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Abstract

Despite their apparent simplicity, multiphase fluids such as liquid-foam exhibit

a very rich dynamics, which is often difficult to predict, much more so than

would be the case for single-phase fluids. The physics of liquid foams can be

hard to capture mathematically, even in static and equilibrium systems. As ex-

ternal forces are applied on the foam structure, driving the system into motion,

the amount of required information to characterize the system also increases, de-

pending on factors such as the number of individual bubbles, and the geometry

of the system’s container. This work takes a step forward into expanding the

understanding of the nature of liquid-foam, where its physics, methods and tech-

niques used to model its dynamics, and possible applications are reviewed. Two

related models for modelling macroscale and bubble-scale liquid-foam dynamics,

respectively, are further analysed. The first of these is the pressure-driven growth

model, which aims to capture the location over time of a two-dimensional foam

front propagating through a porous medium, in the context of foam improved oil

recovery, particularly in the surfactant alternating gas process. It is shown that

this model admits solutions containing sharp corners or kinks, in which a foam

front reorients over a length scale small compared with the distance over which

the front has propagated. The second of these is the viscous froth model, which

is used to model bubble-scale foam flow of a layer of bubbles in a channel between

closely-spaced parallel flat plates, and hence is a two-dimensional foam model.

It is shown that this model admits topological transformations in which sets of

bubbles flowing in a channel exchange neighbours as the flow velocity increases.
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Chapter 1

Introduction

Bubbles, consisting of gas dispersed in liquid, play an important but not always

noticeable role in people’s daily life. They are present in different size scales in

food, in drinks, and in many domestic tasks. People are used to having them

around and interact naturally with them, as with many other multiphase sub-

stances, suspensions, powders, emulsions, aerosols, amongst others. However, un-

derstanding the physics and dynamics behind the behaviour of these substances

can be challenging, particularly due to their multiphase nature [1–3]. Bubbles,

as we have said, consist of a gas phase dispersed inside a liquid phase, where the

liquid fraction is generally less than the gas fraction [1, 4]. Using nothing more

sophisticated than water and soap (a detergent or any other surfactant), bubbles

can be easily created. The mechanisms to make bubbles including mixing or ag-

itation, release of a dissolved gas (due to a change in temperature, pressure, or

as an effect of a catalyst), and blowing gas through a liquid [5]. Nonetheless, it

might be complicated to make them exactly with some desired size characteris-

tics, and even more, to keep them in that state for long periods of time [6,7]. The

lifetime of bubbles depends on factors such as surfactant concentration, liquid

drainage rate, film thinning processes (that lead to film rupture), gas diffusion

(leading to coarsening), surface tension distribution, external stresses, capillary

1



Chapter 1. Introduction

pressure, amongst others, as will be discussed later [5, 7]. Bubbles are by their

nature unstable entities, they shrink, stretch or burst easily [5, 8, 9].

What makes it possible to enclose gas within a thin liquid interface is the presence

of surfactants. Surfactants (surface-active agents) are amphiphilic molecules,

i.e. they are comprised of both a hydrophobic and a hydrophilic group in the

same molecule [10]. In fluids, when surfactants are in low concentrations they

diffuse predominantly onto the fluid surface, decreasing the minimum free energy

necessary to create that interface [11]. Generally, the hydrophilic group of these

molecules is directed to the (aqueous) liquid phase, while the hydrophobic group

is directed to the gas. In bubble films, surfactants maintain structural stability

by exerting a disjoining pressure at both sides of the gas-liquid interface [10],

which opposes both the capillary pressure (that sucks liquid out of the films)

and attractive van der Waals forces [12]. Surfactants give stability to bubbles,

and therefore, pure liquids cannot generate bubbles so easily. In fact, when

a gas is injected below the surface of a pure liquid, it dissipates to the air as

soon as it reaches the surface [10]. If the liquid contains surfactant however,

as the gas-liquid interface is perturbed by the injected mass of gas (bubble), it

expands exhibiting elasticity, where as a result of the Gibbs-Marangoni effect,

the surfactant concentration in that expanded interface (now the bubble film)

reaches a new equilibrium state locally [11, 13]. Surfactants therefore move and

redistribute inside and along the bubble films as an effect of surface tension

gradients [14, 15]. The majority of surfactants are organic in character, and a

wide range of them can be found in nature, hence the reason why bubbles can

be seen in various media, e.g. rivers, sea water, produced by animals and/or

plants [10]. The capacity of a liquid to generate bubbles can be seen as a direct

measure of how much organic load this contains [13]. In these sorts of situations,

bubbles within liquid are regularly grouped together in bulk, i.e. many of them
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packed together, which is called foam or more specifically liquid-foam [9].

1.1 Physics of liquid-foam

The study of liquid-foam had already drawn the attention of scientists by the

19th century. Therefore, by late that century, several studies on liquid-foam and

its applications had already been carried out [1]. However, many of these works

were focused more on empirical observation rather than theoretical analysis: a

more systematic approach however was pioneered by the physicist Joseph A.

F. Plateau in 1876 [1]. In his research Plateau studied the inner geometry of

bubbles, finding a very complex system [1]. Plateau discovered that a static

soap film consists of an unbroken smooth surface that always seeks to reach a

minimum energy state, which corresponds to the minimum surface area necessary

to balance the pressure difference across the film with the film’s curvature. Film

curvature when coupled to the effect of the surface tension produces a force and

this is what then balances the force associated with pressure difference. This

was later corroborated by Taylor [16,17], who proved that the so-called Plateau’s

rules for foam structure are a consequence of the minimization of the interfacial

energy [1, 9, 18]. In addition, Plateau found that the (mean) curvature at any

location on a static bubble film surface is uniform. Moreover, when bubbles with

a uniform surfactant concentration are attached together, i.e. in a foam system,

soap films meet three by three at the edges, subtending an angle of 120◦ (or π/3).

These edges are called Plateau borders, and they also meet at a four fold vertex

subtending an angle of 109.47◦ [5]. Based on Plateau’s studies, many research

articles have emerged through the years, greatly expanding the knowledge about

the configuration of liquid-foam [2, 5, 15, 19–24].
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1.1.1 Liquid-foam structures

As was mentioned before, liquid foams consist of a gas dispersion contained in

a liquid and surfactant solution. Depending on how bubbles are created, the

foam structure can be organized in a wide range of length scales, the typical

size of bubbles being in a range of 10µm–1 cm [9]. Foams comprised of bubbles

of different sizes are known as polydisperse systems, while in a monodisperse

system the bubbles sizes are equal [25]. Depending on the liquid fraction Fl

and the bubble size distribution of the foam, the system can exhibit different

structures. In the dry limit, Fl ≪ 1, the bubbles take a polyhedral cell form with

curved faces, satisfying Plateau’s rules [25]. In contrast for larger Fl, bigger than

the close packing limit (Fl ≈ 0.36 for monodisperse foams and Fl ≈ 0.26 typically

for polydisperse foams [18]), the system is found to behave as a bubbly liquid.

For Fl less than the close packed limit but not ≪ 1, the foams are called wet

foams [25], and bubbles tend to be only slightly perturbed from spherical. Close

to the dry limit however, the equilibrium structure of the foams is described by

Plateau’s rules as we have said [5, 18, 25].

1.1.2 Instabilities of liquid-foam

The instability of liquid-foam is a consequence of the large interfacial energy

associated with dispersing gas in liquid, which is proportional to the surface

area [5, 9, 25]: adding surfactant reduces the surface energy per unit of area, but

energy still remains large provided the area is large. Complex dynamics result

from foams seeking to reduce their interfacial energy [25]. In the absence of

an external stress, the liquid-foam structure evolves over time as a consequence

of a number of coupled processes (also known as ageing processes) [18]. First,

since Plateau borders (edges where films meet) consist of micro channels, liquid

can flow through the channel network from the top to the bottom as an effect
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of gravity, a process which is known as foam drainage [5, 26, 27]. This process

makes the foam dry at the top of the structure and wet at the bottom. As the

liquid within the foam flows down, surfactant can potentially be carried away

with it, increasing the attractive forces between each side of the films [5, 28].

This can change the film stability. Therefore, if the surfactant concentration is

not sufficient to maintain the film stability, foam films between bubbles will break

generating bigger bubbles [18]. This is known as foam coalescence or film rupture.

Another factor affecting the bubble lifetime is the capillary pressure. Generally

the capillary pressure is quantified in terms of the curvature between the liquid

and the gas phase at the Plateau borders [5]. Specifically, the capillary pressure

corresponds to the pressure difference between the gas and the liquid phase there.

Low capillary pressures favour stability, while higher capillary pressures (which

tend to suck liquid from films to Plateau borders) make the system susceptible

to film rupture for any small perturbation [29]. The last ageing process is known

as (diffusive) coarsening, which is governed by the von Neumann’s law [30], and

takes place when the gas diffuses between the bubbles owing to the pressure

difference across the films. This pressure is known as Laplace pressure and can

be expressed as a ratio of the surface tension σ to the mean curvature radius

r as ∆P = 2σ/r [1]. These processes lead to periodic bubble rearrangements,

which help to relax the interfacial energy. The rate at which these processes occur

decreases as the foam ages [25].

1.1.3 Moving away from the static structure

Static foams manage to find an equilibrium state in which structures are deter-

mined via total area minimization, following Plateau’s laws. These constraints

on film meeting angles can be considered to apply even when the foam is set into

motion [24]. Even though liquid foams are comprised of two fluids (generally

Newtonian), their behaviour is non-Newtonian, exhibiting different mechanical
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properties depending on different external applied forces [5, 19, 31–33]. For low

applied stress the foam behaves like a solid, in contrast, for high applied stress be-

yond the yield stress, the foam behaves like a viscous non-Newtonian fluid [9,32].

The yield stress point varies as a function of the liquid fraction Fl, being bigger

in the dry limit (Fl ≪ 1) and lower for wet foams. As the stress rises towards

the yield stress point, the foam behaves like a plastic solid. As foam moves, the

individual gas-liquid interfaces or films may either increase their size or else de-

crease their size until disappearing, leading to rearrangements of the structure,

also called topological transformations [5,19,32]. Rheological complexity thereby

results as a consequence of the evolution of the microstructure of the foam [21].

When the films deform, surface energy increases, producing stress. In order to

compute the films’ energy and the stress they produce, it is necessary to know

in detail the films’ positions, areas, orientations, and shapes. In fully three-

dimensional foam models, it is computationally expensive to determine the films’

energy and stress, owing to the very considerable topological and geometric com-

plexity of the system [20]. Nevertheless, this complexity can be reduced by study-

ing the foam system as a collection of interconnected foam monolayers confined

between two glass plates with a small separation (known as a Hele-Shaw cell),

which gives a quasi-two-dimensional foam structure. This is addressed in detail

in section 2.2.

1.1.4 Topological transformations

A topological transformation can be described as a bubble neighbour exchange,

and can occur in principle via various distinct mechanisms [32]. If a bubble film

breaks as a consequence of the ageing process (as described above), the struc-

ture will experience stress i.e. the equilibrium structure will be perturbed, where

a dissipative process typically associated with the viscous forces will start to
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relax the structure [19]. The system will seek to reach a new equilibrium con-

figuration, minimizing the total surface energy, measured as the total interfacial

surface area [5]. This process can lead in turn to topological changes [34]. On

the other hand, if an external constant force is applied to the system, the foam

structure will deform, while at the same time, viscous forces will try to reach

a new equilibrium state (a minimum energy state) [19]. If the applied force is

low enough, the foam will be essentially always at local mechanical equilibrium

without topological change [19], even though deformed relative to the stress free

state. In contrast, when the force is bigger, topological transformations occur.

Moreover when the flow rate that it induces is bigger than the relaxation rate,

films will be in constant deformation [19, 33]. As the deformation rate increases,

the system energy will keep increasing [24]. In this case, different bubbles will

move at different speeds, relative to their container, and in some cases even in

different directions. In both situations (i.e. slow deformation and fast deforma-

tion) some films will shrink while others will stretch, although the amount of

shrinking/stretching tends to be greater for larger forces and faster deformations.

In the case where films shrink, eventually they can go to zero area. A collision of

films and/or Plateau borders and/or vertices then takes place, which then imme-

diately disassociate into the surrounding bubbles, in concordance with Plateau’s

rules [35]. A new film and/or new Plateau border can also be created in place,

but now connecting different bubbles. In the various cases described above there-

fore, the foam structure undergoes topological transformations (bubble neighbour

exchanges), which help to relax the system energy [5, 19].

1.2 Liquid-foam applications

Foam’s mechanical properties such as high effective viscosity, low mobility, and

high elasticity, which depend on factors like liquid fraction, bubble size distribu-
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tion, bubble stability, and liquid composition, make them ideal working fluids for

a wide range of industrial applications such as for example: mining/minerals pro-

cessing, food and cosmetics, production of glass, foam fractionation, firefighting,

as well as pharmaceutical and medical processes [3, 3, 5, 11, 32, 36–38]. In general

these applications can be found in separation processes, stabilisation processes,

control and active transport of microscale elements, as a contrast agent and also

as a driving fluid. Various of these are reviewed below. Specifically, and what is

studied in the present thesis, are applications which involve foam flow through

confined channels (e.g. in a porous media). We will come back to this point later.

Foam fractionation, is a separation process which uses bubbles to remove a pollu-

tant (organic waste), particles or material from a liquid solution. In this process,

gas is typically injected from the bottom of the liquid’s container. Since the

liquid contains surfactant, this helps to stabilize the gas-liquid interface, gener-

ating bubbles [39]. As bubbles flow up due to buoyancy force (density difference

between liquid and gas), particles and/or surface active species adhere on their

surfaces [39–41]. The type of surfactant and gas used in each case depends on

the nature of the process [40]. In the mining industry for example, a related pro-

cess known as froth flotation operates on the same principle. Bubbles are used

to extract mineral particles of interest from a liquid slurry. The minerals to be

recovered are ultimately collected from the bubbles [42–45].

Foams are also used in the production of materials like glasses, metals, concrete

and paper-making [3, 46–49]. In these applications, the foam is used to control

the process’ stability, and in some cases also to confer mechanical properties to

materials [3]. In such applications, often the strength of a solid foam depends

on the structure of a liquid-foam precursor, and the resulting solid foam is also

lightweight being much less dense than the bulk liquid in the precursor. On the
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other hand, foam can also be used as a firefighting agent, where bubbles are made

of a non-flammable gas and liquid. The foam then displaces the air, which helps

to suffocate the fire [50, 51]. Other more indirect applications of foams can be

found in architecture/construction, where the bubbles’ geometry can be used as

a template for designing structures [52, 53].

Foam applications are also present in the food industry, as, for example, in bak-

ing and/or dessert making (breads, whipped creams, and mousses), and also in

the production of drinks such as beers, sodas, wines, and champagne, amongst

others [3, 54, 55]. In the food industry in particular, aerated mixtures comprised

of dispersed bubbles in a continuous liquid solution (or solid medium), help to

reduce the cost of the final product by reducing the amount of required solution

per volume (relative to the pure liquid or solid phase). By stabilizing the bubbles

within this media, the product structure can be stabilized giving control over

desirable characteristics like texture, crustiness, and caloric density [56].

On the other hand, foam can also be used in a process to produce pharmaceuti-

cal powders from a solution in a systematic and controlled fashion [57–59]. This

process is based on bursting bubbles. When bubbles burst, small droplets are

created. Then, they are immediately dried out. This allows the creation of nano-

particulates or powders [27].

Modelling foam flow through confined channels with complex geometry is rel-

evant for processes such as medical testing [32], and also in the treatment of

varicose veins [60]. Moreover, in medical procedures, properties like the low den-

sity and the low solubility of microbubbles, that depend on the bubble coatings

(phospholipid, surfactants, or synthetic polymer), make them effective for specific

delivery of drug through the blood stream, treatment of thrombosis, pulmonary
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embolism, and even to improve the quality of ultrasonic images since sound waves

travel more slowly through the air than through tissues or liquids [61, 62].

Specifically, applications combining liquid foams with microfluidics occur in pro-

cesses like enhanced oil recovery (EOR) [63, 64] and soil remediation [63], are

those of primary interest in this thesis. In these applications the foam is used

as a driving fluid to sweep a specific material, colloid pollutant or particles from

porous media [65–67]. Using foam allows a more uniform sweep through the

porous medium since foams are less sensitive to permeability heterogeneities than

a Newtonian fluid would be [4]. Moreover, using foam in applications like these

helps to reduce the quantity of the working fluid required, in comparison with a

single-phase fluid [4]. In particular in foam EOR or, as it is often called, foam

improved oil recovery (foam IOR) processes, as the foam displaces, perhaps only

around 10% of it consists of liquid solution, significantly reducing the need for

surfactants in the displacement process [65]. This liquid fraction (Fl) of the foams

has an important role in the structure of foams [18] and also in the relation be-

tween structure and driving velocity [23], as will be discussed later. In any of

the above mentioned applications, how foam moves and rearranges inside porous

media, is a matter of great interest since the bubble-scale processes may affect

the global foam behaviour.

1.3 Overview and scope

Up to here, the basic concepts about the physics and dynamics of liquid foams

and their various applications have been reviewed. In what follows however, this

work is to be focused on reviewing methods and mathematical models used to

capture the foam dynamics as it flows through different systems, considering a

number of very different length scales. This is presented in Chapter 2. Primarily,
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models used to predict how foam flows through a porous media will be addressed,

particularly those related with the foam improved oil recovery process (or foam

IOR). In this context, previous works related to the so-called pressure-driven

growth model for foam IOR are studied, specifically those which form the ba-

sis for the new results of this thesis, presented in chapters 3 and 4. These new

results themselves will be also discussed, comparing with prior work and high-

lighting their importance, as pertinent. Works in chapters 3 and 4 correspond to

research papers already published in the literature, which are presented here as

part of this thesis. The pressure-driven growth model is used in these works to

capture how a propagating foam front moves in the foam IOR process.

On the other hand, the theory, methods and models used to capture the dynamics

on the bubble-scale of a finite number of bubbles as they flow through a confined

geometry are also studied here. Specifically, works based on the so-called viscous

froth model are reviewed in detail in Chapter 2. Novel results obtained by ap-

plying this model are therefore also addressed, emphasising their importance to

the field as relevant. These results are presented in Chapter 5, which corresponds

to a research manuscript already submitted for publication, but not yet published.

Therefore, based on what is discussed above, Chapter 2 is divided into two parts:

macroscale models, and bubble-scale models. An important connection between

these two types of models is that bubble-scale dynamics can be used as a source

of information for the behaviour of macroscale models, e.g. by furnishing infor-

mation about foam rheology and thereby foam mobility. Moreover despite the

pressure-driven growth model (on the porous medium scale) and viscous froth

model (on the individual bubble-scale) applying on very different physical length

scales, there turns out to be a mathematical analogy between them as we will dis-

cuss.
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In summary, the main novel contribution of this thesis to literature relies on

the results in three research papers and/or manuscripts, which are available in

chapters 3, 4 and 5. The scope and key background underpinning each of these

chapters will be mentioned throughout Chapter 2, where relevant. Overall con-

clusions for the thesis are captured in Chapter 6. Possibilities for future work as

discussed in Chapter 7
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Literature Review

This chapter is divided into two parts. In the first part, previous research out-

comes that are ultimately related with the work in chapters 3 and 4 are analysed,

where the theory, methods, and models used to predict foam motion in porous

media are reviewed, particularly those related with foam IOR process. A number

of these works use the pressure-driven growth model to predict how the foam

propagates inside an oil reservoir, in the context of foam IOR. The work in chap-

ters 3 and 4 expands the understanding of this process by taking two different

approaches: using an Eulerian model in Chapter 3 (solved numerically), and a

Lagrangian model in Chapter 4 (solved via an analytical similarity solution ap-

proach).

The second part of this chapter is focused on models and works based on pre-

dicting foam dynamics on the bubble-scale, as the bubbles flow within different

confined geometries. Therefore, mathematical models used to predict how a finite

number of bubbles move inside confined geometries will be reviewed. Specifically,

the models discussed in most detail are those related with the work in Chapter

5. This work is based on the viscous froth model, which incorporates information

not just about the amount a bubble structure deforms, but also the rate at which
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deformation is applied. In Chapter 5, a simple three-bubble system is studied as

a model for a more complex foam. Steady state (but out of equilibrium) config-

urations are obtained as a function of how rapidly the system is driven along a

confining channel.

2.1 Models to capture foam dynamics in porous

media

Foams’ comparatively low mobilities make them excellent control agents in var-

ious industrial applications involving fluid flow through porous media [64, 68].

Since generally foammobility is orders of magnitude lower than other fluids within

the media, by controlling the foam flow it is possible to govern the entire sys-

tem dynamics [69, 70]. Foam applications in porous media include processes like

foam IOR, remediation of contaminated aquifers, clean up of polluted soils, and

subsurface sequestration of CO2 [12, 63, 66, 67, 71–74]. The rheology of foams, as

they flow through these media, can be affected by factors such as the medium

permeability, pore size distribution within the soil, liquid and gas relative perme-

abilities and viscosities, drag forces on the foam, type of surfactant, brine salinity,

temperature, mechanical properties of the fluid to be displaced or recovered, gas

and liquid injection method, injection pressure, capillary pressures, and ageing

processes, such as those mentioned in section 1.1.2 [12, 69, 75, 76]. All these vari-

ous factors can affect the mechanisms in which bubbles are created or destroyed,

and therefore characterise the foam texture, which at the same time defines foam

mobility inside the porous media [77]. Specifically the foam texture is measured

as the number of films (or “lamellae”) per unit of gas volume [12, 77] and the

finer the texture, the less mobile the foam becomes. Several models developed

to predict foam mobility can be found in literature, where the foam rheology is

predicted as a function of the aforementioned factors governing texture, either
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directly (i.e. explicitly involving the texture) and/or indirectly (i.e. implicitly, in-

volving just the factors that govern texture) [12, 78, 79]. How much each one of

the aforementioned factors contributes to the modelling overall, and under which

conditions each factor is considered depends on each specific model type [12].

However, these models all recognize that the foam mobility as a key parameter

within porous media flows [12]. Foam mobility is reflected within the gas relative

permeability and/or gas effective viscosity, both of which are also mainly affected

by the foam texture [76]. Foam can considerably restrict gas mobility, while its

impact on the liquid phase in a porous medium (aqueous surfactant solution in

the case of foam IOR) is almost negligible [12, 70, 80]. In the absence of other

fluids, such as oil (which can destabilise foam), the presence of foam can cause

the mobility of gas to be very severely reduced indeed.

There are two well recognised classes of models for foam in porous media namely

local-equilibrium models, and population-balance models [12]. A key variable in

these models is, as one might expect, the foam texture (or the mobility implicitly

deriving from it), where the main difference between these two foam-modelling

methods relies on the mechanism in which the foam texture is determined [12].

Local-equilibrium models do not necessarily explicitly relate foam texture with

as relative permeability and effective viscosity of foamed gas, instead they adjust

these variables based on physical observation, and empirical approaches [12]: thus

the texture is implicit. In population-balance models in contrast, foam texture is

determined explicitly by dynamically tracking how texture varies based on con-

servation equations for mass and for film number density [12]: processes creating

and destroying foam films need not be in local equilibrium. These conservation

equations lead to complex differential expressions which to be solved sometimes

require extensive computational time [12]. Local-equilibrium implicit models are

therefore often preferred.
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Additional models to predict foam behaviour in porous media have been proposed

in literature, such as the percolation theory which is based on pore-network anal-

ysis, and the fractional-flow theory [12, 81]. Fractional-flow theory in particular

has been widely used to predict the foam mobility and dynamics in processes such

as foam IOR [76,82]. This theory is typically based on solving a local-equilibrium

model for foam mobility coupled to a mass conservation/continuity equation for

foamed gas and/or for liquid, the resulting equation then being solved using

the method of characteristics [76, 82]. Fractional-flow theory is actually relevant

here since it turns out to underlie the pressure-driven growth model for foam

IOR [64, 83], which is one of the main models we will employ in this thesis.

2.1.1 Foam improved oil recovery

The increasing oil demand as an effect of the world’s growing energy needs [84],

the lack of new oil fields being explored or exploited, the reservoirs’ low quality

(e.g. tar sands and heavy oils) and difficult accessibility of the recently discovered

oil reservoirs (e.g. deep in the ocean bed and/or in low permeability formations),

and the number of existing reservoirs that have already reached a mature pro-

duction stage, have triggered the development of new oil extraction techniques

that can make the most of existing fields [75,85]. Oil recovery processes generally

rely on pressure gradients between the oil reservoir and the extraction well [86].

Maintaining these pressure gradients sufficiently high is essential to permit a

continuous oil recovery process, even though the pressure may be expensive to

maintain [86]. Usually, in an oil well, just a fraction of the oil is extracted using

the original internal pressure of the reservoir as a driving force [85]. This stage

is called primary recovery, and thereafter large amounts of oil remain to be re-

covered [85]. Once the reservoir’s own pressure has dropped, so that no extra

oil can be expelled, it is possible to inject other fluids into the reservoir in order
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to maintain a high reservoir pressure and/or to displace additional oil to an ex-

traction well (secondary extraction): common secondary extraction fluids include

injection of single-phase fluids like water or carbon dioxide [87]. Typically up to

a third of the oil originally present in the reservoir is recovered, after the primary

and secondary stage of extraction [85]. Following this, there are technologies,

processes or mechanisms known as tertiary or enhanced oil recovery (EOR), the

application of which can help to recover additional oil [85,86]. EOR is defined as

the set of methods that use external energy sources or materials to recover im-

mobile oils retained in porous media, which due to viscosity and capillary forces

cannot be produced by conventional means employed during primary and sec-

ondary recovery [75,88]. EOR processes can be divided into two groups, thermal

and non-thermal [75]. Thermal methods include hot water flooding or steam in-

jection, while non-thermal methods include the injection of a miscible fluid (e.g.

alcohol), a chemical compound (e.g. a polymer), an immiscible gas (e.g. carbon

dioxide or nitrogen), or a multiphase fluid (e.g. foam) [75]. Therefore, the meth-

ods and techniques used not just to maintain such high pressure gradients, but

also to improve the production efficiency more generally are known as enhanced

and/or improved oil recovery (IOR) processes [75]. IOR is a wider term that is

usually understood to encompass all of EOR plus other approaches (e.g. various

drilling strategies and/or hydraulic fracturing). In the present thesis though we

do not consider those other approaches, only the use of foam, so we use the terms

EOR and IOR interchangeably.

As mentioned above, one of the tertiary oil extraction techniques is the use of

foam. Foam improved oil recovery (or foam IOR) employ liquid-foam as a control

agent to sweep out the remaining oil within porous media [64,80]. Understanding

the foam dynamics is fundamental in order to control and improve the efficiency

of the process, however, modelling how foam propagates inside the reservoir can
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be challenging, since we cannot see what is happening underground. Fortunately

there have been numerous studies of the mechanisms by which foam is generated

within and propagates within porous media [12, 64, 69, 80, 83, 89–93], so insights

into the elements that are required within a model are available. The foam IOR

method is based on the fact that the foam (particularly finely-textured foam)

is relatively immobile compared with the mobility of other fluids within the oil

reservoir. In porous media, foam films can severely restrict the motion of gas;

the gas mobility falls due to the presence of foam films blocking the flow paths

of gas [12]. In the region in which gas has very low mobility, foam is finely-

textured [64], recalling here that mobility is a reflection of texture. Foam’s low

mobility is associated therefore with the large force required to drive the foam

films through channels in a porous medium [80]. Being less mobile, foam con-

trols the flow of any of the other reservoir fluids such as foamed gas, liquid and

surfactant solution, as well as oil. By extension, to control the overall fluid flow

through the reservoir, it is sufficient to control the flow of the foam, leading to

a more uniform displacement of fluid from the reservoir [64]. Hence, the use of

foams makes it possible to improve the process efficiency [64].

The foam is typically created inside the oil reservoir either by the co-injection of

gas and liquid which contains surfactant, or via surfactant alternating gas (SAG)

injection [94]: SAG is the process of main interest here, and consists of an al-

ternate injection of a liquid surfactant solution and a gas. Upon contacting the

surfactant, the gas generates foam, that propagates pushing the liquid (oil and

surfactant solution) to the extraction well. This is discussed in section 2.1.3. The

ratio of flow rates between the gas and the gas plus liquid determines what is

defined as foam quality [68, 69]. A high foam quality, although it decreases the

amount of surfactant liquid required may imply unstable foam, which can col-

lapse if the capillary pressure increases above a critical limiting value [68,89]. In
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contrast, low foam quality makes the foam stable and decreases the gas relative

permeability, but requires more surfactant [70,79]. The process relies on the foam

films that are formed being stable enough to survive as they propagate through

the porous medium, displacing reservoir liquids ahead of them.

In the presence of oil, stability of propagating foam films in porous media can

be significantly affected, and therefore mobility might be more complicated to

predict [76]. When foam films come into contact with the oil phase, the oil can

either destabilize the bubble films (lamellae) breaking them up, or a gas/liquid/oil

interface can be created [76], the properties of this new interface then being dif-

ferent from the original gas-liquid interface [12]. The surfactant solution used for

displacement of a gas-liquid interface might not be appropriate for a more com-

plex gas/liquid/oil interface [76], although, surfactant formulations can be found

that, for particular oil types, impart good stability to the films [95–99]. Despite

phenomena such as these which can complicate modelling, a model known as

fractional-flow theory has been widely used to determine foam mobility in porous

media (under conditions without or with oil), specifically to describe processes

like foam IOR [76, 82]. This model is discussed in what follows.

2.1.2 Fractional-flow theory

Fractional-flow theory has been widely used to predict foam mobility (and mo-

bility of fluids more generally) in porous media, and more recently to model

processes including the presence of oil, and also including SAG injection related

processes [75]. Despite the assumptions of this theory, like incompressible phases,

Newtonian mobilities, one-dimensional displacement, absence of dispersion and

absence of any gradients of capillary pressures, and that steady local-equilibrium

conditions are considered wherever the gas meets the liquid, it captures the

foam dynamics remarkably well [76]. This has been corroborated via labora-
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tory measurements, and also via comparison with more complex models, such as

population-balance models [64, 77]. Fractional-flow theory consists of solving a

governing partial differential equation for liquid (or equivalently for gas) in pores,

which is based on mass conservation laws. This governing equation establishes

that the variation of the liquid saturation over time is proportional to the varia-

tion of liquid fractional flow over space, considering the spatial domain in which

foam has displaced [100]. The variation of fractional flow (i.e. flowing liquid rel-

ative to overall flow) in the presence of foam can be determined as a function of

the gas and liquid relative permeabilities and viscosities, which can be computed

in terms of the liquid saturation [101]. It is supposed that at certain limiting

capillary pressure [102, 103], which is determined as a function of the liquid sat-

uration, the foam collapses, i.e. becomes coarsely textured [68]. Upstream then,

in the region where the liquid saturation is lower than this limiting value, even

though foam films might be present blocking certain pores, if there are sufficient

unblocked pores so that gas is able to find a flow path, then mobility is much

higher [70]. Moreover the mobility of pure liquid (i.e. primarily aqueous sur-

factant solution in foam IOR applications) is not being affected by foam in any

region [12]. Hence what restricts motion is the zone of finely-textured foam where

injected gas meets liquids [104] already in the reservoir, not drier and coarser foam

upstream, nor unfoamed reservoir liquids downstream [12, 105]. Therefore, the

total fluid mobility either side of the region where the foam is being generated is

substantially larger than that at the generation region itself, possibly by as much

as four orders of magnitude [105, 106].

In a SAG process, based on what fractional-flow theory predicts, it is possible

to consider that all the pressure drop occurs across a (typically thin) finely-

textured foam region [64] at which gas meets liquid, where the entire dynamics

is focussed [29, 64, 104, 105]. Thus the effective viscosity of the finely-textured
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foam is much larger than that of the surfactant solution (downstream) or the

coarsely-textured foam (upstream) [80]. This prevents various operational prob-

lems associated with the injection process, in comparison to single phase fluids

with lower density than the oil, such as gravity segregation (or gas override),

where the injected gas might rise to the top of the reservoir and thereby override

most of the oil, and the fingering phenomena, where the gas might predominantly

flow through high permeability strata and therefore leaving oil unrecovered [64].

The finely-textured region where gas and liquid meet can be treated as a “shock”

at which a sharp change in liquid saturation occurs. It has been proven, based

on the fractional-flow theory analysis, that the finely-textured region close to the

shock thickens over time but since the shock itself also migrates, the thickness of

the shock region remains small relative to the distance it migrates [64].

Owing to hydrostatic effects, the net pressure drop driving foam IOR is depth

dependent, although such depth dependence is not captured in a one-dimensional

fractional flow model. These depth-dependent effects are however captured in the

pressure-driven growth model (the main model to be used here) which is a two-

dimensional or even three-dimensional model that derives from one-dimensional

fractional flow [80]. How the shock at which gas meets liquid moves through the

porous medium in a two-dimensional or three-dimensional system is a matter of

great interest for applications such as foam IOR [70].

Returning to the one-dimensional case, the resulting partial differential equation

for fractional flow can be readily solved via the method of characteristics [100].

In the one-dimensional case, fractional flow curves are then derived, from which

time-distance characteristic lines are obtained for each fixed liquid saturation

(and therefore for each fixed foam mobility) [82]. The slopes of these curves also

determine the velocity at which foam at that particular saturation advances in
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the porous medium [82].

Although the information provided by the fractional-flow theory comes as we

have said from an one-dimensional analysis, it can be used to provide input on

foam mobility to macroscale models, and therefore to predict foam flow into two

or three dimensions (see section 2.1.3), such as it does for the pressure-driven

growth model, which is discussed in section 2.1.4.

2.1.3 Propagating foam front

As gas is injected in a porous medium filled with liquid and surfactant, a finely-

textured foam zone forms at the boundary where the gas meets the liquid and

surfactant solution (also called the “shock”), with coarsely-textured foam also be-

ing left behind further back [64]. By applying the fractional-flow theory discussed

above, we can track the foam propagation by considering just the region where

foam is being generated. The thickness of this region, compared to other length

scales, i.e. the depth to which the foam penetrates, and the trajectory through

which the front has moved, is relatively small, such that it can be considered

as a sharp propagation front [64]. As was proven in [64] via considering a two-

dimensional model against an axisymmetric flow from an injection well, provided

the fronts are sufficiently sharp, the shapes of the propagating foam fronts are

the same in either case, despite the volume of liquid and gas injected to achieve

the given front shape turning out to be particular to each geometry. Therefore,

for simplicity, we can consider just a two-dimensional system with the advancing

front treated as a curve of negligible thickness [80,104] (see Figure 2.1). Hence, as

Figure 2.1 shows, the front itself consists of the zone of finely-textured foam, sep-

arating (as mentioned above) coarsely-textured, collapsed foam upstream from

liquids (surfactant solution and oil) downstream. Foam in porous media is of

course a rheologically complex fluid (which amongst other things) can exhibit
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Figure 2.1: Two-dimensional representation of the liquid-foam front propagating
in an isotropic and homogeneous oil reservoir. The front is sketched as line of
negligible thickness, which corresponds to the finely-textured foam zone.

shear thinning behaviour [12, 89, 93, 106–108]. For the purposes to be consid-

ered here though, what matters is that at the front (as we have discussed in

section 2.1.2), we have a finely-textured foam which has very low mobility. Con-

sequently, the front is pushed along the reservoir by pressure, and at the same

time, is retarded by dissipation across the finely-textured foam zone, the width

of this zone gradually increasing with time (as follows from fractional-flow the-

ory) but always remaining thin relative to front displacement [80]. As the front

motion is driven by the pressure difference across it, its velocity decreases with

depth, since the injection pressure behind remains fixed, but the hydrostatic pres-

sure ahead increases with depth. Therefore, there is a maximum depth (used to

non-dimensionalise length scales in the system) to which the foam can penetrate,

i.e. the depth at which the injected gas pressure equals the hydrostatic pressure

(see Figure 2.1) [104]. This maximum depth scales proportionally to gas injec-

tion pressure and inversely with liquid-gas density difference and gravitational

acceleration.
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2.1.4 Pressure-driven growth model

Pressure-driven growth is a model derived ultimately from Darcy’s law [64], de-

veloped to capture the foam propagation front in foam IOR, specifically in SAG

injection related processes. Darcy’s law, as is well known [109, 110], involves a

proportionality between flow through a porous medium and the imposed pressure

gradient, the coefficient of proportionality being then the total mobility of the

fluids that are flowing. Pressure-driven growth [80] is however a special case of

Darcy’s law in which all the driving pressure drop is lost across a thin, finely-

textured foam region adjacent to a shock at which foamed gas meets liquid. The

mobility within and also the (small but finite) thickness of this finely-textured re-

gion follow from one-dimensional fractional-flow theory (see section 2.1.2). Indeed

the pressure-driven model was first deduced in [64], based on a fractional-flow the-

ory analysis, and it was used to determine the evolving position of a foam front

in a porous medium in an idealized two-dimensional system. As already alluded

to in section 2.1.3, the generalisation of pressure-driven growth to axisymmet-

ric three-dimensional systems turns out to be relatively straightforward (easier to

handle certainly than a three-dimensional generalisation of Darcy’s law would be)

so is not considered any further here, although readers can consult [64] for details.

Thus the development from [80], specifically in two dimensions, is recalled below,

where the following assumptions are considered.

• The porous medium (oil reservoir) is geologically homogeneous and isotropic.

• Just gas and liquid (water plus surfactant) phases are considered to flow, in

an effort to understand in the first instance how foam propagates through

the medium and which parts of the medium it reaches over time. The resid-

ual oil trapped in the porous medium is not explicitly considered, although

the model could be extended to included it.

• Surfactant concentration in the pure liquid zone (downstream of any gas)
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is homogeneous.

• The mobility on both sides (coarsely-textured foam upstream and liquid

filled region downstream) of the low-mobility region (finely-textured foam),

is orders of magnitude higher than at the shock itself, so is treated as being

arbitrarily large.

• The thickness of the finely-textured foam zone is much smaller than the

trajectory through which the front (or shock) has moved. Therefore, the

zone of finely-textured foam can be considered to be a curve (an idealised

representation of an area of comparatively small thickness), which propa-

gates through the petroleum reservoir. Any singularities that the model

might predict in the shape of the front correspond physically to the front

reorienting itself on a length scale comparable with the thickness of the

finely-textured zone.

• The finely-textured zone is pushed along by a net driving pressure: At the

top boundary of the domain the net driving pressure is maximal and at the

lower boundary the net driving pressure is zero.

Therefore, based on these assumptions the finely-textured foam zone can be then

represented as a curve of negligible thickness, and it propagates through the

reservoir over time. This curve or propagating foam front, can be modelled by

following the derivation of the model presented in [64] and [70] and realized

in [80]. From Darcy’s law, the superficial velocity of a gas phase in porous media

is expressed as

us = −k krg∇P

µg

, (2.1)

where k corresponds to the medium’s permeability, krg and µg to the gas relative

permeability and gas viscosity, and ∇P to the driving pressure gradient in the

finely-textured foam zone (or low-mobility zone). The interstitial velocity can
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then be obtained as

ui = − k λrg∇P

(1 − Sw)ϕ
, (2.2)

where λrg = krg/µg corresponds to the relative mobility of the gas in the low-

mobility zone, Sw to the liquid saturation, and ϕ to the porosity of the medium.

The interstitial velocity then gives the rate of change with respect to time of the

location (in dimensional variables) of a material point xD in the low-mobility

zone, i.e. it captures the rate at which the finely-textured foam zone advances in

the porous media. By defining ∇P as −(∆PD/τ)n, with ∆PD as the pressure

difference (in dimensional variables) across the low mobility zone, with τ as the

thickness of the low-mobility zone, and with n as the unit normal direction of

motion of xD (downstream), it is possible to deduce that

dxD

dtD
=

k λrg∆PD

(1− Sw)ϕτ
n, (2.3)

where tD denotes the dimensional time. Based on the fractional-flow theory [64],

it was determined that the thickness of the low-mobility zone can be determined

as τ = ǫ sD, with ǫ being assumed constant such that ǫ ≪ 1, and sD as the

total distance that a local material point on the foam front has displaced. In

addition, considering that the pressure difference across the low-mobility zone

can be determined as the injected driving pressure Pdriv (assumed to be uniform

in the coarsely textured foam zone) minus the hydrostatic pressure Phyd in the

pure liquid zone (so that ∆PD = Pdriv −Phyd), it is possible to deduce that there

must be a maximum depth to which foam can penetrate. This corresponds to

the point where Pdriv = Phyd. Here Phyd is computed as Phyd = ρ g(dmax − yD),

where ρ corresponds to the density difference between the liquid and gas, g to

the magnitude of acceleration due to gravity, dmax to the maximum depth to

which the foam penetrates, and yD to the vertical distance measured from this

point, such that yD = 0 corresponds to the maximum depth, and yD = dmax to
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the surface. Since at yD = 0 the hydrostatic pressure Phyd equals the driving

pressure Pdriv, it can be deduced that dmax = Pdriv/(ρ g). On the other hand, the

time scale of the process turns out to be proportional to the following quantities:

gas saturation at the front, porosity of the medium, maximum penetration depth

squared, and the (assumed roughly constant, based on fractional-flow theory)

ratio between front thickness and front displacement, and inversely proportional

to medium permeability, relative mobility of foamed gas, and pressure used to

drive the foam [64, 80]. Then, time can be scaled as

tscale =
(1− Sw)ϕd2maxǫ

kλrg Pdriv
. (2.4)

From equation (2.3), the dimensionless form of the pressure-driven growth model,

developed in [64, 70, 80, 104] and used in this work, can be derived by rescaling

lengths and thickness by dmax, pressures by Pdriv, and time by equation (2.4),

obtaining that
dx

dt
=

y

s
n, (2.5)

where x corresponds to the dimensionless x = (x, y) location of a material point

on the front in Cartesian coordinates (x and y represent the horizontal and vertical

coordinates respectively), t to the dimensionless time, and s corresponds to the

dimensionless distance travelled by a front’s material points, and n is the local

normal direction, which is measured as an angle α from the horizontal (see Figure

2.2). Here y ∈ [0, 1] represents the distance above the maximum depth (which

also equals dimensionless pressure difference). Thus, y = 1 at the top of the

reservoir, and y = 0 at the maximum depth to which foam penetrates. Note

that equation (2.5) is just a statement of Darcy’s law, recognising that the lowest

mobility in the system is at the finely-textured foam front, which is where the

bulk of the Darcy pressure drop occurs, making it no longer necessary to solve

a conventional two-phase flow Darcy model [64]. The front orientation angle α,
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Figure 2.2: Definition sketch: Foam front propagation across a vertical domain
y ∈ [0, 1] and a horizontal domain x ∈ [0,∞). Variables are non-dimensionalised
as established in [64,80,111]. Here S (which will be considered further in section
4.3.1) is the distance along the front measured downward, and s corresponds to
the distance travelled by material points. At each point the front evolves in the
local normal direction n, which is measured as an angle α from the horizontal.
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defined to be between the front normal and a horizontal line, can be obtained in

terms of

tan(α) =
dx

dy
, (2.6)

or equivalently α = arctan(dx/dy). Here the derivative with respect to time

t is considered by following a material point, whereas the derivative with re-

spect y denotes a spatial derivative along the foam front from material point to

material point [104]. If the normal n is expressed in terms of the angle α as

n = (cos(α),−sin(α)), then the model becomes

dx

dt
=

y

s
cos(α), (2.7)

dy

dt
= −y

s
sin(α). (2.8)

On the other hand, by following the path of a fixed material point on the foam

front, it is possible to deduce that the dimensionless evolution of such a point,

i.e. the length of the trajectory s, evolves according to

ds

dt
=

√

(dx

dt

)2

+
(dy

dt

)2

. (2.9)

Inserting the model equations (2.7) and (2.8) into (2.9) gives

ds

dt
=

y

s
. (2.10)

The Lagrangian model for the foam-liquid front propagation consists of equations

(2.5) and (2.10). Two boundary conditions are then considered. (i) At y = 1 the

front location over time is found to be at
√
2 t (in dimensionless variables), which

corresponds to the leading edge or maximum horizontal displacement, at least in

the homogeneous and isotropic case [64]. (ii) At y = 1 the front meets the top of
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the reservoir perpendicularly [64]. In homogeneous systems, these two conditions

turn out to be equivalent. In strongly heterogeneous systems this equivalence

does not always apply, which is discussed later (see also [112] for details). An

initial condition meanwhile establishes that the front location at time t = 0 cor-

responds to a vertical line along the gas injection well (see Figure 2.2). A typical

value of this time scale has been estimated as around 11–14 days [91,113]. How-

ever the important point for the current work is that this time scale is defined

such that, at dimensionless time t = 1/2, the front has displaced horizontally by

an amount equal to its maximum penetration depth [80]. As time proceeds, far

above this maximum depth however, the pressure-driven growth model turns out

to predict a concave corner or kink when seen from downstream [104] (see Figure

2.2), which starts off right at the top and migrates downward. This kink divides

the propagating front vertically in an upper region and a lower region (see Figure

2.2). Determining how this concave corner moves, is one of the issues we address

in this thesis. Further details are given in sections 2.1.4.1 and 2.1.4.2.

Although physically and mathematically the pressure-driven growth model is rel-

atively easy to formulate (see equations (2.5) and (2.10)), it has shown a very

rich and complex dynamics in cases where it has been applied to different porous

media conditions. This complex dynamics arises since the equation governing

the model (see equation (2.5)) turns out to be a hyperbolic partial differential

equation [80]; in this hyperbolic equation, the speed of material points over time

is directly proportional to vertical position y and inversely proportional to dis-

tance travelled s, where the direction of motion is given by the local normal n

which changes over time and also along the front. This system leads to non-

smooth solutions [80, 114]: singularities that emerge from the model have been

determined both numerically, and via obtaining asymptotic analytical solutions.

These singularities have been widely studied via both Eulerian and Lagrangian
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formulations of the model [64, 70, 104]. Eulerian and Lagrangian versions of the

model are further investigated in chapters 3 and 4, respectively. The model has

been employed to explore the foam front motion in different scenarios which are

discussed below.

2.1.4.1 Analysis and predictions of the model

Equation (2.5) and (2.10) can be studied via both, numerical, and analytical

methods. Numerical solutions were first presented in [64], and then were im-

proved in [80]. Analytical solutions were first obtained in [70], which subsequently

were improved in [80]. For the purpose of Lagrangian computation, the propa-

gation front since time t = 0 can be discretized into a finite number of material

points, the motion of which we can readily track, and the front shape itself at any

given time can be reconstructed by following a collection of such points. Then

by applying a discretized version of equations (2.5) and (2.10) it is possible to

track the motion of each individual point, and therefore to have a representa-

tion of the front over time [80]. However, as the front propagates, numerical

artifacts may appear, specifically owing to the nature of model: the hyperbolic

behaviour admits non-smooth solutions. These manifest as discontinuities such

as concave corner (or kinks) which may arise (concave in this context means

as seen from downstream) [112]. In such concave regions, points can intersect

each other generating spurious loops which destroy the solution’s stability and

artifacts then occur [80]. On the other hand, in convex regions (convex in the

sense seen from downstream) the distance between material points tends to in-

crease as the front propagates, so the points do not intersect. Numerically the

aforementioned spurious loops could be easily avoided by correcting velocities to

evolve concave regions slightly faster than surrounding convex ones [12]. Physi-

cally, concavities represent an abrupt front’s reorientation over a short distance

(much less distance than the front has propagated), but there is a physical limit
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to how sharp concave corners can be permitted to become owing to the front’s

small but finite thickness. However, concavities do not necessarily imply concave

corners. In a concavity, material points need to propagate a distance comparable

with the curvature radius of the concavity before they form a corner [114]. In

physical terms, a locally non-smooth front shape, such as this concave corner

represents, may induce fingering phenomena, or also it can be a potential indi-

cation of the gas override phenomena (in points above such a corner, gas can be

much further forward than at the corner itself), any of which can decrease the

process efficiency. Predicting the position and evolution of such corners might

be useful for designing strategies to prevent or control override [104]. For this

reason then, establishing whether the corners are an essential model feature, or

just a numerical artifact, is of interest.

To maintain a reliable and stable solution, material points in the concave cor-

ners have to be either removed (or destroyed) or be evolved differently from their

neighbours (velocity corrections can be included for them as mentioned earlier

and as proposed in [80,112]). Additionally, new material points eventually have to

be placed on the front as it stretches in convex regions. These new material points

can be injected at locations estimated via asymptotic analytical solutions near

the top of the front. This has been addressed by [80], effectively finding numer-

ical solutions up to arbitrarily long times avoiding the aforementioned spurious

loops that otherwise destroy stability, and matching solutions obtained in [64,70].

Solutions obtained out to the long-time limit demonstrated the SAG process can

prevent gas override even up to very long times. In addition, in [80] an alterna-

tive strategy to avoid concave corners (and hence avoid spurious loops) forming

altogether was also suggested, which consists of the inclusions of a diffusive (sur-

face tension force) term in the model. However diffusive strategies generally need

small time and spatial steps, making the numerical scheme expensive [80].
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As studied in [80], concave corners can also appear when the driving pressure

is abruptly increased [115], or when the surfactant concentration decreases near

the top of the foam front (also known as slumping), which affects the bubble

stability, causing film collapse, and therefore increasing the gas relative perme-

ability. In the cases like those mentioned above, the shape of the propagating

front can change and/or concave corners might appear. In the slumping scenario

a reduction in the surfactant concentration can lead to a faster moving front [91].

Slumping of surfactant is typically undesirable though, since it can potentially

trigger foam collapse at the top of the reservoir and hence gas override, which as

mentioned before might decrease the effectiveness of the process [80].

Another case leading to concave corners is that where the porous medium is com-

prised of strata with different permeabilities. This was studied in detail in [114]

and also in [113], where the pressure-driven growth model was used to represent

the foam front, considering heterogeneous (and possibly also anisotropic) porous

media. In this type of system, concave corners are likely to appear since at differ-

ent depths different permeabilities (and also different ratios between vertical and

horizontal permeability) can lead to having material points on the front moving

at distinct velocities (a more substantial velocity variation along the front than

in a pure isotropic and homogeneous case). To determine the motion of points on

the front where concave corners form, a new computation technique was devel-

oped in [114]. This method consists (as already alluded to earlier) of speeding up

points at the concave corner, effectively evolving the propagating front with its

corners correctly, and therefore avoiding the aforementioned spurious loops. This

study also proved that in anisotropic reservoirs the gravity override increases (gas

rises to the top of the reservoir), which means that more oil is left behind than

in an isotropic and homogeneous porous medium [114].
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Then in [112] a system with strong heterogeneities was studied. A strongly het-

erogeneous porous medium in this context was defined as a system with very

different permeabilities in different strata. In particular it was considered that

permeabilities vary with depth by such a large amount that in parts of the medium

this exceeds the variation with depth of net driving pressure (injection pressure

less hydrostatic pressure), so net driving pressure does not entirely govern the

flow dynamics. The top of the front does not now correspond to the maximum

horizontal distance that the front has travelled, neither must the front meet the

top boundary in a right angle. In contrast, the front exhibits local maxima of hor-

izontal displacement away from the top, located in the high permeability strata.

This study showed that sharp concave corners appeared at early times on the

front in the region where strata connect, however as time proceeded they are

driven down to the bottom of the front, where any further propagation is highly

restricted by hydrostatic pressure. Material elements of the front as they migrate

alternate between concave zones and convex zones. Thus, although material ele-

ments shrink in the concavity, before they shrink away to a corner, they manage

to migrate to the next convexity and stretch again [112]. Indeed, only smooth

concavities (not concave corners) persist out to long times [112]. This study also

proved that gravity override (i.e. gas override) should not take place in a strongly

heterogeneous system.

Returning to homogeneous systems, another interesting case (distinct from the

pressure increase discussed earlier) is a net pressure decrease, which can lead in

turn to a flow reversal (a change in the direction of the front’s motion) at depth

on the front. This happens as we have said, whenever the net driving pressure

is decreased, thereby falling below hydrostatic pressure at depth, as studied in

[83]. Flow reversal at depth such as described here, would take place [83] if the
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injection pressure is suddenly reduced, or if the pressure field downstream of

the front is increased by external factors, such as new gas injection wells away

from the original one, or indeed if a gas injection well is shut in (so forward

flow on the upper part of the foam front is necessarily balanced by reverse flow

lower down). The flow reversal case is interesting because the sense of what is

concave and convex (seen from the direction in which the front is propagating) is

likewise reversed. This means any erstwhile concave corners now become convex

corners, whilst former convex regions (which account for most of the front) become

concave. Whether or not these now concave regions actually focus down into

sharp concave corners is an open question. It is conceivable that before any

sharp corners develop, these concave regions may simply find a new depth at

which driving pressure and hydrostatic static pressure balance, and propagation

of this section of the front then stops.

2.1.4.2 Solution procedures for model

The above sections considered various physical situations in which concave corners

might appear on the foam front. In particular, as mentioned above, numerical

solutions of the pressure-driven growth model indicate that concave corners might

tend to appear even in homogeneous and isotropic porous media [104]. Accord-

ing to equation (2.5), the speed of the points closer to y = 1 is faster, hence the

sign of the ̂ component of the normal n becomes negative (as in Figure 2.2),

which implies that material points on front migrate not only sideways but also

downwards. A gap is thereby created between the topmost point originally on

the front at time t = 0 and the top of the reservoir, therefore new material points

have to be injected in order to have a front shape that joins up continuously with

material points that were originally on the front, avoiding instabilities. In Figure

2.2 the trajectory that has been followed by the new material points constituting

what is termed the upper region is drawn with dotted lines, originating at the
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top boundary, those points having been injected from the top and hence hav-

ing been part of the front, during less time than the original ones (present from

t = 0, trajectories drawn with solid line) that constitute what is termed the lower

region. Mathematically, the corner can thereby be a manifestation of an incom-

patibility when trying to match (Lagrangian) material points that have been on

the propagation front since the start of the injection process (all found in the

lower region below the corner) and material points that have been newly injected

at the top boundary since the initial time (the upper region) [104]. Therefore,

it arises due to an incompatibility between boundary and initial conditions. Lit-

erature indicates that it was unclear at first however whether (as was discussed

earlier) these corners were an essential feature of the model or merely a numeri-

cal artifact due to a poor choice of placement of the newly injected points, that

could be mitigated by an algorithm that placed them more carefully [80,104,116].

This was studied in [104] by obtaining an analytical asymptotic solution, which

focused on to determine the front shape at early times near top of the reservoir.

From [104] the existence of a concave corner was then proven, which arises as

alluded to above, owing to an incompatibility between newly injected material

points (boundary condition), and points originally on the front since time t = 0

(initial condition). It was then determined, via first-order similarity equations

valid for early times that this concave corner migrates downwards on the front at

a constant speed, whilst the amount that the front propagates ahead of and above

it remains comparatively limited, at least at early times. This then supports the

notion, as mentioned above, the front itself can then be divided vertically into

two regions, an upper region above the concave corner, and a lower region below it.

The existence of this concave corner was corroborated by solving the pressure-

driven growth model via using Eulerian coordinates (as opposed to Lagrangian

ones). This coordinate system does not require us to track the evolution of in-

36



Chapter 2. Literature Review

dividual material points, instead, it evolves an objective function over a well

specified solution domain. The Eulerian version of the model, as presented in

Chapter 3 constitutes one of the main results chapters of this thesis which is now

published as [116]. It formulates the pressure-driven growth model as a coupled

system of Hamilton-Jacobi equations [116]. Numerical solutions at different times

were then obtained in [116], where the concave corner appeared as a jump in the

front orientation angle (see Chapter 3 for details). In [116] the position of the

concave corner on the propagating front was tracked, suggesting that the veloc-

ity at which this migrates downwards decreases over time. To determine then

whether the behaviour deduced in [104] (constant downward migration velocity

of the corner), or that in [116] (velocity decreasing over time) corresponds to the

real dynamics of the concave corner, further research was carried out as described

below.

One of the issues with [104] was that the upper and lower regions of the front

were computed to different orders of accuracy (first and second-order respec-

tively), and the motion of the corner was predicted by matching these regions. It

is possible then that the predictions in [104] for the velocity of the concave corner

were an error due to having different solutions for the upper and lower region

(different order early-time analytical solutions) as studied in [104]. Alternatively

it is relevant to ask whether the velocity of the corner might have been affected

by numerical truncation error in [116], and hence differed from [104] merely for

that reason. To explore this further, a second-order (in time) analytical solution

was formulated (expanding a leading-order similarity solution up to second-order

in time [104]) as another of the main results chapters of this thesis (see Chapter

4 for details), now published as [117]. The work presented in Chapter 4 [117] is

focused on improving upon the analytical similarity solutions obtained in [104]

to predict the front shape on the upper region. These higher-order solutions
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recognize the existence of strong spatio-temporal non-uniformities in the front

dynamics as it propagates, which makes obtaining the higher-order solution par-

ticularly difficult. Despite the difficulties, the solutions effectively prove that the

velocity at which the concave corner migrates downwards on the front decreases

over time (see Chapter 4 for details).

This completes the section of the literature survey dealing with modelling on the

scale of an entire foam front. In the next section we look at models of foam on

the scale of individual bubbles.

2.2 Modelling foam flow in confined channels

Modelling liquid foams as they flow through confined geometries (e.g. in microflu-

idic devices) is of great interest in a number of processes in different industries

(see section 1.2). As discussed in section 1.2, the study of microfluidics more

generally has applications in various industries such as pharmaceuticals, med-

ical treatment, and materials formation, including metals, polymers, inorganic

crystals, and ceramics [32, 118]. Understanding foam microfluidics in particular

relies on understanding foam at the bubble-scale. In turn, capturing and pre-

dicting foam dynamics at the bubble-scale, 10µm–1 cm depending on the system

of interest, implies taking into account factors such as surfactant concentration,

surface tension (three-dimensional bubbles) or line tension (two-dimensional case

comprised of a single layer of bubbles) [119], capillary pressures, ageing pro-

cesses, bubble size distribution, gas diffusion across films, external applied forces

(or stresses), viscous drag forces, system energy (measured as total film’s surface

area), film to film interactions which are based on Laplace pressures and Plateau’s

rules, and bubble rearrangement (see section 1.1). Despite this complexity, mod-

els have been developed from underlying fluid mechanical principles leading to
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sophisticated mathematical descriptions [20, 119, 120].

