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ABSTRACT 

Maxwell, John A. Ph.D., University of Strathclyde, November 2016. 
Designing for “Life Between Buildings”: Modeling the Relationship Between 
Streetscape Qualities and Pedestrian Activity in Glasgow, Scotland. Thesis 
Supervisors: Sergio Porta , Ombretta Romice, and David Rowe. 
 

Rising levels of physical inactivity, among other pressing urban issues, have 

prompted urban designers to better understand the complex relationship 

between the built environment and human behavior. One of the most 

widely-cited measures of the built environment, as it relates to human 

behavior, is walkability – the measure of how conducive a place is to walking 

and other pedestrian activity. To date, walkability has largely been 

characterized by macroscale measures, such as street connectivity and 

neighborhood density. More recently, several walking audit instruments 

have also been developed to measure microscale features of pedestrian 

environments, like the number of street trees or pieces of street furniture. Yet, 

both of these measures fail to capture potentially important perceptual 

qualities of streetscapes that urban designers have long claimed as significant 

factors for more active streets. However, there is a surprising lack of 

empirical evidence in support of these claims based on validated, objective 
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measures of streetscape qualities. 

 

The purpose of this study was to address this gap in research by modeling 

the relationship between objective measures of streetscape qualities and 

pedestrian activity in Glasgow, Scotland. Overall, five measures of 

streetscape qualities – including imageability, enclosure, human scale, 

transparency, and complexity – were collected from over 690 street segments 

across the city, along with several macroscale measures of walkability and 

pedestrian counts. The results of this study indicated that the five objective 

measures of streetscape qualities added significantly (p ≤ 0.05) to the 

explanatory power of walkability models when controlling for standard 

macroscale measures of walkability. Measures of imageability and 

transparency, in particular, had significant (p ≤ 0.05) relationships to 

pedestrian activity (p = 0.02 and p = 4.60E-14 respectively). These results 

suggest that streetscape qualities should be considered as important 

variables in future, city-wide studies linking measures of the built 

environment to pedestrian activity. 

 



 

xx 

“Beyond functional purposes of permitting people to get from one 

place to another and to gain access to property, streets – most 

assuredly the best streets – can and should help to do other things: 

bring people together, help build community, cause people to act 

and interact, to achieve together what they might not alone … The 

best streets create and leave strong, lasting, positive impressions; 

they catch the eyes and the imagination. They are joyful places to 

be, and given a chance one wants to return to them. Streets are 

places for activity” (A. Jacobs, 1993, p. 312). 
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CHAPTER 1. INTRODUCTION 

Why is it easy to spend several hours wondering the streets of Paris, New York, or 

Edinburgh? What qualities make certain streets seem more enjoyable, inviting, or 

walkable than others? 

 

Streets are one of the most important, permanent, and defining elements of 

the public realm that have evolved over time to reflect changes in the way 

cities are designed and developed (Maxwell & Wolfe, 2014; Porta, Romice, 

Maxwell, Russell, & Baird, 2014). They not only provide a link between daily 

amenities but also a context for public life. Parks, plazas, and other city 

spaces also remain important contexts for activity (Whyte, 1980), or what Jan 

Gehl referred to as the “life between buildings” (1987). However, local 

pavements and streets are one of the most commonly used urban 

environments for pedestrian activity. This is especially true in Scotland, 

where a secondary analysis of Scottish Health Survey data revealed that over 

50% of respondents reported using local pavements1 or streets at least once a 

 

                                                 
1 Pavements are also referred to as sidewalks in American English. 
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week – more than any other physical activity2 environment, including 

gardens, parks, and sports centers (Mitchell, 2013, p. 132). 

 

Understanding the nature of the relationship between measures of the built 

environment and pedestrian activity has remained one of the fundamental 

challenges within the field of urban design. As Ewing et al. noted, “the role 

of the built environment in influencing travel behavior may be the most 

widely researched topic in urban planning” (Ewing, Hajrasouliha, 

Neckerman, Purciel-Hill, & Greene, 2015, p. 5). One of the most important 

and widely-cited measures of the built environment, as it relates to travel 

behavior, is walkability – the measure of how conducive a place is to walking 

and other pedestrian activity. Until recently, macroscale measures of the 

built environment related to walkability, including density, diversity, 

destination accessibility, distance to transit, and street network design, have 

formed the basis for much of the evidence describing the relationship 

between the built environment and pedestrian activity (Ewing & Cervero, 

2001, 2010). However, macroscale measures alone do not reflect pedestrians’ 

                                                 
2 The terms pedestrian activity and physical activity are often used interchangeably in the 
walkability literature. Physical activity is broadly defined by the World Health Organization 
(WHO) as “any bodily movement produced by skeletal muscles that requires energy 
expenditure” (WHO, 2014). However, the term pedestrian activity refers to a subcategory of 
physical activity defined in this study by walking, running, sitting, or standing behaviors 
along a street. 
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experience with the built environment. As Harvey and Aultman-Hall stated, 

“empirical built environment research has tended to focus on the macroscale 

layout and development of whole neighborhoods or cities. These describe 

how streetscapes relate to one another from an overhead perspective but do 

not capture the sizes and shapes of individual streetscape spaces” (2016, p. 

149). In short, macroscale measures of the built environment do not capture 

potentially important microscale factors of pedestrian streetscapes3 that may 

also influence pedestrian activity (Cain et al., 2014; Millstein et al., 2013). 

 

As a result, over the past decade and a half, several tools known as walking 

audit instruments, have also been developed to measure microscale features 

of pedestrian streetscapes (e.g., Boarnet, Day, Alfonzo, Forsyth, & Oakes, 

2006; Clifton, Livi Smith, & Rodriguez, 2007; Day, Boarnet, Alfonzo, & 

Forsyth, 2006; Hoehner, Ivy, Brennan Ramirez, Handy, & Brownson, 2007; 

Millington et al., 2009; T. J. Pikora et al., 2002; Shriver, 2003). These 

instruments typically measure individual streetscape features such as the 

number and height of buildings or pieces of street furniture. However, as has 

been argued by Ewing and Handy, “physical features individually may not 

tell us much about the experience of walking down a street. Specifically, they 

                                                 
3 The term streetscape refers to “urban roadway design and conditions as they impact street 
users and nearby residents” (Victoria Transport Policy Institute, 2016). 
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do not capture people’s overall perceptions of the street environment, 

perceptions that may have complex or subtle relationships to physical 

features” (2009, p. 66). 

 

The importance of these perceptual streetscape qualities and their 

relationship to pedestrian activity has been written about extensively in the 

urban design literature (e.g., Cullen, 1961; Gehl, 1987; A. Jacobs, 1993; A. 

Jacobs & Appleyard, 1987; J. Jacobs, 1961; Lynch, 1960; Rapoport, 1990; Sitte, 

1889; Whyte, 1980). A literature review of classic works in urban design and 

visual preference and assessment literature generated a list of over 50 

perceptual, streetscape qualities ranging from complexity to transparency 

(Ewing & Handy, 2009)4. Yet, as the authors of this review noted, “[w]ith few 

exceptions, the urban design literature has not attempted to objectively 

measure these or other perceptual qualities, and instead simply asserts their 

importance” (Ewing & Handy, 2009, p. 66). 

 

While recently some progress has been made in operationalizing objective 

measures of streetscape qualities (Clemente, Ewing, Handy, & Brownson, 

2005; Ewing, Clemente, Handy, Brownson, & Winston, 2005; Ewing & 

                                                 
4 See Table 1 from Ewing and Handy (2009, p. 66) for full list of perceptual streetscape 
qualities. 
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Handy, 2009; Ewing, Handy, Brownson, Clemente, & Winston, 2006), only a 

handful of limited field studies have attempted validate these measures in 

large-scale walkability studies (Ameli, Hamidi, Garfinkel-Castro, & Ewing, 

2015; Ewing & Clemente, 2013c; Neckerman, Purciel-Hill, Quinn, & Rundle, 

2013). The primary purpose of this study was to improve upon the 

limitations of past field studies by modeling the relationship between 

objective measures of streetscape qualities and pedestrian activity in over 690 

street segments throughout Glasgow, Scotland, while controlling for 

macroscale measures of walkability. By doing so, this study not only 

represents the largest and most rigorous of its kind ever conducted but also 

adds to the current understanding of how streetscape qualities relate to 

pedestrian activity and might be used to improve the design of streets as 

“places for activity” (A. Jacobs, 1993, p. 312). 

 

1.1 Background of the Problem 

Over the past several years, the fields of urban design and public health have 

united under a common interest in walkability. According to Lee and Talen, 

“[w]alkability is now regarded as a key factor in the promotion of health and 

environmental goals” (2014, p. 368). Walkability, as it relates to health, is now 

often linked with goals of promoting more active urban environments, while 

also being associated with efforts to curb vehicle miles traveled and reduce 
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sprawl and emissions (Doyle, Kelly-Schwartz, Schlossberg, & Stockard, 2006; 

Ewing et al., 2008; L. D. Frank et al., 2006). 

 

1.1.1 Issue of Physical Inactivity 

According to the World Health Organization (WHO), physical inactivity is 

the fourth leading risk factor for global mortality, causing 6% of all deaths (or 

approximately 3.2 million deaths) every year, and is on the rise in many 

countries, increasing the burden of non-communicable diseases (WHO, 2010, 

2014). In the UK, physical inactivity causes: 10.5% of the burden of disease 

from coronary heart disease, 18.7% of colon cancer, 17.9% of breast cancer, 

13.0% of type 2 diabetes, and 16.9% of premature all-cause mortality (I.-M. 

Lee et al., 2012). A quarter of British adults now walk for less than nine 

minutes a day, including time spent getting to the car, work, and the shops 

(Design Council, 2014). Additionally, the annual ill health cost of physical 

inactivity to the National Health Service in the UK was estimated at £0.9 

billion (Scarborough et al., 2011), with more recent data showing that these 

costs have been increasing (British Heart Foundation National Centre, 2013). 

 

Decreasing levels of physical activity often correspond with higher or 

increasing gross national product, partly due to inaction during leisure time 

and sedentary behavior. However, increases in the use of passive modes of 
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transportation (e.g., motorized transport) similarly contribute to inactivity, 

along with other factors linked to urbanization, including: crime, traffic, air 

pollution, and lack of parks, pavements, and recreation facilities (WHO, 

2014). While there are many potential correlates of pedestrian activity, 

including demographic, biological, social and cultural variables (Bauman et 

al., 2012), those related to measures of the built environment are believed to 

be among some of the most important. 

 

1.1.2 Challenge of Designing “Places Where People Want to Be” 

In Scotland, it has been recognized that “[t]he need to cater for motor 

vehicles is well understood by designers, but the passage of people on foot 

and cycle has often been neglected” (Scottish Government, 2010, p. 8). As 

noted by the Scottish Council of Economic Advisors: 

“Too much development in Scotland is a missed opportunity and of 

mediocre or indifferent quality. There are a few examples of new or 

regenerated places which are well thought out…The ultimate test 

of an effective planning system is the maintenance and creation of 

places where people want to be” (Scottish Council of Economic 

Advisers, 2008, p. 44). 
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The need to plan for and design places – especially streets – where people 

want to be is not limited to Scotland and has been stressed as a key priority 

to urban development in several recent publications (e.g., Chartered 

Institution of Highways and Transportation, 2010; Department for Transport, 

2007; Scottish Government, 2010; United Nations Human Settlements 

Programme, 2013). However, understanding the relationship between 

measures of the built environment and pedestrian activity has remained one 

of the fundamental challenges within the field of urban design. 

 

1.2 Statement of the Problem 

Until recently, the walkability of built environments has often been 

characterized according to macroscale measures of density, diversity, 

destination accessibility, distance to transit, demographics, and street 

network design – collectively referred to as the “D variables” (Cervero & 

Kockelman, 1997; Ewing & Cervero, 2001). Taken on their own or in 

combination, these variables can often be easily and objectively measured 

using reliable secondary data sources and geographic information systems 

(GIS) analysis tools (Ross C. Brownson, Hoehner, Day, Forsyth, & Sallis, 

2009). However, as Millstein et al. have claimed, “[m]acro-level factors do not 

reflect the entirety of people’s experiences with their environment” (2013, p. 

1). That is, they cannot capture pedestrian perspectives of urban streetscapes, 
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and as Cain et al. have argued, “studying microscale features may also be 

useful for understanding physical activity” (2014, p. 83). 

 

On a pedestrian scale, more complex and labor-intensive tools have emerged 

for measuring streetscape features, often referred to as walking audit 

instruments. These tools typically require in-person audits, measuring 

individual streetscape features, such as building heights, setbacks, and block 

lengths. More recently, researchers have also started exploring ways to 

virtually audit pedestrian street environments using tools such as Google 

Street View (Google Inc., 2016) and GIS (Esri Inc., 2015) (e.g., Badland, Opit, 

Witten, Kearns, & Mavoa, 2010; Clarke, Ailshire, Melendez, Bader, & 

Morenoff, 2010; Odgers, Caspi, Bates, Sampson, & Moffitt, 2012; Rundle, 

Bader, Richards, Neckerman, & Teitler, 2011; Wilson et al., 2012) as a way to 

reduce the costs and time associated with in-person walking audits. 

However, individual features may not fully capture pedestrians’ overall 

perceptions of streetscape qualities – qualities that are presumed to have an 

important relationship with pedestrian activity, despite a lack of empirical 

evidence based on validated, objective measures of streetscape qualities 

(Ewing et al., 2006). 
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1.3 Studies Addressing the Problem 

Recently, several studies have attempted to address this gap in the 

understanding of how streetscape qualities relate to pedestrian activity. The 

first of these studies started by establishing operational definitions and 

measurement protocols for streetscape qualities related to walkability 

(Clemente et al., 2005; Ewing et al., 2005; Ewing & Handy, 2009; Ewing et al., 

2006). In these studies, over 50 perceptual, streetscape qualities5 and 130 

related streetscape features were identified based on past reviews of both 

classic works in urban design and visual preference and assessment 

literature. Later, only five of these qualities – imageability, enclosure, human 

scale, transparency, and complexity – were successfully operationalized as 

objective measures related to walkability by a panel of experts from the fields 

of urban design and public health. Each streetscape quality was linked to a 

set of individual streetscape features using best-fit models and 

operationalized according to the following criteria: (1) if the quality had no 

correlation to overall walkability (i.e., the null hypothesis was true), the 

probability of a type 1 error (α) was less than or equal to 5 in 100 (i.e., p ≤ 

0.05); (2) the degree of agreement among independent, expert panel raters 

                                                 
5 Perceptual, streetscape qualities were referred to as “urban design qualities” in previous 
studies but the terms are intended to be synonymous. 
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(i.e., inter-rater reliability) in measuring the quality was at least “moderate” 

according to the relative strengths of agreement suggested by Landis and 

Koch (1977)6 (intra-class correlation coefficients, ICC ≥ 0.4); (3) measurable 

streetscape features accounted for 30 percent or more of the total variance in 

ratings of the quality; (4) measurable streetscape features explained 60 

percent or more of the sample-specific variance in ratings of the quality; and 

(5) all streetscape features related to ratings of the quality were measured 

with at least a “moderate” degree of inter-rater reliability (ICC ≥ 0.4). While 

each of the five streetscape qualities met the strict operationalization criteria 

listed above, only limited field studies were conducted at the time to test for 

further validation of the measures. 

 

Subsequently, only two preliminary field studies have ever been conducted 

based on the objective definitions of streetscape qualities and measurement 

protocols operationalized in these previous studies. The first of these studies 

was conducted in New York City (Ewing & Clemente, 2013c; Neckerman et 

al., 2013). This study used pedestrian counts from four separate walk-

throughs to generate average pedestrian counts on 588 randomly selected 

                                                 
6 While Landis and Koch (1977) benchmarks were used, it would be more appropriate to use 
cutoffs suggested by Cicchetti (1994), which still indicate “fair” agreement at ICC values > 
0.4. 
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street segments. These counts were collected in person and used as measures 

of pedestrian activity, the dependent variable in the study. Measures of 

imageability, enclosure, human scale, transparency, and complexity were 

also collected, and macroscale measures of several D variables were 

generated at each sample street segment and used as the independent and 

control variables respectively. These variables were then used to model the 

relationship between streetscape qualities and pedestrian activity. Results 

indicated that the measures of streetscape qualities, when taken collectively, 

significantly (p ≤ 0.05) improved the explanatory power of the overall 

walkability models. Additionally, one of the five streetscape qualities – 

transparency – was found to be directly and significantly related (p ≤ 0.05) to 

pedestrian activity. This preliminary finding provided initial field validation 

of the previously-developed protocol for measuring streetscape qualities. 

 

Following this study, Ameli et al. (2015) conducted a similar, but albeit 

smaller-scale, study in the downtown “Free Fare Zone” area of Salt Lake City 

(SLC). Using a similar protocol on 179 street segments, Ameli et al. also 

found that their walkability models were significantly (p ≤ 0.05) improved 

with the addition of streetscape qualities, when controlling for macroscale D 

variables. Transparency was similarly shown to be directly and significantly 

(p ≤ 0.05) related to pedestrian activity. However, the results of this study 
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also indicated that a second streetscape quality – imageability – had a 

significant relationship (p ≤ 0.05) to pedestrian activity, showing for the first 

time that perhaps more than one individual streetscape quality could be 

directly and significantly related to pedestrian activity. 

 

1.4 Deficiencies in Past Studies 

The studies mentioned above represent important gains in improving the 

methods for objectively measuring streetscape qualities and also provide 

valuable preliminary evidence in support of past claims regarding the 

relationship between streetscape qualities and pedestrian activity. However, 

these studies were not without limitations. 

 

Firstly, New York City is one of America’s most unique, walkable7, and 

compact8 cities. As such, this limited the generalizability of the results. As 

Ewing and Clemente suggested, “[o]ur first recommendation would be to 

repeat this validation study in more typical cities” (Ewing & Clemente, 

                                                 
7 The New York City metropolitan area has the highest walk mode share of any large 
metropolitan area, 21.4 %, according to the US Department of Transportation Federal 
Highway Administration’s National Household Travel Survey (U.S. Department of 
Transportation Federal Highway Administration, n.d.). Four of the five counties in New 
York City metropolitan area (New York County, Kings County, Bronx County, and Queens 
County) rank as the four most compact counties in the USA according to their sprawl index 
values (Ewing, Schieber, & Zegeer, 2003). 
8 Four of the five counties in New York City metropolitan area (New York County, Kings 
County, Bronx County, and Queens County) rank as the four most compact counties in the 
USA according to their sprawl index values (Ewing et al., 2003). 
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2013c, p. 98). The study by Ameli et al. attempted to overcome this limitation 

by centering their study in SLC, a city “more typical of the auto-dependent 

United States as compared to NYC” (p. 395). However, while the study by 

Ameli et al. may have represented a more “typical” case, the study was also 

limited by its relatively small sample size (n = 179 street segments) and 

narrowly-focused study area. Ameli et al. noted: 

“This study is not without limitations. The sample size, 179 block 

face segments, is small, relatively speaking. Additionally, the 

homogeneous environmental pattern of the study area reduces data 

variation and contrast. For example, block length and intersection 

density are exceptionally unified within downtown SLC” (2015, p. 

406). 

Ameli et al. suggested that “further validation of walkability should include 

larger sample sizes in study areas with varying environmental patterns” 

(Ameli et al., p. 406). 

 

Secondly, the reliability of the average pedestrian counts in the New York 

City study was limited by the relatively small number of counts and lack of 

standardization. Ewing and Clemente explained: 
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“The main threat to the reliability of our results is the limited 

counts done on each block face. The day and time of the counts 

were variable. Only four counts were done on each [street 

segment], as field observers walked up and down the block. Our 

second research recommendation would be to conduct longer 

standardized counts on each street segment in any future study” 

(2013b, p. 98). 

Ameli et al. overcame this limitation by standardizing longer pedestrian 

counts to get a more representative sampling of typical, weekday activity on 

the street. To standardize pedestrian counts, the number of people 

encountered at each sample street segment was counted over a 30-minute 

period during the months of September and October. Counts were made by a 

team of graduate research students during peak weekday hours of 

pedestrian activity (between 11:30–13:30 hours and 16:30–18:30 hours) and 

only on days without inclement weather (e.g., high winds or rain). While this 

standardization may have worked well for this particular study with a total 

sample size of n = 179 street segments, its application in larger, city-wide 

studies or those without the support of a multi-person research team is 

simply not feasible. 
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Lastly, while both of these studies used in-person audits of streetscape 

qualities, the value of the protocols developed by Ewing et al. (2005) are 

likely to be extended by implementation of improved virtual tools for data 

collection and analysis. Some work has already been done to improve 

methods for assessing features of the Ewing et al. (2005) protocol using 

virtual auditing techniques (Bader et al., 2015). However, these methods rely 

strictly on the use of Google Street View, which is limited by the ability to 

capture all relevant streetscape features, temporal variability in the images, 

and data availability across the entire study area. Thus, there is still scope to 

extend the implementation of the Ewing et al. (2005) protocols by exploring 

new methods for virtual data collection and analysis. 

 

1.5 Scope of this Study 

The primary purpose of this study was to improve the understanding of how 

streetscape qualities relate to pedestrian activity by modeling this 

relationship using data collected from street segments throughout Glasgow, 

Scotland. This study addresses previous concerns surrounding the 

generalizability of results and limited sample sizes by conducting the study 

in a typical, post-industrial European city and including a dataset of 693 

sample street segments. Unlike New York City and downtown Salt Lake City 

study areas used in previous studies, Glasgow represents a wide variety of 
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urban forms and design qualities, linked to its historical development over 

several centuries (Frey, 2004). Samples were selected from across the entire 

city, covering each of the small-area statistical geographies, known as 

datazones, within the city. This study represents the largest of its kind ever 

conducted and the first of its kind outside of the United States. 

 

Additionally, this study improved upon previous methodological limitations 

regarding standardization of pedestrian counts by building upon the data 

collection method suggested by Ameli et al. (2015). While 30-minute counts 

at each sample location were not feasible given the geographic scale of the 

study area (Glasgow covers an area of approximately 175 square kilometers) 

and single observer, four pedestrian counts were conducted by the author in 

the summer months (May - August) at each sample street segment during 

the daylight hours (9:30AM until 4:00PM) of non-inclement weather 

weekdays. Counts were further validated and tested for internal consistency 

against counts made using separate street-level imagery supplied by Google 

Street View (Google Inc., 2016) and Bing Streetside (Microsoft, 2016). 

 

Lastly, this study also represented the first time, to the knowledge of the 

author, that active lifestyle cameras (e.g., GoPro cameras) have been 

validated and used as an alternative to typical in-person audits for 
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measuring streetscape qualities as part of a city-wide walkability study. 

Thus, this study extended the implementation of the Ewing et al. (2005) 

protocols by exploring new methods for virtual data collection and analysis 

in walkability studies. 

 

1.6 Summary of Chapters 

This thesis is divided into several large chapters. Chapter 2 – Theoretical 

Perspective and Literature Review presents the theoretical perspective adopted 

for this study – probabilism – in light of other key theoretical perspectives, 

including determinism and possibilism, used throughout history to describe 

the nature of the relationship between the built environment and human 

behavior. A brief review of the walkability literature is then provided in 

order to highlight the important gap in research (mentioned above in Section 

1.4) regarding the study of perceptual, streetscape qualities and establish the 

hypotheses and expected findings of this study. 

 

Chapter 3 – Data and Methodology details the data and methodology used in 

this study to address the gap in research and test the hypotheses established 

in Chapter 2. This chapter includes a description of the case study location, 

units of observation, primary and secondary data sources, as well as the 

methodology (with reference to the Video Recording Protocol and Field Manual 
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– see Appendix C and Appendix D) used for collecting the data required for 

this study. The final section of this chapter also briefly details additional 

ethical considerations made during this study. 

 

Chapter 4 – Results and Discussion presents the results of this study, along 

with a discussion of the findings and relevant implications to policymakers, 

urban designers, and researchers. This chapter includes a detailed 

description of the statistical distribution of the dependent variable (average 

pedestrian counts) and how this distribution was used to select and generate 

the generalized linear regression model for statistically relating the control 

variables (D variables) and independent variables (streetscape qualities) to 

the average pedestrian counts. Procedures for statistical validation of the 

models and relevant limitations of the results are also discussed. 

 

Lastly, Chapter 5 – Conclusions presents a summary of the conclusions of this 

thesis. This chapter includes a summary of key findings, as well as notes on 

the overall limitations of this study and the potential of future studies. 
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CHAPTER 2. THEORETICAL PERSPECTIVE AND LITERATURE REVIEW 

2.1 Introduction 

It is hard to deny that the way in which people live their lives is linked in 

some way to the design of the built environments in which they live. As 

Winston Churchill once said in an address to the Architectural Association in 

1924: 

“There is no doubt whatever [sic] about the influence of 

architecture and structure upon human character and action. We 

make our buildings and afterwards they make us. They regulate the 

course of our lives” (Brand, 1994, p. 3). 

Yet, there is a long-running debate within the field of urban design about the 

nature of the relationship between the built environment and human 

behavior. 

 

One of the primary goals of this chapter was to establish the substantive, 

positivist framework used to examine the relationship between perceptual, 

streetscape qualities and pedestrian activity in this study. This chapter starts 

by briefly highlighting the primary theoretical positions, including  
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determinism, possibilism, and probabilism, commonly used to describe the 

nature of the relationship between the built environment and human 

behavior. The theoretical perspective adopted in this study – probabilism – is 

then further explained as relates to this study in order to provide a 

foundation for the review of relevant literature. 

 

The second section in this chapter provides a brief review of the walkability 

literature, focusing on the progression of studies – from macroscale to 

microscale – relating measures of the built environment to measures of travel 

behavior and pedestrian activity. This section highlights the important gap in 

the literature regarding the measurement of perceptual streetscape qualities 

and their relationship to measures of pedestrian activity. The chapter ends by 

proposing primary hypotheses and expected findings of this study. 

