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Abstract  

The freak wave is extremely dangerous to offshore structures due to its 

unexpected high wave height and strong nonlinearity. Although increasingly 

more attention is paid to the investigations of freak wave, the principle of its 

generation mechanism and the factors that contribute to its occurrence remain 

unclear. Also, few efforts were exerted to investigate the interactions between 

offshore structures and a freak wave such as wave run-up and slamming force. 

In this present work, both the two dimensional (2D) and three dimensional (3D) 

numerical wave tanks are established based on Navier-Stokes equations for 

viscous, incompressible fluid by CFD commercial software FLUENT. 

At first, the regular waves are generated numerically. Two different wave 

generation methods, paddle wave making method and the source function wave 

making method, are introduced. The paddle wave-making method is a physical 

wave generation technology which is to imitate the wave makers in the 

laboratory. The source function wave-making method is discussed later and the 

empirical formulas of the source size and source intensity are introduced. The 

numerical wave elevations are compared with the linear analytical results.  

Second, the freak waves are generated numerically. According to Longuet-

Higgins wave model theory, the wave free surface can be represented by the 

linear sum of the individual wave components with different frequencies and 

random phases. Improving this wave model, the wave components have their 

phase adjusted, so that a large amount of energy is located at the focus position 

at a given time. Then two more efficient and realistic freak wave models are 

presented, combining wave models and phase modulation wave models, 

respectively. Finally, the numerical results of the shift of freak wave train 

focusing position and focusing time are analysed, and the time history of wave 

elevations are compared with the analytical results. 

Third, a 3-D numerical wave tank is established to perform the interactions 

between a freak wave train and a single cylinder or a pair of two cylinders. How 

the focused wave parameters, including wave steepness, frequency bandwidth, 
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focused position and the distance between the two cylinders, affect the freak 

wave run-up and total slamming forces on the cylinders are investigated.  

Finally, the hydrodynamic behaviour of a rectangular body in roll motions 

under both freak wave excitation and internal flow sloshing is investigated in a 

CFD numerical wave tank. In this study, three different freak wave conditions 

are considered, and two different water levels are investigated. 

The comparisons of numerical regular wave elevations and first order analytical 

results show that the current CFD numerical wave tank based on computational 

fluid dynamic commercial software FLUENT has a good capacity in sea water 

waves simulation. The focused wave parameters, such as frequency bandwidth 

and input wave steepness, have an obvious effect on the nonlinear behaviour of 

a focused wave group. This nonlinear behaviour will not only downstream shift 

the focused position and focused time, but also change the wave elevation at the 

focused position largely. The increased nonlinear behaviour of a focused wave 

group will increase the wave run-up along a fixed vertical cylinder at the 

incident wave facing direction largely. The bigger nonlinear behaviour of a 

focused wave group can result in larger rolling motion amplitude for a floating 

rectangular body, however the anti-rolling behaviour is obvious for the low 

filling case.  
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1 Introduction 

1.1 Background 

The freak wave (also called extreme wave, rouge wave, huge wave) is an 

extremely giant water wave in ocean and may appear in all the sea areas. Freak 

waves present considerable danger for several reasons: they are rare, 

unpredictable, may appear suddenly or without warning, and can impact on 

structures with tremendous force. 

In oceanography, freak waves are more precisely defined as waves 

whose height is more than twice the significant wave height (𝐻𝑠), which is itself 

defined as the mean of the largest third of waves in a wave record. Therefore, 

freak waves are not necessarily the biggest waves found in the sea; they are, 

rather, usually large waves for a given sea state (The Economist, 2009). 

Offshore structures such as wind turbine foundations, marine renewable energy 

devices, offshore platforms, floating breakwaters and floating vessels are widely 

built and utilised in coastal and offshore engineering. Because of climate change, 

the risk of having more severe extreme events is likely to increase in the future. 

