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Abstract

Pore-scale investigations of immiscible two-phase flow displacement dynamics in porous

media provides crucial information to natural and industrial processes such as non-

aqueous phase liquid (NAPL) contamination of groundwater, carbon dioxide injection

and storage, and enhanced oil recovery (EOR) operations. It has the potential to trans-

form our understanding of multiphase flow processes, to improve oil and gas recovery

efficiency, and to facilitate safe carbon dioxide storage. However, the modelled pore-

space geometry is naturally complex for these fields of application. For directly simu-

lating multiphase flow within the complex structure, the most widely-used approach is

the lattice Boltzmann method (LBM).

In this thesis, the implementation of the state-of-the-art colour gradient two-phase LBM

has been validated against the theoretical solution for capillary filling, and analytical

solutions for relative permeabilities in a cocurrent flow in a 2D channel. Then it is

employed to investigate the effects of interfacial tension, wettability, and the viscosity

ratio on displacement of one fluid by another immiscible fluid in a two-dimensional

(2D) Berea sandstone. Through invasion of the wetting phase into the porous matrix,

it is observed that the viscosity ratio plays an important role in the non-wetting phase

recovery. At the viscosity ratio (λ) of unity, the saturation of the wetting fluid is highest,

and linearly increases with time. The displacing fluid saturation reduces drastically

when λ increases to 20; however, when λ is beyond 20, the reduction becomes less

significant for both imbibition and drainage. The front of the bottom fingers is finally

halted at a position near the inlet as the viscosity ratio increases to 10. Increasing the

interfacial tension generally results in higher saturation of the wetting fluid. Finally,

the contact angle is found to have a limited effect on the efficiency of displacement in

the 2D Berea sandstone.

viii



In addition, it has also been utilized to provide a better understanding of spontaneous

imbibition, a key oil recovery mechanism in the fractured reservoir rocks. A pore-

scale computational study of the water imbibition into an artificially generated dual-

permeability porous matrix with a fracture attached on top is conducted. Several

factors affecting the dynamic counter-current imbibition processes and the resulting

oil recovery have been analysed, including the water injection velocity, the geometry

configuration of the dual permeability zones, interfacial tension, viscosity ratio of water

to oil phases, and fracture spacing if there are multiple fractures. By examining different

water injection velocities and interfacial tensions, it is identified for the first time that

the three distinct imbibition regimes exist: the squeezing regime, the jetting regime

and the dripping regime, and they can be distinguished with different expelled oil

morphologies in the fracture (piston-like plug, elongated liquid thread or isolated drops).

The geometry configuration of the high and low permeability zones affects the amount of

oil that can be recovered by the counter-current imbibition in a fracture-matrix system

through transition of the different regimes. In the squeezing regime, which occurs at low

water injection velocity, it is interestingly found that the built-up squeezing pressure

upstream in the fracture enables more water to imbibe into the permeability zone closer

to the fracture inlet thus increasing the oil recovery factor. A larger interfacial tension

or a lower water-to-oil viscosity ratio is favorable for enhancing oil recovery and new

insights into the effect of viscosity ratio are provided. Introducing an extra parallel

fracture can effectively increase the oil recovery factor and there is an optimal fracture

spacing between the two adjacent horizontal fractures to maximize the oil recovery.

These findings can aid the optimal design of water-injecting oil extraction in fractured

rocks in reservoirs of low permeability like oil-bearing shale or tight sandstone.

We conclude that the pore-scale modelling can act as a reliable tool to assess and

predict oil and gas resources and facilitate more efficient oil and gas recovery.
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Chapter 1

Introduction

1.1 Background

The simultaneous flow of two immiscible fluids in porous media is of great interest

in nature and many industrial processes such as non-aqueous phase liquid (NAPL)

contamination of groundwater, carbon dioxide injection and storage, and enhanced oil

recovery (EOR) operations. The fluid flow in porous media is complicated mainly due

to the highly heterogeneous and complex geometry of the porous structure and the

usually nonlinear and coupled transport phenomena of the two immiscible fluids inside.

In petroleum engineering, the porous media refers to the hydrocarbon reservoirs with

a porous geologic formation that contains hydrocarbon (oil or gas) in its pore space as

well as connate water. Within this thesis, we consider the oil recovery from reservoirs.

We focus on the immiscible displacements with both capillary and viscous effects (the

inertial effect is taken into consideration but its effect is negligible at low Mach num-

ber, the gravitational effect is neglected since the ratio of gravity to capillary force is

very small [10], i.e., low Bond number). The physics of fluid displacement at the pore

scale plays a key role in determining the overall movement of the fluids, consequently

deciding how much oil can be recovered. However, many difficulties remain for the

transport properties within the rocks to be properly understood. One way is to deter-

mine the transport properties of porous media by experiment in laboratories, however,

it is usually costly in terms of time and resources and requires highly-skillful technical

operation. Moreover, one can measure only a limited amount of physical variables.

Apart from the experimental efforts, theoretical analysis can be a useful tool, but it is

usually limited for simplified pore geometries which admit theoretical solutions to the

microscopic flow patterns [9].
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With the continuing and rapid development of the computational power, computational

simulation provides an increasingly reliable alternative tool for this problem. Moreover,

numerical simulations can be performed when laboratory experiments are impossible

due to technical limitations. As a complementary method to the experimental and

theoretical approaches, accurate and reliable numerical tools are needed to understand

the underlying mechanisms of multiphase displacement. Conventional macro-scale sim-

ulations have achieved great success in solving the continuity, momentum, and species

balance equations which require some inputs for semi-empirical parameters such as

relative permeabilities. This approach, however, may not be able to capture effects re-

lated to microscale structure in multiphase flows. For example, the capillary trapping

mechanism has a huge impact on the evaluated relative permeability for predicting the

distribution and mobility of the immobilised fluid in the reservoir [11]. On the contrary,

pore-scale simulation provides an important means to improve our understanding of the

underlying physical processes and to determine macroscale constitutive relationships,

for example the capillary pressure-saturation relation.

Figure 1.1: Schematic of the viscous displacement or waterflooding (top) and spon-
taneous imbibition (bottom) process of oil recovery. In waterflooding, the capillary
pressure term in the governing flow equations is relatively small compared to viscous
forces, and mainly affects the fluid front; while in spontaneous imbibition, the displace-
ment process is entirely caused by capillary forces, it often occurs when we can not
exert a significant viscous pressure drop across a region of rock [1].
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As a mesoscopic method, the lattice Boltzmann method (LBM) has been widely ac-

cepted as a useful alternative for simulating multiphase flows, in particular, with the

advantage of dealing with complex geometries such as porous media [12]. In other pore

scale modelling methods such as pore-network modelling, the porous medium is ide-

alised as some simple geometries which could lead to loss of geometrical and topological

information. However, the LBM can be used to solve equations in an arbitrary pore

space geometry and topology without simplification. Nevertheless, the high computa-

tional cost and memory demand restrict our study in two dimensional even with high

performance computer (HPC). As will be introduced in detail in Chapter 2, the LBM is

easy to implement compared with other CFD algorithms and with good locality which

is ideal for parallel computing. In this thesis, the state-of-the-art lattice Boltzmann

colour-gradient method is first utilised for dynamic displacement of immiscible fluids

in a complex porous flow structure extracted from a realistic Berea sandstone sample,

and study the effects of the viscosity ratio, interfacial tension, and contact angle on

the displacement process. Then it is used to understand and quantify the dynamic

imbibition process and oil recovery within the low permeability fractured rocks.

1.2 Literature review

As shown in Fig. 1.1, there are two generic recovery processes in oil reservoirs when

water is injected: direct viscous displacement (simply termed as waterflooding)

and spontaneous imbibition [1]. In the waterflooding process, water pushes out oil in

a process controlled by the imposed injection rate or pressure difference between water

and oil. The pressure difference between the injection and production wells is typically

much larger than the capillary pressure, thus the displacement process is dominated by

viscous forces while the capillary forces control the local distribution of fluids. While

in fractured media, or reservoirs with large permeability contrast, the other recovery

process – spontaneous imbibition is observed. In a fracture-matrix system as shown in

bottom of Fig. 1.1, the interconnected fractures form a short-circuit for flow, where it

is not possible to impose a significant viscous pressure drop across a single region of

rock surrounded by the fractures. In this case oil can only be recovered providing that

water imbibes into the matrix. This process of the wetting fluid – typically water –

being imbibed into the porous rock matrix due to the capillary pressure without any

external driving force is called the spontaneous imbibition. The spontaneous imbibition

can be co-current or counter-current, depending on whether the water and oil transport

in the same (co-current) or opposite (counter-current) directions [13], as illustrated in
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Fig. 1.2.
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Figure 1.2: Schematic of the (a) co-current imbibition: the expelled oil and the imbibing
water (see arrows in the same colour) flow in the same direction, and (b) counter-current
imbibition: the expelled oil and the imbibing water (black arrows) flow in the opposite
directions.

1.2.1 Viscous displacement (Waterflooding)

Many experimental efforts have been made to understand interactions between fluids

and rock during fluid displacement. They mainly used two categories of porous media,

either natural media such as rock cores or transparent network models known as micro-

models. Rock cores are advantageous for characterizing individual formations, however,

they rely on sophisticated and bespoke laboratory facilities such as micro-CT or syn-

chrotron scanner to image the rock samples and visualize the internal fluids distribution

within the rock cores. While for micromodels, which are two-dimensional pore network

patterns etched into materials such as silicon, glass, polyester resin, and most recently,

polydimethylsiloxane (PDMS) [14], visualization of fluid distribution can be done using

cameras with or without fluorescent microscopy. Fluid saturation and interfacial area

can be quantified and may provide a better understanding of physical displacement

processes at the microscopic level. Moreover, the micromodels are ideal for parametric

investigation with porosity, pore size, connectivity, and wetting properties can be inde-

pendently manipulated. For example, an early study of Lenormand et al. [15] conducted
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experiments with a micromodel using transparent polyester resin. They observed sev-

eral different mechanisms by which one fluid can be displaced by another, for example

the basic ‘piston-type’ motion and ‘snap-off’ for the displacement of the meniscus in

a duct and two types of imbibition pattern (imbibition I1 and I2) at the intersection

of four ducts. As a pioneering work, a phase-diagram for immiscible displacement of

wetting fluid by injection of the non-wetting fluid (known as drainage) characterized by

two dimensionless numbers, i.e., the capillary number Ca = (ηnun)/(σnw cos θ), which

represents the ratio of viscous forces to capillary forces experienced by a nonwetting

fluid during displacement, and the viscosity ratio λ = ηn/ηw, was proposed by Lenor-

mand et al. [3] with a oil-wet micromodel. Herein, ηn and un are the viscosity and

velocity of the advancing nonwetting fluid (subscript n), σnw is the interfacial tension

between the wetting (subscript w) and nonwetting fluid, θ is the fluid-fluid contact

angle with the solid surface. They identified three different displacement regimes: (a)

-6 -4 -2 0 2 4

Log  M

-10

-8

-6

-4

-2

0

L
o

g
  

C
a

Viscous

Fingering

Stable

Displacement

Capillary Fingering

Figure 1.3: log M - log Ca phase diagram showing the three displacement zones bounded
by solid lines obtained by Zhang et al. [2] and the gray zones denoted the zones obtained
by Lenormand et al. [3].

viscous fingering, (b) capillary fingering, and (c) stable displacement. They also pre-

sented the existence of a crossover zone, for example, when the nonwetting phase is

less viscous than the wetting fluid (λ < 1), the invasion pattern varies from capillary

fingering (log10Ca ∼ −8.0) to viscous fingering (log10Ca ∼ −3.0) [3] as can be seen

from Fig. 1.3. Great efforts have been made to investigate this crossover zone using
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both experiments [16, 17, 18, 19] and numerical simulations [20]. With the considerable

improvement of techniques such as precise microfabrication, fluid saturation visualiza-

tion and image analysis, a series of displacement experiments were conducted by Zhang

et al. [2] in a homogeneous water-wet pore network micromodel which extend the fun-

damental contributions by Lenormand et al. [3]. They found that the boundaries that

divide the different regimes are strongly dependent on the pore network. Worse still,

micromodels are often criticized for the lack of the complex geometry of real media,

which often ignores the multiscale and random characteristics that may dominate the

fluid and solute transport.

In addition to experimental studies, pore-scale modelling has developed rapidly as a

predictive tool used in the oil industry. Pore-scale simulations are important because

pore-scale phenomena have an important impact on larger-scale phenomena, e.g., field

scale displacement. Unlike experiments, it is easy to change fluid properties, pore space

geometries and boundary conditions systematically in computational simulations [21].

To the best of my knowledge, there are mainly two ways to compute properties in

the pore space. The first one is the direct simulation approach, where the governing

equations of fluid transport are computed on the image itself. This could be compu-

tationally demanding and the computational accuracy is subject to the resolution of

the image. The other approach is pore network modelling (PNM), which is first to

extract a topologically representative network with idealised properties derived from

the image, then to compute the fluid flow through this network composed of pores and

throats in a usually semi-analytical way [22]. This approach is well-tailored for the

study of capillary-controlled displacement, providing infinite resolution in the network

elements. However, apparently a number of approximations are made concerning the

pore space geometry in this approach. And it is challenging to extract topologically

and geometrically equivalent pore networks that are representative for certain classes

of rocks [23].

The most popular way to directly compute multiphase flow from pore-scale images is

the lattice Boltzmann method [24]. The most appealing features of LBM lie in easy

handling of complex boundary conditions and amenability to parallel computing. As a

mesoscopic model, it is able to correctly reproduce macroscopic behaviour while cap-

turing local microscopic effects. The kinetic nature enables the LBM to automatically

maintain fluid interfaces that do not need to be tracked. In comparison, conventional

numerical methods for multiphase flow simulations include level set (LS) [25], volume

of fluid (VOF) [26, 27, 28, 29], phase-field (PF) model [30] and smoothed particle hy-

drodynamics (SPH) [31] rely on auxiliary algorithms to track the fluid interfaces in
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addition to solving the macroscopic flow equations [23].

In addition, LBM offers a convenient way to simulate the true pore geometry of a

porous medium system for both the single phase and multiphase flows. It is based on

a complete description of the pore structure and hence can only be applied to porous

media when the representative elementary volume (REV) (see in Section 3.2.2) is big

enough to allow an appropriate resolution of the smallest single pores, e.g., by high-

resolution X-ray tomography. A number of multiphase and multicomponent LB models

are readily available to simulate flows in complex geometries on a pore scale level, which

will be introduced in section 2.4.

Early in 1995, Ferréol and Rothman [32] have successfully applied the lattice Boltzmann

method to simulate single-phase and two-phase flow through a 3D tomographically-

reconstructed image of Fontainebleau sandstone. They have found that the perme-

ability strongly depends on the viscosity when the grid resolution is not enough, and

the effect of grid resolution decreases as the viscosity decreases. They also presented

preliminary qualitative results for simulations of drainage and imbibition in the early

displacement stage (before reaching steady state), and the behaviours of the invading

fluids are roughly within expectation. Martys and Chen [33] used the three-dimensional

Shan-Chen model to simulate the wetting and non-wetting fluids in a porous geometry

generated by a microtomography image of Fontainebleau sandstone. However, the nu-

merical method adopted was primitive and the computational resolution might be too

low for obtaining meaningful results.

Tölke et al. [34] introduced an improved three dimensional colour gradient LB model for

immiscible binary fluids with variable viscosity and density ratio by reducing the spuri-

ous currents in the interface regions. The interface is less sharp than the original model

by Gunstensen et al. [35] but the stability is improved. Still, the convergence study

with respect to grid refinement was absent and for simulations of large-scale problems

in reality, the stability constraints pose a major limitation with the Bhatnagar-Gross-

Krook (BGK) collision operator (see section 2.2). A synthetic packing with a relatively

uniform distribution of spheres was simulated by Pan et al. [36] with three-dimensional

Shan-Chen model, although encouraging agreement between the simulated hysteretic

P-S (capillary pressure–saturation) relations and experimental data was obtained, the

simulated cubic domain is not large enough to be a representative elementary vol-

ume (REV) (see section 3.2.2).

Manwart et al. [37] compared the lattice Boltzmann method (LBM) and the conven-

tional finite difference (FD) method by performing numerical tests of permeability

for four samples, i.e., one microtomographic image of Fontainebleau sandstone, two
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stochastic reconstructions and one physical model for the Fontainebleau sample. They

concluded that both the LB and FD methods are applicable to solve equations within

the three-dimensional porous medium. However the numerically determined fluid per-

meability should be taken with caution as it may depend on the boundary conditions,

size of the sample, and the resolution of the microstructure. Comparison of the lat-

tice Boltzmann model (three dimensional colour gradient model) and the pore network

model has also been done by Vogel et al. [38], they reported consistent results for pre-

dicting the primary drainage curve. Their work is based on detailed representations of

the complex porous structures as measured by X-ray tomography, and concluded that

the LB model is advantageous to provide a detailed analysis of multiphase dynamics

despite the limitation of insufficient resolution of thin water films with uniform grids.

Li et al. [39] investigated the effect of capillary number, wettability and viscosity ra-

tio on the conventional relative permeabilities in co-current two-phase flow through a

sphere pack porous medium with the D3Q19 Shan-Chen multicomponent LB model.

The dependence of the permeability-saturation curve on the capillary number, wetta-

bility, and viscosity ratio evidenced that the permeability is not only dependant on the

fluid saturation, but also the fluid-fluid interfacial area. There are also studies that

compare the LBM with the experimental data. For example, Schaap et al. [40] com-

pared the pressure-saturation curve from experimental and LBM results using D3Q19

Shan-Chen multiple-relaxation-time model, however a good match is observed only for

the liquid-air system, large differences exists for the liquid-liquid system. This might

be the result of unreasonable assumption that the contact angle is zero in both the

liquid-air and liquid-liquid systems. Ahrenholz et al. [41] compared the D3Q19 colour

gradient multiple-relaxation-time model with the experimental data and suggested that

for the air-water drainage process, the air-entry pressure and the slope of the drainage

curve can be predicted very well while the residual water saturation is more difficult

to be accurately estimated by the LB approach due to the limited resolution of the

thin-film flow. Ramstad et al. [23] reproduced the unsteady and steady-state dis-

placements for measuring relative permeability with LB simulations on pore images

of water-wet Bentheimer and Berea sandstone, and compared the computed relative

permeabilities with available experimental data. It is demonstrated that the LB model

is able to produce the drainage and imbibition permeability curves that are compara-

ble to the experimental data with steady-state setups, although the nonwetting fluid

relative permeability for unsteady-state drainage simulations is over-predicted. Other

previous works on pore-scale simulation of immiscible two-phase flows in porous me-

dia [42, 43, 44, 45, 46, 47] have been shown to be capable of capturing the effects of

various factors, e.g., capillary number, viscosity ratio, surface wettability, and media
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heterogeneity. However, due to the inherent complexity related to interface evolution,

heterogeneous geometry, dominant capillarity, and moving contact line, the computa-

tional simulation of multiphase displacement in realistic porous media still remains a

research challenge.

1.2.2 Spontaneous imbibition

Fractured petroleum reservoirs typically represent over 20% of the world’s oil reserves [48].

Such reservoirs are poorly understood and oil recovery from fractured reservoirs is typ-

ically lower than that from conventional reservoirs. For conventional reservoirs, water

flooding is one of the primary techniques to enhance oil recovery (EOR), in which

water is injected to displace oil from the porous matrix under the pressure difference.

However, for the low permeable fractured reservoirs, the water-flooding displacement

is often not productive because the limited connectivity among the pores cannot guide

effectively the flow of the expelled oil along the pressure gradient [49].

Yet still, in many naturally fractured reservoirs, the spontaneous imbibition (also known

as capillary imbibition) provides a special mechanism for oil recovery from the matrix

which does not rely on the imposed pressure gradient. In the spontaneous imbibition,

the wetting fluid is imbibed into the porous rock matrix due to the capillary pressure

without any external driving force. The oil in the rock matrix is expelled and flows

into the fractures due to the spontaneous imbibition of water into the matrix from the

fractures. In this work, we focus on the counter-current imbibition [Fig. 1.2(b)],

where the wetting phase and non-wetting phase flow in/out of the matrix at the same

side, and enclosed (by wall) matrix is necessary for such flow to occur. The counter-

current imbibition occurs more often although it is less effective in terms of oil recovery.

The spontaneous imbibition is known to be affected by many factors including the

wettability [50], the porosity, permeability and heterogeneity of the matrix [51, 52, 53,

54, 55, 56, 57], the viscosity ratio of the wetting to non-wetting fluids [58, 59] and their

interfacial tension [60, 61], as well as initial saturation and boundary conditions [56,

60, 62], etc.

