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Abstract

This thesis analyses the dynamics of a massless spacecraft (or point mass) around

an inhomogeneous Trojan body in a system composed of three primaries lying on a

plane at the vertexes of an equilateral triangle, with their mutual positions fixed over

the course of the motion. This configuration will here be referred to as “Lagrangian”

or “equilateral triangle”, implicitly meaning that the three primaries lie on a common

plane. To this end two suitable models are identified to represent the system, depending

on the distance from the primary. The first model, adopted for use close to the asteroid,

where the dynamics is dominated by this sole body, is the Restricted Two Body Prob-

lem. In this model the inhomogeneities of the asteroid are taken into account as they

have a dominant effect on the dynamics of the spacecraft. This model will therefore be

referred to as the Inhomogeneous R2BP. The second model is the Lagrangian Circular

Restricted Four Body Problem (CR4BP), with the primaries lying on the same plane,

which is adopted far from the asteroid1, where the gravitational perturbations of the

1Note that by “far from the asteroid” is meant that the point mass is at a significant distance from
the body such that the gravitational influence of the Sun and Jupiter is far greater than the influence
of the inhomogeneities in the gravitational field of the body, but still close enough to the body for
scientific and observational purposes.
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Sun and Jupiter are dominant while the inhomogeneities of the asteroid are negligible.

Low-thrust propulsion perturbations are incorporated into this model. The possibility

to determine the range of validity of each model using an application of a Weak Sta-

bility Boundary (WSB) theory, a relatively novel approach to dynamics for designing

low-energy transfers, is investigated and applied.

A completely new, analytical definition of the Weak Stability Boundary, coher-

ent with the previous algorithmic definitions, is thus developed in this work for the

first time. The existing (algorithmic) WSB theory, previously always treated numer-

ically and mainly applied to Circular Restricted Three Body Problems (CR3BP), is

here rebuilt from an analytical point of view and extended to the Lagrangian CR4BP.

Moreover some topological properties of the WSB are introduced and applied, leading

to analytical estimations of the set of stable orbits around the small primary. An es-

timation of the range of validity of the models is thus derived, which is based on the

region of stable orbits.

The dynamics in a Restricted Two Body Problem incorporating the shape/density

inhomogeneities of the body, is analysed, suitable for modelling the spacecraft dynamics

inside the estimated reference region. The irregular gravitational potential is formu-

lated using spherical harmonics, the coefficients describing the physical properties of

the body. An analytical, arbitrary degree, perturbation theory2, assuming the spher-

ical harmonics of the body as known, is derived. This result generalizes to arbitrary

degree the previous closed form (i.e. valid for every eccentricity) perturbation theories

which are usually limited to second degree (namely to the inclusion of two spherical

harmonics coefficients).

The theory here developed, double averaging the system by means of two canonic Lie

transformations, leads to an integrable, arbitrarily accurate approximation of the sys-

tem whose explicit second order Hamiltonian formulation, derived in closed form, is

thus stated. From this theory an analytic method for determining initial conditions for

frozen orbits around any irregular body is derived for the first time. Such Frozen orbits

are orbits with no secular perturbations in the inclination, argument of pericentre, and

eccentricity.

Results are shown for a major Jupiter Trojan: 624-Hektor. As the spherical harmonics

of this Trojan are unknown and not present in any previous literature, a method is here

applied, which deduces these coefficients from a three dimensional polyhedric model of

the body, assuming a constant density.

2It must be noted that this theory is general, namely valid to study the dynamics in every Two
Body Problem with an inhomogeneous gravitational field (i.e. it is not restricted to systems in the
Lagrangian configuration)
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Finally the dynamics of the Lagrangian CR4PB is studied, for modelling the sys-

tem outside the estimated reference boundary. The natural equilibria and Lyapunov

stability of the linearized system are analysed. A study of the changes in the topology

of the linearly stable zone for different conceivable masses of the Trojan is shown in this

work for the first time. Low-thrust propulsion perturbations, in all previous literature

confined to two and three body problems, are here incorporated into the four bodies

system examined, enabling the generation of surfaces of artificial equilibria. Applica-

tions are shown for the main example of Lagrangian configuration in the Solar system,

the Sun-Jupiter-Trojan-spacecraft system. Numerical simulations for 624-Hektor con-

firm the validity of the model once its real tadpole orbit around the triangular point is

taken into account.
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Chapter 1

Introduction

1.1 Research Background and Motivations

In 1772 the French mathematician and astronomer Joseph-Louis Lagrange [1] predicted

that a small body could be trapped in the orbit of a larger one around the Sun, if the

three masses were located at the vertexes of an equilateral triangle and their mutual

positions being maintained over the course of the motion. Those positions, now bearing

the symbols L4 and L5, are two of five so-called Lagrange points (the others were defined

earlier by Euler). Although Lagrange thought his equilateral triangle solutions were of

no great practical significance it was later realised that the Sun, Jupiter and a group of

asteroids, now called Trojans, formed such a configuration. It was not until 1906 that

the first object trapped at either of such points was found: the asteroid 588-Achilles at

the L4 point in the Sun-Jupiter system. Since then many more asteroids were found

both at the Sun-Jupiter L4 and L5, each named, by convention, after a hero of the

Trojan War from Greek mythology, hence the origin of the term ‘Trojan asteroids’1.

Other Trojans since then have been discovered, which share the orbits of Mars and

Neptune around the Sun. Moreover two of Saturn’s moons, Tethys and Dione, have

Trojan moons. In 2011 a team from Athabasca University, Canada [2] announced the

discovery of the first known Earth’s Trojan, somewhat less romantically named 2010

TK7. However, since the Earth Trojans are so hard to spot, it’s likely that there are a

lot more of them. As such asteroids provide the perfect base for interplanetary missions

beyond the Earth-Moon system [3], their discovery renewed and highlighted again the

importance of dynamical studies on the Lagrange configuration of the Restricted Four

Body Problem, still largely unexplored.

The Trojan asteroids of Jupiter, in particular, lie at the crux of several of the most

1Heroes of the Greek camp are clustered at L4 (Agamemnon, Odysseus, Ajax, Menelaus) and those
of Troy at L5 (Priamus, Troilus, and so on); only two early discoveries, the Greek Patroclus and the
Trojan Hektor, were, in fact, assigned to the wrong camps.
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CHAPTER 1. INTRODUCTION 10

interesting issues regarding the formation and evolution of the Solar System. Jupiters

companion asteroids, indeed, hold the potential to unlock the answers to fundamen-

tal questions about planetary migration, the late heavy bombardment, the formation

of the jovian system, the origin and evolution of transneptunian objects (TNOs) and

many more. Despite a population comparable in number to the main asteroid belt,

they remain poorly understood [4]. What we know about these asteroids is based on

observations of these objects as point sources, by spectrometric analysis or by analogy

with objects believed to be similar. Spacecraft investigation of this Trojan population

has been recognized as a ‘New Frontiers goal’ already in the Decadal Survey in 2002 [5]

and, most importantly, the technical feasibility for any of these mission architectures is

well within our capabilities at the present time. Dedicated missions will revolutionize

our current understanding of these bodies, by a comprehension of the solar system as

a whole. Getting in orbit around any of these bodies could already provide valuable

initial reconnaissance, including a view of surface composition, geology, and density,

which, refined at each revolution, would finally provide an arbitrarily accurate global

picture of the properties of such asteroid, which are necessary to any study aiming to

unlock the answers to fundamental questions about the early stages of the solar system.

To this end orbits with good stability properties would be needed. Among these frozen

orbits might represent a major candidate as, being periodic except for the precession of

the argument of nodes, they can be seen as a first generalization of periodic orbits and

might therefore be suitable for such physical characterization and detection missions.

To get information on the density of the body, for example, it is possible to compare

the actual dynamics due to the experienced gravitational field with the one predicted

using a model built assuming a constant density, like for example measuring the di-

vergence from the predicted a frozen orbit. To this end an accurate description of the

dynamics of a point mass in an inhomogeneous gravity field is necessary. The main

difficulty here lies in the fact that typically such bodies feature shapes and density dis-

tributions more irregular than those of planets. Such irregularities break symmetries

and require more complicated analytical expressions for their description, increasing

noticeably the mathematical difficulties involved in such studies. These obstacles are

maximized in the case of bodies such as asteroids and comets, where shapes and density

distributions are highly irregular and often unknown. Furthermore asteroids are at the

centre of a number of recent advanced mission concepts. Asteroid deflection missions

have been studied by ESA and are being discussed for some time now in the scientific

community. Further asteroid sample return missions are being considered and human

missions to asteroids have entered the agenda of space agencies.

Due to the relevance of the scientific equipment needed onboard, such future inter-
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planetary missions will aim to maximize the payload by lowering the propellant mass

fraction within reasonable transfer times. A sensitive reduction could be achieved by

either exploiting the chaotic dynamics arising in an n-body context or by including low

thrust propulsion technologies into the system [6]. Over the last 20 years an attempt

has been made to take advantage of the gravitational fields through the Weak Stability

Boundaries, a method for designing fuel efficient space missions, which reduces the use

of propellent with a direct impact on the onboard payload [7]. The WSB is a compli-

cated zone of the phase space where ballistic (i.e. natural) capture occurs. Although it

has been extensively studied since the 90’s its nature and associated sensitive dynamics

has not been well understood yet, and a full, analytical and topological understanding

of this set and its properties is still missing.

Primary electric low thrust propulsion, instead, is a widely accepted method for

station-keeping and final orbit insertion of commercial satellites. NASA, JAXA, and

ESA have already used this type of propulsion for several science missions. Low thrust

propulsion enables a range of new, potential applications for several scientific fields like

space physics, human exploration, asteroid observation, material retrieval and many

more, by seeking families of novel, exploitable, non-Keplerian orbits.The concept of

counter-acting gravity through a thrust vector was apparently first proposed by Dusek

in 1966 [95], who noted that a spacecraft could be held in an artificial equilibrium

at some distance from a natural libration point if the difference in gravitation and

centripetal force (gravity gradient) were compensated for by continuous low thrust

propulsion [96]. The use of continuous thrust can be applied in all directions including

perpendicular to the flight direction, which forces the spacecraft out of a natural orbit

into a displaced, non-Keplerian orbit: such kind of orbits have a wide range of potential

applications. The setting, thus far, for such analysis has been confined to include low-

thrust propulsion systems in the two and three body problems but is extended here to

a four body problem.

1.2 Research Objectives and Aims

The overall objective of this research project is to use mathematical tools such as sta-

bility analysis for dynamical systems, non linear and high order analysis, normal forms,

Lie series, chaos theory and exploit the Weak Stability Boundaries, to seek interesting

families of orbits close to the smaller primary of a Sun-Planet-Trojan like system. The

investigation thus aims to find natural orbits (e.g. frozen orbits) close to the body and

new families of artificial, non-Keplerian orbits (e.g. generated by the use of constant

low thrust) to be exploited for many possible science applications. Results are shown

for the Sun-Jupiter-Trojan-spacecraft system, with particular emphasis on the asteroid
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624-Hektor, a major Jupiter Trojan.

***

• The range of validity of the two models

As the system is modelled in two different ways, depending on the distance from the

primary, the range of validity of each model is investigated. The estimation is carried

out by exploiting some topological properties of the set of the stable orbits around

the smaller body whose boundary is, by definition, the so called WSB. To study such

properties an analytical definition of the WSB is needed, therefore, in this work, a

completely new analytic WSB theory, coherent with the previous algorithmic ones, is

introduced and developed for the first time.

This part of the thesis is therefore focused on:

� providing an exhaustive background on the Weak Stability Boundary

theories, including the evolution and generalizations of the concept and the

analysis of its deficiencies.

� formulating a new, analytic definition of the WSB, compatible with the

previous algorithmic and numerical definitions, but such that it enables

topological properties of the WSB to be deduced.

� investigating the possibility of using this new WSB theory to determine

the range of validity of the two models used to represent the system.

� deriving an estimation of the range of applicability of the two models

for the Sun-Jupiter-Hektor-spacecraft system.

***

• Inhomogeneous restricted two body model

Within the identified reference region, the research analyses the dynamics of a

Restricted Two Body model (Fig. 1.1) which incorporates the shape/density inhomo-

geneities of the body. Generalising previous results, which only included two spherical

harmonics (the coefficients describing the inhomogeneities of the body), an arbitrary

degree spherical harmonics representation for the inhomogeneous potential is here used.
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Figure 1.1: The inhomogeneous restricted two body model (adopted inside the esti-
mated region)

Following the usual Lie series approach, a completely analytical, perturbative method

is, n this work, developed completely in closed form and based on an arbitrarily accu-

rate model of the massive body, thus describing the dynamics around the body in an

arbitrarily accurate way.

This section is focussed on:

� defining the state of art of orbital dynamics in inhomogeneous gravita-

tional fields, including an explanation of the usual techniques used to handle

the problems.

� building an analytical perturbative theory of motion for inhomogeneous

gravitational fields which generalizes previous results to arbitrary degree (in

the spherical harmonics) and second order, by means of Lie transformations.

� constructing a novel, general method to find interesting families of or-

bits around inhomogeneous bodies.

� applying the methodology developed to the Trojan 624-Hektor, suitable

for possible future science and observational mission applications.

***

• Lagrangian (low-thrust) circular restricted four-body model

Outwith the identified reference region, where the gravitational influence of the Sun
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Figure 1.2: The Lagrangian circular restricted four-body model (adopted outside the
estimated region)

and Jupiter are dominant perturbations, the Lagrangian Circular Restricted Four Body

model is applied (see Fig. 1.2). In this setting low-thrust propulsion technologies, in

previous literature only appearing in two and three body models, are incorporated,

to study the dynamics of the model both in its natural and artificial (i.e. low thrust

perturbed) state.

This part of the work focusses on:

� providing a general picture of the studies on the Lagrangian CR4BP, also

including recent results and advances of low thrust propulsion systems in

two and three body problems.

� identifying and applying mathematical techniques, classically used in low

thrust two and three body problems, that have the potential to be applied

to the Lagrangian low thrust four body problem.

� applying the methodology found to the Sun-Jupiter-Trojan-spacecraft sys-

tem to seek surfaces of artificial equilibrium points and new non-Keplerian

orbits for useful for many applications.

� testing the robustness of this novel results for the real Sun-Jupiter-Hektor-

spacecraft system (i.e. using observed data for the orbits of the planets

studied)
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1.3 Contributions of This Research

1.3.1 Novelties

Some of the novelties contained in this thesis are listed hereafter. It must be noted

that the Sun-Planet-Trojan-spacecraft system is itself a novel system to be studied.

• Previous studies on the WSB were based on the definition formulated in [8] for

Earth-Moon-spacecraft CR3BP, then corrected/generalized in [9]. Existing definitions

in the literature are all based on an algorithm therefore allowing only numerical stud-

ies on the WSB for specific cases to be undertaken and thus no general mathematical

property of such a set can be obtained for them.

What’s new:

� This work provides a new, analytic definition of the WSB for the CR3BP

which is coherent with the known algorithmic definitions.

� It generalizes the definition of the WSB to the equilateral triangle, CR4BP.

� It investigates some topological properties of the “stable region” (near

to the smaller primary) whose boundary is, by definition, the WSB.

� It provides an analytical and numerical estimation of the stable zone.

Reference also to [10], [11], and [12].

***

• Analytical perturbative studies on inhomogeneous gravitational fields carried out in

closed form (i.e. without expanding in power series of the eccentricity) are mainly lim-

ited to second degree potentials (i.e. they only account for the ellipticity and oblateness

terms). In these the resulting, double averaged, Hamiltonian depends on the sole ar-

gument of pericenter, which does not hold, in general, when including more spherical

harmonics coefficients.

What’s new:

� This research derives, in the close vicinity of the small body (i.e. inside the

estimated stability boundary), the inhomogeneous gravitational potential in

polar-nodal variables, accounting arbitrary degree spherical harmonics co-

efficients.
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� It states the explicit analytical formulation for the averaged, first or-

der, arbitrary degree Hamiltonian of any inhomogeneous gravitational field

found in closed-form (i.e. valid for every eccentricity).

� It provides a method for determining initial conditions for frozen orbits

around any irregular body by prescribing the inclination and eccentricity of

the desired orbit.

� It implements the algorithm to find the spherical harmonics coefficients

from the shape of the asteroid assuming a constant density, to find the har-

monics of 624-Hektor.

Reference also to [13], [14], [15] and [16].

***

Existing literature on the Lagrangian CR4BP are contemporary to the published works

collected in this thesis. They are mainly focussed on determining the number of equi-

librium points depending on the mass distribution of the primaries and on numerical

determination of families of orbits. None of the previous works considers that there are

no asteroids in the exact L4 or L5 position and that they all move on tadpole orbits

around such points.

What’s new:

� This work incorporates low thrust perturbations in the Lagrangian CR4BP

to generate surfaces of artificial equilibria and displaced non Keplerian or-

bits;

� It studies the topological changes of the linearly stable zone with vari-

ations in the Trojan mass.

� It identifies novel, artificial, non-Keplerian orbits both for mathemati-

cal interest as well as for potential future mission applications.

� It finds useful applications to such orbits and tests the validity of the

model for a real case, i.e. considering the real tadpole orbit of the asteroid

624-Hektor around the triangular equilibrium point.
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Reference also to [17], [18], and [19].

1.3.2 Publications and Outputs

All the results collected in this thesis have been published as journal papers, although,

as they are general, the applications here shown may differ from the ones in the papers,

in order to give homogeneity to the work. Moreover other results, contained in the

conference papers listed below, complete and widen the ones contained in this thesis

but have not been included here as they where beyond the scope of this work.

• On Weak Stability Boundaries and applications:

Journal publication(s):

� April 2012: Ceccaroni, M., Biggs, J. D., Biasco, L.: “Analytic estimates

and topological properties of the weak stability boundary”; Celestial Me-

chanics and Dynamical Astronomy (2012) 114:124 DOI 10.1007/s10569-012-

9419-x.

http://www.springerlink.com/content/728265144j86524h/

Conference publication(s):

� June 2011: Ceccaroni, M., Biggs, J. D., Biasco, L.:“Some Analytic Esti-

mates of the Weak Stability Boundary”, New Trends in Astrodynamics and

Applications VI, New York.

� June 2011: Ceccaroni, M., Biggs, J. D., Biasco, L.:“The Weak Stability

Boundary in the Sun-Jupiter-Trojan-spacecraft four body problem”, New

Trends in Astrodynamics and Applications VI, New York.

***

• On inhomogeneous Restricted Two Body Problem and applications:

Journal publication(s):

� February 2013: Ceccaroni, M., Biggs, J. D.: “Analytic perturbative the-

ories in highly inhomogeneous gravitational fields.” Icarus, in press

http://dx.doi.org/10.1016/j.icarus.2013.01.007

� December 2012: Ceccaroni, M., Biscani, F., Biggs, J. D.: “Analytical
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method for perturbed frozen orbit around an Asteroid in highly inhomoge-

neous gravitational fields: a first approach” Solar System Research, in press.

Conference publication(s):

� October 2012: Ceccaroni, M., Biscani, F., Biggs, J. D.: “Analytical Per-

turbative method for frozen orbits around the asteroid 433-Eros”; IAC2010

- International Astronautical Congress - (Naples).

� September 2012: Ceccaroni, M., Biscani, F., Biggs, J. D.:“Analytical

method for perturbed frozen orbits around an Asteroid in highly inhomo-

geneous gravitational fields”; Analytical methods for celestial mechanics,

St.Petersburg.

� September 2011-January 2012: Ceccaroni, M., Biscani, F., Biggs, J. D.:

Ariadna Study “Analytical perturbative theories of motion in highly inho-

mogeneous gravitational fields (11-5201)”.

http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-1205 Analytical

perturbative theories motion inhomogeneous %20gravitational fields.pdf

***

• On low-thrust Lagrangian Circular Restricted Four Body Problem and applications:

Journal publication(s):

� November 2011: Ceccaroni, M., Biggs, J. D.:“Low-thrust propulsion in

a coplanar circular restricted four body problem”; Celestial Mechanics and

Dynamical Astronomy, Volume 112, Issue 2 (2012), Page 191-219. DOI:

10.1007/s10569-011-9391-x.

http://www.springerlink.com/content/728265144j86524h/

Conference publication(s):

� October 2011: Ceccaroni, M., Biggs, J. D.:“Nonlinearly stable equilibria

in the Sun-Jupiter-Trojan-Spacecraft four body problem”; IAC2011 - Inter-

national Astronautical Congress - (Cape Town).

http://www.iafastro.net/iac/archive/browse/IAC-11/C1/4/11300/

� September/ October 2010: Ceccaroni, M., Biggs, J. D.:“Extension of

low thrust propulsion to the Autonomous Coplanar Circular Restricted

Four Body problem with application to Future Trojan Asteroids Missions”,
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IAC2010 - International Astronautical Congress - (Prague).

http://www.iafastro.net/iac/browse/IAC-10/C1/1/

1.4 Thesis Structure

This thesis is organized as follows:

Chapter 1 provides a global picture of this thesis by stressing the motivations, objec-

tives, aims and key questions addressed by the research project. Moreover it provides

a summary of the work highlighting the main results and novelties. Finally it includes

a list of the outcomes and publications related to this thesis work.

Chapter 2 sets the starting point of the analysis by introducing both the dynamical

systems which are used to model the problem. These are here formulated in terms of

Hamiltonian equations of motion. In this chapter both the systems are expressed for

different sets of variables which will be useful for the analysis contained in the following

chapters. Sections 2.1 and 2.2 formulate the Hamiltonian of the two models proposed:

the equilateral triangle CR4BP and the inhomogeneous R2BP, in different sets of vari-

ables including the Delaunay variables, which will be key for both the models. Section

2.3 constructs the inhomogeneous potential for the second model, by means of spherical

harmonics.

Chapter 3 in this chapter the range of applicability of the two models, the inho-

mogeneous Restricted Two Body Problem and the Lagrangian CR4BP, is estimated

as an application of the WSB. Section 3.3 contains the existing definitions of WSB

and an analysis of the main problems affecting such definitions; moreover it includes

a completely new, analytical definition of the WSB and a comparison with previous

algorithmic definitions of WSB from the literature. In Section 3.4 some topological

properties are derived and discussed as enabled by the new definition of WSB here

formulated. In section 3.5 the symplectic Delaunay coordinates, unusual for the WSB

theories, are used to rewrite the problem. It results that the Delaunay coordinates are

suitable for estimating analytically the WSB and, consequently, the range of validity

of the two models.

Chapter 4 analyses the inhomogeneous R2BP. Inside the set of the stable orbits around

the smaller primary, estimated in chapter 3, the dynamics is assumed to be dominated

by the sole smaller body. However, within this region, the inhomogeneities of the grav-
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itational field can’t be neglected. In Section 4.3 and 4.4 the hamiltonian describing

the system is transformed by means of two lie transformations, the relegation and the

normalisation, which enable to find suitable changes of coordinates to reduce the ini-

tial non integrable Hamiltonian of the system into an integrable one plus a negligible,

perturbative remainder of higher degree. In addition, an explicit analytical formulation

for the relegated, Hamiltonian in any inhomogeneous gravitational field is derived in

closed-form, generalised to second order, arbitrary degree. Section 4.5 develops a new

method for determining initial conditions for frozen orbits around any irregular body

by simply prescribing the desired inclination and eccentricity of the orbit. Results are

shown in Section 4.6 for the Trojan asteroid 624-Hektor.

Chapter 5 introduces the Lagrangian (low-thrust) circular restricted four-body model.

Outside the estimated region of stable orbits, the perturbations due to the gravitational

effects of the Sun and Jupiter dominate the dynamics. Furthermore, the effect of

the inhomogeneous gravitational field of the body becomes negligible relative to these

gravitational perturbations. Sections 5.3 and 5.4 analyse the natural dynamics of the

system (i.e. without the use of low thrust), focusing on the equilibrium points of

the system and the stability analysis. Sections 5.5 e 5.6 incorporates, for the first

time in a four body problem, low thrust perturbations into the model. The artificial

dynamics of the system is thus studied, showing the surfaces of artificial equilibria

created by the inclusion of low thrust. In Section 5.7 and 5.8 new, artificial, stable

orbits are found, maintainable using constant low thrust and without the need for any

state feedback control. Section 5.9 tests the methodology developed in the previous

Sections, considering the full, observed dynamics of the real jovian Trojan 624-Hektor.



Chapter 2

Hamiltonian dynamics about

Trojan asteroids

The aim of this thesis is to analyse the dynamics of a point mass around an inho-

mogeneous Trojan body in a system with three primaries lying at the vertexes of an

equilateral triangle. To start such analysis it is necessary to introduce both the dy-

namical systems which will be used in the next chapters to model the problem. The

Hamiltonian formulation of these dynamical models is necessary for setting the base

of the analysis that will be carried on in the remainder of this thesis. In this chapter

the Hamiltonians describing the two models proposed are formulated within different

frames of reference and for various sets of coordinates which will then be recalled in

the next chapters.

The equilateral triangle CR4BP will be first introduced, as it sets the base for both the

estimation of the range of validity of the two models through the use of the WSB con-

tained in Chapter 3, and the analysis of the dynamics relatively far from the asteroid

which is contained in Chapter 5. In order to set the most suitable system of reference

for such estimates and analysis, several intermediate systems of reference (e.g. inertial,

rotating, barycentric, asteroid centered) and sets of coordinates (e.g. polar, Whittaker,

Delaunay variables) will be introduced and the corresponding transformations to obtain

them described. Then the inhomogeneous R2B dynamical model will be introduced as

well, which sets the starting point of the analysis contained in Chapter 4. Again it

will be described using the Hamiltonian formalism and through a series of interme-

diate systems of reference and sets of variables. Finally, at the end of the Chapter,

the inhomogeneous potential used for this model, will also be constructed by means

of spherical harmonics, the coefficients usually adopted to describe the shape/density

inhomogeneities of a massive body.

21
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2.1 The system

The system is initially derived as follows: let be P1, P2 and P3 the three primaries and

P4 the point mass, with corresponding masses m1, m2, m3 and m4 ( assumed to be

infinitesimal and thus called a Restricted model) such that: 0 < m4 << m3 << m2 ≤
m1.

Set the three masses in the equilateral triangle configuration, where the position of P3

corresponds to one of the triangular Lagrangian points in [20].

This configuration is well known to be stable if the masses of the three planets satisfy

the condition (see [21] , [22], [23] and [24])

m1m2+m1m3+m2m3
(m1+m2+m3)2 < 1

27 , (2.1)

that is:

27(m1m2 +m1m3 +m2m3)− (m1 +m2 +m3)2 < 0. (2.2)

As it is assumed that m3 ≤ m2 and the left term of this inequality is monotonically

increasing in m3, ∀m3 ∈ (0,m2), the left term is maximized for m3 = m2, thus, to

obtain the most restrictive condition possible, independently from m3, it is set (just for

the following estimation) m3 = m2, obtaining:

27(m1m2+m1m3+m2m3)−(m1+m2+m3)2 < 27(2m1m2+m2
2)−(m1+2m2)2 ∀m1,m2

(2.3)

Therefore the stability condition becomes:

−m2
1 + 50m1m2 + 23m2

2 < 0 (2.4)

(more restrictive then the previous), that rearranged is:

m1

m2
> 25 + 18

√
2. (2.5)

In addition, the mass of the Asteroid is taken to be small enough not to influence the

motion of P1 and P2, therefore the center of rotation of the three primaries coincides

with the barycenter O of the two main primaries. The three bodies will thus rotate

anticlockwise on circular orbits around it with constant angular velocity perpendicular

to the plane containing the primaries ω.

The system just described is shown in Figure 1.2.
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2.2 The Hamiltonian of the equilateral triangle CR4BP

The first model to be used in this thesis is the equilateral CR4BP, which will be used

both in estimating the range of validity of the two models (Chapter 3) and in the

analysis of the dynamics of the problem contained in Chapter 5.

In this scaled units of measure for mass and distance will be used, normalized with the

sum of the masses of P1 and P2 and their distance dP1/P2 respectively. Therefore, in

nondimensional units, it is set

1−M = m1scaled = m1
m1+m2

,

M = m2scaled = m2
m1+m2

,

m = m3scaled = m3
m1+m2

,

M = m4scaled = m4
m1+m2

' 0.

(2.6)

Moreover it results dP1/P2 = dP1/P2scaled
= 1.

Finally the unit of time is scaled t = tscaled =

√
G(m1+m2)
d3
P1/P2

t, where G is the universal

gravitational constant G = 6.67428 × 10−11 m3

kg·s2 , such that the gravitational constant

in nondimensional unit is Gscaled = 1. Moreover, by Kepler’s third Law for a circular

orbit,

“The square of the orbital period of a planet is directly proportional to the

cube of the semi-major axis of its orbit”,

the period of revolution of P1 and P2 around each other is T = 2π

√
d3
P1/P2

G(m1m2) which,

in nondimensional units, is Tscaled = 2π. Moreover notice that, in nondimensional it

results: |ωscaled| = 2π
Tscaled = 1.

2.2.1 Barycentric, fixed, inertial reference frame

A fixed inertial frame (F0) is taken, which is centered in the center of rotation O of the

planets, where the x/y plane contains the three bodies and the x axes passes through

P1 and P2 at time t = 0. This implies ω = [0, 0, 1] (in the scaled units) and that the

initial position of the primaries is

P1 = (−M, 0, 0),

P2 = (1−M, 0, 0)

and, in order to form an equilateral triangle,

P3 = (Lx, Ly, 0) = (
1

2
−M,

√
3

2
, 0).
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Notice that, as it will be shown later, in a rotating system of reference, centered

in the barycenter O of P1 and P2 and rotating with the same angular velocity of the

primaries ω = [0, 0, 1] (in the scaled units), the primaries will keep their positions as

fixed over the course of the motion and the system would become autonomous (i.e.

time independent).

The motions of P1, P2 and P3 are, respectively,

M [cos (t+ π), sin (t+ π), 0],

(1−M)[cos t, sin t, 0],

√
1−M +M2[cos (t+ τ0), sin (t+ τ0), 0],

(2.7)

with the primaries starting, for t = 0, respectively at

[−M, 0, 0]

[1−M, 0, 0]

√
1−M +M2[cos (τ0), sin (τ0), 0] = [1

2 −M,
√

3
2 ].

(2.8)

Note that, before including low thrust into the system (see Chapter 5), the spacecraft

moves on the plane containing the primaries, therefore the third motion decouples and

the system can be considered planar. This system is represented in Fig. 2.1, where, for

simplicity of representation, the figure shows only the plane of revolution of the bodies.

Let q = [qx, qy, qz] be the position vector of the point mass P in the barycentric

inertial frame of reference (F0). By Newton’s Second Law of Motion:

“The rate of change of momentum is proportional to the force and is in

same direction as that force”

and Gravitational Law :

“Any two bodies attract one another with a force proportional to the prod-

uct of their masses and inversely proportional to the square of distance

between them”,

the equations of motion of the point mass, in (F0), are:

Mq̈ = −∂U(q)
∂q , (2.9)
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Figure 2.1: F0) Barycentric, fixed, inertial reference frame

where U(q) is the potential energy of the point mass:

U(q) = − M(1−M)
|q−M [cos (t+π),sin (t+π),0]|

− MM
|q−(1−M)[cos t,sin t,0]|
− Mm
|q−
√

1−M+M2[cos (t+τ0),sin (t+τ0),0]| ,

(2.10)

with

τ0 = arcsin

√
3

2
√

1−M +M2
. (2.11)

The kinetic energy of the spacecraft is:

T (q̇) =
1

2
M|q̇|2, (2.12)

thus the Lagrangian of the body, given by the difference between kinetic and potential

energies, is:

L(q, q̇) := T (q̇)− U(q). (2.13)
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The conjugate momenta p = [px, py, pz] of q is found by:

p =
∂L(q, q̇)

∂q̇
=Mq̇, (2.14)

thus, by the Euler−Lagrange equations:

ṗ = d
dt

(
∂L(q,q̇)
∂q̇

)
= ∂L(q,q̇)

∂q

= −∂U(q)
∂q .

(2.15)

The Hamiltonian of the body is then the Legendre transform of the Lagrangian with

respect to q̇, namely:

H(q,p) := supη∈R3 {p.η − L(η,p)}
= p.q̇− L(q,p)

= 1
Mp.p− T (p) + U(q)

= T (p) + U(q)

= 1
2M |p|

2 + U(q),

(2.16)

where the . indicates the scalar product between two vectors.