 

2.2 Theoretical Positions Regarding the Relationship Between the Built 

Environment and Human Behavior 

In Creating Architectural Theory: The Role of the Behavioral Sciences in 

Environmental Design, Jon Lang identified four basic theoretical positions 

regarding the relationship between the built environment and human 

behavior, which are summarized in Table 1 (1987, p. 100). Originally drawn 

from the work of J. Douglas Porteous (1977, pp. 135-138), these positions 
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provided a useful set of concepts to describe the environment-behavior 

relationship and ultimately made it possible to establish the theoretical 

perspective used in this study. 

 

Table 1 – Key theoretical positions regarding the relationship between the built environment 
and human behavior 

Free-will approach Deterministic approach 
The built environment has no impact on 
human behavior 
 

The built environment determines human 
behavior 

Possibilistic approach Probabilistic approach 
The built environment is strictly the 
“afforder” of human behavior (i.e., the 
environment contains a set of opportunities 
for behavior, which may or may not be 
acted upon) 

The built environment at least partially 
determines human behavior; e.g., “Given 
an individual A with attributes a, b, c set in 
an environment E with characteristics d, e, f, 
and with the motivation for action M, it is 
probably that A will perform behavior B” 
(Porteous, 1977, p. 138) 

 

The overall goal in reviewing these models was not to justify a normative 

position on the relationship between the built environment and human 

behavior or to rationalize the author’s particular preference. While it was 

necessary to eventually take a stance in support of one theoretical position – 

probabilism – it was recognized from the onset of this study that the nature 

of this relationship remains a subject of debate, and the results and 

conclusions from this study should be left open for further refinement. The 

following subsections detail the key theoretical positions, along with a 

description of how probabilism was used in this study to develop the 
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theoretical framework for modeling the relationship between streetscape 

qualities and pedestrian activity. 

 

2.2.1 Determinism 

One of the fundamental theories linking the built environment and human 

behavior is the concept of determinism. Determinism, as it pertains to the 

built environment and human behavior, is the belief that the built 

environment, comprised of both artificial and natural elements, leads to 

changes in human behavior. This approach implies a simple cause-and-effect 

relationship between the built environment and human behavior, in which 

“the [built] environment is the independent, and human behavior the 

dependent variable” (Broady, 1972, p. 174). 

 

Belief in this one-way process has been recognized as an important premise 

of architectural modernism and other design initiatives throughout history 

aimed at promoting social progress or directing human behavior (Lipman, 

1974). Early expressions of the concept were manifest in the large-scale 

public works of Georges Eugène Haussmann and the utopian designs of 

Ebenezer Howard’s Garden City (see Figure 1)9. As noted by Lang, “[t]he 

                                                 
9 Belief in architectural determinism was further reinforced during the earlier twentieth 
century by bold social housing plans, like the Bruce Plan for the City of Glasgow (Bruce, 



 

24 

whole social and philanthropic movement of the latter part of the nineteenth 

century, which culminated in the garden cities movement led by Ebenezer 

Howard (1902) and the settlement-house schemes, was imbued with the 

spirit of architectural deterministic beliefs” (1987, p. 101). 

 

 

Figure 1 – The Garden City concept from Ebenezer Howard's Garden cities of tomorrow 
(Howard, 1902) 

Despite its popularity, critics have argued that the simple, one-directional 

approach of determinism fails to recognize the importance of additional 

social factors in understanding the complex relationship between the design 

of the built environment and human behavior. Maurice Broady, an early 

                                                 
1945), and other notable concepts including Le Corbusier’s Ville Contemporaine 
(Contemporary City) (Le Corbusier, 1929) and Ville Radieuse (Radiant City) (Le Corbusier, 
1933), and Clearance Perry’s Neighborhood Unit theory (Perry, 1929). 
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critic, emphasized two important limitations: (1) “[d]esigners often fail to 

recognize how much difference it makes to their view of the world that they 

respond to buildings and townscapes with eyes more discriminating and 

intellects more sensitive to design than those of the average layman” (1972, p. 

181); and (2) “human beings are a good deal more autonomous and 

adaptable than a deterministic theory would lead one to suppose” (1972, p. 

182). Ittelson et al. added that the unidirectional causality of strict 

deterministic theory ignored the “feedback role of the participant” (1974, p. 

346) – i.e., the degree to which human perceptions of and react to a situation 

may modify the environmental stimuli to which he or she is responding. 

 

2.2.2 Possibilism 

One alternative to architectural determinism – possibilism – is a theory that 

treats the built environment as simply “the medium by which man is 

presented with opportunities,” (Porteous, 1977, p. 137). In this view, the 

environment provides what James Gibson called “affordances”10 (Gibson, 

1966) for human behavior that limit effective behavior choices and little 

more. According to this theoretical approach, urban designers are thus 

                                                 
10 “Affordances,” as Lang described, “are those of its properties that enable it to be used in a 
particular way by a species. The properties of concern to Gibson are the physical properties 
of the configuration of an object or setting that allow it to be used for some overt activity” 
(1987, p. 81). 
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responsible for creating what Herbert Gans called “potential 

environments,”11 and what is perceived subjectively and later affects human 

behavior becomes the “effective environment” (Gans, 1968). 

 

However, the affordances of potential environments are not perceived and 

used by people in the same way. As a product of the built environment and 

the behaviors of people who use them, the effective environment varies for 

different people according to their “social background” and “way of life” 

(Broady, 1972, p. 181). 

 

A purely possibilistic position suggests that individual differences in 

behavior occur randomly, and that people are completely free to behave as 

they choose. This stance thus limits the role of design to enabling some 

human behaviors, while excluding others. However, critics of possibilism 

have challenged that people are not always free to act on their own choices. 

As suggested by Lang, behavior does not occur haphazardly – “[i]t has a 

certain predictability” (1987, p. 106). 

 

                                                 
11 As Maurice Broady explained, “[t]he physical form is only a potential environment since it 
simply provides possibilities or clues for social behavior. The effective – or total – 
environment is the product of those physical patterns plus the behavior of the people who 
use them” (Broady, 1972, p. 181). 
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2.2.3 Probabilism 

As an alternative to determinism and possibilism, probabilism asserts that an 

individual’s decision regarding behavior cannot be predicted, but that the 

“range of his [or her] possible decisions and the probability of his [or her] 

making any one of them can be ascertained” (Porteous, 1977, p. 138). The 

probabilistic position is one that recognizes the uncertainty of the complex 

relationship between the built environment and human behavior, but asserts 

that human behavior is not entirely random and can be better understood 

through careful study of environment-behavior patterns. As Porteous 

explained: 

“Probabilism, a more moderate viewpoint which invokes common 

sense, asserts that lawful relationships exist between environment 

and behavior. Terrain, climate, and physiology do not dictate. 

Everywhere there exists a large number of latent opportunities and 

alternative possibilities for action or inaction. By the detailed study 

of a host of individual examples some enduring relationships 

between behavior, organism, and environment may emerge 

(Prince, 1971)“ (Porteous, 1977, p. 138). 

Probabilism has become an increasingly popular alternative to determinism 

and possibilism as a theoretical framework for studying the relationship 
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between the built environment and human behavior. As noted by Lang, 

“[t]he probabilistic position underlies most of the recent research on the 

relationship between behavior and environmental design” (1987, p. 100) and 

was the theoretical position adopted in this study. 

 

2.2.4 Summary of the Theoretical Perspective Adopted for This Study 

It has been argued that all design is intended to be persuasive or influence 

human behavior (Buchanan, 1985; Redström, 2006), and that the very concept 

that design matters is “a fundamental tenant for most design activity” 

(Marmot, 2002, p. 252). However, as noted in Chapter 1 and in Section 2.3 

below, empirical tests of the links between measurable streetscape design 

qualities and pedestrian activity remain limited. 

 

This study sought to model the relationship between streetscape qualities 

related to walkability and pedestrian activity in Glasgow, Scotland. In doing 

so, the theoretical perspective adopted in this study was decidedly positivist 

and probabilistic in its outlook, implementing a theoretical-deductive mode 

of inquiry12. As emphasized by Lang, the whole role of positive theory in the 

                                                 
12 A theoretical-deductive mode of inquiry is one in which, as Anne Vernez Moudon 
explained, “a theory is developed on the basis of past knowledge, which is then tested via 
research” (1992, p. 336). 
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field of urban design is to “enhance the ability of designers to predict what 

the effective environment of people will be when the built environment is 

configured in a particular pattern” (Lang, 1987, p. 75). Dan Lockton added 

that by identifying these patterns and continuing to improve environment-

behavior models, “the closer [it] comes to probabilism” (2012, p. 8). 

 

As applied to this this study, probabilistic theory holds that one would 

expect objective measures of streetscape qualities related to walkability to 

help explain pedestrian activity, while controlling for important macroscale 

measures of walkability. In order to determine key variables and a protocol 

for modeling this relationship, and establish the hypotheses and expected 

findings of this study, a review of relevant literature was conducted and is 

detailed below in Section 2.3. 

 

2.3 Review of Walkability Literature 

As emphasized in Chapter 1, urban design researchers have become 

increasingly interested in measuring the built environment as a potentially 

important factor in accounting for pedestrian activity and other human 

behaviors. One of the most important and widely-cited measures of the built 

environment as it relates to pedestrian activity is walkability – the measure of 

how conducive a place is to walking and other pedestrian activity. As noted 



 

30 

by Lee and Talen, “tools ranging from quantitative GIS-based assessment to 

subjective measures of the pedestrian experience are now enlisted in the 

effort to properly assess the environmental correlates of walking. Often there 

is a trade-off to be made between efficiency and accuracy, and researchers 

struggle to find the proper balance” (2014, pp. 368-369). In a struggle to find 

a proper balance in this study, this review focuses on two primary methods 

used to collect walkability measures of the built environment: (1) macroscale, 

GIS-based measures and (2) microscale, streetscape observations (or audits). 

Notably missing from this literature review (and this study) are perceived 

(self-reported) environmental measures, which have been commonly13 used 

to collect data on how individuals perceive their built, social, and political 

environment in relation to pedestrian activity by way of interviews, self-

administered surveys, or questionnaires. As noted in Section 5.3, a logical 

extension of this study would be to include interviews or questionnaires to 

better understand the individual motives and interests of local pedestrians as 

they relate to objective measures of pedestrian activity, microscale measures 

of streetscape qualities, and macroscale measures of walkability. 

                                                 
13 In a review of the “state of the science” on measuring the built environment for physical 
activity, Brownson et al. noted that perceived (self-reported) environmental measures had 
been used in over 100 published studies and shown positive associations between pedestrian 
activity and perceived measures of recreation facilities, sidewalks, shops, and services (2009, 
p. S100). However, they also noted several trade-offs associated with using these measures, 
namely the difficulties in administration and declining response rates for all types of surveys 
(interview or questionnaires) (2009, p. S106). 
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As noted by Cain et al. (2014), measures of the built environment related to 

walkability fall into two broad categories – “macroscale” variables and 

“microscale” variables. The following review of the walkability literature 

briefly explains the progression of studies used to assess measures of the 

built environment as they relate to measures of travel behavior and 

pedestrian activity. This review of the walkability studies starts with a brief 

review of macroscale studies addressing the relationship between the built 

environment and pedestrian activity. It then explains in more detail the 

recent development of several walking audit instruments used to measure 

microscale factors of the built environment related to walkability. The gap in 

the knowledge regarding the specific measurement of perceptual streetscape 

qualities and their relationship to pedestrian activity is then highlighted and 

used to establish key hypotheses and expected findings of this study. 

 

2.3.1 Macroscale Walkability Studies 

Until recently, macroscale measures of the built environment related to 

walkability have formed the basis for much of the evidence describing the 

relationship between the built environment and pedestrian activity. As 

Millstein et al. noted, “[l]arger characteristics, often called macro-level 

attributes of environments (e.g., density, street connectivity, land-use mix) 
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are well-documented correlates of walking and physical activity (Brennan 

Ramirez et al., 2006; Ross C. Brownson et al., 2009; Brian E. Saelens & Handy, 

2008). Most of the built environment and physical activity evidence is based 

on macro-level variables” (2013, p. 1). Macroscale measures of walkability 

often include measures of neighborhood density, diversity, destination 

accessibility, distance to transit, and street network design, commonly 

referred to in the literature as “D variables14.” Importantly, macroscale 

measures of the D variables (see Table 2) can be easily and objectively 

measured using reliable secondary data sources and geographic information 

systems (GIS) analysis tools (Ross C. Brownson et al., 2009). And, as noted by 

Ameli et al. (2015) and Ewing et al. (2015), macroscale measures have been 

used to characterize the walkability of built environments in over 200 

studies. 

 

However, macroscale measures alone may not fully explain a pedestrian’s 

experience in a walking environment. That is, as Millstein et al. explained, 

there may be other, more microscale factors that “may also influence physical 

activity (Boarnet, Forsyth, Day, & Oakes, 2011; Ross C. Brownson et al., 2009; 

                                                 
14 D variables was a term originally coined by Cervero and Kockelman (1997) to refer to 
measures of density, diversity, and street network design, and was later expanded to include 
additional measures such as destination accessibility and distance to transit (Ewing & 
Cervero, 2001, 2010). 
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Moudon & Lee, 2003) but have not been studied as extensively as macro-

scale factors” (2013, p. 1). 

 

Table 2 – Description of macroscale “D variables” 

D Variable Brief Description Examples of 
Measurement 

Density Selected variable of interest (e.g., 
population) per unit of area (e.g., quarter-
mile buffer) 
 

Population density 
Job density 
Floor-area ratio 

Diversity Number of land uses (e.g., residential, 
commercial, etc.) per unit of area (e.g., 
quarter-mile buffer) 
 

Land-use entropy 
Jobs-housing balance 

Street Network 
Design 

Street network characteristics in selected 
area (e.g., quarter-mile buffer) 

Intersection (or street) 
density 
Percentage of four-way 
intersections 
 

Destination 
accessibility 

Ease of access to everyday 
amenities/attractions (e.g., shops) 
 

Jobs, shops, etc. within 
quarter-mile 

Distance to 
transit 

Distance to transit stops (including bus, 
train, subway, etc.) 

Average shortest distance 
to nearest bus, subway, 
etc. stop 

 

2.3.2 Microscale Walkability Studies 

Recently, several tools (or protocols), commonly known as walking audit 

instruments, have been developed for measuring the relationship between 

microscale factors of pedestrian environments and activity (see Table 3). 

Unlike macroscale measures related to walkability, walking audit 

instruments typically require direct, in-person observations of individual 
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streetscape features, such as pavement coverage, building heights and 

setbacks, street widths, and block lengths. More recently, some researchers 



 

 

Table 3 – Brief summaries of walking audit instruments/tools/studies15 measuring microscale, streetscape factors of the built environment related to walkability 

Instrument/Tool/Study Brief Description Reference(s) 
Irvine-Minnesota Inventory 
(IMI) 

Country of Origin: United States of America (USA) 
 
Factors included: 162 features/items, organized into four domains: accessibility, pleasurability, 
perceived safety from traffic, and perceived safety from crime 
 
Notes: The IMI was developed in 2003-2004. The inventory of 162 built environment features linked to 
active living (especially walking) was built by: (1) reviewing multidisciplinary literature on active 
living; (2) conducting three focus group interviews with lower-income persons, teens, and nonwhite 
college students; (3) field surveys by the authors of a variety (27) settings throughout the United 
States; and (4) a panel discussion with five experts from the fields of urban planning, health, GIS, and 
environmental psychology. All items included in the tool can be measured through in-person 
observation, noting the presence or absence of each streetscape feature. After being developed, the IMI 
was initially tested for inter-rater reliability by Boarnet et al. (2006), which indicated that a majority 
(76.8% in tests conducted by University of California-Irvine students and 99.2% in tests conducted by 
University of Minnesota students) of the features included in the inventory had >80% agreement 
between multiple raters. Tests were also conducted in the Twin Cities Walking Study (US) using the 
IMI to assess the predictive value of the IMI (Boarnet, Forsyth, et al., 2011). Results from this test 
indicated that only some (16) of the “themes” (e.g., street crossings, vertical mixed use buildings, 
distinctive retail, neighborhood identification, etc.) included in the inventory were associated with 
increased walking. 

(Boarnet et al., 2006; 
Boarnet, Forsyth, et al., 
2011; Day et al., 2006) 

  

                                                 
15 The examples of walking audit instrument summarized and cited in Table 3 were drawn from past reviews by Ewing et al. (2015), Ross C. Brownson et al. (2009), 
and Moudon and Lee (2003). This table is not intended to be a comprehensive list of walking audit instruments, but does highlight key instruments/tools/studies 
used to measure microscale streetscape factors. 35 



 

 

Instrument/Tool Brief Description Reference(s) 
Analytic Audit Tool Country of Origin: USA 

 
Factors included: 144 features/items, including measures of recreational facilities, physical disorder, 
signage, and social environment 
 
Notes: The analytic audit tool was developed in 2001-2002 based on a compilation of 36 audit tools 
(many of which were selected from a review conducted by Moudon and Lee, 2003) identified from 
peer-reviewed literature, the Internet, experts from the fields of transportation and health, and 
advocacy groups. The tool was used to conduct an audit of 147 street segments in St. Louis, MO (US), 
resulting in ≥ 75% agreement between two raters for 100% of reactional facilities variables (e.g., parks 
playgrounds, etc.) and 75% of land-use environment variables (e.g., restaurants, places of worship, 
etc.). 

(Ross C Brownson et 
al., 2004) 

Maryland Inventory of Urban 
Design Qualities (MI-UDQ) 
protocol 

Country of Origin: USA 
 
Factors included: 27 features/items, organized according to best-fit models of five urban design 
qualities related to walkability, including imageability, enclosure, human scale, transparency, and 
complexity 
 
Notes: The MI-UDQ was developed in 2005 as the first and only (to the knowledge of the author) 
instrument to successfully operationalize several objective measures of urban design qualities 
(streetscape qualities) related to the walkability of streets. Further details on the development and 
preliminary applications of this protocol are provided in Sections 1.3, 1.4, and 2.3.2.1, as it was 
adapted, in collaboration with Prof. Reid Ewing, for use in this study – see Appendix D. 

(Ameli et al., 2015; 
Clemente et al., 2005; 
Ewing & Clemente, 
2013b; Ewing et al., 
2005; Ewing et al., 2015; 
Ewing & Handy, 2009; 
Ewing et al., 2006) 
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Instrument/Tool Brief Description Reference(s) 
Pedestrian Environment Data 
Scan (PEDS) tool 

Country of Origin: USA 
 
Factors included: 47 features/items, organized into groupings of environmental, pedestrian facility, 
road and walking/cycling attributes 
 
Notes: PEDS tool was developed in 2004 based on the SPACES tool developed by T. J. Pikora et al. 
(2006) and designed to capture a range of built and natural environment elements using a handheld, 
personal digital assistant (PDA) device. Reliability tests were conducted during a study in College 
Park, MD (US) involving 12 trained undergraduate students and 192 street segments. Overall, most of 
the items measured (33 out of 47) had Kappa scores ≥ 0.4 

(Clifton et al., 2007) 

Active Neighborhood 
Checklist 

Country of Origin: USA 
 
Factors included: 57 features/items, organized into sections including land use characteristics, 
sidewalks, shoulders and bike lanes, street characteristics, and quality of the environment for a 
pedestrian 
 
Notes: The Active Neighborhood Checklist was developed as a refined version of the Analytic Audit 
Tool developed by Ross C Brownson et al. (2004). A diverse (with regards to socioeconomic levels, 
urbanization, and land use) sample of 64 street segments were audited by a group of 15 public health 
researchers and seven community stakeholders in April 2005 following a two-hour training session. 
Interrater reliability was tested using observed agreement and Cohen K statistics for the items 
included in each section of the checklist. The mean observed agreement for 57 evaluated items was 
0.87 (range, 0.61–1.00), and the mean K statistic was 0.68 (range, 0.21–1.00). 

(Hoehner et al., 2007) 
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Instrument/Tool Brief Description Reference(s) 
Physical Activity Resource 
Assessment (PARA) 
instrument 

Country of Origin: USA 
 
Factors included: 97 “physical activity resources”, including parks, churches, schools, sports facilities, 
trails, etc. 
 
Notes: The single-page PARA instrument was developed over a period of nine months to assess 
publicly available physical activity resources in 13 lower-income, high ethnic minority neighborhoods 
and 4 higher-income, low ethnic minority neighborhoods in Kansas City, Kansas and Missouri with 
similar population densities and connectivity. Three trained field auditors (doctoral candidates in 
psychology) rated 97physical activity resources according to location, types, cost, features, amenities, 
etc. Results of the audits within each 800-meter neighborhood radius indicated that on average higher-
income neighborhoods had more physical activity amenities, and qualities ranged from mediocre to 
good, with most resources accessible at no cost (82%). Reliability tests showed “good” reliability (r > 
0.77). 

(R. E. Lee, Booth, 
Reese-Smith, Regan, & 
Howard, 2005) 

Scottish Walkability 
Assessment Tool (SWAT) 

Country of Origin: Scotland 
 
Factors included: 48 features/items, organized into four categories: (1) functional, objective measures 
of streetscape features, and subjective evaluations of (2) safety, (3) aesthetics, and (4) travel destination 
(the relationship between residences and neighborhood services 
 
Notes: The SWAT was adapted from the SPACES tool (T. J. Pikora et al., 2002) and used to objectively 
assess physical features of the environment believed to be related to walkability in Scottish cities. 
Three pairs of trained raters audited 30 samples street segment on two separate occasions from across 
Glasgow’s Merchant City. 15 items had adequate variability and very good agreement (k > 0.7) and 18 
items had adequate variability and good-fair agreement (0.4 ≤ k < 0.7). Only the 33 items with 
adequate variability and k4.4 for the inter-rater tests were included in the intra-rater reliability tests. 
Of these, 17 items had adequate variability and very good intra rater agreement (k >0.7). 

(Millington et al., 2009) 

  

38 



 

 

Instrument/Tool Brief Description Reference(s) 
Microscale Audit of 
Pedestrian Streetscapes 
(MAPS) 

Country of Origin: USA 
 
Factors included: 160 features/items, organized into subscales including routes, segments, crossings, 
and cul-de-sacs 
 
Notes: The MAPS tool was developed based on several previous instruments, primarily the Analytic 
Audit Tool (Ross C Brownson et al., 2004), to assess individual streetscape features believed to be 
related to physical activity. Objective microscale environmental data was collected from MAPS 
sections (290 route pairs, 319 crossing pairs, and 53 cul-de-sac pairs) from urban neighborhoods in 
Seattle/King County, WA, San Diego, CA, and five counties in the Baltimore, MD-Washington, DC 
region. Of items included in the subscales, 80 items (50.0%) had good/excellent reliability and 41 items 
(25.6%) had moderate reliability. Individual inter-rater item reliability analyses were computed using 
Kappa, 
intra-class correlation coefficient (ICC), and percent agreement. 

(Millstein et al., 2013) 

Systematic Pedestrian and 
Cycling Scan (SPACES) 
instrument 

Country of Origin: Australia 
 
Factors included: 67 features/items, organized into four categories: (1) functional, objective measures 
of streetscape features, and subjective evaluations of (2) safety, (3) aesthetics, and (4) travel destination 
(the relationship between residences and neighborhood services. 
 
Notes: SPACES was developed following consultation with experts from a variety of fields and a 
literature search as an observation-based audit tool focused on Australian cities. Spaces was used to 
collect data on over a total of 1987 kilometers of roads in Perth, Australia. Additional environmental 
information was collected using desktop methods and geographic information systems (GIS) 
technology. Inter- and intra-rater reliability of the instrument was assessed by 16 observers who 
collected the data. Reliability testing resulted in ≥ 75% agreement between two raters, and kappa 
statistics, K for 48 of the 67 items K ≥ 0.4. 

(T. Pikora, Giles-Corti, 
Bull, Jamrozik, & 
Donovan, 2003; T. J. 
Pikora et al., 2002) 
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(e.g., Badland et al., 2010; Clarke et al., 2010) have also started exploring 

ways to virtually audit urban environments using Google Street View 

(Google Inc., 2016) and Bing Streetside (Microsoft, 2016). 

 

Overall, despite the comparatively small number of studies, the literature on 

microscale streetscape features and their relationship to pedestrian activity is 

promising. In reviewing the state of the science on measuring the built 

environment for pedestrian activity, Brownson et al. found that many of the 

20 walking audit instruments reviewed had been systematically developed 

and displayed high degrees of inter-rater reliability (2009). Pikora et al.’s 

study of the local neighborhood environments of 1,678 adults in Perth, 

Australia found that microscale features, such as well-maintained walking 

surfaces and the presence of destination factors on the street (including shops 

and public transport), were significantly (p < 0.005) correlated with self-

reported measures of walking for transport (2006). Similarly, Boarnet et al.’s 

walkability study based on data collected from over 700 people and 891 

street segments throughout the Twin Cities of Minneapolis and Saint Paul 

Minnesota (USA) found that microscale features such as the presence of 

sidewalks, pedestrian crossings, destination factors (including gathering 
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places, playing fields, and plazas), and traffic calming were significantly(p < 

0.05) associated with pedestrian activity (2011). 

 

However, while showing some promise, Bauman et al. have argued that 

there are still not enough studies using microscale factors to support 

conclusions about the relationship between microscale streetscape measures 

and pedestrian activity (2012). Moreover, Cain et al. added, “[t]he literature 

is further limited by inconsistent definitions and scoring…and failure to 

control for macroscale attributes” (2014, p. 83). And, Ewing and Clemente 

warned that “[p]hysical [streetscape] features individually may not tell us 

much about the experience of walking down a particular street. Specifically, 

they do not capture people’s [sic] overall perceptions of the street 

environment” (2013, p. 2). Given these deficiencies in the literature, there is a 

need to further explore the specific relationship between streetscape qualities 

and pedestrian activity, using objective and validated measures of 

streetscape qualities and controlling for important macroscale measures of 

walkability. 

