03 -4.9257921E-03 -4.9715103E-03 -4.9861572E-03 -4.9735443E-03
 -4.9371747E-03 -4.8802672E-03 -4.8057646E-03 -4.7163460E-03 -4.6144379E-03
 -4.5022396E-03 -4.3817158E-03 -4.2546424E-03 -4.1225976E-03 -3.9869845E-03
 -3.8490356E-03 -3.7098501E-03 -3.5703788E-03 -3.4314487E-03 -3.2937797E-03
 -3.1579856E-03 -3.0245786E-03 -2.8939990E-03 -2.7666143E-03 -2.6427067E-03
 -2.5225158E-03 -2.4062172E-03 -2.2939441E-03 -2.1857810E-03 -2.0817877E-03
 -1.9819813E-03 -1.8863496E-03 -1.7948636E-03 -1.7074657E-03 -1.6240894E-03
 -1.5446403E-03 -1.4690219E-03 -1.3971215E-03 -1.3288205E-03 -1.2639920E-03
 -1.2025055E-03 -1.1442242E-03 -1.0890117E-03 -1.0367294E-03 -9.8723685E-04
 -9.4039936E-04 -8.9608028E-04 -8.5414306E-04 -8.1445754E-04 -7.7690015E-04
 -7.4134429E-04 -7.0767588E-04 -6.7578221E-04 -6.4555270E-04 -6.1688840E-04
 -5.8969093E-04
 2.7101237E-02 2.5986878E-02 2.4876492E-02 2.3777651E-02 2.2696434E-02
 2.1637652E-02 2.0605022E-02 1.9601338E-02 1.8628614E-02 1.7688258E-02
 1.6781138E-02 1.5907735E-02 1.5068193E-02 1.4262380E-02 1.3489993E-02
 1.2750556E-02 1.2043467E-02 1.1368050E-02 1.0723547E-02 1.0109149E-02
 9.5240017E-03 8.9672329E-03 8.4379334E-03 7.9351915E-03 7.4580871E-03
 7.0056817E-03 6.5770457E-03 6.1712577E-03 5.7873921E-03 5.4245447E-03
 5.0818156E-03 4.7583245E-03 4.4532022E-03 4.1656117E-03 3.8947216E-03
 3.6397362E-03 3.3998711E-03 3.1743781E-03 2.9625287E-03 2.7636231E-03
 2.5769831E-03 2.4019571E-03 2.2379274E-03 2.0842971E-03 1.9404945E-03
 1.8059786E-03 1.6802246E-03 1.5627402E-03 1.4530504E-03 1.3507152E-03
 1.2553022E-03 1.1664042E-03 1.0836375E-03 1.0066363E-03 9.3505601E-04
 8.6856441E-04 8.0684846E-04 7.4961258E-04 6.9656631E-04 6.4745295E-04
 6.0200831E-04 5.5999454E-04 5.2117655E-04 4.8534205E-04 4.5227827E-04
 4.2179343E-04 3.9369625E-04 3.6781206E-04 3.4397241E-04 3.2202361E-04
 3.0181353E-04
 4.1999528E-03 2.8854015E-03 1.7056585E-03 6.5243454E-04 -2.8259191E-04
 -1.1076410E-03 -1.8307255E-03 -2.4596010E-03 -3.0017197E-03 -3.4642101E-03
 -3.8538682E-03 -4.1771559E-03 -4.4401777E-03 -4.6487167E-03 -4.8081959E-03
 -4.9237087E-03 -5.0000064E-03 -5.0415113E-03 -5.0523300E-03 -5.0362456E-03
 -4.9967500E-03 -4.9370336E-03 -4.8600133E-03 -4.7683469E-03 -4.6644327E-03
 -4.5504486E-03 -4.4283457E-03 -4.2998702E-03 -4.1665891E-03 -4.0298826E-03
 -3.8909770E-03 -3.7509496E-03 -3.6107395E-03 -3.4711678E-03 -3.3329388E-03
 -3.1966537E-03 -3.0628284E-03 -2.9318896E-03 -2.8041897E-03 -2.6800144E-03
 -2.5595906E-03 -2.4430957E-03 -2.3306482E-03 -2.2223340E-03 -2.1182052E-03
 -2.0182717E-03 -1.9225222E-03 -1.8309157E-03 -1.7433966E-03 -1.6598859E-03
 -1.5802926E-03 -1.5045122E-03 -1.4324260E-03 -1.3639155E-03 -1.2988467E-03
 -1.2370885E-03 -1.1784981E-03 -1.1229399E-03 -1.0702681E-03 -1.0203439E-03
 -9.7303482E-04 -9.2819479E-04 -8.8570005E-04 -8.4541412E-04 -8.0721243E-04
 -7.7097915E-04 -7.3659758E-04 -7.0395484E-04 -6.7295157E-04 -6.4348482E-04
 -6.1546615E-04
 2.7425071E-02 2.6302662E-02 2.5183983E-02 2.4076613E-02 2.2986645E-02
 2.1918885E-02 2.0877060E-02 1.9863984E-02 1.8881714E-02 1.7931674E-02
 1.7014798E-02 1.6131595E-02 1.5282257E-02 1.4466726E-02 1.3684727E-02
 1.2935846E-02 1.2219509E-02 1.1535075E-02 1.0881825E-02 1.0258966E-02
 9.6656624E-03 9.1010574E-03 8.5642487E-03 8.0543291E-03 7.5703734E-03
 7.1114446E-03 6.6766180E-03 6.2649567E-03 5.8755265E-03 5.5074142E-03
 5.1597194E-03 4.8315427E-03 4.5220158E-03 4.2302809E-03 3.9555063E-03
 3.6968749E-03 3.4536060E-03 3.2249377E-03 3.0101282E-03 2.8084747E-03
 2.6192842E-03 2.4419082E-03 2.2757067E-03 2.1200823E-03 1.9744581E-03
 1.8382795E-03 1.7110214E-03 1.5921745E-03 1.4812645E-03 1.3778383E-03
 1.2814528E-03 1.1917020E-03 1.1081892E-03 1.0305392E-03 9.5839385E-04
 8.9141936E-04 8.2929287E-04 7.7170203E-04 7.1836152E-04 6.6898845E-04
 6.2332232E-04 5.8111211E-04 5.4211449E-04 5.0611171E-04 4.7288038E-04
 4.4222406E-04 4.1394646E-04 3.8786864E-04 3.6381657E-04 3.4163101E-04
 3.2116164E-04
 4.0108059E-03 2.7015996E-03 1.5279830E-03 4.8151062E-04 -4.4629790E-04
 -1.2638082E-03 -1.9791867E-03 -2.6003025E-03 -3.1347319E-03 -3.5897046E-03
 -3.9721057E-03 -4.2884527E-03 -4.5449142E-03 -4.7472906E-03 -4.9010389E-03
 -5.0112493E-03 -5.0826757E-03 -5.1197316E-03 -5.1265019E-03 -5.1067532E-03
 -5.0639482E-03 -5.0012530E-03 -4.9215630E-03 -4.8275026E-03 -4.7214585E-03
 -4.6055755E-03 -4.4817817E-03 -4.3518096E-03 -4.2171990E-03 -4.0793200E-03
 -3.9393776E-03 -3.7984387E-03 -3.6574262E-03 -3.5171495E-03 -3.3783060E-03
 -3.2414845E-03 -3.1071899E-03 -2.9758364E-03 -2.8477765E-03 -2.7232827E-03
 -2.6025812E-03 -2.4858313E-03 -2.3731582E-03 -2.2646342E-03 -2.1603045E-03
 -2.0601735E-03 -1.9642266E-03 -1.8724162E-03 -1.7846827E-03 -1.7009388E-03
 -1.6210912E-03 -1.5450275E-03 -1.4726276E-03 -1.4037670E-03 -1.3383102E-03
 -1.2761184E-03 -1.2170532E-03 -1.1609731E-03 -1.1077337E-03 -1.0571950E-03
 -1.0092219E-03 -9.6367701E-04 -9.2042889E-04 -8.7935134E-04 -8.4032118E-04
 -8.0322335E-04 -7.6794915E-04 -7.3438714E-04 -7.0244260E-04 -6.7202054E-04
 -6.4303412E-04
 2.7789248E-02 2.6657231E-02 2.5528669E-02 2.4411160E-02 2.3310814E-02
 2.2232460E-02 2.1179851E-02 2.0155830E-02 1.9162487E-02 1.8201301E-02
 1.7273247E-02 1.6378891E-02 1.5518482E-02 1.4691999E-02 1.3899239E-02
 1.3139801E-02 1.2413178E-02 1.1718758E-02 1.1055831E-02 1.0423635E-02
 9.8213507E-03 9.2481319E-03 8.7030800E-03 8.1852907E-03 7.6938337E-03
 7.2277780E-03 6.7861853E-03 6.3681039E-03 5.9726099E-03 5.5987695E-03
 5.2456702E-03 4.9124053E-03 4.5980951E-03 4.3018721E-03 4.0228893E-03
 3.7603264E-03 3.5133914E-03 3.2813044E-03 3.0633213E-03 2.8587226E-03
 2.6668154E-03 2.4869298E-03 2.3184281E-03 2.1606989E-03 2.0131562E-03
 1.8752282E-03 1.7463911E-03 1.6261276E-03 1.5139487E-03 1.4093870E-03
 1.3119989E-03 1.2213631E-03 1.1370678E-03 1.0587346E-03 9.8599494E-04
 9.1849716E-04 8.5590902E-04 7.9791743E-04 7.4421451E-04 6.9451332E-04
 6.4854266E-04 6.0604134E-04 5.6676503E-04 5.3048035E-04 4.9696147E-04
 4.6600343E-04 4.3740883E-04 4.1099178E-04 3.8657524E-04 3.6399701E-04
 3.4310555E-04
 3.8037847E-03 2.5006421E-03 1.3338969E-03 2.9492445E-04 -6.2493247E-04
 -1.4342045E-03 -2.1412054E-03 -2.7539481E-03 -3.2801272E-03 -3.7270715E-03
 -4.1017472E-03 -4.4107386E-03 -4.6602543E-03 -4.8561366E-03 -5.0038444E-03
 -5.1084766E-03 -5.1747798E-03 -5.2071512E-03 -5.2096643E-03 -5.1860544E-03
 -5.1397630E-03 -5.0739255E-03 -4.9914136E-03 -4.8948261E-03 -4.7865175E-03
 -4.6686139E-03 -4.5430185E-03 -4.4114473E-03 -4.2754128E-03 -4.1362718E-03
 -3.9952151E-03 -3.8532873E-03 -3.7114024E-03 -3.5703559E-03 -3.4308292E-03
 -3.2934055E-03 -3.1585721E-03 -3.0267471E-03 -2.8982614E-03 -2.7733848E-03
 -2.6523266E-03 -2.5352526E-03 -2.4222699E-03 -2.3134481E-03 -2.2088236E-03
 -2.1083972E-03 -2.0121431E-03 -1.9200071E-03 -1.8319259E-03 -1.7478064E-03
 -1.6675501E-03 -1.5910398E-03 -1.5181528E-03 -1.4487585E-03 -1.3827193E-03
 -1.3198946E-03 -1.2601477E-03 -1.2033340E-03 -1.1493103E-03 -1.0979366E-03
 -1.0490831E-03 -1.0026118E-03 -9.5839996E-04 -9.1632054E-04 -8.7625900E-04
 -8.3810516E-04 -8.0175063E-04 -7.6709496E-04 -7.3404796E-04 -7.0251909E-04
 -6.7242899E-04
 2.8198557E-02 2.7055066E-02 2.5914725E-02 2.4785168E-02 2.3672545E-02
 2.2581728E-02 2.1516498E-02 2.0479739E-02 1.9473603E-02 1.8499611E-02
 1.7558789E-02 1.6651774E-02 1.5778856E-02 1.4940079E-02 1.4135270E-02
 1.3364075E-02 1.2626031E-02 1.1920543E-02 1.1246934E-02 1.0604455E-02
 9.9923005E-03 9.4096242E-03 8.8555347E-03 8.3291363E-03 7.8294855E-03
 7.3556458E-03 6.9066714E-03 6.4816070E-03 6.0795173E-03 5.6994474E-03
 5.3404826E-03 5.0017126E-03 4.6822252E-03 4.3811533E-03 4.0976410E-03
 3.8308445E-03 3.5799672E-03 3.3442199E-03 3.1228466E-03 2.9151130E-03
 2.7203138E-03 2.5377751E-03 2.3668464E-03 2.2068974E-03 2.0573307E-03
 1.9175828E-03 1.7870984E-03 1.6653516E-03 1.5518450E-03 1.4460987E-03
 1.3476546E-03 1.2560798E-03 1.1709519E-03 1.0918780E-03 1.0184771E-03
 9.5038378E-04 8.8725821E-04 8.2876708E-04 7.7460118E-04 7.2445854E-04
 6.7806151E-04 6.3514005E-04 5.9543690E-04 5.5871689E-04 5.2474829E-04
 4.9332058E-04 4.6423372E-04 4.3729661E-04 4.1233469E-04 3.8918082E-04
 3.6767963E-04
 3.5778370E-03 2.2815219E-03 1.1224250E-03 9.1716342E-05 -8.1944204E-04
 -1.6197702E-03 -2.3177385E-03 -2.9215049E-03 -3.4388844E-03 -3.8773045E-03
 -4.2438083E-03 -4.5450456E-03 -4.7872597E-03 -4.9763196E-03 -5.1176962E-03
 -5.2164826E-03 -5.2774190E-03 -5.3048888E-03 -5.3029363E-03 -5.2752756E-03
 -5.2253185E-03 -5.1561804E-03 -5.0706957E-03 -4.9714390E-03 -4.8607374E-03
 -4.7406941E-03 -4.6131862E-03 -4.4799070E-03 -4.3423502E-03 -4.2018541E-03
 -4.0595923E-03 -3.9165863E-03 -3.7737472E-03 -3.6318479E-03 -3.4915598E-03
 -3.3534497E-03 -3.2180029E-03 -3.0856167E-03 -2.9566137E-03 -2.8312611E-03
 -2.7097554E-03 -2.5922481E-03 -2.4788405E-03 -2.3695973E-03 -2.2645420E-03
 -2.1636731E-03 -2.0669515E-03 -1.9743270E-03 -1.8857176E-03 -1.8010307E-03
 -1.7201634E-03 -1.6429892E-03 -1.5693927E-03 -1.4992289E-03 -1.4323690E-03
 -1.3686711E-03 -1.3079903E-03 -1.2501896E-03 -1.1951322E-03 -1.1426801E-03
 -1.0927004E-03 -1.0450704E-03 -9.9966407E-04 -9.5636467E-04 -9.1506302E-04
 -8.7565149E-04 -8.3803310E-04 -8.0211734E-04 -7.6781097E-04 -7.3503709E-04
 -7.0371933E-04
 2.8658260E-02 2.7501060E-02 2.6346693E-02 2.5202852E-02 2.4075747E-02
 2.2970289E-02 2.1890329E-02 2.0838810E-02 1.9817926E-02 1.8829264E-02
 1.7873917E-02 1.6952561E-02 1.6065553E-02 1.5212984E-02 1.4394722E-02
 1.3610457E-02 1.2859744E-02 1.2142021E-02 1.1456633E-02 1.0802840E-02
 1.0179849E-02 9.5868148E-03 9.0228440E-03 8.4870346E-03 7.9784431E-03
 7.4961279E-03 7.0391223E-03 6.6064717E-03 6.1972192E-03 5.8104070E-03
 5.4450990E-03 5.1003718E-03 4.7753039E-03 4.4690170E-03 4.1806325E-03
 3.9093089E-03 3.6542157E-03 3.4145655E-03 3.1895847E-03 2.9785212E-03
 2.7806661E-03 2.5953252E-03 2.4218301E-03 2.2595518E-03 2.1078726E-03
 1.9662054E-03 1.8339888E-03 1.7106873E-03 1.5957769E-03 1.4887734E-03
 1.3891994E-03 1.2966067E-03 1.2105592E-03 1.1306473E-03 1.0564771E-03
 9.8767609E-04 9.2388253E-04 8.6475856E-04 8.0997805E-04 7.5923407E-04
 7.1223767E-04 6.6871085E-04 6.2839396E-04 5.9104187E-04 5.5642385E-04
 5.2432081E-04 4.9453281E-04 4.6686397E-04 4.4114731E-04 4.1721028E-04
 3.9490327E-04
 3.3319714E-03 2.0432598E-03 8.9259428E-04 -1.2907897E-04 -1.0308124E-03
 -1.8215097E-03 -2.5098133E-03 -3.1040260E-03 -3.6120832E-03 -4.0415102E-03
 -4.3994272E-03 -4.6925331E-03 -4.9271099E-03 -5.1090415E-03 -5.2438090E-03
 -5.3365026E-03 -5.3918455E-03 -5.4142005E-03 -5.4075844E-03 -5.3756912E-03
 -5.3219027E-03 -5.2492996E-03 -5.1606931E-03 -5.0586262E-03 -4.9453988E-03
 -4.8230891E-03 -4.6935519E-03 -4.5584524E-03 -4.4192676E-03 -4.2773113E-03
 -4.1337390E-03 -3.9895624E-03 -3.8456677E-03 -3.7028140E-03 -3.5616606E-03
 -3.4227648E-03 -3.2865920E-03 -3.1535288E-03 -3.0238915E-03 -2.8979322E-03
 -2.7758344E-03 -2.6577469E-03 -2.5437556E-03 -2.4339173E-03 -2.3282452E-03
 -2.2267343E-03 -2.1293366E-03 -2.0359938E-03 -1.9466184E-03 -1.8611152E-03
 -1.7793739E-03 -1.7012747E-03 -1.6266861E-03 -1.5554748E-03 -1.4875076E-03
 -1.4226460E-03 -1.3607488E-03 -1.3016814E-03 -1.2453113E-03 -1.1915093E-03
 -1.1401465E-03 -1.0911041E-03 -1.0442680E-03 -9.9952612E-04 -9.5677702E-04
 -9.1592042E-04 -8.7686582E-04 -8.3952758E-04 -8.0382772E-04 -7.6968677E-04
 -7.3703867E-04
 2.9174104E-02 2.8000548E-02 2.6829509E-02 2.5668772E-02 2.4524612E-02
 2.3402043E-02 2.2304956E-02 2.1236371E-02 2.0198554E-02 1.9193146E-02
 1.8221302E-02 1.7283756E-02 1.6380921E-02 1.5512921E-02 1.4679663E-02
 1.3880882E-02 1.3116147E-02 1.2384930E-02 1.1686573E-02 1.1020355E-02
 1.0385484E-02 9.7811129E-03 9.2063462E-03 8.6602811E-03 8.1419591E-03
 7.6504257E-03 7.1847076E-03 6.7438367E-03 6.3268319E-03 5.9327343E-03
 5.5605848E-03 5.2094478E-03 4.8783896E-03 4.5665046E-03 4.2729080E-03
 3.9967434E-03 3.7371654E-03 3.4933621E-03 3.2645534E-03 3.0499713E-03
 2.8488857E-03 2.6605907E-03 2.4844003E-03 2.3196628E-03 2.1657567E-03
 2.0220685E-03 1.8880203E-03 1.7630546E-03 1.6466440E-03 1.5382733E-03
 1.4374544E-03 1.3437187E-03 1.2566157E-03 1.1757215E-03 1.1006296E-03
 1.0309462E-03 9.6630567E-04 9.0635271E-04 8.5075502E-04 7.9919462E-04
 7.5137906E-04 7.0701970E-04 6.6585350E-04 6.2763179E-04 5.9212284E-04
 5.5910368E-04 5.2837696E-04 4.9974874E-04 4.7304740E-04 4.4811174E-04
 4.2479113E-04
 3.0652524E-03 1.7849104E-03 6.4343645E-04 -3.6846320E-04 -1.2600708E-03
 -2.0404947E-03 -2.7185436E-03 -3.3026705E-03 -3.8009237E-03 -4.2209299E-03
 -4.5698765E-03 -4.8545050E-03 -5.0811395E-03 -5.2556680E-03 -5.3835730E-03
 -5.4699336E-03 -5.5194688E-03 -5.5365046E-03 -5.5250437E-03 -5.4887440E-03
 -5.4309545E-03 -5.3547355E-03 -5.2628568E-03 -5.1578353E-03 -5.0419522E-03
 -4.9172421E-03 -4.7855470E-03 -4.6485052E-03 -4.5075710E-03 -4.3640356E-03
 -4.2190342E-03 -4.0735640E-03 -3.9284891E-03 -3.7845566E-03 -3.6424065E-03
 -3.5025843E-03 -3.3655372E-03 -3.2316425E-03 -3.1012024E-03 -2.9744545E-03
 -2.8515784E-03 -2.7326997E-03 -2.6179061E-03 -2.5072377E-03 -2.4007051E-03
 -2.2982871E-03 -2.1999336E-03 -2.1055823E-03 -2.0151404E-03 -1.9285080E-03
 -1.8455777E-03 -1.7662219E-03 -1.6903161E-03 -1.6177299E-03 -1.5483305E-03
 -1.4819808E-03 -1.4185520E-03 -1.3579150E-03 -1.2999364E-03 -1.2445007E-03
 -1.1914844E-03 -1.1407825E-03 -1.0922813E-03 -1.0458822E-03 -1.0014875E-03
 -9.5900916E-04 -9.1836060E-04 -8.7946368E-04 -8.4224623E-04 -8.0663839E-04
 -7.7257579E-04
 2.9752335E-02 2.8559295E-02 2.7368495E-02 2.6187832E-02 2.5023697E-02
 2.3881175E-02 2.2764251E-02 2.1676026E-02 2.0618826E-02 1.9594366E-02
 1.8603848E-02 1.7648075E-02 1.6727488E-02 1.5842265E-02 1.4992335E-02
 1.4177469E-02 1.3397252E-02 1.2651158E-02 1.1938552E-02 1.1258713E-02
 1.0610846E-02 9.9940961E-03 9.4075678E-03 8.8503361E-03 8.3214426E-03
 7.8199133E-03 7.3447595E-03 6.8949969E-03 6.4696386E-03 6.0676914E-03
 5.6881881E-03 5.3301714E-03 4.9926923E-03 4.6748295E-03 4.3756799E-03
 4.0943632E-03 3.8300199E-03 3.5818168E-03 3.3489573E-03 3.1306569E-03
 2.9261576E-03 2.7347433E-03 2.5557014E-03 2.3883684E-03 2.2320927E-03
 2.0862408E-03 1.9502214E-03 1.8234547E-03 1.7053874E-03 1.5954910E-03
 1.4932549E-03 1.3981962E-03 1.3098449E-03 1.2277615E-03 1.1515253E-03
 1.0807323E-03 1.0149990E-03 9.5396535E-04 8.9729071E-04 8.4465288E-04
 7.9574162E-04 7.5027312E-04 7.0798607E-04 6.6861894E-04 6.3194783E-04
 5.9775007E-04 5.6582829E-04 5.3599203E-04 5.0807651E-04 4.8192215E-04
 4.5738797E-04
 2.7768114E-03 1.5055557E-03 3.7398181E-04 -6.2747585E-04 -1.5083292E-03
 -2.2778953E-03 -2.9451617E-03 -3.5187276E-03 -4.0067593E-03 -4.4169645E-03
 -4.7566020E-03 -5.0324537E-03 -5.2508647E-03 -5.4177404E-03 -5.5385511E-03
 -5.6183725E-03 -5.6618955E-03 -5.6734318E-03 -5.6569441E-03 -5.6160665E-03
 -5.5541182E-03 -5.4741204E-03 -5.3788209E-03 -5.2707032E-03 -5.1520118E-03
 -5.0247665E-03 -4.8907776E-03 -4.7516506E-03 -4.6088230E-03 -4.4635655E-03
 -4.3169903E-03 -4.1700737E-03 -4.0236600E-03 -3.8784824E-03 -3.7351598E-03
 -3.5942195E-03 -3.4561036E-03 -3.3211636E-03 -3.1896939E-03 -3.0619155E-03
 -2.9379996E-03 -2.8180585E-03 -2.7021684E-03 -2.5903636E-03 -2.4826438E-03
 -2.3789823E-03 -2.2793261E-03 -2.1836057E-03 -2.0917284E-03 -2.0035964E-03
 -1.9190975E-03 -1.8381113E-03 -1.7605155E-03 -1.6861858E-03 -1.6149917E-03
 -1.5468088E-03 -1.4815129E-03 -1.4189797E-03 -1.3590914E-03 -1.3017382E-03
 -1.2468090E-03 -1.1941993E-03 -1.1438093E-03 -1.0955494E-03 -1.0493312E-03
 -1.0050703E-03 -9.6269237E-04 -9.2211965E-04 -8.8328775E-04 -8.4613106E-04
 -8.1058691E-04
 3.0399727E-02 2.9183554E-02 2.7969411E-02 2.6765345E-02 2.5577884E-02
 2.4412209E-02 2.3272417E-02 2.2161666E-02 2.1082370E-02 2.0036304E-02
 1.9024724E-02 1.8048475E-02 1.7108055E-02 1.6203644E-02 1.5335222E-02
 1.4502561E-02 1.3705270E-02 1.2942826E-02 1.2214595E-02 1.1519839E-02
 1.0857780E-02 1.0227541E-02 9.6282167E-03 9.0588620E-03 8.5185114E-03
 8.0061676E-03 7.5208289E-03 7.0614810E-03 6.6271266E-03 6.2167482E-03
 5.8293627E-03 5.4639899E-03 5.1196571E-03 4.7954228E-03 4.4903634E-03
 4.2035752E-03 3.9341794E-03 3.6813177E-03 3.4441708E-03 3.2219300E-03
 3.0138202E-03 2.8190915E-03 2.6370182E-03 2.4669000E-03 2.3080688E-03
 2.1598723E-03 2.0216887E-03 1.8929122E-03 1.7729786E-03 1.6613293E-03
 1.5574385E-03 1.4608017E-03 1.3709381E-03 1.2873888E-03 1.2097202E-03
 1.1375177E-03 1.0703886E-03 1.0079631E-03 9.4989385E-04 8.9585292E-04
 8.4553362E-04 7.9864578E-04 7.5492187E-04 7.1411254E-04 6.7598530E-04
 6.4033113E-04 6.0694729E-04 5.7565700E-04 5.4629694E-04 5.1871268E-04
 4.9277110E-04
 2.4658295E-03 1.2042723E-03 8.3199870E-05 -9.0723706E-04 -1.7768040E-03
 -2.5350235E-03 -3.1910685E-03 -3.7536742E-03 -4.2311256E-03 -4.6312148E-03
 -4.9612531E-03 -5.2280701E-03 -5.4380232E-03 -5.5970210E-03 -5.7105348E-03
 -5.7836245E-03 -5.8209528E-03 -5.8268094E-03 -5.8051259E-03 -5.7595065E-03
 -5.6932364E-03 -5.6093023E-03 -5.5104243E-03 -5.3990525E-03 -5.2774013E-03
 -5.1474590E-03 -5.0110067E-03 -4.8696343E-03 -4.7247447E-03 -4.5775869E-03
 -4.4292510E-03 -4.2806901E-03 -4.1327318E-03 -3.9860862E-03 -3.8413573E-03
 -3.6990521E-03 -3.5595950E-03 -3.4233266E-03 -3.2905200E-03 -3.1613910E-03
 -3.0360925E-03 -2.9147316E-03 -2.7973705E-03 -2.6840353E-03 -2.5747253E-03
 -2.4694048E-03 -2.3680225E-03 -2.2705030E-03 -2.1767616E-03 -2.0866941E-03
 -2.0002022E-03 -1.9171652E-03 -1.8374694E-03 -1.7609972E-03 -1.6876284E-03
 -1.6172484E-03 -1.5497395E-03 -1.4849911E-03 -1.4228912E-03 -1.3633434E-03
 -1.3062453E-03 -1.2515003E-03 -1.1990187E-03 -1.1487185E-03 -1.1005173E-03
 -1.0543392E-03 -1.0101135E-03 -9.6776668E-04 -9.2724140E-04 -8.8846439E-04
 -8.5138058E-04
 3.1123599E-02 2.9880056E-02 2.8638458E-02 2.7407045E-02 2.6192470E-02
 2.5000054E-02 2.3833992E-02 2.2697523E-02 2.1593129E-02 2.0522648E-02
 1.9487387E-02 1.8488213E-02 1.7525665E-02 1.6599949E-02 1.5711054E-02
 1.4858766E-02 1.4042685E-02 1.3262291E-02 1.2516948E-02 1.1805912E-02
 1.1128382E-02 1.0483468E-02 9.8702535E-03 9.2877699E-03 8.7350262E-03
 8.2110111E-03 7.7146986E-03 7.2450493E-03 6.8010390E-03 6.3816342E-03
 5.9858235E-03 5.6125959E-03 5.2609602E-03 4.9299523E-03 4.6186130E-03
 4.3260176E-03 4.0512583E-03 3.7934568E-03 3.5517570E-03 3.3253229E-03
 3.1133567E-03 2.9150760E-03 2.7297279E-03 2.5565878E-03 2.3949568E-03
 2.2441531E-03 2.1035355E-03 1.9724751E-03 1.8503758E-03 1.7366677E-03
 1.6308015E-03 1.5322579E-03 1.4405386E-03 1.3551702E-03 1.2757067E-03
 1.2017315E-03 1.1328369E-03 1.0686506E-03 1.0088198E-03 9.5301791E-04
 9.0093270E-04 8.5227448E-04 8.0678251E-04 7.6421036E-04 7.2432874E-04
 6.8693177E-04 6.5182784E-04 6.1884086E-04 5.8781513E-04 5.5860658E-04
 5.3108128E-04
 2.1315119E-03 8.8011054E-04 -2.3001652E-04 -1.2090021E-03 -2.0668767E-03
 -2.8133797E-03 -3.4578608E-03 -4.0092031E-03 -4.4757971E-03 -4.8655178E-03
 -5.1857284E-03 -5.4432936E-03 -5.6445934E-03 -5.7955259E-03 -5.9015625E-03
 -5.9677432E-03 -5.9987069E-03 -5.9987176E-03 -5.9716748E-03 -5.9211459E-03
 -5.8503868E-03 -5.7623507E-03 -5.6597199E-03 -5.5449177E-03 -5.4201237E-03
 -5.2872961E-03 -5.1481905E-03 -5.0043636E-03 -4.8571960E-03 -4.7079101E-03
 -4.5575704E-03 -4.4071097E-03 -4.2573302E-03 -4.1089249E-03 -3.9624753E-03
 -3.8184687E-03 -3.6773165E-03 -3.5393415E-03 -3.4048052E-03 -3.2739078E-03
 -3.1467928E-03 -3.0235553E-03 -2.9042570E-03 -2.7889139E-03 -2.6775259E-03
 -2.5700554E-03 -2.4664481E-03 -2.3666404E-03 -2.2705402E-03 -2.1780636E-03
 -2.0891090E-03 -2.0035706E-03 -1.9213430E-03 -1.8423146E-03 -1.7663813E-03
 -1.6934380E-03 -1.6233766E-03 -1.5560958E-03 -1.4915019E-03 -1.4294985E-03
 -1.3699981E-03 -1.3129113E-03 -1.2581552E-03 -1.2056559E-03 -1.1553396E-03
 -1.1071287E-03 -1.0609573E-03 -1.0167541E-03 -9.7445620E-04 -9.3399669E-04
 -8.9531014E-04
 3.1931888E-02 3.0656114E-02 2.9382383E-02 2.8119138E-02 2.6873207E-02
 2.5650045E-02 2.4453938E-02 2.3288228E-02 2.2155436E-02 2.1057460E-02
 1.9995645E-02 1.8970892E-02 1.7983733E-02 1.7034406E-02 1.6122894E-02
 1.5248983E-02 1.4412269E-02 1.3612227E-02 1.2848190E-02 1.2119402E-02
 1.1425043E-02 1.0764206E-02 1.0135943E-02 9.5392680E-03 8.9731580E-03
 8.4365755E-03 7.9284646E-03 7.4477680E-03 6.9934214E-03 6.5643694E-03
 6.1595631E-03 5.7779686E-03 5.4185623E-03 5.0803446E-03 4.7623315E-03
 4.4635627E-03 4.1830982E-03 3.9200224E-03 3.6734513E-03 3.4425198E-03
 3.2263862E-03 3.0242424E-03 2.8353077E-03 2.6588198E-03 2.4940495E-03
 2.3402958E-03 2.1968822E-03 2.0631612E-03 1.9385130E-03 1.8223482E-03
 1.7140958E-03 1.6132266E-03 1.5192213E-03 1.4316079E-03 1.3499259E-03
 1.2737440E-03 1.2026582E-03 1.1362939E-03 1.0742929E-03 1.0163269E-03
 9.6209225E-04 9.1130519E-04 8.6369982E-04 8.1904233E-04 7.7710435E-04
 7.3768996E-04 7.0061209E-04 6.6570361E-04 6.3280517E-04 6.0178858E-04
 5.7251676E-04
 1.7730267E-03 5.3201034E-04 -5.6691817E-04 -1.5342061E-03 -2.3801455E-03
 -3.1147031E-03 -3.7474025E-03 -4.2872797E-03 -4.7428273E-03 -5.1219980E-03
 -5.4322127E-03 -5.6803701E-03 -5.8728424E-03 -6.0155559E-03 -6.1139581E-03
 -6.1730728E-03 -6.1975112E-03 -6.1915070E-03 -6.1589335E-03 -6.1033238E-03
 -6.0278904E-03 -5.9355628E-03 -5.8289836E-03 -5.7105399E-03 -5.5823862E-03
 -5.4464452E-03 -5.3044385E-03 -5.1578921E-03 -5.0081704E-03 -4.8564542E-03
 -4.7037913E-03 -4.5510889E-03 -4.3991222E-03 -4.2485679E-03 -4.0999814E-03
 -3.9538415E-03 -3.8105345E-03 -3.6703730E-03 -3.5336006E-03 -3.4004126E-03
 -3.2709430E-03 -3.1452812E-03 -3.0234840E-03 -2.9055690E-03 -2.7915339E-03
 -2.6813480E-03 -2.5749612E-03 -2.4723127E-03 -2.3733312E-03 -2.2779298E-03
 -2.1860201E-03 -2.0975117E-03 -2.0123071E-03 -1.9303105E-03 -1.8514263E-03
 -1.7755597E-03 -1.7026201E-03 -1.6325180E-03 -1.5651572E-03 -1.5004678E-03
 -1.4383532E-03 -1.3787423E-03 -1.3215602E-03 -1.2667286E-03 -1.2141750E-03
 -1.1638278E-03 -1.1156201E-03 -1.0694767E-03 -1.0253310E-03 -9.8311261E-04
 -9.4274979E-04
 3.2833204E-02 3.1519659E-02 3.0208495E-02 2.8908404E-02 2.7626388E-02
 2.6368028E-02 2.5137721E-02 2.3938872E-02 2.2774072E-02 2.1645237E-02
 2.0553749E-02 1.9500503E-02 1.8486053E-02 1.7510623E-02 1.6574187E-02
 1.5676523E-02 1.4817199E-02 1.3995669E-02 1.3211248E-02 1.2463154E-02
 1.1750529E-02 1.1072448E-02 1.0427922E-02 9.8159369E-03 9.2354370E-03
 8.6853504E-03 8.1645912E-03 7.6720589E-03 7.2066649E-03 6.7673069E-03
 6.3529122E-03 5.9624002E-03 5.5947136E-03 5.2488171E-03 4.9236822E-03
 4.6183108E-03 4.3317280E-03 4.0629832E-03 3.8111457E-03 3.5753166E-03
 3.3546188E-03 3.1482074E-03 2.9552632E-03 2.7749981E-03 2.6066499E-03
 2.4494873E-03 2.3028152E-03 2.1659548E-03 2.0382660E-03 1.9191467E-03
 1.8080100E-03 1.7043088E-03 1.6075218E-03 1.5171561E-03 1.4327570E-03
 1.3538847E-03 1.2801352E-03 1.2111309E-03 1.1465219E-03 1.0859771E-03
 1.0291982E-03 9.7590673E-04 9.2584628E-04 8.7878318E-04 8.3450176E-04
 7.9280522E-04 7.5351732E-04 7.1646977E-04 6.8151375E-04 6.4851140E-04
 6.1733316E-04
 1.3894398E-03 1.5875498E-04 -9.2898350E-04 -1.8845457E-03 -2.7184957E-03
 -3.4410357E-03 -4.0618824E-03 -4.5902012E-03 -5.0346041E-03 -5.4031247E-03
 -5.7032364E-03 -5.9418529E-03 -6.1253849E-03 -6.2597450E-03 -6.3503687E-03
 -6.4022602E-03 -6.4200135E-03 -6.4078257E-03 -6.3695339E-03 -6.3086436E-03
 -6.2283315E-03 -6.1314837E-03 -6.0207141E-03 -5.8983746E-03 -5.7665808E-03
 -5.6272261E-03 -5.4819970E-03 -5.3323950E-03 -5.1797447E-03 -5.0252089E-03
 -4.8698010E-03 -4.7144047E-03 -4.5597763E-03 -4.4065649E-03 -4.2553167E-03
 -4.1064825E-03 -3.9604395E-03 -3.8174847E-03 -3.6778629E-03 -3.5417513E-03
 -3.4092814E-03 -3.2805461E-03 -3.1556024E-03 -3.0344713E-03 -2.9171568E-03
 -2.8036323E-03 -2.6938645E-03 -2.5877932E-03 -2.4853656E-03 -2.3865085E-03
 -2.2911439E-03 -2.1991958E-03 -2.1105786E-03 -2.0252077E-03 -1.9430036E-03
 -1.8638838E-03 -1.7877641E-03 -1.7145638E-03 -1.6442059E-03 -1.5766162E-03
 -1.5117099E-03 -1.4494166E-03 -1.3896655E-03 -1.3323773E-03 -1.2774770E-03
 -1.2248954E-03 -1.1745546E-03 -1.1263797E-03 -1.0802932E-03 -1.0362205E-03
 -9.9408510E-04
 3.3836894E-02 3.2479335E-02 3.1124815E-02 2.9782278E-02 2.8458919E-02
 2.7160453E-02 2.5891358E-02 2.4655122E-02 2.3454353E-02 2.2290999E-02
 2.1166436E-02 2.0081561E-02 1.9036910E-02 1.8032691E-02 1.7068854E-02
 1.6145136E-02 1.5261085E-02 1.4416121E-02 1.3609518E-02 1.2840464E-02
 1.2108057E-02 1.1411328E-02 1.0749259E-02 1.0120787E-02 9.5248222E-03
 8.9602489E-03 8.4259361E-03 7.9207448E-03 7.4435393E-03 6.9931815E-03
 6.5685404E-03 6.1685028E-03 5.7919603E-03 5.4378351E-03 5.1050545E-03
 4.7925720E-03 4.4993679E-03 4.2244489E-03 3.9668400E-03 3.7256025E-03
 3.4998213E-03 3.2886066E-03 3.0911153E-03 2.9065169E-03 2.7340229E-03
 2.5728790E-03 2.4223591E-03 2.2817678E-03 2.1504487E-03 2.0277810E-03
 1.9131681E-03 1.8060503E-03 1.7059006E-03 1.6122250E-03 1.5245582E-03
 1.4424657E-03 1.3655464E-03 1.2934203E-03 1.2257426E-03 1.1621932E-03
 1.1024750E-03 1.0463138E-03 9.9346554E-04 9.4369100E-04 8.9678908E-04
 8.5256319E-04 8.1083603E-04 7.7144685E-04 7.3424139E-04 6.9908326E-04
 6.6584133E-04
 9.7963330E-04 -2.4113500E-04 -1.3179969E-03 -2.2620594E-03 -3.0841862E-03
 -3.7948191E-03 -4.4038668E-03 -4.9206582E-03 -5.3539132E-03 -5.7117520E-03
 -6.0017002E-03 -6.2307073E-03 -6.4051980E-03 -6.5310812E-03 -6.6137910E-03
 -6.6583068E-03 -6.6691944E-03 -6.6506248E-03 -6.6064019E-03 -6.5399888E-03
 -6.4545348E-03 -6.3528875E-03 -6.2376196E-03 -6.1110500E-03 -5.9752553E-03
 -5.8320956E-03 -5.6832251E-03 -5.5301124E-03 -5.3740512E-03 -5.2161748E-03
 -5.0574737E-03 -4.8988010E-03 -4.7409008E-03 -4.5843911E-03 -4.4298060E-03
 -4.2775897E-03 -4.1280971E-03 -3.9816280E-03 -3.8384164E-03 -3.6986421E-03
 -3.5624355E-03 -3.4298948E-03 -3.3010810E-03 -3.1760277E-03 -3.0547453E-03
 -2.9372224E-03 -2.8234362E-03 -2.7133471E-03 -2.6069055E-03 -2.5040589E-03
 -2.4047452E-03 -2.3088998E-03 -2.2164474E-03 -2.1273270E-03 -2.0414612E-03
 -1.9587786E-03 -1.8792057E-03 -1.8026729E-03 -1.7291030E-03 -1.6584251E-03
 -1.5905628E-03 -1.5254449E-03 -1.4629867E-03 -1.4031187E-03 -1.3457589E-03
 -1.2908276E-03 -1.2382445E-03 -1.1879215E-03 -1.1397784E-03 -1.0937350E-03
 -1.0497039E-03
 3.4953289E-02 3.3544708E-02 3.2140218E-02 3.0749021E-02 2.9378502E-02
 2.8034516E-02 2.6721621E-02 2.5443321E-02 2.4202272E-02 2.3000417E-02
 2.1839092E-02 2.0719184E-02 1.9641193E-02 1.8605294E-02 1.7611381E-02
 1.6659155E-02 1.5748126E-02 1.4877641E-02 1.4046946E-02 1.3255170E-02
 1.2501365E-02 1.1784513E-02 1.1103543E-02 1.0457346E-02 9.8447725E-03
 9.2646610E-03 8.7158261E-03 8.1970831E-03 7.7072298E-03 7.2450917E-03
 6.8094730E-03 6.3992096E-03 6.0131368E-03 5.6501292E-03 5.3090560E-03
 4.9888240E-03 4.6883645E-03 4.4066282E-03 4.1426034E-03 3.8953018E-03
 3.6637655E-03 3.4470768E-03 3.2443483E-03 3.0547222E-03 2.8773847E-03
 2.7115566E-03 2.5564830E-03 2.4114610E-03 2.2758178E-03 2.1489125E-03
 2.0301486E-03 1.9189570E-03 1.8148107E-03 1.7172064E-03 1.6256868E-03
 1.5398186E-03 1.4592010E-03 1.3834616E-03 1.3122598E-03 1.2452814E-03
 1.1822339E-03 1.1228516E-03 1.0668881E-03 1.0141156E-03 9.6432545E-04
 9.1732590E-04 8.7293953E-04 8.3100016E-04 7.9135591E-04 7.5386104E-04
 7.1838743E-04
 5.4217863E-04 -6.6950690E-04 -1.7361500E-03 -2.6692285E-03 -3.4799257E-03
 -4.1789482E-03 -4.7764136E-03 -5.2818195E-03 -5.7040108E-03 -6.0512065E-03
 -6.3309739E-03 -6.5503190E-03 -6.7156819E-03 -6.8329698E-03 -6.9076084E-03
 -6.9445665E-03 -6.9483751E-03 -6.9231791E-03 -6.8727485E-03 -6.8005151E-03
 -6.7095831E-03 -6.6027613E-03 -6.4825895E-03 -6.3513448E-03 -6.2110722E-03
 -6.0635931E-03 -5.9105270E-03 -5.7533081E-03 -5.5932058E-03 -5.4313182E-03
 -5.2686180E-03 -5.1059360E-03 -4.9439906E-03 -4.7833933E-03 -4.6246639E-03
 -4.4682291E-03 -4.3144543E-03 -4.1636243E-03 -4.0159812E-03 -3.8717052E-03
 -3.7309418E-03 -3.5937922E-03 -3.4603332E-03 -3.3306060E-03 -3.2046391E-03
 -3.0824379E-03 -2.9639923E-03 -2.8492783E-03 -2.7382676E-03 -2.6309169E-03
 -2.5271806E-03 -2.4270038E-03 -2.3303325E-03 -2.2371104E-03 -2.1472715E-03
 -2.0607507E-03 -1.9774837E-03 -1.8973998E-03 -1.8204245E-03 -1.7464877E-03
 -1.6755116E-03 -1.6074141E-03 -1.5421155E-03 -1.4795321E-03 -1.4195746E-03
 -1.3621562E-03 -1.3071874E-03 -1.2545785E-03 -1.2042334E-03 -1.1560695E-03
 -1.1099936E-03
 3.6193851E-02 3.4726437E-02 3.3264611E-02 3.1817872E-02 3.0393794E-02
 2.8998330E-02 2.7636115E-02 2.6310671E-02 2.5024641E-02 2.3779938E-02
 2.2577852E-02 2.1419238E-02 2.0304522E-02 1.9233819E-02 1.8206973E-02
 1.7223608E-02 1.6283168E-02 1.5384951E-02 1.4528121E-02 1.3711754E-02
 1.2934836E-02 1.2196285E-02 1.1494962E-02 1.0829704E-02 1.0199289E-02
 9.6024973E-03 9.0380777E-03 8.5047791E-03 8.0013452E-03 7.5265206E-03
 7.0790644E-03 6.6577364E-03 6.2613208E-03 5.8886199E-03 5.5384557E-03
 5.2096713E-03 4.9011488E-03 4.6117860E-03 4.3405211E-03 4.0863277E-03
 3.8482090E-03 3.6252048E-03 3.4164006E-03 3.2209100E-03 3.0378900E-03
 2.8665410E-03 2.7061009E-03 2.5558413E-03 2.4150782E-03 2.2831729E-03
 2.1595168E-03 2.0435364E-03 1.9347082E-03 1.8325313E-03 1.7365501E-03
 1.6463306E-03 1.5614858E-03 1.4816432E-03 1.4064661E-03 1.3356477E-03
 1.2688963E-03 1.2059463E-03 1.1465542E-03 1.0904926E-03 1.0375509E-03
 9.8753523E-04 9.4025838E-04 8.9555932E-04 8.5326633E-04 8.1324030E-04
 7.7534327E-04
 7.5224350E-05 -1.1286852E-03 -2.1861512E-03 -3.1090723E-03 -3.9089816E-03
 -4.5968760E-03 -5.1831184E-03 -5.6773913E-03 -6.0886815E-03 -6.4253053E-03
 -6.6949157E-03 -6.9045541E-03 -7.0606885E-03 -7.1692378E-03 -7.2356141E-03
 -7.2647729E-03 -7.2612241E-03 -7.2290800E-03 -7.1720793E-03 -7.0936116E-03
 -6.9967476E-03 -6.8842596E-03 -6.7586452E-03 -6.6221398E-03 -6.4767539E-03
 -6.3242745E-03 -6.1662905E-03 -6.0042026E-03 -5.8392468E-03 -5.6725079E-03
 -5.5049285E-03 -5.3373287E-03 -5.1704105E-03 -5.0047780E-03 -4.8409402E-03
 -4.6793320E-03 -4.5203106E-03 -4.3641739E-03 -4.2111659E-03 -4.0614847E-03
 -3.9152796E-03 -3.7726753E-03 -3.6337585E-03 -3.4985894E-03 -3.3672163E-03
 -3.2396577E-03 -3.1159199E-03 -2.9960007E-03 -2.8798834E-03 -2.7675389E-03
 -2.6589374E-03 -2.5540371E-03 -2.4527926E-03 -2.3551495E-03 -2.2610568E-03
 -2.1704466E-03 -2.0832592E-03 -1.9994189E-03 -1.9188528E-03 -1.8414833E-03
 -1.7672200E-03 -1.6959823E-03 -1.6276797E-03 -1.5622148E-03 -1.4994938E-03
 -1.4394218E-03 -1.3818955E-03 -1.3268226E-03 -1.2741028E-03 -1.2236416E-03
 -1.1753454E-03
 3.7571482E-02 3.6036529E-02 3.4509212E-02 3.2999322E-02 3.1514607E-02
 3.0061133E-02 2.8643550E-02 2.7265390E-02 2.5929250E-02 2.4636971E-02
 2.3389798E-02 2.2188483E-02 2.1033384E-02 1.9924525E-02 1.8861653E-02
 1.7844323E-02 1.6871883E-02 1.5943546E-02 1.5058402E-02 1.4215438E-02
 1.3413556E-02 1.2651599E-02 1.1928355E-02 1.1242568E-02 1.0592955E-02
 9.9782031E-03 9.3969926E-03 8.8479938E-03 8.3298720E-03 7.8412984E-03
 7.3809605E-03 6.9475495E-03 6.5397765E-03 6.1563798E-03 5.7961191E-03
 5.4577803E-03 5.1401821E-03 4.8421849E-03 4.5626704E-03 4.3005687E-03
 4.0548570E-03 3.8245358E-03 3.6086552E-03 3.4063107E-03 3.2166403E-03
 3.0388199E-03 2.8720803E-03 2.7156854E-03 2.5689369E-03 2.4311978E-03
 2.3018525E-03 2.1803335E-03 2.0661133E-03 1.9587004E-03 1.8576363E-03
 1.7625005E-03 1.6729013E-03 1.5884712E-03 1.5088811E-03 1.4338152E-03
 1.3629893E-03 1.2961328E-03 1.2330016E-03 1.1733581E-03 1.1169920E-03
 1.0636987E-03 1.0132885E-03 9.6558779E-04 9.2042843E-04 8.7765622E-04
 8.3712727E-04
 -4.2361979E-04 -1.6215821E-03 -2.6713414E-03 -3.5852578E-03 -4.3752692E-03
 -5.0527109E-03 -5.6282193E-03 -6.1116968E-03 -6.5123052E-03 -6.8384623E-03
 -7.0979241E-03 -7.2977911E-03 -7.4445549E-03 -7.5441515E-03 -7.6020001E-03
 -7.6230303E-03 -7.6117357E-03 -7.5722020E-03 -7.5081289E-03 -7.4228738E-03
 -7.3194704E-03 -7.2006481E-03 -7.0688650E-03 -6.9263256E-03 -6.7749992E-03
 -6.6166432E-03 -6.4528128E-03 -6.2848856E-03 -6.1140778E-03 -5.9414487E-03
 -5.7679317E-03 -5.5943341E-03 -5.4213512E-03 -5.2495869E-03 -5.0795563E-03
 -4.9116951E-03 -4.7463737E-03 -4.5839008E-03 -4.4245329E-03 -4.2684874E-03
 -4.1159317E-03 -3.9670016E-03 -3.8218107E-03 -3.6804357E-03 -3.5429425E-03
 -3.4093680E-03 -3.2797363E-03 -3.1540624E-03 -3.0323353E-03 -2.9145500E-03
 -2.8006795E-03 -2.6906929E-03 -2.5845487E-03 -2.4821996E-03 -2.3835895E-03
 -2.2886503E-03 -2.1973194E-03 -2.1095155E-03 -2.0251542E-03 -1.9441514E-03
 -1.8664114E-03 -1.7918372E-03 -1.7203307E-03 -1.6517852E-03 -1.5860980E-03
 -1.5231664E-03 -1.4628791E-03 -1.4051358E-03 -1.3498383E-03 -1.2968784E-03
 -1.2461634E-03
 3.9100893E-02 3.7488718E-02 3.5886850E-02 3.4305375E-02 3.2752223E-02
 3.1233521E-02 2.9753940E-02 2.8316965E-02 2.6925094E-02 2.5580101E-02
 2.4283119E-02 2.3034781E-02 2.1835338E-02 2.0684686E-02 1.9582467E-02
 1.8528111E-02 1.7520867E-02 1.6559843E-02 1.5644016E-02 1.4772265E-02
 1.3943404E-02 1.3156172E-02 1.2409248E-02 1.1701302E-02 1.1030934E-02
 1.0396753E-02 9.7973440E-03 9.2312768E-03 8.6971484E-03 8.1935367E-03
 7.7190418E-03 7.2722859E-03 6.8519050E-03 6.4565646E-03 6.0849637E-03
 5.7358299E-03 5.4079257E-03 5.1000603E-03 4.8110788E-03 4.5398702E-03
 4.2853677E-03 4.0465500E-03 3.8224440E-03 3.6121246E-03 3.4147084E-03
 3.2293652E-03 3.0553071E-03 2.8917980E-03 2.7381396E-03 2.5936826E-03
 2.4578241E-03 2.3299917E-03 2.2096606E-03 2.0963452E-03 1.9895856E-03
 1.8889674E-03 1.7940941E-03 1.7046061E-03 1.6201581E-03 1.5404435E-03
 1.4651682E-03 1.3940542E-03 1.3268507E-03 1.2633181E-03 1.2032291E-03
 1.1463792E-03 1.0925654E-03 1.0416053E-03 9.9332526E-04 9.4756630E-04
 9.0417656E-04
 -9.5741497E-04 -2.1518527E-03 -3.1958146E-03 -4.1022110E-03 -4.8834574E-03
 -5.5512902E-03 -6.1166701E-03 -6.5897619E-03 -6.9799051E-03 -7.2956923E-03
 -7.5449795E-03 -7.7349353E-03 -7.8720991E-03 -7.9624308E-03 -8.0113485E-03
 -8.0237770E-03 -8.0041913E-03 -7.9566455E-03 -7.8848135E-03 -7.7920174E-03
 -7.6812496E-03 -7.5552058E-03 -7.4163135E-03 -7.2667333E-03 -7.1084104E-03
 -6.9430708E-03 -6.7722476E-03 -6.5972996E-03 -6.4194244E-03 -6.2396745E-03
 -6.0589765E-03 -5.8781360E-03 -5.6978567E-03 -5.5187447E-03 -5.3413226E-03
 -5.1660500E-03 -4.9933032E-03 -4.8234137E-03 -4.6566580E-03 -4.4932687E-03
 -4.3334397E-03 -4.1773273E-03 -4.0250607E-03 -3.8767376E-03 -3.7324433E-03
 -3.5922315E-03 -3.4561416E-03 -3.3241976E-03 -3.1964076E-03 -3.0727680E-03
 -2.9532567E-03 -2.8378479E-03 -2.7265009E-03 -2.6191624E-03 -2.5157714E-03
 -2.4162561E-03 -2.3205441E-03 -2.2285404E-03 -2.1401527E-03 -2.0552885E-03
 -1.9738332E-03 -1.8956884E-03 -1.8207376E-03 -1.7488716E-03 -1.6799786E-03
 -1.6139444E-03 -1.5506602E-03 -1.4900170E-03 -1.4319078E-03 -1.3762288E-03
 -1.3228791E-03
 4.0799081E-02 3.9098892E-02 3.7412383E-02 3.5749961E-02 3.4119718E-02
 3.2527823E-02 3.0978911E-02 2.9476393E-02 2.8022649E-02 2.6619315E-02
 2.5267368E-02 2.3967296E-02 2.2719184E-02 2.1522783E-02 2.0377595E-02
 1.9282894E-02 1.8237790E-02 1.7241254E-02 1.6292134E-02 1.5389184E-02
 1.4531091E-02 1.3716466E-02 1.2943882E-02 1.2211877E-02 1.1518951E-02
 1.0863601E-02 1.0244306E-02 9.6595390E-03 9.1077918E-03 8.5875541E-03
 8.0973441E-03 7.6356935E-03 7.2011710E-03 6.7923674E-03 6.4079175E-03
 6.0464977E-03 5.7068137E-03 5.3876285E-03 5.0877482E-03 4.8060250E-03
 4.5413654E-03 4.2927205E-03 4.0590982E-03 3.8395510E-03 3.6331932E-03
 3.4391806E-03 3.2567175E-03 3.0850652E-03 2.9235282E-03 2.7714500E-03
 2.6282340E-03 2.4933075E-03 2.3661465E-03 2.2462620E-03 2.1331990E-03
 2.0265325E-03 1.9258651E-03 1.8308322E-03 1.7410833E-03 1.6562993E-03
 1.5761816E-03 1.5004382E-03 1.4288104E-03 1.3610456E-03 1.2969130E-03
 1.2361902E-03 1.1786734E-03 1.1241657E-03 1.0724901E-03 1.0234748E-03
 9.7696402E-04
 -1.5299979E-03 -2.7239590E-03 -3.7645106E-03 -4.6652202E-03 -5.4390715E-03
 -6.0982853E-03 -6.6542132E-03 -7.1173315E-03 -7.4972282E-03 -7.8026704E-03
 -8.0416519E-03 -8.2214354E-03 -8.3486186E-03 -8.4291920E-03 -8.4685888E-03
 -8.4717330E-03 -8.4430827E-03 -8.3866734E-03 -8.3061447E-03 -8.2047936E-03
 -8.0855777E-03 -7.9511637E-03 -7.8039421E-03 -7.6460578E-03 -7.4794223E-03
 -7.3057474E-03 -7.1265469E-03 -6.9431718E-03 -6.7568179E-03 -6.5685380E-03
 -6.3792584E-03 -6.1897980E-03 -6.0008690E-03 -5.8130962E-03 -5.6270193E-03
 -5.4431139E-03 -5.2617821E-03 -5.0833793E-03 -4.9081999E-03 -4.7365027E-03
 -4.5684990E-03 -4.4043646E-03 -4.2442563E-03 -4.0882868E-03 -3.9365552E-03
 -3.7891245E-03 -3.6460552E-03 -3.5073706E-03 -3.3730885E-03 -3.2432061E-03
 -3.1177031E-03 -2.9965455E-03 -2.8796855E-03 -2.7670655E-03 -2.6586133E-03
 -2.5542458E-03 -2.4538746E-03 -2.3573982E-03 -2.2647094E-03 -2.1756983E-03
 -2.0902518E-03 -2.0082525E-03 -1.9295776E-03 -1.8541127E-03 -1.7817362E-03
 -1.7123306E-03 -1.6457828E-03 -1.5819799E-03 -1.5208093E-03 -1.4621650E-03
 -1.4059413E-03
 4.2685945E-02 4.0885635E-02 3.9103206E-02 3.7349373E-02 3.5632391E-02
 3.3958435E-02 3.2332089E-02 3.0756585E-02 2.9234177E-02 2.7766293E-02
 2.6353709E-02 2.4996718E-02 2.3695203E-02 2.2448713E-02 2.1256559E-02
 2.0117838E-02 1.9031486E-02 1.7996300E-02 1.7010966E-02 1.6074080E-02
 1.5184175E-02 1.4339722E-02 1.3539150E-02 1.2780861E-02 1.2063229E-02
 1.1384624E-02 1.0743409E-02 1.0137947E-02 9.5666256E-03 9.0278378E-03
 8.5200081E-03 8.0415914E-03 7.5910785E-03 7.1669919E-03 6.7679114E-03
 6.3924431E-03 6.0392595E-03 5.7070740E-03 5.3946604E-03 5.1008393E-03
 4.8244889E-03 4.5645405E-03 4.3199863E-03 4.0898705E-03 3.8732903E-03
 3.6693921E-03 3.4773911E-03 3.2965329E-03 3.1261232E-03 2.9655115E-03
 2.8140838E-03 2.6712802E-03 2.5365646E-03 2.4094426E-03 2.2894545E-03
 2.1761660E-03 2.0691708E-03 1.9680907E-03 1.8725657E-03 1.7822661E-03
 1.6968749E-03 1.6160982E-03 1.5396507E-03 1.4672821E-03 1.3987421E-03
 1.3338005E-03 1.2722434E-03 1.2138698E-03 1.1584901E-03 1.1059260E-03
 1.0560129E-03
 -2.1460792E-03 -3.3433191E-03 -4.3833484E-03 -5.2805361E-03 -6.0485741E-03
 -6.7002629E-03 -7.2474531E-03 -7.7009755E-03 -8.0707325E-03 -8.3657205E-03
 -8.5940985E-03 -8.7632416E-03 -8.8798320E-03 -8.9499066E-03 -8.9789238E-03
 -8.9718169E-03 -8.9330329E-03 -8.8665951E-03 -8.7761264E-03 -8.6648948E-03
 -8.5358340E-03 -8.3915889E-03 -8.2345344E-03 -8.0667892E-03 -7.8902617E-03
 -7.7066463E-03 -7.5174626E-03 -7.3240604E-03 -7.1276375E-03 -6.9292635E-03
 -6.7298757E-03 -6.5303105E-03 -6.3313032E-03 -6.1334991E-03 -5.9374617E-03
 -5.7436908E-03 -5.5526155E-03 -5.3646062E-03 -5.1799924E-03 -4.9990471E-03
 -4.8220060E-03 -4.6490673E-03 -4.4803955E-03 -4.3161232E-03 -4.1563581E-03
 -4.0011774E-03 -3.8506354E-03 -3.7047693E-03 -3.5635866E-03 -3.4270810E-03
 -3.2952223E-03 -3.1679717E-03 -3.0452695E-03 -2.9270402E-03 -2.8131988E-03
 -2.7036555E-03 -2.5982989E-03 -2.4970181E-03 -2.3996967E-03 -2.3062148E-03
 -2.2164469E-03 -2.1302684E-03 -2.0475478E-03 -1.9681659E-03 -1.8920006E-03
 -1.8189263E-03 -1.7488223E-03 -1.6815749E-03 -1.6170710E-03 -1.5551982E-03
 -1.4958519E-03
 4.4785034E-02 4.2870965E-02 4.0979877E-02 3.9122865E-02 3.7308298E-02
 3.5542365E-02 3.3829469E-02 3.2172702E-02 3.0574059E-02 2.9034723E-02
 2.7555209E-02 2.6135540E-02 2.4775339E-02 2.3473920E-02 2.2230342E-02
 2.1043483E-02 1.9912053E-02 1.8834645E-02 1.7809743E-02 1.6835755E-02
 1.5911035E-02 1.5033888E-02 1.4202568E-02 1.3415334E-02 1.2670414E-02
 1.1966037E-02 1.1300442E-02 1.0671880E-02 1.0078619E-02 9.5189633E-03
 8.9912489E-03 8.4938416E-03 8.0251563E-03 7.5836638E-03 7.1678702E-03
 6.7763403E-03 6.4076977E-03 6.0606212E-03 5.7338485E-03 5.4261778E-03
 5.1364605E-03 4.8636142E-03 4.6066176E-03 4.3644989E-03 4.1363551E-03
 3.9213267E-03 3.7186153E-03 3.5274683E-03 3.3471824E-03 3.1771034E-03
 3.0166102E-03 2.8651317E-03 2.7221201E-03 2.5870763E-03 2.4595202E-03
 2.3390048E-03 2.2251126E-03 2.1174434E-03 2.0156289E-03 1.9193180E-03
 1.8281830E-03 1.7419135E-03 1.6602163E-03 1.5828225E-03 1.5094752E-03
 1.4399319E-03 1.3739684E-03 1.3113724E-03 1.2519516E-03 1.1955192E-03
 1.1418976E-03
 -2.8112989E-03 -4.0163463E-03 -5.0592734E-03 -5.9554521E-03 -6.7194379E-03
 -7.3647709E-03 -7.9038674E-03 -8.3480570E-03 -8.7076165E-03 -8.9918124E-03
 -9.2090154E-03 -9.3667554E-03 -9.4718188E-03 -9.5303115E-03 -9.5477318E-03
 -9.5290365E-03 -9.4786827E-03 -9.4006844E-03 -9.2986599E-03 -9.1758622E-03
 -9.0352194E-03 -8.8793607E-03 -8.7106517E-03 -8.5312165E-03 -8.3429534E-03
 -8.1475740E-03 -7.9465965E-03 -7.7413926E-03 -7.5331726E-03 -7.3230281E-03
 -7.1119196E-03 -6.9007105E-03 -6.6901571E-03 -6.4809327E-03 -6.2736301E-03
 -6.0687717E-03 -5.8668116E-03 -5.6681475E-03 -5.4731267E-03 -5.2820449E-03
 -5.0951550E-03 -4.9126702E-03 -4.7347625E-03 -4.5615765E-03 -4.3932209E-03
 -4.2297747E-03 -4.0712920E-03 -3.9177961E-03 -3.7692913E-03 -3.6257580E-03
 -3.4871537E-03 -3.3534251E-03 -3.2244930E-03 -3.1002720E-03 -2.9806609E-03
 -2.8655513E-03 -2.7548235E-03 -2.6483545E-03 -2.5460224E-03 -2.4476876E-03
 -2.3532235E-03 -2.2624980E-03 -2.1753793E-03 -2.0917356E-03 -2.0114412E-03
 -1.9343680E-03 -1.8603923E-03 -1.7893979E-03 -1.7212653E-03 -1.6558801E-03
 -1.5931311E-03
 4.7124516E-02 4.5081135E-02 4.3066893E-02 4.1093301E-02 3.9168853E-02
 3.7299674E-02 3.5489980E-02 3.3742592E-02 3.2059196E-02 3.0440640E-02
 2.8887099E-02 2.7398257E-02 2.5973421E-02 2.4611581E-02 2.3311505E-02
 2.2071784E-02 2.0890867E-02 1.9767089E-02 1.8698703E-02 1.7683892E-02
 1.6720802E-02 1.5807534E-02 1.4942174E-02 1.4122797E-02 1.3347481E-02
 1.2614314E-02 1.1921396E-02 1.1266856E-02 1.0648861E-02 1.0065606E-02
 9.5153404E-03 8.9963535E-03 8.5069872E-03 8.0456454E-03 7.6107858E-03
 7.2009270E-03 6.8146470E-03 6.4505874E-03 6.1074672E-03 5.7840492E-03
 5.4791723E-03 5.1917424E-03 4.9207136E-03 4.6651135E-03 4.4240225E-03
 4.1965758E-03 3.9819623E-03 3.7794232E-03 3.5882380E-03 3.4077377E-03
 3.2372957E-03 3.0763159E-03 2.9242409E-03 2.7805427E-03 2.6447303E-03
 2.5163346E-03 2.3949200E-03 2.2800658E-03 2.1713907E-03 2.0685236E-03
 1.9711212E-03 1.8788544E-03 1.7914262E-03 1.7085444E-03 1.6299444E-03
 1.5553747E-03 1.4846005E-03 1.4173985E-03 1.3535650E-03 1.2929068E-03
 1.2352443E-03
 -3.5321966E-03 -4.7504948E-03 -5.8003305E-03 -6.6983504E-03 -7.4601891E-03
 -8.1003057E-03 -8.6318515E-03 -9.0667633E-03 -9.4157662E-03 -9.6884901E-03
 -9.8935692E-03 -1.0038735E-02 -1.0130907E-02 -1.0176292E-02 -1.0180455E-02
 -1.0148396E-02 -1.0084590E-02 -9.9930754E-03 -9.8774750E-03 -9.7410465E-03
 -9.5867207E-03 -9.4171353E-03 -9.2346622E-03 -9.0414407E-03 -8.8393837E-03
 -8.6302133E-03 -8.4154829E-03 -8.1965774E-03 -7.9747401E-03 -7.7510821E-03
 -7.5266054E-03 -7.3021851E-03 -7.0786173E-03 -6.8566003E-03 -6.6367532E-03
 -6.4196247E-03 -6.2056887E-03 -5.9953695E-03 -5.7890266E-03 -5.5869725E-03
 -5.3894715E-03 -5.1967371E-03 -5.0089583E-03 -4.8262663E-03 -4.6487716E-03
 -4.4765482E-03 -4.3096314E-03 -4.1480348E-03 -3.9917435E-03 -3.8407294E-03
 -3.6949259E-03 -3.5542671E-03 -3.4186549E-03 -3.2879866E-03 -3.1621528E-03
 -3.0410292E-03 -2.9244840E-03 -2.8123891E-03 -2.7046062E-03 -2.6009977E-03
 -2.5014235E-03 -2.4057524E-03 -2.3138393E-03 -2.2255576E-03 -2.1407674E-03
 -2.0593426E-03 -1.9811564E-03 -1.9060835E-03 -1.8340038E-03 -1.7647978E-03
 -1.6983555E-03
 4.9738441E-02 4.7547806E-02 4.5393705E-02 4.3288101E-02 4.1239642E-02
 3.9254282E-02 3.7336025E-02 3.5487313E-02 3.3709429E-02 3.2002773E-02
 3.0367084E-02 2.8801633E-02 2.7305311E-02 2.5876712E-02 2.4514250E-02
 2.3216169E-02 2.1980593E-02 2.0805566E-02 1.9689057E-02 1.8628992E-02
 1.7623285E-02 1.6669814E-02 1.5766464E-02 1.4911132E-02 1.4101723E-02
 1.3336179E-02 1.2612455E-02 1.1928566E-02 1.1282563E-02 1.0672544E-02
 1.0096672E-02 9.5531475E-03 9.0402570E-03 8.5563390E-03 8.0997972E-03
 7.6691061E-03 7.2628078E-03 6.8795127E-03 6.5179062E-03 6.1767334E-03
 5.8548148E-03 5.5510313E-03 5.2643316E-03 4.9937172E-03 4.7382601E-03
 4.4970745E-03 4.2693354E-03 4.0542604E-03 3.8511127E-03 3.6592041E-03
 3.4778775E-03 3.3065183E-03 3.1445404E-03 2.9913990E-03 2.8465758E-03
 2.7095785E-03 2.5799512E-03 2.4572541E-03 2.3410814E-03 2.2310498E-03
 2.1267934E-03 2.0279766E-03 1.9342771E-03 1.8453986E-03 1.7610614E-03
 1.6810008E-03 1.6049694E-03 1.5327393E-03 1.4640889E-03 1.3988230E-03
 1.3367455E-03
 -4.3161395E-03 -5.5542067E-03 -6.6156504E-03 -7.5187110E-03 -8.2804291E-03
 -8.9163799E-03 -9.4406903E-03 -9.8660290E-03 -1.0203711E-02 -1.0463816E-02
 -1.0655322E-02 -1.0786207E-02 -1.0863592E-02 -1.0893810E-02 -1.0882528E-02
 -1.0834810E-02 -1.0755195E-02 -1.0647749E-02 -1.0516124E-02 -1.0363609E-02
 -1.0193158E-02 -1.0007431E-02 -9.8088253E-03 -9.5995003E-03 -9.3814079E-03
 -9.1562932E-03 -8.9257387E-03 -8.6911619E-03 -8.4538339E-03 -8.2149021E-03
 -7.9753920E-03 -7.7362186E-03 -7.4981954E-03 -7.2620548E-03 -7.0284335E-03
 -6.7979037E-03 -6.5709576E-03 -6.3480306E-03 -6.1294995E-03 -5.9156739E-03
 -5.7068272E-03 -5.5031711E-03 -5.3048814E-03 -5.1120883E-03 -4.9248827E-03
 -4.7433227E-03 -4.5674299E-03 -4.3971939E-03 -4.2325915E-03 -4.0735598E-03
 -3.9200312E-03 -3.7719093E-03 -3.6290886E-03 -3.4914510E-03 -3.3588740E-03
 -3.2312232E-03 -3.1083578E-03 -2.9901417E-03 -2.8764301E-03 -2.7670811E-03
 -2.6619462E-03 -2.5608849E-03 -2.4637568E-03 -2.3704248E-03 -2.2807471E-03
 -2.1945885E-03 -2.1118221E-03 -2.0323163E-03 -1.9559441E-03 -1.8825913E-03
 -1.8121292E-03
 5.2668236E-02 5.0309412E-02 4.7995895E-02 4.5740239E-02 4.3551229E-02
 4.1434653E-02 3.9394148E-02 3.7431665E-02 3.5547961E-02 3.3742875E-02
 3.2015596E-02 3.0364845E-02 2.8789017E-02 2.7286232E-02 2.5854448E-02
 2.4491504E-02 2.3195138E-02 2.1963051E-02 2.0792887E-02 1.9682290E-02
 1.8628903E-02 1.7630365E-02 1.6684348E-02 1.5788550E-02 1.4940702E-02
 1.4138586E-02 1.3380020E-02 1.2662889E-02 1.1985132E-02 1.1344747E-02
 1.0739813E-02 1.0168451E-02 9.6288789E-03 9.1193747E-03 8.6382944E-03
 8.1840698E-03 7.7552036E-03 7.3502674E-03 6.9679231E-03 6.6068908E-03
 6.2659672E-03 5.9440034E-03 5.6399279E-03 5.3527211E-03 5.0814273E-03
 4.8251338E-03 4.5829853E-03 4.3541775E-03 4.1379407E-03 3.9335527E-03
 3.7403326E-03 3.5576292E-03 3.3848379E-03 3.2213782E-03 3.0667025E-03
 2.9203023E-03 2.7816920E-03 2.6504148E-03 2.5260411E-03 2.4081673E-03
 2.2964168E-03 2.1904293E-03 2.0898762E-03 1.9944413E-03 1.9038280E-03
 1.8177651E-03 1.7359894E-03 1.6582632E-03 1.5843561E-03 1.5140570E-03
 1.4471640E-03
 -5.1709996E-03 -6.4367414E-03 -7.5153266E-03 -8.4270528E-03 -9.1907373E-03
 -9.8234368E-03 -1.0340480E-02 -1.0755494E-02 -1.1080542E-02 -1.1326281E-02
 -1.1502124E-02 -1.1616396E-02 -1.1676452E-02 -1.1688825E-02 -1.1659317E-02
 -1.1593102E-02 -1.1494800E-02 -1.1368544E-02 -1.1218045E-02 -1.1046629E-02
 -1.0857301E-02 -1.0652760E-02 -1.0435440E-02 -1.0207538E-02 -9.9710366E-03
 -9.7277258E-03 -9.4792210E-03 -9.2269629E-03 -8.9722704E-03 -8.7163132E-03
 -8.4601436E-03 -8.2047051E-03 -7.9508377E-03 -7.6992889E-03 -7.4507189E-03
 -7.2057070E-03 -6.9647618E-03 -6.7283199E-03 -6.4967559E-03 -6.2703807E-03
 -6.0494514E-03 -5.8341743E-03 -5.6247083E-03 -5.4211579E-03 -5.2236049E-03
 -5.0320784E-03 -4.8465822E-03 -4.6670865E-03 -4.4935434E-03 -4.3258793E-03
 -4.1640024E-03 -4.0078047E-03 -3.8571686E-03 -3.7119647E-03 -3.5720600E-03
 -3.4373095E-03 -3.3075677E-03 -3.1826922E-03 -3.0625283E-03 -2.9469272E-03
 -2.8357422E-03 -2.7288224E-03 -2.6260214E-03 -2.5271939E-03 -2.4322006E-03
 -2.3409005E-03 -2.2531515E-03 -2.1688293E-03 -2.0877945E-03 -2.0099301E-03
 -1.9351047E-03
 5.5964805E-02 5.3412937E-02 5.0916757E-02 4.8489608E-02 4.6140425E-02
 4.3874767E-02 4.1695774E-02 3.9604794E-02 3.7601866E-02 3.5686120E-02
 3.3856057E-02 3.2109719E-02 3.0444866E-02 2.8859040E-02 2.7349671E-02
 2.5914101E-02 2.4549630E-02 2.3253549E-02 2.2023151E-02 2.0855747E-02
 1.9748688E-02 1.8699355E-02 1.7705182E-02 1.6763659E-02 1.5872335E-02
 1.5028819E-02 1.4230791E-02 1.3476000E-02 1.2762274E-02 1.2087500E-02
 1.1449669E-02 1.0846836E-02 1.0277133E-02 9.7387889E-03 9.2301033E-03
 8.7494571E-03 8.2953172E-03 7.8662159E-03 7.4607790E-03 7.0776930E-03
 6.7157168E-03 6.3736695E-03 6.0504475E-03 5.7449890E-03 5.4563056E-03
 5.1834504E-03 4.9255244E-03 4.6816864E-03 4.4511249E-03 4.2330939E-03
 4.0268637E-03 3.8317561E-03 3.6471258E-03 3.4723694E-03 3.3069144E-03
 3.1502168E-03 3.0017705E-03 2.8610949E-03 2.7277377E-03 2.6012801E-03
 2.4813227E-03 2.3674895E-03 2.2594344E-03 2.1568227E-03 2.0593475E-03
 1.9667228E-03 1.8786719E-03 1.7949386E-03 1.7152861E-03 1.6394892E-03
 1.5673366E-03
 -6.1046202E-03 -7.4078264E-03 -8.5102199E-03 -9.4347782E-03 -1.0202639E-02
 -1.0832780E-02 -1.1342100E-02 -1.1745452E-02 -1.2055874E-02 -1.2284769E-02
 -1.2442121E-02 -1.2536693E-02 -1.2576177E-02 -1.2567348E-02 -1.2516214E-02
 -1.2428096E-02 -1.2307730E-02 -1.2159347E-02 -1.1986732E-02 -1.1793289E-02
 -1.1582073E-02 -1.1355835E-02 -1.1117060E-02 -1.0867985E-02 -1.0610632E-02
 -1.0346829E-02 -1.0078219E-02 -9.8062847E-03 -9.5323669E-03 -9.2576630E-03
 -8.9832470E-03 -8.7100845E-03 -8.4390286E-03 -8.1708394E-03 -7.9061836E-03
 -7.6456456E-03 -7.3897270E-03 -7.1388618E-03 -6.8934076E-03 -6.6536637E-03
 -6.4198677E-03 -6.1922027E-03 -5.9708040E-03 -5.7557616E-03 -5.5471198E-03
 -5.3448938E-03 -5.1490618E-03 -4.9595796E-03 -4.7763735E-03 -4.5993598E-03
 -4.4284272E-03 -4.2634620E-03 -4.1043311E-03 -3.9508990E-03 -3.8030187E-03
 -3.6605431E-03 -3.5233193E-03 -3.3911921E-03 -3.2640072E-03 -3.1416102E-03
 -3.0238417E-03 -2.9105502E-03 -2.8015822E-03 -2.6967882E-03 -2.5960146E-03
 -2.4991219E-03 -2.4059666E-03 -2.3164095E-03 -2.2303141E-03 -2.1475474E-03
 -2.0679866E-03
 5.9691112E-02 5.6916256E-02 5.4209303E-02 5.1584687E-02 4.9051546E-02
 4.6615198E-02 4.4278141E-02 4.2040888E-02 3.9902594E-02 3.7861485E-02
 3.5915166E-02 3.4060862E-02 3.2295547E-02 3.0616073E-02 2.9019210E-02
 2.7501738E-02 2.6060428E-02 2.4692124E-02 2.3393694E-02 2.2162093E-02
 2.0994341E-02 1.9887537E-02 1.8838860E-02 1.7845571E-02 1.6905013E-02
 1.6014634E-02 1.5171942E-02 1.4374550E-02 1.3620165E-02 1.2906575E-02
 1.2231661E-02 1.1593401E-02 1.0989859E-02 1.0419190E-02 9.8796356E-03
 9.3695242E-03 8.8872639E-03 8.4313462E-03 8.0003468E-03 7.5929007E-03
 7.2077252E-03 6.8435851E-03 6.4993310E-03 6.1738519E-03 5.8661080E-03
 5.5751074E-03 5.2999044E-03 5.0396072E-03 4.7933660E-03 4.5603863E-03
 4.3399050E-03 4.1312017E-03 3.9336011E-03 3.7464653E-03 3.5691864E-03
 3.4012026E-03 3.2419744E-03 3.0909970E-03 2.9478003E-03 2.8119355E-03
 2.6829881E-03 2.5605632E-03 2.4442906E-03 2.3338294E-03 2.2288461E-03
 2.1290376E-03 2.0341217E-03 1.9438221E-03 1.8578889E-03 1.7760840E-03
 1.6981844E-03
 -7.1237511E-03 -8.4769577E-03 -9.6114948E-03 -1.0553924E-02 -1.1328400E-02
 -1.1956496E-02 -1.2457147E-02 -1.2846837E-02 -1.3139860E-02 -1.3348606E-02
 -1.3483807E-02 -1.3554787E-02 -1.3569684E-02 -1.3535606E-02 -1.3458816E-02
 -1.3344829E-02 -1.3198545E-02 -1.3024311E-02 -1.2826017E-02 -1.2607147E-02
 -1.2370816E-02 -1.2119842E-02 -1.1856753E-02 -1.1583828E-02 -1.1303131E-02
 -1.1016515E-02 -1.0725656E-02 -1.0432061E-02 -1.0137087E-02 -9.8419487E-03
 -9.5477393E-03 -9.2554251E-03 -8.9658666E-03 -8.6798193E-03 -8.3979443E-03
 -8.1208171E-03 -7.8489194E-03 -7.5826668E-03 -7.3223971E-03 -7.0683807E-03
 -6.8208314E-03 -6.5799039E-03 -6.3457037E-03 -6.1182999E-03 -5.8977106E-03
 -5.6839301E-03 -5.4769190E-03 -5.2766092E-03 -5.0829188E-03 -4.8957448E-03
 -4.7149695E-03 -4.5404648E-03 -4.3720892E-03 -4.2096982E-03 -4.0531405E-03
 -3.9022586E-03 -3.7568924E-03 -3.6168834E-03 -3.4820640E-03 -3.3522737E-03
 -3.2273554E-03 -3.1071377E-03 -2.9914663E-03 -2.8801856E-03 -2.7731378E-03
 -2.6701728E-03 -2.5711425E-03 -2.4759013E-03 -2.3843071E-03 -2.2962277E-03
 -2.2115237E-03
 6.3925497E-02 6.0891058E-02 5.7938732E-02 5.5084575E-02 5.2338179E-02
 4.9704529E-02 4.7185313E-02 4.4780005E-02 4.2486604E-02 4.0302187E-02
 3.8223244E-02 3.6245957E-02 3.4366362E-02 3.2580443E-02 3.0884212E-02
 2.9273754E-02 2.7745245E-02 2.6294986E-02 2.4919381E-02 2.3614964E-02
 2.2378389E-02 2.1206435E-02 2.0095989E-02 1.9044075E-02 1.8047806E-02
 1.7104430E-02 1.6211290E-02 1.5365853E-02 1.4565680E-02 1.3808439E-02
 1.3091923E-02 1.2414000E-02 1.1772652E-02 1.1165954E-02 1.0592076E-02
 1.0049275E-02 9.5358957E-03 9.0503646E-03 8.5911835E-03 8.1569273E-03
 7.7462471E-03 7.3578539E-03 6.9905240E-03 6.6430885E-03 6.3144523E-03
 6.0035563E-03 5.7094111E-03 5.4310663E-03 5.1676282E-03 4.9182498E-03
 4.6821302E-03 4.4585108E-03 4.2466763E-03 4.0459512E-03 3.8557060E-03
 3.6753335E-03 3.5042735E-03 3.3420015E-03 3.1880096E-03 3.0418341E-03
 2.9030363E-03 2.7711962E-03 2.6459268E-03 2.5268628E-03 2.4136575E-03
 2.3059929E-03 2.2035604E-03 2.1060780E-03 2.0132742E-03 1.9248980E-03
 1.8407160E-03
 -8.2321782E-03 -9.6521340E-03 -1.0829838E-02 -1.1796628E-02 -1.2580788E-02
 -1.3207332E-02 -1.3697946E-02 -1.4071289E-02 -1.4343330E-02 -1.4527745E-02
 -1.4636245E-02 -1.4678909E-02 -1.4664429E-02 -1.4600352E-02 -1.4493255E-02
 -1.4348913E-02 -1.4172405E-02 -1.3968228E-02 -1.3740389E-02 -1.3492449E-02
 -1.3227602E-02 -1.2948715E-02 -1.2658358E-02 -1.2358849E-02 -1.2052277E-02
 -1.1740515E-02 -1.1425257E-02 -1.1108018E-02 -1.0790170E-02 -1.0472926E-02
 -1.0157373E-02 -9.8444745E-03 -9.5350752E-03 -9.2299115E-03 -8.9296261E-03
 -8.6347684E-03 -8.3457921E-03 -8.0630770E-03 -7.7869347E-03 -7.5176065E-03
 -7.2552687E-03 -7.0000542E-03 -6.7520444E-03 -6.5112696E-03 -6.2777386E-03
 -6.0514249E-03 -5.8322679E-03 -5.6201899E-03 -5.4150932E-03 -5.2168607E-03
 -5.0253747E-03 -4.8404867E-03 -4.6620495E-03 -4.4899150E-03 -4.3239165E-03
 -4.1638915E-03 -4.0096748E-03 -3.8610937E-03 -3.7179764E-03 -3.5801560E-03
 -3.4474612E-03 -3.3197219E-03 -3.1967731E-03 -3.0784467E-03 -2.9645844E-03
 -2.8550255E-03 -2.7496181E-03 -2.6482109E-03 -2.5506525E-03 -2.4568033E-03
 -2.3665244E-03
 6.8766184E-02 6.5426953E-02 6.2185999E-02 5.9062064E-02 5.6065578E-02
 5.3201243E-02 5.0469764E-02 4.7869269E-02 4.5396306E-02 4.3046448E-02
 4.0814795E-02 3.8696218E-02 3.6685586E-02 3.4777816E-02 3.2967988E-02
 3.1251375E-02 2.9623428E-02 2.8079815E-02 2.6616389E-02 2.5229191E-02
 2.3914469E-02 2.2668615E-02 2.1488197E-02 2.0369949E-02 1.9310737E-02
 1.8307585E-02 1.7357644E-02 1.6458197E-02 1.5606662E-02 1.4800576E-02
 1.4037587E-02 1.3315469E-02 1.2632085E-02 1.1985419E-02 1.1373546E-02
 1.0794629E-02 1.0246924E-02 9.7287670E-03 9.2385849E-03 8.7748645E-03
 8.3361706E-03 7.9211444E-03 7.5284792E-03 7.1569444E-03 6.8053659E-03
 6.4726318E-03 6.1576823E-03 5.8595161E-03 5.5771852E-03 5.3097904E-03
 5.0564888E-03 4.8164790E-03 4.5890082E-03 4.3733581E-03 4.1688676E-03
 3.9748945E-03 3.7908531E-03 3.6161819E-03 3.4503471E-03 3.2928651E-03
 3.1432596E-03 3.0010990E-03 2.8659687E-03 2.7374784E-03 2.6152695E-03
 2.4989964E-03 2.3883341E-03 2.2829857E-03 2.1826634E-03 2.0870983E-03
 1.9960410E-03
 -9.4273677E-03 -1.0937677E-02 -1.2174088E-02 -1.3174448E-02 -1.3972717E-02
 -1.4598644E-02 -1.5077686E-02 -1.5431439E-02 -1.5678143E-02 -1.5833182E-02
 -1.5909566E-02 -1.5918339E-02 -1.5868917E-02 -1.5769390E-02 -1.5626736E-02
 -1.5447023E-02 -1.5235550E-02 -1.4996980E-02 -1.4735432E-02 -1.4454552E-02
 -1.4157599E-02 -1.3847479E-02 -1.3526795E-02 -1.3197888E-02 -1.2862847E-02
 -1.2523561E-02 -1.2181717E-02 -1.1838825E-02 -1.1496244E-02 -1.1155168E-02
 -1.0816664E-02 -1.0481663E-02 -1.0150983E-02 -9.8253340E-03 -9.5053120E-03
 -9.1914302E-03 -8.8841058E-03 -8.5836854E-03 -8.2904408E-03 -8.0045778E-03
 -7.7262539E-03 -7.4555622E-03 -7.1925586E-03 -6.9372663E-03 -6.6896663E-03
 -6.4497152E-03 -6.2173372E-03 -5.9924456E-03 -5.7749301E-03 -5.5646659E-03
 -5.3615165E-03 -5.1653287E-03 -4.9759494E-03 -4.7932123E-03 -4.6169502E-03
 -4.4469894E-03 -4.2831493E-03 -4.1252524E-03 -3.9731218E-03 -3.8265761E-03
 -3.6854355E-03 -3.5495283E-03 -3.4186738E-03 -3.2927014E-03 -3.1714423E-03
 -3.0547327E-03 -2.9424070E-03 -2.8343087E-03 -2.7302841E-03 -2.6301828E-03
 -2.5338593E-03
 7.4336588E-02 7.0636608E-02 6.7052461E-02 6.3607477E-02 6.0313895E-02
 5.7176344E-02 5.4194406E-02 5.1364522E-02 4.8681337E-02 4.6138532E-02
 4.3729383E-02 4.1447114E-02 3.9285086E-02 3.7236910E-02 3.5296507E-02
 3.3458143E-02 3.1716388E-02 3.0066142E-02 2.8502585E-02 2.7021198E-02
 2.5617706E-02 2.4288069E-02 2.3028474E-02 2.1835309E-02 2.0705154E-02
 1.9634768E-02 1.8621070E-02 1.7661147E-02 1.6752230E-02 1.5891679E-02
 1.5077006E-02 1.4305821E-02 1.3575874E-02 1.2885012E-02 1.2231184E-02
 1.1612443E-02 1.1026932E-02 1.0472871E-02 9.9485861E-03 9.4524678E-03
 8.9829806E-03 8.5386727E-03 8.1181601E-03 7.7201235E-03 7.3433192E-03
 6.9865617E-03 6.6487282E-03 6.3287565E-03 6.0256394E-03 5.7384316E-03
 5.4662344E-03 5.2082036E-03 4.9635367E-03 4.7314838E-03 4.5113363E-03
 4.3024244E-03 4.1041188E-03 3.9158328E-03 3.7370001E-03 3.5671040E-03
 3.4056450E-03 3.2521584E-03 3.1062113E-03 2.9673877E-03 2.8353056E-03
 2.7095960E-03 2.5899229E-03 2.4759572E-03 2.3674001E-03 2.2639649E-03
 2.1653804E-03
 -1.0694351E-02 -1.2330106E-02 -1.3648668E-02 -1.4696846E-02 -1.5516568E-02
 -1.6144231E-02 -1.6610580E-02 -1.6941302E-02 -1.7157733E-02 -1.7277591E-02
 -1.7315602E-02 -1.7284080E-02 -1.7193370E-02 -1.7052231E-02 -1.6868135E-02
 -1.6647490E-02 -1.6395845E-02 -1.6118029E-02 -1.5818274E-02 -1.5500303E-02
 -1.5167425E-02 -1.4822565E-02 -1.4468336E-02 -1.4107070E-02 -1.3740852E-02
 -1.3371551E-02 -1.3000820E-02 -1.2630143E-02 -1.2260837E-02 -1.1894062E-02
 -1.1530834E-02 -1.1172046E-02 -1.0818461E-02 -1.0470741E-02 -1.0129442E-02
 -9.7950222E-03 -9.4678663E-03 -9.1482773E-03 -8.8364892E-03 -8.5326787E-03
 -8.2369735E-03 -7.9494454E-03 -7.6701250E-03 -7.3990151E-03 -7.1360874E-03
 -6.8812734E-03 -6.6344971E-03 -6.3956496E-03 -6.1646113E-03 -5.9412452E-03
 -5.7254019E-03 -5.5169249E-03 -5.3156447E-03 -5.1213829E-03 -4.9339640E-03
 -4.7531999E-03 -4.5789075E-03 -4.4108923E-03 -4.2489697E-03 -4.0929513E-03
 -3.9426466E-03 -3.7978673E-03 -3.6584365E-03 -3.5241691E-03 -3.3948873E-03
 -3.2704177E-03 -3.1505926E-03 -3.0352450E-03 -2.9242102E-03 -2.8173353E-03
 -2.7144628E-03
 8.0791436E-02 7.6662570E-02 7.2666332E-02 6.8834469E-02 6.5183051E-02
 6.1717346E-02 5.8435839E-02 5.5332895E-02 5.2400708E-02 4.9630463E-02
 4.7013052E-02 4.4539545E-02 4.2201374E-02 3.9990451E-02 3.7899233E-02
 3.5920691E-02 3.4048297E-02 3.2276005E-02 3.0598165E-02 2.9009549E-02
 2.7505262E-02 2.6080729E-02 2.4731671E-02 2.3454074E-02 2.2244154E-02
 2.1098359E-02 2.0013331E-02 1.8985892E-02 1.8013058E-02 1.7091978E-02
 1.6219964E-02 1.5394454E-02 1.4613017E-02 1.3873347E-02 1.3173238E-02
 1.2510597E-02 1.1883427E-02 1.1289827E-02 1.0727990E-02 1.0196193E-02
 9.6927956E-03 9.2162453E-03 8.7650595E-03 8.3378330E-03 7.9332432E-03
 7.5500240E-03 7.1869860E-03 6.8429969E-03 6.5169921E-03 6.2079658E-03
 5.9149689E-03 5.6371004E-03 5.3735198E-03 5.1234197E-03 4.8860586E-03
 4.6607223E-03 4.4467454E-03 4.2434949E-03 4.0503824E-03 3.8668490E-03
 3.6923732E-03 3.5264590E-03 3.3686403E-03 3.2184799E-03 3.0755664E-03
 2.9395137E-03 2.8099536E-03 2.6865453E-03 2.5689611E-03 2.4569016E-03
 2.3500777E-03
 -1.1994607E-02 -1.3810460E-02 -1.5248718E-02 -1.6368367E-02 -1.7222814E-02
 -1.7857909E-02 -1.8312069E-02 -1.8616827E-02 -1.8797899E-02 -1.8876217E-02
 -1.8868852E-02 -1.8789813E-02 -1.8650642E-02 -1.8460954E-02 -1.8228807E-02
 -1.7961027E-02 -1.7663425E-02 -1.7341008E-02 -1.6998110E-02 -1.6638521E-02
 -1.6265558E-02 -1.5882146E-02 -1.5490877E-02 -1.5094053E-02 -1.4693709E-02
 -1.4291655E-02 -1.3889500E-02 -1.3488660E-02 -1.3090388E-02 -1.2695774E-02
 -1.2305782E-02 -1.1921232E-02 -1.1542831E-02 -1.1171177E-02 -1.0806777E-02
 -1.0450041E-02 -1.0101308E-02 -9.7608399E-03 -9.4288429E-03 -9.1054626E-03
 -8.7907957E-03 -8.4848916E-03 -8.1877718E-03 -7.8994110E-03 -7.6197637E-03
 -7.3487554E-03 -7.0862854E-03 -6.8322378E-03 -6.5864762E-03 -6.3488530E-03
 -6.1192052E-03 -5.8973590E-03 -5.6831390E-03 -5.4763514E-03 -5.2768062E-03
 -5.0843102E-03 -4.8986599E-03 -4.7196597E-03 -4.5471070E-03 -4.3808036E-03
 -4.2205518E-03 -4.0661548E-03 -3.9174198E-03 -3.7741547E-03 -3.6361753E-03
 -3.5033000E-03 -3.3753437E-03 -3.2521382E-03 -3.1335147E-03 -3.0193024E-03
 -2.9093430E-03
 8.8320598E-02 8.3684571E-02 7.9191156E-02 7.4888147E-02 7.0799850E-02
 6.6934288E-02 6.3289292E-02 5.9856866E-02 5.6626052E-02 5.3584706E-02
 5.0720561E-02 4.8021771E-02 4.5477208E-02 4.3076545E-02 4.0810294E-02
 3.8669784E-02 3.6647040E-02 3.4734812E-02 3.2926410E-02 3.1215690E-02
 2.9596994E-02 2.8065080E-02 2.6615087E-02 2.5242493E-02 2.3943072E-02
 2.2712884E-02 2.1548212E-02 2.0445568E-02 1.9401673E-02 1.8413417E-02
 1.7477864E-02 1.6592234E-02 1.5753876E-02 1.4960289E-02 1.4209084E-02
 1.3497995E-02 1.2824867E-02 1.2187644E-02 1.1584378E-02 1.1013225E-02
 1.0472418E-02 9.9602928E-03 9.4752684E-03 9.0158405E-03 8.5805980E-03
 8.1681963E-03 7.7773645E-03 7.4068983E-03 7.0556696E-03 6.7226035E-03
 6.4066923E-03 6.1069797E-03 5.8225691E-03 5.5526081E-03 5.2963006E-03
 5.0528934E-03 4.8216721E-03 4.6019736E-03 4.3931608E-03 4.1946466E-03
 4.0058671E-03 3.8262964E-03 3.6554390E-03 3.4928322E-03 3.3380312E-03
 3.1906283E-03 3.0502237E-03 2.9164588E-03 2.7889805E-03 2.6674680E-03
 2.5516131E-03
 -1.3245979E-02 -1.5329733E-02 -1.6950401E-02 -1.8182918E-02 -1.9096812E-02
 -1.9752162E-02 -2.0198617E-02 -2.0476410E-02 -2.0617664E-02 -2.0647936E-02
 -2.0587612E-02 -2.0453006E-02 -2.0257294E-02 -2.0011192E-02 -1.9723503E-02
 -1.9401543E-02 -1.9051434E-02 -1.8678365E-02 -1.8286759E-02 -1.7880440E-02
 -1.7462710E-02 -1.7036455E-02 -1.6604204E-02 -1.6168175E-02 -1.5730331E-02
 -1.5292387E-02 -1.4855856E-02 -1.4422067E-02 -1.3992177E-02 -1.3567198E-02
 -1.3148002E-02 -1.2735334E-02 -1.2329831E-02 -1.1932028E-02 -1.1542375E-02
 -1.1161234E-02 -1.0788898E-02 -1.0425591E-02 -1.0071487E-02 -9.7266994E-03
 -9.3913022E-03 -9.0653244E-03 -8.7487567E-03 -8.4415665E-03 -8.1436839E-03
 -7.8550139E-03 -7.5754449E-03 -7.3048435E-03 -7.0430557E-03 -6.7899167E-03
 -6.5452536E-03 -6.3088723E-03 -6.0805851E-03 -5.8601857E-03 -5.6474684E-03
 -5.4422282E-03 -5.2442495E-03 -5.0533246E-03 -4.8692371E-03 -4.6917745E-03
 -4.5207329E-03 -4.3559060E-03 -4.1970829E-03 -4.0440662E-03 -3.8966623E-03
 -3.7546777E-03 -3.6179200E-03 -3.4862082E-03 -3.3593620E-03 -3.2372125E-03
 -3.1195865E-03
 9.7142324E-02 9.1923207E-02 8.6834759E-02 8.1955679E-02 7.7328347E-02
 7.2968781E-02 6.8876229E-02 6.5040469E-02 6.1446682E-02 5.8078300E-02
 5.4918718E-02 5.1952124E-02 4.9163867E-02 4.6540581E-02 4.4070177E-02
 4.1741755E-02 3.9545469E-02 3.7472464E-02 3.5514686E-02 3.3664837E-02
 3.1916268E-02 3.0262886E-02 2.8699085E-02 2.7219709E-02 2.5819965E-02
 2.4495410E-02 2.3241885E-02 2.2055505E-02 2.0932626E-02 1.9869808E-02
 1.8863818E-02 1.7911594E-02 1.7010231E-02 1.6156996E-02 1.5349286E-02
 1.4584625E-02 1.3860687E-02 1.3175238E-02 1.2526184E-02 1.1911530E-02
 1.1329383E-02 1.0777951E-02 1.0255541E-02 9.7605465E-03 9.2914589E-03
 8.8468352E-03 8.4253252E-03 8.0256471E-03 7.6465863E-03 7.2870110E-03
 6.9458359E-03 6.6220486E-03 6.3146856E-03 6.0228454E-03 5.7456754E-03
 5.4823719E-03 5.2321716E-03 4.9943696E-03 4.7682850E-03 4.5532905E-03
 4.3487842E-03 4.1542095E-03 3.9690272E-03 3.7927448E-03 3.6248881E-03
 3.4650206E-03 3.3127158E-03 3.1675831E-03 3.0292536E-03 2.8973725E-03
 2.7716160E-03
 -1.4288935E-02 -1.6781630E-02 -1.8691568E-02 -2.0111091E-02 -2.1131705E-02
 -2.1834379E-02 -2.2286238E-02 -2.2540774E-02 -2.2639962E-02 -2.2616355E-02
 -2.2495212E-02 -2.2296224E-02 -2.2034839E-02 -2.1723298E-02 -2.1371396E-02
 -2.0987077E-02 -2.0576829E-02 -2.0146044E-02 -1.9699233E-02 -1.9240202E-02
 -1.8772213E-02 -1.8298058E-02 -1.7820153E-02 -1.7340602E-02 -1.6861223E-02
 -1.6383611E-02 -1.5909147E-02 -1.5439033E-02 -1.4974318E-02 -1.4515901E-02
 -1.4064556E-02 -1.3620946E-02 -1.3185622E-02 -1.2759062E-02 -1.2341642E-02
 -1.1933679E-02 -1.1535415E-02 -1.1147042E-02 -1.0768690E-02 -1.0400449E-02
 -1.0042355E-02 -9.6944179E-03 -9.3566021E-03 -9.0288483E-03 -8.7110670E-03
 -8.4031411E-03 -8.1049409E-03 -7.8163063E-03 -7.5370725E-03 -7.2670523E-03
 -7.0060543E-03 -6.7538745E-03 -6.5102978E-03 -6.2751081E-03 -6.0480880E-03
 -5.8290106E-03 -5.6176507E-03 -5.4137828E-03 -5.2171815E-03 -5.0276211E-03
 -4.8448858E-03 -4.6687480E-03 -4.4989977E-03 -4.3354193E-03 -4.1778088E-03
 -4.0259575E-03 -3.8796710E-03 -3.7387514E-03 -3.6030114E-03 -3.4722737E-03
 -3.3463417E-03
 0.1074652 0.1016261 9.5852077E-02 9.0277590E-02 8.4983744E-02
 8.0007590E-02 7.5356200E-02 7.1019210E-02 6.6977672E-02 6.3209355E-02
 5.9691690E-02 5.6403328E-02 5.3324707E-02 5.0438222E-02 4.7728170E-02
 4.5180630E-02 4.2783197E-02 4.0524874E-02 3.8395800E-02 3.6387146E-02
 3.4490969E-02 3.2700054E-02 3.1007854E-02 2.9408373E-02 2.7896104E-02
 2.6465958E-02 2.5113229E-02 2.3833511E-02 2.2622721E-02 2.1477014E-02
 2.0392787E-02 1.9366650E-02 1.8395398E-02 1.7476022E-02 1.6605673E-02
 1.5781654E-02 1.5001419E-02 1.4262557E-02 1.3562799E-02 1.2899986E-02
 1.2272081E-02 1.1677157E-02 1.1113398E-02 1.0579072E-02 1.0072569E-02
 9.5923403E-03 9.1369413E-03 8.7049985E-03 8.2952157E-03 7.9063782E-03
 7.5373300E-03 7.1869823E-03 6.8543125E-03 6.5383497E-03 6.2381839E-03
 5.9529580E-03 5.6818579E-03 5.4241186E-03 5.1790234E-03 4.9458919E-03
 4.7240844E-03 4.5130001E-03 4.3120687E-03 4.1207541E-03 3.9385534E-03
 3.7649903E-03 3.5996153E-03 3.4420069E-03 3.2917601E-03 3.1485020E-03
 3.0118788E-03
 -1.4841298E-02 -1.7956981E-02 -2.0334786E-02 -2.2074373E-02 -2.3291858E-02
 -2.4097703E-02 -2.4585843E-02 -2.4831243E-02 -2.4891585E-02 -2.4810635E-02
 -2.4621340E-02 -2.4348566E-02 -2.4011208E-02 -2.3623737E-02 -2.3197368E-02
 -2.2740910E-02 -2.2261349E-02 -2.1764319E-02 -2.1254407E-02 -2.0735394E-02
 -2.0210437E-02 -1.9682188E-02 -1.9152893E-02 -1.8624479E-02 -1.8098587E-02
 -1.7576637E-02 -1.7059846E-02 -1.6549265E-02 -1.6045799E-02 -1.5550216E-02
 -1.5063183E-02 -1.4585258E-02 -1.4116909E-02 -1.3658531E-02 -1.3210441E-02
 -1.2772884E-02 -1.2346062E-02 -1.1930108E-02 -1.1525118E-02 -1.1131140E-02
 -1.0748178E-02 -1.0376197E-02 -1.0015146E-02 -9.6649220E-03 -9.3254196E-03
 -8.9964923E-03 -8.6779790E-03 -8.3697047E-03 -8.0714747E-03 -7.7830860E-03
 -7.5043226E-03 -7.2349617E-03 -6.9747749E-03 -6.7235194E-03 -6.4809676E-03
 -6.2468708E-03 -6.0209911E-03 -5.8030877E-03 -5.5929180E-03 -5.3902441E-03
 -5.1948316E-03 -5.0064460E-03 -4.8248563E-03 -4.6498403E-03 -4.4811806E-03
 -4.3186536E-03 -4.1620540E-03 -4.0111737E-03 -3.8658131E-03 -3.7257867E-03
 -3.5908895E-03
 0.1193898 0.1130038 0.1065185 0.1001475 9.4045684E-02
 8.8300355E-02 8.2944281E-02 7.7975251E-02 7.3372424E-02 6.9107138E-02
 6.5149002E-02 6.1468903E-02 5.8040280E-02 5.4839488E-02 5.1845748E-02
 4.9040861E-02 4.6408907E-02 4.3935917E-02 4.1609585E-02 3.9419036E-02
 3.7354577E-02 3.5407539E-02 3.3570107E-02 3.1835228E-02 3.0196451E-02
 2.8647885E-02 2.7184099E-02 2.5800079E-02 2.4491185E-02 2.3253074E-02
 2.2081714E-02 2.0973319E-02 1.9924333E-02 1.8931441E-02 1.7991494E-02
 1.7101549E-02 1.6258825E-02 1.5460694E-02 1.4704696E-02 1.3988490E-02
 1.3309876E-02 1.2666770E-02 1.2057217E-02 1.1479360E-02 1.0931455E-02
 1.0411845E-02 9.9189691E-03 9.4513632E-03 9.0076327E-03 8.5864691E-03
 8.1866384E-03 7.8069717E-03 7.4463696E-03 7.1037919E-03 6.7782658E-03
 6.4688665E-03 6.1747250E-03 5.8950228E-03 5.6289821E-03 5.3758770E-03
 5.1350258E-03 4.9057733E-03 4.6875123E-03 4.4796653E-03 4.2816899E-03
 4.0930752E-03 3.9133360E-03 3.7420178E-03 3.5786880E-03 3.4229362E-03
 3.2743879E-03
 -1.4475229E-02 -1.8488709E-02 -2.1606313E-02 -2.3894357E-02 -2.5477357E-02
 -2.6498565E-02 -2.7090793E-02 -2.7363403E-02 -2.7400635E-02 -2.7265150E-02
 -2.7002785E-02 -2.6647000E-02 -2.6222255E-02 -2.5746573E-02 -2.5233386E-02
 -2.4692813E-02 -2.4132581E-02 -2.3558671E-02 -2.2975774E-02 -2.2387631E-02
 -2.1797249E-02 -2.1207081E-02 -2.0619154E-02 -2.0035157E-02 -1.9456500E-02
 -1.8884381E-02 -1.8319814E-02 -1.7763654E-02 -1.7216638E-02 -1.6679389E-02
 -1.6152432E-02 -1.5636208E-02 -1.5131075E-02 -1.4637342E-02 -1.4155234E-02
 -1.3684931E-02 -1.3226565E-02 -1.2780206E-02 -1.2345898E-02 -1.1923640E-02
 -1.1513384E-02 -1.1115062E-02 -1.0728573E-02 -1.0353788E-02 -9.9905571E-03
 -9.6387044E-03 -9.2980424E-03 -8.9683635E-03 -8.6494470E-03 -8.3410665E-03
 -8.0429809E-03 -7.7549438E-03 -7.4767033E-03 -7.2080023E-03 -6.9485870E-03
 -6.6981944E-03 -6.4565670E-03 -6.2234425E-03 -5.9985653E-03 -5.7816803E-03
 -5.5725379E-03 -5.3708875E-03 -5.1764841E-03 -4.9890862E-03 -4.8084650E-03
 -4.6343915E-03 -4.4666375E-03 -4.3049864E-03 -4.1492255E-03 -3.9991578E-03
 -3.8545658E-03
 0.1327725 0.1260860 0.1190266 0.1118640 0.1048517
 9.8174848E-02 9.1933891E-02 8.6160183E-02 8.0842406E-02 7.5948350E-02
 7.1438506E-02 6.7273341E-02 6.3416354E-02 5.9835169E-02 5.6501627E-02
 5.3391431E-02 5.0483599E-02 4.7760051E-02 4.5205060E-02 4.2804919E-02
 4.0547598E-02 3.8422454E-02 3.6420029E-02 3.4531839E-02 3.2750249E-02
 3.1068331E-02 2.9479757E-02 2.7978742E-02 2.6559969E-02 2.5218504E-02
 2.3949787E-02 2.2749571E-02 2.1613894E-02 2.0539068E-02 1.9521622E-02
 1.8558310E-02 1.7646087E-02 1.6782083E-02 1.5963607E-02 1.5188122E-02
 1.4453237E-02 1.3756694E-02 1.3096378E-02 1.2470279E-02 1.1876510E-02
 1.1313291E-02 1.0778939E-02 1.0271874E-02 9.7905947E-03 9.3336925E-03
 8.8998387E-03 8.4877778E-03 8.0963224E-03 7.7243629E-03 7.3708445E-03
 7.0347744E-03 6.7152181E-03 6.4112940E-03 6.1221682E-03 5.8470578E-03
 5.5852239E-03 5.3359629E-03 5.0986246E-03 4.8725824E-03 4.6572527E-03
 4.4520814E-03 4.2565484E-03 4.0701618E-03 3.8924497E-03 3.7229771E-03
 3.5613305E-03
 -1.2703369E-02 -1.7852928E-02 -2.2035740E-02 -2.5212821E-02 -2.7454086E-02
 -2.8907159E-02 -2.9745797E-02 -3.0129855E-02 -3.0187905E-02 -3.0015888E-02
 -2.9682729E-02 -2.9237075E-02 -2.8713165E-02 -2.8135136E-02 -2.7520157E-02
 -2.6880560E-02 -2.6225287E-02 -2.5560927E-02 -2.4892382E-02 -2.4223356E-02
 -2.3556689E-02 -2.2894580E-02 -2.2238770E-02 -2.1590650E-02 -2.0951334E-02
 -2.0321745E-02 -1.9702628E-02 -1.9094616E-02 -1.8498227E-02 -1.7913893E-02
 -1.7341968E-02 -1.6782742E-02 -1.6236441E-02 -1.5703246E-02 -1.5183282E-02
 -1.4676628E-02 -1.4183324E-02 -1.3703368E-02 -1.3236728E-02 -1.2783336E-02
 -1.2343088E-02 -1.1915855E-02 -1.1501493E-02 -1.1099819E-02 -1.0710645E-02
 -1.0333754E-02 -9.9689197E-03 -9.6159037E-03 -9.2744511E-03 -8.9443047E-03
 -8.6251991E-03 -8.3168577E-03 -8.0190040E-03 -7.7313548E-03 -7.4536377E-03
 -7.1855630E-03 -6.9268574E-03 -6.6772318E-03 -6.4364173E-03 -6.2041371E-03
 -5.9801242E-03 -5.7641123E-03 -5.5558388E-03 -5.3550485E-03 -5.1614926E-03
 -4.9749273E-03 -4.7951126E-03 -4.6218163E-03 -4.4548148E-03 -4.2938986E-03
 -4.1388283E-03
 0.1472092 0.1405798 0.1332911 0.1255699 0.1177121
 0.1100166 0.1027121 9.5923491E-02 8.9686662E-02 8.3982661E-02
 7.8767143E-02 7.3988475E-02 6.9596618E-02 6.5546587E-02 6.1799381E-02
 5.8321703E-02 5.5085246E-02 5.2065950E-02 4.9243234E-02 4.6599440E-02
 4.4119306E-02 4.1789498E-02 3.9598342E-02 3.7535496E-02 3.5591751E-02
 3.3758860E-02 3.2029375E-02 3.0396529E-02 2.8854176E-02 2.7396658E-02
 2.6018783E-02 2.4715755E-02 2.3483120E-02 2.2316759E-02 2.1212813E-02
 2.0167692E-02 1.9178035E-02 1.8240685E-02 1.7352704E-02 1.6511312E-02
 1.5713900E-02 1.4958012E-02 1.4241346E-02 1.3561723E-02 1.2917100E-02
 1.2305548E-02 1.1725246E-02 1.1174479E-02 1.0651628E-02 1.0155178E-02
 9.6836910E-03 9.2358068E-03 8.8102529E-03 8.4058233E-03 8.0213854E-03
 7.6558688E-03 7.3082601E-03 6.9776098E-03 6.6630198E-03 6.3636419E-03
 6.0786810E-03 5.8073746E-03 5.5490192E-03 5.3029377E-03 5.0685038E-03
 4.8451121E-03 4.6322020E-03 4.4292388E-03 4.2357156E-03 4.0511577E-03
 3.8751212E-03
 -9.2039369E-03 -1.5542881E-02 -2.1010708E-02 -2.5438171E-02 -2.8752467E-02
 -3.1010726E-02 -3.2376382E-02 -3.3055793E-02 -3.3241846E-02 -3.3087831E-02
 -3.2705203E-02 -3.2171354E-02 -3.1538881E-02 -3.0843357E-02 -3.0108834E-02
 -2.9351670E-02 -2.8583074E-02 -2.7810782E-02 -2.7040169E-02 -2.6275016E-02
 -2.5517996E-02 -2.4771016E-02 -2.4035467E-02 -2.3312349E-02 -2.2602413E-02
 -2.1906212E-02 -2.1224175E-02 -2.0556612E-02 -1.9903777E-02 -1.9265836E-02
 -1.8642932E-02 -1.8035151E-02 -1.7442534E-02 -1.6865101E-02 -1.6302831E-02
 -1.5755678E-02 -1.5223559E-02 -1.4706368E-02 -1.4203978E-02 -1.3716230E-02
 -1.3242948E-02 -1.2783934E-02 -1.2338973E-02 -1.1907824E-02 -1.1490249E-02
 -1.1085981E-02 -1.0694750E-02 -1.0316271E-02 -9.9502541E-03 -9.5964056E-03
 -9.2544248E-03 -8.9240028E-03 -8.6048339E-03 -8.2966080E-03 -7.9990216E-03
 -7.7117663E-03 -7.4345358E-03 -7.1670292E-03 -6.9089476E-03 -6.6599944E-03
 -6.4198826E-03 -6.1883233E-03 -5.9650443E-03 -5.7497630E-03 -5.5422210E-03
 -5.3421510E-03 -5.1492993E-03 -4.9634208E-03 -4.7842711E-03 -4.6116346E-03
 -4.4452506E-03
 0.1622486 0.1559653 0.1488498 0.1410154 0.1326715
 0.1241226 0.1157113 0.1077237 0.1003265 9.3571000E-02
 8.7434508E-02 8.1860483E-02 7.6783597E-02 7.2141580E-02 6.7879528E-02
 6.3950703E-02 6.0315777E-02 5.6941867E-02 5.3801298E-02 5.0870724E-02
 4.8130285E-02 4.5562942E-02 4.3153960E-02 4.0890515E-02 3.8761318E-02
 3.6756396E-02 3.4866847E-02 3.3084672E-02 3.1402681E-02 2.9814305E-02
 2.8313592E-02 2.6895059E-02 2.5553662E-02 2.4284767E-02 2.3084050E-02
 2.1947499E-02 2.0871399E-02 1.9852249E-02 1.8886808E-02 1.7972022E-02
 1.7105032E-02 1.6283147E-02 1.5503858E-02 1.4764785E-02 1.4063705E-02
 1.3398520E-02 1.2767250E-02 1.2168036E-02 1.1599128E-02 1.1058873E-02
 1.0545716E-02 1.0058190E-02 9.5949145E-03 9.1545805E-03 8.7359659E-03
 8.3379094E-03 7.9593156E-03 7.5991563E-03 7.2564594E-03 6.9303052E-03
 6.6198320E-03 6.3242186E-03 6.0426979E-03 5.7745408E-03 5.5190567E-03
 5.2756034E-03 5.0435620E-03 4.8223604E-03 4.6114437E-03 4.4102930E-03
 4.2184303E-03
 -3.9726798E-03 -1.1347835E-02 -1.8062588E-02 -2.3896759E-02 -2.8647505E-02
 -3.2193687E-02 -3.4556031E-02 -3.5897143E-02 -3.6453731E-02 -3.6458179E-02
 -3.6096338E-02 -3.5500925E-02 -3.4761269E-02 -3.3935823E-02 -3.3062391E-02
 -3.2165378E-02 -3.1260476E-02 -3.0357812E-02 -2.9463869E-02 -2.8582793E-02
 -2.7717182E-02 -2.6868645E-02 -2.6038131E-02 -2.5226176E-02 -2.4433032E-02
 -2.3658792E-02 -2.2903429E-02 -2.2166852E-02 -2.1448936E-02 -2.0749513E-02
 -2.0068418E-02 -1.9405458E-02 -1.8760435E-02 -1.8133149E-02 -1.7523382E-02
 -1.6930904E-02 -1.6355488E-02 -1.5796881E-02 -1.5254827E-02 -1.4729061E-02
 -1.4219305E-02 -1.3725265E-02 -1.3246644E-02 -1.2783132E-02 -1.2334420E-02
 -1.1900179E-02 -1.1480086E-02 -1.1073799E-02 -1.0680987E-02 -1.0301305E-02
 -9.9344160E-03 -9.5799705E-03 -9.2376322E-03 -8.9070518E-03 -8.5878978E-03
 -8.2798293E-03 -7.9825139E-03 -7.6956237E-03 -7.4188318E-03 -7.1518221E-03
 -6.8942811E-03 -6.6459039E-03 -6.4063859E-03 -6.1754361E-03 -5.9527657E-03
 -5.7381000E-03 -5.5311620E-03 -5.3316844E-03 -5.1394142E-03 -4.9541206E-03
 -4.7755162E-03
 0.1776164 0.1718045 0.1651151 0.1575752 0.1492684
 0.1403688 0.1311642 0.1220242 0.1133005 0.1052244
 9.7881384E-02 9.1253638E-02 8.5273862E-02 7.9861470E-02 7.4939825E-02
 7.0442170E-02 6.6312417E-02 6.2504187E-02 5.8979079E-02 5.5705298E-02
 5.2656282E-02 4.9809653E-02 4.7146399E-02 4.4650238E-02 4.2307056E-02
 4.0104568E-02 3.8031943E-02 3.6079586E-02 3.4238961E-02 3.2502349E-02
 3.0862819E-02 2.9314047E-02 2.7850255E-02 2.6466161E-02 2.5156889E-02
 2.3917928E-02 2.2745106E-02 2.1634538E-02 2.0582616E-02 1.9585961E-02
 1.8641422E-02 1.7746037E-02 1.6897054E-02 1.6091859E-02 1.5328025E-02
 1.4603259E-02 1.3915403E-02 1.3262433E-02 1.2642437E-02 1.2053622E-02
 1.1494295E-02 1.0962865E-02 1.0457823E-02 9.9777570E-03 9.5213335E-03
 9.0872971E-03 8.6744549E-03 8.2816901E-03 7.9079475E-03 7.5522321E-03
 7.2136000E-03 6.8911696E-03 6.5840948E-03 6.2915953E-03 6.0129152E-03
 5.7473546E-03 5.4942439E-03 5.2529555E-03 5.0228885E-03 4.8034801E-03
 4.5942063E-03
 2.7808556E-03 -5.4026339E-03 -1.3135423E-02 -2.0227306E-02 -2.6458628E-02
 -3.1602770E-02 -3.5484631E-02 -3.8062528E-02 -3.9469004E-02 -3.9958835E-02
 -3.9808486E-02 -3.9246581E-02 -3.8435765E-02 -3.7482813E-02 -3.6455035E-02
 -3.5394065E-02 -3.4325309E-02 -3.3264134E-02 -3.2219641E-02 -3.1197079E-02
 -3.0199297E-02 -2.9227665E-02 -2.8282646E-02 -2.7364178E-02 -2.6471885E-02
 -2.5605213E-02 -2.4763541E-02 -2.3946214E-02 -2.3152601E-02 -2.2382068E-02
 -2.1634025E-02 -2.0907914E-02 -2.0203196E-02 -1.9519374E-02 -1.8855963E-02
 -1.8212505E-02 -1.7588552E-02 -1.6983669E-02 -1.6397441E-02 -1.5829450E-02
 -1.5279280E-02 -1.4746530E-02 -1.4230794E-02 -1.3731666E-02 -1.3248750E-02
 -1.2781640E-02 -1.2329939E-02 -1.1893247E-02 -1.1471170E-02 -1.1063312E-02
 -1.0669280E-02 -1.0288684E-02 -9.9211410E-03 -9.5662661E-03 -9.2236893E-03
 -8.8930335E-03 -8.5739326E-03 -8.2660271E-03 -7.9689659E-03 -7.6824008E-03
 -7.4059940E-03 -7.1394132E-03 -6.8823313E-03 -6.6344352E-03 -6.3954149E-03
 -6.1649713E-03 -5.9428108E-03 -5.7286480E-03 -5.5222041E-03 -5.3232447E-03
 -5.1314505E-03
 0.1932406 0.1879037 0.1817111 0.1746563 0.1667528
 0.1580545 0.1486901 0.1389027 0.1290558 0.1195576
 0.1107263 0.1027109 9.5515840E-02 8.9068107E-02 8.3271161E-02
 7.8031383E-02 7.3267512E-02 6.8912104E-02 6.4910069E-02 6.1216503E-02
 5.7794653E-02 5.4614164E-02 5.1649772E-02 4.8880212E-02 4.6287406E-02
 4.3855846E-02 4.1572087E-02 3.9424378E-02 3.7402388E-02 3.5496913E-02
 3.3699740E-02 3.2003470E-02 3.0401394E-02 2.8887440E-02 2.7456017E-02
 2.6102010E-02 2.4820700E-02 2.3607720E-02 2.2459039E-02 2.1370886E-02
 2.0339761E-02 1.9362388E-02 1.8435717E-02 1.7556882E-02 1.6723206E-02
 1.5932176E-02 1.5181427E-02 1.4468736E-02 1.3792018E-02 1.3149319E-02
 1.2538786E-02 1.1958680E-02 1.1407363E-02 1.0883290E-02 1.0385014E-02
 9.9111581E-03 9.4604343E-03 9.0316171E-03 8.6235609E-03 8.2351817E-03
 7.8654531E-03 7.5134113E-03 7.1781427E-03 6.8587787E-03 6.5545160E-03
 6.2645813E-03 5.9882463E-03 5.7248264E-03 5.4736659E-03 5.2341507E-03
 5.0057149E-03
 1.0820867E-02 2.0218447E-03 -6.4816372E-03 -1.4546464E-02 -2.2000561E-02
 -2.8637534E-02 -3.4224134E-02 -3.8540564E-02 -4.1465368E-02 -4.3061320E-02
 -4.3571211E-02 -4.3311860E-02 -4.2566109E-02 -4.1539166E-02 -4.0363971E-02
 -3.9121680E-02 -3.7860256E-02 -3.6607362E-02 -3.5378493E-02 -3.4181930E-02
 -3.3021666E-02 -3.1899180E-02 -3.0814499E-02 -2.9766852E-02 -2.8755037E-02
 -2.7777674E-02 -2.6833309E-02 -2.5920527E-02 -2.5037991E-02 -2.4184434E-02
 -2.3358686E-02 -2.2559680E-02 -2.1786422E-02 -2.1038011E-02 -2.0313602E-02
 -1.9612424E-02 -1.8933749E-02 -1.8276894E-02 -1.7641226E-02 -1.7026128E-02
 -1.6431019E-02 -1.5855337E-02 -1.5298542E-02 -1.4760101E-02 -1.4239517E-02
 -1.3736280E-02 -1.3249902E-02 -1.2779905E-02 -1.2325819E-02 -1.1887181E-02
 -1.1463542E-02 -1.1054451E-02 -1.0659472E-02 -1.0278174E-02 -9.9101430E-03
 -9.5549580E-03 -9.2122201E-03 -8.8815289E-03 -8.5624969E-03 -8.2547497E-03
 -7.9579176E-03 -7.6716361E-03 -7.3955562E-03 -7.1293334E-03 -6.8726353E-03
 -6.6251438E-03 -6.3865352E-03 -6.1565069E-03 -5.9347600E-03 -5.7210452E-03
 -5.5150106E-03
 0.2091667 0.2042543 0.1985276 0.1919748 0.1845895
 0.1763763 0.1673652 0.1576391 0.1473776 0.1368961
 0.1266220 0.1169663 0.1081791 0.1003187 9.3320310E-02
 8.7073199E-02 8.1464045E-02 7.6393761E-02 7.1780615E-02 6.7558691E-02
 6.3675001E-02 6.0086738E-02 5.6759000E-02 5.3663060E-02 5.0774980E-02
 4.8074625E-02 4.5544833E-02 4.3170847E-02 4.0939882E-02 3.8840707E-02
 3.6863424E-02 3.4999214E-02 3.3240177E-02 3.1579200E-02 3.0009814E-02
 2.8526131E-02 2.7122766E-02 2.5794761E-02 2.4537550E-02 2.3346912E-02
 2.2218913E-02 2.1149911E-02 2.0136507E-02 1.9175529E-02 1.8264014E-02
 1.7399183E-02 1.6578436E-02 1.5799332E-02 1.5059573E-02 1.4357019E-02
 1.3689633E-02 1.3055521E-02 1.2452882E-02 1.1880030E-02 1.1335380E-02
 1.0817428E-02 1.0324767E-02 9.8560601E-03 9.4100507E-03 8.9855576E-03
 8.5814623E-03 8.1967060E-03 7.8302911E-03 7.4812802E-03 7.1487827E-03
 6.8319552E-03 6.5300073E-03 6.2421854E-03 5.9677800E-03 5.7061152E-03
 5.4565696E-03
 1.9974615E-02 1.0692251E-02 1.6016219E-03 -7.1885306E-03 -1.5552625E-02
 -2.3340514E-02 -3.0368578E-02 -3.6415782E-02 -4.1240994E-02 -4.4647478E-02
 -4.6592213E-02 -4.7253862E-02 -4.6965286E-02 -4.6070497E-02 -4.4834215E-02
 -4.3429263E-02 -4.1958861E-02 -4.0481623E-02 -3.9029501E-02 -3.7619025E-02
 -3.6257926E-02 -3.4948979E-02 -3.3692185E-02 -3.2486111E-02 -3.1328559E-02
 -3.0217070E-02 -2.9149098E-02 -2.8122189E-02 -2.7134042E-02 -2.6182510E-02
 -2.5265653E-02 -2.4381690E-02 -2.3529017E-02 -2.2706185E-02 -2.1911865E-02
 -2.1144856E-02 -2.0404063E-02 -1.9688468E-02 -1.8997142E-02 -1.8329218E-02
 -1.7683888E-02 -1.7060384E-02 -1.6457988E-02 -1.5876014E-02 -1.5313811E-02
 -1.4770752E-02 -1.4246233E-02 -1.3739673E-02 -1.3250506E-02 -1.2778193E-02
 -1.2322201E-02 -1.1882016E-02 -1.1457135E-02 -1.1047073E-02 -1.0651356E-02
 -1.0269518E-02 -9.9011138E-03 -9.5456997E-03 -9.2028491E-03 -8.8721486E-03
 -8.5531930E-03 -8.2455883E-03 -7.9489509E-03 -7.6629096E-03 -7.3871007E-03
 -7.1211802E-03 -6.8648015E-03 -6.6176355E-03 -6.3793636E-03 -6.1497223E-03
 -5.9283152E-03
 0.2254865 0.2209329 0.2156049 0.2094953 0.2025982
 0.1949092 0.1864294 0.1771723 0.1671839 0.1565778
 0.1455885 0.1346026 0.1240904 0.1144302 0.1057843
 9.8126836E-02 9.1341816E-02 8.5295044E-02 7.9865418E-02 7.4953079E-02
 7.0478201E-02 6.6377468E-02 6.2600434E-02 5.9106562E-02 5.5862840E-02
 5.2842118E-02 5.0021734E-02 4.7382575E-02 4.4908367E-02 4.2585045E-02
 4.0400404E-02 3.8343698E-02 3.6405429E-02 3.4577139E-02 3.2851208E-02
 3.1220771E-02 2.9679589E-02 2.8221963E-02 2.6842680E-02 2.5536945E-02
 2.4300314E-02 2.3128690E-02 2.2018269E-02 2.0965494E-02 1.9967081E-02
 1.9019939E-02 1.8121187E-02 1.7268121E-02 1.6458215E-02 1.5689097E-02
 1.4958537E-02 1.4264436E-02 1.3604827E-02 1.2977859E-02 1.2381783E-02
 1.1814958E-02 1.1275833E-02 1.0762952E-02 1.0274932E-02 9.8104849E-03
 9.3683787E-03 8.9474525E-03 8.5466215E-03 8.1648557E-03 7.8011742E-03
 7.4546617E-03 7.1244487E-03 6.8097105E-03 6.5096682E-03 6.2235803E-03
 5.9507689E-03
 3.0137852E-02 2.0456182E-02 1.0897047E-02 1.5487198E-03 -7.4928286E-03
 -1.6119326E-02 -2.4203327E-02 -3.1588744E-02 -3.8081042E-02 -4.3446153E-02
 -4.7442146E-02 -4.9912505E-02 -5.0911143E-02 -5.0727878E-02 -4.9755141E-02
 -4.8334602E-02 -4.6699453E-02 -4.4988755E-02 -4.3279223E-02 -4.1610744E-02
 -4.0002491E-02 -3.8462263E-02 -3.6991723E-02 -3.5589356E-02 -3.4252062E-02
 -3.2976091E-02 -3.1757500E-02 -3.0592453E-02 -2.9477341E-02 -2.8408844E-02
 -2.7383935E-02 -2.6399886E-02 -2.5454251E-02 -2.4544828E-02 -2.3669641E-02
 -2.2826906E-02 -2.2015031E-02 -2.1232547E-02 -2.0478146E-02 -1.9750610E-02
 -1.9048832E-02 -1.8371776E-02 -1.7718492E-02 -1.7088087E-02 -1.6479727E-02
 -1.5892616E-02 -1.5326008E-02 -1.4779191E-02 -1.4251482E-02 -1.3742235E-02
 -1.3250826E-02 -1.2776649E-02 -1.2319128E-02 -1.1877704E-02 -1.1451839E-02
 -1.1041011E-02 -1.0644710E-02 -1.0262451E-02 -9.8937554E-03 -9.5381700E-03
 -9.1952439E-03 -8.8645462E-03 -8.5456586E-03 -8.2381750E-03 -7.9417014E-03
 -7.6558599E-03 -7.3802802E-03 -7.1146027E-03 -6.8584811E-03 -6.6116457E-03
 -6.3736485E-03
 0.2423036 0.2380429 0.2330402 0.2272946 0.2208062
 0.2135750 0.2056007 0.1968838 0.1874299 0.1772596
 0.1664337 0.1550983 0.1435448 0.1322242 0.1216238
 0.1120620 0.1036092 9.6170530E-02 8.9595295E-02 8.3736673E-02
 7.8471489E-02 7.3701687E-02 6.9350436E-02 6.5357402E-02 6.1674770E-02
 5.8264162E-02 5.5094369E-02 5.2139647E-02 4.9378533E-02 4.6792854E-02
 4.4367090E-02 4.2087831E-02 3.9943364E-02 3.7923414E-02 3.6018837E-02
 3.4221467E-02 3.2523967E-02 3.0919699E-02 2.9402623E-02 2.7967222E-02
 2.6608432E-02 2.5321586E-02 2.4102386E-02 2.2946833E-02 2.1851229E-02
 2.0812122E-02 1.9826304E-02 1.8890761E-02 1.8002689E-02 1.7159460E-02
 1.6358603E-02 1.5597805E-02 1.4874892E-02 1.4187818E-02 1.3534662E-02
 1.2913620E-02 1.2322982E-02 1.1761140E-02 1.1226584E-02 1.0717893E-02
 1.0233712E-02 9.7727766E-03 9.3338853E-03 8.9159049E-03 8.5177664E-03
 8.1384638E-03 7.7770362E-03 7.4325856E-03 7.1042506E-03 6.7912247E-03
 6.4927554E-03
 4.1254960E-02 3.1226255E-02 2.1272065E-02 1.1469168E-02 1.8968160E-03
 -7.3610866E-03 -1.6212346E-02 -2.4550855E-02 -3.2248370E-02 -3.9143451E-02
 -4.5030907E-02 -4.9665444E-02 -5.2812010E-02 -5.4369923E-02 -5.4498564E-02
 -5.3581074E-02 -5.2038278E-02 -5.0189842E-02 -4.8232947E-02 -4.6275645E-02
 -4.4372402E-02 -4.2548101E-02 -4.0811855E-02 -3.9164662E-02 -3.7603475E-02
 -3.6123432E-02 -3.4719002E-02 -3.3384584E-02 -3.2114878E-02 -3.0904941E-02
 -2.9750301E-02 -2.8646925E-02 -2.7591199E-02 -2.6579922E-02 -2.5610214E-02
 -2.4679517E-02 -2.3785545E-02 -2.2926243E-02 -2.2099769E-02 -2.1304458E-02
 -2.0538790E-02 -1.9801386E-02 -1.9090984E-02 -1.8406415E-02 -1.7746609E-02
 -1.7110553E-02 -1.6497314E-02 -1.5906014E-02 -1.5335818E-02 -1.4785948E-02
 -1.4255655E-02 -1.3744238E-02 -1.3251012E-02 -1.2775335E-02 -1.2316586E-02
 -1.1874173E-02 -1.1447521E-02 -1.1036078E-02 -1.0639315E-02 -1.0256722E-02
 -9.8878043E-03 -9.5320847E-03 -9.1891009E-03 -8.8584116E-03 -8.5395817E-03
 -8.2322005E-03 -7.9358658E-03 -7.6501868E-03 -7.3747886E-03 -7.1093892E-03
 -6.8534799E-03
 0.2597219 0.2556925 0.2509449 0.2454844 0.2393175
 0.2324509 0.2248905 0.2166405 0.2077038 0.1980828
 0.1877850 0.1768364 0.1653116 0.1533900 0.1414197
 0.1299046 0.1193242 0.1099209 0.1016805 9.4456576E-02
 8.8076621E-02 8.2388408E-02 7.7269830E-02 7.2625987E-02 6.8383358E-02
 6.4484604E-02 6.0884360E-02 5.7546251E-02 5.4440688E-02 5.1543213E-02
 4.8833396E-02 4.6293911E-02 4.3909900E-02 4.1668542E-02 3.9558582E-02
 3.7570111E-02 3.5694327E-02 3.3923328E-02 3.2250036E-02 3.0668003E-02
 2.9171364E-02 2.7754758E-02 2.6413267E-02 2.5142338E-02 2.3937797E-02
 2.2795741E-02 2.1712564E-02 2.0684890E-02 1.9709583E-02 1.8783720E-02
 1.7904550E-02 1.7069504E-02 1.6276164E-02 1.5522269E-02 1.4805698E-02
 1.4124446E-02 1.3476633E-02 1.2860487E-02 1.2274339E-02 1.1716617E-02
 1.1185837E-02 1.0680599E-02 1.0199585E-02 9.7415419E-03 9.3053021E-03
 8.8897478E-03 8.4938314E-03 8.1165582E-03 7.7569839E-03 7.4142218E-03
 7.0874416E-03
 5.3300604E-02 4.2956825E-02 3.2652367E-02 2.2457648E-02 1.2442648E-02
 2.6778793E-03 -6.7638443E-03 -1.5804661E-02 -2.4357392E-02 -3.2318968E-02
 -3.9560810E-02 -4.5916073E-02 -5.1168896E-02 -5.5064686E-02 -5.7382870E-02
 -5.8090065E-02 -5.7449173E-02 -5.5912241E-02 -5.3903244E-02 -5.1709872E-02
 -4.9494367E-02 -4.7338184E-02 -4.5277793E-02 -4.3326259E-02 -4.1484859E-02
 -3.9749317E-02 -3.8112931E-02 -3.6568224E-02 -3.5107750E-02 -3.3724491E-02
 -3.2412004E-02 -3.1164484E-02 -2.9976744E-02 -2.8844183E-02 -2.7762707E-02
 -2.6728682E-02 -2.5738897E-02 -2.4790481E-02 -2.3880892E-02 -2.3007844E-02
 -2.2169277E-02 -2.1363350E-02 -2.0588387E-02 -1.9842852E-02 -1.9125361E-02
 -1.8434631E-02 -1.7769476E-02 -1.7128799E-02 -1.6511576E-02 -1.5916863E-02
 -1.5343751E-02 -1.4791405E-02 -1.4259018E-02 -1.3745836E-02 -1.3251145E-02
 -1.2774260E-02 -1.2314524E-02 -1.1871311E-02 -1.1444027E-02 -1.1032092E-02
 -1.0634964E-02 -1.0252105E-02 -9.8830089E-03 -9.5271803E-03 -9.1841556E-03
 -8.8534728E-03 -8.5346941E-03 -8.2273958E-03 -7.9311691E-03 -7.6457271E-03
 -7.3704775E-03
 0.2778445 0.2739893 0.2694320 0.2641833 0.2582556
 0.2516620 0.2444150 0.2365258 0.2280033 0.2188534
 0.2090792 0.1986829 0.1876719 0.1760755 0.1639815
 0.1516024 0.1393404 0.1277384 0.1172479 0.1080305
 0.1000013 9.2976756E-02 8.6772293E-02 8.1234582E-02 7.6244220E-02
 7.1709879E-02 6.7561343E-02 6.3744009E-02 6.0214784E-02 5.6939062E-02
 5.3888667E-02 5.1040296E-02 4.8374400E-02 4.5874398E-02 4.3526046E-02
 4.1316975E-02 3.9236356E-02 3.7274610E-02 3.5423223E-02 3.3674560E-02
 3.2021701E-02 3.0458407E-02 2.8978966E-02 2.7578149E-02 2.6251163E-02
 2.4993580E-02 2.3801295E-02 2.2670507E-02 2.1597678E-02 2.0579524E-02
 1.9612974E-02 1.8695150E-02 1.7823361E-02 1.6995091E-02 1.6207978E-02
 1.5459802E-02 1.4748475E-02 1.4072035E-02 1.3428628E-02 1.2816527E-02
 1.2234085E-02 1.1679758E-02 1.1152090E-02 1.0649697E-02 1.0171290E-02
 9.7156391E-03 9.2815822E-03 8.8680265E-03 8.4739374E-03 8.0983313E-03
 7.7402904E-03
 6.6268198E-02 5.5627994E-02 4.4999830E-02 3.4450687E-02 2.4045391E-02
 1.3847051E-02 3.9179078E-03 -5.6793140E-03 -1.4879284E-02 -2.3610923E-02
 -3.1792492E-02 -3.9324034E-02 -4.6076328E-02 -5.1876854E-02 -5.6499016E-02
 -5.9680756E-02 -6.1222479E-02 -6.1164305E-02 -5.9862446E-02 -5.7813261E-02
 -5.5427011E-02 -5.2956585E-02 -5.0533094E-02 -4.8216093E-02 -4.6027813E-02
 -4.3972038E-02 -4.2044006E-02 -4.0235333E-02 -3.8536489E-02 -3.6937933E-02
 -3.5430707E-02 -3.4006651E-02 -3.2658421E-02 -3.1379506E-02 -3.0164139E-02
 -2.9007226E-02 -2.7904278E-02 -2.6851317E-02 -2.5844840E-02 -2.4881728E-02
 -2.3959197E-02 -2.3074770E-02 -2.2226222E-02 -2.1411540E-02 -2.0628922E-02
 -1.9876713E-02 -1.9153411E-02 -1.8457627E-02 -1.7788097E-02 -1.7143646E-02
 -1.6523184E-02 -1.5925687E-02 -1.5350204E-02 -1.4795841E-02 -1.4261754E-02
 -1.3747152E-02 -1.3251276E-02 -1.2773410E-02 -1.2312875E-02 -1.1869021E-02
 -1.1441226E-02 -1.1028899E-02 -1.0631474E-02 -1.0248399E-02 -9.8791579E-03
 -9.5232483E-03 -9.1801891E-03 -8.8495137E-03 -8.5307714E-03 -8.2236743E-03
 -7.9275379E-03
 0.2967753 0.2930412 0.2886139 0.2835096 0.2777458
 0.2713412 0.2643143 0.2566827 0.2484622 0.2396655
 0.2303021 0.2203771 0.2098918 0.1988461 0.1872455
 0.1751215 0.1625740 0.1498476 0.1373938 0.1257809
 0.1154187 0.1063925 9.8560408E-02 9.1714449E-02 8.5663788E-02
 8.0256455E-02 7.5376466E-02 7.0936002E-02 6.6867948E-02 6.3120134E-02
 5.9651453E-02 5.6428861E-02 5.3425383E-02 5.0618719E-02 4.7990095E-02
 4.5523550E-02 4.3205358E-02 4.1023560E-02 3.8967699E-02 3.7028484E-02
 3.5197631E-02 3.3467703E-02 3.1831995E-02 3.0284392E-02 2.8819337E-02
 2.7431719E-02 2.6116839E-02 2.4870360E-02 2.3688270E-02 2.2566848E-02
 2.1502625E-02 2.0492369E-02 1.9533066E-02 1.8621894E-02 1.7756214E-02
 1.6933557E-02 1.6151588E-02 1.5408129E-02 1.4701127E-02 1.4028653E-02
 1.3388891E-02 1.2780122E-02 1.2200735E-02 1.1649203E-02 1.1124098E-02
 1.0624056E-02 1.0147798E-02 9.6941143E-03 9.2618568E-03 8.8499486E-03
 8.4573692E-03
 8.0162659E-02 6.9235526E-02 5.8298267E-02 4.7416076E-02 3.6650993E-02
 2.6061928E-02 1.5705276E-02 5.6354692E-03 -4.0938072E-03 -1.3428137E-02
 -2.2309905E-02 -3.0674675E-02 -3.8445722E-02 -4.5525715E-02 -5.1784337E-02
 -5.7042770E-02 -6.1063714E-02 -6.3579559E-02 -6.4416409E-02 -6.3688636E-02
 -6.1830919E-02 -5.9363335E-02 -5.6673247E-02 -5.3980235E-02 -5.1389012E-02
 -4.8941541E-02 -4.6648808E-02 -4.4507395E-02 -4.2507868E-02 -4.0638618E-02
 -3.8887884E-02 -3.7244517E-02 -3.5698347E-02 -3.4240291E-02 -3.2862276E-02
 -3.1557202E-02 -3.0318828E-02 -2.9141657E-02 -2.8020870E-02 -2.6952211E-02
 -2.5931904E-02 -2.4956623E-02 -2.4023401E-02 -2.3129588E-02 -2.2272816E-02
 -2.1450942E-02 -2.0662040E-02 -1.9904356E-02 -1.9176286E-02 -1.8476378E-02
 -1.7803280E-02 -1.7155753E-02 -1.6532645E-02 -1.5932886E-02 -1.5355472E-02
 -1.4799478E-02 -1.4264014E-02 -1.3748256E-02 -1.3251415E-02 -1.2772760E-02
 -1.2311580E-02 -1.1867204E-02 -1.1438997E-02 -1.1026351E-02 -1.0628683E-02
 -1.0245438E-02 -9.8760808E-03 -9.5201032E-03 -9.1770114E-03 -8.8465121E-03
 -8.5278032E-03
 0.3166217 0.3129581 0.3086045 0.3035817 0.2979123
 0.2916200 0.2847287 0.2772615 0.2692399 0.2606833
 0.2516079 0.2420260 0.2319451 0.2213677 0.2102917
 0.1987130 0.1866347 0.1740887 0.1611865 0.1482028
 0.1356323 0.1240568 0.1138384 0.1049940 9.7338796E-02
 9.0648502E-02 8.4730066E-02 7.9433948E-02 7.4647725E-02 7.0286848E-02
 6.6286877E-02 6.2597848E-02 5.9180282E-02 5.6002513E-02 5.3038608E-02
 5.0267071E-02 4.7669806E-02 4.5231380E-02 4.2938516E-02 4.0779620E-02
 3.8744505E-02 3.6824133E-02 3.5010446E-02 3.3296168E-02 3.1674761E-02
 3.0140242E-02 2.8687160E-02 2.7310507E-02 2.6005674E-02 2.4768418E-02
 2.3594787E-02 2.2481123E-02 2.1424016E-02 2.0420289E-02 1.9466978E-02
 1.8561305E-02 1.7700674E-02 1.6882641E-02 1.6104916E-02 1.5365350E-02
 1.4661917E-02 1.3992715E-02 1.3355951E-02 1.2749925E-02 1.2173057E-02
 1.1623838E-02 1.1100844E-02 1.0602738E-02 1.0128249E-02 9.6761882E-03
 9.2454208E-03
 9.4996177E-02 8.3785020E-02 7.2544985E-02 6.1340641E-02 5.0232515E-02
 3.9277248E-02 2.8527824E-02 1.8034037E-02 7.8430790E-03 -1.9995782E-03
 -1.1448894E-02 -2.0458402E-02 -2.8977579E-02 -3.6947954E-02 -4.4297028E-02
 -5.0929192E-02 -5.6712355E-02 -6.1461061E-02 -6.4927533E-02 -6.6840306E-02
 -6.7053810E-02 -6.5752864E-02 -6.3434631E-02 -6.0627799E-02 -5.7693377E-02
 -5.4821234E-02 -5.2094359E-02 -4.9540695E-02 -4.7162440E-02 -4.4950582E-02
 -4.2891990E-02 -4.0972564E-02 -3.9178759E-02 -3.7498154E-02 -3.5919610E-02
 -3.4433279E-02 -3.3030499E-02 -3.1703688E-02 -3.0446220E-02 -2.9252263E-02
 -2.8116703E-02 -2.7035045E-02 -2.6003316E-02 -2.5017997E-02 -2.4075970E-02
 -2.3174439E-02 -2.2310911E-02 -2.1483134E-02 -2.0689080E-02 -1.9926913E-02
 -1.9194957E-02 -1.8491678E-02 -1.7815670E-02 -1.7165633E-02 -1.6540371E-02
 -1.5938774E-02 -1.5359797E-02 -1.4802474E-02 -1.4265889E-02 -1.3749196E-02
 -1.3251578E-02 -1.2772278E-02 -1.2310573E-02 -1.1865775E-02 -1.1437234E-02
 -1.1024330E-02 -1.0626466E-02 -1.0243080E-02 -9.8736268E-03 -9.5178122E-03
 -9.1746971E-03
 0.3381902 0.3338558 0.3295214 0.3245202 0.3188797
 0.3126285 0.3057951 0.2984075 0.2904924 0.2820746
 0.2731760 0.2638153 0.2540070 0.2437606 0.2330803
 0.2219645 0.2104067 0.1983983 0.1859386 0.1730601
 0.1598844 0.1467138 0.1340800 0.1225689 0.1124940
 0.1038145 9.6313238E-02 8.9755982E-02 8.3949521E-02 7.8747064E-02
 7.4039638E-02 6.9745556E-02 6.5802671E-02 6.2162884E-02 5.8788165E-02
 5.5647910E-02 5.2717108E-02 4.9974930E-02 4.7403872E-02 4.4988949E-02
 4.2717218E-02 4.0577397E-02 3.8559563E-02 3.6654875E-02 3.4855459E-02
 3.3154201E-02 3.1544667E-02 3.0020999E-02 2.8577834E-02 2.7210267E-02
 2.5913764E-02 2.4684133E-02 2.3517489E-02 2.2410231E-02 2.1359004E-02
 2.0360669E-02 1.9412305E-02 1.8511171E-02 1.7654693E-02 1.6840475E-02
 1.6066251E-02 1.5329890E-02 1.4629402E-02 1.3962893E-02 1.3328600E-02
 1.2724847E-02 1.2150052E-02 1.1602733E-02 1.1081478E-02 1.0584979E-02
 1.0111958E-02
 0.1108302 9.9287920E-02 8.7745607E-02 7.6222815E-02 6.4779446E-02
 5.3470895E-02 4.2348221E-02 3.1458516E-02 2.0845218E-02 1.0548738E-02
 6.0722604E-04 -8.9424318E-03 -1.8063039E-02 -2.6715312E-02 -3.4854781E-02
 -4.2427737E-02 -4.9364850E-02 -5.5571381E-02 -6.0912795E-02 -6.5196835E-02
 -6.8165742E-02 -6.9545567E-02 -6.9219634E-02 -6.7436390E-02 -6.4740643E-02
 -6.1659895E-02 -5.8528967E-02 -5.5512346E-02 -5.2675441E-02 -5.0035156E-02
 -4.7586758E-02 -4.5316894E-02 -4.3209501E-02 -4.1248534E-02 -3.9419040E-02
 -3.7707541E-02 -3.6102127E-02 -3.4592327E-02 -3.3169020E-02 -3.1824213E-02
 -3.0550936E-02 -2.9343085E-02 -2.8195327E-02 -2.7102945E-02 -2.6061807E-02
 -2.5068235E-02 -2.4118969E-02 -2.3211105E-02 -2.2342036E-02 -2.1509424E-02
 -2.0711163E-02 -1.9945337E-02 -1.9210201E-02 -1.8504171E-02 -1.7825790E-02
 -1.7173713E-02 -1.6546702E-02 -1.5943611E-02 -1.5363356E-02 -1.4804955E-02
 -1.4267465E-02 -1.3750008E-02 -1.3251760E-02 -1.2771938E-02 -1.2309805E-02
 -1.1864667E-02 -1.1435853E-02 -1.1022735E-02 -1.0624710E-02 -1.0241497E-02
 -9.8719625E-03
 0.3634756 0.3578006 0.3521257 0.3464508 0.3407758
 0.3344974 0.3276486 0.3202618 0.3123685 0.3039978
 0.2951767 0.2859290 0.2762749 0.2662302 0.2558060
 0.2450080 0.2338358 0.2222830 0.2103381 0.1979877
 0.1852277 0.1720901 0.1587058 0.1454019 0.1327404
 0.1213053 0.1113642 0.1028290 9.5459096E-02 8.9013807E-02
 8.3300978E-02 7.8176677E-02 7.3534854E-02 6.9296345E-02 6.5400973E-02
 6.1802145E-02 5.8463037E-02 5.5353977E-02 5.2450690E-02 4.9732946E-02
 4.7183655E-02 4.4788226E-02 4.2534042E-02 4.0410049E-02 3.8406543E-02
 3.6514867E-02 3.4727279E-02 3.3036791E-02 3.1437077E-02 2.9922379E-02
 2.8487425E-02 2.7127370E-02 2.5837734E-02 2.4614394E-02 2.3453524E-02
 2.2351557E-02 2.1305179E-02 2.0311294E-02 1.9367002E-02 1.8469609E-02
 1.7616566E-02 1.6805492E-02 1.6034152E-02 1.5300437E-02 1.4602370E-02
 1.3938090E-02 1.3305836E-02 1.2703951E-02 1.2130870E-02 1.1585142E-02
 1.1065331E-02
 0.1273978 0.1156209 0.1038440 9.2067152E-02 8.0290280E-02
 6.8633884E-02 5.7147920E-02 4.5877848E-02 3.4864910E-02 2.4146527E-02
 1.3756807E-02 3.7272864E-03 -5.9121614E-03 -1.5132259E-02 -2.3902643E-02
 -3.2189712E-02 -3.9953850E-02 -4.7144838E-02 -5.3695388E-02 -5.9510749E-02
 -6.4453445E-02 -6.8324514E-02 -7.0856974E-02 -7.1775414E-02 -7.0990928E-02
 -6.8807207E-02 -6.5804228E-02 -6.2502757E-02 -5.9213616E-02 -5.6080200E-02
 -5.3153869E-02 -5.0442778E-02 -4.7936793E-02 -4.5619134E-02 -4.3471459E-02
 -4.1476134E-02 -3.9617088E-02 -3.7880000E-02 -3.6252338E-02 -3.4723137E-02
 -3.3282850E-02 -3.1923160E-02 -3.0636830E-02 -2.9417528E-02 -2.8259717E-02
 -2.7158521E-02 -2.6109651E-02 -2.5109299E-02 -2.4154095E-02 -2.3241039E-02
 -2.2367440E-02 -2.1530882E-02 -2.0729179E-02 -1.9960362E-02 -1.9222640E-02
 -1.8514374E-02 -1.7834062E-02 -1.7180325E-02 -1.6551889E-02 -1.5947577E-02
 -1.5366292E-02 -1.4807017E-02 -1.4268789E-02 -1.3750711E-02 -1.3251945E-02
 -1.2771701E-02 -1.2309224E-02 -1.1863804E-02 -1.1434766E-02 -1.1021854E-02
 -1.0623695E-02
 0.3920404 0.3851048 0.3781691 0.3712335 0.3642979
 0.3573623 0.3504266 0.3429652 0.3350133 0.3266046
 0.3177701 0.3085380 0.2989331 0.2889764 0.2786844
 0.2680689 0.2571363 0.2458877 0.2343176 0.2224147
 0.2101624 0.1975430 0.1845485 0.1712109 0.1576688
 0.1442710 0.1316040 0.1202461 0.1104244 0.1020125
 9.4752587E-02 8.8400364E-02 8.2765013E-02 7.7705301E-02 7.3117703E-02
 6.8925090E-02 6.5068968E-02 6.1503973E-02 5.8194295E-02 5.5111047E-02
 5.2230507E-02 4.9532935E-02 4.7001649E-02 4.4622332E-02 4.2382646E-02
 4.0271748E-02 3.8280085E-02 3.6399148E-02 3.4621313E-02 3.2939717E-02
 3.1348120E-02 2.9840834E-02 2.8412646E-02 2.7058775E-02 2.5774810E-02
 2.4556667E-02 2.3400553E-02 2.2302948E-02 2.1260565E-02 2.0270346E-02
 1.9329421E-02 1.8435108E-02 1.7584894E-02 1.6776416E-02 1.6007451E-02
 1.5275924E-02 1.4579862E-02 1.3917416E-02 1.3286846E-02 1.2686542E-02
 1.2114879E-02
 0.1439916 0.1321461 0.1203006 0.1084552 9.6609674E-02
 8.4764190E-02 7.2918706E-02 6.1275978E-02 4.9875908E-02 3.8754050E-02
 2.7942121E-02 1.7468439E-02 7.3586251E-03 -2.3636841E-03 -1.1675773E-02
 -2.0554494E-02 -2.8974839E-02 -3.6907587E-02 -4.4316482E-02 -5.1153615E-02
 -5.7352658E-02 -6.2818125E-02 -6.7409404E-02 -7.0921116E-02 -7.3077999E-02
 -7.3603928E-02 -7.2435334E-02 -6.9922440E-02 -6.6670656E-02 -6.3191466E-02
 -5.9774756E-02 -5.6546733E-02 -5.3547550E-02 -5.0778501E-02 -4.8225220E-02
 -4.5868184E-02 -4.3687262E-02 -4.1663539E-02 -3.9780058E-02 -3.8021836E-02
 -3.6375791E-02 -3.4830552E-02 -3.3376250E-02 -3.2004286E-02 -3.0707207E-02
 -2.9478485E-02 -2.8312413E-02 -2.7203973E-02 -2.6148748E-02 -2.5142847E-02
 -2.4182789E-02 -2.3265492E-02 -2.2388190E-02 -2.1548400E-02 -2.0743893E-02
 -1.9972641E-02 -1.9232810E-02 -1.8522719E-02 -1.7840832E-02 -1.7185746E-02
 -1.6556153E-02 -1.5950853E-02 -1.5368727E-02 -1.4808733E-02 -1.4269903E-02
 -1.3751326E-02 -1.3252145E-02 -1.2771553E-02 -1.2308791E-02 -1.1863631E-02
 -1.1434405E-02
 0.4232817 0.4151931 0.4071046 0.3990160 0.3909274
 0.3828388 0.3747502 0.3666616 0.3585730 0.3500443
 0.3411104 0.3318034 0.3221519 0.3121811 0.3019118
 0.2913607 0.2805395 0.2694552 0.2581091 0.2464970
 0.2346088 0.2224283 0.2099342 0.1971046 0.1839284
 0.1704373 0.1567766 0.1433131 0.1306533 0.1193679
 0.1096490 0.1013404 9.4171435E-02 8.7895729E-02 8.2323998E-02
 7.7317245E-02 7.2774120E-02 6.8619169E-02 6.4795271E-02 6.1258115E-02
 5.7972644E-02 5.4910604E-02 5.2048787E-02 4.9367823E-02 4.6851359E-02
 4.4485338E-02 4.2257596E-02 4.0157478E-02 3.8175561E-02 3.6303479E-02
 3.4533702E-02 3.2859437E-02 3.1274520E-02 2.9773328E-02 2.8350724E-02
 2.7001962E-02 2.5722669E-02 2.4508806E-02 2.3356613E-02 2.2262601E-02
 2.1223521E-02 2.0236325E-02 1.9298173E-02 1.8406406E-02 1.7558524E-02
 1.6752191E-02 1.5985198E-02 1.5255471E-02 1.4561061E-02 1.3900192E-02
 1.3271015E-02
 0.1601107 0.1483297 0.1365486 0.1247676 0.1129866
 0.1012056 8.9424603E-02 7.7643596E-02 6.5862589E-02 5.4347556E-02
 4.3128647E-02 3.2232225E-02 2.1681305E-02 1.1496125E-02 1.6949731E-03
 -7.7049127E-03 -1.6686419E-02 -2.5231071E-02 -3.3317696E-02 -4.0920068E-02
 -4.8003960E-02 -5.4522697E-02 -6.0410101E-02 -6.5569460E-02 -6.9856942E-02
 -7.3061377E-02 -7.4900210E-02 -7.5097054E-02 -7.3610611E-02 -7.0829339E-02
 -6.7376725E-02 -6.3754462E-02 -6.0234737E-02 -5.6929927E-02 -5.3871322E-02
 -5.1054779E-02 -4.8462622E-02 -4.6073142E-02 -4.3864790E-02 -4.1817650E-02
 -3.9914005E-02 -3.8138326E-02 -3.6477111E-02 -3.4918647E-02 -3.3452794E-02
 -3.2070741E-02 -3.0764824E-02 -2.9528357E-02 -2.8355498E-02 -2.7241120E-02
 -2.6180707E-02 -2.5170255E-02 -2.4206225E-02 -2.3285454E-02 -2.2405129E-02
 -2.1562710E-02 -2.0755915E-02 -1.9982681E-02 -1.9241124E-02 -1.8529549E-02
 -1.7846387E-02 -1.7190197E-02 -1.6559664E-02 -1.5953556E-02 -1.5370746E-02
 -1.4810174E-02 -1.4270856E-02 -1.3751867E-02 -1.3252340E-02 -1.2772107E-02
 -1.2309105E-02
 0.4565256 0.4474082 0.4382908 0.4291734 0.4200560
 0.4109386 0.4018212 0.3927038 0.3835864 0.3744690
 0.3653516 0.3558825 0.3460938 0.3360140 0.3256678
 0.3150755 0.3042530 0.2932116 0.2819579 0.2704935
 0.2588148 0.2469127 0.2347724 0.2223733 0.2096902
 0.1966974 0.1833810 0.1697724 0.1560226 0.1425136
 0.1298671 0.1186462 0.1090137 0.1007902 9.3695618E-02
 8.7482505E-02 8.1962317E-02 7.6998696E-02 7.2491832E-02 6.8367667E-02
 6.4570107E-02 6.1055698E-02 5.7790045E-02 5.4745380E-02 5.1898926E-02
 4.9231611E-02 4.6727318E-02 4.4372212E-02 4.2154286E-02 4.0063031E-02
 3.8089149E-02 3.6224354E-02 3.4461200E-02 3.2792959E-02 3.1213552E-02
 2.9717395E-02 2.8299388E-02 2.6954833E-02 2.5679389E-02 2.4469055E-02
 2.3320099E-02 2.2229057E-02 2.1192696E-02 2.0207994E-02 1.9272136E-02
 1.8382473E-02 1.7536525E-02 1.6731963E-02 1.5966590E-02 1.5238440E-02
 1.4545402E-02
 0.1754634 0.1638464 0.1522294 0.1406123 0.1289953
 0.1173783 0.1057614 9.4144367E-02 8.2527377E-02 7.0910387E-02
 5.9293397E-02 4.7987241E-02 3.7013300E-02 2.6389686E-02 1.6131911E-02
 6.2536765E-03 -3.2324968E-03 -1.2314252E-02 -2.0978468E-02 -2.9209908E-02
 -3.6989745E-02 -4.4293512E-02 -5.1088046E-02 -5.7326984E-02 -6.2943727E-02
 -6.7840092E-02 -7.1869180E-02 -7.4814677E-02 -7.6387815E-02 -7.6312184E-02
 -7.4565373E-02 -7.1566664E-02 -6.7952365E-02 -6.4214900E-02 -6.0611896E-02
 -5.7244707E-02 -5.4137506E-02 -5.1282007E-02 -4.8657883E-02 -4.6241712E-02
 -4.4010747E-02 -4.1944277E-02 -4.0024001E-02 -3.8233921E-02 -3.6560211E-02
 -3.4990866E-02 -3.3515517E-02 -3.2125160E-02 -3.0811975E-02 -2.9569155E-02
 -2.8390739E-02 -2.7271500E-02 -2.6206829E-02 -2.5192654E-02 -2.4225377E-02
 -2.3301776E-02 -2.2418980E-02 -2.1574415E-02 -2.0765750E-02 -1.9990899E-02
 -1.9247945E-02 -1.8535160E-02 -1.7850954E-02 -1.7193865E-02 -1.6562562E-02
 -1.5955800E-02 -1.5372433E-02 -1.4811389E-02 -1.4271665E-02 -1.3753180E-02
 -1.3253359E-02
 0.4910979 0.4810831 0.4710682 0.4610533 0.4510385
 0.4410236 0.4310088 0.4209939 0.4109790 0.4009642
 0.3909493 0.3809344 0.3709196 0.3606396 0.3501220
 0.3393905 0.3284641 0.3173575 0.3060812 0.2946409
 0.2830378 0.2712686 0.2593248 0.2471928 0.2348539
 0.2222836 0.2094532 0.1963338 0.1829096 0.1692114
 0.1553950 0.1418543 0.1292232 0.1180574 0.1084962
 0.1003419 9.3307458E-02 8.7144755E-02 8.1666440E-02 7.6737806E-02
 7.2260357E-02 6.8161175E-02 6.4385049E-02 6.0889177E-02 5.7639707E-02
 5.4609273E-02 5.1775377E-02 4.9119230E-02 4.6624906E-02 4.4278752E-02
 4.2068891E-02 3.9984930E-02 3.8017642E-02 3.6158830E-02 3.4401126E-02
 3.2737862E-02 3.1162985E-02 2.9670971E-02 2.8256746E-02 2.6915662E-02
 2.5643403E-02 2.4435982E-02 2.3289699E-02 2.2201100E-02 2.1166988E-02
 2.0184359E-02 1.9250395E-02 1.8362472E-02 1.7518118E-02 1.6715128E-02
 1.5951112E-02
 0.1899468 0.1785616 0.1671763 0.1557911 0.1444059
 0.1330207 0.1216355 0.1102503 9.8865069E-02 8.7479867E-02
 7.6094665E-02 6.4709462E-02 5.3324264E-02 4.2278070E-02 3.1584688E-02
 2.1255489E-02 1.1300123E-02 1.7273005E-03 -7.4546016E-03 -1.6236505E-02
 -2.4607783E-02 -3.2555118E-02 -4.0060971E-02 -4.7101580E-02 -5.3644069E-02
 -5.9641834E-02 -6.5027483E-02 -6.9701284E-02 -7.3513500E-02 -7.6243445E-02
 -7.7597164E-02 -7.7298328E-02 -7.5340085E-02 -7.2166145E-02 -6.8421960E-02
 -6.4591683E-02 -6.0921244E-02 -5.7503249E-02 -5.4356329E-02 -5.1468901E-02
 -4.8818476E-02 -4.6380300E-02 -4.4130694E-02 -4.2048294E-02 -4.0114310E-02
 -3.8312387E-02 -3.6628380E-02 -3.5050076E-02 -3.3566907E-02 -3.2169726E-02
 -3.0850586E-02 -2.9602557E-02 -2.8419580E-02 -2.7296349E-02 -2.6228197E-02
 -2.5210986E-02 -2.4241053E-02 -2.3315135E-02 -2.2430319E-02 -2.1583999E-02
 -2.0773817E-02 -1.9997643E-02 -1.9253550E-02 -1.8539775E-02 -1.7854717E-02
 -1.7196899E-02 -1.6564971E-02 -1.5957674E-02 -1.5373845E-02 -1.4813510E-02
 -1.4273443E-02
 0.5263830 0.5156015 0.5048199 0.4940383 0.4832568
 0.4724752 0.4616936 0.4509121 0.4401305 0.4293490
 0.4185674 0.4077859 0.3970043 0.3862227 0.3754412
 0.3644758 0.3533483 0.3420763 0.3306729 0.3191468
 0.3075028 0.2957413 0.2838586 0.2718466 0.2596927
 0.2473795 0.2348847 0.2221805 0.2092356 0.1960185
 0.1825114 0.1687450 0.1548785 0.1413157 0.1286997
 0.1175798 0.1080764 9.9977672E-02 9.2991546E-02 8.6869419E-02
 8.1424788E-02 7.6524317E-02 7.2070643E-02 6.7991689E-02 6.4232953E-02
 6.0752179E-02 5.7515886E-02 5.4497045E-02 5.1673394E-02 4.9026389E-02
 4.6540245E-02 4.4201437E-02 4.1998196E-02 3.9920200E-02 3.7958339E-02
 3.6104463E-02 3.4351245E-02 3.2692075E-02 3.1120932E-02 2.9632336E-02
 2.8221246E-02 2.6883023E-02 2.5613390E-02 2.4408376E-02 2.3264300E-02
 2.2177737E-02 2.1145485E-02 2.0164564E-02 1.9232169E-02 1.8345827E-02
 1.7502813E-02
 0.2036153 0.1925011 0.1813868 0.1702725 0.1591583
 0.1480440 0.1369297 0.1258155 0.1147012 0.1035869
 9.2472665E-02 8.1358403E-02 7.0244141E-02 5.9129879E-02 4.8015617E-02
 3.7254270E-02 2.6853580E-02 1.6819902E-02 7.1586575E-03 -2.1248176E-03
 -1.1024643E-02 -1.9533711E-02 -2.7642718E-02 -3.5339151E-02 -4.2605914E-02
 -4.9419291E-02 -5.5746131E-02 -6.1539311E-02 -6.6730380E-02 -7.1218088E-02
 -7.4850291E-02 -7.7402599E-02 -7.8576878E-02 -7.8096837E-02 -7.5968154E-02
 -7.2653629E-02 -6.8805203E-02 -6.4900160E-02 -6.1175060E-02 -5.7715703E-02
 -5.4536264E-02 -5.1622584E-02 -4.8950531E-02 -4.6494223E-02 -4.4229262E-02
 -4.2133737E-02 -4.0188462E-02 -3.8376767E-02 -3.6684282E-02 -3.5098609E-02
 -3.3609025E-02 -3.2206245E-02 -3.0882210E-02 -2.9629895E-02 -2.8443186E-02
 -2.7316699E-02 -2.6245689E-02 -2.5225988E-02 -2.4253882E-02 -2.3326075E-02
 -2.2439616E-02 -2.1591863E-02 -2.0780439E-02 -2.0003181E-02 -1.9258153E-02
 -1.8543573E-02 -1.7857822E-02 -1.7199410E-02 -1.6566964E-02 -1.5960678E-02
 -1.5376446E-02
 0.5550041 0.5440346 0.5330651 0.5220956 0.5111262
 0.5001568 0.4891874 0.4782180 0.4672487 0.4562794
 0.4453101 0.4343408 0.4233715 0.4124022 0.4014330
 0.3902799 0.3789647 0.3675051 0.3559140 0.3442003
 0.3324096 0.3205450 0.3086060 0.2965879 0.2844828
 0.2722785 0.2599588 0.2475031 0.2348860 0.2220774
 0.2090435 0.1957509 0.1821801 0.1683618 0.1544579
 0.1408796 0.1282771 0.1171943 0.1077372 9.9682733E-02
 9.2736132E-02 8.6645283E-02 8.1227593E-02 7.6349735E-02 7.1915202E-02
 6.7852609E-02 6.4107969E-02 6.0639419E-02 5.7413820E-02 5.4404423E-02
 5.1589172E-02 4.8949633E-02 4.6470176E-02 4.4137374E-02 4.1939557E-02
 3.9866485E-02 3.7909087E-02 3.6059272E-02 3.4309745E-02 3.2653946E-02
 3.1085894E-02 2.9600121E-02 2.8191613E-02 2.6855757E-02 2.5588294E-02
 2.4385277E-02 2.3243036E-02 2.2158155E-02 2.1127446E-02 2.0148110E-02
 1.9217042E-02
 0.2276921 0.2161089 0.2045258 0.1929427 0.1813596
 0.1697765 0.1581934 0.1466103 0.1350272 0.1234441
 0.1118610 0.1002780 8.8694938E-02 7.7111885E-02 6.5528840E-02
 5.4298721E-02 4.3429263E-02 3.2926820E-02 2.2796815E-02 1.3044582E-02
 3.6570593E-03 -5.3623156E-03 -1.4009044E-02 -2.2276759E-02 -3.0156603E-02
 -3.7636150E-02 -4.4698160E-02 -5.1318578E-02 -5.7463627E-02 -6.3085422E-02
 -6.8114534E-02 -7.2448224E-02 -7.5932361E-02 -7.8339547E-02 -7.9368263E-02
 -7.8742303E-02 -7.6477125E-02 -7.3050223E-02 -6.9118291E-02 -6.5153003E-02
 -6.1383858E-02 -5.7890426E-02 -5.4684330E-02 -5.1749069E-02 -4.9059201E-02
 -4.6587963E-02 -4.4310339E-02 -4.2203985E-02 -4.0249377E-02 -3.8429640E-02
 -3.6730193E-02 -3.5138458E-02 -3.3643585E-02 -3.2236192E-02 -3.0908136E-02
 -2.9652318E-02 -2.8462546E-02 -2.7333381E-02 -2.6260031E-02 -2.5238292E-02
 -2.4264412E-02 -2.3335056E-02 -2.2447251E-02 -2.1598324E-02 -2.0785877E-02
 -2.0007743E-02 -1.9261952E-02 -1.8546714E-02 -1.7860387E-02 -1.7203413E-02
 -1.6570501E-02
 0.5846598 0.5734840 0.5623082 0.5511324 0.5399567
 0.5287811 0.5176054 0.5064299 0.4952545 0.4840791
 0.4729037 0.4617284 0.4505531 0.4393778 0.4282026
 0.4168436 0.4053225 0.3936569 0.3818599 0.3699403
 0.3579437 0.3458733 0.3337714 0.3216360 0.3094617
 0.2972399 0.2849586 0.2726023 0.2601521 0.2475844
 0.2348716 0.2219816 0.2088785 0.1955274 0.1819078
 0.1680500 0.1541180 0.1405287 0.1279377 0.1168846
 0.1074638 9.9444307E-02 9.2528321E-02 8.6462975E-02 8.1066750E-02
 7.6207004E-02 7.1787834E-02 6.7738406E-02 6.4005129E-02 6.0546495E-02
 5.7329621E-02 5.4327905E-02 5.1519483E-02 4.8886038E-02 4.6412058E-02
 4.4084191E-02 4.1890837E-02 3.9821811E-02 3.7868079E-02 3.6021601E-02
 3.4275133E-02 3.2622121E-02 3.1056622E-02 2.9573176E-02 2.8166810E-02
 2.6832921E-02 2.5567263E-02 2.4365898E-02 2.3225175E-02 2.2141870E-02
 2.1112487E-02
 0.2529073 0.2408488 0.2287904 0.2167319 0.2046735
 0.1926150 0.1805566 0.1684981 0.1564398 0.1443814
 0.1323231 0.1202648 0.1082065 9.6148156E-02 8.4089868E-02
 7.2384514E-02 6.1039828E-02 5.0062168E-02 3.9456952E-02 2.9229512E-02
 1.9366788E-02 9.8722121E-03 7.3084625E-04 -8.0545712E-03 -1.6479906E-02
 -2.4538832E-02 -3.2222342E-02 -3.9517678E-02 -4.6407014E-02 -5.2865721E-02
 -5.8859318E-02 -6.4339057E-02 -6.9234595E-02 -7.3441878E-02 -7.6805122E-02
 -7.9094559E-02 -8.0006056E-02 -7.9263389E-02 -7.6889507E-02 -7.3373146E-02
 -6.9374382E-02 -6.5360487E-02 -6.1555408E-02 -5.8034293E-02 -5.4806307E-02
 -5.1853303E-02 -4.9148742E-02 -4.6665177E-02 -4.4377089E-02 -4.2261798E-02
 -4.0299520E-02 -3.8473144E-02 -3.6767937E-02 -3.5171196E-02 -3.3671975E-02
 -3.2260798E-02 -3.0929442E-02 -2.9670740E-02 -2.8478445E-02 -2.7347080E-02
 -2.6271820E-02 -2.5248406E-02 -2.4273071E-02 -2.3342442E-02 -2.2453530E-02
 -2.1603648E-02 -2.0790368E-02 -2.0011513E-02 -1.9265087E-02 -1.8551877E-02
 -1.7865017E-02
 0.6152931 0.6038961 0.5924991 0.5811023 0.5697054
 0.5583086 0.5469119 0.5355153 0.5241188 0.5127226
 0.5013263 0.4899300 0.4785339 0.4671378 0.4557417
 0.4441618 0.4324199 0.4205335 0.4085157 0.3963754
 0.3841581 0.3718669 0.3595443 0.3471883 0.3348380
 0.3224871 0.3101261 0.2977429 0.2853224 0.2728464
 0.2602933 0.2476377 0.2348500 0.2218964 0.2087395
 0.1953433 0.1816862 0.1677983 0.1538454 0.1402483
 0.1276665 0.1166365 0.1072441 9.9251837E-02 9.2359990E-02
 8.6314775E-02 8.0935560E-02 7.6090232E-02 7.1683347E-02 6.7644499E-02
 6.3920423E-02 6.0469821E-02 5.7260007E-02 5.4264542E-02 5.1461693E-02
 4.8833251E-02 4.6363764E-02 4.4039950E-02 4.1850250E-02 3.9784551E-02
 3.7833855E-02 3.5990138E-02 3.4246191E-02 3.2595482E-02 3.1032085E-02
 2.9550584E-02 2.8145997E-02 2.6813732E-02 2.5549574E-02 2.4349745E-02
 2.3210352E-02
 0.2792519 0.2667127 0.2541735 0.2416342 0.2290951
 0.2165559 0.2040168 0.1914777 0.1789386 0.1663996
 0.1538606 0.1413216 0.1287827 0.1162438 0.1037049
 9.1518916E-02 7.9693630E-02 6.8235375E-02 5.7149574E-02 4.6441559E-02
 3.6098260E-02 2.6123112E-02 1.6501179E-02 7.2351960E-03 -1.6906762E-03
 -1.0273630E-02 -1.8509248E-02 -2.6390843E-02 -3.3908777E-02 -4.1049734E-02
 -4.7795217E-02 -5.4119859E-02 -5.9988473E-02 -6.5351479E-02 -7.0137613E-02
 -7.4241854E-02 -7.7506997E-02 -7.9701491E-02 -8.0519147E-02 -7.9683721E-02
 -7.7223748E-02 -7.3636331E-02 -6.9584116E-02 -6.5531000E-02 -6.1696738E-02
 -5.8152966E-02 -5.4906972E-02 -5.1939320E-02 -4.9222615E-02 -4.6728861E-02
 -4.4432141E-02 -4.2309467E-02 -4.0340837E-02 -3.8508970E-02 -3.6799014E-02
 -3.5198156E-02 -3.3695355E-02 -3.2281052E-02 -3.0946968E-02 -2.9685896E-02
 -2.8491532E-02 -2.7358361E-02 -2.6281528E-02 -2.5256740E-02 -2.4280198E-02
 -2.3348533E-02 -2.2458715E-02 -2.1608045E-02 -2.0794073E-02 -2.0018078E-02
 -1.9271035E-02
 0.6468458 0.6352158 0.6235857 0.6119558 0.6003259
 0.5886961 0.5770665 0.5654370 0.5538077 0.5421785
 0.5305494 0.5189204 0.5072914 0.4956625 0.4840338
 0.4722213 0.4602467 0.4481277 0.4358773 0.4235044
 0.4110546 0.3985309 0.3859758 0.3733872 0.3608045
 0.3482211 0.3356736 0.3231517 0.3106430 0.2981322
 0.2856019 0.2730315 0.2603975 0.2476729 0.2348265
 0.2218231 0.2086244 0.1951932 0.1815074 0.1675968
 0.1536282 0.1400253 0.1274507 0.1164385 0.1070679
 9.9096753E-02 9.2223838E-02 8.6194336E-02 8.0828510E-02 7.5994633E-02
 7.1597598E-02 6.7567259E-02 6.3850574E-02 6.0406446E-02 5.7202369E-02
 5.4212015E-02 5.1413711E-02 4.8789356E-02 4.6323534E-02 4.4003051E-02
 4.1816384E-02 3.9753422E-02 3.7805226E-02 3.5963785E-02 3.4221925E-02
 3.2573134E-02 3.1011496E-02 2.9531594E-02 2.8128482E-02 2.6797628E-02
 2.5534835E-02
 0.3067188 0.2936943 0.2806697 0.2676452 0.2546207
 0.2415963 0.2285719 0.2155475 0.2025232 0.1894990
 0.1764748 0.1634506 0.1504264 0.1374023 0.1243782
 0.1117071 9.9396586E-02 8.7453149E-02 7.5882167E-02 6.4688973E-02
 5.3860504E-02 4.3400191E-02 3.3293094E-02 2.3541952E-02 1.4130924E-02
 5.0628139E-03 -3.6783712E-03 -1.2089379E-02 -2.0165056E-02 -2.7898086E-02
 -3.5278082E-02 -4.2291086E-02 -4.8917901E-02 -5.5132370E-02 -6.0898602E-02
 -6.6166319E-02 -7.0863441E-02 -7.4884139E-02 -7.8070104E-02 -8.0188386E-02
 -8.0931343E-02 -8.0022633E-02 -7.7494800E-02 -7.3851138E-02 -6.9756210E-02
 -6.5671466E-02 -6.1813459E-02 -5.8251068E-02 -5.4990221E-02 -5.2010462E-02
 -4.9283735E-02 -4.6781547E-02 -4.4477656E-02 -4.2348854E-02 -4.0374964E-02
 -3.8538568E-02 -3.6824685E-02 -3.5220422E-02 -3.3714648E-02 -3.2297768E-02
 -3.0961445E-02 -2.9698411E-02 -2.8502343E-02 -2.7367679E-02 -2.6289543E-02
 -2.5263630E-02 -2.4286112E-02 -2.3353584E-02 -2.2463011E-02 -2.1616375E-02
 -2.0801671E-02
 0.6792660 0.6673933 0.6555207 0.6436483 0.6317759
 0.6199037 0.6080317 0.5961598 0.5842881 0.5724166
 0.5605451 0.5486737 0.5368025 0.5249314 0.5130605
 0.5010058 0.4887891 0.4764281 0.4639357 0.4513208
 0.4386289 0.4258633 0.4130662 0.4002357 0.3874109
 0.3745856 0.3617962 0.3490324 0.3363287 0.3236716
 0.3110461 0.2984345 0.2858174 0.2731726 0.2604750
 0.2476960 0.2348035 0.2217612 0.2085300 0.1950718
 0.1813640 0.1674362 0.1534558 0.1398488 0.1272796
 0.1162807 0.1069266 9.8977692E-02 9.2113577E-02 8.6096272E-02
 8.0741018E-02 7.5916223E-02 7.1527034E-02 6.7503482E-02 6.3792773E-02
 6.0353916E-02 5.7154503E-02 5.4168299E-02 5.1373709E-02 4.8752699E-02
 4.6289921E-02 4.3972176E-02 4.1787997E-02 3.9727297E-02 3.7781172E-02
 3.5941634E-02 3.4201510E-02 3.2554295E-02 3.0994123E-02 2.9515332E-02
 2.8113673E-02
 0.3353027 0.3217888 0.3082749 0.2947611 0.2812473
 0.2677336 0.2542199 0.2407064 0.2271928 0.2136793
 0.2001659 0.1866525 0.1731392 0.1596259 0.1461126
 0.1329522 0.1201526 0.1077200 9.5659904E-02 8.3977580E-02
 7.2659984E-02 6.1710548E-02 5.1114328E-02 4.0874068E-02 3.0973922E-02
 2.1416694E-02 1.2186396E-02 3.2862783E-03 -5.2992972E-03 -1.3566328E-02
 -2.1508822E-02 -2.9118795E-02 -3.6385179E-02 -4.3293070E-02 -4.9822684E-02
 -5.5947222E-02 -6.1630119E-02 -6.6820472E-02 -7.1445532E-02 -7.5398728E-02
 -7.8521013E-02 -8.0578409E-02 -8.1262164E-02 -8.0295809E-02 -7.7714749E-02
 -7.4026696E-02 -6.9897681E-02 -6.5788515E-02 -6.1910003E-02 -5.8332287E-02
 -5.5059191E-02 -5.2069414E-02 -4.9334358E-02 -4.6825152E-02 -4.4515330E-02
 -4.2381454E-02 -4.0403206E-02 -3.8563047E-02 -3.6845900E-02 -3.5238814E-02
 -3.3730604E-02 -3.2311589E-02 -3.0973405E-02 -2.9708751E-02 -2.8511269E-02
 -2.7375383E-02 -2.6296180E-02 -2.5269331E-02 -2.4290986E-02 -2.3364168E-02
 -2.2472717E-02
 0.7125055 0.7003828 0.6882603 0.6761379 0.6640156
 0.6518935 0.6397716 0.6276498 0.6155283 0.6034069
 0.5912856 0.5791645 0.5670435 0.5549228 0.5428022
 0.5304978 0.5180315 0.5054209 0.4926789 0.4798144
 0.4668730 0.4538578 0.4408112 0.4277312 0.4146570
 0.4015821 0.3885432 0.3755300 0.3625768 0.3496704
 0.3368431 0.3240791 0.3113610 0.2986699 0.2859844
 0.2732809 0.2605331 0.2477113 0.2347827 0.2217100
 0.2084534 0.1949743 0.1812496 0.1673088 0.1533197
 0.1397097 0.1271444 0.1161553 0.1068135 9.8878138E-02
 9.2024378E-02 8.6016469E-02 8.0669440E-02 7.5851791E-02 7.1468845E-02
 6.7450784E-02 6.3744873E-02 6.0310282E-02 5.7114635E-02 5.4131832E-02
 5.1340308E-02 4.8722047E-02 4.6261754E-02 4.3946262E-02 4.1764140E-02
 3.9705336E-02 3.7760928E-02 3.5922941E-02 3.4184288E-02 3.2537561E-02
 3.0978989E-02
 0.3649961 0.3509895 0.3369830 0.3229765 0.3089701
 0.2949637 0.2809575 0.2669512 0.2529451 0.2389390
 0.2249329 0.2109269 0.1969209 0.1829150 0.1689091
 0.1552562 0.1419639 0.1290388 0.1164861 0.1043112
 9.2501104E-02 8.1059135E-02 6.9970384E-02 5.9237592E-02 4.8844922E-02
 3.8795169E-02 2.9072348E-02 1.9679712E-02 1.0601620E-02 1.8420739E-03
 -6.6140192E-03 -1.4761874E-02 -2.2594748E-02 -3.0103695E-02 -3.7276994E-02
 -4.4099160E-02 -5.0549697E-02 -5.6601264E-02 -6.2216647E-02 -6.7344420E-02
 -7.1911328E-02 -7.5810269E-02 -7.8881532E-02 -8.0890447E-02 -8.1527494E-02
 -8.0516070E-02 -7.7893443E-02 -7.4170448E-02 -7.0014186E-02 -6.5884650E-02
 -6.1990116E-02 -5.8399763E-02 -5.5116490E-02 -5.2118376E-02 -4.9376395E-02
 -4.6861380E-02 -4.4546612E-02 -4.2408518E-02 -4.0426631E-02 -3.8583349E-02
 -3.6863510E-02 -3.5254080E-02 -3.3743829E-02 -3.2323044E-02 -3.0983318E-02
 -2.9717332E-02 -2.8518684E-02 -2.7381778E-02 -2.6301678E-02 -2.5282936E-02
 -2.4303490E-02
 0.7465300 0.7341511 0.7217723 0.7093936 0.6970152
 0.6846369 0.6722588 0.6598809 0.6475032 0.6351258
 0.6227484 0.6103713 0.5979943 0.5856176 0.5732411
 0.5606808 0.5479586 0.5350921 0.5220944 0.5089742
 0.4957772 0.4825064 0.4692042 0.4558686 0.4425388
 0.4292085 0.4159141 0.4026453 0.3894367 0.3762748
 0.3631921 0.3501727 0.3372475 0.3243989 0.3116079
 0.2988538 0.2861143 0.2733643 0.2605770 0.2477217
 0.2347646 0.2216681 0.2083917 0.1948964 0.1811589
 0.1672084 0.1532129 0.1396005 0.1270379 0.1160558
 0.1067232 9.8798446E-02 9.1952212E-02 8.5951388E-02 8.0610774E-02
 7.5798772E-02 7.1420796E-02 6.7407109E-02 6.3705057E-02 6.0273916E-02
 5.7081375E-02 5.4101340E-02 5.1312316E-02 4.8696309E-02 4.6238065E-02
 4.3924458E-02 4.1744050E-02 3.9686803E-02 3.7743788E-02 3.5907179E-02
 3.4168340E-02
 0.3957943 0.3812920 0.3667898 0.3522877 0.3377856
 0.3232836 0.3087816 0.2942797 0.2797779 0.2652761
 0.2507744 0.2362728 0.2217713 0.2072697 0.1927683
 0.1786198 0.1648320 0.1514113 0.1383631 0.1256927
 0.1133870 0.1014495 8.9865275E-02 7.8636967E-02 6.7748792E-02
 5.7203550E-02 4.6985246E-02 3.7097134E-02 2.7523566E-02 1.8268550E-02
 9.3169892E-03 6.7366700E-04 -7.6759546E-03 -1.5726043E-02 -2.3469191E-02
 -3.0895792E-02 -3.7993409E-02 -4.4746045E-02 -5.1132541E-02 -5.7125062E-02
 -6.2685981E-02 -6.7763366E-02 -7.2283529E-02 -7.6138929E-02 -7.9169422E-02
 -8.1139855E-02 -8.1740201E-02 -8.0693729E-02 -7.8038804E-02 -7.4288383E-02
 -7.0110433E-02 -6.5964505E-02 -6.2056791E-02 -5.8455937E-02 -5.5164222E-02
 -5.2159183E-02 -4.9411427E-02 -4.6891555E-02 -4.4572655E-02 -4.2431038E-02
 -4.0446140E-02 -3.8600247E-02 -3.6878157E-02 -3.5266768E-02 -3.3754822E-02
 -3.2332573E-02 -3.0991575E-02 -2.9724468E-02 -2.8524846E-02 -2.7387036E-02
 -2.6318051E-02
 0.7812993 0.7686592 0.7560194 0.7433797 0.7307401
 0.7181008 0.7054617 0.6928228 0.6801842 0.6675459
 0.6549076 0.6422697 0.6296318 0.6169943 0.6043570
 0.5915360 0.5785532 0.5654261 0.5521678 0.5387872
 0.5253297 0.5117985 0.4982360 0.4846401 0.4710500
 0.4574594 0.4439048 0.4303758 0.4169070 0.4034850
 0.3901421 0.3768626 0.3636773 0.3505686 0.3375660
 0.3246505 0.3118018 0.2989979 0.2862156 0.2734292
 0.2606106 0.2477288 0.2347494 0.2216341 0.2083422
 0.1948346 0.1810873 0.1671296 0.1531293 0.1395152
 0.1269543 0.1159770 0.1066509 9.8734736E-02 9.1893777E-02
 8.5898295E-02 8.0562599E-02 7.5755037E-02 7.1380965E-02 6.7370787E-02
 6.3671887E-02 6.0243543E-02 5.7053521E-02 5.4075740E-02 5.1288769E-02
 4.8674650E-02 4.6218108E-02 4.3906052E-02 4.1727047E-02 3.9671142E-02
 3.7729356E-02
 0.4276885 0.4126880 0.3976876 0.3826872 0.3676869
 0.3526867 0.3376865 0.3226864 0.3076863 0.2926864
 0.2776866 0.2626868 0.2476872 0.2326876 0.2176881
 0.2030416 0.1887558 0.1748370 0.1612907 0.1481223
 0.1353186 0.1228831 0.1108008 9.9074535E-02 8.7688372E-02
 7.6645143E-02 6.5928861E-02 5.5542771E-02 4.5471232E-02 3.5718251E-02
 2.6268726E-02 1.7127445E-02 8.2798665E-03 -2.6817818E-04 -8.5306903E-03
 -1.6501158E-02 -2.4171403E-02 -3.1531241E-02 -3.8567629E-02 -4.5264013E-02
 -5.1598880E-02 -5.7543874E-02 -6.3060977E-02 -6.8097882E-02 -7.2580539E-02
 -7.6401070E-02 -7.9399072E-02 -8.1339054E-02 -8.1910707E-02 -8.0837108E-02
 -7.8157261E-02 -7.4385375E-02 -7.0190117E-02 -6.6031016E-02 -6.2112447E-02
 -5.8502890E-02 -5.5204116E-02 -5.2193284E-02 -4.9440689E-02 -4.6916749E-02
 -4.4594415E-02 -4.2449854E-02 -4.0462419E-02 -3.8614344E-02 -3.6890373E-02
 -3.5277367E-02 -3.3764008E-02 -3.2340530E-02 -3.0998455E-02 -2.9730339E-02
 -2.8529918E-02
 0.8167795 0.8038747 0.7909700 0.7780656 0.7651613
 0.7522573 0.7393536 0.7264501 0.7135469 0.7006441
 0.6877413 0.6748388 0.6619365 0.6490346 0.6361330
 0.6230477 0.6098006 0.5964094 0.5828869 0.5692421
 0.5555205 0.5417252 0.5278986 0.5140386 0.5001844
 0.4863297 0.4725110 0.4587181 0.4449853 0.4312992
 0.4176924 0.4041488 0.3906995 0.3773268 0.3640604
 0.3508810 0.3378172 0.3248487 0.3119543 0.2991112
 0.2862951 0.2734798 0.2606366 0.2477339 0.2347368
 0.2216069 0.2083031 0.1947858 0.1810311 0.1670681
 0.1530645 0.1394490 0.1268891 0.1159149 0.1065933
 9.8684110E-02 9.1846608E-02 8.5854985E-02 8.0522992E-02 7.5718880E-02
 7.1347952E-02 6.7340575E-02 6.3644186E-02 6.0218103E-02 5.7030134E-02
 5.4054238E-02 5.1268958E-02 4.8656378E-02 4.6201240E-02 4.3890540E-02
 4.1712724E-02
 0.4606723 0.4451713 0.4296704 0.4141695 0.3986687
 0.3831680 0.3676673 0.3521668 0.3366663 0.3211660
 0.3056658 0.2901657 0.2746658 0.2591659 0.2436662
 0.2285195 0.2137335 0.1993146 0.1852681 0.1715995
 0.1582957 0.1453601 0.1327777 0.1205513 0.1086651
 9.7121753E-02 8.5905395E-02 7.5019240E-02 6.4447649E-02 5.4194618E-02
 4.4245053E-02 3.4603734E-02 2.5256118E-02 1.6208038E-02 7.4454905E-03
 -1.0250122E-03 -9.2168190E-03 -1.7122785E-02 -2.4734069E-02 -3.2039940E-02
 -3.9026968E-02 -4.5678064E-02 -5.1971402E-02 -5.7878233E-02 -6.3360162E-02
 -6.8364598E-02 -7.2817221E-02 -7.6609939E-02 -7.9582140E-02 -8.1498079E-02
 -8.2047381E-02 -8.0952965E-02 -7.8253984E-02 -7.4465357E-02 -7.0256315E-02
 -6.6086695E-02 -6.2159128E-02 -5.8542296E-02 -5.5237588E-02 -5.2221891E-02
 -4.9465258E-02 -4.6937905E-02 -4.4612668E-02 -4.2465620E-02 -4.0476065E-02
 -3.8626175E-02 -3.6900625E-02 -3.5286251E-02 -3.3771705E-02 -3.2347083E-02
 -3.1004125E-02
 0.8529544 0.8397815 0.8266088 0.8134364 0.8002642
 0.7870923 0.7739206 0.7607493 0.7475782 0.7344075
 0.7212369 0.7080667 0.6948967 0.6817272 0.6685579
 0.6552052 0.6416906 0.6280318 0.6142419 0.6003296
 0.5863405 0.5722778 0.5581838 0.5440565 0.5299351
 0.5158131 0.5017273 0.4876672 0.4736673 0.4597141
 0.4458402 0.4320297 0.4183133 0.4046736 0.3911402
 0.3776939 0.3643632 0.3511277 0.3380156 0.3250052
 0.3120746 0.2992005 0.2863576 0.2735193 0.2606566
 0.2477374 0.2347265 0.2215852 0.2082720 0.1947473
 0.1809870 0.1670202 0.1530142 0.1393977 0.1268381
 0.1158658 0.1065472 9.8643929E-02 9.1808364E-02 8.5819453E-02
 8.0490306E-02 7.5688854E-02 7.1320392E-02 6.7315251E-02 6.3620903E-02
 6.0196690E-02 5.7010408E-02 5.4036044E-02 5.1252156E-02 4.8640992E-02
 4.6187021E-02
 0.4947349 0.4787317 0.4627285 0.4467254 0.4307224
 0.4147195 0.3987167 0.3827141 0.3667115 0.3507091
 0.3347069 0.3187048 0.3027028 0.2867010 0.2706992
 0.2550506 0.2397627 0.2248419 0.2102936 0.1961231
 0.1823174 0.1688800 0.1557958 0.1430675 0.1306794
 0.1186343 0.1069161 9.5528148E-02 8.4454745E-02 7.3699906E-02
 6.3248537E-02 5.3105425E-02 4.3256022E-02 3.3706158E-02 2.4441827E-02
 1.5469542E-02 6.7759533E-03 -1.6317917E-03 -9.7664380E-03 -1.7620282E-02
 -2.5184061E-02 -3.2446500E-02 -3.9393853E-02 -4.6008714E-02 -5.2268710E-02
 -5.8144934E-02 -6.3598692E-02 -6.8577148E-02 -7.3005795E-02 -7.6776303E-02
 -7.9727955E-02 -8.1625029E-02 -8.2156949E-02 -8.1046648E-02 -7.8333057E-02
 -7.4531443E-02 -7.0311397E-02 -6.6133417E-02 -6.2198371E-02 -5.8575407E-02
 -5.5265740E-02 -5.2245945E-02 -4.9485892E-02 -4.6955664E-02 -4.4627983E-02
 -4.2478867E-02 -4.0487532E-02 -3.8636103E-02 -3.6909215E-02 -3.5293538E-02
 -3.3778012E-02
 0.8897935 0.8763502 0.8629071 0.8494644 0.8360218
 0.8225797 0.8091378 0.7956962 0.7822549 0.7688141
 0.7553735 0.7419332 0.7284933 0.7150539 0.7016147
 0.6879921 0.6742076 0.6602790 0.6462193 0.6320372
 0.6177783 0.6034458 0.5890822 0.5746852 0.5602942
 0.5459027 0.5315473 0.5172178 0.5029483 0.4887257
 0.4745823 0.4605023 0.4465165 0.4326074 0.4188046
 0.4050889 0.3914889 0.3779841 0.3646026 0.3513230
 0.3381724 0.3251289 0.3121696 0.2992706 0.2864066
 0.2735502 0.2606722 0.2477399 0.2347181 0.2215678
 0.2082473 0.1947171 0.1809527 0.1669829 0.1529754
 0.1393580 0.1267984 0.1158216 0.1065103 9.8594666E-02
 9.1770977E-02 8.5788086E-02 8.0462642E-02 7.5663872E-02 7.1297586E-02
 6.7294329E-02 6.3601650E-02 6.0178913E-02 5.6993961E-02 5.4020818E-02
 5.1238082E-02
 0.5298693 0.5133623 0.4968555 0.4803488 0.4638421
 0.4473356 0.4308293 0.4143230 0.3978170 0.3813111
 0.3648053 0.3482997 0.3317942 0.3152889 0.2987838
 0.2826317 0.2668404 0.2514163 0.2363646 0.2216909
 0.2073819 0.1934411 0.1798536 0.1666221 0.1537308
 0.1411823 0.1289609 0.1170697 0.1054930 9.4234973E-02
 8.3280385E-02 7.2634056E-02 6.2281441E-02 5.2228369E-02 4.2460833E-02
 3.2985348E-02 2.3788560E-02 1.4877619E-02 6.2397784E-03 -2.1172604E-03
 -1.0205891E-02 -1.8017877E-02 -2.5543477E-02 -3.2771189E-02 -3.9686725E-02
 -4.6272431E-02 -5.2505761E-02 -5.8357485E-02 -6.3788749E-02 -6.8746433E-02
 -7.3155887E-02 -7.6908708E-02 -7.9844095E-02 -8.1726342E-02 -8.2244910E-02
 -8.1122503E-02 -7.8397863E-02 -7.4580893E-02 -7.0355713E-02 -6.6168323E-02
 -6.2228631E-02 -5.8601871E-02 -5.5288721E-02 -5.2265778E-02 -4.9502980E-02
 -4.6970386E-02 -4.4640675E-02 -4.2489812E-02 -4.0496960E-02 -3.8644239E-02
 -3.6916256E-02
 0.9272856 0.9135699 0.8998544 0.8861392 0.8724243
 0.8587098 0.8449955 0.8312817 0.8175682 0.8038552
 0.7901425 0.7764302 0.7627182 0.7490067 0.7352956
 0.7214010 0.7073445 0.6931440 0.6788123 0.6643583
 0.6498277 0.6352234 0.6205880 0.6059193 0.5912566
 0.5765934 0.5619664 0.5473652 0.5328242 0.5183299
 0.5039151 0.4895636 0.4753065 0.4611261 0.4470519
 0.4330649 0.4191936 0.4054176 0.3917649 0.3782141
 0.3647922 0.3514775 0.3382964 0.3252266 0.3122446
 0.2993261 0.2864454 0.2735747 0.2606843 0.2477419
 0.2347116 0.2215542 0.2082281 0.1946935 0.1809260
 0.1669544 0.1529458 0.1393278 0.1267678 0.1157898
 0.1064810 9.8566860E-02 9.1744892E-02 8.5763797E-02 8.0440126E-02
 7.5643063E-02 7.1278349E-02 6.7276537E-02 6.3585162E-02 6.0163662E-02
 5.6979865E-02
 0.5660675 0.5490556 0.5320439 0.5150324 0.4980209
 0.4810097 0.4639986 0.4469876 0.4299769 0.4129663
 0.3959558 0.3789456 0.3619355 0.3449256 0.3279159
 0.3112593 0.2949634 0.2790347 0.2634786 0.2483003
 0.2334869 0.2190417 0.2049497 0.1912137 0.1778179
 0.1647651 0.1520392 0.1396436 0.1275626 0.1158001
 0.1043411 9.3190417E-02 8.2333423E-02 7.1775973E-02 6.1504062E-02
 5.1524211E-02 4.1823056E-02 3.2407753E-02 2.3265556E-02 1.4404163E-02
 5.8111805E-03 -2.5051550E-03 -1.0556833E-02 -1.8335233E-02 -2.5830258E-02
 -3.3030044E-02 -3.9920125E-02 -4.6482552E-02 -5.2694574E-02 -5.8526721E-02
 -6.3939959E-02 -6.8881065E-02 -7.3275253E-02 -7.7014029E-02 -7.9936542E-02
 -8.1807166E-02 -8.2315482E-02 -8.1184044E-02 -7.8451112E-02 -7.4624680E-02
 -7.0393823E-02 -6.6200808E-02 -6.2256191E-02 -5.8625285E-02 -5.5308688E-02
 -5.2282885E-02 -4.9517665E-02 -4.6983022E-02 -4.4651553E-02 -4.2499207E-02
 -4.0505093E-02
 0.9654139 0.9514241 0.9374345 0.9234453 0.9094564
 0.8954679 0.8814797 0.8674921 0.8535048 0.8395181
 0.8255317 0.8115457 0.7975600 0.7835749 0.7695901
 0.7554219 0.7410918 0.7266178 0.7120126 0.6972852
 0.6824811 0.6676034 0.6526947 0.6377527 0.6228166
 0.6078801 0.5929798 0.5781054 0.5632912 0.5485238
 0.5338359 0.5192115 0.5046813 0.4902280 0.4758809
 0.4616210 0.4474768 0.4334279 0.4195023 0.4056785
 0.3919838 0.3783962 0.3649424 0.3515998 0.3383946
 0.3253040 0.3123040 0.2993701 0.2864760 0.2735940
 0.2606940 0.2477435 0.2347064 0.2215435 0.2082131
 0.1946752 0.1809055 0.1669326 0.1529233 0.1393048
 0.1267443 0.1157644 0.1064576 9.8544322E-02 9.1723502E-02
 8.5743748E-02 8.0421418E-02 7.5625658E-02 7.1262158E-02 6.7261495E-02
 6.3571252E-02
 0.6033245 0.5858068 0.5682892 0.5507718 0.5332546
 0.5157376 0.4982207 0.4807040 0.4631875 0.4456712
 0.4281551 0.4106391 0.3931234 0.3756079 0.3580925
 0.3409303 0.3241289 0.3076946 0.2916329 0.2759492
 0.2606303 0.2456797 0.2310823 0.2168410 0.2029398
 0.1893816 0.1761504 0.1632494 0.1506630 0.1383952
 0.1264309 0.1147748 0.1034125 9.2349708E-02 8.1572466E-02
 7.1087286E-02 6.0880803E-02 5.0960176E-02 4.1312654E-02 3.1945936E-02
 2.2847634E-02 1.4025981E-02 5.4689860E-03 -2.8147297E-03 -1.0836793E-02
 -1.8588252E-02 -2.6058797E-02 -3.3236291E-02 -4.0106058E-02 -4.6649877E-02
 -5.2844845E-02 -5.8661375E-02 -6.4060248E-02 -6.8988167E-02 -7.3370166E-02
 -7.7097751E-02 -8.0010094E-02 -8.1871666E-02 -8.2372166E-02 -8.1234030E-02
 -7.8495011E-02 -7.4660785E-02 -7.0425719E-02 -6.6228211E-02 -6.2279511E-02
 -5.8645152E-02 -5.5325650E-02 -5.2297402E-02 -4.9530115E-02 -4.6993736E-02
 -4.4660799E-02
 1.004160 0.9898949 0.9756302 0.9613658 0.9471018
 0.9328383 0.9185752 0.9043127 0.8900505 0.8757889
 0.8615276 0.8472668 0.8330063 0.8187463 0.8044868
 0.7900438 0.7754391 0.7606903 0.7458106 0.7308086
 0.7157300 0.7005777 0.6853945 0.6701779 0.6549674
 0.6397565 0.6245818 0.6094331 0.5943447 0.5793031
 0.5643409 0.5494422 0.5346379 0.5199103 0.5052890
 0.4907548 0.4763364 0.4620133 0.4478135 0.4337156
 0.4197468 0.4058851 0.3921572 0.3785405 0.3650614
 0.3516968 0.3384725 0.3253653 0.3123510 0.2994048
 0.2865002 0.2736093 0.2607017 0.2477447 0.2347023
 0.2215352 0.2082014 0.1946611 0.1808898 0.1669161
 0.1529064 0.1392876 0.1267263 0.1157439 0.1064388
 9.8526083E-02 9.1705978E-02 8.5727133E-02 8.0405772E-02 7.5611025E-02
 7.1248531E-02
 0.6416349 0.6236105 0.6055863 0.5875623 0.5695384
 0.5515147 0.5334913 0.5154681 0.4974450 0.4794222
 0.4613996 0.4433772 0.4253550 0.4073330 0.3893113
 0.3716426 0.3543348 0.3373942 0.3208262 0.3046362
 0.2888110 0.2733541 0.2582505 0.2435030 0.2290956
 0.2150312 0.2012938 0.1878866 0.1747941 0.1620201
 0.1495496 0.1373874 0.1255189 0.1139500 0.1026666
 9.1675244E-02 8.0962621E-02 7.0535854E-02 6.0382206E-02 5.0509367E-02
 4.0904943E-02 3.1577174E-02 2.2514066E-02 1.3724241E-02 5.1960726E-03
 -3.0614925E-03 -1.1059871E-02 -1.8789835E-02 -2.6240880E-02 -3.3400565E-02
 -4.0254053E-02 -4.6783026E-02 -5.2964423E-02 -5.8768503E-02 -6.4155921E-02
 -6.9073275E-02 -7.3445588E-02 -7.7164285E-02 -8.0068626E-02 -8.1923135E-02
 -8.2417756E-02 -8.1274733E-02 -7.8531280E-02 -7.4690178E-02 -7.0452385E-02
 -6.6251405E-02 -6.2299337E-02 -5.8662057E-02 -5.5340067E-02 -5.2309770E-02
 -4.9540725E-02
 1.043522 1.028980 1.014439 0.9998986 0.9853584
 0.9708188 0.9562796 0.9417410 0.9272028 0.9126651
 0.8981278 0.8835909 0.8690544 0.8545186 0.8399832
 0.8252643 0.8103839 0.7953593 0.7802038 0.7649261
 0.7495717 0.7341439 0.7186849 0.7031928 0.6877067
 0.6722203 0.6567702 0.6413460 0.6259822 0.6106651
 0.5954276 0.5802534 0.5651736 0.5501706 0.5352739
 0.5204644 0.5057706 0.4911722 0.4766972 0.4623242
 0.4480802 0.4339435 0.4199405 0.4060487 0.3922946
 0.3786550 0.3651558 0.3517736 0.3385342 0.3254139
 0.3123884 0.2994324 0.2865195 0.2736213 0.2607078
 0.2477458 0.2346992 0.2215288 0.2081923 0.1946502
 0.1808778 0.1669037 0.1528938 0.1392747 0.1267126
 0.1157271 0.1064240 9.8511294E-02 9.1691509E-02 8.5713781E-02
 8.0392592E-02
 0.6809944 0.6624625 0.6439309 0.6253994 0.6068681
 0.5883370 0.5698062 0.5512756 0.5327452 0.5142152
 0.4956853 0.4771558 0.4586264 0.4400974 0.4215685
 0.4033928 0.3855779 0.3681303 0.3510554 0.3343583
 0.3180262 0.3020624 0.2864518 0.2711974 0.2562832
 0.2417119 0.2274676 0.2135536 0.1999543 0.1866735
 0.1736961 0.1610271 0.1486518 0.1365760 0.1247859
 0.1132878 0.1020684 9.1134876E-02 8.0474481E-02 7.0094898E-02
 5.9983738E-02 5.0149240E-02 4.0579408E-02 3.1282865E-02 2.2247976E-02
 1.3483692E-02 4.9785962E-03 -3.2580851E-03 -1.1237595E-02 -1.8950395E-02
 -2.6385795E-02 -3.3531271E-02 -4.0371813E-02 -4.6888992E-02 -5.3059537E-02
 -5.8853667E-02 -6.4231955E-02 -6.9140904E-02 -7.3505521E-02 -7.7217177E-02
 -8.0115184E-02 -8.1964195E-02 -8.2454465E-02 -8.1307925E-02 -7.8561291E-02
 -7.4713819E-02 -7.0474714E-02 -6.6271059E-02 -6.2316190E-02 -5.8676504E-02
 -5.5352390E-02
 1.083480 1.068661 1.053843 1.039026 1.024209
 1.009392 0.9945764 0.9797610 0.9649460 0.9501317
 0.9353176 0.9205042 0.9056911 0.8908787 0.8760667
 0.8610714 0.8459145 0.8306135 0.8151816 0.7996274
 0.7839967 0.7682925 0.7525573 0.7367889 0.7210267
 0.7052642 0.6895379 0.6738376 0.6581976 0.6426044
 0.6270907 0.6116404 0.5962845 0.5810054 0.5658326
 0.5507470 0.5357771 0.5209028 0.5061519 0.4915029
 0.4769830 0.4625703 0.4482915 0.4341240 0.4200940
 0.4061786 0.3924037 0.3787458 0.3652306 0.3518345
 0.3385831 0.3254524 0.3124179 0.2994542 0.2865346
 0.2736309 0.2607126 0.2477467 0.2346968 0.2215237
 0.2081854 0.1946420 0.1808688 0.1668944 0.1528846
 0.1392653 0.1267024 0.1157122 0.1064122 9.8506317E-02
 9.1679342E-02
 0.7213938 0.7023540 0.6833144 0.6642750 0.6452359
 0.6261970 0.6071584 0.5881200 0.5690819 0.5500441
 0.5310065 0.5119692 0.4929323 0.4738957 0.4548593
 0.4361761 0.4178538 0.3998987 0.3823163 0.3651119
 0.3482723 0.3318011 0.3156832 0.2999214 0.2844997
 0.2694211 0.2546695 0.2402482 0.2261416 0.2123535
 0.1988689 0.1856927 0.1728101 0.1602271 0.1479297
 0.1359244 0.1241978 0.1127570 0.1015894 9.0702631E-02
 8.0084264E-02 6.9742560E-02 5.9665523E-02 4.9861774E-02 4.0319685E-02
 3.1048203E-02 2.2035912E-02 1.3292037E-02 4.8053367E-03 -3.4146542E-03
 -1.1379023E-02 -1.9078128E-02 -2.6501112E-02 -3.3635303E-02 -4.0465515E-02
 -4.6973225E-02 -5.3135157E-02 -5.8921352E-02 -6.4292401E-02 -6.9194660E-02
 -7.3553100E-02 -7.7259175E-02 -8.0152228E-02 -8.1997111E-02 -8.2483999E-02
 -8.1335075E-02 -7.8586258E-02 -7.4731678E-02 -7.0493951E-02 -6.6283666E-02
 -6.2330753E-02
 1.124038 1.108941 1.093846 1.078750 1.063656
 1.048562 1.033468 1.018375 1.003283 0.9881911
 0.9730996 0.9580088 0.9429184 0.9278286 0.9127394
 0.8974668 0.8820326 0.8664544 0.8507452 0.8349139
 0.8190061 0.8030248 0.7870126 0.7709673 0.7549281
 0.7388886 0.7228853 0.7069080 0.6909910 0.6751209
 0.6593302 0.6436030 0.6279702 0.6124142 0.5969645
 0.5816020 0.5663553 0.5512042 0.5361766 0.5212510
 0.5064545 0.4917653 0.4772100 0.4627659 0.4484595
 0.4342676 0.4202162 0.4062819 0.3924903 0.3788178
 0.3652900 0.3518830 0.3386219 0.3254829 0.3124413
 0.2994715 0.2865468 0.2736386 0.2607165 0.2477474
 0.2346950 0.2215199 0.2081802 0.1946357 0.1808620
 0.1668876 0.1528780 0.1392585 0.1266947 0.1157196
 0.1064021
 0.7628328 0.7432846 0.7237368 0.7041891 0.6846417
 0.6650946 0.6455477 0.6260011 0.6064547 0.5869087
 0.5673629 0.5478175 0.5282726 0.5087279 0.4891836
 0.4699925 0.4511622 0.4326992 0.4146089 0.3968966
 0.3795492 0.3625701 0.3459444 0.3296747 0.3137453
 0.2981588 0.2828994 0.2679703 0.2533559 0.2390601
 0.2250679 0.2113839 0.1979937 0.1849030 0.1720980
 0.1595850 0.1473507 0.1354024 0.1237271 0.1123327
 0.1012067 9.0357393E-02 7.9772748E-02 6.9461398E-02 5.9411723E-02
 4.9632654E-02 4.0112775E-02 3.0861311E-02 2.1867022E-02 1.3139445E-02
 4.6674921E-03 -3.5391974E-03 -1.1491555E-02 -1.9179787E-02 -2.6592853E-02
 -3.3717982E-02 -4.0539995E-02 -4.7040194E-02 -5.3195264E-02 -5.8975164E-02
 -6.4340383E-02 -6.9237314E-02 -7.3590882E-02 -7.7292539E-02 -8.0181733E-02
 -8.2023337E-02 -8.2507856E-02 -8.1357323E-02 -7.8607053E-02 -7.4769408E-02
 -7.0515066E-02
 1.165189 1.149814 1.134439 1.119065 1.103692
 1.088319 1.072947 1.057575 1.042204 1.026834
 1.011465 0.9960960 0.9807277 0.9653600 0.9499930
 0.9344425 0.9187305 0.9028745 0.8868877 0.8707787
 0.8545933 0.8383345 0.8220447 0.8057218 0.7894050
 0.7730879 0.7568071 0.7405522 0.7243577 0.7082101
 0.6921419 0.6761371 0.6602268 0.6443933 0.6286662
 0.6130264 0.5975024 0.5820741 0.5667693 0.5515665
 0.5364929 0.5215266 0.5066943 0.4919732 0.4773898
 0.4629210 0.4485926 0.4343813 0.4203128 0.4063635
 0.3925588 0.3788749 0.3653370 0.3519212 0.3386526
 0.3255070 0.3124598 0.2994852 0.2865562 0.2736445
 0.2607195 0.2477479 0.2346936 0.2215168 0.2081759
 0.1946308 0.1808570 0.1668826 0.1528731 0.1392535
 0.1266889
 0.8053087 0.7852517 0.7651951 0.7451387 0.7250826
 0.7050267 0.6849712 0.6649159 0.6448609 0.6248062
 0.6047519 0.5846980 0.5646445 0.5445914 0.5245388
 0.5048394 0.4855008 0.4665296 0.4479311 0.4297106
 0.4118550 0.3943677 0.3772337 0.3604559 0.3440183
 0.3279236 0.3121561 0.2967189 0.2815964 0.2667925
 0.2522922 0.2381002 0.2242020 0.2106033 0.1972903
 0.1842693 0.1715270 0.1590706 0.1468874 0.1349850
 0.1233511 0.1119938 0.1009013 9.0081967E-02 7.9524368E-02
 6.9237374E-02 5.9209570E-02 4.9450185E-02 3.9947975E-02 3.0712478E-02
 2.1732604E-02 1.3017993E-02 4.5577181E-03 -3.6384333E-03 -1.1581186E-02
 -1.9260710E-02 -2.6665868E-02 -3.3783816E-02 -4.0599294E-02 -4.7093522E-02
 -5.3243075E-02 -5.9017956E-02 -6.4378552E-02 -6.9271252E-02 -7.3620938E-02
 -7.7319063E-02 -8.0205135E-02 -8.2044333E-02 -8.2527131E-02 -8.1375569E-02
 -7.8624420E-02
 1.206921 1.191267 1.175613 1.159960 1.144308
 1.128656 1.113005 1.097355 1.081706 1.066057
 1.050409 1.034762 1.019116 1.003470 0.9878243
 0.9719957 0.9560055 0.9398714 0.9236065 0.9072195
 0.8907560 0.8742191 0.8576513 0.8410503 0.8244555
 0.8078603 0.7913015 0.7747687 0.7582961 0.7418705
 0.7255243 0.7092416 0.6930534 0.6769421 0.6609372
 0.6450197 0.6292180 0.6135121 0.5979297 0.5824494
 0.5670982 0.5518543 0.5367444 0.5217459 0.5068851
 0.4921388 0.4775330 0.4630444 0.4486985 0.4344718
 0.4203898 0.4064286 0.3926134 0.3789203 0.3653744
 0.3519517 0.3386770 0.3255263 0.3124745 0.2994961
 0.2865639 0.2736494 0.2607220 0.2477485 0.2346926
 0.2215147 0.2081729 0.1946273 0.1808533 0.1668791
 0.1528700
 0.8488206 0.8282544 0.8076886 0.7871230 0.7665577
 0.7459927 0.7254280 0.7048636 0.6842995 0.6637359
 0.6431726 0.6226097 0.6020474 0.5814856 0.5609241
 0.5407159 0.5208687 0.5013888 0.4822817 0.4635526
 0.4451884 0.4271926 0.4095501 0.3922637 0.3753176
 0.3587145 0.3424385 0.3264928 0.3108619 0.2955497
 0.2805410 0.2658406 0.2514341 0.2373271 0.2235057
 0.2099765 0.1967259 0.1837613 0.1710698 0.1586592
 0.1465170 0.1346516 0.1230508 0.1117233 0.1006575
 8.9862376E-02 7.9326406E-02 6.9058858E-02 5.9048489E-02 4.9304835E-02
 3.9816808E-02 3.0594045E-02 2.1625619E-02 1.2921320E-02 4.4704210E-03
 -3.7172504E-03 -1.1652370E-02 -1.9324956E-02 -2.6723875E-02 -3.3836115E-02
 -4.0646341E-02 -4.7135808E-02 -5.3281013E-02 -5.9051909E-02 -6.4408839E-02
 -6.9298133E-02 -7.3644727E-02 -7.7340081E-02 -8.0223791E-02 -8.2061119E-02
 -8.2542740E-02
 1.249238 1.233305 1.217372 1.201439 1.185507
 1.169577 1.153646 1.137717 1.121789 1.105861
 1.089934 1.074008 1.058083 1.042158 1.026233
 1.010126 0.9938570 0.9774444 0.9609009 0.9442354
 0.9274934 0.9106780 0.8938316 0.8769521 0.8600788
 0.8432052 0.8263679 0.8095565 0.7928056 0.7761015
 0.7594770 0.7429160 0.7264495 0.7100601 0.6937770
 0.6775814 0.6615016 0.6455176 0.6296572 0.6138988
 0.5982696 0.5827478 0.5673599 0.5520834 0.5369447
 0.5219206 0.5070370 0.4922706 0.4776470 0.4631426
 0.4487829 0.4345440 0.4204511 0.4064803 0.3926568
 0.3789564 0.3654042 0.3519759 0.3386964 0.3255416
 0.3124863 0.2995048 0.2865700 0.2736532 0.2607240
 0.2477490 0.2346919 0.2215131 0.2081706 0.1946247
 0.1808508
 0.8933637 0.8722880 0.8512126 0.8301375 0.8090627
 0.7879882 0.7669142 0.7458404 0.7247670 0.7036941
 0.6826216 0.6615496 0.6404782 0.6194072 0.5983366
 0.5776193 0.5572630 0.5372742 0.5176581 0.4984202
 0.4795472 0.4610427 0.4428914 0.4250964 0.4076415
 0.3905298 0.3737451 0.3572908 0.3411513 0.3253304
 0.3098132 0.2946042 0.2796891 0.2650736 0.2507437
 0.2367060 0.2229470 0.2094739 0.1962740 0.1833550
 0.1707044 0.1583305 0.1462213 0.1343855 0.1228113
 0.1115078 0.1004634 8.9687489E-02 7.9168752E-02 6.8916731E-02
 5.8920339E-02 4.9189214E-02 3.9712425E-02 3.0499768E-02 2.1540511E-02
 1.2844482E-02 4.4010053E-03 -3.7799382E-03 -1.1709009E-02 -1.9376086E-02
 -2.6769968E-02 -3.3877660E-02 -4.0683735E-02 -4.7169432E-02 -5.3311184E-02
 -5.9078868E-02 -6.4432859E-02 -6.9319479E-02 -7.3663637E-02 -7.7356793E-02
 -8.0238618E-02
 1.292136 1.275922 1.259709 1.243497 1.227285
 1.211075 1.194865 1.178657 1.162449 1.146242
 1.130035 1.113830 1.097625 1.081420 1.065217
 1.048830 1.032281 1.015590 0.9987671 0.9818227
 0.9648018 0.9477075 0.9305823 0.9134240 0.8962718
 0.8791193 0.8620032 0.8449131 0.8278834 0.8109007
 0.7939976 0.7771581 0.7604131 0.7437451 0.7271837
 0.7107096 0.6943515 0.6780891 0.6619503 0.6459135
 0.6300061 0.6142059 0.5985398 0.5829851 0.5675682
 0.5522658 0.5371040 0.5220594 0.5071577 0.4923753
 0.4777376 0.4632207 0.4488499 0.4346012 0.4204998
 0.4065215 0.3926914 0.3789851 0.3654278 0.3519951
 0.3387119 0.3255537 0.3124956 0.2995116 0.2865747
 0.2736563 0.2607257 0.2477494 0.2346913 0.2215118
 0.2081690
 0.9389365 0.9173510 0.8957659 0.8741811 0.8525967
 0.8310126 0.8094290 0.7878457 0.7662629 0.7446806
 0.7230987 0.7015173 0.6799365 0.6583562 0.6367763
 0.6155499 0.5946844 0.5741863 0.5540611 0.5343142
 0.5149322 0.4959186 0.4772584 0.4589545 0.4409907
 0.4233701 0.4060766 0.3891134 0.3724651 0.3561354
 0.3401094 0.3243917 0.3089678 0.2938436 0.2790049
 0.2644585 0.2501908 0.2362091 0.2225005 0.2090728
 0.1959136 0.1830311 0.1704132 0.1580687 0.1459859
 0.1341738 0.1226208 0.1113363 0.1003090 8.9548431E-02
 7.9043470E-02 6.8803780E-02 5.8818441E-02 4.9097244E-02 3.9629452E-02
 3.0424891E-02 2.1472882E-02 1.2783406E-02 4.3458031E-03 -3.8298049E-03
 -1.1754001E-02 -1.9416697E-02 -2.6806593E-02 -3.3910692E-02 -4.0713497E-02
 -4.7196127E-02 -5.3335112E-02 -5.9100267E-02 -6.4451963E-02 -6.9336437E-02
 -7.3678613E-02

XFOILinterface/XFOIL/orrs/osnew/ai.20

20.00000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 0.001427
 0.40000 0.000535
 0.50000 0.003635
 0.60000 0.012194
 0.70000 0.020498
 0.80000 0.028287
 0.90000 0.035403
 1.00000 0.041808
 1.10000 0.047433
 1.20000 0.052327
 1.30000 0.056500
 1.40000 0.060038
 1.50000 0.062994
 1.60000 0.065447
 1.70000 0.067473
 1.80000 0.069122
 1.90000 0.070478
 2.00000 0.071559
 2.10000 0.072453
 2.20000 0.073148
 2.30000 0.073732
 2.40000 0.074172
 2.50000 0.074553
 2.60000 0.074827
 2.70000 0.075076
 2.80000 0.075243
 2.90000 0.075408
 3.00000 0.075506
 3.10000 0.075617
 3.20000 0.075673
 3.30000 0.075749
 3.40000 0.075778
 3.50000 0.075832
 3.60000 0.075844
 3.70000 0.075884
 3.80000 0.075871
 3.90000 0.075910
 4.00000 0.037105