The spontaneous imbibition in conventional porous media has been extensively stud-

ied [15, 63, 64, 65] due to its wide existence in various disciplines such as oil recovery,

polymer composite manufacturing, soil science and subsurface hydrology. For the frac-

tured porous medium, however, it has not been fully understood and starts to attract

research attention. Rangel-German and Kovscek [66] experimentally investigated the

underlying flow physics of the counter-current imbibition in various fracture apertures
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using an X-ray computerized tomography (CT) scanner. By changing the water in-

jection rates through the fractures, they have identified two spontaneous imbibition

regimes, i.e., the “filling fracture” and the “instantly filled fracture” regimes which cor-

respond to significantly different imbibition behaviors. Later, they further verified such

a finding by micromodel experiments with the aid of pore-scale imaging techniques.

Jafari et al. [67] studied the effect of fracture network topology, pore sizes distribution

and structure of matrix and injection rate on the spontaneous imbibition using a glass

micromodel.

In addition to experimental studies, pore-scale numerical simulations have also been

exploited to understand spontaneous imbibition. Pore-scale simulations allow easy ac-

cess to a wide range of parameters and the imbibition process can be readily visualised

so that its underlying mechanism can be analyzed accordingly in a more controllable

manner. Moreover, numerical simulations are superior to theoretical analysis when

it comes to geometrically complex problems with nonlinearity [55]. Rokhforouz and

Amiri [50] used the phase-field method to study the effect of wettability, interfacial

tension, and viscosity ratio during counter-current imbibition process. Jafari et al. [55]

also used the phase-field method to investigate the effects of water injection velocity,

fracture aperture, and grain shape during counter-current spontaneous imbibition. In

these pore-scale simulations, the solid grains in the matrix are generally idealized as

simple circular [50, 55] or square cylinders [68]. However, the pore structures in nat-

ural rock matrix are extremely complex and irregular. In this work, we conduct the

pore-scale study of the counter-current imbibition in a matrix-fracture system using a

recently improved lattice Boltzmann (LB) colour-gradient model [69]. Among various

multiphase LB models (see the reviews by Huang et al. [70] and Liu et al. [71]), the

colour-gradient model has its own advantages such as high numerical accuracy, strict

mass conservation for each fluid and numerical stability for a broad range of viscosity

ratios [69]. Especially, it produces relatively thin interface and is able to control the

interfacial diffusion and adjust the interfacial tension and viscosity independently to

facilitate the numerical investigation [72]. Therefore, the colour-gradient model has

been extensively used for modeling immiscible two phase flow in porous media, e.g.

Tolke et al. [34], Huang et al. [73], Chen et al. [74], Gu et al. [72] and Xu et al. [75].

1.2.3 Summary

Although significant efforts have been made by a large number of researchers, it is still

challenging to accurately and reliably simulate multiphase fluid dynamics for the full

range of density ratios, viscosity ratios and wetting behaviours in oil reservoir. Con-
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sidering that the viscosity contrast is large while the density difference is small for

the water or carbon dioxide involved oil recovery process, the colour gradient model

is the perfect candidate for simulations in this context. Previous pore-scale numer-

ical simulations are either limited to simplified flow physics and/or simple geometry

configuration/size.

The computational challenge for multiphase flow in porous media simulation is a direct

consequence of the microscopic porous structure and the physicochemical properties of

interfaces. The most important parameters for two-phase immiscible flow in porous

media without considering gravity are:

• Capillary number: Ca = (ηnun)/(σnw cos θ), which represents the ratio of viscous

forces to capillary forces experienced by a nonwetting fluid during displacement.

Herein, ηn and un are the viscosity and velocity of the advancing nonwetting

fluid (subscript n), σnw is the interfacial tension between the wetting (subscript

w) and nonwetting fluid. Concerning the practice in the field of subsurface mul-

tiphase flow, the Ca is usually less than 10−6 where the capillary force is playing

a dominant role.

• Ratio of the dynamic viscosities: e.g. λ = ηn/ηw.

• Contact angle: θ is the fluid-fluid contact angle with the solid surface. The

contact angle changes the geometric shape of the interface and can impact the

development of dynamic process.

To improve the numerical stability of the LB simulation, a multiple-relaxation-time

(MRT) LB model is adopted, which is more stable than the BGK LB model. In

addition, a more accurate treatment of boundary conditions at solid-fluid interfaces

(see Section 2.5.2.2) is incorporated for further improvement of numerical accuracy of

the contact angle.

The aim of this research is to advance the fundamental understanding of a) two immis-

cible phase flow in a complex two-dimensional (2D) porous media through a systematic

investigation of the interfacial tension, contact angle and viscosity ratio and b) coun-

tercurrent imbibition process in a fracture-matrix system using lattice Boltzmann (LB)

modelling.

The implementation of the algorithm are based on the framework inherited from Pro-

fessor Haihu Liu with the wetting boundary condition and Message passing interface

available(Website: http://gr.xjtu.edu.cn/web/haihu.liu). The capability of reading bi-

nary data for complex porous geometry and the inlet and outlet boundary conditions
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are modified by the author.

1.3 Thesis outline

In Chapter 2, the lattice Boltzmann method (LBM) will be first reviewed, and a couple

of commonly used boundary conditions are emphasized. Then four main multiphase

multicomponent lattice Boltzmann (LB) models will be briefly introduced and we ex-

plain the reason why the colour gradient model is implemented instead of other LB

models. Also, the algorithm of the colour gradient model will be described in detail,

focusing on the comparison study of two way of imposing the interfacial tension (per-

turbation step). Finally, two representative approach of implementing the wetting

boundary condition will be discussed, with a distinct advantage shown for the ‘direct

approach’ over the ‘standard approach’ in terms of computational accuracy for wetting

phenomena on a flat surface. Meanwhile, for the curved boundaries as we will encounter

in the modelling of realistic porous geometry, the algorithm proposed by Xu et al. [69]

will be introduced in detail.

Chapter 3 will first describe the properties of porous media, along with the three scales

involved in the oil and gas extraction. Especially, the definition of the representative

volumes, porosity and saturation of the media will be given. Important processes such

as imbibition, drainage are introduced. This chapter will conclude with the extended

Darcy’s law for two phases, the concept of relative permeability and the theoretical

relationship between the capillary pressure Pc, effective saturation Se and the relative

permeability Krw (Krnw).

Chapter 4 provides a systematic investigation of the colour gradient two-phase LBM

for simulating the oil and water dynamics within a realistic 2D porous geometry. The

implementation will be extensively validated by the benchmark cases including capillary

filling for the moving contact line, and cocurrent flow in a 2D channel for the relative

permeability validation. The effect of the viscosity ratio, interfacial tension, and contact

angle on the fluid distributions will be unravelled.

Chapter 5 deals with spontaneous imbibition, a key oil recovery mechanism in the

fractured reservoir rocks. A 2D pore-scale computational study will be performed to

understand the water imbibition into an artificially generated porous matrix with a

fracture attached on top using a recently improved lattice Boltzmann colour gradient

model. Several factors affecting the dynamic imbibition processes and oil recovery will

be analyzed, including the water injection velocity, the geometry configuration of the
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dual permeability zones, interfacial tension, viscosity ratio of water to oil phases, and

fracture spacing if there are multiple fractures. Three distinctively different imbibition

regimes will be identified, each with a special morphology in the fracture.

Chapter 6 will conclude this thesis with summary and discussions for future research.

1.4 Contributions of the thesis

In this thesis, the two generic recovery processes in oil reservoirs (waterflooding

and spontaneous imbibition) have been investigated with the state-of-the-art lattice

Boltzmann colour-gradient method, in order to deepen the understanding of the pore

scale dynamics of immiscible two-phase transport mechanism within the porous and

fractured media.

Waterflooding

- By investigating the dynamic displacement of immiscible fluids through water-

flooding in a complex flow structure extracted from a realistic Berea sandstone

sample, the colour gradient LBM has been shown as a reliable tool for numerical

modelling of complex geometry.

- The numerical resolution of the computed geometry is higher than in previous

studies.

- The effects of the viscosity ratio, interfacial tension and contact angle on the

displacement process have been thoroughly studied. Through invasion of the

wetting phase into the porous matrix, it is observed that the viscosity ratio plays

an important role in the nonwetting phase recovery. At the viscosity ratio (λ)

of unity, the saturation of the wetting fluid is highest, and it linearly increases

with time. The displacing fluid saturation reduces drastically when λ increases

to 20; however, when λ is beyond 20, the reduction becomes less significant for

both imbibition and drainage. The front of the bottom fingers is finally halted

at a position near the inlet as the viscosity ratio increases to 10. Increasing

the interfacial tension generally results in higher saturation of the wetting fluid.

Finally, the contact angle is found to have a limited effect on the efficiency of

displacement in the 2D Berea sandstone.

Spontaneous imbibition

- Unlike many previous works which were done based on simple circular or square
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cylinders of the solid grains in the matrix, the studied matrix is constructed using

a Voronoi tessellation technique where the pore structure is modeled as randomly

connected throats. The throat widths obey a log-normal distribution, which often

serves as a good geometric approximation to natural porous media in statistics.

- By changing the water injection velocity and interfacial tension, three distinct

imbibition regimes are identified for the first time, and they are the squeezing,

jetting and dripping regimes, characterized with distinctively different morpholo-

gies of expelled oil in the fracture.

- In the dripping regime, a linear relationship between the oil recovery factor and

the square root of time is observed, consistent with the available experimental

finding. The effect of the geometry configuration of the dual permeability zones

is explored and it is interestingly found that the build-up of the squeezing pressure

upstream is able to facilitate water into the permeability zone closer to the fracture

inlet thus increasing the oil recovery factor.

- Increasing water-to-oil viscosity ratio leads to a higher water imbibition rate and

the highest oil recovery factor is achieved at the viscosity ratio of 0.5. In addition,

introducing a second horizontal fracture is shown to significantly enhance oil

recovery factor, and the fracture spacing that maximizes oil recovery is found.

These findings can provide valuable information for the optimal design of water-

injecting oil extraction in fractured rocks in reservoirs like oil-bearing shale or

tight sandstone.
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Chapter 2

Lattice Boltzmann Models

Theoretically, the motion of a fluid can be described by three types of mathematical

models according to the observed scales. They are microscopic models at the molecular

scale, the mesoscopic scale models including gas kinetic theories and continuum models

at the macroscopic scale [76]. However, there are problems which can not be well de-

scribed by any of these methods. For example, for fluid flows in porous media, it is very

difficult to deal with the complex boundaries when solving the Navier-Stokes equations

(NSEs), due to the pore size, orientation and their extremely complicated distribution.

The lattice Boltzmann method (LBM) used in this thesis is based on mesoscopic kinetic

equations, which can mimick molecular-scale interactions and describe macroscopic flow

dynamics.

In this Chapter, the concept of the lattice Boltzmann method and its multiphase ex-

tensions will be introduced.

2.1 From Boltzmann equation to lattice Boltzmann method

Historically, the lattice Boltzmann method is derived from the lattice gas automata

(LGA) method proposed in the 1970s. LGA is constructed as simple particle dynam-

ics represented by boolean variables in the discretised space and time. The lattice

Boltzmann method replaces the boolean variables of LGA with the discretised proba-

bility distribution function f which eliminates the need for ensemble averaging. Later

it was shown that lattice Boltzmann equation (LBE) could also be derived from the

Boltzmann equation. From this point of view, LBE is a mesoscopic numerical method.

The Boltzmann equation describes the evolution of non-equilibrium distribution func-

tion from statistical mechanics point of view, the cornerstone of gas kinetic theory. For
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single component gases, we take f as the single-particle distribution function, which

describes the probability of having a particle at time t at position r(x, y, z) with veloc-

ity ξ(ξx, ξy, ξz). The nonlinear, integral-differential Boltzmann equation can be defined

as
∂f

∂t
+ ξ · ∂f

∂r
+ a · ∂f

∂ξ
= J, (2.1)

where a is the acceleration caused by body force F (either external or internal forces,

such as gravity or intermolecular interactions) with F = ρa, the right-hand side (RHS)

J stands for the multi-dimensional integral collision term which leads to extreme diffi-

culties in solution of the Boltzmann equation. To simplify this, the popular Bhatnagar-

Gross-Krook (BGK) collision operator [77] was used to replace the collision term J in

Eq. (2.1). Then the BGK-approximation Boltzmann equation is written as

∂f

∂t
+ ξ · ∂f

∂r
+ a · ∂f

∂ξ
= − 1

τc

[
f − f (eq)

]
, (2.2)

where τc is relaxation time, f (eq) is the Maxwellian distribution function

f (eq) =
ρ

(2πRT )D/2
exp

(
− C2

2RT

)
, (2.3)

where D is the dimensionality, cs =
√
RT is known as the speed of sound at temperature

T , R = kB/m is the gas constant with kB is the Boltzmann constant and m the

molecular mass. C is the particular velocity defined by C = ξ−u where ξ symbolises

the particle velocity and u the macroscopic fluid velocity. For simplicity, here we

consider the single phase without external forces. The macroscopic density and velocity

are defined as

ρ =

∫
fdξ, ρu =

∫
ξfdξ. (2.4)

The first step is to discretise the velocity space of ξ into a finite set of velocities ci

without affecting the conservation laws. To do so, f (eq) is first expanded into a second-

order Taylor series in terms of a very small fluid velocity u

f (eq) =
ρ

(2πRT )D/2
exp

(
− ξ2

2RT
+
ξu

RT
− u2

2RT

)
= exp

(
− ξ2

2RT

)
ρ

(2πRT )D/2
exp

(
ξu

RT
− u2

2RT

)
=

ρ

(2πRT )D/2
exp

(
− ξ2

2RT

)[
1 +

ξ · u
RT

+
(ξ · u)2

2RT 2
− u2

2RT

]
+ O(u3).

(2.5)

In order to obtain the correct Navier-Stokes equations in the limit of low Mach number,
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i.e. |u| /
√
RT � 1, the discrete velocity set should be chosen so that the following

quadratures of the expanded equilibrium distribution function (EDF) hold exactly∫
ξkf (eq)dξ =

∑
i

ωic
k
i f

(eq)(ci), 0 ≤ k ≤ 3, (2.6)

where ωi and ci are the weights and integral points of the numerical quadrature rule.

Based on the formulation of the expanded EDF given by Eq. (2.5), it is natural to

choose a Gaussian quadrature. For the purpose of accuracy, at least fifth-order Gaussian

quadrature should be chosen as can be seen from Eq. (2.6). In this way, the weights and

integral points (i.e. discrete velocities) with different integral accuracy can be defined.

And here we introduce a new distribution function fi(x, t) = ωif(x, ci, t). Its evolution

equation
∂fi
∂t

+ ci ·
∂fi
∂r

= − 1

τc

[
fi − f (eq)

i

]
, (2.7)

where f
(eq)
i (x, t) = ωif

(eq)
i (x, ci, t). For this equation, the time and space are all con-

tinous except the velocity is discretised. Thus it is also called Discrete Velocity Boltz-

mann equation (DVBE). Accordingly, the macroscopic velocity and velocity can be

defined as

ρ =
∑
i

fi, ρu =
∑
i

cifi. (2.8)

Now if we integrate Eq. (2.7) from t to t+ δt along the characteristic line and assume

that the collision term is constant during this interval, we can get

fi(x+ ciδt, t+ δt)− fi(x, t) = −1

τ

[
fi(x, t)− f (eq)

i (x, t)
]
, (2.9)

where τ = τc/δt is the dimensionless relaxation time. This is the LBGK model. As

a first-order finite-difference scheme for the discrete velocity Boltzmann eqation (2.7),

the accuracy in terms of time and space are both fisrt order in Eq. (2.9). However, if

the numerical viscosity is incorporated into the physical viscosity, the LBGK model will

be second-order accurate in time and space. In addition, the discretization of time and

space are not independent, instead related by the discretized velocity of particles, for

example, δx = ciδt. This feature enables us to divide the motion of particles into two

relative process, streaming and collision in the physical space. In detail, the particle

moves to its neighbouring node from the current node between two time steps and

collides with other particles while streaming to the neighbouring node. This equips the

lattice Boltzmann method with good capability of parallel computing and quite good

adaptivity with complex boundary conditions.

17



2.2 Single-phase LBGK models

The LBGK models are the most widely used (LBE) model1 and have been widely ap-

plied for a variety of complex flows. Among those available models, the most representa-

tive ones are those proposed by Qian et al. [78], i.e. the group of DnQb (n-dimensional

b-velocity) models. In the DnQb model, the discrete EDF is written as

f
(eq)
i = ωiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u2

2c2
s

]
, (2.10)

where ωi is the weight coefficient associated with the discrete velocity ci, and the sound

speed cs (a model constant that indicates the speed of information propagation in the

LBE model) is model dependent as it is determined by the Hermite quadratures [79].

As we are dealing with nearly incompressible flow, the physical speed of sound is not

important as long as the Mach number is small enough (e.g. Ma < 0.3). Also the speed

of sound in the LBE indicates it is a method of artificial compressibility. Two popular

DnQb models D2Q9 and D3Q19 are presented in Table 2.12. In these two models,

the relationship between the lattice speed and the lattice sound speed is written as

cs = c/
√

3. For the DnQb model, it is easy to validate that the discrete EDF feqi has

Table 2.1: Parameters of two DnQb models
Model Lattice vector ci Weight ωi c2

s

D2Q9
c(0,0),

c(±1, 0),c(0,±1),
c(±1,±1)

4/9,
1/9,
1/36

1/3c2

D3Q19
c(0,0,0),

c(±1, 0, 0),c(0,±1, 0),c(0, 0,±1)
c(±1,±1, 0),c(±1, 0,±1),c(0,±1,±1)

1/3,
1/18,
1/36

1/3c2

the following characteristics∑
i

feqi = ρ,
∑
i

cif
eq
i = ρu,

∑
i

cicif
eq
i = ρuu+ pI,∑

i

ciαciβciγf
eq
i = c2

sρ[uδ]αβγ = c2
sρ(uαδγβ + uβδγα + uγδαβ),

(2.11)

where p = c2
sρ, these relations are necessary for the derivation of the correct hydrody-

namic equations given in Appendix A.

Considering the presence of a body force (when the forcing term a · ∂f/∂ξ can not be

1These model discussed here are all for isothermal flows unless otherwise stated
2Here the lattice speed c is taken as 1
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neglected), the most straightforward approach is to add a forcing term to Eqn. 2.9,

fi(x+ ciδt, t+ δt)− fi(x, t) = −1

τ

[
fi(x, t)− f (eq)

i (x, t)
]

+ δtFi, (2.12)

where Fi depends on the body force F , given by the modified moment-expansion

scheme [80, 81]

Fi = (1− 1

2τ
)ωi

[
ci − u
c2
s

+
(ci · u)ci

c4
s

]
· F . (2.13)

And the fluid velocity is corrected as the average of the velocity before and after the

collision, given as

ρu =
∑
i

cifi +
1

2
F δt. (2.14)

2.3 Boundary conditions

Boundary conditions are to prescribe adequate values for those populations propagat-

ing from the solid object into the fluid region. They play an important role in fluid

dynamics since they are essential in the determination of the solution of the flow.

For the LBM, the mesoscopic populations on the boundary have to be constructed to

reflect specific boundary conditions for fluid variables (e.g. pressure, velocity, or tem-

perature) during each time step. This may take place either within the collision process

or the propagation stage. Because of the fact that the system of mesoscopic variables

have more degrees of freedom than the corresponding macroscopic system, a variety of

boundary schemes have been introduced for LBM.

2.3.1 Bounce-back Scheme

First of all, the most widely-used rule for stationary no-slip walls is the bounce-back

scheme. The bounce-back scheme includes two different strategies, i.e. standard bounce-

back and halfway bounce-back. The standard bounce-back places the wall on the lattice

nodes, while the halfway bounce-back places the wall at the middle of the lattice link.

Figure 2.1 (a) and (b) illustrate the sketch for both the standard bounce-back and

halfway bounce-back boundary condition.

The standard bounce-back is advantageous for its simplicity and capability of dealing

with complex boundaries. This scheme assumes that a particle just reverses its velocity

after colliding with the wall, which means that the post-collision distribution function
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Figure 2.1: Sketch for (a) standard bounce-back and (b) halfway bounce-back boundary
condition

at a boundary node xb is

f
′
ı̄ (xb, t) = f

′
i (xf , t), (2.15)

where cı̄ points to the fluid and denotes the opposite direction of ci, xf is the boundary

fluid node and xb is the wall node neighbouring to the fluid node. Consider the collision-

streaming process, it can also be written in the following formulation without the wall

node

fı̄(xf , t+ δt) = f
′
i (xf , t). (2.16)

This formation is extremely useful since the computation is completely local. Note

that the collision process is not carried out on the boundary nodes for the standard

bounce-back. Equation (2.16) is also used for the halfway bounce-back except for the

different location of the wall. The halfway bounce-back scheme is very straightforward

to understand from a physical point of view: The post-collision particles with velocity

ci at node xf will arrive at the wall after time δt/2, and are then reflected back to xf

with a reversed velocity cı̄ after another δt/2, and so fı̄(xf , t+ δt) = f
′
i (xf , t), which is

the same as the standard bounce-back scheme.