The equations of motion can therefore be obtained by the system:{
q̇ = ∂H(q,p)

∂p = p
M

ṗ = −∂H(q,p)
∂q = −∂U(q)

∂q .
(2.17)

The momenta are now scaled to introduce the free mass parameter µ:{
q′ = q

p′ = Mp
µ .

(2.18)

This is a symplectic transformation of coefficient Mµ , and therefore, to make it canonic,

the resulting Hamiltonian in the new coordinates must be divided by a factor Mµ :

H ′(p′,q′) = M
µ H(p′,q′)

= 1
2µ |p

′|2 + U ′(q),
(2.19)

with
U ′(q) = − µ(1−M)

|q−M [cos (t+π),sin (t+π),0]|
− µM
|q−(1−M)[cos t,sin t,0]|
− µm

|q−
√

1−M+M2[cos (t+τ0),sin (t+τ0),0]| .

(2.20)

To simplify notations hereafter the primes will be dropped.
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2.2.2 Trojan centered, (non−inertial) reference frame, with axes par-

allel to the inertial

The motions are now expressed in a Trojan centered (non−inertial) frame (F1) with

the smaller primary at the origin and the other primaries moving with angular velocity

ω = [0, 0, 1] (in the scaled units) on a unitary circle around it and the axes of reference

x′, y′ and z′ parallel to the respective axes in (F0) ∀t ≥ 0.

The motions of P1 and P2 are respectively:[
cos (t+ 4

3π), sin (t+ 4
3π), 0

]
[
cos (t− π

3 ), sin (t− π
3 ), 0

]
,

(2.21)

with their initial positions at the time t = 0:[
−1

2 ,−
√

3
2 , 0

]
=
[
cos (4

3π), sin (4
3π), 0

]
[

1
2 ,−

√
3

2 , 0
]

=
[
cos (−π

3 ), sin (−π
3 ), 0

]
.

(2.22)

The system is represented in Fig. 2.2.

The new coordinates of the spacecraft are given by:

s = q−
√

1−M +M2[cos (t+ τ0), sin (t+ τ0), 0], (2.23)

which implies

ṡ = q̇−
√

1−M +M2[− sin (t+ τ0), cos (t+ τ0), 0], (2.24)

and therefore

µs̈ = µq̈ + µ
√

1−M +M2[cos (t+ τ0), sin (t+ τ0), 0]

= −∂U1(s)
∂s + µ

√
1−M +M2[cos (t+ τ0), sin (t+ τ0), 0],

(2.25)

with

U1(s) = − µ(1−M)

|s−[cos (t+ 4
3
π),sin (t+ 4

3
π),0]| −

µM
|s−[cos (t−π

3
),sin (t−π

3
),0]| −

µm
|s| . (2.26)

Equation (2.25) is equivalent to the Hamiltonian system:{
ṡ = ∂H1(s,S;t)

∂S

Ṡ = −∂H1(s,S;t)
∂s

(2.27)
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Figure 2.2: F1) Trojan centered, (not inertial) reference frame, with axes parallel to
the inertial reference frame

with Hamiltonian

H1(s,S; t) :=
1

2µ
|S|2 + U1(s)− µ

√
1−M +M2[cos (t+ τ0), sin (t+ τ0), 0].s (2.28)

in the conjugated variables S, s ∈ R3 with symplectic form dS ∧ ds.

The stability of the orbits in the WSB theory (see Chapter 3) is based on monitoring

the sign of the two-body Kepler energy ; this energy can heuristically be seen as the

Hamiltonian HM
1 (s,S) (in the Trojan centered frame) of the spacecraft due to the

asteroid only, namely when the influence of the two main bodies is neglected.

Notice that the Trojan centered system of reference for the two body model would be

inertial as the Trojan-spacecraft system would not be in rotation.

Definition 1 (Two-Body Kepler energy)

In the Trojan centered frame (F1) defined above, with conjugate variables velocity-

position (x,X), the two-body Kepler energy of the P4 with respect to the P3 is defined

as:

HM
1 (s,S) :=

|S|2

2µ
− µm

|s|
. (2.29)
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2.2.3 Trojan centered, rotating reference frame

The Trojan centered rotating system of reference (F2) is now considered, rotating

anticlockwise with angular velocity ω = [0, 0, 1]. In this frame all the primaries are at

rest, their positions coinciding ∀t ≥ 0 with the initial positions as in (2.22). See Fig.

2.3. The change of coordinates is defined by the matrix:

Figure 2.3: F2) Trojan centered, rotating ( ω = [0, 0, 1]) reference frame

R(t) =

 cos (t) sin (t) 0

− sin (t) cos (t) 0

0 0 1

 , (2.30)

which defines the position vector of the spacecraft x = [x, y, z] in the rotating system

as:

x = R(t)s. (2.31)

Therefore: 
x = sx cos (t) + sy sin (t)

y = −sx sin (t) + sy cos (t)

z = sz.

(2.32)
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Differentiating with respect to time:
ẋ = ṡx cos (t) + ṡy sin (t)− sx sin (t) + sy cos (t)

ẏ = −ṡx sin (t) + ṡy cos (t)− sx cos (t)− sy sin (t)

ż = ṡz.

(2.33)

Differentiating again with respect to time:

ẍ = s̈x cos (t) + s̈y sin (t)− 2ṡx sin (t) + 2ṡy cos (t)

−sx cos (t)− sy sin (t)

ÿ = −s̈x sin (t) + s̈y cos (t)− 2ṡx cos (t)− 2ṡy sin (t)

+sx sin (t)− sy cos (t)

z̈ = s̈z.

(2.34)

In this system of reference the equations of motion in (2.25) becomes:

µẍ = µx+ 2µẏ + µs̈x cos t+ µs̈y sin t

= µx+ 2µẏ − ∂U2(x)
∂x + µ

√
1−M +M2 cos τ0

= µ
(
x+ (1

2 −M)
)

+ 2µẏ − ∂U2(x)
∂x

µÿ = µy − 2µẋ− µs̈x sin t+ µs̈y cos t

= µy − 2µẋ− ∂U2(x)
∂y + µ

√
1−M +M2 sin τ0

= µ
(
y +

√
3

2

)
− 2µẋ− ∂U2(x)

∂y

µz̈ = µs̈z

= −∂U2(x)
∂z ,

(2.35)

with

U2(x) = − µ(1−M)

|x−[cos ( 4
3
π),sin ( 4

3
π),0]| −

µM
|x−[cos (−π

3
),sin (−π

3
),0]| −

µm
|x| . (2.36)

Equation (2.35) is equivalent to the Hamiltonian system:{
ẋ = ∂H2(x,X)

∂X

Ẋ = −∂H2(x,X)
∂x

(2.37)

with Hamiltonian

H2(x,X) :=
1

2µ
|X|2 − x×X + U2(x)− µ

√
1−M +M2[cos (τ0), sin (τ0), 0].x (2.38)

in the conjugated variables X, x ∈ R3 with symplectic form dX ∧ dx. In this system

of reference the two-body Kepler energy remains unchanged as the Trojan-spacecraft

system would not be in rotation (i.e. for the R2BP the systems of reference (F1) and
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(F2) coincides).

HM
2 (x,X) :=

|X|2

2µ
− µm

|x|
. (2.39)

2.2.4 The equilateral triangle CR4BP in polar coordinates

In the reference frame (F2) a canonic change of coordinates is performed, to pass to

the polar coordinates (r, θ,R,Θ). As said before the natural motion of the spacecraft,

before the inclusion of the low trust, can be considered as planar.

The symplectic transformation is given by:

x = r[cos (θ), sin (θ), 0]

X = [R cos (θ)− Θ
r sin (θ), R sin (θ) + Θ

r cos (θ), 0]
(2.40)

Figure 2.4: (F2), polar coordinates: the angle variables describing the system

The system is thus transformed into the autonomous system:
ṙ = ∂H3(r,θ,R,Θ)

∂R

θ̇ = ∂H3(r,θ,R,Θ)
∂Θ

Ṙ = −∂H3(r,θ,R,Θ)
∂r

Θ̇ = −∂H3(r,θ,R,Θ)
∂θ

(2.41)

with Hamiltonian
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H3(r, θ,R,Θ) :=
1

2µ

(
R2 +

Θ2

r2

)
−Θ + U3(r, θ,R,Θ)− µ

√
1−M +M2r cos (θ − τ0),

(2.42)

with

U3(r, θ,R,Θ) = − µ(1−M)√
r2+1−2r cos (θ− 4

3
π)
− µM√

r2+1−2r cos (θ+π
3

)
− µm

r . (2.43)

The two-Body Kepler energy becomes:

HM
3 (r, θ,R,Θ) :=

1

2µ

(
R2 +

Θ2

r2

)
− µm

r
. (2.44)

2.2.5 The equilateral triangle CR4BP in Delaunay coordinates

The Delaunay coordinates are symplectic action-angle variables (`, g, L,G), where the

angles ` and g are conjugate to the actions L and G respectively, where

• ` is the mean anomaly measured from the pericenter;

• g is the argument of the pericenter;

• L is related to the major semi-axis, a, by L = µ
√
ma

• G is the total angular momentum of the spacecraft with respect to the Asteroid (in

the inertial frame), related to the eccentricity and the variable L by

e =

√
1− G2

L2
; (2.45)

Moreover the relation between the True anomaly f and the Eccentric anomaly u is

defined as:

tan

(
f

2

)
=

√
1 + e

1− e
tan

(u
2

)
, (2.46)

which, in particular, implies

r = a(1− e cosu) = a
1− e2

1 + e cos f
. (2.47)

The change of coordinates from the polar variables to the Delaunay coordinates is

generated by the function

S = Gθ +

∫ r

rmin

√
−G

2

r2
+ 2

mµ2

r
− µ4m2

L2
dr (2.48)
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with rmin = a(1− e) by (2.47).

It is completely canonical as

d` ∧ dL+ dg ∧ dG = dr ∧ dR+ dθ ∧ dΘ. (2.49)

Therefore:

R = ∂S
∂r =

√
−G2

r2 + 2mµ
2

r −
µ4m2

L2

Θ = ∂S
∂θ = G

` = ∂S
∂L

= ∂
∂L

(
Gθ +

∫ r
rmin

√
−G2

r2 + 2mµ
2

r −
µ4m2

L2 dr

)
=
∫ r
rmin

µ4m2

L3

√
−G2

r2
+2mµ

2

r
−µ4m2

L2

dr

=
∫ r
rmin

(1−e cosu)
ae sinu dr

=
∫ u

0 (1− e cosu)du

= u− e sinu

g = ∂S
∂G

= ∂
∂G

(
Gθ +

∫ r
rmin

√
−G2

r2 + 2mµ
2

r −
µ4m2

L2 dr

)
= θ −

∫ r
rmin

G

r2

√
−G2

r2
+2mµ

2

r
−µ4m2

L2

dr

= θ − G
L

∫ u
0

1
(1−e cosu)du

= θ − G
L
√

1−e2
∫ f

0 df

= θ − f,

(2.50)

where:
dr
du = ae sinu
du
d` = 1

1+e cosu
df
d` = r2

a2

√
1− e2

(2.51)

The system becomes: 
˙̀ = ∂H4(`,g,L,G)

∂L

ġ = ∂H4(`,g,L,G)
∂G

L̇ = −∂H4(`,g,L,G)
∂`

Ġ = −∂H4(`,g,L,G)
∂g

(2.52)

with Hamiltonian

H4(`, g, L,G) := −µ
3m2

2L2
−G+ U4(`, g, L,G)− µ

√
1−M +M2r cos (g + f − τ0),

(2.53)

with

U4(`, g, L,G) = − µ(1−M)√
r2+1−2r cos (g+f− 4

3
π)
− µM√

r2+1−2r cos (g+f+π
3

)
. (2.54)
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Figure 2.5: (F2) Delaunay coordinates: the angles describing the system

Finally, following the usual procedure for the Delaunay coordinates (see for example

[25]), the free mass parameter µ is set to be equal to m−
2
3 . This m−

2
3 is an effective

mass scaling for the Hamiltonian system, and is therefore usually used to obtain the

standard form of the integrable part of the Hamiltonian i.e. − 1
2L2 . This yields:

H4(`, g, L,G) := − 1

2L2
−G+ U4(`, g, L,G)−m−

2
3

√
1−M +M2r cos (g + f − τ0),

(2.55)

with

U4(`, g, L,G) = − m−
2
3 (1−M)√

r2+1−2r cos (g+f− 4
3
π)
− m−

2
3M√

r2+1−2r cos (g+f+π
3

)
. (2.56)

In Delaunay variables, the two-Body Kepler energy HM
4 (`, g, L,G) takes the form:

HM
4 (`, g, L,G) = −µ3m2

2L2

= − 1
2L2

(2.57)

Calling
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ρ =
√

1−M +M2r cos (g + f − τ0)

= m
1
3L2

[
cos g

(
(1

2 −M)(cosu− e) +
√

3
2

√
1− e2 sinu

)
+ sin g

(√
3

2 (cosu− e)− (1
2 −M)

√
1− e2 sinu

)]
ρ1 = r cos (g + f − 4

3π)

= −m
1
3L2

[
cos g

(
1
2(cosu− e) +

√
3

2

√
1− e2 sinu

)
+ sin g

(
−1

2

√
1− e2 sinu+

√
3

2 (cosu− e)
)]

ρ2 = r cos (g + f + π
3 )

= m
1
3L2

[
cos g

(
1
2(cosu− e)−

√
3

2

√
1− e2 sinu

)
+ sin g

(
−1

2

√
1− e2 sinu−

√
3

2 (cosu− e)
)]

(2.58)

The Hamiltonian (2.55) becomes:

H∗ = − 1

2L2
−G−m−

2
3 ρ− m−

2
3 (1−M)√

r2 + 1− 2ρ1

− m−
2
3M√

r2 + 1− 2ρ2

. (2.59)

The equation of motions of the Hamiltonian (2.59) are:

˙̀ =
dH4

dL
=
dH∗

dL
= ∂LH

∗ + ∂rH
∗(∂Lr + (∂ur∂eu+ ∂er)∂Le) + ∂ρH

∗(∂Lρ+ (∂uρ∂eu+ ∂eρ)∂Le)

+∂ρ1H
∗(∂Lρ1 + (∂uρ1∂eu+ ∂eρ1)∂Le) + ∂ρ2H

∗(∂Lρ2 + (∂uρ2∂eu+ ∂eρ2)∂Le)

ġ =
dH4

dG
=
dH∗

dG
= ∂GH

∗ + ∂rH
∗(∂ur∂eu+ ∂er)∂Ge+ ∂ρH

∗(∂uρ∂eu+ ∂eρ)∂Ge

+∂ρ1H
∗(∂uρ1∂eu+ ∂eρ1)∂Ge+ ∂ρ2H

∗(∂uρ2∂eu+ ∂eρ2)∂Ge

L̇ = −dH4

d`
= −dH

∗

d`
= −∂rH∗∂ur∂`u− ∂ρH∗∂uρ∂`u− ∂ρ1H

∗∂uρ1∂`u− ∂ρ2H
∗∂uρ2∂`u

Ġ = −dH4

dg
= −dH

∗

dg

= −∂ρH∗∂gρ− ∂ρ1H
∗∂gρ1 − ∂ρ2H

∗∂gρ2 . (2.60)

where
∂LH

∗ = 1
L3 ,

∂GH
∗ = −1 ,

∂rH
∗ = m−

2
3 (1−M)r

(
√
r2+1−2ρ1)3

+ m−
2
3Mr

(
√
r2+1−2ρ2)3

,

∂ρH
∗ = −m−

2
3 ,

∂ρ1H
∗ = −m−

2
3 (1−M)

(
1

(
√
r2+1−2ρ1)3

)
,

∂ρ2H
∗ = −m−

2
3M

(
1

(
√
r2+1−2ρ2)3

)
,

(2.61)
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Moreover:

∂Lr = 2Lm
1
3 (1− e cosu)

∂ur = eL2m
1
3 sinu

∂er = −L2m
1
3 cosu

∂Lρ = 2m
1
3L
[
cos g

(
(1

2 −M)(cosu− e) +
√

3
2

√
1− e2 sinu

)
+ sin g

(√
3

2 (cosu− e)− (1
2 −M)

√
1− e2 sinu

)]
∂gρ = m

1
3L2

[
− sin g

(
(1

2 −M)(cosu− e) +
√

3
2

√
1− e2 sinu

)
+ cos g

(√
3

2 (cosu− e)− (1
2 −M)

√
1− e2 sinu

)]
∂uρ = m

1
3L2

[
cos g

(
−(1

2 −M) sinu+
√

3
2

√
1− e2 cosu

)
+ sin g

(
−
√

3
2 sinu− (1

2 −M)
√

1− e2 cosu
)]

∂eρ = m
1
3L2

[
cos g

(
−(1

2 −M)−
√

3
2

e√
1−e2 sinu

)
+ sin g

(
−
√

3
2 + (1

2 −M) e√
1−e2 sinu

)]
∂Lρ1 = 2m

1
3L
[
cos g

(
−1

2(cosu− e)−
√

3
2

√
1− e2 sinu

)
+ sin g

(
1
2

√
1− e2 sinu−

√
3

2 (cosu− e)
)]

∂gρ1 = m
1
3L2

[
− sin g

(
−1

2(cosu− e)−
√

3
2

√
1− e2 sinu

)
+ cos g

(
1
2

√
1− e2 sinu−

√
3

2 (cosu− e)
)]

∂uρ1 = m
1
3L2

[
cos g

(
+1

2 sinu−
√

3
2

√
1− e2 cosu

)
+ sin g

(
1
2

√
1− e2 cosu+

√
3

2 sinu
)]

∂eρ1 = m
1
3L2

[
cos g

(
1
2 +

√
3

2
e√

1−e2 sinu
)

+ sin g
(
−1

2
e√

1−e2 sinu+
√

3
2

)]
∂Lρ2 = 2m

1
3L
[
cos g

(
1
2(cosu− e)−

√
3

2

√
1− e2 sinu

)
+ sin g

(
−1

2

√
1− e2 sinu−

√
3

2 (cosu− e)
)]

∂gρ2 = m
1
3L2

[
− sin g

(
1
2(cosu− e)−

√
3

2

√
1− e2 sinu

)
+ cos g

(
−1

2

√
1− e2 sinu−

√
3

2 (cosu− e)
)]

∂uρ2 = m
1
3L2

[
cos g

(
−1

2 sinu−
√

3
2

√
1− e2 cosu

)
+ sin g

(
−1

2

√
1− e2 cosu+

√
3

2 sinu
)]

∂eρ2 = m
1
3L2

[
cos g

(
−1

2 +
√

3
2

e√
1−e2 sinu

)
+ sin g

(
1
2

e√
1−e2 sinu+

√
3

2

)]

(2.62)
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Furthermore, since e =
√

1− G2

L2 and u = u(`, e) solves the Kepler equation ` =

u− e sinu, it is found that

∂Le = G2

L3
√

1−G2

L2

= (1−e2)
eL

∂Ge = − G

L2
√

1−G2

L2

= −
√

1−e2
eL

∂eu = sinu+ e cosu ∂eu⇒ ∂eu = sinu
1−e cosu

∂`u = 1 + e cosu ∂`u ⇒ ∂`u = 1
1−e cosu .

(2.63)

In conclusion:

˙̀ = ∂LH =

1
L3 + L

m
1
3

{(
− (1−M)

(
√

1−2ρ1+r2)3

)[
cos (g − 4

3π)
(

2 cosu− e− 1
e −

sin2 u(1−e2)
e(1−e cosu)

)
+ sin (g − 4

3π)
(
−
√

1− e2 sinu(1 + (1−e2) cosu
e(1−e cosu) )

)]
+

(
− M

(
√

1−2ρ2+r2)3

)[
cos (g + 1

3π)
(

2 cosu− e− 1
e −

sin2 u(1−e2)
e(1−e cosu)

)
+ sin (g + 1

3π)
(
−
√

1− e2 sinu(1 + (1−e2) cosu
e(1−e cosu) )

)]
+
(
−
√

1−M +M2
) [

cos (g − τ0)
(

2 cosu− e− 1
e −

sin2 u(1−e2)
e(1−e cosu)

)
+ sin (g − τ0)

(
−
√

1− e2 sinu(1 + (1−e2) cosu
e(1−e cosu) )

)]}
+L3

(
1−M

(
√

1−2ρ1+r2)3
+ M

(
√

1−2ρ2+r2)3

)[
3− 3e cosu+ 2e2 cos2 u− 1

e cosu− e2
]
(2.64)

ġ = ∂GH =

−1 + L

m
1
3

{(
− 1−M

(
√

1−2ρ1+r2)3

)[
cos (g − 4

3π)
(√

1−e2
e (1 + sin2 u

(1−e cosu))
)

+

+ sin (g − 4
3π) sinu

(
−e+cosu
e(1−e cosu)

)]
+

(
− M

(
√

1−2ρ2+r2)3

)[
cos (g + 1

3π)
(√

1−e2
e (1 + sin2 u

(1−e cosu))
)

+

+ sin (g + 1
3π) sinu

(
−e+cosu
e(1−e cosu)

)]
+
(
−
√

1−M +M2
) [

cos (g − τ0)
(√

1−e2
e (1 + sin2 u

(1−e cosu))
)

+

+ sin (g − τ0) sinu
(
−e+cosu
e(1−e cosu)

)]}
+L3

(
1−M

(
√

1−2ρ1+r2)3
+ M

(
√

1−2ρ2+r2)3

)[√
1−e2
e (cosu− e)

]

(2.65)
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L̇ = −∂`H =

− L2

m
1
3

{(
1−M

(
√

1−2ρ1+r2)3

)[
cos (g − 4

3π)
(

sinu
1−e cosu

)
+ sin (g − 4

3π)
(√

1−e2 cosu
1−e cosu

)]
+

(
M

(
√

1−2ρ2+r2)3

)[
cos (g + 1

3π)
(

sinu
1−e cosu

)
+ sin (g + 1

3π)
(√

1−e2 cosu
1−e cosu

)]
+
(√

1−M +M2
) [

cos (g − τ0)
(

sinu
1−e cosu

)
+ sin (g − τ0)

(√
1−e2 cosu
1−e cosu

)]}
−L4

(
1−M

(
√

1−2ρ1+r2)3
+ M

(
√

1−2ρ2+r2)3

)
(e sinu) .

(2.66)

Ġ = −∂gH =

− L2

m
1
3

{(
1−M

(
√

1−2ρ1+r2)3

)(
sin (g − 4

3π)(cosu− e) + cos (g − 4
3π)
√

1− e2 sinu
)

+

(
M

(
√

1−2ρ2+r2)3

)(
sin (g + 1

3π)(cosu− e) + cos (g + 1
3π)
√

1− e2 sinu
)

+
(√

1−M +M2
)(

sin (g − τ0)(cosu− e) + cos (g − τ0)
√

1− e2 sinu
)}

(2.67)

Since G appears in the Hamiltonian vector field only through e, it is convenient to

use e instead of G as the independent variable. Then the value of G is recovered by

the formula

G = L
√

1− e2 .

The equation for ė is:

ė = ∂LeL̇+ ∂GeĠ =

− L

m
1
3

{(
1−M

(
√

1−2ρ1+r2)3

)[
cos (g − 4

3π)
(

(1−e2) sinu cosu
1−e cosu

)
+ sin (g − 4

3π)
√

1−e2
1−e cosu(

−2e cosu+ 1 + cos2 u
)]

+

(
M

(
√

1−2ρ2+r2)3

)[
cos (g + 1

3π)
(

(1−e2) sinu cosu
1−e cosu

)
+ sin (g + 1

3π)
√

1−e2
1−e cosu(

−2e cosu+ 1 + cos2 u
)]

+
(√

1−M +M2
) [

cos (g − τ0)
(

(1−e2) sinu cosu
1−e cosu

)
+ sin (g − τ0)

√
1−e2

1−e cosu(
−2e cosu+ 1 + cos2 u

)]}
−L3

(
1−M

(
√

1−2ρ1+r2)3
+ M

(
√

1−2ρ2+r2)3

)(
(1− e2) sinu

)
=: w(L, e, `, g) .

(2.68)

In summary, in the variables (L, e, `, g), the equation of motions are

L̇ = −∂`H , ė = w , ˙̀ = ∂LH , ġ = ∂GH . (2.69)
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2.3 The inhomogeneous restricted two body problem

In the close vicinity of the asteroid the system is modeled as a two body problem,

which will be analysed in Chapter 4. Such dynamical model is here set and described

for different systems of reference and sets of coordinates which are necessary for the

analysis contained in the next chapters.

In this model an inhomogeneous primary body is considered, which rotates uniformly

around its axes of greatest inertia with constant angular velocity Ω.

The units of measure will not be scaled, thus the mass of the body is m3.

2.3.1 Trojan centered, fixed, inertial reference frame

It is set a fixed inertial frame (F3) with the origin coinciding with the center of mass

of the Trojan and the third axis parallel to the axis of greatest inertia of the body such

that Ω = [0, 0,Ω]. Let s = [sx, sy, sz] be the position vector of the point mass P in this

system of reference.

s̈ = −∂U2b
1 (s)
∂s , (2.70)

where U2b
1 (s) is the inhomogeneous potential of the irregular body which will be for-

mulated in terms of the spherical harmonics coefficient in Section 2.4.

System (2.70) is equivalent to the Hamiltonian system:{
ṡ =

∂H2b
1 (s,S)
∂S

Ṡ = −∂H2b
1 (s,S)
∂s

(2.71)

with Hamiltonian:

H2b
1 (s,S) = 1

2 |S|
2 + U2b

1 (s). (2.72)

The formulation of the inhomogeneous potential U2b
1 (s) generated by the irregular Tro-

jan body, will be discussed in the Section 2.4.

2.3.2 Trojan centered, rotating reference frame

The Trojan centered rotating system of reference (F4) is now considered, rotating

anticlockwise with angular velocity Ω = [0, 0,Ω]. The change of coordinates is given

by the matrix:

R′(t) =

 cos (Ωt) sin (Ωt) 0

− sin (Ωt) cos (Ωt) 0

0 0 1

 , (2.73)

which defines the position vector of the spacecraft x = [x, y, z] in the rotating system

as:

x = R′(t)s. (2.74)
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In this system of reference the equations of motion in (2.70) become:

ẍ = Ω2x+ 2Ωẏ + s̈x cos t+ s̈y sin t

= Ω2x+ 2Ωẏ − ∂U(x)
∂x

ÿ = Ω2y − 2Ωẋ− s̈x sin t+ s̈y cos t

= Ω2y − 2Ωẋ− ∂U(x)
∂y

z̈ = s̈z

= −∂U(x)
∂z ,

(2.75)

Equation (2.75) is equivalent to the Hamiltonian system:{
ẋ =

∂H2b
2 (x,X)
∂X

Ẋ = −∂H2b
2 (x,X)
∂x

(2.76)

with Hamiltonian

H2b
2 (x,X) :=

1

2
|X|2 − Ωx×X + U2b

2 (x), (2.77)

in the conjugated variables X, x ∈ R3 with symplectic form dX ∧ dx, where, again,

the potential U2b
2 (x) will be discussed in Section 2.4.

2.3.3 The R2BP in Polar-Nodal coordinates

It is convenient to express the Hamiltonian and the perturbing potential using the so

called nodal-polar variables [26] so that it may easily be transformed to the Delaunay

coordinates in the later chapters.

. This set of variables, will here be indicated as (r, θ, ν, R,Θ, N), where r, θ, and ν are

respectively the distance of the spacecraft from origin of the axes, the angular distance

of the spacecraft from the line of the ascending node on the orbital plane, and the

argument of nodes (see Fig. 2.6), while R, Θ, and N are their respective conjugate

momenta.

Remark that this model spacecraft can move around the Trojan in the three dimensions,

therefore the four variables used before to describe the system in polar coordinates are

not sufficient.



CHAPTER 2. HAMILTONIAN DYNAMICS ABOUT TROJAN ASTEROIDS 41

The transformation required is given in [27]:

x = r(cos θ cos ν − sin θ cos I sin ν)

y = r(cos θ sin ν + sin θ cos I cos ν)

z = r sin θ sin I

X = (R cos θ − Θ
r sin θ) cos ν − (R sin θ + Θ

r cos θ) cos I sin ν

Y = (R cos θ − Θ
r sin θ) sin ν + (R sin θ + Θ

r cos θ) cos I cos ν

Z = (R sin θ + Θ
r cos θ) sin I

(2.78)

with N = |Θ| cos I.

Figure 2.6: The Polar-Nodal angles

In these coordinates the Hamiltonian takes the form:

H2b
3 (r, θ, ν, R,Θ, N) = 1

2(R2 + Θ2

r2 )− ΩN + U2b
3 (r, θ, ν, ,Θ, N), (2.79)

where U2b
3 (r, θ, ν, ,Θ, N) is formulated in Section (2.4).
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2.4 The gravitational potential

By Newton’s Gravitational law the potential generated by a body of mass m3 with

spherical symmetry whose position vector is x1, on a particle set in x is given by:

U(x) = − Gm3

|x− x1|
, (2.80)

which can be generalized for a discrete mass distribution of N masses m
(i)
3 whose po-

sition vector is xi, as the superimposition of the single potential of each mass:

U(x) = −
N∑
i=1

Gm(i)
3

|x− xi|
(2.81)

An arbitrarily shaped body B of finite extension is now considered. The potential

U2b
2 (x) generated from such body, in the reference frame (F4) is firstly formulated. To

this end denote with x′ ∈ R3 the position of the infinitesimal mass element dm3 fixed

in this reference frame.

Figure 2.7: The potential generated by an arbitrarily shaped body B is the integral over
the volume the infinitesimal mass elements dm3

The gravity potential of such a continuous mass distribution on an external point

P set in x ∈ R3 can be obtained from (2.81) substituting the sum with an integral over

the volume of the body, namely:

U(x) = −G
∫
V

ρ(x′)

|x− x′|
dV (2.82)

where ρ(x′) is the density of the body and dV is the infinitesimal element of volume

(i.e. dm3 = ρ(x′)dV ) and V is the volume of the body.

Notice that, to get back to (2.80) it is sufficient to impose the spherical symmetry

property, that is the radial distribution of density ρ(x̂) = ρ(−x̂), ∀x̂ ∈ B.
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With a few algebraic manipulations, calling r = |x| and r′ = |x′|, it can be shown that:

U(r, r′, ψ) = −G
∫
V

ρ(x′)√
r2 − 2x · x′ + r′2

dV

= −Gr
∫
V

ρ(x′)√
1− 2 r

′

r cos (ψ) +
(
r′

r

)2dV, (2.83)

where ψ is the colatitude of x′ over x i.e. the angle between x and x′.

Indicating with Pn(ξ) the Legendre polynomial of degree n, the expansion

(1− 2ξη + η2)−
1
2 =

∞∑
n=0

ηnPn(ξ) (2.84)

is now used, which can be demonstrated by the binomial theorem generalized for all

exponents (other than only nonnegative integers).

Substituting ξ = cos (ψ) and η = r′

r yields, for r′

r < 1 (ray of convergence of the series):

1√
1− 2 r

′

r cos (ψ) +
(
r′

r

)2 =

∞∑
n=0

(
r′

r

)n
Pn(cos (ψ)). (2.85)

Then, substituting into the potential (2.83), yields, for r′

r < 1:

U(r, ψ) = −G
r

∫
V

∞∑
n=0

(
r′

r

)n
Pn(cos (ψ))ρ(x′)dV. (2.86)

The condition r′

r < 1 implies that the model is valid only outside the reference sphere

that is the sphere circumscribing the asteroid.

Figure 2.8: The angle ψ can be expressed in terms of the latitude δ and longitude λ

Expressing the angle ψ in terms of the latitude δ and longitude λ it is obtained that:

cosψ = sin δ sin δ′ + cos δ cos δ′ cos (λ− λ′) (2.87)
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and the generic Legendre Polynomial Pn(cosψ) decomposes to:

Pn(cosψ) =
n∑

m=0

(
(2− δm,0)

(n−m)!

(n+m)!
Pmn (sin δ)Pmn (sin δ′) cos (m(λ− λ′))

)
(2.88)

(see [28]), where Pmn (x) is the associated Legendre function of degree n and order m

and δm,0 (different from the latitude δ) is the Kronecker delta that gives 1 if m = 0,

and 0 elsewhere1.

The potential becomes:

U(r, r′, δ, λ) = −Gr
∫
V

∞∑
n=0

(
r′

r

)n n∑
m=0

(
(2− δm,0)

(n−m)!