So, the offshore structures are more likely to be exposed to harsh environmental 

conditions like freak waves. The freak waves are relatively large and 

spontaneous ocean surface waves, and they are extremely dangerous to 

offshore structures sue to its unexpected high wave height and strong 

nonlinearity. Thus, the accurate evaluation of such impact forces and 

corresponding structure responses is important for structure safety and 

disaster prevention. The research on the impact of extreme waves on offshore 

structures and the corresponding responses has vital significance for structural 

design and safety assessment. For the extreme wave and offshore structure 

interaction problems, the wave impacts are characterized by nonlinear 

phenomena, distorted free surface and large amplitude structure responses for 

floating bodies. This nonlinear analysis is very complicated. Although 

increasingly more attentions are paid to the investigation of freak wave, the 

principle of its generation mechanism and the factors that contribute to its 

https://en.wikipedia.org/wiki/Wave_height
https://en.wikipedia.org/wiki/Significant_wave_height
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occurrence remain unclear. Also, few efforts were exerted to investigate the 

interactions between offshore structures and freak wave such as wave run-up 

and slamming force.  

With the development of computer technology, numerical simulation methods 

are widely used in all areas of research. The world has realised great 

achievements in numerically simulated waves, and the interactions between 

waves and offshore structures. Compared with real physical experiments, the 

numerical wave tank has the advantages of low costs, easy application, easy 

transformation, and accurate measurement among others (Tang and Yuan, 2001).  

It should be mentioned that, as for as problems associated with freak waves 

concerned, the nonlinear VOF models are not widely applied in the numerical 

simulations. This work is motivated by the requirement of developing a nonlinear 

model to investigate the complex nonlinear freak wave and offshore interaction 

issues, including the freak wave run-up and floating body response under freak 

wave groups.  The numerical simulation works are established based on fully 

nonlinear Navier-Stokes and VOF equations for viscous, incompressible fluid by 

CFD commercial software FLUENT.  

1.1.1 Freak Wave Observations 

The first scientific evidence of the existence of freak waves came with the 

recording of a rogue wave by Gorm platform in the central North Sea in 1984. A 

stand-out wave was detected with a wave height of 11m in a relatively low sea 

state. However, the wave that caught the attention of the scientific community 

was digital measurement of the “Draupner wave” (Haver, Sverre, 2003), a rogue 

wave at the Draupner platform in the North Sea on January 1, 1995, with a 

maximum wave height of 25.6 meters (84 ft.) and maximum wave amplitude of 

18.5meters (61 ft.), shown in Figure 1.1. 



3 

 

 

Figure 1.1 The Draupner Wave, a single giant wave measured on New Year’s 

Day 1995, finally confirmed the existence of freak waves. (Haver, Sverre, 2003) 

1.1.2 Physical Mechanisms of the Freak Wave 

The physical mechanisms of the freak wave phenomenon are introduced clearly 

by Kharif (2003). It is worth to introduce various theories as to why freak wave 

events occur.  One general category of theories is based on “wave focusing” in 

which wave convergence or focus at a point due to variable currents, e.g. 

Peregrine (1986), Peregrine et al. (1998), and White and Fornberg (1998).  

Another category of theories is based on nonlinear wave-wave interactions, 

primarily associated with Benjamin-Feir instabilities, e.g. Stansberg (1993, 

1998), Trulsen and Dysthe (1996), Yasuda and Mori (1994), and Osborne 

(1999).  

A third general category of theories is based on the simple argument that 

Fourier wave components in a random sea may superimpose at a point to 

produce an abnormally large transient wave. This approach has formed the 

basis of many laboratory studies of extreme waves, for example by Rapp and 

Melville (1990), Kim et al. (1992), Taylor and Haagsma (1994), Baldock and 

Swan (1994), Chaplin (1996), Johannessen and Swan (1997), Clauss and 

Kuhnlein (1997), Clauss and Steinhagen (1999), and Clauss (1999).   