The standard bounce-back condition is shown to be first-order in accuracy, while the

conventional LBM has the second order of accuracy in space inside of the flow do-

main [78]. Inamuro [82] showed that when the relaxation time is chosen in the range

(0.7, 2), the error of the single relaxation time LBM with the standard bounce-back

condition is sufficiently small and of second order, so that the standard bounce-back

can be used without degrading the entire simulation accuracy. For the multiple relax-

ation time (MRT) LBM, the standard bounce-back is always of second order and not
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dependent on the selection of relaxation parameters [83]. The halfway bounce-back

scheme is of second-order accuracy [84] and it will be implemented in the following

chapters.

2.3.2 Periodic Boundary Condition

The periodic boundary condition may be the simplest LBM boundary condition. It

applies only to the situations where the flow solution is periodic. In less physically

oriented occasions, it can also be used to solve 2D flow problems with an existing 3D

code by adopting the periodic flow condition along one of the Cartesian axis. In the

periodic system, the fluid leaving the domain on one side will re-enter from the opposite

side of the domain thus the mass and momentum are always conserved. Figure 2.2

illustrates periodic boundary condition for the 2D flow problem.

0
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7 8
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�0 �1 �� ��+1

Figure 2.2: Periodic boundary condition with two layers of ghost nodes added at x0 =
x1 − δx and xN+1 = xN + δx. The solid circle denotes fluid node and the open circle
represents the added ghost nodes.

Assuming that L represents the periodic direction and length of the computational

domain, the unknown incoming populations fi on one side are given by those leaving the

domain at the opposite side during propagation (taking the x direction as an example):

f
′
i (x, t) = f

′
i (x+L, t), (2.17a)

f
′
ı̄ (x+ L, t) = f

′
ı̄ (x, t), (2.17b)

where i = 1, 5, 8. Alternatively, it can be considered that the edges of the simulation

domain are attached together without ghost nodes. In this way, the periodic boundary
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conditions are implemented through a completion step in the streaming process. It can

be formulated as:

fi(x1, y, t+ δt) = f
′
i (xN+1, y − ciyδt, t), i = 1, 5, 8, (2.18a)

fi(xN , y, t+ δt) = f
′
i (x0, y − ciyδt, t), i = 3, 6, 7. (2.18b)

2.3.3 Periodic Boundary Condition with Pressure Gradient

Although the periodic condition is exact in flows without mean pressure gradient, it

is not generally valid in the presence of the pressure gradient [85]. It is a widely used

approach to simulate pressure driven flow with an effective body force to replace the

pressure gradient. However, the body force approach is argued to perform well only

for a flow with a constant cross section-area such as Poiseuille flow, and the validity of

the body force approach has not been fully evaluated for flows in complex geometries,

e.g. flows in corrugated channels or porous media. Moreover, numerical errors can

be accumulated since the currently available wall boundary conditions usually do not

consider the body force effects on the wall.

To overcome the limitation mentioned above, the incompressible lattice Boltzmann [86,

87] with the generalized periodic boundary condition (GPBC) may be used since its

accuracy is not diminished by the boundary closure as in the conventional periodic

boundary closure. In pressure driven incompressible flows, the generalized periodic

conditions of the flow are:

p(x, t) = p(x+L, t) + ∆p, (2.19a)

u(x, t) = u(x+L, t). (2.19b)

where ∆p denotes a prescribed pressure drop. A simple and robust procedure of GPBC

developed for LBM proposed by Kim and Pitsch [85] will be discussed here (here we

consider the presence of two layers of virtual nodes at the inlet and outlet). The

equilibrium distributions and the nonequilibrium distributions are specified separately,

following Figure 2.2, for the equilibrium part, it is written as:

feqi (x0, y, t) = feqi (pin,uN ), (2.20a)

feqi (xN+1, y, t) = feqi (pout,u1), (2.20b)
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where uN and u1 represents the velocity at nodes xN and x1, respectively. And pin

and pout denote the pressure at the inlet and outlet, respectively. The non-equilibrium

part is set to the same value as the nodes inside the real domain:

fneqi (x0, y, t) = fneqi (xN , y, t), (2.21a)

fneqi (xN+1, y, t) = fneqi (x1, y, t), (2.21b)

where the non-equilibrium populations at the nodes xN and x1 are acquired after

collision, i.e., fneqi = f
′
i − f

eq
i . Then just before streaming, with the equilibrium and

non-equilibrium part at the nodes x0 and xN+1, we have

f
′
i (x0, y, t) = feqi (pin,uN ) +

[
f
′
i (xN , y, t)− f

eq
i (xN , y, t)

]
, i = 1, 5, 8, (2.22a)

f
′
i (xN+1, y, t) = feqi (pout,u1) +

[
f
′
i (x1, y, t)− feqi (x1, y, t)

]
, i = 3, 6, 7. (2.22b)

2.3.4 Constant pressure or velocity boundary condition

Using the bounceback rule for the non-equilibrium part of the particle distribution, Zou

and He [4] proposed a hydrodynamic scheme, which utilises the relation between the

macroscopic fluid variables and the distribution functions, to realise the exact boundary

condition.
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Figure 2.3: Pressure boundary schematic for the D2Q9 model[4] in a channel

For the constant pressure boundary condition, the inlet pressure pin = c2
sρin is specified,

and the inlet velocity uin = (uin, vin) is unknown. In this approach, it is also assumed
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that vin is zero. From Fig. 2.3, the following equations can be written as

f1 + f5 + f8 = ρin − (f0 + f2 + f3 + f4 + f6 + f7), (2.23a)

f1 + f5 + f8 = ρinuin + (f3 + f6 + f7), (2.23b)

f5 − f8 = −f2 + f4 − f6 + f7. (2.23c)

The first two equations give

uin = 1− [f0 + f2 + f4 + 2(f3 + f6 + f7)]

ρin
, (2.24)

then the bounceback rule for the non-equilibrium part of the particle distribution which

is normal to the inlet is applied,

f1 − f (eq)
1 = f3 − f (eq)

3 , f1 = f3 +
2

3
ρinuin. (2.25)

Combining this relation with Eq. (2.23) (b) and (c), the remaining two distribution

functions f5 and f8 are obtained,

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρinuin, (2.26)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρinuin. (2.27)

Similarly, if the inlet velocity uin is given as in the constant velocity boundary condition,

the density can be obtained with

ρin =
[f0 + f2 + f4 + 2(f3 + f6 + f7)]

1− uin
, (2.28)

The unknown distribution functions f1, f5 and f8 are determined from Eq. (2.25), (2.26)

and (2.27).

2.4 Multiphase lattice Boltzmann models

As a mesoscopic method, the lattice Boltzmann method (LBM) has been widely ac-

cepted as a useful alternative for simulating multiphase flows, in particular, with

the advantage of dealing with complex geometries such as porous media [12]. A

number of multiphase LBM models have been proposed, e.g., the colour gradient

model [35, 88], the pseudo-potential model [89], the free energy model [90] and the

mean-field model [91].
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The colour gradient model developed by Gunstensen et al [35] is known to be the

first multiphase model for simulating immiscible binary fluids. It is based on the two-

component lattice gas model proposed by Rothman and Keller [88]. The colour gradient

model incorporates the effect of interfacial tension by adding a perturbation operator to

the original collision operator. A recolouring operator is used to limit the diffusion near

the interface. This step guarantees the immiscibility of the two fluids. The model has

high numerical accuracy, strict mass conservation for each fluid and numerical stability

for a broad range of viscosity ratios. However, the limitation of this model lies in the

limited density ratio, the medium spurious currents near the interfaces, and difficulty

in considering thermodynamics of interfaces. While it should not be a problem as long

as no major thermodynamical effects such as phase changes are concerned.

Later, a new multiphase LBM model was proposed by Shan and Chen [89], where the

interparticle forces (whether attractive or repulsive) mimicking the molecular poten-

tials are introduced by a modified equilibrium velocity in the equilibrium distribution

functions. Its conceptual and computational simplicity has made Shan-Chen model a

popular approach in the LB community. Recently, the limitations of the original Shan-

Chen model have been alleviated and its performance is improved. These techniques

include improving the forcing scheme [92, 93, 94] in order to achieve thermodynamic

consistency and large density ratio. Through a higher-order analysis of a general forcing

term, the scheme that is able to reproduce arbitrarily high density ratios independent

of the surface tension is proposed by Lycett-Brown and Luo [95], and the interface

width can also be varied independently of density ratio and surface tension. Most re-

cently, based on a two-range pseudopotential lattice Boltzmann method, a scheme with

tunable surface tension is proposed by Fei et al. [96].

The free energy model [90] is thermodynamically consistent, and it considers a gener-

alised equilibrium distribution function that includes a non-ideal pressure tensor term.

The BGK collision operator of the free energy model satisfies the local mass and mo-

mentum conservation. The original free energy model suffers from a lack of Galilean

invariance in the vicinity of interfaces where large density gradient exists, which leads

to some non-physical phenomenon. For example, it has been reported that a droplet

or bubble that is initially spherical will become elliptical over time in a uniform flow

field. Later works have mitigated this problem by modifying the equilibrium distribu-

tion function coefficients [97, 98]. However, with the free-energy model, the dissolution

rate for small droplets/bubbles tends to be large.

The mean-field model was first developed by He, Shan and Doolen [91] for non-ideal

gases (also known as HSD model). Later it is improved by He, Chen and Zhang [99]
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for incompressible multiphase flows (also referred as HCZ model), which describes in-

terfacial dynamics based on the mean-field theory [100], and uses a pressure distri-

bution function instead of its density counterpart to ‘capture’ incompressible fluid’s

pressure and velocity fields. This approach greatly reduces the effect of discretization

errors in the calculation of density gradient and improves the numerical stability for

varied density. The HCZ model is a numerical-diffuse-interface approach which in-

volves a numerical scheme to ‘capture’ the interface. Thus an index function is also

used to track interfaces between different phases. The serious limitation of the mean-

field theory model is its numerical instability, associated with the ‘stiffness’ of the

collision operator, when the ‘complex fluid’ effects are introduced through the forcing

term [101]. Extensive reviews of these LBM multiphase models are available in the

literature, e.g. [24, 70, 71, 101].

In summary, each model has its own advantages and disadvantages. It is not possi-

ble to state that one model is definitely preferred to another, and the choice depends

on the application of interest. In porous media applications, the flow is characterised

by small capillary number, thus it is necessary to choose a suitable model with good

numerical stability and small spurious currents at the interface. Among the models

mentioned above, the pseudo-potential model produces the largest spurious velocities.

And the small droplets/bubbles are expected to dissolve for the free-energy and mean-

field model. Considering that the interfacial tension in the modelling can be given

directly and the colour gradient model is most suitable to simulate flows with moder-

ate/high viscosity ratio, we choose to use the colour gradient model in this thesis. Apart

from the merits mentioned above, the colour gradient model produces relatively thin

interface and is able to control the interfacial diffusion and adjust the interfacial tension

and viscosity independently to facilitate the numerical investigation. Also, since we are

dealing with completely immiscible fluids in this work, the colour gradient method is

implemented.

2.5 Colour gradient lattice Boltzmann method

2.5.1 Numerical algorithm

The multiphase colour gradient LBM will be discussed in detail here which will be used

in Chapters 4 and 5. In this model, the “Red” and “Blue” distribution functions (fRi

and fBi ) are used to represent two different fluids. The total distribution function is

defined as fi = fRi + fBi . Each coloured distribution function undergoes the collision
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and streaming steps expressed by the following equation:

fki (x+ ciδt, t+ δt) = fki (x, t) + Ωk
i (f

k
i (x, t)), (2.29)

where x and t are the position and time, k = R or B, i represents the discrete velocity

directions for the two-dimensional 9-velocity (D2Q9) model, δt is the time step, and

ci denotes the lattice velocity vectors in the i-th discrete velocity direction. For the

two-dimensional 9-velocity (D2Q9) model used in this work, the lattice velocity vector

is given in Table 2.1.

The collision step includes self- and cross-interactions with the other type of particles

which can be written as

Ωk
i = (Ωk

i )
(3)
[
(Ωk

i )
(1)

+ (Ωk
i )

(2)
]
, (2.30)

where (Ωk
i )

(1)
is the single-phase collision operator, (Ωk

i )
(2)

is the perturbation operator,

and (Ωk
i )

(3)
is the recolouring operator.

2.5.1.1 Single-Phase Collision Operator

To achieve high accuracy and good stability, we implemented the collision step in ac-

cordance with the two-relaxation-time (TRT) model [102, 103, 104]—a special multiple

relaxation time (MRT) model with only two relaxation rates [105]. With the TRT

model, the single-phase collision operator is expressed as

(Ωk
i )

(1)
= −(M−1SM)ij(f

k
j − f

k,eq
j ), (2.31)

where M is the transformation matrix and is given by

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



. (2.32)
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The diagonal relaxation matrix S is defined as

S = (1, se, sε, 1, sq, 1, sq, sν , sν). (2.33)

For the conserved moments of density and momentum, the relaxation rates are set

to 1. se and sν are related to the bulk and shear viscosities, and sε and sq are free

parameters. Following the recommendations of Ginzburg et al. [106], these relaxation

rates are taken as

se = sε = sν =
1

τ
, sq = 8

(2− sν)

(8− sν)
, (2.34)

where τ is the dimensionless relaxation time. It is noted that as si = 1/τ , the MRT

reduces to the LBGK models. The mass conservation for each fluid distribution function

and the total momentum conservation require

ρk =
∑
i

fki =
∑
i

fk,eqi , ρu =
∑
i

∑
k

fki ci =
∑
i

∑
k

fk,eqi ci, (2.35)

where ρ is the total density, and ρk is the density of fluid k, and u is the local fluid

velocity.

The equilibrium distribution function (fk,eqi (x, t)) is a truncated Taylor series expan-

sion up to the second order in Mach number of the Maxwell–Boltzmann equilibrium

distribution function, which is chosen to satisfy Equation (2.35):

fk,eqi (ρk,u) = ρkWi

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u2

2c2
s

]
, (2.36)

in which, cs = 1/
√

3 is the lattice sound speed, and the weight coefficients are W0 =

4/9, W1−4 = 1/9 and W5−8 = 1/36 for the D2Q9 lattice model. As we focused on the

oil-water two-phase systems, the density ratio of both fluids is set to be unity. (The

density of petroleum is approximately 800 kg/m3 [107], and 1000 kg/m3 for water.)

To ensure a constant viscosity across the interface when both fluids are of different

viscosities, the following harmonic mean [108] is employed to determine the viscosity

of the fluid mixture:
1

η
=

1 + ρN

2ηR
+

1− ρN

2ηB
, (2.37)

where ηk is the dynamic viscosity of fluid k, and η is the dynamic viscosity of the fluid

mixture which is related to the dimensionless relaxation time τ by η = c2
sρ(τ − 0.5)δt;
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ρN is the indicator function used to distinguish different fluids, and it is defined as

ρN (x, t) =
ρR(x, t)− ρB(x, t)

ρR(x, t) + ρB(x, t)
, −1 ≤ ρN ≤ 1, (2.38)

where ρR and ρB are the local densities of the red and blue fluids, respectively. They

can be understood as the volume fraction of red and blue fluids, respectively. At a

lattice node within the bulk phase, if ρR equals to 1, ρB will be zero. And the vice

versa. With this definition, ρN = 1 and −1 represent the red fluid and the blue fluid,

respectively, and −1 < ρN < 1 represents the diffuse interface where the mixture of red

and blue fluids coexist.

2.5.1.2 Perturbation Operator

The second collision term (Ωk
i )

(2) takes effect in the mixed interfacial region to generate

an interfacial tension. Gunstensen et al. first introduced the perturbation operator with

a 2D hexagonal lattice, it is given as [35, 109]

(Ωk
i )

(2) =
Ak
2
|G|

[
(ci ·G)2

|G|2
− 1

2

]
, (2.39)

where Ak is a free parameter which controls the interfacial tension, and G is the local

colour gradient which is defined by G(x, t) =
∑

i[ρR(x+ ci, t)− ρB(x+ ci, t)]ci. How-

ever, according to the study of Reis and Phillips [110], a direct extension of the above

perturbation operator to the popular D2Q9 lattice would give

(Ωk
i )

(2) =
Ak
2
|G|

[
(ci ·G)2

|G|2
− 3

4

]
, (2.40)

which cannot recover the correct Navier-Stokes equations for two-phase flows. Further,

they proposed that the correct collision operator should be

(Ωk
i )

(2) =
Ak
2
|G|

[
Wi

(ci ·G)2

|G|2
−Bi

]
, (2.41)

where B0 = − 4
27 , B1−4 = 2

27 and B5−8 = 5
108 . Using these parameters, the perturbation

operator can recover the correct interfacial force term, i.e., the divergence of stress

tensor, in the NSEs. This approach is later referred as ‘Reis model’.

Another approach (later referred as ‘CSF model’) to apply the perturbation step is to

add a direct forcing term at the interfacial region to recover the macroscopic effects

of surface tension proposed by Lishchuk [111]. In this approach, Using the continuum
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surface force (CSF) [112] model, a body force term is added to the macroscopic mo-

mentum equation, and it is calculated explicitly through the interfacial normal and

macroscopic curvature

Fs =
1

2
σK∇ρN , (2.42)

where σ is the interfacial tension coefficient, and K is the local interface curvature

calculated by [112]

K = −∇s · n, (2.43)

where ∇s = (I − nn) · ∇ is the surface gradient operator, I is the second-order

identity tensor, and n = ∇ρN/
∣∣∇ρN

∣∣ is a unit vector normal to the interface. In 2D

simulations, the interface curvature can be further written as

K = nxny(∂xny + ∂ynx)− n2
y∂xnx − n2

x∂yny. (2.44)

A body force is then incorporated into LBM through the forcing scheme proposed

by Guo et al. [81] which can significantly improve computation accuracy and reduce

spurious velocities effectively [113]. The perturbation operator (Ωk
i )

(2) is expressed as

(Ωk
i )

(2) = M−1

(
I − 1

2
S

)
F k, (2.45)

with

F k(x, t) = αk[0, 6(uxFsx + uyFsy),

− 6(uxFsx + uyFsy), Fsx, −Fsx, Fsy, −Fsy,

2(uxFsx − uyFsy), uxFsy + uyFsx]T ,

(2.46)

where αk is the fraction of interfacial tension contributed by fluid k and satisfies∑
k αk = 1.

For single-relaxation collision operator, the perturbation operator (Ωk
i )

(2) reduces to

(Ωk
i )

(2) = αk

(
1− 1

2τk

)
Wi

[
ci − u
c2
s

+
ci · u
c4
s

ci

]
· Fs. (2.47)

The fluid velocity is corrected to recover the Navier–Stokes (N-S) equations in the

interfacial region where the two fluids coexist

ρu =
∑
i

∑
k

fki ci +
1

2
Fs. (2.48)
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Figure 2.4: Equilibrium droplet shape and velocity field for νR = νB = 0.33 at σ = 0.001
for (a)‘CSF model’ and (b)‘Reis model’.

In order to compare the two way of imposing the interfacial tension, a comparison study

has been done with a static bubble, when the viscosity ratio for the two fluids is set to

unity.

The radius of the bubble is 30 lattices and the simulation domain is made up of 100×100

lattices. Figure 2.4 shows the equilibrium droplet shape and velocity field for νR = νB =

0.33 at σ = 0.001. We measured the maximum velocity magnitude of the bubble with

respect to different fluid viscosities (i.e., τ = 0.51, 0.53, 0.8, 1, 1.5) and different surface

tension (i.e., σ = 0.1, 0.01, 0.001) using both the ‘CSF model’ and ‘Reis model’. The

results are shown in Fig. 2.5. It is seen that the magnitude of spurious currents in ‘CSF

model’ is maintained at a significantly smaller value than ‘Reis model’ for a range of

viscosity, especially when surface tension becomes relatively larger. Thus ‘CSF model’

is used in all of the simulations from now on.

It is worth mentioning that a generalised perturbation operator is derived by Liu et

al. [114] for the D3Q19 lattice. This operator takes the form of the ‘Reis model’ collision

operator as shown in Eq. (2.41) while using the concept of a continuum surface force

to construct the perturbation operator, by setting the divergence of stress tensor equal

to the macroscopic interfacial force. It is written as

(Ωk
i )

(2) =
Ak
2
|∇ρN |

[
Wi

(ci ·∇ρN )2

|∇ρN |2
−Bi

]
, (2.49)
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Figure 2.5: The maximum spurious currents with different surface tension of σ =
0.001, 0.01 and 0.1 and viscosity of νR = νB = 0.0033, 0.01, 0.1, 0.167 and 0.33 (viscosity
ratio equals to one). Note that ‘R’ refers to ‘Reis model’ and ‘C’ means ‘CSF model’.
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where B0 = − 2+2χ
3χ+12c

2, B1−6 = χ
6χ+24c

2, and B7−18 = 1
6χ+24c

2. χ is a free parame-

ter. Moreover, the interfacial tension σ is analytically obtained without any additional

analysis and assumptions[114]

σ =
2

9
(AR +AB)τ, (2.50)

where τ is the relaxation time of the fluid mixture. It is easily seen that the interfacial

tension can be flexibly chosen by adjusting AR and AB.

