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Summary 
 

In recent years, as the offshore industry moved towards deeper waters, there has been 

a concerted effort to investigate both theoretically and experimentally the response of 

a cluster of vertically tensioned risers in ocean currents. It is believed a loss of 

stability of riser system once the current exceeds a certain critical value can lead to 

riser clashing. 

 

The turbulent cross flow past multiple circular cylinders at Reynolds number Re = 

104 is simulated by using FLUENT with a ω−k  SST turbulence model. 

Position-related fluid forces under wake shielding effect have been obtained. The 

influence of spacing on fluid forces and relative flow patterns was also been 

identified and discussed.  

 

Five flow patterns for two cylinders in cross-flow, in tandem or staggered 

arrangements, are identified. Generally, the downstream cylinder experiences a 

significant drag reduction for tandem arrangement, and also a non-zero 

time-averaged lift force for staggered arrangement. The bistable and hysteresis 

features of flow around two tandem cylinders are observed.  

 

It is found the drag reduction is the result of fluctuating incident flow and the 

time-averaged lift is due to the asymmetry of the same. The latter is also related to 

the asymmetric separation points around the downstream cylinder. The change of 

stagnation point, as a result of the fluctuating incident velocity, is strongly associated 

with the periodical fluid forces. 

 

For three in-line cylinders in cross flow, the drag coefficient of the third cylinder is 

largely influenced by the spacings between the cylinders, as a result of the cascading 

shielding effects of the two upstream cylinders, while the third cylinder only 

influences the drag coefficients of the upstream two when they are near the critical 

spacing. It is also found when the first two cylinders are widely spaced, the third 
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cylinder experiences a reduced vortex shedding frequency. 

 

Based on numerical results and the experimental data, a stability analysis model for 

two elastically supported cylinders is set up and applied for various aspects. It is 

found that for a cylinder located in the wake of an upstream one, there can be 

multiple stable/unstable equilibrium positions. There exists a critical reduced velocity, 

above which there will be no equilibrium positions, indicating a likely clashing 

between the two cylinders once the critical velocity is exceeded. 

 

The tandem arrangement is identified as the worst situation for the clashing onset. It 

is revealed both the diameter and the stiffness ratios have significant impact on the 

riser clashing onset condition. The drag amplification, caused by VIV, can 

significantly change the riser clashing onset condition computed from the forces of 

stationary cylinders. 
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Nomenclature 
 

The following nomenclature is used throughout the thesis unless otherwise 

specifically mentioned. 
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1 Introduction 
 

The continuous increase in world’s hydrocarbon demand and the finite nature of 

the proven reserves paved way to its exploration and production from onshore 

to offshore. As more and more offshore shallow water reserves had been 

discovered and developed, the extraction of hydrocarbons moved to deeper water 

depths in excess of 1000 meters. As a result of these deep water developments, the 

production systems towards the extraction of hydrocarbons are being deployed at 

greater water depths.  

 

Several crucial components of the offshore installations like risers, mooring lines, 

umbilicals, cables and pipelines can be classified broadly as slender 

marine structures (Halse 1997). These marine structures are characterised by the 

bluff nature of their cross sections and hence can be termed bluff bodies. The 

phenomenon of flow separation around bluff bodies and shedding of vortices into the 

wake of the body causes the high frequency inline and transverse forces. The inline 

forces are called drag forces and the transverse forces are referred to as lift forces. 

 

The Morison equation states that the total hydrodynamic force acting on a body due 

to a flow can be divided into two components, namely inertia force and drag 

force (Newman 1977). It can be seen from this equation that the form or shape of 

the body has a significant effect on the hydrodynamic forces acting on it. The effect 

of the form is quantified as hydrodynamic coefficients or drag and inertia 

coefficients. By virtue of its shape, a circular cross section provides properties like 

low hydrodynamic coefficients, high buckling strength and high strength against 

internal and external pressures that are quite favourable with regard to marine 

applications. Almost every marine structure like risers, mooring chains, umbilicals, 

cables, pipelines, piles, jack up legs, bracings etc are of circular cross section.   

 

As offshore production moves to deeper water the structures become very long 

to cater the increased depth. The wave motion decays exponentially with water 
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depth and ocean currents gradually dominate the environmental loads (Halse 1997). 

As a consequence the oscillatory drag and lift forces and the VIV due to a steady 

flow will become the dominating dynamic response. Hence drag reduction and VIV 

suppression of these structures becomes interesting topics for investigations. Since it 

is found to be very difficult to determine the hydrodynamic coefficients of the bodies 

analytically, the coefficients presently used for the industrial designs are mainly 

derived from experimental results. In this regard the advent of Computational 

Fluid Dynamics, or CFD, as a major numerical tool to solve complex flow problems 

can lead us towards realistic results.  

 

1.1 Deep water oil and gas developments 

 

If the ten years from 1993-2003 is considered, over 70% of the reserves from the 

new discoveries of oil and condensates are located offshore with half in deepwater 

zones (around 1000 metres) (IFP 2005). Over the same period, 60% of gas 

discoveries were located offshore, with two thirds in deepwater. Of the 14 giant oil 

fields and 23 giant gas fields found between 1999 and 2003, most were offshore 

mainly in deepwater. Table 1-1 shows the giant oil fields discovered during the 

1999-2003 period and the significance of deepwater developments. 

 

Table 1-1 Giant oil field discovered between 1999 and 2003 (IFP 2005). 
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It is estimated that over 60% of the 3.6 million barrels of new oil production will 

simply offset the loss from depletion of existing fields such as the North Sea or the 

giant Burgan field in Kuwait (Rubin & Buchanan 2006). Figure 1-1 shows the 

expected trend of global oil demand and supply. The increase in net global crude 

supply for the rest of the decade is predicted to come from non conventional sources 

like deep water and oil sands. 

 

 

 Figure 1-1 Global oil & gas demand and supply (Rubin and Buchanan 2006)  

 

The greatest production depth of 300 meters in 1978 increased to 1800 meters by 

1998. Sedimentary areas lying in over 200 meters of water represent nearly 55 

million km² of sedimentary basins or four times the conventional offshore surface 

area (WEC 2001). Deep offshore conditions present certain characteristics like 

high pressures, low temperatures, large water depth range, the constant presence of 

ocean currents, etc, that are radically different from those typifying conventional 

offshore operations. The realisation that the conventional offshore solutions could not 

be applied at greater water depths leads to the development of new concepts. The 

various offshore platforms used presently are shown in Figure 1-2. 

 

The next possible target depth of the industry is 3000 meters. The transition from 

deep offshore to ultra deep offshore will require higher allocations of R&D 

resources since it will not be possible to extrapolate from existing solutions beyond a 

certain limit and new ones will have to be found and proven as appropriate and 



 4 

reliable.  

 

 

Figure 1-2 Offshore platforms (WEC 2001) 

 

1.2 Marine risers 

 

A riser system is essentially conductor pipes connecting floaters on the surface 

and the wellheads at the seabed (Bai 2009). A typical riser system is composed of 

conduit or riser body, interface with floater and wellhead, components and auxiliary. 

The functions performed by a riser system include production, injection, drilling, 

export, import, gas lift, completion and workover. Types of risers normally requested 

for deep-water fields include steel catenary risers (SCRs), top-tensioned risers 

(TTRs), hybrid and flexible risers. 

 

An SCR is a single pipe suspended from the surface support facilities in a catenary 

shape and laying down to the seabed and either continuing directly into the 

horizontal flow-line or connected mechanically to the horizontal flow-line. In the last 

ten years this production has been greatly improved with FPSO (Floating Production, 

Storage and Offloading). For deep-water and even the ultra-deep water, the riser 

designs pose a significant challenge due to the weight of conventional SCR systems. 

Innovations in riser configuration and materials are needed. 
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In order to avoid buckling under self weight and to avoid excessive bending stresses 

under lateral wave, current and vortex shedding loads, rigid risers are tensioned at 

top from the platform (Barltrop 1998). Top tensioned risers consist of a vertical 

column made of several pipes used for transporting the fluids or providing some 

mechanical stiffness to the structure. The platforms associated with this type of risers 

are Tensioned Leg Platforms (TLPs) (Figure 1-3) and Spars. Deep water TLPs are 

mainly found in the Gulf of Mexico, but there are also some in west of Africa and off 

the coast of Brazil. The Spar production option has similar advantages to a TLP and 

may allow some oil storage. It is currently receiving considerable attention both in 

the Gulf of Mexico and West of Shetlands. 

 

 

Figure 1-3 Schematic diagram of a tensioned leg platform. 

 

Top tensioned risers for spars and TLPs are arranged in clusters of (near) vertical 

riser arrays. The number of individual risers in an array may be 20 or more, which 

may consist of different risers applied for production, drilling, workover, export, etc. 

Due to the small space available for the high number of risers, the clearances among 

individual risers are limited. Therefore the problem of riser clashing can happen to 

tensioned risers of a TLP or a spar located in deep waters. 
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1.3 Wake-induced riser clashing 

 

Although the relative motion between individual risers is influenced by many factors, 

such as waves and motions of the floating hulls, it is known that currents play an 

important role. This is particularly so for applications in deep-waters, West of 

Shetland and West Africa, where strong currents are observed across the entire water 

column and the wave effect becomes less important as water depth becomes greater. 

 

For the top tensioned vertical riser system in a current, the vortex-induced vibration 

(VIV) was and still is a primary design concern which has been under extensive 

investigation since the early days of offshore oil and gas exploration. As the industry 

moves into ever deeper waters, an additional problem of the riser system emerges, i.e. 

the interference between individual risers in the riser cluster in strong ocean currents 

as the riser lateral deflections are likely to be large and the risers are prone to 

wake-induced clashing. 

 

The hydrodynamic interaction between a cluster of cylinders in a uniform current is 

dependent upon many factors such as the relative positions of these cylinders, 

Reynolds number and oncoming flow turbulence level. Among these the relative 

positions of these cylinders may be the most important, as the time averaged mean 

static force, which varies depending upon the cylinder’s location in the wake, may 

cause fluid-elastic instability with ensuing large amplitude vibration (Wu et al. 2002). 

 

According to Wu et al. (2001), for two cylinders with one placed in the wake of 

another, the downstream cylinder is subjected to non-zero mean static drag and lift 

forces. In this rather complicated non-linear wake force field, the downstream 

cylinder can have more than just one equilibrium position. Some of these equilibrium 

positions are stable while others are unstable. In general, the downstream cylinder 

will be situated at one of the stable equilibria, and if it is at an unstable equilibrium 

position it tends to move away from the position and converge towards a stable 

position under any small disturbances. As the flow velocity increases, however, it is 

possible that no equilibrium positions exist in the wake for the downstream cylinder. 
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In this case, it will move about in the wake and it is very likely that the two cylinders 

will collide with each other. 

 

1.4 Aims of the thesis 

 

The overall aim of this thesis is towards obtaining a thorough understanding of the 

position-related fluid forces on multiple circular cylinders in a cross flow, and, based 

upon the forces, developing a practical model to predict the stability of a riser cluster. 

The study on fluid forces is via numerical simulation of flow around multiple circular 

cylinders. 

 

Specific objectives include: 

 

i. To validate a numerical model capable of simulating flow around circular 

cylinders in subcritical flow regime. 

ii. To calculate the fluid forces on two circular cylinders in tandem and 

staggered arrangement, and study the effect of spacing on forces. 

iii. To study the flow patterns when two cylinders are closely spaced, and the 

nature of drag reduction and existence of mean lift on the downstream 

cylinder. 

iv. To calculate the fluid forces on three circular cylinders and analyse the 

spacing effects. 

v. To set up a practical model to analyse the stability of risers. 

vi. To extend current study to more general situations, such as different risers 

and VIV effect. 
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2 Literature review 
 

2.1 Flow around one circular cylinder 

 

2.1.1 Flow separation and Karman vortex street 

 

In a viscous flow the particles in the thin boundary layer close to the surface will lose 

parts of their kinetic energy due to friction and may have too little energy to meet the 

increased pressure field or adverse pressure gradient on the downstream half of the 

body. Hence a boundary layer separation will result as shown in Figure 2-1. At the 

separation point the flow from ahead and behind will meet in a stagnation point and 

advance in a different direction. This will give rise to a vortex that will feed on the 

energy loss in the wake due to boundary layer separation. The vortices are then 

convected away by flow velocity and together with other vortices form Karman 

vortex street. 

 

 

Figure 2-1 Viscous flow around a bluff body (Halse 1997). 
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When a fluid flows around a circular cylinder like marine riser, the flow will separate 

from the surface of the cylinder except at very low velocities and form vortices that 

are convected downstream by the flow velocity. A characteristic vortex street often 

referred to as a Von Karman Street is formed in the wake of the cylinder. On a fixed 

cylinder a linear relation is found between the vortex shedding frequency and the 

flow velocity (Halse 1997). The relation is expressed mathematically as 

 

t
s

S Vf
D

=  (2.1) 

 

where fs is the vortex shedding frequency, V is the incoming flow velocity, D is the 

diameter of the cylinder and St is the proportionality constant called as the Strouhal 

number. The relationship was established in 1878 by Strouhal and later has been 

called as the Strouhal relation. 

 

In 1879 Lord Rayleigh confirmed the Strouhal relation but found that the string was 

actually vibrating in a direction transverse to the flow direction. In 1908 

Benard(1908) related the tone to the vortex formation and the existence of a vortex 

street. In 1912 Von Karman found then a symmetrically staggered vortex 

arrangement is stable for one explicit ratio of the vortex street width (h) and distance 

between two adjacent vortices (l) as given below. 

 

( )11 cosh 2 0.2805h
l π

−= =  (2.2) 

 

Figure 2-2 Karman Vortex Street (Blevins 1990). 

 

This arrangement is later referred to as Von Karman Street and is shown in Figure 

2-2. 
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2.1.2 Flow regimes for steady flow around a fixed cylinder 

 

For the flow around circular cylinders, whether or not separation will occur and the 

position of the separation point is Reynolds number dependent. For a circular 

cylinder the Reynolds number is given as 

 

VDRe ρ
µ

=   (2.3) 

 

where Re is the Reynolds number, ρ is the density of the fluid, V is the 

characteristic flow velocity, D is the diameter of the cylinder and µ  is the dynamic 

viscosity of the fluid. Figure 2-3 shows main characteristics of six different flow 

regimes around a smooth cylinder. 

 

 

Figure 2-3 Flow regimes around a cylinder (Blevins 1990). 

 

For Re < 5, the flow is laminar and follows the cylinder contours. For 5 ≤ Re ≤ 
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45 the boundary layer separates on each side of stagnation point. The two separated 

shear layers meet at an increasing distance behind the cylinder enclosing a pair of 

symmetrical standing vortices. For Re above 50 to 60 wavy characteristics of the 

wake and alternate shedding of vortices takes place. The laminar vortex shedding 

forms the Karman’s vortex street and this is continued till a Re of 150. As Re 

increases further, one of the vortices break away and a laminar periodic wake of 

staggered vortices of opposite sign is formed. Between Re = 150 and 300 the wake 

becomes turbulent although boundary layer on the cylinder remains laminar (Blevins 

1990). 

 

The Re range 300 < Re < 51.5 10×  is called subcritical. In this range the wake is 

turbulent but boundary layer is laminar and separates at 80o. The fully developed 

Karman Street is characterised by a constant Strouhal number of 0.20. In the 

transitional or critical range, 51.5 10×  to 63.5 10× , the separation point moves 

backwards from an angle of 80o to an angle of 140o causing a decrease of wake width 

and drag coefficient from 1.2 to 0.3. In this range the flow undergoes at first a 

laminar separation at 100o and reattaches the cylinder wall, forming an attached 

separation bubble, before separating downstream at 140o. No regular vortex shedding 

is observed in this regime. In the supercritical regime, for Re > 63.5 10× , the 

separation bubble gradually disappears and fully turbulent separation occurs at 110o, 

the wake width increases and drag coefficient reaches a stable value of 0.54 and 

turbulent vortex shedding provides a quasi constant Strouhal Number of 0.30 

(Blevins 1990). 

 

The vortex shedding frequency is usually found from the Strouhal relation. The 

Strouhal number is a function of Reynolds number and to a lesser extent surface 

roughness and free stream turbulence (Blevins 1990). Figure 2-4 shows the variation 

of Strouhal number with Re. For low Re, St increases with Re and exhibits a constant 

value of 0.20 in the subcritical regime. In the critical regime a broad banded 

spectrum is found for a smooth cylinder. In supercritical regime a constant value of 

0.30 is established. 
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Figure 2-4 Strouhal number with Re (Blevins 1990). 

 

2.1.3 Fluid forces 

 

The alternate shedding of vortices from the either side of the surface of a circular 

cylinder at significantly high Re results in a periodic pressure field surrounding the 

structure as illustrated in Figure 2-5. Consequently oscillating forces occur both in 

line and cross flow to the incoming flow direction. These forces are called vortex 

induced forces or flow induced forces and the inline and cross flow forces are called 

drag and lift respectively (Blevins 1990). 

 

 

Figure 2-5 Pressure distribution in half a vortex shedding period (Blevins 1990). 
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The time histories of the oscillating drag and lift forces are given in Figure 2-6. It can 

be observed that the transverse force component oscillates at the frequency of vortex 

shedding with a zero mean whereas the inline component oscillates at twice the 

frequency of vortex shedding with a nonzero mean. The amplitude of lift or 

transverse force is also observed to be greater than that of the drag or inline force 

(Sumer & Fredsoe 1997). 

 

 

Figure 2-6 Oscillating drag and lift forces (Sumer & Fredsoe 1997). 

 

The drag coefficient CD and lift coefficient CL are defined as 

 

21
2

D
D

FC
DVρ

=  (2.4)  

21
2

L
L

FC
DVρ

=  (2.5) 

 

where 21
2

DVρ  is the dynamic pressure head. For a smooth circular cylinder the 
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mean drag coefficient is a function of Re and is shown in Figure 2-7. It can be 

observed that CD is practically constant at 1.2 throughout the subcritical range (300 

to 53 10× ) followed by dropping to a value of 0.30 due to a phenomenon called the 

drag crisis in the critical regime and attains a constant value of 0.50 in the 

supercritical regime. 

 

 

Figure 2-7 Drag coefficient of a smooth cylinder as a function of Reynolds number 

(Sumer and Fredsoe 1997). 

 

The mean drag force acting on a cylinder in a steady flow can be resolved into two 

components, one from pressure and other from friction or viscosity. The pressure 

drag or form drag is the inline component of the mean resultant force due to pressure 

acting on the cylinder while friction or viscous drag is the inline component of the 

mean resultant force due to friction (Sumer and Fredsoe, 1997). The contribution of 

friction drag to total drag force is less than 2-3 % for the range of Re encountered in 

practice. The pressure at the rear side of the cylinder is always negative due to 

separation in contrast to the fore and aft symmetry given by potential theory. 

Pressure drag is due to the fore and aft asymmetry of pressure distribution. 

 

For circular cylinder flow the lift has zero mean value. The r.m.s. (root-mean-square) 

lift coefficient '
LC  is used to measure the oscillating lift force. A vast amount of 
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quantitative data has been reported and numerous compilation graphs on the 

variation of lift-related coefficients with Reynolds number have been presented. 

Despite these efforts, there has been no real consensus on ' (Re)LC . As shown in 

Figure 2-8. 

 

 

Figure 2-8 r.m.s lift coefficient versus Reynolds number (Norberg 2003). 

 

2.2 Flow around two circular cylinders 

 

(a)        (b)        (c) 

L
U

  
x

y

U

    

U

 

  Figure 2-9 Configuration of two circular cylinders. 

 

Basically there are three types arrangements for two identical circular cylinders, as 

shown in Figure 2-9: tandem (a), staggered (b) and side-by-side (c) arrangements. As 

the main concern of this thesis is the wake effect of the upstream cylinder on the 

downstream one, only case (a) and (b) are considered. The tandem arrangement is 
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often measured by the centre to centre spacing L or the spacing ratio L/D. 

 

Generally, there are two notations for staggered configurations of two circular 

cylinders of equal diameters in a steady cross-flow. One is by the centre-to-centre 

pitch ratio, P/D, and the incidence angle, α , see Figure 2-10(a); the other is by the 

longitudinal and transverse pitch ratios, L/D and T/D, respectively, see Figure 

2-10(b). In the thesis, similar with the L/D-T/D system, the positions of the cylinders 

are defined by Cartesian coordinate system, with the origin located at the centre of 

upstream cylinder and x-axis parallel to the free stream direction, i.e. Figure 2-10(b). 

In this way it is more convenient to extend to the case of three cylinders flow. For 

staggered arrangement, both the upstream and the downstream cylinders are 

designated an inner side and an outer side, according to their relative positions and 

the direction of free stream. 

 

  (a)                                (b) 

  
 

  Figure 2-10 Notation for two staggered circular cylinders. 

 

Turbulent flow past two circular cylinders represents a very complicated flow 

phenomenon. Excellent summaries of this problem have been compiled in review 

articles by Zdravkovich (1977; 1987; 1997). A number of high-quality experimental 

investigations of the fluid dynamics for two cylinders flow in subcritical regime can 

be found in the literature, for example: Price (1976), Zdravkovich & Pridden (1977), 

Kiya et al. (1980), Igarashi (1981; 1984), Price & Paidoussis (1984), Ljungkrona et 

al. (1991), Zhang & Melbourne (1992), Gu & Sun (1999), and Sumner et al. (2000; 

2005). 
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2.2.1 Flow patterns 

 

The complexity of the two cylinders flow arises from the interaction of four 

separated free shear layers, two Karman vortex formation and shedding processes, 

and interactions between the two Karman vortex streets (Sumner et al. 2005). 

Zdravkovich(1987) classified the fluid behaviour of two cylinders flow into four 

types of interference, based on the location of the downstream cylinder with respect 

to the upstream one, as shown in Figure 2-11: 

 

 Proximity interference, P, which takes place when the cylinders are close to each 

other, but none of them is submerged in the wake of another. 

 Wake interference, W, which takes place when one cylinder is near to or 

submerged into the wake of the other. Tandem arrangement is a special case of 

wake interference. 

 Combination of proximity and wake interference, P+W. 

 Finally, there is a substantial region where the interference is negligible. The 

flow around each cylinder in that region is effectively identical to that around a 

single cylinder. 

 

 

Figure 2-11 Flow patterns of two cylinders in cross flow, after Zdravkovich (1987). 

 

The above four types can be simplified as two basic ones: wake interference and 

proximity interference. Gu and Sun (1999) extended this classification to three 
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different types, namely wake interference, shear layer interference, and 

neighbourhood interference. However, their work was limited to small and 

intermediate spacing ratios. Recently Sumner et al.(2000) conducted more extensive 

flow visualization and PIV experiments within the low subcritical regime (Re = 

850–1900) and revealed a much wider range of flow patterns for the staggered 

configuration. Nine distinct patterns were identified which are illustrated in Figure 

2-12 and Figure 2-13. These flow patterns can broadly be grouped into three 

categories: single bluff-body flow patterns (Figure 2-12a-c), flow patterns at small 

angles of incidence (Figure 2-12d-f), and flow patterns at large angles of incidence 

(Figure 2-12g-i). The flow patterns were also summarised by Akbari & Price (2005). 

 

 

Figure 2-12 Overview of flow patterns for two staggered circular cylinders of equal 

diameter in steady cross-flow, in the low subcritical regime, based on Sumner et al. 

(2000). 

 

According to Sumner et al.(2000), when the two cylinders are located very close to 

each other, the flow pattern resembles that of a single bluff body. The near wake 

region of the cylinder pair contains two free shear layers that alternately shed 

Karman vortices at the same frequency, much like that observed for a single, isolated 

circular cylinder. When the cylinders are in contact, two types of single bluff-body 

behaviour could be distinguished, designated SBB1 and SBB2 for the incidence 
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angle less than and greater than 45 degree, respectively. A third single bluff-body 

flow pattern (BB) is seen at very small pitch ratios (<1.25) and high angles of 

incidence, with the added effect of base bleed, as shown in Figure 2-12 and Figure 

2-13. 

 

 

Figure 2-13 Specification of the flow patterns in Figure 2-12, after Sumner et al. 

(2000). 

 

Sumner et al. (2000) also identified three flow patterns for small angles of incidence. 

For very small pitch ratios, P/D < 3.0, and at small angles of incidence, 10<α  to 

20 , the shear layer reattachment flow pattern (SLR) is observed, in which the shear 

layer originating from the upstream cylinder reattaches on the outer side of the 

downstream cylinder, effectively preventing flow through the gap between the 

cylinders. At slightly greater angles of incidence, from 10  to 30 , shear layer 

reattachment can no longer be maintained. The shear layer from the inner side of the 

upstream cylinder is deflected into the gap between the cylinders. This shear layer 

rolls up in the gap and induces a separation of the flow from the downstream cylinder. 

This flow pattern is referred as induced separation (IS). At larger pitch ratios and 

small angles of incidence, the Karman vortices from the upstream cylinder are 
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formed completely and impinge upon the downstream one, hence the vortex 

impingement flow pattern arises (VI). 

 

For larger angles of incidence, vortex shedding occurs from both cylinders. Sumner 

et al. (2000) reported that, the most commonly observed flow pattern is synchronized 

vortex shedding (SVS). The vortices shedding from the two sides of the gap 

synchronized, resulting in two adjacent, anti-phase Karman vortex streets. The vortex 

pairing and enveloping flow pattern (VPE) was reported for smaller pitch ratios. 

There is a counter-rotating vortex pair structure at the gap exit, which is then 

enveloped by a Kaman vortex from the outer shear layer of the upstream cylinder. 

When the enveloping process was not complete, it involves splitting of the vortex 

pair, resulting in vortex pairing, splitting and enveloping flow pattern (VPSE). 

 

Approximate boundaries for the above nine distinct flow patterns are shown in 

Figure 2-14. For detail, the readers are referred to Sumner et al.(2000). 

 

 

Figure 2-14 Flow pattern boundaries for two staggered cylinders in steady cross-flow, 

after Sumner et al.(2000). 

 

2.2.2 Fluid forces 

 

As a special case, flow around two tandem circular cylinders has been well studied. 

Zdravkovich (1987) compiled all the drag coefficient data into a single plot of CD1 
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(upstream cylinder) and CD2 (downstream cylinder) in terms of spacing ratio and 

Reynolds number, as shown in Figure 2-15. It can be seen the most prominent feature 

is a discontinuous jump in CD1 and CD2 at 3 < L/D < 4. There is a negligible Re effect 

on CD1 curves but a strong effect on CD2 curves. For L/D < 2, CD2 is negative, and 

acts as a thrust force. For L/D > 3.5, CD2 becomes positive. 

 

 

Figure 2-15 Drag coefficients on two tandem cylinders in term of spacing ratio S/D 

and Re, after Zdravkovich (1997). 

 

A map of the static force coefficients for two circular cylinders of equal diameter 

subjected to cross-flow in the subcritical Reynolds number regime, which was 

furnished by Zdravkovich (1987), is shown in Figure 2-16. Contours of constant 

static drag and lift coefficients are plotted in the L/D versus T/D plane. 

 

The upstream cylinder experiences positive lift directed outward for 40>α and a 

relatively small decrease in drag and a significant increase in Strouhal number. There 

is a region of negative lift directed towards the gap when the two cylinders are close 

to each other, at small angle of incidence. 
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For the downstream cylinder, when 1.1 < L/D < 3.5 and T/D = 0.2, the strong gap 

flow between the cylinders induces a significant inner lift force (Zdravkovich 1977), 

which suddenly disappears for T/D < 0.2 as the gap flow ceases. When L/D > 2.8 and 

T/D > 0.4, the outer lift force is produced by the displacement of the fully formed 

wake of the upstream cylinder by the flow around the downstream cylinder. The 

outer lift reaches a maximum value near the edge of the wake boundary when T/D > 

0.4and diminishes gradually to zero when the tandem arrangement is reached. 

 

 

Figure 2-16 Force coefficients and Strouhal number for two circular cylinders: (a) lift 

coefficient; (b) drag coefficients; (c) Strouhal number, after Zdravkovich (1987). 
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Figure 2-16 shows the variation of the lift, drag, and Strouhal number. The inner and 

outer lift forces are always directed towards the axis of the upstream wake. The 

deflected near wake behind the downstream cylinder produces a minimum drag force 

at the same staggered arrangements where the inner lift force is maximum. In 

contrast, the outer lift maximum has no effect on the drag force or Strouhal number. 

 

A number of different explanations for the origin of the outer lift force have been 

provided in the literature, which were summarized and assessed by Price (1976) and 

Ting et al. (1998). Maekawa (1964) attributed the lift force to a buoyancy-like effect 

as the static pressure distribution in the wake is at its minimum at the center of the 

wake. However, by integrating the static pressure around the cylinder’s surface, Best 

and Cook (1967) concluded that only 30 percent of the lift force could be attributed 

to buoyancy. 

 

Mair and Maull (1971) suggested a resolved drag model. This model is based upon 

the observation that due to the entrainment of fluid into the wake, the flow velocity at 

the downstream cylinder is directed towards the wake centerline; hence, the lift force 

experienced by the downstream cylinder would be a resolved component of the drag 

force. However, it was shown by Price (1976) that this amount is still far from 

sufficient to account for the total lift force. 