XFOILinterface/XFOIL/orrs/osm_gu.20

 2001 20.04973
 0.0000000E+00 0.0000000E+00 3.6104376E-29
 5.0124325E-02 2.1504535E-30 4.9700413E-29
 0.1002486 5.1093492E-30 6.8361864E-29
 0.1503730 9.1773511E-30 9.3954627E-29
 0.2004973 1.4765721E-29 1.2902571E-28
 0.2506216 2.2436563E-29 1.7704680E-28
 0.3007460 3.2957452E-29 2.4274505E-28
 0.3508703 4.7375773E-29 3.3255726E-28
 0.4009946 6.7119519E-29 4.5523384E-28
 0.4511189 9.4134075E-29 6.2266774E-28
 0.5012433 1.3106733E-28 8.5099824E-28
 0.5513676 1.8152067E-28 1.1621300E-27
 0.6014919 2.5038844E-28 1.5857492E-27
 0.6516162 3.4431670E-28 2.1620615E-27
 0.7017406 4.7232209E-28 2.9454527E-27
 0.7518649 6.4662785E-28 4.0094807E-27
 0.8019892 8.8379067E-28 5.4535121E-27
 0.8521135 1.2062211E-27 7.4117057E-27
 0.9022379 1.6442244E-27 1.0064963E-26
 0.9523622 2.2387499E-27 1.3657093E-26
 1.002487 3.0450894E-27 1.8516467E-26
 1.052611 4.1378297E-27 2.5084766E-26
 1.102735 5.6175147E-27 3.3955809E-26
 1.152860 7.6195574E-27 4.5927229E-26
 1.202984 1.0326194E-26 6.2069770E-26
 1.253108 1.3982483E-26 8.3818918E-26
 1.303232 1.8917649E-26 1.1309831E-25
 1.353357 2.5573727E-26 1.5248388E-25
 1.403481 3.4543575E-26 2.0542053E-25
 1.453605 4.6621867E-26 2.7651318E-25
 1.503730 6.2872830E-26 3.7191175E-25
 1.553854 8.4720413E-26 4.9982473E-25
 1.603978 1.1406863E-25 6.7119343E-25
 1.654103 1.5346114E-25 9.0059536E-25
 1.704227 2.0629302E-25 1.2074398E-24
 1.754351 2.7709291E-25 1.6175337E-24
 1.804476 3.7189622E-25 2.1651848E-24
 1.854600 4.9873808E-25 2.8959117E-24
 1.904724 6.6831157E-25 3.8702092E-24
 1.954849 8.9483037E-25 5.1680775E-24
 2.004973 1.1971769E-24 6.8957629E-24
 2.055097 1.6004100E-24 9.1935743E-24
 2.105222 2.1377639E-24 1.2247296E-23
 2.155346 2.8532795E-24 1.6302271E-23
 2.205470 3.8052599E-24 2.1682520E-23
 2.255595 5.0708409E-24 2.8815221E-23
 2.305719 6.7519891E-24 3.8263771E-23
 2.355843 8.9833658E-24 5.0770024E-23
 2.405968 1.1942695E-23 6.7309664E-23
 2.456092 1.5864332E-23 8.9166387E-23
 2.506216 2.1057012E-23 1.1802582E-22
 2.556341 2.7927210E-23 1.5610077E-22
 2.606465 3.7009602E-23 2.0629407E-22
 2.656589 4.9006908E-23 2.7240846E-22
 2.706714 6.4842063E-23 3.5942348E-22
 2.756838 8.5725824E-23 4.7385575E-22
 2.806962 1.1324596E-22 6.2422031E-22
 2.857087 1.4948231E-22 8.2164026E-22
 2.907211 1.9715730E-22 1.0806315E-21
 2.957335 2.5983167E-22 1.4201274E-21
 3.007460 3.4215912E-22 1.8647864E-21
 3.057584 4.5021496E-22 2.4467314E-21
 3.107708 5.9192654E-22 3.2076768E-21
 3.157833 7.7762788E-22 4.2019604E-21
 3.207957 1.0207790E-21 5.4999716E-21
 3.258081 1.3389001E-21 7.1933193E-21
 3.308206 1.7547760E-21 9.4003769E-21
 3.358330 2.2980029E-21 1.2274816E-20
 3.408454 3.0070152E-21 1.6015365E-20
 3.458579 3.9316698E-21 2.0879131E-20
 3.508703 5.1365909E-21 2.7198196E-20
 3.558827 6.7054694E-21 3.5401353E-20
 3.608952 8.7466199E-21 4.6041739E-20
 3.659076 1.1400055E-20 5.9832526E-20
 3.709200 1.4846708E-20 7.7691769E-20
 3.759325 1.9320118E-20 1.0080100E-19
 3.809449 2.5121520E-20 1.3067976E-19
 3.859573 3.2639119E-20 1.6927870E-19
 3.909697 4.2372818E-20 2.1910388E-19
 3.959822 5.4965926E-20 2.8336848E-19
 4.009946 7.1245189E-20 3.6618743E-19
 4.060071 9.2272876E-20 4.7283443E-19
 4.110195 1.1941239E-19 6.1005434E-19
 4.160319 1.5441209E-19 7.8646306E-19
 4.210443 1.9951240E-19 1.0130758E-18
 4.260568 2.5758213E-19 1.3039401E-18
 4.310692 3.3229045E-19 1.6769833E-18
 4.360816 4.2832808E-19 2.1549982E-18
 4.410941 5.5168625E-19 2.7670937E-18
 4.461065 7.1000981E-19 3.5501463E-18
 4.511189 9.1304734E-19 4.5512151E-18
 4.561314 1.1732212E-18 5.8298709E-18
 4.611438 1.5063384E-18 7.4617829E-18
 4.661562 1.9325110E-18 9.5428552E-18
 4.711687 2.4772982E-18 1.2194608E-17
 4.761811 3.1731575E-18 1.5570747E-17
 4.811935 4.0612695E-18 1.9865664E-17
 4.862060 5.1938522E-18 2.5325059E-17
 4.912184 6.6370305E-18 3.2258932E-17
 4.962308 8.4745191E-18 4.1058360E-17
 5.012433 1.0812179E-17 5.2216206E-17
 5.062557 1.3783785E-17 6.6353338E-17
 5.112681 1.7558239E-17 8.4250470E-17
 5.162806 2.2348607E-17 1.0688923E-16
 5.212930 2.8423468E-17 1.3550263E-16
 5.263054 3.6121085E-17 1.7163868E-16
 5.313178 4.5867152E-17 2.1723747E-16
 5.363303 5.8197113E-17 2.7473228E-16
 5.413427 7.3783108E-17 3.4716169E-16
 5.463552 9.3469503E-17 4.3834151E-16
 5.513676 1.1831508E-16 5.5301754E-16
 5.563800 1.4964687E-16 6.9714629E-16
 5.613925 1.8912660E-16 8.7812769E-16
 5.664049 2.3883343E-16 1.1052154E-15
 5.714173 3.0136646E-16 1.3899041E-15
 5.764297 3.7997260E-16 1.7465454E-15
 5.814422 4.7870416E-16 2.1929245E-15
 5.864546 6.0261460E-16 2.7512049E-15
 5.914670 7.5800057E-16 3.4488232E-15
 5.964795 9.5270454E-16 4.3199307E-15
 6.014919 1.1964747E-15 5.4066998E-15
 6.065043 1.5014349E-15 6.7614634E-15
 6.115168 1.8826398E-15 8.4489199E-15
 6.165292 2.3587701E-15 1.0549081E-14
 6.215416 2.9529889E-15 1.3160735E-14
 6.265541 3.6939907E-15 1.6405846E-14
 6.315665 4.6172956E-15 2.0434780E-14
 6.365789 5.7668337E-15 2.5432755E-14
 6.415914 7.1968934E-15 3.1627797E-14
 6.466038 8.9745089E-15 3.9300516E-14
 6.516162 1.1182382E-14 4.8795393E-14
 6.566287 1.3922459E-14 6.0535920E-14
 6.616411 1.7320358E-14 7.5041447E-14
 6.666535 2.1530522E-14 9.2947568E-14
 6.716660 2.6743022E-14 1.1503552E-13
 6.766784 3.3191325E-14 1.4225704E-13
 6.816908 4.1162047E-14 1.7578131E-13
 6.867033 5.1006735E-14 2.1702991E-13
 6.917157 6.3156267E-14 2.6774630E-13
 6.967281 7.8138234E-14 3.3004670E-13
 7.017406 9.6598253E-14 4.0652299E-13
 7.067530 1.1932552E-13 5.0031328E-13
 7.117654 1.4728407E-13 6.1525622E-13
 7.167778 1.8165055E-13 7.5599471E-13
 7.217903 2.2386036E-13 9.2819177E-13
 7.268028 2.7566098E-13 1.1386963E-12
 7.318152 3.3918146E-13 1.3958226E-12
 7.368276 4.1701102E-13 1.7096399E-12
 7.418400 5.1229675E-13 2.0923389E-12
 7.468524 6.2886068E-13 2.5586581E-12
 7.518649 7.7134040E-13 3.1264006E-12
 7.568773 9.4535859E-13 3.8170678E-12
 7.618897 1.1577263E-12 4.6565824E-12
 7.669022 1.4166878E-12 5.6761982E-12
 7.719146 1.7322138E-12 6.9135444E-12
 7.769270 2.1163518E-12 8.4138746E-12
 7.819395 2.5836473E-12 1.0231598E-11
 7.869520 3.1516560E-12 1.2432151E-11
 7.919644 3.8415139E-12 1.5093744E-11
 7.969768 4.6787006E-12 1.8310695E-11
 8.019893 5.6938681E-12 2.2195320E-11
 8.070017 6.9238690E-12 2.6882732E-11
 8.120141 8.4129743E-12 3.2533816E-11
 8.170265 1.0214328E-11 3.9341676E-11
 8.220389 1.2391659E-11 4.7535656E-11
 8.270514 1.5021340E-11 5.7390800E-11
 8.320638 1.8194807E-11 6.9233126E-11
 8.370762 2.2021449E-11 8.3452974E-11
 8.420887 2.6632007E-11 1.0051213E-10
 8.471011 3.2182711E-11 1.2096291E-10
 8.521135 3.8859773E-11 1.4545729E-10
 8.571260 4.6885409E-11 1.7477228E-10
 8.621385 5.6524285E-11 2.0982675E-10
 8.671509 6.8091421E-11 2.5171146E-10
 8.721633 8.1961472E-11 3.0171515E-10
 8.771757 9.8579624E-11 3.6136277E-10
 8.821881 1.1847444E-10 4.3245665E-10
 8.872005 1.4227297E-10 5.1712401E-10
 8.922130 1.7071841E-10 6.1787253E-10
 8.972254 2.0469094E-10 7.3765966E-10
 9.022379 2.4523206E-10 8.7996460E-10
 9.072503 2.9357314E-10 1.0488838E-09
 9.122627 3.5116954E-10 1.2492324E-09
 9.172752 4.1973658E-10 1.4866501E-09
 9.222877 5.0129978E-10 1.7677892E-09
 9.273001 5.9824473E-10 2.1003950E-09
 9.323125 7.1338019E-10 2.4936053E-09
 9.373249 8.5000995E-10 2.9580343E-09
 9.423373 1.0120171E-09 3.5061865E-09
 9.473497 1.2039617E-09 4.1525556E-09
 9.523622 1.4311941E-09 4.9142033E-09
 9.573746 1.6999865E-09 5.8108367E-09
 9.623871 2.0176858E-09 6.8656303E-09
 9.673995 2.3928908E-09 8.1053511E-09
 9.724119 2.8356610E-09 9.5613366E-09
 9.774244 3.3577343E-09 1.1269812E-08
 9.824368 3.9728287E-09 1.3272955E-08
 9.874493 4.6969384E-09 1.5619628E-08
 9.924617 5.5487033E-09 1.8366478E-08
 9.974741 6.5498256E-09 2.1579131E-08
 10.02487 7.7255562E-09 2.5333488E-08
 10.07499 9.1052454E-09 2.9717240E-08
 10.12511 1.0722978E-08 3.4831650E-08
 10.17524 1.2618311E-08 4.0793655E-08
 10.22536 1.4837101E-08 4.7737938E-08
 10.27549 1.7432477E-08 5.5819655E-08
 10.32561 2.0465926E-08 6.5217421E-08
 10.37574 2.4008553E-08 7.6136374E-08
 10.42586 2.8142523E-08 8.8812413E-08
 10.47598 3.2962685E-08 1.0351594E-07
 10.52611 3.8578438E-08 1.2055735E-07
 10.57623 4.5115883E-08 1.4029195E-07
 10.62636 5.2720193E-08 1.6312639E-07
 10.67648 6.1558637E-08 1.8952646E-07
 10.72661 7.1822811E-08 2.2002236E-07
 10.77673 8.3733418E-08 2.5522064E-07
 10.82685 9.7543513E-08 2.9581332E-07
 10.87698 1.1354322E-07 3.4258804E-07
 10.92710 1.3206487E-07 3.9644115E-07
 10.97723 1.5348886E-07 4.5839371E-07
 11.02735 1.7825016E-07 5.2960320E-07
 11.07748 2.0684578E-07 6.1138542E-07
 11.12760 2.3984305E-07 7.0523276E-07
 11.17772 2.7788906E-07 8.1283417E-07
 11.22785 3.2172122E-07 9.3610464E-07
 11.27797 3.7217910E-07 1.0772072E-06
 11.32810 4.3021788E-07 1.2385875E-06
 11.37822 4.9692306E-07 1.4230056E-06
 11.42835 5.7352759E-07 1.6335764E-06
 11.47847 6.6143002E-07 1.8738051E-06
 11.52859 7.6221613E-07 2.1476440E-06
 11.57872 8.7768183E-07 2.4595331E-06
 11.62884 1.0098594E-06 2.8144602E-06
 11.67897 1.1610467E-06 3.2180365E-06
 11.72909 1.3338395E-06 3.6765357E-06
 11.77922 1.5311672E-06 4.1970020E-06
 11.82934 1.7563335E-06 4.7873209E-06
 11.87947 2.0130606E-06 5.4562961E-06
 11.92959 2.3055450E-06 6.2138038E-06
 11.97971 2.6384855E-06 7.0707974E-06
 12.02984 3.0171832E-06 8.0395494E-06
 12.07996 3.4475822E-06 9.1337170E-06
 12.13009 3.9363495E-06 1.0368510E-05
 12.18021 4.4909575E-06 1.1760809E-05
 12.23034 5.1197721E-06 1.3329412E-05
 12.28046 5.8321516E-06 1.5095130E-05
 12.33058 6.6385569E-06 1.7081093E-05
 12.38071 7.5506673E-06 1.9312876E-05
 12.43083 8.5815154E-06 2.1818794E-05
 12.48096 9.7456259E-06 2.4630175E-05
 12.53108 1.1059175E-05 2.7781540E-05
 12.58121 1.2540163E-05 3.1311083E-05
 12.63133 1.4208596E-05 3.5260782E-05
 12.68145 1.6086697E-05 3.9676986E-05
 12.73158 1.8199124E-05 4.4610588E-05
 12.78170 2.0573214E-05 5.0117538E-05
 12.83183 2.3239247E-05 5.6259316E-05
 12.88195 2.6230726E-05 6.3103173E-05
 12.93208 2.9584695E-05 7.0723036E-05
 12.98220 3.3342076E-05 7.9199555E-05
 13.03232 3.7548023E-05 8.8621164E-05
 13.08245 4.2252326E-05 9.9084267E-05
 13.13257 4.7509817E-05 1.1069409E-04
 13.18270 5.3381009E-05 1.2356570E-04
 13.23282 5.9931976E-05 1.3782337E-04
 13.28295 6.7235749E-05 1.5360322E-04
 13.33307 7.5372322E-05 1.7105284E-04
 13.38320 8.4429412E-05 1.9033252E-04
 13.43332 9.4503099E-05 2.1161584E-04
 13.48344 1.0569853E-04 2.3509095E-04
 13.53357 1.1813066E-04 2.6096142E-04
 13.58369 1.3192507E-04 2.8944697E-04
 13.63382 1.4721880E-04 3.2078527E-04
 13.68394 1.6416125E-04 3.5523239E-04
 13.73407 1.8291516E-04 3.9306376E-04
 13.78419 2.0365760E-04 4.3457642E-04
 13.83431 2.2658108E-04 4.8008907E-04
 13.88444 2.5189467E-04 5.2994426E-04
 13.93456 2.7982524E-04 5.8450858E-04
 13.98469 3.1061866E-04 6.4417557E-04
 14.03481 3.4454130E-04 7.0936600E-04
 14.08494 3.8188123E-04 7.8052847E-04
 14.13506 4.2294987E-04 8.5814338E-04
 14.18518 4.6808340E-04 9.4272161E-04
 14.23531 5.1764451E-04 1.0348075E-03
 14.28543 5.7202403E-04 1.1349807E-03
 14.33556 6.3164276E-04 1.2438551E-03
 14.38568 6.9695315E-04 1.3620832E-03
 14.43581 7.6844316E-04 1.4903595E-03
 14.48593 8.4663130E-04 1.6294090E-03
 14.53606 9.3207858E-04 1.7800070E-03
 14.58618 1.0253843E-03 1.9429688E-03
 14.63630 1.1271897E-03 2.1191547E-03
 14.68643 1.2381804E-03 2.3094679E-03
 14.73655 1.3590883E-03 2.5148597E-03
 14.78668 1.4906945E-03 2.7363289E-03
 14.83680 1.6338306E-03 2.9749188E-03
 14.88692 1.7893823E-03 3.2317271E-03
 14.93705 1.9582917E-03 3.5078980E-03
 14.98717 2.1415590E-03 3.8046215E-03
 15.03730 2.3402460E-03 4.1231466E-03
 15.08742 2.5554774E-03 4.4647641E-03
 15.13755 2.7884445E-03 4.8308210E-03
 15.18767 3.0404073E-03 5.2227098E-03
 15.23779 3.3126972E-03 5.6418744E-03
 15.28792 3.6067180E-03 6.0898056E-03
 15.33804 3.9239507E-03 6.5680444E-03
 15.38817 4.2659543E-03 7.0781750E-03
 15.43829 4.6343678E-03 7.6218257E-03
 15.48842 5.0309137E-03 8.2006715E-03
 15.53854 5.4573980E-03 8.8164192E-03
 15.58867 5.9157154E-03 9.4708223E-03
 15.63879 6.4078476E-03 1.0165664E-02
 15.68891 6.9358805E-03 1.0902776E-02
 15.73904 7.5019524E-03 1.1683963E-02
 15.78916 8.1083328E-03 1.2511112E-02
 15.83929 8.7573724E-03 1.3386105E-02
 15.88941 9.4515169E-03 1.4310835E-02
 15.93954 1.0193308E-02 1.5287219E-02
 15.98966 1.0985381E-02 1.6317153E-02
 16.03979 1.1830470E-02 1.7402552E-02
 16.08991 1.2731399E-02 1.8545309E-02
 16.14003 1.3691095E-02 1.9747302E-02
 16.19016 1.4712570E-02 2.1010380E-02
 16.24028 1.5798932E-02 2.2336375E-02
 16.29041 1.6953381E-02 2.3727069E-02
 16.34053 1.8179201E-02 2.5184190E-02
 16.39066 1.9479766E-02 2.6709422E-02
 16.44078 2.0858530E-02 2.8304376E-02
 16.49090 2.2319024E-02 2.9970588E-02
 16.54103 2.3864862E-02 3.1709496E-02
 16.59115 2.5499713E-02 3.3522476E-02
 16.64128 2.7227329E-02 3.5410777E-02
 16.69140 2.9051511E-02 3.7375528E-02
 16.74152 3.0976115E-02 3.9417744E-02
 16.79165 3.3005048E-02 4.1538306E-02
 16.84177 3.5142250E-02 4.3737940E-02
 16.89190 3.7391707E-02 4.6017233E-02
 16.94202 3.9757479E-02 4.8376642E-02
 16.99215 4.2243466E-02 5.0816290E-02
 17.04227 4.4853751E-02 5.3336293E-02
 17.09240 4.7592364E-02 5.5936493E-02
 17.14252 5.0463308E-02 5.8616538E-02
 17.19264 5.3470574E-02 6.1375875E-02
 17.24277 5.6618121E-02 6.4213708E-02
 17.29289 5.9909850E-02 6.7129038E-02
 17.34302 6.3349620E-02 7.0120610E-02
 17.39314 6.6941217E-02 7.3186912E-02
 17.44327 7.0688337E-02 7.6326221E-02
 17.49339 7.4594595E-02 7.9536542E-02
 17.54351 7.8663491E-02 8.2815610E-02
 17.59364 8.2898401E-02 8.6160906E-02
 17.64376 8.7302588E-02 8.9569651E-02
 17.69389 9.1879144E-02 9.3038782E-02
 17.74401 9.6631020E-02 9.6565001E-02
 17.79414 0.1015610 0.1001447
 17.84426 0.1066716 0.1037741
 17.89438 0.1119653 0.1074490
 17.94451 0.1174443 0.1111651
 17.99463 0.1231104 0.1149177
 18.04476 0.1289654 0.1187020
 18.09488 0.1350108 0.1225129
 18.14501 0.1412477 0.1263450
 18.19513 0.1476772 0.1301929
 18.24525 0.1542997 0.1340505
 18.29538 0.1611157 0.1379121
 18.34550 0.1681252 0.1417715
 18.39563 0.1753279 0.1456224
 18.44575 0.1827232 0.1494582
 18.49588 0.1903103 0.1532724
 18.54600 0.1980878 0.1570582
 18.59612 0.2060543 0.1608089
 18.64625 0.2142076 0.1645174
 18.69637 0.2225457 0.1681769
 18.74650 0.2310657 0.1717803
 18.79662 0.2397648 0.1753206
 18.84675 0.2486396 0.1787908
 18.89687 0.2576864 0.1821839
 18.94699 0.2669012 0.1854929
 18.99712 0.2762795 0.1887109
 19.04724 0.2858167 0.1918313
 19.09737 0.2955077 0.1948474
 19.14749 0.3053471 0.1977525
 19.19762 0.3153291 0.2005405
 19.24774 0.3254479 0.2032052
 19.29786 0.3356969 0.2057407
 19.34799 0.3460697 0.2081411
 19.39811 0.3565592 0.2104012
 19.44824 0.3671587 0.2125159
 19.49836 0.3778602 0.2144800
 19.54849 0.3886562 0.2162893
 19.59861 0.3995388 0.2179393
 19.64874 0.4105002 0.2194263
 19.69886 0.4215319 0.2207468
 19.74899 0.4326255 0.2218977
 19.79911 0.4437725 0.2228762
 19.84923 0.4549641 0.2236800
 19.89936 0.4661916 0.2243072
 19.94948 0.4774461 0.2247563
 19.99961 0.4887186 0.2250261
 20.04973 0.5000002 0.2251162
 20.09986 0.5112820 0.2250261
 20.14998 0.5225542 0.2247563
 20.20010 0.5338090 0.2243072
 20.25023 0.5450363 0.2236800
 20.30035 0.5562282 0.2228762
 20.35048 0.5673749 0.2218977
 20.40060 0.5784687 0.2207468
 20.45073 0.5895001 0.2194263
 20.50085 0.6004617 0.2179393
 20.55097 0.6113442 0.2162893
 20.60110 0.6221404 0.2144800
 20.65122 0.6328416 0.2125159
 20.70135 0.6434411 0.2104012
 20.75147 0.6539304 0.2081412
 20.80160 0.6643034 0.2057407
 20.85172 0.6745523 0.2032053
 20.90184 0.6846712 0.2005405
 20.95197 0.6946530 0.1977526
 21.00209 0.7044927 0.1948474
 21.05222 0.7141834 0.1918314
 21.10234 0.7237208 0.1887109
 21.15246 0.7330990 0.1854930
 21.20259 0.7423140 0.1821839
 21.25271 0.7513605 0.1787909
 21.30284 0.7602355 0.1753206
 21.35296 0.7689348 0.1717803
 21.40309 0.7774547 0.1681769
 21.45321 0.7857929 0.1645174
 21.50334 0.7939461 0.1608089
 21.55346 0.8019127 0.1570581
 21.60358 0.8096901 0.1532724
 21.65371 0.8172773 0.1494581
 21.70383 0.8246725 0.1456224
 21.75396 0.8318753 0.1417714
 21.80408 0.8388846 0.1379121
 21.85421 0.8457007 0.1340504
 21.90433 0.8523231 0.1301929
 21.95446 0.8587526 0.1263450
 22.00458 0.8649894 0.1225130
 22.05470 0.8710349 0.1187020
 22.10483 0.8768898 0.1149178
 22.15495 0.8825560 0.1111651
 22.20508 0.8880348 0.1074491
 22.25520 0.8933287 0.1037741
 22.30532 0.8984392 0.1001448
 22.35545 0.9033692 9.6565001E-02
 22.40557 0.9081210 9.3038872E-02
 22.45570 0.9126977 8.9569651E-02
 22.50582 0.9171018 8.6160980E-02
 22.55595 0.9213368 8.2815610E-02
 22.60607 0.9254057 7.9536460E-02
 22.65619 0.9293119 7.6326221E-02
 22.70632 0.9330591 7.3186852E-02
 22.75644 0.9366506 7.0120610E-02
 22.80657 0.9400905 6.7128971E-02
 22.85669 0.9433821 6.4213708E-02
 22.90682 0.9465297 6.1375801E-02
 22.95694 0.9495369 5.8616538E-02
 23.00707 0.9524079 5.5936426E-02
 23.05719 0.9551465 5.3336293E-02
 23.10732 0.9577568 5.0816230E-02
 23.15744 0.9602427 4.8376642E-02
 23.20756 0.9626085 4.6017233E-02
 23.25769 0.9648579 4.3737996E-02
 23.30781 0.9669952 4.1538306E-02
 23.35793 0.9690241 3.9417792E-02
 23.40806 0.9709488 3.7375528E-02
 23.45818 0.9727729 3.5410821E-02
 23.50831 0.9745006 3.3522476E-02
 23.55843 0.9761354 3.1709537E-02
 23.60856 0.9776813 2.9970588E-02
 23.65868 0.9791418 2.8304411E-02
 23.70881 0.9805206 2.6709422E-02
 23.75893 0.9818211 2.5184225E-02
 23.80906 0.9830469 2.3727069E-02
 23.85918 0.9842014 2.2336343E-02
 23.90930 0.9852877 2.1010380E-02
 23.95943 0.9863092 1.9747268E-02
 24.00955 0.9872689 1.8545309E-02
 24.05968 0.9881699 1.7402526E-02
 24.10980 0.9890150 1.6317153E-02
 24.15993 0.9898071 1.5287193E-02
 24.21005 0.9905488 1.4310835E-02
 24.26017 0.9912430 1.3386083E-02
 24.31030 0.9918920 1.2511112E-02
 24.36042 0.9924984 1.1683944E-02
 24.41055 0.9930644 1.0902776E-02
 24.46067 0.9935924 1.0165664E-02
 24.51080 0.9940846 9.4708391E-03
 24.56092 0.9945430 8.8164192E-03
 24.61104 0.9949694 8.2006846E-03
 24.66117 0.9953660 7.6218257E-03
 24.71129 0.9957344 7.0781866E-03
 24.76142 0.9960764 6.5680444E-03
 24.81154 0.9963936 6.0898173E-03
 24.86167 0.9966877 5.6418744E-03
 24.91179 0.9969599 5.2227187E-03
 24.96191 0.9972119 4.8308210E-03
 25.01204 0.9974449 4.4647725E-03
 25.06216 0.9976601 4.1231466E-03
 25.11229 0.9978588 3.8046145E-03
 25.16241 0.9980420 3.5078980E-03
 25.21254 0.9982109 3.2317208E-03
 25.26266 0.9983665 2.9749188E-03
 25.31279 0.9985096 2.7363221E-03
 25.36291 0.9986412 2.5148597E-03
 25.41303 0.9987621 2.3094635E-03
 25.46316 0.9988731 2.1191547E-03
 25.51328 0.9989749 1.9429651E-03
 25.56341 0.9990682 1.7800070E-03
 25.61353 0.9991536 1.6294061E-03
 25.66365 0.9992319 1.4903595E-03
 25.71378 0.9993033 1.3620832E-03
 25.76390 0.9993687 1.2438581E-03
 25.81403 0.9994283 1.1349807E-03
 25.86415 0.9994827 1.0348101E-03
 25.91428 0.9995322 9.4272161E-04
 25.96440 0.9995773 8.5814542E-04
 26.01453 0.9996185 7.8052847E-04
 26.06465 0.9996558 7.0936733E-04
 26.11477 0.9996897 6.4417557E-04
 26.16490 0.9997205 5.8450992E-04
 26.21502 0.9997484 5.2994426E-04
 26.26515 0.9997737 4.8009018E-04
 26.31527 0.9997966 4.3457642E-04
 26.36540 0.9998173 3.9306286E-04
 26.41552 0.9998361 3.5523239E-04
 26.46564 0.9998530 3.2078451E-04
 26.51577 0.9998683 2.8944697E-04
 26.56589 0.9998821 2.6096066E-04
 26.61602 0.9998946 2.3509095E-04
 26.66614 0.9999057 2.1161533E-04
 26.71626 0.9999158 1.9033252E-04
 26.76639 0.9999249 1.7105244E-04
 26.81651 0.9999330 1.5360322E-04
 26.86664 0.9999403 1.3782304E-04
 26.91676 0.9999469 1.2356570E-04
 26.96689 0.9999527 1.1069409E-04
 27.01701 0.9999580 9.9084544E-05
 27.06714 0.9999627 8.8621164E-05
 27.11726 0.9999669 7.9199781E-05
 27.16739 0.9999707 7.0723036E-05
 27.21751 0.9999740 6.3103362E-05
 27.26763 0.9999770 5.6259316E-05
 27.31776 0.9999797 5.0117684E-05
 27.36788 0.9999821 4.4610588E-05
 27.41800 0.9999841 3.9677103E-05
 27.46813 0.9999860 3.5260782E-05
 27.51825 0.9999877 3.1311170E-05
 27.56838 0.9999892 2.7781540E-05
 27.61851 0.9999905 2.4630106E-05
 27.66863 0.9999917 2.1818794E-05
 27.71875 0.9999927 1.9312822E-05
 27.76888 0.9999936 1.7081093E-05
 27.81900 0.9999944 1.5095086E-05
 27.86913 0.9999952 1.3329412E-05
 27.91925 0.9999958 1.1760775E-05
 27.96937 0.9999963 1.0368510E-05
 28.01950 0.9999968 9.1336906E-06
 28.06962 0.9999972 8.0395494E-06
 28.11975 0.9999976 7.0707765E-06
 28.16987 0.9999979 6.2138038E-06
 28.22000 0.9999982 5.4562961E-06
 28.27012 0.9999985 4.7873345E-06
 28.32025 0.9999986 4.1970020E-06
 28.37037 0.9999989 3.6765466E-06
 28.42049 0.9999990 3.2180365E-06
 28.47062 0.9999992 2.8144709E-06
 28.52074 0.9999993 2.4595331E-06
 28.57087 0.9999995 2.1476503E-06
 28.62099 0.9999995 1.8738051E-06
 28.67111 0.9999996 1.6335812E-06
 28.72124 0.9999996 1.4230056E-06
 28.77136 0.9999997 1.2385922E-06
 28.82149 0.9999998 1.0772072E-06
 28.87161 0.9999999 9.3610180E-07
 28.92174 0.9999999 8.1283417E-07
 28.97186 1.000000 7.0523004E-07
 29.02198 1.000000 6.1138542E-07
 29.07211 1.000000 5.2960115E-07
 29.12223 1.000000 4.5839371E-07
 29.17236 1.000000 3.9644004E-07
 29.22248 1.000000 3.4258804E-07
 29.27261 1.000000 2.9581221E-07
 29.32273 1.000000 2.5522064E-07
 29.37286 1.000000 2.2002152E-07
 29.42298 1.000000 1.8952646E-07
 29.47310 1.000000 1.6312639E-07
 29.52323 1.000000 1.4029247E-07
 29.57335 1.000000 1.2055735E-07
 29.62348 1.000000 1.0351633E-07
 29.67360 1.000000 8.8812413E-08
 29.72372 1.000000 7.6136665E-08
 29.77385 1.000000 6.5217421E-08
 29.82397 1.000000 5.5819875E-08
 29.87410 1.000000 4.7737938E-08
 29.92422 1.000000 4.0793807E-08
 29.97435 1.000000 3.4831650E-08
 30.02447 1.000000 2.9717354E-08
 30.07460 1.000000 2.5333488E-08
 30.12472 1.000000 2.1579048E-08
 30.17484 1.000000 1.8366478E-08
 30.22497 1.000000 1.5619568E-08
 30.27509 1.000000 1.3272955E-08
 30.32522 1.000000 1.1269769E-08
 30.37534 1.000000 9.5613366E-09
 30.42547 1.000000 8.1053511E-09
 30.47559 1.000000 6.8656303E-09
 30.52571 1.000000 5.8108367E-09
 30.57584 1.000000 4.9142033E-09
 30.62596 1.000000 4.1525556E-09
 30.67609 1.000000 3.5061865E-09
 30.72621 1.000000 2.9580343E-09
 30.77633 1.000000 2.4936053E-09
 30.82646 1.000000 2.1003950E-09
 30.87659 1.000000 1.7677892E-09
 30.92671 1.000000 1.4866501E-09
 30.97683 1.000000 1.2492324E-09
 31.02696 1.000000 1.0488838E-09
 31.07708 1.000000 8.7996804E-10
 31.12721 1.000000 7.3765966E-10
 31.17733 1.000000 6.1787492E-10
 31.22746 1.000000 5.1712401E-10
 31.27758 1.000000 4.3245829E-10
 31.32770 1.000000 3.6136277E-10
 31.37783 1.000000 3.0171343E-10
 31.42795 1.000000 2.5171146E-10
 31.47808 1.000000 2.0982596E-10
 31.52820 1.000000 1.7477228E-10
 31.57833 1.000000 1.4545674E-10
 31.62845 1.000000 1.2096291E-10
 31.67858 1.000000 1.0051213E-10
 31.72870 1.000000 8.3452974E-11
 31.77882 1.000000 6.9233126E-11
 31.82895 1.000000 5.7390800E-11
 31.87907 1.000000 4.7535656E-11
 31.92920 1.000000 3.9341676E-11
 31.97932 1.000000 3.2533816E-11
 32.02945 1.000000 2.6882732E-11
 32.07957 1.000000 2.2195320E-11
 32.12969 1.000000 1.8310695E-11
 32.17982 1.000000 1.5093744E-11
 32.22994 1.000000 1.2432151E-11
 32.28007 1.000000 1.0231598E-11
 32.33019 1.000000 8.4139076E-12
 32.38031 1.000000 6.9135444E-12
 32.43044 1.000000 5.6762308E-12
 32.48056 1.000000 4.6565824E-12
 32.53069 1.000000 3.8170829E-12
 32.58081 1.000000 3.1264006E-12
 32.63094 1.000000 2.5586436E-12
 32.68106 1.000000 2.0923389E-12
 32.73119 1.000000 1.7096335E-12
 32.78131 1.000000 1.3958226E-12
 32.83144 1.000000 1.1386898E-12
 32.88156 1.000000 9.2819177E-13
 32.93168 1.000000 7.5599471E-13
 32.98181 1.000000 6.1525622E-13
 33.03193 1.000000 5.0031328E-13
 33.08205 1.000000 4.0652299E-13
 33.13218 1.000000 3.3004670E-13
 33.18230 1.000000 2.6774630E-13
 33.23243 1.000000 2.1702991E-13
 33.28255 1.000000 1.7578131E-13
 33.33268 1.000000 1.4225704E-13
 33.38280 1.000000 1.1503552E-13
 33.43293 1.000000 9.2947568E-14
 33.48305 1.000000 7.5041447E-14
 33.53318 1.000000 6.0535920E-14
 33.58330 1.000000 4.8795674E-14
 33.63342 1.000000 3.9300516E-14
 33.68355 1.000000 3.1627980E-14
 33.73367 1.000000 2.5432755E-14
 33.78379 1.000000 2.0434858E-14
 33.83392 1.000000 1.6405846E-14
 33.88404 1.000000 1.3160659E-14
 33.93417 1.000000 1.0549081E-14
 33.98429 1.000000 8.4488716E-15
 34.03442 1.000000 6.7614634E-15
 34.08454 1.000000 5.4066693E-15
 34.13467 1.000000 4.3199307E-15
 34.18479 1.000000 3.4488232E-15
 34.23491 1.000000 2.7512049E-15
 34.28504 1.000000 2.1929245E-15
 34.33516 1.000000 1.7465454E-15
 34.38529 1.000000 1.3899041E-15
 34.43541 1.000000 1.1052154E-15
 34.48554 1.000000 8.7812769E-16
 34.53566 1.000000 6.9714629E-16
 34.58578 1.000000 5.5301754E-16
 34.63591 1.000000 4.3834151E-16
 34.68604 1.000000 3.4716169E-16
 34.73616 1.000000 2.7473228E-16
 34.78628 1.000000 2.1723747E-16
 34.83641 1.000000 1.7163999E-16
 34.88653 1.000000 1.3550263E-16
 34.93665 1.000000 1.0688964E-16
 34.98678 1.000000 8.4250470E-17
 35.03690 1.000000 6.6353590E-17
 35.08703 1.000000 5.2216206E-17
 35.13715 1.000000 4.1058049E-17
 35.18728 1.000000 3.2258932E-17
 35.23740 1.000000 2.5324869E-17
 35.28753 1.000000 1.9865664E-17
 35.33765 1.000000 1.5570687E-17
 35.38778 1.000000 1.2194608E-17
 35.43790 1.000000 9.5428188E-18
 35.48802 1.000000 7.4617829E-18
 35.53815 1.000000 5.8298486E-18
 35.58827 1.000000 4.5512151E-18
 35.63840 1.000000 3.5501463E-18
 35.68852 1.000000 2.7670937E-18
 35.73864 1.000000 2.1549982E-18
 35.78877 1.000000 1.6769833E-18
 35.83889 1.000000 1.3039401E-18
 35.88902 1.000000 1.0130835E-18
 35.93914 1.000000 7.8646306E-19
 35.98927 1.000000 6.1005666E-19
 36.03939 1.000000 4.7283443E-19
 36.08952 1.000000 3.6619022E-19
 36.13964 1.000000 2.8336848E-19
 36.18976 1.000000 2.1910554E-19
 36.23989 1.000000 1.6927870E-19
 36.29001 1.000000 1.3068027E-19
 36.34014 1.000000 1.0080100E-19
 36.39026 1.000000 7.7691175E-20
 36.44038 1.000000 5.9832526E-20
 36.49051 1.000000 4.6041564E-20
 36.54063 1.000000 3.5401353E-20
 36.59076 1.000000 2.7197989E-20
 36.64088 1.000000 2.0879131E-20
 36.69101 1.000000 1.6015304E-20
 36.74113 1.000000 1.2274816E-20
 36.79126 1.000000 9.4003414E-21
 36.84138 1.000000 7.1933193E-21
 36.89151 1.000000 5.4999716E-21
 36.94163 1.000000 4.2019604E-21
 36.99175 1.000000 3.2076768E-21
 37.04188 1.000000 2.4467314E-21
 37.09200 1.000000 1.8647864E-21
 37.14212 1.000000 1.4201382E-21
 37.19225 1.000000 1.0806315E-21
 37.24237 1.000000 8.2164339E-22
 37.29250 1.000000 6.2422031E-22
 37.34262 1.000000 4.7385933E-22
 37.39275 1.000000 3.5942348E-22
 37.44287 1.000000 2.7241053E-22
 37.49300 1.000000 2.0629407E-22
 37.54312 1.000000 1.5610195E-22
 37.59325 1.000000 1.1802582E-22
 37.64337 1.000000 8.9165712E-23
 37.69349 1.000000 6.7309664E-23
 37.74362 1.000000 5.0769636E-23
 37.79374 1.000000 3.8263771E-23
 37.84387 1.000000 2.8815110E-23
 37.89399 1.000000 2.1682520E-23
 37.94411 1.000000 1.6302148E-23
 37.99424 1.000000 1.2247296E-23
 38.04436 1.000000 9.1935396E-24
 38.09449 1.000000 6.8957629E-24
 38.14461 1.000000 5.1680775E-24
 38.19474 1.000000 3.8702092E-24
 38.24486 1.000000 2.8959117E-24
 38.29498 1.000000 2.1651848E-24
 38.34511 1.000000 1.6175337E-24
 38.39523 1.000000 1.2074490E-24
 38.44536 1.000000 9.0059536E-25
 38.49548 1.000000 6.7119855E-25
 38.54561 1.000000 4.9982473E-25
 38.59573 1.000000 3.7191459E-25
 38.64585 1.000000 2.7651318E-25
 38.69598 1.000000 2.0542208E-25
 38.74611 1.000000 1.5248388E-25
 38.79623 1.000000 1.1309917E-25
 38.84635 1.000000 8.3818918E-26
 38.89648 1.000000 6.2069289E-26
 38.94660 1.000000 4.5927229E-26
 38.99673 1.000000 3.3955550E-26
 39.04685 1.000000 2.5084766E-26
 39.09698 1.000000 1.8516325E-26
 39.14710 1.000000 1.3657093E-26
 39.19722 1.000000 1.0064887E-26
 39.24735 1.000000 7.4117057E-27
 39.29747 1.000000 5.4534910E-27
 39.34760 1.000000 4.0094807E-27
 39.39772 1.000000 2.9454300E-27
 39.44785 1.000000 2.1620615E-27
 39.49797 1.000000 1.5857492E-27
 39.54809 1.000000 1.1621389E-27
 39.59822 1.000000 8.5099824E-28
 39.64834 1.000000 6.2267251E-28
 39.69847 1.000000 4.5523384E-28
 39.74859 1.000000 3.3255981E-28
 39.79871 1.000000 2.4274505E-28
 39.84884 1.000000 1.7704818E-28
 39.89896 1.000000 1.2902571E-28
 39.94909 1.000000 9.3955349E-29
 39.99921 1.000000 6.8361864E-29
 40.04934 1.000000 4.9700795E-29
 40.09946 1.000000 3.6104376E-29
 40.14959 1.000000 2.6206565E-29
 40.19971 1.000000 1.9006809E-29
 40.24983 1.000000 1.3774534E-29
 40.29996 1.000000 9.9743242E-30
 40.35008 1.000000 7.2167574E-30
 40.40021 1.000000 5.2174251E-30
 40.45033 1.000000 3.7690536E-30
 40.50045 1.000000 2.7205115E-30
 40.55058 1.000000 1.9620840E-30
 40.60071 1.000000 1.4139694E-30
 40.65083 1.000000 1.0181875E-30
 40.70095 1.000000 7.3257894E-31
 40.75108 1.000000 5.2666741E-31
 40.80120 1.000000 3.7832691E-31
 40.85132 1.000000 2.7156059E-31
 40.90145 1.000000 1.9476085E-31
 40.95158 1.000000 1.3956999E-31
 41.00170 1.000000 9.9938908E-32
 41.05182 1.000000 7.1505991E-32
 41.10195 1.000000 5.1120180E-32
 41.15207 1.000000 3.6516670E-32
 41.20220 1.000000 2.6064057E-32
 41.25232 1.000000 1.8589237E-32
 41.30244 1.000000 1.3247072E-32
 41.35257 1.000000 9.4325766E-33
 41.40269 1.000000 6.7110875E-33
 41.45282 1.000000 4.7709793E-33
 41.50294 1.000000 3.3891504E-33
 41.55307 1.000000 2.4055237E-33
 41.60319 1.000000 1.7060190E-33
 41.65332 1.000000 1.2089552E-33
 41.70344 1.000000 8.5605541E-34
 41.75356 1.000000 6.0566488E-34
 41.80369 1.000000 4.2816877E-34
 41.85381 1.000000 3.0244955E-34
 41.90393 1.000000 2.1347795E-34
 41.95406 1.000000 1.5055500E-34
 42.00418 1.000000 1.0609367E-34
 42.05431 1.000000 7.4702620E-35
 42.10443 1.000000 5.2559056E-35
 42.15456 1.000000 3.6948611E-35
 42.20468 1.000000 2.5953988E-35
 42.25481 1.000000 1.8216244E-35
 42.30493 1.000000 1.2775628E-35
 42.35505 1.000000 8.9525030E-36
 42.40518 1.000000 6.2684305E-36
 42.45531 1.000000 4.3855618E-36
 42.50542 1.000000 3.0658932E-36
 42.55555 1.000000 2.1415632E-36
 42.60568 1.000000 1.4946986E-36
 42.65580 1.000000 1.0423937E-36
 42.70593 1.000000 7.2637129E-37
 42.75605 1.000000 5.0577521E-37
 42.80618 1.000000 3.5187782E-37
 42.85630 1.000000 2.4461236E-37
 42.90643 1.000000 1.6990921E-37
 42.95655 1.000000 1.1792996E-37
 43.00667 1.000000 8.1784358E-38
 43.05680 1.000000 5.6671554E-38
 43.10692 1.000000 3.9238767E-38
 43.15704 1.000000 2.7147776E-38
 43.20717 1.000000 1.8766737E-38
 43.25729 1.000000 1.2962695E-38
 43.30742 1.000000 0.0000000E+00
 43.35754 1.000000 0.0000000E+00
 43.40767 1.000000 0.0000000E+00
 43.45779 1.000000 0.0000000E+00
 43.50792 1.000000 0.0000000E+00
 43.55804 1.000000 0.0000000E+00
 43.60816 1.000000 0.0000000E+00
 43.65829 1.000000 0.0000000E+00
 43.70841 1.000000 0.0000000E+00
 43.75853 1.000000 0.0000000E+00
 43.80866 1.000000 0.0000000E+00
 43.85878 1.000000 0.0000000E+00
 43.90891 1.000000 0.0000000E+00
 43.95904 1.000000 0.0000000E+00
 44.00916 1.000000 0.0000000E+00
 44.05928 1.000000 0.0000000E+00
 44.10941 1.000000 0.0000000E+00
 44.15953 1.000000 0.0000000E+00
 44.20966 1.000000 0.0000000E+00
 44.25978 1.000000 0.0000000E+00
 44.30991 1.000000 0.0000000E+00
 44.36003 1.000000 0.0000000E+00
 44.41015 1.000000 0.0000000E+00
 44.46028 1.000000 0.0000000E+00
 44.51040 1.000000 0.0000000E+00
 44.56053 1.000000 0.0000000E+00
 44.61065 1.000000 0.0000000E+00
 44.66077 1.000000 0.0000000E+00
 44.71090 1.000000 0.0000000E+00
 44.76102 1.000000 0.0000000E+00
 44.81115 1.000000 0.0000000E+00
 44.86127 1.000000 0.0000000E+00
 44.91140 1.000000 0.0000000E+00
 44.96152 1.000000 0.0000000E+00
 45.01164 1.000000 0.0000000E+00
 45.06177 1.000000 0.0000000E+00
 45.11189 1.000000 0.0000000E+00
 45.16202 1.000000 0.0000000E+00
 45.21214 1.000000 0.0000000E+00
 45.26226 1.000000 0.0000000E+00
 45.31239 1.000000 0.0000000E+00
 45.36251 1.000000 0.0000000E+00
 45.41264 1.000000 0.0000000E+00
 45.46276 1.000000 0.0000000E+00
 45.51289 1.000000 0.0000000E+00
 45.56301 1.000000 0.0000000E+00
 45.61314 1.000000 0.0000000E+00
 45.66326 1.000000 0.0000000E+00
 45.71339 1.000000 0.0000000E+00
 45.76351 1.000000 0.0000000E+00
 45.81364 1.000000 0.0000000E+00
 45.86376 1.000000 0.0000000E+00
 45.91388 1.000000 0.0000000E+00
 45.96401 1.000000 0.0000000E+00
 46.01413 1.000000 0.0000000E+00
 46.06425 1.000000 0.0000000E+00
 46.11438 1.000000 0.0000000E+00
 46.16451 1.000000 0.0000000E+00
 46.21463 1.000000 0.0000000E+00
 46.26475 1.000000 0.0000000E+00
 46.31488 1.000000 0.0000000E+00
 46.36500 1.000000 0.0000000E+00
 46.41513 1.000000 0.0000000E+00
 46.46525 1.000000 0.0000000E+00
 46.51537 1.000000 0.0000000E+00
 46.56550 1.000000 0.0000000E+00
 46.61562 1.000000 0.0000000E+00
 46.66575 1.000000 0.0000000E+00
 46.71587 1.000000 0.0000000E+00
 46.76600 1.000000 0.0000000E+00
 46.81612 1.000000 0.0000000E+00
 46.86625 1.000000 0.0000000E+00
 46.91637 1.000000 0.0000000E+00
 46.96649 1.000000 0.0000000E+00
 47.01662 1.000000 0.0000000E+00
 47.06675 1.000000 0.0000000E+00
 47.11686 1.000000 0.0000000E+00
 47.16699 1.000000 0.0000000E+00
 47.21712 1.000000 0.0000000E+00
 47.26724 1.000000 0.0000000E+00
 47.31736 1.000000 0.0000000E+00
 47.36749 1.000000 0.0000000E+00
 47.41761 1.000000 0.0000000E+00
 47.46774 1.000000 0.0000000E+00
 47.51786 1.000000 0.0000000E+00
 47.56799 1.000000 0.0000000E+00
 47.61811 1.000000 0.0000000E+00
 47.66824 1.000000 0.0000000E+00
 47.71836 1.000000 0.0000000E+00
 47.76848 1.000000 0.0000000E+00
 47.81861 1.000000 0.0000000E+00
 47.86873 1.000000 0.0000000E+00
 47.91886 1.000000 0.0000000E+00
 47.96898 1.000000 0.0000000E+00
 48.01910 1.000000 0.0000000E+00
 48.06923 1.000000 0.0000000E+00
 48.11935 1.000000 0.0000000E+00
 48.16948 1.000000 0.0000000E+00
 48.21960 1.000000 0.0000000E+00
 48.26973 1.000000 0.0000000E+00
 48.31985 1.000000 0.0000000E+00
 48.36997 1.000000 0.0000000E+00
 48.42010 1.000000 0.0000000E+00
 48.47022 1.000000 0.0000000E+00
 48.52035 1.000000 0.0000000E+00
 48.57047 1.000000 0.0000000E+00
 48.62059 1.000000 0.0000000E+00
 48.67072 1.000000 0.0000000E+00
 48.72085 1.000000 0.0000000E+00
 48.77097 1.000000 0.0000000E+00
 48.82109 1.000000 0.0000000E+00
 48.87122 1.000000 0.0000000E+00
 48.92134 1.000000 0.0000000E+00
 48.97147 1.000000 0.0000000E+00
 49.02159 1.000000 0.0000000E+00
 49.07172 1.000000 0.0000000E+00
 49.12184 1.000000 0.0000000E+00
 49.17197 1.000000 0.0000000E+00
 49.22209 1.000000 0.0000000E+00
 49.27221 1.000000 0.0000000E+00
 49.32234 1.000000 0.0000000E+00
 49.37246 1.000000 0.0000000E+00
 49.42258 1.000000 0.0000000E+00
 49.47271 1.000000 0.0000000E+00
 49.52283 1.000000 0.0000000E+00
 49.57296 1.000000 0.0000000E+00
 49.62308 1.000000 0.0000000E+00
 49.67321 1.000000 0.0000000E+00
 49.72333 1.000000 0.0000000E+00
 49.77346 1.000000 0.0000000E+00
 49.82358 1.000000 0.0000000E+00
 49.87370 1.000000 0.0000000E+00
 49.92383 1.000000 0.0000000E+00
 49.97395 1.000000 0.0000000E+00
 50.02407 1.000000 0.0000000E+00
 50.07420 1.000000 0.0000000E+00
 50.12432 1.000000 0.0000000E+00
 50.17445 1.000000 0.0000000E+00
 50.22458 1.000000 0.0000000E+00
 50.27470 1.000000 0.0000000E+00
 50.32483 1.000000 0.0000000E+00
 50.37495 1.000000 0.0000000E+00
 50.42508 1.000000 0.0000000E+00
 50.47520 1.000000 0.0000000E+00
 50.52532 1.000000 0.0000000E+00
 50.57545 1.000000 0.0000000E+00
 50.62557 1.000000 0.0000000E+00
 50.67569 1.000000 0.0000000E+00
 50.72582 1.000000 0.0000000E+00
 50.77594 1.000000 0.0000000E+00
 50.82607 1.000000 0.0000000E+00
 50.87619 1.000000 0.0000000E+00
 50.92632 1.000000 0.0000000E+00
 50.97644 1.000000 0.0000000E+00
 51.02657 1.000000 0.0000000E+00
 51.07669 1.000000 0.0000000E+00
 51.12681 1.000000 0.0000000E+00
 51.17694 1.000000 0.0000000E+00
 51.22706 1.000000 0.0000000E+00
 51.27718 1.000000 0.0000000E+00
 51.32731 1.000000 0.0000000E+00
 51.37743 1.000000 0.0000000E+00
 51.42756 1.000000 0.0000000E+00
 51.47768 1.000000 0.0000000E+00
 51.52781 1.000000 0.0000000E+00
 51.57793 1.000000 0.0000000E+00
 51.62806 1.000000 0.0000000E+00
 51.67818 1.000000 0.0000000E+00
 51.72830 1.000000 0.0000000E+00
 51.77843 1.000000 0.0000000E+00
 51.82855 1.000000 0.0000000E+00
 51.87868 1.000000 0.0000000E+00
 51.92880 1.000000 0.0000000E+00
 51.97893 1.000000 0.0000000E+00
 52.02905 1.000000 0.0000000E+00
 52.07918 1.000000 0.0000000E+00
 52.12930 1.000000 0.0000000E+00
 52.17942 1.000000 0.0000000E+00
 52.22955 1.000000 0.0000000E+00
 52.27967 1.000000 0.0000000E+00
 52.32980 1.000000 0.0000000E+00
 52.37992 1.000000 0.0000000E+00
 52.43005 1.000000 0.0000000E+00
 52.48017 1.000000 0.0000000E+00
 52.53029 1.000000 0.0000000E+00
 52.58042 1.000000 0.0000000E+00
 52.63054 1.000000 0.0000000E+00
 52.68067 1.000000 0.0000000E+00
 52.73079 1.000000 0.0000000E+00
 52.78091 1.000000 0.0000000E+00
 52.83104 1.000000 0.0000000E+00
 52.88116 1.000000 0.0000000E+00
 52.93129 1.000000 0.0000000E+00
 52.98141 1.000000 0.0000000E+00
 53.03154 1.000000 0.0000000E+00
 53.08166 1.000000 0.0000000E+00
 53.13179 1.000000 0.0000000E+00
 53.18191 1.000000 0.0000000E+00
 53.23203 1.000000 0.0000000E+00
 53.28216 1.000000 0.0000000E+00
 53.33228 1.000000 0.0000000E+00
 53.38240 1.000000 0.0000000E+00
 53.43253 1.000000 0.0000000E+00
 53.48266 1.000000 0.0000000E+00
 53.53278 1.000000 0.0000000E+00
 53.58290 1.000000 0.0000000E+00
 53.63303 1.000000 0.0000000E+00
 53.68316 1.000000 0.0000000E+00
 53.73328 1.000000 0.0000000E+00
 53.78340 1.000000 0.0000000E+00
 53.83353 1.000000 0.0000000E+00
 53.88365 1.000000 0.0000000E+00
 53.93378 1.000000 0.0000000E+00
 53.98390 1.000000 0.0000000E+00
 54.03402 1.000000 0.0000000E+00
 54.08415 1.000000 0.0000000E+00
 54.13427 1.000000 0.0000000E+00
 54.18440 1.000000 0.0000000E+00
 54.23452 1.000000 0.0000000E+00
 54.28465 1.000000 0.0000000E+00
 54.33477 1.000000 0.0000000E+00
 54.38490 1.000000 0.0000000E+00
 54.43502 1.000000 0.0000000E+00
 54.48514 1.000000 0.0000000E+00
 54.53527 1.000000 0.0000000E+00
 54.58539 1.000000 0.0000000E+00
 54.63551 1.000000 0.0000000E+00
 54.68564 1.000000 0.0000000E+00
 54.73576 1.000000 0.0000000E+00
 54.78589 1.000000 0.0000000E+00
 54.83601 1.000000 0.0000000E+00
 54.88614 1.000000 0.0000000E+00
 54.93626 1.000000 0.0000000E+00
 54.98639 1.000000 0.0000000E+00
 55.03651 1.000000 0.0000000E+00
 55.08663 1.000000 0.0000000E+00
 55.13676 1.000000 0.0000000E+00
 55.18689 1.000000 0.0000000E+00
 55.23701 1.000000 0.0000000E+00
 55.28713 1.000000 0.0000000E+00
 55.33726 1.000000 0.0000000E+00
 55.38738 1.000000 0.0000000E+00
 55.43751 1.000000 0.0000000E+00
 55.48763 1.000000 0.0000000E+00
 55.53775 1.000000 0.0000000E+00
 55.58788 1.000000 0.0000000E+00
 55.63800 1.000000 0.0000000E+00
 55.68813 1.000000 0.0000000E+00
 55.73825 1.000000 0.0000000E+00
 55.78838 1.000000 0.0000000E+00
 55.83850 1.000000 0.0000000E+00
 55.88862 1.000000 0.0000000E+00
 55.93875 1.000000 0.0000000E+00
 55.98887 1.000000 0.0000000E+00
 56.03900 1.000000 0.0000000E+00
 56.08912 1.000000 0.0000000E+00
 56.13924 1.000000 0.0000000E+00
 56.18937 1.000000 0.0000000E+00
 56.23949 1.000000 0.0000000E+00
 56.28962 1.000000 0.0000000E+00
 56.33974 1.000000 0.0000000E+00
 56.38987 1.000000 0.0000000E+00
 56.43999 1.000000 0.0000000E+00
 56.49012 1.000000 0.0000000E+00
 56.54024 1.000000 0.0000000E+00
 56.59036 1.000000 0.0000000E+00
 56.64049 1.000000 0.0000000E+00
 56.69062 1.000000 0.0000000E+00
 56.74073 1.000000 0.0000000E+00
 56.79086 1.000000 0.0000000E+00
 56.84099 1.000000 0.0000000E+00
 56.89111 1.000000 0.0000000E+00
 56.94123 1.000000 0.0000000E+00
 56.99136 1.000000 0.0000000E+00
 57.04148 1.000000 0.0000000E+00
 57.09161 1.000000 0.0000000E+00
 57.14173 1.000000 0.0000000E+00
 57.19186 1.000000 0.0000000E+00
 57.24198 1.000000 0.0000000E+00
 57.29211 1.000000 0.0000000E+00
 57.34223 1.000000 0.0000000E+00
 57.39235 1.000000 0.0000000E+00
 57.44248 1.000000 0.0000000E+00
 57.49260 1.000000 0.0000000E+00
 57.54272 1.000000 0.0000000E+00
 57.59285 1.000000 0.0000000E+00
 57.64297 1.000000 0.0000000E+00
 57.69310 1.000000 0.0000000E+00
 57.74323 1.000000 0.0000000E+00
 57.79335 1.000000 0.0000000E+00
 57.84347 1.000000 0.0000000E+00
 57.89360 1.000000 0.0000000E+00
 57.94372 1.000000 0.0000000E+00
 57.99384 1.000000 0.0000000E+00
 58.04397 1.000000 0.0000000E+00
 58.09409 1.000000 0.0000000E+00
 58.14422 1.000000 0.0000000E+00
 58.19434 1.000000 0.0000000E+00
 58.24446 1.000000 0.0000000E+00
 58.29459 1.000000 0.0000000E+00
 58.34472 1.000000 0.0000000E+00
 58.39484 1.000000 0.0000000E+00
 58.44497 1.000000 0.0000000E+00
 58.49509 1.000000 0.0000000E+00
 58.54522 1.000000 0.0000000E+00
 58.59534 1.000000 0.0000000E+00
 58.64546 1.000000 0.0000000E+00
 58.69559 1.000000 0.0000000E+00
 58.74571 1.000000 0.0000000E+00
 58.79583 1.000000 0.0000000E+00
 58.84596 1.000000 0.0000000E+00
 58.89608 1.000000 0.0000000E+00
 58.94621 1.000000 0.0000000E+00
 58.99633 1.000000 0.0000000E+00
 59.04646 1.000000 0.0000000E+00
 59.09658 1.000000 0.0000000E+00
 59.14671 1.000000 0.0000000E+00
 59.19683 1.000000 0.0000000E+00
 59.24695 1.000000 0.0000000E+00
 59.29708 1.000000 0.0000000E+00
 59.34720 1.000000 0.0000000E+00
 59.39733 1.000000 0.0000000E+00
 59.44745 1.000000 0.0000000E+00
 59.49757 1.000000 0.0000000E+00
 59.54770 1.000000 0.0000000E+00
 59.59782 1.000000 0.0000000E+00
 59.64795 1.000000 0.0000000E+00
 59.69807 1.000000 0.0000000E+00
 59.74820 1.000000 0.0000000E+00
 59.79832 1.000000 0.0000000E+00
 59.84844 1.000000 0.0000000E+00
 59.89857 1.000000 0.0000000E+00
 59.94870 1.000000 0.0000000E+00
 59.99882 1.000000 0.0000000E+00
 60.04894 1.000000 0.0000000E+00
 60.09907 1.000000 0.0000000E+00
 60.14919 1.000000 0.0000000E+00
 60.19932 1.000000 0.0000000E+00
 60.24944 1.000000 0.0000000E+00
 60.29956 1.000000 0.0000000E+00
 60.34969 1.000000 0.0000000E+00
 60.39981 1.000000 0.0000000E+00
 60.44994 1.000000 0.0000000E+00
 60.50006 1.000000 0.0000000E+00
 60.55019 1.000000 0.0000000E+00
 60.60031 1.000000 0.0000000E+00
 60.65044 1.000000 0.0000000E+00
 60.70056 1.000000 0.0000000E+00
 60.75068 1.000000 0.0000000E+00
 60.80081 1.000000 0.0000000E+00
 60.85093 1.000000 0.0000000E+00
 60.90105 1.000000 0.0000000E+00
 60.95118 1.000000 0.0000000E+00
 61.00130 1.000000 0.0000000E+00
 61.05143 1.000000 0.0000000E+00
 61.10155 1.000000 0.0000000E+00
 61.15168 1.000000 0.0000000E+00
 61.20180 1.000000 0.0000000E+00
 61.25193 1.000000 0.0000000E+00
 61.30205 1.000000 0.0000000E+00
 61.35217 1.000000 0.0000000E+00
 61.40230 1.000000 0.0000000E+00
 61.45243 1.000000 0.0000000E+00
 61.50255 1.000000 0.0000000E+00
 61.55267 1.000000 0.0000000E+00
 61.60280 1.000000 0.0000000E+00
 61.65292 1.000000 0.0000000E+00
 61.70305 1.000000 0.0000000E+00
 61.75317 1.000000 0.0000000E+00
 61.80330 1.000000 0.0000000E+00
 61.85342 1.000000 0.0000000E+00
 61.90355 1.000000 0.0000000E+00
 61.95367 1.000000 0.0000000E+00
 62.00379 1.000000 0.0000000E+00
 62.05392 1.000000 0.0000000E+00
 62.10404 1.000000 0.0000000E+00
 62.15416 1.000000 0.0000000E+00
 62.20429 1.000000 0.0000000E+00
 62.25441 1.000000 0.0000000E+00
 62.30454 1.000000 0.0000000E+00
 62.35466 1.000000 0.0000000E+00
 62.40479 1.000000 0.0000000E+00
 62.45491 1.000000 0.0000000E+00
 62.50504 1.000000 0.0000000E+00
 62.55516 1.000000 0.0000000E+00
 62.60528 1.000000 0.0000000E+00
 62.65541 1.000000 0.0000000E+00
 62.70553 1.000000 0.0000000E+00
 62.75566 1.000000 0.0000000E+00
 62.80578 1.000000 0.0000000E+00
 62.85590 1.000000 0.0000000E+00
 62.90603 1.000000 0.0000000E+00
 62.95616 1.000000 0.0000000E+00
 63.00628 1.000000 0.0000000E+00
 63.05640 1.000000 0.0000000E+00
 63.10653 1.000000 0.0000000E+00
 63.15665 1.000000 0.0000000E+00
 63.20677 1.000000 0.0000000E+00
 63.25690 1.000000 0.0000000E+00
 63.30703 1.000000 0.0000000E+00
 63.35715 1.000000 0.0000000E+00
 63.40727 1.000000 0.0000000E+00
 63.45740 1.000000 0.0000000E+00
 63.50752 1.000000 0.0000000E+00
 63.55765 1.000000 0.0000000E+00
 63.60777 1.000000 0.0000000E+00
 63.65789 1.000000 0.0000000E+00
 63.70802 1.000000 0.0000000E+00
 63.75814 1.000000 0.0000000E+00
 63.80827 1.000000 0.0000000E+00
 63.85839 1.000000 0.0000000E+00
 63.90852 1.000000 0.0000000E+00
 63.95864 1.000000 0.0000000E+00
 64.00877 1.000000 0.0000000E+00
 64.05889 1.000000 0.0000000E+00
 64.10902 1.000000 0.0000000E+00
 64.15914 1.000000 0.0000000E+00
 64.20927 1.000000 0.0000000E+00
 64.25938 1.000000 0.0000000E+00
 64.30951 1.000000 0.0000000E+00
 64.35963 1.000000 0.0000000E+00
 64.40976 1.000000 0.0000000E+00
 64.45988 1.000000 0.0000000E+00
 64.51001 1.000000 0.0000000E+00
 64.56013 1.000000 0.0000000E+00
 64.61026 1.000000 0.0000000E+00
 64.66038 1.000000 0.0000000E+00
 64.71050 1.000000 0.0000000E+00
 64.76063 1.000000 0.0000000E+00
 64.81075 1.000000 0.0000000E+00
 64.86088 1.000000 0.0000000E+00
 64.91100 1.000000 0.0000000E+00
 64.96113 1.000000 0.0000000E+00
 65.01125 1.000000 0.0000000E+00
 65.06137 1.000000 0.0000000E+00
 65.11150 1.000000 0.0000000E+00
 65.16162 1.000000 0.0000000E+00
 65.21175 1.000000 0.0000000E+00
 65.26187 1.000000 0.0000000E+00
 65.31200 1.000000 0.0000000E+00
 65.36212 1.000000 0.0000000E+00
 65.41225 1.000000 0.0000000E+00
 65.46237 1.000000 0.0000000E+00
 65.51249 1.000000 0.0000000E+00
 65.56262 1.000000 0.0000000E+00
 65.61275 1.000000 0.0000000E+00
 65.66287 1.000000 0.0000000E+00
 65.71299 1.000000 0.0000000E+00
 65.76311 1.000000 0.0000000E+00
 65.81324 1.000000 0.0000000E+00
 65.86337 1.000000 0.0000000E+00
 65.91349 1.000000 0.0000000E+00
 65.96362 1.000000 0.0000000E+00
 66.01374 1.000000 0.0000000E+00
 66.06387 1.000000 0.0000000E+00
 66.11398 1.000000 0.0000000E+00
 66.16411 1.000000 0.0000000E+00
 66.21423 1.000000 0.0000000E+00
 66.26436 1.000000 0.0000000E+00
 66.31448 1.000000 0.0000000E+00
 66.36461 1.000000 0.0000000E+00
 66.41473 1.000000 0.0000000E+00
 66.46486 1.000000 0.0000000E+00
 66.51498 1.000000 0.0000000E+00
 66.56510 1.000000 0.0000000E+00
 66.61523 1.000000 0.0000000E+00
 66.66535 1.000000 0.0000000E+00
 66.71548 1.000000 0.0000000E+00
 66.76560 1.000000 0.0000000E+00
 66.81573 1.000000 0.0000000E+00
 66.86585 1.000000 0.0000000E+00
 66.91598 1.000000 0.0000000E+00
 66.96609 1.000000 0.0000000E+00
 67.01622 1.000000 0.0000000E+00
 67.06635 1.000000 0.0000000E+00
 67.11648 1.000000 0.0000000E+00
 67.16660 1.000000 0.0000000E+00
 67.21672 1.000000 0.0000000E+00
 67.26685 1.000000 0.0000000E+00
 67.31697 1.000000 0.0000000E+00
 67.36710 1.000000 0.0000000E+00
 67.41722 1.000000 0.0000000E+00
 67.46735 1.000000 0.0000000E+00
 67.51747 1.000000 0.0000000E+00
 67.56759 1.000000 0.0000000E+00
 67.61771 1.000000 0.0000000E+00
 67.66784 1.000000 0.0000000E+00
 67.71796 1.000000 0.0000000E+00
 67.76809 1.000000 0.0000000E+00
 67.81821 1.000000 0.0000000E+00
 67.86834 1.000000 0.0000000E+00
 67.91846 1.000000 0.0000000E+00
 67.96859 1.000000 0.0000000E+00
 68.01871 1.000000 0.0000000E+00
 68.06883 1.000000 0.0000000E+00
 68.11896 1.000000 0.0000000E+00
 68.16908 1.000000 0.0000000E+00
 68.21921 1.000000 0.0000000E+00
 68.26933 1.000000 0.0000000E+00
 68.31946 1.000000 0.0000000E+00
 68.36958 1.000000 0.0000000E+00
 68.41970 1.000000 0.0000000E+00
 68.46983 1.000000 0.0000000E+00
 68.51995 1.000000 0.0000000E+00
 68.57008 1.000000 0.0000000E+00
 68.62020 1.000000 0.0000000E+00
 68.67033 1.000000 0.0000000E+00
 68.72045 1.000000 0.0000000E+00
 68.77058 1.000000 0.0000000E+00
 68.82069 1.000000 0.0000000E+00
 68.87083 1.000000 0.0000000E+00
 68.92095 1.000000 0.0000000E+00
 68.97108 1.000000 0.0000000E+00
 69.02120 1.000000 0.0000000E+00
 69.07132 1.000000 0.0000000E+00
 69.12144 1.000000 0.0000000E+00
 69.17157 1.000000 0.0000000E+00
 69.22169 1.000000 0.0000000E+00
 69.27182 1.000000 0.0000000E+00
 69.32195 1.000000 0.0000000E+00
 69.37207 1.000000 0.0000000E+00
 69.42220 1.000000 0.0000000E+00
 69.47231 1.000000 0.0000000E+00
 69.52244 1.000000 0.0000000E+00
 69.57256 1.000000 0.0000000E+00
 69.62269 1.000000 0.0000000E+00
 69.67281 1.000000 0.0000000E+00
 69.72294 1.000000 0.0000000E+00
 69.77306 1.000000 0.0000000E+00
 69.82319 1.000000 0.0000000E+00
 69.87331 1.000000 0.0000000E+00
 69.92343 1.000000 0.0000000E+00
 69.97356 1.000000 0.0000000E+00
 70.02368 1.000000 0.0000000E+00
 70.07381 1.000000 0.0000000E+00
 70.12393 1.000000 0.0000000E+00
 70.17406 1.000000 0.0000000E+00
 70.22418 1.000000 0.0000000E+00
 70.27431 1.000000 0.0000000E+00
 70.32442 1.000000 0.0000000E+00
 70.37456 1.000000 0.0000000E+00
 70.42468 1.000000 0.0000000E+00
 70.47481 1.000000 0.0000000E+00
 70.52493 1.000000 0.0000000E+00
 70.57505 1.000000 0.0000000E+00
 70.62518 1.000000 0.0000000E+00
 70.67530 1.000000 0.0000000E+00
 70.72543 1.000000 0.0000000E+00
 70.77555 1.000000 0.0000000E+00
 70.82568 1.000000 0.0000000E+00
 70.87580 1.000000 0.0000000E+00
 70.92592 1.000000 0.0000000E+00
 70.97604 1.000000 0.0000000E+00
 71.02617 1.000000 0.0000000E+00
 71.07629 1.000000 0.0000000E+00
 71.12642 1.000000 0.0000000E+00
 71.17654 1.000000 0.0000000E+00
 71.22667 1.000000 0.0000000E+00
 71.27679 1.000000 0.0000000E+00
 71.32691 1.000000 0.0000000E+00
 71.37704 1.000000 0.0000000E+00
 71.42716 1.000000 0.0000000E+00
 71.47729 1.000000 0.0000000E+00
 71.52741 1.000000 0.0000000E+00
 71.57754 1.000000 0.0000000E+00
 71.62766 1.000000 0.0000000E+00
 71.67779 1.000000 0.0000000E+00
 71.72791 1.000000 0.0000000E+00
 71.77803 1.000000 0.0000000E+00
 71.82816 1.000000 0.0000000E+00
 71.87829 1.000000 0.0000000E+00
 71.92841 1.000000 0.0000000E+00
 71.97853 1.000000 0.0000000E+00
 72.02866 1.000000 0.0000000E+00
 72.07878 1.000000 0.0000000E+00
 72.12891 1.000000 0.0000000E+00
 72.17903 1.000000 0.0000000E+00
 72.22916 1.000000 0.0000000E+00
 72.27928 1.000000 0.0000000E+00
 72.32941 1.000000 0.0000000E+00
 72.37952 1.000000 0.0000000E+00
 72.42965 1.000000 0.0000000E+00
 72.47977 1.000000 0.0000000E+00
 72.52990 1.000000 0.0000000E+00
 72.58002 1.000000 0.0000000E+00
 72.63015 1.000000 0.0000000E+00
 72.68027 1.000000 0.0000000E+00
 72.73040 1.000000 0.0000000E+00
 72.78053 1.000000 0.0000000E+00
 72.83064 1.000000 0.0000000E+00
 72.88077 1.000000 0.0000000E+00
 72.93089 1.000000 0.0000000E+00
 72.98102 1.000000 0.0000000E+00
 73.03114 1.000000 0.0000000E+00
 73.08127 1.000000 0.0000000E+00
 73.13139 1.000000 0.0000000E+00
 73.18152 1.000000 0.0000000E+00
 73.23164 1.000000 0.0000000E+00
 73.28176 1.000000 0.0000000E+00
 73.33189 1.000000 0.0000000E+00
 73.38202 1.000000 0.0000000E+00
 73.43214 1.000000 0.0000000E+00
 73.48226 1.000000 0.0000000E+00
 73.53239 1.000000 0.0000000E+00
 73.58251 1.000000 0.0000000E+00
 73.63263 1.000000 0.0000000E+00
 73.68276 1.000000 0.0000000E+00
 73.73289 1.000000 0.0000000E+00
 73.78301 1.000000 0.0000000E+00
 73.83313 1.000000 0.0000000E+00
 73.88326 1.000000 0.0000000E+00
 73.93338 1.000000 0.0000000E+00
 73.98351 1.000000 0.0000000E+00
 74.03363 1.000000 0.0000000E+00
 74.08376 1.000000 0.0000000E+00
 74.13388 1.000000 0.0000000E+00
 74.18401 1.000000 0.0000000E+00
 74.23413 1.000000 0.0000000E+00
 74.28425 1.000000 0.0000000E+00
 74.33437 1.000000 0.0000000E+00
 74.38450 1.000000 0.0000000E+00
 74.43462 1.000000 0.0000000E+00
 74.48475 1.000000 0.0000000E+00
 74.53487 1.000000 0.0000000E+00
 74.58500 1.000000 0.0000000E+00
 74.63512 1.000000 0.0000000E+00
 74.68524 1.000000 0.0000000E+00
 74.73537 1.000000 0.0000000E+00
 74.78549 1.000000 0.0000000E+00
 74.83562 1.000000 0.0000000E+00
 74.88574 1.000000 0.0000000E+00
 74.93587 1.000000 0.0000000E+00
 74.98599 1.000000 0.0000000E+00
 75.03612 1.000000 0.0000000E+00
 75.08624 1.000000 0.0000000E+00
 75.13636 1.000000 0.0000000E+00
 75.18649 1.000000 0.0000000E+00
 75.23662 1.000000 0.0000000E+00
 75.28674 1.000000 0.0000000E+00
 75.33686 1.000000 0.0000000E+00
 75.38699 1.000000 0.0000000E+00
 75.43711 1.000000 0.0000000E+00
 75.48724 1.000000 0.0000000E+00
 75.53736 1.000000 0.0000000E+00
 75.58749 1.000000 0.0000000E+00
 75.63761 1.000000 0.0000000E+00
 75.68774 1.000000 0.0000000E+00
 75.73785 1.000000 0.0000000E+00
 75.78798 1.000000 0.0000000E+00
 75.83810 1.000000 0.0000000E+00
 75.88823 1.000000 0.0000000E+00
 75.93835 1.000000 0.0000000E+00
 75.98848 1.000000 0.0000000E+00
 76.03860 1.000000 0.0000000E+00
 76.08873 1.000000 0.0000000E+00
 76.13885 1.000000 0.0000000E+00
 76.18897 1.000000 0.0000000E+00
 76.23910 1.000000 0.0000000E+00
 76.28922 1.000000 0.0000000E+00
 76.33935 1.000000 0.0000000E+00
 76.38947 1.000000 0.0000000E+00
 76.43960 1.000000 0.0000000E+00
 76.48972 1.000000 0.0000000E+00
 76.53985 1.000000 0.0000000E+00
 76.58997 1.000000 0.0000000E+00
 76.64009 1.000000 0.0000000E+00
 76.69022 1.000000 0.0000000E+00
 76.74035 1.000000 0.0000000E+00
 76.79047 1.000000 0.0000000E+00
 76.84059 1.000000 0.0000000E+00
 76.89072 1.000000 0.0000000E+00
 76.94084 1.000000 0.0000000E+00
 76.99097 1.000000 0.0000000E+00
 77.04109 1.000000 0.0000000E+00
 77.09122 1.000000 0.0000000E+00
 77.14134 1.000000 0.0000000E+00
 77.19146 1.000000 0.0000000E+00
 77.24158 1.000000 0.0000000E+00
 77.29171 1.000000 0.0000000E+00
 77.34184 1.000000 0.0000000E+00
 77.39196 1.000000 0.0000000E+00
 77.44209 1.000000 0.0000000E+00
 77.49221 1.000000 0.0000000E+00
 77.54234 1.000000 0.0000000E+00
 77.59245 1.000000 0.0000000E+00
 77.64258 1.000000 0.0000000E+00
 77.69270 1.000000 0.0000000E+00
 77.74283 1.000000 0.0000000E+00
 77.79295 1.000000 0.0000000E+00
 77.84308 1.000000 0.0000000E+00
 77.89320 1.000000 0.0000000E+00
 77.94333 1.000000 0.0000000E+00
 77.99345 1.000000 0.0000000E+00
 78.04357 1.000000 0.0000000E+00
 78.09370 1.000000 0.0000000E+00
 78.14382 1.000000 0.0000000E+00
 78.19395 1.000000 0.0000000E+00
 78.24407 1.000000 0.0000000E+00
 78.29420 1.000000 0.0000000E+00
 78.34432 1.000000 0.0000000E+00
 78.39445 1.000000 0.0000000E+00
 78.44457 1.000000 0.0000000E+00
 78.49470 1.000000 0.0000000E+00
 78.54482 1.000000 0.0000000E+00
 78.59495 1.000000 0.0000000E+00
 78.64507 1.000000 0.0000000E+00
 78.69519 1.000000 0.0000000E+00
 78.74532 1.000000 0.0000000E+00
 78.79544 1.000000 0.0000000E+00
 78.84557 1.000000 0.0000000E+00
 78.89569 1.000000 0.0000000E+00
 78.94582 1.000000 0.0000000E+00
 78.99594 1.000000 0.0000000E+00
 79.04607 1.000000 0.0000000E+00
 79.09618 1.000000 0.0000000E+00
 79.14631 1.000000 0.0000000E+00
 79.19643 1.000000 0.0000000E+00
 79.24656 1.000000 0.0000000E+00
 79.29668 1.000000 0.0000000E+00
 79.34681 1.000000 0.0000000E+00
 79.39693 1.000000 0.0000000E+00
 79.44706 1.000000 0.0000000E+00
 79.49718 1.000000 0.0000000E+00
 79.54730 1.000000 0.0000000E+00
 79.59743 1.000000 0.0000000E+00
 79.64755 1.000000 0.0000000E+00
 79.69768 1.000000 0.0000000E+00
 79.74780 1.000000 0.0000000E+00
 79.79793 1.000000 0.0000000E+00
 79.84805 1.000000 0.0000000E+00
 79.89817 1.000000 0.0000000E+00
 79.94830 1.000000 0.0000000E+00
 79.99843 1.000000 0.0000000E+00
 80.04855 1.000000 0.0000000E+00
 80.09867 1.000000 0.0000000E+00
 80.14880 1.000000 0.0000000E+00
 80.19892 1.000000 0.0000000E+00
 80.24905 1.000000 0.0000000E+00
 80.29917 1.000000 0.0000000E+00
 80.34930 1.000000 0.0000000E+00
 80.39942 1.000000 0.0000000E+00
 80.44954 1.000000 0.0000000E+00
 80.49966 1.000000 0.0000000E+00
 80.54979 1.000000 0.0000000E+00
 80.59991 1.000000 0.0000000E+00
 80.65004 1.000000 0.0000000E+00
 80.70016 1.000000 0.0000000E+00
 80.75029 1.000000 0.0000000E+00
 80.80042 1.000000 0.0000000E+00
 80.85053 1.000000 0.0000000E+00
 80.90066 1.000000 0.0000000E+00
 80.95078 1.000000 0.0000000E+00
 81.00091 1.000000 0.0000000E+00
 81.05103 1.000000 0.0000000E+00
 81.10116 1.000000 0.0000000E+00
 81.15128 1.000000 0.0000000E+00
 81.20142 1.000000 0.0000000E+00
 81.25153 1.000000 0.0000000E+00
 81.30165 1.000000 0.0000000E+00
 81.35178 1.000000 0.0000000E+00
 81.40190 1.000000 0.0000000E+00
 81.45203 1.000000 0.0000000E+00
 81.50216 1.000000 0.0000000E+00
 81.55228 1.000000 0.0000000E+00
 81.60241 1.000000 0.0000000E+00
 81.65253 1.000000 0.0000000E+00
 81.70264 1.000000 0.0000000E+00
 81.75278 1.000000 0.0000000E+00
 81.80290 1.000000 0.0000000E+00
 81.85303 1.000000 0.0000000E+00
 81.90315 1.000000 0.0000000E+00
 81.95328 1.000000 0.0000000E+00
 82.00340 1.000000 0.0000000E+00
 82.05353 1.000000 0.0000000E+00
 82.10365 1.000000 0.0000000E+00
 82.15377 1.000000 0.0000000E+00
 82.20390 1.000000 0.0000000E+00
 82.25402 1.000000 0.0000000E+00
 82.30415 1.000000 0.0000000E+00
 82.35427 1.000000 0.0000000E+00
 82.40440 1.000000 0.0000000E+00
 82.45452 1.000000 0.0000000E+00
 82.50464 1.000000 0.0000000E+00
 82.55476 1.000000 0.0000000E+00
 82.60489 1.000000 0.0000000E+00
 82.65501 1.000000 0.0000000E+00
 82.70514 1.000000 0.0000000E+00
 82.75526 1.000000 0.0000000E+00
 82.80539 1.000000 0.0000000E+00
 82.85551 1.000000 0.0000000E+00
 82.90564 1.000000 0.0000000E+00
 82.95576 1.000000 0.0000000E+00
 83.00588 1.000000 0.0000000E+00
 83.05601 1.000000 0.0000000E+00
 83.10613 1.000000 0.0000000E+00
 83.15626 1.000000 0.0000000E+00
 83.20638 1.000000 0.0000000E+00
 83.25651 1.000000 0.0000000E+00
 83.30663 1.000000 0.0000000E+00
 83.35675 1.000000 0.0000000E+00
 83.40688 1.000000 0.0000000E+00
 83.45700 1.000000 0.0000000E+00
 83.50713 1.000000 0.0000000E+00
 83.55725 1.000000 0.0000000E+00
 83.60738 1.000000 0.0000000E+00
 83.65750 1.000000 0.0000000E+00
 83.70763 1.000000 0.0000000E+00
 83.75774 1.000000 0.0000000E+00
 83.80787 1.000000 0.0000000E+00
 83.85799 1.000000 0.0000000E+00
 83.90812 1.000000 0.0000000E+00
 83.95824 1.000000 0.0000000E+00
 84.00837 1.000000 0.0000000E+00
 84.05849 1.000000 0.0000000E+00
 84.10862 1.000000 0.0000000E+00
 84.15874 1.000000 0.0000000E+00
 84.20886 1.000000 0.0000000E+00
 84.25899 1.000000 0.0000000E+00
 84.30911 1.000000 0.0000000E+00
 84.35924 1.000000 0.0000000E+00
 84.40936 1.000000 0.0000000E+00
 84.45949 1.000000 0.0000000E+00
 84.50962 1.000000 0.0000000E+00
 84.55975 1.000000 0.0000000E+00
 84.60986 1.000000 0.0000000E+00
 84.65998 1.000000 0.0000000E+00
 84.71011 1.000000 0.0000000E+00
 84.76024 1.000000 0.0000000E+00
 84.81036 1.000000 0.0000000E+00
 84.86049 1.000000 0.0000000E+00
 84.91061 1.000000 0.0000000E+00
 84.96074 1.000000 0.0000000E+00
 85.01085 1.000000 0.0000000E+00
 85.06098 1.000000 0.0000000E+00
 85.11111 1.000000 0.0000000E+00
 85.16123 1.000000 0.0000000E+00
 85.21136 1.000000 0.0000000E+00
 85.26148 1.000000 0.0000000E+00
 85.31161 1.000000 0.0000000E+00
 85.36173 1.000000 0.0000000E+00
 85.41186 1.000000 0.0000000E+00
 85.46198 1.000000 0.0000000E+00
 85.51210 1.000000 0.0000000E+00
 85.56223 1.000000 0.0000000E+00
 85.61235 1.000000 0.0000000E+00
 85.66248 1.000000 0.0000000E+00
 85.71260 1.000000 0.0000000E+00
 85.76273 1.000000 0.0000000E+00
 85.81285 1.000000 0.0000000E+00
 85.86297 1.000000 0.0000000E+00
 85.91309 1.000000 0.0000000E+00
 85.96322 1.000000 0.0000000E+00
 86.01334 1.000000 0.0000000E+00
 86.06347 1.000000 0.0000000E+00
 86.11359 1.000000 0.0000000E+00
 86.16372 1.000000 0.0000000E+00
 86.21384 1.000000 0.0000000E+00
 86.26396 1.000000 0.0000000E+00
 86.31409 1.000000 0.0000000E+00
 86.36421 1.000000 0.0000000E+00
 86.41434 1.000000 0.0000000E+00
 86.46446 1.000000 0.0000000E+00
 86.51459 1.000000 0.0000000E+00
 86.56471 1.000000 0.0000000E+00
 86.61484 1.000000 0.0000000E+00
 86.66496 1.000000 0.0000000E+00
 86.71508 1.000000 0.0000000E+00
 86.76521 1.000000 0.0000000E+00
 86.81533 1.000000 0.0000000E+00
 86.86546 1.000000 0.0000000E+00
 86.91558 1.000000 0.0000000E+00
 86.96571 1.000000 0.0000000E+00
 87.01583 1.000000 0.0000000E+00
 87.06596 1.000000 0.0000000E+00
 87.11607 1.000000 0.0000000E+00
 87.16620 1.000000 0.0000000E+00
 87.21632 1.000000 0.0000000E+00
 87.26645 1.000000 0.0000000E+00
 87.31657 1.000000 0.0000000E+00
 87.36670 1.000000 0.0000000E+00
 87.41682 1.000000 0.0000000E+00
 87.46695 1.000000 0.0000000E+00
 87.51707 1.000000 0.0000000E+00
 87.56719 1.000000 0.0000000E+00
 87.61732 1.000000 0.0000000E+00
 87.66744 1.000000 0.0000000E+00
 87.71757 1.000000 0.0000000E+00
 87.76770 1.000000 0.0000000E+00
 87.81783 1.000000 0.0000000E+00
 87.86795 1.000000 0.0000000E+00
 87.91808 1.000000 0.0000000E+00
 87.96819 1.000000 0.0000000E+00
 88.01831 1.000000 0.0000000E+00
 88.06844 1.000000 0.0000000E+00
 88.11857 1.000000 0.0000000E+00
 88.16869 1.000000 0.0000000E+00
 88.21882 1.000000 0.0000000E+00
 88.26894 1.000000 0.0000000E+00
 88.31907 1.000000 0.0000000E+00
 88.36919 1.000000 0.0000000E+00
 88.41931 1.000000 0.0000000E+00
 88.46944 1.000000 0.0000000E+00
 88.51956 1.000000 0.0000000E+00
 88.56969 1.000000 0.0000000E+00
 88.61981 1.000000 0.0000000E+00
 88.66994 1.000000 0.0000000E+00
 88.72006 1.000000 0.0000000E+00
 88.77018 1.000000 0.0000000E+00
 88.82030 1.000000 0.0000000E+00
 88.87043 1.000000 0.0000000E+00
 88.92056 1.000000 0.0000000E+00
 88.97068 1.000000 0.0000000E+00
 89.02081 1.000000 0.0000000E+00
 89.07093 1.000000 0.0000000E+00
 89.12106 1.000000 0.0000000E+00
 89.17118 1.000000 0.0000000E+00
 89.22130 1.000000 0.0000000E+00
 89.27142 1.000000 0.0000000E+00
 89.32155 1.000000 0.0000000E+00
 89.37167 1.000000 0.0000000E+00
 89.42180 1.000000 0.0000000E+00
 89.47192 1.000000 0.0000000E+00
 89.52205 1.000000 0.0000000E+00
 89.57217 1.000000 0.0000000E+00
 89.62229 1.000000 0.0000000E+00
 89.67242 1.000000 0.0000000E+00
 89.72254 1.000000 0.0000000E+00
 89.77267 1.000000 0.0000000E+00
 89.82279 1.000000 0.0000000E+00
 89.87292 1.000000 0.0000000E+00
 89.92304 1.000000 0.0000000E+00
 89.97317 1.000000 0.0000000E+00
 90.02328 1.000000 0.0000000E+00
 90.07341 1.000000 0.0000000E+00
 90.12354 1.000000 0.0000000E+00
 90.17366 1.000000 0.0000000E+00
 90.22379 1.000000 0.0000000E+00
 90.27391 1.000000 0.0000000E+00
 90.32404 1.000000 0.0000000E+00
 90.37416 1.000000 0.0000000E+00
 90.42429 1.000000 0.0000000E+00
 90.47440 1.000000 0.0000000E+00
 90.52453 1.000000 0.0000000E+00
 90.57465 1.000000 0.0000000E+00
 90.62478 1.000000 0.0000000E+00
 90.67490 1.000000 0.0000000E+00
 90.72503 1.000000 0.0000000E+00
 90.77516 1.000000 0.0000000E+00
 90.82529 1.000000 0.0000000E+00
 90.87540 1.000000 0.0000000E+00
 90.92552 1.000000 0.0000000E+00
 90.97565 1.000000 0.0000000E+00
 91.02577 1.000000 0.0000000E+00
 91.07590 1.000000 0.0000000E+00
 91.12603 1.000000 0.0000000E+00
 91.17616 1.000000 0.0000000E+00
 91.22628 1.000000 0.0000000E+00
 91.27639 1.000000 0.0000000E+00
 91.32652 1.000000 0.0000000E+00
 91.37665 1.000000 0.0000000E+00
 91.42677 1.000000 0.0000000E+00
 91.47690 1.000000 0.0000000E+00
 91.52702 1.000000 0.0000000E+00
 91.57715 1.000000 0.0000000E+00
 91.62727 1.000000 0.0000000E+00
 91.67740 1.000000 0.0000000E+00
 91.72752 1.000000 0.0000000E+00
 91.77764 1.000000 0.0000000E+00
 91.82777 1.000000 0.0000000E+00
 91.87789 1.000000 0.0000000E+00
 91.92802 1.000000 0.0000000E+00
 91.97814 1.000000 0.0000000E+00
 92.02827 1.000000 0.0000000E+00
 92.07839 1.000000 0.0000000E+00
 92.12851 1.000000 0.0000000E+00
 92.17863 1.000000 0.0000000E+00
 92.22876 1.000000 0.0000000E+00
 92.27888 1.000000 0.0000000E+00
 92.32901 1.000000 0.0000000E+00
 92.37914 1.000000 0.0000000E+00
 92.42926 1.000000 0.0000000E+00
 92.47939 1.000000 0.0000000E+00
 92.52950 1.000000 0.0000000E+00
 92.57963 1.000000 0.0000000E+00
 92.62975 1.000000 0.0000000E+00
 92.67988 1.000000 0.0000000E+00
 92.73000 1.000000 0.0000000E+00
 92.78013 1.000000 0.0000000E+00
 92.83025 1.000000 0.0000000E+00
 92.88038 1.000000 0.0000000E+00
 92.93050 1.000000 0.0000000E+00
 92.98062 1.000000 0.0000000E+00
 93.03075 1.000000 0.0000000E+00
 93.08087 1.000000 0.0000000E+00
 93.13100 1.000000 0.0000000E+00
 93.18112 1.000000 0.0000000E+00
 93.23125 1.000000 0.0000000E+00
 93.28137 1.000000 0.0000000E+00
 93.33150 1.000000 0.0000000E+00
 93.38161 1.000000 0.0000000E+00
 93.43174 1.000000 0.0000000E+00
 93.48186 1.000000 0.0000000E+00
 93.53199 1.000000 0.0000000E+00
 93.58212 1.000000 0.0000000E+00
 93.63224 1.000000 0.0000000E+00
 93.68237 1.000000 0.0000000E+00
 93.73249 1.000000 0.0000000E+00
 93.78261 1.000000 0.0000000E+00
 93.83273 1.000000 0.0000000E+00
 93.88286 1.000000 0.0000000E+00
 93.93298 1.000000 0.0000000E+00
 93.98311 1.000000 0.0000000E+00
 94.03323 1.000000 0.0000000E+00
 94.08337 1.000000 0.0000000E+00
 94.13349 1.000000 0.0000000E+00
 94.18362 1.000000 0.0000000E+00
 94.23373 1.000000 0.0000000E+00
 94.28385 1.000000 0.0000000E+00
 94.33398 1.000000 0.0000000E+00
 94.38411 1.000000 0.0000000E+00
 94.43423 1.000000 0.0000000E+00
 94.48436 1.000000 0.0000000E+00
 94.53448 1.000000 0.0000000E+00
 94.58461 1.000000 0.0000000E+00
 94.63473 1.000000 0.0000000E+00
 94.68485 1.000000 0.0000000E+00
 94.73498 1.000000 0.0000000E+00
 94.78510 1.000000 0.0000000E+00
 94.83523 1.000000 0.0000000E+00
 94.88535 1.000000 0.0000000E+00
 94.93548 1.000000 0.0000000E+00
 94.98560 1.000000 0.0000000E+00
 95.03572 1.000000 0.0000000E+00
 95.08585 1.000000 0.0000000E+00
 95.13597 1.000000 0.0000000E+00
 95.18610 1.000000 0.0000000E+00
 95.23622 1.000000 0.0000000E+00
 95.28635 1.000000 0.0000000E+00
 95.33647 1.000000 0.0000000E+00
 95.38660 1.000000 0.0000000E+00
 95.43672 1.000000 0.0000000E+00
 95.48684 1.000000 0.0000000E+00
 95.53696 1.000000 0.0000000E+00
 95.58709 1.000000 0.0000000E+00
 95.63721 1.000000 0.0000000E+00
 95.68734 1.000000 0.0000000E+00
 95.73746 1.000000 0.0000000E+00
 95.78759 1.000000 0.0000000E+00
 95.83772 1.000000 0.0000000E+00
 95.88783 1.000000 0.0000000E+00
 95.93796 1.000000 0.0000000E+00
 95.98808 1.000000 0.0000000E+00
 96.03821 1.000000 0.0000000E+00
 96.08833 1.000000 0.0000000E+00
 96.13846 1.000000 0.0000000E+00
 96.18858 1.000000 0.0000000E+00
 96.23871 1.000000 0.0000000E+00
 96.28883 1.000000 0.0000000E+00
 96.33895 1.000000 0.0000000E+00
 96.38908 1.000000 0.0000000E+00
 96.43920 1.000000 0.0000000E+00
 96.48933 1.000000 0.0000000E+00
 96.53945 1.000000 0.0000000E+00
 96.58958 1.000000 0.0000000E+00
 96.63970 1.000000 0.0000000E+00
 96.68983 1.000000 0.0000000E+00
 96.73994 1.000000 0.0000000E+00
 96.79007 1.000000 0.0000000E+00
 96.84019 1.000000 0.0000000E+00
 96.89032 1.000000 0.0000000E+00
 96.94044 1.000000 0.0000000E+00
 96.99057 1.000000 0.0000000E+00
 97.04070 1.000000 0.0000000E+00
 97.09083 1.000000 0.0000000E+00
 97.14094 1.000000 0.0000000E+00
 97.19106 1.000000 0.0000000E+00
 97.24119 1.000000 0.0000000E+00
 97.29131 1.000000 0.0000000E+00
 97.34144 1.000000 0.0000000E+00
 97.39157 1.000000 0.0000000E+00
 97.44170 1.000000 0.0000000E+00
 97.49182 1.000000 0.0000000E+00
 97.54193 1.000000 0.0000000E+00
 97.59206 1.000000 0.0000000E+00
 97.64219 1.000000 0.0000000E+00
 97.69231 1.000000 0.0000000E+00
 97.74244 1.000000 0.0000000E+00
 97.79256 1.000000 0.0000000E+00
 97.84269 1.000000 0.0000000E+00
 97.89281 1.000000 0.0000000E+00
 97.94294 1.000000 0.0000000E+00
 97.99306 1.000000 0.0000000E+00
 98.04318 1.000000 0.0000000E+00
 98.09331 1.000000 0.0000000E+00
 98.14343 1.000000 0.0000000E+00
 98.19356 1.000000 0.0000000E+00
 98.24368 1.000000 0.0000000E+00
 98.29381 1.000000 0.0000000E+00
 98.34393 1.000000 0.0000000E+00
 98.39405 1.000000 0.0000000E+00
 98.44418 1.000000 0.0000000E+00
 98.49430 1.000000 0.0000000E+00
 98.54443 1.000000 0.0000000E+00
 98.59455 1.000000 0.0000000E+00
 98.64468 1.000000 0.0000000E+00
 98.69480 1.000000 0.0000000E+00
 98.74493 1.000000 0.0000000E+00
 98.79504 1.000000 0.0000000E+00
 98.84517 1.000000 0.0000000E+00
 98.89529 1.000000 0.0000000E+00
 98.94542 1.000000 0.0000000E+00
 98.99554 1.000000 0.0000000E+00
 99.04567 1.000000 0.0000000E+00
 99.09579 1.000000 0.0000000E+00
 99.14592 1.000000 0.0000000E+00
 99.19604 1.000000 0.0000000E+00
 99.24616 1.000000 0.0000000E+00
 99.29629 1.000000 0.0000000E+00
 99.34641 1.000000 0.0000000E+00
 99.39654 1.000000 0.0000000E+00
 99.44666 1.000000 0.0000000E+00
 99.49679 1.000000 0.0000000E+00
 99.54691 1.000000 0.0000000E+00
 99.59704 1.000000 0.0000000E+00
 99.64716 1.000000 0.0000000E+00
 99.69728 1.000000 0.0000000E+00
 99.74741 1.000000 0.0000000E+00
 99.79753 1.000000 0.0000000E+00
 99.84766 1.000000 0.0000000E+00
 99.89778 1.000000 0.0000000E+00
 99.94791 1.000000 0.0000000E+00
 99.99803 1.000000 0.0000000E+00
 100.0481 1.000000 0.0000000E+00
 100.0983 1.000000 0.0000000E+00
 100.1484 1.000000 0.0000000E+00
 100.1985 1.000000 0.0000000E+00
 100.2486 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osm_ns.2000

 256 20.04759
 0.0000000E+00 2.5801007E-02 5.1860031E-02 7.8179635E-02 0.1047624
 0.1316111 0.1587282 0.1861165 0.2137786 0.2417174
 0.2699356 0.2984360 0.3272213 0.3562946 0.3856585
 0.4153161 0.4452703 0.4755240 0.5060803 0.5369420
 0.5681125 0.5995946 0.6313916 0.6635065 0.6959426
 0.7287031 0.7617911 0.7952100 0.8289632 0.8630537
 0.8974854 0.9322612 0.9673849 1.002860 1.038689
 1.074877 1.111427 1.148342 1.185627 1.223284
 1.261318 1.299732 1.338530 1.377717 1.417295
 1.457269 1.497642 1.538420 1.579605 1.621202
 1.663215 1.705648 1.748506 1.791792 1.835511
 1.879667 1.924265 1.969308 2.014802 2.060751
 2.107160 2.154032 2.201374 2.249189 2.297481
 2.346257 2.395520 2.445276 2.495530 2.546287
 2.597550 2.649327 2.701621 2.754438 2.807784
 2.861662 2.916080 2.971042 3.026553 3.082620
 3.139247 3.196440 3.254205 3.312549 3.371475
 3.430991 3.491102 3.551814 3.613133 3.675065
 3.737617 3.800794 3.864603 3.929050 3.994142
 4.059884 4.126284 4.193347 4.261082 4.329494
 4.398589 4.468376 4.538861 4.610050 4.681952
 4.754572 4.827919 4.901999 4.976820 5.052390
 5.128714 5.205802 5.283661 5.362299 5.441723
 5.521942 5.602961 5.684792 5.767441 5.850916
 5.935226 6.020380 6.106384 6.193249 6.280982
 6.369594 6.459090 6.549482 6.640778 6.732986
 6.826118 6.920180 7.015182 7.111135 7.208048
 7.305929 7.404789 7.504637 7.605484 7.707340
 7.810215 7.914118 8.019061 8.125052 8.232102
 8.340225 8.449429 8.559724 8.671122 8.783632
 8.897270 9.012044 9.127965 9.245046 9.363297
 9.482730 9.603359 9.725194 9.848246 9.972528
 10.09806 10.22484 10.35289 10.48221 10.61284
 10.74477 10.87802 11.01260 11.14853 11.28581
 11.42447 11.56452 11.70596 11.84882 11.99311
 12.13884 12.28603 12.43469 12.58484 12.73649
 12.88966 13.04435 13.20060 13.35841 13.51779
 13.67877 13.84136 14.00557 14.17143 14.33894
 14.50813 14.67902 14.85161 15.02592 15.20198
 15.37980 15.55940 15.74080 15.92401 16.10905
 16.29594 16.48470 16.67535 16.86790 17.06239
 17.25881 17.45720 17.65757 17.85995 18.06435
 18.27079 18.47930 18.68989 18.90260 19.11742
 19.33439 19.55354 19.77488 19.99843 20.22421
 20.45226 20.68258 20.91521 21.15016 21.38746
 21.62713 21.86921 22.11370 22.36064 22.61005
 22.86195 23.11637 23.37333 23.63286 23.89499
 24.15975 24.42714 24.69721 24.96999 25.24549
 25.52374 25.80478 26.08863 26.37531 26.66487
 26.95732 27.25269 27.55102 27.85233 28.15666
 28.46402 28.77446 29.08801 29.40469 29.72454
 30.04758
 0.0000000E+00 -1.5070665E-04 -3.0240539E-04 -4.5509575E-04 -6.0877716E-04
 -7.6344877E-04 -9.1910950E-04 -1.0757581E-03 -1.2333931E-03 -1.3920127E-03
 -1.5516151E-03 -1.7121980E-03 -1.8737589E-03 -2.0362949E-03 -2.1998032E-03
 -2.3642806E-03 -2.5297238E-03 -2.6961281E-03 -2.8634903E-03 -3.0318054E-03
 -3.2010691E-03 -3.3712760E-03 -3.5424209E-03 -3.7144981E-03 -3.8875015E-03
 -4.0614251E-03 -4.2362618E-03 -4.4120047E-03 -4.5886459E-03 -4.7661783E-03
 -4.9445932E-03 -5.1238816E-03 -5.3040353E-03 -5.4850439E-03 -5.6668990E-03
 -5.8495891E-03 -6.0331044E-03 -6.2174322E-03 -6.4025624E-03 -6.5884818E-03
 -6.7751789E-03 -6.9626393E-03 -7.1508507E-03 -7.3397984E-03 -7.5294669E-03
 -7.7198432E-03 -7.9109091E-03 -8.1026508E-03 -8.2950499E-03 -8.4880888E-03
 -8.6817499E-03 -8.8760154E-03 -9.0708649E-03 -9.2662796E-03 -9.4622374E-03
 -9.6587194E-03 -9.8557016E-03 -1.0053164E-02 -1.0251080E-02 -1.0449429E-02
 -1.0648184E-02 -1.0847323E-02 -1.1046816E-02 -1.1246637E-02 -1.1446760E-02
 -1.1647156E-02 -1.1847794E-02 -1.2048647E-02 -1.2249681E-02 -1.2450866E-02
 -1.2652170E-02 -1.2853557E-02 -1.3054995E-02 -1.3256447E-02 -1.3457878E-02
 -1.3659248E-02 -1.3860522E-02 -1.4061659E-02 -1.4262618E-02 -1.4463360E-02
 -1.4663839E-02 -1.4864014E-02 -1.5063840E-02 -1.5263271E-02 -1.5462257E-02
 -1.5660753E-02 -1.5858712E-02 -1.6056078E-02 -1.6252799E-02 -1.6448826E-02
 -1.6644100E-02 -1.6838567E-02 -1.7032171E-02 -1.7224850E-02 -1.7416544E-02
 -1.7607192E-02 -1.7796729E-02 -1.7985091E-02 -1.8172210E-02 -1.8358016E-02
 -1.8542442E-02 -1.8725414E-02 -1.8906858E-02 -1.9086696E-02 -1.9264851E-02
 -1.9441241E-02 -1.9615788E-02 -1.9788403E-02 -1.9958997E-02 -2.0127486E-02
 -2.0293772E-02 -2.0457765E-02 -2.0619370E-02 -2.0778475E-02 -2.0934986E-02
 -2.1088792E-02 -2.1239785E-02 -2.1387855E-02 -2.1532878E-02 -2.1674737E-02
 -2.1813307E-02 -2.1948459E-02 -2.2080060E-02 -2.2207970E-02 -2.2332048E-02
 -2.2452146E-02 -2.2568109E-02 -2.2679776E-02 -2.2786984E-02 -2.2889562E-02
 -2.2987327E-02 -2.3080092E-02 -2.3167668E-02 -2.3249842E-02 -2.3326414E-02
 -2.3397150E-02 -2.3461826E-02 -2.3520192E-02 -2.3571998E-02 -2.3616971E-02
 -2.3654835E-02 -2.3685286E-02 -2.3708018E-02 -2.3722693E-02 -2.3728965E-02
 -2.3726463E-02 -2.3714798E-02 -2.3693549E-02 -2.3662277E-02 -2.3620510E-02
 -2.3567747E-02 -2.3503453E-02 -2.3427051E-02 -2.3337932E-02 -2.3235433E-02
 -2.3118848E-02 -2.2987412E-02 -2.2840308E-02 -2.2676649E-02 -2.2495463E-02
 -2.2295721E-02 -2.2076277E-02 -2.1835903E-02 -2.1573249E-02 -2.1286841E-02
 -2.0975064E-02 -2.0636143E-02 -2.0268120E-02 -1.9868836E-02 -1.9435899E-02
 -1.8966652E-02 -1.8458139E-02 -1.7907057E-02 -1.7309705E-02 -1.6661920E-02
 -1.5959010E-02 -1.5195657E-02 -1.4365820E-02 -1.3462600E-02 -1.2478083E-02
 -1.1403156E-02 -1.0227264E-02 -8.9381123E-03 -7.5213034E-03 -5.9598638E-03
 -4.2336406E-03 -2.3185306E-03 -1.8545776E-04 2.1983976E-03 4.8660166E-03
 7.8515429E-03 1.1193305E-02 1.4934275E-02 1.9122556E-02 2.3811875E-02
 2.9062107E-02 3.4939740E-02 4.1518349E-02 4.8878979E-02 5.7110395E-02
 6.6309206E-02 7.6579705E-02 8.8033430E-02 0.1007883 0.1149674
 0.1306966 0.1481024 0.1673080 0.1884291 0.2115684
 0.2368097 0.2642103 0.2937939 0.3255424 0.3593882
 0.3952069 0.4328119 0.4719505 0.5123031 0.5534858
 0.5950572 0.6365296 0.6773837 0.7170886 0.7551237
 0.7910028 0.8242978 0.8546609 0.8818418 0.9057006
 0.9262115 0.9434596 0.9576297 0.9689881 0.9778595
 0.9846022 0.9895822 0.9931518 0.9956316 0.9972991
 0.9983832 0.9990638 0.9994759 0.9997167 0.9998521
 0.9999254 0.9999636 0.9999828 0.9999920 0.9999962
 0.9999981 0.9999990 0.9999995 0.9999998 0.9999999
 1.000000
 -5.8509479E-03 -5.8312831E-03 -5.8114226E-03 -5.7913633E-03 -5.7711047E-03
 -5.7506450E-03 -5.7299822E-03 -5.7091150E-03 -5.6880405E-03 -5.6667579E-03
 -5.6452663E-03 -5.6235623E-03 -5.6016445E-03 -5.5795121E-03 -5.5571627E-03
 -5.5345953E-03 -5.5118077E-03 -5.4887985E-03 -5.4655652E-03 -5.4421057E-03
 -5.4184208E-03 -5.3945058E-03 -5.3703617E-03 -5.3459839E-03 -5.3213732E-03
 -5.2965269E-03 -5.2714432E-03 -5.2461196E-03 -5.2205562E-03 -5.1947497E-03
 -5.1687001E-03 -5.1424042E-03 -5.1158606E-03 -5.0890688E-03 -5.0620260E-03
 -5.0347312E-03 -5.0071813E-03 -4.9793767E-03 -4.9513145E-03 -4.9229939E-03
 -4.8944121E-03 -4.8655686E-03 -4.8364620E-03 -4.8070890E-03 -4.7774487E-03
 -4.7475416E-03 -4.7173635E-03 -4.6869149E-03 -4.6561919E-03 -4.6251956E-03
 -4.5939228E-03 -4.5623723E-03 -4.5305425E-03 -4.4984324E-03 -4.4660405E-03
 -4.4333655E-03 -4.4004056E-03 -4.3671592E-03 -4.3336246E-03 -4.2998008E-03
 -4.2656870E-03 -4.2312816E-03 -4.1965824E-03 -4.1615879E-03 -4.1262978E-03
 -4.0907101E-03 -4.0548234E-03 -4.0186360E-03 -3.9821481E-03 -3.9453558E-03
 -3.9082598E-03 -3.8708574E-03 -3.8331486E-03 -3.7951306E-03 -3.7568021E-03
 -3.7181617E-03 -3.6792092E-03 -3.6399416E-03 -3.6003580E-03 -3.5604562E-03
 -3.5202354E-03 -3.4796938E-03 -3.4388290E-03 -3.3976398E-03 -3.3561238E-03
 -3.3142804E-03 -3.2721057E-03 -3.2295994E-03 -3.1867579E-03 -3.1435799E-03
 -3.1000625E-03 -3.0562030E-03 -3.0119997E-03 -2.9674484E-03 -2.9225473E-03
 -2.8772925E-03 -2.8316809E-03 -2.7857090E-03 -2.7393727E-03 -2.6926678E-03
 -2.6455910E-03 -2.5981364E-03 -2.5502997E-03 -2.5020756E-03 -2.4534585E-03
 -2.4044421E-03 -2.3550203E-03 -2.3051857E-03 -2.2549308E-03 -2.2042478E-03
 -2.1531286E-03 -2.1015632E-03 -2.0495423E-03 -1.9970550E-03 -1.9440899E-03
 -1.8906350E-03 -1.8366770E-03 -1.7822019E-03 -1.7271945E-03 -1.6716387E-03
 -1.6155163E-03 -1.5588094E-03 -1.5014971E-03 -1.4435574E-03 -1.3849677E-03
 -1.3257019E-03 -1.2657335E-03 -1.2050329E-03 -1.1435687E-03 -1.0813067E-03
 -1.0182107E-03 -9.5424114E-04 -8.8935555E-04 -8.2350790E-04 -7.5664889E-04
 -6.8872498E-04 -6.1967847E-04 -5.4944691E-04 -4.7796284E-04 -4.0515314E-04
 -3.3093881E-04 -2.5523396E-04 -1.7794583E-04 -9.8973338E-05 -1.8207007E-05
 6.4472086E-05 1.4919396E-04 2.3609954E-04 3.2534273E-04 4.1709156E-04
 5.1152951E-04 6.0885749E-04 7.0929516E-04 8.1308401E-04 9.2048873E-04
 1.0318011E-03 1.1473423E-03 1.2674661E-03 1.3925643E-03 1.5230707E-03
 1.6594663E-03 1.8022861E-03 1.9521256E-03 2.1096498E-03 2.2756034E-03
 2.4508208E-03 2.6362406E-03 2.8329219E-03 3.0420611E-03 3.2650160E-03
 3.5033310E-03 3.7587683E-03 4.0333490E-03 4.3293950E-03 4.6495870E-03
 4.9970341E-03 5.3753555E-03 5.7887859E-03 6.2423078E-03 6.7418120E-03
 7.2943065E-03 7.9081831E-03 8.5935500E-03 9.3626911E-03 1.0230637E-02
 1.1215954E-02 1.2341794E-02 1.3637325E-02 1.5108665E-02 1.6740629E-02
 1.8551312E-02 2.0560574E-02 2.2790128E-02 2.5263509E-02 2.8006058E-02
 3.1044777E-02 3.4408100E-02 3.8125485E-02 4.2226851E-02 4.6741784E-02
 5.1698424E-02 5.7122163E-02 6.3033774E-02 6.9447368E-02 7.6367743E-02
 8.3787546E-02 9.1683902E-02 0.1000148 0.1087158 0.1176963
 0.1268370 0.1359876 0.1449668 0.1535623 0.1615359
 0.1686285 0.1745694 0.1790881 0.1819288 0.1828670
 0.1817266 0.1783963 0.1728459 0.1651362 0.1554264
 0.1439710 0.1311126 0.1172630 0.1028813 8.8442750E-02
 7.4405834E-02 6.1181795E-02 4.9106631E-02 3.8421988E-02 2.9265644E-02
 2.1670282E-02 1.5577642E-02 1.0856950E-02 7.3254136E-03 4.7798189E-03
 3.0121054E-03 1.8311223E-03 1.0733436E-03 6.0593081E-04 3.2930673E-04
 1.7224175E-04 8.6297841E-05 4.2007941E-05 1.9102636E-05 8.8038523E-06
 3.5254295E-06 2.2572328E-06 8.4585861E-07 7.0576317E-07 2.8527319E-07
 3.8669126E-07
 71 81
 0.5000000 0.5500000 0.6000000 0.6500000 0.7000000
 0.7500000 0.8000000 0.8500000 0.9000000 0.9500000
 1.000000 1.050000 1.100000 1.150000 1.200000
 1.250000 1.300000 1.350000 1.400000 1.450000
 1.500000 1.550000 1.600000 1.650000 1.700000
 1.750000 1.800000 1.850000 1.900000 1.950000
 2.000000 2.050000 2.100000 2.150000 2.200000
 2.250000 2.300000 2.350000 2.400000 2.450000
 2.500000 2.550000 2.600000 2.650000 2.700000
 2.750000 2.800000 2.850000 2.900000 2.950000
 3.000000 3.050000 3.100000 3.150000 3.200000
 3.250000 3.300000 3.350000 3.400000 3.450000
 3.500000 3.550000 3.600000 3.650000 3.700000
 3.750000 3.800000 3.850000 3.900000 3.950000
 4.000000
 -3.000000 -2.950000 -2.900000 -2.850000 -2.800000
 -2.750000 -2.700000 -2.650000 -2.600000 -2.550000
 -2.500000 -2.450000 -2.400000 -2.350000 -2.300000
 -2.250000 -2.200000 -2.150000 -2.100000 -2.050000
 -2.000000 -1.950000 -1.900000 -1.850000 -1.800000
 -1.750000 -1.700000 -1.650000 -1.600000 -1.550000
 -1.500000 -1.450000 -1.400000 -1.350000 -1.300000
 -1.250000 -1.200000 -1.150000 -1.100000 -1.050000
 -1.000000 -0.9500000 -0.9000001 -0.8499999 -0.8000000
 -0.7500000 -0.7000000 -0.6500001 -0.5999999 -0.5500000
 -0.5000000 -0.4500000 -0.4000001 -0.3499999 -0.3000000
 -0.2500000 -0.2000000 -0.1500001 -0.1000001 -5.0000191E-02
 -2.3841858E-07 4.9999714E-02 9.9999666E-02 0.1499996 0.1999996
 0.2499995 0.2999995 0.3499994 0.3999994 0.4499993
 0.4999993 0.5499992 0.5999992 0.6499991 0.6999991
 0.7499990 0.7999990 0.8499990 0.8999989 0.9499989
 0.9999988
 1.8506346E-02 1.7690206E-02 1.6889803E-02 1.6108148E-02 1.5347492E-02
 1.4609433E-02 1.3895041E-02 1.3204962E-02 1.2539503E-02 1.1898701E-02
 1.1282415E-02 1.0690340E-02 1.0122102E-02 9.5772231E-03 9.0552205E-03
 8.5555529E-03 8.0776950E-03 7.6210708E-03 7.1851430E-03 6.7693326E-03
 6.3730641E-03 5.9957723E-03 5.6368713E-03 5.2957805E-03 4.9719163E-03
 4.6646805E-03 4.3734810E-03 4.0977318E-03 3.8368355E-03 3.5902082E-03
 3.3572610E-03 3.1374169E-03 2.9301052E-03 2.7347684E-03 2.5508513E-03
 2.3778176E-03 2.2151414E-03 2.0623067E-03 1.9188278E-03 1.7842182E-03
 1.6580106E-03 1.5397590E-03 1.4290364E-03 1.3254245E-03 1.2285291E-03
 1.1379740E-03 1.0533909E-03 9.7443972E-04 9.0078736E-04 8.3212071E-04
 7.6814846E-04 7.0858310E-04 6.5315957E-04 6.0162466E-04 5.5373926E-04
 5.0927710E-04 4.6802434E-04 4.2978133E-04 3.9436133E-04 3.6157854E-04
 3.3126934E-04 3.0327632E-04 2.7744385E-04 2.5363575E-04 2.3172269E-04
 2.1157318E-04 1.9307146E-04 1.7611039E-04 1.6058247E-04 1.4638994E-04
 1.3344277E-04
 1.2814660E-03 4.8359446E-04 -2.2806885E-04 -8.5927878E-04 -1.4155909E-03
 -1.9023316E-03 -2.3246086E-03 -2.6873078E-03 -2.9951120E-03 -3.2525179E-03
 -3.4638061E-03 -3.6330796E-03 -3.7642370E-03 -3.8609831E-03 -3.9268145E-03
 -3.9650216E-03 -3.9786915E-03 -3.9706985E-03 -3.9437059E-03 -3.9001822E-03
 -3.8423929E-03 -3.7724215E-03 -3.6921587E-03 -3.6033269E-03 -3.5074882E-03
 -3.4060499E-03 -3.3002787E-03 -3.1912958E-03 -3.0801140E-03 -2.9676196E-03
 -2.8545954E-03 -2.7417347E-03 -2.6296286E-03 -2.5188008E-03 -2.4096894E-03
 -2.3026718E-03 -2.1980640E-03 -2.0961273E-03 -1.9970727E-03 -1.9010678E-03
 -1.8082398E-03 -1.7186843E-03 -1.6324588E-03 -1.5496042E-03 -1.4701287E-03
 -1.3940235E-03 -1.3212606E-03 -1.2517988E-03 -1.1855782E-03 -1.1225363E-03
 -1.0625944E-03 -1.0056642E-03 -9.5166033E-04 -9.0048841E-04 -8.5204077E-04
 -8.0622459E-04 -7.6293247E-04 -7.2206062E-04 -6.8350130E-04 -6.4715167E-04
 -6.1290874E-04 -5.8066903E-04 -5.5032945E-04 -5.2179373E-04 -4.9496448E-04
 -4.6974470E-04 -4.4604790E-04 -4.2378053E-04 -4.0286387E-04 -3.8320789E-04
 -3.6473875E-04
 1.8631240E-02 1.7812317E-02 1.7009009E-02 1.6224302E-02 1.5460446E-02
 1.4719019E-02 1.4001105E-02 1.3307349E-02 1.2638079E-02 1.1993367E-02
 1.1373086E-02 1.0776972E-02 1.0204677E-02 9.6557643E-03 9.1297645E-03
 8.6261863E-03 8.1444895E-03 7.6841572E-03 7.2446270E-03 6.8253451E-03
 6.4257486E-03 6.0452735E-03 5.6833285E-03 5.3393347E-03 5.0127096E-03
 4.7028530E-03 4.4091749E-03 4.1310703E-03 3.8679547E-03 3.6192224E-03
 3.3842956E-03 3.1625829E-03 2.9535142E-03 2.7565195E-03 2.5710471E-03
 2.3965535E-03 2.2325080E-03 2.0783991E-03 1.9337194E-03 1.7979911E-03
 1.6707415E-03 1.5515249E-03 1.4399037E-03 1.3354666E-03 1.2378079E-03
 1.1465516E-03 1.0613316E-03 9.8179746E-04 9.0761873E-04 8.3848299E-04
 7.7408884E-04 7.1415323E-04 6.5840845E-04 6.0659880E-04 5.5848208E-04
 5.1383435E-04 4.7243593E-04 4.3409062E-04 3.9859972E-04 3.6578259E-04
 3.3547168E-04 3.0750540E-04 2.8173093E-04 2.5800831E-04 2.3619784E-04
 2.1617145E-04 1.9781184E-04 1.8100759E-04 1.6564845E-04 1.5163662E-04
 1.3887047E-04
 1.2054454E-03 4.1054544E-04 -2.9788390E-04 -9.2566037E-04 -1.4784146E-03
 -1.9615304E-03 -2.3801809E-03 -2.7393091E-03 -3.0436546E-03 -3.2977429E-03
 -3.5058982E-03 -3.6722447E-03 -3.8006962E-03 -3.8949579E-03 -3.9585317E-03
 -3.9947000E-03 -4.0065371E-03 -3.9969040E-03 -3.9684568E-03 -3.9236466E-03
 -3.8647188E-03 -3.7937413E-03 -3.7125954E-03 -3.6229957E-03 -3.5264818E-03
 -3.4244570E-03 -3.3181722E-03 -3.2087455E-03 -3.0971775E-03 -2.9843501E-03
 -2.8710410E-03 -2.7579335E-03 -2.6456215E-03 -2.5346191E-03 -2.4253624E-03
 -2.3182274E-03 -2.2135202E-03 -2.1115085E-03 -2.0123932E-03 -1.9163459E-03
 -1.8234926E-03 -1.7339194E-03 -1.6476917E-03 -1.5648393E-03 -1.4853785E-03
 -1.4092925E-03 -1.3365556E-03 -1.2671230E-03 -1.2009367E-03 -1.1379265E-03
 -1.0780175E-03 -1.0211259E-03 -9.6715201E-04 -9.1600441E-04 -8.6758228E-04
 -8.2177937E-04 -7.7849423E-04 -7.3761633E-04 -6.9903920E-04 -6.6266151E-04
 -6.2837231E-04 -5.9607119E-04 -5.6565210E-04 -5.3701689E-04 -5.1006529E-04
 -4.8470357E-04 -4.6084102E-04 -4.3838413E-04 -4.1725219E-04 -3.9735765E-04
 -3.7862596E-04
 1.8771375E-02 1.7949181E-02 1.7142458E-02 1.6354181E-02 1.5586581E-02
 1.4841254E-02 1.4119267E-02 1.3421293E-02 1.2747682E-02 1.2098519E-02
 1.1473726E-02 1.0873066E-02 1.0296232E-02 9.7428085E-03 9.2123682E-03
 8.7044276E-03 8.2184831E-03 7.7540250E-03 7.3105111E-03 6.8874001E-03
 6.4841267E-03 6.1001219E-03 5.7348181E-03 5.3876261E-03 5.0579542E-03
 4.7452105E-03 4.4487910E-03 4.1680965E-03 3.9025280E-03 3.6514823E-03
 3.4143720E-03 3.1906040E-03 2.9795980E-03 2.7807858E-03 2.5936076E-03
 2.4175113E-03 2.2519699E-03 2.0964558E-03 1.9504717E-03 1.8135235E-03
 1.6851464E-03 1.5648811E-03 1.4522905E-03 1.3469602E-03 1.2484831E-03
 1.1564773E-03 1.0705749E-03 9.9042803E-04 9.1569789E-04 8.4607233E-04
 7.8124524E-04 7.2093727E-04 6.6486804E-04 6.1278994E-04 5.6445121E-04
 5.1962968E-04 4.7810594E-04 4.3966848E-04 4.0412776E-04 3.7130076E-04
 3.4101011E-04 3.1309421E-04 2.8739803E-04 2.6377503E-04 2.4208403E-04
 2.2219679E-04 2.0398786E-04 1.8734213E-04 1.7214824E-04 1.5830302E-04
 1.4570449E-04
 1.1214629E-03 3.2990793E-04 -3.7490155E-04 -9.9887070E-04 -1.5476858E-03
 -2.0268166E-03 -2.4414924E-03 -2.7967284E-03 -3.0973114E-03 -3.3478062E-03
 -3.5525751E-03 -3.7157577E-03 -3.8412863E-03 -3.9328728E-03 -3.9940104E-03
 -4.0279808E-03 -4.0378436E-03 -4.0264460E-03 -3.9964281E-03 -3.9502191E-03
 -3.8900580E-03 -3.8179962E-03 -3.7358946E-03 -3.6454550E-03 -3.5482068E-03
 -3.4455380E-03 -3.3386936E-03 -3.2287796E-03 -3.1167902E-03 -3.0035998E-03
 -2.8899787E-03 -2.7766021E-03 -2.6640641E-03 -2.5528686E-03 -2.4434498E-03
 -2.3361822E-03 -2.2313714E-03 -2.1292723E-03 -2.0300907E-03 -1.9339975E-03
 -1.8411062E-03 -1.7515132E-03 -1.6652762E-03 -1.5824250E-03 -1.5029729E-03
 -1.4269020E-03 -1.3541820E-03 -1.2847706E-03 -1.2186088E-03 -1.1556224E-03
 -1.0957320E-03 -1.0388538E-03 -9.8489050E-04 -9.3374780E-04 -8.8531699E-04
 -8.3949667E-04 -7.9617533E-04 -7.5525214E-04 -7.1661198E-04 -6.8014697E-04
 -6.4575393E-04 -6.1332725E-04 -5.8275601E-04 -5.5394566E-04 -5.2679231E-04
 -5.0120527E-04 -4.7708629E-04 -4.5434810E-04 -4.3290353E-04 -4.1267203E-04
 -3.9357095E-04
 1.8928582E-02 1.8102514E-02 1.7291773E-02 1.6499311E-02 1.5727354E-02
 1.4977488E-02 1.4250809E-02 1.3547998E-02 1.2869423E-02 1.2215221E-02
 1.1585333E-02 1.0979567E-02 1.0397637E-02 9.8391864E-03 9.3037933E-03
 8.7910108E-03 8.3003622E-03 7.8313379E-03 7.3834178E-03 6.9560688E-03
 6.5487335E-03 6.1608474E-03 5.7918387E-03 5.4411124E-03 5.1080892E-03
 4.7921650E-03 4.4927318E-03 4.2091790E-03 3.9409143E-03 3.6873240E-03
 3.4478139E-03 3.2217891E-03 3.0086599E-03 2.8078549E-03 2.6188039E-03
 2.4409601E-03 2.2737782E-03 2.1167381E-03 1.9693314E-03 1.8310635E-03
 1.7014610E-03 1.5800633E-03 1.4664318E-03 1.3601433E-03 1.2607943E-03
 1.1679960E-03 1.0813763E-03 1.0005857E-03 9.2528260E-04 8.5515238E-04
 7.8988873E-04 7.2919804E-04 6.7281286E-04 6.2047341E-04 5.7192764E-04
 5.2694738E-04 4.8530832E-04 4.4680468E-04 4.1123325E-04 3.7841199E-04
 3.4816051E-04 3.2030849E-04 2.9470160E-04 2.7118460E-04 2.4961625E-04
 2.2986674E-04 2.1179623E-04 1.9529430E-04 1.8024114E-04 1.6652912E-04
 1.5405829E-04
 1.0288465E-03 2.4104943E-04 -4.5972946E-04 -1.0794742E-03 -1.6239542E-03
 -2.0987131E-03 -2.5090564E-03 -2.8600611E-03 -3.1565623E-03 -3.4031773E-03
 -3.6042936E-03 -3.7640771E-03 -3.8864682E-03 -3.9751800E-03 -4.0337043E-03
 -4.0653120E-03 -4.0730499E-03 -4.0597543E-03 -4.0280423E-03 -3.9803321E-03
 -3.9188387E-03 -3.8455992E-03 -3.7624629E-03 -3.6711122E-03 -3.5730663E-03
 -3.4696991E-03 -3.3622456E-03 -3.2518064E-03 -3.1393536E-03 -3.0257665E-03
 -2.9118024E-03 -2.7981338E-03 -2.6853422E-03 -2.5739358E-03 -2.4643431E-03
 -2.3569248E-03 -2.2519915E-03 -2.1497975E-03 -2.0505437E-03 -1.9543890E-03
 -1.8614569E-03 -1.7718372E-03 -1.6855812E-03 -1.6027212E-03 -1.5232656E-03
 -1.4471957E-03 -1.3744819E-03 -1.3050766E-03 -1.2389156E-03 -1.1759283E-03
 -1.1160350E-03 -1.0591408E-03 -1.0051520E-03 -9.5397001E-04 -9.0548710E-04
 -8.5959473E-04 -8.1618520E-04 -7.7515247E-04 -7.3637738E-04 -6.9975649E-04
 -6.6517619E-04 -6.3253380E-04 -6.0172309E-04 -5.7264190E-04 -5.4518774E-04
 -5.1926804E-04 -4.9478636E-04 -4.7165825E-04 -4.4979408E-04 -4.2911360E-04
 -4.0953440E-04
 1.9104855E-02 1.8274229E-02 1.7458752E-02 1.6661379E-02 1.5884334E-02
 1.5129209E-02 1.4397110E-02 1.3688751E-02 1.3004526E-02 1.2344611E-02
 1.1708977E-02 1.1097474E-02 1.0509853E-02 9.9457856E-03 9.4048874E-03
 8.8867322E-03 8.3908644E-03 7.9167960E-03 7.4640065E-03 7.0319842E-03
 6.6201692E-03 6.2280018E-03 5.8549135E-03 5.5003064E-03 5.1635928E-03
 4.8441659E-03 4.5414143E-03 4.2547355E-03 3.9835079E-03 3.7271292E-03
 3.4849853E-03 3.2564870E-03 3.0410353E-03 2.8380509E-03 2.6469568E-03
 2.4672032E-03 2.2982399E-03 2.1395413E-03 1.9905926E-03 1.8508964E-03
 1.7199747E-03 1.5973644E-03 1.4826184E-03 1.3753092E-03 1.2750389E-03
 1.1814019E-03 1.0940316E-03 1.0125710E-03 9.3668071E-04 8.6603424E-04
 8.0032670E-04 7.3926273E-04 6.8256573E-04 6.2997377E-04 5.8123178E-04
 5.3610810E-04 4.9437169E-04 4.5581078E-04 4.2022369E-04 3.8741593E-04
 3.5720761E-04 3.2942329E-04 3.0390205E-04 2.8048415E-04 2.5902377E-04
 2.3938196E-04 2.2142097E-04 2.0502138E-04 1.9006073E-04 1.7642714E-04
 1.6401205E-04
 9.2689926E-04 1.4330448E-04 -5.5299280E-04 -1.1680730E-03 -1.7077907E-03
 -2.1777768E-03 -2.5834122E-03 -2.9298319E-03 -3.2219347E-03 -3.4643738E-03
 -3.6615720E-03 -3.8177115E-03 -3.9367378E-03 -4.0223743E-03 -4.0781042E-03
 -4.1071847E-03 -4.1126492E-03 -4.0973159E-03 -4.0637865E-03 -4.0144641E-03
 -3.9515421E-03 -3.8770363E-03 -3.7927798E-03 -3.7004456E-03 -3.6015380E-03
 -3.4974162E-03 -3.3893010E-03 -3.2782801E-03 -3.1653314E-03 -3.0513064E-03
 -2.9369688E-03 -2.8229777E-03 -2.7099126E-03 -2.5982717E-03 -2.4884793E-03
 -2.3808978E-03 -2.2758311E-03 -2.1735234E-03 -2.0741792E-03 -1.9779529E-03
 -1.8849659E-03 -1.7952999E-03 -1.7090099E-03 -1.6261259E-03 -1.5466482E-03
 -1.4705580E-03 -1.3978251E-03 -1.3283960E-03 -1.2622067E-03 -1.1991798E-03
 -1.1392396E-03 -1.0822818E-03 -1.0282140E-03 -9.7693468E-04 -9.2833012E-04
 -8.8229438E-04 -8.3871873E-04 -7.9748465E-04 -7.5848610E-04 -7.2160491E-04
 -6.8673852E-04 -6.5377529E-04 -6.2260928E-04 -5.9313793E-04 -5.6526839E-04
 -5.3889520E-04 -5.1393377E-04 -4.9029093E-04 -4.6788601E-04 -4.4663457E-04
 -4.2646544E-04
 1.9302417E-02 1.8466406E-02 1.7645353E-02 1.6842229E-02 1.6059246E-02
 1.5298026E-02 1.4559685E-02 1.3844972E-02 1.3154316E-02 1.2487920E-02
 1.1845808E-02 1.1227868E-02 1.0633890E-02 1.0063563E-02 9.5165493E-03
 8.9924373E-03 8.4907953E-03 8.0111502E-03 7.5529981E-03 7.1158232E-03
 6.6990750E-03 6.3022007E-03 5.9246221E-03 5.5657504E-03 5.2249823E-03
 4.9017174E-03 4.5953332E-03 4.3052156E-03 4.0307450E-03 3.7713076E-03
 3.5262899E-03 3.2950873E-03 3.0770982E-03 2.8717371E-03 2.6784227E-03
 2.4965955E-03 2.3257027E-03 2.1652118E-03 2.0145983E-03 1.8733671E-03
 1.7410307E-03 1.6171220E-03 1.5011918E-03 1.3928107E-03 1.2915630E-03
 1.1970500E-03 1.1089016E-03 1.0267495E-03 9.5025625E-04 8.7908813E-04
 8.1293430E-04 7.5149722E-04 6.9449481E-04 6.4165576E-04 5.9272879E-04
 5.4746750E-04 5.0564064E-04 4.6702978E-04 4.3142535E-04 3.9862693E-04
 3.6845409E-04 3.4071834E-04 3.1525680E-04 2.9190304E-04 2.7050867E-04
 2.5092720E-04 2.3301931E-04 2.1665322E-04 2.0170779E-04 1.8806338E-04
 1.7560630E-04
 8.1490434E-04 3.5994693E-05 -6.5534172E-04 -1.2652911E-03 -1.7998071E-03
 -2.2645991E-03 -2.6651365E-03 -3.0066185E-03 -3.2939950E-03 -3.5319636E-03
 -3.7249702E-03 -3.8772193E-03 -3.9926637E-03 -4.0750224E-03 -4.1277693E-03
 -4.1541574E-03 -4.1571981E-03 -4.1396902E-03 -4.1042217E-03 -4.0531671E-03
 -3.9887121E-03 -3.9128480E-03 -3.8273910E-03 -3.7339963E-03 -3.6341590E-03
 -3.5292171E-03 -3.4203855E-03 -3.3087400E-03 -3.1952448E-03 -3.0807478E-03
 -2.9660009E-03 -2.8516557E-03 -2.7382891E-03 -2.6263846E-03 -2.5163740E-03
 -2.4086058E-03 -2.3033815E-03 -2.2009427E-03 -2.1014882E-03 -2.0051682E-03
 -1.9121043E-03 -1.8223721E-03 -1.7360229E-03 -1.6530837E-03 -1.5735518E-03
 -1.4974073E-03 -1.4246122E-03 -1.3551146E-03 -1.2888459E-03 -1.2257227E-03
 -1.1656672E-03 -1.1085757E-03 -1.0543526E-03 -1.0028870E-03 -9.5407304E-04
 -9.0779504E-04 -8.6394284E-04 -8.2240190E-04 -7.8305829E-04 -7.4579805E-04
 -7.1051595E-04 -6.7709759E-04 -6.4544653E-04 -6.1545492E-04 -5.8702700E-04
 -5.6006911E-04 -5.3449214E-04 -5.1020738E-04 -4.8713715E-04 -4.6520002E-04
 -4.4433109E-04
 1.9523708E-02 1.8681327E-02 1.7853720E-02 1.7043851E-02 1.6253961E-02
 1.5485682E-02 1.4740159E-02 1.4018177E-02 1.3320202E-02 1.2646488E-02
 1.1997084E-02 1.1371926E-02 1.0770840E-02 1.0193556E-02 9.6397540E-03
 9.1090463E-03 8.6010229E-03 8.1152227E-03 7.6511600E-03 7.2083115E-03
 6.7861457E-03 6.3841003E-03 6.0015935E-03 5.6380392E-03 5.2928329E-03
 4.9653566E-03 4.6549928E-03 4.3611154E-03 4.0831026E-03 3.8203287E-03
 3.5721734E-03 3.3380289E-03 3.1172810E-03 2.9093381E-03 2.7136169E-03
 2.5295457E-03 2.3565679E-03 2.1941443E-03 2.0417471E-03 1.8988731E-03
 1.7650280E-03 1.6397429E-03 1.5225619E-03 1.4130460E-03 1.3107779E-03
 1.2153574E-03 1.1264033E-03 1.0435436E-03 9.6643454E-04 8.9473603E-04
 8.2813652E-04 7.6632696E-04 7.0901844E-04 6.5593427E-04 6.0681964E-04
 5.6141592E-04 5.1949243E-04 4.8081539E-04 4.4517376E-04 4.1236181E-04
 3.8218597E-04 3.5445654E-04 3.2900323E-04 3.0565463E-04 2.8425563E-04
 2.6465266E-04 2.4670435E-04 2.3027112E-04 2.1523130E-04 2.0145909E-04
 1.8884335E-04
 6.9213228E-04 -8.1574493E-05 -7.6745031E-04 -1.3717841E-03 -1.9006362E-03
 -2.3598149E-03 -2.7548571E-03 -3.0910429E-03 -3.3733628E-03 -3.6065646E-03
 -3.7951106E-03 -3.9432277E-03 -4.0548672E-03 -4.1337474E-03 -4.1833310E-03
 -4.2068576E-03 -4.2073238E-03 -4.1875062E-03 -4.1499701E-03 -4.0970733E-03
 -4.0309750E-03 -3.9536571E-03 -3.8669172E-03 -3.7723857E-03 -3.6715444E-03
 -3.5657233E-03 -3.4561183E-03 -3.3437959E-03 -3.2297058E-03 -3.1146933E-03
 -2.9994966E-03 -2.8847621E-03 -2.7710572E-03 -2.6588652E-03 -2.5486052E-03
 -2.4406218E-03 -2.3352120E-03 -2.2326109E-03 -2.1330155E-03 -2.0365752E-03
 -1.9433991E-03 -1.8535597E-03 -1.7671132E-03 -1.6840721E-03 -1.6044348E-03
 -1.5281801E-03 -1.4552654E-03 -1.3856291E-03 -1.3192000E-03 -1.2559006E-03
 -1.1956403E-03 -1.1383157E-03 -1.0838273E-03 -1.0320672E-03 -9.8291552E-04
 -9.3626825E-04 -8.9200580E-04 -8.5001497E-04 -8.1018294E-04 -7.7239668E-04
 -7.3654763E-04 -7.0252904E-04 -6.7023991E-04 -6.3957699E-04 -6.1044935E-04
 -5.8276346E-04 -5.5643410E-04 -5.3138036E-04 -5.0752447E-04 -4.8479647E-04
 -4.6312818E-04
 1.9771419E-02 1.8921511E-02 1.8086191E-02 1.7268432E-02 1.6470507E-02
 1.5694061E-02 1.4940291E-02 1.4210010E-02 1.3503728E-02 1.2821738E-02
 1.2164144E-02 1.1530911E-02 1.0921896E-02 1.0336872E-02 9.7755408E-03
 9.2375465E-03 8.7224776E-03 8.2298992E-03 7.7593275E-03 7.3102526E-03
 6.8821325E-03 6.4744125E-03 6.0865115E-03 5.7178340E-03 5.3677638E-03
 5.0356886E-03 4.7209784E-03 4.4229990E-03 4.1411263E-03 3.8747168E-03
 3.6231529E-03 3.3858076E-03 3.1620662E-03 2.9513354E-03 2.7530119E-03
 2.5665262E-03 2.3913062E-03 2.2268130E-03 2.0725129E-03 1.9278895E-03
 1.7924450E-03 1.6657041E-03 1.5472055E-03 1.4365057E-03 1.3331745E-03
 1.2368168E-03 1.1470297E-03 1.0634456E-03 9.8570215E-04 9.1346429E-04
 8.4640569E-04 7.8421354E-04 7.2658813E-04 6.7324884E-04 6.2392652E-04
 5.7835807E-04 5.3630333E-04 4.9752428E-04 4.6179889E-04 4.2891543E-04
 3.9867283E-04 3.7087550E-04 3.4534751E-04 3.2191025E-04 3.0040008E-04
 2.8066387E-04 2.6255284E-04 2.4592641E-04 2.3065889E-04 2.1662038E-04
 2.0369969E-04
 5.5784115E-04 -2.1012427E-04 -8.9001504E-04 -1.4882375E-03 -2.0109611E-03
 -2.4640958E-03 -2.8532550E-03 -3.1837816E-03 -3.4607295E-03 -3.6888644E-03
 -3.8726893E-03 -4.0164315E-03 -4.1240519E-03 -4.1992543E-03 -4.2454982E-03
 -4.2659994E-03 -4.2637382E-03 -4.2414716E-03 -4.2017438E-03 -4.1468884E-03
 -4.0790485E-03 -4.0001781E-03 -3.9120633E-03 -3.8163161E-03 -3.7144008E-03
 -3.6076300E-03 -3.4971917E-03 -3.3841350E-03 -3.2694035E-03 -3.1538266E-03
 -3.0381358E-03 -2.9229748E-03 -2.8088910E-03 -2.6963693E-03 -2.5858195E-03
 -2.4775835E-03 -2.3719480E-03 -2.2691481E-03 -2.1693700E-03 -2.0727571E-03
 -1.9794162E-03 -1.8894211E-03 -1.8028115E-03 -1.7196018E-03 -1.6397876E-03
 -1.5633396E-03 -1.4902095E-03 -1.4203349E-03 -1.3536435E-03 -1.2900512E-03
 -1.2294609E-03 -1.1717710E-03 -1.1168809E-03 -1.0646716E-03 -1.0150343E-03
 -9.6785295E-04 -9.2301704E-04 -8.8041136E-04 -8.3992141E-04 -8.0143841E-04
 -7.6485408E-04 -7.3007029E-04 -6.9698045E-04 -6.6548900E-04 -6.3551060E-04
 -6.0695549E-04 -5.7974254E-04 -5.5379793E-04 -5.2905094E-04 -5.0543668E-04
 -4.8289553E-04
 2.0048484E-02 1.9189691E-02 1.8345306E-02 1.7518340E-02 1.6711079E-02
 1.5925221E-02 1.5161990E-02 1.4422243E-02 1.3706549E-02 1.3015231E-02
 1.2348440E-02 1.1706178E-02 1.1088341E-02 1.0494725E-02 9.9250618E-03
 9.3790069E-03 8.8561783E-03 8.3561409E-03 7.8784181E-03 7.4225017E-03
 6.9878609E-03 6.5739304E-03 6.1801253E-03 5.8058426E-03 5.4504680E-03
 5.1133768E-03 4.7939299E-03 4.4914903E-03 4.2054150E-03 3.9350647E-03
 3.6798022E-03 3.4389959E-03 3.2120254E-03 2.9982845E-03 2.7971659E-03
 2.6080846E-03 2.4304718E-03 2.2637737E-03 2.1074461E-03 1.9609679E-03
 1.8238395E-03 1.6955696E-03 1.5756926E-03 1.4637528E-03 1.3593246E-03
 1.2619820E-03 1.1713365E-03 1.0869997E-03 1.0086057E-03 9.3580509E-04
 8.6826552E-04 8.0566178E-04 7.4768957E-04 6.9405598E-04 6.4448256E-04
 5.9869670E-04 5.5644906E-04 5.1749893E-04 4.8160946E-04 4.4856378E-04
 4.1815333E-04 3.9018021E-04 3.6445344E-04 3.4079689E-04 3.1904102E-04
 2.9902501E-04 2.8060097E-04 2.6362605E-04 2.4797310E-04 2.3351706E-04
 2.2014283E-04
 4.1128774E-04 -3.5038777E-04 -1.0237625E-03 -1.6153720E-03 -2.1315103E-03
 -2.5781700E-03 -2.9610624E-03 -3.2855836E-03 -3.5568364E-03 -3.7796337E-03
 -3.9584762E-03 -4.0976158E-03 -4.2010015E-03 -4.2723389E-03 -4.3150662E-03
 -4.3323818E-03 -4.3272455E-03 -4.3023946E-03 -4.2603486E-03 -4.2034211E-03
 -4.1337349E-03 -4.0532169E-03 -3.9636400E-03 -3.8665957E-03 -3.7635290E-03
 -3.6557415E-03 -3.5444030E-03 -3.4305542E-03 -3.3151219E-03 -3.1989266E-03
 -3.0826901E-03 -2.9670456E-03 -2.8525393E-03 -2.7396365E-03 -2.6287474E-03
 -2.5202057E-03 -2.4142892E-03 -2.3112278E-03 -2.2112008E-03 -2.1143488E-03
 -2.0207718E-03 -1.9305329E-03 -1.8436735E-03 -1.7602000E-03 -1.6800987E-03
 -1.6033407E-03 -1.5298717E-03 -1.4596262E-03 -1.3925264E-03 -1.3284843E-03
 -1.2674041E-03 -1.2091785E-03 -1.1537031E-03 -1.1008683E-03 -1.0505574E-03
 -1.0026570E-03 -9.5705967E-04 -9.1364310E-04 -8.7230874E-04 -8.3294360E-04
 -7.9544535E-04 -7.5971539E-04 -7.2565622E-04 -6.9318153E-04 -6.6220522E-04
 -6.3264754E-04 -6.0443248E-04 -5.7749433E-04 -5.5177091E-04 -5.2720151E-04
 -5.0373445E-04
 2.0358076E-02 1.9488815E-02 1.8633815E-02 1.7796112E-02 1.6978046E-02
 1.6181348E-02 1.5407295E-02 1.4656793E-02 1.3930446E-02 1.3228631E-02
 1.2551533E-02 1.1899195E-02 1.1271548E-02 1.0668409E-02 1.0089530E-02
 9.5345918E-03 9.0032145E-03 8.4949834E-03 8.0094170E-03 7.5460086E-03
 7.1042269E-03 6.6835084E-03 6.2832567E-03 5.9028654E-03 5.5417167E-03
 5.1991646E-03 4.8745736E-03 4.5672911E-03 4.2766649E-03 4.0020440E-03
 3.7427880E-03 3.4982557E-03 3.2678100E-03 3.0508374E-03 2.8467223E-03
 2.6548768E-03 2.4747129E-03 2.3056692E-03 2.1471956E-03 1.9987673E-03
 1.8598620E-03 1.7299904E-03 1.6086684E-03 1.4954380E-03 1.3898576E-03
 1.2914974E-03 1.1999498E-03 1.1148202E-03 1.0357375E-03 9.6233067E-04
 8.9426362E-04 8.3119306E-04 7.7281368E-04 7.1881490E-04 6.6891138E-04
 6.2281941E-04 5.8028544E-04 5.4105045E-04 5.0487765E-04 4.7153898E-04
 4.4082233E-04 4.1252014E-04 3.8644011E-04 3.6239673E-04 3.4022643E-04
 3.1976230E-04 3.0085415E-04 2.8336261E-04 2.6715980E-04 2.5212546E-04
 2.3815536E-04
 2.5171382E-04 -5.0311361E-04 -1.1694449E-03 -1.7539533E-03 -2.2630487E-03
 -2.7028304E-03 -3.0790837E-03 -3.3972706E-03 -3.6625343E-03 -3.8797124E-03
 -4.0533384E-03 -4.1876500E-03 -4.2866026E-03 -4.3538860E-03 -4.3929298E-03
 -4.4069057E-03 -4.3987548E-03 -4.3711876E-03 -4.3267058E-03 -4.2675934E-03
 -4.1959509E-03 -4.1136914E-03 -4.0225587E-03 -3.9241309E-03 -3.8198323E-03
 -3.7109538E-03 -3.5986463E-03 -3.4839318E-03 -3.3677355E-03 -3.2508590E-03
 -3.1340166E-03 -3.0178253E-03 -2.9028275E-03 -2.7894843E-03 -2.6781852E-03
 -2.5692629E-03 -2.4629871E-03 -2.3595791E-03 -2.2592160E-03 -2.1620251E-03
 -2.0681014E-03 -1.9775038E-03 -1.8902654E-03 -1.8063895E-03 -1.7258576E-03
 -1.6486295E-03 -1.5746545E-03 -1.5038607E-03 -1.4361647E-03 -1.3714790E-03
 -1.3097035E-03 -1.2507361E-03 -1.1944679E-03 -1.1407912E-03 -1.0895873E-03
 -1.0407545E-03 -9.9417439E-04 -9.4974483E-04 -9.0735953E-04 -8.6691382E-04
 -8.2831405E-04 -7.9145940E-04 -7.5627316E-04 -7.2266464E-04 -6.9055601E-04
 -6.5987970E-04 -6.3056452E-04 -6.0255331E-04 -5.7578820E-04 -5.5021764E-04
 -5.2579748E-04
 2.0703670E-02 1.9822102E-02 1.8954683E-02 1.8104509E-02 1.7273961E-02
 1.6464828E-02 1.5678432E-02 1.4915718E-02 1.4177354E-02 1.3463746E-02
 1.2775125E-02 1.2111564E-02 1.1473018E-02 1.0859339E-02 1.0270289E-02
 9.7055668E-03 9.1647971E-03 8.6475704E-03 8.1534097E-03 7.6818136E-03
 7.2322334E-03 6.8041054E-03 6.3968310E-03 6.0097976E-03 5.6423643E-03
 5.2938922E-03 4.9637267E-03 4.6512010E-03 4.3556592E-03 4.0764390E-03
 3.8128868E-03 3.5643468E-03 3.3301774E-03 3.1097515E-03 2.9024449E-03
 2.7076504E-03 2.5247815E-03 2.3532584E-03 2.1925236E-03 2.0420363E-03
 1.9012658E-03 1.7697101E-03 1.6468740E-03 1.5322882E-03 1.4254930E-03
 1.3260555E-03 1.2335486E-03 1.1475665E-03 1.0677211E-03 9.9363679E-04
 9.2495797E-04 8.6133665E-04 8.0244715E-04 7.4797490E-04 6.9761730E-04
 6.5109011E-04 6.0812233E-04 5.6844979E-04 5.3183013E-04 4.9802696E-04
 4.6682352E-04 4.3800706E-04 4.1138104E-04 3.8676392E-04 3.6398220E-04
 3.4287974E-04 3.2330281E-04 3.0511903E-04 2.8820540E-04 2.7244512E-04
 2.5773884E-04
 7.8355421E-05 -6.6908443E-04 -1.3278616E-03 -1.9048078E-03 -2.4064349E-03
 -2.8389522E-03 -3.2082191E-03 -3.5197607E-03 -3.7787545E-03 -3.9900676E-03
 -4.1582459E-03 -4.2875218E-03 -4.3818569E-03 -4.4449181E-03 -4.4801147E-03
 -4.4906014E-03 -4.4792970E-03 -4.4488874E-03 -4.4018435E-03 -4.3404335E-03
 -4.2667314E-03 -4.1826316E-03 -4.0898514E-03 -3.9899475E-03 -3.8843353E-03
 -3.7742842E-03 -3.6609212E-03 -3.5452722E-03 -3.4282301E-03 -3.3105949E-03
 -3.1930658E-03 -3.0762481E-03 -2.9606747E-03 -2.8467919E-03 -2.7349901E-03
 -2.6255848E-03 -2.5188411E-03 -2.4149704E-03 -2.3141408E-03 -2.2164716E-03
 -2.1220529E-03 -2.0309344E-03 -1.9431466E-03 -1.8586854E-03 -1.7775231E-03
 -1.6996234E-03 -1.6249248E-03 -1.5533571E-03 -1.4848330E-03 -1.4192670E-03
 -1.3565577E-03 -1.2966008E-03 -1.2392926E-03 -1.1845276E-03 -1.1321929E-03
 -1.0821851E-03 -1.0343979E-03 -9.8873104E-04 -9.4508316E-04 -9.0336316E-04
 -8.6347450E-04 -8.2533620E-04 -7.8886852E-04 -7.5399294E-04 -7.2064024E-04
 -6.8875088E-04 -6.5826101E-04 -6.2911666E-04 -6.0126942E-04 -5.7466951E-04
 -5.4927572E-04
 2.1089019E-02 2.0193018E-02 1.9311128E-02 1.8446509E-02 1.7601596E-02
 1.6778229E-02 1.5977779E-02 1.5201258E-02 1.4449357E-02 1.3722531E-02
 1.3021045E-02 1.2345004E-02 1.1694386E-02 1.1069054E-02 1.0468796E-02
 9.8933103E-03 9.3422337E-03 8.8151572E-03 8.3116004E-03 7.8310547E-03
 7.3729791E-03 6.9367941E-03 6.5218871E-03 6.1276355E-03 5.7533998E-03
 5.3985161E-03 5.0623273E-03 4.7441483E-03 4.4433158E-03 4.1591525E-03
 3.8909893E-03 3.6381620E-03 3.4000173E-03 3.1759122E-03 2.9652109E-03
 2.7672930E-03 2.5815626E-03 2.4074202E-03 2.2442969E-03 2.0916406E-03
 1.9489069E-03 1.8155723E-03 1.6911355E-03 1.5751073E-03 1.4670171E-03
 1.3664089E-03 1.2728488E-03 1.1859149E-03 1.1052027E-03 1.0303266E-03
 9.6090970E-04 8.9659711E-04 8.3705183E-04 7.8194513E-04 7.3096744E-04
 6.8382302E-04 6.4022926E-04 5.9992034E-04 5.6264643E-04 5.2816852E-04
 4.9625809E-04 4.6670789E-04 4.3931973E-04 4.1391267E-04 3.9031939E-04
 3.6837973E-04 3.4795178E-04 3.2890620E-04 3.1112641E-04 2.9450280E-04
 2.7894552E-04
 -1.0958181E-04 -8.4912434E-04 -1.4998859E-03 -2.0688295E-03 -2.5626041E-03
 -2.9875075E-03 -3.3494767E-03 -3.6540844E-03 -3.9065578E-03 -4.1117761E-03
 -4.2742947E-03 -4.3983515E-03 -4.4878894E-03 -4.5465650E-03 -4.5777652E-03
 -4.5846249E-03 -4.5700339E-03 -4.5366571E-03 -4.4869343E-03 -4.4231159E-03
 -4.3472475E-03 -4.2611980E-03 -4.1666701E-03 -4.0652030E-03 -3.9581796E-03
 -3.8468598E-03 -3.7323532E-03 -3.6156701E-03 -3.4976879E-03 -3.3791941E-03
 -3.2608721E-03 -3.1433229E-03 -3.0270559E-03 -2.9125176E-03 -2.8000805E-03
 -2.6900519E-03 -2.5826835E-03 -2.4781842E-03 -2.3767124E-03 -2.2783766E-03
 -2.1832623E-03 -2.0914106E-03 -2.0028467E-03 -1.9175571E-03 -1.8355212E-03
 -1.7566906E-03 -1.6810035E-03 -1.6083871E-03 -1.5387597E-03 -1.4720317E-03
 -1.4081059E-03 -1.3468859E-03 -1.2882649E-03 -1.2321435E-03 -1.1784184E-03
 -1.1269883E-03 -1.0777583E-03 -1.0306304E-03 -9.8551612E-04 -9.4232912E-04
 -9.0098655E-04 -8.6141075E-04 -8.2352979E-04 -7.8728108E-04 -7.5259659E-04
 -7.1942282E-04 -6.8770529E-04 -6.5739342E-04 -6.2843773E-04 -6.0079037E-04
 -5.7440938E-04
 2.1518175E-02 2.0605315E-02 1.9706620E-02 1.8825321E-02 1.7963920E-02
 1.7124319E-02 1.6307939E-02 1.5515826E-02 1.4748722E-02 1.4007119E-02
 1.3291307E-02 1.2601408E-02 1.1937430E-02 1.1299251E-02 1.0686656E-02
 1.0099352E-02 9.5369900E-03 8.9991381E-03 8.4853303E-03 7.9950364E-03
 7.5277169E-03 7.0827720E-03 6.6595878E-03 6.2575298E-03 5.8759367E-03
 5.5141388E-03 5.1714540E-03 4.8472034E-03 4.5406907E-03 4.2512305E-03
 3.9781434E-03 3.7207431E-03 3.4783639E-03 3.2503491E-03 3.0360497E-03
 2.8348286E-03 2.6460655E-03 2.4691517E-03 2.3035083E-03 2.1485512E-03
 2.0037300E-03 1.8685029E-03 1.7423461E-03 1.6247557E-03 1.5152438E-03
 1.4133391E-03 1.3185896E-03 1.2305552E-03 1.1488174E-03 1.0729794E-03
 1.0026480E-03 9.3745306E-04 8.7704754E-04 8.2109321E-04 7.6927070E-04
 7.2127394E-04 6.7681714E-04 6.3562772E-04 5.9745222E-04 5.6204497E-04
 5.2918686E-04 4.9866363E-04 4.7028367E-04 4.4386677E-04 4.1925075E-04
 3.9628331E-04 3.7483140E-04 3.5476903E-04 3.3598693E-04 3.1838339E-04
 3.0186711E-04
 -3.1292142E-04 -1.0441301E-03 -1.6864582E-03 -2.2470276E-03 -2.7326050E-03
 -3.1495877E-03 -3.5039801E-03 -3.8014138E-03 -4.0471400E-03 -4.2460612E-03
 -4.4027362E-03 -4.5214016E-03 -4.6059829E-03 -4.6601244E-03 -4.6871873E-03
 -4.6902834E-03 -4.6722805E-03 -4.6358104E-03 -4.5832940E-03 -4.5169513E-03
 -4.4388045E-03 -4.3507027E-03 -4.2543155E-03 -4.1511715E-03 -4.0426305E-03
 -3.9299293E-03 -3.8141694E-03 -3.6963320E-03 -3.5772887E-03 -3.4578086E-03
 -3.3385572E-03 -3.2201263E-03 -3.1030115E-03 -2.9876486E-03 -2.8743930E-03
 -2.7635486E-03 -2.6553571E-03 -2.5500110E-03 -2.4476568E-03 -2.3484079E-03
 -2.2523317E-03 -2.1594730E-03 -2.0698456E-03 -1.9834349E-03 -1.9002156E-03
 -1.8201406E-03 -1.7431483E-03 -1.6691701E-03 -1.5981209E-03 -1.5299171E-03
 -1.4644653E-03 -1.4016748E-03 -1.3414493E-03 -1.2836892E-03 -1.2283081E-03
 -1.1752055E-03 -1.1242987E-03 -1.0755005E-03 -1.0287262E-03 -9.8390074E-04
 -9.4095548E-04 -8.9981651E-04 -8.6042081E-04 -8.2271337E-04 -7.8663428E-04
 -7.5212441E-04 -7.1914366E-04 -6.8763236E-04 -6.5754348E-04 -6.2883314E-04
 -6.0144940E-04
 2.1995524E-02 2.1063035E-02 2.0144902E-02 1.9244423E-02 1.8364184E-02
 1.7506117E-02 1.6671715E-02 1.5862059E-02 1.5077925E-02 1.4319833E-02
 1.3588092E-02 1.2882853E-02 1.2204121E-02 1.1551789E-02 1.0925647E-02
 1.0325400E-02 9.7506857E-03 9.2010796E-03 8.6760977E-03 8.1752120E-03
 7.6978533E-03 7.2434209E-03 6.8112845E-03 6.4007929E-03 6.0112695E-03
 5.6420290E-03 5.2923751E-03 4.9616056E-03 4.6490189E-03 4.3539018E-03
 4.0755635E-03 3.8132956E-03 3.5664199E-03 3.3342561E-03 3.1161357E-03
 2.9114087E-03 2.7194296E-03 2.5395798E-03 2.3712467E-03 2.2138355E-03
 2.0667659E-03 1.9294907E-03 1.8014502E-03 1.6821313E-03 1.5710254E-03
 1.4676373E-03 1.3715028E-03 1.2821608E-03 1.1991808E-03 1.1221471E-03
 1.0506553E-03 9.8432822E-04 9.2279917E-04 8.6572592E-04 8.1278064E-04
 7.6365174E-04 7.1804965E-04 6.7569833E-04 6.3633686E-04 5.9973338E-04
 5.6566048E-04 5.3391448E-04 5.0430687E-04 4.7666335E-04 4.5082739E-04
 4.2665485E-04 4.0401990E-04 3.8280245E-04 3.6289298E-04 3.4420195E-04
 3.2663840E-04
 -5.3257507E-04 -1.2550770E-03 -1.8886379E-03 -2.4405271E-03 -2.9176287E-03
 -3.3264370E-03 -3.6730282E-03 -3.9630760E-03 -4.2018667E-03 -4.3943194E-03
 -4.5449915E-03 -4.6581095E-03 -4.7375956E-03 -4.7870600E-03 -4.8098527E-03
 -4.8090597E-03 -4.7875186E-03 -4.7478331E-03 -4.6924031E-03 -4.6234122E-03
 -4.5428681E-03 -4.4525862E-03 -4.3542241E-03 -4.2492715E-03 -4.1390816E-03
 -4.0248651E-03 -3.9077043E-03 -3.7885651E-03 -3.6682982E-03 -3.5476570E-03
 -3.4272952E-03 -3.3077879E-03 -3.1896166E-03 -3.0732001E-03 -2.9588891E-03
 -2.8469709E-03 -2.7376791E-03 -2.6311933E-03 -2.5276598E-03 -2.4271780E-03
 -2.3298152E-03 -2.2356040E-03 -2.1445623E-03 -2.0566771E-03 -1.9719133E-03
 -1.8902316E-03 -1.8115748E-03 -1.7358732E-03 -1.6630504E-03 -1.5930269E-03
 -1.5257188E-03 -1.4610427E-03 -1.3989076E-03 -1.3392316E-03 -1.2819270E-03
 -1.2269135E-03 -1.1741117E-03 -1.1234446E-03 -1.0748424E-03 -1.0282410E-03
 -9.8356546E-04 -9.4076461E-04 -8.9977559E-04 -8.6054509E-04 -8.2301529E-04
 -7.8713655E-04 -7.5285538E-04 -7.2012038E-04 -6.8887469E-04 -6.5906841E-04
 -6.3064753E-04
 2.2525813E-02 2.1570578E-02 2.0630045E-02 1.9707607E-02 1.8805888E-02
 1.7926911E-02 1.7072193E-02 1.6242851E-02 1.5439685E-02 1.4663238E-02
 1.3913834E-02 1.3191631E-02 1.2496642E-02 1.1828753E-02 1.1187753E-02
 1.0573353E-02 9.9851573E-03 9.4227483E-03 8.8856220E-03 8.3732344E-03
 7.8850100E-03 7.4203215E-03 6.9785244E-03 6.5589473E-03 6.1608958E-03
 5.7836687E-03 5.4265489E-03 5.0888117E-03 4.7697322E-03 4.4685882E-03
 4.1846558E-03 3.9172154E-03 3.6655583E-03 3.4289870E-03 3.2068081E-03
 2.9983483E-03 2.8029429E-03 2.6199394E-03 2.4487101E-03 2.2886361E-03
 2.1391166E-03 1.9995682E-03 1.8694274E-03 1.7481478E-03 1.6352017E-03
 1.5300766E-03 1.4322900E-03 1.3413639E-03 1.2568539E-03 1.1783243E-03
 1.1053667E-03 1.0375897E-03 9.7461639E-04 9.1609836E-04 8.6170295E-04
 8.1111852E-04 7.6404662E-04 7.2022108E-04 6.7938201E-04 6.4129254E-04
 6.0573954E-04 5.7252642E-04 5.4146274E-04 5.1238859E-04 4.8515142E-04
 4.5961290E-04 4.3565047E-04 4.1315152E-04 3.9200735E-04 3.7212876E-04
 3.5342883E-04
 -7.6955080E-04 -1.4830944E-03 -2.1076440E-03 -2.6506239E-03 -3.1190449E-03
 -3.5194885E-03 -3.8581027E-03 -4.1406048E-03 -4.3723094E-03 -4.5581437E-03
 -4.7026738E-03 -4.8101158E-03 -4.8843678E-03 -4.9290336E-03 -4.9474328E-03
 -4.9426230E-03 -4.9174139E-03 -4.8743864E-03 -4.8159072E-03 -4.7441390E-03
 -4.6610585E-03 -4.5684543E-03 -4.4679637E-03 -4.3610511E-03 -4.2490466E-03
 -4.1331388E-03 -4.0143910E-03 -3.8937475E-03 -3.7720469E-03 -3.6500171E-03
 -3.5282997E-03 -3.4074527E-03 -3.2879438E-03 -3.1701771E-03 -3.0544954E-03
 -2.9411693E-03 -2.8304248E-03 -2.7224389E-03 -2.6173445E-03 -2.5152406E-03
 -2.4161846E-03 -2.3202198E-03 -2.2273529E-03 -2.1375727E-03 -2.0508585E-03
 -1.9671654E-03 -1.8864395E-03 -1.8086282E-03 -1.7336558E-03 -1.6614572E-03
 -1.5919529E-03 -1.5250692E-03 -1.4607356E-03 -1.3988648E-03 -1.3393939E-03
 -1.2822461E-03 -1.2273549E-03 -1.1746556E-03 -1.1240816E-03 -1.0755813E-03
 -1.0290849E-03 -9.8454196E-04 -9.4189547E-04 -9.0109115E-04 -8.6207205E-04
 -8.2478032E-04 -7.8916200E-04 -7.5515907E-04 -7.2271447E-04 -6.9176662E-04
 -6.6225906E-04
 2.3114195E-02 2.2132708E-02 2.1166477E-02 2.0218976E-02 1.9292897E-02
 1.8390302E-02 1.7512741E-02 1.6661368E-02 1.5836990E-02 1.5040166E-02
 1.4271216E-02 1.3530300E-02 1.2817427E-02 1.2132475E-02 1.1475219E-02
 1.0845355E-02 1.0242484E-02 9.6661532E-03 9.1158543E-03 8.5910186E-03
 8.0910474E-03 7.6152943E-03 7.1630972E-03 6.7337565E-03 6.3265576E-03
 5.9407772E-03 5.5756713E-03 5.2304924E-03 4.9044960E-03 4.5969267E-03
 4.3070386E-03 4.0340880E-03 3.7773354E-03 3.5360625E-03 3.3095428E-03
 3.0970792E-03 2.8979715E-03 2.7115522E-03 2.5371602E-03 2.3741492E-03
 2.2218947E-03 2.0797909E-03 1.9472484E-03 1.8236950E-03 1.7085866E-03
 1.6013923E-03 1.5016070E-03 1.4087429E-03 1.3223377E-03 1.2419454E-03
 1.1671464E-03 1.0975390E-03 1.0327457E-03 9.7241008E-04 9.1619935E-04
 8.6380262E-04 8.1492495E-04 7.6929742E-04 7.2667340E-04 6.8681920E-04
 6.4952823E-04 6.1460462E-04 5.8187923E-04 5.5118446E-04 5.2237773E-04
 4.9532420E-04 4.6990372E-04 4.4600360E-04 4.2352016E-04 4.0235888E-04
 3.8243257E-04
 -1.0250105E-03 -1.7294782E-03 -2.3448875E-03 -2.8788375E-03 -3.3384461E-03
 -3.7304040E-03 -4.0609189E-03 -4.3357527E-03 -4.5602550E-03 -4.7393581E-03
 -4.8776264E-03 -4.9792733E-03 -5.0481767E-03 -5.0879177E-03 -5.1017944E-03
 -5.0928360E-03 -5.0638262E-03 -5.0173127E-03 -4.9556368E-03 -4.8809373E-03
 -4.7951522E-03 -4.7000567E-03 -4.5972485E-03 -4.4881753E-03 -4.3741418E-03
 -4.2563123E-03 -4.1357358E-03 -4.0133256E-03 -3.8899013E-03 -3.7661805E-03
 -3.6427844E-03 -3.5202515E-03 -3.3990410E-03 -3.2795423E-03 -3.1620844E-03
 -3.0469298E-03 -2.9343020E-03 -2.8243656E-03 -2.7172540E-03 -2.6130592E-03
 -2.5118466E-03 -2.4136540E-03 -2.3184943E-03 -2.2263625E-03 -2.1372440E-03
 -2.0510992E-03 -1.9678865E-03 -1.8875574E-03 -1.8100528E-03 -1.7353168E-03
 -1.6632791E-03 -1.5938851E-03 -1.5270618E-03 -1.4627518E-03 -1.4008917E-03
 -1.3414196E-03 -1.2842787E-03 -1.2294062E-03 -1.1767494E-03 -1.1262496E-03
 -1.0778556E-03 -1.0315053E-03 -9.8714326E-04 -9.4470975E-04 -9.0414466E-04
 -8.6539093E-04 -8.2838396E-04 -7.9305650E-04 -7.5934822E-04 -7.2719040E-04
 -6.9652067E-04
 2.3766309E-02 2.2754664E-02 2.1759067E-02 2.0783078E-02 1.9829446E-02
 1.8900266E-02 1.7997112E-02 1.7121151E-02 1.6273191E-02 1.5453783E-02
 1.4663251E-02 1.3901737E-02 1.3169232E-02 1.2465595E-02 1.1790591E-02
 1.1143873E-02 1.0525043E-02 9.9336123E-03 9.3690529E-03 8.8307653E-03
 8.3181262E-03 7.8304671E-03 7.3670861E-03 6.9272746E-03 6.5102768E-03
 6.1153476E-03 5.7417108E-03 5.3885882E-03 5.0552092E-03 4.7407849E-03
 4.4445386E-03 4.1656946E-03 3.9034840E-03 3.6571547E-03 3.4259479E-03
 3.2091371E-03 3.0059896E-03 2.8158089E-03 2.6379016E-03 2.4715960E-03
 2.3162349E-03 2.1711965E-03 2.0358565E-03 1.9096299E-03 1.7919466E-03
 1.6822622E-03 1.5800517E-03 1.4848146E-03 1.3960756E-03 1.3133814E-03
 1.2363031E-03 1.1644356E-03 1.0974016E-03 1.0348432E-03 9.7642647E-04
 9.2184229E-04 8.7080861E-04 8.2305871E-04 7.7834952E-04 7.3646009E-04
 6.9718435E-04 6.6033745E-04 6.2574859E-04 5.9325795E-04 5.6272553E-04
 5.3401565E-04 5.0701090E-04 4.8159368E-04 4.5765878E-04 4.3511338E-04
 4.1385792E-04
 -1.3003498E-03 -1.9957637E-03 -2.6020361E-03 -3.1269290E-03 -3.5776894E-03
 -3.9611082E-03 -4.2834561E-03 -4.5505553E-03 -4.7677690E-03 -4.9400479E-03
 -5.0719576E-03 -5.1676976E-03 -5.2311323E-03 -5.2658250E-03 -5.2750460E-03
 -5.2617942E-03 -5.2288221E-03 -5.1786588E-03 -5.1136096E-03 -5.0357771E-03
 -4.9470849E-03 -4.8492649E-03 -4.7439006E-03 -4.6324083E-03 -4.5160637E-03
 -4.3960111E-03 -4.2732731E-03 -4.1487482E-03 -4.0232339E-03 -3.8974262E-03
 -3.7719305E-03 -3.6472722E-03 -3.5238974E-03 -3.4021859E-03 -3.2824536E-03
 -3.1649624E-03 -3.0499257E-03 -2.9375083E-03 -2.8278446E-03 -2.7210298E-03
 -2.6171287E-03 -2.5161861E-03 -2.4182245E-03 -2.3232456E-03 -2.2312400E-03
 -2.1421870E-03 -2.0560527E-03 -1.9727994E-03 -1.8923850E-03 -1.8147585E-03
 -1.7398759E-03 -1.6676829E-03 -1.5981237E-03 -1.5311525E-03 -1.4667145E-03
 -1.4047548E-03 -1.3452212E-03 -1.2880666E-03 -1.2332265E-03 -1.1806523E-03
 -1.1302811E-03 -1.0820553E-03 -1.0359113E-03 -9.9178543E-04 -9.4961002E-04
 -9.0931990E-04 -8.7084348E-04 -8.3411060E-04 -7.9905457E-04 -7.6559762E-04
 -7.3367631E-04
 2.4488356E-02 2.3442203E-02 2.2413189E-02 2.1404941E-02 2.0420253E-02
 1.9461239E-02 1.8529491E-02 1.7626150E-02 1.6752036E-02 1.5907673E-02
 1.5093352E-02 1.4309204E-02 1.3555184E-02 1.2831133E-02 1.2136771E-02
 1.1471741E-02 1.0835587E-02 1.0227804E-02 9.6478276E-03 9.0950318E-03
 8.5687526E-03 8.0682933E-03 7.5929239E-03 7.1418802E-03 6.7143966E-03
 6.3096764E-03 5.9269173E-03 5.5653038E-03 5.2240221E-03 4.9022497E-03
 4.5991768E-03 4.3139914E-03 4.0458804E-03 3.7940587E-03 3.5577328E-03
 3.3361381E-03 3.1285118E-03 2.9341208E-03 2.7522454E-03 2.5821761E-03
 2.4232429E-03 2.2747780E-03 2.1361539E-03 2.0067510E-03 1.8859886E-03
 1.7733002E-03 1.6681533E-03 1.5700307E-03 1.4784505E-03 1.3929578E-03
 1.3131145E-03 1.2385191E-03 1.1687932E-03 1.1035795E-03 1.0425544E-03
 9.8541623E-04 9.3187921E-04 8.8169193E-04 8.3461509E-04 7.9043285E-04
 7.4894592E-04 7.0996629E-04 6.7332882E-04 6.3887879E-04 6.0646725E-04
 5.7596015E-04 5.4723455E-04 5.2017672E-04 4.9467169E-04 4.7062107E-04
 4.4792896E-04
 -1.5972380E-03 -2.2837988E-03 -2.8810762E-03 -3.3969954E-03 -3.8389612E-03
 -4.2138528E-03 -4.5280284E-03 -4.7873505E-03 -4.9972171E-03 -5.1625995E-03
 -5.2880519E-03 -5.3777765E-03 -5.4356204E-03 -5.4651196E-03 -5.4695243E-03
 -5.4518012E-03 -5.4146806E-03 -5.3606555E-03 -5.2920002E-03 -5.2107908E-03
 -5.1189153E-03 -5.0180797E-03 -4.9098362E-03 -4.7955764E-03 -4.6765483E-03
 -4.5538740E-03 -4.4285506E-03 -4.3014553E-03 -4.1733682E-03 -4.0449700E-03
 -3.9168489E-03 -3.7895127E-03 -3.6634079E-03 -3.5388973E-03 -3.4162980E-03
 -3.2958677E-03 -3.1778174E-03 -3.0623158E-03 -2.9494974E-03 -2.8394696E-03
 -2.7323035E-03 -2.6280528E-03 -2.5267482E-03 -2.4284052E-03 -2.3330266E-03
 -2.2406047E-03 -2.1511214E-03 -2.0645515E-03 -1.9808675E-03 -1.9000309E-03
 -1.8220133E-03 -1.7467679E-03 -1.6742563E-03 -1.6044354E-03 -1.5372559E-03
 -1.4726744E-03 -1.4106382E-03 -1.3510913E-03 -1.2939807E-03 -1.2392405E-03
 -1.1868138E-03 -1.1366302E-03 -1.0886199E-03 -1.0427134E-03 -9.9883520E-04
 -9.5691206E-04 -9.1686769E-04 -8.7862555E-04 -8.4210985E-04 -8.0724905E-04
 -7.7396800E-04
 2.5287228E-02 2.4201756E-02 2.3134844E-02 2.2090185E-02 2.1070594E-02
 2.0078201E-02 1.9114571E-02 1.8180836E-02 1.7277773E-02 1.6405871E-02
 1.5565397E-02 1.4756426E-02 1.3978885E-02 1.3232559E-02 1.2517135E-02
 1.1832206E-02 1.1177287E-02 1.0551830E-02 9.9552190E-03 9.3867881E-03
 8.8458396E-03 8.3316313E-03 7.8433864E-03 7.3803090E-03 6.9415825E-03
 6.5263715E-03 6.1338260E-03 5.7630949E-03 5.4133120E-03 5.0836205E-03
 4.7731604E-03 4.4810758E-03 4.2065210E-03 3.9486592E-03 3.7066659E-03
 3.4797359E-03 3.2670735E-03 3.0679062E-03 2.8814818E-03 2.7070709E-03
 2.5439651E-03 2.3914841E-03 2.2489701E-03 2.1157910E-03 1.9913462E-03
 1.8750587E-03 1.7663833E-03 1.6647975E-03 1.5698160E-03 1.4809775E-03
 1.3978512E-03 1.3200343E-03 1.2471516E-03 1.1788565E-03 1.1148265E-03
 1.0547664E-03 9.9839806E-04 9.4547484E-04 8.9576055E-04 8.4904290E-04
 8.0512121E-04 7.6381263E-04 7.2494586E-04 6.8836083E-04 6.5390737E-04
 6.2145613E-04 5.9087016E-04 5.6202925E-04 5.3481769E-04 5.0913508E-04
 4.8487709E-04
 -1.9177076E-03 -2.5958049E-03 -3.1843688E-03 -3.6915217E-03 -4.1248235E-03
 -4.4912687E-03 -4.7972975E-03 -5.0488343E-03 -5.2513154E-03 -5.4097208E-03
 -5.5286204E-03 -5.6122020E-03 -5.6642969E-03 -5.6884335E-03 -5.6878156E-03
 -5.6653996E-03 -5.6238789E-03 -5.5657132E-03 -5.4931496E-03 -5.4082288E-03
 -5.3128065E-03 -5.2085607E-03 -5.0970153E-03 -4.9795322E-03 -4.8573380E-03
 -4.7315215E-03 -4.6030642E-03 -4.4728201E-03 -4.3415586E-03 -4.2099389E-03
 -4.0785433E-03 -3.9478699E-03 -3.8183541E-03 -3.6903652E-03 -3.5642113E-03
 -3.4401538E-03 -3.3184104E-03 -3.1991578E-03 -3.0825392E-03 -2.9686657E-03
 -2.8576239E-03 -2.7494805E-03 -2.6442814E-03 -2.5420557E-03 -2.4428233E-03
 -2.3465885E-03 -2.2533499E-03 -2.1631012E-03 -2.0758193E-03 -1.9914897E-03
 -1.9100837E-03 -1.8315701E-03 -1.7559177E-03 -1.6830851E-03 -1.6130287E-03
 -1.5456994E-03 -1.4810426E-03 -1.4190023E-03 -1.3595142E-03 -1.3025155E-03
 -1.2479282E-03 -1.1956781E-03 -1.1456932E-03 -1.0978900E-03 -1.0521892E-03
 -1.0085086E-03 -9.6677226E-04 -9.2689355E-04 -8.8879827E-04 -8.5240812E-04
 -8.1764860E-04
 2.6170665E-02 2.5040541E-02 2.3930797E-02 2.2845162E-02 2.1786463E-02
 2.0756802E-02 1.9757720E-02 1.8790292E-02 1.7855253E-02 1.6953036E-02
 1.6083848E-02 1.5247700E-02 1.4444470E-02 1.3673879E-02 1.2935565E-02
 1.2229066E-02 1.1553840E-02 1.0909284E-02 1.0294731E-02 9.7094653E-03
 9.1527356E-03 8.6237462E-03 8.1216712E-03 7.6456657E-03 7.1948562E-03
 6.7683496E-03 6.3652606E-03 5.9846737E-03 5.6256796E-03 5.2873683E-03
 4.9688276E-03 4.6691643E-03 4.3874779E-03 4.1228933E-03 3.8745448E-03
 3.6415830E-03 3.4231804E-03 3.2185309E-03 3.0268512E-03 2.8473847E-03
 2.6794006E-03 2.5221878E-03 2.3750789E-03 2.2374208E-03 2.1086079E-03
 1.9880459E-03 1.8751872E-03 1.7695124E-03 1.6705247E-03 1.5777727E-03
 1.4908279E-03 1.4092904E-03 1.3327900E-03 1.2609883E-03 1.1935676E-03
 1.1302364E-03 1.0707236E-03 1.0147766E-03 9.6216501E-04 9.1267005E-04
 8.6609961E-04 8.2225219E-04 7.8096282E-04 7.4206525E-04 7.0540339E-04
 6.7083380E-04 6.3822616E-04 6.0744520E-04 5.7838374E-04 5.5091927E-04
 5.2495819E-04
 -2.2642524E-03 -2.9344663E-03 -3.5147460E-03 -4.0134406E-03 -4.4382829E-03
 -4.7964095E-03 -5.0943540E-03 -5.3381110E-03 -5.5331495E-03 -5.6844917E-03
 -5.7967035E-03 -5.8739730E-03 -5.9201256E-03 -5.9386534E-03 -5.9327474E-03
 -5.9053306E-03 -5.8590714E-03 -5.7963929E-03 -5.7195057E-03 -5.6304298E-03
 -5.5309772E-03 -5.4228059E-03 -5.3074015E-03 -5.1861000E-03 -5.0601061E-03
 -4.9304944E-03 -4.7982130E-03 -4.6641123E-03 -4.5289369E-03 -4.3933424E-03
 -4.2579044E-03 -4.1231182E-03 -3.9894190E-03 -3.8571712E-03 -3.7266966E-03
 -3.5982616E-03 -3.4720921E-03 -3.3483731E-03 -3.2272660E-03 -3.1088935E-03
 -2.9933576E-03 -2.8807407E-03 -2.7711059E-03 -2.6644992E-03 -2.5609536E-03
 -2.4604937E-03 -2.3631321E-03 -2.2688692E-03 -2.1777051E-03 -2.0896276E-03
 -2.0046164E-03 -1.9226470E-03 -1.8436874E-03 -1.7676931E-03 -1.6946198E-03
 -1.6244163E-03 -1.5570183E-03 -1.4923640E-03 -1.4303745E-03 -1.3709811E-03
 -1.3141017E-03 -1.2596525E-03 -1.2075522E-03 -1.1577088E-03 -1.1100393E-03
 -1.0644584E-03 -1.0208834E-03 -9.7922585E-04 -9.3941030E-04 -9.0135488E-04
 -8.6498284E-04
 2.7147437E-02 2.5966760E-02 2.4808735E-02 2.3677099E-02 2.2574665E-02
 2.1503493E-02 2.0465050E-02 1.9460358E-02 1.8490057E-02 1.7554509E-02
 1.6653836E-02 1.5787976E-02 1.4956727E-02 1.4159739E-02 1.3396571E-02
 1.2666697E-02 1.1969501E-02 1.1304315E-02 1.0670406E-02 1.0066997E-02
 9.4932653E-03 8.9483522E-03 8.4313741E-03 7.9414155E-03 7.4775480E-03
 7.0388196E-03 6.6242786E-03 6.2329541E-03 5.8638798E-03 5.5160881E-03
 5.1886220E-03 4.8805280E-03 4.5908638E-03 4.3187076E-03 4.0631508E-03
 3.8233062E-03 3.5983110E-03 3.3873294E-03 3.1895461E-03 3.0041791E-03
 2.8304746E-03 2.6677102E-03 2.5151970E-03 2.3722760E-03 2.2383274E-03
 2.1127623E-03 1.9950233E-03 1.8845910E-03 1.7809784E-03 1.6837349E-03
 1.5924326E-03 1.5066804E-03 1.4261183E-03 1.3504010E-03 1.2792186E-03
 1.2122792E-03 1.1493075E-03 1.0900559E-03 1.0342831E-03 9.8177302E-04
 9.3231705E-04 8.8571734E-04 8.4179797E-04 8.0038403E-04 7.6131924E-04
 7.2445162E-04 6.8963761E-04 6.5674825E-04 6.2566134E-04 5.9625995E-04
 5.6843716E-04
 -2.6399076E-03 -3.3030049E-03 -3.8755701E-03 -4.3662079E-03 -4.7828639E-03
 -5.1328246E-03 -5.4227472E-03 -5.6587053E-03 -5.8462312E-03 -5.9903632E-03
 -6.0956953E-03 -6.1664111E-03 -6.2063294E-03 -6.2189139E-03 -6.2073455E-03
 -6.1745117E-03 -6.1230473E-03 -6.0553472E-03 -5.9735943E-03 -5.8797626E-03
 -5.7756486E-03 -5.6628692E-03 -5.5428892E-03 -5.4170233E-03 -5.2864477E-03
 -5.1522208E-03 -5.0152782E-03 -4.8764599E-03 -4.7365041E-03 -4.5960578E-03
 -4.4556959E-03 -4.3159239E-03 -4.1771708E-03 -4.0398217E-03 -3.9041983E-03
 -3.7705833E-03 -3.6392175E-03 -3.5102998E-03 -3.3840088E-03 -3.2604842E-03
 -3.1398449E-03 -3.0221937E-03 -2.9076044E-03 -2.7961475E-03 -2.6878731E-03
 -2.5828162E-03 -2.4809970E-03 -2.3824403E-03 -2.2871408E-03 -2.1950928E-03
 -2.1062789E-03 -2.0206755E-03 -1.9382422E-03 -1.8589358E-03 -1.7826987E-03
 -1.7094704E-03 -1.6391793E-03 -1.5717547E-03 -1.5071095E-03 -1.4451639E-03
 -1.3858269E-03 -1.3290093E-03 -1.2746196E-03 -1.2225669E-03 -1.1727635E-03
 -1.1251171E-03 -1.0795416E-03 -1.0359487E-03 -9.9425926E-04 -9.5438643E-04
 -9.1625610E-04
 2.8227616E-02 2.6989842E-02 2.5777496E-02 2.4594322E-02 2.3443064E-02
 2.2325715E-02 2.1243652E-02 2.0197783E-02 1.9188641E-02 1.8216485E-02
 1.7281326E-02 1.6383011E-02 1.5521218E-02 1.4695520E-02 1.3905371E-02
 1.3150156E-02 1.2429181E-02 1.1741687E-02 1.1086859E-02 1.0463838E-02
 9.8717315E-03 9.3095945E-03 8.7764701E-03 8.2713794E-03 7.7933045E-03
 7.3412363E-03 6.9141500E-03 6.5110112E-03 6.1307983E-03 5.7724756E-03
 5.4350337E-03 5.1174662E-03 4.8187845E-03 4.5380243E-03 4.2742318E-03
 4.0264837E-03 3.7938834E-03 3.5755641E-03 3.3706878E-03 3.1784528E-03
 2.9980817E-03 2.8288413E-03 2.6700341E-03 2.5209959E-03 2.3810994E-03
 2.2497557E-03 2.1264106E-03 2.0105503E-03 1.9016869E-03 1.7993745E-03
 1.7031906E-03 1.6127455E-03 1.5276792E-03 1.4476435E-03 1.3723329E-03
 1.3014463E-03 1.2347058E-03 1.1718516E-03 1.1126430E-03 1.0568529E-03
 1.0042621E-03 9.5467165E-04 9.0789190E-04 8.6374232E-04 8.2205684E-04
 7.8268041E-04 7.4546534E-04 7.1027444E-04 6.7697949E-04 6.4546376E-04
 6.1561354E-04
 -3.0483499E-03 -3.7052936E-03 -4.2708330E-03 -4.7538872E-03 -5.1626530E-03
 -5.5046002E-03 -5.7865349E-03 -6.0146293E-03 -6.1944826E-03 -6.3311816E-03
 -6.4293416E-03 -6.4931479E-03 -6.5264064E-03 -6.5325820E-03 -6.5148193E-03
 -6.4759897E-03 -6.4186887E-03 -6.3452879E-03 -6.2579350E-03 -6.1585740E-03
 -6.0489741E-03 -5.9307306E-03 -5.8052791E-03 -5.6739142E-03 -5.5378056E-03
 -5.3979908E-03 -5.2554011E-03 -5.1108701E-03 -4.9651382E-03 -4.8188516E-03
 -4.6725939E-03 -4.5268782E-03 -4.3821461E-03 -4.2387932E-03 -4.0971567E-03
 -3.9575393E-03 -3.8201967E-03 -3.6853468E-03 -3.5531851E-03 -3.4238724E-03
 -3.2975513E-03 -3.1743366E-03 -3.0543259E-03 -2.9375989E-03 -2.8242161E-03
 -2.7142288E-03 -2.6076685E-03 -2.5045539E-03 -2.4048844E-03 -2.3086604E-03
 -2.2158506E-03 -2.1264281E-03 -2.0403434E-03 -1.9575448E-03 -1.8779654E-03
 -1.8015300E-03 -1.7281633E-03 -1.6577740E-03 -1.5902790E-03 -1.5255837E-03
 -1.4635928E-03 -1.4042078E-03 -1.3473378E-03 -1.2928837E-03 -1.2407588E-03
 -1.1908615E-03 -1.1431071E-03 -1.0974085E-03 -1.0536747E-03 -1.0118289E-03
 -9.7178761E-04
 2.9422896E-02 2.8120721E-02 2.6847348E-02 2.5606479E-02 2.4400780E-02
 2.3232117E-02 2.2101734E-02 2.1010403E-02 1.9958505E-02 1.8946160E-02
 1.7973240E-02 1.7039463E-02 1.6144374E-02 1.5287421E-02 1.4467956E-02
 1.3685239E-02 1.2938468E-02 1.2226786E-02 1.1549274E-02 1.0904983E-02
 1.0292910E-02 9.7120339E-03 9.1613065E-03 8.6396579E-03 8.1460010E-03
 7.6792436E-03 7.2382875E-03 6.8220287E-03 6.4293770E-03 6.0592489E-03
 5.7105660E-03 5.3822715E-03 5.0733350E-03 4.7827396E-03 4.5094937E-03
 4.2526480E-03 4.0112711E-03 3.7844677E-03 3.5713804E-03 3.3711910E-03
 3.1831071E-03 3.0063933E-03 2.8403385E-03 2.6842796E-03 2.5375905E-03
 2.3996790E-03 2.2699998E-03 2.1480371E-03 2.0333042E-03 1.9253579E-03
 1.8237730E-03 1.7281591E-03 1.6381491E-03 1.5533970E-03 1.4735776E-03
 1.3983910E-03 1.3275485E-03 1.2607808E-03 1.1978372E-03 1.1384751E-03
 1.0824760E-03 1.0296255E-03 9.7972446E-04 9.3259057E-04 8.8804826E-04
 8.4593508E-04 8.0609956E-04 7.6839561E-04 7.3269621E-04 6.9887348E-04
 6.6681142E-04
 -3.4940050E-03 -4.1459296E-03 -4.7052293E-03 -5.1812148E-03 -5.5823727E-03
 -5.9164166E-03 -6.1903154E-03 -6.4103724E-03 -6.5822802E-03 -6.7111719E-03
 -6.8017012E-03 -6.8580694E-03 -6.8840748E-03 -6.8831719E-03 -6.8584904E-03
 -6.8128756E-03 -6.7488966E-03 -6.6688978E-03 -6.5749981E-03 -6.4691198E-03
 -6.3530067E-03 -6.2282318E-03 -6.0962206E-03 -5.9582507E-03 -5.8154818E-03
 -5.6689526E-03 -5.5195927E-03 -5.3682313E-03 -5.2156243E-03 -5.0624250E-03
 -4.9092262E-03 -4.7565578E-03 -4.6048728E-03 -4.4545913E-03 -4.3060700E-03
 -4.1596242E-03 -4.0155333E-03 -3.8740409E-03 -3.7353612E-03 -3.5996716E-03
 -3.4671333E-03 -3.3378766E-03 -3.2120149E-03 -3.0896366E-03 -2.9708154E-03
 -2.8556001E-03 -2.7440253E-03 -2.6361048E-03 -2.5318416E-03 -2.4312164E-03
 -2.3341973E-03 -2.2407444E-03 -2.1507950E-03 -2.0642846E-03 -1.9811392E-03
 -1.9012762E-03 -1.8246026E-03 -1.7510259E-03 -1.6804502E-03 -1.6127754E-03
 -1.5479008E-03 -1.4857289E-03 -1.4261603E-03 -1.3690956E-03 -1.3144395E-03
 -1.2620956E-03 -1.2119707E-03 -1.1639775E-03 -1.1180257E-03 -1.0740315E-03
 -1.0319084E-03
 3.0746957E-02 2.9372184E-02 2.8030278E-02 2.6724858E-02 2.5458457E-02
 2.4232782E-02 2.3048883E-02 2.1907341E-02 2.0808363E-02 1.9751880E-02
 1.8737590E-02 1.7765025E-02 1.6833585E-02 1.5942566E-02 1.5091162E-02
 1.4278509E-02 1.3503660E-02 1.2765641E-02 1.2063408E-02 1.1395893E-02
 1.0761994E-02 1.0160582E-02 9.5905093E-03 9.0506114E-03 8.5397111E-03
 8.0566369E-03 7.6002120E-03 7.1692592E-03 6.7626215E-03 6.3791536E-03
 6.0177217E-03 5.6772232E-03 5.3565670E-03 5.0547090E-03 4.7706198E-03
 4.5033139E-03 4.2518340E-03 4.0152674E-03 3.7927406E-03 3.5834161E-03
 3.3865087E-03 3.2012605E-03 3.0269672E-03 2.8629617E-03 2.7086227E-03
 2.5633541E-03 2.4266106E-03 2.2978748E-03 2.1766589E-03 2.0625112E-03
 1.9550042E-03 1.8537412E-03 1.7583359E-03 1.6684383E-03 1.5837169E-03
 1.5038521E-03 1.4285437E-03 1.3575138E-03 1.2904985E-03 1.2272523E-03
 1.1675317E-03 1.1111228E-03 1.0578200E-03 1.0074271E-03 9.5976540E-04
 9.1466669E-04 8.7197003E-04 8.3152682E-04 7.9320028E-04 7.5686391E-04
 7.2239619E-04
 -3.9821309E-03 -4.6303142E-03 -5.1842332E-03 -5.6536510E-03 -6.0474258E-03
 -6.3735563E-03 -6.6392357E-03 -6.8509174E-03 -7.0144092E-03 -7.1349163E-03
 -7.2171413E-03 -7.2652968E-03 -7.2832047E-03 -7.2743087E-03 -7.2417292E-03
 -7.1882783E-03 -7.1165254E-03 -7.0287785E-03 -6.9271415E-03 -6.8135201E-03
 -6.6896449E-03 -6.5570693E-03 -6.4172153E-03 -6.2713581E-03 -6.1206543E-03
 -5.9661446E-03 -5.8087711E-03 -5.6493725E-03 -5.4887100E-03 -5.3274608E-03
 -5.1662344E-03 -5.0055725E-03 -4.8459587E-03 -4.6878271E-03 -4.5315563E-03
 -4.3774866E-03 -4.2259218E-03 -4.0771198E-03 -3.9313170E-03 -3.7887103E-03
 -3.6494692E-03 -3.5137390E-03 -3.3816420E-03 -3.2532662E-03 -3.1286916E-03
 -3.0079584E-03 -2.8910968E-03 -2.7781134E-03 -2.6689966E-03 -2.5637208E-03
 -2.4622397E-03 -2.3644969E-03 -2.2704240E-03 -2.1799433E-03 -2.0929689E-03
 -2.0094053E-03 -1.9291565E-03 -1.8521255E-03 -1.7782056E-03 -1.7072955E-03
 -1.6392890E-03 -1.5740831E-03 -1.5115773E-03 -1.4516704E-03 -1.3942607E-03
 -1.3392541E-03 -1.2865531E-03 -1.2360638E-03 -1.1876967E-03 -1.1413638E-03
 -1.0969824E-03
 3.2215979E-02 3.0759329E-02 2.9340412E-02 2.7962718E-02 2.6628591E-02
 2.5339505E-02 2.4096282E-02 2.2899244E-02 2.1748360E-02 2.0643327E-02
 1.9583609E-02 1.8568534E-02 1.7597307E-02 1.6669020E-02 1.5782699E-02
 1.4937306E-02 1.4131745E-02 1.3364879E-02 1.2635533E-02 1.1942503E-02
 1.1284565E-02 1.0660470E-02 1.0068964E-02 9.5087774E-03 8.9786490E-03
 8.4773116E-03 8.0035087E-03 7.5559923E-03 7.1335365E-03 6.7349356E-03
 6.3590007E-03 6.0045784E-03 5.6705391E-03 5.3557931E-03 5.0592883E-03
 4.7800047E-03 4.5169732E-03 4.2692558E-03 4.0359711E-03 3.8162752E-03
 3.6093688E-03 3.4145019E-03 3.2309636E-03 3.0580780E-03 2.8952251E-03
 2.7418060E-03 2.5972680E-03 2.4610844E-03 2.3327612E-03 2.2118352E-03
 2.0978646E-03 1.9904368E-03 1.8891612E-03 1.7936642E-03 1.7036010E-03
 1.6186377E-03 1.5384639E-03 1.4627882E-03 1.3913314E-03 1.3238346E-03
 1.2600563E-03 1.1997622E-03 1.1427450E-03 1.0887941E-03 1.0377258E-03
 9.8936656E-04 9.4354776E-04 9.0011704E-04 8.5892942E-04 8.1985368E-04
 7.8275899E-04
 -4.5189136E-03 -5.1647727E-03 -5.7141702E-03 -6.1774477E-03 -6.5639275E-03
 -6.8819607E-03 -7.1390071E-03 -7.3417206E-03 -7.4960464E-03 -7.6073068E-03
 -7.6802345E-03 -7.7191102E-03 -7.7277645E-03 -7.7096471E-03 -7.6678703E-03
 -7.6052491E-03 -7.5243278E-03 -7.4274112E-03 -7.3165908E-03 -7.1937633E-03
 -7.0606465E-03 -6.9188033E-03 -6.7696488E-03 -6.6144685E-03 -6.4544212E-03
 -6.2905638E-03 -6.1238450E-03 -5.9551299E-03 -5.7851896E-03 -5.6147254E-03
 -5.4443688E-03 -5.2746781E-03 -5.1061702E-03 -4.9392935E-03 -4.7744545E-03
 -4.6120151E-03 -4.4522942E-03 -4.2955722E-03 -4.1420939E-03 -3.9920751E-03
 -3.8456910E-03 -3.7030887E-03 -3.5643906E-03 -3.4296808E-03 -3.2990305E-03
 -3.1724714E-03 -3.0500225E-03 -2.9316794E-03 -2.8174110E-03 -2.7071820E-03
 -2.6009306E-03 -2.4985904E-03 -2.4000853E-03 -2.3053165E-03 -2.2142006E-03
 -2.1266283E-03 -2.0425031E-03 -1.9617153E-03 -1.8841586E-03 -1.8097304E-03
 -1.7383160E-03 -1.6698110E-03 -1.6041117E-03 -1.5411130E-03 -1.4807114E-03
 -1.4228071E-03 -1.3673013E-03 -1.3140994E-03 -1.2631081E-03 -1.2142343E-03
 -1.1673922E-03
 3.3849239E-02 3.2300092E-02 3.0794483E-02 2.9335715E-02 2.7925879E-02
 2.6566138E-02 2.5257001E-02 2.3998477E-02 2.2790223E-02 2.1631619E-02
 2.0521868E-02 1.9460030E-02 1.8445063E-02 1.7475827E-02 1.6551133E-02
 1.5669737E-02 1.4830356E-02 1.4031690E-02 1.3272397E-02 1.2551120E-02
 1.1866502E-02 1.1217169E-02 1.0601742E-02 1.0018853E-02 9.4671380E-03
 8.9452388E-03 8.4518204E-03 7.9855612E-03 7.5451625E-03 7.1293619E-03
 6.7369193E-03 6.3666333E-03 6.0173385E-03 5.6879073E-03 5.3772610E-03
 5.0843619E-03 4.8082182E-03 4.5478838E-03 4.3024654E-03 4.0711109E-03
 3.8530151E-03 3.6474236E-03 3.4536112E-03 3.2709057E-03 3.0986683E-03
 2.9362950E-03 2.7832114E-03 2.6388867E-03 2.5028051E-03 2.3744833E-03
 2.2534716E-03 2.1393299E-03 2.0316527E-03 1.9300532E-03 1.8341622E-03
 1.7436366E-03 1.6581522E-03 1.5773996E-03 1.5010915E-03 1.4289566E-03
 1.3607390E-03 1.2962031E-03 1.2351210E-03 1.1772873E-03 1.1225018E-03
 1.0705852E-03 1.0213596E-03 9.7466912E-04 9.3036046E-04 8.8829687E-04
 8.4834360E-04
 -5.1115295E-03 -5.7565691E-03 -6.3022641E-03 -6.7596864E-03 -7.1387314E-03
 -7.4481918E-03 -7.6958691E-03 -7.8886673E-03 -8.0327280E-03 -8.1334701E-03
 -8.1957495E-03 -8.2238885E-03 -8.2217529E-03 -8.1928195E-03 -8.1402063E-03
 -8.0667362E-03 -7.9749487E-03 -7.8671528E-03 -7.7454387E-03 -7.6117055E-03
 -7.4676746E-03 -7.3149172E-03 -7.1548563E-03 -6.9887894E-03 -6.8178922E-03
 -6.6432394E-03 -6.4657973E-03 -6.2864479E-03 -6.1059929E-03 -5.9251501E-03
 -5.7445746E-03 -5.5648582E-03 -5.3865286E-03 -5.2100648E-03 -5.0358893E-03
 -4.8643840E-03 -4.6958849E-03 -4.5306804E-03 -4.3690242E-03 -4.2111315E-03
 -4.0571783E-03 -3.9073071E-03 -3.7616312E-03 -3.6202257E-03 -3.4831448E-03
 -3.3504078E-03 -3.2220189E-03 -3.0979563E-03 -2.9781782E-03 -2.8626327E-03
 -2.7512512E-03 -2.6439484E-03 -2.5406412E-03 -2.4412316E-03 -2.3456169E-03
 -2.2536924E-03 -2.1653487E-03 -2.0804817E-03 -1.9989721E-03 -1.9207115E-03
 -1.8455934E-03 -1.7735012E-03 -1.7043275E-03 -1.6379650E-03 -1.5743106E-03
 -1.5132574E-03 -1.4547040E-03 -1.3985509E-03 -1.3447040E-03 -1.2930704E-03
 -1.2435518E-03
 3.5669882E-02 3.4015898E-02 3.2412384E-02 3.0862384E-02 2.9367629E-02
 2.7928896E-02 2.6546275E-02 2.5219362E-02 2.3947431E-02 2.2729483E-02
 2.1564370E-02 2.0450830E-02 1.9387512E-02 1.8373011E-02 1.7405868E-02
 1.6484614E-02 1.5607749E-02 1.4773771E-02 1.3981161E-02 1.3228396E-02
 1.2513969E-02 1.1836371E-02 1.1194097E-02 1.0585668E-02 1.0009612E-02
 9.4644856E-03 8.9488672E-03 8.4613580E-03 8.0006011E-03 7.5652716E-03
 7.1540819E-03 6.7657824E-03 6.3991765E-03 6.0531097E-03 5.7264785E-03
 5.4182182E-03 5.1273312E-03 4.8528556E-03 4.5938850E-03 4.3495568E-03
 4.1190581E-03 3.9016129E-03 3.6964912E-03 3.5029980E-03 3.3204772E-03
 3.1483090E-03 2.9859000E-03 2.8326891E-03 2.6881448E-03 2.5517642E-03
 2.4230676E-03 2.3016054E-03 2.1869396E-03 2.0786733E-03 1.9764183E-03
 1.8798169E-03 1.7885240E-03 1.7022211E-03 1.6206093E-03 1.5434037E-03
 1.4703370E-03 1.4011622E-03 1.3356452E-03 1.2735670E-03 1.2147248E-03
 1.1589192E-03 1.1059800E-03 1.0557317E-03 1.0080222E-03 9.6269860E-04
 9.1962615E-04
 -5.7682083E-03 -6.4139939E-03 -6.9566858E-03 -7.4082883E-03 -7.7794222E-03
 -8.0794422E-03 -8.3165774E-03 -8.4980577E-03 -8.6302562E-03 -8.7187672E-03
 -8.7685622E-03 -8.7840548E-03 -8.7691704E-03 -8.7274183E-03 -8.6619528E-03
 -8.5756108E-03 -8.4709469E-03 -8.3502857E-03 -8.2157254E-03 -8.0691781E-03
 -7.9123806E-03 -7.7469125E-03 -7.5742230E-03 -7.3956200E-03 -7.2123026E-03
 -7.0253615E-03 -6.8357913E-03 -6.6444967E-03 -6.4522987E-03 -6.2599457E-03
 -6.0681119E-03 -5.8774115E-03 -5.6883930E-03 -5.5015548E-03 -5.3173341E-03
 -5.1361211E-03 -4.9582571E-03 -4.7840350E-03 -4.6137054E-03 -4.4474765E-03
 -4.2855139E-03 -4.1279471E-03 -3.9748773E-03 -3.8263581E-03 -3.6824285E-03
 -3.5430975E-03 -3.4083447E-03 -3.2781395E-03 -3.1524254E-03 -3.0311407E-03
 -2.9142015E-03 -2.8015207E-03 -2.6930051E-03 -2.5885485E-03 -2.4880485E-03
 -2.3913898E-03 -2.2984643E-03 -2.2091526E-03 -2.1233440E-03 -2.0409229E-03
 -1.9617712E-03 -1.8857772E-03 -1.8128286E-03 -1.7428141E-03 -1.6756220E-03
 -1.6111427E-03 -1.5492777E-03 -1.4899190E-03 -1.4329682E-03 -1.3783306E-03
 -1.3259096E-03
 3.7705842E-02 3.5932474E-02 3.4217861E-02 3.2564696E-02 3.0974239E-02
 2.9446742E-02 2.7981771E-02 2.6578417E-02 2.5235411E-02 2.3951335E-02
 2.2724591E-02 2.1553522E-02 2.0436419E-02 1.9371534E-02 1.8357124E-02
 1.7391440E-02 1.6472735E-02 1.5599288E-02 1.4769377E-02 1.3981307E-02
 1.3233394E-02 1.2523992E-02 1.1851465E-02 1.1214209E-02 1.0610647E-02
 1.0039247E-02 9.4984937E-03 8.9869183E-03 8.5031064E-03 8.0456650E-03
 7.6132701E-03 7.2046285E-03 6.8185106E-03 6.4537325E-03 6.1091678E-03
 5.7837376E-03 5.4764189E-03 5.1862327E-03 4.9122563E-03 4.6536075E-03
 4.4094534E-03 4.1789929E-03 3.9614784E-03 3.7561825E-03 3.5624302E-03
 3.3795680E-03 3.2069769E-03 3.0440744E-03 2.8902940E-03 2.7451145E-03
 2.6080259E-03 2.4785567E-03 2.3562568E-03 2.2406990E-03 2.1314840E-03
 2.0282327E-03 1.9305883E-03 1.8382180E-03 1.7508032E-03 1.6680509E-03
 1.5896847E-03 1.5154409E-03 1.4450771E-03 1.3783636E-03 1.3150836E-03
 1.2550417E-03 1.1980429E-03 1.1439150E-03 1.0924899E-03 1.0436137E-03
 9.9714298E-04
 -6.4982148E-03 -7.1463459E-03 -7.6865600E-03 -8.1320331E-03 -8.4943296E-03
 -8.7835211E-03 -9.0083871E-03 -9.1765784E-03 -9.2947455E-03 -9.3687372E-03
 -9.4036832E-03 -9.4041154E-03 -9.3740476E-03 -9.3170507E-03 -9.2363274E-03
 -9.1347462E-03 -9.0148970E-03 -8.8791242E-03 -8.7295482E-03 -8.5680997E-03
 -8.3965352E-03 -8.2164556E-03 -8.0293259E-03 -7.8364806E-03 -7.6391385E-03
 -7.4384110E-03 -7.2353194E-03 -7.0307869E-03 -6.8256613E-03 -6.6207098E-03
 -6.4166277E-03 -6.2140459E-03 -6.0135252E-03 -5.8155721E-03 -5.6206286E-03
 -5.4290895E-03 -5.2412851E-03 -5.0575025E-03 -4.8779808E-03 -4.7029122E-03
 -4.5324443E-03 -4.3666963E-03 -4.2057359E-03 -4.0496108E-03 -3.8983391E-03
 -3.7519115E-03 -3.6103008E-03 -3.4734563E-03 -3.3413160E-03 -3.2138031E-03
 -3.0908342E-03 -2.9723088E-03 -2.8581279E-03 -2.7481893E-03 -2.6423712E-03
 -2.5405672E-03 -2.4426547E-03 -2.3485159E-03 -2.2580344E-03 -2.1710871E-03
 -2.0875565E-03 -2.0073242E-03 -1.9302722E-03 -1.8562819E-03 -1.7852451E-03
 -1.7170468E-03 -1.6515796E-03 -1.5887368E-03 -1.5284157E-03 -1.4705147E-03
 -1.4149363E-03
 3.9991047E-02 3.8080815E-02 3.6239296E-02 3.4468696E-02 3.2769661E-02
 3.1141777E-02 2.9583910E-02 2.8094498E-02 2.6671655E-02 2.5313376E-02
 2.4017544E-02 2.2782013E-02 2.1604644E-02 2.0483306E-02 1.9415898E-02
 1.8400365E-02 1.7434681E-02 1.6516872E-02 1.5644995E-02 1.4817152E-02
 1.4031497E-02 1.3286204E-02 1.2579512E-02 1.1909679E-02 1.1275034E-02
 1.0673926E-02 1.0104769E-02 9.5660146E-03 9.0561863E-03 8.5738357E-03
 8.1175920E-03 7.6861256E-03 7.2781653E-03 6.8925056E-03 6.5279873E-03
 6.1835023E-03 5.8580064E-03 5.5504888E-03 5.2599995E-03 4.9856319E-03
 4.7265114E-03 4.4818134E-03 4.2507472E-03 4.0325625E-03 3.8265404E-03
 3.6319990E-03 3.4482898E-03 3.2747898E-03 3.1109175E-03 2.9561108E-03
 2.8098433E-03 2.6716169E-03 2.5409572E-03 2.4174189E-03 2.3005847E-03
 2.1900567E-03 2.0854606E-03 1.9864475E-03 1.8926867E-03 1.8038696E-03
 1.7197042E-03 1.6399191E-03 1.5642585E-03 1.4924769E-03 1.4243555E-03
 1.3596781E-03 1.2982504E-03 1.2398827E-03 1.1844037E-03 1.1316505E-03
 1.0814678E-03
 -7.3117786E-03 -7.9639498E-03 -8.5019702E-03 -8.9405803E-03 -9.2925467E-03
 -9.5688831E-03 -9.7790742E-03 -9.9313045E-03 -1.0032627E-02 -1.0089180E-02
 -1.0106319E-02 -1.0088733E-02 -1.0040558E-02 -9.9654524E-03 -9.8666819E-03
 -9.7471718E-03 -9.6095484E-03 -9.4561847E-03 -9.2892339E-03 -9.1106463E-03
 -8.9222034E-03 -8.7255258E-03 -8.5220942E-03 -8.3132721E-03 -8.1002945E-03
 -7.8842947E-03 -7.6663136E-03 -7.4472972E-03 -7.2281030E-03 -7.0095141E-03
 -6.7922422E-03 -6.5769185E-03 -6.3641118E-03 -6.1543179E-03 -5.9479782E-03
 -5.7454696E-03 -5.5471128E-03 -5.3531756E-03 -5.1638759E-03 -4.9793869E-03
 -4.7998368E-03 -4.6253162E-03 -4.4558872E-03 -4.2915703E-03 -4.1323737E-03
 -3.9782743E-03 -3.8292294E-03 -3.6851806E-03 -3.5460594E-03 -3.4117824E-03
 -3.2822541E-03 -3.1573768E-03 -3.0370401E-03 -2.9211312E-03 -2.8095380E-03
 -2.7021361E-03 -2.5988028E-03 -2.4994202E-03 -2.4038567E-03 -2.3119929E-03
 -2.2236994E-03 -2.1388594E-03 -2.0573447E-03 -1.9790386E-03 -1.9038245E-03
 -1.8315848E-03 -1.7622050E-03 -1.6955781E-03 -1.6315924E-03 -1.5701504E-03
 -1.5111458E-03
 4.2566936E-02 4.0498454E-02 3.8510721E-02 3.6605313E-02 3.4782074E-02
 3.3039697E-02 3.1376205E-02 2.9789148E-02 2.8275900E-02 2.6833724E-02
 2.5459854E-02 2.4151575E-02 2.2906223E-02 2.1721207E-02 2.0594021E-02
 1.9522255E-02 1.8503562E-02 1.7535679E-02 1.6616425E-02 1.5743669E-02
 1.4915375E-02 1.4129542E-02 1.3384250E-02 1.2677637E-02 1.2007899E-02
 1.1373293E-02 1.0772139E-02 1.0202821E-02 9.6637830E-03 9.1535309E-03
 8.6706365E-03 8.2137259E-03 7.7814907E-03 7.3726838E-03 6.9861049E-03
 6.6206115E-03 6.2751155E-03 5.9485706E-03 5.6399824E-03 5.3483970E-03
 5.0729048E-03 4.8126401E-03 4.5667635E-03 4.3344838E-03 4.1150497E-03
 3.9077355E-03 3.7118585E-03 3.5267682E-03 3.3518390E-03 3.1864922E-03
 3.0301700E-03 2.8823493E-03 2.7425343E-03 2.6102564E-03 2.4850764E-03
 2.3665780E-03 2.2543713E-03 2.1480857E-03 2.0473793E-03 1.9519258E-03
 1.8614201E-03 1.7755709E-03 1.6941152E-03 1.6167975E-03 1.5433799E-03
 1.4736409E-03 1.4073718E-03 1.3443751E-03 1.2844678E-03 1.2274773E-03
 1.1732457E-03
 -8.2199620E-03 -8.8780718E-03 -9.4139930E-03 -9.8445201E-03 -1.0184024E-02
 -1.0444736E-02 -1.0637081E-02 -1.0769909E-02 -1.0850815E-02 -1.0886322E-02
 -1.0882064E-02 -1.0842934E-02 -1.0773228E-02 -1.0676711E-02 -1.0556740E-02
 -1.0416291E-02 -1.0258046E-02 -1.0084407E-02 -9.8975534E-03 -9.6994620E-03
 -9.4919326E-03 -9.2766099E-03 -9.0549868E-03 -8.8284416E-03 -8.5982271E-03
 -8.3654923E-03 -8.1312871E-03 -7.8965686E-03 -7.6622032E-03 -7.4289688E-03
 -7.1975784E-03 -6.9686561E-03 -6.7427536E-03 -6.5203616E-03 -6.3018920E-03
 -6.0877069E-03 -5.8780992E-03 -5.6733135E-03 -5.4735467E-03 -5.2789501E-03
 -5.0896271E-03 -4.9056504E-03 -4.7270656E-03 -4.5538824E-03 -4.3860925E-03
 -4.2236606E-03 -4.0665395E-03 -3.9146617E-03 -3.7679477E-03 -3.6263100E-03
 -3.4896506E-03 -3.3578621E-03 -3.2308304E-03 -3.1084397E-03 -2.9905653E-03
 -2.8770780E-03 -2.7678574E-03 -2.6627700E-03 -2.5616870E-03 -2.4644779E-03
 -2.3710122E-03 -2.2811634E-03 -2.1948044E-03 -2.1118098E-03 -2.0320548E-03
 -1.9554240E-03 -1.8817958E-03 -1.8110586E-03 -1.7430986E-03 -1.6778109E-03
 -1.6150872E-03
 4.5484468E-02 4.3231059E-02 4.1073088E-02 3.9011329E-02 3.7044581E-02
 3.5170395E-02 3.3385657E-02 3.1686850E-02 3.0070366E-02 2.8532574E-02
 2.7069911E-02 2.5678955E-02 2.4356429E-02 2.3099186E-02 2.1904249E-02
 2.0768777E-02 1.9690057E-02 1.8665511E-02 1.7692652E-02 1.6769115E-02
 1.5892632E-02 1.5061020E-02 1.4272188E-02 1.3524123E-02 1.2814896E-02
 1.2142655E-02 1.1505623E-02 1.0902098E-02 1.0330453E-02 9.7891288E-03
 9.2766294E-03 8.7915352E-03 8.3324704E-03 7.8981388E-03 7.4872859E-03
 7.0987148E-03 6.7312815E-03 6.3838847E-03 6.0554789E-03 5.7450579E-03
 5.4516545E-03 5.1743505E-03 4.9122632E-03 4.6645598E-03 4.4304351E-03
 4.2091296E-03 3.9999206E-03 3.8021209E-03 3.6150746E-03 3.4381719E-03
 3.2708286E-03 3.1124896E-03 2.9626365E-03 2.8207812E-03 2.6864538E-03
 2.5592234E-03 2.4386765E-03 2.3244326E-03 2.2161182E-03 2.1133996E-03
 2.0159497E-03 1.9234692E-03 1.8356767E-03 1.7523005E-03 1.6730912E-03
 1.5978143E-03 1.5262548E-03 1.4581971E-03 1.3934500E-03 1.3318337E-03
 1.2731759E-03
 -9.2342952E-03 -9.9008419E-03 -1.0434722E-02 -1.0855512E-02 -1.1179731E-02
 -1.1421253E-02 -1.1591713E-02 -1.1700874E-02 -1.1757008E-02 -1.1767119E-02
 -1.1737202E-02 -1.1672423E-02 -1.1577247E-02 -1.1455582E-02 -1.1310875E-02
 -1.1146175E-02 -1.0964201E-02 -1.0767396E-02 -1.0557959E-02 -1.0337884E-02
 -1.0108984E-02 -9.8729115E-03 -9.6311728E-03 -9.3851490E-03 -9.1360984E-03
 -8.8851731E-03 -8.6334171E-03 -8.3817793E-03 -8.1311259E-03 -7.8822160E-03
 -7.6357336E-03 -7.3922914E-03 -7.1524177E-03 -6.9165658E-03 -6.6851312E-03
 -6.4584343E-03 -6.2367520E-03 -6.0203010E-03 -5.8092508E-03 -5.6037307E-03
 -5.4038279E-03 -5.2096029E-03 -5.0210804E-03 -4.8382613E-03 -4.6611261E-03
 -4.4896328E-03 -4.3237237E-03 -4.1633272E-03 -4.0083532E-03 -3.8587148E-03
 -3.7142977E-03 -3.5749965E-03 -3.4406877E-03 -3.3112464E-03 -3.1865430E-03
 -3.0664490E-03 -2.9508257E-03 -2.8395434E-03 -2.7324609E-03 -2.6294449E-03
 -2.5303604E-03 -2.4350712E-03 -2.3434462E-03 -2.2553590E-03 -2.1706766E-03
 -2.0892774E-03 -2.0110393E-03 -1.9358395E-03 -1.8635659E-03 -1.7941045E-03
 -1.7273487E-03
 4.8806913E-02 4.6334676E-02 4.3976050E-02 4.1730795E-02 3.9596345E-02
 3.7568767E-02 3.5643473E-02 3.3815570E-02 3.2080181E-02 3.0432563E-02
 2.8868156E-02 2.7382666E-02 2.5972052E-02 2.4632510E-02 2.3360485E-02
 2.2152629E-02 2.1005791E-02 1.9917006E-02 1.8883472E-02 1.7902521E-02
 1.6971633E-02 1.6088415E-02 1.5250574E-02 1.4455943E-02 1.3702442E-02
 1.2988101E-02 1.2311029E-02 1.1669421E-02 1.1061565E-02 1.0485808E-02
 9.9405926E-03 9.4244042E-03 8.9358017E-03 8.4734131E-03 8.0359131E-03
 7.6220324E-03 7.2305584E-03 6.8603191E-03 6.5102065E-03 6.1791465E-03
 5.8661196E-03 5.5701439E-03 5.2902880E-03 5.0256643E-03 4.7754273E-03
 4.5387722E-03 4.3149330E-03 4.1031875E-03 3.9028472E-03 3.7132662E-03
 3.5338274E-03 3.3639513E-03 3.2030884E-03 3.0507266E-03 2.9063770E-03
 2.7695750E-03 2.6398895E-03 2.5169209E-03 2.4002742E-03 2.2895969E-03
 2.1845438E-03 2.0848028E-03 1.9900668E-03 1.9000580E-03 1.8145115E-03
 1.7331801E-03 1.6558277E-03 1.5822367E-03 1.5122005E-03 1.4455263E-03
 1.3820318E-03
 -1.0366194E-02 -1.1045037E-02 -1.1577328E-02 -1.1986506E-02 -1.2292035E-02
 -1.2509996E-02 -1.2653677E-02 -1.2734011E-02 -1.2760153E-02 -1.2739737E-02
 -1.2679203E-02 -1.2584025E-02 -1.2458900E-02 -1.2307882E-02 -1.2134516E-02
 -1.1941915E-02 -1.1732841E-02 -1.1509760E-02 -1.1274881E-02 -1.1030207E-02
 -1.0777551E-02 -1.0518553E-02 -1.0254721E-02 -9.9874195E-03 -9.7178929E-03
 -9.4472775E-03 -9.1765895E-03 -8.9067612E-03 -8.6386167E-03 -8.3728926E-03
 -8.1102420E-03 -7.8512300E-03 -7.5963559E-03 -7.3460406E-03 -7.1006394E-03
 -6.8604499E-03 -6.6257175E-03 -6.3966294E-03 -6.1733411E-03 -5.9559583E-03
 -5.7445555E-03 -5.5391765E-03 -5.3398386E-03 -5.1465272E-03 -4.9592154E-03
 -4.7778594E-03 -4.6023875E-03 -4.4327215E-03 -4.2687650E-03 -4.1104206E-03
 -3.9575743E-03 -3.8101028E-03 -3.6678812E-03 -3.5307789E-03 -3.3986575E-03
 -3.2713783E-03 -3.1488014E-03 -3.0307865E-03 -2.9171861E-03 -2.8078631E-03
 -2.7026711E-03 -2.6014762E-03 -2.5041376E-03 -2.4105210E-03 -2.3204882E-03
 -2.2339153E-03 -2.1506720E-03 -2.0706337E-03 -1.9936806E-03 -1.9196961E-03
 -1.8485656E-03
 5.2613705E-02 4.9878906E-02 4.7280472E-02 4.4816978E-02 4.2484097E-02
 4.0275943E-02 3.8185980E-02 3.6207508E-02 3.4334019E-02 3.2559302E-02
 3.0877553E-02 2.9283367E-02 2.7771752E-02 2.6338089E-02 2.4978094E-02
 2.3687821E-02 2.2463588E-02 2.1301970E-02 2.0199765E-02 1.9153967E-02
 1.8161770E-02 1.7220508E-02 1.6327683E-02 1.5480925E-02 1.4677987E-02
 1.3916748E-02 1.3195178E-02 1.2511354E-02 1.1863440E-02 1.1249684E-02
 1.0668406E-02 1.0118005E-02 9.5969439E-03 9.1037471E-03 8.6370036E-03
 8.1953611E-03 7.7775149E-03 7.3822220E-03 7.0082946E-03 6.6545899E-03
 6.3200220E-03 6.0035475E-03 5.7041822E-03 5.4209772E-03 5.1530413E-03
 4.8995288E-03 4.6596201E-03 4.4325604E-03 4.2176200E-03 4.0141167E-03
 3.8214026E-03 3.6388652E-03 3.4659223E-03 3.3020324E-03 3.1466810E-03
 2.9993793E-03 2.8596774E-03 2.7271365E-03 2.6013560E-03 2.4819535E-03
 2.3685712E-03 2.2608701E-03 2.1585312E-03 2.0612616E-03 1.9687763E-03
 1.8808118E-03 1.7971242E-03 1.7174785E-03 1.6416520E-03 1.5694449E-03
 1.5006621E-03
 -1.1625635E-02 -1.2323593E-02 -1.2856101E-02 -1.3252096E-02 -1.3535199E-02
 -1.3724552E-02 -1.3835678E-02 -1.3881104E-02 -1.3871129E-02 -1.3814193E-02
 -1.3717292E-02 -1.3586278E-02 -1.3426103E-02 -1.3240987E-02 -1.3034574E-02
 -1.2810037E-02 -1.2570163E-02 -1.2317427E-02 -1.2054030E-02 -1.1781960E-02
 -1.1503000E-02 -1.1218772E-02 -1.0930742E-02 -1.0640242E-02 -1.0348477E-02
 -1.0056538E-02 -9.7654015E-03 -9.4759418E-03 -9.1889407E-03 -8.9050885E-03
 -8.6249877E-03 -8.3491625E-03 -8.0780638E-03 -7.8120804E-03 -7.5515280E-03
 -7.2966814E-03 -7.0477528E-03 -6.8049096E-03 -6.5682884E-03 -6.3379770E-03
 -6.1140391E-03 -5.8965017E-03 -5.6853755E-03 -5.4806322E-03 -5.2822428E-03
 -5.0901435E-03 -4.9042637E-03 -4.7245100E-03 -4.5507834E-03 -4.3829707E-03
 -4.2209532E-03 -4.0646046E-03 -3.9137802E-03 -3.7683488E-03 -3.6281643E-03
 -3.4930811E-03 -3.3629478E-03 -3.2376188E-03 -3.1169413E-03 -3.0007667E-03
 -2.8889501E-03 -2.7813432E-03 -2.6778004E-03 -2.5781805E-03 -2.4823472E-03
 -2.3901626E-03 -2.3014918E-03 -2.2162073E-03 -2.1341802E-03 -2.0552946E-03
 -1.9794204E-03
 5.7006013E-02 5.3951554E-02 5.1062204E-02 4.8335381E-02 4.5764528E-02
 4.3341167E-02 4.1056149E-02 3.8900353E-02 3.6865082E-02 3.4942228E-02
 3.3124316E-02 3.1404521E-02 2.9776631E-02 2.8234974E-02 2.6774388E-02
 2.5390148E-02 2.4077926E-02 2.2833735E-02 2.1653892E-02 2.0534979E-02
 1.9473825E-02 1.8467469E-02 1.7513134E-02 1.6608223E-02 1.5750268E-02
 1.4936963E-02 1.4166106E-02 1.3435606E-02 1.2743486E-02 1.2087845E-02
 1.1466880E-02 1.0878853E-02 1.0322111E-02 9.7950697E-03 9.2962049E-03
 8.8240607E-03 8.3772447E-03 7.9544215E-03 7.5543211E-03 7.1757264E-03
 6.8174759E-03 6.4784666E-03 6.1576436E-03 5.8540110E-03 5.5666184E-03
 5.2945679E-03 5.0370004E-03 4.7931056E-03 4.5621227E-03 4.3433257E-03
 4.1360264E-03 3.9395783E-03 3.7533708E-03 3.5768233E-03 3.4093976E-03
 3.2505752E-03 3.0998713E-03 2.9568363E-03 2.8210327E-03 2.6920622E-03
 2.5695404E-03 2.4531158E-03 2.3424444E-03 2.2372170E-03 2.1371259E-03
 2.0419017E-03 1.9512719E-03 1.8649937E-03 1.7828335E-03 1.7045719E-03
 1.6299997E-03
 -1.3018396E-02 -1.3748348E-02 -1.4286153E-02 -1.4668826E-02 -1.4926035E-02
 -1.5081323E-02 -1.5153342E-02 -1.5156828E-02 -1.5103613E-02 -1.5003183E-02
 -1.4863240E-02 -1.4690106E-02 -1.4489027E-02 -1.4264404E-02 -1.4019978E-02
 -1.3758964E-02 -1.3484159E-02 -1.3198012E-02 -1.2902692E-02 -1.2600132E-02
 -1.2292064E-02 -1.1980046E-02 -1.1665475E-02 -1.1349620E-02 -1.1033609E-02
 -1.0718465E-02 -1.0405094E-02 -1.0094306E-02 -9.7868172E-03 -9.4832545E-03
 -9.1841687E-03 -8.8900309E-03 -8.6012492E-03 -8.3181690E-03 -8.0410820E-03
 -7.7702235E-03 -7.5057829E-03 -7.2479122E-03 -6.9967215E-03 -6.7522936E-03
 -6.5146685E-03 -6.2838672E-03 -6.0598822E-03 -5.8426829E-03 -5.6322184E-03
 -5.4284250E-03 -5.2312133E-03 -5.0404817E-03 -4.8561227E-03 -4.6780165E-03
 -4.5060297E-03 -4.3400214E-03 -4.1798516E-03 -4.0253694E-03 -3.8764225E-03
 -3.7328580E-03 -3.5945186E-03 -3.4612466E-03 -3.3328829E-03 -3.2092745E-03
 -3.0902659E-03 -2.9757011E-03 -2.8654297E-03 -2.7592997E-03 -2.6571741E-03
 -2.5589031E-03 -2.4643512E-03 -2.3733778E-03 -2.2858568E-03 -2.2016577E-03
 -2.1206522E-03
 6.2114805E-02 5.8665704E-02 5.5417981E-02 5.2368496E-02 4.9508072E-02
 4.6824813E-02 4.4306006E-02 4.1939218E-02 3.9712761E-02 3.7615933E-02
 3.5639036E-02 3.3773355E-02 3.2011073E-02 3.0345164E-02 2.8769309E-02
 2.7277818E-02 2.5865525E-02 2.4527756E-02 2.3260217E-02 2.2058981E-02
 2.0920442E-02 1.9841239E-02 1.8818263E-02 1.7848616E-02 1.6929569E-02
 1.6058568E-02 1.5233186E-02 1.4451141E-02 1.3710256E-02 1.3008457E-02
 1.2343777E-02 1.1714333E-02 1.1118324E-02 1.0554036E-02 1.0019816E-02
 9.5141055E-03 9.0354029E-03 8.5822754E-03 8.1533622E-03 7.7473656E-03
 7.3630437E-03 6.9992254E-03 6.6547901E-03 6.3286726E-03 6.0198712E-03
 5.7274220E-03 5.4504275E-03 5.1880195E-03 4.9393931E-03 4.7037750E-03
 4.4804425E-03 4.2687077E-03 4.0679197E-03 3.8774665E-03 3.6967737E-03
 3.5252932E-03 3.3625124E-03 3.2079513E-03 3.0611462E-03 2.9216737E-03
 2.7891295E-03 2.6631309E-03 2.5433232E-03 2.4293640E-03 2.3209401E-03
 2.2177512E-03 2.1195197E-03 2.0259777E-03 1.9368771E-03 1.8519837E-03
 1.7710782E-03
 -1.4540046E-02 -1.5327033E-02 -1.5882295E-02 -1.6255191E-02 -1.6484559E-02
 -1.6600527E-02 -1.6626323E-02 -1.6579919E-02 -1.6475210E-02 -1.6323138E-02
 -1.6132342E-02 -1.5909735E-02 -1.5660919E-02 -1.5390499E-02 -1.5102307E-02
 -1.4799580E-02 -1.4485084E-02 -1.4161211E-02 -1.3830048E-02 -1.3493436E-02
 -1.3153011E-02 -1.2810217E-02 -1.2466352E-02 -1.2122576E-02 -1.1779917E-02
 -1.1439299E-02 -1.1101542E-02 -1.0767356E-02 -1.0437398E-02 -1.0112214E-02
 -9.7922953E-03 -9.4780596E-03 -9.1698701E-03 -8.8680331E-03 -8.5728001E-03
 -8.2843844E-03 -8.0029462E-03 -7.7286158E-03 -7.4614882E-03 -7.2016190E-03
 -6.9490415E-03 -6.7037577E-03 -6.4657447E-03 -6.2349597E-03 -6.0113394E-03
 -5.7948027E-03 -5.5852504E-03 -5.3825709E-03 -5.1866444E-03 -4.9973363E-03
 -4.8145046E-03 -4.6380013E-03 -4.4676699E-03 -4.3033524E-03 -4.1448884E-03
 -3.9921133E-03 -3.8448619E-03 -3.7029684E-03 -3.5662642E-03 -3.4345866E-03
 -3.3077747E-03 -3.1856620E-03 -3.0680925E-03 -2.9549103E-03 -2.8459604E-03
 -2.7410963E-03 -2.6401691E-03 -2.5430399E-03 -2.4495639E-03 -2.3596103E-03
 -2.2730511E-03
 6.8110943E-02 6.4169876E-02 6.0474273E-02 5.7023093E-02 5.3804751E-02
 5.0802998E-02 4.8000298E-02 4.5379553E-02 4.2924911E-02 4.0622070E-02
 3.8458269E-02 3.6422208E-02 3.4503914E-02 3.2694560E-02 3.0986315E-02
 2.9372223E-02 2.7846057E-02 2.6402229E-02 2.5035685E-02 2.3741841E-02
 2.2516524E-02 2.1355884E-02 2.0256385E-02 1.9214738E-02 1.8227883E-02
 1.7292952E-02 1.6407249E-02 1.5568226E-02 1.4773491E-02 1.4020750E-02
 1.3307850E-02 1.2632727E-02 1.1993410E-02 1.1388049E-02 1.0814851E-02
 1.0272129E-02 9.7582676E-03 9.2717260E-03 8.8110510E-03 8.3748503E-03
 7.9617975E-03 7.5706379E-03 7.2001857E-03 6.8492987E-03 6.5169139E-03
 6.2020095E-03 5.9036226E-03 5.6208377E-03 5.3527923E-03 5.0986665E-03
 4.8576952E-03 4.6291421E-03 4.4123172E-03 4.2065699E-03 4.0112929E-03
 3.8259008E-03 3.6498473E-03 3.4826223E-03 3.3237326E-03 3.1727275E-03
 3.0291772E-03 2.8926712E-03 2.7628313E-03 2.6392967E-03 2.5217293E-03
 2.4098095E-03 2.3032397E-03 2.2017364E-03 2.1050298E-03 2.0128696E-03
 1.9250253E-03
 -1.6162733E-02 -1.7055804E-02 -1.7655473E-02 -1.8030457E-02 -1.8234171E-02
 -1.8307101E-02 -1.8279618E-02 -1.8174466E-02 -1.8008783E-02 -1.7795494E-02
 -1.7544569E-02 -1.7263718E-02 -1.6959012E-02 -1.6635284E-02 -1.6296463E-02
 -1.5945772E-02 -1.5585904E-02 -1.5219143E-02 -1.4847442E-02 -1.4472487E-02
 -1.4095762E-02 -1.3718559E-02 -1.3342026E-02 -1.2967177E-02 -1.2594912E-02
 -1.2226025E-02 -1.1861223E-02 -1.1501124E-02 -1.1146285E-02 -1.0797183E-02
 -1.0454235E-02 -1.0117803E-02 -9.7881993E-03 -9.4656860E-03 -9.1504790E-03
 -8.8427560E-03 -8.5426504E-03 -8.2502663E-03 -7.9656728E-03 -7.6889056E-03
 -7.4199773E-03 -7.1588699E-03 -6.9055399E-03 -6.6599329E-03 -6.4219646E-03
 -6.1915414E-03 -5.9685488E-03 -5.7528615E-03 -5.5443454E-03 -5.3428495E-03
 -5.1482227E-03 -4.9603055E-03 -4.7789328E-03 -4.6039321E-03 -4.4351295E-03
 -4.2723538E-03 -4.1154269E-03 -3.9641731E-03 -3.8184207E-03 -3.6779919E-03
 -3.5427168E-03 -3.4124202E-03 -3.2869435E-03 -3.1661133E-03 -3.0497732E-03
 -2.9377658E-03 -2.8299380E-03 -2.7261381E-03 -2.6262170E-03 -2.5300395E-03
 -2.4374633E-03
 7.5214341E-02 7.0661321E-02 6.6400625E-02 6.2441822E-02 5.8773611E-02
 5.5375095E-02 5.2222349E-02 4.9291767E-02 4.6561569E-02 4.4012312E-02
 4.1626919E-02 3.9390493E-02 3.7290093E-02 3.5314415E-02 3.3453617E-02
 3.1699039E-02 3.0043045E-02 2.8478868E-02 2.7000455E-02 2.5602365E-02
 2.4279701E-02 2.3027971E-02 2.1843091E-02 2.0721298E-02 1.9659085E-02
 1.8653216E-02 1.7700650E-02 1.6798537E-02 1.5944207E-02 1.5135124E-02
 1.4368904E-02 1.3643284E-02 1.2956114E-02 1.2305369E-02 1.1689112E-02
 1.1105510E-02 1.0552828E-02 1.0029400E-02 9.5336642E-03 9.0641305E-03
 8.6193783E-03 8.1980648E-03 7.7989185E-03 7.4207266E-03 7.0623453E-03
 6.7226863E-03 6.4007281E-03 6.0954904E-03 5.8060535E-03 5.5315476E-03
 5.2711507E-03 5.0240834E-03 4.7896085E-03 4.5670355E-03 4.3557105E-03
 4.1550146E-03 3.9643645E-03 3.7832151E-03 3.6110422E-03 3.4473648E-03
 3.2917203E-03 3.1436733E-03 3.0028205E-03 2.8687704E-03 2.7411666E-03
 2.6196667E-03 2.5039513E-03 2.3937097E-03 2.2886645E-03 2.1885440E-03
 2.0930879E-03
 -1.7807288E-02 -1.8902039E-02 -1.9603394E-02 -2.0010365E-02 -2.0200331E-02
 -2.0231029E-02 -2.0144604E-02 -1.9971570E-02 -1.9734088E-02 -1.9448262E-02
 -1.9126022E-02 -1.8776247E-02 -1.8405654E-02 -1.8019389E-02 -1.7621482E-02
 -1.7215108E-02 -1.6802844E-02 -1.6386786E-02 -1.5968692E-02 -1.5550033E-02
 -1.5132075E-02 -1.4715909E-02 -1.4302478E-02 -1.3892617E-02 -1.3487054E-02
 -1.3086441E-02 -1.2691340E-02 -1.2302262E-02 -1.1919646E-02 -1.1543887E-02
 -1.1175329E-02 -1.0814257E-02 -1.0460927E-02 -1.0115549E-02 -9.7782919E-03
 -9.4492901E-03 -9.1286460E-03 -8.8164238E-03 -8.5126674E-03 -8.2173832E-03
 -7.9305526E-03 -7.6521370E-03 -7.3820767E-03 -7.1202838E-03 -6.8666646E-03
 -6.6210991E-03 -6.3834577E-03 -6.1536022E-03 -5.9313788E-03 -5.7166233E-03
 -5.5091716E-03 -5.3088460E-03 -5.1154713E-03 -4.9288627E-03 -4.7488357E-03
 -4.5751990E-03 -4.4077742E-03 -4.2463699E-03 -4.0907990E-03 -3.9408803E-03
 -3.7964310E-03 -3.6572709E-03 -3.5232208E-03 -3.3941071E-03 -3.2697639E-03
 -3.1500226E-03 -3.0347214E-03 -2.9237005E-03 -2.8168096E-03 -2.7138954E-03
 -2.6148164E-03
 8.3686076E-02 7.8396693E-02 7.3426798E-02 6.8820424E-02 6.4577587E-02
 6.0675681E-02 5.7083465E-02 5.3768527E-02 5.0700597E-02 4.7852807E-02
 4.5201808E-02 4.2727582E-02 4.0412962E-02 3.8243234E-02 3.6205720E-02
 3.4289468E-02 3.2484937E-02 3.0783780E-02 2.9178616E-02 2.7662890E-02
 2.6230745E-02 2.4876889E-02 2.3596518E-02 2.2385264E-02 2.1239091E-02
 2.0154292E-02 1.9127415E-02 1.8155249E-02 1.7234793E-02 1.6363233E-02
 1.5537917E-02 1.4756357E-02 1.4016195E-02 1.3315215E-02 1.2651310E-02
 1.2022495E-02 1.1426880E-02 1.0862680E-02 1.0328203E-02 9.8218434E-03
 9.3420837E-03 8.8874735E-03 8.4566539E-03 8.0483211E-03 7.6612583E-03
 7.2943005E-03 6.9463407E-03 6.6163433E-03 6.3033258E-03 6.0063554E-03
 5.7245521E-03 5.4570851E-03 5.2031707E-03 4.9620662E-03 4.7330735E-03
 4.5155329E-03 4.3088216E-03 4.1123508E-03 3.9255698E-03 3.7479538E-03
 3.5790133E-03 3.4182833E-03 3.2653250E-03 3.1197271E-03 2.9811026E-03
 2.8490827E-03 2.7233234E-03 2.6035002E-03 2.4893025E-03 2.3804430E-03
 2.2766478E-03
 -1.9290272E-02 -2.0766385E-02 -2.1687370E-02 -2.2194721E-02 -2.2404952E-02
 -2.2405613E-02 -2.2259455E-02 -2.2010507E-02 -2.1689476E-02 -2.1317823E-02
 -2.0910662E-02 -2.0478697E-02 -2.0029673E-02 -1.9569218E-02 -1.9101486E-02
 -1.8629614E-02 -1.8155981E-02 -1.7682446E-02 -1.7210482E-02 -1.6741276E-02
 -1.6275804E-02 -1.5814887E-02 -1.5359217E-02 -1.4909402E-02 -1.4465959E-02
 -1.4029352E-02 -1.3599988E-02 -1.3178227E-02 -1.2764388E-02 -1.2358747E-02
 -1.1961551E-02 -1.1573006E-02 -1.1193289E-02 -1.0822543E-02 -1.0460878E-02
 -1.0108369E-02 -9.7650792E-03 -9.4310250E-03 -9.1062039E-03 -8.7905955E-03
 -8.4841428E-03 -8.1867790E-03 -7.8984126E-03 -7.6189348E-03 -7.3482217E-03
 -7.0861364E-03 -6.8325265E-03 -6.5872325E-03 -6.3500809E-03 -6.1208960E-03
 -5.8994940E-03 -5.6856796E-03 -5.4792613E-03 -5.2800411E-03 -5.0878236E-03
 -4.9024071E-03 -4.7235880E-03 -4.5511732E-03 -4.3849577E-03 -4.2247516E-03
 -4.0703593E-03 -3.9215903E-03 -3.7782574E-03 -3.6401777E-03 -3.5071666E-03
 -3.3790546E-03 -3.2556697E-03 -3.1368395E-03 -3.0224037E-03 -2.9122080E-03
 -2.8060949E-03
 9.3760327E-02 8.7674700E-02 8.1854388E-02 7.6429784E-02 7.1446002E-02
 6.6893801E-02 6.2738270E-02 5.8936581E-02 5.5446755E-02 5.2231077E-02
 4.9257014E-02 4.6496935E-02 4.3927591E-02 4.1529313E-02 3.9285455E-02
 3.7181858E-02 3.5206351E-02 3.3348437E-02 3.1598959E-02 2.9949870E-02
 2.8394075E-02 2.6925225E-02 2.5537632E-02 2.4226144E-02 2.2986082E-02
 2.1813150E-02 2.0703414E-02 1.9653220E-02 1.8659189E-02 1.7718159E-02
 1.6827196E-02 1.5983533E-02 1.5184580E-02 1.4427898E-02 1.3711193E-02
 1.3032290E-02 1.2389144E-02 1.1779816E-02 1.1202479E-02 1.0655396E-02
 1.0136927E-02 9.6455161E-03 9.1796974E-03 8.7380726E-03 8.3193295E-03
 7.9222200E-03 7.5455629E-03 7.1882438E-03 6.8492028E-03 6.5274495E-03
 6.2220432E-03 5.9320857E-03 5.6567416E-03 5.3952131E-03 5.1467558E-03
 4.9106618E-03 4.6862611E-03 4.4729277E-03 4.2700642E-03 4.0771151E-03
 3.8935484E-03 3.7188677E-03 3.5526026E-03 3.3943083E-03 3.2435702E-03
 3.0999938E-03 2.9632070E-03 2.8328570E-03 2.7086132E-03 2.5901662E-03
 2.4772182E-03
 -2.0252027E-02 -2.2410801E-02 -2.3779837E-02 -2.4535544E-02 -2.4849541E-02
 -2.4859861E-02 -2.4666687E-02 -2.4339059E-02 -2.3923453E-02 -2.3450928E-02
 -2.2942279E-02 -2.2411492E-02 -2.1868020E-02 -2.1318333E-02 -2.0766879E-02
 -2.0216750E-02 -1.9670103E-02 -1.9128472E-02 -1.8592967E-02 -1.8064389E-02
 -1.7543351E-02 -1.7030321E-02 -1.6525676E-02 -1.6029719E-02 -1.5542719E-02
 -1.5064894E-02 -1.4596450E-02 -1.4137560E-02 -1.3688382E-02 -1.3249050E-02
 -1.2819681E-02 -1.2400371E-02 -1.1991194E-02 -1.1592203E-02 -1.1203432E-02
 -1.0824890E-02 -1.0456564E-02 -1.0098418E-02 -9.7504025E-03 -9.4124433E-03
 -9.0844482E-03 -8.7663038E-03 -8.4578907E-03 -8.1590628E-03 -7.8696702E-03
 -7.5895456E-03 -7.3185144E-03 -7.0563932E-03 -6.8029836E-03 -6.5580891E-03
 -6.3215089E-03 -6.0930271E-03 -5.8724359E-03 -5.6595202E-03 -5.4540676E-03
 -5.2558570E-03 -5.0646821E-03 -4.8803254E-03 -4.7025727E-03 -4.5312187E-03
 -4.3660565E-03 -4.2068809E-03 -4.0534949E-03 -3.9057059E-03 -3.7633183E-03
 -3.6261496E-03 -3.4940157E-03 -3.3667381E-03 -3.2441493E-03 -3.1260785E-03
 -3.0123645E-03
 0.1054694 9.8726295E-02 9.2022032E-02 8.5626863E-02 7.9702675E-02
 7.4302629E-02 6.9410004E-02 6.4976722E-02 6.0946867E-02 5.7267513E-02
 5.3892430E-02 5.0782617E-02 4.7905635E-02 4.5234546E-02 4.2746916E-02
 4.0423971E-02 3.8249843E-02 3.6211058E-02 3.4296028E-02 3.2494724E-02
 3.0798405E-02 2.9199347E-02 2.7690714E-02 2.6266389E-02 2.4920860E-02
 2.3649137E-02 2.2446666E-02 2.1309279E-02 2.0233134E-02 1.9214677E-02
 1.8250609E-02 1.7337862E-02 1.6473554E-02 1.5655007E-02 1.4879690E-02
 1.4145226E-02 1.3449381E-02 1.2790043E-02 1.2165227E-02 1.1573052E-02
 1.1011736E-02 1.0479609E-02 9.9750711E-03 9.4966339E-03 9.0428703E-03
 8.6124418E-03 8.2040727E-03 7.8165708E-03 7.4488004E-03 7.0996904E-03
 6.7682276E-03 6.4534545E-03 6.1544711E-03 5.8704223E-03 5.6005055E-03
 5.3439601E-03 5.1000700E-03 4.8681577E-03 4.6475832E-03 4.4377474E-03
 4.2380821E-03 4.0480504E-03 3.8671419E-03 3.6948873E-03 3.5308299E-03
 3.3745491E-03 3.2256404E-03 3.0837262E-03 2.9484478E-03 2.8194706E-03
 2.6964743E-03
 -2.0152772E-02 -2.3373526E-02 -2.5566775E-02 -2.6863234E-02 -2.7470101E-02
 -2.7594700E-02 -2.7402371E-02 -2.7009822E-02 -2.6494456E-02 -2.5906168E-02
 -2.5276748E-02 -2.4626393E-02 -2.3967927E-02 -2.3309438E-02 -2.2656040E-02
 -2.2010908E-02 -2.1375973E-02 -2.0752368E-02 -2.0140735E-02 -1.9541390E-02
 -1.8954458E-02 -1.8379949E-02 -1.7817825E-02 -1.7268013E-02 -1.6730420E-02
 -1.6204974E-02 -1.5691597E-02 -1.5190224E-02 -1.4700793E-02 -1.4223245E-02
 -1.3757533E-02 -1.3303600E-02 -1.2861382E-02 -1.2430822E-02 -1.2011843E-02
 -1.1604355E-02 -1.1208264E-02 -1.0823468E-02 -1.0449842E-02 -1.0087254E-02
 -9.7355526E-03 -9.3945861E-03 -9.0641817E-03 -8.7441597E-03 -8.4343301E-03
 -8.1344945E-03 -7.8444434E-03 -7.5639649E-03 -7.2928355E-03 -7.0308349E-03
 -6.7777354E-03 -6.5333052E-03 -6.2973080E-03 -6.0695154E-03 -5.8496911E-03
 -5.6376043E-03 -5.4330225E-03 -5.2357176E-03 -5.0454563E-03 -4.8620231E-03
 -4.6851952E-03 -4.5147524E-03 -4.3504881E-03 -4.1921893E-03 -4.0396564E-03
 -3.8926895E-03 -3.7510959E-03 -3.6146878E-03 -3.4832812E-03 -3.3567005E-03
 -3.2347697E-03
 0.1184846 0.1114766 0.1041300 9.6786253E-02 8.9770734E-02
 8.3293773E-02 7.7429049E-02 7.2156802E-02 6.7415573E-02 6.3134551E-02
 5.9247989E-02 5.5699676E-02 5.2443083E-02 4.9440123E-02 4.6659682E-02
 4.4076152E-02 4.1668318E-02 3.9418470E-02 3.7311621E-02 3.5335027E-02
 3.3477720E-02 3.1730171E-02 3.0084034E-02 2.8531950E-02 2.7067361E-02
 2.5684386E-02 2.4377733E-02 2.3142567E-02 2.1974504E-02 2.0869497E-02
 1.9823832E-02 1.8834060E-02 1.7896963E-02 1.7009571E-02 1.6169082E-02
 1.5372887E-02 1.4618532E-02 1.3903695E-02 1.3226218E-02 1.2584047E-02
 1.1975256E-02 1.1398020E-02 1.0850618E-02 1.0331425E-02 9.8389080E-03
 9.3716206E-03 8.9281891E-03 8.5073225E-03 8.1077982E-03 7.7284593E-03
 7.3682182E-03 7.0260433E-03 6.7009614E-03 6.3920585E-03 6.0984665E-03
 5.8193645E-03 5.5539832E-03 5.3015933E-03 5.0615007E-03 4.8330631E-03
 4.6156649E-03 4.4087288E-03 4.2117066E-03 4.0240861E-03 3.8453720E-03
 3.6751176E-03 3.5128796E-03 3.3582519E-03 3.2108463E-03 3.0702981E-03
 2.9362640E-03
 -1.8494612E-02 -2.3021271E-02 -2.6457809E-02 -2.8755475E-02 -3.0031420E-02
 -3.0517250E-02 -3.0461274E-02 -3.0064192E-02 -2.9465150E-02 -2.8753283E-02
 -2.7983503E-02 -2.7189009E-02 -2.6389606E-02 -2.5596952E-02 -2.4817713E-02
 -2.4055528E-02 -2.3312205E-02 -2.2588447E-02 -2.1884289E-02 -2.1199418E-02
 -2.0533323E-02 -1.9885415E-02 -1.9255076E-02 -1.8641725E-02 -1.8044814E-02
 -1.7463850E-02 -1.6898382E-02 -1.6348019E-02 -1.5812408E-02 -1.5291234E-02
 -1.4784212E-02 -1.4291092E-02 -1.3811627E-02 -1.3345598E-02 -1.2892794E-02
 -1.2453003E-02 -1.2026018E-02 -1.1611633E-02 -1.1209645E-02 -1.0819840E-02
 -1.0442005E-02 -1.0075916E-02 -9.7213499E-03 -9.3780737E-03 -9.0458542E-03
 -8.7244473E-03 -8.4136091E-03 -8.1130927E-03 -7.8226393E-03 -7.5420002E-03
 -7.2709150E-03 -7.0091318E-03 -6.7563881E-03 -6.5124296E-03 -6.2770024E-03
 -6.0498519E-03 -5.8307284E-03 -5.6193834E-03 -5.4155695E-03 -5.2190498E-03
 -5.0295871E-03 -4.8469468E-03 -4.6709063E-03 -4.5012389E-03 -4.3377285E-03
 -4.1801683E-03 -4.0283483E-03 -3.8820680E-03 -3.7411314E-03 -3.6053548E-03
 -3.4745513E-03
 0.1322789 0.1254383 0.1179425 0.1100275 0.1020417
 9.4363905E-02 8.7272480E-02 8.0881968E-02 7.5179212E-02 7.0090674E-02
 6.5528713E-02 6.1412361E-02 5.7673354E-02 5.4256108E-02 5.1115878E-02
 4.8216622E-02 4.5529038E-02 4.3029167E-02 4.0697142E-02 3.8516361E-02
 3.6472786E-02 3.4554407E-02 3.2750871E-02 3.1053178E-02 2.9453395E-02
 2.7944518E-02 2.6520278E-02 2.5175042E-02 2.3903726E-02 2.2701688E-02
 2.1564683E-02 2.0488810E-02 1.9470461E-02 1.8506303E-02 1.7593220E-02
 1.6728316E-02 1.5908876E-02 1.5132361E-02 1.4396391E-02 1.3698727E-02
 1.3037251E-02 1.2409990E-02 1.1815067E-02 1.1250718E-02 1.0715279E-02
 1.0207182E-02 9.7249430E-03 9.2671551E-03 8.8325050E-03 8.4197447E-03
 8.0276933E-03 7.6552411E-03 7.3013343E-03 6.9649820E-03 6.6452511E-03
 6.3412534E-03 6.0521602E-03 5.7771802E-03 5.5155656E-03 5.2666203E-03
 5.0296807E-03 4.8041176E-03 4.5893439E-03 4.3847985E-03 4.1899583E-03
 4.0043201E-03 3.8274198E-03 3.6588085E-03 3.4980651E-03 3.3447982E-03
 3.1986285E-03
 -1.5128144E-02 -2.0895215E-02 -2.5744958E-02 -2.9467886E-02 -3.1957425E-02
 -3.3288233E-02 -3.3698607E-02 -3.3479769E-02 -3.2878034E-02 -3.2064006E-02
 -3.1143941E-02 -3.0180473E-02 -2.9209377E-02 -2.8250488E-02 -2.7314378E-02
 -2.6406221E-02 -2.5528083E-02 -2.4680294E-02 -2.3862192E-02 -2.3072634E-02
 -2.2310268E-02 -2.1573672E-02 -2.0861473E-02 -2.0172378E-02 -1.9505206E-02
 -1.8858900E-02 -1.8232500E-02 -1.7625161E-02 -1.7036146E-02 -1.6464777E-02
 -1.5910471E-02 -1.5372698E-02 -1.4850981E-02 -1.4344885E-02 -1.3854013E-02
 -1.3377990E-02 -1.2916467E-02 -1.2469112E-02 -1.2035604E-02 -1.1615635E-02
 -1.1208896E-02 -1.0815086E-02 -1.0433910E-02 -1.0065073E-02 -9.7082807E-03
 -9.3632387E-03 -9.0296548E-03 -8.7072328E-03 -8.3956840E-03 -8.0947177E-03
 -7.8040403E-03 -7.5233663E-03 -7.2524073E-03 -6.9908802E-03 -6.7385049E-03
 -6.4950045E-03 -6.2601045E-03 -6.0335337E-03 -5.8150315E-03 -5.6043337E-03
 -5.4011885E-03 -5.2053449E-03 -5.0165579E-03 -4.8345905E-03 -4.6592127E-03
 -4.4901934E-03 -4.3273191E-03 -4.1703698E-03 -4.0191398E-03 -3.8734281E-03
 -3.7330366E-03
 0.1464681 0.1400365 0.1328145 0.1248951 0.1164725
 0.1078713 9.9504285E-02 9.1731958E-02 8.4739260E-02 7.8538753E-02
 7.3050052E-02 6.8167269E-02 6.3791081E-02 5.9838355E-02 5.6242391E-02
 5.2950323E-02 4.9920138E-02 4.7118239E-02 4.4517379E-02 4.2095277E-02
 3.9833467E-02 3.7716437E-02 3.5731059E-02 3.3866059E-02 3.2111701E-02
 3.0459458E-02 2.8901810E-02 2.7432084E-02 2.6044305E-02 2.4733070E-02
 2.3493493E-02 2.2321107E-02 2.1211816E-02 2.0161852E-02 1.9167721E-02
 1.8226190E-02 1.7334238E-02 1.6489057E-02 1.5688023E-02 1.4928662E-02
 1.4208663E-02 1.3525854E-02 1.2878194E-02 1.2263753E-02 1.1680724E-02
 1.1127396E-02 1.0602161E-02 1.0103492E-02 9.6299611E-03 9.1802133E-03
 8.7529765E-03 8.3470391E-03 7.9612639E-03 7.5945784E-03 7.2459686E-03
 6.9144792E-03 6.5992041E-03 6.2992889E-03 6.0139266E-03 5.7423608E-03
 5.4838713E-03 5.2377759E-03 5.0034383E-03 4.7802501E-03 4.5676394E-03
 4.3650656E-03 4.1720211E-03 3.9880159E-03 3.8125974E-03 3.6453363E-03
 3.4858240E-03
 -1.0226904E-02 -1.6985046E-02 -2.3073455E-02 -2.8269386E-02 -3.2341827E-02
 -3.5122555E-02 -3.6611870E-02 -3.7020277E-02 -3.6673214E-02 -3.5873473E-02
 -3.4836356E-02 -3.3693999E-02 -3.2521300E-02 -3.1358637E-02 -3.0226672E-02
 -2.9135086E-02 -2.8087506E-02 -2.7084308E-02 -2.6124138E-02 -2.5204854E-02
 -2.4323968E-02 -2.3478946E-02 -2.2667360E-02 -2.1886947E-02 -2.1135651E-02
 -2.0411627E-02 -1.9713230E-02 -1.9038994E-02 -1.8387642E-02 -1.7758030E-02
 -1.7149156E-02 -1.6560119E-02 -1.5990127E-02 -1.5438466E-02 -1.4904489E-02
 -1.4387609E-02 -1.3887283E-02 -1.3403012E-02 -1.2934328E-02 -1.2480793E-02
 -1.2041979E-02 -1.1617487E-02 -1.1206930E-02 -1.0809923E-02 -1.0426105E-02
 -1.0055112E-02 -9.6965944E-03 -9.3502002E-03 -9.0155918E-03 -8.6924322E-03
 -8.3803898E-03 -8.0791377E-03 -7.7883517E-03 -7.5077182E-03 -7.2369264E-03
 -6.9756680E-03 -6.7236489E-03 -6.4805667E-03 -6.2461365E-03 -6.0200794E-03
 -5.8021154E-03 -5.5919755E-03 -5.3893952E-03 -5.1941252E-03 -5.0059087E-03
 -4.8245071E-03 -4.6496810E-03 -4.4812039E-03 -4.3188501E-03 -4.1624424E-03
 -4.0116981E-03
 0.1609099 0.1549453 0.1481746 0.1406204 0.1323471
 0.1234992 0.1143476 0.1052985 9.6787080E-02 8.9102045E-02
 8.2315713E-02 7.6355219E-02 7.1097262E-02 6.6420600E-02 6.2223449E-02
 5.8425065E-02 5.4962326E-02 5.1785920E-02 4.8856888E-02 4.6144135E-02
 4.3622471E-02 4.1271236E-02 3.9073247E-02 3.7014075E-02 3.5081409E-02
 3.3264674E-02 3.1554677E-02 2.9943330E-02 2.8423522E-02 2.6988856E-02
 2.5633637E-02 2.4352681E-02 2.3141280E-02 2.1995142E-02 2.0910304E-02
 1.9883120E-02 1.8910218E-02 1.7988455E-02 1.7114911E-02 1.6286861E-02
 1.5501751E-02 1.4757185E-02 1.4050925E-02 1.3380861E-02 1.2745010E-02
 1.2141505E-02 1.1568589E-02 1.1024610E-02 1.0508000E-02 1.0017291E-02
 9.5510967E-03 9.1081029E-03 8.6870752E-03 8.2868431E-03 7.9063112E-03
 7.5444328E-03 7.2002346E-03 6.8727829E-03 6.5612025E-03 6.2646666E-03
 5.9823948E-03 5.7136528E-03 5.4577379E-03 5.2139936E-03 4.9818004E-03
 4.7605671E-03 4.5497334E-03 4.3487819E-03 4.1572098E-03 3.9745476E-03
 3.8003491E-03
 -4.0418161E-03 -1.1550483E-02 -1.8587548E-02 -2.4981761E-02 -3.0527836E-02
 -3.4992851E-02 -3.8161080E-02 -3.9938521E-02 -4.0458076E-02 -4.0048175E-02
 -3.9072659E-02 -3.7809253E-02 -3.6430053E-02 -3.5030000E-02 -3.3657689E-02
 -3.2336049E-02 -3.1074299E-02 -2.9874543E-02 -2.8735256E-02 -2.7653243E-02
 -2.6624624E-02 -2.5645373E-02 -2.4711624E-02 -2.3819769E-02 -2.2966547E-02
 -2.2149025E-02 -2.1364603E-02 -2.0610979E-02 -1.9886132E-02 -1.9188276E-02
 -1.8515840E-02 -1.7867442E-02 -1.7241849E-02 -1.6637977E-02 -1.6054850E-02
 -1.5491590E-02 -1.4947409E-02 -1.4421578E-02 -1.3913443E-02 -1.3422388E-02
 -1.2947838E-02 -1.2489256E-02 -1.2046138E-02 -1.1617997E-02 -1.1204374E-02
 -1.0804823E-02 -1.0418915E-02 -1.0046231E-02 -9.6863741E-03 -9.3389498E-03
 -9.0035759E-03 -8.6798780E-03 -8.3674928E-03 -8.0660647E-03 -7.7752466E-03
 -7.4946969E-03 -7.2240843E-03 -6.9630886E-03 -6.7113894E-03 -6.4686816E-03
 -6.2346659E-03 -6.0090479E-03 -5.7915444E-03 -5.5818763E-03 -5.3797751E-03
 -5.1849843E-03 -4.9972418E-03 -4.8163072E-03 -4.6419376E-03 -4.4739512E-03
 -4.3120263E-03
 0.1756089 0.1700827 0.1637769 0.1566942 0.1488505
 0.1402889 0.1311074 0.1215067 0.1118368 0.1025633
 9.4094448E-02 8.6612448E-02 8.0084205E-02 7.4376941E-02 6.9344722E-02
 6.4862214E-02 6.0830373E-02 5.7172898E-02 5.3831045E-02 5.0759181E-02
 4.7921378E-02 4.5288909E-02 4.2838469E-02 4.0550902E-02 3.8410217E-02
 3.6402903E-02 3.4517422E-02 3.2743800E-02 3.1073350E-02 2.9498404E-02
 2.8012170E-02 2.6608558E-02 2.5282081E-02 2.4027783E-02 2.2841128E-02
 2.1717958E-02 2.0654464E-02 1.9647101E-02 1.8692615E-02 1.7787952E-02
 1.6930282E-02 1.6116956E-02 1.5345500E-02 1.4613585E-02 1.3919042E-02
 1.3259814E-02 1.2633979E-02 1.2039726E-02 1.1475348E-02 1.0939239E-02
 1.0429882E-02 9.9458490E-03 9.4857933E-03 9.0484349E-03 8.6325863E-03
 8.2371077E-03 7.8609297E-03 7.5030443E-03 7.1624951E-03 6.8383850E-03
 6.5298593E-03 6.2361150E-03 5.9563932E-03 5.6899749E-03 5.4361825E-03
 5.1943739E-03 4.9639433E-03 4.7443146E-03 4.5349463E-03 4.3353243E-03
 4.1449657E-03
 3.2342717E-03 -4.8554959E-03 -1.2607719E-02 -1.9895831E-02 -2.6570577E-02
 -3.2451611E-02 -3.7322797E-02 -4.0949430E-02 -4.3152034E-02 -4.3939993E-02
 -4.3581903E-02 -4.2484302E-02 -4.1005235E-02 -3.9378263E-02 -3.7731800E-02
 -3.6129195E-02 -3.4598362E-02 -3.3149030E-02 -3.1781901E-02 -3.0493448E-02
 -2.9278358E-02 -2.8130757E-02 -2.7044849E-02 -2.6015211E-02 -2.5036894E-02
 -2.4105471E-02 -2.3217019E-02 -2.2368064E-02 -2.1555582E-02 -2.0776900E-02
 -2.0029679E-02 -1.9311864E-02 -1.8621646E-02 -1.7957432E-02 -1.7317807E-02
 -1.6701508E-02 -1.6107410E-02 -1.5534493E-02 -1.4981844E-02 -1.4448619E-02
 -1.3934051E-02 -1.3437423E-02 -1.2958081E-02 -1.2495394E-02 -1.2048790E-02
 -1.1617711E-02 -1.1201633E-02 -1.0800055E-02 -1.0412492E-02 -1.0038489E-02
 -9.6775964E-03 -9.3293814E-03 -8.9934319E-03 -8.6693438E-03 -8.3567230E-03
 -8.0551943E-03 -7.7643823E-03 -7.4839354E-03 -7.2134994E-03 -6.9527403E-03
 -6.7013307E-03 -6.4589470E-03 -6.2252861E-03 -6.0000420E-03 -5.7829223E-03
 -5.5736504E-03 -5.3719506E-03 -5.1775509E-03 -4.9902052E-03 -4.8097111E-03
 -4.6357191E-03
 0.1906289 0.1854853 0.1795957 0.1729611 0.1655871
 0.1574873 0.1486910 0.1392610 0.1293304 0.1191593
 0.1091708 9.9857755E-02 9.1558285E-02 8.4338315E-02 7.8081377E-02
 7.2618738E-02 6.7795955E-02 6.3489944E-02 5.9606787E-02 5.6075368E-02
 5.2841358E-02 4.9862627E-02 4.7106024E-02 4.4544969E-02 4.2157866E-02
 3.9926864E-02 3.7837021E-02 3.5875659E-02 3.4031935E-02 3.2296401E-02
 3.0660817E-02 2.9117892E-02 2.7661119E-02 2.6284689E-02 2.4983322E-02
 2.3752244E-02 2.2587080E-02 2.1483807E-02 2.0438744E-02 1.9448468E-02
 1.8509803E-02 1.7619791E-02 1.6775688E-02 1.5974913E-02 1.5215064E-02
 1.4493881E-02 1.3809247E-02 1.3159165E-02 1.2541765E-02 1.1955285E-02
 1.1398066E-02 1.0868546E-02 1.0365244E-02 9.8867770E-03 9.4318278E-03
 8.9991642E-03 8.5876100E-03 8.1960699E-03 7.8234961E-03 7.4689076E-03
 7.1313768E-03 6.8100230E-03 6.5040160E-03 6.2125688E-03 5.9349476E-03
 5.6704441E-03 5.4183984E-03 5.1781777E-03 4.9491944E-03 4.7308863E-03
 4.5227199E-03
 1.1480999E-02 2.9188867E-03 -5.3951936E-03 -1.3362163E-02 -2.0871634E-02
 -2.7796129E-02 -3.3982765E-02 -3.9244059E-02 -4.3356370E-02 -4.6092879E-02
 -4.7331594E-02 -4.7203109E-02 -4.6092283E-02 -4.4438161E-02 -4.2563967E-02
 -4.0654205E-02 -3.8798999E-02 -3.7036587E-02 -3.5379168E-02 -3.3826664E-02
 -3.2373480E-02 -3.1011948E-02 -2.9733920E-02 -2.8531536E-02 -2.7397564E-02
 -2.6325487E-02 -2.5309548E-02 -2.4344658E-02 -2.3426382E-02 -2.2550831E-02
 -2.1714604E-02 -2.0914735E-02 -2.0148624E-02 -1.9413993E-02 -1.8708823E-02
 -1.8031340E-02 -1.7379969E-02 -1.6753295E-02 -1.6150070E-02 -1.5569149E-02
 -1.5009495E-02 -1.4470177E-02 -1.3950323E-02 -1.3449138E-02 -1.2965885E-02
 -1.2499874E-02 -1.2050450E-02 -1.1617008E-02 -1.1198962E-02 -1.0795768E-02
 -1.0406903E-02 -1.0031863E-02 -9.6701616E-03 -9.3213413E-03 -8.9849606E-03
 -8.6605866E-03 -8.3478047E-03 -8.0462191E-03 -7.7554388E-03 -7.4750963E-03
 -7.2048246E-03 -6.9442783E-03 -6.6931155E-03 -6.4510098E-03 -6.2176441E-03
 -5.9927138E-03 -5.7759192E-03 -5.5669742E-03 -5.3655999E-03 -5.1716040E-03
 -4.9845758E-03
 0.2060521 0.2012312 0.1956939 0.1894445 0.1824897
 0.1748392 0.1665066 0.1575140 0.1479018 0.1377515
 0.1272316 0.1166620 0.1065265 9.7309075E-02 8.9250602E-02
 8.2310960E-02 7.6315716E-02 7.1078114E-02 6.6443615E-02 6.2294487E-02
 5.8542803E-02 5.5122577E-02 5.1983561E-02 4.9086846E-02 4.6401713E-02
 4.3903507E-02 4.1572094E-02 3.9390776E-02 3.7345558E-02 3.5424490E-02
 3.3617303E-02 3.1915050E-02 3.0309869E-02 2.8794808E-02 2.7363634E-02
 2.6010754E-02 2.4731096E-02 2.3520030E-02 2.2373350E-02 2.1287162E-02
 2.0257881E-02 1.9282183E-02 1.8356994E-02 1.7479427E-02 1.6646825E-02
 1.5856666E-02 1.5106614E-02 1.4394466E-02 1.3718150E-02 1.3075740E-02
 1.2465402E-02 1.1885418E-02 1.1334170E-02 1.0810129E-02 1.0311865E-02
 9.8380148E-03 9.3873022E-03 8.9585185E-03 8.5505173E-03 8.1622293E-03
 7.7926326E-03 7.4407640E-03 7.1057193E-03 6.7866319E-03 6.4826976E-03
 6.1931447E-03 5.9172469E-03 5.6543131E-03 5.4036989E-03 5.1647895E-03
 4.9369968E-03
 2.0630293E-02 1.1664554E-02 2.8845698E-03 -5.6264838E-03 -1.3780786E-02
 -2.1482958E-02 -2.8625457E-02 -3.5081673E-02 -4.0696505E-02 -4.5276720E-02
 -4.8594374E-02 -5.0440498E-02 -5.0768465E-02 -4.9832787E-02 -4.8101105E-02
 -4.6007097E-02 -4.3825880E-02 -4.1696325E-02 -3.9677396E-02 -3.7788060E-02
 -3.6028843E-02 -3.4392394E-02 -3.2868497E-02 -3.1446423E-02 -3.0115914E-02
 -2.8867625E-02 -2.7693219E-02 -2.6585355E-02 -2.5537640E-02 -2.4544468E-02
 -2.3600983E-02 -2.2702949E-02 -2.1846684E-02 -2.1028960E-02 -2.0246956E-02
 -1.9498199E-02 -1.8780500E-02 -1.8091926E-02 -1.7430760E-02 -1.6795471E-02
 -1.6184676E-02 -1.5597134E-02 -1.5031712E-02 -1.4487382E-02 -1.3963205E-02
 -1.3458304E-02 -1.2971874E-02 -1.2503163E-02 -1.2051464E-02 -1.1616122E-02
 -1.1196505E-02 -1.0792028E-02 -1.0402127E-02 -1.0026268E-02 -9.6639404E-03
 -9.3146525E-03 -8.9779459E-03 -8.6533614E-03 -8.3404677E-03 -8.0388561E-03
 -7.7481186E-03 -7.4678725E-03 -7.1977484E-03 -6.9373809E-03 -6.6864295E-03
 -6.4445571E-03 -6.2114415E-03 -5.9867678E-03 -5.7702390E-03 -5.5616582E-03
 -5.3605535E-03
 0.2219649 0.2174099 0.2121617 0.2062287 0.1996214
 0.1923522 0.1844345 0.1758838 0.1667192 0.1569686
 0.1466808 0.1359547 0.1249940 0.1141759 0.1040265
 9.4990492E-02 8.7202206E-02 8.0535755E-02 7.4780598E-02 6.9743708E-02
 6.5274946E-02 6.1263103E-02 5.7626136E-02 5.4302819E-02 5.1246576E-02
 4.8421301E-02 4.5798421E-02 4.3354914E-02 4.1071955E-02 3.8933851E-02
 3.6927383E-02 3.5041269E-02 3.3265729E-02 3.1592261E-02 3.0013341E-02
 2.8522288E-02 2.7113130E-02 2.5780454E-02 2.4519376E-02 2.3325430E-02
 2.2194512E-02 2.1122845E-02 2.0106958E-02 1.9143609E-02 1.8229805E-02
 1.7362745E-02 1.6539818E-02 1.5758574E-02 1.5016730E-02 1.4312138E-02
 1.3642782E-02 1.3006765E-02 1.2402304E-02 1.1827715E-02 1.1281421E-02
 1.0761931E-02 1.0267835E-02 9.7978050E-03 9.3505904E-03 8.9250067E-03
 8.5199401E-03 8.1343297E-03 7.7671818E-03 7.4175503E-03 7.0845475E-03
 6.7673279E-03 6.4650979E-03 6.1770999E-03 5.9026130E-03 5.6409808E-03
 5.3915461E-03
 3.0647930E-02 2.1321883E-02 1.2135974E-02 3.1640814E-03 -5.5189687E-03
 -1.3835973E-02 -2.1705057E-02 -2.9036198E-02 -3.5725921E-02 -4.1649453E-02
 -4.6650112E-02 -5.0529711E-02 -5.3058837E-02 -5.4055568E-02 -5.3560268E-02
 -5.1940229E-02 -4.9709506E-02 -4.7271900E-02 -4.4852443E-02 -4.2551246E-02
 -4.0402923E-02 -3.8411956E-02 -3.6570199E-02 -3.4864970E-02 -3.3282630E-02
 -3.1810179E-02 -3.0435774E-02 -2.9148940E-02 -2.7940501E-02 -2.6802478E-02
 -2.5727948E-02 -2.4710912E-02 -2.3746168E-02 -2.2829205E-02 -2.1956081E-02
 -2.1123361E-02 -2.0328037E-02 -1.9567462E-02 -1.8839307E-02 -1.8141501E-02
 -1.7472208E-02 -1.6829778E-02 -1.6212732E-02 -1.5619733E-02 -1.5049576E-02
 -1.4501147E-02 -1.3973438E-02 -1.3465508E-02 -1.2976499E-02 -1.2505604E-02
 -1.2052073E-02 -1.1615206E-02 -1.1194328E-02 -1.0788825E-02 -1.0398104E-02
 -1.0021602E-02 -9.6587818E-03 -9.3091354E-03 -8.9721726E-03 -8.6474316E-03
 -8.3344653E-03 -8.0328416E-03 -7.7421488E-03 -7.4619921E-03 -7.1919914E-03
 -6.9317794E-03 -6.6810045E-03 -6.4393259E-03 -6.2064114E-03 -5.9820730E-03
 -5.7657636E-03
 0.2384549 0.2341134 0.2290955 0.2234135 0.2170823
 0.2101180 0.2025375 0.1943581 0.1855975 0.1762740
 0.1664093 0.1560344 0.1452049 0.1340348 0.1227620
 0.1118160 0.1017461 9.2935532E-02 8.5417695E-02 7.9003051E-02
 7.3461138E-02 6.8599515E-02 6.4274371E-02 6.0381085E-02 5.6843087E-02
 5.3603344E-02 5.0618496E-02 4.7854822E-02 4.5285620E-02 4.2889278E-02
 4.0648062E-02 3.8547166E-02 3.6574032E-02 3.4717944E-02 3.2969575E-02
 3.1320766E-02 2.9764300E-02 2.8293751E-02 2.6903350E-02 2.5587877E-02
 2.4342583E-02 2.3163132E-02 2.2045543E-02 2.0986136E-02 1.9981531E-02
 1.9028571E-02 1.8124327E-02 1.7266063E-02 1.6451221E-02 1.5677424E-02
 1.4942425E-02 1.4244127E-02 1.3580550E-02 1.2949836E-02 1.2350244E-02
 1.1780127E-02 1.1237930E-02 1.0722195E-02 1.0231537E-02 9.7646564E-03
 9.3203261E-03 8.8973800E-03 8.4947227E-03 8.1113167E-03 7.7461805E-03
 7.3983935E-03 7.0670685E-03 6.7513804E-03 6.4505464E-03 6.1638383E-03
 5.8905189E-03
 4.1521598E-02 3.1862166E-02 2.2307752E-02 1.2926755E-02 3.7863932E-03
 -5.0466564E-03 -1.3505027E-02 -2.1518890E-02 -2.9013328E-02 -3.5904329E-02
 -4.2092912E-02 -4.7456294E-02 -5.1836245E-02 -5.5029947E-02 -5.6808967E-02
 -5.7025794E-02 -5.5811908E-02 -5.3627267E-02 -5.1001377E-02 -4.8296325E-02
 -4.5691289E-02 -4.3255042E-02 -4.1003577E-02 -3.8930546E-02 -3.7021413E-02
 -3.5259511E-02 -3.3628680E-02 -3.2114185E-02 -3.0703029E-02 -2.9383829E-02
 -2.8146768E-02 -2.6983356E-02 -2.5886256E-02 -2.4849147E-02 -2.3866544E-02
 -2.2933684E-02 -2.2046432E-02 -2.1201164E-02 -2.0394716E-02 -1.9624308E-02
 -1.8887462E-02 -1.8182002E-02 -1.7505983E-02 -1.6857658E-02 -1.6235465E-02
 -1.5637994E-02 -1.5063955E-02 -1.4512178E-02 -1.3981585E-02 -1.3471200E-02
 -1.2980101E-02 -1.2507442E-02 -1.2052434E-02 -1.1614332E-02 -1.1192451E-02
 -1.0786131E-02 -1.0394758E-02 -1.0017744E-02 -9.6545359E-03 -9.3046064E-03
 -8.9674536E-03 -8.6425962E-03 -8.3295740E-03 -8.0279466E-03 -7.7372976E-03
 -7.4572209E-03 -7.1873246E-03 -6.9272411E-03 -6.6766115E-03 -6.4352448E-03
 -6.2025012E-03
 0.2556116 0.2514350 0.2465928 0.2411014 0.2349795
 0.2282473 0.2209257 0.2130354 0.2045968 0.1956294
 0.1861520 0.1761835 0.1657460 0.1548714 0.1436198
 0.1321190 0.1206392 0.1096551 9.9721693E-02 9.1149792E-02
 8.3885387E-02 7.7694662E-02 7.2337933E-02 6.7626953E-02 6.3424721E-02
 5.9632752E-02 5.6179289E-02 5.3010944E-02 5.0087098E-02 4.7376078E-02
 4.4852741E-02 4.2496700E-02 4.0291127E-02 3.8221974E-02 3.6277279E-02
 3.4446757E-02 3.2721493E-02 3.1093623E-02 2.9556215E-02 2.8103037E-02
 2.6728498E-02 2.5427537E-02 2.4195548E-02 2.3028286E-02 2.1921895E-02
 2.0872777E-02 1.9877620E-02 1.8933339E-02 1.8037062E-02 1.7186128E-02
 1.6378025E-02 1.5610413E-02 1.4881094E-02 1.4188003E-02 1.3529209E-02
 1.2902887E-02 1.2307321E-02 1.1740891E-02 1.1202073E-02 1.0689429E-02
 1.0201605E-02 9.7373184E-03 9.2953593E-03 8.8745793E-03 8.4739057E-03
 8.0923093E-03 7.7288295E-03 7.3825507E-03 7.0526069E-03 6.7382026E-03
 6.4385165E-03
 5.3253561E-02 4.3276526E-02 3.3376332E-02 2.3618203E-02 1.4064840E-02
 4.7766864E-03 -4.1873953E-03 -1.2769126E-02 -2.0909386E-02 -2.8546154E-02
 -3.5611570E-02 -4.2027541E-02 -4.7699220E-02 -5.2505508E-02 -5.6286253E-02
 -5.8834020E-02 -5.9923314E-02 -5.9445925E-02 -5.7621539E-02 -5.4979563E-02
 -5.2043069E-02 -4.9129549E-02 -4.6379026E-02 -4.3835673E-02 -4.1501340E-02
 -3.9361618E-02 -3.7397176E-02 -3.5588399E-02 -3.3917233E-02 -3.2367650E-02
 -3.0925699E-02 -2.9579358E-02 -2.8318269E-02 -2.7133545E-02 -2.6017515E-02
 -2.4963574E-02 -2.3966011E-02 -2.3019861E-02 -2.2120817E-02 -2.1265104E-02
 -2.0449415E-02 -1.9670835E-02 -1.8926803E-02 -1.8215016E-02 -1.7533453E-02
 -1.6880287E-02 -1.6253876E-02 -1.5652740E-02 -1.5075527E-02 -1.4521021E-02
 -1.3988093E-02 -1.3475710E-02 -1.2982920E-02 -1.2508830E-02 -1.2052632E-02
 -1.1613545E-02 -1.1190857E-02 -1.0783884E-02 -1.0391985E-02 -1.0014568E-02
 -9.6510574E-03 -9.3009090E-03 -8.9636045E-03 -8.6386567E-03 -8.3255954E-03
 -8.0239726E-03 -7.7333599E-03 -7.4533490E-03 -7.1835406E-03 -6.9237635E-03
 -6.6732527E-03
 0.2735278 0.2694702 0.2647527 0.2593955 0.2534211
 0.2468534 0.2397171 0.2320368 0.2238363 0.2151383
 0.2059639 0.1963321 0.1862610 0.1757678 0.1648730
 0.1536083 0.1420364 0.1302974 0.1186915 0.1077307
 9.7961940E-02 8.9621730E-02 8.2584858E-02 7.6588340E-02 7.1389839E-02
 6.6806741E-02 6.2708616E-02 5.9002411E-02 5.5620525E-02 5.2512657E-02
 4.9640488E-02 4.6974089E-02 4.4489618E-02 4.2167712E-02 3.9992336E-02
 3.7950043E-02 3.6029384E-02 3.4220465E-02 3.2514699E-02 3.0904500E-02
 2.9383123E-02 2.7944546E-02 2.6583329E-02 2.5294533E-02 2.4073673E-02
 2.2916621E-02 2.1819573E-02 2.0779029E-02 1.9791726E-02 1.8854665E-02
 1.7965015E-02 1.7120160E-02 1.6317636E-02 1.5555137E-02 1.4830510E-02
 1.4141729E-02 1.3486885E-02 1.2864184E-02 1.2271928E-02 1.1708535E-02
 1.1172500E-02 1.0662404E-02 1.0176909E-02 9.7147515E-03 9.2747398E-03
 8.8557452E-03 8.4566986E-03 8.0765914E-03 7.7144699E-03 7.3694694E-03
 7.0406576E-03
 6.5856308E-02 5.5569623E-02 4.5336306E-02 3.5219956E-02 2.5280628E-02
 1.5575044E-02 6.1569926E-03 -2.9221277E-03 -1.1612400E-02 -1.9864224E-02
 -2.7626682E-02 -3.4845185E-02 -4.1458290E-02 -4.7393113E-02 -5.2558288E-02
 -5.6833569E-02 -6.0056385E-02 -6.2014606E-02 -6.2487148E-02 -6.1407149E-02
 -5.9074555E-02 -5.6066446E-02 -5.2886304E-02 -4.9809597E-02 -4.6944227E-02
 -4.4315271E-02 -4.1913904E-02 -3.9719664E-02 -3.7709657E-02 -3.5862032E-02
 -3.4157284E-02 -3.2578394E-02 -3.1110695E-02 -2.9741628E-02 -2.8460428E-02
 -2.7257858E-02 -2.6125997E-02 -2.5057998E-02 -2.4047956E-02 -2.3090748E-02
 -2.2181900E-02 -2.1317516E-02 -2.0494170E-02 -1.9708842E-02 -1.8958874E-02
 -1.8241888E-02 -1.7555773E-02 -1.6898636E-02 -1.6268771E-02 -1.5664641E-02
 -1.5084850E-02 -1.4528124E-02 -1.3993294E-02 -1.3479293E-02 -1.2985132E-02
 -1.2509899E-02 -1.2052739E-02 -1.1612860E-02 -1.1189518E-02 -1.0782021E-02
 -1.0389714E-02 -1.0011974E-02 -9.6482197E-03 -9.2978934E-03 -8.9604734E-03
 -8.6354585E-03 -8.3223702E-03 -8.0207521E-03 -7.7301711E-03 -7.4504707E-03
 -7.1807327E-03
 0.2923017 0.2883190 0.2836773 0.2784007 0.2725154
 0.2660488 0.2590294 0.2514852 0.2434438 0.2349311
 0.2259714 0.2165868 0.2067967 0.1966180 0.1860660
 0.1751552 0.1639035 0.1523408 0.1405316 0.1286268
 0.1169539 0.1060543 9.6457317E-02 8.8330060E-02 8.1491582E-02
 7.5660504E-02 7.0595443E-02 6.6119805E-02 6.2109087E-02 5.8474887E-02
 5.5153117E-02 5.2096076E-02 4.9267340E-02 4.6638459E-02 4.4186682E-02
 4.1893467E-02 3.9743464E-02 3.7723728E-02 3.5823245E-02 3.4032460E-02
 3.2343034E-02 3.0747611E-02 2.9239651E-02 2.7813263E-02 2.6463162E-02
 2.5184516E-02 2.3972927E-02 2.2824349E-02 2.1735063E-02 2.0701628E-02
 1.9720854E-02 1.8789764E-02 1.7905597E-02 1.7065758E-02 1.6267840E-02
 1.5509566E-02 1.4788812E-02 1.4103581E-02 1.3451984E-02 1.2832258E-02
 1.2242736E-02 1.1681841E-02 1.1148091E-02 1.0640086E-02 1.0156508E-02
 9.6961027E-03 9.2576928E-03 8.8401595E-03 8.4424485E-03 8.0636237E-03
 7.7026151E-03
 7.9348981E-02 6.8754867E-02 5.8194034E-02 4.7729343E-02 3.7419513E-02
 2.7319107E-02 1.7478865E-02 7.9460340E-03 -1.2350135E-03 -1.0022074E-02
 -1.8374033E-02 -2.6249442E-02 -3.3604737E-02 -4.0391862E-02 -4.6554785E-02
 -5.2024685E-02 -5.6712642E-02 -6.0498528E-02 -6.3216768E-02 -6.4650580E-02
 -6.4584136E-02 -6.2991530E-02 -6.0242061E-02 -5.6942705E-02 -5.3571235E-02
 -5.0366078E-02 -4.7409382E-02 -4.4711534E-02 -4.2255651E-02 -4.0016703E-02
 -3.7969030E-02 -3.6089167E-02 -3.4356460E-02 -3.2753125E-02 -3.1263936E-02
 -2.9875891E-02 -2.8577896E-02 -2.7360439E-02 -2.6215384E-02 -2.5135690E-02
 -2.4115285E-02 -2.3148892E-02 -2.2231931E-02 -2.1360373E-02 -2.0530714E-02
 -1.9739831E-02 -1.8984985E-02 -1.8263729E-02 -1.7573884E-02 -1.6913500E-02
 -1.6280819E-02 -1.5674250E-02 -1.5092357E-02 -1.4533827E-02 -1.3997457E-02
 -1.3482151E-02 -1.2986884E-02 -1.2510722E-02 -1.2052787E-02 -1.1612269E-02
 -1.1188409E-02 -1.0780495E-02 -1.0387855E-02 -1.0009858E-02 -9.6459072E-03
 -9.2954477E-03 -8.9579355E-03 -8.6328657E-03 -8.3197523E-03 -8.0184750E-03
 -7.7279191E-03
 0.3120382 0.3080872 0.3034737 0.2982257 0.2923732
 0.2859473 0.2789798 0.2715024 0.2635459 0.2551397
 0.2463113 0.2370859 0.2274859 0.2175305 0.2072361
 0.1966163 0.1856825 0.1744457 0.1629204 0.1511344
 0.1391532 0.1271373 0.1154379 0.1046192 9.5187813E-02
 8.7249123E-02 8.0579981E-02 7.4887842E-02 6.9934174E-02 6.5548077E-02
 6.1610140E-02 5.8035940E-02 5.4764282E-02 5.1749635E-02 4.8957173E-02
 4.6359610E-02 4.3935116E-02 4.1665852E-02 3.9537027E-02 3.7536133E-02
 3.5652474E-02 3.3876788E-02 3.2200973E-02 3.0617846E-02 2.9121038E-02
 2.7704790E-02 2.6363917E-02 2.5093688E-02 2.3889771E-02 2.2748217E-02
 2.1665361E-02 2.0637807E-02 1.9662412E-02 1.8736254E-02 1.7856603E-02
 1.7020909E-02 1.6226783E-02 1.5471992E-02 1.4754422E-02 1.4072107E-02
 1.3423188E-02 1.2805912E-02 1.2218630E-02 1.1659785E-02 1.1127913E-02
 1.0621630E-02 1.0139627E-02 9.6806604E-03 9.2435647E-03 8.8273147E-03
 8.4307054E-03
 9.3754821E-02 8.2851231E-02 7.1963243E-02 6.1153758E-02 5.0480872E-02
 3.9998073E-02 2.9754292E-02 1.9794321E-02 1.0159126E-02 8.8642666E-04
 -7.9886001E-03 -1.6432293E-02 -2.4411432E-02 -3.1891696E-02 -3.8835716E-02
 -4.5200545E-02 -5.0934289E-02 -5.5971019E-02 -6.0223229E-02 -6.3570157E-02
 -6.5842815E-02 -6.6819876E-02 -6.6291250E-02 -6.4269505E-02 -6.1181668E-02
 -5.7651304E-02 -5.4129142E-02 -5.0822243E-02 -4.7792450E-02 -4.5038860E-02
 -4.2538434E-02 -4.0262688E-02 -3.8183875E-02 -3.6277249E-02 -3.4521293E-02
 -3.2897603E-02 -3.1390507E-02 -2.9986650E-02 -2.8674679E-02 -2.7444858E-02
 -2.6288843E-02 -2.5199443E-02 -2.4170451E-02 -2.3196468E-02 -2.2272805E-02
 -2.1395352E-02 -2.0560494E-02 -1.9765051E-02 -1.9006202E-02 -1.8281454E-02
 -1.7588567E-02 -1.6925534E-02 -1.6290557E-02 -1.5682006E-02 -1.5098407E-02
 -1.4538416E-02 -1.4000800E-02 -1.3484435E-02 -1.2988275E-02 -1.2511360E-02
 -1.2052807E-02 -1.1611778E-02 -1.1187498E-02 -1.0779244E-02 -1.0386338E-02
 -1.0008138E-02 -9.6440352E-03 -9.2934640E-03 -8.9558773E-03 -8.6311921E-03
 -8.3180610E-03
 0.3335213 0.3288887 0.3242560 0.3189851 0.3131100
 0.3066656 0.2996874 0.2922102 0.2842681 0.2758939
 0.2671182 0.2579693 0.2484725 0.2386501 0.2285209
 0.2181004 0.2074008 0.1964314 0.1851995 0.1737121
 0.1619803 0.1500297 0.1379263 0.1258390 0.1141392
 0.1034084 9.4128340E-02 8.6352147E-02 7.9825170E-02 7.4248441E-02
 6.9386929E-02 6.5074839E-02 6.1197076E-02 5.7672519E-02 5.4442387E-02
 5.1462870E-02 4.8700474E-02 4.6128877E-02 4.3727022E-02 4.1477647E-02
 3.9366391E-02 3.7381105E-02 3.5511401E-02 3.3748228E-02 3.2083686E-02
 3.0510761E-02 2.9023185E-02 2.7615324E-02 2.6282070E-02 2.5018787E-02
 2.3821225E-02 2.2685466E-02 2.1607906E-02 2.0585191E-02 1.9614235E-02
 1.8692141E-02 1.7816210E-02 1.6983926E-02 1.6192919E-02 1.5440986E-02
 1.4726038E-02 1.4046122E-02 1.3399403E-02 1.2784137E-02 1.2198699E-02
 1.1641543E-02 1.1111218E-02 1.0606349E-02 1.0125631E-02 9.6679637E-03
 9.2319483E-03
 0.1090990 9.7880416E-02 8.6661831E-02 7.5506471E-02 6.4472392E-02
 5.3612590E-02 4.2975053E-02 3.2603148E-02 2.2535803E-02 1.2807992E-02
 3.4512863E-03 -5.5054841E-03 -1.4035312E-02 -2.2112088E-02 -2.9709170E-02
 -3.6797877E-02 -4.3345582E-02 -4.9313091E-02 -5.4651313E-02 -5.9296086E-02
 -6.3160367E-02 -6.6122159E-02 -6.8008937E-02 -6.8595089E-02 -6.7676321E-02
 -6.5299869E-02 -6.1939351E-02 -5.8225889E-02 -5.4584555E-02 -5.1196627E-02
 -4.8107993E-02 -4.5309085E-02 -4.2772140E-02 -4.0466055E-02 -3.8361486E-02
 -3.6432657E-02 -3.4657381E-02 -3.3016764E-02 -3.1494778E-02 -3.0077802E-02
 -2.8754229E-02 -2.7514149E-02 -2.6349062E-02 -2.5251638E-02 -2.4215562E-02
 -2.3235328E-02 -2.2306159E-02 -2.1423854E-02 -2.0584730E-02 -1.9785553E-02
 -1.9023439E-02 -1.8295839E-02 -1.7600464E-02 -1.6935274E-02 -1.6298432E-02
 -1.5688274E-02 -1.5103291E-02 -1.4542115E-02 -1.4003486E-02 -1.3486265E-02
 -1.2989385E-02 -1.2511872E-02 -1.2052813E-02 -1.1611367E-02 -1.1186752E-02
 -1.0778231E-02 -1.0385111E-02 -1.0006743E-02 -9.6425172E-03 -9.2924107E-03
 -8.9547606E-03
 0.3586608 0.3527075 0.3467543 0.3408010 0.3348478
 0.3283261 0.3212749 0.3137327 0.3057368 0.2973230
 0.2885250 0.2793741 0.2698985 0.2601233 0.2500702
 0.2397572 0.2291986 0.2184054 0.2073850 0.1961423
 0.1846806 0.1730031 0.1611175 0.1490471 0.1368585
 0.1247277 0.1130432 0.1023987 9.3251966E-02 8.5613005E-02
 7.9203852E-02 7.3722094E-02 6.8936221E-02 6.4684883E-02 6.0856581E-02
 5.7372849E-02 5.4176882E-02 5.1226299E-02 4.8488691E-02 4.5938537E-02
 4.3555360E-02 4.1322388E-02 3.9225634E-02 3.7253238E-02 3.5395052E-02
 3.3642225E-02 3.1986997E-02 3.0422473E-02 2.8942503E-02 2.7541552E-02
 2.6214596E-02 2.4957046E-02 2.3764707E-02 2.2633715E-02 2.1560514E-02
 2.0541796E-02 1.9574489E-02 1.8655738E-02 1.7782865E-02 1.6953383E-02
 1.6164944E-02 1.5415360E-02 1.4702566E-02 1.4024622E-02 1.3379707E-02
 1.2766100E-02 1.2182180E-02 1.1626411E-02 1.1097353E-02 1.0593804E-02
 1.0114155E-02
 0.1249950 0.1135976 0.1022003 9.0802938E-02 7.9405598E-02
 6.8169393E-02 5.7141922E-02 4.6365712E-02 3.5878532E-02 2.5713751E-02
 1.5900701E-02 6.4652567E-03 -2.5694238E-03 -1.1182277E-02 -1.9353228E-02
 -2.7062058E-02 -3.4287263E-02 -4.1004285E-02 -4.7183804E-02 -5.2789070E-02
 -5.7772566E-02 -6.2070917E-02 -6.5596893E-02 -6.8226829E-02 -6.9784738E-02
 -7.0041165E-02 -6.8797305E-02 -6.6130608E-02 -6.2551416E-02 -5.8692761E-02
 -5.4956824E-02 -5.1504031E-02 -4.8367795E-02 -4.5531914E-02 -4.2965066E-02
 -4.0633883E-02 -3.8507979E-02 -3.6560740E-02 -3.4769442E-02 -3.3114795E-02
 -3.1580474E-02 -3.0152617E-02 -2.8819444E-02 -2.7570885E-02 -2.6398312E-02
 -2.5294283E-02 -2.4252377E-02 -2.3267008E-02 -2.2333311E-02 -2.1447029E-02
 -2.0604426E-02 -1.9802198E-02 -1.9037416E-02 -1.8307487E-02 -1.7610090E-02
 -1.6943151E-02 -1.6304793E-02 -1.5693326E-02 -1.5107226E-02 -1.4545089E-02
 -1.4005648E-02 -1.3487733E-02 -1.2990270E-02 -1.2512265E-02 -1.2052802E-02
 -1.1611028E-02 -1.1186142E-02 -1.0777402E-02 -1.0384107E-02 -1.0006327E-02
 -9.6419938E-03
 0.3820719 0.3759830 0.3698941 0.3638051 0.3577163
 0.3510590 0.3438722 0.3361996 0.3280820 0.3195582
 0.3106649 0.3014362 0.2919033 0.2820938 0.2720322
 0.2617389 0.2512310 0.2405214 0.2296196 0.2185315
 0.2072603 0.1958066 0.1841695 0.1723489 0.1603498
 0.1481933 0.1359463 0.1237909 0.1121298 0.1015651
 9.2532605E-02 8.5007682E-02 7.8695148E-02 7.3290840E-02 6.8566673E-02
 6.4364880E-02 6.0576957E-02 5.7126585E-02 5.3958587E-02 5.1031746E-02
 4.8314463E-02 4.5781888E-02 4.3414064E-02 4.1194562E-02 3.9109737E-02
 3.7147954E-02 3.5299242E-02 3.3554915E-02 3.1907331E-02 3.0349726E-02
 2.8876027E-02 2.7480768E-02 2.6158981E-02 2.4906138E-02 2.3718096E-02
 2.2591032E-02 2.1521417E-02 2.0505978E-02 1.9541668E-02 1.8625665E-02
 1.7755309E-02 1.6928129E-02 1.6141802E-02 1.5394148E-02 1.4683128E-02
 1.4006810E-02 1.3363382E-02 1.2751136E-02 1.2168460E-02 1.1614048E-02
 1.1086039E-02
 0.1424539 0.1306664 0.1188790 0.1070915 9.5304094E-02
 8.3677784E-02 7.2260208E-02 6.1082359E-02 5.0181363E-02 3.9589606E-02
 2.9335145E-02 1.9442063E-02 9.9311024E-03 8.2020217E-04 -7.8746416E-03
 -1.6138498E-02 -2.3956655E-02 -3.1313319E-02 -3.8190514E-02 -4.4566479E-02
 -5.0413799E-02 -5.5697046E-02 -6.0369395E-02 -6.4367488E-02 -6.7603387E-02
 -6.9951653E-02 -7.1233019E-02 -7.1214691E-02 -6.9702893E-02 -6.6800669E-02
 -6.3046739E-02 -5.9072830E-02 -5.5261493E-02 -5.1756531E-02 -4.8581686E-02
 -4.5715537E-02 -4.3124039E-02 -4.0772170E-02 -3.8628623E-02 -3.6666155E-02
 -3.4861583E-02 -3.3195309E-02 -3.1650778E-02 -3.0213926E-02 -2.8872833E-02
 -2.7617291E-02 -2.6438547E-02 -2.5329087E-02 -2.4282385E-02 -2.3292802E-02
 -2.2355404E-02 -2.1465879E-02 -2.0620424E-02 -1.9815698E-02 -1.9048745E-02
 -1.8316925E-02 -1.7617887E-02 -1.6949523E-02 -1.6309932E-02 -1.5697412E-02
 -1.5110399E-02 -1.4547487E-02 -1.4007386E-02 -1.3488912E-02 -1.2990979E-02
 -1.2512580E-02 -1.2052793E-02 -1.1610746E-02 -1.1185642E-02 -1.0777663E-02
 -1.0384217E-02
 0.4069542 0.4006747 0.3943952 0.3881157 0.3818363
 0.3749884 0.3676111 0.3597480 0.3514400 0.3427354
 0.3336742 0.3242930 0.3146259 0.3047032 0.2945517
 0.2841944 0.2736507 0.2629359 0.2520615 0.2410355
 0.2298625 0.2185439 0.2070783 0.1954626 0.1836927
 0.1717653 0.1596828 0.1474649 0.1351786 0.1230110
 0.1113764 0.1008824 9.1945872E-02 8.4514454E-02 7.8280404E-02
 7.2938859E-02 6.8264656E-02 6.4103052E-02 6.0347926E-02 5.6924745E-02
 5.3779535E-02 5.0872039E-02 4.8171360E-02 4.5653164E-02 4.3297894E-02
 4.1089449E-02 3.9014395E-02 3.7061300E-02 3.5220351E-02 3.3483002E-02
 3.1841714E-02 3.0289788E-02 2.8821236E-02 2.7430631E-02 2.6113097E-02
 2.4864128E-02 2.3679618E-02 2.2555783E-02 2.1489110E-02 2.0476367E-02
 1.9514527E-02 1.8600781E-02 1.7732495E-02 1.6907206E-02 1.6122617E-02
 1.5376558E-02 1.4666995E-02 1.3992012E-02 1.3349807E-02 1.2738970E-02
 1.2157319E-02
 0.1610096 0.1488103 0.1366110 0.1244118 0.1122126
 0.1001745 8.8345185E-02 7.6755591E-02 6.5442860E-02 5.4429088E-02
 4.3741535E-02 3.3403274E-02 2.3433575E-02 1.3848449E-02 4.6613282E-03
 -4.1161967E-03 -1.2473675E-02 -2.0400759E-02 -2.7886502E-02 -3.4918070E-02
 -4.1479632E-02 -4.7550958E-02 -5.3105578E-02 -5.8108486E-02 -6.2512815E-02
 -6.6254795E-02 -6.9245458E-02 -7.1357578E-02 -7.2408944E-02 -7.2164007E-02
 -7.0433423E-02 -6.7341343E-02 -6.3448139E-02 -5.9382636E-02 -5.5511042E-02
 -5.1963981E-02 -4.8757676E-02 -4.5866724E-02 -4.3254934E-02 -4.0886004E-02
 -3.8727868E-02 -3.6752786E-02 -3.4937233E-02 -3.3261348E-02 -3.1708382E-02
 -3.0264119E-02 -2.8916491E-02 -2.7655192E-02 -2.6471378E-02 -2.5357455E-02
 -2.4306836E-02 -2.3313802E-02 -2.2373375E-02 -2.1481184E-02 -2.0633409E-02
 -1.9826656E-02 -1.9057933E-02 -1.8324576E-02 -1.7624198E-02 -1.6954679E-02
 -1.6314095E-02 -1.5700711E-02 -1.5112964E-02 -1.4549422E-02 -1.4008787E-02
 -1.3489861E-02 -1.2991547E-02 -1.2512833E-02 -1.2052775E-02 -1.1611743E-02
 -1.1186436E-02
 0.4333936 0.4268721 0.4203507 0.4138293 0.4073080
 0.4002182 0.3925990 0.3844942 0.3759442 0.3669979
 0.3576947 0.3480860 0.3382081 0.3280940 0.3177730
 0.3072703 0.2966075 0.2858020 0.2748676 0.2638142
 0.2526481 0.2413724 0.2299871 0.2184893 0.2068741
 0.1951348 0.1832645 0.1712575 0.1591141 0.1468526
 0.1345405 0.1223686 0.1107603 0.1003273 9.1469966E-02
 8.4114343E-02 7.7943467E-02 7.2652459E-02 6.8018533E-02 6.3889384E-02
 6.0160782E-02 5.6759600E-02 5.3632885E-02 5.0741106E-02 4.8053950E-02
 4.5547485E-02 4.3202464E-02 4.1003037E-02 3.8935959E-02 3.6989983E-02
 3.5155404E-02 3.3423774E-02 3.1787626E-02 3.0240353E-02 2.8776025E-02
 2.7389267E-02 2.6075212E-02 2.4829427E-02 2.3647813E-02 2.2526622E-02
 2.1462375E-02 2.0451851E-02 1.9492041E-02 1.8580148E-02 1.7713567E-02
 1.6889842E-02 1.6106684E-02 1.5361935E-02 1.4653570E-02 1.3980061E-02
 1.3338875E-02
 0.1806662 0.1680382 0.1554103 0.1427824 0.1301546
 0.1176879 0.1054299 9.3411691E-02 8.1670351E-02 7.0227981E-02
 5.9111837E-02 4.8335709E-02 3.7918009E-02 2.7873579E-02 1.8214243E-02
 8.9495126E-03 8.7133107E-05 -8.3660530E-03 -1.6403496E-02 -2.4017958E-02
 -3.1200755E-02 -3.7940737E-02 -4.4223174E-02 -5.0028376E-02 -5.5330072E-02
 -6.0093060E-02 -6.4270005E-02 -6.7796387E-02 -7.0582122E-02 -7.2498262E-02
 -7.3360123E-02 -7.2929896E-02 -7.1022056E-02 -6.7777820E-02 -6.3773908E-02
 -5.9635524E-02 -5.5715602E-02 -5.2134458E-02 -4.8902493E-02 -4.5991432E-02
 -4.3362685E-02 -4.0979639E-02 -3.8809441E-02 -3.6823921E-02 -3.4999296E-02
 -3.3315483E-02 -3.1755559E-02 -3.0305179E-02 -2.8952172E-02 -2.7686140E-02
 -2.6498172E-02 -2.5380591E-02 -2.4326751E-02 -2.3330888E-02 -2.2387985E-02
 -2.1493632E-02 -2.0643959E-02 -1.9835554E-02 -1.9065388E-02 -1.8330777E-02
 -1.7629318E-02 -1.6958857E-02 -1.6317463E-02 -1.5703382E-02 -1.5115036E-02
 -1.4550989E-02 -1.4009921E-02 -1.3490630E-02 -1.2992004E-02 -1.2514647E-02
 -1.2054342E-02
 0.4614488 0.4546383 0.4478280 0.4410177 0.4342074
 0.4268288 0.4189208 0.4105270 0.4016882 0.3924530
 0.3828610 0.3729633 0.3627966 0.3524123 0.3418420
 0.3311132 0.3202495 0.3092704 0.2981913 0.2870241
 0.2757769 0.2644544 0.2530582 0.2415869 0.2300363
 0.2184000 0.2066699 0.1948365 0.1828905 0.1708242
 0.1586364 0.1463442 0.1340153 0.1218440 0.1102604
 9.9878527E-02 9.1085702E-02 8.3790921E-02 7.7670634E-02 7.2420083E-02
 6.7818426E-02 6.3715309E-02 6.0008075E-02 5.6624640E-02 5.3512897E-02
 5.0633881E-02 4.7957696E-02 4.5460757E-02 4.3124065E-02 4.0931992E-02
 3.8871437E-02 3.6931280E-02 3.5101902E-02 3.3374935E-02 3.1743012E-02
 3.0199561E-02 2.8738691E-02 2.7355075E-02 2.6043884E-02 2.4800707E-02
 2.3621481E-02 2.2502473E-02 2.1440219E-02 2.0431513E-02 1.9473372E-02
 1.8563017E-02 1.7697835E-02 1.6875394E-02 1.6093414E-02 1.5350225E-02
 1.4642864E-02
 0.2014102 0.1883412 0.1752722 0.1622033 0.1491344
 0.1362266 0.1235276 0.1110684 9.8886050E-02 8.7002680E-02
 7.5445540E-02 6.4228423E-02 5.3369734E-02 4.2875763E-02 3.2757375E-02
 2.3022743E-02 1.3677922E-02 4.7275065E-03 -3.8247257E-03 -1.1975187E-02
 -1.9719621E-02 -2.7052615E-02 -3.3966634E-02 -4.0451176E-02 -4.6491794E-02
 -5.2068714E-02 -5.7155319E-02 -6.1715875E-02 -6.5702289E-02 -6.9049142E-02
 -7.1665235E-02 -7.3420115E-02 -7.4127026E-02 -7.3546387E-02 -7.1495943E-02
 -6.8130374E-02 -6.4038634E-02 -5.9842195E-02 -5.5883463E-02 -5.2274693E-02
 -4.9021725E-02 -4.6093963E-02 -4.3451369E-02 -4.1056655E-02 -3.8876481E-02
 -3.6882352E-02 -3.5050225E-02 -3.3359863E-02 -3.1794187E-02 -3.0338775E-02
 -2.8981347E-02 -2.7711432E-02 -2.6520044E-02 -2.5399450E-02 -2.4342980E-02
 -2.3344813E-02 -2.2399884E-02 -2.1503761E-02 -2.0652540E-02 -1.9842787E-02
 -1.9071449E-02 -1.8335819E-02 -1.7633477E-02 -1.6962249E-02 -1.6320193E-02
 -1.5705552E-02 -1.5116724E-02 -1.4552264E-02 -1.4010840E-02 -1.3493390E-02
 -1.2994456E-02
 0.4911481 0.4840069 0.4768656 0.4697245 0.4625835
 0.4548740 0.4466351 0.4379105 0.4287409 0.4191748
 0.4092520 0.3990235 0.3885260 0.3778109 0.3669098
 0.3558733 0.3447267 0.3334913 0.3221844 0.3108192
 0.2994055 0.2879494 0.2764541 0.2649195 0.2533429
 0.2417189 0.2300401 0.2182970 0.2064787 0.1945737
 0.1825706 0.1704601 0.1582398 0.1459261 0.1335867
 0.1214186 0.1098571 9.9517554E-02 9.0776481E-02 8.3530247E-02
 7.7450179E-02 7.2231784E-02 6.7655891E-02 6.3573591E-02 5.9883501E-02
 5.6514390E-02 5.3414717E-02 5.0546009E-02 4.7878698E-02 4.5389503E-02
 4.3059606E-02 4.0873520E-02 3.8818285E-02 3.6882855E-02 3.5057735E-02
 3.3334602E-02 3.1706139E-02 3.0165814E-02 2.8707776E-02 2.7326748E-02
 2.6017915E-02 2.4776883E-02 2.3599621E-02 2.2482401E-02 2.1421788E-02
 2.0414591E-02 1.9457830E-02 1.8548733E-02 1.7684711E-02 1.6863916E-02
 1.6082946E-02
 0.2232160 0.2096974 0.1961789 0.1826604 0.1691419
 0.1557846 0.1426361 0.1297273 0.1170954 0.1047626
 9.2755906E-02 8.1089281E-02 6.9781095E-02 5.8837637E-02 4.8269771E-02
 3.8077496E-02 2.8265730E-02 1.8837687E-02 9.7952886E-03 1.1398979E-03
 -7.1271635E-03 -1.5004038E-02 -2.2487767E-02 -2.9573565E-02 -3.6254250E-02
 -4.2519275E-02 -4.8353907E-02 -5.3737935E-02 -5.8644027E-02 -6.3035727E-02
 -6.6864096E-02 -7.0062786E-02 -7.2539568E-02 -7.4162662E-02 -7.4743673E-02
 -7.4041717E-02 -7.1877226E-02 -6.8415336E-02 -6.4253949E-02 -6.0011305E-02
 -5.6021333E-02 -5.2390069E-02 -4.9120635E-02 -4.6178386E-02 -4.3524362E-02
 -4.1120015E-02 -3.8931590E-02 -3.6930326E-02 -3.5091996E-02 -3.3396225E-02
 -3.1825826E-02 -3.0366268E-02 -2.9005194E-02 -2.7732078E-02 -2.6537886E-02
 -2.5414839E-02 -2.4356209E-02 -2.3356153E-02 -2.2409566E-02 -2.1511996E-02
 -2.0659516E-02 -1.9848665E-02 -1.9076373E-02 -1.8339908E-02 -1.7636845E-02
 -1.6965002E-02 -1.6322413E-02 -1.5707314E-02 -1.5118085E-02 -1.4556131E-02
 -1.4014340E-02
 0.5224878 0.5149793 0.5074708 0.4999625 0.4924543
 0.4843778 0.4757719 0.4666802 0.4571435 0.4472104
 0.4369205 0.4263250 0.4154605 0.4043784 0.3931105
 0.3817070 0.3701935 0.3586182 0.3469997 0.3353528
 0.3236884 0.3120140 0.3003338 0.2886491 0.2769582
 0.2652572 0.2535396 0.2417969 0.2300187 0.2181932
 0.2063073 0.1943476 0.1823012 0.1701578 0.1579137
 0.1455849 0.1332395 0.1210758 0.1095334 9.9228397E-02
 9.0528578E-02 8.3320655E-02 7.7272326E-02 7.2079413E-02 6.7523956E-02
 6.3458309E-02 5.9781957E-02 5.6424316E-02 5.3334344E-02 5.0473962E-02
 4.7813863E-02 4.5330938E-02 4.3006547E-02 4.0825330E-02 3.8774427E-02
 3.6842879E-02 3.5021238E-02 3.3301242E-02 3.1675600E-02 3.0137846E-02
 2.8682146E-02 2.7303241E-02 2.5996346E-02 2.4757074E-02 2.3581427E-02
 2.2465691E-02 2.1406436E-02 2.0400472E-02 1.9444853E-02 1.8537488E-02
 1.7674483E-02
 0.2460505 0.2320772 0.2181038 0.2041305 0.1901572
 0.1763451 0.1627417 0.1493782 0.1362915 0.1235039
 0.1110424 9.8921061E-02 8.7158121E-02 7.5759910E-02 6.4737290E-02
 5.4090269E-02 4.3823756E-02 3.3932727E-02 2.4417924E-02 1.5279224E-02
 6.5161767E-03 -1.8716869E-03 -9.8842746E-03 -1.7520372E-02 -2.4777358E-02
 -3.1650405E-02 -3.8132064E-02 -4.4211406E-02 -4.9873006E-02 -5.5095956E-02
 -5.9852179E-02 -6.4104356E-02 -6.7802727E-02 -7.0880026E-02 -7.3243111E-02
 -7.4759141E-02 -7.5238392E-02 -7.4439086E-02 -7.2183810E-02 -6.8645820E-02
 -6.4429387E-02 -6.0149886E-02 -5.6134708E-02 -5.2485116E-02 -4.9201712E-02
 -4.6248015E-02 -4.3584529E-02 -4.1172192E-02 -3.8976919E-02 -3.6969755E-02
 -3.5126314E-02 -3.3426072E-02 -3.1851768E-02 -3.0388780E-02 -2.9024711E-02
 -2.7748968E-02 -2.6552474E-02 -2.5427410E-02 -2.4367005E-02 -2.3365397E-02
 -2.2417465E-02 -2.1518711E-02 -2.0665200E-02 -1.9853448E-02 -1.9080373E-02
 -1.8343240E-02 -1.7639592E-02 -1.6967244E-02 -1.6324211E-02 -1.5712561E-02
 -1.5122879E-02
 0.5554386 0.5475322 0.5396259 0.5317198 0.5238139
 0.5153397 0.5063362 0.4968469 0.4869126 0.4765819
 0.4658946 0.4549016 0.4436396 0.4321602 0.4204948
 0.4086940 0.3967831 0.3848104 0.3727947 0.3607810
 0.3487813 0.3368041 0.3248544 0.3129344 0.3010435
 0.2891785 0.2773342 0.2655029 0.2536753 0.2418403
 0.2299851 0.2180959 0.2061580 0.1941565 0.1820773
 0.1699091 0.1576478 0.1453084 0.1329595 0.1208009
 0.1092749 9.8997578E-02 9.0330325E-02 8.3152436E-02 7.7129059E-02
 7.1956255E-02 6.7416951E-02 6.3364528E-02 5.9699118E-02 5.6350674E-02
 5.3268529E-02 5.0414853E-02 4.7760565E-02 4.5282714E-02 4.2962801E-02
 4.0785555E-02 3.8738187E-02 3.6809813E-02 3.4991004E-02 3.3273574E-02
 3.1650268E-02 3.0114619E-02 2.8660836E-02 2.7283676E-02 2.5978372E-02
 2.4740571E-02 2.3566253E-02 2.2451740E-02 2.1393597E-02 2.0388665E-02
 1.9433985E-02
 0.2698829 0.2554516 0.2410205 0.2265894 0.2121583
 0.1978885 0.1838274 0.1700061 0.1564617 0.1432163
 0.1302972 0.1177181 0.1054974 9.3641527E-02 8.2161210E-02
 7.1056493E-02 6.0332287E-02 4.9983568E-02 4.0011082E-02 3.0406019E-02
 2.1166751E-02 1.2291386E-02 3.7782525E-03 -4.3736766E-03 -1.2164570E-02
 -1.9593200E-02 -2.6656592E-02 -3.3349536E-02 -3.9663918E-02 -4.5588098E-02
 -5.1105946E-02 -5.6195747E-02 -6.0828626E-02 -6.4966388E-02 -6.8558514E-02
 -7.1536958E-02 -7.3807739E-02 -7.5237170E-02 -7.5634554E-02 -7.4757472E-02
 -7.2430342E-02 -6.8832390E-02 -6.4572521E-02 -6.0263626E-02 -5.6228109E-02
 -5.2563563E-02 -4.9268723E-02 -4.6305526E-02 -4.3634169E-02 -4.1215207E-02
 -3.9014276E-02 -3.7002221E-02 -3.5154529E-02 -3.3450585E-02 -3.1873051E-02
 -3.0407248E-02 -2.9040709E-02 -2.7762804E-02 -2.6564408E-02 -2.5437685E-02
 -2.4375835E-02 -2.3372959E-02 -2.2423914E-02 -2.1524193E-02 -2.0669837E-02
 -1.9857356E-02 -1.9083643E-02 -1.8345956E-02 -1.7641826E-02 -1.6969038E-02
 -1.6325660E-02
 0.5899494 0.5816201 0.5732910 0.5649621 0.5566335
 0.5477367 0.5383105 0.5283987 0.5180420 0.5072889
 0.4961792 0.4847639 0.4730796 0.4611778 0.4490902
 0.4368671 0.4245340 0.4121391 0.3997012 0.3872654
 0.3748436 0.3624777 0.3501734 0.3379334 0.3257576
 0.3136435 0.3015866 0.2895801 0.2776155 0.2656824
 0.2537691 0.2418623 0.2299473 0.2180088 0.2060308
 0.1939972 0.1818932 0.1697063 0.1574321 0.1450855
 0.1327350 0.1205815 0.1090692 9.8813921E-02 9.0172127E-02
 8.3017692E-02 7.7013783E-02 7.1856990E-02 6.7330100E-02 6.3288167E-02
 5.9631504E-02 5.6290422E-02 5.3214543E-02 5.0366256E-02 4.7716670E-02
 4.5242947E-02 4.2926677E-02 4.0752664E-02 3.8708173E-02 3.6782380E-02
 3.4965914E-02 3.3250585E-02 3.1629190E-02 3.0095272E-02 2.8643066E-02
 2.7267354E-02 2.5963368E-02 2.4726771E-02 2.3553552E-02 2.2440048E-02
 2.1382840E-02
 0.2946884 0.2797978 0.2649073 0.2500169 0.2351266
 0.2203974 0.2058771 0.1915966 0.1775929 0.1638883
 0.1505099 0.1374716 0.1247918 0.1124767 0.1005372
 8.8973373E-02 7.7790014E-02 6.6982143E-02 5.6550510E-02 4.6486307E-02
 3.6787905E-02 2.7444003E-02 1.8451901E-02 9.8092165E-03 1.5141205E-03
 -6.4342963E-03 -1.4035805E-02 -2.1288695E-02 -2.8189303E-02 -3.4731720E-02
 -4.0907081E-02 -4.6702959E-02 -5.2102484E-02 -5.7083074E-02 -6.1615095E-02
 -6.5659657E-02 -6.9165416E-02 -7.2063744E-02 -7.4259907E-02 -7.5619549E-02
 -7.5951293E-02 -7.5012349E-02 -7.2628558E-02 -6.8983577E-02 -6.4689502E-02
 -6.0357194E-02 -5.6305207E-02 -5.2631408E-02 -4.9324192E-02 -4.6353094E-02
 -4.3675218E-02 -4.1250743E-02 -3.9045092E-02 -3.7028972E-02 -3.5177764E-02
 -3.3470765E-02 -3.1890564E-02 -3.0422429E-02 -2.9053843E-02 -2.7774151E-02
 -2.6574204E-02 -2.5446109E-02 -2.4383070E-02 -2.3379147E-02 -2.2429189E-02
 -2.1528678E-02 -2.0673633E-02 -1.9860549E-02 -1.9086311E-02 -1.8348135E-02
 -1.7643621E-02
 0.6259612 0.6171890 0.6084171 0.5996454 0.5908741
 0.5815346 0.5716658 0.5613114 0.5505121 0.5393166
 0.5277643 0.5159066 0.5037799 0.4914358 0.4789059
 0.4662406 0.4534653 0.4406283 0.4277481 0.4148702
 0.4020064 0.3891984 0.3764520 0.3638058 0.3512598
 0.3388119 0.3264577 0.3141909 0.3020036 0.2898860
 0.2778271 0.2658145 0.2538342 0.2418713 0.2299099
 0.2179332 0.2059244 0.1938660 0.1817427 0.1695419
 0.1572582 0.1449067 0.1325558 0.1204071 0.1089061
 9.8668404E-02 9.0046301E-02 8.2909927E-02 7.6921098E-02 7.1776539E-02
 6.7259669E-02 6.3226022E-02 5.9576277E-02 5.6241047E-02 5.3170208E-02
 5.0326284E-02 4.7680490E-02 4.5210116E-02 4.2896781E-02 4.0725403E-02
 3.8683280E-02 3.6759600E-02 3.4945048E-02 3.3231445E-02 3.1611614E-02
 3.0079134E-02 2.8628239E-02 2.7253712E-02 2.5950808E-02 2.4715208E-02
 2.3542915E-02
 0.3204508 0.3051001 0.2897496 0.2743992 0.2590488
 0.2438597 0.2288794 0.2141389 0.1996753 0.1855107
 0.1716724 0.1581742 0.1450345 0.1322595 0.1198602
 0.1078364 9.6193217E-02 8.4925495E-02 7.4034020E-02 6.3509986E-02
 5.3351760E-02 4.3548040E-02 3.4096122E-02 2.4983425E-02 1.6207207E-02
 7.7653914E-03 -3.4335160E-04 -8.1193401E-03 -1.5561548E-02 -2.2667548E-02
 -2.9432880E-02 -3.5850808E-02 -4.1911740E-02 -4.7602404E-02 -5.2905157E-02
 -5.7796754E-02 -6.2246747E-02 -6.6215746E-02 -6.9651693E-02 -7.2485283E-02
 -7.4621335E-02 -7.5924933E-02 -7.6204225E-02 -7.5216241E-02 -7.2787985E-02
 -6.9106318E-02 -6.4785354E-02 -6.0434349E-02 -5.6369003E-02 -5.2685771E-02
 -4.9370300E-02 -4.6392601E-02 -4.3709256E-02 -4.1280169E-02 -3.9070599E-02
 -3.7051104E-02 -3.5196964E-02 -3.3487428E-02 -3.1905003E-02 -3.0434933E-02
 -2.9064666E-02 -2.7783504E-02 -2.6582265E-02 -2.5453042E-02 -2.4389012E-02
 -2.3384238E-02 -2.2433534E-02 -2.1532366E-02 -2.0676751E-02 -1.9863121E-02
 -1.9088464E-02
 0.6634070 0.6541764 0.6449461 0.6357161 0.6264865
 0.6166888 0.6063619 0.5955494 0.5842921 0.5726385
 0.5606281 0.5483124 0.5357276 0.5229254 0.5099375
 0.4968142 0.4835809 0.4702860 0.4569480 0.4436122
 0.4302905 0.4170247 0.4038205 0.3907164 0.3777126
 0.3648446 0.3521078 0.3394960 0.3270014 0.3146145
 0.3023247 0.2901201 0.2779874 0.2659124 0.2538798
 0.2418731 0.2298757 0.2178691 0.2058360 0.1937586
 0.1816206 0.1694090 0.1571185 0.1447635 0.1324130
 0.1202689 0.1087773 9.8553203E-02 8.9946218E-02 8.2823701E-02
 7.6849252E-02 7.1711473E-02 6.7202389E-02 6.3175246E-02 5.9531018E-02
 5.6200493E-02 5.3133689E-02 5.0293274E-02 4.7650538E-02 4.5182873E-02
 4.2871963E-02 4.0702730E-02 3.8662538E-02 3.6740590E-02 3.4927603E-02
 3.3215441E-02 3.1596906E-02 3.0065605E-02 2.8615778E-02 2.7242254E-02
 2.5940260E-02
 0.3471613 0.3313502 0.3155392 0.2997284 0.2839176
 0.2682680 0.2528273 0.2376265 0.2227026 0.2080777
 0.1937791 0.1798206 0.1662206 0.1529854 0.1401258
 0.1276418 0.1155384 0.1038105 9.2458814E-02 8.1474595E-02
 7.0856184E-02 6.0592283E-02 5.0680187E-02 4.1107312E-02 3.1870920E-02
 2.2957934E-02 1.4366300E-02 6.0946755E-03 -1.8573274E-03 -9.4891973E-03
 -1.6799076E-02 -2.3783615E-02 -3.0437602E-02 -3.6753464E-02 -4.2720832E-02
 -4.8325762E-02 -5.3549815E-02 -5.8369294E-02 -6.2753059E-02 -6.6660978E-02
 -7.0040606E-02 -7.2822101E-02 -7.4909844E-02 -7.6168530E-02 -7.6405995E-02
 -7.5379267E-02 -7.2916247E-02 -6.9206022E-02 -6.4863950E-02 -6.0498048E-02
 -5.6432154E-02 -5.2731138E-02 -4.9408693E-02 -4.6425417E-02 -4.3737505E-02
 -4.1304581E-02 -3.9091732E-02 -3.7069421E-02 -3.5212837E-02 -3.3501182E-02
 -3.1916928E-02 -3.0445255E-02 -2.9073590E-02 -2.7791200E-02 -2.6588891E-02
 -2.5458746E-02 -2.4393907E-02 -2.3388416E-02 -2.2437090E-02 -2.1535320E-02
 -2.0679243E-02
 0.7022343 0.6925327 0.6828315 0.6731308 0.6634304
 0.6531619 0.6423643 0.6310810 0.6193530 0.6072287
 0.5947477 0.5819612 0.5689058 0.5556329 0.5421744
 0.5285807 0.5148770 0.5011116 0.4873032 0.4734970
 0.4597049 0.4459688 0.4322943 0.4187200 0.4052459
 0.3919076 0.3787006 0.3656576 0.3527705 0.3400297
 0.3274246 0.3149433 0.3025730 0.2903000 0.2781093
 0.2659855 0.2539121 0.2418712 0.2298452 0.2178155
 0.2057635 0.1936713 0.1815220 0.1693022 0.1570066
 0.1446495 0.1322997 0.1201597 0.1086757 9.8462276E-02
 8.9866839E-02 8.2754865E-02 7.6786585E-02 7.1658768E-02 6.7155734E-02
 6.3133754E-02 5.9493888E-02 5.6167118E-02 5.3103529E-02 5.0265945E-02
 4.7625717E-02 4.5160253E-02 4.2851303E-02 4.0683825E-02 3.8645204E-02
 3.6724702E-02 3.4913015E-02 3.3202022E-02 3.1584553E-02 3.0054266E-02
 2.8605331E-02
 0.3748168 0.3585450 0.3422733 0.3260017 0.3097302
 0.2936200 0.2777186 0.2620571 0.2466725 0.2315870
 0.2168278 0.2024087 0.1883481 0.1746523 0.1613321
 0.1483876 0.1358237 0.1236352 0.1118231 0.1003783
 8.9299418E-02 7.8575023E-02 6.8202443E-02 5.8169082E-02 4.8472214E-02
 3.9098755E-02 3.0046651E-02 2.1302840E-02 1.2866403E-02 4.7369753E-03
 -3.0848649E-03 -1.0597630E-02 -1.7798617E-02 -2.4683595E-02 -3.1246573E-02
 -3.7479289E-02 -4.3370545E-02 -4.8906010E-02 -5.4066569E-02 -5.8827747E-02
 -6.3158065E-02 -6.7016855E-02 -7.0351183E-02 -7.3090851E-02 -7.5139850E-02
 -7.6362617E-02 -7.6566815E-02 -7.5509563E-02 -7.3019497E-02 -6.9287159E-02
 -6.4928621E-02 -6.0550831E-02 -5.6465849E-02 -5.2769158E-02 -4.9440775E-02
 -4.6452817E-02 -4.3761048E-02 -4.1324906E-02 -3.9109293E-02 -3.7084624E-02
 -3.5226014E-02 -3.3512600E-02 -3.1926803E-02 -3.0453794E-02 -2.9080965E-02
 -2.7797570E-02 -2.6594378E-02 -2.5463458E-02 -2.4397939E-02 -2.3391768E-02
 -2.2439942E-02
 0.7423863 0.7322042 0.7220225 0.7118412 0.7016603
 0.6909114 0.6796332 0.6678695 0.6556610 0.6430562
 0.6300947 0.6168278 0.6032920 0.5895389 0.5756001
 0.5615262 0.5473424 0.5330968 0.5188083 0.5045220
 0.4902499 0.4760337 0.4618791 0.4478248 0.4338707
 0.4200524 0.4063654 0.3928424 0.3794754 0.3662947
 0.3532892 0.3404469 0.3277549 0.3151993 0.3027658
 0.2904389 0.2782028 0.2660405 0.2539346 0.2418669
 0.2298187 0.2177708 0.2057042 0.1936004 0.1814423
 0.1692165 0.1569171 0.1445586 0.1322099 0.1200735
 0.1085960 9.8390765E-02 8.9803979E-02 8.2699858E-02 7.6738328E-02
 7.1616054E-02 6.7117684E-02 6.3099742E-02 5.9463330E-02 5.6139547E-02
 5.3078581E-02 5.0243277E-02 4.7605067E-02 4.5141384E-02 4.2834036E-02
 4.0668014E-02 3.8630702E-02 3.6711372E-02 3.4900747E-02 3.3190798E-02
 3.1574216E-02
 0.4034183 0.3866853 0.3699525 0.3532198 0.3364872
 0.3199158 0.3035533 0.2874307 0.2715851 0.2560386
 0.2408184 0.2259383 0.2114167 0.1972599 0.1834788
 0.1700734 0.1570485 0.1443991 0.1321261 0.1202205
 0.1086807 9.7495437E-02 8.6662002E-02 7.6167785E-02 6.6010073E-02
 5.6175780E-02 4.6662845E-02 3.7458207E-02 2.8560949E-02 1.9958396E-02
 1.1650766E-02 3.6388154E-03 -4.0759840E-03 -1.1491153E-02 -1.8603174E-02
 -2.5407091E-02 -3.1896159E-02 -3.8061526E-02 -4.3891415E-02 -4.9370740E-02
 -5.4480031E-02 -5.9194330E-02 -6.3481659E-02 -6.7300990E-02 -7.0598967E-02
 -7.3305078E-02 -7.5323053E-02 -7.6517135E-02 -7.6694906E-02 -7.5613663E-02
 -7.3102698E-02 -6.9353335E-02 -6.4981945E-02 -6.0594633E-02 -5.6502488E-02
 -5.2801218E-02 -4.9467728E-02 -4.6475772E-02 -4.3780733E-02 -4.1341860E-02
 -3.9123952E-02 -3.7097305E-02 -3.5236992E-02 -3.3522088E-02 -3.1935014E-02
 -3.0460898E-02 -2.9087100E-02 -2.7802855E-02 -2.6598921E-02 -2.5467223E-02
 -2.4401158E-02
 0.7838189 0.7731485 0.7624785 0.7518089 0.7411398
 0.7299027 0.7181363 0.7058844 0.6931877 0.6800947
 0.6666451 0.6528902 0.6388664 0.6246254 0.6101987
 0.5956368 0.5809651 0.5662317 0.5514553 0.5366812
 0.5219212 0.5072172 0.4925749 0.4780329 0.4635911
 0.4492851 0.4351105 0.4210998 0.4072452 0.3935769
 0.3800838 0.3667947 0.3536961 0.3407739 0.3280134
 0.3153993 0.3029159 0.2905467 0.2782747 0.2660823
 0.2539511 0.2418623 0.2297966 0.2177344 0.2056564
 0.1935436 0.1813788 0.1691482 0.1568459 0.1444867
 0.1321394 0.1200063 0.1085336 9.8334581E-02 8.9754209E-02
 8.2655966E-02 7.6699510E-02 7.1581319E-02 6.7086518E-02 6.3071750E-02
 5.9438109E-02 5.6116719E-02 5.3057849E-02 5.0224386E-02 4.7587816E-02
 4.5125615E-02 4.2819586E-02 4.0654749E-02 3.8618494E-02 3.6700282E-02
 3.4890525E-02
 0.4329656 0.4157711 0.3985768 0.3813825 0.3641884
 0.3471555 0.3303316 0.3137475 0.2974404 0.2814324
 0.2657508 0.2504093 0.2354264 0.2208082 0.2065658
 0.1926990 0.1792128 0.1661022 0.1533678 0.1410009
 0.1289998 0.1173533 0.1060586 9.5103115E-02 8.4484145E-02
 7.4188605E-02 6.4214423E-02 5.4548539E-02 4.5190040E-02 3.6126245E-02
 2.7357377E-02 1.8871432E-02 1.0669652E-02 2.7538876E-03 -4.8734960E-03
 -1.2209246E-02 -1.9249050E-02 -2.5987312E-02 -3.2416642E-02 -3.8527582E-02
 -4.4307955E-02 -4.9742151E-02 -5.4810252E-02 -5.9486926E-02 -6.3739792E-02
 -6.7527473E-02 -7.0796356E-02 -7.3475622E-02 -7.5468823E-02 -7.6640032E-02
 -7.6796904E-02 -7.5696930E-02 -7.3169798E-02 -6.9407389E-02 -6.5026000E-02
 -6.0631141E-02 -5.6533135E-02 -5.2828427E-02 -4.9490470E-02 -4.6495061E-02
 -4.3797258E-02 -4.1356079E-02 -3.9136223E-02 -3.7107900E-02 -3.5246149E-02
 -3.3530019E-02 -3.1941868E-02 -3.0466817E-02 -2.9092198E-02 -2.7807055E-02
 -2.6602525E-02
 0.8264917 0.8153270 0.8041627 0.7929989 0.7818354
 0.7701040 0.7578433 0.7450972 0.7319062 0.7183192
 0.7043755 0.6901266 0.6756088 0.6608738 0.6459531
 0.6308973 0.6157317 0.6005043 0.5852340 0.5699659
 0.5547121 0.5395142 0.5243781 0.5093423 0.4944067
 0.4796070 0.4649387 0.4504344 0.4360860 0.4219241
 0.4079374 0.3941546 0.3805623 0.3671878 0.3540158
 0.3410305 0.3282161 0.3155559 0.3030332 0.2906307
 0.2783304 0.2661142 0.2539631 0.2418576 0.2297782
 0.2177048 0.2056178 0.1934979 0.1813278 0.1690936
 0.1567898 0.1444302 0.1320840 0.1199536 0.1084850
 9.8290734E-02 8.9715011E-02 8.2621031E-02 7.6668277E-02 7.1553625E-02
 6.7060970E-02 6.3048691E-02 5.9417233E-02 5.6097750E-02 5.3040572E-02
 5.0208628E-02 4.7573391E-02 4.5112394E-02 4.2807434E-02 4.0643848E-02
 3.8608450E-02
 0.4634579 0.4458015 0.4281453 0.4104892 0.3928332
 0.3753385 0.3580527 0.3410069 0.3242380 0.3077683
 0.2916248 0.2758216 0.2603769 0.2452970 0.2305928
 0.2162643 0.2023164 0.1887440 0.1755479 0.1627193
 0.1502565 0.1381483 0.1263919 0.1149748 0.1038941
 9.3136899E-02 8.2701050E-02 7.2573498E-02 6.2753342E-02 5.3227894E-02
 4.3997377E-02 3.5049789E-02 2.6386367E-02 1.7995825E-02 9.8804599E-03
 2.0429089E-03 -5.5135544E-03 -1.2785004E-02 -1.9766459E-02 -2.6451692E-02
 -3.2832898E-02 -3.8900111E-02 -4.4640690E-02 -5.0038688E-02 -5.5073764E-02
 -5.9720259E-02 -6.3945539E-02 -6.7707904E-02 -7.0953518E-02 -7.3611334E-02
 -7.5584680E-02 -7.6737724E-02 -7.6878071E-02 -7.5763471E-02 -7.3223978E-02
 -6.9451705E-02 -6.5062582E-02 -6.0661685E-02 -5.6558859E-02 -5.2842788E-02
 -4.9509812E-02 -4.6511415E-02 -4.3811228E-02 -4.1368056E-02 -3.9146546E-02
 -3.7116822E-02 -3.5253856E-02 -3.3536684E-02 -3.1947616E-02 -3.0471507E-02
 -2.9096235E-02
 0.8703734 0.8587095 0.8470460 0.8353830 0.8237204
 0.8114898 0.7987301 0.7854849 0.7717950 0.7577091
 0.7432665 0.7285187 0.7135021 0.6982682 0.6828488
 0.6672941 0.6516296 0.6359034 0.6201344 0.6043675
 0.5886149 0.5729184 0.5572836 0.5417491 0.5263150
 0.5110168 0.4958499 0.4808471 0.4660003 0.4513399
 0.4368547 0.4225735 0.4084827 0.3946097 0.3809393
 0.3674974 0.3542674 0.3412324 0.3283754 0.3156789
 0.3031252 0.2906963 0.2783738 0.2661387 0.2539718
 0.2418533 0.2297631 0.2176809 0.2055868 0.1934614
 0.1812876 0.1690507 0.1567450 0.1443853 0.1320402
 0.1199124 0.1084472 9.8256439E-02 8.9684010E-02 8.2593061E-02
 7.6643072E-02 7.1530841E-02 6.7039795E-02 6.3029476E-02 5.9399776E-02
 5.6081872E-02 5.3026080E-02 5.0195362E-02 4.7561221E-02 4.5101747E-02
 4.2797603E-02
 0.4948980 0.4767791 0.4586605 0.4405421 0.4224238
 0.4044667 0.3867186 0.3692105 0.3519793 0.3350472
 0.3184415 0.3021760 0.2862689 0.2707268 0.2555604
 0.2407697 0.2263595 0.2123250 0.1986667 0.1853759
 0.1724510 0.1598806 0.1476621 0.1357828 0.1242401
 0.1130208 0.1021228 9.1533177E-02 8.1250936E-02 7.1263403E-02
 6.1570805E-02 5.2161139E-02 4.3035645E-02 3.4183033E-02 2.5605598E-02
 1.7292602E-02 9.2472695E-03 1.4730326E-03 -6.0261535E-03 -1.3245700E-02
 -2.0180147E-02 -2.6822804E-02 -3.3165351E-02 -3.9197497E-02 -4.4906188E-02
 -5.0275136E-02 -5.5283792E-02 -5.9906170E-02 -6.4109407E-02 -6.7851551E-02
 -7.1078479E-02 -7.3719159E-02 -7.5676784E-02 -7.6815352E-02 -7.6942623E-02
 -7.5816661E-02 -7.3267788E-02 -6.9488041E-02 -6.5092951E-02 -6.0687214E-02
 -5.6580488E-02 -5.2861184E-02 -4.9526315E-02 -4.6525277E-02 -4.3823011E-02
 -4.1378174E-02 -3.9155252E-02 -3.7124336E-02 -3.5260316E-02 -3.3541888E-02
 -3.1952094E-02
 0.9154370 0.9032699 0.8911033 0.8789372 0.8667716
 0.8540381 0.8407755 0.8270275 0.8128348 0.7982460
 0.7833007 0.7680501 0.7525308 0.7367941 0.7208719
 0.7048145 0.6886473 0.6724184 0.6561466 0.6398771
 0.6236220 0.6074228 0.5912855 0.5752485 0.5593119
 0.5435112 0.5278419 0.5123367 0.4969875 0.4818248
 0.4668373 0.4520538 0.4374608 0.4230856 0.4089129
 0.3949688 0.3812366 0.3677415 0.3544658 0.3413916
 0.3285009 0.3157756 0.3031974 0.2907477 0.2784075
 0.2661577 0.2539784 0.2418495 0.2297507 0.2176616
 0.2055623 0.1934326 0.1812553 0.1690162 0.1567096
 0.1443499 0.1320061 0.1198805 0.1084179 9.8229729E-02
 8.9659639E-02 8.2570791E-02 7.6622732E-02 7.1512274E-02 6.7022115E-02
 6.3013405E-02 5.9385158E-02 5.6068517E-02 5.3013843E-02 5.0185174E-02
 4.7551777E-02
 0.5272839 0.5087022 0.4901208 0.4715395 0.4529584
 0.4345386 0.4163277 0.3983567 0.3806627 0.3632679
 0.3461995 0.3294712 0.3131014 0.2970966 0.2814675
 0.2662142 0.2513415 0.2368444 0.2227235 0.2089702
 0.1955828 0.1825499 0.1698689 0.1575271 0.1455218
 0.1338400 0.1224796 0.1114274 0.1006827 9.0232693E-02
 8.0077618E-02 7.0205480E-02 6.0617518E-02 5.1302444E-02 4.2262554E-02
 3.3487108E-02 2.4979323E-02 1.6729049E-02 8.7402752E-03 1.0171218E-03
 -6.4359405E-03 -1.3613801E-02 -2.0510526E-02 -2.7119039E-02 -3.3430614E-02
 -3.9434627E-02 -4.5117810E-02 -5.0463568E-02 -5.5451125E-02 -6.0054235E-02
 -6.4239718E-02 -6.7965724E-02 -7.1177900E-02 -7.3804922E-02 -7.5749941E-02
 -7.6877005E-02 -7.6993987E-02 -7.5859211E-02 -7.3303245E-02 -6.9517933E-02
 -6.5118305E-02 -6.0708720E-02 -5.6598738E-02 -5.2876722E-02 -4.9540512E-02
 -4.6537142E-02 -4.3833073E-02 -4.1386809E-02 -3.9162595E-02 -3.7130103E-02
 -3.5265308E-02
 0.9616612 0.9489878 0.9363150 0.9236428 0.9109710
 0.8977315 0.8839628 0.8697088 0.8550101 0.8399153
 0.8244640 0.8087075 0.7926821 0.7764395 0.7600113
 0.7434480 0.7267749 0.7100402 0.6932626 0.6764873
 0.6597264 0.6430215 0.6263785 0.6098358 0.5933935
 0.5770871 0.5609121 0.5449013 0.5290465 0.5133783
 0.4978854 0.4825966 0.4674982 0.4526177 0.4379396
 0.4234902 0.4092527 0.3952523 0.3814713 0.3679343
 0.3546224 0.3415172 0.3285999 0.3158518 0.3032543
 0.2907881 0.2784341 0.2661724 0.2539833 0.2418462
 0.2297407 0.2176461 0.2055421 0.1934090 0.1812292
 0.1689886 0.1566813 0.1443218 0.1319791 0.1198554
 0.1083951 9.8208785E-02 8.9640252E-02 8.2556672E-02 7.6606944E-02
 7.1497135E-02 6.7010745E-02 6.3002862E-02 5.9375189E-02 5.6059066E-02
 5.3005032E-02
 0.5606127 0.5415677 0.5225230 0.5034785 0.4844343
 0.4655514 0.4468774 0.4284434 0.4102864 0.3924285
 0.3748970 0.3577058 0.3408731 0.3244053 0.3083133
 0.2925971 0.2772615 0.2623015 0.2477178 0.2335016
 0.2196513 0.2061555 0.1930116 0.1802070 0.1677389
 0.1555942 0.1437709 0.1322560 0.1210484 0.1101356
 9.9517688E-02 8.9182727E-02 7.9131953E-02 6.9354080E-02 5.9851393E-02
 5.0613157E-02 4.1642584E-02 3.2929521E-02 2.4477962E-02 1.6278310E-02
 8.3350763E-03 6.5292127E-04 -6.7631188E-03 -1.3907590E-02 -2.0774083E-02
 -2.7355213E-02 -3.3642020E-02 -3.9623570E-02 -4.5286387E-02 -5.0613634E-02
 -5.5584300E-02 -6.0172040E-02 -6.4343587E-02 -6.8056710E-02 -7.1257025E-02
 -7.3873110E-02 -7.5808078E-02 -7.6925956E-02 -7.7034809E-02 -7.5893201E-02
 -7.3331930E-02 -6.9542482E-02 -6.5139361E-02 -6.0726695E-02 -5.6614451E-02
 -5.2890006E-02 -4.9546048E-02 -4.6543952E-02 -4.3839768E-02 -4.1392900E-02
 -3.9168008E-02
 1.009027 0.9958451 0.9826635 0.9694826 0.9563022
 0.9425540 0.9282767 0.9135141 0.8983068 0.8827034
 0.8667435 0.8504784 0.8339444 0.8171933 0.8002566
 0.7831848 0.7660033 0.7487601 0.7314742 0.7141905
 0.6969213 0.6797081 0.6625567 0.6455057 0.6285551
 0.6117405 0.5950572 0.5785382 0.5621754 0.5459991
 0.5299982 0.5142013 0.4985950 0.4832067 0.4680208
 0.4530635 0.4383182 0.4238100 0.4095213 0.3954765
 0.3816569 0.3680865 0.3547461 0.3416163 0.3286780
 0.3159120 0.3032991 0.2908199 0.2784548 0.2661839
 0.2539870 0.2418435 0.2297327 0.2176337 0.2055262
 0.1933905 0.1812088 0.1689670 0.1566591 0.1443000
 0.1319584 0.1198363 0.1083778 9.8192804E-02 8.9625172E-02
 8.2543463E-02 7.6593846E-02 7.1484774E-02 6.6999234E-02 6.2992066E-02
 5.9365351E-02
 0.5948848 0.5753760 0.5558676 0.5363595 0.5168517
 0.4975053 0.4783679 0.4594705 0.4408500 0.4225289
 0.4045341 0.3868795 0.3695836 0.3526525 0.3360973
 0.3199178 0.3041190 0.2886957 0.2736488 0.2589694
 0.2446559 0.2306969 0.2170899 0.2038220 0.1908908
 0.1782830 0.1659966 0.1540184 0.1423477 0.1309718
 0.1198908 0.1090927 9.8578855E-02 8.8337891E-02 7.8372113E-02
 6.8670787E-02 5.9237126E-02 5.0060980E-02 4.1146342E-02 3.2483611E-02
 2.4077300E-02 1.5918257E-02 8.0115767E-03 3.6230389E-04 -7.0240963E-03
 -1.4141765E-02 -2.0984104E-02 -2.7543377E-02 -3.3810437E-02 -3.9774060E-02
 -4.5420583E-02 -5.0733048E-02 -5.5690274E-02 -6.0265779E-02 -6.4426117E-02
 -6.8128951E-02 -7.1319811E-02 -7.3927186E-02 -7.5854167E-02 -7.6964796E-02
 -7.7067271E-02 -7.5920463E-02 -7.3355325E-02 -6.9562897E-02 -6.5157130E-02
 -6.0741603E-02 -5.6627721E-02 -5.2901272E-02 -4.9555648E-02 -4.6552423E-02
 -4.3846812E-02
 1.057521 1.043828 1.030135 1.016443 1.002751
 0.9884921 0.9737040 0.9584306 0.9427126 0.9265985
 0.9101279 0.8933520 0.8763075 0.8590457 0.8415985
 0.8240161 0.8063241 0.7885703 0.7707739 0.7529798
 0.7352001 0.7174764 0.6998146 0.6822532 0.6647923
 0.6474673 0.6302738 0.6132446 0.5963715 0.5796850
 0.5631739 0.5468670 0.5307507 0.5148523 0.4991566
 0.4836895 0.4684344 0.4534164 0.4386179 0.4240632
 0.4097339 0.3956538 0.3818036 0.3682069 0.3548439
 0.3416947 0.3287398 0.3159596 0.3033345 0.2908450
 0.2784712 0.2661929 0.2539898 0.2418412 0.2297262
 0.2176238 0.2055136 0.1933758 0.1811926 0.1689499
 0.1566418 0.1442830 0.1319423 0.1198217 0.1083646
 9.8180555E-02 8.9613415E-02 8.2533352E-02 7.6583236E-02 7.1475536E-02
 6.6989705E-02
 0.6300984 0.6101257 0.5901535 0.5701815 0.5502099
 0.5303997 0.5107986 0.4914374 0.4723534 0.4535685
 0.4351101 0.4169919 0.3992324 0.3818378 0.3648189
 0.3481759 0.3319134 0.3160266 0.3005161 0.2853732
 0.2705962 0.2561738 0.2421033 0.2283720 0.2149773
 0.2019060 0.1891561 0.1767146 0.1645805 0.1527411
 0.1411967 0.1299352 0.1189580 0.1082537 9.7824536E-02
 8.7659866E-02 7.7762865E-02 6.8123385E-02 5.8745418E-02 4.9619365E-02
 4.0749736E-02 3.2127380E-02 2.3757393E-02 1.5630974E-02 7.7535682E-03
 1.3066325E-04 -7.2320201E-03 -1.4328335E-02 -2.1151397E-02 -2.7693238E-02
 -3.3944480E-02 -3.9893799E-02 -4.5527373E-02 -5.0828081E-02 -5.5774592E-02
 -6.0340304E-02 -6.4491712E-02 -6.8186350E-02 -7.1369693E-02 -7.3970124E-02
 -7.5890727E-02 -7.6995596E-02 -7.7093087E-02 -7.5942293E-02 -7.3374361E-02
 -6.9579840E-02 -6.5172113E-02 -6.0754705E-02 -5.6638904E-02 -5.2913539E-02
 -4.9563747E-02
 1.107125 1.092918 1.078712 1.064507 1.050303
 1.035531 1.020231 1.004445 0.9882141 0.9715877
 0.9546047 0.9373166 0.9197598 0.9019858 0.8840263
 0.8659318 0.8477276 0.8294618 0.8111532 0.7928470
 0.7745551 0.7563194 0.7381456 0.7200722 0.7020993
 0.6842625 0.6665571 0.6490160 0.6316311 0.6144328
 0.5974100 0.5805914 0.5639634 0.5475535 0.5313462
 0.5153677 0.4996011 0.4840717 0.4687618 0.4536958
 0.4388551 0.4242636 0.4099021 0.3957941 0.3819198
 0.3683023 0.3549214 0.3417568 0.3287886 0.3159972
 0.3033625 0.2908649 0.2784841 0.2662000 0.2539920
 0.2418393 0.2297210 0.2176159 0.2055035 0.1933641
 0.1811798 0.1689364 0.1566281 0.1442697 0.1319299
 0.1198106 0.1083547 9.8171212E-02 8.9604177E-02 8.2518190E-02
 7.6573245E-02
 0.6662486 0.6458118 0.6253755 0.6049395 0.5845039
 0.5642297 0.5441646 0.5243395 0.5047915 0.4855428
 0.4666206 0.4480387 0.4298153 0.4119569 0.3944743
 0.3773675 0.3606414 0.3442909 0.3283167 0.3127101
 0.2974694 0.2825834 0.2680492 0.2538542 0.2399959
 0.2264611 0.2132477 0.2003425 0.1877449 0.1754419
 0.1634340 0.1517090 0.1402682 0.1291004 0.1182078
 0.1075796 9.7219177E-02 8.7116227E-02 7.7274799E-02 6.7685299E-02
 5.8352221E-02 4.9266424E-02 4.0432997E-02 3.1843141E-02 2.3502300E-02
 1.5401985E-02 7.5480300E-03 -5.3823900E-05 -7.3976195E-03 -1.4476874E-02
 -2.1284532E-02 -2.7812455E-02 -3.4051131E-02 -3.9989103E-02 -4.5612331E-02
 -5.0903637E-02 -5.5841614E-02 -6.0399543E-02 -6.4543851E-02 -6.8231963E-02
 -7.1409285E-02 -7.4004181E-02 -7.5919710E-02 -7.7020019E-02 -7.7113606E-02
 -7.5959831E-02 -7.3389865E-02 -6.9593944E-02 -6.5184742E-02 -6.0766090E-02
 -5.6647919E-02
 1.157823 1.143103 1.128382 1.113663 1.098945
 1.083659 1.067845 1.051545 1.034801 1.017660
 1.000164 0.9823622 0.9642919 0.9460043 0.9275314
 0.9089234 0.8902058 0.8714265 0.8526046 0.8337849
 0.8149798 0.7962307 0.7775437 0.7589571 0.7404710
 0.7221209 0.7039024 0.6858482 0.6679503 0.6502391
 0.6327033 0.6153718 0.5982310 0.5813082 0.5645881
 0.5480967 0.5318174 0.5157753 0.4999527 0.4843741
 0.4690208 0.4539167 0.4390427 0.4244221 0.4100352
 0.3959052 0.3820117 0.3683778 0.3549826 0.3418059
 0.3288274 0.3160270 0.3033847 0.2908805 0.2784942
 0.2662055 0.2539937 0.2418378 0.2297168 0.2176096
 0.2054956 0.1933549 0.1811696 0.1689257 0.1566174
 0.1442593 0.1319204 0.1198022 0.1083472 9.8164074E-02
 8.9597024E-02
 0.7033352 0.6824341 0.6615336 0.6406333 0.6197335
 0.5989951 0.5784658 0.5581766 0.5381644 0.5184517
 0.4990655 0.4800196 0.4613323 0.4430100 0.4250635
 0.4074928 0.3903028 0.3734884 0.3570504 0.3409800
 0.3252755 0.3099256 0.2949276 0.2802689 0.2659468
 0.2519483 0.2382711 0.2249023 0.2118409 0.1990743
 0.1866027 0.1744140 0.1625096 0.1508781 0.1395219
 0.1284301 0.1176061 0.1070395 9.6734472E-02 8.6681373E-02
 7.6884702E-02 6.7335322E-02 5.8038313E-02 4.8984878E-02 4.0180463E-02
 3.1616576E-02 2.3299051E-02 1.5219597E-02 7.3843170E-03 -2.0074549E-04
 -7.5293975E-03 -1.4595056E-02 -2.1390455E-02 -2.7907351E-02 -3.4135997E-02
 -4.0064860E-02 -4.5679871E-02 -5.0963704E-02 -5.5894911E-02 -6.0446642E-02
 -6.4585268E-02 -6.8268172E-02 -7.1440704E-02 -7.4031204E-02 -7.5942695E-02
 -7.7039376E-02 -7.7129915E-02 -7.5973891E-02 -7.3402554E-02 -6.9605708E-02
 -6.5195464E-02
 1.192385 1.177484 1.162583 1.147683 1.132784
 1.117318 1.101323 1.084843 1.067918 1.050598
 1.032921 1.014939 0.9966884 0.9782210 0.9595682
 0.9407803 0.9218828 0.9029237 0.8839220 0.8649226
 0.8459377 0.8270090 0.8081423 0.7893761 0.7707104
 0.7521808 0.7337828 0.7155492 0.6974719 0.6795812
 0.6618662 0.6443554 0.6270353 0.6099332 0.5930339
 0.5763633 0.5599047 0.5436834 0.5276816 0.5119238
 0.4963914 0.4811084 0.4660553 0.4512557 0.4366899
 0.4223809 0.4083085 0.3944957 0.3809216 0.3675660
 0.3544086 0.3414294 0.3286083 0.3159253 0.3033603
 0.2908929 0.2785023 0.2662100 0.2539950 0.2418366
 0.2297135 0.2176034 0.2054889 0.1933474 0.1811616
 0.1689174 0.1566090 0.1442513 0.1319131 0.1197959
 0.1083417
 0.7487426 0.7272351 0.7057281 0.6842214 0.6627152
 0.6413705 0.6202348 0.5993392 0.5787208 0.5584018
 0.5384094 0.5187574 0.4994640 0.4805357 0.4619831
 0.4438065 0.4260104 0.4085901 0.3915461 0.3748697
 0.3585592 0.3426034 0.3269995 0.3117348 0.2968069
 0.2822024 0.2679194 0.2539447 0.2402775 0.2269050
 0.2138276 0.2010332 0.1885229 0.1762857 0.1643237
 0.1526261 0.1411963 0.1300240 0.1191132 0.1084544
 9.8052002E-02 8.7896913E-02 7.7994205E-02 6.8335079E-02 5.8924973E-02
 4.9755398E-02 4.0832192E-02 3.2147061E-02 2.3706105E-02 1.5515368E-02
 7.5810440E-03 -9.0286136E-05 -7.4913558E-03 -1.4613923E-02 -2.1448240E-02
 -2.7982775E-02 -3.4203459E-02 -4.0125102E-02 -4.5733590E-02 -5.1011480E-02
 -5.5937253E-02 -6.0484223E-02 -6.4618133E-02 -6.8296909E-02 -7.1465641E-02
 -7.4052610E-02 -7.5960882E-02 -7.7054709E-02 -7.7142879E-02 -7.5985193E-02
 -7.3412977E-02
 1.227336 1.212253 1.197171 1.182090 1.167010
 1.151363 1.135187 1.118525 1.101420 1.083918
 1.066061 1.047898 1.029467 1.010819 0.9919855
 0.9730173 0.9539396 0.9348002 0.9156183 0.8964388
 0.8772738 0.8581650 0.8391182 0.8201720 0.8013263
 0.7826168 0.7640389 0.7456254 0.7273684 0.7092980
 0.6914032 0.6737126 0.6562127 0.6389310 0.6218519
 0.6050016 0.5883634 0.5719624 0.5557811 0.5398437
 0.5241318 0.5086692 0.4934366 0.4784577 0.4637125
 0.4492242 0.4349725 0.4209804 0.4072270 0.3936922
 0.3803555 0.3671971 0.3541968 0.3413347 0.3285905
 0.3159439 0.3033742 0.2909027 0.2785086 0.2662134
 0.2539961 0.2418356 0.2297089 0.2176000 0.2054840
 0.1933417 0.1811553 0.1689108 0.1566024 0.1442451
 0.1319077
 0.7953756 0.7732615 0.7511479 0.7290346 0.7069218
 0.6849705 0.6632283 0.6417263 0.6205013 0.5995759
 0.5789771 0.5587187 0.5388190 0.5192843 0.5001254
 0.4813424 0.4629400 0.4449133 0.4272630 0.4099803
 0.3930635 0.3765014 0.3602912 0.3444203 0.3288862
 0.3136755 0.2987863 0.2842054 0.2699321 0.2559535
 0.2422700 0.2288695 0.2157533 0.2029100 0.1903420
 0.1780384 0.1660026 0.1542243 0.1427076 0.1314428
 0.1204345 0.1096735 9.9164844E-02 8.8899799E-02 7.8883775E-02
 6.9108292E-02 5.9579190E-02 5.0288174E-02 4.1241337E-02 3.2444719E-02
 2.3904519E-02 1.5627313E-02 7.6203700E-03 -1.0807067E-04 -7.5482614E-03
 -1.4688671E-02 -2.1515228E-02 -2.8042745E-02 -3.4257106E-02 -4.0173005E-02
 -4.5776263E-02 -5.1049426E-02 -5.5971701E-02 -6.0513958E-02 -6.4644307E-02
 -6.8319745E-02 -7.1485415E-02 -7.4069589E-02 -7.5975306E-02 -7.7066854E-02
 -7.7153184E-02
 1.262663 1.247399 1.232135 1.216873 1.201612
 1.185784 1.169427 1.152585 1.135298 1.117616
 1.099577 1.081234 1.062622 1.043793 1.024780
 1.005631 0.9863726 0.9670528 0.9476904 0.9283304
 0.9089850 0.8896958 0.8704687 0.8513421 0.8323163
 0.8134266 0.7946686 0.7760749 0.7576377 0.7393872
 0.7213123 0.7034417 0.6857618 0.6683000 0.6510409
 0.6340106 0.6171924 0.6006115 0.5842502 0.5681329
 0.5522410 0.5365986 0.5211862 0.5060274 0.4911025
 0.4764346 0.4620032 0.4478315 0.4338986 0.4201841
 0.4066680 0.3933300 0.3801502 0.3671085 0.3541849
 0.3413588 0.3286096 0.3159586 0.3033851 0.2909105
 0.2785137 0.2662161 0.2539969 0.2418348 0.2297080
 0.2175972 0.2054801 0.1933371 0.1811502 0.1689056
 0.1565973
 0.8432329 0.8205118 0.7977912 0.7750710 0.7523513
 0.7297932 0.7074441 0.6853353 0.6635036 0.6419715
 0.6207660 0.5999009 0.5793945 0.5592530 0.5394875
 0.5200978 0.5010888 0.4824556 0.4641987 0.4463095
 0.4287863 0.4116177 0.3948010 0.3783237 0.3621831
 0.3463660 0.3308704 0.3156831 0.3008034 0.2862185
 0.2719287 0.2579220 0.2441996 0.2307501 0.2175759
 0.2046662 0.1920243 0.1796399 0.1675170 0.1556461
 0.1440317 0.1326646 0.1215499 0.1106788 0.1000567
 8.9675188E-02 7.9540044E-02 6.9642991E-02 5.9990119E-02 5.0587475E-02
 4.1441254E-02 3.2558028E-02 2.3945063E-02 1.5610602E-02 7.5643919E-03
 -1.8203631E-04 -7.6146126E-03 -1.4748149E-02 -2.1568529E-02 -2.8090447E-02
 -3.4299724E-02 -4.0211067E-02 -4.5810178E-02 -5.1079601E-02 -5.5998243E-02
 -6.0537469E-02 -6.4665042E-02 -6.8337873E-02 -7.1501128E-02 -7.4083053E-02
 -7.5986713E-02
 1.298372 1.282926 1.267480 1.252037 1.236594
 1.220584 1.204045 1.187021 1.169553 1.151690
 1.133470 1.114945 1.096152 1.077142 1.057947
 1.038617 1.019178 0.9996774 0.9801343 0.9605937
 0.9410678 0.9215980 0.9021904 0.8828835 0.8636773
 0.8446072 0.8256688 0.8068948 0.7882773 0.7698465
 0.7515913 0.7335404 0.7156802 0.6980382 0.6805989
 0.6633884 0.6463901 0.6296290 0.6130875 0.5967901
 0.5807181 0.5648956 0.5493031 0.5339643 0.5188594
 0.5040116 0.4894004 0.4750488 0.4609360 0.4470418
 0.4333458 0.4198280 0.4064684 0.3932469 0.3801435
 0.3671376 0.3542087 0.3413781 0.3286248 0.3159704
 0.3033939 0.2909167 0.2785177 0.2662183 0.2539975
 0.2418327 0.2297067 0.2175948 0.2054770 0.1933334
 0.1811463
 0.8923079 0.8689798 0.8456522 0.8223251 0.7989984
 0.7758334 0.7528775 0.7301618 0.7077233 0.6855844
 0.6637720 0.6423001 0.6211869 0.6004387 0.5800664
 0.5600700 0.5404544 0.5212145 0.5023511 0.4838553
 0.4657255 0.4479504 0.4305273 0.4134435 0.3966964
 0.3802729 0.3641708 0.3483772 0.3328912 0.3176999
 0.3028038 0.2881908 0.2738620 0.2598062 0.2460258
 0.2325098 0.2192616 0.2062710 0.1935419 0.1810648
 0.1688442 0.1568709 0.1451500 0.1336727 0.1224444
 0.1114567 0.1007153 9.0212084E-02 7.9953037E-02 6.9944218E-02
 6.0191818E-02 5.0702419E-02 4.1483287E-02 3.2542661E-02 2.3890287E-02
 1.5537694E-02 7.4989535E-03 -2.4074689E-04 -7.6672919E-03 -1.4795374E-02
 -2.1610815E-02 -2.8128324E-02 -3.4333602E-02 -4.0241320E-02 -4.5837156E-02
 -5.1104721E-02 -5.6019127E-02 -6.0556173E-02 -6.4681530E-02 -6.8352260E-02
 -7.1513556E-02
 1.334461 1.318833 1.303205 1.287579 1.271954
 1.255762 1.239041 1.221836 1.204186 1.186141
 1.167739 1.149032 1.130057 1.110866 1.091490
 1.071978 1.052358 1.032676 1.012952 0.9932302
 0.9735234 0.9538729 0.9342846 0.9147969 0.8954099
 0.8761591 0.8570401 0.8380855 0.8192873 0.8006758
 0.7822400 0.7640085 0.7459678 0.7281452 0.7105254
 0.6931344 0.6759555 0.6590139 0.6422920 0.6258141
 0.6095617 0.5935588 0.5777860 0.5622669 0.5469818
 0.5319538 0.5171624 0.5026307 0.4883379 0.4742637
 0.4603877 0.4466899 0.4331504 0.4197490 0.4064656
 0.3932799 0.3801710 0.3671605 0.3542273 0.3413930
 0.3286367 0.3159796 0.3034008 0.2909215 0.2785208
 0.2662200 0.2539960 0.2418333 0.2297055 0.2175929
 0.2054745
 0.9426025 0.9186673 0.8947327 0.8707985 0.8468648
 0.8230929 0.7995300 0.7762074 0.7531619 0.7304160
 0.7079967 0.6859179 0.6641979 0.6428429 0.6218638
 0.6012607 0.5810383 0.5611917 0.5417215 0.5226191
 0.5038826 0.4855008 0.4674710 0.4497806 0.4324269
 0.4153968 0.3986883 0.3822881 0.3661956 0.3503978
 0.3348952 0.3196757 0.3047404 0.2900782 0.2756912
 0.2615688 0.2477143 0.2341173 0.2207818 0.2076984
 0.1948714 0.1822918 0.1699645 0.1578809 0.1460463
 0.1344523 0.1231046 0.1119951 0.1011297 9.0514630E-02
 8.0155954E-02 7.0060290E-02 6.0234897E-02 5.0688013E-02 4.1429382E-02
 3.2470535E-02 2.3825545E-02 1.5479596E-02 7.4468032E-03 -2.8752722E-04
 -7.7092163E-03 -1.4832973E-02 -2.1644499E-02 -2.8158465E-02 -3.4360550E-02
 -4.0265366E-02 -4.5861285E-02 -5.1123220E-02 -5.6035902E-02 -6.0571074E-02
 -6.4694606E-02

