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Abstract

The field of automated mathematical reasoning has captured the interest of the AI

community since the last century, acknowledged as a key step towards achieving true

artificial intelligence. This research domain’s evolution transits through rule-based ap-

proaches, semantic parsing, statistical machine learning, and recently, deep learning

techniques. Moreover, automated mathematical reasoning has found extensive com-

mercial applications. Educational enterprises have begun leveraging AI models for

intelligent tutoring systems to assist students with mathematical problems. In the fi-

nancial sector, it aids in analysing complex financial reports, with firms like JP Morgan

incorporating AI to enhance their analysis capabilities.

This thesis concentrates on two distinct tasks within automated mathematical

reasoning: text-based numerical reasoning and automated geometry maths problem-

solving. Current methods face challenges in addressing complex mathematical reason-

ing tasks, evident in the lengthy and diverse solutions required. Additionally, in solving

geometry maths problems, there is a noticeable deficiency in models’ abilities to accu-

rately interpret geometric relationships from diagrams, which compromises their effec-

tiveness. Furthermore, the advent of large language models (LLMs) and multi-modal

models (MMs) underscores the need for a standardised benchmark to evaluate these

models’ abilities in geometry problem-solving.

To address these issues, we introduce the ELASTIC model in this thesis, designed

for text-based numerical reasoning task. ELASTIC uniquely separates the generation

of operators and operands to minimise errors from complex reasoning chains and is

versatile enough to accommodate a varying number of operands per operator. This

makes it broadly applicable across different domains. Our experimental results show

ii



Chapter 0. Abstract

ELASTIC’s superior performance, significantly outperforming prior models.

Furthermore, we extend the application of the ELASTIC model to tackle geometry

maths problems, which are inherently more complex due to the inclusion of geometric

diagrams and a broader variety of problem types. To navigate these complexities,

we propose the Geometry-Aware Problem Solver (GAPS), a model specifically crafted

to solve diverse types of geometric maths problems by generating tailored solution

programs. Our experiments validate GAPS’s advancement over existing methods.

However, we observed that direct vector representation of geometric diagrams fails

to capture the complex geometric relationships, which are critical in solving geometry

maths problems. To overcome this, we propose converting geometric relationships into

natural language, integrating them with the textual problem descriptions. This method

not only improves the interpretability and effectiveness of the models but also allows

for the utilisation of LLMs in generating reasoning programs.

Lastly, despite the impressive capabilities of recent LLMs and MMs, their profi-

ciency in solving geometry problems, requiring an integrated understanding of textual

and visual information, remains unexplored. To fill this gap, we introduce the GeoE-

val benchmark in this thesis. Through extensive evaluation with GeoEval, we provide

a comprehensive quantitative evaluation of the latest LLMs and MMs in geometry

problem-solving task. This research marks a significant step forward in assessing the

capabilities of state-of-the-art AI models in the realm of geometry problem-solving task.
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Chapter 1

Introduction

This thesis aims to investigate and advance the application of deep learning methods

in solving complex mathematical reasoning problems, with a particular focus on text-

based automated numerical reasoning task and automated geometry maths problem-

solving task. This part includes Chapter 1 for introduction for the automated mathe-

matical reasoning and Chapter 2 for introducing necessary preliminaries and reviewing

relevant literature. In Chapter 1, we described the background of automated mathe-

matical reasoning and then provided the motivation regarding to text-based automated

numerical reasoning task and automated geometry maths problem-solving task, along

with thesis statement, and research questions. In Chapter 2, we provided the prelim-

inary and literature review of existing work, including methods for automated text-

based numerical reasoning task and automated geometry maths problem-solving. We

also described the benchmarks used for evaluating Artificial Intelligence (AI) methods’

proficiency in solving the mathematical reasoning tasks.

1.1 Introduction to the Automated Mathematical Rea-

soning

The Turing test, which is based on whether a person can tell if they are chatting with

an AI system or another human, was once seen as a key path towards creating truly

intelligent machines [13]. But as AI rapidly evolved, many found this test wasn’t the

3



Chapter 1. Introduction

best way to measure an AI system’s smart [14]. Today, researchers believe that if we

want to measure how intelligent an AI system is, we should test it like we do with people.

In fact, the human standardised maths test that we use to assess human intelligence is a

better fit for evaluating the intelligence of the AI system than the Turning test [15,16].

The human standardised maths assessment evaluates core elements of human intel-

lectual capacity such as basic arithmetic, percentages, ratios, data analysis, and other

intricate maths challenges [17]. This test measures mathematical reasoning, a vital

cognitive skill that we use in different ways in our daily lives. From simple tasks like

counting items to more complex ones like analysing financial tables or tackling maths

word problems [18, 19]. Formally, mathematical reasoning means understanding nu-

meric data presented in text, tables, or visuals and applying mathematical concepts to

solve problems or draw conclusions [20]. For instance, a practical maths word problems

of the primary school level, “If a shirt is priced at £40 with a 25% discount, what’s

the final price?”, with the answer being “£30”, relies on the foundational principles

of mathematical reasoning. A more intricate example, such as determining the sales

of a company, like: “Given a 15% sales growth from 2018 to 2019 and 2018 sales of

10 thousands pounds, what were the 2019 sales?”, with the solution being “£11,500”.

To obtain the correct answer, one must select correct quantitative information, convert

the unit, and execute detailed quantitative analyses.

Despite achieving levels of performance similar to human abilities in tasks neces-

sitating cognitive recognition, the realm of AI still struggles with effectively matching

humans in mathematical reasoning. Humans possess the capability to articulate their

thought processes, such as formulating equations, to navigate through complex math-

ematical challenges. AI systems, however, due to their deficiency in mathematical

reasoning, struggle to perform these precise and complex deterministic reasoning steps,

which hinders their ability to derive conclusions. Nevertheless, for AI to be a useful aid

in fields like education, finance, and physics, etc., it must contain robust mathematical

reasoning skills. Consequently, there is an increasing focus on empowering AI systems

with this critical ability, a domain that has intrigued researchers for decades.

Although the field of AI has reached human-like levels of performance in tasks that
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require cognitive recognition abilities, it continues to face challenges in executing math-

ematical reasoning on par with humans. Humans can naturally write down reasoning

processes, such as equations, to work through complex maths problems. However,

lacking mathematical reasoning ability, AI systems face challenges in conducting the

accurate and intricate these deterministic reasoning steps, hindering them to conclude

the answer. Yet, if we hope for AI to assist human beings in areas like education,

finance, physics, and beyond, it must possess strong mathematical reasoning capabil-

ities. As a result, there’s a growing emphasis on equipping the next wave of AI with

this skill, a topic that has caught researchers’ attention for decades [21–25].

The ability of an AI system to perform mathematical reasoning can be evalu-

ated through a variety of tasks, such as text-based automated numerical reasoning

task [17, 18, 26–29]. In this scenario, the AI leverages its mathematical knowledge to

analyse information and generate a solution. A specific example of this task involves

the automated resolution of maths word problems (MWPs) [30–36]. MWPs generally

require only basic mathematical knowledge, such as elementary arithmetic. When ad-

dressing an MWP, the AI must grasp the narrative context, identify numerical data and

their interrelations, and then formulate a solution, like deriving an equation. For suc-

cess in this area, the AI must exhibit skills in reading comprehension, semantic parsing,

and mathematical logic. Another related example is answering mathematical questions,

which, similar to MWPs, demands a broader spectrum of knowledge, such as tackling

mathematics problems based on financial reports [10], science [37–41], and coding [42]

domains. Another task, which differs from the previous that focus on textual data, is

automated geometry maths problem-solving [43–47]. This task is more complex as it

involves not just text but also geometric diagrams. To succeed in resolving the problem,

not only does the AI system have to understand the problem text, but also to identify

attributes and relationships from the diagram before producing a solution. This makes

it a more challenging compared to tasks of solving MWPs and mathematical question

answering. Apart from these tasks that focus on mathematical calculation problems,

there’s also automated theorem proving [48–56]. This task requires the AI system to

produce logical sequences to prove mathematical theorems.
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In this thesis, we aim to investigate and advance the application of deep learning

methods in solving complex mathematical reasoning tasks, with a particular focus on

numerical reasoning and geometry problem-solving. Additionally, we target to inves-

tigate the factors affecting the AI system’s mathematical reasoning ability in tasks

like MWPs, mathematical question answering, geometry problem-solving. Finally, this

thesis proceed the evaluation of the current large language models (LLMs) and multi-

modal models (MMs) proficiency in solving geometry maths problems, along with a new

curated benchmark. The rest of this chapter introduces the motivations, statements

and research questions of the thesis, and finally presents the outline of the remainder

of this thesis.

1.2 Motivation

Section 1.2.1 presents an overview of the task of text-based automated numerical rea-

soning, encompassing solving of maths word problems (MWPs) and mathematics ques-

tion answering (MATH-QA). Section 1.2.2 elaborates on the rationale behind choosing

geometry problem-solving as a focus for further investigation, highlighting the inclu-

sion of an additional modality, i.e., geometric diagrams. This section also explores

the limitations of previous approaches that motivated our deep dive into this area of

research.

1.2.1 Text-based Automated Numerical Reasoning

Automated solving MWPs and mathematical question answering (MATH-QA) require

AI systems to comprehend text and identify relationships among the entities mentioned.

Once these relationships are grasped, the AI system must then use its mathematical

reasoning abilities to derive the correct solution. For such tasks, the input is typically

a text that sets the context and poses a question. The output, on the other hand, is

a sequence that depicts the reasoning process, composed of basic arithmetic actions

(like addition or subtraction), discrete functions (such as comparison or counting), and

numbers. An illustrative example of this task can be found in Table 1.1. The table
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presents a problem narrative followed by various formats that lay out the reasoning

process. These formats combine both operators (e.g., arithmetic functions, discrete

functions) and operands (e.g., numbers).

Table 1.1: An Example (from MathQA [9] dataset) requires solving the problem by
conducting mathematical reasoning. The reasoning process could be represented by
different formats, such as (a) Formula Format, (b) Sequential Format, (c) Pre-order
Traverse Format, (d) Flattened Format, (e) Nested Format. The #n refers to the
executable result from the n-th sub-program, and const 2 refers to the constant number
2.

Problem: A small table has a length of 12 inches and a breadth of b inches.
Cubes are placed on the surface of the table so as to cover the entire surface.
The maximum side of such cubes is found to be 4 inches. Also, a few such tables
are arranged to form a square. The minimum length of side possible for such a
square is 48 inches. What is the number for b?

(a) Formula Format: 48×4
12

(b) Sequential Format:

48× 4÷ 12

(c) Pre-order Traverse Format:

÷,×, 48, 4, 12

(d) Flattened Format:

multiply(48, 4)—(#0, 12)

(e) Nested Format:

divide(multiply(48,4), 12)

Previous methods face two main limitations. First, they fail in complicated prob-

lems [57]. The complexity of such issues often arises due to the length of the reasoning

program and the increased variety of operators employed. As the reasoning program

becomes more extensive or the types of operators increase, the likelihood of errors, espe-

cially cascading ones, also rise. Second, previous models have adaptability issues. These

stem from their inherent design or the way they represent reason processes, restricting

their application across various fields. When tested on different domain datasets, many

models fail because they lack the specific operators required for that domain. For in-

stance, the NeRd model [58], optimised for the general DROP dataset [59], struggles
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on the FinQA [10], a finance-domain dataset.

So far, text-based automated numerical reasoning task still faces two primary chal-

lenges:

1. Textual Understanding: To excel in this task, AI system must possess strong

semantic parsing and reading comprehension skills. This means identifying key

entities and associated numerical details within the text. Furthermore, some

questions might rely on implicit data not present in the text but are inferred from

domain-specific knowledge, adding another layer of complexity to understanding

the narrative.

2. Precise Mathematical Reasoning: The AI system must conduct the precise

reasoning process. Even a single error can result in a domino effect of mistakes.

However, many leading models tend to learn statistical patterns from the data

rather than true mathematical reasoning. [31].

In this thesis, we aim to tackle these difficulties. We argue that by adopting a

novel architecture for generating the reasoning process, we can enhance mathematical

reasoning abilities. Such an architecture should address cascading errors arising from

complex reasoning processes and offer easy extensibility. In Part II, we introduce a

model tailored for this task. This model is designed to minimise the impact of cascading

errors, especially in intricate reasoning scenarios. Moreover, its adaptability to various

operators and operands counts following operators, allowing for seamless integration of

external domain-knowledge.

1.2.2 Automated Geometry Maths Problem-Solving

As mentioned in Section 1.2.1, deep-learning methods has made impressive advance-

ments in text-based automated numerical reasoning task. However, when it comes to

multi-modal data, the research is still in the infancy. A notable example is the task of

automated geometry maths problem-solving. While there have been efforts to adopt

models successful with text-based numerical reasoning task for geometry problems, the

results are not satisfactory. This challenge primarily arises because geometry problems,
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unlike other textual problems, come with the added complexity of diagrams. As de-

picted in Figure 1.1, not only is there a textual description and solution program, but

also a diagram with geometric components and symbols. The objective is to synthesise

this dual-modal information, both text and diagram, to effectively address the problem.

Figure 1.1: Two typical geometry problems from the UniGeo dataset [1]. Particularly,
the problems in the blue rectangle box belongs to the calculation problem, whereas the
problems in the orange rectangle box belongs to the proving problem. The operand
“C x” refers to the x-th constant, the operand “N x” refers to the x-th numbers in the
problem text, “V x” refers to the results of the previous sub-program that at the x-th
index of the total program, and the operand “E x” refers to the x-th geometric element
from the problem text. The operator ”R x” refers to the x-th pre-defined theorem.

Recently, with the introduction of various public datasets, several neural-based

methods have been proposed to tackle geometry problems, such as Inter-GPS [60],

NGS [11], and DPE-NGS [61]. However, these methods often fall short in seamlessly

integrating multiple modalities. Also, there’s a prevalent focus on one kind of geometry

problem, calculation, while other kinds like proving, are largely overlooked. Yet, it’s

imperative to design solutions catering to a broader range of types of geometry prob-

lems. Also, past research have encountered difficulties in accurately parsing geometric

diagrams, especially when dealing with intricate spatial relationships or overlapping

geometric elements [62]. This limited comprehension adversely affects problem-solving
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performance. While rule-based techniques might offer better diagram parsing, their

rigid rules compromise adaptability and hinder integrating other powerful models.

Nowadays, automated geometry maths problem-solving still faces two major chal-

lenges:

1. Parse the Diagram Precisely: Geometry problem solving is a challenging task

for deep-learning methods due to that it demands capabilities like parsing multi-

modal data, executing symbolic abstraction, accessing theorem knowledge, and

engaging in precise mathematical reasoning.

2. Accompany Text with Diagram: Beyond effectively parsing diagrams, any

solution approach must also harmonise the information from both the diagram

and the associated text, especially when it comes to geometric elements specified

in the narrative.

3. Assessing Advanced Models’ Geometry Problem-Solving Ability: De-

spite the emergence of large language models and multi-modal models, it remains

uncertain how effectively these advanced models can automatically solve geom-

etry maths problems. This uncertainty is primarily due to the absence of a

standardised benchmark.

In this thesis, we target to resolve the above challenges. We posit that a uni-

fied deep-learning model, trained across diverse geometry problem types, can enhance

mathematical reasoning capabilities. Moreover, we contend that merely translating

geometric diagrams into high-dimensional vectors fails to capture their inherent com-

plexity. As such, in Part III, we delve into advanced representation techniques for

geometric diagrams, aiming for more precise and interpretable representations. In ad-

dition, we investigate for a effective modality-fusion method to cohesively understand

different modalities, especially texts and diagrams.
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1.3 Thesis Statement

This thesis states that the enhancement of text-based numerical reasoning and geometry

math problem-solving capabilities can be achieved through the innovative architecture

of the solution program generator and the straightforward representational approaches

of the diagrams. Specifically, this thesis states that a new architecture, which in-

dependently generates operators and operands in reasoning programs, will minimize

cascading errors and enhance the complexity and adaptability of reasoning programs.

Additionally, the use of a single solver for various types of geometry problems will

improve performance. This thesis also states that converting geometric diagrams into

natural language descriptions, rather than high-dimensional vectors, will better cap-

ture intricate details and enhance the AI’s reasoning abilities. Finally, this thesis states

that the underperformance of current Large Language Models (LLMs) and Multimodal

Models (MMs) on geometry problem-solving tasks highlights the need for a robust and

varied benchmark to accurately assess their capabilities.

The detailed statements of the thesis are shows as follows:

• Statement (1): For enhanced mathematical reasoning capabilities, we need a

new decoder architecture that minimises the risk of cascading errors. Specifically,

by independently generating the operators and operands in reasoning programs,

the system can produce more complex reasoning programs. Additionally, this sep-

aration approach ensures the model isn’t limited to a specific domain, enabling it

to integrate a variety of operators and thereby enhancing its adaptability. (Chap-

ter 3).

• Statement (2): Using one solver for various geometry maths problems can en-

hance performance. Specifically, we believe that reasoning programs used to solve

geometry maths problems share a common structure, comprising operators (like

arithmetic functions and geometric theorems) and operands (such as numbers and

geometric elements). Leveraging the architecture introduced in Chapter 3, we can

efficiently harness the advantages presented by these new geometry problem types

without any negative implications. (Chapter 5).
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• Statement (3): Previous deep-learning methods often convert geometry problem

diagrams into high-dimensional vectors, which can negatively impact the system’s

ability to reason mathematically about these problems. The intricate details and

overlaps commonly found in geometric diagrams require a new representation

method that high-dimensional vectors cannot capture. As a result, using natural

language descriptions for geometric diagrams becomes advantageous. These de-

scriptions not only provide an accurate and understandable representation of the

diagrams but also bridge the gap between textual descriptions (geometry prob-

lems) and visual representations (geometric diagrams). Adopting this method

can improve the AI system’s capability in tackling geometry maths problems.

(Chapter 6).

• Statement (4): As Large Language Models (LLMs) and Multimodal Models

(MMs) advance, they demonstrate promising capabilities across a variety of tasks.

However, while some LLMs and MMs show impressive results on certain mathe-

matical reasoning benchmarks, we suspect these achievements might stem from

issues of data leakage. Particularly in the domain of geometry problem-solving,

LLMs and MMs tend to underperform. This underscores the need for a robust

and varied benchmark specifically designed to assess the ability of LLMs and

MMs in tackling geometry maths problems. (Chapter 4 and Chapter 7).

1.4 Research Objectives

This thesis primarily focuses on enhancing the AI system’s mathematical reasoning

capabilities for two tasks, text-based numerical reasoning and geometry maths problem-

solving. The objective is to introduce new architectural frameworks tailored to address

complex reasoning challenges and to delve into the pivotal components that boost

mathematical reasoning proficiency. Specifically, the objectives are to:

(1) Examine the effect of segregating the generation of operators and operands on the

mathematical reasoning skills for complex problems. Specifically, carry out both
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quantitative and qualitative evaluations to determine how this innovative archi-

tecture surpasses current state-of-the-art methods across various public datasets.

(2) Following (1), delve into the methods to seamlessly integrate a range of opera-

tors, ensuring their efficiency isn’t compromised by the number of operands they

encompass.

(3) Building on (1), assess the model’s resilience in handling complex reasoning tasks,

especially as indicated by the number of steps in the program. Also, identify the

challenges faced during the execution of these tasks.

(4) Examine the influence of mathematical reasoning for geometry problems when the

model is trained on augmented datasets that encompass diverse problem types.

(5) Building on (4), delve into the mathematical reasoning capabilities across various

types of geometry maths problems. Determine the underlying reasons for why

the model performs significantly better on certain problem types compared to

others.

(6) Propose a technique to depict geometric diagrams using natural language descrip-

tions. Furthermore, evaluate how this natural language representation stands

against the formal language employed by symbolic solvers concerning mathemat-

ical reasoning in geometry maths problems.

(7) Expanding on (6), study the degree to which using natural language descriptions

for geometric diagrams can enhance the synergy between textual data and the

diagrams. Furthermore, explore methods to integrate these natural language

descriptions with existing language models.

(8) Building on findings from (4), (5), (6), and (7), this research delves into the capa-

bilities of the most recent advancements in Large Language Models (LLMs) and

multi-modal Models (MMs) in addressing geometry maths problems. Specifically,

it aims to identify the critical elements that shape these models’ effectiveness in

geometry problem-solving tasks.
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1.5 Thesis Layout

This thesis is divided into four parts and seven chapters:

• PART I: Introduction and Preliminary: This part contains Chapter 1 and

Chapter 2, which provide the background, preliminary and related work of this

thesis. Specifically, Chapter 2 begins with a concise overview of large language

models. It then moves on to introduce the foundational understanding of text-

based automated numerical reasoning and highlights prior research in this area.

It concludes by discussing the evolution of automated geometry maths problem-

solving.

• PART II: Text-based Automated Numerical Reasoning: This part con-

tains Chapter 3. Within this chapter, a deep-learning model is introduced which

segregates the generations of operators and operands. This distinction helps the

model to be less susceptible to cascading errors arising from complicated reason-

ing. The specific contributions and comprehensive experiments related to this are

thoroughly discussed in the respective chapters.

• PART III: Automated Geometry Maths Problem-Solving: This part

comprises Chapter 4, Chapter 5, Chapter 6, and Chapter 7. Chapter 4 introduces

the GeoEval benchmark, a comprehensive collection that focuses on automated

geometry maths problem-solving task. Next, Building on the model introduced in

Chapter 3, Chapter 5 addresses challenges in automated geometry maths problem

solving by introducing a model tailored to tackle various types of geometry maths

problems concurrently. Chapter 6 then enhances the mathematical reasoning

capabilities for geometry problems by employing natural language descriptions

for geometric diagrams. This approach facilitates a smooth integration with large

language models. Collectively, this section underscores the potential of integrating

multi-modal information to bolster automated mathematical reasoning. Finally,

Chapter 7 facilitates a deeper investigation into the performance of LLMs and

MMs on GeoEval benchmark.
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• PART IV Conclusion: This part includes Chapter 8. Chapter 8 outlines

the main contributions and discoveries of this thesis. Additionally, this chap-

ter presents potential avenues for future research and developments.

1.6 Publications

The thesis is built from the following publications:

1. Jiaxin Zhang, Yashar Moshfeghi. ELASTIC: numerical reasoning with adaptive

symbolic compile. Full paper accepted in 36th Advances in Neural Information

Processing Systems. (NeurIPS 2022) (Chapter 3)

2. Jiaxin Zhang, Yinghui Jiang, Yashar Moshfeghi. GAPS: Geometry-Aware Prob-

lem Solver. The journal of Artificial Intelligence, Elsevier. (AIJ) (under-review)

(Chapter 5)

3. Jiaxin Zhang, Yashar Moshfeghi. GOLD: Geometry Problem Solvers with Nat-

ural Language Description. Full paper accepted in 2024 Annual Conference of

the North American Chapter of the Association for Computational Linguistics.

(NAACL 2024 Findings) (Chapter 6)

4. Jiaxin Zhang, Zhongzhi Li, Mingliang Zhang, Fei Yin, Chenglin Liu, Yashar

Moshfeghi. GeoEval: Benchmark for Evaluating LLMs and Multi-Modal Models

on Geometry Problem-Solving. in 62nd Annual Meeting of the Association for

Computational Linguistics. (ACL 2024 Findings) (Chapter 4 and Chapter 7)
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Chapter 2

Preliminaries and Related Work

In this chapter, we lay out the foundational concepts underpinning this thesis. We start

with an introduction to large language models (LLMs) in Section 2.1. Here, we trace

the evolution of LLMs and explain essential technologies crucial for comprehending this

thesis. Next, a comprehensive literature review on benchmarks and methods for text-

based automatic numerical reasoning is presented in Section 2.2. Finally, We wrap up

with Section 2.3, providing an overview of automated geometry maths problem-solving,

encompassing both benchmarks and methodologies.

2.1 Review on Large Language Models

As highlighted in Section 1.1, for successful mathematical reasoning, an AI system needs

to comprehend the problem text, a capability often termed as reading comprehension

ability. Hence, there’s a need for a model proficient in capturing the nuances from tex-

tual information. Recent large language models (LLMs) have proven adept at offering

dense representations of data, thereby enhancing performance across various application

domains, including computer vision [63–65], speech [66–68], and multi-modal [4,69–72].

Compared to other models, there are several reasons why LLMs have dominated in

the research community, particularly when it comes to data representation:

1. No Need for Annotated Data: LLMs are typically pre-trained on unlabelled

data using unsupervised learning methods. This is advantageous because there’s
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a vast amount of textual data accessible online that LLMs can utilise to grasp a

general understanding of language. Furthermore, once pre-trained, LLMs can be

fine-tuned with a relatively small set of labelled data to achieve top-tier results

in numerous downstream applications.

2. No Gradient Vanishing Problem: Thanks to the self-attention mechanism [2]

(detailed in the upcoming Section 2.1.1.3) and residual connection mechanism [6],

LLMs can handle lengthy input data without facing the gradient vanishing issue.

This allows them to adeptly capture long-range dependencies within the data.

3. Parallel Processing: LLMs can process all parts of a sequence simultaneously,

which is more computationally efficient and allows for faster training with modern

GPUs.

4. Scalability: LLMs can be scaled up easily according to the scaling laws [73].

Models like GPT-3 [74], llama-2 [75], and GPT-4 [76] are examples of how in-

creasing the number of parameters can lead to significant gains in performance.

In this thesis, we leverage the capabilities of LLMs. Consequently, we delve into the

technical specifics of the Transformer architecture, a fundamental component of LLMs,

in the following section 2.1.1.

2.1.1 Transformer Architecture

The core component of the LLMs is the Transformer architecture [2], as shown in Fig-

ure 2.1. A typical transformer adopts encoder-decoder architecture, where the encoder

and decoder both contain N identical blocks stacked together. In detail, given an input

sequence (x1, x2, ..., xn), the encoder’s role is to interpret and contextualise it. This is

realised by converting the input into a set of contextualised representations or embed-

dings, denoted as h = (h1, h2, ..., hn). Upon receiving these embeddings, the decoder

then incrementally produces the output sequence (y1, y2, ..., ym). Particularly, the gen-

eration of each token in this sequence is informed both by the embeddings h and the

previous generated token.
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Figure 2.1: The Transformer architecture, image taken from the [2].

2.1.1.1 Encoder

As depicted in Figure 2.1, the encoder of the transformer architecture consists of N

identical blocks, where each block is made up of a multi-head attention mechanism and a

feed-forward neural network (FFN) layer, both equipped with residual connections [6]

and followed by layer normalisation [77]. Specifically, for an input xenc ∈ Rn×h, it

first undergoes the multi-head attention process, then after a residual connection and

layer normalisation becomes omulti head. This output then passes through the FFN

layer, following another round of residual connection and layer normalisation produces

the final output oenc block, which serves as the input for the subsequent block. After

traversing all blocks, the final encoder output, a contextualised representation captures

complex patterns and long-range dependencies of the input:

omulti head = LayerNorm(xenc +MultiHead(xenc))

oenc block = LayerNorm(omulti head + FFN(omulti head))
(2.1)
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where MultiHead and FFN refer to the multi-head attention layer and feed-forward

neural network layer inside one transformer block.

2.1.1.2 Decoder

Unlike the encoder, the decoder of the transformer architecture begins with a masked

multi-head attention layer. This masking ensures that the prediction at position i is

only influenced by positions preceding it. Following this layer, there’s another multi-

head attention mechanism that operates over the encoder’s output, enabling the decoder

to attend to the relevant parts of the input sequence. The decoder then employs a feed-

forward neural network (FFN) supplemented with a residual connection and followed

by layer normalisation. In essence, for a given encoder output h ∈ Rn×h and a decoder

input xdec ∈ Rl×h where l denotes the length of the decoder’s output tokens thus

far, the process can be summarised as passing through the masked attention, then

the attention over the encoder’s output, and finally through the FFN, generating a

sequence of output tokens:

omasked multi head = LayerNorm(xdec +MaskedMultiHead(xdec))

omulti head = LayerNorm(omasked multi head +MultiHead(h,omasked multi head))

odec block = LayerNorm(omulti head + FFN(omulti head))

(2.2)

where MaskedMultiHead refers to the masked multi-head attention layer.

2.1.1.3 Multi-Head Attention

The strength of the transformer lies in its ability to leverage attention mechanisms,

which allow it to weigh the importance of different input tokens differently. The atten-

tion function operates by generating three types of vectors: query (Q), key (K), and

value (V). Initially, the attention function calculates the attention weights by com-

puting the dot product between Q and K. The attention weights are then applied to

compute a weighted sum over the V.

The scaled dot-product attention mechanism, as depicted in Figure 2.2, begins by
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Figure 2.2: The left is the Scaled Dot-Product calculation, and the right is the Multi-
Head version. The image is taken from [2].

taking the dot product of a query vector q with the entire set of key vectors K. This

output is subsequently normalised using the softmax function. Moreover, to mitigate

the risk of exceedingly small gradients, the dot product between q and K is scaled

down by dividing it by the square root of the dimensionality of K:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2.3)

where dk is the dimension, Q ∈ Rn×dk , K ∈ Rm×dk , V ∈ Rm×dv are the matrix version

of query, key, and value vectors.

Expanding upon the scaled dot-product attention, the concept of multi-head atten-

tion is introduced. This approach employs multiple heads, each of which independently

projects the query, key, and value vectors into distinct sub-spaces. As a result, each

head is able to extract information from various aspects of the input data. Beyond

the ability to obtain rich representations, multi-head attention also enhances compu-

tational efficiency when running on GPUs. The output from the multi-head attention

mechanism is computed as:
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MultiHead(Q,K,V) = CONCAT(softmax(
QWQ

i (KWK
i )T√

dk
)VWV

i )W
o (2.4)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , and WV
i ∈ Rdmodel×dv are projection

weights for the i-th head. h here is the number of heads, and Wo ∈ Rhdv×dmodel project

the dimension of concatenated multi-head output back to the target dimension dmodel.

2.1.2 Types of Large Language Models

LLMs can be broadly classified into three categories: encoder-only, decoder-only, and

encoder-decoder models.1

• Encoder-only LLMs: These utilise only the encoder component of the trans-

former architecture (detailed in Section 2.1.1.1). They are often termed auto-

encoding models because they primarily serve to embed input data into dense

representations. With the use of self-attention modules (as discussed in Sec-

tion 2.1.1.3), these models can bi-directionally access the complete input sequence

at every step. Well-known encoder-only LLMs include BERT [78], RoBERTa [79],

ALBERT [80], and DistilBERT [81], etc.

• Decoder-only LLMs: LLMs in this category function as decoders for generative

tasks. Examples of such models are CTRL [82], GPT-2 [83], Transformer XL [84],

and LLaMA [75], and GPT-3 [74]. These models incorporate the decoder segment

of the Transformer architecture (explained in Section 2.1.1.2). In contrast to

encoder-only LLMs, when a word is inputted into the self-attention modules in

these models, it can only access the tokens that come before it. This method of

generation is referred to as auto-regressive generation.

• Encoder-decoder LLMs: These models employ both the encoder and decoder

portions of the Transformer. While the encoder can access every token in a

1To clarify and define terms succinctly, we integrate pre-trained language models with large language
models in this thesis.
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sequence at each stage, the decoder can only access preceding tokens at that stage.

Prominent encoder-decoder LLMs are BART [85], mBART [86], and T5 [87].

2.1.3 Pre-training Large Language Models

Currently, there is an vast amount of data available online, but annotating this data

for specific tasks to train deep-learning models is both labour-intensive and time-

consuming. However, LLMs offer a solution to this challenge by allowing training

on this unlabelled data through unsupervised learning, a process commonly referred

to as pre-training. Pre-training enables LLMs to derive meaningful representations

from large datasets, which can then be utilised for specific downstream tasks.

The method of pre-training is crucial for LLMs to acquire effective representations.

One prevalent approach involves corrupting the input, such as by randomly masking

certain words. The LLMs are then tasked with reconstructing or predicting these

masked words, as seen in models like BERT [78] and ALBERT [80]. Another method

is the auto-regressive task, where the objective is to forecast subsequent words based

on preceding ones in a sentence. This auto-regressive pre-training is particularly apt

for decoder-only LLMs, as exemplified by models like GPT-2 [83] and GPT-Neo [88].

Some more advanced pre-training strategies include objectives like predicting an entire

masked segment of text rather than just individual words, as implemented in models

such as T5 [87].

2.1.4 Task-specific Fine-tune Large Language Models

The sheer size of LLMs results in a vast number of parameters, making the pre-training

process both computationally expensive and data-intensive. Given these challenges, it

is often not feasible for many researchers and organisations to train an LLM from the

ground up. A more practical approach that has gained traction recently is to utilise

pre-trained LLMs as a starting point, initialising them with weights derived from prior

training, and then further refining these models on task-specific datasets. This process

is commonly referred to as “fine-tuning”.

Fine-tuning methods can be broadly categorised into two primary approaches. The
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first approach involves keeping the pre-trained LLM’s parameters fixed, while adding

a supplementary, lightweight layer on top. During the fine-tuning phase, only the

parameters of this additional layer are updated, leaving the original LLM weights un-

changed [89]. The second method entails updating the weights of the entire LLM,

including any added layers. However, a crucial point to note in this approach is that

a reduced learning rate, compared to the original pre-training phase, is typically used.

This ensures that the LLM retains the knowledge it gained during pre-training and

avoids drastic shifts in the parameter space [84,90,91].

2.1.5 In-Context Learning

As the size of LLMs continue to expand, it has become evident that larger models

exhibit enhanced capabilities [92,93]. One of the most significant emergent abilities in

these scaled-up LLMs is “in-context learning”. This capability enables the model to

absorb and respond to natural language instructions, often referred to as “prompts”,

without any specialised fine-tuning for a given task. By providing the model with one or

just a handful of these prompts, it can produce the expected output or answer, aligning

with the instruction given. This approach, which bypasses the need for extensive task-

specific fine-tuning, is termed one-shot or few-shot learning.

The importance of in-context learning in the research community cannot be under-

stated. Given the enormous size of these models, the computational cost of fine-tuning

them has become prohibitive for many. Thus, the ability to leverage them effectively

with only a few prompts presents a significant advantage. This prower of in-context

learning is evident in some of the latest giant LLMs such as PaLM [94], Bloom [95],

Galatica [96], Bard [97], and GPT-4 [76].

For smaller LLMs, complex reasoning spanning multiple steps, especially in math-

ematical domains, can be challenging. The chain-of-thought (CoT) technology [98]

provides a solution, enhancing the LLMs’ capability to handle such tasks. With CoT,

prompts contains demonstrations of solving the problems by breaking down the rea-

soning processes into manageable steps can guides LLMs to mimic this solving process,

which finally improve reasoning accuracy. This approach offers better problem de-
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composition, allows for self-correction [99], and enhances interpretability by producing

intermediate steps. Furthermore, it makes training more efficient and offers potential

extensibility to other domains. CoT has shown marked improvements, especially in

areas like code generation [100] and solving maths word problems [101–104].

In this thesis, encoder-only LLMs are utilised as robust encoders to distil the in-

tricate semantic essence from mathematical problem statements in Chapter II. Con-

currently, given that the gap between the textual narrative and geometric diagrams is

bridged via the conversion of diagrams into natural language in Chapter 6, decoder-

only LLMs present themselves as ready-to-use decoders, facilitating the generation of

solution programs.

2.2 Text-based Automated Numerical Reasoning Overview

This section delves into a thorough review of literature over text-based numerical rea-

soning. Initially, we outline established benchmarks for the evaluation of mathematical

reasoning capabilities in Section 2.2.1. This includes datasets designed for maths word

problems (MWPs) and those for maths question answering (MATH-QA) tasks. Fol-

lowing this, Section 2.2.2 offers a detailed examination of various methods developed

within this domain, ranging from rule-based approaches to statistical techniques, and

evolving through to Sequence-to-Sequence/Tree-based methodologies, concluding in the

exploration of methods based on large language models (LLMs).

2.2.1 Benchmarks for Text-based Numerical Reasoning Task

2.2.1.1 Datasets of Maths Word Problems

As we discussed in Section 1.2.1, maths word problems (MWPs) challenge AI systems

to generate equations that encapsulate the reasoning required to arrive at the correct

answer, making them an excellent measure of the system’s mathematical reasoning

skills. Several foundational datasets have been introduced, such as A12/Verb395 [32],

ALG514 [33], IL [34], and SinEQ [30], etc. A12/Verb395 is notably the first dataset

designed for training models to tackle MWPs, consisting of 400 problems that are
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annotated with arithmetic equations focused on addition and subtraction operations.

These early datasets were typically collected from crowd-sourced platforms; for in-

stance, ALG514 was sourced from “Algebra.com”.

The development of deep-learning methods has indeed revolutionised the approach

to solving mathematical word problems (MWPs). However, the full potential of these

methods can only be explored with access to sufficiently large and high-quality datasets.

The creation of Math23K [105], a pioneering dataset in the field, marked a significant

advancement in this direction. Comprising 23,161 problems with annotated equations

represented in logical forms. Later, datasets like HWMP [106] have been introduced.

HWMP caters to more complex problem-solving by including problems with several

unknown variables, thus pushing the boundaries of what deep-learning models can

achieve. Others using natural languages to annotate the reasoning process, Wang et

al. [107] proposed the use of natural language rationales to describe the reasoning

behind solutions. This approach is popular and used in the construction of datasets

such as GSM8K [36], which consists of high-quality MWPs at a grade school level.

However, while natural language offers flexibility, it can sometimes lack the precision

that mathematical reasoning demands. To mediate between the formality of equations

and the flexibility of natural language, Amini et al. [9] introduced the MathQA dataset.

The introduction of such datasets is crucial in challenging and refining the capabilities

of AI in mathematical reasoning, aiming to closely simulate the nature of mathematical

reasoning ability of human beings.

2.2.1.2 Datasets for Maths Question Answering

The task of maths question answering (MATH-QA) extends beyond maths word prob-

lems (MWPs) task. It requires the AI system to contain the in-depth understanding of

mathematical reasoning ability as well as an awareness of general and subject-specific

knowledge.

The DROP [59] and Mathematics [29] datasets are notable in the maths question

answering task, distinct from typical MWPs datasets that focus on equations as reason-

ing process. They feature a variety of answer formats, including text spans, numerical
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counts, etc.

Just as with MWPs, using datasets focused on specific domains might lead to an

overestimation of the mathematical reasoning capabilities of AI systems. To provide a

more comprehensive assessment, the research community has begun creating datasets

that amalgamate problems from various domains, such as the Lila dataset [108], which

incorporates 23 distinct mathematical reasoning tasks.