 



 

42 

2.3.2.1 Microscale Studies of Streetscape Qualities Related to Walkability 

The importance of perceptual streetscape qualities and their relationship to 

pedestrian activity has been written about extensively in the urban design 

literature (e.g., Cullen, 1961; Gehl, 1987; A. Jacobs, 1993; A. Jacobs & 

Appleyard, 1987; J. Jacobs, 1961; Lynch, 1960; Rapoport, 1990; Sitte, 1889; 

Whyte, 1980). However, as noted by Ewing and Handy (2009), there remains 

a surprising lack of empirical evidence in support of these claims based on 

validated, objective measures of streetscape qualities. 

 

As covered in greater detail in Section 1.3 above, only a handful of recent 

studies have attempted to address this gap in the research. To briefly 

summarize again here, the first of these studies established the first 

operational definitions and measurement protocols for five streetscape 

qualities related to walkability, including imageability, enclosure, human 

scale, transparency, and complexity (Clemente et al., 2005; Ewing et al., 2005; 

Ewing & Handy, 2009; Ewing et al., 2006). While each of the five streetscape 

qualities met strict operationalization criteria, only limited field studies were 

conducted at the time to test for further validation of the measures. 
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Subsequently, two preliminary field studies have been conducted based on 

the objective definitions of streetscape qualities and measurement protocols 

operationalized in these previous studies. The first of these studies used 

measurements of the five streetscape qualities and pedestrian counts from 

588 street segments in New York City (Ewing & Clemente, 2013c; Neckerman 

et al., 2013) and found that streetscape qualities significantly (p ≤ 0.05) 

improved the explanatory power of walkability models, and that measures of 

transparency, in particular, were directly and significantly related (p ≤ 0.05) 

to pedestrian activity, when controlling for macroscale measures of 

walkability. 

 

Following this study, Ameli et al. (2015) conducted a similar, smaller-scale 

study on 179 street segments in the downtown “Free Fare Zone” area of Salt 

Lake City (SLC) using the same protocol. Ameli et al. also found that their 

walkability models were also significantly (p ≤ 0.05) improved with the 

addition of streetscape qualities, and both transparency and imageability 

were significantly (p ≤ 0.05) and directly related to measures of pedestrian 

activity, while controlling for macroscale measures of walkability. However, 

these preliminary field studies were not without limitations. 
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As discussed above in Section 1.4, the results for the New York City (NYC) 

study were limited in terms of their generalizability to other cities, as NYC 

represents one of American’s most walkable and compact cities. As a 

suggestion for further research, Ewing and Clemente commented that future 

studies using the protocol should be conducted in “more typical cities” 

(Ewing & Clemente, 2013c, p. 98). The study by Ameli et al. was similarly 

limited in terms of generalizability of results by its relatively small sample 

size (n = 179 street segments) and narrowly-focused study area (downtown 

SLC). Ameli et al. (2015) suggested that future studies using the same 

protocol should include larger sample sizes and be conducted in study areas 

with more diversity of urban design and form. 

 

Secondly, the reliability of the average pedestrian counts in the New York 

City study was limited by the relatively small number of counts and lack of 

standardization. Ameli et al. overcame this limitation by standardizing 

longer pedestrian counts (30-minutes per sample street segment) to get a 

more representative sampling of typical, weekday activity on the street. 

However, while this form of standardization may have worked well for a 

study with a more limited number of sample street segments and a team of 
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field researchers, its application in larger, city-wide study areas with a single 

observer is not feasible. 

 

Lastly, while both of these studies used in-person audits of streetscape 

qualities, the value of the protocols developed by Ewing et al. (2005) are 

likely to be extended by the implementation of improved virtual tools for 

data collection and analysis. Some work has already been done to improve 

methods for assessing features of the Ewing et al. (2005) protocol using 

virtual auditing techniques (Bader et al., 2015). However, these methods rely 

strictly on the use of Google Street View, which is limited in terms of its 

ability to capture all relevant streetscape features, temporal variability in the 

images, and data availability across the entire study area. Thus, there is still 

scope to extend the implementation of the Ewing et al. (2005) protocols by 

exploring new methods for virtual data collection and analysis. 

 

2.4 Hypotheses and Expected Findings 

The primary purpose of this study was to improve upon the limitations of 

past studies and better understand the relationship between streetscape 

qualities and pedestrian activity. Based the limited results from two 
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preliminary studies (Ameli et al., 2015; Neckerman et al., 2013), the following 

hypotheses and expected findings were established at the start of this study: 

 

1. Collectively, measures of the streetscape qualities add significantly (p 

≤ 0.05) to the overall explanatory power of the walkability models, 

when controlling for macroscale measures of walkability (i.e., 

measures of important D variables). 

 

2. Individually, measures of streetscape qualities are directly and 

significantly (p ≤ 0.05) related to average pedestrian counts 

(dependent variable), when controlling for macroscale measures of 

walkability (i.e., measures of important D variables). 

 

3. Measures of streetscape qualities are of equal or greater significance in 

explaining measures of pedestrian activity, when compared to other 

known built environment correlates of pedestrian activity –i.e., 

macroscale measures of walkability (D variables). 

 

By putting these hypotheses to the test and addressing the limitations of 

previous studies, this study addresses an important gap in research and 
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ultimately works towards a better understanding how perceptual streetscape 

qualities may contribute to the design of streets as places for pedestrian 

activity. 
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CHAPTER 3. DATA AND METHODOLOGY 

3.1 Introduction 

The focus of Chapter 3 is the causal-comparative research design16 used to 

examine the relationship between perceptual streetscape qualities and 

pedestrian activity. This chapter is divided into several sections, detailing 

both the data and methodology used in this study, in addition to describing 

relevant limitations and ethical considerations. 

 

The first section of this chapter briefly describes the case study location – the 

City of Glasgow – and why it was selected for analysis. Glasgow is a typical 

post-industrial European city with a diversity of architecture and urban 

design qualities (Frey, 2004). It is also a city that has shown a strong 

commitment to improving the qualities of its built environments through 

                                                 
16 Causal-comparative research designs seek to find relationships between groups of 
independent, control, and dependent variables. As noted by Brewer and Kuhn, “[t]he 
researcher’s goal is to determine whether the independent variable[s] affected the outcome, 
or dependent variable, by comparing two or more groups” (2010, p. 124). In this study, two 
groups of results (or models) were compared: (1) a model containing only the control 
variables (D variables) and dependent variable (pedestrian activity), and (2) a model 
containing both the control and independent variables (streetscape qualities) and the 
dependent variable. See Chapter 4 for full details of the results and model comparisons. 
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design, technology, and a wealth of open source data (Glasgow Centre for 

Population Health, 2014; National Health Service Greater Glasgow and 

Clyde, 2006; Riddell, 2014). For these reasons, Glasgow was selected as an 

instrumental case17. 

 

The second section of this chapter describes the method used for establishing 

the units of observation within the case study area. A purposive sampling 

technique18 was used to select the most central, pedestrian street segments 

from within each of the 694 Scottish Index for Multiple Deprivation (SIMD) 

datazones19 across the city. This was done in order to obtain a representative 

sampling of the various streetscape qualities present throughout the city, 

while also ensuring that the samples were: (1) collected from streets 

segments that could accommodate pedestrian activity and (2) were likely to 

attract pedestrian activity due to their connection with the rest of the city. 

 

                                                 
17 An instrumental case is “one that lends itself to the understanding of an issue or 
phenomenon beyond the case itself” (Putney, 2010, p. 116). 
18 Purposive sampling is a nonprobability sampling method that approaches the problem of 
collecting samples with a specific plan in mind (Trochim, 2006) – i.e., purposive samples are 
“collected on a predetermined criteria related to the research” (Hussey, 2010, p. 923) 
19 The terms datazone and data zone are used interchangeably in the literature. For 
consistency, datazone was used throughout this thesis. 
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The third section of this chapter details the primary and secondary data 

sources used in this study. It includes descriptions of the independent 

variables (streetscape qualities), control variables (D variables), and 

dependent variable (pedestrian activity). Brief descriptions of the variables 

are provided, including descriptive statistics and details of the best-fit 

models used to compute each of the streetscape qualities from unique 

combinations of measurable streetscape features. 

 

The fourth section of this chapter describes the methodology used to collect 

the primary field data for computing the independent variables (streetscape 

qualities) in this study. Primary field data was collected using an innovative 

and validated video recording method and later analyzed using an updated 

and locally-adapted index of streetscape features and best-fit models. 

 

The final section of this chapter briefly describes additional ethical 

considerations made during this study with regards to the collection of 

primary field data. Reference to the University of Strathclyde ethics approval 

and risk assessment forms is also provided. 
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3.2 Case Study Location 

This case study analysis concentrates on the local authority of Glasgow 

City20. Glasgow is a city located in Scotland’s West Central Lowlands, 

straddling the River Clyde to the north and south (see Figure 2). 

 

 

Figure 2 – Map of the local authority of Glasgow and its location within Scotland (Contains 
Ordnance Survey data © Crown copyright and database right, 2015) 

The local authority covers an area of approximately 175 square kilometers 

(km2) (Scottish Government, 2015) and is the largest by population (596,550 

                                                 
20 The local authority of Glasgow City is simply referred to as Glasgow throughout this thesis. 
These terms are meant to be interchangeable and synonymous with the Scottish council area 
known as the City of Glasgow. 
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people) of any in Scotland21 (National Records of Scotland, 2014) and third 

largest in the United Kingdom (UK)22 (Office for National Statistics, 2015). 

 

Glasgow is a city known not only for its diversity of architecture and urban 

design (see Appendix A), but also its spatial-formal cohesion in the historical 

areas of the city that have escaped comprehensive redevelopment (Frey, 

2004)23. 

 

However, Glasgow also exhibits many adverse characteristics typical of post-

industrial European cities, including sprawl, car-dependency, and social 

stratification (see Figure 3), and suffers from lower levels of physical activity 

and unexplained poor health (Glasgow Centre for Population Health, 2014; 

Reid, 2011). As a result, Glasgow is deeply committed to addressing these 

issues by improving the quality of its built environments and making smart 

use of technology to generate open-source datasets to better understand how 

                                                 
21 At a population density of roughly 3,400 people per km2 (per/ km2), Glasgow is also the 
most densely populated city in Scotland (Office for National Statistics, 2014). 
22 Urban, or built-up areas (e.g., Greater London), are not always synonymous with the 
geographies of local authorities and are often comprised of several local authorities. There 
are 426 local authorities in the UK: 346 in England and 22 in Wales, referred to as local 
authorities; 32 in Scotland, referred to as council areas; and 26 in Northern Ireland, referred 
to as local government districts. 
23 For a more comprehensive history of Glasgow’s historical development and relevant 
characteristics, detailed accounts are covered in several other works, including Horsey 
(1990), Reed (1999), and Frey (2004, Chapter 4). 
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the city functions in relation to pedestrian activity (Irwin, 2013; Riddell, 

2014). It is the combination of the abovementioned characteristics and 

availability of data that make Glasgow particularly attractive for this study. 

 

 

Figure 3 – Map of the 2012 Scottish Index of Multiple Deprivation (SIMD) overall rankings24 
for the datazones in Glasgow by national quintile (Contains Ordnance Survey data © Crown 

copyright and database right, 2015) 

3.2.1 Note on the Author and the Case Study Location 

Glasgow is also a city in which the author has lived over the past several 

years as a postgraduate student at the University of Strathclyde’s Urban 

Design Studies Unit (UDSU, 2015). This position allowed for a unique, first-

                                                 
24 Scotland contains 6,505 SIMD datazones, rankings from 1, the most deprived, to 6,505, the 
least deprived. Glasgow contains 694 SIMD datazones, including some of the most and least 
deprived in all of Scotland, ranging from 2 to 6,480. 
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hand perspective on the range of streetscape qualities present throughout the 

city and access to local expertise and resources. Acquaintance with the city 

also facilitated the collection of primary field data and secondary GIS data 

during the study, and allowed additional observational assessments to be 

made. 

 

3.2.2 Limitations of the Case Study Location 

Glasgow is unique amongst cities in Scotland and throughout the rest of the 

UK. As noted by others (e.g., Neckerman et al., 2013), there are some 

limitations to the external validity or generalizability of findings from case-

specific studies. However, because Glasgow is representative of a typical, 

post-industrial European city, it is hoped that as an instrumental case the 

results from this study might be used in future comparisons to studies 

conducted in similar types of cities. 

 

3.3 Units of Observation 

Central, pedestrian street segments were used as the units of observation in 

this case study analysis in order to: (1) obtain a representative and diverse 

sampling of the streetscape qualities present throughout the city, and (2) 

ensure that samples were collected from streets likely to attract pedestrian 
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activity. As noted by Brownson et al., street segments are the typical units of 

observation for measuring built environment features at the sub-city scale 

when it is not feasible to audit the entire study area (2009). Street segments 

commonly measure the length of one city block and are comprised of two 

opposing street fronts (see Figure 4). 

 

 

Figure 4 – Example of typical street segment (dotted area) with two opposing street fronts 
(hatched areas) (Contains Ordnance Survey data © Crown copyright and database right, 

2015) 

Street segments within a given study area can either be selected at random or 

using nonprobability sampling techniques to ensure that unique but 

important features or qualities are captured in the dataset. A nonprobability 

sampling method was developed for this study after a period of consultation 

with local experts (see Appendix B for brief biographies). Experts included 
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academics and professionals from both the private and public sectors and 

were selected based on their expertise in urban design and knowledge of the 

case study area. When asked to suggest a method for acquiring a 

representative and diverse sampling of the streetscape qualities present 

across the city for use in this study, the experts proposed a method for 

sampling that involved auditing the most central street segment from within 

each of the 694 SIMD datazones within the city. This was suggested based on 

two primary assumptions: (1) streetscape qualities were likely to vary with 

changes in overall neighborhood characteristics, such as those measured by 

the SIMD (e.g., income, employment, housing, etc.), as shown in previous 

studies (e.g., Neckerman et al., 2013); and (2) central street segments are 

likely to attract pedestrian activity due to concentration of service and 

commercial activities, and their connection to the rest of the city, as also 

indicated in previous studies (e.g., Ozbil, Peponis, & Stone, 2011; Porta, 

Latora, et al., 2008). 

 

3.3.1 Centrality Analysis 

In order to determine the most central, pedestrian street segments from 

within each of the SIMD datazones, a centrality analysis was conducted 

using geographic information systems (GIS) on Glasgow’s street network. 
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Centrality analysis works by reducing streets networks to segments and 

nodes that can then be analyzed according to various indices of centrality 

(e.g., betweenness, closeness, straightness). There are two primary forms of 

centrality analysis: (1) dual graph representation, where street segments 

become nodes and points of intersection or endpoints become edges; and (2) 

primary graph representation, where street segments are represented as 

edges and points of intersection and endpoints are represented as nodes 

(Crucitti, Latora, & Porta, 2006; Porta, Crucitti, & Latora, 2006a, 2006b). 

 

A primal graph representation method was used in lieu of a dual graph 

representation in order to retain the metric distance between nodes and 

allow for easier interpretation of results. The Multiple Centrality Assessment 

(MCA) tool for GIS that was developed and tested by Sergio Porta and 

colleagues (Porta, Crucitti, & Latora, 2008; Porta, Latora, et al., 2008; Wang, 

Antipova, & Porta, 2011) utilizes a primal graph representation method and 

was used to compute centrality measures for each of the 28,247 street 

segments across the entire city (see Figure 5). A 5 kilometer buffer was used 

in this case to account for edge effects that threatened to produce lower 

values around the boundaries of the local authority if cropped. As noted by 

Porta et al., an edge effect is “a typical distortion of the spatial distribution on 



 

 

 

Figure 5 – Betweenness centrality of 28,247 street segments in Glasgow with 5 km buffer (Contains Ordnance Survey data © Crown copyright and database right, 
2015) 
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centrality values that artificially groups the highest scores around the centre 

[sic] of the image no matter the actual configuration of the network (Ratti, 

2004; Salheen & Forsyth, 2001)” (Porta, Crucitti, et al., 2008, p. 42). 

 

As opposed to other centrality metrics (e.g., closeness or straightness), the 

betweenness metric was used as the primary measure of street centrality in 

this study because of its theoretical connection to pedestrian activity and 

travel behavior. As Andres Sevtsuk noted, “[it] can be intuitively thought of 

as the potential amount of traffic on each street segment that results if one 

person were to travel from each intersection to each other intersection in the 

given road network along the shortest paths” (2010, p. 44). Betweenness 

centrality is defined as “the degree to which a point falls on the shortest path 

between others and therefore has a potential for control of communication” 

(Freeman, 1977, p. 35). In order to calculate the betweenness value of a given 

street segment, a matrix of shortest-path connections must first be calculated 

for all nodes in the system. Then, a betweenness value for each node, i, can 

be calculated as the number of times that the node is traversed in this matrix 

of shortest paths. 

 

Betweenness was defined mathematically by Crucitti et al. (2006) and Porta, 

Latora, et al. (2008) as:  
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𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 =
1

(𝑁𝑁 − 1) (𝑁𝑁 − 2)
 �

𝐵𝐵𝑗𝑗,𝑘𝑘(𝑖𝑖)
𝐵𝐵𝑗𝑗,𝑘𝑘

𝑁𝑁

𝑗𝑗=1;𝑘𝑘=1;𝑗𝑗≠𝑘𝑘≠𝑖𝑖

 

 

where N is the number of nodes in the system, 𝐵𝐵𝑗𝑗,𝑘𝑘 is the number of shortest 

paths between nodes j and k, and 𝐵𝐵𝑗𝑗,𝑘𝑘(𝑖𝑖) is the number of these shortest paths 

that contain node i. According to Porta et al., when applied to urban street 

networks a betweenness centrality value is a “special property for a place in 

a city: it does not act as an origin or a destination for trips, but as a pass-

through point. CB [betweenness centrality] represents a node’s volume of 

through traffic” (2008, p. 453). 

 

After computing the measures of betweenness for each of the street segments 

throughout the city, this layer of data was then intersected with the 

boundaries of the SIMD datazones to determine the most central street 

segments from within each datazones (see Figure 6). Street segments were 

then pre-screened to meet two additional requirements: (1) a minimum 

length of 50 meters (m), the typical length of a small city block in Glasgow; 

and (2) the presence of pavement, ensuring that the sample street segment 

was able to accommodate pedestrian activity. When these conditions were 

not met (e.g., when the most central street segment was identified as a 



 

 

 

Figure 6 – Betweenness of street segments in the 694 Glasgow SIMD datazones (Contains Ordnance Survey data © Crown copyright and database right, 2015) 
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motorway segment), the next most central street segment within the same 

datazone was screened until a suitable selection could be made. 

 

In some instances, even the most central, pedestrian street segment was not 

observable due to obstructions in the field (e.g., local construction) during 

primary data collection. In these situations, every effort was made to revisit 

the sample street segment at a later point in time to avoid obstructions. 

However, when this was not feasible, the next most central pedestrian street 

segment within the same datazone was audited during the sampling period. 

Only in one instance was there a datazone (datazone code: S01003533) with 

no observable pedestrian street segments during the entire sampling period 

due to local demolition around the Red Road Flats. Therefore, there are 693 

data points in the dataset as opposed to 694. 

 

3.3.2 Limitations of the Units of Observation 

The method for selecting the units of observation, as mentioned above, was 

limited by the fact that it focused strictly on those street segments deemed 

most central within each of the SIMD datazones. This makes it difficult to 

generalize results of this study to the rest of the streets throughout each of 

the SIMD datazones, let alone the city as a whole. However, this method was 

used in lieu of a randomized selection, in an attempt to capture relevant and 
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unique sample street segments (e.g., Buchanan Street, Great Western Road, 

London Road, etc.) that were most likely to attract pedestrian activity and be 

of the greatest importance to the local population due to the connection with 

the rest of the city. 

 

3.4 Data 

Primary data for this study was collected from 693 sample street segments 

from within the study area over the course of two summers, 2014 and 2015, 

using the methodologies described in Section 3.5, Appendix C, and 

Appendix D25. This data was used to generate the independent variables 

(streetscape qualities) and dependent variable (pedestrian activity) for each 

sample street segment included in the dataset. Secondary data was acquired 

directly from the EDINA Digimap Ordinance Survey Service, the Glasgow 

OPEN Data Launchpad26, the Scottish Government, and other sources (see 

Table 4). Efforts were made to only use secondary data that was readily 

available in other parts of the country in order to make the process of data 

collection as replicable as possible in other cities throughout Scotland and 

                                                 
25 In order to limit the text included in the main body of this chapter, the methodology 
explained in Section 3.5 is limited to details on the sampling criteria, pilot test results, and 
reliability test results. Appendix C and Appendix D provide more specific details on the 
video recording protocol used for primary data collection and the field manual used for 
auditing each sample street segment, respectively. 
26 Glasgow OPEN Data Launchpad (link): https://data.glasgow.gov.uk/ 



 

 

Table 4 – Table of secondary data types, uses, and sources 

Data Type Use Dataset source (License) 
Building heights Used to compute floor area ratios OS MasterMap Topography Layer - Building height attribute 

(BHA) (OS Digimap License)1 

Road centerlines Used to compute betweenness centrality, intersection density, 
proportion of 4-way intersections, and distance to transit 

OS MasterMap Integrated Transport Network (ITN) (OS 
Digimap License)2 

Subway locations Used to compute distance to transit Glasgow Subway Station Locations (Glasgow City Council 
Ordnance Survey Development Data License)3 

Bus stop locations Used to compute distance to transit National Public Transport Access Nodes (NaPTAN), Bus Stop 
Locations (Open Government License)4 

Rail station locations Used to compute distance to transit NaPTAN, Rail Station Locations (Open Government License)4 

Census data Used to compute population densities and household size Scotland Census Data Warehouse (Open Government License)5 

Building footprints Used to compute floor area ratios and land use entropy OS MasterMap Topography Layer (OS Digimap License)6 
Land uses Used to compute land use entropy OS AddressBase Premium (OS Research Data Agreement)7 
Datazones Used to create boundaries for the study area Scottish Government - Data Zone Boundaries 2011 and Scottish 

Government - Data Zone Centroids 2011 (Open Government 
License)8 

Walkability Used to compute destination accessibility Walk Score9 
1OS MasterMap Building Heights Layer [GML geospatial data], Ordnance Survey, Using: EDINA Digimap Ordnance Survey Service, http://digimap.edina.ac.uk/ 
2OS MasterMap ITN Layer [GML geospatial data], Ordnance Survey, Using: EDINA Digimap Ordnance Survey Service, http://digimap.edina.ac.uk/ 
3Glasgow City Council Ordnance Survey Development Data License: http://open.glasgow.gov.uk/ckansupport/oGCC_OS_Developer Data Licence.pdf 
4Open Government License: http://reference.data.gov.uk/id/open-government-licence 
5Scotland Census Data Warehouse (link): http://www.scotlandscensus.gov.uk/ods-web/data-warehouse.html 
6OS MasterMap Topography Layer [GML geospatial data], Ordnance Survey, Using: EDINA Digimap Ordnance Survey Service, http://digimap.edina.ac.uk/ 
7OS AddressBase Premium (link): https://www.ordnancesurvey.co.uk/business-and-government/products/addressbase-premium.html 
8Scottish Government - Data Zone Boundaries and Centroids 2011 (link): 
http://sedsh127.sedsh.gov.uk/Atom_data/ScotGov/StatisticalUnits/SG_StatisticalUnits.atom.en.xml 
9Walk Score (link): https://www.walkscore.com/ 64 
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rest of the UK. This data was used in conjunction with GIS software to 

compute the control variables (D variables) related to density, diversity, 

street network design, destination accessibility, distance to transit, and 

demographics. 

 

3.4.1 Independent Variables (Streetscape Qualities) 

The explanatory variables of primary interest in this study were the five 

streetscape qualities related to walkability that were previously 

operationalized by Ewing et al. (Ewing et al., 2005; Ewing et al., 2006) and 

later used in preliminary studies conducted in two US cities, New York City 

(Neckerman et al., 2013) and Salt Lake City (Ameli et al., 2015). The 

streetscape qualities measured included imageability, enclosure, human 

scale, transparency, and complexity. Each of these qualities is rooted in 

classic urban design theory and comprised of unique groupings of 

streetscape features. Brief qualitative descriptions of the streetscape qualities, 

along with operational definitions and quantitative best-fit models used to 

operationalize these variables, are provided in the sections below. 
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3.4.1.1 Note on Best-Fit Models for Independent Variables (Streetscape 

Qualities) 

As summarized above in Section 1.3 and Section 2.3.2.1, and explained in 

greater detail in related reports and publications (see Ewing & Clemente, 

2013b; Ewing et al., 2005; Ewing et al., 2006), the best-fit models for each of 

the streetscape qualities used in this study were based on previous ratings by 

an expert panel of urban design and public health researchers and used to 

operationalize each streetscape quality based on a set of measurable 

streetscape features. Operationalization of each streetscape quality was based 

on several criteria: (1) if the streetscape quality had no correlation to overall 

walkability (i.e., the null hypothesis was true), the probability of a type 1 

error27 (α) was less than or equal to 5 in 100 (i.e., p ≤ 0.05); (2) the degree of 

agreement among independent, expert panel raters (i.e., inter-rater 

reliability) in measuring the quality was at least “moderate” according to the 

relative strengths of agreement suggested by Landis and Koch (1977)28 (intra-

class correlation coefficients, ICC ≥ 0.4); (3) measurable streetscape features 

accounted for 30 percent or more of the total variance in ratings of the 

quality; (4) measurable streetscape features explained 60 percent or more of 

the sample-specific variance in ratings of the quality; and (5) all streetscape 

                                                 
27 Commonly referred to as a “false positive.” 
28 See Page 11 for note on benchmarks. 
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features related to ratings of the quality were measured with at least a 

“moderate degree of inter-rater reliability (ICC ≥ 0.4). 