XFOILinterface/XFOIL/runs/cp_250_040.203

1.000 0.088 | CL=1.08 (a=4 deg nominal) Re=250000
0.950 -.051
0.900 -.102
0.850 -.196
0.800 -.293
0.750 -.386
0.700 -.458
0.675 -.481
0.650 -.719
0.625 -1.098
0.600 -1.098
0.575 -1.098
0.550 -1.098
0.525 -1.098
0.500 -1.123
0.475 -1.146
0.450 -1.195
0.425 -1.244
0.400 -1.291
0.375 -1.344
0.350 -1.344
0.325 -1.363
0.300 -1.388
0.250 -1.388
0.200 -1.363
0.150 -1.342
0.100 -1.246
0.075 -1.195
0.050 -1.144
0.025 -1.007
0.012 -.811
0.000 0.760
0.012 0.430
0.025 0.140
0.050 0.189
0.075 0.189
0.100 0.189
0.150 0.189
0.200 0.160
0.300 0.163
0.400 0.140
0.500 0.139
0.600 0.189
0.700 0.212
0.800 0.212
0.850 0.237
0.900 0.330
0.950 0.430

XFOILinterface/XFOIL/orrs/osm_gu.25

 2001 25.06216
 0.0000000E+00 0.0000000E+00 0.0000000E+00
 5.0124317E-02 0.0000000E+00 0.0000000E+00
 0.1002486 0.0000000E+00 0.0000000E+00
 0.1503730 0.0000000E+00 0.0000000E+00
 0.2004973 0.0000000E+00 0.0000000E+00
 0.2506216 0.0000000E+00 0.0000000E+00
 0.3007459 0.0000000E+00 0.0000000E+00
 0.3508702 0.0000000E+00 0.0000000E+00
 0.4009945 0.0000000E+00 0.0000000E+00
 0.4511189 0.0000000E+00 0.0000000E+00
 0.5012432 0.0000000E+00 0.0000000E+00
 0.5513675 0.0000000E+00 0.0000000E+00
 0.6014918 0.0000000E+00 0.0000000E+00
 0.6516161 0.0000000E+00 0.0000000E+00
 0.7017404 0.0000000E+00 0.0000000E+00
 0.7518648 0.0000000E+00 0.0000000E+00
 0.8019891 0.0000000E+00 0.0000000E+00
 0.8521134 0.0000000E+00 0.0000000E+00
 0.9022378 0.0000000E+00 0.0000000E+00
 0.9523621 0.0000000E+00 0.0000000E+00
 1.002486 0.0000000E+00 0.0000000E+00
 1.052611 0.0000000E+00 0.0000000E+00
 1.102735 0.0000000E+00 0.0000000E+00
 1.152859 0.0000000E+00 0.0000000E+00
 1.202984 0.0000000E+00 0.0000000E+00
 1.253108 0.0000000E+00 0.0000000E+00
 1.303232 0.0000000E+00 0.0000000E+00
 1.353357 0.0000000E+00 0.0000000E+00
 1.403481 0.0000000E+00 0.0000000E+00
 1.453605 0.0000000E+00 0.0000000E+00
 1.503730 0.0000000E+00 0.0000000E+00
 1.553854 0.0000000E+00 0.0000000E+00
 1.603978 0.0000000E+00 0.0000000E+00
 1.654103 0.0000000E+00 0.0000000E+00
 1.704227 0.0000000E+00 0.0000000E+00
 1.754351 0.0000000E+00 0.0000000E+00
 1.804476 0.0000000E+00 0.0000000E+00
 1.854600 0.0000000E+00 1.2962697E-38
 1.904724 0.0000000E+00 1.8766741E-38
 1.954848 0.0000000E+00 2.7147162E-38
 2.004973 0.0000000E+00 3.9239378E-38
 2.055097 0.0000000E+00 5.6671570E-38
 2.105221 0.0000000E+00 8.1784380E-38
 2.155346 0.0000000E+00 1.1792820E-37
 2.205470 0.0000000E+00 1.6991186E-37
 2.255594 1.7602750E-38 2.4461241E-37
 2.305719 3.2552118E-38 3.5187795E-37
 2.355843 5.4046445E-38 5.0576373E-37
 2.405967 8.4926803E-38 7.2638815E-37
 2.456092 1.2925639E-37 1.0423940E-36
 2.506216 1.9284134E-37 1.4946990E-36
 2.556340 2.8397385E-37 2.1415640E-36
 2.606464 4.1448270E-37 3.0658473E-36
 2.656589 6.0123094E-37 4.3855629E-36
 2.706713 8.6824444E-37 6.2684320E-36
 2.756838 1.2497136E-36 8.9525059E-36
 2.806962 1.7942622E-36 1.2775435E-35
 2.857086 2.5709869E-36 1.8216526E-35
 2.907210 3.6779944E-36 2.5953994E-35
 2.957335 5.2544680E-36 3.6948623E-35
 3.007459 7.4977154E-36 5.2558269E-35
 3.057584 1.0687174E-35 7.4703780E-35
 3.107708 1.5218346E-35 1.0609370E-34
 3.157832 2.1650511E-35 1.5055504E-34
 3.207956 3.0773874E-35 2.1347476E-34
 3.258080 4.3704157E-35 3.0245426E-34
 3.308205 6.2015242E-35 4.2816886E-34
 3.358330 8.7925324E-35 6.0566502E-34
 3.408454 1.2455885E-34 8.5604265E-34
 3.458578 1.7631256E-34 1.2089740E-33
 3.508702 2.4936852E-34 1.7060196E-33
 3.558826 3.5241259E-34 2.4055245E-33
 3.608951 4.9764039E-34 3.3891515E-33
 3.659075 7.0215258E-34 4.7710535E-33
 3.709200 9.8991952E-34 6.7110890E-33
 3.759324 1.3945145E-33 9.4325796E-33
 3.809448 1.9629150E-33 1.3247075E-32
 3.859572 2.7607941E-33 1.8588958E-32
 3.909697 3.8798943E-33 2.6064066E-32
 3.959821 5.4483105E-33 3.6516682E-32
 4.009945 7.6446784E-33 5.1120198E-32
 4.060070 1.0717925E-32 7.1504922E-32
 4.110194 1.5014713E-32 9.9940459E-32
 4.160318 2.1017357E-32 1.3957004E-31
 4.210443 2.9396404E-32 1.9476090E-31
 4.260567 4.1083384E-32 2.7155650E-31
 4.310691 5.7371001E-32 3.7833281E-31
 4.360816 8.0052235E-32 5.2666755E-31
 4.410940 1.1161165E-31 7.3257908E-31
 4.461064 1.5548922E-31 1.0181723E-30
 4.511189 2.1644443E-31 1.4139914E-30
 4.561313 3.0105663E-31 1.9620844E-30
 4.611437 4.1841251E-31 2.7205120E-30
 4.661561 5.8105344E-31 3.7689971E-30
 4.711686 8.0627440E-31 5.2175060E-30
 4.761810 1.1179037E-30 7.2167597E-30
 4.811934 1.5487490E-30 9.9743265E-30
 4.862059 2.1439497E-30 1.3774538E-29
 4.912183 2.9655277E-30 1.9007103E-29
 4.962307 4.0986791E-30 2.6206571E-29
 5.012432 5.6603250E-30 3.6104386E-29
 5.062556 7.8107767E-30 4.9700428E-29
 5.112680 1.0769671E-29 6.8361882E-29
 5.162805 1.4837671E-29 9.3954663E-29
 5.212929 2.0426035E-29 1.2902575E-28
 5.263053 2.8096868E-29 1.7704688E-28
 5.313178 3.8617754E-29 2.4274510E-28
 5.363302 5.3036295E-29 3.3255988E-28
 5.413427 7.2780092E-29 4.5523394E-28
 5.463551 9.9794738E-29 6.2267270E-28
 5.513675 1.3672809E-28 8.5099853E-28
 5.563799 1.8718161E-28 1.1621392E-27
 5.613924 2.5604957E-28 1.5857496E-27
 5.664048 3.4997773E-28 2.1620622E-27
 5.714172 4.7798245E-28 2.9454310E-27
 5.764297 6.5228734E-28 4.0094815E-27
 5.814421 8.8944972E-28 5.4534925E-27
 5.864545 1.2118791E-27 7.4117080E-27
 5.914670 1.6498800E-27 1.0064889E-26
 5.964794 2.2444106E-27 1.3657097E-26
 6.014918 3.0507491E-27 1.8516471E-26
 6.065043 4.1434896E-27 2.5084775E-26
 6.115167 5.6231727E-27 3.3955818E-26
 6.165291 7.6252127E-27 4.5927242E-26
 6.215415 1.0331848E-26 6.2069782E-26
 6.265540 1.3988131E-26 8.3818949E-26
 6.315664 1.8923300E-26 1.1309835E-25
 6.365788 2.5579359E-26 1.5248393E-25
 6.415913 3.4549211E-26 2.0542060E-25
 6.466037 4.6627500E-26 2.7651325E-25
 6.516161 6.2878420E-26 3.7191185E-25
 6.566286 8.4726003E-26 4.9982483E-25
 6.616410 1.1407471E-25 6.7119875E-25
 6.666534 1.5346723E-25 9.0059556E-25
 6.716659 2.0629933E-25 1.2074493E-24
 6.766783 2.7709945E-25 1.6175341E-24
 6.816907 3.7190248E-25 2.1651853E-24
 6.867032 4.9874439E-25 2.8959125E-24
 6.917156 6.6831788E-25 3.8702104E-24
 6.967280 8.9483668E-25 5.1680790E-24
 7.017405 1.1971824E-24 6.8957653E-24
 7.067529 1.6004147E-24 9.1935420E-24
 7.117653 2.1377679E-24 1.2247300E-23
 7.167778 2.8532781E-24 1.6302153E-23
 7.217902 3.8052670E-24 2.1682530E-23
 7.268026 5.0708484E-24 2.8815227E-23
 7.318151 6.7519914E-24 3.8263780E-23
 7.368275 8.9833689E-24 5.0770037E-23
 7.418399 1.1942699E-23 6.7309677E-23
 7.468524 1.5864324E-23 8.9166412E-23
 7.518648 2.1057004E-23 1.1802586E-22
 7.568772 2.7927203E-23 1.5610081E-22
 7.618896 3.7009596E-23 2.0629412E-22
 7.669021 4.9006905E-23 2.7240854E-22
 7.719145 6.4841968E-23 3.5942358E-22
 7.769269 8.5725729E-23 4.7385590E-22
 7.819394 1.1324587E-22 6.2422046E-22
 7.869518 1.4948273E-22 8.2164369E-22
 7.919642 1.9715782E-22 1.0806318E-21
 7.969767 2.5983248E-22 1.4201386E-21
 8.019891 3.4215972E-22 1.8647870E-21
 8.070015 4.5021562E-22 2.4467320E-21
 8.120140 5.9192719E-22 3.2076776E-21
 8.170264 7.7762854E-22 4.2019616E-21
 8.220388 1.0207798E-21 5.4999732E-21
 8.270513 1.3389009E-21 7.1933209E-21
 8.320637 1.7547736E-21 9.4003446E-21
 8.370761 2.2979994E-21 1.2274819E-20
 8.420885 3.0070105E-21 1.6015309E-20
 8.471010 3.9316751E-21 2.0879139E-20
 8.521134 5.1365961E-21 2.7198203E-20
 8.571259 6.7054750E-21 3.5401366E-20
 8.621383 8.7466135E-21 4.6041752E-20
 8.671507 1.1400050E-20 5.9832546E-20
 8.721631 1.4846703E-20 7.7691795E-20
 8.771756 1.9320113E-20 1.0080102E-19
 8.821880 2.5121516E-20 1.3067982E-19
 8.872005 3.2639116E-20 1.6927875E-19
 8.922129 4.2372818E-20 2.1910394E-19
 8.972253 5.4965854E-20 2.8336855E-19
 9.022377 7.1245118E-20 3.6618753E-19
 9.072501 9.2272805E-20 4.7283458E-19
 9.122626 1.1941270E-19 6.1005682E-19
 9.172750 1.5441247E-19 7.8646332E-19
 9.222875 1.9951297E-19 1.0130838E-18
 9.272999 2.5758254E-19 1.3039404E-18
 9.323123 3.3229086E-19 1.6769838E-18
 9.373248 4.2832852E-19 2.1549988E-18
 9.423372 5.5168671E-19 2.7670945E-18
 9.473496 7.1001027E-19 3.5501475E-18
 9.523621 9.1304775E-19 4.5512168E-18
 9.573745 1.1732194E-18 5.8298507E-18
 9.623869 1.5063362E-18 7.4617845E-18
 9.673993 1.9325079E-18 9.5428221E-18
 9.724118 2.4773009E-18 1.2194611E-17
 9.774242 3.1731602E-18 1.5570750E-17
 9.824367 4.0612723E-18 1.9865669E-17
 9.874491 5.1938489E-18 2.5325066E-17
 9.924615 6.6370272E-18 3.2258942E-17
 9.974739 8.4745158E-18 4.1058374E-17
 10.02486 1.0812176E-17 5.2216220E-17
 10.07499 1.3783783E-17 6.6353358E-17
 10.12511 1.7558237E-17 8.4250489E-17
 10.17524 2.2348607E-17 1.0688927E-16
 10.22536 2.8423468E-17 1.3550265E-16
 10.27549 3.6121085E-17 1.7163873E-16
 10.32561 4.5867155E-17 2.1723752E-16
 10.37573 5.8196921E-17 2.7473027E-16
 10.42586 7.3782870E-17 3.4716180E-16
 10.47598 9.3469179E-17 4.3833828E-16
 10.52611 1.1831467E-16 5.5301765E-16
 10.57623 1.4964640E-16 6.9714385E-16
 10.62636 1.8912606E-16 8.7812800E-16
 10.67648 2.3883407E-16 1.1052156E-15
 10.72660 3.0136723E-16 1.3899099E-15
 10.77673 3.7997350E-16 1.7465458E-15
 10.82685 4.7870528E-16 2.1929336E-15
 10.87698 6.0261598E-16 2.7512056E-15
 10.92710 7.5800243E-16 3.4488437E-15
 10.97723 9.5270454E-16 4.3199320E-15
 11.02735 1.1964748E-15 5.4067019E-15
 11.07747 1.5014350E-15 6.7614651E-15
 11.12760 1.8826398E-15 8.4489224E-15
 11.17772 2.3587706E-15 1.0549085E-14
 11.22785 2.9529894E-15 1.3160740E-14
 11.27797 3.6939912E-15 1.6405849E-14
 11.32810 4.6172960E-15 2.0434787E-14
 11.37822 5.7668345E-15 2.5432762E-14
 11.42834 7.1968942E-15 3.1627807E-14
 11.47847 8.9745106E-15 3.9300526E-14
 11.52859 1.1182382E-14 4.8795406E-14
 11.57872 1.3922460E-14 6.0535940E-14
 11.62884 1.7320313E-14 7.5041176E-14
 11.67897 2.1530470E-14 9.2947595E-14
 11.72909 2.6742955E-14 1.1503488E-13
 11.77921 3.3191240E-14 1.4225708E-13
 11.82934 4.1161942E-14 1.7578036E-13
 11.87946 5.1006606E-14 2.1702997E-13
 11.92959 6.3156423E-14 2.6774638E-13
 11.97971 7.8138444E-14 3.3004868E-13
 12.02984 9.6598510E-14 4.0652312E-13
 12.07996 1.1932584E-13 5.0031631E-13
 12.13009 1.4728447E-13 6.1525638E-13
 12.18021 1.8165103E-13 7.5599775E-13
 12.23033 2.2386041E-13 9.2819199E-13
 12.28046 2.7566106E-13 1.1386967E-12
 12.33058 3.3918154E-13 1.3958231E-12
 12.38071 4.1701110E-13 1.7096404E-12
 12.43083 5.1229686E-13 2.0923393E-12
 12.48096 6.2886079E-13 2.5586590E-12
 12.53108 7.7134057E-13 3.1264015E-12
 12.58120 9.4535870E-13 3.8170691E-12
 12.63133 1.1577266E-12 4.6565837E-12
 12.68145 1.4166882E-12 5.6762000E-12
 12.73158 1.7322141E-12 6.9135470E-12
 12.78170 2.1163520E-12 8.4138772E-12
 12.83183 2.5836475E-12 1.0231601E-11
 12.88195 3.1516478E-12 1.2432082E-11
 12.93207 3.8415039E-12 1.5093747E-11
 12.98220 4.6786889E-12 1.8310629E-11
 13.03232 5.6938547E-12 2.2195327E-11
 13.08245 6.9238534E-12 2.6882635E-11
 13.13257 8.4129570E-12 3.2533826E-11
 13.18270 1.0214354E-11 3.9341686E-11
 13.23282 1.2391690E-11 4.7535850E-11
 13.28294 1.5021377E-11 5.7390821E-11
 13.33307 1.8194850E-11 6.9233411E-11
 13.38319 2.2021497E-11 8.3453001E-11
 13.43332 2.6632072E-11 1.0051273E-10
 13.48344 3.2182725E-11 1.2096293E-10
 13.53357 3.8859783E-11 1.4545733E-10
 13.58369 4.6885423E-11 1.7477235E-10
 13.63381 5.6524303E-11 2.0982684E-10
 13.68394 6.8091442E-11 2.5171154E-10
 13.73406 8.1961500E-11 3.0171526E-10
 13.78419 9.8579658E-11 3.6136288E-10
 13.83431 1.1847447E-10 4.3245676E-10
 13.88444 1.4227300E-10 5.1712412E-10
 13.93456 1.7071844E-10 6.1787270E-10
 13.98468 2.0469097E-10 7.3765982E-10
 14.03481 2.4523211E-10 8.7996493E-10
 14.08493 2.9357319E-10 1.0488841E-09
 14.13506 3.5116876E-10 1.2492281E-09
 14.18518 4.1973569E-10 1.4866505E-09
 14.23531 5.0129878E-10 1.7677829E-09
 14.28543 5.9824357E-10 2.1003956E-09
 14.33556 7.1337880E-10 2.4935967E-09
 14.38568 8.5000829E-10 2.9580354E-09
 14.43580 1.0120195E-09 3.5061873E-09
 14.48593 1.2039645E-09 4.1525814E-09
 14.53605 1.4311975E-09 4.9142046E-09
 14.58618 1.6999906E-09 5.8108602E-09
 14.63630 2.0176905E-09 6.8656321E-09
 14.68643 2.3928961E-09 8.1053839E-09
 14.73655 2.8356619E-09 9.5613393E-09
 14.78667 3.3577352E-09 1.1269815E-08
 14.83680 3.9728296E-09 1.3272960E-08
 14.88692 4.6969393E-09 1.5619634E-08
 14.93705 5.5487042E-09 1.8366483E-08
 14.98717 6.5498269E-09 2.1579138E-08
 15.03730 7.7255580E-09 2.5333494E-08
 15.08742 9.1052463E-09 2.9717247E-08
 15.13754 1.0722980E-08 3.4831661E-08
 15.18767 1.2618313E-08 4.0793665E-08
 15.23779 1.4837103E-08 4.7737949E-08
 15.28792 1.7432479E-08 5.5819676E-08
 15.33804 2.0465928E-08 6.5217442E-08
 15.38817 2.4008557E-08 7.6136395E-08
 15.43829 2.8142527E-08 8.8812435E-08
 15.48841 3.2962689E-08 1.0351597E-07
 15.53854 3.8578445E-08 1.2055739E-07
 15.58866 4.5115886E-08 1.4029197E-07
 15.63879 5.2720200E-08 1.6312643E-07
 15.68891 6.1558644E-08 1.8952652E-07
 15.73904 7.1822818E-08 2.2002241E-07
 15.78916 8.3733426E-08 2.5522073E-07
 15.83928 9.7543520E-08 2.9581341E-07
 15.88941 1.1354323E-07 3.4258812E-07
 15.93953 1.3206488E-07 3.9644129E-07
 15.98966 1.5348887E-07 4.5839383E-07
 16.03978 1.7825019E-07 5.2960331E-07
 16.08991 2.0684581E-07 6.1138559E-07
 16.14003 2.3984308E-07 7.0523294E-07
 16.19016 2.7788909E-07 8.1283440E-07
 16.24028 3.2172125E-07 9.3610487E-07
 16.29040 3.7217916E-07 1.0772076E-06
 16.34053 4.3021794E-07 1.2385879E-06
 16.39065 4.9692318E-07 1.4230061E-06
 16.44078 5.7352764E-07 1.6335770E-06
 16.49090 6.6143014E-07 1.8738058E-06
 16.54103 7.6221625E-07 2.1476446E-06
 16.59115 8.7768194E-07 2.4595338E-06
 16.64127 1.0098596E-06 2.8144611E-06
 16.69140 1.1610468E-06 3.2180371E-06
 16.74152 1.3338397E-06 3.6765368E-06
 16.79165 1.5311674E-06 4.1970034E-06
 16.84177 1.7563337E-06 4.7873218E-06
 16.89190 2.0130608E-06 5.4562979E-06
 16.94202 2.3055454E-06 6.2138051E-06
 16.99215 2.6384860E-06 7.0707993E-06
 17.04227 3.0171836E-06 8.0395512E-06
 17.09239 3.4475827E-06 9.1337197E-06
 17.14252 3.9363499E-06 1.0368512E-05
 17.19264 4.4909584E-06 1.1760812E-05
 17.24277 5.1197726E-06 1.3329414E-05
 17.29289 5.8321525E-06 1.5095134E-05
 17.34301 6.6385578E-06 1.7081098E-05
 17.39314 7.5506682E-06 1.9312882E-05
 17.44326 8.5815163E-06 2.1818802E-05
 17.49339 9.7456268E-06 2.4630182E-05
 17.54351 1.1059176E-05 2.7781551E-05
 17.59364 1.2540165E-05 3.1311090E-05
 17.64376 1.4208598E-05 3.5260789E-05
 17.69388 1.6086698E-05 3.9676997E-05
 17.74401 1.8199127E-05 4.4610599E-05
 17.79413 2.0573216E-05 5.0117553E-05
 17.84426 2.3239250E-05 5.6259330E-05
 17.89438 2.6230729E-05 6.3103194E-05
 17.94451 2.9584700E-05 7.0723057E-05
 17.99463 3.3342083E-05 7.9199577E-05
 18.04475 3.7548030E-05 8.8621186E-05
 18.09488 4.2252330E-05 9.9084289E-05
 18.14500 4.7509824E-05 1.1069411E-04
 18.19513 5.3381016E-05 1.2356573E-04
 18.24525 5.9931986E-05 1.3782342E-04
 18.29538 6.7235756E-05 1.5360327E-04
 18.34550 7.5372336E-05 1.7105289E-04
 18.39563 8.4429426E-05 1.9033258E-04
 18.44575 9.4503113E-05 2.1161590E-04
 18.49587 1.0569854E-04 2.3509101E-04
 18.54600 1.1813067E-04 2.6096147E-04
 18.59612 1.3192509E-04 2.8944705E-04
 18.64625 1.4721882E-04 3.2078536E-04
 18.69637 1.6416128E-04 3.5523248E-04
 18.74650 1.8291517E-04 3.9306388E-04
 18.79662 2.0365762E-04 4.3457653E-04
 18.84674 2.2658111E-04 4.8008919E-04
 18.89687 2.5189470E-04 5.2994437E-04
 18.94699 2.7982527E-04 5.8450876E-04
 18.99712 3.1061872E-04 6.4417574E-04
 19.04724 3.4454136E-04 7.0936617E-04
 19.09736 3.8188128E-04 7.8052870E-04
 19.14749 4.2294993E-04 8.5814361E-04
 19.19761 4.6808345E-04 9.4272196E-04
 19.24774 5.1764463E-04 1.0348079E-03
 19.29786 5.7202415E-04 1.1349811E-03
 19.34799 6.3164282E-04 1.2438555E-03
 19.39811 6.9695327E-04 1.3620837E-03
 19.44824 7.6844328E-04 1.4903600E-03
 19.49836 8.4663142E-04 1.6294097E-03
 19.54848 9.3207869E-04 1.7800075E-03
 19.59861 1.0253845E-03 1.9429693E-03
 19.64873 1.1271900E-03 2.1191551E-03
 19.69886 1.2381807E-03 2.3094686E-03
 19.74898 1.3590886E-03 2.5148604E-03
 19.79911 1.4906947E-03 2.7363296E-03
 19.84923 1.6338307E-03 2.9749195E-03
 19.89935 1.7893825E-03 3.2317278E-03
 19.94948 1.9582920E-03 3.5078989E-03
 19.99960 2.1415595E-03 3.8046225E-03
 20.04973 2.3402465E-03 4.1231476E-03
 20.09985 2.5554833E-03 4.4647739E-03
 20.14998 2.7884452E-03 4.8308219E-03
 20.20010 3.0404143E-03 5.2227201E-03
 20.25023 3.3126979E-03 5.6418758E-03
 20.30035 3.6067262E-03 6.0898191E-03
 20.35047 3.9239516E-03 6.5680463E-03
 20.40060 4.2659636E-03 7.0781885E-03
 20.45072 4.6343687E-03 7.6218275E-03
 20.50085 5.0309245E-03 8.2006864E-03
 20.55097 5.4573994E-03 8.8164210E-03
 20.60110 5.9157284E-03 9.4708409E-03
 20.65122 6.4078495E-03 1.0165667E-02
 20.70134 6.9358824E-03 1.0902779E-02
 20.75147 7.5019402E-03 1.1683946E-02
 20.80159 8.1083346E-03 1.2511116E-02
 20.85172 8.7573584E-03 1.3386086E-02
 20.90184 9.4515197E-03 1.4310841E-02
 20.95197 1.0193291E-02 1.5287197E-02
 21.00209 1.0985383E-02 1.6317157E-02
 21.05221 1.1830450E-02 1.7402532E-02
 21.10234 1.2731401E-02 1.8545317E-02
 21.15246 1.3691072E-02 1.9747274E-02
 21.20259 1.4712571E-02 2.1010386E-02
 21.25271 1.5798908E-02 2.2336351E-02
 21.30284 1.6953383E-02 2.3727074E-02
 21.35296 1.8179232E-02 2.5184233E-02
 21.40308 1.9479768E-02 2.6709430E-02
 21.45321 2.0858567E-02 2.8304419E-02
 21.50333 2.2319028E-02 2.9970596E-02
 21.55346 2.3864903E-02 3.1709544E-02
 21.60358 2.5499716E-02 3.3522487E-02
 21.65371 2.7227374E-02 3.5410833E-02
 21.70383 2.9051512E-02 3.7375536E-02
 21.75396 3.0976163E-02 3.9417803E-02
 21.80408 3.3005048E-02 4.1538317E-02
 21.85420 3.5142306E-02 4.3738008E-02
 21.90433 3.7391711E-02 4.6017244E-02
 21.95445 3.9757479E-02 4.8376657E-02
 22.00458 4.2243410E-02 5.0816245E-02
 22.05470 4.4853758E-02 5.3336304E-02
 22.10482 4.7592301E-02 5.5936441E-02
 22.15495 5.0463311E-02 5.8616553E-02
 22.20507 5.3470507E-02 6.1375815E-02
 22.25520 5.6618121E-02 6.4213723E-02
 22.30532 5.9909772E-02 6.7128986E-02
 22.35545 6.3349627E-02 7.0120633E-02
 22.40557 6.6941127E-02 7.3186874E-02
 22.45569 7.0688337E-02 7.6326244E-02
 22.50582 7.4594498E-02 7.9536483E-02
 22.55594 7.8663483E-02 8.2815632E-02
 22.60607 8.2898498E-02 8.6161010E-02
 22.65619 8.7302580E-02 8.9569673E-02
 22.70632 9.1879256E-02 9.3038894E-02
 22.75644 9.6631028E-02 9.6565031E-02
 22.80657 0.1015611 0.1001448
 22.85669 0.1066716 0.1037741
 22.90681 0.1119655 0.1074491
 22.95694 0.1174443 0.1111651
 23.00706 0.1231105 0.1149178
 23.05719 0.1289654 0.1187020
 23.10731 0.1350109 0.1225130
 23.15743 0.1412477 0.1263450
 23.20756 0.1476772 0.1301929
 23.25768 0.1542996 0.1340505
 23.30781 0.1611157 0.1379122
 23.35793 0.1681250 0.1417715
 23.40806 0.1753279 0.1456224
 23.45818 0.1827230 0.1494581
 23.50831 0.1903103 0.1532724
 23.55843 0.1980876 0.1570582
 23.60855 0.2060543 0.1608089
 23.65868 0.2142074 0.1645174
 23.70880 0.2225457 0.1681770
 23.75893 0.2310655 0.1717803
 23.80905 0.2397648 0.1753207
 23.85918 0.2486398 0.1787910
 23.90930 0.2576864 0.1821839
 23.95942 0.2669014 0.1854930
 24.00955 0.2762795 0.1887110
 24.05967 0.2858170 0.1918315
 24.10980 0.2955077 0.1948474
 24.15992 0.3053474 0.1977527
 24.21004 0.3153292 0.2005406
 24.26017 0.3254482 0.2032053
 24.31029 0.3356970 0.2057407
 24.36042 0.3460700 0.2081413
 24.41054 0.3565593 0.2104013
 24.46067 0.3671587 0.2125159
 24.51079 0.3778599 0.2144800
 24.56092 0.3886561 0.2162893
 24.61104 0.3995386 0.2179393
 24.66117 0.4105002 0.2194264
 24.71129 0.4215316 0.2207469
 24.76141 0.4326255 0.2218978
 24.81154 0.4437722 0.2228763
 24.86166 0.4549641 0.2236801
 24.91179 0.4661914 0.2243073
 24.96191 0.4774461 0.2247563
 25.01203 0.4887184 0.2250262
 25.06216 0.5000002 0.2251162
 25.11229 0.5112820 0.2250262
 25.16241 0.5225542 0.2247563
 25.21253 0.5338090 0.2243073
 25.26266 0.5450363 0.2236801
 25.31278 0.5562282 0.2228763
 25.36291 0.5673749 0.2218978
 25.41303 0.5784687 0.2207469
 25.46315 0.5895002 0.2194264
 25.51328 0.6004617 0.2179393
 25.56340 0.6113442 0.2162893
 25.61353 0.6221405 0.2144800
 25.66365 0.6328416 0.2125159
 25.71378 0.6434410 0.2104013
 25.76390 0.6539304 0.2081413
 25.81402 0.6643034 0.2057407
 25.86415 0.6745522 0.2032053
 25.91427 0.6846712 0.2005406
 25.96440 0.6946530 0.1977527
 26.01452 0.7044927 0.1948474
 26.06464 0.7141834 0.1918315
 26.11477 0.7237208 0.1887110
 26.16489 0.7330989 0.1854930
 26.21502 0.7423139 0.1821839
 26.26514 0.7513605 0.1787910
 26.31527 0.7602355 0.1753207
 26.36539 0.7689348 0.1717803
 26.41552 0.7774547 0.1681770
 26.46564 0.7857929 0.1645174
 26.51576 0.7939461 0.1608089
 26.56589 0.8019127 0.1570582
 26.61601 0.8096901 0.1532724
 26.66614 0.8172773 0.1494581
 26.71626 0.8246724 0.1456224
 26.76639 0.8318753 0.1417715
 26.81651 0.8388845 0.1379122
 26.86664 0.8457007 0.1340505
 26.91676 0.8523231 0.1301929
 26.96688 0.8587525 0.1263450
 27.01701 0.8649893 0.1225130
 27.06713 0.8710349 0.1187020
 27.11726 0.8768898 0.1149178
 27.16738 0.8825560 0.1111651
 27.21750 0.8880348 0.1074491
 27.26763 0.8933286 0.1037741
 27.31775 0.8984391 0.1001448
 27.36788 0.9033692 9.6565031E-02
 27.41800 0.9081210 9.3038894E-02
 27.46813 0.9126977 8.9569673E-02
 27.51825 0.9171018 8.6161010E-02
 27.56837 0.9213368 8.2815632E-02
 27.61850 0.9254057 7.9536483E-02
 27.66862 0.9293119 7.6326244E-02
 27.71875 0.9330591 7.3186874E-02
 27.76887 0.9366506 7.0120633E-02
 27.81900 0.9400904 6.7128986E-02
 27.86912 0.9433821 6.4213723E-02
 27.91925 0.9465297 6.1375815E-02
 27.96937 0.9495369 5.8616553E-02
 28.01950 0.9524079 5.5936441E-02
 28.06962 0.9551464 5.3336304E-02
 28.11974 0.9577568 5.0816245E-02
 28.16987 0.9602427 4.8376657E-02
 28.21999 0.9626085 4.6017244E-02
 28.27011 0.9648579 4.3738008E-02
 28.32024 0.9669952 4.1538317E-02
 28.37036 0.9690241 3.9417803E-02
 28.42049 0.9709488 3.7375536E-02
 28.47061 0.9727729 3.5410833E-02
 28.52074 0.9745006 3.3522487E-02
 28.57086 0.9761354 3.1709544E-02
 28.62099 0.9776813 2.9970596E-02
 28.67111 0.9791418 2.8304419E-02
 28.72124 0.9805206 2.6709430E-02
 28.77136 0.9818211 2.5184233E-02
 28.82148 0.9830469 2.3727074E-02
 28.87161 0.9842014 2.2336351E-02
 28.92173 0.9852877 2.1010386E-02
 28.97186 0.9863092 1.9747274E-02
 29.02198 0.9872689 1.8545317E-02
 29.07211 0.9881699 1.7402532E-02
 29.12223 0.9890150 1.6317157E-02
 29.17235 0.9898071 1.5287197E-02
 29.22248 0.9905488 1.4310841E-02
 29.27260 0.9912430 1.3386086E-02
 29.32273 0.9918920 1.2511116E-02
 29.37285 0.9924984 1.1683946E-02
 29.42297 0.9930644 1.0902779E-02
 29.47310 0.9935924 1.0165667E-02
 29.52322 0.9940846 9.4708409E-03
 29.57335 0.9945430 8.8164210E-03
 29.62347 0.9949694 8.2006864E-03
 29.67360 0.9953660 7.6218275E-03
 29.72372 0.9957344 7.0781885E-03
 29.77385 0.9960764 6.5680463E-03
 29.82397 0.9963936 6.0898191E-03
 29.87409 0.9966877 5.6418758E-03
 29.92422 0.9969599 5.2227201E-03
 29.97434 0.9972119 4.8308219E-03
 30.02447 0.9974449 4.4647739E-03
 30.07459 0.9976601 4.1231476E-03
 30.12472 0.9978588 3.8046155E-03
 30.17484 0.9980420 3.5078989E-03
 30.22497 0.9982109 3.2317215E-03
 30.27509 0.9983665 2.9749195E-03
 30.32521 0.9985096 2.7363228E-03
 30.37534 0.9986412 2.5148604E-03
 30.42546 0.9987621 2.3094642E-03
 30.47559 0.9988731 2.1191551E-03
 30.52571 0.9989749 1.9429656E-03
 30.57583 0.9990682 1.7800075E-03
 30.62596 0.9991536 1.6294065E-03
 30.67608 0.9992319 1.4903600E-03
 30.72621 0.9993033 1.3620837E-03
 30.77633 0.9993687 1.2438586E-03
 30.82646 0.9994283 1.1349811E-03
 30.87658 0.9994827 1.0348104E-03
 30.92670 0.9995322 9.4272196E-04
 30.97683 0.9995773 8.5814565E-04
 31.02695 0.9996185 7.8052870E-04
 31.07708 0.9996558 7.0936751E-04
 31.12720 0.9996897 6.4417574E-04
 31.17732 0.9997205 5.8451010E-04
 31.22745 0.9997484 5.2994437E-04
 31.27757 0.9997737 4.8009036E-04
 31.32770 0.9997966 4.3457653E-04
 31.37782 0.9998173 3.9306295E-04
 31.42795 0.9998361 3.5523248E-04
 31.47807 0.9998530 3.2078460E-04
 31.52820 0.9998683 2.8944705E-04
 31.57832 0.9998821 2.6096075E-04
 31.62844 0.9998946 2.3509101E-04
 31.67857 0.9999057 2.1161539E-04
 31.72869 0.9999158 1.9033258E-04
 31.77882 0.9999249 1.7105250E-04
 31.82894 0.9999330 1.5360327E-04
 31.87907 0.9999403 1.3782308E-04
 31.92919 0.9999469 1.2356573E-04
 31.97932 0.9999527 1.1069411E-04
 32.02944 0.9999580 9.9084573E-05
 32.07956 0.9999627 8.8621186E-05
 32.12969 0.9999669 7.9199803E-05
 32.17981 0.9999707 7.0723057E-05
 32.22993 0.9999740 6.3103376E-05
 32.28006 0.9999770 5.6259330E-05
 32.33018 0.9999797 5.0117698E-05
 32.38031 0.9999821 4.4610599E-05
 32.43043 0.9999841 3.9677114E-05
 32.48056 0.9999860 3.5260789E-05
 32.53068 0.9999877 3.1311181E-05
 32.58081 0.9999892 2.7781551E-05
 32.63093 0.9999905 2.4630113E-05
 32.68106 0.9999917 2.1818802E-05
 32.73118 0.9999927 1.9312825E-05
 32.78130 0.9999936 1.7081098E-05
 32.83143 0.9999944 1.5095092E-05
 32.88155 0.9999952 1.3329414E-05
 32.93168 0.9999958 1.1760778E-05
 32.98180 0.9999963 1.0368512E-05
 33.03193 0.9999968 9.1336933E-06
 33.08205 0.9999972 8.0395512E-06
 33.13218 0.9999976 7.0707788E-06
 33.18230 0.9999979 6.2138051E-06
 33.23243 0.9999982 5.4562979E-06
 33.28255 0.9999985 4.7873359E-06
 33.33267 0.9999986 4.1970034E-06
 33.38280 0.9999989 3.6765475E-06
 33.43292 0.9999990 3.2180371E-06
 33.48304 0.9999992 2.8144718E-06
 33.53317 0.9999993 2.4595338E-06
 33.58329 0.9999995 2.1476508E-06
 33.63342 0.9999995 1.8738058E-06
 33.68354 0.9999996 1.6335817E-06
 33.73367 0.9999996 1.4230061E-06
 33.78379 0.9999997 1.2385925E-06
 33.83392 0.9999998 1.0772076E-06
 33.88404 0.9999999 9.3610203E-07
 33.93416 0.9999999 8.1283440E-07
 33.98429 1.000000 7.0523021E-07
 34.03441 1.000000 6.1138559E-07
 34.08454 1.000000 5.2960127E-07
 34.13466 1.000000 4.5839383E-07
 34.18479 1.000000 3.9644016E-07
 34.23491 1.000000 3.4258812E-07
 34.28503 1.000000 2.9581230E-07
 34.33516 1.000000 2.5522073E-07
 34.38528 1.000000 2.2002158E-07
 34.43541 1.000000 1.8952652E-07
 34.48553 1.000000 1.6312643E-07
 34.53566 1.000000 1.4029251E-07
 34.58578 1.000000 1.2055739E-07
 34.63590 1.000000 1.0351636E-07
 34.68603 1.000000 8.8812435E-08
 34.73615 1.000000 7.6136686E-08
 34.78628 1.000000 6.5217442E-08
 34.83640 1.000000 5.5819889E-08
 34.88652 1.000000 4.7737949E-08
 34.93665 1.000000 4.0793818E-08
 34.98677 1.000000 3.4831661E-08
 35.03690 1.000000 2.9717363E-08
 35.08702 1.000000 2.5333494E-08
 35.13715 1.000000 2.1579055E-08
 35.18727 1.000000 1.8366483E-08
 35.23740 1.000000 1.5619573E-08
 35.28752 1.000000 1.3272960E-08
 35.33765 1.000000 1.1269772E-08
 35.38777 1.000000 9.5613393E-09
 35.43789 1.000000 8.1053528E-09
 35.48802 1.000000 6.8656321E-09
 35.53814 1.000000 5.8108385E-09
 35.58826 1.000000 4.9142046E-09
 35.63839 1.000000 4.1525570E-09
 35.68851 1.000000 3.5061873E-09
 35.73864 1.000000 2.9580354E-09
 35.78876 1.000000 2.4936060E-09
 35.83889 1.000000 2.1003956E-09
 35.88901 1.000000 1.7677897E-09
 35.93914 1.000000 1.4866505E-09
 35.98926 1.000000 1.2492328E-09
 36.03939 1.000000 1.0488841E-09
 36.08951 1.000000 8.7996826E-10
 36.13963 1.000000 7.3765982E-10
 36.18976 1.000000 6.1787508E-10
 36.23988 1.000000 5.1712412E-10
 36.29000 1.000000 4.3245840E-10
 36.34013 1.000000 3.6136288E-10
 36.39025 1.000000 3.0171352E-10
 36.44038 1.000000 2.5171154E-10
 36.49051 1.000000 2.0982603E-10
 36.54063 1.000000 1.7477235E-10
 36.59076 1.000000 1.4545677E-10
 36.64088 1.000000 1.2096293E-10
 36.69100 1.000000 1.0051215E-10
 36.74113 1.000000 8.3453001E-11
 36.79125 1.000000 6.9233147E-11
 36.84137 1.000000 5.7390821E-11
 36.89150 1.000000 4.7535666E-11
 36.94162 1.000000 3.9341686E-11
 36.99175 1.000000 3.2533826E-11
 37.04187 1.000000 2.6882737E-11
 37.09200 1.000000 2.2195327E-11
 37.14212 1.000000 1.8310700E-11
 37.19225 1.000000 1.5093747E-11
 37.24237 1.000000 1.2432154E-11
 37.29249 1.000000 1.0231601E-11
 37.34262 1.000000 8.4139102E-12
 37.39274 1.000000 6.9135470E-12
 37.44286 1.000000 5.6762321E-12
 37.49299 1.000000 4.6565837E-12
 37.54311 1.000000 3.8170838E-12
 37.59324 1.000000 3.1264015E-12
 37.64336 1.000000 2.5586443E-12
 37.69349 1.000000 2.0923393E-12
 37.74361 1.000000 1.7096340E-12
 37.79374 1.000000 1.3958231E-12
 37.84386 1.000000 1.1386902E-12
 37.89399 1.000000 9.2819199E-13
 37.94411 1.000000 7.5599488E-13
 37.99423 1.000000 6.1525638E-13
 38.04436 1.000000 5.0031344E-13
 38.09448 1.000000 4.0652312E-13
 38.14461 1.000000 3.3004678E-13
 38.19473 1.000000 2.6774638E-13
 38.24485 1.000000 2.1702997E-13
 38.29498 1.000000 1.7578136E-13
 38.34510 1.000000 1.4225708E-13
 38.39523 1.000000 1.1503554E-13
 38.44535 1.000000 9.2947595E-14
 38.49548 1.000000 7.5041461E-14
 38.54560 1.000000 6.0535940E-14
 38.59573 1.000000 4.8795688E-14
 38.64585 1.000000 3.9300526E-14
 38.69597 1.000000 3.1627987E-14
 38.74610 1.000000 2.5432762E-14
 38.79622 1.000000 2.0434863E-14
 38.84635 1.000000 1.6405849E-14
 38.89647 1.000000 1.3160663E-14
 38.94659 1.000000 1.0549085E-14
 38.99672 1.000000 8.4488741E-15
 39.04684 1.000000 6.7614651E-15
 39.09697 1.000000 5.4066706E-15
 39.14709 1.000000 4.3199320E-15
 39.19722 1.000000 3.4488240E-15
 39.24734 1.000000 2.7512056E-15
 39.29747 1.000000 2.1929251E-15
 39.34759 1.000000 1.7465458E-15
 39.39772 1.000000 1.3899045E-15
 39.44784 1.000000 1.1052156E-15
 39.49796 1.000000 8.7812800E-16
 39.54809 1.000000 6.9714650E-16
 39.59821 1.000000 5.5301765E-16
 39.64833 1.000000 4.3834161E-16
 39.69846 1.000000 3.4716180E-16
 39.74858 1.000000 2.7473236E-16
 39.79871 1.000000 2.1723752E-16
 39.84883 1.000000 1.7164004E-16
 39.89896 1.000000 1.3550265E-16
 39.94908 1.000000 1.0688967E-16
 39.99921 1.000000 8.4250489E-17
 40.04933 1.000000 6.6353610E-17
 40.09946 1.000000 5.2216220E-17
 40.14958 1.000000 4.1058063E-17
 40.19971 1.000000 3.2258575E-17
 40.24983 1.000000 2.5325163E-17
 40.29995 1.000000 1.9865669E-17
 40.35008 1.000000 1.5570691E-17
 40.40020 1.000000 1.2194471E-17
 40.45033 1.000000 9.5429304E-18
 40.50045 1.000000 7.4617845E-18
 40.55058 1.000000 5.8298507E-18
 40.60070 1.000000 4.5511647E-18
 40.65082 1.000000 3.5501885E-18
 40.70095 1.000000 2.7670945E-18
 40.75107 1.000000 2.1549988E-18
 40.80120 1.000000 1.6769643E-18
 40.85132 1.000000 1.3039553E-18
 40.90144 1.000000 1.0130838E-18
 40.95157 1.000000 7.8646332E-19
 41.00169 1.000000 6.1004984E-19
 41.05182 1.000000 4.7284182E-19
 41.10194 1.000000 3.6619032E-19
 41.15207 1.000000 2.8336855E-19
 41.20219 1.000000 2.1910311E-19
 41.25231 1.000000 1.6928132E-19
 41.30244 1.000000 1.3068031E-19
 41.35256 1.000000 1.0080102E-19
 41.40269 1.000000 7.7691201E-20
 41.45281 1.000000 5.9831861E-20
 41.50293 1.000000 4.6042101E-20
 41.55306 1.000000 3.5401366E-20
 41.60318 1.000000 2.7197996E-20
 41.65331 1.000000 2.0878898E-20
 41.70343 1.000000 1.6015491E-20
 41.75356 1.000000 1.2274819E-20
 41.80368 1.000000 9.4003446E-21
 41.85381 1.000000 7.1932111E-21
 41.90393 1.000000 5.5000568E-21
 41.95406 1.000000 4.2019616E-21
 42.00418 1.000000 3.2076776E-21
 42.05431 1.000000 2.4466946E-21
 42.10443 1.000000 1.8648084E-21
 42.15455 1.000000 1.4201386E-21
 42.20468 1.000000 1.0806318E-21
 42.25480 1.000000 8.2163415E-22
 42.30492 1.000000 6.2422758E-22
 42.35505 1.000000 4.7385948E-22
 42.40517 1.000000 3.5942358E-22
 42.45530 1.000000 2.7240644E-22
 42.50542 1.000000 2.0629729E-22
 42.55555 1.000000 1.5610200E-22
 42.60567 1.000000 1.1802586E-22
 42.65580 1.000000 8.9165737E-23
 42.70592 1.000000 6.7308907E-23
 42.75604 1.000000 5.0770230E-23
 42.80617 1.000000 3.8263780E-23
 42.85629 1.000000 2.8815117E-23
 42.90642 1.000000 2.1682197E-23
 42.95654 1.000000 1.6302401E-23
 43.00666 1.000000 1.2247300E-23
 43.05679 1.000000 9.1935420E-24
 43.10691 1.000000 6.8956596E-24
 43.15704 1.000000 5.1681382E-24
 43.20716 1.000000 3.8702104E-24
 43.25729 1.000000 2.8959125E-24
 43.30742 1.000000 2.1651605E-24
 43.35753 1.000000 1.6175528E-24
 43.40766 1.000000 1.2074493E-24
 43.45779 1.000000 9.0059556E-25
 43.50791 1.000000 6.7118845E-25
 43.55803 1.000000 4.9983248E-25
 43.60816 1.000000 3.7191469E-25
 43.65828 1.000000 2.7651325E-25
 43.70841 1.000000 2.0541901E-25
 43.75853 1.000000 1.5248625E-25
 43.80865 1.000000 1.1309921E-25
 43.85878 1.000000 8.3818949E-26
 43.90891 1.000000 6.2069308E-26
 43.95903 1.000000 4.5926715E-26
 44.00915 1.000000 3.3956080E-26
 44.05928 1.000000 2.5084775E-26
 44.10940 1.000000 1.8516331E-26
 44.15953 1.000000 1.3656940E-26
 44.20965 1.000000 1.0065042E-26
 44.25977 1.000000 7.4117080E-27
 44.30990 1.000000 5.4534925E-27
 44.36002 1.000000 4.0094202E-27
 44.41014 1.000000 2.9454758E-27
 44.46027 1.000000 2.1620622E-27
 44.51040 1.000000 1.5857496E-27
 44.56052 1.000000 1.1621215E-27
 44.61064 1.000000 8.5101143E-28
 44.66077 1.000000 6.2267270E-28
 44.71089 1.000000 4.5523394E-28
 44.76102 1.000000 3.3255483E-28
 44.81114 1.000000 2.4274881E-28
 44.86126 1.000000 1.7704822E-28
 44.91139 1.000000 1.2902575E-28
 44.96151 1.000000 9.3953940E-29
 45.01163 1.000000 6.8362924E-29
 45.06176 1.000000 4.9700807E-29
 45.11189 1.000000 3.6104386E-29
 45.16201 1.000000 2.6206571E-29
 45.21214 1.000000 1.9006813E-29
 45.26226 1.000000 1.3774538E-29
 45.31239 1.000000 9.9743265E-30
 45.36251 1.000000 7.2167597E-30
 45.41264 1.000000 5.2174266E-30
 45.46276 1.000000 3.7690543E-30
 45.51288 1.000000 2.7205120E-30
 45.56301 1.000000 1.9620844E-30
 45.61313 1.000000 1.4139698E-30
 45.66325 1.000000 1.0181879E-30
 45.71338 1.000000 7.3257908E-31
 45.76350 1.000000 5.2666755E-31
 45.81363 1.000000 3.7832700E-31
 45.86375 1.000000 2.7156064E-31
 45.91388 1.000000 1.9476090E-31
 45.96400 1.000000 1.3957004E-31
 46.01413 1.000000 9.9938931E-32
 46.06425 1.000000 7.1506015E-32
 46.11437 1.000000 5.1120198E-32
 46.16450 1.000000 3.6516682E-32
 46.21462 1.000000 2.6064066E-32
 46.26474 1.000000 1.8589243E-32
 46.31487 1.000000 1.3247075E-32
 46.36499 1.000000 9.4325796E-33
 46.41512 1.000000 6.7110890E-33
 46.46524 1.000000 4.7709808E-33
 46.51537 1.000000 3.3891515E-33
 46.56549 1.000000 2.4055245E-33
 46.61562 1.000000 1.7060196E-33
 46.66574 1.000000 1.2089555E-33
 46.71586 1.000000 8.5605560E-34
 46.76599 1.000000 6.0566502E-34
 46.81612 1.000000 4.2816886E-34
 46.86624 1.000000 3.0244965E-34
 46.91636 1.000000 2.1347799E-34
 46.96649 1.000000 1.5055504E-34
 47.01661 1.000000 1.0609370E-34
 47.06674 1.000000 7.4702643E-35
 47.11686 1.000000 5.2559073E-35
 47.16698 1.000000 3.6948623E-35
 47.21711 1.000000 2.5953994E-35
 47.26723 1.000000 1.8216249E-35
 47.31736 1.000000 1.2775630E-35
 47.36748 1.000000 8.9525059E-36
 47.41761 1.000000 6.2684320E-36
 47.46773 1.000000 4.3855629E-36
 47.51785 1.000000 3.0658940E-36
 47.56798 1.000000 2.1415640E-36
 47.61810 1.000000 1.4946990E-36
 47.66823 1.000000 1.0423940E-36
 47.71835 1.000000 7.2637147E-37
 47.76847 1.000000 5.0577534E-37
 47.81860 1.000000 3.5187795E-37
 47.86872 1.000000 2.4461241E-37
 47.91885 1.000000 1.6990927E-37
 47.96897 1.000000 1.1792999E-37
 48.01910 1.000000 8.1784380E-38
 48.06922 1.000000 5.6671570E-38
 48.11935 1.000000 3.9238778E-38
 48.16947 1.000000 2.7147784E-38
 48.21959 1.000000 1.8766741E-38
 48.26972 1.000000 1.2962697E-38
 48.31984 1.000000 0.0000000E+00
 48.36996 1.000000 0.0000000E+00
 48.42009 1.000000 0.0000000E+00
 48.47021 1.000000 0.0000000E+00
 48.52034 1.000000 0.0000000E+00
 48.57046 1.000000 0.0000000E+00
 48.62059 1.000000 0.0000000E+00
 48.67072 1.000000 0.0000000E+00
 48.72084 1.000000 0.0000000E+00
 48.77096 1.000000 0.0000000E+00
 48.82109 1.000000 0.0000000E+00
 48.87121 1.000000 0.0000000E+00
 48.92134 1.000000 0.0000000E+00
 48.97146 1.000000 0.0000000E+00
 49.02158 1.000000 0.0000000E+00
 49.07171 1.000000 0.0000000E+00
 49.12183 1.000000 0.0000000E+00
 49.17196 1.000000 0.0000000E+00
 49.22208 1.000000 0.0000000E+00
 49.27221 1.000000 0.0000000E+00
 49.32233 1.000000 0.0000000E+00
 49.37246 1.000000 0.0000000E+00
 49.42258 1.000000 0.0000000E+00
 49.47270 1.000000 0.0000000E+00
 49.52283 1.000000 0.0000000E+00
 49.57295 1.000000 0.0000000E+00
 49.62307 1.000000 0.0000000E+00
 49.67320 1.000000 0.0000000E+00
 49.72332 1.000000 0.0000000E+00
 49.77345 1.000000 0.0000000E+00
 49.82357 1.000000 0.0000000E+00
 49.87370 1.000000 0.0000000E+00
 49.92382 1.000000 0.0000000E+00
 49.97395 1.000000 0.0000000E+00
 50.02407 1.000000 0.0000000E+00
 50.07419 1.000000 0.0000000E+00
 50.12432 1.000000 0.0000000E+00
 50.17445 1.000000 0.0000000E+00
 50.22457 1.000000 0.0000000E+00
 50.27469 1.000000 0.0000000E+00
 50.32482 1.000000 0.0000000E+00
 50.37494 1.000000 0.0000000E+00
 50.42507 1.000000 0.0000000E+00
 50.47519 1.000000 0.0000000E+00
 50.52531 1.000000 0.0000000E+00
 50.57544 1.000000 0.0000000E+00
 50.62556 1.000000 0.0000000E+00
 50.67569 1.000000 0.0000000E+00
 50.72581 1.000000 0.0000000E+00
 50.77594 1.000000 0.0000000E+00
 50.82606 1.000000 0.0000000E+00
 50.87618 1.000000 0.0000000E+00
 50.92631 1.000000 0.0000000E+00
 50.97643 1.000000 0.0000000E+00
 51.02656 1.000000 0.0000000E+00
 51.07668 1.000000 0.0000000E+00
 51.12680 1.000000 0.0000000E+00
 51.17693 1.000000 0.0000000E+00
 51.22705 1.000000 0.0000000E+00
 51.27718 1.000000 0.0000000E+00
 51.32730 1.000000 0.0000000E+00
 51.37743 1.000000 0.0000000E+00
 51.42755 1.000000 0.0000000E+00
 51.47768 1.000000 0.0000000E+00
 51.52780 1.000000 0.0000000E+00
 51.57792 1.000000 0.0000000E+00
 51.62805 1.000000 0.0000000E+00
 51.67817 1.000000 0.0000000E+00
 51.72829 1.000000 0.0000000E+00
 51.77842 1.000000 0.0000000E+00
 51.82854 1.000000 0.0000000E+00
 51.87867 1.000000 0.0000000E+00
 51.92879 1.000000 0.0000000E+00
 51.97892 1.000000 0.0000000E+00
 52.02905 1.000000 0.0000000E+00
 52.07917 1.000000 0.0000000E+00
 52.12929 1.000000 0.0000000E+00
 52.17942 1.000000 0.0000000E+00
 52.22954 1.000000 0.0000000E+00
 52.27967 1.000000 0.0000000E+00
 52.32979 1.000000 0.0000000E+00
 52.37991 1.000000 0.0000000E+00
 52.43004 1.000000 0.0000000E+00
 52.48016 1.000000 0.0000000E+00
 52.53028 1.000000 0.0000000E+00
 52.58041 1.000000 0.0000000E+00
 52.63054 1.000000 0.0000000E+00
 52.68066 1.000000 0.0000000E+00
 52.73079 1.000000 0.0000000E+00
 52.78091 1.000000 0.0000000E+00
 52.83103 1.000000 0.0000000E+00
 52.88116 1.000000 0.0000000E+00
 52.93128 1.000000 0.0000000E+00
 52.98140 1.000000 0.0000000E+00
 53.03153 1.000000 0.0000000E+00
 53.08165 1.000000 0.0000000E+00
 53.13178 1.000000 0.0000000E+00
 53.18190 1.000000 0.0000000E+00
 53.23203 1.000000 0.0000000E+00
 53.28215 1.000000 0.0000000E+00
 53.33228 1.000000 0.0000000E+00
 53.38240 1.000000 0.0000000E+00
 53.43252 1.000000 0.0000000E+00
 53.48265 1.000000 0.0000000E+00
 53.53278 1.000000 0.0000000E+00
 53.58289 1.000000 0.0000000E+00
 53.63302 1.000000 0.0000000E+00
 53.68315 1.000000 0.0000000E+00
 53.73327 1.000000 0.0000000E+00
 53.78339 1.000000 0.0000000E+00
 53.83352 1.000000 0.0000000E+00
 53.88364 1.000000 0.0000000E+00
 53.93377 1.000000 0.0000000E+00
 53.98389 1.000000 0.0000000E+00
 54.03402 1.000000 0.0000000E+00
 54.08414 1.000000 0.0000000E+00
 54.13427 1.000000 0.0000000E+00
 54.18439 1.000000 0.0000000E+00
 54.23451 1.000000 0.0000000E+00
 54.28464 1.000000 0.0000000E+00
 54.33476 1.000000 0.0000000E+00
 54.38489 1.000000 0.0000000E+00
 54.43501 1.000000 0.0000000E+00
 54.48513 1.000000 0.0000000E+00
 54.53526 1.000000 0.0000000E+00
 54.58538 1.000000 0.0000000E+00
 54.63551 1.000000 0.0000000E+00
 54.68563 1.000000 0.0000000E+00
 54.73576 1.000000 0.0000000E+00
 54.78588 1.000000 0.0000000E+00
 54.83600 1.000000 0.0000000E+00
 54.88613 1.000000 0.0000000E+00
 54.93625 1.000000 0.0000000E+00
 54.98638 1.000000 0.0000000E+00
 55.03650 1.000000 0.0000000E+00
 55.08662 1.000000 0.0000000E+00
 55.13675 1.000000 0.0000000E+00
 55.18687 1.000000 0.0000000E+00
 55.23700 1.000000 0.0000000E+00
 55.28712 1.000000 0.0000000E+00
 55.33725 1.000000 0.0000000E+00
 55.38737 1.000000 0.0000000E+00
 55.43750 1.000000 0.0000000E+00
 55.48762 1.000000 0.0000000E+00
 55.53775 1.000000 0.0000000E+00
 55.58787 1.000000 0.0000000E+00
 55.63800 1.000000 0.0000000E+00
 55.68812 1.000000 0.0000000E+00
 55.73824 1.000000 0.0000000E+00
 55.78837 1.000000 0.0000000E+00
 55.83849 1.000000 0.0000000E+00
 55.88861 1.000000 0.0000000E+00
 55.93874 1.000000 0.0000000E+00
 55.98886 1.000000 0.0000000E+00
 56.03899 1.000000 0.0000000E+00
 56.08911 1.000000 0.0000000E+00
 56.13924 1.000000 0.0000000E+00
 56.18936 1.000000 0.0000000E+00
 56.23949 1.000000 0.0000000E+00
 56.28961 1.000000 0.0000000E+00
 56.33973 1.000000 0.0000000E+00
 56.38986 1.000000 0.0000000E+00
 56.43998 1.000000 0.0000000E+00
 56.49011 1.000000 0.0000000E+00
 56.54023 1.000000 0.0000000E+00
 56.59035 1.000000 0.0000000E+00
 56.64048 1.000000 0.0000000E+00
 56.69061 1.000000 0.0000000E+00
 56.74073 1.000000 0.0000000E+00
 56.79085 1.000000 0.0000000E+00
 56.84098 1.000000 0.0000000E+00
 56.89110 1.000000 0.0000000E+00
 56.94122 1.000000 0.0000000E+00
 56.99135 1.000000 0.0000000E+00
 57.04148 1.000000 0.0000000E+00
 57.09160 1.000000 0.0000000E+00
 57.14172 1.000000 0.0000000E+00
 57.19185 1.000000 0.0000000E+00
 57.24197 1.000000 0.0000000E+00
 57.29210 1.000000 0.0000000E+00
 57.34222 1.000000 0.0000000E+00
 57.39235 1.000000 0.0000000E+00
 57.44247 1.000000 0.0000000E+00
 57.49260 1.000000 0.0000000E+00
 57.54272 1.000000 0.0000000E+00
 57.59284 1.000000 0.0000000E+00
 57.64297 1.000000 0.0000000E+00
 57.69309 1.000000 0.0000000E+00
 57.74322 1.000000 0.0000000E+00
 57.79334 1.000000 0.0000000E+00
 57.84346 1.000000 0.0000000E+00
 57.89359 1.000000 0.0000000E+00
 57.94371 1.000000 0.0000000E+00
 57.99384 1.000000 0.0000000E+00
 58.04396 1.000000 0.0000000E+00
 58.09409 1.000000 0.0000000E+00
 58.14421 1.000000 0.0000000E+00
 58.19433 1.000000 0.0000000E+00
 58.24446 1.000000 0.0000000E+00
 58.29458 1.000000 0.0000000E+00
 58.34471 1.000000 0.0000000E+00
 58.39483 1.000000 0.0000000E+00
 58.44495 1.000000 0.0000000E+00
 58.49508 1.000000 0.0000000E+00
 58.54520 1.000000 0.0000000E+00
 58.59533 1.000000 0.0000000E+00
 58.64545 1.000000 0.0000000E+00
 58.69558 1.000000 0.0000000E+00
 58.74570 1.000000 0.0000000E+00
 58.79582 1.000000 0.0000000E+00
 58.84595 1.000000 0.0000000E+00
 58.89608 1.000000 0.0000000E+00
 58.94620 1.000000 0.0000000E+00
 58.99633 1.000000 0.0000000E+00
 59.04645 1.000000 0.0000000E+00
 59.09657 1.000000 0.0000000E+00
 59.14670 1.000000 0.0000000E+00
 59.19682 1.000000 0.0000000E+00
 59.24694 1.000000 0.0000000E+00
 59.29707 1.000000 0.0000000E+00
 59.34719 1.000000 0.0000000E+00
 59.39732 1.000000 0.0000000E+00
 59.44744 1.000000 0.0000000E+00
 59.49757 1.000000 0.0000000E+00
 59.54769 1.000000 0.0000000E+00
 59.59782 1.000000 0.0000000E+00
 59.64794 1.000000 0.0000000E+00
 59.69806 1.000000 0.0000000E+00
 59.74819 1.000000 0.0000000E+00
 59.79831 1.000000 0.0000000E+00
 59.84843 1.000000 0.0000000E+00
 59.89856 1.000000 0.0000000E+00
 59.94868 1.000000 0.0000000E+00
 59.99881 1.000000 0.0000000E+00
 60.04893 1.000000 0.0000000E+00
 60.09906 1.000000 0.0000000E+00
 60.14918 1.000000 0.0000000E+00
 60.19931 1.000000 0.0000000E+00
 60.24943 1.000000 0.0000000E+00
 60.29955 1.000000 0.0000000E+00
 60.34968 1.000000 0.0000000E+00
 60.39981 1.000000 0.0000000E+00
 60.44993 1.000000 0.0000000E+00
 60.50005 1.000000 0.0000000E+00
 60.55018 1.000000 0.0000000E+00
 60.60030 1.000000 0.0000000E+00
 60.65043 1.000000 0.0000000E+00
 60.70055 1.000000 0.0000000E+00
 60.75068 1.000000 0.0000000E+00
 60.80080 1.000000 0.0000000E+00
 60.85093 1.000000 0.0000000E+00
 60.90105 1.000000 0.0000000E+00
 60.95117 1.000000 0.0000000E+00
 61.00130 1.000000 0.0000000E+00
 61.05142 1.000000 0.0000000E+00
 61.10154 1.000000 0.0000000E+00
 61.15167 1.000000 0.0000000E+00
 61.20179 1.000000 0.0000000E+00
 61.25192 1.000000 0.0000000E+00
 61.30204 1.000000 0.0000000E+00
 61.35217 1.000000 0.0000000E+00
 61.40229 1.000000 0.0000000E+00
 61.45242 1.000000 0.0000000E+00
 61.50254 1.000000 0.0000000E+00
 61.55266 1.000000 0.0000000E+00
 61.60279 1.000000 0.0000000E+00
 61.65291 1.000000 0.0000000E+00
 61.70304 1.000000 0.0000000E+00
 61.75316 1.000000 0.0000000E+00
 61.80328 1.000000 0.0000000E+00
 61.85341 1.000000 0.0000000E+00
 61.90353 1.000000 0.0000000E+00
 61.95366 1.000000 0.0000000E+00
 62.00378 1.000000 0.0000000E+00
 62.05391 1.000000 0.0000000E+00
 62.10403 1.000000 0.0000000E+00
 62.15415 1.000000 0.0000000E+00
 62.20428 1.000000 0.0000000E+00
 62.25441 1.000000 0.0000000E+00
 62.30453 1.000000 0.0000000E+00
 62.35465 1.000000 0.0000000E+00
 62.40478 1.000000 0.0000000E+00
 62.45490 1.000000 0.0000000E+00
 62.50503 1.000000 0.0000000E+00
 62.55515 1.000000 0.0000000E+00
 62.60527 1.000000 0.0000000E+00
 62.65540 1.000000 0.0000000E+00
 62.70552 1.000000 0.0000000E+00
 62.75565 1.000000 0.0000000E+00
 62.80577 1.000000 0.0000000E+00
 62.85590 1.000000 0.0000000E+00
 62.90602 1.000000 0.0000000E+00
 62.95615 1.000000 0.0000000E+00
 63.00627 1.000000 0.0000000E+00
 63.05639 1.000000 0.0000000E+00
 63.10652 1.000000 0.0000000E+00
 63.15664 1.000000 0.0000000E+00
 63.20676 1.000000 0.0000000E+00
 63.25689 1.000000 0.0000000E+00
 63.30701 1.000000 0.0000000E+00
 63.35714 1.000000 0.0000000E+00
 63.40726 1.000000 0.0000000E+00
 63.45739 1.000000 0.0000000E+00
 63.50751 1.000000 0.0000000E+00
 63.55764 1.000000 0.0000000E+00
 63.60776 1.000000 0.0000000E+00
 63.65788 1.000000 0.0000000E+00
 63.70801 1.000000 0.0000000E+00
 63.75813 1.000000 0.0000000E+00
 63.80825 1.000000 0.0000000E+00
 63.85838 1.000000 0.0000000E+00
 63.90851 1.000000 0.0000000E+00
 63.95863 1.000000 0.0000000E+00
 64.00876 1.000000 0.0000000E+00
 64.05888 1.000000 0.0000000E+00
 64.10900 1.000000 0.0000000E+00
 64.15913 1.000000 0.0000000E+00
 64.20925 1.000000 0.0000000E+00
 64.25938 1.000000 0.0000000E+00
 64.30950 1.000000 0.0000000E+00
 64.35963 1.000000 0.0000000E+00
 64.40975 1.000000 0.0000000E+00
 64.45987 1.000000 0.0000000E+00
 64.50999 1.000000 0.0000000E+00
 64.56012 1.000000 0.0000000E+00
 64.61025 1.000000 0.0000000E+00
 64.66037 1.000000 0.0000000E+00
 64.71049 1.000000 0.0000000E+00
 64.76062 1.000000 0.0000000E+00
 64.81075 1.000000 0.0000000E+00
 64.86086 1.000000 0.0000000E+00
 64.91100 1.000000 0.0000000E+00
 64.96112 1.000000 0.0000000E+00
 65.01125 1.000000 0.0000000E+00
 65.06136 1.000000 0.0000000E+00
 65.11149 1.000000 0.0000000E+00
 65.16161 1.000000 0.0000000E+00
 65.21174 1.000000 0.0000000E+00
 65.26186 1.000000 0.0000000E+00
 65.31199 1.000000 0.0000000E+00
 65.36211 1.000000 0.0000000E+00
 65.41224 1.000000 0.0000000E+00
 65.46236 1.000000 0.0000000E+00
 65.51248 1.000000 0.0000000E+00
 65.56261 1.000000 0.0000000E+00
 65.61273 1.000000 0.0000000E+00
 65.66286 1.000000 0.0000000E+00
 65.71298 1.000000 0.0000000E+00
 65.76311 1.000000 0.0000000E+00
 65.81323 1.000000 0.0000000E+00
 65.86336 1.000000 0.0000000E+00
 65.91348 1.000000 0.0000000E+00
 65.96360 1.000000 0.0000000E+00
 66.01373 1.000000 0.0000000E+00
 66.06385 1.000000 0.0000000E+00
 66.11398 1.000000 0.0000000E+00
 66.16410 1.000000 0.0000000E+00
 66.21423 1.000000 0.0000000E+00
 66.26435 1.000000 0.0000000E+00
 66.31447 1.000000 0.0000000E+00
 66.36459 1.000000 0.0000000E+00
 66.41472 1.000000 0.0000000E+00
 66.46485 1.000000 0.0000000E+00
 66.51498 1.000000 0.0000000E+00
 66.56509 1.000000 0.0000000E+00
 66.61522 1.000000 0.0000000E+00
 66.66534 1.000000 0.0000000E+00
 66.71547 1.000000 0.0000000E+00
 66.76559 1.000000 0.0000000E+00
 66.81572 1.000000 0.0000000E+00
 66.86584 1.000000 0.0000000E+00
 66.91597 1.000000 0.0000000E+00
 66.96609 1.000000 0.0000000E+00
 67.01621 1.000000 0.0000000E+00
 67.06634 1.000000 0.0000000E+00
 67.11646 1.000000 0.0000000E+00
 67.16659 1.000000 0.0000000E+00
 67.21671 1.000000 0.0000000E+00
 67.26684 1.000000 0.0000000E+00
 67.31696 1.000000 0.0000000E+00
 67.36708 1.000000 0.0000000E+00
 67.41721 1.000000 0.0000000E+00
 67.46733 1.000000 0.0000000E+00
 67.51746 1.000000 0.0000000E+00
 67.56758 1.000000 0.0000000E+00
 67.61771 1.000000 0.0000000E+00
 67.66783 1.000000 0.0000000E+00
 67.71796 1.000000 0.0000000E+00
 67.76808 1.000000 0.0000000E+00
 67.81820 1.000000 0.0000000E+00
 67.86832 1.000000 0.0000000E+00
 67.91845 1.000000 0.0000000E+00
 67.96858 1.000000 0.0000000E+00
 68.01870 1.000000 0.0000000E+00
 68.06882 1.000000 0.0000000E+00
 68.11895 1.000000 0.0000000E+00
 68.16908 1.000000 0.0000000E+00
 68.21919 1.000000 0.0000000E+00
 68.26933 1.000000 0.0000000E+00
 68.31945 1.000000 0.0000000E+00
 68.36958 1.000000 0.0000000E+00
 68.41969 1.000000 0.0000000E+00
 68.46982 1.000000 0.0000000E+00
 68.51994 1.000000 0.0000000E+00
 68.57007 1.000000 0.0000000E+00
 68.62019 1.000000 0.0000000E+00
 68.67032 1.000000 0.0000000E+00
 68.72044 1.000000 0.0000000E+00
 68.77057 1.000000 0.0000000E+00
 68.82069 1.000000 0.0000000E+00
 68.87081 1.000000 0.0000000E+00
 68.92094 1.000000 0.0000000E+00
 68.97106 1.000000 0.0000000E+00
 69.02119 1.000000 0.0000000E+00
 69.07131 1.000000 0.0000000E+00
 69.12144 1.000000 0.0000000E+00
 69.17156 1.000000 0.0000000E+00
 69.22169 1.000000 0.0000000E+00
 69.27180 1.000000 0.0000000E+00
 69.32193 1.000000 0.0000000E+00
 69.37206 1.000000 0.0000000E+00
 69.42218 1.000000 0.0000000E+00
 69.47231 1.000000 0.0000000E+00
 69.52243 1.000000 0.0000000E+00
 69.57256 1.000000 0.0000000E+00
 69.62268 1.000000 0.0000000E+00
 69.67280 1.000000 0.0000000E+00
 69.72292 1.000000 0.0000000E+00
 69.77305 1.000000 0.0000000E+00
 69.82318 1.000000 0.0000000E+00
 69.87330 1.000000 0.0000000E+00
 69.92342 1.000000 0.0000000E+00
 69.97355 1.000000 0.0000000E+00
 70.02367 1.000000 0.0000000E+00
 70.07380 1.000000 0.0000000E+00
 70.12392 1.000000 0.0000000E+00
 70.17405 1.000000 0.0000000E+00
 70.22417 1.000000 0.0000000E+00
 70.27430 1.000000 0.0000000E+00
 70.32442 1.000000 0.0000000E+00
 70.37454 1.000000 0.0000000E+00
 70.42467 1.000000 0.0000000E+00
 70.47479 1.000000 0.0000000E+00
 70.52492 1.000000 0.0000000E+00
 70.57504 1.000000 0.0000000E+00
 70.62517 1.000000 0.0000000E+00
 70.67529 1.000000 0.0000000E+00
 70.72541 1.000000 0.0000000E+00
 70.77554 1.000000 0.0000000E+00
 70.82566 1.000000 0.0000000E+00
 70.87579 1.000000 0.0000000E+00
 70.92591 1.000000 0.0000000E+00
 70.97604 1.000000 0.0000000E+00
 71.02616 1.000000 0.0000000E+00
 71.07629 1.000000 0.0000000E+00
 71.12640 1.000000 0.0000000E+00
 71.17653 1.000000 0.0000000E+00
 71.22665 1.000000 0.0000000E+00
 71.27678 1.000000 0.0000000E+00
 71.32690 1.000000 0.0000000E+00
 71.37703 1.000000 0.0000000E+00
 71.42715 1.000000 0.0000000E+00
 71.47728 1.000000 0.0000000E+00
 71.52740 1.000000 0.0000000E+00
 71.57752 1.000000 0.0000000E+00
 71.62766 1.000000 0.0000000E+00
 71.67778 1.000000 0.0000000E+00
 71.72791 1.000000 0.0000000E+00
 71.77802 1.000000 0.0000000E+00
 71.82815 1.000000 0.0000000E+00
 71.87827 1.000000 0.0000000E+00
 71.92840 1.000000 0.0000000E+00
 71.97852 1.000000 0.0000000E+00
 72.02865 1.000000 0.0000000E+00
 72.07877 1.000000 0.0000000E+00
 72.12890 1.000000 0.0000000E+00
 72.17902 1.000000 0.0000000E+00
 72.22914 1.000000 0.0000000E+00
 72.27927 1.000000 0.0000000E+00
 72.32939 1.000000 0.0000000E+00
 72.37952 1.000000 0.0000000E+00
 72.42964 1.000000 0.0000000E+00
 72.47977 1.000000 0.0000000E+00
 72.52989 1.000000 0.0000000E+00
 72.58001 1.000000 0.0000000E+00
 72.63013 1.000000 0.0000000E+00
 72.68026 1.000000 0.0000000E+00
 72.73038 1.000000 0.0000000E+00
 72.78051 1.000000 0.0000000E+00
 72.83064 1.000000 0.0000000E+00
 72.88076 1.000000 0.0000000E+00
 72.93089 1.000000 0.0000000E+00
 72.98101 1.000000 0.0000000E+00
 73.03113 1.000000 0.0000000E+00
 73.08125 1.000000 0.0000000E+00
 73.13138 1.000000 0.0000000E+00
 73.18151 1.000000 0.0000000E+00
 73.23163 1.000000 0.0000000E+00
 73.28175 1.000000 0.0000000E+00
 73.33188 1.000000 0.0000000E+00
 73.38200 1.000000 0.0000000E+00
 73.43213 1.000000 0.0000000E+00
 73.48225 1.000000 0.0000000E+00
 73.53238 1.000000 0.0000000E+00
 73.58250 1.000000 0.0000000E+00
 73.63262 1.000000 0.0000000E+00
 73.68275 1.000000 0.0000000E+00
 73.73287 1.000000 0.0000000E+00
 73.78300 1.000000 0.0000000E+00
 73.83312 1.000000 0.0000000E+00
 73.88325 1.000000 0.0000000E+00
 73.93337 1.000000 0.0000000E+00
 73.98350 1.000000 0.0000000E+00
 74.03362 1.000000 0.0000000E+00
 74.08374 1.000000 0.0000000E+00
 74.13387 1.000000 0.0000000E+00
 74.18399 1.000000 0.0000000E+00
 74.23412 1.000000 0.0000000E+00
 74.28424 1.000000 0.0000000E+00
 74.33437 1.000000 0.0000000E+00
 74.38449 1.000000 0.0000000E+00
 74.43462 1.000000 0.0000000E+00
 74.48473 1.000000 0.0000000E+00
 74.53486 1.000000 0.0000000E+00
 74.58498 1.000000 0.0000000E+00
 74.63511 1.000000 0.0000000E+00
 74.68523 1.000000 0.0000000E+00
 74.73536 1.000000 0.0000000E+00
 74.78548 1.000000 0.0000000E+00
 74.83561 1.000000 0.0000000E+00
 74.88573 1.000000 0.0000000E+00
 74.93585 1.000000 0.0000000E+00
 74.98598 1.000000 0.0000000E+00
 75.03611 1.000000 0.0000000E+00
 75.08623 1.000000 0.0000000E+00
 75.13635 1.000000 0.0000000E+00
 75.18648 1.000000 0.0000000E+00
 75.23660 1.000000 0.0000000E+00
 75.28673 1.000000 0.0000000E+00
 75.33685 1.000000 0.0000000E+00
 75.38698 1.000000 0.0000000E+00
 75.43710 1.000000 0.0000000E+00
 75.48723 1.000000 0.0000000E+00
 75.53735 1.000000 0.0000000E+00
 75.58747 1.000000 0.0000000E+00
 75.63760 1.000000 0.0000000E+00
 75.68772 1.000000 0.0000000E+00
 75.73785 1.000000 0.0000000E+00
 75.78797 1.000000 0.0000000E+00
 75.83810 1.000000 0.0000000E+00
 75.88822 1.000000 0.0000000E+00
 75.93834 1.000000 0.0000000E+00
 75.98846 1.000000 0.0000000E+00
 76.03859 1.000000 0.0000000E+00
 76.08871 1.000000 0.0000000E+00
 76.13884 1.000000 0.0000000E+00
 76.18896 1.000000 0.0000000E+00
 76.23909 1.000000 0.0000000E+00
 76.28922 1.000000 0.0000000E+00
 76.33933 1.000000 0.0000000E+00
 76.38946 1.000000 0.0000000E+00
 76.43958 1.000000 0.0000000E+00
 76.48971 1.000000 0.0000000E+00
 76.53984 1.000000 0.0000000E+00
 76.58996 1.000000 0.0000000E+00
 76.64008 1.000000 0.0000000E+00
 76.69021 1.000000 0.0000000E+00
 76.74033 1.000000 0.0000000E+00
 76.79045 1.000000 0.0000000E+00
 76.84058 1.000000 0.0000000E+00
 76.89071 1.000000 0.0000000E+00
 76.94083 1.000000 0.0000000E+00
 76.99095 1.000000 0.0000000E+00
 77.04108 1.000000 0.0000000E+00
 77.09120 1.000000 0.0000000E+00
 77.14133 1.000000 0.0000000E+00
 77.19145 1.000000 0.0000000E+00
 77.24158 1.000000 0.0000000E+00
 77.29170 1.000000 0.0000000E+00
 77.34183 1.000000 0.0000000E+00
 77.39194 1.000000 0.0000000E+00
 77.44207 1.000000 0.0000000E+00
 77.49220 1.000000 0.0000000E+00
 77.54232 1.000000 0.0000000E+00
 77.59245 1.000000 0.0000000E+00
 77.64257 1.000000 0.0000000E+00
 77.69270 1.000000 0.0000000E+00
 77.74282 1.000000 0.0000000E+00
 77.79295 1.000000 0.0000000E+00
 77.84306 1.000000 0.0000000E+00
 77.89319 1.000000 0.0000000E+00
 77.94331 1.000000 0.0000000E+00
 77.99344 1.000000 0.0000000E+00
 78.04356 1.000000 0.0000000E+00
 78.09369 1.000000 0.0000000E+00
 78.14381 1.000000 0.0000000E+00
 78.19394 1.000000 0.0000000E+00
 78.24406 1.000000 0.0000000E+00
 78.29418 1.000000 0.0000000E+00
 78.34431 1.000000 0.0000000E+00
 78.39444 1.000000 0.0000000E+00
 78.44456 1.000000 0.0000000E+00
 78.49468 1.000000 0.0000000E+00
 78.54481 1.000000 0.0000000E+00
 78.59493 1.000000 0.0000000E+00
 78.64506 1.000000 0.0000000E+00
 78.69518 1.000000 0.0000000E+00
 78.74531 1.000000 0.0000000E+00
 78.79543 1.000000 0.0000000E+00
 78.84555 1.000000 0.0000000E+00
 78.89568 1.000000 0.0000000E+00
 78.94580 1.000000 0.0000000E+00
 78.99593 1.000000 0.0000000E+00
 79.04605 1.000000 0.0000000E+00
 79.09618 1.000000 0.0000000E+00
 79.14630 1.000000 0.0000000E+00
 79.19643 1.000000 0.0000000E+00
 79.24655 1.000000 0.0000000E+00
 79.29667 1.000000 0.0000000E+00
 79.34679 1.000000 0.0000000E+00
 79.39692 1.000000 0.0000000E+00
 79.44704 1.000000 0.0000000E+00
 79.49717 1.000000 0.0000000E+00
 79.54729 1.000000 0.0000000E+00
 79.59742 1.000000 0.0000000E+00
 79.64754 1.000000 0.0000000E+00
 79.69766 1.000000 0.0000000E+00
 79.74779 1.000000 0.0000000E+00
 79.79791 1.000000 0.0000000E+00
 79.84804 1.000000 0.0000000E+00
 79.89816 1.000000 0.0000000E+00
 79.94829 1.000000 0.0000000E+00
 79.99841 1.000000 0.0000000E+00
 80.04854 1.000000 0.0000000E+00
 80.09866 1.000000 0.0000000E+00
 80.14878 1.000000 0.0000000E+00
 80.19891 1.000000 0.0000000E+00
 80.24904 1.000000 0.0000000E+00
 80.29916 1.000000 0.0000000E+00
 80.34929 1.000000 0.0000000E+00
 80.39941 1.000000 0.0000000E+00
 80.44953 1.000000 0.0000000E+00
 80.49966 1.000000 0.0000000E+00
 80.54978 1.000000 0.0000000E+00
 80.59991 1.000000 0.0000000E+00
 80.65003 1.000000 0.0000000E+00
 80.70016 1.000000 0.0000000E+00
 80.75028 1.000000 0.0000000E+00
 80.80041 1.000000 0.0000000E+00
 80.85052 1.000000 0.0000000E+00
 80.90065 1.000000 0.0000000E+00
 80.95078 1.000000 0.0000000E+00
 81.00090 1.000000 0.0000000E+00
 81.05103 1.000000 0.0000000E+00
 81.10115 1.000000 0.0000000E+00
 81.15128 1.000000 0.0000000E+00
 81.20140 1.000000 0.0000000E+00
 81.25152 1.000000 0.0000000E+00
 81.30164 1.000000 0.0000000E+00
 81.35177 1.000000 0.0000000E+00
 81.40189 1.000000 0.0000000E+00
 81.45202 1.000000 0.0000000E+00
 81.50214 1.000000 0.0000000E+00
 81.55227 1.000000 0.0000000E+00
 81.60239 1.000000 0.0000000E+00
 81.65252 1.000000 0.0000000E+00
 81.70264 1.000000 0.0000000E+00
 81.75276 1.000000 0.0000000E+00
 81.80289 1.000000 0.0000000E+00
 81.85301 1.000000 0.0000000E+00
 81.90314 1.000000 0.0000000E+00
 81.95326 1.000000 0.0000000E+00
 82.00339 1.000000 0.0000000E+00
 82.05351 1.000000 0.0000000E+00
 82.10363 1.000000 0.0000000E+00
 82.15376 1.000000 0.0000000E+00
 82.20388 1.000000 0.0000000E+00
 82.25401 1.000000 0.0000000E+00
 82.30413 1.000000 0.0000000E+00
 82.35426 1.000000 0.0000000E+00
 82.40438 1.000000 0.0000000E+00
 82.45451 1.000000 0.0000000E+00
 82.50462 1.000000 0.0000000E+00
 82.55475 1.000000 0.0000000E+00
 82.60487 1.000000 0.0000000E+00
 82.65500 1.000000 0.0000000E+00
 82.70512 1.000000 0.0000000E+00
 82.75525 1.000000 0.0000000E+00
 82.80537 1.000000 0.0000000E+00
 82.85550 1.000000 0.0000000E+00
 82.90562 1.000000 0.0000000E+00
 82.95574 1.000000 0.0000000E+00
 83.00587 1.000000 0.0000000E+00
 83.05599 1.000000 0.0000000E+00
 83.10612 1.000000 0.0000000E+00
 83.15624 1.000000 0.0000000E+00
 83.20637 1.000000 0.0000000E+00
 83.25650 1.000000 0.0000000E+00
 83.30663 1.000000 0.0000000E+00
 83.35674 1.000000 0.0000000E+00
 83.40686 1.000000 0.0000000E+00
 83.45699 1.000000 0.0000000E+00
 83.50711 1.000000 0.0000000E+00
 83.55724 1.000000 0.0000000E+00
 83.60737 1.000000 0.0000000E+00
 83.65749 1.000000 0.0000000E+00
 83.70762 1.000000 0.0000000E+00
 83.75773 1.000000 0.0000000E+00
 83.80786 1.000000 0.0000000E+00
 83.85799 1.000000 0.0000000E+00
 83.90811 1.000000 0.0000000E+00
 83.95824 1.000000 0.0000000E+00
 84.00836 1.000000 0.0000000E+00
 84.05849 1.000000 0.0000000E+00
 84.10861 1.000000 0.0000000E+00
 84.15874 1.000000 0.0000000E+00
 84.20885 1.000000 0.0000000E+00
 84.25898 1.000000 0.0000000E+00
 84.30910 1.000000 0.0000000E+00
 84.35923 1.000000 0.0000000E+00
 84.40936 1.000000 0.0000000E+00
 84.45948 1.000000 0.0000000E+00
 84.50961 1.000000 0.0000000E+00
 84.55973 1.000000 0.0000000E+00
 84.60985 1.000000 0.0000000E+00
 84.65997 1.000000 0.0000000E+00
 84.71010 1.000000 0.0000000E+00
 84.76022 1.000000 0.0000000E+00
 84.81035 1.000000 0.0000000E+00
 84.86047 1.000000 0.0000000E+00
 84.91060 1.000000 0.0000000E+00
 84.96072 1.000000 0.0000000E+00
 85.01084 1.000000 0.0000000E+00
 85.06097 1.000000 0.0000000E+00
 85.11109 1.000000 0.0000000E+00
 85.16122 1.000000 0.0000000E+00
 85.21134 1.000000 0.0000000E+00
 85.26147 1.000000 0.0000000E+00
 85.31159 1.000000 0.0000000E+00
 85.36172 1.000000 0.0000000E+00
 85.41184 1.000000 0.0000000E+00
 85.46196 1.000000 0.0000000E+00
 85.51208 1.000000 0.0000000E+00
 85.56221 1.000000 0.0000000E+00
 85.61234 1.000000 0.0000000E+00
 85.66246 1.000000 0.0000000E+00
 85.71259 1.000000 0.0000000E+00
 85.76271 1.000000 0.0000000E+00
 85.81284 1.000000 0.0000000E+00
 85.86295 1.000000 0.0000000E+00
 85.91308 1.000000 0.0000000E+00
 85.96320 1.000000 0.0000000E+00
 86.01333 1.000000 0.0000000E+00
 86.06345 1.000000 0.0000000E+00
 86.11358 1.000000 0.0000000E+00
 86.16370 1.000000 0.0000000E+00
 86.21383 1.000000 0.0000000E+00
 86.26395 1.000000 0.0000000E+00
 86.31407 1.000000 0.0000000E+00
 86.36420 1.000000 0.0000000E+00
 86.41432 1.000000 0.0000000E+00
 86.46445 1.000000 0.0000000E+00
 86.51457 1.000000 0.0000000E+00
 86.56470 1.000000 0.0000000E+00
 86.61483 1.000000 0.0000000E+00
 86.66496 1.000000 0.0000000E+00
 86.71507 1.000000 0.0000000E+00
 86.76519 1.000000 0.0000000E+00
 86.81532 1.000000 0.0000000E+00
 86.86544 1.000000 0.0000000E+00
 86.91557 1.000000 0.0000000E+00
 86.96570 1.000000 0.0000000E+00
 87.01582 1.000000 0.0000000E+00
 87.06595 1.000000 0.0000000E+00
 87.11606 1.000000 0.0000000E+00
 87.16619 1.000000 0.0000000E+00
 87.21632 1.000000 0.0000000E+00
 87.26644 1.000000 0.0000000E+00
 87.31657 1.000000 0.0000000E+00
 87.36669 1.000000 0.0000000E+00
 87.41682 1.000000 0.0000000E+00
 87.46694 1.000000 0.0000000E+00
 87.51706 1.000000 0.0000000E+00
 87.56718 1.000000 0.0000000E+00
 87.61731 1.000000 0.0000000E+00
 87.66743 1.000000 0.0000000E+00
 87.71756 1.000000 0.0000000E+00
 87.76768 1.000000 0.0000000E+00
 87.81781 1.000000 0.0000000E+00
 87.86794 1.000000 0.0000000E+00
 87.91806 1.000000 0.0000000E+00
 87.96818 1.000000 0.0000000E+00
 88.01830 1.000000 0.0000000E+00
 88.06843 1.000000 0.0000000E+00
 88.11855 1.000000 0.0000000E+00
 88.16868 1.000000 0.0000000E+00
 88.21880 1.000000 0.0000000E+00
 88.26893 1.000000 0.0000000E+00
 88.31905 1.000000 0.0000000E+00
 88.36917 1.000000 0.0000000E+00
 88.41930 1.000000 0.0000000E+00
 88.46942 1.000000 0.0000000E+00
 88.51955 1.000000 0.0000000E+00
 88.56967 1.000000 0.0000000E+00
 88.61980 1.000000 0.0000000E+00
 88.66992 1.000000 0.0000000E+00
 88.72005 1.000000 0.0000000E+00
 88.77016 1.000000 0.0000000E+00
 88.82029 1.000000 0.0000000E+00
 88.87041 1.000000 0.0000000E+00
 88.92054 1.000000 0.0000000E+00
 88.97066 1.000000 0.0000000E+00
 89.02079 1.000000 0.0000000E+00
 89.07092 1.000000 0.0000000E+00
 89.12104 1.000000 0.0000000E+00
 89.17117 1.000000 0.0000000E+00
 89.22128 1.000000 0.0000000E+00
 89.27141 1.000000 0.0000000E+00
 89.32153 1.000000 0.0000000E+00
 89.37166 1.000000 0.0000000E+00
 89.42178 1.000000 0.0000000E+00
 89.47191 1.000000 0.0000000E+00
 89.52203 1.000000 0.0000000E+00
 89.57216 1.000000 0.0000000E+00
 89.62228 1.000000 0.0000000E+00
 89.67240 1.000000 0.0000000E+00
 89.72253 1.000000 0.0000000E+00
 89.77265 1.000000 0.0000000E+00
 89.82278 1.000000 0.0000000E+00
 89.87290 1.000000 0.0000000E+00
 89.92303 1.000000 0.0000000E+00
 89.97316 1.000000 0.0000000E+00
 90.02327 1.000000 0.0000000E+00
 90.07339 1.000000 0.0000000E+00
 90.12352 1.000000 0.0000000E+00
 90.17365 1.000000 0.0000000E+00
 90.22377 1.000000 0.0000000E+00
 90.27390 1.000000 0.0000000E+00
 90.32403 1.000000 0.0000000E+00
 90.37415 1.000000 0.0000000E+00
 90.42428 1.000000 0.0000000E+00
 90.47439 1.000000 0.0000000E+00
 90.52451 1.000000 0.0000000E+00
 90.57465 1.000000 0.0000000E+00
 90.62477 1.000000 0.0000000E+00
 90.67490 1.000000 0.0000000E+00
 90.72502 1.000000 0.0000000E+00
 90.77515 1.000000 0.0000000E+00
 90.82527 1.000000 0.0000000E+00
 90.87539 1.000000 0.0000000E+00
 90.92551 1.000000 0.0000000E+00
 90.97564 1.000000 0.0000000E+00
 91.02576 1.000000 0.0000000E+00
 91.07589 1.000000 0.0000000E+00
 91.12601 1.000000 0.0000000E+00
 91.17614 1.000000 0.0000000E+00
 91.22626 1.000000 0.0000000E+00
 91.27638 1.000000 0.0000000E+00
 91.32651 1.000000 0.0000000E+00
 91.37663 1.000000 0.0000000E+00
 91.42676 1.000000 0.0000000E+00
 91.47688 1.000000 0.0000000E+00
 91.52701 1.000000 0.0000000E+00
 91.57713 1.000000 0.0000000E+00
 91.62726 1.000000 0.0000000E+00
 91.67738 1.000000 0.0000000E+00
 91.72750 1.000000 0.0000000E+00
 91.77763 1.000000 0.0000000E+00
 91.82775 1.000000 0.0000000E+00
 91.87788 1.000000 0.0000000E+00
 91.92800 1.000000 0.0000000E+00
 91.97813 1.000000 0.0000000E+00
 92.02825 1.000000 0.0000000E+00
 92.07838 1.000000 0.0000000E+00
 92.12849 1.000000 0.0000000E+00
 92.17862 1.000000 0.0000000E+00
 92.22874 1.000000 0.0000000E+00
 92.27887 1.000000 0.0000000E+00
 92.32899 1.000000 0.0000000E+00
 92.37912 1.000000 0.0000000E+00
 92.42924 1.000000 0.0000000E+00
 92.47937 1.000000 0.0000000E+00
 92.52949 1.000000 0.0000000E+00
 92.57961 1.000000 0.0000000E+00
 92.62974 1.000000 0.0000000E+00
 92.67986 1.000000 0.0000000E+00
 92.72999 1.000000 0.0000000E+00
 92.78011 1.000000 0.0000000E+00
 92.83024 1.000000 0.0000000E+00
 92.88036 1.000000 0.0000000E+00
 92.93049 1.000000 0.0000000E+00
 92.98061 1.000000 0.0000000E+00
 93.03073 1.000000 0.0000000E+00
 93.08086 1.000000 0.0000000E+00
 93.13098 1.000000 0.0000000E+00
 93.18111 1.000000 0.0000000E+00
 93.23123 1.000000 0.0000000E+00
 93.28136 1.000000 0.0000000E+00
 93.33149 1.000000 0.0000000E+00
 93.38160 1.000000 0.0000000E+00
 93.43172 1.000000 0.0000000E+00
 93.48185 1.000000 0.0000000E+00
 93.53197 1.000000 0.0000000E+00
 93.58210 1.000000 0.0000000E+00
 93.63223 1.000000 0.0000000E+00
 93.68236 1.000000 0.0000000E+00
 93.73248 1.000000 0.0000000E+00
 93.78259 1.000000 0.0000000E+00
 93.83272 1.000000 0.0000000E+00
 93.88284 1.000000 0.0000000E+00
 93.93298 1.000000 0.0000000E+00
 93.98310 1.000000 0.0000000E+00
 94.03323 1.000000 0.0000000E+00
 94.08335 1.000000 0.0000000E+00
 94.13348 1.000000 0.0000000E+00
 94.18360 1.000000 0.0000000E+00
 94.23372 1.000000 0.0000000E+00
 94.28384 1.000000 0.0000000E+00
 94.33397 1.000000 0.0000000E+00
 94.38409 1.000000 0.0000000E+00
 94.43422 1.000000 0.0000000E+00
 94.48434 1.000000 0.0000000E+00
 94.53447 1.000000 0.0000000E+00
 94.58459 1.000000 0.0000000E+00
 94.63471 1.000000 0.0000000E+00
 94.68484 1.000000 0.0000000E+00
 94.73496 1.000000 0.0000000E+00
 94.78509 1.000000 0.0000000E+00
 94.83521 1.000000 0.0000000E+00
 94.88534 1.000000 0.0000000E+00
 94.93546 1.000000 0.0000000E+00
 94.98559 1.000000 0.0000000E+00
 95.03571 1.000000 0.0000000E+00
 95.08583 1.000000 0.0000000E+00
 95.13596 1.000000 0.0000000E+00
 95.18608 1.000000 0.0000000E+00
 95.23621 1.000000 0.0000000E+00
 95.28633 1.000000 0.0000000E+00
 95.33646 1.000000 0.0000000E+00
 95.38658 1.000000 0.0000000E+00
 95.43671 1.000000 0.0000000E+00
 95.48682 1.000000 0.0000000E+00
 95.53695 1.000000 0.0000000E+00
 95.58707 1.000000 0.0000000E+00
 95.63720 1.000000 0.0000000E+00
 95.68732 1.000000 0.0000000E+00
 95.73745 1.000000 0.0000000E+00
 95.78757 1.000000 0.0000000E+00
 95.83770 1.000000 0.0000000E+00
 95.88782 1.000000 0.0000000E+00
 95.93794 1.000000 0.0000000E+00
 95.98807 1.000000 0.0000000E+00
 96.03819 1.000000 0.0000000E+00
 96.08832 1.000000 0.0000000E+00
 96.13844 1.000000 0.0000000E+00
 96.18857 1.000000 0.0000000E+00
 96.23869 1.000000 0.0000000E+00
 96.28881 1.000000 0.0000000E+00
 96.33894 1.000000 0.0000000E+00
 96.38906 1.000000 0.0000000E+00
 96.43919 1.000000 0.0000000E+00
 96.48931 1.000000 0.0000000E+00
 96.53944 1.000000 0.0000000E+00
 96.58956 1.000000 0.0000000E+00
 96.63969 1.000000 0.0000000E+00
 96.68981 1.000000 0.0000000E+00
 96.73993 1.000000 0.0000000E+00
 96.79005 1.000000 0.0000000E+00
 96.84018 1.000000 0.0000000E+00
 96.89030 1.000000 0.0000000E+00
 96.94043 1.000000 0.0000000E+00
 96.99056 1.000000 0.0000000E+00
 97.04069 1.000000 0.0000000E+00
 97.09081 1.000000 0.0000000E+00
 97.14092 1.000000 0.0000000E+00
 97.19105 1.000000 0.0000000E+00
 97.24117 1.000000 0.0000000E+00
 97.29131 1.000000 0.0000000E+00
 97.34143 1.000000 0.0000000E+00
 97.39156 1.000000 0.0000000E+00
 97.44168 1.000000 0.0000000E+00
 97.49181 1.000000 0.0000000E+00
 97.54192 1.000000 0.0000000E+00
 97.59205 1.000000 0.0000000E+00
 97.64217 1.000000 0.0000000E+00
 97.69230 1.000000 0.0000000E+00
 97.74242 1.000000 0.0000000E+00
 97.79255 1.000000 0.0000000E+00
 97.84267 1.000000 0.0000000E+00
 97.89280 1.000000 0.0000000E+00
 97.94292 1.000000 0.0000000E+00
 97.99304 1.000000 0.0000000E+00
 98.04317 1.000000 0.0000000E+00
 98.09329 1.000000 0.0000000E+00
 98.14342 1.000000 0.0000000E+00
 98.19354 1.000000 0.0000000E+00
 98.24367 1.000000 0.0000000E+00
 98.29379 1.000000 0.0000000E+00
 98.34392 1.000000 0.0000000E+00
 98.39404 1.000000 0.0000000E+00
 98.44416 1.000000 0.0000000E+00
 98.49429 1.000000 0.0000000E+00
 98.54441 1.000000 0.0000000E+00
 98.59454 1.000000 0.0000000E+00
 98.64466 1.000000 0.0000000E+00
 98.69479 1.000000 0.0000000E+00
 98.74491 1.000000 0.0000000E+00
 98.79503 1.000000 0.0000000E+00
 98.84515 1.000000 0.0000000E+00
 98.89528 1.000000 0.0000000E+00
 98.94540 1.000000 0.0000000E+00
 98.99553 1.000000 0.0000000E+00
 99.04565 1.000000 0.0000000E+00
 99.09578 1.000000 0.0000000E+00
 99.14590 1.000000 0.0000000E+00
 99.19603 1.000000 0.0000000E+00
 99.24615 1.000000 0.0000000E+00
 99.29627 1.000000 0.0000000E+00
 99.34640 1.000000 0.0000000E+00
 99.39652 1.000000 0.0000000E+00
 99.44665 1.000000 0.0000000E+00
 99.49677 1.000000 0.0000000E+00
 99.54690 1.000000 0.0000000E+00
 99.59702 1.000000 0.0000000E+00
 99.64714 1.000000 0.0000000E+00
 99.69727 1.000000 0.0000000E+00
 99.74739 1.000000 0.0000000E+00
 99.79752 1.000000 0.0000000E+00
 99.84764 1.000000 0.0000000E+00
 99.89777 1.000000 0.0000000E+00
 99.94789 1.000000 0.0000000E+00
 99.99802 1.000000 0.0000000E+00
 100.0481 1.000000 0.0000000E+00
 100.0983 1.000000 0.0000000E+00
 100.1484 1.000000 0.0000000E+00
 100.1985 1.000000 0.0000000E+00
 100.2486 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osm_gu.30