The task of MATH-QA extends beyond purely textual data to include tables, a

format prevalent in various real-world contexts like scientific research, medical records,

financial statements, etc. As such, proficiency in resolving mathematical problems

within these hybrid data forms is essential. To advance research in this area, datasets

such as FinQA [10] and TAT-QA [109] have been constructed from the financial reports.

In the field of MATH-QA, the large variety of problem types typically results in

datasets that only offer the final answer without any annotations of the intermediate

reasoning processes. This presents a significant challenge for effectively leveraging such

datasets for model training and evaluation. To counter this obstacle, recent research

has been making efforts into depicting the reasoning process through various forms

such as logical expressions [10, 26, 28], solution programs [110], or descriptive natural

language explanations [108], thereby enhancing the datasets’ utility for developing AI

systems with more robust mathematical reasoning ability.

Table 2.1 provides a comprehensive list of the datasets created for both the MWPs

and MATH-QA tasks. It details the format of annotations, the size of the data, and

the year that each dataset was proposed.

2.2.2 Methods for Text-based Numerical Reasoning Task

In this section, we describe the evolution of methods aimed at text-based numerical

reasoning. Initially, we briefly introduce rule-based methods predominantly developed

in the previous century. Following that, we explore the statistical approaches that have

been applied to this challenge. Finally, we give a thorough examination of deep-learning

based methods, with particular attention to Sequence-to-Sequence/Tree architectures

and methods leveraging Large Language Models (LLMs).
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Name Task Annotation Size Year

A12/Verb395 [32] MWPs Arithmetic Equation 400 2014

ALG514 [33] MWPs Arithmetic Equation 514 2014

IL [34] MWPs Arithmetic Equation 1,404 2015

SingleEQ [30] MWPs Arithmetic Equation 508 2015

DRAW-1K [111] MWPs Arithmetic Equation 1,000 2015

MAWPS [112] MWPs Arithmetic Equation 3,320 2016

Dolphin18K [113] MWPs Arithmetic Equation 18,460 2016

AllArith [114] MWPs Arithmetic Equation 831 2017

Math23K [105] MWPs Arithmetic Equation 23,162 2017

Aqua [107] MWPs Natural Language 100,000 2017

Aggregate [115] MWPs Arithmetic Equation 1,492 2018

MathQA [9] MWPs Solution Program 37,292 2019

QUAREL [26] MATH-QA Logic Form 2,771 2019

McTaco [27] MATH-QA Direct Answer 13.225 2019

DROP [59] MATH-QA Direct Answer 96,597 2019

Mathematics [29] MATH-QA Direct Answer 2,010,000 2019

HWMP [106] MWPs Arithmetic Equation 5,470 2020

ASDiv [116] MWPs Arithmetic Equation 2,305 2020

Fermi [28] MATH-QA Solution Program 11,000 2020

SVAMP [31] MWPS Arithmetic Equation 1,000 2021

GSM8K [36] MWPS Natural Language 8,792 2021

MathQA-Python [117] MWPs Python Program 23,194 2021

FinQA [10] MATH-QA Solution Program 8,281 2021

Math [18] MATH-QA Natural Language 125,000 2021

TAT-QA [109] MATH-QA Direct Answer 16,552 2021

MultiHertt [110] MATH-QA Arithmetic Equation 10,440 2022

NumGLUE [21] MATH-QA Direct Answer 101,835 2022

Lila [108] MATH-QA Python Program 134,000 2022

Table 2.1: Table listing all introduced datasets for MWPs and MATH-QA tasks.

2.2.2.1 Rule-based and Statistical Methods

The research on endowing AI with the capability of mathematical reasoning has been

attracted the interest for decades [24, 25, 118, 119]. In the early stages, researchers

primarily utilised rule-based methods to transform text descriptions into structured

representations through techniques like pattern matching, verb categorisation, or se-

mantic parsing [21,23,120,121].

However, the early rule-based methods, which involved associating maths problems

with structured representations, heavily relying on manually crafted patterns which

limited their ability to generalise to new problems. Hence, researchers shifted focus

towards statistical models capable of autonomously identifying patterns in training

data. One of the key advancements in this direction was by Kushman et al. [33], who

introduced a method that models the joint probability distribution of MWPs and their

corresponding target equations. Subsequent research efforts concentrated on enhancing

the accuracy of template extraction. For instance, Hosseini et al. [32] hypothesised

that verbs are crucial for identifying relevant equations and thus focused on learning
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word representations by categorising verbs in the problem statements. There were

also studies that emphasised the role of nouns and numbers in the text [122, 123], all

aiming to improve the precision of mapping from textual descriptions to mathematical

expressions.

The approaches mentioned above typically involve representing the reasoning pro-

cess through mathematical equations. However, some researchers like Koncel-Kedziorski

et al. [30] and Roy et al. [123] opted for a different representation strategy by transform-

ing these mathematical equations into expression trees. The principal benefit of using

expression trees is that they inherently prevent the generation of invalid mathematical

equations.

2.2.2.2 Deep Learning Methods: Sequence-to-Sequence/Tree Methods

Sequence-to-Sequence The Sequence-to-Sequence (Seq2Seq) architecture [124], has

gained significant traction across a range of generation tasks, including machine trans-

lation [125, 126], text summarisation [127, 128], image captioning [129, 130], and story

generation [131, 132]. These diverse tasks are unified by a common feature: the neces-

sity to craft outputs that reflect a deep comprehension of contextual information. All

tasks share the same feature that they need to generate outputs according to the un-

derstanding of the context. Consequently, the framework has also been adopted for re-

solving mathematical reasoning problems. In this context, the standard Seq2Seq model

designated for mathematical reasoning typically adopts the encoder-decoder schema.

Within this structure, the encoder is tasked with processing the input maths problem

text, while the decoder is responsible for producing the corresponding output, often in

the form of an arithmetic equation or a similar program structure. The selection of neu-

ral network architectures for both the encoder and decoder components is varied, with

prevalent choices including Long Short-Term Memory (LSTM) networks [133], Gated

Recurrent Units (GRU) [134], Graph network [135], and transformer architecture [2].

Each of these choices brings a unique set of strengths to the model’s mathematical

reasoning ability.

DNS model [105] is a pioneering Seq2Seq approach, specifically for addressing Math
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Word Problems (MWPs). DNS introduces a novel strategy aimed at curtailing the

breadth of the search space for potential mathematical equations by implementing a

normalisation technique for the numbers present in both the problem texts and the

target equations. This technique encompasses two key steps: firstly, it substitutes

numerical values in the text with their positional indices, and secondly, it replaces the

numerical values in the target equations with a sequence reflecting the order of their

indices. By fixing the size of the decoding vocabulary, this normalisation method has

been integrated into subsequent work [136–140]. Building on this, Ling et al. [141]

presented an innovative staged back-propagation method. Unlike its predecessors that

focused on equation generation, they adopt rationals as the output, thereby improving

the model’s interpretability. Further evolving the field, Robaidek et al. [142] shifted the

complexity of the generation task towards a classification-oriented task. Their approach

involved the development of multiple classifiers, each trained to select the most fitting

output from a range of outputs produced by different models.

The prevalent normalisation method of substituting numbers with their positional

indices has facilitated the reduction of the search space in decoding out the target

equations. Nevertheless, this method has its drawbacks, notably the loss of intrinsic

numerical semantics, which can lead the models to make erroneous operational deci-

sions. An illustrative example of such an error would be an inappropriate attempt to

aggregate “the price of two apples” with the “number of apples,” which conceptually

mismatches the distinct semantic roles that numbers play in problems. Addressing

this critical issue, Chiang et al. [138] have introduced an encoder-decoder framework

that retains the numerical semantics by capturing the contextual meanings of numbers

from the problem text. Their approach is characterised by an encoder that is specif-

ically designed to discern the semantic implications behind each number within the

text. Complementing this, the decoder incorporates a stack mechanism which serves to

maintain and track the semantic significance of the operands throughout the decoding

process.

Previous approaches within the Seq2Seq framework conventionally generate target

maths equations in a sequential manner. This method, however, inadvertently leads to
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a non-deterministic output space owing to the production of multiple, equivalent target

programs. For instance, the equations “1 + 2 + 3” and “1 + 3 + 2” are mathematically

equivalent, yet they are generated as distinct outputs by the model. To address this

redundancy, subsequent research has proposed representing equations as expression

trees [136,137] . In this representation, both operators and numerical values are treated

as nodes within a tree structure. This naturally embodies the hierarchical nature of

maths equations. The models are then trained to generate the post-order traversal of

these expression trees.

Figure 2.3: The Seq2Seq model for mathematical reasoning task. Here, W represents
the textual words in maths problem texts and N signifies the numerical elements within
the problem texts. The encoder converts each word in the text into a hidden state vector
h. These vectors are subsequently utilised as the initial input alongside a start token
S for the decoder. The decoder then generates an output at each step, which serves as
the subsequent input for the following step in the decoding process.

Figure 2.3 depicts a fundamental Seq2Seq architecture tailored for mathematical

reasoning tasks. The model processes an input maths problem text, denoted as W1,

W2, N1, ..., where W stands for words and N for numbers. The encoder transforms

these inputs into vector representations h, capturing the understanding of the input

sequence. Following this, the decoder employs the vectors h as its initial input to

sequentially produce the solution program.
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Figure 2.4: The Seq2Seq model incorporating attention for mathematical reasoning
task. During the decoding phase for step j, the decoder’s hidden state hdecj engages in
the computation of attention scores in relation to all the encoder’s hidden states. These
attention scores are then applied to perform a weighted summation of the encoder’s
hidden states, resulting in the context vector cj . This context vector, along with the
hidden state hdecj , contributes to the generation of the probability distribution across
the decoding vocabulary. From this distribution, the word “N1” is selected for having
the highest probability.

Sequence-to-Sequence with Attention Mechanism The initial Seq2Seq models

proposed for mathematical reasoning tasks encountered substantial limitations due to

their reliance on encoding all the information from the problem text into a fixed-size

vector. This constraint posed a significant challenge, as it required the model to com-

press all the necessary details into a single representation, regardless of the problem’s

complexity or length, which could lead to a loss of information and context critical

for solving mathematical problems. To enhance the capability of the encoder-decoder

architecture in Seq2Seq models, the attention mechanism was introduced [143]. This

innovation allows the decoder to attend to different segments of the input text during

each step of the output generation process. At each step of the output generation, the

model can weigh the importance of different parts of the input, focusing on the most

relevant information at that step.

Utilising the attention mechanism, we are able to identify a broader specialised

features for tackling mathematical problems. Li et al. [139] have introduced four addi-

tion features: (1) global features that provide a holistic view of the problem text; (2)

quantity-related features that delineate the association between numerical values and

their contextual terms; (3) quantity-pair features that model the inter-numeric relation-
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ships; and (4) question-related features that define the connections between numerical

data and the question posed. These comprehensive features effectively minimise the

influence of noisy data, refining the model’s performance.

Figure 2.4 illustrates a standard Seq2Seq model with an attention mechanism, tai-

lored for tasks in mathematical reasoning. This model is different from the conventional

Seq2Seq model through the computation of the context vector cj at each j-th step of

output generated by the decoder. First, attention weights attnj are calculated, reflect-

ing the relevance of each word in the maths problem text to the decoder’s hidden state

hdecj at the specific time step j:

eji = W tanh(Whhi +Wdech
dec
j + battn)

attnj = softmax(ej)
(2.5)

where W ∈ R1×h, Wh ∈ Rh×h, and Wdec ∈ Rh×h are trainable parameters. The battn

is the bias. Subsequently, the context vector cj is computed by aggregating all of the

encoder’s hidden states, each weighted by their corresponding attention weight:

cj =
∑
i

attni
jhi (2.6)

Lastly, the probability distribution over the decoding vocabulary, denoted as Pvocab,

is determined by concatenating the context vector cj with the current hidden state from

the decoder:

Pvocab = softmax(Wvocab[h
dec
j , cj ] + bvocab) (2.7)

where Wvocab ∈ R|V |×h and bvocab are trainable parameters and bias, respectively. |V |

is the size of the decoding vocabulary.

The application of attention mechanisms has made a significant impact in math-

ematical reasoning, particularly with the advent of pointer network architecture [144,

145]. Pointer networks are adept at overcoming the constraints of conventional Seq2Seq

models where the output vocabulary is predefined and limited. These networks excel in

tasks where the output elements must be dependant on the input sequence — a com-
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mon scenario in mathematical reasoning, where numbers or variables from the problem

text often form components of the solution.

Figure 2.5: The Seq2Seq with Pointer-Network for mathematical reasoning task. Dur-
ing the decoding phase at time step j, the model computes the weight pgen for the
generation probability using the decoder’s hidden state hdecj in conjunction with the
context vector cj . Subsequently, the decoding vocabulary’s probability distribution is
adjusted by adding the product of attention weights multiplied (1 − pgen). The word
“N1”, which holds the maximum probability within the final distribution, is then cho-
sen as this time step’s output.

Figure 2.5 presents the integrated architecture of a Seq2Seq model with a Pointer-

Network. It illustrates that, at time step at time step j, the predicted probability

distribution for the decoding vocabulary Pfinal
vocab is derived from a combination of atten-

tion weights attnj and the base vocabulary probabilities Pvocab:

pgen = σ(W1cjW2h
dec
j + bgen)

Pfinal
vocab = pgenPvocab + (1− pgen)attnj

(2.8)

where W1 ∈ R1×h and W2 ∈ R1×h are trainable parameters. bgen is the bias. σ refers

to the sigmoid function.

Sequence-to-Tree While transforming equations into post-order traversal sequences

of their expression trees is a strategy to resolve invalid equations generated by Seq2Seq

models, this process does not entirely eliminate the production of invalid formulas [146].
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To address this issue, some researchers have attempted to encode additional auxiliary

information, such as the sibling node at each step, to learn the implicit tree structure

within the sequence. However, these solutions have proven to be overly intricate. In

response to the complexity of these methods, Liu et al. [147] proposed a approach by

transforming the equation into an Abstract Syntax Tree (AST). This AST effectively

encapsulates the hierarchical structure of mathematical equations, providing a clear

and structured representation that can mitigate the generation of invalid equations.

For a visual illustration, Figure 2.6 exemplifies the distinct differences in representing

an equation through various formats.

Figure 2.6: Different representations of the equation for a MWP. Prefix/Suffix refers
to the pre/post order traverse of the AST. The figure is from [3].

To generate the AST as the target to resolve mathematical reasoning task, re-

searchers have proposed the Seq2Tree model [146–148], which is adept at capturing the

hierarchical tree-structured relationships inherent in Abstract Syntax Trees (ASTs).

This approach extends the capabilities of traditional Seq2Seq models by enabling the

generation of outputs that are structured as trees rather than linear sequences, aligning

more closely with the intrinsic structure of mathematical equations.

Seq2Tree approaches, exemplified by the GTS model [146], have demonstrated

promising results in the context of mathematical reasoning tasks. Nonetheless, Zhang

et al. [149] identified limitations in the generalisability of models that rely on Ab-

stract Syntax Tree (AST) representations. For instance, commutative operations like

“3+2” and “2+3” produce the same result and should both be considered correct, but

a Seq2Tree model may erroneously mark one as incorrect due to the strict hierarchical

structure of AST. To rectify this issue, the concept of a teacher-student network was
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introduced [149]. This framework allows for a more flexible interpretation of mathemat-

ical expressions by enabling the student model to learn multiple valid representations

of an equation from the teacher model.

Limitations of Sequence-to-Tree Models Despite the progress achieved by men-

tioned methods in addressing mathematical reasoning tasks, these models do indeed

have several limitations:

1. Train Test Discrepancy: In the mathematical reasoning task, Seq2Seq/Tree

models are conventionally trained using MLE, optimising the prediction of each

subsequent token based on the preceding ones. This approach, while aligning

with gradient descent due to its differentiable nature, introduces a misalignment

with the testing phase which evaluate performance based on accuracy — a non-

differentiable metric. This training-testing discrepancy leads to models that excel

in training environments but may stumble when encountering the complex and

unpredictable scenarios of real-world application [150].

2. Lacking External Knowledge: The incorporation of external knowledge into

Seq2Seq/Tree models for mathematical reasoning has been limited, often con-

strained to the addition of constant tokens to the decoding vocabulary. This

approach only allows for a restricted set of knowledge to be used, which can be a

significant limitation when solving complex problems that require broader knowl-

edge. Addressing this gap, Wu et al. [151] introduced the Knowledge-Aware

Sequence-to-Tree (KA-S2T) network. This innovative model extends beyond

the confines of predefined constants by linking entities directly with an external

knowledge base. By doing so, it dynamically integrates a richer set of knowledge

into the problem-solving process, enhancing the model’s ability to tackle a wider

variety of mathematical reasoning tasks.

3. Not Using the Real Number Value: Prior methods in mathematical reason-

ing often employ a normalisation strategy where numbers within a problem are

replaced with index, and pointer networks are utilised to select these indices for
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the output, discarding the actual numerical values. This technique ignores the se-

mantic content numbers carry — their magnitude, relationships, and the role they

play in mathematical operations. Without considering the true values, models

may fail to grasp the deeper meaning behind the quantities involved, potentially

leading to solutions that are structurally correct but semantically flawed [152].

Addressing the above limitations, there has been significant progress through vari-

ous innovative approaches. Hong et al. [153] presented the Learning-By-Fixing (LBF)

framework, which narrows the gap between training and testing objectives using policy

gradient methods. LBF adapts to incorrect predictions by employing a “fixing” mech-

anism, similar to human learning through error correction. Qin et al. [154] introduced

auxiliary tasks with the Number Solver (NS-Solver) to harness the full potential of the

training data. These tasks encompass predicting numbers, identifying commonsense

constants, checking program consistency, and exploiting mathematical duality, each

contributing to a more robust learning process.

Additionally, traditional Seq2Seq and Seq2Tree methods, with their left-to-right and

top-down decoding strategies, respectively, are challenged when required to generate

multiple target programs due to their inherent sequential processing. Cao et al. [155]

tackled this by proposing a bottom-up approach with the Seq2DAG model, allowing

for simultaneous generation of multiple target programs.

Graph-to-Tree The approaches proposed for mathematical reasoning tasks have

seen merely developing sophisticated decoders to generating target outputs, without

considering to enhance the encoding of problem texts to better capture their intrinsic

information. Prior Seq2Seq/Tree methods predominantly concentrated on the gener-

ation of target programs, often encoding the problem simply as a sequence of words

represented by a singular vector. This approach falls short in emulating the human-like

comprehension of problems, given the complexity and richness of information con-

tained [156,157].

To bridge this gap, researchers have begun incorporating graph-based modules to

represent the problem text more effectively. These methods aim to encapsulate not only
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the sequence of words but also the multifaceted relationships and structures within the

problems. Lin et al. [156] introduced the HMS, which utilises a graph module to deeply

analyse the relationships between the entire problem text and its entities, providing

a more profound understanding and utilisation of information to solve MWPs. Sim-

ilarly, innovations like the Multi-Encoder/Decoder [3] and Graph2Tree [158] further

expand on this approach, leveraging the power of graphs to model the detailed inter-

connections within problem texts, thereby enabling models to approach human-level

problem-solving capabilities.

2.2.2.3 Large-Language-Models-based Methods

The utilisation of large language models (LLMs) has resulted in notable successes across

a diverse range of applications [78–80,83,85,87]. Nevertheless, when it comes to math-

ematical reasoning, these models tend to fail. The underlying factors for this short-

fall are diverse. Initially, the pre-training of these models typically does not involve

many mathematical texts or problems. Additionally, the pre-training objectives used in

LLMs, such as masked and causal language modelling, are not specifically designed to

learn the skills necessary for mathematical reasoning. Finally, the effectiveness of LLMs

depends on the availability of substantial datasets for training, yet there is a conspic-

uous scarcity of such expansive mathematical datasets. Consequently, there has been

a shift toward refining LLMs for mathematical reasoning through targeted fine-tuning

on specific tasks, as such method requires less dataset. Kim et al. [159] pioneered this

approach by integrating a pointer network with the transformer model architecture to

enhance problem-solving capabilities in mathematics. Furthermore, other researchers

have leveraged the extensive linguistic capabilities inherent in LLMs to better inter-

pret the textual content of maths problems [160]. The inherent flexibility of LLMs has

also inspired researchers to extend their use beyond text-based mathematical reasoning

tasks. Emerging studies have begun tackling mathematical problems presented in the

tabular format [10,109,110] and the image format [161].

Directly fine-tuning LLMs for mathematical reasoning tasks is hindered by chal-

lenges comparable to those faced by Seq2Seq/Tree approaches. A notable challenge is
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the performance drop observed as the length of the solution program increases [162].

To resolve this issue, Shen et al. [163] introduced a “generate and rank” approach,

incorporating an additional ranking mechanism specifically to discern correct from in-

correct solutions. This concept of evaluating and ordering the outputs generated by

various models has been further developed in subsequent research [36,162].

Moreover, when fine-tuning LLMs for tasks involving mathematical reasoning, pre-

vailing techniques typically depend on the MLE objective, which focuses on maximising

the probability of the target solution program. Yet, this approach does not account

for the fact that many mathematical problems can have several correct solutions, each

representing a different logical path to the same output. Training models without this

variety of correct solution paths can lead to overfitting, resulting in diminished model

performance on new, unseen problems [164]. To address this, Ni et al. [164] have up-

dated the fine-tuning process of LLMs by including a diversity of self-sampled solutions

during training, equally treating these multiple correct solutions as potential target

programs.

In addition to the fine-tuning of LLMs, alternative approaches have been explored

to equip models with the capability for mathematical reasoning. Li et al. [165] argued

that traditional methods tend to conflate the representations of maths problems that

share the same solution, despite potentially significant semantic differences in their

descriptions. To overcome this, they employed a contrast learning strategy that focuses

on identifying and aligning similar problem prototypes. This method assists LLMs in

recognising and distinguishing between various patterns, enhancing their ability to

understand the underlying structures of maths problems.

Research has delved into why LLMs don’t exhibit the same level of proficiency

in mathematical reasoning as they do in other tasks. A common hypothesis is that

the underlying Transformer architecture might be a limiting factor. The architecture

typically processes reasoning tasks in a single forward pass, which can be inadequate

for complex mathematical reasoning that requires multi-step calculations [166]. To

address this, researchers tried to experiment with generating intermediate reasoning

steps before arriving at the final answer [167]. This concept is the infancy of the future
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work that is called the “chain-of-thought” approach, a method that mimics human-like

step-wise reasoning to tackle complex tasks. This chain-of-thought technique and its

applications will be explored in the subsequent section.

LLMs often struggle with mastering mathematical reasoning ability from standard

pre-training routines [28, 40]. For LLMs to effectively assimilate mathematical under-

standing that benefits downstream tasks, some researchers have introduced customised

pre-training tasks aimed at injecting mathematical reasoning abilities directly into these

models [168]. Peirce [169] identified three critical aspects essential for conducting rea-

soning: 1. Deduction: The process of inferring specific outcomes from general facts

and established rules. 2. Induction: The capacity to formulate broad rules from an

observed set of specific instances. Abduction: The skill of hypothesising a likely cause

or rule given certain evidence or outcomes. Building on this, Wu et al. [170] crafted

specialised synthetic tasks tailored to each of these reasoning types. They posited that

LLMs could develop a strong inductive reasoning capability by training on these syn-

thetic tasks, which in turn helps downstream tasks. Moreover, others in the field have

tried to integrate certain mathematical reasoning ability into LLMs, such as magnitude

and numeric type recognition [171]. This is proposed in the hopes that a better grasp

of these fundamental numerical skills will benefit mathematically intensive reasoning

tasks.

Recent research has suggested that auto-regressive pre-training of LLMs using a

quantitative-relevant corpus can be sufficient for downstream mathematical reasoning

tasks, demanding the need for vast amounts of training data [18,49,50,53,55,172–174].

These specialised corpora, rich in quantitative content, are prevalent in fields closely as-

sociated with quantitative analysis, such as financial reports, scientific literature, and

educational materials. For instance, BloombergGPT [175], an LLM with 50 billion

parameters, was trained on a financial dataset comprising 363 billion tokens. This ex-

tensive pre-training enables it to perform a broad spectrum of tasks within the financial

domain. Similarly, in the realm of science, Galactica [96] has been trained on an exten-

sive scientific corpus that includes 48 million academic papers, textbooks, and lecture

notes, as well as databases of millions of chemical compounds and proteins, scientific
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web content, and encyclopedias. This comprehensive pre-training allows the model to

handle a wide array of data-rich, number-intensive tasks in scientific domains.

The initial wave of LLMs, such as RoBERTa [79] and BERT [78], contain around 123

million parameters. Successor models like T5 [87] and BART [85] marked a substantial

increase in the model size, boasting up to 770 million parameters. Today, we witness a

significantly expansion in the scale of LLMs, with models like GPT-3 [74] encompassing

up to 175 billion parameters. As the parameter count in these LLMs has surged, it

is hard to train such them due to the considerable computational resources required.

However, one of the significant advantages of these larger models is their capacity

for in-context learning, which allows LLMs to perform tasks by being fed examples

directly at inference time [74, 176]. To utilise in-context learning for mathematical

reasoning tasks, researchers began to provide LLMs with maths problems accompanied

by their solution programs to guide the models. Nevertheless, LLMs often could not

produce accurate answers consistent with the provided examples [94]. Insights from

psychological research suggest that arriving at an answer directly is often not feasible.

Instead, models may need to follow a sequence of intermediate steps [177]. Building

on this understanding, Wei et al. [98] introduced the concept of a “chain-of-thought”

(CoT), which presents LLMs with examples as inputs that include explicit step-by-step

reasoning. The CoT approach has substantially enhanced the mathematical reasoning

capabilities of LLMs, leading to marked improvements and notable achievements across

a variety of mathematical reasoning benchmarks.

The process of manually crafting few-shot CoT examples, while useful, may not

adequately address the full range of problem scenarios that an LLM might encounter.

Recognising this limitation, some researchers have turned their focus toward devising

methods for LLMs to autonomously generate high-quality CoT examples [178–181]. In

one of these approaches, Lu et al. [19] introduced a technique that leverages policy

gradient methods to refine the selection of in-context examples from a limited dataset

for the in-context learning. This method allows the model to identify and utilise the

most effective examples to guide its learning process. To further augment the math-

ematical reasoning capabilities of LLMs via CoT, other researchers have investigated
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ensemble strategies. These involve generating multiple solution programs and sub-

sequently selecting the most accurate one. Ensemble methods exploit the diversity

of problem-solving approaches inherent in LLMs to improve the chances of reaching

the correct solution, effectively combining the strengths of various reasoning paths to

enhance overall performance [101,102].

As LLMs continue to expand in size, leveraging them even through in-context learn-

ing has become increasingly resource-intensive, with the cost of significant computa-

tional power, like GPUs, reaching into the millions of dollars. For instance, the devel-

opment of OpenAI’s GPT-3 was reported to have spent more than $5 million [74]. In

response to these huge costs, researchers have initiated efforts to distil the expansive

mathematical knowledge contained within LLMs into smaller models. Liang et al. [182]

took an innovative approach by using GPT-3 as a form of “maths tutor”, employing it

to generate specialised maths samples that were then used to train a smaller model. The

process aimed to transfer the expansive knowledge of GPT-3 to a more cost-efficient

model. Yet, it remains an open question as to the extent of mathematical knowledge

such “student” models can acquire from their larger counterparts.

This thesis introduces a much smaller model, comprised of roughly 500M parameters

contrast to the tens or hundreds of billions of parameters seen in current LLMs. Despite

its relatively reduced size, our model demonstrates performance on par with these larger

models in mathematical reasoning tasks. This not only underscores the effectiveness of

knowledge distillation techniques but also highlights the potential for cost-effective AI

models that retain a high level of mathematical reasoning ability.

2.3 Automated Geometry Maths Problem-solving Overview

The previous section provides the review of the realm of text-based automatic numerical

reasoning. This section further explores and evaluates effective methods for automated

reasoning within the context of geometry maths problems. This section will present

a comprehensive review of existing public datasets in section 2.3.1 and the various

methods proposed in this research field in section 2.3.2.
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2.3.1 Benchmarks for Geometry Mathematical Problems

In contrast to the abundance of datasets for automated mathematical reasoning in text,

the realm of geometry mathematics problems faces a notable scarcity of high-quality

datasets. Existing datasets for geometry problems are often hindered by limitations

such as small scale or lack of public accessibility, presenting a significant challenge in

this field of study [43–45,69].

The growing interest in leveraging deep-learning approaches for solving geometry

maths problems has spurred the creation of several public datasets in recent years

[11,60,61,183]. A notable one in this area is the introduction of Geometry3K [60], the

first large-scale dataset for deep-learning methods in this domain. It offers examples

that combine text and diagrams with structured descriptions in a formal language.

However, the Geometry3K dataset lacks annotations for the reasoning process, a key

element for developing mathematical reasoning skills, as discussed in Section 2.2.1. In

response to this limitation, Chen et al. [11] introduced GeoQA, which encompasses

4,998 geometry problems. Each problem in GeoQA is accompanied by a reasoning

program expressed in a domain-specific language, enriching the dataset’s utility for

deep-learning applications.

Earlier datasets were constrained by a limited variety of problem types, predom-

inantly focusing on geometry problems related to angles and lengths. This lack of

diversity not only hindered the evaluation of models against more challenging prob-

lems but also limited the exploration of potential advantages offered by a wider range

of problem types. To address these limitations, Cao et al. [61] expanded the GeoQA

dataset by adding an additional 2,518 problems encompassing various types. This

expansion resulted in the creation of the GeoQA+ dataset, in a total size of 12,054

problems, thereby significantly enhancing its diversity. More recently, the introduc-

tion of UniGeo [1] marked a significant milestone, being the first dataset to include a

new category of geometry maths problems—proving problems. UniGeo stands out as

the sole benchmark by far that encompasses both geometry calculation and proving

problems.

Solving geometry maths problems poses a distinct challenge compared to text-based
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maths reasoning problems due to the necessity of interpreting geometric diagrams. This

additional complexity requires training AI systems to effectively parse these diagrams

using extensive data. In response to this specific need, Zhang et al. [5] meticulously

annotated geometric diagrams at a primitive level and introduced the PGPS9K dataset.

Comprising 9,022 geometry problems each accompanied by a diagram, PGPS9K stands

out from existing datasets. It uniquely features both detailed diagram annotations

and reasoning programs, providing a comprehensive resource for research in this area.

Please refer to Table 2.2 for a complete overview of geometry maths problem datasets.

Name Diagram Annotation Reasoning Annotation Size Year Public Available

GeoOS [43] - - 186 2015 No

GeoShader [44] - - 102 2017 No

GEOS++ [45] - - 1,406 2017 No

GEO-OS [46] Logic Form Logic Form 2,235 2017 No

Geometry3K [60] Logic Form Logic Form 3,002 2021 Yes

GeoQA [11] - Solution Program 4,998 2021 Yes

GeoQA+ [61] - Solution Program 12,054 2022 Yes

UniGeo [1] - Solution Program 14,541 2022 Yes

PGPS9K [5] Primitive Level Annotation Solution Program 9,022 2023 Yes

Table 2.2: Datasets for the automated geometry maths problem-solving. − indicates
“not available”.

2.3.2 Methods for Geometry Maths Problem-solving

A variety of methods have been proposed from the inception to automate the solving

of geometry maths problems [184–187]. These problems are distinct from standard

maths word problems due to the inclusion of geometric diagrams, requiring a more

robust reasoning capability to interpret multi-modal information. From a psychologi-

cal standpoint, tackling geometry problems demands advanced thinking skills, specif-

ically in symbolic abstraction and logical reasoning [188, 189]. This necessitates the

development of specialised methods tailored specifically for addressing the complexities

inherent in geometry maths problems.

The current methods for addressing geometry maths problems fall into two primary

categories: symbolic solvers [43,45,60] and neural solvers [1, 11]. Symbolic solvers rely

on semantic parsing, a process that converts geometry diagrams into a formal language
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using a specific set of rules and a well-defined alphabet. This formal language is then

utilised to generate solution programs. Semantic parsing traditionally involves mapping

language to a formal meaning representation, initially learned from natural language

utterances paired with logical forms [190, 191]. GEOS [43], a pioneering automated

system in this field, utilises dual parsers to interpret both texts and diagrams. It

correlates diagram components with textual entities and transforms these relations

into formal language, subsequently processed by a solver to deduce the final answer.

This approach has influenced subsequent research in the area [44–46].

However, Sachan et al. [45] identified a critical limitation in these methods: they

cannot incorporate external knowledge for problem-solving. Addressing this gap, they

proposed a method that integrates knowledge extracted from textbooks with the solvers,

enhancing their alignment with parsed text and diagram information. While symbolic

solvers generally surpass neural solvers in performance, mainly due to their precise di-

agram descriptions in formal language, they are heavily reliant on human-annotated

diagram components as intermediate steps. Moreover, they lack explicit reasoning pro-

cesses in their predictions, reducing the task to an optimisation problem that depends

on satisfying parsed information [43–45]. Their reliance on a limited set of handcrafted

rules and validation on small-scale datasets limits their generalisability to more complex

and real-world geometry maths problems.

Moving away from the labour-intensive process of manually crafting rules, researchers

have turned to neural network architectures, known as neural solvers. These solvers

work by embedding diagrams and problem texts either separately or jointly, leading to

models with a high degree of generalisation and eliminating the necessity for specific

rules to discern geometric relations. For instance, neural networks are now capable of

supplanting human effort in translating texts and diagrams into formal languages [60].

For embedding diagrams and problem texts, various neural networks are employed. The

network designated for diagrams typically specialises in object detection, using either

object detection methods like Faster-RCNN [192] and FCOS [8] or instance segmenta-

tion methods like Mask R-CNN [193], based on backbone networks such as ResNet [6]

or MobileNet [7]. Meanwhile, text inputs are processed using encoders, which could

44



Chapter 2. Preliminaries and Related Work

be either traditional networks like LSTM [133] and GRU [134] or more advanced ones

like transformers [2]. The key step in this process is the amalgamation of the text

and diagram embeddings into a unified representation. Techniques such as BAN [194],

FiLM [195], and DAFA [196] are utilised for this purpose. Moreover, integrating aux-

iliary tasks can further refine these joint representations [11]. These tasks primarily

focus on enhancing the semantic representation between text and diagram, and include

tasks like diagram geometric element prediction, and knowledge point prediction.

Previous iterations of neural solvers processed text inputs and diagrams indepen-

dently, which limited their ability to develop effective joint representations. Address-

ing this, Chen et al. [1] introduced the Geoformer, a novel unified geometric trans-

former. Built upon VL-T5 [4], which features a bidirectional multi-modal encoder and

an auto-regressive text decoder, the Geoformer can uniformly encode multiple inputs.

However, it struggles with accurately recognising symbolic characters from text inputs

(e.g., △ABC), as VL-T5’s tokenizer tends to break down these symbols into individual

letters. To overcome this issue, Ning et al. [197] developed a method that aligns dia-

gram feature counterparts with the symbolic character embeddings in the text encoder,

thereby extracting visual information about these symbols.

While neural solvers have the advantage of not requiring the design of specific rules

for identifying geometric relations, they face their own set of challenges. Accurately

depicting the intricate relationships among components in geometry diagrams remains

a significant hurdle. Additionally, their approach of representing geometric relations as

vectors poses a challenge in terms of human interpretability. This lack of clarity makes

it difficult to diagnose issues and determine whether performance limitations are due

to flaws in the relation extractor or the program solver that generates the reasoning

process.

While symbolic solvers excel in precisely depicting components from diagrams, their

reliance on extensively crafted rules is a significant drawback. Conversely, neural solvers

eliminate the need for such rule design but fall short in providing exact diagram de-

scriptions, particularly for diagrams with slender, overlapping components in complex

spatial arrangements. Bridging these gaps, Zhang et al. [5] introduced a method that
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represents geometric diagrams through structural clauses and semantic clauses achiev-

ing a more precise description than traditional symbolic solvers. These clauses are

derived using networks based solely on neural nets, thus avoiding the need for complex

rule creation characteristic of symbolic solvers.

In this thesis, we present an innovative architecture that translates diagrams into

natural language descriptions. This approach not only eliminates the necessity for in-

tricate rule formulation but also enhances extensibility. The use of natural language

descriptions not only improves interpretability but also bride the gap between different

modalities, such as geometric diagrams and problem texts. Furthermore, this method is

designed to integrate seamlessly with LLMs, enabling to utilise the power of advanced

LLMs and allowing for its substitution with any transformer-based model. Finally, to

drive progress in automated solving geometry maths problems, we establish a bench-

mark for assessing the capabilities of LLMs and MMs in resolving such challenges. We

offer detailed analysis by comparing the most recent advancements in LLMs and MMs,

providing a thorough understanding of their proficiency in solving geometry maths

problems.

2.4 Chapter Summary

This chapter comprehensively reviews three areas: large language models, text-based

automated numerical reasoning, and automated geometry maths problem-solving, all

of which are integral to the concepts explored in this thesis.

In our analysis of text-based automatic numerical reasoning, we identify two pri-

mary challenges. First, existing methods struggle with complex reasoning, often failing

to handle tasks involving diverse operators and dynamic operand counts due to their

inability to separate operator and operand generation. This results in compounded

errors in more intricate scenarios. Second, there is a notable lack of extensibility in op-

erators, stemming from either model architecture limitations or program representation

formats, thereby restricting application across different domains.

Moreover, while there is a significant effort to address geometry maths problems,

current methods predominantly rely on LLMs or recurrent neural networks to gener-
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ate solution programs. These approaches fall short in inherently capturing the unique

aspects of geometry maths problems. Additionally, these methods often fail to accu-

rately depict the intricate relationships among diagram components, thus hindering the

effective resolution of geometry maths problems.