4 

 

1.1.3 Freak Wave Definition 

Extreme wave was traditionally defined by a ratio of Hmax/Hs>2 (Skourup et al., 

1996). The analysis was based on 12-year wave elevation measurements in the 

North Sea. During this period, 400 extreme waves were selected. The measured 

wave heights for the 400 individual extreme waves were all more than two 

times the significant wave height Hmax/Hs>2 and their crest amplitudes were all 

more than 1.1 times the significant wave height Amax/Hs>1.1. Taylor (2007) 

analysed the shape of the Draupner Wave of 1st January 1995. The Draupner 

wave is also called New Year’s wave which was the first rouge wave to be 

detected by a measuring instrument, happening at the Draupner platform in the 

North Sea off the coast of Norway on 1 January 1995. The maximum wave 

height of New Year’s wave is Hmax=25.63m and the maximum wave crest height 

is Amax=18.5m. The extreme wave ratio of Hmax/Hs=2.15. 

In the linear approximation, a random wave field can be considered as a 

Gaussian process. Under this assumption, a mathematical definition of a freak 

wave event can be expressed by Hmax>2.0Hs, 𝐻𝑚𝑎𝑥  being the maximum wave 

height of the freak wave event. Accounting to nonlinearities in the process, a 

refined definition tends to raise the limit of the freak wave height to Hmax≥2.2Hs. 

The latter limit of 2.2Hs is now commonly accepted.  

1.2 Research Aims 

Based on the background and motivation of current research, the main 

objectives are as follows: 

1) The two dimensional and three-dimensional numerical wave tanks are 

established based on Navier-Stokes equations for viscous, 

incompressible fluid by computational fluid dynamic commercial 

software. The wave generation, wave absorption and method to capture 

the free surface will be introduced. The focused wave groups allocated by 

different focused wave parameters are generated in numerical wave 

tanks.  
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2) The regular waves are generated by two different wave making methods. 

The computational wave elevation results need to be compared with the 

analytical results. The accuracy of the numerical wave generation should 

be validated. In a three-dimensional numerical wave tank, the results of 

regular wave run-up around a vertical cylinder surface are compared 

with the experimental data and the analytical first order diffraction 

theory results. The regular wave force impacting on the cylinder surface 

need to be compared with the Morrison’s equation. The validation of a 

rectangular body rolling response under different regular wave 

conditions is conducted by comparing the numerical simulation and 

experimental rolling RAO.  

3) Parametric studies are conducted to investigate the effect of focused 

wave factors, including frequency bandwidth, freak wave steepness, 

wave scattering and focused position, on wave run-up around vertical 

cylinders. The effects of focused wave parameters on rectangular body 

rolling response under freak wave are investigated. The influence of 

internal tank sloshing on the floating body global response under freak 

wave is also analysed.  

1.3 Thesis Outline 

The layout of the thesis is described as follow; 

In chapter 2, a literature review of the freak wave event and of its 

experimental and numerical simulations is given. The usage of CFD 

numerical wave tank technique in ship and offshore structure hydrodynamic 

analysis is introduced. The freak wave observation, the physical mechanisms 

and freak wave definition are introduced. 

In chapter 3, two numerical wave generation methods and numerical wave 

absorption technique are introduced first.  After that, two regular wave 

trains are generated numerically by two different wave making methods, 

and the wave elevation profiles are compared with the first order analytical 
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results. The validation of the current numerical method is regular wave 

simulation is proved. 

In chapter 4, based on the Longuet-Higgins random wave model, a large 

amount of wave energy can be gathered in a fixed position at a 

predetermined time by modulation the phase angle for each individual wave 

component. The basic focused wave model and three different effective freak 

wave models are compared. Twenty different focused wave groups allocated 

by different frequency bandwidth and freak wave steepness are generated in 

a two-dimensional numerical wave tank. The effect of focused wave 

parameters on the freak nonlinear behaviour is investigated.  

In chapter 5, the regular wave running-up on a fixed vertical cylinder is 

validated at first. The results of regular wave run-up around the vertical 

cylinder surface are compared with both the experimental data and 

analytical results. After the validation, different freak wave trains running-

up on a vertical cylinder and a pair of two cylinders are investigated. The 

effect of focused wave parameters on the wave run-up intensity and 

horizontal wave forces are analysed. 

In chapter 6, an experiment study of investigating liquid sloshing in a 2-D 

rectangular tank is reproduced numerically at first.  The numerical 

simulations of a rectangular body rolling response RAO are compared with 

the experimental results. The effect of focused wave parameters, including 

frequency bandwidth and peak frequency, on the global floating body 

response under freak wave trains is investigated.  Finally, the influence 

internal sloshing loads on a rectangular body rolling response under freak 

wave are analysed. 