 2001 30.07459
 0.0000000E+00 0.0000000E+00 0.0000000E+00
 5.0124317E-02 0.0000000E+00 0.0000000E+00
 0.1002486 0.0000000E+00 0.0000000E+00
 0.1503730 0.0000000E+00 0.0000000E+00
 0.2004973 0.0000000E+00 0.0000000E+00
 0.2506216 0.0000000E+00 0.0000000E+00
 0.3007459 0.0000000E+00 0.0000000E+00
 0.3508702 0.0000000E+00 0.0000000E+00
 0.4009945 0.0000000E+00 0.0000000E+00
 0.4511189 0.0000000E+00 0.0000000E+00
 0.5012432 0.0000000E+00 0.0000000E+00
 0.5513675 0.0000000E+00 0.0000000E+00
 0.6014918 0.0000000E+00 0.0000000E+00
 0.6516161 0.0000000E+00 0.0000000E+00
 0.7017404 0.0000000E+00 0.0000000E+00
 0.7518648 0.0000000E+00 0.0000000E+00
 0.8019891 0.0000000E+00 0.0000000E+00
 0.8521134 0.0000000E+00 0.0000000E+00
 0.9022378 0.0000000E+00 0.0000000E+00
 0.9523621 0.0000000E+00 0.0000000E+00
 1.002486 0.0000000E+00 0.0000000E+00
 1.052611 0.0000000E+00 0.0000000E+00
 1.102735 0.0000000E+00 0.0000000E+00
 1.152859 0.0000000E+00 0.0000000E+00
 1.202984 0.0000000E+00 0.0000000E+00
 1.253108 0.0000000E+00 0.0000000E+00
 1.303232 0.0000000E+00 0.0000000E+00
 1.353357 0.0000000E+00 0.0000000E+00
 1.403481 0.0000000E+00 0.0000000E+00
 1.453605 0.0000000E+00 0.0000000E+00
 1.503730 0.0000000E+00 0.0000000E+00
 1.553854 0.0000000E+00 0.0000000E+00
 1.603978 0.0000000E+00 0.0000000E+00
 1.654103 0.0000000E+00 0.0000000E+00
 1.704227 0.0000000E+00 0.0000000E+00
 1.754351 0.0000000E+00 0.0000000E+00
 1.804476 0.0000000E+00 0.0000000E+00
 1.854600 0.0000000E+00 0.0000000E+00
 1.904724 0.0000000E+00 0.0000000E+00
 1.954848 0.0000000E+00 0.0000000E+00
 2.004973 0.0000000E+00 0.0000000E+00
 2.055097 0.0000000E+00 0.0000000E+00
 2.105221 0.0000000E+00 0.0000000E+00
 2.155346 0.0000000E+00 0.0000000E+00
 2.205470 0.0000000E+00 0.0000000E+00
 2.255594 0.0000000E+00 0.0000000E+00
 2.305719 0.0000000E+00 0.0000000E+00
 2.355843 0.0000000E+00 0.0000000E+00
 2.405967 0.0000000E+00 0.0000000E+00
 2.456092 0.0000000E+00 0.0000000E+00
 2.506216 0.0000000E+00 0.0000000E+00
 2.556340 0.0000000E+00 0.0000000E+00
 2.606464 0.0000000E+00 0.0000000E+00
 2.656589 0.0000000E+00 0.0000000E+00
 2.706713 0.0000000E+00 0.0000000E+00
 2.756838 0.0000000E+00 0.0000000E+00
 2.806962 0.0000000E+00 0.0000000E+00
 2.857086 0.0000000E+00 0.0000000E+00
 2.907210 0.0000000E+00 0.0000000E+00
 2.957335 0.0000000E+00 0.0000000E+00
 3.007459 0.0000000E+00 0.0000000E+00
 3.057584 0.0000000E+00 0.0000000E+00
 3.107708 0.0000000E+00 0.0000000E+00
 3.157832 0.0000000E+00 0.0000000E+00
 3.207956 0.0000000E+00 0.0000000E+00
 3.258080 0.0000000E+00 0.0000000E+00
 3.308205 0.0000000E+00 0.0000000E+00
 3.358330 0.0000000E+00 0.0000000E+00
 3.408454 0.0000000E+00 0.0000000E+00
 3.458578 0.0000000E+00 0.0000000E+00
 3.508702 0.0000000E+00 0.0000000E+00
 3.558826 0.0000000E+00 0.0000000E+00
 3.608951 0.0000000E+00 0.0000000E+00
 3.659075 0.0000000E+00 0.0000000E+00
 3.709200 0.0000000E+00 0.0000000E+00
 3.759324 0.0000000E+00 0.0000000E+00
 3.809448 0.0000000E+00 0.0000000E+00
 3.859572 0.0000000E+00 0.0000000E+00
 3.909697 0.0000000E+00 0.0000000E+00
 3.959821 0.0000000E+00 0.0000000E+00
 4.009945 0.0000000E+00 0.0000000E+00
 4.060070 0.0000000E+00 0.0000000E+00
 4.110194 0.0000000E+00 0.0000000E+00
 4.160318 0.0000000E+00 0.0000000E+00
 4.210443 0.0000000E+00 0.0000000E+00
 4.260567 0.0000000E+00 0.0000000E+00
 4.310691 0.0000000E+00 0.0000000E+00
 4.360816 0.0000000E+00 0.0000000E+00
 4.410940 0.0000000E+00 0.0000000E+00
 4.461064 0.0000000E+00 0.0000000E+00
 4.511189 0.0000000E+00 0.0000000E+00
 4.561313 0.0000000E+00 0.0000000E+00
 4.611437 0.0000000E+00 0.0000000E+00
 4.661561 0.0000000E+00 0.0000000E+00
 4.711686 0.0000000E+00 0.0000000E+00
 4.761810 0.0000000E+00 0.0000000E+00
 4.811934 0.0000000E+00 0.0000000E+00
 4.862059 0.0000000E+00 0.0000000E+00
 4.912183 0.0000000E+00 0.0000000E+00
 4.962307 0.0000000E+00 0.0000000E+00
 5.012432 0.0000000E+00 0.0000000E+00
 5.062556 0.0000000E+00 0.0000000E+00
 5.112680 0.0000000E+00 0.0000000E+00
 5.162805 0.0000000E+00 0.0000000E+00
 5.212929 0.0000000E+00 0.0000000E+00
 5.263053 0.0000000E+00 0.0000000E+00
 5.313178 0.0000000E+00 0.0000000E+00
 5.363302 0.0000000E+00 0.0000000E+00
 5.413427 0.0000000E+00 0.0000000E+00
 5.463551 0.0000000E+00 0.0000000E+00
 5.513675 0.0000000E+00 0.0000000E+00
 5.563799 0.0000000E+00 0.0000000E+00
 5.613924 0.0000000E+00 0.0000000E+00
 5.664048 0.0000000E+00 0.0000000E+00
 5.714172 0.0000000E+00 0.0000000E+00
 5.764297 0.0000000E+00 0.0000000E+00
 5.814421 0.0000000E+00 0.0000000E+00
 5.864545 0.0000000E+00 0.0000000E+00
 5.914670 0.0000000E+00 0.0000000E+00
 5.964794 0.0000000E+00 0.0000000E+00
 6.014918 0.0000000E+00 0.0000000E+00
 6.065043 0.0000000E+00 0.0000000E+00
 6.115167 0.0000000E+00 0.0000000E+00
 6.165291 0.0000000E+00 0.0000000E+00
 6.215415 0.0000000E+00 0.0000000E+00
 6.265540 0.0000000E+00 0.0000000E+00
 6.315664 0.0000000E+00 0.0000000E+00
 6.365788 0.0000000E+00 0.0000000E+00
 6.415913 0.0000000E+00 0.0000000E+00
 6.466037 0.0000000E+00 0.0000000E+00
 6.516161 0.0000000E+00 0.0000000E+00
 6.566286 0.0000000E+00 0.0000000E+00
 6.616410 0.0000000E+00 0.0000000E+00
 6.666534 0.0000000E+00 0.0000000E+00
 6.716659 0.0000000E+00 0.0000000E+00
 6.766783 0.0000000E+00 0.0000000E+00
 6.816907 0.0000000E+00 0.0000000E+00
 6.867032 0.0000000E+00 1.2962697E-38
 6.917156 0.0000000E+00 1.8766741E-38
 6.967280 0.0000000E+00 2.7147162E-38
 7.017405 0.0000000E+00 3.9239378E-38
 7.067529 0.0000000E+00 5.6671570E-38
 7.117653 0.0000000E+00 8.1784380E-38
 7.167778 0.0000000E+00 1.1792820E-37
 7.217902 0.0000000E+00 1.6991186E-37
 7.268026 1.7602837E-38 2.4461241E-37
 7.318151 3.2552158E-38 3.5187795E-37
 7.368275 5.4046781E-38 5.0577534E-37
 7.418399 8.4927425E-38 7.2638815E-37
 7.468524 1.2925689E-37 1.0423940E-36
 7.518648 1.9284185E-37 1.4946990E-36
 7.568772 2.8397437E-37 2.1415640E-36
 7.618896 4.1448323E-37 3.0658473E-36
 7.669021 6.0123143E-37 4.3855629E-36
 7.719145 8.6824327E-37 6.2684320E-36
 7.769269 1.2497126E-36 8.9525059E-36
 7.819394 1.7942611E-36 1.2775435E-35
 7.869518 2.5709952E-36 1.8216526E-35
 7.919642 3.6780027E-36 2.5953994E-35
 7.969767 5.2544770E-36 3.6948623E-35
 8.019891 7.4977111E-36 5.2558269E-35
 8.070015 1.0687169E-35 7.4703780E-35
 8.120140 1.5218341E-35 1.0609370E-34
 8.170264 2.1650507E-35 1.5055504E-34
 8.220388 3.0773868E-35 2.1347476E-34
 8.270513 4.3704151E-35 3.0245426E-34
 8.320637 6.2015127E-35 4.2816886E-34
 8.370761 8.7925210E-35 6.0566502E-34
 8.420885 1.2455872E-34 8.5604265E-34
 8.471010 1.7631306E-34 1.2089740E-33
 8.521134 2.4936903E-34 1.7060196E-33
 8.571259 3.5241311E-34 2.4055245E-33
 8.621383 4.9764007E-34 3.3891515E-33
 8.671507 7.0215221E-34 4.7710535E-33
 8.721631 9.8991924E-34 6.7110890E-33
 8.771756 1.3945140E-33 9.4325796E-33
 8.821880 1.9629147E-33 1.3247075E-32
 8.872005 2.7607938E-33 1.8588958E-32
 8.922129 3.8798940E-33 2.6064066E-32
 8.972253 5.4483006E-33 3.6516682E-32
 9.022377 7.6446681E-33 5.1120198E-32
 9.072501 1.0717916E-32 7.1504922E-32
 9.122626 1.5014754E-32 9.9940459E-32
 9.172750 2.1017398E-32 1.3957004E-31
 9.222875 2.9396445E-32 1.9476090E-31
 9.272999 4.1083354E-32 2.7155650E-31
 9.323123 5.7370966E-32 3.7833281E-31
 9.373248 8.0052211E-32 5.2666755E-31
 9.423372 1.1161161E-31 7.3257908E-31
 9.473496 1.5548920E-31 1.0181723E-30
 9.523621 2.1644441E-31 1.4139914E-30
 9.573745 3.0105609E-31 1.9620844E-30
 9.623869 4.1841195E-31 2.7205120E-30
 9.673993 5.8105292E-31 3.7689971E-30
 9.724118 8.0627656E-31 5.2175060E-30
 9.774242 1.1179058E-30 7.2167597E-30
 9.824367 1.5487511E-30 9.9743265E-30
 9.874491 2.1439486E-30 1.3774538E-29
 9.924615 2.9655266E-30 1.9007103E-29
 9.974739 4.0986776E-30 2.6206571E-29
 10.02486 5.6603232E-30 3.6104386E-29
 10.07499 7.8107752E-30 4.9700428E-29
 10.12511 1.0769669E-29 6.8361882E-29
 10.17524 1.4837667E-29 9.3954663E-29
 10.22536 2.0426032E-29 1.2902575E-28
 10.27549 2.8096865E-29 1.7704688E-28
 10.32561 3.8617748E-29 2.4274510E-28
 10.37573 5.3036054E-29 3.3255735E-28
 10.42586 7.2779791E-29 4.5523394E-28
 10.47598 9.9794317E-29 6.2266793E-28
 10.52611 1.3672754E-28 8.5099853E-28
 10.57623 1.8718084E-28 1.1621303E-27
 10.62636 2.5604858E-28 1.5857496E-27
 10.67648 3.4997900E-28 2.1620622E-27
 10.72660 4.7798428E-28 2.9454535E-27
 10.77673 6.5228979E-28 4.0094815E-27
 10.82685 8.8945271E-28 5.4535133E-27
 10.87698 1.2118826E-27 7.4117080E-27
 10.92710 1.6498854E-27 1.0064966E-26
 10.97723 2.2444110E-27 1.3657097E-26
 11.02735 3.0507493E-27 1.8516471E-26
 11.07747 4.1434896E-27 2.5084775E-26
 11.12760 5.6231727E-27 3.3955818E-26
 11.17772 7.6252127E-27 4.5927242E-26
 11.22785 1.0331848E-26 6.2069782E-26
 11.27797 1.3988131E-26 8.3818949E-26
 11.32810 1.8923300E-26 1.1309835E-25
 11.37822 2.5579359E-26 1.5248393E-25
 11.42834 3.4549211E-26 2.0542060E-25
 11.47847 4.6627500E-26 2.7651325E-25
 11.52859 6.2878420E-26 3.7191185E-25
 11.57872 8.4726003E-26 4.9982483E-25
 11.62884 1.1407422E-25 6.7119362E-25
 11.67897 1.5346662E-25 9.0059556E-25
 11.72909 2.0629850E-25 1.2074401E-24
 11.77921 2.7709839E-25 1.6175341E-24
 11.82934 3.7190120E-25 2.1651771E-24
 11.87946 4.9874291E-25 2.8959125E-24
 11.92959 6.6832044E-25 3.8702104E-24
 11.97971 8.9484023E-25 5.1681185E-24
 12.02984 1.1971869E-24 6.8957653E-24
 12.07996 1.6004202E-24 9.1935767E-24
 12.13009 2.1377744E-24 1.2247300E-23
 12.18021 2.8532878E-24 1.6302276E-23
 12.23033 3.8052678E-24 2.1682530E-23
 12.28046 5.0708492E-24 2.8815227E-23
 12.33058 6.7519922E-24 3.8263780E-23
 12.38071 8.9833697E-24 5.0770037E-23
 12.43083 1.1942700E-23 6.7309677E-23
 12.48096 1.5864326E-23 8.9166412E-23
 12.53108 2.1057006E-23 1.1802586E-22
 12.58120 2.7927206E-23 1.5610081E-22
 12.63133 3.7009599E-23 2.0629412E-22
 12.68145 4.9006908E-23 2.7240854E-22
 12.73158 6.4841968E-23 3.5942358E-22
 12.78170 8.5725729E-23 4.7385590E-22
 12.83183 1.1324587E-22 6.2422046E-22
 12.88195 1.4948224E-22 8.2164046E-22
 12.93207 1.9715724E-22 1.0806318E-21
 12.98220 2.5983162E-22 1.4201278E-21
 13.03232 3.4215859E-22 1.8647870E-21
 13.08245 4.5021400E-22 2.4467132E-21
 13.13257 5.9192507E-22 3.2076776E-21
 13.18270 7.7763086E-22 4.2019616E-21
 13.23282 1.0207831E-21 5.5000148E-21
 13.28294 1.3389052E-21 7.1933209E-21
 13.33307 1.7547789E-21 9.4003802E-21
 13.38319 2.2980057E-21 1.2274819E-20
 13.43332 3.0070180E-21 1.6015369E-20
 13.48344 3.9316731E-21 2.0879139E-20
 13.53357 5.1365941E-21 2.7198203E-20
 13.58369 6.7054730E-21 3.5401366E-20
 13.63381 8.7466118E-21 4.6041752E-20
 13.68394 1.1400047E-20 5.9832546E-20
 13.73406 1.4846701E-20 7.7691795E-20
 13.78419 1.9320113E-20 1.0080102E-19
 13.83431 2.5121516E-20 1.3067982E-19
 13.88444 3.2639116E-20 1.6927875E-19
 13.93456 4.2372818E-20 2.1910394E-19
 13.98468 5.4965854E-20 2.8336855E-19
 14.03481 7.1245118E-20 3.6618753E-19
 14.08493 9.2272805E-20 4.7283458E-19
 14.13506 1.1941232E-19 6.1005449E-19
 14.18518 1.5441203E-19 7.8646332E-19
 14.23531 1.9951233E-19 1.0130760E-18
 14.28543 2.5758172E-19 1.3039404E-18
 14.33556 3.3228972E-19 1.6769710E-18
 14.38568 4.2832707E-19 2.1549988E-18
 14.43580 5.5168816E-19 2.7670945E-18
 14.48593 7.1001239E-19 3.5501744E-18
 14.53605 9.1305054E-19 4.5512168E-18
 14.58618 1.1732228E-18 5.8298726E-18
 14.63630 1.5063400E-18 7.4617845E-18
 14.68643 1.9325127E-18 9.5428576E-18
 14.73655 2.4773003E-18 1.2194611E-17
 14.78667 3.1731593E-18 1.5570750E-17
 14.83680 4.0612715E-18 1.9865669E-17
 14.88692 5.1938480E-18 2.5325066E-17
 14.93705 6.6370263E-18 3.2258942E-17
 14.98717 8.4745150E-18 4.1058374E-17
 15.03730 1.0812175E-17 5.2216220E-17
 15.08742 1.3783781E-17 6.6353358E-17
 15.13754 1.7558235E-17 8.4250489E-17
 15.18767 2.2348607E-17 1.0688927E-16
 15.23779 2.8423468E-17 1.3550265E-16
 15.28792 3.6121085E-17 1.7163873E-16
 15.33804 4.5867155E-17 2.1723752E-16
 15.38817 5.8196921E-17 2.7473027E-16
 15.43829 7.3782870E-17 3.4716180E-16
 15.48841 9.3469179E-17 4.3833828E-16
 15.53854 1.1831467E-16 5.5301765E-16
 15.58866 1.4964640E-16 6.9714385E-16
 15.63879 1.8912606E-16 8.7812800E-16
 15.68891 2.3883407E-16 1.1052156E-15
 15.73904 3.0136723E-16 1.3899099E-15
 15.78916 3.7997350E-16 1.7465458E-15
 15.83928 4.7870528E-16 2.1929336E-15
 15.88941 6.0261598E-16 2.7512056E-15
 15.93953 7.5800243E-16 3.4488437E-15
 15.98966 9.5270454E-16 4.3199320E-15
 16.03978 1.1964748E-15 5.4067019E-15
 16.08991 1.5014350E-15 6.7614651E-15
 16.14003 1.8826398E-15 8.4489224E-15
 16.19016 2.3587706E-15 1.0549085E-14
 16.24028 2.9529894E-15 1.3160740E-14
 16.29040 3.6939912E-15 1.6405849E-14
 16.34053 4.6172960E-15 2.0434787E-14
 16.39065 5.7668345E-15 2.5432762E-14
 16.44078 7.1968942E-15 3.1627807E-14
 16.49090 8.9745106E-15 3.9300526E-14
 16.54103 1.1182382E-14 4.8795406E-14
 16.59115 1.3922460E-14 6.0535940E-14
 16.64127 1.7320313E-14 7.5041176E-14
 16.69140 2.1530470E-14 9.2947595E-14
 16.74152 2.6742955E-14 1.1503488E-13
 16.79165 3.3191240E-14 1.4225708E-13
 16.84177 4.1161942E-14 1.7578036E-13
 16.89190 5.1006606E-14 2.1702997E-13
 16.94202 6.3156423E-14 2.6774638E-13
 16.99215 7.8138444E-14 3.3004868E-13
 17.04227 9.6598510E-14 4.0652312E-13
 17.09239 1.1932584E-13 5.0031631E-13
 17.14252 1.4728447E-13 6.1525638E-13
 17.19264 1.8165103E-13 7.5599775E-13
 17.24277 2.2386041E-13 9.2819199E-13
 17.29289 2.7566106E-13 1.1386967E-12
 17.34301 3.3918154E-13 1.3958231E-12
 17.39314 4.1701110E-13 1.7096404E-12
 17.44326 5.1229686E-13 2.0923393E-12
 17.49339 6.2886079E-13 2.5586590E-12
 17.54351 7.7134057E-13 3.1264015E-12
 17.59364 9.4535870E-13 3.8170691E-12
 17.64376 1.1577266E-12 4.6565837E-12
 17.69388 1.4166882E-12 5.6762000E-12
 17.74401 1.7322141E-12 6.9135470E-12
 17.79413 2.1163520E-12 8.4138772E-12
 17.84426 2.5836475E-12 1.0231601E-11
 17.89438 3.1516478E-12 1.2432082E-11
 17.94451 3.8415039E-12 1.5093747E-11
 17.99463 4.6786889E-12 1.8310629E-11
 18.04475 5.6938547E-12 2.2195327E-11
 18.09488 6.9238534E-12 2.6882635E-11
 18.14500 8.4129570E-12 3.2533826E-11
 18.19513 1.0214354E-11 3.9341686E-11
 18.24525 1.2391690E-11 4.7535850E-11
 18.29538 1.5021377E-11 5.7390821E-11
 18.34550 1.8194850E-11 6.9233411E-11
 18.39563 2.2021497E-11 8.3453001E-11
 18.44575 2.6632072E-11 1.0051273E-10
 18.49587 3.2182725E-11 1.2096293E-10
 18.54600 3.8859783E-11 1.4545733E-10
 18.59612 4.6885423E-11 1.7477235E-10
 18.64625 5.6524303E-11 2.0982684E-10
 18.69637 6.8091442E-11 2.5171154E-10
 18.74650 8.1961500E-11 3.0171526E-10
 18.79662 9.8579658E-11 3.6136288E-10
 18.84674 1.1847447E-10 4.3245676E-10
 18.89687 1.4227300E-10 5.1712412E-10
 18.94699 1.7071844E-10 6.1787270E-10
 18.99712 2.0469097E-10 7.3765982E-10
 19.04724 2.4523211E-10 8.7996493E-10
 19.09736 2.9357319E-10 1.0488841E-09
 19.14749 3.5116876E-10 1.2492281E-09
 19.19761 4.1973569E-10 1.4866505E-09
 19.24774 5.0129878E-10 1.7677829E-09
 19.29786 5.9824357E-10 2.1003956E-09
 19.34799 7.1337880E-10 2.4935967E-09
 19.39811 8.5000829E-10 2.9580354E-09
 19.44824 1.0120195E-09 3.5061873E-09
 19.49836 1.2039645E-09 4.1525814E-09
 19.54848 1.4311975E-09 4.9142046E-09
 19.59861 1.6999906E-09 5.8108602E-09
 19.64873 2.0176905E-09 6.8656321E-09
 19.69886 2.3928961E-09 8.1053839E-09
 19.74898 2.8356619E-09 9.5613393E-09
 19.79911 3.3577352E-09 1.1269815E-08
 19.84923 3.9728296E-09 1.3272960E-08
 19.89935 4.6969393E-09 1.5619634E-08
 19.94948 5.5487042E-09 1.8366483E-08
 19.99960 6.5498269E-09 2.1579138E-08
 20.04973 7.7255580E-09 2.5333494E-08
 20.09985 9.1052827E-09 2.9717363E-08
 20.14998 1.0722981E-08 3.4831661E-08
 20.20010 1.2618362E-08 4.0793818E-08
 20.25023 1.4837104E-08 4.7737949E-08
 20.30035 1.7432548E-08 5.5819889E-08
 20.35047 2.0465929E-08 6.5217442E-08
 20.40060 2.4008649E-08 7.6136686E-08
 20.45072 2.8142528E-08 8.8812435E-08
 20.50085 3.2962813E-08 1.0351636E-07
 20.55097 3.8578449E-08 1.2055739E-07
 20.60110 4.5116060E-08 1.4029251E-07
 20.65122 5.2720203E-08 1.6312643E-07
 20.70134 6.1558652E-08 1.8952652E-07
 20.75147 7.1822555E-08 2.2002158E-07
 20.80159 8.3733426E-08 2.5522073E-07
 20.85172 9.7543165E-08 2.9581230E-07
 20.90184 1.1354322E-07 3.4258812E-07
 20.95197 1.3206440E-07 3.9644016E-07
 21.00209 1.5348887E-07 4.5839383E-07
 21.05221 1.7824955E-07 5.2960127E-07
 21.10234 2.0684580E-07 6.1138559E-07
 21.15246 2.3984222E-07 7.0523021E-07
 21.20259 2.7788906E-07 8.1283440E-07
 21.25271 3.2172011E-07 9.3610203E-07
 21.30284 3.7217916E-07 1.0772076E-06
 21.35296 4.3021944E-07 1.2385925E-06
 21.40308 4.9692318E-07 1.4230061E-06
 21.45321 5.7352963E-07 1.6335817E-06
 21.50333 6.6143014E-07 1.8738058E-06
 21.55346 7.6221880E-07 2.1476508E-06
 21.60358 8.7768188E-07 2.4595338E-06
 21.65371 1.0098629E-06 2.8144718E-06
 21.70383 1.1610468E-06 3.2180371E-06
 21.75396 1.3338440E-06 3.6765475E-06
 21.80408 1.5311673E-06 4.1970034E-06
 21.85420 1.7563394E-06 4.7873359E-06
 21.90433 2.0130606E-06 5.4562979E-06
 21.95445 2.3055454E-06 6.2138051E-06
 22.00458 2.6384776E-06 7.0707788E-06
 22.05470 3.0171836E-06 8.0395512E-06
 22.10482 3.4475715E-06 9.1336933E-06
 22.15495 3.9363499E-06 1.0368512E-05
 22.20507 4.4909439E-06 1.1760778E-05
 22.25520 5.1197726E-06 1.3329414E-05
 22.30532 5.8321343E-06 1.5095092E-05
 22.35545 6.6385578E-06 1.7081098E-05
 22.40557 7.5506455E-06 1.9312825E-05
 22.45569 8.5815163E-06 2.1818802E-05
 22.50582 9.7455977E-06 2.4630113E-05
 22.55594 1.1059176E-05 2.7781551E-05
 22.60607 1.2540201E-05 3.1311181E-05
 22.65619 1.4208597E-05 3.5260789E-05
 22.70632 1.6086746E-05 3.9677114E-05
 22.75644 1.8199127E-05 4.4610599E-05
 22.80657 2.0573276E-05 5.0117698E-05
 22.85669 2.3239247E-05 5.6259330E-05
 22.90681 2.6230802E-05 6.3103376E-05
 22.95694 2.9584698E-05 7.0723057E-05
 23.00706 3.3342174E-05 7.9199803E-05
 23.05719 3.7548023E-05 8.8621186E-05
 23.10731 4.2252446E-05 9.9084573E-05
 23.15743 4.7509820E-05 1.1069411E-04
 23.20756 5.3381013E-05 1.2356573E-04
 23.25768 5.9931815E-05 1.3782308E-04
 23.30781 6.7235756E-05 1.5360327E-04
 23.35793 7.5372132E-05 1.7105250E-04
 23.40806 8.4429426E-05 1.9033258E-04
 23.45818 9.4502859E-05 2.1161539E-04
 23.50831 1.0569854E-04 2.3509101E-04
 23.55843 1.1813036E-04 2.6096075E-04
 23.60855 1.3192509E-04 2.8944705E-04
 23.65868 1.4721842E-04 3.2078460E-04
 23.70880 1.6416126E-04 3.5523248E-04
 23.75893 1.8291469E-04 3.9306295E-04
 23.80905 2.0365759E-04 4.3457653E-04
 23.85918 2.2658164E-04 4.8009036E-04
 23.90930 2.5189467E-04 5.2994437E-04
 23.95942 2.7982597E-04 5.8451010E-04
 24.00955 3.1061872E-04 6.4417574E-04
 24.05967 3.4454220E-04 7.0936751E-04
 24.10980 3.8188128E-04 7.8052870E-04
 24.15992 4.2295095E-04 8.5814565E-04
 24.21004 4.6808345E-04 9.4272196E-04
 24.26017 5.1764579E-04 1.0348104E-03
 24.31029 5.7202415E-04 1.1349811E-03
 24.36042 6.3164433E-04 1.2438586E-03
 24.41054 6.9695327E-04 1.3620837E-03
 24.46067 7.6844328E-04 1.4903600E-03
 24.51079 8.4662944E-04 1.6294065E-03
 24.56092 9.3207863E-04 1.7800075E-03
 24.61104 1.0253821E-03 1.9429656E-03
 24.66117 1.1271900E-03 2.1191551E-03
 24.71129 1.2381779E-03 2.3094642E-03
 24.76141 1.3590887E-03 2.5148604E-03
 24.81154 1.4906913E-03 2.7363228E-03
 24.86166 1.6338306E-03 2.9749195E-03
 24.91179 1.7893787E-03 3.2317215E-03
 24.96191 1.9582920E-03 3.5078989E-03
 25.01203 2.1415548E-03 3.8046155E-03
 25.06216 2.3402462E-03 4.1231476E-03
 25.11229 2.5554830E-03 4.4647739E-03
 25.16241 2.7884450E-03 4.8308219E-03
 25.21253 3.0404141E-03 5.2227201E-03
 25.26266 3.3126974E-03 5.6418758E-03
 25.31278 3.6067257E-03 6.0898191E-03
 25.36291 3.9239512E-03 6.5680463E-03
 25.41303 4.2659636E-03 7.0781885E-03
 25.46315 4.6343682E-03 7.6218275E-03
 25.51328 5.0309235E-03 8.2006864E-03
 25.56340 5.4573989E-03 8.8164210E-03
 25.61353 5.9157279E-03 9.4708409E-03
 25.66365 6.4078490E-03 1.0165667E-02
 25.71378 6.9358819E-03 1.0902779E-02
 25.76390 7.5019398E-03 1.1683946E-02
 25.81402 8.1083346E-03 1.2511116E-02
 25.86415 8.7573584E-03 1.3386086E-02
 25.91427 9.4515188E-03 1.4310841E-02
 25.96440 1.0193291E-02 1.5287197E-02
 26.01452 1.0985383E-02 1.6317157E-02
 26.06464 1.1830450E-02 1.7402532E-02
 26.11477 1.2731401E-02 1.8545317E-02
 26.16489 1.3691072E-02 1.9747274E-02
 26.21502 1.4712571E-02 2.1010386E-02
 26.26514 1.5798908E-02 2.2336351E-02
 26.31527 1.6953383E-02 2.3727074E-02
 26.36539 1.8179232E-02 2.5184233E-02
 26.41552 1.9479768E-02 2.6709430E-02
 26.46564 2.0858567E-02 2.8304419E-02
 26.51576 2.2319028E-02 2.9970596E-02
 26.56589 2.3864903E-02 3.1709544E-02
 26.61601 2.5499716E-02 3.3522487E-02
 26.66614 2.7227374E-02 3.5410833E-02
 26.71626 2.9051512E-02 3.7375536E-02
 26.76639 3.0976163E-02 3.9417803E-02
 26.81651 3.3005048E-02 4.1538317E-02
 26.86664 3.5142306E-02 4.3738008E-02
 26.91676 3.7391711E-02 4.6017244E-02
 26.96688 3.9757479E-02 4.8376657E-02
 27.01701 4.2243410E-02 5.0816245E-02
 27.06713 4.4853758E-02 5.3336304E-02
 27.11726 4.7592301E-02 5.5936441E-02
 27.16738 5.0463311E-02 5.8616553E-02
 27.21750 5.3470507E-02 6.1375815E-02
 27.26763 5.6618121E-02 6.4213723E-02
 27.31775 5.9909772E-02 6.7128986E-02
 27.36788 6.3349627E-02 7.0120633E-02
 27.41800 6.6941127E-02 7.3186874E-02
 27.46813 7.0688337E-02 7.6326244E-02
 27.51825 7.4594498E-02 7.9536483E-02
 27.56837 7.8663483E-02 8.2815632E-02
 27.61850 8.2898498E-02 8.6161010E-02
 27.66862 8.7302580E-02 8.9569673E-02
 27.71875 9.1879256E-02 9.3038894E-02
 27.76887 9.6631028E-02 9.6565031E-02
 27.81900 0.1015611 0.1001448
 27.86912 0.1066716 0.1037741
 27.91925 0.1119655 0.1074491
 27.96937 0.1174443 0.1111651
 28.01950 0.1231105 0.1149178
 28.06962 0.1289654 0.1187020
 28.11974 0.1350109 0.1225130
 28.16987 0.1412477 0.1263450
 28.21999 0.1476772 0.1301929
 28.27011 0.1542996 0.1340505
 28.32024 0.1611157 0.1379122
 28.37036 0.1681250 0.1417715
 28.42049 0.1753279 0.1456224
 28.47061 0.1827230 0.1494581
 28.52074 0.1903103 0.1532724
 28.57086 0.1980876 0.1570582
 28.62099 0.2060543 0.1608089
 28.67111 0.2142074 0.1645174
 28.72124 0.2225457 0.1681770
 28.77136 0.2310655 0.1717803
 28.82148 0.2397648 0.1753207
 28.87161 0.2486398 0.1787910
 28.92173 0.2576864 0.1821839
 28.97186 0.2669014 0.1854930
 29.02198 0.2762795 0.1887110
 29.07211 0.2858170 0.1918315
 29.12223 0.2955077 0.1948474
 29.17235 0.3053474 0.1977527
 29.22248 0.3153292 0.2005406
 29.27260 0.3254482 0.2032053
 29.32273 0.3356970 0.2057407
 29.37285 0.3460700 0.2081413
 29.42297 0.3565593 0.2104013
 29.47310 0.3671587 0.2125159
 29.52322 0.3778599 0.2144800
 29.57335 0.3886561 0.2162893
 29.62347 0.3995386 0.2179393
 29.67360 0.4105002 0.2194264
 29.72372 0.4215316 0.2207469
 29.77385 0.4326255 0.2218978
 29.82397 0.4437722 0.2228763
 29.87409 0.4549641 0.2236801
 29.92422 0.4661914 0.2243073
 29.97434 0.4774461 0.2247563
 30.02447 0.4887184 0.2250262
 30.07459 0.5000002 0.2251162
 30.12472 0.5112820 0.2250262
 30.17484 0.5225542 0.2247563
 30.22497 0.5338090 0.2243073
 30.27509 0.5450363 0.2236801
 30.32521 0.5562282 0.2228763
 30.37534 0.5673749 0.2218978
 30.42546 0.5784687 0.2207469
 30.47559 0.5895002 0.2194264
 30.52571 0.6004617 0.2179393
 30.57583 0.6113442 0.2162893
 30.62596 0.6221405 0.2144800
 30.67608 0.6328416 0.2125159
 30.72621 0.6434410 0.2104013
 30.77633 0.6539304 0.2081413
 30.82646 0.6643034 0.2057407
 30.87658 0.6745522 0.2032053
 30.92670 0.6846712 0.2005406
 30.97683 0.6946530 0.1977527
 31.02695 0.7044927 0.1948474
 31.07708 0.7141834 0.1918315
 31.12720 0.7237208 0.1887110
 31.17732 0.7330989 0.1854930
 31.22745 0.7423139 0.1821839
 31.27757 0.7513605 0.1787910
 31.32770 0.7602355 0.1753207
 31.37782 0.7689348 0.1717803
 31.42795 0.7774547 0.1681770
 31.47807 0.7857929 0.1645174
 31.52820 0.7939461 0.1608089
 31.57832 0.8019127 0.1570582
 31.62844 0.8096901 0.1532724
 31.67857 0.8172773 0.1494581
 31.72869 0.8246724 0.1456224
 31.77882 0.8318753 0.1417715
 31.82894 0.8388845 0.1379122
 31.87907 0.8457007 0.1340505
 31.92919 0.8523231 0.1301929
 31.97932 0.8587525 0.1263450
 32.02944 0.8649893 0.1225130
 32.07956 0.8710349 0.1187020
 32.12969 0.8768898 0.1149178
 32.17981 0.8825560 0.1111651
 32.22993 0.8880348 0.1074491
 32.28006 0.8933286 0.1037741
 32.33018 0.8984391 0.1001448
 32.38031 0.9033692 9.6565031E-02
 32.43043 0.9081210 9.3038894E-02
 32.48056 0.9126977 8.9569673E-02
 32.53068 0.9171018 8.6161010E-02
 32.58081 0.9213368 8.2815632E-02
 32.63093 0.9254057 7.9536483E-02
 32.68106 0.9293119 7.6326244E-02
 32.73118 0.9330591 7.3186874E-02
 32.78130 0.9366506 7.0120633E-02
 32.83143 0.9400904 6.7128986E-02
 32.88155 0.9433821 6.4213723E-02
 32.93168 0.9465297 6.1375815E-02
 32.98180 0.9495369 5.8616553E-02
 33.03193 0.9524079 5.5936441E-02
 33.08205 0.9551464 5.3336304E-02
 33.13218 0.9577568 5.0816245E-02
 33.18230 0.9602427 4.8376657E-02
 33.23243 0.9626085 4.6017244E-02
 33.28255 0.9648579 4.3738008E-02
 33.33267 0.9669952 4.1538317E-02
 33.38280 0.9690241 3.9417803E-02
 33.43292 0.9709488 3.7375536E-02
 33.48304 0.9727729 3.5410833E-02
 33.53317 0.9745006 3.3522487E-02
 33.58329 0.9761354 3.1709544E-02
 33.63342 0.9776813 2.9970596E-02
 33.68354 0.9791418 2.8304419E-02
 33.73367 0.9805206 2.6709430E-02
 33.78379 0.9818211 2.5184233E-02
 33.83392 0.9830469 2.3727074E-02
 33.88404 0.9842014 2.2336351E-02
 33.93416 0.9852877 2.1010386E-02
 33.98429 0.9863092 1.9747274E-02
 34.03441 0.9872689 1.8545317E-02
 34.08454 0.9881699 1.7402532E-02
 34.13466 0.9890150 1.6317157E-02
 34.18479 0.9898071 1.5287197E-02
 34.23491 0.9905488 1.4310841E-02
 34.28503 0.9912430 1.3386086E-02
 34.33516 0.9918920 1.2511116E-02
 34.38528 0.9924984 1.1683946E-02
 34.43541 0.9930644 1.0902779E-02
 34.48553 0.9935924 1.0165667E-02
 34.53566 0.9940846 9.4708409E-03
 34.58578 0.9945430 8.8164210E-03
 34.63590 0.9949694 8.2006864E-03
 34.68603 0.9953660 7.6218275E-03
 34.73615 0.9957344 7.0781885E-03
 34.78628 0.9960764 6.5680463E-03
 34.83640 0.9963936 6.0898191E-03
 34.88652 0.9966877 5.6418758E-03
 34.93665 0.9969599 5.2227201E-03
 34.98677 0.9972119 4.8308219E-03
 35.03690 0.9974449 4.4647739E-03
 35.08702 0.9976601 4.1231476E-03
 35.13715 0.9978588 3.8046155E-03
 35.18727 0.9980420 3.5078989E-03
 35.23740 0.9982109 3.2317215E-03
 35.28752 0.9983665 2.9749195E-03
 35.33765 0.9985096 2.7363228E-03
 35.38777 0.9986412 2.5148604E-03
 35.43789 0.9987621 2.3094642E-03
 35.48802 0.9988731 2.1191551E-03
 35.53814 0.9989749 1.9429656E-03
 35.58826 0.9990682 1.7800075E-03
 35.63839 0.9991536 1.6294065E-03
 35.68851 0.9992319 1.4903600E-03
 35.73864 0.9993033 1.3620837E-03
 35.78876 0.9993687 1.2438586E-03
 35.83889 0.9994283 1.1349811E-03
 35.88901 0.9994827 1.0348104E-03
 35.93914 0.9995322 9.4272196E-04
 35.98926 0.9995773 8.5814565E-04
 36.03939 0.9996185 7.8052870E-04
 36.08951 0.9996558 7.0936751E-04
 36.13963 0.9996897 6.4417574E-04
 36.18976 0.9997205 5.8451010E-04
 36.23988 0.9997484 5.2994437E-04
 36.29000 0.9997737 4.8009036E-04
 36.34013 0.9997966 4.3457653E-04
 36.39025 0.9998173 3.9306295E-04
 36.44038 0.9998361 3.5523248E-04
 36.49051 0.9998530 3.2078460E-04
 36.54063 0.9998683 2.8944705E-04
 36.59076 0.9998821 2.6096075E-04
 36.64088 0.9998946 2.3509101E-04
 36.69100 0.9999057 2.1161539E-04
 36.74113 0.9999158 1.9033258E-04
 36.79125 0.9999249 1.7105250E-04
 36.84137 0.9999330 1.5360327E-04
 36.89150 0.9999403 1.3782308E-04
 36.94162 0.9999469 1.2356573E-04
 36.99175 0.9999527 1.1069411E-04
 37.04187 0.9999580 9.9084573E-05
 37.09200 0.9999627 8.8621186E-05
 37.14212 0.9999669 7.9199803E-05
 37.19225 0.9999707 7.0723057E-05
 37.24237 0.9999740 6.3103376E-05
 37.29249 0.9999770 5.6259330E-05
 37.34262 0.9999797 5.0117698E-05
 37.39274 0.9999821 4.4610599E-05
 37.44286 0.9999841 3.9677114E-05
 37.49299 0.9999860 3.5260789E-05
 37.54311 0.9999877 3.1311181E-05
 37.59324 0.9999892 2.7781551E-05
 37.64336 0.9999905 2.4630113E-05
 37.69349 0.9999917 2.1818802E-05
 37.74361 0.9999927 1.9312825E-05
 37.79374 0.9999936 1.7081098E-05
 37.84386 0.9999944 1.5095092E-05
 37.89399 0.9999952 1.3329414E-05
 37.94411 0.9999958 1.1760778E-05
 37.99423 0.9999963 1.0368512E-05
 38.04436 0.9999968 9.1336933E-06
 38.09448 0.9999972 8.0395512E-06
 38.14461 0.9999976 7.0707788E-06
 38.19473 0.9999979 6.2138051E-06
 38.24485 0.9999982 5.4562979E-06
 38.29498 0.9999985 4.7873359E-06
 38.34510 0.9999986 4.1970034E-06
 38.39523 0.9999989 3.6765475E-06
 38.44535 0.9999990 3.2180371E-06
 38.49548 0.9999992 2.8144718E-06
 38.54560 0.9999993 2.4595338E-06
 38.59573 0.9999995 2.1476508E-06
 38.64585 0.9999995 1.8738058E-06
 38.69597 0.9999996 1.6335817E-06
 38.74610 0.9999996 1.4230061E-06
 38.79622 0.9999997 1.2385925E-06
 38.84635 0.9999998 1.0772076E-06
 38.89647 0.9999999 9.3610203E-07
 38.94659 0.9999999 8.1283440E-07
 38.99672 1.000000 7.0523021E-07
 39.04684 1.000000 6.1138559E-07
 39.09697 1.000000 5.2960127E-07
 39.14709 1.000000 4.5839383E-07
 39.19722 1.000000 3.9644016E-07
 39.24734 1.000000 3.4258812E-07
 39.29747 1.000000 2.9581230E-07
 39.34759 1.000000 2.5522073E-07
 39.39772 1.000000 2.2002158E-07
 39.44784 1.000000 1.8952652E-07
 39.49796 1.000000 1.6312643E-07
 39.54809 1.000000 1.4029251E-07
 39.59821 1.000000 1.2055739E-07
 39.64833 1.000000 1.0351636E-07
 39.69846 1.000000 8.8812435E-08
 39.74858 1.000000 7.6136686E-08
 39.79871 1.000000 6.5217442E-08
 39.84883 1.000000 5.5819889E-08
 39.89896 1.000000 4.7737949E-08
 39.94908 1.000000 4.0793818E-08
 39.99921 1.000000 3.4831661E-08
 40.04933 1.000000 2.9717363E-08
 40.09946 1.000000 2.5333494E-08
 40.14958 1.000000 2.1579055E-08
 40.19971 1.000000 1.8366343E-08
 40.24983 1.000000 1.5619694E-08
 40.29995 1.000000 1.3272960E-08
 40.35008 1.000000 1.1269772E-08
 40.40020 1.000000 9.5612664E-09
 40.45033 1.000000 8.1054150E-09
 40.50045 1.000000 6.8656321E-09
 40.55058 1.000000 5.8108385E-09
 40.60070 1.000000 4.9141575E-09
 40.65082 1.000000 4.1525974E-09
 40.70095 1.000000 3.5061873E-09
 40.75107 1.000000 2.9580354E-09
 40.80120 1.000000 2.4935871E-09
 40.85132 1.000000 2.1004114E-09
 40.90144 1.000000 1.7677897E-09
 40.95157 1.000000 1.4866505E-09
 41.00169 1.000000 1.2492233E-09
 41.05182 1.000000 1.0488921E-09
 41.10194 1.000000 8.7996826E-10
 41.15207 1.000000 7.3765982E-10
 41.20219 1.000000 6.1787037E-10
 41.25231 1.000000 5.1712806E-10
 41.30244 1.000000 4.3245840E-10
 41.35256 1.000000 3.6136288E-10
 41.40269 1.000000 3.0171352E-10
 41.45281 1.000000 2.5170913E-10
 41.50293 1.000000 2.0982803E-10
 41.55306 1.000000 1.7477235E-10
 41.60318 1.000000 1.4545677E-10
 41.65331 1.000000 1.2096178E-10
 41.70343 1.000000 1.0051312E-10
 41.75356 1.000000 8.3453001E-11
 41.80368 1.000000 6.9233147E-11
 41.85381 1.000000 5.7390280E-11
 41.90393 1.000000 4.7536121E-11
 41.95406 1.000000 3.9341686E-11
 42.00418 1.000000 3.2533826E-11
 42.05431 1.000000 2.6882536E-11
 42.10443 1.000000 2.2195495E-11
 42.15455 1.000000 1.8310700E-11
 42.20468 1.000000 1.5093747E-11
 42.25480 1.000000 1.2432035E-11
 42.30492 1.000000 1.0231698E-11
 42.35505 1.000000 8.4139102E-12
 42.40517 1.000000 6.9135470E-12
 42.45530 1.000000 5.6761783E-12
 42.50542 1.000000 4.6566279E-12
 42.55555 1.000000 3.8170838E-12
 42.60567 1.000000 3.1264015E-12
 42.65580 1.000000 2.5586443E-12
 42.70592 1.000000 2.0923196E-12
 42.75604 1.000000 1.7096504E-12
 42.80617 1.000000 1.3958231E-12
 42.85629 1.000000 1.1386902E-12
 42.90642 1.000000 9.2818309E-13
 42.95654 1.000000 7.5600209E-13
 43.00666 1.000000 6.1525638E-13
 43.05679 1.000000 5.0031344E-13
 43.10691 1.000000 4.0651851E-13
 43.15704 1.000000 3.3005055E-13
 43.20716 1.000000 2.6774638E-13
 43.25729 1.000000 2.1702997E-13
 43.30742 1.000000 1.7577968E-13
 43.35753 1.000000 1.4225844E-13
 43.40766 1.000000 1.1503554E-13
 43.45779 1.000000 9.2947595E-14
 43.50791 1.000000 7.5040749E-14
 43.55803 1.000000 6.0536510E-14
 43.60816 1.000000 4.8795688E-14
 43.65828 1.000000 3.9300526E-14
 43.70841 1.000000 3.1627688E-14
 43.75853 1.000000 2.5433006E-14
 43.80865 1.000000 2.0434863E-14
 43.85878 1.000000 1.6405849E-14
 43.90891 1.000000 1.3160663E-14
 43.95903 1.000000 1.0548964E-14
 44.00915 1.000000 8.4489715E-15
 44.05928 1.000000 6.7614651E-15
 44.10940 1.000000 5.4066706E-15
 44.15953 1.000000 4.3198824E-15
 44.20965 1.000000 3.4488632E-15
 44.25977 1.000000 2.7512056E-15
 44.30990 1.000000 2.1929251E-15
 44.36002 1.000000 1.7465259E-15
 44.41014 1.000000 1.3899204E-15
 44.46027 1.000000 1.1052156E-15
 44.51040 1.000000 8.7812800E-16
 44.56052 1.000000 6.9713850E-16
 44.61064 1.000000 5.5302400E-16
 44.66077 1.000000 4.3834161E-16
 44.71089 1.000000 3.4716180E-16
 44.76102 1.000000 2.7472921E-16
 44.81114 1.000000 2.1724001E-16
 44.86126 1.000000 1.7164004E-16
 44.91139 1.000000 1.3550265E-16
 44.96151 1.000000 1.0688844E-16
 45.01163 1.000000 8.4251456E-17
 45.06176 1.000000 6.6353610E-17
 45.11189 1.000000 5.2216220E-17
 45.16201 1.000000 4.1058063E-17
 45.21214 1.000000 3.2258575E-17
 45.26226 1.000000 2.5325163E-17
 45.31239 1.000000 1.9865669E-17
 45.36251 1.000000 1.5570691E-17
 45.41264 1.000000 1.2194471E-17
 45.46276 1.000000 9.5429304E-18
 45.51288 1.000000 7.4617845E-18
 45.56301 1.000000 5.8298507E-18
 45.61313 1.000000 4.5511647E-18
 45.66325 1.000000 3.5501885E-18
 45.71338 1.000000 2.7670945E-18
 45.76350 1.000000 2.1549988E-18
 45.81363 1.000000 1.6769643E-18
 45.86375 1.000000 1.3039553E-18
 45.91388 1.000000 1.0130838E-18
 45.96400 1.000000 7.8646332E-19
 46.01413 1.000000 6.1004984E-19
 46.06425 1.000000 4.7284182E-19
 46.11437 1.000000 3.6619032E-19
 46.16450 1.000000 2.8336855E-19
 46.21462 1.000000 2.1910311E-19
 46.26474 1.000000 1.6928132E-19
 46.31487 1.000000 1.3068031E-19
 46.36499 1.000000 1.0080102E-19
 46.41512 1.000000 7.7691201E-20
 46.46524 1.000000 5.9831861E-20
 46.51537 1.000000 4.6042101E-20
 46.56549 1.000000 3.5401366E-20
 46.61562 1.000000 2.7197996E-20
 46.66574 1.000000 2.0878898E-20
 46.71586 1.000000 1.6015491E-20
 46.76599 1.000000 1.2274819E-20
 46.81612 1.000000 9.4003446E-21
 46.86624 1.000000 7.1932111E-21
 46.91636 1.000000 5.5000568E-21
 46.96649 1.000000 4.2019616E-21
 47.01661 1.000000 3.2076776E-21
 47.06674 1.000000 2.4466946E-21
 47.11686 1.000000 1.8648084E-21
 47.16698 1.000000 1.4201386E-21
 47.21711 1.000000 1.0806318E-21
 47.26723 1.000000 8.2163415E-22
 47.31736 1.000000 6.2422758E-22
 47.36748 1.000000 4.7385948E-22
 47.41761 1.000000 3.5942358E-22
 47.46773 1.000000 2.7240644E-22
 47.51785 1.000000 2.0629729E-22
 47.56798 1.000000 1.5610200E-22
 47.61810 1.000000 1.1802586E-22
 47.66823 1.000000 8.9165737E-23
 47.71835 1.000000 6.7308907E-23
 47.76847 1.000000 5.0770230E-23
 47.81860 1.000000 3.8263780E-23
 47.86872 1.000000 2.8815117E-23
 47.91885 1.000000 2.1682197E-23
 47.96897 1.000000 1.6302401E-23
 48.01910 1.000000 1.2247300E-23
 48.06922 1.000000 9.1935420E-24
 48.11935 1.000000 6.8956596E-24
 48.16947 1.000000 5.1681382E-24
 48.21959 1.000000 3.8702104E-24
 48.26972 1.000000 2.8959125E-24
 48.31984 1.000000 2.1651605E-24
 48.36996 1.000000 1.6175528E-24
 48.42009 1.000000 1.2074493E-24
 48.47021 1.000000 9.0059556E-25
 48.52034 1.000000 6.7118845E-25
 48.57046 1.000000 4.9983248E-25
 48.62059 1.000000 3.7191469E-25
 48.67072 1.000000 2.7651325E-25
 48.72084 1.000000 2.0541901E-25
 48.77096 1.000000 1.5248625E-25
 48.82109 1.000000 1.1309921E-25
 48.87121 1.000000 8.3818949E-26
 48.92134 1.000000 6.2069308E-26
 48.97146 1.000000 4.5926715E-26
 49.02158 1.000000 3.3956080E-26
 49.07171 1.000000 2.5084775E-26
 49.12183 1.000000 1.8516331E-26
 49.17196 1.000000 1.3656940E-26
 49.22208 1.000000 1.0065042E-26
 49.27221 1.000000 7.4117080E-27
 49.32233 1.000000 5.4534925E-27
 49.37246 1.000000 4.0094202E-27
 49.42258 1.000000 2.9454758E-27
 49.47270 1.000000 2.1620622E-27
 49.52283 1.000000 1.5857496E-27
 49.57295 1.000000 1.1621215E-27
 49.62307 1.000000 8.5101143E-28
 49.67320 1.000000 6.2267270E-28
 49.72332 1.000000 4.5523394E-28
 49.77345 1.000000 3.3255483E-28
 49.82357 1.000000 2.4274881E-28
 49.87370 1.000000 1.7704822E-28
 49.92382 1.000000 1.2902575E-28
 49.97395 1.000000 9.3953940E-29
 50.02407 1.000000 6.8362924E-29
 50.07419 1.000000 4.9700807E-29
 50.12432 1.000000 3.6104386E-29
 50.17445 1.000000 2.6206571E-29
 50.22457 1.000000 1.9006813E-29
 50.27469 1.000000 1.3774538E-29
 50.32482 1.000000 9.9743265E-30
 50.37494 1.000000 7.2167597E-30
 50.42507 1.000000 5.2174266E-30
 50.47519 1.000000 3.7690543E-30
 50.52531 1.000000 2.7205120E-30
 50.57544 1.000000 1.9620844E-30
 50.62556 1.000000 1.4139698E-30
 50.67569 1.000000 1.0181879E-30
 50.72581 1.000000 7.3257908E-31
 50.77594 1.000000 5.2666755E-31
 50.82606 1.000000 3.7832700E-31
 50.87618 1.000000 2.7156064E-31
 50.92631 1.000000 1.9476090E-31
 50.97643 1.000000 1.3957004E-31
 51.02656 1.000000 9.9938931E-32
 51.07668 1.000000 7.1506015E-32
 51.12680 1.000000 5.1120198E-32
 51.17693 1.000000 3.6516682E-32
 51.22705 1.000000 2.6064066E-32
 51.27718 1.000000 1.8589243E-32
 51.32730 1.000000 1.3247075E-32
 51.37743 1.000000 9.4325796E-33
 51.42755 1.000000 6.7110890E-33
 51.47768 1.000000 4.7709808E-33
 51.52780 1.000000 3.3891515E-33
 51.57792 1.000000 2.4055245E-33
 51.62805 1.000000 1.7060196E-33
 51.67817 1.000000 1.2089555E-33
 51.72829 1.000000 8.5605560E-34
 51.77842 1.000000 6.0566502E-34
 51.82854 1.000000 4.2816886E-34
 51.87867 1.000000 3.0244965E-34
 51.92879 1.000000 2.1347799E-34
 51.97892 1.000000 1.5055504E-34
 52.02905 1.000000 1.0609370E-34
 52.07917 1.000000 7.4702643E-35
 52.12929 1.000000 5.2559073E-35
 52.17942 1.000000 3.6948623E-35
 52.22954 1.000000 2.5953994E-35
 52.27967 1.000000 1.8216249E-35
 52.32979 1.000000 1.2775630E-35
 52.37991 1.000000 8.9525059E-36
 52.43004 1.000000 6.2684320E-36
 52.48016 1.000000 4.3855629E-36
 52.53028 1.000000 3.0658940E-36
 52.58041 1.000000 2.1415640E-36
 52.63054 1.000000 1.4946990E-36
 52.68066 1.000000 1.0423940E-36
 52.73079 1.000000 7.2637147E-37
 52.78091 1.000000 5.0577534E-37
 52.83103 1.000000 3.5187795E-37
 52.88116 1.000000 2.4461241E-37
 52.93128 1.000000 1.6990927E-37
 52.98140 1.000000 1.1792999E-37
 53.03153 1.000000 8.1784380E-38
 53.08165 1.000000 5.6671570E-38
 53.13178 1.000000 3.9238778E-38
 53.18190 1.000000 2.7147784E-38
 53.23203 1.000000 1.8766741E-38
 53.28215 1.000000 1.2962697E-38
 53.33228 1.000000 0.0000000E+00
 53.38240 1.000000 0.0000000E+00
 53.43252 1.000000 0.0000000E+00
 53.48265 1.000000 0.0000000E+00
 53.53278 1.000000 0.0000000E+00
 53.58289 1.000000 0.0000000E+00
 53.63302 1.000000 0.0000000E+00
 53.68315 1.000000 0.0000000E+00
 53.73327 1.000000 0.0000000E+00
 53.78339 1.000000 0.0000000E+00
 53.83352 1.000000 0.0000000E+00
 53.88364 1.000000 0.0000000E+00
 53.93377 1.000000 0.0000000E+00
 53.98389 1.000000 0.0000000E+00
 54.03402 1.000000 0.0000000E+00
 54.08414 1.000000 0.0000000E+00
 54.13427 1.000000 0.0000000E+00
 54.18439 1.000000 0.0000000E+00
 54.23451 1.000000 0.0000000E+00
 54.28464 1.000000 0.0000000E+00
 54.33476 1.000000 0.0000000E+00
 54.38489 1.000000 0.0000000E+00
 54.43501 1.000000 0.0000000E+00
 54.48513 1.000000 0.0000000E+00
 54.53526 1.000000 0.0000000E+00
 54.58538 1.000000 0.0000000E+00
 54.63551 1.000000 0.0000000E+00
 54.68563 1.000000 0.0000000E+00
 54.73576 1.000000 0.0000000E+00
 54.78588 1.000000 0.0000000E+00
 54.83600 1.000000 0.0000000E+00
 54.88613 1.000000 0.0000000E+00
 54.93625 1.000000 0.0000000E+00
 54.98638 1.000000 0.0000000E+00
 55.03650 1.000000 0.0000000E+00
 55.08662 1.000000 0.0000000E+00
 55.13675 1.000000 0.0000000E+00
 55.18687 1.000000 0.0000000E+00
 55.23700 1.000000 0.0000000E+00
 55.28712 1.000000 0.0000000E+00
 55.33725 1.000000 0.0000000E+00
 55.38737 1.000000 0.0000000E+00
 55.43750 1.000000 0.0000000E+00
 55.48762 1.000000 0.0000000E+00
 55.53775 1.000000 0.0000000E+00
 55.58787 1.000000 0.0000000E+00
 55.63800 1.000000 0.0000000E+00
 55.68812 1.000000 0.0000000E+00
 55.73824 1.000000 0.0000000E+00
 55.78837 1.000000 0.0000000E+00
 55.83849 1.000000 0.0000000E+00
 55.88861 1.000000 0.0000000E+00
 55.93874 1.000000 0.0000000E+00
 55.98886 1.000000 0.0000000E+00
 56.03899 1.000000 0.0000000E+00
 56.08911 1.000000 0.0000000E+00
 56.13924 1.000000 0.0000000E+00
 56.18936 1.000000 0.0000000E+00
 56.23949 1.000000 0.0000000E+00
 56.28961 1.000000 0.0000000E+00
 56.33973 1.000000 0.0000000E+00
 56.38986 1.000000 0.0000000E+00
 56.43998 1.000000 0.0000000E+00
 56.49011 1.000000 0.0000000E+00
 56.54023 1.000000 0.0000000E+00
 56.59035 1.000000 0.0000000E+00
 56.64048 1.000000 0.0000000E+00
 56.69061 1.000000 0.0000000E+00
 56.74073 1.000000 0.0000000E+00
 56.79085 1.000000 0.0000000E+00
 56.84098 1.000000 0.0000000E+00
 56.89110 1.000000 0.0000000E+00
 56.94122 1.000000 0.0000000E+00
 56.99135 1.000000 0.0000000E+00
 57.04148 1.000000 0.0000000E+00
 57.09160 1.000000 0.0000000E+00
 57.14172 1.000000 0.0000000E+00
 57.19185 1.000000 0.0000000E+00
 57.24197 1.000000 0.0000000E+00
 57.29210 1.000000 0.0000000E+00
 57.34222 1.000000 0.0000000E+00
 57.39235 1.000000 0.0000000E+00
 57.44247 1.000000 0.0000000E+00
 57.49260 1.000000 0.0000000E+00
 57.54272 1.000000 0.0000000E+00
 57.59284 1.000000 0.0000000E+00
 57.64297 1.000000 0.0000000E+00
 57.69309 1.000000 0.0000000E+00
 57.74322 1.000000 0.0000000E+00
 57.79334 1.000000 0.0000000E+00
 57.84346 1.000000 0.0000000E+00
 57.89359 1.000000 0.0000000E+00
 57.94371 1.000000 0.0000000E+00
 57.99384 1.000000 0.0000000E+00
 58.04396 1.000000 0.0000000E+00
 58.09409 1.000000 0.0000000E+00
 58.14421 1.000000 0.0000000E+00
 58.19433 1.000000 0.0000000E+00
 58.24446 1.000000 0.0000000E+00
 58.29458 1.000000 0.0000000E+00
 58.34471 1.000000 0.0000000E+00
 58.39483 1.000000 0.0000000E+00
 58.44495 1.000000 0.0000000E+00
 58.49508 1.000000 0.0000000E+00
 58.54520 1.000000 0.0000000E+00
 58.59533 1.000000 0.0000000E+00
 58.64545 1.000000 0.0000000E+00
 58.69558 1.000000 0.0000000E+00
 58.74570 1.000000 0.0000000E+00
 58.79582 1.000000 0.0000000E+00
 58.84595 1.000000 0.0000000E+00
 58.89608 1.000000 0.0000000E+00
 58.94620 1.000000 0.0000000E+00
 58.99633 1.000000 0.0000000E+00
 59.04645 1.000000 0.0000000E+00
 59.09657 1.000000 0.0000000E+00
 59.14670 1.000000 0.0000000E+00
 59.19682 1.000000 0.0000000E+00
 59.24694 1.000000 0.0000000E+00
 59.29707 1.000000 0.0000000E+00
 59.34719 1.000000 0.0000000E+00
 59.39732 1.000000 0.0000000E+00
 59.44744 1.000000 0.0000000E+00
 59.49757 1.000000 0.0000000E+00
 59.54769 1.000000 0.0000000E+00
 59.59782 1.000000 0.0000000E+00
 59.64794 1.000000 0.0000000E+00
 59.69806 1.000000 0.0000000E+00
 59.74819 1.000000 0.0000000E+00
 59.79831 1.000000 0.0000000E+00
 59.84843 1.000000 0.0000000E+00
 59.89856 1.000000 0.0000000E+00
 59.94868 1.000000 0.0000000E+00
 59.99881 1.000000 0.0000000E+00
 60.04893 1.000000 0.0000000E+00
 60.09906 1.000000 0.0000000E+00
 60.14918 1.000000 0.0000000E+00
 60.19931 1.000000 0.0000000E+00
 60.24943 1.000000 0.0000000E+00
 60.29955 1.000000 0.0000000E+00
 60.34968 1.000000 0.0000000E+00
 60.39981 1.000000 0.0000000E+00
 60.44993 1.000000 0.0000000E+00
 60.50005 1.000000 0.0000000E+00
 60.55018 1.000000 0.0000000E+00
 60.60030 1.000000 0.0000000E+00
 60.65043 1.000000 0.0000000E+00
 60.70055 1.000000 0.0000000E+00
 60.75068 1.000000 0.0000000E+00
 60.80080 1.000000 0.0000000E+00
 60.85093 1.000000 0.0000000E+00
 60.90105 1.000000 0.0000000E+00
 60.95117 1.000000 0.0000000E+00
 61.00130 1.000000 0.0000000E+00
 61.05142 1.000000 0.0000000E+00
 61.10154 1.000000 0.0000000E+00
 61.15167 1.000000 0.0000000E+00
 61.20179 1.000000 0.0000000E+00
 61.25192 1.000000 0.0000000E+00
 61.30204 1.000000 0.0000000E+00
 61.35217 1.000000 0.0000000E+00
 61.40229 1.000000 0.0000000E+00
 61.45242 1.000000 0.0000000E+00
 61.50254 1.000000 0.0000000E+00
 61.55266 1.000000 0.0000000E+00
 61.60279 1.000000 0.0000000E+00
 61.65291 1.000000 0.0000000E+00
 61.70304 1.000000 0.0000000E+00
 61.75316 1.000000 0.0000000E+00
 61.80328 1.000000 0.0000000E+00
 61.85341 1.000000 0.0000000E+00
 61.90353 1.000000 0.0000000E+00
 61.95366 1.000000 0.0000000E+00
 62.00378 1.000000 0.0000000E+00
 62.05391 1.000000 0.0000000E+00
 62.10403 1.000000 0.0000000E+00
 62.15415 1.000000 0.0000000E+00
 62.20428 1.000000 0.0000000E+00
 62.25441 1.000000 0.0000000E+00
 62.30453 1.000000 0.0000000E+00
 62.35465 1.000000 0.0000000E+00
 62.40478 1.000000 0.0000000E+00
 62.45490 1.000000 0.0000000E+00
 62.50503 1.000000 0.0000000E+00
 62.55515 1.000000 0.0000000E+00
 62.60527 1.000000 0.0000000E+00
 62.65540 1.000000 0.0000000E+00
 62.70552 1.000000 0.0000000E+00
 62.75565 1.000000 0.0000000E+00
 62.80577 1.000000 0.0000000E+00
 62.85590 1.000000 0.0000000E+00
 62.90602 1.000000 0.0000000E+00
 62.95615 1.000000 0.0000000E+00
 63.00627 1.000000 0.0000000E+00
 63.05639 1.000000 0.0000000E+00
 63.10652 1.000000 0.0000000E+00
 63.15664 1.000000 0.0000000E+00
 63.20676 1.000000 0.0000000E+00
 63.25689 1.000000 0.0000000E+00
 63.30701 1.000000 0.0000000E+00
 63.35714 1.000000 0.0000000E+00
 63.40726 1.000000 0.0000000E+00
 63.45739 1.000000 0.0000000E+00
 63.50751 1.000000 0.0000000E+00
 63.55764 1.000000 0.0000000E+00
 63.60776 1.000000 0.0000000E+00
 63.65788 1.000000 0.0000000E+00
 63.70801 1.000000 0.0000000E+00
 63.75813 1.000000 0.0000000E+00
 63.80825 1.000000 0.0000000E+00
 63.85838 1.000000 0.0000000E+00
 63.90851 1.000000 0.0000000E+00
 63.95863 1.000000 0.0000000E+00
 64.00876 1.000000 0.0000000E+00
 64.05888 1.000000 0.0000000E+00
 64.10900 1.000000 0.0000000E+00
 64.15913 1.000000 0.0000000E+00
 64.20925 1.000000 0.0000000E+00
 64.25938 1.000000 0.0000000E+00
 64.30950 1.000000 0.0000000E+00
 64.35963 1.000000 0.0000000E+00
 64.40975 1.000000 0.0000000E+00
 64.45987 1.000000 0.0000000E+00
 64.50999 1.000000 0.0000000E+00
 64.56012 1.000000 0.0000000E+00
 64.61025 1.000000 0.0000000E+00
 64.66037 1.000000 0.0000000E+00
 64.71049 1.000000 0.0000000E+00
 64.76062 1.000000 0.0000000E+00
 64.81075 1.000000 0.0000000E+00
 64.86086 1.000000 0.0000000E+00
 64.91100 1.000000 0.0000000E+00
 64.96112 1.000000 0.0000000E+00
 65.01125 1.000000 0.0000000E+00
 65.06136 1.000000 0.0000000E+00
 65.11149 1.000000 0.0000000E+00
 65.16161 1.000000 0.0000000E+00
 65.21174 1.000000 0.0000000E+00
 65.26186 1.000000 0.0000000E+00
 65.31199 1.000000 0.0000000E+00
 65.36211 1.000000 0.0000000E+00
 65.41224 1.000000 0.0000000E+00
 65.46236 1.000000 0.0000000E+00
 65.51248 1.000000 0.0000000E+00
 65.56261 1.000000 0.0000000E+00
 65.61273 1.000000 0.0000000E+00
 65.66286 1.000000 0.0000000E+00
 65.71298 1.000000 0.0000000E+00
 65.76311 1.000000 0.0000000E+00
 65.81323 1.000000 0.0000000E+00
 65.86336 1.000000 0.0000000E+00
 65.91348 1.000000 0.0000000E+00
 65.96360 1.000000 0.0000000E+00
 66.01373 1.000000 0.0000000E+00
 66.06385 1.000000 0.0000000E+00
 66.11398 1.000000 0.0000000E+00
 66.16410 1.000000 0.0000000E+00
 66.21423 1.000000 0.0000000E+00
 66.26435 1.000000 0.0000000E+00
 66.31447 1.000000 0.0000000E+00
 66.36459 1.000000 0.0000000E+00
 66.41472 1.000000 0.0000000E+00
 66.46485 1.000000 0.0000000E+00
 66.51498 1.000000 0.0000000E+00
 66.56509 1.000000 0.0000000E+00
 66.61522 1.000000 0.0000000E+00
 66.66534 1.000000 0.0000000E+00
 66.71547 1.000000 0.0000000E+00
 66.76559 1.000000 0.0000000E+00
 66.81572 1.000000 0.0000000E+00
 66.86584 1.000000 0.0000000E+00
 66.91597 1.000000 0.0000000E+00
 66.96609 1.000000 0.0000000E+00
 67.01621 1.000000 0.0000000E+00
 67.06634 1.000000 0.0000000E+00
 67.11646 1.000000 0.0000000E+00
 67.16659 1.000000 0.0000000E+00
 67.21671 1.000000 0.0000000E+00
 67.26684 1.000000 0.0000000E+00
 67.31696 1.000000 0.0000000E+00
 67.36708 1.000000 0.0000000E+00
 67.41721 1.000000 0.0000000E+00
 67.46733 1.000000 0.0000000E+00
 67.51746 1.000000 0.0000000E+00
 67.56758 1.000000 0.0000000E+00
 67.61771 1.000000 0.0000000E+00
 67.66783 1.000000 0.0000000E+00
 67.71796 1.000000 0.0000000E+00
 67.76808 1.000000 0.0000000E+00
 67.81820 1.000000 0.0000000E+00
 67.86832 1.000000 0.0000000E+00
 67.91845 1.000000 0.0000000E+00
 67.96858 1.000000 0.0000000E+00
 68.01870 1.000000 0.0000000E+00
 68.06882 1.000000 0.0000000E+00
 68.11895 1.000000 0.0000000E+00
 68.16908 1.000000 0.0000000E+00
 68.21919 1.000000 0.0000000E+00
 68.26933 1.000000 0.0000000E+00
 68.31945 1.000000 0.0000000E+00
 68.36958 1.000000 0.0000000E+00
 68.41969 1.000000 0.0000000E+00
 68.46982 1.000000 0.0000000E+00
 68.51994 1.000000 0.0000000E+00
 68.57007 1.000000 0.0000000E+00
 68.62019 1.000000 0.0000000E+00
 68.67032 1.000000 0.0000000E+00
 68.72044 1.000000 0.0000000E+00
 68.77057 1.000000 0.0000000E+00
 68.82069 1.000000 0.0000000E+00
 68.87081 1.000000 0.0000000E+00
 68.92094 1.000000 0.0000000E+00
 68.97106 1.000000 0.0000000E+00
 69.02119 1.000000 0.0000000E+00
 69.07131 1.000000 0.0000000E+00
 69.12144 1.000000 0.0000000E+00
 69.17156 1.000000 0.0000000E+00
 69.22169 1.000000 0.0000000E+00
 69.27180 1.000000 0.0000000E+00
 69.32193 1.000000 0.0000000E+00
 69.37206 1.000000 0.0000000E+00
 69.42218 1.000000 0.0000000E+00
 69.47231 1.000000 0.0000000E+00
 69.52243 1.000000 0.0000000E+00
 69.57256 1.000000 0.0000000E+00
 69.62268 1.000000 0.0000000E+00
 69.67280 1.000000 0.0000000E+00
 69.72292 1.000000 0.0000000E+00
 69.77305 1.000000 0.0000000E+00
 69.82318 1.000000 0.0000000E+00
 69.87330 1.000000 0.0000000E+00
 69.92342 1.000000 0.0000000E+00
 69.97355 1.000000 0.0000000E+00
 70.02367 1.000000 0.0000000E+00
 70.07380 1.000000 0.0000000E+00
 70.12392 1.000000 0.0000000E+00
 70.17405 1.000000 0.0000000E+00
 70.22417 1.000000 0.0000000E+00
 70.27430 1.000000 0.0000000E+00
 70.32442 1.000000 0.0000000E+00
 70.37454 1.000000 0.0000000E+00
 70.42467 1.000000 0.0000000E+00
 70.47479 1.000000 0.0000000E+00
 70.52492 1.000000 0.0000000E+00
 70.57504 1.000000 0.0000000E+00
 70.62517 1.000000 0.0000000E+00
 70.67529 1.000000 0.0000000E+00
 70.72541 1.000000 0.0000000E+00
 70.77554 1.000000 0.0000000E+00
 70.82566 1.000000 0.0000000E+00
 70.87579 1.000000 0.0000000E+00
 70.92591 1.000000 0.0000000E+00
 70.97604 1.000000 0.0000000E+00
 71.02616 1.000000 0.0000000E+00
 71.07629 1.000000 0.0000000E+00
 71.12640 1.000000 0.0000000E+00
 71.17653 1.000000 0.0000000E+00
 71.22665 1.000000 0.0000000E+00
 71.27678 1.000000 0.0000000E+00
 71.32690 1.000000 0.0000000E+00
 71.37703 1.000000 0.0000000E+00
 71.42715 1.000000 0.0000000E+00
 71.47728 1.000000 0.0000000E+00
 71.52740 1.000000 0.0000000E+00
 71.57752 1.000000 0.0000000E+00
 71.62766 1.000000 0.0000000E+00
 71.67778 1.000000 0.0000000E+00
 71.72791 1.000000 0.0000000E+00
 71.77802 1.000000 0.0000000E+00
 71.82815 1.000000 0.0000000E+00
 71.87827 1.000000 0.0000000E+00
 71.92840 1.000000 0.0000000E+00
 71.97852 1.000000 0.0000000E+00
 72.02865 1.000000 0.0000000E+00
 72.07877 1.000000 0.0000000E+00
 72.12890 1.000000 0.0000000E+00
 72.17902 1.000000 0.0000000E+00
 72.22914 1.000000 0.0000000E+00
 72.27927 1.000000 0.0000000E+00
 72.32939 1.000000 0.0000000E+00
 72.37952 1.000000 0.0000000E+00
 72.42964 1.000000 0.0000000E+00
 72.47977 1.000000 0.0000000E+00
 72.52989 1.000000 0.0000000E+00
 72.58001 1.000000 0.0000000E+00
 72.63013 1.000000 0.0000000E+00
 72.68026 1.000000 0.0000000E+00
 72.73038 1.000000 0.0000000E+00
 72.78051 1.000000 0.0000000E+00
 72.83064 1.000000 0.0000000E+00
 72.88076 1.000000 0.0000000E+00
 72.93089 1.000000 0.0000000E+00
 72.98101 1.000000 0.0000000E+00
 73.03113 1.000000 0.0000000E+00
 73.08125 1.000000 0.0000000E+00
 73.13138 1.000000 0.0000000E+00
 73.18151 1.000000 0.0000000E+00
 73.23163 1.000000 0.0000000E+00
 73.28175 1.000000 0.0000000E+00
 73.33188 1.000000 0.0000000E+00
 73.38200 1.000000 0.0000000E+00
 73.43213 1.000000 0.0000000E+00
 73.48225 1.000000 0.0000000E+00
 73.53238 1.000000 0.0000000E+00
 73.58250 1.000000 0.0000000E+00
 73.63262 1.000000 0.0000000E+00
 73.68275 1.000000 0.0000000E+00
 73.73287 1.000000 0.0000000E+00
 73.78300 1.000000 0.0000000E+00
 73.83312 1.000000 0.0000000E+00
 73.88325 1.000000 0.0000000E+00
 73.93337 1.000000 0.0000000E+00
 73.98350 1.000000 0.0000000E+00
 74.03362 1.000000 0.0000000E+00
 74.08374 1.000000 0.0000000E+00
 74.13387 1.000000 0.0000000E+00
 74.18399 1.000000 0.0000000E+00
 74.23412 1.000000 0.0000000E+00
 74.28424 1.000000 0.0000000E+00
 74.33437 1.000000 0.0000000E+00
 74.38449 1.000000 0.0000000E+00
 74.43462 1.000000 0.0000000E+00
 74.48473 1.000000 0.0000000E+00
 74.53486 1.000000 0.0000000E+00
 74.58498 1.000000 0.0000000E+00
 74.63511 1.000000 0.0000000E+00
 74.68523 1.000000 0.0000000E+00
 74.73536 1.000000 0.0000000E+00
 74.78548 1.000000 0.0000000E+00
 74.83561 1.000000 0.0000000E+00
 74.88573 1.000000 0.0000000E+00
 74.93585 1.000000 0.0000000E+00
 74.98598 1.000000 0.0000000E+00
 75.03611 1.000000 0.0000000E+00
 75.08623 1.000000 0.0000000E+00
 75.13635 1.000000 0.0000000E+00
 75.18648 1.000000 0.0000000E+00
 75.23660 1.000000 0.0000000E+00
 75.28673 1.000000 0.0000000E+00
 75.33685 1.000000 0.0000000E+00
 75.38698 1.000000 0.0000000E+00
 75.43710 1.000000 0.0000000E+00
 75.48723 1.000000 0.0000000E+00
 75.53735 1.000000 0.0000000E+00
 75.58747 1.000000 0.0000000E+00
 75.63760 1.000000 0.0000000E+00
 75.68772 1.000000 0.0000000E+00
 75.73785 1.000000 0.0000000E+00
 75.78797 1.000000 0.0000000E+00
 75.83810 1.000000 0.0000000E+00
 75.88822 1.000000 0.0000000E+00
 75.93834 1.000000 0.0000000E+00
 75.98846 1.000000 0.0000000E+00
 76.03859 1.000000 0.0000000E+00
 76.08871 1.000000 0.0000000E+00
 76.13884 1.000000 0.0000000E+00
 76.18896 1.000000 0.0000000E+00
 76.23909 1.000000 0.0000000E+00
 76.28922 1.000000 0.0000000E+00
 76.33933 1.000000 0.0000000E+00
 76.38946 1.000000 0.0000000E+00
 76.43958 1.000000 0.0000000E+00
 76.48971 1.000000 0.0000000E+00
 76.53984 1.000000 0.0000000E+00
 76.58996 1.000000 0.0000000E+00
 76.64008 1.000000 0.0000000E+00
 76.69021 1.000000 0.0000000E+00
 76.74033 1.000000 0.0000000E+00
 76.79045 1.000000 0.0000000E+00
 76.84058 1.000000 0.0000000E+00
 76.89071 1.000000 0.0000000E+00
 76.94083 1.000000 0.0000000E+00
 76.99095 1.000000 0.0000000E+00
 77.04108 1.000000 0.0000000E+00
 77.09120 1.000000 0.0000000E+00
 77.14133 1.000000 0.0000000E+00
 77.19145 1.000000 0.0000000E+00
 77.24158 1.000000 0.0000000E+00
 77.29170 1.000000 0.0000000E+00
 77.34183 1.000000 0.0000000E+00
 77.39194 1.000000 0.0000000E+00
 77.44207 1.000000 0.0000000E+00
 77.49220 1.000000 0.0000000E+00
 77.54232 1.000000 0.0000000E+00
 77.59245 1.000000 0.0000000E+00
 77.64257 1.000000 0.0000000E+00
 77.69270 1.000000 0.0000000E+00
 77.74282 1.000000 0.0000000E+00
 77.79295 1.000000 0.0000000E+00
 77.84306 1.000000 0.0000000E+00
 77.89319 1.000000 0.0000000E+00
 77.94331 1.000000 0.0000000E+00
 77.99344 1.000000 0.0000000E+00
 78.04356 1.000000 0.0000000E+00
 78.09369 1.000000 0.0000000E+00
 78.14381 1.000000 0.0000000E+00
 78.19394 1.000000 0.0000000E+00
 78.24406 1.000000 0.0000000E+00
 78.29418 1.000000 0.0000000E+00
 78.34431 1.000000 0.0000000E+00
 78.39444 1.000000 0.0000000E+00
 78.44456 1.000000 0.0000000E+00
 78.49468 1.000000 0.0000000E+00
 78.54481 1.000000 0.0000000E+00
 78.59493 1.000000 0.0000000E+00
 78.64506 1.000000 0.0000000E+00
 78.69518 1.000000 0.0000000E+00
 78.74531 1.000000 0.0000000E+00
 78.79543 1.000000 0.0000000E+00
 78.84555 1.000000 0.0000000E+00
 78.89568 1.000000 0.0000000E+00
 78.94580 1.000000 0.0000000E+00
 78.99593 1.000000 0.0000000E+00
 79.04605 1.000000 0.0000000E+00
 79.09618 1.000000 0.0000000E+00
 79.14630 1.000000 0.0000000E+00
 79.19643 1.000000 0.0000000E+00
 79.24655 1.000000 0.0000000E+00
 79.29667 1.000000 0.0000000E+00
 79.34679 1.000000 0.0000000E+00
 79.39692 1.000000 0.0000000E+00
 79.44704 1.000000 0.0000000E+00
 79.49717 1.000000 0.0000000E+00
 79.54729 1.000000 0.0000000E+00
 79.59742 1.000000 0.0000000E+00
 79.64754 1.000000 0.0000000E+00
 79.69766 1.000000 0.0000000E+00
 79.74779 1.000000 0.0000000E+00
 79.79791 1.000000 0.0000000E+00
 79.84804 1.000000 0.0000000E+00
 79.89816 1.000000 0.0000000E+00
 79.94829 1.000000 0.0000000E+00
 79.99841 1.000000 0.0000000E+00
 80.04854 1.000000 0.0000000E+00
 80.09866 1.000000 0.0000000E+00
 80.14878 1.000000 0.0000000E+00
 80.19891 1.000000 0.0000000E+00
 80.24904 1.000000 0.0000000E+00
 80.29916 1.000000 0.0000000E+00
 80.34929 1.000000 0.0000000E+00
 80.39941 1.000000 0.0000000E+00
 80.44953 1.000000 0.0000000E+00
 80.49966 1.000000 0.0000000E+00
 80.54978 1.000000 0.0000000E+00
 80.59991 1.000000 0.0000000E+00
 80.65003 1.000000 0.0000000E+00
 80.70016 1.000000 0.0000000E+00
 80.75028 1.000000 0.0000000E+00
 80.80041 1.000000 0.0000000E+00
 80.85052 1.000000 0.0000000E+00
 80.90065 1.000000 0.0000000E+00
 80.95078 1.000000 0.0000000E+00
 81.00090 1.000000 0.0000000E+00
 81.05103 1.000000 0.0000000E+00
 81.10115 1.000000 0.0000000E+00
 81.15128 1.000000 0.0000000E+00
 81.20140 1.000000 0.0000000E+00
 81.25152 1.000000 0.0000000E+00
 81.30164 1.000000 0.0000000E+00
 81.35177 1.000000 0.0000000E+00
 81.40189 1.000000 0.0000000E+00
 81.45202 1.000000 0.0000000E+00
 81.50214 1.000000 0.0000000E+00
 81.55227 1.000000 0.0000000E+00
 81.60239 1.000000 0.0000000E+00
 81.65252 1.000000 0.0000000E+00
 81.70264 1.000000 0.0000000E+00
 81.75276 1.000000 0.0000000E+00
 81.80289 1.000000 0.0000000E+00
 81.85301 1.000000 0.0000000E+00
 81.90314 1.000000 0.0000000E+00
 81.95326 1.000000 0.0000000E+00
 82.00339 1.000000 0.0000000E+00
 82.05351 1.000000 0.0000000E+00
 82.10363 1.000000 0.0000000E+00
 82.15376 1.000000 0.0000000E+00
 82.20388 1.000000 0.0000000E+00
 82.25401 1.000000 0.0000000E+00
 82.30413 1.000000 0.0000000E+00
 82.35426 1.000000 0.0000000E+00
 82.40438 1.000000 0.0000000E+00
 82.45451 1.000000 0.0000000E+00
 82.50462 1.000000 0.0000000E+00
 82.55475 1.000000 0.0000000E+00
 82.60487 1.000000 0.0000000E+00
 82.65500 1.000000 0.0000000E+00
 82.70512 1.000000 0.0000000E+00
 82.75525 1.000000 0.0000000E+00
 82.80537 1.000000 0.0000000E+00
 82.85550 1.000000 0.0000000E+00
 82.90562 1.000000 0.0000000E+00
 82.95574 1.000000 0.0000000E+00
 83.00587 1.000000 0.0000000E+00
 83.05599 1.000000 0.0000000E+00
 83.10612 1.000000 0.0000000E+00
 83.15624 1.000000 0.0000000E+00
 83.20637 1.000000 0.0000000E+00
 83.25650 1.000000 0.0000000E+00
 83.30663 1.000000 0.0000000E+00
 83.35674 1.000000 0.0000000E+00
 83.40686 1.000000 0.0000000E+00
 83.45699 1.000000 0.0000000E+00
 83.50711 1.000000 0.0000000E+00
 83.55724 1.000000 0.0000000E+00
 83.60737 1.000000 0.0000000E+00
 83.65749 1.000000 0.0000000E+00
 83.70762 1.000000 0.0000000E+00
 83.75773 1.000000 0.0000000E+00
 83.80786 1.000000 0.0000000E+00
 83.85799 1.000000 0.0000000E+00
 83.90811 1.000000 0.0000000E+00
 83.95824 1.000000 0.0000000E+00
 84.00836 1.000000 0.0000000E+00
 84.05849 1.000000 0.0000000E+00
 84.10861 1.000000 0.0000000E+00
 84.15874 1.000000 0.0000000E+00
 84.20885 1.000000 0.0000000E+00
 84.25898 1.000000 0.0000000E+00
 84.30910 1.000000 0.0000000E+00
 84.35923 1.000000 0.0000000E+00
 84.40936 1.000000 0.0000000E+00
 84.45948 1.000000 0.0000000E+00
 84.50961 1.000000 0.0000000E+00
 84.55973 1.000000 0.0000000E+00
 84.60985 1.000000 0.0000000E+00
 84.65997 1.000000 0.0000000E+00
 84.71010 1.000000 0.0000000E+00
 84.76022 1.000000 0.0000000E+00
 84.81035 1.000000 0.0000000E+00
 84.86047 1.000000 0.0000000E+00
 84.91060 1.000000 0.0000000E+00
 84.96072 1.000000 0.0000000E+00
 85.01084 1.000000 0.0000000E+00
 85.06097 1.000000 0.0000000E+00
 85.11109 1.000000 0.0000000E+00
 85.16122 1.000000 0.0000000E+00
 85.21134 1.000000 0.0000000E+00
 85.26147 1.000000 0.0000000E+00
 85.31159 1.000000 0.0000000E+00
 85.36172 1.000000 0.0000000E+00
 85.41184 1.000000 0.0000000E+00
 85.46196 1.000000 0.0000000E+00
 85.51208 1.000000 0.0000000E+00
 85.56221 1.000000 0.0000000E+00
 85.61234 1.000000 0.0000000E+00
 85.66246 1.000000 0.0000000E+00
 85.71259 1.000000 0.0000000E+00
 85.76271 1.000000 0.0000000E+00
 85.81284 1.000000 0.0000000E+00
 85.86295 1.000000 0.0000000E+00
 85.91308 1.000000 0.0000000E+00
 85.96320 1.000000 0.0000000E+00
 86.01333 1.000000 0.0000000E+00
 86.06345 1.000000 0.0000000E+00
 86.11358 1.000000 0.0000000E+00
 86.16370 1.000000 0.0000000E+00
 86.21383 1.000000 0.0000000E+00
 86.26395 1.000000 0.0000000E+00
 86.31407 1.000000 0.0000000E+00
 86.36420 1.000000 0.0000000E+00
 86.41432 1.000000 0.0000000E+00
 86.46445 1.000000 0.0000000E+00
 86.51457 1.000000 0.0000000E+00
 86.56470 1.000000 0.0000000E+00
 86.61483 1.000000 0.0000000E+00
 86.66496 1.000000 0.0000000E+00
 86.71507 1.000000 0.0000000E+00
 86.76519 1.000000 0.0000000E+00
 86.81532 1.000000 0.0000000E+00
 86.86544 1.000000 0.0000000E+00
 86.91557 1.000000 0.0000000E+00
 86.96570 1.000000 0.0000000E+00
 87.01582 1.000000 0.0000000E+00
 87.06595 1.000000 0.0000000E+00
 87.11606 1.000000 0.0000000E+00
 87.16619 1.000000 0.0000000E+00
 87.21632 1.000000 0.0000000E+00
 87.26644 1.000000 0.0000000E+00
 87.31657 1.000000 0.0000000E+00
 87.36669 1.000000 0.0000000E+00
 87.41682 1.000000 0.0000000E+00
 87.46694 1.000000 0.0000000E+00
 87.51706 1.000000 0.0000000E+00
 87.56718 1.000000 0.0000000E+00
 87.61731 1.000000 0.0000000E+00
 87.66743 1.000000 0.0000000E+00
 87.71756 1.000000 0.0000000E+00
 87.76768 1.000000 0.0000000E+00
 87.81781 1.000000 0.0000000E+00
 87.86794 1.000000 0.0000000E+00
 87.91806 1.000000 0.0000000E+00
 87.96818 1.000000 0.0000000E+00
 88.01830 1.000000 0.0000000E+00
 88.06843 1.000000 0.0000000E+00
 88.11855 1.000000 0.0000000E+00
 88.16868 1.000000 0.0000000E+00
 88.21880 1.000000 0.0000000E+00
 88.26893 1.000000 0.0000000E+00
 88.31905 1.000000 0.0000000E+00
 88.36917 1.000000 0.0000000E+00
 88.41930 1.000000 0.0000000E+00
 88.46942 1.000000 0.0000000E+00
 88.51955 1.000000 0.0000000E+00
 88.56967 1.000000 0.0000000E+00
 88.61980 1.000000 0.0000000E+00
 88.66992 1.000000 0.0000000E+00
 88.72005 1.000000 0.0000000E+00
 88.77016 1.000000 0.0000000E+00
 88.82029 1.000000 0.0000000E+00
 88.87041 1.000000 0.0000000E+00
 88.92054 1.000000 0.0000000E+00
 88.97066 1.000000 0.0000000E+00
 89.02079 1.000000 0.0000000E+00
 89.07092 1.000000 0.0000000E+00
 89.12104 1.000000 0.0000000E+00
 89.17117 1.000000 0.0000000E+00
 89.22128 1.000000 0.0000000E+00
 89.27141 1.000000 0.0000000E+00
 89.32153 1.000000 0.0000000E+00
 89.37166 1.000000 0.0000000E+00
 89.42178 1.000000 0.0000000E+00
 89.47191 1.000000 0.0000000E+00
 89.52203 1.000000 0.0000000E+00
 89.57216 1.000000 0.0000000E+00
 89.62228 1.000000 0.0000000E+00
 89.67240 1.000000 0.0000000E+00
 89.72253 1.000000 0.0000000E+00
 89.77265 1.000000 0.0000000E+00
 89.82278 1.000000 0.0000000E+00
 89.87290 1.000000 0.0000000E+00
 89.92303 1.000000 0.0000000E+00
 89.97316 1.000000 0.0000000E+00
 90.02327 1.000000 0.0000000E+00
 90.07339 1.000000 0.0000000E+00
 90.12352 1.000000 0.0000000E+00
 90.17365 1.000000 0.0000000E+00
 90.22377 1.000000 0.0000000E+00
 90.27390 1.000000 0.0000000E+00
 90.32403 1.000000 0.0000000E+00
 90.37415 1.000000 0.0000000E+00
 90.42428 1.000000 0.0000000E+00
 90.47439 1.000000 0.0000000E+00
 90.52451 1.000000 0.0000000E+00
 90.57465 1.000000 0.0000000E+00
 90.62477 1.000000 0.0000000E+00
 90.67490 1.000000 0.0000000E+00
 90.72502 1.000000 0.0000000E+00
 90.77515 1.000000 0.0000000E+00
 90.82527 1.000000 0.0000000E+00
 90.87539 1.000000 0.0000000E+00
 90.92551 1.000000 0.0000000E+00
 90.97564 1.000000 0.0000000E+00
 91.02576 1.000000 0.0000000E+00
 91.07589 1.000000 0.0000000E+00
 91.12601 1.000000 0.0000000E+00
 91.17614 1.000000 0.0000000E+00
 91.22626 1.000000 0.0000000E+00
 91.27638 1.000000 0.0000000E+00
 91.32651 1.000000 0.0000000E+00
 91.37663 1.000000 0.0000000E+00
 91.42676 1.000000 0.0000000E+00
 91.47688 1.000000 0.0000000E+00
 91.52701 1.000000 0.0000000E+00
 91.57713 1.000000 0.0000000E+00
 91.62726 1.000000 0.0000000E+00
 91.67738 1.000000 0.0000000E+00
 91.72750 1.000000 0.0000000E+00
 91.77763 1.000000 0.0000000E+00
 91.82775 1.000000 0.0000000E+00
 91.87788 1.000000 0.0000000E+00
 91.92800 1.000000 0.0000000E+00
 91.97813 1.000000 0.0000000E+00
 92.02825 1.000000 0.0000000E+00
 92.07838 1.000000 0.0000000E+00
 92.12849 1.000000 0.0000000E+00
 92.17862 1.000000 0.0000000E+00
 92.22874 1.000000 0.0000000E+00
 92.27887 1.000000 0.0000000E+00
 92.32899 1.000000 0.0000000E+00
 92.37912 1.000000 0.0000000E+00
 92.42924 1.000000 0.0000000E+00
 92.47937 1.000000 0.0000000E+00
 92.52949 1.000000 0.0000000E+00
 92.57961 1.000000 0.0000000E+00
 92.62974 1.000000 0.0000000E+00
 92.67986 1.000000 0.0000000E+00
 92.72999 1.000000 0.0000000E+00
 92.78011 1.000000 0.0000000E+00
 92.83024 1.000000 0.0000000E+00
 92.88036 1.000000 0.0000000E+00
 92.93049 1.000000 0.0000000E+00
 92.98061 1.000000 0.0000000E+00
 93.03073 1.000000 0.0000000E+00
 93.08086 1.000000 0.0000000E+00
 93.13098 1.000000 0.0000000E+00
 93.18111 1.000000 0.0000000E+00
 93.23123 1.000000 0.0000000E+00
 93.28136 1.000000 0.0000000E+00
 93.33149 1.000000 0.0000000E+00
 93.38160 1.000000 0.0000000E+00
 93.43172 1.000000 0.0000000E+00
 93.48185 1.000000 0.0000000E+00
 93.53197 1.000000 0.0000000E+00
 93.58210 1.000000 0.0000000E+00
 93.63223 1.000000 0.0000000E+00
 93.68236 1.000000 0.0000000E+00
 93.73248 1.000000 0.0000000E+00
 93.78259 1.000000 0.0000000E+00
 93.83272 1.000000 0.0000000E+00
 93.88284 1.000000 0.0000000E+00
 93.93298 1.000000 0.0000000E+00
 93.98310 1.000000 0.0000000E+00
 94.03323 1.000000 0.0000000E+00
 94.08335 1.000000 0.0000000E+00
 94.13348 1.000000 0.0000000E+00
 94.18360 1.000000 0.0000000E+00
 94.23372 1.000000 0.0000000E+00
 94.28384 1.000000 0.0000000E+00
 94.33397 1.000000 0.0000000E+00
 94.38409 1.000000 0.0000000E+00
 94.43422 1.000000 0.0000000E+00
 94.48434 1.000000 0.0000000E+00
 94.53447 1.000000 0.0000000E+00
 94.58459 1.000000 0.0000000E+00
 94.63471 1.000000 0.0000000E+00
 94.68484 1.000000 0.0000000E+00
 94.73496 1.000000 0.0000000E+00
 94.78509 1.000000 0.0000000E+00
 94.83521 1.000000 0.0000000E+00
 94.88534 1.000000 0.0000000E+00
 94.93546 1.000000 0.0000000E+00
 94.98559 1.000000 0.0000000E+00
 95.03571 1.000000 0.0000000E+00
 95.08583 1.000000 0.0000000E+00
 95.13596 1.000000 0.0000000E+00
 95.18608 1.000000 0.0000000E+00
 95.23621 1.000000 0.0000000E+00
 95.28633 1.000000 0.0000000E+00
 95.33646 1.000000 0.0000000E+00
 95.38658 1.000000 0.0000000E+00
 95.43671 1.000000 0.0000000E+00
 95.48682 1.000000 0.0000000E+00
 95.53695 1.000000 0.0000000E+00
 95.58707 1.000000 0.0000000E+00
 95.63720 1.000000 0.0000000E+00
 95.68732 1.000000 0.0000000E+00
 95.73745 1.000000 0.0000000E+00
 95.78757 1.000000 0.0000000E+00
 95.83770 1.000000 0.0000000E+00
 95.88782 1.000000 0.0000000E+00
 95.93794 1.000000 0.0000000E+00
 95.98807 1.000000 0.0000000E+00
 96.03819 1.000000 0.0000000E+00
 96.08832 1.000000 0.0000000E+00
 96.13844 1.000000 0.0000000E+00
 96.18857 1.000000 0.0000000E+00
 96.23869 1.000000 0.0000000E+00
 96.28881 1.000000 0.0000000E+00
 96.33894 1.000000 0.0000000E+00
 96.38906 1.000000 0.0000000E+00
 96.43919 1.000000 0.0000000E+00
 96.48931 1.000000 0.0000000E+00
 96.53944 1.000000 0.0000000E+00
 96.58956 1.000000 0.0000000E+00
 96.63969 1.000000 0.0000000E+00
 96.68981 1.000000 0.0000000E+00
 96.73993 1.000000 0.0000000E+00
 96.79005 1.000000 0.0000000E+00
 96.84018 1.000000 0.0000000E+00
 96.89030 1.000000 0.0000000E+00
 96.94043 1.000000 0.0000000E+00
 96.99056 1.000000 0.0000000E+00
 97.04069 1.000000 0.0000000E+00
 97.09081 1.000000 0.0000000E+00
 97.14092 1.000000 0.0000000E+00
 97.19105 1.000000 0.0000000E+00
 97.24117 1.000000 0.0000000E+00
 97.29131 1.000000 0.0000000E+00
 97.34143 1.000000 0.0000000E+00
 97.39156 1.000000 0.0000000E+00
 97.44168 1.000000 0.0000000E+00
 97.49181 1.000000 0.0000000E+00
 97.54192 1.000000 0.0000000E+00
 97.59205 1.000000 0.0000000E+00
 97.64217 1.000000 0.0000000E+00
 97.69230 1.000000 0.0000000E+00
 97.74242 1.000000 0.0000000E+00
 97.79255 1.000000 0.0000000E+00
 97.84267 1.000000 0.0000000E+00
 97.89280 1.000000 0.0000000E+00
 97.94292 1.000000 0.0000000E+00
 97.99304 1.000000 0.0000000E+00
 98.04317 1.000000 0.0000000E+00
 98.09329 1.000000 0.0000000E+00
 98.14342 1.000000 0.0000000E+00
 98.19354 1.000000 0.0000000E+00
 98.24367 1.000000 0.0000000E+00
 98.29379 1.000000 0.0000000E+00
 98.34392 1.000000 0.0000000E+00
 98.39404 1.000000 0.0000000E+00
 98.44416 1.000000 0.0000000E+00
 98.49429 1.000000 0.0000000E+00
 98.54441 1.000000 0.0000000E+00
 98.59454 1.000000 0.0000000E+00
 98.64466 1.000000 0.0000000E+00
 98.69479 1.000000 0.0000000E+00
 98.74491 1.000000 0.0000000E+00
 98.79503 1.000000 0.0000000E+00
 98.84515 1.000000 0.0000000E+00
 98.89528 1.000000 0.0000000E+00
 98.94540 1.000000 0.0000000E+00
 98.99553 1.000000 0.0000000E+00
 99.04565 1.000000 0.0000000E+00
 99.09578 1.000000 0.0000000E+00
 99.14590 1.000000 0.0000000E+00
 99.19603 1.000000 0.0000000E+00
 99.24615 1.000000 0.0000000E+00
 99.29627 1.000000 0.0000000E+00
 99.34640 1.000000 0.0000000E+00
 99.39652 1.000000 0.0000000E+00
 99.44665 1.000000 0.0000000E+00
 99.49677 1.000000 0.0000000E+00
 99.54690 1.000000 0.0000000E+00
 99.59702 1.000000 0.0000000E+00
 99.64714 1.000000 0.0000000E+00
 99.69727 1.000000 0.0000000E+00
 99.74739 1.000000 0.0000000E+00
 99.79752 1.000000 0.0000000E+00
 99.84764 1.000000 0.0000000E+00
 99.89777 1.000000 0.0000000E+00
 99.94789 1.000000 0.0000000E+00
 99.99802 1.000000 0.0000000E+00
 100.0481 1.000000 0.0000000E+00
 100.0983 1.000000 0.0000000E+00
 100.1484 1.000000 0.0000000E+00
 100.1985 1.000000 0.0000000E+00
 100.2486 1.000000 0.0000000E+00

XFOILinterface/XFOIL/orrs/osnew/ai.35

3.50000
 0.10000 0.000000
 0.20000 0.000000
 0.30000 -0.052114
 0.40000 -0.081982
 0.50000 -0.086619
 0.60000 -0.073012
 0.70000 -0.060654
 0.80000 -0.049327
 0.90000 -0.038870
 1.00000 -0.029234
 1.10000 -0.020363
 1.20000 -0.012245
 1.30000 -0.004857
 1.40000 0.001771
 1.50000 0.007606
 1.60000 0.012576
 1.70000 0.016625
 1.80000 0.019700
 1.90000 0.021815
 2.00000 0.023084
 2.10000 0.023744
 2.20000 0.024142
 2.30000 0.024545
 2.40000 0.025041
 2.50000 0.025572
 2.60000 0.026053
 2.70000 0.026446
 2.80000 0.026765
 2.90000 0.027028
 3.00000 0.027250
 3.10000 0.027438
 3.20000 0.027596
 3.30000 0.027732
 3.40000 0.027847
 3.50000 0.027944
 3.60000 0.028027
 3.70000 0.028098
 3.80000 0.028160
 3.90000 0.028206
 4.00000 0.028260

XFOILinterface/XFOIL/runs/cp_060_050.387

0.950 -0.0370 | CL=0.838 (a=5 deg nominal) Re=60000
0.900 -0.1214
0.850 -0.2418
0.800 -0.4137
0.750 -0.5977
0.700 -0.6307
0.650 -0.6126
0.600 -0.6075
0.550 -0.5985
0.500 -0.5990
0.450 -0.6124
0.400 -0.6330
0.350 -0.6652
0.300 -0.7310
0.250 -0.8065
0.200 -0.8648
0.150 -0.9291
0.100 -1.0042
0.075 -1.0262
0.060 -1.0360
0.050 -1.0463
0.040 -1.0469
0.030 -1.0311
0.025 -1.0353
0.020 -1.0571
0.015 -1.0064
0.010 -0.9906
0.005 -0.8359
0.0 0.4274
0.950 0.1178
0.900 0.1461
0.850 0.1603
0.800 0.1754
0.750 0.1786
0.700 0.1837
0.650 0.1912
0.600 0.1977
0.550 0.1983
0.500 0.2044
0.450 0.2144
0.400 0.2156
0.350 0.2243
0.300 0.2354
0.250 0.2380
0.200 0.2570
0.150 0.2817
0.100 0.3200
0.075 0.3595
0.060 0.3932
0.050 0.4291
0.040 0.4701
0.031 0.5370
0.025 0.5845
0.020 0.6551
0.015 0.7133
0.010 0.8403
0.005 0.9710

XFOILinterface/XFOIL/runs/cp_100_040.387

Langley Cp data
0.950 0.0451 | CL=0.778 (a=4 deg nominal) Re=100000
0.900 -.0008
0.850 -.0410
0.800 -.1223
0.750 -.3670
0.700 -.6230
0.650 -.6383
0.600 -.6343
0.550 -.6327
0.500 -.6351
0.450 -.6557
0.400 -.6849
0.350 -.7470
0.300 -.8061
0.250 -.8481
0.200 -.8876
0.150 -.9254
0.100 -.9656
0.075 -.9831
0.060 -.9826
0.050 -.9700
0.040 -.9659
0.030 -.9529
0.025 -.9409
0.020 -.9137
0.015 -.8654
0.010 -.8129
0.005 -.6744
0.0 0.6121
0.950 0.1352
0.900 0.1558
0.850 0.1623
0.800 0.1692
0.750 0.1688
0.700 0.1743
0.650 0.1755
0.600 0.1795
0.550 0.1787
0.500 0.1851
0.450 0.1902
0.400 0.1894
0.350 0.1963
0.300 0.1978
0.250 0.1970
0.200 0.2121
0.150 0.2204
0.100 0.2585
0.075 0.2879
0.060 0.3143
0.050 0.3489
0.040 0.3891
0.031 0.4545
0.025 0.4966
0.020 0.5466
0.015 0.6190
0.010 0.7428
0.005 0.9269

XFOILinterface/XFOIL/runs/polref_100.387

Langley LTPT
0.0201 0.098 | Eppler 387 polar Re=100000 Langley LTPT
0.0201 0.101
0.0168 0.199
0.0164 0.289
0.0155 0.289
0.0173 0.392
0.0189 0.491
0.0218 0.589
0.0216 0.589
0.0238 0.686
0.0241 0.786
0.0241 0.880
0.0234 0.880
0.0237 0.880
0.0230 0.978
0.0232 0.978
0.0225 1.029
0.0219 1.029
0.0214 1.077
0.0212 1.077
0.0212 1.179
0.0207 1.179
0.0246 1.190
0.0285 1.199
0.0505 1.205
999. 999.
-2.97 0.098
-2.97 0.101
-2.01 0.199
-1.00 0.289
-1.00 0.289
 0.00 0.392
 1.00 0.491
 2.00 0.589
 2.00 0.589
 3.00 0.686
 4.02 0.786
 5.00 0.880
 5.00 0.880
 5.00 0.880
 6.01 0.978
 6.01 0.978
 6.52 1.029
 6.52 1.029
 7.01 1.077
 7.01 1.077
 8.02 1.179
 8.02 1.179
 8.52 1.190
 9.02 1.199
11.02 1.205
12.04 1.194
999. 999.
-2.97 -0.1002
-2.97 -0.1005
-2.01 -0.0994
-1.00 -0.0955
-1.00 -0.0955
 0.00 -0.0971
 1.00 -0.0972
 2.00 -0.0983
 2.00 -0.0983
 3.00 -0.0983
 4.02 -0.0943
 5.00 -0.0879
 5.00 -0.0879
 5.00 -0.0879
 6.01 -0.0835
 6.01 -0.0835
 6.52 -0.0814
 6.52 -0.0814
 7.01 -0.0786
 7.01 -0.0786
 8.02 -0.0752
 8.02 -0.0752
 8.52 -0.0717
 9.02 -0.0674
11.02 -0.0549
12.04 -0.0509
999. 999.
999. 999.

XFOILinterface/XFOIL/orrs/osm_gu.50

 2001 50.12431
 0.0000000E+00 0.0000000E+00 0.0000000E+00
 5.0124310E-02 0.0000000E+00 0.0000000E+00
 0.1002486 0.0000000E+00 0.0000000E+00
 0.1503729 0.0000000E+00 0.0000000E+00
 0.2004972 0.0000000E+00 0.0000000E+00
 0.2506216 0.0000000E+00 0.0000000E+00
 0.3007459 0.0000000E+00 0.0000000E+00
 0.3508702 0.0000000E+00 0.0000000E+00
 0.4009945 0.0000000E+00 0.0000000E+00
 0.4511188 0.0000000E+00 0.0000000E+00
 0.5012431 0.0000000E+00 0.0000000E+00
 0.5513674 0.0000000E+00 0.0000000E+00
 0.6014917 0.0000000E+00 0.0000000E+00
 0.6516160 0.0000000E+00 0.0000000E+00
 0.7017404 0.0000000E+00 0.0000000E+00
 0.7518647 0.0000000E+00 0.0000000E+00
 0.8019890 0.0000000E+00 0.0000000E+00
 0.8521133 0.0000000E+00 0.0000000E+00
 0.9022377 0.0000000E+00 0.0000000E+00
 0.9523619 0.0000000E+00 0.0000000E+00
 1.002486 0.0000000E+00 0.0000000E+00
 1.052611 0.0000000E+00 0.0000000E+00
 1.102735 0.0000000E+00 0.0000000E+00
 1.152859 0.0000000E+00 0.0000000E+00
 1.202983 0.0000000E+00 0.0000000E+00
 1.253108 0.0000000E+00 0.0000000E+00
 1.303232 0.0000000E+00 0.0000000E+00
 1.353356 0.0000000E+00 0.0000000E+00
 1.403481 0.0000000E+00 0.0000000E+00
 1.453605 0.0000000E+00 0.0000000E+00
 1.503729 0.0000000E+00 0.0000000E+00
 1.553854 0.0000000E+00 0.0000000E+00
 1.603978 0.0000000E+00 0.0000000E+00
 1.654102 0.0000000E+00 0.0000000E+00
 1.704227 0.0000000E+00 0.0000000E+00
 1.754351 0.0000000E+00 0.0000000E+00
 1.804475 0.0000000E+00 0.0000000E+00
 1.854600 0.0000000E+00 0.0000000E+00
 1.904724 0.0000000E+00 0.0000000E+00
 1.954848 0.0000000E+00 0.0000000E+00
 2.004972 0.0000000E+00 0.0000000E+00
 2.055097 0.0000000E+00 0.0000000E+00
 2.105221 0.0000000E+00 0.0000000E+00
 2.155345 0.0000000E+00 0.0000000E+00
 2.205470 0.0000000E+00 0.0000000E+00
 2.255594 0.0000000E+00 0.0000000E+00
 2.305718 0.0000000E+00 0.0000000E+00
 2.355843 0.0000000E+00 0.0000000E+00
 2.405967 0.0000000E+00 0.0000000E+00
 2.456091 0.0000000E+00 0.0000000E+00
 2.506216 0.0000000E+00 0.0000000E+00
 2.556340 0.0000000E+00 0.0000000E+00
 2.606464 0.0000000E+00 0.0000000E+00
 2.656588 0.0000000E+00 0.0000000E+00
 2.706713 0.0000000E+00 0.0000000E+00
 2.756837 0.0000000E+00 0.0000000E+00
 2.806962 0.0000000E+00 0.0000000E+00
 2.857086 0.0000000E+00 0.0000000E+00
 2.907210 0.0000000E+00 0.0000000E+00
 2.957334 0.0000000E+00 0.0000000E+00
 3.007459 0.0000000E+00 0.0000000E+00
 3.057583 0.0000000E+00 0.0000000E+00
 3.107707 0.0000000E+00 0.0000000E+00
 3.157832 0.0000000E+00 0.0000000E+00
 3.207956 0.0000000E+00 0.0000000E+00
 3.258080 0.0000000E+00 0.0000000E+00
 3.308205 0.0000000E+00 0.0000000E+00
 3.358329 0.0000000E+00 0.0000000E+00
 3.408453 0.0000000E+00 0.0000000E+00
 3.458577 0.0000000E+00 0.0000000E+00
 3.508702 0.0000000E+00 0.0000000E+00
 3.558826 0.0000000E+00 0.0000000E+00
 3.608951 0.0000000E+00 0.0000000E+00
 3.659075 0.0000000E+00 0.0000000E+00
 3.709199 0.0000000E+00 0.0000000E+00
 3.759323 0.0000000E+00 0.0000000E+00
 3.809448 0.0000000E+00 0.0000000E+00
 3.859572 0.0000000E+00 0.0000000E+00
 3.909696 0.0000000E+00 0.0000000E+00
 3.959821 0.0000000E+00 0.0000000E+00
 4.009945 0.0000000E+00 0.0000000E+00
 4.060069 0.0000000E+00 0.0000000E+00
 4.110193 0.0000000E+00 0.0000000E+00
 4.160318 0.0000000E+00 0.0000000E+00
 4.210442 0.0000000E+00 0.0000000E+00
 4.260567 0.0000000E+00 0.0000000E+00
 4.310691 0.0000000E+00 0.0000000E+00
 4.360815 0.0000000E+00 0.0000000E+00
 4.410939 0.0000000E+00 0.0000000E+00
 4.461064 0.0000000E+00 0.0000000E+00
 4.511188 0.0000000E+00 0.0000000E+00
 4.561313 0.0000000E+00 0.0000000E+00
 4.611437 0.0000000E+00 0.0000000E+00
 4.661561 0.0000000E+00 0.0000000E+00
 4.711685 0.0000000E+00 0.0000000E+00
 4.761809 0.0000000E+00 0.0000000E+00
 4.811934 0.0000000E+00 0.0000000E+00
 4.862058 0.0000000E+00 0.0000000E+00
 4.912183 0.0000000E+00 0.0000000E+00
 4.962307 0.0000000E+00 0.0000000E+00
 5.012431 0.0000000E+00 0.0000000E+00
 5.062555 0.0000000E+00 0.0000000E+00
 5.112679 0.0000000E+00 0.0000000E+00
 5.162804 0.0000000E+00 0.0000000E+00
 5.212928 0.0000000E+00 0.0000000E+00
 5.263052 0.0000000E+00 0.0000000E+00
 5.313177 0.0000000E+00 0.0000000E+00
 5.363302 0.0000000E+00 0.0000000E+00
 5.413426 0.0000000E+00 0.0000000E+00
 5.463550 0.0000000E+00 0.0000000E+00
 5.513674 0.0000000E+00 0.0000000E+00
 5.563798 0.0000000E+00 0.0000000E+00
 5.613923 0.0000000E+00 0.0000000E+00
 5.664047 0.0000000E+00 0.0000000E+00
 5.714171 0.0000000E+00 0.0000000E+00
 5.764296 0.0000000E+00 0.0000000E+00
 5.814420 0.0000000E+00 0.0000000E+00
 5.864544 0.0000000E+00 0.0000000E+00
 5.914669 0.0000000E+00 0.0000000E+00
 5.964793 0.0000000E+00 0.0000000E+00
 6.014917 0.0000000E+00 0.0000000E+00
 6.065042 0.0000000E+00 0.0000000E+00
 6.115166 0.0000000E+00 0.0000000E+00
 6.165290 0.0000000E+00 0.0000000E+00
 6.215415 0.0000000E+00 0.0000000E+00
 6.265539 0.0000000E+00 0.0000000E+00
 6.315663 0.0000000E+00 0.0000000E+00
 6.365788 0.0000000E+00 0.0000000E+00
 6.415912 0.0000000E+00 0.0000000E+00
 6.466036 0.0000000E+00 0.0000000E+00
 6.516160 0.0000000E+00 0.0000000E+00
 6.566285 0.0000000E+00 0.0000000E+00
 6.616409 0.0000000E+00 0.0000000E+00
 6.666533 0.0000000E+00 0.0000000E+00
 6.716658 0.0000000E+00 0.0000000E+00
 6.766782 0.0000000E+00 0.0000000E+00
 6.816906 0.0000000E+00 0.0000000E+00
 6.867031 0.0000000E+00 0.0000000E+00
 6.917155 0.0000000E+00 0.0000000E+00
 6.967279 0.0000000E+00 0.0000000E+00
 7.017404 0.0000000E+00 0.0000000E+00
 7.067528 0.0000000E+00 0.0000000E+00
 7.117652 0.0000000E+00 0.0000000E+00
 7.167776 0.0000000E+00 0.0000000E+00
 7.217901 0.0000000E+00 0.0000000E+00
 7.268025 0.0000000E+00 0.0000000E+00
 7.318150 0.0000000E+00 0.0000000E+00
 7.368274 0.0000000E+00 0.0000000E+00
 7.418398 0.0000000E+00 0.0000000E+00
 7.468523 0.0000000E+00 0.0000000E+00
 7.518647 0.0000000E+00 0.0000000E+00
 7.568771 0.0000000E+00 0.0000000E+00
 7.618895 0.0000000E+00 0.0000000E+00
 7.669020 0.0000000E+00 0.0000000E+00
 7.719144 0.0000000E+00 0.0000000E+00
 7.769268 0.0000000E+00 0.0000000E+00
 7.819392 0.0000000E+00 0.0000000E+00
 7.869517 0.0000000E+00 0.0000000E+00
 7.919641 0.0000000E+00 0.0000000E+00
 7.969766 0.0000000E+00 0.0000000E+00
 8.019890 0.0000000E+00 0.0000000E+00
 8.070014 0.0000000E+00 0.0000000E+00
 8.120138 0.0000000E+00 0.0000000E+00
 8.170262 0.0000000E+00 0.0000000E+00
 8.220387 0.0000000E+00 0.0000000E+00
 8.270512 0.0000000E+00 0.0000000E+00
 8.320636 0.0000000E+00 0.0000000E+00
 8.370760 0.0000000E+00 0.0000000E+00
 8.420884 0.0000000E+00 0.0000000E+00
 8.471009 0.0000000E+00 0.0000000E+00
 8.521133 0.0000000E+00 0.0000000E+00
 8.571258 0.0000000E+00 0.0000000E+00
 8.621382 0.0000000E+00 0.0000000E+00
 8.671506 0.0000000E+00 0.0000000E+00
 8.721630 0.0000000E+00 0.0000000E+00
 8.771754 0.0000000E+00 0.0000000E+00
 8.821878 0.0000000E+00 0.0000000E+00
 8.872003 0.0000000E+00 0.0000000E+00
 8.922128 0.0000000E+00 0.0000000E+00
 8.972252 0.0000000E+00 0.0000000E+00
 9.022376 0.0000000E+00 0.0000000E+00
 9.072500 0.0000000E+00 0.0000000E+00
 9.122625 0.0000000E+00 0.0000000E+00
 9.172750 0.0000000E+00 0.0000000E+00
 9.222874 0.0000000E+00 0.0000000E+00
 9.272998 0.0000000E+00 0.0000000E+00
 9.323122 0.0000000E+00 0.0000000E+00
 9.373246 0.0000000E+00 0.0000000E+00
 9.423370 0.0000000E+00 0.0000000E+00
 9.473495 0.0000000E+00 0.0000000E+00
 9.523619 0.0000000E+00 0.0000000E+00
 9.573743 0.0000000E+00 0.0000000E+00
 9.623868 0.0000000E+00 0.0000000E+00
 9.673992 0.0000000E+00 0.0000000E+00
 9.724116 0.0000000E+00 0.0000000E+00
 9.774240 0.0000000E+00 0.0000000E+00
 9.824366 0.0000000E+00 0.0000000E+00
 9.874490 0.0000000E+00 0.0000000E+00
 9.924614 0.0000000E+00 0.0000000E+00
 9.974738 0.0000000E+00 0.0000000E+00
 10.02486 0.0000000E+00 0.0000000E+00
 10.07499 0.0000000E+00 0.0000000E+00
 10.12511 0.0000000E+00 0.0000000E+00
 10.17523 0.0000000E+00 0.0000000E+00
 10.22536 0.0000000E+00 0.0000000E+00
 10.27548 0.0000000E+00 0.0000000E+00
 10.32561 0.0000000E+00 0.0000000E+00
 10.37573 0.0000000E+00 0.0000000E+00
 10.42586 0.0000000E+00 0.0000000E+00
 10.47598 0.0000000E+00 0.0000000E+00
 10.52610 0.0000000E+00 0.0000000E+00
 10.57623 0.0000000E+00 0.0000000E+00
 10.62635 0.0000000E+00 0.0000000E+00
 10.67648 0.0000000E+00 0.0000000E+00
 10.72660 0.0000000E+00 0.0000000E+00
 10.77673 0.0000000E+00 0.0000000E+00
 10.82685 0.0000000E+00 0.0000000E+00
 10.87698 0.0000000E+00 0.0000000E+00
 10.92710 0.0000000E+00 0.0000000E+00
 10.97722 0.0000000E+00 0.0000000E+00
 11.02735 0.0000000E+00 0.0000000E+00
 11.07747 0.0000000E+00 0.0000000E+00
 11.12760 0.0000000E+00 0.0000000E+00
 11.17772 0.0000000E+00 0.0000000E+00
 11.22785 0.0000000E+00 0.0000000E+00
 11.27797 0.0000000E+00 0.0000000E+00
 11.32809 0.0000000E+00 0.0000000E+00
 11.37822 0.0000000E+00 0.0000000E+00
 11.42834 0.0000000E+00 0.0000000E+00
 11.47847 0.0000000E+00 0.0000000E+00
 11.52859 0.0000000E+00 0.0000000E+00
 11.57872 0.0000000E+00 0.0000000E+00
 11.62884 0.0000000E+00 0.0000000E+00
 11.67896 0.0000000E+00 0.0000000E+00
 11.72909 0.0000000E+00 0.0000000E+00
 11.77921 0.0000000E+00 0.0000000E+00
 11.82934 0.0000000E+00 0.0000000E+00
 11.87946 0.0000000E+00 0.0000000E+00
 11.92959 0.0000000E+00 0.0000000E+00
 11.97971 0.0000000E+00 0.0000000E+00
 12.02983 0.0000000E+00 0.0000000E+00
 12.07996 0.0000000E+00 0.0000000E+00
 12.13008 0.0000000E+00 0.0000000E+00
 12.18021 0.0000000E+00 0.0000000E+00
 12.23033 0.0000000E+00 0.0000000E+00
 12.28046 0.0000000E+00 0.0000000E+00
 12.33058 0.0000000E+00 0.0000000E+00
 12.38070 0.0000000E+00 0.0000000E+00
 12.43083 0.0000000E+00 0.0000000E+00
 12.48095 0.0000000E+00 0.0000000E+00
 12.53108 0.0000000E+00 0.0000000E+00
 12.58120 0.0000000E+00 0.0000000E+00
 12.63133 0.0000000E+00 0.0000000E+00
 12.68145 0.0000000E+00 0.0000000E+00
 12.73158 0.0000000E+00 0.0000000E+00
 12.78170 0.0000000E+00 0.0000000E+00
 12.83182 0.0000000E+00 0.0000000E+00
 12.88195 0.0000000E+00 0.0000000E+00
 12.93207 0.0000000E+00 0.0000000E+00
 12.98220 0.0000000E+00 0.0000000E+00
 13.03232 0.0000000E+00 0.0000000E+00
 13.08245 0.0000000E+00 0.0000000E+00
 13.13257 0.0000000E+00 0.0000000E+00
 13.18269 0.0000000E+00 0.0000000E+00
 13.23282 0.0000000E+00 0.0000000E+00
 13.28294 0.0000000E+00 0.0000000E+00
 13.33307 0.0000000E+00 0.0000000E+00
 13.38319 0.0000000E+00 0.0000000E+00
 13.43332 0.0000000E+00 0.0000000E+00
 13.48344 0.0000000E+00 0.0000000E+00
 13.53356 0.0000000E+00 0.0000000E+00
 13.58369 0.0000000E+00 0.0000000E+00
 13.63381 0.0000000E+00 0.0000000E+00
 13.68394 0.0000000E+00 0.0000000E+00
 13.73406 0.0000000E+00 0.0000000E+00
 13.78419 0.0000000E+00 0.0000000E+00
 13.83431 0.0000000E+00 0.0000000E+00
 13.88443 0.0000000E+00 0.0000000E+00
 13.93456 0.0000000E+00 0.0000000E+00
 13.98468 0.0000000E+00 0.0000000E+00
 14.03481 0.0000000E+00 0.0000000E+00
 14.08493 0.0000000E+00 0.0000000E+00
 14.13506 0.0000000E+00 0.0000000E+00
 14.18518 0.0000000E+00 0.0000000E+00
 14.23530 0.0000000E+00 0.0000000E+00
 14.28543 0.0000000E+00 0.0000000E+00
 14.33555 0.0000000E+00 0.0000000E+00
 14.38568 0.0000000E+00 0.0000000E+00
 14.43580 0.0000000E+00 0.0000000E+00
 14.48593 0.0000000E+00 0.0000000E+00
 14.53605 0.0000000E+00 0.0000000E+00
 14.58617 0.0000000E+00 0.0000000E+00
 14.63630 0.0000000E+00 0.0000000E+00
 14.68642 0.0000000E+00 0.0000000E+00
 14.73655 0.0000000E+00 0.0000000E+00
 14.78667 0.0000000E+00 0.0000000E+00
 14.83680 0.0000000E+00 0.0000000E+00
 14.88692 0.0000000E+00 0.0000000E+00
 14.93705 0.0000000E+00 0.0000000E+00
 14.98717 0.0000000E+00 0.0000000E+00
 15.03729 0.0000000E+00 0.0000000E+00
 15.08742 0.0000000E+00 0.0000000E+00
 15.13754 0.0000000E+00 0.0000000E+00
 15.18767 0.0000000E+00 0.0000000E+00
 15.23779 0.0000000E+00 0.0000000E+00
 15.28791 0.0000000E+00 0.0000000E+00
 15.33804 0.0000000E+00 0.0000000E+00
 15.38816 0.0000000E+00 0.0000000E+00
 15.43829 0.0000000E+00 0.0000000E+00
 15.48841 0.0000000E+00 0.0000000E+00
 15.53854 0.0000000E+00 0.0000000E+00
 15.58866 0.0000000E+00 0.0000000E+00
 15.63878 0.0000000E+00 0.0000000E+00
 15.68891 0.0000000E+00 0.0000000E+00
 15.73903 0.0000000E+00 0.0000000E+00
 15.78916 0.0000000E+00 0.0000000E+00
 15.83928 0.0000000E+00 0.0000000E+00
 15.88941 0.0000000E+00 0.0000000E+00
 15.93953 0.0000000E+00 0.0000000E+00
 15.98966 0.0000000E+00 0.0000000E+00
 16.03978 0.0000000E+00 0.0000000E+00
 16.08990 0.0000000E+00 0.0000000E+00
 16.14003 0.0000000E+00 0.0000000E+00
 16.19015 0.0000000E+00 0.0000000E+00
 16.24028 0.0000000E+00 0.0000000E+00
 16.29040 0.0000000E+00 0.0000000E+00
 16.34052 0.0000000E+00 0.0000000E+00
 16.39065 0.0000000E+00 0.0000000E+00
 16.44077 0.0000000E+00 0.0000000E+00
 16.49090 0.0000000E+00 0.0000000E+00
 16.54102 0.0000000E+00 0.0000000E+00
 16.59115 0.0000000E+00 0.0000000E+00
 16.64127 0.0000000E+00 0.0000000E+00
 16.69139 0.0000000E+00 0.0000000E+00
 16.74152 0.0000000E+00 0.0000000E+00
 16.79164 0.0000000E+00 0.0000000E+00
 16.84177 0.0000000E+00 0.0000000E+00
 16.89189 0.0000000E+00 0.0000000E+00
 16.94202 0.0000000E+00 0.0000000E+00
 16.99214 0.0000000E+00 0.0000000E+00
 17.04227 0.0000000E+00 0.0000000E+00
 17.09239 0.0000000E+00 0.0000000E+00
 17.14252 0.0000000E+00 0.0000000E+00
 17.19264 0.0000000E+00 0.0000000E+00
 17.24276 0.0000000E+00 0.0000000E+00
 17.29289 0.0000000E+00 0.0000000E+00
 17.34301 0.0000000E+00 0.0000000E+00
 17.39314 0.0000000E+00 0.0000000E+00
 17.44326 0.0000000E+00 0.0000000E+00
 17.49339 0.0000000E+00 0.0000000E+00
 17.54351 0.0000000E+00 0.0000000E+00
 17.59363 0.0000000E+00 0.0000000E+00
 17.64376 0.0000000E+00 0.0000000E+00
 17.69388 0.0000000E+00 0.0000000E+00
 17.74401 0.0000000E+00 0.0000000E+00
 17.79413 0.0000000E+00 0.0000000E+00
 17.84426 0.0000000E+00 0.0000000E+00
 17.89438 0.0000000E+00 0.0000000E+00
 17.94450 0.0000000E+00 0.0000000E+00
 17.99463 0.0000000E+00 0.0000000E+00
 18.04475 0.0000000E+00 0.0000000E+00
 18.09488 0.0000000E+00 0.0000000E+00
 18.14500 0.0000000E+00 0.0000000E+00
 18.19513 0.0000000E+00 0.0000000E+00
 18.24525 0.0000000E+00 0.0000000E+00
 18.29537 0.0000000E+00 0.0000000E+00
 18.34550 0.0000000E+00 0.0000000E+00
 18.39562 0.0000000E+00 0.0000000E+00
 18.44575 0.0000000E+00 0.0000000E+00
 18.49587 0.0000000E+00 0.0000000E+00
 18.54600 0.0000000E+00 0.0000000E+00
 18.59612 0.0000000E+00 0.0000000E+00
 18.64624 0.0000000E+00 0.0000000E+00
 18.69637 0.0000000E+00 0.0000000E+00
 18.74649 0.0000000E+00 0.0000000E+00
 18.79662 0.0000000E+00 0.0000000E+00
 18.84674 0.0000000E+00 0.0000000E+00
 18.89687 0.0000000E+00 0.0000000E+00
 18.94699 0.0000000E+00 0.0000000E+00
 18.99711 0.0000000E+00 0.0000000E+00
 19.04724 0.0000000E+00 0.0000000E+00
 19.09736 0.0000000E+00 0.0000000E+00
 19.14749 0.0000000E+00 0.0000000E+00
 19.19761 0.0000000E+00 0.0000000E+00
 19.24774 0.0000000E+00 0.0000000E+00
 19.29786 0.0000000E+00 0.0000000E+00
 19.34798 0.0000000E+00 0.0000000E+00
 19.39811 0.0000000E+00 0.0000000E+00
 19.44823 0.0000000E+00 0.0000000E+00
 19.49836 0.0000000E+00 0.0000000E+00
 19.54848 0.0000000E+00 0.0000000E+00
 19.59861 0.0000000E+00 0.0000000E+00
 19.64873 0.0000000E+00 0.0000000E+00
 19.69885 0.0000000E+00 0.0000000E+00
 19.74898 0.0000000E+00 0.0000000E+00
 19.79910 0.0000000E+00 0.0000000E+00
 19.84923 0.0000000E+00 0.0000000E+00
 19.89935 0.0000000E+00 0.0000000E+00
 19.94948 0.0000000E+00 0.0000000E+00
 19.99960 0.0000000E+00 0.0000000E+00
 20.04972 0.0000000E+00 0.0000000E+00
 20.09985 0.0000000E+00 0.0000000E+00
 20.14997 0.0000000E+00 0.0000000E+00
 20.20010 0.0000000E+00 0.0000000E+00
 20.25022 0.0000000E+00 0.0000000E+00
 20.30035 0.0000000E+00 0.0000000E+00
 20.35047 0.0000000E+00 0.0000000E+00
 20.40059 0.0000000E+00 0.0000000E+00
 20.45072 0.0000000E+00 0.0000000E+00
 20.50084 0.0000000E+00 0.0000000E+00
 20.55097 0.0000000E+00 0.0000000E+00
 20.60109 0.0000000E+00 0.0000000E+00
 20.65122 0.0000000E+00 0.0000000E+00
 20.70134 0.0000000E+00 0.0000000E+00
 20.75146 0.0000000E+00 0.0000000E+00
 20.80159 0.0000000E+00 0.0000000E+00
 20.85171 0.0000000E+00 0.0000000E+00
 20.90184 0.0000000E+00 0.0000000E+00
 20.95196 0.0000000E+00 0.0000000E+00
 21.00209 0.0000000E+00 0.0000000E+00
 21.05221 0.0000000E+00 0.0000000E+00
 21.10233 0.0000000E+00 0.0000000E+00
 21.15246 0.0000000E+00 0.0000000E+00
 21.20258 0.0000000E+00 0.0000000E+00
 21.25271 0.0000000E+00 0.0000000E+00
 21.30283 0.0000000E+00 0.0000000E+00
 21.35296 0.0000000E+00 0.0000000E+00
 21.40308 0.0000000E+00 0.0000000E+00
 21.45321 0.0000000E+00 0.0000000E+00
 21.50333 0.0000000E+00 0.0000000E+00
 21.55346 0.0000000E+00 0.0000000E+00
 21.60358 0.0000000E+00 0.0000000E+00
 21.65370 0.0000000E+00 0.0000000E+00
 21.70383 0.0000000E+00 0.0000000E+00
 21.75395 0.0000000E+00 0.0000000E+00
 21.80408 0.0000000E+00 0.0000000E+00
 21.85420 0.0000000E+00 0.0000000E+00
 21.90432 0.0000000E+00 0.0000000E+00
 21.95445 0.0000000E+00 0.0000000E+00
 22.00457 0.0000000E+00 0.0000000E+00
 22.05470 0.0000000E+00 0.0000000E+00
 22.10482 0.0000000E+00 0.0000000E+00
 22.15495 0.0000000E+00 0.0000000E+00
 22.20507 0.0000000E+00 0.0000000E+00
 22.25519 0.0000000E+00 0.0000000E+00
 22.30532 0.0000000E+00 0.0000000E+00
 22.35544 0.0000000E+00 0.0000000E+00
 22.40557 0.0000000E+00 0.0000000E+00
 22.45569 0.0000000E+00 0.0000000E+00
 22.50582 0.0000000E+00 0.0000000E+00
 22.55594 0.0000000E+00 0.0000000E+00
 22.60607 0.0000000E+00 0.0000000E+00
 22.65619 0.0000000E+00 0.0000000E+00
 22.70631 0.0000000E+00 0.0000000E+00
 22.75644 0.0000000E+00 0.0000000E+00
 22.80656 0.0000000E+00 0.0000000E+00
 22.85669 0.0000000E+00 0.0000000E+00
 22.90681 0.0000000E+00 0.0000000E+00
 22.95693 0.0000000E+00 0.0000000E+00
 23.00706 0.0000000E+00 0.0000000E+00
 23.05718 0.0000000E+00 0.0000000E+00
 23.10731 0.0000000E+00 0.0000000E+00
 23.15743 0.0000000E+00 0.0000000E+00
 23.20756 0.0000000E+00 0.0000000E+00
 23.25768 0.0000000E+00 0.0000000E+00
 23.30781 0.0000000E+00 0.0000000E+00
 23.35793 0.0000000E+00 0.0000000E+00
 23.40805 0.0000000E+00 0.0000000E+00
 23.45818 0.0000000E+00 0.0000000E+00
 23.50830 0.0000000E+00 0.0000000E+00
 23.55843 0.0000000E+00 0.0000000E+00
 23.60855 0.0000000E+00 0.0000000E+00
 23.65867 0.0000000E+00 0.0000000E+00
 23.70880 0.0000000E+00 0.0000000E+00
 23.75892 0.0000000E+00 0.0000000E+00
 23.80905 0.0000000E+00 0.0000000E+00
 23.85917 0.0000000E+00 0.0000000E+00
 23.90930 0.0000000E+00 0.0000000E+00
 23.95942 0.0000000E+00 0.0000000E+00
 24.00954 0.0000000E+00 0.0000000E+00
 24.05967 0.0000000E+00 0.0000000E+00
 24.10979 0.0000000E+00 0.0000000E+00
 24.15992 0.0000000E+00 0.0000000E+00
 24.21004 0.0000000E+00 0.0000000E+00
 24.26017 0.0000000E+00 0.0000000E+00
 24.31029 0.0000000E+00 0.0000000E+00
 24.36042 0.0000000E+00 0.0000000E+00
 24.41054 0.0000000E+00 0.0000000E+00
 24.46066 0.0000000E+00 0.0000000E+00
 24.51079 0.0000000E+00 0.0000000E+00
 24.56091 0.0000000E+00 0.0000000E+00
 24.61104 0.0000000E+00 0.0000000E+00
 24.66116 0.0000000E+00 0.0000000E+00
 24.71128 0.0000000E+00 0.0000000E+00
 24.76141 0.0000000E+00 0.0000000E+00
 24.81153 0.0000000E+00 0.0000000E+00
 24.86166 0.0000000E+00 0.0000000E+00
 24.91178 0.0000000E+00 0.0000000E+00
 24.96191 0.0000000E+00 0.0000000E+00
 25.01203 0.0000000E+00 0.0000000E+00
 25.06215 0.0000000E+00 0.0000000E+00
 25.11228 0.0000000E+00 0.0000000E+00
 25.16241 0.0000000E+00 0.0000000E+00
 25.21253 0.0000000E+00 0.0000000E+00
 25.26265 0.0000000E+00 0.0000000E+00
 25.31278 0.0000000E+00 0.0000000E+00
 25.36290 0.0000000E+00 0.0000000E+00
 25.41303 0.0000000E+00 0.0000000E+00
 25.46315 0.0000000E+00 0.0000000E+00
 25.51328 0.0000000E+00 0.0000000E+00
 25.56340 0.0000000E+00 0.0000000E+00
 25.61352 0.0000000E+00 0.0000000E+00
 25.66365 0.0000000E+00 0.0000000E+00
 25.71377 0.0000000E+00 0.0000000E+00
 25.76390 0.0000000E+00 0.0000000E+00
 25.81402 0.0000000E+00 0.0000000E+00
 25.86414 0.0000000E+00 0.0000000E+00
 25.91427 0.0000000E+00 0.0000000E+00
 25.96439 0.0000000E+00 0.0000000E+00
 26.01452 0.0000000E+00 0.0000000E+00
 26.06464 0.0000000E+00 0.0000000E+00
 26.11477 0.0000000E+00 0.0000000E+00
 26.16489 0.0000000E+00 0.0000000E+00
 26.21502 0.0000000E+00 0.0000000E+00
 26.26514 0.0000000E+00 0.0000000E+00
 26.31526 0.0000000E+00 0.0000000E+00
 26.36539 0.0000000E+00 0.0000000E+00
 26.41551 0.0000000E+00 0.0000000E+00
 26.46564 0.0000000E+00 0.0000000E+00
 26.51576 0.0000000E+00 0.0000000E+00
 26.56589 0.0000000E+00 0.0000000E+00
 26.61601 0.0000000E+00 0.0000000E+00
 26.66613 0.0000000E+00 0.0000000E+00
 26.71626 0.0000000E+00 0.0000000E+00
 26.76638 0.0000000E+00 0.0000000E+00
 26.81651 0.0000000E+00 0.0000000E+00
 26.86663 0.0000000E+00 0.0000000E+00
 26.91675 0.0000000E+00 1.2962696E-38
 26.96688 0.0000000E+00 1.8766737E-38
 27.01700 0.0000000E+00 2.7147159E-38
 27.06713 0.0000000E+00 3.9239375E-38
 27.11725 0.0000000E+00 5.6671565E-38
 27.16738 0.0000000E+00 8.1784375E-38
 27.21750 0.0000000E+00 1.1792819E-37
 27.26763 0.0000000E+00 1.6991186E-37
 27.31775 1.7602670E-38 2.4461239E-37
 27.36787 3.2552343E-38 3.5187788E-37
 27.41800 5.4046154E-38 5.0576368E-37
 27.46812 8.4927235E-38 7.2638801E-37
 27.51825 1.2925561E-37 1.0423939E-36
 27.56837 1.9284208E-37 1.4946988E-36
 27.61850 2.8397674E-37 2.1415636E-36
 27.66862 4.1448243E-37 3.0658466E-36
 27.71874 6.0123677E-37 4.3856296E-36
 27.76887 8.6824390E-37 6.2684312E-36
 27.81899 1.2497222E-36 8.9525051E-36
 27.86912 1.7942577E-36 1.2775434E-35
 27.91924 2.5710007E-36 1.8216525E-35
 27.96937 3.6779815E-36 2.5953991E-35
 28.01949 5.2544924E-36 3.6948617E-35
 28.06961 7.4976723E-36 5.2558264E-35
 28.11974 1.0687206E-35 7.4703768E-35
 28.16986 1.5218267E-35 1.0609369E-34
 28.21999 2.1650583E-35 1.5055502E-34
 28.27011 3.0773728E-35 2.1347473E-34
 28.32024 4.3704315E-35 3.0245424E-34
 28.37036 6.2014852E-35 4.2816881E-34
 28.42048 8.7925543E-35 6.0566492E-34
 28.47061 1.2455817E-34 8.5604256E-34
 28.52073 1.7631311E-34 1.2089739E-33
 28.57086 2.4936731E-34 1.7060192E-33
 28.62098 3.5241380E-34 2.4055241E-33
 28.67110 4.9763594E-34 3.3890990E-33
 28.72123 7.0215161E-34 4.7710531E-33
 28.77135 9.8991171E-34 6.7110883E-33
 28.82148 1.3945161E-33 9.4325781E-33
 28.87160 1.9629301E-33 1.3247073E-32
 28.92173 2.7607899E-33 1.8588956E-32
 28.97185 3.8799314E-33 2.6064659E-32
 29.02198 5.4483157E-33 3.6516676E-32
 29.07210 7.6447349E-33 5.1120192E-32
 29.12222 1.0717908E-32 7.1504910E-32
 29.17235 1.5014797E-32 9.9940447E-32
 29.22247 2.1017297E-32 1.3957002E-31
 29.27260 2.9396539E-32 1.9476090E-31
 29.32272 4.1083169E-32 2.7155645E-31
 29.37285 5.7371166E-32 3.7833276E-31
 29.42297 8.0051859E-32 5.2666750E-31
 29.47309 1.1161201E-31 7.3257899E-31
 29.52322 1.5548853E-31 1.0181723E-30
 29.57334 2.1644519E-31 1.4139912E-30
 29.62347 3.0105482E-31 1.9620844E-30
 29.67359 4.1841345E-31 2.7205118E-30
 29.72371 5.8105048E-31 3.7689964E-30
 29.77384 8.0627675E-31 5.2175052E-30
 29.82397 1.1178985E-30 7.2167589E-30
 29.87409 1.5487540E-30 9.9743250E-30
 29.92421 2.1439317E-30 1.3774325E-29
 29.97434 2.9655236E-30 1.9007102E-29
 30.02446 4.0986475E-30 2.6206571E-29
 30.07459 5.6603303E-30 3.6104383E-29
 30.12471 7.8108429E-30 4.9700798E-29
 30.17484 1.0769675E-29 6.8361876E-29
 30.22496 1.4837787E-29 9.3955355E-29
 30.27508 2.0426035E-29 1.2902574E-28
 30.32521 2.8097082E-29 1.7704821E-28
 30.37533 3.8617748E-29 2.4274508E-28
 30.42546 5.3036457E-29 3.3255981E-28
 30.47558 7.2779773E-29 4.5523389E-28
 30.52571 9.9795057E-29 6.2267260E-28
 30.57583 1.3672751E-28 8.5099843E-28
 30.62596 1.8718221E-28 1.1621391E-27
 30.67608 2.5604851E-28 1.5857495E-27
 30.72620 3.4997891E-28 2.1620621E-27
 30.77633 4.7798052E-28 2.9454306E-27
 30.82645 6.5228955E-28 4.0094811E-27
 30.87658 8.8944616E-28 5.4534921E-27
 30.92670 1.2118832E-27 7.4117072E-27
 30.97682 1.6498735E-27 1.0064888E-26
 31.02695 2.2444112E-27 1.3657096E-26
 31.07707 3.0507264E-27 1.8516328E-26
 31.12720 4.1434888E-27 2.5084771E-26
 31.17732 5.6231300E-27 3.3955559E-26
 31.22745 7.6252104E-27 4.5927238E-26
 31.27757 1.0331769E-26 6.2069302E-26
 31.32769 1.3988126E-26 8.3818930E-26
 31.37782 1.8923434E-26 1.1309920E-25
 31.42794 2.5579353E-26 1.5248392E-25
 31.47807 3.4549454E-26 2.0542213E-25
 31.52819 4.6627494E-26 2.7651323E-25
 31.57832 6.2878864E-26 3.7191466E-25
 31.62844 8.4725997E-26 4.9982483E-25
 31.67857 1.1407504E-25 6.7119860E-25
 31.72869 1.5346662E-25 9.0059546E-25
 31.77881 2.0629997E-25 1.2074491E-24
 31.82894 2.7709841E-25 1.6175339E-24
 31.87906 3.7190367E-25 2.1651851E-24
 31.92919 4.9874252E-25 2.8959123E-24
 31.97931 6.6832005E-25 3.8702100E-24
 32.02943 8.9483342E-25 5.1680783E-24
 32.07956 1.1971863E-24 6.8957645E-24
 32.12968 1.6004090E-24 9.1935412E-24
 32.17981 2.1377748E-24 1.2247298E-23
 32.22993 2.8532679E-24 1.6302150E-23
 32.28006 3.8052678E-24 2.1682525E-23
 32.33018 5.0708164E-24 2.8815114E-23
 32.38031 6.7519962E-24 3.8263777E-23
 32.43043 8.9833105E-24 5.0769646E-23
 32.48055 1.1942700E-23 6.7309677E-23
 32.53068 1.5864214E-23 8.9165731E-23
 32.58080 2.1057001E-23 1.1802585E-22
 32.63093 2.7927393E-23 1.5610199E-22
 32.68105 3.7009596E-23 2.0629409E-22
 32.73117 4.9007242E-23 2.7241056E-22
 32.78130 6.4841975E-23 3.5942356E-22
 32.83142 8.5726322E-23 4.7385943E-22
 32.88155 1.1324589E-22 6.2422041E-22
 32.93167 1.4948320E-22 8.2164354E-22
 32.98180 1.9715713E-22 1.0806317E-21
 33.03192 2.5983326E-22 1.4201385E-21
 33.08205 3.4215853E-22 1.8647868E-21
 33.13217 4.5021693E-22 2.4467316E-21
 33.18229 5.9192507E-22 3.2076770E-21
 33.23242 7.7763081E-22 4.2019608E-21
 33.28254 1.0207762E-21 5.4999724E-21
 33.33267 1.3389048E-21 7.1933201E-21
 33.38279 1.7547675E-21 9.4003430E-21
 33.43291 2.2980063E-21 1.2274818E-20
 33.48304 3.0070002E-21 1.6015307E-20
 33.53316 3.9316759E-21 2.0879136E-20
 33.58329 5.1365626E-21 2.7197993E-20
 33.63341 6.7054734E-21 3.5401359E-20
 33.68354 8.7465585E-21 4.6041574E-20
 33.73366 1.1400053E-20 5.9832539E-20
 33.78378 1.4846609E-20 7.7691188E-20
 33.83391 1.9320112E-20 1.0080100E-19
 33.88404 2.5121664E-20 1.3068029E-19
 33.93416 3.2639096E-20 1.6927874E-19
 33.98428 4.2373067E-20 2.1910559E-19
 34.03441 5.4965842E-20 2.8336853E-19
 34.08453 7.1245557E-20 3.6619030E-19
 34.13465 9.2272812E-20 4.7283453E-19
 34.18478 1.1941302E-19 6.1005677E-19
 34.23491 1.5441195E-19 7.8646322E-19
 34.28503 1.9951351E-19 1.0130837E-18
 34.33515 2.5758169E-19 1.3039403E-18
 34.38528 3.3229176E-19 1.6769836E-18
 34.43540 4.2832712E-19 2.1549986E-18
 34.48553 5.5168821E-19 2.7670943E-18
 34.53565 7.1000795E-19 3.5501471E-18
 34.58577 9.1305023E-19 4.5512160E-18
 34.63590 1.1732156E-18 5.8298498E-18
 34.68602 1.5063403E-18 7.4617837E-18
 34.73615 1.9325017E-18 9.5428204E-18
 34.78627 2.4773009E-18 1.2194609E-17
 34.83640 3.1731420E-18 1.5570689E-17
 34.88652 4.0612736E-18 1.9865667E-17
 34.93665 5.1938178E-18 2.5324872E-17
 34.98677 6.6370255E-18 3.2258942E-17
 35.03689 8.4744621E-18 4.1058056E-17
 35.08702 1.0812170E-17 5.2216213E-17
 35.13714 1.3783853E-17 6.6353603E-17
 35.18727 1.7558222E-17 8.4250483E-17
 35.23739 2.2348716E-17 1.0688966E-16
 35.28751 2.8423438E-17 1.3550264E-16
 35.33764 3.6121270E-17 1.7164003E-16
 35.38776 4.5867135E-17 2.1723751E-16
 35.43789 5.8197238E-17 2.7473233E-16
 35.48801 7.3782863E-17 3.4716175E-16
 35.53814 9.3469722E-17 4.3834161E-16
 35.58826 1.1831470E-16 5.5301765E-16
 35.63839 1.4964723E-16 6.9714639E-16
 35.68851 1.8912603E-16 8.7812784E-16
 35.73864 2.3883402E-16 1.1052155E-15
 35.78876 3.0136553E-16 1.3899043E-15
 35.83888 3.7997355E-16 1.7465457E-15
 35.88901 4.7870273E-16 2.1929251E-15
 35.93913 6.0261608E-16 2.7512052E-15
 35.98925 7.5799835E-16 3.4488238E-15
 36.03938 9.5270454E-16 4.3199316E-15
 36.08950 1.1964681E-15 5.4066702E-15
 36.13963 1.5014347E-15 6.7614651E-15
 36.18975 1.8826292E-15 8.4488733E-15
 36.23988 2.3587699E-15 1.0549083E-14
 36.29000 2.9529726E-15 1.3160662E-14
 36.34013 3.6939899E-15 1.6405847E-14
 36.39025 4.6173189E-15 2.0434861E-14
 36.44037 5.7668315E-15 2.5432761E-14
 36.49050 7.1969298E-15 3.1627983E-14
 36.54062 8.9745072E-15 3.9300523E-14
 36.59075 1.1182438E-14 4.8795678E-14
 36.64087 1.3922456E-14 6.0535934E-14
 36.69100 1.7320396E-14 7.5041461E-14
 36.74112 2.1530458E-14 9.2947588E-14
 36.79124 2.6743083E-14 1.1503553E-13
 36.84137 3.3191230E-14 1.4225707E-13
 36.89149 4.1162139E-14 1.7578135E-13
 36.94162 5.1006593E-14 2.1702993E-13
 36.99174 6.3156410E-14 2.6774636E-13
 37.04187 7.8138017E-14 3.3004675E-13
 37.09199 9.6598470E-14 4.0652307E-13
 37.14211 1.1932518E-13 5.0031339E-13
 37.19224 1.4728441E-13 6.1525627E-13
 37.24236 1.8165006E-13 7.5599477E-13
 37.29249 2.2386039E-13 9.2819188E-13
 37.34261 2.7565962E-13 1.1386901E-12
 37.39273 3.3918146E-13 1.3958228E-12
 37.44286 4.1700896E-13 1.7096337E-12
 37.49298 5.1229680E-13 2.0923391E-12
 37.54311 6.2885759E-13 2.5586441E-12
 37.59324 7.7134035E-13 3.1264013E-12
 37.64336 9.4536304E-13 3.8170834E-12
 37.69348 1.1577262E-12 4.6565828E-12
 37.74361 1.4166947E-12 5.6762316E-12
 37.79373 1.7322138E-12 6.9135457E-12
 37.84386 2.1163616E-12 8.4139093E-12
 37.89398 2.5836466E-12 1.0231599E-11
 37.94410 3.1516621E-12 1.2432152E-11
 37.99423 3.8415035E-12 1.5093746E-11
 38.04435 4.6787097E-12 1.8310697E-11
 38.09447 5.6938525E-12 2.2195324E-11
 38.14460 6.9238825E-12 2.6882737E-11
 38.19473 8.4129526E-12 3.2533823E-11
 38.24485 1.0214348E-11 3.9341683E-11
 38.29497 1.2391629E-11 4.7535663E-11
 38.34510 1.5021371E-11 5.7390814E-11
 38.39522 1.8194763E-11 6.9233140E-11
 38.44535 2.2021494E-11 8.3452988E-11
 38.49547 2.6631943E-11 1.0051215E-10
 38.54560 3.2182715E-11 1.2096292E-10
 38.59572 3.8859600E-11 1.4545676E-10
 38.64584 4.6885412E-11 1.7477231E-10
 38.69597 5.6524039E-11 2.0982600E-10
 38.74609 6.8091428E-11 2.5171148E-10
 38.79622 8.1961112E-11 3.0171349E-10
 38.84634 9.8579617E-11 3.6136283E-10
 38.89647 1.1847494E-10 4.3245837E-10
 38.94659 1.4227293E-10 5.1712407E-10
 38.99672 1.7071911E-10 6.1787503E-10
 39.04684 2.0469089E-10 7.3765971E-10
 39.09696 2.4523306E-10 8.7996815E-10
 39.14709 2.9357305E-10 1.0488840E-09
 39.19721 3.5117012E-10 1.2492326E-09
 39.24733 4.1973552E-10 1.4866504E-09
 39.29746 5.0130067E-10 1.7677896E-09
 39.34758 5.9824334E-10 2.1003954E-09
 39.39771 7.1338152E-10 2.4936058E-09
 39.44783 8.5000801E-10 2.9580349E-09
 39.49796 1.0120191E-09 3.5061871E-09
 39.54808 1.2039589E-09 4.1525565E-09
 39.59821 1.4311967E-09 4.9142042E-09
 39.64833 1.6999827E-09 5.8108376E-09
 39.69846 2.0176896E-09 6.8656316E-09
 39.74858 2.3928854E-09 8.1053519E-09
 39.79870 2.8356608E-09 9.5613384E-09
 39.84883 3.3577203E-09 1.1269771E-08
 39.89895 3.9728278E-09 1.3272958E-08
 39.94907 4.6969193E-09 1.5619571E-08
 39.99920 5.5487024E-09 1.8366482E-08
 40.04932 6.5497985E-09 2.1579051E-08
 40.09945 7.7255553E-09 2.5333490E-08
 40.14957 9.1052801E-09 2.9717359E-08
 40.19970 1.0723062E-08 3.4831924E-08
 40.24982 1.2618259E-08 4.0793505E-08
 40.29995 1.4837100E-08 4.7737942E-08
 40.35007 1.7432541E-08 5.5819882E-08
 40.40020 2.0466077E-08 6.5217868E-08
 40.45032 2.4008456E-08 7.6136104E-08
 40.50044 2.8142516E-08 8.8812428E-08
 40.55057 3.2962799E-08 1.0351634E-07
 40.60069 3.8578722E-08 1.2055828E-07
 40.65081 4.5115705E-08 1.4029143E-07
 40.70094 5.2720186E-08 1.6312642E-07
 40.75106 6.1558630E-08 1.8952650E-07
 40.80119 7.1823059E-08 2.2002301E-07
 40.85131 8.3732779E-08 2.5521896E-07
 40.90144 9.7543129E-08 2.9581224E-07
 40.95156 1.1354318E-07 3.4258809E-07
 41.00169 1.3206531E-07 3.9644272E-07
 41.05181 1.5348773E-07 4.5839022E-07
 41.10193 1.7824948E-07 5.2960121E-07
 41.15206 2.0684573E-07 6.1138547E-07
 41.20219 2.3984381E-07 7.0523487E-07
 41.25230 2.7788701E-07 8.1282889E-07
 41.30243 3.2172002E-07 9.3610203E-07
 41.35256 3.7217904E-07 1.0772073E-06
 41.40268 4.3021933E-07 1.2385924E-06
 41.45281 4.9692648E-07 1.4230154E-06
 41.50293 5.7352554E-07 1.6335706E-06
 41.55305 6.6142997E-07 1.8738054E-06
 41.60318 7.6221858E-07 2.1476505E-06
 41.65331 8.7768757E-07 2.4595474E-06
 41.70343 1.0098559E-06 2.8144525E-06
 41.75355 1.1610464E-06 3.2180367E-06
 41.80368 1.3338436E-06 3.6765468E-06
 41.85380 1.5311768E-06 4.1970311E-06
 41.90392 1.7563274E-06 4.7873032E-06
 41.95405 2.0130599E-06 5.4562970E-06
 42.00417 2.3055445E-06 6.2138038E-06
 42.05430 2.6384935E-06 7.0708174E-06
 42.10442 3.0171634E-06 8.0395048E-06
 42.15454 3.4475706E-06 9.1336924E-06
 42.20467 3.9363490E-06 1.0368512E-05
 42.25480 4.4909707E-06 1.1760844E-05
 42.30492 5.1197389E-06 1.3329324E-05
 42.35504 5.8321325E-06 1.5095090E-05
 42.40517 6.6385555E-06 1.7081096E-05
 42.45529 7.5506896E-06 1.9312936E-05
 42.50541 8.5814618E-06 2.1818674E-05
 42.55554 9.7455950E-06 2.4630110E-05
 42.60566 1.1059174E-05 2.7781545E-05
 42.65579 1.2540198E-05 3.1311174E-05
 42.70592 1.4208678E-05 3.5260990E-05
 42.75603 1.6086648E-05 3.9676881E-05
 42.80616 1.8199122E-05 4.4610595E-05
 42.85629 2.0573270E-05 5.0117695E-05
 42.90641 2.3239374E-05 5.6259596E-05
 42.95653 2.6230642E-05 6.3103005E-05
 43.00666 2.9584688E-05 7.0723050E-05
 43.05679 3.3342163E-05 7.9199788E-05
 43.10691 3.7548223E-05 8.8621644E-05
 43.15703 4.2252192E-05 9.9083991E-05
 43.20716 4.7509802E-05 1.1069411E-04
 43.25728 5.3380991E-05 1.2356571E-04
 43.30741 5.9932125E-05 1.3782372E-04
 43.35753 6.7235364E-05 1.5360245E-04
 43.40765 7.5372103E-05 1.7105247E-04
 43.45778 8.4429390E-05 1.9033253E-04
 43.50790 9.4503324E-05 2.1161637E-04
 43.55803 1.0569794E-04 2.3508986E-04
 43.60815 1.1813032E-04 2.6096072E-04
 43.65828 1.3192504E-04 2.8944702E-04
 43.70840 1.4721915E-04 3.2078612E-04
 43.75852 1.6416036E-04 3.5523059E-04
 43.80865 1.8291463E-04 3.9306292E-04
 43.85877 2.0365753E-04 4.3457650E-04
 43.90890 2.2658159E-04 4.8009030E-04
 43.95902 2.5189586E-04 5.2994664E-04
 44.00914 2.7982448E-04 5.8450724E-04
 44.05927 3.1061863E-04 6.4417563E-04
 44.10939 3.4454212E-04 7.0936745E-04
 44.15952 3.8188309E-04 7.8053231E-04
 44.20964 4.2294880E-04 8.5814152E-04
 44.25977 4.6808334E-04 9.4272179E-04
 44.30989 5.1764568E-04 1.0348103E-03
 44.36002 5.7202665E-04 1.1349857E-03
 44.41014 6.3164113E-04 1.2438524E-03
 44.46026 6.9695298E-04 1.3620835E-03
 44.51039 7.6844305E-04 1.4903599E-03
 44.56052 8.4663305E-04 1.6294125E-03
 44.61063 9.3207404E-04 1.7799997E-03
 44.66076 1.0253817E-03 1.9429653E-03
 44.71089 1.1271895E-03 2.1191549E-03
 44.76101 1.2381829E-03 2.3094725E-03
 44.81113 1.3590822E-03 2.5148503E-03
 44.86126 1.4906910E-03 2.7363226E-03
 44.91138 1.6338303E-03 2.9749193E-03
 44.96151 1.7893859E-03 3.2317336E-03
 45.01163 1.9582829E-03 3.5078833E-03
 45.06176 2.1415541E-03 3.8046150E-03
 45.11188 2.3402455E-03 4.1231471E-03
 45.16201 2.5554823E-03 4.4647735E-03
 45.21213 2.7884557E-03 4.8308396E-03
 45.26225 3.0404008E-03 5.2227005E-03
 45.31238 3.3126967E-03 5.6418753E-03
 45.36250 3.6067248E-03 6.0898182E-03
 45.41263 3.9239661E-03 6.5680686E-03
 45.46275 4.2659449E-03 7.0781624E-03
 45.51287 4.6343673E-03 7.6218271E-03
 45.56300 5.0309226E-03 8.2006855E-03
 45.61312 5.4574185E-03 8.8164527E-03
 45.66325 5.9157033E-03 9.4708083E-03
 45.71337 6.4078467E-03 1.0165666E-02
 45.76350 6.9358796E-03 1.0902778E-02
 45.81362 7.5019654E-03 1.1683985E-02
 45.86374 8.1083020E-03 1.2511075E-02
 45.91387 8.7573556E-03 1.3386084E-02
 45.96399 9.4515160E-03 1.4310838E-02
 46.01412 1.0193324E-02 1.5287242E-02
 46.06424 1.0985340E-02 1.6317105E-02
 46.11436 1.1830445E-02 1.7402530E-02
 46.16449 1.2731397E-02 1.8545313E-02
 46.21461 1.3691115E-02 1.9747332E-02
 46.26474 1.4712515E-02 2.1010324E-02
 46.31486 1.5798902E-02 2.2336347E-02
 46.36499 1.6953377E-02 2.3727072E-02
 46.41511 1.8179229E-02 2.5184231E-02
 46.46524 1.9479826E-02 2.6709503E-02
 46.51536 2.0858491E-02 2.8304340E-02
 46.56548 2.2319021E-02 2.9970590E-02
 46.61561 2.3864893E-02 3.1709544E-02
 46.66574 2.5499789E-02 3.3522572E-02
 46.71586 2.7227281E-02 3.5410739E-02
 46.76598 2.9051503E-02 3.7375532E-02
 46.81611 3.0976154E-02 3.9417800E-02
 46.86623 3.3005137E-02 4.1538414E-02
 46.91636 3.5142191E-02 4.3737900E-02
 46.96648 3.7391700E-02 4.6017241E-02
 47.01661 3.9757468E-02 4.8376650E-02
 47.06673 4.2243514E-02 5.0816361E-02
 47.11685 4.4853609E-02 5.3336177E-02
 47.16698 4.7592282E-02 5.5936437E-02
 47.21710 5.0463289E-02 5.8616549E-02
 47.26723 5.3470630E-02 6.1375950E-02
 47.31735 5.6617945E-02 6.4213589E-02
 47.36747 5.9909750E-02 6.7128979E-02
 47.41760 6.3349597E-02 7.0120618E-02
 47.46772 6.6941284E-02 7.3187009E-02
 47.51785 7.0688128E-02 7.6326095E-02
 47.56797 7.4594475E-02 7.9536475E-02
 47.61810 7.8663461E-02 8.2815625E-02
 47.66822 8.2898475E-02 8.6160995E-02
 47.71835 8.7302774E-02 8.9569822E-02
 47.76847 9.1879003E-02 9.3038715E-02
 47.81859 9.6630991E-02 9.6565016E-02
 47.86872 0.1015611 0.1001448
 47.91884 0.1066718 0.1037743
 47.96896 0.1119652 0.1074489
 48.01909 0.1174442 0.1111651
 48.06921 0.1231105 0.1149178
 48.11934 0.1289656 0.1187022
 48.16946 0.1350106 0.1225128
 48.21959 0.1412476 0.1263450
 48.26971 0.1476772 0.1301929
 48.31984 0.1542998 0.1340506
 48.36996 0.1611153 0.1379120
 48.42008 0.1681249 0.1417715
 48.47021 0.1753278 0.1456224
 48.52034 0.1827233 0.1494583
 48.57045 0.1903099 0.1532722
 48.62058 0.1980876 0.1570582
 48.67071 0.2060542 0.1608089
 48.72083 0.2142078 0.1645176
 48.77095 0.2225452 0.1681768
 48.82108 0.2310655 0.1717803
 48.87120 0.2397648 0.1753207
 48.92133 0.2486398 0.1787909
 48.97145 0.2576868 0.1821841
 49.02158 0.2669009 0.1854928
 49.07170 0.2762794 0.1887110
 49.12183 0.2858169 0.1918314
 49.17195 0.2955081 0.1948475
 49.22207 0.3053468 0.1977525
 49.27220 0.3153291 0.2005406
 49.32232 0.3254481 0.2032053
 49.37245 0.3356974 0.2057408
 49.42257 0.3460694 0.2081411
 49.47269 0.3565592 0.2104013
 49.52282 0.3671587 0.2125159
 49.57294 0.3778603 0.2144801
 49.62307 0.3886556 0.2162892
 49.67319 0.3995385 0.2179393
 49.72332 0.4105001 0.2194264
 49.77344 0.4215321 0.2207469
 49.82356 0.4326249 0.2218977
 49.87369 0.4437721 0.2228763
 49.92381 0.4549640 0.2236801
 49.97394 0.4661918 0.2243073
 50.02406 0.4774455 0.2247563
 50.07418 0.4887183 0.2250262
 50.12431 0.5000001 0.2251162
 50.17444 0.5112819 0.2250262
 50.22456 0.5225547 0.2247563
 50.27468 0.5338084 0.2243073
 50.32481 0.5450361 0.2236801
 50.37494 0.5562281 0.2228763
 50.42506 0.5673753 0.2218977
 50.47518 0.5784681 0.2207469
 50.52531 0.5895001 0.2194264
 50.57543 0.6004617 0.2179393
 50.62556 0.6113446 0.2162892
 50.67568 0.6221399 0.2144801
 50.72580 0.6328415 0.2125159
 50.77593 0.6434410 0.2104013
 50.82605 0.6539308 0.2081411
 50.87617 0.6643029 0.2057408
 50.92630 0.6745522 0.2032053
 50.97643 0.6846712 0.2005406
 51.02655 0.6946535 0.1977525
 51.07667 0.7044922 0.1948475
 51.12680 0.7141833 0.1918314
 51.17692 0.7237207 0.1887110
 51.22705 0.7330993 0.1854928
 51.27717 0.7423134 0.1821841
 51.32729 0.7513604 0.1787909
 51.37742 0.7602354 0.1753207
 51.42754 0.7689347 0.1717803
 51.47767 0.7774550 0.1681768
 51.52779 0.7857924 0.1645176
 51.57792 0.7939460 0.1608089
 51.62804 0.8019126 0.1570582
 51.67817 0.8096903 0.1532722
 51.72829 0.8172768 0.1494583
 51.77841 0.8246724 0.1456224
 51.82854 0.8318753 0.1417715
 51.87867 0.8388849 0.1379120
 51.92878 0.8457003 0.1340506
 51.97891 0.8523230 0.1301929
 52.02904 0.8587525 0.1263450
 52.07916 0.8649896 0.1225128
 52.12928 0.8710346 0.1187022
 52.17941 0.8768897 0.1149178
 52.22953 0.8825560 0.1111651
 52.27966 0.8880350 0.1074489
 52.32978 0.8933283 0.1037743
 52.37991 0.8984391 0.1001448
 52.43003 0.9033692 9.6565016E-02
 52.48016 0.9081212 9.3038715E-02
 52.53028 0.9126974 8.9569822E-02
 52.58040 0.9171017 8.6160995E-02
 52.63053 0.9213368 8.2815625E-02
 52.68065 0.9254057 7.9536475E-02
 52.73078 0.9293121 7.6326095E-02
 52.78090 0.9330589 7.3187009E-02
 52.83102 0.9366506 7.0120618E-02
 52.88115 0.9400905 6.7128979E-02
 52.93127 0.9433823 6.4213589E-02
 52.98140 0.9465296 6.1375950E-02
 53.03152 0.9495369 5.8616549E-02
 53.08165 0.9524079 5.5936437E-02
 53.13177 0.9551466 5.3336177E-02
 53.18189 0.9577567 5.0816361E-02
 53.23202 0.9602427 4.8376650E-02
 53.28214 0.9626085 4.6017241E-02
 53.33227 0.9648581 4.3737900E-02
 53.38239 0.9669951 4.1538414E-02
 53.43251 0.9690241 3.9417800E-02
 53.48264 0.9709488 3.7375532E-02
 53.53276 0.9727730 3.5410739E-02
 53.58289 0.9745005 3.3522572E-02
 53.63301 0.9761354 3.1709544E-02
 53.68314 0.9776813 2.9970590E-02
 53.73326 0.9791418 2.8304340E-02
 53.78338 0.9805205 2.6709503E-02
 53.83351 0.9818211 2.5184231E-02
 53.88364 0.9830469 2.3727072E-02
 53.93376 0.9842014 2.2336347E-02
 53.98389 0.9852878 2.1010324E-02
 54.03401 0.9863092 1.9747332E-02
 54.08413 0.9872689 1.8545313E-02
 54.13426 0.9881699 1.7402530E-02
 54.18438 0.9890150 1.6317105E-02
 54.23450 0.9898070 1.5287242E-02
 54.28463 0.9905488 1.4310838E-02
 54.33475 0.9912430 1.3386084E-02
 54.38488 0.9918920 1.2511075E-02
 54.43500 0.9924983 1.1683985E-02
 54.48513 0.9930644 1.0902778E-02
 54.53525 0.9935924 1.0165666E-02
 54.58538 0.9940846 9.4708083E-03
 54.63550 0.9945428 8.8164527E-03
 54.68562 0.9949693 8.2006855E-03
 54.73575 0.9953659 7.6218271E-03
 54.78587 0.9957343 7.0781624E-03
 54.83599 0.9960763 6.5680686E-03
 54.88612 0.9963936 6.0898182E-03
 54.93624 0.9966876 5.6418753E-03
 54.98637 0.9969599 5.2227005E-03
 55.03649 0.9972119 4.8308396E-03
 55.08662 0.9974449 4.4647735E-03
 55.13674 0.9976601 4.1231471E-03
 55.18687 0.9978588 3.8046150E-03
 55.23699 0.9980420 3.5078833E-03
 55.28711 0.9982109 3.2317336E-03
 55.33724 0.9983665 2.9749193E-03
 55.38736 0.9985096 2.7363226E-03
 55.43749 0.9986412 2.5148503E-03
 55.48761 0.9987621 2.3094725E-03
 55.53773 0.9988731 2.1191549E-03
 55.58786 0.9989749 1.9429653E-03
 55.63799 0.9990682 1.7799997E-03
 55.68811 0.9991536 1.6294125E-03
 55.73824 0.9992319 1.4903599E-03
 55.78836 0.9993033 1.3620835E-03
 55.83849 0.9993687 1.2438524E-03
 55.88861 0.9994283 1.1349857E-03
 55.93873 0.9994827 1.0348103E-03
 55.98886 0.9995322 9.4272179E-04
 56.03898 0.9995773 8.5814152E-04
 56.08910 0.9996185 7.8053231E-04
 56.13923 0.9996558 7.0936745E-04
 56.18935 0.9996897 6.4417563E-04
 56.23948 0.9997205 5.8450724E-04
 56.28960 0.9997484 5.2994664E-04
 56.33973 0.9997737 4.8009030E-04
 56.38985 0.9997966 4.3457650E-04
 56.43998 0.9998173 3.9306292E-04
 56.49010 0.9998361 3.5523059E-04
 56.54022 0.9998530 3.2078612E-04
 56.59035 0.9998683 2.8944702E-04
 56.64047 0.9998821 2.6096072E-04
 56.69060 0.9998946 2.3508986E-04
 56.74072 0.9999057 2.1161637E-04
 56.79084 0.9999158 1.9033253E-04
 56.84097 0.9999249 1.7105247E-04
 56.89109 0.9999330 1.5360245E-04
 56.94122 0.9999403 1.3782372E-04
 56.99134 0.9999469 1.2356571E-04
 57.04147 0.9999527 1.1069411E-04
 57.09159 0.9999580 9.9083991E-05
 57.14171 0.9999627 8.8621644E-05
 57.19184 0.9999669 7.9199788E-05
 57.24196 0.9999707 7.0723050E-05
 57.29209 0.9999740 6.3103005E-05
 57.34221 0.9999770 5.6259596E-05
 57.39233 0.9999797 5.0117695E-05
 57.44246 0.9999821 4.4610595E-05
 57.49259 0.9999841 3.9676881E-05
 57.54271 0.9999860 3.5260990E-05
 57.59283 0.9999877 3.1311174E-05
 57.64296 0.9999892 2.7781545E-05
 57.69308 0.9999905 2.4630110E-05
 57.74321 0.9999917 2.1818674E-05
 57.79333 0.9999927 1.9312936E-05
 57.84346 0.9999936 1.7081096E-05
 57.89358 0.9999944 1.5095090E-05
 57.94371 0.9999952 1.3329324E-05
 57.99383 0.9999958 1.1760844E-05
 58.04395 0.9999963 1.0368512E-05
 58.09408 0.9999968 9.1336924E-06
 58.14420 0.9999972 8.0395048E-06
 58.19432 0.9999976 7.0708174E-06
 58.24445 0.9999979 6.2138038E-06
 58.29457 0.9999982 5.4562970E-06
 58.34470 0.9999985 4.7873032E-06
 58.39482 0.9999986 4.1970311E-06
 58.44495 0.9999989 3.6765468E-06
 58.49507 0.9999990 3.2180367E-06
 58.54520 0.9999992 2.8144525E-06
 58.59532 0.9999993 2.4595474E-06
 58.64544 0.9999995 2.1476505E-06
 58.69557 0.9999995 1.8738054E-06
 58.74569 0.9999996 1.6335706E-06
 58.79581 0.9999996 1.4230154E-06
 58.84594 0.9999997 1.2385924E-06
 58.89606 0.9999998 1.0772073E-06
 58.94619 0.9999999 9.3610203E-07
 58.99632 0.9999999 8.1282889E-07
 59.04644 1.000000 7.0523487E-07
 59.09656 1.000000 6.1138547E-07
 59.14669 1.000000 5.2960121E-07
 59.19682 1.000000 4.5839022E-07
 59.24693 1.000000 3.9644272E-07
 59.29706 1.000000 3.4258809E-07
 59.34719 1.000000 2.9581224E-07
 59.39731 1.000000 2.5521896E-07
 59.44743 1.000000 2.2002301E-07
 59.49756 1.000000 1.8952650E-07
 59.54768 1.000000 1.6312642E-07
 59.59781 1.000000 1.4029143E-07
 59.64793 1.000000 1.2055828E-07
 59.69806 1.000000 1.0351634E-07
 59.74818 1.000000 8.8812428E-08
 59.79831 1.000000 7.6136104E-08
 59.84843 1.000000 6.5217868E-08
 59.89855 1.000000 5.5819882E-08
 59.94868 1.000000 4.7737942E-08
 59.99880 1.000000 4.0793505E-08
 60.04892 1.000000 3.4831924E-08
 60.09905 1.000000 2.9717359E-08
 60.14917 1.000000 2.5333490E-08
 60.19930 1.000000 2.1579051E-08
 60.24942 1.000000 1.8366340E-08
 60.29955 1.000000 1.5619692E-08
 60.34967 1.000000 1.3272958E-08
 60.39980 1.000000 1.1269771E-08
 60.44992 1.000000 9.5612656E-09
 60.50004 1.000000 8.1054141E-09
 60.55017 1.000000 6.8656316E-09
 60.60029 1.000000 5.8108376E-09
 60.65042 1.000000 4.9141575E-09
 60.70054 1.000000 4.1525969E-09
 60.75066 1.000000 3.5061871E-09
 60.80079 1.000000 2.9580349E-09
 60.85091 1.000000 2.4935867E-09
 60.90104 1.000000 2.1004112E-09
 60.95116 1.000000 1.7677896E-09
 61.00129 1.000000 1.4866504E-09
 61.05141 1.000000 1.2492232E-09
 61.10153 1.000000 1.0488920E-09
 61.15166 1.000000 8.7996815E-10
 61.20179 1.000000 7.3765971E-10
 61.25191 1.000000 6.1787025E-10
 61.30203 1.000000 5.1712801E-10
 61.35216 1.000000 4.3245837E-10
 61.40228 1.000000 3.6136283E-10
 61.45241 1.000000 3.0171349E-10
 61.50253 1.000000 2.5170910E-10
 61.55265 1.000000 2.0982799E-10
 61.60278 1.000000 1.7477231E-10
 61.65290 1.000000 1.4545676E-10
 61.70303 1.000000 1.2096177E-10
 61.75315 1.000000 1.0051310E-10
 61.80328 1.000000 8.3452988E-11
 61.85340 1.000000 6.9233140E-11
 61.90353 1.000000 5.7390270E-11
 61.95365 1.000000 4.7536117E-11
 62.00377 1.000000 3.9341683E-11
 62.05390 1.000000 3.2533823E-11
 62.10402 1.000000 2.6882534E-11
 62.15414 1.000000 2.2195492E-11
 62.20427 1.000000 1.8310697E-11
 62.25439 1.000000 1.5093746E-11
 62.30452 1.000000 1.2432035E-11
 62.35464 1.000000 1.0231697E-11
 62.40477 1.000000 8.4139093E-12
 62.45489 1.000000 6.9135457E-12
 62.50502 1.000000 5.6761778E-12
 62.55514 1.000000 4.6566275E-12
 62.60526 1.000000 3.8170834E-12
 62.65539 1.000000 3.1264013E-12
 62.70551 1.000000 2.5586441E-12
 62.75564 1.000000 2.0923194E-12
 62.80576 1.000000 1.7096501E-12
 62.85588 1.000000 1.3958228E-12
 62.90601 1.000000 1.1386901E-12
 62.95614 1.000000 9.2818299E-13
 63.00626 1.000000 7.5600203E-13
 63.05639 1.000000 6.1525627E-13
 63.10651 1.000000 5.0031339E-13
 63.15664 1.000000 4.0651843E-13
 63.20676 1.000000 3.3005049E-13
 63.25688 1.000000 2.6774636E-13
 63.30701 1.000000 2.1702993E-13
 63.35713 1.000000 1.7577967E-13
 63.40725 1.000000 1.4225842E-13
 63.45738 1.000000 1.1503553E-13
 63.50750 1.000000 9.2947588E-14
 63.55763 1.000000 7.5040743E-14
 63.60775 1.000000 6.0536503E-14
 63.65788 1.000000 4.8795678E-14
 63.70800 1.000000 3.9300523E-14
 63.75813 1.000000 3.1627685E-14
 63.80825 1.000000 2.5433001E-14
 63.85837 1.000000 2.0434861E-14
 63.90850 1.000000 1.6405847E-14
 63.95862 1.000000 1.3160662E-14
 64.00875 1.000000 1.0548962E-14
 64.05887 1.000000 8.4489707E-15
 64.10899 1.000000 6.7614651E-15
 64.15912 1.000000 5.4066702E-15
 64.20924 1.000000 4.3198820E-15
 64.25937 1.000000 3.4488630E-15
 64.30949 1.000000 2.7512052E-15
 64.35962 1.000000 2.1929251E-15
 64.40974 1.000000 1.7465257E-15
 64.45986 1.000000 1.3899203E-15
 64.50999 1.000000 1.1052155E-15
 64.56011 1.000000 8.7812784E-16
 64.61024 1.000000 6.9713845E-16
 64.66036 1.000000 5.5302395E-16
 64.71049 1.000000 4.3834161E-16
 64.76061 1.000000 3.4716175E-16
 64.81074 1.000000 2.7472918E-16
 64.86086 1.000000 2.1723998E-16
 64.91098 1.000000 1.7164003E-16
 64.96111 1.000000 1.3550264E-16
 65.01123 1.000000 1.0688843E-16
 65.06136 1.000000 8.4251449E-17
 65.11148 1.000000 6.6353603E-17
 65.16161 1.000000 5.2216213E-17
 65.21173 1.000000 4.1058056E-17
 65.26186 1.000000 3.2258572E-17
 65.31197 1.000000 2.5325162E-17
 65.36210 1.000000 1.9865667E-17
 65.41222 1.000000 1.5570689E-17
 65.46235 1.000000 1.2194470E-17
 65.51247 1.000000 9.5429296E-18
 65.56260 1.000000 7.4617837E-18
 65.61272 1.000000 5.8298498E-18
 65.66285 1.000000 4.5511639E-18
 65.71297 1.000000 3.5501876E-18
 65.76309 1.000000 2.7670943E-18
 65.81322 1.000000 2.1549986E-18
 65.86335 1.000000 1.6769642E-18
 65.91347 1.000000 1.3039551E-18
 65.96359 1.000000 1.0130837E-18
 66.01372 1.000000 7.8646322E-19
 66.06384 1.000000 6.1004973E-19
 66.11397 1.000000 4.7284177E-19
 66.16409 1.000000 3.6619030E-19
 66.21422 1.000000 2.8336853E-19
 66.26434 1.000000 2.1910308E-19
 66.31446 1.000000 1.6928131E-19
 66.36459 1.000000 1.3068029E-19
 66.41471 1.000000 1.0080100E-19
 66.46484 1.000000 7.7691188E-20
 66.51496 1.000000 5.9831848E-20
 66.56509 1.000000 4.6042098E-20
 66.61521 1.000000 3.5401359E-20
 66.66534 1.000000 2.7197993E-20
 66.71546 1.000000 2.0878895E-20
 66.76558 1.000000 1.6015490E-20
 66.81570 1.000000 1.2274818E-20
 66.86583 1.000000 9.4003430E-21
 66.91595 1.000000 7.1932103E-21
 66.96608 1.000000 5.5000564E-21
 67.01620 1.000000 4.2019608E-21
 67.06633 1.000000 3.2076770E-21
 67.11646 1.000000 2.4466944E-21
 67.16657 1.000000 1.8648082E-21
 67.21670 1.000000 1.4201385E-21
 67.26682 1.000000 1.0806317E-21
 67.31695 1.000000 8.2163410E-22
 67.36707 1.000000 6.2422753E-22
 67.41720 1.000000 4.7385943E-22
 67.46732 1.000000 3.5942356E-22
 67.51745 1.000000 2.7240639E-22
 67.56757 1.000000 2.0629726E-22
 67.61769 1.000000 1.5610199E-22
 67.66782 1.000000 1.1802585E-22
 67.71795 1.000000 8.9165731E-23
 67.76807 1.000000 6.7308900E-23
 67.81819 1.000000 5.0770226E-23
 67.86832 1.000000 3.8263777E-23
 67.91844 1.000000 2.8815114E-23
 67.96857 1.000000 2.1682195E-23
 68.01869 1.000000 1.6302399E-23
 68.06882 1.000000 1.2247298E-23
 68.11894 1.000000 9.1935412E-24
 68.16907 1.000000 6.8956588E-24
 68.21918 1.000000 5.1681378E-24
 68.26931 1.000000 3.8702100E-24
 68.31944 1.000000 2.8959123E-24
 68.36956 1.000000 2.1651603E-24
 68.41969 1.000000 1.6175525E-24
 68.46981 1.000000 1.2074491E-24
 68.51994 1.000000 9.0059546E-25
 68.57006 1.000000 6.7118835E-25
 68.62018 1.000000 4.9983243E-25
 68.67030 1.000000 3.7191466E-25
 68.72043 1.000000 2.7651323E-25
 68.77055 1.000000 2.0541900E-25
 68.82068 1.000000 1.5248623E-25
 68.87080 1.000000 1.1309920E-25
 68.92093 1.000000 8.3818930E-26
 68.97105 1.000000 6.2069302E-26
 69.02118 1.000000 4.5926705E-26
 69.07130 1.000000 3.3956077E-26
 69.12142 1.000000 2.5084771E-26
 69.17155 1.000000 1.8516328E-26
 69.22168 1.000000 1.3656939E-26
 69.27180 1.000000 1.0065042E-26
 69.32192 1.000000 7.4117072E-27
 69.37205 1.000000 5.4534921E-27
 69.42217 1.000000 4.0094198E-27
 69.47229 1.000000 2.9454757E-27
 69.52242 1.000000 2.1620621E-27
 69.57255 1.000000 1.5857495E-27
 69.62267 1.000000 1.1621213E-27
 69.67279 1.000000 8.5101134E-28
 69.72292 1.000000 6.2267260E-28
 69.77304 1.000000 4.5523389E-28
 69.82317 1.000000 3.3255475E-28
 69.87329 1.000000 2.4274878E-28
 69.92342 1.000000 1.7704821E-28
 69.97354 1.000000 1.2902574E-28
 70.02367 1.000000 9.3953934E-29
 70.07378 1.000000 6.8362912E-29
 70.12391 1.000000 4.9700798E-29
 70.17403 1.000000 3.6104383E-29
 70.22416 1.000000 2.6206571E-29
 70.27428 1.000000 1.9006812E-29
 70.32441 1.000000 1.3774537E-29
 70.37453 1.000000 9.9743250E-30
 70.42466 1.000000 7.2167589E-30
 70.47478 1.000000 5.2174255E-30
 70.52490 1.000000 3.7690539E-30
 70.57503 1.000000 2.7205118E-30
 70.62515 1.000000 1.9620844E-30
 70.67528 1.000000 1.4139696E-30
 70.72540 1.000000 1.0181877E-30
 70.77553 1.000000 7.3257899E-31
 70.82565 1.000000 5.2666750E-31
 70.87578 1.000000 3.7832698E-31
 70.92590 1.000000 2.7156061E-31
 70.97602 1.000000 1.9476090E-31
 71.02615 1.000000 1.3957002E-31
 71.07628 1.000000 9.9938919E-32
 71.12640 1.000000 7.1505997E-32
 71.17652 1.000000 5.1120192E-32
 71.22665 1.000000 3.6516676E-32
 71.27677 1.000000 2.6064063E-32
 71.32689 1.000000 1.8589240E-32
 71.37702 1.000000 1.3247073E-32
 71.42715 1.000000 9.4325781E-33
 71.47727 1.000000 6.7110883E-33
 71.52740 1.000000 4.7709800E-33
 71.57751 1.000000 3.3891508E-33
 71.62764 1.000000 2.4055241E-33
 71.67776 1.000000 1.7060192E-33
 71.72789 1.000000 1.2089553E-33
 71.77802 1.000000 8.5605551E-34
 71.82814 1.000000 6.0566492E-34
 71.87827 1.000000 4.2816881E-34
 71.92839 1.000000 3.0244962E-34
 71.97851 1.000000 2.1347797E-34
 72.02863 1.000000 1.5055502E-34
 72.07876 1.000000 1.0609369E-34
 72.12888 1.000000 7.4702632E-35
 72.17901 1.000000 5.2559067E-35
 72.22913 1.000000 3.6948617E-35
 72.27926 1.000000 2.5953991E-35
 72.32938 1.000000 1.8216247E-35
 72.37950 1.000000 1.2775629E-35
 72.42963 1.000000 8.9525051E-36
 72.47975 1.000000 6.2684312E-36
 72.52988 1.000000 4.3855625E-36
 72.58000 1.000000 3.0658936E-36
 72.63013 1.000000 2.1415636E-36
 72.68025 1.000000 1.4946988E-36
 72.73038 1.000000 1.0423939E-36
 72.78050 1.000000 7.2637138E-37
 72.83062 1.000000 5.0577525E-37
 72.88074 1.000000 3.5187788E-37
 72.93088 1.000000 2.4461239E-37
 72.98100 1.000000 1.6990924E-37
 73.03112 1.000000 1.1792998E-37
 73.08125 1.000000 8.1784375E-38
 73.13137 1.000000 5.6671565E-38
 73.18150 1.000000 3.9238776E-38
 73.23162 1.000000 2.7147781E-38
 73.28175 1.000000 1.8766737E-38
 73.33187 1.000000 1.2962696E-38
 73.38200 1.000000 0.0000000E+00
 73.43211 1.000000 0.0000000E+00
 73.48224 1.000000 0.0000000E+00
 73.53236 1.000000 0.0000000E+00
 73.58249 1.000000 0.0000000E+00
 73.63261 1.000000 0.0000000E+00
 73.68274 1.000000 0.0000000E+00
 73.73286 1.000000 0.0000000E+00
 73.78299 1.000000 0.0000000E+00
 73.83311 1.000000 0.0000000E+00
 73.88323 1.000000 0.0000000E+00
 73.93336 1.000000 0.0000000E+00
 73.98348 1.000000 0.0000000E+00
 74.03361 1.000000 0.0000000E+00
 74.08373 1.000000 0.0000000E+00
 74.13386 1.000000 0.0000000E+00
 74.18398 1.000000 0.0000000E+00
 74.23411 1.000000 0.0000000E+00
 74.28423 1.000000 0.0000000E+00
 74.33435 1.000000 0.0000000E+00
 74.38448 1.000000 0.0000000E+00
 74.43460 1.000000 0.0000000E+00
 74.48473 1.000000 0.0000000E+00
 74.53485 1.000000 0.0000000E+00
 74.58498 1.000000 0.0000000E+00
 74.63510 1.000000 0.0000000E+00
 74.68522 1.000000 0.0000000E+00
 74.73534 1.000000 0.0000000E+00
 74.78547 1.000000 0.0000000E+00
 74.83560 1.000000 0.0000000E+00
 74.88572 1.000000 0.0000000E+00
 74.93584 1.000000 0.0000000E+00
 74.98597 1.000000 0.0000000E+00
 75.03609 1.000000 0.0000000E+00
 75.08622 1.000000 0.0000000E+00
 75.13634 1.000000 0.0000000E+00
 75.18647 1.000000 0.0000000E+00
 75.23660 1.000000 0.0000000E+00
 75.28672 1.000000 0.0000000E+00
 75.33684 1.000000 0.0000000E+00
 75.38696 1.000000 0.0000000E+00
 75.43709 1.000000 0.0000000E+00
 75.48721 1.000000 0.0000000E+00
 75.53734 1.000000 0.0000000E+00
 75.58746 1.000000 0.0000000E+00
 75.63759 1.000000 0.0000000E+00
 75.68771 1.000000 0.0000000E+00
 75.73783 1.000000 0.0000000E+00
 75.78796 1.000000 0.0000000E+00
 75.83808 1.000000 0.0000000E+00
 75.88821 1.000000 0.0000000E+00
 75.93833 1.000000 0.0000000E+00
 75.98846 1.000000 0.0000000E+00
 76.03858 1.000000 0.0000000E+00
 76.08871 1.000000 0.0000000E+00
 76.13882 1.000000 0.0000000E+00
 76.18895 1.000000 0.0000000E+00
 76.23907 1.000000 0.0000000E+00
 76.28920 1.000000 0.0000000E+00
 76.33932 1.000000 0.0000000E+00
 76.38945 1.000000 0.0000000E+00
 76.43958 1.000000 0.0000000E+00
 76.48970 1.000000 0.0000000E+00
 76.53983 1.000000 0.0000000E+00
 76.58994 1.000000 0.0000000E+00
 76.64007 1.000000 0.0000000E+00
 76.69020 1.000000 0.0000000E+00
 76.74033 1.000000 0.0000000E+00
 76.79044 1.000000 0.0000000E+00
 76.84057 1.000000 0.0000000E+00
 76.89069 1.000000 0.0000000E+00
 76.94082 1.000000 0.0000000E+00
 76.99094 1.000000 0.0000000E+00
 77.04107 1.000000 0.0000000E+00
 77.09119 1.000000 0.0000000E+00
 77.14132 1.000000 0.0000000E+00
 77.19144 1.000000 0.0000000E+00
 77.24156 1.000000 0.0000000E+00
 77.29169 1.000000 0.0000000E+00
 77.34181 1.000000 0.0000000E+00
 77.39194 1.000000 0.0000000E+00
 77.44206 1.000000 0.0000000E+00
 77.49219 1.000000 0.0000000E+00
 77.54231 1.000000 0.0000000E+00
 77.59243 1.000000 0.0000000E+00
 77.64256 1.000000 0.0000000E+00
 77.69268 1.000000 0.0000000E+00
 77.74281 1.000000 0.0000000E+00
 77.79293 1.000000 0.0000000E+00
 77.84306 1.000000 0.0000000E+00
 77.89318 1.000000 0.0000000E+00
 77.94331 1.000000 0.0000000E+00
 77.99343 1.000000 0.0000000E+00
 78.04355 1.000000 0.0000000E+00
 78.09367 1.000000 0.0000000E+00
 78.14380 1.000000 0.0000000E+00
 78.19392 1.000000 0.0000000E+00
 78.24405 1.000000 0.0000000E+00
 78.29417 1.000000 0.0000000E+00
 78.34430 1.000000 0.0000000E+00
 78.39442 1.000000 0.0000000E+00
 78.44454 1.000000 0.0000000E+00
 78.49467 1.000000 0.0000000E+00
 78.54480 1.000000 0.0000000E+00
 78.59492 1.000000 0.0000000E+00
 78.64504 1.000000 0.0000000E+00
 78.69517 1.000000 0.0000000E+00
 78.74529 1.000000 0.0000000E+00
 78.79542 1.000000 0.0000000E+00
 78.84554 1.000000 0.0000000E+00
 78.89567 1.000000 0.0000000E+00
 78.94579 1.000000 0.0000000E+00
 78.99592 1.000000 0.0000000E+00
 79.04604 1.000000 0.0000000E+00
 79.09616 1.000000 0.0000000E+00
 79.14629 1.000000 0.0000000E+00
 79.19641 1.000000 0.0000000E+00
 79.24654 1.000000 0.0000000E+00
 79.29666 1.000000 0.0000000E+00
 79.34679 1.000000 0.0000000E+00
 79.39691 1.000000 0.0000000E+00
 79.44704 1.000000 0.0000000E+00
 79.49715 1.000000 0.0000000E+00
 79.54728 1.000000 0.0000000E+00
 79.59740 1.000000 0.0000000E+00
 79.64753 1.000000 0.0000000E+00
 79.69765 1.000000 0.0000000E+00
 79.74778 1.000000 0.0000000E+00
 79.79790 1.000000 0.0000000E+00
 79.84803 1.000000 0.0000000E+00
 79.89815 1.000000 0.0000000E+00
 79.94827 1.000000 0.0000000E+00
 79.99840 1.000000 0.0000000E+00
 80.04852 1.000000 0.0000000E+00
 80.09865 1.000000 0.0000000E+00
 80.14877 1.000000 0.0000000E+00
 80.19890 1.000000 0.0000000E+00
 80.24902 1.000000 0.0000000E+00
 80.29915 1.000000 0.0000000E+00
 80.34927 1.000000 0.0000000E+00
 80.39940 1.000000 0.0000000E+00
 80.44952 1.000000 0.0000000E+00
 80.49964 1.000000 0.0000000E+00
 80.54977 1.000000 0.0000000E+00
 80.59989 1.000000 0.0000000E+00
 80.65002 1.000000 0.0000000E+00
 80.70014 1.000000 0.0000000E+00
 80.75027 1.000000 0.0000000E+00
 80.80039 1.000000 0.0000000E+00
 80.85051 1.000000 0.0000000E+00
 80.90063 1.000000 0.0000000E+00
 80.95076 1.000000 0.0000000E+00
 81.00089 1.000000 0.0000000E+00
 81.05101 1.000000 0.0000000E+00
 81.10114 1.000000 0.0000000E+00
 81.15126 1.000000 0.0000000E+00
 81.20139 1.000000 0.0000000E+00
 81.25150 1.000000 0.0000000E+00
 81.30163 1.000000 0.0000000E+00
 81.35175 1.000000 0.0000000E+00
 81.40188 1.000000 0.0000000E+00
 81.45200 1.000000 0.0000000E+00
 81.50213 1.000000 0.0000000E+00
 81.55225 1.000000 0.0000000E+00
 81.60238 1.000000 0.0000000E+00
 81.65250 1.000000 0.0000000E+00
 81.70262 1.000000 0.0000000E+00
 81.75275 1.000000 0.0000000E+00
 81.80287 1.000000 0.0000000E+00
 81.85300 1.000000 0.0000000E+00
 81.90312 1.000000 0.0000000E+00
 81.95325 1.000000 0.0000000E+00
 82.00338 1.000000 0.0000000E+00
 82.05350 1.000000 0.0000000E+00
 82.10361 1.000000 0.0000000E+00
 82.15374 1.000000 0.0000000E+00
 82.20387 1.000000 0.0000000E+00
 82.25400 1.000000 0.0000000E+00
 82.30412 1.000000 0.0000000E+00
 82.35425 1.000000 0.0000000E+00
 82.40437 1.000000 0.0000000E+00
 82.45450 1.000000 0.0000000E+00
 82.50461 1.000000 0.0000000E+00
 82.55474 1.000000 0.0000000E+00
 82.60487 1.000000 0.0000000E+00
 82.65499 1.000000 0.0000000E+00
 82.70512 1.000000 0.0000000E+00
 82.75524 1.000000 0.0000000E+00
 82.80537 1.000000 0.0000000E+00
 82.85549 1.000000 0.0000000E+00
 82.90562 1.000000 0.0000000E+00
 82.95573 1.000000 0.0000000E+00
 83.00586 1.000000 0.0000000E+00
 83.05598 1.000000 0.0000000E+00
 83.10611 1.000000 0.0000000E+00
 83.15623 1.000000 0.0000000E+00
 83.20636 1.000000 0.0000000E+00
 83.25648 1.000000 0.0000000E+00
 83.30661 1.000000 0.0000000E+00
 83.35673 1.000000 0.0000000E+00
 83.40685 1.000000 0.0000000E+00
 83.45698 1.000000 0.0000000E+00
 83.50710 1.000000 0.0000000E+00
 83.55723 1.000000 0.0000000E+00
 83.60735 1.000000 0.0000000E+00
 83.65748 1.000000 0.0000000E+00
 83.70760 1.000000 0.0000000E+00
 83.75772 1.000000 0.0000000E+00
 83.80785 1.000000 0.0000000E+00
 83.85797 1.000000 0.0000000E+00
 83.90810 1.000000 0.0000000E+00
 83.95822 1.000000 0.0000000E+00
 84.00835 1.000000 0.0000000E+00
 84.05847 1.000000 0.0000000E+00
 84.10860 1.000000 0.0000000E+00
 84.15872 1.000000 0.0000000E+00
 84.20884 1.000000 0.0000000E+00
 84.25896 1.000000 0.0000000E+00
 84.30909 1.000000 0.0000000E+00
 84.35921 1.000000 0.0000000E+00
 84.40934 1.000000 0.0000000E+00
 84.45947 1.000000 0.0000000E+00
 84.50959 1.000000 0.0000000E+00
 84.55972 1.000000 0.0000000E+00
 84.60983 1.000000 0.0000000E+00
 84.65996 1.000000 0.0000000E+00
 84.71008 1.000000 0.0000000E+00
 84.76021 1.000000 0.0000000E+00
 84.81033 1.000000 0.0000000E+00
 84.86046 1.000000 0.0000000E+00
 84.91058 1.000000 0.0000000E+00
 84.96071 1.000000 0.0000000E+00
 85.01083 1.000000 0.0000000E+00
 85.06095 1.000000 0.0000000E+00
 85.11108 1.000000 0.0000000E+00
 85.16120 1.000000 0.0000000E+00
 85.21133 1.000000 0.0000000E+00
 85.26145 1.000000 0.0000000E+00
 85.31158 1.000000 0.0000000E+00
 85.36170 1.000000 0.0000000E+00
 85.41183 1.000000 0.0000000E+00
 85.46194 1.000000 0.0000000E+00
 85.51207 1.000000 0.0000000E+00
 85.56219 1.000000 0.0000000E+00
 85.61232 1.000000 0.0000000E+00
 85.66245 1.000000 0.0000000E+00
 85.71258 1.000000 0.0000000E+00
 85.76270 1.000000 0.0000000E+00
 85.81283 1.000000 0.0000000E+00
 85.86294 1.000000 0.0000000E+00
 85.91306 1.000000 0.0000000E+00
 85.96319 1.000000 0.0000000E+00
 86.01332 1.000000 0.0000000E+00
 86.06345 1.000000 0.0000000E+00
 86.11357 1.000000 0.0000000E+00
 86.16370 1.000000 0.0000000E+00
 86.21382 1.000000 0.0000000E+00
 86.26394 1.000000 0.0000000E+00
 86.31406 1.000000 0.0000000E+00
 86.36419 1.000000 0.0000000E+00
 86.41431 1.000000 0.0000000E+00
 86.46444 1.000000 0.0000000E+00
 86.51456 1.000000 0.0000000E+00
 86.56469 1.000000 0.0000000E+00
 86.61481 1.000000 0.0000000E+00
 86.66494 1.000000 0.0000000E+00
 86.71506 1.000000 0.0000000E+00
 86.76518 1.000000 0.0000000E+00
 86.81531 1.000000 0.0000000E+00
 86.86543 1.000000 0.0000000E+00
 86.91556 1.000000 0.0000000E+00
 86.96568 1.000000 0.0000000E+00
 87.01581 1.000000 0.0000000E+00
 87.06593 1.000000 0.0000000E+00
 87.11605 1.000000 0.0000000E+00
 87.16618 1.000000 0.0000000E+00
 87.21630 1.000000 0.0000000E+00
 87.26643 1.000000 0.0000000E+00
 87.31655 1.000000 0.0000000E+00
 87.36668 1.000000 0.0000000E+00
 87.41680 1.000000 0.0000000E+00
 87.46693 1.000000 0.0000000E+00
 87.51704 1.000000 0.0000000E+00
 87.56717 1.000000 0.0000000E+00
 87.61729 1.000000 0.0000000E+00
 87.66742 1.000000 0.0000000E+00
 87.71754 1.000000 0.0000000E+00
 87.76767 1.000000 0.0000000E+00
 87.81779 1.000000 0.0000000E+00
 87.86792 1.000000 0.0000000E+00
 87.91805 1.000000 0.0000000E+00
 87.96816 1.000000 0.0000000E+00
 88.01829 1.000000 0.0000000E+00
 88.06841 1.000000 0.0000000E+00
 88.11854 1.000000 0.0000000E+00
 88.16866 1.000000 0.0000000E+00
 88.21879 1.000000 0.0000000E+00
 88.26891 1.000000 0.0000000E+00
 88.31904 1.000000 0.0000000E+00
 88.36916 1.000000 0.0000000E+00
 88.41928 1.000000 0.0000000E+00
 88.46941 1.000000 0.0000000E+00
 88.51953 1.000000 0.0000000E+00
 88.56966 1.000000 0.0000000E+00
 88.61978 1.000000 0.0000000E+00
 88.66991 1.000000 0.0000000E+00
 88.72003 1.000000 0.0000000E+00
 88.77015 1.000000 0.0000000E+00
 88.82027 1.000000 0.0000000E+00
 88.87040 1.000000 0.0000000E+00
 88.92052 1.000000 0.0000000E+00
 88.97065 1.000000 0.0000000E+00
 89.02077 1.000000 0.0000000E+00
 89.07090 1.000000 0.0000000E+00
 89.12103 1.000000 0.0000000E+00
 89.17116 1.000000 0.0000000E+00
 89.22127 1.000000 0.0000000E+00
 89.27139 1.000000 0.0000000E+00
 89.32152 1.000000 0.0000000E+00
 89.37164 1.000000 0.0000000E+00
 89.42178 1.000000 0.0000000E+00
 89.47190 1.000000 0.0000000E+00
 89.52203 1.000000 0.0000000E+00
 89.57215 1.000000 0.0000000E+00
 89.62226 1.000000 0.0000000E+00
 89.67239 1.000000 0.0000000E+00
 89.72252 1.000000 0.0000000E+00
 89.77264 1.000000 0.0000000E+00
 89.82277 1.000000 0.0000000E+00
 89.87289 1.000000 0.0000000E+00
 89.92302 1.000000 0.0000000E+00
 89.97314 1.000000 0.0000000E+00
 90.02326 1.000000 0.0000000E+00
 90.07339 1.000000 0.0000000E+00
 90.12351 1.000000 0.0000000E+00
 90.17364 1.000000 0.0000000E+00
 90.22376 1.000000 0.0000000E+00
 90.27389 1.000000 0.0000000E+00
 90.32401 1.000000 0.0000000E+00
 90.37414 1.000000 0.0000000E+00
 90.42426 1.000000 0.0000000E+00
 90.47438 1.000000 0.0000000E+00
 90.52451 1.000000 0.0000000E+00
 90.57463 1.000000 0.0000000E+00
 90.62476 1.000000 0.0000000E+00
 90.67488 1.000000 0.0000000E+00
 90.72501 1.000000 0.0000000E+00
 90.77513 1.000000 0.0000000E+00
 90.82526 1.000000 0.0000000E+00
 90.87537 1.000000 0.0000000E+00
 90.92550 1.000000 0.0000000E+00
 90.97562 1.000000 0.0000000E+00
 91.02575 1.000000 0.0000000E+00
 91.07587 1.000000 0.0000000E+00
 91.12600 1.000000 0.0000000E+00
 91.17612 1.000000 0.0000000E+00
 91.22625 1.000000 0.0000000E+00
 91.27637 1.000000 0.0000000E+00
 91.32649 1.000000 0.0000000E+00
 91.37662 1.000000 0.0000000E+00
 91.42674 1.000000 0.0000000E+00
 91.47687 1.000000 0.0000000E+00
 91.52699 1.000000 0.0000000E+00
 91.57712 1.000000 0.0000000E+00
 91.62724 1.000000 0.0000000E+00
 91.67737 1.000000 0.0000000E+00
 91.72749 1.000000 0.0000000E+00
 91.77761 1.000000 0.0000000E+00
 91.82774 1.000000 0.0000000E+00
 91.87786 1.000000 0.0000000E+00
 91.92799 1.000000 0.0000000E+00
 91.97811 1.000000 0.0000000E+00
 92.02824 1.000000 0.0000000E+00
 92.07836 1.000000 0.0000000E+00
 92.12848 1.000000 0.0000000E+00
 92.17860 1.000000 0.0000000E+00
 92.22873 1.000000 0.0000000E+00
 92.27885 1.000000 0.0000000E+00
 92.32898 1.000000 0.0000000E+00
 92.37910 1.000000 0.0000000E+00
 92.42923 1.000000 0.0000000E+00
 92.47935 1.000000 0.0000000E+00
 92.52947 1.000000 0.0000000E+00
 92.57960 1.000000 0.0000000E+00
 92.62972 1.000000 0.0000000E+00
 92.67985 1.000000 0.0000000E+00
 92.72997 1.000000 0.0000000E+00
 92.78010 1.000000 0.0000000E+00
 92.83022 1.000000 0.0000000E+00
 92.88036 1.000000 0.0000000E+00
 92.93048 1.000000 0.0000000E+00
 92.98059 1.000000 0.0000000E+00
 93.03072 1.000000 0.0000000E+00
 93.08084 1.000000 0.0000000E+00
 93.13097 1.000000 0.0000000E+00
 93.18110 1.000000 0.0000000E+00
 93.23122 1.000000 0.0000000E+00
 93.28135 1.000000 0.0000000E+00
 93.33147 1.000000 0.0000000E+00
 93.38158 1.000000 0.0000000E+00
 93.43172 1.000000 0.0000000E+00
 93.48184 1.000000 0.0000000E+00
 93.53197 1.000000 0.0000000E+00
 93.58209 1.000000 0.0000000E+00
 93.63222 1.000000 0.0000000E+00
 93.68234 1.000000 0.0000000E+00
 93.73247 1.000000 0.0000000E+00
 93.78259 1.000000 0.0000000E+00
 93.83271 1.000000 0.0000000E+00
 93.88284 1.000000 0.0000000E+00
 93.93296 1.000000 0.0000000E+00
 93.98309 1.000000 0.0000000E+00
 94.03321 1.000000 0.0000000E+00
 94.08334 1.000000 0.0000000E+00
 94.13346 1.000000 0.0000000E+00
 94.18359 1.000000 0.0000000E+00
 94.23370 1.000000 0.0000000E+00
 94.28383 1.000000 0.0000000E+00
 94.33395 1.000000 0.0000000E+00
 94.38408 1.000000 0.0000000E+00
 94.43420 1.000000 0.0000000E+00
 94.48433 1.000000 0.0000000E+00
 94.53445 1.000000 0.0000000E+00
 94.58458 1.000000 0.0000000E+00
 94.63470 1.000000 0.0000000E+00
 94.68482 1.000000 0.0000000E+00
 94.73495 1.000000 0.0000000E+00
 94.78507 1.000000 0.0000000E+00
 94.83520 1.000000 0.0000000E+00
 94.88532 1.000000 0.0000000E+00
 94.93545 1.000000 0.0000000E+00
 94.98557 1.000000 0.0000000E+00
 95.03569 1.000000 0.0000000E+00
 95.08582 1.000000 0.0000000E+00
 95.13594 1.000000 0.0000000E+00
 95.18607 1.000000 0.0000000E+00
 95.23619 1.000000 0.0000000E+00
 95.28632 1.000000 0.0000000E+00
 95.33644 1.000000 0.0000000E+00
 95.38657 1.000000 0.0000000E+00
 95.43669 1.000000 0.0000000E+00
 95.48681 1.000000 0.0000000E+00
 95.53693 1.000000 0.0000000E+00
 95.58706 1.000000 0.0000000E+00
 95.63718 1.000000 0.0000000E+00
 95.68731 1.000000 0.0000000E+00
 95.73743 1.000000 0.0000000E+00
 95.78756 1.000000 0.0000000E+00
 95.83768 1.000000 0.0000000E+00
 95.88780 1.000000 0.0000000E+00
 95.93793 1.000000 0.0000000E+00
 95.98805 1.000000 0.0000000E+00
 96.03818 1.000000 0.0000000E+00
 96.08830 1.000000 0.0000000E+00
 96.13843 1.000000 0.0000000E+00
 96.18855 1.000000 0.0000000E+00
 96.23868 1.000000 0.0000000E+00
 96.28880 1.000000 0.0000000E+00
 96.33892 1.000000 0.0000000E+00
 96.38905 1.000000 0.0000000E+00
 96.43917 1.000000 0.0000000E+00
 96.48930 1.000000 0.0000000E+00
 96.53942 1.000000 0.0000000E+00
 96.58955 1.000000 0.0000000E+00
 96.63968 1.000000 0.0000000E+00
 96.68980 1.000000 0.0000000E+00
 96.73991 1.000000 0.0000000E+00
 96.79004 1.000000 0.0000000E+00
 96.84016 1.000000 0.0000000E+00
 96.89030 1.000000 0.0000000E+00
 96.94042 1.000000 0.0000000E+00
 96.99055 1.000000 0.0000000E+00
 97.04067 1.000000 0.0000000E+00
 97.09080 1.000000 0.0000000E+00
 97.14091 1.000000 0.0000000E+00
 97.19104 1.000000 0.0000000E+00
 97.24117 1.000000 0.0000000E+00
 97.29129 1.000000 0.0000000E+00
 97.34142 1.000000 0.0000000E+00
 97.39154 1.000000 0.0000000E+00
 97.44167 1.000000 0.0000000E+00
 97.49179 1.000000 0.0000000E+00
 97.54191 1.000000 0.0000000E+00
 97.59203 1.000000 0.0000000E+00
 97.64216 1.000000 0.0000000E+00
 97.69228 1.000000 0.0000000E+00
 97.74241 1.000000 0.0000000E+00
 97.79253 1.000000 0.0000000E+00
 97.84266 1.000000 0.0000000E+00
 97.89278 1.000000 0.0000000E+00
 97.94291 1.000000 0.0000000E+00
 97.99303 1.000000 0.0000000E+00
 98.04315 1.000000 0.0000000E+00
 98.09328 1.000000 0.0000000E+00
 98.14340 1.000000 0.0000000E+00
 98.19353 1.000000 0.0000000E+00
 98.24365 1.000000 0.0000000E+00
 98.29378 1.000000 0.0000000E+00
 98.34390 1.000000 0.0000000E+00
 98.39402 1.000000 0.0000000E+00
 98.44415 1.000000 0.0000000E+00
 98.49427 1.000000 0.0000000E+00
 98.54440 1.000000 0.0000000E+00
 98.59452 1.000000 0.0000000E+00
 98.64465 1.000000 0.0000000E+00
 98.69477 1.000000 0.0000000E+00
 98.74490 1.000000 0.0000000E+00
 98.79501 1.000000 0.0000000E+00
 98.84514 1.000000 0.0000000E+00
 98.89526 1.000000 0.0000000E+00
 98.94539 1.000000 0.0000000E+00
 98.99551 1.000000 0.0000000E+00
 99.04564 1.000000 0.0000000E+00
 99.09576 1.000000 0.0000000E+00
 99.14589 1.000000 0.0000000E+00
 99.19601 1.000000 0.0000000E+00
 99.24613 1.000000 0.0000000E+00
 99.29626 1.000000 0.0000000E+00
 99.34638 1.000000 0.0000000E+00
 99.39651 1.000000 0.0000000E+00
 99.44663 1.000000 0.0000000E+00
 99.49676 1.000000 0.0000000E+00
 99.54688 1.000000 0.0000000E+00
 99.59701 1.000000 0.0000000E+00
 99.64713 1.000000 0.0000000E+00
 99.69725 1.000000 0.0000000E+00
 99.74738 1.000000 0.0000000E+00
 99.79750 1.000000 0.0000000E+00
 99.84763 1.000000 0.0000000E+00
 99.89775 1.000000 0.0000000E+00
 99.94788 1.000000 0.0000000E+00
 99.99800 1.000000 0.0000000E+00
 100.0481 1.000000 0.0000000E+00
 100.0982 1.000000 0.0000000E+00
 100.1484 1.000000 0.0000000E+00
 100.1985 1.000000 0.0000000E+00
 100.2486 1.000000 0.0000000E+00

XFOILinterface/XFOIL/plotlib/misc/Readme.absoft

/***
 Module: Readme.absoft

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

Xplot11
C Version 4.46 11/28/01

This Readme file pertains to the Absoft Linux f77 compiler, version 5.x, this
stuff has not been checked for later versions...

Various compilers support intrinsics for RSHIFT, LSHIFT and AND(). Absoft
is among those that do not have these supported (also HPUX f77 at last check).

I added a file (util-ops.f) that needs to be included for the Absoft f77 environment. This file contains functions for bit shifts RSHIFT,LSHIFT and
arithmetic AND(I1,I2) for fortrans that lack these intrinsics.

See the Makefile where this is one of the commented out options.

Note that a number of compile switches need to be set when using the Absoft
f77 compiler. See the Makefile for these.

Absoft Linux f77 flags that I use...

DP = -N113 (only for making a double precision version of the library)
FFLAGS = -s -f -O -B100 -B108 -N3 -N90 $(DP)

-s static
-f force to lower case
-O optimize
-B100 Pentium Pro flag (use -B101 for general Pentium compatibility)
-B108 append single underscore to names
-N3 explicitly opened unformatted files contain record information
-N90 pass character args same as g77 and f2c
-N113 lame version of -r8 flag to promote singles into doubles

Note that you will need to link with the libU77 library if you use some
of the UNIX fortran-isms like GETARG. This is supplied by Absoft but is not
in their default link libs. You need to add this library to a link statement
something like this:

f77 -o foobar foobar.o -lU77

HY

XFOILinterface/XFOIL/plotlib/Readme.colors

/***
 Module: Readme.colors

 Copyright (C) 1996 Harold Youngren, Mark Drela

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Report problems to: guppy@maine.com
 or drela@mit.edu
***/

Xplot11
C Version 4.46 11/28/01

This Readme file pertains to problems with colors under some window managers.

The color routines used here employ shared colormaps to avoid the major screen
color dislocations that accompany switching mouse focus with private colormaps.
When the window manager leaves a sufficient number of color entries unallocated
this approach works fine. Newer window managers, notably the fvwm-95 variants
that are now supplied with the Linux distributions, appear to eat up almost
the complete colormap for themselves with allocations for many pixmaps for
icons. This causes heartaches when using Xplot11 as you get lots of messages
about trouble allocating colors (and the colors are messed up in the plot).

This could be avoided by allocating private colormaps but this gets into the
color flashing problem alluded to above.

For the time being I suggest using a window manager that doesn't go overboard
allocating lots of colors. Twm works fine, I use plain old fvwm with xfm
for my usual interface, I set up an .fvwmrc file that does not use
too many wasteful color features (like lots of pixmap icons). This leaves
around 200 free colors most of the time. Note that if you run something like
xv displaying a typical color gif file you will eat up most or all the free
colors while that application is running. Once you quit xv (or whatever) the
colors are freed and clashes with Xplot11 disappear.

If there is a sufficient problem with this I will make an option of allocating
a private colormap when no color space is available in the shared colormap...

HY

XFOILinterface/XFOIL/runs/dae11.dat

DAE 11
Daedalus wing center panel airfoil. Design Re = 500K
 1.000000 0.000000
 0.986485 0.002537
 0.970011 0.005613
 0.947881 0.010041
 0.918618 0.016374
 0.887980 0.023556
 0.857968 0.031118
 0.827970 0.039139
 0.797803 0.047590
 0.767378 0.056399
 0.736634 0.065482
 0.705687 0.074715
 0.675260 0.083695
 0.645478 0.092177
 0.616310 0.099961
 0.587628 0.106875
 0.559192 0.112804
 0.530735 0.117738
 0.502104 0.121740
 0.473284 0.124848
 0.444338 0.127068
 0.415323 0.128391
 0.386255 0.128806
 0.357167 0.128336
 0.328135 0.126996
 0.299232 0.124754
 0.270512 0.121609
 0.242030 0.117536
 0.213885 0.112508
 0.186216 0.106500
 0.159197 0.099489
 0.133039 0.091476
 0.108024 0.082466
 0.084520 0.072514
 0.062995 0.061754
 0.044085 0.050490
 0.028485 0.039251
 0.016619 0.028679
 0.008417 0.019287
 0.003417 0.011421
 0.000883 0.005097
 0.000128 0.000182
 0.000626 -0.003555
 0.002138 -0.006473
 0.004541 -0.008835
 0.008212 -0.010744
 0.014240 -0.012418
 0.024697 -0.013921
 0.041573 -0.014931
 0.065014 -0.015107
 0.092723 -0.014502
 0.122696 -0.013331
 0.153786 -0.011784
 0.185487 -0.010003
 0.217549 -0.008087
 0.249834 -0.006102
 0.282263 -0.004093
 0.314698 -0.002099
 0.347047 -0.000149
 0.379318 0.001724
 0.411508 0.003509
 0.443624 0.005174
 0.475671 0.006709
 0.507637 0.008092
 0.539527 0.009282
 0.571366 0.010264
 0.603162 0.011026
 0.634928 0.011552
 0.666677 0.011849
 0.698414 0.011916
 0.730135 0.011759
 0.761819 0.011381
 0.793447 0.010763
 0.825020 0.009891
 0.856580 0.008751
 0.888343 0.007325
 0.920025 0.005610
 0.948000 0.003865
 0.969655 0.002348
 0.986285 0.001076
 1.000000 0.000000

XFOILinterface/XFOIL/runs/dae21.dat

DAE 21
Daedalus outer panel break airfoil. Design Re = 375K
 1.000000 0.000000
 0.986712 0.002418
 0.970362 0.005492
 0.947691 0.010083
 0.917703 0.016743
 0.887293 0.024120
 0.857161 0.031966
 0.826867 0.040283
 0.796262 0.048982
 0.765287 0.057938
 0.734180 0.066919
 0.703358 0.075625
 0.672878 0.083860
 0.642725 0.091437
 0.612839 0.098204
 0.583189 0.104141
 0.553743 0.109238
 0.524452 0.113495
 0.495245 0.116921
 0.466044 0.119541
 0.436797 0.121383
 0.407512 0.122444
 0.378226 0.122715
 0.348985 0.122181
 0.319838 0.120829
 0.290842 0.118635
 0.262053 0.115583
 0.233558 0.111651
 0.205468 0.106814
 0.177922 0.101046
 0.151092 0.094310
 0.125176 0.086572
 0.100450 0.077840
 0.077317 0.068163
 0.056331 0.057700
 0.038181 0.046773
 0.023556 0.035891
 0.012848 0.025735
 0.005879 0.016869
 0.001956 0.009449
 0.000266 0.003383
 0.000061 -0.001451
 0.000768 -0.005145
 0.002174 -0.007971
 0.004373 -0.010203
 0.007802 -0.012025
 0.013654 -0.013482
 0.024269 -0.014572
 0.041672 -0.014985
 0.065976 -0.014369
 0.094566 -0.012972
 0.125275 -0.011034
 0.156913 -0.008816
 0.189022 -0.006461
 0.221380 -0.004063
 0.253714 -0.001687
 0.285949 0.000632
 0.318102 0.002874
 0.350185 0.005015
 0.382195 0.007039
 0.414128 0.008920
 0.445987 0.010630
 0.477768 0.012157
 0.509472 0.013465
 0.541126 0.014532
 0.572758 0.015351
 0.604367 0.015925
 0.635947 0.016240
 0.667511 0.016282
 0.699072 0.016053
 0.730622 0.015565
 0.762134 0.014807
 0.793605 0.013763
 0.825056 0.012422
 0.856541 0.010783
 0.888226 0.008848
 0.920042 0.006634
 0.948501 0.004447
 0.970227 0.002643
 0.986570 0.001203
 1.000000 0.000000

XFOILinterface/XFOIL/runs/dae31.dat

DAE 31
Daedalus tip panel airfoil (4ft from tip). Design Re = 250K
 1.000000 0.000000
 0.983670 0.003678
 0.964831 0.008217
 0.942298 0.013939
 0.915136 0.021198
 0.884751 0.029762
 0.854418 0.038671
 0.823963 0.047867
 0.793343 0.057188
 0.763399 0.066115
 0.734041 0.074433
 0.705002 0.082031
 0.676045 0.088917
 0.647058 0.095104
 0.617978 0.100577
 0.588755 0.105349
 0.559366 0.109434
 0.529812 0.112852
 0.500123 0.115621
 0.470348 0.117747
 0.440557 0.119235
 0.410816 0.120061
 0.381154 0.120198
 0.351603 0.119637
 0.322220 0.118356
 0.293057 0.116321
 0.264162 0.113501
 0.235612 0.109876
 0.207525 0.105414
 0.180030 0.100065
 0.153293 0.093810
 0.127559 0.086629
 0.103134 0.078508
 0.080386 0.069477
 0.059755 0.059645
 0.041713 0.049168
 0.026721 0.038403
 0.015173 0.027944
 0.007269 0.018571
 0.002584 0.010709
 0.000358 0.004518
 0.000025 -0.000558
 0.000189 -0.002800
 0.001175 -0.006664
 0.002966 -0.009596
 0.005693 -0.011873
 0.009988 -0.013595
 0.017247 -0.014838
 0.029729 -0.015535
 0.049021 -0.015193
 0.074285 -0.013756
 0.102957 -0.011523
 0.133315 -0.008820
 0.164511 -0.005908
 0.196175 -0.002926
 0.228118 0.000031
 0.260168 0.002902
 0.292125 0.005647
 0.323993 0.008244
 0.355786 0.010669
 0.387504 0.012911
 0.419145 0.014938
 0.450717 0.016729
 0.482216 0.018267
 0.513641 0.019520
 0.545019 0.020458
 0.576374 0.021089
 0.607695 0.021417
 0.638977 0.021429
 0.670233 0.021125
 0.701474 0.020513
 0.732690 0.019612
 0.763858 0.018421
 0.794976 0.016921
 0.826072 0.015114
 0.857232 0.012998
 0.888815 0.010562
 0.919284 0.007958
 0.945604 0.005528
 0.967071 0.003429
 0.984882 0.001590
 1.000000 0.000000

XFOILinterface/XFOIL/runs/dae51.dat

DAE 51
Daedalus propeller airfoil
 1.000000 -0.000051
 0.989166 0.001996
 0.975819 0.004501
 0.957448 0.007991
 0.931599 0.013004
 0.901654 0.018957
 0.870818 0.025167
 0.839998 0.031363
 0.809336 0.037430
 0.778839 0.043301
 0.748503 0.048933
 0.718326 0.054243
 0.688314 0.059175
 0.658443 0.063716
 0.628653 0.067839
 0.598855 0.071530
 0.569004 0.074792
 0.539074 0.077652
 0.509071 0.080095
 0.479015 0.082100
 0.448934 0.083641
 0.418877 0.084690
 0.388863 0.085217
 0.358908 0.085197
 0.329049 0.084600
 0.299321 0.083399
 0.269760 0.081570
 0.240419 0.079081
 0.211388 0.075895
 0.182766 0.071967
 0.154699 0.067243
 0.127404 0.061670
 0.101193 0.055204
 0.076503 0.047832
 0.054060 0.039675
 0.034881 0.031085
 0.020059 0.022737
 0.010052 0.015405
 0.004208 0.009557
 0.001251 0.005050
 0.000113 0.001479
 0.000123 -0.001494
 0.001002 -0.004085
 0.002793 -0.006422
 0.006019 -0.008524
 0.011960 -0.010609
 0.022698 -0.012727
 0.040333 -0.014554
 0.064233 -0.015717
 0.091882 -0.016173
 0.121305 -0.016067
 0.151560 -0.015570
 0.182231 -0.014790
 0.213149 -0.013797
 0.244240 -0.012649
 0.275464 -0.011392
 0.306798 -0.010061
 0.338230 -0.008690
 0.369725 -0.007318
 0.401184 -0.005962
 0.432597 -0.004640
 0.463976 -0.003366
 0.495325 -0.002147
 0.526644 -0.000994
 0.557930 0.000082
 0.589182 0.001071
 0.620390 0.001960
 0.651547 0.002731
 0.682648 0.003367
 0.713694 0.003847
 0.744690 0.004152
 0.775644 0.004269
 0.806546 0.004190
 0.837373 0.003898
 0.868134 0.003359
 0.898985 0.002532
 0.929868 0.001410
 0.956572 0.000219
 0.975393 -0.000742
 0.988983 -0.001472
 1.000000 -0.002051

XFOILinterface/XFOIL/runs/e387.dat

E387
 1.00000 0.00000
 0.99677 0.00043
 0.98729 0.00180
 0.97198 0.00423
 0.95128 0.00763
 0.92554 0.01184
 0.89510 0.01679
 0.86035 0.02242
 0.82183 0.02866
 0.78007 0.03540
 0.73567 0.04249
 0.68922 0.04975
 0.64136 0.05696
 0.59272 0.06390
 0.54394 0.07020
 0.49549 0.07546
 0.44767 0.07936
 0.40077 0.08173
 0.35505 0.08247
 0.31078 0.08156
 0.26813 0.07908
 0.22742 0.07529
 0.18906 0.07037
 0.15345 0.06448
 0.12094 0.05775
 0.09185 0.05033
 0.06643 0.04238
 0.04493 0.03408
 0.02748 0.02562
 0.01423 0.01726
 0.00519 0.00931
 0.00044 0.00234
 0.00091 -0.00286
 0.00717 -0.00682
 0.01890 -0.01017
 0.03596 -0.01265
 0.05827 -0.01425
 0.08569 -0.01500
 0.11800 -0.01502
 0.15490 -0.01441
 0.19599 -0.01329
 0.24083 -0.01177
 0.28892 -0.00998
 0.33968 -0.00804
 0.39252 -0.00605
 0.44679 -0.00410
 0.50182 -0.00228
 0.55694 -0.00065
 0.61147 0.00074
 0.66472 0.00186
 0.71602 0.00268
 0.76475 0.00320
 0.81027 0.00342
 0.85202 0.00337
 0.88944 0.00307
 0.92205 0.00258
 0.94942 0.00196
 0.97118 0.00132
 0.98705 0.00071
 0.99674 0.00021
 1.00000 0.00000

XFOILinterface/XFOIL/runs/la203.dat

LA203A
 1.000000 0.000000
 0.993938 0.003044
 0.986151 0.005883
 0.976665 0.008985
 0.965516 0.012408
 0.952740 0.016162
 0.938385 0.020258
 0.922500 0.024700
 0.905141 0.029490
 0.886369 0.034630
 0.866250 0.040113
 0.844856 0.045936
 0.822261 0.052086
 0.798545 0.058545
 0.773791 0.065291
 0.748087 0.072292
 0.721524 0.079495
 0.694194 0.086797
 0.666193 0.094063
 0.637621 0.101087
 0.608579 0.107640
 0.579167 0.113566
 0.549490 0.118770
 0.519653 0.123176
 0.489759 0.126743
 0.459916 0.129436
 0.430226 0.131219
 0.400796 0.132090
 0.371729 0.132075
 0.343127 0.131182
 0.315090 0.129435
 0.287716 0.126854
 0.261106 0.123424
 0.235350 0.119234
 0.210538 0.114389
 0.186758 0.108970
 0.164095 0.103048
 0.142628 0.096688
 0.122432 0.089956
 0.103579 0.082919
 0.086135 0.075641
 0.070162 0.068190
 0.055715 0.060636
 0.042846 0.053047
 0.031599 0.045492
 0.022015 0.038031
 0.014127 0.030677
 0.007963 0.023336
 0.003544 0.015836
 0.000887 0.008000
 0.000000 0.000000
 0.000887 -0.008018
 0.003544 -0.015138
 0.007963 -0.021544
 0.014127 -0.026519
 0.022015 -0.029639
 0.031599 -0.031320
 0.042846 -0.032209
 0.055715 -0.032676
 0.070162 -0.032868
 0.086135 -0.032857
 0.103579 -0.032693
 0.122432 -0.032408
 0.142628 -0.032024
 0.164095 -0.031556
 0.186758 -0.031016
 0.210538 -0.030405
 0.235350 -0.029724
 0.261106 -0.028966
 0.287716 -0.028124
 0.315090 -0.027183
 0.343127 -0.026124
 0.371729 -0.024919
 0.400796 -0.023512
 0.430226 -0.021827
 0.459916 -0.019830
 0.489759 -0.017533
 0.519653 -0.014948
 0.549490 -0.012098
 0.579167 -0.009052
 0.608579 -0.005918
 0.637621 -0.002821
 0.666193 0.000143
 0.694194 0.002917
 0.721524 0.005447
 0.748087 0.007686
 0.773791 0.009595
 0.798545 0.011145
 0.822261 0.012312
 0.844856 0.013088
 0.866250 0.013463
 0.886369 0.013448
 0.905141 0.013056
 0.922500 0.012302
 0.938385 0.011218
 0.952740 0.009838
 0.965516 0.008212
 0.976665 0.006393
 0.986151 0.004425
 0.993938 0.002384
 1.000000 0.000000

XFOILinterface/XFOIL/runs/la203t.dat

LA230A blunt TE
 1.000455 0.000895
 0.993427 0.004332
 0.981492 0.008450
 0.967879 0.012697
 0.952291 0.017269
 0.934612 0.022276
 0.914876 0.027744
 0.893349 0.033633
 0.870451 0.039856
 0.846614 0.046320
 0.822246 0.052928
 0.797640 0.059604
 0.773000 0.066294
 0.748527 0.072935
 0.724456 0.079441
 0.700950 0.085719
 0.678100 0.091696
 0.655966 0.097294
 0.634488 0.102460
 0.613509 0.107185
 0.592872 0.111482
 0.572474 0.115369
 0.552260 0.118854
 0.532181 0.121940
 0.512197 0.124633
 0.492299 0.126938
 0.472493 0.128851
 0.452778 0.130366
 0.433139 0.131481
 0.413556 0.132197
 0.394032 0.132519
 0.374603 0.132449
 0.355296 0.131983
 0.336122 0.131120
 0.317102 0.129862
 0.298297 0.128215
 0.279735 0.126157
 0.261354 0.123677
 0.243142 0.120790
 0.225156 0.117523
 0.207483 0.113902
 0.190225 0.109959
 0.173498 0.105734
 0.157428 0.101275
 0.142137 0.096640
 0.127740 0.091896
 0.114330 0.087111
 0.101967 0.082352
 0.090672 0.077676
 0.080423 0.073127
 0.071170 0.068734
 0.062842 0.064514
 0.055354 0.060471
 0.048621 0.056601
 0.042561 0.052894
 0.037097 0.049337
 0.032164 0.045916
 0.027702 0.042615
 0.023663 0.039417
 0.020007 0.036305
 0.016704 0.033262
 0.013731 0.030267
 0.011068 0.027303
 0.008710 0.024356
 0.006648 0.021414
 0.004880 0.018473
 0.003404 0.015529
 0.002211 0.012581
 0.001291 0.009644
 0.000631 0.006741
 0.000216 0.003893
 0.000020 0.001100
 0.000029 -0.001660
 0.000247 -0.004414
 0.000696 -0.007167
 0.001403 -0.009910
 0.002374 -0.012614
 0.003602 -0.015256
 0.005087 -0.017812
 0.006845 -0.020249
 0.008898 -0.022529
 0.011262 -0.024606
 0.013938 -0.026425
 0.016933 -0.027936
 0.020241 -0.029152
 0.023844 -0.030106
 0.027745 -0.030836
 0.031980 -0.031393
 0.036588 -0.031834
 0.041629 -0.032180
 0.047184 -0.032454
 0.053351 -0.032666
 0.060260 -0.032819
 0.068071 -0.032916
 0.076988 -0.032954
 0.087263 -0.032928
 0.099188 -0.032834
 0.113069 -0.032661
 0.129156 -0.032402
 0.147544 -0.032052
 0.168081 -0.031613
 0.190368 -0.031094
 0.213899 -0.030504
 0.238204 -0.029853
 0.262922 -0.029142
 0.287810 -0.028374
 0.312695 -0.027544
 0.337469 -0.026643
 0.362036 -0.025661
 0.386318 -0.024578
 0.410302 -0.023356
 0.434088 -0.021960
 0.457807 -0.020377
 0.481536 -0.018608
 0.505316 -0.016656
 0.529216 -0.014513
 0.553344 -0.012183
 0.577787 -0.009687
 0.602567 -0.007073
 0.627482 -0.004428
 0.652205 -0.001848
 0.676637 0.000620
 0.700697 0.002939
 0.724337 0.005075
 0.747521 0.006998
 0.770218 0.008681
 0.792379 0.010100
 0.813952 0.011230
 0.834872 0.012054
 0.855042 0.012555
 0.874384 0.012720
 0.892795 0.012552
 0.910177 0.012048
 0.926478 0.011213
 0.941673 0.010057
 0.955776 0.008580
 0.968861 0.006778
 0.980995 0.004570
 0.992375 0.001840
 0.999545 -0.000895

XFOILinterface/XFOIL/runs/lnv109a.dat

LNV-109A
 1.000000 0.000000
 0.993938 0.000543
 0.986151 0.001101
 0.976665 0.001787
 0.965515 0.002657
 0.952740 0.003737
 0.938385 0.005056
 0.922500 0.006639
 0.905141 0.008509
 0.886369 0.010690
 0.866250 0.013204
 0.844856 0.016069
 0.822261 0.019300
 0.798545 0.022912
 0.773791 0.026914
 0.748087 0.031312
 0.721524 0.036110
 0.694194 0.041303
 0.666193 0.046886
 0.637621 0.052846
 0.608579 0.059164
 0.579167 0.065813
 0.549490 0.072756
 0.519653 0.079934
 0.489759 0.087276
 0.459916 0.094701
 0.430226 0.102116
 0.400796 0.109249
 0.371729 0.115295
 0.343127 0.119496
 0.315090 0.121941
 0.287718 0.122784
 0.261106 0.122185
 0.235350 0.120264
 0.210538 0.117155
 0.186758 0.113001
 0.164095 0.107922
 0.142628 0.102024
 0.122432 0.095430
 0.103579 0.088284
 0.086135 0.080712
 0.070162 0.072825
 0.055715 0.064730
 0.042846 0.056528
 0.031599 0.048318
 0.022015 0.040194
 0.014127 0.032222
 0.007963 0.024369
 0.003544 0.016413
 0.000887 0.008081
 0.000000 0.000000
 0.000887 -.008081
 0.003544 -.015530
 0.007963 -.022138
 0.014127 -.027272
 0.022015 -.030455
 0.031599 -.031544
 0.042846 -.031202
 0.055715 -.030105
 0.070162 -.028554
 0.086135 -.026666
 0.103579 -.024529
 0.122432 -.022211
 0.142628 -.019767
 0.164095 -.017246
 0.186758 -.014689
 0.210538 -.012132
 0.235350 -.009608
 0.261106 -.007151
 0.287718 -.004782
 0.315090 -.002532
 0.343127 -.000425
 0.371729 0.001516
 0.400796 0.003265
 0.430226 0.004793
 0.459916 0.006064
 0.489759 0.006997
 0.519653 0.007552
 0.549490 0.007802
 0.579167 0.007826
 0.608579 0.007672
 0.637621 0.007376
 0.666193 0.006968
 0.694194 0.006477
 0.721524 0.005927
 0.748087 0.005340
 0.773791 0.004735
 0.798545 0.004130
 0.822261 0.003538
 0.844856 0.002973
 0.866250 0.002443
 0.886369 0.001955
 0.905141 0.001515
 0.922500 0.001126
 0.938385 0.000789
 0.952740 0.000505
 0.965515 0.000273
 0.976665 0.000093
 0.986151 -.000038
 0.993938 -.000097
 1.000000 0.000000

XFOILinterface/XFOIL/orrs/osmap.dat

XFOILinterface/XFOIL/plotlib/config.make.DP

#=======================================#
Makefile options for Xplot11 library
Set up or select a set of compile
options for your system #
#=======================================#

Use these to set library name
(you might add DP to name to keep double precision version separate)
#PLTLIB = libPlt.a
PLTLIB = libPltDP.a

Some fortrans need trailing underscores in C interface symbols (see Xwin.c)
This should work for most of the "unix" fortran compilers
DEFINE = -DUNDERSCORE

###---
Uncomment for Linux, using the script fort77 or yaf77 or old f77 script
Compiler options for Linux GNU compilers include:
fort77 perl script (calls f2c/gcc) from RH or from yaf77
or the yaf77 or the old f77 shell script from f2c
g77 the GNU Fortran compiler
#
#FC = g77-3
#FC = fort77
#CC = gcc
Uncomment DP to make double-precision version
(note -r8 does not work in g77, use f2c instead)
#DP = -r8
#FFLAGS = -O2 $(DP)
#CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using PGI f77
#FC = pgf77
#CC = gcc
##
Uncomment to make double-precision version
#DP = -r8
#FFLAGS = -fast -O $(DP)
#CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using Intel Fortran compiler
FC = ifort
CC = gcc

Uncomment to make double-precision version
DP = -r8
FFLAGS = -O3 $(DP)
CFLAGS = -O3 $(DEFINE)
AR = ar r
RANLIB = ranlib

LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for DEC OSF/Alpha
#FC = f77
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O4 -float $(DEFINE)
#FFLAGS = -O4 $(DP)
Debug flags
#CFLAGS = -O0 -g -float $(DEFINE)
#FFLAGS = -O0 -g $(DP)
#LINKLIB = -lX11

###---
Uncomment for RS/6000
Note if the library is compiled double precision use the -qautodbl=dbl4
option, not the -qautodbl=dblpad4 option. The dblpad4 option puts padding
into the argument lists for integer args that cause the polylines and
linepatterns to fail as the alignment assumptions between the C and fortran
routines are then different. (The problem lies with xlf90, at least you
can cure it with a compile option:-). This is not a problem on xlf (f77)
because it doesn't have a dblpad4 option...
#
#FC = xlf90
#
Uncomment DP to make double-precision version
#DP = -qautodbl=dbl4
#FFLAGS = -O -qextname -qfixed $(DP)
Link libs required for xlf90 at ABB (HHY 9/96)
#LINKLIB = -lX11 -L/venus/u1/fortran/libfor -lxlfabb

###---
Uncomment for Sun Open-Windows
(give location of X11/xxx.h include files)
#
Uncomment DP to make double-precision version
#DP = -r8
#FFLAGS = -O $(DP)
#CFLAGS = -O -I/usr/openwin/share/include $(DEFINE)
#LINKLIB = -lX11

###---
Uncomment for HP-9000
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O -Aa $(DEFINE)
#FFLAGS = -O +ppu $(DP)
#OBJMISC = util-ops.o
#LINKLIB = -lX11

###---
Uncomment for SGI IRIX
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O $(DEFINE)
#FFLAGS = -O -static $(DP)
#RANLIB = ar qs
#LINKLIB = -lX11

XFOILinterface/XFOIL/plotlib/sym/char.fnt

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789,.;:`"!?@#$%&|()[]{}<>_+-*=/^~
 21616 11672 12183 12888 14488 15183 15672 15616 21650 15650 0 0 0 0 0 0 0 0 0 0
 21616 11688 14288 15284 15676 15668 15260 14256 15252 15644 15628 15220 14216 11616 21656 14256 0 0 0 0
 25674 15183 14488 12888 12183 11672 11632 12121 12816 14416 15121 15629 0 0 0 0 0 0 0 0
 21416 14416 15121 15632 15672 15183 14488 11488 21816 11888 0 0 0 0 0 0 0 0 0 0
 25616 11616 11688 15688 21656 14756 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21616 11688 15688 21656 14656 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 25674 15183 14488 12888 12183 11672 11632 12121 12816 14416 15121 15632 15650 14050 0 0 0 0 0 0
 21616 11688 25616 15688 21656 15656 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 23888 13816 22616 15016 22688 15088 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21430 11921 12616 13916 14621 15132 15188 25788 13688 0 0 0 0 0 0 0 0 0 0 0
 21688 11616 25688 11645 22858 15616 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22088 12016 16016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21416 11488 13648 15888 15816 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21616 11688 15616 15688 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21632 11672 12183 12888 14488 15183 15672 15632 15121 14416 12816 12121 11632 0 0 0 0 0 0 0
 21616 11688 14288 15283 15676 15662 15255 14250 11650 0 0 0 0 0 0 0 0 0 0 0
 21632 11672 12183 12888 14488 15183 15672 15632 15121 14416 12816 12121 11632 24131 15616 0 0 0 0 0
 21616 11688 14288 15283 15676 15662 15255 14250 11650 24250 15816 0 0 0 0 0 0 0 0 0
 25676 15183 14288 13088 12183 11674 11670 12161 13056 14256 15151 15642 15630 15121 14216 13016 12121 11630 0 0
 23688 13616 21488 15888 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21688 11632 12121 12816 14416 15121 15632 15688 0 0 0 0 0 0 0 0 0 0 0 0
 21688 11682 13616 15682 15688 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21488 11452 11639 12516 13437 13646 13837 14716 15639 15852 15888 23646 13654 0 0 0 0 0 0 0
 21688 11682 15622 15616 25688 15682 11622 11616 0 0 0 0 0 0 0 0 0 0 0 0
 21688 11682 13656 15682 15688 23656 13616 0 0 0 0 0 0 0 0 0 0 0 0 0
 21688 15688 11616 15616 22756 14556 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22064 14264 15159 15650 15616 25642 12842 12038 11630 11628 12020 12816 14416 15220 15628 0 0 0 0 0
 21888 11816 21852 12260 13064 14664 15460 15852 15828 15420 14616 13016 12220 11828 0 0 0 0 0 0
 25652 15260 14464 12864 12060 11652 11628 12020 12816 14416 15220 15628 0 0 0 0 0 0 0 0
 25488 15416 25452 15060 14264 12664 11860 11452 11428 11820 12616 14216 15020 15428 0 0 0 0 0 0
 25626 15220 14416 12816 12020 11628 11652 12060 12864 14464 15260 15652 15641 11641 0 0 0 0 0 0
 26072 15680 14884 13684 12880 12472 12416 21656 14256 0 0 0 0 0 0 0 0 0 0 0
 21616 12008 12804 14404 15208 15616 15664 25652 15260 14464 12864 12060 11652 11637 12029 12825 14425 15229 15637 0
 21688 11616 21652 12060 12864 14464 15260 15652 15616 0 0 0 0 0 0 0 0 0 0 0
 22416 15216 24016 14062 12962 23377 13380 13582 13882 14080 14077 13875 13575 13377 0 0 0 0 0 0
 21416 11808 12604 13804 14608 15016 15062 13862 24375 14177 14180 14382 14682 14880 14877 14675 14375 0 0 0
 21888 11816 21844 15268 22750 15816 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22316 14916 23616 13688 12788 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21464 11416 21453 11760 12364 12764 13360 13653 13960 14564 14964 15560 15853 15816 23653 13624 0 0 0 0
 21664 11616 21652 12060 12864 14464 15260 15652 15616 0 0 0 0 0 0 0 0 0 0 0
 21628 11652 12060 12864 14464 15260 15652 15628 15220 14416 12816 12020 11628 0 0 0 0 0 0 0
 21864 11800 21852 12260 13064 14664 15460 15852 15836 15428 14624 13024 12228 11836 0 0 0 0 0 0
 25464 15400 25452 15060 14264 12664 11860 11452 11436 11828 12624 14224 15028 15436 0 0 0 0 0 0
 22064 12016 22052 12460 13264 14664 15460 15852 0 0 0 0 0 0 0 0 0 0 0 0
 25656 15361 14664 12664 11961 11654 11651 11945 12641 14641 15337 15631 15626 15319 14616 12616 11919 11624 0 0
 22484 12428 12820 13616 14816 15620 16028 21666 14266 0 0 0 0 0 0 0 0 0 0 0
 21664 11628 12020 12816 14416 15220 15628 25664 15616 0 0 0 0 0 0 0 0 0 0 0
 21664 11657 11849 13616 15449 15657 15664 0 0 0 0 0 0 0 0 0 0 0 0 0
 21464 11440 11630 12516 13429 13636 13829 14716 15630 15840 15864 23636 13642 0 0 0 0 0 0 0
 21864 15616 25464 11616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21664 11637 12029 12825 14425 15229 15637 25664 15616 15208 14404 12804 12008 11616 0 0 0 0 0 0
 21864 15464 11616 15616 22742 14442 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21628 11676 12084 12888 14488 15284 15676 15628 15220 14416 12816 12020 11628 0 0 0 0 0 0 0
 22678 13688 13616 22616 14616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21676 12084 12888 14488 15284 15676 15666 15258 12036 11628 11616 15616 0 0 0 0 0 0 0 0
 21878 12284 13088 14488 15284 15676 15669 15261 14457 15253 15644 15628 15220 14416 12816 12020 11626 24457 12857 0
 25088 15016 24016 16016 26040 11640 11688 0 0 0 0 0 0 0 0 0 0 0 0 0
 25488 11688 11657 14457 15253 15645 15628 15220 14416 12816 12020 11628 0 0 0 0 0 0 0 0
 25678 15284 14488 12888 12084 11676 11628 12020 12816 14416 15220 15628 15645 15253 14457 12857 12053 11645 0 0
 21688 15688 15679 13228 13216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24757 12557 11667 11676 12084 12888 14488 15284 15676 15667 14757 15647 15628 15220 14416 12816 12020 11628 11647 12557
 21626 12020 12816 14416 15220 15628 15676 15284 14488 12888 12084 11676 11659 12051 12847 14447 15251 15659 0 0
 22604 13416 13424 12624 12616 13215 12604 0 0 0 0 0 0 0 0 0 0 0 0 0
 22624 13424 13416 12616 12624 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22604 13215 12616 12624 13424 13416 12604 22656 12648 13448 13456 12656 0 0 0 0 0 0 0 0
 22624 12616 13416 13424 12624 22656 12648 13448 13456 12656 0 0 0 0 0 0 0 0 0 0
 25284 16268 15884 15284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22184 12666 12784 12184 23784 14266 14384 13784 0 0 0 0 0 0 0 0 0 0 0 0
 23524 13316 13916 13724 13524 23639 14088 13288 13639 23685 13646 0 0 0 0 0 0 0 0 0
 22074 12283 13088 14288 15083 15274 14866 14160 13754 13647 13639 23524 13316 13916 13724 13524 0 0 0 0
 24543 13738 12843 12854 13761 14758 14543 14939 15439 15949 15865 15075 13877 12674 11863 11647 11931 13222 14422 15627
 23278 12622 24778 14122 21959 15759 21640 15440 0 0 0 0 0 0 0 0 0 0 0 0
 25176 12976 12273 11967 11959 12254 12852 14452 15050 15445 15437 15031 14328 12128 23616 13688 0 0 0 0
 21616 15688 22488 12084 12079 12475 12975 13379 13384 12988 12488 25116 15520 15525 15129 14629 14225 14220 14616 15116
 25636 15023 14418 13716 12816 12021 11629 11637 12246 13956 14564 14572 14377 13880 13280 12677 12469 12758 15616 0
 23696 13608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 25092 14382 13965 13850 13935 14318 15008 24417 14230 14150 14270 14483 0 0 0 0 0 0 0 0
 22292 12982 13365 13450 13335 12918 12208 22883 13070 13150 13030 12817 0 0 0 0 0 0 0 0
 25294 13894 13806 15206 24094 14006 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22094 13494 13406 12006 23294 13206 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24896 13890 13853 12850 13846 13810 14804 24009 14045 13846 24091 14054 13853 0 0 0 0 0 0 0
 22496 13490 13453 14450 13446 13410 12304 23209 13245 13446 23291 13254 13453 0 0 0 0 0 0 0
 25666 11648 15630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21666 15648 11630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 20800 17200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21648 15648 23668 13628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21648 15648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22765 14531 22731 14565 21748 15548 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21656 15656 21640 15640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21208 16096 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21854 13868 15854 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21546 11951 12754 13452 14344 14942 15745 16150 0 0 0 0 0 0 0 0 0 0 0 0

XFOILinterface/XFOIL/plotlib/sym/math.fnt

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789,.;:`"!?@#$%&|()[]{}<>_+-*=/^~
 0
 0
 21688 12488 25288 16088 21616 12416 25216 16016 22016 15688 21988 15516 22188 15716 0 0 0 0 0 0
 21216 13988 16416 11216 21318 16118 13884 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
 22816 14816 22888 14888 23788 13716 23988 13916 22575 11461 11443 12529 15129 16243 16261 15175 12575 0 0 0
 25888 16180 16188 11688 22288 12216 22488 12416 21616 13016 0 0 0 0 0 0 0 0 0 0
 20490 11096 11064 21964 13196 23890 14396 15296 15691 15684 13871 13864 15664 0 0 0 0 0 0 0
 26694 16696 16396 16191 15982 15346 15014 14805 14600 14300 14302 25014 15754 15982 0 0 0 0 0 0
 26396 16196 15891 15573 14923 14605 14300 14100 24956 14552 14544 14940 15540 15944 15952 15556 14956 0 0 0
 0
 21516 12616 24916 16116 21816 13888 15816 25616 13784 0 0 0 0 0 0 0 0 0 0 0
 22890 13396 13362 22962 13762 20479 12079 0 0 0 0 0 0 0 0 0 0 0 0 0
 24416 16769 12169 14416 26565 12565 14518 0 0 0 0 0 0 0 0 0 0 0 0 0
 21616 14067 16416 11616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22416 13216 24416 15216 22716 12788 22916 12988 24716 14788 24916 14988 21888 11683 11688 16088 16083 15888 0 0
 22716 14816 15933 15971 14888 12888 11771 11733 12716 23052 14652 23056 13048 24656 14648 21973 11931 25773 15731 0
 23058 13658 14507 16196 17296 23658 13858 14613 0 0 0 0 0 0 0 0 0 0 0 0
 25616 16125 16016 11616 14654 12088 21688 15988 16179 21688 14452 0 0 0 0 0 0 0 0 0
 21347 11755 12255 12451 12235 12422 12916 13816 14522 15134 15552 15670 15582 14888 13988 13484 13277 13468 14362 16153
 23016 14616 21674 11984 12588 13184 13766 13716 26074 15784 15188 14584 13966 13916 23184 13966 24584 13766 0 0
 22124 13642 14456 14870 14983 14888 14688 14486 14080 13670 13253 12935 12924 13118 13516 14216 15019 15926 0 0
 21522 11716 13016 11548 11567 12283 13188 14588 15483 16167 16148 14616 15916 16122 21976 11758 11940 25776 15958 15740
 21626 11716 15916 16026 21678 11788 15988 16078 22660 12644 25060 15044 22654 15054 22650 15050 21720 15920 21784 15984
 23088 14688 23016 14616 23788 13716 23988 13916 21474 11769 11842 13029 14629 15842 15969 16274 21769 12040 25969 15640
 22088 11680 11688 16088 11816 16016 16025 15616 21816 11616 15888 0 0 0 0 0 0 0 0 0
 26064 15554 14937 14323 13617 12916 12217 11722 11534 11746 12256 12962 13564 14064 14460 14750 14737 14919 15416 16120
 21508 12655 13276 13986 14688 15287 15682 15671 15161 14256 12757 24256 15449 15837 15626 14918 13816 13016 11820 0
 21504 15866 25504 15104 14709 14317 13349 12662 12266 11866 0 0 0 0 0 0 0 0 0 0
 25184 14987 14588 13888 13485 13177 13267 13861 14857 15345 15233 14722 13716 12816 11922 11734 12150 12857 13861 0
 25559 14664 13764 12760 12052 11739 11729 12220 13116 14116 15220 21842 14142 0 0 0 0 0 0 0
 21645 12057 12863 13864 14962 15556 15744 15332 14427 13326 12427 11733 11645 23004 14388 0 0 0 0 0
 21557 12164 12867 13662 14246 14325 14113 13804 13500 13305 13416 13932 14950 16063 0 0 0 0 0 0
 21759 11962 12264 12563 12661 12755 11916 22755 13360 14164 14864 15361 15556 15546 14804 0 0 0 0 0
 23164 12424 12618 13016 14116 15018 15724 0 0 0 0 0 0 0 0 0 0 0 0 0
 22666 12060 11751 11740 12232 13329 14329 15333 15841 16049 15958 15662 15064 14564 14160 13747 13004 0 0 0
 22464 11616 25764 15264 14862 13448 12037 22843 13924 14218 14616 15116 0 0 0 0 0 0 0 0
 22788 13288 13685 14074 14627 15018 15316 15716 21316 14256 0 0 0 0 0 0 0 0 0 0
 22764 11600 22130 12122 12517 12916 13716 14418 14922 15664 24922 15017 15316 15616 0 0 0 0 0 0
 22064 12364 12562 12645 12631 12416 13825 15037 15753 15759 15662 15564 15264 0 0 0 0 0 0 0
 21641 12052 12962 13964 15062 15651 15641 15428 14418 13316 12119 11628 11641 0 0 0 0 0 0 0
 21559 11963 12566 15966 23266 12216 24766 14444 14430 14716 0 0 0 0 0 0 0 0 0 0
 25554 12154 12469 12779 13285 13988 14788 15285 15579 15669 15554 15236 14824 14319 13816 13016 12519 12224 12036 12154
 21500 12244 12655 13161 13864 14764 15460 15752 15640 15330 14223 13022 11923 0 0 0 0 0 0 0
 26264 13964 12962 12052 11641 11628 12119 13316 14418 15428 15641 15551 14961 13763 0 0 0 0 0 0
 21655 12061 12764 15964 23864 13016 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21958 12162 12464 12663 12658 12239 12224 12716 13716 14521 15333 15645 15657 15463 15164 0 0 0 0 0
 25660 14964 14264 13464 12761 12254 12147 12542 11936 11728 12020 12816 13816 14618 15321 22542 14042 0 0 0
 22764 12056 11645 11432 11621 12116 12716 13320 13816 14416 15120 15731 15942 15953 15564 23320 13740 0 0 0
 25386 14086 12977 12765 13357 14457 23357 12044 11733 12023 13317 15016 15213 14810 24086 13392 0 0 0 0
 21865 12163 12357 11947 11736 12025 12822 14222 15228 15938 16051 15865 23004 14388 0 0 0 0 0 0
 25482 14482 13473 12560 11942 11931 12422 13617 15016 15314 14809 23990 14482 0 0 0 0 0 0 0
 21272 11864 13064 13672 13688 13096 11896 11288 11272 0 0 0 0 0 0 0 0 0 0 0
 21687 12496 12460 21660 13260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21290 11896 13196 13690 13683 11268 11260 13660 0 0 0 0 0 0 0 0 0 0 0 0
 21391 11896 13196 13691 13684 13179 12079 23179 13674 13666 13060 11860 11266 0 0 0 0 0 0 0
 21296 11271 13771 23296 13260 22860 13560 0 0 0 0 0 0 0 0 0 0 0 0 0
 23696 11296 11280 13180 13675 13666 13060 11860 11266 0 0 0 0 0 0 0 0 0 0 0
 23691 13196 11896 11290 11266 11860 13060 13666 13675 13279 11679 11275 0 0 0 0 0 0 0 0
 21296 13696 13692 12268 12260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21779 11284 11291 11796 13196 13691 13684 13179 13675 13665 13060 11860 11265 11275 11779 13179 0 0 0 0
 23682 13177 11777 11282 11290 11896 13096 13690 13666 13060 11860 11266 0 0 0 0 0 0 0 0
 22604 13215 12616 12624 13424 13416 12604 0 0 0 0 0 0 0 0 0 0 0 0 0
 22624 12616 13416 13424 12624 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
 21620 11616 12016 12020 11620 23820 13816 14216 14220 13820 26020 16016 16416 16420 16020 0 0 0 0 0
 21466 11890 12590 11466 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22696 13496 14092 14486 14478 14072 13468 12668 12072 11678 11686 12092 12696 0 0 0 0 0 0 0
 23130 12822 13622 13530 13130 23441 13588 14488 13441 0 0 0 0 0 0 0 0 0 0 0
 0
 0
 22064 15232 22032 15264 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 23775 14380 15480 16075 16365 16242 15826 15016 13716 13021 12834 13245 14153 15053 16249 0 0 0 0 0
 21648 15648 23464 13460 13860 13864 13464 23436 13432 13832 13836 13436 0 0 0 0 0 0 0 0
 22001 11201 10708 10716 11223 12023 13601 14401 14908 14916 14423 13623 12001 0 0 0 0 0 0 0
 23696 13608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24872 14159 13941 14121 14808 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22472 13159 13340 13121 12408 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
 0
 24266 11648 14230 26066 13448 16030 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21666 14248 11630 23466 16048 13430 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 27280 14016 17216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22282 15482 24882 14786 15882 14578 14882 0 0 0 0 0 0 0 0 0 0 0 0 0
 20896 17296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 23668 13628 21648 15648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21648 15648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 23146 13150 13453 13853 14150 14146 13843 13443 13146 23450 13846 23850 13446 0 0 0 0 0 0 0
 21656 15656 21640 15640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21208 16096 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22480 14088 15680 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22480 12985 13685 14479 15179 15684 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XFOILinterface/XFOIL/plotlib/sym/slan.fnt

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789,.;:`"!?@#$%&|()[]{}<>_+-*=/^~
 21616 12472 13183 13888 15488 16183 16472 15616 22150 16150 0 0 0 0 0 0 0 0 0 0
 21616 12688 15188 16184 16476 16368 15860 14856 15752 16044 15728 15220 14216 11616 22256 14856 0 0 0 0
 26474 16183 15488 13888 13183 12472 11832 12121 12816 14416 15121 15729 0 0 0 0 0 0 0 0
 21416 14416 15121 15832 16472 16183 15488 12488 21816 12888 0 0 0 0 0 0 0 0 0 0
 25616 11616 12688 16688 22256 15356 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21616 12688 16688 22256 15256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 26474 16183 15488 13888 13183 12472 11832 12121 12816 14416 15121 15832 16150 14550 0 0 0 0 0 0
 21616 12688 25616 16688 22256 16256 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24888 13816 22616 15016 23688 16088 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21630 11921 12616 13916 14621 15332 16188 26788 14688 0 0 0 0 0 0 0 0 0 0 0
 22688 11616 26688 12045 23458 15616 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 23088 12016 16016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21416 12488 14048 16888 15816 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21616 12688 15616 16688 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21832 12472 13183 13888 15488 16183 16472 15832 15121 14416 12816 12121 11832 0 0 0 0 0 0 0
 21616 12688 15188 16183 16476 16262 15755 14750 12150 0 0 0 0 0 0 0 0 0 0 0
 21832 12472 13183 13888 15488 16183 16472 15832 15121 14416 12816 12121 11832 24331 15616 0 0 0 0 0
 21616 12688 15188 16183 16476 16262 15755 14750 12150 24750 15816 0 0 0 0 0 0 0 0 0
 26576 16183 15288 14088 13183 12474 12470 12761 13656 14856 15651 15942 15830 15121 14216 13016 12121 11830 0 0
 24688 13616 22488 16888 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22688 11832 12121 12816 14416 15121 15832 16688 0 0 0 0 0 0 0 0 0 0 0 0
 22688 12582 13616 16582 16688 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22488 11952 11939 12516 13737 14046 14137 14716 15939 16352 16888 24046 14154 0 0 0 0 0 0 0
 22688 12582 15622 15616 26688 16582 11622 11616 0 0 0 0 0 0 0 0 0 0 0 0
 22688 12582 14256 16582 16688 24256 13616 0 0 0 0 0 0 0 0 0 0 0 0 0
 22688 16688 11616 15616 23356 15156 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22764 14964 15759 16150 15616 25942 13142 12338 11730 11728 12020 12816 14416 15220 15728 0 0 0 0 0
 22888 11816 22352 12860 13764 15364 16060 16252 15928 15420 14616 13016 12220 12028 0 0 0 0 0 0
 26152 15860 15164 13564 12660 12152 11728 12020 12816 14416 15220 15728 0 0 0 0 0 0 0 0
 26488 15416 25952 15660 14964 13364 12460 11952 11528 11820 12616 14216 15020 15528 0 0 0 0 0 0
 25726 15220 14416 12816 12020 11728 12152 12660 13564 15164 15860 16152 15941 11941 0 0 0 0 0 0
 26872 16680 15884 14684 13880 13272 12416 22256 14856 0 0 0 0 0 0 0 0 0 0 0
 21616 11908 12704 14304 15108 15616 16364 26152 15860 15164 13564 12660 12152 11937 12129 12925 14525 15329 15937 0
 22688 11616 22152 12660 13564 15164 15860 16152 15616 0 0 0 0 0 0 0 0 0 0 0
 22416 15216 24016 14662 13562 24277 14280 14482 14782 14980 14977 14675 14375 14277 0 0 0 0 0 0
 21416 11708 12504 13704 14508 15016 15662 14462 25175 15077 15080 15282 15582 15780 15777 15475 15175 0 0 0
 22888 11816 22244 15968 23250 15816 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22316 14916 23616 14688 13788 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22164 11416 22053 12360 13064 13464 13960 14153 14560 15264 15664 16160 16353 15816 24153 13724 0 0 0 0
 22364 11616 22152 12660 13564 15164 15860 16152 15616 0 0 0 0 0 0 0 0 0 0 0
 21728 12152 12660 13564 15164 15860 16152 15728 15220 14416 12816 12020 11728 0 0 0 0 0 0 0
 22564 11600 22352 12860 13764 15364 16060 16352 16136 15528 14724 13124 12328 12136 0 0 0 0 0 0
 26164 15200 25952 15660 14964 13364 12460 11952 11736 11928 12724 14324 15128 15736 0 0 0 0 0 0
 22764 12016 22552 13060 13964 15364 16060 16352 0 0 0 0 0 0 0 0 0 0 0 0
 26256 15961 15364 13364 12661 12255 12151 12345 12941 14941 15637 15831 15726 15319 14616 12616 11919 11724 0 0
 23484 12528 12820 13616 14816 15620 16128 22366 14966 0 0 0 0 0 0 0 0 0 0 0
 22364 11728 12020 12816 14416 15220 15728 26364 15616 0 0 0 0 0 0 0 0 0 0 0
 22364 12154 13616 16154 16364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22164 11840 11830 12516 13529 13936 14029 14716 15830 16140 16564 23936 14042 0 0 0 0 0 0 0
 22564 15616 26164 11616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22364 11937 12129 12925 14525 15329 15937 26364 15616 15108 14304 12704 11908 11616 0 0 0 0 0 0
 22564 16164 11616 15616 23042 14742 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21728 12576 13084 13888 15488 16284 16576 15728 15220 14416 12816 12020 11728 0 0 0 0 0 0 0
 23578 14688 13616 22616 14616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22576 13084 13888 15488 16284 16576 16466 15858 12336 11728 11616 15616 0 0 0 0 0 0 0 0
 22778 13284 14088 15488 16284 16576 16469 15861 15057 15753 16044 15728 15220 14416 12816 12020 11726 25057 13457 0
 26088 15016 24016 16016 26340 11940 12688 0 0 0 0 0 0 0 0 0 0 0 0 0
 26488 12688 12257 15057 15753 16045 15728 15220 14416 12816 12020 11728 0 0 0 0 0 0 0 0
 26578 16284 15488 13888 13084 12576 11728 12020 12816 14416 15220 15728 16045 15753 15057 13457 12553 12045 0 0
 22688 16688 16579 13328 13216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 25357 13157 12467 12576 13084 13888 15488 16284 16576 16367 15357 16047 15728 15220 14416 12816 12020 11728 12047 13157
 21726 12020 12816 14416 15220 15728 16576 16284 15488 13888 13084 12576 12259 12551 13247 14847 15751 16259 0 0
 22002 12916 13024 12224 12116 12515 12002 0 0 0 0 0 0 0 0 0 0 0 0 0
 22224 13024 12916 12116 12224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22002 12515 12116 12224 13024 12916 12002 22656 12548 13348 13456 12656 0 0 0 0 0 0 0 0
 22224 12116 12916 13024 12224 22656 12548 13348 13456 12656 0 0 0 0 0 0 0 0 0 0
 25784 16468 16384 15784 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22684 12866 13284 12684 24284 14466 14884 14284 0 0 0 0 0 0 0 0 0 0 0 0
 23124 12816 13416 13324 13124 23439 14588 13788 13439 24185 13546 0 0 0 0 0 0 0 0 0
 22374 12783 13588 14788 15583 15574 15066 14260 13754 13547 13439 23124 12816 13416 13324 13124 0 0 0 0
 24443 13538 12743 12854 13861 14858 14443 14739 15239 15849 16065 15375 14277 12974 12063 11547 11631 12722 13922 15227
 23678 12223 25178 13723 21859 15859 21440 15340 0 0 0 0 0 0 0 0 0 0 0 0
 25576 13376 12573 12167 12059 12254 12852 14452 15050 15345 15237 14731 13928 11728 23116 14188 0 0 0 0
 21116 16188 22888 12484 12479 12875 13375 13779 13784 13388 12888 24616 15020 15025 14629 14129 13725 13720 14116 14616
 25436 14623 13918 13216 12316 11521 11229 11437 12146 14056 14764 14872 14777 14280 13680 13077 12669 12858 15116 0
 23696 13608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 26092 15282 14665 14350 14235 14418 14808 24515 14430 14650 15072 15485 0 0 0 0 0 0 0 0
 23492 13882 14065 13950 13635 13018 12208 23784 13870 13650 13229 12816 0 0 0 0 0 0 0 0
 25794 14494 13306 14606 24694 13506 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22794 14094 12906 11606 23894 12706 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 25696 14490 13853 12750 13746 13310 14304 23509 13945 13746 24691 14054 13853 0 0 0 0 0 0 0
 23096 14090 13453 14450 13346 12910 11804 22709 13145 13346 23890 13254 13453 0 0 0 0 0 0 0
 25866 11548 15330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21866 15548 11330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 20600 17000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21648 15648 23668 13628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21648 15648 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22265 14031 22231 14065 21248 15048 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21656 15656 21640 15640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 20608 16696 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21634 15634 21648 15648 21662 15662 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21636 15636 21653 12059 12862 13459 13854 14452 15255 15661 0 0 0 0 0 0 0 0 0 0

XFOILinterface/XFOIL/plotlib/sym/symb.fnt

0123456789ABCD
 24848 14880 18080 18016 11616 11680 14880 0 0 0 0 0 0 0 0 0 0 0 0 0
 24848 14880 16480 18064 18032 16416 13216 11632 11664 13280 14880 0 0 0 0 0 0 0 0 0
 24848 14886 18128 11528 14886 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24885 14811 21148 18548 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 22175 17521 22121 17575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24848 14882 18248 14814 11448 14882 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24848 14868 18168 14810 11568 14868 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21669 14848 14810 24848 18069 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24886 14848 11627 24848 18027 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 23078 16618 23018 16678 21448 18248 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21866 17830 21830 17866 24882 14814 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21680 18016 11616 18080 11680 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 21616 18080 18016 11680 11616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 24848 14859 11559 16917 14884 12717 18159 14859 0 0 0 0 0 0 0 0 0 0 0 0

XFOILinterface/XFOIL/orrs/hfun.fs

 2.200000 1.424314 6.3759692E-02 7.7286772E-02
 2.249999 0.5818658 0.1286836 0.1017801
 2.300001 0.3224505 0.1876043 0.1240487
 2.350000 0.1968402 0.2412394 0.1443625
 2.400001 0.1230612 0.2901566 0.1629318
 2.450002 7.4761219E-02 0.3348306 0.1799315
 2.500000 4.0870249E-02 0.3756623 0.1955078
 2.549999 1.5921699E-02 0.4129993 0.2097875
 2.600000 -3.0974085E-03 0.4471472 0.2228811
 2.650000 -1.7984994E-02 0.4783784 0.2348874
 2.700001 -2.9879723E-02 0.5069337 0.2458933
 2.749999 -3.9539404E-02 0.5330324 0.2559783
 2.800000 -4.7486737E-02 0.5568705 0.2652133
 2.849999 -5.4095037E-02 0.5786278 0.2736634
 2.900000 -5.9637662E-02 0.5984677 0.2813883
 2.950001 -6.4318947E-02 0.6165365 0.2884408
 2.999999 -6.8295643E-02 0.6329733 0.2948720
 3.100000 -7.4594252E-02 0.6614288 0.3060450
 3.200000 -7.9233825E-02 0.6847125 0.3152301
 3.300103 -8.2669333E-02 0.7035615 0.3226993
 3.400010 -8.5209265E-02 0.7186048 0.3286865
 3.500001 -8.7069325E-02 0.7303760 0.3333913
 3.599998 -8.8405088E-02 0.7393323 0.3369858
 3.699999 -8.9330837E-02 0.7458627 0.3396170
 3.799999 -8.9932591E-02 0.7503038 0.3414135
 3.900000 -9.0275936E-02 0.7529424 0.3424849
 3.999999 -9.0411738E-02 0.7540303 0.3429286
 4.100000 -9.0379857E-02 0.7537797 0.3428266
 4.199998 -9.0211928E-02 0.7523782 0.3422523
 4.300000 -8.9933269E-02 0.7499869 0.3412690
 4.400003 -8.9564331E-02 0.7467455 0.3399319
 4.500005 -8.9121759E-02 0.7427766 0.3382895
 4.600001 -8.8619150E-02 0.7381845 0.3363836
 4.700036 -8.8067785E-02 0.7330625 0.3342517
 4.800000 -8.7476961E-02 0.7274926 0.3319269
 4.900002 -8.6854354E-02 0.7215441 0.3294375
 5.000000 -8.6206451E-02 0.7152774 0.3268079
 5.100002 -8.5538656E-02 0.7087481 0.3240614
 5.200044 -8.4855571E-02 0.7020023 0.3212167
 5.300196 -8.4160939E-02 0.6950818 0.3182915
 5.400002 -8.3458036E-02 0.6880222 0.3153006
 5.500004 -8.2749635E-02 0.6808549 0.3122572
 5.600004 -8.2037978E-02 0.6736085 0.3091735
 5.700040 -8.1325099E-02 0.6663060 0.3060593
 5.800205 -8.0612585E-02 0.6589688 0.3029238
 5.899999 -7.9901904E-02 0.6516159 0.2997753
 6.000000 -7.9194203E-02 0.6442629 0.2966205
 6.000000 -7.9194203E-02 0.6442629 0.2966205
 6.200041 -7.7791631E-02 0.6296110 0.2903163
 6.400001 -7.6411203E-02 0.6151052 0.2840521
 6.600001 -7.5057179E-02 0.6008137 0.2778592
 6.800216 -7.3732577E-02 0.5867860 0.2717604
 6.999998 -7.2439343E-02 0.5730603 0.2657741
 7.200051 -7.1178623E-02 0.5596618 0.2599129
 7.400002 -6.9950961E-02 0.5466071 0.2541857
 7.600006 -6.8756513E-02 0.5339069 0.2485987
 7.800218 -6.7595094E-02 0.5215666 0.2431556
 7.999999 -6.6466317E-02 0.5095873 0.2378584
 8.200046 -6.5369554E-02 0.4979668 0.2327075
 8.399995 -6.4304121E-02 0.4867011 0.2277021
 8.600005 -6.3269235E-02 0.4757840 0.2228408
 8.800220 -6.2264036E-02 0.4652079 0.2181211
 9.000002 -6.1287638E-02 0.4549644 0.2135403
 9.200046 -6.0339164E-02 0.4450438 0.2090951
 9.399998 -5.9417758E-02 0.4354364 0.2047819
 9.600000 -5.8522630E-02 0.4261316 0.2005966
 9.800204 -5.7653077E-02 0.4171179 0.1965349
 10.00001 -5.6808326E-02 0.4083832 0.1925918
 10.20004 -5.5987950E-02 0.3999144 0.1887620
 10.40000 -5.5191733E-02 0.3916983 0.1850399
 10.60001 -5.4419592E-02 0.3837187 0.1814184
 10.80020 -5.3671833E-02 0.3759580 0.1778898
 11.00000 -5.2949198E-02 0.3683965 0.1744451
 11.20004 -5.2252978E-02 0.3610107 0.1710734
 11.40001 -5.1585153E-02 0.3537755 0.1677630
 11.60001 -5.0948359E-02 0.3466590 0.1644986
 11.80018 -5.0346270E-02 0.3396267 0.1612639
 12.00001 -4.9783692E-02 0.3326385 0.1580393

XFOILinterface/XFOIL/src/p.ftnchek

ftnchek -common=1 -novice=2 -argument=1 -notruncation \
-include=../plotlib \
pplot.f polplt.f sort.f iopol.f userio.f \
../plotlib/plt_base.f \
../plotlib/plt_font.f \
../plotlib/plt_color.f \
../plotlib/plt_util.f

XFOILinterface/XFOIL/plotlib/plt.ftnchek

Command file for running ftnchek to "lint" the XPLOT11 fortran source
#
ftnchek -common=2 -novice=5 \
plt_base.f plt_font.f plt_util.f plt_color.f \
plt_old.f plt_3D.f\
set_subs.f gw_subs.f ps_subs.f

XFOILinterface/XFOIL/src/x.ftnchek

ftnchek -common=1 -novice=4 -argument=2 -notruncation \
-include=../plotlib \
-include=../orrs \
xfoil.f xpanel.f xoper.f xtcam.f xgdes.f xqdes.f xmdes.f \
xsolve.f xbl.f xblsys.f xpol.f xplots.f xgeom.f xutils.f modify.f \
blplot.f polplt.f aread.f naca.f spline.f plutil.f iopol.f \
userio.f gui.f sort.f \
dplot.f profil.f \
../orrs/ntcalc.f \
../orrs/oshai.f \
../orrs/frplot.f \
../plotlib/plt_base.f \
../plotlib/plt_font.f \
../plotlib/plt_color.f \
../plotlib/plt_util.f

XFOILinterface/XFOIL/orrs/src/osmap.f~

 SUBROUTINE OSMAP(RSP,WSP,HSP,
 & ALFR,
 & ALFR_R, ALFR_W, ALFR_H,
 & ALFRW_R,ALFRW_W,ALFRW_H ,
 & ALFI,
 & ALFI_R, ALFI_W, ALFI_H,
 & ALFIW_R,ALFIW_W,ALFIW_H , OK)
C---
C
C Returns real and imaginary parts of complex wavenumber (Alpha)
C eigenvalue from Orr-Sommerfeld spatial-stability solution
C with mean profiles characterized by shape parameter H.
C Also returns the sensitivities of Alpha with respect to the
C input parameters.
C
C The eigenvalue Alpha(Rtheta,W,H) is stored as a 3-D array at
C discrete points, which is then interpolated to any (Rtheta,W,H)
C via a tricubic spline. The spline coordinates actually used are:
C
C RL = log10(Rtheta)
C WL = log10(W) + 0.5 log10(Rtheta)
C HL = H
C
C
C Input:
C ------
C RSP momentum thickness Reynolds number Rtheta = Theta Ue / v
C WSP normalized disturbance frequency W = w Theta/Ue
C HSP shape parameter of mean profile H = Dstar/Theta
C
C Output:
C -------
C ALFR real part of complex wavenumber * Theta
C ALFR_R d(ALFR)/dRtheta
C ALFR_W d(ALFR)/dW
C ALFR_H d(ALFR)/dH
C ALFRW_R d(dALFR/dW)/dRtheta
C ALFRW_W d(dALFR/dW)/dW
C ALFRW_H d(dALFR/dW)/dH
C
C ALFI imag part of complex wavenumber * Theta
C ALFI_R d(ALFI)/dRtheta
C ALFI_W d(ALFI)/dW
C ALFI_H d(ALFI)/dH
C ALFIW_R d(dALFI/dW)/dRtheta
C ALFIW_W d(dALFI/dW)/dW
C ALFIW_H d(dALFI/dW)/dH
C
C OK T if look up was successful; all values returned are valid
C F if point fell outside (RL,WL) spline domain limits;
C all values (ALFR, ALFR_R, etc.) are returned as zero.
C Exception: If points only falls outside HL spline limits,
C then the HL limit is used and an ALFR value is calculated,
C but OK is still returned as F.
C
C---
 LOGICAL OK
C
C
 REAL B(2,2), BR(2,2), BW(2,2), BH(2,2),
 & BRW(2,2),BRH(2,2),BWH(2,2),BRWH(2,2)
 REAL C(2) , CR(2) , CW(2) , CH(2) ,
 & CRW(2) ,CRH(2) ,CWH(2) ,CRWH(2)
C
 REAL AINT(2),
 & AINT_R(2), AINT_W(2), AINT_H(2),
 & AINTW_R(2),AINTW_W(2),AINTW_H(2)
C
 PARAMETER (NRX=31, NWX=41, NHX=21)
 COMMON /AICOM_I/ NR, NW, NH,
 & IC1, IC2,
 & IW1(NHX), IW2(NHX), IR1(NHX),IR2(NHX)
C
C---
C---- single-precision OS data file
 REAL*4 RLSP, WLSP, HLSP,
 & RINCR, WINCR, RL, WL, HL,
 & A, AR, AW, AH, ARW, ARH, AWH, ARWH
C
C---- native-precision OS data file
c REAL RLSP, WLSP, HLSP,
c & RINCR, WINCR, RL, WL, HL,
c & A, AR, AW, AH, ARW, ARH, AWH, ARWH
C---
C
 COMMON /AICOM_R/ RINCR, WINCR, RL(NRX), WL(NWX), HL(NHX),
 & A(NRX,NWX,NHX,2),
 & AR(NRX,NWX,NHX,2),
 & AW(NRX,NWX,NHX,2),
 & AH(NRX,NWX,NHX,2),
 & ARW(NRX,NWX,NHX,2),
 & ARH(NRX,NWX,NHX,2),
 & AWH(NRX,NWX,NHX,2),
 & ARWH(NRX,NWX,NHX,2)
C
 LOGICAL LOADED
 SAVE LOADED
C
C---- set OSFILE to match the absolute OS database filename
 CHARACTER*128 OSFILE
 DATA OSFILE / '/var/local/codes/orrs/osmap.dat' /
c
c DATA OSFILE
c &/'/afs/athena.mit.edu/course/16/16_d0006/Codes/orrs/osmap_lx.dat'/
C
 DATA LOADED / .FALSE. /
C
C---- set ln(10) for derivatives of log10 function
 DATA AL10 /2.302585093/
C
 IF(LOADED) GO TO 9
C--
C---- first time OSMAP is called ... load in 3-D spline data
C
 NR = 0
 NW = 0
 NH = 0
C
 LU = 31
 OPEN(UNIT=LU,FILE=OSFILE,STATUS='OLD',FORM='UNFORMATTED',ERR=900)
C
 READ(LU) NR, NW, NH
C
 IF(NR.GT.NRX .OR.
 & NW.GT.NWX .OR.
 & NH.GT.NHX) THEN
 WRITE(*,*) 'OSMAP: Array limit exceeded.'
 IF(NR.GT.NRX) WRITE(*,*) ' Increase NRX to', NR
 IF(NW.GT.NWX) WRITE(*,*) ' Increase NWX to', NW
 IF(NH.GT.NHX) WRITE(*,*) ' Increase NHX to', NH
 STOP
 ENDIF
C
 READ(LU) (RL(IR), IR=1,NR)
 READ(LU) (WL(IW), IW=1,NW)
 READ(LU) (HL(IH), IH=1,NH)
 READ(LU) (IR1(IH),IR2(IH),IW1(IH),IW2(IH), IH=1,NH)
C
 DO IC = 2, 1, -1
 DO IH=1, NH
 DO IW=IW1(IH), IW2(IH)
 READ(LU,END=5)
 & (A(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AR(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARW(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (AWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 READ(LU) (ARWH(IR,IW,IH,IC), IR=IR1(IH),IR2(IH))
 ENDDO
 ENDDO
 ENDDO
C
 5 CONTINUE
 IF(IH.LT.NH) THEN
C----- only imaginary part is available
 IC1 = 2
 IC2 = 2
 ELSE
C----- both real and imaginary parts available
 IC1 = 1
 IC2 = 2
 ENDIF
 CLOSE(LU)
C
C
 RINCR = (RL(NR) - RL(1))/FLOAT(NR-1)
 WINCR = (WL(NW) - WL(1))/FLOAT(NW-1)
 LOADED = .TRUE.
C--
 9 CONTINUE
C
C
C---- set returned variables in case of out-of-limits error
 ALFR = 0.0
 ALFR_R = 0.0
 ALFR_W = 0.0
 ALFR_H = 0.0
 ALFRW_R = 0.0
 ALFRW_W = 0.0
 ALFRW_H = 0.0
C
 ALFI = 0.0
 ALFI_R = 0.0
 ALFI_W = 0.0
 ALFI_H = 0.0
 ALFIW_R = 0.0
 ALFIW_W = 0.0
 ALFIW_H = 0.0
C
 IF(NR.EQ.0 .OR. NW.EQ.0 .OR. NH.EQ.0) THEN
C----- map not available for some reason (OPEN or READ error on osmap.dat?)
 OK = .FALSE.
 RETURN
 ENDIF
C
C---- define specified spline coordinates
 RLSP = ALOG10(RSP)
 WLSP = ALOG10(WSP) + 0.5*RLSP
 HLSP = HSP
C
C---- assume map limits will not be exceeded
 OK = .TRUE.
C
C---- find H interval
 DO 10 IH=2, NH
 IF(HL(IH) .GE. HLSP) GO TO 11
 10 CONTINUE
 IH = NH
 11 CONTINUE
C
 IF(HLSP.LT.HL(1) .OR. HLSP.GT.HL(NH)) THEN
CCC OK = .FALSE.
CCC WRITE(*,*) 'Over H limits. R w H:', RSP,WSP,HSP
CCC RETURN
 HLSP = MAX(HL(1) , MIN(HL(NH) , HLSP))
 ENDIF
C
C---- find R interval
 IR = INT((RLSP-RL(1))/RINCR + 2.001)
 IR1X = MAX(IR1(IH) , IR1(IH-1))
 IR2X = MIN(IR2(IH) , IR2(IH-1))
 IF(IR-1.LT.IR1X .OR. IR.GT.IR2X) THEN
 OK = .FALSE.
CCC WRITE(*,*) 'Over R limits. R w H:', RSP,WSP,HSP
CCC RETURN
 IR = MAX(IR1X+1 , MIN(IR2X , IR))
 RLSP = MAX(RL(1) , MIN(RL(NR) , RLSP))
 ENDIF
C
C---- find W interval
 IW = INT((WLSP-WL(1))/WINCR + 2.001)
 IW1X = MAX(IW1(IH) , IW1(IH-1))
 IW2X = MIN(IW2(IH) , IW2(IH-1))
 IF(IW-1.LT.IW1X .OR. IW.GT.IW2X) THEN
 OK = .FALSE.
CCC WRITE(*,*) 'Over w limits. R w H:', RSP,WSP,HSP
CCC RETURN
 IW = MAX(IW1X+1 , MIN(IW2X , IW))
 WLSP = MAX(WL(1) , MIN(WL(NW) , WLSP))
 ENDIF
C
 DRL = RL(IR) - RL(IR-1)
 DWL = WL(IW) - WL(IW-1)
 DHL = HL(IH) - HL(IH-1)
 TR = (RLSP - RL(IR-1)) / DRL
 TW = (WLSP - WL(IW-1)) / DWL
 TH = (HLSP - HL(IH-1)) / DHL
C
 TR = MAX(0.0 , MIN(1.0 , TR))
 TW = MAX(0.0 , MIN(1.0 , TW))
 TH = MAX(0.0 , MIN(1.0 , TH))
C
C---- compute real and imaginary parts
 DO 1000 IC = IC1, IC2
C
C---- evaluate spline in Rtheta at the corners of HL,WL cell
 DO 20 KH=1, 2
 JH = IH + KH-2
 DO 205 KW=1, 2
 JW = IW + KW-2
 A1 = A (IR-1,JW,JH,IC)
 AR1 = AR (IR-1,JW,JH,IC)
 AW1 = AW (IR-1,JW,JH,IC)
 AH1 = AH (IR-1,JW,JH,IC)
 ARW1 = ARW (IR-1,JW,JH,IC)
 ARH1 = ARH (IR-1,JW,JH,IC)
 AWH1 = AWH (IR-1,JW,JH,IC)
 ARWH1 = ARWH(IR-1,JW,JH,IC)
C
 A2 = A (IR ,JW,JH,IC)
 AR2 = AR (IR ,JW,JH,IC)
 AW2 = AW (IR ,JW,JH,IC)
 AH2 = AH (IR ,JW,JH,IC)
 ARW2 = ARW (IR ,JW,JH,IC)
 ARH2 = ARH (IR ,JW,JH,IC)
 AWH2 = AWH (IR ,JW,JH,IC)
 ARWH2 = ARWH(IR ,JW,JH,IC)
C
 DA1 = DRL*AR1 - A2 + A1
 DA2 = DRL*AR2 - A2 + A1
 DAW1 = DRL*ARW1 - AW2 + AW1
 DAW2 = DRL*ARW2 - AW2 + AW1
 DAH1 = DRL*ARH1 - AH2 + AH1
 DAH2 = DRL*ARH2 - AH2 + AH1
 DAWH1 = DRL*ARWH1 - AWH2 + AWH1
 DAWH2 = DRL*ARWH2 - AWH2 + AWH1
C
C-------- set ALFI, dALFI/dWL, dALFI/dHL, d2ALFI/dHLdWL
 B(KW,KH) = (1.0-TR)* A1 + TR* A2
 & + ((1.0-TR)*DA1 - TR*DA2)*(TR-TR*TR)
 BW(KW,KH) = (1.0-TR)* AW1 + TR* AW2
 & + ((1.0-TR)*DAW1 - TR*DAW2)*(TR-TR*TR)
 BH(KW,KH) = (1.0-TR)* AH1 + TR* AH2
 & + ((1.0-TR)*DAH1 - TR*DAH2)*(TR-TR*TR)
 BWH(KW,KH) = (1.0-TR)* AWH1 + TR* AWH2
 & + ((1.0-TR)*DAWH1 - TR*DAWH2)*(TR-TR*TR)
C
C-------- also, the RL derivatives of the quantities above
 BR(KW,KH) = (A2 - A1
 & + (1.0-4.0*TR+3.0*TR*TR)*DA1 + (3.0*TR-2.0)*TR*DA2)/DRL
 BRW(KW,KH) = (AW2 - AW1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAW1 + (3.0*TR-2.0)*TR*DAW2)/DRL
 BRH(KW,KH) = (AH2 - AH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAH1 + (3.0*TR-2.0)*TR*DAH2)/DRL
 BRWH(KW,KH) = (AWH2 - AWH1
 & + (1.0-4.0*TR+3.0*TR*TR)*DAWH1 + (3.0*TR-2.0)*TR*DAWH2)/DRL
C
 205 CONTINUE
 20 CONTINUE
C
C---- evaluate spline in HL at the two WL-interval endpoints
 DO 30 KW=1, 2
 B1 = B (KW,1)
 BR1 = BR (KW,1)
 BW1 = BW (KW,1)
 BH1 = BH (KW,1)
 BRW1 = BRW (KW,1)
 BRH1 = BRH (KW,1)
 BWH1 = BWH (KW,1)
 BRWH1 = BRWH(KW,1)
C
 B2 = B (KW,2)
 BR2 = BR (KW,2)
 BW2 = BW (KW,2)
 BH2 = BH (KW,2)
 BRW2 = BRW (KW,2)
 BRH2 = BRH (KW,2)
 BWH2 = BWH (KW,2)
 BRWH2 = BRWH(KW,2)
C
 DB1 = DHL*BH1 - B2 + B1
 DB2 = DHL*BH2 - B2 + B1
 DBR1 = DHL*BRH1 - BR2 + BR1
 DBR2 = DHL*BRH2 - BR2 + BR1
 DBW1 = DHL*BWH1 - BW2 + BW1
 DBW2 = DHL*BWH2 - BW2 + BW1
 DBRW1 = DHL*BRWH1 - BRW2 + BRW1
 DBRW2 = DHL*BRWH2 - BRW2 + BRW1
C
C------ set ALFI, dALFI/dRL, dALFI/dWL
 C(KW) = (1.0-TH)* B1 + TH* B2
 & + ((1.0-TH)*DB1 - TH*DB2)*(TH-TH*TH)
 CR(KW) = (1.0-TH)* BR1 + TH* BR2
 & + ((1.0-TH)*DBR1 - TH*DBR2)*(TH-TH*TH)
 CW(KW) = (1.0-TH)* BW1 + TH* BW2
 & + ((1.0-TH)*DBW1 - TH*DBW2)*(TH-TH*TH)
 CRW(KW) = (1.0-TH)* BRW1 + TH* BRW2
 & + ((1.0-TH)*DBRW1 - TH*DBRW2)*(TH-TH*TH)
C
C------ also, the HL derivatives of the quantities above
 CH(KW) = (B2 - B1
 & + (1.0-4.0*TH+3.0*TH*TH)*DB1 + (3.0*TH-2.0)*TH*DB2)/DHL
 CRH(KW) = (BR2 - BR1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBR1 + (3.0*TH-2.0)*TH*DBR2)/DHL
 CWH(KW) = (BW2 - BW1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBW1 + (3.0*TH-2.0)*TH*DBW2)/DHL
 CRWH(KW) = (BRW2 - BRW1
 & + (1.0-4.0*TH+3.0*TH*TH)*DBRW1 + (3.0*TH-2.0)*TH*DBRW2)/DHL
C
 30 CONTINUE
C
C---- evaluate cubic in WL
 C1 = C (1)
 CR1 = CR (1)
 CW1 = CW (1)
 CH1 = CH (1)
 CRW1 = CRW (1)
 CRH1 = CRH (1)
 CWH1 = CWH (1)
 CRWH1 = CRWH(1)
C
 C2 = C (2)
 CR2 = CR (2)
 CW2 = CW (2)
 CH2 = CH (2)
 CRW2 = CRW (2)
 CRH2 = CRH (2)
 CWH2 = CWH (2)
 CRWH2 = CRWH(2)
C
 DC1 = DWL*CW1 - C2 + C1
 DC2 = DWL*CW2 - C2 + C1
 DCH1 = DWL*CWH1 - CH2 + CH1
 DCH2 = DWL*CWH2 - CH2 + CH1
 DCR1 = DWL*CRW1 - CR2 + CR1
 DCR2 = DWL*CRW2 - CR2 + CR1
CC DCRH1 = DWL*CRWH1 - CRH2 + CRH1
CC DCRH2 = DWL*CRWH2 - CRH2 + CRH1
C
C---- set AINT, dAINT/dRL, dAINT/dHL
 AINT(IC) = (1.0-TW)* C1 + TW* C2
 & + ((1.0-TW)*DC1 - TW*DC2)*(TW-TW*TW)
 AINT_RL = (1.0-TW)* CR1 + TW* CR2
 & + ((1.0-TW)*DCR1 - TW*DCR2)*(TW-TW*TW)
 AINT_HL = (1.0-TW)* CH1 + TW* CH2
 & + ((1.0-TW)*DCH1 - TW*DCH2)*(TW-TW*TW)
C
C---- also, the WL derivatives of the quantities above
 AINT_WL = (C2 - C1
 & + (1.0-4.0*TW+3.0*TW*TW)*DC1 + (3.0*TW-2.0)*TW*DC2)/DWL
 AINTW_RL = (CR2 - CR1
 & + (1.0-4.0*TW+3.0*TW*TW)*DCR1 + (3.0*TW-2.0)*TW*DCR2)/DWL
 AINTW_HL = (CH2 - CH1
 & + (1.0-4.0*TW+3.0*TW*TW)*DCH1 + (3.0*TW-2.0)*TW*DCH2)/DWL
C
 AINTW_WL = ((6.0*TW-4.0)*DC1 + (6.0*TW-2.0)*DC2)/DWL**2
C
C
C---- convert derivatives wrt to spline coordinates (RL,WL,HL) into
C- derivatives wrt input variables (Rtheta,f,H)
 AINT_R(IC) = (AINT_RL + 0.5*AINT_WL) / (AL10 * RSP)
 AINT_W(IC) = (AINT_WL) / (AL10 * WSP)
 AINT_H(IC) = AINT_HL
C
 AINTW_R(IC) = (AINTW_RL + 0.5*AINTW_WL) / (AL10**2 * WSP*RSP)
 AINTW_W(IC) = (AINTW_WL - AL10*AINT_WL) / (AL10**2 * WSP*WSP)
 AINTW_H(IC) = AINTW_HL / (AL10 * WSP)
C
 1000 CONTINUE
C
 ALFR = AINT(1)
 ALFR_R = AINT_R(1)
 ALFR_W = AINT_W(1)
 ALFR_H = AINT_H(1)
 ALFRW_R = AINTW_R(1)
 ALFRW_W = AINTW_W(1)
 ALFRW_H = AINTW_H(1)
C
 ALFI = AINT(2)
 ALFI_R = AINT_R(2)
 ALFI_W = AINT_W(2)
 ALFI_H = AINT_H(2)
 ALFIW_R = AINTW_R(2)
 ALFIW_W = AINTW_W(2)
 ALFIW_H = AINTW_H(2)
C
C---- if we're within the spline data space, the derivatives are valid
 IF(OK) RETURN
C
C---- if not, the ai value is clamped, and its derivatives are zero
 ALFR_R = 0.0
 ALFR_W = 0.0
 ALFR_H = 0.0
 ALFRW_R = 0.0
 ALFRW_W = 0.0
 ALFRW_H = 0.0
C
 ALFI_R = 0.0
 ALFI_W = 0.0
 ALFI_H = 0.0
 ALFIW_R = 0.0
 ALFIW_W = 0.0
 ALFIW_H = 0.0
C
 RETURN
C
 900 CONTINUE
C---- pick up here for file open error
 WRITE(*,*)
 WRITE(*,*) 'OSMAP: OS database file not found: ', OSFILE
 WRITE(*,*) ' Will return zero amplification rates'
C
C---- assume file is loaded so the above error message doesn't appear again
 LOADED = .TRUE.
 OK = .FALSE.
C
 RETURN
 END ! OSMAP

XFOILinterface/XFOIL/plotlib/config.make.g77

#=======================================#
Makefile options for Xplot11 library
Set up or select a set of compile
options for your system #
#=======================================#

Use these to set library name
(you might add DP to name to keep double precision version separate)
PLTLIB = libPlt.a
#PLTLIB = libPltDP.a

Some fortrans need trailing underscores in C interface symbols (see Xwin.c)
This should work for most of the "unix" fortran compilers
DEFINE = -DUNDERSCORE

###---
Uncomment for Linux, using the script fort77 or yaf77 or old f77 script
Compiler options for Linux GNU compilers include:
fort77 perl script (calls f2c/gcc) from RH or from yaf77
or the yaf77 or the old f77 shell script from f2c
g77 the GNU Fortran compiler
#
FC = g77-3
#FC = fort77
CC = gcc3
Uncomment DP to make double-precision version
(note -r8 does not work in g77, use f2c instead)
#DP = -r8
FFLAGS = -O2 $(DP)
CFLAGS = -O2 $(DEFINE)
AR = ar r
RANLIB = ranlib
LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using PGI f77
#FC = pgf77
#CC = gcc
##
Uncomment to make double-precision version
#DP = -r8
#FFLAGS = -fast -O $(DP)
#CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using Intel Fortran compiler
#FC = ifc
#CC = gcc
##
Uncomment to make double-precision version
#DP = -r8
#FFLAGS = -O3 $(DP)
#CFLAGS = -O3 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for DEC OSF/Alpha
#FC = f77
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O4 -float $(DEFINE)
#FFLAGS = -O4 $(DP)
Debug flags
#CFLAGS = -O0 -g -float $(DEFINE)
#FFLAGS = -O0 -g $(DP)
#LINKLIB = -lX11

###---
Uncomment for RS/6000
Note if the library is compiled double precision use the -qautodbl=dbl4
option, not the -qautodbl=dblpad4 option. The dblpad4 option puts padding
into the argument lists for integer args that cause the polylines and
linepatterns to fail as the alignment assumptions between the C and fortran
routines are then different. (The problem lies with xlf90, at least you
can cure it with a compile option:-). This is not a problem on xlf (f77)
because it doesn't have a dblpad4 option...
#
#FC = xlf90
#
Uncomment DP to make double-precision version
#DP = -qautodbl=dbl4
#FFLAGS = -O -qextname -qfixed $(DP)
Link libs required for xlf90 at ABB (HHY 9/96)
#LINKLIB = -lX11 -L/venus/u1/fortran/libfor -lxlfabb

###---
Uncomment for Sun Open-Windows
(give location of X11/xxx.h include files)
#
Uncomment DP to make double-precision version
#DP = -r8
#FFLAGS = -O $(DP)
#CFLAGS = -O -I/usr/openwin/share/include $(DEFINE)
#LINKLIB = -lX11

###---
Uncomment for HP-9000
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O -Aa $(DEFINE)
#FFLAGS = -O +ppu $(DP)
#OBJMISC = util-ops.o
#LINKLIB = -lX11

###---
Uncomment for SGI IRIX
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O $(DEFINE)
#FFLAGS = -O -static $(DP)
#RANLIB = ar qs
#LINKLIB = -lX11

XFOILinterface/XFOIL/orrs/a.gpl

set terminal x11
set output
set noclip points
set clip one
set noclip two
set border
set boxwidth
set dummy x,y
set format x "%g"
set format y "%g"
set format z "%g"
set nogrid
set key
set nolabel
set noarrow
set nologscale
set offsets 0, 0, 0, 0
set nopolar
set angles radians
set noparametric
set view 60, 30, 1, 1
set samples 100, 100
set isosamples 10, 10
set surface
set nocontour
set clabel
set nohidden3d
set cntrparam order 4
set cntrparam linear
set cntrparam levels auto 5
set cntrparam points 5
set size 1,1
set data style points
set function style lines
set xzeroaxis
set yzeroaxis
set tics in
set ticslevel 0.5
set xtics
set ytics
set ztics
set title "" 0,0
set notime
set rrange [-0 : 10]
set trange [-5 : 5]
set urange [-5 : 5]
set vrange [-5 : 5]
set xlabel "" 0,0
set xrange [-20 : 20]
set ylabel "" 0,0
set yrange [-0.440399 : 0.440399]
set zlabel "" 0,0
set zrange [-10 : 10]
set autoscale r
set autoscale t
set autoscale xy
set autoscale z
set zero 1e-08
rsq(u,v,k) = (u+k*pi/St)**2 + v**2
uxk(u,v,k) = (0.5/St * v/rsq(u,v,k))*(1.0 - exp(-1.69*Rsq(u,v,k)))
uyk(u,v,k) = (0.5/St * (-u-k*pi/St)/rsq(u,v,k))*(1.0 - exp(-1.69*Rsq(u,v,k)))
ux(u,v) = uxk(u,v,-6)+uxk(u,v,-5)+uxk(u,v,-4)+uxk(u,v,-3)+uxk(u,v,-2)+uxk(u,v,-1)+uxk(u,v,0)+uxk(u,v,1)+uxk(u,v,2)+uxk(u,v,3)+uxk(u,v,4)+uxk(u,v,5)+uxk(u,v,6)
uy(u,v) = uyk(u,v,-6)+uyk(u,v,-5)+uyk(u,v,-4)+uyk(u,v,-3)+uyk(u,v,-2)+uyk(u,v,-1)+uyk(u,v,0)+uyk(u,v,1)+uyk(u,v,2)+uyk(u,v,3)+uyk(u,v,4)+uyk(u,v,5)+uyk(u,v,6)
Rsq(u,v,k) = rsq(u,v,k)>50.0?50.0:rsq(u,v,k)
uxx(u,v) = uxk(u,v,-1)+uxk(u,v,0)+uxk(u,v,1)
uyy(u,v) = uyk(u,v,-1)+uyk(u,v,0)+uyk(u,v,1)
L = 16.5
Wmax = 4.45
St = 0.19
plot [u=-20:20] ux(u,20.5), ux(u,-20.5)

XFOILinterface/XFOIL/orrs/u.gpl

set terminal x11
set output
set noclip points
set clip one
set noclip two
set border
set boxwidth
set dummy x,y
set format x "%g"
set format y "%g"
set format z "%g"
set nogrid
set key
set nolabel
set noarrow
set nologscale
set offsets 0, 0, 0, 0
set nopolar
set angles radians
set noparametric
set view 60, 30, 1, 1
set samples 100, 100
set isosamples 10, 10
set surface
set nocontour
set clabel
set nohidden3d
set cntrparam order 4
set cntrparam linear
set cntrparam levels auto 5
set cntrparam points 5
set size 1,1
set data style points
set function style lines
set xzeroaxis
set yzeroaxis
set tics in
set ticslevel 0.5
set xtics
set ytics
set ztics
set title "" 0,0
set notime
set rrange [-0 : 10]
set trange [-5 : 5]
set urange [-5 : 5]
set vrange [-5 : 5]
set xlabel "" 0,0
set xrange [-2 : 2]
set ylabel "" 0,0
set yrange [-1.38712 : 1.38712]
set zlabel "" 0,0
set zrange [-10 : 10]
set autoscale r
set autoscale t
set autoscale xy
set autoscale z
set zero 1e-08
rsq(u,v,k) = (u+k*pi/St)**2 + v**2
Rsq(u,v,k) = rsq(u,v,k)>50.0?50.0:rsq(u,v,k)
uxk(u,v,k) = (0.5/St * v/rsq(u,v,k))*(1.0 - exp(-Wmax*St*Rsq(u,v,k)))
uyk(u,v,k) = (0.5/St * (-u-k*pi/St)/rsq(u,v,k))*(1.0 - exp(-Wmax*St*Rsq(u,v,k)))
ux(u,v) = uxk(u,v,-6)+uxk(u,v,-5)+uxk(u,v,-4)+uxk(u,v,-3)+uxk(u,v,-2)+uxk(u,v,-1)+uxk(u,v,0)+uxk(u,v,1)+uxk(u,v,2)+uxk(u,v,3)+uxk(u,v,4)+uxk(u,v,5)+uxk(u,v,6)
uy(u,v) = uyk(u,v,-6)+uyk(u,v,-5)+uyk(u,v,-4)+uyk(u,v,-3)+uyk(u,v,-2)+uyk(u,v,-1)+uyk(u,v,0)+uyk(u,v,1)+uyk(u,v,2)+uyk(u,v,3)+uyk(u,v,4)+uyk(u,v,5)+uyk(u,v,6)
St = 0.19
Wmax = 4.45
plot [u=-2:2] ux(u,0.5), uy(u,-0.5)

XFOILinterface/XFOIL/runs/cp_500_080.lnv

1.000 0.055 | CL=1.234 (a=8 deg nominal) Re=500000
0.950 0.050
0.900 0.020
0.850 0.000
0.800 -.045
0.750 -.105
0.700 -.150
0.650 -.222
0.600 -.309
0.550 -.418
0.500 -.567
0.450 -.743
0.425 -.860
0.400 -1.216
0.375 -1.775
0.350 -1.784
0.325 -1.784
0.300 -1.870
0.275 -1.944
0.250 -2.022
0.225 -2.072
0.200 -2.111
0.150 -2.126
0.100 -2.063
0.075 -2.005
0.050 -1.946
0.025 -1.805
0.012 -1.171
0.000 0.202
0.012 0.750
0.025 0.486
0.050 0.414
0.075 0.400
0.100 0.408
0.150 0.400
0.200 0.395
0.300 0.336
0.400 0.371
0.500 0.357
0.600 0.332
0.700 0.250
0.800 0.211
0.900 0.152
0.950 0.077

XFOILinterface/XFOIL/orrs/osmaps_gu.lst

osm.0220
osm.0230
osm.0240
osm.0250
osm.0260
osm.0270
osm.0280
osm.0300
osm.0320
osm.0350
osm_gu.0400
osm_gu.0500
osm_gu.0600
osm_gu.0800
osm_gu.1000
osm_gu.1200
osm_gu.1500
osm_gu.2000

XFOILinterface/XFOIL/orrs/osmaps_ns.lst

osm.0220
osm.0230
osm.0240
osm.0250
osm.0260
osm.0270
osm.0280
osm.0300
osm.0320
osm.0350
osm.0400
osm_ns.0500
osm_ns.0600
osm_ns.0800
osm_ns.1000
osm_ns.1200
osm_ns.1500
osm_ns.2000

XFOILinterface/@Airfoil/Airfoil.m

classdef Airfoil < handle
 properties
 UpperX
 UpperY
 LowerX
 LowerY
 Name
 end

 methods (Static)
 AF = createNACA4(Designation, NumPoints)
 AF = createNACA5(Designation, NumPoints)
 end

 methods
 function this = Airfoil(filename)
 if nargin == 0
 %Empty airfoil...
 return
 end
 %Load airfoil from file, using the standard Eppler format
 fid = fopen(filename);
 Header = fgetl(fid);
 tmp=textscan(Header, '%f%f','MultipleDelimsAsOne',true);
 if isempty(tmp{1})
 HasHeader=true;
 this.Name = strtrim(Header);
 else
 HasHeader=false;
 [~,f,~]=fileparts(filename);
 this.Name = f;
 end
 frewind(fid);
 Coordinates = textscan(fid, '%f%f','HeaderLines',HasHeader,'MultipleDelimsAsOne',true);
 fclose(fid);

 %Separate upper and lower coordinates
 X=Coordinates{1};
 Y=Coordinates{2};

 %Normalize data to 0..1
 minX=min(X);
 maxX=max(X);
 scale = 1/(maxX-minX);
 X=(X-minX) .* scale;
 Y= Y .* scale;

 %FIXME: Derotate airfoil, if necessary

 %Find leading edge (X=0)
 iLE = find(X==0,1,'first');
 this.UpperX = X(iLE:-1:1);
 this.UpperY = Y(iLE:-1:1);

 this.LowerX = X(iLE:end);
 this.LowerY = Y(iLE:end);
 end

 function save (this,filename)
 fid=fopen(filename,'w+');
 fprintf(fid,'%s\n',this.Name);
 fprintf(fid,' %f %f \n',[flipud(this.UpperX) flipud(this.UpperY)].');
 fprintf(fid,' %f %f \n',[this.LowerX(2:end) this.LowerY(2:end)].');
 fclose(fid);
 end

 function plot(this,ViewPoints)
 plot(this.UpperX,this.UpperY,'-g');
 hold on
 plot(this.LowerX,this.LowerY,'-r');
 if nargin == 2 && ViewPoints
 plot(this.UpperX,this.UpperY,'og');
 plot(this.LowerX,this.LowerY,'or');
 end
 axis equal
 end

 function [X,Y] = Coordinates(this)
 X=[flipud(this.UpperX); this.LowerX(2:end)];
 Y=[flipud(this.UpperY); this.LowerY(2:end)];
 end

 function T=ThicknessAt(this,X)
 UY = interp1(this.UpperX,this.UpperY,X);
 LY = interp1(this.LowerX,this.LowerY,X);
 T = UY-LY;
 end

 function T=Thickness(this)
 X=[this.UpperX;this.LowerX];
 T=max(this.ThicknessAt(X));
 end

 function T=CamberAt(this,X)
 UY = interp1(this.UpperX,this.UpperY,X);
 LY = interp1(this.LowerX,this.LowerY,X);
 T = (UY+LY)./2;
 end

 function T=Camber(this)
 X=[this.UpperX;this.LowerX];
 T=max(this.CamberAt(X));
 end

 end
end

XFOILinterface/charts.m

clear all
close all

angle = {'-30','-25','-20','-15','-10','-5','0','5','10','15','20','25','30'};
color = {'b','r','g'};

figure(1)
hold on
for i = 1:13
 data{i} = importfile('AerodynamicCoefsFlap09.xls',['FlapAngle',angle{i}],'A2:D79');
 plot(data{i}(:,1),data{i}(:,2),color{mod(i,3)+1})
end
xlabel('Angle of attack [deg]')
ylabel('Lift coefficient [-]')

for i = 1:13
 flapangle(i) = str2num(angle{i});
 flaplift(i) = data{i}(find(data{i}(:,1)>=0,1,'first'),2);
 flapdrag(i) = data{i}(find(data{i}(:,1)>=0,1,'first'),3);
end

figure(3)
hold on
plot(flapangle,flaplift)
xlabel('Flap angle [deg]')
ylabel('Lift coefficient [-]')

figure(4)
hold on
plot(flapangle,flapdrag)
xlabel('Flap angle [deg]')
ylabel('Drag coefficient [-]')

XFOILinterface/@Airfoil/createNACA4.m

function AF = createNACA4(Designation, NumPoints)
 if nargin < 2
 NumPoints = 100;
 end

 if nargin < 1
 Designation = '0012';
 end

 iaf.designation=Designation;
 iaf.n=NumPoints;
 iaf.HalfCosineSpacing=1;
 iaf.wantFile=0;
 iaf.datFilePath='';
 iaf.is_finiteTE=0;

 af = naca4gen(iaf);

 AF = Airfoil;
 AF.UpperX = flipud(af.xU);
 AF.UpperY = flipud(af.zU);
 AF.LowerX = af.xL;
 AF.LowerY = af.zL;
 AF.Name = af.name;
end

%Based on the contribution by Divahar Jayaraman
% http://www.mathworks.com/matlabcentral/fileexchange/19915-naca-4-digit-airfoil-generator

% Copyright (c) 2009, Divahar Jayaraman
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.

function af = naca4gen(iaf)

 %
 % "naca4gen" Generates the NACA 4 digit airfoil coordinates with desired no.
 % of panels (line elements) on it.
 % Author : Divahar Jayaraman (j.divahar@yahoo.com)
 %
 % INPUTS---
 % iaf.designation = NACA 4 digit iaf.designation (eg. '2412') - STRING !
 % iaf.n = no of panels (line elements) PER SIDE (upper/lower)
 % iaf.HalfCosineSpacing = 1 for "half cosine x-spacing"
 % = 0 to give "uniform x-spacing"
 % iaf.wantFile = 1 for creating airfoil data file (eg. 'naca2412.dat')
 % = 0 to suppress writing into a file
 % iaf.datFilePath = Path where the data file has to be created
 % (eg. 'af_data_folder/naca4digitAF/')
 % use only forward slash '/' (Just for OS portability)
 %
 % OUTPUTS--
 % Data:::
 % af.x = x cordinate (nx1 array)
 % af.z = z cordinate (nx1 array)
 % af.xU = x cordinate of upper surface (nx1 array)
 % af.zU = z cordinate of upper surface (nx1 array)
 % af.xL = x cordinate of lower surface (nx1 array)
 % af.zL = z cordinate of lower surface (nx1 array)
 % af.xC = x cordinate of camber line (nx1 array)
 % af.zC = z cordinate of camber line (nx1 array)
 % af.name = Name of the airfoil
 % af.header = Airfoil name ; No of panels ; Type of spacing
 % (eg. 'NACA4412 : [50 panels,Uniform x-spacing]')
 %
 %
 % File:::
 % First line : Header eg. 'NACA4412 : [50 panels,Half cosine x-spacing]'
 % Subsequent lines : (2*iaf.n+1) rows of x and z values
 %
 % Typical Inputs:::
 % iaf.designation='2312';
 % iaf.n=56;
 % iaf.HalfCosineSpacing=1;
 % iaf.wantFile=1;
 % iaf.datFilePath='./'; % Current folder
 % iaf.is_finiteTE=0;

 % % [[Calculating key parameters---]]
 t=str2num(iaf.designation(3:4))/100;
 m=str2num(iaf.designation(1))/100;
 p=str2num(iaf.designation(2))/10;

 a0= 0.2969;
 a1=-0.1260;
 a2=-0.3516;
 a3= 0.2843;

 if iaf.is_finiteTE ==1
 a4=-0.1015; % For finite thick TE
 else
 a4=-0.1036; % For zero thick TE
 end

 % % [[Giving x-spacing---]]
 if iaf.HalfCosineSpacing==1
 beta=linspace(0,pi,iaf.n+1)';
 x=(0.5*(1-cos(beta))); % Half cosine based spacing
 iaf.header=['NACA' iaf.designation ' : [' num2str(2*iaf.n) 'panels,Half cosine x-spacing]'];
 else
 x=linspace(0,1,iaf.n+1)';
 iaf.header=['NACA' iaf.designation ' : [' num2str(2*iaf.n) 'panels,Uniform x-spacing]'];
 end

 yt=(t/0.2)*(a0*sqrt(x)+a1*x+a2*x.^2+a3*x.^3+a4*x.^4);

 xc1=x(find(x<=p));
 xc2=x(find(x>p));
 xc=[xc1 ; xc2];

 if p==0
 xu=x;
 yu=yt;

 xl=x;
 yl=-yt;

 zc=zeros(size(xc));
 else
 yc1=(m/p^2)*(2*p*xc1-xc1.^2);
 yc2=(m/(1-p)^2)*((1-2*p)+2*p*xc2-xc2.^2);
 zc=[yc1 ; yc2];

 dyc1_dx=(m/p^2)*(2*p-2*xc1);
 dyc2_dx=(m/(1-p)^2)*(2*p-2*xc2);
 dyc_dx=[dyc1_dx ; dyc2_dx];
 theta=atan(dyc_dx);

 xu=x-yt.*sin(theta);
 yu=zc+yt.*cos(theta);

 xl=x+yt.*sin(theta);
 yl=zc-yt.*cos(theta);
 end
 af.name=['NACA ' iaf.designation];

 af.x=[flipud(xu) ; xl(2:end)];
 af.z=[flipud(yu) ; yl(2:end)];

 indx1=1:min(find(af.x==min(af.x))); % Upper surface indices
 indx2=min(find(af.x==min(af.x))):length(af.x); % Lower surface indices
 af.xU=af.x(indx1); % Upper Surface x
 af.zU=af.z(indx1); % Upper Surface z
 af.xL=af.x(indx2); % Lower Surface x
 af.zL=af.z(indx2); % Lower Surface z

 af.xC=xc;
 af.zC=zc;

 lecirFactor=0.8;
 af.rLE=0.5*(a0*t/0.2)^2;

 le_offs=0.5/100;
 dyc_dx_le=(m/p^2)*(2*p-2*le_offs);
 theta_le=atan(dyc_dx_le);
 af.xLEcenter=af.rLE*cos(theta_le);
 af.yLEcenter=af.rLE*sin(theta_le);

 % % [[Writing iaf data into file--]]
 if iaf.wantFile==1
 F1=iaf.header;
 F2=num2str([af.x af.z]);
 F=strvcat(F1,F2);
 fileName=[iaf.datFilePath 'naca' iaf.designation '.dat'];
 dlmwrite(fileName,F,'delimiter','')
 end
end

XFOILinterface/@Airfoil/createNACA5.m

function AF = createNACA5(Designation, NumPoints)
 if nargin < 2
 NumPoints = 100;
 end

 if nargin < 1
 Designation = '23012';
 end

 iaf.designation=Designation;
 iaf.n=NumPoints;
 iaf.HalfCosineSpacing=1;
 iaf.wantFile=0;
 iaf.datFilePath='';
 iaf.is_finiteTE=0;

 af = naca5gen(iaf);

 AF = Airfoil;
 AF.UpperX = flipud(af.xU);
 AF.UpperY = flipud(af.zU);
 AF.LowerX = af.xL;
 AF.LowerY = af.zL;
 AF.Name = af.name;
end

%Based on the contribution by Divahar Jayaraman
% http://www.mathworks.com/matlabcentral/fileexchange/23241-naca-5-digit-airfoil-generator

% Copyright (c) 2009, Divahar Jayaraman
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.

function af = naca5gen(iaf)
 %
 % "naca5gen" Generates the NACA 5 digit airfoil coordinates with desired no.
 % of panels (line elements) on it.
 % Author : Divahar Jayaraman (j.divahar@yahoo.com)
 %
 % INPUTS---
 % iaf.designation = NACA 5 digit designation (eg. '23012') - STRING !
 % iaf.n = no of panels (line elements) PER SIDE (upper/lower)
 % iaf.HalfCosineSpacing = 1 for "half cosine x-spacing"
 % = 0 to give "uniform x-spacing"
 % iaf.wantFile = 1 for creating airfoil data file (eg. 'naca2412.dat')
 % = 0 to suppress writing into a file
 % iaf.datFilePath = Path where the data file has to be created
 % (eg. 'af_data_folder/naca5digitAF/')
 % use only forward slash '/' (Just for OS portability)
 %
 % OUTPUTS--
 % Data:::
 % af.x = x cordinate (nx1 array)
 % af.z = z cordinate (nx1 array)
 % af.xU = x cordinate of upper surface (nx1 array)
 % af.zU = z cordinate of upper surface (nx1 array)
 % af.xL = x cordinate of lower surface (nx1 array)
 % af.zL = z cordinate of lower surface (nx1 array)
 % af.xC = x cordinate of camber line (nx1 array)
 % af.zC = z cordinate of camber line (nx1 array)
 % af.name = Name of the airfoil
 % af.header = Airfoil name ; No of panels ; Type of spacing
 % (eg. 'NACA23012 : [50 panels,Uniform x-spacing]')
 %
 %
 % File:::
 % First line : Header eg. 'NACA23012 : [50 panels,Half cosine x-spacing]'
 % Subsequent lines : (2*iaf.n+1) rows of x and z values
 %
 % Typical Inputs:::
 % iaf.designation='23012';
 % iaf.n=56;
 % iaf.HalfCosineSpacing=1;
 % iaf.wantFile=1;
 % iaf.datFilePath='./'; % Current folder
 % iaf.is_finiteTE=0;

 % % [[Calculating key parameters---]]
 cld=str2num(iaf.designation(1))*(3/2)/10;
 p=0.5*str2num(iaf.designation(2:3))/100;
 t=str2num(iaf.designation(4:5))/100;

 a0= 0.2969;
 a1=-0.1260;
 a2=-0.3516;
 a3= 0.2843;

 if iaf.is_finiteTE ==1
 a4=-0.1015; % For finite thick TE
 else
 a4=-0.1036; % For zero thick TE
 end

 % % [[Giving x-spacing---]]
 if iaf.HalfCosineSpacing==1
 beta=linspace(0,pi,iaf.n+1)';
 x=(0.5*(1-cos(beta))); % Half cosine based spacing
 iaf.header=['NACA' iaf.designation ' : [' num2str(2*iaf.n) 'panels,Half cosine x-spacing]'];
 else
 x=linspace(0,1,iaf.n+1)';
 iaf.header=['NACA' iaf.designation ' : [' num2str(2*iaf.n) 'panels,Uniform x-spacing]'];
 end

 yt=(t/0.2)*(a0*sqrt(x)+a1*x+a2*x.^2+a3*x.^3+a4*x.^4);

 P=[0.05 0.1 0.15 0.2 0.25];
 M=[0.0580 0.1260 0.2025 0.2900 0.3910];
 K=[361.4 51.64 15.957 6.643 3.230];

 m=spline(P,M,p);
 k1=spline(M,K,m);

 xc1=x(find(x<=p));
 xc2=x(find(x>p));
 xc=[xc1 ; xc2];

 if p==0
 xu=x;
 yu=yt;

 xl=x;
 yl=-yt;

 zc=zeros(size(xc));
 else
 yc1=(1/6)*k1*(xc1.^3-3*m*xc1.^2+m^2*(3-m)*xc1);
 yc2=(1/6)*k1*m^3*(1-xc2);
 zc=(cld/0.3)*[yc1 ; yc2];

 dyc1_dx=(1/6)*k1*(3*xc1.^2-6*m*xc1+m^2*(3-m));
 dyc2_dx=repmat((1/6)*k1*m^3,size(xc2));
 dyc_dx=[dyc1_dx ; dyc2_dx];
 theta=atan(dyc_dx);

 xu=x-yt.*sin(theta);
 yu=zc+yt.*cos(theta);

 xl=x+yt.*sin(theta);
 yl=zc-yt.*cos(theta);
 end
 af.name=['NACA ' iaf.designation];

 af.x=[flipud(xu) ; xl(2:end)];
 af.z=[flipud(yu) ; yl(2:end)];

 indx1=1:min(find(af.x==min(af.x))); % Upper surface indices
 indx2=min(find(af.x==min(af.x))):length(af.x); % Lower surface indices
 af.xU=af.x(indx1); % Upper Surface x
 af.zU=af.z(indx1); % Upper Surface z
 af.xL=af.x(indx2); % Lower Surface x
 af.zL=af.z(indx2); % Lower Surface z

 af.xC=xc;
 af.zC=zc;

 lecirFactor=0.8;
 af.rLE=0.5*(a0*t/0.2)^2;

 le_offs=0.5/100;
 dyc_dx_le=(1/6)*k1*(3*le_offs.^2-6*m*le_offs+m^2*(3-m));
 theta_le=atan(dyc_dx_le);
 af.xLEcenter=af.rLE*cos(theta_le);
 af.yLEcenter=af.rLE*sin(theta_le);

 % % [[Writing iaf data into file--]]
 if iaf.wantFile==1
 F1=iaf.header;
 F2=num2str([af.x af.z]);
 F=strvcat(F1,F2);
 fileName=[iaf.datFilePath 'naca' iaf.designation '.dat'];
 dlmwrite(fileName,F,'delimiter','')
 end
end

XFOILinterface/exampleXFOIL.m

close all
clear all
fclose('all');

for flapXloc = 0.9:0.1:0.9; %location of flap along the chord

 for flapAngle = -2:2:2; %flap angles to be considered

 %% Create a new instance of the XFOIL class, and set some properties
 xf = XFOIL;
 xf.KeepFiles = false; % Set it to true to keep all intermediate files created (Airfoil, Polars, ...)
 xf.Visible = false; % Set it to false to hide XFOIL plotting window
 xf.XFOILExecutable = 'xfoilP4.exe';

 %% Create a NACA 5-series airfoil
 xf.Airfoil = Airfoil('NACA64618.txt');
 % To create a NACA 4-series, use >> xf.Airfoil = Airfoil.createNACA4('0012');
 % To load an existing airfoil, use >> xf.Airfoil = Airfoil('naca0012.dat');

 %% Setup the action list

 % Add flap with (x hinge location, y/t relative position, angle)
 xf.addFlap(flapXloc,0.5,flapAngle)

 %for i = 1:20
 %xf.addFlap(flapXloc,0.5,1)

 %Add five filtering steps to smooth the airfoil coordinates and help convergence
 xf.addFiltering(5);

 %Switch to OPER mode, and set Reynolds = 3E7, Mach = 0.1
 xf.addOperation(3E7, 0.1);

 %Set maximum number of iterations
 xf.addIter(1000)

 %Initializate the calculations
 xf.addAlpha(0,true);

 %Create a new polar
 xf.addPolarFile('Polar.txt');

 %Calculate a sequence of angle of attack, from 0 to 25 degrees, step size of 0.1 degrees
 xf.addAlpha(-20:0.5:20);

 %Close the polar file
 xf.addClosePolarFile;
 %end

 %And finally add the action to quit XFOIL
 xf.addQuit;

 %% Now we're ready to run XFOIL
 xf.run
 disp('Running XFOIL, please wait...')