 

Rawlins (1974) ascribed the lift force to circulation. Owing to the variation of 

turbulence and velocity across the wake of the windward cylinder, the upper and 

lower boundary layers of the leeward cylinder feed different amounts of vorticity into 

their associated shear layers. Applying Kelvin’s circulation theorem, Rawlins 

concluded that a circulation around the cylinder is built up until the vorticity 

discharging rates from the two boundary layers are equal. A lift force can then be 

calculated which is proportional to the drag gradient across the wake. Price showed 

that the result predicted by this method is still some 30 percent lower than the 

measured one. 
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2.3 Flow around three circular cylinders 

 

According to Zdravkovich (1987), three cylinders can be arranged into three 

categories: (a) all three cylinders aligned and oriented from in-line to side-by-side 

arrangements; (b) regular triangular arrangement where all cylinders are spaced 

equidistantly; and (c) distorted triangular cluster, composed of all other possible 

arrangements, except (a) and (b). 

 

 

Figure 2-17 Classification of three-pipe clusters after Zdravcovich (1987). 

 

The addition of a third cylinder to a tandem arrangement of two, produces a new 

kind of flow which differs from both the flow behind the first two cylinders. Early 

pressure distribution measurements show that the flow around the first two cylinders 

was almost unaffected by the addition of the third and fourth cylinder. The pressure 

distributions around the third and fourth cylinders were similar, and might be taken 

as typical for any additional number of cylinders aligned in a column (Zdravkovich 

(1987). 

 

A systematic investigation of the flow around three in-line cylinders has been carried 

out by Igarashi (Igarashi & Suzuki 1984; Igarashi 1986) in the subcritical state of 

flow. Figure 2-18 shows the pressure drag coefficients for all three pipes and 

Strouhal numbers measured behind the third one. Three flow patterns can be 

identified. When the cylinders are very close, they act like a single cylinder. The flow 

pattern changes with the formation of vortices in the gap between the second and 

third cylinder, which results in distinct jumps in the drag of the last two cylinders and 

a fall in the Strouhal number. At L/D = 3.5 vortices form behind the first cylinder and 

the drag of the third cylinder decreases slightly and Strouhal number increases 
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considerably. The hysteresis phenomenon can be observed when the flow pattern 

changes. A hysteresis phenomenon means the flow pattern persists longer when 

inceasing (labelled A and B) or decreasing (labelled C and D) the spacing between 

the cylinders. The hysteresis produced an apparent overlap of the two flow patterns 

for certain spacing although only one flow pattern exists at a time. 

 

 

Figure 2-18 Effect of spacing on flow around three in-line circular cylinders: (a) drag 

coefficient (Re = 42.2 10× ); (b) Strouhal number (Re = 42.7 10× ), after Igarashi and 

Suzuki (1984). 

 

Dalton & Szabo (1977) measured the drag component of force exerted on each of 

three aligned cylinder in the range 0 90α< < , as shown in Figure 2-19. It is 

evident that the variation of the drag coefficient of the third cylinder is considerably 

different from that behind the second cylinder. there is an increase in CD3 in 

comparison to CD2, but CD3 is always less than CD1. 

 

2.4 Numerical simulations of flow around multiple cylinders 

 

Flow around a cylinder with circular section is a widely studied phenomenon since 

this problem is of interest with respect to many technical applications. The 

simulation of this flow is considered a classic benchmark problem for evaluating 

numerical methods, such as Tutar & Holdo (2001), Rocchi & Zasso (2002), 
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Richmond-Bryant (2003) and Holloway et al. (2004). 

 

 

Figure 2-19 Measured drag coefficient on the three aligned pipes in tandem, 

staggered and side-by-side arrangements at Re = 46.7 10× . (a) Second cylinder; (b) 

third cylinder, after Zdravcovich (1987) adapted from Dalton and Szabo (1977). 

 

Flow around multiple cylinders has been studied primarily from an experimental 

approach, and mostly at high subcritical Reynolds numbers, since they are more 

commonly found in industrial applications. Because of the complexity of the flow, 

numerical work on two cylinders flow is limited and often for low Reynolds numbers 

Re < 200, for example: Li et al. (1991) developed a finite element program to 

simulate flow past two tandem circular cylinders at Re = 100; Slaouti and Stansby 

(1992) applied the random vortex method to study flow around multiple circular 

cylinders at a Reynolds number of 200; and Meneghini et al. (2001) investigated two 

tandem circular cylinders in a cross flow with the Reynolds number ranged from 100 

to 200. Nevertheless, there are some numerical researches on flow around two 

cylinders at higher Reynolds numbers recently. 
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Mittal et al. (1997) employed a stabilized element formulation to study 

incompressible flow past a pair of cylinders at Re = 100 and 1000, in tandem and 

staggered arrangement. For tandem arrangement two cases of L = 2.5D and 5.5D 

were studied while for staggered arrangement the spacings were x = 5.5D and y = 

0.7D. In all cases, when the flow becomes unsteady, the downstream cylinder, which 

lies in the wake of the upstream one, experiences very large unsteady forces that may 

lead to wake-induced flutter. The Strouhal numbers for both cylinders have the same 

value. 

 

Jester & Kallinderis (2003) performed a comprehensive numerical investigation of 

incompressible flow about fixed cylinder pairs for Re = 80 and 1000. A second order 

Streamline Upwind Petrov–Galerkin projection scheme is used along with routines 

for interactive steering and dynamic meshing to solve the 2-D incompressible 

Navier–Stokes equations efficiently on a large number of different configurations. 

Qualitative and quantitative comparisons with published experimental data were 

made which show the ability of their numerical method to capture complex, unsteady 

flow features. Experimentally observed flow physics such as hysteresis effect and 

bistable phenomenon in tandem arrangements were reproduced. Furthermore, an 

extensive series of staggered simulations were performed. 

 

Akbari & Price (2005) carried out numerical simulations of the flow patterns around 

two staggered circular cylinders in cross-flow at Re = 800. The unsteady 

two-dimensional Navier–Stokes equations were solved using a numerical vortex 

method. Detailed numerical results for the flow patterns for different arrangements of 

the cylinders were presented and compared with existing experimental data. Five 

distinct flow regimes, depending on the geometrical arrangement of the cylinders, 

were identified in the simulations. 

 

Recently Kitagawa & Ohta (2008) performed three-dimensional fluid computations 

to investigate the flows around two circular cylinders in tandem arrangements at a 

subcritical Reynolds number, Re = 2.2×104. The center-to-center space between the 

cylinders was varied from twice the cylinder diameter to five times. Special attention 
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was paid to the characteristics of the vortices shed from the upstream cylinder such 

as the convection, the impingement onto the downstream cylinder and the interaction 

with the vortices from the downstream cylinder. The effects of the vortices from the 

upstream cylinder on the fluid-dynamic forces acting on the downstream cylinder 

were discussed. With the 3-D simulation, the fluid forces and the characteristics of 

the vortices in the study showed agreement with the experimental data. 

 

Numerical work on flow around more than two cylinders is considerably limited and 

only for low Reynolds numbers. For example, Lam et al. (2003) investigated the 

flow around four cylinders in a square configuration with a spacing ratio of 4 and at a 

Reynolds number of 200. Several distinct flow patterns were observed. Liang et al. 

(2009) numerically studied the effect of tube spacing on the vortex shedding 

characteristics and fluctuating forces on an inline cylinder array up to six cylinders. 

The examined Reynolds number is 100 and the flow is laminar.  

 

2.5 Stability of elastically supported cylinders with wake interference 

 

The above reviews are all for stationary cylinder(s). For a riser cluster, which can be 

simplified as elastically supported cylinders, the flow field becomes significantly 

more complicated because of the interaction of the fluid flow and the cylinders’ 

motion. To engineers, unfortunately this is more likely the case of reality. 

 

According to Price (1995), the possibility exists for riser vibrations induced by the 

flowing fluid via one or more of the following: (i) buffeting of the body due to 

turbulence, (ii) resonance with a flow periodicity (vortex shedding), and (iii) 

fluidelastic instability. The last can cause riser clashing with large amplitude 

vibration. 

 

For a riser cluster or elastically mounted cylinders the fluidelastic instability is 

mainly associated with the position-related fluid forces (Wu et al. 2001; Blevins 

2005). For two staggered cylinders in cross flow, the downstream cylinder is carried 

aft by its drag and toward the wake centreline by its lift. The upstream cylinder has 
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larger streamwise displacement owing to the higher drag, which results in smaller 

spacing between the cylinders than the initial. The change of relative positions of the 

cylinders consequently leads to the change of fluid forces on the downstream 

cylinder. Therefore the system is non-linear. Wake-induced fluidelastic instability can 

occur at certain velocity of the current. 

 

The work on wake-induced fluidelastic instability of a riser cluster or multiple 

cylinders involves basically two parts: the prediction of fluid forces and the 

establishment of the stability analysis model. 

 

Huse (1993) described a simple calculation procedure based on wake and momentum 

considerations, for predicting the current force on each individual cylinder in an 

array of cylinders. He then used this procedure for calculating the static deflection of 

each riser in the riser system of TLPs, and determining necessary spacing to prevent 

the risers from colliding with each other. 

 

Considering two cylinders, with one in the wake of the upstream cylinder, Huse 

(1993) calculated the wake velocity deficit based on Schlichting (1979) as follows: 

 
2

0 exp( 0.639( / ) )u U y b= −  (2.6) 

1/2
0 1 1( / )D sU V C D x=  (2.7) 

1/2
1 10.25( )D sb C D x=  (2.8) 

s vx x x= +  (2.9) 

1 14 /v Dx D C=  (2.10) 

 

where u is the wake velocity deficit at a position (x, y) (where the downstream 

cylinder situates) in the wake and U0 is the maximum wake velocity deficit the wake 

centreline; V is the free stream velocity; 1DC , 1D  are the drag coefficient and 

diameter of the upstream cylinder, respectively; b is the half width of the wake; vx  

is the distance from virtual source to the cylinder which is used to modify the result 

when x is not large enough. 
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The current force on the downstream cylinder can now be calculated as 

 
2

2 20.5 ( )DF D C V uρ= −  (2.11) 

 

where 2DC , 2D  are the drag coefficient and diameter of the downstream cylinder. 

The RMS averaged value over the downstream cylinder diameter is used by Huse 

(1993) for the wake velocity deficit u in the above formula, considering u varies over 

the space occupied by the downstream cylinder. 

 

Wu et al. (2001; 2002; 2003) investigated the mean lift and drag forces on a cylinder 

placed in the wake of another upstream cylinder and the influence of these forces on 

the stability of the downstream cylinder. The forces were predicted based upon a free 

streamline model and the utilisation of some available experimental data. The 

stability of the downstream cylinder's equilibrium position was then analysed by 

finding eigenvalues of the linearised equation of motion. It is found that under the 

influence of these forces the equilibrium position can become unstable depending 

upon the value of the mass parameter. 

 

Blevins (2005) produced a simple model for the steady lift and drag on a cylinder 

that is in the wake of another cylinder using theoretically based equation forms fitted 

to data. The resultant expressions have good agreement with the data for axial 

spacing more than about two diameters. The model was applied to static response 

and dynamic stability of elastically mounted cylinders. Equations were given for 

mean position of the downstream cylinder, critical velocities for onset of instabilities, 

and clashing with the upstream cylinder. 

 

Numerical simulations of elastic cylinders in cross flows are feasible only for the low 

values of the Reynolds number, due to the large computational power required for 

these kinds of applications. Mittal and Kumar (2001) employed a stabilized finite 

element formulation to study flow-induced oscillations of a pair of cylinders in 

tandem arrangement placed in uniform incompressible flow. The computations were 

carried out at Re = 100. 
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2.6 Concluding remarks 

 

Flow around multiple circular cylinders has been well studied experimentally. For 

one cylinder flow, there are six different flow regimes based on the Reynolds number. 

The hydrodynamic characteristics for each flow regime are different. The drag 

coefficient and Strouhal number are constant throughout the subcritical range, which 

is commonly found in engineering practice. Flow around two cylinders displays 

complexity in flow patterns and fluid forces. There are as many as nine flow patterns 

found by Sumner et al.(2000). Generally, the downstream cylinder experiences a 

reduced drag force for tandem arrangement and also a non-zero mean lift force for 

staggered arrangement. Flow around three cylinders is less systematically 

investigated. For three in-line cylinders, the vortex shedding from and fluid forces on 

the third cylinder is different from those for the second one, as a result of cascading 

shielding effect by the two upstream cylinders. 

 

While numerical simulations are widely applied on flow around one circular cylinder 

for various Reynolds numbers, those on two cylinders flow are limited and often for 

low Reynolds numbers and those on three cylinders are even more limited. Flow 

physics such as flow patterns can be observed numerically and fluid forces can be 

obtained with reasonable accuracy. A systematic study of spacing effect for various 

arrangements at subcritical Reynolds number, and the nature of drag reduction and 

existence of mean lift force for staggered arrangement, still remain to be investigated 

numerically. 

 

For elastically mounted multiple cylinders, the wake-induced fluidelastic instability 

can lead to cylinder clashing. The fluidelastic instability is mainly associated with the 

position-related fluid forces. Relative work involves basically two parts: the fluid 

forces prediction and the stability analysis. Several analysis models are found in 

literature with good performance. Nonetheless, a thorough understanding of the 

hydrodynamic characteristics of multiple cylinders in cross flow is necessary and 

desirable. 
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3 Mathematical model 
 

3.1 Basic equations 

3.1.1 Fluids and flows 

 

Fluids are substances that cannot resist external shear forces; even the smallest force 

causes deformation of a fluid particle. Fluids are composed of molecules that collide 

with one another and solid objects. However, the continuum assumption considers 

fluids to be continuous, rather than discrete. Consequently, properties such as density, 

pressure, temperature, and velocity are taken to be well-defined at infinitely small 

points, and are assumed to vary continuously from one point to another. Although 

significant differences exist between liquids and gases, both types of fluids obey the 

same laws of motion. The most important properties of fluids are density and 

viscosity (Versteeg & Malalasekera 2007). 

 

All fluids are compressible to some extent. The changes in pressure or temperature 

will result in changes in density (mass per unit volume). However, in many situations 

the changes in density are negligible. In this case the fluid density may be assumed 

constant and the flow can be modelled as an incompressible flow. Incompressibility 

is a property of the flow, rather than of the fluid. 

 

The viscosity of a fluid is a measure of its resistance to shear deformations. It is due 

to interaction between fluid molecules. As the temperature increases, the viscosities 

of all liquids decrease, while the viscosities of all gases increase. 

 

The Reynolds number can be used to evaluate whether viscous or inviscid equations 

are appropriate to the problem. High Reynolds numbers indicate that the inertial 

forces are more significant than the viscous (friction) forces. Therefore, the flow may 

be assumed to be an inviscid flow, an approximation in which the viscous term is 
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neglected, compared to inertial terms. This idea can work fairly well when the 

Reynolds number is high. However, certain problems such as those involving solid 

boundaries may require that the viscosity be included. Viscosity often cannot be 

neglected near solid boundaries because the no-slip condition can generate a thin 

region of large strain rate (known as Boundary layer) which enhances the effect of 

even a small amount of viscosity, and thus generating vorticity. 

 

When the flow velocity is very small, the fluid is very viscous or the geometric 

dimensions are very small (i.e. when the Reynolds number is small), the inertial 

force plays a minor role and can be neglected. The flow is then called creeping 

(Stokes) flow. 

 

As the velocity is increased, and thus the Re, inertia becomes important but each 

fluid particle follows a smooth trajectory, the flow is laminar. Viscosity effects still 

dominate and are able to damp out a disturbance. Further increase in velocity may 

lead to instability that produces a more random type of flow called turbulence. 

Turbulent flows are unsteady, irregular, nonlinear and are characterized by the 

formation of eddies. At high velocities the Reynolds number is very high and viscous 

and turbulence effects are important in a small region near the walls, i.e. in the 

boundary layer. 

 

3.1.2 Laws of fluid motion 

 

The governing equations of fluid flow represent mathematical statements of the 

conservation laws of physics, i.e. the mass and the momentum conservation. The 

Navier–Stokes equations describe the motion of fluid substances. These equations 

arise from applying Newton's second law to fluid motion. The fluid will be regarded 

as a continuum and the behaviour of the fluid will be described in terms of 

macroscopic properties, such as velocity, pressure, density and temperature, and their 

space and time derivatives. 

 

The conservative (or divergence) form of the governing equations of the 
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time-dependent two dimensional fluid flow of an incompressible Newtonian fluid is: 

 

Continuity div( ) 0u =  (3.1) 

x-momentum div( ) div( grad ) x
u puu u S
t x

ρ ρ µ∂ ∂
+ = − + +

∂ ∂
 (3.2) 

y-momentum div( ) div( grad ) y
v pvu v S
t y

ρ ρ µ∂ ∂
+ = − + +

∂ ∂
 (3.3) 

 

where t is time, p is static pressure, u and v are x-component and y-component of 

velocity vector u , respectively, and Sx and Sy are source terms. The compressibility 

is not considered here. 

 

It is clear from equation (3.1) and (3.3) that there are significant commonalities 

between these equations. The general conservative form of all fluid flow equations 

for the variable φ  can be written as the following form: 

 

div( ) div( grad )u S
t φ
φρ ρ φ µ φ∂
+ = +

∂
 (3.4) 

 

Equation (3.4) is the so-called transport equation for propertyφ . In words, 

 

Rate of increase of φ  of fluid element + Net rate of flow of φ  out of fluid element 

(convection) = Rate of increase of φ  due to diffusion + Rate of increase of φ  due 

to sources. 

 

3.2 Turbulence modelling 

 

Most flows encountered in practice are turbulent. In contrast to laminar flow 

problems, numerical simulation of turbulent flows cannot be carried out by simply 

discretizing the governing equations and solving them in certain grid. This is caused 

by the fact that turbulence is essentially three dimensional and contains many length 
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scales simultaneously. With increasing Reynolds number the length scales of the 

smallest eddies in the flow become smaller and smaller. Consequently, the amount of 

computational ressources necessary to describe all the length scales that occur, 

increases with the Reynolds number. Even the largest supercomputer do not have 

(yet) the required speed and memory capacity to handle this amount of data, except 

for turbulent flow with relative low Re. 

 

3.2.1 General remarks 

 

In order to compute all significant structures (motions) of a turbulent flow, the 

domain on which the computation is performed must be at least as large as the largest 

eddy, and the grid must be as fine as the smallest eddy. Computational methods to 

simulate turbulent flows: 

 

• Direct Numerical Simulation (DNS) 

• Large Eddy Simulation (LES) 

• Reynolds Averaged Navier-Stokes Models (RANS) 

 

Direct Numerical Simulation 

 

The most accurate approach to turbulence simulation is to solve the N-S equations 

without averaging. This so-called direct simulation does not assume any modelling. 

It discretizes and solves N-S equations on a grid sufficiently fine for resolving all 

motions occurring in the turbulent flow (Gushchin et al. 2002). The computed flow 

field obtained is similar to a laboratory experiment. The characteristic length scale 

for the smallest eddies is given by the Kolmogorov scale η . The relation between 

η  and the length scale L of the largest eddies is given by (Yokokawa et al. 2002): 

 
3
4(Re )L

L
η
=  (3.5) 
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where ReL  is the Reynolds number with respect to characteristic length L. If the 

dimensions of the mean flow field are of the order 3L  and the sizes h of the grid 

elements are about equal to η , then the number of elements needed to discretize the 

flow field is 

 
9
4(Re )elem Ln =  (3.6) 

 

In industrial applications such as aerodynamic investigations of automobiles or 

aircraft, typical Reynolds numbers are 610  and above. Hence, solving these types of 

problems properly using DNS would require over 1310  grid points. Neither existing 

parallel computers nor computers of the near future can supply the storage space or 

the necessary CPU performance demanded by such a simulation. 

 

Large Eddy Simulation 

 

Only the large eddies (or resolvable scale motions) are calculated, whereas the small 

eddies (subgrid-scale motions) are modelled by a closure assumption (Breuer 1998; 

Catalano et al. 2003). 

 

The flow dependent large eddies are directly affected by the boundary conditions. 

They are therefore the most difficult ones to model. LES avoids this problem by 

explicit computation of these motions. Since the small eddies dissipate energy from 

the large ones, a so-called subgrid-scale (SGS) model is needed that takes into 

account this physical energy cascade process. The sizes of the grid elements, and 

thereby the distinction between large and small eddies, has to be chosen to be small 

enough for the unresolved subgrid-scale motions to behave statistically in a nearly 

isotropic manner. If this is the case, the SGS motions can be modelled independently 

of the flow geometry. 

 

Reynolds (Ensemble) Averaging 
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In Reynolds averaging, the solution variables in the instantaneous (exact) 

Navier-Stokes equations are decomposed into the mean (ensemble averaged or 

time-averaged) and fluctuating components. For any scalar quantity: 

 
'

i i iφ φ φ= +  (3.7) 

 

where φ  denotes a scalar such as velocity, pressure, energy, or species 

concentration. Substituting expressions of this form for the flow variables into the 

instantaneous continuity and momentum equations and taking a time (or ensemble) 

average yields the ensemble-averaged momentum equations. They have the same 

general form as the instantaneous Navier-Stokes equations, with the velocities and 

other solution variables now representing ensemble-averaged (or time-averaged) 

values, except that additional terms now appear that represent the effects of 

turbulence, i.e. the Reynolds stresses, ' '
i ju uρ− . They must be modelled in order to 

close the equations. 

 

There are four turbulence models (FLUENT Inc. 2003): 

 

• Spalart-Allmaras model 

• k-ε  model 

• k-ω  model 

• Reynolds stress model 

 

In the case of the Spalart-Allmaras model, only one additional transport equation 

(representing turbulent viscosity) is solved. In the case of the k-ε and k-ω  models, 

two additional transport equations (for the turbulence kinetic energy, k, and either the 

turbulence dissipation rate, ε , or the specific dissipation rate, ω ) are solved. The 

Reynolds Stress Model (RSM), is to solve transport equations for each of the terms 

in the Reynolds stress tensor. An additional scale-determining equation (normally for 

ε ) is also required. This means that five additional transport equations are required 

in 2D flows and seven additional transport equations must be solved in 3D, which 
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cost more computational resource (FLUENT Inc. 2003). 

 

When attention is drawn to industrial applications, DNS method is unfeasible as the 

associated grid resolution would cause prohibitive computational expenses. The 

simulation of engineering turbulent flows is thus restricted to turbulence-modelling 

practices based on Reynolds-averaged Navier–Stokes (RANS) equations and large 

eddy simulation (LES). In the framework of RANS, all aspects of turbulence are 

modelled, which enhances the numerical efficiency at the expense of a strong model 

dependency. As opposed to the RANS approach, a major portion of the turbulent 

scales is numerically resolved within LES. The primary advantage of LES is the 

reduced influence of the turbulence model, which significantly increases the 

computational effort in comparison to RANS. Recently developed explicit algebraic 

stress models revealed remarkable improvements of the RANS methodology for 

several steady flows at low computational costs, which motivates their investigation 

in unsteady turbulent bluff-body flows (Lubcke et al. 2001). 

 

3.2.2 Menter k ω−  SST turbulence model 

 

Flows in the laminar regime are completely described be the equations (3.1)-(3.3). 

Many, if not most, flows of engineering significance are turbulent. In this regime the 

velocity and all other flow properties vary in a random and chaotic way (Versteeg & 

Malalasekera 2007). 

 

In Reynolds averaging, the solution variables in the instantaneous (exact) 

Navier-Stokes equations are decomposed into the mean (ensemble averaged or 

time-averaged) and fluctuating components. For the velocity components and 

pressure: 

 
'

i i iu U u= +   (3.8) 

'
i i ip P p= +   (3.9) 
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where iU  and '
iu  denote the mean and fluctuating velocity, and P  and p′  are 

mean and fluctuating pressure. 

 

Substituting expressions of this form for the flow variables into the instantaneous 

continuity and momentum equations and taking a time average yields the 

ensemble-averaged momentum equations. They can be written in Cartesian tensor 

form as: 

 

0i

i

U
x

∂
=

∂
 (3.10) 

( )
2 _____

' '
2

i i
i j i j

j i j j

U UPU U u u
t x x x x

ρ ρ µ ρ
⎛ ⎞∂ ∂∂ ∂ ∂

+ = − + + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ⎝ ⎠
 (3.11) 

 

Equations (3.10) and (3.11) are called Reynolds-averaged Navier-Stokes (RANS) 

equations. They have the same general form as the instantaneous Navier-Stokes 

equations (3.1)-(3.3), with the velocities and pressure now representing 

time-averaged values. But the process of time averaging has introduced a new term, 

which involves products of fluctuating velocities and associated with convective 

momentum transfer due to turbulent eddies. The Reynolds stresses, 
_____

' '
i ju uρ− , must 

be modelled to close equation (3.11). A common method employs the Boussinesq 

hypothesis to relate the Reynolds stresses to the mean velocity gradients: 

 
_____

' ' 2
3

ji
i j t ij

j i

UUu u k
x x

ρ µ ρ δ
⎛ ⎞∂∂

− = + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (3.12) 

 

where 
___

'21
2 ik u= ∑  is the turbulent kinetic energy per unit mass. 

 

Based on Boussinesq hypothesis, the k ε−  turbulence model is the most widely 

used and validated turbulence model. It has achieved notable success in calculating a 

wide range of flows with industrial engineering applications. Menter (1994) noted 
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that the results of k ε−  model are much less sensitive to the assumed values in the 

free stream, but its near wall performance is unsatisfactory for boundary layers with 

adverse pressure gradients. This led him to suggest a hybrid model using (i) a 

transformation of the k ε−  model into k ω−  model in the near wall region and (ii) 

the standard k ε−  model in the fully turbulent region far from the wall (Versteeg & 

Malalasekera 2007). This was called shear stress transport (SST) model. The 

turbulence kinetic k  and the specific dissipation rate ω  are obtained from the 

following transport equations: 

 

( ) *t
j k

j j k j

k kkU G k
t x x x

µρ ρ µ β ρ ω
σ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
+ = + + −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (3.13) 

( ) 2
1(1 )t

j k
j j j

U G F D
t x x x k ω

ω

µω ω ωρ ρ ω µ α βρω
σ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
+ = + + − + −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (3.14) 

 

Where 2k t ij ijG S Sµ=  is the rate of production of turbulent kinetic energy with 

 

1
2

ji
ij

j i

UUS
x x

⎛ ⎞∂∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (3.15) 

2

2

j j

kD
x xω

ω

ρ ω
σ ω

∂ ∂
=

∂ ∂
 (3.16) 

2

1 * 2 2
2

500 4tanh min max , ,k kF
y y D yω ω

µ ρ
β ω ρ ω σ +

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= ⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 (3.17) 

 

where y is the distance to the next surface and 

 

( )20max ,10D Dω ω
+ −=  (3.18) 

 

The eddy viscosity is defined as 

1
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ρµ
ω

=  (3.19) 
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where 2 ij ijS S S= , 1a = constant and 2F  is a blending function, which restricts 

the limiter to the wall layer computed by 

 
2

2 * 2

2 500tanh max ,kF
y y

µ
β ω ρ ω

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (3.20) 

 

Numerical instabilities may be caused by differences in the computed values of the 

eddy viscosity with the standard k ε−  model in the far field and the transformed 

k ω−  model near the wall. Blending functions are used to achieve a smooth 

transition between the two models. The coefficients of the SST model, kσ , ωσ , α  

and β , are a linear combination of the corresponding coefficients of original k ω−  

model and standard k ε−  model: 

 

1 1 1 2(1 )C FC F C= + −  (3.21) 

 

The constants used in the SST model equations are 

 

1 1.176kσ =
 

1 2.0ωσ =  1 0.553α =  1 0.075β = 1 0.31a =  

2 1.0kσ =  2 1.17ωσ =  2 0.44α =  2 0.083β = * 0.09β =  

 

For the detail of k ω−  SST model, readers are referred to Versteeg & Malalasekera 

(2007) and FLUENT Guide (2003). 

 

Boundary conditions 

 

For the two dimensional flow around cylinders the following boundary conditions 

are applied: 

 On the inlet: complete specification of all velocity components and distribution 

of k  and ω  must be given. 

 On the outlet: set gradient of all velocity components, k  and ω  to zero in the 
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flow direction and specify the static pressure. 

 On symmetry boundary: for all the variables φ , / 0nφ∂ ∂ = . 

 

On solid walls: 

 

Due to the complexity of flow around cylinders, in the current simulation the 

viscosity-affected near wall region is completely resolved all the way to the viscous 

sublayer. The no-slip condition is applied and the value of turbulence kinetic energy 

k at the wall is set to zero. According to FLUENT, the value of ω  at the smooth 

wall is specified as 

 
* 2

w
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where 
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* * C k y
u y µρ
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= =  (3.23) 

 

in the viscous sublayer, where 0.09Cµ =  is a constant and y is the distance to the 

nearest wall. The asymptotic value of ω+  in the laminar sublayer is given by 
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where y u yτρ µ+ =  is the dimensionless distance to the wall. 