2.5.1.3 Recolouring operator

The perturbation operator does not conserve each of the colour density. Another re-

colouring step is needed to promote phase segregation and maintain the interface be-

tween fluids. There are mainly two widely used recolouring algorithms. The first one is

proposed by Gunstensen et al. [35], the colours are separated by maximizing the work

W done by the colour flux K(x) against the colour gradient G

K(x) =
∑
i

[
fRi (x, t)− fBi (x, t)

]
ci, (2.51)

W = K ·G =
∑
i

[fR∗i (x, t)− fB∗i (x, t)]ci ·G, (2.52)

subject to the constraints ∑
i

fR∗i = ρR, (2.53)

fR∗i + fB∗i = f∗i , (2.54)

which locally conserve individual densities of the red and blue fluids, and the total

distribution function in each lattice direction. In this way, the maximum number of

the red particles available are sent in the directions close to the colour gradient G,

i.e., perpendicular to the interface, while the blue particles are sent in the opposite

direction, subject to constraints (2.53) and (2.54). However, this recolouring algorithm

is reported to generate fluctuations in the pressure tensor and the velocity, even in

the simple case of a non-inclined planar interface [34]. In addition, Latva-Kokko et

al. [115] found the potential drawback of lattice pinning of this recolouring technique.

It happens if the fluid velocity is low enough or if the bubble size is small enough, for

example, if a lattice site is near or at the interface of blue and red fluids, but the flow

is too weak to move many red particles from one site to another. The interface then

becomes pinned to the lattice. To solve this problem, they suggested an alternative
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recolouring scheme following the work of d’Ortona et al. [116], which slightly widens

the interface but removes lattice pinning and minimises the spurious velocities:

(ΩR
i )(3) =

ρR
ρ
f∗i + β

ρRρB
ρ2

f
(eq)
i (ρ,u = 0) cos(ϕi),

(ΩB
i )(3) =

ρB
ρ
f∗i − β

ρRρB
ρ2

f
(eq)
i (ρ,u = 0) cos(ϕi).

(2.55)

Based on the above work, Halliday et al. [117] later defined a slightly modified colour

segregation as

(ΩR
i )(3) =

ρR
ρ
f∗i + β

ρRρB
ρ2

f
(eq)
i (ρ,u = 0) cos(ϕi) |ci| ,

(ΩB
i )(3) =

ρB
ρ
f∗i − β

ρRρB
ρ2

f
(eq)
i (ρ,u = 0) cos(ϕi) |ci| ,

(2.56)

where f∗i =
∑

k f
k∗
i denotes the post-perturbation, pre-segregation value of the total

distribution function along the i-th discrete velocity direction, and feqi =
∑

k f
k,eq
i is

the total equilibrium distribution function. β is the segregation parameter related to

the interface thickness, and its value must be between 0 and 1 to ensure positive particle

distributions. The interface becomes less diffuse as β increases. It is chosen to be 0.7

in all the simulations in this context to maintain a steady interface between the two

fluids [117]. ϕi is the angle between the indicator function gradient ∇ρN and the lattice

vector ci, which is defined by

cos(ϕi) =
ci ·∇ρN

|ci||∇ρN |
. (2.57)

2.5.1.4 Calculation of partial derivatives

To generate isotropic interfacial tension and reduce the spurious currents as well as

minimise the discretization error, a fourth-order isotropic finite difference is used to

calculate the partial derivatives. The concept of isotropic finite difference was first

introduced by Kumar [118] and it ensures that the error term of the finite difference

discretization is isotropic. Later Shan [119] pointed it out that using higher order

isotropic gradient operators can significantly reduce the spurious current. Following

his work, Sbragaglia et al. [120] further generalized the 2D and 3D gradients of higher

isotropic order. Leclaire et al. [121] integrated the isotropic colour gradient discretiza-

tion into a two-phase flow simulation of steady bubble, it was found that the spurious

current can be reduced by one order of magnitude and the accuracy of colour gradient

LBM can be improved significantly. In brief, it takes the following form, for example,
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for a variable ψ, the partial derivatives can be calculated by

∇ψ(x, t) =
1

c2
s

∑
i

Wiψ(x+ ciδt, t)ci. (2.58)

2.5.1.5 Conversion of lattice units to physical units and choice of simulation

parameters

All quantities used in the simulation are in lattice units with the LBM. Proper units

must be chosen to represent the physics of an actually existing system. Bearing in

mind that lattice Boltzmann method can act as a good approximation to solve the

incompressible Navier-Stokes equations on the conditions that the mach number is low

enough (e.g. Ma < 0.3). Therefore, discretization of the system is discussed in terms

of macroscopic variables. In order to match the parameters in the lattice units toward

their physical counterpart, three main physical quantities are chosen as the reference

values according to the Buckingham π theorem [122]: the length scale (l0), the time

scale (t0) and the mass scale (m0). In the following, superscript phy denotes physical

units:

δphyx = l0δx, δphyt = t0δt, ρphy = ρ
m0

l30
(2.59)

We define the lattice spacing δx, the simulation time step δt and the lattice density ρ

all as unity in the simulations. Thus we have

δphyx = l0, δphyt = t0, ρphy =
m0

(δphyx )
3 (2.60)

Generally, the lattice units for length, time and mass are defined as lu, ts, and mu,

respectively. Then, the units for the scaling factors l0, t0 and m0 are written as m ·
(lu)−1, s · (ts)−1 and kg · (mu)−1, respectively. In this way, a simulation parameter in

the lattice system multipied by [l0]n1[t0]n2[m0]n3 gives its corresponding physical value.

Other important parameters in a typical two phase problem can also be obtained in a

similar manner. For example:

• the magnitude of flow velocity uphy = u l0t0 .

• the dynamic viscosity ηphydisplaced = ηdisplaced
m0
l0t0

.

• the interfacial tension σphysical = σm0

t20
.

Certain major constraints exists due to the intrinsic restrictions of the LB algorithm

for the selection of proper values for l0, t0 and m0. As mentioned above, the constraint
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of small Mach number requires that

Ma =
u

cs
=

uphy

1√
3
δphyx

δphyt

=
uphy

1√
3
l0
t0

< 0.3 (2.61)

In addition, the parameters should be chosen in a way that the simulation accuracy,

stability and efficiency are reasonably taken into consideration.

The value of τ affects the accuracy. τ � 1 should be avoided because the Knudsen

number, namely the ratio of molecular mean free path, lm, to the representative physical

length scale, lh: Kn = lm/lh, scales with τ [123]. And the lattice Boltzmann model is

valid only for small Knudsen numbers.
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Figure 2.6: The neutral stability Umax− τ curve for LBE extracted from Niu et al. [5].

To achieve a high Reynolds number with the LBM, the usual approach is to decrease

the viscosity as the velocity can not be increased without limit since the LBE recovers

the NSE only in the low-Mach limit. However, the achievable maximum velocity is

decreasing when τ approches 1/2 as shown in Fig. 2.6. Only when τ > 0.65, one can

have Umax > 0.4. It can also be seen that the simulation gets less stable as τ close to

1/2 [5]. In addition, more advanced collision operators, e.g. two-relaxation or multiple

relaxation is more stable than single relaxation collision operator. As a rule of thumb,

the range (0.55, 1.5) is a good choice for relaxation time. And for τ close to 1/2, τ

should obey
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τ >
1

2
+

1

8
Umax, (2.62)

in order to get convergent solutions.

The number of lattice sites and iterations affects the efficiency of an LB simulation

greatly. Generally the finer space and time are resolved, i.e. the smaller δx and δt are,

the more memory and computing time the simulation requires. Hence the value of δx

and δt should be as large as possible if the computational accuracy is not compromised.

2.5.2 Wetting boundary condition

Different fluids may have different affinities to the solid surfaces, which results in the

formation of a certain contact angle involving two fluids and one solid phase. It is

usually defined to quantify the wettability of a solid phase by a liquid via the Young’s

equation [100]

σ cos θ = σwb − σwr, (2.63)

where σ is the red-blue fluid interfacial tension, θ is the contact angle, σwb is the

  

  

    

non-wetting  

wetting  

solid

Figure 2.7: Schematic diagram of contact angle.

wall-blue fluid surface tension and σwr is the wall-red fluid surface tension as shown in

Fig. 2.7.

2.5.2.1 Surface energy formulation - ‘standard approach’

As a diffuse-interface method, the most widely-used wetting boundary condition for

the colour gradient LBM is to set a virtual density at solid surfaces. This approach

is originally proposed by Latva-Kokko et al. [124]. The prescribed virtual density is

now used to calculate the phase field ρN (xs) at the solid nodes xs. Then this ρN (xs)

is used for calculating the colour gradient ∇ρN of the flow domain next to the solid
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Figure 2.8: Different contact angles simulated by the ‘standard approach’. The values
of ρN (xs) are taken as ρN (xs) = {−0.866,−0.5, 0, 0.5, 0.866} along the direction of
arrow. The computational domain is 200× 100.

node. The contact angle is given as

θ = arccos ρN (xs). (2.64)

This approach follows the assumption of Rowlinson and Widom [100] that the solid

wall is a mixture of two fluids, thus having a certain value of the phase field ρN (xs).

Several studies adopted this ‘standard approach’ due to its ease in implementation [12,

23, 44, 68, 73]. Fig. 2.8 shows that different contact angles can be achieved by tuning

the value of the phase field at the solid wall. The red fluid is initialized as a semicircular

stationary droplet sitting on the centreline of the bottom wall, with a radius of R = 25.

And the equilibrium state of the final droplet with different contact angles are shown

in the figure.

However, it has been found in recent works [7, 125] that nonphysical mass transfer of

the wetting phase appears along the boundary, and the numerical errors and spurious

velocities may be accumulated during simulations, which potentially render meaningless

results with the ‘standard approach’. In addition, this problem becomes more apparent

when the contact angle is less than 90◦.

2.5.2.2 Geometric formulation - ‘direct approach’

The ‘direct approach’ refers to modify the direction of the colour gradient at the bound-

ary node ∇ρN (xf ) according to the prescribed contact angle.

Ba et al. [6] introduced an implementation of this wetting boundary condition using
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Figure 2.9: Schematic image of the wetting boundary condition implemented by Ba et
al. [6].

θprescribed θstdmeasure θstderror θdirmeasure θdirerror
150 153.0 0.0200 148.0 -0.0133
120 133.6 0.1133 118.1 -0.0158
90 82.2 -0.0867 88.9 -0.0122
60 33.0 -0.4500 59.0 -0.0167
30 15.1 -0.4967 30.6 0.0200

Table 2.2: Comparison of the prescribed and simulated contact angle. The test case is a
droplet sitting on a flat surface with the ‘standard approach’ and the ‘direct approach’
implemented by Ba et al. [6], respectively.

the strategy proposed by Ding and Spelt [126], using the geometrical properties of the

indicator function ∇ρN at the contact line. As shown in Fig. 2.9, for a prescribed

contact angle θ, the colour gradient ∇ρN at the boundary node should satisfy

∇ρN

|∇ρN |
= n =

{
− sin θex − cos θey, if ∂ρN

∂x < 0,

sin θex − cos θey, if ∂ρN

∂x > 0.
(2.65)

Thus a relationship between the two components of ∇ρN at a boundary node is written

as (
∂ρN

∂y

)
x,0

sin θ = −
∣∣∣∣∂ρN∂x

∣∣∣∣
x,0

cos θ. (2.66)

And a central difference scheme is used to determine the (∂xρ
N )x,0(

∂ρN

∂x

)
x,0

=

[
(ρN )x+1,0 − (ρN )x−1,0

]
2

. (2.67)

This method has shown great accuracy compared to the ‘standard approach’ for sim-

ulation of wetting phenomena on a flat surface as can be seen in Table 2.2. However,
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it is limited to straight flat boundaries.

For modelling contact angles at curved boundaries, Leclaire et al. [125] proposed to

predict the colour gradient ∇ρN∗(xf ) at the boundary fluid nodes, then correct its

direction by linear least-square interpolating the interface normal at the interior fluid

nodes and the theoretical orientation of the interface normal at the wall.

Later Leclaire et al. [127] extend this approach to three dimensions by using the secant

method to find the vector that forms an angle θ with the wall normal ns. This vector is

then normalized before it is used as the corrected direction, i.e, to replace the orientation

of ∇ρN∗(xf ). However, this recurrence relation would in principle need to be carried

out for many iterations to find an exact solution, which will inevitably increase the

computational costs. As a result, it seems untenable that in the literature, the iteration

step is limited to n = 2, in order to avoid high computational costs. However, it is

argued that this approach works without extra treatment for problems with complex

geometry, density and viscosity ratios.

Meanwhile, Xu et al. [69] proposed a way to find the proper direction of the colour

gradient ∇ρN∗(xf ) at the boundary fluid nodes by rotating the wall normal clockwise

or counter-clockwise with the contact angle θ. In algorithm, this approach is easier to

implement than Leclaire et al. [125, 127]. In terms of accuracy, Yu et al. [46] shows

that Xu’s approach has better accuracy than Leclaire’s for moving contact line problem

when simulating capillary filling. We will take a detailed look at this approach. To

explain this wetting boundary condition, let us define

- RF : the list of lattice sites that are considered as fluid but not in contact with

any solid site;

- RFs: the list of lattice sites that are considered as fluid and are in contact with

at least one solid site;

- RSf : the list of lattice sites that are considered as solid and are in contact with

at least one fluid lattice site;

- RS : the list of lattice sites that are considered as solid but are not in contact

with any fluid lattice sites.

Figure 2.10 gives an example of various categories of lattice sites. For the lattice sites

in RF , ρN from all the neighbouring sites are known, while for the lattice sites in RFs,

the value of ρN in RSf is unknown for calculating OOOρN using Eq. (2.58). Thus, these
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y

Figure 2.10: Illustration of four categories of lattice sites. The blue hollow circles
represent interior fluid nodes in RF , blue filled circles represent boundary fluid nodes
in RFs, red filled squares represent boundary solid nodes in RSf and red empty squares
represent interior solid nodes in RS . The black solid line symbolizes the location of the
wall in the simulation if use halfway bounce-back scheme.
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values are extrapolated using the lattice link weighted average as following:

ρN (x ∈ RSf ) =

∑
(i:x+ciδt∈RFs)Wiρ

N (x+ ciδt)∑
(i:x+ciδt∈RFs)Wi

. (2.68)

Thus the colour gradient at the boundary fluid nodes (RFs) can be predicted, denoted

as OOOρN∗. While its direction does not necessarily match the prescribed contact angle,

the correction step is needed. It is to modify the direction of OOOρN∗ only and keep its

modulus
∣∣OOOρN∗∣∣ unchanged. The direction of the predicted OOOρN∗ is written as

n∗ =
OOOρN∗

|OOOρN∗|
. (2.69)

It can be understood as the estimated unit normal vector for the fluid interface at the

boundary fluid nodes near the wall. For a boundary fluid lattice node, two unit normal

vectors can be defined. They are the wall normal ns and the unit vector for the fluid

interfaces n1 (or n2). Figure 2.11 gives a clear picture of these normal vectors. The

basic idea is to evaluate the Euclidean distances D1 (D2) between n∗ and n1(n2), then

replace n∗ with either n1 or n2, whichever has the shorter Euclidean distance to n∗.

The Euclidean distance is defined by

D1 = |n∗ − n1| , D2 = |n∗ − n2| . (2.70)

The corrected unit normal vector for the fluid interface nc is then selected by

nc =

{
n1, D1 ≤ D2,

n2, D1 > D2.
(2.71)

Finally, the modified colour gradient OOOρN is obtained by

OOOρN =
∣∣OOOρN ∣∣nc. (2.72)

To get ns in the first place, an eighth-order isotropic discretization is used [69], given

by

ns(x ∈ RFs) =

∑
lW (|cl|2)s(x+ clδt)cl∣∣∣∑lW (|cl|2)s(x+ clδt)cl

∣∣∣ , (2.73)

where cl is the lth mesoscopic velocity corresponding to the eighth-order isotropic
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Figure 2.11: Illustration of the unit normal vector for the solid wall (ns) and two
possible theoretical unit normal vectors (n1 and n2) for the fluid interface (figure
inspired by [7]). n∗ is the predicted unit normal vector to the fluids interface.

discretization, provided by Sbragaglia et al. [120]:

W (|cl|2) =



4
21 |cl|2 = 1,
4
45 |cl|2 = 2,
1
60 |cl|2 = 4,
2

315 |cl|2 = 5,
1

5040 |cl|2 = 8.

(2.74)

And s(x) is an indicator function which equals to 1 at the fluid nodes and 0 at the solid

nodes. Then the two theoretical normal vectors for the fluid interface are obtained by

rotating ns clockwise or counter-clockwise with the prescribed contact angle θ, resulting

in

n1 = (nsx cos θ − nsy sin θ, nsy cos θ + nsx sin θ),

n2 = (nsx cos θ + nsy sin θ, nsy cos θ − nsx sin θ).
(2.75)

2.5.2.3 Summary

Aiming at dealing with water and oil displacement within complex geometry, the al-

gorithm proposed by Xu et al. [69] is implemented in this thesis to impose the contact

angle on solid surfaces. This algorithm is able to precisely control the contact angle for

both static and dynamic problems which is essential for accurate simulations of two-

phase displacement in porous media. It has been extensively validated against static

droplet resting on a flat surface and on a cylindrical surface by Xu et al. [69]. Further
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validations for simulating the moving contact line problem, i.e., capillary filling are

shown in Chapter 4, along with the relative permeability vadilation, i.e., the cocurrent

flow in a 2D channel.
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Chapter 3

Properties of porous media and

two immiscible fluids

3.1 Definition of porous media and porosity

Porous media is a solid material containing holes or voids, either connected or non-

connected, dispersed within it in either a regular or random manner provided that such

holes occur relatively frequently within the solid. A fluid can flow through a porous

material only if at least some of the pores are interconnected. The interconnected pore

space is called the effective pore space, while all the pore space is termed the total pore

space [128]. One important parameter to characterize the porous medium is porosity.

The porosity is defined as

n =
Vpores
Vbulk

=
Vpores

Vpores + Vmatrix
, (3.1)

where Vpores is the pore volume, and Vmatrix is the volume of the solid matrix within

the bulk volume Vbulk. The porosity varies between zero and unity, depending on its

formation and the type of porous material.

3.2 Fluid flow in porous media

The fluid flow in porous media is commonly-found in nature and man-made devices,

processes such as ground water hydrology, oil and gas deposit exploitation, chemical

engineering, soil science, soil mechanics and new energy development, etc. The flow is

also called percolation or “seepage flow” sometimes because of its generally low speed
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of movement. It is a classical multi-scale problem, normally three scales are involved

in the oil and gas extraction, i.e., pore scale, representative elementary volume (REV)

scale and field scale [76].

3.2.1 Pore scale perspective

On the level of pore scale, the research object is to resolve fluid dynamical behaviour

in single or several pores. It is to study the transportation process of the fluid within

these pores that the information of the flow field will be obtained. Generally, the

fluid flow in the pores obeys the Navier-Stokes equation. The solid surface of the

porous medium is seen as the boundary of the flow field. And the interaction of the

fluid and porous medium is implemented by the boundary condition which has been

introduced in detail in Section 2.5.2. Due to the extremely irregular pore geometries

in the porous media, it is very difficult to model this kind of flow with conventional

computational method. Zhang et al. [129] showed that the continuum-scale two-phase

flow modelling is only able to predict the general displacement pattern in a dual-

permeability pore network micromodel with a 22% discrepancy, and unable to capture

the unstable displacement by viscous fingering mechanism, hence do not accurately

predict the increases in saturation. As an effective method, the lattice Boltzmann

equation has been applied to the porous flow successfully. The particle nature of LBM

makes it convenient to deal with the complex flow field with the simple bounce back

rule. The locality and efficiency of the bounce back scheme brings LBM advantage

when dealing with flows in the irregular pore throats. Despite the need to know the

detailed structure of the porous media beforehand which can now be tackled with X-ray

computed tomography (XCT), the detailed flow information in the porous media can

be obtained and the underlying physics can be explored. However, the computational

size is generally limited, i.e., varies from several micrometres to several millimetres, as

the flow field in each pore needs to be resolved.

3.2.2 REV scale perspective

The REV scale is a scale much larger than the pore scale. The REV refers to a

control volume in the porous media, which includes enough pores, and its size is much

larger than a single pore, while at the same time much smaller than the field size of

interest. At the REV scale, the porous medium can be seen as a continuum medium.

The medium allows a meaningful average over the microscopic heterogeneities (can be

considered homogeneous) at the pore scale when the sample size is large enough where
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Figure 3.1: Schematic of the volume ∆Ui. Gradually shrinking the size of ∆Ui around
P as a centreoid, we have: ∆U1 > ∆U2 > ∆U3 [8].

parameters of interest become independent of the size of the sample. This sample size

is the so-called representative elementary volume. Upon further increase the sample

size, parameters may become nonstationary [130].