In chapter 7, conclusions and discussions of this work are given.  
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2 Literature Review 

In this chapter, a critical review of the previous related studies in the subject of 

freak wave interacting with offshore structures are presented, aiming to identify 

the capacities and limitations of the previous mathematical models in dealing 

with the subject. 

2.1 Wave Run-up  

One of offshore engineers’ interests is to measure wave run-up on both fixed 

and floating platforms. This amplification of incident wave can result in wave 

overtopping of the platform deck. Furthermore, under the platforms, the rapid 

rise of water level can result in wave impact or slamming loads on the 

structures. The design of offshore structures needs an accurate prediction of 

maximum wave run-up elevation to maintain sufficient air gap below the 

platform deck.  

Physical wave tank testing is one of the most common methods to model wave 

structure interaction problems. The most obvious strength of physical test is 

that the real hydrodynamic data can be measured and collected. To research 

wave run-up on circular cylinders, many laboratory experiment studies were 

conducted.  

Galvin and Hallermeier (1972) carried out experimental measurements of wave 

heights very near the surface of cylinders of selected cross sections. When a 

wave passed a vertical cylinder, its shape, including its height, was affected by 

the presence of the cylinder and viscous dissipation in the wake of the cylinder. 

Parameter πX/L describes the wave scattering and parameter H/X describes the 

wake effects and parameter K=UT/X describes the eddy shedding. The 

experiment results showed that when K=4, the wave viscous effect was obvious. 

Niedzwecki and Duggal (1992) performed a small-scale experimental study to 

investigate wave run-up on rigid full-length and truncated circular cylinders 

under regular and random sea conditions. An empirical equation was presented 

to make preliminary estimates of wave run-up on truncated circular cylinders. 
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And an approximate formula for predicting the time-dependent wave force on a 

truncated cylinder was also presented. 

Nielsen (2003) carried out an experiment study of regular wave run-up along 

platform columns. A rigid vertical circular column and a rigid vertical square 

column with rounded corners two different models were considered and wave 

elevations within a radial distance around the cylinder were monitored at 

different locations. The positions where the wave elevations are computed 

around the circular and square columns are shown in Figure 2.1. The 

experiment results showed that, in incident wave direction, wave run-up 

elevation was large on wave measurement points near cylinder surface, and 

wave run-up ability increased with an increase of incident wave steepness. 

Furthermore, the experimental wave run-up results are compared with several 

numerical results. The different numerical methods include first order 

diffraction theory, second-order diffraction theory, frequency domain method 

and time domain method. The comparison results show that the second order 

diffraction theory simulates a more realistic result than the first order 

diffraction theory in regular wave run-up evaluation. 

 

Figure 2.1 Arrangements of the wave probes (Niesen,2003) 

Morris-Tomas et al. (2004) investigated an experiment of wave run-up on a 

fixed vertical surface piercing circular cylinder. Figure 2.2 illustrates the wave 

run-up on front side of column. And Figure 2.3 shows the wave run-up resulting 

from an incident wave impinging on a vertical surface piercing column. The 
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study focused on two important parameters wave steepness and body 

slenderness. How the two parameters affecting the wave run-up were 

investigated. Using a regression analysis involving a separation of ka and kA 

dependence, the importance of higher-order wave steepness effects on wave 

run-up was demonstrated. In long waves, the third-harmonic component was 

shown to contribute up to 8 percent of the wave run-up. 

 

Figure 2.2 Wave run-up on front side of column (Morris-Tomas et al., 2004) 

 

Figure 2.3 Illustration of the wave run-up resulting from an incident wave 

impinging on a vertical surface piercing column (Morris-Tomas et al., 2004) 

To find an alternative method to evaluate the wave cylinder interactions, the 

analytical methods are developed. Generally, there are two different analytical 

methods to investigate the hydrodynamic force on cylinder offshore structures. 