 

These best-fit models were adapted slightly from those presented initially in 

Ewing et al. (2005) and later revised in Ewing and Clemente (2013b), as there 

were some slight differences between the two models. After a period of 

consultation with Professor Reid Ewing (University of Utah) and colleagues, 

more accurate re-estimations of the best-fit models were provided. 

 

In order to compute the scores for each of the five streetscape qualities used 

in this study, field measures of the streetscape features for each sample street 

segment were inserted into the re-estimated best-fit models (shown in the 

sections below) with the two notable modifications. The best-fit models from 

Ewing et al. (2005) and Ewing and Clemente (2013b) for imageability and 

complexity originally included the variable “number of people” encountered 

while walking the sample street segment. This feature was instead used in 

this study as the dependent variable; therefore, it was excluded from the 

calculation of these two independent variables (streetscape quality). 
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3.4.1.2 Imageability 

Imageability is a term that was first coined by Kevin Lynch as “that quality 

in a physical object which gives it a high probability of evoking a strong 

image in any given observer. It is that shape, color, or arrangement which 

facilitates the making of vividly identified, powerfully structured, highly 

useful mental images of the environment” (Lynch, 1960, p. 9). The quality of 

imageability may also be referred to as legibility and is closely related to 

Gordon Cullen’s concepts of Here and There or This and That (Cullen, 1961), 

which asserts that a sense of place is achieved when townscape elements are 

designed as part of a cohesive whole. As Jan Gehl briefly summarized: 

“This feeling of spatial quality characterizes many old pedestrian 

cities and spaces. In Venice, for example, and in many famous 

Italian city squares, life in the space, the climate, and the 

architectural quality support and complement each other to create 

an unforgettable total impression. When all factors have the 

opportunity of working together as in these examples, a feeling of 

physical and psychological well-being results: the feeling that a 

space is a thoroughly pleasant place to be in.” (1987, p. 183). 

Landmarks are one type of streetscape feature believed to be essential to the 

quality of imageability. A landmark can be used as a focal point, contrasting 
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elements to attract attention, which as Tunnard and Pushkarev argued, “lifts 

a considerable area around itself out of anonymity, giving it identity and 

visual structure” (1963, p. 140). Landmarks range in scale from distinct 

buildings, parks, and plazas to unique building features like domes and 

signs. Ultimately, “[l]andmarks become more easily identifiable, more likely 

to be chosen as significant, if they have a clear form; if they contrast with 

their background; and if there is some prominence of spatial location” 

(Lynch, 1960, pp. 78-79). 

 

Imageability was previously defined by Ewing and Handy (2009) and 

referred to in this study, as: “the quality of a place that makes it distinct, 

recognizable and memorable” (p. 73). A streetscape with high imageability 

contains specific physical elements that are arranged to capture attention, 

evoke feelings, and create a lasting impression. Table 5 shows the best-fit 

model of the streetscape features used to compute scores for imageability in 

this study. 
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Table 5 – Best-fit imageability model 

Variable Coefficient p-value 
Constant 2.516 - 
Proportion of historic buildings 0.970 0.001 
Number of courtyards, plazas, or parks 0.414 0.001 
Presence of outdoor dining 0.644 0.001 
Number of buildings with non-rectangular silhouettes 0.0795 0.036 
Noise level (1-5 Likert scale) -0.183 0.045 
Number of major landscape features 0.722 0.049 
Number of buildings with identifiers 0.111 0.083 

 

All of these streetscape features in the best-fit model have positive 

relationships to perceptions of imageability with the exception of noise level, 

which has a negative relationship and thus diminishes the quality. Figure 7, 

Table 6, and Table 7 show the frequency distribution and descriptive 

statistics for imageability measures from all 693 sample street segments 

included in the dataset. Overall, imageability scores were positively skewed 

and non-normally distributed, with scores ranging from 1.71 to 7.68 and a 

mean ± standard deviation of 3.12 ± 1.01. 

 



 

 

 

 
Figure 7 – Histogram of the imageability scores 

 

Table 6 – Decriptive statistics of the imageability scores 

 N Min Max 
Mean ± 

SDa Variance 
Skewness ± 

SEa 
Kurtosis ± 

SEa 
Imageability 
Scores 693 1.7 7.2 

2.95 ± 
0.85 0.73 1.05 ± 0.09 1.43 ± 0.19 

aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

Table 7 – Shapiro-Wilk test of the imageability scores 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.93 693 7.99E-17 
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3.4.1.3 Enclosure 

Enclosure is a quality used to “define” streets (A. Jacobs, 1993, pp. 277-281) 

or describe the room-like quality of outdoor, urban environments, created by 

vertical elements like buildings, walls, and trees (Alexander et al., 1977, pp. 

764-768; Sitte, 1979, pp. 20-24). According to Gordon Cullen, “[e]nclosure, or 

the outdoor room, is, perhaps, the most powerful, the most obvious, of all the 

devices to instill a sense of position, of identity with the surroundings.” 

(Cullen, 1961, p. 29). Allen Jacobs and Donald Appleyard explained , “[i]n an 

urban environment, buildings (and other objects that people place in the 

environment) should be arranged in such a way as to define and even 

enclose public space, rather than sit in space” (1987, p. 118). Outdoor rooms 

are formed when buildings or other vertical elements form the walls, streets 

and pavements make up the floor, and the sky acts as a ceiling. Alexander et 

al. (1977, p. 518) stated that, “[a]n outdoor space is positive when it has a 

distinct and definite shape, as definite as the shape of a room, and when its 

shape is as important as the shapes of the buildings which surround it.” 

Hedman and Jaszewski (1984) echoed these remarks, asserting “[i]f the 

quality of three-dimensional space and not just the functional use of the 

ground surface becomes important, then the designer’s concern graduates to 

an entirely different level that involves the architectural characteristics of the 
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building facades and how they work to create a three-dimensional sense of 

space…Such intense three-dimensional space offers a positive sensory 

experience” (pp. 53-54). 

 

Enclosure was previously defined by Ewing and Handy (2009) and referred 

to in this study, as: “the degree to which streets and other public spaces are 

visually defined by buildings, walls, trees and other vertical elements” (p. 

75). Table 8 shows the best-fit model of the streetscape features used to 

compute scores for enclosure in this study. 

 

Table 8 – Best-fit enclosure model 

Variable Coefficient p-value 
Constant 2.570 - 
Proportion of street wall (same side) 0.716 0.001 
Proportion of street wall (opposite side) 0.940 0.002 
Proportion of sky across -2.193 0.021 
Long sight lines -0.308 0.035 
Proportion of sky ahead -1.418 0.055 

 

Long sight lines and larger proportions of visible sky are streetscape features 

that have a negative relationship to enclosure, while more continuous street 

walls on both sides of the street segment positively contribute to perceptions 

of enclosure. Previous studies have also shown that perceptions of enclosure 

are positively correlated to the portion of a street scene covered by walls and 

negatively related to the proportion of a street scene covered by ground, 
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depth of view, and the number of sides open at the street front (Stamps, 2005; 

Stamps & Smith, 2002). 

 

Though features like building setbacks were originally intended to have a 

positive effect by bringing more light and air to the street, some urban 

designers, like Alexander et al. (1977), have argued, “[b]uilding set-backs 

from the street, originally invented to protect the public welfare by giving 

every building light and air, have actually helped greatly to destroy the street 

as social space.” (p. 593). Likewise, citing the work of Raymond Unwin 

(1909), Andres Duany and other New Urbanists have strongly advocated for 

terminated vistas at the ends of street as a way of achieving enclosure in all 

directions (Duany & Plater-Zyberk, 1992; Duany, Plater-Zyberk, & Speck, 

2000). Terminated vistas can be achieved both through the use of a 

“controlled curve” or the “careful placement of a public building” or other 

structure “worthy of honor” (Duany et al., 2000, p. 35) – features often 

employed in the more historical developments of Glasgow. 

 

Figure 8, Table 9, and Table 10 show the frequency distribution and 

descriptive statistics for enclosure measures from all 693 sample street 

segments included in the dataset. Overall, enclosure scores were positively 



 

 

 

 
Figure 8 – Histogram of the enclosure scores 

 

Table 9 – Descriptive statistics of the enclosure scores 

 N Min Max 
Mean ± 

SDa Variance 
Skewness 

± SEa Kurtosis ± SEa 
Enclosure 
Scores 693 -0.2 5.1 

1.71 ± 
0.98 0.95 0.31 ± 0.09 -0.73 ± 0.19 

aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 10 – Shapiro-Wilk test of the enclosure scores 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.97 693 6.13E-11 
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skewed and non-normally distributed, with scores ranging from -0.16 to 5.10 

and a mean ± standard of 1.77 ± 1.10. 

 

3.4.1.4 Human scale 

Human scale refers to the scale of physical elements in the built environment 

and how they relate to the size of pedestrians and the speed at which they 

travel. These elements may include building details, pavement texture, street 

trees, and street furniture. An advocate for human scale urban design, 

Camillo Sitte criticized the scale of modern city planning, arguing: 

“The larger the city, the bigger and wider the plazas and streets 

become, and the higher and bulkier are all structures, until their 

dimensions, what with their numerous floors and interminable 

rows of windows, can hardly be organized any more in an 

artistically effective manner. Everything tends toward the 

immense, and the constant repetition of identical motifs is enough 

to dull our senses to such an extent that only the most powerful 

effects can still make any impression. As this cannot be altered, the 

city planner must, like the architect, invent a scale appropriate for 

the modern city of millions.” (Sitte, 1889) 



 

77 

Urban designers have often cited the ratio of building heights to street width 

as one of the most important elements in terms of human scale (Alexander et 

al., 1977, pp. 114-119; Blumenfeld, 1953; Hedman & Jaszewski, 1984, pp. 57-

58). However, human scale can also relate to the rate at which pedestrians 

travel and how well they are able to perceive unique streetscape features. 

 

Human scale was previously defined by consensus in Ewing and Handy 

(2009) and referred to in this study as: “a size, texture, and articulation of 

physical elements that match the size and proportions of humans and, 

equally important, correspond to the speed at which humans walk” (p. 77). 

Streetscape features including building details, street trees, and street 

furniture can all contribute to human scale. Table 11 shows the best-fit model 

of the streetscape features used to compute scores for human scale in this 

study. 

 

Table 11 – Best-fit human scale model 

Variable Coefficient p-value 
Constant 2.612 - 
Long sight lines (0-3) -0.744 0.001 
Outdoor dining tables - - 
Lights on buildings (not more than 4 meters high) - - 
All street furniture and other street items 0.0364 0.001 
Proportion window (street level)/street front 1.099 0.001 
Building height -3.040E-03 0.033 
Small planters 0.0496 0.047 
Urban designer 0.382 0.066 
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The number of long sight lines and the height of buildings on the same side 

of the street segment negatively influence the perception of human scale, 

while the presence of first floor windows, small planters and street furniture 

positively contribute to the perception of human scale. Similar visual 

assessment studies on architectural massing have shown that cross-sectional 

areas of buildings and the decoration, articulation, and partitioning of 

building facades were all important determinants of human scale 

perceptions (Stamps, 1998). 

 

Figure 9, Table 12, and Table 13 show the frequency distribution and 

descriptive statistics for human scale measures from all 693 sample street 

segments included in the dataset. Overall, human scale scores were 

positively skewed and non-normally distributed, with scores ranging from 

0.75 to 6.12 and a mean ± standard of 2.61 ± 1.05. 

 

 



 

 

 

 
Figure 9 – Histogram of the human scale scores 

 

Table 12 – Descriptive statistics of the human scale scores 

 N Min Max 
Mean ± 

SDa Variance 
Skewness 

± SEa 
Kurtosis 

± SEa 
Human Scale 
 Scores 693 0.5 6.1 2.46 ± 0.90 0.81 0.58 ± 0.09 

0.66 ± 
0.19 

aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 13 – Shapiro-Wilk test of the human scale scores 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.97 693 4.24E-10 
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3.4.1.5 Transparency 

Transparency is a quality that refers to the degree to which pedestrians can 

perceive what lies beyond the edge of a street, especially in terms of human 

activity. Allan Jacobs explained: 

“The best streets have about them a quality of transparency at their 

edges, where the public realm of the street and the less public, often 

private realm of property and buildings meet. One can see or have 

a sense of what is behind whatever it is that defines the street; one 

senses an invitation to view or know, if only in the mind, what is 

behind the street wall.” (1993, p. 285) 

It is typical for physical features like windows, doors, and narrow, mid-block 

openings to give a sense of transparency, while blank walls and garage doors 

reduce the quality of transparency (A. Jacobs, 1993, pp. 285-287). Street edges 

become more transparent when the internal activities become “externalized” 

(Llewelyn Davies Yeang, 2000), bringing them to the pavement. William 

Whyte explained, “the progression from street to interior is critical in this 

respect. Ideally, the transition should be such that it’s hard to tell where one 

ends and the other begins” (Whyte, 1988, p. 130). 
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Transparency was previously defined by Ewing and Handy (2009) and 

referred to in this study as: “the degree to which people can see or perceive 

what lies beyond the edge of a street and, more specifically, the degree to 

which people can see or perceive human activity beyond the edge of a street” 

(p. 78). Streetscape features that relate directly to the quality of transparency 

include walls, windows, doors, fences, and landscaping. Table 14 shows the 

best-fit model of the streetscape features used to compute scores for 

transparency in this study. 

 

Table 14 – Best-fit transparency model 

Variable Coefficient p-value 
Constant 1.709 - 
Proportion of first floor with windows 1.219 0.002 
Proportion of active uses on street front 0.533 0.004 
Proportion of street wall 0.666 0.011 

 

All physical features in this model have positive relationships to perceptions 

of transparency. Figure 10, Table 15, and Table 16 show the frequency 

distribution and descriptive statistics for transparency measures from all 693 

sample street segments included in the dataset. Overall, transparency scores 

were positively skewed and non-normally distributed, with scores ranging 

from 1.71 to 4.13 and a mean ± standard deviation of 2.62 ± 0.77. 

 



 

 

 

 
Figure 10 – Histogram of the transparency scores 

 

Table 15 – Descriptive statistics of the transparency scores 

 N Min Max Mean ± SDa Variance 
Skewness 

± SEa 
Kurtosis ± 

SEa 
Transparency 
 Scores 693 1.7 4.1 2.41 ± 0.67 0.45 1.23 ± 0.09 0.45 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 16 – Shapiro-Wilk test of the transparency scores 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.83 693 1.38E-26 
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3.4.1.6 Complexity 

Complexity is a quality that refers to the visual richness and variety of 

features in built environments (Rapoport & Kantor, 1967). As Allen Jacobs 

noted, “more buildings along a given length of street…fountains, benches, 

kiosks, paving, lights, signs, and canopies can all be important, at times 

crucially so” (1993, pp. 297-298). Gordon Cullen (1961) even went so far as to 

call elements, such as street signs, “the most characteristic, and, potentially, 

the most valuable, contribution of the twentieth century to urban scenery” 

(p. 151). Though, as Nasar (1987) found in the case of signs, people prefer 

only moderate levels of complexity, and Rapoport and Hawkes (1970) noted, 

“[e]vidence from psychological research has shown that both excessively 

simple and excessively chaotic visual fields are disliked” (p. 106). Jan Gehl 

even asserted that the perceived complexity of built environments could 

have a psychological effect, making the walking distances between two 

points seem shorter than they really were (Gehl, 1987). Nelessen (1994) stated 

as one of ten principles for urban design that “[v]ariations on basic patterns 

must be encouraged in order to prevent a dull sameness” (p. 224). 

 

The quality of complexity has been measured in several previous studies and 

related to differences in building materials, shapes, dimensions, decorations, 
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and setbacks (Elsheshtawy, 1997; T. Heath, Smith, & Lim, 2000; Stamps, 1999; 

Stamps, Nasar, & Hanyu, 2005). 

 

Complexity was previously defined by Ewing and Handy (2009) and 

referred to in this study as simply: “the visual richness of a place” (p. 81). 

Complexity can relate specifically to the numbers and types of buildings, 

architectural diversity and ornamentation, landscape elements, street 

furniture, and signage. Table 17 shows the best-fit model of the streetscape 

features used to compute scores for complexity in this study. 

 

Table 17 – Best-fit complexity model 

Variable Coefficient p-value 
Constant 1.453 - 
Number of people 2.680E-02 0.001 
Number of buildings 0.051 0.008 
Dominant building colors 0.177 0.031 
Accent building colors 0.108 0.043 
Presence of outdoor dining 0.367 0.045 
Pieces of public art 0.272 0.066 

 

All physical features in this model have positive relationships to perceptions 

of complexity. Figure 11, Table 18, and Table 19 show the frequency 

distribution and descriptive statistics for complexity measures from all 693 

sample street segments included in the dataset. Overall, complexity scores  



 

 

 

 
Figure 11 – Histogram of the complexity scores 

 

Table 18 – Descriptives of the complexity scores 

 N Min Max Mean ± SDa Variance 
Skewness ± 

SEa 
Kurtosis ± 

SEa 
Complexity 
 Scores 693 1.50 7.60 2.59 ± 0.69 0.48 1.03 ± 0.09 4.20 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 19 – Shapiro-Wilk test of the complexity scores 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.94 693 8.01E-16 
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were positively skewed and non-normally distributed, with scores ranging 

from 1.45 to 7.67 and a mean ± standard deviation of 2.75 ± 0.82. 

 

3.4.2 Control Variables (D Variables) 

The influence of the built environment on travel behaviors and pedestrian 

activity has been one of the most researched topics within the field of urban 

planning and design. As Ewing and Cervero noted, “[t]he potential to 

moderate travel demand by changing the built environment is the most 

heavily researched subject in urban planning” (2010, p. 267). Within this 

body of research, potential influential factors, beyond those related to 

perceptual qualities of urban streetscapes have often been referred to as the 

“D variables.” The term D variables was first coined by Cervero and 

Kockelman (1997) to describe the variables of density, diversity, and street 

network design. Additional D variables have since been established to 

include the potential influences like destination accessibility and distance to 

transit (Ewing & Cervero, 2001), and other variables like demand 

management (e.g., parking supply and cost) and demographics (Ewing & 

Cervero, 2010). 

 

Control variables in this study were drawn from the characterization of the D 

variables previous described in Ewing and Cervero (2010) and frequently 
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used in studies measuring the built environment in relation to travel studies 

and pedestrian activity. As Ameli et al. noted:  

“The built environment has been measured or operationalized in 

terms [of] one or more of the six recognized D variables in over 200 

studies (c.f. Badoe & Miller, 2000; Cao, Mokhtarian, & Handy, 

2009; Cervero, 2003; Crane, 2000; Ewing & Cervero, 2001, 2010; 

Handy, 2005; G. W. Heath et al., 2006; Tracy E. McMillan, 2005; 

Tracy E McMillan, 2007; Pont, Ziviani, Wadley, Bennett, & 

Abbott, 2009; Brian E Saelens, Sallis, & Frank, 2003; Stead & 

Marshall, 2001). These studies explain trip frequencies, mode 

choice, trip distances and overall vehicle miles travelled. A large 

subset of studies explains pedestrian mode choice, or walking 

frequency, in terms of the D variables” (2015, p. 393). 

The D variables used as control variables in this study were those related to 

density, diversity, street network design, destination accessibility, distance to 

transit, and demographics, and were all computed using ArcGIS software 

(Esri Inc., 2015). 
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3.4.2.1 Density 

Density is a D variable that is measured as a variable of interest per unit of 

gross or net area. Common variables of interest include population, dwelling 

units, employment, and building floor areas. In this study, two density 

measures were computed using GIS for the 400 meter buffer29 around each 

sample street segment: (1) the average floor area ratio (FAR), computed as 

the total building floor area for all buildings located within the buffer 

divided by the total land area within the buffer, and (2) the average 

population density, computed as the population of all output areas whose 

centroids fell within the buffer divided by the gross buffer area, measured in 

one thousand residents per square km. Both of these measures have been 

used in several previous studies (e.g., Greenwald & Boarnet, 2001; 

Kockelman, 1997; Targa & Clifton, 2005) to account for the influence of 

density on walking behaviors as shown in Ewing and Cervero (2010). Other 

studies have also used measures of commercial floor area ratio (e.g., L. Frank, 

Bradley, Kavage, Chapman, & Lawton, 2008; L. Frank, Kavage, Greenwald, 

Chapman, & Bradley, 2009) and job density (e.g., Boarnet, Greenwald, & 

McMillan, 2008; Kockelman, 1997; Zhang, 2004). However, due to the lack of 

                                                 
29 400 m, or roughly a quarter-mile, is a typical buffer region, or pedestrian shed, considered 
comparable to a 5-minute walk. 
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accurate and available data on retail and job locations, these variables were 

not computed as additional control measures of density in this study. 

 

Figure 12, Table 20, and Table 21 show the frequency distribution and 

descriptive statistics for buffer FAR measures from all 693 sample street 

segments included in the dataset. Overall, buffer FAR values were positively 

skewed and non-normally distributed, with values ranging from 0 to 6.30 

and a mean ± standard deviation of 0.71 ± 0.60. Figure 13, Table 22, and Table 

23 show the frequency distribution and descriptive statistics for population 

density measures from all 693 sample street segments included in the 

dataset. Overall, population density values were positively skewed and non-

normally distributed, with values ranging from 0 to 16 thousand residents 

per km2 and a mean ± standard deviation of 5.44 ± 2.98 thousand residents 

per km2. 

 

 



 

 

 

 
Figure 12 – Histogram of the buffer FAR values 

 

Table 20 – Descriptive statistics of the buffer FAR values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 0.00 6.30 0.71 ± 0.60 0.36 3.12 ± 0.09 19.98 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 21 – Shapiro-Wilk test of the buffer FAR values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.75 693 4.79E-31 
 

 

90 



 

 

 

 
Figure 13 – Histogram of the population density values 

 

Table 22 – Descriptive statistics of the population density values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 0.00 16.08 5.44 ± 2.98 8.89 1.11 ± 0.09 1.14 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 23 – Shapiro-Wilk test of the population density values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.92 693 5.84E-19 
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3.4.2.2 Diversity 

Diversity is a D variable that relates to the number of different land uses per 

a given area and the extent to which the land uses are represented by land 

area, floor area, or employment. In this study, entropy measures of diversity 

were computed according to the following equation adapted from (L. Frank 

et al., 2008, p. 42): 

 

𝐿𝐿𝐿𝐿𝐵𝐵𝐿𝐿 𝑢𝑢𝐵𝐵𝐵𝐵 𝑚𝑚𝑖𝑖𝑚𝑚 (𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝐵𝐵𝐿𝐿𝐵𝐵𝑚𝑚) =  −�𝑃𝑃𝑖𝑖×
ln𝑃𝑃𝑖𝑖
ln𝐵𝐵

 

 

where, n = the number of different land use type classes in the 400-meter 

buffer region around the sample street segment (in this study n = 5, 

residential, leisure, education, office, and retail); and Pi = the proportion of 

total land area of the ith land-use category found in the buffer region. Values 

of land use entropy can range from 0 to 1, where lower values indicate areas 

with limited diversity of land uses and higher values indicating areas with 

more diversity of land uses. 

 

Both of these measures have been used in several previous studies (e.g., L. 

Frank et al., 2008; L. Frank et al., 2009; Kockelman, 1997; Targa & Clifton, 

2005; Zhang, 2004) to account for the influence of diversity on walking 
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behaviors as shown in Ewing and Cervero (2010). Other studies have also 

used measures of job-housing balance (e.g., Bento, Cropper, Mobarak, & 

Vinha, 2003) or distance to a different types of stores (e.g., Cao, Handy, & 

Mokhtarian, 2006; Ewing et al., 2006; Handy, Cao, & Mokhtarian, 2006; 

Handy & Clifton, 2001) for measures of diversity. As geospatial data to 

compute these measures was not readily available, these additional measures 

of diversity were not incorporated into the controlled models. 

 

Figure 14, Table 24, and Table 25 show the frequency distribution and 

descriptive statistics for buffer entropy measures from all 693 sample street 

segments included in the dataset. Overall, buffer entropy values were 

positively skewed and non-normally distributed, with values ranging from 0 

to 0.76 and a mean ± standard deviation of 0.23 ± 0.15. 

 

 



 

 

 

 
Figure 14 – Histogram of the buffer entropy values 

 

Table 24 – Descriptive statistics of the buffer entropy values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 0.00 0.76 0.23 ± 0.15 0.02 0.73 ± 0.09 0.10 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 25 – Shapiro-Wilk test of the buffer entropy values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.95 693 4.22E-14 
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3.4.2.3 Street Network Design 

Street network design is a D variable often accounted for using macroscale 

measures generated using GIS that have been shown as a potentially 

influential factors related to pedestrian activity (Boarnet, Joh, Siembab, 

Fulton, & Mai Thi Nguyen, 2011; L. Frank et al., 2008; Targa & Clifton, 2005). 

Street networks can vary in their design from dense, highly-connected grids 

to more sprawled out networks of long, curving streets in the suburbs. 

Measures of street network design can include block or street segment 

length, proportion of four-way intersections, and number of intersections per 

buffer area. The measures of street network design controlled for in this 

study were: (1) intersection density, computed as the number of intersections 

within the 400 m buffer around each sample street segment divided by the 

gross area of the buffer in square km, (2) proportion of four-way 

intersections within the buffer, and (3) sample street segment length in 

meters. Street network design can also be measured as a function of 

additional factors, including pavement coverage (i.e., share of street fronts 

with pavement) (Rodrı́guez & Joo, 2004), pavement width (Cervero & 

Kockelman, 1997), or other pedestrian environment features (Greenwald & 

Boarnet, 2001) that differentiate pedestrian-oriented environments from 

auto-oriented environments. In this study, all sample street segments were 
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preselected as pedestrian-oriented, as previous noted above in Section 3.2. 