(n+m)!
Pmn (sin δ)Pmn (sin δ′)·

· cos (m(λ− λ′))) ρ(r′, δ′, λ′)dV

(2.89)

Now, calling, ∀0 ≤ m ≤ n:

Cn,m =
(2−δm,0)

m3

(n−m)!
(n+m)!

∫
V

(
r′

α

)n
Pn,m(sin δ′) cos (mλ′)ρ(r′, δ′, λ′)dV

Sn,m =
(2−δm,0)

m3

(n−m)!
(n+m)!

∫
V

(
r′

α

)n
Pn,m(sin δ′) sin (mλ′)ρ(r′, δ′, λ′)dV

(2.90)

where α is a conventionally chosen reference radius and it has been used that Pmn =

(−1)mPn,m, to be consistent with [29]. Note that, in particular, the equations in (2.90)

imply that:

C0,0 = 1

Cn,0 = 1
m3

∫
V

(
r′

α

)n
Pn(sin δ′)ρ(r′, δ′, λ′)dV ∀n > 0

Sn,0 = 0 ∀n ≥ 0

(2.91)

Moreover, as the origin of the system of reference is set in the center of mass of the

asteroid, it can be demonstrated that the term C1,0 = 0.

The coefficients C2,0 and C2,2 express the “ellipticity” and “oblateness” of the body.

Therefore it is found:

U(r, δ, λ) = −M̄
r

∞∑
n=0

(α
r

)n n∑
m=0

(−1)m (Cn,m cos (mλ) + Sn,m sin (mλ))Pmn (sin δ)

(2.92)

where M̄ = Gm3.

1The index m must not be confused with any mass parameter.
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Calling:

F̄1
n,m(λ, δ) := (−1)mPmn (sin δ) cos (mλ)

F̄2
n,m(λ, δ) := (−1)mPmn (sin δ) sin (mλ)

where:

F̄1
n,m(λ, δ) := (−1)mPmn (sin δ) cos (mλ)

= (cos δ)mn!2m!2

2n

n∑
j=0

min{j,m}∑
`=max{0,j+m−n}

⌊
m
2

⌋∑
p=0

(
(−1)j+`+p·

· 1
(j)!(n−j)!`!(m−`)!(n−m−j+`)!(j−`)!(2p)!(m−2p)! ·

·(1 + sin δ)n−m−j+`(1− sin δ)j−` cos (λ)m−2p sin (λ)2p
)

F̄2
n,m(λ, δ) := (−1)mPmn (sin δ) sin (mλ)

= (cos δ)mn!2m!2

2n

n∑
j=0

min{j,m}∑
`=max{0,j+m−n}

⌊
m−1

2

⌋∑
p=0

(
(−1)j+`+p·

· 1
(j)!(n−j)!`!(m−`)!(n−m−j+`)!(j−`)!(2p+1)!(m−2p−1)! ·

·(1 + sin δ)n−m−j+`(1− sin δ)j−` cos (λ)m−2p−1 sin (λ)2p+1
)
,

(2.93)

which can be demonstrated by: ∀m ∈ N the fact that:

cos (mx) =

⌊
m
2

⌋∑
p=0

(
m

2p

)
(−1)p cos (x)m−2p sin (x)2p

sin (mx) =

⌊
m−1

2

⌋∑
p=0

(
m

2p+ 1

)
(−1)p cos (x)m−2p−1 sin (x)2p+1

(2.94)

and

Pmn (x) = (−1)m(1− x2)
m
2
n!2m!2

2n

n∑
j=0

min{j,m}∑
`=max{0,j+m−n}

(
(−1)j+`+p·

· 1
(j)!(n−j)!`!(m−`)!(n−m−j+`)!(j−`)!(1 + x)n−m−j+`(1− x)j−`

)
.

(2.95)

The formulation for the potential, expressed in the reference frame (F4), to be substi-
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tuted in (2.77), is thus obtained:

U2b
2 (x) = U2b

2 (r, δ, λ) = −M̄
r

∞∑
n=0

(α
r

)n n∑
m=0

(
Cn,mF̄1

n,m(λ, δ) + Sn,mF̄2
n,m(λ, δ)

)
(2.96)

in which the following relations must be considered:

r = |x| =
√
x2 + y2 + z2

cos δ =

√
x2+y2√

x2+y2+z2

sin δ = z√
x2+y2+z2

cosλ = x√
x2+y2

sinλ = y√
x2+y2

(2.97)

together with their inverse: √
x2 + y2 = r cos δ

z = r sin δ

x = r cos δ cosλ

y = r sinλ cos δ

(2.98)

The potential is now expressed in the Nodal-Polar coordinates, by (2.78), which yields:

F1
n,m(I, θ, ν) = 1

2nm!2n!2
n∑
j=0

min{j,m}∑
`=max{0,j+m−n}

bm
2
c∑

p=0

(
(−1)j+`+p·

·
(

1
j!(n−j)!`!(m−`)!(n−m−j+`)!(j−`)!(2p)!(m−2p)!

)
(1 + sin (θ) sin (I))n−m−j+`·

·(1− sin (θ) sin (I))j−`(cos (θ) cos ν − cos (I) sin (θ) sin (ν))m−2p·

·(cos (θ) sin (ν) + cos (I) sin (θ) cos (ν))2p
)

(2.99)

and
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F2
k,m(I, θ, ν) = 1

2nm!2n!2
n∑
j=0

min{j,m}∑
`=max{0,j+m−n}

bm−1
2
c∑

p=0

(
(−1)j+`+p·

·
(

1
j!(n−j)!`!(m−`)!(n−m−j+`)!(j−`)!(2p+1)!(m−2p−1)!

)
·

·(1 + sin (θ) sin (I))n−m−j+`(1− sin (θ) sin (I))j−`·

·(cos (θ) cos ν − cos (I) sin (θ) sin (ν))m−2p−1·
·(cos (θ) sin (ν) + cos (I) sin (θ) cos (ν))2p+1

)

(2.100)

where it should be noted that, in F1
n,m(λ, δ), the term

(
1
D

)m
, with

D =
√

cos θ2 + cos I2 sin θ2, arising from cos (λ)m−2p sin (λ)2p in (2.93) cancels with the

(cos δ)m = Dm in the same formula; analogously in F2
n,m(λ, δ), where

(
1
D

)m
arises from

cos (λ)m−2p−1 sin (λ)2p+1.

The potential becomes:

U2b
3 (r, θ, ν, ,Θ, N) = −M̄

r

∞∑
n=0

(α
r

)n n∑
m=0

(
Cn,mF1

n,m(I, θ, ν) + Sn,mF2
n,m(I, θ, ν)

)
,

(2.101)

which has to be substituted into (2.79).

The same potential can also be derived using the addition formula for non scaled spher-

ical harmonics [29] and Wigner’s rotation theorem for non scaled spherical harmonics

[30]. This derivation, see Appendix A, leads to:

Ū(r, θ, ν, ,Θ, N) = −
∞∑
n=0

n∑
m=0

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j ·

· 1
rn+1 (An,m,j,t cos (mν − jθ) + Bn,m,j,t sin (mν − jθ)) ,

(2.102)

where

ci := ci(N,Θ) = cos ( I2) =
√

1+cos I
2 =

√
1+N

Θ
2

si := si(N,Θ) = sin ( I2) =
√

1−cos I
2 =

√
1−N

Θ
2

(2.103)
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and:

An,m,j,t = Ḡn,m,j,t
(
Cn,m cos (π2 (j +m))− Sn,m sin (π2 (j +m))

)
Bn,m,j,t = Ḡn,m,j,t

(
Cn,m sin (π2 (j +m)) + Sn,m cos (π2 (j +m))

)
,

(2.104)

and

Ḡn,m,j,t = (−1)m+3t−j+1M̄αn (n+m)!(n−j)!
t!(n+j−t)!(n+m−t)!(t−m−j)!(−1)

n+j
2

1
2n

(n+j)!

(n+j
2 )!(n−j2 )!

·

·((n+ j)mod2 − 1)

(2.105)

where α is a conventionally chosen reference radius, usually taken as the radius of the

circumscribing sphere of the small body and xmody stands for the value of x modulus

y, i.e. the integer reminder of the division of x by y, and where Cn,m and Sn,m as in

(2.90).

This formulation can be shown to be completely equivalent to the one in (2.101) and

will be used hereafter.



Chapter 3

The WSB and the range of

validity of the two models

In this chapter the range of applicability of the two models, the inhomogeneous Re-

stricted Two Body Problem and the Lagrangian CR4BP, is estimated as an application

of the WSB. This is only a minor application of the theory concerning the WSB concept

which is introduced and developed in this Chapter.

3.1 WSB: state of art

In January 1990 Japan’s ISAS Institute launched a pair of small spacecraft linked to-

gether into an elliptic Earth orbit. The smaller one, called MUSES-B, detached and

lost communication connections; it was supposed to go to the Moon and into lunar

orbit using a Hohmann transfer. The larger craft, MUSES-A, still orbiting the Earth,

was meant to send and collect communications to and from MUSES-B and perform sci-

entific experiments while in Earth orbit. It was then desired by the ISAS Institute to

try to get MUSES-A to the Moon as a replacement for MUSES-B, with a desired lunar

periapsis radius at capture r equal to rMoon+100km. MUSES-A was never designed to

go to the Moon, and therefore it had a very small ∆V capability of approximately 100

meters per second (m/s), far less than what is necessary to be placed into lunar orbit

using an Hohmann transfer. A solution was found by Belbruno and Miller [31] at the

Jet Propulsion Laboratory (JPL) in June 1990 to enable MUSES-A, renamed Hiten,

to reach the Moon on a ballistic capture transfer to the region W, thus named lunar

Weak Stability Boundary. This transfer rescued the Japanese lunar mission; without

it, there was not enough ∆V to get Hiten to the Moon by any other means. Since then

low energy interplanetary transfers by means of WSB have been widely studied (see for

example: [32], [33], [8] and [34]), particularly, arousing the interest in designing lunar

trajectories ([35], [36], [37] and [38]) or to reach other systems of planets [39]. Many

49
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different ways have been proposed for designing them ([40], [41], [42], [43]). All of these

techniques for ballistic capture transfers used this “fuzzy” set, the WSB, upon arrival.

Moreover, the Weak Stability Boundary theory has been applied to ESA’s spacecraft

SMART-1 in 2004 [44], in NASA’s GRAIL mission in 2010 and will be applied again

in ESA’s BepiColombo mission to explore the planet Mercury [45].

There exist a wide range of descriptions of the WSB, which may (and sometimes

may not) help to get a general idea of this Cantor-recalling set. Among them “a gen-

eralization of the Lagrange points and a complicated region surrounding the Moon1”

[31], or “a region in phase space supporting a special type of chaotic motion for special

choices of elliptic initial conditions with respect to m2” [8]. Moreover “a transition

region between the gravitational capture and escape from the Moon in the phase space”

[46] which “supports transitory behavior and the motion associated with this region is

both unstable and chaotic in nature” [47]. Independently from their utility in clarifying

the concept of WSB, these descriptions highlight the complexity of its mathematical

structure.

Edward Belbruno, in [8], was the first to formulate the algorithmic definition of WSB,

presenting its geometry for the Earth-Moon-spacecraft CR3BP, planar case, in terms

of the initial eccentricity, pericenter, altitude and Jacobi constant of the osculating

orbit. Then Garćıa and Gómez in [9] provided a new definition, again algorithmic,

which addressed all the inadequacies of the previous one (see Section 3.3.2), and gave

numerical evidence of the shape of the WSB arising from their definition. Moreover

they introduced a generalisation of this concept: the nth WSB. This is obtained by

monitoring the stability of a trajectory about the Moon after n-cycles, instead of 1

cycle as in [8], and collecting the n boundaries obtained. This generalized boundary

has an interesting fractal appearance and, as conjectured in [48], may be related to the

limit set resulting from the invariant manifolds of the Lyapunov orbits associated to L1

and L2 near the target planet. Such a connection was already suggested in the 1960’s

by Conley. He also conjectured the weak capture for the Earth-Moon-spacecraft R3BP,

suggesting that the invariant manifold structure associated to the unstable collinear

Lagrange points would have to somehow play a role, although he didn’t provide any

demonstration. If proved to be true, that would be a surprising result, providing a new

approach for studying such limit sets in general, with a consequent number of promising

applications to mission design and dynamical astronomy.

However, the nature of the weak stability boundary and its associated dynamics has not

been well understood yet [47], meaning that to give any estimate on this complicated

global limit set normally requires extensive numerical computations.

1As it is mainly applied to the Earth-Moon-Spacecraft CR3BP, the descriptions are usually referred
to the Moon as the target body (m2).
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3.2 Introduction and main results

As, thus far, the existing definitions and theories on the WSB are all algorithmic and

therefore can only be studied in a numerical way, no general, topological properties can

be deduced by them. This implies, in particular, that the WSB, as it can be found

in the literature, cannot be used for aim of this Chapter: apply the WSB to estimate

analytically the range of the stable orbits. Indeed, to get this estimation, which will

then be used in the next chapters as the estimation of the set of applicability of the

two dynamical models proposed, an analytical definition of the WSB set is needed.

To this end, in this thesis a completely new, analytical definition of the WSB, co-

herent with the previous algorithmic definitions, is built in Section 3. Moreover this

theory, usually applied to the Earth-Moon-Spacecraft CR3BP, is here generalized, in

view of the applications, to the Lagrangian autonomous, coplanar CR4BP, therefore

representing a double step further in the development of this theory. However, setting

the mass parameter of the smaller primary to zero, its usual setting, the CR3BP, can

be obtained back. The new, analytical definition introduced in this thesis is then also

compared with previous definitions of WSB from the literature, which highlights the

improvements brought by the analytic definition. Furthermore, as such new definition

is analytic, it allows for the first time some generic topological properties of the WSB

to be deduced, which are here discussed as well. Then the symplectic Delaunay coordi-

nates, unusual for the WSB theories (i.e. not used in the previous literature), are here

used to rewrite the problem. It results that these coordinates are suitable for estimating

analytically the WSB and, consequently, the range of validity of the two models2. The

analytic estimates on the Hamiltonian vector field in Delaunay variables are enabled by

the assumption that, if the spacecraft starts close enough to the smaller primary, then

the mean anomaly is a so called “fast angle”. As these estimates are based on the set

of stable orbits around the smaller primary, they provide a highly accurate description

of this region.

2For low values of the eccentricity good stability estimates can be obtained working with the usual
polar coordinates. The range of applicability of the models will here be estimated for eccentricities
e0 >

1
2

as these lead, in general, to worse estimates (i.e. to a smaller set in which the dynamics can be
considered as dominated by the sole smaller primary). In this case the stability estimates deteriorate
and polar coordinates are no longer convenient for analytic estimates.
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3.3 Various definitions of the WSB

Three main definitions of Weak Stability Boundaries are introduced in this section. The

first is the algorithmic definition given by Belbruno (see for example [8]). The second

is the modified version given in [9], which corrects and completes the former, although

it is still algorithmic. Finally the latter is a new, analytic definition of the WSB, fol-

lowed by a topological analysis of it and a comparison with the previous definitions,

which represents one of the novelties of this thesis. All these definitions are based on

the concept of “ballistic capture”, here presented as well, following the definition in

[8]. Ballistic capture is based on monitoring the sign of Kepler’s energy function of the

target body-spacecraft system, for which, in Chapter 2, various formulations have been

found, for different reference frames, all equivalent to the one given in [8].

3.3.1 Belbruno’s definition of WSB

Consider a solution ψ(t) of the Hamiltonians (2.28), (2.38) or (2.42). Note that it is

not important to specify which one among H1(s,S; t), H2(x,X) or H3(r, θ,R,Θ) is

being considered since they are related by symplectic changes of variables. Obviously

HM = HM
i for some i = 1, 2, 3, the two-body keplerian energy, must be intended in

the same variables of the corresponding Hamiltonian.

Definition 2 (Ballistic Capture)

Given 0 < t1 < ∞. A Spacecraft is said to be ballistically captured by a primary in

t = t1 if

HM (ψ(t1)) ≤ 0 . (3.1)

Definition 3 (Osculating ellipse)

In the asteroid centered frame (F1) the osculating ellipse, is the orbit made by the

spacecraft around the asteroid in the asteroid-spacecraft two-body system (i.e. neglect-

ing the other two primaries) with negative energy. In it the asteroid is set in one of the

foci of the ellipse. In other words it is like considering the motions of the Hamiltonian

HM when the energy is negative.

Recalling the relation between the orbital elements of the osculating ellipse (see, e.g.,

[25] for details): the eccentricity e, the energy E, the major semi-axis a, the minimal

rmin and maximal rmax distance from the asteroid (pericenter and apocenter respec-

tively) are:

E = −µm
2a

, rmin = a(1− e) , rmax = a(1 + e) . (3.2)
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Definition 4 ((r0, e0, ϑ0)-Test orbit)

In (F2) consider radial line l emanating from the asteroid (see Fig.3.1) and inclined

of an angle ϑ0 ∈ S1 with respect to the axis x′, which is the axis passing through the

asteroid and parallel to one joining the other two primaries (see Fig.2.1). Then the

Figure 3.1: Stable and unstable test-orbits

((r0, e0, ϑ0)-Test orbit) is the trajectory of the spacecraft which, at time t = 0:

• departs from the line l at a distance r0 > 0 from the Trojan

• is at the pericenter or at the apocenter of the osculating ellipse, i.e. its initial

velocity vector is normal to the line l, pointing in the direct or retrograde direction

• with a fixed initial eccentricity3 e0 ∈ [0, 1].

Therefore the initial conditions in polar coordinates are (recalling (2.44) and (3.2)):

R(0) = 0 , Θ(0) = ±µ
√
mr0(1± e) , r(0) = r0 , θ(0) = ϑ0 , (3.3)

where in Θ(0) the first ± is + in the direct direction and − in the retrograde one and

the second ± depends if one is at the pericenter or at the apocenter.

Definition 5 (Stability)

A test orbit is said to be stable about the asteroid if, after leaving l, makes a full cycle

3This implies that the two body Kepler energy is negative.
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about the asteroid in a time T > 0 without going around any of the other two primaries

(or crashing into it) and returns to a point on l with HM (ψ(T )) ≤ 0.

Definition 6 (Instability)

A test orbit is said to be unstable about the asteroid if:

• it performs a full cycle around the asteroid without going around any of the other

two primaries and returns to a point on l with HM > 0

• the Spacecraft moves away from the asteroid towards any of the other two pri-

maries and makes a full cycle about it or collides with it.

The stability definition above corresponds to the ballistic capture with respect to the

asteroid given in Definition 2 at time both 0 and T (“ballistic capture transfer”). The

first condition of instability is called ballistic escape from the asteroid, while the second

is called primary interchange escape.

For every fixed (e, θ) ∈ [0, 1] × S1 Belbruno claims [8] that it is possible to find

numerically a finite distance r′ = r′(e, θ) > 0 from the target planet such that a

(r, e, θ)-test orbit is

stable if r < r′(e, θ) , unstable if r > r′(e, θ) . (3.4)

Definition 7 (Belbruno’s WSB)

W :=
{

(r, e, θ) ∈ R+ × [0, 1]× S1 s.t. r = r′(e, θ)
}
.

Note that W is a two dimensional stability transition region of position and velocity,

which has two components corresponding to the direct and retrograde motions.

3.3.2 Garćıa-Gómez definition of WSB

Garćıa and Gómez, in [9], stress some lack of accuracy in Belbruno’s definitions. One

regards the definition of unstable orbits and the other the definition of the radius of

the change of stability r′(θ, e).

More precisely, the latter arises from noticing that Definition 7 is not exhaustive of

the complementary set of the Stable orbits as given in Definition 6. Therefore a more

general definition of instability is adapted in [9], where is defined as unstable any orbit

that does not fulfill the Stability criterion. On the other hand, they highlight that

it is not clear how, for fixed values of θ and e there exists a unique finite distance

r′(θ, e) defining the boundary between stable and unstable orbits. In fact it is shown in

the paper that for each fixed inclination and eccentricity there are many changes from

stability to instability and that the set of the stable points recalls a Cantor set.

Then, in [9], an extended definition of WSB is proposed:
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Definition 8 (Garćıa-Gómez WSB)

∀(e, θ) ∈ [0, 2π]× [0, 1] there exist a finite number of points (up to a certain precision)

r∗1 = 0, r∗2 = r∗2(e, θ), ..., r∗2n = r∗2n(e,θ) such that if r belongs to

S∗(e, θ) :=
⋃

1≤j≤n
[r∗2j−1, r

∗
2j ] (3.5)

the motion of a (r, e, θ)-test orbit is stable according to Definition 5 otherwise it is

unstable. Then the WSB is defined as:

W :=
{

(r, e, θ) ∈ R+×[0, 1]×S1 s.t. r ∈ W(e, θ)
}

where W(e, θ) := ∂S∗(e, θ) ⊂ R+ .

(3.6)

The number of points r∗i and their values, varies with the values of θ and e, as well as

with the precision of computation.

As r∗1 = 0, the radius r∗2(e, θ), for each fixed θ and e, represents the bigger radius

such that ∀ 0 < r < r∗2(e, θ), a (r, e, θ)-test orbit is stable. Therefore, ∀θ, e fixed, r∗2(e, θ)

could be seen as a lower limit of the WSB. However, as the stability/instability of an

orbit is determined in a purely numerical way, all these properties would be true only

limited to a certain precision4, which means that nothing prevents an unstable test orbit

to be found in the stable interval (0, r∗2(e, θ)], once the precision has been increased. In

Section 3.5 some analytic estimates on r∗2(e, θ) (i.e. with “infinite” precision) will be

given.

3.3.3 The new analytical definition of WSB

Remark 1 In the following the only component of the WSB to be considered will be

the one generated by direct motions; analogous consideration for the retrograde motions

are possible (leading to better stability estimates in Section 3.5).

Interesting topological considerations on the WSB are possible if Definition 5 is

modified by adding the request that the angular velocity ϑ̇(T ) of the test orbit (see

Definition 4) at the time T > 0 of first return to the line l (after making a full cycle

around the asteroid) is strictly positive, namely ϑ̇(T ) > 0. This “transversality” condi-

tion is (sometimes) implicitly assumed by Belbruno and [9] and explicitly by Topputo

[34].

4Note that Belbruno’s definition of WSB is affected by the same dependence from the accuracy of
the numerical evaluation
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For (e, θ) ∈ [0, 1]× S1 it is set

S = S(e, θ) := {r > 0 s.t. the (r, e, θ)−test orbit is stable according to Definition 5

and ϑ̇(T ) > 0} . (3.7)

Then the new, analytical definition of the WSB is:

Definition 9

W :=
{

(r, e, θ) ∈ R+×[0, 1]×S1 s.t. r ∈ W(e, θ)
}

where W(e, θ) := ∂S(e, θ) ⊂ R+ .

(3.8)

The relation between the analytic definition of the WSB and the previous ones,

that are algorithmic in nature, is now investigated.

Given a δ > 0 it is defined a subset Sδ(e, θ) of S(e, θ), which is a “δ-approximation”

of S(e, θ). By Proposition 1 S(e, θ) is the disjoint union of at most countable open

intervals Ij(e, θ), 0 ≤ j < j(e, θ) (where j(e, θ) ∈ N∪{∞}), with I0(e, θ) = (0, r∗(e, θ)),

plus at most a countable set of points. Therefore

meas
(
S(e, θ)

)
=

∑
0≤j<j(e,θ)

meas
(
Ij(e, θ)

)
. (3.9)

Then, there exists5 jδ < j(e, θ) such that

Sδ(e, θ) :=
⋃

0≤j≤jδ

Ij(e, θ) ⊆ S(e, θ) (3.10)

satisfies

meas
(
Sδ(e, θ)

)
≥ meas

(
S(e, θ)

)
− δ . (3.11)

Consequently it can be defined a “δ-approximation” of the weak stability boundary

setting

Wδ :=
{

(r, e, θ) ∈ R+ × [0, 1]× S1 s.t. r ∈ Wδ(e, θ)
}

where Wδ(e, θ) := ∂Sδ(e, θ) .

(3.12)

Remark 2 If δ > 0 is the “computational error” the sets S∗(e, θ) in (3.5) and Sδ(e, θ)

have the same form, being finite union of disjoint intervals6. The same holds for

W,W(e, θ) in (3.6) and Wδ,Wδ(e, θ) above.

5If j(e, θ) <∞ one can take jδ = j(e, θ)− 1.
6The fact that the intervals in (3.5) contain their endpoints is irrelevant since it does not affect the

boundary.
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3.4 The topology of the WSB

The topology of the stable set S(e, θ) is firstly considered (recall (3.7)), initially showing

that S(e, θ) is bounded.

Lemma 1 If r0 is large enough (independently from e and θ), a (r0, e, θ)-test orbit is

never stable, according to Definition 5. In particular, for every (e, θ) fixed, S(e, θ) is a

bounded subset of R+.

Proof Assume that7 r0 ≥ 104. It is claimed that ∀ 0 ≤ t ≤ 4π

r0

2
< r(t) < 2r0 , |Θ(t)| < 30µr0 . (3.13)

By the Hamilton’s equation for the Hamiltonian H3(r, θ,R,Θ) in (2.42) it is found:

θ̇ =
Θ

µr2
− 1 , |Θ̇| ≤ 2µr

|r − 1|3
+ µr , |r̈| ≤ Θ2

µ2r3
+

1

r2
+

r + 1

|r − 1|3
+ 1 . (3.14)

Let us prove (3.13) by contradiction. Assume that there exists 0 < T < 4π such that

(3.13) holds ∀ 0 < t < T and does not hold for t = T . Then ∀ 0 < t < T it results

|Θ̇| ≤ µ(3 + 2r0) , |r̈| ≤ 8Θ2

µ2r3
0

+
4

r2
0

+ 3. (3.15)

Which yields

|Θ(t)| ≤ Θ0 + 4πµ(3 + 2r0)
By(3.3)

≤ µ
√

2r0 + 28µr0 ≤ 29µr0 , (3.16)

and

|r̈| ≤ 7200

r0
+

4

r2
0

+ 3 ≤ 4 =⇒ |r(t)− r0| ≤ 4
T 2

2
≤ 32π2 ≤ r0

3
(3.17)

∀ 0 < t < T. Then yields

|Θ(T )| ≤ 29µr0 , |r(T )− r0| ≤
r0

3
(3.18)

namely (3.13) still holds for t = T , which is a contradiction. Recollecting it has been

proved (3.13).

By (3.14) it is found that ∀ 0 ≤ t ≤ 4π

ϑ̇(t) ≤ 120

r0
− 1 ≤ −1

2
. (3.19)

7Obviously no effort has been made in obtaining the best value of r0, since the aim of this study is
only in its existence.
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This means that the orbit makes a clockwise turn around the origin in a time 0 <

T∗ ≤ 4π. In particular, since r(t) ≥ 5000, it makes a clockwise turn around the three

primaries, and therefore it is not stable (according to Definition 5).

Proposition 1 For every (e, θ) ∈ (0, 1) × S1, S(e, θ) is a bounded set formed by at

most a countable disjoint union of open intervals plus at most a countable set of points.

Moreover there exists r∗(e) > 0 such that S(e, θ) ⊃
(
0, r∗(e)

)
.

Proof

Fix (e, θ) ∈ (0, 1) × S1. If r̄ ∈ S(e, θ) the first time T of return on l after making a

circle around the asteroid is an analytic function of r in an open neighborhood of r̄.

Denoting ψ(t; r̄) = ψ(t; r̄, e, θ) the flow of the (r̄, e, θ)-test orbit. Let ϑ(t; r̄) be its ϑ-

component. Indeed if T̄ is the first time of return w.r.t. r̄ then, using the transversality

condition

ϑ(T̄ ; r̄) = θ , ∂Tϑ(T̄ ; r̄) = ϑ̇(T̄ ; r̄) > 0 (3.20)

and the implicit function theorem (in analytic class8) is applicable to the equation

ϑ(T ; r) = θ . (3.21)

Then an analytic function T = T (r) is found such that ϑ(T (r); r) = θ for every r in an

open neighborhood of r̄.

Define

S<0 = S<0(e, θ) := {r ∈ S(e, θ) s.t. HM (ψ(T ; r)) < 0} (3.22)

S=0 = S=0(e, θ) := {r ∈ S(e, θ) s.t. HM (ψ(T ; r)) = 0} . (3.23)

Obviously S = S<0 ∪ S=0.

Note that S<0 is an open subset of R+. If r̄ ∈ S<0, for every r in an open neigh-

borhood of r̄, T (r) is well defined, ϑ̇(T (r); r) > 0 and H(ψ(T (r); r)) < 0 by continuity,

since the Hamiltonian flow is a diffeomorphism.

The topology of S=0 is more involved. Assume that r̄ ∈ S=0. Still for every

r ∈ (r̄ − ε, r̄ + ε) (with ε small enough), T (r) is well defined and ϑ̇(T (r); r) > 0 by

continuity. Consider the analytic function

h(r) := H(ψ(T (r); r)) . (3.24)

Taking r ∈ (r̄ − ε, r̄ + ε); then r ∈ S=0 iff h(r) = 0. Since h is analytic, two cases are

possible: h is identically zero on (r̄ − ε, r̄ + ε) or there are at most a finite number of

zeros in [r̄−ε/2, r̄+ε/2]. Consequently any point of S=0 is an inner point or an isolated

point. Since the number of isolated points of a subset of R is at most countable9, S=0

8Note that ϑ(T ; r) is an analytic function of T and r, since the Hamiltonian flow is analytic.
9Since it can be covered by a union of disjoint open intervals.
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is an open set plus, at most, a countable set of points. The same holds for S.

Note that, by standard measure theory arguments, any open subset of R+ is formed

by at most a countable disjoint union of open intervals (with at most one unbounded

interval).

It will be proved later (see Corollary10 1) that, if r is small enough (uniformly on e

and θ), then r ∈ S<0. Moreover S is bounded by Lemma 1. The proof of Proposition

1 is now completed.

Remark 3 It is conceivable that for some e, θ the set S(e, θ) does possess isolated

points, however to prove it is not straightforward.

3.5 Analytic estimates on the stable zone around the Tro-

jan

As the aim of this chapter is to estimate the range of applicability of the two models

which will be analysed later, as an application of the WSB, a realistic, analytic estimate

from below on r∗, as defined in Proposition 1, will, in this section, be derived. This,

being an estimation of the set of the stable orbits, will therefore be used as an estimation

of the set in which the dynamics can be modeled using the sole Trojan, and neglecting

the gravitational influence of the other two primaries.

For low values of the eccentricity good stability estimates can be obtained working with

the usual polar coordinates (see the reference frame (F2)). However, in view of the

applications (i.e. determining the range of validity of the inhomogeneous R2BP), we

will focus on the eccentricities e0 >
1
2 as they lead to smaller estimations of the stable

set. In this case the stability estimates deteriorate, moreover polar coordinates are not

convenient for analytic estimates anymore. Thus symplectic Delaunay coordinates are

thus used, which are suitable for analytic estimates in the relatively large eccentricity

regimes. Therefore some analytic estimates on the Hamiltonian vector field in Delaunay

variables (see Lemma 2) are found, using the assumption that, if the spacecraft starts

quite close to the Trojan, then the “mean anomaly” is a so called “fast angle”. This

means that the Spacecraft actually comes back to the starting line l in a time of

first return T which is quite short, allowing to estimate the variation of all the other

variables over one revolution. Such estimates allow the formulation of the stability

properties stated in Proposition 2, which leads to the desired estimate from below on

r∗(e) contained in Corollary 1.

The system in the Delaunay coordinates has already been derived in (2.55), with

the corresponding two body keplerian energy (2.57).

10Actually in Corollary 1 the only case considered is when the eccentricity is larger than 1/2, as the
case of eccentricity smaller than 1/2 is simpler (see Remark 4).
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Notice that, by construction, Delaunay variables describe only motions with HM <

0. This is not a problem here. As a matter of fact the aim of the next sections of this

chapter is to show (analytically) that orbits starting sufficiently close to the Trojan are

stable according to Definition 5.

By the fact that L = µ
√
ma and (2.47) it is found that:

r = a(1− e cosu) = m
1
3L2(1− e cosu) (3.25)

and therefore, by (2.57):

HM = −m
1
3 (1− e cosu)

2r
, (3.26)

which at the pericenter, namely when f = u = ` = 0, is

HM = −m
1
3 (1− e)

2r
, (3.27)

which differs from the one usually adopted by Belbruno HM = −m(1−e)
2r by a positive

mass factor m
2
3 , but, as the interest of this study is focused on the sign of this function,

here the two are essentially equivalent.