The first one is Morison’s equation, which is proposed by Morison et al. (1950).  
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The Morison’s equation is a semi-empirical equation to calculate the regular 

wave forces interacting with a slender cylinder. The total force is combined a 

linear inertial component and a non-linear drag component. The Morison’s 

equation is always used under a condition D/L≤0.15, in which D is the cylinder 

diameter and L is regular wave length. In this wave and cylinder size condition, 

the wave diffraction can be ignored. When the cylinder diameter and wave 

length ratio D/L>0.15, the wave diffraction cannot be ignored and diffraction 

theory is used to evaluate the wave force on cylinder, which is proposed by 

MacCamy and Fuchs (1954). In diffraction theory, the total wave potential is 

combined with incident wave potential and diffracted wave potential, and it is 

based on an assumption that the wave steepness is small. 

It is acknowledged that the increased wave steepness raises the nonlinear 

behaviour of regular wave, and many researches show that the calculation 

maximum wave elevations are always underestimated based on linear 

diffraction theory (Niedewecki and Duggal, 1992). Many authors use second-

order diffraction theory to study the nonlinear interaction of regular waves with 

a vertical cylinder.  

Stansberg and Kristiansen (2005) investigated the free-surface wave elevation 

within a radius distance around fixed vertical columns and the validity of 

second-order modelling of the wave-column interaction in steep waves were 

addressed. The side view of wave run-up on a vertical cylinder from a 

experiment photo is shown in Figure 2.4. The simulation results showed that 

linear modelling significantly underestimated the crest amplification, while the 

second-order correction represented a significant improvement well in waves 

with moderate steepness. In high steep waves, first-harmonic amplitudes were 

underestimated but second-harmonics were overestimated. 
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Figure 2.4 Photo from experiment for wave run-up, T=15s, H=35m Side view 

(Stansberg and Kristiansen, 2005) 

Kriebel (1992, 1998) investigated the wave run-up and wave force on cylinders. 

The results showed that the linear diffraction theory underestimated the 

maximum wave forces about 5% to 15%, and the measured maximum wave 

elevation was larger than the linear analytical results 44%. The results of 

second-order diffraction theory for wave run-up elevation around the cylinder 

and wave force have a good agreement with the experimental data.  

For the high-nonlinear hydrodynamic problems of wave breaking, green water 

and violent floating body motion, the CFD method can be utilised. Different from 

second-order diffraction theory which is based on truncated perturbation 

expansion, computational fluid dynamic is totally a nonlinear method to 

simulate the flow by solving the Navier-Stokes equations directly. When 

considering the wave run-up on cylinder problems, the multiphase technique to 

track the complicated free surface deformations around the cylinder is needed. 

The tracking multiphase methods include volume of fluid (VOF) method 

(Harlow, 1965) and the Level-Set (LS) method (Takewaki, 1985), and both are 

based on Eulerian formulation. The Smooth Particle Hydrodynamics (SPH) 

method (Gingold and Monaghan, 1977) is based on a concept to decompose the 

fluid domain into numerous freely moving discrete fluid particles by a grid-free 

Lagrangian formulation. The CFD method has many advantages. It can be used 

in all flow regimes in ship and offshore engineering. The overturning flows and 
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fluid viscous behaviours can be considered. Further, the scaling restriction is 

not needed anymore in CFD analysis. With the development of the 

computational technology and the improvement in the efficiency of the 

numerical simulation models, computational expenses is not going to be a 

barrier for the CFD development in ocean engineering,  

Westphalen et al. (2005) introduced a numerical method to analyse the 

interaction of a vertical cylinder in regular waves with Commercial CFD 

software Ansys CFX 22 and STAR-CCM+. Two different regular wave situations 

were considered and the calculated wave forces results on vertical cylinder 

were compared with physical experiment data. The calculated and experiment 

results showed a good agreement. Using the FVM solver the horizontal force 

results predicted for a slender cylinder showed a secondary load cycle. 

Repalle et al. (2007) examined the wave run-up on a square cylinder using 

experimental and numerical methods. The Experiments were performed in a 

wave tank with 1:66 scaled model of a square column. Numerical simulation 

was conducted using the commercial software FLUENT. It was found that the 

results for wave run-up from numerical simulation and experiments were in 

good agreement and were consistently greater than linear diffraction theory. 