Models aside, the experimental study of foam flow in confined channels is often

performed by using microfluidic devices, with a view towards the sorts of applica-

tion areas mentioned above [121]. These devices allow control of the flow of two

fluid phases, such as liquid and gas, or analogously two immiscible liquids (emul-

sions), such that a dispersion of one fluid (bubbles or droplets) can be contained

within the other [122]. The rheology of the multiphase flow is directly related to

the physical properties of each phase, and their respective flow fractions, as well

as the properties of the interface between them [123]. In microscale or bubble-

scale flows, the effect of inertial forces is much less than the viscous forces, i.e.

small Reynolds numbers are considered, which tends to makes the flow laminar

and therefore easier to characterize in detail [124, 125]. By using the gas-liquid

(or liquid-liquid) interface as a membrane it is possible to control reactions, to

refine biochemical processes, and also to control drug delivery rates [61,122,126].

In microfluidic devices, bubbles are generally created by a continuous injection

of liquid (e.g. water plus surfactant) through a tube or in between two glass

plates, and intermittent injection of gas [127, 128]. Gas phases are divided via

the so-called pinch-off method, which interrupts the gas injection at a well de-

fined rate [127]. This interruption rate, in addition to the gas and liquid flow

rates themselves determine the size of each bubble, and the liquid fraction of the

foam. By manipulating liquid fraction, foam (i.e. many bubbles packed together)

can then be changed from the dry limit towards a bubbly dispersion (see section

1.1.1). Depending on the bubble size with respect to the channel, different foam

structures can be found. These vary from the bubbly dispersion case (wet limit),

to packing in regular structures such as the Kelvin structure or Weaire-Phelan

structure [129] (in three-dimensional dry foam) or else (for a monolayer of bubbles
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in the dry limit, i.e. a two-dimensional foam) in so-called honeycomb structures

(dry limit), where bubbles are characterized by their hexagonal shape (see sec-

tion 1.1.1). Confinement however also determines shape, when the channel size

shrinks to become comparable with the bubble size.

Three-dimensional foams systems are geometrically and topologically complex

systems, even more so when they are flowing. One of the issues with studying

rapidly sheared, out-of-equilibrium three-dimensional foam systems, is that the

dissipation mechanisms are not well established [130]. The dissipative process

in three-dimensional of extracting a film from a Plateau border is different from

the somewhat more easily characterised dissipation that occurs in a quasi-two-

dimensional foam (i.e. a bubble monolayer), whereby a Plateau border at a solid

boundary typically moves over that boundary [130, 131]. Indeed the complexity

of studying dynamics of foams as they flow in confined channels can be greatly

reduced (as alluded in section 1.1.3) by considering quasi-two-dimensional chan-

nels, hence the reason we consider this limit [20]. These channels generally are

comprised of two glass plates with a small separation between them, where their

extension greatly exceeds that separation, such that gravity, foam drainage, and

surfactant concentration gradient effects across the gap between the plates can be

neglected [34]. Typically then there is just a single layer of bubbles across the gap

between the plates as we have said. This two-dimensional foam system simpli-

fies modelling, whilst at least some of the insights gained can be extrapolated to

three-dimensional systems [20]. Thus in the interests of simplicity, consideration

here is restricted to flow of two-dimensional foams. Several models to predict

foam rheology have adopted this two-dimensional approach [19–21, 32, 120], in

some cases as a preliminary to a full three-dimensional formulation. Some of the

relevant models are: the vertex model [132,133], network modelling [134], the bub-

ble model [135–137], the Potts model [138–140], and the quasi-static/equilibrium
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foam model [141]. Each model considers a well defined set of assumptions and

constructs the foam out of a well-defined set of model elements. However, not

all physically relevant properties are included in these models, such as bubble

shapes, Plateau’s rules, pressure differences across films, surface tension forces,

or indeed viscous drag forces, which might become relevant as the speed of flow

increases. Unlike some of the other models mentioned above (like the vertex

model), network based models establish the importance of considering hydrody-

namic effects, and looking at all the physically important elements, such as films,

Plateau borders, and vertices [142]. Nonetheless, there is a two-dimensional foam

model, known as the viscous froth model [19] that incorporates all these aspects:

this is the model of choice in this thesis. However, before formally introducing

the viscous froth model, it is necessary to describe in more detail how the vis-

cous drag forces arise in a flowing foam system, particularly when the foam is

two-dimensional (confined between plates). This is discussed in section 2.2.1.

2.2.1 Forces governing film dynamics in two-dimensional

channels

In two-dimensional models, although films are treated as one-dimensional curves,

this disguises the fact that they are actually two-dimensional surfaces that are

embedded in a three-dimensional space, whilst as the foam flows, the film surfaces

can be curved both along and across the glass plates (see Figure 2.3). Therefore,

as was indicated in [20], the three-dimensional physics can be included in two-

dimensional mathematical representations of models. The main forces governing

the dynamics of films are the surface tension σ, the viscous drag forces (associated

with a viscous drag coefficient that we denote C) and pressure difference across

films ∆p. Since the films have two surfaces, the film tension (2σ) is twice the

surface tension σ. In addition, as can be seen in Figure 2.3, the orientation change
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Figure 2.3: A segment ∆s ≪ L of a film moving in a confined linear channel of
width L and a separation H between the plates is considered. The film surface
has a curvature κ along the the plates, and a curvature K across them. The film
moves at a velocity v⊥ in the normal direction n. The inset shows a force balance
between the viscous drag force Cv⊥ and the surface tension.

of film tangents T and t in each direction, determines the curvatures K and κ,

respectively. In Figure 2.3 the angle θ corresponds to the deviation of the tangent

T with respect to the vertical at the top plate. Now consider a single film moving

along a channel of width L, and with a separation between glass plates equal to H

(with H ≪ L) [20]. The film itself now need no longer have any curvature along

the plates, but has a curvature K between them. Thus, the film cross-section

across the plates is an arc of a circle, and the amount G that it bulges forward

(between the plate surface and the centre plane between the plates) is given as

obtained in [20] as

G =
1

K



1−
(

1−
(

KH

2

)2
)1/2



 . (2.11)
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From equation (2.11), it is possible to deduce that when the glass plates are

viewed perpendicularly (looking down on the top or up at the bottom plate), the

film will appear to be a line of thickness G.

Figure 2.3 (see also [19] for a similar figure) shows a portion of length ∆s of

film, moving along two plates with a gap H between them. At any point along

this segment on either, the top or the bottom plate, the film meets the plates

forming a meniscus (also called wet zone or Plateau border), which can be seen

in the inset of Figure 2.3. It is in this region that the majority of the dissipation

occurs, specifically in the dissipative transition region of the meniscus (see Figure

2.4). This dissipative force can be quantified in terms of the viscous drag force

fd, which acts opposite to the direction of motion. This force can be expressed

per unit of length of the meniscus. The thickness and length along the plates of

the aforementioned transition region is expressed (relative to H) as a function

of the capillary number Ca (to be defined shortly), with an order Ca2/3 and

Ca1/3, respectively [19, 143] (see Figure 2.4). It can be determined then that

the shear stress in this region is of order µv⊥/(Ca2/3H), with µ as the dynamic

viscosity of the liquid and v⊥ as the speed of film motion in the direction of the

film normal. Then, integrating over the extent Ca1/3H along the aforementioned

transition region, it can be determined that the drag force per unit length of the

meniscus is of order µv⊥Ca−1/3. Here capillary number Ca is specifically defined

as Ca = µv⊥/σ, with σ as the surface tension force [119]. The viscous drag force

(per length of meniscus) can now be computed as

fd = −ΛσCa2/3ex, (2.12)

where ex is a unit vector in the direction of motion, and Λ corresponds to the

dimensionless pre-factor, which depends on the geometry of the channel [119].
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Figure 2.4: Sketch transition region adjacent to a plate in which the viscous drag
force is concentrated.

The viscous drag force per unit of length of the meniscus can be now expressed

per unit cross-sectional area. We assume a sufficiently small ∆s and a sufficiently

small curvature κ (see Figure 2.3) such that κ∆s ≪ 1, and then multiply drag

per unit length by the meniscus perimeter 2∆s (wet zone), and then divide by

the cross section area ∆sH . Finally, considering that Λ = 38 (as was estimated

in [119]), it is possible to obtain obtain the drag force per cross-sectional area as

−(76/H)σCa2/3ex. It is also possible to write the drag force per cross section

using a drag coefficient

Cva⊥ =
76

H
σCa2/3, (2.13)

where C corresponds to the viscous drag coefficient, and a is an exponent (ideally

2/3 but often for convenience taken to equal unity). As we will explain later on,

choosing a = 1 in a model, makes it far easier to impose constraints on bubble

areas, and use them to deduce bubble pressures. A value for the drag coeffi-

cient C can then be estimated under the following conditions. It is considered

that the liquid-foam solution is a water surfactant-glycerol mixture (5% glycerol

volume) with µ = 1.16 × 10−3 Pa · s and σ = 2.7 × 10−2Nm−1, the foam being
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generated by the same apparatus used in [19, 119], with an apparent velocity

v = 0.025m s−1 (along the transport channel), with width L = 9mm and thick-

ness H = 3mm (so the gap between the plates is indeed narrow), for which via

(2.13), C ≈ 290 kgm−2 s−1.

We emphasise that we have estimated C here based on a linear drag law a = 1,

whereas, as has been proven in [119], the viscous drag force actually has a non-

linear dependence with respect to the velocity, which means that the coefficient

a in (2.13) is strictly speaking a ≈ 2/3. The value of drag force per unit velocity

however has quite a weak velocity dependence scaling only like v
−1/3
⊥

. To this

extent, the foam dynamics can be captured with a reasonable precision taking

a = 1 as we did in the estimate of drag coefficient C above, and as has been done

already in related works using the viscous froth model [19–21, 23, 24, 31, 33]. A

linear drag law is considered moreover since, as alluded to earlier, it also simplifies

in imposing bubble area constraints and computing bubble pressures [19].

2.2.2 Foam structures in a confined system

Quasi-two-dimensional foams are confined not only across the thickness of the

bubble monolayer or plate-to-plate separation (earlier denoted H) but also across

the width of the confining channel (earlier denoted L). This confinement across

the width can govern the foam structure that is realised. Non-Newtonian be-

haviour has been exhibited by the foam structures as they flow, transitioning

between different structural configurations as flow proceeds, yielding a non-linear

relation between driving pressures and migration velocities [65,119,124]. As was

demonstrated by [4], for a given driving pressure, the velocity at which the liquid-

foam flows through a confined plates geometry (Hele-Shaw cell), depends upon

how the bubbles are arranged topologically, exhibiting discontinuities in the re-

sulting velocities at the transition between the different topological structures
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(a) (b) (c)

vvv

upper channel wall

lower channel wall

Figure 2.5: Foam flow structures moving at a velocity v through a confined linear
channel. Here the systems are viewed normal to the confining plates (so they
appear as two-dimensional systems) and what appear as upper and lower channel
walls in this two-dimensional view are actually sidewalls of the original three-
dimensional channel. In such systems, foam films are in general one-dimensional
curves, but in all these special cases they reduce to straight lines. (a) Bamboo
structure. (b) Staircase structure. (c) Double staircase structure.

such as bamboo, staircase, and double staircase structures (see Figure 2.5).

The reason that these different velocities result is because, depending upon how

the films are oriented spatially, how long they are and how fast they are moving,

they experience differing amounts of viscous drag. The velocity in each structure

in Figure 2.5 is then set by the requirement that viscous drag force must be bal-

anced by the driving pressure force. How the bubbles prefer to arrange within

the system and the drag per unit velocity they thereby experience, depends on

the ratio between bubble size and channel size (i.e. channel width). The single

staircase structure (also called hexa-one) shown in Figure 2.5(b) (and likewise

the double staircase (also called hexa-two) in Figure 2.5(c)) correspond in princi-

ple to an arbitrarily long train of bubbles moving along the channel (i.e. infinite

staircases). Hexa-three, hexa-four, etc., structures, have also been obtained in

lab scale simulations [124]. Under these circumstances, and assuming monodis-

persity, bubbles have the exact same shape no matter how far along the staircase

they are. For a channel of width L, the size of a bubble in a staircase such as

Figure 2.5(b) (measured from one of the channel walls to the farthest point of

that bubble away from that wall) is always at least L/2 [21, 33, 144]. On the

other hand, when the channel width is such that L ≤ 2
√

A/π (with A as the
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monodisperse bubble areas), a bamboo foam is more likely to be obtained [4]. In

contrast, for L ≥ 2
√

A/π bubbles might pack in a staircase or double staircase

depending on the operational condition of the microfluidic device along which

bubbles are flowing [4, 127]. Nevertheless all above mentioned structures, once

they are originally set up, and provided they consist of arbitrarily large numbers

of bubbles in a train moving along a perfectly straight channel, manage to mi-

grate without deforming. Bubbles thereby leave the channel in the same order

in which they entered it, meaning there are no bubble neighbour exchanges, or

so-called T1 topological transformations [21].

What was discovered by [32] however is that when the channel is curved, such

transformations become possible again. They entail that a film shrinks until it

becomes zero length. Two bubbles formerly in contact, then lose contact with

one another, and different bubbles contact each other in their place (see section

1.1.4). The precise order of occurrence of the T1 transformations is not known a

priori [144]. Indeed whether or not they even occur at all depends upon on how

rapidly the system is moving: a threshold velocity associated with a threshold

imposed driving pressure is needed before they occur. Therefore, key questions

of interest, in a flowing foam system, are to predict at which velocities and at

which driving pressures T1s occur, and how the bubble areas influence their

occurrence [24]. When flow is rapid, even simple cases are found to exhibit

complex dynamics [19, 33, 144, 145]. What must change between a slow moving

system (no T1s present) and a faster moving one (with T1s) is the amount of

viscous drag that is present. A model to predict the onset of T1s must therefore

incorporate viscous drag in some fashion. As has been proven in [119], the viscous

drag force has a non-linear dependence with respect to the velocity. However, in

this work we consider for simplicity a linear drag law, with a drag coefficient

denoted C: this still manages to capture the key physics, i.e. T1 transformations
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only occurring after a threshold. We also consider a comparatively dry foam in

which film lengths greatly exceed the size of the vertices at which three films

meet. Drag therefore must be assigned to film elements rather than to vertices

or to film endpoints. Assumptions like these have been used in a number of prior

studies [20, 21, 23, 24, 31, 33, 119] and they lead to a simple viscous froth model

that we discuss next.

2.2.3 Viscous froth model

The viscous froth model was originally formulated as a generalization of two

models, known as the ideal soap froth and ideal grain growth models, which can

be derived from it under particular limiting conditions [21,146]. This model was

originally conceived in the dry limit, although under certain condition can also be

used for wet foams [21], albeit the focus of the present thesis is on dry systems.

The viscous froth model combines and balances the pressure difference across the

films with the net surface tension force, which depends on the local curvature,

converting any mismatch between them into film motion, from where viscous

drag force arises [19] (see Figure 2.6). Mathematically, the viscous froth model

can be derived by considering a non-straight moving foam film confined between

two glass plates, with any segment of this film then being as introduced back in

Figure 2.3. A force balance between the pressure difference across the film ∆p

and the surface tension forces (acting along and across the plates, coupled with

film curvature) can be performed starting from Figure 2.3. Here we summarize

the derivation of the model from [19].

First, the driving force associated with pressure across a small (infinitesimal) ele-

mental area of film H ds can be computed as ∆pH ds, with ∆p as the upstream

minus the downstream pressure. Second, as shown in Figure 2.3 the delimited re-

gion may be curved along the direction of movement κ and also across the plates
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Figure 2.6: Two-dimensional force balance across a moving curved film. The
pressure difference across the film is ∆p, while C corresponds to the viscous drag
coefficient (associated with a moving meniscus) and v⊥ is the velocity in the
normal direction. Also σ corresponds to the surface tension (film tension is twice
this). The films meet its neighbours subtending an angle of 2π/3 (or 120◦).

K, and the curvatures can be computed as spatial change of the tangents t and

T, respectively. If seen from downstream, κ < 0 here if the film is concave, and

κ > 0 if convex. The surface tension force balance per length on the sides of a

film segment (of extent ∆s as drawn in Figure 2.3), when written in terms of the

tangent t, can be expressed as (2σ H t |s+∆s −2σH t |s)/∆s, which in the limit

when ∆s → 0 corresponds to 2σH dt/ds. Geometrically dt/ds = −κn, from

which it is deduced that, for an infinitesimal element ds, the net surface tension

force in the normal direction (due to curvature along the plates) is −2σκH ds.

Third, at the top and bottom plates, the surface tension forces are 2σT ·n (top)

and −2σT · n (bottom), respectively (see inset of Figure 2.3). Our convention is

that T ·n < 0 at the top and T ·n > 0 at the bottom, so these represent forces (in

the negative direction) of the meniscus on the film, the forces of the film on the

meniscus being in the positive direction and opposite and equal to these. Force

balance on the meniscus (zero net force there) then results when these tensions
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are summed with the viscous drag forces at each the plates −Cv⊥ (H/2) ds. Note

that C here corresponds to the overall drag coefficient across the plates [19], the

sum of the drag force on both plates being −Cv⊥ H ds. It follows that the tension

that the menisci place on the film balances the total drag force on the menisci,

and so in the film force balance, we can eliminate the former in favour of the latter.

The sum of all the aforementioned forces on the film must be equal to zero,

therefore it is possible to deduce that

0 = ∆pHds− 2σκHds− Cv⊥Hds, (2.14)

which divided by the surface area Hds results in

Cv⊥ = ∆p− 2σκ. (2.15)

Equation 2.15 corresponds to the dimensional form of the viscous froth model,

with a linear viscous drag law (a = 1). In this work the viscous froth model

will be used in its dimensionless form, for which v⊥ is rescaled by the velocity

2σ/(LC) ≈ 0.002m s−1, ∆p by the pressure 2σ/L ≈ 6Nm−2, the curvature κ

by 1/L ≈ 111.1m−1 and finally the time scale by L2C/(2σ) ≈ 0.43 s. Here we

have used estimates of σ, C, L and H given earlier in section 2.2.1. Now the

dimensionless viscous froth model can be written as (for compactness of notation

using the same symbols for dimensional and dimensionless variables)

v⊥ = ∆p− κ. (2.16)

The left-hand side of the equation (2.16) represents the linear viscous drag force,

and the right-hand side represents the driving forces, which can only be in balance

for a static film (in accordance with Laplace’s law). Static foams are governed
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by the ideal soap froth model ∆p = κ in dimensionless form [21, 147].

From equation (2.16) we can deduce that the pressure-driven growth model (ad-

dressed in section 2.1.4) can be recovered, under the assumption that the effect

of the curvature (or in a dimensional formulation, the surface tension-curvature

term) is negligible with respect to the pressure (κ ≪ ∆p in equation (2.16)).

Thus there is a close analogy between pressure-driven growth and the viscous

froth. Recall also (see section 2.1.4 also [80]) that incorporating a (weak) sur-

face tension curvature term within pressure-driven growth was a method (albeit

a computationally expensive one) of stabilising the mathematical behaviour of

pressure-driven growth by avoiding the formation of sharp concave corners and/or

spurious loops. One way of making the pressure-driven growth model stable, and

prevent the formation of kink or corners, is therefore to convert it to a viscous

froth with weak surface tension.

Yet another limit of interest occurs in the viscous froth model when the effect

of the pressure difference across the surface is neglected. In that case normal

velocity matches curvature and the ideal grain growth model can be obtained

[146, 148, 149]. This model was originally formulated in the context of boundary

growth in metals [149], in which the pressures across the cells are no longer

relevant. The motion of interfaces is then driven solely by local curvature. Thus

static foams, pressure-driven growth and curvature-driven growth are all special

cases of the viscous froth. Having introduced the model we now go on to consider

implications for bubble areas.

2.2.3.1 Bubble areas

The so-called ideal soap froth model only considers foam evolution as consequence

of the gas diffusion across the films owing to the pressure difference. The area of

the bubbles changes gradually, but apart from that, bubbles are in equilibrium
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satisfying Laplace’s law. This process for two-dimensional foams is governed by

the von Neumann’s law [21], which (in dimensional form) established that the

area variation over time obeys

dA

dt
=

2π

3
σ̺(η − 6), (2.17)

where η is the number of sides of the bubble, σ is the surface tension (film tension

being twice this), ̺ corresponds to the gas permeability constant (rate of transfer

of bubble area per pressure per unit film length), A is the bubble area, and t is

the time. From equation (2.17) it can be proven that the area of a bubble with six

edges η = 6 will remain constant until a topological transformation occurs and

it either gains or loses an edge. Gas diffusion can cause neighbouring bubbles to

grow or shrink, and these are what then drive topological transformations for the

ideal soap froth. The most common topological transformation is a T1 or bubble

neighbour exchange in which some bubbles gain edges and others lose them [21].

On the other hand, if the gas diffusion across the film is neglected (σ̺ → 0), such

that dA/dt → 0, there will be no growth or shrinkage for any bubble on time

scales of interest and hence no diffusively driven T1s. The only “T1” topological

transformations that then take place then arise from putting an external stress

on the foam, a point we will return to shortly.

A similar expression to that given above can be deduced for the grain growth

model, the expression then being known as the Mullins’ law [21]. This establishes

that
dA

dt
=

2π

3

σ

C (η − 6). (2.18)

Here 2σ now denotes the tension at the grain boundary, C is a drag coefficient and

η is number of sides. Both equations (2.17) and (2.18) were formulated by consid-

ering a polygon-like cells comprised of a number η of curved edges (boundaries)
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dividing a two-dimensional plane, with the boundaries meeting three by three

at vertices subtending angles of 2π/3 [149]. If η < 6 the cell loses area, and if

η > 6 the cell gains area. The area of a cell with η = 6 remains constant over time.

One of the implications of the viscous froth model is that since it generalises

the ideal soap froth model and the grain growth model (reducing to each of

these in suitable limits as mentioned earlier), it is also possible to generalize von

Neumann’s law and Mullins’ law, leading to an associated coarsening dynamic

equation [21, 146].

A general expression to compute bubble area variations over time can therefore

be deduced starting from the viscous froth model (written as given by equation

(2.15)). Therefore, considering that the area change of a bubble is equal to the

net displacement of its η surrounding films, which locally move with a normal

velocity field v⊥, it is possible to deduce that

dA

dt
=

∮

v⊥ ds =
1

C

∮

(∆p− 2σκ) ds, (2.19)

where based on the linear viscous drag law assumption (a = 1), and since

dA/dt =
∮

v⊥ds (with s being the arc length along the films), the relationship

between dA/dt and driving forces now is a simple linear equation. The analo-

gous dimensionless form of (2.19), for compactness of notation retaining the same

symbols as before, corresponds to

dA

dt
=

∮

v⊥ ds =

∮

(∆p− κ) ds. (2.20)

Although this is a coarsening dynamics equation, if the time scales of interest

are too short for any significant coarsening to occur, bubble areas are then con-

strained. The left hand side of equation (2.19) vanishes and it leaves us a linear
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system of equations for bubble pressures, the coefficients in the equations being

a function of film lengths. Interesting dynamics can still result in this limit but

the viscous froth must be subjected to some sort of external forcing. In this case

the viscous froth is no longer a model for foam coarsening, but instead a model

for foam rheology: this point will be returned to shortly.

On the other hand, from Fick’s law [21], which defines the gas permeability as

̺ = −(dA/dt)/(
∮

∆p ds), and also based on Gauss’s theorem for curvature [21],

it is possible to express equation (2.19) back in dimensional form as,

dA

dt
=

2π

3

(

σ̺

1 + C̺

)

(η − 6). (2.21)

This corresponds to a general equation for foam coarsening dynamics, where by

considering two limiting cases C̺ ≪ 1 and C̺ ≫ 1, it is possible to recover the

von Neumann’s law (for ideal soap froth) and Mullins’ law (for grain growth)

respectively.

2.2.3.2 Viscous froth as a rheological model

On time scales of interest in foam rheology, little diffusive coarsening tends to

take place so the viscous froth model can be solved assuming constant bubble

areas. The left hand side of (2.20) now vanishes, and taken over each and ev-

ery bubble, the equation reduces (with the help of Gauss’s theorem) to a linear

system that relates bubble pressures to film lengths and number of sides per

bubble. Many studies to predict foam rheology as foam flows through confined

channels have been already realized by using the viscous froth model in this

fashion [21, 32, 119, 150]. This model can capture out-of-equilibrium phenomena,

overcoming limitations with previous models which in some cases produce discon-

tinuities and jumps in film configuration as the systems undergo T1 topological
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transformations (bubbles change their neighbours as alluded to earlier) [19]. Us-

ing viscous froth, out-of-equilibrium phenomena can be modelled in systems even

comprised of a comparatively large number of bubbles [21]. It is not necessary

however to consider very large numbers of bubbles to see interesting behaviour.

Even a so-called simple lens system (i.e. a single bubble attached to one side of a

channel with a spanning film joining that bubble to the other side of the channel;

see Figure 2.7(a) later on) could exhibit interesting behaviour [19].

Although the viscous froth model was first obtained in the dry limit (which is the

limit treated in this thesis), it can also be adapted to capture wet foam dynamics.

This is what it was achieved in [23], where a simple lens system was studied, but

considering wet films. This study proved that as the liquid fraction increases (for

a fixed bubble area), in comparison with the dry limit, the migration velocity

needed to achieve T1 decreases, as an effect of the increment in the drag force. In

addition, in [23] it was proven that for the same driving velocity, films can suffer

more deformations in wet systems than in the dry limit.

The viscous froth model has also been adapted to study systems with non-uniform

surfactant concentration along the films [14]. Gradients of surfactant may appear

as the film elements deform (stretching or shrinking) under the action of the vis-

cous froth dynamics, leading to differences in surface tension along films. Based

on surface tension gradients, the Marangoni effect [15] begins to act, distributing

the surfactant along the films, affecting in turn the surface tension, and therefore

the deformation rate of the films. This is what has been studied in [15]. In [15]

the motion of a simple lens system along different channels was studied by ac-

counting for variations in the surface tension in terms of the Gibbs-Marangoni

parameter (a ratio of the rates associated with Marangoni flow and flow due to

the viscous froth dynamics). For large values of the Gibbs-Marangoni number
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(leading to large gradients of surface tension) higher driving velocities were re-

quired to drive the system to topological transformations, i.e. making the system

more stable. We do not consider the complications associated with having finite

liquid fraction and/or associated with surface tension gradients here. Instead in

Chapter 5 we look at the complications associated with increasing the number of

bubbles compared to the simple lens geometry considered by [15, 19, 23].

The viscous froth model has also shown quantitative agreement in experiments

of flow of trains of bubbles through curved channels [4, 21, 24] exhibiting T1s for

high speed flow but not low speed flow, thereby showing a very rich and complex

dynamics including in systems comprised of relatively few bubbles. In particular,

in [32], the model was applied to a train of twelve equal-sized bubbles in the

staircase structure (two bubbles across the walls as in Figure 2.5(b) and several

bubbles along the plates) but flowing now, not in a straight channel, but instead

through a 180◦ bend geometry. From [32] it was proven that for arbitrarily low

velocities (hence arbitrarily low driving pressures), there was no T1 topological

transformation. On the other hand, for a high flow rate (hence higher driving

pressure), T1 topological transformations took place in the curved bend, making

the foam structure unstable [32]. Clearly this differs from the situation of an

infinite staircase in a straight channel as described earlier.

2.2.3.3 Infinite staircase vs simple lens

The work of [32] raises the issue of whether the topological transformation ob-

served was due to the curvature of the channel or due to the staircase being

finite or a mixture of both. One way to address this question is to consider a

finite staircase in a straight channel. In [19], the viscous froth model was ap-

plied to the motion along a straight channel of a lens bubble attached to one

of the channel walls and a spanning film connecting the lens with the opposite
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simple lensspanning film T1u

(a) (b)

upper channel wall

lower channel wall

pb

v

Figure 2.7: (a) Sketch of the simple lens problem studied in [19]. (b) T1u topo-
logical transformation for a structure moving at velocity v due to a back pressure
pb imposed upon it.

channel wall: this is known as the simple lens system (see Figure 2.7(a)). It can

be viewed as a drastic truncation of the infinite staircase considered in Figure

2.5(b). From [19], it was found that the lens system exhibits stability when a

comparatively low imposed back pressures pb is placed across the structure. In

contrast, for higher applied pressure, the structure tends to undergo a topolog-

ical transformation despite the channel being entirely straight. The simple lens

topological transformation involves a very particular route by which the structure

can break up; the vertex moves upwards approaching to the upper channel wall

and the film that connects the vertex and a side wall (front film) shrinks to zero,

and subsequently the spanning film detaches from the lens bubble, leaving this

behind (see Figure 2.7(b)). This topological transformation involving a vertex

reaching the upper wall will be called in this study a T1u. This is to distinguish

it from a topological transformation involving a collision between two vertices

away from a wall, such as was observed in [32], which will be called here a T1c:

although this T1c occurred for the bubble trains in [32], it cannot occur in the

simple lens system (since there is only a single vertex away from the wall, hence

no other vertex with which to collide). Alternatively, a system comprised of a

comparatively large lens bubble (and hence a comparatively short spanning film),
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might in principle undergo a T1l, where a vertex reaches the lower channel wall,

although this was not observed to occur in the simple lens system either [19].

By slowly (i.e. quasistatically) increasing the imposed back pressure pb, the simple

lens system can be tracked through a sequence of different steady states. These

move further and further away from the original equilibrium (Figure 2.7(a)) ac-

quiring higher and higher energies (total film length is a measure of energy here),

until at some critical back pressure pb = p∗b (p∗b being a function of bubble area,

becoming larger as the lens bubble area becomes smaller [19]), the system reaches

a saddle-node bifurcation point, where a new steady solution branch (proven to

be unstable for the simple lens, in [19]) meets the original one. All film lengths

remain finite at the saddle-node bifurcation point so a T1u has not yet been

reached. At this bifurcation point, it is not possible to keep increasing the steady

state system energy by increasing the back pressure. Instead, the new steady

solution branch can be tracked by expressing it in terms of a new variable (e.g. a

turning angle measured along a film instead of back pressure). The new steady

solution branch (albeit unstable) can now be tracked quasistatically to yet higher

energies, but with pb now decreasing as energy increases. Eventually the branch

reaches an endpoint at a T1u topological transformation typically with pb < p∗b .

This second branch however, being unstable, is of limited interest physically.

More interesting is to increase pb slowly along the original solution branch up to

the saddle-node bifurcation point p∗b , and subsequently follow the unsteady state

evolution of the system beyond that point once stability is lost. This also results

in a T1u transformation, but the rate at which this is approached [19] is now

determined by the internal unsteady state dynamics of the system, irrespective

of how slowly the imposed back pressure pb is increased beyond p∗b . Conceptually

this is distinct from a situation (albeit not actually observed in [19]) in which a

T1u would be reached at some critical p∗b by following a sequence of steady state

solutions branch along an entirely stable solution branch. In that case the system
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could remain in a state with a very short film, arbitrarily close to a T1u, for an

arbitrarily long time. However, as mentioned, the simple lens was never observed

to undergo quasistatic T1u.

By analogy with the infinite staircase discussed earlier, it is conceivable that a

truncated staircase with a finite number of bubbles, at least for certain choices of

bubble sizes, might asymptote towards a fixed geometric structure in the limit of

high imposed back pressures, without undergoing any T1 (neither a T1 reached

quasistatically, nor one reached dynamically following loss of stability at a saddle-

node bifurcation). As per the infinite staircase then, this fixed geometric structure

would be inherently stable, simply migrating faster and faster as back pressure

increased. This notwithstanding, such behaviour was never observed in the case

of the simple lens, although it is admittedly a very drastic truncation of the infi-

nite staircase [19]. Therefore in order to consider the transition from topological

transformations or loss of stability to inherently stable systems, it is necessary to

explore the effect of the number of bubbles upon system behaviour. The work in

Chapter 5 takes a step towards that by considering a system comprised specifi-

cally of three bubbles of various sizes arranged in a staircase structure and flowing

along a confined channel. The three-bubble system is deemed to be a next step

up in complexity from the simple lens case and, as such, helps to bridge the gap

between the simple lens and the infinite staircase. The main focus is to find, as a

function of certain chosen bubble areas (bubble sizes), the aforementioned topo-

logical transformations and/or saddle-node bifurcation points, or in the absence

of such situations, demonstrate inherent stability instead. The above mentioned

Chapter 5, constitutes a main results chapter of the thesis as has been stated.

We note however that generalisations of the viscous froth model (over and above

what is considered in Chapter 5) are possible, and are found in literature (see

also section 2.2.3.2 and [14, 15, 23]).
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This completes the review of both the pressure-driven growth model and viscous

froth model. The main results chapters obtained using these models now follow.
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Foam-liquid front propagation in

Eulerian coordinates

This chapter is comprised of a work published in the journal Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences, by Car-

los Torres-Ulloa, Stefan Berres, and Paul Grassia. The title of the article is

“Foam-liquid front propagation in Eulerian coordinates”, which was published

on the 18th of December 2018, volume 474, number 2220, pages 20180290, DOI

https://doi.org/10.1098/rspa.2018.0290. In this work the pressure-driven

growth model is used to capture the foam-liquid front propagation by using an

Eulerian version of the model, which is based on a coupled system of Hamilton-

Jacobi equation [116]. All results presented here are reproducible via analytical

results detailed in the article and numerical algorithms and analytical methods

detailed in this chapter. Supplementary material to this work is also presented in

Appendix A. C. Torres-Ulloa carried out the simulation study under S. Berres and

P. Grassia’s supervision. Drafting of the article was shared between C. Torres-

Ulloa, S. Berres and P. Grassia.
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Summary: A mathematical model formulated as a system of Hamilton-Jacobi

equations describes implicitly the propagation of a foam-liquid front in an oil

reservoir, as the zero-level set of the solution variable. The conceptual model is

based on the “pressure-driven growth” model in Lagrangian coordinates. The

Eulerian mathematical model is solved numerically, where the marching is done

via a finite volume scheme with an upwind flux. Periodic reinitialization en-

sures a more accurate implicit representation of the front. The numerical level

set contour values are initially formed to coincide with an early-time asymptotic

analytical solution of the pressure-driven growth model. Via the simulation of

the Eulerian numerical model, numerical data are obtained from which graphi-

cal representations are generated for the location of the propagating front, the

angle that the front normal makes with respect to the horizontal, and the front

curvature, all of which are compared with the Lagrangian model predictions. By

making this comparison, it is possible to confirm the existence of a concavity in

the front shape at small times, which physically corresponds to an abrupt reori-

entation of the front over a limited length scale: much less distance than the front

has propagated.

3.1 Introduction

An idealized schematic model that explains the movement of the foam front in

the petroleum reservoir was introduced in [64] and [70] (as described in section

2.1). This model is used as a basis for work developed in [80] and herein. A brief

description of the Lagrangian formulation of the pressure-driven growth model

was already covered in sections 2.1.3 and 2.1.4, in order to understand the physics

of the model. As detailed in section 2.1.3, the front is itself corresponds to the

finely-textured foam zone, where all resistance to the flow is concentrated.
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Recently in [104] it was proposed that an Eulerian model might overcome some

of the difficulties with the computational simulation of the Lagrangian model,

which requires regridding but without any indication of where to place newly

added grid points (see details in section 2.1.4.1). This issue becomes particularly

acute when one recognizes that the pressure-driven growth model can exhibit sin-

gularities [80], which physically are regions in which the finely-textured foam front

reorients significantly over a small distance. Although we choose to employ an

Eulerian model in this work, originally pressure-driven growth was formulated as

a Lagrangian model (see details in section 2.1.4). Hence previous model formula-

tions have been Lagrangian (following front material points) [80,91,104,112,114].

In a Lagrangian scheme one can never be certain whether a singularity computed

numerically is really present in the physical model or is merely an artifact of

misplacement of newly added or newly injected Lagrangian grid points. In [104]

some preliminary Eulerian data were discussed (and indicated a small concavity

in the front shape), but [104] did not describe in detail how those data were ob-

tained. The present chapter provides the details.

A set of asymptotic analytical solutions of the Lagrangian pressure-driven growth

model developed in [80], [104] and [114] have shown that over time a gap appears

between the top boundary and material points on the front initially near the top

boundary, and that is an essential part of the physics (material points slightly

below the top boundary move downwards as well as sideways). This situation is

described in more detail in Appendix A. To address this issue, a method is sought

to describe the front evolution without the need to handle injected Lagrangian

points. It is proposed to reformulate the model in Eulerian coordinates, since

this type of formulation does not require a continuous monitoring of the material

points. Instead it fixes the physical domain and measures how the front evolves

through that domain. Eulerian simulation thereby detects jumps or kinks in the
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front orientation angle, which are difficult to identify with a Lagrangian model.

The purpose of this current chapter is to show the reformulation of the pressure-

driven growth model as an Eulerian one (see section 3.2), to present the numerical

implementation of the Eulerian model (which needs to be formulated in terms

of two dependent variables rather than just a single one), and to examine Eule-

rian data in more detail, including a full description of the methodology used to

obtain them. The present work is arranged as follows. In section 3.2 the gen-

eral context of the Eulerian solution is introduced, explaining the mathematical

formulation for the pressure-driven growth model, using Eulerian coordinates.

Then, in section 3.3 a description is given of the numerical scheme by which the

new model was solved. This leads to the results, in section 3.4, where the com-

parison between the Lagrangian and Eulerian model is made, using the explicit

representation for the front at different times and also measuring the curvature

and the orientation angle of the front. The conclusions are given in section 3.5.

3.2 Eulerian model

In this section the Eulerian model for foam-liquid front propagation is presented

and its connection to a Lagrangian model is shown. The Eulerian model is ex-

pressed using the Hamilton-Jacobi equation [151], which in general terms can be

written as

Φt +H(∇Φ) = 0, (3.1)

where Φ = Φ(x, t), x ∈ R
m, and the Hamiltonian H depends on the gradient ∇Φ.

The front is implicitly represented as a zero-level set where Φ = 0. To simulate

the propagation of the implicit representation for propagation fronts, we make

use of the Level Set Method [152], an established robust technique to simulate the

evolution of curves. The method can be used to solve problems that involve the
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movement of curves and boundaries, for example the propagation of fire fronts

[153], surface reconstruction [154], and also to predict the deformation patterns

of multi-layered materials [155]. The method evolves a function Φ = Φ(x, t)

with special focus on a manifold of co-dimension one (i.e. a surface in a three-

dimensional domain and a curve in a two-dimensional domain), which is implicitly

described as a zero-level set where Φ = 0. These manifolds propagate in a normal

direction with a specified velocity [156]. We adopt a sign convention in which the

direction of front propagation is taken to be in the +∇Φ direction, rather than

in the −∇Φ direction. The Eulerian model developed in this paper has however

some special features over and above a “standard” level set technique, and these

features are described below.

3.2.1 Eulerian model derivation

Equations are taken in dimensionless form throughout. The Eulerian model uses

the front propagation velocityU = (u, v) = ẋ such that dx/dt = u and dy/dt = v.

Here u and v are propagation velocities in x and y direction, respectively. The

Eulerian model is formulated by a Hamilton-Jacobi equation as follows

∂Φ

∂t
+ u

∂Φ

∂x
+ v

∂Φ

∂y
= 0, (3.2)

where the front is expressed implicitly as zero-level set of the solution variable

Φ = Φ(x, y, t), which depends on time and two spatial dimensions. It takes

positive values on the right side of the front, (Φ > 0), a zone which (in the

surfactant-alternating gas foam improved oil recovery system as considered here)

corresponds to the liquid, and it takes negative values on the left side, (Φ < 0),

a zone which corresponds to the foamed gas, see Figure 3.1. The time evolution

of Φ is determined in the two space dimensions by the corresponding front prop-

agation velocity U with components u and v. The velocities correspond to those
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1
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s +∆s

Figure 3.1: Dimensionless Eulerian model solution domain, with x ∈ [0,∞),
y ∈ [0, 1] and t ∈ [0,∞), showing also dependent variables Φ and s.

established in the Lagrangian model (equations 2.5):

U =





u

v



 =
y

s
n. (3.3)

For the Eulerian model the normal n of the propagating front is determined as [157]

n =
∇Φ

|∇Φ| =
1

√

Φ2
x + Φ2

y





Φx

Φy



 , (3.4)

where the notation | · | corresponds to the Euclidean norm. The complication

in this model, compared to a conventional Hamilton-Jacobi system is that U

depends on the path length s (viz. equations (2.7) and (2.8) as given in section

2.1.4). Hence the equation (3.2) is insufficient as it gives an evolution equation

solely for Φ; in fact, it is necessary to obtain an evolution equation for s also. The

length of the trajectory s evolves similarly to Φ as it convects the same way. It is

still possible to determine Lagrangian particle paths, even given an Eulerian field,

so the concept of path length or distance travelled by each material point retains

its meaning. During the convection s increases according to the travelled path,
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incrementing at a rate |U| =
√
u2 + v2 ≡ y/s, according to equation (2.9) given in

section 2.1.4. Therefore, the time evolution of s is described by a Hamilton-Jacobi

equation with a source term as

∂s

∂t
+ u

∂s

∂x
+ v

∂s

∂y
=

y

s
, (3.5)

where the source term models the increment of the trajectory length. Although

s can be computed globally, only values of s in the neighbourhood of Φ = 0

level set are required. With the goal of simplifying the equations, we apply the

definition of the front normal as a gradient (3.4) to the definition of the velocity

(3.3), which in turn is substituted into the transport equation (3.2) giving

Φt +
y

s
|∇Φ| = 0. (3.6)

For the evolution of s given by the equation (3.5), we have (again substituting

from (3.3))

st +
y

s

(

∇Φ · ∇s

|∇Φ| − 1

)

= 0. (3.7)

Generalizing, the system composed for equations (3.6) and (3.7), has the structure

Φt +H(y, s,∇Φ) = 0, (3.8)

st + G(y, s,∇s,∇Φ) = 0, (3.9)

where both equations, (3.8) and (3.9), have to be solved in a coupled way, with

H and G as the respective Hamiltonians,

H =
y

s
|∇Φ|, (3.10)

G =
y

s

(

∇Φ · ∇s

|∇Φ| − 1

)

. (3.11)
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The boundary conditions of the coupled system (3.8)–(3.9) are

Φ(t, x, y = 1) = x−
√
2t, s(t, x, y = 1) =

√
2t, (3.12)

as was established in [64] and [70], noting that the evolution of the front at the

top, i.e. at y = 1 is described by x =
√
2t. On the other hand, at x = 0, s = 0,

and Φ = −√
2yt. Since we are ultimately interested only in how the zero-level

set propagates, the choice of boundary conditions is non-unique, but the choices

indicated here have the advantage of keeping Φ on the boundary relatively close

to being distance from the zero-level set. Finally, as the model considers first-

order equations, we need only one boundary condition per spatial dimension

(that applies to both equations (3.8) and (3.9)), whilst information propagates

from the top (y = 1) downwards and from the left (x = 0) rightwards. The initial

conditions of the coupled system (3.8)–(3.9) are

Φ(t = ε2/2, x, y) = x−
√

yε2, s(t = ε2/2, x, y) =
√

yε2, (3.13)

where ε ≪ 1. The value of ε is fixed for simulation purposes equal to just a few

times the grid spacing (in section 3.4). A finite ε avoids the need to consider times

all the way down to t = 0 (at which velocities are theoretically infinite). The term
√

yε2 in the initial condition (3.13) arises from an early-time analytical solution,

called the Velde solution, which is a good approximation for the front shape at

early times (t ≪ 1) [70, 80, 114]. We start with a small but non-zero ε which

keeps s non-zero within the denominators of (3.6)–(3.7). This establishes that at

time t = ε2/2 the zero-level set is situated just slightly shifted from the y axis.

Intuitively results should be insensitive to ε, since both equations (3.13) already

incorporate an early time asymptotic behaviour of the system. Concluding, the

Eulerian model to solve consists of the equation system (3.8)–(3.9) together, with

the corresponding initial and boundary conditions.
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3.3 Numerical scheme

In this section the numerical method to solve the presented mathematical model

in the form of a strongly coupled system of Hamilton-Jacobi equations is outlined.

We remark that in the present work a full description is given of the methodology

used to obtain some preliminary Eulerian results already presented by [104]. The

numerical methods were not themselves presented in [104]. In order to obtain a

numerical solution of the mathematical model and a computational simulation

of the foam-liquid displacement process, first a discrete approximation of the

equations (3.8) and (3.9) is needed. A finite volume scheme is used, applying an

upwind flux according to [158]. This section continues as follows: first in section

3.3.1 the spatial discretization is described, in section 3.3.2 the numerical flux

for Φ and s is given, in section 3.3.3 the reinitialization is introduced and how

it is used in the numerical simulation is described, and finally in section 3.3.4 it

is explained how the orientation angle α and curvature κ are measured for the

propagation front.

3.3.1 Spatial discretization

For the spatial discretization the domain in the x and y direction is divided, for

simplicity, into Nx and Ny elements of equal width △x and △y, respectively.

Also, the domain is enlarged on all sides of the rectangle. In the x direction it

is incremented by △x/2 on each side, and in the y direction by △y/2 on each

side. This is done so that the corners of the domain are included as the centre

of the corresponding volume elements generated. For illustration see Figure 3.2,

where X denotes the maximum distance at which the position of the front is

required, and the points (0, 0), (0, 1), (X, 0) and (X, 1) are centre nodes of their

surrounding volume elements.
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(0, 0) (X, 0)

x

y

(0, 1) (X, 1)

∆x

∆y

Φn
j,k

Φn
1,1

Φn
Nx,1

Φn
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Figure 3.2: Spatial discretization over the domain y ∈ [0, 1] and x ∈ [0, X ], where
X is the maximum distance at which the position of the front is required. Nx

and Ny are the number of partitions in x and y direction respectively: partitioned
into equal sized areas (∆x = ∆y). Here j ∈ {1, ..., Nx} and k ∈ {1, ..., Ny} are
the coordinates of the node, associated with a value of Φn

j,k at the time tn.
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3.3.2 Numerical flux

In order to solve the governing equations in the form of a two-dimensional system

of two strongly coupled Hamilton-Jacobi equations, we use a coupled finite volume

scheme, with an upwind flux, the flux being the numerical approximation of

equations (3.10) and (3.11) [158]. According to the scheme, in time step tn, the

variable is reconstructed by a piecewise polynomial and evolved to time step tn+1.

For the stepwise numerical solution one assumes that the discrete approximation

in the nodes (j, k) at time t = tn is given by Φn
j,k ≈ Φ(xj , yk, t

n). To evolve the

solution at these points to time t = tn+1 one utilizes a fully upwind version of the

numerical flux of [158], which establishes that Φ and s evolve at a rate

d

dt
Φj,k(t) = H(y, s,Φ−

x ,Φ
+
y ),

d

dt
sj,k(t) = G(y, s,Φ−

x ,Φ
+
y , s

−
x , s

+
y ), (3.14)

respectively, where H and G are given by equations (3.10) and (3.11), and where

Φ−
x , Φ

+
y , s

−
x and s+y are the derivatives x and y in a given direction relative to

the referred volume. We only need Φ−
x , Φ+

y , s−x and s+y since for the specific

curve shape as indicated in Figure 3.1 we expect Φx > 0 and Φy < 0, which

implies that ∂H/∂Φx ≥ 0 and ∂H/∂Φy ≤ 0, and analogously for s, ∂G/∂sx ≥ 0

and ∂G/∂sy ≤ 0. This indicates that the numerical flux is entirely upwind.

Even though the upwind flux holds for the specific front shapes to be considered

in the present work, a general numerical flux (see Appendix A.3) is needed in

order to deal adequately with model extensions including heterogeneities and

anisotropies [158]. In each time step, both equations for Φ and s are evolved

simultaneously. Which equation (Φ or s) is treated first is irrelevant, because in

order to obtain Φn+1
j,k and sn+1

j,k , in each case, the data for Φn
j,k and snj,k are only used

once. To calculate Φ−
x , Φ

+
y , s

−
x and s+y we suppose that we have approximated Φ at

time t = tn for all nodes. Then, we carry out a piecewise quadratic interpolation
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in both spatial dimensions, from which subsequently we obtain the expressions

for the derivatives (see Appendix A.3). For the temporal discretization of Φ and

s we use the Euler method,

d

dt
Φj,k(t) ≈

Φn+1
j,k − Φn

j,k

△t
,

d

dt
sj,k(t) ≈

sn+1
j,k − snj,k

△t
. (3.15)

To ensure numerical stability in the evolution of the equations according to [159]

one sets

△ t <
min(△x,△y)

max{|a−j,k|, |b+j,k|}
, (3.16)

where a−j,k and b+j,k are the local propagation velocities in the x and y direction

respectively (see Appendix A.3). The time step size is adapted according to

the evolution speeds of s and Φ by setting the Courant-Friedrichs-Levy (CFL)

number to 0.475, following [158].

3.3.3 Reinitialization

In the calculations of the Level Set Method, usually the discrete representation

of the level set function develops non-smoothness during its evolution, since nu-

merical errors increase. This impacts the structure of the solution and finally

destroys the stability of the scheme [156]. To correct this, a numerical strategy

is introduced, which is known as reinitialization. It restores the regularity of Φ

and stabilizes its time evolution. The reinitialization is done after each time step.

Then the degraded solution Φ is converted into a distance function, see [152].

This distance function measures the distance to the zero-level set such that its

absolute value corresponds to this distance, and its sign is retained. One method

to realize the reinitialization is to solve the evolution equation obtained in [156],

namely
∂Φ

∂t′
= sign(Φ)(1− |∇Φ|), (3.17)
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where t′ is an “artificial” time, sign(Φ) is a sign function which takes the value

1 in the region where Φ > 0, −1 where Φ < 0, and 0 on the interface Φ = 0

level set. Smooth behaviour of Φ is not guaranteed, since the interface itself is

computed numerically [156]. In this work, the method suggested in [160] is used,

where equation (3.17) is solved, but the numerically smoothed version of the sign

function

sign(Φ) = Φ(Φ2 + |∇Φ|2(△x)2)−1/2, (3.18)

is used. Note that the equation (3.18) works reliably for a square spatial partition,

i.e. △x = △y, that corresponds (for most of the calculations to be considered

here) to the case of the present solution. During the application of the reinitial-

ization using this equation, the value of sign(Φ) needs to be constantly updated

during the evolution of Φ, that evolves in time until a steady state is reached,

typically in two artificial time steps (t′) if the reinitialization is executed in each

time step (t). The reinitialization helps to obtain a notably smoother shape of

the front and in particular for the front curvature.

3.3.4 Calculation of front orientation angle α and curva-

ture κ

As was mentioned before, the Eulerian and Lagrangian model results can be

compared via the orientation angle and the curvature along the front, in addition

to comparing the front location. The angle α is the angle measured between the

normal n of the front and the horizontal straight line parallel to x axis and the

curvature κ is a spatial derivative of this. To compute the orientation angle at

all points of a front for a given time t, first, an explicit representation (xi, yi), i ∈
{1, ..., Ny} of points on the front is obtained from the implicit representation by

the curves of level zero by a linear interpolation of the data of Φ. From these
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points on the front the angle is approximated as

αi = arctan

(

xi − xi+1

yi − yi+1

)

, i ∈ {1, ..., Ny − 1}.

Once the orientation angle α for each point on the front is calculated, the curva-

ture can be estimated as (see also equation (A.13) in Appendix A.2)

κi =
αi+1 − αi

√

(xi − xi+1)2 + (yi − yi+1)2
i ∈ {1, ..., Ny − 1}.

Another way to obtain the curvature, which is used in this work following [156],

is to calculate it in terms of Φ by the function

κ =
ΦyyΦ

2
x − 2ΦxΦyΦxy + ΦxxΦ

2
y

(Φ2
x + Φ2

y)
(3/2)

. (3.19)

Both α and κ are calculated numerically for grids of various different resolutions.

The results are shown in the next section.

3.4 Results

In this section, results of the computational simulation of the Eulerian model

of the system of equations (3.8) and (3.9) are presented in comparison to the

(Lagrangian) pressure-driven growth model. Specifically the front shape, the front

orientation angle α and the curvature κ are shown compared with the analytical

solutions of [80] and [104]. First in section 3.4.1 we present the numerical results

of the front shape, in section 3.4.2 the front orientation angle α is shown revealing

the presence of a concave corner or kink, in section 3.4.3 the computation of the

curvature κ is shown, and finally in section 3.4.4 the numerical representation for

the movement of the kink through the front is given as a function of the time.
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(a) (b)

Figure 3.3: Foam-liquid front at evolution time t = 0·5 over the domain 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. (a) Intersection of surface Φ with plane xy. (b) Contour line of zero-
level set Φ = 0.

3.4.1 Front shape

The front shape obtained by the computational simulation of the Eulerian model

given by the system of two Hamilton-Jacobi equations (3.8) and (3.9) is shown

in Figures 3.3 and 3.4. The simulations are realized with a Nx = Ny = 200

grid. In Figure 3.3(a) the values of solution Φ at time t = 0·5, over the domain

(x, y) ∈ [0, 1]2 are shown, and the intersection of Φ with the xy plane, which repre-

sents the propagating foam-liquid front, where Φ = 0, is highlighted. An explicit

representation of the front is shown in Figure 3.3(b), where the values of Φ for

the zero-level set and on both sides are indicated. In Figure 3.4 one can see that

the numerical solutions of the Eulerian model are visually similar to the results

of the (Lagrangian) pressure-driven growth model, independently of the time.

The model has been set up using an early asymptotic solution (as was established

by the equation (3.13)), in such a way that ε should have hardly any bearing on

the results. In order to verify the limited effect of ε in the front shape, we have

calculated the front position for ε ∈ [10−2, 10−3, 10−4] from time t = ε2/2 to time

t = ε̂2/2 (with ε̂ = 10−1). The front displacement error (averaged over the length

of the front) compared with the known asymptotic analytical solution at time
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(a) (b)

Figure 3.4: Front position on domain (x, y) ∈ [0, 3]× [0, 1]. (a) Lagrangian model,
(b) Eulerian model.

t = ε̂2/2, for each ε studied, is equal to 7.49× 10−4, 8.01× 10−4 and 8.05× 10−4,

which, given that the top of the front has already displaced by ε̂, implies a good

agreement at early times and consequently at later time also. It was also found,

measuring the absolute error, that the order of convergence (respect to spatial

refinement) of the solution is approximately equal to 2, which is in concordance

with the numerical method used [158].

As was mentioned before, at the top of the front (y = 1) the orientation angle

α = 0, however, it turns out that immediately below the top it grows like square

root of distance from the top [80]. As a result, the angle can be quite significant

even at relatively small distance below the top. This can be difficult to appreciate

in Figure 3.3(b), but it becomes clear when measuring the front orientation angle

α (as will be discussed in section 3.4.2).

Specifically in Figure 3.4 the data obtained with the (Lagrangian) algorithm and

numerical parameter values in [80] are compared with those of the computational

simulation using the Eulerian model for times t ∈ {1, 2, 3, 4}. The agreement seen

between data from the original Lagrangian model (Figure 3.4(a)) and the Eulerian
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(a) (b)

Figure 3.5: (a) Zoom on domain (x, y) ∈ [0·88, 1]× [0·74, 1] for t = 0.5. Solid line:
Numerical results by solving Hamilton-Jacobi equation system. “△”: Analytical
solution from [104], taking c = 1 (see Appendix A.2). “◦”: Analytical solution
from [104], taking c = 0.75 (see Appendix A.2). (b) Position of foam-liquid front
and trajectory length at t = 0·5 over domain (x, y) ∈ [0, 1]2, calculated with a
Nx = Ny = 200 grid. Dotted line: length of trajectory s. Solid line: Front
position.

model (Figure 3.4(b)) proves that the Eulerian model is being computed correctly.

In Figure 3.5(a) the numerical solution for the Hamilton-Jacobi equation system

is plotted for the points near to the top boundary. This is done in order to

make a comparison between the Eulerian model and an approximate analytical

similarity solution, developed in [104]. This similarity solution depends on a

parameter c, defined such that 2c − 1 is the ratio between ds/dy and dx/dy.

Since s is approximately equal to x near the top, it might be thought naively

that c = 1. However this ignores the fact that both ds/dy and dx/dy are equal

to zero at the top. When the problem is formulated correctly, it is possible to

obtain that c = 0.75 right at the top, and moreover (using an integro-differential

approach presented in [104]) the value of c remains effectively constant over the

entire upper region of the front (see sections 2.1.4 and 2.1.4.2 for a description of

the upper region), moving downwards from the top. The form of those similarity
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expressions can be found in Appendix A.2 and as seen in Figure 3.5(a), the case

c = 0.75 gives an excellent fit. To corroborate this, in Figure 3.5(b) the position

of points x on the front is compared to the length of trajectory s, i.e. for given

value of y (and for a given value of t) the magnitude of x and s is shown. For

all material points the trajectory length s is greater than the front displacement

x because points move both downwards and sideways. Even at the top y ≈ 1,

where s ≈ x, we observe that ds/dy is less than dx/dy, as was deduced in [104].

Since the ratio between ds/dy and dx/dy equals 2c− 1, it is clear that c is less

than 1 near the top.