 

3.3 Numerical method 

 

In the past there have been two approaches in science and engineering: the 

experimental and the theoretical. With the invention of the computer a new approach 
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has appeared: the numerical simulation. 

 

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid flow, 

heat transfer and associated phenomena such as chemical reactions by means of 

computer-based simulation. Nowadays expensive experiments are increasingly 

replaced by computer simulations. Moreover, simulation enables the examination of 

processes that cannot be experimentally tested. 

 

This thesis uses a commercial software FLUENT to simulate flow around multiple 

cylinders. FLUENT is based on the finite volume method, which is a method for 

representing and evaluating partial differential equations in the form of algebraic 

equations. Similar to the finite difference method, values are calculated at discrete 

places on a meshed geometry. ‘Finite volume’ refers to the small volume surrounding 

each node point on a mesh. In the finite volume method, volume integrals in a partial 

differential equation that contain a divergence term are converted to surface integrals, 

using the divergence theorem. 

 

3.3.1 Integral form of basic equations 

 

Equation (3.4) is used as starting point in the finite volume method. By setting φ  

equal to 1, u and v, we obtain the partial differential equations for mass and 

momentum equations. The key step of the finite volume method is the integration of 

equation (3.4) over a control volume CV: 

 

CV
div( ) div( grad )

CV CV CV
dV u dV dV S dV

t φ
φρ ρ φ µ φ∂

+ = +
∂∫ ∫ ∫ ∫  (3.25) 

 

By using Gauss’s divergence theorem: 

 

CV
div( )

S
a dV n adS= ⋅∫ ∫  (3.26) 
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The volume integrals in the second term on the left hand side, the convective term, 

and in the diffusion term (on the right hand side) in equation (3.25) are rewritten as 

integrals over the bounding surface of the control volume: 

 

S
( ) ( grad )

CV S CV
dV n u dS n dS S dV

t φ
φρ ρ φ µ φ∂

+ ⋅ = ⋅ +
∂∫ ∫ ∫ ∫  (3.27) 

 

3.3.2 Discretization 
 

The Finite Volume Method (Versteeg & Malalasekera 2007) begins with the integral 

form of the equation (3.27). The domain is subdivided into a finite number of small 

control volumes (CV) by a grid which defines the CV boundaries, not the 

computational nodes. 

 

To obtain an algebraic equation for each CV, the surface and volume integrals need 

to be approximated using quadrature formulae. For the volume integrals the simplest 

approximation is the midpoint rule: 

 

Vol(CV)= Vol(CV)PCV
qdV q q=∫  (3.28) 

 

where q  is the mean value and Pq  the value of q at the CV center. This 

approximation is exact if q is either constant or varies linearly within the CV; 

otherwise is of second order. 

 

The surface integral on CV boundary is the sum of integrals over the faces: 

 

kS S
k

f ndS fdS⋅ = ∑∫ ∫  (3.29) 

 

where ( ) or ( grad )f n u nρ φ µ φ= ⋅ ⋅ . 

 

To calculate the surface integrals, we need the value of φ  and its gradient normal to 
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the cell face at some location on the CV surface. They have to be expressed in terms 

of nodal values by interpolation, such as upwind differencing scheme and central 

difference scheme. 

 

3.3.3 Solution of linear equation systems 

 

By summing all the approximated integrals we produce an algebraic equation at each 

control volume: 

 

P P l l P
l

A A Qφ φ+ =∑  (3.30) 

 

where the index l runs over the neighbour nodes involved, and the system of 

equations for the whole domain has the matrix form 

 

[A] · [φ ] = [Q]  (3.31) 

 

The matrix A is always sparse. 

 

There are mainly two types of methods for solving the system of linear algebraic 

equations, i.e. direct method and iterative method. 

 

Iterative methods are based on the repeated application of a relatively simple 

algorithm leading to a (eventual) convergence after a (sometimes large) number of 

repetitions. The total number of operations, typically on the order of N per iteration 

cycle, cannot be predicted in advance. It is not possible to guarantee convergence 

unless the system of equations satisfies strict criteria. The main advantage of iterative 

methods is that only non-zero coefficients need to be stored. 

 

In an iterative method one guesses a solution and uses the equation to systematically 

improve it. If each iteration is cheap and the number of iterations is small, an 

iterative solver may cost less than a direct method. In CFD problems this is usually 
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the case. 

 

When using iterative solvers, it is important to know when to quit. The most 

common convergence criteria are based on the difference between two successive 

iterates. The procedure is stopped when this difference is less than a pre-selected 

value. 

 

3.3.4 Unsteady problems: Time discretization 

 

For the unsteady (initial value) problem we rewrite the conservation equation in the 

form 

 

0
0div( ) div( grad ) (( , ( )), ( ))u S f t t t

t φ
φρ ρφ µ φ φ φ φ∂
= − + + = =

∂
 (3.32) 

 

The convective, diffusive and source terms represented by ( , ( ))f t tφ  are discretized 

using finite volume method. For time integration we can use similar methods than for 

initial value problems in ODE. 

 

1 11( ) ( , ( ))n n

n n

t tn n

t t
dt f t t dt

t
ρφ ρ φ φ φ+ ++∂

= − =
∂∫ ∫  (3.33) 

 

Two types of methods for time integration are  

 

(i) explicit method ( 1 ( , )n n n
nf t tφ φ φ+ = + ⋅∆ ) (3.34) 

(ii) implicit method ( 1 1
1( , )n n n

nf t tφ φ φ+ +
+= + ⋅∆ ) (3.35) 

 

For the explicit method, solution values at time 1nt +  are computed from the values 

of f at time nt , i.e. all fluxes and source terms are evaluated using known values at 

time nt . It is easy to program and parallelize and needs few numbers of operations 

per time step, but demands strong conditions on the time step for stability. For 
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implicit method, f is evaluated at time 1nt + , i.e. all fluxes and source terms are 

evaluated in terms of the unknown variable values at the new time 1nt + . It is always 

stable and much larger time step is possible, but every time step requires the solution 

of a system of equations so more number of operations. This causes difficulty to 

program and parallelize. 

 

3.3.5 Coupling of pressure and velocity 

 

Transport equations for each velocity component (momentum equation) can be 

derived from the general transport equation by replacing φ  by u, v and w. The 

velocity field must also satisfy the continuity equation. 

 

The convective terms of the momentum equation are non-linear. All three equation 

are coupled because every velocity component appears in each momentum equation 

and the continuity equation. The most complex issue to be solved is the role played 

by the pressure. It appears in both moment equations but there is no equation for the 

pressure. 

 

If the flow is compressible, the continuity equation may be used as a transport 

equation for density and the energy equation for the temperature. The pressure may 

then be obtained from the density and temperature by using the equation of state 

( , )p p tρ= . If the flow is incompressible, the density is constant and not related with 

the pressure. In this case coupling between pressure and velocity introduces a 

constraint on the solution of the flow field: if the correct pressure field is applied in 

the momentum equation the resulting velocity field should satisfy continuity. 

 

There are several algorithms for pressure-velocity coupling, such as, SIMPLE, 

SIMPLEC and PISO. The main steps of SIMPLE algorithm are: 

 

(i) An approximation of the velocity field is obtained by solving the momentum 

equation. The pressure gradient term is calculated using the pressure distribution 
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from the previous iteration or an initial guess.  

(ii) The pressure equation is formulated and solved in order to obtain the new 

pressure distribution.  

(iii) Velocities are corrected and a new set of conservative fluxes is calculated. 

 

3.4 Concluding remarks 

 

In this chapter the basic equations governing the fluid flow and the numerical 

methods are introduced. The Navier-Stokes equations describe the motion of fluid 

substances. As most flows encountered in practice are turbulent, turbulence 

modelling is essential for numerical simulation. Basically there are three methods, 

DNS, LES and RANS, of which the RANS method has been widely used and makes 

a balance between computation efficiency and accuracy. The k ω−  SST model is 

introduced as a RANS model. 

 

The numerical simulations used in this thesis are via a commercial software 

FLUENT, which is based on the finite volume method (FVM). In FVM, volume 

integrals in a partial differential equation that contain a divergence term are 

converted to surface integrals, using the divergence theorem. The discretization of 

the integral form of the governing equations and solution of linear equation system 

are simply introduced in this chapter. For the detail of FVM, the readers are referred 

to the relative textbooks (Versteeg & Malalasekera 2007). 
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4 Flow around a circular cylinder 
 

4.1 Introduction 

 

The uniform cross-flow around a circular cylinder is a classical example of bluff 

body flow. Although the configuration is simple, the flow is characterised by very 

rich and complex physical phenomena for the subcritical Reynolds number studied in 

this work: thin and attached laminar boundary layers in the front part of the cylinder, 

separating shear layers, development of instabilities along these layers that lead to 

transition, as well as small scale streamwise and spanwise vortices in the turbulent 

wake that interact with large scale Karman vortices. A comprehensive review of the 

flow characteristics for a wide range of Reynolds numbers is given by Williamson 

(1996). 

 

4.2 Numerical model 

 

Two-dimensional uniform flow past a circular cylinder is computed using a 

commercial software FLUENT. The flow in the wake of a cylinder is turbulent in the  

subcritical flow regime, so a turbulence model is needed. The ω−k  SST model is 

selected here, for its good behaviour in adverse pressure gradients and separating 

flow. 

 

Unless otherwise noted, The Reynolds number for the simulations is 104, which is in 

the subcritical range. It is believed that the hydrodynamic characteristics of a single 

circular cylinder, such as the vortex shedding frequency, the separation points, the 

shear layers and the wake structures, are similar in the region of subcritical Reynolds 

number (Zdravkovich 1997; Gu & Sun 1999). Therefore, if an understanding of flow 

with Re = 104 is obtained, it is reasonable to suggest that it represents some valuable 

information about the flow around multiple cylinder in the region of subcritical 
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Reynolds number. This Reynolds number is selected because it is in the subcritical 

region and is not too demanding on computer resource for simulation. 

 

A segregated, unsteady solver has been selected for simulations. The flow is 

considered incompressible. A Second order implicit formulation is selected for 

temporal discretization. A second order upwind scheme has been used for solving 

momentum equations with standard pressure interpolation scheme, and SIMPLE 

algorithm is employed for pressure velocity coupling. The simulation settings in 

FLUENT are summarised in Table 4-1. 

 

Table 4-1 Simulation settings. 

Settings Choice 

Solver Segregated 

Temporal discretisation 2nd-order Implicit 

Pressure Standard 

Momentum equations 2nd-order Upwind 

Pressure-velocity coupling SIMPLE 

Turbulence model ω−k  SST 

 

4.2.1 Computational domain and boundary conditions 

 

The flow field around a cylinder is modelled in two dimensional flow with the axis 

of cylinder perpendicular to the direction of flow. The cylinder is modelled as a circle 

with a diameter D = 0.2m and a square flow domain is created around the cylinder 

(Figure 4-1). Inlet (upstream), upper and lower boundaries have been extended in the 

lateral interaction so that the effects due to the cylinder presence have been assumed 

to be negligible at these boundaries. The domain has been also extended long enough 

downstream to eliminate the far field effects on the near wake and to produce full 

development of the vortex street. The actual geometric size of the computational 

domain, namely ud , dd  and td  in Figure 4-1, will be discussed later. 
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A Cartesian coordinate system, where the x-axis is aligned with the incoming flow 

direction (streamwise direction), the y-axis is perpendicular to the plane containing 

the streamwise and spanwise direction (z-axis), is used to describe the flow. The 

origin of the coordinate system is located on the cylinder’s axis. For the convenience 

of describing the point around the cylinder surface, a polar system is also used here, 

with the polar axis directed towards the front point as shown in Figure 4-1. 
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Figure 4-1 Schematic of computation domain and coordinate system. 

 

The boundary conditions used for all simulations are as follows: 

 

i. Inlet: uniform flow at the inlet, which is normal to the boundary, is specified, 

namely, 0u u= , 0=v . Low turbulence intensity, I = 0.6%, and a turbulence 

viscosity ratio, 1=µr , are assumed. 

ii. Outlet: free outflow condition is imposed. An average static pressure over the 

entire outlet boundary is assumed, which is 0.0 Pa in all simulations. 

iii. Lateral boundaries: the symmetry boundary condition is used where the 

normal velocity at the boundary is zero and the scalar variable gradients 

normal to the boundary are also zero. 

iv. The cylinder surface: in this case the no slip boundary condition is applied. 

Meaning that the fluid velocity at the wall has a zero value. 

 

In order to facilitate meshing, the domain is subdivided into nine parts using two 

longitudinal lines and two transverse lines, with curves near the cylinder, as shown in 

Figure 4-2. The zone surrounding the cylinder is meshed with O type structured 
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quadrilateral grids and will be taken extra care for the boundary layer. The outer 

subdomains are all quadrilateral spaces and easy to be meshed with structured grids. 

The mesh is denser near the cylinder by design and stretches out with a growth factor 

of approximately 1.06 in most instances and less than 1.0 in all cases. The same 

strategy was also used by Yong & Ooi (2004). 

 

 

Figure 4-2 Computational mesh around the cylinder. 

 

As the very first step of any CFD simulation, determining computation domain and 

drawing mesh are extremely important on computing convergence and accuracy. 

Generally, large domain and fine enough mesh always produce better results, 

whereas in the meantime, consume more computation resource and time. So a good 

balance should be determined between the two sides primarily. 

 

According to ideal fluid model of flow around a circular cylinder, when the upstream 

distance Ddu 10> , the local velocity at the inlet is within 0.25% difference from the 

free stream flow velocity (Table 4-2). This suggests the distance from the cylinder to 

inlet boundary needs to be around 10D, although the viscous flow around a cylinder 

is much different from the ideal one. 

 



 53 

Table 4-2 The difference between the velocity at the inlet and the free stream velocity 

versus ud , based on potential flow model. 

ud  5D 7.5D 10D 15D 

2 2/ 4 uu D d∆ =  0.01 0.0044 0.0025 0.0011 

 

To find out suitable distances, several cases are computed. Starting from a large 

enough domain, with Ddu 20= , Ddd 40=  and Ddt 15= , the distances are 

decreased respectively. For computing the wake behind the cylinder, the downstream 

distance, dd , is at least 25D. For all cases, the grids in the boundary layers are the 

same. The results are shown in Table 4-3. It can be seen that the domain with 

15ud D= , 25dd D=  and Ddt 10=  is optimal in its accuracy and reduction of 

CPU time and will be used thereafter. 

 

Table 4-3 Drag coefficient and Strouhal number for different computational domains. 

ud  td  dd  CD St 

20D 15D 40D 1.25 0.229 

20D 15D 25D 1.25 0.229 

20D 10D 25D 1.26 0.229 

15D 10D 25D 1.26 0.229 

10D 10D 25D 1.29 0.231 

 

4.2.2 Near-wall treatment 

 

Mesh in the boundary layer, especially the height of the wall-adjacent cells is 

highlighted here as the preliminary simulations showed that it had significant 

influence on the computing results. 

 

The wall function approach does not need a very fine dicretization in the vicinity of a 

no-slip surface, and it makes simulations with boundaries more feasible, in terms of 
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computational resources. However, this approach has been questioned by Launder 

(1984) and Rodi (1997), because the law of the wall is invalid where the flow is 

separated. For the laminar separation flow studied in this thesis, the best treatment is to 

use a sufficiently fine mesh to resolve the near wall flow with no-slip condition, as 

shown in Figure 4-3. 

 

 

Figure 4-3 Close view of the mesh near the cylinder's surface. 

 

The viscous sublayer is fully resolved in all simulations. To accomplish this, it is 

necessary to place at least 5 cells within y u yτρ µ+ =  < 7 in the near wall region 

and to have y+ < 1 for the first cell (Fluent Guide and Holloway et al. (2004)), where 

y+ denotes the dimensionless distance to the wall. 

 

Table 4-4 Mesh convergence for the first cell height. 

Mesh First cell height 

( D410−× ) 

y+ CD St 

A 10 0.94 1.30 0.230 

B 5 0.52 1.26 0.229 

C 2.5 0.26 1.25 0.229 

D 1.5 0.15 1.25 0.229 

 

Four meshes A, B, C and D are created to study the convergence of the first cell 

height. Mesh A is created such that y+ is less than one for Reynolds number 104 and 

for mesh B, C and D the first cell height is successively decreased based on mesh A. 
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All cases are computed with ω−k  SST turbulence model and second order 

discretization at Re = 104 and the results are shown in Table 4-4. Note the value of y+ 

here is the maximum around the cylinder. 

 

As shown in Table 4-4, mesh A, corresponding to y+ = 0.94, is nearly convergent, 

which agrees with the conclusion in literature, the requirement to have y+ < 1 for the 

first cell to simulate the flow around the circular cylinder in subcritical regime. 

Based on the results here, the near-wall cell needs to be even smaller to ensure fully 

convergence. This can be demonstrated by the relationship between y+ and the first 

cell height, as shown in Figure 4-4. y+ is linear with the first cell height up to 

D4105 −× , i.e. mesh B, while the same linear relationship does not exist for mesh A 

(the first cell height is 410 10 D−× ). This suggests that the requirement for the first 

cell height is to have y+ < 0.5 rather than 1. 

First cell height (×10-4D)

y+

0 2.5 5 7.5 10 12.5 15
0

0.5

1

1.5

 

Figure 4-4 Relationship between y+ and the first cell height. 

 

The following simulations will be based on the mesh C, with first cell height 

0.025%D, at which the mesh is fully convergent for the first cell height. 

 

4.2.3 Mesh independence 

 

Mesh independence means that the converged solution obtained from a CFD 
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calculation is independent of the grid density. Increasing the number of cells in one 

region or throughout the entire domain for a grid-independent CFD model would not 

(ideally) change the flow-field solution and integrated quantities. In practice, grid 

independence is indicated when further mesh refinement yields only insignificant 

changes in the numerical solution. 

 

Mesh independence is tested with higher density meshes in both the radial and 

circumferential directions, while keeping the first cell height 0.025%D. A refinement 

factor of 2  is applied to both the inner and outer subdomains which leads to 

nearly doubling the number of cells. The aforementioned numerical approach is then 

employed to compute the flow with each mesh. The results are given in Table 4-5.  

 

Table 4-5 Mesh independence investigation. 

Mesh First cell height 

( 410−× ) 

Number 

of cells 

CD St 

C 2.5D 24880 1.25 0.229 

CP 2.5D 48140 1.25 0.232 

CPP 2.5D 105080 1.25 0.232 

 

As shown in Table 4-5, the resulted drag coefficients and Strouhal numbers have no 

appreciable change among the three successively finer meshes, i.e. mesh C, CP and 

CPP, which suggests mesh C is a convergent one in terms of the drag force and 

vortex shedding frequency. 

 

4.2.4 Time stepping 

 

For flow around a circular cylinder, the dimensionless vortex shedding period is 

often expressed as  

 0 1TU
D St

= . 

With St = 0.23 here, the dimensionless vortex shedding period is about 4.35. The 
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dimensionless time step size ( 0 /tU D∆ ) is firstly selected as about 1% of this period, 

then further reduced to compute the flow around a circular cylinder at 4Re 10=  

based on mesh C, as shown in Table 4-6.  

 

Table 4-6 Numerical results for different time step sizes. 

Dimensionless time step size CD St 

0.05 1.20 0.227 

0.025 1.24 0.229 

0.0125 1.25 0.229 

0.005 1.25 0.229 

 

When the dimensionless time step size ( 0 /tU D∆ ) is 0.025, i.e. 0.57% of the vortex 

shedding period, the computation is convergent in terms of drag force and vortex 

shedding frequency, which has no appreciable changes by using the smaller time step 

sizes. 

 

It is well known that the time step size is proportional to the cell size. This is 

confirmed here, as shown in Table 4-7. For mesh C (24880 grids), the convergent 

time step size is 0.025, while it is at least 0.005 for a finer mesh CPP (105080 grids). 

This indicates the time step size needs to be smaller for finer meshes to achieve 

convergent simulations. 

 

Table 4-7 Comparison of time step sizes between mesh C and CPP. 

Mesh C Mesh CPP Dimensionless 

time step size CD St CD St 

0.05 1.20 0.227   

0.025 1.24 0.229 1.17 0.227 

0.0125 1.25 0.229 1.22 0.231 

0.005 1.25 0.229 1.25 0.232 
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4.3 Simulation results and discussions 

 

4.3.1 Fluid forces and vortex shedding frequency 

 

Figure 4-5 presents an example of the drag (CD) and lift (CL) coefficients histories. For 

CL, there is hardly any oscillation until the dimensionless time 40, it then starts to 

oscillate with increasing amplitude. After 0 / 110tU D = , the fluctuation of CL 

becomes a periodic signal, indicating the alternating vortex shedding state is fully 

developed. At the same time, the fluctuation of CD also becomes steady. 

 

t U0/D

C
D
,C

L

0 50 100 150
-1.5

-1

-0.5

0

0.5

1

1.5

Up: CD
Down: CL

 

Figure 4-5 Drag and lift coefficients histories. 

The time-averaged CD is 1.19 here, matching the well known drag coefficient of a 

circular cylinder in cross-flow within subcritical flow regime, which is 1.2. The value 

is a little below that reported before, because the turbulence equations are discretized 

with first order formula here, instead of second order upwind formula before. The lift 

force has a zero time-averaged value. The amplitude of fluctuating lift, which is 

significantly larger than the fluctuating drag, is often measured as r.m.s. lift coefficient 

'LC . Norberg (2003) summarised the presented experimental data, for example, West 

& Apelt (1993) and Szepessy & Bearman (1992), and found the value of 'LC  is well 
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scattered in subcritical regime, mostly in the range of 0.4 - 0.6. The r.m.s. lift 

coefficient in Figure 4-5 is found to be 0.48, within the experimental results. 
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Figure 4-6 Power spectra of lift coefficient and y-component velocity at x = 2D, y = 

0. Left: lift coefficient; Right: velocity. 

 

The Strouhal number St is predicted by using a power spectrum of the lift force history 

(Figure 4-5), as well the y-component velocity at a point in the near wake region (x 

=2D, y = 0 here), as shown in Figure 4-6. Both show one dominant peak, 

corresponding to the same frequency at St = 0.23. This value is higher than that 

summarised by Norberg (2003), which is about 0.2 in subcritical flow regime. West & 

Apelt (1993) reported St = 0.195 at a similar Reynolds number and Cantwell & Coles 

(1983) presented St = 0.179 at Re = 1.4×105. In comparison, the current simulation 

gives a slightly higher value of the vortex shedding frequency. 

 

4.3.2 Pressure and velocity around the cylinder 

 

Shown in Figure 4-7 are the pressure coefficient distributions varying in one cycle of 

the vortex shedding, with an equal time interval of one tenth of the period. Stable 

stagnation point and stagnation pressure can be seen in the whole period. The 

pressure on the upper and lower sides oscillates in remarkable amplitude, as a result 

of alternative vortex forming and shedding. Interestingly the pressure distributions in 

the first half (0.0T – 0.4T) and those in the second half (0.5T – 0.9T) are arranged in 
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mirror symmetry with respect to the cylinder’s centre line. This indicates the vortex 

forming and shedding on each side is highly similar. 
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Figure 4-7 Pressure distributions around the cylinder varying in a period: the line 

outside the circle represents negative pressure and the inner line represents positive 

pressure. 
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Figure 4-8 Pressure distributions around the cylinder varying in a vortex shedding 

period. 
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Shown in Figure 4-8 are the pressure distributions around the cylinder surface at ten 

instants in a cycle of vortex shedding in pC−φ  coordinate system. Note the 

stagnation pressure here is slightly over 1, because the gauge pressure at the flow 

outlet is set as zero in current simulation. It is seen that the pressure coefficient at the 

extreme aft point changes with time regularly in a small range from –1.4 to -1, and 

the averaged value, i.e. the base pressure 22.1−=pbC . Moreover, the pressure 

coefficient on the rear surface at certain instant always varies around the base 

pressure, and its deviations from the base pressure for the upper and lower sides are 

nearly opposite. One can expect the contribution of the pressure on the rear surface 

of the cylinder on its drag force is nearly constant, and that on lift force is significant. 
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Figure 4-9 Mean pressure distribution around the cylinder. 

 

The results in terms of the time-averaged pressure coefficient ( pC ) distribution 

around the cylinder is compared with the experimental data in Figure 4-9. Only 

upper half of the cylinder is shown here, as the time-averaged value is symmetrical 

with respect to the flow centre line. It is seen that the time-averaged pressure on the 

upstream cylinder part ( 60<φ ) agrees well with that by Norberg (2002) and 

Cantwell & Coles (1983). On the downstream part ( 120>φ ), current result also 

agrees with the experimental data. The base pressure 22.1−=pbC , close to that 

reported by Cantwell & Coles (1983), witch is -1.237. However, on the middle part 



 62 

of the cylinder, where the boundary layer separation takes place, the calculated 

time-averaged pressure coefficient deviates from the experimental results. This may 

be due to the current ω−k  SST model is not good enough to simulate the flow 

separation accurately, though it has improved a lot from other RANS models (see 

Tutar & Holdo 2001 and Holloway et al. 2004). 

 

The separation point, defined by Norberg (2002) as the angular position of local 

maximum for φddCp , is not easy to be identified in Figure 4-9. Alternatively the 

velocity vector field is used to locate the separation point, as illustrated in Figure 

4-10, where the reverse velocity in the boundary layer occurs. The separation point is 

oscillatory and its position varies between 85o to 95 o in a vortex shedding period. 

The time-averaged separation angle is 90 o, while Norberg (2002) reported sφ = 80 o 

for the same Reynolds number Re = 10 4 in the experiment. 

 

 

Figure 4-10 Velocity vector field near the separation point. 

 

4.3.3 Time-averaged velocity in the wake 

 

The mean streamwise velocity distribution along the wake centreline agrees with the 

experimental results by Norberg (1998) and Cantwell & Coles (1983), as shown in 

Figure 4-11. To study the influence of mesh resolution on simulation results, two 

different meshes, i.e. mesh C (24880 cells) and mesh CP (48140 cells), are 

investigated. It can be seen that the coarser mesh C produces an unphysical result of 
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mean streamwise velocity, which decreases in the far wake. This indicates fine mesh 

in the wake region is needed to simulate the wake flow. The reason may be due to the 

numerical diffusion, which has been produced less in the finer mesh system. 
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Figure 4-11 Mean streamwise velocity distribution along the wake centreline. 

 

The mean streamwise velocity distribution gives the information about the 

time-averaged recirculation length behind the cylinder. The wake closure length, or 

the vortex formation length, which is defined as the streamwise length of the adverse 

velocity zone (Norberg 1998), is 1.1D for current simulation, while Norberg (1998) 

reported 1.5D for Re = 104 and in the results by Cantwell & Coles it is about 0.9D 

for Re = 1.4×105. Norberg (1998) also reported the maximum reverse velocity Um = 

-0.38U0 at L = 1.04D, while current simulation predicts Um = -0.20U0 at L = 0.9D. 

The difference suggests current model is capable of obtaining the physical characters 

but the accuracy is insufficient in the near wake. This may again be due to the 

turbulence modelling in the near wake, which is probably one of the most difficult 

problems in fluid mechanics.  

 

The velocity distributions across the wake at the cross sections x = 2D, 4D and 8D 

based upon mesh CP are shown in Figure 4-12. The experimental data by Cantwell & 

Coles (1983) are also included for comparison. It can be seen that a generally good 

agreement is obtained except for those near the wake centreline. The comparison is 
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increasingly better as x/D increases.  
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Figure 4-12 Mean streamwise velocity across the wake. 

 

4.3.4 Time-varying velocity history in the wake 

 

Shown in Figure 4-13 to Figure 4-15 are the velocity histories of both streamwise 

component, u, and transverse component, v, at nine points in near and far wake. The 

experimental data by Cantwell & Coles (1983) are also included for comparison. It 

can be seen that the varying trend of either the velocity component of the current 

simulation is similar with that of the experimental results, while the amplitudes are 

significantly higher. The reason possibly lies in the following two aspects. 

 

Firstly, in the subcritical flow regime, the boundary layer all along the cylinder 

surface remains laminar up to and after the separation point and becomes turbulent 

somewhere in the free shear layer region. The simulations, however, have to be 

carried out with a turbulence model. The transition is therefore not simulated in the 

numerical model as it assumes an all turbulent flow in the domain (Tutar & Holdo 

2001). 

 

Secondly, approximating flow at this Reynolds number with two-dimensional 

simulation does not take into account 3-D effects which are present. The small scale 

streamwise and spanwise vortices in the turbulent wake that interact with large scale 

Karman vortices are ignored in 2-D simulation. 
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Figure 4-13 Velocity history at x=2D, y=0, 0.5D, D, respectively. Left: experimental 

data by Cantwell & Coles (1983); Right: Numerical results. 
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Figure 4-14 Velocity history at x=4D, y=0, 0.5D, D, respectively. Left: experimental 

data by Cantwell & Coles (1983); Right: Numerical results. 
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Figure 4-15 Velocity history at x=8D, y=0, D, 2D, respectively. Left: experimental 

data by Cantwell & Coles (1983); Right: Numerical results. 