By (2.50) the angle ϑ as function of the Delaunay variables is

ϑ = f + g , (3.28)

since f+g is the angle between the Trojan-Spacecraft and the axes passing through the

asteroid and parallel to the line connecting the two main primaries (see Figure (2.5)).

In the rotating frame (F2) an orbit (r(t), ϑ(t)) of the Spacecraft starting at time t = t0

makes an (anti-clockwise) circle around the Trojan in a time T > 0 if∫ t0+T

t0

d

dt
ϑ dt =

∫ t0+T

t0

d

dt
(f + g) dt = 2π. (3.29)

A (r0, e0, ϑ0)-test orbit (see Definition 4) in Delaunay variables has:

1) f(0) = 0 or π (pericenter or apocenter)
(2.46)
=⇒ u(0) = 0 or π

(2.50)
=⇒ `(0) = 0 or π

2) ϑ(0) = ϑ0, (starting on the line l with inclination ϑ0)
(2.50)
=⇒ g(0) = ϑ0 or ϑ0 + π

3) r(0) = r0 (starting at a distance r0 from the Trojan)
(3.25)
=⇒ L(0) =

√
r0m−1/3

(1∓e0)

4) e(0) = e0 (starting with eccentricity e0)
(2.45)
=⇒ G(0) = ±L(0)

√
1− e2

0 (+/− for

direct/retrograde direction).
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Recollecting a (r0, e0, ϑ0)-test orbit has initial data

L(0) =
√
r0m−1/3/(1∓ e0) (−/+ for pericenter/apocenter) ,

G(0) = ±
√
r0m−1/3(1± e0) (+/− for direct/retrograde and pericenter/apocenter) ,

`(0) = 0 or π (pericenter or apocenter) ,

ϑ(0) = ϑ0 (3.30)

(recall also (3.3)).

For some fixed

0 < Lmax , 1/2 ≤ emin < emax < 1 , (3.31)

satisfying

rmax := m1/3L2
max(1 + emax) < 1 , (3.32)

we set

Ω :=
{

(L, e, `, g) | L ∈ (0;Lmax) , e ∈ (emin; emax) , ` , g ∈ T1
}
. (3.33)

Notice that, by (3.25), in Ω

0 < r < rmax < 1 . (3.34)

Remark 4 In view of applications it is assumed

emin ≥ 1/2. (3.35)

However it is possible to prove that better estimates can be obtained for smaller values

of the eccentricity.

Let us define

S0 := inf
Ω
∂LH , S1 := − inf

Ω
∂GH , S2 := sup

Ω
|∂`H| , S3 := sup

Ω
|w| . (3.36)

The next Lemma contains some analytic estimates on S0, S1, S2, S3 in terms of

Lmax, emin, emax (defined in (3.31)).

Lemma 2 It results

S0 ≥ S̃0 , sup
Ω
|1 + ∂GH| ≤ S̃1 =⇒ S1 ≤ 1 + S̃1 , S2 ≤ S̃2 , S3 ≤ S̃3 , (3.37)
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where

S̃0 :=
1

L3
max

− Lmax

m
1
3

√
1−M +M2

(
1

(1− rmax)3
− 1

)
(1 + emin)2

emin

−L3
max

(
1

(1− rmax)3

)
(1 + emax)3

emax
, (3.38)

S̃1 :=
Lmax

m
1
3

√
1−M +M2

(
1

(1− rmax)3
− 1

) √3 + 2emin − e2
min

emin
(3.39)

+L3
max

1

(1− rmax)3

√
1− e2

min

emin
(1 + emin) (3.40)

S̃2 :=
L2
max

m
1
3

√
1−M +M2

(
1

(1− rmax)3
− 1

)√
1 + emax
1− emax

+
L4
max

(1− rmax)3
emax (3.41)

S̃3 :=
Lmax

m
1
3

√
1−M +M2

(
1

(1− rmax)3
− 1

)
2
√

1− e2
min +

L3
max

(1− rmax)3
(1− e2

min) .(3.42)

Proof

Calling:

A =
(

2 cosu− e− 1
e −

sin2 u(1−e2)
e(1−e cosu)

)
B =

(
−
√

1− e2 sinu(1 + (1−e2) cosu
e(1−e cosu) )

) (3.43)
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minΩ ∂LH

≥ 1
L3
max
− Lmax

m
1
3

max
Ω

{∣∣∣∣∣
(
− (1−M)

(
√

1− 2ρ1 + r2)3

)[
A cos (g − 4

3
π) +B sin (g − 4

3
π)

]
+

(
− M

(
√

1−2ρ2+r2)3

)[
A cos (g + 1

3π) +B sin (g + 1
3π)B

]
+
(
−
√

1−M +M2
)

[A cos (g − τ0) +B sin (g − τ0)]
∣∣∣}

−L3
max max

Ω

{∣∣∣∣∣ 1−M
(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

∣∣∣∣∣
}
·

· max
e∈[emin,emax],u∈[0,2π]

{∣∣∣∣3− 3e cosu+ 2e2 cos2 u− 1

e
cosu− e2

∣∣∣∣}
≥ 1

L3
max
− Lmax

m
1
3

max
Ω

{∣∣∣∣∣cos g

[(
−A1

2
+B

√
3

2

)(
1− 1

(
√

1− 2ρ1 + r2)3

)
+M

(
(A1

2 −B
√

3
2 )

(
1− 1

(
√

1−2ρ2+r2)3

)
+ (1

2A+B
√

3
2 )

(
1− 1

(
√

1−2ρ2+r2)3

))]
+ sin g

[(
−B 1

2 −A
√

3
2

)(
1− 1

(
√

1−2ρ1+r2)3

)
+M

(
(B 1

2 +A
√

3
2 )

(
1− 1

(
√

1−2ρ2+r2)3

)
+ (1

2B −A
√

3
2 )

(
1− 1

(
√

1−2ρ2+r2)3

))]∣∣∣∣}
−L3

max max
Ω

{∣∣∣∣∣ 1−M
(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

∣∣∣∣∣
}
·

· max
e∈[emin,emax],u∈[0,2π]

{∣∣∣∣3− 3e cosu+ 2e2 cos2 u− 1

e
cosu− e2

∣∣∣∣}
≥ 1

L3
max
− Lmax

m
1
3

√
1−M +M2

(
1

(1−rmax)3 − 1
)

max
e∈[emin,emax],u∈[0,2π]

{√
A2 +B2

}
+L3

max

(
1

(1−rmax)3

)
max

e∈[emin,emax],u∈[0,2π]

{∣∣∣∣3− 3e cosu+ 2e2 cos2 u− 1

e
cosu− e2

∣∣∣∣}
≥ 1

L3
max
− Lmax

m
1
3

√
1−M +M2

(
1

(1−rmax)3 − 1
)

max
e∈[emin,emax],u∈[0,2π]

{(
1

4e2(1− e cosu)(
10 + 22e2 + 8e4 − 3e(7 + 13e2) cosu+ 6(−1 + 3e2 + 2e4)·

· cos (2u) + (e− e3 − 4e5) cos (3u)
)) 1

2

}
+L3

max

(
1

(1−rmax)3

)
max

e∈[emin,emax]

{
(1 + e)3

e

}
≥ 1

L3
max
− Lmax

m
1
3

√
1−M +M2

(
1

(1−rmax)3 − 1
)

max
u∈[0,2π]

{∣∣∣∣( 1

4e2
min(1− emin cosu)(

10 + 22e2
min + 8e4

min − 3emin(7 + 13e2
min) cosu+ 6(−1 + 3e2

min + 2e4
min)·

· cos (2u) + (emin − e3
min − 4e5

min) cos (3u)
)) 1

2

∣∣∣}
+L3

max

(
1

(1−rmax)3

)
max

e∈[emin,emax]

{
(1 + e)3

e

}
(3.44)

where it has been used that

max
g∈[0,2π]

(A cos g +B sin g) =
√
A2 +B2 (3.45)
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and it has been noted that, by (3.35), the function(
1

4e2(1−e cosu)

(
10 + 22e2 + 8e4 − 3e(7 + 13e2) cosu+ 6(−1 + 3e2 + 2e4) cos (2u)+

+(e− e3 − 4e5) cos (3u)
)) 1

2

reaches its maximum in u = π leading to the decreasing function (1 + e)2/e.

The function ∣∣∣∣3− 3e cosu+ 2e2 cos2 u− 1

e
cosu− e2

∣∣∣∣
has two relative maxima in u = 0 and u = π ∀e ∈ (0, 1], u ∈ [0, 2π]; therefore the

absolute maximum is reached for u = π. Finally (1+e)3/e is increasing by (3.35). This

proves (3.38).

Analogously, Calling:

A =
(√

1−e2
e (1 + sin2 u

(1−e cosu))
)

B = sinu
(
−e+cosu
e(1−e cosu)

) (3.46)
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It results:

supΩ |1 + ∂GH|

≤ Lmax

m
1
3

max
Ω

{∣∣∣∣∣
{(
− 1−M

(
√

1− 2ρ1 + r2)3

)[
A cos (g − 4

3
π) +B sin (g − 4

3
π)

]
+

(
− M

(
√

1−2ρ2+r2)3

)[
A cos (g + 1

3π) +B sin (g + 1
3π)
]

+
(
−
√

1−M +M2
)

[A cos (g − τ0) +B sin (g − τ0)]
}∣∣∣}

+L3
max max

Ω

{∣∣∣∣∣
(

1−M
(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

)∣∣∣∣∣
}
·

·max
Ω

{∣∣∣∣∣
[√

1− e2

e
(cosu− e)

]∣∣∣∣∣
}

≤ Lmax

m
1
3

max
Ω

{∣∣∣∣∣
[
−A

2

(
(1− 2M)− 1−M

(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

)
+
√

3
2 B

(
1− 1−M

(
√

1−2ρ1+r2)3
− M

(
√

1−2ρ2+r2)3

)]
cos g[

−B
2

(
(1− 2M)− 1−M

(
√

1−2ρ1+r2)3
+ M

(
√

1−2ρ2+r2)3

)
−
√

3
2 A

(
1− 1−M

(
√

1−2ρ1+r2)3
− M

(
√

1−2ρ2+r2)3

)]
sin g

∣∣∣∣}
+L3

max

(
1

(1−rmax)3

)
maxe∈[emin,emax]

√
1−e2
e (1 + e)

(3.45)

≤ Lmax

m
1
3

√
1−M +M2

(
1

(1− rmax)3
− 1

)
max

e∈[emin,emax],u∈[0,2π]

√
f1(e, cosu)

+L3
max

(
1

(1−rmax)3

) √
1−e2min
emin

(1 + emin)

≤ Lmax

m
1
3

√
1−M +M2

(
1

(1− rmax)3
− 1

)
max
u∈[0,2π]

√
f1(emin, cosu)

+L3
max

(
1

(1−rmax)3

) √
1−e2min
emin

(1 + emin)

(3.47)

where

f1(e, x) :=
1

e2(1− ex)

(
4− 3e2 − (2e− e3)x− (3− 2e2)x2 + ex3

)
and it has been used that f1(e, cosu) is monotone decreasing in the eccentricity ∀u ∈
[0, 2π]. Since

f1(e, x) =
1

e2(1− ex)

(
3− 2e2 − ex− (3− 2e2)x2 + ex3

)
+

1− e2

e2
= f2(e, x) +

1− e2

e2

where

f2(e, x) :=
(1− x2)(3− 2e2 − x)

e2(1− ex)
.

Note that, for |x| ≤ 1, f2 is a positive function which attains maximum for 0 ≤ x ≤ 1.

For 0 ≤ x ≤ 1 the term 1− x2 is decreasing, while (3− 2e2 − x)/(1− ex) is increasing.
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A rough estimate of this value is obtained the first term in x = 0 and the second one

in x = 1, getting 2(1 + e)/e2. Recollecting yields

0 ≤ f1(e, x) ≤ 3 + 2e− e2

e2
≤ 3 + 2emin − e2

min

e2
min

Finally it has been used that the function
√

1− e2(1− e)/e is monotone decreasing.

By (2.66), calling

A =
(

sinu
1−e cosu

)
B =

(√
1−e2 cosu
1−e cosu

) (3.48)

supΩ |∂`H| ≤
L2
max

m
1
3

max
Ω

{∣∣∣∣∣
(

1−M
(
√

1− 2ρ1 + r2)3

)[
A cos (g − 4

3
π) +B sin (g − 4

3
π)

]
+

(
M

(
√

1−2ρ2+r2)3

)[
A cos (g + 1

3π) +B sin (g + 1
3π)
]

+
(√

1−M +M2
)

[A cos (g − τ0) +B sin (g − τ0)]
∣∣∣}

+L4
max max

Ω

{∣∣∣∣∣ 1−M
(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

∣∣∣∣∣
}

max
Ω
{|e sinu|}

≤ L2
max

m
1
3

max
Ω

{∣∣∣∣∣
[
A

2

(
(1− 2M)− 1−M

(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

)
−
√

3
2 B

(
1− 1−M

(
√

1−2ρ1+r2)3
− M

(
√

1−2ρ2+r2)3

)]
cos g

+

[
B
2

(
(1− 2M)− 1−M

(
√

1−2ρ1+r2)3
+ M

(
√

1−2ρ2+r2)3

)
+
√

3
2 A

(
1− 1−M

(
√

1−2ρ1+r2)3
− M

(
√

1−2ρ2+r2)3

)]
sin g

]∣∣∣∣}
+L4

max
1

(1−rmax)3 emax

≤ L2
max

m
1
3

√
1−M +M2

(
−1 + 1

(1−rmax)3

)√
1+emax
1−emax + L4

max
1

(1−rmax)3 emax

(3.49)

where in the last inequality it has been used (3.45) and the fact that

1 + e cosu

(1− e cosu)
≤ 1 + emax

1− emax
.

Then (3.41) follows.

We conclude estimating w in (2.68), calling:

A =
(

(1−e2) sinu cosu
1−e cosu

)
B =

√
1−e2

1−e cosu

(
−2e cosu+ 1 + cos2 u

) (3.50)
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supΩ |w| ≤ Lmax

m
1
3

max
Ω

{∣∣∣∣∣
(

1−M
(
√

1− 2ρ1 + r2)3

)[
A cos (g − 4

3
π) +B sin (g − 4

3
π)

]
+

(
M

(
√

1−2ρ2+r2)3

)[
A cos (g + 1

3π) +B sin (g + 1
3π)
]

+
(√

1−M +M2
)

[A cos (g − τ0) +B sin (g − τ0)]
∣∣∣}

+L3
max max

Ω

{∣∣∣∣∣
(

1−M
(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

)∣∣∣∣∣
}

max
Ω

{∣∣(1− e2) sinu
∣∣}

≤ Lmax

m
1
3

max
Ω

{∣∣∣∣∣
[
A

2

(
(1− 2M)− 1−M

(
√

1− 2ρ1 + r2)3
+

M

(
√

1− 2ρ2 + r2)3

)
−
√

3
2 B

(
1− 1−M

(
√

1−2ρ1+r2)3
− M

(
√

1−2ρ2+r2)3

)]
cos g

+

[
B
2

(
(1− 2M)− 1−M

(
√

1−2ρ1+r2)3
+ M

(
√

1−2ρ2+r2)3

)
+
√

3
2 A

(
1− 1−M

(
√

1−2ρ1+r2)3
− M

(
√

1−2ρ2+r2)3

)]
sin g

]∣∣∣∣}
+L3

max
1

(1−rmax)3 (1− e2
min)

≤ Lmax

m
1
3

√
1−M +M2

(
1− 1

(1−rmax)3

)
2
√

1− e2
min + L3

max
1

(1−rmax)3 (1− e2
min)

(3.51)

where in the last inequality it has been used (3.45) and the fact that

10− 15e cosu+ 6 cos 2u− e cos 3u

(1− e cosu)
≤ 16 .

Note that

S̃0 →∞ , S̃1 , S̃2/Lmax , S̃3 → 0 , as Lmax → 0 . (3.52)

In the following it is assumed that

inf
Ω
∂LH = S0 > 0 , −S1 = inf

Ω
∂GH ≤ sup

Ω
∂GH ≤ 0 , S0 ≥ 5S1 , (3.53)

S2T̃ < Lmax , 2S3T̃ < emax − emin where T̃ = 2π/(S0 − S1) . (3.54)

Note that from (3.52) these conditions can always be assumed if Lmax is small enough.

Then it can be chosen

0 < L̃max := Lmax − S2T̃ < Lmax ,

emin < ẽmin := emin + S3T̃ < ẽmax := emax − S3T̃ < emax (3.55)
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and set

Ω̃ :=
{

(L, e, `, g) | L ∈ (0, L̃max] , e ∈ [ẽmin, ẽmax] , ` , g ∈ T1
}
. (3.56)

Lemma 3 Assuming (3.53) and (3.54). Then

(L(0), e(0), `(0), g(0)) ∈ Ω̃ =⇒ (L(t), e(t), `(t), g(t)) ∈ Ω , ∀ t ∈ [0, T̃ ] .

Proof Assume by contradiction that ∃T∗ ∈ (0, T̃ ) such that (L(t), e(t), `(t), g(t)) ∈
Ω for every t ∈ [0, T∗), but (L(T∗), e(T∗), `(T∗), g(T∗)) 6∈ Ω. Then (at least) one of the

following equalities occurs:

L(T∗) = Lmax , e(T∗) = emin , e(T∗) = emax .

But this is in contradiction with (3.55) from (2.69), (3.53) and (3.54), proving the

Lemma.

Proposition 2 Assume (3.53) and (3.54). A (r0, e0, θ0)-test orbit with

0 < r0 < r∗ := m1/3L̃2
max(1− ẽmax) , e0 ∈ (ẽmin, ẽmax) (3.57)

is stable according to Definition 5. In particular:

i) r(t) < 1 for every t ∈ [0, T̃ ], namely it cannot go around the any of the other two

primaries or crash into it up to time T̃

ii) there exists 0 < T ≤ T̃ such that∫ T

0
ḟ + ġ = 2π , (3.58)

namely the orbit makes a circle around the Trojan in time T .

Moreover

ϑ̇(T ) = ḟ(T ) + ġ(T ) > 0 .

Remark 5 In the proposition above the worst case is considered, which is when the

test orbit starts at pericenter (see the minus sign in equation (3.57) and recall (3.30)).

Better estimates hold for the apocenter case (in particular replace 1− ẽmax with 1+ ẽmin

in formula (3.57)).

Proof. Let us first note that, by (3.25) and (3.57) the test orbits starts in Ω̃. Then,

by Lemma 3, it remains in Ω for every t ∈ [0, T̃ ]. In particular, by (3.34), r(t) < 1 for

every t ∈ [0, T̃ ].

Consider only the case `(0) = 0, the case `(0) = π being analogous, then there
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exists 0 < T∗ ≤ T̄ such that∫ T∗

0

˙̀ + ġ = 2π and 2π ≤
∫ T∗

0

˙̀ ≤ 3π . (3.59)

Since ˙̀+ ġ ≥ S0−S1 > 0 the existence of (a unique) 0 < T∗ ≤ T̄ satisfying the equality

in (3.59) follows. Also the first inequality in (3.59) is trivial since ġ ≤ 0. It remains to

prove that
∫ T∗

0
˙̀ ≤ 3π. Assume by contradiction that

∫ T∗
0

˙̀ > 3π. Then

2π =

∫ T∗

0

˙̀ + ġ > 3π − S1T∗ ≥ 3π − S1T̄ ≥ 2π (3.60)

since S0 ≥ 3S1. This proves (3.59).

Note that the solution u = u(`) of the Kepler equation (2.50) and f = f(u) in (2.46)

satisfy u(nπ) = nπ = f(nπ)

f(u) ≥ u , u(`) ≥ ` when u, ` ∈ [0, π] + 2nZ . (3.61)

In particular f(u(`)) ≥ ` for ` ∈ [0, π] + 2nZ. Since by (3.59) `(T∗) ∈ [2π, 3π] it results

f(T∗) = f(u(`(T∗))) ≥ `(T∗). Then, since f(0) = f(u(`(0))) = f(u(0)) = 0,∫ T∗

0
ḟ + ġ = f(T∗) +

∫ T∗

0
ġ ≥ `(T∗) +

∫ T∗

0
ġ =

∫ T∗

0

˙̀ + ġ = 2π . (3.62)

The existence of T in (3.58) follows by continuity.

Using (2.50) and (2.46) and denoting ut := u(`(t)), f t := f(ut) it is computed for

0 ≤ t ≤ T

ḟ(t) =
df

du
(ut)

du

d`

(
l(t)
)

˙̀(t)

=

(
1 +

1 + e

1− e
tan2(ut/2)

)−1
√

1 + e

1− e
1

cos2(ut/2)

1

1− e cosut
˙̀(t)

=
(
1 + tan2(f t/2)

)−1

√
1 + e

1− e
1

cos2(ut/2)

1

1− e cosut
˙̀(t) > 0 . (3.63)

Denoting f∗ := f(T )−2π it yields 0 ≤ f∗ ≤ π/2. Indeed 0 ≤ f∗ follows since ḟ > 0.

On the other hand (3.58) implies that

f∗ = −
∫ T

0
ġ ≤ S1T ≤ 2π

S1

S0 − S1

S0≥5S1

≤ π

2
. (3.64)

Noting that u∗ := u(T ) − 2π satisfies 0 ≤ u∗ ≤ f∗ ≤ π/2 (recall (3.61)), by (3.63) it

results

ḟ(T ) >
(
1 + tan2(f∗/2)

)−1 ˙̀(T ) ≥ ˙̀(T )/2 ≥ S0/2 . (3.65)
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Then

ḟ(T ) + ġ(T ) ≥ S0/2− S1 ≥ 3S1/2 > 0 . (3.66)

The proposition is proved.

Corollary 1 Choose

0 < L̃max < Lmax ,
1

2
≤ emin < ẽmin < ẽmax < emax ≤ 1 (3.67)

satisfying (3.32), (3.53), (3.54) and (3.55).

Then

S(e, θ) ⊃ (0, r∗) ∀ e ∈ (ẽmin, ẽmax) ∀ θ ∈ S1 , (3.68)

where r∗ was defined in (3.57).

3.5.1 An example

The value of r∗(e) is now explicitly evaluated, in view of the applications contained in

the next chapter, for relatively high eccentricities, i.e. when e > 1
2 .

The parameters satisfying the hypotheses of Corollary 1 must now be chosen. Two

different ways to proceed are now adopted. The former is analytic and uses Lemma

2 to estimate Si, i = 0, 1, 2, 3 in (3.37). The latter is the numerical estimation of the

function over a defined set, and is obtained using a basic numerical constrained global

optimization (e.g. the one provided by an algebraic manipulators like Mathematica) to

estimate the supΩ and infΩ in (3.37).

In the first case it must be noted that the conditions

S̃0 > 0 , S̃1 < 1 , S̃0 ≥ 5(S̃1 + 1)

S̃2T̄ < Lmax , 2S̃3T̄ < emax − emin with T̄ := 2π/(S̃0 − S̃1 − 1)
(3.69)

imply (3.53)-(3.54), from (3.37) and T̄ ≥ T̃ .
Taking

L̃max = 0.3 , ẽmin = 0.54 , ẽmax = 0.97 ,

which implies, by (3.32):

rmax := 0.0000339673

yields

S̃0 = 36.1237 , S̃1 = 0.639735 , S̃2 = 0.395622 , S̃3 = 0.287628

T̄ = 0.177071 .
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Then (3.32) and (3.69) are satisfied. By (3.55)

L̃max = 0.229947 , ẽmin = 0.590931 , ẽmax = 0.919069 ,

meaning that the set of the stable orbits for the range e0 ∈ [ẽmin, ẽmax] is being con-

sidered. for which, by (3.57), it results

r∗(e0) = 8.19828× 10−7 = 638.097km (3.70)

The value of r∗ can also be confirmed numerically S0, S1, S2, S3 in (3.36), e.g. by

Mathematica. Moreover the estimations obtained will improve the analytical result ob-

tained above as they are numerical and obtained without the uniform (g, u) estimation

of the maximum/minimum contained in Lemma 2. Taking

Lmax := 0.3 , emin := 0.54 , emax := 0.97

yields

S0 = 37.0163 , S1 = 1.11659 , S2 = 0.0166893 , S3 = 0.102606 , T̃ = 0.17502 .

Then (3.32), (3.53) and (3.54) are satisfied. By (3.55)

L̃max = 0.297079 , ẽmin = 0.557958 , ẽmax = 0.952042 ,

meaning that the set of the stable orbits for the range e0 ∈ [ẽmin, ẽmax] is being con-

sidered. for which, by (3.57), it results

r∗(e0) = 8.10881× 10−7 = 631.133km (3.71)

3.6 Summary

The formulation of an analytical definition of the WSB enables the possibility to study

the topological properties of this complicate set, key for future space missions although

still largely unknown. The comparison with the existing algorithmic definitions confirms

the validity of the new definition and enables the possibility to exploit previous results to

get directions of research for new analytical studies. Moreover such definition has here

been generalized to the autonomous coplanar CR4BP. Key topological properties of

the set of the stable orbits have been discussed, from which the properties of the WSB,

frontier of this set, can be directly deduced. In particular it has been demonstrated that

the set of the stable orbits is bounded, is a disjoint union of at most countable open

intervals plus an at most a countable set of points and that ∀e ∈ [0, 1] fixed and that
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there exist a radius r∗(e) > 0 such that all the orbits generated by a radius smaller than

r∗ are stable. Analytical estimates of the radius r∗ have therefore be deduced using the

Delaunay coordinates. This general procedure has been here applied, in view of the

applications, to estimate the zone of the stable orbits with relatively high eccentricities

(i.e. e0 >
1
2), around the asteroid 624-Hektor, a major Jupiter Trojan. The estimated

r∗ = 631, 133km can be seen both as an estimation of the region formed by the sole

stable orbits or as an estimation of the WSB.



Chapter 4

Analysis of the inhomogeneous

R2BP

In the previous chapter a method has been produced, which analytically estimates

the set of the stable orbits around the smaller primary by fixing a range of initial

eccentricities and semimajor axes for the orbit. Inside this estimated region dynamics

is assumed to be dominated by the sole smaller body. However, within this region, the

inhomogeneities of the gravitational field influence the motion of the orbiting spacecraft

and must therefore be included in the modelling. The inhomogeneous R2BP is thus

adopted to model the dynamics of the system inside the reference domain. It must be

noted that such a model and the perturbative theory here developed are general (i.e.

can be applied to every inhomogeneous body), although, in this thesis, they are applied

to a Trojan object.

4.1 State of art

Analytical studies on the effects of the inhomogeneous potential on the dynamics around

a planet is a classical subject of research in the context of celestial mechanics. The two

body problem including the perturbation due to the bulge of the planet, namely the

J2 or “oblateness” effect, has been extensively studied since Brouwer’s analysis [55] on

the main problem of the artificial satellite. Generalizations of Brouwer’s approach can

be found in [56], [57], [58] and [59], each pushing previous studies to higher orders,

but still avoiding series expansions. In recent years this type of research has gained

importance for future planned missions of spacecraft to the moon and to other asteroids

in addition to asteroid deflection missions such as the European Space Agency’s “Don

Quijote” concept [60], in which, after arriving to the target asteroid and be inserted

into an orbit around it, an orbiter spacecraft, called Sancho, will measure with great

accuracy its position, shape, mass, and gravity field for several months before and after

73
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the impact of the other spacecraft (the Impactor), named Hidalgo.

Research undertaken in this area are mainly focused on the effect of the Earth’s inho-

mogeneous gravitational field on the motion of natural and artificial satellites, that is,

artificial satellite theory for small and moderate eccentricities [61]. More recent studies

have researched the effects on motion of the inhomogeneous gravitational field of other

solar system bodies, including the Trojans [62] and other asteroids [63]. The analysis of

the spacecraft’s motion about these bodies is particularly challenging as they typically

feature shapes and density distributions more irregular than those of planets. Such ir-

regularities break symmetries and require more complicated analytical expressions for

their description, which increases the complexity involved in such studies. Numerical

methods are today widely used ([64], [65] and [66]) to study the trajectories of objects

orbiting specific irregular bodies [67] or for finding stability criteria [68]. In these works

the entire potential containing the spherical harmonics coefficients is usually placed at

first order, assumption that will be used in this thesis as well. Disadvantages of these

methods are that they can be highly computational and require a complete re-design

for each different body. Analytical methods, by contrast, have the potential to rapidly

identify useful, natural motions for general bodies with inhomogeneous gravitational

fields. Furthermore, they can provide a full dynamical picture of the motion around

irregular bodies that can be used to search and study particular classes of useful or-

bits. Finally, while a numerical integration usually provides high accuracy and even

may gain in computation time, only an analytical theory can provide a complete, deep

insight into the nature of the perturbation [54]. Current analytical methods are only

used in a limited and semi-numerical way like in [69] and [70], meaning that analytical

expansions constitute the first step in such studies, which are then typically carried

out from a numerical standpoint [71]. The main drawbacks of these methods are that

their application in the case of highly inhomogeneous bodies requires extensive symbolic

computations involving algebraic manipulations, and that they are usually restricted

to a certain range of eccentricities due to series convergence. Analytical studies on in-

homogeneous gravitational fields have been, so far, limited to low degree gravity fields

[27], [50], [63], thus restricting the results to a class of bodies for which the dynamics

is dominated by a few coefficients (e.g. oblateness or ellipticity). In [64] a theory for

the tesseral problem for low altitude satellites based on Deprit’s relegation algorithm

is developed, with the purpose of producing ephemeris of the satellites motion. In [72]

near-circular orbits in a model that included both the third bodys gravity and J2 are

studied. In addition, in [73], the authors studied the orbital dynamics about oblate

planetary satellites using the rigorous averaging method which is applied in this thesis.

The effect of the coefficient J3 is then added in [74]. Finally the planar elliptic restricted

three-body problem including the J2 and J3 coefficients, can be found in [75], which

uses a Deprit’s perturbation method that allow to build a doubly averaged Hamiltonian
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and to provide the transformation between osculating and mean initial conditions.

4.2 Introduction and main results

The aim of this Chapter is to apply Deprit’s and Palacián’s theory [27] for construct-

ing closed form (i.e. without using series expansion in the eccentricity) normalization

of perturbed two body problems, to study the motion of a spacecraft around any

(shape/density) inhomogeneous body for the so called “fast rotating case”.

While the “slow rotation” case has been previously studied in depth, by the direct

application of a Lie transformation called the Delaunay Normalisation[49], which av-

erages the Hamiltonian with respect to the fast angle, thus reducing the number of

variables, this usual technique cannot be directly applied to the complementary “fast

rotating case”. This is due to the presence of the argument of node that appears in the

Coriolis term of the Hamiltonian describing the system in this case. The addition of

this term in the Lie derivative, indeed, prevents the conventional computation of the

Lie transform generator [50]. However another Lie transformations method, Palacian’s

closed form relegation algorithm [51], can be applied first, which “relegates” the action

of the argument of node to a negligible remainder, thus allowing the application of the

Delaunay Normalization. This Lie transformation, the Delaunay normalisation, con-

structed following Palácian’s and Deprit’s method for Lie transformations [53], is thus

be applied to further reduce the number of variables of the Hamiltonian describing the

system.

Therefore in this chapter this two existing theories for averaging perturbed Hamilto-

nians are here applied for the first time to the perturbed dynamics describing this

problem, for the “fast rotating case”, to obtain the explicit formulation of the double

averaged (by means of Lie transformation) Hamiltonian, generalized, with respect to

previous results ([27], [71]) to second order, arbitrary degree, gravitational fields.