3.4.2 Front orientation angle α

For a more stringent comparison between our Eulerian numerical data and predic-

tions of the early-time asymptotic theories, the orientation angle and the curva-

ture are measured. Note that the front orientation angle is zero at the top of the

front (y = 1) at all times, and approaches π/2 at the bottom of the front (y = 0)

at least in the limit of long times. Figure 3.6 (solid line) shows the Eulerian data

of the orientation angle α at time t = 0·5 over the domain [0, 1]× [0, 1] with a grid

Nx = Ny = 400. The front shapes presented in section 3.4.1 are continuous and

can be resolved with relatively few grid point (Nx = Ny = 200 grid in the case),

whereas for derivative quantities like the front orientation angle α and curvature

κ (which exhibit discontinuities) a refined grid is necessary to resolve the location

of the kink (Figure 3.7 shows the effect of having a low resolution in such a case).

In Figure 3.6, a kink or discontinuity in the front orientation angle α around

location y ≈ 0.78 can be seen at this time (t = 0.5). This situation has already

been discussed in [104]. It corresponds to the foam front reorienting itself on a

small distance comparable with the thickness of the finely-textured foam front

(rather than comparable with the much longer length scale over which the front

has propagated). The kink or discontinuity in α arises due to an incompatibility
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Figure 3.6: Front orientation angle α of the numerical Eulerian model (solid
line, with Nx = Ny = 400 grid) vs analytical solutions for t = 0·5 on domain
(x, y) ∈ [0, 1]2. For the lower region the improved Velde solution, equation (A.3)
(dotted line) and the Velde solution (dashed line) are plotted. In the upper region,
two analytical expressions from [104] are plotted: (“△”) c = 1 and (“◦”) c = 0.75
(see Appendix A.1 and A.2).

between material points which have continuously been on the foam front since

time zero (which are unaware of the top boundary condition) and material points

which have been newly injected from the top boundary since time zero (and which

are influenced by the top boundary condition). This corresponds to a concave

corner in the x versus y representation of the front albeit one that is not easy to

recognize in Figure 3.5. Following section 2.1.4, we refer to the points above the

concave corner as the “upper” region and points below it as the “lower” region.

Approximate analytical formulae (see Appendix A.1 and A.2) are available to

describe each region. Figure 3.8 shows good agreement between numerical and

analytical results in each case.

Even though the angle α is sufficient to show how similar the new Eulerian

solution is to the Lagrangian representation of the front considered by [104] and

also sufficient to show the appearance of a kink in the angle (strong evidence of

a concave corner as per [104]), in order to obtain an even more stringent test of
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(a) (b)

Figure 3.7: Curvature κ for two different grid refinement levels at the time t = 0.5.
(a) Nx = Ny = 100 and (b) Nx = Ny = 800.

the Eulerian formulation the curvature is measured in the next subsection.

3.4.3 Front curvature κ

Owing to the jump or kink in the angle, we expect the curvature to be large and

negative at the kink point (specifically to scale inversely with the grid spacing

in our numerical scheme). There may also be some numerical diffusivity [161],

causing points near the kink to be affected as well. In Figure 3.7 the numerical

values of the curvature obtained by the Eulerian numerical simulation of the front

propagation is shown for t = 0·5 with grid partitions Nx = Ny = 100 (Figure

3.7(a)) and Nx = Ny = 800 (Figure 3.7(b)) over the domain (x, y) ∈ [0, 1]2.

Unsurprisingly the curvature computed at the kink itself becomes more significant

if the grid is refined. Moreover, oscillations in the values of curvature κ appear

close by the kink, but these are numerical artifacts. What is of more interest

here however is how the curvature computed via equation (3.19) changes away

from and on the approach to the kink. As can be seen in Figures 3.7 and 3.8

the curvature is largest near the top and bottom of the domain, but decreases on

the approach to the kink. Because of its location (in an otherwise comparatively
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Figure 3.8: Front curvature κ of the numerical Eulerian model (solid line, with
Nx = Ny = 400 grid points) vs analytical solutions for t = 0·5 on domain (x, y) ∈
[0, 1]2. For the lower region, equation (A.4) (dotted line) and the Velde solution
(dashed line) are plotted. In the upper region, two analytical expressions deduced
from [104] are plotted: (“△”) c = 1 and (“◦”) c = 0.75 (see equation (A.14) in
Appendix A.2).

low curvature region), the behaviour at the kink could be misinterpreted, for

the Lagrangian method, as a consequence of possible misplacement of material

points. Under such circumstances, a convex front shape can be switched to a

concave one merely by very small point misplacements. The Eulerian model

(which does not require that the material points be tracked) does not suffer from

this disadvantage, and moreover in Figure 3.8 is seen to agree with approximate

analytic curvature predictions (see Appendix A.1 and A.2).

3.4.4 Kink position as function of time

In Figures 3.6, 3.7 and 3.8, it was possible to examine the location of the kink or

discontinuity (identified as the steepest part locally on the α versus y curve) with

different numbers of grid points over the same domain at the same time, and this

situation was also compared with some analytical expressions for the front itself,

in both the lower region and the upper region. The interesting aspect here is to

analyse how the location of the kink evolves with time. This fact was already
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

(a) (b)

Figure 3.9: (a) Orientation angle α for different times, over the domain (x, y) ∈
[0, 1]× [0, 1] with Nx = Ny = 400. Dotted line: t = 0·5, dashed line: t = 0·375,
dot-dashed line: t = 0·25, solid line: t = 0·125. (b) Kink position y as a function of
the time t (over the domain (x, y) ∈ [0, 2]× [0, 1]) for the Eulerian data (solid line,
grid of Nx = 800 and Ny = 400) and the position y of material points initially just
beneath the top determined by the equation (A.2), with initial vertical location
y0 → 1 (“∗”), and equation y = 1− 0.954t/2 (“×”) discussed in [104].

mentioned in [104], where it was established that the location of the kink would

be at y = 1− 0.954t/2 +O(t2). This was predicted via a similarity solution, but

not validated against numerical data.

Numerical data are presented here in Figure 3.9. Specifically 3.9(a) examines how

the front orientation angle α as a function of height y evolves over time. In Figure

3.9(b) it is shown how the kink moves in the y direction (solid line) as a function

of time, the kink position heuristically being detected as the position of the

steepest positive derivative of the angle. In the Lagrangian picture, as points are

injected from the top, it is thought that the concavity is a result of the collision of

those injected points with those originally along the y-axis (see Figure A.1). The

movement of the kink through y over the time can be fit to a quadratic function of

order t2 with the form of y = 1+a1t+a2t
2, where the parameters a1 and a2 were

found through interpolation. The fitted parameters after interpolation within the
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interval t ∈ [0, 2] over the domain (x, y) ∈ [0, 2] × [0, 1] are a1 = −0.4635 and

a2 = 0.0784, which vary only very slightly from equation (A.2) (see Appendix

A.1) that was obtained by tracking a material point initially at the top of the

lower region. We see that, for much of the evolution, the predicted location of the

kink according to the curve fit is actually very slightly below what is predicted

by equation (A.2) which gives the location of the material point initially at the

top of the front. This is the opposite of what was found in [104] via a first-order

theory in time, which predicted the location of the concave corner or kink via

a linear equation y = 1 − 0.954t/2, which is higher up that the material point

initially at the top given by y = 1 − t/2 at first order (see equation (A.1)).

Equation (A.2) is however itself just an asymptotic expansion of a Lagrangian

model (albeit now to second-order not first-order in time). The zoomed inset in

Figure 3.9(b), at early time t ≈ 0.1, shows the prediction of (A.2) being below

the first-order prediction for the kink location, but the numerical kink location

is above either of them. Whether the location of the kink is above or below the

location of the uppermost material point initially on the front is inconclusive, but

what is clear is that these two locations are close to one another and they can

only be distinguished numerically using a high resolution grid.

3.5 Conclusions

We have simulated the shape of a foam-liquid front evolving via pressure-driven

growth but using an Eulerian model. The simulation results of the Eulerian model

are largely similar to the Lagrangian results of [80]. Good agreement, not only

between Eulerian and Lagrangian numerical solutions, but also between Eulerian

results and an asymptotic analytical solution from [104] were found. These re-

sults mutually validate all these various methods, in particular those with respect

to front orientation angle and front curvature, see Figures 3.4, 3.6 and 3.8.
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With the developed computational code, systems of Hamilton-Jacobi equations

are solved. As a guideline for spatial discretization and explicit time discretiza-

tion by the Eulerian method as a reference the work of [158] was taken. In the

Eulerian model the front representation is determined implicitly as a zero-level

set. This implicit representation liberates us from the necessity to inject material

points explicitly onto the front from the top, as would be required by the simula-

tion of the Lagrangian model, making the Lagrangian model susceptible to errors

in the event that those newly injected points are wrongly placed.

Though the Eulerian solution is implicit, expressing the front position as the

zero-level set of the solution variable Φ, one can obtain an explicit representation

of the location of the front for each time instant. From the data obtained by the

numerical solution of the Eulerian model, one can detect a jump or kink in the

front orientation angle. This gives evidence of the existence of a sharp concavity

in the front (when seen from downstream), which is evident when measuring the

curvature along the front: it becomes large and negative at the kink. Although

the existence of such concavity was predicted before, via an analytical Lagrangian

solution obtained at early times, its predicted location was not guaranteed at later

times. By knowing the existence and location of the concave corner we can be

certain that the predictions of the Lagrangian numerical solution are not just

numerical artifacts coming from a misplacement of new injected material points.

Physically this concavity indicates that the front has reoriented itself over a small

distance, in relation to the distance over which it has propagated. Mathematically

this concavity can be interpreted as a consequence of the information from the

top boundary condition (Φ(x, y = 1, t) = x−
√
2t) propagating into the solution

domain and being distinct from that associated with points originally on the front.
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From the Eulerian calculations, it can be confirmed that the concavity is close to

height y ≈ 1 − 0.4635t + 0.0784t2, for t ≤ 2. This equation predicts a location

that is very close to the vertical position of a material point originating on the

y-axis immediately below the top boundary. It is then possible to demonstrate

that the concave corner not only migrates downwards on the front, but also slows

down as it migrates. This is perhaps unsurprising due to the depth-dependent

speed related to the net driving pressure, such that at certain depth the front must

eventually stop propagating. This however would happen at later times than what

any Lagrangian analytical solution would be able to predict. As alluded to above,

the concavity actually occurs at the point at which material points coming from

the top boundary manage to arrive, assuming they are injected early on in the

evolution. Since we have analytical approximations (see Appendix A.1–A.2 and

also Appendix B.1 for details) to the both zones of the front (points originally on

the front and newly injected ones) it is possible to estimate where they join [104].

There are however different scenarios in which they can join. Material points in

the upper region are injected onto the front and subsequently consumed by the

kink some time later as [104] showed. In the lower region the situation is less

clear cut. If the material point that was initially at the top of the lower region

remains lower down than the kink, then material points are being extracted from

the kink (as happens at early times in Figure 3.9(b)). On the other hand if that

material point initially at the top of the lower region is predicted to move higher

up than the kink (as happens later on in Figure 3.9(b)), material points are then

being consumed. One of the issues with the analytic material point location

and numerical kink location being so close together in Figure 3.9(b) is that it

is difficult to distinguish the two situations of points being extracted and points

being consumed. One of the challenges is that we have a second order analytical

estimate for the material point location (see equation (A.2) in Appendix A.1)

but only a first order analytical estimate for the kink location obtained in [104].
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It is possible then that obtaining an improved analytical estimate for the kink

location might help to clarify the situation. This is studied in Chapter 4.
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Chapter 4

Second-order accurate solution of

foam front propagation in

improved oil recovery

This chapter is comprised of a work published in the journal Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, by Carlos

Torres-Ulloa and Paul Grassia. The title of the article is “Breakdown of similarity

solutions: a perturbation approach for front propagation during foam-improved

oil recovery”, which was published on the 20th of January 2021, volume 477, num-

ber 2245, pages 20200691, DOI = https://doi.org/10.1098/rspa.2020.0691.

In this work the pressure-driven growth model is used to capture the foam-liquid

front propagation analytically with second-order of accuracy, which is based on

first-order similarity equations [117]. Supplementary material to this work is also

presented in Appendix B. This is also available at

https://royalsocietypublishing.org/doi/suppl/10.1098/rspa.2020.0691.

All results presented here are analytically reproducible, as detailed this chapter.

C. Torres-Ulloa carried out the study under P. Grassia’s supervision. Drafting of

the article was shared between C. Torres-Ulloa and P. Grassia.
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Chapter 4. Second-order accurate solution of foam front propagation in
improved oil recovery

Summary: The pressure-driven growth model has been employed to study a

propagating foam front in the foam improved oil recovery process. A leading-

order similarity solution of the model proves the existence of a concave corner on

the front, which initially migrates downwards at a well defined speed that differs

from the speed of front material points. At later times however, it remains un-

clear how the concave corner moves and interacts with points on the front either

side of it, specifically whether material points are extracted from the corner or

consumed by it. To address these questions, an order t correction to the similarity

solution is proposed (t here being time), perturbing the aforementioned first-order

(i.e. leading-order) similarity solution. However the perturbation is challenging

to develop, owing to the nature of the first-order solution, which exhibits strong

spatio-temporal non-uniformities. The second-order solution (incorporating the

aforementioned order t correction) solution indicates that the corner’s vertical

velocity component decreases as the front migrates, and that points initially ex-

tracted from the front are subsequently consumed by it. Overall, the perturbation

approach developed herein demonstrates how early-time similarity solutions ex-

hibiting strong spatio-temporal non-uniformities break down as time proceeds.

4.1 Introduction

The pressure-driven growth model is used to predict the shape of a propagating

foam front in the context of foam improved oil recovery (foam IOR): see details

in section 2.1.3. Even when a homogeneous and isotropic reservoir is considered,

a first-order Lagrangian analytical solution of the model predicts a concave cor-

ner on the front, which starts at the top boundary, and then as time proceeds

propagates downwards [104]. This was discussed in detail in section 2.1.4.1. This

corner is also called a “matching point” since it is where we must match two

regions mentioned in section 2.1.4.2 that divide the front vertically: the “lower
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region” incorporating material points originally on the front, and the “upper re-

gion” consisting of newly injected points (see Figure A.1 for details). The upper

region starts off being of arbitrarily small extent, but grows over time (the lower

region shrinks to compensate). Likewise initially the front reorients by an arbi-

trarily small angle in the upper region (albeit with arbitrarily large curvature),

but the amount it reorients grows over time (whereas curvature falls). Specifically

it was shown by [104] that the upper region is of vertical extent relative to the

maximum penetration depth of the front of order t (t here being the dimensionless

time) and it reorients through an angle of order
√
t, making curvature become

order 1/
√
t. The corner meanwhile arises due to an incompatibility between the

upper and lower regions as section 2.1.4.2 explains.

In Chapter 3 [116], the shape of a propagating foam front was obtained by using

an Eulerian formulation of the pressure-driven growth model (see also section

2.1.4 for details). The shape of the front was obtained numerically by solving

a coupled system of Hamilton–Jacobi equations [158], where the foam front was

given implicitly, as the zero-level set [156] of the solution variable. In the Eulerian

method it is not necessary to deal explicitly with the aforementioned incompat-

ibility between the positioning of newly injected material points (upper region)

and material points already on the front (lower region), since material points are

not tracked at all, by contrast with what is required in a Lagrangian method

(see section 2.1.4.1 for details). Nonetheless a concave corner or kink still arises,

as determined in [104]. This kink was then tracked via an Eulerian scheme in

Chapter 3, and its position at early times was found to be consistent with the

Lagrangian estimates from [104]. However, at later times the Eulerian solution

predicts that the velocity at which the kink or concave corner moves downwards

on the front decreases over time, contrary to the constant speed predicted in [104].

Nevertheless, numerical artifacts may appear in the Eulerian solution, since we
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can only ever capture the concave corner to within the numerical grid resolution.

This then motivates a return to a Lagrangian approach, to search for an improved

analytical approximation which will be free of such artifacts.

4.1.1 Concave corner and spatio-temporal non-uniformities

The position of the kink/corner can be tracked over time (see e.g. section 4.4), in

terms of “similarity variables” at early times [104]. Early time here means small

compared to characteristic time scale identified in [80] which is used to make the

system dimensionless (see section 2.1.4 for details). Small time therefore means

the top of the front has displaced horizontally by much less than the depth over

which the front displaces overall.

Both above and below the corner, it is possible to capture the shape of the front

analytically for small times t ≪ 1, by using equations (2.7) and (2.8), as given

in section 2.1.4, and generating approximate solution. By approximating these

equations it is possible to track the trajectory of the point that was originally at

the top of the front (y = 1 when t = 0). In particular for the vertical coordinate

y, this can be done at first-order (order t) and also at second-order (order t2)

(assuming this point has not been consumed by the concave corner) [80, 104].

Horizontally this point lags an order t3/2 distance behind the top of the front

(which is always at location x =
√
2 t in our dimensionless system, see section

2.1.4). The trajectory of this material point which was initially at y = 1 gives

an indication where the concave corner (or kink) may be, but not the exact lo-

cation, since we are tracking a material point near the concave corner, not the

corner itself. As already mentioned, what was found by [80, 104] is that the

second-order correction for the vertical y location material points originally on

the front predicts the material points to move down more slowly than the first-

order approximation predicts. Extending this analysis to material points initially
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Figure 4.1: Possible trajectories of material points in the neighbourhood of the
kink or concave corner. (a) Points between the fixed material point A and the
kink, move away from it, opening a gap between times t1 and t2. This gap is filled
by points extracted from the kink. Points between the fixed material point B
and the kink, are consumed between times t1 and t2. (b) An alternative scenario
where points between fixed material points A and B, and the kink/corner are
consumed over a time interval between t1 and t2.

at y ≤ 1, a solution is obtained for the lower region [104], to be discussed in

section 4.2. In the upper region, front material points are tracked also, but this

presents more of a challenge requiring, as previously mentioned, a similarity so-

lution to be revised (see section 4.3). As mentioned before, using the similarity

solution a first-order (order t) approximation to the location of the concave cor-

ner or kink was found [104]. However, as time proceeds, the first-order similarity

solution deviates from a numerical and therefore more exact solution presented

in Chapter 3 [116]. This first-order solution showed the corner moving down-

wards (at very early times) more slowly than the second-order approximation

to the material point initially at the top of the lower region, which meant that

new material points were being extracted from the kink or corner to populate

the lower region (see Figure 4.1(a)). Nevertheless, given that the second-order

approximation to the point initially at the top of the lower region indicates that

material point’s vertical motion slows down over time, eventually it is overtaken

by the first-order approximation to the corner or kink: material points in the

lower region are now being consumed by the kink, not extracted from it (see Fig-

ure 4.1(b)). In this context, extracting material points implies physically that the
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zone of finely-textured foam would need to thin slightly (at least temporarily),

whereas consuming/destroying such points implies that this region must thicken

a little (again at least temporarily). These are just temporary effects, since away

from the corner, a local balance between microscale foam generation and foam

destruction mechanisms quickly restores the thickness of the finely-textured zone

to its previous value (i.e. front thickness proportional to front displacement as

mentioned above) on time scales much shorter than the total time for which the

front propagates [108]. It is not clear however, whether this prediction of material

points being extracted/consumed is the actual behaviour or merely an artifact of

having a second-order approximation for one quantity (the material point) and

a first-order approximation for the other (the corner). The aim of this chapter

then is to obtain the second-order approximation to the corner or kink location

by improving upon the first-order similarity solution in the upper region. The

question we address then is whether a transition is still seen between the sce-

nario of Figure 4.1(a) and that of Figure 4.1(b) when a consistent second-order

approximation is used. Obtaining a second-order solution in the upper region is

however challenging, more so than obtaining second-order solutions in the lower

region was [104]. Indeed, given that the first-order solution is a similarity so-

lution, the generic mathematical challenge we focus on here is exploring how

that similarity solution breaks down at second-order. Significant spatio-temporal

non-uniformities arise in the first-order similarity solution for the upper region

which are already complicated to handle: a snapshot of the front shape at a fixed

very early time will have very sharp curvature, whereas a material point on the

front released at very early time will have rapid temporal changes in its vertical

velocity component [104]. Hence, we have to perturb the upper region about a

solution that evolves over arbitrarily small spatial distances at arbitrarily small

times: this then is where the challenge lies. There is also a question concerning

for which set of times a second-order solution might be valid given that in [104],
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although the first-order solution was obtained formally for dimensionless time

t ≪ 1, it managed to describe the front shape reasonably well even for values of t

up to order unity, as was determined by comparison with numerical results from

an Eulerian model [116]. Hence we expect the second-order solution should also

be valid over a similar time domain.

To summarise, this work expands upon the methodology used in [104], to obtain

a second-order accurate solution to track the trajectory of the injected material

points for t ≪ 1, again, in terms of similarity variables in the upper region,

but with small perturbations breaking the similarity. This proves challenging to

do, because of the strong spatio-temporal non-uniformities associated with the

similarity solution. The perturbed solution will be used to find the intersection or

matching point between the lower and the upper region of the front (the concave

corner or kink), consistently through to second-order. The solution will then be

interrogated in an effort to establish which scenario (Figure 4.1(a) or 4.1(b)) is

realised as time progresses, noting that the scenario of Figure 4.1(a) is necessarily

realized at arbitrarily small times. The rest of this work is laid out as follows. In

sections 4.2, 4.3 and 4.4 we review the existing methodology derived by [104], the

extension to that methodology appearing from section 4.5 onwards. The second-

order solution will be expressed, as before, in terms of similarity variables, but

admitting small perturbations at small times t ≪ 1 that break the similarity

(see section 4.5). Then, in sections 4.6 and 4.7, using this new solution we will

proceed to track the position of the concave corner with an accuracy of second-

order in time t. Finally, in section 4.8, we will use the second-order solution

to compute the shape of the upper region of the front, in comparison with the

previous solution given in [104]. Conclusions are offered in section 4.9.
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4.2 Front propagation in the lower region

This section reviews the theory for the lower region presented in [104]. The key

result we derive is equation (4.9), which describes the shape of the lower region.

Readers familiar with the derivations from [104] may want to skip directly to

section 4.3. To determine the front lower region shape, we solve equations (2.7),

(2.8), and (2.10) for t ≪ 1. For small times the front is close to being a vertical

line, the angle α being very small along it. So, we can estimate cos(α) ≈ 1,

via a leading-order Taylor expansion. Moreover, we can also approximate the

trajectory as s ≈ x. Hence, we can compute equation (2.7) as dx/dt ≈ y/x.

Then, after integration, we obtain that x ≈ √
2yt, which is known as the Velde

solution [80,104]. A higher-order solution known as the improved Velde solution

was also given in [104], establishing that

x ≈
√

2yt+ t2/6. (4.1)

This solution recognises that historically points have been higher up (and hence

faster moving) than their current y location indicates. As a result they have

moved further than the Velde solution indicates, i.e. the x location computed by

equation (4.1) is bigger than x ≈ √
2yt. Up till this point, we have the Velde

solution of order t1/2 and the improved Velde solution with a correction of order

t3/2, giving the x displacement of the lower region of the front. We can also

obtain an order t solution to compute the vertical location y of the points in

the lower region (corresponding to a first-order solution). This solution can be

derived for small times t ≪ 1, starting from equation (2.8), with s ≈ √
2yt and

sin(α) ≈ α ≈ tan(α) ≡ dx/dy ≈
√

t/(2y), via the Velde solution. As long as α is

small, the curvature of the front dα/dS (with S being measured down along the

front as in Figure 2.2) can then be approximated by |dα/dy| ≈ t1/2y−3/2/(2
√
2),

so is likewise a small quantity when t ≪ 1. Using (4.1) in place of the Velde
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solution only perturbs this curvature slightly. This modest curvature in the lower

region is a contrast from the order 1/
√
t curvature that turns out to be present

in the upper region. Here we have adopted (as introduced in section 2.1.4) the

notation of [104], where d/dy denotes a derivative along a front comprised of

various material points at fixed t, whereas d/dt denotes a time derivative following

a specified material point. Then, integrating equation (2.8), we determine

y ≈ y0 − t/2, (4.2)

where y0 is the initial position of a material point originally anywhere below

the top y0 ≤ 1. Therefore, for the point initially at the top of the lower region

(y0 = 1), we can compute

y1st,lower ≈ 1− t/2, (4.3)

as its first-order approximated location over time. Considering that, at first-

order, all material points in the lower region migrate downwards with vertical

velocity component of −1/2, new material points must be injected in order to

fill the gap between the y0 = 1 point and the top of the reservoir (which in our

dimensionless system is at y = 1). Hence, we can define a rescaled form for the

vertical coordinate of the points, as

ζ = 2(1− y)/t, (4.4)

where ζ represents a ratio of distances, that between the top of the reservoir

and any arbitrary point y on the front, divided by the vertical distance through

which the material point initially at the top of the front has displaced. Here at

leading order, ζ takes values from ζ = 0 at the top of the reservoir (y = 1), to

ζ = 1 for the topmost original material point of the lower region, with ζ > 1 for

points even lower down. However, a direct computation of the concave corner (or
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matching point between the lower and upper regions) found it actually occurs at

ζ = ζcross < 1 (ζcross ≈ 0.954, based on a much more complex integro-differential

equation, changing to roughly ζcross ≈ 0.94 for a simpler but approximate differ-

ential equation approach), as shown in [104]. The subscript “cross” denotes the

point at which upper and lower regions cross over one another, i.e. the corner or

matching point we seek. Since the material point originally at the top of the front

is now slightly lower down in y (slightly higher in ζ) than the kink or concave

corner is, new material points have been extracted from the kink to fill the lower

region (see e.g. Figure 4.1(a)). In addition, at any given y, we can define ξ as the

horizontal displacement of the front, back from the leading edge at the top of the

front
√
2t, given by

ξ =
√
2t− x. (4.5)

We can also express ξ geometrically, as

ξ =

∫ 1

y

(dx/dy) dy =

∫ 1

y

tan(α) dy. (4.6)

We cannot yet use equation (4.6) to determine ξ exactly, since it extends all the

way into the upper region, for which α versus y is still unspecified. However, we

can still use it to estimate the order of magnitude of ξ, under the assumption

that α (albeit not curvature approximated here by |dα/dy|) has similar order of

magnitude moving between the upper and lower regions. For small times t ≪ 1,

since α ≈
√

t/(2y) via the Velde solution (with α = atan(dx/dy) ≈ dx/dy), we

define Ξ as, the rescaled in time horizontal displacement [104], via

Ξ = ξ/t3/2, (4.7)

which recognises that ξ is an order t3/2 quantity, since we are integrating an order
√
t quantity over an order t distance in the y direction close to y = 1 (see equation
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(4.4)). Furthermore, we can express the lower region of the front, corresponding

to ζ ≥ ζcross, in terms of ζ and Ξ, by first substituting equation (4.1) into equation

(4.5), to obtain

ξ =
2t− x2

√
2t+ x

≈ 2t− 2yt− t2/6√
2t+ x

, (4.8)

and then specifically near the top of the domain where x ≈
√
2t, we can obtain

after introducing equations (4.4) and (4.7), that

Ξ ≈ ζ − 1/6

2
√
2

, if ζ ≥ ζcross, (4.9)

where, ζ ≥ ζcross here requires

y ≤ ycross ≡ 1− (t/2)ζcross, (4.10)

which implies that (4.9) is a solution describing specifically the lower region up

to the matching point or concave corner at location ycross as defined by equa-

tion (4.10). The utility of equation (4.9) is that it gives a Ξ versus ζ relation for

the lower region, and if we can also obtain a Ξ versus ζ relation for the upper

region, we can find where the two regions intersect, and hence determine ζcross.

This is what [104] achieved, by expressing the upper region in terms of a simi-

larity equation (see section 4.3 and also, in Appendix B, section B.1 along with

section B.2). Note that equation (4.9) is a leading-order solution for Ξ, accurate

to order t3/2. Later on in section 4.5, we introduce equation (4.22), which corre-

sponds to an order t5/2 accurate solution for the lower region, close to the concave

corner, improving upon equations (4.1) and (4.9) (see also details in Appendix B

section B.3). Geometrically, equation (4.1) is a parabola, and (4.9) represents a

tangent to that parabola at y = 1− t/2 or equivalently at ζ = 1, the geometrical

distance between the parabola and its tangent being negligible at the current

order of approximation. Having this approximation for the front lower region, it

97



Chapter 4. Second-order accurate solution of foam front propagation in
improved oil recovery

is possible to obtain a more accurate (second-order) estimate of the trajectory y

as a function of time t for material points in the lower region, as an improvement

over and above equation (4.2). As was proven in [104], such points move obeying

y ≈ y0 − t/2 + 5 t2/(48 y0), (4.11)

where y0 ≤ 1 is initial location of the points when t = 0 (see also Appendix

A.1). Equation (4.11) is a perturbation of (4.2) indicating that when t ≪ 1

all points move downwards with the same leading-order velocity, and moreover

velocity changes away from this leading-order value only gradually with time. So,

assuming that the y0 = 1 point (the point originally at the top of the front), has

not been consumed yet by the concave corner, so its location can still be tracked,

and assuming it remains reasonably close to the concave corner itself (to the

extent that the aforementioned value of ζcross ≈ 0.94, is relatively close to unity),

we have an indication of where the junction between the upper and the lower

region might be using equation (4.11). Indeed, we can compute the approximate

vertical location of the topmost original material point in the lower region as

y2nd,lower ≈ 1− t/2 + 5 t2/48 ≈ 1− 0.5 t+ 0.1042 t2. (4.12)

In summary, we have a first-order estimate of the kink location ycross, given by

equation (4.10), and a second-order estimate y2nd,lower (equation (4.12)) for a

material point that improves upon equation (4.3) and that we postulate, is close

to the kink location, although without definitive proof. The reason that the

estimate y2nd,lower was so readily obtained is that the lower region is comparatively

uniform in space and time when t ≪ 1, i.e. low curvatures of the front and weak

perturbations away from a leading-order material point velocity. Our objective

now is to obtain a second-order correction to the equation for ycross. Before

achieving that however we need to switch over focus to the upper region. As
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we will see, analysing the upper region proves to be challenging due to strong

spatio-temporal non-uniformities that are present there.

4.3 First-order location of the upper region’s

material points

In this section we review the methodology employed in [104], to determine the

first-order solution for the shape of the upper region of the front, in order to

determine how it might match with the lower region. The key results we derive

are equations (4.15)–(4.17), which describe the shape of the upper region of the

front, parametrically, in terms of a parameter T , which represents the fraction

of time that an injected point has been on the front. We start by introducing

similarity equations in the upper region, and then based on these, we develop an

order time t solution to compute the vertical y movement of the points of the

front’s upper region, along with an order t3/2 expression for the x displacement.

Readers familiar with the derivations from [104], may prefer to skip directly to

section 4.4. Higher-order corrections are considered later on in section 4.5.

4.3.1 Introducing similarity variables

As [104] showed, if at any given small instant in time (t ≪ 1), the location

and orientation of a material element (treated as a set of closely spaced collinear

material points) is identified relative to the overall extent of the upper region

and overall amount that the upper region reorients (both of which happen to be

arbitrarily small when t ≪ 1), then it should be possible to collapse together the

front shapes in the upper region at different instants of time into a self-similar
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form. Hence, we can express the front orientation angle α of the upper region, as

α =
√

t/2A(ζ), (4.13)

where A is a function of the variable ζ defined earlier [104] (see also section

B.1 in Appendix B, which specifies the function implicitly as ζ = ζ(A)). If t

is small here, α is likewise small. On the other hand, using (4.4) and (4.13),

curvature dα/dS which is approximately |dα/dy| becomes (t/2)−1/2 dA/dζ , and

hence is large when t is small. Note also that
√

t/2 is, at leading order, the

amount that a material element reorients at the top of the lower region. This

leading-order estimate is obtained via the Velde solution, since we are looking at

small times t ≪ 1 close to y ≈ 1. Knowing the top of the lower region reorients

to α ≈
√

t/2, if we compare this with equation (4.13) for the upper region,

any value of A(ζ) greater than unity at the bottom of the upper region thereby

implies a concave kink. Moreover, the front meets the top perpendicularly, as

the boundary condition at y = 1 requires that the angle α = 0 there. This then

implies that A varies from 0 at the top, to some value Across at the cross-over or

matching point, estimated to be at ζ = ζcross. We know from [104], that ζcross

is slightly less than unity, so at leading order, the kink or concave corner moves

down slightly more slowly than material points originally at the top of the lower

region. Moreover [104] showed that Across ≈ 1.18 roughly, which is slightly greater

than unity, so the upper region reorients more than the lower region does. As

mentioned earlier, that is what produces the kink or corner.

4.3.2 First-order upper region representation in terms of T

Since points originally on the front y0 ≤ 1 move downward (as we demonstrated

in section 4.2), material points must be injected from the top onto the front [80],

in order to have a continuous solution over time. For the upper region, we define
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tinj, as the time at which a material point has been injected. For a fixed time t,

we require that tinj ∈ (0, t]. As in [104], we can define a coordinate T such that

1− T is the ratio between tinj and t, as

T = 1− tinj/t. (4.14)

We can express the front location (coordinates ζ and Ξ) in terms of T instead of A
(contrast section B.1 in Appendix B). Here T can be varied by fixing t and varying

tinj (thereby looking at a collection of different material points) or alternatively by

fixing tinj and varying t (following the trajectory of an individual material point):

both ways of varying T turn out to be useful later on. If tinj is significantly

smaller than t, the points injected tend to be already close to the concave corner,

implying that T → Tcross. Here, Tcross < 1 (as obtained via an integro-differential

equation solution), typically Tcross ≈ 0.948 [104]; or alternatively Tcross ≈ 0.9431

for the simpler differential equation approach to be employed here, see section

7.4.3 in [104]), corresponds to the maximum value of T , which is reached at

the concave corner. Points with tinj smaller than (1 − Tcross)t have already been

consumed by the concave corner, so are no longer part of the propagating front

(see Figure 4.1). By contrast, if tinj → t, the material points are near to the

top, which implies that ζ ≪ 1, A ≪ 1, Ξ ≪ 1 and T ≪ 1. To date, we have

presented a first-order theory of the upper region as per [104]. The second-order

theory to be presented from section 4.5 onwards, is most naturally expressed in

terms of the variable T defined by equation (4.14), rather than in terms of A as is

presented in section B.1 in Appendix B. Before tackling the second-order theory

therefore, we need to recast the theory for the upper region in terms of T , and

then explain how to identify the matching point between the lower and upper

region. As mentioned previously, at small times t ≪ 1, we can collapse together

the front shapes at different times, expressing the shape in terms of similarity
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variables A, ζ and Ξ, instead of α, y and ξ. In particular, assuming that the

upper region of the front consists of a set of material points, each one injected at

a different time tinj ∈ (0, t], we can compute the front shape for a fixed time t in

terms of T , varying it between 0 up to some Tcross. It follows from [104] that

A ≈ A0 ≡
1− (1− T )c

c
, (4.15)

where 2c− 1 is the assumed constant invariant ratio between ds/dy and dx/dy,

over the upper region [104] (see section B.1 in Appendix B). Substituting into

equation (B.2) we deduce

ζ ≈ ζ0 ≡
1− cT − (1− T )c

c(1− c)
. (4.16)

Equations (4.15)–(4.16) have been expressed in the form A0(T ) and ζ0(T ) to

highlight that they are leading-order expressions which may need to be corrected

as time increases. It can be readily checked that dζ/dA ≡ (dζ/dT )/(dA/dT ),

when computed at leading order via equations (4.15)–(4.16), is compatible with

equation (B.1) (the original form given by [104]). We also obtain a leading-

order expression for the rescaled horizontal displacement of the upper region

Ξ = (2
√
2)−1

∫ ζ

0
A dζ in the form Ξ ≈ Ξ0(T ), by substituting from equations

(4.15)–(4.16) to give

Ξ ≈ Ξ0 ≡
2c((1− T )c − c− 1)T + (1 + c)(1− T )2c − 2(2c+ 1)(1− T )c + 3c+ 1

4
√
2c2(1− c2)

.

(4.17)

Taken together (4.16) and (4.17), both in terms of T , give a parametric represen-

tation of the upper region of the front, with the same order of accuracy in time

as the lower region as computed by equation (4.9), i.e. order t3/2 in ξ and order t

in y. Therefore, we can determine in terms of T , the matching point between the
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lower and the upper region of the front. This is how [104] proceeded to obtain

Tcross, and the details will be discussed in the next section.

4.4 First-order matching point between upper

and lower region

Now we review the methodology used in [104] to determine the first-order vertical

location of the concave corner over time. Reviewing this enables us subsequently

to extend that methodology to second-order in section 4.5. The key first-order

results are shown in Figure 4.2. A snapshot of the shape of the front is plotted in

Figure 4.2(a), and in Figure 4.2(b), the trajectory of the concave corner at leading

order is plotted, in comparison with the first-order approximated trajectory of

material points in the upper and lower region. Having consulted Figures 4.2(a)–

(b), some readers may prefer to skip to section 4.5, in which the methodology is

extended to higher-order solutions. Our immediate objective via Figure 4.2, is to

obtain the first-order matching point between the lower and upper region of the

front (namely the concave corner). We proceed by plotting both regions, using

equation (4.9) for the lower region, and equations (4.16)–(4.17) for the upper

region, identifying the intersection or matching point (see Figure 4.2(a)). We

decide to plot −Ξ vs −ζ , since it has the same orientation as x versus y. Assuming

c = 3/4 (the value given by [104], see Appendix B section B.1 for details), the

matching point between these two regions turns out to be ζcross ≈ 0.9397 and

Ξcross ≈ 0.2733, and is obtained at Tcross ≈ 0.9431 (see Figure 4.2(a)). This same

result was previously obtained in [104] albeit expressed not in terms of T but

rather in terms of A (equations (B.2)–(B.3)), with the corner found at Across ≈
1.18 roughly. Given the value of ζcross, we can compute via equation (4.10)

y1st,cross = 1− 0.4698 t, (4.18)
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(a) (b)

Figure 4.2: (a) Matching point between the lower (dotted line) and the upper
(solid line) region of the front. Here, −ζ is the rescaled vertical y location of
the front and −Ξ is the rescaled horizontal displacement of the front behind
the leading edge at the top. (b) Rescaled −ζ+(T ) location (see in Appendix
B section B.2 for additional details) versus a rescaled time defined as t/tinj =
1/(1 − T ) with 0 ≤ T ≤ Tcross ≈ 0.9431. Solid curve: trajectory of a material
point in the upper region. Dotted line: trajectory of the concave corner itself.
Dashed-dotted line: trajectory of the topmost material point originally at the top
of the front at time t = 0.

as the first-order vertical location of the concave corner (the cross-over or match-

ing point between the upper and the lower region of the front). Here we employ

the notation y1st,cross (instead of simply ycross used earlier) to emphasise that

this is a first-order solution. In the rest of the section we explore some con-

sequences and concepts that follow from having found the first-order matching

point. These will be generalized to second-order in later sections of the paper.

Further details can be found in Appendix B section B.2 which based on the value

of Tcross defines tinj(min)(t) (the earliest injected point still surviving on the front

at time t) and tmax(tinj) (the maximum time out to which a point injected at

tinj survives). Appendix B section B.2 also presents another rescaling of the y

coordinate ζ+ = (1 − y)/(tinj/2) = ζ/(1− T ) which is relevant to Figure 4.2(b).

Whilst the variable ζ is useful for representing the shape of the front at fixed t,

the variable ζ+ is more useful for representing the trajectory of a material point

with fixed tinj. Indeed, for a fixed tinj (and hence fixed material point), plotting
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ζ+ vs 1/(1−T ) (with 1/(1−T ) = t/tinj via equation (4.14)) is just a rescaling of

y vs t. In Figure 4.2(b) the solid curve represents the trajectory −ζ+ of a material

point moving through the upper region as −ζ(T )/(1 − T ), with ζ(T ) ≡ ζ0(T )

at leading order as given by equation (4.16). The dotted line shows the −ζ+

position of the concave corner itself, namely −ζcross/(1−T ), with ζcross ≈ 0.9397.

The solid curve and the dotted line coincide only when T = Tcross ≈ 0.9431. The

dash-dotted line shows the trajectory in terms of −ζ+ of a point in the lower

region that was originally at the top of the front, as −1/(1 − T ). Note that

the solid curve in Figure 4.2(b) is not a straight line, which implies non-uniform

motion. The fact that this is not a straight line in Figure 4.2(b) indicates that, in

the upper region, material point motion always varies with time even in the limit

of very small tinj and hence very small t: this is one of the challenges of tracking

material points in the upper region.

4.5 Second-order correction to front shape

To date all we have done is review the first-order findings of [104], recast in terms

of a more convenient variable set. Now we extend those findings to obtain a

second-order accurate solution in time to compute the upper and lower region of

the front. Key results we obtain are equations (4.23)–(4.25), from which we can

track upper region material points on the front, and equation (4.26), for which

we can compute the corresponding location of points in the lower region. Some

details are relegated to Appendix B.

4.5.1 Second-order location of the upper region’s material

points

Although we parameterise the system in terms of T here, if we recall that ζ and

Ξ could also be expressed readily in terms of A (see equations (B.2) and (B.3),

105



Chapter 4. Second-order accurate solution of foam front propagation in
improved oil recovery

in Appendix B respectively), it is useful to begin by computing a second-order

expression for the front orientation angle A, for a small but finite time t (see

Appendix B, section B.4.1 for details of how this is achieved). It is reasonable to

expand A as

A(T , t) ≈ A0(T ) + tA1(T ), (4.19)

in order to determine the effect of an order t correction upon the rescaled front

orientation angle A (which corresponds to an order t3/2 correction for α, see

equation (4.13)). Equation (4.19) breaks the similarity solution, depending as

it does on both T and t, not merely on T . Consistently, we can expand the

rescaled vertical (see Appendix B, section B.4.2 for details), and horizontal (see

Appendix B, section B.4.3 for details) location of the upper region’s material

points respectively, in the form of

ζ(T , t) ≈ ζ0(T ) + t ζ1(T ), (4.20)

Ξ(T , t) ≈ Ξ0(T ) + tΞ1(T ). (4.21)

Here, A0, ζ0 and Ξ0 from section 4.3, and A1, ζ1 and Ξ1 obtained in Appendix

B section B.4, turn out to be well defined quantities in terms of T . In addition,

since ζ is related to y via equation (4.4) and Ξ is related to ξ via equation (4.7),

and hence to x via equation (4.5), it follows that equations (4.20) and (4.21)

are order t2 and t5/2 accurate expressions, in y and x respectively. To use these

expressions to find the matching point between both regions of the front, we must

also calculate, with a consistent order of accuracy, the shape of the lower region.

4.5.2 Second-order correction to lower region front shape

We now present an extension of the equation (4.9), used to compute the lower

region of the front. Note that the equation (4.9), has been derived via an order
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t3/2 accurate solution in the x direction (given by equation (4.1); also known as

the improved Velde solution), and an order t accurate solution in the y direction

(given by equation (4.2)). We need however, to incorporate the order t2 effect, in

the vertical, which is given by equation (4.11), along with an order t5/2 correction

to compute the x location of material points, to achieve the same order of accuracy

as is computed for the upper region via equation (4.20) and (4.21). The required

expression is (see Appendix B section B.3)

Ξ ≈ 1

2
√
2

(

ζ − 1

6
+

t

8

(

ζ2 − ζ

3
+

107

540

))

, if ζ ≥ ζcross, (4.22)

which represents a parabola, as it includes a second-order term in ζ . This is

applicable specifically near the top of the lower region (ζ ≥ ζcross but not ζ ≫ 1).

Here, we see how a self-similar solution (given by equation (4.9) involving only

Ξ and ζ), valid for early times, is broken as a higher-order correction in time

is introduced. According to equation (4.22), for any specified ζ , the order t

correction term for Ξ is positive, so on a graph such as Figure 4.2(a), which plots

coordinates (−ζ ,−Ξ), we obtain a point to the left of the t → 0 limit (dotted line

in Figure 4.2(a)).

4.5.3 Rescaled location of the upper region’s material points

The form of equations (4.19), (4.20), (4.21) (upper region), and (4.22) (lower

region), indicates that in the limit t → 0, the upper region can be expressed in

similarity form via variables ζ and Ξ, in which for the upper region in particular,

only the ratio tinj/t ≡ 1−T was relevant. Nevertheless, for small but finite t, the

similarity solution is broken as alluded to earlier, and both values tinj and t are

needed. To explore how the similarity solution becomes broken, we can either

select a given t and find the front shape ζ vs Ξ at that time, or alternatively

we can select a given tinj and find how a material point injected at time tinj
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moves and reorients. This latter approach is easier since the governing equations

for pressure-driven growth are expressed in Lagrangian form. A rescaling of the

variables is now convenient. We define ζ+ and Ξ+, as the rescaled 1 − y and
√
2t − x front location, rescaling respectively, by amounts depending solely on

the now fixed tinj (respectively by tinj/2 and t
3/2
inj ), and we track a material point

trajectory parametrically, by varying T from 0 up to Tcross (the matching point

between the lower and upper region). Consistently, we define A+ as the rescaled

front orientation angle α, rescaled by
√

tinj/2. Using definitions analogous to

equations (4.4), (4.7), and (4.13), but with tinj in place of t, and relating A+, ζ+

and Ξ+ back to A, ζ and Ξ, we compute via equations (4.19)–(4.21)

A+ ≈ A0(T )√
1− T

+ t
A1(T )√
1− T

≡A+,0(T ) + tinj
A1(T )

(1− T )3/2
=A+,0(T ) + tinj A+,1(T ),

(4.23)

ζ+ ≈ ζ0(T )

1− T + t
ζ1(T )

1− T ≡ζ+,0(T ) + tinj
ζ1(T )

(1− T )2
=ζ+,0(T ) + tinj ζ+,1(T ),

(4.24)

Ξ+ ≈ Ξ0(T )

(1− T )3/2
+ t

Ξ1(T )

(1− T )3/2
≡Ξ+,0(T ) + tinj

Ξ1(T )

(1− T )5/2
=Ξ+,0(T ) + tinj Ξ+,1(T ),

(4.25)

where t has been replaced by tinj/(1−T ) (as follows from equation (4.14)). Hence,

if we can determine how the front shape is perturbed at any given t ≪ 1 (given by

equations (4.19)–(4.21)), we can also determine how the trajectory of a material

point is perturbed at any given tinj, i.e, for different choices of tinj ≪ 1, we

have different solutions of Ξ+ and ζ+ versus T , which correspond to the actual

geometric path that a fixed injected material point takes (at least to second-order

accuracy) to reach the concave corner (the intersection with the lower region).
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4.5.4 Rescaled location of the lower region’s material points

To find where material points injected in the upper region from time tinj intersect

the lower region, we convert (4.22) (applicable near the top of the lower region)

into Ξ+ ≡ Ξ/(1 − T )3/2 vs ζ+ ≡ ζ/(1 − T ) format. At any given time t =

tinj/(1− T ), it follows via equation (4.22)

Ξ+ ≈ (1− T )−3/2

2
√
2

(

ζ+(1− T )− 1

6
+

tinj
8

(

ζ2+(1− T )− ζ+
3

+
107

540(1− T )

))

(4.26)

where, given any tinj, our challenge is to find a T value (and hence a time t) at

which equations (4.24) and (4.25) intersect equation (4.26). Therefore, equations

(4.24) and (4.25) give a locus ζ+ and Ξ+ swept out by a material point in the

upper region, and equation (4.26) gives the Ξ+ that would be on the lower region

at that same ζ+. The upper and lower region only meet when, at the same ζ+,

they also have the same Ξ+. This then gives the matching or cross-over ζ+cross

and Ξ+cross point: for additional details see section B.6 in Appendix B. Despite

the similarity between equations (4.22) and (4.26), note the subtle difference in

the way we use them. With equation (4.22) it is convenient to fix t, and consider

how Ξ varies with ζ at that fixed t. With equation (4.26), however, we vary t (by

varying T at given tinj), and select a particular ζ+ (depending on T and hence

on t), considering how Ξ+ then varies. Therefore, tracking different tinj gives

different cross-over points ζ+cross and Ξ+cross, which can be expressed in a form

giving the ζcross and Ξcross location of the concave corner over time t: see section

4.6 and also Appendix B section B.7 for details. After using equation (4.26) in

the way described above to locate the matching point, there turns out to be an

alternative way in which this equation can be used. Given the T and ζ+ values

at the matching point, respectively Tcross and ζ+cross, it is possible to find, for

any given tinj, corresponding values of t and y at the matching point. For these

specific t and y values, equation (4.11) can then be used to identify a y0 value (i.e.
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a material point in the lower region, labelled by its initial location on the front)

which coincides at the concave corner with the given upper region material point

labelled by tinj. It turns out (see section B.8 in Appendix B) that the required

y0 only differs from unity by order tinj amounts, so it is more useful to define a

quantity z0 = 1− y0 and hence a quantity Z0

Z0 ≡
1− y0
tinj/2

=
z0

tinj/2
. (4.27)

Once y0 or equivalently Z0 is known for any given tinj, then at all times t up the

matching point, equation (4.11) can now be rescaled into ζ+ vs T coordinates

(see section B.8 in Appendix B for details), giving the trajectory followed by the

lower region material point, generally having (at any given time t or equivalently

at any given T ) a ζ+ different from the upper region material point (except at

the matching point). Substituting the lower region ζ+ into equation (4.26) and

varying T gives the trajectory followed over time by this material point in terms

of ζ+ vs Ξ+, which can be compared with the trajectory for the upper region

material point described by equations (4.24)–(4.25). Trajectories of both points

can be followed over time, and at the matching point, they coincide. Before

equation (4.26) can be used in this particular fashion however, first the matching

point itself must be found.

4.6 Perturbed location of the concave corner

In this section we present the perturbation analysis to track the location of the

concave corner with second-order accuracy in time. The key result is equation

(4.34), giving the vertical location of the concave corner over time. This is what

we contrast, in section 4.7, with the first-order solution for the corner given by

equation (4.18). The analysis proceeds as follows. Given a set of small but
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finite tinj values here, we can obtain different Tcross values, with which we can

determine the variation in location of the concave corner over time. In the limit

when tinj → 0, the value we seek is the aforementioned Tcross ≈ 0.9431 (which

we now denote Tcross,0). More generally however, varying tinj, will cause Tcross

(obtained as per the procedure discussed in section 4.5.4) to vary also. In the

limit of sufficiently small tinj, we can approximate this variation via

Tcross ≈ Tcross,0 + tinjTcross,1 ≈ Tcross,0 + (1− Tcross,0)Tcross,1 t. (4.28)

Here, as mentioned above, Tcross,0 is the lowest order approximation found previ-

ously, and Tcross,1 is a next order correction to be determined. Knowing Tcross, we

can also define additional quantities tmax and tinj(min) (mentioned in section 4.4

and defined in Appendix B section B.2). Substituting (4.28) into equation (B.5)

and Taylor expanding, we deduce that the maximum time t = tmax for which a

material point injected at tinj could survive would be

tmax ≡
tinj

(1− Tcross)
≈ tinj

1− Tcross,0

+
t2injTcross,1

(1− Tcross,0)2
, (4.29)

Moreover, at the cross-over point, the earliest injected material point still surviv-

ing at time t has tinj = tinj(min) with, according to equations (4.28) and (B.4)

tinj(min) ≡ (1− Tcross)t ≈ (1− Tcross,0) t− (1− Tcross,0)Tcross,1 t
2. (4.30)

Although the discussion of sections 4.5.3–4.5.4 focussed on functions used for

tracking loci of material points, i.e. fixed tinj, having the value of tinj(min) can

also be useful. Knowing tinj(min) makes it possible to reconstruct the shape of

the upper region (fixed t), by selecting a set of injected points tinj in the domain

tinj(min) ≤ tinj ≤ t. Then, computing T = 1 − tinj/t for each one, and computing

Ξ and ζ (given by equations (4.21) and (4.20), respectively) for each T at the
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given time t, we can reconstruct the front shape. Thus, we can convert between

material point trajectories and front shapes. This will be explored further in

section 4.8. Once we know the values of Tcross,0 and Tcross,1, we can determine the

perturbed value of A+ at the concave corner (denoted A+cross) by using equation

(4.23), as

A+cross ≈ A+,0(Tcross,0 + tinjTcross,1) + tinjA+,1(Tcross,0 + tinjTcross,1), (4.31)

which upon expanding for sufficiently small tinj gives

A+cross ≈ A+,0(Tcross,0) + tinj
(

Tcross,1A′

+,0(Tcross,0) +A+,1(Tcross,0)
)

≡ A+cross,0 + tinjA+cross,1, (4.32)

whereA′
+,0 denotes the function dA+,0/dT (which is obtained via equations (4.15)

and (4.23)). There are analogous expressions for ζ+ and Ξ+ at the concave corner

(denoted ζ+cross and Ξ+cross): the formulae are given in equations (B.40)–(B.42) in

Appendix B section B.7. There are also analogous expressions, but expanded in

terms of t rather than in terms of tinj. These provide the cross-over values of A, ζ

and Ξ, denoted Across, ζcross and Ξcross: see equations (B.44)–(B.46) in Appendix

B. Various ways to estimate the location of the concave corner, in an effort to

improve upon the first-order estimate y1st,cross already given in equation (4.18),

now present themselves. Based on the definition of ζ+ ≡ (1 − y)/(tinj/2), we

can obtain, by tracking the vertical location of a given injected material point

tinj over time up to its intersection with the concave corner, an estimate of the

y location of the corner. We denote this by yintercross, i.e. the value of the matching

point determined by this intersection, and it turns out to be

yintercross = 1− (tinj/2) ζ+cross(tinj). (4.33)
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Here ζ+cross(tinj) is obtained as already mentioned by tracking tinj on the upper

region using equations (4.24)–(4.25), until its location coincides with the lower

region given by equation (4.26). The value of ζ+cross(tinj) determined here will

not agree perfectly with the expression obtained via a small tinj expansion for

ζ+cross (see equation (B.41) in Appendix B), although agreement should be good

when tinj is sufficiently small. We can combine this expression for yintercross vs tinj

with an expression for time at cross-over t = tinj/(1 − Tcross) vs tinj, this latter

expression again not agreeing perfectly with the Taylor expanded form given

in (4.29). Despite these small discrepancies, a parametric representation of the

cross-over y vs time t can now be obtained by varying tinj. A slightly different

estimate for the second-order vertical location of the concave corner over time t,

can be obtained by combining equation (4.10) with a small t expansion for ζcross

in equation (B.45), obtaining

y2nd,cross ≈ 1− (t/2) ζcross,0 − (t2/2) ζcross,1. (4.34)

In the limit of sufficiently small t, this should agree with what (4.33) predicts,

but is rather simpler to evaluate. Provided we can determine ζcross,1 (the value of

ζcross,0 being already known from literature [104]; see also Table 4.1 later on), we

can estimate the second-order position of the concave corner over time. Predic-

tions for how second-order effects perturb not only the concave corner but also

material point trajectories are discussed in the next section.

4.7 Second-order matching between upper and

lower region

In this section, we determine the effect of selecting a small but finite time upon the

evolution of the upper region of the front, and how the matching point between
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the lower and the upper region moves with time. Recall that we are working

with second-order accuracy in time, in the sense that we have included an order

t2 correction (newly derived here for the upper region, but already given by [104]

in the case of the lower region) to compute vertical location y, and an order t5/2

expression in time (newly derived in the present work) to compute the horizontal

position x or ξ of a material point, with a consistent order of accuracy in time for

both, upper and lower region. After suitable rescaling, this is given by equations

(4.20) and (4.21) for the upper region, and equation (4.22) for the lower region.

In order to measure the concave corner location over time, we use equations

(4.25) and (4.24) to compute the (Ξ+, ζ+) location of the upper region’s material

points, which is done by fixing tinj (following the trajectory of a specific material

point), and then tracking (parametrically in terms of T ) the locus swept out

by the material point, up to the matching point with the lower region, with a

(Ξ+, ζ+) location given by equation (4.26). To find the intersection where the

two regions meet (see the discussion in section 4.5.4), it is sufficient to focus

on a point in the lower region with the same ζ+ value as the material point in

the upper region, and determine the corresponding Ξ+ value via (4.26). This is

what is plotted in Figure B.2 in section B.6 in Appendix B. When the location

of the matching point is found however, we can identify which specific material

point from the lower region (identified by the value of Z0 via equation (4.27))

happens to be present there (again see the discussion in section 4.5.4 and details

in section B.8). Then trajectories of both upper and lower region material points

can be tracked until their intersection. This is what is plotted here in Figure

4.3. The curves are close to overlapping along almost all the trajectory, although

they only actually intersect at the matching point (Ξ+cross, ζ+cross). In Figure 4.3,

we see that the matching point is slightly sensitive to tinj. Increasing tinj causes

it to shift the left (i.e. larger Ξ+) and also slightly downwards (larger ζ+). We

also note Figure 4.3 that values of Z0 are negative (see more explanation in
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(lower) Z0 = −1.06

(lower) Z0 = −1.16

(upper) tinj = 0

(upper) tinj = 0.01

Figure 4.3: Trajectory of fixed material points labelled by tinj in the upper region,
and fixed material points labelled by Z0 ≡ (1− y0)/(tinj/2) in the lower region in
terms of rescaled vertical and horizontal distances ζ+ and Ξ+. Dash-dotted line
for upper region tinj = 0 vs solid line for lower region Z0 ≈ −1.06 (see section B.8
in Appendix B for explanation of how to determine this Z0 value). Dotted line
for tinj = 0.01 vs dashed line for Z0 ≈ −1.16.