In response to these challenges, the next chapter introduces a novel architecture de-

signed specifically for text-based numerical reasoning task. This is followed by a deeper

exploration into an architecture tailored for geometry maths problem-solving, focusing

on improved representation of geometric diagrams and more effective integration of text

and diagram descriptions.
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Text-based Automated

Numerical Reasoning
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In Part II, we delve into a model uniquely designed for the task of text-based automated

numerical reasoning. Chapter 3 presents the numEricaL reASoning with adapTive

symbolIc Compiler (ELASTIC) model. This model is tailor-made to tackle challenges

in this task. The insights and methodology of this chapter are based from my published

work, “ELASTIC: Numerical Reasoning with Adaptive Symbolic Compiler” presented

at the Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS

2022) in (https://proceedings.neurips.cc/paper_files/paper/2022/hash/522

ef98b1e52f5918e5abc868651175d-Abstract-Conference.html).
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Chapter 3

ELASTIC: Numerical Reasoning

with Adaptive Symbolic

Compiler

Text-based automated numerical reasoning is a challenging task of Artificial Intelligence

(AI), requiring reading comprehension and numerical reasoning abilities. As discussed

in Section 2.2, previous approaches use reasoning programs to represent the reason-

ing process. However, most works do not separate the generation of operators and

operands, which are key components of a reasoning program, thus limiting their ability

to generate such programs for complicated tasks. The proposed ELASTIC model in this

chapter is constituted of the RoBERTa [79] as the Encoder and a Compiler with four

modules: Reasoning Manager, Operator Generator, Operands Generator, and Memory

Register. ELASTIC is robust when conducting complicated reasoning. Also, it is do-

main agnostic by supporting the expansion of diverse operators without caring about

the number of operands it contains. We conduct extensive experiments to show that

ELASTIC outperforms previous state-of-the-art models.

The rest of the chapter is organised as follows: Section 3.1 briefly describes the

our work with respect to other state-of-the-art methods proposed for the text-based

automated numerical reasoning task. Additionally, we list the research questions of this

work and contributions of this work. Section 3.2 describes the definition of the task and
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the details of our proposed ELASTIC model. Section 3.3 gives the setup details of the

experiments of this work. And Section 3.4 shows results of our experiments and give

comprehensive analysis of the experimental results according to the research questions

proposed in Section 3.1. Finally, Section 3.5 summarises this chapter.

3.1 Introduction

Recently, Pre-trained language models (PLMs) [74, 78, 79, 87, 198] show astonishing

performance over reading comprehension tasks like SQuAD [199]. However, PLMs

fall short of numerical reasoning over text [58], which requires conducting numerical

reasoning based on understanding the text. Hence, text-based numerical reasoning is

more challenging than reading comprehension [168] and attracts the interest of the

AI community. Previous approaches adopt the sequence-to-sequence architecture to

generate the sequential format of numerical reasoning programs (see (b) in Table 1.1)

[105]. However, the sequential format could produce invalid expressions such as “3 −

((2)” because of the wrong position of parentheses [146]. To avoid this, some methods

convert the reasoning program to the binary tree, then use the tree-decoder to generate

the pre/post-order traversal sequence (see (c) in Table 1.1) [106,147,200]. Alternatively,

FinQANet [10] represents the reasoning program in a flattened format and generates the

right parentheses forcibly after generating two consecutive operands. To increase the

scalability, NeRd [58] introduces the symbolic operations and generates the reasoning

program as the nested compositional format (see (e) in Table 1.1). Researchers also

investigate to capture valuable information between entities and numbers to improve

numerical reasoning ability. Some works use PLMs [58, 168, 171], while others, like Li

et al. [158] and Ran et al. [201], adopt graph neural network to encode the text.

Currently, proposed approaches struggle with two significant problems. Firstly,

they are vulnerable to complicated numerical reasoning problems. The complicated

numerical reasoning problems usually contain a long reasoning program, in which the

types of operators are diverse, and the number of operands is dynamic. Since most

works do not separate the generation of operators and operands, their performance is

hindered by cascading errors when encountering complicated tasks. Secondly, previous
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works lack extensibility for the operators, which arises from either the flaw of the model

architecture or the representation format of the program, making them hard to apply

to different data domains.

Hence, in this chapter, we state that independently generating the operators and

operands in reasoning programs can minimise the risk of cascading errors, and fur-

ther can resolve more complex reasoning programs (See Statement (1) in Section 1.3).

Specifically, this chapter presents the numEricaL reASoning with adapTive symbolIc

Compiler (ELASTIC) model. ELASTIC separates the generation of operators and

operands, allowing it to be less influenced by the cascading error from the complicated

reasoning. Moreover, ELASTIC is adaptable to the number of operands following an

operator, making it domain-agnostic to support diverse operators. Specifically, ELAS-

TIC contains an Encoder part extracting the contextual representations of the passage

and question and a Compiler part generating the numerical reasoning program. The

Compiler consists of four modules: Reasoning Manager, Operator Generator, Operands

Generator, and Memory Register.

To validate our thesis statement, we conduct experiments to answer the following

research questions (RQ):

• RQ-3.1 Performance Evaluation: To what extent does the ELASTIC model

outperform the existing state-of-the-art models in execution accuracy and pro-

gram accuracy on the FinQA and MathQA datasets?

• RQ-3.2 Effectiveness of Separation: How does the separation of the gener-

ation of operators and operands impact the effectiveness of generating reasoning

programs in dealing with complicated tasks?

• RQ-3.3 Generalisability and Adaptation: How well can the ELASTIC model

generalise across different domains, and how efficiently can it incorporate diverse

operators without being affected by the number of operands they contain?

• RQ-3.4 Robustness Analysis: How does the ELASTIC model maintain ro-

bustness when conducting complicated reasoning tasks, which is reflected by the
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length of the program steps, and what are the challenges encountered during these

tasks?

• RQ-3.5 Impact of Memory Register: What is the individual contribution of

the Memory Register in the overall performance of the ELASTIC model to utilise

the results from the previous sub-programs?

3.1.1 Contributions

The contributions of this chapter are:

1. This chapter presents the ELASTIC model with good adaptability and elasticity,

which separates the generation of operators and operands. ELASTIC achieves

state-of-the-art results on two challenging datasets: FinQA and MathQA.

2. This chapter introduces the design of separate modules and Memory Register,

making ELASTIC perform stably on complicated reasoning problems.

3. The proposed ELASTIC is domain agnostic because it supports diverse operators.

3.2 Approach

This section describes the detail of the ELASTIC model. Figure 3.1 shows the architec-

ture of our ELASTIC model. ELASTIC consists of an Encoder part encoding the ques-

tion text and problem text into contextual vectors and a Compiler part producing the

numerical reasoning programs. The Compiler part consists of four modules: Reasoning

Manager, Operator Generator, Operands Generator, and Memory Register. The Rea-

soning Manager leverages other modules to produce the numerical reasoning program.

Since a complete numerical reasoning program usually contains several sub-programs,

the generation steps between operators and operands are interchangeable. To help the

following sub-programs use executable results from the previous sub-programs, Mem-

ory Register stores the sub-programs executable results into corresponding pre-defined

cache tokens embeddings.
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Figure 3.1: The overall architecture of the ELASTIC model. The Encoder part takes
the sequence of question text Q and passage text P as input, then generates the contex-
tual vectors henc. The Compiler part consists of four modules: Reasoning Manager,
Operator Generator, Operands Generator, and Memory Register. The right
part of the figure shows a complete process of the generation of sub-program rt. Firstly,
Reasoning Manager sends the guidance vectors gop to the Operator Generator, which
guides the generation of operator opt. Secondly, Reasoning Manager suspends the Op-
erator Generator, then the Operands Generator takes gop and opt from the Operator
Generator to produce the first operand oet1. When finish the generation of the sub-
program rt, the Memory Register stores the results and updates the embedding vectors
of cache token #t by goet . Again, the Compiler repeats to generate next sub-program
rt+1.

54



Chapter 3. ELASTIC: Numerical Reasoning with Adaptive Symbolic Compiler

3.2.1 Task Definition

Given the problem text P and question text Q, the task is to generate a numerical

reasoning program R. Both problem text P and question text Q consist of words

and numbers (denoted by NUM). The numerical reasoning program R represents the

numerical reasoning process, which is a sequence of symbols (denoted by s) from math-

ematical operators (denoted by OP) and operands (denoted by OE). Operands OE are

from either constant numbers (denoted by CONS) defined in Domain Specific Language

(DSL) or NUM. CONS are the special numbers that do not exist in either the problem

text P and question text Q, such as const pi (π). Finally, the pattern of the numerical

reasoning program R is defined as R =

{
opi

[
oeij

]m−1
j=0

}n−1

i=0

, where opi ∈ OP, it is the

ith operator in R, and opi contains several operands oe
i
j . In addition, we regard a group

of one operator and its operands as the sub-program r. For example, opi

[
oeij

]
is the

ith sub-program ri, which can be executed since it is a complete arithmetic program.

See Table 3.1 for the definition of all the notations. Please see Appendix A.1 for an

example of a maths problem and its reasoning programs.

Notation Description

P , Q, R Problem Text, Question Text, Numerical Reasoning
Program

NUM The numbers in P and Q

CONS Constants defined in DSL

OP All mathematical operators

opi The ith operator in R

OE All operands

oei All operands belonging to opi

oeij The jth operands of opi

s From either OP or OE, s constitute R

ri
The i-th sub-program of R

ri = opi
[
oei

]
Table 3.1: Task Definition Notation.
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3.2.2 Encoder Part

As shown in Figure 3.1 (Encoder), the Encoder takes the concatenated sequence of Q

and P as input. The Encoder encodes the input sequence and outputs the contextual

vectors henc. Next, henc is used for the Compiler to produce the numerical reasoning

program R. In this work, we use RoBERTa [79] as the Encoder. The outputs from the

final layer of RoBERTa is used as henc ∈ Rh∗s, where s is the maximum input length

of the RoBERTa, and h is the hidden size of RoBERTa. Note that ELASTIC is not

dependent on the specific type of encoder. Any model providing contextual vectors of

the sequence can be used.

3.2.3 Compiler Part

3.2.3.1 Decoding Vocabulary and Token Embedding

We first describe the decoding vocabulary. The decoding vocabulary consists of OP and

OE, where OE can be further categorised into NUM and CONS. The embedding es of

symbol s of the decoding vocabulary is represented by the embedding Eop,cons,num(s),

which is the embedding look-up function. Hence, the embedding for symbol s is defined

as:

es =


Eop(s) if s ∈ OP

Econs(s) if s ∈ CONS

Enum(s) = henc
i if s ∈ NUM

(3.1)

The symbols embeddings of OP and CONS are two trainable embedding matrices

Eop ∈ Rh∗nop and Econs ∈ Rh∗ncons (nop and ncons refers sizes of OP and CONS respec-

tively). The embedding for the symbol of NUM is henc
i ∈ Rh, where i denotes the index

position in the sequence of Q and P.

3.2.3.2 Reasoning Manager

As shown in Figure 3.1 (Reasoning Manager), the Reasoning Manager outputs the

vector g, which guides the Operator Generator and the Operands Generator to produce
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op and oe. The inputs for the Reasoning Manager are contextual vectors henc ( henc
q

for generating operators) from the Encoder and embedding of the previously generated

symbol st−1. The Reasoning Manager first calculates the context vector c by the

normalised vectors of henc
i and the attention weights ai:

c =
∑
i

aih
enc
i (3.2)

ai =
exp(score(est−1 ,h

enc
i ))∑

j exp(score(est−1 ,h
enc
j ))

(3.3)

score(est−1 ,h
enc
i ) = eTst−1

W1 ·W2h
enc
i (3.4)

where W1 ∈ Rh∗h and W2 ∈ Rh∗h, and both are trainable parameters. The c sum-

marises the encoded information from the Encoder according to the previous generated

symbol s. Next, the Reasoning Manager adopts the GRU [134] network to generate

the guidance output g:

g,ht = GRU(ReLU(W3[c : Eop,cons,num(st−1)]),ht−1) (3.5)

where “:” represents concatenation. W3 ∈ Rh∗2h is trainable parameter, and ReLU

is the activation function. ht−1 ∈ Rh is the hidden state of GRU from the previous

step, and h0 is 0.

3.2.3.3 Operator Generator

As shown in Figure 3.1 (Operator Generator). Firstly, the Operator Generator receives

the guidance vector gop
t from the Reasoning Manager by inputting: contextual vec-

tors henc
q of tokens from the question Q, and embedding Eop(opt−1) of the previously

generated operator. Next, the Operator Generator calculates the probabilities of i-th

operator (denoted as i-op) of the OP:

P(i-op|Eop(opt−1),g
op
t ) =

exp(ET
op(i-op)ReLU(Wopg

op
t ))∑

j-op∈OP exp(ET
op(j-op)ReLU(Wopg

op
t )

(3.6)
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where Wop ∈ Rh∗h is trainable parameter. The Operator Generator selects the

operator with the highest probability as the predicted op. Next, unlike other models,

the Reasoning Manager suspends the generation of operators and starts to generate

operands
{
oet

}
through the Operands Generator.

3.2.3.4 Operands Generator

As shown in Figure 3.1 (Operands Generator). The inputs from Operands Generator

to the Reasoning Manager are different from Operator Generator’s. Because oe could

be a number in Q or P , the contextual vectors henc of all tokens are used. Further-

more, the Operands Generator initialises the embedding of the initial operand e(oet0)

as ReLU(W4[Eop(opt) : gt]) (W4 ∈ Rh∗2h), leveraging information of opt to produce

oet. Next, the Reasoning Manager outputs goen for n-th step generation of operand oetn.

Finally, the probability of i-th operand (denoted as i-oe) of the OE:

P(i-oe|Econs,num(oe
t
n−1),g

oe
t ) =

exp(ET
cons,num(i-oe)ReLU(Woeg

oe
t ))∑

j-oe∈OE exp(ET
cons,num(j-oe)ReLU(Woegoe

t )
(3.7)

where Woe ∈ Rh∗h is trainable parameter. The Operands Generator selects the

operand with the highest probability as the predicted oe. After one operand has been

generated, the Operands Generator continues producing operands for the sub-program

rt. The decoding process for the operands terminates when the token none is produced.

3.2.3.5 Memory Register

When generating sub-program ri, its operands could be the executable results from

the previous sub-program rp(p < i). To make the Operands Generator be able to use

the results from previous sub-programs. Inspired by Chen et al. [10], we introduce

a cache token #n to the CONS of DSL, which is used for storing the information of

executable results. Unlike other constants, #n does not point to a static value. It is

different according to the different sub-program rn. As the results, ELASTIC needs to

update the representation of #n after the sub-program rn is generated. Specifically,
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the Memory and Register module update the cache #n by replacing its embedding

with output goe
n , which is the guidance vector from Reasoning Manager to guide the

generation of the last operands belonging to the sub-program rn.
1

3.2.4 Training Objective

Given the data D with size of N containing Pi, Qi, ôp
i, ôei, where Pi and Qi refer to the

passage and question in the the ith training data, likewise, ôpi and ôei are the golden

operators and operands. Our training goal is to minimise the sum of the negative

log-likelihood over the entire data, so the training loss is as follow:

Loss =

N∑
i=1

−
{
logP(OPi|Pi,Qi) + logP(OEi|Pi,Qi)

}
(3.8)

3.3 Experimental Setup

3.3.1 Datasets

In this section, we conduct evaluation experiments on two datasets: FinQA [10] and

MathQA [9].2

• FinQA: FinQA is a dataset created from the annual financial reports. It con-

tains 8,281 data, split into train, eval, and test parts with 6,251, 883, and 1,147

examples. We adopt the evaluation metrics from the original FinQA paper: ex-

ecution accuracy (Exe Acc) and program accuracy (Prog Acc). The program

accuracy calculates the accuracy of the operators and operands between the pre-

dicted program and the golden program. The execution accuracy calculates the

accuracy between the golden executable result and the result from the predicted

program. Since the FinQA dataset only contains operators with two operands,

we extend it by creating questions required to be solved by the operators with

1Please see Appendix A.2 for an example to show how separated modules work.
2We do not select other datasets because of: (1) too small in size (around 1000), e.g., MAWPS [112]

and ASDiv-a [116], (2) language are not English. e.g. Math23K [105] and HMWP [106], (3) lack
intermediate annotated program, like DROP [59].
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more than two operands. We use the extended FinQA dataset to evaluate our

models’ adaptability to the number of operands (See Section ??).

• MathQA:MathQA is created from GRE/GMAT examinations, containing 37,200

maths word problems. The dataset is split into 80%, 12%, and 8% of train, dev,

and test data. Compared with the FinQA dataset, the examples of MathQA

require more advanced reasoning ability, which challenges the model to conduct

advanced numerical reasoning.3 A significant difference with FinQA is that the

number of operands following an operator is not explicit in the MathQA dataset.

Each MathQA question contains one correct of several answer options, calculated

by the reasoning program with the knowledge of the operation semantics. Since

we do not have this kind of knowledge, we adopted the same way as NeRd [58],

by only using program accuracy to evaluate models’ performances. Note that

program accuracy is stricter than execution accuracy because the model could

find the correct answer by spurious reasoning programs.

3.3.2 Baselines

We compare our ELASTIC model with several state-of-the-art models. (1) FinQANet

[10]: It adopts the Encoder-Decoder architecture with a cache updating mechanism to

generate the program. Since FinQANet only supports generating operators with exact

two operands, we manage to train and evaluate FinQANet on the MathQA dataset by

discarding the operators containing more than two operands. (2)NeRd [58]: it uses the

BERT and a pointer-generator-based model to generate the symbolic nested program.

(3) Graph2Tree [158]: It models the dependency information of the text sequence by

the GraphSAGE [202] like model, and generates the program in a tree-structured way.

(4)NumNet [201]: NumNet models the numeracy information by a GNN network. We

also train the NumNet+, which replaces the Encoder of the NumNet by RoBERTa-

large.4 Note that program accuracy does not apply to NumNet, since NumNet does

not generate compositional reasoning programs. (5) Human Performance: We also

3Please see comparison between two datasets in Appendix A.3.
4https://github.com/llamazing/numnet_plus

60

https://github.com/llamazing/numnet_plus


Chapter 3. ELASTIC: Numerical Reasoning with Adaptive Symbolic Compiler

report the human performance of both experts and non-experts in the FinQA dataset.

The results are taken from the original FinQA paper [10].

3.3.3 Implementation Details

The model is implemented by PyTorch [203] and Transformers [204], then trained on

one NVIDIA A100 GPU (40G). Training epochs are set to 50 and 100 for FinQA and

MathQA, respectively. The batch size for all datasets is set to 10. We use Adam as

optimiser [205] to update the parameters of the models. The initial learning rate is set

to 1e-5 equally, and it would be halved in every 25 epochs and 50 epochs for FinQA

and MathQA. During training, the dropout rate and the weight decay are set to 0.1

and 1e-5 to prevent over-fitting. The parameters of the RoBERTa are fine-tuned during

training. For the GRU cell in the decoder, the hidden size is the same as the RoBERTa,

and the GRU layers number is 4. During inference, we use greedy decoding to generate

the reasoning program.

3.4 Experimental Results and Discussions

3.4.1 Comparison with Previous Methods (RQ-3.1, RQ-3.2, RQ-3.3)

Table 3.2 shows the performances of our ELASTIC model and baselines on FinQA and

MathQA datasets. Overall, ELASTIC (RoBERTa-large) achieves the highest scores

on both datasets. In the FinQA dataset, we see a lead in our ELASTIC (RoBERTa-

large) model compared to the best baseline FinQANet (RoBERTa-large), with 3.91

points higher execution accuracy and 1.69 points higher program accuracy. When we

change the Encoder part of ELASTIC from RoBERTa-large to RoBERTa-base, it still

achieves better results than FinQANet using the same size of RoBERTa. Since both

ELASTIC and FinQANet use the RoBERTa as the encoder, the results demonstrate

the improvements brought by separating the generation procedures for operators and

operands. Both ELASTIC models outperform the NeRd with a large margin. It is

worth mentioning that NeRd defines external rules for different operators in their model

[58], which is not the case with the ELASTIC. ELASTIC also outperforms the NumNet
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Datasets & Metrics
FinQA (test) MathQA (test)

Exe Acc Prog Acc Prog Acc

Graph2Tree 0.37 0.0 69.96†

NumNet 2.32 n/a⋆ n/a⋆

NumNet+ 10.29 n/a⋆ n/a⋆

NeRd 52.48‡ 49.90‡ 79.70†

FinQANet (RoBERTa-base) 60.10† 58.38† 74.12

FinQANet (RoBERTa-large) 65.05† 63.52† 79.20

ELASTIC (RoBERTa-base) 62.66 59.28 82.27

ELASTIC (RoBERTa-large) 68.96 65.21 83.00

Human Expert 91.16† 87.49† n/a

Human Non-Expert 50.68† 48.17† n/a

Table 3.2: Overall Results for the baselines and ELASTIC on the testing data from
three datasets. † means that the scores are taken from the original papers. ‡ means
that the scores are taken from the FinQA paper [10]. ⋆ The program accuracy does
not apply to the NumNet on FinQA and MathQA datasets because NumNet does not
generate the intermediate reasoning program. In addition, NumNet could only solve
reasoning program involving add and subtract operations. However, the proportions of
examples only use add and subtract as operations in MahtQA are 0.055% and 0.056%,
respectively. As a result, we choose not to train NumNet on MathQA.
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and NumNet+ by a considerable margin. This could be due to the internal structure of

these models limiting their scalability in generating reasoning programs, thus struggling

to produce reasoning steps in a systematic manner [206]. Finally, Graph2Tree achieves

only 0.37 accuracy on the FinQA test dataset, which is much lower compared to its 69.96

program accuracy on the MathQA dataset. We suspect that this is because of the data

leak problem existing in FinQA train and eval data, where the design of Graph2Tree is

vulnerable to. Although ELASTIC surpasses the non-expert performance, we can still

find a large gap between our ELASTIC model and Human Expert.

For the MathQA dataset, ELASTIC (RoBERTa-large) is the best performing model,

with 3.3 higher program accuracy than NeRd and 13.04 points higher than Graph2Tree.

We further investigate the performance of ELASTIC using RoBERTa-base, which still

achieves higher accuracy of 82.27 than 79.7 of NeRd. The slight performance difference

between ELASTIC (RoBERTa-large) and ELASTIC (RoBERTa-base) suggests that

the extracted contextual semantic information of passage and question is sufficient.

Finally, FinQANet achieves promising results on MathQA, 79.20% program accuracy by

FinQANet (RoBERTa-large) and 74.12% program accuracy by FinQANet (RoBERTa-

base). Note that we discarded the data of MathQA containing more than two operands

for the FinQANet, so that performance of FinQANet on MathQA is the overestimation

of its numerical reasoning ability. Even with such consideration, ELASTIC outperforms

FinQANet, demonstrating that ELASTIC is more adaptable by supporting diverse

operators than FinQANet.5

3.4.2 Performance on Different Program Steps (RQ-3.4)

When producing the long numerical reasoning program, ELASTIC is less influenced by

the cascading error. To demonstrate this superiority of ELASTIC, we investigate how

different lengths of programs influence models’ performances.

Table 3.3 displays the models’ performances when generating programs with differ-

ent steps. ELASTIC (RoBERTa-large) performs better than FinQANet (RoBERTa-

large)† when the program step is either 1 or 2, indicating ELASTIC also performs well

5Please see Appendix A.4 for models’ performances on extended FinQA dataset.
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Program Steps
ELASTIC FinQANet† FinQANet‡

# Train & Dev

Exe Acc Prog Acc Exe Acc Prog Acc Exe Acc Prog Acc

=1 76.30 75.66 70.27 68.77 73.70 71.25 4240

=2 66.01 66.01 63.69 61.79 62.34 59.65 2300

≥3 31.78 31.10 31.65 31.65 28.57 23.80 594

Table 3.3: ELASTIC and FinQANet performances on FinQA dataset in terms of differ-
ent program steps. The “# Train & Dev” is the number of training and development
data. All models use the RoBERTa-large as the encoder. † means the results of that
model are taken from the original FinQA [10] paper. ‡ means that the FinQANet
(RoBERTa-large) is re-trained by ourselves.

on the shorter program steps. Surprisingly, with the program step increasing from 3,

the accuracy for both ELASTIC and FinQANet tumbles by half compared with the

performances on program steps equal 2. We suspect that the FinQA dataset lacks suf-

ficient training examples for the data with more than 3 program steps. Table 3.3 shows

that the number of training data with more than 2 program steps is 594 compared to

the numbers of data available for program steps equal to 1 (4240) or 2 (2300). For a

fair comparison, we retrained the FinQANet (RoBERTa-large) on the FinQA dataset,

but ELASTIC still outperforms it in execution accuracy and program accuracy.

From Figure 3.2, ELASTIC (RoBERTa-large) surpasses the FinQANet (RoBERTa-

large) on MathQA dataset almost on every program step. Meanwhile, although MathQA

is challenging, ELASTIC (RoBERTa-large) still achieves program accuracy over 80.0

when program steps are less than or equal to 8. The model’s performance drops when

the program steps are equal to 9 and 10, but starts to soar when the program steps

are bigger than 10. This demonstrates that ELASTIC performs well when generating

longer program steps. As shown in Figure 3.2, we plot the accuracy for the operator

generation, which ignores the correctness of operands generation. We could find that

the operation accuracy is always higher than the program accuracy regarding different

program steps (except for program steps equal to 12). This finding demonstrates the

advantage of separating the generation procedure for operators and operands. This

finding also reveals that the wrong predictions are because ELASTIC selects the wrong
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operands. We suspect this is due to too much noise from the context.
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Figure 3.2: (a) Program Accuracy on FinQA according to the M-MDD. (b) Program
Accuracy on MathQA according to the M-MDD. (c) Program Accuracy and Opera-
tor Accuracy of ELASTIC (RoBERTa-large) on different program steps in MathQA
dataset, compared with Program Accuracy of FinQANet (RoBERTa-large).

3.4.3 Necessity of Memory Register (RQ-3.5)

As discussed in the Section Memory Register, ELASTIC stores the executable results

of each sub-program into a special cache token #n, and updates its embedding after

n-th sub-program is generated. The longer the reasoning program is, the higher the

probability of the generating process using the previous sub-program result. This sec-

tion investigates the effect of the Memory Register on improving numerical reasoning

performance.

Datasets & Metrics
FinQA (test) MathQA (test)

Exe Acc Prog Acc Prog Acc

ELASTIC w MR 68.96 65.21 83.00

ELASTIC w/o MR 68.79 64.78 82.68

FinQANet 65.06 63.52 79.20

Table 3.4: The performances of ELASTIC with or without memory register (MR).
ELASTIC with MR performs better than without MR on FinQA and MathQA datasets.
Both ELASTIC with or without MR performs better than FinQANet. All models use
the RoBERTa-large as the encoder.
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First, we present an ablation study of using and not using the Memory Register

for ELASTIC. From Table 3.4, we find that ELASTIC with Memory Register performs

slightly better than it without. Similar observations can be found for the MathQA

dataset. This observation demonstrates the value of the Memory Register. Next, since

ELASTIC and FinQANet store the executable results from the previous sub-program

in a different way, we conduct a comparison between the two models. The results from

Table 3.4 show that the ELASTIC with Memory Register achieves higher scores than

FinQANet on both datasets.

Next, given two sub-program belonging to the same R: ri, rj (i < j). where the

executable result of ri is used as the operand for rj . Then, we introduce the Memory

Departing Distance (MDD) for ri and rj as j− i, and the maximum Memory Departing

Distance (M-MDD) as the longest MDD between all {r} of R.6 The bigger M-MDD

is, the more challenging to select the correct previous sub-program result, since the

model tends to forget the information passing from long steps before. As the result, we

investigate how models perform when dealing with different M-MDD.

From Figure 3.2a and Figure 3.2b, the ELASTIC with Memory Register performs

better than ELASTIC without it at each M-MDD on FinQA and MathQA datasets.

Particularly in the MathQA dataset, when M-MDD is larger than 5, ELASTIC with

Memory Register can achieve better results than the ELASTIC without it. This demon-

strates the importance of the Memory Register when using executable results from long

steps before. Worth mentioning that ELASTIC performs better than FinQANet on

both datasets, even without the Memory Register.

3.5 Chapter Summary

In this chapter, we identified two major challenges in handling complex text-based nu-

merical reasoning tasks with existing methods. First, these methods struggle with long

reasoning programs characterized by diverse operators and dynamic operand numbers,

leading to cascading errors due to their inability to separate operator and operand gen-

6For example, in flatten program “add(20, 3), subtract(6, 1), add(#1, 10), subtract(#0,#2)”, the
MDD for r0, r1, and r2 are 3, 1, and 1. Obviously, the maximum M-MDD is 3.
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eration. Second, they exhibit limited extensibility regarding operators, due to either

model architecture limitations or the program representation format, hindering their

application across different domains.

To address these challenges, this chapter states that independently generating the

operators and operands in reasoning programs can minimise the risk of cascading errors,

and further can resolve more complex reasoning program. Consequently, this chapter

presented the numEricaL reASoning with adapTive symbolIc Compiler (ELASTIC)

model. ELASTIC independently generates operators and operands in reasoning pro-

grams, minimizing the risk of cascading errors and enabling the resolution of more

complex reasoning tasks. Additionally, ELASTIC’s domain-agnostic design supports

diverse operators, enhancing its adaptability. The model includes a Memory Register

to improve performance by utilizing executable results from preceding sub-programs.

To validate the statement, we addressed the research questions outlined in Sec-

tion 3.1 through extensive experiments comparing ELASTIC with leading methods

using two datasets specifically designed for assessing automated mathematical reason-

ing abilities (see Section 3.3).

We began by evaluating ELASTIC against previous methods on two benchmarks,

FinQA and MathQA. This addressed research question RQ-3.1, demonstrating that

ELASTIC outperforms other methods, achieving the highest scores on both datasets

(see Table 3.2).

Next, we conducted a detailed comparison with FinQANet, which utilizes the same

encoder as ELASTIC but showed inferior performance. This comparison, discussed in

Section 3.4.1, underscores the efficacy of our method’s separation design, addressing

research question RQ-3.2. Additionally, we focused on operator generation accuracy,

independent of operand correctness. As illustrated in Figure 3.2, operator accuracy

consistently surpasses overall program accuracy across different program steps, high-

lighting the benefits of separating the generation processes to disentangle errors from

operators and operands.

Furthermore, we addressed research question RQ-3.3 by comparing ELASTIC with

other methods across two distinct datasets: FinQA (financial domain) and MathQA
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(elementary maths word problems). Our results, detailed in Table 3.2, demonstrate

that ELASTIC surpasses other methods, showcasing robust performance even with

datasets from different domains.

To examine ELASTIC’s robustness, addressing research question RQ-3.4, we ex-

plored the impact of solution program length on model performance in Section 3.4.2.

Our findings show that ELASTIC consistently outperforms FinQANet across various

program lengths, indicating greater resistance to cascading errors in longer solution

programs.

To enhance ELASTIC’s performance with lengthy solution programs, we incorpo-

rated the Memory Register (MR), detailed in Section 3.2.3.5. Through an ablation

study, we addressed research question RQ-3.5. The results, shown in Table 3.4, indi-

cate that ELASTIC with MR outperforms its counterpart without MR. Additionally,

we introduced the Memory Departing Distance (MDD) and maximum Memory De-

parting Distance (M-MDD) in Section 3.4.3 to evaluate ELASTIC’s efficacy in utilizing

results from earlier sub-program steps. The findings demonstrate that ELASTIC with

MR yields better outcomes when referencing results from more distant steps compared

to ELASTIC without MR.

In the future, we plan to improve the accuracy of matching numbers and entities

within the text. Additionally, since ELASTIC requires annotated reasoning programs,

which is labor-intensive, we aim to investigate methods for generating reasoning pro-

grams from the trained model.
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Part III

Automated Geometry Maths

Problem-Solving
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In the previous part, we introduce a model specifically designed for text-based au-

tomated numerical reasoning task. Our extensive experiments have shown that this

model not only achieves remarkable performance but also exhibits strong generalisa-

tion capabilities. However, the application of mathematical reasoning extends beyond

textual data, which exists in multi-modal data as well. Consequently, this part of the

thesis focus to the task of solving geometry maths problems, which uniquely incorporate

geometric diagrams as part of their input.

Specifically, in Chapter 4, we propose the GeoEval benchmark to prompt the re-

search on automated geometry maths problem-solving task. Subsequently, in Chap-

ter 5, we address the problems of existing approaches in neglecting the distinct char-

acteristics of geometry maths problems by introducing the Geometry-Aware Problem

Solver (GAPS) model. Then, in Chapter 6, we tackle the challenge of accurately de-

picting geometric relations in diagrams. This is achieved through the use of natural

language descriptions, which not only improve the interpretability of these relations

but also strengthen the connection between different modalities (image and text). The

efficacy of these two novel methods is validated through their superior performance

across multiple benchmark tests. Finally, in Chapter 7, we investigate the current

large language models’ and multi-modal models’ performances on GeoEval benchmark,

providing valuable insights to the community.
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Chapter 4

GeoEval Benchmark

This chapter concludes that the datasets currently used for automated geometry problem-

solving lack a standardized format and sufficient diversity, which complicates the eval-

uation of models’ true proficiency in solving geometry problems. Additionally, these

datasets usually focus on a single type of geometry problem, such as plane geome-

try, while neglecting other important areas like solid geometry. This omission restricts

the ability to perform a comprehensive assessment across the entire range of geometry

problems.

To prompt the research, we introduce the GeoEval benchmark in this chapter, a

comprehensive collection that includes a main subset of 2000 problems, a 750 problem

subset focusing on backward reasoning, an augmented subset of 2000 problems, and a

hard subset of 300 problems. This benchmark facilitates a deeper investigation into the

performance of models in solving geometry maths problems. This chapter is mainly

based on my accepted paper “GeoEval: Benchmark for Evaluating LLMs and Multi-

Modal Models on Geometry Problem-Solving” in ACL 2024 Findings.

This chapter is organised as follows: Section 4.1 introduces our GeoEval benchmark

and summarises the research questions addressed and the contributions of this chapter.

Section 4.2 delivers an in-depth presentation of the GeoEval benchmark, detailing its

development process and statistical analysis. The chapter concludes with Section 4.3,

which offers a recap of the findings and contributions of this chapter.
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4.1 Introduction

Geometry maths problems are a key component in assessing the mathematical reason-

ing skills of K12 students, serving as a critical benchmark for evaluating educational

outcomes [207]. The complexity of solving these problems stems from the requirement

to interpret both textual and visual information, in addition to applying mathemati-

cal reasoning skills. This complexity has made geometry problem-solving a key area

of interest for researchers aiming to evaluate the capabilities of AI models in this do-

main [208–212].

In recent years, several datasets, such as Geometry3K [213], PGPS9K [5], and Ge-

omVerse [214], have been developed to test the proficiency of AI models in solving

geometry maths problems. Yet, these datasets often lack a standardised format and

sufficient diversity, complicating the assessment of models’ genuine proficiency in ge-

ometry problem-solving. Furthermore, these datasets typically focus on one type of

geometry problem, such as flat geometry, overlooking other crucial areas like solid ge-

ometry. This oversight limits the ability to conduct a thorough evaluation across the

full spectrum of geometry problems.

To prompt research towards assessing models’ proficiency in automated geome-

try problem-solving, we introduce the GeoEval benchmark, a comprehensive collection

specifically designed for this task. GeoEval features its Comprehensive Variety, sourced

from seven public datasets and formatted uniformly to encompass a wide range of geo-

metric shapes. It includes Varied Problems, covering flat, solid, and analytic geometry

to challenge models comprehensively. GeoEval supports Dual Inputs, accommodat-

ing both diagrammatic and textual problem representations. To counter the potential

overfitting to previously seen datasets, GeoEval introduces Diverse Challenges through

backward reasoning, augmented, and hard subsets, each designed to test different as-

pects of models’ geometry problem-solving abilities. Additionally, GeoEval is annotated

with Complexity Ratings, allowing for a fine-grained analysis of model performance

across various difficulty levels, thus providing a robust framework for advancing AI

capabilities in understanding and solving geometry maths problems.
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4.1.1 Contributions

To summarise, the contributions of this chapter are:

1. We present GeoEval, a benchmark developed to assess the geometry problem-

solving capabilities AI models. GeoEval comprises four distinct subsets, each

designed to facilitate a thorough evaluation.

4.2 GeoEval Dataset

Total Numbers

- GeoEval-2000 2,000

- GeoEval-backward 750

- GeoEval-aug 2,000

- GeoEval-hard 300

Input Types

- text + description 1,120

- text + diagram 1,120

- text + description + diagram 1,166

Answer Types

- number 5,050

- expression 232

- coordinate 68

Problem Types

- flat geometry 5,050

- solid geometry 272

- analytic geometry 28

Others

- average problem length 28

- average description length 34

- geometry shapes 12

Table 4.1: Statistics of GeoEval benchmark.

The GeoEval benchmark is structured into four subsets: GeoEval-2000, comprising

2,000 problems; GeoEval-backward, with 750 problems; GeoEval-aug, containing 2,000

problems; and GeoEval-hard, including 300 problems. Table 4.1 presents a statistical

breakdown of the GeoEval benchmark. This benchmark encompasses a total of 5,050 ge-

ometry math problems, categorised into four subsets: GeoEval-2000 (2,000 problems),

GeoEval-backward (750 problems), GeoEval-aug (2,000 problems), and GeoEval-hard

(300 problems). Besides the problem text, each problem in the dataset includes at
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least one of the following: a geometric diagram, a description of the diagram, or both.

The majority of the correct answers are numerical values, with a minority comprising

expressions, coordinates, or option letters, primary in the GeoEval-hard subset.

The subsequent sections will detail the collection process for each individual subset,

followed by an explanation of the unique features of the GeoEval benchmark.

4.2.1 Data Collection

4.2.1.1 Collection from Diverse Data Sources

We have compiled a comprehensive collection of public geometry maths problem datasets,

with a total of 24,912 geometry maths problems from sources such as Geometry3K [213],

PGPS9K [5], UniGeo [1], GeoQA+ [61], GeometryQA [215], as well as geometry prob-

lems from the MATH [216] and MathQA [9] datasets. The first four datasets feature

geometry questions that include both problem texts and geometric diagrams, whereas

the latter three datasets comprise questions that only contain problem texts.

Building on the data gathered, we then selected 2,000 geometry maths problems

to create our GeoEval-2000 subset. This selection process was guided by the aim to

inclusively cover a wide range of basic geometric shapes, ensuring a broad representation

of geometry concepts.1

4.2.1.2 Backward Data Generation

Figure 4.1: Example for the backward question.

In contrast to forward problems, backward problems use the answer from forward

problems as a starting point, posing a query to determine a specific number that was

1Please see Appendix B.1 for the further information of GeoEval-2000 dataset.
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part of the forward problems but is concealed in the backward problems [217]. These

types of questions are particularly effective in assessing models’ capability for multi-

step reasoning. Following the methodology of previous research [218], we selected 750

problems from the GeoEval-2000 subset and created corresponding backward questions.

This process involved masking a number, the solution of the forward problems, as “X”.

The prompt “The correct answer is ansgold. Now please answer what is the value of

X?”, where ansgold represents the correct answer to the forward problems, is then

added. An example of the backward problem is displayed in Figure 4.1.