Therefore, these additional measures for design were not included as 

controls in this study. 

 

Figure 15, Table 26, and Table 27 show the frequency distribution and 

descriptive statistics for intersection density measures from all 693 sample 

street segments included in the dataset. Overall, intersection density values 

were positively skewed and non-normally distributed, with values ranging 

from 24 to 292 intersections per km2 and a mean ± standard deviation of 

127.56 ± 47.06 intersections per km2. Figure 16, Table 28, and Table 29 show 

the frequency distribution and descriptive statistics for proportion of four-

way intersection measures from all 693 sample street segments included in 

the dataset. Overall, proportion of four-way intersection values were 

positively skewed and non-normally distributed, with values ranging from 0 

to 0.39 and a mean ± standard deviation of 0.10 ± 0.07. Figure 17, Table 30, 

and Table 31 show the frequency distribution and descriptive statistics for 

sample street segment length measures from all 693 sample street segments 

included in the dataset. Overall, sample street segment length values were 

positively skewed and non-normally distributed, with values ranging from 

28.80 to 228.0 meters and a mean ± standard deviation of 83.95 ± 31.36 meters. 

Though sample street segments were preselected to be a minimum of 50 m in 



 

 

 

 
Figure 15 – Histogram of the buffer intersection density values 

 

Table 26 – Descriptive statistics of the buffer intersection density values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 24 292 127.56 ± 47.06 2,214.78 0.60 ± 0.09 0.38 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 27 – Shapiro-Wilk test of the buffer intersection density values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.98 693 8.42E-09 
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Figure 16 – Histogram of the buffer proportion of four-way intersections 

values 

 

Table 28 – Descriptive statistics of the buffer proportion of four-way intersections 
values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 0.00 0.39 0.10 ± 0.07 4.39E-03 0.69 ± 0.09 0.45 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 29 – Shapiro-Wilk test of the buffer proportion of four-way intersections 
values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.96 693 4.97E-13 
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Figure 17 – Histogram of the sample street segment length values 

 

Table 30 – Descriptive statistics of the sample street segment length values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 28.80 228.0 83.95 ± 31.36 983.33 1.15 ± 0.09 1.58 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 31 – Shapiro-Wilk test of the sample street segment length values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.92 693 3.61E-18 
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length, when centerline segments were snapped to the adjacent pavement (or 

sidewalk) in ArcGIS, the lengths were slightly adjusted and in some cases 

shortened. 

 

3.4.2.4 Destination Accessibility 

Destination accessibility is a D variable that measures the ease of access to 

local or regional destinations of interest (e.g., shops and jobs) (Handy, 1993). 

Regional accessibility can be measured as the distance to the central business 

district (Cervero, 2006) or the number of jobs (L. Frank et al., 2009) or other 

attractions reachable within a given travel time. Local accessibility is 

measured slightly differently and is defined by Handy (1993) as the distance 

from home to the closest “convenience establishment” (e.g., supermarkets, 

pharmacies, and dry cleaners). 

 

Destination accessibility has more recently been measured in several studies 

using online rating tools such as Walk Score (Walk Score, 2016). Walk Score 

is an Internet-based platform that rates the walkability of a specific addresses 

based on its proximity to a number of different destinations. Walk Score 

ratings are made on a Likert scale from 0 to 100 based on the number of 

nearby stores and amenities (e.g., grocery stores, coffee shops, restaurants, 
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bars, movie theatres, schools, parks, libraries, bookstores, fitness centers, 

drug stores, hardware stores, and clothing/music stores) within a one-mile 

radius of a selected address (Carr, Dunsiger, & Marcus, 2011). The higher the 

rating, the more accessible desirable destinations are to the selected address.  

Several studies have examined the use and validity of Walk Scores in 

measuring neighborhood walkability and access to amenities in the US (e.g., 

Carr et al., 2011; Duncan, Aldstadt, Whalen, Melly, & Gortmaker, 2011). The 

studies by Carr et al. (2011) and Duncan et al. (2011) used GIS measures to 

validate Walk Score data, concluding that Walk Score values represented 

reliable measures of destination accessibility in multiple locations and across 

multiple geographic scales. 

 

For this study, an address at the approximate midpoint of each sample street 

segment was retrieved from the address data layer in ArcGIS and recorded 

as part of the meta-data for each sample street segment. Later, this 

approximate midpoint address was entered into the Walk Score platform to 

obtain a score for each sample street segment. 

 

Figure 18, Table 32, and Table 33 show the frequency distribution and 

descriptive statistics for destination accessibility measures from all 693 

sample street segments included in the dataset. Overall, destination 



 

 

 

 
Figure 18 – Histogram of the destination accessibility values 

 

Table 32 – Descriptive statistics of the destination accessibility values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 12 100 67.85 ± 17.87 319.40 -0.30 ± 0.09 -0.53 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 33 – Shapiro-Wilk test of the destination accessibility values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.98 693 4.73E-08 
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accessibility values were negatively skewed and non-normally distributed, 

with values ranging from 12 to 100 and a mean ± standard deviation of 67.85 

± 17.87. 

 

3.4.2.5 Distance to Transit 

Distance to transit is a D variable commonly measured as the average of the 

shortest routes from the midpoint of the sample street segment to the nearest 

rail station or bus stop (Bento et al., 2003; L. Frank et al., 2009). In this study, 

distance to transit was calculated using the ERSI ArcInfo Network Analyst 

toolbox. A network analysis was performed to find the shortest distance in 

meters from the mid-point of each sample street segment to the closest rail, 

bus, or subway station. The result was a distance-to-transit variable (in 

meters) related to each study segment. 

 

Figure 19, Table 34, and Table 35 show the frequency distribution and 

descriptive statistics for distance-to-transit measures from all 693 sample 

street segments included in the dataset. Overall, distance-to-transit values 

were positively skewed and non-normally distributed, with values ranging 

from 0.10 to 1,464.50 meters and a mean ± standard deviation of 93.49 ± 

117.09 meters. 



 

 

 

 
Figure 19 – Histogram of the distance-to-transit values 

 

Table 34 – Descriptive statistics of the distance-to-transit values 

N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

693 0.10 1,464.50 93.49 ± 117.09 13,709.56 4.26 ± 0.09 33.00 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 

 

 

Table 35 – Shapiro-Wilk test of the distance-to-transit values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.66 693 4.38E-35 
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3.4.2.6 Demographics 

The only demographic D variable measured in this study was average 

household size for output areas whose centroids fell with the 400 m buffer 

around each sample street segment. Household size has been shown in 

previous studies (e.g., Ameli et al., 2015; Ewing & Clemente, 2013b) to be 

significantly (p ≤ 0.05) related to average pedestrian counts. Additional 

demographic measures related to income (e.g., median household income 

and income per capita) are also sometimes computed; however, this data was 

not available at the resolution of the output area geography and thus these 

additional demographic measures were not incorporated into the controlled 

models. 

 

Figure 20, Table 36, and Table 37 show the frequency distribution and 

descriptive statistics for average household size measures from all 693 

sample street segments included in the dataset. Overall, average household 

size values were negatively skewed and non-normally distributed, with 

values ranging from 0 to 3.0 people per household and a mean ± standard 

deviation of 2.05 ± 0.31 people per household. 

 



 

 

 

 
Figure 20 – Histogram of the average household size values 

 

 

Table 36 – Descriptive statistics of the average household size values 

 N Min. Max. Mean ± SDa Variance Skewness ± SEa Kurtosis ± SEa 

 693 0.00 3.00 2.05 ± 0.31 0.10 -0.80 ± 0.09 7.28 ± 0.19 
aAbbreviations: SD, Standard deviation; SE Standard Error 
 

 

 

Table 37 – Shapiro-Wilk test of the average household size values 

Shapiro-Wilk 
Statistic Degrees of freedom p-value 

0.92 693 4.20E-19 
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3.4.3 Dependent Variable (Pedestrian Activity) 

The dependent variable in this study was the average number of people 

encountered on four passes, also referred to as “walk-throughs,” up and 

down one side30 of the sample street segment. Measurements were made by 

walking the length of the sample street segment one time for each count and 

included every pedestrian encountered during the walk-through. 

 

Due to the small sample size of these field counts and that counts were made 

in succession at different times and days of the week, there was a need to 

establish the reliability of the field counts in this study. Thus, additional 

counts were collected using two websites that provide street-level imagery, 

Google Street View and Bing Streetside, and then compared to the field 

counts for inter-rater reliability and scale reliability. 

 

3.4.3.1 Note on the Use of Internet-Based, Street-Level Imagery 

Google Street View (Google Inc., 2016) is a technology available online 

through Google Maps and Google Earth that allows users to see omni-

directional street-level imagery shot continuously from the top of a moving 

car along public streets. Since its inception in 2007, Google Street View has 

                                                 
30 Where not defined by the topography of the street segments on the street network, the side 
of the sample street segment for observations was randomly selected. 
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been increasingly utilized in urban planning and design research as a reliable 

and cost-effective alternative to conducting in-person neighborhood and 

streetscape audits measuring walkability and bikeability (Badland et al., 

2010; Clarke et al., 2010; Odgers et al., 2012; Rundle et al., 2011; Wilson et al., 

2012). 

 

Microsoft’s Bing Streetside platform (Microsoft, 2016), available through Bing 

Maps, was also used to make additional counts for comparison with average 

field counts. Streetside imagery is similar to Google Street View, though 

often at slightly lower image resolutions. It is also worth noting that the 

majority of the Bing Streetside imagery around Glasgow was captured 

several years before (mostly in 2012) the imagery captured in Google Street 

View (mostly in 2015). 

 

3.4.3.2 Reliability Testing 

Two reliability tests were performed with respect to the field and virtual 

pedestrian counts. The first test was for inter-rater reliability for the counts 

made using the two Internet-based imagery resources. In Internet-based 

images, pedestrians can sometimes be partially hidden by other pedestrians, 

cars, trees, and other visual obstacles, and the images are also sometimes 
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blurry. Therefore, it was assumed that there was some observer error 

associated with virtual counts made using Internet-based imagery. In order 

to test the effects of observer errors, an inter-rater reliability test was 

conducted by the author and 2 undergraduate research assistants. A random 

selection of 30 sample street segments31 (with both high and low pedestrian 

counts) were selected from the dataset, and all 3 observers counted the total 

number of pedestrians on each of the 30 samples street segments using both 

Google Street View and Bing Streetside imagery. 

 

In order to assess the inter-rater reliability of multiple individuals analyzing 

the same set of samples, intra-class correlation coefficients were computed 

using a two-way mixed ANOVA model with measures of consistency (see 

Table 38). The results in Table 38 represent estimates for the reliability of a 

single rating, as this study ultimately relied on the average pedestrian counts 

of a single observer (i.e., the author). 

 

Table 38 – Intraclass correlation coefficients for a sample of thrity counts by 3 observers 

Imagery Source Intraclass Correlation Coefficients (ICCs) 
Google 0.94 
Bing 0.98 

                                                 
31 This is a sample size analogous to that used in similar reliability studies (e.g., Clifton et al., 
2007; T. J. Pikora et al., 2002). 
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Higher ICC values indicate greater inter-rater reliability, with estimates of 1 

indicating perfect agreement, and estimates of 0 indicating random 

agreement (Hallgren, 2012). The intra-class correlation coefficients indicated 

almost perfect agreement according to the benchmarks for observer 

agreement suggested by Cicchetti (1994). 

 

After establishing that pedestrian counts could be reliably counted across 

Internet-based sources, another test of reliability was conducted to compare 

all 693 field counts to counts from web-based street imagery. In order to test 

the internal consistency of this measures (i.e., how closely related the set of 

measures were as a group), Cronbach alpha (α) values were computed (see 

Table 39). 

 

Table 39 – Cronbach’s Alpha values for field counts versus Internet-based, street-level 
imagery counts 

Statistic Field counts vs. 
Google Street View Counts 

Field counts vs. 
Bing Streetside Counts 

Cronbach's alpha, α 0.91 0.88 
Sample size, n 692 666 

 

Cronbach α values are commonly used to assess scale reliability or how 

closely two indicators (or “scales”) measure the same variable. While 
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acceptable α values can range from 0.50 to 0.80 depending on the number of 

items in the scale, the stage and application of the research (Field, 2013, pp. 

709-710). Kline (1999) noted that α values of 0.80 and greater are generally 

acceptable indicators of reliability. As the results from this second reliability 

test showed, comparisons between field counts and Internet-based, street-

level imagery counts all indicated high degrees of reliability, and thus the 

average pedestrian counts collected in the field were considered appropriate 

for use in this study. Further statistical descriptions and analysis of the 

dependent average pedestrian counts variable is included in Chapter 4, as 

the distribution of this variable directly influenced the model selection used 

to generate results for this study. 

 

3.5 Methodology 

Primary data for the independent variables (streetscape qualities) and the 

dependent variable (pedestrian activity) was collected by the author on each 

of the 693 sample street segments over the course of two summers, 2014 and 

2015, using helmet-mounted, GoPro action cameras. Video samples (see 

Figure 21) were collected and later analyzed following an innovative, 

validated video recording protocol developed by the author (see Appendix C 

for details) and field manual (see Appendix D for details) adapted from 

Ewing et al. (2005). 
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Figure 21 – Still image from video sample collected on Duke Street in Glasgow, UK 

Auditing the video clips taken at each sample street segment location took on 

average approximately 15 minutes. Sample street segment were accessed 

mostly by bike or occasionally on foot (for sites located within walking 

distance from the University of Strathclyde)32. Sample street segments 

located in close proximity to one another were grouped together prior to 

sampling to allow for reduced travel time between segments during daily 

sampling. The following standardized sampling criteria were also set in 

place in order to achieve the most comparable pedestrian counts across all 

samples, representative of typical weekday flow: 

 

                                                 
32 For the full scale project sampling, over 800 miles of biking and walk were logged by the 
author over the course of the two summers (2014 and 2015) traveling on bike between 
sample street segments and walking during video sampling. 
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• Samples may only be collected during the summer months at times 

when: (1) it is not raining at the time of sampling, (2) it has not been 

raining for at least an hour prior to sampling (allowing time for street 

furniture, etc. to dry), and (3) average daily temperatures were above 

yearly averages (approximately 13°C average high temperature). 

 

• Samples may only be collected during the weekdays and during mid-

day off-peak hours – i.e., 9:30AM until 4:00PM. Holidays or days of 

special events (e.g., Commonwealth Games) are also excluded. 

 

While the majority of the methodologies for primary data collection and 

analysis are explained in Appendix C and Appendix D, the following 

subsections detail important notes regarding the reliability of these methods 

and related limitations. 

 

3.5.1 Pilot Tests and Reliability Testing 

Before using the video recording protocol (Appendix C) and adapted field 

manual (Appendix D) to collect and analyze data from each of the 693 

sample street segments in the dataset, a pilot test was conducted to test the 

reliability of both of the instruments, using a subset of 30 randomly-selected 

sample street segments and 3 trained undergraduate research assistants. 

After an initial 1-day training, which included a classroom-based 
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introduction to the video recording protocol and adapted field manual, the 3 

undergraduate research assistants and the author independently conducted 

both in-person/on-street audits of the 30 samples street segments and also 

collected and analyzed video samples from each sample location according 

to the video recording protocol and field manual. 

 

In order to assess the inter-rater reliability of multiple individuals analyzing 

the same set of 30 samples, intra-class correlation coefficients were computed 

using a two-way mixed ANOVA model with measures of consistency using 

the in-person, on-street audits (see Table 40). The results in Table 40 

represent estimates for the reliability of a single rating for each computed 

streetscape quality, as this study ultimately relied on the streetscape quality 

scores of a single observer (i.e., the author). 

 

Table 40 – Intraclass correlation coefficients for streetscape quality variables from 30 sample 
street segments by 4 observers 

Streetscape Quality Intraclass Correlation Coefficients (ICCs) 
Imageability 0.92 
Enclosure 0.92 
Human scale 0.81 
Transparency 0.91 
Complexity 0.93 
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The intra-class correlation coefficients indicated almost perfect agreement 

according to the benchmarks for observer agreement suggested by Cicchetti 

(1994). 

 

After establishing that streetscape qualities scores could be reliably scored by 

multiple trained observers, another test of reliability was conducted to 

compare scores collected using in-person, on-street audits and audits 

conducted via video samples. In order to test the internal consistency of these 

measures (i.e., how closely related the set of measures were as a group), 

Cronbach alpha (α) values were computed (see Table 41). 

 

Table 41 – Cronbach’s Alpha values for average streetscape quality measurements from 30 
sample street segments taken from the field versus video clips by 4 observers 

Streetscape Quality Cronbach's alpha, α 
Imageability 0.96 
Enclosure 0.92 
Human scale 0.96 
Transparency 0.98 
Complexity 0.96 

 

As the results from this second reliability test showed, comparisons between 

field measures and video clip measures for each streetscape quality indicated 

high degrees of scale reliability. Overall, these results indicated that the 

video recording protocol and adapted field manual were reliable instruments 
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for use in this study and were then used for data collection and analysis on 

the full-scale, city-wide study including all 693 samples street segments. 

 

3.5.2 Limitations of the Methodology 

One of the most significant limitations of this study is the limited counts of 

pedestrians conducted at each sample location. Others have suggested 

similar standardization of pedestrian accounts in order to account for this 

limitation. For example, Ameli et al. (2015) suggested counting the number of 

pedestrians over a 30-minute period at each sample street segment during 

hours of peak pedestrian activity (11:30-13:30 and 16:30-18:30 in the case of 

Salt Lake City) and non-inclement weather conditions (i.e., not in rain or 

periods of high winds). While longer standardized counts would be 

preferred, the scale of the case study area limited counts of pedestrians to the 

4 walk-throughs, which were validated against two other randomized counts 

conducted using Internet-based, street-level imagery as described above. 

 

3.6 Ethical considerations 

Following the University of Strathclyde’s guidance on ethics (University of 

Strathclyde, 2013a, 2013b), the required ethics, participant consent, and risk 
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assessment forms33 were completed and approved prior to field sampling 

and the use of undergraduate research students in pilot studies and 

reliability testing. 

 

The main ethical issue related to this study involved the collection of 

potentially harmful data while video recording in public street 

environments. Harmful data could include, for example, incidents of crime 

witnessed in a public place. 

 

All efforts were made during the collection, analysis, reporting, and storing 

of all data to avoid collecting and disclosing information that would be 

harmful to those potentially captured during on-street video recording. The 

data collected for this investigation was reported strictly in terms of 

mathematical values, without the need to disclose any personal information. 

 

These ethical considerations were made in keeping with the American 

Psychological Association Ethics Code (effective 1 June 2010) Section 8.03 

and the British Psychological Society Code of Ethics and Conduct (effective 

August 2009) Section 1.3.ix . 

                                                 
33 Copies of these forms are provided in Appendix E for reference. 
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter details the results of this study examining the relationship 

between streetscape qualities and pedestrian activity in Glasgow, UK. The 

first section of this chapter covers a detailed description of the statistical 

distribution of the dependent variable (average pedestrian counts). All 

statistical analysis, unless noted otherwise, was conducted using the IBM 

statistical analysis software package SPSS Statistics (IBM Corp., 2015). The 

first section is followed by a discussion of how this distribution was then 

used to select the generalized linear regression model for statistically relating 

the control variables (D variables) and independent variables (streetscape 

qualities) to the average pedestrian counts. The third section presents an 

overview of the statistical modeling results using negative binomial 

generalized linear regression models. Statistical validation of these models is 

then explained before a more detailed discussion of the results, including 

notes on implications for the research and practice of urban design, and 

relevant limitations. 
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4.2 Statistical Description of the Dependent Variable 

The method for statistically modeling the relationship between streetscape 

qualities and pedestrian activity was determined by the distribution of the 

dependent average pedestrian counts variable. 

 

4.2.1 Frequencies 

The distribution of the average pedestrian counts was initially evaluated 

using a histogram showing the frequency of average pedestrian counts (see 

Figure 22). 

 

 
Figure 22 – Histogram of the dependent variable (average pedestrian counts) 
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The histogram shown in Figure 22 is a graphical representation of the 

probability distribution where each column (or “bin”) contains a single 

value. For example, the first bin contains the value 0, indicating the 

frequency of 0 average pedestrian counts in the dataset, and so on. A normal 

curve (represented by the black line in Figure 22) was also generated based 

on the same mean and standard deviation as the data from the dataset. 

 

Based on a visual inspection of the histogram, the distribution of the average 

pedestrian counts appeared to be unimodal, positively skewed, and non-

normal. Further descriptive statistics and tests of normality were then 

conducted to confirm initial estimates related to the distribution of the 

average pedestrian counts variable. 

 

4.2.2 Descriptive Statistics 

The average pedestrian counts in the dataset, ranged from 0 to 35, with many 

of the sample street segments having low average pedestrian counts (304 

sample street segments had an average pedestrian count of 0 or 1). The mean 

± standard deviation of the average pedestrian counts was 1.74 ± 3.40, and 

the variance was 11.56. With the variance over 6 times larger than the mean, 

the distribution displayed signs of overdispersion. Full details of the 

descriptive statistics for the average pedestrian counts are shown in Table 42. 
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Table 42 – Descriptive statistics for the dependent variable (average pedestrian counts) 

 N Min Max 
Mean ± 

SDa 
Variance 

Skewness ± 
SEa 

Kurtosis ± 
SEa 

Average 
pedestrian 
counts 

693 0 35 
1.74 ± 
3.40 

11.56 4.28 ± 0.09 24.96 ± 0.19 

aAbbreviations: SD, Standard deviation; SE, Standard error 
 

4.2.2.1 Notes on Skewness and Kurtosis 

The skewness value of the average pedestrian counts was 4.28, indicating a 

positively skewed distribution as shown in Figure 22. The skewness value 

measures the degree and direction of the distribution asymmetry. A 

skewness value of 0 indicates a symmetric distribution, while a positive 

skewness value indicates an asymmetrical distribution that is skewed to the 

right, and a negative skewness value indicates an asymmetrical distribution 

that is skewed to the left (see Figure 23). 
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Figure 23 – Examples of negative and positive skew (Source: © Rodolfo 
Hermanss/Wikimedia/CC-BY-SA-3.0) 

The kurtosis value of the average pedestrian counts was 24.96, indicating a 

higher propensity to produce outliers, or a “flatter” tail, as shown in the 

Figure 22 histogram. Kurtosis is a measure of the “heaviness,” or 

“extremity,” of the tails of a distribution – i.e., the “propensity to produce 

outliers” (Westfall, 2014, p. 191). Near-normal distributions have kurtosis 

values close to 0, while positive kurtosis values indicate the tails are 

“heavier” than normal distributions and negative kurtosis values indicate the 

tails are “lighter” than the normal distribution (see Figure 24). 

 

 

Figure 24 – Examples of kurtosis curves greater than (heavier), equal to, and less than 
(lighter) normal. 
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4.2.3 Test of Normality 

While visual inspection of the histogram and descriptive statistics indicated 

that the distribution of average pedestrian counts was likely non-normal, a 

Shapiro-Wilk test (Shapiro & Wilk, 1965) of normality was also conducted 

(see Table 43) to test the discrepancy between the observed sample 

distribution and the corresponding normal curve, as advised by Ghasemi 

and Zahediasl (2012). 

 

Table 43 – Shapiro-Wilk test of the dependent variable (average pedestrian counts) 

 Shapiro-Wilk 
Statistic Degrees of freedom p-value 

Average Pedestrian Counts 0.52 693 1.65E-39 

 

The Shapiro-Wilk test compares the observed sample distribution to an 

expected normal distribution using the Shapiro-Wilk (W) test statistic for 

normality, defined by the following equation (Shapiro & Wilk, 1965, p. 592): 

 

𝑊𝑊 = �∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 �2

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

, 

 

where yi is the ith-order statistic; 𝑒𝑒� = (y1 + … + yn)/n, which represents the 

sample mean; and ai is a constant given by the following equation: 
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(𝐿𝐿1, … ,𝐿𝐿𝑛𝑛) = 𝑚𝑚′𝑉𝑉−1

�(𝑚𝑚′𝑉𝑉−1𝑉𝑉−1𝑚𝑚)
, 

 

where m = (m1,…,mn)’ and m1,…,mn are the expected values of standard 

normal order statistics. V is the corresponding covariance matrix. 

 

The null hypothesis (H0) of the Shapiro-Wilk test is that the sample 

population is normally distributed. When W = 1, the sample variable data are 

perfectly normal (i.e., H0 is not rejected). When W is significantly (p ≤ 0.05) 

smaller than 1, the H0 is rejected, and the distribution is considered non-

normally distributed. Because the Shapiro-Wilk test is biased by the sample 

size (see Field, 2013, p. 184), the sample population, n, should be less than or 

equal to 2,000, as recommended by Royston (1982; 1992) and was the case in 

this study (n = 693). The results of the Shapiro-Wilk test (W = 0.52; p = 1.65E-

39) indicated that the distribution of the dependent average pedestrian 

counts variable was non-normally distributed, thus the H0 was rejected. 

 

Additionally, a normal quantile-quantile (Q-Q) probability plot was used for 

further visual inspection of the distribution and validation of the Shapiro-

Wilk test results. Q-Q plots are used to plot quantiles of data as opposed to 

accounting for each individual score as shown in the Figure 22 histogram. 
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Quantiles are values that split datasets into equal portions. The Q-Q plot of 

the average pedestrian counts variable (see Figure 25) showed that the 

observed quantiles (represented as individual points in Figure 25) departed 

from normality (represented by the straight, diagonal line Figure 25). 

Additionally, the pattern of the points wrapping about the normal line 

further validated earlier descriptive statistics regarding skewness and 

kurtosis. As noted by Field, when interpreting a Q-Q plot, “[k]urtosis is 

shown up [sic] by the dots sagging above or below the line, whereas skew is 

shown up [sic] by the dots snaking around the line in an ‘S’ shape” (2013, p. 

185). 