Appendix B section B.8). This implies y0 values in excess of unity, i.e. points

not actually present on the front initially, but which instead are extracted from

the corner into the lower region as the system evolves. Although Figure 4.3 only

shows two tinj values (tinj → 0 and tinj = 0.01) we have repeated the calculations

for a number of tinj values in the domain tinj ∈ [0, 0.01], determining in each

case the T value, namely Tcross, at which these points meet the concave corner

(see Figure 4.4) and hence the maximum survival time tmax(tinj), which is also

estimated at least for tinj ≪ 1 by equation (4.29) (see Figure 4.5). We can also

compute A+, ζ+, and Ξ+ at the concave corner (see Figures 4.6(a)–(c)), and then

(by employing equations (4.23)–(4.25)), A, ζ , and Ξ values there (see Figures

4.6(d)–(f)). These expressions plotted in Figure 4.6 break similarity by allowing

separate dependence on tinj and t, rather than holding all values fixed at the

matching point. At sufficiently small tinj and/or t we expect variation in all

the above mentioned quantities to be linear in tinj and/or t, as established by

equations (B.40)–(B.42) and (B.44)–(B.46), respectively (as given in Appendix

B section B.7). Here, we achieve this by focussing firstly on exceedingly small

115



Chapter 4. Second-order accurate solution of foam front propagation in
improved oil recovery

Tcross,0 Tcross,1 A+cross,0 A+cross,1 ζ+cross,0 ζ+cross,1 Ξ+cross,0 Ξ+cross,1

0.9431 0.4608 4.94 16.11 16.52 81.64 20.15 211.28

Across,0 Across,1 ζcross,0 ζcross,1 Ξcross,0 Ξcross,1

1.1784 −0.0528 0.9397 −0.1686 0.2733 −0.0257

Table 4.1: Parameters for equations (4.28), (B.40)–(B.42), (B.44)–(B.46) (given
in section B.7 in Appendix B), and (4.34).

times tinj ∈ [0, 0.0001], thereby obtaining parameters for equations (4.28), (B.40)–

(B.42), (B.44)–(B.46) and subsequently for (4.34), i.e. we obtain firstly Tcross,0 and

Tcross,1 using data for tinj ∈ [0, 0.0001], from which we compute A+cross,0, A+cross,1,

ζ+cross,0, ζ+cross,1, Ξ+cross,0 and Ξ+cross,1, and subsequently Across,0, Across,1, ζcross,0,

ζcross,1, Ξcross,0 and Ξcross,1. These values are summarized in Table 4.1. Note that

although Across,0, ζcross,0 and Ξcross,0, can be straightforwardly expressed in terms

of A+cross,0, ζ+cross,0 and Ξ+cross,0 and Tcross,0 (see equations (4.23)–(4.25)), the

relations for Across,1, ζcross,1 and Ξcross,1 in equations (B.44)–(B.46), are rather

more complex, and these quantities can even have opposite sign from A+cross,1,

ζ+cross,1 and Ξ+cross,1 in equations (B.40)–(B.42), as in fact is obtained here (see

Table 4.1). How such sign changes can arise is discussed in section B.7. The

above mentioned sign changes have the following implication. In a view such as

Figure 4.3, −Ξ+ vs −ζ+, which compares trajectories of material points released

at different tinj, we have already seen that increasing tinj drives the concave corner

to the left and downwards, with the leftward shift being particularly noticeable

due to the large Ξ+cross,1 value in Table 4.1. On the other hand, since ζcross,1 and

Ξcross,1 are negative, snapshots of the instantaneous front shape at various times

t, using now −ζ vs −Ξ coordinates in a view similar to Figure 4.2(a), would show

the corner shifting upwards and to the right, the upward shift being dominant

owing to Ξcross,1 in Table 4.1 being very small. In addition, the negative value of

Across,1 implies that the kink in front orientation angle at the concave corner is

less than first-order theory predicts, but since Across,1, like Ξcross,1, is numerically
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Figure 4.4: Tcross as a function of tinj. Solid line: Value Tcross of the matching
point tracked up to time tinj = 0.01. Dotted line: linear approximation obtained
from data up to time tinj = 0.0001, with Tcross ≈ Tcross,0 + tinjTcross,1 and for
Tcross,0 ≈ 0.9431 and Tcross,1 ≈ 0.4608.

small in Table 4.1, the shift in kink angle is likewise small, compared with the

vertical shift of the corner. The fact that fixing t produces a vertical shift in the

corner location, whereas fixing tinj produces a horizontal shift, indicates how the

similarity solution breaks down, i.e. the solution no longer depends solely on the

ratio tinj/t. We now return to consider tinj values in the domain, tinj ∈ [0, 0.01],

instead of the much narrower domain tinj ∈ [0, 0.0001] used to obtain the data

of Table 4.1. In Figure 4.4 we see Tcross as a function of tinj, and it is clear

that only for small times (tinj ≤ 0.002) we can consider the relation for Tcross to

be a linear function well approximated by Tcross ≈ Tcross,0 + tinjTcross,1 (given by

equation (4.28)), with values of Tcross,0 and Tcross,1 given by Table 4.1. Nonetheless,

at least on the domain of Figure 4.4, we found that as tinj increases, the matching

point Tcross still manages to increase albeit deviating from equation (4.28). The

values of Tcross now affect the behaviour of a number of other quantities (tmax,

tinj(min) as well as A+cross, ζ+cross, Ξ+cross, Across, ζcross, and Ξcross) as we explain

below, with an impact in turn on the corner’s vertical y coordinate location (as

we go on to explain).

4.7.1 Values of tmax vs tinj and tinj(min) vs t

As has been indicated already in sections 4.4 and 4.6, for a given fixed tinj we can

calculate the maximum survival times tmax(tinj) (time at which the injected point
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(a) (b)

Figure 4.5: (a) Maximum survival time, for a given injected material point. Solid
line: tmax/tinj vs tinj, given by equation (B.5) (as given in Appendix B). Dotted
line: approximation given by equation (4.35). (b) Minimum injection time of all
surviving material points as a function of time. Solid line: tinj(min)/t vs t, given
by equation (B.4). Dotted line: approximation given by equation (4.36).

tinj reaches the concave corner). This is obtained by equation (B.5) (as given in

Appendix B) and/or via an expansion (4.29), and is what Figure 4.5(a) shows.

Equivalently (see Figure 4.5(b)) for a given t we can determine the injection time

tinj(min) of the earliest injected point still surviving (see equation (4.30)). From

the data in Figure 4.4 and Table 4.1, specifically via the linear approximation of

Tcross in (4.28), we evaluate equations (4.29) and (4.30), as

tmax/tinj ≈ 17.57 + 142.33 tinj, (4.35)

tinj(min)/t ≈ 0.0569− 0.0262 t, (4.36)

which are also plotted in Figures 4.5(a) and (b), respectively. Overall, equations

(4.35) and (4.36) represent, at least for small time, good approximations to tmax

and tinj(min). Note in particular that tinj(min)/t ≡ 1− Tcross (see equation (B.4) in

Appendix B) so the data in Figure 4.5(b) mirror those in Figure 4.4.

4.7.2 Values of A+cross, ζ+cross, Ξ+cross, Across, ζcross, and Ξcross

Using Tcross obtained from Figure 4.4 we can also determine evolution of the

orientation and position of the concave corner over time, by evaluating either

equations (4.23)–(4.25) or equations (4.19)–(4.21) setting also t = tmax(tinj) via
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(a) (d)

(b) (e)

(c) (f)

Figure 4.6: Values of variables at the matching point over time tinj or t. Different
computations of (a) A+cross, (b) ζ+cross, and (c) Ξ+cross for tinj ≤ 0.01. These are
obtained respectively by equations (4.23)–(4.25) evaluated at Tcross (solid lines),
and by equations (B.40)–(B.42) (dotted lines), with parameters as shown in Ta-
ble 4.1. (d) Across, (e) ζcross and (f) Ξcross, for t = tmax(tinj) = tinj/(1 − Tcross),
with tinj ≤ 0.01, which are obtained respectively by equations (4.19)–(4.21) eval-
uated at Tcross (solid lines), and by equations (B.44)–(B.46) (dotted lines), with
parameters as shown in Table 4.1.

Figure 4.5(a). The behaviour is as follows (see Figure 4.6). In Figures 4.6(a)–

(c) we see how A+cross, ζ+cross and Ξ+cross (i.e. values at the concave corner),

respectively, increase at early times as tinj increases, and then, at slightly larger

tinj, are predicted to decrease. In contrast, in Figures 4.6(d)–(f), we see Across,

ζcross and Ξcross, respectively, decrease as time t increases. The implications of

these findings for ζcross in particular are discussed next.

4.7.3 Data for corner’s vertical location

As can be seen in Figure 4.6(e), ζcross decreases with increasing t, which has an

important implication: the vertical location of the concave corner is higher up
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in y than was predicted at leading order. Using equation (4.34) for the vertical

location of the concave corner over time, along with data from Table 4.1 fed into

equation (B.45) we can deduce

y2nd,cross ≈ 1− 0.4698t+ 0.0843 t2. (4.37)

This is plotted in Figure 4.7, representing an improvement over and above the

formula y1st,cross given by equation (4.18) (also plotted in Figure 4.7). In this

same figure we also show (obtained parametrically by varying tinj) data com-

puted for yintercross = 1 − (tinj/2)ζ+cross, as given by equation (4.33), vs t = tmax ≡
tinj/(1−Tcross(tinj)) as given by equation (B.5) in Appendix B. That this paramet-

ric expression for yintercross vs t must agree well with equation (4.37) for sufficiently

small t follows from the two curves as seen in Figure 4.6(e) initially having the

same slope. As t increases though (albeit well beyond the domain plotted in

Figure 4.6(e)) considerable deviation sets in between yintercross and y2nd,cross, and this

is what we see in Figure 4.7. This is mainly associated with the ζ+cross data

obtained within equation (4.33) falling well below the predictions of a small tinj

expansion given by equation (B.41), ultimately leading to yintercross data exceeding

y2nd,cross. Moreover, we plot an Eulerian predicted position of the concave corner,

a numerical result given in Chapter 3, section 3.4.4 [116], as

yEulerian = 1− 0.4635t+ 0.0784t2, (4.38)

obtained via interpolation of numerical data, fitted over a domain t ∈ [0, 2], in a

space domain x ∈ [0, 2], y ∈ [0, 1], where the grid size for the solution variable

in the numerical Eulerian method was ∆x = ∆y = 2.5 × 10−3, with the time

step ∆t set via the Courant-Friedrichs-Lewy condition (CFL) [156] (see section

3.3 for details). Over the domain in Figure 4.7 these Eulerian data are evidently

close to y2nd,cross data but further away from the data for yintercross. We have also
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(a) (b)

Figure 4.7: Vertical y position of the concave corner as a function of time t.
(a) Dotted line: first-order solution y1st,cross given by equation (4.18). Dash-
dotted line: second-order solution y2nd,cross given by equation (4.37). Dashed line:
Solution for a material point originally at the top of the lower region y2nd,lower,
see equation (4.12). Solid line: Eulerian numerical solution yEulerian, see equation
(4.38). Dense-dotted line: Solution yintercross given by equation (4.33). (b) Zoomed
view of (a) at later times.

plotted the trajectory of the topmost point of the lower region y2nd,lower given by

equation (4.12), via a second-order approximation (see Figure 4.7). By compar-

ing y2nd,lower with the position of the concave corner obtained via our y2nd,cross

we can determine that not only are material points from the upper region being

consumed by the concave corner (which follows because tinj(min) = (1− Tcross)t is

an increasing function of time), but also that material points must initially be ex-

tracted from the concave corner in order to populate the lower region, as early on

y2nd,lower is below y2nd,cross. This however only appears to happen until a certain

time after which points of the lower region start being consumed by the con-

cave corner. Indeed at a certain time y2nd,lower intersects the concave corner (see

Figure 4.7(b)): all extracted points have now been consumed. So, initially new

points are extracted into the lower region, then those same points are consumed,

after which the points originally present in the lower region start being consumed.

We have currently several different methods to estimate the position of the con-

cave corner, hence different estimates of when y2nd,lower and the concave corner
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might coincide. Via the first-order analytical solution for the corner y1st,cross, com-

pared to y2nd,lower, we could determine that originally present points start being

consumed by the concave corner from time t ≈ 0.289 at y ≈ 0.864, although

this result is likely to be unreliable employing as it does y1st,cross. Meanwhile the

point yintercross never coincides with y2nd,lower for any t > 0. However, the second-

order solution for the corner y2nd,cross coincides with y2nd,lower at time t ≈ 1.518

at y ≈ 0.481. On the other hand, using the corner location as predicted via

the Eulerian method, we determine that material points originally present in the

lower region start being consumed by the concave corner at time t ≈ 1.416 at

y ≈ 0.501 (see Figure 4.7(b)). At the comparatively large times considered here,

there is difference among the various predictions. The difference is unsurprising,

since our first and second-order analytical solutions are formally small time ex-

pansions, so we do not expect them to be valid all the way up to t = 2. To

quantify deviations between the Eulerian data and the various other solutions

that we have derived, we measure the root-mean-square (rms) error with respect

to the Eulerian data, up to t = 2. The rms error between yEulerian and y1st,cross

turned out to be 0.1473, between yEulerian and yintercross it was 0.1518, and between

yEulerian and y2nd,cross it was 0.0039. This proves that the second-order solution

given by equation (4.37) gives a much better estimate for the concave corner posi-

tion over time than the first-order solution does, as expected. In addition, the rms

difference between yEulerian and y2nd,lower was found to be 0.0118, which is larger

than the error between yEulerian and y2nd,cross. The difference between yEulerian and

y2nd,cross must come from either higher-order corrections in time (and hence not

captured equations (4.19)–(4.21) nor by y2nd,cross) or else truncation error in the

numerical scheme used to obtain yEulerian. Since the difference between yEulerian

and y2nd,lower is however larger than this, we assert that the difference between

y2nd,lower and the location of the concave corner is genuine and not solely due

to error in our second-order expansion. Thus, we confirm that we are actually
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extracting material points to populate the lower region at early times, but later

on, we consume those extracted points again. However, doubt is still present,

regarding the exact time at which material points originally present on the front

start being consumed, as our estimates require extrapolation out of the t ≪ 1

domain where second-order solutions formally apply. In summary, we found that

our second-order predicted location of the concave corner fits the Eulerian data

reasonably well, at both, small times t ≪ 1 and also up to times of order unity.

Nevertheless, for points away from the concave corner, we have not yet demon-

strated whether the position of the Lagrangian material points forming the upper

region fit front shape predictions from the Eulerian numerical data. This will be

considered in the next section.

4.8 Second-order front shape at later times

In order to check reliability of our second-order results, we compute for a given

time t = 1, the front shape (−Ξ,−ζ) (see Figure 4.8(a)), as a collection of ma-

terial points with different tinj all at the same t, specifically t = 1. Thus, we

fix t and vary tinj from tinj(min) to t, by varying T , from 0 up to Tcross. We plot

(−Ξ,−ζ) at both first-order (equations (4.16)–(4.17)) and second-order (equa-

tions (4.20)–(4.21)) comparing results with the numerical Eulerian data. When

t = 1, the first-order theory predicts tinj(min) = 1 − Tcross,0 ≈ 0.0569 whereas the

second-order procedure (i.e. tracking (4.24)–(4.25) until they match with (4.26))

requires tinj(min) ≈ 0.0997 to achieve matching at t = 1. This is already out-

side the domain tinj ∈ [0, 0.01] analysed in section 4.7, and likewise outside the

domain in which we can apply equation (4.36) to estimate tinj given t. A value

tinj(min) ≈ 0.0997 when t = 1 implies Tcross ≈ 0.9003 in order for equations (4.24)–

(4.25) and (4.26) to match, which is actually less than the value of Tcross,0. It

follows that Tcross initially increases as tinj increases (as per Figure 4.4) but for
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(a) (b)

Figure 4.8: First and second-order solution, for upper and lower region, compared
with Eulerian data at time t = 1. Horizontal and vertical lines labelled with {1},
{2} and {3} specify the matching point between regions. (a) Rescaled front
shape (−Ξ,−ζ). (b) Rescaled front orientation angle A against rescaled vertical
coordinate ζ .

large tinj it starts to decrease. In addition to front shape data (−Ξ,−ζ) as plotted

in Figure 4.8(a), we also show, in Figure 4.8(b), the orientation angle A versus ζ .

For the upper region, this is given parametrically, in terms of A0(T ) and ζ0(T )

(at first-order), and A(T , t) and ζ(T , t) (at second-order), via equations (4.15),

(4.16), (4.19) and (4.20). We also plot the lower region angle A(t) vs ζ(t), which

is determined either using equation (4.1) (accurate to order t3/2 in x) or else

via (B.11) (in Appendix B; accurate to order t5/2 in x) coupled with equation

(4.11). The upper and lower region predictions are compared with Eulerian data,

although in Figure 4.8(b), these display oscillations in the neighbourhood of the

concave corner, which are just numerical artifacts [116].

In Figure 4.8(a), we see how the self-similar nature of ζ and Ξ, present at early

times, is broken at a finite time t = 1. Here, we also appreciate how the upper

region given by equations (4.20) and (4.21), intersects the lower region given by

equation (4.22), at ζ(Tcross, t = 1) ≈ 0.5839 and Ξ(Tcross, t = 1) ≈ 0.1627, with

Tcross ≈ 0.9003 (horizontal line labelled by {1} in Figure 4.8(a)). This point

corresponds to a y value of yintercross at t = 1 (see Figure 4.7). Nevertheless, we
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extend the second-order solution via a linear extrapolation up to the point where

equation (B.45) would predict the location of the concave corner (see section B.9

in Appendix B for details), suggesting instead ζcross(t = 1) ≈ 0.7711 (horizontal

line labelled by {2} in Figure 4.8(a)). This now corresponds to a y value of

y2nd,cross at t = 1 (see Figure 4.7). Here also we see that our current second-order

solution for ζ vs Ξ is closer to the Eulerian data, than the first-order solution

is. Indeed the dotted curve, corresponding to the upper region via a first-order

approximation (ζ0(T ), Ξ0(T )), finishes even further away, with ζcross,0 ≈ 0.9397

and Ξcross,0 ≈ 0.2733 (values quoted in Table 4.1; see horizontal line labelled by

{3} in Figure 4.8(a) corresponding to y1st,cross in Figure 4.7), intercepting the

lower region predicted by (4.18) (thick-dotted line). In addition, we see that the

lower region (given by second-order equation (4.22) at least for parts of the lower

region near the concave corner), is relatively close to the Eulerian solution, more

so than first-order equation (4.9). In Figure 4.8(b), we show the orientation angle

A vs ζ , highlighting, as in Figure 4.8(a), the second-order matching point, which

occurs at ζ(Tcross) ≈ 0.5839 with A(Tcross) ≈ 1.0063 and with Tcross ≈ 0.9003

(vertical line labelled {1} in Figure 4.8(b), corresponding to yintercross). This data

is extrapolated up to the concave corner location predicted by equation (B.45)

(vertical line labelled {2} in Figure 4.8(b), corresponding to y2nd,cross), which

gives ζcross(t = 1) ≈ 0.7711, and a corresponding value of A ≈ 1.1131 (note that

this value is slightly different from that predicted by extrapolation of equation

(B.44), which gives Across(t = 1) ≈ 1.1259). We also show the intersection

between the two regions via the first-order solution (vertical line labelled {3} in

Figure 4.8(b), corresponding to y1st,cross, see section 4.3.2 for details). The value

of A(Tcross) ≈ 1.0063 (labelled by {1}) in Figure 4.8(b) is curious. This is so close

to unity that the orientation of the upper and lower region are nearly parallel,

making it possible in Figure 4.8(a) to extrapolate the solution of the upper region,

and still remain close to the lower region. In a near parallel case like that it is
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difficult to pinpoint exactly where the intersection between these regions occurs.

This may help to explain why the Eulerian prediction seems to give the concave

corner (with a sudden decrease of A in Figure 4.8(b)) at a different ζ value, closer

to the point labelled {2} than {1}: we already know from Figure 4.7 that y2nd,cross

fits yEulerian better than yintercross does. Despite the subtleties, from Figure 4.8(a) and

(b), we see that the current second-order solution fits the Eulerian data better

than the first-order solution does, giving good agreement even up to times of

order unity.

4.9 Conclusions

We have considered a dimensionless form of the pressure-driven growth model

used to predict the foam front propagation in an oil reservoir. The front has been

captured as the region of finely-textured foam of very low mobility, where injected

gas meets reservoir liquid. The foam front is represented as a curve of negligible

thickness, which propagates through the porous medium due to the pressure dif-

ference across it, and at the same time is retarded by dissipation. The focus here

was on early time behaviour, such that the distance the front has propagated hor-

izontally is less than the maximum vertical depth through which it can displace,

albeit some of the results we present are extrapolated beyond that regime. As

was shown in previous studies [104, 116], and also in Chapter 3, the foam front

can be divided vertically into two regions (lower and upper) that intersect in a

concave corner. In this study we have obtained a second-order solution in time,

to track the trajectory of the material points of the upper region of the front, up

to the aforementioned concave corner or matching point between both regions.

Obtaining the second-order solution in the upper region was particularly chal-

lenging owing to strong spatio-temporal non-uniformities that are present there.

Our approach was to start with solutions in terms of dimensionless similarity
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solutions, but then at second-order include corrections showing how those simi-

larity solutions break down. This obtained an approximation accurate to order

t5/2 for the horizontal x location of the material points of the upper region of

the front, and an order t2 accurate approximation for their vertical y location,

in each case, with the same order at which the lower region has been computed.

At any specified time t, a second-order solution predicted the vertical location of

the concave corner higher up than the first-order solution, but very close to the

prediction of an independently obtained Eulerian prediction obtained in Chapter

3. Based on the second-order solutions we can determine that the speed at which

the concave corner or kink moves downwards decreases over time, although as it

moves down on the front its velocity decreases (due to the net driving pressure

also decreasing with depth). Eventually of course it will reach a depth at which

driving pressure is balanced by hydrostatic pressure, and the downward motion

will then cease. We have also proven that initially material points are extracted

from the concave corner to populate the lower region, since the topmost point

originally present on the front at time t = 0 initially moves down faster than

the concave corner does, as predicted via the first and/or second-order solution

obtained in this study. Later on, due to second-order effects in time, with the

downward motion of such material points slowing down over time, the lower re-

gion material points originally on the front eventually reach the concave corner,

which must therefore have consumed any previously extracted material points.

Therefore, we can assert that all points extracted into the lower region are even-

tually consumed, however, based on the different approximations that we use, we

can actually have different predictions for exactly when this occurs. The issue is

that the time we are trying to identify is already sufficiently long that there might

be some uncertainty whether expanding in time as far as a second-order solution

remains adequate or whether yet a higher-order correction is required, which will

be challenging in view of strong spatio-temporal non-uniformities present in the
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upper region. Nevertheless, with the new solutions we were also able to compute

the shape of the upper region of the front, which fitted the Eulerian data even up

to times of order unity. Therefore, the second-order analytical solution frees us

of having to obtain computationally expensive numerical simulations in order to

determine accurately the shape of the front at a specific time, which is relevant

for real field applications.
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Chapter 5

Foam flow in confined straight

channels

This chapter is comprised of a work submitted to the journal Physical Review

E, by Carlos Torres-Ulloa and Paul Grassia. The title of the article is “Viscous

froth model applied to the motion of two-dimensional bubbles in a channel: The

three-bubble case”, which was submitted in late December 2020. In this work the

viscous froth model is used to study the rheology of a system comprised of three

bubbles as they flow in a confined straight channel. Supplementary material to

this work is also presented in Appendix C.
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Summary: The viscous froth model can be used to predict rheological behaviour

of a two-dimensional liquid-foam system comprised of a number of bubbles con-

fined between two glass plates. The model incorporates three physical phenom-

ena: namely the viscous drag force, the pressure difference across foam films, and

the surface tension acting along them, converting any mismatch between the pres-

sure forces and film curvature to film motion. In the so-called infinite staircase

structure, the system does not undergo topological bubble neighbour exchange

transformations, for any imposed driving back pressure, bubbles then flowing out

of the channel of transport in the same order in which they entered it. In contrast,

in a simple single bubble staircase or so-called lens system, for higher imposed

back pressures, topological transformations do occur, helping to relax the system.

The case studied here, i.e. the three-bubble case, bridges between the dynamics

seen in the infinite staircase and simple staircase/lens. Steady state three-bubble

solutions are obtained for a range of bubble sizes and imposed back pressures.

As an imposed back pressure increases quasistatically from equilibrium, systems

undergo either topological transformations, reach saddle-node bifurcation points,

or asymptote to an inherently stable structure which ceases to change as the back

pressure is further increased.

5.1 Introduction

A two-dimensional foam system comprised by three bubbles attached together

is studied in this chapter by using the viscous froth model, particularly as the

system flows along a straight channels in a truncated staircase configuration. Al-

though, other studies have been carried out for more bubbles, these considered

the complication of non-straight channels [21,24], which may affect the dynamics.

What still remains unclear in literature though, even for a straight channel, is

how the staircase system would behave as a function of the number of bubbles.
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Two limiting cases are of special interest for this chapter. These are the so-called

simple lens problem, which consists at equilibrium (in a two-dimensional view) of

a single bubble lens attached to an upper channel wall and a spanning film con-

necting it with the lower channel wall [19] (see Figure 2.7 in section 2.2.3.3), and

the infinite staircase structure [144] (see Figure 2.5(b) in section 2.2.2). While

the simple lens has been characterized as undergoing topological transformation

as the system driving velocity increases [19], the infinite staircase remains stable

(not suffering any topological change) up to arbitrarily large driving velocities.

This work therefore aims to interpolate between the simple lens case and the

infinite staircase structure, by studying as mentioned above a system comprised

of three bubbles in a staircase configuration starting from equilibrium; when seen

in a two-dimensional view (see Figure 5.1) two symmetric (i.e. equal area) bub-

bles are attached to an upper channel wall, and a spanning bubble (possibly of

different size) connects them to the lower channel wall. This system is considered

here in the dry limit, so Plateau’s rules applied.

As is known from literature [19], when the simple lens moves at an increasing ve-

locity v driven via an increasing imposed back pressure pb, is expected to deform

leading to topological transformations and/or loss of stability (at a saddle-node

bifurcation point, see section 2.2.3.3). However, for a large number of bubbles

N ≫ 1 arranged in a staircase, the system is expected to remain in the stable state

without any T1 event [144] (indeed without even any geometric distortion of the

structure), no matter how large a pressure is used to drive it. One of the aims of

this chapter is to establish whether the three-bubble system N = 3 behaves more

akin to the simple lens, or more akin to the infinite staircase, or perhaps whether

it can exhibit either type of behaviour depending on the particular bubble sizes

considered. The methodology considered here is an entirely steady state one, i.e.

the imposed back pressure pb (or in the event that a saddle-node bifurcation is
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encountered, some other variable imposed in lieu) is varied quasistatically, and

changes in the resulting steadily propagating three-bubble structure are tracked

through parameter space. This methodology is adequate to establish for which

parameter sets T1s occur, and to classify the various types of T1 that are found

(T1c, T1u or T1l as mentioned earlier). However an unsteady state approach (not

considered here) would of course be required to examine how the system evolves

following any T1.

The rest of this work is structured as follows. In section 5.2 we introduce a three-

bubble symmetric system, as aforementioned, symmetric in the sense that the

first and third bubbles have equal size. Here it is also shown how the structure

is set up in equilibrium. In section 5.3 we apply the viscous froth model to

obtain necessary conditions for the existence of an inherently stable migration

structure out of equilibrium, at arbitrarily large driving pressure. In section 5.4

we introduce the methodology by which steady state solutions (i.e. solutions for

a steadily propagating but out-of-equilibrium three-bubble system) are obtained

for an arbitrary imposed back pressure. This includes a discussion of the method

by which the solutions are tracked to a topological transformation. Finally in

section 5.5, we present the steady state solution results. Conclusions are offered

in section 5.6. Additional details of equations, results and numerical methods are

relegated to Appendix C, as specified through this paper.

5.2 Three-bubble symmetric system

The system under study in this work is formed of three two-dimensional bubbles

flowing through a straight channel of width L, with two of these attached to

the upper channel wall (bubbles B1 and B3, symmetric as they have the same

size) and one bubble B2 (possibly with a different size) attached to the lower
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v

(a) (b)

Figure 5.1: (a) Equilibrium system for channel of dimensionless width L = 1. (b)
The system is set in motion, travelling at an unknown migration velocity v, as a
consequence of an imposed back pressure pb > 0. The film 13 turns through an
unknown angle δφ13. Moreover δφ02 and δφ20 are no longer opposite and equal.

channel wall (see Figure 5.1(a)). In the dimensionless form of the model, as used

in this work, L = 1. This three-bubble structure is a generalisation of the simple

lens (see Figure 2.7), which had only a single bubble. Note that we consider an

odd number of bubbles here, since in the simple lens case interesting behaviour

stemmed from the fact that unequal numbers of films attached to the upper and

lower walls. Like the simple lens, the three-bubble structure is also a truncated

case of the infinite staircase (see Figure 2.5(b)), albeit not quite so drastic a

truncation. It is comprised of seven films denoted by ij, where the subscript

[i, j] ∈ {0, 1, 2, 3} indicates the bubbles that each film divides (see Figure 5.1(a)),

such that [i, j] ≡ 0 outside the structure. In addition, we use the superscript

“◦” to denote variables in the equilibrium. In the equilibrium state, the pressure

of the spanning bubble B2 corresponds to p◦2, the pressures of the symmetric

bubbles B1 and B3 are p
◦
1 = p◦3, and the imposed back pressure pb satisfies pb = 0.

The distance between the top of the channel and the vertex V1 and V3 is l◦1, and

between the top of the channel and the vertex V2 is l◦2. Films 01, 02 and 12

join at the vertex V1, and the films 12, 13 and 23 join at the vertex V2, while

the films 23, 30 and 20 join at the vertex V3. Finally, the film 12 connects the
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vertices V1 and V2, and the film 23 connects the vertices V2 and V3. Every film

forms an angle of π/2 with the respective wall of the channel and an angle 2π/3

with other films. The length of the films in equilibrium are L◦
01 = L◦

30, L◦
12 = L◦

23

and L◦
02 = L◦

20. Film 13 is flat at equilibrium and the angles through which the

films 02 and 20 turn are δφ◦
02 = −δφ◦

20. It turns out that turning angles on all

other films in the equilibrium state can be determined once δφ◦
02 and δφ◦

20 are

known. In what follows we will consider systems both in equilibrium and systems

that are steadily moving, but out-of-equilibrium (see Figure 5.1(b)). In section

5.2.1 we give further details of the geometry of the three-bubble system. Then,

in section 5.2.2 we introduce the system’s governing equations. In section 5.2.3

we determine the equilibrium structure (further detail in section C.1 in Appendix

C). Finally in section 5.2.4 we describe the conditions to achieve a topological

transformation for the three-bubble system. Understanding all of this geometrical

and topological information turns out to be relevant to the body of results that

we present later on in section 5.5.

5.2.1 Configuration of the three-bubble symmetric sys-

tem

In the (stationary) equilibrium (see Figure 5.1(a)) and (steadily moving) out-

of-equilibrium structure (see Figure 5.1(b)), the films join three by three at the

respective vertices subtending an angle of 2π/3 and join at an angle of π/2 with

respect to the channel side walls. How much a film is oriented at each point is

measured with respect to the vertical in the anticlockwise direction as an angle

φij(sij) (see Figure 5.1(b) and 5.2(c)), where sij corresponds to the distance mea-

sured along a film from a wall or vertex up to a total length per film Lij , with the

direction in which sij is measured to be specified shortly. The orientation angle

at the start of each film is expressed as φij(sij = 0) ≡ φij,0, and the orientation
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v dt

v⊥01dt

Upper channel wall

s01

φ01(s01)

(a) (b) (c)

V1

V2

π/3

π/3

π/3
π/3

δφ02 < 0

−π/3 + δφ02

π/3 + δφ02

−π/3 + δφ13

δφ13 > 0

π/3 + δφ13

Figure 5.2: Angle measurement convention. In (a) and (b), the inset shows
zoomed views near V1 and V2, respectively, for each film meeting at the vertex.
Here, orientation angles are measured in the anticlockwise direction starting from
the vertical (dash line) to the film (thick solid line). (c) View of film 01 which
is attached to the upper channel wall. At a distance s01 measured along it, an
element of the film has an orientation angle φ01(s01) with respect to the vertical.
In a time step dt, the element moves a distance v⊥dt in the normal direction and
an apparent distance v dt = v⊥01dt/ cos(φ01) along the channel.

angles at the ends of films as φij(sij = Lij) = φij,L. Hence, the total turning angle

of each film ij is then expressed as δφij ≡ φij,L − φij,0 (with [i, j] ∈ [0, 1, 2, 3]).

In this work, we consider that for films connected with the upper channel wall,

sij grows downwards, where the initial orientation angle at this point is equal to

φij,0 ≡ 0. Films 12 and 23, are also considered to have sij growing downwards,

so they start at vertex V2 (with sij = 0), where their initial orientation angles are

expressed in terms of δφ13, as specified in Table 5.1. In contrast, for films con-

nected with the lower channel wall, sij is considered to grow upwards, where their

initial orientation angle corresponds to φij,0 ≡ 0. In this work we specify bubble

areas by fixing the vertical distance (measured down from the upper channel wall)

of the vertices V1 and V2 in equilibrium (see section 5.2.3, and further details in

section C.1 in Appendix C). These distances are denoted l◦1 and l◦2, respectively.

Note that in equilibrium, vertex V3 is at the same vertical location as vertex V1 on

symmetry grounds. In addition, we can readily express either for equilibrium and
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Film from to φij,0 φij,L δφij

02 Lower channel wall vertex V1 0 δφ02 δφ02

13 Upper channel wall vertex V2 0 δφ13 δφ13

20 Lower channel wall vertex V3 0 δφ20 δφ20

01 Upper channel wall vertex V1 0 π/3 + δφ02 π/3 + δφ02

12 vertex V2 vertex V1 −π/3 + δφ13 −π/3 + δφ02 δφ02 − δφ13

23 vertex V2 vertex V3 π/3 + δφ13 π/3 + δφ20 δφ20 − δφ13

30 Upper channel wall vertex V3 0 −π/3 + δφ20 −π/3 + δφ20

Table 5.1: Orientation angles φij(sij) for every film, from sij = 0 up to sij = Lij.
Applying rules on vertex meeting angles, the initial and final orientation angles are
expressed in terms of three total turning angles δφ13, δφ02, and δφ20, respectively.

out-of-equilibrium systems, final orientation angles at the ends of films 01 and

12 (at vertex V1), denoted φ01,L and φ12,L, in terms of δφ02, and for films 23 and

30 (at vertex V3), denoted φ23,L and φ30,L, in terms of δφ20. This is what we have

summarized in Table 5.1. Only three of the total turning angles, namely δφ02,

δφ13 and δφ20, are treated as being independent. This follows since, by applying

rules on vertex meeting angles, we can deduce that δφ01 = φ01,L ≡ δφ02 + π/3,

δφ12 = δφ02 − δφ13, δφ23 = δφ20 − δφ13, and δφ30 = φ30,L ≡ δφ20 − π/3.

When the system is set in motion (by imposing an external force) for a given

imposed back pressure pb, we need to obtain in addition the aforementioned

turning angles, film lengths, pressures, and the migration velocity v (see Figure

5.1(b)). Therefore, to define a system we have to determine 19 unknown variables,

namely 7 turning angles δφij (measured from the end to the start of each film),

7 film lengths Lij, 3 bubble pressures pi, the imposed back pressure pb, and

migration velocity v. In this work we propose two different ways of parametrizing

film coordinates. The first one is in terms of film orientation angles φij (varying

between φij,0 and φij,L), and the second is in terms of distances measured along

films sij (varying between 0 and Lij). Using either way of parametrizing, there

are a set of well-defined constraints that must be satisfied.
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If coordinates are computed in terms of orientation angles (see section C.2.1 in

Appendix C), we can reduce the number of independent variables as follows.

Since film lengths can be computed readily in terms of turning angles along films

and vice versa, as explained in section C.2.2 in Appendix C, we can reduce the

number of unknown independent variables to 12. Furthermore, by applying rules

on vertex meeting angles, specifically at vertices V1 and V3, turning angles δφij

can be expressed in terms of the three turning angles treated as independent,

namely δφ13, δφ02, and δφ20, thereby reducing the number of unknown variables

to 8. No further variables can be eliminated by imposing rules on meeting angles

at vertex V2, because vertex V2 is already negotiated both when reaching vertex

V1 via films 13 and 12, and likewise when reaching vertex V3 via films 13 and 23.

For any given set of 8 independent variables as identified above, when computing

film coordinates in terms of orientation angles φij, the system must satisfy 3 area

constraints (one constraint per bubble), plus 4 constraints on the y position, 2

at V1 and 2 at V3. This is explained further in section 5.4.3. No additional

constraints arise from the y position at V2, since this vertex is already negotiated

when reaching V1 and V3 via 12 or 13. Thus we have 8 independent variables

and 7 constraints. One of the variables remains therefore free to be selected

as a control variable, and imposing a value for it then determines all the other

variables. Typically we select a back pressure pb (as in Figure 5.1) to be the

control variable, although as we will see later on, alternative choices are possible.

By contrast, if film coordinates are computed not in terms of orientation angle

φij but rather in terms of distances along films sij (see section C.2.3 in Appendix

C), the number of independent variables can be reduced from 19 to just 12, by

computing film turning angles in terms of film length: this is already explained

in section C.2.2. In that section what is obtained are distances along films sij as

a function of the orientation angles φij and vice versa, from which it is possible

to relate film lengths Lij to film turning angles δφij. In all cases, we have to
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consider 3 constraints on bubble areas. In addition there are 4 constraints on

angles, consistently with Table 5.1, 2 constraints at V1 and 2 at V3. There are

also 4 constraints on y values at vertices, 2 at V1 and 2 at V3. This is explained

further in section 5.4.4. In each case no additional constraints arise from vertex

V2, since the orientation angles at vertices V1 and V3 as well as the y coordinates

there, already depend on negotiating vertex V2. With 12 independent variables

and 11 constraints in total, one of the variables (typically pb, but other choices

are possible) is retained as a control variable.

To summarise, depending on whether we parametrize the system in terms of ori-

entation angles or in terms of distances measured along films, we have different

numbers of independent variables and constraints to consider. However in both

cases there is one more variable than constraint, meaning that one of the variables

can be set as a control. These constraints meanwhile are formulated by applying

the viscous froth model to determine the shape of each film, in terms of pressure

difference across films ∆pij and migration velocity v (see section 5.2.2). Once

these film shapes are established, and film endpoints are specified (in terms of

either δφij or Lij), then enclosed bubble areas, coordinate locations of vertices,

and (if needed) orientation angles at film endpoints can all be determined. The

constraints are therefore merely expressed as functions (albeit complicated non-

linear functions) of the system variables.

We recall that we seek to find, for a given system, not only how it evolves as pb in-

creases, but also whether a topological transformation i.e. bubble rearrangement

occurs. As the three-bubble structure we consider here is rather more complicated

geometrically than the simple lens considered by [19], the set of possible topo-

logical transformations it can undergo is likewise more complicated. We consider

that a T1c topological transformation will take place when the length of film 12
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tends to 0, implying the collision between the film vertices V1 and V2, and that

δφ12 → 0. On the other hand, a T1u topological transformation takes place when

the length of film 30 tends to 0, implying that the vertex V3 has reached the upper

channel side wall, with δφ30 → 0. Meanwhile a T1l1 topological transformation

happens when the length of film 02 goes to 0, implying that the vertex V1 has

reached the lower channel side wall, with δφ02 → 0. In addition, a T1l3 topologi-

cal transformation happens when the length of film 20 goes to 0, implying that

the vertex V3 has reached the lower channel side wall, with δφ20 → 0. Yet an-

other possibility to consider is that the system reaches a saddle-node bifurcation

(further details in section 5.2.4), or reaches an inherently stable structure without

undergoing any T1 whatsoever even for arbitrary large migration velocity (fur-

ther details in section 5.3). Under such circumstances, by analogy with an infinite

staircase, the system should eventually approach a limiting state that does not

suffer any further deformation as pb increases. This is what we discuss in section

5.3. First however we present the model and governing equations (section 5.2.2),

discuss the equilibrium structure (section 5.2.3), and impose conditions on the

out-of-equilibrium topological transformations (section 5.2.4).

5.2.2 Model and governing equations for steady state so-

lution

In this section we recall the methodology used in [19], to obtain the equations

governing the steady state film coordinates of the system. Readers familiar with

this procedure from [19], may prefer to skip directly to section 5.2.3. Equation

(4.35) corresponds to the dimensional form of the viscous froth model, with a

linear viscous drag law. We assume typical parameter values L = 9mm, σ =

27 × 10−3Nm−1, and C = 290 kgm−2 s−1, the latter having been given by [19].

In this work the viscous froth model will be used in its dimensionless form, for
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which v⊥ is rescaled by the velocity 2σ/(LC) ≈ 0.002m s−1 using the scales given

earlier, ∆p by the pressure 2σ/L ≈ 6Nm−2, the curvature κ by 1/L ≈ 111m−1

and finally the time scale by L2C/(2σ) = 0.43 s. Thus the dimensionless viscous

froth model applied to the motion of a local film element can be written as

v⊥ij = ∆pij − κij. (5.1)

Here v⊥ij is the normal velocity, and ∆pij the pressure difference, both mea-

sured in the left to right direction. The curvature term depends on our sign

convention. If sij is measured downwards, we define κij = −dφij/dsij ; when sij

is measured upwards, we define instead κij = dφij/dsij. With this convention,

seen from downstream, convex films are always positively curved and concave

films are always negatively curved. In either case, the left-hand side of the equa-

tion (5.1) represents the linear viscous drag force, and the right-hand side repre-

sents the driving forces, which can only be in balance for a static film (following

Laplace’s law).

If the system is at steady state, then in a small time interval dt, all points in the

structure have a uniform apparent displacement v dt. However the structure’s ap-

parent horizontal displacement is also related to the turning angle and the normal

velocity by v⊥ijdt/ cos(φij). Hence, the left hand side of (5.1) can be expressed

as v⊥ij = v cos(φij). Using the aforementioned definition for the curvature κij ,

velocity v⊥ij , and the pressure difference across films ∆pij , equation (5.1) can be

expressed in terms of the orientation angle φij as

dsij
dφij

= ± 1

∆pij − v cos(φij)
, (5.2)

with the sign “±” set as − for films where sij is measured from the upper to the

lower channel wall direction, and as + for films where sij is measured from the
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lower to the upper channel wall direction. Knowing the range of angles covered

by each film, equation (5.2) can be integrated to obtain film length Lij (see

section C.2.2 in Appendix C). Additionally, a film element of length dsij along

the film which has turned through an angle φij , with respect to the vertical can

be represented in Cartesian coordinates as (dxij , dyij) where

dxij/dsij = sin(φij), (5.3)

dyij/dsij = − cos(φij), (5.4)

if sij is measured downward (as is the case in Figure 5.2(c)), and

dxij/dsij = − sin(φij), (5.5)

dyij/dsij = cos(φij), (5.6)

if sij is measured upward. In both cases φij is measured in the anticlockwise

from the vertical. Then equation (5.2) can be re-expressed, for both cases (sij

measured upwards, and sij measured downwards), as

dxij

dφij

=
− sin(φij)

∆pij − v cos(φij)
, (5.7)

dyij
dφij

=
cos(φij)

∆pij − v cos(φij)
. (5.8)

Equations (5.7), and (5.8) can be integrated with v = 0 to determine the equi-

librium structure (see section 5.2.3 to follow), or with v > 0 to determine the

film coordinates when the structure is set in motion. This latter case with v > 0

is rather more complicated to integrate, so discussion of it is deferred until sec-

tion 5.4.
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5.2.3 Equilibrium structure

When the imposed back pressure pb = 0, the structure is at equilibrium with

v = 0 and δφ13 = 0. Although our main interest in the present work will be

in moving structures with pb, v and δφ13 all being non-zero, understanding the

equilibrium structure is important for the following reasons. Firstly we use two

equilibrium length scales l◦1 and l◦2 (discussed in more detail below) as surrogates

for bubble areas, so it is necessary to understand how they do in fact relate to

bubble areas. Secondly varying the values of l◦1 and l◦2 affects all the length scales

in the structure, including the lengths of all the films. Since T1 transformations

in out-of-equilibrium structures involve films shrinking away to zero, identifying

films which are already particularly short in the equilibrium structure gives an

indication of the types of T1 to which a system is most likely to be susceptible.

These points are discussed below, with additional detail in section C.1 in Ap-

pendix C.

Here equilibrium variables are denoted with the superscript “◦”. The variables

that define the shape of the structure are then bubble pressures p◦1, p
◦
2, p

◦
3 (with

p◦1 = p◦3 on symmetry grounds since bubble areas A1 and A3 are equal), and the

total turning angles δφ◦
02 and δφ◦

20 (with δφ◦
02 = −δφ◦

20 on symmetry grounds). All

these variables can be determined by fixing two parameters that we denote l◦1 and

l◦2. Here as indicated in Figure 5.1(a), l◦1 is the vertical distance between the upper

channel wall to both vertex V1 and V3 (on symmetry grounds), and l◦2 (which is

always less than l◦1) is the distance from the upper channel wall to vertex V2. At

equilibrium moreover, film lengths L◦
ij are determined by energy minimization.

Laplace’s law then applies, implying that all films except film 13 (which is entirely

flat with length L◦
13 = l◦2), are arcs of circles with uniform curvature. The xij and

yij coordinates for each film can be computed by integrating equations (5.7), (5.8)

for v = 0, as determined in section C.1 in Appendix C. Then by imposing meeting

142



Chapter 5. Foam flow in confined straight channels

(a)

(b)

(c)

l◦
1
increasing

l◦
1
increasing

Figure 5.3: (a) Equilibrium structures for a fixed l◦1 = 0.5 and three different l◦2.
Solid line: l◦2/l

◦
1 = 0.1. Dot-dashed line: l◦2/l

◦
1 = 0.3. Dotted line: l◦2/l

◦
1 = 0.45.

(b) Equilibrium structures for a fixed l◦2 = 0.1 and three different l◦1. Solid line:
l◦1 = 0.9. Dot-dashed line: l◦1 = 0.5. Dotted line: l◦1 = 0.15. (c) Polydisperse
bubble areas for three fixed values of l◦1 and various values of l◦2/l

◦
1 ∈ [0, 1].

rules upon the y coordinates at vertices, the bubble pressures p◦1 and p◦2, and total

turning angle δφ◦
02, can be obtained as functions of l◦1 and l◦2. Since at equilibrium

films are arcs of circles, bubble areas A1 = A3 and A2 can be calculated directly

in terms of p◦1, p
◦
2, and δφ◦

02, and therefore can be also computed in terms of l◦1 and

l◦2, albeit via quite complex non-linear equations. These are given by equations

(C.9) and (C.10) in section C.1 in Appendix C.

Figure 5.3 shows how the shape of the equilibrium structure changes as a function

of either l◦2 at fixed l◦1 (Figure 5.3(a)) or l◦1 at fixed l◦2 (Figure 5.3(b)). In Figure

5.3(c), we plot bubble areas for polydisperse systems (polydisperse in the sense

that A1 = A3 6= A2), considering three fixed values of l◦1 and various values of

l◦2/l
◦
1 ∈ (0, 1). As we see, for small l◦1, bubble area A2 is almost always bigger

than bubble area A1 except when l◦2/l
◦
1 is exceedingly close to unity. On the

other hand for large l◦1, a large l◦2/l
◦
1 value gives bubble area A2 much smaller

than A1. We can also deduce that for l◦1 → 1 and l◦2 → 0, the maximum al-

lowed area of bubble B1 corresponds to A1 = A3 = 1.2755 (with A2 = 1.7321).
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(a) (b)

Figure 5.4: (a) Structures for l◦1 and l◦2 for which the areas A1 = A2 (i.e. monodis-
perse system). Solid line: l◦1 versus l◦2 for equal areas (with A1 > A2 above
the solid line and A1 < A2 below it). Dottted line: l◦1 = l◦2. Dash-dotted line
shows l◦2 ≈ l◦1 − (2π/(3

√
3) − 1/2)l◦1

3 obtained in the limit of small l◦1 → 0 and
l◦2 → l◦1 (see equation (C.24) in section C.1.4.1 in Appendix C). Dashed line
shows l◦2 ≈ (6− 2 4

√
3
√
π)/9 + (((14 4

√
3
√
π + 15)π+ 51 4

√
27
√
π)/(108π))(1− l◦1) ≈

0.1483 + 1.0486 (1 − l◦1) obtained in the limit of l◦1 → 1 (see equation (C.30) in
section C.1.4 in Appendix C). The inset figures show the monodisperse struc-
ture for two different combinations of l◦1 and l◦2. (b) Monodisperse bubble areas
A1 = A3 = A2 for values of l◦1 ∈ [0, 1] with different values of l◦2 as given in (a).

For l◦1 → 0 and l◦2/l
◦
1 → 0, we obtain that the area of bubble B2 corresponds to

A2 = 2.8868 (with A1 = A3 = 0.1208). In this l◦1 → 0 limit though particularly

when as l◦2/l
◦
1 exceeds 1/2, the area of bubbles A1 = A3 might become really

small (see Appendix C section C.1.4 for details). Meanwhile the solid line in

Figure 5.4(a) corresponds to the values of l◦1 and l◦2 where the sizes of the bub-

bles are equal A1 = A2 = A3, i.e. the system is monodisperse. A monodisperse

scenario is of particular interest as it could be easily reproducible experimentally

using the same apparatus described in [119]. Points above the solid line have

A1 > A2 and points below it have A1 < A2. In addition, the dotted line on

Figure 5.4(a) shows the maximum allowed value of l◦2, i.e. the line l◦2 = l◦1. Note

that when l◦1 ≪ 1 the monodisperse case approaches close to this dotted line.

In Figure 5.4(a) therefore, small values of l◦1 with l◦2 nearly the same as l◦1, is
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able to give small monodisperse bubbles, albeit in real processes, bubbles this

small are unlikely to pack in a staircase structure with just two bubbles across

the width of the channel. Indeed for l◦1 ≪ 1 it is possible to demonstrate that

monodispersity requires l◦2 ≈ l◦1 − (2π/(3
√
3) − 1/2)l◦1

3 (see dash-dotted line in

Figure 5.4(a)) (see section C.1.4 in Appendix C for details). However as alluded

to above, this relation is of limited interest since bubbles this small (relative to

the channel) would be unlikely to pack in the way indicated, such that bubble

B2 is now highly elongated. More likely to pack in a staircase are monodisperse

systems with large bubbles l◦1 → 1 for which it turns out l◦2 is relatively small,

i.e. l◦2 ≈ (6 − 2 4
√
3
√
π)/9 + (((14 4

√
3
√
π + 15)π + 51 4

√
27
√
π)/(108π))(1 − l◦1) ≈

0.1483+1.0486 (1− l◦1), as given by equation (C.30) in section C.1.4 in Appendix

C (see also dashed line in Figure 5.4(a)).

In Figure 5.4(b) we show for a wide range of values of l◦1 ∈ (0, 1) the area of

monodisperse bubbles, where bigger bubbles are obtained for larger values of l◦1.

However for monodisperse systems with large values of l◦1 and relatively small

values of l◦2 (corresponding to big bubbles), even though a staircase is admitted,

the system might prefer to pack in the so-called bamboo structure [4] (just a

single bubble across the entire channel width as in Figure 2.5(a)), instead of

the staircase structure indicated in the inset of Figure 5.4(a). Based on work

of [4] (as mentioned in section 2.2.2), if L ≤ 2
√

A/π systems tend to prefer

to pack in a bamboo structure, so we can determine that the corresponding

critical area becomes Acrit = π/4 (for dimensionless L = 1) (see straight line in

Figure 5.4(b)). Based on Figure 5.4(b) intermediate values of l◦1 tend therefore to

be of most interest in monodisperse systems, since they are most likely to adopt

a single staircase configuration [4, 127]. As Figure 5.4(a) shows monodisperse

structures with intermediate l◦1, have larger l◦2 values than either the l◦1 ≪ 1 or

l◦1 → 1 monodisperse cases. In order to consider a broad range of behaviours in
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(a) (b)

Figure 5.5: Film lengths L◦
ij in equilibrium, for three fixed l◦1 values and l◦2/l

◦
1 ∈

[0.01, 0.99]. (a) For l◦1 = 0.1 and for l◦1 = 0.5 we compute L◦
12 and L◦

30, and (b)
for l◦1 = 0.7 and for l◦1 = 0.9 we compute L◦

12 and L◦
02.

what follows however, in the rest of this work we will tend to focus on values of

l◦1 ∈ [0.01, 0.99] and l◦2/l
◦
1 ∈ [0.01, 0.99].

Once we have computed an equilibrium state, we know values of bubble pressures

p◦i , film turning angles δφ◦
ij and also film lengths L◦

ij. Values of film length L◦
ij are

of particular interest for the following reason. Although we are considering the

equilibrium state here, later on in this work we will consider driving the system

to an out-of-equilibrium state up to the point of a T1 topological transformation,

at which a film shrinks away to zero length. We have already mentioned (see

section 5.2.1) that four types of T1 are possible, T1c (corresponding to shrinking

of film 12), T1u (corresponding to shrinking of film 30), T1l1 (corresponding to

shrinking of film 02), and T1l3 (corresponding to shrinking of film 20). We can

therefore estimate based on the shortest film in the equilibrium state, to which

type of topological transformation a particular system might be most susceptible.

In Figure 5.5(a), for a small l◦1 = 0.1 we compute L◦
12 and L◦

30 as functions of

l◦2/l
◦
1. This shows L◦

30 being the smaller of the two for most l◦2/l
◦
1 values (T1u

more likely), but being the larger of the two when l◦2/l
◦
1 is close to unity (T1c
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more likely). Likewise for l◦1 = 0.5, we show that L◦
30 < L◦

12 for small l◦2/l
◦
1, but

L◦
30 > L◦

12 for larger l
◦
2/l

◦
1. In Figure 5.5(b), for l◦1 = 0.7 and l◦1 = 0.9 we compute

L◦
12 and L◦

02 (which is also equal to L◦
20) vs l

◦
2/l

◦
1. For small l◦2/l

◦
1, the value of L◦

02

is smaller (T1l1 and/or T1l3 are more likely). For large l◦2/l
◦
1 though, the value of

L◦
12 decreases (T1c is more likely). Note that analysis of equilibrium film lengths

gives an indication of which type of T1 is more likely, but not a definitive proof,

since what matters for T1 is how the Lij values evolve away from equilibrium.

This will be discussed in more detail in section 5.5.

5.2.4 Conditions to achieve a topological transformation

Our aim in the first instance is to introduce slow quasistatic increases in imposed

back pressure pb to evolve the system through a sequence of steady states that

move increasingly far from equilibrium as pb increases. We anticipate however

that for sufficiently high imposed back pressures a steady state structure with

the topology indicated in Figure 5.1(b) might not exist in all cases. This could

happen when certain films in the structure shrink down to zero length implying

a T1c, T1u, T1l1 or T1l3 topological transformation (see Figure 5.6) which then

causes the structure to break up.

Nevertheless for a slowly (i.e. quasistatically) increasing back pressure pb imposed

on a system, there are two conceptually distinct ways in which each of these T1

transformations can occur. First, a particular film might quasistatically shrink

to zero length as an imposed back pressure pb increases towards some critical

pressure p∗b , leading then directly to T1 transformation. In this situation, films

can be maintained with an arbitrarily small length for an arbitrarily long time,

as long as the rate of increase of pb is low. Alternatively (as for the simple lens

system in [19]) systems can reach the end of a solution branch at a saddle-node

bifurcation, such that beyond a certain critical pressure p∗b steady state solutions
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cease to exist, even though all films still have a finite length at p∗b . Again as for

the simple lens [19], the rate of any subsequent evolution would be determined

by the internal dynamics of the system, not by the rate at which an externally

imposed pressure is changed. Once pb attains p
∗
b , typically the internal dynamics

might drive the system to a T1 but (as described in section 2.2.3.3 for the simple

lens) this happens at a rate determined by the system itself: on the approach to

T1, films can no longer be kept arbitrarily short for arbitrarily long times.

This saddle-node scenario implies the existence of a new steady state solution

branch (typically unstable), which meets the original branch at the saddle-node

bifurcation. Since pb cannot be increased beyond p∗b at steady state, in order to

track this new steady solution branch away from the saddle-node bifurcation, we

need to select a new control variable, usually (as in the case of [19]) a total turn-

ing angle δφij . As we track the new steady state solution branch, the value of pb

(which is now a response variable) is found to decrease. Similarly, the migration

velocity v, and possibly the pressures p1, p2, and p3 also, are expected to decrease,

by an amount dependent upon the decrease in pb. This was already seen in [19]

for the simple lens. The expectation is that the new branch can be followed all

the way to a T1 topological transformation, albeit with the value of pb at the T1

in question, now denoted pb,T1, smaller than the aforementioned p∗b . Tracking the

new branch via a steady state methodology is straightforward to do, although we

cannot preclude encountering yet another saddle-node bifurcation, implying yet

another solution branch to be followed requiring yet another change of control

variable. Even though the new steady solution branch itself may be dynamically

unstable (hence difficult to reach from an unsteady state), locating and track-

ing it through the domain pb ≤ p∗b can still be worthwhile. By demonstrating

that it joins up with the original stable solution, we prove the existence of the

saddle-node bifurcation, verifying in turn that for pb > p∗b there is no longer a

corresponding steady state solution.
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What happens to this saddle-node system when pb is increased from a value

slightly below p∗b to a value slightly above it, is now a question of physical inter-

est. That is however an inherently dynamic question that we cannot address with

the steady state methodology to be employed here. Given the lack of steady state

solutions in that domain, we anticipate, that the system would eventually evolve

towards a T1c, T1u, T1l1 or T1l3 transformation (again see Figure 5.6), albeit as

we have already explained, these should now become dynamic events, with their

own internal rate of evolution being unrelated to how slowly increases in pb are

imposed externally. Regardless of whether the T1 is realised quasistatically or

dynamically, a T1c happens when the film length L12 → 0 i.e. the vertices V1

and V2 collide, and consequently δφ02 → δφ13 (see Figure 5.6(a)) or equivalently

δφ12 → 0 (see Table 5.1). Meanwhile a T1u happens when L30 → 0 i.e. the

vertex V3 reaches the upper channel wall, and δφ30 → 0 (see Figure 5.6(b)) (or

equivalently δφ20 → π/3, see Table 5.1) . When a T1l1 takes place L02 → 0

i.e. vertex V1 goes to the lower channel wall, also implying that δφ02 → 0 (see

Figure 5.6(c)). On the other hand a T1l3 takes place when L20 → 0 i.e. vertex V3

goes to the lower channel wall, also implying that δφ20 → 0 (see Figure 5.6(d)).