4.2.1.3 Augmented Data Generation

To evaluate the resilience of current models and mitigate the risk of data leakage that

may occur during the pre-training phase, we implement a context learning strategy for

rephrasing problems from the GeoEval-2000 subset. Each problems is rephrased into

five variant candidates by GPT-3.5 [219], ensuring they retain the original problems’s

semantic essence while varying in lexical structure. Out of these five alternatives, one is

selected randomly to substitute the original problems, forming the GeoEval-aug subset.

4.2.1.4 Hard Data Collection

While the GeoEval-2000 subset comprises geometry problems from a variety of source

datasets, it exhibits a lack of diversity in problem categories, notably in solid geometry

and analytic geometry. To enhance the diversity of problem categories, we introduce

the GeoEval-hard subset, which includes 300 geometry problems specifically focusing

on solid geometry and analytic geometry, providing a broader assessment scope. The

distinctions between the GeoEval-hard subset and other publicly available datasets

are detailed in Table 4.2, demonstrating the unique coverage and complexity of the

GeoEval-hard subset in comparison.

The creation of the GeoEval-hard subset begins with web scraping to gather approx-

imately 10,000 authentic geometry problems from online resources. An initial selection

is made using a rule-based engine equipped with a keyword list, targeting solid and an-

alytic geometry problems. This step yields around 3,100 potential problems, identified
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Dataset Solid Geometry Analytic Geometry

#solid geometry shapes #question type #geometry curve knowledge #grade

UniGeo [1] ✗ calculate/prove ✗ 6-12

GeoQA [61] ✗ calculate ✗ 6-12

Geometry3K [213] ✗ calculate ✗ 6-12

PGPS9K [5] ✗ calculate/judge ✗ 6-12

MathVista(Geometry Part) [12] ✗ calculate/judge ✗ –

MathVista(FunctionQA Part) [12] ✗ calculate/judge ✓ –

GeoEval-hard ✓ judge/calculate/reason ✓ 9-12

Table 4.2: Comparison between GeoEval-hard with other public datasets.

as GeoEval-hard-raw. A manual review further narrows these down to 300 problems

specifically related to solid and analytic geometry. The cleaning and manual inspection

process, is documented in Appendix B.2.

4.2.2 Features of GeoEval

Dataset
Comprehensive

Variety

Varied

Problems

Dual

Inputs

Diverse

Challenges

Complexity

Ratings

MathQA [9] n/a flat text ✗ ✗

GeometryQA [215] n/a flat text ✗ ✗

Geometry3K [213] n/a flat text + diagram ✗ ✗

GeoQA+ [61] n/a flat text + diagram ✗ ✗

MATH [216] n/a flat text ✗ ✗

UniGeo [1] n/a flat text + diagram ✗ ✗

PGPS9K [5] n/a flat text + diagram ✗ ✗

GeomVerse [214] n/a flat text + diagram ✗ ✓

MathVista [12] 4 flat text + diagram ✗‡ ✗

GeoEval 7 + 3 (new) flat, solid, analytic text + diagram ✓ ✓

Table 4.3: Comparison between GeoEval benchmark and other datasets. Under Com-
prehensive Variety, MathVista and GeoEval stand out as collective datasets, while the
rest, denoted as “n/a”. GeoEval includes problems from seven public datasets and
three newly created ones. Varied Problems categorises problems into “flat geometry”,
“solid geometry”, and “analytic geometry”, For Dual Inputs, “text” signifies problems
presented only in text format, whereas “text + diagram” encompasses problems with
both texts and diagrams. In Diverse Challenges, the symbol ‡ indicates that Math-
Vista introduces three new datasets, which, however, are unrelated to the geometry
problem-solving task.

The GeoEval benchmark is specifically designed for assessing the ability of models

in resolving geometric maths problems. This benchmark features five characteristics:
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Comprehensive Variety, Varied Problems, Dual Inputs, Diverse Challenges, and Com-

plexity Ratings, with each attribute exemplified in the Appendix B.3. For an insightful

contrast, Table 4.3 offers a comparative analysis of GeoEval against earlier datasets.

• Comprehensive Variety : GeoEval consists of a diverse collection of geometry prob-

lems sourced from seven most recent datasets. Therefore, the problems in GeoEval

cover a wide range of geometric shapes, offering a comprehensive view of varied

geometry maths challenges.

• Varied Problems: The GeoEval benchmark encompasses three distinct categories

of geometry maths problems, namely flat geometry, solid geometry, and analytic

geometry.

• Dual Inputs: GeoEval features problems in two formats: those accompanied by

diagrams and those consisting solely of text. This versatility makes it suitable for

evaluating models that process either diagrams or text-based inputs.

• Diverse Challenges: In addition to gathering public datasets, GeoEval also gen-

erates its own out-of-distribution dataset aimed at addressing data leakage prob-

lems. This includes a backward reasoning subset, an augmented subset, and a

hard subset, all created by us.

• Complexity Ratings: GeoEval is equipped with annotations indicating the com-

plexity level for each problem, serving as a guideline to evaluate models’ profi-

ciency in solving these tasks.2

4.3 Chapter Summary

In this chapter, we introduce GeoEval, a benchmark specifically developed to assess the

geometry problem-solving capabilities of AI models. GeoEval consists of four distinct

subsets, each designed to enable a comprehensive evaluation.

2Algorithm for classifying complexity is in Appendix B.4.
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In the subsequent Chapter 5 and Chapter 6, we evaluate our proposed methods on

portions of the GeoEval dataset. Furthermore, Chapter 7 provides an evaluation of the

latest LLMs and MMs, assessing their performance on the full GeoEval benchmark.
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GAPS: Geometry-Aware

Problem Solver

In Chapter 2.2, we realise that lots of methods were proposed for solving the task of

text-based automated numerical reasoning task. However, for the task of solving ge-

ometry maths problems, existing approaches often rely on models designed for solving

maths word problems, neglecting the unique characteristics of geometry maths prob-

lems. Additionally, the current research predominantly focuses on geometry calculation

problems, while overlooking other essential aspects like proving.

In this Chapter, we address these limitations by proposing the Geometry-Aware

Problem Solver (GAPS) model. GAPS is specifically designed to generate solution

programs for geometry maths problems of various types with the help of its unique

problem-type classifier. To achieve this, GAPS treats the solution program as a com-

position of operators and operands, segregating their generation processes. Further-

more, we introduce the geometric elements enhancement method, which enhances the

ability of GAPS to recognise geometric elements accurately. By leveraging these im-

provements, GAPS showcases remarkable performance in resolving geometry maths

problems. Our experiments conducted on the UniGeo dataset demonstrate the superi-

ority of GAPS over the state-of-the-art model, Geoformer. Specifically, GAPS achieves

an accuracy improvement of more than 5.3% for calculation tasks and an impressive

41.1% for proving tasks. Notably, GAPS achieves an impressive accuracy of 97.5%

79



Chapter 5. GAPS: Geometry-Aware Problem Solver

on proving problems, representing a significant advancement in solving geometry prov-

ing tasks. This chapter is mainly based on my under-review submission on Artificial

Intelligence journal (Elsevier).

The subsequent sections of this chapter are structured as follows: Section 5.1 pro-

vides an overview of the challenges in solving geometry maths problems and outlines

the current limitations in this field. It also details the specific research questions ad-

dressed in this chapter and enumerates the contributions of this chapter. In Section 5.2,

we briefly introduce how the VL-T5 [4] work, which is used as the text encoder for our

proposed GAPs model. Section 5.3 offers an in-depth description of the newly proposed

GAPS model. Section 5.4 outlines the experimental setup. Section 5.5 presents the

results of our experiments, providing a thorough analysis in the context of the research

questions introduced in Section 5.1. The chapter concludes with Section 5.6, which

summarises the key findings and insights gained from this chapter.

5.1 Introduction

Deep learning techniques have shown remarkable success in text-based numerical rea-

soning task using methods such as CoT [98] and MultiHiertt [110]. However, when it

comes to automatically solving geometry maths problems, the research is still at an

early stage. Recent efforts have attempted to adapt models that succeeded in MWPs

to handle geometry maths problems, but only a few methods have yielded satisfac-

tory results. One possible reason for this discrepancy is that, unlike MWPs, geometry

maths problems involve additional complexity due to the presence of geometric dia-

grams. To illustrate this point, consider the typical geometry maths problem shown

in Figure 1.1. Effectively solving this problem requires a deep understanding of both

the textual information and the accompanying diagrams [61]. Moreover, it is crucial to

identify the geometric elements mentioned in the problem text to achieve satisfactory

performance [45].

Although researchers have been motivated to tackle geometry maths problems from

various angles, the existing approaches can be broadly categorised as utilising pre-

trained language models (PLMs) or recurrent neural networks to directly generate
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solution programs [1,11,61]. Consequently, these methods lack an inherent architectural

design that explicitly captures the unique characteristics of geometry maths problems.

Geometry maths problems can be categorised into various types, with two domi-

nant ones being calculation (CAL) problems and proving (PRV) problems (as depicted

in Figure 1.1). However, most recent works have primarily focused on CAL problems

because other types of geometry maths problems require different domain-specific lan-

guages. For example, solution programs for CAL problems involve arithmetic operators

and numbers, while solution programs for PRV problems are constructed using geomet-

ric theorems and geometric elements. Nevertheless, it is essential to recognise that the

mathematical knowledge required to solve CAL problems significantly overlaps with

the knowledge needed for PRV problems [1]. This observation underscores the consid-

erable importance of developing a single solver that can generate solution programs for

geometry maths problems of all kinds of types. By creating such a versatile solver, we

can leverage the shared mathematical knowledge and potentially devise more efficient

and effective problem-solving techniques for a wide range of geometry maths problems.

To resolve the difficulties in the automated geometry maths problem solving, this

chapter states that using one solver for various geometry maths problems can en-

hance performance (see Statement (2) in 1.3). Specifically, this chapter introduces

the Geometry-Aware Problem Solver (GAPS), a model designed to automatically solve

geometry maths problems of different types simultaneously. GAPS leverages the VL-

T5 [4] model to obtain unified representations of text and diagrams, which are then

used to predict the solution programs.

To achieve a single solution program generator for various problem types, we assume

that solution programs hold a unified pattern that consists of operators (arithmetic op-

erators, geometric theorems) and operands (numbers, geometric elements). To handle

different problem types, GAPS incorporates a problem-type classifier, which distin-

guishes between the problem types of various geometry maths problems. By combining

the unified solution program pattern with the problem-type classifier, GAPS can in-

dependently generate the operators and operands by selecting tokens from different

domain-specific languages based on the specific problem types. Leveraging the unified
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solution program and the problem-type classifier, GAPS achieves the distinct capabil-

ity of disentangling the process of generating the operators and operands within the

solution program. To amplify this framework, we enhance GAPS by incorporating the

hierarchical beam search, a decoding technique aligned with the approach of segregat-

ing operator and operand generation within GAPS. Furthermore, aiming to augment

GAPS’ proficiency in identifying geometric elements from the provided problem text,

we introduce the geometric elements enhancement method which hinders the special

geometry tokens being recognised as unknown tokens.

To validate the statement, this chapter investigates the following research questions

(RQ):

• RQ-5.1 Comparison with Existing Models: How does the performance

of GAPS compare to state-of-the-art models on the UniGeo Cal, UniGeo Prv,

PGPS9K, and Geometry3K datasets, specifically in terms of accuracy and com-

prehensiveness in reasoning?

• RQ-5.2 Efficiency in Solving Different Types of Geometry Problems:

Given the superior capabilities of GAPS in solving geometry maths problems,

how does its proficiency vary across different types of geometry problems?

• RQ-5.3 Investigation for the model’s weakness on certain problem type:

What are the reasons for GAPS achieve better results on solving proving problems

than solving the calculation problems? Can the reasons be generalised to evaluate

the difficulty level of the geometry maths problems?

• RQ-5.4 Enhancement through Augmented Training Data: How does the

training of GAPS on merged datasets featuring a variety of domain-specific lan-

guages (DSLs) impact its performance and ability to generalise across diverse

problem types? And how does the performances are boosted with the help of the

problem-type classifier?

• RQ-5.5 Effectiveness of the problem-type classifier: How does the in-

tegration of a problem-type classifier in GAPS enable the model to handle di-
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verse types of geometry maths problems and enhance its adaptability to different

domain-specific languages without compromising performance?

• RQ-5.6 Investigation of the Number of Problem Types: How does the

accuracy in identifying the correct number of problem types by the problem-type

classifier influence the benefits and overall performance of the GAPS model?

• RQ-5.7 Advantages of Unified Solution Program Generator: How does

employing a unified solution program generator, harmonised with a problem-

type classifier, allow GAPS to tackle a diverse array of geometry maths problems

proficiently, and what are the limitations, if any, of this approach?

• RQ-5.8 Comparison of the different cache token updating methods:

What is the best approach to update the cache token embeddings? So that it

helps the model to fully utilise the results of previous sub-programs?

• RQ-5.9 Effectiveness of the Hierarchical Beam Search Algorithm: How

does the integration of hierarchical beam search technology enhance GAPS’ abil-

ity to proficiently select high-quality solution programs compared to other search

technologies like greedy search?

• RQ-5.10 Effectiveness of the geometric element Enhancement Method:

How does the geometric element enhance method that helps the model in selecting

the geometric elements as operands for the solution programs? And will the same

strategy help the model in selecting numbers from the text?

5.1.1 Contributions

The contributions of this chapter are:

1. We present the GAPS model, which introduces a novel encoder capable of seam-

lessly processing both text and diagram inputs. Additionally, a geometry-specific

program generator is incorporated to create solution programs for geometry maths

problems. This integration enables the model to effectively understand geometric

diagrams.
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2. GAPS introduces a framework to handle a wide range of geometry maths problems

without requiring separate program generators for different problem types. This is

achieved by inserting a problem-type classifier between the diagram and problem

text encoder and the program decoder. This augmentation enhances GAPS’

adaptability, allowing it to handle diverse types of geometry maths problems.

3. The geometry-specific program generator divides the generation of operators and

operands in the solution program. This innovation presents a challenge for em-

ploying beam search decoding strategy. In this paper, we address this challenge

by proposing hierarchical beam search as a pivotal enhancement for GAPS. This

inventive beam search approach empowers GAPS to produce precise and varied

solution programs for geometry maths problems, leading to a performance boost.

4. To comprehensively assess GAPS’ capabilities, we conduct extensive experiments

on various geometry maths problem datasets, including UniGeo Calculation, Uni-

Geo Proving, PGPS9K, and Geometry3K. The experimental outcomes underscore

GAPS’ exceptional performance compared to alternative methods designed for

solving geometry maths problems.

5.2 Preliminary: VL-T5

Figure 5.1: An illustration of the VL-T5 model. The image is taken from the original
paper [4].

This section outlines the foundational knowledge necessary to grasp the workings of

our GAPS model. Central to GAPS is the use of VL-T5, as detailed in [4], which serves

as the textual encoder. This differs from the conventional Transformer architecture
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discussed in Section 2.1.1, particularly in how VL-T5 incorporates additional tokens

{< vis 1 >, ..., < vis n >} for image representation. Here, the number n denotes

the n-th region the image, as depicted in Figure 5.2(b). Each region feature evi is a

composite of four distinct types of features: 1. RoI (Region of Interest) object features,

2. RoI bounding box coordinates, 3. image ids (ranging from 1 to 2), and 4. region ids

(ranging from 1 to n). The visual embeddings for the image are thus considered as a

cumulative representation of all these regional features evi .

In line with other transformers, VL-T5 processes the combined textual and visual

embeddings as inputs to the transformer block to generate joint representations. For

more detailed information on the functioning of each transformer block, please refer to

Section 2.1.1.3.

5.3 Approach

This section describes the details of the Geometry-Aware Problem Solver (GAPS),

which is tailored specifically for solving geometry maths problems. The architecture

of GAPS is illustrated in Figure 5.2. GAPS employs a joint diagram and problem

text encoder to create unified representations for both textual and diagram modalities.

These unified text-diagram representations are then utilised by the geometry-specific

program generator to produce the solution program, with a separation of the operators

and operands. To enhance the accuracy of the generated solution programs, we intro-

duce a hierarchical beam search for the geometry-specific program generator. Moreover,

to handle various types of geometry maths problems, we incorporate a problem-type

classifier within GAPS, which enables the use of a single geometry-specific program

generator to produce solution programs for different problem types. The generator em-

ploys masks according to the problem-type classifier to select the appropriate symbols

from the domain-specific language defined for each type of geometry maths problem.
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Figure 5.2: First, the diagram is divided into patches, and along with the problem text,
both are transformed into vectors. These vectors are then concatenated and passed to
the joint diagram and problem encoder, producing the joint representations denoted
as H. Subsequently, the geometry-specific program generator starts to generate the
solution program, each solution program is represented by several sub-program risub.
Each sub-program risub contains one operator opi and corresponding operands {oei},
where the query vector qop is used for generating the operator opi, and the query
vector qoe is used for generating operands in the sub-program. After each sub-program
is generated, the corresponding cache token is updated by replacing its vector by the
qoet , which is the query vector used for generating the last operand in the sub-program.
Specifically, Ptype is used to produce the mask to multiply with the probabilities of
operators and operands, thus influencing GAPS to select op and oe from the domain-
specific language (DSL) of the corresponding problem type. This mechanism enables
GAPS to adapt and solve different kinds of geometry maths problems effectively.

5.3.1 Task Definition

The objective of our task is to generate the correct solution program R for a given

geometry maths problem P accompanied by a geometric diagram D. Each problem

text P belongs to a specific problem type Ptype. The solution program R consists

of both operators op and operands oe. The operator op comprises various arithmetic

operations (e.g., +,−) as well as advanced functions such as trigonometric functions

and formulas for calculating areas. On the other hand, the operands oe can be pre-

defined constant numbers or numbers (num) and geometric elements (ele) extracted

from the problem text P. Please refer to Table 5.1 for a detailed explanation of the

notation symbols used in the context.
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Notation Description

P geometry maths problem text

D geometric diagram

R solution program

Ptype problem type

rtsub the t-th sub-program of R
opt the operator in rtsub
oeti the i-th operand in rtsub

DSLop domain-specific language defined for operator

DSLoe domain-specific language defined for operand

#t cache token refers to rtsub
num numbers from P
ele geometric elements from P

Table 5.1: The notations used for the task definition.

5.3.1.1 Normalise the Representation of the Solution Program

We represent the solution program R as a combination of operators and operands, ad-

hering to the output format of GAPS’s geometry-specific program generator. Moreover,

the solution program R is divided into a set of sub-programs rsub, each containing one

operator and its corresponding operands. Formally, a solution program R is defined as

R := {rtsub}Tt=0, where T represents the total number of sub-programs in the solution

program R, and rtsub refers to the t-th sub-program within the solution program. Fur-

thermore, each sub-program rtsub is defined as rtsub := (opt, {oeti}Ii=0), where opt denotes

the t-th operator in the solution program R, and it is the sole operator included in the

sub-program rtsub. The set of {oeti}Ii=0 is associated with opt, comprising a total count

of I. For a concrete example, please refer to Figure 5.3.

5.3.1.2 Domain Specific Language

As stated earlier, the geometry maths problem text P lack explicit domain-specific

knowledge regarding operators and operands, making it necessary to define a domain-

specific language (DSL) to aid the GAPS model in decoding. In particular, the DSL
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Figure 5.3: An example of normalised representation of the solution program.

for operators (DSLop) encompasses basic arithmetic operations, geometry theorems

(e.g., Corresponding Angles Theorem), and geometry calculations (e.g., Circle R Area).

Additionally, the DSL for operands (DSLoe) includes constant numbers (e.g., the value

of π) and cache token #i that represents the result of the previous sub-program. For

a comprehensive list of the DSL, please refer to the original dataset or the code link

provided by us.

5.3.2 Joint Diagram and Problem Text Encoder

We opt for VL-T5 [4] as our encoder due to its capability to uniformly embed both text

and diagram modalities without requiring any modifications to the transformer archi-

tecture. Specifically, the geometry problem text P is tokenized into tokens {t1, ..., ti}

and mapped into learned text embeddings {et1, ..., eti}, where i is the number of the

tokens in P. Additionally, the diagram D is divided into n patches, each of which is

embedded into visual embeddings {ev1, ..., evn}. To create the joint representations, the

text embeddings {et1, ..., eti} and visual embeddings {ev1, ..., evn} are concatenated and

fed into the VL-T5 transformer. The output of this process is the contextualised joint

representations H = {ht1, ..., hti, hv1, ...hvn}, where H ∈ R(i+n)×h, and h represents the

dimension of the embeddings.
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5.3.2.1 Ggeometric Elements Enhancement

The tokenizer employed by VL-T5 often converts geometric elements (e.g., △) in the

problem texts to unknown tokens, making it challenging for the program generator to

differentiate between elements that share the same points (e.g., ∠SUW and △SUW ).

To address this issue, we propose replacing geometric elements (e.g., △) with geometry

terminology tokens (e.g., “triangle”). Moreover, we introduce a straightforward yet

useful technique called “geometric elements enhancement” to enhance the accuracy of

selecting geometric elements ele from the problem text as operands. Specifically, we

repeat and append these geometry terminology tokens to the problem text P. By

doing so, the model becomes capable of distinguishing such elements accurately. In

our ablation study, we demonstrate the effectiveness of this enhancement technology in

improving the model’s performance.

5.3.3 Problem-Type Classifier

In order to handle different types of geometry maths problems with varying DSLs, it

becomes necessary to combine the distinct DSLs into a unified one. However, this amal-

gamation unavoidably increases the complexity of solving geometry maths problems, as

it expands the search space of the decoding vocabulary. To address this challenge and

alleviate the difficulty of generating the solution programs, we draw inspiration from the

observation that neural models find it easier to perform discriminative tasks compared

to generative tasks. As a solution, we introduce the problem-type classifier, which

serves to distinguish between problem types for different geometry maths problems.

The problem-type classifier takes the contextualised representations H = {ht1, ..., hti} of

the problem text as input and subsequently generates probability distributions for all

problem types:

P(Ptype|ht1, ..., hti) = softmax(W1 · sum(ht1, ..., h
t
i, dim = 1)) (5.1)

where W1 ∈ Rc×h is trainable parameters, an c is the number of problem types. Fol-

lowing the classification result Ptype, the problem-type classifier generates a mask that
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converts the probabilities of operators and operands not belonging to Ptype into zeros.

This masking mechanism ensures that irrelevant symbols are not generated, thus pre-

venting the introduction of erroneous symbols in the solution program. By leveraging

the problem-type classifier, GAPS can effectively address geometry maths problems of

various problem types with a single program generator. This approach simplifies the

training process as there is no need to separately train multiple program generators

for different problem types, streamlining the model and promoting its versatility across

different geometry maths problems.

5.3.4 Geometry-Specific Program Generator

With the utilisation of the joint diagram and problem text encoder, coupled with the

problem-type classifier, the geometry-specific program generator takes the contextu-

alised combined representations denoted as H as its input. It proceeds to construct

the solution program R by iteratively generating its sub-program rsub over multiple

steps, where each step is represented as i. Building upon the insights from prior re-

search [220], which highlighted the advantages of segregating the generation process for

operators and operands, our geometry-specific program generator adopts an alternat-

ing approach. Specifically, during the generation of each sub-program risub at the i-th

step, the generator switches between generating the operators and the operands within

the sub-program. This strategy empowers the GAPS model to proficiently devise ac-

curate solution programs. It capitalises on the contextual cues from both the problem

text and diagram, while also drawing upon the problem-type classifier to ensure the

appropriateness of the generated symbols with respect to the specific problem type.

5.3.4.1 Generating Sub-Program Step-by-Step

Given the inherent variability in decoding symbols s for numbers and geometric ele-

ments across different input geometry problems, it’s important to note that each index

within the decoding vocabulary doesn’t consistently correspond to the same symbol s.

Moreover, the number of decoding options for both numbers and geometric elements

within each input is contingent on the specific content of the original problem text.
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Consequently, the conventional approach of devising a fixed-length decoding vocabu-

lary, commonly employed in language models, is unfeasible in this context.

In drawing inspiration from the principles of pointer networks [145] and cross-

attention architectures [2], we introduce the concept of “decoding values vectors”. This

concept facilitates the program generator in selecting the appropriate symbol s. Con-

cretely, for a given input geometry problem, the decoding values vectors encompass the

representations of all decoding symbols. These vectors are formulated as V = Wv(es),

with es representing the embedding vectors for each symbol. Notably, es encompasses

embeddings for both operators and operands defined within the domain-specific lan-

guage (DSL), and these embeddings are amenable to training. Additionally, es incor-

porates vectors corresponding to numbers or geometric elements present in the problem

text of the input geometry problem. These are formulated as hti, with i denoting the

positional index of a number or geometric element within the geometry maths problem

text P.

In order to accurately choose the appropriate symbol s as the output for the current

step, we formulate a query vector qst−1 that encapsulates the information derived from

both the previously generated symbol st−1 and the combined representation H:

qop,oet , ht = GRUop,oe(ReLU(W2[Paware : vst−1 ]), ht−1) (5.2)

where W2 ∈ Rh×2h is trainable parameters, and ReLU is the activation function, and

ht−1 is the hidden state of the GRU from the previous step (by default, h0 is initialised

as zero vector). Since we separate the generation of operators and operands, two GRUs

with different parameters are adopted. The vst−1 refers to the value vector of the

previous generated symbol st−1. Notably, Paware encodes the weighed sum information

of H, which is calculated by:

Paware =
∑
i

aih
t,v
i (5.3)

where ht,vi is the representation vector of the i-th token in H, and ai is the weight,

91



Chapter 5. GAPS: Geometry-Aware Problem Solver

which is calculated through:

ai =
exp(score(vst−1 , h

t,v
i ))∑

L exp(score(vst−1 , h
t,v
j ))

(5.4)

score(vst−1 , h
t,v
i ) = (vTst−1

W3) · (W4h
t,v
i ) (5.5)

where W3 ∈ Rh×h and W4 ∈ Rh×h are trainable parameters, and L is the total number

of problem text tokens and diagram patches.

Subsequently, for the generation of the t-th symbol st within the sub-program risub,

we employ the query vector qop,oet to perform a dot product with the decoding values

vectors V . This operation yields a probability distribution across all potential decoding

candidates:

P = softmax(qop,oet · (W5 · Vop,oe))×maskPtype (5.6)

where W5 ∈ Rh×h is trainable parameters. The symbol with the highest probability

among P is selected as the predicted operator for the current step. When generating

the initial symbol s0, since each sub-program comprises a single operator alongside

multiple operands, the decoding value vector is limited to Vop. This vector exclusively

contains operators as defined within the DSL, facilitating the generation of opi.

Subsequent to generating the operator opi for the sub-program risub, GAPS replaces

the decoding values vectors to Voe, which exclusively includes the constants specified

within the DSL, as well as numbers (or geometric elements) present within the problem

text. This adjustment allows GAPS to proceed with the completion of the associated

operands {oei} within the sub-program risub. The generation of operands concludes

when the “end of sequence” token (denoted as “eos”) is produced.

The sub-program risub is considered finished when both its operator opi and operands

{oei} have been generated. Following this, the program generator iterates through the

same process outlined above to generate the following sub-programs rt>i
sub.
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5.3.4.2 Using one Program Generator for Different Problem Types

In order to streamline the process and avoid the need for distinct program generators

for varying problem types in geometry problems, we incorporate all symbols from the

DSL into the decoding values vectors V . To ensure that the chosen symbol adheres to

the DSLPtype specific to the given problem type Ptype, we utilise the mask maskPtype ,

generated by the problem-type classifier. This mask effectively eliminates probabilities

associated with irrelevant symbols, ensuring that only valid symbols are taken into

account during the generation process (as illustrated in Equation 5.6). During training,

the correct Ptype information is provided by the ground truth. During the inference

stage, the problem-type classifier (as seen in Equation 5.1) is deployed to determine the

Ptype for the geometry maths problem. This strategic approach empowers the GAPS

model to employ a singular program generator capable of addressing diverse geometry

maths problems, thereby enhancing the efficiency of the overall architecture.

5.3.4.3 Updating the Cache Token

During the generation of sub-program risub, its operands {oei} have the potential to be

derived from the executable result obtained from the preceding sub-program r<i
sub. To

enable the operand generator to effectively leverage results from earlier sub-programs,

GAPS employs the cache token #i within the DSLoe, drawing inspiration from previous

work [220]. This cache token symbolises the executable outcome of the i-th sub-program

risub. Diverging from other operands, the content encapsulated by #i varies based on the

specific sub-program it references. Consequently, GAPS needs to update its embeddings

once the generation of sub-program risub is concluded.

To this end, we explore several approaches for updating the cache token #i:

• Employing the qoet as its embedding: qoet signifies the query vector utilised in

generating the last operand for sub-program risub.

• Utilising qop0 as its embedding: qop0 represents the query vector applied to generate

the operator for sub-program risub.
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• Incorporating eop as its embedding: eop corresponds to the embedding of the

operator generated for sub-program risub.

By using the cache token #i, GAPS enhances its ability to make contextually

informed decisions during operand generation, thereby improving overall performance.

5.3.4.4 Hierarchical Beam Search for Operators and Operands

To ensure the production of high-quality solution programs and mitigate the possibility

of sub-optimal solutions, GAPS enhances its geometry-specific program generator with

the hierarchical beam search. This beam search approach aligns well with the design

of segregating generations between operators and operands. Here is an outline of how

the hierarchical beam search operates (refer to algorithm in Appendix C.1):

Let “ops” represent the set of all possible operators, and “bs” represent the beam

size. Let R represent the final solution program.

• Operator Generation: At each step of generating the sub-program, the hier-

archical beam search selects the number of bs operators from ops as candidates.

Let opcandidates be the set of operator candidates and output probabilities.

• Operand Generation: For each operator candidate op ∈ opcandidates, the

operand generator takes op as input and produces the number of bs sequences of

operands. Let oecandidates represent the set of operand sequences generated for

operator candidate op.

• Score Computation: Once completing the generation of operands for each oper-

ator candidate, the output probabilities between operators and their correspond-

ing operands are summed up to obtain scores for each combination. Let scoreop oe

denote the scores of all operator candidates with their operand sequences.

• Candidate Selection: The scoreop oe are sorted in descending order. The al-

gorithm selects the top bs operator candidates along with their corresponding

operand sequences.
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• Iteration: Repeat the above steps until the generation of the solution program

R is complete. In each iteration, new operator candidates and operand sequences

are selected based on the scores computed in the previous iteration.

By using the hierarchical beam search, GAPS can effectively explore different com-

binations of operators and operands, leading to the selection of high-quality solution

programs. This approach is instrumental in improving the overall performance and

accuracy of the model in solving geometry maths problems.

5.3.5 Training Objective

During the training phase, the GAPS model’s parameters are updated by minimis-

ing the combined negative log-likelihoods. This sum encompasses the negative log-

likelihoods associated with several components, including the ground truth geometry

maths problem type Ptype, the ground truth operator at each step in the ground truth

solution program, and the ground truth operand for each sub-program in the ground

truth solution program.

L = −{logP(Ptype|H) +
1

Lprog

Lprog∑
i=0

logP(opi) +
1

Lprog

Lprog∑
i=0

1

Lsub

Lsub∑
j=0

logP(oeij)} (5.7)

where Lprog and Lsub refer to the length of the golden solution program and the length

of the golden sub-program. opi is the i-th golden operator in the solution program, and

oeij is the j-th golden operand in the i-th sub-program of the solution program.

5.4 Experimental Setup

This section is dedicated to detailing the datasets selected for the evaluation of our

methods. It also enumerates the baseline models and metrics employed in our experi-

mental analysis. Lastly, an in-depth explanation of the implementation specifics of our

methods is provided.
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5.4.1 Datasets

We conducted an extensive evaluation of our model using the UniGeo dataset [1],

the latest dataset specifically designed for assessing mathematical reasoning ability

in geometry maths problems. The UniGeo dataset is an extension of the GeoQA

dataset [11], encompassing 4,998 CAL problems from GeoQA and an additional 9,543

new PRV problems. For each problem in the UniGeo dataset, annotated step-by-step

solution programs are provided. The UniGeo dataset further categorises each problem

into one of eight sub-tasks, along with the corresponding number of problems in each

sub-task (shown in parenthesis): Angle (2,737), Length (1,869), Other (392), Parallel

(443), Triangle (3,035), Quadrangle (1,704), Congruent (2,808), and Similarity (1,553).

To maintain consistency with the authors of the UniGeo dataset, we followed their

approach to split the dataset into training, validation, and test subsets, with respective

ratios of 0.7, 0.15, and 0.15. This dataset serves as a comprehensive benchmark for

evaluating our model’s performance in tackling diverse geometry problem types and

assessing its mathematical reasoning capabilities.

5.4.2 Baselines

• No Solution Programs we selected three methods known for their effectiveness

in multi-modal reasoning tasks: FiLM [195], RN [221], and MCAN [222]. It

is important to note that these baselines differ from our proposed approach in

that they do not generate solution programs to solve geometry maths problems.

Instead, they treat the problem as a classification task.

• Encode Text and Diagram Separately we also compare our model with

Seq2Prog [9] and BERT2Prog [78]. Seq2Prog employs a GRU-based as text en-

coder, while BERT2Prog utilises BERT as the text encoder. For the diagram

encoder, they adopt the ResNet [6]. Both Seq2Prog and BERT2Prog follow a

similar approach of directly concatenating text embeddings and diagram embed-

dings as input to an LSTM decoder.

• Geometry-Specific Models We also compare the two previous models speci-
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fied for solving geometric problems: NGS [11] and Geoformer [1]. NGS adopts

an LSTM [133] for encoding text and ResNet-101 [6] for diagram encoding. The

model combines information from both modalities through a co-attention reason-

ing mechanism. On the other hand, Geoformer is developed based on VL-T5 [4]

and is pre-trained on maths expressions to enhance its performance.

5.4.3 Evaluation Metrics

To maintain consistency with previous works [1,11], we employ top-10 accuracy as the

evaluation metric for both CAL problems and PRV problems. Top-10 accuracy mea-

sures the percentage of the top 10 predicted solution programs that contain the ground

truth program. By using these evaluation metrics, we can gauge how well our model

performs in comparison to the previous state-of-the-art models, for solving both CAL

problems and PRV problems. This comparison enables us to assess the model’s profi-

ciency in generating accurate solution programs for various geometry maths problems.

5.4.4 Implementation Details

The experiment code was written in PyTorch [203] and Huggingface [204]. We opted

for the pre-trained T5-base embedding [87] to represent the tokens in the problem

text, and we utilised ResNet-101 [6] as the encoder for diagrams. In addition, the

same diagram processing method as previous work [11] was used, which changes the

background colour to white and resizes each diagram to 224 × 224. The model was

trained on a single NVIDIA A100 GPU (40G VRAM) for 100 epochs, with a learning

rate of 2e-4 and a batch size of 40. The model’s weights were optimised by Adam

optimiser [205]. We used teacher-forcing during training, where the probabilities using

the ground-truth symbols for different epochs are: 0.0 when the epoch is less than 10,

0.1 when the epoch is less than 20, 0.5 when the epoch is less than 30, 0.8 when the

epoch is less than 40, 0.9 when the epoch is less than 100.
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5.5 Experimental Results and Discussions

5.5.1 Comparison with the State-of-the-art Methods (RQ-5.1)

CAL (%) PRV (%)

Methods Data All Angle Length All Par. Tri. Qua. Con. Sim.

FiLM⋄ CAL 31.7 34.0 29.7 - - - - - -

RN⋄ CAL 38.0 42.8 32.5 - - - - - -

MCAN⋄ CAL 39.7 45.0 34.6 - - - - - -

Seq2Prog† CAL 54.2 66.4 38.5 - - - - - -

BERT2Prog† CAL 54.7 65.8 42.1 - - - - - -

NGS‡ CAL 56.9 71.5 49.1 - - - - - -

Geoformer‡ CAL 60.3 71.5 49.1 - - - - - -

GAPS (Ours) CAL
65.4

(+5.1)

77.7

(+6.2)

50.4

(+1.3)
- - - - - -

BERT2Prog† PRV - - - 48.0 15.5 48.1 28.5 49.5 77.6

NGS‡ PRV - - - 53.2 13.2 56.6 29.8 57.1 79.4

Geoformer‡ PRV - - - 55.7 13.2 56.6 29.8 57.1 79.4

GAPS (Ours) PRV - - -
97.8

(+42.1)

86.1

(+72.9)

100.0

(+43.4)

99.6

(+69.8)

99.5

(42.4)

92.0

(+12.6)

BERT2Prog† UniGeo 52.0 63.1 39.2 48.1 15.4 48.0 31.7 49.5 75.1

NGS‡ UniGeo 51.9 63.6 38.8 47.4 11.2 46.9 31.3 48.3 77.6

Geoformer‡ UniGeo 62.5 75.5 48.8 56.4 19.4 69.4 20.4 60.3 75.0

GAPS (Ours) UniGeo
67.8

(+5.3)

78.2

(+2.7)

54.6

(+5.8)

97.5

(+41.1)

85.5

(+66.1)

100.0

(+30.6)

99.6

(+79.2)

99.1

(+38.8)

90.7

(+15.7)

Table 5.2: The top-10 accuracy (%) comparison between baselines and our proposed
GAPS model. ⋄, †, and ‡ refer to “No Solution Programs”, “Encode Text and Diagram
Separately”, and “geometry-specific Models”, respectively. We report performances
separately when training models on only CAL problems, only PRV problems, and
the entire UniGeo problems (see column header “Data”). Numbers in bold refer to
the highest accuracy in the specific data subset. In addition, we report the accuracy
differences between GAPS and the previous state-of-the-art model (Geoformer) in the
parenthesis. Except for the results of Seq2Prog are taken from [11], other baselines’
results are taken from [1].