 

 
Figure 25 – Normal Q-Q plot of the dependent variable (average pedestrian counts) 
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4.2.4 Summary of the Statistical Description 

According to the results presented above, it was determined that the 

distribution of the average pedestrian counts was positively skewed, 

positively kurtotic, and therefore non-normally distributed, thus indicating 

the need for a generalized linear regression model. The following section 

(Section 4.3) details the process for selecting the generalized linear regression 

model applied in this study. 

 

4.3 Selection of the Generalized Linear Regression Model 

Two types of generalized linear regression models are commonly used in 

regression analysis when the dependent variable is a count with non-

negative integers and is non-normally distributed: (1) a Poisson regression or 

(2) a negative binomial regression (Vittinghoff, Shiboski, Glidden, & 

McCulloch, 2005). 

 

Where these two models differ is in their assumptions regarding the 

relationship between the mean (µ) and variance (σ2) of the dependent 

variable. A Poisson regression assumes that σ2 = µ, while a negative binomial 

regression assumes σ2 > µ. 
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As was the case in this study, the variance of the dependent average 

pedestrian counts variable (11.56) was over 6 times larger than the mean 

(1.74), indicating overdispersion. Long and Freese have noted, “the PRM 

[Poisson regression model] rarely fits, due to overdispersion. That is, the 

model under fits [sic] the amount of dispersion in the outcome” (2006, p. 

372). Thus, a negative binomial regression was initially selected for statistical 

modeling in this study and later confirmed as the more appropriate 

generalized linear regression model using an estimated dispersion coefficient 

(see Section 4.5.1). 

 

4.4 Results of the Negative Binomial Generalized Linear Regression 

Models 

To compare the relationship between the control variables (D variables) and 

the independent variables (streetscape qualities) with the dependent variable 

(average pedestrian counts), two negative binomial regression models were 

generated (see Table 44). Model 1 was comprised only of the control 

variables, including measures of density, diversity, street network design, 

destination accessibility, distance to transit, and demographics. Model 2 was 

comprised of both the control variables and the independent variables, 

including imageability, enclosure, human scale, transparency, and 

complexity. Overall, many of the control variables had the expected 
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relationships with the average pedestrian counts and were statistically 

significant (p ≤ 0.05). Additionally, two of the five streetscape qualities, 

imageability and transparency, were also related to the average pedestrian 

counts at statistically significant levels (p ≤ 0.05) – a novel finding for a city-

wide study utilizing an adapted version of the Clemente et al. (2005) 

protocols. For a full discussion of the results, see Section 4.6. 

 

4.5 Validation of the Negative Binomial Generalized Linear Regression 

Models 

Before interpreting the results of the negative binomial regression models 

shown in Table 44, it was necessary to test the validity of the models. The 

following sections detail the tests that were used to: (1) confirm 

overdispersion and the use of the negative binomial regression analysis for 

statistical modeling, and (2) check for issues with multicollinearity and 

spatial autocorrelation amongst the variables. 

 

4.5.1 Overdispersion Tests 

To verify the overdispersion of the assumed negative binomial distribution, a 

dispersion coefficient (labeled “Estimated Dispersion Coefficient” in Table 

44) was computed as part of the original output models using SPSS. A 

Poisson distribution is one in which this estimated dispersion coefficient is 



 

 

Table 44 – Negative binomial generalized linear regression models 

Model 1 Model 2 

Parameter B Std. 
Error 

95% Wald Confidence 
Interval Hypothesis Test 

B Std. 
Error 

95% Wald Confidence 
Interval Hypothesis Test 

Lower Upper Wald Chi-
Square 

p-value Lower Upper Wald Chi-
Square 

p-value 

(Intercept) -2.41 0.56 -3.52 -1.31 18.26 1.90E-05 -3.33 0.52 -4.34 -2.32 41.63 1.10E-10 
D_1.1 0.46 0.12 0.23 0.69 15.38 8.80E-05 0.31 0.09 0.13 0.49 11.15 8.39E-04 
D_1.2 0.05 0.02 0.02 0.09 7.41 0.01 -4.50E-04 0.02 -0.04 0.04 6.23E-04 0.98 
D_2 0.67 0.35 -0.01 1.36 3.69 0.05 0.37 0.32 -0.26 1 1.35 0.25 
D_3.1 -3.27E-04 1.32E-03 -2.91E-03 2.26E-03 0.06 0.8 7.00E-05 1.16E-03 -2.20E-03 2.34E-03 3.63E-03 0.95 
D_3.2 0.57 0.81 -1.02 2.15 0.49 0.49 0.18 0.72 -1.24 1.6 0.06 0.8 
D_3.3 5.28E-03 1.59E-03 2.17E-03 0.01 11.06 8.81E-04 0.01 1.48E-03 0 0.01 13.88 1.94E-04 
D_4 0.03 4.87E-03 0.02 0.04 38.28 6.13E-10 0.02 4.41E-03 0.01 0.03 18.25 1.90E-05 
D_5 -0.01 7.10E-03 -0.01 -3.92E-03 55.94 7.46E-14 -0.01 6.65E-04 -0.01 -3.43E-03 50.65 1.10E-12 
D_6 -0.21 0.2 -0.6 0.19 1.06 0.3 -0.23 0.18 -0.58 0.13 1.58 0.21 
Q_1 

     
  0.18 0.08 0.03 0.33 5.69 0.02 

Q_2 
     

  -0.08 0.06 -0.2 0.04 1.61 0.21 
Q_3 

     
  1.95E-03 0.08 -0.15 0.15 6.53E-04 0.98 

Q_4 
     

  0.73 0.1 0.54 0.92 56.89 4.60E-14 
Q_5 

     
  -0.05 0.09 -0.23 0.12 0.37 0.55 

Estimated 
Dispersion 
Coefficient 

0.59 0.07 0.46 0.75 
    

0.29 0.05 0.21 0.4 
    

Dependent Variable: Average pedestrian counts 

Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-use entropy; D_3.1, Intersection density; D_3.2, Proportion of four-way intersections; D_3.3, Street segment 
length; D_4, Walk Score; D_5, Distance to transit; D_6, Buffer average household size 

Independent variables: Q_1, Imageability; Q_2, Enclosure; Q_3, Human scale; Q_4, Transparency; Q_5, Complexity 
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constrained to zero, while an estimate greater than zero confirms 

overdispersion (UCLA: Statistical Consulting Group, 2016). As the estimates 

were all greater than 0, and the 95% confidence intervals also did not include 

a 0, the results of the estimated dispersion coefficient confirmed that the 

negative binomial regression was more appropriate than the Poisson 

regression for statistical modeling in this study. 

 

4.5.2 Multicollinearity Tests 

Multicollinearity between the variables in the models was a concern as some 

of the variables are comprised of similar measures (see full list of streetscape 

features from best-fit models in Section 3.41). Multicollinearity exists when 

there is a correlation between two or more predictor variables in a model. If 

collinearity exists between variables in the model, it is difficult to obtain 

unique estimates of the regression coefficients – i.e., the B values from the 

models become interchangeable. As the degree of multicollinearity increases, 

the B values can become unreliable, and their associated standard errors may 

become inflated, meaning that the B values are more variable across the 

samples (Field, 2013, pp. 324-325). 

 

As an initial check for multicollinearity, a correlation matrix of the predictor 

variables was generated to determine the correlation values between the 
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variables used in the models (see Table 45). Strong correlation values are 

indicated by |r| values > 0.80. None of the correlation coefficients showed 

signs of strong correlation among the predictor variables used in this study, 

as all |r| values were < |0.40|, with the exception of the r value (r = -0.61) 

between Q_1 (imageability) and Q_5 (complexity). 

 

Additionally, Pearson correlations were also computed for each pairing of 

variables included in the models (see Table 46). These correlations measure 

both the strength and direction of the linear relationship between two 

variables and can range from -1 to +1. A value of -1 indicates a perfect 

negative correlation, a value of +1 indicating a perfect positive correlation, 

and 0 value indicates no correlation at all. 

 

Tolerance and variance inflation (VIF) values were also computed for each of 

the variables used in the models (see Table 47). Tolerance is an indication of 

the percentage of variance in the variable that cannot be account for by the 

other variables. VIF is a ratio of 1 divided by the tolerance value and is a 

measure of the linear relationship between predictor variables. Common 

rules of thumb state that values of tolerance that are less than 0.10 and VIF 

values greater than 5.0 may indicate a problem with multicollinearity (Hair, 

Black, Babin, Anderson, & Tatham, 2006; Marquardt, 1970; Menard, 1995). 



 

 

Table 45 – Correlation matrix for predictor variables used in the negative binomial generalized linear regression models 

Coefficient Correlations, r 

 Q_5 D_5 D_3.3 D_3.2 D_2 D_6 D_3.1 Q_2 D_1.2 Q_4 D_4 Q_3 D_1.1 Q_1 
Q_5 - 0.05 -0.07 -0.05 -0.03 0.06 -0.09 0.18 -0.08 -0.11 0.08 -0.26 0.11 -0.61 
D_5 0.05 - 0.00 0.01 0.12 0.18 -0.02 -0.10 0.07 0.08 0.10 -0.03 0.00 -0.09 
D_3.3 -0.07 0.00 - 0.02 0.00 -0.09 0.03 -0.07 0.11 0.13 -0.05 0.06 0.01 -0.18 
D_3.2 -0.05 0.01 0.02 - 0.02 -0.09 0.05 0.01 0.01 0.02 -0.17 -0.01 -0.13 0.03 
D_2 -0.03 0.12 0.00 0.02 - 0.05 -0.01 0.02 0.27 -0.02 -0.20 -0.04 -0.16 0.00 
D_6 0.06 0.18 -0.09 -0.09 0.05 - -0.18 0.09 -0.03 0.08 0.23 -0.12 0.20 -0.07 
D_3.1 -0.09 -0.02 0.03 0.05 -0.01 -0.18 - 0.03 -0.08 0.04 -0.25 -0.05 -0.34 0.08 
Q_2 0.18 -0.10 -0.07 0.01 0.02 0.09 0.03 - -0.14 -0.18 -0.05 -0.39 -0.05 -0.07 
D_1.2 -0.08 0.07 0.11 0.01 0.27 -0.03 -0.08 -0.14 - 0.04 -0.28 0.04 -0.29 -0.17 
Q_4 -0.11 0.08 0.13 0.02 -0.02 0.08 0.04 -0.18 0.04 - -0.14 -0.37 -0.14 -0.12 
D_4 0.08 0.10 -0.05 -0.17 -0.20 0.23 -0.25 -0.05 -0.28 -0.14 - 0.03 -0.18 -0.05 
Q_3 -0.26 -0.03 0.06 -0.01 -0.04 -0.12 -0.05 -0.39 0.04 -0.37 0.03 - 0.00 -0.05 
D_1.1 0.11 0.00 0.01 -0.13 -0.16 0.20 -0.34 -0.05 -0.29 -0.14 -0.18 0.00 - -0.07 
Q_1 -0.61 -0.09 -0.18 0.03 0.00 -0.07 0.08 -0.07 -0.17 -0.12 -0.05 -0.05 -0.07 - 
Dependent Variable: Average pedestrian counts 
Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-use entropy; D_3.1, Intersection density; D_3.2, Proportion of four-way intersections; D_3.3, 
Street segment length; D_4, Walk Score; D_5, Distance to transit; D_6, Buffer average household size 
Independent variables: Q_1, Imageability; Q_2, Enclosure; Q_3, Human scale; Q_4, Transparency; Q_5, Complexity 
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Table 46 – Pearson correlation matrix for predictor variables used in the negative binomial generalized linear regression models 

Pearson Correlations (p-value) 

  PC Q_1 Q_2 Q_3 Q_4 Q_5 D_1.1 D_1.2 
PC - 0.48 (8.84E-41) 0.36 (1.06E-22) 0.50 (4.47E-45) 0.60 (7.74E-70) 0.40 (1.56E-28) 0.56 (1.46E-59) 0.41 (3.78E-30) 
Q_1.1 0.48 (8.84E-41) - 0.46 (1.78E-37) 0.60 (2.87E-69) 0.59 (8.05E-67) 0.78 (2.54E-143) 0.42 (1.30E-31) 0.52 (1.29E-49) 
Q_2 0.36 (1.06E-22) 0.46 (1.78E-37) - 0.64 (1.71E-81) 0.61 (2.61E-71) 0.36 (5.51E-22) 0.47 (4.67E-40) 0.48 (5.32E-42) 
Q_3 0.50 (4.47E-45) 0.60 (2.87E-69) 0.64 (1.71E-81) - 0.72 (1.22E-109) 0.61 (1.45E-70) 0.43 (8.69E-32) 0.44 (9.52E-34) 
Q_4 0.60 (7.74E-70) 0.59 (8.05E-67) 0.61 (2.61E-71) 0.72 (1.22E-109) - 0.55 (5.28E-57) 0.55 (6.59E-56) 0.50 (5.88E-46) 
Q_5.1 0.40 (1.56E-28) 0.78 (2.54E-143) 0.36 (5.51E-22) 0.61 (1.45E-70) 0.55 (5.28E-57) - 0.32 (1.10E-17) 0.43 (5.36E-32) 
D_1.1 0.56 (1.46E-59) 0.42 (1.30E-31) 0.47 (4.67E-40) 0.43 (8.69E-32) 0.55 (6.59E-56) 0.32 (1.10E-17) - 0.65 (8.07E-85) 
D_1.2 0.41 (3.78E-30) 0.52 (1.29E-49) 0.48 (5.32E-42) 0.44 (9.51E-34) 0.50 (5.88E-46) 0.43 (5.36E-32) 0.65 (8.07E-85) - 
D_2 0.20 (2.30E-07) 0.11 (2.63E-03) 0.12 (1.36E-03) 0.16 (3.46E-05) 0.20 (5.78E-08) 0.11 (3.80E-03) 0.28 (9.44E-14) 0.04 (0.35) 
D_3.1 0.36 (2.79E-22) 0.31 (2.26E-16) 0.32 (1.62E-17) 0.33 (2.60E-19) 0.38 (1.27E-24) 0.28 (9.21E-14) 0.61 (8.10E-73) 0.50 (2.32E-45) 
D_3.2 0.17 (5.38E-06) 0.15 (8.18E-05) 0.15 (1.20E-04) 0.16 (3.47E-05) 0.18 (1.15E-06) 0.14 (1.82E-04) 0.30 (8.32E-15) 0.22 (3.65E-09) 
D_3.3 -5.20E-03 (0.89) 0.16 (3.77E-05) -0.02 (0.69) -0.02 (0.61) -0.08 (0.03) 0.13 (9.29E-04) -0.09 (0.02) -0.08 (0.04) 
D_4.1 0.44 (8.92E-35) 0.41 (1.29E-29) 0.46 (1.51E-37) 0.41 (1.14E-28) 0.54 (1.22E-53) 0.31 (2.39E-17) 0.70 (1.55E-102) 0.63 (2.04E-78) 
D_5 -0.15 (6.61E-05) 1.57E-03 (0.97) 0.05 (0.23) -0.01 (0.74) -0.08 (0.05) -0.04 (0.33) -0.08 (0.03) -0.09 (0.01) 
D_6 -0.21 (4.39E-08) -0.13 (3.92E-04) -0.26 (2.18E-12) -0.14 (2.85E-04) -0.27 (2.07E-13) -0.11 (5.85E-03) -0.38 (4.03E-25) -0.25 (4.41E-11) 

Dependent Variable: PC_Average pedestrian counts 
Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-use entropy; D_3.1, Intersection density; D_3.2, Proportion of four-way intersections; 
D_3.3, Street segment length; D_4, Walk Score; D_5, Distance to transit; D_6, Buffer average household size 
Independent variables: Q_1, Imageability; Q_2, Enclosure; Q_3, Human scale; Q_4, Transparency; Q_5, Complexity 
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Pearson Correlations (p-value) 

  D_2 D_3.1 D_3.2 D_3.3 D_4.1 D_5 D_6 
PC 0.20 (2.30E-07) 0.36 (2.79E-22) 0.17 (5.38E-06) 5.20E-03 (0.89) 0.44 (8.92E-35) -0.15 (6.61E-05) -0.21 (4.39E-08) 
Q_1.1 0.11 (2.63E-03) 0.31 (2.26E-16) 0.15 (8.18E-05) 0.16 (3.77E-05) 0.41 (1.29E-29) 1.57E-03 (0.97) -0.13 (3.92E-04) 
Q_2 0.12 (1.36E-03) 0.32 (1.62E-17) 0.146 (1.20E-04) -0.02 (0.69) 0.46 (1.50E-37) 0.05 (0.23) -0.26 (2.18E-12) 
Q_3 0.16 (3.46E-05) 0.33 (2.60E-19) 0.16 (3.47E-05) -0.02 (0.61) 0.41 (1.14E-28) -0.01 (0.74) -0.14 (2.85E-04) 
Q_4 0.20 (5.78E-08) 0.38 (1.27E-24) 0.18 (1.15E-06) -0.08 (0.03) 0.54 (1.22E-53) -0.08 (0.05) -0.27 (2.07E-13) 
Q_5.1 0.11 (3.80E-03) 0.28 (9.21E-14) 0.14 (1.82E-04) 0.13 (9.29E-04) 0.31 (2.39E-17) -0.04 (0.33) -0.11 (0.01) 
D_1.1 0.28 (9.44E-14) 0.61 (8.80E-73) 0.29 (8.32E-15) -0.09 (0.02) 0.70 (1.55E-102) -0.08 (0.03) -0.38 (4.03E-25) 
D_1.2 0.04 (0.35) 0.50 (2.32E-45) 0.22 (3.65E-09) -0.08 (0.04) 0.63 (2.04E-78) -0.09 (0.01) -0.25 (4.41E-11) 
D_2 - 0.19 (3.57E-07) 0.09 (0.03) -0.01 (0.70) 0.31 (2.38E-16) -0.14 (3.84E-04) -0.17 (1.17E-05) 
D_3.1 0.19 (3.57E-07) - 0.19 (5.82E-07) -0.06 (0.10) 0.57 (3.52E-61) -0.09 (0.02) -0.14 (2.32E-04) 
D_3.2 0.09 (0.03) 0.19 (5.82E-07) - -0.03 (0.43) 0.31 (2.03E-16) -0.06 (0.10) -0.06 (0.13) 
D_3.3 -0.01 (0.70) -0.06 (0.10) -0.03 (0.43) - -0.06 (0.11) 0.02 (0.58) 0.12 (1.17E-03) 
D_4.1 0.31 (2.38E-16) 0.57 (3.52E-61) 0.31 (2.03E-16) -0.06 (0.11) - -0.14 (3.45E-04) -0.39 (3.18E-26) 
D_5 -0.14 (3.84E-04) -0.09 (0.02) -0.06 (0.10) 0.02 (0.58) -0.14 (3.45E-04) - -0.11 (0.01) 
D_6 -0.17 (1.17E-05) -0.14 (2.32E-04) -0.06 (0.13) 0.12 (1.17E-03) -0.39 (3.18E-26) -0.11 (5.12E-03) - 

Dependent Variable: PC_Average pedestrian counts 
Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-use entropy; D_3.1, Intersection density; D_3.2, Proportion of four-way 
intersections; D_3.3, Street segment length; D_4, Walk Score; D_5, Distance to transit; D_6, Buffer average household size 
Independent variables: Q_1, Imageability; Q_2, Enclosure; Q_3, Human scale; Q_4, Transparency; Q_5, Complexity 
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Table 47 – Multicollinearity statistics for predictor variables used in the negative binomial 
generalized linear regression models 

Variable 
Collinearity Statistics 

Variable 
Collinearity Statistics 

Tolerance VIF Tolerance VIF 
D_1.1 0.34 2.93 Q_1 0.31 3.25 
D_1.2 0.41 2.47 Q_2 0.48 2.10 
D_2 0.81 1.23 Q_3 0.35 2.85 
D_3.1 0.55 1.81 Q_4 0.35 2.83 
D_3.2 0.88 1.13 Q_5 0.34 2.97 
D_3.3 0.90 1.12    
D_4 0.36 2.75    
D_5 0.91 1.10    
D_6 0.74 1.35    
Dependent Variable: Average pedestrian counts 
Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-
use entropy; D_3.1, Intersection density; D_3.2, Proportion of four-
way intersections; D_3.3, Street segment length; D_4, Walk Score; 
D_5, Distance to transit; D_6, Buffer average household size 
Independent variables: Q_1, Imageability; Q_2, Enclosure; Q_3, Human 
scale; Q_4, Transparency; Q_5, Complexity 

 

The lowest tolerance and highest VIF values were found in the imageability 

variable at 0.31 and 3.25 respectively. Together with the results from the 

correlation matrix, these results indicated that multicollinearity was not an 

issue, and there was little reason for concerns over redundancy in the 

variables. 

 

4.5.3 Spatial Autocorrelation Tests 

Negative binomial regressions also assume that the measured values of the 

dependent variable are independent of one another. Since observations of 

average pedestrian counts may be related by their spatial proximity (see 
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Figure 26), it was necessary to test for spatial autocorrelation in the residuals 

of the negative binomial regression models. 

 

 

Figure 26 – Spatial proximity of sample street segments and their 400-m walkshed buffers 
within the case study area 

Spatial autocorrelation may be positive or negative. In this study, positive 

spatial autocorrelation would have indicated that similar values of 

pedestrian counts occurred near one another. Negative spatial 

autocorrelation would have indicated that dissimilar values occurred near 

one another. If spatial autocorrelation does not exist, then the results of the 

negative binomial regression models are valid. 
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4.5.3.1 The Moran’s I Test 

A Moran’s I test (Moran, 1950) was used for testing spatial autocorrelation. 

While the Moran’s I test generates similar results as the Geary’s C statistic 

(Geary, 1954), another commonly used test for spatial auto correlation, the 

Moran’s I test is often preferred, as it has been shown by Cliff and Ord (1975, 

1981) to be more consistently powerful. 

 

The Moran’s I test statistic, I, is based on sample locations and sample values. 

Given a set of samples and an associated attribute (e.g., average pedestrian 

counts), it evaluates whether the pattern expressed in the dataset is clustered, 

dispersed, or random based on cross products of the deviations from the 

mean. I is calculated according to the following equation (Esri Inc., 2015): 

 

𝐼𝐼 =
𝐵𝐵
𝑆𝑆0

∑ ∑ 𝐵𝐵𝑖𝑖,𝑗𝑗(𝑚𝑚𝑖𝑖 − �̅�𝑚)(𝑚𝑚𝑗𝑗 − �̅�𝑚)𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

∑ (𝑚𝑚𝑖𝑖 − �̅�𝑚)2𝑛𝑛
𝑖𝑖=1

 

 

where n is the number of observations of variable x, i and j are locations, �̅�𝑚 is 

the mean of the x  variable, wi,j are elements of a weight matrix, and S0 is the 

sum of the elements of a weight matrix: 𝑆𝑆0 = ∑ ∑ 𝐵𝐵𝑖𝑖,𝑗𝑗𝑗𝑗𝑖𝑖 . 
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Moran’s I test statistics can vary between -1 to 1. I values higher than -1/(n - 

1) indicate positive spatial autocorrelation, while I values lower than -1/(n - 

1) indicate negative spatial autocorrelation. 

 

4.5.3.2 Conceptualizations of the Spatial Relationship 

Before testing for spatial autocorrelation using the Moran’s I test, a realistic 

conceptualization of the spatial relationship was determined. In order to 

reflect the inherent spatial relationship between data points, several types of 

conceptualizations can be used (see Table 48 for common examples). For this 

study two conceptualizations of spatial relationships were used based on the 

assumption that average pedestrian counts on sample street segments 

located within a walkable distance of one another (i.e., within a 400 m 

walkshed) were more likely to influence one another. The two 

conceptualizations of spatial relationships used to compute the Moran’s I test 

statistics were: (1) the zone of indifference conceptualization and (2) the 

distance band conceptualization, using a spatial weights matrix. The inverse 

distances conceptualization was ruled out given the scale of the study area 

and the fact that it forces all data points to be a neighbor to all other features 

in the dataset. 

 



 

 

Table 48 – Conceptualizations of spatial relationships for Moran’s I test 

Conceptualization of Spatial Relationships Description Figures 
Inverse distance or Inverse distance squared This conceptualization is based on an impedance or 

distance decay model of spatial relationships. It 
assumes that all features influence all other 
features, but that the farther away a feature is, the 
smaller its influence. 
 

 
Distance band This conceptualization is used when imposing a 

buffer of influence on the spatial interactions of the 
data. Each feature is analyzed within the context of 
those neighboring features located within a 
specified buffer distance. Data points within the 
specified buffer distance are weighted equally, 
while features outside the specified distance are 
assumed to have no influence (i.e., their weight is 
zero). 
 

 

Zone of indifference This conceptualization combines the inverse 
distance and fixed distance band models. Features 
within the distance band or threshold distance are 
included in analyses, while the level of influence for 
those located outside the threshold distance decays 
over distance. 
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4.5.3.3 Results of the Moran’s I Test Using the Zone of Indifference 

Conceptualization 

Using the zone of indifference conceptualization, a Moran’s I test was 

conducted using Environmental Systems Research Institute (Esri) ArcGIS 

(Esri Inc., 2015) and a standard 400 m distance band (see Figure 27). The 

results indicated that spatial autocorrelation was nonsignificant (p = 0.54) 

using the zone of indifference conceptualization. However, one of the 

assumptions of the zone of indifference conceptualization is that all features 

influence all other features in the dataset, but that the farther away a feature 

is from the fixed 400 m distance band, the smaller its influence. In reality, 

given the spatial scale of the study area, it was unlikely that spatial outliers 

beyond the 400 m threshold distance were having much of an effect, if any. 