Specifically in the case of a T1l1, having δφ02 → 0 does not always imply a T1l1,

since for some given pb, that film 02 might have finite length but simply become

flat between changing from being concave to convex (seen from downstream), a

situation that we will see later on does in fact occur.

Thus, when film coordinates are parametrized in terms of orientation angle φij

(as was done by [19]; see also section 5.4.1, and also further details in Appendix

C section C.2.1) we refer in this work to a T1φc,pb, T1
φ
u,pb

, T1φl1,pb, and T1φl3,pb, if

the system reaches a topological transformation by quasistatically increasing pb.

In that case p∗b is the back pressure at which the T1 happens. Meanwhile T1φc,δφij
,
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Figure 5.6: Three-bubble system topological transformations sketches. In (a), (c),
(e), (g) we show the equilibrium structure for systems with different bubble area
distributions. In (b), (d), (f), (h) we show the sketch of the respective topological
transformation.
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T1φu,δφij
, T1φl1,δφij

, and T1φl3,δφij
, are used to denote topological transformations

found on a new solution branch, which we track following a change of control

variable at a saddle-node bifurcation. Here δφij is the new control variable, and

typically it is chosen as the particular turning angle that is driven quasistatically

to zero as the new solution branch approaches the topological transformation.

Thus we would select δφ12 on the approach to a T1c, δφ30 for a T1u, δφ02 for

a T1l1 and δφ20 for a T1l3. In any of these cases, at the T1 itself, generally

pb = pb,T1 < p∗b , since p∗b corresponds now to the aforementioned saddle-node

bifurcation not to the topological transformation itself. An additional scenario

might also be found, in which pb starts increasing again immediately before a

T1, after first having decreased when we switched to a different control variable.

Such cases will be denoted as, e.g. T1φu,δφ30,pb
if δφ30 is used a control variable, or

as T1φl1,δφ02,pb
if δφ02 is used instead.

Note however (as already mentioned in section 5.2.1) we also have the option of

parametrizing film coordinates by distance along films sij, rather than in terms

of film orientation angle φij, the conversion between sij and φij being provided by

equation (5.2) (see also section 5.4.2, and further details in Appendix C section

C.2.2). This can be convenient to do if large segments of particular films turn out

to be nearly straight, meaning they have nearly the same φij but very different

sij . The respective topological transformations are now denoted as T1sc,pb, T1
s
u,pb

,

T1sl1,pb and T1sl3,pb, if they are reached by quasistatically increasing pb. They are

denoted as T1sc,Lij
, T1su,Lij

, T1sl1,Lij
, and T1sl3,Lij

if a change of control variable

is required and the topological transformation is now reached by quasistatically

decreasing one of the film lengths. Here Lij is the specific film length that ap-

proaches zero at the topological transformation, typically L12, L30, L02 or L20

in the case of T1c, T1u, T1l1 or T1l3 respectively. The methodology for how we

track the steady state solution along the stable and, if necessary, the unstable
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solution branches up to the topological transformation is explained in section 5.4.

In summary, in this work we focus on steady state systems increasing back pres-

sure pb quasistatically up to some critical value p∗b , with some (albeit not all)

cases then requiring a switch of control variable at that point, selecting either

a film turning angle δφij or a film length Lij depending on how the system is

parametrized. In all the above mentioned systems, topological transformations if

they happen at all, are observed to occur in only four distinct ways, namely T1c,

T1u, T1l1, or T1l3, corresponding to vanishing of films 12, 30, 02 and 20. Which

one of these transformations occurs depends on the bubble areas A1 = A3 and

A2, which are defined by fixing in the equilibrium state l◦1 and l◦2. Nevertheless,

it turns out that an alternative scenario can arise, namely that as pb is increased

a given system might reach an inherently stable structure, which does not suffer

any further deformation as pb increases. This is described in section 5.3.

5.3 Inherently stable structure

Here we study a type of steady state solution for a three-bubble system that does

not change geometrically as the imposed back pressure pb increases even up to

arbitrarily high levels. Instead the three-bubble structure propagates faster and

faster as pb increases, whilst its geometry does not change (as also happens for

an infinite staircase in Figure 2.5(b)). Key results we deduce are equations (5.9),

(5.10) and (5.11)–(5.13), which are used to predict bubble pressures, orientation

angles, and bubble areas, respectively, when migration velocity v → ∞ and hence

back pressure pb → ∞ also.

As demonstrated in [19], in the high velocity limit, films that are convex (when

viewed from downstream) leave the channel wall at right angles, and are exceed-

ingly flat along most of their length, only curving very sharply in the neighbour-
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hood of vertices away from channel walls. Meanwhile as found in [144], films that

are concave (viewed from downstream) leave walls at a right angle, curve very

sharply near the walls, but then become very flat moving downstream. Both of

these results actually follow from equation (5.1). Via that equation, it is possible

to deduce that for concave films (κij < 0 according to the sign convention in sec-

tion 5.2.2), the largest magnitude of curvature |κij| corresponds to the smallest

magnitude of φij. In contrast for convex films (κij > 0) the largest magnitude of

curvature should correspond to largest magnitude of φij . According to equation

(5.1), large curvatures arise when normal velocity v⊥ij and pressure difference

∆pij are large but out of balance. Since films can only turn through finite angles,

large curvatures κij = ±dφij/dsij are necessarily confined to small distances. In

both cases then (convex or concave), all curvature is confined in a small region

at the upstream end of the film, with moreover the size of this region becoming

smaller as the velocity grows. The analysis below relies on films being sufficiently

long to ensure that the curved region accounts for just a small portion of the

film, with the rest of the film being flat; it therefore relies on bubbles being

comparatively large, as larger bubbles tend also to have longer films.

5.3.1 Structure with almost flat films

Consider now a foam structure composed of three bubbles of some arbitrary

size, travelling in a steady state configuration at a high velocity along a straight

channel, as shown in Figure 5.7. Here by applying equation (5.1) to the convex

film 20 we can deduce that p2 = v, similarly for film 30 that p3 = v. It follows

that film 23 has negligible pressure difference across it, so (if it is also straight

along most of its length) it must be horizontal, with a turning angle along its

length of δφ23 = 0. It also follows that δφ20 = −δφ30 = π/6 (see Figure 5.7). In

addition, consideration of film 02 now tells that pb−p2 = v, from which it follows

that v = pb/2. Film 12 meanwhile has curvature zero at its downstream end
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pb = 2v
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(√
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2
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√
3

2

)
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pb ∼ 2v

p1 ∼ v

(√
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2
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)
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− π
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∼ π/6

v ≫ 1

(a) (b)

Figure 5.7: Three-bubble system travelling along a straight channel in a high
migration velocity limit. Here bubbles B1 and B3 adjoin the upper channel wall,
while bubble B2 adjoins the lower channel wall. (a) Migration velocity v ≫ 1.
Here films are flat over most of their length. Turning angles are indicated as
follows δφ02 → acos(1 −

√
3/2) − π/3, and δφ13 ∼ δφ20 → π/6. (b) Migration

velocity v → ∞. Here films are entirely flat, with all the curvature focused
arbitrarily close to the vertices if film orientation is convex, and arbitrarily close
to the channel walls if film orientation is concave, the sense of the curvature being
as seen from the downstream direction.

(its downstream orientation angle φ12,0 must be −π/6 in order to meet 23 at the

required angle), but curvature on 12 grows moving upstream on the approach to

vertex V1, where it meets films 02 and 01. The orientation of film 13 now follows

from a requirement that it meets 23 at the correct angle. Specifically film 13

now must turn through an angle of δφ13 = π/6 (with the curvature being confined

near the wall), from which we can deduce p1. The normal velocity on the straight

part of this film is v⊥13 = v cos(δφ13) =
√
3v/2 and the pressure difference across

it is p1 − p3 where we already know p3 = v. Hence

p1 =

(√
3

2
+ 1

)

v. (5.9)

The pressure difference pb − p1 across film 01 now becomes (1 −
√
3/2)v. Since

along film 01, curvature κ01 → 0 away from the wall, we determine the maximum
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turning angle for this film as

δφ01 = acos

(

1−
√
3

2

)

≈ 1.4364. (5.10)

Using equation (5.10) we can deduce orientation angles of films 02 and 12, consis-

tently with what is given in Table 5.1. We find that δφ02 = δφ01 − π/3 ≈ 0.3892,

and that δφ12 = δφ01 − π/2 ≈ −0.1344.

Once we know the film orientations and total turning angles, we can compute

bubble areas, just by giving the length of films 12, 23, and 30, from which we

can go on to find constraints upon bubble areas that might reach the inherently

stable migrating structure, proceeding as follows. First we compute bubble areas

for the structure in Figure 5.7(b) in terms of L12, L23 and L30 recognising that

all bubbles are now polygonal in shape. The result is as follows

A1 =
(L30 + L12 cos(φ12,0))

2

2
tan(δφ01) + (L30 + L12 cos(φ12,0))L12 sin(|φ12,0|)

−L2
30

2
tan(δφ13)−

L2
12

2
sin(|φ12,0|) cos(φ12,0),

(5.11)

where this equation recognises that the area of bubble A1 corresponds to a triangle

of height L30 + L12 cos(φ12,0) and base tan(δφ01) times that height, plus a rect-

angle of the same height and a width of L12 sin(|φ12,0|), minus a triangular chunk

belonging to bubble B3 of height L30 and base tan(δφ01) times this, minus another

triangular chunk belonging to bubble B2 of size L2
12 sin(|φ12,0|) cos(φ12,0)/2. The

area of bubble B2 can be computed as

A2 = (1− L30)(L23 + L12 sin(|φ12,0|))−
L2

12

2
sin(|φ12,0|) cos(φ12,0), (5.12)

where the area A2 here corresponds to a rectangle of size (1 − L30)L23, plus an
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additional rectangle of height (1 − L30) and width L12 sin(|φ12,0|), less a small

triangle which is of size L2
12 sin(|φ12,0|) cos(φ12,0)/2. Finally the area of bubble B3

is determined as

A3 = L23L30 +
L2

30

2
tan (δφ13) , (5.13)

which corresponds to a rectangle of size L30L23, plus a triangle of height L30 and

base tan(δφ13) times this. Specifying the value of A1, A2 and A3 (with A1 = A3 in

our system), then defines the values L12, L23, L30. As discussed in section 5.2.3,

our technique for fixing the areas actually involves fixing parameters l◦1 and l◦2

(which are distances from the upper channel walls to vertices in the equilibrium

state). The values of A1 ≡ A3 and A2 on the left hand sides of (5.11)–(5.13) are

then complicated nonlinear functions of l◦1 and l◦2 (see Appendix C section C.1 for

details). Hence solving equations (5.11)–(5.13) will give L12, L23, L30 as functions

of l◦1 and l◦2. Constraints can now be placed on the bubble areas as discussed in

the next section.

5.3.2 Constraints upon the flat film state

We note that (at least as sketched in Figure 5.7) the shortest edge in the system

is L12. It seems then that a likely reason why an inherently stable structure

might not be found would be due to equations (5.11)–(5.13) predicting L12 → 0

for certain combinations of A1 and A2. If we impose the condition L12 → 0

on the above equations, and treat A1 as a free parameter, then the value of A2

(and likewise of L23 and of L30) is fixed for any specified A1. This represents a

minimum A2 for the inherently stable state to exist for any given A1 (see solid line

in Figure 5.8). These results can also be presented in terms of l◦1 and l◦2 and what

we find is that for any given l◦1 there is a maximum l◦2 at which the inherently

stable state can exist. This is shown later in Figure 5.10(b), in section 5.5.1.

On the other hand, there is an alternative way in principle that the structure
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(a) (b)

Figure 5.8: (a) A2 vs A1 relations in the inherently stable state. (b) Zoomed view
of (a). Solid and dashed lines, respectively, show the limit as either L12 → 0 or
L02 → 0. The thin dotted lines meanwhile denote the relationship between A1

and A2 for a fixed value of L30, with L30 decreasing from bottom right to top
left (L30 = 0.9, 0.7, 0.5, 0.3 and 0.1). Also shown is the A1 vs A2 relation for an
equilibrium system in the limit l◦1 → 1, but with variable l◦2 (dash-dotted curve),
the A1 vs A2 relation for an equilibrium system in the limit l◦2 → 0 with variable
l◦1 (bold dotted curve), and the A1 vs A2 relation for an equilibrium system in the
limit l◦1 → 0 with variable ◦

2/l
◦
1 (bold dashed curve): see Appendix C section C.1.4

for details. In addition we show a monodisperse line A1 = A2.
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sketched in Figure 5.7(b) can break up. This is for the length L02 to approach

zero, which requires L30 + L12 cos(φ12,0) → 1 (see dashed line in Figure 5.8). We

have analysed this case, and (see dashed line towards the right of Figure 5.8(a))

yet again there turns out to be a minimum A2 for any A1. However we are

now dealing with A1 values that are rather larger than previously. In fact it is

possible to demonstrate that the bubbles need to be so large for the L02 → 0

limiting condition to apply that it would not be possible to stack them in a

staircase structure at equilibrium in the first place. This can be seen as follows.

The domain of permitted A1 and A2 values to achieve an equilibrium structure

is marked off in the bottom left hand corner of Figure 5.8(a) (see also Appendix

C section C.1.4). The domain is delineated here by the dashed curve l◦1 → 0 (see

Appendix C section C.1.4.1), with variable l◦2/l
◦
1 < 1/2), by the dash-dotted curve

l◦1 → 1 (see Appendix C section C.1.4.2), with variable l◦2, and by the bold dotted

curve l◦2 → 0 (see Appendix C section C.1.4.3), with variable l◦1. The l
◦
1 → 1 curve

can be considered to give a maximum A1 to achieve an equilibrium staircase for

a given selected A2. Meanwhile the l◦1 → 0 and l◦2 → 0 curves can be considered

to give a maximum A2 to achieve an equilibrium staircase for a selected A1.

Outside of this zone marked off in Figure 5.8(a) there would be no equilibrium

staircase structure present that we could subsequently drive out of equilibrium

by imposing a back pressure. The limiting case L02 → 0 of the inherently stable

structure (dashed line to the right of Figure 5.8(a)) does not therefore need to

be considered any further as it corresponds to A1 values well outside the zone in

question. It is only the limiting case L12 → 0 of the inherently stable structure

that is of concern here. In fact it is only a fairly small domain of A2 vs A1 values

(see the zoomed view in Figure 5.8(b)) which are compatible both with having

an inherently stable state with L12 > 0 (the region above the solid line) and with

having originated from an equilibrium staircase structure.
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In Figure 5.8 one way of mapping out the permitted domain of A1 and A2 for

an inherently stable state to exist is to select, in the first instance, a fixed value

of L30, which is a convenient parameter to use since L30 values cover a known

domain L30 ∈ [0, 1]. For each chosen L30, we then map out a locus of A1 and

A2 values by varying L12. A number of these loci are shown in Figure 5.8(a)

by thin dotted curves, which turn out to be very nearly straight lines on that

figure. When L12 → 0 the thin dotted curve intersects the solid curve, and when

L12 → (1−L30)/ cos(φ12,0) (which implies L02 → 0) it intersects the dashed curve

over to the right of Figure 5.8(a). Of course this latter intersection is well outside

the domain of states which form a staircase at equilibrium. For any chosen L30

therefore, there will be on each thin dotted line a maximum L12 (strictly less

than (1 − L30)/ cos(φ12,0), with the value of φ12,0 given in section 5.3.1) forming

a staircase at equilibrium. The equations for these thin dotted lines are given in

Appendix C, section C.3.1.

In the limit of L12 → 0 we can determine by equating (5.11) and (5.13) that

L23 ≈ L30 ((1/2) tan(δφ01)− tan(δφ13)) , (5.14)

which leads in turn to

A1 = A3 ≈ (1/2) (tan(δφ01)− tan(δφ13))L2
30 (5.15)

and

A2 ≈ (1− L30)L30((1/2) tan(δφ01)− tan(δφ13)). (5.16)

Values of δφ01 and δφ13 are known (see section 5.3.1) and we can then de-

duce that for monodispersity L30 ≈ ((1/2) tan(δφ01) − tan(δφ13))/(tan(δφ01) −
(3/2) tan(δφ13)) ≈ 0.4779. This leads to A1 = A2 = A3 ≈ 0.7787.

For comparison, on Figure 5.8(b) we also show via a thick solid line the values
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A1 = A2 giving a monodisperse system. For monodisperse systems at least, the

data plotted here prove that the inherently stable state is only possible for com-

paratively large bubbles, specifically for values of A1 = A2 bigger than 0.7787,

and less than about 1.2565 (note that this lies on the dash-dotted curve l◦1 → 1).

The former value is surprisingly close to π/4 (the bubble area at which a circular

bubble has diameter equal to the channel width, and so may prefer a bamboo

structure over a staircase), while the latter corresponds to l◦1 → 1 as we have

said, along with l◦2 ≈ 0.1483 (monodisperse bubbles any larger than this could

not form an equilibrium staircase at all).

In summary Figure 5.8 (in particular the zoomed view in Figure 5.8(b)) identifies

a permitted domain corresponding straight films moving in the high velocity limit.

However, since for slower migration velocities films are curved, some systems

might undergo topological transformation before reaching the inherently stable

structure. Therefore not all the possible configurations allowed in Figure 5.8(b)

necessarily reach the inherently stable state. In general then Figure 5.8(b) gives

the necessary but not sufficient conditions for the inherently stable state to exist.

In the cases for which the systems satisfy the necessary condition to reach the

inherently stable structure, we can also compute their energy. This corresponds

to the maximum energy that such a system will reach which exceeds the energy

it had at equilibrium: see section C.3.2 in Appendix C for details.

5.4 Steady state solution methodology

In this section, we describe the methodology employed to determine the steady

state migration solution of a moving system. The methodology described here is

based on the work developed in [19] to simulate the motion of a simple lens system

(see Figure 2.7) in a straight confined channel, and is applied here to simulate
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the motion of three bubbles (see Figure 5.1), using a similar operational method-

ology. Readers already familiar with that methodology may wish to skip directly

to results in section 5.5, but in what follows we highlight some of the features of

the methodology, especially those that are particular to the three-bubble case as

opposed to the simple lens. Fuller details can be found in Appendix C section C.2.

Starting from an equilibrium structure, the system can be deformed by applying

an external force, typically by increasing pb, which drives the structure out-of-

equilibrium propagating at an a priori unknown steady migration velocity v.

Hence, for a moving system with well-defined bubble areas set up in equilibrium

by fixing l◦1 and l◦2, we increase pb quasistatically. If a steady state exists, typically

for pb less than some maximum allowed p∗b , we seek to find a configuration, such

that the vertex meeting rules, and also the area constraints are satisfied. Un-

der those circumstances, to determine the x, y coordinates of the films, we must

integrate the equations given in section 5.2.2, the integrated expressions being

explained further in sections 5.4.1 and 5.4.2. These coordinates can be obtained

by parametrizing film coordinates in terms of orientation angles φij or distances

along films sij . Both forms are discussed in detail in section C.2 in Appendix

C. Film coordinates in terms of sij are particularly useful since as the migra-

tion velocity increases, long films tend to become flat (see section 5.3). Hence

almost the same orientation angle φij can be found at many different locations

along the film, but the different locations all have different sij. Regardless of

the parametrization chosen, the state of the system is now fixed via constraint

equations. The constraint equations that apply are deduced in sections 5.4.3 and

5.4.4, respectively.

In the case of parametrizing films in terms of orientation angle φij, the set of

variables that govern the state of the system are as mentioned in section 5.2.1:
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the total turning angles (δφ02, δφ13, and δφ20), bubble pressures (p1, p2, and p3),

and migration velocity (v). All of these can be considered as response variables

for a given imposed back pressure pb, which is specified as the control variable

at least on the stable solution branch. So there are 7 values to find in order

to determine the shape of the moving system. However, as alluded to above,

for systems in which films become flat, it is no longer feasible to compute film

coordinates in terms of orientation angles. We consider that a film has become flat

when the value of |κij| at any point along it falls below a threshold value typically

|κij| < 10−7. There is no risk of confusing this with a film shape containing an

inflection, i.e. a change of sign of κij at just a single isolated point, since inflections

turn out to be precluded for steadily propagating films. Films that are deemed

flat according to the above criterion (excluding of course the equilibrium state

for which κ13 ≡ 0 on symmetry grounds, but which is easily handled via the

methodology of section 5.2.3) are then parametrized in terms of their distance

measured along them sij . In this case, as section 5.2.1 states, the system state is

given by 11 response variables, these being the 7 film lengths Lij, the 3 bubble

pressures (p1, p2, and p3), and the migration velocity (v). Again, all of these

are given as a function of the imposed control variable pb, at least on the stable

solution branch. Regardless of how the films are parametrized, the system must

satisfy the vertex meeting rules (for y coordinates and, where applicable as per

Table 5.1, for vertex meeting angles also), plus bubble area constraints.

5.4.1 Film coordinates in terms of φij

The process of obtaining equations that describe the film shape in terms of orien-

tation angle φij for a three-bubble system in motion generalizes what was already

done for the viscous froth lens studied in [33]. The equations, which are closed-

form analytical expressions albeit quite complex ones, are obtained in Appendix
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C section C.2, and are written here generically as

xij = xij(xij,0, φij,0, aij, v, φij), (5.17)

yij = yij(yij,0, φij,0, aij, v, φij), (5.18)

with xij,0, yij,0 being coordinate locations at the start of the film at φij = φij,0,

and with aij as the mobility parameter defined as aij = v/∆pij. Note that we

obtain two slightly different forms of the generic equation (C.35), one for |aij| < 1

and other for |aij | > 1, as given in section C.2.1 in Appendix C. These equations

for the coordinates will be inserted into constraint equations on y coordinates of

vertices, and on bubble areas.

5.4.2 Film coordinates in terms of sij

If we switch to parametrizing film coordinates in terms of distance measured

along a film, the equations we require are described in detail in section C.2.3 in

Appendix C. The equations we deduce are now given as a function of sij , but

again with aij = v/∆pij . Hence we obtain generic equations for xij and yij in the

form of

xij = xij(xij,0, φij,0, aij , v, sij), (5.19)

yij = yij(yij,0, φij,0, aij, v, sij). (5.20)

On different films, different expressions may be used in terms of aij and sij (de-

pending whether |aij| < 1 or |aij | > 1 and depending whether sij is measured

upwards or downwards). These are given in section C.2.3 in Appendix C. Using

equations (C.42)–(C.43), we can easily obtain film coordinates xij and yij as a

function of distance along a film sij , and these relationships can be still used even

at high velocities when the films become asymptotically flat as in section 5.3.

Again, these equations for the coordinates will be inserted into constraint equa-
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tions on y coordinate of vertices, on meeting angles, and on bubble areas. Where

the constraints come from has already been discussed in physical terms in sec-

tion 5.2.1, but in what follows we present the constraint equations themselves.

5.4.3 Constraint equations in terms of turning angle δφij

Since the films must meet at their respective vertices, we can obtain two sets of

two constraint equations, respectively at V1 and V3

y02(δφ02) = y01(π/3 + δφ02) = y12(−π/3 + δφ02), (5.21)

y20(δφ20) = y23(π/3 + δφ20) = y30(−π/3 + δφ20), (5.22)

where the arguments of each of the yij here are φij,L as specified in Table 5.1.

Note that equations (5.21) and (5.22) fix V1 and V3, and (as already mentioned

in section 5.2.1) a separate equation for V2 is not needed since the locations that

are specified for y12(δφ02 − π/3) and y23(δφ20 + π/3) at V1 and V3 in the above

equations, already depend upon the location of y13(δφ13) at vertex V2.

As the bubbles change shape, no variation in their areas is possible, these areas

being obtained by fixing l◦1 and l◦2 in equilibrium, which then fixes A1 = A3 and

A2. The area constraints can be written in terms of x and y coordinates of films,

taking into account each film bounding the bubble. Given that the system is

comprised of three bubbles, we define three area constraints as follows,

A1 =

∫ δφ01

0

(1− y01)
dx01

dφ01

dφ01+

∫ φ12,0

φ12,L

(1− y12)
dx12

dφ12

dφ12+

∫ 0

δφ13

(1− y13)
dx13

dφ13

dφ13,

(5.23)

A2 =

∫ δφ02

0

y02
dx02

dφ02
dφ02+

∫ φ12,0

φ12,L

y12
dx12

dφ12
dφ12+

∫ φ23,L

φ23,0

y23
dx23

dφ23
dφ23+

∫ 0

δφ20

y20
dx20

dφ20
dφ20,

(5.24)

A3 =

∫ δφ13

0

(1− y13)
dx13

dφ13
dφ13+

∫ φ23,L

φ23,0

(1− y23)
dx23

dφ23
dφ23+

∫ 0

δφ30

(1− y30)
dx30

dφ30
dφ30.

(5.25)
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Here a number of the integration limits δφ01, φ12,0, φ12,L, φ23,0, φ23,L, and δφ30,

can be re-expressed in terms of just three turning angles, namely δφ02, δφ13, and

δφ20 respectively, as summarized in Table 5.1. The equation system (5.21)–(5.25)

has 7 equations and 8 unknown variables, listed as pb, v, p1, p2, p3, δφ02, δφ13 and

δφ20. The variables’ values in the equilibrium structure, by construction, meet

the constraints (5.21)–(5.25) provided pb = 0. However a small perturbation in pb

away from zero, would cause a violation of the constraint equations, unless all the

other variables also change. Perturbing in powers of pb leads to a weakly-driven

migration solution (see section C.4 in Appendix C). Once we have determined all

system variables, for a small change in the control variable pb away from equilib-

rium, we can keep increasing pb in small steps, until either topological transfor-

mation takes place, the system loses stability in a saddle-node bifurcation, or the

inherently stable configuration is reached (albeit the alternative methodology to

be discussed in section 5.4.4 is better equipped for the inherently stable case).

As mentioned earlier (see sections 5.2.1 and 5.2.4), it may also be expedient at

some point to switch pb from being a control variable to a response variable,

using one of the other variables, e.g. a film total turning angle, as the new control

variable. It is in fact be essential to do this in the neighbourhood of a saddle-

node bifurcation, since pb would then have reached a maximum, and so could not

be increased any further without loss of the steady state. The methodology for

selecting the new control variable in such cases is described in section 5.4.5.

5.4.4 Constraint equations in terms of film lengths Lij

When film coordinates are computed in terms of distances along films sij, with

0 ≤ sij ≤ Lij, we can readily impose constraints based on vertex meeting rules.

Considering that at vertex V1 and at vertex V3 the yij(Lij) values of films meeting
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at these points have to be equal, we deduce that

y01(L01) = y12(L12) = y02(L02), (5.26)

y23(L23) = y30(L30) = y20(L20). (5.27)

In addition, the orientation angle φij(Lij) at each vertex must satisfy

φ01(L01)−
π

3
= φ02(L02) = φ12(L12) +

π

3
, (5.28)

φ23(L23)−
π

3
= φ20(L20) = φ30(L30) +

π

3
, (5.29)

consistently with what is shown in Table 5.1. Equations (5.26) and (5.27) are

computed by using equation (C.43) (along with formulae given in section C.2.3

in Appendix C), while (5.28) and (5.29) are computed by equation (C.40) and

(C.41) as given in Appendix C section C.2.2. Note that equations (5.26)–(5.29)

fix V1 and V3, and as was the case in section 5.4.3, a separate equation for V2 is

not needed. On the other hand, again as before, we compute bubble areas for a

steadily moving system albeit now in terms of sij , as

A1 =

∫ L01

0

(1− y01)
dx01

ds01
ds01 +

∫ 0

L12

(1− y12)
dx12

ds12
ds12 +

∫ 0

L13

(1− y13)
dx13

ds13
ds13,

(5.30)

A2 =

∫ L02

0

y02
dx02

ds02
ds02+

∫ 0

L12

y12
dx12

ds12
ds12+

∫ L23

0

y23
dx23

ds23
ds23+

∫ 0

L20

y20
dx20

ds20
ds20,

(5.31)

A3 =

∫

L13

0

(1− y13)
dx13

ds13
ds13 +

∫

L23

0

(1− y23)
dx23

ds23
ds23 +

∫ 0

L30

(1− y30)
dx30

ds30
ds30.

(5.32)

The equation system (5.26)–(5.32) has 11 equations and 12 unknown variables,

listed as pb, v, p1, p2, p3, L01, L02, L12, L13, L23, L30, and L20. The variable values

in the equilibrium structure, by construction, meet the constraints (5.26)–(5.32)

provided pb = 0. Again perturbation solutions can be obtained for small non-zero
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imposed pb, and thereafter solutions can be tracked by taking small steps in pb.

Indeed for a small change in pb away from equilibrium, we can convert values

of response variables obtained via the weakly-driven migration solution in terms

of film orientation angles (see section C.4 in Appendix C) to film length with

the help of equations (C.38) and (C.39), from which the approximated values of

all 12 out-of-equilibrium system variables can be obtained. Then, we can keep

increasing pb in small steps, until either a topological transformation take place,

the system loses stability (at a saddle-node bifurcation), or an inherently stable

state is reached. Again for systems that exhibit a saddle-node bifurcation we need

in particular to switch the control variable from pb to a new variable. The criteria

for selecting the new control variable are explained in the following section.

5.4.5 Setting new control variables

As explained in section 5.2 (see e.g. section 5.2.4), as pb is increased, the system

might reach the end of a steady solution branch at some maximum allowed back

pressure, but without necessarily reaching any topological transformation qua-

sistatically. This implies the existence of a different solution branch (typically

unstable), meeting the original one at a saddle-node bifurcation with pb = p∗b .

To move beyond this saddle-node bifurcation and track the new solution branch,

we can no longer use pb as a control variable, since it has ceased increasing. In-

stead we must switch one of the erstwhile response variables to become a new

control variable. Typically we choose one of the total turning angles δφij in the

case of parametrizing the system in terms of orientation angle φij, or one of the

film lengths Lij in the case of parametrizing in terms sij . The reason that these

turning angles and/or film lengths are sensible choices is that our aim is to follow

the new solution branch up to T1, occurring now at some pb,T1 which is less than

p∗b : the turning angle and length of one particular film necessarily vanish at the

T1 itself. As already mentioned in section 5.2.4, we want however to ensure that
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we select the control variable belonging to the “correct” film, i.e. to the film that

eventually disappears at T1. A strategy for determining which film to select is

presented below.

In the case of computing film coordinates in terms of φij, we augment our system

of variables by introducing turning angles δφij for all 7 films, instead of just the 3

turning angles δφ13, δφ02 and δφ20 we have been working with to date. Of course

this also requires introducing 4 additional equations relating the various δφij to

one another, but these are very simple relations easily obtained via Table 5.1. In

fact the very simplicity of these relations is why it was possible to eliminate 4

of the original 7 values of δφij in the first place. The numerical method should

now select either δφ12, δφ30, δφ02, or δφ20 as the new control variable, since these

are the particular angles that go to zero respectively as the system approaches a

T1c, T1u, T1l1, or T1l3 transformation. We moreover select whichever of these

four turning angles has lowest magnitude since that identifies the type of T1 to

which the system is currently most susceptible. However, if the magnitude of the

smallest of the four is actually increasing on the approach to the saddle-node bi-

furcation point, one of the remaining three with the next lowest magnitude is then

chosen. We then step away from the saddle-node bifurcation point by imposing

small step decreases in the magnitude of whichever δφij is currently the control

variable. Values of δφ12, δφ30, δφ02 and δφ20 are evaluated on each iteration step,

and the choice of the control variable is reassessed such that whichever of these

turning angles has the smallest magnitude at each step (provided the magni-

tude is also decreasing) is selected as the control variable. The choice of control

variable might thereby change, but the procedure ensures that the turning angle

that goes to zero is always eventually selected as the control variable, at least

on the final approach to any T1. We thereby reach either a T1φc,δφ12
, a T1φu,δφ30

,

T1φl1,δφ02
or a T1φl3,δφ20

, the superscript indicating film coordinates parametrized by
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φij and the subscript indicating the new control variable that has now replaced pb.

If film coordinates are parametrized in terms of distances along films sij, the

numerical method sets as the new control variable either L12, L30, L02 or L20,

i.e. one of the film lengths that goes to zero when the system approaches one of

the respective topological transformations. In each iteration step, the film length

with the lowest magnitude is typically chosen. As before, if at the saddle-node bi-

furcation point the smallest of these is increasing, one of the remaining options is

selected, again the one with the next lowest magnitude. This is reassessed in each

iteration step such that the Lij that eventually goes to zero, triggering a topo-

logical transformation, is ultimately chosen. Therefore, in the notation we have

established, the system undergoes either a T1sc,L12
, T1su,L30

, T1sl1,L02
or T1sl3,L20

transformation, as distinct from a topological transformation that is reached on

a single solution branch solely by increasing pb without any saddle-node bifurca-

tion being present.

In summary, in cases for which saddle-node bifurcations are present at some

maximum pb = p∗b , we have established a procedure by which we can switch

robustly from one steady solution branch to another. Although the second branch

is expected to be unstable (hence not readily achieved in experiment), by tracking

it away from p∗b and showing that pb decreases along it, we demonstrate (as already

mentioned in section 5.2.4) that there is a well-defined critical p∗b beyond which

steady state solutions really do indeed cease to exist. This is worthwhile since

it clearly distinguishes the saddle-node bifurcation situation from an alternative

situation in which steady solutions are still present with increasing pb but there is

just some issue with a numerical scheme merely failing to find them. A numerical

scheme could fail for instance because of the way we parametrize films: indeed

films that become nearly flat as pb increases are not readily parametrized in terms
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of orientation angle, and distance along films is a better parameter choice.

5.4.6 Numerical method

In equilibrium, the system variables by construction satisfy the vertex meeting

rules and area constraints, regardless of whether parametrization is in terms of

orientation angle φij (equations (5.21)–(5.25)), or distance along films sij (equa-

tions (5.26)–(5.32)). However, we start off here by parametrizing in terms of

orientation angle. Hence, once the equilibrium structure is set up with pb = 0,

which is done by fixing l◦1 and l◦2, an initial perturbation away from equilibrium

can be obtained using the weakly-driven migration solution (see section C.4 in

Appendix C). This is done for an initial step change of control variable (pb in

the first instance) from the equilibrium by an amount ε = 10−2. Using the

weakly-driven solution as a starting point, the extent to which the constraints

are violated is reduced by employing Newton-Raphson minimization, adjusting

all variable values so as to ensure that the constraint violations are reduced to

within an error of order 10−7 or less. Once this is achieved, we can be confident

that we have found a steady state solution.

After correcting the weakly-driven velocity limit solution, we introduced addi-

tional step changes in the control variable (pb initially) in steps of ε = 0.01, using

the converged solution from one step as an initial guess for the next. If at any

iteration step, the value of |κij | = |∆pij − v cos(φij)| of any film at any point

is such that |κij | < 10−7, we consider switching from parametrizing in terms of

φij to sij. Independently of how we parametrize, if at any iteration step the

Newton-Raphson algorithm fails to find the corresponding steady state solution,

the system variables are taken back to the last, known to be correct, values. Then,

the step size is reduced to half of its original value, i.e. ε = 0.005. This procedure

is repeated until a steady state solution can actually be found for a sufficiently
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small step size. Nevertheless, when ε < 10−6, we assume that no further steady

state solution can be found for the currently selected control variable. This might

imply that we have reached a topological transformation, which we interrogate

by examining film lengths: if a film length has shrunk below ε < 10−6, then it

is considered that a topological transformation has taken place. On the other

hand, if ε < 10−6 and all film lengths are Lij > 10−6, this implies that we have

reached a saddle-node bifurcation. In such cases we switch control variable using

the criteria explained in section 5.4.5. An additional scenario is that in which for

any step change ε > 10−6 the lengths of all films are bigger than 10−6, and the

orientation angles δφij converge to the predicted values for the inherently stable

system (see section 5.3 for details). Convergence is assumed when the difference

of each angle with respect to the predicted ones is less than 10−6. In this case we

consider that the system has reached the inherently stable configuration. On the

other hand, in the case of reaching a saddle-node bifurcation point, we change

the control variable, repeating the procedure again with a step size ε = 0.01, al-

though noting that whereas on the original solution branch we stepped upwards

in pb on the new solution branch, we might be stepping downwards in the new

control variable (we are specifically trying to reduce the magnitude of our chosen

δφij or Lij).

5.5 Steady state out-of-equilibrium results

In this section we present the steady state solution results for systems driven

out-of-equilibrium for a wide range of l◦1 and l◦2, i.e. we consider bubbles with

a variety of different sizes (see Tables C.1 and C.2 in section C.1 in Appendix

C to relate l◦1 and l◦2 to bubble areas). We find the shapes of the bubbles as

they migrate through a confined channel, spanning the range from low to high

imposed driving pressures. We start by studying the effect of having different
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values of l◦1 and l◦2 upon the different possible topological transformations that

the three-bubble system might reach. This is discussed in section 5.5.1. Then

in section 5.5.2 we compare for a selected set of systems, the maximum or criti-

cal imposed back pressure with the pressure at which the system actually attains

topological transformation. In section 5.5.3 we show examples in which we change

control variables in order to track the steady state solution along a second solu-

tion branch. Along this particular branch, the imposed back pressure pb changes,

and typically decreases as the topological transformation is approached. Subse-

quently, in section 5.5.4 we study the system geometry as an inherently stable

configuration is approached. Finally in section 5.5.5 the three-bubble system is

compared with the simple lens system, by computing in each case, the imposed

back pressure vs migration velocity. Additional information concerning how indi-

vidual bubble pressures and system energy change as the imposed back pressure

increases have been relegated to Appendix C section C.5.1 and section C.5.2,

respectively. In addition more information about imposed back pressures needed

to attain topological transformation is found in sections C.5.3–C.5.4.

As these are steady state computations, what matters is to establish under which

conditions steadily migrating structures are admitted and for which conditions

topological transformations take place (but not what happens after those trans-

formations). We explore how film turning angles, film lengths, bubble pressures,

and migration velocity change as the structures deform out-of-equilibrium. In

Figure 5.9 we can see, as an example, the case of a structure characterized in

equilibrium by fixing l◦1 = 0.5 and l◦2 = 0.3. The resulting shape of the migrating

structure is shown for three different imposed back pressures pb. As the struc-

ture deforms away from equilibrium, films either grow or shorten. The majority

of films grow in length, leading to an increment in the system energy (sum of

lengths over all the films). However the film lengths L12 and L30 shrink, leading
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Figure 5.9: Steady state simulation for a fixed l◦1 = 0.5 and l◦2 = 0.3 in the
equilibrium, and three arbitrary imposed back pressures. Solid line: pb = 0.
Dashed line: pb = 9.7037. Dotted line: pb = 14.7037. The energies (i.e. sum of
lengths of all the films) are respectively 3.5849, 3.8116, and 4.1315 so increase
with pb, even though some individual films shorten.

in the cases in which L12 and L30 shrink away to zero to either a T1c or T1u topo-

logical transformation respectively (see discussion in section 5.2.4). In Figure 5.9,

the length of film 02, namely L02, shrinks at first, but at higher pb grows again.

The minimum of L02 turns out to happen roughly around a pb value at which the

film becomes entirely flat (δφ02 = 0), with the film then switching from concave

to convex seen from downstream. Different combinations of l◦1 and l◦2 can however

be found at which the length L02 or L20 shrink all the way to zero, leading to a

T1l1 or T1l3 topological transformation, respectively.

5.5.1 Type of topological transformation for different l◦1

and l◦2 values

To determine for which values of l◦1 and l◦2 the structure undergoes either a

T1c, T1u, T1l1 or T1l3 topological transformation, steady state solutions are

obtained for a wide range of values of l◦1 ∈ [0.01, 0.02, 0.03, ..., 0.99] and l◦2/l
◦
1 ∈

[0.01, 0.02, 0.03, ..., 0.99]. For each system we start off parametrizing the films in

terms of orientation angles φij , and using pb as control variable. However the sys-

tem may reach a saddle-node bifurcation at the end of a stable solution branch,
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and in order to track the steady state solution up to a topological transforma-

tion, we then need to switch the control variable, as specified in section 5.4.5. On

the other hand, if (for large pb) films become very flat, it is recommended (see

section 5.4.6) to switch from parametrizing in terms of orientation angle φij to

parametrizing in terms of distance along films sij . The domain in which we have

to switch to parametrizing in terms of sij is that for large values of l◦1 and small

to moderate values of l◦2/l
◦
1. By contrast, the current scheme (parametrized in

terms of φij) has no issues dealing with small values of l◦1. In the small l◦1 regime,

systems undergo either T1u or T1c topological transformations, with T1u being

favoured for small l◦2/l
◦
1 (area A2 much larger than areas A1 = A3 which are small)

and T1c being favoured for larger values of l◦2/l
◦
1 (less disparity between A2 and

A1 = A3 with all areas being comparatively small). This then is what we show

in Figures 5.10 and 5.11.

In an effort to identify to which type of T1 a given system might be most sus-

ceptible, it is interesting (as mentioned in section 5.2.3) to ask whether any of

the above mentioned films are already quite short in the equilibrium state. Ac-

cordingly we examine the corresponding equilibrium film lengths L◦
12, L◦

30 and

L◦
02 = L◦

20 for a variety of bubble sizes, i.e. a variety of l◦1 and l◦2. This is what

Figure 5.10(a) shows. What we see is that large l◦2/l
◦
1 shows L◦

12 is the smallest

film length (suggesting susceptibility to T1c), small l◦1 (but without very large

l◦2/l
◦
1) shows L◦

30 is the smallest length (susceptibility to T1u), and for large l◦1

(again without very large l◦2/l
◦
1) L◦

02 = L◦
20 is the shortest length (the system

might be susceptible to either Tl1 or Tl3). Although Figure 5.10(a) gives an indi-

cation as to which type of T1 a system might be susceptible, we emphasise that

this is not a definitive proof. The data in Figure 5.10(a) are based entirely on

the equilibrium state, and a film that starts off quite short at equilibrium, might

actually grow rather than shrink as we depart from equilibrium.
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(a) (b)

Figure 5.10: (a) Phase diagram dividing the studied values of l◦1 and l◦2/l
◦
1 in

equilibrium in three regions, each region showing which film length L◦
ij is the

shortest one. The dash-dotted line corresponds to the values of l◦1 and l◦2/l
◦
1 for

which the structure is monodisperse (all bubbles of the same size). Above the
dash-dotted line the area of bubbles A1 = A3 > A2, and below it A1 = A3 < A2.
(b) Topological transformation phase diagram for systems set up at equilibrium
with l◦1 ∈ [0.01, 0.99] vs l◦2/l

◦
1 ∈ [0.01, 0.99]. The dash-dotted line is as per (a).

Figure 5.10(b) shows which type of topological transformation T1 the different

systems actually undergo as a function of l◦1 and l◦2/l
◦
1. Here we show this by

specifying in each case which one of the film lengths Lij shrinks all the way down

to zero, although for the purposes of this figure we make no distinction between

a T1 reached on a stable steady state branch (by increasing pb) and a T1 reached

on an unstable branch that we switch onto after a saddle-node bifurcation. The

different regions on Figure 5.10(b) are divided by dotted lines. There is a rea-

sonable correlation between the regions marked out in Figure 5.10(a) (i.e. which

film length L◦
ij is shortest) and those marked out in Figure 5.10(b) (i.e. which

film length Lij ultimately vanishes at T1). However the region in Figure 5.10(b)

in which T1c events occur (i.e. vanishing L12) is rather larger than Figure 5.10(a)

might suggest. Likewise the region in Figure 5.10(b) in which either T1l1 or T1l3

events occur (i.e. vanishing L02 or L20) is much smaller than Figure 5.10(a) sug-
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(a) (b)

Figure 5.11: (a) Detailed phase diagram for different values (in equilibrium) of
l◦1 and l◦2/l

◦
1. Here we show whether the systems reach a topological transforma-

tion, either a T1c, T1u, T1l1 or a T1l3, or reach the inherently stable migrating
structure. (b) Zoom in of (a).

gests. Monodisperse cases (the dash-dotted line plotted on Figure 5.10(a) and

(b)) tend to correspond to T1c, i.e. L12 → 0, although the monodisperse line also

penetrates the region in which films become exceedingly flat without T1 occur-

ring (i.e. the inherently stable region labelled in Figure 5.10(b) by pb ≫ 1). For

yet larger l◦1, the monodisperse case also penetrates the region where the system

undergoes T1l1 (L02 → 0) or T1l3 (L20 → 0).

In Figure 5.10(b) we also indicate the necessary condition derived in section 5.3.2

for systems to admit an inherently stable state. This is shown by a dashed line,

with the entire region underneath the dashed line meeting the necessary condi-

tion. The information presented here is the same as that presented in Figure 5.8

just expressed in terms of l◦1 and l◦2/l
◦
1 rather than in terms of A1 and A2. The

region of parameter space within which the inherently stable state is actually

found (labelled as pb ≫ 1) is however significantly smaller than this.
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Figure 5.11 shows in detail which specific type of topological transformation the

different systems undergo (if they do so), i.e. whether they approach a T1 via a

stable or unstable solution branch, and whether the systems were parametrized

in terms of φij or sij at the point of reaching it. Looking at Figure 5.11(a) over

a wide range of l◦1 and l◦2/l
◦
1 values, we see that to the bottom left of the figure,

systems favour T1φu,pb, and towards the top right they favour T1φc,pb, although

on the right hand edge cases with T1φl3,pb are observed. Meanwhile in Figure

5.11(b) (zoom in of the bottom right of Figure 5.11(a)), in some cases we see

T1φl1,pb topological transformations. All these transformations subscripted pb are

on an original (believed stable) solution branch which is tracked by monotonically

increasing pb. Topological transformations T1φu,δφ30
and T1φc,δφ12

that occur on an

unstable solution branch are also found for various combinations of l◦1 and l◦2/l
◦
1

in Figure 5.11(a). For the most part, these tend to form “buffer regions” between

the T1φu,pb and T1φc,pb regions. In Figure 5.11(b) we also see examples of T1φl1,δφ02

and T1φl3,δφ02
. As we have mentioned, tracking these sorts of transformations

(subscripted δφij) involves pb reaching a maximum and decreasing again after a

saddle-node bifurcation.

In certain cases, a second saddle-node bifurcation is reached when the steady

state solution is tracked in terms of δφ30 and δφ02. On this new solution branch

pb starts increasing again, just before reaching a topological change. This be-

haviour for pb proves the existence of a second saddle-node bifurcation. Thus the

value of pb increases on an original solution branch, then decreases after a new

control variable is selected to negotiate a saddle-node bifurcation, but finally pb

starts increasing again after a second saddle-node bifurcation, immediately before

the T1. Such cases are denoted T1φu,δφ30,pb
and T1φl1,δφ02,pb

topological transforma-

tions. Whether the solution branch between the second saddle-node bifurcation

and the eventual T1 might be stable or unstable, is not a question we can inter-

rogate with our current steady state solution methodology.
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Whilst saddle-node bifurcations were ubiquitous in the simple lens [19], for the

three-bubble case in Figure 5.11 they occupy a comparatively small fraction of

the l◦1 vs l◦2/l
◦
1 phase space. As alluded to earlier, for the most part, they form

“buffer regions” separating the various T1φu,pb, T1
φ
c,pb

, T1φl1,pb and T1φl3,pb regions

from one another: in “buffer regions” like these, competition between different

types of T1 might be expected.

Also as mentioned in sections 5.4.2, 5.4.4 and 5.4.6 there are certain instances in

which we switch from parametrizing the system in terms of orientation angle φij

to parametrizing in terms of distance along a film sij . The trigger for this change

in parameterization is when curvature |κij| on at least parts of films becomes

small, meaning that different positions on the film have nearly the same φij, al-

beit different sij. This is most likely an issue in systems that have comparatively

large bubbles and hence comparatively long films enclosing them, corresponding

to cases for which l◦1 is large and l◦2/l
◦
1 is small to moderate. This is exactly the

region in Figure 5.11 where the change in parametrization occurs. What we see

for instance in Figure 5.11(a) is a region of T1sc,pb topological transformations

and zooming into Figure 5.11(b) we see T1sc,L12
transformations also. Physically

a T1sc,pb is no different from a T1φc,pb: they both involve monotonic increases in

pb up to a T1, but have merely been computed by parametrizing in different

ways. Likewise, despite the different computational approach, physically there

is no difference between T1sc,L12
and T1φc,δφ12

. Both involve pb increasing up to

a saddle-node bifurcation on one solution branch, and meeting a new (typically

unstable) branch along which pb then decreases.

Additionally Figure 5.11(b) reveals, in the same way that Figure 5.10(b) did,

that some systems also reach the inherently stable structure (labelled here as
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pb ≫ 1), where no further deformation in the structure can be seen. A change in

parametrization from φij to sij is always triggered in this case, since approaching

the inherently stable state, curvatures fall as films become asymptotically flat.

Film orientations and film lengths then approach limiting values, while internal

bubble pressures and migration velocity keep increasing at a constant rate as the

imposed back pressure increases. Although details are not discussed here, we have

checked (see section C.5.1–C.5.2) that computed values of the above mentioned

quantities match with the predicted values given in section 5.3.1. As we already

saw in the context of Figure 5.10(b), just a fraction of all the possible combina-

tions of l◦1 and l◦2/l
◦
1 that would meet the necessary condition for inherent stability

are ultimately seen to achieve that state. In Figure 5.11(b), the domain of in-

herently stable solutions lies lower down in l◦2/l
◦
1 value than the region of T1sc,pb

topological transformations, with the T1sc,L12
region forming a “buffer” between

the two. Other parameter regimes despite meeting the aforementioned necessary

condition, e.g. those with small values of l◦1, undergo topological transformation

(typically T1u) and never reach the inherently stable state. Moreover systems

having large l◦1 and rather small l◦2/l
◦
1 lead, as Figure 5.11(b) shows, to various

types of T1l transformation, e.g. T1φl1,pb, T1
φ
l1,δφ02

or T1φl3,pb.

In summary, we have determined for which values of l◦1 and l◦2 the systems un-

dergo either T1c, T1u, T1l1 or T1l3 (reached either quasistatically by increasing

the imposed back pressure, or else by passing through a saddle-node bifurcation),

or reach the inherently stable migrating structure. In the following sections we

show how, as the imposed back pressure pb is increased, the response variables

change as the system approaches the different topological transformations dis-

cussed above. On the other hand, when we encounter a saddle-node bifurcation,

we need to change control variables from pb to δφij (or to Lij depending how

films are parametrized). The value of pb is now expected to decrease, and we
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want to demonstrate that explicitly. This then is what we discuss in the next few

sections.

5.5.2 Critical imposed back pressure p∗b and T1 back pres-

sure pb,T 1

As we have already discussed, the critical imposed back pressure p∗b corresponds

to the maximum allowed pressure for which a steady state solution exists. At this

point, either the system achieves a topological transformation, or else reaches the

end of the current steady solution branch at a saddle-node bifurcation point. In

the latter case, we can track the steady state solution onto a second branch by

using a different control variable: a turning angle δφij (or one of the Lij values),

allowing us to follow what is now an unstable solution branch all the way to

a topological transformation, which occurs at some pb,T1 less than p∗b . Here we

show for six fixed values of l◦1 ∈ [0.3, 0.5, 0.7, 0.78, 0.9, 0.97] and a wide range of

values of l◦2/l
◦
1 ∈ [0.01, 0.99], the maximum imposed back pressure p∗b for each

system, comparing these values with the pressure pb,T1 at which the systems un-

dergo topological transformation with pb,T1 ≤ p∗b . This is what we see in Figure

5.12. The systems that survive out to largest p∗b tend to be those with large l◦1 and

small to moderate l◦2/l
◦
1, some of these cases being inherently stable (hence having

arbitrarily large p∗b , indicated by zones between vertical dashed lines in Figure

5.12). The data presented in Figure 5.12 are interesting to compare and contrast

with results in [19] for the simple lens. When the lens bubble was small, the

simple lens system was found to be particularly “rigid” or particularly “strong”,

requiring a very large imposed pressure to deform significantly away from the

equilibrium structure but eventually reaching a T1u topological transformation.

For the three-bubble system in Figure 5.12(a) meanwhile, in the case l◦1 = 0.3

say, bubbles B1 and B3 have relatively modest area, but particularly when l◦2/l
◦
1
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1
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(a) (b)

(c) (d)

Figure 5.12: Back pressures p∗b and pb,T1, which only differ from one another in
the case of a saddle-node bifurcation (where relevant pb,T1 are shown with dotted
lines). The circle points “◦” corresponds to the values of l◦2/l

◦
1 for which the

systems are monodisperse. For each fixed l◦1, the different types of T1, as per
shown Figure 5.11 are indicated. In (a) we plot data for l◦1 = 0.3 (solid line), and
for l◦1 = 0.5 (dash-dotted line), in (b) for l◦1 = 0.7, in (c) for l◦1 = 0.78, and in
(d) for l◦1 = 0.9 (solid line) and for l◦1 = 0.97 (dash-dotted line), in each case for
l◦2/l

◦
1 ∈ [0.01, 0.99]. In (b), (c), and (d) the region in between the vertical dashed

lines encloses the systems that reach the inherently stable structure. Here values
of pb ≫ 1 are attained.
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is small, the area of bubble B2 is much larger. The implication of having small

l◦2/l
◦
1 is that film 13 is now so short that the structure (at equilibrium at least) is

almost on the point of becoming two individual simple lenses that happen to be

side by side. Topological transformation is however realized in the same fashion

as for a simple lens, i.e. via a T1u. Nonetheless as section C.5.4 in Appendix

C explains however, the three-bubble system can (compared to the simple lens)

be much more susceptible to T1u owing to the geometry of how the vertex that

undergoes T1u is positioned on the bubbles. In the three-bubble system vertex

V3 tends, even at equilibrium, to be positioned quite far towards the right hand

end of bubble B3 making it easy for the bubble and vertex to slip apart.

Increasing l◦2/l
◦
1, still considering fixed l◦1 = 0.3, causes the size of bubble B2 to

shrink. For very large l◦2/l
◦
1 (very close to unity) all three bubbles B1, B2 and

B3 are quite small area, but unlike the simple lens case, having small bubbles

does not impart stability to the three-bubble structure, in the sense that the

critical pressure p∗b actually decreases as l◦2/l
◦
1 increases (assuming l◦2/l

◦
1 is near

unity) as Figure 5.12(a) shows. The reason for having a comparatively low p∗b

in this situation is that the three-bubble system undergoes a T1c topological

transformation, i.e. a vertex-vertex collision away from the channel walls. There

is no counterpart to this in the simple lens since, for the simple lens, there is only

one single vertex away from the walls. As Appendix C section C.5.4 explains,

there are ways in which a system with small l◦1 can acquire the strength to resist

T1 in a similar fashion to what is seen for a simple lens [19], but it requires a

specific choice of l◦2/l
◦
1, neither too small nor too close to unity.

Now consider a much larger l◦1 (e.g. l
◦
1 = 0.9 or l◦1 = 0.97 as in Figure 5.12(d)) but

still with comparatively large l◦2/l
◦
1 approaching unity. In this system, bubbles

B1 and B3 are comparatively large area, but bubble B2 is small. Unlike the sim-

ple lens though, having this small bubble B2 present once again does not impart
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stability to the system. Again the three-bubble system undergoes topological

transformation at comparatively small p∗b and again the type of transformation

that occurs, namely T1c, is unavailable to the simple lens.

Another contrast between the three-bubble system and the simple lens can be seen

by considering a three-bubble case in which l◦1 is large and l◦2/l
◦
1 is very small. The

three-bubble system breaks up via a T1l1 or T1l3 in this case as Figure 5.12(d)

shows: again this happens at a comparatively small p∗b . That behaviour (a topo-

logical transformation at the lower channel wall), is never seen in the simple lens

system, even for simple lens which at equilibrium would have a very large lens

bubble connected to a very short spanning film, the latter being located near the

lower channel wall. Instead, if the simple lens is deformed out of equilibrium,

the spanning film lengthens significantly, and the topological transformation al-

ways occurs at the upper channel wall [19] rather than at the lower channel wall.

In a simple lens of course, the spanning film is relatively free to lengthen, since

it is not associated with any bubble area constraint. The three-bubble system

is however more constrained: films 02 and 20 connecting to the lower channel

wall both contribute to an area constraint on bubble B2. Increasing the length

of one of these (film 20 say) might require the length of the other (film 02) to

decrease, and that drives a T1l1. Alternatively increasing the length of 02 might

make film 20 shorter, leading to T1l3. Both types of transformation are seen in

Figure 5.12(d) when l◦1 is large and l◦2/l
◦
1 is small.

Further details of the types of topological transformations that are possible, and

why certain types of transformations are selected for certain limiting values of l◦1

and l◦2 can be found in sections C.5.3–C.5.4. One of the points discussed there, is

that a system with bubbles B1 and B3 small, can behave qualitatively differently

(in terms of how strong it is to resist T1) from a system in which just bubble B2
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is small. The difference is found to be related to the quite different bubble shapes

and quite different film curvatures seen when B1 and B3 small versus when B2 is

small.

5.5.3 Imposed back pressure pb vs control variables

Figure 5.12 identified a number of cases that exhibit saddle-node bifurcations

such that p∗b is strictly greater than pb,T1. In such cases a new control variable is

selected at the bifurcation point, and one convenient way to visualize the system

is to plot how pb varies as a function of that new control variable (or vice versa).

The variables that we choose to plot in each case are δφ12 if the system reaches

a T1φc,δφ12
, δφ30 if the system reaches a T1φu,δφ30

, δφ02 if the system eventually

reaches a T1φl1,δφ02
, and δφ20 for if the system reaches a T1φl3,δφ20

. We also plot

L12, in the case of a system reaching a T1sc,L12
. This is what Figure 5.13 shows.