 %% Wait up to 200 seconds for it to finish...
 %It is possible to run more than one XFOIL instance at the same time
 finished = xf.wait(200);

 %% If successfull, read and plot the polar
 if finished
 disp('XFOIL analysis finished.')
 xf.readPolars;
 %figure
 %xf.plotPolar(1);
 d = [xf.Polars{1}.Alpha,xf.Polars{1}.CL,xf.Polars{1}.CD,xf.Polars{1}.CM,xf.Polars{1}.HMom];
 headers = {'AoA','Cl','Cd','Cm','Hinge moment'};
 xlswrite(['AAerodynamicCoefsFlap0',int2str(flapXloc*10),'.xls'], headers, ['FlapAngle',int2str(flapAngle)], 'A1');
 xlswrite(['AAerodynamicCoefsFlap0',int2str(flapXloc*10),'.xls'], d, ['FlapAngle',int2str(flapAngle)], 'A2');

 else
 xf.kill;
 end

 end
end

XFOILinterface/exampleXFOIL_profileDiagrams.m

close all
clear all
fclose('all');

flapXloc = 0.8; %location of flap along the chord
for flapAngle = -20:2:20; %flap angles to be considered

%% Create a new instance of the XFOIL class, and set some properties
xf = XFOIL;
xf.KeepFiles = false; % Set it to true to keep all intermediate files created (Airfoil, Polars, ...)
xf.Visible = true; % Set it to false to hide XFOIL plotting window
xf.XFOILExecutable = 'xfoilP4.exe';

%% Create a NACA 5-series airfoil
xf.Airfoil = Airfoil('NACA64618.txt');
% To create a NACA 4-series, use >> xf.Airfoil = Airfoil.createNACA4('0012');
% To load an existing airfoil, use >> xf.Airfoil = Airfoil('naca0012.dat');

%% Setup the action list

% Add flap with (x hinge location, y/t relative position, angle)
xf.addFlap(flapXloc,0.5,flapAngle)

%for i = 1:20
%xf.addFlap(flapXloc,0.5,1)

%Add five filtering steps to smooth the airfoil coordinates and help convergence
xf.addFiltering(5);

xf.save(['NACA64618_flap',num2str(flapAngle),'.dat'])

%And finally add the action to quit XFOIL
xf.addQuit;

%% Now we're ready to run XFOIL
xf.run
disp('Running XFOIL, please wait...')

%% Wait up to 200 seconds for it to finish...
%It is possible to run more than one XFOIL instance at the same time
finished = xf.wait(200);

%% If successfull, read and plot the polar
if finished
 disp('XFOIL analysis finished.')
else
 xf.kill;
end

end

XFOILinterface/FlapLift.m

%close all
clear all
fclose('all');

flapXloc = 0.8; %location of flap along the chord
iter = 0;
for flapAngle = -20:.5:20; %flap angles to be considered

%% Create a new instance of the XFOIL class, and set some properties
xf = XFOIL;
xf.KeepFiles = false; % Set it to true to keep all intermediate files created (Airfoil, Polars, ...)
xf.Visible = false; % Set it to false to hide XFOIL plotting window
xf.XFOILExecutable = 'xfoilP4.exe';

%% Create a NACA 5-series airfoil
xf.Airfoil = Airfoil('NACA64618.txt');
% To create a NACA 4-series, use >> xf.Airfoil = Airfoil.createNACA4('0012');
% To load an existing airfoil, use >> xf.Airfoil = Airfoil('naca0012.dat');

%% Setup the action list

% Add flap with (x hinge location, y/t relative position, angle)
xf.addFlap(flapXloc,0.5,flapAngle)

%for i = 1:20
%xf.addFlap(flapXloc,0.5,1)

%Add five filtering steps to smooth the airfoil coordinates and help convergence
xf.addFiltering(5);

%Switch to OPER mode, and set Reynolds = 3E7, Mach = 0.1
xf.addOperation(3E7, 0.1);

%Set maximum number of iterations
xf.addIter(100)

%Initializate the calculations
xf.addAlpha(0,true);
%xf.addAlpha(-.05:.001:0);

%Create a new polar
xf.addPolarFile('Polar.txt');

%Calculate a sequence of angle of attack, from 0 to 25 degrees, step size of 0.1 degrees
xf.addAlpha(0);

%Close the polar file
xf.addClosePolarFile;
%end

%And finally add the action to quit XFOIL
xf.addQuit;

%% Now we're ready to run XFOIL
xf.run
disp('Running XFOIL, please wait...')

%% Wait up to 200 seconds for it to finish...
%It is possible to run more than one XFOIL instance at the same time
finished = xf.wait(200);

%% If successfull, read and plot the polar
if finished
 disp('XFOIL analysis finished.')
 xf.readPolars;
 %figure
 %xf.plotPolar(1);
 if isempty(xf.Polars{1}.CL);

 else
 iter = iter + 1;
 lift(iter) = xf.Polars{1}.CL;
 hingemoment(iter) = xf.Polars{1}.HMom;
 angle(iter) = flapAngle;

 end
% headers = {'AoA','Cl','Cd','Cm','Hinge moment'};
% xlswrite(['AerodynamicCoefsFlap',num2str(flapXloc*10,'%02d'),'.xls'], headers, ['FlapAngle',num2str(flapAngle)], 'A1');
% xlswrite(['AerodynamicCoefsFlap',num2str(flapXloc*10,'%02d'),'.xls'], d, ['FlapAngle',num2str(flapAngle)], 'A2');

else
 xf.kill;
end

end

XFOILinterface/importfile.m

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import data from a spreadsheet
% DATA = IMPORTFILE(FILE) reads all numeric data from the first worksheet
% in the Microsoft Excel spreadsheet file named FILE and returns the
% numeric data.
%
% DATA = IMPORTFILE(FILE,SHEET) reads from the specified worksheet.
%
% DATA = IMPORTFILE(FILE,SHEET,RANGE) reads from the specified worksheet
% and from the specified RANGE. Specify RANGE using the syntax
% 'C1:C2',where C1 and C2 are opposing corners of the region.%
% Example:
% AerodynamicCoefsFlap09 =
% importfile('AerodynamicCoefsFlap09.xls','FlapAngle-30','A2:D79');
%
% See also XLSREAD.

% Auto-generated by MATLAB on 2013/09/26 17:57:48

%% Input handling

% If no sheet is specified, read first sheet
if nargin == 1 || isempty(sheetName)
 sheetName = 1;
end

% If no range is specified, read all data
if nargin <= 2 || isempty(range)
 range = '';
end

%% Import the data
data = xlsread(workbookFile, sheetName, range);

XFOILinterface/@XFOIL/readPolars.m

function readPolars(this)
 this.Polars = {};
 for i=1:length(this.PolarFiles)
 try
 fid = fopen(this.PolarFiles{i});

 if (this.HingeMom == true)
 status = fseek(fid, 442, 'bof');
 data=textscan(fid,'%f%f%f%f%f%f%f%f');
 else
 status = fseek(fid, 429, 'bof');
 data=textscan(fid,'%f%f%f%f%f%f%f');
 end

 fclose(fid);
 if not(isempty(data)) && status == 0
 data=cell2mat(data);
 else
 data = [];
 end

 n=any(isnan(data),2);
 data(n,:) = [];
 Polar.Alpha = data(:,1);
 Polar.CL = data(:,2);
 Polar.CD = data(:,3);
 Polar.CDp = data(:,4);
 Polar.CM = data(:,5);
 Polar.Top_Xtr = data(:,6);
 Polar.Bot_Xtr = data(:,7);

 if (this.HingeMom == true)
 Polar.HMom = data(:,8);
 end

 this.Polars{i} = Polar;
 catch
 error('Invalid polar file %s', this.PolarFiles{i});
 end
 end

 if ~this.KeepFiles
 for i=1:length(this.PolarFiles)
 delete(this.PolarFiles{i});
 end
 this.PolarFiles = {};
 delete(this.ActionsFile);
 if isa(this.Airfoil,'Airfoil')
 delete(this.AirfoilFile);
 end
 end

end

XFOILinterface/@XFOIL/XFOIL.m

classdef XFOIL < handle
 properties
 Airfoil
 Actions = {}
 Polars
 PolarFiles = {};
 PressureFiles = {};
 Visible = true
 Process
 XFOILExecutable = 'xfoil.exe';
 KeepFiles = false;
 ID
 HingeMom = false;
 end

 properties (SetAccess = private)
 AirfoilFile = ''
 end

 methods (Static, Hidden)
 function ID = NewID()
 persistent LastID
 if isempty(LastID)
 LastID=0;
 end
 ID=LastID+1;
 LastID=ID;
 end
 end

 methods (Hidden)
 function CreateActionsFile(this)
 fid = fopen(this.ActionsFile,'wt+');
 if ~this.Visible
 fprintf(fid,'PLOP\nG\n\n');
 end
 fprintf(fid,'LOAD %s\n',this.AirfoilFile);
 fprintf(fid,'%s\n',this.Actions{:});
 fclose(fid);
 end
 end

 methods (Static)
 function DownloadXFOIL
 h = waitbar(0,'Please wait, downloading XFOIL...');
 URL = 'http://web.mit.edu/drela/Public/web/xfoil/xfoil6.96.zip';
 [f, status] = urlwrite(URL, 'xfoil.zip');
 if status == 0
 warning('XFOIL:NotFound','XFOIL executable was not found in current MATLAB path, and I failed to download it. Please get it at http://web.mit.edu/drela/Public/web/xfoil/');
 end
 ClassPath = mfilename('fullpath');
 ClassPath = fileparts(fileparts(ClassPath)); %Get the directory above the class
 TargetPath = fullfile(ClassPath,'XFOIL');
 unzip(f,TargetPath);
 delete(f);
 addpath(genpath(TargetPath));
 delete(h);
 end
 end

 methods
 function this = XFOIL(XFOILExecutable)
 if nargin == 1 && ~isempty(XFOILExecutable)
 this.XFOILExecutable = XFOILExecutable;
 end
 this.ID=this.NewID;

 if this.ID == 1
 disp(repmat('-',1,70));
 disp(' XFOIL - MATLAB interface v1.0');
 disp(' Copyright (c) 2011 by Rafael Oliveira - Contact: rafael@rafael.aero')
 disp(repmat('-',1,70));
 disp(' Thanks for Prof. Mark Drela and all involved on XFOIL development')
 disp(' for making available this amazing tool for all of us.')
 disp(repmat('-',1,70));
 end

 if isempty(which(this.XFOILExecutable))
 if ispc
 ButtonName = questdlg('XFOIL executable not found, should I download it?', 'XFOIL','Yes','No','Yes');
 if strcmp(ButtonName,'Yes')
 XFOIL.DownloadXFOIL;
 else
 warning('XFOIL:NotFound','XFOIL executable was not found in current MATLAB path, Please get it at http://web.mit.edu/drela/Public/web/xfoil/');
 end
 else
 error('Unix version not yet implemented!')
 end
 end
 end

 function AF = ActionsFile(this)
 AF = sprintf('actions_%i.txt',this.ID);
 end

 function run(this)

 if ~isa(this.Airfoil,'char')
 if isa(this.Airfoil,'Airfoil')
 [d, AirfoilFile] = fileparts(tempname(pwd));
 this.AirfoilFile = [AirfoilFile '.dat'];
 this.Airfoil.save(this.AirfoilFile);
 else
 error('Invalid airfoil')
 end
 else
 this.AirfoilFile = this.Airfoil;
 end

 if ~exist(this.AirfoilFile,'file')
 error('Airfoil file not found: %s', AirfoilFile)
 end

 this.CreateActionsFile;

 warning('off','MATLAB:DELETE:FileNotFound')
 for i=1:length(this.PolarFiles)
 delete(this.PolarFiles{1})
 end
 warning('on','MATLAB:DELETE:FileNotFound')

 if ispc
 if ~exist(fullfile(pwd,this.XFOILExecutable),'file')
 xfEXE = which(this.XFOILExecutable);
 [success,msg,msgid] = copyfile(xfEXE,fullfile(pwd,this.XFOILExecutable),'f');
 if ~success
 error('Error when copying XFOIL to current directory: %s',msg)
 end
 end
 arg = {'cmd', '/c',sprintf('"%s < %s"',this.XFOILExecutable,this.ActionsFile), '>','nul'};
 else
 error('Unix version not yet implemented!')
 end
 PB=java.lang.ProcessBuilder(arg);
 this.Process = PB.start;
 end

 function finished = wait(this,timeout)
 tStart = tic;
 finished=false;
 if nargin<2
 timeout=inf;
 end
 while toc(tStart)<timeout && finished==false
 try %#ok<TRYNC>
 ev = this.Process.exitValue(); %#ok<NASGU>
 this.Process=[];
 finished=true;
 end
 pause(0.01)
 end
 end

 function kill (this)
 if ~isempty(this.Process)
 this.Process.destroy;
 this.Process =[];
 end
 end

 function addActions (this, NewActions)
 if ~iscell(NewActions)
 NewActions={NewActions};
 end

 this.Actions = cat(1,this.Actions, NewActions);
 end

 function addFiltering (this,Steps)
 NewActions = {''; ''; ''; '';'' ;''; ''; ''; ...
 'PANE'; 'MDES'; 'FILT 1.00'};
 FiltActions = repmat({'EXEC'},Steps,1);

 NewActions = cat(1,NewActions,FiltActions);
 NewActions{end+1} = '';
 NewActions{end+1} = 'PANE';
 this.addActions (NewActions);
 end

 function addFlap (this,PostionX,PositionY,Angle)
 NewActions = {''; ''; ''; '';'' ;''; ''; ''; ...
 'GDES'; 'FLAP'; num2str(PostionX);...
 '999';num2str(PositionY);num2str(Angle);...
 '';'PANE'};

 this.HingeMom = true;
 this.addActions (NewActions);
 end

 function save (this,fileName)
 NewActions = {''; ''; ''; '';'' ;''; ''; ''; ...
 ''; 'save'; fileName};

 this.addActions (NewActions);
 end

 function changePaneling (this,NumberOfNodes)%, TeLeDensity, RefinedArea)
 NewActions = {''; ''; ''; '';'' ;''; ''; ''; ...
 'PPAR'; ['n ' num2str(NumberOfNodes)]; ''; '';...
 'GDES'; 'CADD'; ''; ''; ''; '';};
 this.addActions (NewActions);
 end

 function addOperation (this, Reynolds, Mach, N, Vacc, XTrTop, XTrBottom)
 if nargin<2
 Reynolds=0;
 end
 if nargin<3
 Mach=0;
 end
 if nargin<4
 N=9;
 end
 if nargin<5
 Vacc=0.01;
 end
 if nargin<6
 XTrTop=1;
 end
 if nargin<7
 XTrBottom=1;
 end

 NewActions = {'OPER'; 'VPAR'; ...
 sprintf('N %1.2f',N); ...
 sprintf('VACC %1.4f',Vacc); ...
 'XTR'; sprintf('%1.4f',XTrTop); ...
 sprintf('%1.4f',XTrBottom); ''; ...
 sprintf('VISC %1.4f',Reynolds); ...
 sprintf('MACH %1.6f',Mach)};

 this.addActions (NewActions);
 end

 function addIter(this,Iter)
 this.addActions('ITER')
 this.addActions(num2str(Iter))
 end

 function addAlpha(this, Alpha,Init)
 if nargin==2 || ~Init
 if numel(Alpha) == 1
 this.addActions(sprintf('ALFA %2.4f',Alpha))
 else
 for i = 1:numel(Alpha)
 this.addActions(sprintf('ALFA %2.4f',Alpha(i)))
 end
 end
 else
 this.addActions({sprintf('ALFA %2.4f',Alpha);'INIT'})
 end
 end

 function addCL(this, CL, Init)
 if nargin==2 || ~Init
 this.addActions(sprintf('CL %2.4f',CL))
 else
 this.addActions({sprintf('CL %2.4f',CL);'INIT'})
 end
 end

 function addPolarFile(this,PolarFile)
 if (this.HingeMom == true)
 this.addActions({'HINC'})
 end
 this.addActions({'PACC'; PolarFile; ''});
 this.PolarFiles{end+1} = PolarFile;
 end

 function addPressureFile(this,PressureFile)
 this.addActions(sprintf('CPWR %s', PressureFile));
 this.PressureFiles{end+1} = PressureFile;
 end

 function addClosePolarFile(this)
 this.addActions({'PACC';''});
 end

 function addQuit(this)
 this.addActions({'';'';'';'';'';'';'';'QUIT';''});
 end

 function plotPolar(this,Index)
 p1=this.Polars{Index};
 subplot(4,2,1:2)
 if isa(this.Airfoil,'Airfoil')
 this.Airfoil.plot;
 xlim([0 1])
 set(gcf,'Name',this.Airfoil.Name);
 else
 af = Airfoil(this.Airfoil);
 af.plot;
 xlim([0 1])
 set(gcf,'Name',af.Name);
 end
 xlabel('x/c')
 ylabel('y/c')

 ax = subplot(4,2,[5 7]);
 plot(p1.CD,p1.CL)
 xlabel('CD')
 ylabel('CL')

 subplot(4,2,[6 8]);
 axCLCM = plotyy(p1.Alpha,p1.CL,p1.Alpha,p1.CM);
 ax(2) = axCLCM(1);
 set(axCLCM(1),'YTick', get(ax(1),'YTick'));
 xlabel('Alpha [deg]')
 ylabel(axCLCM(1),'CL')
 ylabel(axCLCM(2),'CM')

 ax(3) = subplot(4,2,3:4);
 xlim([0 1])
 plot(p1.Top_Xtr,p1.CL,'g')
 hold on
 plot(p1.Bot_Xtr,p1.CL,'r')
 xlabel('x_t_r/c')
 ylabel('CL')

 linkaxes(ax,'y');
 end

 end
end

XFOILinterface/XFOILpitchVflap.m

%close all
clear all
fclose('all');

flapXloc = 0.8; %location of flap along the chord
iter = 0;
for flapAngle = -20:.5:20; %flap angles to be considered

%% Create a new instance of the XFOIL class, and set some properties
xf = XFOIL;
xf.KeepFiles = true; % Set it to true to keep all intermediate files created (Airfoil, Polars, ...)
xf.Visible = true; % Set it to false to hide XFOIL plotting window
xf.XFOILExecutable = 'xfoilP4.exe';

%% Create a NACA 5-series airfoil
xf.Airfoil = Airfoil('NACA64618.txt');
% To create a NACA 4-series, use >> xf.Airfoil = Airfoil.createNACA4('0012');
% To load an existing airfoil, use >> xf.Airfoil = Airfoil('naca0012.dat');

%% Setup the action list

% Add flap with (x hinge location, y/t relative position, angle)
xf.addFlap(flapXloc,0.5,flapAngle)

%for i = 1:20
%xf.addFlap(flapXloc,0.5,1)

%Add five filtering steps to smooth the airfoil coordinates and help convergence
xf.addFiltering(5);

%Switch to OPER mode, and set Reynolds = 3E7, Mach = 0.1
xf.addOperation(3E7, 0.1);

%Set maximum number of iterations
xf.addIter(100)

%Initializate the calculations
xf.addAlpha(0,true);
%xf.addAlpha(-.05:.001:0);

%Create a new polar
xf.addPolarFile('Polar.txt');

%Calculate a sequence of angle of attack, from 0 to 25 degrees, step size of 0.1 degrees
xf.addAlpha(0);

%Close the polar file
xf.addClosePolarFile;
%end

%And finally add the action to quit XFOIL
xf.addQuit;

%% Now we're ready to run XFOIL
xf.run
disp('Running XFOIL, please wait...')

%% Wait up to 200 seconds for it to finish...
%It is possible to run more than one XFOIL instance at the same time
finished = xf.wait(200);

%% If successfull, read and plot the polar
if finished
 disp('XFOIL analysis finished.')
 xf.readPolars;
 %figure
 %xf.plotPolar(1);
 if isempty(xf.Polars{1}.CL);

 else
 iter = iter + 1;
 lift(iter) = xf.Polars{1}.CL;
 angle(iter) = flapAngle;

 end
% headers = {'AoA','Cl','Cd','Cm','Hinge moment'};
% xlswrite(['AerodynamicCoefsFlap',num2str(flapXloc*10,'%02d'),'.xls'], headers, ['FlapAngle',num2str(flapAngle)], 'A1');
% xlswrite(['AerodynamicCoefsFlap',num2str(flapXloc*10,'%02d'),'.xls'], d, ['FlapAngle',num2str(flapAngle)], 'A2');

else
 xf.kill;
end

end

XFOILinterface/XFOIL_FlapAerodynamicCoefs.m

close all
clear all
fclose('all');

for flapXloc = 0.7:0.1:0.9; %location of flap along the chord

 for flapAngle = -22:2:22; %flap angles to be considered

 %% Create a new instance of the XFOIL class, and set some properties
 xf = XFOIL;
 xf.KeepFiles = false; % Set it to true to keep all intermediate files created (Airfoil, Polars, ...)
 xf.Visible = false; % Set it to false to hide XFOIL plotting window
 xf.XFOILExecutable = 'xfoilP4.exe';

 %% Create a NACA 5-series airfoil
 xf.Airfoil = Airfoil('NACA64618.txt');
 % To create a NACA 4-series, use >> xf.Airfoil = Airfoil.createNACA4('0012');
 % To load an existing airfoil, use >> xf.Airfoil = Airfoil('naca0012.dat');

 %% Setup the action list

 % Add flap with (x hinge location, y/t relative position, angle)
 xf.addFlap(flapXloc,0.5,flapAngle)

 %for i = 1:20
 %xf.addFlap(flapXloc,0.5,1)

 %Add five filtering steps to smooth the airfoil coordinates and help convergence
 xf.addFiltering(5);

 %Switch to OPER mode, and set Reynolds = 3E7, Mach = 0.1
 xf.addOperation(3E7, 0.1);

 %Set maximum number of iterations
 xf.addIter(1000)

 %Initializate the calculations
 xf.addAlpha(0,true);

 %Create a new polar
 xf.addPolarFile('Polar.txt');

 %Calculate a sequence of angle of attack, from 0 to 25 degrees, step size of 0.1 degrees
 xf.addAlpha(-20:0.5:20);

 %Close the polar file
 xf.addClosePolarFile;
 %end

 %And finally add the action to quit XFOIL
 xf.addQuit;

 %% Now we're ready to run XFOIL
 xf.run
 disp('Running XFOIL, please wait...')

 %% Wait up to 200 seconds for it to finish...
 %It is possible to run more than one XFOIL instance at the same time
 finished = xf.wait(200);

 %% If successfull, read and plot the polar
 if finished
 disp('XFOIL analysis finished.')
 xf.readPolars;
 %figure
 %xf.plotPolar(1);
 d = [xf.Polars{1}.Alpha,xf.Polars{1}.CL,xf.Polars{1}.CD,xf.Polars{1}.CM,xf.Polars{1}.HMom];
 headers = {'AoA','Cl','Cd','Cm','Hinge moment'};
 xlswrite(['AerodynamicCoefsFlap0',int2str(flapXloc*10),'.xls'], headers, ['FlapAngle',int2str(flapAngle)], 'A1');
 xlswrite(['AerodynamicCoefsFlap0',int2str(flapXloc*10),'.xls'], d, ['FlapAngle',int2str(flapAngle)], 'A2');

 else
 xf.kill;
 end

 end
end

XFOILinterface/XFOIL/plotlib/config.make

#=======================================#
Makefile options for Xplot11 library
Set up or select a set of compile
options for your system #
#=======================================#

Use these to set library name
(you might add DP to name to keep double precision version separate)
PLTLIB = libPlt.a
#PLTLIB = libPltDP.a

Some fortrans need trailing underscores in C interface symbols (see Xwin.c)
This should work for most of the "unix" fortran compilers
DEFINE = -DUNDERSCORE

###---
Uncomment for Linux, using the script fort77 or yaf77 or old f77 script
Compiler options for Linux GNU compilers include:
fort77 perl script (calls f2c/gcc) from RH or from yaf77
or the yaf77 or the old f77 shell script from f2c
g77 the GNU Fortran compiler
#
#FC = g77-3
#FC = fort77
#CC = gcc
Uncomment DP to make double-precision version
(note -r8 does not work in g77, use f2c instead)
#DP = -r8
#FFLAGS = -O2 $(DP)
#CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using PGI f77
#FC = pgf77
#CC = gcc
##
Uncomment to make double-precision version
#DP = -r8
#FFLAGS = -fast -O $(DP)
#CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using Intel Fortran compiler 8.x
FC = ifort
CC = gcc

Uncomment to make double-precision version
#DP = -r8

FFLAGS = -O3 $(DP)
CFLAGS = -O3 $(DEFINE)
AR = ar r
RANLIB = ranlib

LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for DEC OSF/Alpha
#FC = f77
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O4 -float $(DEFINE)
#FFLAGS = -O4 $(DP)
Debug flags
#CFLAGS = -O0 -g -float $(DEFINE)
#FFLAGS = -O0 -g $(DP)
#LINKLIB = -lX11

###---
Uncomment for RS/6000
Note if the library is compiled double precision use the -qautodbl=dbl4
option, not the -qautodbl=dblpad4 option. The dblpad4 option puts padding
into the argument lists for integer args that cause the polylines and
linepatterns to fail as the alignment assumptions between the C and fortran
routines are then different. (The problem lies with xlf90, at least you
can cure it with a compile option:-). This is not a problem on xlf (f77)
because it doesn't have a dblpad4 option...
#
#FC = xlf90
#
Uncomment DP to make double-precision version
#DP = -qautodbl=dbl4
#FFLAGS = -O -qextname -qfixed $(DP)
Link libs required for xlf90 at ABB (HHY 9/96)
#LINKLIB = -lX11 -L/venus/u1/fortran/libfor -lxlfabb

###---
Uncomment for Sun Open-Windows
(give location of X11/xxx.h include files)
#
Uncomment DP to make double-precision version
#DP = -r8
#FFLAGS = -O $(DP)
#CFLAGS = -O -I/usr/openwin/share/include $(DEFINE)
#LINKLIB = -lX11

###---
Uncomment for HP-9000
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O -Aa $(DEFINE)
#FFLAGS = -O +ppu $(DP)
#OBJMISC = util-ops.o
#LINKLIB = -lX11

###---
Uncomment for SGI IRIX
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O $(DEFINE)
#FFLAGS = -O -static $(DP)
#RANLIB = ar qs
#LINKLIB = -lX11

XFOILinterface/XFOIL/src/xblsys.f.new

C***
C Module: xblsys.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***

 SUBROUTINE TRCHEK
C
C---- 1st-order amplification equation
cc CALL TRCHEK1
C
C---- 2nd-order amplification equation
 CALL TRCHEK2
C
 RETURN
 END

 SUBROUTINE AXSET(HK1, T1, RT1, A1,
 & HK2, T2, RT2, A2, ACRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HK2, AX_T2, AX_RT2, AX_A2)
C--
C Returns average amplification AX over interval 1..2
C--

 common /damp_com/ idamp

C
cC==========================
cC---- 1st-order -- based on "1" quantities only
c CALL DAMPL(HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1)
c AX2_HK2 = 0.0
c AX2_T2 = 0.0
c AX2_RT2 = 0.0
cC
c AX1_A1 = 0.0
c AX2_A2 = 0.0
cC
c AX = AX1
c AX_AX1 = 1.0
c AX_AX2 = 0.0
cC
c ARG = MIN(20.0*(ACRIT-A1) , 20.0)
c EXN = EXP(-ARG)
c EXN_A1 = 20.0*EXN
c EXN_A2 = 0.
cC
c DAX = EXN * 0.0004/T1
c DAX_A1 = EXN_A1* 0.0004/T1
c DAX_A2 = 0.
c DAX_T1 = -DAX/T1
c DAX_T2 = 0.
C
C==========================
C---- 2nd-order
 if(idamp.eq.0) then
 CALL DAMPL(HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1)
 CALL DAMPL(HK2, T2, RT2, AX2, AX2_HK2, AX2_T2, AX2_RT2)
 else
 CALL DAMPL2(HK1, T1, RT1, AX1, AX1_HK1, AX1_T1, AX1_RT1)
 CALL DAMPL2(HK2, T2, RT2, AX2, AX2_HK2, AX2_T2, AX2_RT2)
 endif
C
CC---- simple-average version
C AXA = 0.5*(AX1 + AX2)
C IF(AXA .LE. 0.0) THEN
C AXA = 0.0
C AXA_AX1 = 0.0
C AXA_AX2 = 0.0
C ELSE
C AXA_AX1 = 0.5
C AXA_AX2 = 0.5
C ENDIF
C
C---- rms-average version (seems a little better on coarse grids)
 AXSQ = 0.5*(AX1**2 + AX2**2)
 IF(AXSQ .LE. 0.0) THEN
 AXA = 0.0
 AXA_AX1 = 0.0
 AXA_AX2 = 0.0
 ELSE
 AXA = SQRT(AXSQ)
 AXA_AX1 = 0.5*AX1/AXA
 AXA_AX2 = 0.5*AX2/AXA
 ENDIF
C
C----- small additional term to ensure dN/dx > 0 near N = Ncrit
 ARG = MIN(20.0*(ACRIT-0.5*(A1+A2)) , 20.0)
 IF(ARG.LE.0.0) THEN
 EXN = 1.0
CC EXN_AC = 0.
 EXN_A1 = 0.
 EXN_A2 = 0.
 ELSE
 EXN = EXP(-ARG)
CC EXN_AC = -20.0 *EXN
 EXN_A1 = 20.0*0.5*EXN
 EXN_A2 = 20.0*0.5*EXN
 ENDIF
C
 DAX = EXN * 0.002/(T1+T2)
CC DAX_AC = EXN_AC * 0.002/(T1+T2)
 DAX_A1 = EXN_A1 * 0.002/(T1+T2)
 DAX_A2 = EXN_A2 * 0.002/(T1+T2)
 DAX_T1 = -DAX/(T1+T2)
 DAX_T2 = -DAX/(T1+T2)
C
c
c DAX = 0.
c DAX_A1 = 0.
c DAX_A2 = 0.
c DAX_AC = 0.
c DAX_T1 = 0.
c DAX_T2 = 0.
C==========================
C
 AX = AXA + DAX
C
 AX_HK1 = AXA_AX1*AX1_HK1
 AX_T1 = AXA_AX1*AX1_T1 + DAX_T1
 AX_RT1 = AXA_AX1*AX1_RT1
 AX_A1 = DAX_A1
C
 AX_HK2 = AXA_AX2*AX2_HK2
 AX_T2 = AXA_AX2*AX2_T2 + DAX_T2
 AX_RT2 = AXA_AX2*AX2_RT2
 AX_A2 = DAX_A2
C
 RETURN
 END

c SUBROUTINE TRCHEK1
cC---
cC Checks if transition occurs in the current
cC interval 1..2 (IBL-1...IBL) on side IS.
cC
cC Old first-order version.
cC
cC Growth rate is evaluated at the upstream
cC point "1". The discrete amplification
cC equation is
cC
cC Ncrit - N(X1)
cC ------------- = N'(X1)
cC XT - X1
cC
cC which can be immediately solved for
cC the transition location XT.
cC---
c INCLUDE 'XBL.INC'
cC
cC---- calculate AMPL2 value
c CALL AXSET(HK1, T1, RT1, AMPL1,
c & HK2, T2, RT2, AMPL2, AMCRIT,
c & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
c & AX_HK2, AX_T2, AX_RT2, AX_A2)
c AMPL2 = AMPL1 + AX*(X2-X1)
cC
cC---- test for free or forced transition
c TRFREE = AMPL2.GE.AMCRIT
c TRFORC = XIFORC.GT.X1 .AND. XIFORC.LE.X2
cC
cC---- set transition interval flag
c TRAN = TRFORC .OR. TRFREE
cC
cC---- if no transition yet, just return
c IF(.NOT.TRAN) RETURN
cC
cC---- resolve if both forced and free transition
c IF(TRFREE .AND. TRFORC) THEN
c XT = (AMCRIT-AMPL1)/AX + X1
c TRFORC = XIFORC .LT. XT
c TRFREE = XIFORC .GE. XT
c ENDIF
cC
c IF(TRFORC) THEN
cC----- if forced transition, then XT is prescribed
c XT = XIFORC
c XT_A1 = 0.
c XT_X1 = 0.
c XT_T1 = 0.
c XT_D1 = 0.
c XT_U1 = 0.
c XT_X2 = 0.
c XT_T2 = 0.
c XT_D2 = 0.
c XT_U2 = 0.
c XT_MS = 0.
c XT_RE = 0.
c XT_XF = 1.0
c ELSE
cC----- if free transition, XT is related to BL variables
cC- by the amplification equation
cC
c XT = (AMCRIT-AMPL1)/AX + X1
c XT_AX = -(AMCRIT-AMPL1)/AX**2
cC
c XT_A1 = -1.0/AX - (AMCRIT-AMPL1)/AX**2 * AX_A1
c XT_X1 = 1.0
c XT_T1 = XT_AX*(AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1)
c XT_D1 = XT_AX*(AX_HK1*HK1_D1)
c XT_U1 = XT_AX*(AX_HK1*HK1_U1 + AX_RT1*RT1_U1)
c XT_X2 = 0.
c XT_T2 = 0.
c XT_D2 = 0.
c XT_U2 = 0.
c XT_MS = XT_AX*(AX_HK1*HK1_MS + AX_RT1*RT1_MS)
c XT_RE = XT_AX*(AX_RT1*RT1_RE)
c XT_XF = 0.0
c ENDIF
cC
c RETURN
c END

 SUBROUTINE TRCHEK2
C--
C New second-order version: December 1994.
C
C Checks if transition occurs in the current interval X1..X2.
C If transition occurs, then set transition location XT, and
C its sensitivities to "1" and "2" variables. If no transition,
C set amplification AMPL2.
C
C
C Solves the implicit amplification equation for N2:
C
C N2 - N1 N'(XT,NT) + N'(X1,N1)
C ------- = ---------------------
C X2 - X1 2
C
C In effect, a 2-point central difference is used between
C X1..X2 (no transition), or X1..XT (transition). The switch
C is done by defining XT,NT in the equation above depending
C on whether N2 exceeds Ncrit.
C
C If N2<Ncrit: NT=N2 , XT=X2 (no transition)
C
C If N2>Ncrit: NT=Ncrit , XT=(Ncrit-N1)/(N2-N1) (transition)
C
C
C--
 INCLUDE 'XBL.INC'
 DATA DAEPS / 5.0E-5 /
CCC DATA DAEPS / 1.0D-12 /
C
C---- save variables and sensitivities at IBL ("2") for future restoration
 DO 5 ICOM=1, NCOM
 C2SAV(ICOM) = COM2(ICOM)
 5 CONTINUE
C
C---- calculate average amplification rate AX over X1..X2 interval
 CALL AXSET(HK1, T1, RT1, AMPL1,
 & HK2, T2, RT2, AMPL2, AMCRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HK2, AX_T2, AX_RT2, AX_A2)
C
C---- set initial guess for iterate N2 (AMPL2) at X2
 AMPL2 = AMPL1 + AX*(X2-X1)
C
C---- solve implicit system for amplification AMPL2
 DO 100 ITAM=1, 30
C
C---- define weighting factors WF1,WF2 for defining "T" quantities from 1,2
C
 IF(AMPL2 .LE. AMCRIT) THEN
C------ there is no transition yet, "T" is the same as "2"
 AMPLT = AMPL2
 AMPLT_A2 = 1.0
 SFA = 1.0
 SFA_A1 = 0.
 SFA_A2 = 0.
 ELSE
C------ there is transition in X1..X2, "T" is set from N1, N2
 AMPLT = AMCRIT
 AMPLT_A2 = 0.
 SFA = (AMPLT - AMPL1)/(AMPL2-AMPL1)
 SFA_A1 = (SFA - 1.0)/(AMPL2-AMPL1)
 SFA_A2 = (- SFA)/(AMPL2-AMPL1)
 ENDIF
C
 IF(XIFORC.LT.X2) THEN
 SFX = (XIFORC - X1)/(X2-X1)
 SFX_X1 = (SFX - 1.0)/(X2-X1)
 SFX_X2 = (- SFX)/(X2-X1)
 SFX_XF = 1.0 /(X2-X1)
 ELSE
 SFX = 1.0
 SFX_X1 = 0.
 SFX_X2 = 0.
 SFX_XF = 0.
 ENDIF
C
C---- set weighting factor from free or forced transition
 IF(SFA.LT.SFX) THEN
 WF2 = SFA
 WF2_A1 = SFA_A1
 WF2_A2 = SFA_A2
 WF2_X1 = 0.
 WF2_X2 = 0.
 WF2_XF = 0.
 ELSE
 WF2 = SFX
 WF2_A1 = 0.
 WF2_A2 = 0.
 WF2_X1 = SFX_X1
 WF2_X2 = SFX_X2
 WF2_XF = SFX_XF
 ENDIF
C
C
C=====================
CC---- 1st-order (based on "1" quantites only, for testing)
C WF2 = 0.0
C WF2_A1 = 0.0
C WF2_A2 = 0.0
C WF2_X1 = 0.0
C WF2_X2 = 0.0
C WF2_XF = 0.0
C=====================
C
 WF1 = 1.0 - WF2
 WF1_A1 = - WF2_A1
 WF1_A2 = - WF2_A2
 WF1_X1 = - WF2_X1
 WF1_X2 = - WF2_X2
 WF1_XF = - WF2_XF
C
C---- interpolate BL variables to XT
 XT = X1*WF1 + X2*WF2
 TT = T1*WF1 + T2*WF2
 DT = D1*WF1 + D2*WF2
 UT = U1*WF1 + U2*WF2
C
 XT_A2 = X1*WF1_A2 + X2*WF2_A2
 TT_A2 = T1*WF1_A2 + T2*WF2_A2
 DT_A2 = D1*WF1_A2 + D2*WF2_A2
 UT_A2 = U1*WF1_A2 + U2*WF2_A2
C
C---- temporarily set "2" variables from "T" for BLKIN
 X2 = XT
 T2 = TT
 D2 = DT
 U2 = UT
C
C---- calculate laminar secondary "T" variables HKT, RTT
 CALL BLKIN
C
 HKT = HK2
 HKT_TT = HK2_T2
 HKT_DT = HK2_D2
 HKT_UT = HK2_U2
 HKT_MS = HK2_MS
C
 RTT = RT2
 RTT_TT = RT2_T2
 RTT_UT = RT2_U2
 RTT_MS = RT2_MS
 RTT_RE = RT2_RE
C
C---- restore clobbered "2" variables, except for AMPL2
 AMSAVE = AMPL2
 DO 8 ICOM=1, NCOM
 COM2(ICOM) = C2SAV(ICOM)
 8 CONTINUE
 AMPL2 = AMSAVE
C
C---- calculate amplification rate AX over current X1-XT interval
 CALL AXSET(HK1, T1, RT1, AMPL1,
 & HKT, TT, RTT, AMPLT, AMCRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HKT, AX_TT, AX_RTT, AX_AT)
C
C---- punch out early if there is no amplification here
 IF(AX .LE. 0.0) GO TO 101
C
C---- set sensitivity of AX(A2)
 AX_A2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A2
 & + (AX_HKT*HKT_DT)*DT_A2
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_A2
 & + AX_AT *AMPLT_A2
C
C---- residual for implicit AMPL2 definition (amplification equation)
 RES = AMPL2 - AMPL1 - AX *(X2-X1)
 RES_A2 = 1.0 - AX_A2*(X2-X1)
C
 DA2 = -RES/RES_A2
C
 RLX = 1.0
 DXT = XT_A2*DA2
C
 IF(RLX*ABS(DXT/(X2-X1)) .GT. 0.05) RLX = 0.05*ABS((X2-X1)/DXT)
 IF(RLX*ABS(DA2) .GT. 1.0) RLX = 1.0 *ABS(1.0 /DA2)
C
C---- check if converged
 IF(ABS(DA2) .LT. DAEPS) GO TO 101
C
 IF((AMPL2.GT.AMCRIT .AND. AMPL2+RLX*DA2.LT.AMCRIT).OR.
 & (AMPL2.LT.AMCRIT .AND. AMPL2+RLX*DA2.GT.AMCRIT)) THEN
C------ limited Newton step so AMPL2 doesn't step across AMCRIT either way
 AMPL2 = AMCRIT
 ELSE
C------ regular Newton step
 AMPL2 = AMPL2 + RLX*DA2
 ENDIF
C
 100 CONTINUE
 WRITE(*,*) 'TRCHEK2: N2 convergence failed.'
 WRITE(*,6700) X1, XT, X2, AMPL1, AMPLT, AMPL2, AX, DA2
 6700 FORMAT(1X,'x:', 3F9.5,' N:',3F7.3,' Nx:',F8.3,' dN:',E10.3)
C
 101 CONTINUE
C
C
C---- test for free or forced transition
 TRFREE = AMPL2 .GE. AMCRIT
 TRFORC = XIFORC.GT.X1 .AND. XIFORC.LE.X2
C
C---- set transition interval flag
 TRAN = TRFORC .OR. TRFREE
C
 IF(.NOT.TRAN) RETURN
C
C---- resolve if both forced and free transition
 IF(TRFREE .AND. TRFORC) THEN
 TRFORC = XIFORC .LT. XT
 TRFREE = XIFORC .GE. XT
 ENDIF
C
 IF(TRFORC) THEN
C----- if forced transition, then XT is prescribed,
C- no sense calculating the sensitivities, since we know them...
 XT = XIFORC
 XT_A1 = 0.
 XT_X1 = 0.
 XT_T1 = 0.
 XT_D1 = 0.
 XT_U1 = 0.
 XT_X2 = 0.
 XT_T2 = 0.
 XT_D2 = 0.
 XT_U2 = 0.
 XT_MS = 0.
 XT_RE = 0.
 XT_XF = 1.0
 RETURN
 ENDIF
C
C---- free transition ... set sensitivities of XT
C
C---- XT(X1 X2 A1 A2 XF), TT(T1 T2 A1 A2 X1 X2 XF), DT(...
CC XT = X1*WF1 + X2*WF2
CC TT = T1*WF1 + T2*WF2
CC DT = D1*WF1 + D2*WF2
CC UT = U1*WF1 + U2*WF2
C
 XT_X1 = WF1
 TT_T1 = WF1
 DT_D1 = WF1
 UT_U1 = WF1
C
 XT_X2 = WF2
 TT_T2 = WF2
 DT_D2 = WF2
 UT_U2 = WF2
C
 XT_A1 = X1*WF1_A1 + X2*WF2_A1
 TT_A1 = T1*WF1_A1 + T2*WF2_A1
 DT_A1 = D1*WF1_A1 + D2*WF2_A1
 UT_A1 = U1*WF1_A1 + U2*WF2_A1
C
CC XT_A2 = X1*WF1_A2 + X2*WF2_A2
CC TT_A2 = T1*WF1_A2 + T2*WF2_A2
CC DT_A2 = D1*WF1_A2 + D2*WF2_A2
CC UT_A2 = U1*WF1_A2 + U2*WF2_A2
C
 XT_X1 = X1*WF1_X1 + X2*WF2_X1 + XT_X1
 TT_X1 = T1*WF1_X1 + T2*WF2_X1
 DT_X1 = D1*WF1_X1 + D2*WF2_X1
 UT_X1 = U1*WF1_X1 + U2*WF2_X1
C
 XT_X2 = X1*WF1_X2 + X2*WF2_X2 + XT_X2
 TT_X2 = T1*WF1_X2 + T2*WF2_X2
 DT_X2 = D1*WF1_X2 + D2*WF2_X2
 UT_X2 = U1*WF1_X2 + U2*WF2_X2
C
 XT_XF = X1*WF1_XF + X2*WF2_XF
 TT_XF = T1*WF1_XF + T2*WF2_XF
 DT_XF = D1*WF1_XF + D2*WF2_XF
 UT_XF = U1*WF1_XF + U2*WF2_XF
C
C---- at this point, AX = AX(HK1, T1, RT1, A1, HKT, TT, RTT, AT)
C
C---- set sensitivities of AX(T1 D1 U1 A1 T2 D2 U2 A2 MS RE)
 AX_T1 = AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1
 & + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_T1
 AX_D1 = AX_HK1*HK1_D1
 & + (AX_HKT*HKT_DT)*DT_D1
 AX_U1 = AX_HK1*HK1_U1 + AX_RT1*RT1_U1
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_U1
 AX_A1 = AX_A1
 & + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A1
 & + (AX_HKT*HKT_DT)*DT_A1
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_A1
 AX_X1 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_X1
 & + (AX_HKT*HKT_DT)*DT_X1
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_X1
C
 AX_T2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_T2
 AX_D2 = (AX_HKT*HKT_DT)*DT_D2
 AX_U2 = (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_U2
 AX_A2 = AX_AT *AMPLT_A2
 & + (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_A2
 & + (AX_HKT*HKT_DT)*DT_A2
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_A2
 AX_X2 = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_X2
 & + (AX_HKT*HKT_DT)*DT_X2
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_X2
C
 AX_XF = (AX_HKT*HKT_TT + AX_TT + AX_RTT*RTT_TT)*TT_XF
 & + (AX_HKT*HKT_DT)*DT_XF
 & + (AX_HKT*HKT_UT + AX_RTT*RTT_UT)*UT_XF
C
 AX_MS = AX_HKT*HKT_MS + AX_RTT*RTT_MS
 & + AX_HK1*HK1_MS + AX_RT1*RT1_MS
 AX_RE = AX_RTT*RTT_RE
 & + AX_RT1*RT1_RE
C
C
C---- set sensitivities of residual RES
CCC RES = AMPL2 - AMPL1 - AX*(X2-X1)
 Z_AX = - (X2-X1)
C
 Z_A1 = Z_AX*AX_A1 - 1.0
 Z_T1 = Z_AX*AX_T1
 Z_D1 = Z_AX*AX_D1
 Z_U1 = Z_AX*AX_U1
 Z_X1 = Z_AX*AX_X1 + AX
C
 Z_A2 = Z_AX*AX_A2 + 1.0
 Z_T2 = Z_AX*AX_T2
 Z_D2 = Z_AX*AX_D2
 Z_U2 = Z_AX*AX_U2
 Z_X2 = Z_AX*AX_X2 - AX
C
 Z_XF = Z_AX*AX_XF
 Z_MS = Z_AX*AX_MS
 Z_RE = Z_AX*AX_RE
C
C---- set sensitivities of XT, with RES being stationary for A2 constraint
 XT_A1 = XT_A1 - (XT_A2/Z_A2)*Z_A1
 XT_T1 = - (XT_A2/Z_A2)*Z_T1
 XT_D1 = - (XT_A2/Z_A2)*Z_D1
 XT_U1 = - (XT_A2/Z_A2)*Z_U1
 XT_X1 = XT_X1 - (XT_A2/Z_A2)*Z_X1
 XT_T2 = - (XT_A2/Z_A2)*Z_T2
 XT_D2 = - (XT_A2/Z_A2)*Z_D2
 XT_U2 = - (XT_A2/Z_A2)*Z_U2
 XT_X2 = XT_X2 - (XT_A2/Z_A2)*Z_X2
 XT_MS = - (XT_A2/Z_A2)*Z_MS
 XT_RE = - (XT_A2/Z_A2)*Z_RE
 XT_XF = 0.0
C
 RETURN
 END

 SUBROUTINE BLSYS
C--
C
C Sets up the BL Newton system governing the current interval:
C
C | ||dA1| | ||dA2| | |
C | VS1 ||dT1| + | VS2 ||dT2| = |VSREZ|
C | ||dD1| | ||dD2| | |
C |dU1| |dU2|
C |dX1| |dX2|
C
C 3x5 5x1 3x5 5x1 3x1
C
C The system as shown corresponds to a laminar station
C If TRAN, then dS2 replaces dA2
C If TURB, then dS1, dS2 replace dA1, dA2
C
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
C---- calculate secondary BL variables and their sensitivities
 IF(WAKE) THEN
 CALL BLVAR(3)
 CALL BLMID(3)
 ELSE IF(TURB.OR.TRAN) THEN
 CALL BLVAR(2)
 CALL BLMID(2)
 ELSE
 CALL BLVAR(1)
 CALL BLMID(1)
 ENDIF
C
C---- for the similarity station, "1" and "2" variables are the same
 IF(SIMI) THEN
 DO 3 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 3 CONTINUE
 ENDIF
C
C---- set up appropriate finite difference system for current interval
 IF(TRAN) THEN
 CALL TRDIF
 ELSE IF(SIMI) THEN
 CALL BLDIF(0)
 ELSE IF(.NOT.TURB) THEN
 CALL BLDIF(1)
 ELSE IF(WAKE) THEN
 CALL BLDIF(3)
 ELSE IF(TURB) THEN
 CALL BLDIF(2)
 ENDIF
C
 IF(SIMI) THEN
C----- at similarity station, "1" variables are really "2" variables
 DO 10 K=1, 4
 DO 101 L=1, 5
 VS2(K,L) = VS1(K,L) + VS2(K,L)
 VS1(K,L) = 0.
 101 CONTINUE
 10 CONTINUE
 ENDIF
C
C---- change system over into incompressible Uei and Mach
 DO 20 K=1, 4
C
C------ residual derivatives wrt compressible Uec
 RES_U1 = VS1(K,4)
 RES_U2 = VS2(K,4)
 RES_MS = VSM(K)
C
C------ combine with derivatives of compressible U1,U2 = Uec(Uei M)
 VS1(K,4) = RES_U1*U1_UEI
 VS2(K,4) = RES_U2*U2_UEI
 VSM(K) = RES_U1*U1_MS + RES_U2*U2_MS + RES_MS
 20 CONTINUE
C
 RETURN
 END

 SUBROUTINE TESYS(CTE,TTE,DTE)
C--
C Sets up "dummy" BL system between airfoil TE point
C and first wake point infinitesimally behind TE.
C--
 IMPLICIT REAL (M)
 INCLUDE 'XBL.INC'
C
 DO 55 K=1, 4
 VSREZ(K) = 0.
 VSM(K) = 0.
 VSR(K) = 0.
 VSX(K) = 0.
 DO 551 L=1, 5
 VS1(K,L) = 0.
 VS2(K,L) = 0.
 551 CONTINUE
 55 CONTINUE
C
 CALL BLVAR(3)
C
 VS1(1,1) = -1.0
 VS2(1,1) = 1.0
 VSREZ(1) = CTE - S2
C
 VS1(2,2) = -1.0
 VS2(2,2) = 1.0
 VSREZ(2) = TTE - T2
C
 VS1(3,3) = -1.0
 VS2(3,3) = 1.0
 VSREZ(3) = DTE - D2 - DW2
C
 RETURN
 END

 SUBROUTINE BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
C--
C Set BL primary "2" variables from parameter list
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
 X2 = XSI
 AMPL2 = AMI
 S2 = CTI
 T2 = THI
 D2 = DSI - DSWAKI
 DW2 = DSWAKI
C
 U2 = UEI*(1.0-TKBL) / (1.0 - TKBL*(UEI/QINFBL)**2)
 U2_UEI = (1.0 + TKBL*(2.0*U2*UEI/QINFBL**2 - 1.0))
 & / (1.0 - TKBL*(UEI/QINFBL)**2)
 U2_MS = (U2*(UEI/QINFBL)**2 - UEI)*TKBL_MS
 & / (1.0 - TKBL*(UEI/QINFBL)**2)
C
 RETURN
 END ! BLPRV

 SUBROUTINE BLKIN
C--
C Calculates turbulence-independent secondary "2"
C variables from the primary "2" variables.
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
C---- set edge Mach number ** 2
 M2 = U2*U2*HSTINV / (GM1BL*(1.0 - 0.5*U2*U2*HSTINV))
 TR2 = 1.0 + 0.5*GM1BL*M2
 M2_U2 = 2.0*M2*TR2/U2
 M2_MS = U2*U2*TR2 / (GM1BL*(1.0 - 0.5*U2*U2*HSTINV))
 & * HSTINV_MS
C
C---- set edge static density (isentropic relation)
 R2 = RSTBL *TR2**(-1.0/GM1BL)
 R2_U2 = -R2/TR2 * 0.5*M2_U2
 R2_MS = -R2/TR2 * 0.5*M2_MS
 & + RSTBL_MS*TR2**(-1.0/GM1BL)
C
C---- set shape parameter
 H2 = D2/T2
 H2_D2 = 1.0/T2
 H2_T2 = -H2/T2
C
C---- set edge static/stagnation enthalpy
 HERAT = 1.0 - 0.5*U2*U2*HSTINV
 HE_U2 = - U2*HSTINV
 HE_MS = - 0.5*U2*U2*HSTINV_MS
C
C---- set molecular viscosity
 V2 = SQRT((HERAT)**3) * (1.0+HVRAT)/(HERAT+HVRAT)/REYBL
 V2_HE = V2*(1.5/HERAT - 1.0/(HERAT+HVRAT))
C
 V2_U2 = V2_HE*HE_U2
 V2_MS = -V2/REYBL * REYBL_MS + V2_HE*HE_MS
 V2_RE = -V2/REYBL * REYBL_RE
C
C---- set kinematic shape parameter
 CALL HKIN(H2, M2, HK2, HK2_H2, HK2_M2)
C
 HK2_U2 = HK2_M2*M2_U2
 HK2_T2 = HK2_H2*H2_T2
 HK2_D2 = HK2_H2*H2_D2
 HK2_MS = HK2_M2*M2_MS
C
C---- set momentum thickness Reynolds number
 RT2 = R2*U2*T2/V2
 RT2_U2 = RT2*(1.0/U2 + R2_U2/R2 - V2_U2/V2)
 RT2_T2 = RT2/T2
 RT2_MS = RT2*(R2_MS/R2 - V2_MS/V2)
 RT2_RE = RT2*(- V2_RE/V2)
C
 RETURN
 END ! BLKIN

 SUBROUTINE BLVAR(ITYP)
C--
C Calculates all secondary "2" variables from
C the primary "2" variables X2, U2, T2, D2, S2.
C Also calculates the sensitivities of the
C secondary variables wrt the primary variables.
C
C ITYP = 1 : laminar
C ITYP = 2 : turbulent
C ITYP = 3 : turbulent wake
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
 IF(ITYP.EQ.3) HK2 = MAX(HK2,1.00005)
 IF(ITYP.NE.3) HK2 = MAX(HK2,1.05000)
C
C---- density thickness shape parameter (H**)
 CALL HCT(HK2, M2, HC2, HC2_HK2, HC2_M2)
 HC2_U2 = HC2_HK2*HK2_U2 + HC2_M2*M2_U2
 HC2_T2 = HC2_HK2*HK2_T2
 HC2_D2 = HC2_HK2*HK2_D2
 HC2_MS = HC2_HK2*HK2_MS + HC2_M2*M2_MS
C
C---- set KE thickness shape parameter from H - H* correlations
 IF(ITYP.EQ.1) THEN
 CALL HSL(HK2, RT2, M2, HS2, HS2_HK2, HS2_RT2, HS2_M2)
 ELSE
 CALL HST(HK2, RT2, M2, HS2, HS2_HK2, HS2_RT2, HS2_M2)
 ENDIF
C
 HS2_U2 = HS2_HK2*HK2_U2 + HS2_RT2*RT2_U2 + HS2_M2*M2_U2
 HS2_T2 = HS2_HK2*HK2_T2 + HS2_RT2*RT2_T2
 HS2_D2 = HS2_HK2*HK2_D2
 HS2_MS = HS2_HK2*HK2_MS + HS2_RT2*RT2_MS + HS2_M2*M2_MS
 HS2_RE = HS2_RT2*RT2_RE
C
C---- normalized slip velocity Us
 US2 = 0.5*HS2*(1.0 - (HK2-1.0)/(GBCON*H2))
 US2_HS2 = 0.5 * (1.0 - (HK2-1.0)/(GBCON*H2))
 US2_HK2 = 0.5*HS2*(- 1.0 /(GBCON*H2))
 US2_H2 = 0.5*HS2* (HK2-1.0)/(GBCON*H2**2)
C
 US2_U2 = US2_HS2*HS2_U2 + US2_HK2*HK2_U2
 US2_T2 = US2_HS2*HS2_T2 + US2_HK2*HK2_T2 + US2_H2*H2_T2
 US2_D2 = US2_HS2*HS2_D2 + US2_HK2*HK2_D2 + US2_H2*H2_D2
 US2_MS = US2_HS2*HS2_MS + US2_HK2*HK2_MS
 US2_RE = US2_HS2*HS2_RE
C
 IF(ITYP.LE.2 .AND. US2.GT.0.95) THEN
CCC WRITE(*,*) 'BLVAR: Us clamped:', US2
 US2 = 0.98
 US2_U2 = 0.
 US2_T2 = 0.
 US2_D2 = 0.
 US2_MS = 0.
 US2_RE = 0.
 ENDIF
C
 IF(ITYP.EQ.3 .AND. US2.GT.0.99995) THEN
CCC WRITE(*,*) 'BLVAR: Wake Us clamped:', US2
 US2 = 0.99995
 US2_U2 = 0.
 US2_T2 = 0.
 US2_D2 = 0.
 US2_MS = 0.
 US2_RE = 0.
 ENDIF
C
C---- equilibrium wake layer shear coefficient (Ctau)EQ ** 1/2
C ... NEW 12 Oct 94
 GCC = 0.0
 HKC = HK2 - 1.0
 HKC_HK2 = 1.0
 HKC_RT2 = 0.0
 IF(ITYP.EQ.2) THEN
 GCC = GCCON
 HKC = HK2 - 1.0 - GCC/RT2
 HKC_HK2 = 1.0
 HKC_RT2 = GCC/RT2**2
 IF(HKC .LT. 0.01) THEN
 HKC = 0.01
 HKC_HK2 = 0.0
 HKC_RT2 = 0.0
 ENDIF
 ENDIF
C
 HKB = HK2 - 1.0
 USB = 1.0 - US2
 CQ2 =
 & SQRT(CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2))
 CQ2_HS2 = CTCON *HKB*HKC**2 / (USB*H2*HK2**2) * 0.5/CQ2
 CQ2_US2 = CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2) / USB * 0.5/CQ2
 CQ2_HK2 = CTCON*HS2 *HKC**2 / (USB*H2*HK2**2) * 0.5/CQ2
 & - CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**3) * 2.0 * 0.5/CQ2
 & + CTCON*HS2*HKB*HKC / (USB*H2*HK2**2) * 2.0 * 0.5/CQ2
 & *HKC_HK2
 CQ2_RT2 = CTCON*HS2*HKB*HKC / (USB*H2*HK2**2) * 2.0 * 0.5/CQ2
 & *HKC_RT2
 CQ2_H2 =-CTCON*HS2*HKB*HKC**2 / (USB*H2*HK2**2) / H2 * 0.5/CQ2
C
 CQ2_U2 = CQ2_HS2*HS2_U2 + CQ2_US2*US2_U2 + CQ2_HK2*HK2_U2
 CQ2_T2 = CQ2_HS2*HS2_T2 + CQ2_US2*US2_T2 + CQ2_HK2*HK2_T2
 CQ2_D2 = CQ2_HS2*HS2_D2 + CQ2_US2*US2_D2 + CQ2_HK2*HK2_D2
 CQ2_MS = CQ2_HS2*HS2_MS + CQ2_US2*US2_MS + CQ2_HK2*HK2_MS
 CQ2_RE = CQ2_HS2*HS2_RE + CQ2_US2*US2_RE
C
 CQ2_U2 = CQ2_U2 + CQ2_RT2*RT2_U2
 CQ2_T2 = CQ2_T2 + CQ2_H2*H2_T2 + CQ2_RT2*RT2_T2
 CQ2_D2 = CQ2_D2 + CQ2_H2*H2_D2
 CQ2_MS = CQ2_MS + CQ2_RT2*RT2_MS
 CQ2_RE = CQ2_RE + CQ2_RT2*RT2_RE
C
C
C---- set skin friction coefficient
 IF(ITYP.EQ.3) THEN
C----- wake
 CF2 = 0.
 CF2_HK2 = 0.
 CF2_RT2 = 0.
 CF2_M2 = 0.
 ELSE IF(ITYP.EQ.1) THEN
C----- laminar
 CALL CFL(HK2, RT2, M2, CF2, CF2_HK2, CF2_RT2, CF2_M2)
 ELSE
C----- turbulent
 CALL CFT(HK2, RT2, M2, CF2, CF2_HK2, CF2_RT2, CF2_M2)
 CALL CFL(HK2, RT2, M2, CF2L,CF2L_HK2,CF2L_RT2,CF2L_M2)
 IF(CF2L.GT.CF2) THEN
C------- laminar Cf is greater than turbulent Cf -- use laminar
C- (this will only occur for unreasonably small Rtheta)
ccc write(*,*) 'Cft Cfl Rt Hk:', CF2, CF2L, RT2, HK2, X2
 CF2 = CF2L
 CF2_HK2 = CF2L_HK2
 CF2_RT2 = CF2L_RT2
 CF2_M2 = CF2L_M2
 ENDIF
 ENDIF
C
 CF2_U2 = CF2_HK2*HK2_U2 + CF2_RT2*RT2_U2 + CF2_M2*M2_U2
 CF2_T2 = CF2_HK2*HK2_T2 + CF2_RT2*RT2_T2
 CF2_D2 = CF2_HK2*HK2_D2
 CF2_MS = CF2_HK2*HK2_MS + CF2_RT2*RT2_MS + CF2_M2*M2_MS
 CF2_RE = CF2_RT2*RT2_RE
C
C---- dissipation function 2 CD / H*
 IF(ITYP.EQ.1) THEN
C
C----- laminar
 CALL DIL(HK2, RT2, DI2, DI2_HK2, DI2_RT2)
C
 DI2_U2 = DI2_HK2*HK2_U2 + DI2_RT2*RT2_U2
 DI2_T2 = DI2_HK2*HK2_T2 + DI2_RT2*RT2_T2
 DI2_D2 = DI2_HK2*HK2_D2
 DI2_S2 = 0.
 DI2_MS = DI2_HK2*HK2_MS + DI2_RT2*RT2_MS
 DI2_RE = DI2_RT2*RT2_RE
C
 ELSE IF(ITYP.EQ.2) THEN
C
CCC CALL DIT(HS2, US2, CF2, S2, DI2,
CCC & DI2_HS2, DI2_US2, DI2_CF2, DI2_S2)
C
C----- turbulent wall contribution
 CALL CFT(HK2, RT2, M2, CF2T, CF2T_HK2, CF2T_RT2, CF2T_M2)
 CF2T_U2 = CF2T_HK2*HK2_U2 + CF2T_RT2*RT2_U2 + CF2T_M2*M2_U2
 CF2T_T2 = CF2T_HK2*HK2_T2 + CF2T_RT2*RT2_T2
 CF2T_D2 = CF2T_HK2*HK2_D2
 CF2T_MS = CF2T_HK2*HK2_MS + CF2T_RT2*RT2_MS + CF2T_M2*M2_MS
 CF2T_RE = CF2T_RT2*RT2_RE
C
 DI2 = (0.5*CF2T*US2) * 2.0/HS2
 DI2_HS2 = -(0.5*CF2T*US2) * 2.0/HS2**2
 DI2_US2 = (0.5*CF2T) * 2.0/HS2
 DI2_CF2T = (0.5 *US2) * 2.0/HS2
C
 DI2_S2 = 0.0
 DI2_U2 = DI2_HS2*HS2_U2 + DI2_US2*US2_U2 + DI2_CF2T*CF2T_U2
 DI2_T2 = DI2_HS2*HS2_T2 + DI2_US2*US2_T2 + DI2_CF2T*CF2T_T2
 DI2_D2 = DI2_HS2*HS2_D2 + DI2_US2*US2_D2 + DI2_CF2T*CF2T_D2
 DI2_MS = DI2_HS2*HS2_MS + DI2_US2*US2_MS + DI2_CF2T*CF2T_MS
 DI2_RE = DI2_HS2*HS2_RE + DI2_US2*US2_RE + DI2_CF2T*CF2T_RE
C
C
C----- set minimum Hk for wake layer to still exist
 GRT = LOG(RT2)
 HMIN = 1.0 + 2.1/GRT
 HM_RT2 = -(2.1/GRT**2) / RT2
C
C----- set factor DFAC for correcting wall dissipation for very low Hk
 FL = (HK2-1.0)/(HMIN-1.0)
 FL_HK2 = 1.0/(HMIN-1.0)
 FL_RT2 = (-FL/(HMIN-1.0)) * HM_RT2
C
 TFL = TANH(FL)
 DFAC = 0.5 + 0.5* TFL
 DF_FL = 0.5*(1.0 - TFL**2)
C
 DF_HK2 = DF_FL*FL_HK2
 DF_RT2 = DF_FL*FL_RT2
C
 DI2_S2 = DI2_S2*DFAC
 DI2_U2 = DI2_U2*DFAC + DI2*(DF_HK2*HK2_U2 + DF_RT2*RT2_U2)
 DI2_T2 = DI2_T2*DFAC + DI2*(DF_HK2*HK2_T2 + DF_RT2*RT2_T2)
 DI2_D2 = DI2_D2*DFAC + DI2*(DF_HK2*HK2_D2)
 DI2_MS = DI2_MS*DFAC + DI2*(DF_HK2*HK2_MS + DF_RT2*RT2_MS)
 DI2_RE = DI2_RE*DFAC + DI2*(DF_RT2*RT2_RE)
 DI2 = DI2 *DFAC
C
 ELSE
C
C----- zero wall contribution for wake
 DI2 = 0.0
 DI2_S2 = 0.0
 DI2_U2 = 0.0
 DI2_T2 = 0.0
 DI2_D2 = 0.0
 DI2_MS = 0.0
 DI2_RE = 0.0
C
 ENDIF
C
C
C---- Add on turbulent outer layer contribution
 IF(ITYP.NE.1) THEN
C
 DD = S2**2 * (0.995-US2) * 2.0/HS2
 DD_HS2 = -S2**2 * (0.995-US2) * 2.0/HS2**2
 DD_US2 = -S2**2 * 2.0/HS2
 DD_S2 = S2*2.0* (0.995-US2) * 2.0/HS2
C
 DI2 = DI2 + DD
 DI2_S2 = DD_S2
 DI2_U2 = DI2_U2 + DD_HS2*HS2_U2 + DD_US2*US2_U2
 DI2_T2 = DI2_T2 + DD_HS2*HS2_T2 + DD_US2*US2_T2
 DI2_D2 = DI2_D2 + DD_HS2*HS2_D2 + DD_US2*US2_D2
 DI2_MS = DI2_MS + DD_HS2*HS2_MS + DD_US2*US2_MS
 DI2_RE = DI2_RE + DD_HS2*HS2_RE + DD_US2*US2_RE
C
C----- add laminar stress contribution to outer layer CD
c###
 DD = 0.15*(0.995-US2)**2 / RT2 * 2.0/HS2
 DD_US2 = -0.15*(0.995-US2)*2. / RT2 * 2.0/HS2
 DD_HS2 = -DD/HS2
 DD_RT2 = -DD/RT2
C
 DI2 = DI2 + DD
 DI2_U2 = DI2_U2 + DD_HS2*HS2_U2 + DD_US2*US2_U2 + DD_RT2*RT2_U2
 DI2_T2 = DI2_T2 + DD_HS2*HS2_T2 + DD_US2*US2_T2 + DD_RT2*RT2_T2
 DI2_D2 = DI2_D2 + DD_HS2*HS2_D2 + DD_US2*US2_D2
 DI2_MS = DI2_MS + DD_HS2*HS2_MS + DD_US2*US2_MS + DD_RT2*RT2_MS
 DI2_RE = DI2_RE + DD_HS2*HS2_RE + DD_US2*US2_RE + DD_RT2*RT2_RE
C
 ENDIF
C
C
 IF(ITYP.EQ.2) THEN
 CALL DIL(HK2, RT2, DI2L, DI2L_HK2, DI2L_RT2)
C
 IF(DI2L.GT.DI2) THEN
C------- laminar CD is greater than turbulent CD -- use laminar
C- (this will only occur for unreasonably small Rtheta)
ccc write(*,*) 'CDt CDl Rt Hk:', DI2, DI2L, RT2, HK2
 DI2 = DI2L
 DI2_S2 = 0.
 DI2_U2 = DI2L_HK2*HK2_U2 + DI2L_RT2*RT2_U2
 DI2_T2 = DI2L_HK2*HK2_T2 + DI2L_RT2*RT2_T2
 DI2_D2 = DI2L_HK2*HK2_D2
 DI2_MS = DI2L_HK2*HK2_MS + DI2L_RT2*RT2_MS
 DI2_RE = DI2L_RT2*RT2_RE
 ENDIF
 ENDIF
C
cC----- add on CD contribution of inner shear layer
c IF(ITYP.EQ.3 .AND. DW2.GT.0.0) THEN
c DKON = 0.03*0.75**3
c DDI = DKON*US2**3
c DDI_US2 = 3.0*DKON*US2**2
c DI2 = DI2 + DDI * DW2/DWTE
c DI2_U2 = DI2_U2 + DDI_US2*US2_U2 * DW2/DWTE
c DI2_T2 = DI2_T2 + DDI_US2*US2_T2 * DW2/DWTE
c DI2_D2 = DI2_D2 + DDI_US2*US2_D2 * DW2/DWTE
c DI2_MS = DI2_MS + DDI_US2*US2_MS * DW2/DWTE
c DI2_RE = DI2_RE + DDI_US2*US2_RE * DW2/DWTE
c ENDIF
C
 IF(ITYP.EQ.3) THEN
C------ laminar wake CD
 CALL DILW(HK2, RT2, DI2L, DI2L_HK2, DI2L_RT2)
 IF(DI2L .GT. DI2) THEN
C------- laminar wake CD is greater than turbulent CD -- use laminar
C- (this will only occur for unreasonably small Rtheta)
ccc write(*,*) 'CDt CDl Rt Hk:', DI2, DI2L, RT2, HK2
 DI2 = DI2L
 DI2_S2 = 0.
 DI2_U2 = DI2L_HK2*HK2_U2 + DI2L_RT2*RT2_U2
 DI2_T2 = DI2L_HK2*HK2_T2 + DI2L_RT2*RT2_T2
 DI2_D2 = DI2L_HK2*HK2_D2
 DI2_MS = DI2L_HK2*HK2_MS + DI2L_RT2*RT2_MS
 DI2_RE = DI2L_RT2*RT2_RE
 ENDIF
 ENDIF
C
C
 IF(ITYP.EQ.3) THEN
C----- double dissipation for the wake (two wake halves)
 DI2 = DI2 *2.0
 DI2_S2 = DI2_S2*2.0
 DI2_U2 = DI2_U2*2.0
 DI2_T2 = DI2_T2*2.0
 DI2_D2 = DI2_D2*2.0
 DI2_MS = DI2_MS*2.0
 DI2_RE = DI2_RE*2.0
 ENDIF
C
C---- BL thickness (Delta) from simplified Green's correlation
 DE2 = (3.15 + 1.72/(HK2-1.0))*T2 + D2
 DE2_HK2 = (- 1.72/(HK2-1.0)**2)*T2
C
 DE2_U2 = DE2_HK2*HK2_U2
 DE2_T2 = DE2_HK2*HK2_T2 + (3.15 + 1.72/(HK2-1.0))
 DE2_D2 = DE2_HK2*HK2_D2 + 1.0
 DE2_MS = DE2_HK2*HK2_MS
C
ccc HDMAX = 15.0
 HDMAX = 12.0
 IF(DE2 .GT. HDMAX*T2) THEN
cccc IF(DE2 .GT. HDMAX*T2 .AND. (HK2 .GT. 4.0 .OR. ITYP.EQ.3)) THEN
 DE2 = HDMAX*T2
 DE2_U2 = 0.0
 DE2_T2 = HDMAX
 DE2_D2 = 0.0
 DE2_MS = 0.0
 ENDIF
C
 RETURN
 END

 SUBROUTINE BLMID(ITYP)
C--
C Calculates midpoint skin friction CFM
C
C ITYP = 1 : laminar
C ITYP = 2 : turbulent
C ITYP = 3 : turbulent wake
C--
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
C---- set similarity variables if not defined
 IF(SIMI) THEN
 HK1 = HK2
 HK1_T1 = HK2_T2
 HK1_D1 = HK2_D2
 HK1_U1 = HK2_U2
 HK1_MS = HK2_MS
 RT1 = RT2
 RT1_T1 = RT2_T2
 RT1_U1 = RT2_U2
 RT1_MS = RT2_MS
 RT1_RE = RT2_RE
 M1 = M2
 M1_U1 = M2_U2
 M1_MS = M2_MS
 ENDIF
C
C---- define stuff for midpoint CF
 HKA = 0.5*(HK1 + HK2)
 RTA = 0.5*(RT1 + RT2)
 MA = 0.5*(M1 + M2)
C
C---- midpoint skin friction coefficient (zero in wake)
 IF(ITYP.EQ.3) THEN
 CFM = 0.
 CFM_HKA = 0.
 CFM_RTA = 0.
 CFM_MA = 0.
 CFM_MS = 0.
 ELSE IF(ITYP.EQ.1) THEN
 CALL CFL(HKA, RTA, MA, CFM, CFM_HKA, CFM_RTA, CFM_MA)
 ELSE
 CALL CFT(HKA, RTA, MA, CFM, CFM_HKA, CFM_RTA, CFM_MA)
 CALL CFL(HKA, RTA, MA, CFML,CFML_HKA,CFML_RTA,CFML_MA)
 IF(CFML.GT.CFM) THEN
ccc write(*,*) 'Cft Cfl Rt Hk:', CFM, CFML, RTA, HKA, 0.5*(X1+X2)
 CFM = CFML
 CFM_HKA = CFML_HKA
 CFM_RTA = CFML_RTA
 CFM_MA = CFML_MA
 ENDIF
 ENDIF
C
 CFM_U1 = 0.5*(CFM_HKA*HK1_U1 + CFM_MA*M1_U1 + CFM_RTA*RT1_U1)
 CFM_T1 = 0.5*(CFM_HKA*HK1_T1 + CFM_RTA*RT1_T1)
 CFM_D1 = 0.5*(CFM_HKA*HK1_D1)
C
 CFM_U2 = 0.5*(CFM_HKA*HK2_U2 + CFM_MA*M2_U2 + CFM_RTA*RT2_U2)
 CFM_T2 = 0.5*(CFM_HKA*HK2_T2 + CFM_RTA*RT2_T2)
 CFM_D2 = 0.5*(CFM_HKA*HK2_D2)
C
 CFM_MS = 0.5*(CFM_HKA*HK1_MS + CFM_MA*M1_MS + CFM_RTA*RT1_MS
 & + CFM_HKA*HK2_MS + CFM_MA*M2_MS + CFM_RTA*RT2_MS)
 CFM_RE = 0.5*(CFM_RTA*RT1_RE
 & + CFM_RTA*RT2_RE)
C
 RETURN
 END ! BLMID

 SUBROUTINE TRDIF
C---
C Sets up the Newton system governing the
C transition interval. Equations governing
C the laminar part X1 < xi < XT and
C the turbulent part XT < xi < X2
C are simply summed.
C---
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
 REAL BL1(4,5), BL2(4,5), BLREZ(4), BLM(4), BLR(4), BLX(4)
 & , BT1(4,5), BT2(4,5), BTREZ(4), BTM(4), BTR(4), BTX(4)
C
C---- save variables and sensitivities for future restoration
 DO 5 ICOM=1, NCOM
 C1SAV(ICOM) = COM1(ICOM)
 C2SAV(ICOM) = COM2(ICOM)
 5 CONTINUE
C
C---- weighting factors for linear interpolation to transition point
 WF2 = (XT-X1)/(X2-X1)
 WF2_XT = 1.0/(X2-X1)
C
 WF2_A1 = WF2_XT*XT_A1
 WF2_X1 = WF2_XT*XT_X1 + (WF2-1.0)/(X2-X1)
 WF2_X2 = WF2_XT*XT_X2 - WF2 /(X2-X1)
 WF2_T1 = WF2_XT*XT_T1
 WF2_T2 = WF2_XT*XT_T2
 WF2_D1 = WF2_XT*XT_D1
 WF2_D2 = WF2_XT*XT_D2
 WF2_U1 = WF2_XT*XT_U1
 WF2_U2 = WF2_XT*XT_U2
 WF2_MS = WF2_XT*XT_MS
 WF2_RE = WF2_XT*XT_RE
 WF2_XF = WF2_XT*XT_XF
C
 WF1 = 1.0 - WF2
 WF1_A1 = -WF2_A1
 WF1_X1 = -WF2_X1
 WF1_X2 = -WF2_X2
 WF1_T1 = -WF2_T1
 WF1_T2 = -WF2_T2
 WF1_D1 = -WF2_D1
 WF1_D2 = -WF2_D2
 WF1_U1 = -WF2_U1
 WF1_U2 = -WF2_U2
 WF1_MS = -WF2_MS
 WF1_RE = -WF2_RE
 WF1_XF = -WF2_XF
C
C
C**** FIRST, do laminar part between X1 and XT
C
C-----interpolate primary variables to transition point
 TT = T1*WF1 + T2*WF2
 TT_A1 = T1*WF1_A1 + T2*WF2_A1
 TT_X1 = T1*WF1_X1 + T2*WF2_X1
 TT_X2 = T1*WF1_X2 + T2*WF2_X2
 TT_T1 = T1*WF1_T1 + T2*WF2_T1 + WF1
 TT_T2 = T1*WF1_T2 + T2*WF2_T2 + WF2
 TT_D1 = T1*WF1_D1 + T2*WF2_D1
 TT_D2 = T1*WF1_D2 + T2*WF2_D2
 TT_U1 = T1*WF1_U1 + T2*WF2_U1
 TT_U2 = T1*WF1_U2 + T2*WF2_U2
 TT_MS = T1*WF1_MS + T2*WF2_MS
 TT_RE = T1*WF1_RE + T2*WF2_RE
 TT_XF = T1*WF1_XF + T2*WF2_XF
C
 DT = D1*WF1 + D2*WF2
 DT_A1 = D1*WF1_A1 + D2*WF2_A1
 DT_X1 = D1*WF1_X1 + D2*WF2_X1
 DT_X2 = D1*WF1_X2 + D2*WF2_X2
 DT_T1 = D1*WF1_T1 + D2*WF2_T1
 DT_T2 = D1*WF1_T2 + D2*WF2_T2
 DT_D1 = D1*WF1_D1 + D2*WF2_D1 + WF1
 DT_D2 = D1*WF1_D2 + D2*WF2_D2 + WF2
 DT_U1 = D1*WF1_U1 + D2*WF2_U1
 DT_U2 = D1*WF1_U2 + D2*WF2_U2
 DT_MS = D1*WF1_MS + D2*WF2_MS
 DT_RE = D1*WF1_RE + D2*WF2_RE
 DT_XF = D1*WF1_XF + D2*WF2_XF
C
 UT = U1*WF1 + U2*WF2
 UT_A1 = U1*WF1_A1 + U2*WF2_A1
 UT_X1 = U1*WF1_X1 + U2*WF2_X1
 UT_X2 = U1*WF1_X2 + U2*WF2_X2
 UT_T1 = U1*WF1_T1 + U2*WF2_T1
 UT_T2 = U1*WF1_T2 + U2*WF2_T2
 UT_D1 = U1*WF1_D1 + U2*WF2_D1
 UT_D2 = U1*WF1_D2 + U2*WF2_D2
 UT_U1 = U1*WF1_U1 + U2*WF2_U1 + WF1
 UT_U2 = U1*WF1_U2 + U2*WF2_U2 + WF2
 UT_MS = U1*WF1_MS + U2*WF2_MS
 UT_RE = U1*WF1_RE + U2*WF2_RE
 UT_XF = U1*WF1_XF + U2*WF2_XF
C
C---- set primary "T" variables at XT (really placed into "2" variables)
 X2 = XT
 T2 = TT
 D2 = DT
 U2 = UT
C
 AMPL2 = AMCRIT
 S2 = 0.
C
C---- calculate laminar secondary "T" variables
 CALL BLKIN
 CALL BLVAR(1)
C
C---- calculate X1-XT midpoint CFM value
 CALL BLMID(1)
C=
C= at this point, all "2" variables are really "T" variables at XT
C=
C
C---- set up Newton system for dAm, dTh, dDs, dUe, dXi at X1 and XT
 CALL BLDIF(1)
C
C---- The current Newton system is in terms of "1" and "T" variables,
C- so calculate its equivalent in terms of "1" and "2" variables.
C- In other words, convert residual sensitivities wrt "T" variables
C- into sensitivities wrt "1" and "2" variables. The amplification
C- equation is unnecessary here, so the K=1 row is left empty.
 DO 10 K=2, 3
 BLREZ(K) = VSREZ(K)
 BLM(K) = VSM(K)
 & + VS2(K,2)*TT_MS
 & + VS2(K,3)*DT_MS
 & + VS2(K,4)*UT_MS
 & + VS2(K,5)*XT_MS
 BLR(K) = VSR(K)
 & + VS2(K,2)*TT_RE
 & + VS2(K,3)*DT_RE
 & + VS2(K,4)*UT_RE
 & + VS2(K,5)*XT_RE
 BLX(K) = VSX(K)
 & + VS2(K,2)*TT_XF
 & + VS2(K,3)*DT_XF
 & + VS2(K,4)*UT_XF
 & + VS2(K,5)*XT_XF
C
 BL1(K,1) = VS1(K,1)
 & + VS2(K,2)*TT_A1
 & + VS2(K,3)*DT_A1
 & + VS2(K,4)*UT_A1
 & + VS2(K,5)*XT_A1
 BL1(K,2) = VS1(K,2)
 & + VS2(K,2)*TT_T1
 & + VS2(K,3)*DT_T1
 & + VS2(K,4)*UT_T1
 & + VS2(K,5)*XT_T1
 BL1(K,3) = VS1(K,3)
 & + VS2(K,2)*TT_D1
 & + VS2(K,3)*DT_D1
 & + VS2(K,4)*UT_D1
 & + VS2(K,5)*XT_D1
 BL1(K,4) = VS1(K,4)
 & + VS2(K,2)*TT_U1
 & + VS2(K,3)*DT_U1
 & + VS2(K,4)*UT_U1
 & + VS2(K,5)*XT_U1
 BL1(K,5) = VS1(K,5)
 & + VS2(K,2)*TT_X1
 & + VS2(K,3)*DT_X1
 & + VS2(K,4)*UT_X1
 & + VS2(K,5)*XT_X1
C
 BL2(K,1) = 0.
 BL2(K,2) = VS2(K,2)*TT_T2
 & + VS2(K,3)*DT_T2
 & + VS2(K,4)*UT_T2
 & + VS2(K,5)*XT_T2
 BL2(K,3) = VS2(K,2)*TT_D2
 & + VS2(K,3)*DT_D2
 & + VS2(K,4)*UT_D2
 & + VS2(K,5)*XT_D2
 BL2(K,4) = VS2(K,2)*TT_U2
 & + VS2(K,3)*DT_U2
 & + VS2(K,4)*UT_U2
 & + VS2(K,5)*XT_U2
 BL2(K,5) = VS2(K,2)*TT_X2
 & + VS2(K,3)*DT_X2
 & + VS2(K,4)*UT_X2
 & + VS2(K,5)*XT_X2
C
 10 CONTINUE
C
C
C**** SECOND, set up turbulent part between XT and X2 ****
C
C---- calculate equilibrium shear coefficient CQT at transition point
 CALL BLVAR(2)
C
C---- set initial shear coefficient value ST at transition point
C- (note that CQ2, CQ2_T2, etc. are really "CQT", "CQT_TT", etc.)
C
 CTR = CTRCON*EXP(-CTRCEX/(HK2-1.0))
 CTR_HK2 = CTR * CTRCEX/(HK2-1.0)**2
C
c CTR = 1.1*EXP(-10.0/HK2**2)
c CTR_HK2 = CTR * 10.0 * 2.0/HK2**3
C
CCC CTR = 1.2
CCC CTR = 0.7
CCC CTR_HK2 = 0.0
C
 ST = CTR*CQ2
 ST_TT = CTR*CQ2_T2 + CQ2*CTR_HK2*HK2_T2
 ST_DT = CTR*CQ2_D2 + CQ2*CTR_HK2*HK2_D2
 ST_UT = CTR*CQ2_U2 + CQ2*CTR_HK2*HK2_U2
 ST_MS = CTR*CQ2_MS + CQ2*CTR_HK2*HK2_MS
 ST_RE = CTR*CQ2_RE
C
C---- calculate ST sensitivities wrt the actual "1" and "2" variables
 ST_A1 = ST_TT*TT_A1 + ST_DT*DT_A1 + ST_UT*UT_A1
 ST_X1 = ST_TT*TT_X1 + ST_DT*DT_X1 + ST_UT*UT_X1
 ST_X2 = ST_TT*TT_X2 + ST_DT*DT_X2 + ST_UT*UT_X2
 ST_T1 = ST_TT*TT_T1 + ST_DT*DT_T1 + ST_UT*UT_T1
 ST_T2 = ST_TT*TT_T2 + ST_DT*DT_T2 + ST_UT*UT_T2
 ST_D1 = ST_TT*TT_D1 + ST_DT*DT_D1 + ST_UT*UT_D1
 ST_D2 = ST_TT*TT_D2 + ST_DT*DT_D2 + ST_UT*UT_D2
 ST_U1 = ST_TT*TT_U1 + ST_DT*DT_U1 + ST_UT*UT_U1
 ST_U2 = ST_TT*TT_U2 + ST_DT*DT_U2 + ST_UT*UT_U2
 ST_MS = ST_TT*TT_MS + ST_DT*DT_MS + ST_UT*UT_MS + ST_MS
 ST_RE = ST_TT*TT_RE + ST_DT*DT_RE + ST_UT*UT_RE + ST_RE
 ST_XF = ST_TT*TT_XF + ST_DT*DT_XF + ST_UT*UT_XF
C
 AMPL2 = 0.
 S2 = ST
C
C---- recalculate turbulent secondary "T" variables using proper CTI
 CALL BLVAR(2)
C
C---- set "1" variables to "T" variables and reset "2" variables
C- to their saved turbulent values
 DO 30 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 COM2(ICOM) = C2SAV(ICOM)
 30 CONTINUE
C
C---- calculate XT-X2 midpoint CFM value
 CALL BLMID(2)
C
C---- set up Newton system for dCt, dTh, dDs, dUe, dXi at XT and X2
 CALL BLDIF(2)
C
C---- convert sensitivities wrt "T" variables into sensitivities
C- wrt "1" and "2" variables as done before for the laminar part
 DO 40 K=1, 3
 BTREZ(K) = VSREZ(K)
 BTM(K) = VSM(K)
 & + VS1(K,1)*ST_MS
 & + VS1(K,2)*TT_MS
 & + VS1(K,3)*DT_MS
 & + VS1(K,4)*UT_MS
 & + VS1(K,5)*XT_MS
 BTR(K) = VSR(K)
 & + VS1(K,1)*ST_RE
 & + VS1(K,2)*TT_RE
 & + VS1(K,3)*DT_RE
 & + VS1(K,4)*UT_RE
 & + VS1(K,5)*XT_RE
 BTX(K) = VSX(K)
 & + VS1(K,1)*ST_XF
 & + VS1(K,2)*TT_XF
 & + VS1(K,3)*DT_XF
 & + VS1(K,4)*UT_XF
 & + VS1(K,5)*XT_XF
C
 BT1(K,1) = VS1(K,1)*ST_A1
 & + VS1(K,2)*TT_A1
 & + VS1(K,3)*DT_A1
 & + VS1(K,4)*UT_A1
 & + VS1(K,5)*XT_A1
 BT1(K,2) = VS1(K,1)*ST_T1
 & + VS1(K,2)*TT_T1
 & + VS1(K,3)*DT_T1
 & + VS1(K,4)*UT_T1
 & + VS1(K,5)*XT_T1
 BT1(K,3) = VS1(K,1)*ST_D1
 & + VS1(K,2)*TT_D1
 & + VS1(K,3)*DT_D1
 & + VS1(K,4)*UT_D1
 & + VS1(K,5)*XT_D1
 BT1(K,4) = VS1(K,1)*ST_U1
 & + VS1(K,2)*TT_U1
 & + VS1(K,3)*DT_U1
 & + VS1(K,4)*UT_U1
 & + VS1(K,5)*XT_U1
 BT1(K,5) = VS1(K,1)*ST_X1
 & + VS1(K,2)*TT_X1
 & + VS1(K,3)*DT_X1
 & + VS1(K,4)*UT_X1
 & + VS1(K,5)*XT_X1
C
 BT2(K,1) = VS2(K,1)
 BT2(K,2) = VS2(K,2)
 & + VS1(K,1)*ST_T2
 & + VS1(K,2)*TT_T2
 & + VS1(K,3)*DT_T2
 & + VS1(K,4)*UT_T2
 & + VS1(K,5)*XT_T2
 BT2(K,3) = VS2(K,3)
 & + VS1(K,1)*ST_D2
 & + VS1(K,2)*TT_D2
 & + VS1(K,3)*DT_D2
 & + VS1(K,4)*UT_D2
 & + VS1(K,5)*XT_D2
 BT2(K,4) = VS2(K,4)
 & + VS1(K,1)*ST_U2
 & + VS1(K,2)*TT_U2
 & + VS1(K,3)*DT_U2
 & + VS1(K,4)*UT_U2
 & + VS1(K,5)*XT_U2
 BT2(K,5) = VS2(K,5)
 & + VS1(K,1)*ST_X2
 & + VS1(K,2)*TT_X2
 & + VS1(K,3)*DT_X2
 & + VS1(K,4)*UT_X2
 & + VS1(K,5)*XT_X2
C
 40 CONTINUE
C
C---- Add up laminar and turbulent parts to get final system
C- in terms of honest-to-God "1" and "2" variables.
 VSREZ(1) = BTREZ(1)
 VSREZ(2) = BLREZ(2) + BTREZ(2)
 VSREZ(3) = BLREZ(3) + BTREZ(3)
 VSM(1) = BTM(1)
 VSM(2) = BLM(2) + BTM(2)
 VSM(3) = BLM(3) + BTM(3)
 VSR(1) = BTR(1)
 VSR(2) = BLR(2) + BTR(2)
 VSR(3) = BLR(3) + BTR(3)
 VSX(1) = BTX(1)
 VSX(2) = BLX(2) + BTX(2)
 VSX(3) = BLX(3) + BTX(3)
 DO 60 L=1, 5
 VS1(1,L) = BT1(1,L)
 VS2(1,L) = BT2(1,L)
 VS1(2,L) = BL1(2,L) + BT1(2,L)
 VS2(2,L) = BL2(2,L) + BT2(2,L)
 VS1(3,L) = BL1(3,L) + BT1(3,L)
 VS2(3,L) = BL2(3,L) + BT2(3,L)
 60 CONTINUE
C
C---- To be sanitary, restore "1" quantities which got clobbered
C- in all of the numerical gymnastics above. The "2" variables
C- were already restored for the XT-X2 differencing part.
 DO 70 ICOM=1, NCOM
 COM1(ICOM) = C1SAV(ICOM)
 70 CONTINUE
C
 RETURN
 END

 SUBROUTINE BLDIF(ITYP)
C---
C Sets up the Newton system coefficients and residuals
C
C ITYP = 0 : similarity station
C ITYP = 1 : laminar interval
C ITYP = 2 : turbulent interval
C ITYP = 3 : wake interval
C
C This routine knows nothing about a transition interval,
C which is taken care of by TRDIF.
C---
 IMPLICIT REAL(M)
 INCLUDE 'XBL.INC'
C
 IF(ITYP.EQ.0) THEN
C----- similarity logarithmic differences (prescribed)
 XLOG = 1.0
 ULOG = BULE
 TLOG = 0.5*(1.0 - BULE)
 HLOG = 0.
 DDLOG = 0.
 ELSE
C----- usual logarithmic differences
 XLOG = LOG(X2/X1)
 ULOG = LOG(U2/U1)
 TLOG = LOG(T2/T1)
 HLOG = LOG(HS2/HS1)
C XLOG = 2.0*(X2-X1)/(X2+X1)
C ULOG = 2.0*(U2-U1)/(U2+U1)
C TLOG = 2.0*(T2-T1)/(T2+T1)
C HLOG = 2.0*(HS2-HS1)/(HS2+HS1)
 DDLOG = 1.0
 ENDIF
C
 DO 55 K=1, 4
 VSREZ(K) = 0.
 VSM(K) = 0.
 VSR(K) = 0.
 VSX(K) = 0.
 DO 551 L=1, 5
 VS1(K,L) = 0.
 VS2(K,L) = 0.
 551 CONTINUE
 55 CONTINUE
C
C---- set triggering constant for local upwinding
 HUPWT = 1.0
C
ccc HDCON = 5.0*HUPWT
ccc HD_HK1 = 0.0
ccc HD_HK2 = 0.0
C
 HDCON = 5.0*HUPWT/HK2**2
 HD_HK1 = 0.0
 HD_HK2 = -HDCON*2.0/HK2
C
C---- use less upwinding in the wake
 IF(ITYP.EQ.3) THEN
 HDCON = HUPWT/HK2**2
 HD_HK1 = 0.0
 HD_HK2 = -HDCON*2.0/HK2
 ENDIF
C
C---- local upwinding is based on local change in log(Hk-1)
C- (mainly kicks in at transition)
 ARG = ABS((HK2-1.0)/(HK1-1.0))
 HL = LOG(ARG)
 HL_HK1 = -1.0/(HK1-1.0)
 HL_HK2 = 1.0/(HK2-1.0)
C
C---- set local upwinding parameter UPW and linearize it
C
C UPW = 0.5 Trapezoidal
C UPW = 1.0 Backward Euler
C
 HLSQ = MIN(HL**2 , 15.0)
 EHH = EXP(-HLSQ*HDCON)
 UPW = 1.0 - 0.5*EHH
 UPW_HL = EHH * HL *HDCON
 UPW_HD = 0.5*EHH * HLSQ
C
 UPW_HK1 = UPW_HL*HL_HK1 + UPW_HD*HD_HK1
 UPW_HK2 = UPW_HL*HL_HK2 + UPW_HD*HD_HK2
C
 UPW_U1 = UPW_HK1*HK1_U1
 UPW_T1 = UPW_HK1*HK1_T1
 UPW_D1 = UPW_HK1*HK1_D1
 UPW_U2 = UPW_HK2*HK2_U2
 UPW_T2 = UPW_HK2*HK2_T2
 UPW_D2 = UPW_HK2*HK2_D2
 UPW_MS = UPW_HK1*HK1_MS
 & + UPW_HK2*HK2_MS
C
C
 IF(ITYP.EQ.0) THEN
C
C***** LE point --> set zero amplification factor
 VS2(1,1) = 1.0
 VSR(1) = 0.
 VSREZ(1) = -AMPL2
C
 ELSE IF(ITYP.EQ.1) THEN
C
C***** laminar part --> set amplification equation
C
C----- set average amplification AX over interval X1..X2
 CALL AXSET(HK1, T1, RT1, AMPL1,
 & HK2, T2, RT2, AMPL2, AMCRIT,
 & AX, AX_HK1, AX_T1, AX_RT1, AX_A1,
 & AX_HK2, AX_T2, AX_RT2, AX_A2)
C
 REZC = AMPL2 - AMPL1 - AX*(X2-X1)
 Z_AX = -(X2-X1)
C
 VS1(1,1) = Z_AX* AX_A1 - 1.0
 VS1(1,2) = Z_AX*(AX_HK1*HK1_T1 + AX_T1 + AX_RT1*RT1_T1)
 VS1(1,3) = Z_AX*(AX_HK1*HK1_D1)
 VS1(1,4) = Z_AX*(AX_HK1*HK1_U1 + AX_RT1*RT1_U1)
 VS1(1,5) = AX
 VS2(1,1) = Z_AX* AX_A2 + 1.0
 VS2(1,2) = Z_AX*(AX_HK2*HK2_T2 + AX_T2 + AX_RT2*RT2_T2)
 VS2(1,3) = Z_AX*(AX_HK2*HK2_D2)
 VS2(1,4) = Z_AX*(AX_HK2*HK2_U2 + AX_RT2*RT2_U2)
 VS2(1,5) = -AX
 VSM(1) = Z_AX*(AX_HK1*HK1_MS + AX_RT1*RT1_MS
 & + AX_HK2*HK2_MS + AX_RT2*RT2_MS)
 VSR(1) = Z_AX*(AX_RT1*RT1_RE
 & + AX_RT2*RT2_RE)
 VSX(1) = 0.
 VSREZ(1) = -REZC
C
 ELSE
C
C***** turbulent part --> set shear lag equation
C
 SA = (1.0-UPW)*S1 + UPW*S2
 CQA = (1.0-UPW)*CQ1 + UPW*CQ2
 CFA = (1.0-UPW)*CF1 + UPW*CF2
 HKA = (1.0-UPW)*HK1 + UPW*HK2
C
 USA = 0.5*(US1 + US2)
 RTA = 0.5*(RT1 + RT2)
 DEA = 0.5*(DE1 + DE2)
 DA = 0.5*(D1 + D2)
C
C
 IF(ITYP.EQ.3) THEN
C------ increased dissipation length in wake (decrease its reciprocal)
 ALD = DLCON
 ELSE
 ALD = 1.0
 ENDIF
C
C----- set and linearize equilibrium 1/Ue dUe/dx ... NEW 12 Oct 94
 IF(ITYP.EQ.2) THEN
 GCC = GCCON
 HKC = HKA - 1.0 - GCC/RTA
 HKC_HKA = 1.0
 HKC_RTA = GCC/RTA**2
 IF(HKC .LT. 0.01) THEN
 HKC = 0.01
 HKC_HKA = 0.0
 HKC_RTA = 0.0
 ENDIF
 ELSE
 GCC = 0.0
 HKC = HKA - 1.0
 HKC_HKA = 1.0
 HKC_RTA = 0.0
 ENDIF
C
 HR = HKC / (GACON*ALD*HKA)
 HR_HKA = HKC_HKA / (GACON*ALD*HKA) - HR / HKA
 HR_RTA = HKC_RTA / (GACON*ALD*HKA)
C
 UQ = (0.5*CFA - HR**2) / (GBCON*DA)
 UQ_HKA = -2.0*HR*HR_HKA / (GBCON*DA)
 UQ_RTA = -2.0*HR*HR_RTA / (GBCON*DA)
 UQ_CFA = 0.5 / (GBCON*DA)
 UQ_DA = -UQ/DA
C
 UQ_UPW = UQ_CFA*(CF2-CF1) + UQ_HKA*(HK2-HK1)
C
 UQ_T1 = (1.0-UPW)*(UQ_CFA*CF1_T1 + UQ_HKA*HK1_T1) + UQ_UPW*UPW_T1
 UQ_D1 = (1.0-UPW)*(UQ_CFA*CF1_D1 + UQ_HKA*HK1_D1) + UQ_UPW*UPW_D1
 UQ_U1 = (1.0-UPW)*(UQ_CFA*CF1_U1 + UQ_HKA*HK1_U1) + UQ_UPW*UPW_U1
 UQ_T2 = UPW *(UQ_CFA*CF2_T2 + UQ_HKA*HK2_T2) + UQ_UPW*UPW_T2
 UQ_D2 = UPW *(UQ_CFA*CF2_D2 + UQ_HKA*HK2_D2) + UQ_UPW*UPW_D2
 UQ_U2 = UPW *(UQ_CFA*CF2_U2 + UQ_HKA*HK2_U2) + UQ_UPW*UPW_U2
 UQ_MS = (1.0-UPW)*(UQ_CFA*CF1_MS + UQ_HKA*HK1_MS) + UQ_UPW*UPW_MS
 & + UPW *(UQ_CFA*CF2_MS + UQ_HKA*HK2_MS)
 UQ_RE = (1.0-UPW)* UQ_CFA*CF1_RE
 & + UPW * UQ_CFA*CF2_RE
C
 UQ_T1 = UQ_T1 + 0.5*UQ_RTA*RT1_T1
 UQ_D1 = UQ_D1 + 0.5*UQ_DA
 UQ_U1 = UQ_U1 + 0.5*UQ_RTA*RT1_U1
 UQ_T2 = UQ_T2 + 0.5*UQ_RTA*RT2_T2
 UQ_D2 = UQ_D2 + 0.5*UQ_DA
 UQ_U2 = UQ_U2 + 0.5*UQ_RTA*RT2_U2
 UQ_MS = UQ_MS + 0.5*UQ_RTA*RT1_MS
 & + 0.5*UQ_RTA*RT2_MS
 UQ_RE = UQ_RE + 0.5*UQ_RTA*RT1_RE
 & + 0.5*UQ_RTA*RT2_RE
C
 SCC = SCCON*1.333/(1.0+USA)
 SCC_USA = -SCC/(1.0+USA)
C
 SCC_US1 = SCC_USA*0.5
 SCC_US2 = SCC_USA*0.5
C
C
 SLOG = LOG(S2/S1)
 DXI = X2 - X1
C
 REZC = SCC*(CQA - SA*ALD)*DXI/DEA
 & - 2.0* SLOG
 & + 2.0*(UQ*DXI - ULOG)*DUXCON
C
 Z_CQA = SCC *DXI/DEA
 Z_SA = -SCC ALD *DXI/DEA
 Z_DEA = -SCC*(CQA - SA*ALD)*DXI/DEA**2
 Z_USA = SCC_USA
 & *(CQA - SA*ALD)*DXI/DEA
 Z_DXI = SCC*(CQA - SA*ALD) /DEA
 & + 2.0* UQ *DUXCON
 Z_UQ = 2.0* DXI *DUXCON
 Z_SL = -2.0
 Z_UL = -2.0 *DUXCON
C
C
 Z_DE1 = 0.5*Z_DEA
 Z_DE2 = 0.5*Z_DEA
 Z_US1 = 0.5*Z_USA
 Z_US2 = 0.5*Z_USA
 Z_U1 = - Z_UL/U1
 Z_U2 = Z_UL/U2
 Z_X1 = -Z_DXI
 Z_X2 = Z_DXI
 Z_S1 = (1.0-UPW)*Z_SA - Z_SL/S1
 Z_S2 = UPW *Z_SA + Z_SL/S2
 Z_CQ1 = (1.0-UPW)*Z_CQA
 Z_CQ2 = UPW *Z_CQA
C
 Z_UPW = Z_CQA*(CQ2-CQ1) + Z_SA *(S2 -S1)
C
C
 VS1(1,1) = Z_S1
 VS1(1,2) = Z_DE1*DE1_T1 + Z_US1*US1_T1 + Z_CQ1*CQ1_T1
 VS1(1,3) = Z_DE1*DE1_D1 + Z_US1*US1_D1 + Z_CQ1*CQ1_D1
 VS1(1,4) = Z_U1 + Z_DE1*DE1_U1 + Z_US1*US1_U1 + Z_CQ1*CQ1_U1
 VS1(1,5) = Z_X1
 VS2(1,1) = Z_S2
 VS2(1,2) = Z_DE2*DE2_T2 + Z_US2*US2_T2 + Z_CQ2*CQ2_T2
 VS2(1,3) = Z_DE2*DE2_D2 + Z_US2*US2_D2 + Z_CQ2*CQ2_D2
 VS2(1,4) = Z_U2 + Z_DE2*DE2_U2 + Z_US2*US2_U2 + Z_CQ2*CQ2_U2
 VS2(1,5) = Z_X2
 VSM(1) = Z_DE1*DE1_MS + Z_US1*US1_MS + Z_CQ1*CQ1_MS
 & Z_DE2*DE2_MS + Z_US2*US2_MS + Z_CQ2*CQ2_MS
 VSR(1) = Z_CQ1*CQ1_RE
 & + Z_CQ2*CQ2_RE
C
 VS1(1,2) = VS1(1,2) + Z_UPW*UPW_T1
 VS1(1,3) = VS1(1,3) + Z_UPW*UPW_D1
 VS1(1,4) = VS1(1,4) + Z_UPW*UPW_U1
C
 VS2(1,2) = VS2(1,2) + Z_UPW*UPW_T2
 VS2(1,3) = VS2(1,3) + Z_UPW*UPW_D2
 VS2(1,4) = VS2(1,4) + Z_UPW*UPW_U2
C
 VSM(1) = VSM(1) + Z_UPW*UPW_MS
 VSX(1) = 0.
 VSREZ(1) = -REZC
C
 ENDIF
C
C**** Set up momentum equation
 HA = 0.5*(H1 + H2)
 MA = 0.5*(M1 + M2)
 XA = 0.5*(X1 + X2)
 TA = 0.5*(T1 + T2)
 HWA = 0.5*(DW1/T1 + DW2/T2)
C
C---- set Cf term, using central value CFM for better accuracy in drag
 CFX = 0.50*CFM*XA/TA + 0.25*(CF1*X1/T1 + CF2*X2/T2)
 CFX_XA = 0.50*CFM /TA
 CFX_TA = -.50*CFM*XA/TA**2
C
 CFX_X1 = 0.25*CF1 /T1 + CFX_XA*0.5
 CFX_X2 = 0.25*CF2 /T2 + CFX_XA*0.5
 CFX_T1 = -.25*CF1*X1/T1**2 + CFX_TA*0.5
 CFX_T2 = -.25*CF2*X2/T2**2 + CFX_TA*0.5
 CFX_CF1 = 0.25* X1/T1
 CFX_CF2 = 0.25* X2/T2
 CFX_CFM = 0.50* XA/TA
C
 BTMP = HA + 2.0 - MA + HWA
C
 REZT = TLOG + BTMP*ULOG - XLOG*0.5*CFX
 Z_CFX = -XLOG*0.5
 Z_HA = ULOG
 Z_HWA = ULOG
 Z_MA = -ULOG
 Z_XL =-DDLOG * 0.5*CFX
 Z_UL = DDLOG * BTMP
 Z_TL = DDLOG
C
 Z_CFM = Z_CFX*CFX_CFM
 Z_CF1 = Z_CFX*CFX_CF1
 Z_CF2 = Z_CFX*CFX_CF2
C
 Z_T1 = -Z_TL/T1 + Z_CFX*CFX_T1 + Z_HWA*0.5*(-DW1/T1**2)
 Z_T2 = Z_TL/T2 + Z_CFX*CFX_T2 + Z_HWA*0.5*(-DW2/T2**2)
 Z_X1 = -Z_XL/X1 + Z_CFX*CFX_X1
 Z_X2 = Z_XL/X2 + Z_CFX*CFX_X2
 Z_U1 = -Z_UL/U1
 Z_U2 = Z_UL/U2
C
 VS1(2,2) = 0.5*Z_HA*H1_T1 + Z_CFM*CFM_T1 + Z_CF1*CF1_T1 + Z_T1
 VS1(2,3) = 0.5*Z_HA*H1_D1 + Z_CFM*CFM_D1 + Z_CF1*CF1_D1
 VS1(2,4) = 0.5*Z_MA*M1_U1 + Z_CFM*CFM_U1 + Z_CF1*CF1_U1 + Z_U1
 VS1(2,5) = Z_X1
 VS2(2,2) = 0.5*Z_HA*H2_T2 + Z_CFM*CFM_T2 + Z_CF2*CF2_T2 + Z_T2
 VS2(2,3) = 0.5*Z_HA*H2_D2 + Z_CFM*CFM_D2 + Z_CF2*CF2_D2
 VS2(2,4) = 0.5*Z_MA*M2_U2 + Z_CFM*CFM_U2 + Z_CF2*CF2_U2 + Z_U2
 VS2(2,5) = Z_X2
C
 VSM(2) = 0.5*Z_MA*M1_MS + Z_CFM*CFM_MS + Z_CF1*CF1_MS
 & + 0.5*Z_MA*M2_MS + Z_CF2*CF2_MS
 VSR(2) = Z_CFM*CFM_RE + Z_CF1*CF1_RE
 & + Z_CF2*CF2_RE
 VSX(2) = 0.
 VSREZ(2) = -REZT
C
C**** Set up shape parameter equation
C
 XOT1 = X1/T1
 XOT2 = X2/T2
C
 HA = 0.5*(H1 + H2)
 HSA = 0.5*(HS1 + HS2)
 HCA = 0.5*(HC1 + HC2)
 HWA = 0.5*(DW1/T1 + DW2/T2)
C
 DIX = (1.0-UPW)*DI1*XOT1 + UPW*DI2*XOT2
 CFX = (1.0-UPW)*CF1*XOT1 + UPW*CF2*XOT2
 DIX_UPW = DI2*XOT2 - DI1*XOT1
 CFX_UPW = CF2*XOT2 - CF1*XOT1
C
 BTMP = 2.0*HCA/HSA + 1.0 - HA - HWA
C
 REZH = HLOG + BTMP*ULOG + XLOG*(0.5*CFX-DIX)
 Z_CFX = XLOG*0.5
 Z_DIX = -XLOG
 Z_HCA = 2.0*ULOG/HSA
 Z_HA = -ULOG
 Z_HWA = -ULOG
 Z_XL = DDLOG * (0.5*CFX-DIX)
 Z_UL = DDLOG * BTMP
 Z_HL = DDLOG
C
 Z_UPW = Z_CFX*CFX_UPW + Z_DIX*DIX_UPW
C
 Z_HS1 = -HCA*ULOG/HSA**2 - Z_HL/HS1
 Z_HS2 = -HCA*ULOG/HSA**2 + Z_HL/HS2
C
 Z_CF1 = (1.0-UPW)*Z_CFX*XOT1
 Z_CF2 = UPW *Z_CFX*XOT2
 Z_DI1 = (1.0-UPW)*Z_DIX*XOT1
 Z_DI2 = UPW *Z_DIX*XOT2
C
 Z_T1 = (1.0-UPW)*(Z_CFX*CF1 + Z_DIX*DI1)*(-XOT1/T1)
 Z_T2 = UPW *(Z_CFX*CF2 + Z_DIX*DI2)*(-XOT2/T2)
 Z_X1 = (1.0-UPW)*(Z_CFX*CF1 + Z_DIX*DI1)/ T1 - Z_XL/X1
 Z_X2 = UPW *(Z_CFX*CF2 + Z_DIX*DI2)/ T2 + Z_XL/X2
 Z_U1 = - Z_UL/U1
 Z_U2 = Z_UL/U2
C
 Z_T1 = Z_T1 + Z_HWA*0.5*(-DW1/T1**2)
 Z_T2 = Z_T2 + Z_HWA*0.5*(-DW2/T2**2)
C
 VS1(3,1) = Z_DI1*DI1_S1
 VS1(3,2) = Z_HS1*HS1_T1 + Z_CF1*CF1_T1 + Z_DI1*DI1_T1 + Z_T1
 VS1(3,3) = Z_HS1*HS1_D1 + Z_CF1*CF1_D1 + Z_DI1*DI1_D1
 VS1(3,4) = Z_HS1*HS1_U1 + Z_CF1*CF1_U1 + Z_DI1*DI1_U1 + Z_U1
 VS1(3,5) = Z_X1
 VS2(3,1) = Z_DI2*DI2_S2
 VS2(3,2) = Z_HS2*HS2_T2 + Z_CF2*CF2_T2 + Z_DI2*DI2_T2 + Z_T2
 VS2(3,3) = Z_HS2*HS2_D2 + Z_CF2*CF2_D2 + Z_DI2*DI2_D2
 VS2(3,4) = Z_HS2*HS2_U2 + Z_CF2*CF2_U2 + Z_DI2*DI2_U2 + Z_U2
 VS2(3,5) = Z_X2
 VSM(3) = Z_HS1*HS1_MS + Z_CF1*CF1_MS + Z_DI1*DI1_MS
 & + Z_HS2*HS2_MS + Z_CF2*CF2_MS + Z_DI2*DI2_MS
 VSR(3) = Z_HS1*HS1_RE + Z_CF1*CF1_RE + Z_DI1*DI1_RE
 & + Z_HS2*HS2_RE + Z_CF2*CF2_RE + Z_DI2*DI2_RE
C
 VS1(3,2) = VS1(3,2) + 0.5*(Z_HCA*HC1_T1+Z_HA*H1_T1) + Z_UPW*UPW_T1
 VS1(3,3) = VS1(3,3) + 0.5*(Z_HCA*HC1_D1+Z_HA*H1_D1) + Z_UPW*UPW_D1
 VS1(3,4) = VS1(3,4) + 0.5*(Z_HCA*HC1_U1) + Z_UPW*UPW_U1
 VS2(3,2) = VS2(3,2) + 0.5*(Z_HCA*HC2_T2+Z_HA*H2_T2) + Z_UPW*UPW_T2
 VS2(3,3) = VS2(3,3) + 0.5*(Z_HCA*HC2_D2+Z_HA*H2_D2) + Z_UPW*UPW_D2
 VS2(3,4) = VS2(3,4) + 0.5*(Z_HCA*HC2_U2) + Z_UPW*UPW_U2
C
 VSM(3) = VSM(3) + 0.5*(Z_HCA*HC1_MS) + Z_UPW*UPW_MS
 & + 0.5*(Z_HCA*HC2_MS)
C
 VSX(3) = 0.
 VSREZ(3) = -REZH
C
 RETURN
 END

 SUBROUTINE DAMPL(HK, TH, RT, AX, AX_HK, AX_TH, AX_RT)
C==
C Amplification rate routine for envelope e^n method.
C Reference:
C Drela, M., Giles, M.,
C "Viscous/Inviscid Analysis of Transonic and
C Low Reynolds Number Airfoils",
C AIAA Journal, Oct. 1987.
C
C NEW VERSION. March 1991 (latest bug fix July 93)
C - m(H) correlation made more accurate up to H=20
C - for H > 5, non-similar profiles are used
C instead of Falkner-Skan profiles. These
C non-similar profiles have smaller reverse
C velocities, are more representative of typical
C separation bubble profiles.
C--
C
C input : HK kinematic shape parameter
C TH momentum thickness
C RT momentum-thickness Reynolds number
C
C output: AX envelope spatial amplification rate
C AX_(.) sensitivity of AX to parameter (.)
C
C
C Usage: The log of the envelope amplitude N(x) is
C calculated by integrating AX (= dN/dx) with
C respect to the streamwise distance x.
C x
C /
C N(x) = | AX(H(x),Th(x),Rth(x)) dx
C /
C 0
C The integration can be started from the leading
C edge since AX will be returned as zero when RT
C is below the critical Rtheta. Transition occurs
C when N(x) reaches Ncrit (Ncrit= 9 is "standard").
C==
 IMPLICIT REAL (A-H,M,O-Z)
ccc DATA DGR / 0.04 /
 DATA DGR / 0.08 /
C
 HMI = 1.0/(HK - 1.0)
 HMI_HK = -HMI**2
C
C---- log10(Critical Rth) - H correlation for Falkner-Skan profiles
 AA = 2.492*HMI**0.43
 AA_HK = (AA/HMI)*0.43 * HMI_HK
C
 BB = TANH(14.0*HMI - 9.24)
 BB_HK = (1.0 - BB*BB) * 14.0 * HMI_HK
C
 GRCRIT = AA + 0.7*(BB + 1.0)
 GRC_HK = AA_HK + 0.7* BB_HK
C
C
 GR = LOG10(RT)
 GR_RT = 1.0 / (2.3025851*RT)
C
 IF(GR .LT. GRCRIT-DGR) THEN
C
C----- no amplification for Rtheta < Rcrit
 AX = 0.
 AX_HK = 0.
 AX_TH = 0.
 AX_RT = 0.
C
 ELSE
C
C----- Set steep cubic ramp used to turn on AX smoothly as Rtheta
C- exceeds Rcrit (previously, this was done discontinuously).
C- The ramp goes between -DGR < log10(Rtheta/Rcrit) < DGR
C
 RNORM = (GR - (GRCRIT-DGR)) / (2.0*DGR)
 RN_HK = - GRC_HK / (2.0*DGR)
 RN_RT = GR_RT / (2.0*DGR)
C
 IF(RNORM .GE. 1.0) THEN
 RFAC = 1.0
 RFAC_HK = 0.
 RFAC_RT = 0.
 ELSE
 RFAC = 3.0*RNORM**2 - 2.0*RNORM**3
 RFAC_RN = 6.0*RNORM - 6.0*RNORM**2
C
 RFAC_HK = RFAC_RN*RN_HK
 RFAC_RT = RFAC_RN*RN_RT
 ENDIF
C
C----- Amplification envelope slope correlation for Falkner-Skan
 ARG = 3.87*HMI - 2.52
 ARG_HK = 3.87*HMI_HK
C
 EX = EXP(-ARG**2)
 EX_HK = EX * (-2.0*ARG*ARG_HK)
C
 DADR = 0.028*(HK-1.0) - 0.0345*EX
 DADR_HK = 0.028 - 0.0345*EX_HK
C
C----- new m(H) correlation 1 March 91
 AF = -0.05 + 2.7*HMI - 5.5*HMI**2 + 3.0*HMI**3
 AF_HMI = 2.7 - 11.0*HMI + 9.0*HMI**2
 AF_HK = AF_HMI*HMI_HK
C
 AX = (AF *DADR/TH) * RFAC
 AX_HK = (AF_HK*DADR/TH + AF*DADR_HK/TH) * RFAC
 & + (AF *DADR/TH) * RFAC_HK
 AX_TH = -AX/TH
 AX_RT = (AF *DADR/TH) * RFAC_RT
C
 ENDIF
C
 RETURN
 END ! DAMPL

 SUBROUTINE DAMPL2(HK, TH, RT, AX, AX_HK, AX_TH, AX_RT)
C==
C Amplification rate routine for modified envelope e^n method.
C Reference:
C Drela, M., Giles, M.,
C "Viscous/Inviscid Analysis of Transonic and
C Low Reynolds Number Airfoils",
C AIAA Journal, Oct. 1987.
C
C NEWER VERSION. Nov 1996
C - Amplification rate changes to the Orr-Sommerfeld
C maximum ai(H,Rt) function for H > 4 .
C - This implicitly assumes that the frequency range
C (around w = 0.09 Ue/theta) which experiences this
C maximum amplification rate contains the currently
C most-amplified frequency.
C--
C
C input : HK kinematic shape parameter
C TH momentum thickness
C RT momentum-thickness Reynolds number
C
C output: AX envelope spatial amplification rate
C AX_(.) sensitivity of AX to parameter (.)
C
C
C Usage: The log of the envelope amplitude N(x) is
C calculated by integrating AX (= dN/dx) with
C respect to the streamwise distance x.
C x
C /
C N(x) = | AX(H(x),Th(x),Rth(x)) dx
C /
C 0
C The integration can be started from the leading
C edge since AX will be returned as zero when RT
C is below the critical Rtheta. Transition occurs
C when N(x) reaches Ncrit (Ncrit= 9 is "standard").
C==
 IMPLICIT REAL (A-H,M,O-Z)
 DATA DGR / 0.08 /
 DATA HK1, HK2 / 3.8, 4.2 /
C
 HMI = 1.0/(HK - 1.0)
 HMI_HK = -HMI**2
C
C---- log10(Critical Rth) -- H correlation for Falkner-Skan profiles
 AA = 2.492*HMI**0.43
 AA_HK = (AA/HMI)*0.43 * HMI_HK
C
 BB = TANH(14.0*HMI - 9.24)
 BB_HK = (1.0 - BB*BB) * 14.0 * HMI_HK
C
 GRC = AA + 0.7*(BB + 1.0)
 GRC_HK = AA_HK + 0.7* BB_HK
C
C
 GR = LOG10(RT)
 GR_RT = 1.0 / (2.3025851*RT)
C
 IF(GR .LT. GRC-DGR) THEN
C
C----- no amplification for Rtheta < Rcrit
 AX = 0.
 AX_HK = 0.
 AX_TH = 0.
 AX_RT = 0.
C
 ELSE
C
C----- Set steep cubic ramp used to turn on AX smoothly as Rtheta
C- exceeds Rcrit (previously, this was done discontinuously).
C- The ramp goes between -DGR < log10(Rtheta/Rcrit) < DGR
C
 RNORM = (GR - (GRC-DGR)) / (2.0*DGR)
 RN_HK = - GRC_HK / (2.0*DGR)
 RN_RT = GR_RT / (2.0*DGR)
C
 IF(RNORM .GE. 1.0) THEN
 RFAC = 1.0
 RFAC_HK = 0.
 RFAC_RT = 0.
 ELSE
 RFAC = 3.0*RNORM**2 - 2.0*RNORM**3
 RFAC_RN = 6.0*RNORM - 6.0*RNORM**2
C
 RFAC_HK = RFAC_RN*RN_HK
 RFAC_RT = RFAC_RN*RN_RT
 ENDIF
C
C
C----- set envelope amplification rate with respect to Rtheta
C- DADR = d(N)/d(Rtheta) = f(H)
C
 ARG = 3.87*HMI - 2.52
 ARG_HK = 3.87*HMI_HK
C
 EX = EXP(-ARG**2)
 EX_HK = EX * (-2.0*ARG*ARG_HK)
C
 DADR = 0.028*(HK-1.0) - 0.0345*EX
 DADR_HK = 0.028 - 0.0345*EX_HK
C
C
C----- set conversion factor from d/d(Rtheta) to d/dx
C- AF = Theta d(Rtheta)/dx = f(H)
C
 BRG = -20.0*HMI
 AF = -0.05 + 2.7*HMI - 5.5*HMI**2 + 3.0*HMI**3 + 0.1*EXP(BRG)
 AF_HMI = 2.7 - 11.0*HMI + 9.0*HMI**2 - 2.0*EXP(BRG)
 AF_HK = AF_HMI*HMI_HK
C
C
C----- set amplification rate with respect to x,
C- with RFAC shutting off amplification when below Rcrit
C
 AX = (AF *DADR/TH) * RFAC
 AX_HK = (AF_HK*DADR/TH + AF*DADR_HK/TH) * RFAC
 & + (AF *DADR/TH) * RFAC_HK
 AX_TH = -AX/TH
 AX_RT = (AF *DADR/TH) * RFAC_RT
C
 ENDIF
C
 IF(HK .LT. HK1) RETURN
C
C---- non-envelope max-amplification correction for separated profiles
C
 HNORM = (HK - HK1) / (HK2 - HK1)
 HN_HK = 1.0 / (HK2 - HK1)
C
C---- set blending fraction HFAC = 0..1 over HK1 < HK < HK2
 IF(HNORM .GE. 1.0) THEN
 HFAC = 1.0
 HF_HK = 0.
 ELSE
 HFAC = 3.0*HNORM**2 - 2.0*HNORM**3
 HF_HK = (6.0*HNORM - 6.0*HNORM**2)*HN_HK
 ENDIF
C
C---- "normal" envelope amplification rate AX1
 AX1 = AX
 AX1_HK = AX_HK
 AX1_TH = AX_TH
 AX1_RT = AX_RT
C
C---- set modified amplification rate AX2
 GR0 = 0.30 + 0.35 * EXP(-0.15*(HK-5.0))
 GR0_HK = - 0.35 * EXP(-0.15*(HK-5.0)) * 0.15
C
 TNR = TANH(1.2*(GR - GR0))
 TNR_RT = (1.0 - TNR**2)*1.2*GR_RT
 TNR_HK = -(1.0 - TNR**2)*1.2*GR0_HK
C
 AX2 = (0.086*TNR - 0.25/(HK-1.0)**1.5) / TH
 AX2_HK = (0.086*TNR_HK + 1.5*0.25/(HK-1.0)**2.5) / TH
 AX2_RT = (0.086*TNR_RT) / TH
 AX2_TH = -AX2/TH
C
 IF(AX2 .LT. 0.0) THEN
 AX2 = 0.0
 AX2_HK = 0.
 AX2_RT = 0.
 AX2_TH = 0.
 ENDIF
C
C---- blend the two amplification rates
 AX = HFAC*AX2 + (1.0 - HFAC)*AX1
 AX_HK = HFAC*AX2_HK + (1.0 - HFAC)*AX1_HK + HF_HK*(AX2-AX1)
 AX_RT = HFAC*AX2_RT + (1.0 - HFAC)*AX1_RT
 AX_TH = HFAC*AX2_TH + (1.0 - HFAC)*AX1_TH
C
 RETURN
 END ! DAMPL2

 SUBROUTINE HKIN(H, MSQ, HK, HK_H, HK_MSQ)
 REAL MSQ
C
C---- calculate kinematic shape parameter (assuming air)
C (from Whitfield)
 HK = (H - 0.29*MSQ)/(1.0 + 0.113*MSQ)
 HK_H = 1.0 /(1.0 + 0.113*MSQ)
 HK_MSQ = (-.29 - 0.113*HK)/(1.0 + 0.113*MSQ)
C
 RETURN
 END

 SUBROUTINE DIL(HK, RT, DI, DI_HK, DI_RT)
C
C---- Laminar dissipation function (2 CD/H*) (from Falkner-Skan)
 IF(HK.LT.4.0) THEN
 DI = (0.00205 * (4.0-HK)**5.5 + 0.207) / RT
 DI_HK = (-.00205*5.5*(4.0-HK)**4.5) / RT
 ELSE
 HKB = HK - 4.0
 DEN = 1.0 + 0.02*HKB**2
 DI = (-.0016 * HKB**2 /DEN + 0.207) / RT
 DI_HK = (-.0016*2.0*HKB*(1.0/DEN - 0.02*HKB**2/DEN**2)) / RT
 ENDIF
 DI_RT = -DI/RT
C
 RETURN
 END

 SUBROUTINE DILW(HK, RT, DI, DI_HK, DI_RT)
 REAL MSQ
C
 MSQ = 0.
 CALL HSL(HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ)
C
C---- Laminar wake dissipation function (2 CD/H*)
 RCD = 1.10 * (1.0 - 1.0/HK)**2 / HK
 RCD_HK = -1.10 * (1.0 - 1.0/HK)*2.0 / HK**3
 & - RCD/HK
C
 DI = 2.0*RCD /(HS*RT)
 DI_HK = 2.0*RCD_HK/(HS*RT) - (DI/HS)*HS_HK
 DI_RT = -DI/RT - (DI/HS)*HS_RT
C
 RETURN
 END

 SUBROUTINE HSL(HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ)
 REAL MSQ
C
C---- Laminar HS correlation
 IF(HK.LT.4.35) THEN
 TMP = HK - 4.35
 HS = 0.0111*TMP**2/(HK+1.0)
 & - 0.0278*TMP**3/(HK+1.0) + 1.528
 & - 0.0002*(TMP*HK)**2
 HS_HK = 0.0111*(2.0*TMP - TMP**2/(HK+1.0))/(HK+1.0)
 & - 0.0278*(3.0*TMP**2 - TMP**3/(HK+1.0))/(HK+1.0)
 & - 0.0002*2.0*TMP*HK * (TMP + HK)
 ELSE
 HS = 0.015* (HK-4.35)**2/HK + 1.528
 HS_HK = 0.015*2.0*(HK-4.35) /HK
 & - 0.015* (HK-4.35)**2/HK**2
 ENDIF
C
 HS_RT = 0.
 HS_MSQ = 0.
C
 RETURN
 END

 SUBROUTINE CFL(HK, RT, MSQ, CF, CF_HK, CF_RT, CF_MSQ)
 REAL MSQ
C
C---- Laminar skin friction function (Cf) (from Falkner-Skan)
 IF(HK.LT.5.5) THEN
 TMP = (5.5-HK)**3 / (HK+1.0)
 CF = (0.0727*TMP - 0.07)/RT
 CF_HK = (-.0727*TMP*3.0/(5.5-HK) - 0.0727*TMP/(HK+1.0))/RT
 ELSE
 TMP = 1.0 - 1.0/(HK-4.5)
 CF = (0.015*TMP**2 - 0.07) / RT
 CF_HK = (0.015*TMP*2.0/(HK-4.5)**2) / RT
 ENDIF
 CF_RT = -CF/RT
 CF_MSQ = 0.0
C
 RETURN
 END

 SUBROUTINE DIT(HS, US, CF, ST, DI, DI_HS, DI_US, DI_CF, DI_ST)
C
C---- Turbulent dissipation function (2 CD/H*)
 DI = (0.5*CF*US + ST*ST*(1.0-US)) * 2.0/HS
 DI_HS = -(0.5*CF*US + ST*ST*(1.0-US)) * 2.0/HS**2
 DI_US = (0.5*CF - ST*ST) * 2.0/HS
 DI_CF = (0.5 *US) * 2.0/HS
 DI_ST = (2.0*ST*(1.0-US)) * 2.0/HS
C
 RETURN
 END

 SUBROUTINE HST(HK, RT, MSQ, HS, HS_HK, HS_RT, HS_MSQ)
 IMPLICIT REAL (A-H,M,O-Z)
C
C---- Turbulent HS correlation
C
 DATA HSMIN, DHSINF / 1.500, 0.015 /
C
C---- ### 12/4/94
C---- limited Rtheta dependence for Rtheta < 200
C
C
 IF(RT.GT.400.0) THEN
 HO = 3.0 + 400.0/RT
 HO_RT = - 400.0/RT**2
 ELSE
 HO = 4.0
 HO_RT = 0.
 ENDIF
C
 IF(RT.GT.200.0) THEN
 RTZ = RT
 RTZ_RT = 1.
 ELSE
 RTZ = 200.0
 RTZ_RT = 0.
 ENDIF
C
 IF(HK.LT.HO) THEN
C----- attached branch
C===
C----- old correlation
C- (from Swafford profiles)
c SRT = SQRT(RT)
c HEX = (HO-HK)**1.6
c RTMP = 0.165 - 1.6/SRT
c HS = HSMIN + 4.0/RT + RTMP*HEX/HK
c HS_HK = RTMP*HEX/HK*(-1.6/(HO-HK) - 1.0/HK)
c HS_RT = -4.0/RT**2 + HEX/HK*0.8/SRT/RT
c & + RTMP*HEX/HK*1.6/(HO-HK)*HO_RT
C===
C----- new correlation 29 Nov 91
C- (from arctan(y+) + Schlichting profiles)
 HR = (HO - HK)/(HO-1.0)
 HR_HK = - 1.0/(HO-1.0)
 HR_RT = (1.0 - HR)/(HO-1.0) * HO_RT
 HS = (2.0-HSMIN-4.0/RTZ)*HR**2 * 1.5/(HK+0.5) + HSMIN
 & + 4.0/RTZ
 HS_HK =-(2.0-HSMIN-4.0/RTZ)*HR**2 * 1.5/(HK+0.5)**2
 & + (2.0-HSMIN-4.0/RTZ)*HR*2.0 * 1.5/(HK+0.5) * HR_HK
 HS_RT = (2.0-HSMIN-4.0/RTZ)*HR*2.0 * 1.5/(HK+0.5) * HR_RT
 & + (HR**2 * 1.5/(HK+0.5) - 1.0)*4.0/RTZ**2 * RTZ_RT
C
 ELSE
C
C----- separated branch
 GRT = LOG(RTZ)
 HDIF = HK - HO
 RTMP = HK - HO + 4.0/GRT
 HTMP = 0.007*GRT/RTMP**2 + DHSINF/HK
 HTMP_HK = -.014*GRT/RTMP**3 - DHSINF/HK**2
 HTMP_RT = -.014*GRT/RTMP**3 * (-HO_RT - 4.0/GRT**2/RTZ * RTZ_RT)
 & + 0.007 /RTMP**2 / RTZ * RTZ_RT
 HS = HDIF**2 * HTMP + HSMIN + 4.0/RTZ
 HS_HK = HDIF*2.0* HTMP
 & + HDIF**2 * HTMP_HK
 HS_RT = HDIF**2 * HTMP_RT - 4.0/RTZ**2 * RTZ_RT
 & + HDIF*2.0* HTMP * (-HO_RT)
C
 ENDIF
C
C---- fudge HS slightly to make sure HS -> 2 as HK -> 1
C- (unnecessary with new correlation)
c HTF = 0.485/9.0 * (HK-4.0)**2/HK + 1.515
c HTF_HK = 0.485/9.0 * (1.0-16.0/HK**2)
c ARG = MAX(10.0*(1.0 - HK) , -15.0)
c HXX = EXP(ARG)
c HXX_HK = -10.0*HXX
cC
c HS_HK = (1.0-HXX)*HS_HK + HXX*HTF_HK
c & + (-HS + HTF)*HXX_HK
c HS_RT = (1.0-HXX)*HS_RT
c HS = (1.0-HXX)*HS + HXX*HTF
C
C---- Whitfield's minor additional compressibility correction
 FM = 1.0 + 0.014*MSQ
 HS = (HS + 0.028*MSQ) / FM
 HS_HK = (HS_HK) / FM
 HS_RT = (HS_RT) / FM
 HS_MSQ = 0.028/FM - 0.014*HS/FM
C
 RETURN
 END

 SUBROUTINE CFT(HK, RT, MSQ, CF, CF_HK, CF_RT, CF_MSQ)
 IMPLICIT REAL (A-H,M,O-Z)
 DATA GAM /1.4/
C
C---- Turbulent skin friction function (Cf) (Coles)
 GM1 = GAM - 1.0
 FC = SQRT(1.0 + 0.5*GM1*MSQ)
 GRT = LOG(RT/FC)
 GRT = MAX(GRT,3.0)
C
 GEX = -1.74 - 0.31*HK
C
 ARG = -1.33*HK
 ARG = MAX(-20.0, ARG)
C
 THK = TANH(4.0 - HK/0.875)
C
 CFO = 0.3*EXP(ARG) * (GRT/2.3026)**GEX
 CF = (CFO + 1.1E-4*(THK-1.0)) / FC
 CF_HK = (-1.33*CFO - 0.31*LOG(GRT/2.3026)*CFO
 & - 1.1E-4*(1.0-THK**2) / 0.875) / FC
 CF_RT = GEX*CFO/(FC*GRT) / RT
 CF_MSQ = GEX*CFO/(FC*GRT) * (-0.25*GM1/FC**2) - 0.25*GM1*CF/FC**2
C
 RETURN
 END ! CFT

 SUBROUTINE HCT(HK, MSQ, HC, HC_HK, HC_MSQ)
 REAL MSQ
C
C---- density shape parameter (from Whitfield)
 HC = MSQ * (0.064/(HK-0.8) + 0.251)
 HC_HK = MSQ * (-.064/(HK-0.8)**2)
 HC_MSQ = 0.064/(HK-0.8) + 0.251
C
 RETURN
 END

XFOILinterface/XFOIL/plotlib/examples/Makefile.NT

#***
Module: Makefile (examples directory)

Copyright (C) 1996 Harold Youngren, Mark Drela

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Report problems to: guppy@maine.com
or drela@mit.edu
#***

##
makefile for Xplot11 library examples
##

PLTLIB = ..\libPlt.lib
#PLTLIB = ..\libPltDP.lib

AR = lib

Link libs
LINKLIB = gdi32.lib user32.lib

###==
Compaq Visual Fortran compiler and flags, install commands
#FC = f77
#CC = cl
Defines for C interface
#DEFINE = -DUNDERSCORE -D_CVF
Uncomment DP to make double-precision version
#DP = /realsize:64
#FFLAGS = /Oxp $(DP) /threads
#CFLAGS = $(DEFINE) -MT
#LFLAGS = /libs:qwin /threads /LINK /NODEFAULTLIB:LIBC.LIB

###==
Intel Fortran compiler and flags, install commands
FC = ifl.exe
LINK32 = xilink.exe
#
FC = ifl
CC = cl
Defines for C interface
#DEFINE = -DUNDERSCORE
Uncomment DP to make double-precision version
#DP = /4R8
use flags for processor optimization G5 G6 G7 for PII,PIII,P4
FFLAGS = /O2 $(DP) /MT /4Yportlib -W0
CFLAGS = $(DEFINE) -MT
LFLAGS = /MT /link /NODEFAULTLIB:LIBC.LIB

###==

PROGS = symbols.exe symbolsall.exe \
	squares.exe squaresdoublebuff.exe \
	spectrum.exe cmap2.exe cmap3.exe defmap.exe \
 gridtest.exe zoomtest.exe contest.exe \
 volts.exe volts_old.exe

examples: $(PROGS)

test: $(PROGS)

clean:
	del *.obj
	del $(PROGS)
	del plot*.ps

#Test routines for package

volts.exe: volts.obj
	$(FC) /Fevolts.exe volts.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

volts_old.exe: volts_old.obj
	$(FC) /Fevolts_old.exe volts_old.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

symbols.exe: symbols.obj
	$(FC) /Fesymbols.exe symbols.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

symbolsall.exe: symbolsall.obj
	$(FC) /Fesymbolsall.exe symbolsall.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

squares.exe: squares.obj
	$(FC) /Fesquares.exe squares.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

squares3.exe: squares3.obj
	$(FC) squares3.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

squaresdoublebuff.exe: squaresdoublebuff.obj
	$(FC) /Fesquaresdoublebuff.exe squaresdoublebuff.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

spectrum.exe: spectrum.obj
	$(FC) /Fespectrum.exe spectrum.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

cmap2.exe: cmap2.obj
	$(FC) /Fecmap2.exe cmap2.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

cmap3.exe: cmap3.obj
	$(FC) /Fecmap3.exe cmap3.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

defmap.exe: defmap.obj
	$(FC) /Fedefmap.exe defmap.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

gridtest.exe: gridtest.obj
	$(FC) /Fegridtest.exe gridtest.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

zoomtest.exe: zoomtest.obj
	$(FC) /Fezoomtest.exe zoomtest.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

contest.exe: contest.obj
	$(FC) /Fecontest.exe contest.obj $(PLTLIB) $(LINKLIB) $(LFLAGS)

volts.obj: volts.f
	$(FC) /c $(FFLAGS) volts.f

volts_old.obj: volts_old.f
	$(FC) /c $(FFLAGS) volts_old.f

symbols.obj: symbols.f
	$(FC) /c $(FFLAGS) symbols.f

symbolsall.obj: symbolsall.f
	$(FC) /c $(FFLAGS) symbolsall.f

squares.obj: squares.f
	$(FC) /c $(FFLAGS) squares.f

squares3.obj: squares3.f
	$(FC) /c $(FFLAGS) squares3.f

squaresdoublebuff.obj: squaresdoublebuff.f
	$(FC) /c $(FFLAGS) squaresdoublebuff.f

spectrum.obj: spectrum.f
	$(FC) /c $(FFLAGS) spectrum.f

cmap2.obj: cmap2.f
	$(FC) /c $(FFLAGS) cmap2.f

cmap3.obj: cmap3.f
	$(FC) /c $(FFLAGS) cmap3.f

defmap.obj: defmap.f
	$(FC) /c $(FFLAGS) defmap.f

gridtest.obj: gridtest.f
	$(FC) /c $(FFLAGS) gridtest.f

zoomtest.obj: zoomtest.f
	$(FC) /c $(FFLAGS) zoomtest.f

contest.obj: contest.f
	$(FC) /c $(FFLAGS) contest.f

#May need to specify these on a brain-dead make system
#.f.obj:	$(FC) /c $(FFLAGS) $<
#.c.obj:	$(CC) /c $(CFLAGS) $<

XFOILinterface/XFOIL/plotlib/win32/Makefile.NT

#***
Module: Makefile

Copyright (C) 1996 Harold Youngren, Mark Drela

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Report problems to: guppy@maine.com
or drela@orville.mit.edu
#***

#################################
makefile for Xplot11 library
#################################

#point to your install directory
INSTALLDIR= .
DIR= ..

#Library tool
AR = lib

Use these to set library name
(add DP to keep double precision version separate)
PLTLIB = libPlt.lib
#PLTLIB = libPltDP.lib

###========================ggggg===========================
Basic plot library object files
OBJ = plt_base.obj plt_font.obj plt_util.obj \
 plt_color.obj set_subs.obj gw_subs.obj \
 ps_subs.obj W32win.obj
OBJMISC =
OBJ3D =
OBJOLD =
###
###--
Uncomment to add the old plot compatibility routines
OBJOLD = plt_old.obj
###
###--
Uncomment to add the 3D-view routines
OBJ3D = plt_3D.obj
###
###--
Uncomment for f77 compiler w/o AND() and RSHIFT/LSHIFT functions.
This adds some functions to duplicate these using IAND and ISHFT
which often appear in these offending fortran's libraries.
The compilers that this has affected include:
HPUX f77
Absoft f77 on Linux
###
#OBJMISC = util-ops.obj

###==
Compaq Visual Fortran compiler and flags, install commands
#FC = f77
#CC = cl
Defines for C interface
#DEFINE = -DUNDERSCORE -D_CVF
Uncomment DP to make double-precision version
#DP = /realsize:64
#FFLAGS = /Oxp $(DP) /threads
#FLGOPT = /Oxp $(DP) /threads
#CFLAGS = $(DEFINE) -MT
#LFLAGS = /libs:qwin /threads /link /NODEFAULTLIB:LIBC.LIB

###==
Intel Fortran compiler and flags, install commands
FC = ifl
CC = cl
Defines for C interface
#DEFINE = -DUNDERSCORE
Uncomment DP to make double-precision version
#DP = /4R8
use flags for processor optimization G5 G6 G7 for PII,PIII,P4
#FFLAGS = /Od /Zi $(DP) /W0 /MT
FFLAGS = /I.. /O2 $(DP) /W0 /MT /4Yportlib
FLGOPT = /I.. /O3 $(DP) /W0 /MT /4Yportlib
CFLAGS = $(DEFINE) -MT
LFLAGS = /4Yportlib /MT /link /NODEFAULTLIB:LIBC.LIB

###==

###---
Basic make targets - build library, test programs

$(PLTLIB): $(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC)
	$(AR) /out:$(PLTLIB) $(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC)
	copy $(PLTLIB) ..

test: $(PLTLIB)
	(cd examples; make test)

###---
Utility functions - install the library, clean the directory

install: $(PLTLIB)
	mv $(PLTLIB) $(INSTALLDIR)

clean:
	del *.obj
	del $(PLTLIB)
	del plot*.ps
	(cd examples; make clean)

###---
compile plot package routines

plt_base.obj: $(DIR)\plt_base.f $(DIR)\pltlib.inc
	$(FC) /c $(FFLAGS) $(DIR)\plt_base.f

plt_color.obj: $(DIR)\plt_color.f $(DIR)\pltlib.inc
	$(FC) /c $(FFLAGS) $(DIR)\plt_color.f

plt_font.obj: $(DIR)\plt_font.f $(DIR)\CHAR.INC $(DIR)\SLAN.INC $(DIR)\MATH.INC $(DIR)\SYMB.INC
	$(FC) /c $(FFLAGS) $(DIR)\plt_font.f

plt_util.obj: $(DIR)\plt_util.f
	$(FC) /c $(FFLAGS) $(DIR)\plt_util.f

plt_3D.obj: $(DIR)\plt_3D.f
	$(FC) /c $(FFLAGS) $(DIR)\plt_3D.f

plt_old.obj: $(DIR)\plt_old.f $(DIR)\pltlib.inc
	$(FC) /c $(FFLAGS) $(DIR)\plt_old.f

set_subs.obj: $(DIR)\set_subs.f $(DIR)\pltlib.inc
	$(FC) /c $(FFLAGS) $(DIR)\set_subs.f

gw_subs.obj: $(DIR)\gw_subs.f $(DIR)\pltlib.inc
	$(FC) /c $(FFLAGS) $(DIR)\gw_subs.f

ps_subs.obj: $(DIR)\ps_subs.f $(DIR)\pltlib.inc
	$(FC) /c $(FFLAGS) $(DIR)\ps_subs.f

util-ops.obj: $(DIR)\util-ops.f
	$(FC) /c $(FFLAGS) $(DIR)\util-ops.f

W32win.obj: W32win.c
	$(CC) /c $(CFLAGS) W32win.c

May need to specify these on a brain-dead make system
#.f.obj:	$(FC) /c $(FFLAGS) $<
#.c.obj:	$(CC) /c $(CFLAGS) $<

XFOILinterface/XFOIL/bin/Makefile.NT

#***
Win32 Makefile for XFOIL V6.96 programs
H.Youngren
M.Drela
#***

#SHELL = sh
BINDIR = .
#INSTALLCMD = install -s

PLTLIB = ..\plotlib\libPlt.lib
#PLTLIB = ..\plotlib\libPltDP.lib

AR = lib

Link libs
LINKLIB = gdi32.lib user32.lib

###==
Compaq Visual Fortran compiler and flags, install commands
#FC = f77
Uncomment DP to make double-precision version
#DP = /realsize:64
#FFLAGS = /Oxp $(DP) /threads
#FLGOPT = /Oxp $(DP) /threads

#LFLAGS = /libs:qwin /threads /link /NODEFAULTLIB:LIBC.LIB

###==
Intel Fortran compiler and flags, install commands
#
FC = ifort
CC = cl
Uncomment DP to make double-precision version
#DP = /4R8
Debug Fortran
#FFLAGS = /Od /Zi $(DP) /W0 /MT /4Yportlib
#FLGOPT = /Od /Zi $(DP) /W0 /MT /4Yportlib
use flags for processor optimization G5 G6 G7 for PII,PIII,P4 architectures
FFLAGS = /O2 $(DP) /W0 /MT /4Yportlib /G6
#FLGOPT = /O3 $(DP) /W0 /MT /4Yportlib /G6
use flags for P4 processor optimization with older Pentium compatibility
#FFLAGS = /O2 $(DP) /W0 /MT /4Yportlib /G6 /QaxW
FLGOPT = /O3 $(DP) /W0 /MT /4Yportlib /G6 /QaxW

#LINK32 = xilink.exe
LFLAGS = /MT /link /NODEFAULTLIB:LIBC.LIB

###==

PLTLIB = C:\Users\Guppy\Aero\Aero-progs\lib\libPlt.lib

SRC = ..\src
OSRC = ..\orrs\src

PROGS = xfoil.exe pplot.exe pxplot.exe

XFOILOBJ = xfoil.obj xpanel.obj xoper.obj xtcam.obj xgdes.obj xqdes.obj xmdes.obj \
xsolve.obj xbl.obj xblsys.obj xpol.obj xplots.obj pntops.obj xgeom.obj xutils.obj modify.obj \
blplot.obj polplt.obj aread.obj naca.obj spline.obj plutil.obj iopol.obj gui.obj sort.obj \
dplot.obj profil.obj

XUTILOBJ = userio.obj

PPLOTOBJ = pplot.obj polplt.obj sort.obj iopol.obj gui.obj
PXPLOTOBJ = pxplot.obj plutil.obj gui.obj

##--
OSOBJ = frplot0.obj
Use this for individual TS-wave frequency plotting
OSOBJ = frplot.obj ntcalc.obj osmap.obj

##--
#PLTOBJ = ../plotlib/libPlt.a
Use this if you have a copy of the plotlib as a system library
#PLTOBJ = -lPlt
The extra location arg here is for Linux which places X libs in /usr/X11R6
#PLTLIB = -L/usr/X11R6/lib -lX11

all:	 $(PROGS)

#install:
#	$(INSTALLCMD) $(PROGS) $(BINDIR)

clean:
	del *.obj
	del $(PROGS)
	del plot.ps

Make targets

xfoil.exe: $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ)
	$(FC) /Fexfoil.exe $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PLTLIB) $(LINKLIB) $(LFLAGS)
pplot.exe: $(PPLOTOBJ) $(XUTILOBJ)
	$(FC) /Fepplot.exe $(PPLOTOBJ) $(XUTILOBJ) $(PLTLIB) $(LINKLIB) $(LFLAGS)
pxplot.exe: $(PXPLOTOBJ) $(XUTILOBJ)
	$(FC) /Fepxplot.exe $(PXPLOTOBJ) $(XUTILOBJ) $(PLTLIB) $(LINKLIB) $(LFLAGS)

xfoil.obj: $(SRC)\xfoil.f $(SRC)\XFOIL.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xfoil.f
xpanel.obj: $(SRC)\xpanel.f $(SRC)\XFOIL.INC
	$(FC) /c /I$(SRC) $(FLGOPT) $(SRC)\xpanel.f
xoper.obj: $(SRC)\xoper.f $(SRC)\XFOIL.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xoper.f
xsolve.obj: $(SRC)\xsolve.f $(SRC)\XFOIL.INC
	$(FC) /c /I$(SRC) $(FLGOPT) $(SRC)\xsolve.f
dplot.obj: $(SRC)\dplot.f $(SRC)\XFOIL.INC
	$(FC) -c /I$(SRC) $(FLGOPT) $(SRC)\dplot.f
xtcam.obj: $(SRC)\xtcam.f $(SRC)\XFOIL.INC $(SRC)/XDES.INC
	$(FC) -c /I$(SRC) $(FFLAGS) $(SRC)\xtcam.f
xgdes.obj: $(SRC)\xgdes.f $(SRC)\XFOIL.INC $(SRC)\XDES.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xgdes.f
xqdes.obj: $(SRC)\xqdes.f $(SRC)\XFOIL.INC $(SRC)\XDES.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xqdes.f
xmdes.obj: $(SRC)\xmdes.f $(SRC)\XFOIL.INC $(SRC)\XDES.INC $(SRC)\CIRCLE.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xmdes.f
xbl.obj: $(SRC)\xbl.f $(SRC)\XFOIL.INC $(SRC)\XBL.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xbl.f
xblsys.obj: $(SRC)\xblsys.f $(SRC)\XBL.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xblsys.f
xplots.obj: $(SRC)\xplots.f $(SRC)\XFOIL.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xplots.f
pntops.obj: $(SRC)\pntops.f $(SRC)\XFOIL.INC $(SRC)\XDES.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\pntops.f
blplot.obj: $(SRC)\blplot.f $(SRC)\XFOIL.INC
	$(FC) -c /I$(SRC) $(FFLAGS) $(SRC)\blplot.f
xpol.obj: $(SRC)\xpol.f $(SRC)\XFOIL.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xpol.f
xgeom.obj: $(SRC)\xgeom.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xgeom.f
xutils.obj: $(SRC)\xutils.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\xutils.f
aread.obj: $(SRC)\aread.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\aread.f
plutil.obj: $(SRC)\plutil.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\plutil.f
userio.obj: $(SRC)\userio.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\userio.f
spline.obj: $(SRC)\spline.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\spline.f
iopol.obj: $(SRC)\iopol.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\iopol.f
modify.obj: $(SRC)\modify.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\modify.f
naca.obj: $(SRC)\naca.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\naca.f
gui.obj: $(SRC)\gui.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\gui.f
sort.obj: $(SRC)\sort.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\sort.f
profil.obj: $(SRC)\profil.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\profil.f
polplt.obj: $(SRC)\polplt.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\polplt.f

pplot.obj: $(SRC)\pplot.f $(SRC)\PPLOT.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\pplot.f
pxplot.obj: $(SRC)\pxplot.f $(SRC)\PXPLOT.INC
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\pxplot.f

frplot0.obj: $(SRC)\frplot0.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\frplot0.f
frplot.obj: $(SRC)\frplot.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\frplot.f
ntcalc.obj: $(SRC)\ntcalc.f
	$(FC) /c /I$(SRC) $(FFLAGS) $(SRC)\ntcalc.f

osmap.obj: $(OSRC)\osmap.f
	$(FC) /c $(FFLAGS) $(OSRC)\osmap.f

XFOILinterface/XFOIL/plotlib/misc/Makefile.linux.shared

#***
Module: Makefile.linux

Copyright (C) 1996 Harold Youngren, Mark Drela

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
#
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Report problems to: guppy@maine.com
or drela@mit.edu
#***

#===
This Makefile was used to make a shared library version of the plotlib
on Linux. This has not been updated or supported.
#===

#================================#
Makefile for Xplot11 library
#================================#

#point to your install directory
INSTALLDIR= $(HOME)/lib
#INSTALLDIR= /usr/local/lib
#INSTALLDIR= .

Use these to set library name
(add DP to keep double precision version separate)
PLTLIB = libPlt
#PLTLIB = libPltDP

###==
Basic plot library object files
OBJ = plt_base.o plt_font.o plt_util.o plt_color.o \
 set_subs.o gw_subs.o ps_subs.o Xwin.o
OBJMISC =
OBJ3D =
OBJOLD =
###
###--
Uncomment to add the old plot compatibility routines
OBJOLD = plt_old.o
###
###--
Uncomment to add the 3D-view routines
OBJ3D = plt_3D.o
###
###--
Uncomment for f77 compiler w/o AND() and RSHIFT/LSHIFT functions.
This adds some functions to duplicate these using IAND and ISHFT
which often appear in these offending fortran's libraries.
The compilers that this has affected include:
HPUX f77
Absoft f77 on Linux
###
#OBJMISC = util-ops.o

###==
Default compilers and flags, install commands
F77 = f77
CC = cc

Uncomment DP to make double-precision version
#DP = -r8

Some fortrans need trailing underscores in C interface symbols (see Xwin.c)
DEFINE = -DUNDERSCORE

FFLAGS = -O $(DP)
CFLAGS = -O $(DEFINE)
AR = ar r
RANLIB = ranlib
LINKLIB = -lX11

###---
Uncomment for Linux, using the script f77 (unusable in Slackware 3.0)
Note compiler options for Linux:
f77 script (calls f2c/gcc) note bug in Slackware 3.0 f77 script
fort77 script (calls f2c/gcc) perl script from RH or from yaf77
g77 the GNU F77 compiler
F77 = g77
#F77 = fort77
#F77 = f77-f2c
CC = gcc
Uncomment DP to make double-precision version
(note -r8 does not work in g77, use f2c instead)
#DP = -r8
FFLAGS = -O2 $(DP)
CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
LINKLIB = -L/usr/X11R6/lib -lX11

###---
Basic make targets - build library, test programs

$(PLTLIB): $(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC)
	$(AR) $(PLTLIB).a $(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC)
	$(RANLIB) $(PLTLIB).a

test: $(PLTLIB)
	(cd examples; make test)

###---
Utility functions - install the library, clean the directory

install: $(PLTLIB).a
	mv $(PLTLIB).a $(INSTALLDIR)
	$(RANLIB) $(INSTALLDIR)/$(PLTLIB).a

clean:
	-/bin/rm *.o
#	-/bin/rm -r PIC
	-/bin/rm *.a *.so.*
	-/bin/rm plot*.ps
	(cd examples; make clean)

###---
This set of targets makes the libPlt Linux ELF shared library
As far as I know this only works with g77 as it is the only Linux
compiler that makes shared libraries.
###
You will need to install the library in some place that ldconfig knows
about to get this to work as a shared library.
1) Before making the shared library you may need to change the -lf2c
library reference in the $(PLTLIB).so target below to the shared
fortran library that you are using (most Linuxes use libf2c, hence
the -lf2c).
2) Install the shared library in some place (like /usr/local/lib).
3) Make the following links in that directory
ln -s libPlt.so.0.21 libPlt.so.0
ln -s libPlt.so.0 libPlt.so
4) Look in /etc/ld.so.conf and check that the library directory is
in the list of directories and add it if it isn't.
5) Then run ldconfig -v (as root) to get the loader to recognize the
shared library.

$(PLTLIB).so:
	mkdir -p PIC
	make -f Makefile.linux.shared shared
	gcc -shared -Wl,-soname,$(PLTLIB).so.0 -o $(PLTLIB).so.0.21 \
 PIC/*.o -lf2c -lm -lc

SHAREDOBJ = $(patsubst %.o,PIC/%.o,$(OBJ) $(OBJOLD) $(OBJ3D) $(OBJMISC))

shared: $(SHAREDOBJ)
###---

###---
compile plot package routines

plt_base.o: plt_base.f pltlib.inc
	$(F77) -c $(FFLAGS) plt_base.f

plt_color.o: plt_color.f pltlib.inc
	$(F77) -c $(FFLAGS) plt_color.f

plt_font.o: plt_font.f CHAR.INC SLAN.INC MATH.INC SYMB.INC
	$(F77) -c $(FFLAGS) plt_font.f

plt_util.o: plt_util.f
	$(F77) -c $(FFLAGS) plt_util.f

plt_3D.o: plt_3D.f
	$(F77) -c $(FFLAGS) plt_3D.f

plt_old.o: plt_old.f pltlib.inc
	$(F77) -c $(FFLAGS) plt_old.f

set_subs.o: set_subs.f pltlib.inc
	$(F77) -c $(FFLAGS) set_subs.f

gw_subs.o: gw_subs.f pltlib.inc
	$(F77) -c $(FFLAGS) gw_subs.f

ps_subs.o: ps_subs.f pltlib.inc
	$(F77) -c $(FFLAGS) ps_subs.f

util-ops.o: util-ops.f
	$(F77) -c $(FFLAGS) util-ops.f

Xwin.o: Xwin.c
	$(CC) -c $(CFLAGS) Xwin.c

May need to specify these on a brain-dead make system
#.f.o:	$(F77) -c $(FFLAGS) $<
#.c.o:	$(CC) -c $(CFLAGS) $<

Handles the shared library objects

PIC/%.o : %.f
	$(F77) -c $(FFLAGS) -fPIC -o $@ $<
PIC/%.o : %.c
	$(CC) -c $(CFLAGS) $(CPPFLAGS) -fPIC -o $@ $<

XFOILinterface/XFOIL/plotlib/config.make.SP

#=======================================#
Makefile options for Xplot11 library
Set up or select a set of compile
options for your system #
#=======================================#

Use these to set library name
(you might add DP to name to keep double precision version separate)
PLTLIB = libPlt.a
#PLTLIB = libPltDP.a

Some fortrans need trailing underscores in C interface symbols (see Xwin.c)
This should work for most of the "unix" fortran compilers
DEFINE = -DUNDERSCORE

###---
Uncomment for Linux, using the script fort77 or yaf77 or old f77 script
Compiler options for Linux GNU compilers include:
fort77 perl script (calls f2c/gcc) from RH or from yaf77
or the yaf77 or the old f77 shell script from f2c
g77 the GNU Fortran compiler
#
#FC = g77-3
#FC = fort77
#CC = gcc
Uncomment DP to make double-precision version
(note -r8 does not work in g77, use f2c instead)
#DP = -r8
#FFLAGS = -O2 $(DP)
#CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using PGI f77
#FC = pgf77
#CC = gcc
##
Uncomment to make double-precision version
#DP = -r8
#FFLAGS = -fast -O $(DP)
#CFLAGS = -O2 $(DEFINE)
#AR = ar r
#RANLIB = ranlib
#LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for Linux, using Intel Fortran compiler 8.x
FC = ifort
CC = gcc

Uncomment to make double-precision version
#DP = -r8

FFLAGS = -O3 $(DP)
CFLAGS = -O3 $(DEFINE)
AR = ar r
RANLIB = ranlib

LINKLIB = -L/usr/X11R6/lib -lX11

###---
Uncomment for DEC OSF/Alpha
#FC = f77
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O4 -float $(DEFINE)
#FFLAGS = -O4 $(DP)
Debug flags
#CFLAGS = -O0 -g -float $(DEFINE)
#FFLAGS = -O0 -g $(DP)
#LINKLIB = -lX11

###---
Uncomment for RS/6000
Note if the library is compiled double precision use the -qautodbl=dbl4
option, not the -qautodbl=dblpad4 option. The dblpad4 option puts padding
into the argument lists for integer args that cause the polylines and
linepatterns to fail as the alignment assumptions between the C and fortran
routines are then different. (The problem lies with xlf90, at least you
can cure it with a compile option:-). This is not a problem on xlf (f77)
because it doesn't have a dblpad4 option...
#
#FC = xlf90
#
Uncomment DP to make double-precision version
#DP = -qautodbl=dbl4
#FFLAGS = -O -qextname -qfixed $(DP)
Link libs required for xlf90 at ABB (HHY 9/96)
#LINKLIB = -lX11 -L/venus/u1/fortran/libfor -lxlfabb

###---
Uncomment for Sun Open-Windows
(give location of X11/xxx.h include files)
#
Uncomment DP to make double-precision version
#DP = -r8
#FFLAGS = -O $(DP)
#CFLAGS = -O -I/usr/openwin/share/include $(DEFINE)
#LINKLIB = -lX11

###---
Uncomment for HP-9000
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O -Aa $(DEFINE)
#FFLAGS = -O +ppu $(DP)
#OBJMISC = util-ops.o
#LINKLIB = -lX11

###---
Uncomment for SGI IRIX
(use ANSI-C standard, use underscored C-routine names)
#
Uncomment DP to make double-precision version
#DP = -r8
#CFLAGS = -O $(DEFINE)
#FFLAGS = -O -static $(DP)
#RANLIB = ar qs
#LINKLIB = -lX11

XFOILinterface/XFOIL/README.Win32exe

README for Windows XFOIL6.96

HHY 5/2/06

This version is compiled with the Intel Fortran compiler (ver 9.0) and should
run on Windows systems (Win2K, XP).

This version has the option (in OPER/VPLO) for N-growth display as a function
of frequency (from Orr-Sommerfeld stability calculation look-up tables).

To enable these to work XFOIL will expect the lookup table file (osmap.dat) to
be located at "C:\xfoil\osmap.dat". The suggested procedure for this is:

mkdir C:\xfoil
copy orrs\osmap.dat C:\xfoil

where the orrs directory is located in the XFOIL directories with the source
and other distribution files.

XFOILinterface/XFOIL/bin/pplot.exe

XFOILinterface/XFOIL/bin/pxplot.exe

XFOILinterface/xfoil.exe

XFOILinterface/XFOIL/bin/xfoil.exe

XFOILinterface/xfoilP4.exe

Appendix C

External Bladed controller

The NREL external Bladed controller is a C++ interpretation of the FORTRAN controller code

supplied in the definition of the 5MW NREL conceptual wind turbine. Whilst the source code is

supplied below, it was only used in this work to validate the model and not for smart rotor control.

To compile it replace the UpWind source code with this one in the Visual Studio project and build

the project. The name of the external controller dll remains the same.

The UpWind external Bladed controller is created in C++ and includes all control options

experimented with in this thesis. These include the use of various filters, constant torque or

constant power ability above rated, options for dq-axis or independent control and individual pitch

or smart rotor control, the testing of supplementary and consolidated smart rotor control, and

options for various faults. These options are activated in Bladed through adjustment of the flags

in the ‘External Controller data’ box, which means no changes to the C++ code are needed for

experimentation with it. The source code and Visual Studio project are nonetheless supplied

alongside a compiled controller dll that works with the Bladed project, so that those interested can

see exactly what is going and adjust things for new projects as desired.

In the controller code SI units are used (e.g. rad/s) and floating points precision is used (4-byte,

32-bit precision).

NREL C++ controller

UpWind controller Visual Studios project plus compiled dll

182

./Appendices/NREL_5MW_NREL_ExternalControllerDLL.cc
/*

! This Bladed-style DLL controller is used to implement a variable-speed

! generator-torque controller and PI collective blade pitch controller for

! the NREL Offshore 5MW baseline wind turbine. This routine was written by

! J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.

! Fortran code converted to C++ by C. Plumley 16/08/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Define all local variables

 float Alpha; // Current coefficient in the recursive, singl

 float BlPitch[3]; // Current values of the blade pitch angles, r

 float ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Filtered HSS (generator) speed, rad/s.

 float GenTrq; // Electrical generator torque, N-m.

 float GK; // Current value of the gain correction factor

 float HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float static LastTimePC; // Last time the pitch controller was called,

 float static LastTimeVS; // Last time the torque controller was called,

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float const PC_DT = 0.00125f; // Communication interval for pitch controlle

 float const PC_KI = 0.008068634f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.1099965f; // Pitch angle were the the derivative of the

 float const PC_KP = 0.01882681f; // Proportional gain for pitch controller at r

 float const PC_MaxPit = 1.570796f; // Maximum pitch setting in pitch controller,

 float const PC_MaxRat = 0.1396263f; // Maximum pitch rate (in absolute value) in

 float const PC_MinPit = 0.0f; // Minimum pitch setting in pitch controller,

 float const PC_RefSpd = 122.9096f; // Desired (reference) HSS speed for pitch con

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float PitComI; // Integral term of command pitch, rad.

 float PitComP; // Proportional term of command pitch, rad.

 float PitComT; // Total command pitch based on the sum of the

 float PitRate[3]; // Pitch rates of each blade based on the curr

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float SpdErr; // Current speed error, rad/s.

 float Time; // Current simulation time, sec.

 float TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = 70.16224f; // Transitional generator speed (HSS side) bet

 float const VS_DT = 0.00125f; // Communication interval for torque controlle

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS s

 float const VS_Rgn2K = 2.332287f; // Generator torque constant in Region 2 (HSS

 float const VS_Rgn2Sp = 91.21091f; // Transitional generator speed (HSS side) bet

 float const VS_Rgn3MP = 0.01745329f; // Minimum pitch angle at which the torque is

 float const VS_RtGnSp = 121.6805f; // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float static VS_Slope15; // Torque/speed slope of region 1 1/2 cut-in t

 float static VS_Slope25; // Torque/speed slope of region 2 1/2 inductio

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_SySp; // Synchronous speed of region 2 1/2 induction

 float static VS_TrGnSp; // Transitional generator speed (HSS side) bet

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id);

 NumBl = GetNumberOfBlades(turbine_id) ;

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 }

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll as written by J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_SySp = VS_RtGnSp/(1.0f + 0.01f*VS_SlPc);

 VS_Slope15 = (VS_Rgn2K*VS_Rgn2Sp*VS_Rgn2Sp)/(VS_Rgn2Sp - VS_CtInSp);

 VS_Slope25 = (VS_RtPwr/VS_RtGnSp)/(VS_RtGnSp - VS_SySp);

 if (VS_Rgn2K == 0.0) // TRUE if the Region 2 torque is flat, and thus, the denominator in the ELSE condition is

 {

 VS_TrGnSp = VS_SySp;

 }

 else // TRUE if the Region 2 torque is quadratic with speed

 {

 VS_TrGnSp = (VS_Slope25 - sqrt(VS_Slope25*(VS_Slope25 - 4.0f*VS_Rgn2K*VS_SySp)))/(2.0f*VS_Rgn2K);

 }

 // Check validity of input parameters:

 if (CornerFreq <= 0.0) {

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2Sp <= VS_CtInSp) {

 strcat(strMsg,"\r\nVS_Rgn2Sp must be greater than VS_CtInSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_TrGnSp < VS_Rgn2Sp) {

 strcat(strMsg,"\r\nVS_TrGnSp must not be less than VS_Rgn2Sp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComPI" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 GenSpeedF = GenSpeed; // This will ensure that generator speed filter will use the initial value of

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitCom[0]/(GK*PC_KI); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenTrq = 0; // initialises but is overidden on first run

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Filter the HSS (generator) speed measurement:

 // NOTE: This is a very simple recursive, single-pole, low-pass filter with

 // exponential smoothing.

 // Update the coefficient in the recursive formula based on the elapsed time

 // since the last call to the controller:

 Alpha = exp((LastTime - Time)*CornerFreq);

 // Apply the filter:

 GenSpeedF = (1.0f - Alpha)*GenSpeed + Alpha*GenSpeedF;

 //===

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 // Compute the generator torque, which depends on which region we are in:

 if ((GenSpeedF >= VS_RtGnSp) || (PitCom[0] >= VS_Rgn3MP))

 {

 // We are in region 3 - power is constant

 GenTrq = VS_RtPwr/GenSpeedF;

 }

 else if (GenSpeedF <= VS_CtInSp)

 {

 // We are in region 1 - torque is zero

 GenTrq = 0.0;

 }

 else if (GenSpeedF < VS_Rgn2Sp)

 {

 // We are in region 1 1/2 - linear ramp in to

 GenTrq = VS_Slope15*(GenSpeedF - VS_CtInSp);

 }

 else if (GenSpeedF < VS_TrGnSp)

 {

 // We are in region 2 - optimal torque is pro

 GenTrq = VS_Rgn2K*GenSpeedF*GenSpeedF;

 }

 else

 {

 // We are in region 2 1/2 - simple induction

 GenTrq = VS_Slope25*(GenSpeedF - VS_SySp);

 }

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*ElapTime; // Saturate the command using the torque rate limit

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //===

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 // Compute the gain scheduling correction factor based on the previously

 // commanded pitch angle for blade 1:

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK);

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + SpdErr*ElapTime; // Current integral of speed error w.r.t. time

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit/(GK*PC_KI)),PC_MaxPit/(GK*PC_KI)); // Saturate the integral term using the pitch angle li

 // Compute the pitch commands associated with the proportional and integral

 // gains:

 PitComP = GK*PC_KP* SpdErr; // Proportional term

 PitComI = GK*PC_KI*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 // saturate the overall command using the pitch angle limits:

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit);

 // Saturate the overall command using the pitch angle

 // Saturate the overall commanded pitch using the pitch rate limit:

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT - BlPitch[K])/ElapTime; // Pitch rate of blade K (unsaturated)

 //PitRate[K] = MIN(MAX(PitRate[K], -PC_MaxRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximum - deactivated as actuator dynamics included in model

 PitCom[K] = BlPitch[K] + PitRate[K]*ElapTime; // Saturate the overall command of blade K using the p

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeedF*RPS2RPM << Tab << 100.0*SpdErr/PC_RefSpd << Tab << SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===

 //Reset the value of LastTime to the current value:

 LastTime = Time;

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "GenSpeedF", "A/T");

 AddLogValue (turbine_id, "SpdErr", "A/T");

 AddLogValue (turbine_id, "IntSpdErr", "A/T");

 AddLogValue (turbine_id, "PitComT", "A");

 AddLogValue (turbine_id, "PitRate0", "A/T");

 AddLogValue (turbine_id, "PC_MaxRat", "A/T");

 AddLogValue (turbine_id, "PitCom0", "A");

 }

 SetLoggingValue (turbine_id, 0, GenSpeedF);

 SetLoggingValue (turbine_id, 1, SpdErr);

 SetLoggingValue (turbine_id, 2, IntSpdErr);

 SetLoggingValue (turbine_id, 3, PitComT);

 SetLoggingValue (turbine_id, 4, PitRate[0]);

 SetLoggingValue (turbine_id, 5, PC_MaxRat);

 SetLoggingValue (turbine_id, 6, PitCom[0]);

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/ExternalControllerApi.chm

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

Functions

ExternalControllerApi.h File Reference

#include "GH_DISCON_Constants.h"

				[bookmark: func-members]
Functions

				int 				GetLastErrorCode (const turbine turbine_id)

				 				Returns the status of the last operation performed by the simulation.

				const char * 				GetLastErrorMessage (const turbine turbine_id)

				 				Returns a description of the error that occurred on the last command call, or an empty string.

				int 				AddLogValue (const turbine turbine_id, const char *name, const char *units)

				 				Adds a logging value, and returns the new number of logging variables. This is called by the external controller during initialisation, to tell Bladed what values are being logged.

				int 				GetNumberOfLogValues (const turbine turbine_id)

				 				Returns the number of logging value set by the external controller.

				int 				GetLogIndexFromName (const turbine turbine_id, const char *name)

				 				Returns the index of the logging value of the name 'name'. Returns -1 if the name cannot be found.

				int 				SetLoggingLevel (const turbine turbine_id, int logging_level)

				 				Sets the level of logging to the message file.

				int 				ReportScratchMessage (const turbine turbine_id, const char *message)

				 				Reports a scratch message to the user.

				int 				ReportDebugMessage (const turbine turbine_id, const char *message)

				 				Reports a debug message to the user, prefixed by "*** DEBUG:".

				int 				ReportInfoMessage (const turbine turbine_id, const char *message)

				 				Reports an info message to the user, prefixed by "*** Note:".

				int 				ReportWarningMessage (const turbine turbine_id, const char *message)

				 				Reports a warning message to the user, prefixed by "*** WARNING:".

				int 				ReportErrorMessage (const turbine turbine_id, const char *message)

				 				Reports an error message to the user, prefixed by "*** ERROR:". This should be called at least once immediately before requesting program termination, explaining the reason for the termination.

				int 				ReportCriticalMessage (const turbine turbine_id, const char *message)

				 				Reports a critical message to the user, prefixed by "*** ERROR:".

				int 				SetNamedUserVariable (const turbine turbine_id, const char *name, double variable_value)

				 				Logs a user-specified value by name.

				double 				GetNamedUserVariable (const turbine turbine_id, const char *name)

				 				Returns the logged a user-specified value, indexed by name. If the specified name has not previously been set, NaN will be returned and a warning reported.

				int 				AppendIndexedUserVariable (const turbine turbine_id, double variable_value)

				 				Logs a user-specified value, added at the end of the list. Returns the index of the new user variable (i.e. the new size of the array minus 1).

				int 				SetIndexedUserVariable (const turbine turbine_id, int index, double variable_value)

				 				Logs a user-specified value by index. Returns an error if the index is out of range.

				double 				GetIndexedUserVariable (const turbine turbine_id, int index)

				 				Returns the logged user-specified value at position 'index'. If the specified index has not previously been set, NaN will be returned and a warning reported.

				int 				GetNumberOfIndexedUserVariables (const turbine turbine_id)

				 				Returns the number of logged user-specified values.

				int 				ClearIndexedUserVariables (const turbine turbine_id)

				 				Clears all indexed user variables.

				int 				GetControllerFailureFlag (const turbine turbine_id)

				 				Returns the failure flag that the simulation is imposing on the external controller (0 for error-free running).

				int 				GetSimulationStatus (const turbine turbine_id)

				 				Returns the status of the simulation.

				double 				GetCurrentTime (const turbine turbine_id)

				 				Returns the current time in the simulation.

				double 				GetCommunicationInterval (const turbine turbine_id)

				 				Returns the time step of the simulation.

				double 				GetRealTimeSimulationTimeStep (const turbine turbine_id)

				 				Returns the real time step of the simulation.

				double 				GetRealTimeSimulationTimeStepMultiplier (const turbine turbine_id)

				 				Returns the real time step multiplier of the simulation.

				double 				GetSettlingTime (const turbine turbine_id)

				 				Returns the settling time of the simulation in s, before data starts being collected.

				const char * 				GetInfileFilepath (const turbine turbine_id)

				 				Returns filepath of the INFILE.

				int 				GetInfileFilepathLength (const turbine turbine_id)

				 				Returns length of the INFILE filepath.

				const char * 				GetOutnameFilepath (const turbine turbine_id)

				 				Returns filepath of the OUTNAME.

				int 				GetOutnameFilepathLength (const turbine turbine_id)

				 				Returns length of the OUTNAME filepath.

				const char * 				GetDllInterfaceVersion (const turbine turbine_id)

				 				The current version of the ExternalControllerApi.dll. This should match the version of dtbladed.exe, retrieved using GetBladedVersion().

				const char * 				GetBladedVersion (const turbine turbine_id)

				 				The current version of dtbladed.exe.

				int 				SetMeanFlowSpeedIncrement (const turbine turbine_id, double speed)

				 				Sets the increment in the mean speed of the flow. Returns 0 for success, and -1 for an error.

				int 				SetTurbulenceIntensityIncrement (const turbine turbine_id, double percentage)

				 				Sets the turbulence intensity increment. Returns 0 for success, and -1 for an error.

				int 				SetFlowDirectionIncrement (const turbine turbine_id, double angle)

				 				Sets the flow direction increment. Returns 0 for success, and -1 for an error.

				int 				SetHardwareInLoop (const turbine turbine_id, int is_hardware_in_loop)

				 				Sets whether the hardware-related functions are active. Returns 0 for success, and -1 for an error.

				int 				GetNumberOfRotors (const turbine turbine_id)

				 				Returns the number of rotors in the model.

				int 				GetNumberOfNacelles (const turbine turbine_id)

				 				Returns the number of nacelles in the model.

				int 				GetNumberOfHubs (const turbine turbine_id)

				 				Returns the number of hubs in the model.

				double 				GetNominalStartFlowSpeed (const turbine turbine_id)

				 				Returns the mean speed of the flow at the point the controller starts up.

				int 				GetActiveSafetySystemNumber (const turbine turbine_id)

				 				Returns The active safety system number.

				int 				SetActiveSafetySystemNumber (const turbine turbine_id, int safety_system)

				 				Sets the active safety system number. Returns 0 for success, and -1 for an error.

				double 				GetNetworkVoltageDisturbanceFactor (const turbine turbine_id)

				 				Returns the network voltage disturbance factor.

				double 				GetNetworkFrequencyDisturbanceFactor (const turbine turbine_id)

				 				Returns the network frequency disturbance factor.

				int 				GetNumberOfTurbineStrainGauges (const turbine turbine_id)

				 				Returns the number of strain gauges on the tower.

				int 				GetNumberOfTurbineAccelerometers (const turbine turbine_id)

				 				Returns the number of strain gauges on the tower.

				int 				GetNumberOfTurbineActiveDampers (const turbine turbine_id)

				 				Returns the number of active dampers on the turbine.

				int 				GetNumberOfLidarBeams (const turbine turbine_id)

				 				Returns the number of Lidar beams on the model.

				int 				GetRotorActiveSafetySystemNumberOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns The active safety system number for the rotor (if individual rotor safety systems are being).

				int 				GetRotorActiveSafetySystemNumber (const turbine turbine_id)

				 				Returns The active safety system number for the rotor (if individual rotor safety systems are being).

				int 				SetRotorActiveSafetySystemNumberOnNacelleN (const turbine turbine_id, int safety_system, int index_nacelle)

				 				Sets the active safety system number for the rotor (if individual rotor safety systems are being). Returns 0 for success, and -1 for an error.

				int 				SetRotorActiveSafetySystemNumber (const turbine turbine_id, int safety_system)

				 				Sets the active safety system number for the rotor (if individual rotor safety systems are being). Returns 0 for success, and -1 for an error.

				int 				GetControllerStateOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns an integer representing the current state of the controller: -1=CONTROLLER_ERROR; 0=POWER_PRODUCTION; 1=PARKED; 2=IDLING; 3=START_UP; 4=NORMAL_STOP; 5=EMERGENCY_STOP.

				int 				GetControllerState (const turbine turbine_id)

				 				Returns an integer representing the current state of the controller: -1=CONTROLLER_ERROR; 0=POWER_PRODUCTION; 1=PARKED; 2=IDLING; 3=START_UP; 4=NORMAL_STOP; 5=EMERGENCY_STOP.

				double 				GetOptimalModeGainOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the optimal mode gain, in Nm/(rad/s)2. This is valid for variable-speed controllers only. If the number of points on the speed:torque curve is greater than 0 (see GetNumberOfGeneratorSpeedTorqueValues), the speed:torque curve is to be used instead, and the optimal mode gain will be 0.0.

				double 				GetOptimalModeGain (const turbine turbine_id)

				 				Returns the optimal mode gain, in Nm/(rad/s)2. This is valid for variable-speed controllers only. If the number of points on the speed:torque curve is greater than 0 (see GetNumberOfGeneratorSpeedTorqueValues), the speed:torque curve is to be used instead, and the optimal mode gain will be 0.0.

				double 				GetMinimumGeneratorSpeedOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the minimum generator speed, in rad/s. This is valid for variable-speed controllers only.

				double 				GetMinimumGeneratorSpeed (const turbine turbine_id)

				 				Returns the minimum generator speed, in rad/s. This is valid for variable-speed controllers only.

				double 				GetOptimalModeMaximumSpeedOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the optimal mode maximum speed, in rad/s. This is valid for variable-speed controllers only.

				double 				GetOptimalModeMaximumSpeed (const turbine turbine_id)

				 				Returns the optimal mode maximum speed, in rad/s. This is valid for variable-speed controllers only.

				double 				GetReferenceGeneratorSpeedAboveRatedOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the rotor's reference generator speed, when the turbine is operating above its rated flow speed, in rad/s. This is valid for pitch-regulated, variable-speed controllers only.

				double 				GetReferenceGeneratorSpeedAboveRated (const turbine turbine_id)

				 				Returns the rotor's reference generator speed, when the turbine is operating above its rated flow speed, in rad/s. This is valid for pitch-regulated, variable-speed controllers only.

				double 				GetReferenceGeneratorTorqueAboveRatedOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the rotor's reference generator torque, when the turbine is operating above its rated flow speed, in Nm. This is valid for variable-speed controllers only.

				double 				GetReferenceGeneratorTorqueAboveRated (const turbine turbine_id)

				 				Returns the rotor's reference generator torque, when the turbine is operating above its rated flow speed, in Nm. This is valid for variable-speed controllers only.

				int 				GetTorqueOverrideStatusOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns The current override status: 0=OFF, 1=ON.

				int 				GetTorqueOverrideStatus (const turbine turbine_id)

				 				Returns The current override status: 0=OFF, 1=ON.

				int 				SetTorqueOverrideStatusOnNacelleN (const turbine turbine_id, int override_status, int index_nacelle)

				 				Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				int 				SetTorqueOverrideStatus (const turbine turbine_id, int override_status)

				 				Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				double 				GetDemandedPowerOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the power currently demanded of the rotor by the controller, in W. This is not valid for variable-speed, pitch-regulated controllers.

				double 				GetDemandedPower (const turbine turbine_id)

				 				Returns the power currently demanded of the rotor by the controller, in W. This is not valid for variable-speed, pitch-regulated controllers.

				double 				GetDemandedGeneratorSpeedOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns The demanded speed, in rad/s.

				double 				GetDemandedGeneratorSpeed (const turbine turbine_id)

				 				Returns The demanded speed, in rad/s.

				double 				SetDemandedGeneratorSpeedOnNacelleN (const turbine turbine_id, double speed, int index_nacelle)

				 				Sets the demanded speed, in rad/s. Returns 0 for success, and -1 for an error.

				double 				SetDemandedGeneratorSpeed (const turbine turbine_id, double speed)

				 				Sets the demanded speed, in rad/s. Returns 0 for success, and -1 for an error.

				double 				GetDemandedGeneratorTorqueOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns The demanded torque, in Nm.

				double 				GetDemandedGeneratorTorque (const turbine turbine_id)

				 				Returns The demanded torque, in Nm.

				int 				SetDemandedGeneratorTorqueOnNacelleN (const turbine turbine_id, double torque, int index_nacelle)

				 				Sets the demanded torque, in Nm. Returns 0 for success, and -1 for an error.

				int 				SetDemandedGeneratorTorque (const turbine turbine_id, double torque)

				 				Sets the demanded torque, in Nm. Returns 0 for success, and -1 for an error.

				int 				GetGeneratorContactorOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.

				int 				GetGeneratorContactor (const turbine turbine_id)

				 				Returns The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.

				int 				SetGeneratorContactorOnNacelleN (const turbine turbine_id, int generator_contactor, int index_nacelle)

				 				Sets the generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED. Returns 0 for success, and -1 for an error.

				int 				SetGeneratorContactor (const turbine turbine_id, int generator_contactor)

				 				Sets the generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED. Returns 0 for success, and -1 for an error.

				int 				SetGeneratorStartupResistanceOnNacelleN (const turbine turbine_id, double resistance, int index_nacelle)

				 				Sets the startup resistance, in ohm/phase. Returns 0 for success, and -1 for an error.

				int 				SetGeneratorStartupResistance (const turbine turbine_id, double resistance)

				 				Sets the startup resistance, in ohm/phase. Returns 0 for success, and -1 for an error.

				int 				GetVariableSlipStatusOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns The current variable slip status: 0=OFF, 1=ON.

				int 				GetVariableSlipStatus (const turbine turbine_id)

				 				Returns The current variable slip status: 0=OFF, 1=ON.

				int 				SetVariableSlipStatusOnNacelleN (const turbine turbine_id, int variable_slip_status, int index_nacelle)

				 				Sets the current variable slip status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				int 				SetVariableSlipStatus (const turbine turbine_id, int variable_slip_status)

				 				Sets the current variable slip status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				double 				GetDemandedVariableSlipCurrentOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns The variable slip current demand, in Amps.

				double 				GetDemandedVariableSlipCurrent (const turbine turbine_id)

				 				Returns The variable slip current demand, in Amps.

				int 				SetDemandedVariableSlipCurrentOnNacelleN (const turbine turbine_id, double current, int index_nacelle)

				 				Sets the variable slip current demand, in Amps. Returns 0 for success, and -1 for an error.

				int 				SetDemandedVariableSlipCurrent (const turbine turbine_id, double current)

				 				Sets the variable slip current demand, in Amps. Returns 0 for success, and -1 for an error.

				int 				GetNumberOfGeneratorSpeedTorqueValuesOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the number of entries in the generator speed/torque lookup table. If the number of points is greater than 0, the speed:torque curve is to be used, and the optimal mode gain will be 0.0.

				int 				GetNumberOfGeneratorSpeedTorqueValues (const turbine turbine_id)

				 				Returns the number of entries in the generator speed/torque lookup table. If the number of points is greater than 0, the speed:torque curve is to be used, and the optimal mode gain will be 0.0.

				double 				GetGeneratorLookupTableSpeedValueOnNacelleN (const turbine turbine_id, int index, int index_nacelle)

				 				Returns the generator speed at the specified locus on the speed/torque look-up table.

				double 				GetGeneratorLookupTableSpeedValue (const turbine turbine_id, int index)

				 				Returns the generator speed at the specified locus on the speed/torque look-up table.

				double 				GetGeneratorLookupTableTorqueValueOnNacelleN (const turbine turbine_id, int index, int index_nacelle)

				 				Returns the generator torque at the specified locus on the speed/torque look-up table.

				double 				GetGeneratorLookupTableTorqueValue (const turbine turbine_id, int index)

				 				Returns the generator torque at the specified locus on the speed/torque look-up table.

				int 				GetNumberOfDrivetrainBrakeStatusOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the size of the vector.

				int 				GetNumberOfDrivetrainBrakeStatus (const turbine turbine_id)

				 				Returns the size of the vector.

				int 				GetDrivetrainBrakeStatusOnNacelleN (const turbine turbine_id, int index, int index_nacelle)

				 				Returns the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller.

				int 				GetDrivetrainBrakeStatus (const turbine turbine_id, int index)

				 				Returns the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller.

				int 				SetDrivetrainBrakeStatusOnNacelleN (const turbine turbine_id, int brake_status, int index, int index_nacelle)

				 				Sets the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller. Returns 0 for success, and -1 for an error.

				int 				SetDrivetrainBrakeStatus (const turbine turbine_id, int brake_status, int index)

				 				Sets the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller. Returns 0 for success, and -1 for an error.

				double 				GetDemandedAdditionalBrakeTorqueOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the torque to be added to the total brake torque from all other brakes.

				double 				GetDemandedAdditionalBrakeTorque (const turbine turbine_id)

				 				Returns the torque to be added to the total brake torque from all other brakes.

				int 				SetDemandedAdditionalBrakeTorqueOnNacelleN (const turbine turbine_id, double torque, int index_nacelle)

				 				Sets the torque to be added to the total brake torque from all other brakes. Returns 0 for success, and -1 for an error.

				int 				SetDemandedAdditionalBrakeTorque (const turbine turbine_id, double torque)

				 				Sets the torque to be added to the total brake torque from all other brakes. Returns 0 for success, and -1 for an error.

				int 				GetGridConverterdAxisControlTypeOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the grid-side converter d-axis control type.

				int 				GetGridConverterdAxisControlType (const turbine turbine_id)

				 				Returns the grid-side converter d-axis control type.

				int 				SetGridConverterdAxisControlTypeOnNacelleN (const turbine turbine_id, int control_type, int index_nacelle)

				 				Sets the grid-side converter d-axis control type. Returns 0 for success, and -1 for an error.

				int 				SetGridConverterdAxisControlType (const turbine turbine_id, int control_type)

				 				Sets the grid-side converter d-axis control type. Returns 0 for success, and -1 for an error.

				double 				GetGridConverterdAxisControlReferenceOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the grid-side converter d-axis control reference value.

				double 				GetGridConverterdAxisControlReference (const turbine turbine_id)

				 				Returns the grid-side converter d-axis control reference value.

				int 				SetGridConverterdAxisControlReferenceOnNacelleN (const turbine turbine_id, double reference_value, int index_nacelle)

				 				Sets the grid-side converter d-axis control reference value. Returns 0 for success, and -1 for an error.

				int 				SetGridConverterdAxisControlReference (const turbine turbine_id, double reference_value)

				 				Sets the grid-side converter d-axis control reference value. Returns 0 for success, and -1 for an error.

				int 				GetYawControlOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the current yaw control type: 0=RATE CONTROL, 1=TORQUE CONTROL.

				int 				GetYawControl (const turbine turbine_id)

				 				Returns the current yaw control type: 0=RATE CONTROL, 1=TORQUE CONTROL.

				int 				SetOverrideYawRateWithTorqueOnNacelleN (const turbine turbine_id, int override_rate_with_torque, int index_nacelle)

				 				Sets whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				int 				SetOverrideYawRateWithTorque (const turbine turbine_id, int override_rate_with_torque)

				 				Sets whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				int 				SetDemandedYawActuatorTorqueOnNacelleN (const turbine turbine_id, double torque, int index_nacelle)

				 				Sets the demanded yaw actuator torque. This is only valid when either the yaw control is 'torque', or override_yaw_rate_with_torque=1. Returns 0 for success, and -1 for an error.

				int 				SetDemandedYawActuatorTorque (const turbine turbine_id, double torque)

				 				Sets the demanded yaw actuator torque. This is only valid when either the yaw control is 'torque', or override_yaw_rate_with_torque=1. Returns 0 for success, and -1 for an error.

				int 				SetDemandedYawRateOnNacelleN (const turbine turbine_id, double rate, int index_nacelle)

				 				Sets the demanded yaw rate of the nacelle itself (as opposed to the motor rate). This is only valid when the yaw control is 'rate', and override_yaw_rate_with_torque=0. Returns 0 for success, and -1 for an error.

				int 				SetDemandedYawRate (const turbine turbine_id, double rate)

				 				Sets the demanded yaw rate of the nacelle itself (as opposed to the motor rate). This is only valid when the yaw control is 'rate', and override_yaw_rate_with_torque=0. Returns 0 for success, and -1 for an error.

				int 				SetUseYawStiffnessOnNacelleN (const turbine turbine_id, int use_yaw_stiffness, int index_nacelle)

				 				Sets whether the yaw stiffness will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				int 				SetUseYawStiffness (const turbine turbine_id, int use_yaw_stiffness)

				 				Sets whether the yaw stiffness will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				int 				SetYawStiffnessOnNacelleN (const turbine turbine_id, double stiffness, int index_nacelle)

				 				Sets the yaw stiffness. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				int 				SetYawStiffness (const turbine turbine_id, double stiffness)

				 				Sets the yaw stiffness. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				int 				SetUseYawDampingOnNacelleN (const turbine turbine_id, int use_yaw_damping, int index_nacelle)

				 				Sets whether the yaw damping will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				int 				SetUseYawDamping (const turbine turbine_id, int use_yaw_damping)

				 				Sets whether the yaw damping will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				int 				SetYawDampingOnNacelleN (const turbine turbine_id, double damping, int index_nacelle)

				 				Sets the yaw damping. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				int 				SetYawDamping (const turbine turbine_id, double damping)

				 				Sets the yaw damping. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				int 				SetDemandedYawBrakeTorqueOnNacelleN (const turbine turbine_id, double torque, int index_nacelle)

				 				Sets the demanded brake torque, in Nm. This is treated as additional yaw bearing friction. Returns 0 for success, and -1 for an error.

				int 				SetDemandedYawBrakeTorque (const turbine turbine_id, double torque)

				 				Sets the demanded brake torque, in Nm. This is treated as additional yaw bearing friction. Returns 0 for success, and -1 for an error.

				double 				GetMeasuredShaftPowerOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the measured shaft power of the rotor, in W. This is valid for variable-speed controllers only.

				double 				GetMeasuredShaftPower (const turbine turbine_id)

				 				Returns the measured shaft power of the rotor, in W. This is valid for variable-speed controllers only.

				double 				GetMeasuredRotorSpeedOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the measured rotor speed, in rad/s.

				double 				GetMeasuredRotorSpeed (const turbine turbine_id)

				 				Returns the measured rotor speed, in rad/s.

				double 				GetMeasuredElectricalPowerOutputOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the measured electrical power output of the rotor.

				double 				GetMeasuredElectricalPowerOutput (const turbine turbine_id)

				 				Returns the measured electrical power output of the rotor.

				double 				GetMeasuredGeneratorSpeedOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the measured generator speed in rad/s. This is valid for variable-speed controllers only.

				double 				GetMeasuredGeneratorSpeed (const turbine turbine_id)

				 				Returns the measured generator speed in rad/s. This is valid for variable-speed controllers only.

				double 				GetMeasuredGeneratorTorqueOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the measured generator torque, in Nm. This is valid for variable-speed controllers only.

				double 				GetMeasuredGeneratorTorque (const turbine turbine_id)

				 				Returns the measured generator torque, in Nm. This is valid for variable-speed controllers only.

				double 				GetMeasuredYawBearingAngularPositionOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the angular position of the yaw bearing.

				double 				GetMeasuredYawBearingAngularPosition (const turbine turbine_id)

				 				Returns the angular position of the yaw bearing.

				double 				GetMeasuredYawBearingAngularVelocityOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the angular velocity of the yaw bearing.

				double 				GetMeasuredYawBearingAngularVelocity (const turbine turbine_id)

				 				Returns the angular velocity of the yaw bearing.

				double 				GetMeasuredYawBearingAngularAccelerationOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the angular acceleration of the yaw bearing.

				double 				GetMeasuredYawBearingAngularAcceleration (const turbine turbine_id)

				 				Returns the angular acceleration of the yaw bearing.

				double 				GetMeasuredYawMotorRateOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the yaw motor measured rate.

				double 				GetMeasuredYawMotorRate (const turbine turbine_id)

				 				Returns the yaw motor measured rate.

				double 				GetMeasuredYawErrorOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the measured yaw error, in rad. 4. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				double 				GetMeasuredYawError (const turbine turbine_id)

				 				Returns the measured yaw error, in rad. 4. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				double 				GetMeasuredNacelleAngleFromNorthOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the angle of the nacelle, in rad from North.

				double 				GetMeasuredNacelleAngleFromNorth (const turbine turbine_id)

				 				Returns the angle of the nacelle, in rad from North.

				double 				GetMeasuredTowerTopForeAftAccelerationOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the fore-aft acceleration of the nacelle at the top of the tower, in m/s2.

				double 				GetMeasuredTowerTopForeAftAcceleration (const turbine turbine_id)

				 				Returns the fore-aft acceleration of the nacelle at the top of the tower, in m/s2.

				double 				GetMeasuredTowerTopSideSideAccelerationOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the side-to-side acceleration of the nacelle at the top of the tower, in m/s2.

				double 				GetMeasuredTowerTopSideSideAcceleration (const turbine turbine_id)

				 				Returns the side-to-side acceleration of the nacelle at the top of the tower, in m/s2.

				double 				GetMeasuredShaftTorqueOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the torque of the shaft around the nacelle's x-axis, in Nm.

				double 				GetMeasuredShaftTorque (const turbine turbine_id)

				 				Returns the torque of the shaft around the nacelle's x-axis, in Nm.

				double 				GetMeasuredYawBearingMyOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the pitching/normal moment on the yaw bearing, in Nm.

				double 				GetMeasuredYawBearingMy (const turbine turbine_id)

				 				Returns the pitching/normal moment on the yaw bearing, in Nm.

				double 				GetMeasuredYawBearingMzOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the yawing moment on the yaw bearing, in Nm.

				double 				GetMeasuredYawBearingMz (const turbine turbine_id)

				 				Returns the yawing moment on the yaw bearing, in Nm.

				double 				GetMeasuredNacelleRollAccelerationOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the acceleration of the nacelle around the shaft's axis, in rad/s2.

				double 				GetMeasuredNacelleRollAcceleration (const turbine turbine_id)

				 				Returns the acceleration of the nacelle around the shaft's axis, in rad/s2.

				double 				GetMeasuredNacelleNoddingAccelerationOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the acceleration of the nacelle around the horizontal axis normal to the shaft's axis, in rad/s2.

				double 				GetMeasuredNacelleNoddingAcceleration (const turbine turbine_id)

				 				Returns the acceleration of the nacelle around the horizontal axis normal to the shaft's axis, in rad/s2.

				double 				GetMeasuredNacelleYawAccelerationOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the acceleration of the nacelle around the vertical axis, in rad/s2.

				double 				GetMeasuredNacelleYawAcceleration (const turbine turbine_id)

				 				Returns the acceleration of the nacelle around the vertical axis, in rad/s2.

				double 				GetMeasuredTeeterAngleOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the teeter angle of the nacelle, in rad.

				double 				GetMeasuredTeeterAngle (const turbine turbine_id)

				 				Returns the teeter angle of the nacelle, in rad.

				double 				GetMeasuredTeeterVelocityOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the teeter velocity of the nacelle, in rad/s.

				double 				GetMeasuredTeeterVelocity (const turbine turbine_id)

				 				Returns the teeter velocity of the nacelle, in rad/s.

				int 				GetNumberOfNacelleActiveDampersOnNacelleN (const turbine turbine_id, int index_nacelle)

				 				Returns the number of active dampers on the nacelle.

				int 				GetNumberOfNacelleActiveDampers (const turbine turbine_id)

				 				Returns the number of active dampers on the nacelle.

				double 				GetMeasuredNacelleActiveDamperAccelerationOnNacelleN (const turbine turbine_id, int index_nacelle_active_damper, int index_nacelle)

				 				Returns the acceleration being measured by the active damper, in m/s2.

				double 				GetMeasuredNacelleActiveDamperAcceleration (const turbine turbine_id, int index_nacelle_active_damper)

				 				Returns the acceleration being measured by the active damper, in m/s2.

				int 				SetDemandedNacelleActiveDamperForceOnNacelleN (const turbine turbine_id, int index_nacelle_active_damper, double force, int index_nacelle)

				 				Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.

				int 				SetDemandedNacelleActiveDamperForce (const turbine turbine_id, int index_nacelle_active_damper, double force)

				 				Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.

				int 				GetNumberOfBladesOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the number of blades on the hub.

				int 				GetNumberOfBlades (const turbine turbine_id)

				 				Returns the number of blades on the hub.

				double 				GetCollectivePitchAngleOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the current collective pitch angle for all blades on the rotor in rad/s, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				double 				GetCollectivePitchAngle (const turbine turbine_id)

				 				Returns the current collective pitch angle for all blades on the rotor in rad/s, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				double 				GetDemandedCollectivePitchAngleOnHubN (const turbine turbine_id, int index_hub)

				 				Returns The demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				double 				GetDemandedCollectivePitchAngle (const turbine turbine_id)

				 				Returns The demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				int 				SetDemandedCollectivePitchAngleOnHubN (const turbine turbine_id, double angle, int index_hub)

				 				Sets the demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION. Returns 0 for success, and -1 for an error.

				int 				SetDemandedCollectivePitchAngle (const turbine turbine_id, double angle)

				 				Sets the demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION. Returns 0 for success, and -1 for an error.

				double 				GetDemandedCollectivePitchRateOnHubN (const turbine turbine_id, int index_hub)

				 				Returns The demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE.

				double 				GetDemandedCollectivePitchRate (const turbine turbine_id)

				 				Returns The demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE.

				int 				SetDemandedCollectivePitchRateOnHubN (const turbine turbine_id, double rate, int index_hub)

				 				Sets the demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE. Returns 0 for success, and -1 for an error.

				int 				SetDemandedCollectivePitchRate (const turbine turbine_id, double rate)

				 				Sets the demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE. Returns 0 for success, and -1 for an error.

				int 				GetPitchControlOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the current pitch control type: 0=COLLECTIVE, 1=INDIVIDUAL.

				int 				GetPitchControl (const turbine turbine_id)

				 				Returns the current pitch control type: 0=COLLECTIVE, 1=INDIVIDUAL.

				int 				GetPitchOverrideStatusOnHubN (const turbine turbine_id, int index_hub)

				 				Returns The current override status: 0=OFF, 1=ON.

				int 				GetPitchOverrideStatus (const turbine turbine_id)

				 				Returns The current override status: 0=OFF, 1=ON.

				int 				SetPitchOverrideStatusOnHubN (const turbine turbine_id, int override_status, int index_hub)

				 				Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				int 				SetPitchOverrideStatus (const turbine turbine_id, int override_status)

				 				Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedCollectivePitchRateOnHubN (const turbine turbine_id, double demanded_pitch_rate, int index_hub)

				 				Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedCollectivePitchRate (const turbine turbine_id, double demanded_pitch_rate)

				 				Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedCollectivePitchTorqueOnHubN (const turbine turbine_id, double demanded_pitch_torque, int index_hub)

				 				Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedCollectivePitchTorque (const turbine turbine_id, double demanded_pitch_torque)

				 				Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				double 				GetMeasuredRotorAzimuthAngleOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the angle between the first blade's axis and vertical, in rad.

				double 				GetMeasuredRotorAzimuthAngle (const turbine turbine_id)

				 				Returns the angle between the first blade's axis and vertical, in rad.

				double 				GetNominalHubFlowSpeedOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the modelled speed of the flow over the hub, in m/s. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				double 				GetNominalHubFlowSpeed (const turbine turbine_id)

				 				Returns the modelled speed of the flow over the hub, in m/s. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				double 				GetMeasuredRotatingHubMyOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the moment around the y-axis of the rotating hub's axis system, in Nm.

				double 				GetMeasuredRotatingHubMy (const turbine turbine_id)

				 				Returns the moment around the y-axis of the rotating hub's axis system, in Nm.

				double 				GetMeasuredRotatingHubMzOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the yawing moment on the hub around the nominal axis of the first blade, in Nm.

				double 				GetMeasuredRotatingHubMz (const turbine turbine_id)

				 				Returns the yawing moment on the hub around the nominal axis of the first blade, in Nm.

				double 				GetMeasuredFixedHubMyOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the nodding/pitching moment around the y-axis, in Nm.

				double 				GetMeasuredFixedHubMy (const turbine turbine_id)

				 				Returns the nodding/pitching moment around the y-axis, in Nm.

				double 				GetMeasuredFixedHubMzOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the yawing moment around the vertical axis, in Nm..

				double 				GetMeasuredFixedHubMz (const turbine turbine_id)

				 				Returns the yawing moment around the vertical axis, in Nm..

				double 				GetMeasuredFixedHubFxOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the force acting on the hub in the direction of the shaft, in N.

				double 				GetMeasuredFixedHubFx (const turbine turbine_id)

				 				Returns the force acting on the hub in the direction of the shaft, in N.

				double 				GetMeasuredFixedHubFyOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the force acting on the hub in the direction normal to the shaft in the horizontal plane, in N.

				double 				GetMeasuredFixedHubFy (const turbine turbine_id)

				 				Returns the force acting on the hub in the direction normal to the shaft in the horizontal plane, in N.

				double 				GetMeasuredFixedHubFzOnHubN (const turbine turbine_id, int index_hub)

				 				Returns the force acting on the hub in the vertical direction, in N.

				double 				GetMeasuredFixedHubFz (const turbine turbine_id)

				 				Returns the force acting on the hub in the vertical direction, in N.

				double 				GetDemandedPitchAngleOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns The demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL.

				double 				GetDemandedPitchAngle (const turbine turbine_id, int index_blade)

				 				Returns The demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL.

				int 				SetDemandedPitchAngleOnHubN (const turbine turbine_id, int index_blade, double demanded_pitch_angle, int index_hub)

				 				Sets the demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				int 				SetDemandedPitchAngle (const turbine turbine_id, int index_blade, double demanded_pitch_angle)

				 				Sets the demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				double 				GetDemandedPitchRateOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns The demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL.

				double 				GetDemandedPitchRate (const turbine turbine_id, int index_blade)

				 				Returns The demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL.

				int 				SetDemandedPitchRateOnHubN (const turbine turbine_id, int index_blade, double demanded_pitch_rate, int index_hub)

				 				Sets the demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				int 				SetDemandedPitchRate (const turbine turbine_id, int index_blade, double demanded_pitch_rate)

				 				Sets the demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedPitchRateOnHubN (const turbine turbine_id, int index_blade, double demanded_pitch_rate, int index_hub)

				 				Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedPitchRate (const turbine turbine_id, int index_blade, double demanded_pitch_rate)

				 				Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedPitchTorqueOnHubN (const turbine turbine_id, int index_blade, double demanded_pitch_torque, int index_hub)

				 				Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				int 				SetSafetySystemDemandedPitchTorque (const turbine turbine_id, int index_blade, double demanded_pitch_torque)

				 				Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				int 				IsPitchLimitSwitchTrippedOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				The status of whether either the lower or upper limit switch has been tripped in the pitch actuator.

				int 				IsPitchLimitSwitchTripped (const turbine turbine_id, int index_blade)

				 				The status of whether either the lower or upper limit switch has been tripped in the pitch actuator.

				double 				GetBelowRatedPitchAngleSetPointOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the reference blade angle for when the turbine is operating below its rated flow speed, in rad.

				double 				GetBelowRatedPitchAngleSetPoint (const turbine turbine_id, int index_blade)

				 				Returns the reference blade angle for when the turbine is operating below its rated flow speed, in rad.

				double 				GetMinimumPitchAngleOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the minimum pitch angle allowed on the blade, in rad.

				double 				GetMinimumPitchAngle (const turbine turbine_id, int index_blade)

				 				Returns the minimum pitch angle allowed on the blade, in rad.

				double 				GetMaximumPitchAngleOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the maximum pitch angle allowed on the blade, in rad.

				double 				GetMaximumPitchAngle (const turbine turbine_id, int index_blade)

				 				Returns the maximum pitch angle allowed on the blade, in rad.

				double 				GetMinimumPitchRateOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the minimum pitch rate allowed on the blade, in rad/s.

				double 				GetMinimumPitchRate (const turbine turbine_id, int index_blade)

				 				Returns the minimum pitch rate allowed on the blade, in rad/s.

				double 				GetMaximumPitchRateOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the maximum pitch rate allowed on the blade, in rad/s.

				double 				GetMaximumPitchRate (const turbine turbine_id, int index_blade)

				 				Returns the maximum pitch rate allowed on the blade, in rad/s.

				int 				GetPitchActuatorTypeOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the pitch actuator type: 0=POSITION, 1=RATE.

				int 				GetPitchActuatorType (const turbine turbine_id, int index_blade)

				 				Returns the pitch actuator type: 0=POSITION, 1=RATE.

				double 				GetMeasuredPitchAngleOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the current pitch angle of the blade.

				double 				GetMeasuredPitchAngle (const turbine turbine_id, int index_blade)

				 				Returns the current pitch angle of the blade.

				double 				GetMeasuredPitchRateOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the current rate of change of the pitch angle of the blade.

				double 				GetMeasuredPitchRate (const turbine turbine_id, int index_blade)

				 				Returns the current rate of change of the pitch angle of the blade.

				double 				GetMeasuredPitchActuatorTorqueOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the current pitch actuator torque, in Nm.

				double 				GetMeasuredPitchActuatorTorque (const turbine turbine_id, int index_blade)

				 				Returns the current pitch actuator torque, in Nm.

				double 				GetMeasuredBladeOutOfPlaneBendingMomentOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the out-of-plane bending moment, in Nm.

				double 				GetMeasuredBladeOutOfPlaneBendingMoment (const turbine turbine_id, int index_blade)

				 				Returns the out-of-plane bending moment, in Nm.

				double 				GetMeasuredBladeInPlaneBendingMomentOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the in-plane bending moment, in Nm.

				double 				GetMeasuredBladeInPlaneBendingMoment (const turbine turbine_id, int index_blade)

				 				Returns the in-plane bending moment, in Nm.

				double 				GetMeasuredPitchBearingMzOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the pitch bearing's Mz, in Nm.

				double 				GetMeasuredPitchBearingMz (const turbine turbine_id, int index_blade)

				 				Returns the pitch bearing's Mz, in Nm.

				double 				GetMeasuredPitchBearingFrictionOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the pitch bearing's friction, in Nm.

				double 				GetMeasuredPitchBearingFriction (const turbine turbine_id, int index_blade)

				 				Returns the pitch bearing's friction, in Nm.

				double 				GetMeasuredPitchBearingRadialForceOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the pitch bearing's radial force, i.e. sqrt(Fx2+Fy2), in N.

				double 				GetMeasuredPitchBearingRadialForce (const turbine turbine_id, int index_blade)

				 				Returns the pitch bearing's radial force, i.e. sqrt(Fx2+Fy2), in N.

				double 				GetMeasuredPitchBearingAxialForceOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the pitch bearing's axial force, i.e. Fz, in N.

				double 				GetMeasuredPitchBearingAxialForce (const turbine turbine_id, int index_blade)

				 				Returns the pitch bearing's axial force, i.e. Fz, in N.

				int 				SetHardwarePitchPositionOnHubN (const turbine turbine_id, int index_blade, double pitch_position, int index_hub)

				 				Sets the actual pitch position of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				int 				SetHardwarePitchPosition (const turbine turbine_id, int index_blade, double pitch_position)

				 				Sets the actual pitch position of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				int 				SetHardwarePitchRateOnHubN (const turbine turbine_id, int index_blade, double pitch_rate, int index_hub)

				 				Sets the actual pitch rate of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				int 				SetHardwarePitchRate (const turbine turbine_id, int index_blade, double pitch_rate)

				 				Sets the actual pitch rate of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				int 				GetNumberOfAileronsOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the number of ailerons on the blade.

				int 				GetNumberOfAilerons (const turbine turbine_id, int index_blade)

				 				Returns the number of ailerons on the blade.

				int 				GetNumberOfBladeStrainGaugesOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the number of strain gauges on the blade.

				int 				GetNumberOfBladeStrainGauges (const turbine turbine_id, int index_blade)

				 				Returns the number of strain gauges on the blade.

				int 				GetNumberOfBladeAccelerometersOnHubN (const turbine turbine_id, int index_blade, int index_hub)

				 				Returns the number of accelerometers on the blade.

				int 				GetNumberOfBladeAccelerometers (const turbine turbine_id, int index_blade)

				 				Returns the number of accelerometers on the blade.

				double 				GetDemandedAileronAngleOnHubN (const turbine turbine_id, int index_blade, int index_aileron, int index_hub)

				 				Returns The demanded deployment angle of the aileron.

				double 				GetDemandedAileronAngle (const turbine turbine_id, int index_blade, int index_aileron)

				 				Returns The demanded deployment angle of the aileron.

				int 				SetDemandedAileronAngleOnHubN (const turbine turbine_id, int index_blade, int index_aileron, double demanded_angle, int index_hub)

				 				Sets the demanded deployment angle of the aileron. Returns 0 for success, and -1 for an error.

				int 				SetDemandedAileronAngle (const turbine turbine_id, int index_blade, int index_aileron, double demanded_angle)

				 				Sets the demanded deployment angle of the aileron. Returns 0 for success, and -1 for an error.

				double 				GetBladeStrainGaugeDistanceOnHubN (const turbine turbine_id, int index_blade, int index_blade_strain_gauge, int index_hub)

				 				The distance along the span the strain gauge is positioned.

				double 				GetBladeStrainGaugeDistance (const turbine turbine_id, int index_blade, int index_blade_strain_gauge)

				 				The distance along the span the strain gauge is positioned.

				double 				GetBladeStrainGaugeAngleOnHubN (const turbine turbine_id, int index_blade, int index_blade_strain_gauge, int index_hub)

				 				Returns the angle of the strain gauge.

				double 				GetBladeStrainGaugeAngle (const turbine turbine_id, int index_blade, int index_blade_strain_gauge)

				 				Returns the angle of the strain gauge.

				double 				GetMeasuredBladeStrainGaugeMOnHubN (const turbine turbine_id, int index_blade, int index_blade_strain_gauge, int index_hub)

				 				Returns the moment in the direction specified by the strain gauge's angle.

				double 				GetMeasuredBladeStrainGaugeM (const turbine turbine_id, int index_blade, int index_blade_strain_gauge)

				 				Returns the moment in the direction specified by the strain gauge's angle.

				double 				GetBladeAccelerometerDistanceOnHubN (const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub)

				 				The distance along the span the accelerometer is positioned.

				double 				GetBladeAccelerometerDistance (const turbine turbine_id, int index_blade, int index_blade_accelerometer)

				 				The distance along the span the accelerometer is positioned.

				double 				GetMeasuredBladeAccelerometerAccelerationOnHubN (const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub)

				 				Returns the acceleration in the direction specified by the accelerometer's angle.

				double 				GetMeasuredBladeAccelerometerAcceleration (const turbine turbine_id, int index_blade, int index_blade_accelerometer)

				 				Returns the acceleration in the direction specified by the accelerometer's angle.

				double 				GetMeasuredBladeAccelerometerAccelerationXOnHubN (const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub)

				 				Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				double 				GetMeasuredBladeAccelerometerAccelerationX (const turbine turbine_id, int index_blade, int index_blade_accelerometer)

				 				Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				double 				GetMeasuredBladeAccelerometerAccelerationYOnHubN (const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub)

				 				Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				double 				GetMeasuredBladeAccelerometerAccelerationY (const turbine turbine_id, int index_blade, int index_blade_accelerometer)

				 				Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				double 				GetMeasuredBladeAccelerometerAccelerationZOnHubN (const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub)

				 				Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				double 				GetMeasuredBladeAccelerometerAccelerationZ (const turbine turbine_id, int index_blade, int index_blade_accelerometer)

				 				Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				int 				SetLoggingValue (const turbine turbine_id, int index_log_value, double log_value)

				 				Sets the value to be logged in this timestep. Returns 0 for success, and -1 for an error.

				const char * 				GetLoggingName (const turbine turbine_id, int index_log_value)

				 				Returns the name of the logging value.

				const char * 				GetLoggingUnits (const turbine turbine_id, int index_log_value)

				 				Returns the units of the logging value.

				double 				GetTurbineStrainGaugeMemberIndex (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the index of the structural member on which the strain gauge is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, seeGetTurbineStrainGaugeTowerHeight.

				double 				GetTurbineStrainGaugeLengthFraction (const turbine turbine_id, int index_turbine_strain_gauge)

				 				The fraction along the structural member that the strain gauge is located: 0.0 = end 1, 1.0 = end 2. For monopile towers, see GetTurbineStrainGaugeTowerHeight.

				double 				GetTurbineStrainGaugeTowerHeight (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the height up the tower the strain gauge is located. This is only valid for monopile towers, and will be -666.0 for multi-member towers.

				double 				GetMeasuredTurbineStrainGaugeMx (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the moment about the X-axis (the torsion about the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				double 				GetMeasuredTurbineStrainGaugeMy (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the moment about the Y-axis (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				double 				GetMeasuredTurbineStrainGaugeMz (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the moment about the Z-axis (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				double 				GetMeasuredTurbineStrainGaugeFx (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the load in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				double 				GetMeasuredTurbineStrainGaugeFy (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the load in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				double 				GetMeasuredTurbineStrainGaugeFz (const turbine turbine_id, int index_turbine_strain_gauge)

				 				Returns the load in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				double 				GetTurbineAccelerometerMemberIndex (const turbine turbine_id, int index_turbine_accelerometer)

				 				Returns the index of the structural member on which the accelerometer is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, see GetTurbineAccelerometerTowerHeight.

				double 				GetTurbineAccelerometerLengthFraction (const turbine turbine_id, int index_turbine_accelerometer)

				 				The fraction along the structural member that the accelerometer is located: 0.0 = end 1, 1.0 = end 2. For monopile towers, see GetTurbineAccelerometerTowerHeight.

				double 				GetTurbineAccelerometerTowerHeight (const turbine turbine_id, int index_turbine_accelerometer)

				 				Returns the height up the tower the acceleraometer is located. This is only valid for monopile towers, and will be set to a negative number for multi-member towers.

				double 				GetMeasuredTurbineAccelerometerAccelerationX (const turbine turbine_id, int index_turbine_accelerometer)

				 				Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				double 				GetMeasuredTurbineAccelerometerAccelerationY (const turbine turbine_id, int index_turbine_accelerometer)

				 				Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				double 				GetMeasuredTurbineAccelerometerAccelerationZ (const turbine turbine_id, int index_turbine_accelerometer)

				 				Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				double 				GetTurbineActiveDamperMemberIndex (const turbine turbine_id, int index_turbine_active_damper)

				 				Returns the index of the structural member on which the active damper is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, see GetTurbineActiveDamperTowerHeight.

				double 				GetMeasuredTurbineActiveDamperAcceleration (const turbine turbine_id, int index_turbine_active_damper)

				 				Returns the acceleration being measured by the active damper, in m/s2.

				int 				SetDemandedTurbineActiveDamperForce (const turbine turbine_id, int index_turbine_active_damper, double force)

				 				Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.

				double 				GetNominalLidarBeamPositionX (const turbine turbine_id, int index_lidar_beam)

				 				Returns returns the nominal X coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.

				double 				GetNominalLidarBeamPositionY (const turbine turbine_id, int index_lidar_beam)

				 				Returns returns the nominal Y coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.

				double 				GetNominalLidarBeamPositionZ (const turbine turbine_id, int index_lidar_beam)

				 				Returns returns the nominal Z coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.

				int 				GetLidarBeamMounting (const turbine turbine_id, int index_lidar_beam)

				 				Returns an integer representing the mounting of the LIDAR: 0=Support Structure or Ground; 1=Nacelle; 2=Hub; 3=Blade.

				int 				GetLidarBeamRotorIndex (const turbine turbine_id, int index_lidar_beam)

				 				Returns returns the index (starting at 0) of the rotor the Lidar is mounted on, or -1 if it is not mounted on a blade, hub or nacelle.

				int 				GetLidarBeamBladeIndex (const turbine turbine_id, int index_lidar_beam)

				 				Returns returns the index (starting at 0) of the blade the Lidar is mounted on, or -1 if it is not mounted on a blade.

				int 				AddLidarBeamFocalPoint (const turbine turbine_id, int index_lidar_beam)

				 				Adds a focal point, and returns the new number of focal points.

				int 				RemoveLidarBeamFocalPoint (const turbine turbine_id, int index_lidar_beam, int index)

				 				Removes a focal point, and returns the new number of focal points.

				int 				GetNumberOfLidarBeamFocalPoints (const turbine turbine_id, int index_lidar_beam)

				 				Returns the number of focal points.

				int 				GetLidarBeamControl (const turbine turbine_id, int index_lidar_beam)

				 				Returns the control method for the Lidar beam: 0=External Controller; 1=Bladed (circular pattern); 2=Bladed rosette pattern).

				int 				GetLidarBeamUpdate (const turbine turbine_id, int index_lidar_beam)

				 				Returns the update mechanism for the beam: GH_DISCON_LIDAR_BEAM_UPDATE_ON_TIMESTEP (0)=on every Lidar timestep GH_DISCON_LIDAR_BEAM_UPDATE_WAITING (1)=on demand (currently waiting) GH_DISCON_LIDAR_BEAM_UPDATE_REQUESTED (2)=on demand (already requested).

				int 				RequestLidarBeamUpdate (const turbine turbine_id, int index_lidar_beam)

				 				Requests an update for the beam (only available if the Lidar update type = GH_DISCON_LIDAR_BEAM_UPDATE_WAITING).

				int 				SetLidarBeamControlCoordinateSystem (const turbine turbine_id, int index_lidar_beam, int lidar_beam_control_coordinate_system_int)

				 				Sets the control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth). Returns 0 for success, and -1 for an error.

				int 				GetLidarBeamControlCoordinateSystem (const turbine turbine_id, int index_lidar_beam)

				 				Returns the control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth).

				int 				GetIsLidarBeamCurrentlyOccluded (const turbine turbine_id, int index_lidar_beam)

				 				Returns whether the Lidar beam is currently occluded by a blade: 0=NO, 1=YES.

				int 				SetLidarBeamDemandedAngleY (const turbine turbine_id, int index_lidar_beam, double angle)

				 				Sets the Lidar beam's demanded angle in the XZ plane (i.e. rotating around the Y axis). Only valid when the beam control is CARTESIAN. Returns 0 for success, and -1 for an error.

				int 				SetLidarBeamDemandedAngleZ (const turbine turbine_id, int index_lidar_beam, double angle)

				 				Sets the Lidar beam's demanded angle in the XY plane (i.e. rotating around the Z axis). Only valid when the beam control is CARTESIAN. Returns 0 for success, and -1 for an error.

				double 				GetMeasuredLidarBeamFocalPointVelocity (const turbine turbine_id, int index_lidar_beam, int index_lidar_beam_focal_point)

				 				Returns the measured velocity of the Lidar station in line-of-site, in m/s.

				int 				SetDemandedLidarBeamFocalPointFocalDistance (const turbine turbine_id, int index_lidar_beam, int index_lidar_beam_focal_point, double focal_distance)

				 				Sets the distance to the focal point of the Lidar, along line-of-sight. This is the distance from the Lidar position at which the flow velocity is measured. Returns 0 for success, and -1 for an error.