Therefore, another Moran’s I test was conducted using the fixed distance 

band conceptualization and a spatial weights matrix to account for spatial 

outliers. 
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Figure 27 – ArcGIS spatial autocorrelation report for zone of indifference conceptualization 

4.5.3.4 Results of the Moran’s I Test Using the Distance Band 

Conceptualization with a Spatial Weights Matrix 

In the second test, to determine an appropriate distance band for all but the 

spatial outliers, a spatial weights matrix was created using the Spatial 

Statistics Tools in ArcGIS, the same threshold distance of 400 m, and a 

minimum number of 2 neighbors. This meant that the Moran’s I test applied 

a fixed 400 m distance band to all data points in the dataset except those that 

did not have at least two neighbors (a condition of a valid Moran’s I test) 

within the threshold distance. For those spatial outliers, the distance band 

was expanded just enough to ensure that only those spatial outliers had at 
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least two neighbors. Using that spatial weights matrix and the distance band 

conceptualization, the second Moran’s I test (see Figure 28) also resulted in 

statistically nonsignificant spatial autocorrelation in the residuals of the 

model (p = 0.11). 

 

 

Figure 28 – ArcGIS spatial autocorrelation report for distance band conceptualization using 
spatial weights matrix 

Results from these two tests confirmed that spatial autocorrelation was not 

present. Therefore, the results from the negative binomial regression models 

were valid. 
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4.6 Discussion of the Results from the Negative Binomial Generalized 

Linear Regression Models 

The purpose of this study was to test the validation of using streetscape 

qualities as variables in modeling the relationship between measures of the 

built environment related to walkability and pedestrian activity. The 

following sections provide a more detailed discussion of the results 

presented in Section 4.4, with notes on relevant limitations and the 

implications for future urban design research and practice. 

 

4.6.1 Goodness of Fit Comparison 

Overall, both models had significant (p ≤ 0.05) likelihood ratio chi-squared 

(Χ2) statistics, indicating a good fit relative to the intercept-only, or “null,” 

model without any predictor variables (see Table 49). 

 

Table 49 – Likelihood ratio Χ2 test results for Model 1 and Model 2 

Model 1 Model 2 
Likelihood Ratio Χ2 df p-value Likelihood Ratio Χ2 df p-value. 

396.28 9 0.001< 528.15 14 0.001< 

 

Moreover, when comparing the fit of the two models, the likelihood-ratio test 

statistic, D, was 131.88 with 5 degrees of freedom, which indicated a 
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significantly better fit at p ≤ 0.05 where the critical value for Χ2 distributions 

(df = 5) is = 11.07 (Devore, 2004, p. 745). D was calculated using the following 

equation (Field, 2013, pp. 763-764): 

 

𝐷𝐷 = 2 × (log-likelihoodModel 2 − log-likelihoodModel 1)

= (likelihood ratio 𝛸𝛸2Model 2) − (likelihood ratio 𝛸𝛸2Model 2) 

 

These results, indicating the improved fit of Model 2 over Model 1, 

confirmed that as a group the measurable streetscape qualities related to 

walkability added significantly to the explanatory power of the models. This 

suggested that streetscape qualities should be considered in future models 

linking measures of the built environment related to walkability to 

pedestrian activity. 

 

4.6.2 Significance of Model Variables 

As noted earlier in Section 4.4, several of the D variables tested resulted in 

the expected positive relationships to the average pedestrian counts at 

statistically significant levels (p ≤ 0.05), including buffer FAR, population 

density (Model 1 only), land-use entropy (Model 1 only), street segment 

length, and Walk Score. The only exception was distance to transit, which 

was statistically significant (p ≤ 0.05) but had a negative relationship to 
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average pedestrian counts. This was expected because as one moves further 

away from transit stops (i.e., the values of distance to transit get larger), one 

is more likely to choose an alternative to non-motorized forms of transport. 

 

Buffer population density (Model 2 only), land-use entropy (Model 2 only), 

intersection density, proportion of four-way intersections, and average 

household size were nonsignificantly related (p > 0.05) to average pedestrian 

counts. While similar studies (Ameli et al., 2015; Ewing & Clemente, 2013b) 

have shown that intersection density, proportion of four-way intersections, 

and land-use entropy variables were similarly nonsignificant (p > 0.05), these 

results were surprising, as these variables have been shown to be strongly 

associated with household level travel studies (Ewing & Cervero, 2010). 

Some of the differences between the results in this study and those found in 

the literature may stem from the fact that this study specifically examines the 

relationship between streetscape qualities and pedestrian counts, as opposed 

to explaining individual walking trips. Additionally, upon further 

examination of the variables, some exhibited only slight variability. For 

example, the mean ± standard deviation for the average household size was 

2.05 ± 0.31. Where there is only slight variation in the variable, it is often 

nonsignificant. 
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Despite some of the control variables showing nonsignificant relationships to 

pedestrian activity, two of the streetscape qualities, imageability and 

transparency, added significantly to the explanatory power of Model 2 and 

showed positive and significant relationships to pedestrian activity (B = 0.18, 

p = 0.02; and B = 0.29, p = 4.60E-14 respectively). This represents a novel 

finding, as it stands in contrast with previous results from the only other 

known study of its kind conducted on a city-wide scale34 in New York City 

(Ewing & Clemente, 2013b). In that preliminary study, transparency was the 

only streetscape quality with a statistically significant (p ≤ 0.05) relationship 

to pedestrian activity. 

 

Transparency, defined in this study as “the degree to which people can see or 

perceive what lies beyond the edge of a street and, more specifically, the 

degree to which people can see or perceive human activity beyond the edge 

of a street” (Ewing & Handy, 2009, p. 78), was measured as a function of 

proportion of first floor windows, proportion of active uses buildings, and 

                                                 
34 As noted in Section  2.3.2, a similar study was also conducted in Salt Lake City (SLC) by 
Ameli et al. (2015), which showed that both imageability and transparency were statistically 
significant (p ≤ 0.05). However, Ameli et al.’s study was constrained geographically to the 
downtown area of SLC (just under 1 square mile or around 629 acres) and limited to a 
sample size of 179 sample street segments. By comparison, the case study area in this study 
was approximately 175 square kilometers (around 67.5 square miles or just over 43,243 
acres) and n = 693 samples street segments. 



 

147 

proportion of the street wall35 (see Figure 29 and Figure 30). Not only was 

transparency statistically significant (p = 4.60E-14) after controlling for D 

variables, but it also had the greatest significance of any other variable 

accounted for in the negative binomial generalized linear regression model. 

These results suggested that regardless of other standard control variables, 

including distance to transit (p = 1.10E-12), (Walk Score) destination 

accessibility (p = 1.90E-05), and floor area ratio (p = 8.39E-04), transparency 

was an important variable in modeling the relationship between built 

environment measures related to walkability and pedestrian activity. 

 

Imageability, defined in this study as, “the quality of a place that makes it 

distinct, recognizable and memorable” (Ewing & Handy, 2009, p. 73), was 

measured as a function of proportion of historic buildings, number of 

courtyards/plazas/parks, presence of outdoor dining, number of buildings 

with non-rectangular shapes, noise level, number of major landscape 

features, and number of buildings with identifiers36 (see Figure 31, Figure 32, 

and Figure 33). Similar to transparency, imageability was also shown to be a 

significant factor (p = 0.02)  

                                                 
35 See Section 3.4.1.5 and Appendix D for more details on the transparency variable and how 
it was measured in this study. 
36 See Section 3.4.1.2 and Appendix D for more details on the imageability variable and how 
it was measured in this study. 



 

 

 

Figure 29 – Active street with windows along a street wall contributing to 
transparency quality (Location: George St.) 

 

Figure 30 – Raised first-floor windows well above the street level and view 
of the pedestrian, which do not contribute to transparency quality 

(Location: Blythswood Sq.) 
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Figure 31 – A building with identifying features (e.g., “convenience store”), 
indicating its first-floor use and contributing to the imageability quality (Location: 

High St.) 

 

Figure 32 – Street with outdoor dining, which contributes to imageability 
quality 
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Figure 33 – Street with approximately 90 per cent of its building frontage (on both sides) occupied by historic buildings, contributing to imageability (Location: 
Bell St.) 
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in modeling the relationship between built environment measures related to 

walkability and pedestrian activity, though not as significantly as other 

variables included in the models. 

 

4.6.3 A Note on the Effect Sizes of Model Variables 

Table 44 presented the negative binomial regression coefficients for each of 

the control and predictor variables included in the two-step regression 

models. These coefficients, or B values, represented a measure of effect size 

and can be interpreted as follows: for a one unit change in the 

control/predictor variable, the difference in the logs of expected counts of the 

dependent variable (i.e., the average pedestrian counts) is expected to change 

by the respective regression coefficient, or B value, given the other 

control/predictor variables in the model are held constant. For example, in 

Table 44, the B value for transparency (Q_4) was 0.73. This meant that for 

every one unit increase in transparency scores, the difference in the logs of 

the expected average pedestrian counts would be expected to increase by 

0.73, while holding the other variables constant. Given that the units for the 

control and predictor variables included in this model are different37, 

                                                 
37 For example, intersection density is measured in units of number of intersections within 
the 400 m buffer around each sample street segment divided by the gross area of the buffer 
in square km. While, transparency is measured in integer units according to the best fit 
models reported in Section 3.4. 
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comparing the relative effects of the independent and control variables on 

the dependent variable is difficult. However, these B values do still allow for 

an understanding of the individual effect of the control/predictor variables 

on the dependent variation (average pedestrian counts). 

 

4.6.4 Additional Negative Binomial Generalized Linear Regression Models 

For further analysis, two additional models were generated to compare 

against the control-only model (Model 1). The first was a simplified version 

of Model 2, containing only the control and independent variables that 

entered into Model 2 at significant levels (p ≤ 0.05). The second was an 

adaptation of Model 2 whereby the independent variables (streetscape 

qualities) were substituted with individual streetscape features that were 

statistically significant (p ≤ 0.05) in modeling pedestrian activity. These 

additional models provided further confirmation of model fits and 

highlighted the importance of individual streetscape features. 
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4.6.4.1 Simplification of Model Using Only Significant Control Variables (D 

Variables) and Independent Variables (Streetscape Qualities) 

A simplified version of Model 2 (see Table 50), was generated using only the 

control variables (D variables) and independent variables (streetscape 

qualities) that entered significantly into Model 2 (p ≤ 0.05). 

 

Table 50 – Negative binomial generalized linear regression model, with only control and 
independent variables that entered into Model 2 at significant levels (p ≤ 0.05) 

Model 3 

Parameter B 
Std. 

Error 

95% Wald Confidence 
Interval Hypothesis Test 

Lower Upper Wald Chi-
Square 

p-value 

(Intercept) -3.79 0.28 -4.35 -3.23 177.07 0.001< 
D_1.1 0.33 0.08 0.18 0.49 17.89 2.30E-05 
D_3.3 0.01 1.47E-03 2.66E-03 0.01 14.26 2.34E-05 
D_4 0.02 3.90E-03 0.01 0.03 27.13 1.60E-04 
D_5 -0.01 6.53E-04 -0.01 -3.59E-03 55.56 1.90E-07 
Q_1 0.13 0.06 0.02 0.24 5.37 9.05E-14 
Q_4 0.69 0.08 0.54 0.84 79.06 2.05E-02 
(Negative 
binomial) 

0.29 0.05 0.21 0.41     

Dependent Variable: Average pedestrian counts 
Control Variables: D_1.1, FAR; D_3.3, Street segment length; D_4, Walk Score; D_5, Distance to transit 
Independent variables: Q_1, Imageability; Q_4, Transparency 

 

In this model, Model 3, all of the relationships with pedestrian activity 

remained the same. Similarly, Model 3 showed an improvement in the 

predictive power over Model 1 (see Table 51), where the likelihood-ratio test 

statistic, D, when compared with Model 1, was 126.53 with 3 degrees of 

freedom. 
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Table 51 – Likelihood ratio Χ2 test results for Model 3 

Model 3 
Likelihood Ratio Χ2 df p-value 

522.81 6 0.001< 
 

This indicated a significantly better fit at p ≤ 0.05 where the critical value for 

Χ2 distributions (df = 3) is = 7.815 (Devore, 2004, p. 745). However, when 

Model 3 was compared to Model 2, the likelihood-ratio test statistic, D, was 

only 5.34 with 8 degrees of freedom, indicating a nonsignificantly better fit at 

p ≤ 0.05, where the critical value for Χ2 distributions is 15.507 (Devore, 2004, 

p. 745). 

 

Tests for multicollinearity (see Table 52) and spatial autocorrelation (see 

Figure 34) were also conducted and used to confirm that there was no 

redundancy of variables or spatial autocorrelation in the residuals in Model 

3. 

 

Overall, the results of the simplified negative binomial regression model 

(Model 3) confirmed that a model, based only on the significant (p ≤ 0.05) 

control and independent variables from Model 2 could add significantly to 

the explanatory power of models. This is an important finding, as a 
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Table 52 – Multicollinearity statistics for Model 3 

Variable 
Collinearity Statistics 
Tolerance VIF 

D_1.1 0.46 2.16 
D_3.3 0.92 1.09 
D_4.1 0.47 2.13 
D_5 0.98 1.03 
Q_1.1 0.59 1.71 
Q_4 0.50 1.98 
Dependent Variable: Average 
pedestrian counts 
Control Variables: D_1.1, FAR; D_3.3, 
Street segment length; D_4, Walk 
Score; D_5, Distance to transit 
Independent variables: Q_1, 
Imageability; Q_4, Transparency 

 

simplified model may help streamline similar studies in the future (e.g., by 

reducing the time to collect and analyze street segment samples), aimed at 

modeling the relationship between measures of the built environment related 

to walkability and pedestrian activity. In statistical parlance, this is referred 

to as parsimony, as Field explained: 

“[W]hen building a model we should strive for parsimony. In a 

scientific context, parsimony refers to the idea that simpler 

explanations of a phenomenon are preferable to complex ones. The 

statistical implication of using a parsimony heuristic is that models 

be kept as simple as possible. In other words, do not include 

predictors unless they have explanatory benefit” (2013, p. 768) 

 



 

 

 

Figure 34 – Model 3 ArcGIS spatial autocorrelation report for zone of indifference conceptualization (left) and distance band conceptualization using spatial weights 
matrix (right) 
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4.6.4.2 Adaptation of Model Using Control Variables (D Variables) and 

Significant Independent Variables (Streetscape Features) 

Though the focus of this study is on the relationship between streetscape 

qualities and pedestrian activity, an additional model (see Table 53) was 

created to relate streetscape features (comprised by the measured streetscape 

qualities) directly to average pedestrian counts. In this model, Model 4, the 

control variables (D variables) remained the same, while the earlier 

independent variables (streetscape qualities) were changed for streetscape 

features that entered into the model at significant levels (p ≤ 0.05). 

 

The three streetscape features that were included in the model were the 

number of buildings with identifiers (included in the measure of 

imageability), the proportion of street-level façade with windows (included 

in the measure of transparency), and the proportion of active use buildings 

(included in the measure of transparency). The number of buildings with 

identifiers variable ranged from 0 to 25, with a mean ± standard deviation of 

1.54 ± 2.95. The proportion of street-level façade with windows variable 

ranged from 0 to 1, with a mean ± standard deviation of 0.25 ± 0.27. The  

 



 

 

Table 53 – Comparison of model relating streetscape features directly to average pedestrian counts 

Model 1 Model 4 

Parameter B 
Std. 

Error 

95% Wald Confidence 
Interval 

Hypothesis Test 

B 
Std. 

Error 

95% Wald Confidence 
Interval 

Hypothesis Test 

Lower Upper 
Wald 
Chi-

Square 
p-value Lower Upper 

Wald Chi-
Square 

p-value 

(Intercept) -2.41 0.56 -3.52 -1.31 18.26 1.90E-05 -2 0.49 -2.96 -1.05 16.82 4.12E-05 
D_1.1 0.46 0.12 0.23 0.69 15.38 8.80E-05 0.31 0.09 0.14 0.48 12.46 4.15E-04 
D_1.2 0.05 0.02 0.02 0.09 7.41 0.01 0 0.02 -0.03 0.04 0.15 0.7 
D_2 0.67 0.35 -0.01 1.36 3.69 0.05 0.22 0.31 -0.39 0.82 0.48 0.49 
D_3.1 -3.27E-04 1.32E-03 -2.91E-03 2.26E-03 0.06 0.8 3.80E-05 1.13E-03 -2.18E-03 2.25E-03 1.13E-03 0.97 
D_3.2 0.57 0.81 -1.02 2.15 0.49 0.49 0.01 0.71 -1.38 1.4 1.16E-04 0.91 
D_3.3 5.28E-03 1.59E-03 2.17E-03 0.01 11.06 8.81E-04 0.01 1.43E-03 3.55E-03 0.01 19.8 8.60E-06 
D_4 0.03 4.87E-03 0.02 0.04 38.28 6.13E-10 0.02 4.29E-03 0.01 0.03 22.18 2.48E-06 
D_5 -0.01 7.10E-03 -0.01 -3.92E-03 55.94 7.46E-14 -4.31E-03 6.52E-04 -0.01 -3.04E-03 43.84 3.56E-11 
D_6 -0.21 0.2 -0.6 0.19 1.06 0.3 -0.15 0.17 -0.49 0.19 0.74 0.39 
F_1.4 

     
  0.05 0.01 0.03 0.08 14.07 1.76E-04 

F_4.1 
     

  0.54 0.23 0.09 0.99 5.54 0.02 
F_4.3 

     
  0.77 0.18 0.42 1.13 18.61 1.60E-05 

Estimated 
Dispersion 
Coefficient 

0.59 0.07 0.46 0.75 
    

0.25 0.05 0.18 0.36 
    

Dependent Variable: Average pedestrian counts 
Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-use entropy; D_3.1, Intersection density; D_3.2, Proportion of four-way intersections; D_3.3, 
Street segment length; D_4, Walk Score; D_5, Distance to transit; D_6, Buffer average household size 
Independent variables: F_1.4, Number of buildings with identifiers (Imageability); F_4.1, Proportion of street-level façade with windows (Transparency); F_4.3, 
Proportion of active use buildings (Transparency) 
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proportion of active use buildings variable ranged from 0 to 1, with a mean ± 

standard deviation of 0.19 ± 0.35. 

 

While the number of buildings with identifiers (B = 0.05, p = 1.76E-04), the 

proportion of street-level façade with windows (B = 0.54, p = 0.02), and the 

proportion of active use buildings (B = 0.77, p = 1.60E-05) were all positively 

and significantly related to average pedestrian counts, these individual 

streetscape features were not as significant as other standard D variables like 

the distance to transit (p = 3.56E-11) and (Walk Score) destination accessibility 

(p = 2.48E-06). 

 

Overall, both models had significant likelihood ratio chi-squared (Χ2) 

statistics (p ≤ 0.05), indicating a good fit relative to the intercept-only, or 

“null,” model without any predictor variables (see Table 54). 

 

Table 54 – Likelihood ratio Χ2 test results for Model 1 and Model 4 

Model 1 Model 4 
Likelihood Ratio Χ2 df p-value Likelihood Ratio Χ2 df p-value. 

396.28 9 0.001< 556.42 12 0.001< 
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When comparing the fit of the two models, the likelihood-ratio test statistic, 

D, was 160.14 with 3 degrees of freedom, which indicated a significantly 

better fit at p ≤ 0.05 where the critical value for Χ2 distributions (df = 3) is = 

7.82 (Devore, 2004, p. 745).  

 

Tests for multicollinearity (see Table 55) and spatial autocorrelation (see 

Figure 35) were also conducted and used to confirm that there was no 

redundancy of variables or spatial autocorrelation in the residuals in Model 

4. 

 

Table 55 – Multicollinearity statistics for Model 4 

Variable 
Collinearity Statistics 

Tolerance VIF 
D_1.1 0.34 2.91 
D_1.2 0.44 2.29 
D_2 0.81 1.23 
D_3.1 0.56 1.79 
D_3.2 0.89 1.13 
D_3.3 0.95 1.05 
D_4.1 0.37 2.69 
D_5 0.92 1.09 
D_6 0.75 1.33 
F_1.4 0.41 2.43 
F_4.1 0.36 2.81 
F_4.3 0.31 3.28 

Dependent Variable: Average pedestrian counts 
Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-use entropy; D_3.1, 
Intersection density; D_3.2, Proportion of four-way intersections; D_3.3, Street segment 
length; D_4, Walk Score; D_5, Distance to transit; D_6, Buffer average household size 
Independent variables: F_1.4, Number of buildings with identifiers (Imageability); F_4.1, 
Proportion of street-level façade with windows (Transparency); F_4.3, Proportion of active 
use buildings (Transparency) 



 

 

 

Figure 35 – Model 4 ArcGIS spatial autocorrelation report for zone of indifference conceptualization (left) and distance band conceptualization using spatial weights 
matrix (right) 
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Overall, these results indicated that individual streetscape features or groups 

of streetscape features may add significantly to the explanatory power of 

models. This is also an important finding, as urban designers often wish to 

know those specific features that may help contribute pedestrian activity. 

However, urban designers should be careful to avoid interpreting these 

results as certain streetscape features leading to a causal effect on increased 

pedestrian activity. Rather, they should be considered as part of and along 

with other significant factors, including streetscape qualities and other 

measures of the built environment related to walkability (e.g., the standard D 

variables). The following sections will provide more details on the 

implications of these results for further research and practice in the field of 

urban design, and important limitations. 

 

4.6.5 Additional Considerations for Regression Analyses 

As noted in Section 4.3, the distribution of the average pedestrian counts was 

positively skewed, positively kurtotic, and therefore non-normally 

distributed – i .e., the assumptions of an ordinary least squares (OLS) 

regression were violated. Additionally, as noted in Section 3.2, the purposive 

method used established for selecting the units of observation (i.e., the 

sample street segments) was used in lieu of a randomized selection, in an 

attempt to capture relevant and unique sample street segments (e.g., 
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Buchanan Street, Great Western Road, London Road, etc.) that were most 

likely to attract pedestrian activity and be of the greatest importance to the 

local population due to the connection with the rest of the city. However, at 

the suggestion of Prof Robert Gifford (University of Victoria), further 

consideration was given to the potential effect of outliers in the dataset. 

 

While determining outliers in multivariate analyses can be explored using a 

number of methods (e.g., residuals, leverage, and Cook's D statistics), it was 

suggested by Gifford that an outlier may be defined as sample street 

segments with unusually high pedestrian activity relative to the other sample 

street segments in the dataset (e.g., Buchanan Street). In keeping with this 

suggestion, a boxplot was generated (see Figure 36) to help identify potential 

outliers. Boxplots are useful for displaying several aspects of a dataset, 

including: (1) the interquartile range (IQR), that is the middle 50% of average 

pedestrian counts) represented by the tinted box; (2) the median score, 

represented by the solid black line in the tinted box; (3) the range of top 25% 

and bottom 25% of scores, represented by the whiskers; and (4) potential 

outliers, that is, scores that are 3 times the IQR, represented by the * symbol. 
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Figure 36 – Box plot of the dependent variable (average pedestrian counts) 

After a visual inspection of the potential outliers in Figure 36 and 

consultation with a research supervisor, Dr. David Rowe, it was decided that 

sample street segments with average pedestrian counts greater than 9 (i.e., 3 

times the IQR) would be excluded as outliers in an additional analysis of the 

data38. 

 

Two additional regression models were then generated (see Table 56) to 

compare the results after the exclusion of outliers using a two-step regression 

analysis. 

 

                                                 
38 Note, this excluded data collected from 23 sample street segments with average pedestrian 
counts great than 9, which included samples collected on streets such as Buchanan Street, 
Victoria Road, and Byers Road that typically receive higher volumes of pedestrian traffic 
given their proximity to shops and other local amenities. 



 

 

Table 56 – Negative binomial generalized linear regression models (adjusted for outliers) 

Model 5 Model 6 

Parameter B Std. 
Error 

95% Wald Confidence 
Interval Hypothesis Test 

B Std. Error 

95% Wald Confidence 
Interval Hypothesis Test 

Lower Upper Wald Chi-
Square 

p-value Lower Upper Wald Chi-
Square 

p-value 

(Intercept) -1.55 0.53 -2.58 -0.51 8.59 3.38E-03 -2.38 0.50 -3.37 -1.40 22.52 2.08E-06 
D_1.1 0.44 0.15 0.16 0.73 9.11 2.54E-03 0.38 0.13 0.12 0.64 8.38 3.80E-03 
D_1.2 0.02 0.02 -0.03 0.06 0.55 0.46 -0.03 0.02 -0.07 0.01 1.56 0.21 
D_2 0.66 0.32 0.03 1.28 4.16 0.04 0.47 0.30 -0.12 1.056 2.46 0.12 
D_3.1 1.78E-04 1.22E-03 -2.57E-03 2.21E-03 0.02 0.88 2.83E-04 1.11E-03 -1.90E-03 2.46E-03 0.07 0.80 
D_3.2 -0.49 0.75 -1.96 0.98 0.43 0.51 -0.48 0.70 -1.84 0.89 0.47 0.49 
D_3.3 0.01 1.46E-03 1.66E-03 0.01 9.60 1.95E-03 0.01 1.40E-03 3.22E-03 0.01 18.21 1.98E-05 
D_4 0.03 4.50E-03 0.02 0.04 40.36 2.11E-10 0.02 0.004.23E-03 0.01 0.03 19.10 1.23E-05 
D_5 -0.01 6.65E-04 -6.02E-03 -3.42E-03 50.47 1.21E-12 -0.01 6.49E-04 -0.01 -3.25E-03 48.63 3.09E-12 
D_6 -0.46 0.20 -0.86 -0.06 5.01 0.03 -0.46 0.19 -0.83 -0.09 6.03 0.01 
Q_1 

     
  0.07 0.08 -0.09 0.22 0.77 0.38 

Q_2 
     

  0.02 0.06 -0.10 0.13 0.07 0.79 
Q_3 

     
  -0.05 0.08 -0.20 0.10 0.38 0.54 

Q_4 
     

  0.68 0.09 0.50 0.86 57.01 4.35E-14 
Q_5 

     
  -0.06 0.09 -0.24 0.12 0.39 0.53 

Estimated 
Dispersion 
Coefficient 

0.33 0.07 0.22 0.49 
    

0.15 0.05 0.08 0.28 
    

Dependent Variable: Average pedestrian counts 

Control Variables: D_1.1, FAR; D_1.2, Population density; D_2, Land-use entropy; D_3.1, Intersection density; D_3.2, Proportion of four-way intersections; D_3.3, Street segment 
length; D_4, Walk Score; D_5, Distance to transit; D_6, Buffer average household size 

Independent variables: Q_1, Imageability; Q_2, Enclosure; Q_3, Human scale; Q_4, Transparency; Q_5, Complexity 
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Overall, both Models 5 and 6 had significant (p ≤ 0.05) likelihood ratio chi-

squared (Χ2) statistics, indicating a good fit relative to the intercept-only, or 

“null,” model without any predictor variables (see Table 57). 