 

4.4 Concluding remarks 

 

The turbulent cross flow past a circular cylinder at Reynolds number Re = 104 was 
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simulated in this chapter by using a commercial CFD software FLUENT with a 

ω−k  SST model. The computational domain and mesh independence were 

carefully checked to ensure a convergent simulation. The near wall zone is using 

sufficiently fine mesh to simulate the separation flow. It is found the requirement for 

the first cell height is to have y+ < 0.5. The convergent non-dimensional time step 

size is 0.025 for a typical mesh used in most simulations, while it should be even 

smaller for a finer mesh. 

 

All the simulation results are compared with existed experimental data. The 

time-averaged drag coefficient CD is found to be 1.19, and r.m.s. lift coefficient 'LC  

0.48, which agree well with the experimental results. The computed Stouhal number St 

= 0.23 is slightly above the value reported in literature. The time-averaged velocity 

distributions in the wake also agree with experimental results. 

 

It is also shown that despite proper resolution of the flow physics, discrepancies still 

exist between the computational and experimental results. The separation point is 

overestimated and the pressure distribution near it deviates from the experimental 

results. The time-varying velocities have similar trends with that of the experimental 

results, while the amplitudes are higher. 

 

It must be noted that approximating flow at this Reynolds number with 2-D, 

eddy-viscosity model simulation ignores the 3-D effects which are present and the 

model is for fully developed turbulent flow. However, as pointed out by Mittal et al. 

(1997), the flow simulation can give excellent insight into the underlying physical 

phenomena present in real applications. The numerical approach will continue to be 

adopted to simulate flow around multiple cylinders in the following chapters. 
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5 Two cylinders flow: tandem arrangement 
 

5.1 Introduction 

 

The chapter will investigate the hydrodynamic characteristics of two tandem circular 

cylinders in uniform flow, while the staggered case will be tackled in the following 

chapter. The important parameters for the tandem arrangement are free stream 

velocity V, the diameter of the cylinders D and their centre to centre spacing L. 

 

Turbulent flow past two circular cylinders in tandem represents a very complicated 

flow phenomenon. There are three flow patterns for such kind of flow according to 

Zdravkovich (1987).  

 

• The first flow pattern is observed when two cylinders are in contact or in 

extremely close proximity. The shear layers separating from the upstream 

cylinder completely engulf the downstream cylinder. Thus, the two cylinders 

essentially behave as an extended bluff body.  

• The second flow pattern is observed when L/D is within a medium range in 

which a separation bubble is formed behind the upstream cylinder and is 

captured by the downstream cylinder. Vortex shedding is observed behind the 

downstream cylinder but not from the upstream cylinder. A steady circulation 

region consisting of a pair of counter-rotating vortices exists in the gap.  

• The third flow pattern is observed for a larger L/D in which vortex shedding 

occurs from both cylinders. The wake behind the downstream cylinder is 

called binary, because each vortex is formed by the combination of one 

vortex shed from the upstream cylinder and another by the downstream 

cylinder. 

 

In this chapter the flow around two tandem circular cylinders with the spacing L 

from 1.5D to 8D is simulated. All cases presented use a Reynolds number of 104 and 
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a turbulence model of ω−k  SST, as in the last chapter. 

 

The inflow and outflow boundaries are situated to allow at least 15 diameters 

between the inflow boundary and the upstream cylinder and 25 diameters between 

the outflow boundary and the downstream cylinder. The lateral boundaries are 

situated to allow at least 10 diameters distance to the closest cylinder. The mesh in 

the boundary layer for each cylinder is identical with that used in the last chapter, 

while the mesh between the two cylinders is determined by considering the results in 

4.2.3 and 4.3.3, i.e. the density of the mesh behind the upstream cylinder is as good 

as or finer than mesh CP. An example of the case L = 4D is shown in Figure 5-1. 

 

   

Figure 5-1 Computational mesh around two tandem cylinders. Left: the whole 

domain; Right: close view of the region between two cylinders. 

 

5.2 Fluid forces 

 

5.2.1 Drag and lift force history 

 

Figure 5-2 shows typical lift and drag force coefficients histories for a downstream 

cylinder, L = 8D here. The lift force is zero when numerical iteration began, with no 

vortices shedding. Then it gradually fluctuates with the formation of the vortices, and 

finally a periodic state is achieved, by which the calculation is considered convergent. 

When the lift force converges, so does the drag force accordingly. 
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Figure 5-2 Typical lift and drag forces histories for the downstream cylinder, L = 8D. 

 

Figure 5-3 to Figure 5-6 show the time variation in drag and lift coefficients of the 

upstream and downstream cylinder at L = 2D, 4D, 6D and 8D, respectively. These 

data are gathered when steady periodic states were achieved, after at least 30 periods 

of computing. The dash-dot line denotes the force coefficient for the upstream 

cylinder, while the solid line denotes that for the downstream cylinder. All the force 

coefficients are based on the free stream velocity. 

 

t

C
D

950 1000 1050 1100 1150 1200
-1

-0.5

0

0.5

1

t

C
L

950 1000 1050 1100 1150 1200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 

Figure 5-3 Drag and lift coefficients history of the upstream and downstream 

cylinder, L = 2D: Dash-dot line: upstream cylinder; Solid line: downstream cylinder. 

 

At L = 2D, the drag force coefficient for the upstream cylinder, CD1, is around 0.84, 

much less than that of the one cylinder flow. This means the pressure behind the 

upstream cylinder is less negative in the presence of the downstream one. CD2 is 

about –0.33, which is caused by the negative pressure region between the two 
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cylinders, as shown in Figure 5-12. The fluctuations of the drag force coefficients for 

both cylinders are negligible, and that for the lift force coefficients is also very small. 

No alternating vortices are shed from the upstream cylinder and the flow between the 

two cylinders is relatively steady. Although there are vortices shed from the 

downstream cylinder, the vortex formation length is larger compared to that of the 

one cylinder flow or the two vortex street flow patterns, as shown in Figure 5-10. 

This indicates the vortex shedding has insignificant effect on the downstream 

cylinder. 

 

At L = 4D, 6D and 8D, the flow is in two vortex streets pattern. The force 

coefficients for both cylinders fluctuate along with the vortices shedding. The 

amplitudes of the fluctuations for the upstream cylinder are smaller than those for the 

downstream cylinder, for the force fluctuation of the downstream cylinder is induced 

by the alternate vortex shedding from itself, as well as by the impingement of 

vortices from the upstream cylinder. With increasing the spacing between the two 

cylinders, the amplitudes of the force coefficients for the downstream cylinder 

decrease, as the result of the decline in the impinging vortices. At the same time, 

those for the upstream cylinder keep nearly identical, which indicates the existence 

of the downstream cylinder hardly has any effect on the upstream one, as long as the 

flow is in two vortex streets pattern. 
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Figure 5-4 Drag and lift coefficients history of the upstream and downstream 

cylinder, L = 4D: Dash-dot line: upstream cylinder; Solid line: downstream cylinder. 
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The force coefficients of the downstream cylinder are very regular at L = 4D, become 

not so regular at L = 6D, and show significant irregularity at L = 8D. This indicates 

that, at L = 4D, the flow around the downstream cylinder is dominated by the 

impinging vortices coming from the upstream. As the spacing increases, the flow 

around the downstream cylinder is influenced by the impinging vortices, with 

decreasing intensity, as well as the vortices shed from itself. The interaction between 

these two types of vortices is also an important factor for the drag and lift on the 

downstream cylinder.    
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Figure 5-5 Drag and lift coefficients history of the upstream and downstream 

cylinder, L = 6D: Dash-dot line: upstream cylinder; Solid line: downstream cylinder. 
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Figure 5-6 Drag and lift coefficients history of the upstream and downstream 

cylinder, L = 8D: Dash-dot line: upstream cylinder; Solid line: downstream cylinder. 
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5.2.2 Vortices shedding frequency 
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Figure 5-7 Power spectra of lift coefficients of the upstream and downstream cylinder. 

Dash-dot line: upstream cylinder; Solid line: downstream cylinder. 

 

Figure 5-7 shows the power spectra of the lift force of upstream and downstream 

cylinders, at L = 2D, 4D, 6D and 8D. For small cylinder spacing, the dominant 

frequencies of vortex shedding from both cylinders are coincident with each other. 

This indicates the frequency of the vortex shedding from the downstream cylinder is 

strongly influenced by that from the upstream one, even though the average incident 

flow velocity to the downstream cylinder is much reduced due to the wake shielding. 

With increase of the distance, the upstream influence becomes less strong, as there is 
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a small peak frequency shift and more frequencies appear (L = 6D and 8D). 

 

The Strouhal number, St = f D/U, obtained from the dominant frequencies and the 

free stream velocity, is around 0.22. This value is slightly above those presented in 

literatures (Kiya et al. 1980; Ljungkrona et al. 1991). 

 

While the peak frequencies of the CL fluctuations of both cylinders are almost same, 

it is inferred that there is a phase shift between the CL fluctuations which may 

correlate with L/D (Kitagawa & Ohta 2008). Alam and Zhou (2007) also investigated 

the phase shift, or phase lag, and suggested 

*2.44 ( ) 2t c cS L Lϕ π π= − +  (5.1) 

Where ϕ  is the phase lag and DLLc /=  is the normalized cylinder 

center-to-center spacing and *
cL  is the critical spacing defined as the minimum cL  

at which the upstream cylinder could shed vortices in the gap between the cylinders.  

Alam and Zhou claimed this relationship agrees well with experimental data 

previously reported.  
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Figure 5-8 Phase shift of fluctuating lift of the cylinders.  

Symbol: present study; line: equation by Alam and Zhou. 

 

From Figure 5-10 and Figure 5-6, the phase lag for L=4D is 1.38 2ϕ π= × . With 

22.0=tS  it can be calculated 582.2* =cL  here. The phase lag values of present 

study for L = 4D, 6D and 8D are plotted in Figure 5-8, together with the result of the 
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above equation. Current result agrees well with the relationship proposed by Alam 

and Zhou. 

 

With the phase lag value, the nondimensional mean convection speed of the vortices 

shed from the upstream cylinder can be estimated as (Kitagawa & Ohta 2008) 

2
con t cu S Lπ

ϕ
= . (5.2) 

The calculated conu  values are 0.64, 0.69 and 0.72 for Lc = 4, 6, and 8, respectively. 

 

5.2.3 Mean force coefficients 

 

Table 5-1 summarizes the time-averaged drag and lift coefficients for L = 2D, 4D, 

6D and 8D, from Figure 5-3 to Figure 5-6, while in Table 5-2 are the STD values of 

those force coefficients. Note the average lift forces are non-zero for some cases, 

which suggest the error level of the current simulation is about 2%. 

 

When the flow is in reattachment pattern, which is indicated by L = 2D, the drag 

force of the upstream cylinder decreases significantly (CD1 = 0.84), compared to that 

of the one cylinder flow (1.20), while the downstream cylinder has a negative drag. 

This shows that the negative pressure zone (Figure 5-12) between the two cylinders 

has heavy impact on the downstream cylinder. The STD values of force coefficients 

are also quite small. 

 

Table 5-1 Time averaged drag and lift forces coefficients. 

 

 

 

 

 

 

L CD1 C D2 C L1 C L2 

2 0.84 -0.33 0.00 0.00 

4 1.20 0.26 -0.02 0.03 

6 1.20 0.39 -0.03 -0.02

8 1.24 0.52 0.00 -0.02
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When the flow is in two vortex streets pattern, L = 4D, 6D and 8D here, both the 

mean forces and the STD values of the upstream cylinder remain relatively constant, 

while for the downstream cylinder, the average drag increases with the clearance, and 

the STD values decrease with the clearance. The influence of the downstream 

cylinder on the upstream one can be ignored as long as the gap between the cylinders 

is greater than 4D. On the other hand, the wake effect on the downstream cylinder is 

significant and decreases with the spacing. 

 

Table 5-2 Standard deviation of drag and lift forces coefficients. 

 

 

 

 

 

 

 

 

Shown in Figure 5-9 are the mean drag coefficients on both cylinders, CD1 and CD2, 

versus the spacing ratio, L/D. Some of the experimental results are also included for 

comparison. For L < 2.5D, the upstream cylinder has a reduced drag coefficient and 

the downstream cylinder experiences adverse drag. The drag coefficient of the 

upstream cylinder decreases with increasing the spacing. The same trend can be 

observed in the experimental results. Though some literature reported CD2 also 

decreases when increasing the spacing between the two cylinders but still keeping 

the flow in reattachment pattern (Kitagawa & Ohta 2008), the present results, 

together with the experimental data shown here, suggest the drag coefficient of the 

downstream increases with increasing the spacing. 

 

Between L = 2.5D and L = 3D, the drag coefficients for both cylinders have an 

abrupt jump. CD1 is close to that of an isolated cylinder in cross flow while CD2 is 

still far below that.   

 

L STD 

(CD1)

STD 

(C D2)

STD 

(C L1)

STD 

(C L2)

2 0.00 0.00 0.02 0.07 

4 0.06 0.34 0.85 1.28 

6 0.05 0.25 0.81 1.16 

8 0.05 0.19 0.83 0.95 
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The exact spacing ratio where the abrupt jump in CD happens, i.e. the critical spacing 

ratio, was reported by many other researchers with rather scattered values. It can be 

seen from Figure 5-9 that it is 3.6 by Igarashi (1981), while the results by Ljungkrona 

et al. (1991), Moriya et al. (1983) and Zdravkovich & Pridden (1977) show the 

critical spacing ratio is about 3.0. It is around 2.5 in current simulation. The 

underestimate is likely due to the current computational model, the three dimensional 

effects and the difference in Reynolds number. 
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 Figure 5-9 Mean drag coefficients on two tandem cylinders. Open symbol: 

upstream cylinder. Solid symbol: downstream cylinder. Square and line, current 

study (Re = 104); Delta, Igarashi (Re = 3.55×104); Diamond, Ljungkrona et al. (Re = 

2×104); Circle, Moriya et al. (Re = 9×104); Left triangle, Zdravkovich and Pridden 

(Re = 1.2×105). 

 

5.3 Flow features 

 

5.3.1 Reattachment and two vortex streets patterns 

 

Figure 5-10 (a) shows an instantaneous contour of vorticity distribution in the case of 
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L = 2D. Alternating vortex shedding is not observed from the upstream cylinder. The 

shear layers separated from the upstream cylinder reattach to the downstream one, 

and two quasi-steady vortices are formed between the cylinders, which was also 

obtained by Igarashi (1981). However, vortices are alternately formed and shed 

behind the downstream cylinder. In this shear layer reattachment flow pattern the 

cylinders act as a single body.  

 

 (a) 

  
 (b) 

 

Figure 5-10 Instantaneous contours of vorticity magnitude. (a) L = 2D; (b) L = 4D. 

 

 (a) 

 

 
 (b) 

 
 

Figure 5-11 Instantaneous contours of stream function. (a) L = 2D; (b) L = 4D. 

 

Increasing the spacing between the two cylinders to 4D, the two vortex streets 
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pattern is observed, as shown in Figure 5-10 (b). The shear layers from the upstream 

cylinder do not reattach to the downstream one, and the vortices are alternately shed 

from the upstream cylinder. The vortices shed from the upstream cylinder rapidly 

deform as they approach the downstream cylinder. Because of impingement of the 

vortices from the upstream cylinder on the downstream one, the flow near the 

downstream cylinder is highly unsteady. The wake behind the downstream cylinder 

is called a binary vortex street (Williamson 1985), because each vortex is formed by 

the combination of one vortex from the upstream cylinder and another by the 

downstream one. 

 

Figure 5-11 shows the instantaneous contours of stream function, L = 2D and 4D, 

respectively. In part (a), which represents the stream function of the case L = 2D, a 

steady recirculation region consisting of a pair of counter-rotating vortices exists in 

the gap. However there is no such a region existed when L = 4D, as shown in part (b), 

and the flow between the two cylinders is highly unsteady. 

 

  

 

(a) 

 
(b) 

 

Figure 5-12 Instantaneous contours of static pressure. (a) L = 2D; (b) L = 4D. 

 

The pressure distributions also indicate differences between the two flow patterns, as 

shown in Figure 5-12. In part (a), there exists a steady negative pressure region 

between the two cylinders at L = 2D. This significant negative pressure is acted on 

the front part of the downstream cylinder, resulting in a negative drag on it; on the 
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contrary, this steady negative pressure zone does not exist when L = 4D. Both 

positive and negative pressure alternately act on both sides of the downstream 

cylinder. The fluid forces will be discussed in detail in the following parts. 

 

5.3.2 Bistable and hysteresis features 

 

For certain spacing, the flow can be in either reattachment pattern or two vortex 

streets pattern, and both states are stable. This phenomenon is called bistable 

(Zdravkovich 1997). The bistable nature of the flow around two tandem cylinders 

was also been observed here. It is possible to drive the flow into either the 

reattachment or two vortex streets patterns by selecting different initial conditions. 

 

Figure 5-10 (a) shows the reattachment flow pattern for the case L = 2D, by directly 

running the simulation, with two fixed cylinder in cross flow. To achieve the two 

vortex streets pattern, a steady solution at a larger spacing, say, L = 3D, was first 

obtained. The flow was in two vortex street pattern in this case. Then using the 

dynamic mesh technique, the spacing between the two cylinders was slowly 

decreased to 2D. The flow pattern persisted for any additional time steps, as shown 

in Figure 5-13. 

 

Figure 5-13 Instantaneous contours of vorticity magnitude, L = 2D. 

 

A hysteretic effect is an experimentally observable feature in two cylinders in tandem. 

It has been summarized by the following quote from Zdravkovich (1984). 

 

One of the two flow patterns persisted longer when the velocity was increased or, at 

the same velocity when the cylinder was displaced in one direction and the other 

pattern lasted longer when the opposite conditions were imposed. The hysteresis 
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produced an apparent overlap of the two flow patterns although only one flow pattern 

exists at a time. 

 

Using the dynamic mesh, the spacing was increased by moving the downstream 

cylinder at a velocity of 0.2% of the free stream velocity from the initial L = 1.3D, 

which was obviously in reattachment pattern, to L = 4D. It was found that this flow 

pattern persisted until L = 2.7D (Figure 5-14), at which point a rapid transition to the 

two vortex streets pattern occurs. 

 

(a) 

 
(b)  

 

Figure 5-14 Instantaneous contours of vorticity magnitude showing reattachment 

flow pattern. (a) L = 1.7D; (b) L = 2.7D. 

 

The hysteresis phenomenon can also be observed in Figure 5-15, which shows the 

drag coefficient on the upstream cylinder and downstream cylinder as a function of 

the clearance L/D for either an increasing spacing (shown as squares) or decreasing 

spacing (shown as deltas).  

 

By starting the simulation from the reattachment pattern at L = 1.3D and slowly 

increasing the spacing to 8D, the reattachment flow pattern persists up to a spacing of 

2.7D at which point a sharp increase in drag coefficients for both cylinders, 

indicating a transition to the two vortex streets pattern occurs.  

 

Similarly, when the spacing was decreased from 4D to 1.3D, the two vortex streets 

pattern persisted until L = 1.7D, as shown in Figure 5-16. Note in Figure 5-16 (b), 
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there are not two vortex streets formed behind the upstream cylinder actually, but 

obviously the shear layers do not reattach the downstream cylinder either. This 

special flow state causes significant drag on the downstream cylinder, as shown in 

Figure 5-15. Similar results were also found by Jester & Kallinderis (Jester & 

Kallinderis 2003). 
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Figure 5-15 Hysteresis of drag coefficients of two tandem cylinders when increasing 

and decreasing the spacing. 

 

(a) 

  
(b) 

  

Figure 5-16 Instantaneous contours of vorticity magnitude showing two vortex 

streets pattern, (a) L = 2.7D; (b) L = 1.7D. 
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5.4 The wake behind the downstream cylinder 

 

The wake behind the downstream cylinder is very complex because it features 

intensive turbulence and vortex superposition. Previous work about this can hardly 

be found, either experimentally or numerically. Huse (1993) calculated the wake 

velocity by RMS summation of the wake contributions generated by all upstream 

cylinders, based on wake and momentum considerations. 

 

In this thesis the characteristics on wake centre line behind two tandem cylinders are 

studied. The time-averaged velocity and the power spectra of the velocity history are 

presented, which can be of importance for three in-line cylinders flow in Chapter 7. 

No comparisons are made due to lack of experimental data. 

 

5.4.1 Time-averaged velocity along the wake centre line 
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Figure 5-17 Time-averaged streamwise velocity along the wake centre line behind 

the downstream cylinder. 

 

Shown in Figure 5-17 are the time-averaged streamwise velocity distributions along 
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the wake centreline behind the downstream cylinder in the case of two tandem 

cylinders with the spacing L = 2D, 4D, 6D and 8D. The distribution behind an 

isolated cylinder is also presented for comparison. It can be seen that the increase in 

the averaged velocity along the wake centreline for tandem arrangement is slower 

than that for an isolated cylinder flow. This indicates the cascading shielding effects 

by both the cylinders. 

 

For L = 2D, the flow is in reattachment pattern. The time-averaged recirculation 

length behind the downstream cylinder is larger than that of an isolated cylinder (see 

part 4.3.3). The vortex formation length is 1.5D here. Though the average velocity 

increases slower along the wake centreline, the magnitude is greater than that of an 

isolated cylinder in the wake further than 6D. This is mainly due to the fact that the 

vortices generated behind the downstream cylinder are not as strong as those behind 

an isolated cylinder (Figure 5-10a). 

 

 

 

 

 

 

Figure 5-18 Instantaneous velocity magnitude contours of flow around two tandem 

cylinders. L = 2D, 4D, 6D and 8D, respectively. The free stream velocity V = 0.05 

for this figure. 
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For L = 4D, 6D and 8D, the flow is in two vortex streets pattern. The increase in 

velocity along the wake centreline downstream is even slower. It can be seen that in 

this flow pattern, the increase is slower when the spacing between the two cylinders 

is less. This probably is the result of strong vortex-body interaction when the two 

cylinders are close. 

 

Figure 5-18 shows the instantaneous velocity contours of flow around two tandem 

cylinders, L = 2D, 4D, 6D and 8D, respectively. It is evident there is a zone behind 

the downstream cylinder where the velocity is greatly reduced, which is significantly 

longer streamwise for two vortex streets flow pattern compared to the reattachment 

pattern or the flow behind an isolated cylinder. 

 

5.4.2 Wake power spectra analysis 

 

The power spectrum analysis of the downstream cylinder lift history suggests the 

vortex shedding frequency is almost constant with St = 0.22 for all the spacings 

investigated between two tandem cylinders. This does not mean the oscillating flow 

in the wake has the same frequency, as demonstrated by the following wake velocity 

power spectra analysis. 

 

Shown in Figure 5-19 - Figure 5-22 are wake power spectra density of velocities 

measured on the wake centreline behind two tandem cylinders with the spacing L = 

2D, 4D, 6D and 8D. The measurement points are selected in such a way that they are 

away from the centre of the downstream cylinder at distances x – L = D, 2D, 4D, 6D 

and 8D. For comparison, the power spectrum density of the lift force for each 

configuration is also included. 

 

Figure 5-19 shows the case for L = 2D. It can be seen that the wake along the 

centreline up to 8D has the same frequency as the lift history, with the 

non-dimensional frequency St = 0.20. This indicates in reattachment flow pattern the 

vortex shedding behind the downstream cylinder shares some similarity to the one 

cylinder flow. 
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Figure 5-19 Power spectra analysis of lift history and velocities at several points 

along the wake centre line. L = 2D. 
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Figure 5-20 Power spectra analysis of lift history and velocities at several points 

along the wake centre line. L = 4D. 
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Figure 5-20 shows the case for L = 4D. Again the wake along the centreline up to 8D 

has the same frequency as the lift history, with St = 0.22. This probably is due to the 

strong influence of the vortices from the upstream cylinder on the downstream 

cylinder. 

 

Figure 5-21 shows the case for L = 6D, which is different from the two cases above. 

The power spectra density of the lift history and the velocity at x – L = D indicate the 

vortex shedding frequency St = 0.22. At x – L = 2D, there is a significant peak at 

0.14 as well as the dominant frequency at 0.22. Further downstream beyond x – L = 

4D, the dominant frequency is reduced to around 0.13. This indicates when the two 

cylinders are spaced at a distance of 6D, the developed wake has a reduced frequency, 

though the vortex shedding frequency is still dominated by the oncoming vortices. 
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Figure 5-21 Power spectra analysis of lift history and velocities at several points 

along the wake centre line. L = 6D. 

 

Figure 5-22 shows the case for L = 8D. The power spectra density of the lift history 

indicates the vortex shedding frequency St = 0.22, but at x-L = D there are two 

distinct peak frequencies at 0.22 and 0.14 respectively for the velocity, with the 



 89 

dominate peak at 0.22. As the distance increases, i.e. further downstream, the 

dominant peak frequency of the velocity shifts to 0.14 with a reduced peak at 0.22. 

At x-L = 6D, the peak at 0.22 disappears altogether. This may suggest that the wake 

developed behind the downstream cylinder is mainly controlled by the vortices shed 

from itself, rather than the impinging vortices from upstream, even though the 

frequency of the lift is heavily influenced by the impinging vortices.  
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Figure 5-22 Power spectra analysis of lift history and velocities at several points 

along the wake centre line. L = 8D. 

 

5.5 The cause of fluid forces on the downstream cylinder 

 

The fluid forces on the downstream cylinder show some different characteristics 

from those on the upstream or an isolated one. To study the time-averaged drag 

reduction and lift force enhancement, the vortex and pressure fields, velocity vector 

around the downstream cylinder and their relationships with each other need to be 

investigated in greater detail. 
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5.5.1 Vortex impingement 

 

Shown in the following figures are the pressure and vorticity contour and velocity 

vector varying within a vortex shedding period, for flow around two tandem circular 

cylinders with the spacing L = 4D. The time-interval between consecutive plots in 

these figures is one tenth of the period for one complete cycle of vortex shedding in 

the cylinders’ wake. All variables are dimensionless based on the free stream velocity, 

U and the cylinder diameter, D. 

 

Legend 
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Figure 5-23 Pressure and vorticity contour and velocity vector varying in a vortex 

shedding period. 

 

The Karman vortex from the upstream cylinder is fully formed, and its impingement 

on the downstream cylinder is observed, shown in Figure 5-23 0.0T(a)~1.0T(a). As a 

negative vortex from the upper surface of the upstream cylinder approaches the 

downstream cylinder (0.0T), it is deformed (0.0T~0.3T) and then splits into two parts 

(0.4T) upon impingement, the upper part of which merges into the like-sign 

newly-forming vortex from the upper surface of the downstream cylinder, and the 

lower part merges into the opposite-sign shedding vortex from the lower side of the 

downstream cylinder. It is difficult to decide the proportion into which the impinging 

vortex splits up, but it is observed only a small portion of that merges into the 

opposite-sign vortex. The same process happens to the positive vortex shedding from 

the lower side of the upstream cylinder (0.5T~0.9T). 
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During the process of the like-sign vortices merging by the split upstream vortex and 

that formed behind the downstream cylinder, it is observed that the upstream vortex 

dominates the latter. As the split vortex bypass the cylinder, its centre is pushed away 

from the cylinder axis. It entrains the newly forming, incomplete vortex behind the 

downstream cylinder and then convects downstream. The centre of the combined 

vortex is well off the cylinders’ centreline, which is different from the vortices shed 

from the upstream cylinder, or an isolated one, since their centres are more close to 

the cylinders’ centreline. 

 

The upstream vortices’ dominance can also be verified by the Strouhal number data 

measured in the wakes of the upstream and downstream cylinders. Shown in Figure 

5-24 are power spectra of velocities of a few points in both wakes, of which those x 

= 2D and 3D are in the upstream wake, and those x = 5D and 8D are in the 

downstream wake. The results show the same frequency for all the cases (St = 0.21). 

This may indicate synchronization between the impingement flow and Karman 

vortex shedding from the downstream cylinder, analogous to lock-in condition 

(Rockwell 1998). 
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Figure 5-24 Power spectra of velocities of some points in two cylinders’ flow field. 

 

The strong effect of the impingement flow on the vortex shedding behind the 

downstream cylinder is mainly because of the cylinders’ tandem arrangement with 
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L=4D. With increasing the spacing, weaker effect should be expected, as the vortex 

intensity decreases with convecting downstream. 

 

5.5.2 Velocity vector 

 

Shown in Figure 5-23 0.0T(b)~1.0T(b) are velocity vector plots which depict the 

magnitudes and orientations of the flow velocities around the downstream cylinder. 