Assuming that the planetary body is in uniform rotation around its axis of greatest iner-

tia, the potential generated by the inhomogeneous gravitational field has been derived,

following the classical procedure, in the rotating polar nodal variables [26], convenient

for the necessary transformation to Delaunay coordinates. This potential takes into

account an arbitrary number of spherical harmonic coefficients thus providing a dy-

namical model based on an arbitrarily accurate approximation of the inhomogeneous

body. Spherical harmonics are divided between zonal and tesseral harmonics, coeffi-

cients respectively independent and dependent from the longitude, therefore zonal are

invariant under the rotation through a particular fixed axis [29]. In this work, both

zonal and tesseral harmonics are be taken into account. Note that the perturbation

theories which take into account longitude-dependent tesseral coefficients of the spher-

ical harmonics, i.e. involving the rotation of the planet, are, in general, more complex
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than the theories which include only the zonal harmonics, the reason being that the

tesseral problem is formulated by means of a three degree of freedom autonomous

Hamiltonian, whereas the zonal problem is represented as a system of two degrees of

freedom. Then through the application of two different Lie transformations, suitable

changes of coordinates are here explicitly found, which reduce the initial non integrable

Hamiltonian of the system into an integrable one plus a negligible, perturbative re-

mainder of higher degree. The explicit analytical formulation for the relegated, first

and second order, arbitrary degree Hamiltonian, for relatively high altitude motion,

in any inhomogeneous gravitational field is, in this work, derived in closed-form for

the first time. Furthermore, in this thesis novel applications for the algorithm built

are found and presented, which include a method for determining initial conditions for

frozen orbits around any irregular body by simply prescribing the desired inclination

and eccentricity of the orbit. The method obtained is used to find interesting orbits

for space mission applications such as frozen orbits. Frozen orbits are orbits with no

secular perturbations in the inclination, argument of pericentre, and eccentricity [55].

These orbits are periodic orbits, except for the orbital plane of precession, and are

therefore called frozen. Frozen orbits are of key interest for any scientific and obser-

vational missions especially unknown bodies as, among the other applications, their

good stability properties might allow a very fast process of physical characterization of

the body, with all the possible implications in saving mission time and money or for

safetyness in the case, for example, of an hazardous asteroid which is approaching the

Earth.

The procedure followed to get to such explicit formulation and the new application for

detection of initial conditions for frozen orbits, is summarized in the main steps below:

• Relegation of the polar component of the angular momentum N to obtain the

relegated nodal polar variables where the conjugate momenta of the argument of

nodes (i.e. the polar component of the angular momentum) is constant along the

Hamiltonian flow.

• Transformation to Delaunay variables

• Normalization of the Delaunay variables which yields a reduced ordinary differen-

tial equation in two coordinates; the total angular momentum and the argument

of pericentre

• Identification of frozen orbits, for fixed eccentricity, inclination and argument of

perigee, as the equilibrium points of these equations i.e. where the total angular

momentum about the z-axis and the argument of pericentre are constant. This

final stage essentially reduces the problem of computing frozen orbits to a problem

of solving a 2-D algebraic equation.
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Results are shown for the Jupiter Trojan 624-Hektor, for which the spherical harmonics

coefficients have been derived from a three dimensional polyhedric model of the asteroid,

assuming a constant density.

4.3 The relegation of the polar component of the angular

momentum N

In the context of artificial satellite theory, in general, it is needed to order the terms

of the Hamiltonian H according to an asymptotic expansion in order to built a per-

turbation theory. The usual way to arrange the Hamiltonian for the cases in which

the angular velocity of the asteroid is higher than the mean motion of the spacecraft

[64](which holds, for example, for fast rotating bodies or for relatively high altitudes)

is here followed. It consists in placing the full unperturbed part at zeroth order and

distribute the perturbation at first and second orders. The dominant (unperturbed)

part of the Hamilton function is set to be the sum of the two-body Hamiltonian HK

and the Coriolis term HC . The perturbing potential takes into account an arbitrary

number of spherical harmonic coefficients, distributed as first or second order perturba-

tions, depending on the harmonics of the specific asteroid studied and thus providing a

dynamical model based on an arbitrarily accurate approxmation of the inhomogeneous

body.

The flows associated to the two components of the unperturbed Hamiltonian are used

to relegate the whole system first and then to put it into normal form by means of

symplectic transformations.

The Hamiltonian in (2.79) is therefore rearranged as:

H = H0 + εH1 +
ε2

2
H2 +O(ε3), (4.1)

where ε is merely an ordering, dimensionless parameter, which will be decided later on

for the applications, and

H0 = HK +HC

H1 = U (1)(r, θ, ν, ,Θ, N)

H2 = U (2)(r, θ, ν, ,Θ, N)

(4.2)

where:
HK := 1

2(R2 + Θ2

r2 )− M̄
r

HC = −ΩN,
(4.3)
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and, for s = 1, 2

U (s)(r, θ, ν, ,Θ, N) = − s!
εs

∞∑
n=1

n∑
m=0

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j ·

· 1
rn+1

(
A(s)
n,m,j,t cos (mν − jθ) + B(s)

n,m,j,t sin (mν − jθ)
)
,

(4.4)

with:
A(s)
n,m,j,t = Ḡn,m,j,t

(
C

(s)
n,m cos (π2 (j +m))− S(s)

n,m sin (π2 (j +m))
)

B(s)
n,m,j,t = Ḡn,m,j,t

(
C

(s)
n,m sin (π2 (j +m)) + S

(s)
n,m cos (π2 (j +m))

)
,

(4.5)

with:

C
(s)
n,m =

{
Cn,m if the term containing Cn,m is ∼ O(εq)

0 otherwise

S
(s)
n,m =

{
Sn,m if the term containing Sn,m is of ∼ O(εq)

0 otherwise

(4.6)

Again ci and si as in (2.103) and Ḡn,m,j,t as in (6.11).

Now, considering the case |HK | < |HC |, two different Lie transformations are per-

formed: the relegation of the polar component of the angular momentum N first and

the Delaunay normalisation then.

Definition 10 A Lie transformation φ is a one-parameter family of mappings

φ : (y, Y ; ε)→ (x,X), defined by the solution x(y, Y ; ε) and X(y, Y ; ε) of the Hamilto-

nian system {
dx
dε = ∂W

∂X
dX
dε = −∂W

∂x

with initial conditions x(y, Y ; 0) = y and X(y, Y ; 0) = Y and where the function

W (x,X; ε) =
∑
s≥0

εs

s!
Ws+1(x,X)

is the generator of the transformation.

Due to the properties of the Hamiltonian systems, the Lie transformation φ is a com-

pletely canonical transformation that maps a Hamiltonian

H(x,X; ε) =
∑
s≥0

εs

s!
Hs(x,X)
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onto an equivalent Hamiltonian K of the form

K(y, Y ; ε) =
∑
s≥0

εs

s!
Ks(y, Y ; 0).

found by solving a series of homological equations:

[H0;Ws] + H̃s = Ks ∀s ≥ 1 (4.7)

where the symbol [ ; ] stands for the Poisson Brackets. In equation (4.7) the element H̃s

collects the terms from the previous orders (see [53] and [27]). The relegation and the

normalization algorithms (see [51] and [49] respectively) are two different methods of

solving such homological equations. In particular, the relegation maps the Hamiltonian

(4.1) into an equivalent one of the form:

K = K0 +
∑
s≥1

εs

s!
Ks =

∑
s≥0

εs

s!

 p∑
j=0

Ks,p +Rs

 (4.8)

with K0 = H0(y, Y ) and the coefficients Ks,p ∈ ker(LHC ), where LHC is the Lie

derivative with respect to the Coriolis term1.

In contrast with normalization, the term Ks may not belong to ker(LHC ) due to the

presence of the residual Rs. In this resulting Hamiltonian the terms containing the

variable ν will only appear in the remainder Rs. Moreover, for every order s of the

Hamiltonian, the algorithm is iterated p(s) times (depending on the choice of the small

parameter ε), progressively diminishing the importance of the remainder Rs, such that

after p(s) times it results Rs ∼ O(ε3).

As a result the truncated system

K =
∑
s≥0

εs

s!

p∑
j=0

Ks,p, (4.9)

is obtained, which represents an approximation of the starting Hamiltonian independent

from ν and admits HC as an integral.

In this section, in order to keep the generality of the analysis, the relegation is performed

to the second order, arbitrary number of iterations p(s). In the applications section,

once the parameter ε will be fixed, the number of iterations necessary to relegate the

terms of the Hamiltonian containing ν to orders ∼ O(ε3) will therefore be estimated.

1Let LW be the Lie derivative induced by the function W , then LW which maps any function f(X,x)
into its Poisson Bracket with W , namely f(X,x) :→ [f ;W ].
It must be noted that LHCHK = 0 and that LHC is semi-simple over a Poisson algebra of functions P .
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4.3.1 Algorithm

The general relegation algorithm is briefly described here before the application to the

problem. For each homological equation (∀s ≥ 1):

[H0;Ws] + H̃s = Ks (4.10)

considering that, as LHC is semi-simple, there ∃Ks,0,Ws,0 ∈ P s.t.{
H̃s = Ks,0 + [Ws,0;HC ]

Ks,0 ∈ Ker(LHC ).
(4.11)

Therefore (4.10) becomes:

[H0;Ws] + [Ws,0;HC ] = Ks −Ks,0. (4.12)

Thus, setting Ws = W ∗s,0 +Ws,0, (4.12) yields:

[H0;W ∗s ] + [H0 −HC ;Ws,0] = Ks −Ks,0. (4.13)

The algorithm continues re-invoking p(s)-times the semi-simplicity of LHC , and finding

∀1 ≤ p ≤ p(s) Ks,p,Ws,p ∈ P s.t.{
[H0 −HC ;Ws,p−1] = Ks,p + [Ws,p;HC ]

Ks,p ∈ Ker(LHC )
(4.14)

and setting p(s)-times ∀1 ≤ p ≤ p(s) Ws,p−1 = W ∗s,p +Ws,p.

Finally the algorithm ends at a certain iteration p(s) setting W ∗
s,p(s) = 0 and obtaining

(4.13) to become:

Ks =

p(s)∑
p=0

(Ks,p) +Rs (4.15)

with Rs := [H0 −HC ;Ws,p(s) ].

Although the procedure is general, in view of the applications, only the first two

homological equations will here be considered and explicitly solved.
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4.3.2 Results

Following the procedure just described and [53], for the first order s = 1 of the Hamil-

tonian (4.1), it is found that:

H̃1,0 = H1 (4.16)

therefore, after the first iteration p = 1, it results:

K1,0 = −1
ε

∞∑
n=1

n∑
j=−n

min{n,n+j}∑
t=max{0,j}

ci2n+j−2tsi2t−j
1

rn+1

(
A(1)
n,0,j,t cos (−jθ)

+B(1)
n,0,j,t sin (−jθ)

)
.

(4.17)

Moreover

W1,0 = − 1
Ω

∫
(H1 −K1,0)dν

= −

1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j
(
− 1

mΩ

)
1

rn+1
·

·
(
A(1)
n,m,j,t sin (mν − jθ) + B(1)

n,m,j,t(− cos (mν − jθ))
))

,

(4.18)

and

[HK ,W1,0] = R
∂W1,0

∂r + Θ
r2
∂W1,0

∂θ − (Θ2

r3 − M̄
r2 )

∂W1,0

∂R

= −1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j
(
− 1

mΩ

)(
−R
r

)
·

·(−(n+ 1)) 1
rn+1

(
A(1)
n,m,j,t sin (mν − jθ) + B(1)

n,m,j,t(− cos (mν − jθ))
)

−1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j
(
− 1

mΩ

)(
jΘ

r2

)
1

rn+1
·

·
(
A(1)
n,m,j,t cos (mν − jθ) + B(1)

n,m,j,t sin (mν − jθ)
)
,

(4.19)

Then the algorithm is iterated ∀1 < p ≤ p(s), where at each iteration, by induction, it

can be derived that:

K1,p = 0 (4.20)
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Calling pOmax = 2bp−1
2 c+ 1, pEmax = 2bp2c, and:

S(k̂, k∗) =
k∗∑
k=k̂

ak

SE(k̂, k∗) =

k∗∑
k = k̂,

k even

ak, S ′E(k̂, k∗) =

k∗∑
k = k̂,

k even

a′k, S ′′E(k̂, k∗) =

k∗∑
k = k̂,

k even

a′′k

SO(k̂, k∗) =
k∗∑

k = k̂,

k odd

ak, S ′O(k̂, k∗) =
k∗∑

k = k̂,

k odd

a′k, S ′′O(k̂, k∗) =
k∗∑

k = k̂,

k odd

a′′k

(4.21)

Also, calling:

D := (−1)p−S(1,p)

(
p− S(2, p)

p− S(1, p)

)
(n+ p− S(1, p))!

(n+ a1)!
(4.22)

and ∀k odd

Ok :=

((apOmax
a′pOmax

)
...
(
a5

a′5

)(
a3

a′3

))((apOmax−a′pOmax
a′′pOmax

)
...
(a5−a′5

a′′5

)(a3−a′3
a′′3

))(
(a1+n+p+2SE(2,k−1)−S(k,p)+ak−a′′k+S′O(3,k−2)−S′′O(3,k−2))!

(a1+n+p+2SE(2,k−1)−S(k,p)+a′k+S′O(3,k−2)−S′′O(3,k−2))!

)(
(a1+n+p+SE(2,k−1)−S(k,p)+ak+SO(3,k−2)−S′′O(3,k−2))!

(a1+n+p+SE(2,k−1)−S(k,p)+ak−a′′k+SO(3,k−2)−S′′O(3,k−2))!

) (4.23)

while ∀k even

E2 :=
(

(p−S(1,p))!
(p−S(1,p)−a2)!

)
Ek :=

(
(p−a1−2SE(2,k−2)−S(k,p)−S′O(3,k−1)+ak+1)!

(p−a1−2SE(2,k−2)−S(k,p)−S′O(3,k−1)−1)!

)
∀k ≥ 4, k even

(4.24)
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it results:

W1,p = −1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j
(
− 1

mΩ

)p+1

1∑
ap=0

max{p−(p−2),0}∑
ap−1=1−δap,0

...

max{p−S(4,p)−2,0}∑
a3=1−δa4,0

max{p−S(3,p)−1,0}∑
a2=1−δa3,0

max{p−S(2,p),0}∑
a1=0

D

 apOmax∑
a′pOmax

=0

...

a5∑
a′5

a3∑
a′3

apOmax
−a′pOmax∑

a′′pOmax
=0

...

a5−a′5∑
a′′5 =0

a3−a′3∑
a′′3 =0

(
OpOmax · ... · O5 · O3

) (
EpEmax · ... · E4E2

) (
1
r

)3(SO(3,pOmax )−S′O(3,pOmax ))

(
−1
r

)p−a1−SE(2,pEmax )−S′O(3,pOmax )
Rp−a1−2SE(2,pEmax )−S′O(3,pOmax )

(
jΘ
r2

)a1+S′O(3,pOmax ) (−Θ2+rM̄
r3

)SE(2,pEmax )−SO(3,pOmax )+S′O(3,pOmax )

Θ2(SO(3,pOmax )−S′O(3,pOmax )−S′′O(3,pOmax ))(−rM̄)S
′′
O(3,pOmax ) 1

rn+1(
A(1)
n,m,j,t

(
cos (mν − jθ) cos (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))

− sin (mν − jθ) sin (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))
)

+B(1)
n,m,j,t

(
sin (mν − jθ) cos (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))

+ cos (mν − jθ) sin (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))
))))))

(4.25)
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and

[HK ,W1,p] = −1
ε

∞∑
n=1

n∑
m=1

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j

1∑
ap+1=0

max{p+1−(p−1),0}∑
ap=1−δap+1,0

...

max{p+1−S(4,p+1)−2,0}∑
a3=1−δa4,0

max{p+1−S(3,p+1)−1,0}∑
a2=1−δa3,0

max{p+1−S(2,p+1),0}∑
a1=0

D∗

 apOmax+1∑
a′pOmax+1=0

...

a5∑
a′5

a3∑
a′3

(
− 1

mΩ

)p+1

apOmax+1−a′pOmax+1∑
a′′pOmax+1=0

...

a5−a′5∑
a′′5 =0

a3−a′3∑
a′′3 =0

(
O∗pOmax+1 · ... · O∗5 · O∗3

)(
E∗pEmax+1 · ... · E∗4E∗2

)
(

1
r

)3(SO(3,pOmax+1)−S′O(3,pOmax+1))

(
−1
r

)p+1−a1−SE(2,pEmax+1)−S′O(3,pOmax+1)

Rp+1−a1−2SE(2,pEmax+1)−S′O(3,pOmax+1)

(
jΘ
r2

)a1+S′O(3,pOmax+1) (−Θ2+rM̄
r3

)SE(2,pEmax+1)−SO(3,pOmax+1)+S′O(3,pOmax+1)

Θ2(SO(3,pOmax+1)−S′O(3,pOmax+1)−S′′O(3,pOmax+1))(−rM̄)S
′′
O(3,pOmax+1) 1

rn+1

(
A(1)
n,m,j,t

(
cos (mν − jθ) cos (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))

− sin (mν − jθ) sin (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))
)

+B(1)
n,m,j,t

(
sin (mν − jθ) cos (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))

+ cos (mν − jθ) sin (π2 (−(p+ 1) + a1 + S ′O(3, pOmax)))
)))))) (4.26)

where D∗, O∗t and E∗t are like the one in (6.15) (6.16) and (6.17) respectively with p+ 1

instead of p.

As

[HK ; · ] = [1
2(R2 + Θ2

r2 )− M̄
r ; · ] = R ∂·

∂r + Θ
r2

∂·
∂θ − (Θ2

r3 − M̄
r2 ) ∂·∂R (4.27)
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at each step p the term [HK ,W1,p] is the sum functions that have the same order

of the preceding [HK ,W1,p−1] but multiplied by R
Ωr , Θ

Ωr2 or Θ2+r
ΩRr3 . Following [64], as

R ∼ Θ
r and as, at order zero, for the two-body problem, Θ ∼ r2θ̇, for a satellite period

greater than the rotational period of the asteroid (i.e. θ̇ < Ω), these coefficients are

and therefore less than the unity over an orbit ∼ θ̇
Ω < 1. Therefore, at each step of

the relegation, the transformation process reduces the magnitude of the terms of the

perturbing potential which contain the angle ν. Thus, after fixing the parameter ε, the

number of iteration p(1) is fixed such that [HK ,W1,p(1) ] ∼ O(ε3).

The relegation of the first order is ended setting:

W1 :=
∑p(1)

p=0W1,p

R1 := [HK ,W1,p(1) ]

K1 :=
∑p(1)

p=0K1,p +R1 = K1,0 +R1

(4.28)

To pass to the second order s = 2, the evaluation of H̃2,0 = H2 + 2[H1,W1] +

[[H0,W1],W1] is first required, from which the expression for K2,0 is derived (see Ap-

pendix B). In analogy with the first order, it results K2,p = 0 ∀p ≥ 1.

The relegation of the second order is ended setting:

W2 :=
∑p(2)

p=0W2,p

R2 := [HK ,W2,p(2) ]

K2 :=
∑p(2)

p=0K2,p +R2 = K2,0 +R2

(4.29)

where p(2) is chosen such that [HK ,W2,p(2) ] ∼ O(ε3) which is p(2) = bp
(1)+1

2 c.

The resulting Hamiltonian K = K0 + εK1 + ε2

2 K2 is completely equivalent to the

one in (4.1). However, as the terms Rs, s = 1, 2 are of order ∼ ε3, a truncated system

is considered in which such terms have been neglected. Setting:

K̃0 := K0

K̃1 :=
∑p(1)

p=0K1,p = K1,0

K̃2 :=
∑p(2)

p=0K2,p = K2,0

(4.30)

the truncated system is described by the Hamiltonian:

K̃ = K̃0 + εK̃1 +
ε2

2
K̃2 (4.31)

where, to simplify notation, the ˜ will be ignored. This Hamiltonian is equivalent to

the one in the main problem of the artificial satellite, in which the argument of node

ν is cyclic, which implies that the coriolis term −ΩN is constant and can therefore
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be dropped from the Hamiltonian. A closed form Delaunay normalization can now be

performed, for a further reduction of the degrees of freedom, thus yielding an integrable

Hamiltonian.

It must be noted that, in complete analogy with the procedure adopted so far, the

explicit formulation for every higher order s ≥ 2 could be obtained.

4.4 Delaunay Normalization

In order to perform the Delaunay normalisation the Hamiltonian is transformed from

the relegated Whittaker variables to the Delaunay coordinates. These coordinates have

already been introduced in Section 2.2.5, but will here be extended by the introduction

of two more conjugated variables h, and H, where h is the argument of the node. and

H is the z-component of the total angular momentum, i.e. H = G cos I.

Moreover, by Section 3, it is known that N = G cos I => H = G cos I and

R = M̄e sin f
G .

The relegated Hamiltonian (4.31) in the Delaunay coordinates takes the form:

J = J0 + εJ1 +
ε2

2
J2 (4.32)

with:

J0 = − M̄2

2L2

J1 = −1
ε

∞∑
n=1

n∑
j=−n

min{n,n+j}∑
t=max{0,j}

ci2n+j−2tsi2t−j
(

(1 + e cos f)

(a(1− e2))

)n+1

(
A(1)
n,0,j,t cos (−j(f + g)) + B(1)

n,0,j,t sin (−j(f + g))
)
.

(4.33)

with

ci =

√
1+H

G
2

si =

√
1−H

G
2

(4.34)

For brevity of exposition the expression for J2 will not be explicitly written.

4.4.1 The Normalization algorithm

The closed form normalization algorithm [49] is here adopted, which, instead of using

the expansions of r and f in powers of the eccentricity, changes the independent vari-

able from time to the true anomaly f .
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Definition 11

A formal series K ′(y, Y, ε) =

∞∑
s=0

εs

s!
K ′s(y, Y ) is said to be in Delaunay normal form if

the Lie derivative LK′0K
′ is zero, that is [K ′s,K

′
0] = 0 ∀s ≥ 0.

In our case, as K ′0 = J0 = − M̄2

2L2 , the Lie derivative

LK′0(·) =
M̄2

L3

∂(·)
∂`

therefore the new Hamiltonian (4.32) will be in normal form if and only if

∂K ′1
∂`

= 0 and
∂K ′2
∂`

= 0

Note that, as for the relegation for the angle ν, the normalization degenerates into an

average over the mean anomaly `. Moreover it will be used that:

df

d`
=
a2
√

1− e2

r2
. (4.35)

4.4.2 Results

The explicit formula for the normalized J1 is:

K ′1 = −1
ε

∞∑
n=1

min{n,n+j}∑
t=max{0,j}

ci2n+j−2tsi2t−j

√
1−e2

an+1(1−e2)n

(
n−1∑
k=0

(
n− 1

k

)
ekA(1)

n,0,j,t

(k − 1)!!

k!!
(k + 1)mod2+

+2(n+ 1)mod2

n∑
j=1

n−1∑
k=0

⌊
j
2

⌋∑
q=0

q∑
v=0

(
n− 1

k

)(
j

2q

)(
q

v

)
(−1)q+v ek A(1)

n,0,j,t·

· cos (gj) ((j−2q+k+2v)−1)!!
(j−2q+k+2v)!! ((j − 2q + k + 2v) + 1)mod2

−2(n)mod2

n∑
j=1

n−1∑
k=0

⌊
j
2

⌋∑
q=0

q∑
v=0

(
n− 1

k

)(
j

2q

)(
q

v

)
(−1)q+v ek B(1)

n,0,j,t·

· sin (gj) ((j−2q+k+2v)−1)!!
(j−2q+k+2v)!! ((j − 2q + k + 2v) + 1)mod2

)

(4.36)
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obtained using that, ∀1 ≤ j ≤ n:

if n even A(1)
n,0,j = A(1)

n,0,−j
if n odd A(1)

n,0,j = −A(1)
n,0,−j

(4.37)

and
if n even B(1)

n,0,j = B(1)
n,0,−j

if n odd B(1)
n,0,j = −B(1)

n,0,−j
(4.38)

The first order generating function is obtained by:

W ′1 =

∫
L3

(M̄)2

(
J1 −

1

2π

∫ 2π

0
J1d`

)
d` (4.39)

Finally the normalised J2, namely

K ′2 =
1

2π

∫ 2π

0
(J2 + 2[J1,W

′
1] + [[J0,W

′
1],W ′1])d` (4.40)

and its corresponding generating function

W ′2 =

∫
L3

(M̄)2
(J2 −K ′2)d` (4.41)

have been analytically evaluated, using integration by parts, with the aid of the soft-

ware Mathematica.

As a result K ′ = K ′0 + εK ′1 + ε2

2 K
′
2 is obtained which is the analytical formulation for

the closed-form averaged (with respect to both the argument of node and the mean

anomaly), second order, arbitrary degree Hamiltonian of any inhomogeneous gravita-

tional field of a body uniformly rotating around its main axes of inertia for the case

|HK | < |HC |. This two degree of freedom, integrable Hamiltonian approximates the

initial system, and can now be applied to every inhomogeneous body in order to deter-

mine possible orbits useful for scientific observation missions such as frozen orbits.
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4.5 Applications

The Hamiltonian obtained is of the form: K ′(L,G,H, , g, ) thus the equations of

motion are:
`′(t) = ∂K′

∂L

g′(t) = ∂K′

∂G

h′(t) = ∂K′

∂H

L′(t) = 0

G′(t) = −∂K′

∂g

H ′(t) = 0,

(4.42)

which can be derived by (4.36) and (4.40) where L and H are constants and all the

other motions will only depend on G(t) and g(t).

As already said frozen orbit is an orbit in which the Inclination, the Eccentricity and

the Argument of pericenter remains constant during the motion.

This in particular implies that such an orbit is then perfectly periodic except for the

orbital plane precession.

A frozen orbit it thus described by the system:

ė = d
dt

√
L2−G2

L = 0

İ = d
dt arccos HG = 0

ġ = 0.

(4.43)

For the properties of the Lie transformations, the “normalized” eccentricity, inclina-

tion and argument of pericenter are related to their relative “real” equivalents by the

generator of the transformation (see [53]), and can thus be interpreted as a perturbed

version of their real correspondents.

In the normalized variables (4.42), the system (4.43) is equivalent to:

Ġ = 0

ġ = 0.
(4.44)

Thus fixing normalized eccentricity e and inclination I for the desired normalized frozen

orbit, and solving the system gives:

Ġ = 0

ġ = 0

e =
√
L2−G2

L

I = arccos HG ,

(4.45)

and the initial conditions (L0, G0, H0, g0) for normalized frozen orbits can be found.

Moreover, as this all procedure is valid for the case |HK | < |HC | such initial conditions



CHAPTER 4. ANALYSIS OF THE INHOMOGENEOUS R2BP 90

must satisfy:

ΩH0 >
M̄2

2L2
0

(4.46)

and also

0 < |H0| < G0 < L0 (4.47)

These resulting initial conditions can be transformed back to the initial system de-

scribing the full dynamics (see (4.1)) by the inverse of the generating functions [53], to

generate an initial guess for frozen orbits around any inhomogeneous body.

4.6 An example

Setting the desired eccentricity and inclination it is thus possible to determine initial

conditions which lead to frozen orbits in the truncated system. Such initial conditions

are used to approximate the solutions for the secular motion of the satellite in the real

system, showing a good agreement between the approximated and the real dynamics.

Figure 4.1: A 3D polyhedric model of 624-Hektor, one of the main Jupiter
Trojans

An example of the application of the method is shown for the asteroid 624-Hektor,

for which the spherical harmonic coefficients up to the 10th order and degree (i.e.132

coefficients) are listed in the Appendix C. This coefficients have been obtained following

partially the procedure described in [76] from the 1022 vertices (i.e. 2040 “simplices”)

3D model of 624-Hektor represented in Fig. 4.1 and found on the DAMIT-Database

of Asteroid Models from Inversion Techniques. The physical properties of this asteroid

are summarized in the Table 4.1.

It is now needed to fix the value of ε to distribute the terms of the potential into the

right orders of the Hamiltonian. As in this work the fast rotating case is analyzed, a
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Mass Rotational velocity Reference Radius Mean Density2

Kg rad/s Km Kg/m3

624-Hektor 1.4× 1019 2.52215× 10−4 185 2211.12

Table 4.1: Physical properties of 624-Hektor

good candidate might be ε ∼ M̄2

ΩL3
0
. This is derived from an inverse analogy with the ε

taken in [27] for the case of an artificial satellite orbiting the Earth at low altitudes (i.e.

the “slow rotation case”). In this, Palacián fixes ε to be the ratio between the angular

velocity of the Earth, and the initial mean motion of the satellite n0, i.e. ε = Ω
n0

, and

therefore, as this work deals with the complementary case then the one examined in

[27], the reciprocal ε is here considered. However, as the resulting frozen orbits has

to be at an altitude high enough to satisfy the condition |HK | > |HC |, and trying to

include an high number of spherical harmonic coefficients in the model, in the example

shown the ordering parameter ε is set to be ε = 10−1) (i.e. semimajor axes ∼ 800km; to

apply the results found in the previous chapter, the discussion will focus on relatively

high eccentricities e ∈ (1
2 , 1) which implies reasonable periapses radii), p(1) = 2, p(2) = 2

s.t. R1 ∼
(
θ̇
Ω

)p(1)+1
∼ 10−3).

For this example the numerical estimation of the terms containing 624-Hektor’s spher-

ical harmonics up to order and degree 10, leads to the following distribution of the

Cn,m, Sn,m between the C
(1)
n,m, C

(2)
n,m and the S

(1)
n,m, S

(2)
n,m respectively:

C
(1)
n,m =

{
Cn,m if (n,m) ∈ {(0, 0), (2, 0), (2, 1), (2, 2)}
0 otherwise

C
(2)
n,m =


Cn,m if (n,m) ∈ {(4, 0), (4, 4)

(5, 3), (5, 5), (6, 2), (6, 6)}
0 otherwise

S
(1)
n,m =

{
Sn,m if (n,m) ∈ {(2, 1), (2, 2)}
0 otherwise

S
(2)
n,m =

{
Sn,m if (n,m) ∈ {(3, 2), (3, 3), (4, 2)}
0 otherwise

(4.48)

For illustration purposes the initial conditions for (relegated and normalized) frozen

orbits originating from two different eccentricity-inclination-argument of pericenter

triples (E0, I0, g0) have been found (see Table 4.2). In the last row of the Table, the

initial semimajor axes a0 of the resulting orbits has also been recorded.
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Figure 4.2: The resulting frozen orbit for E0 = 0.7, I0 = −0.002 and g0 = −π
2 for 1

year, cartesian, inertial system of reference

Fig. 4.2 Fig. 4.3

I0(rad) −0.002 1.1

E0 0.7 0.85

g0 0 −π
2

h0 π π

f0 π π

G0 2.9143× 107 3.6890× 107

L0 4.0264× 107 6.1484× 107

H0 2.9143× 107 1.6733× 107

a0(km) 1735.12 4045.95

Table 4.2: 624-Hektor: initial conditions for frozen orbits

The initial conditions found with this method are transformed back by canonic

transformations inverse to the relegating and normalizing transformations of coordi-

nates found before, leading to approximated initial conditions for frozen orbits in the

full model. The integration of such system shows a good agreement of the dynamics

between the approximated and the full system, namely a large number of initial condi-

tions produced with the approximated model evolve, in the full system, into a frozen

orbit, although some of them degenerate after some time (depending on the initial fixed

eccentricity and inclination). The resulting orbits for 624-Hektor are shown in Fig. 4.2

and 4.3, in the cartesian inertial frame of reference centered in the center of mass of

the inhomogeneous body (unit of measure km).

4.7 Summary

Inside the stable zone estimated in the previous chapter, the system has been modeled

as a R2BP accounting the inhomogeneities of the primary. A general, analytical, closed

form perturbational theory has been developed, which yields to an approximate second

order Hamiltonian describing the system. An explicit formulation of such a relegated

and normalized Hamiltonian is obtained, which allows the development of a method

to find frozen orbits in the vicinity of the asteroid by prescribing the eccentricity,
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Figure 4.3: The resulting frozen orbit for E0 = 0.85, I0 = 1.1 and g0 = 0 for 5 years,
cartesian, inertial system of reference

inclination and argument of pericenter. Results, evaluated for the Trojan 624-Hektor,

show two examples of frozen orbits. The first resulting orbit, found fixing an initial

eccentricity e0 = 0.7, inclination I0 = −0.002 and argument of pericenter g0 = 0 has

an initial radius at pericenter of 520.536km which, in normalized units, is 6× 10−6 <

r∗(0.7) = 0.0000615179 which means that this orbit is, in particular, contained in the

range estimated in the previous chapter, see (3.70) and (3.71). Another resulting frozen

orbit has been shown as well, which is not compared to the WSB estimated range as

it has an high inclination and therefore the WSB estimation might not be realistic in

this case. This is since the estimation of the set of stable orbits has been obtained

in Chapter 3 for the value I = 0, and will therefore hold, by continuity for small

inclinations. However, following the same methodology, different estimations should be

found for different (e.g. higher) inclinations of the orbit.