Function Documentation

 				int AddLidarBeamFocalPoint
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Adds a focal point, and returns the new number of focal points.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int AddLogValue
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				name,

 				
 				
 				const char *
 				units

 				
)
 								

Adds a logging value, and returns the new number of logging variables. This is called by the external controller during initialisation, to tell Bladed what values are being logged.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				name				The name of the logging value, as it will appears in the log report.

 				units				The units of the logging value as a string.

 				int AppendIndexedUserVariable
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				variable_value

 				
)
 								

Logs a user-specified value, added at the end of the list. Returns the index of the new user variable (i.e. the new size of the array minus 1).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				variable_value				A double value to log.

 				int ClearIndexedUserVariables
 				(
 				const turbine
 				turbine_id)
 				

Clears all indexed user variables.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetActiveSafetySystemNumber
 				(
 				const turbine
 				turbine_id)
 				

Returns The active safety system number.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetBelowRatedPitchAngleSetPoint
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the reference blade angle for when the turbine is operating below its rated flow speed, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetBelowRatedPitchAngleSetPointOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the reference blade angle for when the turbine is operating below its rated flow speed, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetBladeAccelerometerDistance
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer

 				
)
 								

The distance along the span the accelerometer is positioned.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				double GetBladeAccelerometerDistanceOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer,

 				
 				
 				int
 				index_hub

 				
)
 								

The distance along the span the accelerometer is positioned.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				const char* GetBladedVersion
 				(
 				const turbine
 				turbine_id)
 				

The current version of dtbladed.exe.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetBladeStrainGaugeAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_strain_gauge

 				
)
 								

Returns the angle of the strain gauge.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_strain_gauge				Index of blade strain gauge, starting at 0.

 				double GetBladeStrainGaugeAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_strain_gauge,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the angle of the strain gauge.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_strain_gauge				Index of blade strain gauge, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetBladeStrainGaugeDistance
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_strain_gauge

 				
)
 								

The distance along the span the strain gauge is positioned.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_strain_gauge				Index of blade strain gauge, starting at 0.

 				double GetBladeStrainGaugeDistanceOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_strain_gauge,

 				
 				
 				int
 				index_hub

 				
)
 								

The distance along the span the strain gauge is positioned.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_strain_gauge				Index of blade strain gauge, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetCollectivePitchAngle
 				(
 				const turbine
 				turbine_id)
 				

Returns the current collective pitch angle for all blades on the rotor in rad/s, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetCollectivePitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the current collective pitch angle for all blades on the rotor in rad/s, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetCommunicationInterval
 				(
 				const turbine
 				turbine_id)
 				

Returns the time step of the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetControllerFailureFlag
 				(
 				const turbine
 				turbine_id)
 				

Returns the failure flag that the simulation is imposing on the external controller (0 for error-free running).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetControllerState
 				(
 				const turbine
 				turbine_id)
 				

Returns an integer representing the current state of the controller: -1=CONTROLLER_ERROR; 0=POWER_PRODUCTION; 1=PARKED; 2=IDLING; 3=START_UP; 4=NORMAL_STOP; 5=EMERGENCY_STOP.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetControllerStateOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns an integer representing the current state of the controller: -1=CONTROLLER_ERROR; 0=POWER_PRODUCTION; 1=PARKED; 2=IDLING; 3=START_UP; 4=NORMAL_STOP; 5=EMERGENCY_STOP.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetCurrentTime
 				(
 				const turbine
 				turbine_id)
 				

Returns the current time in the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedAdditionalBrakeTorque
 				(
 				const turbine
 				turbine_id)
 				

Returns the torque to be added to the total brake torque from all other brakes.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedAdditionalBrakeTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the torque to be added to the total brake torque from all other brakes.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetDemandedAileronAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_aileron

 				
)
 								

Returns The demanded deployment angle of the aileron.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_aileron				Index of aileron, starting at 0.

 				double GetDemandedAileronAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_aileron,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns The demanded deployment angle of the aileron.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_aileron				Index of aileron, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetDemandedCollectivePitchAngle
 				(
 				const turbine
 				turbine_id)
 				

Returns The demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedCollectivePitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns The demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetDemandedCollectivePitchRate
 				(
 				const turbine
 				turbine_id)
 				

Returns The demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedCollectivePitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns The demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetDemandedGeneratorSpeed
 				(
 				const turbine
 				turbine_id)
 				

Returns The demanded speed, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedGeneratorSpeedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns The demanded speed, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetDemandedGeneratorTorque
 				(
 				const turbine
 				turbine_id)
 				

Returns The demanded torque, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedGeneratorTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns The demanded torque, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetDemandedPitchAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns The demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetDemandedPitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns The demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetDemandedPitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns The demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetDemandedPitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns The demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetDemandedPower
 				(
 				const turbine
 				turbine_id)
 				

Returns the power currently demanded of the rotor by the controller, in W. This is not valid for variable-speed, pitch-regulated controllers.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedPowerOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the power currently demanded of the rotor by the controller, in W. This is not valid for variable-speed, pitch-regulated controllers.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetDemandedVariableSlipCurrent
 				(
 				const turbine
 				turbine_id)
 				

Returns The variable slip current demand, in Amps.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetDemandedVariableSlipCurrentOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns The variable slip current demand, in Amps.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				const char* GetDllInterfaceVersion
 				(
 				const turbine
 				turbine_id)
 				

The current version of the ExternalControllerApi.dll. This should match the version of dtbladed.exe, retrieved using GetBladedVersion().

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetDrivetrainBrakeStatus
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index

 				
)
 								

Returns the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				The index of the element in the vector.

 				int GetDrivetrainBrakeStatusOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				The index of the element in the vector.

 				index_nacelle				Index of nacelle, starting at 0.

 				int GetGeneratorContactor
 				(
 				const turbine
 				turbine_id)
 				

Returns The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetGeneratorContactorOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetGeneratorLookupTableSpeedValue
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index

 				
)
 								

Returns the generator speed at the specified locus on the speed/torque look-up table.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				The index of the locus in the table.

 				double GetGeneratorLookupTableSpeedValueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the generator speed at the specified locus on the speed/torque look-up table.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				The index of the locus in the table.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetGeneratorLookupTableTorqueValue
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index

 				
)
 								

Returns the generator torque at the specified locus on the speed/torque look-up table.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				The index of the locus in the table.

 				double GetGeneratorLookupTableTorqueValueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the generator torque at the specified locus on the speed/torque look-up table.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				The index of the locus in the table.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetGridConverterdAxisControlReference
 				(
 				const turbine
 				turbine_id)
 				

Returns the grid-side converter d-axis control reference value.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetGridConverterdAxisControlReferenceOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the grid-side converter d-axis control reference value.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				int GetGridConverterdAxisControlType
 				(
 				const turbine
 				turbine_id)
 				

Returns the grid-side converter d-axis control type.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetGridConverterdAxisControlTypeOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the grid-side converter d-axis control type.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetIndexedUserVariable
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index

 				
)
 								

Returns the logged user-specified value at position 'index'. If the specified index has not previously been set, NaN will be returned and a warning reported.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				An integer designating the 'slot number' of the value to be retrieved.

 				const char* GetInfileFilepath
 				(
 				const turbine
 				turbine_id)
 				

Returns filepath of the INFILE.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetInfileFilepathLength
 				(
 				const turbine
 				turbine_id)
 				

Returns length of the INFILE filepath.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetIsLidarBeamCurrentlyOccluded
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns whether the Lidar beam is currently occluded by a blade: 0=NO, 1=YES.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int GetLastErrorCode
 				(
 				const turbine
 				turbine_id)
 				

Returns the status of the last operation performed by the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				const char* GetLastErrorMessage
 				(
 				const turbine
 				turbine_id)
 				

Returns a description of the error that occurred on the last command call, or an empty string.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetLidarBeamBladeIndex
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns returns the index (starting at 0) of the blade the Lidar is mounted on, or -1 if it is not mounted on a blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int GetLidarBeamControl
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns the control method for the Lidar beam: 0=External Controller; 1=Bladed (circular pattern); 2=Bladed rosette pattern).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int GetLidarBeamControlCoordinateSystem
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns the control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int GetLidarBeamMounting
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns an integer representing the mounting of the LIDAR: 0=Support Structure or Ground; 1=Nacelle; 2=Hub; 3=Blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int GetLidarBeamRotorIndex
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns returns the index (starting at 0) of the rotor the Lidar is mounted on, or -1 if it is not mounted on a blade, hub or nacelle.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int GetLidarBeamUpdate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns the update mechanism for the beam: GH_DISCON_LIDAR_BEAM_UPDATE_ON_TIMESTEP (0)=on every Lidar timestep GH_DISCON_LIDAR_BEAM_UPDATE_WAITING (1)=on demand (currently waiting) GH_DISCON_LIDAR_BEAM_UPDATE_REQUESTED (2)=on demand (already requested).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				const char* GetLoggingName
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_log_value

 				
)
 								

Returns the name of the logging value.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_log_value				Index of log value, starting at 0.

 				const char* GetLoggingUnits
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_log_value

 				
)
 								

Returns the units of the logging value.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_log_value				Index of log value, starting at 0.

 				int GetLogIndexFromName
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				name

 				
)
 								

Returns the index of the logging value of the name 'name'. Returns -1 if the name cannot be found.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				name				The Log_Value's internal name.

 				double GetMaximumPitchAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the maximum pitch angle allowed on the blade, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMaximumPitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the maximum pitch angle allowed on the blade, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMaximumPitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the maximum pitch rate allowed on the blade, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMaximumPitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the maximum pitch rate allowed on the blade, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredBladeAccelerometerAcceleration
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer

 				
)
 								

Returns the acceleration in the direction specified by the accelerometer's angle.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				double GetMeasuredBladeAccelerometerAccelerationOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the acceleration in the direction specified by the accelerometer's angle.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredBladeAccelerometerAccelerationX
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer

 				
)
 								

Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				double GetMeasuredBladeAccelerometerAccelerationXOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredBladeAccelerometerAccelerationY
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer

 				
)
 								

Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				double GetMeasuredBladeAccelerometerAccelerationYOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredBladeAccelerometerAccelerationZ
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer

 				
)
 								

Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				double GetMeasuredBladeAccelerometerAccelerationZOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_accelerometer,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_accelerometer				Index of blade accelerometer, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredBladeInPlaneBendingMoment
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the in-plane bending moment, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredBladeInPlaneBendingMomentOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the in-plane bending moment, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredBladeOutOfPlaneBendingMoment
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the out-of-plane bending moment, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredBladeOutOfPlaneBendingMomentOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the out-of-plane bending moment, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredBladeStrainGaugeM
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_strain_gauge

 				
)
 								

Returns the moment in the direction specified by the strain gauge's angle.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_strain_gauge				Index of blade strain gauge, starting at 0.

 				double GetMeasuredBladeStrainGaugeMOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_blade_strain_gauge,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the moment in the direction specified by the strain gauge's angle.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_blade_strain_gauge				Index of blade strain gauge, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredElectricalPowerOutput
 				(
 				const turbine
 				turbine_id)
 				

Returns the measured electrical power output of the rotor.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredElectricalPowerOutputOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the measured electrical power output of the rotor.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredFixedHubFx
 				(
 				const turbine
 				turbine_id)
 				

Returns the force acting on the hub in the direction of the shaft, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredFixedHubFxOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the force acting on the hub in the direction of the shaft, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredFixedHubFy
 				(
 				const turbine
 				turbine_id)
 				

Returns the force acting on the hub in the direction normal to the shaft in the horizontal plane, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredFixedHubFyOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the force acting on the hub in the direction normal to the shaft in the horizontal plane, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredFixedHubFz
 				(
 				const turbine
 				turbine_id)
 				

Returns the force acting on the hub in the vertical direction, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredFixedHubFzOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the force acting on the hub in the vertical direction, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredFixedHubMy
 				(
 				const turbine
 				turbine_id)
 				

Returns the nodding/pitching moment around the y-axis, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredFixedHubMyOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the nodding/pitching moment around the y-axis, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredFixedHubMz
 				(
 				const turbine
 				turbine_id)
 				

Returns the yawing moment around the vertical axis, in Nm..

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredFixedHubMzOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the yawing moment around the vertical axis, in Nm..

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredGeneratorSpeed
 				(
 				const turbine
 				turbine_id)
 				

Returns the measured generator speed in rad/s. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredGeneratorSpeedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the measured generator speed in rad/s. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredGeneratorTorque
 				(
 				const turbine
 				turbine_id)
 				

Returns the measured generator torque, in Nm. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredGeneratorTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the measured generator torque, in Nm. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredLidarBeamFocalPointVelocity
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam,

 				
 				
 				int
 				index_lidar_beam_focal_point

 				
)
 								

Returns the measured velocity of the Lidar station in line-of-site, in m/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				index_lidar_beam_focal_point				Index of lidar beam focal point, starting at 0.

 				double GetMeasuredNacelleActiveDamperAcceleration
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle_active_damper

 				
)
 								

Returns the acceleration being measured by the active damper, in m/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle_active_damper				Index of nacelle active damper, starting at 0.

 				double GetMeasuredNacelleActiveDamperAccelerationOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle_active_damper,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the acceleration being measured by the active damper, in m/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle_active_damper				Index of nacelle active damper, starting at 0.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredNacelleAngleFromNorth
 				(
 				const turbine
 				turbine_id)
 				

Returns the angle of the nacelle, in rad from North.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredNacelleAngleFromNorthOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the angle of the nacelle, in rad from North.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredNacelleNoddingAcceleration
 				(
 				const turbine
 				turbine_id)
 				

Returns the acceleration of the nacelle around the horizontal axis normal to the shaft's axis, in rad/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredNacelleNoddingAccelerationOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the acceleration of the nacelle around the horizontal axis normal to the shaft's axis, in rad/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredNacelleRollAcceleration
 				(
 				const turbine
 				turbine_id)
 				

Returns the acceleration of the nacelle around the shaft's axis, in rad/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredNacelleRollAccelerationOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the acceleration of the nacelle around the shaft's axis, in rad/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredNacelleYawAcceleration
 				(
 				const turbine
 				turbine_id)
 				

Returns the acceleration of the nacelle around the vertical axis, in rad/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredNacelleYawAccelerationOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the acceleration of the nacelle around the vertical axis, in rad/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredPitchActuatorTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the current pitch actuator torque, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredPitchActuatorTorqueOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the current pitch actuator torque, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredPitchAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the current pitch angle of the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredPitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the current pitch angle of the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredPitchBearingAxialForce
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the pitch bearing's axial force, i.e. Fz, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredPitchBearingAxialForceOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the pitch bearing's axial force, i.e. Fz, in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredPitchBearingFriction
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the pitch bearing's friction, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredPitchBearingFrictionOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the pitch bearing's friction, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredPitchBearingMz
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the pitch bearing's Mz, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredPitchBearingMzOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the pitch bearing's Mz, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredPitchBearingRadialForce
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the pitch bearing's radial force, i.e. sqrt(Fx2+Fy2), in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredPitchBearingRadialForceOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the pitch bearing's radial force, i.e. sqrt(Fx2+Fy2), in N.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredPitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the current rate of change of the pitch angle of the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMeasuredPitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the current rate of change of the pitch angle of the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredRotatingHubMy
 				(
 				const turbine
 				turbine_id)
 				

Returns the moment around the y-axis of the rotating hub's axis system, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredRotatingHubMyOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the moment around the y-axis of the rotating hub's axis system, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredRotatingHubMz
 				(
 				const turbine
 				turbine_id)
 				

Returns the yawing moment on the hub around the nominal axis of the first blade, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredRotatingHubMzOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the yawing moment on the hub around the nominal axis of the first blade, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredRotorAzimuthAngle
 				(
 				const turbine
 				turbine_id)
 				

Returns the angle between the first blade's axis and vertical, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredRotorAzimuthAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the angle between the first blade's axis and vertical, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetMeasuredRotorSpeed
 				(
 				const turbine
 				turbine_id)
 				

Returns the measured rotor speed, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredRotorSpeedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the measured rotor speed, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredShaftPower
 				(
 				const turbine
 				turbine_id)
 				

Returns the measured shaft power of the rotor, in W. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredShaftPowerOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the measured shaft power of the rotor, in W. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredShaftTorque
 				(
 				const turbine
 				turbine_id)
 				

Returns the torque of the shaft around the nacelle's x-axis, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredShaftTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the torque of the shaft around the nacelle's x-axis, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredTeeterAngle
 				(
 				const turbine
 				turbine_id)
 				

Returns the teeter angle of the nacelle, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredTeeterAngleOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the teeter angle of the nacelle, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredTeeterVelocity
 				(
 				const turbine
 				turbine_id)
 				

Returns the teeter velocity of the nacelle, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredTeeterVelocityOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the teeter velocity of the nacelle, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredTowerTopForeAftAcceleration
 				(
 				const turbine
 				turbine_id)
 				

Returns the fore-aft acceleration of the nacelle at the top of the tower, in m/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredTowerTopForeAftAccelerationOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the fore-aft acceleration of the nacelle at the top of the tower, in m/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredTowerTopSideSideAcceleration
 				(
 				const turbine
 				turbine_id)
 				

Returns the side-to-side acceleration of the nacelle at the top of the tower, in m/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredTowerTopSideSideAccelerationOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the side-to-side acceleration of the nacelle at the top of the tower, in m/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredTurbineAccelerometerAccelerationX
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_accelerometer

 				
)
 								

Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_accelerometer				Index of turbine accelerometer, starting at 0.

 				double GetMeasuredTurbineAccelerometerAccelerationY
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_accelerometer

 				
)
 								

Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_accelerometer				Index of turbine accelerometer, starting at 0.

 				double GetMeasuredTurbineAccelerometerAccelerationZ
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_accelerometer

 				
)
 								

Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_accelerometer				Index of turbine accelerometer, starting at 0.

 				double GetMeasuredTurbineActiveDamperAcceleration
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_active_damper

 				
)
 								

Returns the acceleration being measured by the active damper, in m/s2.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_active_damper				Index of turbine active damper, starting at 0.

 				double GetMeasuredTurbineStrainGaugeFx
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the load in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetMeasuredTurbineStrainGaugeFy
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the load in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetMeasuredTurbineStrainGaugeFz
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the load in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetMeasuredTurbineStrainGaugeMx
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the moment about the X-axis (the torsion about the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetMeasuredTurbineStrainGaugeMy
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the moment about the Y-axis (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetMeasuredTurbineStrainGaugeMz
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the moment about the Z-axis (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetMeasuredYawBearingAngularAcceleration
 				(
 				const turbine
 				turbine_id)
 				

Returns the angular acceleration of the yaw bearing.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredYawBearingAngularAccelerationOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the angular acceleration of the yaw bearing.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredYawBearingAngularPosition
 				(
 				const turbine
 				turbine_id)
 				

Returns the angular position of the yaw bearing.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredYawBearingAngularPositionOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the angular position of the yaw bearing.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredYawBearingAngularVelocity
 				(
 				const turbine
 				turbine_id)
 				

Returns the angular velocity of the yaw bearing.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredYawBearingAngularVelocityOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the angular velocity of the yaw bearing.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredYawBearingMy
 				(
 				const turbine
 				turbine_id)
 				

Returns the pitching/normal moment on the yaw bearing, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredYawBearingMyOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the pitching/normal moment on the yaw bearing, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredYawBearingMz
 				(
 				const turbine
 				turbine_id)
 				

Returns the yawing moment on the yaw bearing, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredYawBearingMzOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the yawing moment on the yaw bearing, in Nm.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredYawError
 				(
 				const turbine
 				turbine_id)
 				

Returns the measured yaw error, in rad. 4. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredYawErrorOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the measured yaw error, in rad. 4. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMeasuredYawMotorRate
 				(
 				const turbine
 				turbine_id)
 				

Returns the yaw motor measured rate.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMeasuredYawMotorRateOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the yaw motor measured rate.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMinimumGeneratorSpeed
 				(
 				const turbine
 				turbine_id)
 				

Returns the minimum generator speed, in rad/s. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetMinimumGeneratorSpeedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the minimum generator speed, in rad/s. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetMinimumPitchAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the minimum pitch angle allowed on the blade, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMinimumPitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the minimum pitch angle allowed on the blade, in rad.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetMinimumPitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the minimum pitch rate allowed on the blade, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				double GetMinimumPitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the minimum pitch rate allowed on the blade, in rad/s.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				double GetNamedUserVariable
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				name

 				
)
 								

Returns the logged a user-specified value, indexed by name. If the specified name has not previously been set, NaN will be returned and a warning reported.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				name				A char pointer to a null-terminated character array representing the field name. This must already have been set.

 				double GetNetworkFrequencyDisturbanceFactor
 				(
 				const turbine
 				turbine_id)
 				

Returns the network frequency disturbance factor.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetNetworkVoltageDisturbanceFactor
 				(
 				const turbine
 				turbine_id)
 				

Returns the network voltage disturbance factor.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetNominalHubFlowSpeed
 				(
 				const turbine
 				turbine_id)
 				

Returns the modelled speed of the flow over the hub, in m/s. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetNominalHubFlowSpeedOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the modelled speed of the flow over the hub, in m/s. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetNominalLidarBeamPositionX
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns returns the nominal X coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				double GetNominalLidarBeamPositionY
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns returns the nominal Y coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				double GetNominalLidarBeamPositionZ
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns returns the nominal Z coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				double GetNominalStartFlowSpeed
 				(
 				const turbine
 				turbine_id)
 				

Returns the mean speed of the flow at the point the controller starts up.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfAilerons
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the number of ailerons on the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				int GetNumberOfAileronsOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the number of ailerons on the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				int GetNumberOfBladeAccelerometers
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the number of accelerometers on the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				int GetNumberOfBladeAccelerometersOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the number of accelerometers on the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				int GetNumberOfBlades
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of blades on the hub.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfBladesOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the number of blades on the hub.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				int GetNumberOfBladeStrainGauges
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the number of strain gauges on the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				int GetNumberOfBladeStrainGaugesOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the number of strain gauges on the blade.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				int GetNumberOfDrivetrainBrakeStatus
 				(
 				const turbine
 				turbine_id)
 				

Returns the size of the vector.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfDrivetrainBrakeStatusOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the size of the vector.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				int GetNumberOfGeneratorSpeedTorqueValues
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of entries in the generator speed/torque lookup table. If the number of points is greater than 0, the speed:torque curve is to be used, and the optimal mode gain will be 0.0.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfGeneratorSpeedTorqueValuesOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the number of entries in the generator speed/torque lookup table. If the number of points is greater than 0, the speed:torque curve is to be used, and the optimal mode gain will be 0.0.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				int GetNumberOfHubs
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of hubs in the model.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfIndexedUserVariables
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of logged user-specified values.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfLidarBeamFocalPoints
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Returns the number of focal points.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int GetNumberOfLidarBeams
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of Lidar beams on the model.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfLogValues
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of logging value set by the external controller.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfNacelleActiveDampers
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of active dampers on the nacelle.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfNacelleActiveDampersOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the number of active dampers on the nacelle.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				int GetNumberOfNacelles
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of nacelles in the model.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfRotors
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of rotors in the model.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfTurbineAccelerometers
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of strain gauges on the tower.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfTurbineActiveDampers
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of active dampers on the turbine.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetNumberOfTurbineStrainGauges
 				(
 				const turbine
 				turbine_id)
 				

Returns the number of strain gauges on the tower.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetOptimalModeGain
 				(
 				const turbine
 				turbine_id)
 				

Returns the optimal mode gain, in Nm/(rad/s)2. This is valid for variable-speed controllers only. If the number of points on the speed:torque curve is greater than 0 (see GetNumberOfGeneratorSpeedTorqueValues), the speed:torque curve is to be used instead, and the optimal mode gain will be 0.0.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetOptimalModeGainOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the optimal mode gain, in Nm/(rad/s)2. This is valid for variable-speed controllers only. If the number of points on the speed:torque curve is greater than 0 (see GetNumberOfGeneratorSpeedTorqueValues), the speed:torque curve is to be used instead, and the optimal mode gain will be 0.0.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetOptimalModeMaximumSpeed
 				(
 				const turbine
 				turbine_id)
 				

Returns the optimal mode maximum speed, in rad/s. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetOptimalModeMaximumSpeedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the optimal mode maximum speed, in rad/s. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				const char* GetOutnameFilepath
 				(
 				const turbine
 				turbine_id)
 				

Returns filepath of the OUTNAME.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetOutnameFilepathLength
 				(
 				const turbine
 				turbine_id)
 				

Returns length of the OUTNAME filepath.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetPitchActuatorType
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

Returns the pitch actuator type: 0=POSITION, 1=RATE.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				int GetPitchActuatorTypeOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the pitch actuator type: 0=POSITION, 1=RATE.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				int GetPitchControl
 				(
 				const turbine
 				turbine_id)
 				

Returns the current pitch control type: 0=COLLECTIVE, 1=INDIVIDUAL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetPitchControlOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns the current pitch control type: 0=COLLECTIVE, 1=INDIVIDUAL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				int GetPitchOverrideStatus
 				(
 				const turbine
 				turbine_id)
 				

Returns The current override status: 0=OFF, 1=ON.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetPitchOverrideStatusOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_hub

 				
)
 								

Returns The current override status: 0=OFF, 1=ON.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_hub				Index of hub, starting at 0.

 				double GetRealTimeSimulationTimeStep
 				(
 				const turbine
 				turbine_id)
 				

Returns the real time step of the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetRealTimeSimulationTimeStepMultiplier
 				(
 				const turbine
 				turbine_id)
 				

Returns the real time step multiplier of the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetReferenceGeneratorSpeedAboveRated
 				(
 				const turbine
 				turbine_id)
 				

Returns the rotor's reference generator speed, when the turbine is operating above its rated flow speed, in rad/s. This is valid for pitch-regulated, variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetReferenceGeneratorSpeedAboveRatedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the rotor's reference generator speed, when the turbine is operating above its rated flow speed, in rad/s. This is valid for pitch-regulated, variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetReferenceGeneratorTorqueAboveRated
 				(
 				const turbine
 				turbine_id)
 				

Returns the rotor's reference generator torque, when the turbine is operating above its rated flow speed, in Nm. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				double GetReferenceGeneratorTorqueAboveRatedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the rotor's reference generator torque, when the turbine is operating above its rated flow speed, in Nm. This is valid for variable-speed controllers only.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				int GetRotorActiveSafetySystemNumber
 				(
 				const turbine
 				turbine_id)
 				

Returns The active safety system number for the rotor (if individual rotor safety systems are being).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetRotorActiveSafetySystemNumberOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns The active safety system number for the rotor (if individual rotor safety systems are being).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetSettlingTime
 				(
 				const turbine
 				turbine_id)
 				

Returns the settling time of the simulation in s, before data starts being collected.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetSimulationStatus
 				(
 				const turbine
 				turbine_id)
 				

Returns the status of the simulation.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetTorqueOverrideStatus
 				(
 				const turbine
 				turbine_id)
 				

Returns The current override status: 0=OFF, 1=ON.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetTorqueOverrideStatusOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns The current override status: 0=OFF, 1=ON.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				double GetTurbineAccelerometerLengthFraction
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_accelerometer

 				
)
 								

The fraction along the structural member that the accelerometer is located: 0.0 = end 1, 1.0 = end 2. For monopile towers, see GetTurbineAccelerometerTowerHeight.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_accelerometer				Index of turbine accelerometer, starting at 0.

 				double GetTurbineAccelerometerMemberIndex
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_accelerometer

 				
)
 								

Returns the index of the structural member on which the accelerometer is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, see GetTurbineAccelerometerTowerHeight.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_accelerometer				Index of turbine accelerometer, starting at 0.

 				double GetTurbineAccelerometerTowerHeight
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_accelerometer

 				
)
 								

Returns the height up the tower the acceleraometer is located. This is only valid for monopile towers, and will be set to a negative number for multi-member towers.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_accelerometer				Index of turbine accelerometer, starting at 0.

 				double GetTurbineActiveDamperMemberIndex
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_active_damper

 				
)
 								

Returns the index of the structural member on which the active damper is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, see GetTurbineActiveDamperTowerHeight.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_active_damper				Index of turbine active damper, starting at 0.

 				double GetTurbineStrainGaugeLengthFraction
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

The fraction along the structural member that the strain gauge is located: 0.0 = end 1, 1.0 = end 2. For monopile towers, see GetTurbineStrainGaugeTowerHeight.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetTurbineStrainGaugeMemberIndex
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the index of the structural member on which the strain gauge is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, seeGetTurbineStrainGaugeTowerHeight.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				double GetTurbineStrainGaugeTowerHeight
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_strain_gauge

 				
)
 								

Returns the height up the tower the strain gauge is located. This is only valid for monopile towers, and will be -666.0 for multi-member towers.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_strain_gauge				Index of turbine strain gauge, starting at 0.

 				int GetVariableSlipStatus
 				(
 				const turbine
 				turbine_id)
 				

Returns The current variable slip status: 0=OFF, 1=ON.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetVariableSlipStatusOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns The current variable slip status: 0=OFF, 1=ON.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				int GetYawControl
 				(
 				const turbine
 				turbine_id)
 				

Returns the current yaw control type: 0=RATE CONTROL, 1=TORQUE CONTROL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				int GetYawControlOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Returns the current yaw control type: 0=RATE CONTROL, 1=TORQUE CONTROL.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle				Index of nacelle, starting at 0.

 				int IsPitchLimitSwitchTripped
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade

 				
)
 								

The status of whether either the lower or upper limit switch has been tripped in the pitch actuator.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				int IsPitchLimitSwitchTrippedOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_hub

 				
)
 								

The status of whether either the lower or upper limit switch has been tripped in the pitch actuator.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_hub				Index of hub, starting at 0.

 				int RemoveLidarBeamFocalPoint
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam,

 				
 				
 				int
 				index

 				
)
 								

Removes a focal point, and returns the new number of focal points.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				index				The index of the focal point to remove.

 				int ReportCriticalMessage
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				message

 				
)
 								

Reports a critical message to the user, prefixed by "*** ERROR:".

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				message				A char pointer to a null-terminated character array.

 				int ReportDebugMessage
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				message

 				
)
 								

Reports a debug message to the user, prefixed by "*** DEBUG:".

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				message				A char pointer to a null-terminated character array.

 				int ReportErrorMessage
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				message

 				
)
 								

Reports an error message to the user, prefixed by "*** ERROR:". This should be called at least once immediately before requesting program termination, explaining the reason for the termination.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				message				A char pointer to a null-terminated character array.

 				int ReportInfoMessage
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				message

 				
)
 								

Reports an info message to the user, prefixed by "*** Note:".

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				message				A char pointer to a null-terminated character array.

 				int ReportScratchMessage
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				message

 				
)
 								

Reports a scratch message to the user.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				message				A char pointer to a null-terminated character array.

 				int ReportWarningMessage
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				message

 				
)
 								

Reports a warning message to the user, prefixed by "*** WARNING:".

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				message				A char pointer to a null-terminated character array.

 				int RequestLidarBeamUpdate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam

 				
)
 								

Requests an update for the beam (only available if the Lidar update type = GH_DISCON_LIDAR_BEAM_UPDATE_WAITING).

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				int SetActiveSafetySystemNumber
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				safety_system

 				
)
 								

Sets the active safety system number. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				safety_system				

 				int SetDemandedAdditionalBrakeTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque

 				
)
 								

Sets the torque to be added to the total brake torque from all other brakes. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The additional brake torque, in Nm.

 				int SetDemandedAdditionalBrakeTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the torque to be added to the total brake torque from all other brakes. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The additional brake torque, in Nm.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDemandedAileronAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_aileron,

 				
 				
 				double
 				demanded_angle

 				
)
 								

Sets the demanded deployment angle of the aileron. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_aileron				Index of aileron, starting at 0.

 				demanded_angle				The deployment angle of the aileron, in rad.

 				int SetDemandedAileronAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				int
 				index_aileron,

 				
 				
 				double
 				demanded_angle,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded deployment angle of the aileron. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				index_aileron				Index of aileron, starting at 0.

 				demanded_angle				The deployment angle of the aileron, in rad.

 				index_hub				Index of hub, starting at 0.

 				int SetDemandedCollectivePitchAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				angle

 				
)
 								

Sets the demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				angle				The angle of the blades relative to the rotor disc, in rad.

 				int SetDemandedCollectivePitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				angle,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				angle				The angle of the blades relative to the rotor disc, in rad.

 				index_hub				Index of hub, starting at 0.

 				int SetDemandedCollectivePitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				rate

 				
)
 								

Sets the demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				rate				The rate of change of the angle of the blades relative to the rotor disc, in rad/s.

 				int SetDemandedCollectivePitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				rate,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				rate				The rate of change of the angle of the blades relative to the rotor disc, in rad/s.

 				index_hub				Index of hub, starting at 0.

 				double SetDemandedGeneratorSpeed
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				speed

 				
)
 								

Sets the demanded speed, in rad/s. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				speed				The demanded speed, in rad/s.

 				double SetDemandedGeneratorSpeedOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				speed,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the demanded speed, in rad/s. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				speed				The demanded speed, in rad/s.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDemandedGeneratorTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque

 				
)
 								

Sets the demanded torque, in Nm. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The demanded torque, in Nm.

 				int SetDemandedGeneratorTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the demanded torque, in Nm. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The demanded torque, in Nm.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDemandedLidarBeamFocalPointFocalDistance
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam,

 				
 				
 				int
 				index_lidar_beam_focal_point,

 				
 				
 				double
 				focal_distance

 				
)
 								

Sets the distance to the focal point of the Lidar, along line-of-sight. This is the distance from the Lidar position at which the flow velocity is measured. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				index_lidar_beam_focal_point				Index of lidar beam focal point, starting at 0.

 				focal_distance				The distance to the focal point, in m.

 				int SetDemandedNacelleActiveDamperForce
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle_active_damper,

 				
 				
 				double
 				force

 				
)
 								

Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle_active_damper				Index of nacelle active damper, starting at 0.

 				force				The force demanded of the active damper, in N.

 				int SetDemandedNacelleActiveDamperForceOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_nacelle_active_damper,

 				
 				
 				double
 				force,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_nacelle_active_damper				Index of nacelle active damper, starting at 0.

 				force				The force demanded of the active damper, in N.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDemandedPitchAngle
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_angle

 				
)
 								

Sets the demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_angle				The pitch of the blade to the rotor disc, in rad.

 				int SetDemandedPitchAngleOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_angle,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_angle				The pitch of the blade to the rotor disc, in rad.

 				index_hub				Index of hub, starting at 0.

 				int SetDemandedPitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_rate

 				
)
 								

Sets the demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_rate				The pitch of the blade to the rotor disc, in rad.

 				int SetDemandedPitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_rate,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_rate				The pitch of the blade to the rotor disc, in rad.

 				index_hub				Index of hub, starting at 0.

 				int SetDemandedTurbineActiveDamperForce
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_turbine_active_damper,

 				
 				
 				double
 				force

 				
)
 								

Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_turbine_active_damper				Index of turbine active damper, starting at 0.

 				force				The force demanded of the active damper, in N.

 				int SetDemandedVariableSlipCurrent
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				current

 				
)
 								

Sets the variable slip current demand, in Amps. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				current				The variable slip current demand, in Amps.

 				int SetDemandedVariableSlipCurrentOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				current,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the variable slip current demand, in Amps. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				current				The variable slip current demand, in Amps.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDemandedYawActuatorTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque

 				
)
 								

Sets the demanded yaw actuator torque. This is only valid when either the yaw control is 'torque', or override_yaw_rate_with_torque=1. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The demanded torque, in Nm.

 				int SetDemandedYawActuatorTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the demanded yaw actuator torque. This is only valid when either the yaw control is 'torque', or override_yaw_rate_with_torque=1. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The demanded torque, in Nm.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDemandedYawBrakeTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque

 				
)
 								

Sets the demanded brake torque, in Nm. This is treated as additional yaw bearing friction. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The demanded brake torque, in Nm. This is treated as additional yaw bearing friction.

 				int SetDemandedYawBrakeTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				torque,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the demanded brake torque, in Nm. This is treated as additional yaw bearing friction. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				torque				The demanded brake torque, in Nm. This is treated as additional yaw bearing friction.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDemandedYawRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				rate

 				
)
 								

Sets the demanded yaw rate of the nacelle itself (as opposed to the motor rate). This is only valid when the yaw control is 'rate', and override_yaw_rate_with_torque=0. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				rate				The demanded rate, in rad/s.

 				int SetDemandedYawRateOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				rate,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the demanded yaw rate of the nacelle itself (as opposed to the motor rate). This is only valid when the yaw control is 'rate', and override_yaw_rate_with_torque=0. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				rate				The demanded rate, in rad/s.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetDrivetrainBrakeStatus
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				brake_status,

 				
 				
 				int
 				index

 				
)
 								

Sets the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				brake_status				The status of the nth brake: GH_DISCON_BRAKE_OFF (0) - brake off GH_DISCON_BRAKE_ON (1) - brake on

 				index				The index of the element in the vector.

 				int SetDrivetrainBrakeStatusOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				brake_status,

 				
 				
 				int
 				index,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				brake_status				The status of the nth brake: GH_DISCON_BRAKE_OFF (0) - brake off GH_DISCON_BRAKE_ON (1) - brake on

 				index				The index of the element in the vector.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetFlowDirectionIncrement
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				angle

 				
)
 								

Sets the flow direction increment. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				angle				Angle, in rad.

 				int SetGeneratorContactor
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				generator_contactor

 				
)
 								

Sets the generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				generator_contactor				The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.

 				int SetGeneratorContactorOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				generator_contactor,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				generator_contactor				The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetGeneratorStartupResistance
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				resistance

 				
)
 								

Sets the startup resistance, in ohm/phase. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				resistance				The startup resistance, in ohm/phase.

 				int SetGeneratorStartupResistanceOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				resistance,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the startup resistance, in ohm/phase. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				resistance				The startup resistance, in ohm/phase.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetGridConverterdAxisControlReference
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				reference_value

 				
)
 								

Sets the grid-side converter d-axis control reference value. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				reference_value				d-axis control reference value

 				int SetGridConverterdAxisControlReferenceOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				reference_value,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the grid-side converter d-axis control reference value. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				reference_value				d-axis control reference value

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetGridConverterdAxisControlType
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				control_type

 				
)
 								

Sets the grid-side converter d-axis control type. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				control_type				Control type 1 = terminal voltage control 2 = power factor control 3 = reactive power control 4 = d-axis current control

 				int SetGridConverterdAxisControlTypeOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				control_type,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the grid-side converter d-axis control type. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				control_type				Control type 1 = terminal voltage control 2 = power factor control 3 = reactive power control 4 = d-axis current control

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetHardwareInLoop
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				is_hardware_in_loop

 				
)
 								

Sets whether the hardware-related functions are active. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				is_hardware_in_loop				Whether hardware is in the loop: 0=NO, 1=YES.

 				int SetHardwarePitchPosition
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				pitch_position

 				
)
 								

Sets the actual pitch position of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				pitch_position				The pitch of the blade to the rotor disc, in rad.

 				int SetHardwarePitchPositionOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				pitch_position,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the actual pitch position of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				pitch_position				The pitch of the blade to the rotor disc, in rad.

 				index_hub				Index of hub, starting at 0.

 				int SetHardwarePitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				pitch_rate

 				
)
 								

Sets the actual pitch rate of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				pitch_rate				The pitch rate of the blade, in rad.

 				int SetHardwarePitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				pitch_rate,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the actual pitch rate of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				pitch_rate				The pitch rate of the blade, in rad.

 				index_hub				Index of hub, starting at 0.

 				int SetIndexedUserVariable
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index,

 				
 				
 				double
 				variable_value

 				
)
 								

Logs a user-specified value by index. Returns an error if the index is out of range.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index				An integer designating the 'slot number' of the value to be stored to.

 				variable_value				A double value to log.

 				int SetLidarBeamControlCoordinateSystem
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam,

 				
 				
 				int
 				lidar_beam_control_coordinate_system_int

 				
)
 								

Sets the control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth). Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				lidar_beam_control_coordinate_system_int				The control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth), in .

 				int SetLidarBeamDemandedAngleY
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam,

 				
 				
 				double
 				angle

 				
)
 								

Sets the Lidar beam's demanded angle in the XZ plane (i.e. rotating around the Y axis). Only valid when the beam control is CARTESIAN. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				angle				The angle to the x-axis, in rad.

 				int SetLidarBeamDemandedAngleZ
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_lidar_beam,

 				
 				
 				double
 				angle

 				
)
 								

Sets the Lidar beam's demanded angle in the XY plane (i.e. rotating around the Z axis). Only valid when the beam control is CARTESIAN. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_lidar_beam				Index of lidar beam, starting at 0.

 				angle				The angle to the x-axis, in rad.

 				int SetLoggingLevel
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				logging_level

 				
)
 								

Sets the level of logging to the message file.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				logging_level				The logging level, from 0 (everything) to 60 (nothing).

 				int SetLoggingValue
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_log_value,

 				
 				
 				double
 				log_value

 				
)
 								

Sets the value to be logged in this timestep. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_log_value				Index of log value, starting at 0.

 				log_value				The value to be logged.

 				int SetMeanFlowSpeedIncrement
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				speed

 				
)
 								

Sets the increment in the mean speed of the flow. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				speed				Speed, in m/s.

 				int SetNamedUserVariable
 				(
 				const turbine
 				turbine_id,

 				
 				
 				const char *
 				name,

 				
 				
 				double
 				variable_value

 				
)
 								

Logs a user-specified value by name.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				name				A char pointer to a null-terminated character array representing the field name. This must be unique.

 				variable_value				A double value to log.

 				int SetOverrideYawRateWithTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				override_rate_with_torque

 				
)
 								

Sets whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				override_rate_with_torque				Whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON.

 				int SetOverrideYawRateWithTorqueOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				override_rate_with_torque,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				override_rate_with_torque				Whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetPitchOverrideStatus
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				override_status

 				
)
 								

Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				override_status				The current override status: 0=OFF, 1=ON

 				int SetPitchOverrideStatusOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				override_status,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				override_status				The current override status: 0=OFF, 1=ON

 				index_hub				Index of hub, starting at 0.

 				int SetRotorActiveSafetySystemNumber
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				safety_system

 				
)
 								

Sets the active safety system number for the rotor (if individual rotor safety systems are being). Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				safety_system				

 				int SetRotorActiveSafetySystemNumberOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				safety_system,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the active safety system number for the rotor (if individual rotor safety systems are being). Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				safety_system				

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetSafetySystemDemandedCollectivePitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				demanded_pitch_rate

 				
)
 								

Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				demanded_pitch_rate				The demanded pitch rate of the blade to the rotor disc, in rad/s.

 				int SetSafetySystemDemandedCollectivePitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				demanded_pitch_rate,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				demanded_pitch_rate				The demanded pitch rate of the blade to the rotor disc, in rad/s.

 				index_hub				Index of hub, starting at 0.

 				int SetSafetySystemDemandedCollectivePitchTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				demanded_pitch_torque

 				
)
 								

Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				demanded_pitch_torque				The demanded pitch motor torque of the blade to the rotor disc, in Nm

 				int SetSafetySystemDemandedCollectivePitchTorqueOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				demanded_pitch_torque,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				demanded_pitch_torque				The demanded pitch motor torque of the blade to the rotor disc, in Nm

 				index_hub				Index of hub, starting at 0.

 				int SetSafetySystemDemandedPitchRate
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_rate

 				
)
 								

Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_rate				The demanded pitch rate of the blade to the rotor disc, in rad/s.

 				int SetSafetySystemDemandedPitchRateOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_rate,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_rate				The demanded pitch rate of the blade to the rotor disc, in rad/s.

 				index_hub				Index of hub, starting at 0.

 				int SetSafetySystemDemandedPitchTorque
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_torque

 				
)
 								

Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_torque				The demanded pitch motor torque of the blade to the rotor disc, in Nm

 				int SetSafetySystemDemandedPitchTorqueOnHubN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				index_blade,

 				
 				
 				double
 				demanded_pitch_torque,

 				
 				
 				int
 				index_hub

 				
)
 								

Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				index_blade				Index of blade, starting at 0.

 				demanded_pitch_torque				The demanded pitch motor torque of the blade to the rotor disc, in Nm

 				index_hub				Index of hub, starting at 0.

 				int SetTorqueOverrideStatus
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				override_status

 				
)
 								

Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				override_status				The current override status: 0=OFF, 1=ON

 				int SetTorqueOverrideStatusOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				override_status,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				override_status				The current override status: 0=OFF, 1=ON

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetTurbulenceIntensityIncrement
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				percentage

 				
)
 								

Sets the turbulence intensity increment. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				percentage				Percentage.

 				int SetUseYawDamping
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				use_yaw_damping

 				
)
 								

Sets whether the yaw damping will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				use_yaw_damping				Integer representing override state: 0=OFF, 1=ON.

 				int SetUseYawDampingOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				use_yaw_damping,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets whether the yaw damping will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				use_yaw_damping				Integer representing override state: 0=OFF, 1=ON.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetUseYawStiffness
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				use_yaw_stiffness

 				
)
 								

Sets whether the yaw stiffness will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				use_yaw_stiffness				Integer representing override state: 0=OFF, 1=ON.

 				int SetUseYawStiffnessOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				use_yaw_stiffness,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets whether the yaw stiffness will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				use_yaw_stiffness				Integer representing override state: 0=OFF, 1=ON.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetVariableSlipStatus
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				variable_slip_status

 				
)
 								

Sets the current variable slip status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				variable_slip_status				The current variable slip status: 0=OFF, 1=ON

 				int SetVariableSlipStatusOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				int
 				variable_slip_status,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the current variable slip status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				variable_slip_status				The current variable slip status: 0=OFF, 1=ON

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetYawDamping
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				damping

 				
)
 								

Sets the yaw damping. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				damping				The damping.

 				int SetYawDampingOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				damping,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the yaw damping. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				damping				The damping.

 				index_nacelle				Index of nacelle, starting at 0.

 				int SetYawStiffness
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				stiffness

 				
)
 								

Sets the yaw stiffness. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				stiffness				The stiffness.

 				int SetYawStiffnessOnNacelleN
 				(
 				const turbine
 				turbine_id,

 				
 				
 				double
 				stiffness,

 				
 				
 				int
 				index_nacelle

 				
)
 								

Sets the yaw stiffness. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				stiffness				The stiffness.

 				index_nacelle				Index of nacelle, starting at 0.

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

Defines |
Typedefs

GH_DISCON_Constants.h File Reference

#include <float.h>

				[bookmark: define-members]
Defines

				#define 				INFINITY (DBL_MAX+DBL_MAX)

				#define 				NAN (INFINITY-INFINITY)

				#define 				GH_DISCON_ERROR_STRING_LENGTH 256

				#define 				GH_DISCON_LEGACY_MESSAGE_STRING_LENGTH 512

				#define 				GH_DISCON_LEGACY_MAXIMUM_NUMBER_LOGGING_VARS 70

				#define 				GH_DISCON_LEGACY_NUMBER_MINIMUM_INFILE_LENGTH 256

				[bookmark: typedef-members]
Typedefs

				typedef size_t 				turbine

				typedef int(__cdecl * 				CONTROLLER_TYPEDEF)(const turbine turbine_id)

				 				The external controller DLL should expose a function named "CONTROLLER". The function in the DLL should match the CONTROLLER_TYPEDEF, and can reference any of the API functions in this header file.

Define Documentation

 				#define GH_DISCON_ERROR_STRING_LENGTH 256

 				#define GH_DISCON_LEGACY_MAXIMUM_NUMBER_LOGGING_VARS 70

 				#define GH_DISCON_LEGACY_MESSAGE_STRING_LENGTH 512

 				#define GH_DISCON_LEGACY_NUMBER_MINIMUM_INFILE_LENGTH 256

 				#define INFINITY (DBL_MAX+DBL_MAX)

 				#define NAN (INFINITY-INFINITY)

Typedef Documentation

 				typedef int(__cdecl * CONTROLLER_TYPEDEF)(const turbine turbine_id)

The external controller DLL should expose a function named "CONTROLLER". The function in the DLL should match the CONTROLLER_TYPEDEF, and can reference any of the API functions in this header file.

e.g. the function specification in C: extern "C" int __declspec(dllexport) __cdecl CONTROLLER (turbine turbine_id)

or the function specification in FORTRAN: INTEGER FUNCTION CONTROLLER (TURBINE) USE ISO_C_BINDING INTEGER(C_SIZE_T), INTENT(IN) :: TURBINE

See documentation on external interfaces for more details.

				Parameters:

				

 				turbine_id				The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.

 				typedef size_t turbine

The 'turbine' is a pointer which is passed to the API so that the target model can be identified and located.

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

File List

Here is a list of all files with brief descriptions:

 				ExternalControllerApi.h				

 				GH_DISCON_Constants.h				

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- a -

				AddLidarBeamFocalPoint()
: ExternalControllerApi.h

				AddLogValue()
: ExternalControllerApi.h

				AppendIndexedUserVariable()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- c -

				ClearIndexedUserVariables()
: ExternalControllerApi.h

				CONTROLLER_TYPEDEF
: GH_DISCON_Constants.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- g -

				GetActiveSafetySystemNumber()
: ExternalControllerApi.h

				GetBelowRatedPitchAngleSetPoint()
: ExternalControllerApi.h

				GetBelowRatedPitchAngleSetPointOnHubN()
: ExternalControllerApi.h

				GetBladeAccelerometerDistance()
: ExternalControllerApi.h

				GetBladeAccelerometerDistanceOnHubN()
: ExternalControllerApi.h

				GetBladedVersion()
: ExternalControllerApi.h

				GetBladeStrainGaugeAngle()
: ExternalControllerApi.h

				GetBladeStrainGaugeAngleOnHubN()
: ExternalControllerApi.h

				GetBladeStrainGaugeDistance()
: ExternalControllerApi.h

				GetBladeStrainGaugeDistanceOnHubN()
: ExternalControllerApi.h

				GetCollectivePitchAngle()
: ExternalControllerApi.h

				GetCollectivePitchAngleOnHubN()
: ExternalControllerApi.h

				GetCommunicationInterval()
: ExternalControllerApi.h

				GetControllerFailureFlag()
: ExternalControllerApi.h

				GetControllerState()
: ExternalControllerApi.h

				GetControllerStateOnNacelleN()
: ExternalControllerApi.h

				GetCurrentTime()
: ExternalControllerApi.h

				GetDemandedAdditionalBrakeTorque()
: ExternalControllerApi.h

				GetDemandedAdditionalBrakeTorqueOnNacelleN()
: ExternalControllerApi.h

				GetDemandedAileronAngle()
: ExternalControllerApi.h

				GetDemandedAileronAngleOnHubN()
: ExternalControllerApi.h

				GetDemandedCollectivePitchAngle()
: ExternalControllerApi.h

				GetDemandedCollectivePitchAngleOnHubN()
: ExternalControllerApi.h

				GetDemandedCollectivePitchRate()
: ExternalControllerApi.h

				GetDemandedCollectivePitchRateOnHubN()
: ExternalControllerApi.h

				GetDemandedGeneratorSpeed()
: ExternalControllerApi.h

				GetDemandedGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetDemandedGeneratorTorque()
: ExternalControllerApi.h

				GetDemandedGeneratorTorqueOnNacelleN()
: ExternalControllerApi.h

				GetDemandedPitchAngle()
: ExternalControllerApi.h

				GetDemandedPitchAngleOnHubN()
: ExternalControllerApi.h

				GetDemandedPitchRate()
: ExternalControllerApi.h

				GetDemandedPitchRateOnHubN()
: ExternalControllerApi.h

				GetDemandedPower()
: ExternalControllerApi.h

				GetDemandedPowerOnNacelleN()
: ExternalControllerApi.h

				GetDemandedVariableSlipCurrent()
: ExternalControllerApi.h

				GetDemandedVariableSlipCurrentOnNacelleN()
: ExternalControllerApi.h

				GetDllInterfaceVersion()
: ExternalControllerApi.h

				GetDrivetrainBrakeStatus()
: ExternalControllerApi.h

				GetDrivetrainBrakeStatusOnNacelleN()
: ExternalControllerApi.h

				GetGeneratorContactor()
: ExternalControllerApi.h

				GetGeneratorContactorOnNacelleN()
: ExternalControllerApi.h

				GetGeneratorLookupTableSpeedValue()
: ExternalControllerApi.h

				GetGeneratorLookupTableSpeedValueOnNacelleN()
: ExternalControllerApi.h

				GetGeneratorLookupTableTorqueValue()
: ExternalControllerApi.h

				GetGeneratorLookupTableTorqueValueOnNacelleN()
: ExternalControllerApi.h

				GetGridConverterdAxisControlReference()
: ExternalControllerApi.h

				GetGridConverterdAxisControlReferenceOnNacelleN()
: ExternalControllerApi.h

				GetGridConverterdAxisControlType()
: ExternalControllerApi.h

				GetGridConverterdAxisControlTypeOnNacelleN()
: ExternalControllerApi.h

				GetIndexedUserVariable()
: ExternalControllerApi.h

				GetInfileFilepath()
: ExternalControllerApi.h

				GetInfileFilepathLength()
: ExternalControllerApi.h

				GetIsLidarBeamCurrentlyOccluded()
: ExternalControllerApi.h

				GetLastErrorCode()
: ExternalControllerApi.h

				GetLastErrorMessage()
: ExternalControllerApi.h

				GetLidarBeamBladeIndex()
: ExternalControllerApi.h

				GetLidarBeamControl()
: ExternalControllerApi.h

				GetLidarBeamControlCoordinateSystem()
: ExternalControllerApi.h

				GetLidarBeamMounting()
: ExternalControllerApi.h

				GetLidarBeamRotorIndex()
: ExternalControllerApi.h

				GetLidarBeamUpdate()
: ExternalControllerApi.h

				GetLoggingName()
: ExternalControllerApi.h

				GetLoggingUnits()
: ExternalControllerApi.h

				GetLogIndexFromName()
: ExternalControllerApi.h

				GetMaximumPitchAngle()
: ExternalControllerApi.h

				GetMaximumPitchAngleOnHubN()
: ExternalControllerApi.h

				GetMaximumPitchRate()
: ExternalControllerApi.h

				GetMaximumPitchRateOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAcceleration()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationX()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationXOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationY()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationYOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationZ()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationZOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeInPlaneBendingMoment()
: ExternalControllerApi.h

				GetMeasuredBladeInPlaneBendingMomentOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeOutOfPlaneBendingMoment()
: ExternalControllerApi.h

				GetMeasuredBladeOutOfPlaneBendingMomentOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeStrainGaugeM()
: ExternalControllerApi.h

				GetMeasuredBladeStrainGaugeMOnHubN()
: ExternalControllerApi.h

				GetMeasuredElectricalPowerOutput()
: ExternalControllerApi.h

				GetMeasuredElectricalPowerOutputOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredFixedHubFx()
: ExternalControllerApi.h

				GetMeasuredFixedHubFxOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubFy()
: ExternalControllerApi.h

				GetMeasuredFixedHubFyOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubFz()
: ExternalControllerApi.h

				GetMeasuredFixedHubFzOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubMy()
: ExternalControllerApi.h

				GetMeasuredFixedHubMyOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubMz()
: ExternalControllerApi.h

				GetMeasuredFixedHubMzOnHubN()
: ExternalControllerApi.h

				GetMeasuredGeneratorSpeed()
: ExternalControllerApi.h

				GetMeasuredGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredGeneratorTorque()
: ExternalControllerApi.h

				GetMeasuredGeneratorTorqueOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredLidarBeamFocalPointVelocity()
: ExternalControllerApi.h

				GetMeasuredNacelleActiveDamperAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleActiveDamperAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleAngleFromNorth()
: ExternalControllerApi.h

				GetMeasuredNacelleAngleFromNorthOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleNoddingAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleNoddingAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleRollAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleRollAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleYawAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleYawAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredPitchActuatorTorque()
: ExternalControllerApi.h

				GetMeasuredPitchActuatorTorqueOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchAngle()
: ExternalControllerApi.h

				GetMeasuredPitchAngleOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingAxialForce()
: ExternalControllerApi.h

				GetMeasuredPitchBearingAxialForceOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingFriction()
: ExternalControllerApi.h

				GetMeasuredPitchBearingFrictionOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingMz()
: ExternalControllerApi.h

				GetMeasuredPitchBearingMzOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingRadialForce()
: ExternalControllerApi.h

				GetMeasuredPitchBearingRadialForceOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchRate()
: ExternalControllerApi.h

				GetMeasuredPitchRateOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMy()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMyOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMz()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMzOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotorAzimuthAngle()
: ExternalControllerApi.h

				GetMeasuredRotorAzimuthAngleOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotorSpeed()
: ExternalControllerApi.h

				GetMeasuredRotorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredShaftPower()
: ExternalControllerApi.h

				GetMeasuredShaftPowerOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredShaftTorque()
: ExternalControllerApi.h

				GetMeasuredShaftTorqueOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTeeterAngle()
: ExternalControllerApi.h

				GetMeasuredTeeterAngleOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTeeterVelocity()
: ExternalControllerApi.h

				GetMeasuredTeeterVelocityOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTowerTopForeAftAcceleration()
: ExternalControllerApi.h

				GetMeasuredTowerTopForeAftAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTowerTopSideSideAcceleration()
: ExternalControllerApi.h

				GetMeasuredTowerTopSideSideAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTurbineAccelerometerAccelerationX()
: ExternalControllerApi.h

				GetMeasuredTurbineAccelerometerAccelerationY()
: ExternalControllerApi.h

				GetMeasuredTurbineAccelerometerAccelerationZ()
: ExternalControllerApi.h

				GetMeasuredTurbineActiveDamperAcceleration()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeFx()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeFy()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeFz()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeMx()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeMy()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeMz()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularAcceleration()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularPosition()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularPositionOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularVelocity()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularVelocityOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingMy()
: ExternalControllerApi.h

				GetMeasuredYawBearingMyOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingMz()
: ExternalControllerApi.h

				GetMeasuredYawBearingMzOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawError()
: ExternalControllerApi.h

				GetMeasuredYawErrorOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawMotorRate()
: ExternalControllerApi.h

				GetMeasuredYawMotorRateOnNacelleN()
: ExternalControllerApi.h

				GetMinimumGeneratorSpeed()
: ExternalControllerApi.h

				GetMinimumGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetMinimumPitchAngle()
: ExternalControllerApi.h

				GetMinimumPitchAngleOnHubN()
: ExternalControllerApi.h

				GetMinimumPitchRate()
: ExternalControllerApi.h

				GetMinimumPitchRateOnHubN()
: ExternalControllerApi.h

				GetNamedUserVariable()
: ExternalControllerApi.h

				GetNetworkFrequencyDisturbanceFactor()
: ExternalControllerApi.h

				GetNetworkVoltageDisturbanceFactor()
: ExternalControllerApi.h

				GetNominalHubFlowSpeed()
: ExternalControllerApi.h

				GetNominalHubFlowSpeedOnHubN()
: ExternalControllerApi.h

				GetNominalLidarBeamPositionX()
: ExternalControllerApi.h

				GetNominalLidarBeamPositionY()
: ExternalControllerApi.h

				GetNominalLidarBeamPositionZ()
: ExternalControllerApi.h

				GetNominalStartFlowSpeed()
: ExternalControllerApi.h

				GetNumberOfAilerons()
: ExternalControllerApi.h

				GetNumberOfAileronsOnHubN()
: ExternalControllerApi.h

				GetNumberOfBladeAccelerometers()
: ExternalControllerApi.h

				GetNumberOfBladeAccelerometersOnHubN()
: ExternalControllerApi.h

				GetNumberOfBlades()
: ExternalControllerApi.h

				GetNumberOfBladesOnHubN()
: ExternalControllerApi.h

				GetNumberOfBladeStrainGauges()
: ExternalControllerApi.h

				GetNumberOfBladeStrainGaugesOnHubN()
: ExternalControllerApi.h

				GetNumberOfDrivetrainBrakeStatus()
: ExternalControllerApi.h

				GetNumberOfDrivetrainBrakeStatusOnNacelleN()
: ExternalControllerApi.h

				GetNumberOfGeneratorSpeedTorqueValues()
: ExternalControllerApi.h

				GetNumberOfGeneratorSpeedTorqueValuesOnNacelleN()
: ExternalControllerApi.h

				GetNumberOfHubs()
: ExternalControllerApi.h

				GetNumberOfIndexedUserVariables()
: ExternalControllerApi.h

				GetNumberOfLidarBeamFocalPoints()
: ExternalControllerApi.h

				GetNumberOfLidarBeams()
: ExternalControllerApi.h

				GetNumberOfLogValues()
: ExternalControllerApi.h

				GetNumberOfNacelleActiveDampers()
: ExternalControllerApi.h

				GetNumberOfNacelleActiveDampersOnNacelleN()
: ExternalControllerApi.h

				GetNumberOfNacelles()
: ExternalControllerApi.h

				GetNumberOfRotors()
: ExternalControllerApi.h

				GetNumberOfTurbineAccelerometers()
: ExternalControllerApi.h

				GetNumberOfTurbineActiveDampers()
: ExternalControllerApi.h

				GetNumberOfTurbineStrainGauges()
: ExternalControllerApi.h

				GetOptimalModeGain()
: ExternalControllerApi.h

				GetOptimalModeGainOnNacelleN()
: ExternalControllerApi.h

				GetOptimalModeMaximumSpeed()
: ExternalControllerApi.h

				GetOptimalModeMaximumSpeedOnNacelleN()
: ExternalControllerApi.h

				GetOutnameFilepath()
: ExternalControllerApi.h

				GetOutnameFilepathLength()
: ExternalControllerApi.h

				GetPitchActuatorType()
: ExternalControllerApi.h

				GetPitchActuatorTypeOnHubN()
: ExternalControllerApi.h

				GetPitchControl()
: ExternalControllerApi.h

				GetPitchControlOnHubN()
: ExternalControllerApi.h

				GetPitchOverrideStatus()
: ExternalControllerApi.h

				GetPitchOverrideStatusOnHubN()
: ExternalControllerApi.h

				GetRealTimeSimulationTimeStep()
: ExternalControllerApi.h

				GetRealTimeSimulationTimeStepMultiplier()
: ExternalControllerApi.h

				GetReferenceGeneratorSpeedAboveRated()
: ExternalControllerApi.h

				GetReferenceGeneratorSpeedAboveRatedOnNacelleN()
: ExternalControllerApi.h

				GetReferenceGeneratorTorqueAboveRated()
: ExternalControllerApi.h

				GetReferenceGeneratorTorqueAboveRatedOnNacelleN()
: ExternalControllerApi.h

				GetRotorActiveSafetySystemNumber()
: ExternalControllerApi.h

				GetRotorActiveSafetySystemNumberOnNacelleN()
: ExternalControllerApi.h

				GetSettlingTime()
: ExternalControllerApi.h

				GetSimulationStatus()
: ExternalControllerApi.h

				GetTorqueOverrideStatus()
: ExternalControllerApi.h

				GetTorqueOverrideStatusOnNacelleN()
: ExternalControllerApi.h

				GetTurbineAccelerometerLengthFraction()
: ExternalControllerApi.h

				GetTurbineAccelerometerMemberIndex()
: ExternalControllerApi.h

				GetTurbineAccelerometerTowerHeight()
: ExternalControllerApi.h

				GetTurbineActiveDamperMemberIndex()
: ExternalControllerApi.h

				GetTurbineStrainGaugeLengthFraction()
: ExternalControllerApi.h

				GetTurbineStrainGaugeMemberIndex()
: ExternalControllerApi.h

				GetTurbineStrainGaugeTowerHeight()
: ExternalControllerApi.h

				GetVariableSlipStatus()
: ExternalControllerApi.h

				GetVariableSlipStatusOnNacelleN()
: ExternalControllerApi.h

				GetYawControl()
: ExternalControllerApi.h

				GetYawControlOnNacelleN()
: ExternalControllerApi.h

				GH_DISCON_ERROR_STRING_LENGTH
: GH_DISCON_Constants.h

				GH_DISCON_LEGACY_MAXIMUM_NUMBER_LOGGING_VARS
: GH_DISCON_Constants.h

				GH_DISCON_LEGACY_MESSAGE_STRING_LENGTH
: GH_DISCON_Constants.h

				GH_DISCON_LEGACY_NUMBER_MINIMUM_INFILE_LENGTH
: GH_DISCON_Constants.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- i -

				INFINITY
: GH_DISCON_Constants.h

				IsPitchLimitSwitchTripped()
: ExternalControllerApi.h

				IsPitchLimitSwitchTrippedOnHubN()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- n -

				NAN
: GH_DISCON_Constants.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- r -

				RemoveLidarBeamFocalPoint()
: ExternalControllerApi.h

				ReportCriticalMessage()
: ExternalControllerApi.h

				ReportDebugMessage()
: ExternalControllerApi.h

				ReportErrorMessage()
: ExternalControllerApi.h

				ReportInfoMessage()
: ExternalControllerApi.h

				ReportScratchMessage()
: ExternalControllerApi.h

				ReportWarningMessage()
: ExternalControllerApi.h

				RequestLidarBeamUpdate()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- s -

				SetActiveSafetySystemNumber()
: ExternalControllerApi.h

				SetDemandedAdditionalBrakeTorque()
: ExternalControllerApi.h

				SetDemandedAdditionalBrakeTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedAileronAngle()
: ExternalControllerApi.h

				SetDemandedAileronAngleOnHubN()
: ExternalControllerApi.h

				SetDemandedCollectivePitchAngle()
: ExternalControllerApi.h

				SetDemandedCollectivePitchAngleOnHubN()
: ExternalControllerApi.h

				SetDemandedCollectivePitchRate()
: ExternalControllerApi.h

				SetDemandedCollectivePitchRateOnHubN()
: ExternalControllerApi.h

				SetDemandedGeneratorSpeed()
: ExternalControllerApi.h

				SetDemandedGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				SetDemandedGeneratorTorque()
: ExternalControllerApi.h

				SetDemandedGeneratorTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedLidarBeamFocalPointFocalDistance()
: ExternalControllerApi.h

				SetDemandedNacelleActiveDamperForce()
: ExternalControllerApi.h

				SetDemandedNacelleActiveDamperForceOnNacelleN()
: ExternalControllerApi.h

				SetDemandedPitchAngle()
: ExternalControllerApi.h

				SetDemandedPitchAngleOnHubN()
: ExternalControllerApi.h

				SetDemandedPitchRate()
: ExternalControllerApi.h

				SetDemandedPitchRateOnHubN()
: ExternalControllerApi.h

				SetDemandedTurbineActiveDamperForce()
: ExternalControllerApi.h

				SetDemandedVariableSlipCurrent()
: ExternalControllerApi.h

				SetDemandedVariableSlipCurrentOnNacelleN()
: ExternalControllerApi.h

				SetDemandedYawActuatorTorque()
: ExternalControllerApi.h

				SetDemandedYawActuatorTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedYawBrakeTorque()
: ExternalControllerApi.h

				SetDemandedYawBrakeTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedYawRate()
: ExternalControllerApi.h

				SetDemandedYawRateOnNacelleN()
: ExternalControllerApi.h

				SetDrivetrainBrakeStatus()
: ExternalControllerApi.h

				SetDrivetrainBrakeStatusOnNacelleN()
: ExternalControllerApi.h

				SetFlowDirectionIncrement()
: ExternalControllerApi.h

				SetGeneratorContactor()
: ExternalControllerApi.h

				SetGeneratorContactorOnNacelleN()
: ExternalControllerApi.h

				SetGeneratorStartupResistance()
: ExternalControllerApi.h

				SetGeneratorStartupResistanceOnNacelleN()
: ExternalControllerApi.h

				SetGridConverterdAxisControlReference()
: ExternalControllerApi.h

				SetGridConverterdAxisControlReferenceOnNacelleN()
: ExternalControllerApi.h

				SetGridConverterdAxisControlType()
: ExternalControllerApi.h

				SetGridConverterdAxisControlTypeOnNacelleN()
: ExternalControllerApi.h

				SetHardwareInLoop()
: ExternalControllerApi.h

				SetHardwarePitchPosition()
: ExternalControllerApi.h

				SetHardwarePitchPositionOnHubN()
: ExternalControllerApi.h

				SetHardwarePitchRate()
: ExternalControllerApi.h

				SetHardwarePitchRateOnHubN()
: ExternalControllerApi.h

				SetIndexedUserVariable()
: ExternalControllerApi.h

				SetLidarBeamControlCoordinateSystem()
: ExternalControllerApi.h

				SetLidarBeamDemandedAngleY()
: ExternalControllerApi.h

				SetLidarBeamDemandedAngleZ()
: ExternalControllerApi.h

				SetLoggingLevel()
: ExternalControllerApi.h

				SetLoggingValue()
: ExternalControllerApi.h

				SetMeanFlowSpeedIncrement()
: ExternalControllerApi.h

				SetNamedUserVariable()
: ExternalControllerApi.h

				SetOverrideYawRateWithTorque()
: ExternalControllerApi.h

				SetOverrideYawRateWithTorqueOnNacelleN()
: ExternalControllerApi.h

				SetPitchOverrideStatus()
: ExternalControllerApi.h

				SetPitchOverrideStatusOnHubN()
: ExternalControllerApi.h

				SetRotorActiveSafetySystemNumber()
: ExternalControllerApi.h

				SetRotorActiveSafetySystemNumberOnNacelleN()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchRate()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchRateOnHubN()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchTorque()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchTorqueOnHubN()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchRate()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchRateOnHubN()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchTorque()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchTorqueOnHubN()
: ExternalControllerApi.h

				SetTorqueOverrideStatus()
: ExternalControllerApi.h

				SetTorqueOverrideStatusOnNacelleN()
: ExternalControllerApi.h

				SetTurbulenceIntensityIncrement()
: ExternalControllerApi.h

				SetUseYawDamping()
: ExternalControllerApi.h

				SetUseYawDampingOnNacelleN()
: ExternalControllerApi.h

				SetUseYawStiffness()
: ExternalControllerApi.h

				SetUseYawStiffnessOnNacelleN()
: ExternalControllerApi.h

				SetVariableSlipStatus()
: ExternalControllerApi.h

				SetVariableSlipStatusOnNacelleN()
: ExternalControllerApi.h

				SetYawDamping()
: ExternalControllerApi.h

				SetYawDampingOnNacelleN()
: ExternalControllerApi.h

				SetYawStiffness()
: ExternalControllerApi.h

				SetYawStiffnessOnNacelleN()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				n

 				r

 				s

 				t

Here is a list of all file members with links to the files they belong to:

- t -

				turbine
: GH_DISCON_Constants.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

				GH_DISCON_ERROR_STRING_LENGTH
: GH_DISCON_Constants.h

				GH_DISCON_LEGACY_MAXIMUM_NUMBER_LOGGING_VARS
: GH_DISCON_Constants.h

				GH_DISCON_LEGACY_MESSAGE_STRING_LENGTH
: GH_DISCON_Constants.h

				GH_DISCON_LEGACY_NUMBER_MINIMUM_INFILE_LENGTH
: GH_DISCON_Constants.h

				INFINITY
: GH_DISCON_Constants.h

				NAN
: GH_DISCON_Constants.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				r

 				s

- a -

				AddLidarBeamFocalPoint()
: ExternalControllerApi.h

				AddLogValue()
: ExternalControllerApi.h

				AppendIndexedUserVariable()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				r

 				s

- c -

				ClearIndexedUserVariables()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				r

 				s

- g -

				GetActiveSafetySystemNumber()
: ExternalControllerApi.h

				GetBelowRatedPitchAngleSetPoint()
: ExternalControllerApi.h

				GetBelowRatedPitchAngleSetPointOnHubN()
: ExternalControllerApi.h

				GetBladeAccelerometerDistance()
: ExternalControllerApi.h

				GetBladeAccelerometerDistanceOnHubN()
: ExternalControllerApi.h

				GetBladedVersion()
: ExternalControllerApi.h

				GetBladeStrainGaugeAngle()
: ExternalControllerApi.h

				GetBladeStrainGaugeAngleOnHubN()
: ExternalControllerApi.h

				GetBladeStrainGaugeDistance()
: ExternalControllerApi.h

				GetBladeStrainGaugeDistanceOnHubN()
: ExternalControllerApi.h

				GetCollectivePitchAngle()
: ExternalControllerApi.h

				GetCollectivePitchAngleOnHubN()
: ExternalControllerApi.h

				GetCommunicationInterval()
: ExternalControllerApi.h

				GetControllerFailureFlag()
: ExternalControllerApi.h

				GetControllerState()
: ExternalControllerApi.h

				GetControllerStateOnNacelleN()
: ExternalControllerApi.h

				GetCurrentTime()
: ExternalControllerApi.h

				GetDemandedAdditionalBrakeTorque()
: ExternalControllerApi.h

				GetDemandedAdditionalBrakeTorqueOnNacelleN()
: ExternalControllerApi.h

				GetDemandedAileronAngle()
: ExternalControllerApi.h

				GetDemandedAileronAngleOnHubN()
: ExternalControllerApi.h

				GetDemandedCollectivePitchAngle()
: ExternalControllerApi.h

				GetDemandedCollectivePitchAngleOnHubN()
: ExternalControllerApi.h

				GetDemandedCollectivePitchRate()
: ExternalControllerApi.h

				GetDemandedCollectivePitchRateOnHubN()
: ExternalControllerApi.h

				GetDemandedGeneratorSpeed()
: ExternalControllerApi.h

				GetDemandedGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetDemandedGeneratorTorque()
: ExternalControllerApi.h

				GetDemandedGeneratorTorqueOnNacelleN()
: ExternalControllerApi.h

				GetDemandedPitchAngle()
: ExternalControllerApi.h

				GetDemandedPitchAngleOnHubN()
: ExternalControllerApi.h

				GetDemandedPitchRate()
: ExternalControllerApi.h

				GetDemandedPitchRateOnHubN()
: ExternalControllerApi.h

				GetDemandedPower()
: ExternalControllerApi.h

				GetDemandedPowerOnNacelleN()
: ExternalControllerApi.h

				GetDemandedVariableSlipCurrent()
: ExternalControllerApi.h

				GetDemandedVariableSlipCurrentOnNacelleN()
: ExternalControllerApi.h

				GetDllInterfaceVersion()
: ExternalControllerApi.h

				GetDrivetrainBrakeStatus()
: ExternalControllerApi.h

				GetDrivetrainBrakeStatusOnNacelleN()
: ExternalControllerApi.h

				GetGeneratorContactor()
: ExternalControllerApi.h

				GetGeneratorContactorOnNacelleN()
: ExternalControllerApi.h

				GetGeneratorLookupTableSpeedValue()
: ExternalControllerApi.h

				GetGeneratorLookupTableSpeedValueOnNacelleN()
: ExternalControllerApi.h

				GetGeneratorLookupTableTorqueValue()
: ExternalControllerApi.h

				GetGeneratorLookupTableTorqueValueOnNacelleN()
: ExternalControllerApi.h

				GetGridConverterdAxisControlReference()
: ExternalControllerApi.h

				GetGridConverterdAxisControlReferenceOnNacelleN()
: ExternalControllerApi.h

				GetGridConverterdAxisControlType()
: ExternalControllerApi.h

				GetGridConverterdAxisControlTypeOnNacelleN()
: ExternalControllerApi.h

				GetIndexedUserVariable()
: ExternalControllerApi.h

				GetInfileFilepath()
: ExternalControllerApi.h

				GetInfileFilepathLength()
: ExternalControllerApi.h

				GetIsLidarBeamCurrentlyOccluded()
: ExternalControllerApi.h

				GetLastErrorCode()
: ExternalControllerApi.h

				GetLastErrorMessage()
: ExternalControllerApi.h

				GetLidarBeamBladeIndex()
: ExternalControllerApi.h

				GetLidarBeamControl()
: ExternalControllerApi.h

				GetLidarBeamControlCoordinateSystem()
: ExternalControllerApi.h

				GetLidarBeamMounting()
: ExternalControllerApi.h

				GetLidarBeamRotorIndex()
: ExternalControllerApi.h

				GetLidarBeamUpdate()
: ExternalControllerApi.h

				GetLoggingName()
: ExternalControllerApi.h

				GetLoggingUnits()
: ExternalControllerApi.h

				GetLogIndexFromName()
: ExternalControllerApi.h

				GetMaximumPitchAngle()
: ExternalControllerApi.h

				GetMaximumPitchAngleOnHubN()
: ExternalControllerApi.h

				GetMaximumPitchRate()
: ExternalControllerApi.h

				GetMaximumPitchRateOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAcceleration()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationX()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationXOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationY()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationYOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationZ()
: ExternalControllerApi.h

				GetMeasuredBladeAccelerometerAccelerationZOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeInPlaneBendingMoment()
: ExternalControllerApi.h

				GetMeasuredBladeInPlaneBendingMomentOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeOutOfPlaneBendingMoment()
: ExternalControllerApi.h

				GetMeasuredBladeOutOfPlaneBendingMomentOnHubN()
: ExternalControllerApi.h

				GetMeasuredBladeStrainGaugeM()
: ExternalControllerApi.h

				GetMeasuredBladeStrainGaugeMOnHubN()
: ExternalControllerApi.h

				GetMeasuredElectricalPowerOutput()
: ExternalControllerApi.h

				GetMeasuredElectricalPowerOutputOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredFixedHubFx()
: ExternalControllerApi.h

				GetMeasuredFixedHubFxOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubFy()
: ExternalControllerApi.h

				GetMeasuredFixedHubFyOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubFz()
: ExternalControllerApi.h

				GetMeasuredFixedHubFzOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubMy()
: ExternalControllerApi.h

				GetMeasuredFixedHubMyOnHubN()
: ExternalControllerApi.h

				GetMeasuredFixedHubMz()
: ExternalControllerApi.h

				GetMeasuredFixedHubMzOnHubN()
: ExternalControllerApi.h

				GetMeasuredGeneratorSpeed()
: ExternalControllerApi.h

				GetMeasuredGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredGeneratorTorque()
: ExternalControllerApi.h

				GetMeasuredGeneratorTorqueOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredLidarBeamFocalPointVelocity()
: ExternalControllerApi.h

				GetMeasuredNacelleActiveDamperAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleActiveDamperAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleAngleFromNorth()
: ExternalControllerApi.h

				GetMeasuredNacelleAngleFromNorthOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleNoddingAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleNoddingAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleRollAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleRollAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredNacelleYawAcceleration()
: ExternalControllerApi.h

				GetMeasuredNacelleYawAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredPitchActuatorTorque()
: ExternalControllerApi.h

				GetMeasuredPitchActuatorTorqueOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchAngle()
: ExternalControllerApi.h

				GetMeasuredPitchAngleOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingAxialForce()
: ExternalControllerApi.h

				GetMeasuredPitchBearingAxialForceOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingFriction()
: ExternalControllerApi.h

				GetMeasuredPitchBearingFrictionOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingMz()
: ExternalControllerApi.h

				GetMeasuredPitchBearingMzOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchBearingRadialForce()
: ExternalControllerApi.h

				GetMeasuredPitchBearingRadialForceOnHubN()
: ExternalControllerApi.h

				GetMeasuredPitchRate()
: ExternalControllerApi.h

				GetMeasuredPitchRateOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMy()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMyOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMz()
: ExternalControllerApi.h

				GetMeasuredRotatingHubMzOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotorAzimuthAngle()
: ExternalControllerApi.h

				GetMeasuredRotorAzimuthAngleOnHubN()
: ExternalControllerApi.h

				GetMeasuredRotorSpeed()
: ExternalControllerApi.h

				GetMeasuredRotorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredShaftPower()
: ExternalControllerApi.h

				GetMeasuredShaftPowerOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredShaftTorque()
: ExternalControllerApi.h

				GetMeasuredShaftTorqueOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTeeterAngle()
: ExternalControllerApi.h

				GetMeasuredTeeterAngleOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTeeterVelocity()
: ExternalControllerApi.h

				GetMeasuredTeeterVelocityOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTowerTopForeAftAcceleration()
: ExternalControllerApi.h

				GetMeasuredTowerTopForeAftAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTowerTopSideSideAcceleration()
: ExternalControllerApi.h

				GetMeasuredTowerTopSideSideAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredTurbineAccelerometerAccelerationX()
: ExternalControllerApi.h

				GetMeasuredTurbineAccelerometerAccelerationY()
: ExternalControllerApi.h

				GetMeasuredTurbineAccelerometerAccelerationZ()
: ExternalControllerApi.h

				GetMeasuredTurbineActiveDamperAcceleration()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeFx()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeFy()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeFz()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeMx()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeMy()
: ExternalControllerApi.h

				GetMeasuredTurbineStrainGaugeMz()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularAcceleration()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularAccelerationOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularPosition()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularPositionOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularVelocity()
: ExternalControllerApi.h

				GetMeasuredYawBearingAngularVelocityOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingMy()
: ExternalControllerApi.h

				GetMeasuredYawBearingMyOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawBearingMz()
: ExternalControllerApi.h

				GetMeasuredYawBearingMzOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawError()
: ExternalControllerApi.h

				GetMeasuredYawErrorOnNacelleN()
: ExternalControllerApi.h

				GetMeasuredYawMotorRate()
: ExternalControllerApi.h

				GetMeasuredYawMotorRateOnNacelleN()
: ExternalControllerApi.h

				GetMinimumGeneratorSpeed()
: ExternalControllerApi.h

				GetMinimumGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				GetMinimumPitchAngle()
: ExternalControllerApi.h

				GetMinimumPitchAngleOnHubN()
: ExternalControllerApi.h

				GetMinimumPitchRate()
: ExternalControllerApi.h

				GetMinimumPitchRateOnHubN()
: ExternalControllerApi.h

				GetNamedUserVariable()
: ExternalControllerApi.h

				GetNetworkFrequencyDisturbanceFactor()
: ExternalControllerApi.h

				GetNetworkVoltageDisturbanceFactor()
: ExternalControllerApi.h

				GetNominalHubFlowSpeed()
: ExternalControllerApi.h

				GetNominalHubFlowSpeedOnHubN()
: ExternalControllerApi.h

				GetNominalLidarBeamPositionX()
: ExternalControllerApi.h

				GetNominalLidarBeamPositionY()
: ExternalControllerApi.h

				GetNominalLidarBeamPositionZ()
: ExternalControllerApi.h

				GetNominalStartFlowSpeed()
: ExternalControllerApi.h

				GetNumberOfAilerons()
: ExternalControllerApi.h

				GetNumberOfAileronsOnHubN()
: ExternalControllerApi.h

				GetNumberOfBladeAccelerometers()
: ExternalControllerApi.h

				GetNumberOfBladeAccelerometersOnHubN()
: ExternalControllerApi.h

				GetNumberOfBlades()
: ExternalControllerApi.h

				GetNumberOfBladesOnHubN()
: ExternalControllerApi.h

				GetNumberOfBladeStrainGauges()
: ExternalControllerApi.h

				GetNumberOfBladeStrainGaugesOnHubN()
: ExternalControllerApi.h

				GetNumberOfDrivetrainBrakeStatus()
: ExternalControllerApi.h

				GetNumberOfDrivetrainBrakeStatusOnNacelleN()
: ExternalControllerApi.h

				GetNumberOfGeneratorSpeedTorqueValues()
: ExternalControllerApi.h

				GetNumberOfGeneratorSpeedTorqueValuesOnNacelleN()
: ExternalControllerApi.h

				GetNumberOfHubs()
: ExternalControllerApi.h

				GetNumberOfIndexedUserVariables()
: ExternalControllerApi.h

				GetNumberOfLidarBeamFocalPoints()
: ExternalControllerApi.h

				GetNumberOfLidarBeams()
: ExternalControllerApi.h

				GetNumberOfLogValues()
: ExternalControllerApi.h

				GetNumberOfNacelleActiveDampers()
: ExternalControllerApi.h

				GetNumberOfNacelleActiveDampersOnNacelleN()
: ExternalControllerApi.h

				GetNumberOfNacelles()
: ExternalControllerApi.h

				GetNumberOfRotors()
: ExternalControllerApi.h

				GetNumberOfTurbineAccelerometers()
: ExternalControllerApi.h

				GetNumberOfTurbineActiveDampers()
: ExternalControllerApi.h

				GetNumberOfTurbineStrainGauges()
: ExternalControllerApi.h

				GetOptimalModeGain()
: ExternalControllerApi.h

				GetOptimalModeGainOnNacelleN()
: ExternalControllerApi.h

				GetOptimalModeMaximumSpeed()
: ExternalControllerApi.h

				GetOptimalModeMaximumSpeedOnNacelleN()
: ExternalControllerApi.h

				GetOutnameFilepath()
: ExternalControllerApi.h

				GetOutnameFilepathLength()
: ExternalControllerApi.h

				GetPitchActuatorType()
: ExternalControllerApi.h

				GetPitchActuatorTypeOnHubN()
: ExternalControllerApi.h

				GetPitchControl()
: ExternalControllerApi.h

				GetPitchControlOnHubN()
: ExternalControllerApi.h

				GetPitchOverrideStatus()
: ExternalControllerApi.h

				GetPitchOverrideStatusOnHubN()
: ExternalControllerApi.h

				GetRealTimeSimulationTimeStep()
: ExternalControllerApi.h

				GetRealTimeSimulationTimeStepMultiplier()
: ExternalControllerApi.h

				GetReferenceGeneratorSpeedAboveRated()
: ExternalControllerApi.h

				GetReferenceGeneratorSpeedAboveRatedOnNacelleN()
: ExternalControllerApi.h

				GetReferenceGeneratorTorqueAboveRated()
: ExternalControllerApi.h

				GetReferenceGeneratorTorqueAboveRatedOnNacelleN()
: ExternalControllerApi.h

				GetRotorActiveSafetySystemNumber()
: ExternalControllerApi.h

				GetRotorActiveSafetySystemNumberOnNacelleN()
: ExternalControllerApi.h

				GetSettlingTime()
: ExternalControllerApi.h

				GetSimulationStatus()
: ExternalControllerApi.h

				GetTorqueOverrideStatus()
: ExternalControllerApi.h

				GetTorqueOverrideStatusOnNacelleN()
: ExternalControllerApi.h

				GetTurbineAccelerometerLengthFraction()
: ExternalControllerApi.h

				GetTurbineAccelerometerMemberIndex()
: ExternalControllerApi.h

				GetTurbineAccelerometerTowerHeight()
: ExternalControllerApi.h

				GetTurbineActiveDamperMemberIndex()
: ExternalControllerApi.h

				GetTurbineStrainGaugeLengthFraction()
: ExternalControllerApi.h

				GetTurbineStrainGaugeMemberIndex()
: ExternalControllerApi.h

				GetTurbineStrainGaugeTowerHeight()
: ExternalControllerApi.h

				GetVariableSlipStatus()
: ExternalControllerApi.h

				GetVariableSlipStatusOnNacelleN()
: ExternalControllerApi.h

				GetYawControl()
: ExternalControllerApi.h

				GetYawControlOnNacelleN()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				r

 				s

- i -

				IsPitchLimitSwitchTripped()
: ExternalControllerApi.h

				IsPitchLimitSwitchTrippedOnHubN()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				r

 				s

- r -

				RemoveLidarBeamFocalPoint()
: ExternalControllerApi.h

				ReportCriticalMessage()
: ExternalControllerApi.h

				ReportDebugMessage()
: ExternalControllerApi.h

				ReportErrorMessage()
: ExternalControllerApi.h

				ReportInfoMessage()
: ExternalControllerApi.h

				ReportScratchMessage()
: ExternalControllerApi.h

				ReportWarningMessage()
: ExternalControllerApi.h

				RequestLidarBeamUpdate()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

 				a

 				c

 				g

 				i

 				r

 				s

- s -

				SetActiveSafetySystemNumber()
: ExternalControllerApi.h

				SetDemandedAdditionalBrakeTorque()
: ExternalControllerApi.h

				SetDemandedAdditionalBrakeTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedAileronAngle()
: ExternalControllerApi.h

				SetDemandedAileronAngleOnHubN()
: ExternalControllerApi.h

				SetDemandedCollectivePitchAngle()
: ExternalControllerApi.h

				SetDemandedCollectivePitchAngleOnHubN()
: ExternalControllerApi.h

				SetDemandedCollectivePitchRate()
: ExternalControllerApi.h

				SetDemandedCollectivePitchRateOnHubN()
: ExternalControllerApi.h

				SetDemandedGeneratorSpeed()
: ExternalControllerApi.h

				SetDemandedGeneratorSpeedOnNacelleN()
: ExternalControllerApi.h

				SetDemandedGeneratorTorque()
: ExternalControllerApi.h

				SetDemandedGeneratorTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedLidarBeamFocalPointFocalDistance()
: ExternalControllerApi.h

				SetDemandedNacelleActiveDamperForce()
: ExternalControllerApi.h

				SetDemandedNacelleActiveDamperForceOnNacelleN()
: ExternalControllerApi.h

				SetDemandedPitchAngle()
: ExternalControllerApi.h

				SetDemandedPitchAngleOnHubN()
: ExternalControllerApi.h

				SetDemandedPitchRate()
: ExternalControllerApi.h

				SetDemandedPitchRateOnHubN()
: ExternalControllerApi.h

				SetDemandedTurbineActiveDamperForce()
: ExternalControllerApi.h

				SetDemandedVariableSlipCurrent()
: ExternalControllerApi.h

				SetDemandedVariableSlipCurrentOnNacelleN()
: ExternalControllerApi.h

				SetDemandedYawActuatorTorque()
: ExternalControllerApi.h

				SetDemandedYawActuatorTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedYawBrakeTorque()
: ExternalControllerApi.h

				SetDemandedYawBrakeTorqueOnNacelleN()
: ExternalControllerApi.h

				SetDemandedYawRate()
: ExternalControllerApi.h

				SetDemandedYawRateOnNacelleN()
: ExternalControllerApi.h

				SetDrivetrainBrakeStatus()
: ExternalControllerApi.h

				SetDrivetrainBrakeStatusOnNacelleN()
: ExternalControllerApi.h

				SetFlowDirectionIncrement()
: ExternalControllerApi.h

				SetGeneratorContactor()
: ExternalControllerApi.h

				SetGeneratorContactorOnNacelleN()
: ExternalControllerApi.h

				SetGeneratorStartupResistance()
: ExternalControllerApi.h

				SetGeneratorStartupResistanceOnNacelleN()
: ExternalControllerApi.h

				SetGridConverterdAxisControlReference()
: ExternalControllerApi.h

				SetGridConverterdAxisControlReferenceOnNacelleN()
: ExternalControllerApi.h

				SetGridConverterdAxisControlType()
: ExternalControllerApi.h

				SetGridConverterdAxisControlTypeOnNacelleN()
: ExternalControllerApi.h

				SetHardwareInLoop()
: ExternalControllerApi.h

				SetHardwarePitchPosition()
: ExternalControllerApi.h

				SetHardwarePitchPositionOnHubN()
: ExternalControllerApi.h

				SetHardwarePitchRate()
: ExternalControllerApi.h

				SetHardwarePitchRateOnHubN()
: ExternalControllerApi.h

				SetIndexedUserVariable()
: ExternalControllerApi.h

				SetLidarBeamControlCoordinateSystem()
: ExternalControllerApi.h

				SetLidarBeamDemandedAngleY()
: ExternalControllerApi.h

				SetLidarBeamDemandedAngleZ()
: ExternalControllerApi.h

				SetLoggingLevel()
: ExternalControllerApi.h

				SetLoggingValue()
: ExternalControllerApi.h

				SetMeanFlowSpeedIncrement()
: ExternalControllerApi.h

				SetNamedUserVariable()
: ExternalControllerApi.h

				SetOverrideYawRateWithTorque()
: ExternalControllerApi.h

				SetOverrideYawRateWithTorqueOnNacelleN()
: ExternalControllerApi.h

				SetPitchOverrideStatus()
: ExternalControllerApi.h

				SetPitchOverrideStatusOnHubN()
: ExternalControllerApi.h

				SetRotorActiveSafetySystemNumber()
: ExternalControllerApi.h

				SetRotorActiveSafetySystemNumberOnNacelleN()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchRate()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchRateOnHubN()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchTorque()
: ExternalControllerApi.h

				SetSafetySystemDemandedCollectivePitchTorqueOnHubN()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchRate()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchRateOnHubN()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchTorque()
: ExternalControllerApi.h

				SetSafetySystemDemandedPitchTorqueOnHubN()
: ExternalControllerApi.h

				SetTorqueOverrideStatus()
: ExternalControllerApi.h

				SetTorqueOverrideStatusOnNacelleN()
: ExternalControllerApi.h

				SetTurbulenceIntensityIncrement()
: ExternalControllerApi.h

				SetUseYawDamping()
: ExternalControllerApi.h

				SetUseYawDampingOnNacelleN()
: ExternalControllerApi.h

				SetUseYawStiffness()
: ExternalControllerApi.h

				SetUseYawStiffnessOnNacelleN()
: ExternalControllerApi.h

				SetVariableSlipStatus()
: ExternalControllerApi.h

				SetVariableSlipStatusOnNacelleN()
: ExternalControllerApi.h

				SetYawDamping()
: ExternalControllerApi.h

				SetYawDampingOnNacelleN()
: ExternalControllerApi.h

				SetYawStiffness()
: ExternalControllerApi.h

				SetYawStiffnessOnNacelleN()
: ExternalControllerApi.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

 				File List

 				File Members

 				All

 				Functions

 				Typedefs

 				Defines

				CONTROLLER_TYPEDEF
: GH_DISCON_Constants.h

				turbine
: GH_DISCON_Constants.h

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

 				
 ExternalControllerApi
 0.0

 GH Bladed User-Controller API

 				Main Page

 				Files

ExternalControllerApi Documentation

Generated on Tue Aug 6 2013 08:42:29 for ExternalControllerApi by
[image: doxygen]
 1.8.0

NREL 5MW external control/ExternalControllerApi.h

/***
*
* Purpose : This header file defines all of the C functions that can
* be used by external controllers to control the simulation.
* This header file can be imported either by C code (i.e.
* the customer's dll) or C++ code, andthere are various ifndef
* statements to protect C compilers from C++ specific clauses.
*
* All API functions require the as their first argument a turbine
* typedef. External controllers should accept this argument
* and return it - unchanged - as he first argument of all API
* calls.
*
* THIS FILE IS AUTOGENERATED FROM, "DataModel.xml" AND IS NOT UNDER SOURCE CONTROL
*
* Created : 11/9/2013 using T4 template "ExternalControllerApiH.tt"
*
* Copyright : GL Garrad Hassan 2012
*
**/

#ifndef EXTERNAL_CONTROLLER_API_H
#define EXTERNAL_CONTROLLER_API_H

#include "GH_DISCON_Constants.h"

#ifdef __cplusplus // These statements are only necessary (and indeed valid) when compiled under C++
namespace GHTurbineInterface {

extern "C"
{
#endif

/// <summary>
/// Returns the status of the last operation performed by the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetLastErrorCode(const turbine turbine_id);

/// <summary>
/// Returns a description of the error that occurred on the last command call, or an empty string.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
const char* GetLastErrorMessage(const turbine turbine_id);

/// <summary>
/// Adds a logging value, and returns the new number of logging variables. This is called by the external controller during initialisation, to tell Bladed what values are being logged.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="name"> The name of the logging value, as it will appears in the log report.</param>
/// <param name="units"> The units of the logging value as a string.</param>
int AddLogValue(const turbine turbine_id, const char* name, const char* units);

/// <summary>
/// Returns the number of logging value set by the external controller.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfLogValues(const turbine turbine_id);

/// <summary>
/// Returns the index of the logging value of the name 'name'. Returns -1 if the name cannot be found.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="name"> The Log_Value's internal name.</param>
int GetLogIndexFromName(const turbine turbine_id, const char* name);

/// <summary>
/// Sets the level of logging to the message file.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="logging_level"> The logging level, from 0 (everything) to 60 (nothing).</param>
int SetLoggingLevel(const turbine turbine_id, int logging_level);

/// <summary>
/// Reports a scratch message to the user.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="message"> A char pointer to a null-terminated character array.</param>
int ReportScratchMessage(const turbine turbine_id, const char* message);

/// <summary>
/// Reports a debug message to the user, prefixed by "*** DEBUG:".
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="message"> A char pointer to a null-terminated character array.</param>
int ReportDebugMessage(const turbine turbine_id, const char* message);

/// <summary>
/// Reports an info message to the user, prefixed by "*** Note:".
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="message"> A char pointer to a null-terminated character array.</param>
int ReportInfoMessage(const turbine turbine_id, const char* message);

/// <summary>
/// Reports a warning message to the user, prefixed by "*** WARNING:".
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="message"> A char pointer to a null-terminated character array.</param>
int ReportWarningMessage(const turbine turbine_id, const char* message);

/// <summary>
/// Reports an error message to the user, prefixed by "*** ERROR:". This should be called at least once immediately before requesting program termination, explaining the reason for the termination.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="message"> A char pointer to a null-terminated character array.</param>
int ReportErrorMessage(const turbine turbine_id, const char* message);

/// <summary>
/// Reports a critical message to the user, prefixed by "*** ERROR:".
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="message"> A char pointer to a null-terminated character array.</param>
int ReportCriticalMessage(const turbine turbine_id, const char* message);

/// <summary>
/// Logs a user-specified value by name.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="name"> A char pointer to a null-terminated character array representing the field name. This must be unique.</param>
/// <param name="variable_value"> A double value to log.</param>
int SetNamedUserVariable(const turbine turbine_id, const char* name, double variable_value);

/// <summary>
/// Returns the logged a user-specified value, indexed by name. If the specified name has not previously been set, NaN will be returned and a warning reported.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="name"> A char pointer to a null-terminated character array representing the field name. This must already have been set.</param>
double GetNamedUserVariable(const turbine turbine_id, const char* name);

/// <summary>
/// Logs a user-specified value, added at the end of the list. Returns the index of the new user variable (i.e. the new size of the array minus 1).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="variable_value"> A double value to log.</param>
int AppendIndexedUserVariable(const turbine turbine_id, double variable_value);

/// <summary>
/// Logs a user-specified value by index. Returns an error if the index is out of range.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> An integer designating the 'slot number' of the value to be stored to.</param>
/// <param name="variable_value"> A double value to log.</param>
int SetIndexedUserVariable(const turbine turbine_id, int index, double variable_value);

/// <summary>
/// Returns the logged user-specified value at position 'index'. If the specified index has not previously been set, NaN will be returned and a warning reported.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> An integer designating the 'slot number' of the value to be retrieved.</param>
double GetIndexedUserVariable(const turbine turbine_id, int index);

/// <summary>
/// Returns the number of logged user-specified values.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfIndexedUserVariables(const turbine turbine_id);

/// <summary>
/// Clears all indexed user variables.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int ClearIndexedUserVariables(const turbine turbine_id);

/// <summary>
/// Returns the failure flag that the simulation is imposing on the external controller (0 for error-free running).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetControllerFailureFlag(const turbine turbine_id);

/// <summary>
/// Returns the status of the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetSimulationStatus(const turbine turbine_id);

/// <summary>
/// Returns the current time in the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetCurrentTime(const turbine turbine_id);

/// <summary>
/// Returns the time step of the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetCommunicationInterval(const turbine turbine_id);

/// <summary>
/// Returns the real time step of the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetRealTimeSimulationTimeStep(const turbine turbine_id);

/// <summary>
/// Returns the real time step multiplier of the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetRealTimeSimulationTimeStepMultiplier(const turbine turbine_id);

/// <summary>
/// Returns the settling time of the simulation in s, before data starts being collected.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetSettlingTime(const turbine turbine_id);

/// <summary>
/// Returns filepath of the INFILE.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
const char* GetInfileFilepath(const turbine turbine_id);

/// <summary>
/// Returns length of the INFILE filepath.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetInfileFilepathLength(const turbine turbine_id);

/// <summary>
/// Returns filepath of the OUTNAME.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
const char* GetOutnameFilepath(const turbine turbine_id);

/// <summary>
/// Returns length of the OUTNAME filepath.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetOutnameFilepathLength(const turbine turbine_id);

/// <summary>
/// The current version of the ExternalControllerApi.dll. This should match the version of dtbladed.exe, retrieved using GetBladedVersion().
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
const char* GetDllInterfaceVersion(const turbine turbine_id);

/// <summary>
/// The current version of dtbladed.exe.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
const char* GetBladedVersion(const turbine turbine_id);

/// <summary>
/// Sets the increment in the mean speed of the flow. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="speed"> Speed, in m/s.</param>
int SetMeanFlowSpeedIncrement(const turbine turbine_id, double speed);

/// <summary>
/// Sets the turbulence intensity increment. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="percentage"> Percentage.</param>
int SetTurbulenceIntensityIncrement(const turbine turbine_id, double percentage);

/// <summary>
/// Sets the flow direction increment. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="angle"> Angle, in rad.</param>
int SetFlowDirectionIncrement(const turbine turbine_id, double angle);

/// <summary>
/// Sets whether the hardware-related functions are active. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="is_hardware_in_loop"> Whether hardware is in the loop: 0=NO, 1=YES.</param>
int SetHardwareInLoop(const turbine turbine_id, int is_hardware_in_loop);

/// <summary>
/// Returns the number of rotors in the model.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfRotors(const turbine turbine_id);

/// <summary>
/// Returns the number of nacelles in the model.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfNacelles(const turbine turbine_id);

/// <summary>
/// Returns the number of hubs in the model.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfHubs(const turbine turbine_id);

/// <summary>
/// Returns the mean speed of the flow at the point the controller starts up.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetNominalStartFlowSpeed(const turbine turbine_id);

/// <summary>
/// Returns The active safety system number.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetActiveSafetySystemNumber(const turbine turbine_id);

/// <summary>
/// Sets the active safety system number. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="safety_system"> </param>
int SetActiveSafetySystemNumber(const turbine turbine_id, int safety_system);

/// <summary>
/// Returns the network voltage disturbance factor.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetNetworkVoltageDisturbanceFactor(const turbine turbine_id);

/// <summary>
/// Returns the network frequency disturbance factor.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetNetworkFrequencyDisturbanceFactor(const turbine turbine_id);

/// <summary>
/// Returns the number of strain gauges on the tower.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfTurbineStrainGauges(const turbine turbine_id);

/// <summary>
/// Returns the number of strain gauges on the tower.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfTurbineAccelerometers(const turbine turbine_id);

/// <summary>
/// Returns the number of active dampers on the turbine.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfTurbineActiveDampers(const turbine turbine_id);

/// <summary>
/// Returns the number of Lidar beams on the model.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfLidarBeams(const turbine turbine_id);

/// <summary>
/// Returns The active safety system number for the rotor (if individual rotor safety systems are being).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetRotorActiveSafetySystemNumberOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns The active safety system number for the rotor (if individual rotor safety systems are being).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetRotorActiveSafetySystemNumber(const turbine turbine_id);

/// <summary>
/// Sets the active safety system number for the rotor (if individual rotor safety systems are being). Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="safety_system"> </param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetRotorActiveSafetySystemNumberOnNacelleN(const turbine turbine_id, int safety_system, int index_nacelle);

/// <summary>
/// Sets the active safety system number for the rotor (if individual rotor safety systems are being). Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="safety_system"> </param>
int SetRotorActiveSafetySystemNumber(const turbine turbine_id, int safety_system);

/// <summary>
/// Returns an integer representing the current state of the controller: -1=CONTROLLER_ERROR; 0=POWER_PRODUCTION; 1=PARKED; 2=IDLING; 3=START_UP; 4=NORMAL_STOP; 5=EMERGENCY_STOP
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetControllerStateOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns an integer representing the current state of the controller: -1=CONTROLLER_ERROR; 0=POWER_PRODUCTION; 1=PARKED; 2=IDLING; 3=START_UP; 4=NORMAL_STOP; 5=EMERGENCY_STOP
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetControllerState(const turbine turbine_id);

/// <summary>
/// Returns the optimal mode gain, in Nm/(rad/s)2. This is valid for variable-speed controllers only. If the number of points on the speed:torque curve is greater than 0 (see GetNumberOfGeneratorSpeedTorqueValues), the speed:torque curve is to be used instead, and the optimal mode gain will be 0.0.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetOptimalModeGainOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the optimal mode gain, in Nm/(rad/s)2. This is valid for variable-speed controllers only. If the number of points on the speed:torque curve is greater than 0 (see GetNumberOfGeneratorSpeedTorqueValues), the speed:torque curve is to be used instead, and the optimal mode gain will be 0.0.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetOptimalModeGain(const turbine turbine_id);

/// <summary>
/// Returns the minimum generator speed, in rad/s. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMinimumGeneratorSpeedOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the minimum generator speed, in rad/s. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMinimumGeneratorSpeed(const turbine turbine_id);

/// <summary>
/// Returns the optimal mode maximum speed, in rad/s. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetOptimalModeMaximumSpeedOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the optimal mode maximum speed, in rad/s. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetOptimalModeMaximumSpeed(const turbine turbine_id);

/// <summary>
/// Returns the rotor's reference generator speed, when the turbine is operating above its rated flow speed, in rad/s. This is valid for pitch-regulated, variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetReferenceGeneratorSpeedAboveRatedOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the rotor's reference generator speed, when the turbine is operating above its rated flow speed, in rad/s. This is valid for pitch-regulated, variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetReferenceGeneratorSpeedAboveRated(const turbine turbine_id);

/// <summary>
/// Returns the rotor's reference generator torque, when the turbine is operating above its rated flow speed, in Nm. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetReferenceGeneratorTorqueAboveRatedOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the rotor's reference generator torque, when the turbine is operating above its rated flow speed, in Nm. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetReferenceGeneratorTorqueAboveRated(const turbine turbine_id);

/// <summary>
/// Returns The current override status: 0=OFF, 1=ON
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetTorqueOverrideStatusOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns The current override status: 0=OFF, 1=ON
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetTorqueOverrideStatus(const turbine turbine_id);

/// <summary>
/// Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="override_status"> The current override status: 0=OFF, 1=ON</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetTorqueOverrideStatusOnNacelleN(const turbine turbine_id, int override_status, int index_nacelle);

/// <summary>
/// Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="override_status"> The current override status: 0=OFF, 1=ON</param>
int SetTorqueOverrideStatus(const turbine turbine_id, int override_status);

/// <summary>
/// Returns the power currently demanded of the rotor by the controller, in W. This is not valid for variable-speed, pitch-regulated controllers.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetDemandedPowerOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the power currently demanded of the rotor by the controller, in W. This is not valid for variable-speed, pitch-regulated controllers.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetDemandedPower(const turbine turbine_id);

/// <summary>
/// Returns The demanded speed, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetDemandedGeneratorSpeedOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns The demanded speed, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetDemandedGeneratorSpeed(const turbine turbine_id);

/// <summary>
/// Sets the demanded speed, in rad/s. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="speed"> The demanded speed, in rad/s.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double SetDemandedGeneratorSpeedOnNacelleN(const turbine turbine_id, double speed, int index_nacelle);

/// <summary>
/// Sets the demanded speed, in rad/s. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="speed"> The demanded speed, in rad/s.</param>
double SetDemandedGeneratorSpeed(const turbine turbine_id, double speed);

/// <summary>
/// Returns The demanded torque, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetDemandedGeneratorTorqueOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns The demanded torque, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetDemandedGeneratorTorque(const turbine turbine_id);

/// <summary>
/// Sets the demanded torque, in Nm. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The demanded torque, in Nm.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDemandedGeneratorTorqueOnNacelleN(const turbine turbine_id, double torque, int index_nacelle);

/// <summary>
/// Sets the demanded torque, in Nm. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The demanded torque, in Nm.</param>
int SetDemandedGeneratorTorque(const turbine turbine_id, double torque);

/// <summary>
/// Returns The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetGeneratorContactorOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetGeneratorContactor(const turbine turbine_id);

/// <summary>
/// Sets the generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="generator_contactor"> The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetGeneratorContactorOnNacelleN(const turbine turbine_id, int generator_contactor, int index_nacelle);

/// <summary>
/// Sets the generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="generator_contactor"> The generator contactor: 0=OFF, 1=MAIN, 2=LOW SPEED.</param>
int SetGeneratorContactor(const turbine turbine_id, int generator_contactor);

/// <summary>
/// Sets the startup resistance, in ohm/phase. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="resistance"> The startup resistance, in ohm/phase.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetGeneratorStartupResistanceOnNacelleN(const turbine turbine_id, double resistance, int index_nacelle);

/// <summary>
/// Sets the startup resistance, in ohm/phase. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="resistance"> The startup resistance, in ohm/phase.</param>
int SetGeneratorStartupResistance(const turbine turbine_id, double resistance);

/// <summary>
/// Returns The current variable slip status: 0=OFF, 1=ON
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetVariableSlipStatusOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns The current variable slip status: 0=OFF, 1=ON
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetVariableSlipStatus(const turbine turbine_id);

/// <summary>
/// Sets the current variable slip status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="variable_slip_status"> The current variable slip status: 0=OFF, 1=ON</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetVariableSlipStatusOnNacelleN(const turbine turbine_id, int variable_slip_status, int index_nacelle);

/// <summary>
/// Sets the current variable slip status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="variable_slip_status"> The current variable slip status: 0=OFF, 1=ON</param>
int SetVariableSlipStatus(const turbine turbine_id, int variable_slip_status);

/// <summary>
/// Returns The variable slip current demand, in Amps.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetDemandedVariableSlipCurrentOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns The variable slip current demand, in Amps.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetDemandedVariableSlipCurrent(const turbine turbine_id);

/// <summary>
/// Sets the variable slip current demand, in Amps. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="current"> The variable slip current demand, in Amps.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDemandedVariableSlipCurrentOnNacelleN(const turbine turbine_id, double current, int index_nacelle);

/// <summary>
/// Sets the variable slip current demand, in Amps. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="current"> The variable slip current demand, in Amps.</param>
int SetDemandedVariableSlipCurrent(const turbine turbine_id, double current);

/// <summary>
/// Returns the number of entries in the generator speed/torque lookup table. If the number of points is greater than 0, the speed:torque curve is to be used, and the optimal mode gain will be 0.0.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetNumberOfGeneratorSpeedTorqueValuesOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the number of entries in the generator speed/torque lookup table. If the number of points is greater than 0, the speed:torque curve is to be used, and the optimal mode gain will be 0.0.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfGeneratorSpeedTorqueValues(const turbine turbine_id);

/// <summary>
/// Returns the generator speed at the specified locus on the speed/torque look-up table.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> The index of the locus in the table.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetGeneratorLookupTableSpeedValueOnNacelleN(const turbine turbine_id, int index, int index_nacelle);

/// <summary>
/// Returns the generator speed at the specified locus on the speed/torque look-up table.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> The index of the locus in the table.</param>
double GetGeneratorLookupTableSpeedValue(const turbine turbine_id, int index);

/// <summary>
/// Returns the generator torque at the specified locus on the speed/torque look-up table.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> The index of the locus in the table.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetGeneratorLookupTableTorqueValueOnNacelleN(const turbine turbine_id, int index, int index_nacelle);

/// <summary>
/// Returns the generator torque at the specified locus on the speed/torque look-up table.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> The index of the locus in the table.</param>
double GetGeneratorLookupTableTorqueValue(const turbine turbine_id, int index);

/// <summary>
/// Returns the size of the vector.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetNumberOfDrivetrainBrakeStatusOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the size of the vector.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfDrivetrainBrakeStatus(const turbine turbine_id);

/// <summary>
/// Returns the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> The index of the element in the vector.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetDrivetrainBrakeStatusOnNacelleN(const turbine turbine_id, int index, int index_nacelle);

/// <summary>
/// Returns the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index"> The index of the element in the vector.</param>
int GetDrivetrainBrakeStatus(const turbine turbine_id, int index);

/// <summary>
/// Sets the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="brake_status"> The status of the nth brake:
/// GH_DISCON_BRAKE_OFF (0) - brake off
/// GH_DISCON_BRAKE_ON (1) - brake on</param>
/// <param name="index"> The index of the element in the vector.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDrivetrainBrakeStatusOnNacelleN(const turbine turbine_id, int brake_status, int index, int index_nacelle);

/// <summary>
/// Sets the current status of the brakes on the drivetrain: GH_DISCON_BRAKE_SHAFT_1 (1) = The first shaft brake; GH_DISCON_BRAKE_SHAFT_2 (2) = The second shaft brake; GH_DISCON_BRAKE_GENERATOR (3) = The generator brake; GH_DISCON_BRAKE_SHAFT_3 (4) = The third shaft brake; GH_DISCON_BRAKE_ADDITIONAL_DISCON (5) = The additional brake torque set by the controller. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="brake_status"> The status of the nth brake:
/// GH_DISCON_BRAKE_OFF (0) - brake off
/// GH_DISCON_BRAKE_ON (1) - brake on</param>
/// <param name="index"> The index of the element in the vector.</param>
int SetDrivetrainBrakeStatus(const turbine turbine_id, int brake_status, int index);

/// <summary>
/// Returns the torque to be added to the total brake torque from all other brakes.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetDemandedAdditionalBrakeTorqueOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the torque to be added to the total brake torque from all other brakes.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetDemandedAdditionalBrakeTorque(const turbine turbine_id);

/// <summary>
/// Sets the torque to be added to the total brake torque from all other brakes. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The additional brake torque, in Nm.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDemandedAdditionalBrakeTorqueOnNacelleN(const turbine turbine_id, double torque, int index_nacelle);

/// <summary>
/// Sets the torque to be added to the total brake torque from all other brakes. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The additional brake torque, in Nm.</param>
int SetDemandedAdditionalBrakeTorque(const turbine turbine_id, double torque);

/// <summary>
/// Returns the grid-side converter d-axis control type
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetGridConverterdAxisControlTypeOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the grid-side converter d-axis control type
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetGridConverterdAxisControlType(const turbine turbine_id);

/// <summary>
/// Sets the grid-side converter d-axis control type. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="control_type"> Control type
/// 1 = terminal voltage control
/// 2 = power factor control
/// 3 = reactive power control
/// 4 = d-axis current control
/// </param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetGridConverterdAxisControlTypeOnNacelleN(const turbine turbine_id, int control_type, int index_nacelle);

/// <summary>
/// Sets the grid-side converter d-axis control type. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="control_type"> Control type
/// 1 = terminal voltage control
/// 2 = power factor control
/// 3 = reactive power control
/// 4 = d-axis current control
/// </param>
int SetGridConverterdAxisControlType(const turbine turbine_id, int control_type);

/// <summary>
/// Returns the grid-side converter d-axis control reference value
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetGridConverterdAxisControlReferenceOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the grid-side converter d-axis control reference value
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetGridConverterdAxisControlReference(const turbine turbine_id);

/// <summary>
/// Sets the grid-side converter d-axis control reference value. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="reference_value"> d-axis control reference value</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetGridConverterdAxisControlReferenceOnNacelleN(const turbine turbine_id, double reference_value, int index_nacelle);

/// <summary>
/// Sets the grid-side converter d-axis control reference value. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="reference_value"> d-axis control reference value</param>
int SetGridConverterdAxisControlReference(const turbine turbine_id, double reference_value);

/// <summary>
/// Returns the current yaw control type: 0=RATE CONTROL, 1=TORQUE CONTROL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetYawControlOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the current yaw control type: 0=RATE CONTROL, 1=TORQUE CONTROL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetYawControl(const turbine turbine_id);

/// <summary>
/// Sets whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="override_rate_with_torque"> Whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetOverrideYawRateWithTorqueOnNacelleN(const turbine turbine_id, int override_rate_with_torque, int index_nacelle);

/// <summary>
/// Sets whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="override_rate_with_torque"> Whether the yaw rate calculation will be overriden with a specified yaw torque: 0=OFF, 1=ON.</param>
int SetOverrideYawRateWithTorque(const turbine turbine_id, int override_rate_with_torque);

/// <summary>
/// Sets the demanded yaw actuator torque. This is only valid when either the yaw control is 'torque', or override_yaw_rate_with_torque=1. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The demanded torque, in Nm.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDemandedYawActuatorTorqueOnNacelleN(const turbine turbine_id, double torque, int index_nacelle);

/// <summary>
/// Sets the demanded yaw actuator torque. This is only valid when either the yaw control is 'torque', or override_yaw_rate_with_torque=1. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The demanded torque, in Nm.</param>
int SetDemandedYawActuatorTorque(const turbine turbine_id, double torque);

/// <summary>
/// Sets the demanded yaw rate of the nacelle itself (as opposed to the motor rate). This is only valid when the yaw control is 'rate', and override_yaw_rate_with_torque=0. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="rate"> The demanded rate, in rad/s.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDemandedYawRateOnNacelleN(const turbine turbine_id, double rate, int index_nacelle);

/// <summary>
/// Sets the demanded yaw rate of the nacelle itself (as opposed to the motor rate). This is only valid when the yaw control is 'rate', and override_yaw_rate_with_torque=0. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="rate"> The demanded rate, in rad/s.</param>
int SetDemandedYawRate(const turbine turbine_id, double rate);

/// <summary>
/// Sets whether the yaw stiffness will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="use_yaw_stiffness"> Integer representing override state: 0=OFF, 1=ON.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetUseYawStiffnessOnNacelleN(const turbine turbine_id, int use_yaw_stiffness, int index_nacelle);

/// <summary>
/// Sets whether the yaw stiffness will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="use_yaw_stiffness"> Integer representing override state: 0=OFF, 1=ON.</param>
int SetUseYawStiffness(const turbine turbine_id, int use_yaw_stiffness);

/// <summary>
/// Sets the yaw stiffness. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="stiffness"> The stiffness.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetYawStiffnessOnNacelleN(const turbine turbine_id, double stiffness, int index_nacelle);

/// <summary>
/// Sets the yaw stiffness. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="stiffness"> The stiffness.</param>
int SetYawStiffness(const turbine turbine_id, double stiffness);

/// <summary>
/// Sets whether the yaw damping will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="use_yaw_damping"> Integer representing override state: 0=OFF, 1=ON.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetUseYawDampingOnNacelleN(const turbine turbine_id, int use_yaw_damping, int index_nacelle);

/// <summary>
/// Sets whether the yaw damping will be used in conjunction with the yaw rate: 0=OFF, 1=ON. ONLY USED WITH FLEXIBLE YAW WITH NO TORQUE OVERRIDE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="use_yaw_damping"> Integer representing override state: 0=OFF, 1=ON.</param>
int SetUseYawDamping(const turbine turbine_id, int use_yaw_damping);

/// <summary>
/// Sets the yaw damping. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="damping"> The damping.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetYawDampingOnNacelleN(const turbine turbine_id, double damping, int index_nacelle);

/// <summary>
/// Sets the yaw damping. This is only valid when the yaw is controlled by rate, and use_yaw_damping=1. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="damping"> The damping.</param>
int SetYawDamping(const turbine turbine_id, double damping);

/// <summary>
/// Sets the demanded brake torque, in Nm. This is treated as additional yaw bearing friction. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The demanded brake torque, in Nm. This is treated as additional yaw bearing friction.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDemandedYawBrakeTorqueOnNacelleN(const turbine turbine_id, double torque, int index_nacelle);

/// <summary>
/// Sets the demanded brake torque, in Nm. This is treated as additional yaw bearing friction. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="torque"> The demanded brake torque, in Nm. This is treated as additional yaw bearing friction.</param>
int SetDemandedYawBrakeTorque(const turbine turbine_id, double torque);

/// <summary>
/// Returns the measured shaft power of the rotor, in W. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredShaftPowerOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the measured shaft power of the rotor, in W. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredShaftPower(const turbine turbine_id);

/// <summary>
/// Returns the measured rotor speed, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredRotorSpeedOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the measured rotor speed, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredRotorSpeed(const turbine turbine_id);

/// <summary>
/// Returns the measured electrical power output of the rotor.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredElectricalPowerOutputOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the measured electrical power output of the rotor.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredElectricalPowerOutput(const turbine turbine_id);

/// <summary>
/// Returns the measured generator speed in rad/s. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredGeneratorSpeedOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the measured generator speed in rad/s. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredGeneratorSpeed(const turbine turbine_id);

/// <summary>
/// Returns the measured generator torque, in Nm. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredGeneratorTorqueOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the measured generator torque, in Nm. This is valid for variable-speed controllers only.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredGeneratorTorque(const turbine turbine_id);

/// <summary>
/// Returns the angular position of the yaw bearing.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredYawBearingAngularPositionOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the angular position of the yaw bearing.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredYawBearingAngularPosition(const turbine turbine_id);

/// <summary>
/// Returns the angular velocity of the yaw bearing.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredYawBearingAngularVelocityOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the angular velocity of the yaw bearing.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredYawBearingAngularVelocity(const turbine turbine_id);

/// <summary>
/// Returns the angular acceleration of the yaw bearing.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredYawBearingAngularAccelerationOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the angular acceleration of the yaw bearing.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredYawBearingAngularAcceleration(const turbine turbine_id);

/// <summary>
/// Returns the yaw motor measured rate.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredYawMotorRateOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the yaw motor measured rate.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredYawMotorRate(const turbine turbine_id);

/// <summary>
/// Returns the measured yaw error, in rad. 4. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredYawErrorOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the measured yaw error, in rad. 4. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredYawError(const turbine turbine_id);

/// <summary>
/// Returns the angle of the nacelle, in rad from North.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredNacelleAngleFromNorthOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the angle of the nacelle, in rad from North.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredNacelleAngleFromNorth(const turbine turbine_id);

/// <summary>
/// Returns the fore-aft acceleration of the nacelle at the top of the tower, in m/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredTowerTopForeAftAccelerationOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the fore-aft acceleration of the nacelle at the top of the tower, in m/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredTowerTopForeAftAcceleration(const turbine turbine_id);

/// <summary>
/// Returns the side-to-side acceleration of the nacelle at the top of the tower, in m/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredTowerTopSideSideAccelerationOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the side-to-side acceleration of the nacelle at the top of the tower, in m/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredTowerTopSideSideAcceleration(const turbine turbine_id);

/// <summary>
/// Returns the torque of the shaft around the nacelle's x-axis, in Nm
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredShaftTorqueOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the torque of the shaft around the nacelle's x-axis, in Nm
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredShaftTorque(const turbine turbine_id);

/// <summary>
/// Returns the pitching/normal moment on the yaw bearing, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredYawBearingMyOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the pitching/normal moment on the yaw bearing, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredYawBearingMy(const turbine turbine_id);

/// <summary>
/// Returns the yawing moment on the yaw bearing, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredYawBearingMzOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the yawing moment on the yaw bearing, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredYawBearingMz(const turbine turbine_id);

/// <summary>
/// Returns the acceleration of the nacelle around the shaft's axis, in rad/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredNacelleRollAccelerationOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the acceleration of the nacelle around the shaft's axis, in rad/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredNacelleRollAcceleration(const turbine turbine_id);

/// <summary>
/// Returns the acceleration of the nacelle around the horizontal axis normal to the shaft's axis, in rad/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredNacelleNoddingAccelerationOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the acceleration of the nacelle around the horizontal axis normal to the shaft's axis, in rad/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredNacelleNoddingAcceleration(const turbine turbine_id);

/// <summary>
/// Returns the acceleration of the nacelle around the vertical axis, in rad/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredNacelleYawAccelerationOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the acceleration of the nacelle around the vertical axis, in rad/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredNacelleYawAcceleration(const turbine turbine_id);

/// <summary>
/// Returns the teeter angle of the nacelle, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredTeeterAngleOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the teeter angle of the nacelle, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredTeeterAngle(const turbine turbine_id);

/// <summary>
/// Returns the teeter velocity of the nacelle, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredTeeterVelocityOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the teeter velocity of the nacelle, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredTeeterVelocity(const turbine turbine_id);

/// <summary>
/// Returns the number of active dampers on the nacelle.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int GetNumberOfNacelleActiveDampersOnNacelleN(const turbine turbine_id, int index_nacelle);

/// <summary>
/// Returns the number of active dampers on the nacelle.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfNacelleActiveDampers(const turbine turbine_id);

/// <summary>
/// Returns the acceleration being measured by the active damper, in m/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle_active_damper"> Index of nacelle active damper, starting at 0.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
double GetMeasuredNacelleActiveDamperAccelerationOnNacelleN(const turbine turbine_id, int index_nacelle_active_damper, int index_nacelle);

/// <summary>
/// Returns the acceleration being measured by the active damper, in m/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle_active_damper"> Index of nacelle active damper, starting at 0.</param>
double GetMeasuredNacelleActiveDamperAcceleration(const turbine turbine_id, int index_nacelle_active_damper);

/// <summary>
/// Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle_active_damper"> Index of nacelle active damper, starting at 0.</param>
/// <param name="force"> The force demanded of the active damper, in N.</param>
/// <param name="index_nacelle"> Index of nacelle, starting at 0.</param>
int SetDemandedNacelleActiveDamperForceOnNacelleN(const turbine turbine_id, int index_nacelle_active_damper, double force, int index_nacelle);

/// <summary>
/// Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_nacelle_active_damper"> Index of nacelle active damper, starting at 0.</param>
/// <param name="force"> The force demanded of the active damper, in N.</param>
int SetDemandedNacelleActiveDamperForce(const turbine turbine_id, int index_nacelle_active_damper, double force);

/// <summary>
/// Returns the number of blades on the hub.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int GetNumberOfBladesOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the number of blades on the hub.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetNumberOfBlades(const turbine turbine_id);

/// <summary>
/// Returns the current collective pitch angle for all blades on the rotor in rad/s, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetCollectivePitchAngleOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the current collective pitch angle for all blades on the rotor in rad/s, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetCollectivePitchAngle(const turbine turbine_id);

/// <summary>
/// Returns The demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetDemandedCollectivePitchAngleOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns The demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetDemandedCollectivePitchAngle(const turbine turbine_id);

/// <summary>
/// Sets the demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="angle"> The angle of the blades relative to the rotor disc, in rad.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetDemandedCollectivePitchAngleOnHubN(const turbine turbine_id, double angle, int index_hub);

/// <summary>
/// Sets the demanded collective pitch for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=POSITION. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="angle"> The angle of the blades relative to the rotor disc, in rad.</param>
int SetDemandedCollectivePitchAngle(const turbine turbine_id, double angle);

/// <summary>
/// Returns The demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetDemandedCollectivePitchRateOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns The demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetDemandedCollectivePitchRate(const turbine turbine_id);

/// <summary>
/// Sets the demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="rate"> The rate of change of the angle of the blades relative to the rotor disc, in rad/s.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetDemandedCollectivePitchRateOnHubN(const turbine turbine_id, double rate, int index_hub);

/// <summary>
/// Sets the demanded collective pitch rate for all blades on the rotor, where the pitch control=COLLECTIVE and each blade's pitch actuator=RATE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="rate"> The rate of change of the angle of the blades relative to the rotor disc, in rad/s.</param>
int SetDemandedCollectivePitchRate(const turbine turbine_id, double rate);

/// <summary>
/// Returns the current pitch control type: 0=COLLECTIVE, 1=INDIVIDUAL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int GetPitchControlOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the current pitch control type: 0=COLLECTIVE, 1=INDIVIDUAL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetPitchControl(const turbine turbine_id);

/// <summary>
/// Returns The current override status: 0=OFF, 1=ON
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int GetPitchOverrideStatusOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns The current override status: 0=OFF, 1=ON
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
int GetPitchOverrideStatus(const turbine turbine_id);

/// <summary>
/// Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="override_status"> The current override status: 0=OFF, 1=ON</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetPitchOverrideStatusOnHubN(const turbine turbine_id, int override_status, int index_hub);

/// <summary>
/// Sets the current override status: 0=OFF, 1=ON. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="override_status"> The current override status: 0=OFF, 1=ON</param>
int SetPitchOverrideStatus(const turbine turbine_id, int override_status);

/// <summary>
/// Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="demanded_pitch_rate"> The demanded pitch rate of the blade to the rotor disc, in rad/s.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetSafetySystemDemandedCollectivePitchRateOnHubN(const turbine turbine_id, double demanded_pitch_rate, int index_hub);

/// <summary>
/// Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="demanded_pitch_rate"> The demanded pitch rate of the blade to the rotor disc, in rad/s.</param>
int SetSafetySystemDemandedCollectivePitchRate(const turbine turbine_id, double demanded_pitch_rate);

/// <summary>
/// Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="demanded_pitch_torque"> The demanded pitch motor torque of the blade to the rotor disc, in Nm</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetSafetySystemDemandedCollectivePitchTorqueOnHubN(const turbine turbine_id, double demanded_pitch_torque, int index_hub);

/// <summary>
/// Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=COLLECTIVE. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="demanded_pitch_torque"> The demanded pitch motor torque of the blade to the rotor disc, in Nm</param>
int SetSafetySystemDemandedCollectivePitchTorque(const turbine turbine_id, double demanded_pitch_torque);

/// <summary>
/// Returns the angle between the first blade's axis and vertical, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredRotorAzimuthAngleOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the angle between the first blade's axis and vertical, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredRotorAzimuthAngle(const turbine turbine_id);

/// <summary>
/// Returns the modelled speed of the flow over the hub, in m/s. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetNominalHubFlowSpeedOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the modelled speed of the flow over the hub, in m/s. This is based on free flow at hub position - there is no modelling of actual nacelle anemometer or pitot tube.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetNominalHubFlowSpeed(const turbine turbine_id);

/// <summary>
/// Returns the moment around the y-axis of the rotating hub's axis system, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredRotatingHubMyOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the moment around the y-axis of the rotating hub's axis system, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredRotatingHubMy(const turbine turbine_id);

/// <summary>
/// Returns the yawing moment on the hub around the nominal axis of the first blade, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredRotatingHubMzOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the yawing moment on the hub around the nominal axis of the first blade, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredRotatingHubMz(const turbine turbine_id);

/// <summary>
/// Returns the nodding/pitching moment around the y-axis, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredFixedHubMyOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the nodding/pitching moment around the y-axis, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredFixedHubMy(const turbine turbine_id);

/// <summary>
/// Returns the yawing moment around the vertical axis, in Nm..
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredFixedHubMzOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the yawing moment around the vertical axis, in Nm..
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredFixedHubMz(const turbine turbine_id);

/// <summary>
/// Returns the force acting on the hub in the direction of the shaft, in N
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredFixedHubFxOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the force acting on the hub in the direction of the shaft, in N
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredFixedHubFx(const turbine turbine_id);

/// <summary>
/// Returns the force acting on the hub in the direction normal to the shaft in the horizontal plane, in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredFixedHubFyOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the force acting on the hub in the direction normal to the shaft in the horizontal plane, in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredFixedHubFy(const turbine turbine_id);

/// <summary>
/// Returns the force acting on the hub in the vertical direction, in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredFixedHubFzOnHubN(const turbine turbine_id, int index_hub);

/// <summary>
/// Returns the force acting on the hub in the vertical direction, in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
double GetMeasuredFixedHubFz(const turbine turbine_id);

/// <summary>
/// Returns The demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetDemandedPitchAngleOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns The demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetDemandedPitchAngle(const turbine turbine_id, int index_blade);

/// <summary>
/// Sets the demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_angle"> The pitch of the blade to the rotor disc, in rad.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetDemandedPitchAngleOnHubN(const turbine turbine_id, int index_blade, double demanded_pitch_angle, int index_hub);

/// <summary>
/// Sets the demanded pitch angle of the blade. This is only relevant when the pitch actuator=POSITION, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_angle"> The pitch of the blade to the rotor disc, in rad.</param>
int SetDemandedPitchAngle(const turbine turbine_id, int index_blade, double demanded_pitch_angle);

/// <summary>
/// Returns The demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetDemandedPitchRateOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns The demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetDemandedPitchRate(const turbine turbine_id, int index_blade);

/// <summary>
/// Sets the demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_rate"> The pitch of the blade to the rotor disc, in rad.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetDemandedPitchRateOnHubN(const turbine turbine_id, int index_blade, double demanded_pitch_rate, int index_hub);

/// <summary>
/// Sets the demanded rate of change of the pitch angle of the blade. This is only relevant when the pitch actuator=RATE, and the pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_rate"> The pitch of the blade to the rotor disc, in rad.</param>
int SetDemandedPitchRate(const turbine turbine_id, int index_blade, double demanded_pitch_rate);

/// <summary>
/// Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_rate"> The demanded pitch rate of the blade to the rotor disc, in rad/s.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetSafetySystemDemandedPitchRateOnHubN(const turbine turbine_id, int index_blade, double demanded_pitch_rate, int index_hub);

/// <summary>
/// Sets the demanded rate of change of the pitch angle of the blade during a safety system shutdown. This is only relevant when the safety system is rate demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_rate"> The demanded pitch rate of the blade to the rotor disc, in rad/s.</param>
int SetSafetySystemDemandedPitchRate(const turbine turbine_id, int index_blade, double demanded_pitch_rate);

/// <summary>
/// Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_torque"> The demanded pitch motor torque of the blade to the rotor disc, in Nm</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetSafetySystemDemandedPitchTorqueOnHubN(const turbine turbine_id, int index_blade, double demanded_pitch_torque, int index_hub);

/// <summary>
/// Sets the demanded pitch motor torque of the blade during a safety system shutdown. This is only relevant when the safety system is torque demand and pitch control=INDIVIDUAL. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="demanded_pitch_torque"> The demanded pitch motor torque of the blade to the rotor disc, in Nm</param>
int SetSafetySystemDemandedPitchTorque(const turbine turbine_id, int index_blade, double demanded_pitch_torque);

/// <summary>
/// The status of whether either the lower or upper limit switch has been tripped in the pitch actuator
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int IsPitchLimitSwitchTrippedOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// The status of whether either the lower or upper limit switch has been tripped in the pitch actuator
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
int IsPitchLimitSwitchTripped(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the reference blade angle for when the turbine is operating below its rated flow speed, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetBelowRatedPitchAngleSetPointOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the reference blade angle for when the turbine is operating below its rated flow speed, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetBelowRatedPitchAngleSetPoint(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the minimum pitch angle allowed on the blade, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMinimumPitchAngleOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the minimum pitch angle allowed on the blade, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMinimumPitchAngle(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the maximum pitch angle allowed on the blade, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMaximumPitchAngleOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the maximum pitch angle allowed on the blade, in rad.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMaximumPitchAngle(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the minimum pitch rate allowed on the blade, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMinimumPitchRateOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the minimum pitch rate allowed on the blade, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMinimumPitchRate(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the maximum pitch rate allowed on the blade, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMaximumPitchRateOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the maximum pitch rate allowed on the blade, in rad/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMaximumPitchRate(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the pitch actuator type: 0=POSITION, 1=RATE
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int GetPitchActuatorTypeOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the pitch actuator type: 0=POSITION, 1=RATE
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
int GetPitchActuatorType(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the current pitch angle of the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredPitchAngleOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the current pitch angle of the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredPitchAngle(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the current rate of change of the pitch angle of the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredPitchRateOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the current rate of change of the pitch angle of the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredPitchRate(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the current pitch actuator torque, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredPitchActuatorTorqueOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the current pitch actuator torque, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredPitchActuatorTorque(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the out-of-plane bending moment, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredBladeOutOfPlaneBendingMomentOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the out-of-plane bending moment, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredBladeOutOfPlaneBendingMoment(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the in-plane bending moment, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredBladeInPlaneBendingMomentOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the in-plane bending moment, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredBladeInPlaneBendingMoment(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the pitch bearing's Mz, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredPitchBearingMzOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the pitch bearing's Mz, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredPitchBearingMz(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the pitch bearing's friction, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredPitchBearingFrictionOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the pitch bearing's friction, in Nm.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredPitchBearingFriction(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the pitch bearing's radial force, i.e. sqrt(Fx2+Fy2), in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredPitchBearingRadialForceOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the pitch bearing's radial force, i.e. sqrt(Fx2+Fy2), in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredPitchBearingRadialForce(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the pitch bearing's axial force, i.e. Fz, in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredPitchBearingAxialForceOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the pitch bearing's axial force, i.e. Fz, in N.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
double GetMeasuredPitchBearingAxialForce(const turbine turbine_id, int index_blade);

/// <summary>
/// Sets the actual pitch position of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="pitch_position"> The pitch of the blade to the rotor disc, in rad.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetHardwarePitchPositionOnHubN(const turbine turbine_id, int index_blade, double pitch_position, int index_hub);

/// <summary>
/// Sets the actual pitch position of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="pitch_position"> The pitch of the blade to the rotor disc, in rad.</param>
int SetHardwarePitchPosition(const turbine turbine_id, int index_blade, double pitch_position);

/// <summary>
/// Sets the actual pitch rate of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="pitch_rate"> The pitch rate of the blade, in rad.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetHardwarePitchRateOnHubN(const turbine turbine_id, int index_blade, double pitch_rate, int index_hub);

/// <summary>
/// Sets the actual pitch rate of the blade, based on the hardware measurements. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="pitch_rate"> The pitch rate of the blade, in rad.</param>
int SetHardwarePitchRate(const turbine turbine_id, int index_blade, double pitch_rate);

/// <summary>
/// Returns the number of ailerons on the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int GetNumberOfAileronsOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the number of ailerons on the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
int GetNumberOfAilerons(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the number of strain gauges on the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int GetNumberOfBladeStrainGaugesOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the number of strain gauges on the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
int GetNumberOfBladeStrainGauges(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns the number of accelerometers on the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int GetNumberOfBladeAccelerometersOnHubN(const turbine turbine_id, int index_blade, int index_hub);

/// <summary>
/// Returns the number of accelerometers on the blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
int GetNumberOfBladeAccelerometers(const turbine turbine_id, int index_blade);

/// <summary>
/// Returns The demanded deployment angle of the aileron.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_aileron"> Index of aileron, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetDemandedAileronAngleOnHubN(const turbine turbine_id, int index_blade, int index_aileron, int index_hub);

/// <summary>
/// Returns The demanded deployment angle of the aileron.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_aileron"> Index of aileron, starting at 0.</param>
double GetDemandedAileronAngle(const turbine turbine_id, int index_blade, int index_aileron);

/// <summary>
/// Sets the demanded deployment angle of the aileron. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_aileron"> Index of aileron, starting at 0.</param>
/// <param name="demanded_angle"> The deployment angle of the aileron, in rad.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
int SetDemandedAileronAngleOnHubN(const turbine turbine_id, int index_blade, int index_aileron, double demanded_angle, int index_hub);

/// <summary>
/// Sets the demanded deployment angle of the aileron. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_aileron"> Index of aileron, starting at 0.</param>
/// <param name="demanded_angle"> The deployment angle of the aileron, in rad.</param>
int SetDemandedAileronAngle(const turbine turbine_id, int index_blade, int index_aileron, double demanded_angle);

/// <summary>
/// The distance along the span the strain gauge is positioned.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_strain_gauge"> Index of blade strain gauge, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetBladeStrainGaugeDistanceOnHubN(const turbine turbine_id, int index_blade, int index_blade_strain_gauge, int index_hub);

/// <summary>
/// The distance along the span the strain gauge is positioned.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_strain_gauge"> Index of blade strain gauge, starting at 0.</param>
double GetBladeStrainGaugeDistance(const turbine turbine_id, int index_blade, int index_blade_strain_gauge);

/// <summary>
/// Returns the angle of the strain gauge.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_strain_gauge"> Index of blade strain gauge, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetBladeStrainGaugeAngleOnHubN(const turbine turbine_id, int index_blade, int index_blade_strain_gauge, int index_hub);

/// <summary>
/// Returns the angle of the strain gauge.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_strain_gauge"> Index of blade strain gauge, starting at 0.</param>
double GetBladeStrainGaugeAngle(const turbine turbine_id, int index_blade, int index_blade_strain_gauge);

/// <summary>
/// Returns the moment in the direction specified by the strain gauge's angle.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_strain_gauge"> Index of blade strain gauge, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredBladeStrainGaugeMOnHubN(const turbine turbine_id, int index_blade, int index_blade_strain_gauge, int index_hub);

/// <summary>
/// Returns the moment in the direction specified by the strain gauge's angle.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_strain_gauge"> Index of blade strain gauge, starting at 0.</param>
double GetMeasuredBladeStrainGaugeM(const turbine turbine_id, int index_blade, int index_blade_strain_gauge);

/// <summary>
/// The distance along the span the accelerometer is positioned.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetBladeAccelerometerDistanceOnHubN(const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub);

/// <summary>
/// The distance along the span the accelerometer is positioned.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
double GetBladeAccelerometerDistance(const turbine turbine_id, int index_blade, int index_blade_accelerometer);

/// <summary>
/// Returns the acceleration in the direction specified by the accelerometer's angle.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredBladeAccelerometerAccelerationOnHubN(const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub);

/// <summary>
/// Returns the acceleration in the direction specified by the accelerometer's angle.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
double GetMeasuredBladeAccelerometerAcceleration(const turbine turbine_id, int index_blade, int index_blade_accelerometer);

/// <summary>
/// Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredBladeAccelerometerAccelerationXOnHubN(const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub);

/// <summary>
/// Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
double GetMeasuredBladeAccelerometerAccelerationX(const turbine turbine_id, int index_blade, int index_blade_accelerometer);

/// <summary>
/// Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredBladeAccelerometerAccelerationYOnHubN(const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub);

/// <summary>
/// Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
double GetMeasuredBladeAccelerometerAccelerationY(const turbine turbine_id, int index_blade, int index_blade_accelerometer);

/// <summary>
/// Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
/// <param name="index_hub"> Index of hub, starting at 0.</param>
double GetMeasuredBladeAccelerometerAccelerationZOnHubN(const turbine turbine_id, int index_blade, int index_blade_accelerometer, int index_hub);

/// <summary>
/// Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_blade"> Index of blade, starting at 0.</param>
/// <param name="index_blade_accelerometer"> Index of blade accelerometer, starting at 0.</param>
double GetMeasuredBladeAccelerometerAccelerationZ(const turbine turbine_id, int index_blade, int index_blade_accelerometer);

/// <summary>
/// Sets the value to be logged in this timestep. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_log_value"> Index of log value, starting at 0.</param>
/// <param name="log_value"> The value to be logged.</param>
int SetLoggingValue(const turbine turbine_id, int index_log_value, double log_value);

/// <summary>
/// Returns the name of the logging value.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_log_value"> Index of log value, starting at 0.</param>
const char* GetLoggingName(const turbine turbine_id, int index_log_value);

/// <summary>
/// Returns the units of the logging value.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_log_value"> Index of log value, starting at 0.</param>
const char* GetLoggingUnits(const turbine turbine_id, int index_log_value);

/// <summary>
/// Returns the index of the structural member on which the strain gauge is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, seeGetTurbineStrainGaugeTowerHeight.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetTurbineStrainGaugeMemberIndex(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// The fraction along the structural member that the strain gauge is located: 0.0 = end 1, 1.0 = end 2. For monopile towers, see GetTurbineStrainGaugeTowerHeight.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetTurbineStrainGaugeLengthFraction(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the height up the tower the strain gauge is located. This is only valid for monopile towers, and will be -666.0 for multi-member towers.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetTurbineStrainGaugeTowerHeight(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the moment about the X-axis (the torsion about the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetMeasuredTurbineStrainGaugeMx(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the moment about the Y-axis (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetMeasuredTurbineStrainGaugeMy(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the moment about the Z-axis (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetMeasuredTurbineStrainGaugeMz(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the load in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetMeasuredTurbineStrainGaugeFx(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the load in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetMeasuredTurbineStrainGaugeFy(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the load in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_strain_gauge"> Index of turbine strain gauge, starting at 0.</param>
double GetMeasuredTurbineStrainGaugeFz(const turbine turbine_id, int index_turbine_strain_gauge);

/// <summary>
/// Returns the index of the structural member on which the accelerometer is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, see GetTurbineAccelerometerTowerHeight.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_accelerometer"> Index of turbine accelerometer, starting at 0.</param>
double GetTurbineAccelerometerMemberIndex(const turbine turbine_id, int index_turbine_accelerometer);

/// <summary>
/// The fraction along the structural member that the accelerometer is located: 0.0 = end 1, 1.0 = end 2. For monopile towers, see GetTurbineAccelerometerTowerHeight.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_accelerometer"> Index of turbine accelerometer, starting at 0.</param>
double GetTurbineAccelerometerLengthFraction(const turbine turbine_id, int index_turbine_accelerometer);

/// <summary>
/// Returns the height up the tower the acceleraometer is located. This is only valid for monopile towers, and will be set to a negative number for multi-member towers.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_accelerometer"> Index of turbine accelerometer, starting at 0.</param>
double GetTurbineAccelerometerTowerHeight(const turbine turbine_id, int index_turbine_accelerometer);

/// <summary>
/// Returns the accelleration in the X-axis direction (along the component's axis for a multi-member structure or blade, or the turbine's X-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_accelerometer"> Index of turbine accelerometer, starting at 0.</param>
double GetMeasuredTurbineAccelerometerAccelerationX(const turbine turbine_id, int index_turbine_accelerometer);

/// <summary>
/// Returns the acceleration in the Y-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Y-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_accelerometer"> Index of turbine accelerometer, starting at 0.</param>
double GetMeasuredTurbineAccelerometerAccelerationY(const turbine turbine_id, int index_turbine_accelerometer);

/// <summary>
/// Returns the acceleration in the Z-axis direction (perpendicular to the component's axis for a multi-member structure or blade, or the turbine's Z-axis for a monopile tower).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_accelerometer"> Index of turbine accelerometer, starting at 0.</param>
double GetMeasuredTurbineAccelerometerAccelerationZ(const turbine turbine_id, int index_turbine_accelerometer);

/// <summary>
/// Returns the index of the structural member on which the active damper is located. This is the same as that used in the Support Structure definition screen, and does not necessarily start at 0 or 1. For monopile towers, see GetTurbineActiveDamperTowerHeight.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_active_damper"> Index of turbine active damper, starting at 0.</param>
double GetTurbineActiveDamperMemberIndex(const turbine turbine_id, int index_turbine_active_damper);

/// <summary>
/// Returns the acceleration being measured by the active damper, in m/s2.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_active_damper"> Index of turbine active damper, starting at 0.</param>
double GetMeasuredTurbineActiveDamperAcceleration(const turbine turbine_id, int index_turbine_active_damper);

/// <summary>
/// Sets the force demanded of the active damper, in N. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_turbine_active_damper"> Index of turbine active damper, starting at 0.</param>
/// <param name="force"> The force demanded of the active damper, in N.</param>
int SetDemandedTurbineActiveDamperForce(const turbine turbine_id, int index_turbine_active_damper, double force);

/// <summary>
/// Returns returns the nominal X coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
double GetNominalLidarBeamPositionX(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns returns the nominal Y coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
double GetNominalLidarBeamPositionY(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns returns the nominal Z coordinate of the LIDAR beam's origin, in the coordinates of the component to which it is attached. This is nominal as it does not include the distortion of the component during the simulation.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
double GetNominalLidarBeamPositionZ(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns an integer representing the mounting of the LIDAR: 0=Support Structure or Ground; 1=Nacelle; 2=Hub; 3=Blade
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetLidarBeamMounting(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns returns the index (starting at 0) of the rotor the Lidar is mounted on, or -1 if it is not mounted on a blade, hub or nacelle.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetLidarBeamRotorIndex(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns returns the index (starting at 0) of the blade the Lidar is mounted on, or -1 if it is not mounted on a blade.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetLidarBeamBladeIndex(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Adds a focal point, and returns the new number of focal points.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int AddLidarBeamFocalPoint(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Removes a focal point, and returns the new number of focal points.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
/// <param name="index"> The index of the focal point to remove.</param>
int RemoveLidarBeamFocalPoint(const turbine turbine_id, int index_lidar_beam, int index);

/// <summary>
/// Returns the number of focal points.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetNumberOfLidarBeamFocalPoints(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns the control method for the Lidar beam: 0=External Controller; 1=Bladed (circular pattern); 2=Bladed rosette pattern).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetLidarBeamControl(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns the update mechanism for the beam:
/// GH_DISCON_LIDAR_BEAM_UPDATE_ON_TIMESTEP (0)=on every Lidar timestep
/// GH_DISCON_LIDAR_BEAM_UPDATE_WAITING (1)=on demand (currently waiting)
/// GH_DISCON_LIDAR_BEAM_UPDATE_REQUESTED (2)=on demand (already requested).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetLidarBeamUpdate(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Requests an update for the beam (only available if the Lidar update type = GH_DISCON_LIDAR_BEAM_UPDATE_WAITING).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int RequestLidarBeamUpdate(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Sets the control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth). Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
/// <param name="lidar_beam_control_coordinate_system_int"> The control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth), in .</param>
int SetLidarBeamControlCoordinateSystem(const turbine turbine_id, int index_lidar_beam, int lidar_beam_control_coordinate_system_int);

/// <summary>
/// Returns the control axes for the Lidar beam: 0=CARTESIAN (using angles Y and Z), 1=SPHERICAL (using offset and azimuth).
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetLidarBeamControlCoordinateSystem(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns whether the Lidar beam is currently occluded by a blade: 0=NO, 1=YES.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
int GetIsLidarBeamCurrentlyOccluded(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Returns The Lidar beam's demanded angle in the XZ plane (i.e. rotating around the Y axis). Only valid when the beam control is CARTESIAN.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
double GetDemandedLidarBeamAngleY(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Sets the Lidar beam's demanded angle in the XZ plane (i.e. rotating around the Y axis). Only valid when the beam control is CARTESIAN. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
/// <param name="angle"> The angle to the x-axis, in rad.</param>
int SetDemandedLidarBeamAngleY(const turbine turbine_id, int index_lidar_beam, double angle);

/// <summary>
/// Returns The Lidar beam's demanded angle in the XY plane (i.e. rotating around the Z axis). Only valid when the beam control is CARTESIAN.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
double GetDemandedLidarBeamAngleZ(const turbine turbine_id, int index_lidar_beam);

/// <summary>
/// Sets the Lidar beam's demanded angle in the XY plane (i.e. rotating around the Z axis). Only valid when the beam control is CARTESIAN. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
/// <param name="angle"> The angle to the x-axis, in rad.</param>
int SetDemandedLidarBeamAngleZ(const turbine turbine_id, int index_lidar_beam, double angle);

/// <summary>
/// Returns the measured velocity of the Lidar station in line-of-site, in m/s.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
/// <param name="index_lidar_beam_focal_point"> Index of lidar beam focal point, starting at 0.</param>
double GetMeasuredLidarBeamFocalPointVelocity(const turbine turbine_id, int index_lidar_beam, int index_lidar_beam_focal_point);

/// <summary>
/// Returns The distance to the focal point of the Lidar, along line-of-sight. This is the distance from the Lidar position at which the flow velocity is measured.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
/// <param name="index_lidar_beam_focal_point"> Index of lidar beam focal point, starting at 0.</param>
double GetDemandedLidarBeamFocalPointFocalDistance(const turbine turbine_id, int index_lidar_beam, int index_lidar_beam_focal_point);

/// <summary>
/// Sets the distance to the focal point of the Lidar, along line-of-sight. This is the distance from the Lidar position at which the flow velocity is measured. Returns 0 for success, and -1 for an error.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
/// <param name="index_lidar_beam"> Index of lidar beam, starting at 0.</param>
/// <param name="index_lidar_beam_focal_point"> Index of lidar beam focal point, starting at 0.</param>
/// <param name="focal_distance"> The distance to the focal point, in m.</param>
int SetDemandedLidarBeamFocalPointFocalDistance(const turbine turbine_id, int index_lidar_beam, int index_lidar_beam_focal_point, double focal_distance);

#ifdef __cplusplus
};
}
#endif // End of __cplusplus

#endif // End of EXTERNAL_CONTROLLER_API_H

NREL 5MW external control/GH_DISCON_Constants.h

/***
 *
 * Purpose : This header file defines a set of constants for robust
 * operation of the External Controller API and the internal
 * model interface.
 *
 * THIS FILE IS AUTOGENERATED FROM, "DataModel.xml" AND IS NOT UNDER SOURCE CONTROL
 *
 * Created : 11/9/2013 using T4 template "ExternalControllerApiH.tt"
 *
 * Copyright : GL Garrad Hassan 2012
 *
 **/

#ifndef GH_DISCON_CONSTANTS
#define GH_DISCON_CONSTANTS

#include <float.h> // Defines DBL_MAX

#define INFINITY (DBL_MAX+DBL_MAX)
#define NAN (INFINITY-INFINITY)
#define GH_DISCON_ERROR_STRING_LENGTH 256 // This is used to size all error strings.	
#define GH_DISCON_LEGACY_MESSAGE_STRING_LENGTH 512 // This is used to size the discon message argument for legacy controllers.	
#define GH_DISCON_LEGACY_MAXIMUM_NUMBER_LOGGING_VARS 70 // This is used to calculate the number of characters in OUTNAME for legacy controllers.	
#define GH_DISCON_LEGACY_NUMBER_MINIMUM_INFILE_LENGTH 256 // This is hard-coded into some external controllers.	

#ifdef __cplusplus // This statement is only necessary (and indeed valid) when compiled under C++
namespace GHTurbineInterface {
#endif

// TYPEDEFS ===
/*! The 'turbine' is a pointer which is passed to the API so that the target model can be identified and located. */
typedef size_t turbine;
/*! */
/// <summary>
/// The external controller DLL should expose a function named "CONTROLLER". The function in the DLL should match the CONTROLLER_TYPEDEF, and can reference any of the API functions in this header file.
///
/// e.g. the function specification in C:
/// extern "C" int __declspec(dllexport) __cdecl CONTROLLER (turbine turbine_id)
///
/// or the function specification in FORTRAN:
/// INTEGER FUNCTION CONTROLLER (TURBINE)
/// USE ISO_C_BINDING
/// INTEGER(C_SIZE_T), INTENT(IN) :: TURBINE
///
/// See documentation on external interfaces for more details.
/// </summary>
/// <param name="turbine_id"> The id of the turbine model that is provided by the simulation. This should be provided as the first argument to any function call to the simulation.</param>
typedef int (__cdecl *CONTROLLER_TYPEDEF)(const turbine turbine_id);			
// ==

// CONSTANTS ==
// Use these for testing the return result of functions that return integers representing states.
// GH_DISCON_RESULT - Flag returned by simulation in response to 'Set' commands.
static const int GH_DISCON_SUCCESS = 0; /**< Function executed successfully. */
static const int GH_DISCON_ERROR = -1; /**< An error prevented the function from completing. Use function GetLastErrorMessage to retrieve a description of the error. */
static const int GH_DISCON_FILE_NOT_FOUND = -404; /**< The specified file was not found. */
static const int GH_DISCON_FUNCTION_NOT_FOUND = -405; /**< The specified function was not found in the specified DLL. */
static const int GH_DISCON_SIDE_BY_SIDE_ERRORS = -406; /**< Windows Error 14001: the side-by-side configuration information for the specified DLL contains errors.. */
static const int GH_DISCON_WARNING = 1; /**< A warning was generated by a subroutine. */
// GH_DISCON_CONTROLLER_STATE - Flag returned by simulation from GetControllerState.
static const int GH_DISCON_CONTROLLER_ERROR = -1; /**< The simulation has errored during this or last timestep */
static const int GH_DISCON_POWER_PRODUCTION = 0; /**< The simulation is in power production mode. */
static const int GH_DISCON_PARKED = 1; /**< The simulation is in parked mode. */
static const int GH_DISCON_IDLING = 2; /**< The simulation is in idling mode. */
static const int GH_DISCON_START_UP = 3; /**< The simulation is in start-up mode. */
static const int GH_DISCON_NORMAL_STOP = 4; /**< The simulation is in normal stopping mode. */
static const int GH_DISCON_EMERGENCY_STOP = 5; /**< The simulation is in emergency stopping mode. */
// GH_DISCON_SIMULATION_STATUS - Flag returned by simulation from GetSimulationStatus. Descriptions taken from the user manual.
static const int GH_DISCON_STATUS_FINALISING = -1; /**< Final call at the end of the simulation. */
static const int GH_DISCON_STATUS_INITIALISING = 0; /**< First call at time zero. */
static const int GH_DISCON_STATUS_DISCRETE_STEP = 1; /**< Simulation discrete timestep. */
static const int GH_DISCON_STATUS_REALTIME = 2; /**< Real Time update step (for Real Time Test simulations only). On a call with the status flag set to 2, the DLL must exchange data with the turbine controller. */
// GH_DISCON_PITCH_CONTROL - Flag to specify whether the pitch is controlled collectively or individually.
static const int GH_DISCON_PITCH_CONTROL_COLLECTIVE = 0; /**< Pitch is controlled collectively - use GetCollectivePitchAngle and SetDemandedCollectivePitchAngle. */
static const int GH_DISCON_PITCH_CONTROL_INDIVIDUAL = 1; /**< Pitch is controlled on each blade individually - use GetPitchAngle and SetDemandedPitchAngle. */
// GH_DISCON_YAW_CONTROL - Flag to represent whether the yaw is controlled by rate or torque.
static const int GH_DISCON_YAW_CONTROL_RATE = 0; /**< Uses the yaw rate demand to control yaw. */
static const int GH_DISCON_YAW_CONTROL_TORQUE = 1; /**< Uses the yaw torque demand to control yaw. */
// GH_DISCON_GENERATOR_CONTACTOR - Flag used in Rotor functions Get and SetGeneratorContactor. Descriptions come from the user manual for the external controller.
static const int GH_DISCON_GENERATOR_CONTACTOR_OFF = 0; /**< Off. */
static const int GH_DISCON_GENERATOR_CONTACTOR_MAIN = 1; /**< Main (high speed) or variable speed generator. */
static const int GH_DISCON_GENERATOR_CONTACTOR_LOW_SPEED = 2; /**< Low speed generator. */
// GH_DISCON_GRID_CONVERTER_D_AXIS_CONTROL_TYPE -
static const int GH_DISCON_GRID_CONVERTER_TERMINAL_VOLTAGE_CONTROL = 1; /**< Terminal voltage control. */
static const int GH_DISCON_GRID_CONVERTER_POWER_FACTOR_CONTROL = 2; /**< Power factor control. */
static const int GH_DISCON_GRID_CONVERTER_REACTIVE_POWER_CONTROL = 3; /**< Reactive power control. */
static const int GH_DISCON_GRID_CONVERTER_DAXIS_CURRENT_CONTROL = 4; /**< d-axis current control. */
// GH_DISCON_BRAKE_STATUS - Flag to specify the status of the various brakes on a rotor.
static const int GH_DISCON_BRAKE_OFF = 0; /**< Brake is off. */
static const int GH_DISCON_BRAKE_ON = 1; /**< Brake is on. */
// GH_DISCON_BRAKE -
static const int GH_DISCON_BRAKE_SHAFT_1 = 1; /**< First shaft brake. */
static const int GH_DISCON_BRAKE_SHAFT_2 = 2; /**< Second shaft brake. */
static const int GH_DISCON_BRAKE_SHAFT_3 = 4; /**< Third shaft brake. */
static const int GH_DISCON_BRAKE_GENERATOR = 3; /**< Generator brake. */
static const int GH_DISCON_BRAKE_ADDITIONAL_DISCON = 5; /**< Additional brake torque, added to the total applied torque of all of the other brakes. */
// GH_DISCON_OVERRIDE_STATUS - Flag used to specify whether the controller is overriding the control of yaw, torque or pitch.
static const int GH_DISCON_OVERRIDE_OFF = 0; /**< Override is off. */
static const int GH_DISCON_OVERRIDE_ON = 1; /**< Override is on. */
// GH_DISCON_VARIABLE_SLIP_STATUS - Flag used by Rotor's Get and SetVariableSlipStatus.
static const int GH_DISCON_VARIABLE_SLIP_OFF = 0; /**< Variable slip off. */
static const int GH_DISCON_VARIABLE_SLIP_ON = 1; /**< Variable slip on. */
// GH_DISCON_PITCH_ACTUATOR_TYPE - Flag to specify the actuator type of either a blade or an aileron.
static const int GH_DISCON_PITCH_POSITION = 0; /**< The required actuator position is demanded. */
static const int GH_DISCON_PITCH_RATE = 1; /**< The required actuator rate is demanded. */
static const int GH_DISCON_PITCH_NO_ACTUATOR = 2; /**< There is no pitch actuator on the blade (for instance, if ailerons are used to control pitch). */
// GH_DISCON_TEETER_LOCK_FLAG - Flag for use in function SetTeeterLock.
static const int GH_DISCON_TEETER_UNLOCKED = 0; /**< Teeter lock off. */
static const int GH_DISCON_TEETER_LOCKED = 1; /**< Teeter lock on. */
// GH_DISCON_LOGGING_LEVEL - Flag to set the logging level printed to the console or the log file.
static const int GH_DISCON_LOG_SCRATCH = 0; /**< If level is less than this, ALL messages will be reported. */
static const int GH_DISCON_LOG_DEBUG = 10; /**< If level is less than this, messages down to DEBUG level will be reported. */
static const int GH_DISCON_LOG_INFO = 20; /**< If level is less than this, messages down to INFO level will be reported. */
static const int GH_DISCON_LOG_WARNING = 30; /**< If level is less than this, messages down to WARNING level will be reported. */
static const int GH_DISCON_LOG_ERROR = 40; /**< If level is less than this, messages down to ERROR level will be reported. */
static const int GH_DISCON_LOG_CRITICAL = 50; /**< If level is less than this, messages down to CRITICAL level will be reported. If above this, then no messages will be reported (not recommended). */
// GH_DISCON_LIDAR_BEAM_COORDINATES - Flag to define in what coordinate systems the Lidar beam is controlled.
static const int GH_DISCON_LIDAR_BEAM_CARTESIAN = 0; /**< Cartesian coordinates, using Y and Z. */
static const int GH_DISCON_LIDAR_BEAM_SPHERICAL = 1; /**< Spherical coordinates, using azimuth and offset angles. */
// GH_DISCON_LIDAR_BEAM_CONTROL - Flag to represent whether the Lidar beam is controlled by the external controller or not.
static const int GH_DISCON_LIDAR_BEAM_CONTROL_DISCON = 0; /**< Lidar beam is expecting control instructions from the external controller. */
static const int GH_DISCON_LIDAR_BEAM_CONTROL_AUTO_CIRCULAR = 1; /**< Lidar beam is being controlled by the simulation, varying in a circular pattern. */
static const int GH_DISCON_LIDAR_BEAM_CONTROL_AUTO_ROSETTE = 2; /**< Lidar beam is being controlled by the simulation, varying in a rosette pattern. */
// GH_DISCON_LIDAR_BEAM_UPDATE - Flag to represent whether the Lidar beam is controlled by the external controller or not.
static const int GH_DISCON_LIDAR_BEAM_UPDATE_ON_TIMESTEP = 0; /**< The Lidar beam's measured velocity is updated automatically on every Lidar timestep. */
static const int GH_DISCON_LIDAR_BEAM_UPDATE_WAITING = 1; /**< The Lidar beam's measured velocity is updated only on request, and is currently waiting for the controller to request an update. */
static const int GH_DISCON_LIDAR_BEAM_UPDATE_REQUESTED = 2; /**< The Lidar beam's measured velocity is updated only on request, and this flag shows that the controller has requested the measured results to be updated on the next controller timestep. */
// GH_DISCON_LIDAR_MOUNTING - Flag to on which component the LIDAR is mounted.
static const int GH_DISCON_LIDAR_SUPPORT_STRUCTURE = 0; /**< Lidar beam is mounted on the support structure or the ground (both specified in the global coordinate system). */
static const int GH_DISCON_LIDAR_NACELLE = 1; /**< Lidar beam is mounted on one of the nacelles, rotating with yaw, but not with the blades. */
static const int GH_DISCON_LIDAR_HUB = 2; /**< Lidar beam is mounted on one of the hubs, rotating with yaw and with the blades. */
static const int GH_DISCON_LIDAR_BLADE = 3; /**< Lidar beam is mounted on one of the blades. */
// GH_DISCON_BOOL - Flag to represent a boolean condition.
static const int GH_DISCON_NO = 0; /**< No. */
static const int GH_DISCON_YES = 1; /**< Yes. */

// Error Values - Enum returned by simulation from GetControllerState.
static const int GH_DISCON_ERROR_INT = -666;
static const double GH_DISCON_ERROR_DOUBLE = NAN;
#pragma warning(disable:4305) // Warning 4305 warns of implicit casts. Unfortunately, an *explicit* cast causes an error when compiled as C code.
static const float GH_DISCON_ERROR_FLOAT = NAN;
#pragma warning(default:4305)
static const char* const GH_DISCON_ERROR_CHAR = "<function-returned-error>";
static const wchar_t* const GH_DISCON_ERROR_WCHAR = L"<function-returned-error>";
static const int GH_DISCON_ERROR_STATUS = -1;
// ==

#ifdef __cplusplus
}
#endif // End of __cplusplus

#endif // End of GH_DISCON_CONSTANTS

NREL 5MW external control/parameterSearchDefine.h

#ifndef PARAMETER_SEARCH_FIND_H
#define PARAMETER_SEARCH_FIND_H

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.
using namespace GHTurbineInterface;

#include <string.h>		//for strings

bool parameterSearchDefine (const turbine turbine_id, string line, bool parameter, const char* search)
{

	if (line.find(search) != -1)
	{
		if (line.find("true") != -1)
			parameter = true;
		else if (line.find("false") != -1)
			parameter = false;
		else
		{
			ReportWarningMessage (turbine_id, "Parameter ill defined:");
			ReportWarningMessage (turbine_id, search);
		}
	}
	
 return (parameter);
}

#endif // End of PARAMETER_SEARCH_FIND_H

NREL 5MW external control/transferFunctions.h

// Header file including definitions for defining transfer functions, and an update procedure to use them

#ifndef TRANSFER_FUNCTIONS_H
#define TRANSFER_FUNCTIONS_H

#include <iostream>
#include <string>
using namespace std;

struct TF //Structure: transfer functions of up to 5 numerators/denominators
{
public:
	int		size;		// max number of numerators/denominators in tf (avoids excessive calculations)
	double 	alpha[5];	//
	double 	beta[5];	//
	double 	inputs[5];	// previous input values
	double 	outputs[5];	// previous output values
	TF():size(3){};		// Constructor: to set default size of tf to 3 numerators/denominators
};

// Set initial conditions of TF and coefficients
TF TFinit(TF tf, double *alphas, double *betas, double init)
{
	int arrayLength = tf.size;
	int k;
	
	for (k=0; k<arrayLength; k++)
	{
		tf.inputs[k] = init;

		tf.outputs[k] = init;

		tf.alpha[k] = alphas[k];

		tf.beta[k] = betas[k];
	}

	return(tf);
}

// Update input/output of TF
TF TFupdate(TF tf, double input) //Function: update output from TFs
{
	//int arrayLength = sizeof(tf.inputs)/sizeof(double);
	int arrayLength = tf.size;
	int k;

	// shift along the previous input and ouput values
	for (k=1; k<arrayLength; k++)
	{
		tf.inputs[arrayLength-k] = tf.inputs[arrayLength-k-1];
		tf.outputs[arrayLength-k] = tf.outputs[arrayLength-k-1];
	}

	// set new input value
	tf.inputs[0]	=	input;

	// calculate latest output value
	tf.outputs[0] = 0.0;
	double temp = 0.0;
	for (k=1; k<arrayLength;k++)
	{
		temp = temp - tf.outputs[arrayLength-k]*tf.alpha[arrayLength-k] + tf.inputs[arrayLength-k]*tf.beta[arrayLength-k];
	}

	tf.outputs[0] = temp + tf.inputs[0]*tf.beta[0];

	//return updated data
	return(tf);

}

#endif // End of TRANSFER_FUNCTIONS_H

NREL 5MW external control/transferFunctionsFloat.h

// Header file including definitions for defining transfer functions, and an update procedure to use them

#ifndef TRANSFER_FUNCTIONS_H
#define TRANSFER_FUNCTIONS_H

#include <iostream>
#include <string>
using namespace std;

struct TF //Structure: transfer functions of up to 5 numerators/denominators
{
public:
	int		size;		// max number of numerators/denominators in tf (avoids excessive calculations)
	float 	alpha[5];	//
	float 	beta[5];	//
	float 	inputs[5];	// previous input values
	float 	outputs[5];	// previous output values
	TF():size(3){};		// Constructor: to set default size of tf to 3 numerators/denominators
};

// Set initial conditions of TF and coefficients
TF TFinit(TF tf, float *alphas, float *betas, float init)
{
	int arrayLength = tf.size;
	int k;
	
	for (k=0; k<arrayLength; k++)
	{
		tf.inputs[k] = init;

		tf.outputs[k] = init;

		tf.alpha[k] = alphas[k];

		tf.beta[k] = betas[k];
	}

	return(tf);
}

// Update input/output of TF
TF TFupdate(TF tf, float input) //Function: update output from TFs
{
	//int arrayLength = sizeof(tf.inputs)/sizeof(float);
	int arrayLength = tf.size;
	int k;

	// shift along the previous input and ouput values
	for (k=1; k<arrayLength; k++)
	{
		tf.inputs[arrayLength-k] = tf.inputs[arrayLength-k-1];
		tf.outputs[arrayLength-k] = tf.outputs[arrayLength-k-1];
	}

	// set new input value
	tf.inputs[0]	=	input;

	// calculate latest output value
	tf.outputs[0] = 0.0f;
	float temp = 0.0f;
	for (k=1; k<arrayLength;k++)
	{
		temp = temp - tf.outputs[arrayLength-k]*tf.alpha[arrayLength-k] + tf.inputs[arrayLength-k]*tf.beta[arrayLength-k];
	}

	tf.outputs[0] = temp + tf.inputs[0]*tf.beta[0];

	//return updated data
	return(tf);

}

#endif // End of TRANSFER_FUNCTIONS_H

NREL 5MW external control/ExternalControllerDLL.cpp

NREL 5MW external control/ExternalControllerDLL.cpp

/* ===

This is a very simple example of an external controller DLL written in C++ which simply causes a

step change in pitch position demand.

If the pitch actuator cannot accept a pitch position demand, an error message is returned to Bladed.

A simple example of logging output is also included.

=== */

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

/// <summary>

/// Function to calculate the required pitch demand from the current pitch and wind speed.

/// </summary>

/// <TODO>Write this function.</TODO>

int calcs(const double measured_speed, const double measured_pitch, double pitch_demand)

{ return 0; };

extern "C"

{

 int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

 {

 int result = 0;

 double measured_pitch, measured_speed, pitch_demand;

 measured_pitch = GetMeasuredPitchAngle(turbine_id, 0);

 measured_speed = GetNominalHubFlowSpeed(turbine_id);

 pitch_demand = 0.0;

 // Main calculation (User to supply calcs routine)

 result = calcs(measured_speed, measured_pitch, pitch_demand);

 // --

 if (result >= 0)

 {

 result = SetDemandedPitchAngle(turbine_id, 0, pitch_demand);

 if (result == GH_DISCON_SUCCESS)

 {

 ReportInfoMessage(turbine_id, "Set pitch");

 return GH_DISCON_SUCCESS;

 }

 }

 ReportErrorMessage(turbine_id, "Failed to set pitch");

 return GH_DISCON_ERROR;

 }

}

NREL 5MW external control/Backups/NREL_5MW_Jonkman_ExternalControllerDLL_22Jul13.cpp

NREL 5MW external control/Backups/NREL_5MW_Jonkman_ExternalControllerDLL_22Jul13.cpp

/*

! This Bladed-style DLL controller is used to implement a variable-speed

! generator-torque controller and PI collective blade pitch controller for

! the NREL Offshore 5MW baseline wind turbine. This routine was written by

! J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.

! Fortran code converted to C++ by C. Plumley 16/08/2012

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 float Alpha; // Current coefficient in the recursive, singl

 float BlPitch[3]; // Current values of the blade pitch angles, r

 float ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Filtered HSS (generator) speed, rad/s.

 float GenTrq; // Electrical generator torque, N-m.

 float GK; // Current value of the gain correction factor

 float HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float static LastTimePC; // Last time the pitch controller was called,

 float static LastTimeVS; // Last time the torque controller was called,

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float const PC_DT = 0.00125f; // Communication interval for pitch controlle

 float const PC_KI = 0.008068634f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.1099965f; // Pitch angle were the the derivative of the

 float const PC_KP = 0.01882681f; // Proportional gain for pitch controller at r

 float const PC_MaxPit = 1.570796f; // Maximum pitch setting in pitch controller,

 float const PC_MaxRat = 0.1396263f; // Maximum pitch rate (in absolute value) in

 float const PC_MinPit = 0.0f; // Minimum pitch setting in pitch controller,

 float const PC_RefSpd = 122.9096f; // Desired (reference) HSS speed for pitch con

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float PitComI; // Integral term of command pitch, rad.

 float PitComP; // Proportional term of command pitch, rad.

 float PitComT; // Total command pitch based on the sum of the

 float PitRate[3]; // Pitch rates of each blade based on the curr

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float SpdErr; // Current speed error, rad/s.

 float Time; // Current simulation time, sec.

 float TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = 70.16224f; // Transitional generator speed (HSS side) bet

 float const VS_DT = 0.00125f; // Communication interval for torque controlle

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS s

 float const VS_Rgn2K = 2.332287f; // Generator torque constant in Region 2 (HSS

 float const VS_Rgn2Sp = 91.21091f; // Transitional generator speed (HSS side) bet

 float const VS_Rgn3MP = 0.01745329f; // Minimum pitch angle at which the torque is

 float const VS_RtGnSp = 121.6805f; // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float static VS_Slope15; // Torque/speed slope of region 1 1/2 cut-in t

 float static VS_Slope25; // Torque/speed slope of region 2 1/2 inductio

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_SySp; // Synchronous speed of region 2 1/2 induction

 float static VS_TrGnSp; // Transitional generator speed (HSS side) bet

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll as written by J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_SySp = VS_RtGnSp/(1.0f + 0.01f*VS_SlPc);

 VS_Slope15 = (VS_Rgn2K*VS_Rgn2Sp*VS_Rgn2Sp)/(VS_Rgn2Sp - VS_CtInSp);

 VS_Slope25 = (VS_RtPwr/VS_RtGnSp)/(VS_RtGnSp - VS_SySp);

 if (VS_Rgn2K == 0.0) // TRUE if the Region 2 torque is flat, and thus, the denominator in the ELSE condition is

 {

 VS_TrGnSp = VS_SySp;

 }

 else // TRUE if the Region 2 torque is quadratic with speed

 {

 VS_TrGnSp = (VS_Slope25 - sqrt(VS_Slope25*(VS_Slope25 - 4.0f*VS_Rgn2K*VS_SySp)))/(2.0f*VS_Rgn2K);

 }

 // Check validity of input parameters:

 if (CornerFreq <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_Rgn2Sp <= VS_CtInSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2Sp must be greater than VS_CtInSp.\r\n");

 }

 if (VS_TrGnSp < VS_Rgn2Sp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_TrGnSp must not be less than VS_Rgn2Sp.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the

 // header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debug.txt");

 strcat(strMsg,"\r\nDebugging active, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeedF" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 GenSpeedF = GenSpeed; // This will ensure that generator speed filter will use the initial value of

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitCom[0]/(GK*PC_KI); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenTrq = 0; // initialises but is overidden on first run

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if ((iStatus >= 0) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 //===

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 // Filter the HSS (generator) speed measurement:

 // NOTE: This is a very simple recursive, single-pole, low-pass filter with

 // exponential smoothing.

 // Update the coefficient in the recursive formula based on the elapsed time

 // since the last call to the controller:

 Alpha = exp((LastTime - Time)*CornerFreq);

 // Apply the filter:

 GenSpeedF = (1.0f - Alpha)*GenSpeed + Alpha*GenSpeedF;

 //===

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 // Compute the generator torque, which depends on which region we are in:

 if ((GenSpeedF >= VS_RtGnSp) || (PitCom[0] >= VS_Rgn3MP))

 {

 // We are in region 3 - power is constant

 GenTrq = VS_RtPwr/GenSpeedF;

 }

 else if (GenSpeedF <= VS_CtInSp)

 {

 // We are in region 1 - torque is zero

 GenTrq = 0.0;

 }

 else if (GenSpeedF < VS_Rgn2Sp)

 {

 // We are in region 1 1/2 - linear ramp in to

 GenTrq = VS_Slope15*(GenSpeedF - VS_CtInSp);

 }

 else if (GenSpeedF < VS_TrGnSp)

 {

 // We are in region 2 - optimal torque is pro

 GenTrq = VS_Rgn2K*GenSpeedF*GenSpeedF;

 }

 else

 {

 // We are in region 2 1/2 - simple induction

 GenTrq = VS_Slope25*(GenSpeedF - VS_SySp);

 }

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetSwapValue(47,LastGenTrq);

 }

 TrqRate = (GenTrq - LastGenTrq)/ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*ElapTime; // Saturate the command using the torque rate limit

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //===

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 // Compute the gain scheduling correction factor based on the previously

 // commanded pitch angle for blade 1:

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK);

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + SpdErr*ElapTime; // Current integral of speed error w.r.t. time

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit/(GK*PC_KI)),PC_MaxPit/(GK*PC_KI)); // Saturate the integral term using the pitch angle li

 // Compute the pitch commands associated with the proportional and integral

 // gains:

 PitComP = GK*PC_KP* SpdErr; // Proportional term

 PitComI = GK*PC_KI*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 // saturate the overall command using the pitch angle limits:

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit);

 // Saturate the overall command using the pitch angle

 // Saturate the overall commanded pitch using the pitch rate limit:

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT - BlPitch[K])/ElapTime; // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], -PC_MaxRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximu

 PitCom[K] = BlPitch[K] + PitRate[K]*ElapTime; // Saturate the overall command of blade K using the p

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeedF*RPS2RPM << Tab << 100.0*SpdErr/PC_RefSpd << Tab << SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===

 //Reset the value of LastTime to the current value:

 LastTime = Time;

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 SetSwapValue(65,3); // Number of variables returned for logging

 strcpy(avcOutname,"Time:T;Blade1Pitch:A;HubWindSpeed:L/T;");

 SetSwapValue((NINT(GetSwapValue(63))+0),Time);

 SetSwapValue((NINT(GetSwapValue(63))+1),BlPitch[0]);

 SetSwapValue((NINT(GetSwapValue(63))+2),HorWindV);

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Jonkman_ExternalControllerDLL_28Nov14.cpp

NREL 5MW external control/Backups/NREL_5MW_Jonkman_ExternalControllerDLL_28Nov14.cpp

/*

! This Bladed-style DLL controller is used to implement a variable-speed

! generator-torque controller and PI collective blade pitch controller for

! the NREL Offshore 5MW baseline wind turbine. This routine was written by

! J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.

! Fortran code converted to C++ by C. Plumley 16/08/2012

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 float Alpha; // Current coefficient in the recursive, singl

 float BlPitch[3]; // Current values of the blade pitch angles, r

 float ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Filtered HSS (generator) speed, rad/s.

 float GenTrq; // Electrical generator torque, N-m.

 float GK; // Current value of the gain correction factor

 float HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float static LastTimePC; // Last time the pitch controller was called,

 float static LastTimeVS; // Last time the torque controller was called,

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float const PC_DT = 0.00125f; // Communication interval for pitch controlle

 float const PC_KI = 0.008068634f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.1099965f; // Pitch angle were the the derivative of the

 float const PC_KP = 0.01882681f; // Proportional gain for pitch controller at r

 float const PC_MaxPit = 1.570796f; // Maximum pitch setting in pitch controller,

 float const PC_MaxRat = 0.1396263f; // Maximum pitch rate (in absolute value) in

 float const PC_MinPit = 0.0f; // Minimum pitch setting in pitch controller,

 float const PC_RefSpd = 122.9096f; // Desired (reference) HSS speed for pitch con

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float PitComI; // Integral term of command pitch, rad.

 float PitComP; // Proportional term of command pitch, rad.

 float PitComT; // Total command pitch based on the sum of the

 float PitRate[3]; // Pitch rates of each blade based on the curr

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float SpdErr; // Current speed error, rad/s.

 float Time; // Current simulation time, sec.

 float TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = 70.16224f; // Transitional generator speed (HSS side) bet

 float const VS_DT = 0.00125f; // Communication interval for torque controlle

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS s

 float const VS_Rgn2K = 2.332287f; // Generator torque constant in Region 2 (HSS

 float const VS_Rgn2Sp = 91.21091f; // Transitional generator speed (HSS side) bet

 float const VS_Rgn3MP = 0.01745329f; // Minimum pitch angle at which the torque is

 float const VS_RtGnSp = 121.6805f; // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float static VS_Slope15; // Torque/speed slope of region 1 1/2 cut-in t

 float static VS_Slope25; // Torque/speed slope of region 2 1/2 inductio

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_SySp; // Synchronous speed of region 2 1/2 induction

 float static VS_TrGnSp; // Transitional generator speed (HSS side) bet

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll as written by J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_SySp = VS_RtGnSp/(1.0f + 0.01f*VS_SlPc);

 VS_Slope15 = (VS_Rgn2K*VS_Rgn2Sp*VS_Rgn2Sp)/(VS_Rgn2Sp - VS_CtInSp);

 VS_Slope25 = (VS_RtPwr/VS_RtGnSp)/(VS_RtGnSp - VS_SySp);

 if (VS_Rgn2K == 0.0) // TRUE if the Region 2 torque is flat, and thus, the denominator in the ELSE condition is

 {

 VS_TrGnSp = VS_SySp;

 }

 else // TRUE if the Region 2 torque is quadratic with speed

 {

 VS_TrGnSp = (VS_Slope25 - sqrt(VS_Slope25*(VS_Slope25 - 4.0f*VS_Rgn2K*VS_SySp)))/(2.0f*VS_Rgn2K);

 }

 // Check validity of input parameters:

 if (CornerFreq <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_Rgn2Sp <= VS_CtInSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2Sp must be greater than VS_CtInSp.\r\n");

 }

 if (VS_TrGnSp < VS_Rgn2Sp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_TrGnSp must not be less than VS_Rgn2Sp.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the

 // header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debug.txt");

 strcat(strMsg,"\r\nDebugging active, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeedF" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 GenSpeedF = GenSpeed; // This will ensure that generator speed filter will use the initial value of

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitCom[0]/(GK*PC_KI); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenTrq = 0; // initialises but is overidden on first run

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if ((iStatus >= 0) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 //===

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 // Filter the HSS (generator) speed measurement:

 // NOTE: This is a very simple recursive, single-pole, low-pass filter with

 // exponential smoothing.

 // Update the coefficient in the recursive formula based on the elapsed time

 // since the last call to the controller:

 Alpha = exp((LastTime - Time)*CornerFreq);

 // Apply the filter:

 GenSpeedF = (1.0f - Alpha)*GenSpeed + Alpha*GenSpeedF;

 //===

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 // Compute the generator torque, which depends on which region we are in:

 if ((GenSpeedF >= VS_RtGnSp) || (PitCom[0] >= VS_Rgn3MP))

 {

 // We are in region 3 - power is constant

 GenTrq = VS_RtPwr/GenSpeedF;

 }

 else if (GenSpeedF <= VS_CtInSp)

 {

 // We are in region 1 - torque is zero

 GenTrq = 0.0;

 }

 else if (GenSpeedF < VS_Rgn2Sp)

 {

 // We are in region 1 1/2 - linear ramp in to

 GenTrq = VS_Slope15*(GenSpeedF - VS_CtInSp);

 }

 else if (GenSpeedF < VS_TrGnSp)

 {

 // We are in region 2 - optimal torque is pro

 GenTrq = VS_Rgn2K*GenSpeedF*GenSpeedF;

 }

 else

 {

 // We are in region 2 1/2 - simple induction

 GenTrq = VS_Slope25*(GenSpeedF - VS_SySp);

 }

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetSwapValue(47,LastGenTrq);

 }

 TrqRate = (GenTrq - LastGenTrq)/ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*ElapTime; // Saturate the command using the torque rate limit

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //===

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 // Compute the gain scheduling correction factor based on the previously

 // commanded pitch angle for blade 1:

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK);

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + SpdErr*ElapTime; // Current integral of speed error w.r.t. time

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit/(GK*PC_KI)),PC_MaxPit/(GK*PC_KI)); // Saturate the integral term using the pitch angle li

 // Compute the pitch commands associated with the proportional and integral

 // gains:

 PitComP = GK*PC_KP* SpdErr; // Proportional term

 PitComI = GK*PC_KI*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 // saturate the overall command using the pitch angle limits:

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit);

 // Saturate the overall command using the pitch angle

 // Saturate the overall commanded pitch using the pitch rate limit:

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT - BlPitch[K])/ElapTime; // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], -PC_MaxRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximu

 PitCom[K] = BlPitch[K] + PitRate[K]*ElapTime; // Saturate the overall command of blade K using the p

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeedF*RPS2RPM << Tab << 100.0*SpdErr/PC_RefSpd << Tab << SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===

 //Reset the value of LastTime to the current value:

 LastTime = Time;

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 SetSwapValue(65,3); // Number of variables returned for logging

 strcpy(avcOutname,"Time:T;Blade1Pitch:A;HubWindSpeed:L/T;");

 SetSwapValue((NINT(GetSwapValue(63))+0),Time);

 SetSwapValue((NINT(GetSwapValue(63))+1),BlPitch[0]);

 SetSwapValue((NINT(GetSwapValue(63))+2),HorWindV);

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Debug/NREL 5MW external control_manifest.rc

2 /* ISOLATIONAWARE_MANIFEST_RESOURCE_ID */ 24 /* RT_MANIFEST */ "Debug\\NREL 5MW external control.dll.embed.manifest"

NREL 5MW external control/Debug/NREL 5MW external control.dll.embed.manifest

NREL 5MW external control/Debug/NREL 5MW external control.dll.intermediate.manifest

NREL 5MW external control/Solution1.sln

Microsoft Visual Studio Solution File, Format Version 11.00
Visual C++ Express 2010
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "NREL 5MW external control", "NREL 5MW external control.vcxproj", "{5F79503A-1CF7-484B-A49B-96DF071B7762}"
EndProject
Global
	GlobalSection(SolutionConfigurationPlatforms) = preSolution
		Debug|Win32 = Debug|Win32
		Release|Win32 = Release|Win32
	EndGlobalSection
	GlobalSection(ProjectConfigurationPlatforms) = postSolution
		{5F79503A-1CF7-484B-A49B-96DF071B7762}.Debug|Win32.ActiveCfg = Debug|Win32
		{5F79503A-1CF7-484B-A49B-96DF071B7762}.Debug|Win32.Build.0 = Debug|Win32
		{5F79503A-1CF7-484B-A49B-96DF071B7762}.Release|Win32.ActiveCfg = Release|Win32
		{5F79503A-1CF7-484B-A49B-96DF071B7762}.Release|Win32.Build.0 = Release|Win32
	EndGlobalSection
	GlobalSection(SolutionProperties) = preSolution
		HideSolutionNode = FALSE
	EndGlobalSection
EndGlobal

NREL 5MW external control/NREL 5MW external control fortran.txt

!===
SUBROUTINE DISCON (avrSWAP, aviFAIL, accINFILE, avcOUTNAME, avcMSG)
!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'DISCON' :: DISCON

! This Bladed-style DLL controller is used to implement a variable-speed
! generator-torque controller and PI collective blade pitch controller for
! the NREL Offshore 5MW baseline wind turbine. This routine was written by
! J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.

IMPLICIT NONE

! Passed Variables:

REAL(4), INTENT(INOUT) :: avrSWAP (*) ! The swap array, used to pass data to, and r

INTEGER(4), INTENT(OUT) :: aviFAIL ! A flag used to indicate the success of this

INTEGER(1), INTENT(IN) :: accINFILE (*) ! The address of the first record of an array
INTEGER(1), INTENT(OUT) :: avcMSG (*) ! The address of the first record of an array
INTEGER(1), INTENT(IN) :: avcOUTNAME(*) ! The address of the first record of an array

! Local Variables:

REAL(4) :: Alpha ! Current coefficient in the recursive, singl
REAL(4) :: BlPitch (3) ! Current values of the blade pitch angles, r
REAL(4) :: ElapTime ! Elapsed time since the last call to the con
REAL(4), PARAMETER :: CornerFreq = 1.570796 ! Corner frequency (-3dB point) in the recurs
REAL(4) :: GenSpeed ! Current HSS (generator) speed, rad/s.
REAL(4), SAVE :: GenSpeedF ! Filtered HSS (generator) speed, rad/s.
REAL(4) :: GenTrq ! Electrical generator torque, N-m.
REAL(4) :: GK ! Current value of the gain correction factor
REAL(4) :: HorWindV ! Horizontal hub-heigh wind speed, m/s.
REAL(4), SAVE :: IntSpdErr ! Current integral of speed error w.r.t. time
REAL(4), SAVE :: LastGenTrq ! Commanded electrical generator torque the l
REAL(4), SAVE :: LastTime ! Last time this DLL was called, sec.
REAL(4), SAVE :: LastTimePC ! Last time the pitch controller was called,
REAL(4), SAVE :: LastTimeVS ! Last time the torque controller was called,
REAL(4), PARAMETER :: OnePlusEps = 1.0 + EPSILON(OnePlusEps) ! The number slighty greater than unity in si
REAL(4), PARAMETER :: PC_DT = 0.00125 ! Communication interval for pitch controlle
REAL(4), PARAMETER :: PC_KI = 0.008068634 ! Integral gain for pitch controller at rated
REAL(4), PARAMETER :: PC_KK = 0.1099965 ! Pitch angle were the the derivative of the
REAL(4), PARAMETER :: PC_KP = 0.01882681 ! Proportional gain for pitch controller at r
REAL(4), PARAMETER :: PC_MaxPit = 1.570796 ! Maximum pitch setting in pitch controller,
REAL(4), PARAMETER :: PC_MaxRat = 0.1396263 ! Maximum pitch rate (in absolute value) in
REAL(4), PARAMETER :: PC_MinPit = 0.0 ! Minimum pitch setting in pitch controller,
REAL(4), PARAMETER :: PC_RefSpd = 122.9096 ! Desired (reference) HSS speed for pitch con
REAL(4), SAVE :: PitCom (3) ! Commanded pitch of each blade the last time
REAL(4) :: PitComI ! Integral term of command pitch, rad.
REAL(4) :: PitComP ! Proportional term of command pitch, rad.
REAL(4) :: PitComT ! Total command pitch based on the sum of the
REAL(4) :: PitRate (3) ! Pitch rates of each blade based on the curr
REAL(4), PARAMETER :: R2D = 57.295780 ! Factor to convert radians to degrees.
REAL(4), PARAMETER :: RPS2RPM = 9.5492966 ! Factor to convert radians per second to rev
REAL(4) :: SpdErr ! Current speed error, rad/s. REAL(4) :: Time ! Current simulation time, sec.
REAL(4) :: TrqRate ! Torque rate based on the current and last t
REAL(4), PARAMETER :: VS_CtInSp = 70.16224 ! Transitional generator speed (HSS side) bet
REAL(4), PARAMETER :: VS_DT = 0.00125 ! Communication interval for torque controlle
REAL(4), PARAMETER :: VS_MaxRat = 15000.0 ! Maximum torque rate (in absolute value) in
REAL(4), PARAMETER :: VS_MaxTq = 47402.91 ! Maximum generator torque in Region 3 (HSS s
REAL(4), PARAMETER :: VS_Rgn2K = 2.332287 ! Generator torque constant in Region 2 (HSS
REAL(4), PARAMETER :: VS_Rgn2Sp = 91.21091 ! Transitional generator speed (HSS side) bet
REAL(4), PARAMETER :: VS_Rgn3MP = 0.01745329 ! Minimum pitch angle at which the torque is
REAL(4), PARAMETER :: VS_RtGnSp = 121.6805 ! Rated generator speed (HSS side), rad/s. --
REAL(4), PARAMETER :: VS_RtPwr = 5296610.0 ! Rated generator generator power in Region 3
REAL(4), SAVE :: VS_Slope15 ! Torque/speed slope of region 1 1/2 cut-in t
REAL(4), SAVE :: VS_Slope25 ! Torque/speed slope of region 2 1/2 inductio
REAL(4), PARAMETER :: VS_SlPc = 10.0 ! Rated generator slip percentage in Region 2
REAL(4), SAVE :: VS_SySp ! Synchronous speed of region 2 1/2 induction
REAL(4), SAVE :: VS_TrGnSp ! Transitional generator speed (HSS side) bet

INTEGER(4) :: I ! Generic index.
INTEGER(4) :: iStatus ! A status flag set by the simulation as foll
INTEGER(4) :: K ! Loops through blades.
INTEGER(4) :: NumBl ! Number of blades, (-).

INTEGER(4), PARAMETER :: UnDb = 85 ! I/O unit for the debugging information

INTEGER(1) :: iInFile (256) ! CHARACTER string cInFile stored as a 1-byt
INTEGER(1) :: iMessage (256) ! CHARACTER string cMessage stored as a 1-byt
INTEGER(1), SAVE :: iOutName (1024) ! CHARACTER string cOutName stored as a 1-byt

LOGICAL(1), PARAMETER :: PC_DbgOut = .FALSE. ! Flag to indicate whether to output debuggin

CHARACTER(256) :: cInFile ! CHARACTER string giving the name of the par
CHARACTER(256) :: cMessage ! CHARACTER string giving a message that will
CHARACTER(1024), SAVE :: cOutName ! CHARACTER string giving the simulation run
CHARACTER(1), PARAMETER :: Tab = CHAR(9) ! The tab character.
CHARACTER(25), PARAMETER :: FmtDat = "(F8.3,99('"//Tab//"',ES10.3E2,:))" ! The format of the debugging data

! Set EQUIVALENCE relationships between INTEGER(1) byte arrays and CHARACTER strings:

EQUIVALENCE (iInFile , cInFile)
EQUIVALENCE (iMessage, cMessage)
EQUIVALENCE (iOutName, cOutName)

! Load variables from calling program (See Appendix A of Bladed User's Guide):

iStatus = NINT(avrSWAP(1))
NumBl = NINT(avrSWAP(61))

BlPitch (1) = avrSWAP(4)
BlPitch (2) = avrSWAP(33)
BlPitch (3) = avrSWAP(34)
GenSpeed = avrSWAP(20)
HorWindV = avrSWAP(27)
Time = avrSWAP(2)

! Initialize aviFAIL to 0:
aviFAIL = 0

! Read any External Controller Parameters specified in the User Interface
! and initialize variables:

IF (iStatus == 0) THEN ! .TRUE. if were on the first call to the DLL

! Convert byte arrays to CHARACTER strings, for convenience:

DO I = 1,MIN(256, NINT(avrSWAP(50)))
iInFile (I) = accINFILE (I) ! Sets cInfile by EQUIVALENCE
ENDDO
DO I = 1,MIN(1024, NINT(avrSWAP(51)))
iOutName(I) = avcOUTNAME(I) ! Sets cOutName by EQUIVALENCE
ENDDO

! Inform users that we are using this user-defined routine:
aviFAIL = 1
cMessage = 'Running with torque and pitch control of the NREL offshore '// &
'5MW baseline wind turbine from DISCON.dll as written by J. '// &
'Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 ' // &
'studies.'

! Determine some torque control parameters not specified directly:

VS_SySp = VS_RtGnSp/(1.0 + 0.01*VS_SlPc)
VS_Slope15 = (VS_Rgn2K*VS_Rgn2Sp*VS_Rgn2Sp)/(VS_Rgn2Sp - VS_CtInSp)
VS_Slope25 = (VS_RtPwr/VS_RtGnSp)/(VS_RtGnSp - VS_SySp)
IF (VS_Rgn2K == 0.0) THEN ! .TRUE. if the Region 2 torque is flat, and thus, the denominator in the ELSE condition is
VS_TrGnSp = VS_SySp
ELSE ! .TRUE. if the Region 2 torque is quadratic with speed
VS_TrGnSp = (VS_Slope25 - SQRT(VS_Slope25*(VS_Slope25 - 4.0*VS_Rgn2K*VS_SySp)))/(2.0*VS_Rgn2K)
ENDIF

! Check validity of input parameters:

IF (CornerFreq <= 0.0) THEN
aviFAIL = -1

cMessage = 'CornerFreq must be greater than zero.'
ENDIF

IF (VS_DT <= 0.0) THEN
aviFAIL = -1
cMessage = 'VS_DT must be greater than zero.'
ENDIF

IF (VS_CtInSp < 0.0) THEN
aviFAIL = -1
cMessage = 'VS_CtInSp must not be negative.'
ENDIF

IF (VS_Rgn2Sp <= VS_CtInSp) THEN
aviFAIL = -1
cMessage = 'VS_Rgn2Sp must be greater than VS_CtInSp.'
ENDIF

IF (VS_TrGnSp < VS_Rgn2Sp) THEN
aviFAIL = -1
cMessage = 'VS_TrGnSp must not be less than VS_Rgn2Sp.'
ENDIF

IF (VS_SlPc <= 0.0) THEN
aviFAIL = -1
cMessage = 'VS_SlPc must be greater than zero.'
ENDIF

IF (VS_MaxRat <= 0.0) THEN
aviFAIL = -1
cMessage = 'VS_MaxRat must be greater than zero.'
ENDIF

IF (VS_RtPwr < 0.0) THEN
aviFAIL = -1
cMessage = 'VS_RtPwr must not be negative.'
ENDIF

IF (VS_Rgn2K < 0.0) THEN
aviFAIL = -1
cMessage = 'VS_Rgn2K must not be negative.'
ENDIF

IF (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) THEN
aviFAIL = -1
cMessage = 'VS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.'
ENDIF

IF (VS_MaxTq < VS_RtPwr/VS_RtGnSp) THEN
aviFAIL = -1
cMessage = 'VS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.'
ENDIF

IF (PC_DT <= 0.0) THEN
aviFAIL = -1
cMessage = 'PC_DT must be greater than zero.'
ENDIF

IF (PC_KI <= 0.0) THEN
aviFAIL = -1
cMessage = 'PC_KI must be greater than zero.'
ENDIF

IF (PC_KK <= 0.0) THEN
aviFAIL = -1
cMessage = 'PC_KK must be greater than zero.'
ENDIF

IF (PC_RefSpd <= 0.0) THEN
aviFAIL = -1
cMessage = 'PC_RefSpd must be greater than zero.'
ENDIF

IF (PC_MaxRat <= 0.0) THEN
aviFAIL = -1
cMessage = 'PC_MaxRat must be greater than zero.'
ENDIF

IF (PC_MinPit >= PC_MaxPit) THEN
aviFAIL = -1
cMessage = 'PC_MinPit must be less than PC_MaxPit.'
ENDIF

! If we're debugging the pitch controller, open the debug file and write the
! header:

IF (PC_DbgOut) THEN

OPEN (UnDb, FILE=TRIM(cOutName)//'.dbg', STATUS='REPLACE')

WRITE (UnDb,'(/////)')
WRITE (UnDb,'(A)') 'Time '//Tab//'ElapTime'//Tab//'HorWindV'//Tab//'GenSpeed'//Tab//'GenSpeedF'//Tab//'RelSpdErr'//Tab 'SpdErr '//Tab//'IntSpdErr'//Tab//'GK '//Tab//'PitComP'//Tab//'PitComI'//Tab//'PitComT'//Tab// 'PitRate1'//Tab//'PitCom1'
WRITE (UnDb,'(A)') '(sec)'//Tab//'(sec) '//Tab//'(m/sec) '//Tab//'(rpm) '//Tab//'(rpm) '//Tab//'(%) '//Tab '(rad/s)'//Tab//'(rad) '//Tab//'(-)'//Tab//'(deg) '//Tab//'(deg) '//Tab//'(deg) '//Tab// '(deg/s) '//Tab//'(deg) '

ENDIF

! Initialize the SAVEd variables:
! NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller
! below for simplicity, not here.

GenSpeedF = GenSpeed ! This will ensure that generator speed filter will use the initial value of
PitCom = BlPitch ! This will ensure that the variable speed controller picks the correct contr
GK = 1.0/(1.0 + PitCom(1)/PC_KK) ! This will ensure that the pitch angle is unchanged if the initial SpdErr is
IntSpdErr = PitCom(1)/(GK*PC_KI) ! This will ensure that the pitch angle is unchanged if the initial SpdErr is
LastTime = Time ! This will ensure that generator speed filter will use the initial value of
LastTimePC = Time - PC_DT ! This will ensure that the pitch controller is called on the first pass
LastTimeVS = Time - VS_DT ! This will ensure that the torque controller is called on the first pass

ENDIF

! Main control calculations:

IF ((iStatus >= 0) .AND. (aviFAIL >= 0)) THEN ! Only compute control calculations if no error has occured and we are

! Abort if the user has not requested a pitch angle actuator (See Appendix A
! of Bladed User's Guide):

IF (NINT(avrSWAP(10)) /= 0) THEN ! .TRUE. if a pitch angle actuator hasn't been requested
aviFAIL = -1
cMessage = 'Pitch angle actuator not requested.'
ENDIF

! Set unused outputs to zero (See Appendix A of Bladed User's Guide):

avrSWAP(36) = 0.0 ! Shaft brake status: 0=off
avrSWAP(41) = 0.0 ! Demanded yaw actuator torque
avrSWAP(46) = 0.0 ! Demanded pitch rate (Collective pitch)
avrSWAP(48) = 0.0 ! Demanded nacelle yaw rate
avrSWAP(65) = 0.0 ! Number of variables returned for logging
avrSWAP(72) = 0.0 ! Generator startup resistance
avrSWAP(79) = 0.0 ! Request for loads: 0=none
avrSWAP(80) = 0.0 ! Variable slip current status
avrSWAP(81) = 0.0 ! Variable slip current demand

!===

! Filter the HSS (generator) speed measurement:
! NOTE: This is a very simple recursive, single-pole, low-pass filter with
! exponential smoothing.

! Update the coefficient in the recursive formula based on the elapsed time
! since the last call to the controller:

Alpha = EXP((LastTime - Time)*CornerFreq)

! Apply the filter:

GenSpeedF = (1.0 - Alpha)*GenSpeed + Alpha*GenSpeedF

!===

! Variable-speed torque control:

! Compute the elapsed time since the last call to the controller:

ElapTime = Time - LastTimeVS

! Only perform the control calculations if the elapsed time is greater than
! or equal to the communication interval of the torque controller:
! NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called
! at every time step when VS_DT = DT, even in the presence of
! numerical precision errors.

IF ((Time*OnePlusEps - LastTimeVS) >= VS_DT) THEN

! Compute the generator torque, which depends on which region we are in:

IF ((GenSpeedF >= VS_RtGnSp) .OR. (PitCom(1) >= VS_Rgn3MP)) THEN ! We are in region 3 - power is constant
GenTrq = VS_RtPwr/GenSpeedF
ELSEIF (GenSpeedF <= VS_CtInSp) THEN ! We are in region 1 - torque is zero
GenTrq = 0.0
ELSEIF (GenSpeedF < VS_Rgn2Sp) THEN ! We are in region 1 1/2 - linear ramp in to
GenTrq = VS_Slope15*(GenSpeedF - VS_CtInSp)
ELSEIF (GenSpeedF < VS_TrGnSp) THEN ! We are in region 2 - optimal torque is pro
GenTrq = VS_Rgn2K*GenSpeedF*GenSpeedF
ELSE ! We are in region 2 1/2 - simple induction
GenTrq = VS_Slope25*(GenSpeedF - VS_SySp)
ENDIF

! Saturate the commanded torque using the maximum torque limit:

GenTrq = MIN(GenTrq , VS_MaxTq) ! Saturate the command using the maximum torque limit

! Saturate the commanded torque using the torque rate limit:

IF (iStatus == 0) LastGenTrq = GenTrq ! Initialize the value of LastGenTrq on the first pass only
TrqRate = (GenTrq - LastGenTrq)/ElapTime ! Torque rate (unsaturated)
TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat) ! Saturate the torque rate using its maximum absolute value
GenTrq = LastGenTrq + TrqRate*ElapTime ! Saturate the command using the torque rate limit

! Reset the values of LastTimeVS and LastGenTrq to the current values:

LastTimeVS = Time
LastGenTrq = GenTrq

ENDIF

! Set the generator contactor status, avrSWAP(35), to main (high speed)
! variable-speed generator, the torque override to yes, and command the
! generator torque (See Appendix A of Bladed User's Guide):

avrSWAP(35) = 1.0 ! Generator contactor status: 1=main (high speed) variable-speed generator
avrSWAP(56) = 0.0 ! Torque override: 0=yes
avrSWAP(47) = LastGenTrq ! Demanded generator torque

!===

! Pitch control:

! Compute the elapsed time since the last call to the controller:

ElapTime = Time - LastTimePC

! Only perform the control calculations if the elapsed time is greater than
! or equal to the communication interval of the pitch controller:
! NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called
! at every time step when PC_DT = DT, even in the presence of
! numerical precision errors.

IF ((Time*OnePlusEps - LastTimePC) >= PC_DT) THEN

! Compute the gain scheduling correction factor based on the previously
! commanded pitch angle for blade 1:

GK = 1.0/(1.0 + PitCom(1)/PC_KK)

! Compute the current speed error and its integral w.r.t. time; saturate the
! integral term using the pitch angle limits:

SpdErr = GenSpeedF - PC_RefSpd ! Current speed error
IntSpdErr = IntSpdErr + SpdErr*ElapTime ! Current integral of speed error w.r.t. time
IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit/(GK*PC_KI)),
& PC_MaxPit/(GK*PC_KI)) ! Saturate the integral term using the pitch angle li

! Compute the pitch commands associated with the proportional and integral
! gains:

PitComP = GK*PC_KP* SpdErr ! Proportional term
PitComI = GK*PC_KI*IntSpdErr ! Integral term (saturated)

! Superimpose the individual commands to get the total pitch command;
! saturate the overall command using the pitch angle limits:

PitComT = PitComP + PitComI ! Overall command (unsaturated)
PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit)

! Saturate the overall command using the pitch angle
! Saturate the overall commanded pitch using the pitch rate limit:
! NOTE: Since the current pitch angle may be different for each blade
! (depending on the type of actuator implemented in the structural
! dynamics model), this pitch rate limit calculation and the
! resulting overall pitch angle command may be different for each
! blade.

DO K = 1,NumBl ! Loop through all blades

PitRate(K) = (PitComT - BlPitch(K))/ElapTime ! Pitch rate of blade K (unsaturated)
PitRate(K) = MIN(MAX(PitRate(K), -PC_MaxRat), PC_MaxRat) ! Saturate the pitch rate of blade K using its maximu
PitCom (K) = BlPitch(K) + PitRate(K)*ElapTime ! Saturate the overall command of blade K using the p

ENDDO ! K - all blades

! Reset the value of LastTimePC to the current value:
LastTimePC = Time

! Output debugging information if requested:

IF (PC_DbgOut) WRITE (UnDb,FmtDat) Time, ElapTime, HorWindV, GenSpeed*RPS2RPM, GenSpeedF*RPS2RPM, &
100.0*SpdErr/PC_RefSpd, SpdErr, IntSpdErr, GK, PitComP*R2D, PitComI*R2D, &
PitComT*R2D, PitRate(1)*R2D, PitCom(1)*R2D
ENDIF

! Set the pitch override to yes and command the pitch demanded from the last
! call to the controller (See Appendix A of Bladed User's Guide):

avrSWAP(55) = 0.0 ! Pitch override: 0=yes

avrSWAP(42) = PitCom(1) ! Use the command angles of all blades if using individual pitch
avrSWAP(43) = PitCom(2) ! " avrSWAP(44) = PitCom(3) ! "
avrSWAP(45) = PitCom(1) ! Use the command angle of blade 1 if using collective pitch

!===

! Reset the value of LastTime to the current value:

LastTime = Time

ENDIF

! Convert CHARACTER string to byte array for the return message:

DO I = 1,MIN(256, NINT(avrSWAP(49)))
avcMSG(I) = iMessage(I) ! Same as cMessage by EQUIVALENCE
ENDDO

RETURN
END SUBROUTINE DISCON

!===

NREL 5MW external control/ParameterFileTemplate.txt

// flag for external Bladed data logging
bool const DataLog_on	= false;

// flag for torque controller
bool const VSConstP_on	= false;					// Flag to indicate whether constant power (or torque) above rated

//flag for torsional vibration filter in torque control
bool const FTV_on		= true;					// Flag to indicate whether the torsional vibration filter is on

//flags for pitch controller
bool const PCI_on		= true;					// Flag to indicate whether the pitch interaction with the torque control is on
bool const PCFA_on		= true;					// Flag to indicate whether the pitch notch filter A is on
bool const PCFB_on		= true;					// Flag to indicate whether the pitch notch filter B is on
bool const PCF_on		= true;					// Flag to indicate whether the pitch low-pass filter is on
	
//flags for individual pitch control
bool const IPC_on		= false;					// Flag to indicate whether IPC is on
bool const IPCFDA_on	= false;					// Flag to indicate whether IPC yaw error (D-axis) notch filter is on
bool const IPCFQA_on	= false;					// Flag to indicate whether IPC tilt error (Q-axis) notch filter is on
bool const IPC2_on		= false;					// Flag to indicate whether IPC2 is on
bool const IPC2FDA_on	= false;					// Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on
bool const IPC2FQA_on	= false;					// Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

//flag for tower vibration damping using pitch control
bool const TVD_on		= true;					// Flag to indicate whether the tower vibration damping is on

//flag for non-linear pitch term for gusts
bool const NLP_on		= false;				// Flag to indicate whether the non-linear pitch term for gusts is on

//flags for Smart Rotor dq-axis control
bool const SRC_on		= true;					// Flag to indicate whether smart rotor control is active
bool const SRCFDA_on	= true;					// Flag to indicate whether SRC yaw error (D-axis) notch filter is on
bool const SRCFQA_on	= true;					// Flag to indicate whether SRC tilt error (Q-axis) notch filter is on
bool const SRC2_on		= false;					// Flag to indicate whether smart rotor control is active
bool const SRC2FDA_on	= false;					// Flag to indicate whether IPC yaw error (D-axis) notch filter is on
bool const SRC2FQA_on	= false;					// Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

//flag for Smart Rotor distributed control
bool const SRCD_on		= false;				// Flag to indicate whether distributed smart rotor control is active
bool const SRCDFA_on	= false;				// Flag to indicate whether distributed smart rotor control is active
bool const SRCDFB_on	= false;				// Flag to indicate whether distributed smart rotor control is active

//flag for LIDAR system
bool const LIDAR_on		= false;				// Flag to indicate whether LIDAR system is active

//flag for Smart Rotor control utilising LIDAR
bool const	SRCL_on		= false;

//flag for indivudal pitch control utilising LIDAR
bool const	IPCL_on		= false;

//debugging preferences
bool const PC_DbgOut	= false;				// Flag to indicate whether to output debugging
bool const VS_DbgOut	= false;				// Flag to indicate whether to output debugging

NREL 5MW external control/Debug/NREL_5MW_UpWind_ExternalControllerDLL.obj

NREL 5MW external control/ExternalControllerApi.lib

ExternalControllerApi.dll

ExternalControllerApi.dll

ExternalControllerApi.dll

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

ExternalControllerApi.dll

0.0

NREL 5MW external control/Debug/NREL 5MW external control.lib

NREL 5MW external control.dll

NREL 5MW external control.dll

NREL 5MW external control.dll

NREL 5MW external control.dll

0.0

NREL 5MW external control/Debug/NREL 5MW external control.pdb

NREL 5MW external control/Debug/vc100.pdb

NREL 5MW external control/Debug/vc100.idb

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_01Oct12.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_01Oct12.cc

/*

This Bladed controller is modelled on Bossanyi's control strategies

It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 float static Alpha; // Current coefficient in the recursive, singl

 float static BlPitch[3]; // Current values of the blade pitch angles, r

 float static ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float static GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenTrq; // Electrical generator torque, N-m.

 float static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 float static GK; // Current value of the gain correction factor

 float static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float static LastTimePC; // Last time the pitch controller was called,

 float static LastTimeVS; // Last time the torque controller was called,

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float static Time; // Current simulation time, sec.

 // Generally to do with pitch control

 float const PC_DT = 0.1f; // Communication interval for pitch controller

 float const PC_KI = 0.00453f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.174532925f; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 float const PC_KP = 0.0135f; // Proportional gain for pitch controller at r

 float const PC_MaxPit = 1.570796f; // Maximum pitch setting in pitch controller,

 float const PC_MaxRat = 0.1396263f; // Maximum pitch rate (in absolute value) in

 float const PC_MinPit = 0.0f; // Minimum pitch setting in pitch controller,

 float const PC_RefSpd = 122.9096f; // Desired (reference) HSS speed for pitch control

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float static PitComI; // Integral term of command pitch, rad.

 float static PitComP; // Proportional term of command pitch, rad.

 float static PitComT; // Total command pitch based on the sum of the

 float static PitRate[3]; // Pitch rates of each blade based on the curr

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float static SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 float static PCI_PwrEr; // Current power error, W

 float static PCI_IntPwrEr; // Current integral of power error

 float const PCI_KP = 0.0000001f; // Proportional gain

 float const PCI_KI = 0.00000005f; // Integral gain

 float static PCI_Prp; // Pitch command proportional term

 float static PCI_Int; // Pitch command integral term

 float static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 float static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 float static NLP_LastSpEr; // the last generator speed error

 float static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 float static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 float static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 float const NLP_KSpEr = 25; // Scale factor for the speed error

 float const NLP_KSpErDt = 10; // Scale factor for the rate of change of speed error

 float const NLP_Gain = 0.15; // Gain for pitch command

 float const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 float const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 float static NLP_PitRate; // NLP pitch rate command

 float static NLP_PitCom; // NLP pitch command

 // Generally to do with torque control

 float static TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = 70.16224f; // Transitional generator speed (HSS side), cut-in speed, rad/s

 float const VS_DT = 0.01f; // Communication interval for torque controller

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 float const VS_Rgn2K = 2.332287f; // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 float const VS_Rgn3MP = 0.01745329f; // Minimum pitch angle at which the torque is in above rated (1 degree)

 float const VS_RtGnSp = 121.6805f; // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 float static VS_RtGnTrq; // Rated generator torque

 float static VS_SpdErr; // generator speed error for torque control

 float static VS_IntSpdErr; // integral of speed error for torque control

 float static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 float static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 float const VS_KP1 = 4200.0f; // proportional gain for torque control in A-B region

 float const VS_KI1 = 2100.0f; // integral gain for torque control in A-B region

 float const VS_KP2 = 4200.0f; // proportional gain for torque control in C-E region

 float const VS_KI2 = 2100.0f; // integral gain for torque control in C-E region

 float static VS_ComI; // integral torque demand

 float static VS_ComP; // proportional torque demand

 float static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 float static FTV_GnSp[5]; // the previous 5 values of measured generator speed

 float static FTV_GnTqF[5]; // the previous 5 values of the filtered generator torque

 float const FTV_alph[5] = {1, -3.78865457824117, 5.44068947154296, -3.50923154684766, 0.857629209879516}; // the tf denominator values

 float const FTV_beta[5] = {117.030302254623, -221.446713569963, -8.36150963845548, 221.446713569963, -108.668792616168}; // the tf numerator values

 float static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 float static FTV_GnTqLast= 0; // last generator torque for use by torque controller

 float const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Notch filter A for pitch control

 float static PCFA_PCT[3]; // the previous 3 values of measured pitch angle

 float static PCFA_PCTF[3]; // the previous 3 values of the filtered pitch angle

 float const PCFA_alp[3] = {1, -1.76360808709176, 0.895709450187540}; // the tf denominator values

 float const PCFA_bet[3] = {0.947854725093770, -1.76360808709176, 0.947854725093770}; // the tf numerator values

 // Notch filter B for pitch control

 float static PCFB_PCT[3]; // the previous 3 values of measured pitch angle

 float static PCFB_PCTF[3]; // the previous 3 values of the filtered pitch angle

 float const PCFB_alp[3] = {1, -1.24900532993019, 0.753772239321372}; // the tf denominator values

 float const PCFB_bet[3] = {0.876886119660686, -1.24900532993019, 0.876886119660686}; // the tf numerator values

 // Low-pass filter for pitch control

 float static PCF_PCT[3]; // the previous 3 values of measured pitch angle

 float static PCF_PCTF[3]; // the previous 3 values of the filtered pitch angle

 float const PCF_alp[3] = {1, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 float const PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 float static TVD_TowAcc; // tower acceleration fore-aft

 float static TVD_TowVel; // filtered tower fore-aft velocity

 float static TVD_PitCom; // Pitch command from tower vibration damping section

 float static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 float const TVD_KI = 0.0172; // integral gain for tower acceleration (proportional gain for velocity)

 float static TVD_TV[3]; // the previous 3 values of tower velocity

 float static TVD_TVf[3]; // the previous 3 values of the filtered tower velocity

 float const TVD_alp[3] = {1, -1.65296803652968, 0.683075832447197}; // the tf denominator values

 float const TVD_bet[3] = {2.38450103634423, -4.38377668389767, 2.02938344347096}; // the tf numerator values

 float static TVD_gain; //Gain correction factor

 float const TVD_FOFa[2] = {1, -0.818181818181818}; // the first order lag filter tf denominator values

 float const TVD_FOFb[2] = {0.0909090909090909, 0.0909090909090909}; // the first order lag filter tf numerator values

 float static TVD_P[2]; // the previous 2 values of generator power

 float static TVD_Pf[2]; // the previous 2 values of the filtered generator power

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 //flag for torsional vibration filter in torque control

 bool const FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool const PC_interVS = true; // Flag to indicate whether the pitch interaction with the torque control is on

 bool const PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 bool const PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 bool const PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flag for tower vibration damping using pitch control

 bool const TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool const NLP_on = true; // Flag to indicate whether the non-linear pitch term for gusts is on

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 bool const VS_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 TVD_TowAcc = GetSwapValue(53) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // Check validity of input parameters:

 if (CornerFreq <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_KP1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KP1 must be greater than 0.\r\n");

 }

 if (VS_KI1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KI1 must be greater than 0.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPitch control debugging active, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debugging active, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitCom[0]/(GK*PC_KI); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if (((iStatus >= 0) || (iStatus == -1)) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 //===

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if ((GenSpeed*GenTrq >= VS_RtPwr) || (PitCom[0] >= VS_Rgn3MP))

 {

 // We are in region 3 - power is held constant

 GenTrq = VS_RtPwr/GenSpeed;

 }

 else if (GenSpeed < VS_GnSpSw)

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,0),VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = MIN(MAX(VS_ComT,0),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = MAX(MIN(VS_ComT,VS_RtGnTrq),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================+++++++++++++++++++++++++++++=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_GnSp[0] = GenSpeed; // the previous 5 values of measured generator torque

 FTV_GnSp[1] = GenSpeed;

 FTV_GnSp[2] = GenSpeed;

 FTV_GnSp[3] = GenSpeed;

 FTV_GnSp[4] = GenSpeed;

 FTV_GnTqF[0] = GenSpeed; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[1] = GenSpeed;

 FTV_GnTqF[2] = GenSpeed;

 FTV_GnTqF[3] = GenSpeed;

 FTV_GnTqF[4] = GenSpeed;

 }

 FTV_GnSp[4] = FTV_GnSp[3]; // the previous 5 values of measured generator speed

 FTV_GnSp[3] = FTV_GnSp[2];

 FTV_GnSp[2] = FTV_GnSp[1];

 FTV_GnSp[1] = FTV_GnSp[0];

 FTV_GnSp[0] = GenSpeed;

 FTV_GnTqF[4] = FTV_GnTqF[3]; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[3] = FTV_GnTqF[2];

 FTV_GnTqF[2] = FTV_GnTqF[1];

 FTV_GnTqF[1] = FTV_GnTqF[0];

 FTV_GnTqF[0] = -FTV_GnTqF[1]*FTV_alph[1] -FTV_GnTqF[2]*FTV_alph[2] -FTV_GnTqF[3]*FTV_alph[3] -FTV_GnTqF[4]*FTV_alph[4] +FTV_GnSp[0]*FTV_beta[0] +FTV_GnSp[1]*FTV_beta[1] +FTV_GnSp[2]*FTV_beta[2] +FTV_GnSp[3]*FTV_beta[3] +FTV_GnSp[4]*FTV_beta[4];

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_GnTqF[0];

 // saturate to amplitude limit

 FTV_GnTqLast = MIN(MAX(FTV_GenTrqF,-FTV_GnTqMax),FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================+++++++++++++++++++++++++++++=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq on the first pass only

 LastGenTrq = GenTrq;

 }

 TrqRate = (GenTrq - LastGenTrq)/ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*ElapTime; // Saturate the command using the torque rate limit

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 // Output debugging information if requested:

 if (VS_DbgOut) {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (variable speed torque control)

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 //===

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 // Compute the gain scheduling correction factor based on the previously

 // commanded pitch angle for blade 1:

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK);

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 SpdErr = GenSpeed - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*SpdErr*ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, NB of blade 1 but in IPC could be different

 IntSpdErr = MIN(MAX(IntSpdErr, (-PC_MaxRat*ElapTime+BlPitch[0])),(PC_MaxRat*ElapTime+BlPitch[0]));

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 // end of standard PI pitch control

 //=================----------------------------======================

 //=================............................======================

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PC_interVS){

 if (iStatus == 0)

 {

 PCI_IntPwrEr = 0;

 }

 PCI_PwrEr = GenTrq*GenSpeed - VS_RtPwr; // Current error in power

 PCI_IntPwrEr = PCI_IntPwrEr + PCI_KI*PCI_PwrEr*ElapTime; // Current integral of power error

 //saturate the integral term with pitch angle and pitch rate limits

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, PC_MinPit),PC_MaxPit);

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, (-PC_MaxRat*ElapTime)),(PC_MaxRat*ElapTime));

 PCI_Prp = PCI_KP*PCI_PwrEr;

 PCI_Int = PCI_IntPwrEr;

 // add additional terms to pitch command

 PitComT = PitComT + PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 //=================............................======================

 //=================++++++++++++++++++++++++++++======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == 0)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_IntTA = 0; // set the velocity (acceleration integral) term to zero initially

 TVD_TV[0] = 0; // the previous 3 values of measured tower velocity

 TVD_TV[1] = 0;

 TVD_TV[2] = 0;

 TVD_TVf[0] = 0; // the previous 3 values of the filtered tower velocity

 TVD_TVf[1] = 0;

 TVD_TVf[2] = 0;

 }

 TVD_IntTA = TVD_IntTA + TVD_TowAcc*ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 // the previous 3 values of measured tower velocities

 TVD_TV[2] = TVD_TV[1];

 TVD_TV[1] = TVD_TV[0];

 TVD_TV[0] = TVD_IntTA;

 // the previous 3 values of the filtered tower velocities

 TVD_TVf[2] = TVD_TVf[1];

 TVD_TVf[1] = TVD_TVf[0];

 TVD_TVf[0] = -TVD_TVf[1]*TVD_alp[1] -TVD_TVf[2]*TVD_alp[2] +TVD_TV[0]*TVD_bet[0] +TVD_TV[1]*TVD_bet[1] +TVD_TV[2]*TVD_bet[2];

 TVD_TowVel = TVD_TVf[0]; // tower velocity

 // filter the power output with a lag filter

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_P[0] = GenSpeed*GenTrq; // the previous 2 values of the generator power

 TVD_P[1] = GenSpeed*GenTrq;

 TVD_Pf[0] = GenSpeed*GenTrq; // the previous 2 values of the filtered generator power

 TVD_Pf[1] = GenSpeed*GenTrq;

 }

 // the previous 2 values of measured generator power

 TVD_P[1] = TVD_P[0];

 TVD_P[0] = GenSpeed*GenTrq;

 // the previous 2 values of the filtered generator power

 TVD_Pf[1] = TVD_Pf[0];

 TVD_Pf[0] = -TVD_Pf[1]*TVD_FOFa[1] +TVD_P[0]*TVD_FOFb[0] +TVD_P[1]*TVD_FOFb[1];

 // determine gain for tower vibration signal

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 TVD_gain = MIN(MAX(TVD_gain,0),1); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================++++++++++++++++++++++++++++======================

 //=================~~~~~~~~~~~~~~~~~~~~~~~~~~~~======================

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeed - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == 0)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //=================~~~~~~~~~~~~~~~~~~~~~~~~~~~~======================

 //=================++++++++++++++++++++++++++++======================

 // Filter the pitch controller with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_PCT[0] = PitComT; // the previous 3 values of measured pitch angle

 PCFA_PCT[1] = PitComT;

 PCFA_PCT[2] = PitComT;

 PCFA_PCTF[0] = PitComT; // the previous 3 values of the filtered pitch angle

 PCFA_PCTF[1] = PitComT;

 PCFA_PCTF[2] = PitComT;

 }

 // the previous 3 values of measured generator speed

 PCFA_PCT[2] = PCFA_PCT[1];

 PCFA_PCT[1] = PCFA_PCT[0];

 PCFA_PCT[0] = PitComT;

 // the previous 3 values of the filtered generator torque

 PCFA_PCTF[2] = PCFA_PCTF[1];

 PCFA_PCTF[1] = PCFA_PCTF[0];

 PCFA_PCTF[0] = -PCFA_PCTF[1]*PCFA_alp[1] -PCFA_PCTF[2]*PCFA_alp[2] +PCFA_PCT[0]*PCFA_bet[0] +PCFA_PCT[1]*PCFA_bet[1] +PCFA_PCT[2]*PCFA_bet[2];

 PitComT = PCFA_PCTF[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_PCT[0] = PitComT; // the previous 3 values of measured pitch angle

 PCFB_PCT[1] = PitComT;

 PCFB_PCT[2] = PitComT;

 PCFB_PCTF[0] = PitComT; // the previous 3 values of the filtered pitch angle

 PCFB_PCTF[1] = PitComT;

 PCFB_PCTF[2] = PitComT;

 }

 // the previous 3 values of measured generator speed

 PCFB_PCT[2] = PCFB_PCT[1];

 PCFB_PCT[1] = PCFB_PCT[0];

 PCFB_PCT[0] = PitComT;

 // the previous 3 values of the filtered generator torque

 PCFB_PCTF[2] = PCFB_PCTF[1];

 PCFB_PCTF[1] = PCFB_PCTF[0];

 PCFB_PCTF[0] = -PCFB_PCTF[1]*PCFB_alp[1] -PCFB_PCTF[2]*PCFB_alp[2] +PCFB_PCT[0]*PCFB_bet[0] +PCFB_PCT[1]*PCFB_bet[1] +PCFB_PCT[2]*PCFB_bet[2];

 PitComT = PCFB_PCTF[0];

 }

 // Low-pass filter

 if (PCF_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_PCT[0] = PitComT; // the previous 3 values of measured pitch angle

 PCFB_PCT[1] = PitComT;

 PCFB_PCT[2] = PitComT;

 PCFB_PCTF[0] = PitComT; // the previous 3 values of the filtered pitch angle

 PCFB_PCTF[1] = PitComT;

 PCFB_PCTF[2] = PitComT;

 }

 // the previous 3 values of measured generator speed

 PCF_PCT[2] = PCF_PCT[1];

 PCF_PCT[1] = PCF_PCT[0];

 PCF_PCT[0] = PitComT;

 // the previous 3 values of the filtered generator torque

 PCF_PCTF[2] = PCF_PCTF[1];

 PCF_PCTF[1] = PCF_PCTF[0];

 PCF_PCTF[0] = -PCF_PCTF[1]*PCF_alp[1] -PCF_PCTF[2]*PCF_alp[2] +PCF_PCT[0]*PCF_bet[0] +PCF_PCT[1]*PCF_bet[1] +PCF_PCT[2]*PCF_bet[2];

 PitComT = PCF_PCTF[0];

 }

 // saturate the overall command using the pitch angle limits:

 PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit);

 // Saturate the overall command using the pitch angle

 // Saturate the overall commanded pitch using the pitch rate limit:

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT - BlPitch[K])/ElapTime; // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], -PC_MaxRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximu

 PitCom[K] = BlPitch[K] + PitRate[K]*ElapTime; // Saturate the overall command of blade K using the p

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*SpdErr/PC_RefSpd << Tab << SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 //===

 //Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == -1))

 { // Last call to controller

 strcat(strMsg,"\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 SetSwapValue(65,6); // Number of variables returned for logging

 strcpy(avcOutname,"PitComT:A;PitComP:A;PitComI:A;IntSpdErr:A;SpdErr:A/T;GK:L;");

 SetSwapValue((NINT(GetSwapValue(63))+0),PitComT);

 SetSwapValue((NINT(GetSwapValue(63))+1),PitComP);

 SetSwapValue((NINT(GetSwapValue(63))+2),PitComI);

 SetSwapValue((NINT(GetSwapValue(63))+3),IntSpdErr);

 SetSwapValue((NINT(GetSwapValue(63))+4),SpdErr);

 SetSwapValue((NINT(GetSwapValue(63))+5),GK);

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_01Oct14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_01Oct14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<float>::epsilon(); // The number slighty greater than unity in simulations due to rounding error, needs to be float as thats what Bladed uses

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_GenAcc;

 double static NacelRolAcc;

 double static NacelNodAcc;

 double static NacelRolVel;

 double static NacelNodVel;

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 double static VS_lastGenSpd = 0; // last generator speed for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComT; // Total command pitch based on the sum of the

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static GenTrqF; // Filtered generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.199161997555370, 0.746146616371889}; // the tf denominator values

 double PCFB_bet[3] = {0.873073308185945, -1.199161997555369, 0.873073308185945}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.745244572310132, 0.761469654294494}; // the tf denominator values

 double TVD_bet[3] = {2.449630717274034, -4.615760042119332, 2.182354406829659}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.922898292198467}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; // Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 //double const TVD_Smart_xHat = 0.0f; // Ratio used for pitch:smart control sharing of TVD

 // Supplementing pitch control filter

 //double const Sup_FreqCutOff = 1.0f*2.0f*PIE*PC_DT; // recurssive filter 3dB cutoff frequency in rad/s

 double static Sup_xHat = 0.96;//exp(-Sup_FreqCutOff); // recurssive filter decay constant for determining coefficients

 double static Sup_Signal; // supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SigPrev; // previous time step supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SmartF; // supplementary smart rotor control filtered signal

 double static Sup_PitchF; // supplementary pitch control filtered signal

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.000000001; // Proportional gain

 double const IPCB_KI = 0.00000000; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_PitComF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFL_bet[3] = {0.003933975449816, 0.007867950899633, 0.003933975449816}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFH_bet[3] = {2.0*1.569381033248292, -2.0*3.138762066496584, 2.0*1.569381033248292}; // the tf numerator values

 // Smart Rotor Control

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 // Smart Rotor Control DQ-axis

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = IPC_KP; // proportional gain

 double const SRC_KI = IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_triggered; // ratchet for fault ride through 1

 bool static SRC_faultRF2_triggered; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCfrf_TF;

 double SRCfrf_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCfrf_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCfrf_values[100];

 double const SRCfrf_threshold = 0.02;

 int static SRCfrf_cnt;

 double static SRCfrf_value;

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = -IPCB_KI; // Integral gain

 double const SRCD_KP = -IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 double static SRCD_PitComF[3];

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {IPCBFL_alp[0], IPCBFL_alp[1], IPCBFL_alp[2]}; // the tf denominator values

 double SRCDFL_bet[3] = {IPCBFL_bet[0], IPCBFL_bet[1], IPCBFL_bet[2]}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {IPCBFH_alp[0], IPCBFH_alp[1], IPCBFH_alp[2]}; // the tf denominator values

 double SRCDFH_bet[3] = {IPCBFH_bet[0], IPCBFH_bet[1], IPCBFH_bet[2]}; // the tf numerator values

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 // flags for supplementary speed control

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 double static Sup_FreqCutOff; // 3dB cut-off frequency for spliting the pitch and smart rotor signals using filters

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flags for supplementary TVD control

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 double static TVD_Smart_xHat; // Ratio of pitch to smart rotor control

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //Smart Rotor control gain factor for controller pitch angle to flap angle

 double static SRC_Pitch2Flap; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //flag for fixed flap angle

 bool static FA_on; // Flag to indicate whether fixed flap angle is applied

 double static FA_aileronAngle; // Value for fixed flap angle

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for supplementary control

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 Sup_FreqCutOff = 1; // Value for spliting the pitch signal using filters

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether dq-axis Individual Pitch Control (IPC) is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether Independent blade pitch control (IPCB) is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 TVD_Smart_xHat = 1; // Ratio of pitch to smart rotor control for tower vibration damping

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //pitch to flap angle gain factor

 SRC_Pitch2Flap = 4.6; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether auto fault ride-through version 1 is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether auto fault ride-through version 2 is operational

 SRC_faultRF1_triggered = false; // Flag to indicate whether fault ride-through version 1 has been triggered

 SRC_faultRF2_triggered = false; // Flag to indicate whether fault ride-through version 2 has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //flag to set flap at a fixed angle

 FA_on = false; // Flag to indicate whether flap angle is fixed

 FA_aileronAngle = 0; // Angle at which flap is fixed

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output pitch control debugging

 VS_DbgOut = false; // Flag to indicate whether to output torque control debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 FA_on = parameterSearchDefine (turbine_id, line, FA_on, "FA_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamAngle = atof(tmptxt.c_str()); //convert selected string to float

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamTime=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamTime = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("Sup_FreqCutOff") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSup_FreqCutOff=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 Sup_FreqCutOff = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("TVD_Smart_xHat") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nTVD_Smart_xHat=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 TVD_Smart_xHat = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("FA_aileronAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nFA_aileronAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 FA_aileronAngle = atof(tmptxt.c_str()); //convert selected string to integer

 FA_aileronAngle = FA_aileronAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_Pitch2Flap") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_Pitch2Flap=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_Pitch2Flap = atof(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on && SRCD_on) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if ((SRC_on || SRCD_on || PC_Smart_on || TVD_Smart_on) && FA_on) {

 ReportErrorMessage (turbine_id, "\r\nFixed flap angle and SRC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 } //if SRC_jam on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 if (FA_on == true)

 {

 strcat(strMsg,"FA ");

 } //if FA on

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComT;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = GenSpeed;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on || SRCD_on || TVD_Smart_on || PC_Smart_on || FA_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 if (VSConstP_on){

 // and saturate to rated power (with no drop in torque allowed):

 // GenTrq = MAX(VS_ComT,VS_GnTqLast); // no drop in torque allowed

 GenTrq = MAX(VS_ComT,VS_GnTqLast*VS_lastGenSpd/GenSpeed); // no drop in power allowed, where did this idea come from??????

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 /*if (VSConstP_on){

 // and saturate to rated power:

 GenTrq = MAX(VS_ComT,GenTrqOpt); // overall command (saturated to Cp optimum curve)

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }*/ //this seems like bollocks as its not above rated region!!!

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 VS_lastGenSpd = GenSpeed; // last VS generator speed

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFB_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 PitComT = SATURATE(PitComT, PC_MinPit ,PC_MaxPit); //Overall command saturated

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComT < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComT = PitComT - 1.0*PCI_Prp;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 PitComT = SATURATE(PitComT, PC_MinPit ,PC_MaxPit); //Overall command saturated

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComT < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComT = PitComT - 1.0*PCI_Prp;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = GK*TVD_K*TVD_gain*TVD_TowVel;//TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -4.0*(TVD_Smart_xHat)*TVD_PitCom;

 TVD_PitCom = (1-TVD_Smart_xHat)*TVD_PitCom;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = GK*NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 //==============BEGIN: IPCB Independent Blade Control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComT < (0.0001))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + GK*IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -GK*IPC_gain*IPC_PitMax ,GK*IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = GK*IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 // individual pitch command for each blade

 IPCB_PitComF[K] = IPCB_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_PitComF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_PitComF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_PitComF[K] = SATURATE(IPCB_PitComF[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: IPCB Independent Blade Control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + TVD_PitCom + NLP_PitCom + IPC_pit[K] + IPCB_PitComF[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 //==============BEGIN: SRCD Smart rotor control distributed==============

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComT < (0.0001))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + GK*SRC_gain*SRC_Pitch2Flap*SRCD_KI*SRCD_BladeRBMopF[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], GK*SRC_gain*SRC_PitMin ,GK*SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = GK*SRC_gain*SRC_Pitch2Flap*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitComF[K] = SRCD_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_PitComF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_PitComF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_PitComF[K] = SATURATE(SRCD_PitComF[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCfrf_cnt=1; SRCfrf_cnt<100; SRCfrf_cnt++)

 {

 SRCfrf_values[100-SRCfrf_cnt] = SRCfrf_values[100-SRCfrf_cnt-1];

 }

 //filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_TF = TFinit(SRCfrf_TF,SRCfrf_alp,SRCfrf_bet,0);

 }

 SRCfrf_TF = TFupdate(SRCfrf_TF,TowerAccX);

 //new value

 SRCfrf_values[0] = (SRCfrf_TF.outputs[0])*(SRCfrf_TF.outputs[0]);

 SRCfrf_value = SRCfrf_values[0] - SRCfrf_values[99] + SRCfrf_value;

 if (SRCfrf_value/100 >SRCfrf_threshold)

 {

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRCD_PitComF[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF1_triggered))

 {

 if (SRC_faultRF1_triggered == false)

 {

 SRC_faultRF1_triggered = true;

 ReportWarningMessage (turbine_id, "FRF activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 //=======END: SRC fault ride through =======

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 if ((!SRC_faultRF1_triggered) && (!SRC_faultRF2_triggered))

 {

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 if (FA_on){

 SRC_PitCom[K] = FA_aileronAngle; // Fixed aileron angle

 }

 //SRC_PitComLast[K] = SRC_PitCom[K]

 } //only adjust if fault ride through inactive

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime and LastGenSpeed to the current values:

 LastGenSpd = GenSpeed;

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "IPCB_PitCom", "A") ;

 AddLogValue (turbine_id, "IPCB_Ref", "FL") ;

 AddLogValue (turbine_id, "IPCB_RefF", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF", "FL") ;

 AddLogValue (turbine_id, "IPCB_towerAdjustment", "FL") ;

 AddLogValue (turbine_id, "IPCB_nacelleNodRollAdj", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop", "FL") ;

 AddLogValue (turbine_id, "IPCB_PitComF", "A") ;

 }

 SetLoggingValue (turbine_id, 0, IPCB_PitCom[0]);

 SetLoggingValue (turbine_id, 1, IPCB_Ref);

 SetLoggingValue (turbine_id, 2, IPCB_RefF);

 SetLoggingValue (turbine_id, 3, IPCB_BladeRBMopF[0]);

 SetLoggingValue (turbine_id, 4, 17734*20.5*(TowerAccX));

 SetLoggingValue (turbine_id, 5, 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(0)*PIE/3)));

 SetLoggingValue (turbine_id, 6, BladeRBMop[0]);

 SetLoggingValue (turbine_id, 7, IPCB_PitComF[0]);

 }//end logging

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_02Oct14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_02Oct14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<float>::epsilon(); // The number slighty greater than unity in simulations due to rounding error, needs to be float as thats what Bladed uses

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_GenAcc;

 double static NacelRolAcc;

 double static NacelNodAcc;

 double static NacelRolVel;

 double static NacelNodVel;

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 double static VS_lastGenSpd = 0; // last generator speed for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComPI; // Proportional integral command pitch for generator speed control

 double static PitComT; // Total command pitch

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static GenTrqF; // Filtered generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.199161997555370, 0.746146616371889}; // the tf denominator values

 double PCFB_bet[3] = {0.873073308185945, -1.199161997555369, 0.873073308185945}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.745244572310132, 0.761469654294494}; // the tf denominator values

 double TVD_bet[3] = {2.449630717274034, -4.615760042119332, 2.182354406829659}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.922898292198467}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; // Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 //double const TVD_Smart_xHat = 0.0f; // Ratio used for pitch:smart control sharing of TVD

 // Supplementing pitch control filter

 //double const Sup_FreqCutOff = 1.0f*2.0f*PIE*PC_DT; // recurssive filter 3dB cutoff frequency in rad/s

 double static Sup_xHat = 0.96;//exp(-Sup_FreqCutOff); // recurssive filter decay constant for determining coefficients

 double static Sup_Signal; // supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SigPrev; // previous time step supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SmartF; // supplementary smart rotor control filtered signal

 double static Sup_PitchF; // supplementary pitch control filtered signal

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.000000001; // Proportional gain

 double const IPCB_KI = 0.00000000; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_PitComF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFL_bet[3] = {0.003933975449816, 0.007867950899633, 0.003933975449816}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFH_bet[3] = {2.0*1.569381033248292, -2.0*3.138762066496584, 2.0*1.569381033248292}; // the tf numerator values

 // Smart Rotor Control

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 // Smart Rotor Control DQ-axis

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = IPC_KP; // proportional gain

 double const SRC_KI = IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_triggered; // ratchet for fault ride through 1

 bool static SRC_faultRF2_triggered; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCfrf_TF;

 double SRCfrf_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCfrf_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCfrf_values[100];

 double const SRCfrf_threshold = 0.02;

 int static SRCfrf_cnt;

 double static SRCfrf_value;

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = -IPCB_KI; // Integral gain

 double const SRCD_KP = -IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 double static SRCD_PitComF[3];

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {IPCBFL_alp[0], IPCBFL_alp[1], IPCBFL_alp[2]}; // the tf denominator values

 double SRCDFL_bet[3] = {IPCBFL_bet[0], IPCBFL_bet[1], IPCBFL_bet[2]}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {IPCBFH_alp[0], IPCBFH_alp[1], IPCBFH_alp[2]}; // the tf denominator values

 double SRCDFH_bet[3] = {IPCBFH_bet[0], IPCBFH_bet[1], IPCBFH_bet[2]}; // the tf numerator values

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 // flags for supplementary speed control

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 double static Sup_FreqCutOff; // 3dB cut-off frequency for spliting the pitch and smart rotor signals using filters

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flags for supplementary TVD control

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 double static TVD_Smart_xHat; // Ratio of pitch to smart rotor control

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //Smart Rotor control gain factor for controller pitch angle to flap angle

 double static SRC_Pitch2Flap; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //flag for fixed flap angle

 bool static FA_on; // Flag to indicate whether fixed flap angle is applied

 double static FA_aileronAngle; // Value for fixed flap angle

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for supplementary control

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 Sup_FreqCutOff = 1; // Value for spliting the pitch signal using filters

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether dq-axis Individual Pitch Control (IPC) is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether Independent blade pitch control (IPCB) is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 TVD_Smart_xHat = 1; // Ratio of pitch to smart rotor control for tower vibration damping

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //pitch to flap angle gain factor

 SRC_Pitch2Flap = 4.6; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether auto fault ride-through version 1 is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether auto fault ride-through version 2 is operational

 SRC_faultRF1_triggered = false; // Flag to indicate whether fault ride-through version 1 has been triggered

 SRC_faultRF2_triggered = false; // Flag to indicate whether fault ride-through version 2 has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //flag to set flap at a fixed angle

 FA_on = false; // Flag to indicate whether flap angle is fixed

 FA_aileronAngle = 0; // Angle at which flap is fixed

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output pitch control debugging

 VS_DbgOut = false; // Flag to indicate whether to output torque control debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 FA_on = parameterSearchDefine (turbine_id, line, FA_on, "FA_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamAngle = atof(tmptxt.c_str()); //convert selected string to float

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamTime=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamTime = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("Sup_FreqCutOff") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSup_FreqCutOff=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 Sup_FreqCutOff = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("TVD_Smart_xHat") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nTVD_Smart_xHat=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 TVD_Smart_xHat = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("FA_aileronAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nFA_aileronAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 FA_aileronAngle = atof(tmptxt.c_str()); //convert selected string to integer

 FA_aileronAngle = FA_aileronAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_Pitch2Flap") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_Pitch2Flap=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_Pitch2Flap = atof(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on && SRCD_on) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if ((SRC_on || SRCD_on || PC_Smart_on || TVD_Smart_on) && FA_on) {

 ReportErrorMessage (turbine_id, "\r\nFixed flap angle and SRC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComPI" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 } //if SRC_jam on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 if (FA_on == true)

 {

 strcat(strMsg,"FA ");

 } //if FA on

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComPI = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComPI; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComPI;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = GenSpeed;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on || SRCD_on || TVD_Smart_on || PC_Smart_on || FA_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComPI > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 if (VSConstP_on){

 // and saturate to rated power (with no drop in torque allowed):

 // GenTrq = MAX(VS_ComT,VS_GnTqLast); // no drop in torque allowed

 GenTrq = MAX(VS_ComT,VS_GnTqLast*VS_lastGenSpd/GenSpeed); // no drop in power allowed, where did this idea come from??????