The first noticeable is the change of stagnation point near the surface of the 

downstream cylinder. At t = 0.2T, the stagnation point is near the middle part of the 

front surface of the cylinder, and moves downwards to about minus forty degree at t 

= 0.3T, 0.4T, 0.5T and 0.6T, then back to the middle point at t = 0.7T. The similar 

process, with the stagnation point moving upwards and then back, takes place in the 

other half cycle of the vortex shedding. It is seen from Table 5-3, which shows the 

actual positions of the stagnation point changing in one cycle of the vortex shedding, 

that for the most part of a period, the stagnation point is around 35±=φ , and highly 

symmetric at the relative time in both half of the vortex shedding cycle. 

 

Table 5-3 Position of the stagnation point in a period. 

t 0.0T 0.1T 0.2T 0.3T 0.4T 

Sφ  (degree) 43 31 -13 -31 -38 

t 0.5T 0.6T 0.7T 0.8T 0.9T 

Sφ  (degree) -43 -29 13 31 38 

 

The reason of the change of the stagnation point is the highly fluctuating velocity in 

the wake of the upstream cylinder. This can be explained with Figure 5-25, which 

shows an assumed circular cylinder B lies in the wake of an identical cylinder A. 

When t = 0.2T, corresponding to t = 0.2T in Figure 5-23, the incident flow upon 

cylinder B is basically parallel to the free stream, with significantly reduced velocity. 

Shown in t = 0.5T is the main fluctuating flow acting on the bottom left side of 

cylinder B, which corresponds to the significant minus degree of the stagnation point 
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in Table 5-3. With the flow convecting downstream, the incident flow upon cylinder 

B is parallel again at t = 0.7T. Finally at t = 1.0T, the flow impacts on the top left side 

of cylinder B, corresponding to the position of the stagnation point, 43=φ . 

 

 

 

 

(t = 0.2T)

(t = 0.5T)

(t = 0.7T)

(t = 1.0T)

Figure 5-25 Velocity vector of incident flow upon an assumed downstream cylinder. 

 

Another feature in the velocity vector plots is, because of its fluctuation, the flow 

passes the downstream cylinder ‘positively’. It is known that for the upstream 

cylinder or an isolated cylinder, when the flow approaches it, the velocity magnitude 

and direction are changed ‘negatively’, due to the blockage of the cylinder. For the 

downstream cylinder, taking the case t = 0.1T in Figure 5-23 as an example, the 

oncoming flow has the potential to go top right, and its most flux does bypass the 

cylinder in that direction. Nevertheless, there is no significant accelerating flow near 

the top of the cylinder, with the velocity magnitude still in the vicinity of that of the 

oncoming flow velocity, which indicates that the flow passes the blockage in a 

‘positive’ way. Even at t = 0.4T, when the fluctuating flow completely impacts on the 
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bottom left side of the downstream cylinder, the velocity magnitude of the 

accelerating flow around the cylinder is just slightly greater than that of the 

oncoming flow.  

 

Shown in Table 5-4 is the change of separation points in a vortex shedding period. 

Similar to the stagnation point, the separation points in both half of a period are 

highly symmetrical, and there is an abrupt change at certain times. Different from the 

stagnation point, whose abrupt change happens at t = 0.2T and 0.7T, that of the 

separation point happens at t = 0.4T and 0.9T. This delay of change indicates the 

flow hysteresis in response to the change of the incident flow. 

 

Table 5-4 Separation angle in a period (NE: No Exact separation point detected). 

t 0.0T 0.1T 0.2T 0.3T 0.4T 

109 111 114 108 87 Separation angle 

(degree) -75 -70 -74 NE NE 

t 0.5T 0.6T 0.7T 0.8T 0.9T 

75 70 74 NE NE Separation angle 

(degree) -109 -112 -114 -109 -87 

 

The velocity field in the wake of the downstream cylinder shows a difference from 

that of the upstream or an isolated cylinder, as shown in Figure 5-26. Due to the 

increased lateral interval of the Karman vortex street, the flow velocity in the near 

wake of the downstream cylinder is significantly reduced, to about 0.2 times the free 

stream velocity, and still highly fluctuating due to the Karman vortex street. This 

effect lasts until 6 diameters distance from the downstream cylinder, where the flow 

velocity begins to increase and the vortex intensity decreases. This feature of the two 

cylinders wake will affect the hydrodynamic characteristic of the third cylinder if it is 

added to this region, which will be discussed in detail in the following chapter. 
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Figure 5-26 Instantaneous velocity vector in the wake of two tandem cylinders. 

 

5.5.3 Pressure distribution 

 

Circular cylinder
t = 0.7T
t = 0.8T
t = 0.9T
t = 0.0T
t = 0.1T

t = 0.2T
t = 0.3T
t = 0.4T
t = 0.5T
t = 0.6T
Circular cylinder

 

Figure 5-27 Pressure distributions around the downstream cylinder varying in a 

period: the line outside the circle represents negative pressure and the inner line 

represents positive pressure. 

 

The pressure distribution around the downstream cylinder, and its integral over the 

surface, namely the fluid forces, are the main concern of this thesis. Shown in Figure 

5-23 0.0T(c)~1.0T(c) are pressure coefficient contours varying in one cycle of vortex 

shedding. Unlike the pressure distribution around an isolated circular cylinder, or the 
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upstream cylinder in Figure 5-23, in which the stagnation pressure keeps constant 

( 1≈pC ) and always acts on the most front point of the cylinder ( 0=φ ), the pressure 

distribution around the downstream cylinder is more complex. Because of the change 

of stagnation point, the maximum positive pressure impacts on the top and bottom 

left alternately, and the negative pressure centre exists on the other side, as shown in 

Figure 5-23 and Figure 5-27. 

 

From the viewpoint of velocity vector, the stagnation point is determined by the 

direction of incident flow. At the stagnation point, the dynamic pressure totally 

transfers to static pressure (Figure 5-23 0.0T (b), (c)). On the other side, i.e. bottom 

left side, there is a negative pressure centre caused by the accelerating flow, thanks to 

the blockage of the cylinder. At t = 0.1T, there are no specific positive or negative 

centres, because the fluctuating approaching flow automatically bypasses the 

cylinder. At t = 0.2T, the stagnation point moves to the bottom left side on which the 

incident flow acts, and a negative pressure centre exists on the top side of the 

cylinder due to the accelerating flow. This state lasts until t = 0.6T, when fluctuating 

approaching flow automatically bypasses the cylinder from the lower side of the 

cylinder. The above-mentioned process of the pressure on the downstream cylinder 

surface is repeated in another half cycle of vortex shedding, with the opposite side 

being influenced by the incident flow. 

 

From the viewpoint of vortex impingement, according to Kitagawa and Ohta (2008), 

the oncoming vortex shed from the upstream cylinder is likely to induce positive 

pressure on the same side (upper or lower), and the impinging vortex together with 

that forming in the wake of the downstream cylinder will induce negative pressure. 

So is it in Figure 5-23. At t = 0.0T, the oncoming negative vortex induces positive 

pressure on the top left side, and the split positive vortex causes negative pressure on 

the lower side. At t = 0.1T, because the negative vortex is impinging on the cylinder 

and oncoming positive vortex is still too far to influence the pressure on the cylinder, 

there is no specific positive pressure centre on the surface of the downstream cylinder. 

On the lower side, the negative pressure is weakened because the positive vortex 

near the surface is attracted by the impinging negative vortex. This state changes at t 
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= 0.2T, when the oncoming positive vortex begins to induce positive pressure on the 

bottom left side of the downstream cylinder and the deformed negative vortex causes 

negative pressure on the upper side. At the same time, the negative vortex near the 

lower side continues to drag the positive vortex out so that the pressure on the lower 

side of the cylinder increases. This state lasts until t = 0.5T. Again, the process is 

repeated in another half period, with opposite side being influenced by opposite 

vortices. 

 

For the rear of the downstream cylinder, its pressure is not so low as that of the 

upstream cylinder, because the split like-sign vortex is not so close to the cylinder’s 

rear due to its inertia after bypassing the cylinder, and the forming like-sign vortex is 

merged. So the negative pressure on the rear of the cylinder, often induced by the 

vortices near the cylinder surface, is weakened. 
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Figure 5-28 Pressure distributions around the downstream cylinder varying in a 

vortex shedding period. 

 

Shown in Figure 5-28 is the pressure distribution around the downstream cylinder at 

ten instants in a cycle of vortex shedding. It is seen that the pressure coefficient at the 
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most rear point changes with time regularly in the range from –0.4 to 0.65, and the 

averaged value 5.0−≈pC  is much higher than that of an isolated cylinder, which is 

about –1.2. Moreover, the pressure coefficient on the rear surface at certain instant 

always varies around the base pressure, and its deviations from the base pressure for 

the upper and lower sides are nearly opposite. One can expect the contribution of the 

pressure on the rear surface of the cylinder on its drag force is nearly constant. 

 

For the front of the downstream cylinder, during t = 0.3T~0.5T and t = 0.8T~1.0T, 

there exist a significant stagnation angle (around 35±=φ ), a high stagnation 

pressure ( 1≈pC ) and a low negative pressure on the opposite side ( 8.1−≈pC ). This 

causes large variartions in both the drag and lift, as shown in Figure 5-29. The 

mechanism of the lift force here is significantly different from that of the upstream or 

an isolated cylinder, whose lift force is caused by the pressure difference of the upper 

and lower sides of the cylinder, due to the periodically vortex shedding. For the 

downstream cylinder in the wake, the lift force is additionally caused by the shifting  

stagnation point on the front of the cylinder, with a resulting force component in the 

cross flow direction. Therefore, the amplitude of the lift force coefficient of the 

downstream cylinder is much higher than that of the upstream one (Table 5-2).  

 

At t = 0.1T, 0.2T, 0.6T and 0.7T, the flow is transitional between the two incident 

directions, therefore the lift forces are smaller.  
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Figure 5-29 Drag and lift force coefficients in a period. 
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As for the drag force, its variation mainly depends on the pressure on the front 

surface of the cylinder, since, as mentioned before, the contribution of the rear is 

nearly constant. At t = 0.0T and 0.5T, the drag force is at its minimum (Figure 5-29), 

corresponding to the maximum stagnation angle, relative to the most front point F 

(the green lines in Figure 5-28), while the maximum drag is reached at t = 0.2T and 

0.7T, corresponding to the minimum stagnation angle (the blue lines in Figure 5-28). 

The drag force variation also depends on the variation of the stagnation angle, not the 

stagnation pressure, since actually it is much higher at t = 0.0T and 0.5T ( 98.0=pSC ) 

than that at t = 0.2T and 0.7T ( 64.0=pSC ).  

 

Shown in Figure 5-30 is the drag force coefficient and cosine of the relative 

stagnation angle. The result indicates significant correlation between them, though 

they are not completely in-phase. The lift force is also notably correlative to the 

minus sine of the relative stagnation angle, as shown in Figure 5-31. This indicates 

the periodical change of stagnation point, caused by the fluctuating incident flow, 

plays a significant role on the variation of the fluid forces on the downstream 

cylinder. 

t/T

C
D

co
sφ

S

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
CD
cosφs

Figure 5-30 Drag force coefficient and 

cosine of stagnation angle in a period. 
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Figure 5-31 Lift force coefficient and 

minus sine of stagnation angle in a period.

 

5.5.4 Correlation analysis 
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The correlation coefficient is used to study the relationship between fluid forces and 

some other flow variables. The correlation coefficient between two discrete 

sequences }{ nx  and }{ ny  is defined as 
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where x  and y  are the averaged values of }{ nx  and }{ ny , respectively. The 

correlation coefficient indicates the strength and direction of a linear relationship 

between two random variables. 

 

Table 5-5 shows the correlation coefficients between drag force and cosine of the 

stagnation angle, the stagnation pressure, the production of them, and pFC , the 

pressure coefficient at the most front point. The results reveal that the correlation 

between the drag force and cosine of the stagnation angle is very strong, while the 

stagnation pressure, as mentioned before, has moderate minus correlation with the 

drag force. The stagnation pressure’s component on x direction ( SpSCosC φ ) is 

insignificant, which suggests the stagnation pressure, though has its contribution, is 

not a main influencing factor to drag force. 

 

Surprisingly, the correlation coefficient between the drag force and the pressure at 

the most front point is as high as 0.99, which is also illustrated in Figure 5-32. This 

indicates the latter is the main influencing factor to the drag force of the downstream 

cylinder, considering the contribution of the pressure on the rear of the cylinder is 

quite constant, as shown in Figure 5-28. Further calculation shows the correlation 

coefficient between the cosine of stagnation angle and pressure of the most front 

point is 0.97, indicating the influence of them on the drag force is synchronous, 

which is also revealed in Figure 5-28, where larger stagnation angle is always 

corresponding to lower pressure at the most front point, among the ten instant 

pressure distributions, and vice visa. The variation of the pressure at the most front 
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point is caused by and synchronised with the variation of the stagnation point.  

 

Table 5-5 Correlation coefficient between drag force and some expressions. 

 sCosφ  pSC  SpSCosC φ  pFC  

DCR  0.940 -0.296 -0.035 0.990 
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Figure 5-32 Drag force coefficient and pressure coefficient at the most front point in 

a period. 

 

Table 5-6 shows the correlation coefficient between the lift force and minus sine of 

stagnation angle, the stagnation pressure, the product of them, and the pressure at the 

most front point. Again, the link between the stagnation angle and relative lift force 

is significant, while the stagnation pressure is insignificant. The stagnation pressure’s 

component on –y direction ( )( spS SinC φ− ) is strongly correlated with the lift force, 

which indicates it is synchronous with other lift-influenced factors such as the 

negative pressure on the opposed side of the front of the cylinder, and the pressure 

difference on the rear. As can be expected, the pressure at the most front point has no 

link to the lift force, as they are perpendicular to each other. 

 

The significant influence of the stagnation angle on the fluid forces of the 

downstream cylinder located in the wake of an upstream one is revealed by above 
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analysis. This does not mean it is the only factor, as the pressure distribution around 

the rear of the cylinder also plays a role on the forces. But it is simpler to be dealt 

with, since the pressure distribution on the rear either can be seen as a constant when 

calculating drag force, or is in-phase with stagnation angle when calculating lift 

force. 

 

Table 5-6 Correlation coefficient between lift force and some expressions. 

 sSinφ−  pSC  )( spS SinC φ−  pFC  

LCR  0.967 0.002 0.988 0.001 

 

5.6 Concluding remarks 

 

This chapter investigated uniform flow past two circular cylinders of the same 

diameter in tandem arrangements at a subcritical Reynolds number Re = 104. The 

centre to centre spacing between the cylinders is from 1.5D to 8D, thus the proximity 

interference and wake interference are both covered. For 2.5L D≤ , the reattachment 

flow pattern is observed. The shear layers separated from both sides of the upstream 

cylinder reattach onto the downstream cylinder, with a steady recirculation region 

consisting of a pair of counter-rotating vortices in the gap. For 3L D> , vortices are 

shed not only from the downstream cylinder but also from the upstream cylinder. The 

drag coefficient of the downstream cylinder experiences a jump when the flow 

pattern changed. The critical spacing is found to be around 2.5D in the current study. 

 

The bistable and hysteresis features of flow around two tandem cylinders are also 

observed. With the dynamic mesh technique, it is found for certain spacing around L 

= 2D, the flow can be either the reattachment or two vortex streets patterns 

depending upon the initial conditions. By starting the simulation from the 

reattachment pattern and slowly increasing the spacing, the reattachment flow pattern 

persists up to a spacing of 2.7D at which point a transition to the two vortex streets 

pattern occurs. Similarly, when the spacing is decreased, the two vortex streets 
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pattern persists until L = 1.7D. 

 

The wake behind the downstream cylinder shows some different characteristics from 

that of an isolated cylinder. The velocity is greatly reduced due to the cascading 

shielding effects by both cylinders. It is observed that the increase in averaged 

velocity along the wake centreline for tandem arrangement is slower than that for an 

isolated cylinder flow. The wake power spectra analysis shows the oscillating flow in 

the wake behind the downstream cylinder is strongly influenced by its own vortex 

shedding when 6L D≥ . 

 

This chapter also investigated in great detail the main factors influencing the fluid 

forces of a circular cylinder located in the wake of an upstream one, in tandem 

arrangement with the spacing L = 4D. The changes of vorticity and velocity in flow 

field and the pressure distributions around the cylinder in a vortex shedding period 

are studied in detail to investigate the relationship among them. Then the correlation 

coefficient is used to analyse the influence of various factors on fluid forces, such as 

stagnation angle and the pressure at stagnation point and the most front point. 

 

Due to the periodically shed vortices from the upstream cylinder, the flow incident 

on the downstream cylinder is highly fluctuating. The pressure distribution around 

the downstream cylinder can be explained in the viewpoint of either vortex 

impingement or change of incident velocity vector. 

 

It is revealed that the stagnation point, also the point on which the maximum pressure 

acts, changes periodically on the front of the downstream cylinder, and at the same 

time varies the pressure distribution on this part of the cylinder significantly. On the 

rear of the cylinder the pressure distribution is almost a constant. 

 

It is found that the change of the stagnation point, as a result of the fluctuating 

incident velocity, is strongly associated with the large and periodical variations of the  

drag and lift forces, while the stagnation pressure is not. The cosine and minus sine 

of the stagnation angle are highly correlated with the drag and lift force, respectively. 
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6 Two cylinders flow: Staggered 

arrangement 
 

6.1 Introduction 

 

The aim of the chapter is to numerically study the flow patterns and fluid forces of 

two staggered circular cylinders in cross flow, especially the origin of the mean lift 

force on the downstream cylinder. 

 

Two identical circular cylinders are considered. The upstream cylinder is at x = 0 and 

y = 0, and the downstream cylinder is at x = 2D, 4D, or 8D, and y = 0.5D, D, or 2D. 

So the proximity interference, near wake interference and far wake interference are 

all covered. 

 

The inflow and outflow boundaries are situated to allow at least 15 diameters 

between the inflow boundary and the upstream cylinder and 20 diameters between 

the outflow boundary and the downstream cylinder. The lateral boundaries are 

situated to allow at least 10 diameters distance to the closest cylinder. The meshes in 

the boundary layers and between the cylinders are in the same way as described in 

the last chapter. 

 

6.2 Flow patterns 

 

In the last chapter the shear layer reattachment flow pattern was presented for the 

tandem arrangement with the spacing ratio less than 2.7. As reported in the literature 

(Zdravkovich 1987; Sumner et al. 2000; Akbari & Price 2005), this flow regime 

persists for configurations with moderate pitch ratios, 1.1 < P/D < 2, and small 

angles of incidence, 10<α . The distance between the two cylinders is small 
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enough for the inner shear layer from the upstream cylinder to reattach onto the outer 

surface of the downstream cylinder. The flow through the gap between the cylinders 

is small compared to the main flow around the two cylinders. There is only one 

Karman vortex street in the wake of the cylinder pair. 

 

While increasing the angle of incidence, or moving the downstream cylinder away 

from the flow axis of the upstream cylinder, i.e. y = 0.5D, D and 2D, shear layer 

reattachment flow pattern can no longer exist, and several different flow patterns 

were identified. The flow patterns for two staggered circular cylinders in cross flow 

were systematically investigated by Sumner et al. (2000) using flow visualization 

and particle image velocimetry and by Akbari & Price (2005) numerically. Current 

results are compared with theirs, though the Reynolds numbers in their studies are 

within the low subcritical regime, Re = 800 to 1900, while Re = 104 in this thesis. 

 

6.2.1 Shear layer enveloping 

 

When the downstream cylinder is situated at x = 2D and y = 0.5D, as shown in 

Figure 6-1, it is easier for the inner shear layer from the upstream cylinder to be 

deflected into the gap between the cylinders. In addition, some of the oncoming 

mean flow is now permitted to penetrate the gap. Because of the existence of the 

downstream cylinder, the shear layers from the upstream cylinder do not have 

sufficient space to roll up before convecting into the wake of the downstream 

cylinder. The vorticity of the inner shear layer of the upstream cylinder, being 

constrained between two opposite signed vortices from the outer side of the upstream 

cylinder and the inner side of the downstream cylinder, soon fade out. The inner 

shear layer of the downstream cylinder is enveloped by the outer shear layer of the 

upstream cylinder, before it rolls up completely.  

 

The combined shear layers roll up into an expanded, weakened Karman vortex, while 

the outer shear layer of the downstream cylinder forms regular Karman vortex almost 

without interruption. In this flow pattern there is only one Karman vortex street in the 

wake of the two cylinders, similar to that for one cylinder flow and shear layer 
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reattachment flow pattern of two tandem cylinders flow, although the vortex street is 

not as regular as that for a single cylinder. 

 

As an example of the flow pattern, a sequence of vorticity contour plots is presented 

in Figure 6-1. The time-interval between the successive frames in these figures is t* 

= 0 /tU D∆  = 1, corresponding to about one fifth of the period for one complete 

vortex shedding cycle, assuming the typical Strouhal number value of 0.2 in this case. 

Figure 6-1(a, b) show the shear layers in the gap between the cylinders form and the 

inner shear layer from the downstream cylinder is ready to roll up. In Figure 6-1(c, d) 

it is enveloped by the outer shear layer of the upstream cylinder. Figure 6-1(f-h) 

show the shedding process of the combined Karman vortex. 

 

      

      

Figure 6-1 Vorticity contour plots for the vortex enveloping flow pattern, x = 2D, y = 

0.5D. Equal time-intervals of t* = 1 between consecutive plots (a)-(h). 

 

Sumner et al. (2000) classified the flow of this range as ‘induced separation’ flow 

pattern. It was reported that the Karman vortices from the inner shear layer of the 

upstream cylinder induce a separation of the flow from the inner side of the 
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downstream cylinder and the induced vorticity production does not involve the 

formation and roll-up of a free shear layer (Figure 6-2). However, Akbari and Price 

(2005) offered a different explanation. According to them, this phenomenon does not 

appear to be really an ‘induced’ separation, for the separation on the inner surface of 

the downstream cylinder appears to be due to the impingement of part of the main 

flow through the gap and its subsequent deflection off the cylinder surface. The latter 

explanation is confirmed here, as the Karman vortex formation from the inner 

surface of the downstream cylinder does involve the roll-up of a free shear layer, 

though it is enveloped simultaneously by the outer shear layer from the upstream 

cylinder. 

 

 

Figure 6-2 Flow visualization of ‘induced separation’ flow pattern, P/D = 2.0, 

20=α , Re = 850, after Sumner et al. (2000). 

 

The wake power spectra analysis show, the dominant wake frequency, i.e. Strouhal 

number, is approximately 0.17 at an arbitrary wake point. Shown in Figure 6-3 is a 

typical wake power spectrum for which the velocity is sampled at x = 3D and y = 0, 

in the combined wake of the two cylinders. Sumner et al. (2000) reported that in 

‘induced separation’ flow pattern the frequencies of Karman vortex formation are 

different for each row and those from the outer shear layer of the downstream 

cylinder are considerably lower. This is not found here, which possibly means the 

shear layer enveloping flow pattern is totally different from the ‘induced separation’ 

flow pattern identified by Sumner et al., because these two cases are under different 

Reynolds numbers. 
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Figure 6-3 Wake power spectrum for x = 2D, y = 0.5D. Velocity measurement at x = 

3D and y = 0 as indicated in Figure 2-10. 

 

6.2.2 Vortex pairing and enveloping 

 

When the downstream cylinder is at x = 2D and y = D, the flow pattern is similar to 

the above-mentioned shear layer enveloping regime. However, this flow involves the 

formation of vortices from the upstream cylinder and the inner side of the 

downstream cylinder, though the process is incomplete before they merge into an 

expanded, weakened composite vortex. 

 

This ‘vortex pairing and enveloping’ flow pattern is identified by Sumner et al. (2000) 

using flow visualization and particle image velocimetry and by Akbari & Price (2005) 

numerically. In the near wake region the Karman vortex from the inner side of the 

downstream cylinder is paired with smaller-scale vortex of opposite sign from the 

inner shear layer of the upstream cylinder. The counter-rotating vortex pair structure 

is a distinct feature of this flow pattern. A little further downstream this vortex pair is 

enveloped by the vortex from the outer shear layer of the upstream cylinder. Again in 

this flow pattern there is only one Karman vortex street in the wake of the two 

cylinders. 

 

Shown in Figure 6-4 is a sequence of vorticity contour plots for ‘vortex pairing and 
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enveloping’ flow pattern with x = 2D and y = D. Figure 6-4(a-e) show the process of 

vortices formation from both sides of the gap and the outer side of the upstream 

cylinder. Due to the accelerated main flow the vortices are elongated. In Figure 6-4(f) 

the vortices from both sides of the gap are paired and then been enveloped by the 

outer shear layer of the upstream cylinder, as shown in Figure 6-4(g-h). 

 

    

    

Figure 6-4 Vorticity contour plots for the vortex enveloping flow pattern, x = 2D, 

y=D. Equal time-intervals of t* = 1 between the consecutive plots (a) to (h). 

 

Shown in Figure 6-5 are illustrations of the vortex pairing and enveloping flow 

pattern by Sumner et al. (2000) and Akbari & Price (2005). In the picture of flow 

visualization by Sumner et al. the process of pairing and enveloping happens further 

away from the flow centreline of the upstream cylinder, while the numerical result by 

Akbari & Price shows this process happens near the flow centreline of the upstream 

cylinder, which resembles the current numerical results. In the results by Akbari & 
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Price it can be seen that the vortices are elongated too, not only in the process of 

enveloping, but also in the wake downstream. 

 

    

Figure 6-5 Vortex pairing and enveloping flow pattern. Left: flow visualization by 

Sumner et al. (2000), P/D = 1.5, 30=α , Re = 850; Right: numerical results by 

Akbari & Price (2005), P/D = 2.0, 40=α , Re = 800. 
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Figure 6-6 Wake power spectra for x = 2D, y = D. The coordinates indicate the points 

at which the velocities are measured. 

 

The wake power spectra for this flow are measured at x = D, y = 0.5D and x = 3.2D, 

y = 1.3D, which correspond to the wake of upstream cylinder and the downstream 

one, respectively, as shown in Figure 6-6. It can be seen a dominant nondimensional 

frequency St = 0.15 is observed in both figures. Sumner et al. (2000) reported St = 

0.14 and Akbari & Price (2005) reported St = 0.19 for this flow pattern. This 
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considerable discrepancy, as stated by Akbari & Price, may be due to the high 

sensitivity of the wake power spectra to the exact locations at which the signals are 

obtained. 

 

6.2.3 Complete vortex shedding 

 

This phenomenon occurs for x = 2D and y = 2D where the downstream cylinder is 

not immersed in the wake of the upstream cylinder, but the two cylinders are close 

enough for them to influence the vortex shedding from each other. In this 

arrangement two distinct Karman vortex streets are seen in the wake of the cylinder 

pair. Sumner et al. (2000) classified the flow at this range as ‘synchronized vortex 

shedding’. It was reported that within the near field, vortices of opposite sign from 

opposite sides of the gap, are observed to pair up. Within the combined wake of the 

pair of cylinders, this results in two adjacent Karman vortex streets that exhibit 

anti-phase synchronization, as shown in Figure 6-7. In this flow pattern, according to 

Sumner et al., the two shear layers from the upstream cylinder and the inner shear 

layer of the downstream cylinder shed vortices at the same frequency, while 

lower-frequency happens at the outer shear layer of the downstream one only. 

 

 

Figure 6-7 Flow visualization of ‘synchronized vortex shedding’ flow pattern, P/D = 

2.5, 50=α , Re = 900, after Sumner et al. (2000). 

 

The same features can be found from the results of the current simulation, as shown 
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in Figure 6-8. The vortex streets from both cylinders are highly synchronized, as the 

counter-rotating vortex pairs arranged transversely are regularly laid within the near 

wake. However, Akbari & Price (2005) carefully checked their numerical results and 

concluded that this vortex pairing occurs only during some instances, and that there 

is no synchronization of vortex shedding between the two cylinders. 

 

   

Figure 6-8 Vorticity contour plots for the complete vortex shedding flow pattern, x = 

2D, y = 2D. Equal time-intervals of t* = 1 between consecutive plots (a)-(f). 

 

Wake power spectra are analysed to study the frequencies of the shear layers. Shown 

in Figure 6-9 are power spectra for four points, i.e. x = D, y = -0.5D and x = D, y = 

0.5D, corresponding to the outer and inner shear layer of the upstream cylinder, 

respectively; x = 3D, y = 1.5D and x = D, y = 2.5D, corresponding to the outer and 

inner shear layer of the downstream cylinder, respectively. It can be seen that the 

frequency of vortex shedding from the two shear layers of the same cylinder is 

always the same. The Strouhal number for the upstream cylinder is St = 0.23, while 

that for the downstream cylinder is St = 0.21. This suggests no synchronization 
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between the vortices of the two cylinders, but the frequencies are close enough so 

that the synchronization-like condition happens when the two Karman vortex streets 

are in certain phases. There is also a peak at St = 0.23 in the power spectra for the 

downstream cylinder, which indicates the influence of the upstream cylinder on the 

vortex shedding of the downstream one. Akbari & Price (2005) computed a case in 

this range and the Strouhal numbers for the upstream and downstream cylinders were 

found to be St = 0.22 and 0.2, respectively, which is similar to current simulation. 
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Figure 6-9 Wake power spectra of several points behind the upstream and 

downstream cylinder for x = 2D, y = 2D. The coordinates indicate the points at 

which the velocities are measured. 