The use of an alternative method for prediction of wave run-up around a 

Gravity-Base Structure is conducted by Danmeier et al. (2008). The results from 

a second-order diffraction code WAMIT and a fully nonlinear CFD program 

(ComFLOW) are compared to assess the importance of nonlinearities. The 

numerical simulation of nonlinear wave run-up profile from ComFLOW is 

shown in Figure 2.5. The results showed that the wave run-up behaviour 

around the GBS depends on incident wave steepness and wave length. The 

computational results showed that when the incident wave has a small wave 

steepness, linear wave component dominates the wave run-up. With the 

increased wave steepness, the wave elevation around the cylinder becomes 

shaper and narrower, and the wave trough becomes much more flat, which 

contributes from the increased high nonlinear wave behaviour.   
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Figure 2.5 Nonlinear wave run-up profile from ComFLOW (Danmeier et al., 

2008) 

Lwanowski et al. (2009) investigated the wave run-up around a semi-

submersible by the same CFD numerical tool ComFLOW. In the numerical study, 

four different wave gauges are set around the cylinder surface, and at the lower 

deck six fluid pressures are set to check the hydrodynamic pressures. The VOF 

method is used to track the water free surfaces, and short wave, medium wave 

and long wave three different regular wave conditions are considered. The 

visualization of wave run-up along the platform’s front column is shown in 

Figure 2.6. By comparing the experimental results, it shows that the current CFD 

method is suitable to simulate regular wave running-up on semi-submersible 

cylinders problems, and some nonlinear hydrodynamic phenomenon like wave 

slamming and wave turning over are observed.  

 

Figure 2.6 Long wave running-up on semi-submersible (Lwanowski et al., 2009) 
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An open source numerical wave tank based on the OpenFOAM software was 

setup and tested to solve the Navier–Stokes equations by Rajagopalan and 

Nihous (2016). This work focused on submerged plates because of their simple 

geometry, their importance as a design component (e.g., heave plates), and the 

broad availability of published experimental results. Two-dimensional plates in 

an oscillatory flow, as well as three-dimensional circular disks and square plates 

undergoing forced oscillations were simulated in conditions where the 

nonlinearity of hydrodynamic viscous drag and inertia forces can be probed 

easily. The effect of plate thickness as well as the ability of the numerical 

simulations to predict wave radiation damping at shallow plate submergence 

were also considered. Overall, force coefficient predictions were very 

satisfactory when compared to experimental data, and generally exhibited less 

scatter. The influence of both Keulegan–Carpenter number and frequency 

parameter on the hydrodynamic force could be assessed as well from these 

numerical simulations as from past laboratory experiments. 

Lin et al. (2017) conducted a hydrodynamic simulation of wave run-up heights 

and wave loads on three types of wind turbine foundations by using a RANS 

solver and employing k-ε turbulent closure. Due to the contribution of the 

present CFD model, a semi-empirical formula was calibrated based on velocity 

stagnation head theory for crest kinematics. Eventually, the results indicated 

that the difference among the maximum normalized run-up heights of these 

support structures was smaller for lower wave steepness than those for higher 

wave steepness. In contrast, it was shown that the difference among the wave 

loads of these foundations was larger for lower wave steepness than those for 

higher wave steepness. A calibrated run-up parameter was also obtained by 

means of numerical simulation and found that the value of calibrated run-up 

parameter became smaller accompanied with larger values of wave steepness 

and the maximum normalized run-up height. It was relevant that the tendency 

of run-up heights was positively correlated with higher nonlinearity, whereas 

an opposite trend was observed in the relationship between larger calibrated 

run-up parameter and lower nonlinearity. 
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2.2 Freak Wave 

In order to research the hydrodynamic characteristics of extreme waves, many 

laboratory experiment studies were investigated. The wave focusing approach 

is used mostly in previous experimental work in physical wave tank, such as 

Baldock et al. (1996), Pelinovsky et al. (2000), Kriebel and Alsina (2000) and 

Clauss (2002). Some details are going to be shown later. 