Chapter 5

Lagrangian (low-thrust) circular

restricted four-body model

When a spacecraft moves beyond the region defined by the WSB in Chapter 3 the

perturbations due to the gravitational effects of the Sun and Jupiter dominate the dy-

namics. Furthermore, the effect of the inhomogeneous gravitational field of the body

becomes negligible relatively to these gravitational perturbations. To complete the dy-

namical studies of the spacecraft beyond this region, a Sun-Planet-Trojan-spacecraft

model is used. This model, known as the Lagrangian CR4BP, is analysed in this chap-

ter. Again, it represents the dynamics of the spacecraft far from the body1, where the

influence of the two main primaries can no longer be neglected. Low thrust propulsion

is included in the modelling with the objective to identify completely novel orbits both

for mathematical interest as well as for potential future mission applications.

5.1 State of art

For many years trajectory designers for interplanetary missions have obtained the initial

trajectory solutions in the N-body problem (e.g. the four body problem) by dividing

the spacecraft’s motion into several two-body models, or spheres of influence, each

considering one body per time. This ‘patched two-body’ method, known as patched

conic, is relatively straightforward, switching from the influence of one body to another.

This method, also named ‘spheres of influence method’, breaks down when, for example,

low energy trajectories [77] are considered, like those used for the WSB; in this regime,

where the two bodies both influence the motion of the spacecraft with the same order

of magnitude, the restricted N-body problem must be used to model the motion of

the spacecraft [48]. Thus N-body dynamics offers exciting new possibilities in mission

1See note 2 of the Abstract

94
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design, allowing missions to visit more targets of interest or orbits and to collect data

for longer, still using less delta-V than conventionally designed missions.

The Lagrangian Coplanar CR4BP, here introduced, can be considered as one of

the first generalisation of the CR3BP. It was first considered by Moulton in 1900 [78].

There exist some preliminary studies of this problem in different versions, mainly used

to approximate existing symmetric or equal mass binary systems, see for example [79],

[80], [81], [82], [83], [84], and [85]. Of particular relevance are the papers [86] and [87],

where the latter uses a numerical approach to determine the number of equilibrium

points and a linear stability analysis depending on the distribution of the masses. Most

recently in [88] and [89], families of interesting simple non-symmetric periodic orbits

are numerically found for two and three equal masses and for an unequal distribution

of masses. Many of these papers identify the Sun-Jupiter-Trojan-spacecraft system as

the main example of Lagrangian configuration in the Solar system (see also [90], [87],

[91], [92], [93]) and apply their studies to such a system. However none of these authors

consider that there are no asteroids in the exact L4 or L5 position and that they all

move on tadpole orbits around such points [94], sometimes with huge oscillations even

outside the orbital plane of Jupiter around the Sun.

While orbital motion under the action of a conservative gravitational potential leads

to an array of problems with often complex and interesting solutions, the addition of

non-conservative forces offers new avenues of investigation. In particular, the com-

bination of natural gravitational potential and non-conservative forces lead to a rich

diversity of problems associated with the existence, stability and control of families of

highly non-Keplerian orbits. These orbits can potentially have a broad range of practi-

cal applications across a number of different disciplines. The use of continuous thrust

can be applied in all directions including perpendicular to the flight direction, which

forces the spacecraft out of a natural orbit into a displaced, non-Keplerian orbit: such

kind of orbits have a wide range of potential applications. Space mission design for low-

thrust spacecraft has been extensively investigated from the late 1990’s. So far the two

major types of low-thrust propulsion, which have been studied in this context, are solar

sails and Solar Electric Propulsion SEP, the latter considered in this thesis. Research

on this topic, at present, mainly focus on finding artificial equilibria as in [97], [98] and

[99], on generating non-Keplerian periodic orbits using solar sails or low thrust, e.g.

[100], [101], [102] and [96], on the systematic cataloguing of non-Keplerian orbits using

SEP as in [103], or on analyzing the stability properties of minimum-control artificial

equilibrium points as in [97] and [104], all of which are set in restricted two or three

body models.

The “UK ion propulsion programme” has culminated in the availability of three

thrusters of different sizes, covering the thrust 1mN to 300mN range [105], based on
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the T5, T6 and UK-25 propulsion systems. This is thus the low-thrust potential ca-

pability initially assumed in this work. However the result found suggests that a shift

towards micropropulsion systems (MPS) could be more appropriate for this application.

As an example the Field Emission Electric Propulsion (FEEP) technology, used in the

Lisa pathfinder experiment on Einstein’s geodesic motion in space, which operates in

the micro-Newton field covering the range from 1×10−4mN up to 0.5×mN [106], can

provide a more effective propulsion system for the proposed application.

5.2 Introduction and main results

Existing literature, specifically focused on the Lagrangian CR4BP, is contemporary

to the new results obtained in this thesis. This literature works are mainly focussed

on determining the number of equilibrium points depending on the mass distribution

of the primaries and on numerical determination of families of orbits, and the results

contained in this Chapter make use of such contemporary results. So in this thesis,

Chapter a new dynamical model, the Lagrangian CR4BP, is analysed for the first time,

following the traditional techniques used for 2 and 3 body problems (e.g. natural

equilibria, linearisation and Lyapunov stability analysis). Furthermore, in this work,

the topological changes of the linearly stable zone with variations in the Trojan mass are

for the first time showed and analyzed. Moreover in this work, for the first time, the low

thrust perturbations are incorporated to the Lagrangian CR4BP to generate surfaces of

artificial equilibria and displaced non Keplerian orbits; low thrust perturbations indeed,

where thus far confined to two and three body systems. The inclusion of low thrust into

the model allows the possibility to find novel, artificial, non-Keplerian orbits both for

mathematical interest as well as for future discovery and scientific mission applications.

Finally, as none of the previous works considers that there are no asteroids in the exact

L4 or L5 position and that they all move on tadpole orbits around such points, the

model here developed is here tested for a real case, i.e. considering the real tadpole

orbit of the asteroid 624-Hektor around the triangular equilibrium point.

The analysis of the natural evolution of this autonomous coplanar CR4BP is thus first

undertaken, which identifies eight natural equilibria, four of which are close to the

asteroid. A linear stability analysis reveals that the two closest are unstable and the

other two stable, when considering as primaries the Sun and two other bodies of the

Solar System. Following this, the model is perturbed by the inclusion of near term low-

thrust propulsion system (such as solar electric propulsion (SEP)). Assuming that the

spacecraft can thrust in every direction, including perpendicular to the plane containing

the three massive bodies, surfaces of artificial equilibrium points close to the smaller

primary are generated, both in and out of the plane containing the celestial bodies. Low-
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thrust propulsion has been previously considered only in two and three-body restricted

problems. A stability analysis of these points is carried out and a stable subset of

them is identified. Throughout the analysis the Sun-Jupiter-Trojan- spacecraft system

is analysed, as a particular case, for conceivable masses of a hypothetical asteroid set at

the libration point L4. The different topologies of the linearly stable zone corresponding

to these masses are shown. The analysis then focusses on a hypothetical asteroid, set to

have the same mass of a major Jupiter Trojan: 624-Hektor. A region of bounded orbits

is proved to exist, which can be maintained with a constant thrust less than 0.15mN

for a 1000 kg spacecraft. This illustrates that, by exploiting low-thrust technologies,

it would be possible to maintain an observation point more than 66% closer to the

asteroid than that of a stable natural equilibrium point. Moreover, this would enable

a continuous synoptic view of the hypothetical asteroid itself. The thrust required to

enable close asteroid observation is determined in the simplified CR4BP model and eight

resulting bounded orbits are shown. However, there are no important Trojan asteroids

in or close to the L4 point of the Sun-Jupiter system. Thus a numerical investigation is

performed to test the validity of the stability analysis of the model when the asteroid is

moved from the exact L4 location to its actual librating orbit. The numerical simulation

of the real Sun-Jupiter-Hektor-spacecraft is then undertaken. Results show a shift of

the real model towards instability, i.e. the unstable zone enlarges, due to the inclusion in

the real model of high perturbations. However, a zone of bounded orbits is heuristically

found, in which all the orbits remain bounded within ∼ 3.5×106 km from the Asteroid

for at least 36 Terrestrial years (∼ 3 Jupiter’s and 624-Hektor’s revolutions around the

Sun) before starting to diverge. These finite-time bounded orbits can be maintained by

using a constant thrust lower than 4× 10−4N without the need for any state feedback

control.

5.3 Natural Equilibria

The dynamics of the massless spacecraft, whose state vector is expressed in non-

dimensional cartesian coordinates x = [x, y, z], is described by the system (2.35), where

the parameter µ, appearing on both sides of the motions, can be dropped. Note that

if m→ 0, system (2.35) degenerates to the classical CR3BP, while if both m→ 0 and

M → 0 it becomes a R2BP. In order to find the equilibrium points of the system, the

velocities ẋ, ẏ, ż and the accelerations ẍ, ÿ, z̈ are set to be zero in (2.35) obtaining:

x+ Lx −
(1−M)(x+ 1

2
)√

(x+ 1
2

)2+(y+
√

3
2

)2+z2
3 −

M(x− 1
2

)√
(x− 1

2
)2+(y+

√
3

2
)2+z2

3 − mx√
x2+y2+z2

= 0

y + Ly −
(1−M)(y+

√
3

2
)√

(x+ 1
2

)2+(y+
√

3
2

)2+z2
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√
3

2
)√

(x− 1
2

)2+(y+
√

3
2
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2
)2+(y+

√
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2
)2+z2
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3

2
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x2+y2+z2

= 0

(5.1)
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As the system is in the stable Lagrangian configuration (see Chapter 2) such system

admits eight solutions (see [87]), the equilibrium points Mj , j = 1, ..., 8, defined at the

intersections of the three surfaces described by the equations in (5.1), see Appendix D.

Figures 5.1 and 5.2 show the behavior of the three surfaces which satisfy system (5.1)

in the vicinity of the third primary; in this region such surfaces form four equilibrium

points M4, M5, M6 and M7 on which this chapter is focussed. Figure 5.1 shows the

three surfaces in three dimensions, while Figure 5.2 represents them for z < 0 plane,

part a), and for z = 0 part b).

In particular, in these Figures, the continuous, light, meshed surfaces represent the

solution of the first equation of system (5.1), the dashed, dark, meshed surfaces show

the solution the second equation of (5.1), while the solution of the third equation is the

plane z = 0, plotted in the Figures as well. As the third equation is satisfied by the

plane z = 0, all the equilibria are bounded to stay on this plane, which, equivalently,

can be seen as the degeneration of system (5.1) into a two dimensional system for z = 0

(see [19]).

Figure 5.1: The four equilibria close to the asteroid; spatial view

By the stability result for unequal masses of [87], there exist a lower limit for the

mass ratio m1
m1+m2

(= 1−M) such as, for all the values bigger than that, the points M6

and M7 are always stable, which happens, for example, when fixing the three massive

bodies in the model to be the Sun and any other two objects of the Solar System.

Moreover, as such ratio decreases with the increase in mass of the second primary,
m1

m1+m2
is fixed to be the minimal obtainable for the solar system, or, equivalently, P2

is chosen to be Jupiter (i.e. M = 0.000953592, 1−M = 0.999046). This configuration,
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Figure 5.2: The four equilibria close to the asteroid; a) spatial view for z < 0; b)
Intersection with the plane z = 0

in particular, satisfies the stability condition (1−M)
M > 25 + 18

√
2 that can also be

rearranged as: M < (13−9
√

2)
14 .

The qualitative dynamics close to the asteroid does not change for different masses of

the asteroid m ∈ (0,M), in that, there are always four equilibrium points configured

approximately at the same angle relative to the asteroid. However, quantitatively,

as the mass increases, the equilibrium points are displaced further from the asteroid,

as shown in the Figure 5.3 a) and b) where the first shows the behavior of the four

equilibrium points as the mass of the asteroid increases while the second is focussed

just on M4 and M5. Thus, it would be concluded that the only assumptions on the

masses of the system should be the stability condition, which, in nondimensional units,

becomes: M < (13−9
√

2)
14 and that the mass of the asteroid has to be small enough such

that it does not affect the motion of the other two Primaries.

5.4 Stability analysis

Hereafter, for simplicity of notation, (xe, ye, ze) will indicate a generic equilibrium so-

lution of system (5.1); moreover, for convenience, a translation to a generic equilibrium

point (xe, ye, ze) is performed:


x′ = x− xe
y′ = y − ye
z′ = z − ze

(5.2)
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Figure 5.3: Equilibrium Points; a) ∀m ∈ (0,M) the two lines intersects four times in
the region near the asteroid ; b) Zoomed image

but, to simplify notation, the indices above x′, y′, z′ will be ignored.

Then the motion is linearized close to this generic point (xe, ye, ze), obtaining

ẋ = X + y

ẏ = Y − x
ż = Z

Ẋ = Y + (α− 1)x+ χy + δz

Ẏ = −X + χx+ (β − 1)y + φz

Ż = δx+ φy + γz

(5.3)

with
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5 +
m[−x2

E+2yE
2−z2

E ]√
x2
E

+y2
E

+z2
E

5 ,

γ =
(1−M)

[
−(xE+ 1

2
)2−(yE+

√
3

2
)2+2z2

E

]
√

(xE+ 1
2

)2+(yE+
√

3
2

)2+z2
E

5 +
M

[
−(xE− 1

2
)2−(yE+

√
3

2
)
2
+2z2

E

]
√

(xE− 1
2

)2+(yE+
√

3
2

)2+z2
E

5 +
m[−x2

E−y
2
E+2z2

E ]√
x2
E

+y2
E

+z2
E

5 ,

χ = 3

{
(1−M)

[
(xE+ 1

2
)(yE+

√
3

2
)
]

√
(xE+ 1

2
)2+(yE+

√
3

2
)2+z2

E

5 +
M
[
(xE− 1

2
)(yE+

√
3

2
)
]

√
(xE− 1

2
)2+(yE+

√
3

2
)2+z2

E

5 +
m[xEyE ]√
x2
E

+y2
E

+z2
E

5

}
,

δ = 3

{
(1−M)[(xE+ 1

2
)zE ]√

(xE+ 1
2

)2+(yE+
√

3
2

)2+z2
E

5 +
M[(xE− 1

2
)zE ]√

(xE− 1
2

)2+(yE+
√

3
2

)2+z2
E

5 +
m[xEzE ]√
x2
E

+y2
E

+z2
E

5

}
,

φ = 3

{
(1−M)

[
(yE+

√
3

2
)zE

]
√

(xE+ 1
2

)2+(yE+
√

3
2

)2+z2
E

5 +
M
[
(yE+

√
3

2
)zE

]
√

(xE− 1
2

)2+(yE+
√

3
2

)2+z2
E

5 +
m[yEzE ]√
x2
E

+y2
E

+z2
E

5

}
.

(5.4)

which is consistent with [17].
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Calling Ā the matrix corresponding to system (5.3), namely:

Ā =



0 1 0 1 0 0

−1 0 0 0 1 0

0 0 0 0 0 1

α− 1 χ δ 0 1 0

χ β − 1 φ −1 0 0

δ φ γ 0 0 0


(5.5)

The characteristic polynomial of Ā is

Ψ6 + (4− α− β − γ)Ψ4 + (αβ + αγ + βγ − χ2 − δ2 − φ2 − 4γ)Ψ2 + (αφ2 + βδ2

+γχ2 − αβγ − 2χδφ) = 0.

(5.6)

As (5.6) is a biquadratic equation it is useful to set Γ = Ψ2, and, observing that

(4− α− β − γ) = 2 in (5.4), yields the monic polynomial of the third degree:

Γ3 + 2Γ2 + (αβ + αγ + βγ − χ2 − δ2 − φ2 − 4γ)Γ + (αφ2 + βδ2 + γχ2 − αβγ
−2χδφ) = 0.

(5.7)

Following the usual procedure to solve third degree polynomials, see for example, [107],

it is set

p = −4
3 + (αβ + αγ + βγ − χ2 − δ2 − φ2 − 4γ),

q = 16
27 −

2(αβ+αγ+βγ−χ2−δ2−φ2−4γ)
3 + (αφ2 + βδ2 + γχ2 − αβγ − 2χδφ),

∆ = q2

4 + p3

27 .

(5.8)

Then it is well known that the three solutions Γ1,2,3 of (5.7) are the only three

solutions among those nine

Γ1,2,3 = 3

√
− q

3 +
√

∆ + 3

√
− q

3 −
√

∆− 2
3

(5.9)

such as (
3

√
− q

2 +
√

∆

)
·
(

3

√
− q

2 −
√

∆

)
= −p

3 ∈ R. (5.10)

This means that the six eigenvalues of system (5.3) will be Ψk, k = 1, ..., 6 defined as:

Ψk = ±
√

Γj k = 1, ..., 6; j = 1, 2, 3. (5.11)

From now on, the main primaries of the system will be considered to be the Sun

and Jupiter; therefore, fixing a specific mass m ∈ (0,M) for the hypothetical asteroid,

and evaluating the eigenvalues corresponding to both the equilibrium points M4 and
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M5, the ∆ will be negative, while
√
−3p will be greater than one, which, as will be

shown later on, means that at least one of the three eigenvalues will have Real part non-

zero, i.e. these two equilibrium points are linearly unstable and therefore nonlinearly

unstable; on the other hand for both the equilibrium points M6 and M7, the ∆ will

be negative, and
√
−3p will be smaller than one, which implies that all the eigenvalues

will be purely imaginary, i.e. the equilibrium points are linearly stable.

5.5 The low-thrust autonomous coplanar CR4BP

The dynamics of a low-thrust spacecraft in the autonomous coplanar CR4BP is now

investigated. Using SEP propulsion the spacecraft can create artificial equilibrium

points in the spatial vicinity of the asteroid, suitable for observation missions. In

addition, a subset of these novel equilibrium points is proved to be stable, such that

the motion will remain bounded in a small region about them, with relatively low fuel

requirements and without the need for a state feedback control.

Given a maximum thrust capability Fmax, expressed in N , and an approximate

weight for the spacecraft Ws, evaluated in kg, the maximal acceleration in the non-

dimensional units is given by:

amax = Fmax
Ws

N
kg = Fmax

Ws
· m
s2

= Fmax
Ws
· kg
m2

m3

kg·s2

= Fmax
Ws

d2
P1/P2

(m1+m2)
1
G ,

(5.12)

where dP1/P2
means the distance in meters between the two major Primaries.

The acceleration will be indicated with an̂ = axx̄ +ayȳ +azz̄, where ax, ay, and az are

the components of the acceleration in the x, y and z directions, a =
√
a2
x + a2

y + a2
z is

the magnitude and n̂ is the direction of the acceleration itself.

Considering the actual thrust capability range between 1mN to 300mN , as stated

by the results of the “UK ion propulsion programme” [105], the maximal reachable

thrust Fmax is initially set to be 300mN . Moreover, in order to estimate the range of

possible acceleration on the spacecraft its mass is set to be 1000kg. For the Sun-Jupiter-

Asteroid-Spacecraft system, the non-dimensional value of the maximum acceleration

amax (corresponding to the maximal thrust Fmax = 300mN) will therefore be 1.36765.

Moreover the acceleration has to be constant in the direction of the perturbation,

namely
∂

∂x
(an̂) =

∂

∂y
(an̂) =

∂

∂z
(an̂) = 0. (5.13)
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Adding low-thrust to system (2.35), it becomes:
ẍ = x+ Lx + 2ẏ − ∂U2(x)

∂x + ax

ÿ = y + Ly − 2ẋ− ∂U2(x)
∂y + ay

z̈ = −∂U2(x)
∂z + az

(5.14)

with U2(x) as in (2.36).

Again, to find the equilibrium points, the velocities ẋ, ẏ, ż and the accelerations ẍ, ÿ, z̈

are set to be zero in (5.14), obtaining:


ax = x+ Lx + ∂U2(x)

∂x

ay = y + Ly + ∂U2(x)
∂y

az = ∂U2(x)
∂z

⇔


a = |∇(

(x+Lx)2+(y+Ly)2

2 + U2(x))|

n̂ = − ∇(
(x+Lx)2+(y+Ly)2

2
+U2(x))

|∇(
(x+Lx)2+(y+Ly)2

2
+U2(x))|

(5.15)

In which, the second system states that, in order to get a new equilibrium point,

the acceleration on the spacecraft due to the thrusters has to be equal in magnitude

(first equation) but opposite in direction (second equation) to the acceleration on the

spacecraft due to the gravitational field at that point; the sign of the three components

ax, ay and az will therefore be determined (and, in particular, opposite) by the respec-

tive components of the gravitational field evaluated in the point.

5.6 Stability analysis of the linearized system

Notice that, with a constant thrust, system (5.14), once linearized, is equal to the linear

system in (5.3) and therefore the linear stability of the equilibrium points resulting from

system (5.15) will be given by the analysis of the eigenvalues in (5.11). By the Lyapunov

Stability theorem, see for example [108], in order to obtain a linearly bounded motion,

the eigenvalues must have Real part less than or equal to zero. In the case examined,

a non zero Real part cannot be accepted, as it would imply that either Re(Ψ2k−1) >

0 or Re(Ψ2k) = Re(−Ψ2k−1) = −Re(Ψ2k−1) > 0 for k = 1 and/or 2 and/or 3 ,

and this would lead to a saddle × saddle × saddle, a saddle × saddle × center or a

saddle× center × center unstable equilibrium point.

Therefore, in this case, the only acceptable way to get a linearly bounded motion

is with Re(Ψk) = 0, ∀ k = 1, ..., 6.

Theorem 1 If ∆ < 0 then the solutions Γj , j = 1, 2, 3 of (5.7) are in R.

Proof:

Let be ∆ < 0.
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From (5.9) and (5.10), and considering the fact that ∆ < 0, the solutions Γj , j = 1, 2, 3

of (5.7) can be rearranged to yield the three solutions among these nine

Γ1,2,3 = 3

√
−q

3
+ i
√
−∆ + 3

√
−q

3
− i
√
−∆− 2

3
(5.16)

that satisfy the condition:(
3

√
−q

2
+ i
√
−∆

)
·
(

3

√
−q

2
− i
√
−∆

)
= −p

3
∈ R. (5.17)

Notice that, from system (5.8),

∆ < 0⇒ p < 0 (5.18)

and that the two numbers
− q

2 + i
√
−∆

− q
2 − i

√
−∆

(5.19)

are complex conjugates (same Real part, opposite Imaginary part) such that:

| − q
2 + i

√
−∆| = | − q

2 − i
√
−∆| =

√
(− q

2)2 − (
√
−∆)2 =

√
−p

3 ∈ R. (5.20)

Calling

θ =

 arctan
(
−2
√
−∆
q

)
if q < 0

arctan
(
−2
√
−∆
q

)
− π if q > 0

(5.21)

the two numbers can be rewritten as:√
−p3

27(eiθ)√
−p3

27(e−iθ)
(5.22)

Thus, extracting the cubic root, gives:√
−p

3(ei(
θ
3

+ 2kπ
3

))√
−p

3(ei(−
θ
3

+ 2hπ
3

))
(5.23)

with h, k = 0, 1, 2.

For condition (5.17), the only couples that can be accepted are (h = 0; k = 0),

(h = 2; k = 1) and (h = 1; k = 2) . This implies that the three acceptable solutions of
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(5.7) can be summarized in a compact form as:

Γj =
√
−p

3(ei(
θ
3

+
2(j−1)π

3
) + ei(−

θ
3

+
4(j−1)π

3
))− 2

3

=
√
−p

3

(
cos
(
θ
3 + 2(j−1)π

3

)
+ i sin

(
θ
3 + 2(j−1)π

3

))
+
√
−p

3

(
cos
(
θ
3 + 2(j−1)π

3

)
− i sin

(
θ
3 + 2(j−1)π

3

))
− 2

3

= 2
√
−p

3 cos
(
θ
3 + 2(j−1)π

3

)
− 2

3 ,

(5.24)

with j = 1, 2, 3.

Which demonstrates that ∆ < 0⇒ Γj ∈ R, ∀j = 1, 2, 3.

Theorem 2 If
√
−3p < 1 then Γj < 0, ∀j = 1, 2, 3.

Proof:

By (5.24) for each j = 1, 2, 3, Γj can be rewritten as

Γj = 2

√
−p

3
cos

(
θ

3
+

2(j − 1)π

3

)
− 2

3
. (5.25)

Then, for hypothesis:

2
√
−p

3 cos
(
θ
3 + 2(i−1)π

3

)
− 2

3 ≤ 2
√
−p

3 −
2
3 <

2
3 −

2
3 = 0 (5.26)

Theorem 3 If {
∆ < 0
√
−3p < 1

(5.27)

then the six eigenvalues of system (5.3) are purely Imaginary.

Proof:

The proof of the Lemma is straight forward since the eigenvalues of (5.3) are Ψk =

±
√

Γj , k = 1, ..., 6; j = 1, 2, 3. Considering the hypothesis and applying Lemma 1,

indeed, yields that Γ ∈ R,∀j = 1, 2, 3. Then, for Lemma 2, Γj < 0, ∀j = 1, 2, 3, which

are the two conditions that lead to the thesis of Lemma 3.

Therefore, the six eigenvalues can be rearranged in the form:

Ψk = ±i
√
−Γj , k = 1, ..., 6; j = 1, 2, 3. (5.28)

Figure 5.4 shows the spatial view of the three possible topologies of the zone that

satisfies the conditions in (5.27), obtained for a realistic range for the mass of the

hypothetical asteroid (i.e. from zero to the total mass of the Jupiter Trojans ∼ 6 ×
1020kg).
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In particular part a) of the Figure represents the topology of the “four leaf clover”

[19] for m3 ∈ [0; 1.648× 1017[ kg (⇒ ε ∈ [0; 8.27632× 10−14[), part b) represents it for

m3 = 1.648×1017 kg (⇒ ε = 8.27632×10−14), and part c) for m3 ∈]1.648×1017; 6×1020]

kg (⇒ ε ∈]8.27632× 10−14; 3.01356× 10−10]).

In this figure, the zone that satisfies the conditions in (5.27), is the linearly “stable

zone”, intersection of the zone outside the dashed, dark, meshed surfaces and that

outside the continuous, light, meshed surfaces which represents the solution of the first

and the second equations of system (5.27) respectively.
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Figure 5.4: The possible topologies obtainable varying the mass of the Asteroid; a)
m3 ∈ [0; 1.648 × 1017[ kg (⇒ ε ∈ [0; 8.27632 × 10−14[ ). b) m3 = 1.648 × 1017 kg
(⇒ ε = 8.27632 × 10−14 ). c) m3 ∈]1.648 × 1017; 6 × 1020] kg (⇒ ε ∈]8.27632 ×
10−14; 3.01356× 10−10]).
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For displaying purpose only, from now on, the mass of the Asteroid will be set to be

equal to the major of the actual Trojan Asteroids, namely 624-Hektor, therefore fixing

m3 = 1.4 × 1019kg (which implies ε = 7.03165 × 10−12). Qualitatively the results for

this value will be the same as for each value in the range considered, from zero to the

total mass of the Jupiter Trojans.

Figure 5.5: Linearly stable/unstable zones; the three dimensional “four leaf clover”,the
boundary between the linearly stable and the unstable zones near the asteroid

Figure 5.6: Linearly stable/unstable zones; a) spatial view for z < 0; b) Intersection
with the plane z = 0

Figure 5.5 represents the spatial view of the linearly stable zone of the Sun-Jupiter-

Asteroid-Spacecraft system, while, once again, Figure 5.6 represents the horizontal x/y

section, part a), and its intersection with the x/y plane, part b).
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Of course, there exist an upper, external limit of the linearly stable zone as repre-

sented in Figure 5.7.

Figure 5.7: The outside boundary; The linearly stable zone is bounded.

In particular the first inequality of system (5.27) is verified by the points between

the dashed, dark, meshed surfaces, while the second by those between the continuous,

light, meshed surfaces. Thus, within the bounded area defined by the intersection of

these two zones the linearized motion is stable. Once again, these zones are represented

in the three dimensions, Figure 5.7, then for z < 0, Figure 5.8 a), and finally intersected

with this plane, Figure 5.8 b).

With reference to Figure 5.4 it should be noted that the external limit is separated

from the four leaf clover for small values of the mass of the asteroid, then approaches

it as the mass of the Asteroid grows to 1.648 × 1017kg, where two surfaces becomes

tangent, and finally, as the mass overcomes such value, the two surfaces merge together

and the lower part of the four leaf clover opens.

Moreover it was numerically evaluated that the maximum possible thrust required

to overcome the lower outside boundary is about 0.7mN while for the upper one the

thrust required is about 25mN . However, for the system considered, the maximum

thrust actually needed for this simplified model will be lower than 0.15mN .

For the purpose of exposition, eight linearly stable artificial equilibrium points A, B, C,

D, E, F, G, H are chosen, which have to fulfill three main requirements: to be gener-

ated by a thrust lower than 0.15mN , to be at a distance from the unstable zone equal

or higher than 3500km (far enough from the unstable zone to account for the likeli-

hood of injection/position errors of the spacecraft), but remaining as close as possible
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Figure 5.8: The outside boundary; a) spatial view for z < 0; b) Intersection with the
plane z = 0

to the asteroid. Moreover the first four are taken lying on the x/y plane, while the

other on the x′/z plane where x′ is the tilted horizontal axis y = −xM5x−M4x
M5y−M4y

, (i.e. the

line passing through the asteroid and perpendicular to the segment connecting M4 and

M5). The nondimensional coordinates of the four artificial equilibria in the x/y are:

x y z

A -0.000263408 -0.0000934038 0

B 0.0000505918 -0.000274404 0

C 0.000263592 0.0000930962 0

D -0.0000509082 0.000274596 0

The nondimensional coordinates of the four artificial equilibrium point on the x′/z

plane:

x y z

E -0.000211408 -0.866332 -0.000307

F 0.287971 0.000211592 -0.000307

G 0.287727 0.000211592 0.000307

H -0.000211408 0.287971 0 0.000307

The eight points result to be at a distance smaller than 300000km from the aster-
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oid (note that the distance of the stable equilibrium points from the Asteroid is about

1.16 × 106km, more that two thirds bigger than the distance of the asteroid from the

artificial equilibrium points chosen).
In this system, in non-dimensional units, the amount of thrust required to create

the two artificial points in A = (Ax;Ay;Az) and in G = (Gx;Gy;Gz) are evaluated;
the behavior of the dynamics close to these two artificial equilibrium points, as well as
their required thrust, are representative of the four points on the z = 0 plane, and for
the four on the x′/z plane respectively, as can be seen in Figures 5.10 and 5.11, and,
therefore, these points will be the only two investigated in detail.
To this end the computation of the gravitational field in both A and G is needed. For
the point A it is set:

ax = −Ax − LX +
(1−M)(Ax+ 1

2
)√

(Ax+ 1
2

)2+(Ay+
√

3
2

)2+A2
z

3 +
M(Ax− 1

2
)√

(Ax− 1
2

)2+(Ay+
√

3
2

)2+A2
z

3 + mAx√
A2

x+A2
y+A2

z

3

= 0.000233755

ay = −Ay − Ly +
(1−M)(Ay+

√
3

2
)√

(Ax+ 1
2

)2+(Ay+
√

3
2

)2+A2
z

3 +
M(Ay+

√
3

2
)√

(Ax− 1
2

)2+(Ay+
√

3
2

)2+A2
z

3 +
mAy√

A2
x+A2

y+A2
z

3

= 0.000521729

az =
(1−M)Az√

(Ax+ 1
2

)2+(Ay+
√

3
2

)2+A2
z

3 + MAz√
(Ax− 1

2
)2+(Ay−

√
3

2
)2+A2

z

3 + mAz√
A2

x+A2
y+A2

z

3

= 0

(5.29)

which yields to a =
√
a2
x + a2

y + a2
z = 0.000571701 corresponding approximately to

a force of 0.125406mN ; the same evaluation for the point G leads to (ax, ay, az) =

(0.0000240703,−0.00001415, 0.00034275) which is a =
√
a2
x + a2

y + a2
z = 0.000343885

corresponding approximately to a force of 0.075433mN .

These thrusts are represented respectively by the two “tube shaped”, meshed sur-

faces in Figures 5.9, 5.10 and 5.11; the first thrust is approximately the same required to

create the other three equilibrium points lying on the x/y plane (B, C, and D), while

the other is approximately the same required to create artificial equilibrium points set

on the x′/z plane (E, F , and H). Figure 5.10 a) and b) represents the horizontal x/y

section and the intersection with the x/y plane of Figure 5.9.