 

Actually, by computing this case for a little more time from Figure 6-8, the vorticity 

contour is like Figure 6-10(a), which indicates the vortices shedding from the two 
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cylinders are not in phase. In Figure 6-10(b) the vortices are involved in complex 

interaction in the near wake, and the phenomenon of synchronization completely 

disappears. This again suggests the so called ‘synchronized vortex shedding’ flow 

pattern does not exist in the current simulation and the flow is in a complete vortex 

shedding mode for the two cylinders while has complex vortices interaction in the 

near wake. 

 

 (a)            (b) 

      

Figure 6-10 Vorticity contour plots for two instances, x = 2D, y=2D. 

 

6.3 Fluid forces 

 

6.3.1 Drag and lift forces history 

 

Shown in Figure 6-11 are drag and lift coefficients time histories for both cylinders 

when the downstream one is located at x = 2D and y = 0.5D, D and 2D. The solid 

lines denote those for the downstream cylinder, and the dashed lines for the upstream 

one. These data were gathered when steady periodic states were achieved, after at 

least 30 periods computing. 

 

For x = 2D and y = 0.5D, the amplitudes of both drag and lift coefficients of the 

upstream cylinder are very small, which indicates that in the ‘shear layer enveloping’ 

flow pattern, the flow around the upstream cylinder is quite steady, and no vortex 

shedding happens behind it. For the downstream cylinder, the amplitudes of both 

drag and lift coefficients are significant. The periodic vortex shedding causes the 
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fluctuation of the lift force, as well as the drag force. The fluctuation of the drag 

force may also be due to the fact that the gap flow between the two cylinders changes 

the direction of the oncoming flow to the downstream cylinder, which is towards the 

flow centre line of the upstream cylinder. This can also explain the existence of the 

time-averaged lift force of the downstream cylinder, which possibly is a part of 

resolved drag force. 
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Figure 6-11 Drag and lift forces histories, the downstream cylinder is at x=2D, 

y=0.5D, D and 2D, respectively. Solid line: downstream cylinder; Dashed line: 

upstream cylinder. 

 

For x = 2D and y = D, the force coefficients are similar to the above, except the 

averaged drag coefficient of the downstream cylinder increases significantly, which 

can be expected because the shielding effect of the upstream cylinder is weakened as 

the downstream one move outwards. The amplitudes of both drag and lift 

coefficients of the upstream cylinder are still very small. This suggests though there 

are vortices forming behind the upstream cylinder, they are too far from the cylinder 

surface to significantly influence the pressure distribution around it. 
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The force coefficients become very complex for x = 2D and y = 2D. The lift 

coefficient history of the downstream cylinder depicts a phenomenon of interference 

effect, which can be explained that the vortex shedding from the downstream 

cylinder is at the nondimensional frequency St = 0.21, while modulated by the 

vortices from the upstream one at St = 0.23 (Figure 6-9). Surprisingly, the lift 

coefficient history of the upstream cylinder also displays the interference effect 

feature, which indicates in this arrangement the upstream cylinder is also influenced 

by the downstream one, though complete Karman vortex street formed behind the 

former. 
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Figure 6-12 Drag and lift forces histories, the downstream cylinder is at x=4D, 

y=0.5D, D and 2D, respectively. Solid line: downstream cylinder; Dashed line: 

upstream cylinder. 

 

When x = 4D, the flow is in the vortex impingement regime, so the hydrodynamic 

loading of the downstream cylinder is the result of vortex-body interaction while the 

loading for the upstream cylinder can be treated as an isolated one. The averaged 

drag force coefficient of the downstream cylinder increases when the lateral distance 

is increased from 0.5D to 2D, while the variation amplitude of the drag force 
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decreases, indicating a weakening effect of the wake. 

 

Abnormally, the amplitude of the lift coefficient of the downstream cylinder is larger 

than that of the upstream cylinder for the case x = 4D and y = 2D, which is possibly 

because the downstream cylinder is actually out of the wake of the upstream one in 

this arrangement, and the oncoming flow velocity is larger than that of the free 

stream. The drag force of the downstream cylinder is also larger than that of the 

upstream one for the same reason. 

 

For x = 8D, the influence of the downstream cylinder on the upstream one can be 

neglected, as shown by the drag and lift coefficients histories in Figure 6-13. The 

averaged drag coefficient of the downstream cylinder increases significantly when 

moving it outward the wake, while its amplitude keeps in a similar range. This is 

different from the cases x = 4D, which indicates at this cross section at x = 8D, the 

flow around the downstream cylinder is dominated by the local oncoming flow, 

while less significantly influenced by the vortices from the upstream cylinder. 
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Figure 6-13 Drag and lift forces histories, the downstream cylinder is at x=8D, 

y=0.5D, D and 2D, respectively. Solid line: downstream cylinder; Dashed line: 

upstream cylinder. 
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The fluctuation of the lift force of the downstream cylinder becomes more consistent 

when increasing the lateral spacing. The unstable amplitudes for y = 0.5D and y = D 

also indicates the oncoming vortices have certain but not essential effect on the 

downstream cylinder. 

 

6.3.2 Vortex shedding frequency 
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Figure 6-14 Power spectra of lift coefficients of the upstream and downstream 

cylinders. Circle and dashed line: upstream cylinder; Solid line: downstream 

cylinder. 

 

The Strouhal number, St, was obtained from the power spectrum of the lift force 

history of the downstream cylinder, as shown in Figure 6-14. Nine configurations, x 
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= 2D, 4D or 8D, and y = 0.5D, D or 2D, are presented. The power spectra for the 

upstream cylinder are also shown here. For x = 2D, St = 0.16, 0.17 and 0.21 for y = 

0.5D, D or 2D, respectively, which agree with the results from wake power spectra in 

chapter 6.2. At x = 2D and y = 2D, the power spectrum of the lift history of the 

upstream cylinder indicates its dominant frequency is 0.23, which suggests the 

complete vortex shedding flow pattern is a special case. This is the only exception of 

all cases, where both cylinders share the same dominant frequency. At x = 4D and x 

= 8D, the dominant frequencies for both cylinders, and therefore the Strouhal 

numbers, are found to be 0.21-0.22. This indicates the strong ‘lock-in’ state for two 

staggered cylinders in cross flow. 

 

Table 6-1 summarised the strouhal numbers for all the nine staggered cases. 

Comparing with those from Zdravkovich (1987), current simulation overestimated a 

little, especially for smaller spacings. Nevertheless, the results here reflect similar 

trends, i.e. smaller Strouhal numbers for the proximity interference and a value 

around 0.2 for the wake interference. 

 

Table 6-1 Strouhal number of the downstream cylinder for flow around two 

staggered circular cylinders. 

x/D y/D St St from Zdravkovich 

(1987) Re= 1.58×104 

0.5 0.16 0.14 

1 0.17 0.14 

 

2 

2 0.21 0.16 

0.5 0.21 0.17 

1 0.21 0.18 

 

4 

2 0.22 0.20 

0.5 0.22 0.20 

1 0.21 0.20 

 

8 

2 0.22 0.20 
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6.3.3 Mean force coefficients 

 

Shown in Table 6-2 are the mean drag and lift coefficients of both cylinders for the 

cases computed in this thesis. For comparison, the results of the tandem arrangement, 

i.e. y = 0, are also shown here. CD1 and C L1 denote the drag and lift coefficients of 

the upstream cylinder, while C D2 and C L2 for the downstream cylinder.  

 

Table 6-2 Time average of drag and lift coefficients. 

x/D y/D CD1 C D2 C L1 C L2 

0 0.84 -0.33 0.00 0.00 

0.5 0.87 0.58 -0.02 -0.32 

1 0.89 0.93 -0.01 -0.18 

 

2 

2 1.05 1.25 -0.03 -0.09 

0 1.20 0.26 -0.02 0.00 

0.5 1.23 0.47 -0.01 -0.09 

1 1.22 0.69 -0.01 -0.18 

 

4 

2 1.21 1.31 -0.01 -0.12 

0 1.24 0.52 0.00 -0.02 

0.5 1.25 0.59 -0.01 -0.04 

1 1.24 0.71 0.02 -0.10 

 

8 

2 1.24 1.15 -0.01 -0.09 

 

For the upstream cylinder, the mean lift force is close to zero for all the cases, and 

the drag coefficient is close to that of an isolated circular cylinder in cross flow, 

except for x = 2D, where proximity interference between the two cylinder happens 

(Zdravkovich(1987). At x = 2D, the drag coefficient is almost constant (CD1 = 0.84 - 

0.89) for y = 0, 0.5D and D, where the flow is in shear layer reattachment, shear 

layer enveloping and vortex enveloping flow patterns. At x = 2D and y = 2D where 

complete vortex shedding happens, CD1 = 1.05, which indicate the upstream cylinder 

is less influenced by the downstream one at this arrangement, though its vortex 

shedding frequency is still influenced (Figure 6-9). The results suggest the influence 
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of the downstream cylinder on the upstream one has to be considered when the two 

cylinders are close enough, while upstream cylinder can be treated as an isolated one 

once the impingement flow pattern happens. 

 

For the downstream cylinder, the drag coefficient increases when the lateral spacing, 

y, increases, which also is shown in Figure 6-15. The lift coefficient of the 

downstream cylinder is at its maximum when x = 2D and y = 0.5D. For x = 4D and 

8D, the maximum lift occurs around y = D. This agrees with the result given by 

Zdravkovich and Pridden (1977). Quantitatively, the lift coefficients from current 

simulations are significantly undervalued comparing with experimental results, only 

about half of the experimental data for x = 4D (Figure 6-16), which suggests this 2-D 

ω−k  SST model is not sufficient to predict lift forces, though is quite good for drag 

forces. 
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Figure 6-15 Drag and lift force coefficients of the downstream cylinder. 

 

Table 6-3 summarised the standard deviation of the force coefficients. Again, the 

results for the tandem arrangement, i.e. y = 0, are also presented here for comparison. 

For the upstream cylinder, it can be seen that standard deviation of the drag 

coefficient is very small for all configurations, close to that of an isolated circular 

cylinder. As the downstream cylinder moves downstream, the standard deviation of 

the lift coefficient of the upstream cylinder is also close to that of a single cylinder in 

cross flow. This again suggests the downstream cylinder hardly have any influence 
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on the upstream one, except when they are very close (L = 2D), at which the standard 

deviation of the lift coefficient of the upstream cylinder is significantly reduced. This 

is possibly due to the incomplete vortex formation behind the upstream cylinder. It is 

interesting to notice that when x = 2D and y = 2D, STD(C L1) = 0.39, far below that 

of a single cylinder. This indicates that for this configuration, though complete vortex 

street is formed behind the upstream cylinder, the influence of the downstream 

cylinder on its hydrodynamics is still significant. 
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Figure 6-16 Comparison of force coefficients between results of current simulation 

(Re = 104) and those by Zdravkovich (1977) (Re = 6.1×104). 

 

For the downstream cylinder, the standard deviations of the force coefficients are 

more complex. At x = 2D, its values for both coefficients increase while moving the 

downstream cylinder away from the wake centre line of the upstream one, which is 

understandable considering the weakening shielding effect of the upstream cylinder. 
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Table 6-3 Standard deviation of drag and lift forces. 

x/D y/D STD 

(CD1) 

STD 

(C D2)

STD 

(C L1)

STD 

(C L2) 

0 0.00 0.00 0.02 0.07 

0.5 0.03 0.07 0.15 0.51 

1 0.03 0.09 0.05 0.61 

 

2 

2 0.03 0.15 0.39 1.00 

0 0.06 0.34 0.85 1.28 

0.5 0.06 0.30 0.90 0.98 

1 0.06 0.28 0.87 0.75 

 

4 

2 0.05 0.17 0.77 1.09 

0 0.05 0.19 0.83 0.95 

0.5 0.05 0.16 0.83 0.81 

1 0.05 0.17 0.83 0.63 

 

8 

2 0.05 0.20 0.81 0.66 

 

The standard deviation of drag coefficient of the upstream cylinder at x = 4D 

decreases from 0.34 to 0.17 when increasing the lateral spacing from 0 to 2D, while 

that of the lift coefficient decreases from a significant value STD(C L2) = 1.28 to 0.75 

at y = D, which indicates the influence of the oncoming vortices on the downstream 

cylinder weakens. At y = 2D, STD(C L1) = 1.09, together with the significant value at 

x = 2D and y = 2D, it can be inferred that the reason is the higher oncoming flow 

velocity at this lateral clearance. 

 

At x = 8D standard deviations of the force coefficients are quite stable except that of 

the lift coefficient is a little higher in the range from y = 0 to y = D. This suggests the 

influence of the vortices from the upstream cylinder on the downstream one is 

insignificant in the far wake. 
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Figure 6-17 Standard deviation of drag and lift coefficients of the downstream 

cylinder. 

 

6.4 The cause of fluid forces on the downstream cylinder 

 

6.4.1 Vortex impingement 

 

Shown in the following figures are the pressure and vorticity contours and velocity 

vectors varying in a vortex shedding period, for flow around two staggered circular 

cylinders with the downstream cylinder at x = 4D and y = D. The time-interval 

between consecutive plots in these figures is one tenth of the period for one complete 

cycle of vortex shedding in the cylinders’ wake. All variables are dimensionless 

based on the free stream velocity, V, and the cylinder diameter, D. 

 

This configuration is similar to that described in the last chapter for the tandem 

arrangement with L = 4D, where two rows of vortices from the upstream cylinder 

impinge on the downstream one. However for the staggered arrangement x = 4D and 

y = D here, only one row of vortices impinges directly on the downstream cylinder, 

as shown in Figure 6-18 0.0T(a)~1.0T(a). 
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Legend 
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Figure 6-18 Pressure and vorticity contour and velocity vector varying in a vortex 

shedding period. 

 

The Karman vortex shed from the outer shear layer of the upstream cylinder (the 

positive vortex here) remains intact as it approaches the downstream cylinder. When 

it passes the downstream cylinder, the vortex becomes a little distorted and connects 

the newly forming like-sign vortex from the inner side of the downstream cylinder 

(Figure 6-18 0.0T~0.6T). As the negative vortex from the inner surface of the 

upstream cylinder approaches the downstream cylinder (0.5T), it is deformed 

(0.6T~0.7T) and then splits into two parts (0.8T~0.9T) upon impingement, the outer 

part of which merges into the like-sign newly-forming vortex from the outer surface 

of the downstream cylinder, and the inner part merges into the opposite-sign 

shedding vortex from the inner side of the downstream cylinder. In contrast to the 

tandem arrangement, it is observed here only a small portion of split vortex merges 

into the like-sign vortex. Sumner (2000) schematically described this process, as 

shown in Figure 6-19, in which the newly-forming vortex on the inner side of the 

downstream cylinder is considered as induced vorticity by the impinging 

opposite-sign vortex. 

 

During the merging process of the split upstream vortex (labelled B in Figure 6-19) 

and that formed behind the downstream cylinder (C) and previously shed outer 

Karman vortex (A), it is found that the centre of the combined vortex is well off the 

upstream cylinder’ centreline (Figure 6-18). This transverse movement of vortex may 
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be a result of votex-body interaction. 

 

 

Figure 6-19 The vortex impingement flow pattern for two staggered circular 

cylinders in cross flow, after Sumner et al. (2000). 

 

The vortex impingement flow pattern is of practical importance because the 

vortex-body interaction will cause large changes in the time-dependent pressure 

forces on the downstream cylinder (Sumner et al. 2000), which is important in the 

study of flow-induced vibrations of multiple cylinders. 

 

6.4.2 Velocity vector 

 

Shown in Figure 6-18 0.0T(b)~1.0T(b) are velocity vector plots which depict the 

magnitudes and orientations of the flow velocities around the downstream cylinder. It 

can be seen that the oncoming flow acts on the downstream cylinder in various 

directions and so the stagnation point shifts within the front surface of it. Shown in 

Table 6-4 are the actual positions of the stagnation point in one cycle of the vortex 

shedding. The position variation for this staggered configuration is significantly 

smaller compared with those for the tandem arrangement. For example in the tanden 

case with L = 4D, for the most part of a period the stagnation point varies in the 

range 35±=φ , while in Table 3-4 it varies between 15φ = ± . The reason is that In 

tandem case, both the positive and negative vortices contribute to the variation, while 

in the staggered case, it is mainly from one row of vortices. 

 

Another feature in the positions of the stagnation point here is, those in the first half 
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period and in the second half are asymmetric, while for tandem case described in last 

chapter, stagnation points are highly symmetric in both half of the vortex shedding 

cycle. Furthermore, it has a positive angle in most time, and the mean angle of 

stagnation point among these ten instances is 2.8o. This mean value is actually 

underestimated here, which will be discussed in the following part. Similarly, Price 

(1976) reported the average stagnation angle was 5.8 o for x = 6D and y = D. 

 

Table 6-4 Position of the stagnation point on the downstream cylinder in a period, x 

= 4D and y = D. 

t 0.0T 0.1T 0.2T 0.3T 0.4T 

Sφ  (degree) 1 8 13 15 15 

t 0.5T 0.6T 0.7T 0.8T 0.9T 

Sφ  (degree) 10 3 -8 -17 -12 

 

It is also observed that, the fluctuating flow behind the upstream cylinder has a 

significant offset after it passes the downstream cylinder. This can be illustrated by 

Figure 6-20. For a single cylinder flow, the fluctuating flow in the wake convects 

directly downstream, i.e. along the wake centre line (a). If another cylinder is added 

on one side of this line while still in the wake, the fluctuating flow cannot maintain 

its trajectory due to the blockage of the downstream cylinder, therefore the main flow 

is pushed away to another side, and an offset yδ is found (Figure 6-20 b), as shown 

in Figure 6-18 0.0T(b)-1.0T(b). 

 

(a)
     

δy

(b)
 

Figure 6-20 Illustration of fluctuating flow in the wake of a circular cylinder, (a): free 

wake; (b): after adding a downstream staggered cylinder. 

 

As mentioned in the last chapter, the reason of the change of the stagnation point is 
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the highly fluctuating flow in the wake of the upstream cylinder. If the oncoming 

flow is symmetric with respect to the centre line of the downstream cylinder, 

symmetric stagnation points around it should be expected, which is not the case here. 

It is found through careful observation that the oncoming flow to the downstream 

cylinder is actually asymmetric due to its transverse offset. In Figure 6-20 (b), the 

oncoming flows toward the wake centre and that outward the wake centre are 

different; the amplitude of the former is A/2 + yδ , while that of the latter is A/2 - 

yδ . As a result of this difference the fluid acting on the downstream cylinder toward 

the wake centre is likely to be more and to last longer than the outward flow. This 

possibly is the reason of the existence of the asymmetric stagnation points. In some 

literatures this phenomenon was called entrainment of fluid into the wake (Mair & 

Maull 1971; Price 1976). 

 

Table 6-5 Separation angle in a period of the downstream cylinder  

for x = 4D and y = D. 

T  0.0T 0.1T 0.2T 0.3T 0.4T 

Outer 85 85 87 89 91 Separation angle

(degree) Inner -108 -112 -115 -112 -80 

T  0.5T 0.6T 0.7T 0.8T 0.9T 

Outer 92 91 89 87 87 Separation angle 

(degree) Inner -74 -74 -79 -89 -98 

 

Shown in Table 6-5 is the change of separation point of the downstream cylinder in a 

vortex shedding period. Similar to the stagnation point, the separation points in both 

half of a period are asymmetric here. It can be seen that the separation point on the 

outer side is relatively stable, from 85o to 92 o, while that on the inner side covers a 

wide range, -74o to -115 o. Furthermore, the mean separation angle on the inner side 

is higher than that on the outer side, -94.1o and 88.3 o, respectively. Price (1976) 

reported the separation angles on the inner side and outer side are -94 o and 85 o, 

respectively, for the case x = 6D and y = D, Re = 6.36×104. Together with the fact 

of positive stagnation angle and larger inner separation angle, the flow around the 
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downstream cylinder is asymmetric. This obviously will influence the pressure 

distribution around it, which will be discussed in the following part. 

 

6.4.3 Pressure distribution 

 

Pressure distribution around the downstream cylinder, and its integral over the 

surface, namely most part of the fluid forces, is the main concern of this thesis. 

Shown in Figure 6-18 0.0T(c)~1.0T(c) are pressure coefficient contours varying in 

one cycle of vortex shedding. Unlike the pressure distribution around the 

downstream cylinder in tandem arrangement, as shown in (5.5.3), where the pressure 

is symmetric with respect to the cylinder’s centre line in both half of a full vortex 

shedding period, the pressure distribution around the downstream cylinder in 

staggered arrangement is more complex. The pressure distributions in both half of a 

period are remarkably asymmetric, as shown in Figure 6-21. This feature of 

asymmetry will give rise to a time-averaged lift force on the downstream cylinder. 

 

t = 0.2T
t = 0.3T
t = 0.4T
t = 0.5T
t = 0.6T
Cylinder

t = 0.7T
t = 0.8T
t = 0.9T
t = 0.0T
t = 0.1T
Cylinder

 

Figure 6-21 Pressure distribution around the downstream cylinder varying in a period: 

the line outside the circle represents negative pressure and the inner line represents 

positive pressure. 

 

From the viewpoint of vortex impingement, the asymmetry of pressure distribution is 

a result of the fact that only one row of vortices from the upstream cylinder impinges 
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the downstream one. In Figure 6-18 the vortex from the inner side of the upstream 

cylinder is transversely closer to the downstream cylinder, and split into two parts 

during the process of impingement, while that from the outer side only deforms a 

little when it passes the downstream cylinder. Though quantitatively the vortex-body 

interaction is not clear, the asymmetry of pressure distribution around the 

downstream cylinder can be expected. 

 

As mentioned before, the fluid acting on the downstream cylinder is toward the wake 

centre in most time of a period. This will likely cause more stagnation pressure on 

the outer side and more negative pressure on the inner side, as shown in Figure 6-21. 

The negative pressure at t = 0.4T, 0.5T and 0.6T on the inner side is significant 

among all distributions. Furthermore, this negative pressure covers more area on the 

inner side, as a result of further separation point on the same side. Therefore the total 

pressure on the inner side is lower than that on the outer side. 
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Figure 6-22 Pressure distribution around the downstream cylinder varying in a 

period. 
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Shown in Figure 6-22 are the pressure distributions around the downstream cylinder 

at ten instants in a cycle of vortex shedding. The stagnation point, where the 

maximum pressure exists, shifts around the extreme front point of the downstream 

cylinder, and the stagnation pressure changes in a remarkable range. Despite of the 

shift of stagnation point, it is seen that the pressure at the extreme aft end is relatively 

stable, with the base pressure 0.5pbC ≈ − . Moreover, the pressure coefficient at most 

instants always varies around the base pressure for 210~150=φ . One can expect 

the contribution of the pressure on the rear surface of the cylinder, about a quarter of 

the total area, to its time-averaged lift force is insignificant. 

 

What contributes more to the average lift force is the pressure distributions on the 

inner and outer surface, i.e. around 90±=φ . The separation points are also in these 

regions. It can be seen from Figure 6-22 that the distributions on the outer surface are 

in the manner of those for flow around an isolated cylinder, while on the inner 

surface, the distributions are disorderly, indicating the main influence of the wake on 

the downstream cylinder impacts on the inner side of it. 

 

Shown in Figure 6-23 is the time-averaged pressure distribution around the 

downstream cylinder. The exact average stagnation angle, where the maximum 

pressure acts on the downstream cylinder, is 6.5 o, and is similar to that reported by 

Price (1976). Some characteristics of asymmetry can be found in Figure 6-23. Firstly, 

the positions of zero pressure are at 42=φ and 30− on the outer and inner surface, 

respectively. Secondly, the maximum negative pressure happens at 74=φ on the 

outer surface and 62−=φ on the inner surface. Thirdly, the pressure coefficients 

are 57.0−=pC and 70.0−  at 90=φ and 90− , respectively. Furthermore, increasing 

of pressure from the maximum negative to base pressure is relatively smooth on the 

inner side, due to the further and scattered separation points. All above factors will 

cause the time-averaged lift force directed towards the wake centre line. 

 



 138 

φ

C
p

0 30 60 90 120 150 180 210 240 270 300 330 360
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

Figure 6-23 Time-averaged pressure distribution around the downstream cylinder. 
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Figure 6-24 Drag and lift force coefficients varying in a period. 

 

Shown in Figure 6-24 are drag and lift coefficients histories for the downstream 

cylinder in a vortex shedding period. The drag coefficient is around 0.6 for most of 

the time and a significant rise at t = 0.7T is found. It can be seen from Figure 6-22 

this is because the pressure distribution on the rear of the cylinder is not point 

symmetric with respect to 180=φ and 5.0−=pC  at t = 0.7T, and results in much 

lower base pressure. The reason for this asymmetry is not clear but it displays the 

complexity of this flow. The lift coefficient history shows a significant feature, that 
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the cylinder experiences negative lift longer than positive lift. The proportions are 

58% and 42%, respectively. To the best of the author’s knowledge, this is not 

reported in literatures. This feature correlates with the longer positive stagnation 

angle in Table 6-4 and entrainment of fluid into the wake. 

 

6.4.4 Correlation analysis 

 

Table 6-6 shows the correlation coefficients between drag force and cosine of the 

stagnation angle, the stagnation pressure, the production of them, and pFC , the 

pressure coefficient at the extreme front point. The results reveal that the correlation 

between the drag force and these expressions is not very strong, just around 0.6, 

while for tandem arrangement L = 4D, the drag force of the downstream cylinder is 

significantly correlated with the stagnation pressure’s component on x direction 

( SpSCosC φ ) and the pressure at the extreme front point ( pFC ). This suggests the 

other influence on the drag force is not synchronous with these expressions, so none 

of them is representative. For example, none of these expressions reflects the abrupt 

rise of drag at t = 0.7T in Figure 6-24. The asymmetry of the flow around the 

downstream cylinder, especially that of the separation point, obviously affects the 

pressure distribution around it, and therefore the drag force. 

 

Table 6-6 Correlation coefficients between drag force and some expressions. 

 sCosφ  pSC  SpSCosC φ  pFC  

DCR  0.282 0.549 0.561 0.670 

 

Table 6-7 shows the correlation coefficients between the lift force and minus sine of 

stagnation angle ( sSinφ− ), the stagnation pressure pSC , the product of them 

( )( spS SinC φ− ), and the pressure at the extreme front point pFC . Similar to tandem 

case, the stagnation angle and the stagnation pressure’s component on –y direction 

( )( spS SinC φ− ) are strongly correlated with the lift force, which indicates they are 
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synchronous with other lift-influenced factors such as the negative pressure on the 

opposed side of the front of the cylinder, and the pressure difference on the rear. 

 

Table 6-7 Correlation coefficient between lift force and some expressions. 

 sSinφ−  pSC  )( spS SinC φ−  pFC  

LCR  0.919 -0.63 0.953 -0.519 

 

6.5 Concluding remarks 

 

This chapter investigated uniform flow past two circular cylinders of the same 

diameter in staggered arrangement at a subcritical Reynolds number Re = 104. The 

the downstream cylinder is at x = 2D, 4D, or 8D, and y = 0.5D, D, or 2D. So the 

proximity interference, near wake interference and far wake interference are all 

covered. Some flow patterns are identified and compared to those by Sumner et al. 

(2000) and Akbari and Price (2005). 

 

The ‘shear layer enveloping’ pattern is observed when the downstream cylinder is 

situated at x = 2D and y = 0.5D. The inner shear layer from the upstream cylinder is 

deflected into the gap between the cylinders and soon fades out, being constrained 

between two opposite sign vortices from the outer side of the upstream cylinder and 

the inner side of the downstream cylinder. The inner shear layer of the downstream 

cylinder is enveloped by the outer shear layer of the upstream cylinder, before it rolls 

up into an expanded, weakened Karman vortex. The gap flow causes significant 

time-averaged lift force on the downstream cylinder. 

 

The ‘vortex pairing and enveloping’ flow pattern is identified when the downstream 

cylinder is at x = 2D and y = D. The flow pattern is similar to the above-mentioned 

shear layer enveloping regime. However, in the near wake region the Karman vortex 

from the inner side of the downstream cylinder is paired with smaller-scale vortex of 

opposite sign from the inner shear layer of the upstream cylinder. A little further 
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downstream this vortex pair is enveloped by the vortex from the outer shear layer of 

the upstream cylinder. A reduced vortex shedding frequency St = 0.15 is observed for 

this flow pattern. 

 

For x = 2D and y = 2D where the downstream cylinder is not immersed in the wake 

of the upstream cylinder, but the two cylinders are close enough for them to 

influence the vortex shedding from each other, the ‘complete vortex shedding’ flow 

pattern is observed. In this arrangement two distinct Karman vortex streets are seen 

in the wake of the cylinder pair. The Strouhal number for the upstream cylinder is St 

= 0.23, while that for the downstream cylinder is St = 0.21. As a result the force 

coefficient histories of the downstream cylinder depict a phenomenon of interference 

effect. Surprisingly, the force coefficient histories of the upstream cylinder also 

display the wave group feature, which indicates in this arrangement the upstream 

cylinder is still influenced by the downstream one. 