For example, let P be a mathematical point inside the domain occupied by the porous

medium, consider a volume ∆Ui (say, having the shape of a sphere as in Fig. 3.1) much

larger than a single pore or grain, for which P is the centroid. For this volume, we may

determine the ratio:

ni = ni(∆Ui) =
(∆Uv)i

∆Ui
, (3.2)

where (∆Uv)i is the volume of pores within ∆Ui. Repeating this procedure, a sequence

of values ni(∆Ui), i = 1, 2, 3, ... can be obtained by gradually reducing the size of ∆Ui

around P as a centroid: ∆U1 > ∆U2 > ∆U3. . .

For large values of ∆Ui, the ratio ni may undergo gradual changes as ∆Ui is reduced,

especially when the considered domain is inhomogeneous. Below a certain value of ∆Ui,

depending on the distance of P from boundaries of inhomogeneity, these changes or

fluctuations tend to decay, leaving only small-amplitude fluctuations that are due to the

random distribution of pore sizes in the neighbourhood of P . However, below a certain

value ∆U0 we suddenly observe large fluctuations in the ratio ni. This happens as the
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Figure 3.2: Porosity and representative elementary volume [9].

dimensions of ∆Ui approach those of a single pore. Finally, as ∆Ui → 0, converging

on the mathematical point P , ni will become either one or zero, depending on whether

P is inside a pore or inside the solid matrix of the medium. Figure 3.2 shows the

relationship between ni and ∆Ui.

The medium’s porosity n(P ) at point P is then defined as the limit of the ratio ni as

∆Ui → ∆U0:

n(P ) = lim
∆Ui→∆U0

ni {∆Ui(P )} = lim
∆Ui→∆U0

(∆Uv)i(P )

∆Ui
. (3.3)

For values of ∆Ui < ∆U0, we must consider the actual presence of pores and solid

particles; in this range there is no single value that can represent the porosity at P .

The volume ∆U0 is therefore the representative elementary volume (REV).

The LBE based on REV scale does not solve the flows in the pores, instead to solve the

average flows at REV scale. In this approach, the interaction between the fluid and the

medium is described by some empirical models such as the mostly widely used model

Darcy’s law,

q = −K
η
∇P, (3.4)
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where q is the specific discharge (or flow rate per unit area of cross section or flux)

corresponding to the pressure gradient ∇P (equivalent to ∆P/L, L is the length of the

porous medium). K is the intrinsic permeability related to the structure of the medium.

Permeability represents the capacity for flow to go through the porous medium. The

dimensions of permeability are length squared, often expressed as darcies (1 darcy

= 0.987× 10−8cm2), millidarcies, or micrometers squared. One of the most widely

accepted derivations of permeability and its relationship to porous medium properties

is given by the Kozeny-Carman equation,

K = c0
n3

S2
, (3.5)

where c0 is a constant varies slightly according to the geometrical form of the individual

channels in the model, and S is the specific surface area of the medium. The advantage

of such LBE is that only a few statistical parameters are required rather than detailed

pore structures, e.g., porosity and permeability, so the computational efficiency is much

higher than the pore-scale approach. Consequently, REV scale LBE can be used for

engineering purpose. However, the accuracy of such simulations relies on the empirical

or semi-empirical model and the parameters used.

3.2.3 Field scale perspective

The field scale is the largest scale of all. It is used to describe phenomena of transport

in geological formation which are typically highly heterogeneous. Usual distances of in-

terest ranges from metres to kilometres. Details of analysis and experimental operation

at this scale can be found in Ref [131].

3.2.4 Summary

Although there are many scales of interest concerning multiphase flow in the subsurface,

of particular interest are macroscopic variables that can be associated with a represen-

tative elementary volume. In a REV, macroscopic variables are typically defined as the

average of microscopic variables. Therefore, it is necessary to determine whether the

sample size simulated is large enough to be a REV.
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3.3 Phenomenology of flows in porous media

For a simultaneous flow of two immiscible fluids in the porous medium, the interfacial

tension between the two fluids is nonzero, because of the difference between the inward

attraction of the molecules in the interior of each fluid and those at the contact surface.

There is a certain contact angle θ at the contact point for balancing the interfacial

tensions between any pair of two fluids and the solid. When the angle θ < 90◦, the

fluid is termed the wetting fluid; when θ > 90◦, the fluid is called the nonwetting fluid.

3.3.1 Drainage

For drainage, the porous media is initially filled with a wetting fluid, a nonwetting fluid

is forced into the porous media to displace the wetting fluid. It is a fluid flow process

in which the saturation of the nonwetting fluid increases.

3.3.2 Imbibition

In the case of imbibition, the porous media is initially filled with the nonwetting fluid,

and it is displaced by a wetting fluid. In the process of imbibition, the saturation of

the wetting fluid increases and the nonwetting fluid saturation decreases.

3.4 Two-phase governing equation

3.4.1 Conservation equation and the extended Darcy’s law

In the absence of sources and wells, the mass conservation equation that describes a

substance with density gα and average velocity VGα is [9]:

∂(gα)

∂t
+∇ · (gαVGα) = 0. (3.6)

Applying this equation to the flow of two immiscible fluids in porous media, the mass

conservation equation for each fluid is written as:

∂(nSαρα)

∂t
+∇ · (ραqα) = 0, α = 1, 2, (3.7)
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where n is the porosity of porous medium, Sα is the saturation of phase α, defined as

Sα =
volume of fluid α within an REV

volume of voids within an REV
,
∑
(α)

Sα = 1. (3.8)

gα = nSαρα is the mass of fluid α per unit volume of porous medium, and gαVGα =

nSαραVα = ραqα is the mass flux (mass per unit area per unit time) of fluid α. For a

homogenous incompressible fluid in the porous medium, Eqn. (3.7) becomes:

∂(nSα)

∂t
+∇ · qα = 0. (3.9)

The Darcy’s law may be extended to describe the two immiscible fluids specially without

considering gravitational effects, it can be written as:

qα = −Kα

ηα
∇Pα, (3.10)

where Kα is the effective permeability of the fluid α. The relative permeability for each

fluid is then defined as

Krα =
Kα

K
. (3.11)

The Relative permeability is a dimensionless function that usually varies from 0 to 1.

Considering a wetting fluid (subscript w) and a nonwetting fluid (subscript nw), the

relative permeability depends only on the saturation, which is expressed by

Krα = Krα(Sw). (3.12)

The two fluids pressures are related by the capillary pressure Pc (pressure difference

across the interface of the two immiscible fluids) through the expression

Pn − Pw = f(Sw) = Pc, (3.13)

where the capillary pressure is a measure of a porous medium to suck in the wetting

fluid phase or to expel the nonwetting phase. The above four equations including

Eqn. (3.9), (3.10), (3.12),(3.13) are used together to describe the flow of the two phase

immiscible fluids in porous media. It should be noted that Eqn. (3.13) is the traditional

Pc − Sw relationship based on the assumption that Pc is uniquely described by Sw at

static conditions. Other studies [132, 133] argue a constitutive relationship between

Pc−Sw−anw where the specific interfacial area between the fluid phases are explicitly

taken into consideration. Including the interfacial area results in a smooth functional

form for capillary pressure however the interfacial area is often difficult to measure in
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core analysis [1]. The use of constitutive relationship implies that the sample is large

enough to be considered as a REV. The dynamics of fluids at the larger scale can be

described using appropriate partial differential equations once the constitutive relations

are known.

3.4.2 Relative permeability/Capillary pressure - Saturation relation-

ship

3.4.2.1 Burdine’s equation

The relative permeability can be estimated by assuming a particular model of the pore

structure. The simplest model of a porous medium is to consider a bundle of parallel

cylindrical tubes, whose radii r vary within the range of (r1, r2) with a distribution

function α(r). Assuming that the bundle is cut into a large number of thin slices then

the short tubes in each slice are rearranged randomly and the slices are reassembled

also randomly, one example of the cross-section for the slice is shown in Fig. 3.3. After

r

Figure 3.3: Schematic of the cross-section for one slice of the capillary tubes.

a series of analysis, the wetting fluid relative permeability is written as [9, 134]

Krw = (
Sw − Sr
1− Sr

)2

∫ Sw
Sr

dSw
Pc2∫ 1

Sr
dSw
Pc2

, (3.14)
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where Sw is the fraction of the total pore space occupied by the wetting phase. Sr is the

residual wetting phase which can be regarded as part of the solid structure. Corey [135]

introduced the concept of effective saturation Se by

Se = (
Sw − Sr
1− Sr

). (3.15)

Replacing the variable Sw in Eqn.(3.14) by Se, the wetting fluid relative permeability

is rewritten as

Krw = (Se)
2

∫ Se
0

dSe
Pc2∫ 1

0
dSe
Pc2

. (3.16)

Similarly, for the nonwetting fluid

Krnw = (1− Se)2

∫ 1
Se

dSe
Pc2∫ 1

0
dSe
Pc2

. (3.17)

Equations (3.16) and (3.17) are also known as Burdine’s equation [134] for relative

permeability. The derivation can be seen in Appendix B.

3.4.2.2 Corey-type relationship for Relative permeability/Capillary pres-

sure

The above Burdine’s equation is said to be based on laboratory experiments carried

out under stationary conditions, it can be extended using the following suggestions by

Brooks and Corey [134] based on a large number of drainage experiments:

Se = (
Pb
Pc

)λ for Pc ≥ Pb, (3.18)

where Pb is the entry capillary pressure and λ is the pore-size distribution index which

must be determined experimentally. Then Eqns. (3.16) and (3.17) become:

Krw = (Se)
2
λ

+3 = (
Pb
Pc

)(2+3λ), Pc ≥ Pb, (3.19)

Krnw = (1− Se)2(1− S
2+λ
λ

e ) = [1− (
Pb
Pc

)λ]2[1− (
Pb
Pc

)2+λ]. (3.20)

Equations (3.19) and (3.20) present the theoretical relationship between the capillary

pressure Pc, effective saturation Se, wetting fluid relative permeability Krw and the

nonwetting fluid relative permeability Krnw.
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3.5 Summary

In this Chapter, we have introduced the representative characteristic parameters of

porous medium - porosity, and briefly introduced the three perspectives to study porous

medium. We have also looked at two relationships that related to the two-phase flow

within the porous media from the theoretic perspective, including the capillary - sat-

uration curve and the relative permeability - saturation curve. In summary, porous

medium is with complex geometry in nature, the multiphase flow in these confined

systems are even more complicated. In this thesis, we resort to numerical modelling

to obtain pore scale information and as a guide to understand large-scale natural pro-

cesses. In the following two chapters, we will describe our efforts to directly simulate

the motion of two immiscible fluids in the porous media with 2D realistic geometries

and fractured media.

54



Chapter 4

Immiscible Two-Phase

Displacement in

Two-Dimensional

Berea Sandstone

In this chapter, we will first validate the accuracy of our model by comparing the

numerical results with the analytical solution. Then, we will investigate the colour

gradient two-phase LBM for simulating the oil and water dynamics within a realistic

2D porous geometry. The effects of several parameters will be unraveled systematically

in the subsequent sections.

4.1 Dynamic validation: capillary filling

H

L

flow direction

non-wetting wetting

Figure 4.1: Simulation set-up for capillary filling. The length of the capillary tube is
L and the width is H. The blue fluid is the displacing fluid (nonwetting) and the red
fluid is the displaced fluid (wetting).

In this section, we concentrate on the capillary filling dynamics which has a moving

55



t

x
(t

)

0 10000 20000
0

50

100

150

Simulation
Theory

(a) λ = 1

t

x
(t

)

0 10000 20000 30000 40000
0

50

100

150

Simulation
Theory

(b) λ = 10

Figure 4.2: The length of the tube occupied by the filling fluid as a function of time
for drainage with (a)λ = 1 and (b)λ = 10. The (red) open circles represent simulation
results and the (black) solid lines are theoretical predictions based on Eqn. 4.1.

interface. The nonwetting (blue) fluid is injected to displace the wetting (red) fluid

under a constant pressure difference as shown in Fig. 4.1. Assuming that the gravity

and inertial effects can be neglected, the balance between the pressure difference over

the interface, the Laplace pressure and the viscous drag of the fluid column gives the

position of the fluid interface x in the capillary with time t

12

H2
[ηBx+ ηR(L− x)] · dx

dt
= pin − pout −

2σcosθ

H
, (4.1)

where H is the capillary tube width, x is the position of the phase interface, ηR and ηB

are the dynamic viscosities of the red (wetting) and blue (nonwetting) fluids, L is the

length of the capillary tube, pin and pout are pressures at the inlet and the outlet, σ is

the interfacial tension coefficient and θ is dynamic contact angle between the wetting

phase and the capillary measured from the simulation results [136]. The details of the

derivation and solution to this equation are given in Appendix C.

The breakthrough time TB can be derived by setting x = L, then we have

TB =
6L2(ηR + ηB)

H2(pin − pout − 2σcosθ
H )

. (4.2)

The simulation set-up consists of a 200×20 lattice domain with fixed pressure boundary

condition of Zou and He [4] used in the x direction. On the solid walls, the bounce-back
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rule is applied. Initially, the capillary tube is filled by the blue phase for x <= 5 and

the red fluid for x > 5. The simulations are stopped when x reaches 196 to avoid the

outlet effect. Thus the effective length of filling xe = 191. And the simulations are

run with the parameters ρR = ρB = 1. Two sets of simulations are conducted with

different viscosity ratio λ, i.e., the ratio of dynamic viscosity between the defending

and invading fluids here denoted as λ = µR/µB.

Figure 4.2 compares the simulation results to the analytical solution of Eqn. 4.1. The

open circles represent the simulation results and the solid line shows the theoretically

expected profile based on the numerically measured contact angle and the effective

length of filling. It can be seen that in the drainage case (a), location of the interface

in simulation is in very good agreement with the analytical solution. The error in

breakthrough time for Case (a) is 0.4998%. In the drainage case (b), despite the interface

in the simulation is slightly left behind than the analytical solution near the outlet, the

breakthrough time error is −0.4838%. The error is calculated by E% = ((TB,simulation−
TB,theoretical)/TB,theoretical × 100%).

4.2 Relative permeability validation: cocurrent flow in a

2D channel

ab

wetting phase

non-wetting phase

wetting phase

(0, 0)

x

y

Figure 4.3: Schematic diagram for the cocurrent immiscible two-phase flow in a 2D
channel. The wetting phase flows along the upper and lower solid walls, while nonwet-
ting phase flows in the central region of the channel.

We first use the above model to simulate a pressure driven flow through a porous media.

In the single-phase case, the intrinsic permeability K can be determined according to
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Figure 4.4: Relative permeabilities as a function of wetting phase saturation for two-
phase cocurrent flow in a 2D channel for (a) λ = 1 and (b) λ = 0.1. The open circles
represent the simulation results, and the solid lines are the analytical solutions from
Equation (4.5).

the Darcy’s law [9]

u = −K
µ
∇P, K = − µu

∇P
, (4.3)

where u is the Darcy velocity in the porous medium. Note that the intrinsic perme-

ability does not depend on the nature of the flow field but only on the geometry of the

porous medium. In case of two-phase flows, the relative permeability Kr,i can be given

as [9]

ui =
KKr,i

µi
∇Pi, Kr,i =

µiui
K∇Pi

, i = w, nw. (4.4)

Here, i = w and nw refer to the wetting and nonwetting fluids respectively, µi is the

dynamic viscosity of fluid i, and ∇Pi is the pressure gradient of fluid i. We test whether

the LBM model can accurately predict relative permeability for a simple immiscible

two-phase cocurrent flow. Specifically, we calculate the relative permeabilities of the

layered two-phase flow in a channel under different saturation values. In the simulation,

a constant pressure difference is applied on the inlet and outlet boundaries following

Zou and He [4], and a non-slip (bounce-back) boundary condition is applied on the

upper and lower walls using the halfway bounce-back scheme. As shown in Fig. 4.3,

the wetting phase flows along the walls (a < |y| < b) and nonwetting phase flows in

the central region (|y| < a). One can obtain the analytical solutions for the relative
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permeability, a function of wetting phase saturation Sw and viscosity ratio λ [137],

Kr,nw = (1− Sw)

[
3

2
λ+ (1− Sw)2(1− 3

2
λ)

]
, Kr,w =

1

2
S2
w(3− Sw), (4.5)

where Sw is the wetting phase saturation, which is defined as Sw = 1 − a/b, and λ is

the viscosity ratio of the nonwetting to wetting fluids, i.e., λ = µnw/µw.

For two typical viscosity ratios of λ = 1 and λ = 0.1, Figure 4.4 shows excellent

agreement between the computed relative permeabilities and the analytical solutions.

4.3 Results and discussion

This section presents a systematic investigation on a pressure-driven immiscible two-

phase flow in a 2D micromodel extracted from Boek et al. [138], which was engineered

at Schlumberger Cambridge Research based on a thin section of a 3D Berea sandstone

Figure 4.5: The 2D pore network used in the present lattice Boltzmann method sim-
ulations. The solid grains are represented in gray, while the displacing and displaced
fluids are represented in blue and red, respectively. The domain size is 1774 µm by
1418 µm.
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rock sample. We defined the lattice units for length, mass and time as lu, mu, and

ts, respectively. To match the parameters in the lattice unit towards their physical

values, three basic physical quantities are chosen as the reference values: the length

scale (l0), the mass scale (m0) and the time scale (t0). In the present study, l0 =

8 × 10−6 m, m0 = 5.12 × 10−13 kg, and t0 = 7.2 × 10−7 s. Therefore, the density

can be obtained by ρphy = ρm0

l30
= 5.12 × 10−13

(8 × 10−6)3
= 103 kg/m3, the dynamic viscosity by

ηdisplaced
phy = ηdisplaced

m0
l0t0

= 0.167 × 5.12 × 10−13

8 × 10−6 × 7.2 × 10−7 = 0.0148 Pa·s, and the

interfacial tension by σphy = σm0/t0
2. More details about the unit conversion can be

found in Appendix 2.5.1.5. For the interfacial tension values used in the present work,

the corresponding physical values for 0.03 mu·ts−2, 0.015 mu·ts−2, and 0.0005 mu·ts−2

are 0.0296 N·m−1, 0.0148 N·m−1, and 0.0004938 N·m−1, respectively. However, using a

time scale of t0 means that about 1 million iterations are needed to simulate 1 second of

physical time in a physical system, imposing limitations on the physical size or physical

time that can be simulated.

Crude oil has a wide range of dynamic viscosity in nature varying with different com-

positions, temperature and pressure, etc. Thus it is reasonable to consider that the

dynamic viscosity of the displaced fluid (crude oil) is 0.167 mu lu−1 ts−1 (0.0148 Pa·
s). The dynamic viscosity of water is 8.9 × 10−4 Pa· s under room temperature, the

resulted viscosity ratio between the displaced and invading fluid is 16.6 which is within

the range of 1-50. This validates the practicality of the simulation.

4.3.1 Problem statement

The 2D micromodel is shown in Fig. 4.5, and its porosity is 0.33. The entire micromodel

is divided into L × H = 2644 × 2117 lu2 with a resolution of 0.67 µm per lu. The

narrowest throat has a width of 12 lu which is fine enough to produce grid-independent

results in two-phase displacement simulations [44]. Twenty-two extra layers of lattices

are added to both the inlet and outlet to facilitate the implementation of boundary

conditions and to act as NWP and WP reservoirs respectively, so the actual domain

size is 2688×2117 lu2. Here, the flow velocity for each fluid is so small that the inertial

effect becomes insignificant.

The constant pressure boundary condition developed by Zou and He [4] is imposed

at the inlet and outlet, which are located at the left and right sides of the domain,

respectively. The halfway bounce-back scheme and wetting boundary condition are

applied at the walls that contain the surfaces of solid grains as well as the upper and

lower edges of the domain. The densities of both wetting and nonwetting fluids are
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Figure 4.6: Porosity as a function of the domain size. L is the length of the entire
micromodel, while H is its width; x refers to the distance to the left boundary, and y
is the distance to the bottom boundary. For each point shown above, the same scaling
is applied to x and y, i.e. x/L = y/H.
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(a) λ = 1 (b) λ = 2

(c) λ = 5 (d) λ = 10

Figure 4.7: Fluid distributions at breakthrough for a wetting fluid invading a porous
medium initially saturated with a nonwetting fluid. The wetting fluid (indicated in
blue) is injected from the left side, and the viscosity ratio λ equals to 1, 2, 5, and 10,
respectively.
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set to be unity as the density difference between oil and water is insignificant. The

dynamic viscosity of the displaced fluid is kept as 0.167 mu·lu−1·ts−1, and the dynamic

viscosity of the displacing fluid is varied to achieve different viscosity ratio values (λ =

ηdisplaced/ηinvading). Initially, for x ≥ 22 lu, the domain is filled with the displaced

fluid (represented in red) at rest, and a constant pressure pout = 1/3 mu·lu−1·ts−2 is

imposed at the outlet, while for x < 22 lu, the region is occupied by the displacing

fluid (represented in blue) with a higher pressure at the inlet. The simulations are

stopped when the displacing fluid breaks through at the outlet to avoid the capillary

end effect1 in the finite-sized computational domain [139].