In each case, the new control variable vanishes at the respective T1.

In Figure 5.13 in cases that actually exhibit saddle-node bifurcations, we see the

expected behaviour, i.e. pb increasing on one branch, but decreasing on another.

However there are some complications, as we can see in Figure 5.13(b). Here for

l◦1 = 0.75 with l◦2/l
◦
1 = 0.1 for instance, although pb does indeed decrease as we

move onto the second solution branch, it actually starts increasing again (see inset

of Figure 5.13(b)) right near the end of the branch (at which point the magnitude

of the control variable δφ30 is already very small). The case l◦1 = 0.75 with

l◦2/l
◦
1 = 0.14 is more complex still. On this branch (see the inset of Figure 5.13(c))

the selected control variable δφ02 initially manages to fall to zero, even though

there is no T1. Having the value δφ02 approach zero is a necessary condition

for T1l1 but not sufficient, since it also happens that δφ02 changes sign when 02

switches from being concave to convex. After δφ02 changes sign, its magnitude

(whilst still remaining exceedingly small) is increasing along the solution branch.

In line with the procedure described in section 5.4.5, we therefore temporarily
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(a) (b)

(c) (d)

Figure 5.13: Imposed back pressure pb vs the value of control variables that can
be selected to vanish at the point at which topological transformation is reached.
In each case the dash-dotted line corresponds to a system that reaches the topo-
logical transformation on a stable solution branch (pb increases monotonically up
to the T1, implying no need for a change of control variable in such cases). The
solid lines correspond to the original stable solution branch for a system that
reaches a saddle-node bifurcation (and a change of control variable is applied
at that point). The dotted lines correspond to the so-called unstable solution
branch, where pb now starts off decreasing. Additionally, in (d) we plot L12 for
a system that reaches the inherently stable configuration, with L12 converging to
0.1220, the predicted value for the particular l◦1 and l◦2/l

◦
1 values of the system in

question based on the theory presented in section 5.3.1.
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switch control variable to one of the other film turning angles. As we continue to

track the system, pb is found to fall to a minimum and starts increasing again.

Subsequently δφ02 reaches a maximum and starts decreasing, meaning it can be

selected as the control variable again. Eventually a T1l1 is reached. The case for

l◦1 = 0.80 and l◦2/l
◦
1 = 0.18 has similar features, in that δφ02 initially exhibits a

change of sign without a T1 occurring, and then δφ02 returns back to zero later on

at the T1l1 itself. Here though, pb increases monotonically after the sign change for

δφ02. Also in Figure 5.13(c) we can see cases in which δφ20 approaches zero as the

system reaches a T1l3. Particularly, in the case of l◦1 = 0.96, and l◦2/l
◦
1 = 0.32, the

system reaches a saddle-node bifurcation, with pb after such point decreasing as

the system approaches to a T1l3 on a second solution branch. On the other hand,

in Figure 5.13(d) we see how a system with l◦1 = 0.85 and l◦2/l
◦
1 = 0.2, reaches

an inherently stable structure, with no T1 but instead with L12 approaching (for

these chosen l◦1 and l◦2/l
◦
1 values) a well-defined length of 0.1220. This length can

be predicted on the basis of the theory presented in section 5.3.1. In this case the

system does not undergo any topological transformation, no matter how large pb

becomes. Further analysis of the approach to the inherently stable state is given

in the next section.

5.5.4 Total film turning angles on approach to the inher-

ently stable state

Here we show how the total turning angle of films change as a function of the

imposed back pressure pb, as systems approach the inherently stable structure.

In these cases total turning angles eventually reach values that do not change

significantly as pb increases. Since at each vertex total turning angles are related

as specified in Table 5.1, here we just focus on δφ02, δφ13, δφ20, these being

the total turning angles of the films that connect most directly channel walls
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(a) (b)

Figure 5.14: Turning angles δφ02, δφ13 and δφ30, vs imposed back pressure pb.
We consider two different values of l◦1, and one value of l◦2/l

◦
1 in each case. As

pb increases, turning angles approximate to values deduced in section 5.3.1, via
a prediction for an inherently stable state, specifically. As pb increases, δφ13 and
δφ20 approach π/6, and δφ02 approaches acos(1 −

√
3/2) − π/3 ≈ 0.3892. (a)

l◦1 = 0.78 with l◦2/l
◦
1 = 0.21. (b) l◦1 = 0.9 with l◦2/l

◦
1 = 0.23.

with respective vertices. As the imposed back pressure is increased more and

more, total turning angles δφ13 and δφ20 approach π/6, and δφ02 approaches

acos(1 −
√
3/2) − π/3 ≈ 0.3892, as obtained in section 5.3.1. This is what we

show in Figure 5.14.

5.5.5 Imposed back pressure pb vs migration velocity v

As was shown in [19], for the simple lens, the driving velocity v is a (weakly) non-

linear function of the imposed back pressure pb, with smaller bubbles reaching

higher critical pressures than the larger ones. The velocity was well approximated

by v ≈ pb for the simple lens. Here we study for the three-bubble symmetric

system how the driving velocity changes as a function of the back pressure, when

different systems are considered. Specifically, we computed the driving velocity

for l◦1 ∈ [0.5, 0.7, 0.9], in each case with l◦2/l
◦
1 = 0.5, up to pb = p∗b (see Figure 5.15).

We can determine that for the three-bubble system, the migration velocity is
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(a)

(b)

(c)

Figure 5.15: Steady state migration velocity v as a function of the imposed
back pressure pb. (a) Different values of l◦1 ∈ [0.5, 0.7, 0.9] for the same value
of l◦2/l

◦
1 = 0.5 are considered. In (b) and (c) we plot a simple lens vs a three-

bubble symmetric case system. Cases are: the three-bubble case with l◦1 = 0.5
and l◦2/l

◦
1 = 0.899 (solid line in (b) and (c)), and the simple lens with l◦1 = 0.4044

(dotted line in (b)) and with l◦1 = 0.5 (dashed line in (c)). Bubble areas are
A1 = A2 = A3 = 0.1339 for the three-bubble system. In the simple lens cases
A1 = 0.1339 (for l◦1 = 0.4044) and A1 = 0.2047 (for l◦1 = 0.5).

approximately v ≈ pb/2. This relation (which is consistent with the predictions in

section 5.3.1) comes from the fact that moving across the three-bubble structure,

we must cross at least two films. For any chosen l◦1, this relation turns out

not to change significantly as we vary l◦2/l
◦
1, in all the studied cases, the values

superposing each other on the scale of Figure 5.15: variation of the v-pb relation

with respect to l◦2/l
◦
1 is exceedingly weak. Some slight variation can be seen when

different values of l◦1 are considered (at fixed l◦2/l
◦
1), but even this variation is

comparatively weak. Variation seen in Figure 5.15(a) thereby shows the “less

weak” of these two weak functions, and for simplicity in each case we plot, just

one fixed value of l◦2/l
◦
1. In Figure 5.15(a), we can see that for increasingly large

values of l◦1, the v vs pb curves have very slightly lower slopes, the system travels

at very slightly lower velocity.

In Figure 5.15(b)–(c), we plot for l◦1 = 0.5 and l◦2/l
◦
1 = 0.899 (a monodisperse
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three-bubble system) against a similar simple lens structure obtained for the

same area (Figure 5.15(b)) and also a simple lens with the same l◦1 = 0.5 (Figure

5.15(c)). The bubble areas in the three-bubble system are A1 = A2 = A3 =

0.1339, whereas the bubble area in the simple lens cases is A1 = 0.1339 with

l◦1 = 0.4044 (dotted line in Figure 5.15(b)), or else is A1 = 0.2047 when l◦1 = 0.5.

Even the latter simple lens case here is not too far away from each area for the

three-bubble system. There is a weak l◦1 dependence in the v-pb relation in the

simple lens case: larger l◦1 gives a slightly smaller v at any given pb, and more-

over larger l◦1 means the system only survives out to a smaller pb (and hence a

smaller v). These effects are predicted by [19]. In both the simple lens cases,

the systems reach saddle-node bifurcations: switching to a new solution branch

causes migration velocity v and pressure pb to start decreasing before reaching a

topological transformation. However, in the simple lens cases plotted here, the

“increasing pb” and “decreasing pb” solution branches have nearly the same v-pb

relationship, namely v ≈ pb. Hence in each case, the data for the two branches

(stable and unstable) almost overlay one another, so are only barely visible as

separate branches in Figure 5.15(b).

This same behaviour (i.e. increasing and decreasing pb branches nearly overlaying

one another) was seen for the three-bubble system in cases (albeit not plotted

here) in situations where it undergoes a saddle-node bifurcation. The present

three-bubble system (l◦1 = 0.5, l◦2/l
◦
1 = 0.899) however has no saddle-node bifur-

cation, but instead attains a T1c with pb monotonically increasing. On the other

hand for the three-bubble system, the major change that we see is that v ≈ pb/2

(instead of v ≈ pb for the simple lens). The factor of 1/2 follows as mentioned

earlier because to traverse the three-bubble structure from left to right we must

cross, at the very least, two films (i.e. 02 and 20 which are both attached to the

lower channel wall). Another observation we make is that the three-bubble case
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considered here survives out to a higher pressure, but almost the same velocity as

the simple lens, regardless of whether we consider a simple lens of the same l◦1 or

of the same bubble area. This indicates that the particular three-bubble system

considered here is at least of “comparable strength” to the simple lens, because

even though the three-bubble system survives out to higher back pressures in

total (which it manages to achieve merely through having more films that must

be crossed from one end of the structure to the other), it still only survives out

to comparable velocities (and hence comparable imposed pressure difference per

film crossed). This is potentially significant because, as we add yet more bubbles

and approach the limit of an infinite staircase, a structure that eventually ex-

hibits topological transformation might only be stable out to a specified imposed

pressure difference per film. On the other hand, three-bubble systems that reach

an inherently stable configuration without topological transformation however

(different choices of l◦1 and l◦2/l
◦
1 from those plotted here) survive of course out to

arbitrarily large imposed pressure per film.

In summary, in the simple lens case, which consists of one bubble attached to a

spanning film, the migration velocity approaches v ≈ pb, whereas in the three-

bubble symmetric case, which consists of two bubbles of equal size plus a spanning

bubble (hence two films attached to the lower channel wall), the migration ve-

locity approaches v ≈ pb/2. By extension we can deduce that for N bubbles

arranged in a staircase structure, the migration velocity should correspond to

v ≈ 2pb/(N + 1). Nevertheless, we do not know definitively whether in the case

when N ≫ 1, the system always survives out to arbitrarily large pb per film,

effectively reaching arbitrary large velocities v also, or whether it breaks at more

modest velocities. Results from the three-bubble system indicated that for certain

parameter choices (i.e. certain choices of bubble areas) the structure survived out

to arbitrarily large velocities, but other parameter choices only survived out to ve-
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locities comparable to those achieved in the single lens. Finally note that velocity

v is just one response variable out of several that we can analyse. Other response

variables such as bubble pressures and total film energies can be examined, but

that discussion is relegated to Appendix C sections C.5.1–C.5.2.

5.6 Conclusions

We have obtained steady state solutions for three-bubble staircase structures

(two symmetric, equal area bubbles B1 and B3 adjoining one channel wall, and

B2, possibly of different area, adjoining the other). The structure is specified in

the equilibrium by a symmetric configuration, which is set by fixing l◦1 and l◦2,

that correspond to vertex distances from a channel wall with respect to the width

of the transport channel. Here small values of l◦1 represent small areas for bubbles

B1 and B3, whereas large values of l◦1 imply that bubbles B1 and B3 are larger.

For values of l◦2 exceedingly close to l◦1 the size of bubble B2 is small relative that

of bubbles B1 and B3. In contrast, for values of l◦2 ≪ l◦1 the size of bubble B2 tends

to be larger than that of B1 and B3. For any given l◦1, a monodisperse scenario is

found at some point in between these limiting cases for l◦2.

Moving to an out-of-equilibrium state, typically by imposing a driving back pres-

sure on the system, we have determined the shape of the bubbles as these systems

migrate through a straight channel, looking at a range of migration velocities

from low (i.e. near equilibrium) to high (large deviations from equilibrium, possi-

bly even to the point that the structure breaks up). It is clear that the staircase

structure with three bubbles, exhibits more complex and richer dynamics than

the simple lens problem [19]. By tracking the steady state solution, different

types of topological transformations were found to cause break up of the struc-

ture. These were T1c (vertex-vertex collision), T1u (transformation at the upper
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wall) and T1l1 or T1l3 (transformation at the lower wall). In the simple lens

only the T1u could occur. More specifically, as the driving back pressure pb is

increased, possible outcomes are:

• A quasistatic T1c in which vertex V1 (at the upstream end of the structure)

and vertex V2 (in the middle of the structure) come together and collide

as the driving back pressure pb is gradually increased. This happens for a

wide range of l◦1 but with comparatively large l◦2/l
◦
1, hence bubble B2 smaller

than, or of comparable size to bubbles B1 and B3.

• A quasistatic T1u in which vertex V3 (at the downstream end of the struc-

ture) moves to the upper channel wall. This happens again for a range of

l◦1 but with comparatively small l◦2/l
◦
1, hence bubble B2 is rather larger than

B1 and B3.

• A quasistatic T1l1 in which vertex V1 moves to the lower channel wall. This

happens for large l◦1 and very small l◦2/l
◦
1, hence bubbles B1 and B3 are large,

whilst B2 is even slightly larger.

• A quasistatic T1l3 in which vertex V3 moves to the lower channel wall. This

happens for very large l◦1 and a range of l◦2/l
◦
1, hence bubbles B1 and B3 are

large, but bubble B2 could be smaller.

• A saddle-node bifurcation in which the aforementioned T1c, T1u, T1l3

and/or T1l1 would still occur, but they now occur dynamically rather than

quasistatically. In a phase diagram of l◦1 vs l
◦
2/l

◦
1, these tend to form “buffer”

zones separating the various quasistatic T1c, T1u, T1l1, T1l3 and regions

from one another.

• The system does not undergo any break up no matter how large the back

pressure is (it reaches an inherently stable state). This tends to happen for
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large l◦1 and small to moderate l◦2/l
◦
1, hence areas of all bubbles B1, B2 and

B3 tend to be large.

In spite of the different ways that the structure could break, the three-bubble

system was found, at least in one particular case we studied, to be of compara-

ble strength to the simple lens. It survived out to higher driving back pressures

(which is expected because more films require higher pressure to move them) but

it just reaches similar velocities, therefore comparable imposed driving pressure

per film. There were exceptions to this however, particularly when one or more

bubbles were small. The simple lens is known to be difficult to break in that

case, but the three-bubble system breaks much more readily in that case, often

via the T1c route which is not available to a simple lens. Cases when bubbles

were particularly large (as opposed to small) admitted yet another behaviour,

tending to an inherently stable state, a point which we return to shortly.

In some cases, the aforementioned topological transformations could be induced

by tracking a single solution branch increasing imposed back pressure quasistat-

ically (which physically implies a system could be held arbitrarily close to the

transformation for an arbitrarily long time) but in other cases they required

tracking two distinct solution branches (a situation that was ubiquitous for the

simple lens [19]). These two distinct solution branches then meet at a saddle-node

bifurcation, as referred to earlier, and were found by tracking solutions firstly by

increasing the imposed back pressure, and subsequently by varying a film turning

angle, when systems were parametrized in terms of orientation angles, or alterna-

tively varying a particular film length, when systems were parametrized in terms

of distances along films. These become the control variables for tracking the sec-

ond steady state solution branch, whilst imposed back pressure takes the role of

a response variable and actually starts to decrease as the new solution branch is

tracked.
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As obtained for the simple lens case, here we expect that the stable solution

branch is the one obtained by using imposed back pressure as control variable.

As we approach the back pressure corresponding to the end of that branch, all

films retain finite lengths so a topological transformation has not yet occurred.

Nonetheless no steady state solutions are permitted for any larger back pressure,

so if a larger back pressure were to be imposed, the structure must evolve, pre-

sumably towards a topological transformation. As also occurred in the simple

lens case, the evolution towards the transformation is expected now to be dy-

namic rather than quasistatic: the system can no longer be held arbitrarily close

to the transformation for an indefinite period. Unsteady state simulation (rather

than the steady state methodology used here) is then required to analyse this case.

Dealing with multiple solution branches and associated saddle-node bifurcations,

was not the only computational challenge we faced. For a sufficiently high im-

posed back pressure (hence sufficiently high speed) and for sufficiently large bub-

bles, films become relatively flat. It is no longer possible to compute the film

coordinates in terms of a film orientation angle, since many different points on

the film turn through nearly the same angle. It is then expedient to change the

system coordinates, and parametrize in terms of distance measured along films in-

stead of film orientation angle. It is only through using that parametrization, that

we identified cases (with large l◦1 and small to moderate l◦2, i.e. with large bubbles,

or more correctly large bubbles relative to channel size) that do not undergo any

topological transformation whatsoever, even for an arbitrarily high imposed back

pressure, suggesting (as alluded to earlier) the existence of an inherently stable

state. In such cases, the three-bubble system can therefore propagate along the

channel exceedingly quickly without breaking up. This is particularly relevant

in a foam microfluidic system: if one wants to deliver a collection of bubbles (or
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equivalently for emulsion microfluidics, a collection droplets) very quickly along

a channel, then for a given bubble size, the channel width could be chosen as to

ensure that the bubble size to channel size ratio is in the regime for which high

velocities can be delivered.

As more bubbles are added to the system, we anticipate this inherently stable

situation to become more common for a wider range of bubble sizes, since systems

with many bubbles are expected to be able to attain arbitrarily high migration

velocities (hence arbitrarily high imposed driving pressure per film), without un-

dergoing any topological transformation. On the other hand, a structure propa-

gating at high speed which does break up via topological transformation, might

actually undergo multiple topological transformations, given that we have iden-

tified that various different types of transformation (e.g. T1c, T1u, T1l1 and T1l3

mentioned earlier) are now permitted. In order to determine how a system evolves

after a first topological transformation and subsequently how a sequence of mul-

tiple transformations would occur, we must compute unsteady state simulations.

This will be done in future work.
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Conclusions

The physics of liquid foams have been reviewed in this work, starting from basic

concepts such as how foams are created, their geometry, and governing forces,

up to a discussion of mathematical models used to predict how foams move and

behave under different conditions. However, just a sample of existing models has

been reviewed in depth here, particularly those related to the main works pre-

sented in chapters 3–5.

Liquid-foam applications have also been discussed, emphasizing processes in which

foam flows within porous media, and/or within straight confined channels. Foam

flow through porous media is generally studied via macroscale simulation, specif-

ically by using interface motion models such as those, e.g. derived from Darcy’s

law or a special case thereof, the pressure-driven growth model, which is believed

to model the surfactant alternating gas process of foam improved oil recovery

reasonably well. Based on the predictions of this model (i.e. how foam fronts

sweep through porous oil reservoirs), relevant information can be obtained and

used to control and optimize real process operations in foam improved oil re-

covery processes. This is discussed in chapters 3 and 4. The pressure-driven

growth model is based on an underlying fractional-flow theory, which consists of
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a one-dimensional model used to determine foam mobility within porous media

(and thereby the mobility of the two-dimensional foam front in pressure-driven

growth) [64]. Other models to predict foam mobility are also presented and dis-

cussed in this thesis, particularly in Chapter 2.

In addition to describing how pressure-driven growth is obtained (in Chapter 2),

relevant works available in the literature that apply the model have been ana-

lyzed, especially those related to the work presented in chapters 3 and 4, which

corresponds to the novel contribution of this work to the literature, as summarised

below.

The pressure-driven growth model captures the foam front in a two-dimensional

space by a thin curve which represents the region in which a finely-textured foam

is being generated, particularly where gas and surfactant solution meet [117]. In

literature, this model has been used considering different conditions for the porous

media, such as in anisotropic and heterogeneous systems, not just isotropic and

homogeneous ones [80, 112]. Studies related with the former scenarios have been

reviewed in detail, where the model’s versatility has proven to capture, even

in these complex scenarios, the various foam front shapes that can occur [112].

On the other hand, despite the apparent simplicity of the latter scenarios, they

still exhibit the existence of complexity in the solutions, namely concave corner

singularities occurring on the propagating front, as the model is solved either nu-

merically or analytically [116]. When considering isotropic and homogeneous oil

reservoirs, early-time Lagrangian numerical solutions for pressure-driven growth

were unable to establish unequivocally whether the front was entirely convex [80],

although later on, a first-order analytical similarity solution proved the existence

of concave corners on the front [104], which was predicted to start at the top of the

front and then move downwards at a constant speed. The presence of the concave
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corner then was corroborated numerically via using Eulerian coordinates [116],

although its location on the front was proved to move (unlike in the case of the

analytical similarity solution) at different speeds, specifically with a decreasing

downward speed over time (see Chapter 3). This corresponds to one of the main

outcomes of this work. Further details can be consulted in Chapter 3. A bet-

ter understanding of how this concave corner moves down along the propagating

front was then achieved by obtaining second-order similarity analytical solution

of the model [117]. This solution was achieved by perturbing the aforementioned

first-order analytical similarity solution. Performing this perturbation was far

from straightforward owing to the strong spatio-temporal non-uniformities that

the similarity solution exhibited [117] and techniques needed to be developed that

could deal with this. Additional details can be consulted in Chapter 4.

The pressure-driven growth model captures the propagation of a foam front, on

the scale of the front as a whole, and does not resolve individual bubbles. How-

ever models to predict the foam flow through confined straight channels on the

bubble-scale, particularly those developed to capture the foam dynamics in two di-

mensions were also reviewed (see Chapter 2 for details). In particular the viscous

froth model was introduced, which can capture flowing foams out of equilibrium.

Previous works related to this model were therefore discussed. Using this model

a new case, as studied in detail in Chapter 5, was discussed. This corresponds to

a three-bubble symmetric staircase structure, consisting of two bubbles stacked

across the width of a channel and three bubbles total along its length, and sym-

metric in the sense that the first and last bubble cover equal area domains. Using

the viscous froth model, steady state (but out of equilibrium) solutions were ob-

tained, capturing the shape of the bubbles as the structure moves at different

velocities. At high velocity, the structure was however found to be susceptible

to breaking up via topological transformations. These could be realised in some
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cases by gradual quasistatic increases in velocity, but in other cases it was sug-

gested they could occur suddenly i.e. dynamically. In the latter case, two solution

branches were also proven to exist, behaviour already seen in the simple lens sys-

tem (consisting of just one bubble plus a spanning film) [19]. The two solution

branches were shown to meet at a saddle-node bifurcation. It still remains uncer-

tain which solution branch is the stable one (as that requires analysis of unsteady

state solutions, not just steady state ones), although previous evidence from the

simple lens case suggests that it corresponds to the branch that is obtained by

quasisteadily perturbing the system from equilibrium [19]. Nonetheless, as men-

tioned, this can only be clarified by computing unsteady state simulations. Com-

pared to the simple lens, the set of topological transformations observed for the

three-bubble system was far more complex, with many different types of trans-

formation occurring in different parts of parameter space. On the other hand, for

a well specified domain of bubble areas, the three-bubble system can also reach

an inherently stable structure (avoiding topological transformation), typical of

an infinite staircase system (two bubbles across the channel width, and an arbi-

trary number along it) [144]. This structure can resist topological transformation

even for arbitrarily large driving velocity. Thus the three-bubble system exhibits

complex behaviour, sometimes akin to a simple lens, and at other times akin

to an infinite staircase. Additional, detailed results are available to consult in

Chapter 5.

Finally, the solutions and predictions obtained by using these models (pressure-

driven growth and viscous froth model), can be used as a pre-assessment tool in

real engineering processes (respectively porous media foam flows and microfluidic

bubble flows in channels). The solutions/predictions allow to study the effect of

changing certain key variables, like injection pressure, liquid saturation, capillary

pressure, surfactant concentration, bubble texture, foam mobility and foam col-
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lapse (which feed into pressure-driven growth and/or the fractional-flow theory

that underlies it) as well as driving pressure, flow velocity, surface tension, viscous

drag coefficient, bubble size, and geometry of the channels of transport (which

feed into viscous froth), in an effort to improve the process performance. Knowing

how these variables influence the system’s behaviour is therefore a fundamental

part in the development of new technologies, and procedures.
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Future work

The previous chapter considered the overall findings of the thesis both for the

pressure-driven growth model and the viscous froth model. In the present chap-

ter some open questions that can be tackled with these models are discussed.

One of the interesting questions to discuss is what happens to pressure-driven

growth under a reduction in driving pressure, this situation being quite distinct

from the pressure increase already considered by [115]. From [83], we know that

under a pressure reduction, parts of the foam front higher up in a reservoir con-

tinue moving forwards and downwards, whereas other parts of the front beyond

a certain depth start moving backwards and upwards, possibly with a differ-

ent mobility from the forwards/downwards moving parts. We now also know

what mobility to assign to those backward moving parts of the front within a

pressure-driven growth model which was the main contribution of [83]. How-

ever, it still remains unclear what would happens if the concave corner, which as

demonstrated in this work starts at the top and moves downward, as discussed

in Chapter 4, starts interacting with any upward moving parts of the front. Yet

another alternative scenario is that where the reduction in injection pressure hap-

pens only when the concave corner is already quite deep down on the front, so
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after pressure reduction, what happens is that it also finds itself moving upwards

and backwards. On those backwards moving parts of the front, the sense of what

is concave and convex is switched, meaning the erstwhile concave corner is now

a convex corner with concave shaped front either side of it. How the corner then

propagates and interacts with the concave regions surrounding it is an open ques-

tion. Indeed the concavities are at risk of shrinking down into corners themselves

as is well established for pressure-driven growth [80].

Regarding the work on the viscous froth model, and the possibility of multiple

solution branches in the studied three-bubble system (as described in Chapter

5), in order to determine which branch is the stable one, we need to do unsteady

state simulations, as already alluded to earlier. This will also establish how

the system would evolve after whichever topological transformation occurs first.

On the other hand, since the three-bubble system behaves broadly similar to

the simple lens [19] (i.e. tends to break up via topological transformation) in

much of parameter space, but behaves like an infinite staircase [144] (i.e. resists

break up) in a small part of parameter space, an interesting question concerns

what happens as more and more bubbles are added. As we add more bubbles

though (N -bubble problem), we expect additional complexity to arise, just as the

three-bubble system admitted a more complex set of topological transformations

than the simple lens did. Nonetheless, as the number of bubbles increases yet

further, intuitively we also expect the system to behave like an infinite staircase

(i.e. inherently stable with no topological transformation) over more and more of

the parameter space, but this needs to be verified by steady and unsteady state

simulations. There are implications for microfluidic foam systems in practice. As

more bubbles are added to a structure, we might be able to drive systems faster

and faster, without any break up of the structure occurring.
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Supplementary material:

Foam-liquid front in Eulerian

coordinates

This appendix consists of the supplementary material of the work presented in

Chapter 3: “Foam-liquid front propagation in Eulerian coordinates”. Here the

deduction of relevant equations used in Chapter 3 is presented (sections A.1–A.2)

along with details of numerical schemes (section A.3).

A.1 Asymptotic analytic solution of Lagrangian

model

In what follows the early-time analytic solution of the Lagrangian model presented

in [70] is recalled. This solution reflects the fact that at the top, for any time

(t > 0), front orientation angle α = 0 and front displacement distance s = x

(x here being horizontal coordinate), and for any point on the front at vertical

location y, for small times (t ≪ 1), that s ≈ x and α ≈ 0. On the top, for
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t > 0, the model (2.7) reduces, after integration, to x =
√
2t, and for any point

on the front, for t ≪ 1 to x ≈ √
2yt, termed the Velde solution by [104]. Using

the property that sin(α) ≈ dx/dy (for dx/dy ≪ 1) and differentiating x ≈ √
2yt

with respect to y gives sin(α) ≈
√

t/2y. Putting this in the equation (2.8) gives,

after integration,

y ≈ y0 −
t

2
, (A.1)

where y0 is the initial position of a given material point. Equation (A.1) describes

material points which originate anywhere below the top y0 ≤ 1 and move with a

vertical velocity −1/2. A higher-order correction was also obtained by [104] still

assuming t ≪ 1

y ≈ y0 −
t

2
+

5t2

48y0
. (A.2)

Equation (A.1)−(A.2) have implications for schemes for solving the Lagrangian

model numerically (details of such schemes can be found in literature [80]). Ow-

ing to (A.1) and (A.2), a gap opens up between the point at the top of the front

(which remains on the top boundary for all time) and material points slightly

underneath it (those with y0 → 1) which necessarily drift downwards: in the

Lagrangian model, new material points (hereafter called “newly injected points”)

must continually be injected from the top boundary to fill this gap. Upon leaving

the top boundary their downwards velocity component starts off small, but grows

over time to ensure that the gap is filled [104]. The gap between the top of the

front and the material points that started off immediately below it meanwhile

becomes wider and wider over time, such that over time, more and more of the

front is comprised of newly injected points (see Figure A.1). Using equation (A.1)

it is possible to improve upon the estimate that x ≈ √
2yt, specifically by ob-

taining the “improved Velde” solution discussed in [104] which established that
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Paths of
Injected points

Paths of points
originating between
y=0 and y=1

y

x

1

√
2t

(0, 0)

Figure A.1: Distinction between trajectories of points originally at x = 0 in
0 ≤ y ≤ 1, and points injected at the top y = 1 for x > 0. In the Lagrangian
formulation, to resolve the front shape near the top we need to add new mate-
rial points to replace those originally on the front that have drifted downwards.
However, it is not known a priori where exactly to add them, since the shape of
the front itself is unknown.

x ≈
√

2yt+ t2/6. This equation is used in section 3.4 to compare the orienta-

tion angle and the curvature of the front in the, so-called, “lower region” of the

front [104]. The lower region extends downwards from the position where the

original front points and the injected front points meet, whereas the “upper re-

gion” extends from this point upwards. Since, using (2.6), α = arctan(dx/dy), it

is possible to derive a formula for the curvature in the lower region, the curvature

being given by κ = −(dα/dy) cos(α) (see also equation (A.13)), so that

α ≈ arctan
(

t(2yt+ t2/6)−1/2
)

, (A.3)

κ ≈ 63/2
√
t(12y + 7t)−3/2. (A.4)

For the upper region it is possible to obtain, using the similarity equation devel-

oped in [104], an analytical approximation of the front position (see Appendix

A.2). However the resulting formulae for front orientation angle and curvature

are less simple than in (A.3) and (A.4). Nonetheless, the angle and the curvature
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can be estimated for both, the “lower” and “upper” region.

A.2 Front shape in the upper region

Using the similarity equations developed in [104] it is possible to obtain a paramet-

ric analytical expression for the upper region of the front in terms of x = x(t,Ξ)

and y = y(t, ζ), where Ξ and ζ are the rescaled form of x and y, respectively.

Here we recall and extend the results of [104]. If we assume from [104] that

Ξ = (
√
2t− x)t−3/2 ≡ ξt−3/2, (A.5)

ζ = 2(1− y)/t, (A.6)

where t ≪ 1, and also that the orientation angle can be expressed as α =
√

t/2A(ζ), then [104] demonstrates

ζ ≈ (1− cA)1/c

(1− c)
− (1− cA)

c(1− c)
+

1

c
, (A.7)

where, as discussed in Chapter 3 (see section 3.4.1), 2c − 1 corresponds to the

assumed constant ratio between ds/dy and dx/dy in the upper region [104]. For

small times (t ≪ 1) it is possible to obtain from [104] that

ξ ≈ −
∫ 1

y

(

α +
α3

3

)

dy. (A.8)

If we combine (A.5) and (A.8), using the derivative of (A.6) respect to y (dy/dζ =

−t/2), and also with α =
√

t/2A we obtain

Ξ =
ξ

t3/2
≈ − 1

t3/2

∫ 1

y

(

α +
α3

3

)

dy =
1

2
√
2

∫ A

0

(

A+
t

6
A3

)

dζ

dA dA, (A.9)
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where dζ/dA can be obtained from (A.7). In order to compare the results ob-

tained in [104] with the Eulerian data obtained here we need to use the same

values of c as used in [104], i.e. c = 1 and c = 0.75. Equation (A.7) is plotted

in Figure 3.6, and (A.7) and (A.9) taken together are plotted in Figure 3.5. For

c = 1 we have via equation (A.7) that (taking the limit when c → 1 of ζ)

ζ = (1−A) log(1−A) +A, (A.10)

then differentiating (A.10) respect to A we can compute, using equation (A.9),

that

Ξ ≈ − 1

2
√
2

∫ A

0

log(1−A)

(

A+
t

6
A3

)

dA. (A.11)

Now, combining equations (A.5) with (A.10) and (A.6) with (A.11), for each

value of A we can obtain Ξ and ζ , and thus, x and y. The range of A values

is easy to obtain owing to the fact that ζ is the rescaled version of y, i.e. when

ζ = 1, y = 1 − t/2 (cf. early-time solution (A.1)) and when ζ = 0, y = 1. Thus

α varies from 0 to
√

t/2 and A varies from A = 0 (ζ = 0) to A = 1 (ζ = 1) at

least in this case c = 1 (one of the cases of interest in Figure 3.5).

The same procedure as used to obtain equation (A.11) can to be used in order to

obtain the analytical expression for Ξ for values of c < 1. As a result we obtain

Ξ ≈ − 1

2
√
2

∫ A

0

(

(1− cA)1/c + cA− 1

(c− 1)(cA− 1)

)(

A+
t

6
A3

)

dA. (A.12)

Then, combining equations (A.5) with (A.12) and (A.6) with (A.7), for each value

of A we again obtain Ξ and ζ , and x and y. Here as explained in [104], A varies

from A = 0 to A = 1.18.

Given an expression for α in the upper region (where recall, α =
√

t/2A) it is
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possible to obtain an analytical formula for the front curvature using the equation

(A.7), then with κ = −dα/dS, where S is the length measured along the front,

we obtain

κ = −dα

dy

dy

dS
= −dα

dy
cos(α), (A.13)

then substituting the similarity solution (A.7) into (A.13) we can deduce that

κ ≈
(

2

t

√

t

2

1

dζ/dA

)

cos

(

√

t

2
A
)

≈ −
( √

2(c− 1)(cA− 1)

((1− cA)1/c + cA− 1)
√
t

)

(

1− tA2

4

)

,

(A.14)

which was plotted in Figure 3.8.

A.3 Semidiscrete central-upwind scheme

Although it turns out that the central-upwind flux numerical scheme that is

utilised here is not strictly required in this work (which deals with homogeneous

and isotropic systems), it is presented here because this scheme is useful (and

essential) in heterogeneous and/or anisotropic systems, which are of physical

interest in improved oil recovery [114]. We start from [158]

d

dt
Φj,k(t) = −

a−j,kb
−

j,kH++ − a−j,kb
+
j,kH+− − a+j,kb

−

j,kH−+ + a+j,kb
+
j,kH−−

(a+j,k − a−j,k)(b
+
j,k − b−j,k)

(A.15)

−
a+j,ka

−

j,k

a+j,k − a−j,k

(

Φ+
x − Φ−

x

)

−
b+j,kb

−

j,k

b+j,k − b−j,k

(

Φ+
y − Φ−

y

)

,

and

d

dt
sj,k(t) = −

a−j,kb
−

j,kG++ − a−j,kb
+
j,kG+− − a+j,kb

−

j,kG−+ + a+j,kb
+
j,kG−−

(a+j,k − a−j,k)(b
+
j,k − b−j,k)

(A.16)

−
a+j,ka

−

j,k

a+j,k − a−j,k

(

s+x − s−x

)

−
b+j,kb

−

j,k

b+j,k − b−j,k

(

s+y − s−y

)

,
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where H△� := H(y, s,Φ△
x ,Φ

�

y ) and G△� := G(y, s,Φ△
x ,Φ

�

y , s
△
x , s

�

y ) for △,� ∈
{−,+} (see equation (3.10) and (3.11)). The local propagation velocities a±j,k and

b±j,k are estimated as

a+j,k := max
±

(HΦx
(y, s,Φ±

x ,Φ
±

y ))+, a−j,k := min
±

(HΦx
(y, s,Φ±

x ,Φ
±

y ))−,(A.17)

b+j,k := max
±

(HΦy
(y, s,Φ±

x ,Φ
±

y ))+, b−j,k := min
±

(HΦy
(y, s,Φ±

x ,Φ
±

y ))−,(A.18)

where (·)+ := max(·, 0) and (·)− := min(·, 0). The values of Φ±
x are calculated

(for any fixed y) using the following interpolating polynomial

Φ̃(x, tn) = Φn
j +

(△Φ)n
j+ 1

2

△x
(x− xj) +

(△Φ)′
j+ 1

2

2(△x)2
(x− xj)(x− xj+1), x ∈ [xj , xj+1],

(A.19)

where (△Φ)n
j+ 1

2

≡ Φn
j − Φn

j+ 1
2

, Φn
j+ 1

2

= (Φn
j + Φn

j+1)/2 and (△Φ)′
j+ 1

2

/

(△x)2 is an

approximation of the second derivative of Φxx(xj+ 1
2
, tn). To estimate (△Φ)′

j+ 1
2

we use the minmod limiters

(△Φ)′
j+ 1

2

= minmod
(

θ
[

(△Φ)n
j+ 3

2

− (△Φ)n
j+ 1

2

]

,
1

2

[

(△Φ)n
j+ 3

2

− (△Φ)n
j− 1

2

]

,

θ
[

(△Φ)n
j+ 1

2

− (△Φ)n
j− 1

2

]

)

,

where θ ∈ [1, 2] is a weighting factor, and the multivariable minmod function (for

arbitrary arguments w1, w2,...) is defined as

minmod(w1, w2, ...) =



























minj{wj} if wj > 0 ∀ j,

maxj{wj} if wj < 0 ∀ j,

0 otherwise.

(A.20)
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In this work a value of θ = 1.5 is used for the minmod weighting factor [158].

Finally from (A.19) one obtains

Φ−

x =
(△Φ)n

j− 1
2

△x
∓

(△Φ)′
j− 1

2

2△ x
.

The expressions s−x and s+y are obtained in a similar way. For the equations (A.17)

and (A.18) we have from the definition of H in equation (3.10) that

HΦx
=

y

s

Φx

|∇Φ| , HΦy
=

y

s

Φy

|∇Φ| . (A.21)

Moreover, it is easy to show that (∂/∂Φx)H = (∂/∂sx)G and (∂/∂Φy)H =

(∂/∂sy)G, i.e. HΦx
= Gsx and HΦy

= Gsy , where HΦx
,HΦy

,Gsx,Gsy denote partial

derivatives (of H respectively G) with respect to Φx, Φy, sx, sy, respectively. This

means that for both equations (3.8) and (3.9), the propagation velocities of the

corresponding variable (Φ and s) are the same. For the specific curve shape as

indicated in Figure 3.1 we expect Φx > 0 and Φy < 0, which implies that HΦx
≥ 0

and HΦy
≤ 0. This indicates that the numerical flux is entirely upwind, since the

speeds a+j,k = 0 and b−j,k = 0 in (A.17) vanish. The upwind version of (A.15) and

(A.16), where those terms disappear, is (see (3.14))

d

dt
Φj,k(t) = H(y, s,Φ−

x ,Φ
+
y ),

d

dt
sj,k(t) = G(y, s,Φ−

x ,Φ
+
y , s

−

x , s
+
y ). (A.22)
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Supplementary material:

Foam-liquid front propagation in

Lagrangian coordinates

This appendix consists of the supplementary material of the work presented in

Chapter 4: “Breakdown of similarity solutions: A perturbation approach for front

propagation during foam-improved oil recovery”. Here a detailed deduction of the

main equations used in Chapter 4 is presented, in addition to further analysis and

discussion about the studied phenomena.
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Summary: This appendix begins by reviewing and analysing first-order early-

time similarity solutions (sections B.1–B.2), specifically in the context of the up-

per region of a foam front that is propagating during foam improved oil recovery.

These first-order solutions, applicable in the limit of early times, were obtained in

prior work by [104], and the discussion given below expands upon that in Chapter

4 presented within sections 4.3–4.4. After that, the focus switches to second-order

accurate solutions in time. We now consider both the lower (section B.3) and the

upper (sections B.4–B.5) regions of a propagating foam front. The analysis for

the lower region (section B.3) proves relatively straightforward. However, since

strong spatio-temporal non-uniformities are present in the upper region of the

front, obtaining second-order solutions there is challenging: the procedure is de-

tailed in section B.4, feeding into the results of section B.5. The key results we

deduce are given in sections B.3 and B.5, specifically by equation (B.13) (lower

region), and by equations (B.28), (B.37) and (B.39) (upper region). In section

B.6, we plot the difference between solutions in the upper and lower regions to

identify where these regions match: this expands on the methodology outlined

in section 4.5.4 of Chapter 4. Section B.7 gives expressions for front orientation

angle, vertical coordinate and horizontal coordinate on time, specifically at the

matching point between upper and lower regions: this supports the discussion of

sections 4.6–4.7 in Chapter 4. In section B.8 we track material points in the lower

region in an analogous fashion to the way we already track material points in the

upper region: this corresponds to an alternative methodology also mentioned in

section 4.5.4 with data presented in section 4.7. Finally, in section B.9 we ob-

tain a set of equations used to extrapolate the second-order solution to a wider

domain, beyond the domain where it was originally obtained: this supports the

discussion of section 4.8 in Chapter 4.
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B.1 Review of first-order similarity equations

As established in [104], the front upper region can be expressed in terms of a

set of similarity variables. These variables as given in Chapter 4 are: A as the

rescaled front orientation angle, ζ as the rescaled vertical front location, and Ξ

as the rescaled horizontal front displacement. In [104] it was proven that it is

possible to obtain a leading-order expression to define ζ as a function of A, as

dζ/dA = (1− (1− cA)1/c−1)/(1− c), (B.1)

which after integrating gives

ζ = ((1− c)− (1− cA) + c(1− cA)1/c)/(c(1− c)), (B.2)

where 2c− 1 is the constant invariant ratio between ds/dy and dx/dy, over the

upper region. As proven in [104], choosing c = 3/4 and hence 2c− 1 = 1/2, gives

a suitable approximation for it. In [104] it was demonstrated, via a far more

complex integro-differential formulation of the system of equations, that the ra-

tio between ds/dy and dx/dy in the upper region always lies between 0.5 and

0.51. Hence, treating it as invariant (with assumed value 0.5), despite being an ad

hoc approximation, led to negligible error, and had the advantage of producing

the simple analytical form, given by equation (B.2).

To determine the horizontal displacement of the upper region of the front, we

need to obtain an approximation for Ξ. As in [104], we can take a first-order

Taylor expansion of tan(α) and insert it into equation (4.6) (given in Chapter 4),
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in order to obtain for y ≥ 1− (t/2)ζcross, i.e. ζ ≤ ζcross (upper region), that

Ξ ≈ 1

2
√
2

∫ ζ

0

A dζ =
1

2
√
2

∫ A

0

A dζ

dA dA =
2(1 +A)(1− cA)1/c +A2(1 + c)− 2

4
√
2(1− c2)

,

(B.3)

where equations (4.4), (4.7), (4.13) (as given in Chapter 4) and (B.1) have

been used.

Here we have introduced two similarity equations ((B.2) and (B.3)) to compute

the upper region of the front in terms of a rescaled in time front orientation angle

A. Therefore, each point on the upper region of the front must have a well defined

A value, which governs on its current ζ and Ξ location. These were the forms of

the similarity equations originally obtained by [104]. In section 4.3 of Chapter 4

however we expressed these solutions in terms of an alternative, more convenient

variable T (the fraction of total time that an injected material point has been on

the front). The expressions in terms of T however are equivalent to those written

in terms of A.

B.2 Analysing first-order similarity solution

As in [104], we have computed the upper region of the front in terms of T via

a first-order solution (see sections 4.3–4.4 in Chapter 4), up to Tcross, where the

matching point between the lower and upper region of the front is located. The

lower region at first-order is given in section 4.2 in Chapter 4. At leading order

we have obtained that Tcross ≈ 0.9431, with ζcross ≈ 0.9397, and Ξcross ≈ 0.2733.

Even on the basis of these first-order results, we can establish a number of useful

concepts, which are highlighted below. We can determine for instance, out of

all the material points currently on the front, a minimum injected time tinj(min),

which corresponds to the time at which a material point that has reached the
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concave corner was injected. This is explained in detail in section B.2.1. On

the other hand, there is also a maximum survival time that a material point can

remain on the upper region. This is explained in detail in section B.2.2. Then,

in section B.2.3 we show how to rescale the vertical coordinated ζ as a function

of T , so as to be able to track more readily the location of different injected

material points, as explained in section B.2.4. All of these concepts carry over

to our second-order analysis so we make extensive use of them in Chapter 4 (see

e.g. the results presented in section 4.7 in Chapter 4).

B.2.1 Minimum injected time tinj(min) as a function of time t

Since Tcross < 1, it follows from equation (4.14) that the point injected at tinj = 0

has been already consumed or destroyed by the concave corner. This then implies

that (for any given t) there is a minimum time (tinj(min)) at which a still surviving

material point has been injected without yet having been destroyed by the kink,

so we can establish that tinj ∈ [tinj(min), t] defines the full set of material points on

the front. At any time t, there must be a material point in the upper region just

beside the concave corner, which was injected at a time tinj(min) significantly less

than t, with

tinj(min) = (1− Tcross) t. (B.4)

If Tcross is found via the first-order matching point, we can estimate for any small

time t that tinj(min) ≈ 0.0569 t, implying that the points injected before such time

have already been consumed by the concave corner. This expression is perturbed

when second-order corrections are included (equation (4.36) in Chapter 4).

B.2.2 Maximum survival time tmax as a function of time tinj

We can also consider that each injected material point in the front, has a max-

imum survival time (tmax depending on tinj), which is the estimated time that a
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material point can survive before reaching the kink or matching point [104] i.e.

before being consumed by the concave corner. Note that tmax(tinj) is the inverse

of tinj(min)(t). Hence

tmax = tinj/(1− Tcross). (B.5)

Note that for Tcross ≈ 0.9431 (the leading-order result), it follows tmax = 17.57tinj.

At second-order, equation (4.35) applies instead. By definition, for tinj = tinj(min),

we find tmax = t. Hence, we can then determine that for any given tinj, the

domain of t values of interest will be tinj ≤ t ≤ tmax, and consequently 1 ≤
t/tinj ≤ tmax/tinj. This is the domain plotted in Figure 4.2(b) in Chapter 4.

B.2.3 Rescaled ζ+ as a function of T

Since vertical coordinate ζ has been computed for the upper region at leading or-

der in equation (4.16) (as a function of T up to Tcross), we can calculate at any time

t, the position ζ(T ) of the material points injected at different tinj ∈ [tinj(min), t].

However, we can also follow the trajectory of a single material point within the

upper region, by fixing tinj and varying T , which corresponds to tracking the

point’s position over time t. Hence, we define ζ+ = (1−y)/(tinj/2) as the rescaled

vertical position of a material point. Here, ζ+ is a direct measure of 1− y, since

tinj is fixed for each material point. By contrast, for ζ = (1 − y)/(t/2) the re-

lationship is less straightforward since both 1 − y and t change following the

material point. Now consider this material point injected at time tinj which is

currently (at some time t, and hence at some T = 1− tinj/t) at a vertical location

ζ+(T ) ≡ ζ(T )/(1−T ). It is of interest to ask where is the location of the concave

corner relative to this point. This is always at ζ = ζcross (for a well defined value

of ζcross, e.g. at leading order ζcross ≈ 0.9397), and hence at ζ+ = ζcross/(1 − T ).

This gives the instantaneous location of the cross-over point, even though the

material point of interest has not yet reached it. Likewise, we can track the posi-
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tion of a lower region material point originally (at t = 0) at the top of the front,

by considering that this point follows a trajectory ζ = 1, which follows from a

first-order approximation to the lower region (see equation (4.3)), implying that

at first-order ζ+ ≡ 1/(1− T ). Thus, we have distinct formulae (plotted at lead-

ing order in Figure 4.2(b) in Chapter 4), respectively for a material point in the

upper region, for the concave corner or kink, and for a material point in the lower

region. Generalisations to these relations at second-order are possible, see e.g.

equations (4.24), (B.45) and (B.68).

B.2.4 Using ζ+ vs T to compare trajectories

Figure 4.2(b) in Chapter 4, which is a first-order approximation in the limit of

arbitrary small tinj and hence arbitrary small t with tinj ≤ t ≤ tinj/(1 − Tcross),

shows how a point originally at the top of the lower region y0 = 1 moves down-

wards with a velocity of −1/2 (or equivalently retains ζ = 1 for all time), which is

represented in terms of ζ+ as 1/(1−T ) (dash-dotted line). Here we see that a gap

is present even at T = Tcross, between this uppermost material point originally

on the front, and the final position of the material point injected at tinj, which

coincides with the concave corner (specifically when T = Tcross). The existence

of this gap implies that material points must have been extracted from the kink

or concave corner to populate the lower region. This however, is a first-order

theory, that must be perturbed at second-order. We know the second-order cor-

rection to the lower region’s material points (equation (4.11)), and we have also

mentioned that the point originally at the top of the front moves downwards

(considering the second-order effect via equation (4.12)) slower than it would do

for the leading-order term in equation (4.3). Nevertheless, this in itself does not

tell us if the topmost point originally on the front moves upwards sufficiently

(relative to its first-order location) so as to overtake the position of the concave

corner. To address this question we need to have a second-order approximation
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for the position of the concave corner. Only when that second approximation is

available can we determine whether material points in the lower region initially

extracted from the kink are subsequently consumed by it. However, given the

corner is where the upper and lower regions match, we can only start to answer

this question if we also have a second-order approximation to the upper region:

this then is what Chapter 4 developed.

In summary, employing the first-order solution we were able to determine the

matching point between the upper and the lower region of the front for t ≪ 1

or equivalently tinj ≪ 1, by using similarity variables. We can also verify the

existence of the concave corner at the matching point, which was proven by [104].

Since rescaled orientation angle Across in the upper region (see value Across,0 in

Table 4.1) is greater than unity (which is the analogous amount that the lower

region reorients near the top at small times), the front not only curves sharply in

the upper region, but also undergoes an abrupt reorientation at a concave corner

in order to meet the lower region. In the above, we also demonstrated that

material points are extracted from the concave corner in order to populate the

lower region (at least in the limit of small times), and that material points in the

upper region are being destroyed at the matching point. However, even though we

are studying an arbitrarily small interval of time tinj ≤ t ≤ tinj/(1−Tcross) = tmax,

with tinj ≪ 1, the motion of material points (ζ+ vs t/tinj) in the upper region,

as shown in Figure 4.2(b), is non-uniform over this interval. These strong non-

uniformities in space and time make it challenging to perturb the upper region

to higher-orders of accuracy (in contrast to the lower region in which all points

move down uniformly with velocity −1/2 at leading order via equation (4.3)). In

Chapter 4 (section 4.5 onwards) however, we tackle that challenge to determine

how the upper region solution is perturbed as t increases, and thereby obtain a

corresponding second-order solution for the location of the matching point, taking
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proper account of the spatio-temporal non-uniformities that are present.

B.3 Correction to ξ at order t5/2 for lower region

front shape

Previous work [104], derived a so-called improved Velde solution for x vs y and

t, in the lower region (equation (4.1) in Chapter 4), that was accurate through

order t3/2 in time. However, in the present work we have points in the upper

region placed horizontally to order t accuracy in Ξ, hence order t5/2 accuracy in

ξ (since ξ ≡ Ξ t3/2 with x ≡
√
2t− ξ). We therefore need further improvement in

the description of the lower region, to be consistent between both regions. Hence,

what we seek for the lower region, is to incorporate an order t5/2 correction to

the horizontal x location, alongside an order t2 correction to the vertical location

y of the material points, the latter being already available as given by equation

(4.11). This is achieved in what follows via an order t correction to the variable Ξ

in the lower region. We start by considering the motion of a Lagrangian material

point in the x direction, which is given by equation (2.7), as

dx2/dt ≈ 2 y(y0, t) cos(α) (x/s), (B.6)

where α denotes the orientation angle of the front normal relative to the horizon-

tal, s denotes the path length that a lower region material point has displaced,

and y0 denotes the initial vertical location of a material point in the lower region,

which moves to a location y(y0, t) at time t. At early times near the top of the

lower region, we can set y0 ≡ 1 − z0, where it turns out z0 ≪ 1 for the material

points of interest. Here at early times, any value of z0 of interest can be treated

as a quantity of order t, since via equations (4.4) and (4.11), we can compute
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y ≈ 1− z0 − t/2 + (5t2)/48, but also ζ ≡ (1− y)/(t/2), and hence

z0 ≈ (ζ − 1)(t/2) + 5t2/48. (B.7)

Equation (B.7) implies that if we focus attention near the top of the lower

region where ζ − 1 is at most order unity, then z0 values of interest are at

most order t. Within equation (B.6), since α can be expressed geometrically

as α = atan(dx/dy), we can obtain via Taylor expansion that cos(α) ≈ 1 −
(1/2)(dx/dy)2 + (3/8)(dx/dy)4, where (dx/dy)2 is computed using the improved

Velde solution (given by equation (4.1)), but now written in terms of z0 and t,

i.e. by using

x ≈
√

2t− 2z0t− 5t2/6, (B.8)

in which y has been replaced by y ≈ 1 − z0 − t/2, via first-order approximation,

which is given by equation (4.2). Consistent with the current order of expansion,

(dx/dy)4 is calculated using the Velde solution (x ≈ √
2yt). Then, we com-

pute x/s by considering that ds/dt =
√

(dx/dt)2 + (dy/dt)2, which after Taylor

expanding to terms of fourth power, gives

s ≈ x+
1

2

∫ t

0

(dy/dt′)2

dx/dt′
dt′ − 1

8

∫ t

0

(dy/dt′)4

(dx/dt′)3
dt′, (B.9)

with t′ here being a dummy integration variable. Here dy/dt′ is calculated using

equation (4.11), dx/dt′ uses equation (B.8), and (dx/dt′)3 uses the Velde solution.

Hence, we can express equation (B.6), by Taylor expanding out to order t2 terms

(treating z0 itself as being order t), as

dx2

dt
≈ 2

(

1− z0 −
t

2
+

5t2

48

)(

1− t

4

(

1 + z0 +
t

24

))(

1− t

12

(

1 + z0 +
t

120

))

≈ 2− 2z0 −
5t

3
+

101t2

180
. (B.10)
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Next, integrating (B.10), retaining terms up to third power in time, we deduce

x ≈
√

2t− 2z0t− 5t2/6 + 101t3/540. (B.11)

Then, and analogously to equation (4.8), we can obtain

ξ =
2t− x2

√
2t+ x

≈ 2z0t + 5t2/6− 101t3/540√
2t+

√

2t− 2tz0 − 5t2/6
. (B.12)

Here, we do not need a high accuracy approximation to x in the denominator,

so we have substituted from (B.8). Finally, Taylor expanding in t up to second-

order, and introducing equation (B.7), we can compute Ξ = ξ/t3/2 as defined

by equation (4.7). The resulting equation we obtain is (see equation (4.22) in

Chapter 4)

Ξ ≈ 1

2
√
2

(

ζ − 1

6
+

t

8

(

ζ2 − ζ

3
+

107

540

))

, (B.13)

which represents an improvement upon equation (4.9) including a correction term

for small but finite t.

B.4 Order t correction to upper region rescaled

variables A, ζ and Ξ

To determine with second-order accuracy, the front orientation angle α, the ver-

tical location y, and horizontal location x of points in the upper region, we need

to compute (in terms of the parameter T , i.e. the fraction of time a material

point has been on the front) the functions A1(T ), ζ1(T ) and Ξ1(T ), respectively.

These are required to compute perturbations to rescaled angle A, rescaled verti-

cal coordinate ζ and rescaled horizontal coordinate ξ via equations (4.19)–(4.21)

in Chapter 4. The key results we deduce here are equations (B.28), (B.37) and

(B.39), which are used to compute A1(T ), ζ1(T ) and Ξ1(T ), (see section B.5 to
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follow). We compute these actual functional forms by fixing a parameter c = 3/4,

as was established in section 4.3 in Chapter 4 and in section B.1 following the rec-

ommendation of [104]. Results are plotted in Figure B.1 (see section B.5). Note

that A1(T ), ζ1(T ) and Ξ1(T ) are all negative and become increasingly negative

as T increases. It follows that for a given T , equations (4.19)–(4.21) predict a

front shape that reorients less and displaces less vertically and horizontally than

the corresponding first-order prediction.

B.4.1 Correction at order t for upper region front reori-

entation angle A(T , t)

We start by considering that the variation of the angle α (front normal relative

to the horizontal) with time t, of a Lagrangian film element can be quantified

in terms of the variation in the normal velocity of the front along an element S
(distance measured along the front itself), as follows

(

dα

dt

)

L

= − d

dS
(y

s

)

, (B.14)

where y/s is the material point speed given by equation (2.5), and where the

subscript L reminds us that we are dealing with a Lagrangian material point.

Here S is specifically distance along the front measured downward (see Figure

2.2 in Chapter 4); this is not to be confused with s which is the material point

trajectory. We can differentiate equation (B.14) to obtain

(

dα

dt

)

L

= −1

s

dy

dS +
y

s2
ds

dy

dy

dS =
cos(α)

s

(

1− y

s

ds

dy

)

, (B.15)

where, cos(α) = −dy/dS (by geometric definition). We can express s in terms

of x by assuming that, in the upper region, the ratio between ds/dy and dx/dy

(these derivatives being measured along the front) can be assumed invariant and
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equal to 2c−1 (the reasons for making this assumption are discussed in section B.1

and justified in [104]). Therefore, imposing a condition (as in Chapter 4) that

the leading edge of the front is at location
√
2t with s and x being equal at that

point, we can express (moving down from the leading edge)

s ≈
√
2t− (2c− 1)(

√
2t− x) ≈

√
2t− (2c− 1)ξ, (B.16)

where ξ is the horizontal displacement of the front, from the leading edge
√
2t to

a point x on the front, as per equation (4.5). Replacing ds/dy by (2c− 1)dx/dy

(the assumed invariant ratio alluded to earlier), we obtain

(

dα

dt

)

L

≈ cos(α)√
2t− (2c− 1)(

√
2t− x)

(

1− (2c− 1) y√
2t− (2c− 1)(

√
2t− x)

dx

dy

)

.