 

The ‘vortex impingement’ flow pattern occurs when the downstream cylinder is 

immersed in the wake of the upstream cylinder with larger spacing, for example, x = 

4D and y = D. The inner vortices from the upstream cylinder impinge on the 

downstream cylinder and split into two parts, the outer part of which merges into the 

like-sign newly-forming vortex from the outer surface of the downstream cylinder, 

and the inner part merges into the opposite-sign shedding vortex from the inner side 

of the downstream cylinder, before entrained by the outer Karman vortices from the 

upstream cylinder. In the vortex impingement pattern, the hydrodynamics of the 

downstream cylinder are results of vortex-body interaction while those for the 

upstream cylinder can be treated as an isolated one. The Strouhal numbers for both 

cylinders are found to be around 0.22, which indicates the strong ‘lock-in’ state for 

this flow pattern. 

 

The case for x = 4D and y = D is carefully examined to investigate the origin of the 

time-averaged lift force. The changes of vorticity and velocity in flow field and the 

pressure distributions around the cylinder in a vortex shedding period are studied in 

detail to investigate the relationship among them. Then the correlation coefficient is 
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used to analyse the influence of various factors on fluid forces, such as stagnation 

angle and the pressure at stagnation point and the extreme front point. 

 

Due to the periodically shed vortices from the upstream cylinder, the flow incident 

on the downstream cylinder is highly fluctuating. It is also observed that, the 

fluctuating flow behind the upstream cylinder has a significant offset after it passes 

the downstream cylinder. This introduces asymmetrical instantaneous stagnation 

points in a vortex shedding period. Furthermore, the stagnation point exists on the 

outer side of the downstream cylinder longer than on the inner side. This not only 

causes more stagnation pressure on the outer side, but also more negative pressure on 

the inner side, which obviously contribute to the time-averaged lift force. 

 

Similar to the stagnation point, the separation points on both sides of the downstream 

cylinder are asymmetrical. The average separation angle on the inner side is higher 

than that on the outer side, being -94.1o and 88.3 o, respectively. This again causes 

more negative pressure on the inner side. Together with the facts of outward 

stagnation angle and higher separation angle on the inner side, the flow around the 

downstream cylinder is highly asymmetric, which introduces a significant 

time-averaged lift force. 

 

It is found that the change of the stagnation point, as a result of the fluctuating 

incident velocity, is strongly associated with the periodical variation of lift force, but 

not with the drag force. This suggests the asymmetry of separation points is also a 

significant influencing factor to the forces. The influences of stagnation point and 

separation point are synchronous on lift force but not on drag force. 
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7 Three cylinders flow: in-line 

arrangement 
  

According to Zdravkovich (1987), three cylinders can be arranged into three 

categories: (a) all three cylinders aligned and oriented from in-line to side-by-side 

arrangements; (b) regular triangular arrangement where all cylinders are spaced 

equidistantly; and (c) irregular triangular arrangements, composed of all other 

possible arrangements, except (a) and (b). 

 

Among various arrangements three aligned cylinders with in-line arrangement 

(Figure 7-1) represents a special case and will be studied in detail in this chapter. 

Zdravkovich (1987) pointed out that the addition of a third cylinder to a tandem 

arrangement of two, produces a new kind of flow which differs from both the flows 

behind the first two cylinders. The drag force measured by Igarashi & Suzuki (1984) 

and Dalton & Szabo (1977) indicated that the variation of the drag coefficient on the 

third cylinder is considerably different from that of the second cylinder. It was 

evident in Chapter 5 that when two cylinders are in tandem arrangement, the 

downstream cylinder experiences most drag reduction and the wake shielding effect 

is most remarkable, which also suggests the flow around three in-line cylinders is 

worth studying. 

 

L1 L2

 

Figure 7-1 Three in-line circular cylinders in cross flow. 

 

Though some of the experimental study about this arrangement can be found in the 

literature, the numerical simulation of flow around three in-line cylinders is very rare. 

To the author’s knowledge, no one has studied the effect of various unequal spacing 

between the cylinders ( 1 2L  L≠ ) on the flow characteristics. This chapter will study 
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the influence of the third cylinder on the flow around first two; the spacing between 

the second and third cylinders, L2, on the third cylinder with fixed L1; and the 

spacing between the first and second cylinder, L1, on the third cylinder with fixed L2. 

 

Flow around three in-line circular cylinders is simulated with the spacing L1 from 

1.5D to 8D, and L2 from 1.5D to 12D. All cases presented use a Reynolds number of 

104 and a turbulence model of k-w SST, as in the previous chapters. The domain, 

mesh and boundary conditions are all tackled in the same way described in the 

two-cylinder case. 

 

7.1 Equal spacing L1 = L2 

 

7.1.1 Vorticity contours and flow patterns 

 

 

Figure 7-2 Vorticity contours of flow around three circular cylinders with equal 

spacing L = 2D. 

 

 

Figure 7-3 Stream function of flow around three circular cylinders with equal spacing 

L = 2D. 

 

Figure 7-2 shows instantaneous contours of vorticity distribution for the case L = 2D. 

Vortex shedding is not observed from the upstream two cylinders. The shear layers 

separated from the first cylinder reattach to the second one, and two quasi-steady 
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vortices are formed between the cylinders, which is similar to the flow around two 

tandem cylinders with L = 2D. A steady recirculation region consisting of a pair of 

counter-rotating vortices exists in the first gap, as shown in Figure 7-3, which shows 

the stream function of this flow. However, no steady recirculation region is formed in 

the second gap. This region is alternately disturbed by the outer flow on both sides. 

This is mainly due to the fact that more turbulence is generated when the flow past 

the second gap, compared to the first one. Vortices are alternately formed on and 

shed from the third cylinder. Similar to the tandem flow case, the vortex formation 

length in current arrangement is much longer than that of an isolated cylinder. 

 

 

 

Figure 7-4 Vorticity contours of flow around three circular cylinders with equal 

spacing, L = 4D, 6D and 8D. 

 

Figure 7-4 shows instantaneous contours of vorticity distribution for the cases L = 

4D, 6D and 8D, respectively. In these configurations the two vortex streets pattern is 

observed behind every cylinder. The shear layers from the first cylinder rolls up into 

Karman vortex streets, and the vortices alternately impinge on the second cylinder. 

As a result the vortex streets behind the second cylinder have an increased transverse 

displacement and impinge on the third cylinder with greater attack angle. It is 

interesting that at L = 4D the vortices from the third cylinder are shed at similar 

frequency of those behind the second one, while at L = 6D and 8D the frequency of 
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the vortices behind the third cylinder is much lower. This will be studied in detail in 

the following part. 

 

7.1.2 Pressure distributions and drag coefficients 
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Figure 7-5 Time-average pressure distribution around three cylinders of various 

spacing. 

 

The time-averaged pressure distributions around the cylinders at L = 2D, 4D, 6D and 

8D are shown in Figure 7-5. When the third cylinder is situated in the far wake of the 

second cylinder, i.e. L = 6D and 8D, the pressure distribution around the third 

cylinder resembles that around the second one, with a lower base pressure. However, 

when the cylinders are closely arranged, the pressure distribution around the third 
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cylinder is much different from those around the first two. At L = 2D, the third 

cylinder has higher stagnation pressure and lower base pressure, compared to the 

second cylinder. At L = 4D, the last two cylinders have similar stagnation pressure 

but the base pressure of the third cylinder is much higher than the second one’s. 

Actually the averaged pressure around the third cylinder is nearly constant. This may 

be because the oncoming flow to the third cylinder is much weakened by the 

cascading shielding effect of the upstream two cylinders (Figure 5-18). 

 

The difference of the pressure distributions between the second and third cylinders at 

L = 2D is highlighted here. Shown in Figure 7-6 is the instantaneous pressure 

contour of this configuration. It can be seen that the first gap is a significant negative 

pressure zone, as a result of the steady recirculation region. Typically the pressure 

coefficient in this region is nearly -1.0. However, the pressure in the second gap is 

much higher due to non-existence of such a recirculation region. This again 

demonstrates the difference of flow patterns in both gaps. Behind the third cylinder 

the pressure drops a lot because of periodic vortex formation and shedding. 

Therefore the third cylinder will experience positive drag while the second cylinder 

has an adverse drag. 

 

 

Figure 7-6 Instantaneous pressure coefficient contour of flow around three in-line 

circular cylinders, L = 2D. 

 

Figure 7-7 shows the drag coefficients of three circular cylinders with in-line 

arrangement under various spacing. The data of the upstream two cylinders in 
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two-cylinder case are also included to investigate the influence of the third cylinder 

on the upstream two. It is found that the variation of the drag coefficients of the first 

two cylinders with the spacing basically coincides with those results in the 

two-cylinder flow case, except that the critical spacing, where the flow pattern 

changes from shear layer reattachment to two vortex streets, decreases by about 0.5D. 

The existence of the third cylinder makes the reattachment flow pattern sustain in 

shorter spacing. The influence of third cylinder is mainly limited within L < 4D. 
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Figure 7-7 Drag force coefficients of three in-line circular cylinders with the distance 

L between them, in comparison to two-cylinder case. 

 

As for the drag coefficient of the third cylinder concerned, its variation with the 

spacing is quite different from both upstream cylinders. When the flow around the 

first two cylinders is in reattachment pattern, the drag coefficient of the third cylinder 

3 0.4DC ≈  is much higher than that of the second one ( 2 0.35DC ≈ − ), but still less 

than that of the first cylinder ( 3 0.85DC ≈ ). The positive drag for the third cylinder 

has been analysed above. When the reattachment pattern is broken, but the third 

cylinder is still in the near wake behind the second one, i.e. L = 2.5D to 5D, 3DC  
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drops rapidly to nearly zero, and is less than 2DC  in this range. As seen above, the 

pressure distribution around the third cylinder is nearly constant, which leads to little 

drag acting on it. As the third cylinder locates in far wake, the drag coefficient is 

again greater than 2DC , as a result of lower base pressure in comparison with that of 

the second cylinder. 

 

7.1.3 Vortex shedding frequency 

 

The Strouhal number, St, is obtained from the power spectrum of the lift force history 

of the third cylinder, as shown in Figure 7-8. Eight configurations, where drag 

coefficients are computed and shown above, are presented. At L = 1.5D and 2D, the 

dominant frequencies are about 0.1St = , with small peaks at the multiple-harmonics, 

0.3 and 0.2 respectively. The dominant frequency increases to about 0.2 with some 

small peaks, when the third cylinder is in the near wake of the second cylinder. With 

increasing the spacing, the sub-harmonic peak at 0.1St = becomes significant. 

Finally then L = 6D and 8D, only one dominant frequency, 0.13St = , is found. 

 

Figure 7-9 summarised the Strouhal numbers obtained above. Its variation with the 

spacing indicates a strong correlation with that of the drag coefficient of the third 

cylinder. When the flow around the upstream two cylinder changes from 

reattachment pattern to two vortex streets pattern, the Strouhal number jumps from 

0.1 to 0.2, corresponding to the drop of drag on the third cylinder. Similarly, when 

the spacing between the cylinder changes from 5D to 6D, the Strouhal number 

decrease to 0.13, corresponding to the increase in 3DC . This reduced St may link to 

the frequency of incident flow to the third cylinder. When the distance between the 

first two cylinders is large enough, possibly 5D, as shown in Figure 7-9, the 

dominated wake frequency is greatly reduced, as analysed in 5.4.2. 

 

The results are compared with those from those by Igarashi & Suzuki (1984), as 

shown in Figure 7-9. The current simulation overestimated slightly, especially for 

2.5D < L < 4D . Nevertheless, the results here reflect similar trends. 
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Figure 7-8 Power spectra of the lift force history of the third cylinder under various 

arrangements. 
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Figure 7-9 Strouhal number of flow around three in-line circular cylinders with the 

distance L between them. 

 

7.2 The influence of L2 on the third cylinder 

 

7.2.1 L1 = 2D 

 

The influence of spacing L2 on the characteristics of the third cylinder is approached 

by keeping the upstream two cylinders fixed with L1 = 2D, while moving the third 

cylinder along the wake centre line. Five cases, L2 = 2D, 4D, 6D, 8D and 12D, are 

modelled. The drag coefficients of all three cylinders are shown in Figure 7-10. The 

drag coefficients of the upstream two cylinders are unaffected in all cases, which 

indicates the flow pattern of the first two cylinders is relatively stable when L1 = 2D. 

Of course the conclusion that there is no influence of the third cylinder on the 

upstream two cannot be drawn, as only a few cases are modelled here. 

 

The drag coefficient of the third cylinder in the wake of two cylinders with 2 

diameters apart is significant, not only much greater than that of the second cylinder, 

but comparable to that of the first one. As mentioned above, 3 0.4DC =  when L1 = 

L2 = 2D. Increasing L2 to 4D, the drag coefficient of the third cylinder increases to 
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near 1, which is unexpected as it is even more than that of the first cylinder. From L2 

= 6D, 3DC  is less than but slowly approaches 1DC  with increasing L2. 

 

L2/D

C
D

0 2 4 6 8 10 12
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

First cylinder
Second cylinder
Third cylinder

 

Figure 7-10 Drag coefficient of the third cylinder versus L2 while L1 = 2D. 
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Figure 7-11 Strouhal number for flow around three in-line cylinders versus L2 while 

L1 = 2D. 

 

Shown in Figure 7-11 is the Strouhal number varying with L2, corresponding to the 

above cases. It can be seen that the Strouhal number is 0.2 for all cases except for L2 

= 2D, at which no vortices shed from the second cylinder. The shear layers envelope 

the third cylinder and merge those newly formed ones, then roll up into Karman 

vortices, as shown in Figure 7-12. The reduced vortex shedding frequency may 
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correlate with this flow pattern. When the spacing between the second and third 

cylinders increases to 4D, vortices shed from the second cylinder and impinge upon 

the third cylinder. The frequency of vortex shedding from the third cylinder is 

dominated by the impinged vortices which, as seen in chapter 4, have a frequency of 

0.2. 

 

 

 

 

 

Figure 7-12 Contours of vorticity magnitude, L1 = 2D, L2 = 2D, 4D, 6D and 8D, 

respectively. 

 

7.2.2 L1 = 4D 

 

When L1 = 4D, the vortices from the first cylinder impinge on the second one and 

two vortex streets form behind the second cylinder. A third cylinder added into the 

wake of the second cylinder will also be impinged by the vortices. Thus the 

characteristics of the flow around the third cylinder may display different features 

from those of L1 = 2D. 

 

The drag coefficient of the cylinders varying with L2 is shown in Figure 7-13. As 

expected, those of the upstream cylinders are not affected, except that 2DC  slightly 
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increases when L2 = 2D. Surprisingly 3DC  does not change when L2 increases from 

2D to 4D, similar with the equal-spaced case described in 7.1.2. This suggests the 

shielding effect of near wake is very strong. 3DC  gradually increases when further 

increasing L2, but the values are much less than those for L1 = 2D. The trend of 3DC  

varying with L2 resembles that of the downstream cylinder of two tandem cylinders 

flow.  
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Figure 7-13 Drag coefficient of the third cylinder versus L2 while L1 = 4D. 
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Figure 7-14 Strouhal number for flow around three in-line cylinders versus L2 while 

L1 = 4D. 

Strouhal numbers for these cases are shown in Figure 7-14. 0.21St =  when L2 = 2D, 
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4D and 8D, and 0.12 and 0.14 when L2 = 6D and 12D, respectively. It seems that the 

trend is very random. However, it is found from the power spectrum of lift force of 

the third cylinder when L2 = 8D that at this configuration there is a significant peak 

at 0.11St = , as well as the dominant frequency 0.21St = . This indicates the vortex 

shedding frequency of the third cylinder has a tendency to decrease when it moves 

into far wake. 
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Figure 7-15 Power spectrum of lift history of the third cylinder, L1 = 4D, L2 = 8D. 

 

The change of vortex shedding frequency can be observed through the vorticity 

contours, as shown in Figure 7-16. The spacing between the successive vortices 

indicates the relative amplitude of the frequencies. The vortices shedding from the 

second cylinder for all the cases here is in a similar frequency, which is about 0.22 as 

computed in Chapter 5. The vortices shedding from the third cylinder have different 

frequencies for the cases shown here. At L2 = 2D and 4D, the frequency is similar 

with that behind the second cylinder, while at L2 = 6D and 8D, the frequency of the 

vortices shedding from the third cylinder is much lower.  

 

7.2.3 L1 = 8D 

 

When L1 = 8D, the second cylinder is situated in the far wake of the first cylinder. 

The fully developed vortices from the first cylinder impinge on the second one and a 
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combined wake forms behind the second cylinder. A third cylinder added into the 

wake of the second cylinder will also be impinged by the vortices. Thus the 

characteristics of the flow around the third cylinder may display different features 

from those of L1 = 2D and 4D. 

 

 

 

 

 

Figure 7-16 Contours of vorticity magnitude, L1 = 4D, L2 = 2D, 4D, 6D and 8D, 

respectively. 

 

The drag coefficient of the cylinders varying with L2 is shown in Figure 7-17. Again, 

those of the upstream cylinders are not affected, except that 2DC  slightly increases 

when L2 = 2D. Similar to the case L1 = 2D, 3DC  does not increase when L2 

increases from 2D to 4D as the shielding effect of the near wake of the second 

cylinder is still strong. What makes this case special is the abrupt jump of 3DC  

when L2 is increased from 4D to 6D. Such a jump in the fluid loading is often 

associated with a characteristic change in the flow pattern. But on the other hand, 

puzzlingly, for L2 = 2D to 8D the flow pattern shows no marked difference, all of 

which are vortex impingement flow patterns, according to the results in Figure 7-18. 
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Figure 7-17 Drag coefficient of the third cylinder versus L2 while L1 = 8D. 

 

 

 

 

 

Figure 7-18 Contours of vorticity magnitude, L1 = 8D, L2 = 2D, 4D, 6D and 8D, 

respectively. 

 

Strouhal numbers for these cases are shown in Figure 7-19. Surprisingly all the case 

have a reduced frequency, with a Strouhal number of around 0.12. This again 

indicates the special influence of the second cylinder situated in the far wake of the 
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first one on the flow around the third cylinder. It can be observed from the vorticity 

contours that the frequency of the vortices shedding from the third cylinder is much 

lower than that from the upstream two for all the cases here, as shown in Figure 7-18. 

 

L2/D

S
t

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

L1 = 8D

 

Figure 7-19 Strouhal number for flow around three in-line cylinders versus L2 while 

L1 = 8D. 

 

7.3 The influence of L1 on the third cylinder 

 

From the results above it can be seen that the spacing between the first two cylinders 

L1 also has an influence on the flow around the third cylinder, though one can expect 

that the main factor is still L2. In this part the influence of L1 on the third cylinder is 

examined, by fixing the last two cylinders at certain distance, while moving the first 

cylinder along the wake centre line. 

 

Shown in Figure 7-20 are the drag coefficients of all three cylinders varying with L1 

while L2 = 2D. The flow around the upstream two cylinder is actually a tandem 

cylinders flow, for it is only slightly influenced by the third cylinder when L2 = 2D, 

as described in the above part. Thus the drag coefficients of the upstream two 

cylinders resemble those in the tandem case.  

 

3 0.4DC =  when L1 = 2D and the flow around the first two cylinders is in 
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reattachment pattern. As long as two vortex streets happen behind the first cylinder 

the drag coefficient of the third cylinder is very small and slightly increases with 

increasing L1. This indicates the third cylinder under proximity interference with the 

second one is hardly affected by the position of the first cylinder once L1 > 4D. 
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Figure 7-20 Drag coefficient of the third cylinder versus L1 while L2 = 2D. 
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Figure 7-21 Drag coefficient of the third cylinder versus L1 while L2 = 4D. 

 

Shown in Figure 7-21 are the drag coefficients of all three cylinders varying with L1 

while L2 = 4D. Similar with the above case L2 = 2D, the drag coefficient of the third 

cylinder is significant when the upstream two cylinders are in reattachment regime, 

while near zero when two vortex streets regime happens. There is no tendency of 
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increasing in 3DC  with increasing L1. This indicates when the two downstream 

cylinders are moderately spaced at the distance of 4D, the drag coefficient of the last 

cylinder is very small and does not depend on the position of the first cylinder, unless 

the upstream two cylinders are too close, or of course, too far that the wake effect on 

the second cylinder weakens. 

 

For L2 = 8D, when the downstream two cylinders are widely spaced, the position of 

the first cylinder has significant influence on the drag coefficient of the third cylinder, 

as shown in Figure 7-22. Again, 3DC  is remarkable when the first cylinder is very 

close to the second one. The tendency of increasing in 3DC  can be observed when 

moving the first cylinder upstream. This phenomenon may be the result of wakes 

superposition. 
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Figure 7-22 Drag coefficient of the third cylinder versus L1 while L2 = 8D. 

 

Shown in Figure 7-23 are Strouhal numbers varying with L1 while L2 = 2D, 4D and 

8D, respectively. It is obvious that vortex shedding frequency from the third cylinder 

is around 0.2 when L1 = 2D and 4D, except for the case L1 = L2 = 2D, while near 0.1 

when L1 = 6D and 8D. The decrease of Strouhal number from 0.2 to 0.1 happens 

between L1 = 4D and 6D, for arbitrary distance between the downstream two 

cylinders shown here. This indicates that the vortex shedding frequency of the third 

cylinder depends on the spacing of the upstream two cylinders to a large extent. 
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Figure 7-23 Strouhal number for flow around three in-line cylinders versus L1 while 

L2 = 2D. 

 

7.4 Discussion 

 

Figure 7-24 summarises the influence of the spacing between the first and second 

cylinder, L1, and the spacing between the second and third cylinders, L2, on drag 

coefficients of three in-line cylinders. For the cases investigated here, it can be seen 

that 1DC  is independent of L1 and L2, 2DC  is dependent on L1 only, and 3DC  is 

dependent on both L1 and L2. Generally the downstream cylinder(s) have 

insignificant influences on the upstream cylinder(s). 

 

For L1 = 4D, 6D and 8D, 3DC  is very small when 2 4L D≤ , and there is a jump 

between L2 = 4D and 6D. When 2 6L D≥ , 3DC  slowly increases with L2. The 

reason can be explained by the averaged wake behind two tandem cylinders shown in 

Figure 5-17. For L = 4D, 6D and 8D, the increase in the wake velocity along the 

wake centreline behind the second cylinder is slow. Therefore, for the third cylinder, 

the oncoming flow velocity u is only about 0.2U0 when 2 4L D≤ . With the 

increasing distance behind the second cylinder, the wake velocity increases. As a 

result, increase in 3DC  can be expected. 
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Figure 7-24 Drag coefficients of three in-line cylinders versus spacings L1 and L2. 
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For L1 = 2D, the flow around first two cylinders is in reattachment pattern. The 

averaged velocity behind the second cylinder increase very fast and the vortices are 

very weak compared to those behind an isolated cylinder. So the drag coefficient of 

the third cylinder is significant for any L2. 

 

Figure 7-25 summarises the Strouhal numbers of the third cylinder with different L1 

and L2. It is interesting to note that there are two distinct regions in Figure 7-25. The 

region over the dash line all have a reduced vortex shedding frequencies for the third 

cylinder, with the exception for L1 = 4D and L2 = 8D for which the lift force of the 

third cylinder has a significant component at a lower frequency, i.e. Figure 7-15. 

 

Power spectra analysis of the wake of two tandem cylinders with spacing L = 6D 

(Figure 5-21) and 8D (Figure 5-22) suggests the velocity in the wake has a reduced 

frequency of around 0.13, so the reduced vortex shedding frequency for the third 

cylinder can be expected for L1 = 6D and 8D. 
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Figure 7-25 Strouhal number of the third cylinder varying with the spacing between 

three in-line cylinders. 

 

For L1 = 4D, the vortex shedding frequency of the third cylinder has a tendency to 

decrease when it is situated in the far wake of the second cylinder, though the wake 

itself has a normal frequency of 0.22. The reason is not clear. This is possibly 
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because the wake at this frequency is not stable, especially when interacting with a 

third cylinder. 

 

7.5 Concluding remarks 

 

This chapter investigated uniform flow past three in-line circular cylinders of a same 

diameter at a subcritical Reynolds number Re = 104. The centre to centre spacing 

between the first two cylinders varies from 1.5D to 8D, and that between the second 

and third cylinders is from 1.5D to 12D. The drag coefficients and vortex shedding 

frequencies are the main focus in this chapter. Three aspects were studied, i.e. the 

influence of the third cylinder on the flow around first two; the spacing between the 

first and second cylinders, L1, on the third cylinder; and the spacing between the 

second and third cylinder, L2, on the third cylinder. 

 

For the case of three cylinders with equal distances, it is found that the varaiation of 

drag coefficients of the first two cylinders with the spacing basically coincides with 

those in two cylinders flow, except that the critical spacing, where the flow pattern 

changes from shear layer reattachment to two vortex streets, decreases about 0.5D. 

Therefore the third cylinder only influences the drag of the upstream two when they 

are at such a distance apart that the flow pattern can change, i.e. the configuration is 

near the critical spacing. 

 

The variation of the drag coefficient of the third cylinder with spacing is quite 

different from that for both upstream cylinders. When the flow around the first two 

cylinders is in reattachment pattern, the drag coefficient of the third cylinder 

3 0.4DC ≈  is much higher than that of the second one. When the reattachment pattern 

is broken, but the third cylinder is still in the near wake behind the second one, i.e. L 

= 2.5D to 5D, 3DC  drops rapidly to nearly zero, and is less than 2DC  in this range. 

As the third cylinder locates in far wake, the drag coefficient again is greater than 

2DC , as result of lower base pressure in comparison to that of the second cylinder.  
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The Strouhal number shows the opposite trend with increasing spacing. A reduced 

vortex shedding frequency is observed when the flow around the first two cylinders 

is in reattachment pattern or the spacing is more than 5D. 

 

The influence of spacing between the second and third cylinder, L2, on the third 

cylinder is significant. For L1 = 4D, 6D and 8D, 3DC  is very small when 2 4L D≤ , 

and there is a jump between L2 = 4D and 6D. When 2 6L D≥ , 3DC  slowly 

increases with L2. This is possibly due to the double shielding effects of the two 

upstream cylinders, behind which the flow velocity is greatly reduced in the near 

wake. 

 

The influence of spacing between the first and second cylinder, L1, on the third 

cylinder is also significant. For L1 = 6D and 8D, the third cylinder experiences a 

reduced vortex shedding frequency. When the third cylinder situates in the near wake 

of the second cylinder, 3DC  is not influenced by L1; when L2 = 8D, the tendency of 

increasing in 3DC  can be observed when moving the first cylinder upstream.  
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8 Stability analysis of two elastically 

supported cylinders with wake 

interference 
 

After investigating flow around multiple stationary cylinders, it is time to study the 

stability of real marine risers. A natural way is to dynamically simulate cross-flow 

around elastically mounted cylinders. But this will demand huge computational 

resources, as simulations of both VIVs and wake-induced motions are very 

time-consuming. 

 

Based on the research work by Wu et al.(2001; 2002), a stability analysis model for 

two closely arranged marine risers is established in this chapter. The risers are 

simplified as elastically mounted cylinders in a two dimensional flow field, and the 

problem is formulated by taking account of the wake shielding effect. To trace the 

multiple solutions of the non-linear static problem, a continuation analysis 

methodology is adopted. For each equilibrium position its stability is further 

examined by finding the eigenvalues of linearised dynamic equations. 

 

The position-related fluid forces used here are based on the numerical results of 

stationary cylinders and the experimental data by DHI Water & Environment in 

2002. 

 

Different nomenclature is used in this section, and this is noted when the variable is 

firstly employed. 

 

8.1 Theoretical formulation 

 

In the previous investigation into the wake-induced riser clashing by Wu et al. (2001; 
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2002; 2003), two identical risers with identical top tensions, or, in the 

two-dimensional case, two identical cylinders with identical supporting springs, were 

always assumed. The first task is therefore to extend the formulation as well as the 

computer code to the more general situation where the cylinder diameter and spring 

stiffness are not necessarily the same for the upstream and downstream cylinders. 

 

8.1.1 Fluid forces on the elastically mounted downstream cylinder 

 

Consider a pair of cylinders, with diameters D1 and D2, respectively, each supported 

on elastic springs, as shown in Figure 8-1. As only the drag force is considered on the 

upstream cylinder, its displacement is one-dimensional along the incoming flow 

direction. The downstream cylinder is allowed to move in both streamwise and cross 

flow direction. The co-ordinate system has its origin at the centre of the upstream 

cylinder’s location when the fluid is stationary, with its x axis parallel to the flow 

direction and pointing towards downstream. The initial position of the downstream 

cylinder is (xs, ys). It is assumed here that the springs are ideal, i.e. the direction of 

the two springs supporting the downstream cylinder will not change with the 

displacement of the downstream cylinder. 

 

 

Figure 8-1 Schematic diagram of two elastically supported cylinders. 