5.5.1.1 Results when trained on both UniGeo CAL and PRV

We present the comprehensive results of our proposed GAPS model and the baseline

models in Table 5.2. Notably, GAPS outperforms all models trained on the entire Uni-

Geo dataset, achieving the highest accuracy scores. Particularly, GAPS demonstrates

a remarkable increase of 5.3% in accuracy on CAL problems and a substantial improve-

ment of 41.1% on PRV problems compared to Geoformer, the previous state-of-the-art

method. This highlights GAPS’ superiority in effectively solving geometry maths prob-

lems. Furthermore, it is worth noting that both GAPS and Geoformer utilise VL-T5 as

encoders. However, GAPS’ programs generator exhibits superior performance in pro-

98



Chapter 5. GAPS: Geometry-Aware Problem Solver

ducing solution programs for geometry maths problems, indicating its suitability for

this specific task. Additionally, GAPS outperforms NGS by 15.9% on CAL problems

and an impressive 50.1% on PRV problems. This showcases the significance of designing

complex feature fusion techniques to enhance reasoning ability in geometric problem-

solving tasks. Finally, the unsatisfactory performance of BERT2Prog emphasises the

essential role of step-by-step solution programs, reinforcing their indispensability in

tackling geometry maths problems effectively. Overall, the results affirm GAPS’ out-

standing performance and effectiveness in generating accurate and high-quality solution

programs for geometry maths problems, outperforming other state-of-the-art models in

this domain.1

5.5.1.2 Results when solely trained on UniGeo CAL

When evaluating models trained solely on CAL problems, GAPS continues to exhibit

superiority over the selected baselines. Compared to FiLM, RN, and MCAN, GAPS

achieves an accuracy approximately twice as high as theirs. This underscores the im-

portance of designing a solution program generation approach tailored for solving ge-

ometry maths problems specifically. Furthermore, GAPS outperforms Geoformer on

all sub-tasks of CAL problems, a trend consistent with their performance when trained

on the entire UniGeo dataset. Moreover, models that uniformly encode text and di-

agram information, such as GAPS and Geoformer, consistently achieve better results

compared to models that naively concatenate embeddings (Seq2Prog, BERT2Prog)

or use co-attention mechanisms (NGS). This suggests that performance improvements

are observed when using complex feature fusion techniques to align text and diagram

information effectively. The findings emphasise the superior capabilities of GAPS in

solving geometry maths problems and the advantages of employing sophisticated fusion

methods for achieving accurate and comprehensive reasoning in geometry maths tasks.

1Please see Appendix 5.5.3.1 for the comparison between top-1 and top-10 accuracy (%) on CAL
problems and PRV problems achieved by Geoformer and GAPS.
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5.5.1.3 Results when solely trained on UniGeo PRV

When evaluating models trained solely on PRV problems, GAPS consistently outper-

forms the baselines with competitive advantages. Particularly, GAPS achieves an im-

pressive 42.1% higher accuracy than the previous state-of-the-art method, Geoformer.

Compared to GAPS trained on the entire UniGeo dataset, GAPS trained on PRV prob-

lems performs slightly better, with a 1.0% accuracy increment. Remarkably, GAPS

achieves an overall performance of nearly 100% accuracy in PRV problems, highlight-

ing its exceptional proficiency in solving this problem type. The notable difference of

29.7% between GAPS’ performance on CAL problems and PRV problems indicates

that GAPS excels in solving the latter type of problem. In the upcoming section, we

provide an in-depth analysis to understand the reasons behind the disparity in GAPS’

performance across these two problem types.

5.5.2 Comparison of performances according to the sub-program types

(RQ-5.2)

Figure 5.4 presents a radar chart illustrating the performance of our proposed GAPS

model and the baseline models in CAL problems, PRV problems, and their respective

sub-tasks. The radar chart showcases the top-10 accuracy scores for each model in

different problem types and sub-tasks. From the radar chart, it is evident that GAPS

outperforms the baselines in both problem types and their corresponding sub-tasks in

terms of top-10 accuracy. Notably, GAPS demonstrates advantages, particularly in the

PRV problems.

5.5.3 Investigation for the Model’s Weakness on Certain Problem

Type (RQ-5.3)

5.5.3.1 Performance Comparison with Geoformer Using Top-1 and Top-10

Accuracy Metrics

Table 5.3 presents a comparison between our GAPS model and the previous best ap-

proach, Geoformer, using a stricter metric, top-1 accuracy, in addition to the top-10
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Figure 5.4: Overall results comparison in top-10 accuracy between GAPS and baselines
on all sub-tasks by the radar chart.

CAL (%) PRV (%)

Methods top1 top10 top1 top10

Geoformer 46.8 62.5 51.3 56.4

GAPS (Ours) 42.1 67.8 97.5 97.5

Table 5.3: Comparison between top-1 and top-10 accuracy (%) on CAL problems and
PRV problems achieved by Geoformer and GAPS, when training models on the entire
UniGeo dataset.
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accuracy. The table shows the top-1 and top-10 accuracy scores achieved by GAPS

and Geoformer on CAL problems and PRV problems. Consistent with the results

using top-10 accuracy, GAPS maintains its superiority over Geoformer on PRV prob-

lems when evaluated using top-1 accuracy. Specifically, GAPS achieves a remarkable

46.2% improvement in top-1 accuracy compared to Geoformer, further highlighting its

proficiency in solving PRV problems. However, when evaluating CAL problems using

top-1 accuracy, our proposed GAPS model exhibits a decrease in performance of 4.7%

compared to Geoformer. This contrasts with the results obtained using top-10 accu-

racy, where GAPS outperforms Geoformer. This discrepancy suggests that GAPS may

not always achieve the top predicted solution program in CAL problems, although it

still excels in identifying the correct solution program among the top 10 predictions.

The variation in performance on CAL problems under different evaluation metrics war-

rants further investigation in the subsequent analysis to gain a deeper understanding

of GAPS’ performance characteristics across different problem types.

5.5.3.2 Analysing Prediction Consistency: Top-1 and Top-10 Accuracy

Comparison

Figure 5.5: (a) Numbers of occurring indices of correct predictions in top-10 predic-
tions candidates. We discard 2th, 3th, and 7th indices because numbers are zero. (b)
Distributions of number of operands following each operator in ground truth solution
programs from CAL problems and PRV problems. (c) The number of incorrect predic-
tions due to wrong operators or wrong operands generated by GAPS in all sub-tasks.
The “Angle”, “Length”, and “Other” belong to CAL problems, and the others belong
to PRV problems.

Table 5.3 reveals a significant discrepancy in the performance of GAPS on PRV

problems compared to CAL problems, in terms of top-1 and top-10 accuracy. Interest-
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ingly, the top-1 and top-10 accuracy achieved by GAPS on PRV problems are identical,

indicating that the model consistently makes correct predictions within the top 10 can-

didates for these types of problems. In contrast, on CAL problems, there is a consider-

able difference of 25.7% between the top-1 and top-10 accuracy scores. To investigate

the reasons behind this inconsistency, we conduct a detailed analysis by counting the

occurrence of correct predictions among the top 10 candidates. Figure 5.5(a) visually

presents the distribution of correct prediction indices for both PRV problems and CAL

problems. From Figure 5.5(a), we make a significant observation: for PRV problems,

all indices of correct predictions are clustered around the 0th index, indicating that the

correct solution program is consistently ranked first among the top 10 predictions by

GAPS. This finding provides an explanation for the identical top-1 and top-10 accu-

racy scores obtained by GAPS on PRV problems. In contrast, for CAL problems, the

indices of correct predictions are dispersed across several positions within the top 10

predictions. This scattering of correct predictions leads to the difference between the

top-1 and top-10 accuracy scores for CAL problems.

5.5.3.3 Analysing Performance Discrepancy: Complexity of CAL and PRV

Problems

Table 5.2 presents the top-10 accuracy comparison between the baselines and our pro-

posed GAPS model. An interesting observation is the substantial performance differ-

ence in GAPS between CAL problems and PRV problems. This discrepancy could

be attributed to the inherent complexity of CAL problems, which typically involve

more intricate reasoning processes. To investigate this further, we refer to previous

research [220] that highlights the significance of the number of operands following each

operator in determining the complexity of solution programs. As such, we plot the

distribution of the number of operands following each operator in the ground truth

programs for both CAL and PRV problems Figure 5.5(b). From Figure 5.5(b), it is ev-

ident that all operators in PRV problems have only one following operand. Conversely,

CAL problems exhibit greater variance in the number of operands, ranging from 1 to 3,

per operator. This observation confirms our hypothesis that the complexity of solution

103



Chapter 5. GAPS: Geometry-Aware Problem Solver

programs is a key factor influencing GAPS’ differing performances on the two problem

types. PRV problems, with simpler solution program structures, are more effectively

handled by GAPS, resulting in higher accuracy. However, the greater complexity of

CAL problems poses a greater challenge, leading to a comparatively lower accuracy for

this problem type.

Additionally, we posit that generating correct operators poses a more challenging

task than generating correct operands. The complexity of operator generation arises

from the necessity to comprehend the semantic meaning of the text and diagrams

while also manipulating relevant theorem knowledge. On the other hand, generating

operands primarily requires matching entities and numbers in the text and employing

finite domain knowledge, such as constants. In line with this hypothesis, we anal-

yse and present the number of wrong predictions caused by mistaken operators or

operands in Figure 5.5(c). The findings reveal that in CAL problems, the majority of

incorrect predictions are attributed to wrong operators. Conversely, in PRV problems,

the incorrect predictions are more frequently due to wrong operands. This disparity in

incorrect predictions further validates our hypothesis, demonstrating that generating

solution programs for CAL problems is indeed more intricate than generating those for

PRV problems. The complexity associated with CAL problems poses challenges for the

model, leading GAPS to be more prone to fail in generating correct solution programs

for this problem type.

Indeed, our analysis of the difficulty level between CAL problems and PRV problems

clearly indicates that CAL problems pose a greater level of diversity and challenge in

their solution programs. This inherent complexity in CAL problems explains the better

performance achieved by GAPS on the PRV problems than on the CAL problems.

5.5.4 Dataset Augmentation with PGPS9K: A Comparative Analysis

(RQ-5.4)

Due to the presence of the unified solution program pattern and the problem-type clas-

sifier, GAPS can effectively address a wide range of geometry maths problems using

just one solution program generator, all while maintaining the model’s performance.
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Furthermore, our research seeks to determine whether enhancing the training data

of GAPS with additional geometry maths problems featuring diverse domain-specific

languages (DSLs) could lead to performance improvements. Consequently, we con-

duct experiments to investigate the potential advantages of supplementing the GPAS

model’s training data with datasets that incorporate various DSLs alongside the Uni-

Geo dataset. Specifically, we extend the data by incorporating the PGPS9K dataset [5],

which represents the latest collection of geometry math problems sourced independently

from the UniGeo dataset. The PGPS9K dataset consists of a total of 9,022 geometry

math problems, out of which 2,891 problems are selected from another dataset called

Geometry3K [60]. Notably, the PGPS9K dataset encompasses 30 types of operators in

its DSL, whereas the UniGeo dataset comprises 18 types of operators for CAL prob-

lems and 44 types of operators for PRV problems. To evaluate the GPAS model’s

performance, we use two distinct subsets of the PGPS9K test data: the first subset

(Geometry3K test) includes 589 problems from the original Geometry3K dataset, and

the second subset (PGPS9K test) includes 1000 problems sourced from the PGPS9K

dataset.

Training Dataset CAL (%) PRV (%) PGPS9K test (%) Geometry3K test (%)

UniGeo 67.8 97.5 n/a n/a

PGPS9K n/a n/a 50.5 57.5

UniGeo + PGPS9K 68.5 (+1.7 ) 97.2 (-0.3 ) 61.2 (+10.7 ) 68.0 (+10.5 )

Table 5.4: The performance of top-10 accuracy (%) achieved by GAPS model on vari-
ous datasets, inlcuding UniGeo CAL, UniGeo PRV, PGPS9K test, and PGPS9K test
datasets. The column displaying the highest accuracy is marked in bold. For datasets
that were not used during the training stage, the accuracy is not reported, and the
corresponding cells are marked as “n/a.”

In Table 5.4, we present the varied performances of the GAPS model based on

different training approaches. Specifically, we compare the model’s performance when

trained on three different datasets: UniGeo dataset alone, PGPS9K dataset alone, and

the combined UniGeo and PGPS9K datasets. The results reveal a notable improve-

ment in the GAPS model’s performance on UniGeo CAL, PGPS9K, and Geometry3K
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datasets when trained on the combined dataset, in comparison to training with a sin-

gle dataset. The accuracy shows an increase of 1.7%, 10.7%, and 10.5% on UniGeo

CAL, PGPS9K, and Geometry3K, respectively. Despite the substantial differences in

the DSL between UniGeo and PGPS9K, the addition of the PGPS9K dataset during

training still enhances the GAPS model’s capability to solve geometry maths problems.

However, it is noteworthy that the GAPS model experiences a negligible decrease in

performance on the UniGeo PRV test data when trained on both UniGeo and PGPS9K

datasets. This can be attributed to the distinct problem types present in the PGPS9K

dataset compared to the UniGeo PRV dataset. The former dataset primarily consists

of calculation-type problems, while the latter focuses on proving-type problems.

In summary, the findings from Table 5.4 demonstrate that augmenting the GAPS

model’s training data with datasets featuring different Domain-Specific Languages

(DSLs) can actually enhance its performance, rather than causing any detriment. Inter-

estingly, the design of GAPS, which separates the generation of operators and operands,

plays a crucial role in mitigating the complexities introduced by the additional dataset.

This design choice allows GAPS to effectively capitalise on the benefits offered by

the new dataset without getting overwhelmed by its inherent complexity. As a result,

GAPS demonstrates improved performance when trained on the combined dataset with

a diverse DSL, underlining the advantages of incorporating data from different domains.

5.5.5 Analysis of the Utility of the Problem-Type Classifier (RQ-5.5,

RQ-5.6, RQ-5.7)

This section explores the significance of the problem-type classifier in GAPS, which en-

ables the model to generate solution programs for geometry maths problems belonging

to different types simultaneously.

5.5.5.1 The Impact of Problem-Type Classifier on GAPS Performance

The comparison between the performance of GAPS with and without using the problem-

type classifier is illustrated in Table 5.5. When GAPS is trained solely on the UniGeo

dataset, the presence of the problem-type classifier leads to improved performances.
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Train Data Test Data w/o (%) w (%) three types (%)

UniGeo
CAL 46.8 67.8 n/a

PRV 96.9 97.5 n/a

UniGeo + PGPS9K

CAL 40.4 68.5 49.4

PRV 97.1 97.2 97.9

PGPS9K test 53.0 61.2 58.8

Geometry3K test 61.0 68.0 63.5

Table 5.5: The comparison between the top-10 accuracy (%) achieved by GAPS model
under three configurations: 1. without the problem-type classifier (denoted as “w/o”),
2. equipped with the problem-type classifier (denoted as “w”), 3. considering UniGeo
CAL, UniGeo PRV, and PGPS9K as three different problem-types (denoted as “three
types”). The highest accuracy scores in each row are highlighted in bold type, indicating
the best performance achieved by the respective configuration for each problem type.

Specifically, GAPS equipped with the problem-type classifier achieves a substantial in-

crease of 21% in accuracy on the UniGeo CAL dataset and a 0.6% increase on the

UniGeo PRV dataset, compared to GAPS without it. Furthermore, when GAPS is

trained on the combined UniGeo and PGPS9K datasets, the importance of the problem-

type classifier becomes even more evident. GAPS without the problem-type classi-

fier exhibits notably lower accuracy across all test data in comparison to GAPS with

the classifier. These results presented in Table 5.5 emphasise the effectiveness of the

problem-type classifier. By acting as a discriminative task, the problem-type classifier

efficiently handles the complexity within the generation of solution programs, leading

to enhanced performance for the GAPS model on various geometry maths problem

types.

5.5.5.2 Evaluating the Influence of Fine-Grained Problem-Type Classifica-

tion on GAPS Performance

We initiated an inquiry into the potential benefits of categorising geometry maths

problems into finer problem types. To explore this, we treated UniGeo CAL, UniGeo

PRV, and PGPS9K as three distinct problem types. As depicted in Table 5.5, when
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dividing the datasets into three problem types, the performance of GAPS exhibited a

decline on UniGeo CAL, PGPS9K, and Geometry3K test data, with accuracy drops

of 19.1%, 2.3%, and 4.5%, respectively. Upon closer examination, we realised that

problems within the UniGeo CAL, PGPS9K, and Geometry3K datasets predominantly

focus on calculation problems, warranting their categorisation into a single problem

type. Despite the performance decrease in the finer-grained problem type classification,

the accuracy of GAPS on these three test datasets remains substantially higher than

GAPS without any problem-type classifier at all. From these observations, we can

confidently conclude that GAPS indeed benefits from the problem-type classifier, and

the extent of its benefits is maximised when the correct problem types are appropriately

identified.2

5.5.6 GAPS Performance on GeoEval Benchmark

GeoEval Benchmark

GeoEval-2000 † GeoEval-backward GeoEval-aug † GeoEval-hard

55.1 5.2 26.7 0.0

Table 5.6: Top-10 accuracy (%) of the GAPS model on the GeoEval benchmark. The
† denotes that GAPS was evaluated on partial subsets of GeoEval-2000 and GeoEval-
aug, as it can only solve geometry math problems with available diagrams. Approx-
imately 62% of problems in the GeoEval-2000 and GeoEval-aug subsets contain dia-
grams, sourced from the PGPS9K, UniGeo, GeoQA+, and Geometry3K datasets.

Table 5.6 presents the top-10 accuracy performance of the GAPS model on the

GeoEval benchmark, which was introduced in Chapter 4. Since GeoEval does not

provide annotated solution programs, we employ the GAPS model from Section 5.5.4,

trained on a combination of the UniGeo and PGPS9K datasets, to solve the problems

in the GeoEval benchmark. Additionally, we compare the execution accuracy, which

calculates the accuracy between the golden executable result and the result obtained

from the predicted program, because GeoEval only provides the golden executable

result, without annotated solution programs.

2Please see Appendix C.2 for a further study on how the problem-type classifier accelerates the
convergence in GAPS training process.
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The results show that GAPS achieved 55.1% accuracy on the GeoEval-2000 subset,

despite not being directly trained on this subset. This reasonable performance can be

attributed to the fact that we only evaluated GAPS on the partial GeoEval-2000 subset

containing both problem texts and geometric diagrams. This partial subset is sourced

from the PGPS9K, UniGeo, GeoQA+, and Geometry3K datasets, three of which were

used to train GAPS, as described in Section 5.5.4.

However, a concerning observation is that GAPS’ performance drops by the 28.4%

accuracy on the GeoEval-aug subset compared to the GeoEval-2000 subset. Notably,

the problems in GeoEval-aug are rephrased versions of the problems in the GeoEval-

2000 subset, with no modifications to the underlying problem statements. This decrease

in accuracy demonstrates that GAPS is vulnerable to the semantic diversity introduced

by the rephrased problems in the GeoEval-aug subset. Despite being trained on similar

geometric concepts, GAPS struggles to generalize its knowledge and reasoning capa-

bilities to linguistically diverse representations of the same underlying problems. This

finding highlights a crucial limitation in GAPS’s ability to robustly understand and

solve geometry problems across various linguistic formulations and phrasings.

The results in Table 5.6 reveal the limitation of the GAPS model when it comes

to backward reasoning. GAPS achieves an accuracy of only 5.2% on the GeoEval-

backward subset, which is strikingly low. This poor performance in backward reasoning

tasks is understandable, given that the GAPS model adopted for this experiment from

Section 5.5.4 was not specifically trained to develop backward reasoning capabilities.

Backward reasoning in geometry problems involves working backwards from a given

conclusion or result to derive the initial conditions or premises that lead to that out-

come. This type of reasoning requires a deep understanding of geometric concepts and

the ability to reverse the logical flow of problem-solving steps. However, the GAPS

model’s training focused primarily on forward reasoning, where the model learns to

solve problems by applying a sequence of logical steps from given premises to reach a

conclusion.

The results in Table 5.6 reveal that the GAPS model is unable to resolve problems

in the GeoEval-hard subset, highlighting two critical limitations. Firstly, GAPS was
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not specifically trained to solve problems related to solid geometry and analytic geome-

try, which are covered in the GeoEval-hard subset. These advanced geometric domains

involve concepts and problem-solving techniques that were not part of the model’s

training domain. Secondly, the GAPS model adopted from Section 5.5.4 lacks familiar-

ity with the domain-specific language used in the GeoEval-hard subset. This hinders

its ability to generate targeted solution programs for the corresponding problems.

5.5.7 Analysis for the Different Cache Token Updating Methods (RQ-

5.8)

Table 5.7 presents a performance comparison of various strategies for updating cache

tokens. As indicated in the table, employing the query vector used to generate the final

operand in the sub-program to update the cache token achieves the highest accuracy

across all datasets. Our hypothesis is that this outcome can be attributed to the

comprehensive nature of the query vector qoet , which encapsulates information from all

the symbols generated within the sub-program. Consequently, it can be interpreted as

an integrated representation of the sub-program. In contrast, the other two vectors used

to update the cache token, qop0 and eop, do not take into account the generated operands,

resulting in the incorporation of only partial information from the sub-program.

CAL (%) PRV (%) PGPS9K (%) Geometry3K (%)

qop0 59.0 91.0 36.5 40.2

eop 58.8 90.2 37.6 42.2

qoet 65.4 97.8 50.5 57.5

Table 5.7: Performance comparison between different cache token updating methods.
qop0 refers to the query vector used for generating the operator for the sub-program, eop
refers to the embedding of the generated operator for the sub-program, and qoet refers
to the query vector used for generating the last operand for the sub-program. For
an equitable evaluation, GAPS models trained exclusively on UniGeo CAL, UniGeo
PRV, and PGPS9K datasets are used to assess the performance on their respective test
datasets.
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5.5.8 Enhancing Solution Program Generation with Hierarchical Beam

Search (RQ-5.9)

To enable GAPS to utilise beam search for generating solution programs, we propose

the hierarchical beam search, which is designed to be compatible with GAPS’ architec-

ture that separates the generation of operators and operands. In order to showcase the

necessity and effectiveness of the hierarchical beam search, we conduct a comparison

between GAPS employing the hierarchical beam search and GAPS using the tradi-

tional greedy decode approach. The results are presented in Table 5.8, which clearly

demonstrates that GAPS with hierarchical beam search outperforms the GAPS with

greedy decode by a large margin.

Greedy Decode (%) Hierarchical Beam Search (%)

CAL 42.1 65.4 (+23.3 )

PRV 97.5 97.8 (+0.30 )

PGPS9K 32.6 50.5 (+17.9 )

Geometry3K 35.8 57.5 (+21.7 )

Table 5.8: Comparing Accuracy (%) of GAPS with Hierarchical Beam Search and
Greedy Decode for Solution Program Generation. For an equitable evaluation, GAPS
models trained exclusively on UniGeo CAL, UniGeo PRV, and PGPS9K datasets are
used to assess the performance on their respective test datasets.

Specifically, when utilising the hierarchical beam search for solution program gen-

eration, GAPS achieves impressive accuracy improvements of 23.3%, 0.3%, 17.9%, and

21.7% on the UniGeo CAL, PRV, PGPS9K, and Geometry3K test data, respectively.

This compelling evidence highlights the efficacy of the hierarchical beam search in al-

lowing GAPS to effectively explore various combinations of operators and operands,

ultimately leading to the selection of high-quality solution programs. The hierarchical

beam search proves to be a crucial enhancement, enabling GAPS to achieve superior

performance in generating accurate and diverse solution programs for geometry maths

problems.
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5.5.9 Enhancing geometric element Selection with the geometric ele-

ments Enhancement Method (RQ-5.10)

The geometric elements enhancement method enhances GAPS’ capability to select ge-

ometric elements as operands by appending the geometric elements to the problem

text. In addition, this enhancement proves particularly valuable in situations where

the elements involve identical points (e.g., ∠SUW and △SUM ), enabling GAPS to

differentiate between such elements effectively. To substantiate the effectiveness of this

approach, we compare the performances on UniGeo PRV problems between GAPS with

the enhancement method and GAPS without it. The results, as presented in Table 5.9,

clearly demonstrate the substantial benefits that GAPS gains from the geometric ele-

ments enhancement method.3

PRV (%) CAL (%)

Top1 Top10 Top1 Top10

w/o 88.4 89.0 42.1 67.8

w 97.5 97.5 41.6 65.6

Table 5.9: Performance comparison between GAPS with (w) geometric elements en-
hancement and without (w/o) it.

Similarly, we explore the applicability of a method akin to the geometric elements

enhancement to improve GAPS’ performance on CAL problems. Since numbers in the

text are not tokenized into unknown tokens, we solely insert the token “number” before

each number and append all numbers to the problem text. However, as demonstrated

in Table 5.9, contrary to the results observed with the geometric elements enhancement,

GAPS’ performances decline when employing this method. The findings in Table 5.9

indicate that the approach of inserting “number” tokens and appending the numbers

to the problem text does not yield the desired performance improvements for GAPS

on CAL problems. Consequently, this method does not prove as effective in enhancing

GAPS’ ability to handle CAL problem types as compared to its success with PRV

problems.

3Please see Appendix C.3 for a case study where we map out the probability distributions during
the generation of operands.
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5.6 Chapter Summary

In Chapter 5, we focused on adapting our proposed methods to solve math problems

with the additional component of geometric diagrams. This chapter states that we

could effectively leverage the unique features of various geometry problem types without

encountering a decline. In line with this statement, we propose the Geometry-Aware

Problem Solver (GAPS), which can simultaneously handle diverse types of geometry

math problems. GAPS achieves this by integrating a problem-type classifier, enabling a

unified solution program generator to cater to various problem types. This allows GAPS

to independently generate operators and operands using symbols from domain-specific

languages tailored to each problem type. The problem-type classifier also enables GAPS

to incorporate diverse data types for supplementary training without compromising

performance.

To validate our statement, we addressed the research questions outlined in Sec-

tion 5.1. In Section 5.5.1, we answered research question RQ-5.1 by comparing GAPS

with leading methods on two types of geometry problems: calculation and proving. As

shown in Table 5.2, GAPS outperformed the baseline models.

In Section 5.5.2, we compared GAPS’s accuracy with other baseline models based

on sub-program types. Figure 5.4 illustrates that GAPS excelled in both main problem

types and their sub-tasks, addressing research question RQ-5.2.

We observed a notable disparity in GAPS’s performance on proving versus cal-

culation problems, addressing research question RQ-5.3. Section 5.5.3 reveals that

most errors in calculation problems stem from incorrect operators, while proving prob-

lems typically suffer from incorrect operands. This suggests that calculation problems

present a more diverse and challenging set of solution programs. Consequently, GAPS

performs better on proving problems than on calculation problems, thus addressing

RQ-5.3.

We further investigated the impact of training on diverse geometry math prob-

lems with different domain-specific languages. In Section 5.5.4, we incorporated the

PGPS9K dataset, comprising newly created problems and those from the Geometry3K
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dataset. We assessed the model’s performance using three datasets: solely UniGeo,

solely PGPS9K, and a combination of both. The results, shown in Table 5.4, indi-

cate performance improvements when GAPS was trained on the combined dataset,

confirming RQ-5.4.

In Section 5.5.5, we explored the importance of the problem-type classifier, address-

ing research questions RQ-5.5, RQ-5.6, and RQ-5.7. Our ablation study, as shown

in Table 5.5, revealed that including the problem-type classifier enhances GAPS’s per-

formance on both the UniGeo and combined UniGeo-PGPS9K datasets. Its absence

led to a marked decrease in accuracy. Optimizing the number of problem types maxi-

mized GAPS’s benefits. Additionally, training loss convergence analysis indicated faster

convergence for GAPS with the problem-type classifier, confirming its effectiveness.

We addressed research question RQ-5.8 by analyzing the effectiveness of updating

the cache token with the query vector used for generating the final operand in the

sub-program, as detailed in Table 5.7. This approach yielded the highest accuracy, val-

idating our method. Additionally, we developed a specialized algorithm for hierarchical

beam search due to our unique design that separates operator and operand generation.

The results in Table 5.8 demonstrate that employing beam search enhances GAPS’s

accuracy, effectively answering research question RQ-5.9.

To address research questionRQ-5.10, we performed an ablation study by removing

the geometry elements enhancement feature and evaluated its impact on the UniGeo

dataset. The results, shown in Table 5.9, highlight the advantages of incorporating

this method. A case study visualizing the probability distributions during operand

generation with and without this enhancement, depicted in Figure C.2, indicates that

GAPS is more likely to select the correct geometry elements when the enhancement is

applied.

Overall, our findings provide strong evidence of GAPS’ efficacy and highlight the

importance of incorporating advanced techniques to enhance its performance on geom-

etry problem-solving tasks. However, we discovered that vector-based representations

of geometric relations struggle to accurately capture the complex relationships within

geometric diagrams. Additionally, these representations are not easily interpretable
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by humans, making it challenging to identify whether performance issues stem from

the relation extraction or the problem-solving component. In Chapter 6, we propose a

new representation method to describe geometric diagrams, aiming to enhance inter-

pretability and generalization ability.
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GOLD: Geometry Problem

Solvers with Natural Language

Description

Chapter 5 presents a novel model designed to comprehend and solve geometry maths

problems by integrating various modalities, namely geometric diagrams and problem

texts. The approach primarily focuses on jointly encoding these diagrams and texts into

high-dimensional vectors, aiming to create a cohesive understanding of both elements.

Despite this innovative approach, the model faces challenges in accurately interpreting

geometric diagrams, especially due to the intricate nature of geometric primitives like

lines and arcs, which are often slender and overlapped. This complexity necessitates

a more detailed description of the relationships among diagram components, a task

at which the model introduced in Chapter 5 still encounters difficulties, resulting in

limited interpretability.

To address this, in this Chapter we present the Geometry problem sOlver with

natural Language Description (GOLD) model. GOLD enhances the extraction of ge-

ometric relations by separately processing symbols and geometric primitives within

the diagram. Subsequently, it converts the extracted relations into natural language

descriptions, efficiently utilising large language models to solve geometry maths prob-

lems.Experiments show that the GOLD model outperforms the Geoformer model, the
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previous best method on the UniGeo dataset, by achieving accuracy improvements of

12.7% and 42.1% in calculation and proving subsets. Additionally, it surpasses the

former best model on the PGPS9K and Geometry3K datasets, PGPSNet, by obtaining

accuracy enhancements of 1.8% and 3.2%, respectively. This chapter is mainly based

on my published paper “GOLD: Geometry Problem Solver with Natural Language De-

scription” accepted in 2024 Annual Conference of the North American Chapter of the

Association for Computational Linguistics (NAACL 2024 Findings).

Section 6.1 delves into a categorisation of current methodologies, specifically distin-

guishing between symbolic and neural solvers, and discusses their respective strengths

and limitations. It also outlines the research questions addressed and the contributions

made in this chapter. In Section 6.2, we offer a detailed explanation of our approach,

particularly how we utilise natural language descriptions to represent geometric dia-

grams and apply these descriptions to solve geometry maths problems. Section 6.3

outlines the datasets and metrics employed in our evaluation. Section 6.4 is dedicated

to a thorough analysis of the experimental results. The chapter concludes with Sec-

tion 6.5, which provides a summary of the work accomplished in this chapter.

6.1 Introduction

As discussed in Section 2.3 and Section 5.1, automated solving of geometry maths prob-

lems has gained considerable attention in the AI community in recent years. Unlike

maths word problems, geometry maths problems involve additional geometric diagrams,

necessitating comprehensive reasoning capabilities for understanding multi-modal in-

formation. As a result, research on the automated resolution of geometry problems is

still in its infancy [1].

Existing approaches for solving geometry maths problems utilise neural networks

to embed the diagram and problem text separately or jointly. For example, the GAPS

model proposed in Chapter 5 utilise neural networks to embed the diagram and problem

text jointly, resulting in highly generalised models. However, these methods struggle

with accurately capturing the complex relationships within geometric diagrams [20].

Additionally, their vector-based representation of geometric relations is not easily in-
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terpretable by humans, posing challenges in identifying whether performance issues

are from the relation extraction or the problem-solving component. In a different

approach, some studies have successfully translated geometric diagrams into formal

languages, enhancing precision and interpretability [43, 45]. However, these methods

do not separately process relations among geometric primitives and relations between

symbols and geometric primitives, which adds difficulty in solving the geometry maths

problem correctly. Moreover, these approaches necessitate specifically designed solvers

that take formal languages as input, making them incompatible with prevalent large

language models (LLMs).

To address the limitations of existing methods in solving geometry maths problems,

this chapter states that using natural language descriptions for geometric diagrams can

provide accurate and understandable representations while bridging the gap between

textual and visual information (See Statement (3) in Section 1.3). Therefore, we intro-

duce the GOLD model in this chapter. The GOLD model converts geometric diagrams

into natural language descriptions, aiding in the generation of solution programs for

the problems. Particularly, the GOLD model’s relation-construction head extracts two

types of geometric relations: sym2geo (relations between symbols and geometric prim-

itives) and geo2geo (relations among geometric primitives). This process involves two

specialised heads that separately model symbols and geometric primitives within dia-

grams as distinct vectors. These extracted geometric relations are then converted into

natural language descriptions. This not only improves the model’s interpretability but

also connects geometric diagrams with problem texts. Furthermore, since these natu-

ral language descriptions meet the input requirements of LLMs, the GOLD model is

able to utilise the advanced LLMs as the problem-solving module, efficiently generating

solution programs used to solve geometry maths problems.

To validate the statement, this Chapter investigates the following research questions

(RQ):

• RQ-6.1 Performance and Accuracy: In comparison with existing approaches

like Geoformer and PGPSNet, how are the accuracy improvements achieved by

the GOLD model across different datasets such as UniGeo, PGPS9K, and Geom-
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etry3K?

• RQ-6.2 Natural Language Representation: How does converting extracted

geometric relations into natural language enhance the ability of the model to

generate solution programs, and how does this natural language representation

compare with the formal language used by symbolic solvers in terms of alignment

with current language models?

• RQ-6.3 The geo2geo and sym2geo Relation Extraction Accuracy: How

does different embeddings influence the geo2geo and sym2geo relation extraction

accuracy?

• RQ-6.4 Influence of feature embedding and spatial embedding on Ge-

ometry Problem Solving: How does feature embedding and spatial embedding

influence the geometry-problem solving?

• RQ-6.5 Usefulness of the Additional geo2geo Relation: How does provid-

ing additional description of relations between geometry primitives help to solve

the geometry maths problems?

6.1.1 Contributions

To summarise, the contributions of this chapter are:

1. We propose the GOLD model to extract geometric relations from geometric dia-

grams and subsequently convert these relations into natural languages, which are

then utilised for solving geometry maths problems. Its compatibility with LLMs

is a significant advantage, enabling the GOLD model to utilise the capabilities of

LLMs to generate solution programs.

2. The GOLD model separately processes symbols and geometric primitives from

the diagrams. This separation design simplifies the extraction of the geometric

relations.

3. Our GOLD model demonstrates improvements over previous methods across all

evaluated datasets, validating the effectiveness of our approach.
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6.2 Approach

Figure 6.1: The illustration of the GOLD Model. The diagram D, problem text T , and
solution program P used in this illustration are sourced from the PGPS9K dataset [5].
The symbols and geometric primitives in the diagram are annotated using the notations
from the Notation Table, which are consistent with the colours of extracted relations
of sym2geo and geo2geo.

Our GOLD model is illustrated in Figure 6.1.

6.2.1 Task Description and Pre-parsing

The objective is to generate the correct solution program P to solve the problem by

analysing a geometry maths problem text T and its corresponding diagram D. Specif-

ically, the solution program represents intermediate steps in the domain-specific lan-

guage generating the output for the question (see an example of solution program in

Figure 6.1).

In our approach, we initially pre-process geometric diagrams to extract geometric

primitives G (including Point P, Line L, and Circle C) and symbols S from the diagram

D for subsequent task. Specifically, we utilise a standard Feature Pyramid Network

(FPN) [223] integrated with a MobileNetV2 [224] backbone for this task. For the

detection of symbols, we apply the anchor-free detection model FCOS [8], and for the

extraction of geometric primitives, we use the GSM model [183]. The FCOS model

employs feature maps P3 to P7, generated by the FPN layer, to detect symbols within
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the diagram. This detection step produces bounding box coordinates (boxs) and class

type (clss) for each symbol (s ∈ S). For the extraction of geometric primitives, we

prefer using the feature map P2 instead of P1, as P2 is more memory-efficient due to

its lower resolution. This process results in the identification of segmentation masks

(maskg) and class type (clsg) for each geometric primitive (g ∈ G).1

6.2.2 Mapping Symbols and Geometric Primitives Separately

Before constructing the geometric relations, we map the symbols and geometric prim-

itives into vectors. To achieve this, we introduce two heads: symbol vector head and

geometric primitive vector head. Specifically, each head functions as extracting the

feature embedding (embfeat) and spatial embedding (embspat). The feature embedding

is computed from the cropped feature map, which is determined by either the bound-

ing box or the segmentation mask. Moreover, where symbols and geometric primitives

are placed significantly shapes how they relate. For instance, only points lying on a line

can hold the geometric relation with that particular line. Thus, we hypothesise that

incorporating spatial information of S and G can enhance the accuracy of predictions

about geometric relations. Consequently, we embed the bounding boxes of symbols and

the coordinates of the geometric primitives into the spatial embedding.

6.2.2.1 Constructing the feature embedding

To obtain the feature embedding (embs,gfeat) and spatial embedding (embs,gspat) for symbol

s or geometric primitive g, we conduct the below calculation:

embs,gfeat = ReLU(Ws,g
featV

s,g) (6.1)

where Ws,g
feat ∈ Rh×h are trainable parameters for either symbols or geometric prim-

itives. Next, we elaborate the calculation process of Vs,g for symbols and geometric

primitives separately.

1The knowledge of FCOS and GSM models are not this thesis’s work, however, they are the founda-
tional knowledge required for understanding this Section. Therefore, we put them in the Appendix D.1.
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To obtain the Vs for symbol s, we utilise RoIAlign [193] on its feature map, based

on the bounding box of symbol s:

Vs = F(ReLU(BN(Conv(RoIAlign(boxs, feat mapi))))) (6.2)

where i refers to the i-th layer of feature maps where the bounding box (boxs) is calcu-

lated from. The Conv is the convolution layer with 64 channels, BN is the BatchNorm

layer, and ReLU is the ReLU activation layer. The Fmeans flatten operation, indicating

that the Vs is further flatten into a vector and used for obtaining the feature embedding

embsfeat for symbol s through Eq 6.1.

To obtain the Vg for geometric primitive g, we perform an element-wise multi-

plication between the segmentation mask (maskg) of g and the P2 layer of feature

map (feat map2). Next, we flatten the resulting vector along the height and width

dimensions and apply global average pooling to obtain the Vg:

Vg = AvgPool(F(maskg × feat map2)) (6.3)

The Vg is used for calculating the feature embedding embgfeat for geometric primitive g

through Eq 6.1.

6.2.2.2 Constructing the spatial embedding

The spatial embedding is obtained by mapping the spatial information of symbols

and geometric primitives into embeddings. Specifically, for symbol s, we map the

coordinates of its bounding box into an embedding using the trainable parameters

Ws
spat ∈ Rh×4. Specifically, embsspat =Ws

spat [xt, yt, xb, yb]
⊤, where (xt, yt) represent the

coordinates of the top-left corner of the bounding box, and (xb, yb) is the coordinates

of the bottom-right corner of the bounding box.