(B.17)

Here, since dx/dy = tan(α) (by geometry), we can approximate dx/dy ≈ α+α3/3

which is obtained via Taylor expansion in powers of α. We can also Taylor expand

cos(α) in powers of α, and thereby we deduce

(

dα

dt

)

L

≈
1− α2

2√
2t− (2c− 1)(

√
2t− x)

(

1− (2c− 1) y√
2t− (2c− 1)(

√
2t− x)

(

α +
α3

3

))

.

(B.18)

Now, introducing ξ =
√
2t − x, along with similarity variables α =

√

t/2A,

ζ = (1− y)/(t/2), and ξ = t3/2Ξ, we can determine

(

dα

dt

)

L

≈ 1√
2t









1− tA2

4

1− (2c− 1)√
2

tΞ









1− A
2









(2c− 1)

(

1− t

2
ζ

)

1− (2c− 1)√
2

tΞ

















(

1 +
tA2

6

)









.

(B.19)

We now assume t ≪ 1, and Taylor expanding each factor in the parentheses in

terms of small parameters, we end up with an expression that has a leading-order

term plus an order t correction, plus higher-order terms that we neglect. We
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obtain

(

dα

dt

)

L

≈ 1√
2t

(

1− A(2c− 1)

2
+ t

(

−A2
0

4
− A3

0(2c− 1)

12
+

(2c− 1)A0ζ0
4

+

(

2c− 1√
2

− A0(2c− 1)2

2
√
2

)

Ξ0

))

,

(B.20)

where terms appearing on the right hand side at order t, such as the orientation

angle A, the front vertical location ζ and the front horizontal displacement Ξ,

have been replaced by leading order expressions A0(T ), ζ0(T ) and Ξ0(T ), given

by equations (4.15), (4.16) and (4.17), respectively. Thus, we express (B.20) as

(

dα

dt

)

L

≈ 1√
2t

(

1− A(2c− 1)

2
+ tΩ(A0, ζ0,Ξ0)

)

, (B.21)

where Ω(A0, ζ0,Ξ0) corresponds to

Ω(A0, ζ0,Ξ0) = −A2
0

4
−A3

0(2c− 1)

12
+
(2c− 1)A0ζ0

4
+

(

2c− 1√
2

− A0(2c− 1)2

2
√
2

)

Ξ0.

(B.22)

Since A0, ζ0 and Ξ0 are well defined functions of T (see equations (4.15)–(4.17)

in the main text), we can express Ω ≡ Ω(T ). We can also compute (dα/dt)L as a

function of A and T , by using the similarity equations (4.13) and (4.14). Then,

we can express the left side hand of equation (B.21), using equation (4.19), as

follows

(

dα

dt

)

L

≈ 1

2
√
2t
(A0+tA1)+

√

t

2

((

dA0

dT

)(

dT
dt

)

L

+A1 + t

(

dA1

dT

)(

dT
dt

)

L

)

,

(B.23)

where since T = (1− tinj/t) (which is given by equation (4.14)), we can determine

(dT /dt)L = (1− T )/t. (B.24)
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Combining equations (B.21) and (B.23), and matching terms at each order of t,

we find

(1− T )(dA0/dT ) = 1− cA0, (B.25)

and

A1(1 + c) + (1− T )(dA1/dT ) = Ω(T ). (B.26)

Hence, we can compute

A0 = (1− (1− T )c)/c, (B.27)

which corresponds to the leading-order front reorientation A0, obtained in equa-

tion (4.15). Moreover, applying the integrating factor (1 − T )−(1+c) to equation

(B.26), we deduce

A1 = (1− T )1+c

∫ T

0

Ω(T ′)

(1− T ′)2+c
dT ′, (B.28)

T ′ here being a dummy integration variable. Then, after substituting from equa-

tion (B.22) and integrating, we obtain an explicit expression for A1 ≡ A1(T ),

which is plotted later on in Figure B.1(b) in section B.5. Hence we have obtained

the order t correction, to compute the front orientation A. This equation will be

used in what follows, to determine the order t term contributing to the vertical

location of the upper region’s material points.

B.4.2 Correction at order t for upper region front vertical

location ζ(T , t)

We start by considering the velocity of a Lagrangian material point in the y

direction, given by equation (2.8) [104]. Then, Taylor expanding sin(α) in terms

225



Appendix B. Supplementary material: Foam-liquid front propagation in
Lagrangian coordinates

of the small angle α, and rewriting (2.8) we obtain

(

dy

dt

)

L

≈
−(1 − (1− y))

(

α− α3

6

)

√
2t− (

√
2t− s)

≈ − α√
2t

(

1− (1− y)− α2

6
+

(2c− 1)√
2t

ξ

)

,

(B.29)

where we have substituted equation (B.16) into (B.29), and Taylor expanded.

Now introducing the similarity equations (4.4), (4.7) and (4.13), we can express

α =
√

t/2A, ζ = (1− y)/(t/2), and ξ = t3/2Ξ, respectively, in order to obtain

ζ + t

(

dζ

dt

)

L

≈ A
(

1− t
ζ

2
− t

A2

12
+ t

(2c− 1)√
2

Ξ

)

, (B.30)

where we can approximate the front orientation as A ≈ A0 + tA1, so we can

compute

ζ + t

(

dζ

dt

)

L

≈ A0 + tA1 − t
A0ζ0
2

− t
A3

0

12
+ t

(2c− 1)√
2

A0Ξ0. (B.31)

In going from equation (B.30) to (B.31), terms appearing on the right side hand

at order t, such as the orientation angle A, the front vertical location ζ and the

front horizontal displacement Ξ, have been replaced by A0(T ), ζ0(T ) and Ξ0(T ),

given by equations (4.15), (4.16) and (4.17). Moreover, using equation (4.20), we

compute the left hand side of equation (B.31) as follows

ζ+t (dζ/dt)L ≈ ζ0+t (dζ0/dT ) (dT /dt)L+2t ζ1+t2 (dζ1/dT ) (dT /dt)L , (B.32)

where (dT /dt)L is given by equation (B.24), in order to obtain

ζ + t (dζ/dt)L ≈ ζ0 + (1− T ) (dζ0/dT ) + 2t ζ1 + t(1− T ) (dζ1/dT ) . (B.33)

Here, dζ0/dT and dζ1/dT are well defined, as ζ0 and ζ1 depend only on T . Then,

from combining equations (B.31) and(B.33), and matching terms at each order
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t, we can deduce that

ζ0 + (1− T ) (dζ0/dT ) = A0, (B.34)

and

2ζ1 + (1− T ) (dζ1/dT ) = A1 −A0ζ0/2−A3
0/12 + (2c− 1)A0Ξ0/

√
2. (B.35)

First, we integrate equation (B.34), to obtain

ζ0 = (1− T )

∫ T

0

A0(T ′)

(1− T ′)2
dT ′ =

1− cT − (1− T )c

c(1− c)
, (B.36)

which was obtained previously by equation (4.16). Then in equation (B.35), after

applying the integrating factor (1− T )−2, we obtain

ζ1(T ) ≈ (1− T )2
∫ T

0

1

(1− T ′)3

(

A1 −
A0ζ0
2

− A3
0

12
+

(2c− 1)√
2

A0Ξ0

)

dT ′.

(B.37)

Then, since A0, ζ0, Ξ0, and A1 depend solely on T (being given by equations

(4.15), (4.16), (4.17) and (B.28), respectively), we obtain equation ζ1 ≡ ζ1(T )

which is plotted in Figure B.1 in section B.5.

B.4.3 Correction at order t for upper region front hori-

zontal location Ξ(T , t)

Having obtained an order t correction for A(T , t) and ζ(T , t), we now compute

the order t correction for Ξ, in the form Ξ(T , t) ≈ Ξ0(T ) + tΞ1(T ). We first

combine equations (4.6) and (4.7), and then, Taylor expanding tan(α), we can

obtain Ξ ≈ t−3/2
∫ 1

y
(α+ α3/3) dy, where via equation (4.4), we substitute dy =

−(t/2) dζ at any given time t, and introducing similarity variable α =
√

t/2A
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given by equation (4.13), we deduce

Ξ ≈ 1

2
√
2

∫ ζ

0

(

A+ t
A3

6

)

dζ. (B.38)

Then, introducing A(T , t), which is given by equation (4.19), and using equation

(4.20) to compute dζ ≈ dζ0 + t dζ1 (again at a given t), we express (B.38) in

terms of T , as

Ξ ≈ 1

2
√
2

∫

T

0

A0
dζ0
dT dT +

t

2
√
2

∫

T

0

((

A1 +
A3

0

6

)

dζ0
dT +A0

dζ1
dT

)

dT . (B.39)

After integrating, we obtain Ξ(T , t) ≈ Ξ0(T ) + tΞ1(T ), with Ξ1(T ) as a well

defined function in terms of T , which is plotted in Figure B.1(b) along with

A1(T ) and ζ1(T ). Note, as commented earlier, they are all negative.

B.5 Values of A1(T ), ζ1(T ), and Ξ1(T ) for c = 3/4

Here we compute A1(T ), ζ1(T ), and Ξ1(T ) from equations (B.28), (B.37) and

(B.39), respectively, computed in section B.4. The equations are solved in terms of

T , for c = 3/4. As can be seen in Figure B.1, these variables become increasingly

negative as T increases. This contrasts with the values of A0, ζ0 and Ξ0 obtained

in [104], all of which are positive. In summary, the signs of A1(T ), ζ1(T ) and

Ξ1(T ) indicate via equations (4.19)–(4.21) that, if the front shape is examined for

a given T , the effect of having finite t is that film elements have rotated/reoriented

less than the leading-order formulae suggest. Likewise film elements are higher

up vertically (higher y) and have fallen less far behind the leading edge (they

have smaller ξ hence larger x) than the leading-order formulae suggest.
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(a) (b)

Figure B.1: Functions appearing in first vs second-order solutions. (a) A0, ζ0
and Ξ0, computed by equations (4.15), (4.16) and (4.17) respectively, as given in
Chapter 4. Similar plots can be found in [104]. (b) A1(T ), ζ1(T ) and Ξ1(T ),
computed from equations (B.28), (B.37) and (B.39), respectively.

B.6 Intersection between upper and lower re-

gion in terms of T for fixed tinj

Here we clarify how the upper region given at second-order by equations (4.24)

and (4.25), intersects with the lower region given also at second-order by equation

(4.26) (all these equations having been given in Chapter 4). We require to find

this intersection, in order to predict where the foam front has a concave corner

for any given time t. We can track an injected material point in the upper region

at different times t, by fixing an injection time tinj and then varying T ≡ 1− tinj/t

in equations (4.24)–(4.25) (upper region), and equation (4.26) (lower region).

We then determine for which value of T both regions intersect. This is what

we plot in Figure B.2 for two values of tinj, i.e. tinj → 0 and tinj = 0.01. By

using these equations we found for a set of t values (obtained by varying T
at fixed tinj), a particular ζ+ value given by equation (4.24) at each T , with a

corresponding Ξ+ value given by either equation (4.25) or (4.26). When for a

certain T , the Ξ+ value coincides in both regions, the intersection occurs (see

Figure B.2). Therefore, for a given time tinj, we compute ζupper+ (T ) (via equation
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(a) (b)

Figure B.2: (a) Determining the matching point between the lower and the upper
region of the front for two values of tinj. Here, −ζ+ and −Ξ+ are the rescaled
vertical y and horizontal x locations. (b) Inset zoomed view of (a) close to the
cross over point.

(4.24)), and Ξupper
+ (T ) (via equation (4.25)) in the upper region. Then, for the

specified ζupper+ , we set ζ lower+ = ζupper+ , and compute Ξlower
+ via equation (4.26). For

fixed time tinj, we keep increasing T until the location of the upper region material

point coincides with a material point in the lower region, so that Ξupper
+ = Ξlower

+

(see also Figure B.3). For tinj → 0, we found that the matching point occurs at

Tcross,0 ≈ 0.9431, with ζ+cross,0 ≈ 16.52 and Ξ+cross,0 ≈ 20.15 (see the first-order

solution in section 4.4 of Chapter 4). For tinj = 0.01, we found that Tcross ≈ 0.9458,

obtaining that ζ+(Tcross) ≈ 16.57 and Ξ+(Tcross) ≈ 20.95. In Figure B.3 we see, for

injected tinj, that there are two values of T at which the upper and lower region

intersect, the larger one being the correct value in each case. This verifies what is

difficult to see on the scale of Figure B.2(a), i.e. that there are two intersections,

with the intersection we require, giving specifically a concave corner, being the

one that is lower down in Figure B.2(a), which corresponds here to the second

intersection having the larger of the two T values. A zoomed view of the second

intersection is shown in the inset of Figure B.3. We denote the intersection point

by ζ+cross and Ξ+cross and it has a corresponding y value yintercross as can be obtained
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Figure B.3: Front rescaled horizontal displacement difference between upper and
lower region Ξupper

+ − Ξlower
+ , as a function of T .

via equation (4.33) in Chapter 4. Note that the T value corresponding to the

intersection increases as tinj increases (inset of Figure B.3), at least for tinj up

to 0.01.

B.7 Perturbed location of the concave corner at

time t

In section 4.6 in Chapter 4 we demonstrated that the value of orientation angle

A+ at the matching point, denoted A+cross could be expanded in the form of

equation (4.32), as

A+cross ≈ A+,0(Tcross,0) + tinj
(

Tcross,1A′

+,0(Tcross,0) +A+,1(Tcross,0)
)

≡ A+cross,0 + tinjA+cross,1, (B.40)

whereA′
+,0 denotes the function dA+,0/dT (which is obtained via equations (4.15)

and (4.23) as given in Chapter 4). Analogously, we can compute ζ+ and Ξ+ at

the concave corner (denoted ζ+cross and Ξ+cross), via equations (4.24) and (4.25)
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(also given in Chapter 4), as

ζ+cross ≈ ζ+,0(Tcross,0) + tinj
(

Tcross,1ζ
′
+,0(Tcross,0) + ζ+,1(Tcross,0)

)

≡ ζ+cross,0 + tinjζ+cross,1, (B.41)

Ξ+cross ≈ Ξ+,0(Tcross,0) + tinj
(

Tcross,1Ξ
′
+,0(Tcross,0) + Ξ+,1(Tcross,0)

)

≡ Ξ+cross,0 + tinjΞ+cross,1, (B.42)

where ζ ′+,0 and Ξ′
+,0, denote the functions dζ+,0/dT and dΞ+,0/dT , respectively

(obtained via equations (4.16), (4.17), (4.24) and (4.25), as given in Chapter

4). We can also obtain analogous expressions in terms of t instead of tinj. Via

equation (4.19) (given in Chapter 4), the value A at the corner (denoted Across),

is given by (using also equation (4.28), as given in Chapter 4)

Across ≈ A0(Tcross,0 + t (1− Tcross,0)Tcross,1) + tA1(Tcross,0 + t (1− Tcross,0)Tcross,1)

(B.43)

which upon expanding gives

Across ≈ A0(Tcross,0) + t ((1− Tcross,0)Tcross,1A′
0(Tcross,0) + A1(Tcross,0))

≡ Across,0 + tAcross,1, (B.44)

where A′
0 denotes the function dA0/dT (obtained via equation (4.15)). Analo-

gously, we can compute ζ ≡ ζcross and Ξ ≡ Ξcross, via equations (4.20) and (4.21)

(given in Chapter 4), as

ζcross ≈ ζ0(Tcross,0) + t ((1− Tcross,0)Tcross,1ζ
′

0(Tcross,0) + ζ1(Tcross,0))

≡ ζcross,0 + t ζcross,1, (B.45)

Ξcross ≈ Ξ0(Tcross,0) + t ((1− Tcross,0)Ξcross,1Ξ
′

0(Tcross,0) + Ξ1(Tcross,0))

≡ Ξcross,0 + tΞcross,1, (B.46)
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where ζ ′0 and Ξ′
0, denote the functions dζ0/dT and dΞ0/dT , respectively (ob-

tained via equations (4.16) and (4.17)). Predictions that arise from equations

(B.40)–(B.42) and (B.44)–(B.46) are presented in section 4.7 of Chapter 4.

A comparison between equations (B.40)–(B.42) and (B.44)–(B.46) can be made

using equations (4.23)–(4.25) to identify the relationships between A+,0, ζ+,0,

Ξ+,0, A+,1, ζ+,1 and Ξ+,1, and A0, ζ0, Ξ0, A1, ζ1 and Ξ1, noting also via (4.23)–

(4.25) that

A′
+,0 =

A′
0

(1− T )1/2
+

A0

2(1− T )3/2
, (B.47)

ζ ′+,0 =
ζ ′0

(1− T )
+

ζ0
(1− T )2

, (B.48)

Ξ′

+,0 =
Ξ′
0

(1− T )3/2
+

3Ξ0

2(1− T )5/2
. (B.49)

Equations (B.40)–(B.42) now become

A+cross ≈ A0(Tcross,0)

(1− Tcross,0)1/2
(B.50)

+tinj

(

Tcross,1

( A′
0(Tcross,0)

(1− Tcross,0)1/2
+

A0(Tcross,0)

2(1− Tcross,0)3/2

)

+
A1(Tcross,0)

(1− Tcross,0)3/2

)

,

ζ+cross ≈ ζ0(Tcross,0)

(1− Tcross,0)
(B.51)

+tinj

(

Tcross,1

(

ζ ′0(Tcross,0)

(1− Tcross,0)
+

ζ0(Tcross,0)

(1− Tcross,0)2

)

+
ζ1(Tcross,0)

(1− Tcross,0)2

)

,

Ξ+cross ≈ Ξ0(Tcross,0)

(1− Tcross,0)3/2
(B.52)

+tinj

(

Tcross,1

(

Ξ′
0(Tcross,0)

(1− Tcross,0)3/2
+

3Ξ0(Tcross,0)

2(1− Tcross,0)5/2

)

+
Ξ1(Tcross,0)

(1− Tcross,0)3/2

)

,

which are written in a form that can be readily contrasted with equations (B.44)–

(B.46), with the various functions needed to evaluate all of these being specified

in equations (4.15)–(4.17) and ((B.28), (B.37) and (B.39)). The following rela-
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tionships can now be derived (replacing terms in (B.47)–(B.49) by counterparts

from equations (B.44)–(B.46))

A+cross,0 = Across,0/(1− Tcross,0)
1/2, (B.53)

ζ+cross,0 = ζcross,0/(1− Tcross,0), (B.54)

Ξ+cross,0 = Ξcross,0/(1− Tcross,0)
3/2, (B.55)

A+cross,1 =
Across,1

(1− Tcross,0)3/2
+ Tcross,1

Across,0

2(1− Tcross,0)3/2
, (B.56)

ζ+cross,1 =
ζcross,1

(1− Tcross,0)2
+ Tcross,1

ζcross,0
(1− Tcross,0)2

, (B.57)

Ξ+cross,1 =
Ξcross,1

(1− Tcross,0)5/2
+ Tcross,1

3Ξcross,0

2(1− Tcross,0)5/2
. (B.58)

Consulting Table 4.1 in Chapter 4, the terms A+cross,1, ζ+cross,1, Ξ+cross,1 turn

out to have opposite sign from Across,1, ζcross,1, Ξcross,1. It is clear from equa-

tions (B.56)–(B.58) that any sign changes must originate from the second term

on each right hand side. In each expression, the origin of this second term is due

Tcross increasing (by an amount tinjTcross,1) to a value greater than Tcross,0 coupled

to the tendency of A+,0, ζ+,0 and Ξ+,0 to increase with increasing T even without

accounting for increases in A0, ζ0, Ξ0 (due to the second term on the right hand

side of equations (B.47)–(B.49)).

B.8 Tracking lower region material points to achieve

matching

In Chapter 4 and also in section B.6 above, we used a procedure of second-order

accuracy in time to track the trajectory of an injected material point (injected

at time tinj) through the upper region in terms of ζ+ and Ξ+, as the rescaled y

and x location. We followed its location over time until it coincided with the

current location of a material point in the lower region, thereby allowing us to
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estimate the location of the concave corner. Once we know when and where the

two regions coincide, we can figure out which material point in the lower region

meets up with any given material point in the upper region. Then it is possible

to track the trajectory of a lower region material point up to the matching point

with the upper region material point labelled by tinj: this is what Figure 4.3

in Chapter 4 achieves. In what follows we identify material points in the lower

region by their original location on the front y0 on the front at time t = 0, and we

explain how to find a relation between the lower region y0 and the upper region

tinj, this relation then being used to produce the trajectories in Figure 4.3.

B.8.1 Identifying the value of z0

As we are interested in early-time solutions, and hence small values of tinj and

t, we expect that the material points of interest will be comparatively close to

the top of the solution domain, hence y0 values are expected to be close to unity.

Accordingly (and in line with section B.3) we define z0 = 1 − y0 as the vertical

distance (measured down from the top of the solution domain) of a material point

at its original location at time t = 0. We anticipate that z0 will be rather smaller

than unity. In principle we can consider not only values z0 > 0 (points already

present on the front at t = 0), but also z0 < 0 (denoting a “virtual” material

points not yet physically present on the front at time t = 0, but which might be

extracted from the concave corner later on [104]). Comparing equations (4.11)

and (4.12) in Chapter 4 (and remembering that 5t2/(48y0) can be approximated

by 5t2/48 when t is small and y0 is close to unity), it follows that a lower region

point released at t = 0 from y = y0, follows a trajectory given by

y ≈ y0 − 1 + y2nd,lower(t) = −z0 + y2nd,lower(t), (B.59)
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with the specific formula for y2nd,lower(t) (the trajectory of a point initially at the

top of the solution domain) given by equation (4.12) in Chapter 4. If we suppose

that the concave corner is at location y2nd,cross(t) (see equation (4.34)) at any

given time t, we can determine the z0 value instantaneously at the corner via

z0 ≈ y2nd,lower(t)− y2nd,cross(t). (B.60)

Here however we are interested in the first instance in obtaining z0 as a function

of tinj rather than as a function of t. Within the expression for y2nd,lower(t) (see

equation (4.12)) it is a simple matter to replace t by tinj/(1 − Tcross(tinj)) where

Tcross as a function of tinj is obtained by the procedure outlined in section B.6. If

we are specifically interested in the time at which the point z0 reaches the concave

corner tracked via the aforementioned procedure to a location y = yintercross(tinj) at

which upper and lower regions intersect, it now follows that

z0 ≈ y2nd,lower(tinj/(1− Tcross(tinj)))− yintercross(tinj). (B.61)

Meanwhile employing equation (4.33) in Chapter 4, yintercross can simply be written

as 1 − (tinj/2)ζ+cross(tinj) where again ζ+cross as a function of tinj is obtained by

the procedure outlined in section B.6. Hence

z0 ≈ −tinj
2

(

1

(1− Tcross)
− ζ+cross

)

+
5t2inj

48(1− Tcross)2
. (B.62)

This has been plotted in Figure B.4 presented later on. This equation (B.62) can

also be simplified in small tinj limit by first recognising that ζ+cross = ζcross/(1 −
Tcross). Then ζcross is expanded as ζcross,0+ t ζcross,1 (see equation (B.45)), with the

factor t (which appears here within the perturbation term t ζcross,1) approximated

at leading order by tinj/(1 − Tcross,0). In addition the factor (1 − Tcross)
−1 in
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equation (B.62) can be approximated via

1

(1− Tcross)
≈ 1

(1− Tcross,0 − tinjTcross,1)
≈ 1

(1− Tcross,0)
+

tinjTcross,1

(1− Tcross,0)2
. (B.63)

Retaining only terms out to order t2inj within equation (B.62) gives

z0 ≈ − (1− ζcross,0)

(1− Tcross,0)

tinj
2

+

(

5

24
+ ζcross,1 − (1− ζcross,0)Tcross,1

)

t2inj
2(1− Tcross,0)2

.

(B.64)

Inserting parameter values from Table 4.1 (as provided in Chapter 4) now gives

z0 ≈ −0.530 tinj + 1.845 t2inj. (B.65)

Again this has been plotted in Figure B.4. As can be seen in that figure, although

equations (B.62) and (B.65) agree in the small tinj limit, for larger tinj they behave

rather differently. Equation (B.65) predicts z0 decreasing from zero reaching a

minimum value of −0.0382 at tinj ≈ 0.144 and returning to z0 = 0 at tinj ≈ 0.288.

Negative z0 values correspond to material points with y0 > 1 that were not on

the lower region of front originally but rather which have been extracted from

the concave corner sometime after time t = 0. The minimum (i.e. most negative)

z0 corresponds to the last extracted material point. After this, as z0 begins

to increase, the corner starts consuming previously extracted material points,

and when z0 = 0 all extracted points have now been consumed and the corner

is beginning to consume points originally on the front y0 ≤ 1. By contrast,

equation (B.62) predicts a monotonically decreasing z0, the magnitude of the

derivative |dz0/dtinj| initially decreases with increasing tinj but then an inflection

occurs and |dz0/dtinj| increases again. The reason for this can be traced back

to the behaviour of ζ+cross as predicted by the procedure of section B.6. For

small tinj, we find that ζ+cross is an increasing function of tinj, but for larger tinj

the predicted value of ζ+cross decreases (see Figure 4.6(b) in Chapter 4). The
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decrease in ζ+cross is what then drives equation (B.62) towards more negative z0

values.

B.8.2 Relating z0 to the location of the concave corner

One of the issues we face with increasing tinj is that the procedure in section B.6

for tracking an upper region material point up to the corner actually yields a

poor estimate for the corner’s location, at least when compared with a numerical

Eulerian approach (see Figure 4.7 in Chapter 4). In that case Figure 4.7 reveals

that the function y2nd,cross(t) (equation (4.37)) actually gives a far better estimate

of the location of the corner for any given t than a formula based on tracking

material points through the upper region would. That suggests returning to

equation (B.60) which gives z0 directly as a function of t. To the extent that the

formula (4.34) for y2nd,cross(t) is reliable, this enables us to identify which material

point in the lower region is being extracted or consumed by the concave corner at

any instant t, without even having to specify the corresponding material point in

the upper region. Using the specific formulae for y2nd,lower(t) and y2nd,cross(t) from

equations (4.12) and (4.37) in Chapter 4, equation (B.60) predicts a minimum

value of z0 equal to −0.0114 at time t ≈ 0.759 and predicts z0 = 0 at time

t ≈ 1.518, i.e. the time at which y2nd,lower = y2nd,cross as discussed in section 4.7.3

in Chapter 4. To plot the resulting equation (B.60) on Figure B.4 we need

however to provide a relation between t and tinj. If we choose to approximate

Tcross ≈ Tcross,0 + tinjTcross,1 as in equation (4.28) in Chapter 4, we deduce

t ≈ tinj/(1− Tcross,0 − tinjTcross,1). (B.66)

This is now inserted into equation (B.60). If we were to Taylor expand the

resulting equation in powers of tinj, and discard all powers higher than order
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t2inj, then equation (B.65) would result. Here however we do not carry out that

formal expansion, retaining instead equations (B.60) and (B.66). The result is

now plotted in Figure B.4: qualitatively the shape is similar to equation B.65

but over a more compressed tinj scale. Using the values for Tcross,0 and Tcross,1

reported in Table 4.1 in Chapter 4, the time t ≈ 0.759 giving the minimum z0 is

now considered to correspond to tinj ≈ 0.0320. Meanwhile the time t ≈ 1.518 at

which z0 = 0 corresponds to tinj ≈ 0.0508.

B.8.3 Tracking a particular material point in the lower

region

When tinj is sufficiently small, all the various methodologies discussed above to

estimate z0 give nearly the same prediction, so matching material points in the

upper and lower region becomes straightforward again. Once we have identified,

for any particular upper region material point tinj, the corresponding lower region

material point z0, we can track the vertical motion this material point executes

via

y ≈ 1− z0 − t/2 + 5t2/48, (B.67)

where equations (B.59) and (4.12) have been used, and all t values are considered

up to the time at which intersection occurs between the specified upper and

lower region material points. Equivalently defining ζ+ = (1 − y)/(tinj/2), Z0 =

z0/(tinj/2) and T = 1− tinj/t (now with T ≤ Tcross), we deduce

ζ+ = Z0 +
1

1− T − tinj
5

24 (1− T )2
. (B.68)

This then can be inserted into equation (4.26) to predict the ζ+ vs Ξ+ trajectory

that the lower region material point executes as T and hence t varies. This is what

we plot in Figure 4.3 in Chapter 4 for the cases tinj → 0 and tinj = 0.01. The values
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z0

d
2
z
0
/d

t2 in
j

(a) (b)

Figure B.4: z0 vs tinj obtained via three different methodologies. Solid line: equa-
tions (B.60) (along with (B.66)). Dash-dotted line: equation (B.62). Dashed
lined: equation (B.65). Points “∗” and “◦” show the (tinj, z0) value correspond-
ing to the minimum z0 given by equations (B.60) and (B.65), respectively. (b)
d2
z0/dt

2
inj vs tinj for tinj < 0.002.

of z0 and hence Z0 ≡ z0/(tinj/2) reported in Figure 4.3 in each instance have been

obtained from equation (B.62). Note that as tinj → 0, the value of z0 → 0 also, but

Z0 remains finite, turning out to have a value of Z0 ≡ z0/(tinj/2) ≈ −1.06, as also

follows from (B.65) in the tinj → 0 limit. For small tinj < 0.01 values, equations

(B.60), (B.62) and (B.65) predict almost the same z0 value, however the amount

that they disagree increases as tinj increases. In the case of equation (B.60), a

minimum is found at tinj ≈ 0.0320 (assuming (B.66) applies) the minimum value

being z0 ≈ −0.0114 (point with asterisk “∗” on the solid line in Figure B.4).

To the left of ∗, material points at the concave corner were not in the original

solution domain of the lower region: they only appear when they are extracted

from the concave corner. To the right of ∗, we start consuming material points

again. At tinj ≈ 0.0508 (still using equation (B.60)), the value of z0 reaches zero:

all the extracted material points have been consumed. Hence for values of z0 > 0

we start consuming material points that were originally on the front since time

t = 0. Similarly, when the formula given by equation (B.65) is used, a minimum

is found at tinj ≈ 0.114 and z0 ≈ −0.0382 (point with “◦” on the dashed line
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in Figure B.4). This also predicts that at tinj ≈ 0.288 all the extracted material

points have been consumed (z0 reaches zero here). In contrast, when equation

(B.62) is used z0 just becomes more negative as tinj increases. In Figure B.4 we

compute d2
z0/dt

2
inj vs tinj with tinj < 0.002, for equations (B.62), (B.65), and

(B.60). For equation (B.62) (dash-dotted line in Figure B.4), this starts positive

and then becomes negative for tinj ∼ 0.001: this indicates an inflection for z0 vs

tinj (albeit difficult to see on the scale of in Figure B.4(a)). For equation (B.65)

this corresponds to a constant d2
z0/dt

2
inj value of 3.69. Finally for equation (B.60)

(solid line in Figure B.4), it starts positive and keeps increasing.

B.9 Front upper region extrapolation

Although equation (B.45) estimates ζcross for any given t, it only approximates

the nominal ζcross value that would be computed via the intersection of equations

(4.20), (4.21), and (4.22), as Figure 4.6(e) (in Chapter 4) makes clear when com-

paring predictions. It may be necessary to extrapolate the solution of equations

(4.20) and (4.21) over an interval of ζ from the vertical location where it inter-

sects with equation (4.22) to an estimated ζcross value by equation (B.45). As we

saw in Chapter 4, the estimated ζcross obtained via (B.45) actually gives a better

indication (see e.g. equation (4.34)) of how the vertical location of the concave

corner evolves. Here we explain a simple way in which an extrapolation with

respect to ζ can be achieved. We extrapolate the rescaled front’s upper region

shape ζ(T , t) vs Ξ(T , t), and rescaled front orientation A(T , t) vs ζ(T , t) at any

given time t (as described by equations (4.19)–(4.21)), beyond the intercept be-

tween the upper (given by equation (4.20) and (4.21)) and the lower (given by

equation (4.22)) region of the front, by considering a straight line extrapolation

between the nominal ζcross at the intercept itself and the estimate of ζcross from
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equation (B.45). Specifically, we can expand equations (4.19)–(4.21), to obtain

A ≈ A0(Tcross,0) + tA1(Tcross,0) + χ t (1− Tcross,0)Tcross,1A′
0(Tcross,0), (B.69)

ζ ≈ ζ0(Tcross,0) + t ζ1(Tcross,0) + χ t (1− Tcross,0)Tcross,1ζ
′

0(Tcross,0), (B.70)

Ξ ≈ Ξ0(Tcross,0) + tΞ1(Tcross,0) + χ t (1− Tcross,0)Tcross,1Ξ
′
0(Tcross,0). (B.71)

Here, A′
0, ζ

′
0 and Ξ′

0, denote dA0/dT , dζ0/dT and dΞ0/dT , respectively (with

A0, ζ0 and Ξ0 as given by equations (4.15)–(4.17)). Moreover, χ is a parameter

that varies from 0 to unity, as T varies from Tcross,0 to Tcross,0 + tinj Tcross,1 ≈
Tcross,0 + t (1 − Tcross,0) Tcross,1. We can obtain a straight line relation between A
and ζ , and between Ξ and ζ as

A ≈ A′
0(Tcross,0)

ζ ′0(Tcross,0)
(ζ − ζ0(Tcross,0)− t ζ1(Tcross,0)) +A0(Tcross,0) + tA1(Tcross,0),

(B.72)

Ξ ≈ Ξ′
0(Tcross,0)

ζ ′0(Tcross,0)
(ζ − ζ0(Tcross,0)− t ζ1(Tcross,0)) + Ξ0(Tcross,0) + tΞ1(Tcross,0).

(B.73)

Equations (B.72) and (B.73) are what we have plotted in Figure 4.8 (see Chapter

4 for details) at fixed time t = 1, with Tcross ≈ 0.9003, for values of ζ from

the computed ζ(Tcross) ≈ 0.5839 (i.e. the intersection between (4.20)–(4.21) and

(4.22)) up to the prediction that equation (B.45) estimates namely ζcross ≈ 0.7711.
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Supplementary material: Foam

flow in confined straight channels

This appendix consists of the supplementary material of the manuscript presented

in Chapter 5: “Viscous froth model applied to the motion of two-dimensional

bubbles in a channel: The three-bubble case”. Here a detailed deduction of the

main equation used in Chapter 5 is presented, in addition to further analysis and

discussion about limiting cases of the studied phenomena.
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Summary: In these supplementary sections, we start by deriving the formulae

to compute the three-bubble system structure at equilibrium, given in section

C.1. Then we proceed in section C.2, to obtain the coordinates for moving films,

either when the system is parametrized in terms of orientation angles or distances

along films. Then in section C.3 we carry out further analysis of the inherently

stable system moving at high velocity. In section C.4 by contrast, we deduce a

weakly-driven migration solution for the variables that define the system as it

moves at very low velocities. Results for out-of-equilibrium systems migrating

at a finite velocity are presented in section C.5: these expand upon the results

already presented in section 5.5 in Chapter 5.

C.1 Determining the equilibrium structure

In this section, we compute the initial symmetric static state, or so-called, equilib-

rium structure, where there is not any external driving pressure applied. Hence,

the imposed back pressure pb = 0. The (equilibrium) pressures of each of the

bubbles B1, B2 and B3 will be denoted by p◦1, p
◦
2 and p◦3, where the superscript

“◦” is used in this work to refer to the value of variables in the initial equilibrium

state. The bubble pressures are fixed by the constrained bubble areas A1, A2 and

A3, respectively, with A1 = A3 in the symmetric state considered here.

C.1.1 Equilibrium film coordinates

As described in Chapter 5 (see section 5.2), films are connected three by three at

vertices, each film subtending an angle of 2π/3 with respect to its neighbours, as

required by Plateau’s law for dry foams (see Figure 5.1(a) in Chapter 5 section

5.2). The angles through which a film turns, measured in the case of films 02,

13 and 20 from a channel side wall to a vertex either V1, V2 or V3 are denoted

δφ02, δφ13 and δφ20, all other film turning angles being determined in terms of
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these according to Table 5.1 in Chapter 5. The turning angles are measured in the

anticlockwise direction from the vertical, implying that for film 02 at equilibrium,

the value of δφ◦
02 is negative and equal to −δφ◦

20 (see Figure 5.1 in Chapter 5).

Meanwhile on symmetry grounds at equilibrium δφ◦
13 = 0. For migration velocity

v = 0, we obtain for each film ij (using equations (5.3)–(5.4))

dx◦
ij

dφij
= −sin(φij)

∆p◦ij
, (C.1)

dy◦ij
dφij

=
cos(φij)

∆p◦ij
. (C.2)

Remember that ∆p◦ij here corresponds to the left side minus right side pressure.

The ranges of variation of φij for each film, are summarized in Table 5.1 in Chap-

ter 5.

Since at equilibrium the system is symmetric, we just need to integrate equations

(C.1) and (C.2) for three of the films 23, 20 and 30, in order to characterize the

whole structure. Then, we obtain

y◦23 = 1− l◦2 −
√
3

2(p◦2 − p◦3)
+

sin(φ23)

(p◦2 − p◦3)
,

π

3
≤ φ23 ≤

π

3
+ δφ◦

20, (C.3)

y◦30 = 1 +
sin(φ30)

p◦3
, 0 ≥ φ30 ≥ −π

3
+ δφ◦

20, (C.4)

y◦20 =
sin(φ20)

p◦2
, 0 ≤ φ20 ≤ δφ◦

20. (C.5)

Since the films 23, 30 and 20 join at the vertex V3, we know that y◦23(π/3+δφ◦
20) =

y◦30(−π/3 + δφ◦
20) = y◦20(δφ

◦
20) ≡ 1− l◦1. Using these relations, we can calculate p◦3
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and p◦2, in terms of l◦1 and l◦2, as

p◦3 =

√
3(1− l◦2)

√

4l◦2
2(1− l◦1 + l◦1

2)− 4l◦1l
◦
2(1 + l◦1) + l◦1

2(1 + 6l◦1 − 3l◦1
2)

4l◦1
2 − 4l◦1l

◦
2(1 + l◦1) + 4l◦2

2(1− l◦1 + l◦1
2)

+

√
3l◦2(2− 3l◦1 + l◦1

2)−
√
3l◦1(1− l◦1)

4l◦1
2 − 4l◦1l

◦
2(1 + l◦1) + 4l◦2

2(1− l◦1 + l◦1
2)
, (C.6)

p◦2 =

√
3− 2p◦3l

◦
2

2(1− l◦2)
. (C.7)

Here both equation (C.3) and equation (C.4) were matched at vertex V3 to (1−l◦1),

to obtain, after some manipulation, equations (C.6) and (C.7), respectively. Here

in each case by using equation (C.5) the turning angle δφ◦
20 was replaced by

δφ◦
20 = asin(p◦2(1− l◦1)).

In Figure C.1 we show the equilibrium pressures and also a film turning angle

for two fixed values of l◦1 and different values of l◦2/l
◦
1. Observe how the pressures

p◦1 = p◦3 tend to exceed p◦2, and decreasing l◦1 causes p◦1 = p◦3 to increase even

more. Meanwhile increasing l◦2/l
◦
1 tends to decrease both p◦2 and δφ◦

20. Note that

increasing l◦1 decreases the length of film 20 and hence decreases the turning angle

δφ◦
20 likewise. Once the pressures are calculated for the equilibrium structure,

given l◦1 and l◦2 as the control variables, we can compute the xij and yij coordinate

of each film using equations (C.1) and (C.2).

C.1.2 System energy in the equilibrium

We can compute the system’s energy in equilibrium (the sum of all film lengths)

E◦ by integrating equation (5.2) (as given in section 5.2.2 in Chapter 5) with

v = 0, for films 23, 30 and 20. Then by adding together (on symmetry grounds)

twice the L◦
23, L◦

30 and L◦
20 of these films, with the vertical film 13 of length l◦2,
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(a) (b)

Figure C.1: (a) Equilibrium pressures p◦1 = p◦3 and p◦2, and (b) total turning angle
δφ◦

20 = −δφ◦
02. In each case we plot for two values of l◦1, and l◦2/l

◦
1 ∈ [0.01, 0.99].

In (a) and (b) in each curve the monodisperse scenario has been highlighted
with “◦”.

we can obtain E◦, which is given by

E◦ = 2

(

π

3 p◦3
+ δφ◦

20

(

1

p◦2
+

1

p◦3 − p◦2
− 1

p◦3

))

+ l◦2, (C.8)

where δφ◦
20, p

◦
2 and p◦3 are functions of l◦1 and l◦2. This E◦ is plotted in Figure

C.2(b) for different values of l◦1 and l◦2. Qualitatively E◦ shows a similar trend to

the perimeter of a circular bubble with the same Atot i.e. with the same total area.

C.1.3 Setting bubble areas

In this work we do not consider gas diffusion between bubbles, i.e. areas will

remain constant even when the system is set in motion. Once the equilibrium

pressures and film turning angles are determined as a function of l◦1 and l◦2, we

can compute bubble areas considering that in the equilibrium state all films are
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l◦
1

l◦
2
/l◦

1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.121 0.077 0.044 0.019 0.005 0.000 0.000 0.000 0.000 0.000 0.000

0.1 0.196 0.151 0.112 0.080 0.053 0.033 0.020 0.012 0.008 0.005 0.004
0.2 0.277 0.233 0.192 0.154 0.120 0.089 0.064 0.044 0.030 0.021 0.016
0.3 0.365 0.324 0.282 0.241 0.201 0.162 0.125 0.093 0.066 0.048 0.037
0.4 0.460 0.423 0.382 0.340 0.295 0.248 0.202 0.157 0.117 0.085 0.066
0.5 0.565 0.532 0.493 0.449 0.401 0.348 0.293 0.236 0.181 0.134 0.102
0.6 0.679 0.651 0.615 0.571 0.520 0.462 0.397 0.328 0.258 0.193 0.147
0.7 0.806 0.782 0.749 0.705 0.651 0.588 0.516 0.435 0.349 0.265 0.201
0.8 0.945 0.927 0.896 0.853 0.797 0.728 0.648 0.557 0.455 0.350 0.262
0.9 1.101 1.088 1.059 1.016 0.958 0.884 0.797 0.694 0.578 0.450 0.333
1 1.276 1.265 1.239 1.196 1.135 1.057 0.961 0.849 0.719 0.571 0.410

Table C.1: Area of bubbles A1 = A3 for different values of l◦1 and l◦2/l
◦
1. Cases

shown in italics have A1 and A3 smaller than A2. The cases l◦1 → 1 or l◦2/l
◦
1 → 0

reported here are limiting cases that are easy to compute. Meanwhile in the
limiting case l◦2/l

◦
1 → 1, A1 = A3 ≈ (2π/9 − 1/(2

√
3))l◦1

2. The limiting case
l◦1 → 0 is discussed later on (see section C.1.4): areas A1 = A3 vanish unless
l◦2/l

◦
1 < 0.5.

arcs of circles. It is possible to deduce that

A2 = 2

(

1

∆p◦23

(

1− (l◦1 + l◦2)

2

)(

cos
(π

3
+ δφ◦

20

)

− 1

2

)

− 1

2∆p◦23
2 (δφ

◦

20 − sin(δφ◦

20))

+
1

2∆p◦20
2 (δφ

◦

20 − sin (δφ◦

20)) +
(1− l◦1)

2∆p◦20
(1− cos (δφ◦

20))

)

, (C.9)

A3 =
1

2∆p◦23
2 (δφ

◦

20 − sin(δφ◦

20)) +
(l◦1 + l◦2)

2∆p◦23

(

cos
(π

3
+ δφ◦

20

)

− 1

2

)

+
1

2∆p◦30
2

(π

3
− δφ◦

20 − sin
(π

3
− δφ◦

20

))

+
l◦1

2∆p◦30

(

1− cos
(π

3
− δφ◦

20

))

.

(C.10)

Remember that a symmetric system entails that A1 = A3. Although equations

(C.9) and (C.10) are given here as functions of l◦1, l
◦
2, δφ

◦
20, p

◦
2, and p◦3, by using

equations (C.6) and (C.7), and the fact that δφ◦
20 = asin(p◦2(1 − l◦1)), they can

be written solely in terms of l◦1 and l◦2. Equations (C.9) and (C.10) are therefore

nonlinear equations relating A2 and A1 = A3 to l◦1 and l◦2.
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l◦
1

l◦
2
/l◦

1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 2.887 2.512 2.118 1.704 1.271 0.819 0.599 0.415 0.259 0.122 0.000

0.1 2.752 2.414 2.069 1.720 1.374 1.042 0.744 0.495 0.296 0.135 0.000
0.2 2.629 2.312 1.994 1.678 1.367 1.066 0.783 0.531 0.317 0.143 0.000
0.3 2.512 2.207 1.907 1.611 1.323 1.044 0.780 0.537 0.324 0.145 0.000
0.4 2.399 2.100 1.809 1.528 1.256 0.996 0.750 0.522 0.317 0.141 0.000
0.5 2.288 1.990 1.705 1.433 1.174 0.930 0.701 0.489 0.298 0.133 0.000
0.6 2.177 1.878 1.595 1.328 1.080 0.848 0.635 0.441 0.268 0.119 0.000
0.7 2.069 1.763 1.479 1.217 0.976 0.756 0.558 0.382 0.229 0.100 0.000
0.8 1.958 1.646 1.360 1.099 0.864 0.655 0.471 0.313 0.182 0.077 0.000
0.9 1.846 1.526 1.236 0.976 0.746 0.546 0.377 0.237 0.128 0.049 0.000
1 1.732 1.404 1.109 0.849 0.624 0.433 0.277 0.156 0.069 0.017 0.000

Table C.2: Area of bubble A2 for different values of l◦1 and l◦2/l
◦
1. Cases shown in

italics are those for which A1 and A3 are smaller than A2. Limiting cases either
l◦1 → 1 or l◦2/l

◦
1 → 0 are easy to compute. In the limiting case l◦2/l

◦
1 → 1, A2

vanishes. However area A2 is finite in the l◦1 → 0 limit, see section C.1.4 for
details.

Tables C.1 and C.2 show for a wide range of values of l◦1 and l◦2, the correspond-

ing bubble areas A1 = A3 and A2, respectively. Increasing l◦1 or decreasing l◦2/l
◦
1

leads to increased A1 = A3. Meanwhile increasing l◦1 or increasing l◦2/l
◦
1 leads to

decreased A2. In Figure 5.3(c) in Chapter 5 we plot the bubble area for poly-

disperse bubble systems for three fixed values of l◦1 = [0.1, 0.5, 0.9] and values of

l◦2/l
◦
1 ∈ [0.01, 0.99], in effect plotting data from selected rows of Table C.1 and

Table C.2.

Figure C.2(a) shows for that same system the total area of all bubbles Atot =

2A1+A2 using the same set of l◦1 and again with values of l◦2/l
◦
1 ∈ [0.01, 0.99]. Here

the edges of the bubbles on the channel walls are not included in the computation

of E◦, so there is no requirement for E◦ to exceed (4π Atot)
1/2. In both Figure

C.2(a) and C.2(b) (for each l◦1) the particular l◦2/l
◦
1 values giving monodispersity

are highlighted with “◦”. In the case of l◦1 = 0.01 however, this value is strictly

speaking out of the studied domain since it involves l◦2/l
◦
1 = 0.997. Certain

combinations of l◦1 and l◦2 (see Figure 5.4(a) in Chapter 5) lead to monodisperse
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(a) (b)

Figure C.2: (a) Total bubble area Atot = 2A1+A2 for three fixed values of l◦1 and
values of l◦2/l

◦
1 ∈ [0.01, 0.99]. (b) System energy in equilibrium E◦ for different

three values of l◦1 and values of l◦2/l
◦
1 ∈ [0.01, 0.99], in comparison with (4π Atot)

1/2

(which is the perimeter of a circular bubble with the same total area).

systems for which A1 = A2 = A3, the resulting monodisperse bubble areas being

plotted in Figure 5.4(b) (also in Chapter 5). For any given l◦1, the requisite l◦2/l
◦
1

value to attain the monodisperse state can be estimated by reading off areas from

the corresponding rows of Table C.1 and C.2 until a l◦2/l
◦
1 value is found at which

the areas are roughly equal. This then provides a starting guess for solving the

nonlinear equation obtained by equating (C.9) and (C.10).

C.1.4 Setting bubble areas in limiting cases

Equations (C.9)–(C.10) indicate that bubble areas A1 = A3 are complex nonlinear

functions of l◦1 and l◦2. There are certain limiting cases however in which these

relations simplify considerably. Here we consider a number of such limiting cases

for the system in equilibrium.

C.1.4.1 l◦1 ≪ 1 limit

The limiting case l◦1 ≪ 1 turns out to have very different behaviour depending

upon whether χ < 1/2 or 1/2 < χ < 1 (with χ = l◦2/l
◦
1). In the former case, it can
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(a) (b)

Figure C.3: (a) Total turning angle δφ◦
20, and (b) bubble pressures l◦1 p

◦
1 = l◦1 p

◦
3

and p◦2, as a function of χ ≡ l◦2/l
◦
1 for four fixed values of l◦1 in the equilibrium.

Here for bubbles B1 and B3 we plot a rescaled pressure (rescaled by l◦1) since in
the l◦1 → 0 limit, with χ > 1/2, p◦1 = p◦3 might be orders of magnitude bigger than
p◦2. The data shown here obtained by using equations (C.6) and (C.7).

be shown that film 20 turns through an angle π/3 and bubble pressure p◦2 ≈
√
3/2

(see Figure C.3(a)). Meanwhile bubble B3 (which is a symmetric mirror image of

bubble B1) need not be particularly small, the pressure p◦3 (whilst larger than p◦2)

need not be orders of magnitude larger (see Figure C.3(b)), and film 30 (which

is very short in this l◦1 ≪ 1 limit) turns through a negligible angle (see Figure

C.4 (a)). In the latter case however, film 20 turns through an angle significantly

less than π/3 and bubble pressure p◦2 can likewise be less than
√
3/2. Film 30

despite being very short, now turns through a non-negligible angle. This requires

that pressure p◦3 is orders of magnitude larger than p◦2 (see Figure C.3(b)). Films

30 and 23 both have nearly the same curvature, and both these films are highly

curved. This then requires that bubble B3 and also its symmetric mirror image

bubble B1 have vanishingly small area in the limit l◦1 → 0 (see Figure C.4(b)).

As seen in Figure C.3(b), small l◦1 means that p◦1 and p◦3 are very large (much

bigger than p◦2), which causes that 12 and 23 to turn through a noticeable angle,

especially when χ < 0.5.
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Approximated results can then be derived in this limiting case, taking note in

what follows of the turning angles at the start and end of each film as given in

Table 5.1 in Chapter 5. Film 20 at equilibrium satisfies (see equation (C.5))

1− l◦1 =
sin(δφ◦

20)

p◦2
. (C.11)

Hence if l◦1 ≪ 1, we can either have δφ◦
20 ≈ π/3 and p◦2 =

√
3/2 (as suggested

by equation (C.7), provided p◦3l
◦
2 → 0 as l◦2 → 0), or we can have a smaller

value of δφ◦
20 and a correspondingly smaller p◦2. Film 30 meanwhile satisfies (see

equation (C.4))

l◦1 =
sin(π/3− δφ◦

20)

p◦3
. (C.12)

In a situation in which δφ◦
20 = π/3 − ∆φ20 where by assumption ∆φ20 ≪ 1, we

have to a good approximation

l◦1 ≈
∆φ20

p◦3
. (C.13)

Meanwhile film 23 satisfies (see equation (C.3))

l◦2 − l◦1 =
sin(π/3)

p◦3 − p◦2
− sin(π/3 + δφ◦

20)

p◦3 − p◦2
. (C.14)

If we set l◦2 = χl◦1 (for some χ < 1) and we also set δφ◦
20 = π/3−∆φ20 we discover

upon Taylor expanding in terms of ∆φ20 that

(1− χ)l◦1 ≈
∆φ20

2(p◦3 − p◦2)
. (C.15)

Solutions of the above equations are

p◦3 ≈
(2− 2χ)

(1− 2χ)
p◦2, (C.16)
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∆φ20 ≈ l◦1p
◦

3 ≈
(2− 2χ)

(1− 2χ)
l◦1p

◦

2. (C.17)

These equations have physically sensible solutions as long as χ < 1/2. In that

case it is clear that p◦3 is not orders of magnitude larger than p◦2 and since ∆φ20

is then small it follows by equation (C.11) that p◦2 ≈
√
3/2.

It is only in the limit as χ → 1/2 that we find p◦3 ≫ p◦2 and ∆φ20 ceases to

be small (which means δφ◦
20 starts to become significantly less than π/3). In

the limit when p◦3 ≫ p◦2 we have the following approximation for film 23 (see

equation (C.14))

l◦1 − l◦2 ≈
sin(π/3 + δφ◦

20)−
√
3/2

p◦3
. (C.18)

If we take a ratio between the relations for 30 and 23 (see equations (C.12) and

(C.18)) we obtain

1− χ ≡ l◦1 − l◦2
l◦1

≈ sin(π/3 + δφ◦
20)−

√
3/2

sin(π/3− δφ◦
20)

. (C.19)

For any value of 1/2 < χ < 1 we should be able to find a corresponding δφ◦
20.

Close to χ = 1, we expect δφ◦
20 → 0 whereas close to χ = 1/2 we expect δφ◦

20 to

be slightly smaller than π/3. Once the value of δφ◦
20 is obtained, the pressure p◦2

follows via equation (C.11) as p◦2 ≈ sin(δφ◦
20).

Based on the arguments above, it is now possible to determine formulae for bubble

areas with l◦1 ≪ 1, both in the regime χ ≡ l◦2/l
◦
1 < 1/2 and in the regime

1/2 < χ < 1. These are the data we already reported in Table C.1 and Table

C.2. One feature of the l◦1 ≪ 1 geometry, which is particularly noticeable when

χ is also small, is that vertices V1 and V3 are no longer necessarily the most

distant points of film 12 and film 23 from the upper channel wall. Instead films

12 and 23 sweep downwards starting from vertex V2 and then sweep upwards a

little to reach vertices V1 and V3, respectively: see Figure C.4(a)–(b) for detail.

Here (since films 01, 13 and 30 are all nearly vertical, with χ < 1/2 in this
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(a) (b)

Figure C.4: (a) System in equilibrium for l◦1 = 0.001 and l◦2/l
◦
1 = 0.1 (solid line),

l◦2/l
◦
1 = 0.3 (dashed line), and l◦2/l

◦
1 = 0.5 (dotted line), with A1 = A3 ≈ 0.0780

and A2 ≈ 2.5109; A1 = A3 ≈ 0.0198 and A2 ≈ 1.7049; and A1 = A3 ≈ 1.1318 ×
10−4 and A2 ≈ 0.8483, respectively. (b) System in equilibrium for l◦2/l

◦
1 = 0.5 and

l◦1 = 0.001 (solid line), l◦1 = 0.005 (dashed line), and l◦1 = 0.01 (dotted line). Here
the areas are A1 = A3 = 1.1318×10−4 and A2 = 0.8483; A1 = A3 = 7.0803×10−4

and A2 = 0.8832; and A1 = A3 = 0.0016 and A2 = 0.9080, respectively.

figure), it follows that films 12 and 23 turn through an angle of roughly π/3, so

we can deduce that the pressure difference across these films can be estimated as

π/(3L◦
23). Based on this, we can determine that

L◦

23 ≈ 2π

√

A1

3(2π − 3
√
3)
, (C.20)

and that the vertex V2 to V3 separation ∆x◦
23 can be determined as ∆x◦

23 ≈
1/∆p◦23 ≈ 3L◦

23/π, hence ∆x◦
23 ≈ 2

√

3A1/(2π − 3
√
3). All these values L◦

23,

∆p◦23 ≡ p◦2 − p◦3, ∆x◦
23 and A1 are of course sensitive to the value of χ. On the

other hand, considering that the turning angle of films 02 and 20 correspond to

|δφ◦
02| = δφ◦

20 ≈ π/3, we can deduce that the area of bubble B2 can be obtained

as a leading-order term (formed by the “wings” swept out by films 02 and 20

in Figure C.4(a)–(b)) plus an order A
1/2
1 correction (formed by the rectangle of

width 2∆x◦
12 and unit height, i.e. the part of the channel enclosed between vertices
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V1 and V3), minus order A1 corrections (from bubbles B1 and B3 bulging into the

aforementioned rectangle). Therefore, we can compute that

A2 ≈
(

4π

9
− 1√

3

)

+ 12

√

A1

3(2π − 3
√
3)

− 2A1 ≈ 0.8189 + 6.6451
√

A1 − 2A1.

(C.21)

The values of A1 here are in the domain A1 → 0 (corresponding to χ → 1/2) to

A1 ≈ 0.1208 (corresponding to χ → 0). The domain of A2 therefore is 0.8189 ≤
A2 ≤ 2.8868. If we now increase χ above the value 1/2, A1 remains zero, and

A2 falls from 0.8189 to zero. These are the domains shown in Table C.1 and

Table C.2 in the l◦1 ≪ 1 limit. Equation (C.21) has been also plotted in Figure

5.8 in Chapter 5. For any choice of A1 (and hence, in this instance, A2 via

(C.21)), equations (C.9)–(C.10) are ordinarily used to obtain the values of l◦1

and l◦2. However, the structures plotted in Figure C.4 were obtained selecting

small but arbitrary values of l◦1 and l◦2 in the equilibrium (then using equations

(C.9)–(C.10) merely to report the areas A1 and A2). In Figure C.4(a) we see

how when l◦1/l
◦
2 is very small, the order A

1/2
1 contribution to equation (C.21)

(i.e. the part of the enclosed channel between vertices V1 and V3) makes a very

significant contribution to A2. A variant of the scenario seen in Figure C.4(b) is

that in which the value of l◦2/l
◦
1 is maintained fixed (with a value 0.5) for different

arbitrary small l◦1 ≪ 1 values. This is what Figure C.4(b) shows. The area A1

is now tiny, and A2 changes comparatively little with l◦1. On the other hand,

if l◦1 ≪ 1, but χ increases beyond 0.5, values of A2 do change. An extreme

case occurs with l◦2 → l◦1, i.e. χ = l◦2/l
◦
1 → 1 (see Figure C.5(c) for details).