 

When the downstream circular cylinder with a velocity ( ,x y ) is in the wake of 

another one, it is subjected to a wake velocity U (Figure 8-2). Based on the 

quasi-steady model (Price 1995), the time averaged fluid forces are 
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2
2 2 2

1cos sin ( cos sin )
2x D L r D LF F F D U C Cβ β ρ β β= − = −  (8.1) 

2
2 2 2

1sin cos ( sin cos )
2y D L r D LF F F D U C Cβ β ρ β β= + = +  (8.2) 

 

where ,D LF F  are drag and lift force; respectively; ρ  is the fluid density; rU  is 

the relative velocity to the downstream cylinder; 2 2,D LC C  are drag and lift 

coefficients defined by the local wake velocity; and 

 

2 2( )rU U x y= − +  (8.3) 

cos
r

U x
U

β −
=  (8.4) 

sin
r

y
U

β −
=  (8.5) 

 

 

 

 

 

 

 

 

Figure 8-2 Force and velocity diagram. 

 

Substituting equations (8.3)-(8.5) into equations (8.1) and (8.2) we have 

 

2 2 2
1 ( )
2x r D LF D U C U x C yρ ⎡ ⎤= − +⎣ ⎦  (8.6) 

2 2 2
1 ( )
2y r L DF D U C U x C yρ ⎡ ⎤= − −⎣ ⎦  (8.7) 

 

2 
U x−  

y−  rU  
β

2 xF

DF  

yF  

LF  



 169 

8.1.2 Equations of motion 

 

For the upstream cylinder only drag force is considered, which is calculated by 

Morison’s equation. The motion equations of this system are 

 

( )2
1 1 1 1 1 1 1 1 1 1

1
4 2m Dm C D x D C V x V x k xπ ρ ρ⎛ ⎞+ = − − −⎜ ⎟

⎝ ⎠
 (8.8) 

2
2 2 2 2 2 2 2 2 2 2

1 ( )
4 2m r D L xm C D x D U C U x C y k xπ ρ ρ⎛ ⎞ ⎡ ⎤+ = − + −⎜ ⎟ ⎣ ⎦⎝ ⎠

 (8.9) 

2
2 2 2 2 2 2 2 2 2 2

1 ( )
4 2m r L D ym C D y D U C U x C y k yπ ρ ρ⎛ ⎞ ⎡ ⎤+ = − − −⎜ ⎟ ⎣ ⎦⎝ ⎠

 (8.10) 

 

Where 1x  is the in-line displacement of the upstream cylinder from its initial 

position at the origin,  2 2( , )x y  are the in-line and transverse displacements of the 

downstream cylinder from its initial position at ( , )s sx y , and their upper dot and 

upper dot dot represent first and second order derivatives with respect to time t, 

respectively; 1k  is stiffness of  the upstream cylinder, and xk , yk  are stiffness of 

the downstream cylinder in x-direction and y-direction, respectively; V is the free 

stream velocity; 1 2,m m  are masses of unit cylinders and 1 2,m mC C  are added mass 

coefficients, respectively. 

 

By non-dimensionalising x, y with the D1 and introducing 1tτ ω=  with 

1
1

2
1 1 14m

k

m C D
ω π ρ

=
+

, the above equations can be given as  

 
2

1 1 1
1 13

1

2 21 (1 )
2 ( )

R D

m R R

U C X XX X
a C U U

π π
π

= − − −
+

 (8.11) 

2 22
12 2 2 2

2 2 2 23 2 2
1 1

( )2 2 2 21 1
2 ( )

m m

kx mD R
D L

m C m D R R R R m C m D

R a CR U VX VY VX VYX C C X
R a R C R UU UU UU UU R a R C R

π π π π
π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ +
= − + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (8.12) 
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2 22
12 2 2 2

2 2 2 23 2 2
1 1

( )2 2 2 21 1
2 ( )

m m

ky mD R
L D

m C m D R R R R m C m D

R a CR U VX VY VX VYY C C Y
R a R C R UU UU UU UU R a R C R

π π π π
π

⎡ ⎤ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (8.13) 

where 111 / DxX =  and 122 / DxX = ; 1

2
14

ma
Dπ ρ

=  is mass parameter of the 

upstream cylinder; 
1 1

R
VU

f D
=  is the reduced velocity, where 1

1 2f ω
π= ; The ratios 

DR , kxR , kyR , mR , 
mCR  are defined as 12 / DDRD = , 

1

x
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kR
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= , 
1

y
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k
R
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= , 

2

1
m

mR
m

= ,  2

1
m

m
C

m

CR
C

= , respectively. As the force coefficients are usually based on 

free stream velocity, the reference velocity for 2DC  and 2LC  is transformed from 

the local wake velocity U to the free stream velocity V by the relations 

2

2

22 V
UCC DD = , 

2

2 2 2L L
UC C
V

= . 

 

For simplicity, let 

 

1 1mM a C= +  (8.14) 

2
2 1mm C m DM R a R C R= +  (8.15) 

Ub
V

=  (8.16) 

2 2

2 22 21f
R R

VX VYU
UU UU
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 (8.17) 

 

Then we have 

 
2

1 1 1
1 13

1

2 21 (1 )
2

R D

R R

U C X XX X
M U U

π π
π

= − − −  (8.18) 

2
12 2

2 2 2 23
2 2

2 21
2
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π π
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In the above equations, 1X  is the dimensionless in-line displacement of the 

upstream cylinder from its initial position at the origin.  2X , 2Y  are the 

dimensionless in-line and transverse displacements of the downstream cylinder from 

its initial position at ( , )s sX Y .  

 

Compared with the formula by Wu (2003), current ones count in the influence of 

added mass, redefine the reduced velocity UR, and introduce the ratios of diameter 

and stiffness, therefore the results based on current formula should be more accurate 

and can be used to study the effects of diameter and stiffness ratios. 

 

8.1.3 Equilibrium positions 

 

While finding the equilibrium positions of the upstream cylinder is straightforward, 

the equilibrium positions of the downstream cylinders are identified by applying a 

continuation analysis methodology (Seydel 1994) as there exist multiple solutions 

with branch points. 

 

Let the vector 
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 (8.21) 

 

then we have 
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 (8.22) 

where λ  can be any of the parameters, typically, the reduced velocity RU . 

Mathematically, the equilibrium positions are obtained by solving 

 

( , ) 0H F H λ= =  (8.23) 

 

Together with a complementary equation 

 
6 22 2

1
( , , ) ( ) ( ) ( ) 0i j j

i

p h s h h s s sλ λ λ
=

⎡ ⎤= − + − − − =⎣ ⎦∑  (8.24) 

 

Here s is the arc length along the continuation solution curve. Equation (8.24) 

together with (8.23) constitutes self-contained non-linear equations, among which the 

continuation step length js s s∆ = −  is prescribed beforehand. Such a system is 

solvable by predictor and corrector two steps method (Wu 2003). 

 

Predictor step 

 

Predictor is a procedure to provide an initial guess for equilibrium based on the 

already known equilibrium. The procedure starts from a known solution ( , )j
jh λ , 

which can be sought at a small reduced flow velocity for system (8.23). In fact, the 

specified position of ( , )s sX Y  itself is an equilibrium position at zero flow velocity. 

By taking prescribed arc length js s s∆ = − , the predictor is made by the AKIMA 
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extrapolation in present investigation (Akima 1970). 

 

Corrector step 

 

The objective of corrector step is to find the exact equilibrium based on the guess 

provided by predictor step. In this chapter, it is made via the modified version of M. J. 

D. Powell’s hybrid algorithm contained in the package of ISML library (ISML user 

manual), which is a variation of Newton’s method. The algorithm uses a 

finite-difference approximation to the Jacobian and takes precautions to avoid large 

step sizes or increasing residuals. For further description, see (More et al. 1980). 

 

8.1.4 Stability analysis of the downstream cylinder 

 

Each equilibrium position along the solution curve is further examined on its 

dynamic stability. A conventional approach is adopted here by linearsing the 

equations of motion in the vicinity of the equilibrium position and finding 

eigenvalues of the Jacobian matrix of ( , )F H λ . The stability is determined by the 

signs of the real parts of the eigenvalues. 

 

The Jacobian matrix of vector ( , )F H λ  

 

( , )F H A
H

λ∂
=

∂
 (8.25) 

 

where 

 

11 0a = , 12 1a = , 13 0a = , 14 0a = , 15 0a = , 16 0a = , 

 

21 1a = − , 1 2
22 2

1

2 21R D

R

U C ha
M U

π
π

= − − , 23 0a = , 24 0a = , 25 0a = , 26 0a = , 
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31 0a = , 32 0a = , 33 0a = , 34 1a = , 35 0a = , 36 0a = , 
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where 1DC  is assumed keeping constant, and 2 2 2 1 2( , )D DC C X X Y= − , 

2 2 2 1 2( , )L LC C X X Y= − . DXC , DYC , LXC , LYC  are defined as 2
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If 0H  denotes an equilibrium position and 
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8.2 Some applications 

 

In order to obtain the static solution of equation (8.23) and examine its eigenvalues, 

the fluid force coefficients have to be given beforehand. In the present study, they are 

mapped out by considering the numerical results from two cylinders flow and the 

experimental data from Zdravkovich (1997), the 2D model test data of two 

equal/unequal cylinders carried out by DHI Water & Environment (2002) and Huang 

and Sworn (2006). 

 

8.2.1 Multiple stable/unstable equilibrium positions of the downstream 

cylinder 

 

Some typical numerical results are presented in the following examples for two 

identical circular cylinders, with one cylinder located in the wake of another one. 

Identical supporting springs are also assumed for both cylinders. So we have 1DR =  

and 1kR = . The mass parameter a = 2.183, which is a typical value for marine risers. 

 

Shown in Figure 8-3 is an example of the continuation and stability analysis. Only 

the streamwise equilibrium positions of the downstream cylinder are shown here. 

The two cylinders are in a tandem arrangement with the initial spacing L = 10D. The 

upstream cylinder is initially at X = 0 with zero flow velocity and downstream 

cylinder Xs = 10, Ys = 0. As the flow velocity increases from zero, the upstream 

cylinder is pushed downstream along the flow direction. The downstream cylinder 

also moves along the flow direction, but due to the wake shielding effect its 

displacement is not as great as that of the upstream cylinder. As the reduced velocity 
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increases further, two equilibrium positions emerge with one close to the upstream 

cylinder and another further downstream. Further increasing the reduced flow 

velocity, a critical state is then reached where the two equilibrium positions converge 

into a single equilibrium position (A in Figure 8-3) and above this critical reduced 

flow velocity no equilibrium positions exists. 
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Figure 8-3 Equilibrium positions and relative eigenvalues of the downstream 

cylinder (Xs = 10,Ys = 0). Left: equilibrium positions versus the reduced velocity; 

Right: relative eigenvalues. 
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Figure 8-4 Equilibrium positions and relative eigenvalues of the downstream 

cylinder (Xs = 10,Ys = 2.5). Left: equilibrium positions versus the reduced velocity; 

Right: relative eigenvalues. 
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The variation of the two pairs of eigenvalues of the Jacobian matrix (8.26) with the 

reduced velocity for the downstream cylinder is depicted in Figure 8-3. They all start 

from (0, i) or (0, -i) on the imaginary axis at zero flow velocity. As the velocity 

increases, they vary within the left half plane with negative real parts. At certain 

velocity, eigenvalues with positive real parts emerge, indicating unstable equilibrium 

positions. The unstable equilibrium positions are depicted by dash line in Figure 8-3. 

 

Figure 8-4 shows a case when the two cylinders are in staggered arrangement, Xs = 

10, Ys = 2.5. As the reduced velocity increases, the downstream cylinder is pushed 

downstream and also moves towards the wake centreline. The streamwise 

displacement of the downstream cylinder is similar to that in Figure 8-3, except that 

more equilibrium positions can be identified here. Along the solution curve in Figure 

8-4, stability changes at every turning point (A, B and C in Figure 8-4). Therefore at 

a reduced velocity UR = 36, the downstream cylinder has two stable equilibrium 

positions and two unstable ones. 

 

Along each solution curve of above equilibrium positions, there is a critical reduced 

velocity beyond which no equilibrium positions can be identified. At this critical 

velocity, the downstream cylinder is about to leave its equilibrium position, i.e. a loss 

of stability. Above the critical velocity the movement of the downstream cylinder 

will not converge to another stable equilibrium as there are no equilibrium positions. 

Instead the cylinder will move about in the wake. In this scenario, clashing with the 

upstream cylinder is very likely. This is demonstrated in experiments where clashing 

largely happens in case of loss of the stability. The critical velocity is therefore 

regarded as the onset condition of clashing. 

8.2.2 Wake shielding effect on clashing onset – the worst scenario 

 

In the model described in 8.1, the downstream cylinder can be situated anywhere in 

the wake (if outside the wake, wake-induced clashing will not occur). As far as the 

riser clashing onset condition is concerned, the tandem arrangement, i.e. the 

downstream cylinder is on the wake centreline of the upstream cylinder, possibly 

represents the worst scenario. That is to say that, for two given elastically supported 
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Figure 8-5 Traces of static solution of the downstream cylinder’s in-line 

displacement as the in-flow velocity increases. 
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rigid cylinders in a current, they are most susceptible to the loss of stability as the 

in-flow velocity increases (i.e. onset condition of clashing) if these two cylinders are 

arranged in tandem.  

 

To verify the conjecture, a detailed parametric study is carried out for two cylinders 

of an equal diameter with the downstream cylinder placed at various positions in the 

wake. The initial streamwise spacing varies from 5D to 15D, while the transverse 

spacing varies from 0 to 3D. The results are given in Figure 8-5 in terms of the 

streamwise solution curve as a function of the current velocity. The critical current 

speed, i.e. the clashing onset condition, corresponds to the maximum UR of each 

curve. UR is further defined by the current speed. 
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Figure 8-6 Trace of static solution versus reduced velocity (initial streamwise spacing 

L = 5D1). 
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It can be seen that the tandem arrangement gives the smallest critical current velocity. 

It is therefore concluded that the tandem arrangement represents the worst wake 

shielding scenario in so far as the riser clashing onset condition is concerned. Based 

upon the conclusion of this investigation, it is decided that in the subsequent analysis, 

we consider the tandem arrangement only. 

 

8.2.3 Effects of diameter and stiffness ratios 
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Figure 8-7 Trace of static solution versus reduced velocity (initial streamwise spacing 

L = 10D1). 

 

The effects of diameter and stiffness ratios between two cylinders on clashing onset 

are investigated here. As we consider the tandem arrangement only, the downstream 

cylinder is supported on a single spring aligned in the flow direction. The spring 
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stiffness is denoted as 2k . In this case, there are two varying parameters given below  

 

12 / DDRD =  and  2 1/kR k k=  

 

A systematic computation is carried out to trace the static solutions, as the current 

speed increases, of the two cylinders of different diameters and spring stiffness. From 

these results, the critical current speed can then be obtained and the effects of the 

diameter and stiffness ratios can be ascertained.  
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Figure 8-8 Trace of static solution versus reduced velocity (initial streamwise spacing 

L = 15D1). 

 

Figure 8-6 to Figure 8-8 give the traces of the non-linear static solutions of the 

cylinder’s displacement as the in-flow velocity increases, based upon the 

continuation method. The critical current speed, i.e. the clashing onset condition, 
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corresponds to the maximum reduced velocity UR of each curve. The results are 

given for a variety of diameter ratio, stiffness ratio and initial spacing between the 

two cylinders. 

 

The results of the parametric analysis, in terms of the critical in-flow velocity, are 

summarised in Figure 8-9 and Figure 8-10. It can be seen that both the diameter and 

the stiffness ratios have significant impact on the riser clashing onset condition. 

Although the results presented here are for the two-dimensional case, these charts are 

potentially useful for riser design. 
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Figure 8-9 Critical inflow velocity vs diameter ratio. 
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Figure 8-10 Critical inflow velocity vs stiffness ratio. 

 

8.2.4 Effects of VIV 

 

It should be noted that previous investigations are based on the fluid forces of 

stationary cylinders, which ignore the influence of VIV. For elastically supported 
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cylinders in cross-flow, VIV motions can significantly increase the mean drag 

coefficients of both the upstream and downstream cylinders. The effects of the drag 

increase upon the clashing onset condition are investigated in the present section.  

 

Figure 8-11 gives the amplified drag coefficients of the downstream cylinder at 

various reduced velocities, which are reproduced from Huang and Sworn (2006). 

Note that 0rV =  is used here to denote the case of fixed cylinders. The 

corresponding drag coefficients of the upstream cylinder are 1.1 ( 0rV = ), 1.563 

( 4rV = ) and 2.019 ( 5rV = ). 

 

It is important to understand that the analysis in the present section assumes that the 

cylinder has multiple natural frequencies and it is possible to undergo a combined 

VIV and low-frequency large-amplitude motion. The definition of the reduced 

velocity for VIV ( rV ) is based upon a higher natural frequency, whilst the definition 

of the reduced velocity for the clashing onset condition ( RU ) is based upon the 

fundamental natural frequency.  
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Figure 8-11 Amplified drag coefficient of the downstream cylinder versus the 

spacing (D1/D2 = 2). Reproduced from Huang and Sworn (2006). 

 

Figure 8-12 shows the effect of the drag amplification on the clashing onset 
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condition. With the drag amplification, the critical inflow velocity, at which the 

clashing is about to occur, is significantly reduced in this particularly case (L = 15D1, 

2 1/ 0.5DR D D= = , 2 1/ 0.5kR k k= = , and the drag coefficient of the upstream 

cylinder 2.019, the drag coefficient of the downstream cylinder given by the middle 

curve of Figure 8-11). 

 

The drag amplification does not always reduce the critical inflow velocity of the 

clashing onset. Its effect is more dependent upon to what extent the drag is increased 

for the upstream and downstream cylinders, respectively. In Figure 8-11, at Vr = 4 the 

drag coefficient of the downstream cylinder is increased significantly with the 

maximum value approaching 3.0, while the drag coefficient of the upstream cylinder 

is only increased moderately to 1.563 at the reduced velocity. In this case, the drag 

amplification helps to separate the two cylinders and completely prevents the 

occurrence of the clashing (hence the result of continuation analysis is not given 

here).  
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Figure 8-12 Trace of static solutions, with and without VIV drag amplification.  

 

8.2.5 Huse’s wake model 

 

The above calculations are based on the force coefficients from numerical 
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simulations and experiments. By using Huse’s wake model equations (2.6) - (2.11) 

(Huse 1993), it is possible to estimate the drag on the downstream cylinder simply 

from the empirical formula. A typical result for two cylinders of an equal diameter in 

tandem is given in Figure 8-13. 

 

The drag prediction based upon the Huse’s wake model has at least two problems, i.e. 

(i) the prediction does not agree well with the test data in all cases, and (ii) for the 

tandem arrangement, the drag-versus-spacing curve is rather flat. The experimental 

data and numerical results, on the other hand, show a negative drag region in the near 

wake as well as a sharp rise of the drag as the spacing increases.  
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Figure 8-13 Drag coefficient of the downstream cylinder based upon Huse’s model 

(Tandem arrangement, Upstream cylinder CD1 = 1.1). 

 

The effect of the “mis-prediction” of Huse’s wake model upon the clashing onset 

condition is examined here. The clashing onset condition is computed based upon 

two drag curves with one given by the experimental data and the other by Huse’s 

wake model. The drag coefficient of the upstream cylinder is 1.1 for both cases. The 

results are given in comparison in Figure 8-14 for 1DR =  and 1kR = . Note that, 

unlike the solid line (result based upon the experimental data), the dashed line (based 

upon Huse’s wake model) does not have a turning point. At the top end of UR, it 

meets up with the line of the upstream cylinder, i.e. the two cylinders become in 

touch with each other.  
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Figure 8-14 Trace of static solutions based upon experimental data and Huse’s wake 

model, respectively. 
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As far as the clashing onset condition is concerned, the greatest discrepancy among 

the cases investigated here is about 15%. However, the fundamental difference 

between Huse’s wake model and the experimental data lies in the interpretation of 

the physical phenomenon. If the experimental data are used, then a critical instability 

condition can be identified. The clashing follows once the instability sets in as the 

downstream cylinder moves upstream, gathers its momentum and ultimately collides 

with the upstream cylinder. Based upon Huse’s wake model, on the other hand, the 

two cylinders would ultimately touch each other as the in-flow velocity increases, i.e. 

there is no instability issue. From the investigations in literature (Price 1995; Wu et. 

al 2002), it is clear that the riser clashing is an instability issue, not that the risers are 

pushed by the underwater current to touch each other.  

 

8.3 Concluding remarks 

 

In this chapter a stability analysis model for two marine risers is set up. Continuation 

analysis is used to find the equilibrium positions and the relative dynamic stability is 

identified by the eigenvalues of the relative Jacobian matrix. 

 

It is found that for a cylinder located in the wake of an upstream one, there can be 

multiple stable/unstable equilibrium positions. There exists a critical reduced velocity, 

above which there will be no equilibrium positions. This indicates a likely clashing 

between the two cylinders once the critical velocity is exceeded. 

 

The effects upon the clashing onset condition of various parameters, such as diameter 

ratio, stiffness ratio and VIV drag amplification are quantified. The validity of Huse’s 

wake model, in the context of predicting clashing onset condition, is also 

investigated.  

 

For two given elastically supported cylinders in cross flow, the tandem arrangement, 

i.e. the downstream cylinder situated on the wake centreline of the upstream cylinder, 

has the smallest critical inflow velocity for the occurrence of wake-induced clashing. 

The tandem arrangement is therefore identified as the worst situation for the clashing 
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onset. 

 

Both the diameter and the stiffness ratios have significant impact on the riser 

clashing onset condition. Charts are produced to show their effects.  

 

The drag amplification, caused by VIV, can significantly change the riser clashing 

onset condition. In some cases, the drag amplification can prevent riser clashing, for 

example, when the VIV amplifies the drag of the downstream riser a great deal more 

than it does to the upstream one. In other cases, the drag amplification can 

significantly reduce the critical inflow velocity for clashing to occur.  

 

Huse’s wake model, together with the drag prediction based on the model, does not 

explain the underlying mechanism of riser clashing. Nor does it predict the clashing 

onset condition accurately. Typically, the error of predicting the critical inflow 

velocity is about 15%.  
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9 Conclusion and future work 
 

9.1 Conclusion 

 

The turbulent cross flow past multiple identical circular cylinders at Reynolds 

number Re = 104 was simulated in this thesis by using a commercial CFD software 

FLUENT with a ω−k  SST model. Flow patterns and fluid forces have been 

obtained. The effect of spacing on fluid forces has also been obtained and analysed. 

Based on numerical results and the experimental data by DHI Water & Environment 

in 2002, a stability analysis model is set up and applied for various aspects. 

 

A computation model has been validated to simulate flow around circular cylinders in 

subcritical regime. Reasonable accuracy has been achieved considering the 

complexity of this bluff-body flow with unfixed separation points. It is optimised to 

allow a balance between computation efficiency and accuracy. 

 

Five flow patterns for two cylinders in cross-flow, in tandem and staggered 

arrangements, are identified. The patterns ‘shear layer reattachment’, ‘shear layer 

enveloping’, ‘vortex pairing and enveloping’ and ‘complete vortex shedding’ emerge 

when the two cylinders are streamwise close and gradually moving out of the 

centreline of the upstream cylinder. The ‘vortex impingement’ flow pattern, or ‘two 

vortex streets’ pattern, happens when the downstream cylinder is situated in the wake 

of the upstream one and the streamwise spacing is more than 3D.  

 

The bistable and hysteresis features of flow around two tandem cylinders are 

observed. The drag coefficients of the both cylinders experience a jump when the 

flow pattern changed. 

 

Generally, the downstream cylinder experiences a significant drag reduction for 

tandem arrangement, and also a non-zero time-averaged lift force for staggered 



 191 

arrangement. The drag reduction decreases when the streamwise or transverse 

clearance of the two cylinders is increased. The lift force of the downstream cylinder 

is always towards the wake centre. It is zero when it is situated out of the wake of the 

upstream one or on the wake centreline.  

 

The nature of drag reduction and time-averaged lift was analysed in detail. It is found 

that the drag reduction is the result of fluctuation incident flow and the time-averaged 

lift is due to the asymmetry of fluctuating incident flow. 

 

It is found for a tandem arrangement that the change of the stagnation point, as a 

result of the fluctuating incident velocity, is strongly associated with the large and 

periodical variations of the drag and lift forces, while the stagnation pressure is not. 

The cosine and minus sine of the stagnation angle are highly correlated with the drag 

and lift force, respectively. For a staggered arrangement, the change of the stagnation 

point is still strongly associated with the periodic variation of lift force, but not with 

the drag force. The reason lies in the asymmetry of separation points. The influences 

of stagnation point and separation point are synchronous on lift force but not on drag 

force. 

 

The wake behind two tandem cylinders shows some different characteristics from 

those of an isolated cylinder. The velocity is greatly reduced due to the cascading 

shielding effects by both cylinders. It is observed that the increase in averaged 

velocity along the wake centreline for tandem arrangement is slower than that for an 

isolated cylinder flow. The wake power spectra analysis shows the oscillating flow in 

the wake behind the downstream cylinder is strongly influenced by its own vortex 

shedding when 6L D≥ . 

 

Corresponding to the wake distribution behind two tandem cylinders, flow around 

three in-line cylinders display some interesting features. While the third cylinder only 

influences the drag of the upstream two when they are at such a distance apart that 

the flow pattern can change, i.e. the configuration is near the critical spacing, the first 

two cylinders’ influence on the third one is remarkable. When the three cylinders are 
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equally spaced, 3 0.4DC ≈  is much higher than that of the second one for L < 2.5D, 

then drops rapidly to zero for L = 2.5D to 5D. At L = 5D, 3DC  experiences a jump 

and again is greater than 2DC . 

The influence of spacing between the second and third cylinder, L2, on the third 

cylinder is significant. 3DC  is very small when 2 4L D≤ , and there is a jump 

between L2 = 4D and 6D, as a result of the double shielding effects of the two 

upstream cylinders. It is also found that when the first two cylinders are widely 

spaced, the third cylinder experiences a reduced vortex shedding frequency. 

 

A stability analysis model for two marine risers was set up. Continuation analysis 

was used to find the equilibrium positions and the relative dynamic stability was 

identified by the eigenvalues of the relative Jacobian matrix. 

 

It was found that for a cylinder located in the wake of an upstream one, there can be 

multiple stable/unstable equilibrium positions. There exists a critical reduced velocity, 

above which there will be no equilibrium positions. This indicates a likely clashing 

between the two cylinders once the critical velocity is exceeded. 

 

The effects upon the clashing onset condition of various parameters, such as diameter 

ratio, stiffness ratio and VIV drag amplification are quantified. The validity of Huse’s 

wake model, in the context of predicting clashing onset condition, is also 

investigated.  

 

The tandem arrangement is identified as the worst situation for the clashing onset. It 

is revealed both the diameter and the stiffness ratios have significant impact on the 

riser clashing onset condition. The drag amplification, caused by VIV, can 

significantly change the riser clashing onset condition. In some cases, the drag 

amplification can prevent riser clashing, while in other cases, the drag amplification 

can significantly reduce the critical inflow velocity for clashing to occur.  

 

Huse’s wake model, together with the drag prediction based on the model, does not 

explain the underlying mechanism of riser clashing. Nor does it predict the clashing 
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onset condition accurately.  

 

9.2 Suggestions for future work 

 

The following research areas are of interest of future work. 

 

Strouhal number reduction 

 

The reduced Strouhal number of the wake behind two tandem cylinders with large 

spacing (>5D) between them is numerically observed, and so is for the three in-line 

cylinders flow. This is a very interesting phenomenon and is not fully investigated in 

this thesis. The reasons could be the lower locally incident velocity to the second 

cylinder, the effect of the upstream vortices or both of them. Theoretical vortex 

structure research is needed to study this phenomenon. 

 

Quantitative analysis of the cause of fluid forces on a cylinder in a wake 

 

It is found in this thesis that the change of stagnation point is strongly associated with 

the periodic variation of the fluid forces on a cylinder in a wake. This qualitative 

conclusion can be the first step of investigating the analytical or empirical calculation 

of the fluid forces under wake effects, which will leads to simple and accurate 

stability analysis of multiple cylinders. 

 

Dynamic simulation of two elastically mounted cylinders 

 

In this thesis, the static fluid forces are used to study the stability of two elastic 

cylinders. The limitation of this approach is obvious as the influence of VIVs on 

fluid loading is remarkable. To eliminate this drawback, dynamic simulation of two 

elastically mounted cylinders in a cross flow can be performed, based on the 

dynamic mesh technique in FLUENT. This of course will demand much of the 

computer resources.  
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Flow around three cylinders in triangular arrangement 

 

Only in-line arrangement of three cylinders is investigated in this thesis. Further 

work should be carried out of triangular configurations. The triangular arrangement 

represents the engineering practise and is a very complex fluid mechanics problem. 

There exist the drag reduction and mean lift force for both downstream cylinders 

under the wake shielding effect. 
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