 

Table 57 – Likelihood ratio Χ2 test results for Model 5 and Model 6 

Model 5 Model 6 
Likelihood Ratio Χ2 df p-value Likelihood Ratio Χ2 df p-value. 

294.77 9 0.001< 392.25 14 0.001< 

 

Moreover, when comparing the fit of the two models, the likelihood-ratio test 

statistic, D, was 97.48 with 5 degrees of freedom, which indicated a 

significantly better fit at p ≤ 0.05 where the critical value for Χ2 distributions 

(df = 5) is = 11.07 (Devore, 2004, p. 745). 

 

These results, indicating the improved fit of Model 6 over Model 5, 

confirmed that, despite the removal of potential outliers, the measurable 

streetscape qualities related to walkability still added significantly to the 

explanatory power of the models. This suggested that streetscape qualities 

should still be considered in future models linking measures of the built 

environment related to walkability to pedestrian activity. 
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4.6.6 Implications for the Research and Practice of Urban Design 

4.6.6.1 Implications for Research 

This study adds to the literature on the relationship between measures of the 

built environment related to walkability and pedestrian activity in several 

ways. First, considering this case study was conducted in Glasgow, this 

study represents the first of its kind conducted outside of the United States 

and is intended to address previous concerns regarding generalizability and 

homogeneity of environmental patterns (Ameli et al., 2015, p. 406; Ewing & 

Clemente, 2013b, p. 98). Though the results of this study are unique to 

Glasgow, it is intended to shed light on similar trends within other post-

industrial European cities. 

 

Secondly, this study employed a more rigorous methodology for data 

collection and analysis. Novel methods of primary data collection using on-

street video recording were developed and validated, and stricter sampling 

parameters were established in order to create a more standardized method 

of data collection and address previous concerns regarding the variability in 

the day and time of pedestrian counts (Ewing & Clemente, 2013b, p. 98). 

Though limited counts still remains a threat to the reliability of the data 
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collected, every effort was made to try to get a representative sampling of 

typical daily flow. 

 

Lastly, this study also applied rigorous controls for spatial autocorrelation 

and multicollinearity that have not always been used in past studies (e.g., 

Ewing & Clemente, 2013a). These controls validated the results of the 

negative binomial regression models. For a discussion of further research, 

building upon this study, see Section 5.3. 

 

4.6.6.2 Implications for Practice 

The results of this research study pose several implications for practice. 

While traditional aspects of urban planning and design (e.g., building 

density, transit accessibility, etc.) remain important to pedestrian activity and 

the function of the city itself, the careful design of streets may also contribute 

significantly to pedestrian activity or “life” on the street. This idea has been 

well-reflected in policy statements by the Scottish Government (Scottish 

Government, 2010, 2011). The Scottish Government’s policy statement on 

street design, Designing Streets39, highlighted six qualities to be used as a 

framework for “good street design” (Scottish Government, 2010, p. 11). These 

                                                 
39 Importantly, Glasgow City Council’s own Design Guide for New Residential Areas (Glasgow 
City Council, 2013) builds upon and interprets the guidance detailed in Designing Streets. 
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qualities are distinctive, safe and pleasant, easy to move around, welcoming, 

adaptable, and resource efficient, which share many parallels with the 

streetscape qualities measured in this study, including transparency and 

imageability. 

 

With regards to the quality of transparency, Designing Streets stressed the 

importance of pedestrian streets being “overlooked with active frontages” (p. 

23), providing direct frontage access to buildings as a way to “generate 

activity and positive relationship between the street and its surroundings” 

(p. 37), the advantages of putting cars underground as a way to “[preserve] 

the street frontage”, and avoiding “parking within the front curtilage…as it 

breaks up the frontage” (p. 42). However, there is no specific mention of the 

importance of street-level windows. Future iterations of the policy statement 

may benefit from more explicit reference to the importance of street-level 

windows, as they are an important component of transparency and have 

been shown to relate directly to pedestrian activity in this study. 

 

With regards to the quality of imageability, Designing Streets stresses the 

importance of pedestrian streets being “enhanced with punctuations of 

public space” including “parks, green edges or formal and informal squares” 

(p. 25), having “provision of views and vistas, landmarks, gateways and 
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focal points” as a means of orientation and creating visual interest (p. 25), 

lining streets with buildings that help create a “sense of place” by promoting 

“local distinctiveness” (p. 7), and designing to “mitigate noise pollution” (p. 

25). However, there is no specific mention of the importance of buildings 

with identifiers that help reveal a building’s street-level use. Future iterations 

of the policy statement may benefit from more explicit reference to the 

importance of buildings with identifiers, as they are an important component 

of imageability and have been shown to relate directly to pedestrian activity 

in this study. 

 

4.6.7 Limitations of the Results 

As suggested in the previous sections discussing the results, this study is not 

without its limitations. First, pedestrian counts at each sample street segment 

were limited given the geographical scale of the study. One recommendation 

for future research would be to conduct longer standardized counts on a 

subset of the samples in order to get a longitudinal picture of pedestrian 

activity at a given location. Technology now exists to track pedestrian 

activity remotely using fixed pedestrian trackers, which can also provide 

more detail on types of pedestrian activity and patterns over time. 
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Secondly, while the results of this study are intended to shed light on 

potential relationships between streetscape qualities and pedestrian activity 

in other post-industrial European cities, the results of this study are unique 

to Glasgow and more specifically to the most central, pedestrian street 

segments from each of Glasgow’s SIMD datazones. Another 

recommendation for future research would be to conduct this study in other 

post-industrial European cities, especially those in the UK (e.g., Manchester) 

or Scotland in particular. 

 

Lastly, this study focuses only on correlations between measures of the built 

environment linked to walkability and pedestrian activity. It does not prove 

causality. Future research exploring the relationship between qualities of the 

built environment related to walkability and measures of pedestrian activity 

should also include interviews and/or surveys that seek to understand what 

interests and motivates people to walk along certain streets. A valuable 

complement to this study would be to conduct a representative interview 

and/or survey of local citizens on a subset of the samples to understand how 

personal preferences align with measured streetscape qualities. Likewise, 

technology also exists to simulate walking through a virtual environment 

and track eye movements of participants. Using the video samples collected 

in this study and eye-tracking technology, it would be possible to identify 
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additional streetscape features that capture the attention of observers, which 

are not covered in the current index of streetscape features and qualities – 

thus improving researcher’s ability to measure what really matters in relation 

to pedestrian activity. 
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CHAPTER 5. CONCLUSIONS 

When Jan Gehl coined the phrase “life between buildings” he defined it by 

writing, “[l]ife between buildings is not merely pedestrian traffic or 

recreational or social activities. Life between buildings comprises the entire 

spectrum of activities, which combine to make communal spaces in cities and 

residential areas meaningful and attractive” (Gehl, 1987, p. 14). 

Understanding the forces that influence this activity or “life” between 

buildings remains one of the fundamental challenges in the field of urban 

design. Macroscale measures of walkability and microscale measures of 

individual streetscape features have formed the basis for much of the 

evidence linking the built environment and pedestrian activity. However, 

these measures alone do not reflect pedestrians’ overall perceptions of 

streetscape qualities. The importance of perceptual streetscape qualities, and 

their relationship to pedestrian activity, has been written about extensively in 

the urban design literature. Yet, only a handful of limited preliminary studies 

have ever tried to address this gap in the research. The primary purpose of 

this study was to improve upon the limitations of past studies, and further 

test the validity of using perceptual qualities in walkability studies by 
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modeling the relationship between objective measures of streetscape 

qualities and pedestrian activity in Glasgow, Scotland, while controlling for 

macroscale measures of walkability. 

 

5.1 Summary of Findings 

From the onset of this study, it was argued that a greater understanding of 

the relationship between the built environment and pedestrian activity could 

be gained by adopting a probabilistic theoretical perspective. Applied to this 

this study, probabilistic theory held that one would expect independent 

measures of streetscape qualities related to walkability to help explain 

overall patterns of pedestrian activity, while controlling for other macroscale 

factors of walkability. Based on the results of past studies, the following 

hypotheses were made: 

 

1. Collectively, measures of the streetscape qualities add significantly (p 

≤ 0.05) to the overall explanatory power of walkability models, when 

controlling for macroscale measures of walkability (i.e., measures of 

important D variables). 

 

2. Individually, measures of streetscape qualities are directly and 

significantly (p ≤ 0.05) related to average pedestrian counts 
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(dependent variable), when controlling for macroscale measures of 

walkability (i.e., measures of important D variables). 

 

3. Measures of streetscape qualities are of equal or greater significance in 

explaining measures of pedestrian activity, when compared to other 

known built environment correlates of pedestrian activity – i.e., 

macroscale measures of walkability (D variables). 

 

To compare the relationship between the control variables (D variables) and 

the independent variables (streetscape quality) with the dependent variable 

(average pedestrian counts), two negative binomial regression models were 

generated based on primary data collected from 693 central, pedestrian street 

segments throughout Glasgow and secondary data analyzed using GIS (see 

Table 44). Overall, several of the D variables resulted in the expected positive 

relationships to the average pedestrian counts at statistically significant 

levels (p ≤ 0.05). However, when comparing the fit of the control-only model 

and the model with both the control and independent variables, the results 

(D = 131.88, df = 5) indicated that the objective measures of streetscape 

qualities related to walkability added significantly (p ≤ 0.05) to the 

explanatory power of the models, validating the first hypothesis. These 

results suggested that streetscape qualities should be considered in future 
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models linking measures of the built environment related to walkability to 

pedestrian activity. 

 

Additionally, two of the individual streetscape qualities – imageability and 

transparency – added significantly (p ≤ 0.05) to the explanatory power of the 

walkability models, and showed positive and significant relationships to 

pedestrian activity (B = 0.18, p = 0.02; and B = 0.29, p = 4.60E-14 respectively), 

validating the second hypothesis. This represented a novel finding, as it 

stands in contrast with previous results from the only other known study of 

its kind conducted on a city-wide scale40 in New York City (Ewing & 

Clemente, 2013b). 

 

Transparency, defined in this study as “the degree to which people can see or 

perceive what lies beyond the edge of a street and, more specifically, the 

degree to which people can see or perceive human activity beyond the edge 

of a street” (Ewing & Handy, 2009, p. 78), was measured as a function of 

proportion of first floor windows, proportion of active uses buildings, and 

                                                 
40 As noted in Section 2.3.2, a similar study was also conducted in Salt Lake City (SLC) by 
Ameli et al. (2015), which showed that both imageability and transparency were statistically 
significant (p ≤ 0.05). However, Ameli et al.’s study was constrained geographically to the 
downtown area of SLC (just under 1 square mile or around 629 acres) and limited to a 
sample size of 179 sample street segments. By comparison, the case study area in this study 
was approximately 175 square kilometers (around 67.5 square miles or just over 43,243 
acres) and n = 693 samples street segments. 
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proportion of the street wall. Not only was transparency statistically 

significant (p = 4.60E-14) after controlling for D variables, but it also had the 

greatest significance of any other variable accounted for in the negative 

binomial generalized linear regression model, validating the third 

hypothesis. These results suggested that regardless of other standard control 

variables, including distance to transit (p = 1.10E-12), (Walk Score) 

destination accessibility (p = 1.90E-05), and floor area ratio (p = 8.39E-04), 

transparency was an important variable in modeling the relationship 

between built environment measures related to walkability and pedestrian 

activity. 

 

Imageability, defined in this study as, “the quality of a place that makes it 

distinct, recognizable and memorable” (Ewing & Handy, 2009, p. 73), was 

measured as a function of proportion of historic buildings, number of 

courtyards/plazas/parks, presence of outdoor dining, number of buildings 

with non-rectangular shapes, noise level, number of major landscape 

features, and number of buildings with identifiers. Similar to transparency, 

imageability was also shown to be a significant factor (p = 0.02) in modeling 

the relationship between built environment measures related to walkability 

and pedestrian activity, though not as significantly as other variables 

included in the models. 
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5.2 Notes on Causality and Moving Towards Probabilism 

While this study identified unique correlations between macroscale and 

microscale measures of the built environment and pedestrian activity, it 

cannot explain causality. That is, the results of this study merely explain 

what is, not why. Several limitations related to the methodology and 

interpretation of the results from this study were noted in the previous 

chapters. However, it is hoped that as an instrumental case the results from 

this study might be used in future comparisons to studies conducted in 

similar types of cities. By continuing to identify the patterns in the 

relationship between streetscape qualities (Lockton, 2012) and pedestrian 

activity, the closer future models will come to probabilism and enhancing the 

ability of urban designers to understand what the effective environment of 

people will be when the built environment is design in a particular way 

(Lang, 1987). 

 

5.3 Notes on Future Studies 

As noted above in Section 4.6.4.1, this study adds to the walkability literature 

in several ways that can be built upon in future studies to increase the 

understanding of the relationship between streetscape qualities (related to 

walkability) and pedestrian activity. This study was the first of its kind 
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conducted outside of the United States, and was is intended to address 

previous concerns regarding generalizability and homogeneity of 

environmental patterns identified in previous studies by Ameli et al. (2015, p. 

406) and Ewing and Clemente (2013b, p. 98). Though the results of this study 

are unique to central, pedestrian streets in Glasgow, as an instrumental case 

study it was intended to shed light on potential trends within similar post-

industrial European cities. One recommendation for future studies would be 

to conduct a similar study in other post-industrial European cities, especially 

those in the UK (e.g., Manchester) or Scotland in particular. 

 

This study also employed a more rigorous methodology for data collection 

and analysis. Novel methods of primary data collection using on-street video 

recording were developed and validated, and stricter sampling parameters 

were established in order to create a more standardized method of data 

collection across a city-wide geography, addressing previous concerns 

regarding the variability in the day and time of pedestrian counts in the 

study by Ewing and Clemente (2013b, p. 98). Though the limited number of 

pedestrian counts still remains a threat to the reliability of the pedestrian 

activity data collected in this study, every effort was made to get a 

representative sampling of typical daily flow and validate measures against 

other samples taken from Google Street View and Bing Streetside imagery 
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sources. Another recommendation for future studies would be to conduct 

longer standardized counts on a diverse (with respect to range of qualities) 

subset of the samples in order to get a longitudinal picture of pedestrian 

activity at selected locations. Technology now exists to track a range of 

pedestrian activities using remote sensors fixed at on-street locations 

throughout the city. The author of this study has already started to explore 

the future use of tools, such as “placemeters” (Placemeter Inc., 2016) that use 

on-street sensors to remotely track the movements of pedestrians over time, 

such as volumes (numbers of people or flows), walking direction, and dwell 

time (stopping time). This type of technology could also potentially unlock 

the ability to understand pedestrian activity patterns in relation to unique 

design interventions on the street aimed at improving streetscape qualities. 

 

Lastly, this study focuses on correlations between measures of the built 

environment linked to walkability and pedestrian activity. A valuable 

complement to this study would be to include additional interview or 

surveys of local citizens to better understand how personal preferences, 

motivations, and interests align with measured streetscape qualities. 

Likewise, technology also exists to simulate walking through a virtual 

environment and track eye movements of participants as they conduct 

virtual walk-throughs. Using the video samples collected in this study and 
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eye-tracking technology, it may be possible to identify additional physical 

features that capture the attention of observers, yet are not represented in the 

current index of streetscape features and qualities. 

 

5.4 Conclusion 

Streets are one of the most important, permanent, and defining elements of 

the public realm. They provide a link between daily amenities and a context 

for public life. Over the past several years, the fields of urban design and 

public health have united under a common interest in understanding the 

walkability of streets as it relates to health and efforts to curb vehicle miles 

traveled and reduce sprawl and emissions. Understanding the nature of the 

relationship between measures of the built environment and pedestrian 

activity has remained one of the fundamental challenges within the field of 

urban design. Until recently, macroscale measures of walkability and 

microscale measures of individual streetscape features have formed the basis 

for much of the evidence describing the relationship between the built 

environment and pedestrian activity. However, this study added to the 

understanding of this relationship by demonstrating that objective measures 

of streetscape qualities added significantly (p ≤ 0.05) to the explanatory 

power of walkability models, and that streetscape qualities, such as 
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imageability and transparency, in individually added significantly (p ≤ 0.05) 

to the explanatory power of walkability models. 
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Appendix A Glasgow’s Diversity of Architecture and Urban Design 

 
Tenement building, Hillhead (Source: © User: dshaw/Wikimedia 

Commons/CC-BY-SA-3.0) 

 
Pedestrianized shopping area, City Centre (Source: © Finlay 

McWalter/Wikimedia Commons/CC-BY-SA-3.0) 

 
Office buildings in International Financial Services District, St Vincent Place  

(Source: © Barbara Carr/Geograph/CC-BY-SA-2.0) 

 
Multi-story warehouse, Jamaica Street (Source: © Chris Allen/Geograph/CC-

BY-SA-2.0) 
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Living above shops, Great Western Road (Source: © Thomas 

Nugent/Geograph/CC-BY-SA-2.0) 

 
Gleneagles cottages, Scoutstoun (Source: © Barbara Carr/Geograph/CC-BY-SA-

2.0) 

 
Terraced row houses, Hyndland (Source: © Chris Upson/Wikimedia 

Commons/CC-BY-SA-2.0) 

 
Industrial building, Elliot Street (Source: © Thomas Nugent/Geograph/CC-BY-

SA-2.0) 
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Semi-detached suburban housing, Knightswood (Source: © M J 

Richardson/Geograph/CC-BY-SA-2.0) 

 
Forge retail park (Source: © Stephen Sweeney/Geograph/CC-BY-SA-2.0) 

 
Cranhill tower blocks (Source: © Chris Upson/Geograph/CC-BY-SA-2.0) 

 
High Street (Source: © Kim Traynor/Wikimedia Commons/CC-BY-SA-3.0) 
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Newer housing development in Glasgow Harbour (Source: © Thomas 

Nugent/Geograph/CC-BY-SA-2.0) 

 
Newer housing development, Ardencraig Road (Source: © Stephen Sweeney 

/Geograph/CC-BY-SA-2.0) 

 
Glasgow School of Art (Source: © Chris Downer/Geograph/CC-BY-SA-2.0) 

 
BBC Building and Science Centre (Source: © Thomas Nugent/Geograph/CC-

BY-SA-2.0) 
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Riverside Museum (Source: © Gordon Hatton/Geograph/CC-BY-SA-2.0)  

Glasgow City Chambers and George Square (Source: © Andy 
Farrington/Geograph/CC-BY-SA-2.0) 

 
People’s Palace and Winter Gardens, Glasgow Green (Source: © Kim 

Traynor/Geograph/CC-BY-SA-2.0) 

 
Glasgow Cathedral (Source: © Mary and Agnus Hogg/Geograph/CC-BY-SA-

2.0) 

All images used under Creative Commons Licenses (http://creativecommons.org/licenses/) 
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Appendix B Short Biographies of Local Experts 

Name Biography 
Mr Gordon 
Barbour 

Gordon is a qualified Glasgow-based architect with over 
25 years of experience. He studied architecture at both the 
University of Edinburgh and the Oxford Polytechnic. After 
working in private practice, he transitioned into the public 
sector, working on social housing. He has worked for 
Scottish Homes, the National Housing Agency, Glasgow 
City Council, and is currently serving as the development 
manager for the Glasgow Housing Association. As a 
researcher, his research focuses on urban regeneration and 
housing within Glasgow. 
 

Ms Paola 
Pasino 

Paola is a qualified architect based in Glasgow, currently 
working with the Glasgow City Council as a project 
manager. Her work within the public sector focuses on 
housing, development and regeneration services, with a 
recent emphasis on city center regeneration. As a 
researcher, she also studies the relationship between urban 
morphology and social deprivation within the City of 
Glasgow. 
 

Dr Ombretta 
Romice 

Ombretta is a senior lecturer at the University of 
Strathclyde and past president of the International 
Association for People Environment Studies. She teaches 
and conducts research in the areas of urban design, 
environmental behavior studies, urban morphology and 
user participation. She holds a PhD in urban design and 
post doc in housing and regeneration. 
 

Prof Sergio 
Porta 

Sergio is a professor of urban design and the director of 
the Urban Design Studies Unit at the University of 
Strathclyde. He served as former head of the Department 
of Architecture at the University of Strathclyde from 2011-
2014. His research expertise includes urban morphology, 
street network analysis, and urban design. 
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Appendix C Video Recording Protocol 

Materials list 

• GoPro Hero 3+ camera, 2 spare batteries, and housing 

• Helmet (with GoPro mount) 

• USB cable 

• 32GB SD memory card 

Getting started (before entering the field) 

Assemble camera 

1. Insert SD memory card into the SD card slot located on the side of the 

GoPro Hero 3+ camera. 

2. Install the battery into back of the camera. 

3. Power on the camera by pressing and releasing the power button 

located on the front of the camera. The LED recording light on the front 

of the camera will flash three times to indicate that the camera is on. 

4. Check that the battery is fully charged, indicated by the battery meter 

on the LCD status screen, located on the front of the camera. 

5. (If not fully charged) Charge battery by connecting the USB cable to the 

USB port located on the side of the camera to a USB power supply. 

Assemble camera, housing and mount 

1. Attach the camera housing to the helmet using thumb screw. 

2. Twist thumb screw until housing is securely mounted to the helmet. 

3. Assembling the camera 

4. Place the camera into housing. 

5. Close the housing door and hook latch under groove on the backdoor. 
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6. Push down the thumb latch until the housing locks into place. 

Verify camera mode and settings 

1. Verify the camera is in video mode, indicated by the video icon on the 

LCD. 

2. (If not in video mode) Press the power button repeatedly until the video 

icon is displayed. 

3. Verify the camera is set to the following setting, indicated by the icons 

on the LCD: 

• Video resolution/Frames per second (FPS): 1080p-60 

• Field of view (FOV): 170° Wide 

(If not adjusted to proper settings) Adjust camera settings 

1. Press the power button repeatedly until the LCD displays the settings 

icon. 

2. Press the shutter button on the top of the camera to select the settings 

menu. 

3. (To adjust video resolution/FPS) Press the power button repeatedly 

until the LCD displays the icon for the video resolution mode. Press the 

shutter button to select video resolution mode. Press the power button 

repeatedly to toggle through the list of settings until LCD displays 1080-

60. Press the shutter button to select the highlighted resolution setting 

and exit the resolution settings list. 

4. (To adjust FOV) Press the power button repeatedly until the LCD 

displays the icon for the FOV mode. Press the shutter button to select 

FOV mode. Press the power button repeatedly to toggle through the list 

of settings until LCD displays 170°. Press the shutter button to select the 

highlighted FOV setting and exit the resolution settings list. 
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5. From the exit screen, press the power button to return to the camera’s 

normal camera mode. 

Recording streetscape videos (in the field) 

1. Mount camera to helmet. 

2. To record a video, press and release the shutter button. The LED 

recording light will flash continuously while recording. 

3. Proceed as follows: 

a. Start approximately 5 meters (m) from the beginning of the block 

on the outside of the pavement 

b. Walk forward in the direction of adjacent traffic at an 

approximate speed of 1 mile per hour (mph) 

c. While walking, looking straight ahead, keeping your head level 

until you have reached the end of the block or boundary of the 

study area 

d. Briefly pan left, then pan right, and then stop recording by 

pressing and releasing the shutter button. The LED recording 

light will flash three times to indicate that the camera is no longer 

recording 

e. Turn around and repeat steps a-d for a total of 4 times – these 

will be samples 1-4 (the walk-through clips) 

f. At the end of the fourth walk-through stop the recording and 

walk midway up the sample street segment 

g. At approximately the midpoint of the sample street segment, 

turn to face the opposite side of street, keeping your head level 

h. Record a brief 3-5 second video, pressing and releasing the 

shutter button to start and stop the camera – this will be sample 

5 (view across clip) 
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i. Cross the street to the opposite side of the sample street segment, 

and starting at one end of the street segment, record a video of 

the entire length of the street segment while keeping your head 

level and your head turned 30°-45° away from the street towards 

the adjacent plots – this will be sample 6 (opposite side) 

j. Cross the street again to the original side of the sample street 

segment and repeat the process for step i (above) – this will be 

sample 7 (your side) 

k. Once all 7 sample clips have been collected, sampling for that 

sample street segment is complete 

l. Turn the camera off to conserve battery 

Uploading, editing, and storing video clips (in the office) 

Transferring video files to computer 

1. Remove camera from housing. 

2. Connect camera to computer using USB cable. 

3. Press the power button to turn the camera on. 

4. Locate the camera as a removable disk on the computer and open the 

DCIM folder. 

5. Open the 100GOPRO folder and select videos to copy and paste to 

computer hard drive. 

Editing 

1. Save all seven clips in a sample folder with the number of the sample 

street segment (e.g., “0359”) 

2. Label each clip according to the samples street segment number and 

number of the clip (e.g., “0359_01” to indicate Clip 1 (walk-through 1) 

from sample street segment 359) 
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Storing samples 

1. Store copies of all sample clips in at least two different locations (e.g., 

physical hard drive and a remote server) before formatting the SD card 

in the camera 
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