By studying the dependency of porosity on the size of the rock sample, we calculated the

porosity using different sizes of Berea sandstone to find its representative elementary

volume (REV). The results are shown in Figure 4.6, which demonstrates that the chosen

size of 2688× 2117 lu2 could be a good REV of the Berea sandstone. This guarantees

that the simulated geometry included a sufficient number of pores for the meaningful

statistical average, which is generally required by the continuum concept [9].

4.3.2 The viscosity ratio effect

The viscosity ratio is one of the most important dimensionless numbers in two-phase

displacement through a porous media, and its effect is studied for a constant contact

angle of 120◦, corresponding to a weak wetting property of the displacing fluid. The

inlet pressure is also the same for different viscosity ratios, i.e. pin = (pout + 0.0125)

mu·lu−1·ts−2. Figure 4.7 shows the fluid distributions inside the pore network when

breakthrough of the displacing fluid occurs for viscosity ratios of 1, 2, 5, and 10. It can

Table 4.1: Parameters used in four typical cases of immiscible displacement.
Case ∆P σ cos θ

I 0.0125 0.015 −0.5
II 0.0125 0.0005 −0.5
III 0.0125 0.0005 0.5
IV 0.0125 0.015 0.5

be seen that for these viscosity ratios considered, two or three preferential paths are

generally formed. As the viscosity ratio increases, it becomes harder for the finger to

flow into the large pore as highlighted by the black elliptical circles due to lower viscous

pressure from the invading fluid. The front of the bottom finger is finally halted at the

1Due to the experimental/numerical setup, capillary end effects are commonly observed at the
outlet as a result of the capillary jump generated by the discontinuity in the solid matrix at the
interface between the rock sample and the outlet.
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Figure 4.8: Evolution of the displacing fluid saturation for the viscosity ratio λ increased
from 1 to 30 at σ = 0.015 mu·ts−2 and θ = 120◦ (imbibition). Note that the time step
is normalized by tb, defined as the time step at which the breakthrough occurs.
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position near the inlet for the viscosity ratio of 10 for the same reason. Also, the

breakthrough finger switches to a lower position at the outlet when the viscosity ratio

increases to 10.

Figure 4.8 shows the time evolution of the displacing (wetting) fluid saturation for

viscosity ratio changing from 1 to 30. It can be clearly seen that a higher viscosity ratio

results in a lower fluid saturation which is less favourable for the recovery of displaced

fluid. This is consistent with previous experimental [2] and numerical results [140].

At the viscosity ratio of unity, the highest displacing fluid saturation (around 0.37)

is observed, and the displacing fluid saturation keeps increasing linearly with time.

Although the displacing fluid saturation reduces with λ, the reduction becomes less

significant at larger λ values.

We also tested whether the above observations are valid for varying wettability and

interfacial tension. Four pairs of contact angle and interfacial tension are considered (see

Table 4.1), and the simulation results are shown in Figure 4.9. It is clear that the

displacing fluid saturation drops rapidly when the viscosity ratio increases from 1 to 20

and then stays almost unchanged for all the cases considered. For each viscosity ratio,

increasing contact angle or interfacial tension always leads to a higher displacing fluid

saturation or displacement efficiency and the interfacial tension has a higher impact.

In addition, the limitation of the current model is tested by decreasing the viscosity

of the displacing fluid, and it is found that the maximum viscosity ratio that it can

successfully access is as high as 50.

4.3.3 The interfacial tension effect

The interfacial tension between the displacing and displaced fluid is known to play an

important role at the pore scale for two-phase displacement through a porous media.

The same viscosity ratio (λ = 1) is used and the contact angle is fixed at 120◦. Fig-

ure 4.10 shows the fluid distributions at breakthrough for the interfacial tensions of

0.03 mu·ts−2, 0.015 mu·ts−2, and 0.0005 mu·ts−2. From this figure, it is seen that when

the interfacial tension is as low as 0.0005 mu·ts−2, the viscous force prevails, the main

fingers get thinner and even break up, and many fingers only occupy partial pores or

throats that they pass by. Also a number of small blobs of displaced fluid are left

behind at low levels of interfacial tension. When the interfacial tension increases to

0.015 mu·ts−2, larger blobs of the displaced fluid are trapped by the displacing fluid,

and the displacing fluid flows into the large pore more easily due to higher capillary

pressure, as highlighted by the black elliptical circles in Figure 4.10. As the interfacial
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(a) σ = 0.03

(b) σ = 0.015

(c) σ = 0.0005

Figure 4.10: Fluid distributions at breakthrough for a wetting fluid invading a porous
medium initially saturated with a nonwetting fluid. The wetting fluid (indicated
in blue) is injected from the left side and the values of the interfacial tension are
0.03 mu·ts−2, 0.015 mu·ts−2, and 0.0005 mu·ts−2 from the top to bottom.
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Figure 4.11: Evolution of the displacing fluid saturation for the interfacial tension of
0.0005 mu·ts−2, 0.015 mu·ts−2 and 0.03 mu·ts−2.

tension is further increased to 0.03 mu·ts−2, we surprisingly found that the front of the

displacing fluid can be flat inside some pores, e.g., the one surrounded by the black

rectangle box in Figure 4.10, though most interfaces remain curved due to large capil-

lary pressure. Meanwhile, much less of the displaced phase is left behind as the invading

phase tends to occupy the pore body completely before reaching a neighbouring pore.

Figure 4.11 shows the evolution of the displacing fluid saturation for an interfacial

tension of 0.0005 mu·ts−2, 0.015 mu·ts−2 and 0.03 mu·ts−2. It is seen that generally

higher interfacial tension results in a higher saturation. The linear relationship between

saturation and the evolving time is again observed.

4.3.4 The contact angle effect

The contact angle is measured from the displaced fluid. All the contact angles are

larger than 90◦ in this part to simulate the imbibition process.

Figure 4.12 shows the fluid distributions when the displacing fluid breaks through at

the outlet for the contact angles of 162◦, 150◦, 135◦, and 120◦. The contact angle

is chosen as any value larger than 90◦ to simulate imbibition. Recent studies have

shown that contact angles vary pore by pore as a result of wettability alteration by
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(a) θ = 162◦ (b) θ = 150◦

(c) θ = 135◦ (d) θ = 120◦

Figure 4.12: Fluid distributions at breakthrough for a wetting fluid invading a porous
medium initially saturated with a nonwetting fluid. The wetting fluid (indicated in
blue) is injected from the left side and the values of the contact angle are 162◦, 150◦,
135◦, and 120◦, respectively.
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Figure 4.13: Evolution of the displacing fluid saturation for contact angles of 162◦,
150◦, 135◦, and 120◦.

the sorption of surface active compounds in crude oil [141]. Hence it is still not fully

understood how this surface wettability condition affects oil recovery. As a preliminary

study we apply same contact angle in each pore within this thesis however it is desirable

to investigate further, e.g., the effect of mixed wettability, contact angle hysteresis etc

in future as the wettability significantly affects the darcy scale multiphase flow [142].

It is observed that the invading paths of the wetting fluid do not change significantly

except for a few branches. An obvious difference can be seen at the contact angle of

135◦ where the bottom finger advances furthermost. Figure 4.13 shows the evolution

of the displacing fluid for different contact angles. The case of θ = 120◦ has the lowest

wetting fluid saturation but its difference from the others is very small. It can also be

seen from Figure 4.9 that the contact angle does not have a big impact on the saturation.

Therefore, the contact angle has a limited effect on the efficiency of displacement in

the micro-model of Berea sanstone.

4.4 Conclusions

The colour gradient two-phase LBM is used to study dynamic displacement of immis-

cible fluids in a 2D micromodel of Berea sandstone. The effects of the viscosity ratio,
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interfacial tension, and contact angle on the fluid distributions at breakthrough and

the evolution of displacing fluid saturation are systematically investigated. When the

viscosity ratio is no more than 20, a higher viscosity ratio results in a lower displacing

fluid saturation which is less favourable for the recovery of the displaced fluid. However,

when the viscosity ratio is larger than 20, the saturation is almost constant for both

imbibition and drainage, regardless of the interfacial tension. At the viscosity ratio of

unity, the displacing fluid saturation has the highest value, and it linearly increases

with time.

The interfacial tension affects the flow pattern. When the interfacial tension is as

low as 0.0005 mu·ts−2, thin viscous fingers appear. A number of small drops of dis-

placed fluid are left behind. As the interfacial tension increases from 0.0005 mu·ts−2

to 0.015 mu·ts−2, the size of the trapped blobs increases, and the number decreases.

The displacing fluid flows into large pores more easily due to the increased capillary

pressure. When the interfacial tension continues to increase, smaller amount of the

displaced phase is left behind as the invading phase tends to occupy the pore body

completely before reaching a neighbouring pore. In addition, increasing interfacial

tension results in a higher saturation of wetting fluid.

The contact angle generally does not change preferential flow paths except for a few

branches in the imbibition, suggesting that the contact angle has limited effect on the

efficiency of displacement within 2D Berea sandstone.
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Chapter 5

Counter-current imbibition in

strongly water-wet fractured

porous media

In Chapter 4, a series of parameters have been used to investigate two immiscible fluids

flow in a realistic 2D porous geometry, including different viscosity ratios, interfacial

tensions, and contact angles. All of these parameters can affect fluid flow within frac-

tured media as well.

In this Chapter, the colour gradient LBM is used to investigate the counter-current

spontaneous imbibition mechanism in the fracture-matrix system. In Section 5.1, the

Voronoi tessellation technique is used to construct the pore structure. In Section 5.2,

the effect of water injection velocity, geometry configuration of the dual permeability

zones, interfacial tension, viscosity ratio, and fracture spacing (only when multiple

fractures are present) is systematically studied, and the sensitivity analysis is performed

to find the optimal parameters that maximise the oil recovery. Three distinct imbibition

regimes will be identified, characterized with different morphologies of expelled oil in

the fracture.

5.1 Matrix construction

The matrix is constructed using a Voronoi tessellation technique where the pore struc-

ture is simplified as randomly connected throats. The throat widths are specified

according to the log-normal distribution, which is found to be a good geometric ap-
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Figure 5.1: Schematic of the simulated geometry used for counter-current displacement
of oil from a porous matrix by the wetting water. White color indicates the solid grains.
The inlet and outlet are specified with arrows, and the matrix is initially saturated with
oil (red colour) and the fracture with water (blue colour).

proximation to natural porous media in statistics [143]. Also, the matrix is constructed

with two different permeability zones along the fracture as commonly encountered in

multiplayer geological formations [129].

5.2 Results and discussion

In this section, we will analyse the effect of various factors on the counter-current

spontaneous imbibition in matrix-fracture systems, which include the water injection

velocity, interfacial tension, viscosity ratio, geometry configuration of the dual per-

meability zones and fracture spacing. In the following, we first present a detailed

description of the problem, including the simulated geometries, boundary conditions,

and the parameter setting.

Figure 5.1 illustrates the primary geometry investigated in this study. It is composed of

a rectangular porous matrix and a single fracture with the same length attached on its

top side. The matrix is constructed by randomly placed throats. The throat positions

are generated by applying the Voronoi tessellation technique with randomly placed

sites. Details of this algorithm are described in Debnath et al. [144]. To introduce the

permeability heterogeneity in the matrix, the sites population density (or the number

of throats) in the right-half domain is twice of that in the left-half domain. The pore
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(a) (b)

Figure 5.2: Final fluid distribution in (a) the coarse grid and (b) the fine grid for λ = 1,
σ = 30 mN/m and uinj = 5.6 mm/s. The minimum throat width in the coarse grid
is 4 lattices while in the fine grid it is 8 lattices. Note that the water and the oil are
shown in blue and red respectively.

diameter and throat width in both half-domains follow a truncated log-normal distribu-

tion with Lognormal(µ, σ2) (µ = 0, σ = 0.5), where the variation range is specified by

the minimum and maximum values [145]. The common statistic approximation for the

throat widths in natural fractured porous media is the log-normal distribution [143].

The statistic average of the pore throat width in the left half of the domain is twice

of that in the right half, yielding a dual-permeability porous matrix with high and low

permeability zones. The resultant matrix porosity is 0.26. The length and width of

the computing domain is L = 13.44 mm and H = 7.2 mm, which are divided into 1680

and 900 cells, respectively. The fracture width is h = 0.6 mm (75 lattices) and the

minimum width of the pore throats is 32µm (4 lattices).

To obtain statistically meaningful results, we should apply sufficient number of lattices

for the thinnest throat and simulate as many as possible pores and throats. With

the restriction of the high-performance computer we can access to, we need to strike

a balance on the computational efficiency and accuracy. Thus, it is important to

minimize the grid number while necessary physics can be retained. Here we provide a

test to examine the dependence of numerical results on the grid resolution. In order

to minimize the computing resources, we take a slice of 6.888 × 3.600 mm2 which

incorporates the thinnest throats from the middle upper side of the primary geometry,

i.e., “left-wide matrix” shown in Fig. 5.1. The simulation parameters are chosen as

λ = 1, σ = 30 mN/m and uinj = 5.6 mm/s (see later for the matrix configuration

and parameter setting). Fig. 5.2(a) shows the final fluid distribution in the coarse grid

with the thinnest throat width of 4 lattices and (b) shows the final fluid distribution in

the fine grid with the thinnest throat width of 8 lattices. It is observed that the grid

refinement only slightly affects the numerical results. The final oil saturation in the
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matrix varies from 0.114 in the coarse grid to 0.113 in the fine grid, with a difference

of 0.88%. This verifies that the coarse grid simulation with the thinnest throat width

of 4 lattices can offer acceptable computational accuracy.

Initially, the fracture and the matrix are saturated with water and oil (denoted by blue

and red in Fig. 5.1), respectively. Then water is continuously injected from the left inlet

of the fracture with a constant velocity of uinj, and the outlet pressure is set to be zero.

Both water and the expelled oil flow out at the right end of the fracture. All the sides of

the matrix are assumed to be solid walls, except for the top side, which is connected to

the fracture. At the solid surfaces, no-slip boundary condition is imposed by using the

half-way bounce-back scheme [146] and the desired contact angle is achieved by using

the wetting boundary condition proposed by Xu et al. [69], which modifies the direction

of the colour gradient ∇ρN at the boundary to match the specified contact angle θ.

These boundary conditions are to maintain a counter-current imbibition environment

in which the oil in the matrix can only flow into the fracture that supplies water,

which have been widely adopted in the previous numerical and experimental studies of

counter-current imbibition [50, 55, 68, 147]. Among various factors that influence the

capillary imbibition, surface wettability is of vital importance for both imbibition rate

and ultimate oil recovery, and its effect has been thoroughly investigated by Rokhforouz

and Amiri [50]. They found that, when the contact angle θ (measured from the water

side) is greater than π/4, the oil recovery is negligible, but both the imbibition rate

and the oil recovery drastically increase with decreasing contact angle when θ < π/4.

Similar findings are also demonstrated by the present simulations and the simulation

results are shown in Appendix D, where the effect of surface wettability is studied for

the contact angles varying from π/10 to π/4. Therefore, the porous matrix is considered

strongly water-wet with θ = π/10 in the following study.

For most pore-scale studies, the ratio of gravity to capillary forces is very small and

thus the effects of density difference can be neglected [10]. In the LB simulations, the

densities of both fluids are set to unity for the sake of simplicity. Five different water-oil

viscosity ratios are considered, i.e. λ = 0.1, 0.5, 1, 5 and 10, and six different interface

tensions are used, i.e. σ =5, 10, 15, 30, 45 and 60 mN/m. The water injection velocity

at the inlet ranges from uinj = 0.075 mm/s to 44.4 mm/s. Unless otherwise stated, the

simulation parameters are chosen as λ = 1, σ = 30 mN/m and uinj = 5.6 mm/s. For

each case, the simulation is run until the saturation of water in the matrix reaches a

constant value.

Apart from the primary geometry setup as illustrated in Fig. 5.1, we also consider sev-

eral different geometries that are derived from it to study the effect of matrix geometry
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Figure 5.3: Snapshots of fluid distributions during imbibition for different injection
velocities: (a) uinj = 0.075 mm/s; (b) uinj = 0.11 mm/s; (c) uinj = 0.56 mm/s; (d) uinj =
1.11 mm/s; (e) uinj = 4.44 mm/s; (f) uinj = 5.56 mm/s; (g) uinj = 22.22 mm/s and
(h) uinj = 44.44 mm/s. Note that the water and the oil are shown in blue and red
respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Fluid distributions at steady-state for different injection velocities:
(a) uinj = 0.075 mm/s; (b) uinj = 0.11 mm/s; (c) uinj = 0.56 mm/s; (d) uinj =
1.11 mm/s; (e) uinj = 4.44 mm/s; (f) uinj = 5.56 mm/s; (g) uinj = 22.22 mm/s and
(h) uinj = 44.44 mm/s. Note that the water and the oil are shown in blue and red
respectively.
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configuration and the interplay between imbibition and fluid transport in the fractures.

The first variant is the mirrored one by reversing the matrix from left to right. The

second variant is the two-fracture system by adding an additional horizontal fracture

at various positions.

5.2.1 Effect of water injection velocity

The interaction of water with the matrix is strongly related to the rate of water in-

jection [148] as the expelled oil accumulates and transports in the fracture. In order

to investigate the effect of water injection velocity, eight numerical experiments with

the injection velocities of 0.075, 0.11, 0.56, 1.11, 4.44, 5.56, 22.22 and 44.44 mm/s are

conducted. In the LB model, the numerical values corresponding to these values are

6.75×10−6, 1×10−5, 5×10−5, 1×10−4, 4×10−4, 5×10−4, 2×10−3 and 4×10−3 lu/ts,

respectively. These values are chosen for the sake of generality of the computational

experiment.

Figure 5.3 shows snapshots of the fluid distributions for various injection velocities.

It is observed that regardless of the water injection velocity, the oil selects the widest

matrix throat connecting with the fracture to flow into the fracture, while water in

the fracture imbibes into the matrix from the other narrower matrix throats. This is

because the wider throat corresponding to the lower capillary pressure makes the water

imbibition more difficult. Such a pattern was also observed by Gunde et al. [68] when

they analyzed the counter-current imbibition in a fracture-matrix system where the

porous matrix is composed of randomly placed square solid grains.

As more oil comes out of the matrix from the widest channel continuously, the oil

accumulates locally to form either piston-like plug, elongated liquid thread, or isolated

drops, depending on the water injection velocity. The water imbibition characteristics

including the preferential path and the imbibition depth also change significantly with

the injection velocity. We will later discuss these differences from the perspective of

different regimes.

When the oil cannot further move out from the matrix, we assume the imbibition

has reached the steady-state. The fluid distributions at the steady-state for the eight

different injection velocities are presented in Fig. 5.4. It shows the oil recovery factor

and the imbibition depth overall increase as the water injection velocity decreases. For

the present geometry, one would expect that the wetting fluid (water) will preferentially

enter the narrowest neighboring throat due to its highest capillary pressure [149]. Such

a trend is observed in the early stage, while in the late stage, the water front could
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(b)

Figure 5.5: (a) Time evolution of the oil recovery factor for different injection velocities
of 0.075 mm/s, 0.11 mm/s, 0.56 mm/s, 1.11 mm/s, 4.44 mm/s, 5.56 mm/s, 22.22 mm/s
and 44.44 mm/s; (b) The magnified illustration of the oil recovery factor evolution in
the dripping regime.
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Figure 5.6: Time evolution of the pressure difference (which is scaled against the water
injection velocity uinj) between the upstream and outlet in the fracture for three typical
regimes. Blue lines with solid circles correspond to the case shown in Fig. 5.3(d) (the
squeezing regime), the dashed red and magenta lines correspond to Fig. 5.3(e) and
(f) (the jetting regime), and the green and black lines with open triangles correspond
to Fig. 5.3(g) and (h) (the dripping regime). The black squares labelled I, II and III
correspond to the three snapshots shown in Fig. 5.3(d), while IV represents the instant
at which the widest matrix throat connected with the fracture being invaded by water.
The dimensionless time T is defined by T = t/ts where ts is the time of reaching the
steady state. The values of ts are 12.96s, 7.2s, 6.48s, 5.04s and 2.59s for Fig. 5.3(d)-(h).
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Figure 5.7: The distributions of pressure (difference to the outlet pressure) at the times
of (a) t=0.72s; (b) t=3.46s and (c) t=5.33s, which correspond to the three snapshots
shown in Fig. 5.3(d).
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Figure 5.8: Snapshots of fluid distributions during imbibition in the right-wide matrix
for different injection velocities: (a) uinj = 0.075 mm/s; (b) uinj = 0.11 mm/s; (c) uinj =
0.56 mm/s; (d) uinj = 1.11 mm/s; (e) uinj = 4.44 mm/s; (f) uinj = 5.56 mm/s; (g) uinj =
22.22 mm/s and (h) uinj = 44.44 mm/s. Note that the water and the oil are shown in
blue and red respectively.
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invade the matrix further in the left-half region where the throat width is larger [see

Fig. 5.4(c)-(f)]. Again, this will be discussed in more details later.