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 //GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 if (VSConstP_on){

 // and saturate to rated power:

 GenTrq = MAX(VS_ComT,GenTrqOpt); // overall command (saturated to Cp optimum curve)

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 VS_lastGenSpd = GenSpeed; // last VS generator speed

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFB_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PCI_Prp + PCI_Int;

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); // Overall command saturated

 PitComT = PitComPI; // set overall pitch speed control command

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComPI < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComPI = PitComPI - 1.0*PCI_Prp;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PitComP + PitComI; // Overall command (unsaturated)

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); //Overall command saturated

 PitComT = PitComPI;

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComPI < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComPI = PitComPI - 1.0*PCI_Prp;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = GK*TVD_K*TVD_gain*TVD_TowVel;//TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -4.0*(TVD_Smart_xHat)*TVD_PitCom;

 TVD_PitCom = (1-TVD_Smart_xHat)*TVD_PitCom;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = GK*NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 //==============BEGIN: IPCB Independent Blade Control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + GK*IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -GK*IPC_gain*IPC_PitMax ,GK*IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = GK*IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 // individual pitch command for each blade

 IPCB_PitComF[K] = IPCB_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_PitComF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_PitComF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_PitComF[K] = SATURATE(IPCB_PitComF[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: IPCB Independent Blade Control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + TVD_PitCom + NLP_PitCom + IPC_pit[K] + IPCB_PitComF[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComPI*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 //==============BEGIN: SRCD Smart rotor control distributed==============

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + GK*SRC_gain*SRC_Pitch2Flap*SRCD_KI*SRCD_BladeRBMopF[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], GK*SRC_gain*SRC_PitMin ,GK*SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = GK*SRC_gain*SRC_Pitch2Flap*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitComF[K] = SRCD_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_PitComF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_PitComF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_PitComF[K] = SATURATE(SRCD_PitComF[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCfrf_cnt=1; SRCfrf_cnt<100; SRCfrf_cnt++)

 {

 SRCfrf_values[100-SRCfrf_cnt] = SRCfrf_values[100-SRCfrf_cnt-1];

 }

 //filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_TF = TFinit(SRCfrf_TF,SRCfrf_alp,SRCfrf_bet,0);

 }

 SRCfrf_TF = TFupdate(SRCfrf_TF,TowerAccX);

 //new value

 SRCfrf_values[0] = (SRCfrf_TF.outputs[0])*(SRCfrf_TF.outputs[0]);

 SRCfrf_value = SRCfrf_values[0] - SRCfrf_values[99] + SRCfrf_value;

 if (SRCfrf_value/100 >SRCfrf_threshold)

 {

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRCD_PitComF[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF1_triggered))

 {

 if (SRC_faultRF1_triggered == false)

 {

 SRC_faultRF1_triggered = true;

 ReportWarningMessage (turbine_id, "FRF activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 //=======END: SRC fault ride through =======

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 if ((!SRC_faultRF1_triggered) && (!SRC_faultRF2_triggered))

 {

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 if (FA_on){

 SRC_PitCom[K] = FA_aileronAngle; // Fixed aileron angle

 }

 //SRC_PitComLast[K] = SRC_PitCom[K]

 } //only adjust if fault ride through inactive

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime and LastGenSpeed to the current values:

 LastGenSpd = GenSpeed;

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "IPCB_PitCom", "A") ;

 AddLogValue (turbine_id, "IPCB_Ref", "FL") ;

 AddLogValue (turbine_id, "IPCB_RefF", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF", "FL") ;

 AddLogValue (turbine_id, "IPCB_towerAdjustment", "FL") ;

 AddLogValue (turbine_id, "IPCB_nacelleNodRollAdj", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop", "FL") ;

 AddLogValue (turbine_id, "IPCB_PitComF", "A") ;

 }

 SetLoggingValue (turbine_id, 0, IPCB_PitCom[0]);

 SetLoggingValue (turbine_id, 1, IPCB_Ref);

 SetLoggingValue (turbine_id, 2, IPCB_RefF);

 SetLoggingValue (turbine_id, 3, IPCB_BladeRBMopF[0]);

 SetLoggingValue (turbine_id, 4, 17734*20.5*(TowerAccX));

 SetLoggingValue (turbine_id, 5, 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(0)*PIE/3)));

 SetLoggingValue (turbine_id, 6, BladeRBMop[0]);

 SetLoggingValue (turbine_id, 7, IPCB_PitComF[0]);

 }//end logging

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_11Nov14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_11Nov14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

#define ABS(a) ((a) > (0.0) ? a : (-a)) //finds the absolute value

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<float>::epsilon(); // The number slighty greater than unity in simulations due to rounding error, needs to be float as thats what Bladed uses

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_GenAcc;

 double static NacelRolAcc;

 double static NacelNodAcc;

 double static NacelRolVel;

 double static NacelNodVel;

 double const windspeed_tau = 30.0; // regressive filter time constant for filtering wind speed

 double static windspeedF; // filtered wind speed

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 double static VS_lastGenSpd = 0; // last generator speed for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComPI; // Proportional integral command pitch for generator speed control

 double static PitComT; // Total command pitch

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static GenTrqF; // Filtered generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.199161997555370, 0.746146616371889}; // the tf denominator values

 double PCFB_bet[3] = {0.873073308185945, -1.199161997555369, 0.873073308185945}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.745244572310132, 0.761469654294494}; // the tf denominator values

 double TVD_bet[3] = {2.449630717274034, -4.615760042119332, 2.182354406829659}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.922898292198467}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; // Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 //double const TVD_Smart_xHat = 0.0f; // Ratio used for pitch:smart control sharing of TVD

 // Supplementing pitch control filter

 //double const Sup_FreqCutOff = 1.0f*2.0f*PIE*PC_DT; // recurssive filter 3dB cutoff frequency in rad/s

 double static Sup_xHat = 0.96;//exp(-Sup_FreqCutOff); // recurssive filter decay constant for determining coefficients

 double static Sup_Signal; // supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SigPrev; // previous time step supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SmartF; // supplementary smart rotor control filtered signal

 double static Sup_PitchF; // supplementary pitch control filtered signal

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.000000001; // Proportional gain

 double const IPCB_KI = 0.00000000; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_PitComF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.935058323398081, 0.950697247287957};//{1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFL_bet[3] = {0.081999700234532, 0.007819461944938, -0.074180238289594};//{0.003933975449816, 0.007867950899633, 0.003933975449816}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.935058323398081, 0.950697247287957};//{1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFH_bet[3] = {1.637799151886204, -3.119418365248281, 1.481619213362077};//{2.0*1.569381033248292, -2.0*3.138762066496584, 2.0*1.569381033248292}; // the tf numerator values

 // Smart Rotor Control

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 // Smart Rotor Control DQ-axis

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = IPC_KP; // proportional gain

 double const SRC_KI = IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_on; // ratchet for fault ride through 1

 bool static SRC_faultRF2_on; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCafd_TF;

 double SRCafd_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCafd_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCafd_values[100];

 double const SRCafd_threshold = 2.5;

 int static SRCafd_cnt;

 double static SRCafd_value;

 double static SRCfrf_angle[3]; // adjust other flaps to this angle (initially zero)

 double static SRCfrf_KI_gain[3]; // adjust other flaps to this angle (initially zero)

 double const SRCfrf_tau = 60.0; // time constant for measuring the mean RBM of all 3 flaps and adjusting to be closer to that mean

 double static SRCfrf_RBMf[3];

 double static SRCfrf_deltaRBM[3];

 double static SRCfrf_IntAngle[3];

 double const SRCfrf_KP = -0.0000000;

 double const SRCfrf_KI = -0.00000001;

 TF static SRCfrf_1p_TF[3];

 double SRCfrf_1p_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190};

 double SRCfrf_1p_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595};

 TF static SRCfrf_3p_TF[3];

 double SRCfrf_3p_alp[3] = {1.000000000000000, -1.739215736436336, 0.756217844466947};

 double SRCfrf_3p_bet[3] = {0.878108922233473, -1.739215736436336, 0.878108922233473};

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = -IPCB_KI; // Integral gain

 double const SRCD_KP = -IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 double static SRCD_PitComF[3];

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {IPCBFL_alp[0], IPCBFL_alp[1], IPCBFL_alp[2]}; // the tf denominator values

 double SRCDFL_bet[3] = {IPCBFL_bet[0], IPCBFL_bet[1], IPCBFL_bet[2]}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {IPCBFH_alp[0], IPCBFH_alp[1], IPCBFH_alp[2]}; // the tf denominator values

 double SRCDFH_bet[3] = {IPCBFH_bet[0], IPCBFH_bet[1], IPCBFH_bet[2]}; // the tf numerator values

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 // flags for supplementary speed control

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 double static Sup_FreqCutOff; // 3dB cut-off frequency for spliting the pitch and smart rotor signals using filters

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flags for supplementary TVD control

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 double static TVD_Smart_xHat; // Ratio of pitch to smart rotor control

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //Smart Rotor control gain factor for controller pitch angle to flap angle

 double static SRC_Pitch2Flap; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //flag for fixed flap angle

 bool static FA_on; // Flag to indicate whether fixed flap angle is applied

 double static FA_aileronAngle; // Value for fixed flap angle

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for supplementary control

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 Sup_FreqCutOff = 1; // Value for spliting the pitch signal using filters

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether dq-axis Individual Pitch Control (IPC) is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether Independent blade pitch control (IPCB) is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 TVD_Smart_xHat = 1; // Ratio of pitch to smart rotor control for tower vibration damping

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //pitch to flap angle gain factor

 SRC_Pitch2Flap = 4.6; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether auto fault ride-through version 1 is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether auto fault ride-through version 2 is operational

 SRC_faultRF1_on = false; // Flag to indicate whether fault ride-through version 1 has been triggered

 SRC_faultRF2_on = false; // Flag to indicate whether fault ride-through version 2 has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //flag to set flap at a fixed angle

 FA_on = false; // Flag to indicate whether flap angle is fixed

 FA_aileronAngle = 0; // Angle at which flap is fixed

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output pitch control debugging

 VS_DbgOut = false; // Flag to indicate whether to output torque control debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 SRC_faultRF1_on = parameterSearchDefine (turbine_id, line, SRC_faultRF1_on, "SRC_faultRF1_on");

 SRC_faultRF2_on = parameterSearchDefine (turbine_id, line, SRC_faultRF2_on, "SRC_faultRF2_on");

 FA_on = parameterSearchDefine (turbine_id, line, FA_on, "FA_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamAngle = atof(tmptxt.c_str()); //convert selected string to float

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamTime=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamTime = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("Sup_FreqCutOff") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSup_FreqCutOff=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 Sup_FreqCutOff = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("TVD_Smart_xHat") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nTVD_Smart_xHat=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 TVD_Smart_xHat = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("FA_aileronAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nFA_aileronAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 FA_aileronAngle = atof(tmptxt.c_str()); //convert selected string to integer

 FA_aileronAngle = FA_aileronAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_Pitch2Flap") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_Pitch2Flap=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_Pitch2Flap = atof(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on && SRCD_on) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if ((SRC_on || SRCD_on || PC_Smart_on || TVD_Smart_on) && FA_on) {

 ReportErrorMessage (turbine_id, "\r\nFixed flap angle and SRC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComPI" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 if (SRC_faultRF1_on == true)

 strcat(strMsg,"SRC_faultRF1_on ");

 if (SRC_faultRF2_on == true)

 strcat(strMsg,"SRC_faultRF2_on ");

 } //if SRC_jam on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 if (FA_on == true)

 {

 strcat(strMsg,"FA ");

 } //if FA on

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComPI = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComPI; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComPI;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = GenSpeed;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on || SRCD_on || TVD_Smart_on || PC_Smart_on || FA_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 if ((SRC_jamAngle < -21.0/R2D) || (SRC_jamAngle > 21.0/R2D))

 {

 SRC_jamAngle = SRC_PitCom[0];

 }

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComPI > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 if (VSConstP_on){

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast*VS_lastGenSpd/GenSpeed,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // GenTrq = MAX(VS_ComT,VS_GnTqLast); // no drop in torque allowed

 GenTrq = MAX(VS_ComT,VS_GnTqLast*VS_lastGenSpd/GenSpeed); // no drop in power allowed

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 //GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 if (VSConstP_on){

 // and saturate to rated power:

 GenTrq = MAX(VS_ComT,GenTrqOpt); // overall command (saturated to Cp optimum curve)

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 VS_lastGenSpd = GenSpeed; // last VS generator speed

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFB_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PCI_Prp + PCI_Int;

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); // Overall command saturated

 PitComT = PitComPI; // set overall pitch speed control command

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComPI < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComPI = PitComPI - 1.0*PCI_Prp;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PitComP + PitComI; // Overall command (unsaturated)

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); //Overall command saturated

 PitComT = PitComPI;

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComPI < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComPI = PitComPI - 1.0*PCI_Prp;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = GK*TVD_K*TVD_gain*TVD_TowVel;//TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -4.0*(TVD_Smart_xHat)*TVD_PitCom;

 TVD_PitCom = (1-TVD_Smart_xHat)*TVD_PitCom;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = GK*NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 //==============BEGIN: IPCB Independent Blade Control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + GK*IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -GK*IPC_gain*IPC_PitMax ,GK*IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = GK*IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 // individual pitch command for each blade

 IPCB_PitComF[K] = IPCB_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_PitComF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_PitComF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = 2.0*IPCBFH_TF[K].outputs[0];

 }

 IPCB_PitComF[K] = SATURATE(IPCB_PitComF[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: IPCB Independent Blade Control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + TVD_PitCom + NLP_PitCom + IPC_pit[K] + IPCB_PitComF[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComPI*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 //==============BEGIN: SRCD Smart rotor control distributed==============

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + GK*SRC_gain*SRC_Pitch2Flap*SRCD_KI*SRCD_BladeRBMopF[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], GK*SRC_gain*SRC_PitMin ,GK*SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = GK*SRC_gain*SRC_Pitch2Flap*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitComF[K] = SRCD_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_PitComF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_PitComF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_PitComF[K] = SATURATE(SRCD_PitComF[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCafd_cnt=1; SRCafd_cnt<100; SRCafd_cnt++)

 {

 SRCafd_values[100-SRCafd_cnt] = SRCafd_values[100-SRCafd_cnt-1];

 }

 // 1P filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCafd_TF = TFinit(SRCafd_TF,SRCafd_alp,SRCafd_bet,TowerAccX);

 }

 SRCafd_TF = TFupdate(SRCafd_TF,TowerAccX);

 //new value

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 windspeedF = HorWindV;

 }

 windspeedF = ((windspeed_tau/SRC_DT)*windspeedF + HorWindV)/((windspeed_tau/SRC_DT)+1.0);

 SRCafd_values[0] = (SRCafd_TF.outputs[0])*(SRCafd_TF.outputs[0]) * (1.0 / (0.024*windspeedF*windspeedF - 0.57*windspeedF + 4.2));

 SRCafd_value = SRCafd_values[0] - SRCafd_values[99] + SRCafd_value;

 // ignore first minute to avoid transcience

 if (Time > 60.0)

 {

 // normalise data for fixed threshold value based on wind speed * 1.0 / (0.024*HorWindV*HorWindV - 0.57*HorWindV + 4.2)

 if (SRCafd_value > SRCafd_threshold)

 {

 if (!SRC_faultRF_on)

 {

 ReportWarningMessage (turbine_id, "Fault detected");

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 }

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRCD_PitComF[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF1_on))

 {

 if (SRC_faultRF1_on == false)

 {

 SRC_faultRF1_on = true;

 ReportWarningMessage (turbine_id, "FRF1 activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 //SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 // Fault ride through by setting other flaps to 0

 if ((SRC_faultRF_on) || (SRC_faultRF2_on))

 {

 if (SRC_faultRF2_on == false)

 {

 for (K = 0;K<NumBl;K++)

 {

 SRCfrf_RBMf[K] = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2])/3;

 SRCfrf_1p_TF[K] = TFinit(SRCfrf_1p_TF[K],SRCfrf_1p_alp,SRCfrf_1p_bet,SRCfrf_RBMf[K]);

 SRCfrf_1p_TF[K] = TFupdate(SRCfrf_1p_TF[K],SRCfrf_RBMf[K]);

 SRCfrf_RBMf[K] = SRCfrf_1p_TF[K].outputs[K];

 SRCfrf_3p_TF[K] = TFinit(SRCfrf_3p_TF[K],SRCfrf_3p_alp,SRCfrf_3p_bet,SRCfrf_RBMf[K]);

 SRCfrf_3p_TF[K] = TFupdate(SRCfrf_3p_TF[K],SRCfrf_RBMf[K]);

 SRCfrf_RBMf[K] = SRCfrf_3p_TF[K].outputs[K];

 }

 SRC_faultRF2_on = true;

 ReportWarningMessage (turbine_id, "FRF2 activated");

 }

 else

 {

 for (K = 0;K<NumBl;K++)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRCfrf_RBMf[K] = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2])/3;

 }

 //SRCfrf_RBMf[K] = ((SRCfrf_tau/SRC_DT)*SRCfrf_RBMf[K] + BladeRBMop[K])/((SRCfrf_tau/SRC_DT)+1.0);

 SRCfrf_RBMf[K] = BladeRBMop[K];

 ///*

 // 1P notch filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_1p_TF[K] = TFinit(SRCfrf_1p_TF[K],SRCfrf_1p_alp,SRCfrf_1p_bet,SRCfrf_RBMf[K]);

 }

 SRCfrf_1p_TF[K] = TFupdate(SRCfrf_1p_TF[K],SRCfrf_RBMf[K]);

 //new value

 SRCfrf_RBMf[K] = SRCfrf_1p_TF[K].outputs[K];

 //*/

 ///*

 // 3P notch filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_3p_TF[K] = TFinit(SRCfrf_3p_TF[K],SRCfrf_3p_alp,SRCfrf_3p_bet,SRCfrf_RBMf[K]);

 }

 SRCfrf_3p_TF[K] = TFupdate(SRCfrf_3p_TF[K],SRCfrf_RBMf[K]);

 //new value

 SRCfrf_RBMf[K] = SRCfrf_3p_TF[K].outputs[K];

 //*/

 }

 }

 for (K = 0;K<NumBl;K++)

 {

 SRCfrf_deltaRBM[K] = SRCfrf_RBMf[K] - ((SRCfrf_RBMf[0] + SRCfrf_RBMf[1] + SRCfrf_RBMf[2])/3);

 SRCfrf_IntAngle[K] = SRCfrf_IntAngle[K] + SRC_ElapTime*SRCfrf_KI*SRCfrf_deltaRBM[K]*SRCfrf_KI_gain[2];

 SRCfrf_IntAngle[K] = SATURATE(SRCfrf_IntAngle[K], SRC_PitMin , SRC_PitMax);

 SRCfrf_angle[K] = SRCfrf_IntAngle[K] + SRCfrf_KP*SRCfrf_deltaRBM[K];

 //SRCfrf_KI_gain[K] = ((SRCfrf_tau/SRC_DT)*SRCfrf_KI_gain[K] + SRCfrf_angle[K])/((SRCfrf_tau/SRC_DT)+1.0);

 SRC_PitCom[K] = SRCfrf_angle[K]; // fault ride through sets all flaps to the same angle

 }

 SRCfrf_KI_gain[0] = ((SRCfrf_deltaRBM[0]+SRCfrf_deltaRBM[1]+SRCfrf_deltaRBM[2])/3)*0.00001;

 if (SRCfrf_KI_gain[1] == 0.0)

 {

 SRCfrf_KI_gain[1] = SRCfrf_KI_gain[0];

 }

 SRCfrf_KI_gain[1] = ((SRCfrf_tau/SRC_DT)*SRCfrf_KI_gain[1] + SRCfrf_KI_gain[0])/((SRCfrf_tau/SRC_DT)+1.0);

 SRCfrf_KI_gain[1] = SATURATE(SRCfrf_KI_gain[1],-1.0,1.0);

 SRCfrf_KI_gain[2] = SRCfrf_KI_gain[1];

 SRCfrf_KI_gain[2] = SATURATE(ABS(SRCfrf_KI_gain[2]),0.1,1.0);

 /*

 SRCfrf_deltaRBM[1] = 0.5*(SRCfrf_RBMf[1] + SRCfrf_RBMf[2]) - SRCfrf_RBMf[0]; //SRCfrf_RBMf[1] - ((SRCfrf_RBMf[0] + SRCfrf_RBMf[1] + SRCfrf_RBMf[2])/3);

 SRCfrf_IntAngle[1] = SRCfrf_IntAngle[1] + SRC_ElapTime*SRCfrf_KI*SRCfrf_deltaRBM[1];

 SRCfrf_IntAngle[1] = SATURATE(SRCfrf_IntAngle[1], SRC_PitMin , SRC_PitMax);

 SRCfrf_angle[1] = SRCfrf_IntAngle[1] + SRCfrf_KP*SRCfrf_deltaRBM[1];

 SRC_PitCom[1] = SRCfrf_angle[1]; // fault ride through sets all flaps to the same angle

 SRC_PitCom[2] = SRCfrf_angle[1];

 */

 } // end fault ride through by setting flaps to 0

 //=======END: SRC fault ride through =======

 // set aileron angle demands

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 if (FA_on){

 SRC_PitCom[K] = FA_aileronAngle; // Fixed aileron angle

 }

 //SRC_PitComLast[K] = SRC_PitCom[K]

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime and LastGenSpeed to the current values:

 LastGenSpd = GenSpeed;

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "SRCafd_value", "-");

 }

 SetLoggingValue (turbine_id, 0, SRCafd_value);

 }//end logging

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_14Jul14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_14Jul14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<double const>::epsilon(); // The number slighty greater than unity in si

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 /*double static NacelRolAcc; // nacelle rolling acceleration

 double static NacelNodAcc; // nacelle nodding acceleration

 double static NacelRolVel; // nacelle rolling velocity

 double static NacelNodVel; // nacelle nodding velocity

 */

 double static SRC_GenAcc;

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 double static VS_lastGenSpd = 0; // last generator speed for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComT; // Total command pitch based on the sum of the

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static GenTrqF; // Filtered generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 TF static PCF2A_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 TF static PCF2B_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.190374887599262, 0.744851779574509}; // the tf denominator values

 double PCFB_bet[3] = {0.872425889787254, -1.190374887599262, 0.872425889787254}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 TF static PCF2_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.737727154311832, 0.754923915708174}; // the tf denominator values

 double TVD_bet[3] = {1.526289229930945, -2.820160337169271, 1.311067868634668}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.922898292198467}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; // Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 //double const TVD_Smart_xHat = 0.0f; // Ratio used for pitch:smart control sharing of TVD

 // Supplementing pitch control filter

 //double const Sup_FreqCutOff = 1.0f*2.0f*PIE*PC_DT; // recurssive filter 3dB cutoff frequency in rad/s

 double static Sup_xHat = 0.96;//exp(-Sup_FreqCutOff); // recurssive filter decay constant for determining coefficients

 double static Sup_Signal; // supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SigPrev; // previous time step supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SmartF; // supplementary smart rotor control filtered signal

 double static Sup_PitchF; // supplementary pitch control filtered signal

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 double const IPC2_PitMax = 2.5/R2D; // max angle due to IPC2 control

 double const IPC2_KP = 0.0; // proportional gain

 double const IPC2_KI = 0.000000002; // integral gain

 double static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static IPC2_loadsD; // load measurements in D-axis

 double static IPC2_loadsQ; // load measurements in Q-axis

 double static IPC2_loadsDF; // Filtered yaw moment

 double static IPC2_loadsQF; // Filtered tilt moment

 double static IPC2_pitD; // D-axis pitch demand

 double static IPC2_pitQ; // Q-axis pitch demand

 double static IPC2_pit[3]; // Individual pitch demands

 double static IPC2_YawRef = 0.0; // Desired yaw moment

 double static IPC2_TltRef = 0.0; // Desired tilt moment

 double static IPC2_YawEr; // Yaw (D-axis) moment error

 double static IPC2_TltEr; // Tilt (Q-axis) moment error

 double static IPC2_IntYawEr; // Integral of yaw moment error

 double static IPC2_IntTltEr; // Integral of tilt moment error

 double static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 TF static IPC2FDA_TF;

 double IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 TF static IPC2FQA_TF;

 double IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 double IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // IPC utilising angle of attack measurements

 double static IPCL_Ref; // Reference angle of attack

 double static IPCL_RefF; // Filtered reference (regressive filter)

 double const IPCL_Tau = 0.1; // Regressive filter time constant

 double static IPCL_IntEr[3]; // Integral error for each of the flaps

 double static IPCL_PitCom[3]; // Pitch command for each of the flaps

 double const IPCL_KD = 0.0; // Differential gain

 double const IPCL_KP = -1.0; // Proportional gain

 double const IPCL_KI = 0.0; // Integral gain

 double static IPCL_DifEr[3]; // Differential error

 double static IPCL_Er[3]; // Current error

 double const IPCL_PitMax = 2.5/R2D; // max angle due to IPC2 control

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.00000001; // Proportional gain

 double const IPCB_KI = 0.0; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double IPCBFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double IPCBFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // Smart Rotor Control (dq)

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 19.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -19.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = 4.0*IPC_KP; // proportional gain

 double const SRC_KI = 4.0*IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF_triggered; // ratchet for fault ride through 1

 bool static SRC_faultRF2_triggered; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCfrf_TF;

 double SRCfrf_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCfrf_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCfrf_values[100];

 double const SRCfrf_threshold = 0.02;

 int static SRCfrf_cnt;

 double static SRCfrf_value;

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control (2P dq)

 double const SRC2_PitMax = 2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMin = -2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC2_KP = 0.0; // proportional gain

 double const SRC2_KI = 0.0000002; // integral gain

 double static SRC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC2_loadsD; // load measurements in D-axis

 double static SRC2_loadsQ; // load measurements in Q-axis

 double static SRC2_loadsDF; // Filtered yaw moment

 double static SRC2_loadsQF; // Filtered tilt moment

 double static SRC2_PitComD; // D-axis pitch demand

 double static SRC2_PitComQ; // Q-axis pitch demand

 double static SRC2_PitCom[3]; // Individual pitch demands

 double static SRC2_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC2_YawRef = 0.0; // Desired yaw moment

 double static SRC2_TltRef = 0.0; // Desired tilt moment

 double static SRC2_YawEr; // Yaw (D-axis) moment error

 double static SRC2_TltEr; // Tilt (Q-axis) moment error

 double static SRC2_IntYawEr; // Integral of yaw moment error

 double static SRC2_IntTltEr; // Integral of tilt moment error

 double static SRC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC2_gain; // gain to phase out SRC2 below rated

 double static SRC2_dqPitCom[3];

 // Notch filter for SRC2 yaw error D

 TF static SRC2FDA_TF;

 double SRC2FDA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FDA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC2 tilt error Q

 TF static SRC2FQA_TF;

 double SRC2FQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = 0.0; // Integral gain

 double const SRCD_KP = -8.0*IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double SRCDFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double SRCDFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // LIDAR beams detection unit, blade mounted

 int LIDAR_lidars; // Loops through LIDARs per blade

 int LIDAR_beams; // Loops through LIDAR beams per LIDAR

 int LIDAR_focals; // Loops through focal points of LIDAR beams

 //int const LIDAR_Nbeams = GetNumberOfLidarBeams(turbine_id); // Number of effectively independent Lidar beams

 double const LIDAR_Yrot[2] = {0.0000, 90.0/R2D}; // Angular separtaion between x-axis and beam

 double const LIDAR_Zrot[2] = {0.0000, 90.0/R2D}; // Azimuth angle about x-axis

 double const LIDAR_Focus = 0.0001; // Focal point in metres of LIDAR

 double static LIDAR_WS[6]; // Velocity percieved by each LIDAR focal point

 double const LIDAR_DT = 0.1; // Communication interval with LIDAR

 double static LastTimeLIDAR; // Last call to LIDAR

 double static LIDAR_AoA[3]; // Angle of attack calculated from LIDAR

 // Smart Rotor Control utilising angle of attack measurements

 double static SRCL_Ref; // Reference angle of attack

 double static SRCL_RefF; // Filtered reference (regressive filter)

 double const SRCL_Tau = 1.0; // Regressive filter time constant

 double static SRCL_IntEr[3]; // Integral error for each of the flaps

 double static SRCL_PitCom[3]; // Pitch command for each of the flaps

 double const SRCL_KD = 0.0; // Differential gain

 double const SRCL_KP = 3.0; // Proportional gain

 double const SRCL_KI = 0.0; // Integral gain

 double static SRCL_DifEr[3]; // Differential error

 double static SRCL_Er[3]; // Current error

 //Strain gauge measurements

 int static STRAIN_gauges; // Counter for strain gauges

 int const STRAIN_Ngauges = GetNumberOfBladeStrainGauges (turbine_id, 0); //number of strain gauges on blade 0

 double static STRAIN_strainB0[10]; // Strains on blade 0

 double static STRAIN_strainB1[10]; // Strains on blade 1

 double static STRAIN_strainB2[10]; // Strains on blade 2

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 // flags for supplementary speed control

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 double static Sup_FreqCutOff; // 3dB cut-off frequency for spliting the pitch and smart rotor signals using filters

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flags for supplementary TVD control

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 double static TVD_Smart_xHat; // Ratio of pitch to smart rotor control

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 /*NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 */

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for supplementary control

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 Sup_FreqCutOff = 1; // Value for spliting the pitch signal using filters

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether IPC is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPC2_on = false; // Flag to indicate whether IPC2 is on

 IPC2FDA_on = true; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 IPC2FQA_on = true; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether IPCB is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 TVD_Smart_xHat = 1; // Ratio of pitch to smart rotor control for tower vibration damping

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 SRC2_on = false; // Flag to indicate whether smart rotor control is active

 SRC2FDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 SRC2FQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 LIDAR_on = false; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 SRCL_on = false;

 //flag for indivudal pitch control utilising LIDAR

 IPCL_on = false;

 // Sensors

 STRAIN_on = false; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_faultRF_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_faultRF2_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output debugging

 VS_DbgOut = false; // Flag to indicate whether to output debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPC2_on = parameterSearchDefine (turbine_id, line, IPC2_on, "IPC2_on");

 IPC2FDA_on = parameterSearchDefine (turbine_id, line, IPC2FDA_on, "IPC2FDA_on");

 IPC2FQA_on = parameterSearchDefine (turbine_id, line, IPC2FQA_on, "IPC2FQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRC2_on = parameterSearchDefine (turbine_id, line, SRC2_on, "SRC2_on");

 SRC2FDA_on = parameterSearchDefine (turbine_id, line, SRC2FDA_on, "SRC2FDA_on");

 SRC2FQA_on = parameterSearchDefine (turbine_id, line, SRC2FQA_on, "SRC2FQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 LIDAR_on = parameterSearchDefine (turbine_id, line, LIDAR_on, "LIDAR_on");

 SRCL_on = parameterSearchDefine (turbine_id, line, SRCL_on, "SRCL_on");

 IPCL_on = parameterSearchDefine (turbine_id, line, IPCL_on, "IPCL_on");

 STRAIN_on = parameterSearchDefine (turbine_id, line, STRAIN_on, "STRAIN_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamAngle = atoi(tmptxt.c_str()); //convert selected string to integer

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamTime = atoi(tmptxt.c_str()); //convert selected string to integer

 }

 if (line.find("Sup_FreqCutOff") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 Sup_FreqCutOff = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("TVD_Smart_xHat") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 TVD_Smart_xHat = atof(tmptxt.c_str()); //convert selected string to float

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (SRCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nSRCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (IPCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nIPCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPC2_on == true)

 {

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 }

 if (IPCL_on == true)

 strcat(strMsg,"IPCL ");

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 } //if SRC_jam on

 if (SRC2_on == true)

 {

 strcat(strMsg,"SRC2 ");

 if (SRC2FDA_on == true)

 strcat(strMsg,"SRC2FDA ");

 if (SRC2FQA_on == true)

 strcat(strMsg,"SRC2FQA ");

 } //if SRC2 on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 if (LIDAR_on == true)

 strcat(strMsg,"LIDAR ");

 if (SRCL_on == true)

 strcat(strMsg,"SRCL ");

 if (STRAIN_on == true)

 strcat(strMsg,"STRAIN ");

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComT;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeLIDAR= Time - LIDAR_DT; // This will ensure that the torque controller is called on the first pass

 //LastGenSpd = GenSpeed; now decided at the bottom of the script as the new GenSpeed is called above this point

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_1); // The first shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_2); // The second shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_GENERATOR); // The generator brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_3); // The third shaft brake: 0=off

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 //SetSwapValue(79,0.0); // Request for loads: 0=none

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on || SRCD_on || SRC2_on || SRCL_on || TVD_Smart_on || PC_Smart_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //------------BEGIN: SENSORS--------------

 if (STRAIN_on)

 for (STRAIN_gauges = 0;STRAIN_gauges<STRAIN_Ngauges;STRAIN_gauges++)

 {

 STRAIN_strainB0[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 0, STRAIN_gauges);

 STRAIN_strainB1[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 1, STRAIN_gauges);

 STRAIN_strainB2[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 2, STRAIN_gauges);

 }

 //------------END: SENSORS--------------

 //==========BEGIN: LIDAR wind speed module==========

 if (LIDAR_on)

 {

 if ((Time*OnePlusEps - LastTimeLIDAR) >= LIDAR_DT)

 {

 //Get LIDAR wind speeds

 for (K = 0;K<NumBl;K++)

 {

 }

 //Determine Angle of Attack from wind speeds, ignoring twist of blade

 LIDAR_AoA[0] = atan(LIDAR_WS[0]/LIDAR_WS[1]);

 LIDAR_AoA[1] = atan(LIDAR_WS[2]/LIDAR_WS[3]);

 LIDAR_AoA[2] = atan(LIDAR_WS[4]/LIDAR_WS[5]);

 LastTimeLIDAR = Time;

 }

 }

 //======END: LIDAR wind speed module==========

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 if (VSConstP_on){

 // and saturate to rated power (with no drop in torque allowed):

 //GenTrq = MAX(VS_ComT,VS_GnTqLast); // no drop in torque allowed

 GenTrq = MAX(VS_ComT,VS_GnTqLast*VS_lastGenSpd/GenSpeed);

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 //GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 if (VSConstP_on){

 // and saturate to rated power:

 GenTrq = MAX(VS_ComT,GenTrqOpt); // overall command (saturated to Cp optimum curve)

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 VS_lastGenSpd = GenSpeed; // last VS generator speed

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -5.0f*Sup_SmartF;

 //if (PitComT < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComT = PitComT - 1.0*PCI_Prp;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -5.0f*Sup_SmartF;

 //if (PitComT < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComT = PitComT - 1.0*PCI_Prp;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_K*TVD_gain*TVD_TowVel;//TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -4.0*(TVD_Smart_xHat)*TVD_PitCom;

 TVD_PitCom = (1-TVD_Smart_xHat)*TVD_PitCom;

 }

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC2_gain = SATURATE(IPC2_gain,0.0,1.0); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_TF = TFinit(IPC2FDA_TF,IPC2FDA_alp,IPC2FDA_bet,IPC2_loadsDF);

 }

 IPC2FDA_TF = TFupdate(IPC2FDA_TF,IPC2_loadsDF);

 IPC2_loadsDF = IPC2FDA_TF.outputs[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FQA_TF = TFinit(IPC2FQA_TF,IPC2FQA_alp,IPC2FQA_bet,IPC2_loadsQF);

 }

 IPC2FQA_TF = TFupdate(IPC2FQA_TF,IPC2_loadsQF);

 IPC2_loadsQF = IPC2FQA_TF.outputs[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + GK*IPC2_gain*IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + GK*IPC2_gain*IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = SATURATE(IPC2_IntYawEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_IntTltEr = SATURATE(IPC2_IntTltEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitD = GK*IPC2_gain*IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = GK*IPC2_gain*IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = SATURATE(IPC2_pitD, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitQ = SATURATE(IPC2_pitQ, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 // individual pitch command for each blade

 IPC2_pit[0] = (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)));

 IPC2_pit[2] = (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //============BEGIN: IPCL individual pitch control using LIDAR==============

 if (IPCL_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //IPCL_RefF = IPCL_Ref;

 IPCL_RefF = ((IPCL_Tau/PC_DT)*IPCL_RefF + IPCL_Ref)/((IPCL_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // AoA error

 IPCL_DifEr[K] = IPCL_Er[K];

 IPCL_Er[K] = IPCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 IPCL_DifEr[K] = (IPCL_Er[K]-IPCL_DifEr[K])/SRC_ElapTime; // Differential error

 IPCL_IntEr[K] = IPCL_IntEr[K] + GK*IPCL_KI*IPCL_Er[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCL_IntEr[K] = SATURATE(IPCL_IntEr[K], IPCL_PitMax ,IPC_PitMax);

 // PID controller demand

 IPCL_PitCom[K] = GK*IPCL_KD*IPCL_DifEr[K] + GK*IPCL_KP*IPCL_Er[K] + IPCL_IntEr[K];

 // individual pitch command for each blade

 IPCL_PitCom[K] = IPC_gain * IPCL_PitCom[K];

 }

 }

 //==============END: IPCL Indivudal pitch Control utilising Lidar==========

 //============BEGIN: IPCB individual pitch control using LIDAR==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 //IPCB_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 IPCB_PitCom[K] = SATURATE(IPCB_PitCom[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPCB_PitCom[K] = IPCB_PitCom[K];

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + IPC_pit[K] + IPC2_pit[K] + IPCL_PitCom[K] + IPCB_PitCom[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 // =========BEGIN: SRC2 DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC2 control so that only fully active above rated, ramping up from 0.8 rated power

 SRC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC2_gain = SATURATE(SRC2_gain,0.0,1.0); // saturate between 0 and 1

 SRC2_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(2.0f*RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 SRC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(2.0f*RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: SRC2 filters=============

 SRC2_loadsDF = SRC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRC2FDA_TF = TFinit(SRC2FDA_TF,SRC2FDA_alp,SRC2FDA_bet,SRC2_loadsDF);

 }

 SRC2FDA_TF = TFupdate(SRC2FDA_TF,SRC2_loadsDF);

 SRC2_loadsDF = SRC2FDA_TF.outputs[0];

 }

 SRC2_loadsQF = SRC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRC2FQA_TF = TFinit(SRC2FQA_TF,SRC2FQA_alp,SRC2FQA_bet,SRC2_loadsQF);

 }

 SRC2FQA_TF = TFupdate(SRC2FQA_TF,SRC2_loadsQF);

 SRC2_loadsQF = SRC2FQA_TF.outputs[0];

 }

 SRC2_YawEr = SRC2_YawRef - SRC2_loadsDF; // Current yaw error

 SRC2_TltEr = SRC2_TltRef - SRC2_loadsQF; // Current tilt error

 //===========END: SRC2 filters=============

 SRC2_IntYawEr = SRC2_IntYawEr + GK*SRC2_gain*SRC2_KI*SRC2_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC2_IntTltEr = SRC2_IntTltEr + GK*SRC2_gain*SRC2_KI*SRC2_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC2_IntYawEr = SATURATE(SRC2_IntYawEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_IntTltEr = SATURATE(SRC2_IntTltEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComD = GK*SRC2_gain*SRC2_KP*SRC2_YawEr + SRC2_IntYawEr; // PI controller D-axis (yaw) demand

 SRC2_PitComQ = GK*SRC2_gain*SRC2_KP*SRC2_TltEr + SRC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC2 to degree max (gain scheduled)

 SRC2_PitComD = SATURATE(SRC2_PitComD, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComQ = SATURATE(SRC2_PitComQ, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 // individual pitch command for each blade

 SRC2_dqPitCom[0] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+SRC2_offset)));

 SRC2_dqPitCom[1] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)));

 SRC2_dqPitCom[2] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)));

 } //ENDIF for SRC2

 //===========END: SRC2 DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/PC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/PC_DT)+1.0f);

 //SRCD_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRC_gain*SRCD_KI*SRCD_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], -SRC_gain*SRC_PitMax ,SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = SRC_gain*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 SRCD_PitCom[K] = SATURATE(SRCD_PitCom[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRCD_PitCom[K];

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+SRCD_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // SRCD_PitCom[K] = SRCD_PitCom[K];//-SRCD_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //============BEGIN: SRCL Smart rotor control using LIDAR==============

 if (SRCL_on)

 {

 SRC_gain = 1.0;//(1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //SRCL_RefF = SRCL_Ref;

 SRCL_RefF = ((SRCL_Tau/SRC_DT)*SRCL_RefF + SRCL_Ref)/((SRCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCL_DifEr[K] = SRCL_Er[K];

 SRCL_Er[K] = SRCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 SRCL_DifEr[K] = (SRCL_Er[K]-SRCL_DifEr[K])/SRC_ElapTime; // Differential error

 SRCL_IntEr[K] = SRCL_IntEr[K] + GK*SRCL_KI*SRCL_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCL_IntEr[K] = SATURATE(SRCL_IntEr[K], SRC_PitMin ,SRC_PitMax);

 // PID controller demand

 SRCL_PitCom[K] = GK*SRCL_KD*SRCL_DifEr[K] + GK*SRCL_KP*SRCL_Er[K] + SRCL_IntEr[K];

 // individual pitch command for each blade

 SRCL_PitCom[K] = SRC_gain * SRCL_PitCom[K];

 }

 }

 //==============END: SRCL Smart Rotor Control utilising Lidar==========

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCfrf_cnt=1; SRCfrf_cnt<100; SRCfrf_cnt++)

 {

 SRCfrf_values[100-SRCfrf_cnt] = SRCfrf_values[100-SRCfrf_cnt-1];

 }

 //filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_TF = TFinit(SRCfrf_TF,SRCfrf_alp,SRCfrf_bet,0);

 }

 SRCfrf_TF = TFupdate(SRCfrf_TF,TowerAccX);

 //new value

 SRCfrf_values[0] = (SRCfrf_TF.outputs[0])*(SRCfrf_TF.outputs[0]);

 SRCfrf_value = SRCfrf_values[0] - SRCfrf_values[99] + SRCfrf_value;

 if (SRCfrf_value/100 >SRCfrf_threshold)

 {

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF_triggered))

 {

 if (SRC_faultRF_triggered == false)

 {

 SRC_faultRF_triggered = true;

 ReportWarningMessage (turbine_id, "FRF activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 //=======END: SRC fault ride through =======

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 if ((!SRC_faultRF_triggered) && (!SRC_faultRF2_triggered))

 {

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 //SRC_PitComLast[K] = SRC_PitCom[K]

 } //only adjust if fault ride through inactive

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime and LastGenSpeed to the current values:

 LastGenSpd = GenSpeed;

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "TowerAccX", "L/TT") ;

 AddLogValue (turbine_id, "TVD_TowVel", "L/T") ;

 AddLogValue (turbine_id, "TVD_IntTA", "-") ;

 AddLogValue (turbine_id, "TVD_PitCom", "A") ;

 AddLogValue (turbine_id, "VS_ComT", "FL") ;

 AddLogValue (turbine_id, "PitComI", "A") ;

 AddLogValue (turbine_id, "PCI_Prp", "A") ;

 AddLogValue (turbine_id, "PCI_Int", "A") ;

 AddLogValue (turbine_id, "GenSpeedF", "A/T") ;

 AddLogValue (turbine_id, "Sup_SmartF", "A") ;

 AddLogValue (turbine_id, "Sup_PitchF", "A") ;

 AddLogValue (turbine_id, "Sup_Signal", "A") ;

 AddLogValue (turbine_id, "Sup_xHat", "-") ;

 AddLogValue (turbine_id, "PC_SpdErr", "A/T") ;

 AddLogValue (turbine_id, "PCI_PwrEr", "W") ;

 AddLogValue (turbine_id, "PCI_IntPwrEr", "A") ;

 AddLogValue (turbine_id, "Sup_FreqCutOff", "A/T") ;

 AddLogValue (turbine_id, "GK", "-") ;

 }

 SetLoggingValue (turbine_id, 0, TowerAccX);

 SetLoggingValue (turbine_id, 1, TVD_TowVel);

 SetLoggingValue (turbine_id, 2, TVD_IntTA);

 SetLoggingValue (turbine_id, 3, TVD_PitCom);

 SetLoggingValue (turbine_id, 4, VS_ComT);

 SetLoggingValue (turbine_id, 5, PitComI);

 SetLoggingValue (turbine_id, 6, PCI_Prp);

 SetLoggingValue (turbine_id, 7, PCI_Int);

 SetLoggingValue (turbine_id, 8, SRC_Pit[0]);

 SetLoggingValue (turbine_id, 9, Sup_SmartF);

 SetLoggingValue (turbine_id, 10, Sup_PitchF);

 SetLoggingValue (turbine_id, 11, Sup_Signal);

 SetLoggingValue (turbine_id, 12, Sup_xHat);

 SetLoggingValue (turbine_id, 13, PC_SpdErr);

 SetLoggingValue (turbine_id, 14, PCI_PwrEr);

 SetLoggingValue (turbine_id, 15, PCI_IntPwrEr);

 SetLoggingValue (turbine_id, 16, Sup_FreqCutOff);

 SetLoggingValue (turbine_id, 17, GK);

 }//end logging

 return GH_DISCON_SUCCESS;

 } //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_16Jan14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_16Jan14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<double const>::epsilon(); // The number slighty greater than unity in si

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 /*double static NacelRolAcc; // nacelle rolling acceleration

 double static NacelNodAcc; // nacelle nodding acceleration

 double static NacelRolVel; // nacelle rolling velocity

 double static NacelNodVel; // nacelle nodding velocity

 */

 double static SRC_GenAcc;

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 15000.0; // Maximum torque rate (in absolute value) in

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = 43093.6; // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV_TF; // transfer function structure

 FTV_TF.size = 5; // size of transfer function (default is 3, used to marginally reduce computations)

 double FTV_alp[5] = {1.0f, -3.78865457824117, 5.44068947154296, -3.50923154684766, 0.857629209879516}; // the tf denominator values

 double FTV_bet[5] = {117.030302254623, -221.446713569963, -8.36150963845548f, 221.446713569963, -108.668792616168}; // the tf numerator values

 double static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double static FTV_GnTqLast = 0; // last generator torque for use by torque controller

 double const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at r

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComT; // Total command pitch based on the sum of the

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.763608087091757, 0.895709450187540}; // the tf denominator values

 double PCFA_bet[3] = {0.947854725093770, -1.763608087091757, 0.947854725093770}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.249005329930186, 0.753772239321372}; // the tf denominator values

 double PCFB_bet[3] = {0.876886119660686, -1.249005329930186, 0.876886119660686}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_KI = 0.0172; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.0, -1.65296803652968, 0.683075832447197}; // the tf denominator values

 double TVD_bet[3] = {2.38450103634423, -4.38377668389767, 2.02938344347096}; // the tf numerator values

 double static TVD_gain; //Gain correction factor

 TF static TVD_FOF;

 double TVD_FOFalp[2] = {1.0, -0.818181818181818}; // the first order lag filter tf denominator values

 double TVD_FOFbet[2] = {0.0909090909090909, 0.0909090909090909}; // the first order lag filter tf numerator values

 double static TVD_Pf; // low pass filtered generator power

 double static SRC_TVD_Com; // Smart Rotor angle demnand for tower vibration damping

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761677196131134, 0.775876635842114}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887938317921057, -1.761677196131134, 0.887938317921057}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 double const IPC2_PitMax = 2.5/R2D; // max angle due to IPC2 control

 double const IPC2_KP = 0.0; // proportional gain

 double const IPC2_KI = 0.000000002; // integral gain

 double static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static IPC2_loadsD; // load measurements in D-axis

 double static IPC2_loadsQ; // load measurements in Q-axis

 double static IPC2_loadsDF; // Filtered yaw moment

 double static IPC2_loadsQF; // Filtered tilt moment

 double static IPC2_pitD; // D-axis pitch demand

 double static IPC2_pitQ; // Q-axis pitch demand

 double static IPC2_pit[3]; // Individual pitch demands

 double static IPC2_YawRef = 0.0; // Desired yaw moment

 double static IPC2_TltRef = 0.0; // Desired tilt moment

 double static IPC2_YawEr; // Yaw (D-axis) moment error

 double static IPC2_TltEr; // Tilt (Q-axis) moment error

 double static IPC2_IntYawEr; // Integral of yaw moment error

 double static IPC2_IntTltEr; // Integral of tilt moment error

 double static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 TF static IPC2FDA_TF;

 double IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 TF static IPC2FQA_TF;

 double IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 double IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // IPC utilising angle of attack measurements

 double static IPCL_Ref; // Reference angle of attack

 double static IPCL_RefF; // Filtered reference (regressive filter)

 double const IPCL_Tau = 0.1; // Regressive filter time constant

 double static IPCL_IntEr[3]; // Integral error for each of the flaps

 double static IPCL_PitCom[3]; // Pitch command for each of the flaps

 double const IPCL_KD = 0.0; // Differential gain

 double const IPCL_KP = -1.0; // Proportional gain

 double const IPCL_KI = 0.0; // Integral gain

 double static IPCL_DifEr[3]; // Differential error

 double static IPCL_Er[3]; // Current error

 double const IPCL_PitMax = 2.5/R2D; // max angle due to IPC2 control

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.00000001; // Proportional gain

 double const IPCB_KI = 0.0; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double IPCBFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double IPCBFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // Smart Rotor Control (dq)

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 29.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -29.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = 10.0*IPC_KP; // proportional gain

 double const SRC_KI = 10.0*IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_triggered; // ratchet for fault ride through 1

 bool static SRC_faultRF2_triggered; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control (2P dq)

 double const SRC2_PitMax = 2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMin = -2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC2_KP = 0.0; // proportional gain

 double const SRC2_KI = 0.0000002; // integral gain

 double static SRC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC2_loadsD; // load measurements in D-axis

 double static SRC2_loadsQ; // load measurements in Q-axis

 double static SRC2_loadsDF; // Filtered yaw moment

 double static SRC2_loadsQF; // Filtered tilt moment

 double static SRC2_PitComD; // D-axis pitch demand

 double static SRC2_PitComQ; // Q-axis pitch demand

 double static SRC2_PitCom[3]; // Individual pitch demands

 double static SRC2_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC2_YawRef = 0.0; // Desired yaw moment

 double static SRC2_TltRef = 0.0; // Desired tilt moment

 double static SRC2_YawEr; // Yaw (D-axis) moment error

 double static SRC2_TltEr; // Tilt (Q-axis) moment error

 double static SRC2_IntYawEr; // Integral of yaw moment error

 double static SRC2_IntTltEr; // Integral of tilt moment error

 double static SRC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC2_gain; // gain to phase out SRC2 below rated

 double static SRC2_dqPitCom[3];

 // Notch filter for SRC2 yaw error D

 TF static SRC2FDA_TF;

 double SRC2FDA_alp[3] = {1.000000000000000, -1.361157014197597, 0.463187104324829}; // the tf denominator values

 double SRC2FDA_bet[3] = {0.731593552162415, -1.361157014197597, 0.731593552162415}; // the tf numerator values

 // Notch filter for SRC2 tilt error Q

 TF static SRC2FQA_TF;

 double SRC2FQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = 0.0; // Integral gain

 double const SRCD_KP = -8.0*IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double SRCDFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double SRCDFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // LIDAR beams detection unit, blade mounted

 int LIDAR_lidars; // Loops through LIDARs per blade

 int LIDAR_beams; // Loops through LIDAR beams per LIDAR

 int LIDAR_focals; // Loops through focal points of LIDAR beams

 //int const LIDAR_Nbeams = GetNumberOfLidarBeams(turbine_id); // Number of effectively independent Lidar beams

 double const LIDAR_Yrot[2] = {0.0000, 90.0/R2D}; // Angular separtaion between x-axis and beam

 double const LIDAR_Zrot[2] = {0.0000, 90.0/R2D}; // Azimuth angle about x-axis

 double const LIDAR_Focus = 0.0001; // Focal point in metres of LIDAR

 double static LIDAR_WS[6]; // Velocity percieved by each LIDAR focal point

 double const LIDAR_DT = 0.1; // Communication interval with LIDAR

 double static LastTimeLIDAR; // Last call to LIDAR

 double static LIDAR_AoA[3]; // Angle of attack calculated from LIDAR

 // Smart Rotor Control utilising angle of attack measurements

 double static SRCL_Ref; // Reference angle of attack

 double static SRCL_RefF; // Filtered reference (regressive filter)

 double const SRCL_Tau = 1.0; // Regressive filter time constant

 double static SRCL_IntEr[3]; // Integral error for each of the flaps

 double static SRCL_PitCom[3]; // Pitch command for each of the flaps

 double const SRCL_KD = 0.0; // Differential gain

 double const SRCL_KP = 3.0; // Proportional gain

 double const SRCL_KI = 0.0; // Integral gain

 double static SRCL_DifEr[3]; // Differential error

 double static SRCL_Er[3]; // Current error

 //Strain gauge measurements

 int static STRAIN_gauges; // Counter for strain gauges

 int const STRAIN_Ngauges = GetNumberOfBladeStrainGauges (turbine_id, 0); //number of strain gauges on blade 0

 double static STRAIN_strainB0[10]; // Strains on blade 0

 double static STRAIN_strainB1[10]; // Strains on blade 1

 double static STRAIN_strainB2[10]; // Strains on blade 2

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF1_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_faultRF2_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 /*NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 */

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether IPC is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPC2_on = false; // Flag to indicate whether IPC2 is on

 IPC2FDA_on = true; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 IPC2FQA_on = true; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether IPCB is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 SRC2_on = false; // Flag to indicate whether smart rotor control is active

 SRC2FDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 SRC2FQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 LIDAR_on = false; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 SRCL_on = false;

 //flag for indivudal pitch control utilising LIDAR

 IPCL_on = false;

 // Sensors

 STRAIN_on = false; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF1_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_faultRF2_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_faultRF1_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_faultRF2_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output debugging

 VS_DbgOut = false; // Flag to indicate whether to output debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPC2_on = parameterSearchDefine (turbine_id, line, IPC2_on, "IPC2_on");

 IPC2FDA_on = parameterSearchDefine (turbine_id, line, IPC2FDA_on, "IPC2FDA_on");

 IPC2FQA_on = parameterSearchDefine (turbine_id, line, IPC2FQA_on, "IPC2FQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRC2_on = parameterSearchDefine (turbine_id, line, SRC2_on, "SRC2_on");

 SRC2FDA_on = parameterSearchDefine (turbine_id, line, SRC2FDA_on, "SRC2FDA_on");

 SRC2FQA_on = parameterSearchDefine (turbine_id, line, SRC2FQA_on, "SRC2FQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 LIDAR_on = parameterSearchDefine (turbine_id, line, LIDAR_on, "LIDAR_on");

 SRCL_on = parameterSearchDefine (turbine_id, line, SRCL_on, "SRCL_on");

 IPCL_on = parameterSearchDefine (turbine_id, line, IPCL_on, "IPCL_on");

 STRAIN_on = parameterSearchDefine (turbine_id, line, STRAIN_on, "STRAIN_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF1_on = parameterSearchDefine (turbine_id, line, SRC_faultRF1_on, "SRC_faultRF1_on");

 SRC_faultRF2_on = parameterSearchDefine (turbine_id, line, SRC_faultRF2_on, "SRC_faultRF2_on");

 SRC_autoFRF_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF_on, "SRC_autoFRF_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamAngle = atoi(tmptxt.c_str()); //convert selected string to integer

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamTime = atoi(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (SRCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nSRCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (IPCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nIPCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPC2_on == true)

 {

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 }

 if (IPCL_on == true)

 strcat(strMsg,"IPCL ");

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 strcat(strMsg,"TVD ");

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF1_on == true)

 strcat(strMsg,"SRC_faultRF1 ");

 if (SRC_faultRF2_on == true)

 strcat(strMsg,"SRC_faultRF2 ");

 if (SRC_autoFRF_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 } //if SRC_jam on

 if (SRC2_on == true)

 {

 strcat(strMsg,"SRC2 ");

 if (SRC2FDA_on == true)

 strcat(strMsg,"SRC2FDA ");

 if (SRC2FQA_on == true)

 strcat(strMsg,"SRC2FQA ");

 } //if SRC2 on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDF ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDF2 ");

 } //if SRCD on

 if (LIDAR_on == true)

 strcat(strMsg,"LIDAR ");

 if (SRCL_on == true)

 strcat(strMsg,"SRCL ");

 if (STRAIN_on == true)

 strcat(strMsg,"STRAIN ");

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComT;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeLIDAR= Time - LIDAR_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_1); // The first shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_2); // The second shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_GENERATOR); // The generator brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_3); // The third shaft brake: 0=off

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 //SetSwapValue(79,0.0); // Request for loads: 0=none

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 if (SRC_on || SRC2_on || SRCL_on || SRCD_on || SRC_jam_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //------------BEGIN: SENSORS--------------

 if (STRAIN_on)

 for (STRAIN_gauges = 0;STRAIN_gauges<STRAIN_Ngauges;STRAIN_gauges++)

 {

 STRAIN_strainB0[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 0, STRAIN_gauges);

 STRAIN_strainB1[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 1, STRAIN_gauges);

 STRAIN_strainB2[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 2, STRAIN_gauges);

 }

 //------------END: SENSORS--------------

 //==========BEGIN: LIDAR wind speed module==========

 if (LIDAR_on)

 {

 if ((Time*OnePlusEps - LastTimeLIDAR) >= LIDAR_DT)

 {

 //Get LIDAR wind speeds

 for (K = 0;K<NumBl;K++)

 {

 }

 //Determine Angle of Attack from wind speeds, ignoring twist of blade

 LIDAR_AoA[0] = atan(LIDAR_WS[0]/LIDAR_WS[1]);

 LIDAR_AoA[1] = atan(LIDAR_WS[2]/LIDAR_WS[3]);

 LIDAR_AoA[2] = atan(LIDAR_WS[4]/LIDAR_WS[5]);

 LastTimeLIDAR = Time;

 }

 }

 //======END: LIDAR wind speed module==========

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_TF = TFinit(FTV_TF,FTV_alp,FTV_bet,GenSpeed);

 }

 FTV_TF = TFupdate(FTV_TF,GenSpeed);

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_TF.outputs[0];

 // saturate to amplitude limit

 FTV_GnTqLast = SATURATE(FTV_GenTrqF,-FTV_GnTqMax,FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,LastGenTrq,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 if (VSConstP_on == true){

 // and saturate to rated power (with no drop in power allowed):

 GenTrq = SATURATE(VS_ComT,LastGenTrq*LastGenSpd/GenSpeed,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,LastGenTrq,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================END: PI TORQUE CONTROL VS=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,0.0);

 }

 TVD_IntTA = TVD_IntTA + TowerAccX*PC_ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_TF = TFupdate(TVD_TF,TVD_IntTA);

 TVD_TowVel = TVD_TF.outputs[0]; // tower velocity

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_FOF = TFinit(TVD_FOF,TVD_FOFalp,TVD_FOFbet,GenSpeed*GenTrq);

 }

 TVD_FOF = TFupdate(TVD_FOF,GenSpeed*GenTrq);

 TVD_Pf = TVD_FOF.outputs[0];

 // determine gain for tower vibration signal

 TVD_gain = ((TVD_Pf/VS_RtPwr) - 0.8) * 5.0;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 if (SRC_TVD_on = true)

 {

 SRC_TVD_Com = -8*TVD_PitCom;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC2_gain = SATURATE(IPC2_gain,0.0,1.0); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_TF = TFinit(IPC2FDA_TF,IPC2FDA_alp,IPC2FDA_bet,IPC2_loadsDF);

 }

 IPC2FDA_TF = TFupdate(IPC2FDA_TF,IPC2_loadsDF);

 IPC2_loadsDF = IPC2FDA_TF.outputs[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FQA_TF = TFinit(IPC2FQA_TF,IPC2FQA_alp,IPC2FQA_bet,IPC2_loadsQF);

 }

 IPC2FQA_TF = TFupdate(IPC2FQA_TF,IPC2_loadsQF);

 IPC2_loadsQF = IPC2FQA_TF.outputs[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + GK*IPC2_gain*IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + GK*IPC2_gain*IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = SATURATE(IPC2_IntYawEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_IntTltEr = SATURATE(IPC2_IntTltEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitD = GK*IPC2_gain*IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = GK*IPC2_gain*IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = SATURATE(IPC2_pitD, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitQ = SATURATE(IPC2_pitQ, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 // individual pitch command for each blade

 IPC2_pit[0] = (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)));

 IPC2_pit[2] = (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //============BEGIN: IPCL individual pitch control using LIDAR==============

 if (IPCL_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //IPCL_RefF = IPCL_Ref;

 IPCL_RefF = ((IPCL_Tau/PC_DT)*IPCL_RefF + IPCL_Ref)/((IPCL_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // AoA error

 IPCL_DifEr[K] = IPCL_Er[K];

 IPCL_Er[K] = IPCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 IPCL_DifEr[K] = (IPCL_Er[K]-IPCL_DifEr[K])/SRC_ElapTime; // Differential error

 IPCL_IntEr[K] = IPCL_IntEr[K] + GK*IPCL_KI*IPCL_Er[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCL_IntEr[K] = SATURATE(IPCL_IntEr[K], IPCL_PitMax ,IPC_PitMax);

 // PID controller demand

 IPCL_PitCom[K] = GK*IPCL_KD*IPCL_DifEr[K] + GK*IPCL_KP*IPCL_Er[K] + IPCL_IntEr[K];

 // individual pitch command for each blade

 IPCL_PitCom[K] = IPC_gain * IPCL_PitCom[K];

 }

 }

 //==============END: IPCL Indivudal pitch Control utilising Lidar==========

 //============BEGIN: IPCB individual pitch control using LIDAR==============

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 //IPCB_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -IPC_gain*IPCB_PitMax ,IPC_gain*IPCB_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 IPCB_PitCom[K] = SATURATE(IPCB_PitCom[K], -IPC_gain*IPCB_PitMax ,IPC_gain*IPCB_PitMax);

 // individual pitch command for each blade

 IPCB_PitCom[K] = IPCB_PitCom[K];

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 for (K = 0;K<NumBl;K++)

 {

 IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 }

 }

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT + IPC_pit[K] + IPC2_pit[K] + IPCL_PitCom[K] + IPCB_PitCom[K] - PitCom[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = PitCom[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 // =========BEGIN: SRC2 DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC2 control so that only fully active above rated, ramping up from 0.8 rated power

 SRC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC2_gain = SATURATE(SRC2_gain,0.0,1.0); // saturate between 0 and 1

 SRC2_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(2.0f*RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 SRC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(2.0f*RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: SRC2 filters=============

 SRC2_loadsDF = SRC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRC2FDA_TF = TFinit(SRC2FDA_TF,SRC2FDA_alp,SRC2FDA_bet,SRC2_loadsDF);

 }

 SRC2FDA_TF = TFupdate(SRC2FDA_TF,SRC2_loadsDF);

 SRC2_loadsDF = SRC2FDA_TF.outputs[0];

 }

 SRC2_loadsQF = SRC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRC2FQA_TF = TFinit(SRC2FQA_TF,SRC2FQA_alp,SRC2FQA_bet,SRC2_loadsQF);

 }

 SRC2FQA_TF = TFupdate(SRC2FQA_TF,SRC2_loadsQF);

 SRC2_loadsQF = SRC2FQA_TF.outputs[0];

 }

 SRC2_YawEr = SRC2_YawRef - SRC2_loadsDF; // Current yaw error

 SRC2_TltEr = SRC2_TltRef - SRC2_loadsQF; // Current tilt error

 //===========END: SRC2 filters=============

 SRC2_IntYawEr = SRC2_IntYawEr + GK*SRC2_gain*SRC2_KI*SRC2_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC2_IntTltEr = SRC2_IntTltEr + GK*SRC2_gain*SRC2_KI*SRC2_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC2_IntYawEr = SATURATE(SRC2_IntYawEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_IntTltEr = SATURATE(SRC2_IntTltEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComD = GK*SRC2_gain*SRC2_KP*SRC2_YawEr + SRC2_IntYawEr; // PI controller D-axis (yaw) demand

 SRC2_PitComQ = GK*SRC2_gain*SRC2_KP*SRC2_TltEr + SRC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC2 to degree max (gain scheduled)

 SRC2_PitComD = SATURATE(SRC2_PitComD, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComQ = SATURATE(SRC2_PitComQ, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 // individual pitch command for each blade

 SRC2_dqPitCom[0] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+SRC2_offset)));

 SRC2_dqPitCom[1] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)));

 SRC2_dqPitCom[2] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)));

 } //ENDIF for SRC2

 //===========END: SRC2 DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/PC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/PC_DT)+1.0f);

 //SRCD_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRC_gain*SRCD_KI*SRCD_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], -SRC_gain*SRC_PitMax ,SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = SRC_gain*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 SRCD_PitCom[K] = SATURATE(SRCD_PitCom[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRCD_PitCom[K];

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+SRCD_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // SRCD_PitCom[K] = SRCD_PitCom[K];//-SRCD_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //============BEGIN: SRCL Smart rotor control using LIDAR==============

 if (SRCL_on)

 {

 SRC_gain = 1.0;//(1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //SRCL_RefF = SRCL_Ref;

 SRCL_RefF = ((SRCL_Tau/SRC_DT)*SRCL_RefF + SRCL_Ref)/((SRCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCL_DifEr[K] = SRCL_Er[K];

 SRCL_Er[K] = SRCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 SRCL_DifEr[K] = (SRCL_Er[K]-SRCL_DifEr[K])/SRC_ElapTime; // Differential error

 SRCL_IntEr[K] = SRCL_IntEr[K] + GK*SRCL_KI*SRCL_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCL_IntEr[K] = SATURATE(SRCL_IntEr[K], SRC_PitMin ,SRC_PitMax);

 // PID controller demand

 SRCL_PitCom[K] = GK*SRCL_KD*SRCL_DifEr[K] + GK*SRCL_KP*SRCL_Er[K] + SRCL_IntEr[K];

 // individual pitch command for each blade

 SRCL_PitCom[K] = SRC_gain * SRCL_PitCom[K];

 }

 }

 //==============END: SRCL Smart Rotor Control utilising Lidar==========

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF1_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_faultRF2_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF1_on) || (SRC_faultRF1_triggered))

 {

 if (SRC_faultRF1_triggered == false)

 {

 SRC_faultRF1_triggered = true;

 ReportWarningMessage (turbine_id, "FRF1 activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 // Fault ride through by setting other flaps to zero

 if ((SRC_faultRF2_on) || (SRC_faultRF2_triggered))

 {

 if (SRC_faultRF2_triggered == false)

 {

 SRC_faultRF2_triggered = true;

 ReportWarningMessage (turbine_id, "FRF2 activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = 0; // fault ride through sets all flaps to zero

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to zero

 //=======END: SRC fault ride through =======

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 if ((!SRC_faultRF1_triggered) && (!SRC_faultRF2_triggered))

 {

 SRC_PitRate[K] = (SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 } //only adjust if fault ride through inactive

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "SRCD_RefF", "FL") ;

 AddLogValue (turbine_id, "SRCD_PitCom0", "A") ;

 AddLogValue (turbine_id, "SRCD_PitCom1", "A") ;

 AddLogValue (turbine_id, "SRCD_PitCom2", "A") ;

 AddLogValue (turbine_id, "SRCD_BladeRBMopF0", "FL") ;

 AddLogValue (turbine_id, "SRCD_BladeRBMopF1", "FL") ;

 AddLogValue (turbine_id, "SRCD_BladeRBMopF2", "FL") ;

 AddLogValue (turbine_id, "IPCB_RefF", "FL") ;

 AddLogValue (turbine_id, "TowerMotionCompensation", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop0", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop1", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop2", "FL") ;

 AddLogValue (turbine_id, "IPCB_PitCom0", "A") ;

 AddLogValue (turbine_id, "IPCB_PitCom1", "A") ;

 AddLogValue (turbine_id, "IPCB_PitCom2", "A") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF0", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF1", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF2", "FL") ;

 }

 SetLoggingValue (turbine_id, 0, SRCD_RefF);

 SetLoggingValue (turbine_id, 1, SRCD_PitCom[0]);

 SetLoggingValue (turbine_id, 2, SRCD_PitCom[1]);

 SetLoggingValue (turbine_id, 3, SRCD_PitCom[2]);

 SetLoggingValue (turbine_id, 4, SRCD_BladeRBMopF[0]);

 SetLoggingValue (turbine_id, 5, SRCD_BladeRBMopF[1]);

 SetLoggingValue (turbine_id, 6, SRCD_BladeRBMopF[2]);

 SetLoggingValue (turbine_id, 7, IPCB_RefF);

 SetLoggingValue (turbine_id, 8, 17734*20.5*(TowerAccX));

 SetLoggingValue (turbine_id, 9, BladeRBMop[0]);

 SetLoggingValue (turbine_id, 10, BladeRBMop[1]);

 SetLoggingValue (turbine_id, 11, BladeRBMop[2]);

 SetLoggingValue (turbine_id, 12, IPCB_PitCom[0]);

 SetLoggingValue (turbine_id, 13, IPCB_PitCom[1]);

 SetLoggingValue (turbine_id, 14, IPCB_PitCom[2]);

 SetLoggingValue (turbine_id, 15, IPCB_BladeRBMopF[0]);

 SetLoggingValue (turbine_id, 16, IPCB_BladeRBMopF[1]);

 SetLoggingValue (turbine_id, 17, IPCB_BladeRBMopF[2]);

 }//end logging

 return GH_DISCON_SUCCESS;

 } //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_17Jan13.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_17Jan13.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 float static Alpha; // Current coefficient in the recursive, singl

 float static BlPitch[3]; // Current values of the blade pitch angles, r

 float static ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float static GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 float static LastGenSpd; // Previous generator speed

 float const GearRatio = 97.0f; // Gear ratio

 float static GenTrq; // Electrical generator torque, N-m.

 float static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 float static GK; // Current value of the gain correction factor

 float static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float static Time; // Current simulation time, sec.

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float const Pie = 3.14159265358979f; // pi to the precision of a float

 float static RotAzi; // rotor azimuth angle

 float static BladeRBM[3]; // load measurements on each blade

 // Generally to do with torque control

 float static LastTimeVS; // Last time the torque controller was called,

 float static VS_ElapTime; // Elapsed time since the last call to the torque controller

 float static TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = GetSwapValue(17); // Transitional generator speed (HSS side), cut-in speed, rad/s

 float const VS_DT = 0.01f; // Communication interval for torque controller

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 float const VS_Rgn2K = GetSwapValue(16); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 float const VS_Rgn3MP = 0.0f; // Minimum pitch angle at which the torque is in above rated (0 degree)

 float const VS_RtGnSp = GetSwapValue(18); // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 float static VS_RtGnTrq; // Rated generator torque

 float static VS_SpdErr; // generator speed error for torque control

 float static VS_IntSpdErr; // integral of speed error for torque control

 float static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 float static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 float const VS_KP1 = 4200.0f; // proportional gain for torque control in A-B region

 float const VS_KI1 = 2100.0f; // integral gain for torque control in A-B region

 float const VS_KP2 = 4200.0f; // proportional gain for torque control in C-E region

 float const VS_KI2 = 2100.0f; // integral gain for torque control in C-E region

 float static VS_ComI; // integral torque demand

 float static VS_ComP; // proportional torque demand

 float static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 float static FTV_GnSp[5]; // the previous 5 values of measured generator speed

 float static FTV_GnTqF[5]; // the previous 5 values of the filtered generator torque

 float const FTV_alph[5] = {1.0f, -3.78865457824117f, 5.44068947154296f, -3.50923154684766f, 0.857629209879516f}; // the tf denominator values

 float const FTV_beta[5] = {117.030302254623f, -221.446713569963f, -8.36150963845548f, 221.446713569963f, -108.668792616168f}; // the tf numerator values

 float static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 float static FTV_GnTqLast= 0; // last generator torque for use by torque controller

 float const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 float static LastTimePC; // Last time the pitch controller was called,

 float static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 float const PC_DT = 0.1f; // Communication interval for pitch controller

 float const PC_KI = 0.00453f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.174532925f; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 float const PC_KP = 0.0135f; // Proportional gain for pitch controller at r

 float const PC_MinPit = GetSwapValue(6); // Minimum pitch setting in pitch controller,

 float const PC_MaxPit = GetSwapValue(7); // Maximum pitch setting in pitch controller,

 float const PC_MinRat = GetSwapValue(8); // Minimum pitch rate in rad/s

 float const PC_MaxRat = GetSwapValue(9); // Maximum pitch rate in rad/s

 float const PC_RefSpd = GetSwapValue(19); // Desired (reference) HSS speed for pitch control

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float static PitComI; // Integral term of command pitch, rad.

 float static PitComP; // Proportional term of command pitch, rad.

 float static PitComT; // Total command pitch based on the sum of the

 float static PitRate[3]; // Pitch rates of each blade based on the curr

 float static PC_SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 float static PCI_PwrEr; // Current power error, W

 float static PCI_IntPwrEr; // Current integral of power error

 float const PCI_KP = 0.0000001f; // Proportional gain

 float const PCI_KI = 0.00000005f; // Integral gain

 float static PCI_Prp; // Pitch command proportional term

 float static PCI_Int; // Pitch command integral term

 float static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 float static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 float static NLP_LastSpEr; // the last generator speed error

 float static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 float static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 float static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 float const NLP_KSpEr = 25.0f; // Scale factor for the speed error

 float const NLP_KSpErDt = 10.0f; // Scale factor for the rate of change of speed error

 float const NLP_Gain = 0.15f; // Gain for pitch command

 float const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 float const NLP_FOFb[2] = {0.500000000000000f, 0.500000000000000f}; // the first order lag filter tf numerator values

 float static NLP_PitRate; // NLP pitch rate command

 float static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 float static PCFA_GS[3]; // the previous 3 values of measured pitch angle

 float static PCFA_GSF[3]; // the previous 3 values of the filtered pitch angle

 float const PCFA_alp[3] = {1.000000000000000f, -1.763608087091757f, 0.895709450187540f}; // the tf denominator values

 float const PCFA_bet[3] = {0.947854725093770f, -1.763608087091757f, 0.947854725093770f}; // the tf numerator values

 // Notch filter B for pitch control

 float static PCFB_GS[3]; // the previous 3 values of measured generator speed

 float static PCFB_GSF[3]; // the previous 3 values of the filtered generator speed

 float const PCFB_alp[3] = {1.000000000000000f, -1.249005329930186f, 0.753772239321372f}; // the tf denominator values

 float const PCFB_bet[3] = {0.876886119660686f, -1.249005329930186f, 0.876886119660686f}; // the tf numerator values

 // Low-pass filter for pitch control

 float static PCF_GS[3]; // the previous 3 values of measured generator speed

 float static PCF_GSF[3]; // the previous 3 values of the filtered generator speed

 float const PCF_alp[3] = {1.000000000000000f, -0.666666666666667f, 0.111111111111111f}; // the tf denominator values

 float const PCF_bet[3] = {0.111111111111111f, 0.222222222222222f, 0.111111111111111f}; // the tf numerator values

 // Tower vibration damping

 float static TVD_TowAcc; // tower acceleration fore-aft

 float static TVD_TowVel; // filtered tower fore-aft velocity

 float static TVD_PitCom; // Pitch command from tower vibration damping section

 float static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 float const TVD_KI = 0.0172f; // integral gain for tower acceleration (proportional gain for velocity)

 float static TVD_TV[3]; // the previous 3 values of tower velocity

 float static TVD_TVf[3]; // the previous 3 values of the filtered tower velocity

 float const TVD_alp[3] = {1.0f, -1.65296803652968f, 0.683075832447197f}; // the tf denominator values

 float const TVD_bet[3] = {2.38450103634423f, -4.38377668389767f, 2.02938344347096f}; // the tf numerator values

 float static TVD_gain; //Gain correction factor

 float const TVD_FOFa[2] = {1.0f, -0.818181818181818f}; // the first order lag filter tf denominator values

 float const TVD_FOFb[2] = {0.0909090909090909f, 0.0909090909090909f}; // the first order lag filter tf numerator values

 float static TVD_P[2]; // the previous 2 values of generator power

 float static TVD_Pf[2]; // the previous 2 values of the filtered generator power

 // Individual pitch control

 float const IPC_KP = 0.0f; // proportional gain

 float const IPC_KI = 0.00000001f; // integral gain

 float const IPC_PitMax = 8.0f/R2D; // max angle due to IPC control

 float static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 float static IPC_loadsD; // load measurements in D-axis

 float static IPC_loadsQ; // load measurements in Q-axis

 float static IPC_loadsDF; // Filtered yaw moment

 float static IPC_loadsQF; // Filtered tilt moment

 float static IPC_pitD; // D-axis pitch demand

 float static IPC_pitQ; // Q-axis pitch demand

 float static IPC_pit[3]; // Individual pitch demands

 float static IPC_YawRef = 0.0f; // Desired yaw moment

 float static IPC_TltRef = 0.0f; // Desired tilt moment

 float static IPC_YawEr; // Yaw (D-axis) moment error

 float static IPC_TltEr; // Tilt (Q-axis) moment error

 float static IPC_IntYawEr; // Integral of yaw moment error

 float static IPC_IntTltEr; // Integral of tilt moment error

 float static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 float static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 float static IPCFDA_YE[3]; // the previous 3 values of measured yaw error

 float static IPCFDA_YEF[3]; // the previous 3 values of the filtered yaw error

 float const IPCFDA_alp[3] = {1.000000000000000f, -1.761677196131134f, 0.775876635842114f}; // the tf denominator values

 float const IPCFDA_bet[3] = {0.887938317921057f, -1.761677196131134f, 0.887938317921057f}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 float static IPCFQA_TE[3]; // the previous 3 values of measured tilt error

 float static IPCFQA_TEF[3]; // the previous 3 values of the filtered tilt error

 float const IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 float const IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 float const IPC2_PitMax = 2.5f/R2D; // max angle due to IPC2 control

 float const IPC2_KP = 0.0f; // proportional gain

 float const IPC2_KI = 0.000000002f; // integral gain

 float static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static IPC2_loadsD; // load measurements in D-axis

 float static IPC2_loadsQ; // load measurements in Q-axis

 float static IPC2_loadsDF; // Filtered yaw moment

 float static IPC2_loadsQF; // Filtered tilt moment

 float static IPC2_pitD; // D-axis pitch demand

 float static IPC2_pitQ; // Q-axis pitch demand

 float static IPC2_pit[3]; // Individual pitch demands

 float static IPC2_YawRef = 0.0f; // Desired yaw moment

 float static IPC2_TltRef = 0.0f; // Desired tilt moment

 float static IPC2_YawEr; // Yaw (D-axis) moment error

 float static IPC2_TltEr; // Tilt (Q-axis) moment error

 float static IPC2_IntYawEr; // Integral of yaw moment error

 float static IPC2_IntTltEr; // Integral of tilt moment error

 float static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 float static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 float static IPC2FDA_YE[3]; // the previous 3 values of measured yaw error

 float static IPC2FDA_YEF[3]; // the previous 3 values of the filtered yaw error

 float const IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 float const IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 float static IPC2FQA_TE[3]; // the previous 3 values of measured tilt error

 float static IPC2FQA_TEF[3]; // the previous 3 values of the filtered tilt error

 float const IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 float const IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control

 float static LastTimeSRC; // Time of last call to SRC

 float static SRC_ElapTime; // Elapsed time since last call to SRC controller

 float static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 float const SRC_PitMax = 40.0f/R2D; // Max pitch in degrees converted to radians

 float const SRC_PitMin = -40.0f/R2D; // Max pitch in degrees converted to radians

 float const SRC_PitMaxRat = 40.0f/R2D; // Max pitch rate degress/s converted to rad/s

 float const SRC_DT = 0.1f; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 float static SRC_load[3]; // load measurements on each blade

 float const SRC_KP = 0.0f; // proportional gain

 float const SRC_KI = 0.0000001f;// integral gain

 float static SRC_Pit[3]; // angle of flaps

 float static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static SRC_loadsD; // load measurements in D-axis

 float static SRC_loadsQ; // load measurements in Q-axis

 float static SRC_loadsDF; // Filtered yaw moment

 float static SRC_loadsQF; // Filtered tilt moment

 float static SRC_PitComD; // D-axis pitch demand

 float static SRC_PitComQ; // Q-axis pitch demand

 float static SRC_PitCom[3]; // Individual pitch demands

 float static SRC_PitRate[3]; // Demanded pitch rate for each blade

 float static SRC_YawRef = 0.0f; // Desired yaw moment

 float static SRC_TltRef = 0.0f; // Desired tilt moment

 float static SRC_YawEr; // Yaw (D-axis) moment error

 float static SRC_TltEr; // Tilt (Q-axis) moment error

 float static SRC_IntYawEr; // Integral of yaw moment error

 float static SRC_IntTltEr; // Integral of tilt moment error

 float static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 float static SRC_gain; // gain to phase out SRC below rated

 // Notch filter for individual pitch control yaw error D

 float static SRCFDA_YE[3]; // the previous 3 values of measured yaw error

 float static SRCFDA_YEF[3]; // the previous 3 values of the filtered yaw error

 float const SRCFDA_alp[3] = {1.000000000000000f, -1.361157014197597f, 0.463187104324829f}; // the tf denominator values

 float const SRCFDA_bet[3] = {0.731593552162415f, -1.361157014197597f, 0.731593552162415f}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 float static SRCFQA_TE[3]; // the previous 3 values of measured tilt error

 float static SRCFQA_TEF[3]; // the previous 3 values of the filtered tilt error

 float const SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 float const SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 float static SRCD_Er[3]; // Current error for each blade

 float static SRCD_IntEr[3]; // Integral error for each blade

 float const SRCD_KI = 0.000000f; // Integral gain

 float const SRCD_KP = 0.00001f; // Proportional gain

 float static SRCD_Ref; // Reference (collective) angle for flaps

 float static SRCD_RefF; // Reference (collective) angle for flaps filtered

 float static SRCD_RBMF[3]; // Filtered RBM

 // band-pass filter for blade RBM signals

 float static SRCDF_RBM[9]; // the previous 3 values of measured blade RBMs

 float static SRCDF_RBMF[9]; // the previous 3 values of the filtered blade RBMs

 float const SRCDF_alp[3] = {1.000000000000000, -0.951219512195122, 0.0}; // the tf denominator values

 float const SRCDF_bet[3] = {0.024390243902439, 0.024390243902439, 0.0}; // the tf numerator values

 // notch filter for blade RBM signals

 float static SRCDF2_RBM[9]; // the previous 3 values of measured blade RBMs

 float static SRCDF2_RBMF[9]; // the previous 3 values of the filtered blade RBMs

 float const SRCDF2_alp[3] = {1.000000000000000, -0.977076510866329, 0.238669627021680}; // the tf denominator values

 float const SRCDF2_bet[3] = {0.619334813510840, -0.977076510866329, 0.619334813510840}; // the tf numerator values

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // flag for torque controller

 bool const VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 bool const FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool const PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 bool const PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 bool const PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 bool const PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 bool const IPC_on = false; // Flag to indicate whether IPC is on

 bool const IPCFDA_on = false; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const IPCFQA_on = false; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool const IPC2_on = false; // Flag to indicate whether IPC2 is on

 bool const IPC2FDA_on = false; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool const IPC2FQA_on = false; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 //flag for tower vibration damping using pitch control

 bool const TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool const NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool const SRC_on = false; // Flag to indicate whether smart rotor control is active

 bool const SRCFDA_on = false; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const SRCFQA_on = false; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool const SRCD_on = true; // Flag to indicate whether distributed smart rotor control is active

 bool const SRCDF_on = true; // Flag to indicate whether distributed smart rotor control is active

 bool const SRCDF2_on = false;

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 bool const VS_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 TVD_TowAcc = GetSwapValue(53) ;

 BladeRBM[0] = GetSwapValue(30) ;

 BladeRBM[1] = GetSwapValue(31) ;

 BladeRBM[2] = GetSwapValue(32) ;

 RotAzi = GetSwapValue(60) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCentral and distributed AFC active\r\n");

 }

 if (CornerFreq <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_KP1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KP1 must be greater than 0.\r\n");

 }

 if (VS_KI1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KI1 must be greater than 0.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (IPC_on == true)

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 if (IPC2_on == true)

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 if (TVD_on == true)

 strcat(strMsg,"TVD ");

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 strcat(strMsg,"SRC ");

 if (SRCD_on == true)

 strcat(strMsg,"SRCD ");

 if (SRCDF_on == true)

 strcat(strMsg,"SRCDF ");

 if (SRCDF2_on == true)

 strcat(strMsg,"SRCDF2 ");

 strcat(strMsg,"\r\n");

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT/(GK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if (((iStatus >= 0) || (iStatus == -1)) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 // Smart Rotor control signals

 SetSwapValue(38,SRC_PitCom[0]);

 SetSwapValue(39,SRC_PitCom[1]);

 SetSwapValue(40,SRC_PitCom[2]);

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_GnSp[0] = GenSpeed; // the previous 5 values of measured generator torque

 FTV_GnSp[1] = GenSpeed;

 FTV_GnSp[2] = GenSpeed;

 FTV_GnSp[3] = GenSpeed;

 FTV_GnSp[4] = GenSpeed;

 FTV_GnTqF[0] = GenSpeed; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[1] = GenSpeed;

 FTV_GnTqF[2] = GenSpeed;

 FTV_GnTqF[3] = GenSpeed;

 FTV_GnTqF[4] = GenSpeed;

 }

 FTV_GnSp[4] = FTV_GnSp[3]; // the previous 5 values of measured generator speed

 FTV_GnSp[3] = FTV_GnSp[2];

 FTV_GnSp[2] = FTV_GnSp[1];

 FTV_GnSp[1] = FTV_GnSp[0];

 FTV_GnSp[0] = GenSpeed;

 FTV_GnTqF[4] = FTV_GnTqF[3]; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[3] = FTV_GnTqF[2];

 FTV_GnTqF[2] = FTV_GnTqF[1];

 FTV_GnTqF[1] = FTV_GnTqF[0];

 FTV_GnTqF[0] = -FTV_GnTqF[1]*FTV_alph[1] -FTV_GnTqF[2]*FTV_alph[2] -FTV_GnTqF[3]*FTV_alph[3] -FTV_GnTqF[4]*FTV_alph[4] +FTV_GnSp[0]*FTV_beta[0] +FTV_GnSp[1]*FTV_beta[1] +FTV_GnSp[2]*FTV_beta[2] +FTV_GnSp[3]*FTV_beta[3] +FTV_GnSp[4]*FTV_beta[4];

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_GnTqF[0];

 // saturate to amplitude limit

 FTV_GnTqLast = MIN(MAX(FTV_GenTrqF,-FTV_GnTqMax),FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > 0.0f)

 {

 // We are in region 3 - power is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,LastGenTrq),VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 if (VSConstP_on == true){

 // and saturate to rated power (with no drop in power allowed):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq*LastGenSpd/GenSpeed),VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq),VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MAX(MIN(VS_ComT,VS_RtGnTrq),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,0.0f),VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MIN(MAX(VS_ComT,0),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================END: PI TORQUE CONTROL VS=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut) {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFA_GS[1] = GenSpeedF;

 PCFA_GS[2] = GenSpeedF;

 PCFA_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFA_GSF[1] = GenSpeedF;

 PCFA_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCFA_GS[2] = PCFA_GS[1];

 PCFA_GS[1] = PCFA_GS[0];

 PCFA_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator torque

 PCFA_GSF[2] = PCFA_GSF[1];

 PCFA_GSF[1] = PCFA_GSF[0];

 PCFA_GSF[0] = -PCFA_GSF[1]*PCFA_alp[1] -PCFA_GSF[2]*PCFA_alp[2] +PCFA_GS[0]*PCFA_bet[0] +PCFA_GS[1]*PCFA_bet[1] +PCFA_GS[2]*PCFA_bet[2];

 GenSpeedF = PCFA_GSF[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFB_GS[1] = GenSpeedF;

 PCFB_GS[2] = GenSpeedF;

 PCFB_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFB_GSF[1] = GenSpeedF;

 PCFB_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCFB_GS[2] = PCFB_GS[1];

 PCFB_GS[1] = PCFB_GS[0];

 PCFB_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator speed

 PCFB_GSF[2] = PCFB_GSF[1];

 PCFB_GSF[1] = PCFB_GSF[0];

 PCFB_GSF[0] = -PCFB_GSF[1]*PCFB_alp[1] -PCFB_GSF[2]*PCFB_alp[2] +PCFB_GS[0]*PCFB_bet[0] +PCFB_GS[1]*PCFB_bet[1] +PCFB_GS[2]*PCFB_bet[2];

 GenSpeedF = PCFB_GSF[0];

 }

 // Low-pass filter

 if (PCF_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFB_GS[1] = GenSpeedF;

 PCFB_GS[2] = GenSpeedF;

 PCFB_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFB_GSF[1] = GenSpeedF;

 PCFB_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCF_GS[2] = PCF_GS[1];

 PCF_GS[1] = PCF_GS[0];

 PCF_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator speed

 PCF_GSF[2] = PCF_GSF[1];

 PCF_GSF[1] = PCF_GSF[0];

 PCF_GSF[0] = -PCF_GSF[1]*PCF_alp[1] -PCF_GSF[2]*PCF_alp[2] +PCF_GS[0]*PCF_bet[0] +PCF_GS[1]*PCF_bet[1] +PCF_GS[2]*PCF_bet[2];

 GenSpeedF = PCF_GSF[0];

 }

 //=============END: generator speed FILTERS================================

 //=============BEGIN: PITCH CONTROL

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 if (iStatus == 0)

 {

 PCI_IntPwrEr = 0;

 }

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + PCI_KI*PCI_PwrEr*PC_ElapTime + PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = MIN(MAX(PCI_IntPwrEr, (((PC_MinRat*PC_ElapTime) +PitComT) /GK)),(((PC_MaxRat*PC_ElapTime) +PitComT)/GK));

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = GK*PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = MIN(MAX(IntSpdErr, (((PC_MinRat*PC_ElapTime) +PitComT) /GK)),(((PC_MaxRat*PC_ElapTime) +PitComT)/GK));

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = GK*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == 0)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_IntTA = 0; // set the velocity (acceleration integral) term to zero initially

 TVD_TV[0] = 0; // the previous 3 values of measured tower velocity

 TVD_TV[1] = 0;

 TVD_TV[2] = 0;

 TVD_TVf[0] = 0; // the previous 3 values of the filtered tower velocity

 TVD_TVf[1] = 0;

 TVD_TVf[2] = 0;

 }

 TVD_IntTA = TVD_IntTA + TVD_TowAcc*PC_ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 // the previous 3 values of measured tower velocities

 TVD_TV[2] = TVD_TV[1];

 TVD_TV[1] = TVD_TV[0];

 TVD_TV[0] = TVD_IntTA;

 // the previous 3 values of the filtered tower velocities

 TVD_TVf[2] = TVD_TVf[1];

 TVD_TVf[1] = TVD_TVf[0];

 TVD_TVf[0] = -TVD_TVf[1]*TVD_alp[1] -TVD_TVf[2]*TVD_alp[2] +TVD_TV[0]*TVD_bet[0] +TVD_TV[1]*TVD_bet[1] +TVD_TV[2]*TVD_bet[2];

 TVD_TowVel = TVD_TVf[0]; // tower velocity

 // filter the power output with a lag filter

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_P[0] = GenSpeed*GenTrq; // the previous 2 values of the generator power

 TVD_P[1] = GenSpeed*GenTrq;

 TVD_Pf[0] = GenSpeed*GenTrq; // the previous 2 values of the filtered generator power

 TVD_Pf[1] = GenSpeed*GenTrq;

 }

 // the previous 2 values of measured generator power

 TVD_P[1] = TVD_P[0];

 TVD_P[0] = GenSpeed*GenTrq;

 // the previous 2 values of the filtered generator power

 TVD_Pf[1] = TVD_Pf[0];

 TVD_Pf[0] = -TVD_Pf[1]*TVD_FOFa[1] +TVD_P[0]*TVD_FOFb[0] +TVD_P[1]*TVD_FOFb[1];

 // determine gain for tower vibration signal

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 TVD_gain = MIN(MAX(TVD_gain,0),1); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == 0)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC_gain = MIN(MAX(IPC_gain,0),1); // saturate between 0 and 1

 IPC_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*sin(RotAzi+4.0f*Pie/3.0f));

 IPC_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*cos(RotAzi+4.0f*Pie/3.0f));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_YE[0] = IPC_loadsDF; // the previous 3 values of measured yaw error moment

 IPCFDA_YE[1] = IPC_loadsDF;

 IPCFDA_YE[2] = IPC_loadsDF;

 IPCFDA_YEF[0] = IPC_loadsDF; // the previous 3 values of the filtered yaw error moment

 IPCFDA_YEF[1] = IPC_loadsDF;

 IPCFDA_YEF[2] = IPC_loadsDF;

 }

 // the previous 3 values of measured yaw error moment

 IPCFDA_YE[2] = IPCFDA_YE[1];

 IPCFDA_YE[1] = IPCFDA_YE[0];

 IPCFDA_YE[0] = IPC_loadsDF;

 // the previous 3 values of the filtered yaw error moment

 IPCFDA_YEF[2] = IPCFDA_YEF[1];

 IPCFDA_YEF[1] = IPCFDA_YEF[0];

 IPCFDA_YEF[0] = -IPCFDA_YEF[1]*IPCFDA_alp[1] -IPCFDA_YEF[2]*IPCFDA_alp[2] +IPCFDA_YE[0]*IPCFDA_bet[0] +IPCFDA_YE[1]*IPCFDA_bet[1] +IPCFDA_YE[2]*IPCFDA_bet[2];

 IPC_loadsDF = IPCFDA_YEF[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TE[0] = IPC_loadsQ; // the previous 3 values of measured Tlt moment

 IPCFQA_TE[1] = IPC_loadsQ;

 IPCFQA_TE[2] = IPC_loadsQ;

 IPCFQA_TEF[0] = IPC_loadsQ; // the previous 3 values of the filtered Tlt moment

 IPCFQA_TEF[1] = IPC_loadsQ;

 IPCFQA_TEF[2] = IPC_loadsQ;

 }

 // the previous 3 values of measured Tlt moment

 IPCFQA_TE[2] = IPCFQA_TE[1];

 IPCFQA_TE[1] = IPCFQA_TE[0];

 IPCFQA_TE[0] = IPC_loadsQ;

 // the previous 3 values of the filtered Tlt moment

 IPCFQA_TEF[2] = IPCFQA_TEF[1];

 IPCFQA_TEF[1] = IPCFQA_TEF[0];

 IPCFQA_TEF[0] = -IPCFQA_TEF[1]*IPCFQA_alp[1] -IPCFQA_TEF[2]*IPCFQA_alp[2] +IPCFQA_TE[0]*IPCFQA_bet[0] +IPCFQA_TE[1]*IPCFQA_bet[1] +IPCFQA_TE[2]*IPCFQA_bet[2];

 IPC_loadsQF = IPCFQA_TEF[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = MIN(MAX(IPC_IntYawEr, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_IntTltEr = MIN(MAX(IPC_IntTltEr, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_pitD = IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = MIN(MAX(IPC_pitD, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_pitQ = MIN(MAX(IPC_pitQ, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 // individual pitch command for each blade

 IPC_pit[0] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+2.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*Pie/3.0f+IPC_offset));

 IPC_pit[2] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+4.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*Pie/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC2_gain = MIN(MAX(IPC2_gain,0),1); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*sin(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*cos(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_YE[0] = IPC2_loadsDF; // the previous 3 values of measured yaw error moment

 IPC2FDA_YE[1] = IPC2_loadsDF;

 IPC2FDA_YE[2] = IPC2_loadsDF;

 IPC2FDA_YEF[0] = IPC2_loadsDF; // the previous 3 values of the filtered yaw error moment

 IPC2FDA_YEF[1] = IPC2_loadsDF;

 IPC2FDA_YEF[2] = IPC2_loadsDF;

 }

 // the previous 3 values of measured yaw error moment

 IPC2FDA_YE[2] = IPC2FDA_YE[1];

 IPC2FDA_YE[1] = IPC2FDA_YE[0];

 IPC2FDA_YE[0] = IPC2_loadsDF;

 // the previous 3 values of the filtered yaw error moment

 IPC2FDA_YEF[2] = IPC2FDA_YEF[1];

 IPC2FDA_YEF[1] = IPC2FDA_YEF[0];

 IPC2FDA_YEF[0] = -IPC2FDA_YEF[1]*IPC2FDA_alp[1] -IPC2FDA_YEF[2]*IPC2FDA_alp[2] +IPC2FDA_YE[0]*IPC2FDA_bet[0] +IPC2FDA_YE[1]*IPC2FDA_bet[1] +IPC2FDA_YE[2]*IPC2FDA_bet[2];

 IPC2_loadsDF = IPC2FDA_YEF[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPC2FQA_TE[0] = IPC2_loadsQ; // the previous 3 values of measured Tlt moment

 IPC2FQA_TE[1] = IPC2_loadsQ;

 IPC2FQA_TE[2] = IPC2_loadsQ;

 IPC2FQA_TEF[0] = IPC2_loadsQ; // the previous 3 values of the filtered Tlt moment

 IPC2FQA_TEF[1] = IPC2_loadsQ;

 IPC2FQA_TEF[2] = IPC2_loadsQ;

 }

 // the previous 3 values of measured Tlt moment

 IPC2FQA_TE[2] = IPC2FQA_TE[1];

 IPC2FQA_TE[1] = IPC2FQA_TE[0];

 IPC2FQA_TE[0] = IPC2_loadsQ;

 // the previous 3 values of the filtered Tlt moment

 IPC2FQA_TEF[2] = IPC2FQA_TEF[1];

 IPC2FQA_TEF[1] = IPC2FQA_TEF[0];

 IPC2FQA_TEF[0] = -IPC2FQA_TEF[1]*IPC2FQA_alp[1] -IPC2FQA_TEF[2]*IPC2FQA_alp[2] +IPC2FQA_TE[0]*IPC2FQA_bet[0] +IPC2FQA_TE[1]*IPC2FQA_bet[1] +IPC2FQA_TE[2]*IPC2FQA_bet[2];

 IPC2_loadsQF = IPC2FQA_TEF[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = MIN(MAX(IPC2_IntYawEr, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_IntTltEr = MIN(MAX(IPC2_IntTltEr, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_pitD = IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = MIN(MAX(IPC2_pitD, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_pitQ = MIN(MAX(IPC2_pitQ, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 // individual pitch command for each blade

 IPC2_pit[0] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)));

 IPC2_pit[2] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT + IPC_pit[K] + IPC2_pit[K]- PitCom[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], PC_MinRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = PitCom[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = MIN(MAX(PitCom[K], PC_MinPit), PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 SRC_ElapTime = Time - LastTimeSRC;

 // =========BEGIN: SRC DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 SRC_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*sin(RotAzi+4.0f*Pie/3.0f));

 SRC_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*cos(RotAzi+4.0f*Pie/3.0f));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_YE[0] = SRC_loadsDF; // the previous 3 values of measured yaw error moment

 SRCFDA_YE[1] = SRC_loadsDF;

 SRCFDA_YE[2] = SRC_loadsDF;

 SRCFDA_YEF[0] = SRC_loadsDF; // the previous 3 values of the filtered yaw error moment

 SRCFDA_YEF[1] = SRC_loadsDF;

 SRCFDA_YEF[2] = SRC_loadsDF;

 }

 // the previous 3 values of measured yaw error moment

 SRCFDA_YE[2] = SRCFDA_YE[1];

 SRCFDA_YE[1] = SRCFDA_YE[0];

 SRCFDA_YE[0] = SRC_loadsDF;

 // the previous 3 values of the filtered yaw error moment

 SRCFDA_YEF[2] = SRCFDA_YEF[1];

 SRCFDA_YEF[1] = SRCFDA_YEF[0];

 SRCFDA_YEF[0] = -SRCFDA_YEF[1]*SRCFDA_alp[1] -SRCFDA_YEF[2]*SRCFDA_alp[2] +SRCFDA_YE[0]*SRCFDA_bet[0] +SRCFDA_YE[1]*SRCFDA_bet[1] +SRCFDA_YE[2]*SRCFDA_bet[2];

 SRC_loadsDF = SRCFDA_YEF[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TE[0] = SRC_loadsQ; // the previous 3 values of measured Tlt moment

 SRCFQA_TE[1] = SRC_loadsQ;

 SRCFQA_TE[2] = SRC_loadsQ;

 SRCFQA_TEF[0] = SRC_loadsQ; // the previous 3 values of the filtered Tlt moment

 SRCFQA_TEF[1] = SRC_loadsQ;

 SRCFQA_TEF[2] = SRC_loadsQ;

 }

 // the previous 3 values of measured Tlt moment

 SRCFQA_TE[2] = SRCFQA_TE[1];

 SRCFQA_TE[1] = SRCFQA_TE[0];

 SRCFQA_TE[0] = SRC_loadsQ;

 // the previous 3 values of the filtered Tlt moment

 SRCFQA_TEF[2] = SRCFQA_TEF[1];

 SRCFQA_TEF[1] = SRCFQA_TEF[0];

 SRCFQA_TEF[0] = -SRCFQA_TEF[1]*SRCFQA_alp[1] -SRCFQA_TEF[2]*SRCFQA_alp[2] +SRCFQA_TE[0]*SRCFQA_bet[0] +SRCFQA_TE[1]*SRCFQA_bet[1] +SRCFQA_TE[2]*SRCFQA_bet[2];

 SRC_loadsQF = SRCFQA_TEF[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = MIN(MAX(SRC_IntYawEr, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_IntTltEr = MIN(MAX(SRC_IntTltEr, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_PitComD = SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = MIN(MAX(SRC_PitComD, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_PitComQ = MIN(MAX(SRC_PitComQ, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // individual pitch command for each blade

 SRC_PitCom[0] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_PitCom[1] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+2.0f*Pie/3.0f+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0f*Pie/3.0f+SRC_offset));

 SRC_PitCom[2] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+4.0f*Pie/3.0f+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0f*Pie/3.0f+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 //===========BEGIN: SRCD filters=============

 for (K = 0;K<NumBl;K++){

 SRCD_RBMF[K] = BladeRBM[K];

 // Low pass filter

 if (SRCDF_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDF_RBM[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of measured RBM

 SRCDF_RBM[3*K+1] = SRCD_RBMF[K];

 SRCDF_RBM[3*K+2] = SRCD_RBMF[K];

 SRCDF_RBMF[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of the filtered RBM

 SRCDF_RBMF[3*K+1] = SRCD_RBMF[K];

 SRCDF_RBMF[3*K+2] = SRCD_RBMF[K];

 }

 // the previous 3 values of measured RBM

 SRCDF_RBM[3*K+2] = SRCDF_RBM[3*K+1];

 SRCDF_RBM[3*K+1] = SRCDF_RBM[3*K+0];

 SRCDF_RBM[3*K+0] = SRCD_RBMF[K];

 // the previous 3 values of the filtered RBM

 SRCDF_RBMF[3*K+2] = SRCDF_RBMF[3*K+1];

 SRCDF_RBMF[3*K+1] = SRCDF_RBMF[3*K+0];

 SRCDF_RBMF[3*K+0] = -SRCDF_RBMF[3*K+1]*SRCDF_alp[1] -SRCDF_RBMF[3*K+2]*SRCDF_alp[2] +SRCDF_RBM[3*K+0]*SRCDF_bet[0] +SRCDF_RBM[3*K+1]*SRCDF_bet[1] +SRCDF_RBM[3*K+2]*SRCDF_bet[2];

 SRCD_RBMF[K] = SRCDF_RBMF[3*K];

 }

 if (SRCDF2_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDF2_RBM[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of measured RBM

 SRCDF2_RBM[3*K+1] = SRCD_RBMF[K];

 SRCDF2_RBM[3*K+2] = SRCD_RBMF[K];

 SRCDF2_RBMF[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of the filtered RBM

 SRCDF2_RBMF[3*K+1] = SRCD_RBMF[K];

 SRCDF2_RBMF[3*K+2] = SRCD_RBMF[K];

 }

 // the previous 3 values of measured RBM

 SRCDF2_RBM[3*K+2] = SRCDF2_RBM[3*K+1];

 SRCDF2_RBM[3*K+1] = SRCDF2_RBM[3*K+0];

 SRCDF2_RBM[3*K+0] = SRCD_RBMF[K];

 // the previous 3 values of the filtered RBM

 SRCDF2_RBMF[3*K+2] = SRCDF2_RBMF[3*K+1];

 SRCDF2_RBMF[3*K+1] = SRCDF2_RBMF[3*K+0];

 SRCDF2_RBMF[3*K+0] = -SRCDF2_RBMF[3*K+1]*SRCDF2_alp[1] -SRCDF2_RBMF[3*K+2]*SRCDF2_alp[2] +SRCDF2_RBM[3*K+0]*SRCDF2_bet[0] +SRCDF2_RBM[3*K+1]*SRCDF2_bet[1] +SRCDF2_RBM[3*K+2]*SRCDF2_bet[2];

 SRCD_RBMF[K] = SRCDF2_RBMF[3*K];

 }

 }

 SRCD_Ref = 0.0f;//(SRCD_RBMF[0] + SRCD_RBMF[1] + SRCD_RBMF[2]) / 3.0f;

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCD_Er[K] = BladeRBM[K] - SRCD_RBMF[K]; // Current error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRCD_KI*SRCD_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = MIN(MAX(SRCD_IntEr[K], SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // PI controller demand

 SRC_PitCom[K] = SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRC_PitCom[K] = SRC_gain*GK * SRC_PitCom[K];

 } //end for loop for SRCD

 } //ENDIF for SRCD

 //===========END: SRCD Individual pitch control distributed==============

 SRC_Pit[0] = GetSwapValue(38);

 SRC_Pit[1] = GetSwapValue(39);

 SRC_Pit[2] = GetSwapValue(40);

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = MIN(MAX(SRC_PitRate[K], -SRC_PitMaxRat), SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_PitCom[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = MIN(MAX(SRC_PitCom[K], SRC_PitMin), SRC_PitMax); // Saturate to pitch limits

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == -1))

 { // Last call to controller

 strcat(strMsg,"\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 SetSwapValue(65,13); // Number of variables returned for logging

 strcpy(avcOutname,"SRCD_Ref:FL;SRCD_IntEr:A;KP*SRCD_Er:A;SRC_PitCom:A;SRC_PitComD:A;SRC_PitComQ:A;SRCD_RefF:FL;SRCD_RBMF:FL;IPC_pit_bl1:A;SRC_DQpit:A;SRC_YawEr:A;SRC_IntYawEr:A;SRC_offset:A;");

 SetSwapValue((NINT(GetSwapValue(63))+0),SRCD_Ref);

 SetSwapValue((NINT(GetSwapValue(63))+1),SRCD_IntEr[0]);

 SetSwapValue((NINT(GetSwapValue(63))+2),SRCD_KP*SRCD_Er[0]);

 SetSwapValue((NINT(GetSwapValue(63))+3),SRC_PitCom[0]);

 SetSwapValue((NINT(GetSwapValue(63))+4),SRC_PitComD);

 SetSwapValue((NINT(GetSwapValue(63))+5),SRC_PitComQ);

 SetSwapValue((NINT(GetSwapValue(63))+6),SRCD_RefF);

 SetSwapValue((NINT(GetSwapValue(63))+7),SRCD_RBMF[0]);

 SetSwapValue((NINT(GetSwapValue(63))+8),IPC_pit[0]);

 SetSwapValue((NINT(GetSwapValue(63))+9),SRC_PitCom[0]);

 SetSwapValue((NINT(GetSwapValue(63))+10),SRC_YawEr);

 SetSwapValue((NINT(GetSwapValue(63))+11),SRC_IntYawEr);

 SetSwapValue((NINT(GetSwapValue(63))+12),SRC_offset);

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_18Feb14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_18Feb14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<double const>::epsilon(); // The number slighty greater than unity in si

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 /*double static NacelRolAcc; // nacelle rolling acceleration

 double static NacelNodAcc; // nacelle nodding acceleration

 double static NacelRolVel; // nacelle rolling velocity

 double static NacelNodVel; // nacelle nodding velocity

 */

 double static SRC_GenAcc;

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = 43093.6; // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV_TF; // transfer function structure

 FTV_TF.size = 5; // size of transfer function (default is 3, used to marginally reduce computations)

 double FTV_alp[5] = {1.0f, -3.78865457824117, 5.44068947154296, -3.50923154684766, 0.857629209879516}; // the tf denominator values

 double FTV_bet[5] = {117.030302254623, -221.446713569963, -8.36150963845548f, 221.446713569963, -108.668792616168}; // the tf numerator values

 double static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double static FTV_GnTqLast = 0; // last generator torque for use by torque controller

 double const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at r

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComT; // Total command pitch based on the sum of the

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.190374887599262, 0.744851779574509}; // the tf denominator values

 double PCFB_bet[3] = {0.872425889787254, -1.190374887599262, 0.872425889787254}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_KI = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.652968036529681, 0.683075832447197}; // the tf denominator values

 double TVD_bet[3] = {2.384501036344228, -4.383776683897670, 2.029383443470958}; // the tf numerator values

 double static TVD_gain; //Gain correction factor

 TF static TVD_FOF;

 TVD_FOF.size = 2;

 double TVD_FOFalp[2] = {1.000000000000000, -0.818181818181818}; // the first order lag filter tf denominator values

 double TVD_FOFbet[2] = {0.090909090909091, 0.090909090909091}; // the first order lag filter tf numerator values

 double static TVD_Pf; // low pass filtered generator power

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 double const IPC2_PitMax = 2.5/R2D; // max angle due to IPC2 control

 double const IPC2_KP = 0.0; // proportional gain

 double const IPC2_KI = 0.000000002; // integral gain

 double static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static IPC2_loadsD; // load measurements in D-axis

 double static IPC2_loadsQ; // load measurements in Q-axis

 double static IPC2_loadsDF; // Filtered yaw moment

 double static IPC2_loadsQF; // Filtered tilt moment

 double static IPC2_pitD; // D-axis pitch demand

 double static IPC2_pitQ; // Q-axis pitch demand

 double static IPC2_pit[3]; // Individual pitch demands

 double static IPC2_YawRef = 0.0; // Desired yaw moment

 double static IPC2_TltRef = 0.0; // Desired tilt moment

 double static IPC2_YawEr; // Yaw (D-axis) moment error

 double static IPC2_TltEr; // Tilt (Q-axis) moment error

 double static IPC2_IntYawEr; // Integral of yaw moment error

 double static IPC2_IntTltEr; // Integral of tilt moment error

 double static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 TF static IPC2FDA_TF;

 double IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 TF static IPC2FQA_TF;

 double IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 double IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // IPC utilising angle of attack measurements

 double static IPCL_Ref; // Reference angle of attack

 double static IPCL_RefF; // Filtered reference (regressive filter)

 double const IPCL_Tau = 0.1; // Regressive filter time constant

 double static IPCL_IntEr[3]; // Integral error for each of the flaps

 double static IPCL_PitCom[3]; // Pitch command for each of the flaps

 double const IPCL_KD = 0.0; // Differential gain

 double const IPCL_KP = -1.0; // Proportional gain

 double const IPCL_KI = 0.0; // Integral gain

 double static IPCL_DifEr[3]; // Differential error

 double static IPCL_Er[3]; // Current error

 double const IPCL_PitMax = 2.5/R2D; // max angle due to IPC2 control

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.00000001; // Proportional gain

 double const IPCB_KI = 0.0; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double IPCBFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double IPCBFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // Smart Rotor Control (dq)

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 29.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -29.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = 10.0*IPC_KP; // proportional gain

 double const SRC_KI = 10.0*IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_triggered; // ratchet for fault ride through 1

 bool static SRC_faultRF2_triggered; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCfrf_TF;

 double SRCfrf_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCfrf_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCfrf_values[100];

 double const SRCfrf_threshold = 0.02;

 int static SRCfrf_cnt;

 double static SRCfrf_value;

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control (2P dq)

 double const SRC2_PitMax = 2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMin = -2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC2_KP = 0.0; // proportional gain

 double const SRC2_KI = 0.0000002; // integral gain

 double static SRC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC2_loadsD; // load measurements in D-axis

 double static SRC2_loadsQ; // load measurements in Q-axis

 double static SRC2_loadsDF; // Filtered yaw moment

 double static SRC2_loadsQF; // Filtered tilt moment

 double static SRC2_PitComD; // D-axis pitch demand

 double static SRC2_PitComQ; // Q-axis pitch demand

 double static SRC2_PitCom[3]; // Individual pitch demands

 double static SRC2_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC2_YawRef = 0.0; // Desired yaw moment

 double static SRC2_TltRef = 0.0; // Desired tilt moment

 double static SRC2_YawEr; // Yaw (D-axis) moment error

 double static SRC2_TltEr; // Tilt (Q-axis) moment error

 double static SRC2_IntYawEr; // Integral of yaw moment error

 double static SRC2_IntTltEr; // Integral of tilt moment error

 double static SRC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC2_gain; // gain to phase out SRC2 below rated

 double static SRC2_dqPitCom[3];

 // Notch filter for SRC2 yaw error D

 TF static SRC2FDA_TF;

 double SRC2FDA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FDA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC2 tilt error Q

 TF static SRC2FQA_TF;

 double SRC2FQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = 0.0; // Integral gain

 double const SRCD_KP = -8.0*IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double SRCDFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double SRCDFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // LIDAR beams detection unit, blade mounted

 int LIDAR_lidars; // Loops through LIDARs per blade

 int LIDAR_beams; // Loops through LIDAR beams per LIDAR

 int LIDAR_focals; // Loops through focal points of LIDAR beams

 //int const LIDAR_Nbeams = GetNumberOfLidarBeams(turbine_id); // Number of effectively independent Lidar beams

 double const LIDAR_Yrot[2] = {0.0000, 90.0/R2D}; // Angular separtaion between x-axis and beam

 double const LIDAR_Zrot[2] = {0.0000, 90.0/R2D}; // Azimuth angle about x-axis

 double const LIDAR_Focus = 0.0001; // Focal point in metres of LIDAR

 double static LIDAR_WS[6]; // Velocity percieved by each LIDAR focal point

 double const LIDAR_DT = 0.1; // Communication interval with LIDAR

 double static LastTimeLIDAR; // Last call to LIDAR

 double static LIDAR_AoA[3]; // Angle of attack calculated from LIDAR

 // Smart Rotor Control utilising angle of attack measurements

 double static SRCL_Ref; // Reference angle of attack

 double static SRCL_RefF; // Filtered reference (regressive filter)

 double const SRCL_Tau = 1.0; // Regressive filter time constant

 double static SRCL_IntEr[3]; // Integral error for each of the flaps

 double static SRCL_PitCom[3]; // Pitch command for each of the flaps

 double const SRCL_KD = 0.0; // Differential gain

 double const SRCL_KP = 3.0; // Proportional gain

 double const SRCL_KI = 0.0; // Integral gain

 double static SRCL_DifEr[3]; // Differential error

 double static SRCL_Er[3]; // Current error

 //Strain gauge measurements

 int static STRAIN_gauges; // Counter for strain gauges

 int const STRAIN_Ngauges = GetNumberOfBladeStrainGauges (turbine_id, 0); //number of strain gauges on blade 0

 double static STRAIN_strainB0[10]; // Strains on blade 0

 double static STRAIN_strainB1[10]; // Strains on blade 1

 double static STRAIN_strainB2[10]; // Strains on blade 2

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 /*NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 */

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether IPC is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPC2_on = false; // Flag to indicate whether IPC2 is on

 IPC2FDA_on = true; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 IPC2FQA_on = true; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether IPCB is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 SRC2_on = false; // Flag to indicate whether smart rotor control is active

 SRC2FDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 SRC2FQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 LIDAR_on = false; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 SRCL_on = false;

 //flag for indivudal pitch control utilising LIDAR

 IPCL_on = false;

 // Sensors

 STRAIN_on = false; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_faultRF1_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_faultRF2_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output debugging

 VS_DbgOut = false; // Flag to indicate whether to output debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPC2_on = parameterSearchDefine (turbine_id, line, IPC2_on, "IPC2_on");

 IPC2FDA_on = parameterSearchDefine (turbine_id, line, IPC2FDA_on, "IPC2FDA_on");

 IPC2FQA_on = parameterSearchDefine (turbine_id, line, IPC2FQA_on, "IPC2FQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRC2_on = parameterSearchDefine (turbine_id, line, SRC2_on, "SRC2_on");

 SRC2FDA_on = parameterSearchDefine (turbine_id, line, SRC2FDA_on, "SRC2FDA_on");

 SRC2FQA_on = parameterSearchDefine (turbine_id, line, SRC2FQA_on, "SRC2FQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 LIDAR_on = parameterSearchDefine (turbine_id, line, LIDAR_on, "LIDAR_on");

 SRCL_on = parameterSearchDefine (turbine_id, line, SRCL_on, "SRCL_on");

 IPCL_on = parameterSearchDefine (turbine_id, line, IPCL_on, "IPCL_on");

 STRAIN_on = parameterSearchDefine (turbine_id, line, STRAIN_on, "STRAIN_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamAngle = atoi(tmptxt.c_str()); //convert selected string to integer

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamTime = atoi(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (SRCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nSRCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (IPCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nIPCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPC2_on == true)

 {

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 }

 if (IPCL_on == true)

 strcat(strMsg,"IPCL ");

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 } //if SRC_jam on

 if (SRC2_on == true)

 {

 strcat(strMsg,"SRC2 ");

 if (SRC2FDA_on == true)

 strcat(strMsg,"SRC2FDA ");

 if (SRC2FQA_on == true)

 strcat(strMsg,"SRC2FQA ");

 } //if SRC2 on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDF ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDF2 ");

 } //if SRCD on

 if (LIDAR_on == true)

 strcat(strMsg,"LIDAR ");

 if (SRCL_on == true)

 strcat(strMsg,"SRCL ");

 if (STRAIN_on == true)

 strcat(strMsg,"STRAIN ");

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComT;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeLIDAR= Time - LIDAR_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_1); // The first shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_2); // The second shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_GENERATOR); // The generator brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_3); // The third shaft brake: 0=off

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 //SetSwapValue(79,0.0); // Request for loads: 0=none

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //------------BEGIN: SENSORS--------------

 if (STRAIN_on)

 for (STRAIN_gauges = 0;STRAIN_gauges<STRAIN_Ngauges;STRAIN_gauges++)

 {

 STRAIN_strainB0[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 0, STRAIN_gauges);

 STRAIN_strainB1[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 1, STRAIN_gauges);

 STRAIN_strainB2[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 2, STRAIN_gauges);

 }

 //------------END: SENSORS--------------

 //==========BEGIN: LIDAR wind speed module==========

 if (LIDAR_on)

 {

 if ((Time*OnePlusEps - LastTimeLIDAR) >= LIDAR_DT)

 {

 //Get LIDAR wind speeds

 for (K = 0;K<NumBl;K++)

 {

 }

 //Determine Angle of Attack from wind speeds, ignoring twist of blade

 LIDAR_AoA[0] = atan(LIDAR_WS[0]/LIDAR_WS[1]);

 LIDAR_AoA[1] = atan(LIDAR_WS[2]/LIDAR_WS[3]);

 LIDAR_AoA[2] = atan(LIDAR_WS[4]/LIDAR_WS[5]);

 LastTimeLIDAR = Time;

 }

 }

 //======END: LIDAR wind speed module==========

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,LastGenTrq,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 if (VSConstP_on){

 // and saturate to rated power (with no drop in power allowed):

 GenTrq = SATURATE(VS_ComT,LastGenTrq*LastGenSpd/GenSpeed,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,LastGenTrq,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_TF = TFinit(FTV_TF,FTV_alp,FTV_bet,GenSpeed);

 }

 FTV_TF = TFupdate(FTV_TF,GenSpeed);

 FTV_GenTrqF = FTV_TF.outputs[0];

 // saturate to amplitude limit

 FTV_GenTrqF = SATURATE(FTV_GenTrqF,-FTV_GnTqMax,FTV_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TowerAccX*PC_ElapTime);

 }

 TVD_TF = TFupdate(TVD_TF,TowerAccX*PC_ElapTime);

 TVD_TowVel = TVD_TF.outputs[0]; // delta tower velocity

 TVD_IntTA = TVD_IntTA + TVD_KI*TVD_TowVel; // Current integral of acceleration error w.r.t. time (velocity)

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_FOF = TFinit(TVD_FOF,TVD_FOFalp,TVD_FOFbet,GenSpeed*GenTrq);

 }

 TVD_FOF = TFupdate(TVD_FOF,GenSpeed*GenTrq);

 TVD_Pf = TVD_FOF.outputs[0];

 // determine gain for tower vibration signal

 TVD_gain = ((TVD_Pf/VS_RtPwr) - 0.8) * 5.0;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_IntTA;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -8.0*TVD_PitCom;

 TVD_PitCom = 0.0;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC2_gain = SATURATE(IPC2_gain,0.0,1.0); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_TF = TFinit(IPC2FDA_TF,IPC2FDA_alp,IPC2FDA_bet,IPC2_loadsDF);

 }

 IPC2FDA_TF = TFupdate(IPC2FDA_TF,IPC2_loadsDF);

 IPC2_loadsDF = IPC2FDA_TF.outputs[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FQA_TF = TFinit(IPC2FQA_TF,IPC2FQA_alp,IPC2FQA_bet,IPC2_loadsQF);

 }

 IPC2FQA_TF = TFupdate(IPC2FQA_TF,IPC2_loadsQF);

 IPC2_loadsQF = IPC2FQA_TF.outputs[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + GK*IPC2_gain*IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + GK*IPC2_gain*IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = SATURATE(IPC2_IntYawEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_IntTltEr = SATURATE(IPC2_IntTltEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitD = GK*IPC2_gain*IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = GK*IPC2_gain*IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = SATURATE(IPC2_pitD, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitQ = SATURATE(IPC2_pitQ, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 // individual pitch command for each blade

 IPC2_pit[0] = (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)));

 IPC2_pit[2] = (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //============BEGIN: IPCL individual pitch control using LIDAR==============

 if (IPCL_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //IPCL_RefF = IPCL_Ref;

 IPCL_RefF = ((IPCL_Tau/PC_DT)*IPCL_RefF + IPCL_Ref)/((IPCL_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // AoA error

 IPCL_DifEr[K] = IPCL_Er[K];

 IPCL_Er[K] = IPCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 IPCL_DifEr[K] = (IPCL_Er[K]-IPCL_DifEr[K])/SRC_ElapTime; // Differential error

 IPCL_IntEr[K] = IPCL_IntEr[K] + GK*IPCL_KI*IPCL_Er[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCL_IntEr[K] = SATURATE(IPCL_IntEr[K], IPCL_PitMax ,IPC_PitMax);

 // PID controller demand

 IPCL_PitCom[K] = GK*IPCL_KD*IPCL_DifEr[K] + GK*IPCL_KP*IPCL_Er[K] + IPCL_IntEr[K];

 // individual pitch command for each blade

 IPCL_PitCom[K] = IPC_gain * IPCL_PitCom[K];

 }

 }

 //==============END: IPCL Indivudal pitch Control utilising Lidar==========

 //============BEGIN: IPCB individual pitch control using LIDAR==============

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 //IPCB_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -IPC_gain*IPCB_PitMax ,IPC_gain*IPCB_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 IPCB_PitCom[K] = SATURATE(IPCB_PitCom[K], -IPC_gain*IPCB_PitMax ,IPC_gain*IPCB_PitMax);

 // individual pitch command for each blade

 IPCB_PitCom[K] = IPCB_PitCom[K];

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 for (K = 0;K<NumBl;K++)

 {

 IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 }

 }

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + IPC_pit[K] + IPC2_pit[K] + IPCL_PitCom[K] + IPCB_PitCom[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 // =========BEGIN: SRC2 DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC2 control so that only fully active above rated, ramping up from 0.8 rated power

 SRC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC2_gain = SATURATE(SRC2_gain,0.0,1.0); // saturate between 0 and 1

 SRC2_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(2.0f*RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 SRC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(2.0f*RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: SRC2 filters=============

 SRC2_loadsDF = SRC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRC2FDA_TF = TFinit(SRC2FDA_TF,SRC2FDA_alp,SRC2FDA_bet,SRC2_loadsDF);

 }

 SRC2FDA_TF = TFupdate(SRC2FDA_TF,SRC2_loadsDF);

 SRC2_loadsDF = SRC2FDA_TF.outputs[0];

 }

 SRC2_loadsQF = SRC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRC2FQA_TF = TFinit(SRC2FQA_TF,SRC2FQA_alp,SRC2FQA_bet,SRC2_loadsQF);

 }

 SRC2FQA_TF = TFupdate(SRC2FQA_TF,SRC2_loadsQF);

 SRC2_loadsQF = SRC2FQA_TF.outputs[0];

 }

 SRC2_YawEr = SRC2_YawRef - SRC2_loadsDF; // Current yaw error

 SRC2_TltEr = SRC2_TltRef - SRC2_loadsQF; // Current tilt error

 //===========END: SRC2 filters=============

 SRC2_IntYawEr = SRC2_IntYawEr + GK*SRC2_gain*SRC2_KI*SRC2_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC2_IntTltEr = SRC2_IntTltEr + GK*SRC2_gain*SRC2_KI*SRC2_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC2_IntYawEr = SATURATE(SRC2_IntYawEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_IntTltEr = SATURATE(SRC2_IntTltEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComD = GK*SRC2_gain*SRC2_KP*SRC2_YawEr + SRC2_IntYawEr; // PI controller D-axis (yaw) demand

 SRC2_PitComQ = GK*SRC2_gain*SRC2_KP*SRC2_TltEr + SRC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC2 to degree max (gain scheduled)

 SRC2_PitComD = SATURATE(SRC2_PitComD, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComQ = SATURATE(SRC2_PitComQ, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 // individual pitch command for each blade

 SRC2_dqPitCom[0] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+SRC2_offset)));

 SRC2_dqPitCom[1] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)));

 SRC2_dqPitCom[2] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)));

 } //ENDIF for SRC2

 //===========END: SRC2 DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/PC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/PC_DT)+1.0f);

 //SRCD_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRC_gain*SRCD_KI*SRCD_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], -SRC_gain*SRC_PitMax ,SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = SRC_gain*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 SRCD_PitCom[K] = SATURATE(SRCD_PitCom[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRCD_PitCom[K];

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+SRCD_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // SRCD_PitCom[K] = SRCD_PitCom[K];//-SRCD_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //============BEGIN: SRCL Smart rotor control using LIDAR==============

 if (SRCL_on)

 {

 SRC_gain = 1.0;//(1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //SRCL_RefF = SRCL_Ref;

 SRCL_RefF = ((SRCL_Tau/SRC_DT)*SRCL_RefF + SRCL_Ref)/((SRCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCL_DifEr[K] = SRCL_Er[K];

 SRCL_Er[K] = SRCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 SRCL_DifEr[K] = (SRCL_Er[K]-SRCL_DifEr[K])/SRC_ElapTime; // Differential error

 SRCL_IntEr[K] = SRCL_IntEr[K] + GK*SRCL_KI*SRCL_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCL_IntEr[K] = SATURATE(SRCL_IntEr[K], SRC_PitMin ,SRC_PitMax);

 // PID controller demand

 SRCL_PitCom[K] = GK*SRCL_KD*SRCL_DifEr[K] + GK*SRCL_KP*SRCL_Er[K] + SRCL_IntEr[K];

 // individual pitch command for each blade

 SRCL_PitCom[K] = SRC_gain * SRCL_PitCom[K];

 }

 }

 //==============END: SRCL Smart Rotor Control utilising Lidar==========

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCfrf_cnt=1; SRCfrf_cnt<100; SRCfrf_cnt++)

 {

 SRCfrf_values[100-SRCfrf_cnt] = SRCfrf_values[100-SRCfrf_cnt-1];

 }

 //filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_TF = TFinit(SRCfrf_TF,SRCfrf_alp,SRCfrf_bet,0);

 }

 SRCfrf_TF = TFupdate(SRCfrf_TF,TowerAccX);

 //new value

 SRCfrf_values[0] = (SRCfrf_TF.outputs[0])*(SRCfrf_TF.outputs[0]);

 SRCfrf_value = SRCfrf_values[0] - SRCfrf_values[99] + SRCfrf_value;

 if (SRCfrf_value/100 >SRCfrf_threshold)

 {

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF_triggered))

 {

 if (SRC_faultRF1_triggered == false)

 {

 SRC_faultRF1_triggered = true;

 ReportWarningMessage (turbine_id, "FRF activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 //=======END: SRC fault ride through =======

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 if ((!SRC_faultRF1_triggered) && (!SRC_faultRF2_triggered))

 {

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 } //only adjust if fault ride through inactive

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "SRCfrf_values0", "-") ;

 AddLogValue (turbine_id, "SRCfrf_value", "-") ;

 AddLogValue (turbine_id, "SRCfrf_values99", "-") ;

 AddLogValue (turbine_id, "SRC_dqPitCom0", "A") ;

 AddLogValue (turbine_id, "SRC_dqPitCom1", "A") ;

 AddLogValue (turbine_id, "SRCD_PitCom0", "A") ;

 AddLogValue (turbine_id, "SRCL_PitCom0", "A") ;

 AddLogValue (turbine_id, "TVD_Smart_Com", "A") ;

 AddLogValue (turbine_id, "SRC_Pit", "A") ;

 AddLogValue (turbine_id, "BladeRBMop0", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop1", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop2", "FL") ;

 AddLogValue (turbine_id, "IPCB_PitCom0", "A") ;

 AddLogValue (turbine_id, "IPCB_PitCom1", "A") ;

 AddLogValue (turbine_id, "IPCB_PitCom2", "A") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF0", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF1", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF2", "FL") ;

 }

 SetLoggingValue (turbine_id, 0, SRCfrf_values[0]);

 SetLoggingValue (turbine_id, 1, SRCfrf_value);

 SetLoggingValue (turbine_id, 2, SRCfrf_values[99]);

 SetLoggingValue (turbine_id, 3, SRC_dqPitCom[0]);

 SetLoggingValue (turbine_id, 4, SRC_dqPitCom[1]);

 SetLoggingValue (turbine_id, 5, SRCD_PitCom[0]);

 SetLoggingValue (turbine_id, 6, SRCL_PitCom[0]);

 SetLoggingValue (turbine_id, 7, TVD_Smart_Com);

 SetLoggingValue (turbine_id, 8, SRC_Pit[0]);

 SetLoggingValue (turbine_id, 9, BladeRBMop[0]);

 SetLoggingValue (turbine_id, 10, BladeRBMop[1]);

 SetLoggingValue (turbine_id, 11, BladeRBMop[2]);

 SetLoggingValue (turbine_id, 12, IPCB_PitCom[0]);

 SetLoggingValue (turbine_id, 13, IPCB_PitCom[1]);

 SetLoggingValue (turbine_id, 14, IPCB_PitCom[2]);

 SetLoggingValue (turbine_id, 15, IPCB_BladeRBMopF[0]);

 SetLoggingValue (turbine_id, 16, IPCB_BladeRBMopF[1]);

 SetLoggingValue (turbine_id, 17, IPCB_BladeRBMopF[2]);

 }//end logging

 return GH_DISCON_SUCCESS;

 } //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_19Jun13.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_19Jun13.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

#include "transferFunctions.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 float static BlPitch[3]; // Current values of the blade pitch angles, r

 float static ElapTime; // Elapsed time since the last call to the con

 float static GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 float static LastGenSpd; // Previous generator speed

 float const GearRatio = 97.0f; // Gear ratio

 float static GenTrq; // Electrical generator torque, N-m.

 float static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 float static GK; // Current value of the gain correction factor

 float static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float static Time; // Current simulation time, sec.

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float const Pie = 3.14159265358979f; // pi to the precision of a float

 float static RotAzi; // rotor azimuth angle

 float static BladeRBM[3]; // load measurements on each blade

 // Generally to do with torque control

 float static LastTimeVS; // Last time the torque controller was called,

 float static VS_ElapTime; // Elapsed time since the last call to the torque controller

 float static TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = GetSwapValue(17); // Transitional generator speed (HSS side), cut-in speed, rad/s

 float const VS_DT = 0.01f; // Communication interval for torque controller

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 float const VS_Rgn2K = GetSwapValue(16); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 float const VS_Rgn3MP = 0.0f; // Minimum pitch angle at which the torque is in above rated (0 degree)

 float const VS_RtGnSp = GetSwapValue(18); // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 float static VS_RtGnTrq; // Rated generator torque

 float static VS_SpdErr; // generator speed error for torque control

 float static VS_IntSpdErr; // integral of speed error for torque control

 float static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 float static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 float const VS_KP1 = 4200.0f; // proportional gain for torque control in A-B region

 float const VS_KI1 = 2100.0f; // integral gain for torque control in A-B region

 float const VS_KP2 = 4200.0f; // proportional gain for torque control in C-E region

 float const VS_KI2 = 2100.0f; // integral gain for torque control in C-E region

 float static VS_ComI; // integral torque demand

 float static VS_ComP; // proportional torque demand

 float static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV_TF; // transfer function structure

 FTV_TF.size = 5; // size of transfer function (default is 3, used to marginally reduce computations)

 float FTV_alp[5] = {1.0f, -3.78865457824117f, 5.44068947154296f, -3.50923154684766f, 0.857629209879516f}; // the tf denominator values

 float FTV_bet[5] = {117.030302254623f, -221.446713569963f, -8.36150963845548f, 221.446713569963f, -108.668792616168f}; // the tf numerator values

 float static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 float static FTV_GnTqLast= 0; // last generator torque for use by torque controller

 float const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 float static LastTimePC; // Last time the pitch controller was called,

 float static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 float const PC_DT = 0.1f; // Communication interval for pitch controller

 float const PC_KI = 0.00453f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.174532925f; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 float const PC_KP = 0.0135f; // Proportional gain for pitch controller at r

 float const PC_MinPit = GetSwapValue(6); // Minimum pitch setting in pitch controller,

 float const PC_MaxPit = GetSwapValue(7); // Maximum pitch setting in pitch controller,

 float const PC_MinRat = GetSwapValue(8); // Minimum pitch rate in rad/s

 float const PC_MaxRat = GetSwapValue(9); // Maximum pitch rate in rad/s

 float const PC_RefSpd = GetSwapValue(19); // Desired (reference) HSS speed for pitch control

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float static PitComI; // Integral term of command pitch, rad.

 float static PitComP; // Proportional term of command pitch, rad.

 float static PitComT; // Total command pitch based on the sum of the

 float static PitRate[3]; // Pitch rates of each blade based on the curr

 float static PC_SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 float static PCI_PwrEr; // Current power error, W

 float static PCI_IntPwrEr; // Current integral of power error

 float const PCI_KP = 0.0000001f; // Proportional gain

 float const PCI_KI = 0.00000005f; // Integral gain

 float static PCI_Prp; // Pitch command proportional term

 float static PCI_Int; // Pitch command integral term

 float static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 float static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 float static NLP_LastSpEr; // the last generator speed error

 float static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 float static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 float static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 float const NLP_KSpEr = 25.0f; // Scale factor for the speed error

 float const NLP_KSpErDt = 10.0f; // Scale factor for the rate of change of speed error

 float const NLP_Gain = 0.15f; // Gain for pitch command

 float const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 float const NLP_FOFb[2] = {0.500000000000000f, 0.500000000000000f}; // the first order lag filter tf numerator values

 float static NLP_PitRate; // NLP pitch rate command

 float static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 float PCFA_alp[3] = {1.000000000000000f, -1.763608087091757f, 0.895709450187540f}; // the tf denominator values

 float PCFA_bet[3] = {0.947854725093770f, -1.763608087091757f, 0.947854725093770f}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 float PCFB_alp[3] = {1.000000000000000f, -1.249005329930186f, 0.753772239321372f}; // the tf denominator values

 float PCFB_bet[3] = {0.876886119660686f, -1.249005329930186f, 0.876886119660686f}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 float PCF_alp[3] = {1.000000000000000f, -0.666666666666667f, 0.111111111111111f}; // the tf denominator values

 float PCF_bet[3] = {0.111111111111111f, 0.222222222222222f, 0.111111111111111f}; // the tf numerator values

 // Tower vibration damping

 float static TVD_TowAcc; // tower acceleration fore-aft

 float static TVD_TowVel; // filtered tower fore-aft velocity

 float static TVD_PitCom; // Pitch command from tower vibration damping section

 float static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 float const TVD_KI = 0.0172f; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 float TVD_alp[3] = {1.0f, -1.65296803652968f, 0.683075832447197f}; // the tf denominator values

 float TVD_bet[3] = {2.38450103634423f, -4.38377668389767f, 2.02938344347096f}; // the tf numerator values

 float static TVD_gain; //Gain correction factor

 TF static TVD_FOF;

 TVD_FOF.size = 2;

 float TVD_FOFalp[2] = {1.0f, -0.818181818181818f}; // the first order lag filter tf denominator values

 float TVD_FOFbet[2] = {0.0909090909090909f, 0.0909090909090909f}; // the first order lag filter tf numerator values

 float static TVD_Pf; // low pass filtered generator power

 // Individual pitch control

 float const IPC_KP = 0.0f; // proportional gain

 float const IPC_KI = 0.00000001f; // integral gain

 float const IPC_PitMax = 8.0f/R2D; // max angle due to IPC control

 float static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 float static IPC_loadsD; // load measurements in D-axis

 float static IPC_loadsQ; // load measurements in Q-axis

 float static IPC_loadsDF; // Filtered yaw moment

 float static IPC_loadsQF; // Filtered tilt moment

 float static IPC_pitD; // D-axis pitch demand

 float static IPC_pitQ; // Q-axis pitch demand

 float static IPC_pit[3]; // Individual pitch demands

 float static IPC_YawRef = 0.0f; // Desired yaw moment

 float static IPC_TltRef = 0.0f; // Desired tilt moment

 float static IPC_YawEr; // Yaw (D-axis) moment error

 float static IPC_TltEr; // Tilt (Q-axis) moment error

 float static IPC_IntYawEr; // Integral of yaw moment error

 float static IPC_IntTltEr; // Integral of tilt moment error

 float static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 float static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 float IPCFDA_alp[3] = {1.000000000000000f, -1.761677196131134f, 0.775876635842114f}; // the tf denominator values

 float IPCFDA_bet[3] = {0.887938317921057f, -1.761677196131134f, 0.887938317921057f}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 float IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 float IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 float const IPC2_PitMax = 2.5f/R2D; // max angle due to IPC2 control

 float const IPC2_KP = 0.0f; // proportional gain

 float const IPC2_KI = 0.000000002f; // integral gain

 float static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static IPC2_loadsD; // load measurements in D-axis

 float static IPC2_loadsQ; // load measurements in Q-axis

 float static IPC2_loadsDF; // Filtered yaw moment

 float static IPC2_loadsQF; // Filtered tilt moment

 float static IPC2_pitD; // D-axis pitch demand

 float static IPC2_pitQ; // Q-axis pitch demand

 float static IPC2_pit[3]; // Individual pitch demands

 float static IPC2_YawRef = 0.0f; // Desired yaw moment

 float static IPC2_TltRef = 0.0f; // Desired tilt moment

 float static IPC2_YawEr; // Yaw (D-axis) moment error

 float static IPC2_TltEr; // Tilt (Q-axis) moment error

 float static IPC2_IntYawEr; // Integral of yaw moment error

 float static IPC2_IntTltEr; // Integral of tilt moment error

 float static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 float static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 TF static IPC2FDA_TF;

 float IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 float IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 TF static IPC2FQA_TF;

 float IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 float IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // IPC utilising angle of attack measurements

 float static IPCL_Ref; // Reference angle of attack

 float static IPCL_RefF; // Filtered reference (regressive filter)

 float const IPCL_Tau = 1.0; // Regressive filter time constant

 float static IPCL_IntEr[3]; // Integral error for each of the flaps

 float static IPCL_PitCom[3]; // Pitch command for each of the flaps

 float const IPCL_KD = 0.0; // Differential gain

 float const IPCL_KP = -1.0; // Proportional gain

 float const IPCL_KI = 0.0; // Integral gain

 float static IPCL_DifEr[3]; // Differential error

 float static IPCL_Er[3]; // Current error

 float const IPCL_PitMax = 2.5f/R2D; // max angle due to IPC2 control

 // Smart Rotor Control (dq)

 float static LastTimeSRC; // Time of last call to SRC

 float static SRC_ElapTime; // Elapsed time since last call to SRC controller

 float static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 float const SRC_PitMax = 40.0f/R2D; // Max pitch in degrees converted to radians

 float const SRC_PitMin = -40.0f/R2D; // Max pitch in degrees converted to radians

 float const SRC_PitMaxRat = 40.0f/R2D; // Max pitch rate degress/s converted to rad/s

 float const SRC_DT = 0.1f; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 float static SRC_load[3]; // load measurements on each blade

 float const SRC_KP = 0.0f; // proportional gain

 float const SRC_KI = 0.0000001f;// integral gain

 float static SRC_Pit[3]; // angle of flaps

 float static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static SRC_loadsD; // load measurements in D-axis

 float static SRC_loadsQ; // load measurements in Q-axis

 float static SRC_loadsDF; // Filtered yaw moment

 float static SRC_loadsQF; // Filtered tilt moment

 float static SRC_PitComD; // D-axis pitch demand

 float static SRC_PitComQ; // Q-axis pitch demand

 float static SRC_PitCom[3]; // Individual pitch demands

 float static SRC_PitRate[3]; // Demanded pitch rate for each blade

 float static SRC_YawRef = 0.0f; // Desired yaw moment

 float static SRC_TltRef = 0.0f; // Desired tilt moment

 float static SRC_YawEr; // Yaw (D-axis) moment error

 float static SRC_TltEr; // Tilt (Q-axis) moment error

 float static SRC_IntYawEr; // Integral of yaw moment error

 float static SRC_IntTltEr; // Integral of tilt moment error

 float static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 float static SRC_gain; // gain to phase out SRC below rated

 float static SRC_dqPitCom[3];

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 float SRCFDA_alp[3] = {1.000000000000000f, -1.361157014197597f, 0.463187104324829f}; // the tf denominator values

 float SRCFDA_bet[3] = {0.731593552162415f, -1.361157014197597f, 0.731593552162415f}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 SRCFQA_TF.size = 3;

 float SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 float SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control (2P dq)

 float const SRC2_PitMax = 12.5f/R2D; // Max pitch in degrees converted to radians

 float const SRC2_PitMin = -12.5f/R2D; // Max pitch in degrees converted to radians

 float const SRC2_PitMaxRat = 12.5f/R2D; // Max pitch rate degress/s converted to rad/s

 float const SRC2_KP = 0.0f; // proportional gain

 float const SRC2_KI = 0.0000002f;// integral gain

 float static SRC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static SRC2_loadsD; // load measurements in D-axis

 float static SRC2_loadsQ; // load measurements in Q-axis

 float static SRC2_loadsDF; // Filtered yaw moment

 float static SRC2_loadsQF; // Filtered tilt moment

 float static SRC2_PitComD; // D-axis pitch demand

 float static SRC2_PitComQ; // Q-axis pitch demand

 float static SRC2_PitCom[3]; // Individual pitch demands

 float static SRC2_PitRate[3]; // Demanded pitch rate for each blade

 float static SRC2_YawRef = 0.0f; // Desired yaw moment

 float static SRC2_TltRef = 0.0f; // Desired tilt moment

 float static SRC2_YawEr; // Yaw (D-axis) moment error

 float static SRC2_TltEr; // Tilt (Q-axis) moment error

 float static SRC2_IntYawEr; // Integral of yaw moment error

 float static SRC2_IntTltEr; // Integral of tilt moment error

 float static SRC2_GK[3]; // Gain correction factor for each blade based on current pitch

 float static SRC2_gain; // gain to phase out SRC2 below rated

 float static SRC2_dqPitCom[3];

 // Notch filter for SRC2 yaw error D

 TF static SRC2FDA_TF;

 float SRC2FDA_alp[3] = {1.000000000000000f, -1.361157014197597f, 0.463187104324829f}; // the tf denominator values

 float SRC2FDA_bet[3] = {0.731593552162415f, -1.361157014197597f, 0.731593552162415f}; // the tf numerator values

 // Notch filter for SRC2 tilt error Q

 TF static SRC2FQA_TF;

 float SRC2FQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 float SRC2FQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 float static SRCD_Er[3]; // Current error for each blade

 float static SRCD_IntEr[3]; // Integral error for each blade

 float const SRCD_KI = 0.00000000f; // Integral gain

 float const SRCD_KP = 0.00000005f; // Proportional gain

 float const SRCD_KD = 0.00000000f; // Differential gain

 float static SRCD_Ref; // Reference (collective) angle for flaps

 float static SRCD_RefF; // Reference (collective) angle for flaps filtered

 float static SRCD_RBMF[3]; // Filtered RBM

 float const SRCD_Tau = 5.0f; // Autoregressive filter

 float static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 float static SRCD_PitCom[3]; // Commanded angle from SRCD

 float static SRCD_DifEr[3]; // Differential error if Kd in use

 // low-pass filter for blade RBM signals

 TF static SRCDFA_TF[3];

 float SRCDFA_alp[3] = {1.000000000000000, -0.666666666666667, 0.0}; // the tf denominator values

 float SRCDFA_bet[3] = {0.166666666666667, 0.166666666666667, 0.0}; // the tf numerator values

 // notch filter for blade RBM signals

 TF static SRCDFB_TF[3];

 float SRCDFB_alp[3] = {1.000000000000000, -0.977076510866329, 0.238669627021680}; // the tf denominator values

 float SRCDFB_bet[3] = {0.619334813510840, -0.977076510866329, 0.619334813510840}; // the tf numerator values

 // LIDAR beams detection unit, blade mounted

 int LIDAR_beams; // Loops through LIDAR beams

 int LIDAR_focals; // Loops through focal points of LIDAR beams

 int const LIDAR_NL = GetSwapValue(154); // Number of effectively independent Lidar beams

 int const LIDAR_NF = GetSwapValue(155); // Number of focal points

 int const LIDAR_L = GetSwapValue(156); // Record number for start of Lidar data

 float const LIDAR_XRise[6] = {0.0000, 90.0/R2D, 0.0000, 90.0/R2D, 0.0000, 90.0/R2D}; // Angular separtaion between x-axis and beam

 float const LIDAR_XRot[6] = {0.0000, 90.0/R2D, 0.0000, 90.0/R2D, 0.0000, 90.0/R2D}; // Azimuth angle about x-axis

 float const LIDAR_Focus[6] = {0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001}; // Focal point in metres of LIDAR

 float static LIDAR_WS[6]; // Velocity percieved by each LIDAR focal point

 float const LIDAR_DT = 0.1; // Communication interval with LIDAR

 float static LastTimeLIDAR; // Last call to LIDAR

 float static LIDAR_AoA[3]; // Angle of attack calculated from LIDAR

 // Smart Rotor Control utilising angle of attack measurements

 float static SRCL_Ref; // Reference angle of attack

 float static SRCL_RefF; // Filtered reference (regressive filter)

 float const SRCL_Tau = 1.0; // Regressive filter time constant

 float static SRCL_IntEr[3]; // Integral error for each of the flaps

 float static SRCL_PitCom[3]; // Pitch command for each of the flaps

 float const SRCL_KD = 0.0; // Differential gain

 float const SRCL_KP = 3.0; // Proportional gain

 float const SRCL_KI = 0.0; // Integral gain

 float static SRCL_DifEr[3]; // Differential error

 float static SRCL_Er[3]; // Current error

 // General debugging & messaging values

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // flag for external Bladed data logging

 bool const DataLog_on = false;

 // flag for torque controller

 bool const VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 bool const FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool const PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 bool const PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 bool const PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 bool const PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 bool const IPC_on = false; // Flag to indicate whether IPC is on

 bool const IPCFDA_on = false; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const IPCFQA_on = false; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool const IPC2_on = false; // Flag to indicate whether IPC2 is on

 bool const IPC2FDA_on = false; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool const IPC2FQA_on = false; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 //flag for tower vibration damping using pitch control

 bool const TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool const NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool const SRC_on = true; // Flag to indicate whether smart rotor control is active

 bool const SRCFDA_on = false; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const SRCFQA_on = false; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool const SRC2_on = true; // Flag to indicate whether smart rotor control is active

 bool const SRC2FDA_on = false; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const SRC2FQA_on = false; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool const SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 bool const SRCDFA_on = false; // Flag to indicate whether distributed smart rotor control is active

 bool const SRCDFB_on = false; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool const LIDAR_on = false; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool const SRCL_on = false;

 //flag for indivudal pitch control utilising LIDAR

 bool const IPCL_on = false;

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 bool const VS_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 TVD_TowAcc = GetSwapValue(53) ;

 BladeRBM[0] = GetSwapValue(30) ;

 BladeRBM[1] = GetSwapValue(31) ;

 BladeRBM[2] = GetSwapValue(32) ;

 RotAzi = GetSwapValue(60) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCentral and distributed AFC active\r\n");

 }

 if (SRCL_on == true && LIDAR_on == false) {

 *aviFail = -1;

 strcat(strMsg,"\r\nSRCL requires LIDAR_on\r\n");

 }

 if (IPCL_on == true && LIDAR_on == false) {

 *aviFail = -1;

 strcat(strMsg,"\r\nIPCL requires LIDAR_on\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_KP1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KP1 must be greater than 0.\r\n");

 }

 if (VS_KI1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KI1 must be greater than 0.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (IPC_on == true)

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 if (IPC2_on == true)

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 if (IPCL_on == true)

 strcat(strMsg,"IPCL ");

 if (TVD_on == true)

 strcat(strMsg,"TVD ");

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 strcat(strMsg,"SRC ");

 if (SRC2_on == true)

 strcat(strMsg,"SRC2 ");

 if (SRCD_on == true)

 strcat(strMsg,"SRCD ");

 if (SRCDFA_on == true)

 strcat(strMsg,"SRCDF ");

 if (SRCDFB_on == true)

 strcat(strMsg,"SRCDF2 ");

 if (LIDAR_on == true)

 strcat(strMsg,"LIDAR ");

 if (SRCL_on == true)

 strcat(strMsg,"SRCL ");

 strcat(strMsg,"\r\n");

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT/(GK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBM[0] + BladeRBM[1] + BladeRBM[2]) / 3.0f;

 // Set LIDAR beams angles and focal points

 for (LIDAR_beams=0;LIDAR_beams<LIDAR_NL;LIDAR_beams++)

 {

 SetSwapValue(LIDAR_L+LIDAR_beams , LIDAR_XRise[LIDAR_beams]); // angular separation from the x axis

 SetSwapValue(LIDAR_L+LIDAR_NL+LIDAR_beams , LIDAR_XRot[LIDAR_beams]); // azimuthal direction around the x axis

 //strcat(strMsg," beams");

 for (LIDAR_focals=0;LIDAR_focals<LIDAR_NF;LIDAR_focals++)

 {

 //strcat(strMsg," focus");

 SetSwapValue(LIDAR_L+2*LIDAR_NL+LIDAR_beams+LIDAR_focals , LIDAR_Focus[LIDAR_focals]); // Distance of focal point

 }

 }

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if (((iStatus >= 0) || (iStatus == -1)) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 // Smart Rotor control signals

 SetSwapValue(38,SRC_PitCom[0]);

 SetSwapValue(39,SRC_PitCom[1]);

 SetSwapValue(40,SRC_PitCom[2]);

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: LIDAR wind speed module==========

 if (LIDAR_on)

 {

 if ((Time*OnePlusEps - LastTimeLIDAR) >= LIDAR_DT)

 {

 //Get LIDAR wind speeds

 for (LIDAR_beams=0;LIDAR_beams<LIDAR_NL;LIDAR_beams++){

 for (LIDAR_focals=0;LIDAR_focals<LIDAR_NF;LIDAR_focals++){

 LIDAR_WS[LIDAR_beams+LIDAR_focals] = GetSwapValue(LIDAR_L+2*LIDAR_NL+LIDAR_NL*LIDAR_NF+LIDAR_beams*LIDAR_NF+LIDAR_focals) ;

 }

 }

 //Determine Angle of Attack from wind speeds, ignoring twist of blade

 LIDAR_AoA[0] = atan(LIDAR_WS[0]/LIDAR_WS[1]);

 LIDAR_AoA[1] = atan(LIDAR_WS[2]/LIDAR_WS[3]);

 LIDAR_AoA[2] = atan(LIDAR_WS[4]/LIDAR_WS[5]);

 LastTimeLIDAR = Time;

 }

 }

 //======END: LIDAR wind speed module==========

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_TF = TFinit(FTV_TF,FTV_alp,FTV_bet,GenSpeed);

 }

 FTV_TF = TFupdate(FTV_TF,GenSpeed);

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_TF.outputs[0];

 // saturate to amplitude limit

 FTV_GnTqLast = MIN(MAX(FTV_GenTrqF,-FTV_GnTqMax),FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > 0.0f)

 {

 // We are in region 3 - power is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,LastGenTrq),VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 if (VSConstP_on == true){

 // and saturate to rated power (with no drop in power allowed):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq*LastGenSpd/GenSpeed),VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq),VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MAX(MIN(VS_ComT,VS_RtGnTrq),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,0.0f),VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MIN(MAX(VS_ComT,0),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================END: PI TORQUE CONTROL VS=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut) {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //=============BEGIN: PITCH CONTROL

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 if (iStatus == 0)

 {

 PCI_IntPwrEr = 0;

 }

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + PCI_KI*PCI_PwrEr*PC_ElapTime + PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = MIN(MAX(PCI_IntPwrEr, (((PC_MinRat*PC_ElapTime) +PitComT) /GK)),(((PC_MaxRat*PC_ElapTime) +PitComT)/GK));

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = GK*PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = MIN(MAX(IntSpdErr, (((PC_MinRat*PC_ElapTime) +PitComT) /GK)),(((PC_MaxRat*PC_ElapTime) +PitComT)/GK));

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = GK*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == 0)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,0.0);

 }

 TVD_IntTA = TVD_IntTA + TVD_TowAcc*PC_ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_TF = TFupdate(TVD_TF,TVD_IntTA);

 TVD_TowVel = TVD_TF.outputs[0]; // tower velocity

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_FOF = TFinit(TVD_FOF,TVD_FOFalp,TVD_FOFbet,GenSpeed*GenTrq);

 }

 TVD_FOF = TFupdate(TVD_FOF,GenSpeed*GenTrq);

 TVD_Pf = TVD_FOF.outputs[0];

 // determine gain for tower vibration signal

 TVD_gain = ((TVD_Pf/VS_RtPwr) - 0.8) * 5;

 TVD_gain = MIN(MAX(TVD_gain,0),1); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == 0)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC_gain = MIN(MAX(IPC_gain,0),1); // saturate between 0 and 1

 IPC_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*sin(RotAzi+4.0f*Pie/3.0f));

 IPC_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*cos(RotAzi+4.0f*Pie/3.0f));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFDA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = MIN(MAX(IPC_IntYawEr, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_IntTltEr = MIN(MAX(IPC_IntTltEr, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_pitD = IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = MIN(MAX(IPC_pitD, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_pitQ = MIN(MAX(IPC_pitQ, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 // individual pitch command for each blade

 IPC_pit[0] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+2.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*Pie/3.0f+IPC_offset));

 IPC_pit[2] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+4.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*Pie/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC2_gain = MIN(MAX(IPC2_gain,0),1); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*sin(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*cos(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_TF = TFinit(IPC2FDA_TF,IPC2FDA_alp,IPC2FDA_bet,IPC2_loadsDF);

 }

 IPC2FDA_TF = TFupdate(IPC2FDA_TF,IPC2_loadsDF);

 IPC2_loadsDF = IPC2FDA_TF.outputs[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FQA_TF = TFinit(IPC2FQA_TF,IPC2FQA_alp,IPC2FQA_bet,IPC2_loadsQF);

 }

 IPC2FQA_TF = TFupdate(IPC2FQA_TF,IPC2_loadsQF);

 IPC2_loadsQF = IPC2FQA_TF.outputs[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = MIN(MAX(IPC2_IntYawEr, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_IntTltEr = MIN(MAX(IPC2_IntTltEr, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_pitD = IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = MIN(MAX(IPC2_pitD, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_pitQ = MIN(MAX(IPC2_pitQ, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 // individual pitch command for each blade

 IPC2_pit[0] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)));

 IPC2_pit[2] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //============BEGIN: IPCL individual pitch control using LIDAR==============

 if (IPCL_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC_gain = MIN(MAX(IPC_gain,0),1); // saturate between 0 and 1

 IPCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //IPCL_RefF = IPCL_Ref;

 IPCL_RefF = ((IPCL_Tau/SRC_DT)*IPCL_RefF + IPCL_Ref)/((IPCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // AoA error

 IPCL_DifEr[K] = IPCL_Er[K];

 IPCL_Er[K] = IPCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 IPCL_DifEr[K] = (IPCL_Er[K]-IPCL_DifEr[K])/SRC_ElapTime; // Differential error

 IPCL_IntEr[K] = IPCL_IntEr[K] + IPCL_KI*IPCL_Er[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCL_IntEr[K] = MIN(MAX(IPCL_IntEr[K], IPCL_PitMax*IPC_gain),IPC_PitMax*IPC_gain);

 // PID controller demand

 IPCL_PitCom[K] = IPCL_KD*IPCL_DifEr[K] + IPCL_KP*IPCL_Er[K] + IPCL_IntEr[K];

 // individual pitch command for each blade

 IPCL_PitCom[K] = IPC_gain * IPCL_PitCom[K];

 }

 }

 //==============END: IPCL Indivudal pitch Control utilising Lidar==========

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT + IPC_pit[K] + IPC2_pit[K] + IPCL_PitCom[K]- PitCom[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], PC_MinRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = PitCom[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = MIN(MAX(PitCom[K], PC_MinPit), PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 SRC_ElapTime = Time - LastTimeSRC;

 SRC_Pit[0] = GetSwapValue(38);

 SRC_Pit[1] = GetSwapValue(39);

 SRC_Pit[2] = GetSwapValue(40);

 // =========BEGIN: SRC DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 SRC_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*sin(RotAzi+4.0f*Pie/3.0f));

 SRC_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*cos(RotAzi+4.0f*Pie/3.0f));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = MIN(MAX(SRC_IntYawEr, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_IntTltEr = MIN(MAX(SRC_IntTltEr, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_PitComD = SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = MIN(MAX(SRC_PitComD, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_PitComQ = MIN(MAX(SRC_PitComQ, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+2.0f*Pie/3.0f+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0f*Pie/3.0f+SRC_offset));

 SRC_dqPitCom[2] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+4.0f*Pie/3.0f+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0f*Pie/3.0f+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 // =========BEGIN: SRC2 DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC2 control so that only fully active above rated, ramping up from 0.8 rated power

 SRC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 SRC2_gain = MIN(MAX(SRC2_gain,0),1); // saturate between 0 and 1

 SRC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC2_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(2.0f*RotAzi) + BladeRBM[1]*sin(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*sin(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 SRC2_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(2.0f*RotAzi) + BladeRBM[1]*cos(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*cos(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 //===========BEGIN: SRC2 filters=============

 SRC2_loadsDF = SRC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRC2FDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRC2FDA_TF = TFinit(SRC2FDA_TF,SRC2FDA_alp,SRC2FDA_bet,SRC2_loadsDF);

 }

 SRC2FDA_TF = TFupdate(SRC2FDA_TF,SRC2_loadsDF);

 SRC2_loadsDF = SRC2FDA_TF.outputs[0];

 }

 SRC2_loadsQF = SRC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRC2FQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRC2FQA_TF = TFinit(SRC2FQA_TF,SRC2FQA_alp,SRC2FQA_bet,SRC2_loadsQF);

 }

 SRC2FQA_TF = TFupdate(SRC2FQA_TF,SRC2_loadsQF);

 SRC2_loadsQF = SRC2FQA_TF.outputs[0];

 }

 SRC2_YawEr = SRC2_YawRef - SRC2_loadsDF; // Current yaw error

 SRC2_TltEr = SRC2_TltRef - SRC2_loadsQF; // Current tilt error

 //===========END: SRC2 filters=============

 SRC2_IntYawEr = SRC2_IntYawEr + SRC2_KI*SRC2_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC2_IntTltEr = SRC2_IntTltEr + SRC2_KI*SRC2_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC2_IntYawEr = MIN(MAX(SRC2_IntYawEr, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 SRC2_IntTltEr = MIN(MAX(SRC2_IntTltEr, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 SRC2_PitComD = SRC2_KP*SRC2_YawEr + SRC2_IntYawEr; // PI controller D-axis (yaw) demand

 SRC2_PitComQ = SRC2_KP*SRC2_TltEr + SRC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC2 to degree max (gain scheduled)

 SRC2_PitComD = MIN(MAX(SRC2_PitComD, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 SRC2_PitComQ = MIN(MAX(SRC2_PitComQ, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 // individual pitch command for each blade

 SRC2_dqPitCom[0] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+SRC2_offset)) + SRC2_PitComD*sin(2.0*(RotAzi+SRC2_offset)));

 SRC2_dqPitCom[1] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+2.0f*Pie/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+2.0f*Pie/3.0f+SRC2_offset)));

 SRC2_dqPitCom[2] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+4.0f*Pie/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+4.0f*Pie/3.0f+SRC2_offset)));

 } //ENDIF for SRC2

 //===========END: SRC2 DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active when 5 degrees pitch ramping from zero pitch

 SRC_gain = (1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 //===========BEGIN: SRCD filters=============

 for (K = 0;K<NumBl;K++){

 SRCD_RBMF[K] = BladeRBM[K];

 // Low pass filter

 if (SRCDFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDFA_TF[K] = TFinit(SRCDFA_TF[K],SRCDFA_alp,SRCDFA_bet,SRCD_RBMF[K]);

 }

 SRCDFA_TF[K] = TFupdate(SRCDFA_TF[K],SRCD_RBMF[K]);

 SRCD_RBMF[K] = SRCDFA_TF[K].outputs[0];

 }

 if (SRCDFB_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDFA_TF[K] = TFinit(SRCDFB_TF[K],SRCDFB_alp,SRCDFB_bet,SRCD_RBMF[K]);

 }

 SRCDFB_TF[K] = TFupdate(SRCDFB_TF[K],SRCD_RBMF[K]);

 SRCD_RBMF[K] = SRCDFB_TF[K].outputs[0];

 }

 }

 //---------------END: SRCD filters---------------]

 SRCD_Ref = (SRCD_RBMF[0] + SRCD_RBMF[1] + SRCD_RBMF[2]) / 3.0f;

 //SRCD_RefF = SRCD_Ref;

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCD_DifEr[K] = SRCD_Er[K];

 SRCD_Er[K] = SRCD_RefF - SRCD_RBMF[K]; // Current (proportional) error

 SRCD_DifEr[K] = (SRCD_Er[K]-SRCD_DifEr[K])/SRC_ElapTime; // Differential error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRCD_KI*SRCD_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = MIN(MAX(SRCD_IntEr[K], SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // PID controller demand

 SRCD_PitCom[K] = SRCD_KD*SRCD_DifEr[K] + SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRC_gain * SRCD_PitCom[K];

 } //end for loop for SRCD

 } //ENDIF for SRCD

 //===========END: SRCD Smart rotor control distributed==============

 //============BEGIN: SRCL Smart rotor control using LIDAR==============

 if (SRCL_on)

 {

 SRC_gain = 1.0;//(1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 SRCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //SRCL_RefF = SRCL_Ref;

 SRCL_RefF = ((SRCL_Tau/SRC_DT)*SRCL_RefF + SRCL_Ref)/((SRCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCL_DifEr[K] = SRCL_Er[K];

 SRCL_Er[K] = SRCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 SRCL_DifEr[K] = (SRCL_Er[K]-SRCL_DifEr[K])/SRC_ElapTime; // Differential error

 SRCL_IntEr[K] = SRCL_IntEr[K] + SRCL_KI*SRCL_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCL_IntEr[K] = MIN(MAX(SRCL_IntEr[K], SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // PID controller demand

 SRCL_PitCom[K] = SRCL_KD*SRCL_DifEr[K] + SRCL_KP*SRCL_Er[K] + SRCL_IntEr[K];

 // individual pitch command for each blade

 SRCL_PitCom[K] = SRC_gain * SRCL_PitCom[K];

 }

 }

 //==============END: SRCL Smart Rotor Control utilising Lidar==========

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 SRC_PitRate[K] = (SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = MIN(MAX(SRC_PitRate[K], -SRC_PitMaxRat), SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = MIN(MAX(SRC_PitCom[K], SRC_PitMin), SRC_PitMax); // Saturate to pitch limits

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == -1))

 { // Last call to controller

 strcat(strMsg,"\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 if (DataLog_on)

 {

 SetSwapValue(65,13); // Number of variables returned for logging

 strcpy(avcOutname,"GenSpeed:A/T;GenSpeedF:A/T;FTV_TF.alpha0:;FTV_TF.alpha1:;FTV_TF.alpha2:;FTV_TF.alpha3:;FTV_TF.alpha4:;SRCD_RBMF:FL;SRCD_PitCom:A;SRC_DQpit:A;SRC_Pit:A;SRC_gain:;SRC_PitRate:A/T;");

 SetSwapValue((NINT(GetSwapValue(63))+0),GenSpeed);

 SetSwapValue((NINT(GetSwapValue(63))+1),GenSpeedF);

 SetSwapValue((NINT(GetSwapValue(63))+2),FTV_TF.alpha[0]);

 SetSwapValue((NINT(GetSwapValue(63))+3),FTV_TF.beta[0]);

 SetSwapValue((NINT(GetSwapValue(63))+4),FTV_TF.inputs[0]);

 SetSwapValue((NINT(GetSwapValue(63))+5),FTV_TF.outputs[0]);

 SetSwapValue((NINT(GetSwapValue(63))+6),FTV_TF.beta[4]);

 SetSwapValue((NINT(GetSwapValue(63))+7),FTV_GnTqLast);

 SetSwapValue((NINT(GetSwapValue(63))+8),FTV_GenTrqF);

 SetSwapValue((NINT(GetSwapValue(63))+9),SRC_PitCom[0]);

 SetSwapValue((NINT(GetSwapValue(63))+10),SRC_Pit[0]);

 SetSwapValue((NINT(GetSwapValue(63))+11),SRC_gain);

 SetSwapValue((NINT(GetSwapValue(63))+12),SRC_PitRate[0]);

 }

 else

 {

 SetSwapValue(65,0);

 }

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_19Nov12.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_19Nov12.cc

/*

This Bladed controller is modelled on Bossanyi's control strategies

It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 float static Alpha; // Current coefficient in the recursive, singl

 float static BlPitch[3]; // Current values of the blade pitch angles, r

 float static ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float static GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenTrq; // Electrical generator torque, N-m.

 float static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 float static GK; // Current value of the gain correction factor

 float static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float static LastTimePC; // Last time the pitch controller was called,

 float static LastTimeVS; // Last time the torque controller was called,

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float static Time; // Current simulation time, sec.

 // Generally to do with pitch control

 float const PC_DT = 0.1f; // Communication interval for pitch controller

 float const PC_KI = 0.00453f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.174532925f; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 float const PC_KP = 0.0135f; // Proportional gain for pitch controller at r

 float const PC_MaxPit = 1.570796f; // Maximum pitch setting in pitch controller,

 float const PC_MaxRat = 0.1396263f; // Maximum pitch rate (in absolute value) in

 float const PC_MinPit = 0.0f; // Minimum pitch setting in pitch controller,

 float const PC_RefSpd = 121.6805; //122.9096f; // Desired (reference) HSS speed for pitch control

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float static PitComI; // Integral term of command pitch, rad.

 float static PitComP; // Proportional term of command pitch, rad.

 float static PitComT; // Total command pitch based on the sum of the

 float static PitRate[3]; // Pitch rates of each blade based on the curr

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float static SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 float static PCI_PwrEr; // Current power error, W

 float static PCI_IntPwrEr; // Current integral of power error

 float const PCI_KP = 0.0000001f; // Proportional gain

 float const PCI_KI = 0.00000005f; // Integral gain

 float static PCI_Prp; // Pitch command proportional term

 float static PCI_Int; // Pitch command integral term

 float static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 float static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 float static NLP_LastSpEr; // the last generator speed error

 float static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 float static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 float static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 float const NLP_KSpEr = 25; // Scale factor for the speed error

 float const NLP_KSpErDt = 10; // Scale factor for the rate of change of speed error

 float const NLP_Gain = 0.15; // Gain for pitch command

 float const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 float const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 float static NLP_PitRate; // NLP pitch rate command

 float static NLP_PitCom; // NLP pitch command

 // Generally to do with torque control

 float static TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = 70.16224f; // Transitional generator speed (HSS side), cut-in speed, rad/s

 float const VS_DT = 0.01f; // Communication interval for torque controller

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 float const VS_Rgn2K = 2.332287f; // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 float const VS_Rgn3MP = 0.0f; // Minimum pitch angle at which the torque is in above rated (0 degree)

 float const VS_RtGnSp = 121.6805f; // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 float static VS_RtGnTrq; // Rated generator torque

 float static VS_SpdErr; // generator speed error for torque control

 float static VS_IntSpdErr; // integral of speed error for torque control

 float static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 float static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 float const VS_KP1 = 4200.0f; // proportional gain for torque control in A-B region

 float const VS_KI1 = 2100.0f; // integral gain for torque control in A-B region

 float const VS_KP2 = 4200.0f; // proportional gain for torque control in C-E region

 float const VS_KI2 = 2100.0f; // integral gain for torque control in C-E region

 float static VS_ComI; // integral torque demand

 float static VS_ComP; // proportional torque demand

 float static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 float static FTV_GnSp[5]; // the previous 5 values of measured generator speed

 float static FTV_GnTqF[5]; // the previous 5 values of the filtered generator torque

 float const FTV_alph[5] = {1, -3.78865457824117, 5.44068947154296, -3.50923154684766, 0.857629209879516}; // the tf denominator values

 float const FTV_beta[5] = {117.030302254623, -221.446713569963, -8.36150963845548, 221.446713569963, -108.668792616168}; // the tf numerator values

 float static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 float static FTV_GnTqLast= 0; // last generator torque for use by torque controller

 float const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Notch filter A for pitch control

 float static PCFA_PCT[3]; // the previous 3 values of measured pitch angle

 float static PCFA_PCTF[3]; // the previous 3 values of the filtered pitch angle

 float const PCFA_alp[3] = {1, -1.76360808709176, 0.895709450187540}; // the tf denominator values

 float const PCFA_bet[3] = {0.947854725093770, -1.76360808709176, 0.947854725093770}; // the tf numerator values

 // Notch filter B for pitch control

 float static PCFB_PCT[3]; // the previous 3 values of measured pitch angle

 float static PCFB_PCTF[3]; // the previous 3 values of the filtered pitch angle

 float const PCFB_alp[3] = {1, -1.24900532993019, 0.753772239321372}; // the tf denominator values

 float const PCFB_bet[3] = {0.876886119660686, -1.24900532993019, 0.876886119660686}; // the tf numerator values

 // Low-pass filter for pitch control

 float static PCF_PCT[3]; // the previous 3 values of measured pitch angle

 float static PCF_PCTF[3]; // the previous 3 values of the filtered pitch angle

 float const PCF_alp[3] = {1, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 float const PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 float static TVD_TowAcc; // tower acceleration fore-aft

 float static TVD_TowVel; // filtered tower fore-aft velocity

 float static TVD_PitCom; // Pitch command from tower vibration damping section

 float static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 float const TVD_KI = 0.0172; // integral gain for tower acceleration (proportional gain for velocity)

 float static TVD_TV[3]; // the previous 3 values of tower velocity

 float static TVD_TVf[3]; // the previous 3 values of the filtered tower velocity

 float const TVD_alp[3] = {1, -1.65296803652968, 0.683075832447197}; // the tf denominator values

 float const TVD_bet[3] = {2.38450103634423, -4.38377668389767, 2.02938344347096}; // the tf numerator values

 float static TVD_gain; //Gain correction factor

 float const TVD_FOFa[2] = {1, -0.818181818181818}; // the first order lag filter tf denominator values

 float const TVD_FOFb[2] = {0.0909090909090909, 0.0909090909090909}; // the first order lag filter tf numerator values

 float static TVD_P[2]; // the previous 2 values of generator power

 float static TVD_Pf[2]; // the previous 2 values of the filtered generator power

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 //flag for torsional vibration filter in torque control

 bool const FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool const PC_interVS = true; // Flag to indicate whether the pitch interaction with the torque control is on

 bool const PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 bool const PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 bool const PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flag for tower vibration damping using pitch control

 bool const TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool const NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 bool const VS_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 TVD_TowAcc = GetSwapValue(53) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // Check validity of input parameters:

 if (CornerFreq <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_KP1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KP1 must be greater than 0.\r\n");

 }

 if (VS_KI1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KI1 must be greater than 0.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPitch control debugging active, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debugging active, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitCom[0]/(GK*PC_KI); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenTrq = 0;

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if (((iStatus >= 0) || (iStatus == -1)) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 //===

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitCom[0] > VS_Rgn3MP)

 {

 // We are in region 3 - power is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to rated power (no drop in torque):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq),VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else if (GenSpeed < VS_GnSpSw)

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,0),VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = MIN(MAX(VS_ComT,0),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = MAX(MIN(VS_ComT,VS_RtGnTrq),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================+++++++++++++++++++++++++++++=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_GnSp[0] = GenSpeed; // the previous 5 values of measured generator torque

 FTV_GnSp[1] = GenSpeed;

 FTV_GnSp[2] = GenSpeed;

 FTV_GnSp[3] = GenSpeed;

 FTV_GnSp[4] = GenSpeed;

 FTV_GnTqF[0] = GenSpeed; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[1] = GenSpeed;

 FTV_GnTqF[2] = GenSpeed;

 FTV_GnTqF[3] = GenSpeed;

 FTV_GnTqF[4] = GenSpeed;

 }

 FTV_GnSp[4] = FTV_GnSp[3]; // the previous 5 values of measured generator speed

 FTV_GnSp[3] = FTV_GnSp[2];

 FTV_GnSp[2] = FTV_GnSp[1];

 FTV_GnSp[1] = FTV_GnSp[0];

 FTV_GnSp[0] = GenSpeed;

 FTV_GnTqF[4] = FTV_GnTqF[3]; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[3] = FTV_GnTqF[2];

 FTV_GnTqF[2] = FTV_GnTqF[1];

 FTV_GnTqF[1] = FTV_GnTqF[0];

 FTV_GnTqF[0] = -FTV_GnTqF[1]*FTV_alph[1] -FTV_GnTqF[2]*FTV_alph[2] -FTV_GnTqF[3]*FTV_alph[3] -FTV_GnTqF[4]*FTV_alph[4] +FTV_GnSp[0]*FTV_beta[0] +FTV_GnSp[1]*FTV_beta[1] +FTV_GnSp[2]*FTV_beta[2] +FTV_GnSp[3]*FTV_beta[3] +FTV_GnSp[4]*FTV_beta[4];

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_GnTqF[0];

 // saturate to amplitude limit

 FTV_GnTqLast = MIN(MAX(FTV_GenTrqF,-FTV_GnTqMax),FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================+++++++++++++++++++++++++++++=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*ElapTime; // Saturate the command using the torque rate limit

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 // Output debugging information if requested:

 if (VS_DbgOut) {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (variable speed torque control)

 //===

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 // Compute the gain scheduling correction factor based on the previously

 // commanded pitch angle for blade 1:

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK);

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 SpdErr = GenSpeed - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*SpdErr*ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, NB of blade 1 but in IPC could be different

 IntSpdErr = MIN(MAX(IntSpdErr, (-PC_MaxRat*ElapTime+BlPitch[0])),(PC_MaxRat*ElapTime+BlPitch[0]));

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 // end of standard PI pitch control

 //=================----------------------------======================

 //=================............................======================

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PC_interVS){

 if (iStatus == 0)

 {

 PCI_IntPwrEr = 0;

 }

 PCI_PwrEr = GenTrq*GenSpeed - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + PCI_KI*PCI_PwrEr*ElapTime + GK*PC_KI*SpdErr*ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, NB of blade 1 but in IPC could be different

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, (-PC_MaxRat*ElapTime+BlPitch[0])),(PC_MaxRat*ElapTime+BlPitch[0]));

 PCI_Prp = PCI_KP*PCI_PwrEr;

 PCI_Int = PCI_IntPwrEr;

 // add additional terms to pitch command

 PitComT = PitComT + PCI_Prp + PCI_Int - PitComI;

 } //ENDIF pitch-torque controller interaction

 //=================............................======================

 //=================++++++++++++++++++++++++++++======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == 0)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_IntTA = 0; // set the velocity (acceleration integral) term to zero initially

 TVD_TV[0] = 0; // the previous 3 values of measured tower velocity

 TVD_TV[1] = 0;

 TVD_TV[2] = 0;

 TVD_TVf[0] = 0; // the previous 3 values of the filtered tower velocity

 TVD_TVf[1] = 0;

 TVD_TVf[2] = 0;

 }

 TVD_IntTA = TVD_IntTA + TVD_TowAcc*ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 // the previous 3 values of measured tower velocities

 TVD_TV[2] = TVD_TV[1];

 TVD_TV[1] = TVD_TV[0];

 TVD_TV[0] = TVD_IntTA;

 // the previous 3 values of the filtered tower velocities

 TVD_TVf[2] = TVD_TVf[1];

 TVD_TVf[1] = TVD_TVf[0];

 TVD_TVf[0] = -TVD_TVf[1]*TVD_alp[1] -TVD_TVf[2]*TVD_alp[2] +TVD_TV[0]*TVD_bet[0] +TVD_TV[1]*TVD_bet[1] +TVD_TV[2]*TVD_bet[2];

 TVD_TowVel = TVD_TVf[0]; // tower velocity

 // filter the power output with a lag filter

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_P[0] = GenSpeed*GenTrq; // the previous 2 values of the generator power

 TVD_P[1] = GenSpeed*GenTrq;

 TVD_Pf[0] = GenSpeed*GenTrq; // the previous 2 values of the filtered generator power

 TVD_Pf[1] = GenSpeed*GenTrq;

 }

 // the previous 2 values of measured generator power

 TVD_P[1] = TVD_P[0];

 TVD_P[0] = GenSpeed*GenTrq;

 // the previous 2 values of the filtered generator power

 TVD_Pf[1] = TVD_Pf[0];

 TVD_Pf[0] = -TVD_Pf[1]*TVD_FOFa[1] +TVD_P[0]*TVD_FOFb[0] +TVD_P[1]*TVD_FOFb[1];

 // determine gain for tower vibration signal

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 TVD_gain = MIN(MAX(TVD_gain,0),1); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================++++++++++++++++++++++++++++======================

 //=================~~~~~~~~~~~~~~~~~~~~~~~~~~~~======================

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeed - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == 0)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //=================~~~~~~~~~~~~~~~~~~~~~~~~~~~~======================

 //=================++++++++++++++++++++++++++++======================

 // Filter the pitch controller with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_PCT[0] = PitComT; // the previous 3 values of measured pitch angle

 PCFA_PCT[1] = PitComT;

 PCFA_PCT[2] = PitComT;

 PCFA_PCTF[0] = PitComT; // the previous 3 values of the filtered pitch angle

 PCFA_PCTF[1] = PitComT;

 PCFA_PCTF[2] = PitComT;

 }

 // the previous 3 values of measured generator speed

 PCFA_PCT[2] = PCFA_PCT[1];

 PCFA_PCT[1] = PCFA_PCT[0];

 PCFA_PCT[0] = PitComT;

 // the previous 3 values of the filtered generator torque

 PCFA_PCTF[2] = PCFA_PCTF[1];

 PCFA_PCTF[1] = PCFA_PCTF[0];

 PCFA_PCTF[0] = -PCFA_PCTF[1]*PCFA_alp[1] -PCFA_PCTF[2]*PCFA_alp[2] +PCFA_PCT[0]*PCFA_bet[0] +PCFA_PCT[1]*PCFA_bet[1] +PCFA_PCT[2]*PCFA_bet[2];

 PitComT = PCFA_PCTF[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_PCT[0] = PitComT; // the previous 3 values of measured pitch angle

 PCFB_PCT[1] = PitComT;

 PCFB_PCT[2] = PitComT;

 PCFB_PCTF[0] = PitComT; // the previous 3 values of the filtered pitch angle

 PCFB_PCTF[1] = PitComT;

 PCFB_PCTF[2] = PitComT;

 }

 // the previous 3 values of measured generator speed

 PCFB_PCT[2] = PCFB_PCT[1];

 PCFB_PCT[1] = PCFB_PCT[0];

 PCFB_PCT[0] = PitComT;

 // the previous 3 values of the filtered generator torque

 PCFB_PCTF[2] = PCFB_PCTF[1];

 PCFB_PCTF[1] = PCFB_PCTF[0];

 PCFB_PCTF[0] = -PCFB_PCTF[1]*PCFB_alp[1] -PCFB_PCTF[2]*PCFB_alp[2] +PCFB_PCT[0]*PCFB_bet[0] +PCFB_PCT[1]*PCFB_bet[1] +PCFB_PCT[2]*PCFB_bet[2];

 PitComT = PCFB_PCTF[0];

 }

 // Low-pass filter

 if (PCF_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_PCT[0] = PitComT; // the previous 3 values of measured pitch angle

 PCFB_PCT[1] = PitComT;

 PCFB_PCT[2] = PitComT;

 PCFB_PCTF[0] = PitComT; // the previous 3 values of the filtered pitch angle

 PCFB_PCTF[1] = PitComT;

 PCFB_PCTF[2] = PitComT;

 }

 // the previous 3 values of measured generator speed

 PCF_PCT[2] = PCF_PCT[1];

 PCF_PCT[1] = PCF_PCT[0];

 PCF_PCT[0] = PitComT;

 // the previous 3 values of the filtered generator torque

 PCF_PCTF[2] = PCF_PCTF[1];

 PCF_PCTF[1] = PCF_PCTF[0];

 PCF_PCTF[0] = -PCF_PCTF[1]*PCF_alp[1] -PCF_PCTF[2]*PCF_alp[2] +PCF_PCT[0]*PCF_bet[0] +PCF_PCT[1]*PCF_bet[1] +PCF_PCT[2]*PCF_bet[2];

 PitComT = PCF_PCTF[0];

 }

 // saturate the overall command using the pitch angle limits:

 PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit);

 // Saturate the overall command using the pitch angle

 // Saturate the overall commanded pitch using the pitch rate limit:

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT - BlPitch[K])/ElapTime; // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], -PC_MaxRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximu

 PitCom[K] = BlPitch[K] + PitRate[K]*ElapTime; // Saturate the overall command of blade K using the p

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*SpdErr/PC_RefSpd << Tab << SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===

 //Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == -1))

 { // Last call to controller

 strcat(strMsg,"\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 SetSwapValue(65,6); // Number of variables returned for logging

 strcpy(avcOutname,"PitComT:A;PitComP:A;PitComI:A;IntSpdErr:A;SpdErr:A/T;GK:L;");

 SetSwapValue((NINT(GetSwapValue(63))+0),PitComT);

 SetSwapValue((NINT(GetSwapValue(63))+1),PitComP);

 SetSwapValue((NINT(GetSwapValue(63))+2),PitComI);

 SetSwapValue((NINT(GetSwapValue(63))+3),IntSpdErr);

 SetSwapValue((NINT(GetSwapValue(63))+4),SpdErr);

 SetSwapValue((NINT(GetSwapValue(63))+5),GK);

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_20May14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_20May14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<double const>::epsilon(); // The number slighty greater than unity in si

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 /*double static NacelRolAcc; // nacelle rolling acceleration

 double static NacelNodAcc; // nacelle nodding acceleration

 double static NacelRolVel; // nacelle rolling velocity

 double static NacelNodVel; // nacelle nodding velocity

 */

 double static SRC_GenAcc;

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComT; // Total command pitch based on the sum of the

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.190374887599262, 0.744851779574509}; // the tf denominator values

 double PCFB_bet[3] = {0.872425889787254, -1.190374887599262, 0.872425889787254}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.002; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.875955943822496, 0.903393809245671}; // the tf denominator values

 double TVD_bet[3] = {1.313970119951566, -1.875955943822496, 0.589423689294105}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.818181818181818}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; //Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 double const IPC2_PitMax = 2.5/R2D; // max angle due to IPC2 control

 double const IPC2_KP = 0.0; // proportional gain

 double const IPC2_KI = 0.000000002; // integral gain

 double static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static IPC2_loadsD; // load measurements in D-axis

 double static IPC2_loadsQ; // load measurements in Q-axis

 double static IPC2_loadsDF; // Filtered yaw moment

 double static IPC2_loadsQF; // Filtered tilt moment

 double static IPC2_pitD; // D-axis pitch demand

 double static IPC2_pitQ; // Q-axis pitch demand

 double static IPC2_pit[3]; // Individual pitch demands

 double static IPC2_YawRef = 0.0; // Desired yaw moment

 double static IPC2_TltRef = 0.0; // Desired tilt moment

 double static IPC2_YawEr; // Yaw (D-axis) moment error

 double static IPC2_TltEr; // Tilt (Q-axis) moment error

 double static IPC2_IntYawEr; // Integral of yaw moment error

 double static IPC2_IntTltEr; // Integral of tilt moment error

 double static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 TF static IPC2FDA_TF;

 double IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 TF static IPC2FQA_TF;

 double IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 double IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // IPC utilising angle of attack measurements

 double static IPCL_Ref; // Reference angle of attack

 double static IPCL_RefF; // Filtered reference (regressive filter)

 double const IPCL_Tau = 0.1; // Regressive filter time constant

 double static IPCL_IntEr[3]; // Integral error for each of the flaps

 double static IPCL_PitCom[3]; // Pitch command for each of the flaps

 double const IPCL_KD = 0.0; // Differential gain

 double const IPCL_KP = -1.0; // Proportional gain

 double const IPCL_KI = 0.0; // Integral gain

 double static IPCL_DifEr[3]; // Differential error

 double static IPCL_Er[3]; // Current error

 double const IPCL_PitMax = 2.5/R2D; // max angle due to IPC2 control

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.00000001; // Proportional gain

 double const IPCB_KI = 0.0; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double IPCBFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double IPCBFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // Smart Rotor Control (dq)

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 29.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -29.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = 8.0*IPC_KP; // proportional gain

 double const SRC_KI = 8.0*IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF_triggered; // ratchet for fault ride through 1

 bool static SRC_faultRF2_triggered; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCfrf_TF;

 double SRCfrf_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCfrf_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCfrf_values[100];

 double const SRCfrf_threshold = 0.02;

 int static SRCfrf_cnt;

 double static SRCfrf_value;

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control (2P dq)

 double const SRC2_PitMax = 2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMin = -2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC2_KP = 0.0; // proportional gain

 double const SRC2_KI = 0.0000002; // integral gain

 double static SRC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC2_loadsD; // load measurements in D-axis

 double static SRC2_loadsQ; // load measurements in Q-axis

 double static SRC2_loadsDF; // Filtered yaw moment

 double static SRC2_loadsQF; // Filtered tilt moment

 double static SRC2_PitComD; // D-axis pitch demand

 double static SRC2_PitComQ; // Q-axis pitch demand

 double static SRC2_PitCom[3]; // Individual pitch demands

 double static SRC2_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC2_YawRef = 0.0; // Desired yaw moment

 double static SRC2_TltRef = 0.0; // Desired tilt moment

 double static SRC2_YawEr; // Yaw (D-axis) moment error

 double static SRC2_TltEr; // Tilt (Q-axis) moment error

 double static SRC2_IntYawEr; // Integral of yaw moment error

 double static SRC2_IntTltEr; // Integral of tilt moment error

 double static SRC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC2_gain; // gain to phase out SRC2 below rated

 double static SRC2_dqPitCom[3];

 // Notch filter for SRC2 yaw error D

 TF static SRC2FDA_TF;

 double SRC2FDA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FDA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC2 tilt error Q

 TF static SRC2FQA_TF;

 double SRC2FQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = 0.0; // Integral gain

 double const SRCD_KP = -8.0*IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double SRCDFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double SRCDFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // LIDAR beams detection unit, blade mounted

 int LIDAR_lidars; // Loops through LIDARs per blade

 int LIDAR_beams; // Loops through LIDAR beams per LIDAR

 int LIDAR_focals; // Loops through focal points of LIDAR beams

 //int const LIDAR_Nbeams = GetNumberOfLidarBeams(turbine_id); // Number of effectively independent Lidar beams

 double const LIDAR_Yrot[2] = {0.0000, 90.0/R2D}; // Angular separtaion between x-axis and beam

 double const LIDAR_Zrot[2] = {0.0000, 90.0/R2D}; // Azimuth angle about x-axis

 double const LIDAR_Focus = 0.0001; // Focal point in metres of LIDAR

 double static LIDAR_WS[6]; // Velocity percieved by each LIDAR focal point

 double const LIDAR_DT = 0.1; // Communication interval with LIDAR

 double static LastTimeLIDAR; // Last call to LIDAR

 double static LIDAR_AoA[3]; // Angle of attack calculated from LIDAR

 // Smart Rotor Control utilising angle of attack measurements

 double static SRCL_Ref; // Reference angle of attack

 double static SRCL_RefF; // Filtered reference (regressive filter)

 double const SRCL_Tau = 1.0; // Regressive filter time constant

 double static SRCL_IntEr[3]; // Integral error for each of the flaps

 double static SRCL_PitCom[3]; // Pitch command for each of the flaps

 double const SRCL_KD = 0.0; // Differential gain

 double const SRCL_KP = 3.0; // Proportional gain

 double const SRCL_KI = 0.0; // Integral gain

 double static SRCL_DifEr[3]; // Differential error

 double static SRCL_Er[3]; // Current error

 //Strain gauge measurements

 int static STRAIN_gauges; // Counter for strain gauges

 int const STRAIN_Ngauges = GetNumberOfBladeStrainGauges (turbine_id, 0); //number of strain gauges on blade 0

 double static STRAIN_strainB0[10]; // Strains on blade 0

 double static STRAIN_strainB1[10]; // Strains on blade 1

 double static STRAIN_strainB2[10]; // Strains on blade 2

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 /*NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 */

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether IPC is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPC2_on = false; // Flag to indicate whether IPC2 is on

 IPC2FDA_on = true; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 IPC2FQA_on = true; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether IPCB is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 SRC2_on = false; // Flag to indicate whether smart rotor control is active

 SRC2FDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 SRC2FQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 LIDAR_on = false; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 SRCL_on = false;

 //flag for indivudal pitch control utilising LIDAR

 IPCL_on = false;

 // Sensors

 STRAIN_on = false; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_faultRF_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_faultRF2_triggered = false; // Flag to indicate whether fault ride-through has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output debugging

 VS_DbgOut = false; // Flag to indicate whether to output debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPC2_on = parameterSearchDefine (turbine_id, line, IPC2_on, "IPC2_on");

 IPC2FDA_on = parameterSearchDefine (turbine_id, line, IPC2FDA_on, "IPC2FDA_on");

 IPC2FQA_on = parameterSearchDefine (turbine_id, line, IPC2FQA_on, "IPC2FQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRC2_on = parameterSearchDefine (turbine_id, line, SRC2_on, "SRC2_on");

 SRC2FDA_on = parameterSearchDefine (turbine_id, line, SRC2FDA_on, "SRC2FDA_on");

 SRC2FQA_on = parameterSearchDefine (turbine_id, line, SRC2FQA_on, "SRC2FQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 LIDAR_on = parameterSearchDefine (turbine_id, line, LIDAR_on, "LIDAR_on");

 SRCL_on = parameterSearchDefine (turbine_id, line, SRCL_on, "SRCL_on");

 IPCL_on = parameterSearchDefine (turbine_id, line, IPCL_on, "IPCL_on");

 STRAIN_on = parameterSearchDefine (turbine_id, line, STRAIN_on, "STRAIN_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamAngle = atoi(tmptxt.c_str()); //convert selected string to integer

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamTime = atoi(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (SRCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nSRCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (IPCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nIPCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPC2_on == true)

 {

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 }

 if (IPCL_on == true)

 strcat(strMsg,"IPCL ");

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 } //if SRC_jam on

 if (SRC2_on == true)

 {

 strcat(strMsg,"SRC2 ");

 if (SRC2FDA_on == true)

 strcat(strMsg,"SRC2FDA ");

 if (SRC2FQA_on == true)

 strcat(strMsg,"SRC2FQA ");

 } //if SRC2 on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 if (LIDAR_on == true)

 strcat(strMsg,"LIDAR ");

 if (SRCL_on == true)

 strcat(strMsg,"SRCL ");

 if (STRAIN_on == true)

 strcat(strMsg,"STRAIN ");

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComT;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeLIDAR= Time - LIDAR_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_1); // The first shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_2); // The second shaft brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_GENERATOR); // The generator brake: 0=off

 //SetDrivetrainBrakeStatus (turbine_id, 0, GH_DISCON_BRAKE_SHAFT_3); // The third shaft brake: 0=off

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 //SetSwapValue(79,0.0); // Request for loads: 0=none

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on || SRCD_on || SRC2_on || SRCL_on || TVD_Smart_on || PC_Smart_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //------------BEGIN: SENSORS--------------

 if (STRAIN_on)

 for (STRAIN_gauges = 0;STRAIN_gauges<STRAIN_Ngauges;STRAIN_gauges++)

 {

 STRAIN_strainB0[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 0, STRAIN_gauges);

 STRAIN_strainB1[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 1, STRAIN_gauges);

 STRAIN_strainB2[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 2, STRAIN_gauges);

 }

 //------------END: SENSORS--------------

 //==========BEGIN: LIDAR wind speed module==========

 if (LIDAR_on)

 {

 if ((Time*OnePlusEps - LastTimeLIDAR) >= LIDAR_DT)

 {

 //Get LIDAR wind speeds

 for (K = 0;K<NumBl;K++)

 {

 }

 //Determine Angle of Attack from wind speeds, ignoring twist of blade

 LIDAR_AoA[0] = atan(LIDAR_WS[0]/LIDAR_WS[1]);

 LIDAR_AoA[1] = atan(LIDAR_WS[2]/LIDAR_WS[3]);

 LIDAR_AoA[2] = atan(LIDAR_WS[4]/LIDAR_WS[5]);

 LastTimeLIDAR = Time;

 }

 }

 //======END: LIDAR wind speed module==========

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 if (VSConstP_on){

 // and saturate to rated power (with no drop in power allowed):

 GenTrq = SATURATE(VS_ComT,LastGenTrq*LastGenSpd/GenSpeed,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 if (PC_Smart_on){

 PC_Smart_com = -1.0*8.0*PCI_Prp;

 PitComT = PitComT - 1.0*PCI_Prp;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 if (PC_Smart_on){

 PC_Smart_com = -8.0*PitComP;

 PitComT = PitComT - PitComP;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TVD_K*TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TVD_K*TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -8.0*TVD_PitCom;

 TVD_PitCom = 0.0;

 }

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC2_gain = SATURATE(IPC2_gain,0.0,1.0); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_TF = TFinit(IPC2FDA_TF,IPC2FDA_alp,IPC2FDA_bet,IPC2_loadsDF);

 }

 IPC2FDA_TF = TFupdate(IPC2FDA_TF,IPC2_loadsDF);

 IPC2_loadsDF = IPC2FDA_TF.outputs[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FQA_TF = TFinit(IPC2FQA_TF,IPC2FQA_alp,IPC2FQA_bet,IPC2_loadsQF);

 }

 IPC2FQA_TF = TFupdate(IPC2FQA_TF,IPC2_loadsQF);

 IPC2_loadsQF = IPC2FQA_TF.outputs[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + GK*IPC2_gain*IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + GK*IPC2_gain*IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = SATURATE(IPC2_IntYawEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_IntTltEr = SATURATE(IPC2_IntTltEr, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitD = GK*IPC2_gain*IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = GK*IPC2_gain*IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = SATURATE(IPC2_pitD, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 IPC2_pitQ = SATURATE(IPC2_pitQ, -IPC2_gain*IPC2_PitMax ,+IPC2_gain*IPC2_PitMax);

 // individual pitch command for each blade

 IPC2_pit[0] = (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+IPC2_offset)));

 IPC2_pit[2] = (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //============BEGIN: IPCL individual pitch control using LIDAR==============

 if (IPCL_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //IPCL_RefF = IPCL_Ref;

 IPCL_RefF = ((IPCL_Tau/PC_DT)*IPCL_RefF + IPCL_Ref)/((IPCL_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // AoA error

 IPCL_DifEr[K] = IPCL_Er[K];

 IPCL_Er[K] = IPCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 IPCL_DifEr[K] = (IPCL_Er[K]-IPCL_DifEr[K])/SRC_ElapTime; // Differential error

 IPCL_IntEr[K] = IPCL_IntEr[K] + GK*IPCL_KI*IPCL_Er[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCL_IntEr[K] = SATURATE(IPCL_IntEr[K], IPCL_PitMax ,IPC_PitMax);

 // PID controller demand

 IPCL_PitCom[K] = GK*IPCL_KD*IPCL_DifEr[K] + GK*IPCL_KP*IPCL_Er[K] + IPCL_IntEr[K];

 // individual pitch command for each blade

 IPCL_PitCom[K] = IPC_gain * IPCL_PitCom[K];

 }

 }

 //==============END: IPCL Indivudal pitch Control utilising Lidar==========

 //============BEGIN: IPCB individual pitch control using LIDAR==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 //IPCB_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 IPCB_PitCom[K] = SATURATE(IPCB_PitCom[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPCB_PitCom[K] = IPCB_PitCom[K];

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + IPC_pit[K] + IPC2_pit[K] + IPCL_PitCom[K] + IPCB_PitCom[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 // =========BEGIN: SRC2 DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC2 control so that only fully active above rated, ramping up from 0.8 rated power

 SRC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC2_gain = SATURATE(SRC2_gain,0.0,1.0); // saturate between 0 and 1

 SRC2_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC2_loadsD = (2.0f/3.0f) * (BladeRBMop[0]*sin(2.0f*RotAzi) + BladeRBMop[1]*sin(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*sin(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 SRC2_loadsQ = (2.0f/3.0f) * (BladeRBMop[0]*cos(2.0f*RotAzi) + BladeRBMop[1]*cos(2.0f*(RotAzi+2.0f*PIE/3.0f)) + BladeRBMop[2]*cos(2.0f*(RotAzi+4.0f*PIE/3.0f)));

 //===========BEGIN: SRC2 filters=============

 SRC2_loadsDF = SRC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRC2FDA_TF = TFinit(SRC2FDA_TF,SRC2FDA_alp,SRC2FDA_bet,SRC2_loadsDF);

 }

 SRC2FDA_TF = TFupdate(SRC2FDA_TF,SRC2_loadsDF);

 SRC2_loadsDF = SRC2FDA_TF.outputs[0];

 }

 SRC2_loadsQF = SRC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRC2FQA_TF = TFinit(SRC2FQA_TF,SRC2FQA_alp,SRC2FQA_bet,SRC2_loadsQF);

 }

 SRC2FQA_TF = TFupdate(SRC2FQA_TF,SRC2_loadsQF);

 SRC2_loadsQF = SRC2FQA_TF.outputs[0];

 }

 SRC2_YawEr = SRC2_YawRef - SRC2_loadsDF; // Current yaw error

 SRC2_TltEr = SRC2_TltRef - SRC2_loadsQF; // Current tilt error

 //===========END: SRC2 filters=============

 SRC2_IntYawEr = SRC2_IntYawEr + GK*SRC2_gain*SRC2_KI*SRC2_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC2_IntTltEr = SRC2_IntTltEr + GK*SRC2_gain*SRC2_KI*SRC2_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC2_IntYawEr = SATURATE(SRC2_IntYawEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_IntTltEr = SATURATE(SRC2_IntTltEr, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComD = GK*SRC2_gain*SRC2_KP*SRC2_YawEr + SRC2_IntYawEr; // PI controller D-axis (yaw) demand

 SRC2_PitComQ = GK*SRC2_gain*SRC2_KP*SRC2_TltEr + SRC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC2 to degree max (gain scheduled)

 SRC2_PitComD = SATURATE(SRC2_PitComD, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 SRC2_PitComQ = SATURATE(SRC2_PitComQ, SRC2_gain*SRC2_PitMin ,SRC2_gain*SRC2_PitMax);

 // individual pitch command for each blade

 SRC2_dqPitCom[0] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+SRC2_offset)));

 SRC2_dqPitCom[1] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+2.0f*PIE/3.0f+SRC2_offset)));

 SRC2_dqPitCom[2] = GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+4.0f*PIE/3.0f+SRC2_offset)));

 } //ENDIF for SRC2

 //===========END: SRC2 DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/PC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/PC_DT)+1.0f);

 //SRCD_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRC_gain*SRCD_KI*SRCD_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], -SRC_gain*SRC_PitMax ,SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = SRC_gain*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 SRCD_PitCom[K] = SATURATE(SRCD_PitCom[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRCD_PitCom[K];

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+SRCD_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // SRCD_PitCom[K] = SRCD_PitCom[K];//-SRCD_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //============BEGIN: SRCL Smart rotor control using LIDAR==============

 if (SRCL_on)

 {

 SRC_gain = 1.0;//(1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //SRCL_RefF = SRCL_Ref;

 SRCL_RefF = ((SRCL_Tau/SRC_DT)*SRCL_RefF + SRCL_Ref)/((SRCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCL_DifEr[K] = SRCL_Er[K];

 SRCL_Er[K] = SRCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 SRCL_DifEr[K] = (SRCL_Er[K]-SRCL_DifEr[K])/SRC_ElapTime; // Differential error

 SRCL_IntEr[K] = SRCL_IntEr[K] + GK*SRCL_KI*SRCL_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCL_IntEr[K] = SATURATE(SRCL_IntEr[K], SRC_PitMin ,SRC_PitMax);

 // PID controller demand

 SRCL_PitCom[K] = GK*SRCL_KD*SRCL_DifEr[K] + GK*SRCL_KP*SRCL_Er[K] + SRCL_IntEr[K];

 // individual pitch command for each blade

 SRCL_PitCom[K] = SRC_gain * SRCL_PitCom[K];

 }

 }

 //==============END: SRCL Smart Rotor Control utilising Lidar==========

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCfrf_cnt=1; SRCfrf_cnt<100; SRCfrf_cnt++)

 {

 SRCfrf_values[100-SRCfrf_cnt] = SRCfrf_values[100-SRCfrf_cnt-1];

 }

 //filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_TF = TFinit(SRCfrf_TF,SRCfrf_alp,SRCfrf_bet,0);

 }

 SRCfrf_TF = TFupdate(SRCfrf_TF,TowerAccX);

 //new value

 SRCfrf_values[0] = (SRCfrf_TF.outputs[0])*(SRCfrf_TF.outputs[0]);

 SRCfrf_value = SRCfrf_values[0] - SRCfrf_values[99] + SRCfrf_value;

 if (SRCfrf_value/100 >SRCfrf_threshold)

 {

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF_triggered))

 {

 if (SRC_faultRF_triggered == false)

 {

 SRC_faultRF_triggered = true;

 ReportWarningMessage (turbine_id, "FRF activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 //=======END: SRC fault ride through =======

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 if ((!SRC_faultRF_triggered) && (!SRC_faultRF2_triggered))

 {

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 //SRC_PitComLast[K] = SRC_PitCom[K]

 } //only adjust if fault ride through inactive

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "TVD_PitCom", "A") ;

 AddLogValue (turbine_id, "TVD_Smart_Com", "A") ;

 AddLogValue (turbine_id, "PC_Smart_Com", "A") ;

 AddLogValue (turbine_id, "PitComT", "A") ;

 AddLogValue (turbine_id, "PitComP", "A") ;

 AddLogValue (turbine_id, "PitComI", "A") ;

 AddLogValue (turbine_id, "PCI_Prp", "A") ;

 AddLogValue (turbine_id, "PCI_Int", "A") ;

 AddLogValue (turbine_id, "SRC_Pit", "A") ;

 AddLogValue (turbine_id, "BladeRBMop0", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop1", "FL") ;

 AddLogValue (turbine_id, "BladeRBMop2", "FL") ;

 AddLogValue (turbine_id, "IPCB_PitCom0", "A") ;

 AddLogValue (turbine_id, "IPCB_PitCom1", "A") ;

 AddLogValue (turbine_id, "IPCB_PitCom2", "A") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF0", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF1", "FL") ;

 AddLogValue (turbine_id, "IPCB_BladeRBMopF2", "FL") ;

 }

 SetLoggingValue (turbine_id, 0, TVD_PitCom);

 SetLoggingValue (turbine_id, 1, TVD_Smart_Com);

 SetLoggingValue (turbine_id, 2, PC_Smart_com);

 SetLoggingValue (turbine_id, 3, PitComT);

 SetLoggingValue (turbine_id, 4, PitComP);

 SetLoggingValue (turbine_id, 5, PitComI);

 SetLoggingValue (turbine_id, 6, PCI_Prp);

 SetLoggingValue (turbine_id, 7, PCI_Int);

 SetLoggingValue (turbine_id, 8, SRC_Pit[0]);

 SetLoggingValue (turbine_id, 9, BladeRBMop[0]);

 SetLoggingValue (turbine_id, 10, BladeRBMop[1]);

 SetLoggingValue (turbine_id, 11, BladeRBMop[2]);

 SetLoggingValue (turbine_id, 12, IPCB_PitCom[0]);

 SetLoggingValue (turbine_id, 13, IPCB_PitCom[1]);

 SetLoggingValue (turbine_id, 14, IPCB_PitCom[2]);

 SetLoggingValue (turbine_id, 15, IPCB_BladeRBMopF[0]);

 SetLoggingValue (turbine_id, 16, IPCB_BladeRBMopF[1]);

 SetLoggingValue (turbine_id, 17, IPCB_BladeRBMopF[2]);

 }//end logging

 return GH_DISCON_SUCCESS;

 } //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_22Jul13.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_22Jul13.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, r

 double static ElapTime; // Elapsed time since the last call to the con

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<double const>::epsilon(); // The number slighty greater than unity in si

 double static Time; // Current simulation time, sec.

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const Pie = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBM[3]; // load measurements on each blade

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 15000.0; // Maximum torque rate (in absolute value) in

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtPwr = 5296610.0; // Rated generator generator power in Region 3

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV_TF; // transfer function structure

 FTV_TF.size = 5; // size of transfer function (default is 3, used to marginally reduce computations)

 double FTV_alp[5] = {1.0f, -3.78865457824117, 5.44068947154296, -3.50923154684766, 0.857629209879516}; // the tf denominator values

 double FTV_bet[5] = {117.030302254623, -221.446713569963, -8.36150963845548f, 221.446713569963, -108.668792616168}; // the tf numerator values

 double static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double static FTV_GnTqLast = 0; // last generator torque for use by torque controller

 double const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D;// 0.21816615649;//0.174532925; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at r

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComT; // Total command pitch based on the sum of the

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.763608087091757, 0.895709450187540}; // the tf denominator values

 double PCFA_bet[3] = {0.947854725093770, -1.763608087091757, 0.947854725093770}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.249005329930186, 0.753772239321372}; // the tf denominator values

 double PCFB_bet[3] = {0.876886119660686, -1.249005329930186, 0.876886119660686}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowAcc; // tower acceleration fore-aft

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_KI = 0.0172; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.0, -1.65296803652968, 0.683075832447197}; // the tf denominator values

 double TVD_bet[3] = {2.38450103634423, -4.38377668389767, 2.02938344347096}; // the tf numerator values

 double static TVD_gain; //Gain correction factor

 TF static TVD_FOF;

 double TVD_FOFalp[2] = {1.0, -0.818181818181818}; // the first order lag filter tf denominator values

 double TVD_FOFbet[2] = {0.0909090909090909, 0.0909090909090909}; // the first order lag filter tf numerator values

 double static TVD_Pf; // low pass filtered generator power

 // Individual pitch control

 double const IPC_KP = 0.0; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761677196131134, 0.775876635842114}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887938317921057, -1.761677196131134, 0.887938317921057}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 double const IPC2_PitMax = 2.5/R2D; // max angle due to IPC2 control

 double const IPC2_KP = 0.0; // proportional gain

 double const IPC2_KI = 0.000000002; // integral gain

 double static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static IPC2_loadsD; // load measurements in D-axis

 double static IPC2_loadsQ; // load measurements in Q-axis

 double static IPC2_loadsDF; // Filtered yaw moment

 double static IPC2_loadsQF; // Filtered tilt moment

 double static IPC2_pitD; // D-axis pitch demand

 double static IPC2_pitQ; // Q-axis pitch demand

 double static IPC2_pit[3]; // Individual pitch demands

 double static IPC2_YawRef = 0.0; // Desired yaw moment

 double static IPC2_TltRef = 0.0; // Desired tilt moment

 double static IPC2_YawEr; // Yaw (D-axis) moment error

 double static IPC2_TltEr; // Tilt (Q-axis) moment error

 double static IPC2_IntYawEr; // Integral of yaw moment error

 double static IPC2_IntTltEr; // Integral of tilt moment error

 double static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 TF static IPC2FDA_TF;

 double IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 TF static IPC2FQA_TF;

 double IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 double IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // IPC utilising angle of attack measurements

 double static IPCL_Ref; // Reference angle of attack

 double static IPCL_RefF; // Filtered reference (regressive filter)

 double const IPCL_Tau = 1.0; // Regressive filter time constant

 double static IPCL_IntEr[3]; // Integral error for each of the flaps

 double static IPCL_PitCom[3]; // Pitch command for each of the flaps

 double const IPCL_KD = 0.0; // Differential gain

 double const IPCL_KP = -1.0; // Proportional gain

 double const IPCL_KI = 0.0; // Integral gain

 double static IPCL_DifEr[3]; // Differential error

 double static IPCL_Er[3]; // Current error

 double const IPCL_PitMax = 2.5/R2D; // max angle due to IPC2 control

 // Smart Rotor Control (dq)

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 19.9/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -19.9/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = 0.0; // proportional gain

 double const SRC_KI = 3.0*IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3];

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control (2P dq)

 double const SRC2_PitMax = 2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMin = -2.5/R2D; // Max pitch in degrees converted to radians

 double const SRC2_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC2_KP = 0.0; // proportional gain

 double const SRC2_KI = 0.0000002; // integral gain

 double static SRC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC2_loadsD; // load measurements in D-axis

 double static SRC2_loadsQ; // load measurements in Q-axis

 double static SRC2_loadsDF; // Filtered yaw moment

 double static SRC2_loadsQF; // Filtered tilt moment

 double static SRC2_PitComD; // D-axis pitch demand

 double static SRC2_PitComQ; // Q-axis pitch demand

 double static SRC2_PitCom[3]; // Individual pitch demands

 double static SRC2_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC2_YawRef = 0.0; // Desired yaw moment

 double static SRC2_TltRef = 0.0; // Desired tilt moment

 double static SRC2_YawEr; // Yaw (D-axis) moment error

 double static SRC2_TltEr; // Tilt (Q-axis) moment error

 double static SRC2_IntYawEr; // Integral of yaw moment error

 double static SRC2_IntTltEr; // Integral of tilt moment error

 double static SRC2_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC2_gain; // gain to phase out SRC2 below rated

 double static SRC2_dqPitCom[3];

 // Notch filter for SRC2 yaw error D

 TF static SRC2FDA_TF;

 double SRC2FDA_alp[3] = {1.000000000000000, -1.361157014197597, 0.463187104324829}; // the tf denominator values

 double SRC2FDA_bet[3] = {0.731593552162415, -1.361157014197597, 0.731593552162415}; // the tf numerator values

 // Notch filter for SRC2 tilt error Q

 TF static SRC2FQA_TF;

 double SRC2FQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRC2FQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = 0.00000000; // Integral gain

 double const SRCD_KP = 0.00000005; // Proportional gain

 double const SRCD_KD = 0.00000000; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 5.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 // low-pass filter for blade RBM signals

 TF static SRCDFA_TF[3];

 double SRCDFA_alp[3] = {1.000000000000000, -0.666666666666667, 0.0}; // the tf denominator values

 double SRCDFA_bet[3] = {0.166666666666667, 0.166666666666667, 0.0}; // the tf numerator values

 // notch filter for blade RBM signals

 TF static SRCDFB_TF[3];

 double SRCDFB_alp[3] = {1.000000000000000, -0.977076510866329, 0.238669627021680}; // the tf denominator values

 double SRCDFB_bet[3] = {0.619334813510840, -0.977076510866329, 0.619334813510840}; // the tf numerator values

 // LIDAR beams detection unit, blade mounted

 int LIDAR_lidars; // Loops through LIDARs per blade

 int LIDAR_beams; // Loops through LIDAR beams per LIDAR

 int LIDAR_focals; // Loops through focal points of LIDAR beams

 int const LIDAR_Nlidars = GetNumberOfBladeLidars (turbine_id, 0); // Number of focal points GetNumberOfBladeLidars (const turbine turbine_id, int index_blade)dar)

 int const LIDAR_Nbeams = GetNumberOfBladeLidarBeams (turbine_id, 0, 0); // Number of effectively independent Lidar beams on 0th blade GetNumberOfBladeLidarBeams (const turbine turbine_id, int index_blade, int index_blade_lidar)

 int const LIDAR_Nfocals = GetNumberOfBladeLidarBeamFocalPoints (turbine_id, 0, 0, 0); // Number of focal points GetNumberOfBladeLidarBeamFocalPoints (const turbine turbine_id, int index_blade, int index_blade_lidar, int index_lidar_beam)

 double const LIDAR_Yrot[2] = {0.0000, 90.0/R2D}; // Angular separtaion between x-axis and beam

 double const LIDAR_Zrot[2] = {0.0000, 90.0/R2D}; // Azimuth angle about x-axis

 double const LIDAR_Focus = 0.0001; // Focal point in metres of LIDAR

 double static LIDAR_WS[6]; // Velocity percieved by each LIDAR focal point

 double const LIDAR_DT = 0.1; // Communication interval with LIDAR

 double static LastTimeLIDAR; // Last call to LIDAR

 double static LIDAR_AoA[3]; // Angle of attack calculated from LIDAR

 // Smart Rotor Control utilising angle of attack measurements

 double static SRCL_Ref; // Reference angle of attack

 double static SRCL_RefF; // Filtered reference (regressive filter)

 double const SRCL_Tau = 1.0; // Regressive filter time constant

 double static SRCL_IntEr[3]; // Integral error for each of the flaps

 double static SRCL_PitCom[3]; // Pitch command for each of the flaps

 double const SRCL_KD = 0.0; // Differential gain

 double const SRCL_KP = 3.0; // Proportional gain

 double const SRCL_KI = 0.0; // Integral gain

 double static SRCL_DifEr[3]; // Differential error

 double static SRCL_Er[3]; // Current error

 //Strain gauge measurements

 int static STRAIN_gauges; // Counter for strain gauges

 int const STRAIN_Ngauges = GetNumberOfBladeStrainGauges (turbine_id, 0); //number of strain gauges on blade 0

 double static STRAIN_strainB0[10]; // Strains on blade 0

 double static STRAIN_strainB1[10]; // Strains on blade 1

 double static STRAIN_strainB2[10]; // Strains on blade 2

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFA_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFB_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 TVD_TowAcc = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBM[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether IPC is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPC2_on = false; // Flag to indicate whether IPC2 is on

 IPC2FDA_on = true; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 IPC2FQA_on = true; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 SRC2_on = false; // Flag to indicate whether smart rotor control is active

 SRC2FDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 SRC2FQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFA_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFB_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 LIDAR_on = false; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 SRCL_on = false;

 //flag for indivudal pitch control utilising LIDAR

 IPCL_on = false;

 // Sensors

 STRAIN_on = false; // Flag to indicate whether strain measurements are taken

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output debugging

 VS_DbgOut = false; // Flag to indicate whether to output debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPC2_on = parameterSearchDefine (turbine_id, line, IPC2_on, "IPC2_on");

 IPC2FDA_on = parameterSearchDefine (turbine_id, line, IPC2FDA_on, "IPC2FDA_on");

 IPC2FQA_on = parameterSearchDefine (turbine_id, line, IPC2FQA_on, "IPC2FQA_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRC2_on = parameterSearchDefine (turbine_id, line, SRC2_on, "SRC2_on");

 SRC2FDA_on = parameterSearchDefine (turbine_id, line, SRC2FDA_on, "SRC2FDA_on");

 SRC2FQA_on = parameterSearchDefine (turbine_id, line, SRC2FQA_on, "SRC2FQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFA_on = parameterSearchDefine (turbine_id, line, SRCDFA_on, "SRCDFA_on");

 SRCDFB_on = parameterSearchDefine (turbine_id, line, SRCDFB_on, "SRCDFB_on");

 LIDAR_on = parameterSearchDefine (turbine_id, line, LIDAR_on, "LIDAR_on");

 SRCL_on = parameterSearchDefine (turbine_id, line, SRCL_on, "SRCL_on");

 IPCL_on = parameterSearchDefine (turbine_id, line, IPCL_on, "IPCL_on");

 STRAIN_on = parameterSearchDefine (turbine_id, line, STRAIN_on, "STRAIN_on");

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (SRCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nSRCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (IPCL_on == true && LIDAR_on == false) {

 ReportErrorMessage (turbine_id, "\r\nIPCL requires LIDAR_on\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPC2_on == true)

 {

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 }

 if (IPCL_on == true)

 strcat(strMsg,"IPCL ");

 if (TVD_on == true)

 strcat(strMsg,"TVD ");

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC on

 if (SRC2_on == true)

 {

 strcat(strMsg,"SRC2 ");

 if (SRC2FDA_on == true)

 strcat(strMsg,"SRC2FDA ");

 if (SRC2FQA_on == true)

 strcat(strMsg,"SRC2FQA ");

 } //if SRC2 on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFA_on == true)

 strcat(strMsg,"SRCDF ");

 if (SRCDFB_on == true)

 strcat(strMsg,"SRCDF2 ");

 } //if SRCD on

 if (LIDAR_on == true)

 strcat(strMsg,"LIDAR ");

 if (SRCL_on == true)

 strcat(strMsg,"SRCL ");

 if (STRAIN_on == true)

 strcat(strMsg,"STRAIN ");

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComT;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeLIDAR= Time - LIDAR_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBM[0] + BladeRBM[1] + BladeRBM[2]) / 3.0f;

 if (LIDAR_on)

 {

 // Set LIDAR beams angles and focal points

 for (K = 0;K<NumBl;K++)

 {

 ReportWarningMessage (turbine_id, "blades");

 for (LIDAR_lidars=0;LIDAR_lidars<LIDAR_Nlidars;LIDAR_lidars++)

 {

 ReportWarningMessage (turbine_id, "lidars");

 for (LIDAR_beams=0;LIDAR_beams<LIDAR_Nbeams;LIDAR_beams++)

 {

 ReportWarningMessage (turbine_id, "beams");

 SetBladeLidarBeamDemandedAngleY (turbine_id, K, LIDAR_lidars, LIDAR_beams, LIDAR_Yrot[LIDAR_beams]); // Sets the Lidar beam's demanded angle in the XZ plane (i.e. rotating around the Y axis).

 SetBladeLidarBeamDemandedAngleZ (turbine_id, K, LIDAR_lidars, LIDAR_beams, LIDAR_Zrot[LIDAR_beams]); // Sets the Lidar beam's demanded angle in the XY plane (i.e. rotating around the Z axis).

 for (LIDAR_focals=0;LIDAR_focals<LIDAR_Nfocals;LIDAR_focals++)

 {

 ReportWarningMessage (turbine_id, "focals");

 SetBladeLidarBeamFocalPointFocalDistance (turbine_id, K, LIDAR_lidars, LIDAR_beams, LIDAR_focals, LIDAR_Focus) ; // Distance of focal point

 } //endfor focals per beam

 } //endfor beams per lidar

 } //endfor lidars per blade

 } //endfor blades

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetShaftBrakeStatus (turbine_id, 0); // Shaft brake status: 0=off

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 //SetSwapValue(79,0.0); // Request for loads: 0=none

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same for each blade currently)

 }

 }

 // ============END: DATA TRANSFER ==================

 //------------BEGIN: SENSORS--------------

 if (STRAIN_on)

 for (STRAIN_gauges = 0;STRAIN_gauges<STRAIN_Ngauges;STRAIN_gauges++)

 {

 STRAIN_strainB0[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 0, STRAIN_gauges);

 STRAIN_strainB1[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 1, STRAIN_gauges);

 STRAIN_strainB2[STRAIN_gauges] = GetMeasuredBladeStrainGaugeM (turbine_id, 2, STRAIN_gauges);

 }

 //------------END: SENSORS--------------

 //==========BEGIN: LIDAR wind speed module==========

 if (LIDAR_on)

 {

 if ((Time*OnePlusEps - LastTimeLIDAR) >= LIDAR_DT)

 {

 //Get LIDAR wind speeds

 for (K = 0;K<NumBl;K++)

 {

 for (LIDAR_lidars=0;LIDAR_lidars<LIDAR_Nlidars;LIDAR_lidars++)

 {

 for (LIDAR_beams=0;LIDAR_beams<LIDAR_Nbeams;LIDAR_beams++)

 {

 for (LIDAR_focals=0;LIDAR_focals<LIDAR_Nfocals;LIDAR_focals++)

 {

 LIDAR_WS[K+LIDAR_focals] = GetMeasuredBladeLidarBeamFocalPointVelocity (turbine_id, K, LIDAR_lidars, LIDAR_beams, LIDAR_focals); //Returns the measured velocity of the Lidar station in line-of-site, in m/s.

 }

 }

 }

 }

 //Determine Angle of Attack from wind speeds, ignoring twist of blade

 LIDAR_AoA[0] = atan(LIDAR_WS[0]/LIDAR_WS[1]);

 LIDAR_AoA[1] = atan(LIDAR_WS[2]/LIDAR_WS[3]);

 LIDAR_AoA[2] = atan(LIDAR_WS[4]/LIDAR_WS[5]);

 LastTimeLIDAR = Time;

 }

 }

 //======END: LIDAR wind speed module==========

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_TF = TFinit(FTV_TF,FTV_alp,FTV_bet,GenSpeed);

 }

 FTV_TF = TFupdate(FTV_TF,GenSpeed);

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_TF.outputs[0];

 // saturate to amplitude limit

 FTV_GnTqLast = SATURATE(FTV_GenTrqF,-FTV_GnTqMax,FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > 0.0f)

 {

 // We are in region 3 - power is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,LastGenTrq,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 if (VSConstP_on == true){

 // and saturate to rated power (with no drop in power allowed):

 GenTrq = SATURATE(VS_ComT,LastGenTrq*LastGenSpd/GenSpeed,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,LastGenTrq,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================END: PI TORQUE CONTROL VS=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //=============BEGIN: PITCH CONTROL

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,0.0);

 }

 TVD_IntTA = TVD_IntTA + TVD_TowAcc*PC_ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_TF = TFupdate(TVD_TF,TVD_IntTA);

 TVD_TowVel = TVD_TF.outputs[0]; // tower velocity

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_FOF = TFinit(TVD_FOF,TVD_FOFalp,TVD_FOFbet,GenSpeed*GenTrq);

 }

 TVD_FOF = TFupdate(TVD_FOF,GenSpeed*GenTrq);

 TVD_Pf = TVD_FOF.outputs[0];

 // determine gain for tower vibration signal

 TVD_gain = ((TVD_Pf/VS_RtPwr) - 0.8) * 5.0;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0*Pie/3.0) + BladeRBM[2]*sin(RotAzi+4.0*Pie/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0*Pie/3.0) + BladeRBM[2]*cos(RotAzi+4.0*Pie/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_PitMax*IPC_gain, +IPC_PitMax*IPC_gain);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_PitMax*IPC_gain,+IPC_PitMax*IPC_gain);

 IPC_pitD = IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_PitMax*IPC_gain ,+IPC_PitMax*IPC_gain);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_PitMax*IPC_gain ,+IPC_PitMax*IPC_gain);

 // individual pitch command for each blade

 IPC_pit[0] = IPC_gain* (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = IPC_gain* (IPC_pitQ*cos(RotAzi+2.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*Pie/3.0f+IPC_offset));

 IPC_pit[2] = IPC_gain* (IPC_pitQ*cos(RotAzi+4.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*Pie/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC2_gain = SATURATE(IPC2_gain,0.0,1.0); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*sin(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*cos(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_TF = TFinit(IPC2FDA_TF,IPC2FDA_alp,IPC2FDA_bet,IPC2_loadsDF);

 }

 IPC2FDA_TF = TFupdate(IPC2FDA_TF,IPC2_loadsDF);

 IPC2_loadsDF = IPC2FDA_TF.outputs[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FQA_TF = TFinit(IPC2FQA_TF,IPC2FQA_alp,IPC2FQA_bet,IPC2_loadsQF);

 }

 IPC2FQA_TF = TFupdate(IPC2FQA_TF,IPC2_loadsQF);

 IPC2_loadsQF = IPC2FQA_TF.outputs[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = SATURATE(IPC2_IntYawEr, -IPC2_PitMax*IPC2_gain ,+IPC2_PitMax*IPC2_gain);

 IPC2_IntTltEr = SATURATE(IPC2_IntTltEr, -IPC2_PitMax*IPC2_gain ,+IPC2_PitMax*IPC2_gain);

 IPC2_pitD = IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = SATURATE(IPC2_pitD, -IPC2_PitMax*IPC2_gain ,+IPC2_PitMax*IPC2_gain);

 IPC2_pitQ = SATURATE(IPC2_pitQ, -IPC2_PitMax*IPC2_gain ,+IPC2_PitMax*IPC2_gain);

 // individual pitch command for each blade

 IPC2_pit[0] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)));

 IPC2_pit[2] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //============BEGIN: IPCL individual pitch control using LIDAR==============

 if (IPCL_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //IPCL_RefF = IPCL_Ref;

 IPCL_RefF = ((IPCL_Tau/SRC_DT)*IPCL_RefF + IPCL_Ref)/((IPCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // AoA error

 IPCL_DifEr[K] = IPCL_Er[K];

 IPCL_Er[K] = IPCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 IPCL_DifEr[K] = (IPCL_Er[K]-IPCL_DifEr[K])/SRC_ElapTime; // Differential error

 IPCL_IntEr[K] = IPCL_IntEr[K] + IPCL_KI*IPCL_Er[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCL_IntEr[K] = SATURATE(IPCL_IntEr[K], IPCL_PitMax*IPC_gain ,IPC_PitMax*IPC_gain);

 // PID controller demand

 IPCL_PitCom[K] = IPCL_KD*IPCL_DifEr[K] + IPCL_KP*IPCL_Er[K] + IPCL_IntEr[K];

 // individual pitch command for each blade

 IPCL_PitCom[K] = IPC_gain * IPCL_PitCom[K];

 }

 }

 //==============END: IPCL Indivudal pitch Control utilising Lidar==========

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT + IPC_pit[K] + IPC2_pit[K] + IPCL_PitCom[K]- PitCom[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = PitCom[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0*Pie/3.0) + BladeRBM[2]*sin(RotAzi+4.0*Pie/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0*Pie/3.0) + BladeRBM[2]*cos(RotAzi+4.0*Pie/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_loadsDF - SRC_YawRef; // Current yaw error

 SRC_TltEr = SRC_loadsQF - SRC_TltRef; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_PitMin*SRC_gain ,SRC_PitMax*SRC_gain);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_PitMin*SRC_gain ,SRC_PitMax*SRC_gain);

 SRC_PitComD = SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_PitMin*SRC_gain ,SRC_PitMax*SRC_gain);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_PitMin*SRC_gain ,SRC_PitMax*SRC_gain);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = SRC_gain* (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = SRC_gain* (SRC_PitComQ*cos(RotAzi+2.0*Pie/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*Pie/3.0+SRC_offset));

 SRC_dqPitCom[2] = SRC_gain* (SRC_PitComQ*cos(RotAzi+4.0*Pie/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*Pie/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 // =========BEGIN: SRC2 DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC2 control so that only fully active above rated, ramping up from 0.8 rated power

 SRC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC2_gain = SATURATE(SRC2_gain,0.0,1.0); // saturate between 0 and 1

 SRC2_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC2_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(2.0f*RotAzi) + BladeRBM[1]*sin(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*sin(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 SRC2_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(2.0f*RotAzi) + BladeRBM[1]*cos(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*cos(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 //===========BEGIN: SRC2 filters=============

 SRC2_loadsDF = SRC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRC2FDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRC2FDA_TF = TFinit(SRC2FDA_TF,SRC2FDA_alp,SRC2FDA_bet,SRC2_loadsDF);

 }

 SRC2FDA_TF = TFupdate(SRC2FDA_TF,SRC2_loadsDF);

 SRC2_loadsDF = SRC2FDA_TF.outputs[0];

 }

 SRC2_loadsQF = SRC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRC2FQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRC2FQA_TF = TFinit(SRC2FQA_TF,SRC2FQA_alp,SRC2FQA_bet,SRC2_loadsQF);

 }

 SRC2FQA_TF = TFupdate(SRC2FQA_TF,SRC2_loadsQF);

 SRC2_loadsQF = SRC2FQA_TF.outputs[0];

 }

 SRC2_YawEr = SRC2_YawRef - SRC2_loadsDF; // Current yaw error

 SRC2_TltEr = SRC2_TltRef - SRC2_loadsQF; // Current tilt error

 //===========END: SRC2 filters=============

 SRC2_IntYawEr = SRC2_IntYawEr + SRC2_KI*SRC2_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC2_IntTltEr = SRC2_IntTltEr + SRC2_KI*SRC2_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC2_IntYawEr = SATURATE(SRC2_IntYawEr, SRC2_PitMin*SRC2_gain ,SRC2_PitMax*SRC2_gain);

 SRC2_IntTltEr = SATURATE(SRC2_IntTltEr, SRC2_PitMin*SRC2_gain ,SRC2_PitMax*SRC2_gain);

 SRC2_PitComD = SRC2_KP*SRC2_YawEr + SRC2_IntYawEr; // PI controller D-axis (yaw) demand

 SRC2_PitComQ = SRC2_KP*SRC2_TltEr + SRC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC2 to degree max (gain scheduled)

 SRC2_PitComD = SATURATE(SRC2_PitComD, SRC2_PitMin*SRC2_gain ,SRC2_PitMax*SRC2_gain);

 SRC2_PitComQ = SATURATE(SRC2_PitComQ, SRC2_PitMin*SRC2_gain ,SRC2_PitMax*SRC2_gain);

 // individual pitch command for each blade

 SRC2_dqPitCom[0] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+SRC2_offset)));

 SRC2_dqPitCom[1] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+2.0f*Pie/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+2.0f*Pie/3.0f+SRC2_offset)));

 SRC2_dqPitCom[2] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+4.0f*Pie/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+4.0f*Pie/3.0f+SRC2_offset)));

 } //ENDIF for SRC2

 //===========END: SRC2 DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active when 5 degrees pitch ramping from zero pitch

 SRC_gain = (1/(5.0/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //===========BEGIN: SRCD filters=============

 for (K = 0;K<NumBl;K++){

 SRCD_RBMF[K] = BladeRBM[K];

 // Low pass filter

 if (SRCDFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDFA_TF[K] = TFinit(SRCDFA_TF[K],SRCDFA_alp,SRCDFA_bet,SRCD_RBMF[K]);

 }

 SRCDFA_TF[K] = TFupdate(SRCDFA_TF[K],SRCD_RBMF[K]);

 SRCD_RBMF[K] = SRCDFA_TF[K].outputs[0];

 }

 if (SRCDFB_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDFA_TF[K] = TFinit(SRCDFB_TF[K],SRCDFB_alp,SRCDFB_bet,SRCD_RBMF[K]);

 }

 SRCDFB_TF[K] = TFupdate(SRCDFB_TF[K],SRCD_RBMF[K]);

 SRCD_RBMF[K] = SRCDFB_TF[K].outputs[0];

 }

 }

 //---------------END: SRCD filters---------------]

 SRCD_Ref = (SRCD_RBMF[0] + SRCD_RBMF[1] + SRCD_RBMF[2]) / 3.0f;

 //SRCD_RefF = SRCD_Ref;

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCD_DifEr[K] = SRCD_Er[K];

 SRCD_Er[K] = SRCD_RefF - SRCD_RBMF[K]; // Current (proportional) error

 SRCD_DifEr[K] = (SRCD_Er[K]-SRCD_DifEr[K])/SRC_ElapTime; // Differential error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRCD_KI*SRCD_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], SRC_PitMin*SRC_gain ,SRC_PitMax*SRC_gain);

 // PID controller demand

 SRCD_PitCom[K] = SRCD_KD*SRCD_DifEr[K] + SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRC_gain * SRCD_PitCom[K];

 } //end for loop for SRCD

 } //ENDIF for SRCD

 //===========END: SRCD Smart rotor control distributed==============

 //============BEGIN: SRCL Smart rotor control using LIDAR==============

 if (SRCL_on)

 {

 SRC_gain = 1.0;//(1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //SRCL_RefF = SRCL_Ref;

 SRCL_RefF = ((SRCL_Tau/SRC_DT)*SRCL_RefF + SRCL_Ref)/((SRCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCL_DifEr[K] = SRCL_Er[K];

 SRCL_Er[K] = SRCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 SRCL_DifEr[K] = (SRCL_Er[K]-SRCL_DifEr[K])/SRC_ElapTime; // Differential error

 SRCL_IntEr[K] = SRCL_IntEr[K] + SRCL_KI*SRCL_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCL_IntEr[K] = SATURATE(SRCL_IntEr[K], SRC_PitMin*SRC_gain ,SRC_PitMax*SRC_gain);

 // PID controller demand

 SRCL_PitCom[K] = SRCL_KD*SRCL_DifEr[K] + SRCL_KP*SRCL_Er[K] + SRCL_IntEr[K];

 // individual pitch command for each blade

 SRCL_PitCom[K] = SRC_gain * SRCL_PitCom[K];

 }

 }

 //==============END: SRCL Smart Rotor Control utilising Lidar==========

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 SRC_PitRate[K] = (SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "SRC_loadsD", "FL") ;

 AddLogValue (turbine_id, "SRC_loadsQ", "FL") ;

 AddLogValue (turbine_id, "SRC_YawEr", "FL") ;

 AddLogValue (turbine_id, "SRC_TltEr", "FL") ;

 AddLogValue (turbine_id, "SRC_IntYawEr", "A") ;

 AddLogValue (turbine_id, "SRC_IntTltEr", "A") ;

 AddLogValue (turbine_id, "SRC_pitD", "A") ;

 AddLogValue (turbine_id, "SRC_pitQ", "A") ;

 AddLogValue (turbine_id, "IPC_demand", "A") ;

 AddLogValue (turbine_id, "IPC_actual", "A") ;

 }

 SetLoggingValue (turbine_id, 0, SRC_loadsD);

 SetLoggingValue (turbine_id, 1, SRC_loadsQ);

 SetLoggingValue (turbine_id, 2, SRC_YawEr);

 SetLoggingValue (turbine_id, 3, SRC_TltEr);

 SetLoggingValue (turbine_id, 4, SRC_IntYawEr);

 SetLoggingValue (turbine_id, 5, SRC_IntTltEr);

 SetLoggingValue (turbine_id, 6, SRC_PitComD); //SRC_PitComD IPC_pitD

 SetLoggingValue (turbine_id, 7, SRC_PitComQ); //SRC_PitComQ IPC_pitQ

 SetLoggingValue (turbine_id, 8, IPC_pit[0]);

 SetLoggingValue (turbine_id, 9, BlPitch[0] - (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0));

 }//end logging

 return GH_DISCON_SUCCESS;

 } //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_22Nov12.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_22Nov12.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 float static Alpha; // Current coefficient in the recursive, singl

 float static BlPitch[3]; // Current values of the blade pitch angles, r

 float static ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float static GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 float static GenTrq; // Electrical generator torque, N-m.

 float static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 float static GK; // Current value of the gain correction factor

 float static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float static LastTimePC; // Last time the pitch controller was called,

 float static LastTimeVS; // Last time the torque controller was called,

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float static Time; // Current simulation time, sec.

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 // Generally to do with pitch control

 float const PC_DT = 0.1f; // Communication interval for pitch controller

 float const PC_KI = 0.00453f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.174532925f; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 float const PC_KP = 0.0135f; // Proportional gain for pitch controller at r

 float const PC_MaxPit = 1.570796f; // Maximum pitch setting in pitch controller,

 float const PC_MaxRat = 0.1396263f; // Maximum pitch rate (in absolute value) in

 float const PC_MinPit = 0.0f; // Minimum pitch setting in pitch controller,

 float const PC_RefSpd = 122.9096f; // Desired (reference) HSS speed for pitch control

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float static PitComI; // Integral term of command pitch, rad.

 float static PitComP; // Proportional term of command pitch, rad.

 float static PitComT; // Total command pitch based on the sum of the

 float static PitRate[3]; // Pitch rates of each blade based on the curr

 float static SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 float static PCI_PwrEr; // Current power error, W

 float static PCI_IntPwrEr; // Current integral of power error

 float const PCI_KP = 0.0000001f; // Proportional gain

 float const PCI_KI = 0.00000005f; // Integral gain

 float static PCI_Prp; // Pitch command proportional term

 float static PCI_Int; // Pitch command integral term

 float static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 float static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 float static NLP_LastSpEr; // the last generator speed error

 float static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 float static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 float static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 float const NLP_KSpEr = 25; // Scale factor for the speed error

 float const NLP_KSpErDt = 10; // Scale factor for the rate of change of speed error

 float const NLP_Gain = 0.15; // Gain for pitch command

 float const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 float const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 float static NLP_PitRate; // NLP pitch rate command

 float static NLP_PitCom; // NLP pitch command

 // Generally to do with torque control

 float static TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = 70.16224f; // Transitional generator speed (HSS side), cut-in speed, rad/s

 float const VS_DT = 0.01f; // Communication interval for torque controller

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 float const VS_Rgn2K = 2.332287f; // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 float const VS_Rgn3MP = 0.0f; // Minimum pitch angle at which the torque is in above rated (0 degree)

 float const VS_RtGnSp = 122.9096f; //121.6805f; // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 float static VS_RtGnTrq; // Rated generator torque

 float static VS_SpdErr; // generator speed error for torque control

 float static VS_IntSpdErr; // integral of speed error for torque control

 float static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 float static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 float const VS_KP1 = 4200.0f; // proportional gain for torque control in A-B region

 float const VS_KI1 = 2100.0f; // integral gain for torque control in A-B region

 float const VS_KP2 = 4200.0f; // proportional gain for torque control in C-E region

 float const VS_KI2 = 2100.0f; // integral gain for torque control in C-E region

 float static VS_ComI; // integral torque demand

 float static VS_ComP; // proportional torque demand

 float static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 float static FTV_GnSp[5]; // the previous 5 values of measured generator speed

 float static FTV_GnTqF[5]; // the previous 5 values of the filtered generator torque

 float const FTV_alph[5] = {1, -3.78865457824117, 5.44068947154296, -3.50923154684766, 0.857629209879516}; // the tf denominator values

 float const FTV_beta[5] = {117.030302254623, -221.446713569963, -8.36150963845548, 221.446713569963, -108.668792616168}; // the tf numerator values

 float static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 float static FTV_GnTqLast= 0; // last generator torque for use by torque controller

 float const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Notch filter A for pitch control

 float static PCFA_GS[3]; // the previous 3 values of measured pitch angle

 float static PCFA_GSF[3]; // the previous 3 values of the filtered pitch angle

 float const PCFA_alp[3] = {1, -1.76360808709176, 0.895709450187540}; // the tf denominator values

 float const PCFA_bet[3] = {0.947854725093770, -1.76360808709176, 0.947854725093770}; // the tf numerator values

 // Notch filter B for pitch control

 float static PCFB_GS[3]; // the previous 3 values of measured generator speed

 float static PCFB_GSF[3]; // the previous 3 values of the filtered generator speed

 float const PCFB_alp[3] = {1, -1.24900532993019, 0.753772239321372}; // the tf denominator values

 float const PCFB_bet[3] = {0.876886119660686, -1.24900532993019, 0.876886119660686}; // the tf numerator values

 // Low-pass filter for pitch control

 float static PCF_GS[3]; // the previous 3 values of measured generator speed

 float static PCF_GSF[3]; // the previous 3 values of the filtered generator speed

 float const PCF_alp[3] = {1, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 float const PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 float static TVD_TowAcc; // tower acceleration fore-aft

 float static TVD_TowVel; // filtered tower fore-aft velocity

 float static TVD_PitCom; // Pitch command from tower vibration damping section

 float static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 float const TVD_KI = 0.0172; // integral gain for tower acceleration (proportional gain for velocity)

 float static TVD_TV[3]; // the previous 3 values of tower velocity

 float static TVD_TVf[3]; // the previous 3 values of the filtered tower velocity

 float const TVD_alp[3] = {1, -1.65296803652968, 0.683075832447197}; // the tf denominator values

 float const TVD_bet[3] = {2.38450103634423, -4.38377668389767, 2.02938344347096}; // the tf numerator values

 float static TVD_gain; //Gain correction factor

 float const TVD_FOFa[2] = {1, -0.818181818181818}; // the first order lag filter tf denominator values

 float const TVD_FOFb[2] = {0.0909090909090909, 0.0909090909090909}; // the first order lag filter tf numerator values

 float static TVD_P[2]; // the previous 2 values of generator power

 float static TVD_Pf[2]; // the previous 2 values of the filtered generator power

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 //flag for torsional vibration filter in torque control

 bool const FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool const PC_interVS = true; // Flag to indicate whether the pitch interaction with the torque control is on

 bool const PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 bool const PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 bool const PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flag for tower vibration damping using pitch control

 bool const TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool const NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 bool const VS_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 TVD_TowAcc = GetSwapValue(53) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // Check validity of input parameters:

 if (CornerFreq <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_KP1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KP1 must be greater than 0.\r\n");

 }

 if (VS_KI1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KI1 must be greater than 0.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPitch control debugging active, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debugging active, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitCom[0]/(GK*PC_KI); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 GenSpeedF = -1;

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if (((iStatus >= 0) || (iStatus == -1)) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_GnSp[0] = GenSpeed; // the previous 5 values of measured generator torque

 FTV_GnSp[1] = GenSpeed;

 FTV_GnSp[2] = GenSpeed;

 FTV_GnSp[3] = GenSpeed;

 FTV_GnSp[4] = GenSpeed;

 FTV_GnTqF[0] = GenSpeed; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[1] = GenSpeed;

 FTV_GnTqF[2] = GenSpeed;

 FTV_GnTqF[3] = GenSpeed;

 FTV_GnTqF[4] = GenSpeed;

 }

 FTV_GnSp[4] = FTV_GnSp[3]; // the previous 5 values of measured generator speed

 FTV_GnSp[3] = FTV_GnSp[2];

 FTV_GnSp[2] = FTV_GnSp[1];

 FTV_GnSp[1] = FTV_GnSp[0];

 FTV_GnSp[0] = GenSpeed;

 FTV_GnTqF[4] = FTV_GnTqF[3]; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[3] = FTV_GnTqF[2];

 FTV_GnTqF[2] = FTV_GnTqF[1];

 FTV_GnTqF[1] = FTV_GnTqF[0];

 FTV_GnTqF[0] = -FTV_GnTqF[1]*FTV_alph[1] -FTV_GnTqF[2]*FTV_alph[2] -FTV_GnTqF[3]*FTV_alph[3] -FTV_GnTqF[4]*FTV_alph[4] +FTV_GnSp[0]*FTV_beta[0] +FTV_GnSp[1]*FTV_beta[1] +FTV_GnSp[2]*FTV_beta[2] +FTV_GnSp[3]*FTV_beta[3] +FTV_GnSp[4]*FTV_beta[4];

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_GnTqF[0];

 // saturate to amplitude limit

 FTV_GnTqLast = MIN(MAX(FTV_GenTrqF,-FTV_GnTqMax),FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitCom[0] > VS_Rgn3MP)

 {

 // We are in region 3 - power is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to rated power (no drop in torque):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq),VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MAX(MIN(VS_ComT,VS_RtGnTrq),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,0),VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MIN(MAX(VS_ComT,0),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================END: PI TORQUE CONTROL VS=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut) {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFA_GS[1] = GenSpeedF;

 PCFA_GS[2] = GenSpeedF;

 PCFA_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFA_GSF[1] = GenSpeedF;

 PCFA_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCFA_GS[2] = PCFA_GS[1];

 PCFA_GS[1] = PCFA_GS[0];

 PCFA_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator torque

 PCFA_GSF[2] = PCFA_GSF[1];

 PCFA_GSF[1] = PCFA_GSF[0];

 PCFA_GSF[0] = -PCFA_GSF[1]*PCFA_alp[1] -PCFA_GSF[2]*PCFA_alp[2] +PCFA_GS[0]*PCFA_bet[0] +PCFA_GS[1]*PCFA_bet[1] +PCFA_GS[2]*PCFA_bet[2];

 GenSpeedF = PCFA_GSF[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFB_GS[1] = GenSpeedF;

 PCFB_GS[2] = GenSpeedF;

 PCFB_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFB_GSF[1] = GenSpeedF;

 PCFB_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCFB_GS[2] = PCFB_GS[1];

 PCFB_GS[1] = PCFB_GS[0];

 PCFB_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator speed

 PCFB_GSF[2] = PCFB_GSF[1];

 PCFB_GSF[1] = PCFB_GSF[0];

 PCFB_GSF[0] = -PCFB_GSF[1]*PCFB_alp[1] -PCFB_GSF[2]*PCFB_alp[2] +PCFB_GS[0]*PCFB_bet[0] +PCFB_GS[1]*PCFB_bet[1] +PCFB_GS[2]*PCFB_bet[2];

 GenSpeedF = PCFB_GSF[0];

 }

 // Low-pass filter

 if (PCF_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFB_GS[1] = GenSpeedF;

 PCFB_GS[2] = GenSpeedF;

 PCFB_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFB_GSF[1] = GenSpeedF;

 PCFB_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCF_GS[2] = PCF_GS[1];

 PCF_GS[1] = PCF_GS[0];

 PCF_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator speed

 PCF_GSF[2] = PCF_GSF[1];

 PCF_GSF[1] = PCF_GSF[0];

 PCF_GSF[0] = -PCF_GSF[1]*PCF_alp[1] -PCF_GSF[2]*PCF_alp[2] +PCF_GS[0]*PCF_bet[0] +PCF_GS[1]*PCF_bet[1] +PCF_GS[2]*PCF_bet[2];

 GenSpeedF = PCF_GSF[0];

 }

 //=============FILTERS END================================

 //============BEGIN: PI PITCH CONTROL==============

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PC_interVS){

 if (iStatus == 0)

 {

 PCI_IntPwrEr = 0;

 }

 SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + PCI_KI*PCI_PwrEr*ElapTime + PC_KI*SpdErr*ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, NB of blade 1 but in IPC could be different

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, (((-PC_MaxRat*ElapTime) /GK) +BlPitch[0])),(((-PC_MaxRat*ElapTime) /GK) +BlPitch[0]));

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*SpdErr;

 PCI_Int = GK*PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the gain scheduling correction factor based on the previously

 // commanded pitch angle for blade 1:

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK);

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + PC_KI*SpdErr*ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, NB of blade 1 but in IPC could be different

 IntSpdErr = MIN(MAX(IntSpdErr, (((-PC_MaxRat*ElapTime) /GK) +BlPitch[0])),(((PC_MaxRat*ElapTime) /GK) +BlPitch[0]));

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* SpdErr; // Proportional term

 PitComI = GK*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 }

 //============END: PI PITCH CONTROL==============

 //=================............................======================

 //=================++++++++++++++++++++++++++++======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == 0)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_IntTA = 0; // set the velocity (acceleration integral) term to zero initially

 TVD_TV[0] = 0; // the previous 3 values of measured tower velocity

 TVD_TV[1] = 0;

 TVD_TV[2] = 0;

 TVD_TVf[0] = 0; // the previous 3 values of the filtered tower velocity

 TVD_TVf[1] = 0;

 TVD_TVf[2] = 0;

 }

 TVD_IntTA = TVD_IntTA + TVD_TowAcc*ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 // the previous 3 values of measured tower velocities

 TVD_TV[2] = TVD_TV[1];

 TVD_TV[1] = TVD_TV[0];

 TVD_TV[0] = TVD_IntTA;

 // the previous 3 values of the filtered tower velocities

 TVD_TVf[2] = TVD_TVf[1];

 TVD_TVf[1] = TVD_TVf[0];

 TVD_TVf[0] = -TVD_TVf[1]*TVD_alp[1] -TVD_TVf[2]*TVD_alp[2] +TVD_TV[0]*TVD_bet[0] +TVD_TV[1]*TVD_bet[1] +TVD_TV[2]*TVD_bet[2];

 TVD_TowVel = TVD_TVf[0]; // tower velocity

 // filter the power output with a lag filter

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_P[0] = GenSpeed*GenTrq; // the previous 2 values of the generator power

 TVD_P[1] = GenSpeed*GenTrq;

 TVD_Pf[0] = GenSpeed*GenTrq; // the previous 2 values of the filtered generator power

 TVD_Pf[1] = GenSpeed*GenTrq;

 }

 // the previous 2 values of measured generator power

 TVD_P[1] = TVD_P[0];

 TVD_P[0] = GenSpeed*GenTrq;

 // the previous 2 values of the filtered generator power

 TVD_Pf[1] = TVD_Pf[0];

 TVD_Pf[0] = -TVD_Pf[1]*TVD_FOFa[1] +TVD_P[0]*TVD_FOFb[0] +TVD_P[1]*TVD_FOFb[1];

 // determine gain for tower vibration signal

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 TVD_gain = MIN(MAX(TVD_gain,0),1); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================++++++++++++++++++++++++++++======================

 //=================~~~~~~~~~~~~~~~~~~~~~~~~~~~~======================

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == 0)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //=================~~~~~~~~~~~~~~~~~~~~~~~~~~~~======================

 //=================++++++++++++++++++++++++++++======================

 // saturate the overall command using the pitch angle limits:

 PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit);

 // Saturate the overall command using the pitch angle

 // Saturate the overall commanded pitch using the pitch rate limit:

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT - BlPitch[K])/ElapTime; // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], -PC_MaxRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximu

 PitCom[K] = BlPitch[K] + PitRate[K]*ElapTime; // Saturate the overall command of blade K using the p

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*SpdErr/PC_RefSpd << Tab << SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===

 // Reset the value of LastTime to the current value:

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 LastTime = Time;

 if ((iStatus == -1))

 { // Last call to controller

 strcat(strMsg,"\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 SetSwapValue(65,10); // Number of variables returned for logging

 strcpy(avcOutname,"PitComT:A;PitComP:A;PitComI:A;PCI_prp:A;PCI_Int:A;IntSpdErr:A;SpdErr:A/T;GK:L;GenSpeed:A/T;GenSpeedF:A/T;");

 SetSwapValue((NINT(GetSwapValue(63))+0),PitComT);

 SetSwapValue((NINT(GetSwapValue(63))+1),PitComP);

 SetSwapValue((NINT(GetSwapValue(63))+2),PitComI);

 SetSwapValue((NINT(GetSwapValue(63))+3),PCI_Prp);

 SetSwapValue((NINT(GetSwapValue(63))+4),PCI_Int);

 SetSwapValue((NINT(GetSwapValue(63))+5),IntSpdErr);

 SetSwapValue((NINT(GetSwapValue(63))+6),SpdErr);

 SetSwapValue((NINT(GetSwapValue(63))+7),GK);

 SetSwapValue((NINT(GetSwapValue(63))+8),GenSpeed);

 SetSwapValue((NINT(GetSwapValue(63))+9),GenSpeedF);

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_27Feb13.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_27Feb13.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#include <string.h>

#include <stdio.h> //to append strings for message output

#include <iostream>

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

//initialise SwapArray for passing data to/from Bladed

float *SwapArray;

float GetSwapValue(int Index) { return(SwapArray[Index-1]); }

void SetSwapValue(int Index, float Val) { SwapArray[Index-1] = Val; }

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" void __declspec(dllexport) __cdecl DISCON (float *avrSwap,

 int *aviFail, char *accInfile, char *avcOutname, char *avcMsg)

{

 SwapArray = avrSwap; //Store the pointer

 //Make sure there's a C string terminator

 accInfile[NINT (GetSwapValue(50))] = '\0';

 avcOutname[NINT(GetSwapValue(51))] = '\0';

 avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 float static Alpha; // Current coefficient in the recursive, singl

 float static BlPitch[3]; // Current values of the blade pitch angles, r

 float static ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float static GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 float static LastGenSpd; // Previous generator speed

 float const GearRatio = 97.0f; // Gear ratio

 float static GenTrq; // Electrical generator torque, N-m.

 float static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 float static GK; // Current value of the gain correction factor

 float static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float static Time; // Current simulation time, sec.