As the four leaf clover is tilted with respect to the system of reference, it is also useful,

in terms of visual presentation, to section and intersect it with the vertical plane x′/z

as shown in Figure 5.11 a) and b) respectively.

Note that, the eight points in Figures 5.9, 5.10 and 5.11 lie 3500km outside the linearly

unstable zone, although it is not easy to visualize.

Moreover, parts b) of Figures 5.10 and 5.11 show the projections, on the respective

planes, of the directions of the thrust required to counterbalance the gravitational field

creating artificial equilibrium points.
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Figure 5.9: Adding the low-thrust; eight artificial equilibrium points are created in the
linearly stable zone using a thrust lower than 1.5× 10−4

5.7 Integrating the linearized motion

Theorem 4 For a linear system of the form:{
ẋ = Āx
x(t0) = x0

(5.30)

where x ∈ R6 and

Ā ∈ L(R6) :=
{

linear operators Ā : R6 → R6, with real coefficients
}

, if Ā has three

couples of eigenvalues complex conjugated λ, λ∗; ν, ν∗;ϕ,ϕ∗ ∈ C, where the complex

conjugated is indicated by the ∗, such that:

λ = λ
R

+ iλ
I
,

ν = ν
R

+ iν
I
,

ϕ = ϕ
R

+ iϕ
I
,

(5.31)

where λR = Re(λ) and λI = Im(λ) and λ
I
, ν

I
, ϕ

I
6= 0; then there exist a base of

vectors {ū1, w̄1, ū3, w̄3, ū5, w̄5}, with ū2j−1, w̄2j−1 ∈ R6 ∀j = 1, 2, 3, and where

f̄2j−1 = ū2j−1 + iw̄2j−1, j = 1, 2, 3 are the eigenvectors of system (5.30), such that, in
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Figure 5.10: Adding the low-thrust; a) spatial view for z < 0;; b) Intersection with the
plane z = 0 and projection on this plane of the direction of the thrust required

this basis, the solution (t)ג = [ξ1(t), ξ2(t), ψ1(t), ψ2(t), ζ1(t), ζ2(t)]T of the problem is:

ξ1(t) = eλRt
(

cos (λ
I
t)ξ0

1 + sin (λ
I
t)ξ0

2

)
ξ2(t) = eλRt

(
cos (λ

I
t)ξ0

2 − sin (λ
I
t)ξ0

1

)
ψ1(t) = eνRt

(
cos (ν

I
t)ψ0

1 + sin (ν
I
t)ψ0

2

)
ψ2(t) = eνRt

(
cos (ν

I
t)ψ0

2 − sin (ν
I
t)ψ0

1

)
ζ1(t) = eϕRt

(
cos (ϕ

I
t)ζ0

1 + sin (ϕ
I
t)ζ0

2

)
ζ2(t) = eϕRt

(
cos (ϕIt)ζ

0
2 − sin (ϕ

I
t)ζ0

1

)
(5.32)

And therefore the solution x(t) = [x(t), y(t), z(t), X(t), Y (t), Z(t)]T of system (5.30)

will be x(t) = N (t)ג where N is the matrix which provide the expression of the original

coordinates x = [x, y, z,X, Y, Z]T in terms of the new one, ג = [ξ1, ξ2, ψ1, ψ2, ζ1, ζ2]T ,

i.e. is the matrix of the change of coordinates.

Proof:

The proof of this theorem is given in Appendix E.

For the theorem above it is enough to find the eigenvectors of the system, and its

solutions will be automatically obtained; moreover it will also provide the matrix N of

the change of coordinates, as will be shown later on.

The eigenvalues of the system will be the six vectors f̄j = ūj+iw̄j ∈ C6, j = 1, ..., 6

which solve

Āf̄j = Ψj f̄j , j = 1, ..., 6. (5.33)
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Figure 5.11: Adding the low-thrust; a) x′/z section of the spatial view; b) Intersection
with the plane x′/z and projection on this plane of the direction of the thrust required

As the six eigenvalues are three couples of complex conjugated numbers, the eigenvec-

tors must be three couples of complex conjugated vectors, namely f̄2j = ū2j + iw̄2j =

ū2j−1 − iw̄2j−1 = f̄∗2j−1, ∀j = 1, 2, 3. This, in particular implies that it is sufficient to

find three of the six eigenvectors, i.e. f̄1, f̄3 and f̄5. Moreover, in the case considered

in this work, the eigenvalues have null Real part (i.e. are purely imaginary), and can

therefore be stated in a simpler form.

Therefore, to simplify notation, hereafter the eigenvectors of the system will be:

Ψ1 = λi,

Ψ2 = −λi,
Ψ3 = νi,

Ψ4 = −νi,
Ψ5 = ϕi,

Ψ6 = −ϕi.

(5.34)

A few algebraic manipulations of (5.33) lead to the determination of the coefficients

ūk,j k = 1, 3, 5 j = 1, ..., 6 of the three eigenvectors corresponding to the eigenvalues

λi, νi, ϕi respectively; these coefficients are listed in the Appendix F.

Note that, to be consistent with the notation used in [17] it is sufficient to invert the
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relation:
ū1,4 = −u1,2 + u1,4

w̄1,4 = −w1,2 + w1,4

ū3,4 = −u3,2 + u3,4

w̄3,4 = −w3,2 + w3,4

ū5,4 = −u5,2 + u5,4

w̄5,4 = −w5,2 + w5,4

ū1,5 = u1,1 + u1,5

w̄1,5 = w1,1 + w1,5

ū3,5 = u3,1 + u3,5

w̄3,5 = w3,1 + w3,5

ū5,5 = u5,1 + u5,5

w̄5,5 = w5,1 + w5,5.

(5.35)

Then the matrix N =

(
Nj,k

)
j = 1, ..., 6

k = 1, ..., 6

of the change of coordinates will be given

by

Nj,k =

{
ūk,j if k odd

w̄k−1,j if k even
(5.36)

Applying the transformation of coordinates N−1 on x = [x, y, z,X, Y, Z]T , yields

the new coordinates ג = [ξ1, ξ2, ψ1, ψ2, ζ1, ζ2]T , namely:

ג = N−1x. (5.37)

The transformationN−1 is then performed on the system (5.3) to find it’s expression

in the new coordinates:

ג̇ = N−1ẋ = N−1Ā x = N−1Ā N .ג (5.38)

Such a system can be rewritten as:

ג̇ = A′ ג with A′ = N−1Ā N (5.39)

with

A′ =



0 λ 0 0 0 0

−λ 0 0 0 0 0

0 0 0 ν 0 0

0 0 −ν 0 0 0

0 0 0 0 0 ϕ

0 0 0 0 −ϕ 0


(5.40)

whose solutions are 

ξ1(t) = cos (λt)ξ0
1 + sin (λt)ξ0

2

ξ2(t) = cos (λt)ξ0
2 − sin (λt)ξ0

1

ψ1(t) = cos (νt)ψ0
1 + sin (νt)ψ0

2

ψ2(t) = cos (νt)ψ0
2 − sin (νt)ψ0

1

ζ1(t) = cos (ϕt)ζ0
1 + sin (ϕt)ζ0

2

ζ2(t) = cos (ϕt)ζ0
2 − sin (ϕt)ζ0

1

(5.41)
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Therefore the solution of system (5.14), given by x(t) = N ,(t)ג are:

x(t) = N1,1ξ1(t) +N1,2ξ2(t) +N1,3ψ1(t) +N1,4ψ2(t) +N1,5ζ1(t) +N1,6ζ2(t)

= ū1,1ξ1(t) + w̄1,1ξ2(t) + ū3,1ψ1(t) + w̄3,1ψ2(t) + ū5,1ζ1(t) + w̄5,1ζ2(t)

y(t) = N2,1ξ1(t) +N2,2ξ2(t) +N2,3ψ1(t) +N2,4ψ2(t) +N2,5ζ1(t) +N2,6ζ2(t)

= ū1,2ξ1(t) + w̄1,2ξ2(t) + ū3,2ψ1(t) + w̄3,2ψ2(t) + ū5,2ζ1(t) + w̄5,2ζ2(t)

z(t) = N3,1ξ1(t) +N3,2ξ2(t) +N3,3ψ1(t) +N3,4ψ2(t) +N3,5ζ1(t) +N3,6ζ2(t)

= ū1,3ξ1(t) + w̄1,3ξ2(t) + ū3,3ψ1(t) + w̄3,3ψ2(t) + ū5,3ζ1(t) + w̄5,3ζ2(t).

(5.42)

Notice that, evaluating

x(0) = [x(0), y(0), z(0), X(0), Y (0), Z(0)]T = [x(0), y(0), z(0), ẋ(0)−y(0), ẏ(0)+x(0), ż(0)]T ,

as expected, yields: 

x(0)

y(0)

z(0)

X(0)

Y (0)

Z(0)


= N



ξ0
1

ξ0
2

ψ0
1

ψ0
2

ζ0
1

ζ0
2


(5.43)

which is equal to (5.37) evaluated at t = 0.

Recall that these resulting orbits, solutions of the linearized system, are expressed

in the system of reference translated to the artificial equilibrium point xe, ye, ze (see

(5.2)) such that they must be translated back to the position of the asteroid.

As the behaviors of the linear solution in (5.42), in the vicinity of the points A and

G, is qualitatively the same as the other six artificial equilibria, the dynamics starting

sufficiently close to these two points is shown, for the Sun-Jupiter-Trojan-Spacecraft

system, where the asteroid has the same mass of 624-Hektor, in Figures 5.12 and 5.13.

In these Figures, the x/y, x/z projections of the solution of the linearized system

are represented by the dark, continuous lines. As expected, after 12 Jovian years (∼
150 Earth years), they are still close to the respective starting points.

The dashed projection of the 3500km spherical domains around the points are also

plotted in the Figures.

Notice that, if the perturbation (the position error) on the z axis was null, the orbit

starting close to the point A would qualitatively degenerate to the two dimensional

case analyzed in [19].

5.8 Integrating the full nonlinear system

The next step to illustrate the nonlinear stability of the linearly stable artificial equi-

libria identified in the previous section, is to perform a numerical integration of the full

nonlinear system in their vicinity. To this end, recalling system (5.14), the behavior of
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Figure 5.12: The solution of the linearized system in the vicinity of the point A after
12 Jovian years; a) x/y projection; b) x/z projection

a spacecraft starting sufficiently close to the points A and G is investigated.

Recalling the evaluation of the thrust needed to create artificial equilibrium points

in A and G stated in Section 5, a numerical integration with Mathematica using a

Runge-Kutta method is performed, starting sufficiently close to the initial points. The

dark, continuous lines in Figures 5.14 and 5.15 are the x/y and x/z projections of the

numerical solutions close to A and G respectively, evaluated for a null initial velocity.

Once again the solutions are represented for the first 12 Jovian years and the dashed

projection of the 3500km spherical domains around the points appears in the Figures

as well. Notice that the divergence between the analytical integration of the linearized

system in Fig. 5.12 and 5.13 and the numerical integration of the full system increases

with the time, (i.e. the orbits starts to diverge approximately after 70 terrestrial years),

but their bounded behavior, the relevant feature on which the result is focussed, holds

despite the non linear terms introduced in the system. As a result of the application

of the same method on the points B, C, D, H, E, and F , other six orbits are obtained,

which, starting sufficiently close to the respective point with null initial velocity, will re-

main bounded around it. In particular, for approximately 150 Earth years, the motion

starting close to each of the eight points, remains within the round domain, 3500km

radius, outside the unstable zone. Moreover the orbits obtained can be divided into

four similarly-behaving couples (A/C, B/D, H/F and G/E, in which, the two elements

of the last two couples perfectly mirror each other), where, in particular, the motion

starting close to B or D or that starting close to H or F remains bounded within an

area much smaller than 3500km. Furthermore, looking at their behaviors it is clear

that care must be taken to the choice of the initial conditions as there is a trade-off

between the amplitude of the oscillations about the initial point (in the z direction)
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Figure 5.13: The solution of the linearized system in the vicinity of the point G after
12 Jovian years; a) x/y projection; b) x/z projection

and the fuel required, i.e. fuel can be saved at the expense of larger oscillations.

5.9 The numerical simulation of the real system

As there are no actual Jupiter Trojans in or close to L4 a numerical simulation was

required in order to test the results found analytically in the simplified model. The ac-

tual orbits of Jupiter and 624-Hektor were derived by interpolating their daily observed

position and velocity vectors (found in the JPL Small Bodies Database). In this real

model the orbit of Jupiter is elliptic, and its velocity of revolution is no longer constant.

Fortunately the resulting effects on the system are minimal due to the low eccentricity

of Jupiter’s real orbit. On the other hand all the tadpole orbits of the main Jupiter

Trojans are inclined up to 20 degrees with respect to the plane containing Jupiter’s

orbit around the Sun. Thus, as the x/y plane of the system of reference used is set

to be the one containing the three massive planets, the change in inclination of this

plane will greatly affect the change of velocity of the system ω̇ (in the theoretical model

ω̇ = 0) therefore representing the main difference between the two models.

The eight artificial equilibria chosen in Section 5.7, which are bounded in the simplified

model, in the real model result to be unstable, quickly diverging from 624-Hektor. The

x/y projections of their orbits are shown in Figure 5.16 for a period of around 36 years

(∼ 3 revolutions of Jupiter(and of 624-Hektor) around the Sun).

The numerical integration of many other artificial equilibrium points was then under-

taken. Results highlight a shift of the model towards instability, i.e. an enlargement of

the unstable zone. This result is expected considering the perturbations added in the
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Figure 5.14: The solution of the full nonlinear system in the vicinity of the point A
after 12 Jovian years; a) x/y projection; b) x/z projection

real model.

However, a zone of finite-time bounded orbits was heuristically found, in which all the

orbits remain bounded within ∼ 3.5× 106 km from the Asteroid for at least 36 Terres-

trial years before starting to diverge. In this zone two artificial equilibria A′ and G′ were

chosen, lying on the line connecting the Asteroid with the points A and G respectively,

at a distance of 2.5 and 2.3 times their distance from the Asteroid. These artificial

equilibria can be generated with a thrust lower then 4 × 10−4N(still well within the

feasible range), kept constant during the motion. The x/y projection of the resulting

orbits, for ∼ 3 revolution of Jupiter around the Sun, is shown in Figure 5.17 a) and

b). It must be noted that, due to the x/y projection, the second orbit seems to spiral

around the Asteroid but instead is displaced spatially.
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Figure 5.15: The solution of the full nonlinear system in the vicinity of the point G
after 12 Jovian years; a) x/y projection; b) x/z projection

Figure 5.16: The unstable zone of the model enlarges and the eight artificial equilibria
above become unstable; a) The orbit generating from the point A in the real system; b)
The orbit generating from the point G in the real system
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Figure 5.17: Two orbits of the finite-time bounded zone of the real case after 3 Jovian
years; a) The starting point A′ is set on the line connecting A and 624-Hektor at a
distance of 544903 km from the Asteroid ; b) The starting point G′ is set on the line
connecting G and 624-Hektor at a distance of 711477 km from the Asteroid

Thus the simplified model studied in this chapter can give some indications of

where weakly unstable solutions about a real Trojan may exist. Moreover it is clear

that the perturbations due to a nonconstant velocity of revolution and the inclination

of the tadpole orbits of the main Trojans must be taken into account when analysing

stability.

5.10 Summary

A low thrust autonomous coplanar CR4BP, with the primaries set in the Lagrangian

equilateral triangle configuration, has been formulated for both the purpose of math-

ematical interest as well as to investigate potential applications in the Sun-Jupiter-

Asteroid-Spacecraft system. The analyses of the natural evolution of the system was

performed, for a range of conceivable masses of a hypothetical asteroid set at the li-

bration point L4, which revealed eight natural equilibrium points, four of which are

close to the asteroid. Of these, a linear stability analysis revealed that the two closest

are unstable and the other two stable, when considering as primaries the Sun and two

other bodies of the solar system.

Adding a low-thrust propulsion system to the spacecraft, which can thrust in every

direction, including perpendicular to the plane containing the three massive bodies, a

region of stable artificial equilibrium points close to the asteroid was created. As the

“UK ion propulsion programme” has culminated in the availability of three thrusters

of different sizes, covering the thrust 1mN to 300mN range [105], based on the T5,

T6 and UK-25 propulsion systems, the assumed low-thrust potential for the spacecraft

was initially based on current capability. Moreover completely novel, bounded orbits
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were proved to exist in the spatial vicinity of the asteroid which can be maintained

with a constant thrust lower than the 0.1% of the maximum thrust capability, oriented

in a fixed direction. Such result suggests that a shift towards micro propulsion systems

(MPS) could be more appropriate for this application. Therefore, the Field Emission

Electric Propulsion (FEEP) technology, used in the Lisa pathfinder experiment on Ein-

stein’s geodesic motion in space, which operates in the micro-Newton field covering the

range from 1 × 10−4mN up to 0.5mN [106], may provide a more effective propulsion

system for the proposed application.

This chapter illustrates that by exploiting low-thrust, it would be possible to maintain

strategic observation points, more than 66% closer to the hypothetical asteroid than

the stable natural equilibrium points. This would enable a continuous synoptic view of

the hypothetical asteroid itself.

A numerical simulation of the system was then performed, based on the real observa-

tions of the orbits of Jupiter and the 624-Hektor Trojan Asteroid to test the result when

the asteroid is moving on its real tadpole orbit instead of remaining fixed in L4. Results

show a shift of the real model towards instability, i.e. the unstable zone enlarges, due

to the inclusion in the real model of high perturbations.

However, numerical integration highlights a zone of finite-time bounded orbits for the

real model, in which the orbits remain bounded within ∼ 3.5×106km from the Asteroid

for at least 36 Terrestrial years(∼ 3 Jupiter’s and 624-Hektor’s revolutions around the

Sun) before starting to escape. These finite-time bounded orbits can be maintained by

using a constant thrust lower than 4× 10−4N without the need for any state feedback

control.
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Conclusions

The dynamics of a massless spacecraft around an inhomogeneous Trojan body, in a

system composed of three primaries lying at the vertexes of an equilateral triangle,

with their mutual positions fixed over the course of the motion, has been investigated.

Two possible dynamical models have been identified as suitable to represent and study

the system, depending on the distance from the primary. In the close vicinity of the

Trojan object, the motion was assumed to be dominated by this sole body, perturbed

by the inhomogeneities of the gravitational field due to its shape/density irregularities.

In this zone the dynamics was thus modeled using the perturbed Restricted Two Body

Problem, in which an arbitrary number of harmonics of the body were taken into ac-

count.

Far from the asteroid (but still close enough to the body for scientific and observational

purposes), where the gravitational influence of the other two primaries is far greater

than the influence of the inhomogeneities of the body, the model adopted was the

Lagrangian Circular Restricted Four Body Problem (CR4BP). Low-thrust propulsion

perturbations were incorporated into this model.

The validity range of the two models was discussed and estimated as an application of

a Weak Stability Boundary theory.

Interesting natural orbits (e.g. frozen orbits) close to the body and new families of ar-

tificial, non-Keplerian orbits, which could be exploited for science and commercial ap-

plications, were identified. Results where shown for the Sun-Jupiter-Trojan-spacecraft

system, with particular emphasis on the asteroid 624-Hektor, a major Jupiter Trojan.

***

The concept of Weak Stability boundary was first introduced, with both its classical,

algorithmic definitions. A completely new, analytical definition was then formulated,

which enabled to study the topology of the set of the stable orbits of which the WSB is,

123
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by definition, the frontier. In particular it was demonstrated that the set of the stable

orbits is a bounded set formed by, at most, a countable disjoint union of open intervals

plus, at most, a countable set of points. Moreover, for each fixed initial eccentricity of

the orbit, a radius r∗ was proven to exist, such that all the orbits generated by a smaller

radius are stable. This radius provides an estimation from the below of the WSB as

no points of such set can be found below r∗. However this same estimation is also an

estimation of the stable zone around the asteroid. For the Jupiter Trojan 624-Hektor,

for the case e0 >
1
2 , analytical and numerical estimations of r∗ were evaluated. This

estimations were used as the estimation of the range of validity for the application of

the two dynamical models proposed.

Following the definition of stability used for the WSB theory developed in Chapter 3

(see Definition 5), an orbit was defined as stable by monitoring its distance from the

target asteroid and the sign of the Keplerian energy after a circle around the body. Thus

estimating the variations of all the coordinates describing the motion of the spacecraft

around the asteroid, it was possible to identify the set of initial conditions leading to

stable orbits. In particular, for 624-Hektor, it was found that, starting with an initial

eccentricity of the osculating ellipse e0 ∈ [0.557958; 0.952042] and a semimajor axes

a0 < 13160km, after completing a circle around the asteroid, the eccentricity would

remain bounded within the range e ∈ [0.54; 0.97], with a semimajor axes a < 13420km.

This was thus the boundary of the stable zone around the asteroid within which

the dynamics was investigated as a R2BP with an inhomogeneous gravitational field.

The case where the angular velocity of the asteroid is larger than the mean motion

of the spacecraft was analysed. An analytical theory in closed form in terms of the

eccentricity, inclination and mean anomaly of the spacecraft was presented. This is of

second order with respect to a small parameter and of arbitrary degree in the expansion

of the gravitational field of the body in terms of the zonal and tesseral harmonic coef-

ficients. Two different, canonical Lie-Deprit transformations were built, together with

their corresponding suitable changes of coordinates, with the aim of reducing the ini-

tial non-integrable Hamiltonian system into an integrable Hamiltonian plus a negligible

remainder of higher order in the small parameter. The first was the relegation of the

action conjugate to the argument of the node while the latter was a Delaunay normali-

sation, to average the Hamiltonian with respect to the mean anomaly of the spacecraft’s

orbit. An explicit analytical formulation for the averaged, second order, Hamiltonian

of any inhomogeneous gravitational field was derived in closed form. A method for

determining initial conditions for frozen orbits solving a 2-D algebraic equation, after

prescribing the desired inclination and eccentricity of the orbit, was then presented as

an application. This could be useful for the dynamical analysis of both natural and

artificial satellites around any body with an inhomogeneous gravitational field.
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Two examples of frozen orbits were shown, found for the Trojan 624-Hektor, in accor-

dance with the previous stability range estimation. The former had an initial inclination

close to zero while the latter with an high inclination I0 = 1.1. The initial conditions

of both these orbits were taken in the estimated stable set, although the validity of

the estimation might deteriorate for high inclinations regimes. Moreover, as the per-

turbational theory is valid for the cases in which the angular velocity of the asteroid

is higher than the mean motion of the spacecraft, which holds, for example, for fast

rotating bodies or for relatively high altitudes, both the resulting orbits had to ful-

fill such altitude requirements. For the low inclined orbit the initial eccentricity was

fixed to e0 = 0.7 and the initial semimajor axes to a0 ∼ 1735km, while for the other

e0 = 0, 85 and a0 ∼ 4045km. Furthermore it must be noted that the spherical har-

monics of 624-Hektor couldn’t be found in previous literature. A method for obtaining

these coefficients from a three dimensional polyhedric model of the asteroid, assuming

a constant density was thus developed.

To complete the dynamical studies of the spacecraft beyond the stable region, the

autonomous Lagrangian CR4BP was used. In this outer region the perturbations due

to the gravitational effects of the Sun and Jupiter dominate the dynamics and the ef-

fect of the inhomogeneous gravitational field of the body becomes negligible compared

to them. The natural dynamics of this model was first investigated, which, for the

stable equilateral triangle configuration (e.g. considering the Sun and any other two

objects of the Solar System), was shown to have 8 equilibrium points. The study then

focussed on the four equilibria close to the asteroid. A linear stability analysis of them

revealed the two closer to the body to be unstable while the other two to be linearly

stable. Different topologies for the linearly stable zone were investigated, for different

conceivable masses for the asteroid. The system was then perturbed by the inclusion

of low thrust propulsion. Surfaces of artificial equilibrium points were generated in the

spatial vicinity of the asteroid. The low thrust necessary to create surfaces of artificial

equilibrium points in this zone was estimated for a 1000kg spacecraft, for the simplified

model in which the asteroid is fixed at the exact L4 position. A zone of stable orbits

was shown to exist, for the Sun-Jupiter-Trojan-spacecraft system, considering a fixed

hypothetical asteroid with the same mass of 624-Hektor. As an example eight orbits

around artificial equilibria, in and out the plane containing the three primaries, were

shown, which, starting at a distance of approximately ∼ 21000km remain bounded

outside the unstable zone in a round domain, 3500km radius, for at least 150 years.

These orbits can be maintained with a constant thrust lower than 0.15mN without the

need for any state feedback control. A numerical simulation of the system was then

performed, based on the real observations of the orbits of Jupiter and the 624-Hektor

Trojan Asteroid to test the result when the asteroid is moving on its real tadpole orbit

instead of remaining fixed in L4, the main perturbation introduced being the non zero
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z-velocity of the plane containing the three bodies. In this real case a zone of finite-time

bounded orbits was found, in which all the orbits remain bounded within 3.5× 106km

from the Asteroid for at least 36 years before starting to diverge. These finite-time

bounded orbits can be maintained by using a constant thrust lower than 0.4mN with-

out the need for any state feedback control.
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[9] Garćıa, F., Gómez, G.: ‘A note on weak stability boundaries’, Celest. Mech. Dyn.

Astr., Vol.97, pp. 87-10 (2007)

[10] Ceccaroni, M., Biggs, J. D., Biasco, L.: ‘Analytic estimates and topological prop-

erties of the weak stability boundary’, Celest. Mech. Dyn. Astr., Vol.114, pp.124

DOI 10.1007/s10569-012-9419-x (2012)

127



BIBLIOGRAPHY 128

[11] Ceccaroni, M., Biggs, J. D., Biasco, L.: ‘Some Analytic Estimates of the Weak

Stability Boundary’, New Trends in Astrodynamics and Applications VI, New

York. (2011)

[12] Ceccaroni, M., Biggs, J. D., Biasco, L.: ‘The Weak Stability Boundary in the

Sun-Jupiter-Trojan-spacecraft four body problem’, New Trends in Astrodynamics

and Applications VI, New York. (2011)

[13] Ceccaroni, M., Biggs, J. : ‘Analytic perturbative theories

in highly inhomogeneous gravitational fields’, Icarus (in press)

http://dx.doi.org/10.1016/j.icarus.2013.01.007 (2013)

[14] Ceccaroni, M., Biscani, F., Biggs, J. D.: : ‘Analytical method for perturbed frozen

orbit around an Asteroid in highly inhomogeneous gravitational fields: a first

approach’, Solar System Research (in press) (2012)

[15] Ceccaroni, M., Biscani, F., Biggs, J. D.: : ‘Analytical Perturbative method for

frozen orbits around the asteroid 433-Eros’, IAC2010 - International Astronautical

Congress - Naples (2012)

[16] Ceccaroni, M., Biscani, F., Biggs, J. D.: : ‘Analytical method for perturbed frozen

orbits around an Asteroid in highly inhomogeneous gravitational fields’,Analytical

methods for celestial mechanics, St.Petersburg (2012)

[17] Ceccaroni, M., Biggs, J. D.:‘Low-thrust propulsion in a coplanar circular restricted

four body problem’, Celestial Mechanics and Dynamical Astronomy, Volume 112,

Issue 2 (2012), pp. 191-219. DOI: 10.1007/s10569-011-9391-x. (2011)

[18] Ceccaroni, M., Biggs, J. D.:‘Nonlinearly stable equilibria in the Sun-Jupiter-

Trojan-Spacecraft four body problem’, IAC2011 - International Astronautical

Congress - Cape Town (2011)

[19] Ceccaroni, M., Biggs, J.:‘Extension of low-thrust propulsion to the Autonomous

Coplanar Circular Restricted Four Body Problem with application to future Tro-

jan Asteroid missions’, in 61st International Astronautical Congress, IAC-10-1.1.3,

Prague (2010)

[20] Ambrosetti, A., Prodi, G.:‘A Primer of Nonlinear Analysis’, pp. 153-159. Cam-

bridge University Press, Cambridge (1993)

[21] Gascheau, M.:‘Examen d’une classe d’equations differentielles et application a un

cas particulier du probleme des trois corps’, Compt. Rend. 16, Princeton (1843)

[22] Deprit, A., Deprit-Bartholome, A.:‘Stability of the triangular Lagrangian points’,

Astronomical Journal, Vol.72, pp. 173 (1967)



BIBLIOGRAPHY 129
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Appendix A

A second approach for deriving the gravitational potential expressed using the Whit-

taker Nodal-Polar variables, is here provided. The procedure is undertaken using

Wigner’s rotation theorem for non scaled spherical harmonics.

Definition 12 The non scaled spherical harmonics Y m
n (δ, λ) are the angular portion

of the solution to Laplace’s equation in spherical coordinates where azimuthal symmetry

is not present, which can be expressed as

Y m
n (δ, λ) := Pmn (sin δ)eımλ (6.1)

Getting Back to the formulation of the potential in (2.86) the addition formula for non

scaled spherical harmonics [29] is applied:

Pn(cosψ) = <

[
n∑

m=0

(−1)m(2− δ0,m)Y −mn (δ, λ)Y m
n (δ′, λ′)

]
(6.2)

Thus obtaining:

U(r, δ, λ)) = −Gr
∫
V

∞∑
n=0

(
r′

r

)n
<

[
n∑

m=0

(−1)m(2− δ0,m)Y −mn (δ, λ)Y m
n (δ′, λ′)

]
·

·ρ(r′)dV

= −M̄
r

∞∑
n=0

<

[
n∑

m=0

(−1)m
(α
r

)n
Y −mn (δ, λ)

(
1

M

∫
V

(
r′

α

)n
(2− δ0,m)·

·Y m
n (δ′, λ′)ρ(r′)dV )]

= <

[
−M̄

r

∞∑
n=0

n∑
m=0

(α
r

)n (n+m)!

(n−m)!
Y −mn (δ, λ)

(
1

M

∫
V

(
r′

α

)n
(2− δ0,m)·

· (n−m)!
(n+m)!Pn,m(sin δ′)eımλ

′
ρ(r′)dV

)]

= <

[
−M̄

r

∞∑
n=0

n∑
m=0

(α
r

)n (n+m)!

(n−m)!
Y −mn (δ, λ)Kn,m

]
,

(6.3)
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where Kn,m = Cn,m + ıSn,m and Cn,m and Sn,m are as in (2.90) 11.

Wigner’s rotation theorem for non scaled spherical harmonics (see [30]) is now

applied in order to get to the nodal polar variables.

Theorem 5 ∀n, m ∈ N, n, m let be Y m
n (δ, λ) the spherical harmonics expressed in

terms of the latitude δ and longitude λ in a system of reference Ox̂,ŷ,ẑ. Then the

expression for Y m
n (δ, λ) in terms of the latitude ∆ and longitude Λ in another system

of reference Ox̂,ŷ,ẑ, obtained by the composition of three rotations of angles α, β and γ

(around the x̂ axes, the rotated ẑ, and the rotated x̂ axes respectively), is given by:

Y m
n (δ, λ) =

n∑
j=−n

Dn
j,m(−α,−β,−γ)Y j

n (∆,Λ) (6.4)

where

Dn
j,m(−α,−β,−γ) = eıj(α+π

2
)eım(γ−π

2
)dnj,m(−β) (6.5)

and
dnj,m(−β) =

∑min{n−m,n+j}
t=max {0,j−m}(−1)m−j+3t (n−j)!(n+m)!

t!(n+j−t)!(n−m−t)!(m−j+t)! ·

·
(

cos
(
β
2

))2n−(m−j+2t) (
sin
(
β
2

))m−j+2t
(6.6)

This theorem is then applied by setting the second system of reference to be the one

where the spacecraft position vector is (0, 0, r) therefore the three angles α, β and γ are

set to be θ, I and ν, the argument of latitude, the inclination of the orbital plane and

namely the right ascension of the ascending node; moreover it must be noticed that in

such system of reference the new latitude ∆ and longitude Λ of the spacecraft will be

both equal to zero as it has been set its new position vector to be (0, 0, r). Therefore

11 Cn,m and Sn,m are the so called “Stokes coefficient” [29]
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(6.3) becomes:

U(r, δ, λ)) = <

−M̄
r
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n=0
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+Sn,m
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The potential can therefore be rearranged as:

Ū(r, θ, ν, ,Θ, N) = −
∞∑
n=0

n∑
m=0

n∑
j=−n

min{n+m,n+j}∑
t=max{0,j+m}

ci2n+m+j−2tsi2t−m−j ·

· 1
rn+1 (An,m,j,t cos (mν − jθ) + Bn,m,j,t sin (mν − jθ)) ,

(6.8)

where

ci := ci(N,Θ) = cos ( I2) =
√

1+cos I
2 =

√
1+N

Θ
2

si := si(N,Θ) = sin ( I2) =
√

1−cos I
2 =

√
1−N

Θ
2

(6.9)

and:

An,m,j,t = Ḡn,m,j,t
(
Cn,m cos (π2 (j +m))− Sn,m sin (π2 (j +m))

)
Bn,m,j,t = Ḡn,m,j,t

(
Cn,m sin (π2 (j +m)) + Sn,m cos (π2 (j +m))

)
,

(6.10)

and

Ḡn,m,j,t = (−1)m+3t−j+1M̄αn (n+m)!(n−j)!
t!(n+j−t)!(n+m−t)!(t−m−j)!(−1)

n+j
2

1
2n

(n+j)!