This particular structure, although not easy to set up experimentally (given that

bubble B2 is highly elongated, so bubbles would likely stack in a different fashion,

not in a staircase), can be determined analytically as follows. Bubbles B1 and B3
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Figure C.5: System in equilibrium for l◦1 = 0.2 and l◦2/l
◦
1 ≈ 0.9871, with

A1 = A2 = A3 ≈ 0.0168. The horizontal distance between vertices V1 and V3

corresponds to 0.0092 while the horizontal spacing between film 02 and 20 at the
lower channel wall corresponds to 0.0270, indicating that most of the area of A2

is in the parabolic wings to the left of V1 and to the right of V3. The proportion
of the area A2 in the parabolic wings becomes even more significant as l◦1 → 0.

can be considered as half a simple lens each, Therefore we find that

A1 = A3 ≈
1

2

(

4π

9
− 1√

3

)

l◦1
2, (C.22)

so their areas are proportional to l◦1
2. The pressure of bubbles B1 and B3 can

be approximated as p◦1 = p◦3 ≈
√
3/(2 l◦1), and the pressure of bubble B2 can be

considered as p◦2 ≪ p◦3, such that film 23 with a length L◦
23 of roughly 2(l◦1 − l◦2)

turns through an angle of δφ◦
23 ≈

√
3(1 − l◦2/l

◦
1). Film 20 therefore, must turn

through exactly the same angle but over a much longer distance, so its curvature

is comparatively small. Based on the aforementioned, the area of bubble B2 can

be estimated as the area enclosed by two “wings” of a parabola formed by films

02 and 20 these wings covering almost all the height of the channel, and almost

meeting one another. Hence, we can deduce that

A2 ≈
1√
3

(

1− l◦2
l◦1

)

. (C.23)
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There is an additional contribution to A2 coming from the region between vertices

V1, V2 and V3 and the lower channel wall, but equation (C.23) dominates when l◦1

is small. A special case of interest is the monodisperse case in which all bubble

areas are equal. By matching equations (C.22) with (C.23), we obtain that for

monodispersity.

l◦2 ≈ l◦1 −
(

2π

3
√
3
− 1

2

)

l◦1
3. (C.24)

This is what we plot in Figure 5.4(a) in Chapter 5.

Although the l◦1 ≪ 1 structures considered above are permissible three-bubble

structures, some of them (see e.g. Figure C.4(a)–(b)), do not strictly speaking

match the geometrical notion of a staircase in which bubble B1 would extend

furthest to the left out of all the bubbles, and B3 would extend furthest to the

right. As such those structures are less likely to exhibit properties similar to an

infinite staircase. A limiting case which is however geometrically more similar to

an infinite staircase is the opposite limit l◦1 → 1, which we discuss next.

C.1.4.2 l◦1 → 1 limit

In the case l◦1 → 1, films 02 and 20 are now very short and almost vertical,

whilst film 13 is always vertical (in the equilibrium state): see Figure C.6. If

we now consider how films 12 and 23 are oriented at either end, it follows that

those films are necessarily flat, in other words the pressure of bubble B2 is the

same as that of bubbles B1 and B3. Moreover the area of bubbles B1 and B3

tends to be very significant when compared with the opposite cases for which

l◦1 ≪ 1. In the first instance we consider a case for which l◦1 is close to unity,

but 1 − l◦2 ≫ 1 − l◦1 (see Figure C.6(a) for details). Here, as we have said, films

12 and 23 are relatively flat with their curvature approaching zero, so the area

of bubble A1 can be approximated by the area swept out by the arc 01 plus a

trapezium joining the upper channel wall to vertices V1 and V2: the trapezium
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area is
√
3(l◦1 − l◦2)(l

◦
1 + l◦2)/2. We can deduce that

A1 ≈
1

2

(

4π

9
− 1√

3

)

l◦1
2 +

√
3

2
(l◦1 − l◦2)(l

◦

1 + l◦2), (C.25)

where recall l◦1 is close to unity here. The area of bubble A2 can be approximated

as a pentagon (a leading-order term given by a triangle enclosed by vertices V1, V2

and V3, plus a small rectangle between vertices V1 and V3 and the lower channel

wall), so we can compute

A2 ≈
√
3(l◦1 − l◦2)

2 + 2
√
3(l◦1 − l◦2)(1− l◦1). (C.26)

Note that A2 vanishes as l
◦
2 → l◦1, but decreasing l◦2 at fixed l◦1 → 1, causes both A1

and A2 to increase. If l
◦
2 → 0 whilst l◦1 → 1, we find A1 ≈ 1.2755 and A2 ≈ 1.7321.

By matching equations (C.25) with (C.26) (i.e. imposing monodispersity), still

with l◦1 → 1, we determine that

l◦2 →
6− 2 4

√
3
√
π

9
≈ 0.1483. (C.27)

This is essentially the situation we plot in Figure C.6(a). Equations (C.25) and

(C.26) however are only strictly valid in the limit of l◦1 → 1. Therefore, to ob-

tain a relation for the monodisperse l◦2 as a function of (1 − l◦1) in the limit of

small but finite (1 − l◦1), we need to consider a different set of equations. These

equations recognize that for (1 − l◦1) small but non-zero, films 12 and 23 are

not entirely flat. Hence, using equations (C.3)–(C.5) we can determine an order

(1 − l◦1) correction for bubble pressures as p◦1 = p◦3 ≈
√
3/2 + (

√
3/2)(1 − l◦1),

and p2 ≈
√
3/2 − (

√
3/4)l◦2(1 − l◦1)/(1 − l◦2). Then via equation (C.1) we can

deduce the order (1− l◦1) correction for the horizontal extent of film 01 (the same

applies to 30), so we obtain ∆x◦
01 = ∆x◦

30 ≈ 1/
√
3 − (2/

√
3)(1 − l◦1). The hor-

izontal distance between vertices V1 and V2 (the same applies for V2 and V3) is
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∆x◦
12 = ∆x◦

23 ≈
√
3(1− l◦2)− (

√
3/2)l◦2(1− l◦1).

Finally the bubble areas A1 = A3 can be obtained using an order (1−l◦1) correction

to the area of the arc segment of film 01 (or 30) which can be approximated as

the sum of the area in B1 to the left of V1 (half a simple lens plus a (1 − l◦1)

correction due to a perturbation in the turning angle of δφ◦
01) and the area in B1

to the right of V1 which corresponds to a trapezium and a bulge from film 12.

The area of bubble A2 can be determined in a similar fashion to C.26, so it can

be approximated as pentagon of height 1− l◦2, enclosed by vertices V1, V2 and V3,

minus the bulges from films 12 and 23. Therefore, by keeping terms up to order

(1− l◦1) we can determine

A1 ≈
9(2− 3l◦2

2) + 4
√
3π

18
√
3

− (9(l◦2
2 + l◦2 + 8) + 8

√
3π)(1− l◦1)

36
√
3

, (C.28)

A2 ≈
√
3(1− l◦2)

2 +
(1− l◦2)(4− l◦2)(1− l◦1)

2
√
3

. (C.29)

By matching equations (C.28) and (C.29) for monodispersity, again keeping the

terms up to order (1− l◦1) we can deduce that

l◦2 ≈
6− 2 4

√
3
√
π

9
+

((14 4
√
3
√
π + 15)π + 51 4

√
27
√
π)(1− l◦1)

108π
. (C.30)

This is what we have plotted in Figure 5.4(a) in Chapter 5.

On the other hand, we can also consider the limit l◦1 → 1 in a very polydisperse

scenario, with bubble B2 much smaller than bubbles B1 and B3. In this case 1− l◦2

(whilst larger than 1− l◦1) is not considered to be orders of magnitude larger. In

this case we can put l◦1 → 1 and l◦2 → 1 in equation (C.25) to deduce A1 whereas

A2 remains a pentagon so equation (C.26) continues to apply. Indeed we are free

to fix the area of bubbles A1 = A3 and change the area of bubble A2, by changing

l◦1, without l
◦
2 changing too much (see Figure C.6(b) for details). It is interesting
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(a) (b)

Figure C.6: (a) System in equilibrium for l◦1 = 0.99 and l◦2/l
◦
1 ≈ 0.1584, with

A1 = A2 = A3 ≈ 1.2343. (b) System in equilibrium for l◦1 = 0.99 and l◦2 = 0.9
(dotted line), with A1 = A3 ≈ 0.5458, and A2 ≈ 0.0173 (when pushed out of
equilibrium, this system is expected to undergo a T1l3). We also plot a system
in the equilibrium for l◦1 = 0.95 and l◦2 = 0.9 (solid line), with A1 = A3 ≈ 0.3483,
and A2 ≈ 0.0034 (when pushed out of equilibrium, this system is expected to
undergo a T1c).

to contrast the structure for l◦1 ≪ 1 and comparatively large l◦2/l
◦
1 (χ > 1/2), with

the structure in Figure C.6(b) (both l◦1 and l◦2/l
◦
1 close to unity). In the former

case, bubbles B1 and B3 are small, and have 4 sides each, including the channel

wall. Films 01 and 30 turn through very significant angles, due to large pressures

in p◦1 and p◦3. This is reminiscent of what happens in a simple lens with small

area [19]. Hence we expect this system might have a behaviour akin to that of

a simple lens: in particular decreasing the size of the small bubble might make

the system (when pushed out of equilibrium) better able to resist T1. On the

other hand, in Figure C.6(b) it is bubble B2 that has small area. This bubble now

has 5 sides, including the channel wall. The pressure p◦2 is comparatively small,

and none of the films now turns through a significant angle, at least as long as

l◦1 and l◦2/l
◦
1 remain close to unity. The resulting shape is no longer reminiscent

of a simple lens, so there is no guarantee that shrinking bubble B2 will make the

out-of-equilibrium system better able to resist T1. We will return to this point

in section C.5.4.
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Figure C.7: l◦2 → 0 limit. Dotted line: l◦1 = 0.1, with A1 = A3 = 0.1953
and A2 = 2.7482. Dash-dotted line: l◦1 = 0.5, with A1 = A3 = 0.5647 and
A2 = 2.2878. Solid line: l◦1 = 0.9, with A1 = A3 = 1.1009 and A2 = 1.8458.

C.1.4.3 l◦2 → 0 limit

Note that the system considered above l◦1 → 1, gives (for any chosen l◦2 or anal-

ogously for any chosen A2) the largest possible A1 for an equilibrium staircase

structure to exist. Is it is also possible to consider, for any chosen l◦1 or analogously

any chosen A1, a maximum allowed A2. This corresponds to the limit l◦2 → 0.

This limit is easy to compute given that in the limit l◦2 → 0, equation (C.7) gives

p◦2 =
√
3/2. Hence the amount that film 20 turns (over a vertical distance 1− l◦1)

is well defined. This in turn fixes the amount that film 30 turns over a vertical

distance l◦1 (specifically δφ◦
20 = asin((

√
3/2)(1 − l◦1))), and hence the value p◦3 is

fixed too (specifically p◦1 = p◦3 = (
√
3
√

1− 3 l◦1
2 + 6 l◦1)/(4 l

◦
1)−

√
3/(4 l◦1)+

√
3/4).

Knowing the two pressures p◦2 and p◦3 then defines the shape of film 23. Formulae

for A1 and A2, as given by equations (C.9) and (C.10), then result, and since

l◦2 → 0 here, areas can therefore be computed solely in terms of l◦1. As mentioned

in section C.1.4.1, and given in Tables C.1 and C.2, these give the largest allowed

A2 for any chosen l◦1 and its value varies between 2.8868 when l◦1 → 0 and 1.7321

when l◦1 → 1, while A1 ≈ 0.1208 when l◦1 → 0 (albeit still with l◦2/l
◦
1 ≪ 1), and

A1 ≈ 1.2755 when l◦1 → 1. In Figure C.7 we plot sample bubble shapes for a

selection of l◦1.
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C.1.4.4 l◦2 → l◦1 limit

The last case we consider here, consists of the limit of l◦2 → l◦1 for arbitrary l◦1.

In this limit, the shape of bubble B2 (except when l◦1 → 1) is highly elongated

(hence not easy to realise experimentally). In this case the bubbles B1 and B3 are

both half-lenses, so they have a well-defined formula for area in terms of l◦1 (see

equation (C.22)). Meanwhile bubble B2 has a negligible area when l◦2 → l◦1 (see

Table C.2). When l◦1 is small, most of the area of B2 is in the parabolic wings (as

discussed in section C.1.4.1), but when l◦1 is larger, most of the area of B2 is in

the pentagon underneath vertices V1, V2 and V3 (see section C.1.4.2 for details).

The reason that the parabolic wings become less important when l◦1 is larger, is

that the pressures p◦1 and p◦3 are not quite so large, and hence pressure differences

p◦1−p◦2 and p◦3−p◦2 are not so large either. Hence, for a given value of l◦1− l◦2, films

12 and 23 turn through a lesser angle, as do therefore 02 and 20, and the area in

the parabolic wings is proportionately less. Nevertheless, regardless of whether

l◦1 is small or large, A2 vanishes in the limit l◦2 → l◦1, making the details how that

area is distributed across bubble B2 be of limited interest.

Out-of-equilibrium configurations for all the various types of structures described

above will be studied in section C.5. The different structures we explore here

exhibit different types of T1, as presented in section 5.5 in Chapter 5. Moreover,

in section C.5 we will study how pb,T1 (and also the critical imposed back pressure

p∗b) changes as different values of l◦1 and l◦2 are considered, implying therefore

different values of A1 and A2. What we will find is that certain of these structures

(particularly those with small l◦1 → 0 and l◦2 neither too small nor too close to

l◦1) can resist T1 out to very large pb values whereas others undergo T1 at much

more modest pb,T1 (particularly those with l◦1 → 0 and l◦2 → l◦1 leading to a T1c,

or those with l◦1 → 0 and l◦2 ≪ l◦1 leading to T1u).
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C.2 Displacement of film coordinates due to mo-

tion

In this section we compute x and y coordinates for moving films, parametrically

in terms of orientation angle φij , as explained in section C.2.1. Then, in section

C.2.2 we obtain expressions to compute film length sij as a function of orientation

angle φij, expressions that can be inverted to obtain φij as a function of sij. The

equations obtained are used to compute x and y coordinates for moving films,

parametrically in terms of sij, as explained in section C.2.3. The various results

presented here are used by section 5.4 in Chapter 5.

C.2.1 Film coordinates expressed as a function of orien-

tation angle φij

Here, we integrate equations (5.7) and (5.8) given in Chapter 5 in terms of φij,

in the domain of orientation angles established in Table 5.1 (see Chapter 5), in

order to obtain xij(φij) vs yij(φij) film coordinates. The shape of the moving

films, is then given by the bubble pressures (p1, p2 and p3), turning angles (δφ02,

δφ13 and δφ20, which govern the domain of φij values for each and every film)

and the migration velocity v. In addition, it is convenient to define a mobility

parameter aij as

aij =
v

∆pij
, (C.31)

which is the ratio between the migration velocity v and the driving pressures

across films ∆pij (where recall ∆pij is measured from left to right). Therefore,

we can express equation (5.7) as

dxij

dφij
= −1

v

(

aij sin(φij)

1− aij cos(φij)

)

, (C.32)
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and equation (5.8) as

dyij
dφij

=
1

v

(

aij cosφij

1− aij cos(φij)

)

. (C.33)

Hence, integrating equation (C.32) in terms of φij , from some initial orientation

φij,0 to φij, we obtain that

xij(φij) = xij,0 +
1

v
log

(

1− aij cos(φij,0)

1− aij cos(φij)

)

. (C.34)

To integrate equation (C.33), we have to consider two different cases, firstly for

values of |aij| < 1 and then for |aij | > 1. In both cases we integrate in terms of

φij, from φij,0 to φij (see Table 5.1 in Chapter 5). Hence, for |aij | < 1 we obtain

that

yij(φij) = yij,0+
1

v









φij,0 − φij +

2 atan

(

āij tan

(

φij

2

))

− 2 atan

(

āij tan

(

φij,0

2

))

√

1− a2ij









,

(C.35)

āij =

√

1 + aij
1− aij

,

and when |aij | > 1, that

yij(φij) = yij,0+
1

v









φij,0 − φij +

2 atanh

(

âij tan

(

φij

2

))

− 2 atanh

(

âij tan

(

φij,0

2

))

âij(1− aij)









,

(C.36)

âij =

√

aij + 1

aij − 1
.

Equations (C.34) and (C.35)–(C.36) (when expressed in a short hand notation)

correspond to equations (C.34) and (C.35) in Chapter 5. Once we know the

xij and yij coordinates for each film, we can compute the shape of the moving
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structure.

C.2.2 Distance along film sij and its relation to orientation

angle φij

We measure each film’s energy via its length Lij and therefore the system’s en-

ergy (as already mentioned in section C.1.2) as the sum of all film lengths. When

the system is set in motion by imposing a back pressure pb, the energy typi-

cally increases up to the point where a topological transformation occurs. Some

systems exhibit (as already mentioned where in section 5.2.4 in Chapter 5), at

a certain critical pressure, a saddle-node bifurcation at which a stable solution

branch meets an unstable branch, the latter typically with higher energy than

the former. It is therefore of interest to track how the energy changes after the

saddle-node bifurcation. In order to compute energy, we need a formula to relate

film length Lij to the total angle δφij through which films turn along their length.

To obtain that we need, in turn, a formula relating distance sij measured to an

arbitrary point along a film to the orientation angle φij at that same point. Addi-

tionally, as the migration velocity increases, films of a system comprised of large

bubbles and therefore with long films, might become flat. In such cases we can no

longer readily parametrize films in terms of orientation angle φij . Nevertheless if

(as mentioned in section 5.4.2 in Chapter 5) we know distance measured along a

film sij we can obtain how orientation angles φij depend on location even if the

film asymptotes towards being entirely flat. The above arguments highlight that

having a relation between the variables sij and φij is very valuable.

Such a relation can be obtained by integrating equation (5.2) (given in Chapter

5), as before, for each film from φij,0 (film’s initial point) to φij (with φij,0 as
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specified in Table 5.1 of Chapter 5). First we rearrange equation (5.2), to obtain

dsij
dφij

= ±aij
v

(

1

1− aij cos(φij)

)

, (C.37)

and then we integrate it. For |aij| < 1 we obtain that

sij(φij) = ± 2 aij
v āij(1− aij)

(

atan

(

āij tan

(

φij

2

))

− atan

(

āij tan

(

φij,0

2

)))

,

(C.38)

āij =

√

1 + aij
1− aij

,

and for |aij| > 1, we obtain

sij(φij) = ± 2 aij
v âij(1− aij)

(

atanh

(

âij tan

(

φij

2

))

− atanh

(

âij tan

(

φij,0

2

)))

,

(C.39)

âij =

√

aij + 1

aij − 1
.

In equations (C.38) and (C.39), the sign of “±” is set as − if sij is measured

downwards, and as + if sij is measured upwards, such that sij is always a positive

quantity. Equations (C.38) and (C.39) evaluated at φij = φij,L are then used to

obtain film lengths Lij, which are in turn used to compute system energy E.

In the above, we have obtained the length of a film sij as a function of orientation

angle φij. Now we can invert equations (C.38) and (C.39), to express φij as a

function of sij . Hence, when |aij| < 1, we find that

φij(sij) = 2 atan

(

1

āij
tan

(

±sij
vāij(1− aij)

2 aij
+ atan

(

āij tan

(

φij,0

2

))))

,

(C.40)
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and when |aij | > 1 we find that

φij(sij) = 2 atan

(

1

âij
tanh

(

±sij
v âij(1− aij)

2 aij
+ atanh

(

âij tan

(

φij,0

2

))))

.

(C.41)

Given values of sij in the domain 0 ≤ sij ≤ Lij, the corresponding range of

orientations φij can be determined and values of film turning angles δφij then

follow.

C.2.3 Film coordinates expressed as a function of distance

along film sij

Substituting (C.40) and (C.41) into equations (5.3), (5.4), (5.5) and (5.6) in

Chapter 5, as applicable, we obtain for |aij | < 1 that

xij(sij) = xij,0 −
ᾱij

β̄ij(1− ᾱ2
ij)

log

(

(1 + tan2(±sij β̄ij + γ̄ij))(1 + ᾱ2
ij tan

2(γ̄ij))

(1 + ᾱ2
ij tan

2(±sij β̄ij + γ̄ij))(1 + tan2(γ̄ij))

)

,

(C.42)

and

yij(sij) = yij,0 +
1

β̄ij(ᾱ2
ij − 1)

(

−(±sij β̄ij(1 + ᾱ2
ij)) + 2ᾱij

(

atan(ᾱij tan(±s β̄ij + γ̄ij))

− atan(ᾱij tan(γ̄ij))
))

, (C.43)

with ᾱij = 1/āij, β̄ij = v āij(1 − aij)/(2 aij), and γ̄ij = atan(āij tan(φij,0/2)).

Meanwhile for |aij| > 1 we obtain that

xij(sij) = xij,0−
α̂ij

β̂ij(1 + α̂2
ij)

log

(

(1 + α̂2
ijtanh(±sij β̂ij + γ̂ij))(1− tanh2(γ̂ij))

(1− tanh2(±sij β̂ij + γ̂ij))(1 + α̂2
ijtanh

2(γ̂ij))

)

,

(C.44)
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and

yij(sij) = yij,0 +
1

β̂ij(1 + α̂2
ij)

(

(±sij β̂ij(1− α̂2
ij)) + 2α̂ij

(

atan(α̂ij tanh(±sij β̂ij + γ̂ij))

− atan(ᾱij tanh(γ̄ij))
))

, (C.45)

with α̂ij = 1/âij , β̂ij = v âij(1− aij)/(2 aij), and γ̂ij = atanh(âijtan(φij,0/2)). As

before the − sign applies if sij is measured downwards, and the + sign applies if it

is measured upwards, as specified in Chapter 5. Using equations (C.42)–(C.45),

we can obtain film coordinates xij and yij as a function of film length sij . These

relationships, which are represented in short hand notation in equations (C.42)–

C.43, can be used even when the films become asymptotically flat.

C.3 Inherently stable structure additional re-

sults

Some systems as specified in section 5.3 in Chapter 5, might reach a so-called

inherently stable structure without undergoing any topological transformation,

even for an arbitrarily large imposed back pressure. This structure is character-

ized by the fact that films do not suffer any further deformation as the imposed

back pressure keeps increasing. In this limit, film curvature along them vanishes,

films then becoming entirely flat, apart from sharp curvature at one of their end

points. Here we obtain expressions to compute the area of bubbles in this limit,

which are the same expression from those discussed in section C.3.1, but written

in a different fashion. This is done with the objective of determining how bubble

areas A1 = A3 and A2 are related with each each other for a fixed L30 variable,

but varying L12 (recalling Lij is the length of film ij). This relation, for each

fixed L30 as seen by the thin dotted lines in Figure 5.8 in Chapter 5. Then, in sec-
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tion C.3.2 we compute the system energy for a given set of bubble areas, related

with a specific structure in the equilibrium state, obtained via the corresponding

l◦1 and l◦2 values.

C.3.1 Bubble areas in terms of L12

As seen in section 5.3 in Chapter 5, for a fixed value of L30, we can obtain

the area of bubbles A1 and A2 as a function of L12. In Figure 5.8 two limiting

cases are plotted, for L12 → 0 and for L02 → 0 (the last implying that L12 →
(1−L30)/ cos(φ12,0)). For any specified L30, a thin line in Figure 5.8 connects these

two limit points, relating bubble areas A1 and A2 as L12 varies. Here we reexpress

equations (5.11)–(5.12) from Chapter 5 as a leading-order term (obtained as a

function of L30) plus order L12 and L2
12 terms. Therefore we obtain,

A1 = A1(0) + A1(1)L12 + A1(2)L2
12, (C.46)

A2 = A2(0) + A2(1)L12 + A2(2)L2
12, (C.47)

where

A1(0) = L2
30(tan(δφ01)− tan(δφ13))/2, (C.48)

A1(1) = L30(sin(|φ12,0|) + tan(δφ01) cos(φ12,0)), (C.49)

A1(2) = (cos(φ12,0) sin(|φ12,0|) + tan(δφ01) cos(φ12,0)
2)/2, (C.50)
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Figure C.8: Value of A1(2)/A1(1) for bubble A1 vs value of A2(2)/A2(1) for bubble
A2, for values of L30 ∈ (0, 1).

and

A2(0) = (L30(1− L30) tan(δφ01)− 2L30(1−L30) tan(δφ30))/2, (C.51)

A2(1) = (2(1− L30) sin(|φ12,0|) + (1− L30) tan(δφ30) cos(φ12,0)), (C.52)

A2(2) = ((1− 2L30) cos(φ12,0) sin(|φ12,0|) + (1−L30) tan(δφ01) cos(φ12,0)
2)/(2L30)

(C.53)

where the values of δφ01, δφ13 and φ12,0 are given in section 5.3.1 in Chapter 5.

To determine if the thin dotted lines in Figure 5.8 in Chapter 5 are exactly

straight lines or merely almost straight, we compute A1(2)/A1(1) vs A2(2)/A2(1).

As seen in Figure C.8 these two ratios are almost equal over nearly the entire L30

domain. This implies that if L30 is held fixed but L12 varies, the amount that

A1 changes is very nearly proportional to the amount that A2 changes, which

explains the almost straight lines in Figure 5.8 in Chapter 5. The aforementioned

ratios A1(2)/A1(1) vs A2(2)/A2(1) only differ significantly when L30 → 1. However

in that limit, it is necessarily the case that L12 ≪ 1, so the order L2
12 terms do

not affect the areas much in equations (C.46)–(C.47), and a near straight relation

between A2 vs A1 is recovered regardless of the values of A1(2) and A2(2).
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C.3.2 System energies for pb ≫ 1

Now we continue to consider inherently stable states in which L30 is given, and

neither L12 → 0, nor L02 → 0 (section 5.3.2 in Chapter 5). As shown in Figure

5.8(b) in Chapter 5, there is well specified domain of values of A2 vs A1 that can

in principle generate the migration configuration corresponding to an inherently

stable structure. This A2 vs A1 domain can also be expressed in terms a well

defined domain in l◦1 vs l◦2/l
◦
1 space. This is what Figure 5.10(b) in Chapter 5

shows. We compute the energy Einh for the inherently stable system in these

permitted domains as follows. Once L12, L23 and L30 have been obtained as

explained in section 5.3 in Chapter 5 we can compute L01, L02, L13 and L20 by

simple geometry as

L01 =
L30 + L12 cos(φ12,0)

cos(δφ01)
, (C.54)

L02 = 1− (L30 + L12 cos(φ12,0)), (C.55)

L13 =
L30

cos(δφ13)
, (C.56)

L20 = 1− L30, (C.57)

where recall values for δφ01, δφ13 and φ12,0 are found in section 5.3.1 in Chapter

5. Then the energy Einh can be computed as the sum of all the Lij.

Here we compute the system energy Einh for three fixed values of l◦1 values of l
◦
2/l

◦
1

as given in Figure 5.8(b), in each case for the selected values of l◦2/l
◦
1 (see Figure

5.8 for details). In addition we also plot, as a comparison, the energy E◦ of those

systems in the equilibrium. This is what Figure C.9 shows. Here as expected the

energy in the equilibrium E◦ is less than the energy Einh. The value of Einh in

this case shows us the maximum energy that such a system might reach as the

inherently stable state is approached.
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Figure C.9: System energy Einh for the structures that survive up to arbitrary
large velocities (also known as the inherently stable state) vs system energies in
the equilibrium E◦. Note that for each l◦1, the inherently stable structure itself
(and hence the value of Einh) is only defined over a limited domain of l◦2/l

◦
1.

C.4 Weakly driven system: pb ≪ 1 limit

Here we explain how to go from a system at equilibrium, to one slightly perturbed

away from equilibrium. Consider, in the first instance, a three-bubble system at

equilibrium, as given in section 5.2.3 in Chapter 5, set by fixing l◦1 and l◦2. For

such a system the pressure difference across the structure is equal to zero. If

we now impose back pressure pb > 0 upon the structure, this will move at an

unknown migration velocity v. A steady state solution for this migration must

then be obtained. If we consider that pb ≪ 1, we can find the values of the

variables that define the system structure out of equilibrium via perturbations

in terms of the variables at equilibrium. Therefore, perturbed response variables

are pi ≈ p◦i + δ̂pi for the bubble pressures, δφij ≈ δφ◦
ij + δ̂(δφij) for the film total

turning angles, and φij,0 ≈ φ◦
ij,0 + δ̂φij,0 for the orientation angle at the start of

each film: note that φij,0 is known for films that start on walls, but not known

a priori for films that start at vertices (specifically in this system those starting

at vertex V2), but can be determined in terms of the film turning angle δφ13.

We need to deal with 11 response variables: a velocity, 3 bubble pressures and 7

turning angles. However, there are 4 relations between turning angles (2 at vertex
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V1 and 2 at vertex V2: the relations are found in Table 5.1 in Chapter 5), so 4 of

the total turning angles δφij can be eliminated, leaving just δφ02, δφ20 and δφ13

as the unknown angles. We also consider that pressure differences across films

∆pij = ∆p◦ij + δ̂(∆pij) where δ̂(∆pij) = δ̂pi − δ̂pj, with i denoting the bubble

on the left and j the one on the right. Here pb, v, δ̂pi, δ̂φij,L, and δ̂φij,0 are all

first-order quantities. Additionally, since δφ◦
13 = 0, we can express δ̂φ13,L ≡ δφ13

(another first-order quantity). Then, via first-order Taylor expansion of equation

(5.2) in powers of the small parameter φ13 (with 0 ≤ φ13 ≤ δφ13), it is obtained

after integration that

δφ13 ≈ (l◦2 + δ̂L2)(v − (δ̂p1 − δ̂p3)) ≈ l◦2(v − (δ̂p1 − δ̂p3)), (C.58)

where δ̂L2 is the perturbation of the film length l◦2. Therefore, as established in

Table 5.1 we can readily express δ̂φ12,0 ≈ −δφ13 and δ̂φ23,0 ≈ δφ13. Hence, it is

possible to obtain approximated system variables for an arbitrary small pb ≪ 1,

by using the seven system constraints established in section 5.4.3. The proce-

dure starts by substituting the previously defined perturbed response variables in

equations (5.7) and (5.8) as given in Chapter 5. Then via a first-order Taylor ex-

pansion in terms of the small parameters δ̂(∆pij) and v, retaining the first-order

terms, we obtain

dxij

dφij

≈
(

v
dy◦ij
dφij

− δ̂(∆pij)

∆p◦ij
+ 1

)

dx◦
ij

dφij

, (C.59)

dyij
dφij

≈
(

v
dy◦ij
dφij

− δ̂(∆pij)

∆p◦ij
+ 1

)

dy◦ij
dφij

, (C.60)

where y◦ij = y◦ij(φij) corresponds to the y coordinate of a film in the equilibrium.

This has been obtained already in section C.1. Then integrating (C.60) in terms
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of φij from φ◦
ij,0+ δ̂φij,0 to φij, and Taylor expanding in terms of δ̂φij,0, we obtain

yij ≈ y◦ij,0 + δ̂yij,0 + v
sin(2φij)− sin(2φ◦

ij,0) + 2(φij − φ◦
ij,0)

4∆p◦ij
2

− δ̂(∆pij)
sin(φij)− sin(φ◦

ij,0)

∆p◦ij
2 − δ̂φij,0

cos(φ◦
ij,0)

∆p◦ij
+

sin(φij)− sin(φ◦
ij,0)

∆p◦ij
,

(C.61)

where y◦ij,0 = y◦ij(φ
◦
ij,0), such that yij(φij,0) ≈ yij(φ

◦
ij,0+ δ̂φij,0) ≈ y◦ij,0+ δ̂yij,0. Here

the vertical yij,0 location at the start of each film is known for films that start on

walls, but not known a priori for films that start at a vertex. Then, we can obtain

yij(φij,L) ≈ yij(φ
◦
ij,L + δ̂φij,L) ≈ y◦ij,L + δ̂yij,L by substituting φij,L ≈ φ◦

ij,L + δ̂φij,L

in place of φij in equation (C.61), and Taylor expanding in powers of the small

parameter δ̂φij,L, considering just the first-order terms, we deduce

yij(φij,L) ≈ y◦ij,0 + δ̂yij,0 + v
sin(2φ◦

ij,L)− sin(2φ◦
ij,0) + 2(φ◦

ij,L − φ◦
ij,0)

4∆p◦ij
2

− δ̂(∆pij)
sin(φ◦

ij,L)− sin(φ◦
ij,0)

∆p◦ij
2 − δ̂φij,0

cos(φ◦
ij,0)

∆p◦ij
+ δ̂φij,L

cos(φ◦
ij,L)

∆p◦ij

sin(φ◦
ij,L)− sin(φ◦

ij,0)

∆p◦ij
,

yij(φij,L) ≈ y◦ij,0 + Yij(v, δ̂(∆pij), δ̂φij,0, δ̂φij,L), (C.62)

where Yij is a first-order quantity, that gives the variation in the vertical location

of each film. Exceptionally, since in equilibrium, film 13 is a straight line, we

can approximate y13(φ13,L) ≈ 1− l◦2 − δ̂L2, where δ̂L2 is the perturbation to the

length of this film, so the initial film points for films 12 and 23 can be estimated

as y12(φ12,0) = y23(φ23,0) ≈ 1 − l◦2 − δ̂L2, with y◦12,0 = 1 − l◦2, and δ̂y12,0 = −δ̂L2

(similarly for film 23). All other films start on walls at known y locations and with

known orientations. Using equation (C.62), in combination with vertex meeting

rule constraints on y coordinates, and the angle relations given in Table 5.1, we
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can determine four linear equations in terms of the equilibrium parameters and

seven unknown variables v, δ̂p1, δ̂p2, δ̂p3, δ̂φ02,L, δ̂φ20,L, δ̂L2, with δφ13 having

already been given by equation (C.58). The symbols without δ̂ are already first-

order quantities. Hence, we can deduce the following equations

Y12(v, δ̂(∆p12), δ̂φ12,0, δ̂φ12,L) = Y01(v, δ̂(∆p01), δ̂φ01,0, δ̂φ01,L)

= Y02(v, δ̂(∆p02), δ̂φ02,0, δ̂φ02,L), (C.63)

Y23(v, δ̂(∆p23), δ̂φ23,0, δ̂φ23,L) = Y30(v, δ̂(∆p30), δ̂φ30,0, δ̂φ30,L)

= Y20(v, δ̂(∆p20), δ̂φ20,0, δ̂φ20,L). (C.64)

In addition we can obtain three more equations, based on bubble area constraints.

Therefore, we obtain

A1 ≈
∫ φ◦

01,L
+δ̂φ01,L

0

(1− y01)
dx01

dφ01
dφ01 +

∫ φ◦
12,0+δ̂φ12,0

φ◦

12,L
+δ̂φ12,L

(1− y12)
dx12

dφ12
dφ12

+

∫ 0

l◦2+δ̂L2

(x13,v − x13(s))ds13, (C.65)

A2 ≈
∫ φ◦

02,L+δ̂φ02,L

0

y02
dx02

dφ02
dφ02 +

∫ φ◦
12,0+δ̂φ12,0

φ◦

12,L
+δ̂φ12,L

y12
dx12

dφ12
dφ12 +

∫ φ◦

23,L+δ̂φ23,L

φ◦
23,0+δ̂φ23,0

y23
dx23

dφ23
dφ23

+

∫ 0

φ◦

20,L
+δ̂φ20,L

y20
dx20

dφ20
dφ20,

(C.66)
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A3 ≈
∫ φ◦

23,L+δ̂φ23,L

φ◦
23,0+δ̂φ23,0

(1− y23)
dx23

dφ23
dφ23 +

∫ 0

φ◦

30,L
+δ̂φ30,L

(1− y30)
dx30

dφ30
dφ30

+

∫ l◦2+δ̂L2

0

(x13,v − x13(s))ds13, (C.67)

where x13,v is the location where film 13 meets the vertex V2. Here an arbitrary

point on that same film has x13(s13) ≈ x13,w+ |κ13|s213/2, with x13,w here denoting

the location where film 13 meets the wall, and with κ13 denoting curvature.

Hence x13,v ≈ x13,w + |κ13|l◦22/2. Here, as in Chapter 5, the distance along films

13 is measured downwards, so that the curvature κ13 ≡ −dφ13/ds13 as defined in

Chapter 5 is negative for this film. Hence, |κ13| = v−(δ̂p1− δ̂p3) > 0, as obtained

via equation (5.2) (given in Chapter 5) with cos(φ13) ≈ 1 since φ13 ≪ 1 along

film 13. This verifies incidentally that κ13 is near uniform along this film. Taylor

expanding equations (C.65)–(C.67) up to first-order terms in the seven unknown

small variables v, δ̂p1, δ̂p2, δ̂p3, δ̂φ02,L, δ̂L2 and δ̂φ20,L, we can obtain three linear

equations in terms of the equilibrium parameters and seven unknown variables

(all remaining unknowns being expressed in terms of these). Therefore, we obtain

A1 ≈ A◦

1 + δ̂A1, (C.68)

A2 ≈ A◦
2 + δ̂A2, (C.69)

A2 ≈ A◦

3 + δ̂A3, (C.70)

where equations (C.68)–(C.70) must match the bubble areas given by equations

(C.9) and (C.10). Finally, by solving the seven linear equations (equations (C.63),

(C.64) and (C.68)–(C.70)), it is possible to calculate the value of the perturbation

variables v, δ̂p1, δ̂p2, δ̂p3, δ̂φ02,L, δ̂L2 and δ̂φ20,L, as a function of any arbitrary
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small pb ≪ 1. Thus we obtain all the perturbed values that we require p1 ≈ p◦1 +

δ̂p1, p2 ≈ p◦2+ δ̂p2, p3 ≈ p◦3+ δ̂p3, δφ02 ≈ δφ◦
02+ δ̂(δφ02), δφ13 ≈ l◦2(v− (δ̂p1− δ̂p3))

(via (C.58)) and δφ20 = δφ◦
20+ δ̂(δφ20), as a function of the equilibrium variables.

Note in particular that δ̂(δφ02) = δ̂φ02,L and δ̂(δφ20) = δ̂φ20,L which follows

because φ02,0 = φ20,0 ≡ 0.

C.5 Steady state out-of-equilibrium additional

results

As the system moves faster due to an increasing imposed driving pressure, not

only do films deform and reorient as seen in section 5.5 in Chapter 5, but also the

internal bubble pressures increase. This is what we show in section C.5.1. Then

in section C.5.2 we compute the film energy for various systems again as they

move and deform as a driving pressure is increased. Finally in sections C.5.3–

C.5.4 we study how pb,T1 (or p∗b) varies for systems in a number of special cases,

including limiting cases as defined in section C.1.4. The results discussed here

thereby supplement those already shown in section 5.5.

C.5.1 Imposed back pressure pb vs p1, p2 and p3

In this section we study, for four particular systems set up at equilibrium by

fixing l◦1 and l◦2, how the pressures p1, p2 and p3 change as pb increases, up to the

systems reaching a topological transformation quasistatically, or else reaching a

saddle-node bifurcation, or alternatively attaining an inherently stable structure

that does not change anymore as we keep increasing pb. In Figure C.10(a) we

plot data for l◦1 = 0.5, with l◦2/l
◦
1 = 0.41. Here we track the steady state solution

along the stable solution branch by using pb as control variable, eventually the

system reaches a saddle-node bifurcation with p∗b ≈ 7.86 (solid lines in Figure
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(a) (b)

Figure C.10: (a) Steady state pressures p1, p2 and p3 as a function of the imposed
back pressure pb. (a) l◦1 = 0.5 with l◦2/l

◦
1 = 0.41. (b) l◦1 = 0.9 with l◦2/l

◦
1 = 0.5.

Here we also plot the bubble pressures obtained via the weakly driven solution.

C.10(a)), where by switching control variable as explained in Chapter 5 section

5.4.5, we track the steady state solution through the unstable solution branch

up to T1φu,δφ20
now with p1 and p3 increasing as pb decreases down to a T1 at

pb,T1 ≈ 7.61. In contrast p2 decreases on this branch.

In Figure C.10(b) we plot data for l◦1 = 0.9, with l◦2/l
◦
1 = 0.5. Here we track p1,

p2 and p3 vs pb, up to p∗b ≈ 26.71, the system undergoing a T1sc,pb topological

transformation. In addition we have also included the values of bubble pressures

obtained via the weakly driven solution, as deduced in section C.4. This is shown

up to pressures of pb = 5. Even though this is formally a low velocity (and hence

low pb) approximate solution, it still manages to fit the data comparatively well

(see inset of Figure C.10(b)). On the other hand, as mentioned before, there

is a set of systems that do not undergo any topological transformation, for any

arbitrarily large imposed back pressure. These systems are intrinsically stable,

and the structures keep their shape for any imposed back pressure. Hence, as

explained in section 5.3 in Chapter 5 we can still obtain solutions for these systems

no matter how large pb becomes. Here, when we impose back pressure pb ≫ 1, we

can approximate pressures p2 and p3, by p2 ≈ p3 ≈ pb/2 and p1 ≈ pb(
√
3/2+1)/2,
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(a) (b)

Figure C.11: (a) Steady state pressures p1, p2 and p3 (normalised here as (pi −
p◦i )/pb) as a function of the imposed back pressure pb for systems that attain
inherently stable structures. (a) l◦1 = 0.78 with l◦2/l

◦
1 = 0.21. (b) l◦1 = 0.9 with

l◦2/l
◦
1 = 0.23. In the large pb limit, known values of pi/pb and hence of (pi−p◦i )/pb

are predicted in section 5.3 of Chapter 5.

while the imposed back pressure and velocity can be related as v ≈ pb/2. These

results are plotted in Figure C.11. In Figure C.11(a) we plot for l◦1 = 0.78 with

l◦2/l
◦
1 = 0.21, while in Figure C.11(b) we plot for l◦1 = 0.9 with l◦2/l

◦
1 = 0.23.

For large imposed back pressures, each case matches with what was obtained in

section 5.3.

C.5.2 System energy

We now compute the energy for systems with values of l◦1 ∈ [0.5, 0.9], as considered

before (see e.g. Figure C.10 in section C.5.1), and different values of l◦2/l
◦
1. As

mentioned earlier, we calculate the energy E of a given system as the total length

of the films that comprise it. To determine this, we use equations (C.38)–(C.39),

whichever corresponds to each film, evaluating sij for φij = φij,L (see Table 5.1

in Chapter 5) to obtain Lij. From Figure C.12 we can see that, in cases which

exhibit saddle-node bifurcations, beyond the bifurcation, the energy continues to

increase even though the back pressure decreases. High energy branches like these
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Figure C.12: System energy E (relative to equilibrium energy E◦) vs imposed
back pressure pb computed for (a) l◦1 = 0.5, and (b) l◦1 = 0.9 and various l◦2/l

◦
1

values. In particular, for l◦1 = 0.5 and l◦2/l
◦
1 = 0.41 and l◦2/l

◦
1 = 0.46 (in (a)) and for

l◦1 = 0.9 and l◦2/l
◦
1 = 0.35 (in (b)) the systems reach saddle-node bifurcations even

before reaching the maximum possible energy (where they undergo topological
transformations). Here we also plot the energy for an inherently stable structure
(pb ≫ 1), as given by the system in (b) with l◦2/l

◦
1 = 0.23. In this case the

energy E/E◦ ≈ 1.496 as predicted for the selected l◦1 and l◦2 values by the theory
presented in section 5.3.1 and section C.3.2.

are expected to be unstable. This same behaviour was found in [19], for the simple

lens system. An additional behaviour we see in Figure C.12 is that for systems

that are inherently stable, energy eventually approaches a final limiting state

associated with the flat film structure analysed in section 5.3.1 and section C.3.2.

C.5.3 Critical imposed back pressure for monodisperse

systems

In Chapter 5 (section 5.5.2) we examined values of critical imposed back pressure

for T1 for a number of combinations of l◦1 and l◦2. In the present section, we

do the same for a monodisperse system with A1 = A2 = A3. In each studied

case, for any selected l◦1, the value of l◦2 is set to ensure monodispersity (see

Figure 5.4(a) in Chapter 5 for details). In Figure C.13, we plot pb,T1 for values
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Figure C.13: Imposed back pressure pb,T1 (in the majority of the cases it coincides
with p∗b) for monodisperse systems. Here we consider systems set up in the equi-
librium for values of l◦1 ∈ [0.01, 0.99] and values of l◦2 to ensure monodispersity
(see Figure 5.4(a) in Chapter 5). The dotted line corresponds to a numerical
approximation pb,T1 ≈ 12.35 l◦1 obtained for small l◦1 ∈ [0.001, 0.01] values. The
dash-dotted line corresponds to a numerical approximation pb,T1 ≈ 121.3(1− l◦1)
obtained for values of l◦1 ∈ [0.99, 0.999].

of l◦1 ∈ [0.01, 0.99]. Here we can see that as l◦1 increases from zero, pb,T1 also

increases, the system undergoing T1φc,pb (and eventually T1sc,pb). There is however

a band of l◦1 values between l◦1 ≈ 0.89 and l◦1 ≈ 0.95 (see the vertical dashed lines

in Figure C.13) for which an inherently stable state is possible, with the three-

bubble system surviving out to arbitrarily large pressure. Then, for even larger

values of l◦1, pb,T1 decreases to zero as l◦1 approaches unity. In the case of l◦1 ≪ 1

we obtain that pb,T1 ≈ 12.35 l◦1 (dotted lined), the system undergoing T1φc,pb in

all the studied cases. Meanwhile when l◦1 → 1 we find that pb,T1 ≈ 121.3(1 − l◦1)

(dash-dotted line), the system undergoing T1φl3,pb in all the studied cases. Thus

neither in the limit when l◦1 → 0 nor in the limit when l◦1 → 1 is the monodisperse

case particularly stable. This is an interesting contrast from the simple lens which

was highly stable in the l◦1 → 0 limit in particular [19]. However in both instances

(l◦1 → 0 and l◦1 → 1) discussed here, the (monodisperse) three-bubble system is

exhibiting a type of T1 (respectively a T1c or a T1l3) that the simple lens did not
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exhibit. Further analysis of (polydisperse) systems in the l◦1 ≪ 1, l◦1 → 1, and

the l◦2 → 0 limiting cases, as described in sections C.1.4, are offered in the follow

section.

C.5.4 Critical imposed back pressure in limiting cases

An interesting analysis to consider consists of determining how pb,T1 (or p∗b) be-

haves with bubble size in some of the limiting cases described in section C.1.4.

In what follows we treat cases with with l◦1 ≪ 1, then cases with l◦1 → 1 and

finally we study the l◦2 → 0 limit. The l◦2 → l◦1 limiting case (with arbitrary l◦1) is

not considered here for reasons already explained in section C.1.4.4 (bubble B2

despite having tiny area is highly elongated, which would be a difficult state to

set up).

C.5.4.1 l◦1 ≪ 1 limit

We start by considering cases in which l◦1 ≪ 1 for l◦2 = χ l◦1, with 0 < χ < 1. Here

we have computed pb,T1 for four different small values of l◦1 ∈ [0.01, 0.04, 0.07, 0.1]

(see Figure C.14). In this limit, the relation between A1 = A3 and A2 is sensitive

to χ (see section C.1.4.1 for details). For values of 0 < χ < 0.5, regardless of how

small l◦1 becomes, A2 and A1 attain finite areas, but in all cases A2 exceeds A1.

Moreover, in this case, the point of attachment of vertex V3 is close to the right

hand end of B3 as Figure C.4(a) shows.

The case of 1/2 < χ < 1, meanwhile permits the size of bubble A1 = A3 to shrink

as l◦1 shrinks, although A2 is typically larger, except in the limit as χ also becomes

very close to unity (see e.g. Figure C.4(c)). In what follows the pb,T1 data are

presented, with Figure C.14(a)–(b) focussing on 0 < χ < 0.5 and Figure C.14(c)–

(d) focussing on 0.5 < χ < 1. The data are also subjected to various different

rescalings. In Figure C.14(b)–(d) we plot for instance l◦1pb,T1 rather than just

pb,T1, which allows us to compare the effect of having different small but finite
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(a) (b)

(c) (d)

Figure C.14: Imposed back pressure at the topological transformation point pb,T1

(which for the most part coincides with p∗b) for values of l
◦
1 ∈ [0.01, 0.04, 0.07, 0.1].

Data are plotted against χ ≡ l◦2/l
◦
1. In (a), plotted on the domain 0 < χ < 0.5 (or

more specifically for χ ∈ [0.01, 0.5]). In (b), again on the domain 0 < χ < 0.5, we
plot l◦1pb,T1 instead of just pb,T1: now values of l◦1 increase uniformly from bottom
to the top. In (c) we continue to plot l◦1pb,T1 but now on the domain 0.5 < χ < 1,
or more specifically χ ∈ [0.5, 0.99]. Moreover in (d), we plot l◦1pb,T1 vs (−1+χ)/l◦1.
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values of l◦1. For χ < 0.5 in all the studied cases the system undergoes T1φu,pb

topological transformations (see Figure C.14(a) and (b)). This is unsurprising

given that (even at equilibrium) vertex V3 is already far towards the right of

bubble B3, making it easy for that vertex and that bubble to slip apart when the

system starts moving, and that then produces a T1u.

Moreover, as Figure C.4(a) shows, decreasing χ causes bubble B3 to grow in area,

meaning that in relative terms (i.e. relative to either the horizontal end-to-end

length of bubble B3 or the vertical distance B3 protrudes into the channel) the

point of attachment of vertex V3 on bubble B3, shifts increasingly far to the right

and upwards as χ = l◦2/l
◦
1 decreases. This makes the system even weaker, i.e. even

more susceptible to T1u, so that pb,T1 falls as χ decreases. The simple lens [19]

with small l◦1 ≪ 1 did not exhibit anywhere near this level of weakness to T1u,

because at equilibrium the vertex always attached at the point on the lens bubble

furthest from the upper channel wall: it was not then so easy for the vertex and

bubble to slip apart.

In Figure C.14(a)–(b), we see that as χ increases towards 0.5 and (in Figure

C.14(c)) even beyond that into the domain χ > 0.5, the system becomes much

stronger, in the sense that the value of pb,T1 corresponding to T1φu,pb increases

greatly. Moreover as χ increases well above 0.5, the systems eventually start to

exhibit T1φu,δφ30
(on an assumed unstable solution branch) or T1φc,δφ12

(again on

an assumed unstable solution branch). On these unstable solution branches we

show pb,T1 with the lower down lines (pressure at which the system undergoes a

topological transformation), and p∗b with the higher up lines (maximum imposed

back pressure corresponding here to a saddle-node bifurcation). As χ continues

to increase, the system eventually switches again to a T1φc,pb.

For any l◦1, observe that there is a well defined χ = l◦2/l
◦
1 (dependent upon l◦1)
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at which pb,T1 attains an overall maximum allowed value: this corresponds to

the strongest or most stable system that is permitted for that l◦1 values. Fig-

ure C.14(d) makes it clear that this occurs at a χ value that is relatively close

to 1 − l◦1. Note also that, since in Figure C.14(c)–(d) we have plotted l◦1pb,T1

rather than just pb,T1, by comparing the data at different l◦1, it is clear that this

maximum allowed pb,T1 scales proportionally to (l◦1)
−1. A similar scaling is seen

for the strength of the simple lens system in [19]. The similar behaviour is not

surprising since (as already noted in section C.1.4.1) the three-bubble system

with small l◦1 but 1/2 < χ < 1 has a number of similarities with the simple

lens. The pressures in bubbles B1 and B3 are now very large, and as a result of

this, films 01 and 30 despite having small length, turn through significant angles.

Increasing χ even further beyond the point at which pb,T1 has its maximum al-

lowed value, we see that pb,T1 drops several orders of magnitude as we approach

χ → 1 (see right hand side of Figure C.14(c)). The system is now very suscep-

tible indeed to T1φc,pb topological transformation (a type of transformation that

incidentally is not even available to the simple lens). The reason for this high

susceptibility to T1c is that for χ extremely close to unity, at equilibrium film

12 has now become very short indeed (Figure C.4(c) shows a typical shape).

It is this film that, when the system driven out-of-equilibrium, shrinks away to

produce the T1c.

C.5.4.2 l◦1 → 1 and l◦2 → 1 limit

In Figure C.15(a) and (b), we show pb,T1, and pb,T1/(1 − l◦2), respectively, con-

sidering systems with values of l◦1 → 1 and with l◦2 → l◦1 (which makes A1 =

A3 ≫ A2). More specifically we consider a set of comparatively large values of

l◦2 (l◦2 ∈ [0.9, 0.93, 0.96, 0.99]), with l◦1 varying in the domain from l◦2 < l◦1 < 1.

Consequently (1− l◦1)/(1− l◦2) increases from 0 to 1 as l◦1 decreases. Here we see
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that as l◦1 moves closer to a fixed l◦2 i.e. as we change the aspect ratio of bubble

A2 from nearly a triangle to a much thinner pentagon of the same height (see

Figure C.6(b)), the system switches, at certain value of (1− l◦1)/(1− l◦2) which is

weakly dependent on l◦2, from undergoing a T1φl3,pb topological transformation to

undergoing a T1φc,pb. This is expected since we move from a system in which 20

is the shortest edge to a system in which 12 is shortest. On the T1φl3,pb branch, as

(1 − l◦1)/(1 − l◦2) increases, the system becomes more stable, but after switching

to T1φc,pb, it becomes less stable again. Hence the maximum possible stability is

at the (1− l◦1)/(1− l◦2) value at which the two branches meet.

Note that this maximum allowed pb,T1 decreases as l◦2 increases, seeming to scale

roughly like 1−l◦2. Hence (by contrast with section C.5.4.1) shrinking the smallest

bubble (B2 in this case), i.e. increasing l◦2, makes the system weaker, not stronger.

In Figure C.15(b) we plot a rescaled pb,T1/(1− l◦2) so as to compare more readily

the effect of changing l◦1, and therefore (1−l◦1)/(1−l◦2) for various different l
◦
2. Here

we appreciate that as l◦2 increases, the value of (1−l◦1)/(1−l◦2) at which the system

switch from undergoing a T1φl3,pb to a T1φc,pb approaches 0.5. As we have noted,

this exhibits a different behaviour from what is seen in section C.5.4.1 in the

limit of l◦1 ≪ 1 (and also the simple lens [19]): shrinking the smallest bubbles (B1

and B3) made that system more stable. This difference between these scenarios

can be explained (see section C.1.4.2 for details) by the very different shape of

four-sided bubbles B1 and B3 when they are small, versus the five-sided bubble

B2 when it is small. In the former case, the pressures p◦1 and p◦3 can be large,

and films 01 and 30 turn through very significant amounts, as can films 12 and

23. In the latter case however, p◦2 decreases towards zero, whilst the pressures

p◦1 = p◦3 turn out to approach a finite value
√
3/2. All the films on bubble small

B2, namely 02, 12, 23 and 20 then barely turn through any angle whatsoever.
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(a) (b)

Figure C.15: Imposed back pressure at the topological transformation point pb,T1

(which coincides with p∗b) in the limit of l◦2 → 1 and (1−l1)
◦/(1−l◦2) ∈ (0, 1). Here

we plot for l◦2 ∈ [0.9, 0.93, 0.96, 0.99] (values of l◦2 increasing from top to bottom),
where the dash-dotted lines show T1φl3,pb, and solid lines show T1φc,pb topological
transformations.

C.5.4.3 l◦2 → 0 limit

In the previous section we looked at pb,T1 values in a situation in which bubbles

B1 and B3 were made comparatively large by taking the limit l◦1 → 1. Now we

consider a situation in which bubble B2 is made comparatively large by setting

l◦2 → 0, as already introduced in section C.1.4.3. However, for the purpose of

numerical computations, since film 13 cannot be shorter than the minimum es-

tablished in the numerical method, i.e. less than 10−6 (see section 5.4.6 in Chapter

5). Hence we set l◦2 = 0.0001 and vary l◦1 ∈ [0.01, 0.99], determining pb,T1 in each

case. This is what Figure C.16 shows. Here we can see that for small l◦1 values,

the system undergoes T1φu,pb, consistently with what is shown in section C.5.4.1.

Recall that this happens since, when both l◦1 and l◦2/l
◦
1 are small, vertex V3 is far

over towards the right of bubble B3, making it easy for the vertex and bubble to

slip apart as the three-bubble structure moves. As l◦1 increases the system even-

tually starts to undergo T1φu,δφ30
, and then switches to T1φl1,δφ02

. In these cases

the lower down lines on Figure C.16 show pb,T1, while the higher up lines show

p∗b . Finally as l◦1 → 1, the system undergoes T1φl3,pb. This was also seen in section
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Figure C.16: pb,T1 (and where relevant p∗b , upper line) vs l◦1 for a fixed small
l◦2 = 0.0001.

C.5.4.2, but since the values of l◦2 there were close to l◦1 (rather than l◦2 ≪ 1 as

considered here), the observed transition was from T1◦c,pb to T1φl3,pb.
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F. Rouyer, and A. Saint-Jalmes, Foams: Structure and Dynamics. OUP

Oxford, 2013.

[3] P. Stevenson, Foam Engineering: Fundamentals and Applications. John

Wiley & Sons, 2012.
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