Based on the different morphologies of the expelled oil in the fracture, as shown in

Fig. 5.3, we identified three different regimes: the squeezing regime when the expelled

oil forms a piston-like plug and grows in the fracture [Fig. 5.3 (a) - (d)]; the dripping

regime when the expelled oil forms isolated drops in the fracture [Fig. 5.3 (g) and (h)];

and the jetting regime where the expelled oil develops into a thin and elongated oil

thread [Fig. 5.3 (e) and (f)]. It is noted that a similar regime classification was also

performed in the studies of droplet formation using a microfluidic T-junction [150, 151,

152]. These three different regimes are analyzed below individually.

First, when the water injection velocity is small (typically varying from 0.075 mm/s to

1.11 mm/s), the squeezing regime occurs, where the expelled oil blobs form a continually

growing plug in the fracture [Fig. 5.3 (a) - (d)]. The oil plug is big enough to entirely

block water flowing through the fracture. As a result, the pressure builds up at the

upstream of the oil plug as observed in the simulations. The increased pressure at the

upstream forces water to advance into the left-half region of the matrix gradually from

the upstream. At the same time, as the plug length increases, it blocks the imbibition of

water into the narrower throats in the right-half region of the matrix. This mechanism

explains why we observe the counterintuitive phenomenon that water advances further

in the left-half region of the matrix which has wider throats, as shown in Fig. 5.4(c) and

(d). For the extremely low water injection rate, e.g. uinj ≤ 0.11 mm/s, we can clearly

see from Fig. 5.4(a) and (b) that water progresses with three distinctive capillary fingers

into the matrix. In the squeezing regime, thanks to the blocking effect from the oil plug,

more water imbibes into the matrix and thus a relatively large amount of oil is expelled

from the matrix into the fracture. This suggests a higher oil recovery factor at steady

state as shown in Fig. 5.5(a).

As the water injection velocity increases, e.g., uinj = 4.44 mm/s and 5.56 mm/s, the

jetting regime occurs where the expelled oil exhibits a shape different from the one in

the squeezing regime. Due to the higher water injection velocity in the fracture, the oil

droplet is stretched into a long thread by the incoming water, with its root attached to

the widest matrix channel that supplies the expelled oil [Fig. 5.3 (e) and (f)]. After the

oil thread gets pinched off at its root, it quickly retracts to a dumbbell shape. During

the early stage of the oil thread spreading towards the right end of the fracture, the

imbibition of water into the right-half region of the matrix is quickly blocked, which

explains why the final oil recovery factor is much less than that in the squeezing regime

[see Fig. 5.5(a)]. The dumbbell-shaped oil thread eventually flows out of the fracture,
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(a) (b)
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Figure 5.9: Steady-state fluid distributions in the right-wide matrix for different injec-
tion velocities: (a) uinj = 0.075 mm/s; (b) uinj = 0.11 mm/s; (c) uinj = 0.56 mm/s;
(d) uinj = 1.11 mm/s; (e) uinj = 4.44 mm/s; (f) uinj = 5.56 mm/s; (g) uinj = 22.22 mm/s
and (h) uinj = 44.44 mm/s. Note that the water and the oil are shown in blue and red
respectively.
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Figure 5.10: Ultimate oil recovery factor as a function of injection velocity uinj for both
the left-wide and the right-wide matrixes.

which can be seen from Fig. 5.4 (e) and (f).

As the rate of water injection continues to increase, the expelled oil enters the fracture

as isolated drops [Fig. 5.3 (g) and (h)], which is known as the dripping regime. The

higher injection velocity results in a larger shear force acting on the expelled oil drop,

leading to an earlier pinch-off before it can grow longer. The size of the drop decreases

with increasing water injection rate. These drops are transported quickly along the

fracture by the injected water. Since the water is able to freely flow out through the

fracture and no blocking effect exists, overall imbibition depth is much shallower than

that in the other two regimes. Accordingly, the oil recovery factor in this regime is the

lowest among all the three regimes, typically lower than 8% as observed in Fig. 5.5(a).

On the other hand, the water infiltration path into the matrix is less selective than the

other two regimes, as can been seen from Fig. 5.4 (g) and (h) where the imbibition front

progresses almost uniformly down into the matrix. This regime resembles the “instantly

filled fracture” regime identified experimentally by Rangel-German et al. [66], in which

water is mainly pumped through the fracture and little water is imbibed into the matrix.

In addition, the water saturation in the matrix in this regime scales linearly (correlation

coefficient of 0.99) with the square root of time before reaching the steady state [see

Fig. 5.5(b)], which is consistent with the experimental finding of Rangel-German et

al. [148].
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Figure 5.11: Snapshots of fluid distributions during imbibition for different interfacial
tensions: (a) σ = 30 mN/m; (b) σ = 15 mN/m and (c) σ = 5 mN/m. Note that the
water and the oil are shown in blue and red respectively.

Among the above three regimes, the squeezing regime has the highest oil recovery

factor and takes a relatively long time to reach the steady state. Specifically, the

maximum oil recovery factor rf = 0.25 is reached at uinj = 0.56 mm/s in the squeezing

regime. On the contrary, in the dripping regime, the imbibition reaches the steady

state almost instantly, and the final oil recovery factor is extremely low. We also

record the pressure differences between the upstream and outlet in the fracture during

the displacement for the three typical regimes, and the results are shown in Fig. 5.6.

Among these three regimes, the pressure build-up is the most significant in the squeezing

regime. For the squeezing regime, the pressure upstream keeps at a high level before

reaching IV, although sudden drop occurs when more wetting fluid is imbibed into

the matrix. The pressure build-up process in the squeezing regime can be also seen

from the pressure distributions plotted in Fig. 5.7. As the oil plug grows, the pressure

upstream in the fracture increases while the pressure of the non-wetting fluid in the

matrix decreases [Fig. 5.7(a)-(c)]. For the jetting regime, a certain level of pressure

build-up is also observed, which is consistent with the fluid distributions in Fig. 5.3(e)

and (f). In contrast, the pressure upstream maintains at a rather low level throughout

the displacement process for the dripping regime.
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(a)

(b)

(c)

Figure 5.12: Fluid distributions at steady-state for different interfacial tensions: (a) σ =
30 mN/m; (b) σ = 15 mN/m and (c) σ = 5 mN/m. Note that the water and the oil
are shown in blue and red respectively.
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5.2.2 Effect of geometry configuration of the dual permeability zones

The porous matrix in the primary geometry is intentionally constructed as two dif-

ferent regions, where the mean channel width in the left-half region of the matrix is

twice of that in the right-half region. Such an geometry configuration of the matrix is

expected to significantly influence the water imbibition process due to the interplay of

the water imbibition into the matrix and oil accumulation and transport in the frac-

ture. As previously shown in Fig. 5.3, the oil blobs prefer flowing through the widest

throat into the fracture and accumulate locally in the fracture towards the downstream

direction. In the squeezing and jetting regimes, the oil plug or thread would entirely

or partially block the matrix entrances downstream. Thus, it is important whether the

high permeability zone is located upstream or downstream of the fracture.

In this subsection, we investigate how the geometry configuration of the high and low

permeability zones affects the imbibition process and the oil recovery factor. By revers-

ing the matrix in the primary geometry (Fig. 5.1) from left to right, we create another

geometry with wide throats distributed in the right-half region of the matrix and the

water is still injected from the left end of the fracture. The new set-up is tantamount to

reversing the water injection direction in Fig. 5.1. We now distinguish the two matrixes

by calling the original one “left-wide matrix” and the new one “right-wide matrix”, re-

spectively. The left-wide matrix corresponds to the geometry configuration that the

high permeability zone is located upstream and the low permeability zone downstream.

By contrast, the right-wide matrix has the high permeability zone downstream and the

low permeability zone upstream.

Fig. 5.8 shows the water imbibition process in the right-wide matrix and the dynamics

of expelled oil blobs in the fracture for eight different injection velocities. Note that

the corresponding results regarding the left-wide matrix have been shown in Fig. 5.3.

Different from the results in Fig. 5.3, it is seen in Fig. 5.8 that the squeezing regime

[Fig. 5.8(a-d)] changes to the dripping regime [Fig. 5.8(e-h)] directly without undergoing

the jetting regime, as the oil shape in the fracture changes from plug to small drop by

increasing injection velocity. The regime alteration process is seen clearly from row (d)

to (e) in Fig. 5.8, as the location of the high permeability zone is downstream near

the outlet of the fracture, the expelled oil blobs from the widest throat are snapped off

easily and carried away quickly as the injection velocity increases. Thus the elongation

of the oil thread is less likely to happen. In addition, we also notice that water advances

almost exclusively into the matrix from the left-half region, i.e. low permeability zone

[also see the steady-state fluid distributions in Fig. 5.9 (a)-(d)], whereas in the left-

wide matrix, water invades mostly into the high permeability zone. This difference lies
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Figure 5.13: Time evolution of oil recovery factor for various water-oil interfacial
tensions. The solid and dashed lines are the linear fits to the data of σ = 10
mN/m and σ = 5 mN/m, respectively, which are given by rf = 0.03524 × t0.5 and
rf = 0.02699× t0.5.

in that in the right-wide matrix, the preference of water imbibition into the narrower

throats is attributed not only to the larger capillary pressure, but also to the build-up

squeezing pressure.

Figure 5.10 plots the final oil recovery factor as a function of water injection velocity

for both the left-wide matrix and the right-wide matrix. It reveals that the oil recovery

factor is high (around 0.22 ∼ 0.26) at low injection velocity (uinj ≤ 0.78 mm/s) in

both geometry configurations. Upon increasing uinj from 1.11 mm/s, the oil recovery

factor decreases and reaches its minimum value of 0.04 at the highest injection velocity

in both matrix geometries. It is seen in Fig. 5.10 that there exists a critical velocity

(around 0.78 mm/s) above which the left-wide matrix has a higher oil recovery factor,

but below which, the right-wide matrix has a higher oil recovery factor. In the left-wide

geometry, water is found to advance further into the left-half region (high permeability

zone) which is connected to the upstream of the fracture. This counters our intuition

that wider throats corresponding to smaller capillary pressure unfavor the imbibition

of water into the matrix. We speculate that this is due to the build-up squeezing

pressure upstream when the oil blobs accumulate at the downstream of the fracture

and block the fracture channel. By flipping the geometry from “left-wide matrix”

to “right-wide matrix”, we again observe that water invades deeper into the left-half
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Figure 5.14: Snapshots of the fluid distributions during imbibition for different viscosity
ratios: (a) λ = 1; (b) λ = 0.1 and (c) λ = 10. Note that the water and the oil are
shown in blue and red respectively.

region of the matrix (low permeability zone) that is adjacent to the upstream of the

fracture, which confirms our speculation. To conclude, the geometry configuration of

the dual permeability zones plays a significant role in the oil recovery by counter-current

imbibition in a fracture-matrix system.

5.2.3 Effect of interfacial tension

As spontaneous imbibition is a result of capillary pressure, the dynamic imbibition

process and the final recovery factor are significantly affected by the interfacial tension

between two fluids [153]. To investigate the impact of the interfacial tension on the

oil recovery process in a fracture-matrix system, six different simulations with the

interfacial tension values of σ = 5, 10, 15, 30, 45 and 60 mN/m are carried out. All the

other parameters are chosen as the default values mentioned before, and the primary

geometry, i.e. the left-wide matrix is used as an illustration.

According to the Young-Laplace equation, the capillary intrusion of water into the ma-

trix is weakened with the decrease of interfacial tension σ. This is confirmed by the

imbibition depths in Fig. 5.11, which shows the dynamic imbibition processes at dif-

ferent values of σ. It is also observed that with the interfacial tension decreasing from

30 mN/m to 5 mN/m, the flow regime for the expelled oil changes from the jetting
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Figure 5.15: Time evolution of the oil recovery factor for the viscosity ratios of 0.1,
0.5, 1, 5 and 10. Note that the solid and dashed lines represent the linear fits to the
data of λ = 5 and λ = 10, respectively, which are given by rf = 0.10439 × t0.5 and
rf = 0.12858× t0.5.

regime [Fig. 5.11 (a) and (b)] to the dripping regime [Fig. 5.11 (c)]. In this regard,

decreasing interfacial tension has a similar effect to increasing water injection velocity,

which can be explained by the competition between the viscous shear force exerted

on the expelled oil blobs and the capillary force resisting the interface deformation.

However, the imbibition behavior in the matrix cannot be described by the capillary

number (Ca). The capillary number is often used to characterize the forced displace-

ment, in which the characteristic velocity, as a measure of viscous force, is defined as

the injection velocity or the imposed pressure difference. In the spontaneous imbibi-

tion, the imbibition rate is not determined by the injection velocity of water into the

fracture but by the interfacial tension, suggesting that it is more appropriate to use

the interfacial tension rather than the capillary number defined through the injection

velocity of water for our discussion.

Figure 5.12 presents the steady-state oil-water distribution for different interfacial ten-

sions. It shows that with larger interfacial tension, the water imbibes deeper into the

left-half matrix with high permeability. This is because the elongated expelled oil in the

jetting regime can block the fracture channel to some extent, leading to an increased

upstream pressure that drives more water into the high permeability zone. In addition,

increasing σ will increase the capillary pressure, which acts as the only driving force for
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Figure 5.16: Fluid distributions at steady-state for different fracture spacing: (a) δ = 0;
(b) δ = 0.167; (c) δ = 0.333; (d) δ = 0.5; (e) δ = 0.667 and (f) δ = 0.833. Note that
δ = 0 corresponds to the primary geometry with only one fracture. Note that the water
and the oil are shown in blue and red respectively.
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spontaneous imbibition of water into the matrix, leading to more water imbibed into

the matrix and enhancing the oil recovery.

Figure 5.17: Ultimate oil recovery factor as a function of the fracture spacing, which is
normalized by the matrix height.

Figure 5.13 displays the oil recovery factor as a function of the square root of time

for different interfacial tensions. It is found that a larger interfacial tension leads to a

higher imbibition rate and usually a higher ultimate oil recovery factor. These trends

are consistent with the previous findings by Rokhforouz and Amiri [50] who studied

the imbibition of water from a fracture into a porous media composed of randomly

distributed cylinders using the phase-field method. In addition, Fig. 5.13 shows that

in the dripping regime, the linear relationship between the oil recovery factor and the

square root of time is still valid.

5.2.4 Effect of viscosity ratio

The effect of viscosity ratio, defined as λ = µwater/µoil, is investigated for λ = 0.1, 0.5,

1, 5 and 10. Different values of viscosity ratio are achieved by adjusting the viscosity

of oil while keeping the viscosity of water unchanged.

Fig. 5.14(a) shows snapshots of the fluid distributions for the viscosity ratios of 0.1, 1

and 10. It is found in the fracture that the expelled oil morphology changes from jetting

regime to the dripping regime with increasing viscosity ratio. In the jetting regime, see
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Fig. 5.14 [row (a)], water progresses more in the high permeability zone because the

long oil thread blocks the water passage into the low permeability zone. Fig. 5.14(b)

shows a combination of the jetting and dripping regimes. Clearly, water advances into

the matrix within a very limited depth because of high viscous force between oil and the

matrix wall. When the viscosity ratio is increased to 10, see Fig. 5.14(c), the oil blob

occupies the whole cross-section of the fracture, and the squeezing regime seemingly

occurs. However, the squeezing pressure upstream is not built up because the oil plugs

in the fracture are driven by water towards the outlet quickly. Note that the formed oil

plugs move more easily towards the outlet in the fracture when the oil phase is of lower

viscosity. In this case, the water front advances evenly into the left and right regions

of the matrix – like in the dripping regime. Figure 5.15 displays the oil recovery factor

as a function of the square root of time for various viscosity ratios. It is clear that the

highest oil recovery factor is reached when λ = 0.5, different from the previous finding

of Rokhforouz and Amiri [50], who found the highest oil recovery factor occurring at

the viscosity ratio of unity. In addition, the imbibition rate increases with the viscosity

ratio, and the linear relationship between oil recovery factor and the square root of

time is interestingly observed for λ = 5 and λ = 10, also like in the dripping regime.

5.2.5 Effect of fracture spacing

In standard “water-flooding” oil recovery, the fracture spacing is an important charac-

teristic of natural fractured rock [154, 155, 156, 157] that affects the water supply, the

transport of expelled oil and thus the amount of recoverable oil. It is also important

in artificially created fracture network during unconventional gas & oil extraction to

optimize the production rate and reduce the economic costs [158, 159, 160, 161]. To

investigate the effect of fracture spacing on the counter-current imbibition, we add an-

other horizontal fracture in the primary geometry. By varying the spacing between the

added fracture with the original one, we can observe the effect of fracture spacing on

the dynamic imbibition process and the ultimate oil recovery factor. Eight different

fracture spacings are considered, where the fracture spacings normalized by the matrix

height are δ = 0.167, 0.333, 0.5, 0.667, 0.74, 0.81, 0.833 and 0.88, respectively.

Figure 5.16 shows the steady-state fluid distributions for different fracture spacings

where the result of the primary geometry with a single fracture is also shown for com-

parison. From this figure, it can be seen that the interaction between the water fronts

from different fractures is greatly affected by the fracture spacing. Specifically, when

two fractures are very close to each other [Fig. 5.16(b)], the oil in the porous matrix

located between two fractures is quickly expelled out, and thus only the lower fracture
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supplies water for further imbibition into the lower porous region. By increasing the

fracture spacing, the water fronts from two fractures have more space to develop, and

thus more oil is expelled into the fracture [Fig. 5.16(c) - (d)]. This explains why the oil

recovery factor overall increases with the fracture spacing, which is shown in Fig. 5.17.

However, when the fracture spacing δ is increased from 0.667 to 0.88, the oil recovery

factor does not increase but decrease instead (Fig. 5.17). This is because the lower

fracture is too close to the matrix downside boundary, leading to dead throats in the

lower porous region and thus restricting the development of water fronts, for example,

at δ = 0.833 [see Fig. 5.16(f)].

5.3 Conclusions

A lattice Boltzmann colour-gradient model is used for pore-scale simulation of the

counter-current water-oil imbibition in a strongly water-wet fracture-matrix system.

The effects of water injection velocity into the fracture (uinj), geometry configuration

of the high and low permeability zones, interfacial tension (σ), viscosity ratio (λ) of

water to oil and the fracture spacing (δ) (if there are multiple fractures) on the dynamic

imbibition process and the ultimate oil recovery factor are systematically analyzed. The

main findings are summarized as follows.

The morphology of the expelled oil in the fracture changes with the water injection

velocity and the interfacial tension. Depending on the relative strength of the viscous

shear force and capillary force, the expelled oil in the fracture appears as either plugs

or long threads or isolated drops. Accordingly, they are classified into three regimes,

i.e. squeezing, jetting and dripping.

In the primary geometry, i.e. the one with left-wide porous matrix, we observe the

counter-intuitive phenomenon that more water invades into the left-half region of the

matrix (high permeability zone), which is due to that the oil plug entirely blocks the

downstream fracture channel. The build-up pressure upstream facilitates water to

invade the wider throats which improves the oil recovery factor. The ultimate oil

recovery factor is not significantly affected by the injection velocity and is generally

high in the squeezing regime; whereas in the jetting regime, it decreases gradually with

the increase of injection velocity. In the dripping regime, the ultimate oil recovery factor

is extremely low and we find that the amount of oil expelled out from the matrix scales

with the square root of time, consistent with the previous experimental result [148].

The geometry configuration of the high and low permeability zones affects the amount of
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oil that can be recovered by the counter-current imbibition in a fracture-matrix system.

There exists a critical injection velocity above which water is preferably injected from

the fracture end adjacent to the high permeability zone.

Decreasing interfacial tension favors reduction of the oil recovery as the oil morphology

in the fracture shifts to the dripping regime. Increasing water-to-oil viscosity ratio

leads to a higher water imbibition rate and the highest oil recovery factor is achieved

at λ = 0.5. Finally, introducing a second horizontal fracture is found to significantly

enhance oil recovery. Increasing fracture spacing first leads to an increasing trend of

the oil recovery factor, and then the highest oil recovery factor is reached when the

fracture spacing is large enough to allow the water imbibition fronts from different

fractures to develop independently. A further increase of the fracture spacing decreases

the oil recovery factor as the lower fracture becomes too close to the matrix downside

boundary.
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Chapter 6

Conclusions and future research

In this final Chapter, we conclude our research and discuss possible directions for future

research.

6.1 Summary

Our investigation into the transport mechanism of immiscible two phases within the

porous and fractured media has resulted in a deeper understanding of the pore-scale

dynamics. The colour gradient two-phase LBM has allowed us to systematically look

into the effects of various fluid properties and geometry configurations, and reveal the

role they play in the displacement process. This lays the foundation for explaining the

phenomena on a larger-scale and aids to optimise the oil recovery process.