(n+j
2 )!(n−j2 )!

·

·((n+ j)mod2 − 1)

(6.11)

where α is a conventionally chosen reference radius, usually taken as the radius of the

circumscribing sphere of the small body and xmody stands for the value of x modulus y,

i.e. the integer reminder of the division of x by y, and where Cn,m and Sn,m as in (2.90).
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Appendix B

As H̃2,0 = H2 +2[H1,W1]+ [[H0,W1],W1], the explicit expression for K2,0 will be given

by the sum of the three corresponding contributions from the three terms of H̃2,0 such

that K2,0 = K
(1)
2,0 +K

(2)
2,0 +K

(23)
2,0 where:

K
(1)
2,0 = − 2!

ε2

∞∑
n=1

n∑
j=−n

min{n,n+j}∑
t=max{0,j}

ci2n+j−2tsi2t−j ·

· 1
rn+1

(
A(2)
n,0,j,t cos (−jθ) + B(2)

n,0,j,t sin (−jθ)
) (6.12)

then

K
(2)
2,0 = 2

ε2

∞∑
n̄=1

n̄∑
m̄=1

n̄∑
j̄=−n̄

min{n̄+m̄,n̄+j̄}∑
t̄=max{0,j̄+m̄}

p(2)∑
p=0

∞∑
n=1

n∑
j=−n

min{n+m̄,n+j}∑
t=max{0,j+m̄}

ci2n̄+m̄+j̄−2t̄+2n+m̄+j−2tsi2t̄−m̄−j̄+2t−m̄−j (− 1
m̄ω

)p+1
1∑

ap=0max{p−(p−2),0}∑
ap−1=1−δap,0

...

max{p−S(4,p)−2,0}∑
a3=1−δa4,0

max{p−S(3,p)−1,0}∑
a2=1−δa3,0

max{p−S(2,p),0}∑
a1=0

D

 apOmax∑
a′pOmax

=0

...

a5∑
a′5

a3∑
a′3

apOmax
−a′pOmax∑

a′′pOmax
=0

...

a5−a′5∑
a′′5 =0

a3−a′3∑
a′′3 =0

(
OpOmax

· ... · O5 · O3

)(
EpEmax

· ... · E4E2
)

(
1
r

)3(SO(3,pOmax )−S′O(3,pOmax )) (− 1
r

)p−a1−SE(2,pEmax )−S′O(3,pOmax )

Rp−a1−2SE(2,pEmax )−S′O(3,pOmax )
(
jΘ
r2

)a1+S′O(3,pOmax )

(
−Θ2+rµ

r3

)SE(2,pEmax )−SO(3,pOmax )+S′O(3,pOmax )

Θ2(SO(3,pOmax )−S′O(3,pOmax )−S′′O(3,pOmax ))(−rµ)S
′′
O(3,pOmax ) 1

rn̄+1+n+1 ·

·
((
−(n̄+1)

r

p−a1−2SE(2,pEmax )−S′O(3,pOmax )

R

)
(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) cos

(
π
2

(−(−(p+ 1) + a1 + S′O(3, pOmax )))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) sin

(
π
2

(−(−(p+ 1) + a1 + S′O(3, pOmax )))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) cos

(
π
2

(−(−(p+ 1) + a1 + S′O(3, pOmax )))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) sin

(
π
2

(−(−(p+ 1) + a1 + S′O(3, pOmax )))
))

sin (−(j − j̄)θ))
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+
(
(−j̄) 1

Θ

(
(a1 + S′O(3, pOmax ))

+2(SO(3, pOmax )− S′O(3, pOmax )− S′′O(3, pOmax ))
(j−2t+m̄)N

2(N−Θ)

− (j−2t+m̄+2n)N
2(N+Θ)

+
2(SE(2,pEmax )−SO(3,pOmax )+S′O(3,pOmax ))Θ2

Θ2−rµ

))
(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
))

sin (−(j − j̄)θ))

+

(
−(−j)(−N(n̄(1−N

Θ
)+(j̄−2t̄+m̄))

Θ2(1−N2

Θ2 )
)

)
(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
))

sin (−(j − j̄)θ))

+

(
(m̄)(

(j−2t+m̄)+n(1−N
Θ

)

Θ(1−N2

Θ2 )
)

)
(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax )− 1)
))

sin (−(j − j̄)θ))

−
(

(m̄)(
(j̄−2t̄+m̄)+n̄(1−N

Θ
)

Θ(1−N2

Θ2 )
)

)
(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
) cos

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
) sin

(
π
2

(−(p+ 1) + a1 + S′O(3, pOmax + 1))
))

sin (−(j − j̄)θ)))

(6.13)

where in D, O and E the parameter m must be substituted by m̄.
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Finally, calling, p̄Omax = 2b p̄−1
2 c+ 1, p̄Emax = 2b p̄2c, and:

S̄(k̂, k∗) =
k∗∑
k̄=k̂

āk̄

S̄E(k̂, k∗) =

k∗∑
k̄ = k̂,

k̄ even

āk̄, S̄ ′E(k̂, k∗) =

k∗∑
k̄ = k̂,

k̄ even

ā′k̄, S̄ ′′E(k̂, k∗) =

k∗∑
k̄ = k̂,

k̄ even

ā′′k̄

S̄O(k̂, k∗) =

k∗∑
k̄ = k̂,

k̄ odd

āk̄, S̄ ′O(k̂, k∗) =

k∗∑
k̄ = k̂,

k̄ odd

ā′k̄, S̄ ′′O(k̂, k∗) =

k∗∑
k̄ = k̂,

k̄ odd

ā′′k̄

(6.14)

Also, calling:

D̄ := (−1)p̄−S̄(1,p̄)

(
p̄− S̄(2, p̄)

p̄− S̄(1, p̄)

)
(n̄+ p̄− S̄(1, p̄))!

(n̄+ ā1)!
(6.15)

and ∀k̄ odd

Ōk̄ :=

((āp̄Omax
ā′p̄Omax

)
...
(
ā5

ā′5

)(
ā3

ā′3

))((āp̄Omax−ā′p̄Omax
ā′′p̄Omax

)
...
(ā5−ā′5

ā′′5

)(ā3−ā′3
ā′′3

))(
(ā1+n̄+p̄+2S̄E(2,k̄−1)−S̄(k̄,p̄)+āk̄−ā′′k̄+S̄′O(3,k̄−2)−S̄′′O(3,k̄−2))!

(ā1+n̄+p̄+2S̄E(2,k̄−1)−S̄(k̄,p̄)+ā′
k̄
+S̄′O(3,k̄−2)−S̄′′O(3,k̄−2))!

)
(

(ā1+n̄+p̄+S̄E(2,k̄−1)−S̄(k̄,p̄)+āk̄+S̄O(3,k̄−2)−S̄′′O(3,k̄−2))!

(ā1+n̄+p̄+S̄E(2,k̄−1)−S̄(k̄,p̄)+āk̄−ā′′k̄+S̄O(3,k̄−2)−S̄′′O(3,k̄−2))!

) (6.16)

while ∀k̄ even

Ē2 :=
(

(p̄−S̄(1,p̄))!
(p̄−S̄(1,p̄)−ā2)!

)
Ēk̄ :=

(
(p̄−ā1−2S̄E(2,k̄−2)−S̄(k̄,p̄)−S̄′O(3,k̄−1)+āk̄+1)!

(p̄−ā1−2S̄E(2,k̄−2)−S̄(k̄,p̄)−S̄′O(3,k̄−1)−1)!

)
∀k̄ ≥ 4, k̄ even

(6.17)

yields:
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K
(3)
2,0 =

(
1
ε2

) p(2)∑
p=0

∞∑
n=1

n∑
m̄=1

n∑
j=−n

min{n+m̄,n+j}∑
t=max{0,j+m̄}

p̄(2)∑
p̄ = 0

p + p̄ ≤ p(2)

∞∑
n̄=1

n̄∑
j̄=−n̄

min{n̄+m̄,n̄+j̄}∑
t̄=max{0,j̄+m̄}

(2− δp,0)ci2n+m̄+j−2tsi2t−m̄−j
(
− 1
m̄ω

)p
ci2n̄+m̄+j̄−2t̄si2t̄−m̄−j̄

(
− 1
m̄ω

)p̄+1

1∑
āp̄=0

max{p̄−(p̄−2),0}∑
āp̄−1=1−δāp̄,0

...

max{p̄−S̄(4,p̄)−2,0}∑
ā3=1−δā4,0

max{p̄−S̄(3,p̄)−1,0}∑
ā2=1−δā3,0

max{p̄−S̄(2,p̄),0}∑
ā1=0

1∑
ap=0

max{p−(p−2),0}∑
ap−1=1−δap,0

...

max{p−S(4,p)−2,0}∑
a3=1−δa4,0

max{p−S(3,p)−1,0}∑
a2=1−δa3,0

max{p−S(2,p),0}∑
a1=0

D

 apOmax∑
a′pOmax

=0

...

a5∑
a′5

a3∑
a′3

apOmax
−a′pOmax∑

a′′pOmax
=0

...

a5−a′5∑
a′′5 =0

a3−a′3∑
a′′3 =0

D̄

 āp̄Omax∑
ā′p̄Omax

=0

...

ā5∑
ā′5

ā3∑
ā′3

āp̄Omax
−ā′p̄Omax∑

ā′′p̄Omax
=0

...

ā5−ā′5∑
ā′′5 =0

ā3−ā′3∑
ā′′3 =0

(
OpOmax

· ... · O5 · O3

)(
EpEmax

· ... · E4E2
) (

1
r

)3(SO(3,pOmax )−S′O(3,pOmax ))

(
Ōp̄Omax

· ... · Ō5 · Ō3

)(
Ēp̄Emax

· ... · Ē4Ē2
) (

1
r

)3(S̄O(3,p̄Omax )−S̄′O(3,p̄Omax ))

(
− 1
r

)p−a1−SE(2,pEmax )−S′O(3,pOmax )
Rp−a1−2SE(2,pEmax )−S′O(3,pOmax )

(
− 1
r

)p̄−ā1−S̄E(2,p̄Emax )−S̄′O(3,p̄Omax )
Rp̄−ā1−2S̄E(2,p̄Emax )−S̄′O(3,p̄Omax )

(
jΘ
r2

)a1+S′O(3,pOmax ) (−Θ2+rµ
r3

)SE(2,pEmax )−SO(3,pOmax )+S′O(3,pOmax )

(
j̄Θ
r2

)ā1+S̄′O(3,p̄Omax ) (−Θ2+rµ
r3

)S̄E(2,p̄Emax )−S̄O(3,p̄Omax )+S̄′O(3,p̄Omax )

Θ2(SO(3,pOmax )−S′O(3,pOmax )−S′′O(3,pOmax ))(−rµ)S
′′
O(3,pOmax ) 1

rn+1

Θ2(S̄O(3,p̄Omax )−S̄′O(3,p̄Omax )−S̄′′O(3,p̄Omax ))(−rµ)S̄
′′
O(3,p̄Omax ) 1

rn̄+1 ·
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·
(
−
(

r3

−Θ2+rµ
1
r4

((
(3(S̄O(3, p̄Omax )− S̄′O(3, p̄Omax )))− (S̄′′O(3, p̄Omax )) +

(
p̄− ā1 − S̄E(2, p̄Emax )

−S̄′O(3, p̄Omax )
)

+ 2(ā1 + S̄′O(3, p̄Omax )) + 3(S̄E(2, p̄Emax )− S̄O(3, p̄Omax )

+S̄′O(3, p̄Omax )
)

+ (n̄+ 1)
)

Θ2 +
(
−(3(S̄O(3, p̄Omax )− S̄′O(3, p̄Omax ))) + (S̄′′O(3, p̄Omax ))

−(p̄− ā1 − SE(2, p̄Emax )− S̄′O(3, p̄Omax ))− (ā1 + S̄′O(3, p̄Omax ))

−2(S̄E(2, p̄Emax )− S̄O(3, p̄Omax ) + S̄′O(3, p̄Omax ))− (n̄+ 1)
)
rµ
))(

p−a1−2SE(2,pEmax )−S′O(3,pOmax )

R

)
(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

sin (−(j − j̄)θ))

+

(
p̄−ā1−2S̄E(2,p̄Emax )−S̄′O(3,p̄Omax )

R

)(
−
(

r3

−Θ2+rµ
1
r4

(((3 (SO(3, pOmax )

−S′O(3, pOmax )
))
− (S′′O(3, pOmax )) + (p− a1 − SE(2, pEmax )

−S′O(3, pOmax )
)

+ 2(a1 + S′O(3, pOmax )) + 3 (SE(2, pEmax )− SO(3, pOmax )

+S′O(3, pOmax )
)

+ (n+ 1)
)

Θ2 +
(
−(3(SO(3, pOmax )− S′O(3, pOmax )))

+(S′′O(3, pOmax ))− (p− a1 − SE(2, pEmax )− S′O(3, pOmax ))

−(a1 + S′O(3, pOmax ))− 2(SE(2, pEmax )− SO(3, pOmax ) + S′O(3, pOmax ))

−(n+ 1)) rµ)))(
1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

sin (−(j − j̄)θ))
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− (−j̄)
(

1
2Θ

(
4(SO(3, pOmax )− S′O(3, pOmax )− S′′O(3, pOmax ))

+2(a1 + S′O(3, pOmax )) +
N(j+m̄−2t)

N−Θ
− N(j+m̄+2n−2t)

N+Θ

+
4(SE(2,pEmax )−SO(3,pOmax )+S′O(3,pOmax ))Θ

Θ2−rµ

))
(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
))

sin (−(j − j̄)θ))

+
(
4(S̄O(3, p̄Omax )− S̄′O(3, p̄Omax )− S̄′′O(3, p̄Omax )) + 2(ā1 + S̄′O(3, p̄Omax ))

+
N(j̄+m̄−2t̄)

N−Θ
− N(j̄+m̄+2n̄−2t̄)

N+Θ
+

4(S̄E(2,p̄Emax )−S̄O(3,p̄Omax )+S̄′O(3,p̄Omax ))Θ

Θ2−rµ

)
(−j)(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

sin (−(j − j̄)θ))

− (m̄)
(
− 1
N2−Θ2 ((j + m̄− 2t)Θ + n(−N + Θ))

)(
1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ))− (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax ) + 1))
))

sin (−(j − j̄)θ))

+
(
− 1
N2−Θ2 ((j̄ + m̄− 2t̄)Θ + n̄(−N + Θ))

)
(m̄)(

1
2

(
(A(1)

n,m̄,jA
(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

+(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

cos (−(j − j̄)θ)
+ 1

2

(
(A(1)

n̄,m̄,j̄
B(1)
n,m̄,j −A

(1)
n,m̄,jB

(1)

n̄,m̄,j̄
)

cos
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
)

−(A(1)
n,m̄,jA

(1)

n̄,m̄,j̄
+ B(1)

n,m̄,jB
(1)

n̄,m̄,j̄
)

sin
(
π
2

((−(p) + a1 + S′O(3, pOmax ) + 1) + (−(p̄+ 1) + ā1 + S̄′O(3, p̄Omax )))
))

sin (−(j − j̄)θ)))

(6.18)
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where in D, O and E the parameter m must be substituted by m̄.
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Appendix C

The un-normalized spherical harmonic coefficients of 624-Hektor are here listed.

This coefficients have been obtained following the procedure described in [76] from

the 1022 vertices 3D model of 624-Hektor represented in Fig. 4.1 and found on the

DAMIT-Database of Asteroid Models from Inversion Techniques.

C0,0 1
C1,0 2.33217× 10−8

C1,1 −5.65245× 10−9

C2,0 −0.12464
C2,1 0.00304843
C2,2 0.04981
C3,0 0.00102426
C3,1 −0.00116095
C3,2 0.000631592
C3,3 0.0000250782
C4,0 0.0400541
C4,1 −0.000166485
C4,2 −0.00381943
C4,3 0.0000443294
C4,4 0.00031861
C5,0 −0.000329525
C5,1 0.000632048
C5,2 −0.0000697135
C5,3 −2.77318× 10−7

C5,4 8.72067× 10−6

C5,5 −2.40029× 10−6

C6,0 −0.0168482
C6,1 −0.000136802
C6,2 0.000743635
C6,3 −3.08661× 10−6

C6,4 −0.000017396
C6,5 4.21979× 10−7

C6,6 9.05311× 10−7

C7,0 0.000297055
C7,1 −0.000304151
C7,2 0.0000102168
C7,3 2.96129× 10−7

C7,4 −9.86927× 10−7

C7,5 1.95817× 10−7

C7,6 4.09629× 10−8

C7,7 −1.98738× 10−8

C8,0 0.00791898
C8,1 0.000133685
C8,2 −0.000201374
C8,3 −7.42295× 10−8

C8,4 2.38859× 10−6

C8,5 −3.97459× 10−8

C8,6 −3.57829× 10−8

C8,7 1.709× 10−9

C8,8 1.76265× 10−9

C9,0 −0.000322245
C9,1 0.000137372
C9,2 1.04867× 10−7

C9,3 −1.53402× 10−8

C9,4 1.70052× 10−7

C9,5 −3.13028× 10−8

C9,6 −4.09551× 10−9

C9,7 1.06157× 10−9

C9,8 9.09409× 10−11

C9,9 −5.2564× 10−11

C10,0 −0.00389284
C10,1 −0.0000890129
C10,2 0.0000641703
C10,3 2.22255× 10−7

C10,4 −4.63008× 10−7

C10,5 5.78004× 10−9

C10,6 3.50487× 10−9

C10,7 −1.41563× 10−10

C10,8 −4.90193× 10−11

C10,9 3.30995× 10−12

C10,10 3.07354× 10−12

Table 6.1: 624-Hektor,Spherical Harmonics coefficients: Cn,m
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S0,0 0
S1,0 0
S1,1 −3.75818× 10−2

S2,0 0
S2,1 2.44174× 10−3

S2,2 2.47263× 10−2

S3,0 0
S3,1 −1.61779× 10−3

S3,2 2.44957× 10−4

S3,3 1.27032× 10−4

S4,0 0
S4,1 −4.37887× 10−4

S4,2 1.87272× 10−3

S4,3 3.92078× 10−5

S4,4 1.51864× 10−4

S5,0 0
S5,1 4.67568× 10−4

S5,2 −2.27241× 10−5

S5,3 −2.94281× 10−6

S5,4 2.39711× 10−6

S5,5 −1.13629× 10−6

S6,0 0
S6,1 8.02977× 10−5

S6,2 3.61996× 10−4

S6,3 −4.21205× 10−6

S6,4 −8.14515× 10−6

S6,5 2.18522× 10−7

S6,6 4.09279× 10−7

S7,0 0
S7,1 −1.79721× 10−4

S7,2 9.51647× 10−7

S7,3 1.15513× 10−7

S7,4 −2.35444× 10−7

S7,5 1.2149× 10−7

S7,6 7.08749× 10−9

S7,7 −1.26457× 10−8

S8,0 0
S8,1 1.56517× 10−6

S8,2 −9.9021× 10−5

S8,3 5.70613× 10−7

S8,4 1.1143× 10−6

S8,5 −2.06789× 10−8

S8,6 −1.52099× 10−8

S8,7 5.73623× 10−10

S8,8 7.41676× 10−10

S9,0 0
S9,1 8.23674× 10−5

S9,2 1.74015× 10−6

S9,3 9.50787× 10−9

S9,4 2.95314× 10−8

S9,5 −2.01586× 10−8

S9,6 −5.53021× 10−10

S9,7 7.00849× 10−10

S9,8 6.69884× 10−12

S9,9 −3.68673× 10−11

S10,0 0
S10,1 −1.228× 10−5

S10,2 3.28695× 10−5

S10,3 −5.79763× 10−8

S10,4 −2.2292× 10−7

S10,5 2.68899× 10−9

S10,6 1.43408× 10−9

S10,7 −4.5155× 10−11

S10,8 −1.74772× 10−11

S10,9 8.34705× 10−13

S10,10 1.27466× 10−12

Table 6.2: 624-Hektor,Spherical Harmonics coefficients: Sn,m
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Appendix D

The equilibrium points Mj , j = 1, ..., 8 are defined at the three intersect of the surfaces

that satisfy the equations of (5.1). As the third equation is clearly satisfied by the plane

z = 0, the equilibrium points Mj , j = 1, ..., 8, are bounded to stay on the z = 0 plane,

which, equivalently, can be seen as the degeneration of system (5.1) into a two dimen-

sional system, once the solution of the third equation, namely z = 0, is substituted in.

Such system is qualitatively the same treated in [19] whose solution is shown by Figure

6.1. In particular the light, continuous curve in the figure represents the solution of the

first equation of system (5.1), the dark, dashed line shows the solution of the second

equation of the system and the third equation is clearly satisfied by the plane z = 0,

plotted in all the Figure as well.

Figure 6.1: Equilibrium points; Intersection with the plane z = 0
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Appendix E

Let be λ, λ∗; ν, ν∗;ϕ,ϕ∗ ∈ C the eigenvalues of the system (5.30) and f̄j = ūj + iw̄j ∈
R6, j = 1, ..., 6 the respective eigenvectors.

Since {ū1, w̄1, ū3, w̄3, ū5, w̄5} is a base of R6, then ∀s ∈ R6 there exist s1, ..., s6 ∈ R
such that s = s1ū1 + s2w̄1 + s3ū3 + s4w̄3 + s5ū5 + s6w̄5.

A′



s1

s2

s3

s4

s5

s6


= ... = s1



A′1,1
A′2,1
A′3,1
A′4,1
A′5,1
A′6,1


+ ...+ s6



A′1,6
A′2,6
A′3,6
A′4,6
A′5,6
A′6,6


(6.19)

Then, of course, being the Ā and A′ the expression of the same system in two

different coordinates, and being N the matrix of the change of coordinates, yields that

(6.19) is also equal to:

Ā



s1N1,1 + s2N2,1 + s3N3,1 + s4N4,1 + s5N5,1 + s6N6,1

s1N1,2 + s2N2,2 + s3N3,2 + s4N4,2 + s5N5,2 + s6N6,2

s1N1,3 + s2N2,3 + s3N3,3 + s4N4,3 + s5N5,3 + s6N6,3

s1N1,4 + s2N2,4 + s3N3,4 + s4N4,4 + s5N5,4 + s6N6,4

s1N1,5 + s2N2,5 + s3N3,5 + s4N4,5 + s5N5,5 + s6N6,5

s1N1,6 + s2N2,6 + s3N3,6 + s4N4,6 + s5N5,6 + s6N6,6



= s1Ā


N1,1

N2,1

N3,1

N5,1

N6,1

+ ...+ s6Ā



N1,6

N2,6

N3,6

N4,6

N5,6

N6,6



= s1



Ā(ū1)/ū1

Ā(ū1)/w̄1

Ā(ū1)/ū3

Ā(ū1)/w̄3

Ā(ū1)/ū5

Ā(ū1)/w̄5


+ ...+ s6



Ā(w̄5)/ū1

Ā(w̄5)/w̄1

Ā(w̄5)/ū3

Ā(w̄5)/w̄3

Ā(w̄5)/ū5

Ā(w̄5)/w̄5



(6.20)

Where, with / it is indicated the projection, e.g. Ā(ū1)/ū1 means the component of

ūĀ(ū1) in the ū1 direction.
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Equating (6.19) and (6.20) it is found that, being A′ =
(
A′j,k

)
j = 1, ..., 6

k = 1, ..., 6

,

A′j,k =


Ā(ūk)/ūj if k, j odd

Ā(w̄k−1/ūj if k even, j odd

Ā(ūk)/w̄j−1 if j even, k odd

Ā(w̄k−1)/w̄j−1 if k, j even

(6.21)

Now, given Ā ∈ L(R6), let us define ĀC as the “complexification” of Ā, namely,

ĀC ∈ L(C6) such that ∀f̄ = ū + iw̄ ∈ C6, ū, w̄ ∈ R6, ĀC(f̄) := Ā(ū) + iĀ(w̄).

Then, taking Ā as in (5.30) and the first eigenvector f̄1 ∈ C6 yields:

ĀC(f̄1) = Ā(ū1) + iĀ(w̄1) (6.22)

But, since f̄1 is an eigenvector of Ā, it is also true that:

ĀC(f̄1) = λf̄1 = (λR + iλI)(ū1 + iw̄1) = (λRū1 − λIw̄1) + i(λI ū1 + λRw̄1) (6.23)

Equaling the Real and Imaginary parts of (6.22) and (6.23) yields:

Ā(ū1) = λRū1 − λIw̄1

Ā(w̄1) = λRw̄1 + λI ū1

(6.24)

Repeating the analogous procedure for the other eigenvectors it is finally found that:

A′ =



λR λI 0 0 0 0

−λI λR 0 0 0 0

0 0 νR νI 0 0

0 0 −νI νR 0 0

0 0 0 0 ϕR ϕI

0 0 0 0 −ϕI ϕR


(6.25)

Then, in this basis, the system takes the form

(t)ג̇ = A′ג(t) (6.26)

with (t0)ג = [ξ0
1(t), ξ0

2(t), ψ0
1(t), ψ0

2(t), ζ0
1 (t), ζ0

2 (t)]T . This system is solved by

(t)ג = eA(t0)ג
′t (6.27)

For the well known property of the exponential of a matrix12 it is found that if A′ is

21 This property is straight forward from direct calculations once the basis in which the matrix of
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as in (6.25) then S = eA
′t is a block matrix (6× 6) such that:

S = eA
′t =

 S1 0 0

0 S2 0

0 0 S3

 (6.28)

with

S1 =

(
eλRt cos (λIt) −eλRt sin (λIt)

eλRt cos (νIt) eλRt sin (λIt)

)

S2 =

(
eνRt cos (νIt) −eνRt sin (νIt)

eνRt cos (νIt) eνRt sin (νIt)

)
(6.29)

S3 =

(
eϕRt cos (ϕIt) −eϕRt sin (ϕIt)

eϕRt cos (ϕIt) eϕRt sin (ϕIt)

)
that is exactly the one in (5.32).

Finally, for how the solution has been derived, it is clear that x(t) =Mג(t) .

the system A is diagonal (but with complex coefficients) is known.
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Appendix F

ū1,1 = 1

w̄1,1 = 0

ū1,2 = γχ−δφ+χλ2

−βγ+φ2−βλ2−γλ2−λ4

w̄1,2 = −2λ3−2γλ
−βγ+φ2−βλ2−γλ2−λ4

ū1,3 = βδ−χφ+δλ2

−βγ+φ2−βλ2−γλ2−λ4

w̄1,3 = 2φλ
−βδγ+φ2−βδλ2−γλ2−λ4

ū1,4 = −
(

γχ−δφ+χλ2

−βγ+φ2−βλ2−γλ2−λ4

)
w̄1,4 = −

(
−2λ3−2γλ

−βγ+φ2−βλ2−γΛ2−λ4

)
+ λ

ū1,5 = 1− λ w̄1,2

w̄1,5 = λ ū1,2

ū1,6 = −λ w̄1,3

w̄1,6 = λ ū1,3

ū3,1 = 1

w̄3,1 = 0

ū3,2 = −αγ2χ+γχδ2+αγδφ−δ3φ+(−2αγχ−γ2χ+χδ2+αδφ+γδφ)ν2+(−αχ−2γχ+δφ)ν4−χν6

γ2χ2−2γχδφ+δ2φ2+(4γ2+2γχ2−2χδφ)ν2+(8γ+χ2)ν4+4ν6

w̄3,2 = (2αγ2−2γδ2)ν+(4αγ+2γ2−2δ2)ν3+(2α+4γ)ν5+2ν7

γ2χ2−2γχδφ+δ2φ2+(4γ2+2γχ2−2χδφ)ν2+(8γ+χ2)ν4+4ν6

ū3,3 = −γχ2δ+αγχφ+χδ2φ−αδφ2+(−4γδ−χ2δ+αχφ+γχφ−δφ2)ν2+(−4δ+χφ)ν4

γ2χ2−2γχδφ+δ2φ2+(4γ2+2γχ2−2χδφ)ν2+(8γ+χ2)ν4+4ν6

w̄3,3 = (−2αγφ+2δ2φ)ν+(−2αφ−2γφ)ν3−2φν5

γ2χ2−2γχδφ+δ2φ2+(4γ2+2γχ2−2χδφ)ν2+(8γ+χ2)ν4+4ν6

ū3,4 = −
(
−αγ2χ+γχδ2+αγδφ−δ3φ+(−2αγχ−γ2χ+χδ2+αδφ+γδφ)ν2+(−αχ−2γχ+δφ)ν4−χν6

γ2χ2−2γχδφ+δ2φ2+(4γ2+2γχ2−2χδφ)ν2+(8γ+χ2)ν4+4ν6

)
w̄3,4 = −

(
(2αγ2−2γδ2)ν+(4αγ+2γ2−2δ2)ν3+(2α+4γ)ν5+2ν7

γ2χ2−2γχδφ+δ2φ2+(4γ2+2γχ2−2χδφ)ν2+(8γ+χ2)ν4+4ν6

)
+ ν

ū3,5 = 1− ν w̄3,2

w̄3,5 = ν ū3,2

ū3,6 = −ν w̄3,3

w̄3,6 = ν ū3,3

ū5,1 = 1

w̄5,1 = 0

ū5,2 = (−βχδ2+αβδφ+χ2δφ−αχφ2+(−χδ2−4δφ+αδφ+βδφ−χφ2)ϕ2+δφϕ4)
β2δ2−2βχδφ+χ2φ2+(2βδ2−2χδφ+4φ2)ϕ2+δ2ϕ4

w̄5,2 = (2βδ2−4χδφ+2αφ2)ϕ+(2δ2+2φ2)ϕ3

β2δ2−2βχδφ+χ2φ2+(2βδ2−2χδφ+4φ2)ϕ2+δ2ϕ4

ū5,3 = −αβ2δ+βδχ2+αβχφ−χ3φ+(4βδ−2αβδ−β2δ+χ2δ−4χφ+αχφ+βχφ)ϕ2

β2δ2−2βχδφ+χ2φ2+(2βδ2−2χδφ+4φ2)ϕ2+δ2ϕ4

+ (4δ−αδ−2βδ+χφ)ϕ4−δϕ6

β2δ2−2βχδφ+χ2φ2+(2βδ2−2χδφ+4φ2)ϕ2+δ2ϕ4

w̄5,3 = (−2αβφ+2χ2φ)ϕ+(8φ−2αφ−2βφ)ϕ3−2φϕ5

β2δ2−2βχδφ+χ2φ2+(2βδ2−2χδφ+4φ2)ϕ2+δ2ϕ4

ū5,4 = −
(

(−βχδ2+αβδφ+χ2δφ−αχφ2+(−χδ2−4δφ+αδφ+βδφ−χφ2)ϕ2+δφϕ4)
β2δ2−2βχδφ+χ2φ2+(2βδ2−2χδφ+4φ2)ϕ2+δ2ϕ4

)
w̄5,4 = −

(
(2βδ2−4χδφ+2αφ2)ϕ+(2δ2+2φ2)ϕ3

β2δ2−2βχδφ+χ2φ2+(2βδ2−2χδφ+4φ2)ϕ2+δ2ϕ4

)
+ ϕ

ū5,5 = 1− ϕ w̄5,2

w̄5,5 = ϕ ū5,2

ū5,6 = −ϕ w̄5,3

w̄5,6 = ϕ ū5,3