Baldock et al. (1996) made an experimental investigation in which many water 

waves were focused at one point in space and time to generate a large transient 

freak wave. Figure 2.7 shows the formation of a focused wave group and the 

wave elevations close to the focal point at three locations. Both the measured 

water surface elevation and water particle underlying kinematics were 

compared with first- and second- order solutions. Experiment results showed 

that the wave focusing can result in highly nonlinear extreme wave group, and 

the nonlinearity was related to the input amplitude and wave group frequency 

bandwidth. The nonlinearity also gave rise to the downstream shifting of the 

focus point. 

 

(a) (b) 

Figure 2.7 (a) Formation of a focused wave group. The number indicated on the 

left-hand side corresponds to the position along the length of the wave flume, x 

(m). (b) Wave focusing close to the focal point at three locations. (Baldock et al., 

1996) 

Kim et al. (1990) presented the results of recent research on laboratory 

synthesis of extreme waves and experimental investigation of wave-fluid 
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particle kinematics just prior to breaking using laser Doppler anemometry. An 

extreme wave was generated and their kinematics was measured. The transient 

wave kinematics under the crest was shown to be much more severe above the 

still water level and somewhat less severe below. The experimental extreme 

transient wave velocity filed is shown in Figure 2.8. 

 

Figure 2.8 Extreme transient wave velocity field (Kim et al., 1990) 

Kriebel and Alsina (2000) aligned the traditional wave focusing extreme wave 

generation method. Laboratory experiments were conducted to embed a large 

transient wave within a random sea as a means of simulating freak wave in a 

wave tank. The wave energy spectrum was separated into two parts, the first 

part energy was used to generate background random sea and the second part 

energy was distributed to generate extreme wave. The results showed that a 

realistic freak wave train can be made by only allocating 15% to 20% total wave 

energy for freak wave part generation based on freak wave definition of a ratio 

Hmax/Hs>2. 

Cox and Ortega (2002) performed a small-scale laboratory experiment to 

quantify a transient wave overtopping a horizontal deck fixed above the free 

surface. The experimental setup is shown in Figure 2.9. A short transient wave 

was chosen to produce an extreme wave. The flap-type wave-maker signal 
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consisted of two cycles of a T1=1.0s sinusoidal wave followed by two and a half 

cycles of a T2=1.5s sinusoidal wave with larger amplitude. The experimental 

results showed that the effect of the structure on the free surface at the leading 

edge increases the total wave height by 6% and the free surface height relative 

to an observer on the deck by 20%. Immediately below the deck, the maximum 

velocity is 2.5 times greater than the corresponding velocity without the deck 

and 2.1 times larger than the maximum crest velocity measured without the 

deck.  

 

Figure 2.9 Elevation and plan view of experimental setup (Cox and Ortega, 2002) 

Clauss et al. (2002, 2003) did a numerical study of the seakeeping behaviour of 

a semisubmersible GAV 4000 in a reported rouge wave, the Draupner New York 

Wave embedded in irregular sea states.  The numerical time-domain 

investigation using a panel-method and potential theory is compared to 

frequency-domain results. For time-domain analysis, the commercial code 

TiMIT is used to provide the motions and forces on the wetted body of the 

semisubmersible in rouge waves as time series. Corresponding response 

amplitude operators are also calculated with WAMIT, a program system for 

zero-speed problems. The research results showed that WAMIT and TiMIT 

results compare quite well as far as significant and maximum motions and 

forces are evaluated by a frequency-domain analysis. Also, the time-domain 

analysis of the dynamics of the selected semisubmersible agrees satisfactorily 

with experimental results.    

Li et al. (2012) and Ji et al. (2015) performed a wave basin experiment to 

investigate the interactions between multi-directional focused wave and 
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vertical bottom-mounted cylinder. The work is only focused on the extreme 

wave run-up phenomenon. The experimental results showed that the focused 

wave parameters, including wave steepness, frequency bandwidth, a directional 

spreading index, have significant impacts on the wave run-up on a cylinder. The 

maximum wave run-up happens at the front of the cylinder, and the minimum 

run-up depends on the directional parameters occurring at attack angle range 

[135°, 180°]. The wave run-up increase at the front part of the cylinder as the 

relative dimension ka increases, but at the back cylinder, it showed an opposite 

tendency. The focused wave run-up increases as the wave steepness increases.  