Next, to obtain the spatial embedding of a geometric primitive g, we start by repre-

senting coordinates of g using locg. The format of locg depends on the class type (clsg)

of the geometric primitive: for a point, it contains two numbers (ng = 2) representing

its coordinates; for a line, it contains four numbers (ng = 4) representing the coordi-

nates of its start and end points; and for a circle, it contains three numbers (ng = 3)
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representing the coordinates of its centre point and the radius length. We then map

locg into spatial embedding by calculating embgspat = ReLU(Wg
spat(W

g
loclocg)), where

Wg
loc ∈ Rh×ng are different trainable parameters for different clsg, and Wg

spat ∈ Rh×h

are trainable parameters.

To help the model differentiate between different types of geometric primitives, we

introduce the geo type embedding (embgtype) to capture the semantic information of the

geometric primitive. The embgtype is obtained by performing a lookup operation on the

embeddings using the class type (clsg) of g from the list of geometric primitive types

[P,L,C]. Specifically, embgtype = embedding(clsg), where clsg is the class type ID of g.

6.2.2.3 Symbol Vector and Geometric Primitive Vector

The vector representation vecs∈S of symbol s is obtained by passing concatenated

embsfeat and embsspat through a specific feed-forward neural network:

vecs∈S = ReLU(Ws
vec [embsfeat : embsspat ]

⊤) (6.4)

where Ws
vec ∈ Rh×2h are the trainable parameters depending on the class type (clss)

of symbol s, and [:] refers to concatenation operation.

The vector representation of the geometric primitive vecg∈G is obtained by sum-

ming up three embeddings relevant to the geometric primitive g, embgfeat , embgspat , and

embgtype :

vecg∈G = ReLU(Wg
vec(embgfeat + embgspat + embgtype)) (6.5)

where Wg
vec ∈ Rh×h are the trainable parameters.

6.2.3 Relation Construction Head

The relation-construction head aims to establish sym2geo relations among symbols and

geometric primitives and geo2geo relations among geometric primitives themselves.
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6.2.3.1 sym2geo relation

The sym2geo relation can be further divided into text2geo and other2geo relations. The

text2geo relation explains the association between text symbols and geometric prim-

itives, where the text symbols are used to be the reference to a geometric primitive

or to display degree, length, etc. To distinguish the role of a text symbol, we intro-

duce the text class for the text symbol. Specifically, when text class is category 0 , the

text2geo signifies point (or line, or circle) names; when text class is category 1 , the

text2geo corresponds to angle degrees; when text class is category 2 , the text2geo sig-

nifies line lengths; when text class is category 3 , the text2geo denotes the degree of an

angle within a circle. The probabilities of the category (P (text class|s)) of text symbol

(s ∈ {S|clss = “text”}) is defined as:

P = softmax(Wsym2geo
text classReLU(Wsym2geo

1 vecs)) (6.6)

where Wsym2geo
1 ∈ Rh×h and Wsym2geo

text class ∈ R4×h, both are the trainable parameters.

The other2geo relation captures relations between non-text symbols (s ∈ {S|clss ̸=

“text”}) and geometric primitives. The non-text symbols are used to find out the

relations among geometric primitives, such as angles of same degree, lines of same

length, parallel lines, and perpendicular lines. For instance, in Figure 6.1, the symbol

enclosed in a red rectangle signifies the parallel relation.

To establish the sym2geo relation between symbol s and geometric primitive g,

we begin by utilising the corresponding symbol head to transform the vector of the

geometric primitive: v̂ecg=ReLU(Wsym2geo
s1 vecg), whereWsym2geo

s1 ∈ Rh×h are trainable

parameters that vary depending on different class types (clss) of symbols. Finally,

we calculate the probabilities of the existence of the relation between symbol s and

geometric primitive g as follows:

O1 =ReLU(Wsym2geo
2 [vecs : v̂ec

g∈{sub}
])

P (relsym2geo
s,g |s, g) = sigmoid(Wsym2geo

rel O1)
(6.7)

where Wsym2geo
2 ∈ Rh×2h and Wsym2geo

rel ∈ R1×h are the trainable parameters. Worth

mentioning, that each type of symbol, including the additional four categories of the
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text symbol, has its ownWsym2geo
2 . Additionally, {sub} refers to the subset of geometric

primitives, as certain symbols can only have relations with specific geometric primitives.

6.2.3.2 geo2geo relation

Previous work tend to provide only sym2geo relations. However, despite the sym2geo

relation can provide geometric relations among geometric primitives like parallel, per-

pendicular, etc. We hypothesise that providing additional information that describes

all the geometric primitives from the diagrams is beneficial for the task. Moreover,

we tackle the issue concerning the absence of references to geometric primitives in the

diagram. For example, in Figure 6.1, the original diagram lacks a reference to the line,

where sym2geo relation cannot address. To overcome this limitation, we have devised

an automated approach that assigns appropriate references to the geometric primi-

tives using the format “clsg + num” (e.g., “L1, L2, L3, L4” in purple in Figure 6.1).

This enables the relation-construction module to (1) present a detailed depiction of

the diagram by describing the geo2geo relations, even in the absence of a single ref-

erence, and (2) generate all sym2geo relations, even when some geometric primitives

lack references. The geo2geo relations are categorised according to the involved geo-

metric primitives: (1) Point and Line: “on-a-line” and “end-point”. The “on-a-line”

relation occurs when a point lies between the tail and the head of the line. Specifically,

a point lying at either the head or the tail of the line is the “end-point”, which is

the special case of “on-a-line”. (2) Point and Circle: “centre-point” and “on-a-circle.”

The “centre-point” relation refers to a point being the centre point of the circle. The

“on-a-circle” relation occurs when a point lies on the arc of the circle. Finally, the

probabilities (P (relgeo2geogi,gj |gi, gj)) of the relations between geometric primitives gi and

gj can be calculated as follows:

P = softmax(Wgeo2geo
rel ReLU(Wgeo2geo

1 (vecgi + vecgj ))) (6.8)

where Wgeo2geo
1 ∈ Rh×h and Wgeo2geo

rel ∈ R3×h are the trainable parameters (the number

3 refers to “no relation” and two relations from either Point and Line or Point and

Circle).
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6.2.4 Problem-Solving Module

Both the sym2geo and geo2geo relations are expressed in natural languages by the

GOLD model, following the same format as the problem text T relations to natural

language descriptions.2 Therefore, it is convenient to utilise the LLMs as the problem-

solving module. Specifically, the problem text T and the natural language descriptions

L are concatenated for the LLMs to generate the solution program P. To illustrate

the compatibility of our methods with LLMs, we employ three well-known models for

problem-solving: T5-base [87], Llama2-13b-chat [75], and CodeLlama-13b [225]. The

T5-base model is fine-tuned for the target solution programs. Conversely, for Llama2-

13b-chat and CodeLlama-13b, we employ directive instructions to guide their solution

generation process.3

6.2.5 Training Objective

Given a dataset of geometry maths problems. The training process begins with training

the pre-parsing module to extract necessary features from the geometric diagrams.

Following this, we focus on training three components: the symbol vector head, the

geometric primitive vector head, and the relation-construction head. This training is

guided by minimising a joint loss function, which is defined as Lcons=Lg2g+Lt cls+Ls2g .

The Lg2g loss represents the negative log-likelihood loss for accurately identifying the

ground truth geo2geo relations. Meanwhile, the Lt cls constitutes the negative log-

likelihood loss for correctly categorising the text symbols. Lastly, the Ls2g loss is the

binary cross-entropy loss associated with the ground truth sym2geo relations. Once

they are trained, and their parameters are fixed, we advance to the final stage of fine-

tuning the problem-solving module.4 During this stage, our objective is to minimise

the Lprog loss, which is the negative log-likelihood loss for correct solution programs

The Lg2g is defined as the negative log-likelihood loss, where we aim to minimise

2Please see Appendix D.2 for the defined paradigm used to convert geo2geo and sym2geo relations
to natural language descriptions.

3Please see Appendix D.3 for the instruction choice.
4Note that the fine-tuning step is only implemented when T5-base is used as the problem-solving

module.
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the negative log-likelihood of the ground truth relations among geometric primitives:

Lg2g = −
∑
gi∈P

∑
gj∈L,C

log(P (relgeo2geogi,gj |gi, gj)) (6.9)

where gi is a geometric primitive belonging to points, and gj is a geometric primitive

belonging to lines and circles. The relgeo2geogi,gj refers to the ground truth relation between

gi and gj .

The Lt cls is defined as the negative log-likelihood loss, where we aim to minimise

the negative log-likelihood of the ground truth text class of the text symbol:

Lt cls =−
∑
S

log(P (text classs|s)) (6.10)

where text classs is the ground truth text class of the symbol s.

The Ls2g is the binary cross-entropy loss:

Ls2g=−
∑
s∈S

∑
g∈G
{I(s, g)× log(P (relsym2geo

s,g |s, g))

+ (1− I(s, g))× (1− log(P (relsym2geo
s,g |s, g)}

(6.11)

where I(s, g) is 1 if there is relation between symbol s and geometric primitive g,

otherwise it is 0.

The Lprog is defined as the negative log-likelihood loss, where we aim to minimise

the negative log-likelihood of the tokens of the ground truth solution programs:

Lprog =−
∑
i

log(P (ti|t<i)) (6.12)

where i is the i-th token in the ground truth solution program.

6.2.6 Inference Stage

During the inference stage, we employ Eq 6.4 and Eq 6.5 to map symbols s ∈ S and

geometric primitives g ∈ G to corresponding vectors vecs∈S and vecg∈G , respectively.

Following this, we proceed with the inference of sym2geo and geo2geo relations.

6.2.6.1 Predict sym2geo Relation

For a text symbol s ∈ {S|clss = “text”}, it is necessary to determine its meaning

based on its text class. To accomplish this, we assign the category of text symbol
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s ∈ {S|clss = “text”} as the one with the highest probability among the P (text class|s)

values, as specified in Eq 6.6:

text classs = argmaxP (text class|s) (6.13)

• if text classs is 0 (i.e., category 0 ), it indicates that the symbol s corresponds

to the reference name of a point, or a line, or a circle. In this case, we assign

the symbol s to the geometric primitive g that has the highest probability of

P (relsym2geo
s∈{S|clss=“text”},g∈{P,L,C}|s, g), where g ∈ {P,L,C} specifies that the geo-

metric primitive g belongs to the set of points, lines, and circles:

g = argmaxP (relsym2geo
s∈{S|clss=“text”},g∈{P,L,C}|s, g) (6.14)

• if text classs is 1 (i.e., category 1 ), it indicates that the symbol s represents the

degree of an angle. Since an angle consists of two lines and one point, we select the

point with the highest probability P (relsym2geo
s∈{S|clss=“text”},g∈{P}|s, g), and we select

the two lines with the top two highest probabilities P (relsym2geo
s∈{S|clss=“text”},g∈{L}|s, g).

It is worth mentioning these two lines must have geo2geo relations of “end-point”

or “on-a-line” with the selected point.

p = argmaxP (relsym2geo
s∈{S|clss=“text”},g∈{P}|s, g)

l1, l2 = argmaxtwoP (relsym2geo
s∈{S|clss=“text”},g∈{L}|s, g),

where rel l1,p ∈ {“end-point”‘, “on-a-line”} and

rel l2,p ∈ {“end-point”‘, “on-a-line”}

(6.15)

• if text classs is 2 (i.e., category 2 ), it indicates that the symbol s represents the

length of a line. Since a line consists of two points, we select the points with the

top two highest probabilities P (relsym2geo
s∈{S|clss=“text”},g∈{P}|s, g):

p1, p2 = argmaxtwoP (relsym2geo
s∈{S|clss=“text”},g∈{P}|s, g) (6.16)

• if text classs is 3 (i.e., category 3 ), it indicates that the symbol s represents the

degree of an angle on the circle. In this case, the angle is formed by the centre

point of a circle and two points lying on the arc of a circle. Therefore, we first
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select the circle with the highest probability of P (relsym2geo
s∈{S|clss=“text”},g∈{C}|s, g).

Subsequently, we select two points with the top two highest probabilities, which

are P (relsym2geo
s∈{S|clss=“text”},g∈{P}|s, g). Worth mentioning, these two points must be

on the arc of the selected circle:

c = argmaxP (relsym2geo
s∈{S|clss=“text”},g∈{C}|s, g)

p1, p2 = argmaxtwoP (relsym2geo
s∈{S|clss=“text”},g∈{P}|s, g),

where relp1,c = relp2,c = “on-a-circle”

(6.17)

For the geometric relations among geometric primitives, such as parallel. It is

determined by the other2geo relation. For the other2geo relation involving other sym-

bols, it is required that the relation holds with at least two geometric primitives.

This means that there should be at least two geometric primitives with probabilities

P (relsym2geo
s,g |s, g) larger than a threshold θ. In this case, the geometric primitives are

selected based on this criterion.

{gindices} = sorted(P (relsym2geo
s∈{S|clss ̸=“text”},g∈{P,L,C}|s, g)) > θ

gselected = G[{gindices}]
(6.18)

where “sorted” indicates that values are sorted in descending order, and [] refers to

the selection from the geometric primitives group G according to the indices {gindices}.

The threshold θ is set as 0.5 experimentally.

6.2.6.2 Predict geo2geo Relation

The geo2geo relation between geometric primitives gi and gj is determined based on

Eq 6.8, where it is assigned as the relation with the highest probability:

relgi,gj∈G = argmaxP (relgeo2geogi,gj |gi, gj) (6.19)

In an ideal scenario, the OCR results would accurately provide references to the

points, lines, and circles, allowing us to extract precise information about the geometric

primitives. However, the open-source OCR tool5 we have adopted is not accurate.

As a result, some primitives may lack reference names. To address this issue, we

5https://github.com/JaidedAI/EasyOCR
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automatically label the primitives in sequential order (e.g., “P1, P2, L1, L2”) if their

reference names are missing.

6.2.6.3 Generate Solution Program

Once the geo2geo and sym2geo relations are constructed, we proceed to convert them

into natural language descriptions L. We then concatenate the natural language de-

scriptions L with the problem text T . This combined text is passed to the problem-

solving module, which employs BeamSearch with a beam size of 10 to generate the

solution program P. Moreover, when using larger LLMs, such as Llama2, we add in-

structions in front of the concatenation of L and T , which is further sent to LLMs to

generate reasoning process.

6.3 Experimental Setup

Our method was implemented using the PyTorch [203] and HuggingFace [204] libraries.

For the pre-parsing module, we followed the training and parameter settings of the

previous work [183]. We evaluated the dimensions of the embeddings over a range

of {32, 64, 128}, and based on the model’s performance in the validation set, we

experimentally determined 64 as the optimal dimension size for the embeddings. We

utilised the Adam optimiser with a learning rate of 1e−4 and weight decay of 1e−4 for

training all modules. The symbol vector head, geometric primitive vector head, and

relation-construction head were trained end-to-end for 50 epochs with a batch size of

20, while the problem-solving module (using T5-base) was fine-tuned for 30 epochs with

a batch size of 10. All experiments were conducted on one NVIDIA A100 80GB GPU.

6.3.1 Datasets

Our experiments are conducted on three datasets: UniGeo [1], PGPS9K [5], and Ge-

ometry3K [60]. The UniGeo dataset comprises 14,541 problems, categorized into 4,998

calculation problems (CAL) and 9,543 proving problems (PRV), which are split into

train, validate, and test subsets in a ratio of 7.0: 1.5: 1.5. The Geometry3K includes

130



Chapter 6. GOLD: Geometry Problem Solvers with Natural Language Description

3,002 problems, divided into train, validate, and test subsets following a 7.0: 1.0: 2.0

ratio. Since PGPS9K contains a partial Geometry3K dataset, we keep an exclusive set

of 6,131 problems, of which 1000 problems are a test subset. Due to the absence of

a validation subset in PGPS9K, we divide its training set to create a train-validation

split in a 9.0: 1.0 ratio.

6.3.2 Evaluation Metrics

To compare against existing works, we adhere to the evaluation criteria from the original

datasets for both our model and the baselines. For the UniGeo dataset, we utilise the

top-10 accuracy metric, which measures the ratio of correct solution programs among

the top ten predictions, aligning with the metric used by the authors of the UniGeo

dataset. For the PGPS9K and Geometry3K datasets, we adopt a stricter metric, the

top-3 accuracy, as recommended by the authors of the PGPS9K dataset. Note that our

comparison involves matching the predicted solution program with the ground truth,

which is more rigorous than merely comparing the numerical output derived from the

solution program.6

6.4 Results and Discussions

6.4.1 Comparison with State-of-the-art Models (RQ-6.1)

We evaluate the performance of our GOLD model (using T5-base as its problem-solving

module) against state-of-the-art (SOTA) methods in solving geometry math problems.

The selected baselines for this comparison include: 1. PGSPNet [5]: it integrates

a combination of CNN and GRU encoders, which generate an encoded vector of the

diagram that serves as the input aligning with the logic form to the solver module.

2. Inter-GPS [60]: it parses both the problem text and the diagram into a formal

language, subsequently feeding this into the solver. 3. Geoformer [1]: it utilises the

6This is grounded in the principle that a correct output can sometimes be produced by an incorrect
solution program, indicating a failure in the model’s understanding of the problem. For example,
consider a problem where the correct answer is “5” and the correct program is “2 × 3 - 1”. An incorrect
program like “2 + 3” could still yield the correct output. Thus, generating the correct program is a
more reliable indicator of the model’s accurate problem comprehension.
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Models UniGeo CAL Test (%) UniGeo Prv Test (%) PGPS9K Test (%) Geometry3K Test (%)

BERT2Prog 54.7† 48.0† - -

NGS 56.9† 53.2† 34.1‡ 35.3‡
Geoformer 62.5† 56.4† 35.6‡ 36.8‡

InterGPS 56.8 47.2 38.3 48.6

InterGPS (GT) n/a n/a 59.8‡ 64.2‡
PGPSNet 53.2 42.3 58.8 59.5

PGPSNet (GT) n/a n/a 62.7‡ 65.0‡

GAPS (Chapter 5) 68.5 97.2 37.2♢ 38.0♢

GOLD 75.2 98.5 60.6 62.7

GOLD (GT) n/a n/a 65.8 69.1

Table 6.1: Comparison results on the test subsets of chosen datasets. PGPSNet re-
ported models’ performances using the ground truth diagram annotations, where these
models have “(GT)” behind them. We re-implemented these methods to get perfor-
mances without GT annotations. Note that UniGeo lacks GT diagram annotations,
so relevant cells are “n/a”. “†” and “‡” indicates the results are from [1] and [5], re-
spectively. The performance of GAPS on the PGPS9K Test and Geometry 3K Test
datasets, indicated by “♢” is evaluated using top-3 accuracy, the same metric employed
by other models.

VL-T5 model for the purpose of diagram encoding, then servers encoded embeddings

to the transformer. 4. NGS [11]: it uses the ResNet-101 for its encoding process,

showcasing a different approach in handling the diagram encoding. 5. Bert2Prog [11]:

it leverages BERT and ResNet as encoders and an LSTM network for generating. 6.

GAPS: the model introduced in Chapter 5.

The results presented in Table 6.1 demonstrate that our GOLD model outperforms

baselines across test subsets of all datasets. Specifically, when compared to Geoformer,

our model exhibits a remarkable increase in accuracy: 12.7% on the UniGeo CAL and

42.1% on the UniGeo PRV. Compared to the SOTA model on PGPS9K and Geome-

try3K datasets, PGPSNet, the GOLD model surpasses it by 1.8% and 3.2% in accuracy,

respectively. When using ground truth diagram annotations, the GOLD (GT) shows

a improvement in accuracy on the PGPS9K and Geometry3K, with gains of 3.1% and

4.1% over PGPSNet (GT). Against InterGPS (GT), the improvements are at 6.0% and

4.9%, respectively. These results underline the effectiveness of the GOLD model in

solving geometry maths problems.

When compared to the GAPS model as detailed in Chapter 5, the GOLD model

consistently demonstrates better performance across all evaluated subsets.7 Specifically,

7Please note that GAPS performances on PGPS9K test and Geometry3K test are reported in Top-3
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the GOLD model exceeds the performance of the GAPS model by 6.7% on the UniGeo

CAL subset and by 1.3% on the Prv test subset. The margins of improvement are

even more pronounced in the PGPS9K and Geometry3K test subsets, underscoring the

robustness of the GOLD model compared to the GAPS model.

Moreover, our GOLD model distinguishes itself from approaches like InterGPS and

PGPSNet, which rely on logic-form representations to describe diagrams. In contrast,

GOLD inputs natural language descriptions to LLMs to generate solution programs.

Using natural language leads to improvements across all datasets compared to InterGPS

and PGPSNet, as evidenced in Table 6.1. Furthermore, models like Geoformer and

NGS primarily encode diagrams into vectors. These approaches fall short in providing

precise descriptions of the diagrams and limit the adoption of LLMs, thus leading to

worse performances compared to our GOLD model. This highlights the importance of

detailed and accurate diagram representations for tackling geometry maths problems,

where our GOLD model excels.

Worth mentioning is that the training for the symbol vector head, geometric prim-

itive vector head, and relation-construction head of the GOLD model was exclusively

conducted on the PGPS9K and Geometry datasets due to the lack of annotations in

the UniGeo dataset. Despite this, the outstanding performance of the GOLD model

on the test subset of UniGeo, as shown in Table 6.1, demonstrates its exceptional

generalisation capability.

6.4.2 Ablation Study on Natural Language Description (RQ-6.2)

We assess our model’s efficacy using three distinct diagram description formats: absence

of diagram description, logic forms, and natural language descriptions. The compara-

tive results are detailed in Table 6.2. When fine-tuning T5-base as the problem-solving

module, Table 6.2 indicates that descriptions in natural language outperform those

in logic-form, with 3.1% and 3.4% improvements on the test subsets of PGPS9K and

Geometry3K, respectively.

Conversely, when using Llama2-13b-chat (Llama2) and CodeLlama-13b (CodeL-

accuracy, therefore the accuracy scores are worse than reported in Table 5.4.
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PGPS9K Geometry3K

n/a LF NLD n/a LF NLD

T5-base
22.3

± 0.0

57.5

± 0.3

60.6

± 0.3

12.3

± 0.0

59.3

± 0.5

62.7

± 0.2

Llama2-13b-chat
5.2

± 0.0

33.5

± 0.4

39.6

± 0.2

2.3

± 0.0

31.8

± 0.3

40.1

± 0.4

CodeLlama-13b
3.2

± 0.0

15.8

± 0.0

16.2

± 0.0

2.0

± 0.0

14.6

± 0.0

15.1

± 0.0

Table 6.2: Evaluation of the GOLD model on two datasets with no description (n/a),
logic-forms (LF), and natural language descriptions (NLD). Both the mean and stan-
dard errors of the accuracy metrics are presented.

lama) as the problem-solving module, we implement instructions to guide the genera-

tion of answers. Since their generations differ from the ground truth, we opt to calculate

the accuracy of choosing the correct option from given candidates. According to Ta-

ble 6.2, using natural language descriptions enhances the accuracy of the Llama2 model

compared to using logic forms, demonstrating the greater compatibility of our natural

language descriptions with models like Llama2. However, neither natural language de-

scriptions nor logic forms yield satisfactory outcomes with CodeLlama, possibly due to

a mismatch between the training corpus of CodeLlama and the description formats.

Lastly, we conduct experiments by excluding relevant modules used to generate

the natural language descriptions and solely inputting the problem text T into the

problem-solving module. The results in Table 6.2 show a substantial decline in the

performance of the GOLD model across all selected LLMs, highlighting the importance

of diagram descriptions provided by relevant modules of the GOLD model in solving

geometry maths problems.

6.4.3 GOLD’s Performance on GeoEval Benchmark

Table 6.3 presents the top-10 accuracy achieved by the GOLD model on the GeoEval

benchmark, introduced in Chapter 4. Note that we report the execution accuracy as no

golden solution program provided by the GeoEval benchmark. We evaluate two variants

of the GOLD model, as described in Section 6.4.2. The first variant, GOLD (T5), uses

134



Chapter 6. GOLD: Geometry Problem Solvers with Natural Language Description

GeoEval Benchmark

GeoEval-2000 † GeoEval-backward GeoEval-aug † GeoEval-hard

GOLD (T5) 62.3 6.8 ‡ 40.1 0.0

GOLD (Llama2) 27.6 12.0 ‡ 25.2 0.0

Table 6.3: The top-10 accuracy (%) of GOLD model achieved on GeoEval bench-
mark. The † denotes that GOLD was evaluated on partial subsets of GeoEval-2000 and
GeoEval-aug, as it can only solve geometry math problems with available diagrams.
Approximately 62% of problems in the GeoEval-2000 and GeoEval-aug subsets contain
diagrams, sourced from the PGPS9K, UniGeo, GeoQA+, and Geometry3K datasets.
The ‡ symbol indicates that GOLD utilizes only the problem text from the GeoEval-
backward subset as input, since no corresponding geometric diagrams are available for
that subset.

a fine-tuned T5-base as the problem-solving module, while the second variant, GOLD

(Llama2), adapts the Llama2-13b-chat model directly as the problem-solving module.

It is important to note that the GeoEval-backward subset does not have corresponding

geometric diagrams, as these problems were created by reversing the original problems.

To prevent the GOLD model from parsing the masked conditions directly from the

original diagrams, we solely provide the problem texts as input when evaluating the

model on the GeoEval-backward subset.

The results presented in Table 6.3 show that the GOLD (T5) model achieves a

reasonable accuracy of 62.3% on the GeoEval-2000 subset. This performance can be

attributed to the fact that a significant portion of the problems in the selected GeoEval-

2000 subset are sourced from the UniGeo, PGPS9K, and Geometry3K datasets, which

were used to train the GOLD (T5) model. Therefore, the model’s familiarity with the

problem types and linguistic patterns present in these datasets likely contributed to its

proficiency on the GeoEval-2000 subset.

However, a notable observation is the substantial drop in GOLD’s performance

on the GeoEval-aug subset, where its accuracy decreases from 62.3% to 40.1%. This

decline reveals a limitation in the model’s ability to generalize effectively to problems

with semantic diversity that deviates from its training corpus. Despite being rephrased

versions of the original problems, the variations in linguistic expressions and problem

formulations in the GeoEval-aug subset pose a challenge for the GOLD (T5) model,
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indicating its sensitivity to semantic divergences from its training data.

The results in Table 6.3 reveal that the GOLD (T5) model struggles with the

GeoEval-backward subset, achieving a relatively low performance, with 6.8% accuracy.

This limitation might stem from the model’s lack of explicit training on backward rea-

soning tasks during the training stage. Backward reasoning, which involves working

backwards from the given result to derive the masked conditions, is a crucial skill for

solving geometric problems that require reversing the logical flow of problem-solving

steps. Without dedicated training on this specific type of reasoning, the GOLD (T5)

model may find it challenging to tackle problems in the GeoEval-backward subset ef-

fectively.

Furthermore, Table 6.3 shows that the GOLD (T5) model is unable to resolve

problems in the GeoEval-hard subset. This limitation can be attributed to the model’s

inability to parse geometric diagrams involving solid geometry and analytic geome-

try concepts. These advanced geometric domains require specialized knowledge and

problem-solving techniques that were not been represented in the model’s training

data. Consequently, the incorrect pre-parsing results obtained for these types of geo-

metric diagrams ultimately harm the overall problem-solving accuracy of the GOLD

(T5) model on the GeoEval-hard subset.

In addition, the results presented in Table 6.3 reveal that the GOLD (Llama2)

model underperforms compared to the GOLD (T5) model on the GeoEval-2000 and

GeoEval-aug subsets. This observation aligns with the conclusions drawn from Ta-

ble 6.2, suggesting that the fine-tuning problem-solving module to generate solution

program exhibits stronger performance than using instruction to guide LLMs to gen-

erate the reasoning process.

However, an interesting finding is that the GOLD (Llama2) model outperforms

the GOLD (T5) model on the GeoEval-backward subset. This superior performance

demonstrates that adopting the Llama 2 model as the problem-solving module, which

leverages an instruction-based approach, can enhance the model’s ability to resolve

backward reasoning problems. In contrast, fine-tuning the T5 model appears to limit

its performance on solving problems that require backward reasoning, potentially due
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to the model’s training focus on forward reasoning tasks.

Furthermore, the results indicate that the performance gap (27.6% vs. 25.2%)

between the GOLD (Llama2) model on the GeoEval-2000 and GeoEval-aug subsets

is smaller than the gap (62.3% vs. 40.1%) observed for the GOLD (T5) model on

these subsets. This finding suggests that the Llama2 model exhibits greater robustness

to semantic diversity, as it is less affected by the linguistic variations present in the

GeoEval-aug subset compared to the GOLD (T5) model. These observations highlight

the potential benefits of leveraging instruction-based models like Llama2 for geometric

problem-solving tasks. Such models may be better equipped to handle diverse reason-

ing requirements, including backward reasoning, while also demonstrating increased

robustness to semantic variations in problem formulations.

The results also reveal that the GOLD (Llama2) model struggles with problems

from the GeoEval-hard subset, similar to the GOLD (T5) model. This limitation can

be attributed to the pre-parsing module of the GOLD framework, which is unable to

accurately parse geometric diagrams involving solid geometry and analytic geometry

concepts. Consequently, without correct descriptions of the geometric diagrams asso-

ciated with these problems, it becomes extremely challenging for any problem-solving

module, regardless of fine-tuned T5 or instruction-based Llama2, to accurately solve the

problems. The pre-parsing module’s failure to accurately interpret and represent the

geometric concepts in these diagrams ultimately hinders the problem-solving module’s

ability to reason about the problem effectively.

6.4.4 Accuracy of the Extraction of geo2geo and sym2geo Relations

(RQ-6.3)

Our analysis in Table 6.4 and measured by F1 metric, evaluates the accuracy of ex-

tracting geometric relations with and without embfeat and embspat on PGPS9K test

subset. We note that the pre-parsing stage achieves a high F1-score of 98.9%, en-

suring accurate identification of symbols and geometric primitives for sym2geo and

geo2geo relations extraction. However, when directly using Vs,g as vectors of symbols

and geometric primitives (only using feature outputs from the pre-parsing step), the
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absence of embfeat and embspat leads to a notable decrease in performance for both

relations extraction. Conversely, the inclusion of either embfeat and embspat results in

improved performance. Table 6.4 further reveals that the extraction of both relation

types reaches its highest F1-score when both embeddings are utilised. These results

highlight the advantages of our approach in separately modelling symbols and geomet-

ric primitives, which proves to be more efficient in addressing the relation extraction

of geometry maths problems.

embfeat embspat pre-parsing geo2geo sym2geo

98.9 65.2 ± 0.1 58.6 ± 0.1

✓ 98.9 79.8 ± 0.3 75.6 ± 0.5

✓ 98.9 80.6 ± 0.4 71.1 ± 0.2

✓ ✓ 98.9 93.7 ± 0.2 77.3 ± 0.1

Table 6.4: The check mark (✓) indicates that the corresponding embedding is enabled.
Note that “pre-parsing” is not influenced by embfeat and embspat . Both the mean and
standard errors of the accuracy metrics are presented.

6.4.5 Influence of feature embedding and spatial embedding on Ge-

ometry Problem Solving (RQ-6.4)

We conduct ablation study on feature embedding and spatial embedding in Table 6.5.

To discard the use of (embfeat and embspat), we directly use feature outputs from the

pre-parsing step as vectors of symbols and geometric primitives, i.e., Vs,g, to construct

the sym2geo and geo2geo relations. We can observe that the GOLD model without

any embedding performs the worst on all test subsets. However, when either one of

embeddings (embfeat or embspat) is added, the model’s performance improves. Notably,

the model equipped with both embeddings achieves the best performance.

6.4.6 Usefulness of the Additional geo2geo Relation (RQ-6.5)

Table 6.4 shows that the GOLD model accurately captures geo2geo relation, prompt-

ing us to investigate its impact on solving geometry math problems. The bar chart

in Figure 6.2 indicates a notable decline in model performance on the PGPS9K and
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embfeat embspat CAL PRV PGPS9K Geometry3K

66.2

± 0.3

90.2

± 0.2

48.2

± 0.5

50.2

± 0.3

✓
71.5

± 0.3

93.2

± 0.4

55.0

± 0.1

58.1

± 0.1

✓
72.8

± 0.2

93.0

± 0.3

56.3

± 0.1

58.0

± 0.2

✓ ✓
75.2

± 0.3

98.5

± 0.5

60.6

± 0.3

62.7

± 0.2

Table 6.5: Program accuracy with or without feature embedding and spatial embedding.
The check mark (✓) indicates that the corresponding embedding is enabled. T5-base is
used as the problem-solving module for the GOLD model. Both the mean and standard
errors of the accuracy metrics are presented.

Figure 6.2: Top-left: the performance of the GOLD (using T5-base) with (w) and
without (w/o) the geo2geo. Top-right: Geometry maths problem. Bottom: Predicted
diagram description with and without the geo2geo. The same text between (w) and
(w/o) is omitted for space consideration, where the red text is geo2geo relations.
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Geometry3K datasets when geo2geo relations are omitted. However, this trend is less

pronounced on the UniGeo datasets. This is likely because the PGPS9K and Geome-

try3K datasets often lack descriptions of geometric primitives in their problem texts.

An example from the Geometry3K dataset, illustrated in Figure 6.2, demonstrates

this issue: the problem text typically poses a question (e.g., “Find X”) without ex-

tra information. Consequently, relying only on sym2geo relations leads to insufficient

representation of essential diagram details.

6.5 Chapter Summary

This chapter addresses the challenge highlighted in Chapter 5, which emphasized the

difficulties in accurately encoding and interpreting geometric diagrams when processing

them alongside text. This chapter states that using natural language descriptions for

geometric diagrams can provide accurate and comprehensible representations, bridging

the gap between textual and visual information. Specifically, we introduced the GOLD

model for automated geometry math problem-solving. GOLD uniquely converts geo-

metric diagrams into natural language descriptions, facilitating direct integration with

LLMs for problem-solving. A key feature of the GOLD model is its ability to separately

handle symbols and geometric primitives, simplifying the establishment of relations be-

tween symbols and geometric primitives and among geometric primitives themselves.

To validate the statement, we assessed the effectiveness of GOLD relative to current

state-of-the-art methods in Section 6.4.1. This comparison, conducted using the Uni-

Geo CAL, PRV, PGPS9K, and Geometry3K datasets, demonstrated GOLD’s superior

performance, addressing Research Question RQ-6.1.

In Section 6.4.2, we explored research question RQ-6.2 by comparing the per-

formance of the GOLD model using three distinct diagram description formats: no

diagram description, logic forms, and natural language descriptions. Results, displayed

in Table 6.2, indicate that natural language descriptions outperform logic forms across

three LLMs: T5, Llama2, and CodeLlama.

To address research questions RQ-6.3 and RQ-6.4, we conducted ablation studies.

As shown in Table 6.4 in Section 6.4.4, the highest F1-score for extracting relation
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types was achieved when both feature and spatial embeddings (embfeat and embspat)

were utilized. Furthermore, in Section 6.4.5, we demonstrated that the GOLD model

using both embeddings performed best on all test subsets.

We further addressed research question RQ-6.5 in Section 6.4.6. As illustrated in

Figure 6.2, the absence of the geo2geo relation impacted GOLD’s performance, confirm-

ing the critical role of the geo2geo relation in conveying essential details of geometric

diagrams.

This work lays a foundation for future research on utilizing large language models

to solve geometry math problems using natural language descriptions. Consequently,

in Chapter 7, we investigate the impact of supplementing geometric diagrams with

textual descriptions on the geometry math problem-solving performance of LLMs and

MMs.
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Chapter 7

Evaluating LLMs and

Multi-Modal Models on

Geometry Problem-Solving

In Chapter 6, we demonstrated that converting geometric diagrams into natural lan-

guage descriptions seamlessly merges with the textual description of the problem. This

conversion not only facilitates integration but also opens up the possibility of utilis-

ing large language models (LLMs) as generators for reasoning programs, which could

enhance both interpretability and effectiveness. Such advancements prompt us to inves-

tigate the performance of the latest LLMs and Multi-Modal Models (MMs) in solving

geometry problems. While recent progress in LLMs and MMs has shown their excep-

tional problem-solving abilities, their skill in addressing geometry problems—which re-

quires the understanding of both textual and visual information—remains insufficiently

explored. This chapter is mainly based on my accepted paper “GeoEval: Benchmark

for Evaluating LLMs and Multi-Modal Models on Geometry Problem-Solving” in ACL

2024 Findings.

To address this gap, this Chapter evaluates 9 LLMs and MMs across these var-

ied subsets reveals that the WizardMath model excels, achieving a 55.67% accuracy

rate on the main subset but only a 6.00% accuracy on the challenging subset. This

highlights the critical need for testing models against datasets on which they have not
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been pre-trained. Additionally, our findings indicate that GPT-series models perform

more effectively on problems they have rephrased, suggesting a promising method for

enhancing model capabilities.

This chapter is organised as follows: Section 7.2 conducts a detailed evaluation of

the most recent LLMs and MMs using our GeoEval benchmark. The chapter concludes

with Section 7.3, which offers a recap of the findings and contributions of this chapter.

7.1 Introduction

Rencently, large language models (LLMs) and multi-modal models (MMs) have demon-

strated significant potential in handling complex reasoning tasks [226–228]. This poten-

tial has raised considerable interest in testing these advanced models across a variety of

tasks, such as maths word problem solving [12] and physical problem solving [229]. De-

spite this interest, specific research on evaluating these models’ effectiveness in geometry

problem-solving remains scarce. Therefore, it is critical to develop a new, comprehen-

sive benchmark that can effectively assess LLMs and MMs in geometry problem-solving,

especially considering the potential exposure of existing public datasets during model

training [230]. Comparing the performance of current LLMs and MMs on such a bench-

mark is essential, as it could yield valuable insights that further the development of

models capable of tackling complex reasoning tasks.

This Chapter states that LLMs and MMs underperform on the automated geometry

problem-solving task (See Statement (4) in Section 1.3). To validate this statement, we

conduct extensive experiments using the GeoEval benchmark introduced in Chapter 4

to evaluate the proficiency of nine LLMs and MMs in solving geometry problems.