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float const Pie = 3.14159265358979f; // pi to the precision of a float

 float static RotAzi; // rotor azimuth angle

 float static BladeRBM[3]; // load measurements on each blade

 // Generally to do with torque control

 float static LastTimeVS; // Last time the torque controller was called,

 float static VS_ElapTime; // Elapsed time since the last call to the torque controller

 float static TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = GetSwapValue(17); // Transitional generator speed (HSS side), cut-in speed, rad/s

 float const VS_DT = 0.01f; // Communication interval for torque controller

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 float const VS_Rgn2K = GetSwapValue(16); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 float const VS_Rgn3MP = 0.0f; // Minimum pitch angle at which the torque is in above rated (0 degree)

 float const VS_RtGnSp = GetSwapValue(18); // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 float static VS_RtGnTrq; // Rated generator torque

 float static VS_SpdErr; // generator speed error for torque control

 float static VS_IntSpdErr; // integral of speed error for torque control

 float static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 float static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 float const VS_KP1 = 4200.0f; // proportional gain for torque control in A-B region

 float const VS_KI1 = 2100.0f; // integral gain for torque control in A-B region

 float const VS_KP2 = 4200.0f; // proportional gain for torque control in C-E region

 float const VS_KI2 = 2100.0f; // integral gain for torque control in C-E region

 float static VS_ComI; // integral torque demand

 float static VS_ComP; // proportional torque demand

 float static VS_ComT; // Total torque demand

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 float static FTV_GnSp[5]; // the previous 5 values of measured generator speed

 float static FTV_GnTqF[5]; // the previous 5 values of the filtered generator torque

 float const FTV_alph[5] = {1.0f, -3.78865457824117f, 5.44068947154296f, -3.50923154684766f, 0.857629209879516f}; // the tf denominator values

 float const FTV_beta[5] = {117.030302254623f, -221.446713569963f, -8.36150963845548f, 221.446713569963f, -108.668792616168f}; // the tf numerator values

 float static FTV_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 float static FTV_GnTqLast= 0; // last generator torque for use by torque controller

 float const FTV_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 float static LastTimePC; // Last time the pitch controller was called,

 float static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 float const PC_DT = 0.1f; // Communication interval for pitch controller

 float const PC_KI = 0.00453f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.174532925f; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 float const PC_KP = 0.0135f; // Proportional gain for pitch controller at r

 float const PC_MinPit = GetSwapValue(6); // Minimum pitch setting in pitch controller,

 float const PC_MaxPit = GetSwapValue(7); // Maximum pitch setting in pitch controller,

 float const PC_MinRat = GetSwapValue(8); // Minimum pitch rate in rad/s

 float const PC_MaxRat = GetSwapValue(9); // Maximum pitch rate in rad/s

 float const PC_RefSpd = GetSwapValue(19); // Desired (reference) HSS speed for pitch control

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float static PitComI; // Integral term of command pitch, rad.

 float static PitComP; // Proportional term of command pitch, rad.

 float static PitComT; // Total command pitch based on the sum of the

 float static PitRate[3]; // Pitch rates of each blade based on the curr

 float static PC_SpdErr; // Current speed error, rad/s, for pitch control

 // Pitch control interaction with torque control

 float static PCI_PwrEr; // Current power error, W

 float static PCI_IntPwrEr; // Current integral of power error

 float const PCI_KP = 0.0000001f; // Proportional gain

 float const PCI_KI = 0.00000005f; // Integral gain

 float static PCI_Prp; // Pitch command proportional term

 float static PCI_Int; // Pitch command integral term

 float static PCI_GnTq; // Last generator torque

 // Pitch additional non-linear control term for gusts

 float static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 float static NLP_LastSpEr; // the last generator speed error

 float static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 float static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 float static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 float const NLP_KSpEr = 25.0f; // Scale factor for the speed error

 float const NLP_KSpErDt = 10.0f; // Scale factor for the rate of change of speed error

 float const NLP_Gain = 0.15f; // Gain for pitch command

 float const NLP_FOFa[2] = {1, 0}; // the first order lag filter tf denominator values

 float const NLP_FOFb[2] = {0.500000000000000f, 0.500000000000000f}; // the first order lag filter tf numerator values

 float static NLP_PitRate; // NLP pitch rate command

 float static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 float static PCFA_GS[3]; // the previous 3 values of measured pitch angle

 float static PCFA_GSF[3]; // the previous 3 values of the filtered pitch angle

 float const PCFA_alp[3] = {1.000000000000000f, -1.763608087091757f, 0.895709450187540f}; // the tf denominator values

 float const PCFA_bet[3] = {0.947854725093770f, -1.763608087091757f, 0.947854725093770f}; // the tf numerator values

 // Notch filter B for pitch control

 float static PCFB_GS[3]; // the previous 3 values of measured generator speed

 float static PCFB_GSF[3]; // the previous 3 values of the filtered generator speed

 float const PCFB_alp[3] = {1.000000000000000f, -1.249005329930186f, 0.753772239321372f}; // the tf denominator values

 float const PCFB_bet[3] = {0.876886119660686f, -1.249005329930186f, 0.876886119660686f}; // the tf numerator values

 // Low-pass filter for pitch control

 float static PCF_GS[3]; // the previous 3 values of measured generator speed

 float static PCF_GSF[3]; // the previous 3 values of the filtered generator speed

 float const PCF_alp[3] = {1.000000000000000f, -0.666666666666667f, 0.111111111111111f}; // the tf denominator values

 float const PCF_bet[3] = {0.111111111111111f, 0.222222222222222f, 0.111111111111111f}; // the tf numerator values

 // Tower vibration damping

 float static TVD_TowAcc; // tower acceleration fore-aft

 float static TVD_TowVel; // filtered tower fore-aft velocity

 float static TVD_PitCom; // Pitch command from tower vibration damping section

 float static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 float const TVD_KI = 0.0172f; // integral gain for tower acceleration (proportional gain for velocity)

 float static TVD_TV[3]; // the previous 3 values of tower velocity

 float static TVD_TVf[3]; // the previous 3 values of the filtered tower velocity

 float const TVD_alp[3] = {1.0f, -1.65296803652968f, 0.683075832447197f}; // the tf denominator values

 float const TVD_bet[3] = {2.38450103634423f, -4.38377668389767f, 2.02938344347096f}; // the tf numerator values

 float static TVD_gain; //Gain correction factor

 float const TVD_FOFa[2] = {1.0f, -0.818181818181818f}; // the first order lag filter tf denominator values

 float const TVD_FOFb[2] = {0.0909090909090909f, 0.0909090909090909f}; // the first order lag filter tf numerator values

 float static TVD_P[2]; // the previous 2 values of generator power

 float static TVD_Pf[2]; // the previous 2 values of the filtered generator power

 // Individual pitch control

 float const IPC_KP = 0.0f; // proportional gain

 float const IPC_KI = 0.00000001f; // integral gain

 float const IPC_PitMax = 8.0f/R2D; // max angle due to IPC control

 float static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 float static IPC_loadsD; // load measurements in D-axis

 float static IPC_loadsQ; // load measurements in Q-axis

 float static IPC_loadsDF; // Filtered yaw moment

 float static IPC_loadsQF; // Filtered tilt moment

 float static IPC_pitD; // D-axis pitch demand

 float static IPC_pitQ; // Q-axis pitch demand

 float static IPC_pit[3]; // Individual pitch demands

 float static IPC_YawRef = 0.0f; // Desired yaw moment

 float static IPC_TltRef = 0.0f; // Desired tilt moment

 float static IPC_YawEr; // Yaw (D-axis) moment error

 float static IPC_TltEr; // Tilt (Q-axis) moment error

 float static IPC_IntYawEr; // Integral of yaw moment error

 float static IPC_IntTltEr; // Integral of tilt moment error

 float static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 float static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 float static IPCFDA_YE[3]; // the previous 3 values of measured yaw error

 float static IPCFDA_YEF[3]; // the previous 3 values of the filtered yaw error

 float const IPCFDA_alp[3] = {1.000000000000000f, -1.761677196131134f, 0.775876635842114f}; // the tf denominator values

 float const IPCFDA_bet[3] = {0.887938317921057f, -1.761677196131134f, 0.887938317921057f}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 float static IPCFQA_TE[3]; // the previous 3 values of measured tilt error

 float static IPCFQA_TEF[3]; // the previous 3 values of the filtered tilt error

 float const IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 float const IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Individual pitch control 2nd harmonic

 float const IPC2_PitMax = 2.5f/R2D; // max angle due to IPC2 control

 float const IPC2_KP = 0.0f; // proportional gain

 float const IPC2_KI = 0.000000002f; // integral gain

 float static IPC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static IPC2_loadsD; // load measurements in D-axis

 float static IPC2_loadsQ; // load measurements in Q-axis

 float static IPC2_loadsDF; // Filtered yaw moment

 float static IPC2_loadsQF; // Filtered tilt moment

 float static IPC2_pitD; // D-axis pitch demand

 float static IPC2_pitQ; // Q-axis pitch demand

 float static IPC2_pit[3]; // Individual pitch demands

 float static IPC2_YawRef = 0.0f; // Desired yaw moment

 float static IPC2_TltRef = 0.0f; // Desired tilt moment

 float static IPC2_YawEr; // Yaw (D-axis) moment error

 float static IPC2_TltEr; // Tilt (Q-axis) moment error

 float static IPC2_IntYawEr; // Integral of yaw moment error

 float static IPC2_IntTltEr; // Integral of tilt moment error

 float static IPC2_GK[3]; // Gain correction factor for each blade based on current pitch

 float static IPC2_gain; // gain to phase out IPC2 below rated

 // Notch filter for individual pitch control yaw error D

 float static IPC2FDA_YE[3]; // the previous 3 values of measured yaw error

 float static IPC2FDA_YEF[3]; // the previous 3 values of the filtered yaw error

 float const IPC2FDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 float const IPC2FDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q

 float static IPC2FQA_TE[3]; // the previous 3 values of measured tilt error

 float static IPC2FQA_TEF[3]; // the previous 3 values of the filtered tilt error

 float const IPC2FQA_alp[3] = {IPC2FDA_alp[0], IPC2FDA_alp[1], IPC2FDA_alp[2]}; // the tf denominator values

 float const IPC2FQA_bet[3] = {IPC2FDA_bet[0], IPC2FDA_bet[1], IPC2FDA_bet[2]}; // the tf numerator values

 // IPC utilising angle of attack measurements

 float static IPCL_Ref; // Reference angle of attack

 float static IPCL_RefF; // Filtered reference (regressive filter)

 float const IPCL_Tau = 1.0; // Regressive filter time constant

 float static IPCL_IntEr[3]; // Integral error for each of the flaps

 float static IPCL_PitCom[3]; // Pitch command for each of the flaps

 float const IPCL_KD = 0.0; // Differential gain

 float const IPCL_KP = -1.0; // Proportional gain

 float const IPCL_KI = 0.0; // Integral gain

 float static IPCL_DifEr[3]; // Differential error

 float static IPCL_Er[3]; // Current error

 float const IPCL_PitMax = 2.5f/R2D; // max angle due to IPC2 control

 // Smart Rotor Control (dq)

 float static LastTimeSRC; // Time of last call to SRC

 float static SRC_ElapTime; // Elapsed time since last call to SRC controller

 float static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 float const SRC_PitMax = 9.99f/R2D; // Max pitch in degrees converted to radians

 float const SRC_PitMin = -9.99f/R2D; // Max pitch in degrees converted to radians

 float const SRC_PitMaxRat = 40.0f/R2D; // Max pitch rate degress/s converted to rad/s

 float const SRC_DT = 0.1f; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 float static SRC_load[3]; // load measurements on each blade

 float const SRC_KP = 0.0f; // proportional gain

 float const SRC_KI = 0.0000001f;// integral gain

 float static SRC_Pit[3]; // angle of flaps

 float static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static SRC_loadsD; // load measurements in D-axis

 float static SRC_loadsQ; // load measurements in Q-axis

 float static SRC_loadsDF; // Filtered yaw moment

 float static SRC_loadsQF; // Filtered tilt moment

 float static SRC_PitComD; // D-axis pitch demand

 float static SRC_PitComQ; // Q-axis pitch demand

 float static SRC_PitCom[3]; // Individual pitch demands

 float static SRC_PitRate[3]; // Demanded pitch rate for each blade

 float static SRC_YawRef = 0.0f; // Desired yaw moment

 float static SRC_TltRef = 0.0f; // Desired tilt moment

 float static SRC_YawEr; // Yaw (D-axis) moment error

 float static SRC_TltEr; // Tilt (Q-axis) moment error

 float static SRC_IntYawEr; // Integral of yaw moment error

 float static SRC_IntTltEr; // Integral of tilt moment error

 float static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 float static SRC_gain; // gain to phase out SRC below rated

 float static SRC_dqPitCom[3];

 // Notch filter for SRC yaw error D

 float static SRCFDA_YE[3]; // the previous 3 values of measured yaw error

 float static SRCFDA_YEF[3]; // the previous 3 values of the filtered yaw error

 float const SRCFDA_alp[3] = {1.000000000000000f, -1.361157014197597f, 0.463187104324829f}; // the tf denominator values

 float const SRCFDA_bet[3] = {0.731593552162415f, -1.361157014197597f, 0.731593552162415f}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 float static SRCFQA_TE[3]; // the previous 3 values of measured tilt error

 float static SRCFQA_TEF[3]; // the previous 3 values of the filtered tilt error

 float const SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 float const SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart Rotor Control (2P dq)

 float const SRC2_PitMax = 7.5f/R2D; // Max pitch in degrees converted to radians

 float const SRC2_PitMin = -7.5f/R2D; // Max pitch in degrees converted to radians

 float const SRC2_PitMaxRat = 7.5f/R2D; // Max pitch rate degress/s converted to rad/s

 float const SRC2_KP = 0.0f; // proportional gain

 float const SRC2_KI = 0.0000002f;// integral gain

 float static SRC2_offset; // offset (omega T) to rotor azimuth for time delays etc.

 float static SRC2_loadsD; // load measurements in D-axis

 float static SRC2_loadsQ; // load measurements in Q-axis

 float static SRC2_loadsDF; // Filtered yaw moment

 float static SRC2_loadsQF; // Filtered tilt moment

 float static SRC2_PitComD; // D-axis pitch demand

 float static SRC2_PitComQ; // Q-axis pitch demand

 float static SRC2_PitCom[3]; // Individual pitch demands

 float static SRC2_PitRate[3]; // Demanded pitch rate for each blade

 float static SRC2_YawRef = 0.0f; // Desired yaw moment

 float static SRC2_TltRef = 0.0f; // Desired tilt moment

 float static SRC2_YawEr; // Yaw (D-axis) moment error

 float static SRC2_TltEr; // Tilt (Q-axis) moment error

 float static SRC2_IntYawEr; // Integral of yaw moment error

 float static SRC2_IntTltEr; // Integral of tilt moment error

 float static SRC2_GK[3]; // Gain correction factor for each blade based on current pitch

 float static SRC2_gain; // gain to phase out SRC2 below rated

 float static SRC2_dqPitCom[3];

 // Notch filter for SRC2 yaw error D

 float static SRC2FDA_YE[3]; // the previous 3 values of measured yaw error

 float static SRC2FDA_YEF[3]; // the previous 3 values of the filtered yaw error

 float const SRC2FDA_alp[3] = {1.000000000000000f, -1.361157014197597f, 0.463187104324829f}; // the tf denominator values

 float const SRC2FDA_bet[3] = {0.731593552162415f, -1.361157014197597f, 0.731593552162415f}; // the tf numerator values

 // Notch filter for SRC2 tilt error Q

 float static SRC2FQA_TE[3]; // the previous 3 values of measured tilt error

 float static SRC2FQA_TEF[3]; // the previous 3 values of the filtered tilt error

 float const SRC2FQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 float const SRC2FQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 float static SRCD_Er[3]; // Current error for each blade

 float static SRCD_IntEr[3]; // Integral error for each blade

 float const SRCD_KI = 0.00000000f; // Integral gain

 float const SRCD_KP = 0.00000005f; // Proportional gain

 float const SRCD_KD = 0.00000000f; // Differential gain

 float static SRCD_Ref; // Reference (collective) angle for flaps

 float static SRCD_RefF; // Reference (collective) angle for flaps filtered

 float static SRCD_RBMF[3]; // Filtered RBM

 float const SRCD_Tau = 5.0f; // Autoregressive filter

 float static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 float static SRCD_PitCom[3]; // Commanded angle from SRCD

 float static SRCD_DifEr[3]; // Differential error if Kd in use

 // low-pass filter for blade RBM signals

 float static SRCDFA_RBM[9]; // the previous 3 values of measured blade RBMs

 float static SRCDFA_RBMF[9]; // the previous 3 values of the filtered blade RBMs

 float const SRCDFA_alp[3] = {1.000000000000000, -0.666666666666667, 0.0}; // the tf denominator values

 float const SRCDFA_bet[3] = {0.166666666666667, 0.166666666666667, 0.0}; // the tf numerator values

 // notch filter for blade RBM signals

 float static SRCDFB_RBM[9]; // the previous 3 values of measured blade RBMs

 float static SRCDFB_RBMF[9]; // the previous 3 values of the filtered blade RBMs

 float const SRCDFB_alp[3] = {1.000000000000000, -0.977076510866329, 0.238669627021680}; // the tf denominator values

 float const SRCDFB_bet[3] = {0.619334813510840, -0.977076510866329, 0.619334813510840}; // the tf numerator values

 // LIDAR beams detection unit, blade mounted

 int LIDAR_beams; // Loops through LIDAR beams

 int LIDAR_focals; // Loops through focal points of LIDAR beams

 int const LIDAR_NL = GetSwapValue(154); // Number of effectively independent Lidar beams

 int const LIDAR_NF = GetSwapValue(155); // Number of focal points

 int const LIDAR_L = GetSwapValue(156); // Record number for start of Lidar data

 float const LIDAR_XRise[6] = {0.0000, 90.0/R2D, 0.0000, 90.0/R2D, 0.0000, 90.0/R2D}; // Angular separtaion between x-axis and beam

 float const LIDAR_XRot[6] = {0.0000, 90.0/R2D, 0.0000, 90.0/R2D, 0.0000, 90.0/R2D}; // Azimuth angle about x-axis

 float const LIDAR_Focus[6] = {0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001}; // Focal point in metres of LIDAR

 float static LIDAR_WS[6]; // Velocity percieved by each LIDAR focal point

 float const LIDAR_DT = 0.001; // Communication interval with LIDAR

 float static LastTimeLIDAR; // Last call to LIDAR

 float static LIDAR_AoA[3]; // Angle of attack calculated from LIDAR

 // Smart Rotor Control utilising angle of attack measurements

 float static SRCL_Ref; // Reference angle of attack

 float static SRCL_RefF; // Filtered reference (regressive filter)

 float const SRCL_Tau = 1.0; // Regressive filter time constant

 float static SRCL_IntEr[3]; // Integral error for each of the flaps

 float static SRCL_PitCom[3]; // Pitch command for each of the flaps

 float const SRCL_KD = 0.0; // Differential gain

 float const SRCL_KP = 0.1; // Proportional gain

 float const SRCL_KI = 0.0; // Integral gain

 float static SRCL_DifEr[3]; // Differential error

 float static SRCL_Er[3]; // Current error

 // General debugging & messaging values

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // flag for external Bladed data logging

 bool const DataLog_on = false;

 // flag for torque controller

 bool const VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 bool const FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool const PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 bool const PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 bool const PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 bool const PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for individual pitch control

 bool const IPC_on = false; // Flag to indicate whether IPC is on

 bool const IPCFDA_on = false; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const IPCFQA_on = false; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool const IPC2_on = false; // Flag to indicate whether IPC2 is on

 bool const IPC2FDA_on = false; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool const IPC2FQA_on = false; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 //flag for tower vibration damping using pitch control

 bool const TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 //flag for non-linear pitch term for gusts

 bool const NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool const SRC_on = true; // Flag to indicate whether smart rotor control is active

 bool const SRCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const SRCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool const SRC2_on = true; // Flag to indicate whether smart rotor control is active

 bool const SRC2FDA_on = false; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool const SRC2FQA_on = false; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool const SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 bool const SRCDFA_on = false; // Flag to indicate whether distributed smart rotor control is active

 bool const SRCDFB_on = false; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool const LIDAR_on = true; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool const SRCL_on = true;

 //flag for indivudal pitch control utilising LIDAR

 bool const IPCL_on = false;

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 bool const VS_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = NINT (GetSwapValue(1));

 NumBl = NINT(GetSwapValue(61)) ;

 BlPitch[0] = GetSwapValue(4) ;

 BlPitch[1] = GetSwapValue(33) ;

 BlPitch[2] = GetSwapValue(34) ;

 GenSpeed = GetSwapValue(20) ;

 HorWindV = GetSwapValue(27) ;

 Time = GetSwapValue(2) ;

 TVD_TowAcc = GetSwapValue(53) ;

 BladeRBM[0] = GetSwapValue(30) ;

 BladeRBM[1] = GetSwapValue(31) ;

 BladeRBM[2] = GetSwapValue(32) ;

 RotAzi = GetSwapValue(60) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCentral and distributed AFC active\r\n");

 }

 if (SRCL_on == true && LIDAR_on == false) {

 *aviFail = -1;

 strcat(strMsg,"\r\nSRCL requires LIDAR_on\r\n");

 }

 if (IPCL_on == true && LIDAR_on == false) {

 *aviFail = -1;

 strcat(strMsg,"\r\nIPCL requires LIDAR_on\r\n");

 }

 if (CornerFreq <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 }

 if (VS_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 }

 if (VS_CtInSp < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 }

 if (VS_KP1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KP1 must be greater than 0.\r\n");

 }

 if (VS_KI1 < 0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_KI1 must be greater than 0.\r\n");

 }

 if (VS_SlPc <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 }

 if (VS_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 }

 if (VS_RtPwr < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 }

 if (VS_Rgn2K < 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 *aviFail = -1;

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 }

 if (PC_DT <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 }

 if (PC_KI <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 }

 if (PC_KK <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 }

 if (PC_RefSpd <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 }

 if (PC_MaxRat <= 0.0) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 }

 if (PC_MinPit >= PC_MaxPit) {

 *aviFail = -1;

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 }

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (IPC_on == true)

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 if (IPC2_on == true)

 strcat(strMsg,"IPC2 ");

 if (IPC2FDA_on == true)

 strcat(strMsg,"IPC2FDA ");

 if (IPC2FQA_on == true)

 strcat(strMsg,"IPC2FQA ");

 if (IPCL_on == true)

 strcat(strMsg,"IPCL ");

 if (TVD_on == true)

 strcat(strMsg,"TVD ");

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 strcat(strMsg,"SRC ");

 if (SRC2_on == true)

 strcat(strMsg,"SRC2 ");

 if (SRCD_on == true)

 strcat(strMsg,"SRCD ");

 if (SRCDFA_on == true)

 strcat(strMsg,"SRCDF ");

 if (SRCDFB_on == true)

 strcat(strMsg,"SRCDF2 ");

 if (LIDAR_on == true)

 strcat(strMsg,"LIDAR ");

 if (SRCL_on == true)

 strcat(strMsg,"SRCL ");

 strcat(strMsg,"\r\n");

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT/(GK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 GenSpeedF = -1.0f;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBM[0] + BladeRBM[1] + BladeRBM[2]) / 3.0f;

 // Set LIDAR beams angles and focal points

 for (LIDAR_beams=0;LIDAR_beams<LIDAR_NL;LIDAR_beams++)

 {

 SetSwapValue(LIDAR_L+LIDAR_beams , LIDAR_XRise[LIDAR_beams]); // angular separation from the x axis

 SetSwapValue(LIDAR_L+LIDAR_NL+LIDAR_beams , LIDAR_XRot[LIDAR_beams]); // azimuthal direction around the x axis

 //strcat(strMsg," beams");

 for (LIDAR_focals=0;LIDAR_focals<LIDAR_NF;LIDAR_focals++)

 {

 //strcat(strMsg," focus");

 SetSwapValue(LIDAR_L+2*LIDAR_NL+LIDAR_beams+LIDAR_focals , LIDAR_Focus[LIDAR_focals]); // Distance of focal point

 }

 }

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if (((iStatus >= 0) || (iStatus == -1)) && (*aviFail >= 0)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A

 // of Bladed User's Guide):

 if (NINT(GetSwapValue(10)) != 0) // TRUE if a pitch angle actuator hasn't been requested

 {

 *aviFail = -1 ;

 strcat(strMsg,"\r\nPitch angle actuator not requested.\r\n");

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetSwapValue(36,0.0); // Shaft brake status: 0=off

 SetSwapValue(41,0.0); // Demanded yaw actuator torque

 SetSwapValue(46,0.0); // Demanded pitch rate (Collective pitch)

 SetSwapValue(48,0.0); // Demanded nacelle yaw rate

 SetSwapValue(72,0.0); // Generator startup resistance

 SetSwapValue(79,0.0); // Request for loads: 0=none

 SetSwapValue(80,0.0); // Variable slip current status

 SetSwapValue(81,0.0); // Variable slip current demand

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetSwapValue(35,1.0); // Generator contactor status: 1=main (high speed) variable-speed generator

 SetSwapValue(56,0.0); // Torque override: 0=yes

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetSwapValue(55,0.0); // Pitch override: 0=yes

 SetSwapValue(42,PitCom[0]); // Use the command angles of all blades if using individual pitch

 SetSwapValue(43,PitCom[1]); // "

 SetSwapValue(44,PitCom[2]); // "

 SetSwapValue(45,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 // Smart Rotor control signals

 SetSwapValue(38,SRC_PitCom[0]);

 SetSwapValue(39,SRC_PitCom[1]);

 SetSwapValue(40,SRC_PitCom[2]);

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: LIDAR wind speed module==========

 if (LIDAR_on)

 {

 if ((Time*OnePlusEps - LastTimeLIDAR) >= LIDAR_DT)

 {

 //Get LIDAR wind speeds

 for (LIDAR_beams=0;LIDAR_beams<LIDAR_NL;LIDAR_beams++){

 for (LIDAR_focals=0;LIDAR_focals<LIDAR_NF;LIDAR_focals++){

 LIDAR_WS[LIDAR_beams+LIDAR_focals] = GetSwapValue(LIDAR_L+2*LIDAR_NL+LIDAR_NL*LIDAR_NF+LIDAR_beams*LIDAR_NF+LIDAR_focals) ;

 }

 }

 //Determine Angle of Attack from wind speeds, ignoring twist of blade

 LIDAR_AoA[0] = atan(LIDAR_WS[0]/LIDAR_WS[1]);

 LIDAR_AoA[1] = atan(LIDAR_WS[2]/LIDAR_WS[3]);

 LIDAR_AoA[2] = atan(LIDAR_WS[4]/LIDAR_WS[5]);

 LastTimeLIDAR = Time;

 }

 }

 //======END: LIDAR wind speed module==========

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV_GnSp[0] = GenSpeed; // the previous 5 values of measured generator torque

 FTV_GnSp[1] = GenSpeed;

 FTV_GnSp[2] = GenSpeed;

 FTV_GnSp[3] = GenSpeed;

 FTV_GnSp[4] = GenSpeed;

 FTV_GnTqF[0] = GenSpeed; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[1] = GenSpeed;

 FTV_GnTqF[2] = GenSpeed;

 FTV_GnTqF[3] = GenSpeed;

 FTV_GnTqF[4] = GenSpeed;

 }

 FTV_GnSp[4] = FTV_GnSp[3]; // the previous 5 values of measured generator speed

 FTV_GnSp[3] = FTV_GnSp[2];

 FTV_GnSp[2] = FTV_GnSp[1];

 FTV_GnSp[1] = FTV_GnSp[0];

 FTV_GnSp[0] = GenSpeed;

 FTV_GnTqF[4] = FTV_GnTqF[3]; // the previous 5 values of the filtered generator torque

 FTV_GnTqF[3] = FTV_GnTqF[2];

 FTV_GnTqF[2] = FTV_GnTqF[1];

 FTV_GnTqF[1] = FTV_GnTqF[0];

 FTV_GnTqF[0] = -FTV_GnTqF[1]*FTV_alph[1] -FTV_GnTqF[2]*FTV_alph[2] -FTV_GnTqF[3]*FTV_alph[3] -FTV_GnTqF[4]*FTV_alph[4] +FTV_GnSp[0]*FTV_beta[0] +FTV_GnSp[1]*FTV_beta[1] +FTV_GnSp[2]*FTV_beta[2] +FTV_GnSp[3]*FTV_beta[3] +FTV_GnSp[4]*FTV_beta[4];

 FTV_GnTqLast = FTV_GenTrqF; //set last torque for controller to use this round

 FTV_GenTrqF = FTV_GnTqF[0];

 // saturate to amplitude limit

 FTV_GnTqLast = MIN(MAX(FTV_GenTrqF,-FTV_GnTqMax),FTV_GnTqMax);

 GenTrq = GenTrq + FTV_GnTqLast;

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > 0.0f)

 {

 // We are in region 3 - power is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,LastGenTrq),VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 if (VSConstP_on == true){

 // and saturate to rated power (with no drop in power allowed):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq*LastGenSpd/GenSpeed),VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = MIN(MAX(VS_ComT,LastGenTrq),VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,VS_GnTrq2),VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MAX(MIN(VS_ComT,VS_RtGnTrq),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = MIN(MAX(VS_IntSpdErr,0.0f),VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI + FTV_GnTqLast;

 // and saturate to Cp tracking curve:

 GenTrq = MIN(MAX(VS_ComT,0),GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 //===================END: PI TORQUE CONTROL VS=======================

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetSwapValue(47,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut) {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFA_GS[1] = GenSpeedF;

 PCFA_GS[2] = GenSpeedF;

 PCFA_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFA_GSF[1] = GenSpeedF;

 PCFA_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCFA_GS[2] = PCFA_GS[1];

 PCFA_GS[1] = PCFA_GS[0];

 PCFA_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator torque

 PCFA_GSF[2] = PCFA_GSF[1];

 PCFA_GSF[1] = PCFA_GSF[0];

 PCFA_GSF[0] = -PCFA_GSF[1]*PCFA_alp[1] -PCFA_GSF[2]*PCFA_alp[2] +PCFA_GS[0]*PCFA_bet[0] +PCFA_GS[1]*PCFA_bet[1] +PCFA_GS[2]*PCFA_bet[2];

 GenSpeedF = PCFA_GSF[0];

 }

 // Notch filter B

 if (PCFA_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFB_GS[1] = GenSpeedF;

 PCFB_GS[2] = GenSpeedF;

 PCFB_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFB_GSF[1] = GenSpeedF;

 PCFB_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCFB_GS[2] = PCFB_GS[1];

 PCFB_GS[1] = PCFB_GS[0];

 PCFB_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator speed

 PCFB_GSF[2] = PCFB_GSF[1];

 PCFB_GSF[1] = PCFB_GSF[0];

 PCFB_GSF[0] = -PCFB_GSF[1]*PCFB_alp[1] -PCFB_GSF[2]*PCFB_alp[2] +PCFB_GS[0]*PCFB_bet[0] +PCFB_GS[1]*PCFB_bet[1] +PCFB_GS[2]*PCFB_bet[2];

 GenSpeedF = PCFB_GSF[0];

 }

 // Low-pass filter

 if (PCF_on){

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_GS[0] = GenSpeedF; // the previous 3 values of measured pitch angle

 PCFB_GS[1] = GenSpeedF;

 PCFB_GS[2] = GenSpeedF;

 PCFB_GSF[0] = GenSpeedF; // the previous 3 values of the filtered pitch angle

 PCFB_GSF[1] = GenSpeedF;

 PCFB_GSF[2] = GenSpeedF;

 }

 // the previous 3 values of measured generator speed

 PCF_GS[2] = PCF_GS[1];

 PCF_GS[1] = PCF_GS[0];

 PCF_GS[0] = GenSpeedF;

 // the previous 3 values of the filtered generator speed

 PCF_GSF[2] = PCF_GSF[1];

 PCF_GSF[1] = PCF_GSF[0];

 PCF_GSF[0] = -PCF_GSF[1]*PCF_alp[1] -PCF_GSF[2]*PCF_alp[2] +PCF_GS[0]*PCF_bet[0] +PCF_GS[1]*PCF_bet[1] +PCF_GS[2]*PCF_bet[2];

 GenSpeedF = PCF_GSF[0];

 }

 //=============END: generator speed FILTERS================================

 //=============BEGIN: PITCH CONTROL

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 if (iStatus == 0)

 {

 PCI_IntPwrEr = 0;

 }

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + PCI_KI*PCI_PwrEr*PC_ElapTime + PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = MIN(MAX(PCI_IntPwrEr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = MIN(MAX(PCI_IntPwrEr, (((PC_MinRat*PC_ElapTime) +PitComT) /GK)),(((PC_MaxRat*PC_ElapTime) +PitComT)/GK));

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = GK*PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit),PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = MIN(MAX(IntSpdErr, (((PC_MinRat*PC_ElapTime) +PitComT) /GK)),(((PC_MaxRat*PC_ElapTime) +PitComT)/GK));

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = GK*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 //filter tower velocity signal

 if (iStatus == 0)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_IntTA = 0; // set the velocity (acceleration integral) term to zero initially

 TVD_TV[0] = 0; // the previous 3 values of measured tower velocity

 TVD_TV[1] = 0;

 TVD_TV[2] = 0;

 TVD_TVf[0] = 0; // the previous 3 values of the filtered tower velocity

 TVD_TVf[1] = 0;

 TVD_TVf[2] = 0;

 }

 TVD_IntTA = TVD_IntTA + TVD_TowAcc*PC_ElapTime; // Current integral of acceleration error w.r.t. time (velocity)

 // the previous 3 values of measured tower velocities

 TVD_TV[2] = TVD_TV[1];

 TVD_TV[1] = TVD_TV[0];

 TVD_TV[0] = TVD_IntTA;

 // the previous 3 values of the filtered tower velocities

 TVD_TVf[2] = TVD_TVf[1];

 TVD_TVf[1] = TVD_TVf[0];

 TVD_TVf[0] = -TVD_TVf[1]*TVD_alp[1] -TVD_TVf[2]*TVD_alp[2] +TVD_TV[0]*TVD_bet[0] +TVD_TV[1]*TVD_bet[1] +TVD_TV[2]*TVD_bet[2];

 TVD_TowVel = TVD_TVf[0]; // tower velocity

 // filter the power output with a lag filter

 if (iStatus == 0)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_P[0] = GenSpeed*GenTrq; // the previous 2 values of the generator power

 TVD_P[1] = GenSpeed*GenTrq;

 TVD_Pf[0] = GenSpeed*GenTrq; // the previous 2 values of the filtered generator power

 TVD_Pf[1] = GenSpeed*GenTrq;

 }

 // the previous 2 values of measured generator power

 TVD_P[1] = TVD_P[0];

 TVD_P[0] = GenSpeed*GenTrq;

 // the previous 2 values of the filtered generator power

 TVD_Pf[1] = TVD_Pf[0];

 TVD_Pf[0] = -TVD_Pf[1]*TVD_FOFa[1] +TVD_P[0]*TVD_FOFb[0] +TVD_P[1]*TVD_FOFb[1];

 // determine gain for tower vibration signal

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 TVD_gain = MIN(MAX(TVD_gain,0),1); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = TVD_gain*TVD_KI*TVD_TowVel;

 // pitch command with tower vibration damping

 PitComT = PitComT + TVD_PitCom;

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == 0)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // Pitch command with non-linear pitch gust term

 PitComT = PitComT + NLP_PitCom;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC_gain = MIN(MAX(IPC_gain,0),1); // saturate between 0 and 1

 IPC_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*sin(RotAzi+4.0f*Pie/3.0f));

 IPC_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*cos(RotAzi+4.0f*Pie/3.0f));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_YE[0] = IPC_loadsDF; // the previous 3 values of measured yaw error moment

 IPCFDA_YE[1] = IPC_loadsDF;

 IPCFDA_YE[2] = IPC_loadsDF;

 IPCFDA_YEF[0] = IPC_loadsDF; // the previous 3 values of the filtered yaw error moment

 IPCFDA_YEF[1] = IPC_loadsDF;

 IPCFDA_YEF[2] = IPC_loadsDF;

 }

 // the previous 3 values of measured yaw error moment

 IPCFDA_YE[2] = IPCFDA_YE[1];

 IPCFDA_YE[1] = IPCFDA_YE[0];

 IPCFDA_YE[0] = IPC_loadsDF;

 // the previous 3 values of the filtered yaw error moment

 IPCFDA_YEF[2] = IPCFDA_YEF[1];

 IPCFDA_YEF[1] = IPCFDA_YEF[0];

 IPCFDA_YEF[0] = -IPCFDA_YEF[1]*IPCFDA_alp[1] -IPCFDA_YEF[2]*IPCFDA_alp[2] +IPCFDA_YE[0]*IPCFDA_bet[0] +IPCFDA_YE[1]*IPCFDA_bet[1] +IPCFDA_YE[2]*IPCFDA_bet[2];

 IPC_loadsDF = IPCFDA_YEF[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TE[0] = IPC_loadsQ; // the previous 3 values of measured Tlt moment

 IPCFQA_TE[1] = IPC_loadsQ;

 IPCFQA_TE[2] = IPC_loadsQ;

 IPCFQA_TEF[0] = IPC_loadsQ; // the previous 3 values of the filtered Tlt moment

 IPCFQA_TEF[1] = IPC_loadsQ;

 IPCFQA_TEF[2] = IPC_loadsQ;

 }

 // the previous 3 values of measured Tlt moment

 IPCFQA_TE[2] = IPCFQA_TE[1];

 IPCFQA_TE[1] = IPCFQA_TE[0];

 IPCFQA_TE[0] = IPC_loadsQ;

 // the previous 3 values of the filtered Tlt moment

 IPCFQA_TEF[2] = IPCFQA_TEF[1];

 IPCFQA_TEF[1] = IPCFQA_TEF[0];

 IPCFQA_TEF[0] = -IPCFQA_TEF[1]*IPCFQA_alp[1] -IPCFQA_TEF[2]*IPCFQA_alp[2] +IPCFQA_TE[0]*IPCFQA_bet[0] +IPCFQA_TE[1]*IPCFQA_bet[1] +IPCFQA_TE[2]*IPCFQA_bet[2];

 IPC_loadsQF = IPCFQA_TEF[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = MIN(MAX(IPC_IntYawEr, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_IntTltEr = MIN(MAX(IPC_IntTltEr, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_pitD = IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = MIN(MAX(IPC_pitD, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 IPC_pitQ = MIN(MAX(IPC_pitQ, -IPC_PitMax*IPC_gain),+IPC_PitMax*IPC_gain);

 // individual pitch command for each blade

 IPC_pit[0] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+2.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*Pie/3.0f+IPC_offset));

 IPC_pit[2] = IPC_gain*GK * (IPC_pitQ*cos(RotAzi+4.0f*Pie/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*Pie/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 // =========BEGIN: IPC2 Individual Pitch control 2nd harmonic=====================

 // Individual pitch control for second harmonic with filters at 1P on D-Q axis loads

 if (IPC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC2_gain = MIN(MAX(IPC2_gain,0),1); // saturate between 0 and 1

 IPC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC2_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*sin(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 IPC2_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*cos(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 //===========BEGIN: IPC2 filters=============

 IPC2_loadsDF = IPC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPC2FDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPC2FDA_YE[0] = IPC2_loadsDF; // the previous 3 values of measured yaw error moment

 IPC2FDA_YE[1] = IPC2_loadsDF;

 IPC2FDA_YE[2] = IPC2_loadsDF;

 IPC2FDA_YEF[0] = IPC2_loadsDF; // the previous 3 values of the filtered yaw error moment

 IPC2FDA_YEF[1] = IPC2_loadsDF;

 IPC2FDA_YEF[2] = IPC2_loadsDF;

 }

 // the previous 3 values of measured yaw error moment

 IPC2FDA_YE[2] = IPC2FDA_YE[1];

 IPC2FDA_YE[1] = IPC2FDA_YE[0];

 IPC2FDA_YE[0] = IPC2_loadsDF;

 // the previous 3 values of the filtered yaw error moment

 IPC2FDA_YEF[2] = IPC2FDA_YEF[1];

 IPC2FDA_YEF[1] = IPC2FDA_YEF[0];

 IPC2FDA_YEF[0] = -IPC2FDA_YEF[1]*IPC2FDA_alp[1] -IPC2FDA_YEF[2]*IPC2FDA_alp[2] +IPC2FDA_YE[0]*IPC2FDA_bet[0] +IPC2FDA_YE[1]*IPC2FDA_bet[1] +IPC2FDA_YE[2]*IPC2FDA_bet[2];

 IPC2_loadsDF = IPC2FDA_YEF[0];

 }

 IPC2_loadsQF = IPC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPC2FQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPC2FQA_TE[0] = IPC2_loadsQ; // the previous 3 values of measured Tlt moment

 IPC2FQA_TE[1] = IPC2_loadsQ;

 IPC2FQA_TE[2] = IPC2_loadsQ;

 IPC2FQA_TEF[0] = IPC2_loadsQ; // the previous 3 values of the filtered Tlt moment

 IPC2FQA_TEF[1] = IPC2_loadsQ;

 IPC2FQA_TEF[2] = IPC2_loadsQ;

 }

 // the previous 3 values of measured Tlt moment

 IPC2FQA_TE[2] = IPC2FQA_TE[1];

 IPC2FQA_TE[1] = IPC2FQA_TE[0];

 IPC2FQA_TE[0] = IPC2_loadsQ;

 // the previous 3 values of the filtered Tlt moment

 IPC2FQA_TEF[2] = IPC2FQA_TEF[1];

 IPC2FQA_TEF[1] = IPC2FQA_TEF[0];

 IPC2FQA_TEF[0] = -IPC2FQA_TEF[1]*IPC2FQA_alp[1] -IPC2FQA_TEF[2]*IPC2FQA_alp[2] +IPC2FQA_TE[0]*IPC2FQA_bet[0] +IPC2FQA_TE[1]*IPC2FQA_bet[1] +IPC2FQA_TE[2]*IPC2FQA_bet[2];

 IPC2_loadsQF = IPC2FQA_TEF[0];

 }

 IPC2_YawEr = IPC2_loadsDF - IPC2_YawRef; // Current yaw error

 IPC2_TltEr = IPC2_loadsQF - IPC2_TltRef; // Current tilt error

 //===========END: IPC2 filters=============

 IPC2_IntYawEr = IPC2_IntYawEr + IPC2_KI*IPC2_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC2_IntTltEr = IPC2_IntTltEr + IPC2_KI*IPC2_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC2_IntYawEr = MIN(MAX(IPC2_IntYawEr, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_IntTltEr = MIN(MAX(IPC2_IntTltEr, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_pitD = IPC2_KP*IPC2_YawEr + IPC2_IntYawEr; // PI controller D-axis (yaw) demand

 IPC2_pitQ = IPC2_KP*IPC2_TltEr + IPC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC2_pitD = MIN(MAX(IPC2_pitD, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 IPC2_pitQ = MIN(MAX(IPC2_pitQ, -IPC2_PitMax*IPC2_gain),+IPC2_PitMax*IPC2_gain);

 // individual pitch command for each blade

 IPC2_pit[0] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+IPC2_offset)));

 IPC2_pit[1] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+2.0f*Pie/3.0f+IPC2_offset)));

 IPC2_pit[2] = IPC2_gain*GK * (IPC2_pitQ*cos(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)) + IPC2_pitD*sin(2.0f*(RotAzi+4.0f*Pie/3.0f+IPC2_offset)));

 } //ENDIF for IPC2

 //===========END: IPC2 Individual pitch control==============

 //============BEGIN: IPCL individual pitch control using LIDAR==============

 if (IPCL_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 IPC_gain = MIN(MAX(IPC_gain,0),1); // saturate between 0 and 1

 IPCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //IPCL_RefF = IPCL_Ref;

 IPCL_RefF = ((IPCL_Tau/SRC_DT)*IPCL_RefF + IPCL_Ref)/((IPCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // AoA error

 IPCL_DifEr[K] = IPCL_Er[K];

 IPCL_Er[K] = IPCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 IPCL_DifEr[K] = (IPCL_Er[K]-IPCL_DifEr[K])/SRC_ElapTime; // Differential error

 IPCL_IntEr[K] = IPCL_IntEr[K] + IPCL_KI*IPCL_Er[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCL_IntEr[K] = MIN(MAX(IPCL_IntEr[K], IPCL_PitMax*IPC_gain),IPC_PitMax*IPC_gain);

 // PID controller demand

 IPCL_PitCom[K] = IPCL_KD*IPCL_DifEr[K] + IPCL_KP*IPCL_Er[K] + IPCL_IntEr[K];

 // individual pitch command for each blade

 IPCL_PitCom[K] = IPC_gain * IPCL_PitCom[K];

 }

 }

 //==============END: IPCL Indivudal pitch Control utilising Lidar==========

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT + IPC_pit[K] + IPC2_pit[K] + IPCL_PitCom[K]- PitCom[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = MIN(MAX(PitRate[K], PC_MinRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = PitCom[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = MIN(MAX(PitCom[K], PC_MinPit), PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 SRC_ElapTime = Time - LastTimeSRC;

 SRC_Pit[0] = GetSwapValue(38);

 SRC_Pit[1] = GetSwapValue(39);

 SRC_Pit[2] = GetSwapValue(40);

 // =========BEGIN: SRC DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 SRC_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(RotAzi) + BladeRBM[1]*sin(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*sin(RotAzi+4.0f*Pie/3.0f));

 SRC_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(RotAzi) + BladeRBM[1]*cos(RotAzi+2.0f*Pie/3.0f) + BladeRBM[2]*cos(RotAzi+4.0f*Pie/3.0f));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_YE[0] = SRC_loadsDF; // the previous 3 values of measured yaw error moment

 SRCFDA_YE[1] = SRC_loadsDF;

 SRCFDA_YE[2] = SRC_loadsDF;

 SRCFDA_YEF[0] = SRC_loadsDF; // the previous 3 values of the filtered yaw error moment

 SRCFDA_YEF[1] = SRC_loadsDF;

 SRCFDA_YEF[2] = SRC_loadsDF;

 }

 // the previous 3 values of measured yaw error moment

 SRCFDA_YE[2] = SRCFDA_YE[1];

 SRCFDA_YE[1] = SRCFDA_YE[0];

 SRCFDA_YE[0] = SRC_loadsDF;

 // the previous 3 values of the filtered yaw error moment

 SRCFDA_YEF[2] = SRCFDA_YEF[1];

 SRCFDA_YEF[1] = SRCFDA_YEF[0];

 SRCFDA_YEF[0] = -SRCFDA_YEF[1]*SRCFDA_alp[1] -SRCFDA_YEF[2]*SRCFDA_alp[2] +SRCFDA_YE[0]*SRCFDA_bet[0] +SRCFDA_YE[1]*SRCFDA_bet[1] +SRCFDA_YE[2]*SRCFDA_bet[2];

 SRC_loadsDF = SRCFDA_YEF[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TE[0] = SRC_loadsQ; // the previous 3 values of measured Tlt moment

 SRCFQA_TE[1] = SRC_loadsQ;

 SRCFQA_TE[2] = SRC_loadsQ;

 SRCFQA_TEF[0] = SRC_loadsQ; // the previous 3 values of the filtered Tlt moment

 SRCFQA_TEF[1] = SRC_loadsQ;

 SRCFQA_TEF[2] = SRC_loadsQ;

 }

 // the previous 3 values of measured Tlt moment

 SRCFQA_TE[2] = SRCFQA_TE[1];

 SRCFQA_TE[1] = SRCFQA_TE[0];

 SRCFQA_TE[0] = SRC_loadsQ;

 // the previous 3 values of the filtered Tlt moment

 SRCFQA_TEF[2] = SRCFQA_TEF[1];

 SRCFQA_TEF[1] = SRCFQA_TEF[0];

 SRCFQA_TEF[0] = -SRCFQA_TEF[1]*SRCFQA_alp[1] -SRCFQA_TEF[2]*SRCFQA_alp[2] +SRCFQA_TE[0]*SRCFQA_bet[0] +SRCFQA_TE[1]*SRCFQA_bet[1] +SRCFQA_TE[2]*SRCFQA_bet[2];

 SRC_loadsQF = SRCFQA_TEF[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = MIN(MAX(SRC_IntYawEr, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_IntTltEr = MIN(MAX(SRC_IntTltEr, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_PitComD = SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = MIN(MAX(SRC_PitComD, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 SRC_PitComQ = MIN(MAX(SRC_PitComQ, SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+2.0f*Pie/3.0f+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0f*Pie/3.0f+SRC_offset));

 SRC_dqPitCom[2] = SRC_gain*GK * (SRC_PitComQ*cos(RotAzi+4.0f*Pie/3.0f+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0f*Pie/3.0f+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 // =========BEGIN: SRC2 DQ-axis control=============

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (SRC2_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC2_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC2_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC2_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC2 control so that only fully active above rated, ramping up from 0.8 rated power

 SRC2_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5;

 SRC2_gain = MIN(MAX(SRC2_gain,0),1); // saturate between 0 and 1

 SRC2_offset = 0.01f*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC2_loadsD = (2.0f/3.0f) * (BladeRBM[0]*sin(2.0f*RotAzi) + BladeRBM[1]*sin(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*sin(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 SRC2_loadsQ = (2.0f/3.0f) * (BladeRBM[0]*cos(2.0f*RotAzi) + BladeRBM[1]*cos(2.0f*(RotAzi+2.0f*Pie/3.0f)) + BladeRBM[2]*cos(2.0f*(RotAzi+4.0f*Pie/3.0f)));

 //===========BEGIN: SRC2 filters=============

 SRC2_loadsDF = SRC2_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRC2FDA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRC2FDA_YE[0] = SRC2_loadsDF; // the previous 3 values of measured yaw error moment

 SRC2FDA_YE[1] = SRC2_loadsDF;

 SRC2FDA_YE[2] = SRC2_loadsDF;

 SRC2FDA_YEF[0] = SRC2_loadsDF; // the previous 3 values of the filtered yaw error moment

 SRC2FDA_YEF[1] = SRC2_loadsDF;

 SRC2FDA_YEF[2] = SRC2_loadsDF;

 }

 // the previous 3 values of measured yaw error moment

 SRC2FDA_YE[2] = SRC2FDA_YE[1];

 SRC2FDA_YE[1] = SRC2FDA_YE[0];

 SRC2FDA_YE[0] = SRC2_loadsDF;

 // the previous 3 values of the filtered yaw error moment

 SRC2FDA_YEF[2] = SRC2FDA_YEF[1];

 SRC2FDA_YEF[1] = SRC2FDA_YEF[0];

 SRC2FDA_YEF[0] = -SRC2FDA_YEF[1]*SRC2FDA_alp[1] -SRC2FDA_YEF[2]*SRC2FDA_alp[2] +SRC2FDA_YE[0]*SRC2FDA_bet[0] +SRC2FDA_YE[1]*SRC2FDA_bet[1] +SRC2FDA_YE[2]*SRC2FDA_bet[2];

 SRC2_loadsDF = SRC2FDA_YEF[0];

 }

 SRC2_loadsQF = SRC2_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRC2FQA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRC2FQA_TE[0] = SRC2_loadsQ; // the previous 3 values of measured Tlt moment

 SRC2FQA_TE[1] = SRC2_loadsQ;

 SRC2FQA_TE[2] = SRC2_loadsQ;

 SRC2FQA_TEF[0] = SRC2_loadsQ; // the previous 3 values of the filtered Tlt moment

 SRC2FQA_TEF[1] = SRC2_loadsQ;

 SRC2FQA_TEF[2] = SRC2_loadsQ;

 }

 // the previous 3 values of measured Tlt moment

 SRC2FQA_TE[2] = SRC2FQA_TE[1];

 SRC2FQA_TE[1] = SRC2FQA_TE[0];

 SRC2FQA_TE[0] = SRC2_loadsQ;

 // the previous 3 values of the filtered Tlt moment

 SRC2FQA_TEF[2] = SRC2FQA_TEF[1];

 SRC2FQA_TEF[1] = SRC2FQA_TEF[0];

 SRC2FQA_TEF[0] = -SRC2FQA_TEF[1]*SRC2FQA_alp[1] -SRC2FQA_TEF[2]*SRC2FQA_alp[2] +SRC2FQA_TE[0]*SRC2FQA_bet[0] +SRC2FQA_TE[1]*SRC2FQA_bet[1] +SRC2FQA_TE[2]*SRC2FQA_bet[2];

 SRC2_loadsQF = SRC2FQA_TEF[0];

 }

 SRC2_YawEr = SRC2_YawRef - SRC2_loadsDF; // Current yaw error

 SRC2_TltEr = SRC2_TltRef - SRC2_loadsQF; // Current tilt error

 //===========END: SRC2 filters=============

 SRC2_IntYawEr = SRC2_IntYawEr + SRC2_KI*SRC2_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC2_IntTltEr = SRC2_IntTltEr + SRC2_KI*SRC2_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC2_IntYawEr = MIN(MAX(SRC2_IntYawEr, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 SRC2_IntTltEr = MIN(MAX(SRC2_IntTltEr, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 SRC2_PitComD = SRC2_KP*SRC2_YawEr + SRC2_IntYawEr; // PI controller D-axis (yaw) demand

 SRC2_PitComQ = SRC2_KP*SRC2_TltEr + SRC2_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC2 to degree max (gain scheduled)

 SRC2_PitComD = MIN(MAX(SRC2_PitComD, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 SRC2_PitComQ = MIN(MAX(SRC2_PitComQ, SRC2_PitMin*SRC2_gain),SRC2_PitMax*SRC2_gain);

 // individual pitch command for each blade

 SRC2_dqPitCom[0] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+SRC2_offset)) + SRC2_PitComD*sin(2.0*(RotAzi+SRC2_offset)));

 SRC2_dqPitCom[1] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+2.0f*Pie/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+2.0f*Pie/3.0f+SRC2_offset)));

 SRC2_dqPitCom[2] = SRC2_gain*GK * (SRC2_PitComQ*cos(2.0f*(RotAzi+4.0f*Pie/3.0f+SRC2_offset)) + SRC2_PitComD*sin(2.0f*(RotAzi+4.0f*Pie/3.0f+SRC2_offset)));

 } //ENDIF for SRC2

 //===========END: SRC2 DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active when 5 degrees pitch ramping from zero pitch

 SRC_gain = (1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 //===========BEGIN: SRCD filters=============

 for (K = 0;K<NumBl;K++){

 SRCD_RBMF[K] = BladeRBM[K];

 // Low pass filter

 if (SRCDFA_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDFA_RBM[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of measured RBM

 SRCDFA_RBM[3*K+1] = SRCD_RBMF[K];

 SRCDFA_RBM[3*K+2] = SRCD_RBMF[K];

 SRCDFA_RBMF[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of the filtered RBM

 SRCDFA_RBMF[3*K+1] = SRCD_RBMF[K];

 SRCDFA_RBMF[3*K+2] = SRCD_RBMF[K];

 }

 // the previous 3 values of measured RBM

 SRCDFA_RBM[3*K+2] = SRCDFA_RBM[3*K+1];

 SRCDFA_RBM[3*K+1] = SRCDFA_RBM[3*K+0];

 SRCDFA_RBM[3*K+0] = SRCD_RBMF[K];

 // the previous 3 values of the filtered RBM

 SRCDFA_RBMF[3*K+2] = SRCDFA_RBMF[3*K+1];

 SRCDFA_RBMF[3*K+1] = SRCDFA_RBMF[3*K+0];

 SRCDFA_RBMF[3*K+0] = -SRCDFA_RBMF[3*K+1]*SRCDFA_alp[1] -SRCDFA_RBMF[3*K+2]*SRCDFA_alp[2] +SRCDFA_RBM[3*K+0]*SRCDFA_bet[0] +SRCDFA_RBM[3*K+1]*SRCDFA_bet[1] +SRCDFA_RBM[3*K+2]*SRCDFA_bet[2];

 SRCD_RBMF[K] = SRCDFA_RBMF[3*K+0];

 }

 if (SRCDFB_on)

 {

 if (iStatus == 0)

 {

 // Initialize the value of previous RBM measurements and filtered signals on the first pass only

 SRCDFB_RBM[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of measured RBM

 SRCDFB_RBM[3*K+1] = SRCD_RBMF[K];

 SRCDFB_RBM[3*K+2] = SRCD_RBMF[K];

 SRCDFB_RBMF[3*K+0] = SRCD_RBMF[K]; // the previous 3 values of the filtered RBM

 SRCDFB_RBMF[3*K+1] = SRCD_RBMF[K];

 SRCDFB_RBMF[3*K+2] = SRCD_RBMF[K];

 }

 // the previous 3 values of measured RBM

 SRCDFB_RBM[3*K+2] = SRCDFB_RBM[3*K+1];

 SRCDFB_RBM[3*K+1] = SRCDFB_RBM[3*K+0];

 SRCDFB_RBM[3*K+0] = SRCD_RBMF[K];

 // the previous 3 values of the filtered RBM

 SRCDFB_RBMF[3*K+2] = SRCDFB_RBMF[3*K+1];

 SRCDFB_RBMF[3*K+1] = SRCDFB_RBMF[3*K+0];

 SRCDFB_RBMF[3*K+0] = -SRCDFB_RBMF[3*K+1]*SRCDFB_alp[1] -SRCDFB_RBMF[3*K+2]*SRCDFB_alp[2] +SRCDFB_RBM[3*K+0]*SRCDFB_bet[0] +SRCDFB_RBM[3*K+1]*SRCDFB_bet[1] +SRCDFB_RBM[3*K+2]*SRCDFB_bet[2];

 SRCD_RBMF[K] = SRCDFB_RBMF[3*K];

 }

 }

 //---------------END: SRCD filters---------------]

 SRCD_Ref = (SRCD_RBMF[0] + SRCD_RBMF[1] + SRCD_RBMF[2]) / 3.0f;

 //SRCD_RefF = SRCD_Ref;

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCD_DifEr[K] = SRCD_Er[K];

 SRCD_Er[K] = SRCD_RefF - SRCD_RBMF[K]; // Current (proportional) error

 SRCD_DifEr[K] = (SRCD_Er[K]-SRCD_DifEr[K])/SRC_ElapTime; // Differential error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRCD_KI*SRCD_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = MIN(MAX(SRCD_IntEr[K], SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // PID controller demand

 SRCD_PitCom[K] = SRCD_KD*SRCD_DifEr[K] + SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRC_gain * SRCD_PitCom[K];

 } //end for loop for SRCD

 } //ENDIF for SRCD

 //===========END: SRCD Smart rotor control distributed==============

 //============BEGIN: SRCL Smart rotor control using LIDAR==============

 if (SRCL_on)

 {

 SRC_gain = 1.0;//(1/(5.0f/R2D))*((BlPitch[0]+BlPitch[1]+BlPitch[2])/3);

 SRC_gain = MIN(MAX(SRC_gain,0),1); // saturate between 0 and 1

 SRCL_Ref = (LIDAR_AoA[0] + LIDAR_AoA[1] + LIDAR_AoA[2]) / 3.0f;

 //SRCL_RefF = SRCL_Ref;

 SRCL_RefF = ((SRCL_Tau/SRC_DT)*SRCL_RefF + SRCL_Ref)/((SRCL_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 // root bending moment error

 SRCL_DifEr[K] = SRCL_Er[K];

 SRCL_Er[K] = SRCL_RefF - LIDAR_AoA[K]; // Current (proportional) error

 SRCL_DifEr[K] = (SRCL_Er[K]-SRCL_DifEr[K])/SRC_ElapTime; // Differential error

 SRCL_IntEr[K] = SRCL_IntEr[K] + SRCL_KI*SRCL_Er[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCL_IntEr[K] = MIN(MAX(SRCL_IntEr[K], SRC_PitMin*SRC_gain),SRC_PitMax*SRC_gain);

 // PID controller demand

 SRCL_PitCom[K] = SRCL_KD*SRCL_DifEr[K] + SRCL_KP*SRCL_Er[K] + SRCL_IntEr[K];

 // individual pitch command for each blade

 SRCL_PitCom[K] = SRC_gain * SRCL_PitCom[K];

 }

 }

 //==============END: SRCL Smart Rotor Control utilising Lidar==========

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 SRC_PitRate[K] = (SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = MIN(MAX(SRC_PitRate[K], -SRC_PitMaxRat), SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = MIN(MAX(SRC_PitCom[K], SRC_PitMin), SRC_PitMax); // Saturate to pitch limits

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime to the current value:

 LastTime = Time;

 if ((iStatus == -1))

 { // Last call to controller

 strcat(strMsg,"\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 if (true)

 {

 SetSwapValue(65,13); // Number of variables returned for logging

 strcpy(avcOutname,"LIDAR_AoA:A;IPCL_PitCom0:A;IPCL_Er0:A;SRCL_RefF:A;SRCL_KP*SRCL_Er:A;SRCL_PitCom:A;SRCD_RefF:FL;SRCD_RBMF:FL;SRCD_PitCom:A;SRC_DQpit:A;SRC_Pit:A;SRC_gain:;SRC_PitRate:A/T;");

 SetSwapValue((NINT(GetSwapValue(63))+0),LIDAR_AoA[0]);

 SetSwapValue((NINT(GetSwapValue(63))+1),IPCL_PitCom[0]);

 SetSwapValue((NINT(GetSwapValue(63))+2),IPCL_Er[0]);

 SetSwapValue((NINT(GetSwapValue(63))+3),SRCL_RefF);

 SetSwapValue((NINT(GetSwapValue(63))+4),SRCL_KP*SRCL_Er[0]);

 SetSwapValue((NINT(GetSwapValue(63))+5),SRCL_PitCom[0]);

 SetSwapValue((NINT(GetSwapValue(63))+6),SRCD_RefF);

 SetSwapValue((NINT(GetSwapValue(63))+7),SRCD_RBMF[0]);

 SetSwapValue((NINT(GetSwapValue(63))+8),SRCD_PitCom[0]);

 SetSwapValue((NINT(GetSwapValue(63))+9),SRC_PitCom[0]);

 SetSwapValue((NINT(GetSwapValue(63))+10),SRC_Pit[0]);

 SetSwapValue((NINT(GetSwapValue(63))+11),SRC_gain);

 SetSwapValue((NINT(GetSwapValue(63))+12),SRC_PitRate[0]);

 }

 else

 {

 SetSwapValue(65,0);

 }

 strcpy(avcMsg,strMsg); //returns messages to Bladed

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_28Nov14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_28Nov14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

#define ABS(a) ((a) > (0.0) ? a : (-a)) //finds the absolute value

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<float>::epsilon(); // The number slighty greater than unity in simulations due to rounding error, needs to be float as thats what Bladed uses

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_GenAcc;

 double static NacelRolAcc;

 double static NacelNodAcc;

 double static NacelRolVel;

 double static NacelNodVel;

 double const windspeed_tau = 30.0; // regressive filter time constant for filtering wind speed

 double static windspeedF; // filtered wind speed

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 double static VS_lastGenSpd = 0; // last generator speed for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComPI; // Proportional integral command pitch for generator speed control

 double static PitComT; // Total command pitch

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static GenTrqF; // Filtered generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.199161997555370, 0.746146616371889}; // the tf denominator values

 double PCFB_bet[3] = {0.873073308185945, -1.199161997555369, 0.873073308185945}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.745244572310132, 0.761469654294494}; // the tf denominator values

 double TVD_bet[3] = {2.449630717274034, -4.615760042119332, 2.182354406829659}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.922898292198467}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; // Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 //double const TVD_Smart_xHat = 0.0f; // Ratio used for pitch:smart control sharing of TVD

 // Supplementing pitch control filter

 //double const Sup_FreqCutOff = 1.0f*2.0f*PIE*PC_DT; // recurssive filter 3dB cutoff frequency in rad/s

 double static Sup_xHat = 0.96;//exp(-Sup_FreqCutOff); // recurssive filter decay constant for determining coefficients

 double static Sup_Signal; // supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SigPrev; // previous time step supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SmartF; // supplementary smart rotor control filtered signal

 double static Sup_PitchF; // supplementary pitch control filtered signal

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.000000001; // Proportional gain

 double const IPCB_KI = 0.00000000; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_PitComF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFL_bet[3] = {0.003933975449816, 0.007867950899633, 0.003933975449816}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFH_bet[3] = {2.0*1.569381033248292, -2.0*3.138762066496584, 2.0*1.569381033248292}; // the tf numerator values

 // Smart Rotor Control

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 // Smart Rotor Control DQ-axis

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = IPC_KP; // proportional gain

 double const SRC_KI = IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_on; // ratchet for fault ride through 1

 bool static SRC_faultRF2_on; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCafd_TF;

 double SRCafd_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCafd_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCafd_values[100];

 double const SRCafd_threshold = 2.5;

 int static SRCafd_cnt;

 double static SRCafd_value;

 double static SRCfrf_angle[3]; // adjust other flaps to this angle (initially zero)

 double static SRCfrf_KI_gain[3]; // adjust other flaps to this angle (initially zero)

 double const SRCfrf_tau = 60.0; // time constant for measuring the mean RBM of all 3 flaps and adjusting to be closer to that mean

 double static SRCfrf_RBMf[3];

 double static SRCfrf_deltaRBM[3];

 double static SRCfrf_IntAngle[3];

 double const SRCfrf_KP = -0.0000000;

 double const SRCfrf_KI = -0.00000001;

 TF static SRCfrf_1p_TF[3];

 double SRCfrf_1p_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190};

 double SRCfrf_1p_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595};

 TF static SRCfrf_3p_TF[3];

 double SRCfrf_3p_alp[3] = {1.000000000000000, -1.739215736436336, 0.756217844466947};

 double SRCfrf_3p_bet[3] = {0.878108922233473, -1.739215736436336, 0.878108922233473};

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = -IPCB_KI; // Integral gain

 double const SRCD_KP = -IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 double static SRCD_PitComF[3];

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {IPCBFL_alp[0], IPCBFL_alp[1], IPCBFL_alp[2]}; // the tf denominator values

 double SRCDFL_bet[3] = {IPCBFL_bet[0], IPCBFL_bet[1], IPCBFL_bet[2]}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {IPCBFH_alp[0], IPCBFH_alp[1], IPCBFH_alp[2]}; // the tf denominator values

 double SRCDFH_bet[3] = {IPCBFH_bet[0], IPCBFH_bet[1], IPCBFH_bet[2]}; // the tf numerator values

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 // flags for supplementary speed control

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 double static Sup_FreqCutOff; // 3dB cut-off frequency for spliting the pitch and smart rotor signals using filters

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flags for supplementary TVD control

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 double static TVD_Smart_xHat; // Ratio of pitch to smart rotor control

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //Smart Rotor control gain factor for controller pitch angle to flap angle

 double static SRC_Pitch2Flap; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //flag for fixed flap angle

 bool static FA_on; // Flag to indicate whether fixed flap angle is applied

 double static FA_aileronAngle; // Value for fixed flap angle

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for supplementary control

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 Sup_FreqCutOff = 1; // Value for spliting the pitch signal using filters

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether dq-axis Individual Pitch Control (IPC) is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether Independent blade pitch control (IPCB) is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 TVD_Smart_xHat = 1; // Ratio of pitch to smart rotor control for tower vibration damping

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //pitch to flap angle gain factor

 SRC_Pitch2Flap = 4.6; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether auto fault ride-through version 1 is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether auto fault ride-through version 2 is operational

 SRC_faultRF1_on = false; // Flag to indicate whether fault ride-through version 1 has been triggered

 SRC_faultRF2_on = false; // Flag to indicate whether fault ride-through version 2 has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //flag to set flap at a fixed angle

 FA_on = false; // Flag to indicate whether flap angle is fixed

 FA_aileronAngle = 0; // Angle at which flap is fixed

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output pitch control debugging

 VS_DbgOut = false; // Flag to indicate whether to output torque control debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 SRC_faultRF1_on = parameterSearchDefine (turbine_id, line, SRC_faultRF1_on, "SRC_faultRF1_on");

 SRC_faultRF2_on = parameterSearchDefine (turbine_id, line, SRC_faultRF2_on, "SRC_faultRF2_on");

 FA_on = parameterSearchDefine (turbine_id, line, FA_on, "FA_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamAngle = atof(tmptxt.c_str()); //convert selected string to float

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamTime=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamTime = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("Sup_FreqCutOff") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSup_FreqCutOff=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 Sup_FreqCutOff = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("TVD_Smart_xHat") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nTVD_Smart_xHat=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 TVD_Smart_xHat = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("FA_aileronAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nFA_aileronAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 FA_aileronAngle = atof(tmptxt.c_str()); //convert selected string to integer

 FA_aileronAngle = FA_aileronAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_Pitch2Flap") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_Pitch2Flap=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_Pitch2Flap = atof(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on && SRCD_on) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if ((SRC_on || SRCD_on || PC_Smart_on || TVD_Smart_on) && FA_on) {

 ReportErrorMessage (turbine_id, "\r\nFixed flap angle and SRC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComPI" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 if (SRC_faultRF1_on == true)

 strcat(strMsg,"SRC_faultRF1_on ");

 if (SRC_faultRF2_on == true)

 strcat(strMsg,"SRC_faultRF2_on ");

 } //if SRC_jam on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 if (FA_on == true)

 {

 strcat(strMsg,"FA ");

 } //if FA on

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComPI = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComPI; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComPI;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = GenSpeed;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on || SRCD_on || TVD_Smart_on || PC_Smart_on || FA_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 if ((SRC_jamAngle < -21.0/R2D) || (SRC_jamAngle > 21.0/R2D))

 {

 SRC_jamAngle = SRC_PitCom[0];

 }

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComPI > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 if (VSConstP_on){

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast*VS_lastGenSpd/GenSpeed,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // GenTrq = MAX(VS_ComT,VS_GnTqLast); // no drop in torque allowed

 GenTrq = MAX(VS_ComT,VS_GnTqLast*VS_lastGenSpd/GenSpeed); // no drop in power allowed

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 //GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 if (VSConstP_on){

 // and saturate to rated power:

 GenTrq = MAX(VS_ComT,GenTrqOpt); // overall command (saturated to Cp optimum curve)

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 VS_lastGenSpd = GenSpeed; // last VS generator speed

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFB_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PCI_Prp + PCI_Int;

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); // Overall command saturated

 PitComT = PitComPI; // set overall pitch speed control command

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComPI < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComPI = PitComPI - 1.0*PCI_Prp;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PitComP + PitComI; // Overall command (unsaturated)

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); //Overall command saturated

 PitComT = PitComPI;

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 //if (PitComPI < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComPI = PitComPI - 1.0*PCI_Prp;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = GK*TVD_K*TVD_gain*TVD_TowVel;//TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -4.0*(TVD_Smart_xHat)*TVD_PitCom;

 TVD_PitCom = (1-TVD_Smart_xHat)*TVD_PitCom;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = GK*NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 //==============BEGIN: IPCB Independent Blade Control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + GK*IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -GK*IPC_gain*IPC_PitMax ,GK*IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = GK*IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 // individual pitch command for each blade

 IPCB_PitComF[K] = IPCB_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_PitComF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_PitComF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_PitComF[K] = SATURATE(IPCB_PitComF[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: IPCB Independent Blade Control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + TVD_PitCom + NLP_PitCom + IPC_pit[K] + IPCB_PitComF[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComPI*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 //==============BEGIN: SRCD Smart rotor control distributed==============

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + GK*SRC_gain*SRC_Pitch2Flap*SRCD_KI*SRCD_BladeRBMopF[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], GK*SRC_gain*SRC_PitMin ,GK*SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = GK*SRC_gain*SRC_Pitch2Flap*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitComF[K] = SRCD_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_PitComF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_PitComF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_PitComF[K] = SATURATE(SRCD_PitComF[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCafd_cnt=1; SRCafd_cnt<100; SRCafd_cnt++)

 {

 SRCafd_values[100-SRCafd_cnt] = SRCafd_values[100-SRCafd_cnt-1];

 }

 // 1P filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCafd_TF = TFinit(SRCafd_TF,SRCafd_alp,SRCafd_bet,TowerAccX);

 }

 SRCafd_TF = TFupdate(SRCafd_TF,TowerAccX);

 //new value

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 windspeedF = HorWindV;

 }

 windspeedF = ((windspeed_tau/SRC_DT)*windspeedF + HorWindV)/((windspeed_tau/SRC_DT)+1.0);

 SRCafd_values[0] = (SRCafd_TF.outputs[0])*(SRCafd_TF.outputs[0]) * (1.0 / (0.024*windspeedF*windspeedF - 0.57*windspeedF + 4.2));

 SRCafd_value = SRCafd_values[0] - SRCafd_values[99] + SRCafd_value;

 // ignore first minute to avoid transcience

 if (Time > 60.0)

 {

 // normalise data for fixed threshold value based on wind speed * 1.0 / (0.024*HorWindV*HorWindV - 0.57*HorWindV + 4.2)

 if (SRCafd_value > SRCafd_threshold)

 {

 if (!SRC_faultRF_on)

 {

 ReportWarningMessage (turbine_id, "Fault detected");

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 }

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRCD_PitComF[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF1_on))

 {

 if (SRC_faultRF1_on == false)

 {

 SRC_faultRF1_on = true;

 ReportWarningMessage (turbine_id, "FRF1 activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 //SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 // Fault ride through by setting other flaps to 0

 if ((SRC_faultRF_on) || (SRC_faultRF2_on))

 {

 if (SRC_faultRF2_on == false)

 {

 for (K = 0;K<NumBl;K++)

 {

 SRCfrf_RBMf[K] = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2])/3;

 SRCfrf_1p_TF[K] = TFinit(SRCfrf_1p_TF[K],SRCfrf_1p_alp,SRCfrf_1p_bet,SRCfrf_RBMf[K]);

 SRCfrf_1p_TF[K] = TFupdate(SRCfrf_1p_TF[K],SRCfrf_RBMf[K]);

 SRCfrf_RBMf[K] = SRCfrf_1p_TF[K].outputs[K];

 SRCfrf_3p_TF[K] = TFinit(SRCfrf_3p_TF[K],SRCfrf_3p_alp,SRCfrf_3p_bet,SRCfrf_RBMf[K]);

 SRCfrf_3p_TF[K] = TFupdate(SRCfrf_3p_TF[K],SRCfrf_RBMf[K]);

 SRCfrf_RBMf[K] = SRCfrf_3p_TF[K].outputs[K];

 }

 SRC_faultRF2_on = true;

 ReportWarningMessage (turbine_id, "FRF2 activated");

 }

 else

 {

 for (K = 0;K<NumBl;K++)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRCfrf_RBMf[K] = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2])/3;

 }

 //SRCfrf_RBMf[K] = ((SRCfrf_tau/SRC_DT)*SRCfrf_RBMf[K] + BladeRBMop[K])/((SRCfrf_tau/SRC_DT)+1.0);

 SRCfrf_RBMf[K] = BladeRBMop[K];

 ///*

 // 1P notch filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_1p_TF[K] = TFinit(SRCfrf_1p_TF[K],SRCfrf_1p_alp,SRCfrf_1p_bet,SRCfrf_RBMf[K]);

 }

 SRCfrf_1p_TF[K] = TFupdate(SRCfrf_1p_TF[K],SRCfrf_RBMf[K]);

 //new value

 SRCfrf_RBMf[K] = SRCfrf_1p_TF[K].outputs[K];

 //*/

 ///*

 // 3P notch filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_3p_TF[K] = TFinit(SRCfrf_3p_TF[K],SRCfrf_3p_alp,SRCfrf_3p_bet,SRCfrf_RBMf[K]);

 }

 SRCfrf_3p_TF[K] = TFupdate(SRCfrf_3p_TF[K],SRCfrf_RBMf[K]);

 //new value

 SRCfrf_RBMf[K] = SRCfrf_3p_TF[K].outputs[K];

 //*/

 }

 }

 for (K = 0;K<NumBl;K++)

 {

 SRCfrf_deltaRBM[K] = SRCfrf_RBMf[K] - ((SRCfrf_RBMf[0] + SRCfrf_RBMf[1] + SRCfrf_RBMf[2])/3);

 SRCfrf_IntAngle[K] = SRCfrf_IntAngle[K] + SRC_ElapTime*SRCfrf_KI*SRCfrf_deltaRBM[K]*SRCfrf_KI_gain[2];

 SRCfrf_IntAngle[K] = SATURATE(SRCfrf_IntAngle[K], SRC_PitMin , SRC_PitMax);

 SRCfrf_angle[K] = SRCfrf_IntAngle[K] + SRCfrf_KP*SRCfrf_deltaRBM[K];

 //SRCfrf_KI_gain[K] = ((SRCfrf_tau/SRC_DT)*SRCfrf_KI_gain[K] + SRCfrf_angle[K])/((SRCfrf_tau/SRC_DT)+1.0);

 SRC_PitCom[K] = SRCfrf_angle[K]; // fault ride through sets all flaps to the same angle

 }

 SRCfrf_KI_gain[0] = ((SRCfrf_deltaRBM[0]+SRCfrf_deltaRBM[1]+SRCfrf_deltaRBM[2])/3)*0.00001;

 if (SRCfrf_KI_gain[1] == 0.0)

 {

 SRCfrf_KI_gain[1] = SRCfrf_KI_gain[0];

 }

 SRCfrf_KI_gain[1] = ((SRCfrf_tau/SRC_DT)*SRCfrf_KI_gain[1] + SRCfrf_KI_gain[0])/((SRCfrf_tau/SRC_DT)+1.0);

 SRCfrf_KI_gain[1] = SATURATE(SRCfrf_KI_gain[1],-1.0,1.0);

 SRCfrf_KI_gain[2] = SRCfrf_KI_gain[1];

 SRCfrf_KI_gain[2] = SATURATE(ABS(SRCfrf_KI_gain[2]),0.1,1.0);

 /*

 SRCfrf_deltaRBM[1] = 0.5*(SRCfrf_RBMf[1] + SRCfrf_RBMf[2]) - SRCfrf_RBMf[0]; //SRCfrf_RBMf[1] - ((SRCfrf_RBMf[0] + SRCfrf_RBMf[1] + SRCfrf_RBMf[2])/3);

 SRCfrf_IntAngle[1] = SRCfrf_IntAngle[1] + SRC_ElapTime*SRCfrf_KI*SRCfrf_deltaRBM[1];

 SRCfrf_IntAngle[1] = SATURATE(SRCfrf_IntAngle[1], SRC_PitMin , SRC_PitMax);

 SRCfrf_angle[1] = SRCfrf_IntAngle[1] + SRCfrf_KP*SRCfrf_deltaRBM[1];

 SRC_PitCom[1] = SRCfrf_angle[1]; // fault ride through sets all flaps to the same angle

 SRC_PitCom[2] = SRCfrf_angle[1];

 */

 } // end fault ride through by setting flaps to 0

 //=======END: SRC fault ride through =======

 // set aileron angle demands

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 if (FA_on){

 SRC_PitCom[K] = FA_aileronAngle; // Fixed aileron angle

 }

 //SRC_PitComLast[K] = SRC_PitCom[K]

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime and LastGenSpeed to the current values:

 LastGenSpd = GenSpeed;

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "SRCafd_value", "-");

 }

 SetLoggingValue (turbine_id, 0, SRCafd_value);

 }//end logging

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_29Jul14.cc

NREL 5MW external control/Backups/NREL_5MW_Bossanyi_ExternalControllerDLL_29Jul14.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Make sure there's a C string terminator

 //accInfile[NINT (GetSwapValue(50))] = '\0';

 //avcOutname[NINT(GetSwapValue(51))] = '\0';

 //avcMsg[0] = '\0';

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<float>::epsilon(); // The number slighty greater than unity in simulations due to rounding error, needs to be float as thats what Bladed uses

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_GenAcc;

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 double static VS_lastGenSpd = 0; // last generator speed for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComT; // Total command pitch based on the sum of the

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static GenTrqF; // Filtered generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.199161997555370, 0.746146616371889}; // the tf denominator values

 double PCFB_bet[3] = {0.873073308185945, -1.199161997555369, 0.873073308185945}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.745244572310132, 0.761469654294494}; // the tf denominator values

 double TVD_bet[3] = {2.449630717274034, -4.615760042119332, 2.182354406829659}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.922898292198467}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; // Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 //double const TVD_Smart_xHat = 0.0f; // Ratio used for pitch:smart control sharing of TVD

 // Supplementing pitch control filter

 //double const Sup_FreqCutOff = 1.0f*2.0f*PIE*PC_DT; // recurssive filter 3dB cutoff frequency in rad/s

 double static Sup_xHat = 0.96;//exp(-Sup_FreqCutOff); // recurssive filter decay constant for determining coefficients

 double static Sup_Signal; // supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SigPrev; // previous time step supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SmartF; // supplementary smart rotor control filtered signal

 double static Sup_PitchF; // supplementary pitch control filtered signal

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.00000001; // Proportional gain

 double const IPCB_KI = 0.0; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double IPCBFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double IPCBFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // Smart Rotor Control

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 19.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -19.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 double const SRC_Pitch2Flap = 6.3; // Gain to convert from pitch to flap angle demand

 // Smart Rotor Control DQ-axis

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = SRC_Pitch2Flap*IPC_KP; // proportional gain

 double const SRC_KI = SRC_Pitch2Flap*IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd;

 double static SRC_LastGenSpd;

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_triggered; // ratchet for fault ride through 1

 bool static SRC_faultRF2_triggered; // ratchet for fault ride through 1

 double static SRC_twrAcXtrig1; // Match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_twrAcXtrig1F; // Low pass filtered match filtered tower acceleration at hub height in X direction (out-of-plane motion)

 double static SRC_genAccTrig1; // Match filtered rotor acceleration

 double static SRC_genAccTrig1F; // Low pass filtered match filtered rotor acceleration

 double const SRC_fault_tau = 100.0; // time constant for fault ride through regressive filters

 double static SRC_trigValue; // value above which fault ride through is triggered

 double static SRC_phaseMatch; // to match phase to where loads would be greatest

 double static SRC_phaseMatchF;

 TF static SRCfrf_TF;

 double SRCfrf_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587};

 double SRCfrf_bet[3] = {0.071002556092019, 0.0, -0.071002556092019};

 double static SRCfrf_values[100];

 double const SRCfrf_threshold = 0.02;

 int static SRCfrf_cnt;

 double static SRCfrf_value;

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = 0.0; // Integral gain

 double const SRCD_KP = -SRC_Pitch2Flap*IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {1.000000000000000, -1.960024292306558, 0.970120462694068}; // the tf denominator values

 double SRCDFL_bet[3] = {0.002524042596878, 0.005048085193755, 0.002524042596878}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {1.000000000000000, -1.933174329249176, 0.955651889941932}; // the tf denominator values

 double SRCDFH_bet[3] = {2.247756069275525, -4.495512138551050, 2.247756069275525}; // the tf numerator values

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 // flags for supplementary speed control

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 double static Sup_FreqCutOff; // 3dB cut-off frequency for spliting the pitch and smart rotor signals using filters

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flags for supplementary TVD control

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 double static TVD_Smart_xHat; // Ratio of pitch to smart rotor control

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 /*NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 */

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportInfoMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportScratchMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\nRunning with");

 //ReportErrorMessage (turbine_id, "\r\nRunning with");

 //ReportCriticalMessage (turbine_id, "\r\nRunning with");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for supplementary control

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 Sup_FreqCutOff = 1; // Value for spliting the pitch signal using filters

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether dq-axis Individual Pitch Control (IPC) is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether Independent blade pitch control (IPCB) is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 TVD_Smart_xHat = 1; // Ratio of pitch to smart rotor control for tower vibration damping

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether auto fault ride-through version 1 is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether auto fault ride-through version 2 is operational

 SRC_faultRF1_triggered = false; // Flag to indicate whether fault ride-through version 1 has been triggered

 SRC_faultRF2_triggered = false; // Flag to indicate whether fault ride-through version 2 has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output pitch control debugging

 VS_DbgOut = false; // Flag to indicate whether to output torque control debugging

 //Read in parameters

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamAngle = atoi(tmptxt.c_str()); //convert selected string to integer

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 SRC_jamTime = atoi(tmptxt.c_str()); //convert selected string to integer

 }

 if (line.find("Sup_FreqCutOff") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 Sup_FreqCutOff = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("TVD_Smart_xHat") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-1);

 TVD_Smart_xHat = atof(tmptxt.c_str()); //convert selected string to float

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on == true && SRCD_on == true) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComT" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 } //if SRC_jam on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 //ReportInfoMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComT = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComT; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComT;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = GenSpeed;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 //ReportInfoMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 //if (SRC_PitCom[0] != 0.0 || SRC_PitCom[1] != 0.0 || SRC_PitCom[2] != 0.0) why have this???

 if (SRC_on || SRCD_on || TVD_Smart_on || PC_Smart_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComT > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 if (VSConstP_on){

 // and saturate to rated power (with no drop in torque allowed):

 //GenTrq = MAX(VS_ComT,VS_GnTqLast); // no drop in torque allowed

 GenTrq = MAX(VS_ComT,VS_GnTqLast*VS_lastGenSpd/GenSpeed);

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 //GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 if (VSConstP_on){

 // and saturate to rated power:

 GenTrq = MAX(VS_ComT,GenTrqOpt); // overall command (saturated to Cp optimum curve)

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 VS_lastGenSpd = GenSpeed; // last VS generator speed

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter

 // to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFB_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 //Superimpose the individual commands to get the total pitch command;

 PitComT = PCI_Prp + PCI_Int;

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -5.0f*Sup_SmartF;

 //if (PitComT < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComT = PitComT - 1.0*PCI_Prp;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -5.0f*Sup_SmartF;

 //if (PitComT < 0.0){

 // PC_Smart_com = 0.0;

 //}

 //PC_Smart_com = -1.0*8.0*PCI_Prp;

 //PitComT = PitComT - 1.0*PCI_Prp;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = GK*TVD_K*TVD_gain*TVD_TowVel;//TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -4.0*(TVD_Smart_xHat)*TVD_PitCom;

 TVD_PitCom = (1-TVD_Smart_xHat)*TVD_PitCom;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = GK*NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //IPC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //IPC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //IPC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 //==============BEGIN: IPCB Independent Blade Control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_BladeRBMopF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_BladeRBMopF[K]);

 IPCB_BladeRBMopF[K] = IPCBFH_TF[K].outputs[0];

 }

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 IPCB_PitCom[K] = SATURATE(IPCB_PitCom[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPCB_PitCom[K] = IPCB_PitCom[K];

 }

 //IPCB_fictforce = (IPCB_PitCom[0]+IPCB_PitCom[1]+IPCB_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // IPCB_PitCom[K] = IPCB_PitCom[K];//-IPCB_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: IPCB Independent Blade Control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + TVD_PitCom + NLP_PitCom + IPC_pit[K] + IPCB_PitCom[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // gain correction factors for each blade? Or should they just use the collective GK...

 //SRC_GK[0] = 1.0f/(1.0f + BlPitch[0]/PC_KK);

 //SRC_GK[1] = 1.0f/(1.0f + BlPitch[1]/PC_KK);

 //SRC_GK[2] = 1.0f/(1.0f + BlPitch[2]/PC_KK);

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 //SRC_gain = 1.0*SRC_gain; // multiplier for flap angles - not used as equvialent to Ki

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 //==============BEGIN: SRCD Smart Rotor control distributed===========

 // Smart Rotor distributed control

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComT,2.0)-33000000.0*PitComT + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (GenTrq < (VS_RtGnTq - 100.0))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/PC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/PC_DT)+1.0f);

 //SRCD_RefF = 0;

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17734*20.5*(TowerAccX);// - 12900610*(NacelRolVel*cos(RotAzi+2*(K+1)*PIE/3)+NacelNodVel*sin(RotAzi+2*(K+1)*PIE/3));

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_BladeRBMopF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_BladeRBMopF[K]);

 SRCD_BladeRBMopF[K] = SRCDFH_TF[K].outputs[0];

 }

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + SRC_gain*SRCD_KI*SRCD_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], -SRC_gain*SRC_PitMax ,SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = SRC_gain*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 SRCD_PitCom[K] = SATURATE(SRCD_PitCom[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRCD_PitCom[K] = SRCD_PitCom[K];

 }

 //SRCD_fictforce = (SRCD_PitCom[0]+SRCD_PitCom[1]+SRCD_PitCom[2])/3.0;

 //for (K = 0;K<NumBl;K++)

 //{

 // SRCD_PitCom[K] = SRCD_PitCom[K];//-SRCD_fictforce;

 //}

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 SRC_LastGenSpd = SRC_GenSpd;

 SRC_GenSpd = GetMeasuredGeneratorSpeed (turbine_id);

 SRC_GenAcc = (SRC_GenSpd-SRC_LastGenSpd)/SRC_ElapTime;

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_GenAcc = 0.0;

 }

 // Matched filter for blade 1 fault

 if (SRC_PitComQ == 0.0)

 {

 SRC_PitComQ = OnePlusEps - 1.0;

 }

 // Low-pass filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRC_twrAcXtrig1F = 0;

 SRC_genAccTrig1F = 0;

 SRC_phaseMatchF = 0;

 }

 SRC_phaseMatch = ((SRC_fault_tau/SRC_DT)*SRC_phaseMatch + (SRC_PitComD/SRC_PitComQ))/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_phaseMatchF = atan(SRC_phaseMatch);

 SRC_twrAcXtrig1 = TowerAccX*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_twrAcXtrig1F = ((SRC_fault_tau/SRC_DT)*SRC_twrAcXtrig1F + SRC_twrAcXtrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_genAccTrig1 = SRC_GenAcc*(sin(RotAzi-2.0*PIE/3.0-SRC_phaseMatchF));

 SRC_genAccTrig1F = ((SRC_fault_tau/SRC_DT)*SRC_genAccTrig1F + SRC_genAccTrig1)/((SRC_fault_tau/SRC_DT)+1.0);

 SRC_trigValue = -0.0000083*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) + 0.0003*pow((R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0),2.0) - 0.0013*(R2D*(BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0) + 0.0065; //approximately one standard deviation from mean

 SRC_trigValue = 7.0*SRC_trigValue;

 if ((SRC_twrAcXtrig1F > SRC_trigValue) && (SRC_genAccTrig1F < -3.5*SRC_trigValue))

 {

 SRC_RFangle = 0.0;

 SRC_faultRF_on = true;

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCfrf_cnt=1; SRCfrf_cnt<100; SRCfrf_cnt++)

 {

 SRCfrf_values[100-SRCfrf_cnt] = SRCfrf_values[100-SRCfrf_cnt-1];

 }

 //filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_TF = TFinit(SRCfrf_TF,SRCfrf_alp,SRCfrf_bet,0);

 }

 SRCfrf_TF = TFupdate(SRCfrf_TF,TowerAccX);

 //new value

 SRCfrf_values[0] = (SRCfrf_TF.outputs[0])*(SRCfrf_TF.outputs[0]);

 SRCfrf_value = SRCfrf_values[0] - SRCfrf_values[99] + SRCfrf_value;

 if (SRCfrf_value/100 >SRCfrf_threshold)

 {

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRCD_PitCom[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF1_triggered))

 {

 if (SRC_faultRF1_triggered == false)

 {

 SRC_faultRF1_triggered = true;

 ReportWarningMessage (turbine_id, "FRF activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 //=======END: SRC fault ride through =======

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 if ((!SRC_faultRF1_triggered) && (!SRC_faultRF2_triggered))

 {

 //SRC_PitCom[K] = SRC_dqPitCom[K] + SRC2_dqPitCom[K] + SRCD_PitCom[K] + SRCL_PitCom[K] + TVD_Smart_Com; //moved above fault ride throughs

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 //SRC_PitComLast[K] = SRC_PitCom[K]

 } //only adjust if fault ride through inactive

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime and LastGenSpeed to the current values:

 LastGenSpd = GenSpeed;

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "SRC_dqPitCom", "A") ;

 AddLogValue (turbine_id, "SRCD_PitCom", "A") ;

 AddLogValue (turbine_id, "PitComT", "A") ;

 AddLogValue (turbine_id, "TVD_PitCom", "A") ;

 AddLogValue (turbine_id, "GenSpeedF", "A/T") ;

 }

 SetLoggingValue (turbine_id, 0, SRC_dqPitCom[0]);

 SetLoggingValue (turbine_id, 1, SRCD_PitCom[0]);

 SetLoggingValue (turbine_id, 2, PitComT);

 SetLoggingValue (turbine_id, 3, TVD_PitCom);

 SetLoggingValue (turbine_id, 4, GenSpeedF);

 }//end logging

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/NREL_5MW_NREL_ExternalControllerDLL.cc

NREL 5MW external control/NREL_5MW_NREL_ExternalControllerDLL.cc

/*

! This Bladed-style DLL controller is used to implement a variable-speed

! generator-torque controller and PI collective blade pitch controller for

! the NREL Offshore 5MW baseline wind turbine. This routine was written by

! J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.

! Fortran code converted to C++ by C. Plumley 16/08/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

/*

Code for controller DLL file.

The routine reads in and defines:

double avrSwap, int aviFail, char accInFile, char avcOutname, char avcMsg

*/

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Define all local variables

 float Alpha; // Current coefficient in the recursive, singl

 float BlPitch[3]; // Current values of the blade pitch angles, r

 float ElapTime; // Elapsed time since the last call to the con

 float const CornerFreq = 1.570796f; // Corner frequency (-3dB point) in the recurs

 float GenSpeed; // Current HSS (generator) speed, rad/s.

 float static GenSpeedF; // Filtered HSS (generator) speed, rad/s.

 float GenTrq; // Electrical generator torque, N-m.

 float GK; // Current value of the gain correction factor

 float HorWindV; // Horizontal hub-heigh wind speed, m/s.

 float static IntSpdErr; // Current integral of speed error w.r.t. time

 float static LastGenTrq; // Commanded electrical generator torque the l

 float static LastTime; // Last time this DLL was called, sec.

 float static LastTimePC; // Last time the pitch controller was called,

 float static LastTimeVS; // Last time the torque controller was called,

 float const OnePlusEps = 1.0f + std::numeric_limits<float const>::epsilon(); // The number slighty greater than unity in si

 float const PC_DT = 0.00125f; // Communication interval for pitch controlle

 float const PC_KI = 0.008068634f; // Integral gain for pitch controller at rated

 float const PC_KK = 0.1099965f; // Pitch angle were the the derivative of the

 float const PC_KP = 0.01882681f; // Proportional gain for pitch controller at r

 float const PC_MaxPit = 1.570796f; // Maximum pitch setting in pitch controller,

 float const PC_MaxRat = 0.1396263f; // Maximum pitch rate (in absolute value) in

 float const PC_MinPit = 0.0f; // Minimum pitch setting in pitch controller,

 float const PC_RefSpd = 122.9096f; // Desired (reference) HSS speed for pitch con

 float static PitCom[3]; // Commanded pitch of each blade the last time

 float PitComI; // Integral term of command pitch, rad.

 float PitComP; // Proportional term of command pitch, rad.

 float PitComT; // Total command pitch based on the sum of the

 float PitRate[3]; // Pitch rates of each blade based on the curr

 float const R2D = 57.295780f; // Factor to convert radians to degrees.

 float const RPS2RPM = 9.5492966f; // Factor to convert radians per second to rev

 float SpdErr; // Current speed error, rad/s.

 float Time; // Current simulation time, sec.

 float TrqRate; // Torque rate based on the current and last t

 float const VS_CtInSp = 70.16224f; // Transitional generator speed (HSS side) bet

 float const VS_DT = 0.00125f; // Communication interval for torque controlle

 float const VS_MaxRat = 15000.0f; // Maximum torque rate (in absolute value) in

 float const VS_MaxTq = 47402.91f; // Maximum generator torque in Region 3 (HSS s

 float const VS_Rgn2K = 2.332287f; // Generator torque constant in Region 2 (HSS

 float const VS_Rgn2Sp = 91.21091f; // Transitional generator speed (HSS side) bet

 float const VS_Rgn3MP = 0.01745329f; // Minimum pitch angle at which the torque is

 float const VS_RtGnSp = 121.6805f; // Rated generator speed (HSS side), rad/s. --

 float const VS_RtPwr = 5296610.0f; // Rated generator generator power in Region 3

 float static VS_Slope15; // Torque/speed slope of region 1 1/2 cut-in t

 float static VS_Slope25; // Torque/speed slope of region 2 1/2 inductio

 float const VS_SlPc = 10.0f; // Rated generator slip percentage in Region 2

 float static VS_SySp; // Synchronous speed of region 2 1/2 induction

 float static VS_TrGnSp; // Transitional generator speed (HSS side) bet

 char strMsg[1024] = "";

 char static filenameDebug[256] = "";

 int iStatus;

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 //debugging preferences

 bool const PC_DbgOut = false; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id);

 NumBl = GetNumberOfBlades(turbine_id) ;

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 }

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 //Initialise

 if (iStatus == 0) // TRUE if we are on the first call to the DLL

 {

 // Inform users that we are using this user-defined routine:

 strcat(strMsg,"\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll as written by J. Jonkman of NREL/NWTC for use in the IEA Annex XXIII OC3 studies.\r\n");

 //Determine some torque control parameters not specified directly:

 VS_SySp = VS_RtGnSp/(1.0f + 0.01f*VS_SlPc);

 VS_Slope15 = (VS_Rgn2K*VS_Rgn2Sp*VS_Rgn2Sp)/(VS_Rgn2Sp - VS_CtInSp);

 VS_Slope25 = (VS_RtPwr/VS_RtGnSp)/(VS_RtGnSp - VS_SySp);

 if (VS_Rgn2K == 0.0) // TRUE if the Region 2 torque is flat, and thus, the denominator in the ELSE condition is

 {

 VS_TrGnSp = VS_SySp;

 }

 else // TRUE if the Region 2 torque is quadratic with speed

 {

 VS_TrGnSp = (VS_Slope25 - sqrt(VS_Slope25*(VS_Slope25 - 4.0f*VS_Rgn2K*VS_SySp)))/(2.0f*VS_Rgn2K);

 }

 // Check validity of input parameters:

 if (CornerFreq <= 0.0) {

 strcat(strMsg,"\r\nCornerFreq must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 strcat(strMsg,"\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 strcat(strMsg,"\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2Sp <= VS_CtInSp) {

 strcat(strMsg,"\r\nVS_Rgn2Sp must be greater than VS_CtInSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_TrGnSp < VS_Rgn2Sp) {

 strcat(strMsg,"\r\nVS_TrGnSp must not be less than VS_Rgn2Sp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 strcat(strMsg,"\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 strcat(strMsg,"\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 strcat(strMsg,"\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 strcat(strMsg,"\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 strcat(strMsg,"\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 strcat(strMsg,"\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 strcat(strMsg,"\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 strcat(strMsg,"\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 strcat(strMsg,"\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 strcat(strMsg,"\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 strcat(strMsg,"\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 strcat(strMsg,"\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComPI" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Initialize the SAVEd variables:

 // NOTE: LastGenTrq, though SAVEd, is initialized in the torque controller

 // below for simplicity, not here.

 GenSpeedF = GenSpeed; // This will ensure that generator speed filter will use the initial value of

 PitCom[0] = BlPitch[0]; // This will ensure that the variable speed controller picks the correct contr

 PitCom[1] = BlPitch[1]; // ditto

 PitCom[2] = BlPitch[2]; // ditto

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitCom[0]/(GK*PC_KI); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastGenTrq = 0; // initialises but is overidden on first run

 strcat(strMsg,"\r\nInitialisation complete\r\n");

 } //ENDIF first call to dll

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero (See Appendix A of Bladed User's Guide):

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set the generator contactor status, avrSWAP(35), to main (high speed)

 // variable-speed generator, the torque override to yes, and command the

 // generator torque (See Appendix A of Bladed User's Guide):

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last

 // call to the controller (See Appendix A of Bladed User's Guide):

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Filter the HSS (generator) speed measurement:

 // NOTE: This is a very simple recursive, single-pole, low-pass filter with

 // exponential smoothing.

 // Update the coefficient in the recursive formula based on the elapsed time

 // since the last call to the controller:

 Alpha = exp((LastTime - Time)*CornerFreq);

 // Apply the filter:

 GenSpeedF = (1.0f - Alpha)*GenSpeed + Alpha*GenSpeedF;

 //===

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when VS_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 // Compute the generator torque, which depends on which region we are in:

 if ((GenSpeedF >= VS_RtGnSp) || (PitCom[0] >= VS_Rgn3MP))

 {

 // We are in region 3 - power is constant

 GenTrq = VS_RtPwr/GenSpeedF;

 }

 else if (GenSpeedF <= VS_CtInSp)

 {

 // We are in region 1 - torque is zero

 GenTrq = 0.0;

 }

 else if (GenSpeedF < VS_Rgn2Sp)

 {

 // We are in region 1 1/2 - linear ramp in to

 GenTrq = VS_Slope15*(GenSpeedF - VS_CtInSp);

 }

 else if (GenSpeedF < VS_TrGnSp)

 {

 // We are in region 2 - optimal torque is pro

 GenTrq = VS_Rgn2K*GenSpeedF*GenSpeedF;

 }

 else

 {

 // We are in region 2 1/2 - simple induction

 GenTrq = VS_Slope25*(GenSpeedF - VS_SySp);

 }

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == 0)

 {

 // Initialize the value of LastGenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/ElapTime; // Torque rate (unsaturated)

 TrqRate = MIN(MAX(TrqRate, -VS_MaxRat), VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*ElapTime; // Saturate the command using the torque rate limit

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //===

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than

 // or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called

 // at every time step when PC_DT = DT, even in the presence of

 // numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 // Compute the gain scheduling correction factor based on the previously

 // commanded pitch angle for blade 1:

 GK = 1.0f/(1.0f + PitCom[0]/PC_KK);

 // Compute the current speed error and its integral w.r.t. time; saturate the

 // integral term using the pitch angle limits:

 SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + SpdErr*ElapTime; // Current integral of speed error w.r.t. time

 IntSpdErr = MIN(MAX(IntSpdErr, PC_MinPit/(GK*PC_KI)),PC_MaxPit/(GK*PC_KI)); // Saturate the integral term using the pitch angle li

 // Compute the pitch commands associated with the proportional and integral

 // gains:

 PitComP = GK*PC_KP* SpdErr; // Proportional term

 PitComI = GK*PC_KI*IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 // saturate the overall command using the pitch angle limits:

 PitComT = PitComP + PitComI; // Overall command (unsaturated)

 PitComT = MIN(MAX(PitComT, PC_MinPit), PC_MaxPit);

 // Saturate the overall command using the pitch angle

 // Saturate the overall commanded pitch using the pitch rate limit:

 // NOTE: Since the current pitch angle may be different for each blade

 // (depending on the type of actuator implemented in the structural

 // dynamics model), this pitch rate limit calculation and the

 // resulting overall pitch angle command may be different for each

 // blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitRate[K] = (PitComT - BlPitch[K])/ElapTime; // Pitch rate of blade K (unsaturated)

 //PitRate[K] = MIN(MAX(PitRate[K], -PC_MaxRat), PC_MaxRat); // Saturate the pitch rate of blade K using its maximum - deactivated as actuator dynamics included in model

 PitCom[K] = BlPitch[K] + PitRate[K]*ElapTime; // Saturate the overall command of blade K using the p

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeedF*RPS2RPM << Tab << 100.0*SpdErr/PC_RefSpd << Tab << SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComT*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===

 //Reset the value of LastTime to the current value:

 LastTime = Time;

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "GenSpeedF", "A/T");

 AddLogValue (turbine_id, "SpdErr", "A/T");

 AddLogValue (turbine_id, "IntSpdErr", "A/T");

 AddLogValue (turbine_id, "PitComT", "A");

 AddLogValue (turbine_id, "PitRate0", "A/T");

 AddLogValue (turbine_id, "PC_MaxRat", "A/T");

 AddLogValue (turbine_id, "PitCom0", "A");

 }

 SetLoggingValue (turbine_id, 0, GenSpeedF);

 SetLoggingValue (turbine_id, 1, SpdErr);

 SetLoggingValue (turbine_id, 2, IntSpdErr);

 SetLoggingValue (turbine_id, 3, PitComT);

 SetLoggingValue (turbine_id, 4, PitRate[0]);

 SetLoggingValue (turbine_id, 5, PC_MaxRat);

 SetLoggingValue (turbine_id, 6, PitCom[0]);

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/NREL_5MW_UpWind_ExternalControllerDLL.cc

NREL 5MW external control/NREL_5MW_UpWind_ExternalControllerDLL.cc

/*

! This Bladed controller is modelled on Bossanyi's control strategies

! It is implemented in C++ using the Jonkman NREL 5MW external controller as a template

!

! Created by C. Plumley 21/11/2012

*/

#define _CRT_SECURE_NO_WARNINGS //avoids complaint by MS about strcat rather than strcat_s being used

// Latest version of Bladed offers alternative to avrSwap and additional wind turbines in one simulation

#pragma comment(lib, "ExternalControllerApi.lib")

#include "ExternalControllerApi.h" // This defines the C functions that can be called, as well as 'turbine'.

using namespace GHTurbineInterface;

// standard things to include

#include <string.h> //for strings

#include <stdio.h> //to append strings for message output

#include <iostream> //for reading/writing to (text) files - like the parameter inputs

#include <fstream> //for writing to file

#include <limits> //for use of machine epsilon

#include <math.h> //for pie, cos and sine

// where I define transfer functions (though not really "functions" in the programming sense)

#include "transferFunctions.h" //imported the header file

#include "parameterSearchDefine.h" //imported the header file

#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5)) //rounds to nearest integer

#define MIN(a,b) ((a) < (b) ? a : (b)) //selects minumum value

#define MAX(a,b) ((a) > (b) ? a : (b)) //selects maximum value

#define SATURATE(value,min,max) (MIN(MAX(value,min),max)) //saturates to max/min values

#define ABS(a) ((a) > (0.0) ? a : (-a)) //finds the absolute value

//Code for controller DLL file.

// double *avrSwap, int *aviFail, char *accInfile, char *avcOutname, char *avcMsg

extern "C" int __declspec(dllexport) __cdecl CONTROLLER (const turbine turbine_id)

{

 //Define all local variables

 // General local variables

 double static BlPitch[3]; // Current values of the blade pitch angles, rad

 double static ElapTime; // Elapsed time since the last call to the controller

 double static GenSpeed; // Current HSS (generator) speed, rad/s.

 double static GenSpeedF; // Current filtered PC HSS (generator) speed, rad/s.

 double static LastGenSpd; // Previous generator speed

 double const GearRatio = 97.0; // Gear ratio

 double static GenTrq; // Electrical generator torque, N-m.

 double static GenTrqOpt; // Optimum Cp electrical generator torque, N-m.

 double static GK; // Current value of the gain correction factor

 double static HorWindV; // Horizontal hub-heigh wind speed, m/s.

 double static IntSpdErr; // Current integral of speed error w.r.t. time for pitch control

 double static LastGenTrq; // Commanded electrical generator torque the l

 double static LastTime; // Last time this DLL was called, sec.

 double const OnePlusEps = 1.0f + std::numeric_limits<float>::epsilon(); // The number slighty greater than unity in simulations due to rounding error, needs to be float as thats what Bladed uses

 double static Time; // Current simulation time, sec

 double const R2D = 57.295780; // Factor to convert radians to degrees.

 double const RPS2RPM = 9.5492966; // Factor to convert radians per second to rev

 double const PIE = 3.14159265358979; // pi to the precision of a double

 double static RotAzi; // rotor azimuth angle

 double static BladeRBMop[3]; // load measurements on each blade = blade root out of plane bending moment

 double static BladeRBMip[3]; // load measurements on each blade = blade root in plane bending moment

 double static TowerAccX; // tower acceleration at hub height in X direction (out-of-plane motion)

 double static NacelRolAcc; // nacelle roll acceleration

 double static NacelNodAcc; // nacelle nod acceleration

 double static NacelRolVel; // nacelle roll velocity

 double static NacelNodVel; // nacelle nod velocity

 double const windspeed_tau = 30.0; // regressive filter time constant for filtering wind speed

 double static windspeedF; // filtered wind speed

 // Generally to do with torque control

 double static LastTimeVS; // Last time the torque controller was called,

 double static VS_ElapTime; // Elapsed time since the last call to the torque controller

 double static TrqRate; // Torque rate based on the current and last t

 double const VS_CtInSp = GetMinimumGeneratorSpeed (turbine_id) ; // Transitional generator speed (HSS side), cut-in speed, rad/s

 double const VS_DT = 0.01; // Communication interval for torque controller

 double const VS_MaxRat = 30000.0; // Maximum torque rate (in absolute value) in Nm

 double const VS_MaxTq = 47402.91; // Maximum generator torque in Region 3 (HSS side), max torque of turbine

 double const VS_Rgn2K = GetOptimalModeGain (turbine_id); // Generator torque constant in Region 2 (HSS side), for optimum Cp tracking

 double const VS_Rgn3MP = 0.0; // Minimum pitch angle at which the torque is in above rated (0 degree)

 double const VS_RtGnSp = GetOptimalModeMaximumSpeed (turbine_id); // Rated generator speed (HSS side), rad/s. --

 double const VS_RtGnTq = GetReferenceGeneratorTorqueAboveRated (turbine_id); // Generator torque above rated

 double const VS_RtPwr = VS_RtGnTq*VS_RtGnSp; // Rated generator generator power in Region 3 (5296610.0 W)

 double const VS_SlPc = 10.0; // Rated generator slip percentage in Region 2

 double static VS_GnSpSw; // Generator speed at which control switches from A-B to C-E

 double static VS_RtGnTrq; // Rated generator torque

 double static VS_SpdErr; // generator speed error for torque control

 double static VS_IntSpdErr; // integral of speed error for torque control

 double static VS_GnTrq1; // Optimum Cp generator torque at cut-in speed

 double static VS_GnTrq2; // Optimum Cp generator torque at rated speed

 double const VS_KP1 = 4200.0; // proportional gain for torque control in A-B region

 double const VS_KI1 = 2100.0; // integral gain for torque control in A-B region

 double const VS_KP2 = 4200.0; // proportional gain for torque control in C-E region

 double const VS_KI2 = 2100.0; // integral gain for torque control in C-E region

 double static VS_ComI; // integral torque demand

 double static VS_ComP; // proportional torque demand

 double static VS_ComT; // Total torque demand

 double static VS_GnTqLast = 0; // last generator torque for use by torque controller

 double static VS_lastGenSpd = 0; // last generator speed for use by torque controller

 // Filter for damping of torsional vibrations using a ripple term in the torque control

 TF static FTV1_TF; // transfer function structure

 double FTV1_alp[3] = {1.000000000000000, -1.882998514215281, 0.938955746547103}; // the tf denominator values

 double FTV1_bet[3] = {0.030522126726448, 0, -0.030522126726448}; // the tf numerator values

 double const FTV1_K = 1560; // gain

 double static FTV1_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV1_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 TF static FTV2_TF; // transfer function structure

 double FTV2_alp[3] = {1.000000000000000, -1.905656064025886, 0.913386187829772}; // the tf denominator values

 double FTV2_bet[3] = {0.042717405883916, 0, -0.042717405883916}; // the tf numerator values

 double const FTV2_K = 1625; // gain

 double static FTV2_GenTrqF = 0; // this is the riple term, remains zero if FTV is off

 double const FTV2_GnTqMax = 1800; // amplitude limit of damping torque (1.8kNm)

 // Generally to do with pitch control

 double static LastTimePC; // Last time the pitch controller was called,

 double static PC_ElapTime; // Elapsed time since the last call to the pitch controller

 double const PC_DT = 0.1; // Communication interval for pitch controller

 double const PC_KI = 0.00453; // Integral gain for pitch controller at rated

 double const PC_KK = (25.0/2.0)/R2D; // Gain correction gradient GK = 1/(1.0+theta_deg/PC_KK)

 double const PC_KP = 0.0135; // Proportional gain for pitch controller at rated

 double const PC_MinPit = GetMinimumPitchAngle (turbine_id, 0); // Minimum pitch setting in pitch controller, (0th blade)

 double const PC_MaxPit = GetMaximumPitchAngle (turbine_id, 0); // Maximum pitch setting in pitch controller, (0th blade)

 double const PC_MinRat = GetMinimumPitchRate (turbine_id, 0); // Minimum pitch rate in rad/s, (0th blade)

 double const PC_MaxRat = GetMaximumPitchRate (turbine_id, 0); // Maximum pitch rate in rad/s, (0th blade)

 double const PC_RefSpd = GetReferenceGeneratorSpeedAboveRated (turbine_id); // Desired (reference) HSS speed for pitch control

 double static PitCom[3]; // Commanded pitch of each blade the last time

 double static PitComI; // Integral term of command pitch, rad.

 double static PitComP; // Proportional term of command pitch, rad.

 double static PitComPI; // Proportional integral command pitch for generator speed control

 double static PitComT; // Total command pitch

 double static PitRate[3]; // Pitch rates of each blade based on the curr

 double static PC_SpdErr; // Current speed error, rad/s, for pitch control

 double static PC_Smart_com; // Smart rotor supplementing speed control signal

 // Pitch control interaction with torque control

 double static PCI_PwrEr; // Current power error, W

 double static PCI_IntPwrEr; // Current integral of power error

 double const PCI_KP = 0.0000001; // Proportional gain

 double const PCI_KI = 0.00000005; // Integral gain

 double static PCI_Prp; // Pitch command proportional term

 double static PCI_Int; // Pitch command integral term

 double static GenTrqF; // Filtered generator torque

 // Pitch additional non-linear control term for gusts

 double static NLP_SpdErr; // generator speed error for use in NLP (may be replaced by SpdErr)

 double static NLP_LastSpEr; // the last generator speed error

 double static NLP_SpdErrDotF; // filtered rate of change of generator speed error

 double static NLP_SpErDt[2]; // the previous 2 rate of change of generator speed errors

 double static NLP_SpErDtF[2]; // the previous 2 rate of change of generator speed errors filtered

 double const NLP_KSpEr = 25.0; // Scale factor for the speed error

 double const NLP_KSpErDt = 10.0; // Scale factor for the rate of change of speed error

 double const NLP_Gain = 0.15; // Gain for pitch command

 double const NLP_FOFa[2] = {1.0, 0.0}; // the first order lag filter tf denominator values

 double const NLP_FOFb[2] = {0.500000000000000, 0.500000000000000}; // the first order lag filter tf numerator values

 double static NLP_PitRate; // NLP pitch rate command

 double static NLP_PitCom; // NLP pitch command

 // Notch filter A for pitch control

 TF static PCFA_TF;

 double PCFA_alp[3] = {1.000000000000000, -1.759437560288276, 0.894588738372735}; // the tf denominator values

 double PCFA_bet[3] = {0.947294369186368, -1.759437560288277, 0.947294369186368}; // the tf numerator values

 // Notch filter B for pitch control

 TF static PCFB_TF;

 double PCFB_alp[3] = {1.000000000000000, -1.199161997555370, 0.746146616371889}; // the tf denominator values

 double PCFB_bet[3] = {0.873073308185945, -1.199161997555369, 0.873073308185945}; // the tf numerator values

 // Low-pass filter for pitch control

 TF static PCF_TF;

 double PCF_alp[3] = {1.000000000000000, -0.666666666666667, 0.111111111111111}; // the tf denominator values

 double PCF_bet[3] = {0.111111111111111, 0.222222222222222, 0.111111111111111}; // the tf numerator values

 // Tower vibration damping

 double static TVD_TowVel; // filtered tower fore-aft velocity

 double static TVD_PitCom; // Pitch command from tower vibration damping section

 double static TVD_IntTA; // integral of filtered tower acceleration (velocity)

 double const TVD_K = 0.0454; // integral gain for tower acceleration (proportional gain for velocity)

 TF static TVD_TF; // transfer function used to determine tower velocity from accelerometer

 double TVD_alp[3] = {1.000000000000000, -1.745244572310132, 0.761469654294494}; // the tf denominator values

 double TVD_bet[3] = {2.449630717274034, -4.615760042119332, 2.182354406829659}; // the tf numerator values

 TF static TVD_INT;

 TVD_INT.size = 2;

 double TVD_INTalp[2] = {1.000000000000000, -0.922898292198467}; // the first order lag filter tf denominator values

 double TVD_INTbet[2] = {0.048188567375958, 0.048188567375958}; // the first order lag filter tf numerator values

 double static TVD_gain; // Gain correction factor

 double static TVD_Smart_Com; // Smart Rotor angle demnand for tower vibration damping

 // Supplementing pitch control filter

 double static Sup_xHat = 0.96; // recurssive filter decay constant for determining coefficients

 double static Sup_Signal; // supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SigPrev; // previous time step supplementary control signal to be split between smart rotor and pitch control

 double static Sup_SmartF; // supplementary smart rotor control filtered signal

 double static Sup_PitchF; // supplementary pitch control filtered signal

 // Individual pitch control

 double const IPC_KP = 0.000000010; // proportional gain

 double const IPC_KI = 0.000000001; // integral gain

 double const IPC_PitMax = 8.0/R2D; // max angle due to IPC control

 double static IPC_offset; // offset (omega * T) to rotor azimuth for time delays etc.

 double static IPC_loadsD; // load measurements in D-axis

 double static IPC_loadsQ; // load measurements in Q-axis

 double static IPC_loadsDF; // Filtered yaw moment

 double static IPC_loadsQF; // Filtered tilt moment

 double static IPC_pitD; // D-axis pitch demand

 double static IPC_pitQ; // Q-axis pitch demand

 double static IPC_pit[3]; // Individual pitch demands

 double static IPC_YawRef = 0.0; // Desired yaw moment

 double static IPC_TltRef = 0.0; // Desired tilt moment

 double static IPC_YawEr; // Yaw (D-axis) moment error

 double static IPC_TltEr; // Tilt (Q-axis) moment error

 double static IPC_IntYawEr; // Integral of yaw moment error

 double static IPC_IntTltEr; // Integral of tilt moment error

 double static IPC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static IPC_gain; // gain to phase out IPC below rated

 // Notch filter for individual pitch control yaw error D (1P)

 TF static IPCFDA_TF;

 double IPCFDA_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double IPCFDA_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // Notch filter for individual pitch control tilt error Q (1P)

 TF static IPCFQA_TF;

 double IPCFQA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double IPCFQA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // IPC based purely on blade root moment

 double static IPCB_Ref; // Reference blade RBM

 double static IPCB_RefF; // Filtered reference (regressive filter)

 double const IPCB_Tau = 0.0; // Regressive filter time constant

 double static IPCB_IntEr[3]; // Integral error for each of the blades

 double static IPCB_PitCom[3]; // Pitch command for each of the blades

 double const IPCB_KD = 0.0; // Differential gain

 double const IPCB_KP = 0.000000001; // Proportional gain

 double const IPCB_KI = 0.00000000; // Integral gain

 double static IPCB_DifEr[3]; // Differential error for each blade

 double static IPCB_Er[3]; // Current error for each blade

 double const IPCB_PitMax = 8.0/R2D; // max angle due to IPCB control

 double static IPCB_BladeRBMopF[3];

 double static IPCB_PitComF[3];

 double static IPCB_fictforce;

 // Low-pass filter for IPCB pitch control

 TF static IPCBFL_TF[3];

 double IPCBFL_alp[3] = {1.000000000000000, -1.935058323398081, 0.950697247287957};//{1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFL_bet[3] = {0.081999700234532, 0.007819461944938, -0.074180238289594};//{0.003933975449816, 0.007867950899633, 0.003933975449816}; // the tf numerator values

 // High-pass filter for IPCB pitch control

 TF static IPCBFH_TF[3];

 double IPCBFH_alp[3] = {1.000000000000000, -1.935058323398081, 0.950697247287957};//{1.000000000000000, -1.947057736661417, 0.962793638460682}; // the tf denominator values

 double IPCBFH_bet[3] = {1.637799151886204, -3.119418365248281, 1.481619213362077};//{2.0*1.569381033248292, -2.0*3.138762066496584, 2.0*1.569381033248292}; // the tf numerator values

 // Smart Rotor Control

 double static LastTimeSRC; // Time of last call to SRC

 double static SRC_ElapTime; // Elapsed time since last call to SRC controller

 int static SRC_ailerons; // loop through ailerons

 int static SRC_Nailerons = GetNumberOfAilerons (turbine_id, 0); // ailerons per blade (on 0th blade)

 double static SRC_dep[3]; // Deployment angle of surfaces (flaps)

 double const SRC_PitMax = 20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMin = -20.0/R2D; // Max pitch in degrees converted to radians

 double const SRC_PitMaxRat = 40.0/R2D; // Max pitch rate degress/s converted to rad/s

 double const SRC_DT = 0.1; // Communication interval for SRC (dq filters set for 0.1s, distributed also for 0.1s)

 // Smart Rotor Control DQ-axis

 double static SRC_load[3]; // load measurements on each blade

 double const SRC_KP = IPC_KP; // proportional gain

 double const SRC_KI = IPC_KI; // integral gain

 double static SRC_Pit[3]; // angle of flaps

 double static SRC_offset; // offset (omega T) to rotor azimuth for time delays etc.

 double static SRC_loadsD; // load measurements in D-axis

 double static SRC_loadsQ; // load measurements in Q-axis

 double static SRC_loadsDF; // Filtered yaw moment

 double static SRC_loadsQF; // Filtered tilt moment

 double static SRC_PitComD; // D-axis pitch demand

 double static SRC_PitComQ; // Q-axis pitch demand

 double static SRC_PitCom[3]; // Individual pitch demands

 double static SRC_PitRate[3]; // Demanded pitch rate for each blade

 double static SRC_YawRef = 0.0; // Desired yaw moment

 double static SRC_TltRef = 0.0; // Desired tilt moment

 double static SRC_YawEr; // Yaw (D-axis) moment error

 double static SRC_TltEr; // Tilt (Q-axis) moment error

 double static SRC_IntYawEr; // Integral of yaw moment error

 double static SRC_IntTltEr; // Integral of tilt moment error

 double static SRC_GK[3]; // Gain correction factor for each blade based on current pitch

 double static SRC_gain; // gain to phase out SRC below rated

 double static SRC_dqPitCom[3]; // dq pitch command

 double static SRC_GenSpd; // generator speed used in SRC module

 double static SRC_LastGenSpd; // last generator speed

 double static SRC_RFangle; // fault ride through flap angle

 bool static SRC_faultRF1_on; // ratchet for fault ride through 1

 bool static SRC_faultRF2_on; // ratchet for fault ride through 2

 TF static SRCafd_TF; // SRC auto-fault detection transefer function

 double SRCafd_alp[3] = {1.000000000000000, -1.761715421755183, 0.775915932973587}; // the tf denominator values

 double SRCafd_bet[3] = {0.071002556092019, 0.0, -0.071002556092019}; // the tf numerator values

 double static SRCafd_values[100]; // Number of values in window

 double const SRCafd_threshold = 2.5; // Threshold that activates fault ride through

 int static SRCafd_cnt; // For loop counter

 double static SRCafd_value; // Measured fault detection value

 double static SRCfrf_angle[3]; // adjust other flaps to this angle (initially zero)

 double static SRCfrf_KI_gain[3]; // adjust other flaps to this angle (initially zero)

 double const SRCfrf_tau = 60.0; // time constant for measuring the mean RBM of all 3 flaps and adjusting to be closer to that mean

 double static SRCfrf_RBMf[3]; // filtered blade root bending moment

 double static SRCfrf_deltaRBM[3]; // difference between RBM and mean RBM

 double static SRCfrf_IntAngle[3]; // PI integral demanded angle

 double const SRCfrf_KP = -0.0000000; // proportional gain

 double const SRCfrf_KI = -0.00000001; // integral gain

 // 1P notch filter transfer function

 TF static SRCfrf_1p_TF[3];

 double SRCfrf_1p_alp[3] = {1.000000000000000, -1.761376867168625, 0.775612117049190}; // the tf denominator values

 double SRCfrf_1p_bet[3] = {0.887806058524595, -1.761376867168626, 0.887806058524595}; // the tf numerator values

 // 3P notch filter transfer function

 TF static SRCfrf_3p_TF[3];

 double SRCfrf_3p_alp[3] = {1.000000000000000, -1.739215736436336, 0.756217844466947}; // the tf denominator values

 double SRCfrf_3p_bet[3] = {0.878108922233473, -1.739215736436336, 0.878108922233473}; // the tf numerator values

 // Notch filter for SRC yaw error D

 TF static SRCFDA_TF;

 double SRCFDA_alp[3] = {IPCFDA_alp[0], IPCFDA_alp[1], IPCFDA_alp[2]}; // the tf denominator values

 double SRCFDA_bet[3] = {IPCFDA_bet[0], IPCFDA_bet[1], IPCFDA_bet[2]}; // the tf numerator values

 // Notch filter for SRC tilt error Q

 TF static SRCFQA_TF;

 double SRCFQA_alp[3] = {SRCFDA_alp[0], SRCFDA_alp[1], SRCFDA_alp[2]}; // the tf denominator values

 double SRCFQA_bet[3] = {SRCFDA_bet[0], SRCFDA_bet[1], SRCFDA_bet[2]}; // the tf numerator values

 // Smart rotor control specific to distributed PI design

 double static SRCD_Er[3]; // Current error for each blade

 double static SRCD_IntEr[3]; // Integral error for each blade

 double const SRCD_KI = -IPCB_KI; // Integral gain

 double const SRCD_KP = -IPCB_KP; // Proportional gain

 double const SRCD_KD = 0.0; // Differential gain

 double static SRCD_Ref; // Reference (collective) angle for flaps

 double static SRCD_RefF; // Reference (collective) angle for flaps filtered

 double static SRCD_RBMF[3]; // Filtered RBM

 double const SRCD_Tau = 0.0; // Autoregressive filter

 double static SRCD_RBM[3]; // the previous 3 values of measured blade RBMs

 double static SRCD_PitCom[3]; // Commanded angle from SRCD

 double static SRCD_DifEr[3]; // Differential error if Kd in use

 double static SRCD_BladeRBMopF[3]; // Filtered blade root bending moment out-of-plane

 double static SRCD_PitComF[3]; // Demanded flap angle

 // low-pass filter for blade RBM signals

 TF static SRCDFL_TF[3];

 double SRCDFL_alp[3] = {IPCBFL_alp[0], IPCBFL_alp[1], IPCBFL_alp[2]}; // the tf denominator values

 double SRCDFL_bet[3] = {IPCBFL_bet[0], IPCBFL_bet[1], IPCBFL_bet[2]}; // the tf numerator values

 // high-pass for blade RBM signals

 TF static SRCDFH_TF[3];

 double SRCDFH_alp[3] = {IPCBFH_alp[0], IPCBFH_alp[1], IPCBFH_alp[2]}; // the tf denominator values

 double SRCDFH_bet[3] = {IPCBFH_bet[0], IPCBFH_bet[1], IPCBFH_bet[2]}; // the tf numerator values

 // General debugging & messaging values

 char strMsg[2048] = "";

 char static filenameDebug[256] = "";

 char static filenameDebugVS[256] = "";

 //More general values

 int iStatus; // Status of programme (0 = first call at time zero, 1 = all subsequent timestepts, -1 = final call)

 int K; // Loops through blades.

 int NumBl; // Number of blades, (-).

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 bool static DataLog_on;

 // flag for torque controller

 bool static VSConstP_on; // Flag to indicate whether constant power (or torque) above rated

 //flag for torsional vibration filter in torque control

 bool static FTV_on; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 bool static PCI_on; // Flag to indicate whether the pitch interaction with the torque control is on

 bool static PCFA_on; // Flag to indicate whether the pitch notch filter A is on

 bool static PCFB_on; // Flag to indicate whether the pitch notch filter B is on

 bool static PCF_on; // Flag to indicate whether the pitch low-pass filter is on

 // flags for supplementary speed control

 bool static PC_Smart_on; // Flag to indicate whether the smart control of speed control is on

 double static Sup_FreqCutOff; // 3dB cut-off frequency for spliting the pitch and smart rotor signals using filters

 //flags for individual pitch control

 bool static IPC_on; // Flag to indicate whether IPC is on

 bool static IPCFDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static IPCFQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 bool static IPC2_on; // Flag to indicate whether IPC2 is on

 bool static IPC2FDA_on; // Flag to indicate whether IPC2 yaw error (D-axis) notch filter is on

 bool static IPC2FQA_on; // Flag to indicate whether IPC2 tilt error (Q-axis) notch filter is on

 bool static IPCB_on; // Flag to indicate whether IPCB is on

 bool static IPCBFL_on; // Flag to indicate whether IPCB low pass filter is on

 bool static IPCBFH_on; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 bool static TVD_on; // Flag to indicate whether the tower vibration damping is on

 //flags for supplementary TVD control

 bool static TVD_Smart_on; // Flag to indicate whether the smart rotor tower vibration damping is on

 double static TVD_Smart_xHat; // Ratio of pitch to smart rotor control

 //flag for non-linear pitch term for gusts

 bool static NLP_on; // Flag to indicate whether the non-linear pitch term for gusts is on

 //Smart Rotor control gain factor for controller pitch angle to flap angle

 double static SRC_Pitch2Flap; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 bool static SRC_on; // Flag to indicate whether smart rotor control is active

 bool static SRCFDA_on; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 bool static SRCFQA_on; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 bool static SRC2_on; // Flag to indicate whether smart rotor control is active

 bool static SRC2FDA_on; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 bool static SRC2FQA_on; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 bool static SRCD_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFL_on; // Flag to indicate whether distributed smart rotor control is active

 bool static SRCDFH_on; // Flag to indicate whether distributed smart rotor control is active

 //flag for LIDAR system

 bool static LIDAR_on; // Flag to indicate whether LIDAR system is active

 //flag for Smart Rotor control utilising LIDAR

 bool static SRCL_on;

 //flag for indivudal pitch control utilising LIDAR

 bool static IPCL_on;

 // Sensors

 bool static STRAIN_on; // Flag to indicate whether strain measurements are taken

 //flag for flap faults

 bool static SRC_jam_on; // Flag to indicate whether flap is jammed

 double static SRC_jamAngle; // Angle at which flap is jammed

 double static SRC_jamTime; // Time at which flap is jammed

 bool static SRC_faultRF_on; // Flag to indicate whether fault ride-through is operational

 bool static SRC_autoFRF1_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_autoFRF2_on; // Flag to indicate if auto fault-ride through is operational

 bool static SRC_jamNoRF1_on; // Flag to indicate whether detection of fault through measurement of flap angle is operational

 //flag for fixed flap angle

 bool static FA_on; // Flag to indicate whether fixed flap angle is applied

 double static FA_aileronAngle; // Value for fixed flap angle

 //debugging preferences

 bool static PC_DbgOut; // Flag to indicate whether to output debugging

 bool static VS_DbgOut; // Flag to indicate whether to output debugging

 char const Tab[2] = "\t"; // The tab character as deliminator

 //Load variables from calling program (See Appendix A of Bladed User's Guide):

 iStatus = GetSimulationStatus(turbine_id) ;

 NumBl = GetNumberOfBlades(turbine_id) ;

 GenSpeed = GetMeasuredGeneratorSpeed(turbine_id) ;

 HorWindV = GetNominalHubFlowSpeed (turbine_id) ;

 Time = GetCurrentTime (turbine_id) ;

 ElapTime = Time - LastTime;

 TowerAccX = GetMeasuredTowerTopForeAftAcceleration(turbine_id) ;

 RotAzi = GetMeasuredRotorAzimuthAngle (turbine_id);

 NacelRolAcc = GetMeasuredNacelleRollAcceleration(turbine_id);

 NacelNodAcc = GetMeasuredNacelleNoddingAcceleration(turbine_id);

 NacelRolVel = ((0.1/ElapTime)*NacelRolVel + NacelRolAcc * ElapTime)/(0.1/ElapTime+1.0f);

 NacelNodVel = ((0.1/ElapTime)*NacelNodVel + NacelNodAcc * ElapTime)/(0.1/ElapTime+1.0f);

 if (ElapTime < 0.001)

 {

 NacelRolVel = 0;

 NacelNodVel = 0;

 }

 for (K = 0;K<NumBl;K++)

 {

 BlPitch[K] = GetMeasuredPitchAngle (turbine_id, K) ;

 BladeRBMop[K] = GetMeasuredBladeOutOfPlaneBendingMoment (turbine_id, K);

 BladeRBMip[K] = GetMeasuredBladeInPlaneBendingMoment (turbine_id, K);

 }

 //Initialise

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Inform users that we are using this user-defined routine:

 //ReportInfoMessage (turbine_id, "\r\n InfoMessage \r\n");

 //ReportScratchMessage (turbine_id, "\r\n ScratchMessage \r\n");

 ReportWarningMessage (turbine_id, "\r\nRunning with torque and pitch control of the NREL offshore 5MW baseline wind turbine from DISCON.dll, modelled on the UpWind controller by E. Bossanyi.\r\n");

 //ReportWarningMessage (turbine_id, "\r\n WarningMessage \r\n");

 //ReportErrorMessage (turbine_id, "\r\n ErrorMessage \r\n");

 //ReportCriticalMessage (turbine_id, "\r\n CriticalMessage \r\n");

 // Determine some torque control parameters not specified directly:

 VS_RtGnTrq = VS_RtPwr/VS_RtGnSp; // Rated generator torque

 VS_GnSpSw = (VS_CtInSp + VS_RtGnSp)/2; // Torque at which PI controllers switch

 VS_GnTrq1 = VS_Rgn2K*VS_CtInSp*VS_CtInSp; // Max torque on vertical section 1

 VS_GnTrq2 = VS_Rgn2K*VS_RtGnSp*VS_RtGnSp; // Min torque on vertical section 2

 // FLAGS for standard set-up (constant torque above rated, tower damping and all filters active)

 // flag for external Bladed data logging

 DataLog_on = false;

 // flag for torque controller

 VSConstP_on = false; // Flag to indicate whether constant power (true) or torque (false) above rated

 //flag for torsional vibration filter in torque control

 FTV_on = true; // Flag to indicate whether the torsional vibration filter is on

 //flags for pitch controller

 PCI_on = true; // Flag to indicate whether the pitch interaction with the torque control is on

 PCFA_on = true; // Flag to indicate whether the pitch notch filter A is on

 PCFB_on = true; // Flag to indicate whether the pitch notch filter B is on

 PCF_on = true; // Flag to indicate whether the pitch low-pass filter is on

 //flags for supplementary control

 PC_Smart_on = false; // Flag to indicate whether the smart control is used to help with speed control

 Sup_FreqCutOff = 1; // Value for spliting the pitch signal using filters

 //flags for individual pitch control

 IPC_on = false; // Flag to indicate whether dq-axis Individual Pitch Control (IPC) is on

 IPCFDA_on = true; // Flag to indicate whether IPC yaw error (D-axis) notch filter is on

 IPCFQA_on = true; // Flag to indicate whether IPC tilt error (Q-axis) notch filter is on

 IPCB_on = false; // Flag to indicate whether Independent blade pitch control (IPCB) is on

 IPCBFL_on = true; // Flag to indicate whether IPCB low pass filter is on

 IPCBFH_on = true; // Flag to indicate whether IPCB high pass filter is on

 //flag for tower vibration damping using pitch control

 TVD_on = true; // Flag to indicate whether the tower vibration damping is on

 TVD_Smart_on = false; // Flag to indicate whether the smart rotor tower vibration damping is on

 TVD_Smart_xHat = 1; // Ratio of pitch to smart rotor control for tower vibration damping

 //flag for non-linear pitch term for gusts

 NLP_on = false; // Flag to indicate whether the non-linear pitch term for gusts is on

 //pitch to flap angle gain factor

 SRC_Pitch2Flap = 4.6; // Gain to convert from pitch to flap angle demand

 //flags for Smart Rotor dq-axis control

 SRC_on = false; // Flag to indicate whether smart rotor control is active

 SRCFDA_on = true; // Flag to indicate whether SRC yaw error (D-axis) notch filter is on

 SRCFQA_on = true; // Flag to indicate whether SRC tilt error (Q-axis) notch filter is on

 //flag for Smart Rotor distributed control

 SRCD_on = false; // Flag to indicate whether distributed smart rotor control is active

 SRCDFL_on = true; // Flag to indicate whether distributed smart rotor control is active

 SRCDFH_on = true; // Flag to indicate whether distributed smart rotor control is active

 //flag for flap faults

 SRC_jam_on = false; // Flag to indicate whether flap 1 is jammed

 SRC_jamAngle = 0; // Angle at which flap 1 is jammed

 SRC_jamTime = 0; // Time at which flap 1 is jammed

 SRC_faultRF_on = false; // Flag to indicate whether fault ride-through is operational

 SRC_autoFRF1_on = false; // Flag to indicate whether auto fault ride-through version 1 is operational

 SRC_autoFRF2_on = false; // Flag to indicate whether auto fault ride-through version 2 is operational

 SRC_faultRF1_on = false; // Flag to indicate whether fault ride-through version 1 has been triggered

 SRC_faultRF2_on = false; // Flag to indicate whether fault ride-through version 2 has been triggered

 SRC_jamNoRF1_on = false; // Flag to indicate whether detection of fault through measurement of flap angle is disabled

 //flag to set flap at a fixed angle

 FA_on = false; // Flag to indicate whether flap angle is fixed

 FA_aileronAngle = 0; // Angle at which flap is fixed

 //debugging preferences

 PC_DbgOut = false; // Flag to indicate whether to output pitch control debugging

 VS_DbgOut = false; // Flag to indicate whether to output torque control debugging

 //Read in parameters from External controller data in Bladed

 string line;

 int static iter = -1;

 ifstream myfile ("DISCON.IN");

 if (myfile.is_open())

 {

 while (myfile.good())

 {

 getline (myfile,line);

 DataLog_on = parameterSearchDefine (turbine_id, line, DataLog_on, "DataLog_on");

 VSConstP_on = parameterSearchDefine (turbine_id, line, VSConstP_on, "VSConstP_on");

 FTV_on = parameterSearchDefine (turbine_id, line, FTV_on, "FTV_on");

 PCI_on = parameterSearchDefine (turbine_id, line, PCI_on, "PCI_on");

 PCFA_on = parameterSearchDefine (turbine_id, line, PCFA_on, "PCFA_on");

 PCFB_on = parameterSearchDefine (turbine_id, line, PCFB_on, "PCFB_on");

 PCF_on = parameterSearchDefine (turbine_id, line, PCF_on, "PCF_on");

 PC_Smart_on = parameterSearchDefine (turbine_id, line, PC_Smart_on, "PC_Smart_on");

 IPC_on = parameterSearchDefine (turbine_id, line, IPC_on, "IPC_on");

 IPCFDA_on = parameterSearchDefine (turbine_id, line, IPCFDA_on, "IPCFDA_on");

 IPCFQA_on = parameterSearchDefine (turbine_id, line, IPCFQA_on, "IPCFQA_on");

 IPCB_on = parameterSearchDefine (turbine_id, line, IPCB_on, "IPCB_on");

 IPCBFL_on = parameterSearchDefine (turbine_id, line, IPCBFL_on, "IPCBFL_on");

 IPCBFH_on = parameterSearchDefine (turbine_id, line, IPCBFH_on, "IPCBFH_on");

 TVD_on = parameterSearchDefine (turbine_id, line, TVD_on, "TVD_on");

 TVD_Smart_on= parameterSearchDefine (turbine_id, line, TVD_Smart_on,"TVD_Smart_on");

 NLP_on = parameterSearchDefine (turbine_id, line, NLP_on, "NLP_on");

 SRC_on = parameterSearchDefine (turbine_id, line, SRC_on, "SRC_on");

 SRCFDA_on = parameterSearchDefine (turbine_id, line, SRCFDA_on, "SRCFDA_on");

 SRCFQA_on = parameterSearchDefine (turbine_id, line, SRCFQA_on, "SRCFQA_on");

 SRCD_on = parameterSearchDefine (turbine_id, line, SRCD_on, "SRCD_on");

 SRCDFL_on = parameterSearchDefine (turbine_id, line, SRCDFL_on, "SRCDFL_on");

 SRCDFH_on = parameterSearchDefine (turbine_id, line, SRCDFH_on, "SRCDFH_on");

 SRC_jam_on = parameterSearchDefine (turbine_id, line, SRC_jam_on, "SRC_jam_on");

 SRC_faultRF_on = parameterSearchDefine (turbine_id, line, SRC_faultRF_on, "SRC_faultRF_on");

 SRC_autoFRF1_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF1_on, "SRC_autoFRF1_on");

 SRC_autoFRF2_on = parameterSearchDefine (turbine_id, line, SRC_autoFRF2_on, "SRC_autoFRF2_on");

 SRC_jamNoRF1_on = parameterSearchDefine (turbine_id, line, SRC_jamNoRF1_on, "SRC_jamNoRF1_on");

 SRC_faultRF1_on = parameterSearchDefine (turbine_id, line, SRC_faultRF1_on, "SRC_faultRF1_on");

 SRC_faultRF2_on = parameterSearchDefine (turbine_id, line, SRC_faultRF2_on, "SRC_faultRF2_on");

 FA_on = parameterSearchDefine (turbine_id, line, FA_on, "FA_on");

 if (line.find("SRC_jamAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamAngle = atof(tmptxt.c_str()); //convert selected string to float

 SRC_jamAngle = SRC_jamAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_jamTime") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_jamTime=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_jamTime = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("Sup_FreqCutOff") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSup_FreqCutOff=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 Sup_FreqCutOff = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("TVD_Smart_xHat") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nTVD_Smart_xHat=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 TVD_Smart_xHat = atof(tmptxt.c_str()); //convert selected string to float

 }

 if (line.find("FA_aileronAngle") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nFA_aileronAngle=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 FA_aileronAngle = atof(tmptxt.c_str()); //convert selected string to integer

 FA_aileronAngle = FA_aileronAngle/R2D; //convert to radians from degreees

 }

 if (line.find("SRC_Pitch2Flap") != -1)

 {

 string tmptxt = line.substr(line.find("#")+1,line.find(";")-line.find("#")-1);

 strcat(strMsg,"\r\nSRC_Pitch2Flap=");

 strcat(strMsg,tmptxt.c_str());

 strcat(strMsg," ");

 SRC_Pitch2Flap = atof(tmptxt.c_str()); //convert selected string to integer

 }

 PC_DbgOut = parameterSearchDefine (turbine_id, line, PC_DbgOut, "PC_DbgOut");

 VS_DbgOut = parameterSearchDefine (turbine_id, line, VS_DbgOut, "VS_DbgOut");

 } //end while file is good

 myfile.close();

 } //end if file is open

 else

 {

 ReportErrorMessage (turbine_id, "Unable to load parameter file");

 return GH_DISCON_ERROR;

 } //end else if file is not open

 // Check validity of input parameters:

 if (SRC_on && SRCD_on) {

 ReportErrorMessage (turbine_id, "\r\nCentral and distributed AFC active\r\n");

 return GH_DISCON_ERROR;

 }

 if ((SRC_on || SRCD_on || PC_Smart_on || TVD_Smart_on) && FA_on) {

 ReportErrorMessage (turbine_id, "\r\nFixed flap angle and SRC active\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_CtInSp < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_CtInSp must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KP1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KP1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_KI1 < 0) {

 ReportErrorMessage (turbine_id, "\r\nVS_KI1 must be greater than 0.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_SlPc <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_SlPc must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_RtPwr < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K < 0.0) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K must not be negative.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_Rgn2K*VS_RtGnSp*VS_RtGnSp > VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_Rgn2K*VS_RtGnSp^2 must not be greater than VS_RtPwr/VS_RtGnSp.\r\n");

 return GH_DISCON_ERROR;

 }

 if (VS_MaxTq < VS_RtPwr/VS_RtGnSp) {

 ReportErrorMessage (turbine_id, "\r\nVS_RtPwr/VS_RtGnSp must not be greater than VS_MaxTq.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_DT <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_DT must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KI <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KI must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_KK <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_KK must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_RefSpd <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_RefSpd must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MaxRat <= 0.0) {

 ReportErrorMessage (turbine_id, "\r\nPC_MaxRat must be greater than zero.\r\n");

 return GH_DISCON_ERROR;

 }

 if (PC_MinPit >= PC_MaxPit) {

 ReportErrorMessage (turbine_id, "\r\nPC_MinPit must be less than PC_MaxPit.\r\n");

 return GH_DISCON_ERROR;

 }

 const char* avcOutname = GetOutnameFilepath (turbine_id); //get path to output file

 // If we're debugging the pitch controller, open the debug file and write the header:

 if (PC_DbgOut) {

 strcpy(filenameDebug,avcOutname);

 strcat(filenameDebug,"_debugPI.txt");

 strcat(strMsg,"\r\nPC debug, output file: \r\n");

 strcat(strMsg,filenameDebug);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebug);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "RelSpdErr" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "GK " << Tab << "PitComP" << Tab << "PitComI" << Tab << "PitComPI" << Tab << "PitRate1" << Tab << "PitCom1 \n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "(%) " << Tab << "(rad/s)" << Tab << "(rad) " << Tab << "(-)" << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg) " << Tab << "(deg/s) " << Tab << "(deg) \n";

 myfile.close();

 } //ENDIF for debugger headers

 // If we're debugging the torque controller, open the debug file and write the header:

 if (VS_DbgOut) {

 strcpy(filenameDebugVS,avcOutname);

 strcat(filenameDebugVS,"_debugVS.txt");

 strcat(strMsg,"\r\nTorque control debug, output file: \r\n");

 strcat(strMsg,filenameDebugVS);

 strcat(strMsg,"\r\n");

 std::ofstream myfile(filenameDebugVS);

 myfile << "Time " << Tab << "ElapTime" << Tab << "HorWindV" << Tab << "GenSpeed" << Tab << "GenSpeed" << Tab << "SpdErr " << Tab << "IntSpdErr" << Tab << "VS_ComP" << Tab << "VS_ComI" << Tab << "GenTrq" << Tab << "\n";

 myfile << "(sec)" << Tab << "(sec) " << Tab << "(m/sec) " << Tab << "(rpm) " << Tab << "(rpm) " << Tab << "rad/s " << Tab << "(rad)" << Tab << "N" << Tab << "N" << Tab << "N" << Tab << " \n";

 myfile.close();

 } //ENDIF for debugger headers

 // Explain what parts of the control are active

 strcat(strMsg,"\r\nActive components: ");

 if (DataLog_on == true)

 strcat(strMsg,"DataLog ");

 if (VSConstP_on == true)

 strcat(strMsg,"VSConstP ");

 if (FTV_on == true)

 strcat(strMsg,"FTV ");

 if (PCI_on == true)

 strcat(strMsg,"PCI ");

 if (PCFA_on == true)

 strcat(strMsg,"PCFA ");

 if (PCFB_on == true)

 strcat(strMsg,"PCFB ");

 if (PCF_on == true)

 strcat(strMsg,"PCF ");

 if (PC_Smart_on == true)

 strcat(strMsg,"PC_Smart ");

 if (IPC_on == true)

 {

 strcat(strMsg,"IPC ");

 if (IPCFDA_on == true)

 strcat(strMsg,"IPCFDA ");

 if (IPCFQA_on == true)

 strcat(strMsg,"IPCFQA ");

 }

 if (IPCB_on == true)

 {

 strcat(strMsg,"IPCB ");

 if (IPCBFL_on == true)

 strcat(strMsg,"IPCFL ");

 if (IPCBFH_on == true)

 strcat(strMsg,"IPCFH ");

 }

 if (TVD_on == true)

 {

 strcat(strMsg,"TVD ");

 if (TVD_Smart_on == true)

 strcat(strMsg,"TVD_Smart ");

 }

 if (NLP_on == true)

 strcat(strMsg,"NLP ");

 if (SRC_on == true)

 {

 strcat(strMsg,"SRC ");

 if (SRCFDA_on == true)

 strcat(strMsg,"SRCFDA ");

 if (SRCFQA_on == true)

 strcat(strMsg,"SRCFQA ");

 } //if SRC_on on

 if (SRC_jam_on == true)

 {

 strcat(strMsg,"SRC_jam ");

 if (SRC_faultRF_on == true)

 strcat(strMsg,"SRC_faultRF ");

 if (SRC_autoFRF1_on == true)

 strcat(strMsg,"SRC_autoFRF ");

 if (SRC_autoFRF2_on == true)

 strcat(strMsg,"SRC_autoFRF2 ");

 if (SRC_jamNoRF1_on == true)

 strcat(strMsg,"SRC_jamNoRF1 ");

 if (SRC_faultRF1_on == true)

 strcat(strMsg,"SRC_faultRF1_on ");

 if (SRC_faultRF2_on == true)

 strcat(strMsg,"SRC_faultRF2_on ");

 } //if SRC_jam on

 if (SRCD_on == true)

 {

 strcat(strMsg,"SRCD ");

 if (SRCDFL_on == true)

 strcat(strMsg,"SRCDFL ");

 if (SRCDFH_on == true)

 strcat(strMsg,"SRCDFH ");

 } //if SRCD on

 if (FA_on == true)

 {

 strcat(strMsg,"FA ");

 } //if FA on

 strcat(strMsg,"\r\n");

 ReportWarningMessage (turbine_id, strMsg);

 // Initialize the SAVEd variables:

 for (K = 0;K<NumBl;K++)

 {

 PitCom[K] = BlPitch[K]; // This will ensure that the variable speed controller picks the correct contr

 }

 PitComPI = (BlPitch[0]+BlPitch[1]+BlPitch[2])/3.0f;

 GK = 1.0f/(1.0f + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0f*PC_KK)); // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 IntSpdErr = PitComPI; // This will ensure that the pitch angle is unchanged if the initial SpdErr is

 PCI_IntPwrEr= PitComPI;

 LastTime = Time; // This will ensure that generator speed filter will use the initial value of

 LastTimePC = Time - PC_DT; // This will ensure that the pitch controller is called on the first pass

 LastTimeVS = Time - VS_DT; // This will ensure that the torque controller is called on the first pass

 LastTimeSRC = Time - SRC_DT; // This will ensure that the torque controller is called on the first pass

 LastGenSpd = GenSpeed;

 LastGenTrq = SATURATE(VS_Rgn2K*GenSpeed*GenSpeed,0.0,VS_MaxTq);

 GenSpeedF = GenSpeed;

 SRC_PitCom[0] = 0.0f;

 SRC_PitCom[1] = 0.0f;

 SRC_PitCom[2] = 0.0f;

 SRCD_RefF = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2]) / 3.0f;

 if (LIDAR_on)

 {

 } // endif LIDAR_on

 ReportWarningMessage (turbine_id,"\r\nInitialisation complete\r\n") ;

 } //Initialisation complete

 //Main calculation

 if ((iStatus == GH_DISCON_STATUS_INITIALISING) || (iStatus == GH_DISCON_STATUS_DISCRETE_STEP) || (iStatus == GH_DISCON_STATUS_FINALISING)) // Only compute control calculations if no error has occured and we are

 {

 // Abort if the user has not requested a pitch angle actuator (See Appendix A of Bladed User's Guide):

 if (NINT(GetPitchActuatorType (turbine_id, 0)) != 0) // Returns the pitch actuator type: 0=POSITION, 1=RATE.

 {

 ReportErrorMessage(turbine_id,"\r\nPitch position actuator not requested.\r\n");

 return GH_DISCON_ERROR;

 } //ENDIF pitch angle actuator request

 // ==========BEGIN: DATA TRANSFER ==================

 // Set unused outputs to zero:

 SetDemandedYawActuatorTorque (turbine_id, 0.0); // Demanded yaw actuator torque

 SetDemandedCollectivePitchRate (turbine_id, 0.0); // Demanded pitch rate (Collective pitch)

 SetDemandedYawRate (turbine_id, 0.0); // Demanded nacelle yaw rate

 SetGeneratorStartupResistance (turbine_id,0.0); // Generator startup resistance

 SetVariableSlipStatus (turbine_id, 0); // Sets the current variable slip status: 0=OFF, 1=ON.

 SetDemandedVariableSlipCurrent (turbine_id, 0); // Sets the variable slip current demand, in Amps.

 // Set used values to previous values to create a one controller time step delay

 // Set the generator contactor status to main (high speed) variable-speed generator, the torque override to yes, and command the generator torque:

 SetGeneratorContactor (turbine_id, 1); // Sets the generator contactor: 0=OFF, 1=MAIN (high speed), 2=LOW SPEED

 SetTorqueOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedGeneratorTorque (turbine_id, LastGenTrq); // Demanded generator torque

 // Set the pitch override to yes and command the pitch demanded from the last call to the controller

 SetPitchOverrideStatus (turbine_id, 1); // Sets the current override status: 0=OFF, 1=ON

 SetDemandedCollectivePitchAngle (turbine_id,PitCom[0]); // Use the command angle of blade 1 if using collective pitch

 for (K = 0;K<NumBl;K++)

 {

 SetDemandedPitchAngle (turbine_id, K, PitCom[K]); // Use the command angles of all blades if using individual pitch

 }

 // Smart Rotor control signals

 if (SRC_on || SRCD_on || TVD_Smart_on || PC_Smart_on || FA_on)

 {

 // Normal operation

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_PitCom[K]); //Sets the aileron angle (same on each blade currently)

 }

 }

 // Jammed flap - blade 0, flap 0

 if ((SRC_jam_on) && (Time > SRC_jamTime))

 {

 K = 0;

 SRC_ailerons = 0;

 if ((SRC_jamAngle < -21.0/R2D) || (SRC_jamAngle > 21.0/R2D))

 {

 SRC_jamAngle = SRC_PitCom[0];

 }

 SetDemandedAileronAngle (turbine_id, K, SRC_ailerons, SRC_jamAngle); // fault whereby flap gets jammed at a fixed angle

 if (SRC_jamNoRF1_on)

 {

 SRC_PitCom[K] = SRC_jamAngle;

 }

 }

 }

 // ============END: DATA TRANSFER ==================

 //==========BEGIN: VARIABLE SPEED TORQUE CONTROL==============

 // Variable-speed torque control:

 //Compute the elapsed time since the last call to the controller:

 VS_ElapTime = Time - LastTimeVS;

 // Only perform the control calculations if the elapsed time is greater than or equal to the communication interval of the torque controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called at every time step when VS_DT = DT, even in the presence of numerical precision errors.

 if ((Time*OnePlusEps - LastTimeVS) >= VS_DT)

 {

 //===================BEGIN: PI TORQUE CONTROL VS=======================

 // Compute the generator torque, which depends on which region we are in:

 GenTrqOpt = VS_Rgn2K*GenSpeed*GenSpeed; //optimum generator torque for Cp_max

 if (PitComPI > PC_MinPit)

 {

 // We are in region 3 - torque is held constant

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 if (VSConstP_on){

 // constant power above rated

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast*VS_lastGenSpd/GenSpeed,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 GenTrq = MAX(VS_ComT,VS_GnTqLast*VS_lastGenSpd/GenSpeed); // no drop in power allowed

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // constant torque above rated

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTqLast,VS_MaxTq); // De-saturate the integral term so it doesn't exceed the torque limits

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 GenTrq = SATURATE(VS_ComT,VS_GnTqLast,VS_RtPwr/VS_RtGnSp); // overall command saturated to rated torque

 }

 }

 else if (GenSpeed > VS_GnSpSw)

 {

 // We are in region 2 - 3, PI control set at C with min Cp_opt

 VS_SpdErr = GenSpeed - VS_RtGnSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,VS_GnTrq2,VS_RtGnTrq); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP2 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 if (VSConstP_on){

 // and saturate to rated power:

 GenTrq = MAX(VS_ComT,GenTrqOpt); // overall command (saturated to Cp optimum curve)

 GenTrq = MIN(GenTrq,VS_RtPwr/GenSpeed); // overall command saturated to rated power

 }

 else

 {

 // saturate to rated torque (with no drop in torque allowed):

 GenTrq = SATURATE(VS_ComT,GenTrqOpt,VS_RtGnTrq); // Overall command (saturated to Cp optimum curve)

 }

 }

 else

 {

 // We are in region 1 - 2, PI control set at A with max Cp_opt

 VS_SpdErr = GenSpeed - VS_CtInSp; // Current speed error

 VS_IntSpdErr = VS_IntSpdErr + VS_KI1*VS_SpdErr*VS_ElapTime; // Current integral demand

 VS_IntSpdErr = SATURATE(VS_IntSpdErr,0.0f,VS_GnTrq1); // De-saturate the integral term so it remains in vertical section

 // Compute the torque commands associated with the proportional and integral gains:

 VS_ComP = VS_KP1 * VS_SpdErr; // Proportional term

 VS_ComI = VS_IntSpdErr; // Integral term (unsaturated)

 // Superimpose the individual commands to get the total torque command;

 VS_ComT = VS_ComP + VS_ComI;

 // and saturate to Cp tracking curve:

 GenTrq = SATURATE(VS_ComT,0.0,GenTrqOpt); // Overall command (saturated to Cp optimum curve)

 }

 VS_GnTqLast = GenTrq; // last PI generator torque demand for use by PI torque controller

 VS_lastGenSpd = GenSpeed; // last VS generator speed

 //===================END: PI TORQUE CONTROL VS=======================

 //===================BEGIN: DAMPING TORISONAL VIBRATIONS FTV=======================

 // Damping of torsional vibrations using ripple term in generator torque if requested

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV1_TF = TFinit(FTV1_TF,FTV1_alp,FTV1_bet,GenSpeed);

 }

 FTV1_TF = TFupdate(FTV1_TF,GenSpeed);

 FTV1_GenTrqF = FTV1_K*FTV1_TF.outputs[0];

 // saturate to amplitude limit

 FTV1_GenTrqF = SATURATE(FTV1_GenTrqF,-FTV1_GnTqMax,FTV1_GnTqMax);

 }

 if (FTV_on){

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 FTV2_TF = TFinit(FTV2_TF,FTV2_alp,FTV2_bet,GenSpeed);

 }

 FTV2_TF = TFupdate(FTV2_TF,GenSpeed);

 FTV2_GenTrqF = FTV2_K*FTV2_TF.outputs[0];

 // saturate to amplitude limit

 FTV2_GenTrqF = SATURATE(FTV2_GenTrqF,-FTV2_GnTqMax,FTV2_GnTqMax);

 }

 //===================END: DAMPING TORISONAL VIBRATIONS FTV=======================

 GenTrq = GenTrq + FTV1_GenTrqF + FTV2_GenTrqF;

 // Saturate the commanded torque using the maximum torque limit:

 GenTrq = MIN(GenTrq , VS_MaxTq);

 // Saturate the commanded torque using the torque rate limit:

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of LastGenTrq and set the GenTrq on the first pass only

 LastGenTrq = GenTrq;

 SetDemandedGeneratorTorque (turbine_id,LastGenTrq); // Demanded generator torque

 }

 TrqRate = (GenTrq - LastGenTrq)/VS_ElapTime; // Torque rate (unsaturated)

 TrqRate = SATURATE(TrqRate,-VS_MaxRat,VS_MaxRat); // Saturate the torque rate using its maximum absolute value

 GenTrq = LastGenTrq + TrqRate*VS_ElapTime; // Saturate the command using the torque rate limit

 // Output debugging information if requested:

 if (VS_DbgOut)

 {

 std::ofstream myfile(filenameDebugVS,std::ios_base::app);

 myfile << Time << Tab << VS_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << VS_SpdErr << Tab << VS_IntSpdErr << Tab << VS_ComP << Tab << VS_ComI << Tab << GenTrq << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 // Reset the values of LastTimeVS and LastGenTrq to the current values:

 LastTimeVS = Time;

 LastGenTrq = GenTrq;

 } //ENDIF control calculation (variable speed torque control)

 //=======END: VARIABLE SPEED TORQUE CONTROL==================

 //========BEGIN: PITCH CONTROL==========

 // Pitch control:

 // Compute the elapsed time since the last call to the controller:

 PC_ElapTime = Time - LastTimePC;

 // Only perform the control calculations if the elapsed time is greater than or equal to the communication interval of the pitch controller:

 // NOTE: Time is scaled by OnePlusEps to ensure that the contoller is called at every time step when PC_DT = DT, even in the presence of numerical precision errors.

 if ((Time*OnePlusEps - LastTimePC) >= PC_DT)

 {

 //=================----------------------------======================

 // Standard PI pitch control

 //=============BEGIN: FILTERS================

 // Filter the generator speed with 2 notch filters and a low-pass filter to avoid blade passing frequencies (3P,6P) and curtail excess pitch action

 GenSpeedF = GenSpeed;

 // Notch filter A

 if (PCFA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFA_TF = TFinit(PCFA_TF,PCFA_alp,PCFA_bet,GenSpeedF);

 }

 PCFA_TF = TFupdate(PCFA_TF,GenSpeedF);

 GenSpeedF = PCFA_TF.outputs[0];

 }

 // Notch filter B

 if (PCFB_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCFB_TF = TFinit(PCFB_TF,PCFB_alp,PCFB_bet,GenSpeedF);

 }

 PCFB_TF = TFupdate(PCFB_TF,GenSpeedF);

 GenSpeedF = PCFB_TF.outputs[0];

 }

 // Low-pass filter

 if (PCF_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 PCF_TF = TFinit(PCF_TF,PCF_alp,PCF_bet,GenSpeedF);

 }

 PCF_TF = TFupdate(PCF_TF,GenSpeedF);

 GenSpeedF = PCF_TF.outputs[0];

 }

 //=============END: generator speed FILTERS================================

 //============BEGIN: PI pitch control==============

 // Compute the gain scheduling correction factor based on the collective pitch angle:

 GK = 1.0/(1.0 + (BlPitch[0]+BlPitch[1]+BlPitch[2])/(3.0*PC_KK));

 GK = MAX(GK,(1.0/3.5));

 // Pitch-torque interaction to allow pitching prior to rated power when wind speed increasing rapidly

 if (PCI_on){

 PC_SpdErr = GenSpeedF - PC_RefSpd;

 PCI_PwrEr = GenTrq*GenSpeedF - VS_RtPwr; // Current error in power

 // Current integral of power error and speed error

 PCI_IntPwrEr = PCI_IntPwrEr + GK*PCI_KI*PCI_PwrEr*PC_ElapTime + GK*PC_KI*PC_SpdErr*PC_ElapTime;

 //saturate the integral term with pitch angle limits

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 PCI_IntPwrEr = SATURATE(PCI_IntPwrEr,PCI_IntPwrEr+PC_MinRat*PC_DT*OnePlusEps,PCI_IntPwrEr+PC_MaxRat*PC_DT*OnePlusEps);

 PCI_Prp = GK*PCI_KP*PCI_PwrEr + GK*PC_KP*PC_SpdErr;

 PCI_Int = PCI_IntPwrEr;

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PCI_Prp + PCI_Int;

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); // Overall command saturated

 PitComT = PitComPI; // set overall pitch speed control command

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 }

 } //ENDIF pitch-torque controller interaction

 else

 {

 // Compute the current speed error and its integral w.r.t. time; saturate the integral term using the pitch angle limits:

 PC_SpdErr = GenSpeedF - PC_RefSpd; // Current speed error

 IntSpdErr = IntSpdErr + GK*PC_KI*PC_SpdErr*PC_ElapTime; // Current integral of speed error term wrt time

 // Saturate the integral term using the pitch angle limits

 IntSpdErr = SATURATE(IntSpdErr, PC_MinPit ,PC_MaxPit);

 // Saturate the integral term using the pitch rate limits, based on the collective pitch angle

 IntSpdErr = SATURATE(IntSpdErr, PC_MinRat*PC_DT*OnePlusEps +IntSpdErr, PC_MaxRat*PC_DT*OnePlusEps +IntSpdErr);

 // Compute the pitch commands associated with the proportional and integral gains:

 PitComP = GK*PC_KP* PC_SpdErr; // Proportional term

 PitComI = IntSpdErr; // Integral term (saturated)

 // Superimpose the individual commands to get the total pitch command;

 PitComPI = PitComP + PitComI; // Overall command (unsaturated)

 PitComPI = SATURATE(PitComPI, PC_MinPit ,PC_MaxPit); //Overall command saturated

 PitComT = PitComPI;

 if (PC_Smart_on){

 Sup_xHat = exp(-Sup_FreqCutOff*PC_DT);

 Sup_SigPrev = Sup_Signal; // previous time step supplementary control signal to be split between smart rotor and pitch control

 Sup_Signal = PitComT; // supplementary control signal to be split between smart rotor and pitch control

 Sup_PitchF = (Sup_Signal*(1-Sup_xHat) + Sup_xHat*Sup_PitchF); // single pole low pass filter

 PitComT = Sup_PitchF;

 if (PitComT < 0.0){

 Sup_Signal = 0.0;

 }

 Sup_SmartF = (Sup_Signal*(1+Sup_xHat)/2.0f - Sup_SigPrev*(1+Sup_xHat)/2.0f + Sup_xHat*Sup_SmartF); // single pole high pass filter

 PC_Smart_com = -SRC_Pitch2Flap*Sup_SmartF;

 }

 }

 //============END: PI pitch control==============

 //=================BEGIN: Tower vibration Damping======================

 // Tower Vibration Damping

 if (TVD_on){

 // filter the power output with a lag filter for the gain scheduling of the tower feedback loop

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 TVD_INT = TFinit(TVD_INT,TVD_INTalp,TVD_INTbet,TowerAccX);

 }

 TVD_INT = TFupdate(TVD_INT,TowerAccX);

 TVD_TowVel = TVD_INT.outputs[0]; // delta tower velocity

 //filter tower velocity signal

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured tower acceleration and filtered signals on the first pass only

 TVD_TF = TFinit(TVD_TF,TVD_alp,TVD_bet,TVD_TowVel);

 }

 TVD_TF = TFupdate(TVD_TF,TVD_TowVel);

 TVD_IntTA = TVD_TF.outputs[0]; // Current integral of acceleration error w.r.t. time (velocity)

 TVD_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 TVD_gain = SATURATE(TVD_gain,0.0,1.0); // saturate between 0 and 1

 // determine the tower vibration damping pitch demand

 TVD_PitCom = GK*TVD_K*TVD_gain*TVD_TowVel;//TVD_IntTA;

 if (TVD_Smart_on)

 {

 TVD_Smart_Com = -4.0*(TVD_Smart_xHat)*TVD_PitCom;

 TVD_PitCom = (1-TVD_Smart_xHat)*TVD_PitCom;

 }

 } //ENDIF tower vibration damping

 //=================BEGIN: Tower vibration Damping======================

 //===========BEGIN: NLP Non-linear pitch for gust control =============

 // Non-linear pitch term for gust control

 if (NLP_on)

 {

 // speed error for use in NLP control (may be replaced by SpdErr)

 NLP_SpdErr = GenSpeedF - PC_RefSpd;

 // filter the rate of change of generator speed error

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured change in generator speeds and filtered signals on the first pass only

 NLP_SpErDt[0] = 0; // the previous 2 values of the error

 NLP_SpErDt[1] = 0;

 NLP_SpErDtF[0] = 0; // the previous 2 values of the filtered error

 NLP_SpErDtF[1] = 0;

 NLP_LastSpEr = NLP_SpdErr; // initialise last speed error to current speed error

 }

 // the previous 2 values of measured rate of change of generator speed error

 NLP_SpErDt[1] = NLP_SpErDt[0];

 NLP_SpErDt[0] = (NLP_SpdErr-NLP_LastSpEr)/PC_ElapTime; // rate of change of speed error using first differnce

 // the previous 2 values of the filtered rate of change of generator speed error

 NLP_SpErDtF[1] = NLP_SpErDtF[0];

 NLP_SpErDtF[0] = -NLP_SpErDtF[1]*NLP_FOFa[1] +NLP_SpErDt[0]*NLP_FOFb[0] +NLP_SpErDt[1]*NLP_FOFb[1];

 // the filtered rate of change of speed error current value

 NLP_SpdErrDotF = NLP_SpErDtF[0];

 // Determine total contribution of speed error and rate of change of ~ to pitch rate command using scale factors

 NLP_PitRate = NLP_KSpEr*NLP_SpdErr + NLP_KSpErDt*NLP_SpdErrDotF - 1;

 // Any excess over 1 multiply by gain factor to determine pitch rate command

 if (NLP_PitRate>0.0){

 NLP_PitRate = GK*NLP_Gain*NLP_PitCom;

 }

 else {

 NLP_PitRate = 0;

 }

 NLP_PitCom = NLP_PitRate*PC_ElapTime;

 // record last speed error

 NLP_LastSpEr = NLP_SpdErr;

 } //ENDIF non-linear pitch term for gust control

 //===========END: NLP Non-linear pitch for gust control =============

 // =========BEGIN: Individual Pitch control=====================

 // Individual pitch control with filters at 1P on D-Q axis loads

 if (IPC_on)

 {

 // determine gain for IPC control so that only fully active above rated, ramping up from 0.8 rated power

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8f) * 5.0f;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 IPC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 IPC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: IPC filters=============

 IPC_loadsDF = IPC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (IPCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 IPCFDA_TF = TFinit(IPCFDA_TF,IPCFDA_alp,IPCFDA_bet,IPC_loadsDF); // the previous 3 values of measured yaw error moment

 }

 IPCFDA_TF = TFupdate(IPCFDA_TF,IPC_loadsDF);

 IPC_loadsDF = IPCFDA_TF.outputs[0];

 }

 IPC_loadsQF = IPC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (IPCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 IPCFQA_TF = TFinit(IPCFQA_TF,IPCFQA_alp,IPCFQA_bet,IPC_loadsQF);

 }

 IPCFQA_TF = TFupdate(IPCFQA_TF,IPC_loadsQF);

 IPC_loadsQF = IPCFQA_TF.outputs[0];

 }

 IPC_YawEr = IPC_loadsDF - IPC_YawRef; // Current yaw error

 IPC_TltEr = IPC_loadsQF - IPC_TltRef; // Current tilt error

 //===========END: IPC filters=============

 IPC_IntYawEr = IPC_IntYawEr + GK*IPC_gain*IPC_KI*IPC_YawEr*PC_ElapTime; // Current integral of yaw error term wrt time

 IPC_IntTltEr = IPC_IntTltEr + GK*IPC_gain*IPC_KI*IPC_TltEr*PC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 IPC_IntYawEr = SATURATE(IPC_IntYawEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_IntTltEr = SATURATE(IPC_IntTltEr, -IPC_gain*IPC_PitMax,+IPC_gain*IPC_PitMax);

 IPC_pitD = GK*IPC_gain*IPC_KP*IPC_YawEr + IPC_IntYawEr; // PI controller D-axis (yaw) demand

 IPC_pitQ = GK*IPC_gain*IPC_KP*IPC_TltEr + IPC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate IPC to degree max (gain scheduled)

 IPC_pitD = SATURATE(IPC_pitD, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 IPC_pitQ = SATURATE(IPC_pitQ, -IPC_gain*IPC_PitMax ,+IPC_gain*IPC_PitMax);

 // individual pitch command for each blade

 IPC_pit[0] = (IPC_pitQ*cos(RotAzi+IPC_offset) + IPC_pitD*sin(RotAzi+IPC_offset));

 IPC_pit[1] = (IPC_pitQ*cos(RotAzi+2.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+2.0f*PIE/3.0f+IPC_offset));

 IPC_pit[2] = (IPC_pitQ*cos(RotAzi+4.0f*PIE/3.0f+IPC_offset) + IPC_pitD*sin(RotAzi+4.0f*PIE/3.0f+IPC_offset));

 } //ENDIF for IPC

 //===========END: IPC Individual pitch control==============

 //==============BEGIN: IPCB Independent Blade Control distributed===========

 if (IPCB_on)

 {

 IPC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 IPC_gain = SATURATE(IPC_gain,0.0,1.0); // saturate between 0 and 1

 IPCB_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 IPCB_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (IPCB_Ref < 2.3)

 {

 IPCB_Ref = 2.3;

 }

 }

 IPCB_RefF = ((IPCB_Tau/PC_DT)*IPCB_RefF + IPCB_Ref)/((IPCB_Tau/PC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 IPCB_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 IPCB_Er[K] = IPCB_BladeRBMopF[K] - IPCB_RefF; // Current (proportional) error

 IPCB_IntEr[K] = IPCB_IntEr[K] + GK*IPC_gain*IPCB_KI*IPCB_BladeRBMopF[K]*PC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 IPCB_IntEr[K] = SATURATE(IPCB_IntEr[K], -GK*IPC_gain*IPC_PitMax ,GK*IPC_gain*IPC_PitMax);

 // PID controller demand

 IPCB_PitCom[K] = GK*IPC_gain*IPCB_KP*IPCB_Er[K] + IPCB_IntEr[K];

 // individual pitch command for each blade

 IPCB_PitComF[K] = IPCB_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (IPCBFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFL_TF[K] = TFinit(IPCBFL_TF[K],IPCBFL_alp,IPCBFL_bet,IPCB_PitComF[K]);

 }

 IPCBFL_TF[K] = TFupdate(IPCBFL_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = IPCBFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (IPCBFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 IPCBFH_TF[K] = TFinit(IPCBFH_TF[K],IPCBFH_alp,IPCBFH_bet,IPCB_PitComF[K]);

 }

 IPCBFH_TF[K] = TFupdate(IPCBFH_TF[K],IPCB_PitComF[K]);

 IPCB_PitComF[K] = 2.0*IPCBFH_TF[K].outputs[0];

 }

 IPCB_PitComF[K] = SATURATE(IPCB_PitComF[K], -IPC_gain*IPC_PitMax ,IPC_gain*IPC_PitMax);

 }

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: IPCB Independent Blade Control distributed==============

 //=================++++++++++++++++++++++++++++======================

 // Update pitch signal and saturate pitch

 // Saturate the overall commanded pitch using the pitch rate limit:

 // Saturate the overall command using the pitch angle limit

 // NOTE: Since the current pitch angle may be different for each blade (depending on the type of actuator implemented in the structural dynamics model), this pitch rate limit calculation and the resulting overall pitch angle command may be different for each blade.

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 PitCom[K] = PitComT + TVD_PitCom + NLP_PitCom + IPC_pit[K] + IPCB_PitComF[K];

 PitRate[K] = (PitCom[K] - BlPitch[K])/(PC_ElapTime); // Pitch rate of blade K (unsaturated)

 PitRate[K] = SATURATE(PitRate[K], PC_MinRat , PC_MaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 PitCom[K] = BlPitch[K] + PitRate[K]*PC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 PitCom[K] = SATURATE(PitCom[K], PC_MinPit , PC_MaxPit); // Saturate to pitch limits

 } //ENDFOR K - all blades

 // Reset the value of LastTimePC to the current value:

 LastTimePC = Time;

 // Output debugging information if requested:

 if (PC_DbgOut) {

 std::ofstream myfile(filenameDebug,std::ios_base::app);

 myfile << Time << Tab << PC_ElapTime << Tab << HorWindV << Tab << GenSpeed*RPS2RPM << Tab << GenSpeed*RPS2RPM << Tab << 100.0*PC_SpdErr/PC_RefSpd << Tab << PC_SpdErr << Tab << IntSpdErr << Tab << GK << Tab << PitComP*R2D << Tab << PitComI*R2D << Tab << PitComPI*R2D << Tab << PitRate[0]*R2D << Tab << PitCom[0]*R2D << Tab << "\n";

 myfile.close();

 } //ENDIF debug output if requested

 } //ENDIF control calculation (pitch control)

 //===============END: Pitch Control=====================

 //==============BEGIN: SRC Smart Rotor control===========

 // Smart Rotor DQ control with filters at 1P on D-Q axis loads

 SRC_ElapTime = Time - LastTimeSRC;

 if ((Time*OnePlusEps - LastTimeSRC) >= SRC_DT)

 {

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_Pit[K] = GetDemandedAileronAngle (turbine_id, K, SRC_ailerons);

 }

 }

 // =========BEGIN: SRC DQ-axis control=============

 // Smart rotor control with filters at 1P on D-Q axis loads

 if (SRC_on)

 {

 // determine gain for SRC control so that only fully active above rated, ramping up from 0.8 rated power

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRC_offset = 0.01*GenSpeedF/GearRatio; //delay to account for controller

 // loads (blade root bending moment) converted to the stationary DQ-axis (D = yaw, Q = tilt)

 SRC_loadsD = (2.0/3.0) * (BladeRBMop[0]*sin(RotAzi) + BladeRBMop[1]*sin(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*sin(RotAzi+4.0*PIE/3.0));

 SRC_loadsQ = (2.0/3.0) * (BladeRBMop[0]*cos(RotAzi) + BladeRBMop[1]*cos(RotAzi+2.0*PIE/3.0) + BladeRBMop[2]*cos(RotAzi+4.0*PIE/3.0));

 //===========BEGIN: SRC filters=============

 SRC_loadsDF = SRC_loadsD;

 // Notch filter Yaw at blade passing frequency 1P

 if (SRCFDA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous yaw moment error measurements and filtered signals on the first pass only

 SRCFDA_TF = TFinit(SRCFDA_TF,SRCFDA_alp,SRCFDA_bet,SRC_loadsDF);

 }

 SRCFDA_TF = TFupdate(SRCFDA_TF,SRC_loadsDF);

 SRC_loadsDF = SRCFDA_TF.outputs[0];

 }

 SRC_loadsQF = SRC_loadsQ;

 // Notch filter Tlt at blade passing frequency 1P

 if (SRCFQA_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous Tlt moment error measurements and filtered signals on the first pass only

 SRCFQA_TF = TFinit(SRCFQA_TF,SRCFQA_alp,SRCFQA_bet,SRC_loadsQF);

 }

 SRCFQA_TF = TFupdate(SRCFQA_TF,SRC_loadsQF);

 SRC_loadsQF = SRCFQA_TF.outputs[0];

 }

 SRC_YawEr = SRC_YawRef - SRC_loadsDF; // Current yaw error

 SRC_TltEr = SRC_TltRef - SRC_loadsQF; // Current tilt error

 //===========END: SRC filters=============

 SRC_IntYawEr = SRC_IntYawEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_YawEr*SRC_ElapTime; // Current integral of yaw error term wrt time

 SRC_IntTltEr = SRC_IntTltEr + GK*SRC_gain*SRC_Pitch2Flap*SRC_KI*SRC_TltEr*SRC_ElapTime; // Current integral of tilt error term wrt time

 //saturate integral to max angle with gain scheduling

 SRC_IntYawEr = SATURATE(SRC_IntYawEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_IntTltEr = SATURATE(SRC_IntTltEr, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComD = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_YawEr + SRC_IntYawEr; // PI controller D-axis (yaw) demand

 SRC_PitComQ = GK*SRC_gain*SRC_Pitch2Flap*SRC_KP*SRC_TltEr + SRC_IntTltEr; // PI controller Q-axis (tilt) demand

 //saturate SRC to degree max (gain scheduled)

 SRC_PitComD = SATURATE(SRC_PitComD, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 SRC_PitComQ = SATURATE(SRC_PitComQ, SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 // individual pitch command for each blade

 SRC_dqPitCom[0] = (SRC_PitComQ*cos(RotAzi+SRC_offset) + SRC_PitComD*sin(RotAzi+SRC_offset));

 SRC_dqPitCom[1] = (SRC_PitComQ*cos(RotAzi+2.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+2.0*PIE/3.0+SRC_offset));

 SRC_dqPitCom[2] = (SRC_PitComQ*cos(RotAzi+4.0*PIE/3.0+SRC_offset) + SRC_PitComD*sin(RotAzi+4.0*PIE/3.0+SRC_offset));

 } //ENDIF for SRC

 //===========END: SRC DQ-axis control==============

 //==============BEGIN: SRCD Smart rotor control distributed==============

 if (SRCD_on)

 {

 SRC_gain = ((GenSpeed*GenTrq/VS_RtPwr) - 0.8) * 5.0;

 SRC_gain = SATURATE(SRC_gain,0.0,1.0); // saturate between 0 and 1

 SRCD_Ref = (32000000.0*pow(PitComPI,2.0)-33000000.0*PitComPI + 11000000.0); //convert collective pitch demand to collective RBM demand based on steady state loads

 if (PitComPI < (0.0001))

 {

 SRCD_Ref = (-0.00000027*pow(GenTrq,3.0)+0.017*pow(GenTrq,2.0)-49.0*GenTrq+2300000);

 if (SRCD_Ref < 2.3)

 {

 SRCD_Ref = 2.3;

 }

 }

 SRCD_RefF = ((SRCD_Tau/SRC_DT)*SRCD_RefF + SRCD_Ref)/((SRCD_Tau/SRC_DT)+1.0f);

 for (K = 0;K<NumBl;K++)

 {

 SRCD_BladeRBMopF[K] = BladeRBMop[K] + 17732*20.5*(TowerAccX) + 17732*20.5*(NacelNodAcc*cos(RotAzi+2*(K)*PIE/3));

 SRCD_Er[K] = SRCD_BladeRBMopF[K] - SRCD_RefF; // Current (proportional) error

 SRCD_IntEr[K] = SRCD_IntEr[K] + GK*SRC_gain*SRC_Pitch2Flap*SRCD_KI*SRCD_BladeRBMopF[K]*SRC_ElapTime; // Current integral of error term wrt time

 //saturate integral to max angle with gain scheduling

 SRCD_IntEr[K] = SATURATE(SRCD_IntEr[K], GK*SRC_gain*SRC_PitMin ,GK*SRC_gain*SRC_PitMax);

 // PID controller demand

 SRCD_PitCom[K] = GK*SRC_gain*SRC_Pitch2Flap*SRCD_KP*SRCD_Er[K] + SRCD_IntEr[K];

 // individual pitch command for each blade

 SRCD_PitComF[K] = SRCD_PitCom[K];

 // Low-pass filter (creating band-pass filter)

 if (SRCDFL_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFL_TF[K] = TFinit(SRCDFL_TF[K],SRCDFL_alp,SRCDFL_bet,SRCD_PitComF[K]);

 }

 SRCDFL_TF[K] = TFupdate(SRCDFL_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = SRCDFL_TF[K].outputs[0];

 }

 // High-pass filter (creating band-pass filter)

 if (SRCDFH_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCDFH_TF[K] = TFinit(SRCDFH_TF[K],SRCDFH_alp,SRCDFH_bet,SRCD_PitComF[K]);

 }

 SRCDFH_TF[K] = TFupdate(SRCDFH_TF[K],SRCD_PitComF[K]);

 SRCD_PitComF[K] = 2.0*SRCDFH_TF[K].outputs[0];

 }

 SRCD_PitComF[K] = SATURATE(SRCD_PitComF[K], SRC_gain*SRC_PitMin ,SRC_gain*SRC_PitMax);

 }

 }

 //=================++++++++++++++++++++++++++++======================

 //===========END: SRCD Smart rotor control distributed==============

 //=======BEGIN: SRC fault ride through =======

 // Auto fault ride through

 if (SRC_autoFRF1_on)

 {

 // Detection

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 // Detection from flap angle sensor

 if (SRC_Pit[K] != SRC_PitCom[K])

 {

 SRC_faultRF_on = true;

 SRC_RFangle = GetDemandedAileronAngle(turbine_id, K, SRC_ailerons);

 }

 } //end loop flaps

 } //end loop blades

 } //end auto fault ride through based on flap angle sensor

 if (SRC_autoFRF2_on)

 {

 // shift along the previous input and ouput values

 for (SRCafd_cnt=1; SRCafd_cnt<100; SRCafd_cnt++)

 {

 SRCafd_values[100-SRCafd_cnt] = SRCafd_values[100-SRCafd_cnt-1];

 }

 // 1P filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCafd_TF = TFinit(SRCafd_TF,SRCafd_alp,SRCafd_bet,TowerAccX);

 }

 SRCafd_TF = TFupdate(SRCafd_TF,TowerAccX);

 //new value

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 windspeedF = HorWindV;

 }

 windspeedF = ((windspeed_tau/SRC_DT)*windspeedF + HorWindV)/((windspeed_tau/SRC_DT)+1.0);

 SRCafd_values[0] = (SRCafd_TF.outputs[0])*(SRCafd_TF.outputs[0]) * (1.0 / (0.024*windspeedF*windspeedF - 0.57*windspeedF + 4.2));

 SRCafd_value = SRCafd_values[0] - SRCafd_values[99] + SRCafd_value;

 // ignore first minute to avoid transcience

 if (Time > 60.0)

 {

 // normalise data for fixed threshold value based on wind speed * 1.0 / (0.024*HorWindV*HorWindV - 0.57*HorWindV + 4.2)

 if (SRCafd_value > SRCafd_threshold)

 {

 if (!SRC_faultRF_on)

 {

 ReportWarningMessage (turbine_id, "Fault detected");

 SRC_faultRF_on = true;

 SRC_RFangle = 0.0; //SRC_jamAngle;

 }

 }

 }

 } //end auto fault ride-through 2 (which uses a band pass filter)

 //--------------------------------

 // Set flap angle commands essential regardless of whether fault ride-through is active

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_dqPitCom[K] + SRCD_PitComF[K] + TVD_Smart_Com + PC_Smart_com;

 }

 }

 //--------------------------------

 // Fault ride through by setting other flaps to same as jammed flap

 if ((SRC_faultRF_on) || (SRC_faultRF1_on))

 {

 if (SRC_faultRF1_on == false)

 {

 SRC_faultRF1_on = true;

 ReportWarningMessage (turbine_id, "FRF1 activated");

 }

 for (K = 0;K<NumBl;K++)

 {

 for (SRC_ailerons = 0;SRC_ailerons<SRC_Nailerons;SRC_ailerons++)

 {

 SRC_PitCom[K] = SRC_RFangle; // fault ride through sets all flaps to the same angle

 } //end loop flaps

 } //end loop blades

 } // end fault ride through by setting flaps to same as jammed flap

 // Fault ride through by setting other flaps to 0 and allow adjustment basedd on RBM

 if (((SRC_faultRF_on) || (SRC_faultRF2_on)) && (!SRC_faultRF1_on))

 {

 if (SRC_faultRF2_on == false)

 {

 for (K = 0;K<NumBl;K++)

 {

 SRCfrf_RBMf[K] = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2])/3;

 SRCfrf_1p_TF[K] = TFinit(SRCfrf_1p_TF[K],SRCfrf_1p_alp,SRCfrf_1p_bet,SRCfrf_RBMf[K]);

 SRCfrf_1p_TF[K] = TFupdate(SRCfrf_1p_TF[K],SRCfrf_RBMf[K]);

 SRCfrf_RBMf[K] = SRCfrf_1p_TF[K].outputs[K];

 SRCfrf_3p_TF[K] = TFinit(SRCfrf_3p_TF[K],SRCfrf_3p_alp,SRCfrf_3p_bet,SRCfrf_RBMf[K]);

 SRCfrf_3p_TF[K] = TFupdate(SRCfrf_3p_TF[K],SRCfrf_RBMf[K]);

 SRCfrf_RBMf[K] = SRCfrf_3p_TF[K].outputs[K];

 }

 SRC_faultRF2_on = true;

 ReportWarningMessage (turbine_id, "FRF2 activated");

 }

 else

 {

 for (K = 0;K<NumBl;K++)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 SRCfrf_RBMf[K] = (BladeRBMop[0] + BladeRBMop[1] + BladeRBMop[2])/3;

 }

 //SRCfrf_RBMf[K] = ((SRCfrf_tau/SRC_DT)*SRCfrf_RBMf[K] + BladeRBMop[K])/((SRCfrf_tau/SRC_DT)+1.0);

 SRCfrf_RBMf[K] = BladeRBMop[K];

 ///*

 // 1P notch filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_1p_TF[K] = TFinit(SRCfrf_1p_TF[K],SRCfrf_1p_alp,SRCfrf_1p_bet,SRCfrf_RBMf[K]);

 }

 SRCfrf_1p_TF[K] = TFupdate(SRCfrf_1p_TF[K],SRCfrf_RBMf[K]);

 //new value

 SRCfrf_RBMf[K] = SRCfrf_1p_TF[K].outputs[K];

 //*/

 ///*

 // 3P notch filter

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 // Initialize the value of previous measured generator speeds and filtered signals on the first pass only

 SRCfrf_3p_TF[K] = TFinit(SRCfrf_3p_TF[K],SRCfrf_3p_alp,SRCfrf_3p_bet,SRCfrf_RBMf[K]);

 }

 SRCfrf_3p_TF[K] = TFupdate(SRCfrf_3p_TF[K],SRCfrf_RBMf[K]);

 //new value

 SRCfrf_RBMf[K] = SRCfrf_3p_TF[K].outputs[K];

 //*/

 }

 }

 for (K = 0;K<NumBl;K++)

 {

 SRCfrf_deltaRBM[K] = SRCfrf_RBMf[K] - ((SRCfrf_RBMf[0] + SRCfrf_RBMf[1] + SRCfrf_RBMf[2])/3);

 SRCfrf_IntAngle[K] = SRCfrf_IntAngle[K] + SRC_ElapTime*SRCfrf_KI*SRCfrf_deltaRBM[K]*SRCfrf_KI_gain[2];

 SRCfrf_IntAngle[K] = SATURATE(SRCfrf_IntAngle[K], SRC_PitMin , SRC_PitMax);

 SRCfrf_angle[K] = SRCfrf_IntAngle[K] + SRCfrf_KP*SRCfrf_deltaRBM[K];

 //SRCfrf_KI_gain[K] = ((SRCfrf_tau/SRC_DT)*SRCfrf_KI_gain[K] + SRCfrf_angle[K])/((SRCfrf_tau/SRC_DT)+1.0);

 SRC_PitCom[K] = SRCfrf_angle[K]; // fault ride through sets all flaps to the same angle

 }

 SRCfrf_KI_gain[0] = ((SRCfrf_deltaRBM[0]+SRCfrf_deltaRBM[1]+SRCfrf_deltaRBM[2])/3)*0.00001;

 if (SRCfrf_KI_gain[1] == 0.0)

 {

 SRCfrf_KI_gain[1] = SRCfrf_KI_gain[0];

 }

 SRCfrf_KI_gain[1] = ((SRCfrf_tau/SRC_DT)*SRCfrf_KI_gain[1] + SRCfrf_KI_gain[0])/((SRCfrf_tau/SRC_DT)+1.0);

 SRCfrf_KI_gain[1] = SATURATE(SRCfrf_KI_gain[1],-1.0,1.0);

 SRCfrf_KI_gain[2] = SRCfrf_KI_gain[1];

 SRCfrf_KI_gain[2] = SATURATE(ABS(SRCfrf_KI_gain[2]),0.1,1.0);

 } // end fault ride through by setting flaps to 0

 //=======END: SRC fault ride through =======

 // set aileron angle demands

 for (K = 0;K<NumBl;K++)

 {

 // Loop through all blades

 SRC_PitRate[K] = (SRC_PitCom[K] - SRC_Pit[K])/(SRC_ElapTime); // Pitch rate of blade K (unsaturated)

 SRC_PitRate[K] = SATURATE(SRC_PitRate[K], -SRC_PitMaxRat , SRC_PitMaxRat); // Saturate the pitch rate of blade K using its maximum rate limits

 SRC_PitCom[K] = SRC_Pit[K] + SRC_PitRate[K]*SRC_ElapTime; // Calculate the overall command of blade K using the saturated rate limits

 SRC_PitCom[K] = SATURATE(SRC_PitCom[K], SRC_PitMin , SRC_PitMax); // Saturate to pitch limits

 if (FA_on){

 SRC_PitCom[K] = FA_aileronAngle; // Fixed aileron angle

 }

 } //ENDFOR K - all blades

 LastTimeSRC = Time;

 } // End SRC controller

 //===========END: SRC Individual pitch control==============

 // Reset the value of LastTime and LastGenSpeed to the current values:

 LastGenSpd = GenSpeed;

 LastTime = Time;

 if ((iStatus == GH_DISCON_STATUS_FINALISING))

 { // Last call to controller

 ReportWarningMessage (turbine_id, "\r\nLast call to controller complete.\r\n");

 }

 } //ENDIF main calculations

 //===

 //Logging external controller output to Bladed

 // Initialise data logging

 if (DataLog_on)

 {

 if (iStatus == GH_DISCON_STATUS_INITIALISING)

 {

 AddLogValue (turbine_id, "SRCafd_value", "-");

 }

 SetLoggingValue (turbine_id, 0, SRCafd_value);

 }//end logging

 return GH_DISCON_SUCCESS;

} //END OF SCRIPT

NREL 5MW external control/Debug/NREL 5MW external control.exp

L���6¯6U/�����������.edata����������[���d���À�����������@��@.debug$S��������3���ü���������������@��B����6¯6U��NREL 5MW external control.dll�CONTROLLER���������������������� ���������$���������(���������,�������������ñ���'���^�������D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.exp�+�<���������������
�������Microsoft (R) LINK���=��cwd�D:\USERS\rgb10163\Desktop\NREL 5MW external control�exe�C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin\link.exe����8�����_CONTROLLER�@comp.id����ÿÿ����.edata������������szName��2���������rgpv����(���������rgszName,���������rgwOrd��0���������$N00001�P�������������������������������_CONTROLLER�

NREL 5MW external control/NREL 5MW external control.vcxproj.filters

 {4FC737F1-C7A5-4376-A066-2A32D752A2FF}
 cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx

 {93995380-89BD-4b04-88EB-625FBE52EBFB}
 h;hpp;hxx;hm;inl;inc;xsd

 {67DA6AB6-F800-4c08-8B7A-83BB121AAD01}
 rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms

 Header Files

 Header Files

 Header Files

 Header Files

 Header Files

 Source Files

NREL 5MW external control/Debug/NREL 5MW external control.ilk

NREL 5MW external control/ipch/nrel 5mw external control-4cb41d22/nrel 5mw external control-68d8d6fa.ipch

NREL 5MW external control/Debug/NREL 5MW external control.lastbuildstate

#v4.0:v100:false
Debug|Win32|D:\USERS\rgb10163\Desktop\NREL 5MW external control\|

NREL 5MW external control/Debug/NREL 5MW external control.log

Build started 21/04/2015 21:12:37.
 1>Project "D:\USERS\rgb10163\Desktop\NREL 5MW external control\NREL 5MW external control.vcxproj" on node 2 (build target(s)).
 1>InitializeBuildStatus:
 Creating "Debug\NREL 5MW external control.unsuccessfulbuild" because "AlwaysCreate" was specified.
 ClCompile:
 C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin\CL.exe /c /ZI /nologo /W3 /WX- /Od /Oy- /D WIN32 /D _DEBUG /D _WINDOWS /D _USRDLL /D NREL5MWEXTERNALCONTROL_EXPORTS /D _WINDLL /D _UNICODE /D UNICODE /Gm /EHsc /RTC1 /MDd /GS /fp:precise /Zc:wchar_t /Zc:forScope /Fo"Debug\\" /Fd"Debug\vc100.pdb" /Gd /TP /analyze- /errorReport:prompt NREL_5MW_UpWind_ExternalControllerDLL.cc
 NREL_5MW_UpWind_ExternalControllerDLL.cc
 ManifestResourceCompile:
 C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\rc.exe /nologo /fo"Debug\NREL 5MW external control.dll.embed.manifest.res" "Debug\NREL 5MW external control_manifest.rc"
 Link:
 C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin\link.exe /ERRORREPORT:PROMPT /OUT:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.dll" /INCREMENTAL /NOLOGO kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /MANIFEST /ManifestFile:"Debug\NREL 5MW external control.dll.intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG /PDB:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.pdb" /SUBSYSTEM:WINDOWS /TLBID:1 /DYNAMICBASE /NXCOMPAT /IMPLIB:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.lib" /MACHINE:X86 /DLL "Debug\NREL 5MW external control.dll.embed.manifest.res"
 Debug\NREL_5MW_UpWind_ExternalControllerDLL.obj
 Creating library D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.lib and object D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.exp
 Manifest:
 C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\mt.exe /nologo /verbose /out:"Debug\NREL 5MW external control.dll.embed.manifest" /manifest "Debug\NREL 5MW external control.dll.intermediate.manifest"
 C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\rc.exe /nologo /fo"Debug\NREL 5MW external control.dll.embed.manifest.res" "Debug\NREL 5MW external control_manifest.rc"
 LinkEmbedManifest:
 C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\bin\link.exe /ERRORREPORT:PROMPT /OUT:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.dll" /INCREMENTAL /NOLOGO kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /MANIFEST /ManifestFile:"Debug\NREL 5MW external control.dll.intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG /PDB:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.pdb" /SUBSYSTEM:WINDOWS /TLBID:1 /DYNAMICBASE /NXCOMPAT /IMPLIB:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.lib" /MACHINE:X86 /DLL "Debug\NREL 5MW external control.dll.embed.manifest.res"
 Debug\NREL_5MW_UpWind_ExternalControllerDLL.obj
 Creating library D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.lib and object D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.exp
 NREL 5MW external control.vcxproj -> D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.dll
 FinalizeBuildStatus:
 Deleting file "Debug\NREL 5MW external control.unsuccessfulbuild".
 Touching "Debug\NREL 5MW external control.lastbuildstate".
 1>Done Building Project "D:\USERS\rgb10163\Desktop\NREL 5MW external control\NREL 5MW external control.vcxproj" (build target(s)).

Build succeeded.

Time Elapsed 00:00:01.37

NREL 5MW external control/Debug/NREL 5MW external control.dll.embed.manifest.res

NREL 5MW external control/Solution1.sdf

NREL 5MW external control/Solution1.suo

NREL 5MW external control/Solution1.v12.suo

NREL 5MW external control/Debug/cl.command.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.CC
/c /ZI /nologo /W3 /WX- /Od /Oy- /D WIN32 /D _DEBUG /D _WINDOWS /D _USRDLL /D NREL5MWEXTERNALCONTROL_EXPORTS /D _WINDLL /D _UNICODE /D UNICODE /Gm /EHsc /RTC1 /MDd /GS /fp:precise /Zc:wchar_t /Zc:forScope /Fo"Debug\\" /Fd"Debug\vc100.pdb" /Gd /TP /analyze- /errorReport:prompt D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.CC

NREL 5MW external control/Debug/CL.read.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.CC
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\BIN\1033\CLUI.DLL
C:\WINDOWS\GLOBALIZATION\SORTING\SORTDEFAULT.NLS
C:\WINDOWS\SYSTEM32\RSAENH.DLL
C:\WINDOWS\SYSTEM32\TZRES.DLL
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\EXTERNALCONTROLLERAPI.H
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\GH_DISCON_CONSTANTS.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\FLOAT.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CRTDEFS.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\SAL.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CODEANALYSIS\SOURCEANNOTATIONS.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\VADEFS.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CRTWRN.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\STRING.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\STDIO.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\SWPRINTF.INL
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\IOSTREAM
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\ISTREAM
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\OSTREAM
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\IOS
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XLOCNUM
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CLIMITS
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\YVALS.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\USE_ANSI.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\LIMITS.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CMATH
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\MATH.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CSTDIO
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CSTDLIB
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\STDLIB.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\STREAMBUF
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XIOSBASE
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XLOCALE
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CSTRING
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\STDEXCEPT
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\EXCEPTION
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XSTDDEF
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CSTDDEF
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\STDDEF.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\EH.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\MALLOC.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XSTRING
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XMEMORY
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\NEW
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XUTILITY
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\UTILITY
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\IOSFWD
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CWCHAR
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\WCHAR.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\WTIME.INL
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CRTDBG.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\TYPE_TRAITS
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\LIMITS
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\YMATH.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CFLOAT
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XTR1COMMON
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XFWRAP
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XFWRAP1
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XXTYPE_TRAITS
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\TYPEINFO
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XLOCINFO
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XLOCINFO.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CTYPE.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\LOCALE.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\XDEBUG
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\SYSTEM_ERROR
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\CERRNO
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\ERRNO.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\SHARE.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\FSTREAM
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\TRANSFERFUNCTIONS.H
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\INCLUDE\STRING
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\PARAMETERSEARCHDEFINE.H

NREL 5MW external control/Debug/CL.write.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.CC
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.OBJ
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\VC100.PDB

NREL 5MW external control/Debug/link-cvtres.read.1.tlog

ÿþ

NREL 5MW external control/Debug/link-cvtres.write.1.tlog

ÿþ

NREL 5MW external control/Debug/link.4228-cvtres.read.1.tlog

ÿþ

NREL 5MW external control/Debug/link.4228-cvtres.write.1.tlog

ÿþ

NREL 5MW external control/Debug/link.4228.read.1.tlog

ÿþ

NREL 5MW external control/Debug/link.4228.write.1.tlog

ÿþ

NREL 5MW external control/Debug/link.command.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST.RES|D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.OBJ
/ERRORREPORT:PROMPT /OUT:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.dll" /INCREMENTAL /NOLOGO kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /MANIFEST /ManifestFile:"Debug\NREL 5MW external control.dll.intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG /PDB:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.pdb" /SUBSYSTEM:WINDOWS /TLBID:1 /DYNAMICBASE /NXCOMPAT /IMPLIB:"D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.lib" /MACHINE:X86 /DLL "Debug\NREL 5MW external control.dll.embed.manifest.res"
Debug\NREL_5MW_UpWind_ExternalControllerDLL.obj

NREL 5MW external control/Debug/link.read.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST.RES|D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.OBJ
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\KERNEL32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\USER32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\GDI32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\WINSPOOL.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\COMDLG32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\ADVAPI32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\SHELL32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\OLE32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\OLEAUT32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\UUID.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\ODBC32.LIB
C:\PROGRAM FILES (X86)\MICROSOFT SDKS\WINDOWS\V7.0A\LIB\ODBCCP32.LIB
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST.RES
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.OBJ
C:\WINDOWS\SYSTEM32\TZRES.DLL
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.PDB
C:\WINDOWS\GLOBALIZATION\SORTING\SORTDEFAULT.NLS
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.EXP
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.LIB
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\EXTERNALCONTROLLERAPI.LIB
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\LIB\MSVCPRTD.LIB
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\LIB\MSVCRTD.LIB
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\LIB\OLDNAMES.LIB
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\BIN\CVTRES.EXE
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\BIN\LINK.EXE
C:\WINDOWS\SYSTEM32\RSAENH.DLL
C:\PROGRAM FILES (X86)\MICROSOFT VISUAL STUDIO 10.0\VC\BIN\1033\LINKUI.DLL

NREL 5MW external control/Debug/link.write.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST.RES|D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL_5MW_UPWIND_EXTERNALCONTROLLERDLL.OBJ
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.ILK
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.INTERMEDIATE.MANIFEST
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.PDB

NREL 5MW external control/Debug/mt.command.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.INTERMEDIATE.MANIFEST
/nologo /verbose /out:"Debug\NREL 5MW external control.dll.embed.manifest" /manifest "Debug\NREL 5MW external control.dll.intermediate.manifest"

NREL 5MW external control/Debug/mt.read.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.INTERMEDIATE.MANIFEST
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST

NREL 5MW external control/Debug/mt.write.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.INTERMEDIATE.MANIFEST
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST

NREL 5MW external control/Debug/NREL 5MW external control.write.1.tlog

^D:\USERS\rgb10163\Desktop\NREL 5MW external control\NREL 5MW external control.vcxproj
D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.lib
D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.lib
D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.exp
D:\USERS\rgb10163\Desktop\NREL 5MW external control\Debug\NREL 5MW external control.exp

NREL 5MW external control/Debug/rc.command.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL_MANIFEST.RC
/nologo /fo"Debug\NREL 5MW external control.dll.embed.manifest.res" "Debug\NREL 5MW external control_manifest.rc" /nologo /fo"Debug\NREL 5MW external control.dll.embed.manifest.res" D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL_MANIFEST.RC

NREL 5MW external control/Debug/rc.read.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL_MANIFEST.RC
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST

NREL 5MW external control/Debug/rc.write.1.tlog

^D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL_MANIFEST.RC
D:\USERS\RGB10163\DESKTOP\NREL 5MW EXTERNAL CONTROL\DEBUG\NREL 5MW EXTERNAL CONTROL.DLL.EMBED.MANIFEST.RES

NREL 5MW external control/NREL 5MW external control.vcxproj.user

NREL 5MW external control/NREL 5MW external control.vcxproj

 Debug
 Win32

 Release
 Win32

 {5F79503A-1CF7-484B-A49B-96DF071B7762}
 Win32Proj
 NREL5MWexternalcontrol

 DynamicLibrary
 true
 Unicode

 DynamicLibrary
 false
 true
 Unicode

 true

 false

 Level3
 Disabled
 WIN32;_DEBUG;_WINDOWS;_USRDLL;NREL5MWEXTERNALCONTROL_EXPORTS;%(PreprocessorDefinitions)

 Windows
 true

 Level3

 MaxSpeed
 true
 true
 WIN32;NDEBUG;_WINDOWS;_USRDLL;NREL5MWEXTERNALCONTROL_EXPORTS;%(PreprocessorDefinitions)

 Windows
 true
 true
 true

NREL 5MW external control/Debug/ExternalControllerApi.dll

NREL 5MW external control/ExternalControllerApi.dll

NREL 5MW external control.dll

NREL 5MW external control/Debug/NREL 5MW external control.dll

Appendix D

MATLAB scripts for load

calculations

There are a number of MATLAB scripts required to process the loads. These include a rain-flow

counter, 1Hz damage equivalent load calculator, an extreme load extrapolation script, and a method

for quickly importing the binary data files from the runs in Bladed into MATLAB. These are as an

alternative to using using Bladed‘s data post-processing methods.

Load calculation scripts

183

README.txt

FATIGUE LOAD CALCULATIONS

Read in data from Bladed runs using [variableData] = readBladedBinaryFiles(variable,fileName,directory)
Where the variable is the name of the variable you want to read in (e.g. 'Blade root 1 My')
The file name is the name of the run
And the path is to the place it is saved.

After importing the time series data from Bladed (e.g. of blade root My moment)
Use the [halfcycles,halfcycleMeans] = RainFlowCounting(variableData) function with your variable data

Then run the [DamageEquivalentLoad] = DEL_RBM(halfcycles,halfcycleMeans,m,UTS,RunTime) function
Using the previous outputs, the Wohler exponent of the material, and the ultimate tensile strength of the material. Also include the runtime (e.g. 600s) to correctly determine the 1Hz DEL.

This will give you the 1HZ Damage Equivalent Load (1Hz DEL), for a single run.

EXTREME LOAD EXTRAPOLATION

The extreme load extrapolation requires a larger amount of data
The data should include wind speeds 4:2:24 and 6 seeds and be of the form:
variableData(timeseriesData,windspeeds,seeds)

It is recommended that you use a "for loop" to read in the data using 'readBladedBinaryFiles'

The extreme loads extrapolation will estimate the 1-in-50-year extreme load on the turbine

DEL_RBM.m

function [DamageEquivalentLoad] = DEL_RBM(halfcycles,halfcycleMeans,m,UTS,RunTime)
% 1Hz damage equivalent loads
% Calculates the 1Hz damage equivalent loads at the blade root
% halfcycles and their means come from rainflow counting
% m = the wohler exponent (10-12 for GRP, 3/4 for steel)
% UTS = the ultimate tensile strength (175 MPa for GRP, 400MPa for steel)
% RunTime == duration of time series, typically 600s

 sRun = RunTime*2/2.01; %length of simulation data in s x2 as halfcycles /2.01 bending moment to stress conversion at blade root for NREL 5MW

 % m = 10 for GRP [023], 3 or 4 for steel
 % UTS ultimate tensile strength 175*10^6 for GRP, 400*10^6 for steel
 NeqSigmaeq = sum((halfcycles./(1-halfcycleMeans/UTS)).^m)/sRun;

 L = 1; % 1Hz
 DamageEquivalentLoad = (NeqSigmaeq/L)^(1/m);

end

ExtremeLoadExtrap.m

function [extremeValue] = ExtremeLoadExtrap(variableData)
% Extreme value extrapolation
% See the IEC 61400 ed3 Standard for guidance
% Data should include wind speeds 4:2:24 and 6 seeds and be of the form:
% variableData(timeseries,windspeeds,seeds)

% basic stats
%variableData = -variableData;
variableDataMean = mean((mean(variableData,1)),3);
variableDataStd = mean((std(variableData,0,1)),3);
variableDataMax = mean((max(variableData,[],1)),3);
variableAbsoluteMax = max(max((max(variableData))));

timeData = 0.01:0.01:600;
%timeData = timeData'*ones(1,8);

%vj = wind speed j
Pe = 0;
ne = 0;
Pve = 0;
x = 0:variableAbsoluteMax/100:10*variableAbsoluteMax;
vj_iter = 0; %4=0 6=1 8=2 10=3 12=4 14=5 16=6 18=7 20=8 22=9 24=10
for vj = 4:2:24;

 vj_iter = vj_iter + 1;
 singleWindSpeedData = reshape((variableData(:,vj_iter,:)),[],1);
 singleDataMean = variableDataMean(:,vj_iter,:);
 singleDataStd = variableDataStd(:,vj_iter,:);

 %% extract extreme values from data
 % find data above (1) and below (0) the mean
 dataUpLogic = singleWindSpeedData>singleDataMean;

 % find maxima between successive upcrossings of the mean plus 1.4 stds
 count = 0;
 tempMaxima = 0;
 dataMaxima(1) = 0;
 dataMaximaLoc(1) = 0;
 for iter = 1:length(singleWindSpeedData)
 if (dataUpLogic(iter) == 1)
 if (tempMaxima<singleWindSpeedData(iter))
 tempMaxima = singleWindSpeedData(iter);
 tempMaximaLoc = iter;
 end
 else
 if (tempMaxima ~= 0)
 count = count + 1;
 dataMaxima(count) = tempMaxima;
 dataMaximaLoc(count) = tempMaximaLoc;
 end
 tempMaxima = 0;
 end
 end

 % data must be mean plus 1.4 stds
 dataMaximaLoc = dataMaximaLoc(dataMaxima>singleDataMean+1.4*singleDataStd);
 dataMaxima = dataMaxima(dataMaxima>singleDataMean+1.4*singleDataStd);

 %display(vj)
 %display(sum(dataMaxima>singleDataMean+1.4*singleDataStd))

 % continue from top of loop if less than 10 extreme values found
 if sum(dataMaxima>singleDataMean+1.4*singleDataStd) < 20
 continue
 end

 % plot extracted data
 %figure(1)
 %plot(singleWindSpeedData(dataMaximaLoc,1),dataMaxima,'gp')

 % plot cumulative probability density of data
 %figure(2)
 dataMaximaSort = sort(dataMaxima);
 %plot(dataMaximaSort,1-(1:length(dataMaximaSort))/length(dataMaximaSort),'b.')

 %% do an extreme value fit, -x is for maxima evaluation (+x for minima)
 parmhat = evfit(-dataMaximaSort);

 %plot cumulative pdf of extreme value fit
 pcpdf = evcdf(-x,parmhat(1),parmhat(2));
 %hold on
 %plot(x,pcpdf,'rp')

 %plot pdf of extreme value fit
 ppdf = evpdf(-x,parmhat(1),parmhat(2));
 %figure(3)
 %plot(x,ppdf,'go')
 %plot(x,ppdf/(max(ppdf)),'go')

 %plot using log y axis
 %figure(4)
 %semilogy(dataMaximaSort,1-(1:length(dataMaximaSort))/length(dataMaximaSort),'.')
 %hold on
 %semilogy(x,pcpdf,'r')

 %figure(7)
 %plot(x,pcpdf)
 %hold on

 %% estimate expected number of maxima for typical 10 min observation period
 nj = length(dataMaximaSort)/6; %divide by 6 as 6 10minute seeds

 %% probability distribution of a given load

 v_ave = 0.2*50;

 %probability of each wind speed bin 4:2:24 (3-5,5-7,7-9,9-11 etc.)
 Pvj = exp(-pi*((vj-1)/(2*v_ave)).^2)-exp(-pi*((vj+1)/(2*v_ave)).^2);

 Pe = Pe+(1-(1-pcpdf).^nj).*Pvj;
 Pve = Pve + Pvj;

end

% 50-year occurence extreme value extrapolation
extremeValue = interp1(Pe(Pe<10^(-5) & Pe>10^(-9)),x(Pe<10^(-5) & Pe>10^(-9)),3.8*10^-7,'spline'); %(Pe<10^(-5) & Pe>10^(-9)) to avoid monotonic results

figure
semilogy(x,Pe,'b')
hold on
semilogy([extremeValue,extremeValue],[min(Pe)+eps(1),3.8*10^-7],'g--')
semilogy([variableAbsoluteMax,variableAbsoluteMax],[min(Pe)+eps(1),1],'r:')
legend('Probablity of exceedance','50-year extreme','Maximum simulated')

ylim([10^-8,1])
semilogy([0,extremeValue],[3.8*10^-7,3.8*10^-7],'g--')
semilogy(extremeValue,3.8*10^-7,'go')
xlabel('Extreme values')
ylabel('Probability')

RainFlowCounting.m

function [halfcycles,halfcycleMeans] = RainFlowCounting(variableData)
% Rain flow counting (ASTM E1049 - 85 standard)
% Calculates the amplitude of halfcycles and their mean displacement

 variableData = squeeze(variableData);
 sizeVar = size(variableData);
 if sizeVar(1)==1
 variableData = variableData';
 end

 [peaks, peaklocs] = findpeaks(variableData);
 [trofs, troflocs] = findpeaks(-variableData);
 trofs = -trofs;

 reversals = [[peaklocs;troflocs],[peaks;trofs]];
 reversals = sortrows(reversals,1);

 %locs = reversals(:,1);

 reversals = reversals(:,2);

 halfcyclesSize = size(reversals);
 halfcyclesSize(1) = halfcyclesSize(1)-1;
 halfcycles = zeros(halfcyclesSize);
 halfcycleMeans = zeros(halfcyclesSize);

 %halfcyclePeriods = zeros(halfcyclesSize);

 revShield = ones(size(reversals));
 revShield = cumsum(revShield);

 iter = 0;
 count = 1;
 while iter ~= -1

 iter = iter + 1;

 if iter+2 >= length(revShield)
 for iter = 1:length(revShield)-1
 Y = [reversals(revShield(iter)),reversals(revShield(iter+1))];

 halfcycles(count) = abs(diff(Y));
 halfcycleMeans(count) = mean(Y);

 %halfcyclePeriods(count) = abs(diff([locs(revShield(iter)),locs(revShield(iter+1))]));

 count = count + 1;
 end
 break
 end

 S = reversals(revShield(1));

 Y = [reversals(revShield(iter)),reversals(revShield(iter+1))];
 X = [reversals(revShield(iter+1)),reversals(revShield(iter+2))];

 if abs(diff(X))<abs(diff(Y))
 %display('X<Y') %do nothing
 else
 %display('X>=Y')
 if Y(1)==S
 %display('half-cycle')
 halfcycles(count) = abs(diff(Y));
 halfcycleMeans(count) = mean(Y);

 %halfcyclePeriods(count) = abs(diff([locs(revShield(iter)),locs(revShield(iter+1))]));

 count = count + 1;

 revShield = revShield(revShield~=revShield(iter));
 iter = 0;

 else
 %display('one-cycle')
 halfcycles(count) = abs(diff(Y));
 halfcycleMeans(count) = mean(Y);

 %halfcyclePeriods(count) = abs(diff([locs(revShield(iter)),locs(revShield(iter+1))]));

 count = count + 1;
 halfcycles(count) = abs(diff(Y));
 halfcycleMeans(count) = mean(Y);

 %halfcyclePeriods(count) = abs(diff([locs(revShield(iter)),locs(revShield(iter+1))]));

 count = count + 1;

 revShield = revShield(revShield~=revShield(iter));
 revShield = revShield(revShield~=revShield(iter));
 iter = 0;

 end %end if Y(1) == S or not

 end %end if X<Y or X>=Y

 end %while loop for rainflow counting

readBladedBinaryFiles.m

function [variableData] = readBladedBinaryFiles(variable,fileName,directory)
%read data in from Bladed files
%variableNames = {'Blade root 1 Mx','Blade root 1 My','Rotating hub My','Rotating hub Mz','Yaw bearing My','Yaw bearing Mz','Foundation Mx','Foundation My'};
%variable = variableNames{8}; %Blade root 1 Mx, Blade root 1 My, Rotating hub My, , Blade 1 pitch rate, Blade 1 pitch acceleration , Blade 1 pitch actuator torque
%fileName = 'Baseline_NTM_Kai10s1'; %Baseline
%directory = 'D:\USERS\rgb10163\Documents\BladedRuns\Thesis\Baseline\'; %baseline;

allFiles = dir(directory);
allFiles = struct2cell(allFiles);
allFiles = allFiles(1,:);
headerFiles = find(strncmpi(allFiles,[fileName,'.%'],length(fileName)+2));
headerFiles = allFiles(headerFiles);

%---
% READ THE HEADER OF THE BINARY FILE
%---
for fileNumber = 1:length(headerFiles);

 fileID = fopen([directory, headerFiles{fileNumber}]);
 if (fileID <= 0)
 error('File could not be opened.');
 return;
 end
 fseek(fileID, 0, 'bof'); %return cursor to start of file

 % read each line of the header file and record values

 FILE = textscan(fileID,'%*s %s',1);
 ACCESS = textscan(fileID,'%*s %s',1);
 FORM = textscan(fileID,'%*s %s',1);
 RECL = textscan(fileID,'%*s %f',1);
 FORMAT = textscan(fileID,'%*s %s',1);
 CONTENT = textscan(fileID,'%*s %s',1);
 CONFIG = textscan(fileID,'%*s %s',1);
 NDIMENS = textscan(fileID,'%*s %f',1);

 dataFormat = '%*s';
 for iter = 1:NDIMENS{1}
 dataFormat = [dataFormat,' %f'];
 end

 DIMENS = textscan(fileID,dataFormat,1);

 GENLAB = textscan(fileID,'%*s %s',1,'delimiter','''');

 dataFormat = '%*s';
 for iter = 1:DIMENS{1}
 dataFormat = [dataFormat,' %s %*s'];
 end

 VARIAB = textscan(fileID,dataFormat,1,'delimiter','''');

 dataFormat = '%*s';
 for iter = 1:DIMENS{1}
 dataFormat = [dataFormat,' %s'];
 end

 VARUNIT = textscan(fileID,dataFormat,1);
 AXISLAB = textscan(fileID,'%*s %s',1);
 AXIUNIT = textscan(fileID,'%*s %s',1);
 AXIMETH = textscan(fileID,'%*s %f',1);
 MIN = textscan(fileID,'%*s %f',1);
 STEP = textscan(fileID,'%*s %f',1);
 NVARS = textscan(fileID,'%*s %f',1);

 dataFormat = '';
 for iter = 1:DIMENS{1}
 dataFormat = [dataFormat,' %f'];
 end

 ULOADS = [textscan(fileID,['%*s',dataFormat],1)];
 for iter = 1:2*DIMENS{1}-1
 ULOADS = [ULOADS;textscan(fileID,dataFormat,1)];
 end

 MAXTIME = textscan(fileID,['%*s',dataFormat],1);
 MINTIME = textscan(fileID,['%*s',dataFormat],1);
 MEAN = textscan(fileID,['%*s',dataFormat],1);

 %check if variable is in (header) file
 for iter = 1:length(VARIAB)
 ind = find(strcmp(VARIAB{iter},variable));

 if ~isempty(ind)
 break;
 end
 end

 fclose(fileID);

 if ~isempty(ind)
 display(['Variable, ''' variable, ''', found in file ', headerFiles{fileNumber}])
 break;
 end

end

if isempty(ind)
 display(['ERROR: Variable, ''' variable, ''', not found'])
 return;
end

% ---
% READ THE DATA OF THE BINARY FILE
% ---

fileFmt = 'float'; % int16 is used for the binary wind data

fileID = fopen([directory, FILE{1}{1}]);
if (fileID <= 0)
 display('File could not be opened.');
 return;
end
fseek(fileID, 0, 'bof');

if NDIMENS{1} == 2
 data = fread(fileID, [DIMENS{1},DIMENS{2}], fileFmt);
elseif NDIMENS{1} == 3
 display('Warning, 3D array');
 data = fread(fileID, [DIMENS{1},DIMENS{2},DIMENS{3}], fileFmt);
end

variableData = data(iter,:); %select only the variable data asked for

fclose('all');

Appendix E

Reading 3D turbulent wind files

For importing the 3D turbulent wind (.wnd) files into MATLAB a function has been created. This

facilitates manipulation of the velocity field data in MATLAB. A reverse script is then used to

write the new turbulent wind, with the adjusted data, back into the wind file format. This might

be done, for example, to add wake deficits or veer to the wind field.

Files for reading and writing wind files

184

README.txt

To read in wind files simply use:

[headers,velocityField] = readWndFile(path,fileName,TIu,TIv,TIw)
% Function to read .wnd files
%
% Input:
% path - string, path to directory with file to be read
% fileName - string, containing file name to open (.wnd extension is optional)
% TIu, TIv, TIw - turbulence intensity in u,v,w directions as a decimal
% (i.e. 0.15 == 15%)
%
% Output:
% headers - all headers of the .wnd binary file as a structure
% velocity - 4-D vector: velocity component, iy, iz, time

You can the manipulate the velocityField as required, before writing to a new file using:

function [fileName] = writeWndFile(path,fileName,headers,velocityField)
% Function to write .wnd files
%
% Input:
% path - string, path to directory where file is to be written
% fileName - string, containing file name to write to (.wnd extension is optional)
% headers - all headers of the .wnd binary file as a structure
% velocityField - 4-D vector: velocity component, iy, iz, time
%
% Output:
% fileName - file name of .wnd file created

Note that the fileName in the writeWndFile function should be different to the one you are reading, or it will be overwritten without warning

readWndFile.m

function [headers,velocityField] = readWndFile(path,fileName,TIu,TIv,TIw)
% Function to read .wnd files
%
% Input:
% path - string, path to directory with file to be read
% fileName - string, containing file name to open (.wnd extension is optional)
% TIu, TIv, TIw - turbulence intensity in u,v,w directions as a decimal
% (i.e. 0.15 == 15%)
%
% Output:
% headers - all headers of the .wnd binary file as a structure
% velocity - 4-D vector: velocity component, iy, iz, time

[headers] = readWndFileHeaders(path,fileName);

[headers,velocityField] = readWndFileWindData(headers,TIu,TIv,TIw);

readWndFileHeaders.m

function [headers] = readWndFileHeaders(path,fileName)
%Function to read .wnd file headers
%
% Input:
% path - string, path to directory with file to be read
% fileName - string, containing file name to open (.wnd extension is optional)
%
% Output:
% headers - all headers of the .wnd binary file as a structure

% ensure correct file ending .wnd is used
len = length(fileName);
ending = fileName(len-3:len);

if strcmpi(ending, '.wnd')
 fileName = fileName(1:len-4);
end

%---

%---
%READ THE HEADER OF THE BINARY FILE
%---
fid_wnd = fopen([path, fileName, '.wnd']); %open file

display(['File, ', path, fileName,'.wnd, opened'])

if (fid_wnd <= 0)
 error('Wind file could not be opened.');
 return;
end

headers.fileStyle = fread(fid_wnd, 1, 'int16'); % -99 for new style bladed wind files

if (headers.fileStyle ~= -99)
 error('Wind file wrong style');
 return;
end

% THE NEWER-STYLE WIND FILE
windModelString = {
 '1 = 1-component von Karman'
 '2 = 1-component Kaimal'
 '3 = 3-compontent von Karman'
 '4 = improved von Karman'
 '5 = IEC-2 Kaimal'
 '6 = (not supported)'
 '7 = General Kaimal'
 '8 = Mann model' };

% type of wind model
headers.windModel = fread(fid_wnd, 1, 'int16');

if (headers.windModel == 6)
 error(windModelString{headers.windModel});
 return
elseif ((headers.windModel >= 9) || (headers.windModel <= 0))
 display(headers.windModel)
 error('Wind file not recognised model');
 return
else
 display(windModelString{headers.windModel});
end

if (headers.windModel >= 7)
 headers.N_header = fread(fid_wnd, 1, 'int32'); % Number of bytes in header
 headers.nffc = fread(fid_wnd, 1, 'int32'); % Number of turbulence components
end

if (headers.windModel == 4)
 headers.nffc = fread(fid_wnd, 1, 'int32'); % Number of turbulence components
 headers.latitude = fread(fid_wnd, 1, 'float32'); % Latitude [degrees]
 headers.roughL = fread(fid_wnd, 1, 'float32'); % Roughness length [m]
 headers.roughH = fread(fid_wnd, 1, 'float32'); % Roughness height [m]
 headers.TI_u = fread(fid_wnd, 1, 'float32'); % Longitudinal turbulence intensity [%]
 headers.TI_v = fread(fid_wnd, 1, 'float32'); % Lateral turbulence intensity [%]
 headers.TI_w = fread(fid_wnd, 1, 'float32'); % Vertical turbulence intensity [%]
end

headers.dz = fread(fid_wnd, 1, 'float32'); % Grid point spacing in vertical direction [m]
headers.dy = fread(fid_wnd, 1, 'float32'); % Grid point spacing in lateral direction [m]
headers.dx = fread(fid_wnd, 1, 'float32'); % Grid point spacing in longitudinal direction [m]

headers.nt = fread(fid_wnd, 1, 'int32'); % Half the number of points in the alongwind direction

headers.MFFWS = fread(fid_wnd, 1, 'float32'); % The mean full-field wind speed

headers.zLu = fread(fid_wnd, 1, 'float32'); % Vertical length scale of the longitudinal component [m]
headers.yLu = fread(fid_wnd, 1, 'float32'); % Lateral length scale of the longitudinal component [m]
headers.xLu = fread(fid_wnd, 1, 'float32'); % Longitudinal length scale of the longitudinal component [m]

headers.fx = fread(fid_wnd, 1, 'float32'); % fx/2
headers.seed = fread(fid_wnd, 1, 'int32'); % seed

headers.nz = fread(fid_wnd, 1, 'int32'); % Number of grid points in vertical direction
headers.ny = fread(fid_wnd, 1, 'int32'); % Number of grid points in lateral direction

if (headers.windModel == 3 || headers.windModel == 5)
 headers.nffc = 3; % defines number of components for 3-component von Karman and IEC2 models
end

if (headers.nffc ==3)
 headers.zLv = fread(fid_wnd, 1, 'float32'); % Vertical length scale of the lateral component [m]
 headers.yLv = fread(fid_wnd, 1, 'float32'); % Lateral length scale of the lateral component [m]
 headers.xLv = fread(fid_wnd, 1, 'float32'); % Longitudinal length scale of the lateral component [m]

 headers.zLw = fread(fid_wnd, 1, 'float32'); % Vertical length scale of the vertical component [m]
 headers.yLw = fread(fid_wnd, 1, 'float32'); % Lateral length scale of the vertical component [m]
 headers.xLw = fread(fid_wnd, 1, 'float32'); % Longitudinal length scale of the vertical component [m]
end

if (headers.windModel == 7)
 headers.decayK = fread(fid_wnd, 1, 'float32'); % Coherence decay constant
 headers.ScaleParam = fread(fid_wnd, 1, 'float32'); % Coherence scale parameter [m]
end

if (headers.windModel == 8)
 headers.shearParam = fread(fid_wnd, 1, 'float32'); % Shear parameter (gamma)
 headers.scaleLength = fread(fid_wnd, 1, 'float32'); % Scale length (L) [m]

 headers.ratioTIvu = fread(fid_wnd, 1, 'float32'); % Ratio of lateral to longitudianl turbulence intensity
 headers.ratioTIwu = fread(fid_wnd, 1, 'float32'); % Ratio of vertical to longitudianl turbulence intensity

 headers.LmaxLatVert = fread(fid_wnd, 1, 'float32'); % Max Lateral/Vertical wavelength [m]

 headers.reserved(1) = fread(fid_wnd, 1, 'float32'); % Reserved: max Lateral/Vertical wavelength??
 headers.reserved(2) = fread(fid_wnd, 1, 'int32'); % Reserved: number of points in horizontal direction??

 headers.fftny = fread(fid_wnd, 1, 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??

 headers.reserved(3) = fread(fid_wnd, 1, 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??

 headers.reserved(4) = fread(fid_wnd, 1, 'float32'); % Reserved: Max Lateral/Vertical wavelength??
 headers.reserved(5) = fread(fid_wnd, 1, 'float32'); % Reserved: Max Lateral/Vertical wavelength??
 headers.reserved(6) = fread(fid_wnd, 1, 'int32'); % Reserved: number of points in horizontal direction??
 headers.reserved(7) = fread(fid_wnd, 1, 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??
 headers.reserved(8) = fread(fid_wnd, 1, 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??

 headers.reserved(9) = fread(fid_wnd, 1, 'float32'); % Reserved: 3??
 headers.reserved(10)= fread(fid_wnd, 1, 'float32'); % Reserved: ??
end

% additional data used in reading the wind data
headers.bytes = ftell(fid_wnd); % bytes in the header
headers.path = path; % path of the file
headers.fileName = fileName; % file name

fclose(fid_wnd); %close the file

readWndFileWindData.m

function [headers,velocityField] = readWndFileWindData(headers,TIu,TIv,TIw)
% Function to read .wnd file wind field binary data and convert to velocity files
%
% Input:
% headers - all headers of the .wnd binary file as a structure
% TIu, TIv, TIw - turbulence intensity in u,v,w directions as a decimal
% (i.e. 0.15 == 15%)
%
% Output:
% velocity - 4-D vector: velocity component, iy, iz, time

%---
%READ THE GRID DATA FROM THE BINARY FILE
%---

if exist('headers.TIu')
 overwrite = input('Overwrite existing turbulence intensities? [0 = no, 1 = yes] ');
 if (overwrite)
 display('Overwriting existing turbulence intensitites')
 headers.TIu = TIu;
 headers.TIv = TIv;
 headers.TIw = TIw;
 end
else
 headers.TIu = TIu;
 headers.TIv = TIv;
 headers.TIw = TIw;
end

% ensure correct file ending .wnd is used
len = length(headers.fileName);
ending = headers.fileName(len-3:len);

if strcmpi(ending, '.wnd')
 headers.fileName = headers.fileName(1:len-4);
end

%---

% initialize variables
fileFmt = 'int16'; % int16 is used for the binary wind data
headers.ConvFact = 1; % results in meters and seconds

fid_wnd = fopen([headers.path, headers.fileName, '.wnd']);

display(['File, ', headers.path, headers.fileName,'.wnd, opened'])

if (fid_wnd <= 0)
 error('Wind file could not be opened.');
 return;
end

disp('Reading and scaling the grid data...');

fseek(fid_wnd,headers.bytes,'bof');

nt = max([headers.nt*2,1]); %total time steps
dt = headers.dx/headers.MFFWS; %seconds per metre

% %check memory is sufficient for reading in data (no such command in 2007b Matlab)
% [memtest,~] = memory;
% if (memtest.MaxPossibleArrayBytes < nt*nffc*ny*nz*8)
% display(sprintf('Bytes available for array = %i',memtest.MaxPossibleArrayBytes))
% display(sprintf('Bytes required for array = %i',nt*nffc*ny*nz*8))
% display(sprintf('Array Dimensions: nt = %i, nffc = %i, ny = %i, nz = %i', nt,nffc,ny,nz))
% error('Not enough memory for velocity array')
% return
% end

nv = headers.nffc*headers.ny*headers.nz; % The size of one time step

% The scale and offset are used to convert from normalised, zero mean, unit
% standard devitation wind speed deviations into actual wind speeds
% The formula conversion is:
% V_actual = V_wnd * V_average * TI / 1000 + V_offset
% wind speeds are in m/s
% turbulence intensities as a deicmal [i.e. 0.15 = 15%]
% the offset is the mean wind speed of that component

% scale and offset defined for u,v,w wind components
Scale(1) = (headers.MFFWS*headers.TIu/1000);
Scale(2) = (headers.MFFWS*headers.TIv/1000);
Scale(3) = (headers.MFFWS*headers.TIw/1000);
Offset(1) = headers.MFFWS;
Offset(2) = 0;
Offset(3) = 0;

% read in data to velocity array
[velocityField, cnt] = fread(fid_wnd, nv*nt, fileFmt);
if cnt < nv*nt
 error(['Could not read entire file: at grid record ' num2str(cnt) ' of ' num2str(nv*nt)]);
end

velocityField = reshape(velocityField,headers.nffc,headers.ny,headers.nz,nt);

for k=1:headers.nffc
 velocityField(k,:,:,:) = velocityField(k,:,:,:)*Scale(k)+Offset(k);
end

velocityField = velocityField*headers.ConvFact;

%---
% CLOSE .WND FILE
%---
fclose(fid_wnd);
disp('Reading done');

%---
% END READ THE GRID DATA FROM THE BINARY FILE
%---

writeWndFile.m

function [fileName] = writeWndFile(path,fileName,headers,velocityField)
% Function to write .wnd files
%
% Input:
% path - string, path to directory where file is to be written
% fileName - string, containing file name to write to (.wnd extension is optional)
% headers - all headers of the .wnd binary file as a structure
% velocityField - 4-D vector: velocity component, iy, iz, time
%
% Output:
% fileName - file name of .wnd file created

disp('Writing');

% ensure correct file ending .wnd is used
len = length(fileName);
ending = fileName(len-3:len);

if strcmpi(ending, '.wnd')
 fileName = fileName(1:len-4);
end

%---

% initialize variables
fileFmt = 'int16'; % int16 is used for the binary wind data

%---
% WRITE THE HEADER OF THE BINARY FILE
%---
fid_wnd = fopen([path, fileName, '.wnd'],'w');
if (fid_wnd <= 0)
 error('Write wind file could not be opened.');
 return;
end

fwrite(fid_wnd,headers.fileStyle,'int16');% = fread(fid_wnd, 1, 'int16'); % -99 for new style bladed wind files
fwrite(fid_wnd,headers.windModel,'int16');

if (headers.windModel >= 7)
 fwrite(fid_wnd,headers.N_header,'int32'); % Number of bytes in header
 fwrite(fid_wnd,headers.nffc,'int32'); % Number of turbulence components
end

if (headers.windModel == 4)
 fwrite(fid_wnd,headers.nffc,'int32'); % Number of turbulence components
 fwrite(fid_wnd,headers.latitude,'float32'); % Latitude [degrees]
 fwrite(fid_wnd,headers.roughL,'float32'); % Roughness length [m]
 fwrite(fid_wnd,headers.roughH,'float32'); % Roughness height [m]
 fwrite(fid_wnd,headers.TI_u,'float32'); % Longitudinal turbulence intensity [%]
 fwrite(fid_wnd,headers.TI_v,'float32'); % Lateral turbulence intensity [%]
 fwrite(fid_wnd,headers.TI_w,'float32'); % Vertical turbulence intensity [%]
end

fwrite(fid_wnd, headers.dz, 'float32'); % Grid point spacing in vertical direction [m]
fwrite(fid_wnd, headers.dy, 'float32'); % Grid point spacing in lateral direction [m]
fwrite(fid_wnd, headers.dx, 'float32'); % Grid point spacing in longitudinal direction [m]

fwrite(fid_wnd, headers.nt, 'int32'); % Half the number of points in the alongwind direction

fwrite(fid_wnd, headers.MFFWS, 'float32'); % The mean full-field wind speed

fwrite(fid_wnd, headers.zLu, 'float32'); % Vertical length scale of the longitudinal component [m]
fwrite(fid_wnd, headers.yLu, 'float32'); % Lateral length scale of the longitudinal component [m]
fwrite(fid_wnd, headers.xLu, 'float32'); % Longitudinal length scale of the longitudinal component [m]

fwrite(fid_wnd, headers.fx, 'float32'); % fx/2
fwrite(fid_wnd, headers.seed, 'int32'); % seed

fwrite(fid_wnd, headers.nz, 'int32'); % Number of grid points in vertical direction
fwrite(fid_wnd, headers.ny, 'int32'); % Number of grid points in lateral direction

if (headers.nffc ==3)
 fwrite(fid_wnd, headers.zLv, 'float32'); % Vertical length scale of the lateral component [m]
 fwrite(fid_wnd, headers.yLv, 'float32'); % Lateral length scale of the lateral component [m]
 fwrite(fid_wnd, headers.xLv, 'float32'); % Longitudinal length scale of the lateral component [m]

 fwrite(fid_wnd, headers.zLw, 'float32'); % Vertical length scale of the vertical component [m]
 fwrite(fid_wnd, headers.yLw, 'float32'); % Lateral length scale of the vertical component [m]
 fwrite(fid_wnd, headers.xLw, 'float32'); % Longitudinal length scale of the vertical component [m]
end

if (headers.windModel == 7)
 fwrite(fid_wnd, headers.decayK, 'float32'); % Coherence decay constant
 fwrite(fid_wnd, headers.ScaleParam, 'float32'); % Coherence scale parameter [m]
end

if (headers.windModel == 8)
 fwrite(fid_wnd, headers.shearParam, 'float32'); % Shear parameter (gamma)
 fwrite(fid_wnd, headers.scaleLength, 'float32'); % Scale length (L) [m]

 fwrite(fid_wnd, headers.ratioTIvu, 'float32'); % Ratio of lateral to longitudianl turbulence intensity
 fwrite(fid_wnd, headers.ratioTIwu, 'float32'); % Ratio of vertical to longitudianl turbulence intensity

 fwrite(fid_wnd, headers.LmaxLatVert, 'float32'); % Max Lateral/Vertical wavelength [m]

 fwrite(fid_wnd, headers.reserved(1), 'float32'); % Reserved: max Lateral/Vertical wavelength??
 fwrite(fid_wnd, headers.reserved(2), 'int32'); % Reserved: number of points in horizontal direction??

 fwrite(fid_wnd, headers.fftny, 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??

 fwrite(fid_wnd, headers.reserved(3), 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??

 fwrite(fid_wnd, headers.reserved(4), 'float32'); % Reserved: Max Lateral/Vertical wavelength??
 fwrite(fid_wnd, headers.reserved(5), 'float32'); % Reserved: Max Lateral/Vertical wavelength??
 fwrite(fid_wnd, headers.reserved(6), 'int32'); % Reserved: number of points in horizontal direction??
 fwrite(fid_wnd, headers.reserved(7), 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??
 fwrite(fid_wnd, headers.reserved(8), 'int32'); % Reserved: number of fft points in Lateral/Vertical direction??

 fwrite(fid_wnd, headers.reserved(9), 'float32'); % Reserved: 3??
 fwrite(fid_wnd, headers.reserved(10), 'float32'); % Reserved: ??
end

% write velocity array to binary file

% The scale and offset are used to convert from normalised, zero mean, unit
% standard devitation wind speed deviations into actual wind speeds
% The formula conversion is:
% V_actual = V_wnd * V_average * TI / 1000 + V_offset
% wind speeds are in m/s
% turbulence intensities as a deicmal [i.e. 0.15 = 15%]
% the offset is the mean wind speed of that component

% scale and offset defined for u,v,w wind components
Scale(1) = (headers.MFFWS*headers.TIu/1000);
Scale(2) = (headers.MFFWS*headers.TIv/1000);
Scale(3) = (headers.MFFWS*headers.TIw/1000);
Offset(1) = headers.MFFWS;
Offset(2) = 0;
Offset(3) = 0;

velocityField = velocityField/headers.ConvFact;

for k=1:headers.nffc
 velocityField(k,:,:,:) = (velocityField(k,:,:,:)-Offset(k))/Scale(k);
end %for k number of components

fwrite(fid_wnd, velocityField, fileFmt);

%---
% CLOSE .WND FILE
%---
fclose(fid_wnd);
disp('Files complete');

disp('Finished.');
disp('');

	Introduction
	Contribution to knowledge
	Overview of thesis

	Background
	Development of wind as an energy source
	Wind turbine technology
	The smart rotor wind turbine

	Technical review
	Smart rotor control strategies
	Sensors
	Accelerometers
	Strain gauges

	Flow control devices
	Trailing edge flaps

	Bladed: wind turbine modelling software
	Aerodynamic modelling

	Discussion

	Baseline and controllers
	Baseline wind turbine
	UpWind/NREL 5-MW description

	Smart rotor trailing edge flaps
	Collective pitch control
	NREL 5MW controller
	UpWind controller

	Advanced load reduction control options
	Control using the dq-axis
	Independent control

	Validation of baseline
	Tower velocity damping
	Drivetrain filter
	Pitch filters
	Advanced load reduction control options

	Performance analysis
	Motivation
	Cost of Energy
	Controller objectives
	Loads

	Metrics
	Power spectral density plots
	Damage equivalent loads
	Extreme load extrapolation

	Design load cases
	DLC 1.1 and 1.2

	Wind field synthesis
	Normal turbulence model wind fields
	Grid resolution
	Wind field model: Kaimal and Mann
	Sensitivity study
	Turbulence intensity
	Wind shear
	Tower shadow

	Discussion

	Trailing edge flap devices
	Motivation
	Aerodynamic characteristics
	Thin aerofoil theory
	Modelling the flaps using XFOIL
	Device modelling in Bladed

	Actuator requirements
	Motion
	Torques
	Power

	Discussion

	Direct comparison of individual pitch and smart rotor control
	Motivation
	Fatigue load reductions
	Extreme load reductions
	Pitch actuator requirements
	Flap actuator requirements
	Rotor speed variability
	Discussion

	Supplementary control
	Motivation
	Rotor speed control
	Supplementary control design
	Tuning the filters

	Supplementary speed control
	Consolidated smart rotor control
	Discussion

	Faults
	Motivation
	Fault cases
	Detection of faults
	Fault correction
	Loads
	Energy Capture
	Discussion

	Conclusion
	Summary
	Deductions, implications and limitations
	Wind field synthesis and performance
	Trailing edge flaps
	Individual pitch and smart rotor control
	Supplementary control
	Faults

	Future work

	Appendices description
	Wind turbine model parameters
	Flap aerodynamic characteristics from XFOIL
	External Bladed controller
	MATLAB scripts for load calculations
	Reading 3D turbulent wind files