The first objective of this work is presented in Chapter 4 for the verification and val-

idation of the model implementation. It is on the basis of the state-of-the-art colour

gradient two-phase LBM, which is able to precisely control the contact angle for both

static and dynamic problems, essential for accurate modelling of two-phase displace-

ment in porous media. The model has shown many advantages including strict mass

conservation for each fluid, low spurious currents, wide accessibility to various viscos-

ity ratios, and high accuracy in modelling contact angle. However, it was previously

limited to the simplified porous media. To fill this gap, the present work extends the

colour-gradient model for two-phase displacement in a porous flow structure extracted

from a realistic Berea sandstone sample. It is demonstrated that the colour-gradient

model is effective and accurate for pore-scale simulation of two-phase flows in arbitrar-

ily complex porous media. To be specific, direct simulation on the 2D realistic porous

image based on a thin section of a 3D Berea sandstone rock sample is used, since the
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complexity of the pore-space geometry is preserved. The size of the computational

domain is large enough to be a representative elementary volume (REV) of the sample

with the resolution of 0.67 µm. A series of two-phase displacement simulations driven

by an imposed pressure difference are performed and the effect of the viscosity ratio,

interfacial tension, and contact angle on the fluid distributions at breakthrough time

and the evolution of displacing fluid saturation are analysed.

We demonstrated that the viscosity ratio plays an important role in the displaced phase

recovery efficiency. When the viscosity ratio is equal to unity, the saturation of the

displacing fluid has the highest value, and increases linearly with time. The displacing

fluid saturation drops rapidly when the viscosity ratio varies from 1 to 20 and then

stays almost unchanged regardless of the interfacial tension and the contact angle if

the viscosity ratio continue to increase from 20 to 50. While the viscosity ratio (λ)

changing from 1 to 30, although the displacing fluid saturation reduces with λ, the

reduction becomes less significant at larger λ values. At each viscosity ratio, increasing

the contact angle or the interfacial tension have the same effect, both leading to a

higher displacing fluid saturation or displacement efficiency. Generally higher interfacial

tension leads to a higher displacement efficiency. And the linear relationship between

the saturation of the displacing fluid and the evolving time at various interfacial tension

still holds. It is also observed that at low interfacial tension value of 0.0005 mu·ts−2,

thin viscous fingers appear. When the interfacial tension increases from 0.0005 mu·ts−2

to 0.015 mu·ts−2, the size of the trapped nonwetting fluid blobs increase and the number

decrease. Further increase the interfacial tension to 0.03 mu·ts−2, the displacing front

becomes flat in some pores, and the displacing fluid flows into the large pore more easily

due to the higher capillary pressure. We also found that the effect of contact angle on

the displacement efficiency is limited within the 2D Berea sandstone. Meanwhile, no

obvious changes of the invading paths of the wetting fluid is observed except for a few

branches.

Chapter 5 employed the colour gradient two-phase LBM model for the purpose of solv-

ing the counter-current spontaneous imbibition process in a dual-permeability fracture-

matrix system. The studied matrix is constructed using a Voronoi tessellation technique

where the pore structure is modeled as randomly connected throats. The throat widths

obey a log-normal distribution, which often serves as a good geometric approximation

to natural porous media in statistics. This is different from many previous works which

were done based on simple circular or square cylinders of the solid grains in the ma-

trix. The porous matrix is intentionally constructed as two different regions, where

the statistic average of the pore throat width in the left half of the domain is twice of
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that in the right half, yielding a dual-permeability porous matrix with high and low

permeability zones.

By examining different water injection velocities and interfacial tensions, it is identified

for the first time that the three distinct imbibition regimes exist, i.e. the squeezing,

jetting and dripping regimes, and they can be distinguished with different morphologies

of expelled oil in the fracture (piston-like plug, elongated liquid thread and isolated

drops). Especially, in the squeezing regime, it is interestingly found that the build-up

of the squeezing pressure upstream is able to facilitate water into the permeability zone

closer to the fracture inlet thus increasing the oil recovery factor, due to the blocking

effect from the oil plug. In the jetting regime, the final oil recovery factor is much

less than that in the squeezing regime. And the oil recovery factor is the lowest in

the dripping regime, typically lower than 8%. Besides, a linear relationship between

the oil recovery factor and the square root of time is observed in the dripping regime,

which is consistent with the available experimental finding. The geometry configuration

of the dual permeability zones is shown to play a significant role in the oil recovery

by switching the side of the high and low permeability zones. It has the potential

to affect the amount of oil that can be recovered by the counter-current imbibition

in a fracture-matrix system through transition of the different regimes. A series of

simulations with different interfacial tensions show that a larger interfacial tension leads

to a higher imbibition rate and usually a higher ultimate oil recovery factor, consistent

with previous numerical findings studying the imbibition of water from a fracture into

a porous medium composed of randomly distributed cylinders using the phase-field

method. A higher viscosity ratio leads to a higher imbibition rate, however the highest

oil recovery factor is reached when λ = 0.5, different from the previous work which

reported that the highest oil recovery factor occurring at the viscosity ratio of unity.

In addition, another horizontal fracture is added in order to investigate the effect of

fracture spacing on the counter-current imbibition. The fracture spacing that produces

the highest oil recovery factor is found. These results could serve as a guideline for the

optimal design of the water-injecting oil extraction techniques.

6.2 Future research

In this thesis, the colour gradient two-phase LBM model has shown its potential in

simulating a wide range of viscosity ratios for the two immiscible fluids in complex

porous geometries. The underlying mechanisms for displacement dynamics are found

to be well captured. With the continuous developments in computer hardware and
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software methods, LB simulations are likely to be much faster and more affordable in

the near future. Further studies can be carried out in three dimensional in terms of the

computed porous geometry. Moreover, the present work stores the full lattice, making

parallelization straightforward but wasteful. It is possible to use a sparse domain

decomposition technique which helps to avoid the need to store and operate on lattice

points located within a solid phase [162].

The current study on the counter-current spontaneous imbibition process in a dual-

permeability fracture-matrix system is only preliminary, apart from the many factors

investigated in this work, media inhomogeneity is also a key factor for spreading and

displacement of fluids within porous media which deserves further study in the fu-

ture. In addition, it is desirable to validate the numerical simulations by experimental

measurement.

Lastly, real oil reservoirs tend to be mixed wet, which means some parts maybe water-

wet and other parts being oil-wet. The effect of mixed wettability could be carried out

on the counter-current imbibition process. Also, it is possible to quantify the interfacial

area in order to provide insights about physical displacement process as proposed by

Hassanizadeh and Gray [132].
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Appendix A

From lattice Boltzmann equation

to the Navier-Stokes equations:

Chapman-Enskog expansion

Here we derive the macroscopic NSEs from the lattice Boltzmann equation in detail

through Chapmann-Enskog expansion, which is a multi-scale analysis by Chapman and

Enskog. Normally three time scales are adopted in the multiscale expansion:

• the collision time scale ε0 (ε is an arbitrarily small positive number) the par-

ticle collision process is very fast.

• the convection time scale ε−1 the convection process is slower than the particle

collision process.

• the diffusion time scale ε−2 the diffusion process is slower than the convection

process.

The spatial scale for the collision process is the molecular mean free path (λ), while

the characteristic flow length (L) for convection and diffusion process. Within this

multiscale method, three time scales are usually adopted: the discrete scale t, and two

continuous scale t0 = εt and t1 = ε2t. Two spatial scales are used: the discrete scale x

and the continuous scale x0 = εx. Thus the time derivative, spatial derivative and the

distribution function are expanded as follows

∂t = ε∂t0 + ε2∂t1 , ∂α = ε∂0α, fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · (A.1)

where ε is a small number proportional to Kn, and ∂α = Oα is the spatial derivative.
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The second order Taylor series expansion of the LBGK equation (2.9) yields

δt(∂t + ci · O)fi +
δ2
t

2
(∂t + ci · O)2fi +

1

τ
(fi − f (eq)

i ) +O(δ3
t ) = 0 (A.2)

Now substitute the expansions (A.1) into Eq. (A.2) and compare the coefficients of

each order of ε, one can obtain that

ε0 : f0
i = f

(eq)
i , (A.3)

ε1 : (∂t0 + ci · O0)f
(eq)
i +

1

τδt
f

(1)
i = 0, (A.4)

ε2 : ∂t1f
(eq)
i + (∂t0 + ci · O0)f

(1)
i +

δt
2

(∂t0 + ci · O0)2f
(eq)
i +

1

τδt
f

(2)
i = 0, (A.5)

Using Eq. (A.4), Eq. (A.5) can be simplified as

ε2 : ∂t1f
(eq)
i + (1− 1

2τ
)(∂t0 + ci · O0)f

(1)
i +

1

τδt
f

(2)
i = 0. (A.6)

From Eq. (A.3), together with Eqs. (2.8) and (2.11), we can obtain that

∑
i

f
(k)
i = 0,

∑
i

cif
(k)
i = 0 for k > 0. (A.7)

From Eq. (A.4), we can get the macroscopic equation at time scale t0 from its zeroth

and first order velocity moments

∂t0ρ+ O0 · (ρu) = 0, (A.8)

∂t0(ρu) + O0 · π(0) = 0, (A.9)

where π
(0)
αβ =

∑
i ciαciβf

(0)
i = ρuαuβ + pδαβ is the zeroth-order momentum flux tensor,

with p = c2
sρ. The following properties of the generalized lattice tensors of the D2Q9

model have been used here:∑
i

ωiciα =
∑
i

ωiciαciβciγ = 0,
∑
i

ωiciαciβ = c2
sδαβ∑

i

ωiciαciβciγciθ = c4
s∆αβγθ

(A.10)

where ∆αβγθ = δαβδγθ+δαγδβθ+δαθδβγ . Eqs. (A.8) and (A.9) are the Euler equations.

Similarly, the zeroth and first order moments of Eq. (A.6) leads to the conservation
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equations at time scale t1,

∂t1ρ = 0, (A.11)

∂t1(ρu) +

(
1− 1

2τ

)
O0 · π(1) = 0, (A.12)

where π
(1)
αβ =

∑
i ciαciβf

(1)
i . Next we evaluate π

(1)
αβ by multiplying Eq. (A.4) by ciαciβ

and take summation over i

− 1

τδt

∑
i

ciαciβf
(1)
i =

∑
i

ciαciβ(∂t0 + ci · O0)f
(0)
i

= ∂t0
∑
i

ciαciβf
(0)
i + ∂0γ

∑
i

ciαciβciγf
(0)
i

= ∂t0(ρuαuβ + pδαβ) + ∂0γ [ρc2
s(δαβuγ + δαγuβ + δβγuα)]

(A.13)

where

∂t0(ρuαuβ + pδαβ) = ∂t0(ρuαuβ)− c2
sO0(ρu)δαβ

= uβ∂t0(ρuα) + uα∂t0(ρuβ)− uαuβ∂t0ρ− c2
sO0(ρu)δαβ

= uβ[−∂0γ(ρuαuγ + ρc2
sδαγ)] + uα[−∂0γ(ρuβuγ + ρc2

sδβγ)]− uαuβ∂t0ρ

− c2
sO0(ρu)δαβ

= −c2
suβ∂0αρ− c2

suα∂0βρ− ∂0γ(ρuαuβuγ)− c2
sO0(ρu)δαβ

(A.14)

and

∂0γ [ρc2
s(δαβuγ + δαγuβ + δβγuα] = c2

sO0(ρu)δαβ + ρc2
s∂0αuβ + c2

suβ∂0αρ+ ρc2
s∂0βuα

+ c2
suα∂0βρ

(A.15)

Now we have

− 1

τδt

∑
i

ciαciβf
(1)
i = ρc2

s(∂0αuβ + ∂0βuα)− ∂0γ(ρuαuβuγ) (A.16)

So Eq. (A.12) can be written as

∂

∂t1
(ρu) +

(
1− 1

2τ

)
O0 · (−τδt[ρc2

s(∂0αuβ + ∂0βuα)− ∂0γ(ρuαuβuγ)]) = 0 (A.17)

which is equivalent to

∂

∂t1
(ρu) + O · [(−ρν(Ou + (Ou)T ) +

ν

c2
s

O(ρuuu)] = 0 (A.18)

103



Eq. (A.9) can be rewritten as

∂

∂t0
(ρu) + O · (ρuu) = −Op (A.19)

combining Eqs. (A.18) and (A.19), we can get the following equation,

∂

∂t
(ρu) + O · (ρuu) = −Op+ O · [ρν(Ou + (Ou)T )− ν

c2
s

O(ρuuu)] (A.20)

Similarly, combining Eqs. (A.8) and (A.11), we can get the macroscopic equation as

follows
∂ρ

∂t
+ O · (ρu) = 0 (A.21)

It should be noted that the kinematic viscosity is given by ν = c2
s(τ− 1

2)δt and cs = c/
√

3

for the D2Q9 model. In small Mach number limit, the density of the fluid ρ is almost the

same as ρ0 calculated from the equilibrium distribution function, i.e. ρ = ρ0 = const.

Thus the incompressible Navier-Stokes equations can be further obtained

O · u = 0, (A.22)

∂u

∂t
+ u · Ou = −1

ρ
Op+ νO2u. (A.23)

It is noted that the density variation of a flow is proportional to the square of the Mach

number, i.e., the LBGK method is actually an artificially compressible method for the

incompressible Navier-Stokes equations.
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Appendix B

Derivation of the Burdine’s law

with the bundle of tubes model

Consider the drainage process, imagine now that we have a bundle of cylindrical tubes

whose radii vary within the range of (r1, r2) with a distribution function α(r). Thus

the nonwetting fluid occupies all pores larger than a size r′ at the value of capillary

pressure Pc,

r′ = 2σ/Pc, (B.1)

where r′ is any value between (r1, r2). Thus the wetting fluid volume is

Ve =

∫ r′

r1

πr2α(r)dr, (B.2)

from which the wetting fluid saturation Se is

Se =

∫ r′

r1

πr2α(r)dr/

∫ r2

r1

πr2α(r)dr. (B.3)

The change in saturation with radius is

r
dSe
dr

=
dSe
d ln r

=
r3α(r)∫ r2

r1
r2α(r)dr

= G(r), (B.4)

where G(r) is the normalized distribution of volume on a logarithmic scale of radius

and it is straightforward to write that∫ r2

r1

G(r)

r
dr = 1. (B.5)
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Hence we can infer the distribution function α(r) of throat radius from the measured

capillary pressure as a function of saturation Pc = Pc(Se). Using Eq. (B.1) and (B.4),

we can write
dPc
dSe

=
dPc
dr

dr

dSe
= − Pc

G(r)
, (B.6)

from which we find

G(r) = −Pc
dSe
dPc

= − dSe
d lnPc

, (B.7)

where G(r) is also called the apparent throat size distribution and is routinely mea-

sured [1].

Assuming that the bundle is cut into a large number of thin slices then the short tubes

in each slice are rearranged randomly and the slices are reassembled also randomly. In

any slice of area A of the model, the area occupied by the wetting fluid is nSeA in

pores of radii between r1 and r′. Because of the tubes model, an equal area is occupied

by the wetting fluid in the neighbouring slices. However, not all of these areas are

connected because of the random distribution of the pores in each slice. We use λ,

called the pore-size distribution index, to characterize how the available interconnected

total pore area is distributed, it also depends on α(r).

Considering a point on the interface between two neighbouring slices, the probability

that it lies in the wetting fluid in each slice is nSe. Similarly, the probability of a

wetting-fluid-filled pore in a slice is nSe, the area common to a single pore of cross-

sectional area πr2 in one slice and all the wetting-fluid-filled pores in a neighbouring

slice, is therefore πr2nSe. Thus the passage of wetting fluid takes place from an area

πr2 to a constricted area πr2nSe. One may visualize the constricted area as a pore of

smaller radius r′′ so that

λπr′′
2

= πr2nSe, (B.8)

or

r′′ = (nSe/λ)1/2r. (B.9)

We now use the Poiseuille’s law to describe the flow through the capillary model,

Qv = −(πr′′
4
γ/8µ)J = −πr

4n2Se
2γ

8µλ2
J, (B.10)

where J is the pressure gradient in terms of piezometric head. Assuming that λ is

independent of α(r), the specific discharge q = Q/A is given by

q = −πn
3Se

2γ

8µλ2
J

∫ r′
r1
r4α(r)dr∫ r2

r1
πr2α(r)dr

, (B.11)
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where Q =
∫ r′
r1
Qvα(r)dr and nA =

∫ r2
r1
πr2α(r)dr.

Equation (B.4) can be rewritten as

dr =

(∫ r2
r1
r2α(r)dr

)
dSe

r2α(r)
. (B.12)

Now from Eq. (B.1) and (B.12), Equation (B.11) can be written as

q = −πn
3Se

2γ

8µλ2
J

∫ r′
r1
r2
(∫ r2

r1
r2α(r)dr

)
dSe∫ r2

r1
πr2α(r)dr

= −n
3S2

eγσ
2

2µλ2
J

∫ Se

0

dS′e
P 2
c (S′e)

, (B.13)

Therefore,

q =
kwγ

µ
J, kw =

n3S2
eσ

2

2λ2

∫ Se

0

dS′e
P 2
c (S′e)

, k =
n3σ2

2λ2

∫ 1

0

dS′e
P 2
c (S′e)

, (B.14)

under the assumption that 1/λ2 is not a sensitive function of Sw. Thus

krw = (Se)
2

∫ Se
0

dS′e
P 2
c (S′e)∫ 1

0
dS′e

P 2
c (S′e)

. (B.15)

Similarly,

krnw = (1− Se)2

∫ 1
Se

dS′e
P 2
c (S′e)∫ 1

0
dS′e

P 2
c (S′e)

. (B.16)
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Appendix C

Derivation and theoretical

solutions to the governing

equation for capillary filling

Here, we shall present the derivation of the Eqn. (4.1) for the capillary filling. As shown

in Fig. C.1, in a 2D channel the volumetric flow rate can be defined by

Q =
H3

12ηB

pin − p1

x
, (C.1)

and also by

Q =
H3

12ηR

p2 − pout
L− x

. (C.2)

Equation.(C.1) and Eqn.(C.2) can be rewritten as

μB

 

μR

 

pin pout

 

p1

 

p2

L

H

Figure C.1: The schematic diagram for the displacement of a wetting fluid with a
non-wetting fluid in a capillary tube with a constant pressure differential.

pin − p1 =
12ηBQx

H3
, (C.3)

108



p2 − pout =
12ηRQ(L− x)

H3
. (C.4)

Then we take the sum, which leads to

pin − p1 + p2 − pout =
12ηBQx+ 12ηRQ(L− x))

H3
, (C.5)

Hence,

Q =
(pin − pout − p1 + p2)H3

12(ηB − ηR)x+ 12ηRL
. (C.6)

From v = dx
dt , we can write the following

dx

dt
=

(pin − pout − p1 + p2)H2

12(ηB − ηR)x+ 12ηRL
. (C.7)

The capillary pressure across the interface gives that

p1 − p2 =
2σ cos θ

H
. (C.8)

This can be used in Eqn. (C.7) and we obtain

dx

dt
=

(
pin − pout − 2σ cos θ

H

)
H2

12(ηB − ηR)x+ 12ηRL
. (C.9)

It is easy to be seen that Eqn. (C.9) is another form of Eqn. (4.1). Now we are looking

for the solution for this equation. It can be rearranged as

[12(ηB − ηR)x+ 12ηRL] dx =

(
pin − pout −

2σ cos θ

H

)
H2dt, (C.10)

The following expression is obtained by integrating both sides of the equation

6(ηB − ηR)x2 + 12ηRLx =

(
pin − pout −

2σ cos θ

H

)
H2t. (C.11)

The above equation is a quadratic formula when ηB 6= ηR. Here are the solutions to

the above equation:

• ηB = ηR,

x =
H2

12
·
pin − pout − 2σ cos θ

H

ηRL
· t, (C.12)

• ηB > ηR,

x = − ηRL

ηB − ηR
+

√
η2
RL

2

(ηB − ηR)2
+
H2

6
·
pin − pout − 2σ cos θ

H

ηB − ηR
· t, (C.13)
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• ηB < ηR,

x = − ηRL

ηB − ηR
−

√
η2
RL

2

(ηB − ηR)2
+
H2

6
·
pin − pout − 2σ cos θ

H

ηB − ηR
· t. (C.14)

By setting x = L in Eqn. (C.11), the breakthrough time is obtained as shown in

Eqn. (4.2).
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Appendix D

The effect of wettability

To investigate the effect of wettability on the fluid displacement during the imbibition

process, four preliminary tests have been carried out for the primary geometry with

contact angles of π/10, π/8, π/6 and π/4. The other parameters are chosen as the

default values. Figure D.1 shows the final fluid distributions for different contact angles.

It can be observed that as the contact angle decreases from π/4 to π/10, the amount

of water that can be imbibed into the matrix keeps increasing. Fig. D.2 plots the

time evolution of the oil recovery factor. It is seen that both the imbibition rate and

the ultimate oil recovery increase as the contact angle decreases, consistent with the

previous numerical results [50].
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(a) (b)

(c) (d)

Figure D.1: Final fluid distributions for different contact angles: (a) θ = π/4; (b) θ =
π/6; (c) θ = π/8 and (d) θ = π/10. Note that the water and the oil are shown in blue
and red, respectively.
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Figure D.2: The oil recovery factor as a function of time for the contact angles of π/4,
π/6, π/8 and π/10.
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