This includes three LLMs: CodeGen2-16B [231], GPT-3.5 [219], and GPT-4 [76]; two

LLMs specialized in mathematics: WizardMath-70B and WizardMath-7B-V1.1 [232];

and four MMs: llava-7B-V1.5 [233], Qwen-VL [234], mPLUG-Owl2 [235], and GPT-

4V [76]. The findings reveal that GeoEval forms a challenging benchmark, with both

LLMs and MMs struggling to resolve its complexities effectively.

This Chapter investigates the following research questions (RQ) to demonstrate the

statement:
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• RQ-7.1: How do the latest LLMs and MMs perform in geometry problem-solving

tasks, and what does this indicate about their underlying mechanisms of under-

standing and reasoning?

• RQ-7.2: To what extent can training on specialised mathematical corpora im-

prove the performance of models on geometry problem-solving, and what does

this reveal about the role of domain-specific knowledge in AI reasoning?

• RQ-7.3: What is the impact of supplementing geometric diagrams with textual

descriptions on the problem-solving performance of LLMs and MMs, and how do

these descriptions affect the models’ interpretability and accuracy?

• RQ-7.4: How do the latest LLMs and MMs integrate and apply external knowl-

edge in solving complex geometry maths problems, and what methodologies en-

hance their effectiveness in such tasks?

• RQ-7.5: How do variations in the length of problem inputs affect the performance

of the latest LLMs and MMs in geometry problem-solving, and what does this

suggest about the models’ processing and comprehension capabilities?

• RQ-7.6: What is the relationship between the complexity of geometry prob-

lems and the performance of the latest LLMs and MMs, and how can models be

optimised to handle increasingly complex problems?

7.1.1 Contributions

To summarise, the contributions of this chapter are:

1. We conduct comprehensive evaluation of the latest LLMs and MMs, we believe

the evaluation results analysis provide the first comprehensive quantitative assess-

ment of the latest LLMs and MMs in the domain of geometry problem-solving.
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7.2 Evaluating LLMs and MMs on GeoEval benchmark

7.2.1 Experimental Setup

In this chapter, we deliberately select state-of-the-art LLMs and MMs that are widely

recognised for their advanced capabilities, including

• LLMs Specialised in Programming Code: We include CodeGen2-16B model

[231], which is renowned for its proficiency in understanding and generating pro-

gramming code, offering insights into its adaptability to solve geometry maths

problems.

• LLMs with a Focus on Mathematics: This includes WizardMath-7B-V1.1

andWizardMath-70B [232], explicitly pre-trained on mathematical corpora. Their

inclusion allows for an assessment of models that have been fine-tuned to tackle

complex mathematical problems.

• LLMs Designed for a Broad Range of Topics: Models such as GPT-3.5

[219] and GPT-4 [76] exemplify the advanced commercial LLMs engineered to

encompass a broad range of topics.

• Multi-Modal Models (MMs) with Diverse Decoders: Given the ubiquity

of ViT architecture [161] as the vision encoder in MMs, we select models that

integrate ViT with various LLMs as decoders. This includes llava-7B-V1.5 [233]

with Vicuna [236], Qwen-VL [234] using Qwen [237], mPLUG-Owl2 [235] with

LLaMA [75], and GPT-4V [76].

These models are evaluated through a zero-shot approach, utilising straightforward

instruction prompts to directly assess their geometry problem-solving capabilities with-

out further fine-tuning specifically for our benchmark.1

1Details on the hyperparameters used for these models and the prompt design are available in
Appendix E.1 and Appendix E.2.
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7.2.2 Evaluation Metric

Building upon the approach by MathVista [12], we first input the generated sequence

from the model into GPT-4 to extract the target value or option letter. To enhance

the precision of our answer extraction, we formulate intricate rules for post-processing

the outcomes in cases where GPT-4 falls short. This approach has enabled us to

attain an extraction accuracy surpassing 97%, similar to the success rate reported

in MathVista [12]. Details on the crafted prompts and the extraction guidelines are

available in Appendix E.3.

The extracted results are compared against the golden answers to determine the

final performance metric. Given the model’s intention to produce responses in varying

formats, either as the precise answer (for instance, “3.15”) or as the corresponding

option letter (such as “A”), we regard a prediction as accurate if it either matches the

golden answer or the golden option letter.

7.2.3 Experimental Results (RQ-7.1)

GeoEval-2000 GeoEval-backward GeoEval-aug GeoEval-hard

Model A (%) T (%) A (%) A (%) A (%)

CodeGen2-16B ♢ 28.76 22.06 5.10 8.50 5.66

GPT-3.5 ♢ 24.71 21.27 22.66 41.25 22.33

GPT-4 ♢ 27.95 43.86 26.00 45.75 10.10

WizardMath-70B ♢ 55.67 34.20 28.66 37.75 6.00

WizardMath-7B-V1.1 ♢ 54.78 32.76 32.66 47.75 6.00

llava-7B-V1.5 12.80 21.01 11.33 20.25 20.30

Qwen-VL 25.60 25.97 5.66 22.25 21.66

mPLUG-Owl2 37.76 n/a 35.33 38.00 22.66

GPT-4V 37.22 43.86 ‡ 26.00 45.75 10.10

Table 7.1: Accuracy scores of models on our GeoEval benchmark. The “♢” refers to all
LLMs. The “A” signifies the overall accuracy across all problems, while “T” denotes
the accuracy for problems containing only texts without diagrams. “n/a” indicates
that scores are unavailable due to models cannot process text-only inputs. The “‡”
notes that the accuracy figures for GPT-4V are derived from GPT-4, as GPT-4V does
not support image-free inputs.

146



Chapter 7. Evaluating LLMs and Multi-Modal Models on Geometry Problem-Solving

In this section, we present the accuracy achieved by models on our GeoEval bench-

mark. Table 7.1 highlights that models pre-trained on a math-specific corpus tend to

outperform others. Furthermore, except for llava-7B-V1.5 and Qwen-VL, multi-modal

models (MMs) generally exceed the performance of large language models (LLMs).

7.2.3.1 Comparison among LLMs

When reviewing the performances of LLMs as detailed in Table 7.1, it becomes evi-

dent that models pre-trained on mathematical corpora demonstrate superior efficacy in

solving geometry maths problems compared to those trained on general corpora. Specif-

ically, evaluating on all problems of GeoEval-2000 subset (marked as “A” in the table),

WizardMath-70B leads with an accuracy of 55.67%, while WizardMath-7B-V1.1 closely

follows with a 54.78% accuracy, outperforming other LLMs. Conversely, GPT-4, GPT-

3.5, and CodeGen2-16B report notably lower accuracies, all under 30.00%. Focusing on

questions solely based on problem text within the GeoEval-2000 subset (indicated as

“T” in the table), GPT-4 emerges as the frontrunner, securing the highest accuracy of

43.86%, with WizardMath models also surpassing the 32.00% accuracy. These findings

underscore the enhanced proficiency of models pre-trained on math-specific corpora

in tackling geometry maths problems, particularly when problems are well-described

textually, as evidenced by GPT-4’s leading performance.

In the GeoEval-backward subset, WizardMath-7B-V1.1 excels with the highest ac-

curacy of 32.66%, closely followed by WizardMath-70B at 28.66%. This drop in per-

formance across all LLMs, compared to the GeoEval-2000 results, highlights a col-

lective weakness in backward reasoning capabilities. For the GeoEval-aug subset,

WizardMath-7B-V1.1 again tops the leaderboard with an accuracy of 47.75%, with

GPT-4 not far behind at 45.75% accuracy. Lastly, within the GeoEval-hard subset,

all models, excluding GPT-3.5, exhibit relatively low accuracies, indicating a broad

difficulty in addressing the most challenging solid geometry and analytic geometry

problems.
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7.2.3.2 Comparison among Multi-Modal Models

Table 7.1 shows that among the MMs, GPT-4V and mPLUG-Owl2 consistently out-

perform their counterparts across all subsets. Specifically, within the GeoEval-2000

subset, mPLUG-Owl2 leads with an accuracy of 37.76%, closely followed by GPT-4V

at 37.22%, with the remaining MMs fall behind at lower accuracies. Specifically, Qwen-

VL and llava-7B-V1.5 achieve accuracies of 25.60% and 12.80%, respectively. When

examining problems that only involve texts, GPT-4V achieves a 43.86% accuracy, sur-

passing llava-7B-V1.5 (21.01%) and Qwen-VL (25.97%).

In the GeoEval-backward subset, mPLUG-Owl2 tops with the accuracy of 35.33%,

with GPT-4V following at 26.00% accuracy. This performance shows a notable lack

in backward reasoning skills, as illustrated by the diminished results of llava-7B-V1.5

and Qwen-VL in this category. Moving to the GeoEval-aug subset, GPT-4V leads

with an impressive 45.75% accuracy, with mPLUG-Owl2 at the second place with

38.00% accuracy. Both Qwen-VL and llava-7B-V1.5 show comparable performances

in this subset. Lastly, within the GeoEval-hard subset, mPLUG-Owl2 demonstrates

the highest efficacy with a 22.66% accuracy, closely followed by Qwen-VL and llava-

7B-V1.5. Surprisingly, GPT-4V records a lower accuracy of just 10.10%, highlighting

the challenging nature of GeoEval-hard subset and the varied capabilities of MMs in

addressing the most difficult problems.

7.2.3.3 Comparison between LLMs and Multi-Modal Models

In the GeoEval-2000 subset, specifically for problems that only include texts, GPT-4’s

performance exceeds the top MMs, Qwen-VL, by 17.89%. This is attributed to the

MMs’ inability to access geometric diagrams, which likely hinders their comprehension

of the problems. Moreover, when evaluating across all problems of the GeoEval-2000

subset, WizardMath-70B surpasses the best MMs, Qwen-VL, by 17.91% in accuracy.

However, MMs like GPT-4V and mPLUG-Owl2 achieve higher accuracy than LLMs

not pre-trained on mathematical content. This underscores the value of mathematical

pre-training for excelling in geometry problem-solving. Notably, GPT-4V’s accuracy

on all GeoEval-2000 problems is 9.27% higher than GPT-4’s, suggesting GPT-4V’s
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superior capability in solving geometry problems with diagrams.

This pattern persists in the GeoEval-aug subset, where WizardMath-7B-V1.1, a

model trained on a mathematical corpus, achieves the highest accuracy at 47.75%. Con-

versely, mPLUG-Owl2 leads in the GeoEval-backward and GeoEval-hard subsets, with

accuracies of 35.33% and 22.66%, respectively. Given that GeoEval-aug rephrases ques-

tions from GeoEval-2000, it implies both subsets might have been exposed to the models

during their pre-training phase. In contrast, GeoEval-backward and GeoEval-hard sub-

sets are less likely to have been previously exposed. This suggests that WizardMath-7B-

V1.1 excels with familiar geometry math problems, while mPLUG-Owl2 demonstrates

a robust capability in tackling unseen geometry problems. This is further evidenced by

the low performance of WizardMath models on the GeoEval-hard subset, where both

models only achieve an accuracy of 6.00%.2

7.2.3.4 Analysis on the Best Model (RQ-7.2)

Table 7.1 shows that GPT-4, the leading LLMs, records the highest accuracy on the

GeoEval-aug subsets, though it only secures a 27.95% accuracy on the GeoEval-2000

subset. A similar pattern of improvement is noted for the GPT-3.5 model, which sees

its accuracy jump from 24.71% on the GeoEval-2000 subset to 41.25% on the GeoEval-

aug subset. This improvement aligns with the involvement of GPT-3.5 in generating

the GeoEval-aug subset, suggesting that the capabilities of GPT-3.5 and GPT-4 in

addressing geometry math problems benefit from their use in rephrasing geometry

question texts.

While WizardMath-70B and WizardMath-7B-V1.1, both pre-trained on a mathe-

matical corpus, demonstrate superior performance on the GeoEval-2000 subset, they

show a marked decline in accuracy across the other subsets, with the most decreases

observed on the GeoEval-hard subset. This indicates that although pre-training on

a mathematical corpus is crucial for solving geometry math problems, it may not be

enough.

In contrast to the variances in accuracy observed among LLMs across different

2Please see Appendix E.4 for detailed accuracy scores for models across various academic subjects.
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subsets, the top-performing multi-modal model, mPLUG-Owl2, maintains relatively

stable accuracies with scores of 37.76% on the GeoEval-2000, 35.33% on the GeoEval-

backward, and 38.00% on the GeoEval-aug subsets. Additionally, the performance

of GPT-4V on the GeoEval-aug subset surpasses its accuracy on the GeoEval-2000

subset, mirroring the trends observed with GPT-4 and GPT-3.5, further illustrating the

enhanced effectiveness of GPT-series models when engaged in rephrasing the content

of geometry questions.

7.2.4 Benefit from the Geometric Diagram Descriptions (RQ-7.3)

Models ✗ ✓

GPT-4V 40.28 45.61 (+5.33 )

WizardMath-7B 38.10 56.83 (+18.73 )

Table 7.2: Comparison of models with (✓) and without (✗) geometric diagram descrip-
tions.

To assess the impact of including geometric diagram descriptions on models’ ability

to comprehend geometric diagrams and solve related problems, we selected a sample of

300 questions with geometric diagram descriptions from the GeoEval-2000 subset. We

then evaluated the performance of two models, GPT-4V and WizardMath-7B-V1.1, on

these questions, both with and without the use of geometric diagram descriptions. The

results in Table 7.2 indicate that GPT-4V’s accuracy decreases by 5.33% without the

diagram descriptions. More significantly, WizardMath-7B’s accuracy falls by 18.73% in

the absence of these descriptions. This evidence suggests that supplemental geometric

diagram descriptions enhance models’ efficiency in solving geometry math problems,

particularly benefiting LLMs.

7.2.5 External Knowledge Required (RQ-7.4)

In the GeoEval benchmark, certain questions require external knowledge, such as the

value of π, which is not typically included in the problem text. This necessitates models

to have pre-existing knowledge to accurately solve these problems. Figure 7.1 assesses
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Figure 7.1: Comparison of models requiring external knowledge (“w” in blue colour)
and those do not (”w/o” in orange colour).

the performance of four models on problems differentiated by the need for external

knowledge, identified through a heuristic approach that classifies problems according

to whether its solutions requires constants.

Figure 7.1 shows that the WizardMath-7B-V1.1 model maintains consistent accu-

racy on GeoEval-2000 subset, regardless of the requirement for external knowledge,

unlike other models, which perform better on problems without such requirements.

This consistency in WizardMath-7B-V1.1’s performance is likely due to its pre-training

on a maths-specific corpus, providing it with the necessary knowledge to resolve geom-

etry maths problems effectively. In contrast, models trained on general corpora may

not possess this specialised mathematical knowledge, hindering them from solving the

problems correctly.

7.2.6 Performances According to Different Problem Lengths and Var-

ied Complexities (RQ-7.5, RQ-7.6)

Figure 7.2 shows how models perform with inputs of different lengths. Performance

slightly varies for problems ranging from 80 to 100 characters, but there’s a clear trend

of decreasing accuracy as problem length increases. This is expected, as longer questions
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Figure 7.2: Models performances on GeoEval-2000 subset according to different ques-
tion lengths.

typically involve more complex geometry maths problems, challenging the models more

as the length grows. The figure also points out that the WizardMath-7B-V1.1 model

is notably more adept at handling longer questions, with GPT-4V and GPT-4 showing

relatively stable accuracy for increased question lengths. On the other hand, GPT-3.5

and CodeGen2-16B perform less effectively on lengthy questions.

Figure 7.3: Model performances on GeoEval-2000 subset according to different com-
plexity levels.

Upon the analysis in Figure 7.3, similar to the observations made in Figure 7.2

regarding input lengths, we delve into the models’ performances as they relate to the
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complexity of geometry maths problems. Figure 7.3 presents the performance of models

across varying levels of problem complexity. It is evident that as the complexity of

geometry problems escalates, the accuracy of the models correspondingly diminishes.

7.3 Chapter Summary

In this chapter, we evaluated nine cutting-edge LLMs and MMs using the GeoEval

benchmark to validate the assertion that these models underperform in solving geome-

try problems. Utilizing the proposed GeoEval benchmark from Chapter 4, we assessed

the proficiency of these state-of-the-art models in tackling geometry math problems.

Our analysis, presented in Table 7.1, reveals that both LLMs and MMs continue to

struggle in this domain. Notably, even the top-performing model, WizardMath-70B,

achieved only 55.67% accuracy on the GeoEval-2000 subset, addressing Research Ques-

tion RQ-7.1.

In Section 7.2.3.4, we address Research Question RQ-7.2 by analyzing the highest-

performing model on the GeoEval benchmark, WizardMath-70B. Our investigation

concludes that models pre-trained on mathematical corpora exhibit superior perfor-

mance in automated geometry problem-solving tasks due to their implicit integration

of necessary mathematical knowledge. However, despite the critical importance of such

pre-training, it may not be sufficient on its own.

Section 7.2.4 emphasizes the importance of integrating descriptions of geometric

diagrams, which can enhance LLMs’ and MMs’ ability to comprehend and solve geom-

etry problems. This finding is supported by the results of the ablation study presented

in Table 7.2, directly addressing Research Question RQ-7.3.

To address Research Question RQ-6.4, we conducted a comparative analysis of

four representative models to assess their performance on geometry problems requiring

external knowledge versus those that do not. As shown in Figure 7.1, we observed a

performance decline in CodeGen2-16B, GPT-4, and GPT-4V on problems requiring

external knowledge, except for the WizardMath-7B-V1.1 model. WizardMath mod-

els excel in automated geometry problem-solving due to their inherent integration of

necessary mathematical knowledge, directly addressing Research Question RQ-7.4.

153



Chapter 7. Evaluating LLMs and Multi-Modal Models on Geometry Problem-Solving

In Section 7.2.5, we addressed both Research Questions RQ-7.5 and RQ-7.6 by

examining model performance concerning varying question lengths and complexity lev-

els. As illustrated in Figure 7.2 and Figure 7.3, it is evident that model performance

diminishes as question length and complexity increase.
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Chapter 8

Conclusion and Future Work

This thesis concentrates on investigating and advancing the application of deep learning

methods in solving complex mathematical reasoning problems, with a particular focus

on text-based automated numerical reasoning task and automated geometry maths

problem-solving task.

The traditional approaches for text-based numerical reasoning task often involve

using solution programs to represent the reasoning process. However, a common limi-

tation in these models is their inability to distinguish between operators and operands

within solution programs, hindering their adaptability to more complex tasks. Ad-

dressing this gap, we introduce the ELASTIC model in Chapter 3. ELASTIC uniquely

separates the generation of operators and operands, thereby reducing cascading er-

rors in intricate reasoning processes. Its design also allows flexibility in the number

of operands per operator, making it suitable for various domains. Our experiments

demonstrate that ELASTIC outperforms existing baselines in this field.

While text-based automated numerical reasoning has progressed significantly, the

field of mathematical reasoning on multi-modal data, especially the geometry maths

problem-solving, is relatively at early stage. Recognising the need for advancement in

this area, we have created the GeoEval benchmark in Chapter 4, which is developed to

assess the geometry problem-solving capabilities. Specifically, GeoEval comprises four

distinct subsets, each designed to facilitate a thorough evaluation. This benchmark

facilitates a deeper investigation into the performance of models on solving geometry
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maths problems. In addition, we have evaluated proposed GPAS model in Chapter 5

and GOLD model in Chapter 6 on GeoEval benchmark, showcasing it as a challenging

benchmark.

Prior research in solving geometry math problem often focused on a single type

of geometry problem due to the complexity introduced by diverse domain-specific lan-

guages. However, a substantial overlap in mathematical knowledge across different

problem types exists [1]. To overcome this challenge, we have developed methods to

automatically solve geometry maths problems, as detailed in Chapter 5. Our proposed

model, GAPS, is a universal solver designed to tackle various types of geometry prob-

lems. It functions based on the fact that solution programs follow a unified pattern,

comprising operators (like arithmetic operators and geometric theorems) and operands

(such as numbers and geometric elements). GAPS includes a problem-type classifier

that identifies different geometry problem types, enabling the model to select appropri-

ate tokens from various domain-specific languages. This approach allows GAPS to gen-

erate operators and operands tailored to each problem type. Experimental evaluations

across multiple geometry maths datasets have shown that GAPS achieves state-of-the-

art results. Furthermore, its effectiveness is enhanced through training on augmented

datasets, leveraging its ability to solve diverse geometry problems with a single solution

program generator, supported by the problem-type classifier.

However, unlike other image-text as input, geometric diagrams present unique chal-

lenges due to their complex interrelations among components, which cannot be accu-

rately captured by simply converting diagrams into vectors. This limitation hinders

the effectiveness of models in solving geometry maths problems. Prior attempts to

address this involved parsing diagrams into formal language for greater precision and

interpretability. However, these methods suffer from limited scalability and complexity

in rule design. Additionally, they necessitate specific solvers compatible with formal

languages, rendering them incompatible with current large language models (LLMs).

To overcome these challenges, we introduce the GOLD model in Chapter 6. GOLD

converts geometric diagrams into natural language descriptions. This approach not

only enhances interpretability but also bridges the gap between image and text modal-
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ities, facilitating integration with LLMs. Consequently, the GOLD model leverages

the advanced capabilities of LLMs for problem-solving. Our experimental findings

demonstrate that the GOLD model outperforms existing state-of-the-art models in

this domain.

Recently, with the advance of large language models (LLMs) and multi-modal mod-

els (MMs), to conclude the research in this thesis, in Chapter 7, we evaluate 9 cutting-

edge LLMs and MMs using the GeoEval benchmark, we underscore the critical role

of mathematical corpus pre-training for effective geometry problem resolution. Ad-

ditionally, our analysis reveals that GPT-series models exhibit improved performance

on geometry problems they have rephrased, pointing to the potential benefits of self-

rephrasing in problem-solving.

The outline of this chapter is as follow. We summarise the main contributions of

this thesis in Section 8.1. Next we discuss the main findings and conclusions of this

thesis in Section 8.2. Finally, we discuss the ongoing future work in Section 8.3.

8.1 Contributions

The main contributions of this thesis are as follows:

• In Chapter 3, our investigation revealed that current methods struggle with com-

plex mathematical reasoning tasks, primarily due to limited extensibility and a

lack of consideration for the unique nature of solution programs in these tasks.

Addressing this, we introduced the numEricaL reASoning with adapTive sym-

bolIc Compiler (ELASTIC) model. ELASTIC separates the generation of oper-

ators and operands, thereby reducing errors in complex reasoning processes. Its

innovative design includes distinct modules and a Memory Register, enhancing

stability in challenging numerical reasoning problems. Additionally, ELASTIC

is a domain-agnostic approach, supporting a wide range of operators, ensures its

flexible extensibility. Our experiments confirm that ELASTIC outperforms the

existing state-of-the-art baselines.

• In Chapter 4, we introduced the GeoEval benchmark, a comprehensive collection

158



Chapter 8. Conclusion and Future Work

specifically designed for automated geometry math problem-solving task. Geo-

Eval features its comprehensive variety, sourced from seven public datasets and

formatted uniformly to encompass a wide range of geometric shapes.

• In Chapter 5, our focus expanded from the concepts introduced in Chapter 3,

extending our methodology to address mathematical reasoning tasks in geometry

maths problems, which involve both textual and geometric diagram as the input.

We introduced the GAPS model, featuring an innovative encoder that adeptly

processes both text and diagrams. A key advancement of GAPS is its unified

framework, which efficiently handles a diverse array of geometry maths problems

without the need for distinct program generators for different problem types. Our

experimental findings highlight GAPS’ superior performance in solving geometry

maths problems, outperforming other methods in this field.

• In Chapter 6, we delved into optimising the combination of problem texts and ge-

ometric diagrams for solving geometry maths problems. Our solution, the GOLD

model converts geometric diagrams into natural language descriptions. This ap-

proach gets rid of the need for complex rule creation while facilitating smooth

integration with large language models (LLMs). Our experimental findings not

only demonstrate GOLD’s substantial superiority over preceding methods but

also highlight the effectiveness of converting images into text for improved modal-

ity fusion.

• In Chapter 7, we conduct extensive experiments using the GeoEval benchmark to

evaluate the proficiency of 10 LLMs and MMs in solving geometry problems. This

includes three LLMs: CodeGen2-16B [231], GPT-3.5 [219], and GPT-4 [76]; two

LLMs specialised in mathematics: WizardMath-70B and WizardMath-7B-V1.1

[232]; and five MMs: llava-7B-V1.5 [233], Qwen-VL [234], mPLUG-Owl2 [235],

and GPT-4V [76]. The findings reveal that GeoEval forms a challenge benchmark,

with both LLMs and MMs struggling to resolve its complexities effectively.
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8.2 Findings and Conclusions

The main finding and conclusion of this thesis are that the enhancement of text-based

numerical reasoning and geometry math problem-solving capabilities can be achieved

through the innovative architecture of the solution program decoder and the straightfor-

ward representational approaches of the diagrams. To ensure success in these tasks, the

following considerations are crucial in method design:

• (Chapter 3): In the context of textual mathematical reasoning, our approach of

segregating the generation of operators and operands effectively reduces errors in

complex problems, thereby enhancing the model’s robustness. This strategy is

also domain-agnostic, accommodating a wide range of operators and thus boosting

its generalisation capability. Our method demonstrates superior performance,

achieving execution accuracy of 68.96% on the FinQA dataset and 65.21% on

the MathQA dataset for program accuracy, surpassing previous state-of-the-art

models.

• (Chapter 3): Preserving and updating intermediate results is crucial for generat-

ing lengthy solution programs. By employing the Maximum Memory Departing

Distance (M-MDD) metric, we demonstrate that ELASTIC with a Memory Reg-

ister outperforms its counterpart without this feature when M-MDD exceeds 5.

• (Chapter 5): Effectively addressing various types of geometry maths problems

simultaneously is important, as evidenced by our GAPS model. It incorporates a

problem-type classifier, allowing a single solution program generator to adaptively

handle different problem types.

• (Chapter 5): Training models on a wide range of geometry maths problems boosts

their performance and generalisation capabilities across diverse problem types.

This approach has proven to be more effective than state-of-the-art methods, as

validated by our experimental results.

• (Chapter 6): Accurate representation of both components and relationships in

geometric diagrams is essential for successful problem solving. Our research shows
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that converting geometric diagrams into natural language descriptions not only

enhances interpretability but also effectively bridges the gap between different

modalities, namely geometric diagrams and problem texts.

• (Chapter 6): Beyond the relationships among geometric primitives, including

details about the primitives themselves, like their types and spatial information,

can enhance the model’s performance in automatically solving geometry maths

problems.

• (Chapter 7): Despite the advancements in LLMs and MMs have demonstrated

potential in handling complex reasoning tasks, they still fall short in solving

geometry maths problems. Our GeoEval benchmark (Chapter 4) suggests that

both LLMs and MMs struggles to resolve its complexities effectively.

In the following part of this section, we will elaborate on these findings and provide

a detailed explanation.

8.2.1 Limitations of State-of-The-Art Methods on Text-based Auto-

mated Numerical Reasoning Task

In Chapter 3, we identified two major challenges with existing methods in handling

complex text-based numerical reasoning task. First, these methods struggle with long

reasoning programs characterised by diverse operators and dynamic operand numbers,

leading to cascading errors due to their inability to separate operator and operand gen-

eration. Second, they exhibit limited extensibility regarding operators, attributed to

either model architecture limitations or the program representation format, which hin-

ders their application in different domains. Consequently, we proposed a novel network

architecture that segregates operator and operand generation in reasoning programs,

stating that this approach minimises cascading errors and enhances adaptability by

integrating a broader range of operators (see Statement (1) in Section 1.3). Based

on this principle, we proposed the ELASTIC model, to fully evaluate our model, we

answered the following research questions proposed in Section 3.1. To address these

research questions, we took extensive experiments to compare our ELASTIC model
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with leading methods using two datasets specifically designed for assessing automated

mathematical reasoning abilities (refer to Section 3.3 for details).

We initiated our comparison by evaluating ELASTIC against previous methods

on two benchmarks, FinQA [10] and MathQA [9]. This effectively addresses research

question RQ-3.1, demonstrating that ELASTIC outperforms other methods, achieving

the highest scores on both datasets (refer to Table 3.2 for detailed results).

Next, we conducted a more detailed comparison with a specific model. As discussed

in Section 3.4.1, FinQANet [10], which utilises the same encoder as ELASTIC, showed

inferior performance. This underscores the efficacy of our method’s separation design,

addressing research question RQ-3.2. Additionally, we focused on operator generation

accuracy, disregarding operand correctness. The findings, illustrated in Figure 3.2,

reveal that operator accuracy consistently surpasses overall program accuracy across

different program steps. This highlights the benefits of segregating the generation

processes can disentangle the errors from operators and operands.

Furthermore, we addressed RQ-3.3 in Section 3.4.1 by comparing ELASTIC with

other methods across two distinct datasets. The FinQA dataset focuses on the financial

domain, while MathQA focuses on elementary maths word problems. Our results,

detailed in Table 3.2, demonstrate that ELASTIC surpasses other methods, showcasing

its robust performance even with datasets from different domains.

Following our comparison with state-of-the-art methods, we examined the robust-

ness of ELASTIC, addressing research question RQ-3.4. In Section 3.4.2, we explored

the impact of solution program length on model performance. Our findings clearly show

that ELASTIC consistently outperforms the previous best method, FinQANet, across

various program lengths. This indicates that ELASTIC is more resistant to cascading

errors in longer solution programs.

To further examine the robustness of ELASTIC, which aligns with research ques-

tion RQ-3.4, we conducted an evaluation using a challenging dataset we curated. This

dataset features solution programs with operators having varying numbers of operands.

The ELASTIC model, while performing slightly lower on this challenging dataset com-

pared to the original one, still demonstrated strong results. This led us to conclude
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that the ELASTIC model excels in handling problems necessitating the generation of

operators with diverse operand counts.

To improve ELASTIC’s performance with lengthy solution programs, we incorpo-

rated a novel feature: the memory register (MR), detailed in Section 3.2.3.5. To assess

its impact, we addressed research question RQ-3.5 through an ablation study on the

MR. The results, as shown in Table 3.4, indicate that ELASTIC with MR outperforms

its counterpart without MR. Additionally, we introduced the Memory Departing Dis-

tance (MDD) and maximum Memory Departing Distance (M-MDD) in Section 3.4.3

to evaluate ELASTIC’s efficacy in utilising results from earlier sub-program steps. The

findings demonstrate that ELASTIC with MR yields better outcomes when referencing

results from more distant steps than ELASTIC without MR.

8.2.2 Generalise the Maths Reasoning Ability From Text-based Data

to Image-text Data

In Chapter 5, our investigation focused on adapting our proposed methods to solve

maths problems with an additional component – geometric diagrams. Recent research

has largely concentrated on a single type of geometry maths problem, often due to the

need for different domain-specific languages for other types. Additionally, while some

state-of-the-art methods have tried to extend models successful in textual mathematical

reasoning to geometry problems, few have achieved satisfactory results. This led us to

state that we could effectively leverage the unique features of various geometry problem

types without encountering decline (refer to Statement (2) in Section 1.3). In line

with this hypothesis, we introduced the Geometry-Aware Problem Solver (GAPS), a

model tailored to autonomously tackle different types of geometry maths problems

simultaneously. We aimed to validate this hypothesis by addressing specific research

questions proposed in Section 5.1.

In Section 5.5.1, we resolved research question RQ-5.1 by comparing our GAPS

model against leading methods in two types of geometry problems: calculation and

proving. As demonstrated in Table 5.2, GAPS notably outperformed the other baseline

models.
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In the following Section 5.5.2, we compared the accuracy of our GAPS model with

other baseline models based on sub-program types. Figure 5.4 clearly shows that GAPS

excelled over the baselines in both main problem types and their respective sub-tasks,

addressing research question RQ-5.2.

In our analysis, we noted a notable disparity in GAPS’s performance on proving

versus calculation problems, aligning with research question RQ-5.3. Section 5.5.3

reveals that most errors in calculation problems stem from incorrect operators, while

in proving problems, errors are more often due to incorrect operands. This suggests

that calculation problems present a more diverse and challenging set of solution pro-

grams. Consequently, GAPS performs better on proving problems than on calculation

problems, thereby addressing research question RQ-5.3.

We further investigated our hypothesis regarding the impact of training on diverse

geometry maths problems with different domain-specific languages. In Section 5.5.4,

we incorporated PGPS9K [5] as an additional training dataset, comprising 6,131 newly

created problems and 2,891 problems from the Geometry3K dataset [60]. We assessed

the model’s performance using three datasets: solely UniGeo, solely PGPS9K, and a

combination of both. The results, shown in Table 5.4, indicate improvements in the

GAPS model’s performance when trained on the combined dataset. Thus, we confirm

RQ-5.4: incorporating problems with various types indeed boosts performance, rather

than hindering it.

In Section 5.5.5, we explored the importance of the problem-type classifier in GAPS,

which allows simultaneous generation of solution programs for various types of geometry

maths problems, thereby addressing research questionsRQ-5.5, RQ-5.6, andRQ-5.7.

Our ablation study, as shown in Table 5.5, revealed that including the problem-type

classifier enhances GAPS’s performance on both the UniGeo dataset [1] and a combi-

nation of UniGeo and PGPS9K datasets, while its absence leads to a marked decrease

in accuracy. Furthermore, optimising the number of problem types resulted in max-

imised benefits for GAPS. Additionally, training loss convergence analysis indicated

that GAPS equipped with the problem-type classifier achieves faster convergence com-

pared to the version without it, confirming the effectiveness of this feature in addressing
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research questions RQ-5.5, RQ-5.6, RQ-5.7.

We further addressed research question RQ-5.8 by analysing the effectiveness of

updating the cache token with the query vector used for generating the final operand

in the sub-program, as detailed in Table 5.7. This approach yielded the highest ac-

curacy, validating our method. Additionally, due to our unique design that separates

operator and operand generation, we developed a specialised algorithm for hierarchical

beam search, as described in Section 5.3.4.4. The results in Table 5.8 demonstrate

that employing beam search enhances GAPS’s accuracy, effectively answering research

question RQ-5.9.

To address research questionRQ-5.10, as detailed in Section 5.5.9, we performed an

ablation study by removing the geometry elements enhancement feature and evaluated

its impact on the UniGeo dataset. The results, shown in Table 5.9, highlight the

advantages of incorporating the geometry elements enhancement method. Further,

we presented a case study that visualises the probability distributions during operand

generation with and without this enhancement, as depicted in Figure C.2. The figure

indicates that GAPS is more likely to select the correct geometry elements when the

enhancement is applied.

8.2.3 Improve the Quality of Fusing the Diagram and the Text Modal-

ity for Solving Geometry Maths Problems

In Chapter 6, we introduced the GOLDmodel, which aims to enhance the interpretation

of geometric diagrams by representing them with natural language descriptions. The

goal is to improve interpretability and establish connections between different modal-

ities: geometric diagrams and problem texts. However, Chapter 5 highlighted the

challenges in accurately encoding and interpreting geometric diagrams when jointly

processing them with text. To address this issue, we state that using natural language

descriptions for geometric diagrams can provide accurate and understandable represen-

tations while bridging the gap between textual and visual information (see Statement

(3) in Section 1.3). To investigate this hypothesis, we addressed the research questions

proposed in Section 6.1.
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In Section 6.4.1, we assessed the effectiveness of our GOLD relative to current state-

of-the-art methods. This comparison, as presented in the datasets UniGeo CAL, PRV,

PGPS9K, and Geometry3K, demonstrated GOLD’s superior performance, addressing

Research Question RQ-6.1.

In Section 6.4.2, we delved into research question RQ-6.2 by comparing the perfor-

mance of our GOLD model using three distinct diagram description formats: absence

of diagram description, logic forms, and natural language descriptions. Results dis-

played in Table 6.2 indicates that descriptions in natural language outperform those in

logic-form on three LLMs: T5, Llama2, and CodeLlama.

To address research questions RQ-6.3 and RQ-6.4, we conducted ablation studies.

In the ablation study, as illustrated in Table 6.4 in Section 6.4.4, the extraction of

both relation types reaches its highest F1-score when both embeddings (embfeat and

embspat) are utilised. Furthermore, in Section 6.4.5, we show that GOLD model using

both embeddings performs the best on all test subsets.

We further address the research question RQ-6.5 in Section 6.4.6, as illustrated in

Figure 6.2, we noted a impact on GOLD’s performance in the absence of the geo2geo

relation. This finding confirms the critical role of the geo2geo relation in conveying

essential details of geometric diagrams, answering RQ-6.5.

8.2.4 Evaluate Latest LLMs andMMs Proficiency in Geometry Maths

Problem-Solving

From Chapter 6, we observe the advantage of using LLMs as problem solver, which

generates the reasoning process. Additionally, we find that describing the geometric

diagrams into natural language can improve models’ performances. This raise our inter-

est to investigate the latest LLMs and MMs on solving the geometry maths problems,

where specific research on evaluating these models’ effectiveness in geometry problem-

solving remains scarce. We state that LLMs and MMs underperform on this task (see

Statment (4) in Section 1.3). To support this statement, we introduce the Geo-

Eval benchmark, a comprehensive collection specifically designed for this task. We

aimed to validate this hypothesis by addressing specific research questions proposed in
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Section 7.1.

In Chapter 4, we introduce the GeoEval benchmark, crafted specifically to evaluate

the performance of LLMs and MMs in resolving geometry maths problems. This bench-

mark is meticulously created, featuring five key advantages: Comprehensive Variety,

Varied Problems, Dual Inputs, Diverse Challenges, and Complexity Ratings. Utilising

the proposed GeoEval benchmark, we assess the proficiency of ten state-of-the-art LLMs

and MMs in solving geometry maths problems. Our analysis, as presented in Table 7.1,

reveals that both LLMs and MMs continue to face difficulties in this domain. Notably,

even the top-performing model, WizardMath-70B, achieves only 55.67% accuracy on

the GeoEval-2000 subset, providing a response to Research Question RQ-7.1.

In Section 7.2.3.4, we address Research Question RQ-7.2 by conducting an anal-

ysis of the highest-performing model on the GeoEval benchmark, WizardMath-70B.

Our investigation leads us to the conclusion that models pre-trained on mathematical

corpora exhibit superior performance in automated geometry maths problem-solving

tasks. One notable advantage of these models is their implicit integration of the requi-

site mathematical knowledge necessary for solving geometry maths problems. However,

despite the critical importance of pre-training on a mathematical corpus for tackling

geometry maths problems, we also find that it may not suffice on its own.

In Section 7.2.4, we recognise the importance of integrating descriptions of geometric

diagrams, which can notably enhance the ability of LLMs and MMs to comprehend and

solve geometry problems. This significance is underscored by the results of the ablation

study presented in Table 7.2, directly addressing Research Question RQ-7.3.

In addressing Research Question RQ-7.4, we conducted a comparative analysis of

four representative models to assess their performances in solving geometry problems

that either require external knowledge or do not. As depicted in Figure 7.1, we observed

a decline in the performances of CodeGen2-16B, GPT-4, and GPT-4V on problems re-

quiring external knowledge, with the exception of the WizardMath-7B-V1.1 model.

Notably, WizardMath models [232] exhibit superior performance in automated geom-

etry maths problem-solving tasks due to their inherent integration of the necessary

mathematical knowledge essential for tackling geometry problems. This comprehensive
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evaluation directly addresses Research Question RQ-7.4.

In Section 7.2.5, we tackled both Research QuestionRQ-7.5 and Research Question

RQ-7.6 by examining the performances of models concerning varying question lengths

and complexity levels. As illustrated in Figure 7.2 and Figure 7.3, it is evident that

the performance of models diminishes as both question lengths and complexity levels

increase.

We further evaluated the proposed GAPS model discussed in Chapter 5 and the

GOLD model presented in Chapter 6 on the GeoEval benchmark. The results shown

in Table 5.5.6 and Table 6.4.3 demonstrate that GeoEval serves as a challenging bench-

mark for assessing the ability to solve geometry-based mathematical problems. The

performance of the models on this benchmark highlights the complexity of the task

and the need for robust approaches to tackle geometry problem-solving.

8.3 Future Work

In this thesis, we have explored how to enable AI agents to perform mathematical

reasoning. While significant progress have been made, several directions remain open

for further exploration and development. Future research could focus on the following

areas:

8.3.1 Other Multi-Modal Mathematical Reasoning

In this thesis, we have delved into the design of methodologies for automated geome-

try problem solving, as elaborated in Chapters 5 and 6. Moving forward, it’s crucial

to consider other modalities such as tabular data and videos [19, 238] The method

we proposed in Chapter 6, which involves converting geometric diagrams into natural

language, shows promise for extending to multi-modal mathematical reasoning.

The future challenge lies in fully leveraging the rich information inherent in these

diverse modalities and effectively utilising them for mathematical reasoning tasks. Po-

tential areas for future research include:

• Exploring how to incorporate data from various sources such as videos and tables,
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and understanding how they can contribute to the problem-solving process in

mathematical reasoning.

• Modifying the natural language translation approach of geometric diagrams, as

proposed in Chapter 6, to suit other modalities. This involves developing new

methods to interpret and translate complex information from different data for-

mats into a comprehensible form for AI processing.

By addressing these areas, we might create AI systems capable of tackling complex

mathematical reasoning tasks across a wider range of data formats.

8.3.2 Different Formats to Represent the Reasoning Process

In this thesis, we adopted solution programs as the representation medium for the rea-

soning process in mathematical reasoning. Despite the effectiveness of this approach,

as shown in all chapters, a notable limitation emerges in Chapter 5: while GAPS

demonstrates impressive performance in geometry proving problems, it does not show

comparable results on geometry calculation problems. Our in-depth analysis revealed

that GAPS excels when solution programs adhere to a specific pattern, a format where

each operator is followed by the same number of operands. This finding opens up a

promising direction for future research, which involves exploring more effective repre-

sentation methods for the reasoning process.

Current work, such as using the natural language [18,36] and the programming lan-

guage [100], each have their limitations. Natural language processing can inadvertently

introduce noise, while programming language requires consuming conversion process.

Therefore, we list potential future research directions as following:

• Developing a new representation method that combines the strengths of solution

program natural language and programming language. This hybrid model could

offer the clarity and specificity of solution program and programming language

while retaining the flexibility and expressiveness of natural language.

• Enhancing the reasoning process representation by incorporating advanced con-

textual and semantic analysis techniques, which could help in understanding and
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solving more complex mathematical problems.

8.4 Chapter Summary

This chapter highlights key contributions and summarises findings of this thesis, which

is identifying limitations in current methodologies and exploring automated mathemat-

ical reasoning using AI. It also proposes directions for future research, building on the

groundwork from this thesis.
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Eds. Association for Computational Linguistics, 2017, pp. 251–261. [Online].

Available: https://doi.org/10.18653/v1/S17-1029

[47] W. Yu, M. Wang, X. Wang, X. Zhou, Y. Zha, Y. Zhang, S. Miao, and J. Liu,

“Geore: A relation extraction dataset for chinese geometry problems,” in 35th

Conference on Neural Information Processing Systems (NeurIPS 2021) Workshop

on Math AI for Education (MATHAI4ED), 2021.

[48] A. Newell, J. C. Shaw, and H. A. Simon, “Empirical explorations of

the logic theory machine: a case study in heuristic,” in Papers presented

at the 1957 western joint computer conference: Techniques for reliability,

IRE-AIEE-ACM 1957 (Western), Los Angeles, California, USA, February

26-28, 1957, M. M. Astrahan, Ed. ACM, 1957, pp. 218–230. [Online]. Available:

https://doi.org/10.1145/1455567.1455605

[49] S. Polu and I. Sutskever, “Generative language modeling for automated

theorem proving,” CoRR, vol. abs/2009.03393, 2020. [Online]. Available:

https://arxiv.org/abs/2009.03393

[50] J. M. Han, J. Rute, Y. Wu, E. W. Ayers, and S. Polu, “Proof artifact co-training

for theorem proving with language models,” arXiv preprint arXiv:2102.06203,

2021.

[51] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever,

“Formal mathematics statement curriculum learning,” in The Eleventh

International Conference on Learning Representations, ICLR 2023, Kigali,

Rwanda, May 1-5, 2023. OpenReview.net, 2023. [Online]. Available:

https://openreview.net/pdf?id=-P7G-8dmSh4

180

https://doi.org/10.18653/v1/S17-1029
https://doi.org/10.1145/1455567.1455605
https://arxiv.org/abs/2009.03393
https://openreview.net/pdf?id=-P7G-8dmSh4


Bibliography

[52] A. Q. Jiang, W. Li, S. Tworkowski, K. Czechowski, T. Odrzygózdz, P. Milos,
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Appendix A

ELASTIC: Numerical Reasoning

with Adaptive Symbolic

Compiler

A.1 Example for a Maths Word Problems

Figure A.1 shows an example of a maths problem and its reasoning programs. The

problem text P and question text Q are combined, which contains three numbers: 5,

3, 2, denoted by NUM. The reasoning program R contains two sub-programs, “5 + 3”

(denoted as r1) and “#0 − 2” (denoted as r2). The first sub-program r1 contains one

operator “+” (denoted as op1) and two operands “5” (denoted as oe11) and “3” (denoted

as oe12). The second sub-program r2 contains one operator “−” (denoted as op2) and

two operands “#0” (denoted as oe21) and “2” (denoted as oe22). “#0” is pre-defined in

the constant vocabulary, which is denoted as CONS. The op1 and op2 are belong to

all mathematical operators OP. The oe11, oe
1
2, oe

2
1, and oe22 belong to all operands OE.

We regard OP, OE as symbols s.

217
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Figure A.1: An example of maths word problems, using nations defined in Table 3.1.

A.2 An Example to Show How Separated Modules Work

Figure A.2 shows the generation process of equations: “5+3−2”, which is represented

as two sub-programs: “+, 5, 3” and “−,#0, 2”. At the beginning, the Operator Gen-

erator produces “+” by sampling from the OP decoding vocabulary (refer to Equation

(6)). Next, the generation for the operator is suspended, and the Reasoning Manager

guides Operands Generator to produce “3” and “2” sampling from the NUM Decoding

Vocabulary (refer to Equation (7)). After the first sub-program is complete, the Mem-

ory Register replaces the first cache token “#0” embedding with the guidance vector

from Reasoning Manager. When generating the second sub-program, the Reasoning

Manager enables the Operator Generator to produce the operator “−” for the second

sub-program. Since the first operand in equation “8 − 2” refers to the executable re-

sult from the first sub-program. As a result, the Operands Generator produces “#0”,

which refers to the executable result of the first sub-program. Finally, after operand

“2” is generated, the generation for the second sub-program completes. Likewise, the

Memory Register updates the second cache token “(#1)” embedding with the guidance
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vector.

Figure A.2: An Example to Show How Separated Modules Work.

A.3 Comparison between Operation Length of the Golden

Numerical Reasoning Program in MathQA and FinQA

Datasets

Figure A.3 compares the distribution of operation length of the golden numerical rea-

soning program in FinQA and MathQA datasets. We can see that the lengths of

operation of most numerical reasoning programs in FinQA are between 2 and 4. In

contrast, MathQA contains more golden numerical reasoning programs with operation

lengths between 3 and 8. Obviously, MathQA contains longer numerical reasoning pro-

grams than FinQA. As a result, the MathQA dataset is more complicated than the

FinQA dataset.

A.4 Training (RoBERTa-large) on Extended FinQA Dataset)

One advantage of our ELASTIC model is that it is adaptable to the number of operands

of an operator. We demonstrate this by evaluating ELASTIC on the MathQA dataset

in the “Overall Results” section. However, another dataset we used for the evaluation,

219



Appendix A. ELASTIC: Numerical Reasoning with Adaptive Symbolic Compiler

Figure A.3: The distribution of Operation Length in FinQA and MathQA datasets.

the FinQA dataset, only contains questions solved by operators with two operands.

To test the advantage of our model on the FinQA dataset, we manually extend it by

adding 30 and 20 questions for train and test data (named extended FinQA dataset),

respectively (see Table A.2 for one example of the extended questions). These questions

are proposed based on the original passages in the FinQA dataset. In addition, they are

about superlative questions, which require to be solved by using superlative operators

(i.e., smallest and biggest). As a result, unlike questions from the original FinQA

dataset, the numbers of operands used to solve these extended questions are not limited

to two. Next, We trained ELASTIC (RoBERTa-large) on the train data from the

combination of the extended FinQA dataset and the original FinQA dataset. Since the

number of operands of an operator is not determined anymore, the Reasoning Manager

of ELASTIC has to manage the Operands Generator to generate the correct number of

operands in terms of the specific question. This increases the difficulty for the model

to generate correct operands and makes the dataset more challenging. The results are

shown in Table A.1. For the performance on the combined test data (original FinQA +

extended FinQA), ELASTIC (RoBERTa-large) achieves slightly lower scores (64.5 of

Exec Acc and 63.8 of Prog Acc), compared to the results of ELASTIC (RoBERTa-large)
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achieved on original FinQA dataset (68.96 of Exec Acc and 65.21 of Prog Acc).1 We also

report the metric scores of ELASTIC (RoBERTa-large) achieved on test data from the

extended FinQA dataset: 90.0 on both Exec Acc and Prog Acc. Note that the state-of-

the-art model FinQANet cannot solve the extended FinQA dataset because it can only

generate operators with two operands. These results show ELASTIC model solving

questions that require the capability of generating operators with diverse numbers of

operands.

Dataset (Test) Exec Acc Prog Acc

original FinQA + extended FinQA 64.5 63.8

extended FinQA 90.0 90.0

Table A.1: The performances of ELASTIC (RoBERTa-large) on the test data from the
combination of the original FinQA dataset and extended FinQA dataset, and only on
the test data from the extended FinQA dataset. Note that the model is trained on
the train data from the combination of the original FinQA dataset and the extended
FinQA dataset.

Question What is the biggest obligations of payments between 2007 and 2010?

Passage†

Contractual obligations and commercial commitments the following table (in thousands ):

The operating lease obligations of payments due by fiscal year total is $4819;
The operating lease obligations of payments due by fiscal year 2007 is $1703;
The operating lease obligations of payments due by fiscal year 2008 is $1371;
The operating lease obligations of payments due by fiscal year 2009 is $1035;
The operating lease obligations of payments due by fiscal year 2010 is $710;
The total obligations of payments due by fiscal year 2007 is $1903;
The total obligations of payments due by fiscal year 2008 is $1571;
The total obligations of payments due by fiscal year 2009 is $1235;
The total obligations of payments due by fiscal year 2010 is $710.

Prediction biggest(1903, 1571, 1235, 710)

Table A.2: An example from the extended FinQA dataset. The “Prediction” refers to
the generated numerical reasoning program from ELASTIC (RoBERTa-large). †: The
passage is from the FinQA dataset, which is reorganised for better readability.

Table A.2 shows one example from the extended FinQA dataset. To solve this

question, the model needs to select numbers relevant to the obligations of payments

between 2007 and 2019, compare them, and select the biggest one. We observe that

1See full results in “Overall Results” section.
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ELASTIC (RoBERTa-large) correctly selects the relevant numbers and applies the

biggest operator to them. Worth mentioning, there are 9 numbers (4819, 1703, 1371,

1035, 710, 1903, 1571, 1235, 710) relevant to the “payments” in the question. ELASTIC

only selects part of these numbers which are relevant to the “obligations of payments”

asked by the question. This demonstrates that ELASTIC understands the aim of the

question and solves it by generating the correct numerical reasoning program.
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GeoEval Dataset

B.1 Source datasets for GeoEval-2000 dataset

Table B.1 presents the the information of source datasets for GeoEval-2000 dataset.

Meanwhile, Figure B.1 visualizes the proportional contributions of these source datasets

to the GeoEval-2000 subset, showcasing the variety and scope of the geometry problems

collected from each source. Finally, Figure B.2 illustrates the varied distribution of

geometric shapes within the GeoEval-2000 subset, highlighting the diversity of geometry

concepts represented in this collection.

Source Dataset Diagram Diagram Descriptions Quantity

Geometry3K ✓ ✓ 3001

PGPS9K ✓ ✓ 9022

UniGeo ✓ ✗ 4998 †

GeoQA+ ✓ ✗ 2518

GeometryQA ✗ ✗ 1398

MATH ✗ ✗ 1349 ‡

MathQA ✗ ✗ 2625 ‡

Table B.1: The information of source datasets for GeoEval-2000 dataset. The ”†”
symbol indicates that proving problems from the UniGeo dataset have been excluded.
The ”‡” sign specifies that the count only pertains to geometry problems within the
dataset, focusing on problems directly relevant to the GeoEval-2000’s scope.
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Figure B.1: Distributions of source datasets.

Figure B.2: Distributions of different geometric shapes.
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B.2 Inspection of GeoEval-hard subset

To ensure the GeoEval-hard dataset’s high quality and accuracy, we form a team of six

reviewers, each holding at least a Master’s degree, to scrutinize every question. This

evaluation process is structured in three phases: individual review, swap review, and

candidate review. The primary focus lies on two key standards: the completeness and

relevance of the geometric diagrams, and the reasonableness of the answers provided.

In the first phase, ”individual review”, each reviewer is randomly assigned 50 ge-

ometry math problems from the GeoEval-hard dataset. Their task is to assess the

geometry math problems based on the standards, marking any that fail to meet these

standards. During the ”swap review” phase, these sets of 50 geometry math problems

are exchanged among reviewers for a second evaluation. To ensure unbiased assessment,

we hide the results of the initial review. Here, reviewers again highlight geometry math

problems not conforming to the standards. The final phase, ”candidate review”, in-

volves selecting geometry math problems for the dataset based on the outcomes of the

first two phases. Geometry math problems unmarked in both phases are retained, those

marked in both are discarded, and those highlighted in only one phase undergo further

examination by the entire review team, with the majority decision determining their

inclusion.

B.3 Examples from GeoEval Representing Five Features

B.3.1 Comprehensive Variety

Figure B.3 present sample data from the GeoEval-2000 subset, illustrating its diversity

in terms of data sources.

B.3.2 Varied Problems

Figure B.4 displays examples of three distinct problem types in the GeoEval benchmark:

flat geometry, analytic geometry, and solid geometry.
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Figure B.3: Examples from GeoEval-2000 dataset. The golden answer choice is high-
lighted in red color.
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Figure B.4: Examples of the flat geometry problem, the analytic geometry problem,
and the solid geometry problem in GeoEval benchmark.

B.3.3 Dual Inputs

Figure B.3 shows that the GeoEval benchmark comprises geometry math problems

that contain both diagrams and textual descriptions, as well as problems that include

textual descriptions alone.

B.3.4 Diverse Challenges

Figure B.5 showcases examples from the GeoEval-2000, GeoEval-backward, GeoEval-

aug, and GeoEval-hard subsets, illustrating the diverse challenges within the GeoEval

benchmark.

B.3.5 Complexity Ratings

Every problem in the GeoEval benchmark is annotated with a complexity rating, indi-

cating the level of skill necessary to solve it, as shown in Figure B.6.
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Figure B.5: Examples of GeoEval-2000, GeoEval-backward, GeoEval-aug, GeoEval-
hard subsets.

Figure B.6: Example for a problem annotated with complexity in the GeoEval bench-
mark.
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B.4 Algorithm for Classifying Geometry Math Problems

Complexity

Algorithm 1 details our methodology for classifying each geometry math problem into

distinct levels of complexity.

Algorithm 1: Algorithm for classifying geometry math problems complexity

Input: All Problem Texts T,All Diagram Descriptions D,
All Golden Solution Programs S
Output: Complexity for each problem
lenT,D = 0;
lenS = 0;
for t in T , d in D, s in S do

lenT,D+ = lent + lend ; /* sum up the length of problem texts and

the length of diagram descriptions. */

lenS+ = lens ; /* sum up the length of golden solution programs.

*/
end
for t in T , d in D, s in S do

Ct,d,s ← α× lent+lend−min(lenT,D)
max(lenT,D)−min(lenT,D) + (1− α)× lens−min(lenS)

max(lenS)−min(lenS)
;

if 0.0 ≤ Ct,d,s ≤ 0.2 then
Complexity← Easy; /* classify the problem as Easy problem.

*/
else if 0.2 < Ct,d,s ≤ 0.6 then

Complexity← Middle; /* classify the problem as Middle

problem. */

else if 0.6 < Ct,d,s ≤ 1.0 then
Complexity← Hard; /* classify the problem as Hard problem.

*/
end

end
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GAPS: Geometry-Aware

Problem Solver

C.1 Hierarchical Beam Search

C.2 Accelerated Convergence with Problem-Type Classi-

fier in GAPS Training

We have generated Figure C.1 to visualise the training losses of GAPS with and with-

out the problem-type classifier. The plot illustrates that GAPS equipped with the

problem-type classifier converges faster than GAPS without it. The reason behind this

accelerated convergence lies in the problem-type classifier’s role in simplifying the task

of generating solution programs. By initially classifying the input geometry maths prob-

lem, the problem-type classifier provides valuable insights, streamlining the subsequent

process of generating solution programs for the GAPS model.

C.3 Case Study for the Geometric Element Enhancement

Technology

We also undertake a case study where we map out the probability distributions during

the generation of operands, as seen in Figure C.2. This instance is taken from the proof
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Algorithm 2: Hierarchical Beam Search
Input: maxop,maxoe, bs, i, j = 0, oppred = [“sos” for in range bs], oepred = [ [ ] ]
Output: R
while i ̸= maxop do

ops, opsscores ← Equation (6) ; /* ops, opsscores are all predicted operands and

probabilities, respectively. */

opcandidates ← select max(ops, opsscores, bs) ; /* select the predicted operators of the beam

size bs with the maximum probabilities. */

beamsub oe = [ ];
for op in opcandidates do

beamprev oe = [ [ ] for in range maxoe];
while j ̸= maxoe do

oes, oesscores ← Equation (6) ; /* oes, oesscores are all predicted operands and

probabilities, respectively. */

oecandidates ← select max(oes, oesscores, bs) ; /* select the predicted operands of

the beam size bs with the maximum probabilities. */

if beamprev oe[−1] ̸= none then
prevoe ids = oecandidates//bs ; /* get the previous operands ids of the

selected operands */

beamprev oe ← beamprev oe[−1][prevoe ids] ; /* save the previous operands of the

selected operands */

end
else

beamprev oe ← oecandidates
end
j +=1;

end
beamsub oe ← backtrace(beamprev oe[−1]) ; /* backtrace to recover the selected

operands sequences */

beamsub oe ← oecandidates ; /* remember to append the last step prediction to the

sequences */

end
scoreop oe ← merge score(opcandidates, beamsub oe) ; /* merge score: sum the probabilities

of operators and their operands */

candidatesop oe ← select max(scoreop oe, bs) ; /* selects beam size bs of the combinations

of operator and operands with highest probabilities. */

prevop ids ← candidatesop oe//bs ; /* get the previous operators ids of the selected

sub-program */

oppred ← oppred[− 1][candidatesop oe] ; /* save the previous operators of the selected

sub-program */

oepred ← beamsub oe[prevop ids];
i +=1;

end
{op}, {opindex} ← backtrace(oppred) ; /* backtrace to recover the selected operator sequences

*/

{oe} ← oepred[{opindex}] ; /* get the operands of the selected operator sequences */

{op} ← candidatesop oe.op ; /* remember to append the last step prediction to the sequences

*/

{oe} ← candidatesop oe.oe;

return R = {op} ∨ {oe}
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Figure C.1: Comparison of training loss convergence in GAPS, with and without the
utilisation of the problem-type classifier. The “loss” and “loss wo” are the sum of
operator and operands training losses values with and without problem-type classifier.
The “op loss” and “op loss wo” are the operator training loss values with and without
problem-type classifier. The “oe loss” and “oe loss wo” are the operand training loss
values with and without problem-type classifier. The loss values are scaled by the
logarithmic function for better visualisation.
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problem showcased in Figure 1.1, where the intended solution program is designated as

“R 4, E 1, congruent, E 3, R 15, E 3, similar, E 2”. Observing Figure C.2, it is evident

that GAPS is inclined to choose geometric elements from the appended geometric ele-

ments while employing geometric element enhancement. Conversely, in the absence of

geometric element enhancement, GAPS erroneously picks “E 0” (“triangle SUW”) as

the operand for the second sub-program, whereas the accurate operand should be “E 3”

(“angle SUW”). We hypothesise this occurs due to the geometric elements being tok-

enized into multiple segments by the tokenizer, allowing these segments to easily engage

with other contextual token pieces, subsequently generating extra noise. Nonetheless,

appending these geometric elements to the problem statement can alleviate such noise,

facilitating an enhancement in the precision of operand selection.

Figure C.2: This heatmap illustrates the probability distributions across operand gen-
eration with and without the utilisation of geometric element enhancement technology.
It exemplifies the creation of a solution program for a geometry proving problem. We
truncate the x-axis by omitting the constants not pertinent to solving proving prob-
lems. The y-axis denotes the tokens in the solution program, and the probabilities
of generating operators are nullified, as this instance aims to scrutinise the impact of
geometric element enhancement on the generation of operands. With the enhancement
enabled, the value vectors for the geometric elements are derived from the vectors of the
corresponding appended geometric elements in the problem text. Conversely, without
the enhancement, the value vectors for the geometric elements are extracted from the
vectors of the original geometric elements within the problem text.
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GOLD: Geometry Problem

Solvers with Natural Language

Description

D.1 Preliminary: FCOS and GSM Models

This section equips the reader with the foundational knowledge required for compre-

hending the Section 6.2. Particularly, we delve into the FCOS model [8], which plays

a crucial role in detecting the symbols outlined in Section 6.2.1. Additionally, we ex-

plore the GSM model [183], an instance segmentation method integral for extracting

geometry primitives as defined previously.

D.1.1 FCOS: Object Detection

FCOS model [8] is a type of deep learning model used primarily for object detection

tasks. It represents a shift from the traditional two-stage detection frameworks (like

Faster R-CNN [192]) to the one-stage approach. Figure D.1 displays the overall archi-

tecture of the FCOS network.

Unlike traditional methods that rely on region proposal networks (RPNs) to gen-

erate candidate object locations, FCOS falls into the category of one-stage detectors,

like YOLO [239] and SSD [240]. Therefore, FCOS is generally faster than two-stage
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Figure D.1: The illustration of the FCOS network. The C2, C3, C4, C5 refer to the
feature maps from the backbone network, such as ResNet-101 [6] and MobileNets [7].
Each of them are obtained by using different ratio (denotes as /s (s = 8, 16, 32, 64,
128) to down-sample over the input image with the size of 800× 1024 in this example.
The figure is taken from the FCOS paper [8].

detectors as it does not have a separate region proposal step. They directly predict the

bounding boxes and class probabilities in a single pass. Additionally, traditional object

detectors use anchor boxes – predefined boxes of various sizes and aspect ratios – to

detect objects. FCOS, however, is anchor-free. It does not rely on these pre-defined

anchor boxes, which simplifies the training process.

To obtain the bounding box of the object, FCOS model adopts three tasks: bound-

ing box regression, classification, and the centerness prediction.

D.1.1.1 Bounding Box Regression

In FCOS model, each location x, y on the feature maps is considered as a potential

object centre. For each location, the model predicts four offsets l, t, r, b which represent

the distances from this location to the left, top, right, and bottom sides of the bounding

box, respectively.

If x, y is the location on the i-th feature map and xa, ya is the corresponding location

on the original input image:
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xa = x× s+
⌊s
2

⌋
ya = y × s+

⌊s
2

⌋ (D.1)

where s is the scaling factor of the i-th feature map.

Next, the predicted bounding box Bx, By, Bw, Bh in the original image can be cal-

culated as:

Bx = xa − l × s

By = ya − t× s

Bw = l + r × s

Bh = t+ b× s

(D.2)

where Bx and By refer to the coordinates of the top-left corner of the bounding box in

the original image, and Bw and Bh are the width and height of the bounding box.

D.1.1.2 Object Classification

For classification, the model predicts a probability distribution over C classes for each

location x, y. If pc is the predicted probability for class c, the classification loss (or

named focal loss) for a positive sample can be:

Lfocal = α(1− pc)
γlog(pc) (D.3)

where α and γ are the hyperparameters of the focal loss, designed to mitigate the prob-

lem of class imbalance by down-weighting the loss assigned to well-classified examples.

D.1.1.3 Centerness Prediction

During inference, there might be a number of points be regarded as the class c. FCOS

tends to select point which is close to the real centre point. Therefore, FCOS predict a

scalar value s ∈ [0, 1] that gauges how close location is to the centre of an object. It’s

calculated as:
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s =

√
min(l, r)

max(l, r)
· min(t, b)

max(t, b)
(D.4)

when s equals to 1, the predicted point is at the centre point, whereas when s equals

to 0, the predicted point is the margin point.

D.1.1.4 Train the FCOS Network

The overall loss function for FCOS is a combination of the classification loss, the box

regression loss, and the centerness loss. The box regression loss is typically a form of

IoU loss or smooth L1 loss. The total loss for a positive sample is:

L = Lfocal + λ1Lbox + λ2Lcenterness (D.5)

where λ1 and λ2 are hyperparameters balancing the different components of the loss.

D.1.2 GSM: Instance Segmentation

The Geometric Segmentation Module (GSM), as detailed in [183], is an instance seg-

mentation method designed for the extraction of geometric primitives from diagrams.

The architecture of GSM comprises two primary branches: a semantic segmentation

branch and a segmentation embedding branch. The core objective of the GSM model

is to optimize performance by minimizing the cross-entropy loss for each pixel in the

original image:

Lbs∗ =
−w∗
Mmap

Mmap∑
i=1

y∗i log(p
∗
i ) + (1− y∗i )log(1− (p∗i ) (D.6)

where ∗ denotes that the pixel belongs to one of primitive classes, w is for balancing

the positive and negative classes. And Mmap is the total pixel number.

To better differentiate pixels of one primitive from pixels of other primitives, GSM

add regularisation terms [241] to the Equation D.6:
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Ldist =
1

N(N − 1)

N∑
n1=1

∑
n2=1,n2 ̸=n1

[2δd − ||µn1 − µn2||]2+

Lvar =
1

N

N∑
n1=1

1

Mn

Mn∑
i=1

[||µn − xi|| − δv]
2
+

(D.7)

where N is the sum of the number of pixels belonging to primitives. x is the pixel

embedding, µ is the centre of instance embedding. Intuitively, Ldist tries to increasing

the distance between the cluster centres of different ptimitives. Conversely, Lvar tends

to push embeddings of pixels of the same primitive to the centre of the cluster.

D.2 Convert Relations to Natural Language Descriptions

Relations Paradigm Example

Point The diagram contains ${}. The diagram contains Point A, B, C.

geo2geo Line

The diagram contains ${},
which has endpoints: ${} and ${},
In addition, there is/are ${} on the line.

The diagram contains Line L1,

which has endpoints: Point P0 and Point P1,

In addition, there is/are Point P2 on the line.

Circle

The diagram contains ${},
whose center point is ${},
which has ${} on its arc.

The diagram contains Circle M,

whose center point is Point E,

which has Point F, Point G on its arc.

Degree

1. Angle ${} has degree of ${}.
2. Line ${} and Line ${} cross at Point ${}
has degree of ${}.

1. Angle 1 has degree of 100.

2. Line L1 and Line L2 cross at Point C

has degree of 50.

text2geo Length
The length of Line ${} between Point ${}
and Point $ is ${}.

The length of Line L3 between Point A

and Point B is 10.

Circle Degree

Line ${} and Line ${} cross at the

center point ${} of Circle ${} has

degree of ${}.

Line L1 and Line L2 cross at the

center point C of Circle C0 has

degree of 20.

same degree
Angle ${} has the same degree with

Angle ${} ...

Angle 1 has the same degree with

Angle 2, Angle 3.

other2geo same length
Line ${} has the same length with

Line ${} ...

Line L1 has the same length with

Line L2, Line L3.

parallel Line ${} is parallel with Line ${}... Line a is parallel with Line b.

perpendicular
Line ${} is perpendicular with Line ${}
at Point ${}.

Line L1 is perpendicular with Line L2

at Point C.

Table D.1: The defined paradigm used to convert geo2geo and sym2geo relations to
natural language descriptions L. “${}” is the placeholder. The placeholder is filled in
as demonstrated in the “Example” column, and the filled content is highlighted in bold
type.

Once the geo2geo relations and sym2geo relations have been established, we proceed

to convert these relations into natural language descriptions denoted as L following the

guidelines specified in Table D.1.
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To begin, we initiate the process by representing the existing geometric primitives

in the diagram by enumerating points, lines, and circles within the description of the

geo2geo relation. In detail, we sequentially enumerate all existing points, providing

their reference names as described in the “Point” entry of Table D.1. We describe the

associated points for each line by mentioning their reference names. Additionally, we

include a list of points that have “end-point” and “on-a-line” relations with the line,

as specified in the “Line” entry of Table D.1. Similarly, for each circle, we mention its

reference name and proceed to list the points that exhibit “centre-point” and “on-a-

circle” relations with the circle, following the guidelines provided in the “Circle” entry

of Table D.1.

Next, we proceed to describe the text2geo relation within the sym2geo relation based

on the predicted text class. Here are the guidelines for each case:

• If the text class indicates that the symbol refers to the reference name of a point

(or a line, or a circle), we modify the name of the corresponding point (or line,

or circle) accordingly.

• If the text class indicates that the symbol refers to the degree of an angle, we

describe it following the guidelines specified in the “Degree” entry of Table D.1.

• If the text class indicates that the symbol refers to the length of a line, we describe

it according to the instructions provided in the “Length” entry of Table D.1.

• If the text class indicates that the symbol refers to the degree of an angle on the

circle, we describe it based on the guidelines outlined in the “Circle Degree” entry

of Table D.1.

Furthermore, when dealing with the other2geo relations, we describe them based

on the specific type of geometric relation as indicated in Table D.1.

D.3 Instruction Choice

Instructions serve as direct and explicit commands that clearly communicate to the

model the specific task it is required to perform. For our experiments, we initially
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selected two distinct instruction templates for Llama2-13b-chat [75] and CodeLlama-

13b [225], as detailed in Table D.2. Upon experimental evaluation, it was observed

that the instruction template modified from the one used to train the Llama2 model

(displayed at the upper row in Table D.2) demonstrated superior performance. Conse-

quently, we opted for this template.
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IT

You are a problem-solving bot,

and now I ask you to solve a

geometry problem,

please answer the question

and provide the correct option letter.

The problem is as follows:

{Problem Text}

Here are the basic

descriptions of the diagram:

{Natural Language Descriptions}

The Answer and the

Reason Process are:

[/INST]

Hint: Please answer the question and

provide the correct option letter,

e.g., A, B, C, D, at the end

{Problem Text}

Here are the basic

descriptions of the diagram:

{Natural Language Descriptions}

EX

[INST]

You are a problem-solving bot,

and now I ask you to solve a

geometry problem,

please answer the question and

provide the correct option letter.

The problem is as follows:

Find the perimeter of the polygon.

The Choices are:

A: 20.0, B: 24.0, C: 28.0, D: 34.409,

Here are the basic

description of the diagram:

The diagram contains

Point P0, Point P1, Point P2, Point P3, Point P4,

The diagram contains

Line L0, which has endpoints: Point P1, Point P3,

Line L1, which has endpoints: Point P1, Point P4,

Line L2, which has endpoints: Point P3, Point P4,

Line L3, which has endpoints: Point P0, Point P3,

Line L4, which has endpoints: Point P0, Point P1,

Line L5, which has endpoints: Point P0, Point P4,

The length of Line L0 between Point P2 and Point P3

is 7.

The length of Line L4 between Point P2 and Point P1

is 7.

The length of Line L5 between Point P4 and Point P2

is 5.

Line L3 between Point P0 and Point P3 has the same length

with Line L4 between Point P1 and Point P0

and Line L2 between Point P3 and Point P4

and Line L1 between Point P1 and Point P4.

The Answer and the Reason Process are:

[/INST]

Hint: Please answer the question and

provide the correct option letter,

e.g., A, B, C, D, at the end

Here are the basic

description of the diagram:

The diagram contains

Point P0, Point P1, Point P2, Point P3, Point P4,

The diagram contains

Line L0, which has endpoints: Point P1, Point P3,

Line L1, which has endpoints: Point P1, Point P4,

Line L2, which has endpoints: Point P3, Point P4,

Line L3, which has endpoints: Point P0, Point P3,

Line L4, which has endpoints: Point P0, Point P1,

Line L5, which has endpoints: Point P0, Point P4,

The length of Line L0 between Point P2 and Point P3

is 7.

The length of Line L4 between Point P2 and Point P1

is 7.

The length of Line L5 between Point P4 and Point P2

is 5.

Line L3 between Point P0 and Point P3 has

the same length

with Line L4 between Point P1 and Point P0

and Line L2 between Point P3 and Point P4

and Line L1 between Point P1 and Point P4.

Table D.2: Two instruction templates. “IT” and “EX” refer to the instruction template
and examples. The template in the left column is modified from the instruction used
to train the Llama2 model, and another one is from the [12]. In the column of “IT”,
the “{problem Text}” is the geometry maths problem text T , and “{Natural Language
Descriptions}” is the description of the diagram L.
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E.1 Model Hyperparameters

Table E.1 presents the complete list of hyperparameters applied to the models through-

out the evaluation phase.
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E.2 Instruction Prompt Used for Evaluating Models
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Prior to employing instruction prompts to steer model responses, we combine the

problem texts, diagram descriptions, and choice lists from an example, as depicted

in the ”Merge” row of Table E.2. Following this combination, as illustrated in the

”Instruction” row of Table E.2, we incorporate instruction prompts into the merged

texts and then forward these to the models to generate responses.

E.3 Prompt and Heuristic rules For Answer Extraction

We detail the prompts utilized for extraction using GPT-4, which include an extraction

instruction alongside various sample prompts. The extraction instruction and the con-

structed samples are presented in Table E.3 and Table E.4, illustrating the methodology

behind the extraction process.

Element Prompt

Task description
You are a result extraction bot. I will provide you with geometry questions and a model
output, and you will help me extract the reference answers from the model’s output.

Example 1

Question: As shown in the figure, in triangle ABC, AB = AC, ∠A = 40◦, DE is the
perpendicular bisector of AB. What is the degree measure of ∠DBC? ()
Choices: (A) 30.0 (B) 20.0 (C) 15.0 (D) 10.0
Model response: Given that ∠A = 40◦, AB = AC, we can conclude that
∠ABC = ∠ACB = 70◦. Also, since DE is perpendicular and bisects AB, we have
DB = AD and ∠ABD = ∠A = 40◦. Therefore,
∠DBC = ∠ABC − ∠ABD = 70◦ − 40◦ = 30◦. The answer is option A.
Extracted answer: A

Example 2

Question: As shown in the diagram, the lateral surface area of a cone with a radius of
the base r equals 6 cm and a height h equals 8 cm is ().
Choices: (A) 94.2 (B) 150.8 (C) 188.5 (D) 251.3
Model response: Given h = 8 cm and r = 6 cm, the length of the generatrix of the cone
can be set as l. Using the Pythagorean theorem, we have l =

√
62 + 82 = 10 cm. The lateral

area of the unfolded cone is Sside = 0.5× 2× 6π × 10 = 60π cm2. Therefore, the lateral
area of the cone is 60π cm2. Therefore, the answer is C.
Extracted answer: C

Example 3

Question: In triangle ABC, F is the midpoint of BC and point E is on the AC side.
AC = 10. What is the length of AE?
Choices: (A) 3.0 (B) 4.0 (C) 5.0 (D) 4.5
Model response: Since F is the midpoint of BC, EF is parallel to AB, so EF is the
median of triangle ABC. Therefore, point E is the midpoint of AC. Therefore,
AE = 0.5 × AC. Since AC = 10, AE = 5. Therefore, the answer is C.
Extracted answer: C

Table E.3: Task specific instruction used for extracting the answer, and three
examples.
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Regular expressions Demonstration Examples

value of (\w+) is\s*([\d.]+) The value of x is 3.5.

correct answer is\s*(.+). correct answer is C.”

answer is\s*([\d.]+) answer is 17.1.”

answer should be\s*(.+) degrees Therefore, the answer should be choice D.”

answer to (.+) is (.+) degrees The answer to the angle ABC is 60◦

answer to the problem is\s*(.+) The correct answer to problem is y = x2 + 2x+ 3.”

The closest (.+) is (.+). So we got the area is 13.1. The closest answer is D.”

the (.+) is equal to (.+). The degree measure of angle ABC is 35 degrees.

(.+) is approximately (.+) units So, the length of the line segment is approximately 10 units.”

Table E.4: Regular expressions used for extracting the answers that GPT-4 cannot
tackle.

E.4 Results Across Different Subjects

Figure E.1: Detailed accuracy scores for models across various academic subjects.

Figure E.1 displays the performance of models across various subjects, revealing

distinct strengths. The WizardMath-7B model significantly outperforms others in flat

geometry problems, such as length and lines. Conversely, in solid geometry problems

like cuboids and spheres, GPT-4V surpasses WizardMath-7B, indicating its superior

capability in addressing solid geometry questions.
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