With the development of advanced computer techniques, the numerical wave 

tank can provide more detailed insights into wave hydrodynamics than 

traditional experiment. The pressure and velocity fields in the numerical wave 

tank are easily measured.  In recent years, more efforts are made in numerical 

wave tank technologies and it has become a new method to investigate the freak 

waves. 

Clauss et al. (2005) introduced different approaches for numerical wave tanks 

and all numerical wave tanks were used to simulate rouge wave trains. The first 

kind numerical wave tank was based on potential theory with Finite Element 

discretization (Pot/FE). The second kind numerical wave tank was based on 

Reynolds-Averaged Navier-Stokes Equations (RANSE) using the Volume of Fluid 

(VOF) method for describing the free surface. For the NWT using the VOF 

method three different commercial RANSE codes (CFX, FLUENT, COMET) were 

applied to calculate wave propagation. In order to simulate the Jonswap wave 

spectrum, two different methods of coupling potential theory and RANSE/VOF-

solver were presented. Potential theory was used to simulate the propagation of 

the wave train from the start toward a given position in the wave tank or until 

wave breaking was encountered at a given time step. So, that the velocity field 

and the contour of the free surface were handed over as boundary or initial 

values to RANSE/VOF-solver and the simulation process continued.  

Sun et al. (2008) analysed the efficient freak wave generation models in his 

work. Based on improved Longuet-Higgins wave model, four wave focusing 
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models for freak wave generation were presented first. The efficient freak wave 

generation models include extreme wave model, extreme wave mode plus 

regular wave model, phase interval modulation wave focusing model and 

number modulation wave focusing model with the same phase. By using 

different energy distribution techniques in the four models, the freak wave 

events were obtained with different maximum wave height by significant wave 

height ratios in finite space and time. After that the author carried out a 

numerical simulation of 2-D freak wave event based on enhanced high order 

spectral (HOS) numerical method and validated by comparison of numerical 

results with experimental and analytical results (Baldock et al., 1996). 

 

Figure 2.10 Comparison of experimental wave elevation and calculated wave 

elevation at the wave probe in the numerical wave tank (Liang et al., 2011) 

Liang et al. (2011) described how the generation of single extreme wave was 

investigated. Based on commercial CFD software Fluent, VOF method was used 

to capture the fee surface. First, an experimental irregular wave train was 

decomposed into certain number of small-amplitude waves. Fourier series 

expansion was performed to determine the amplitude and phase angle of each 

wave component. And then a hydrodynamic transfer function was used to 

calculate the amplitude of the wave-maker motion associated with each wave 

component. During the numerical simulation, calculated horizontal velocity 

profiles of the extreme wave at different moments were analysed and compared 
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with experimental results. The comparisons of experimental extreme wave 

elevation and numerical calculated extreme wave elevation are shown in Figure 

2.10. 

Zhao et al. (2012) introduced further development of a constrained 

interpolation profile (CIP)-based Cartesian grid method to model nonlinear 

interactions between extreme waves and a floating body. In the 2D numerical 

wave tank, three kinds of waves (regular wave focused wave and combined 

regular and focused wave) were generated. The numerical wave tank was based 

on improved CIP-based Cartesian grid method in which the THIN/WLIC scheme 

was used for interface capturing. Computations were compared with 

experimental results, and agreement was achieved. In (2014), Zhao et al. 

extended the 2D numerical wave tank to a 3D model to investigate the green 

water running-up on a floating body under freak wave conditions. Cao and Wan 

(2014) presented a new CFD code which was based on the open source package 

OpenFOAM, and Zhao (2012)’s work was reproduced numerically. The accuracy 

of the present numerical solver naoe-FOAM-SJTU for dealing with the problem 

of extreme wave interaction with floating body was proved.  

Westphalen et al. (2012) developed a fully nonlinear method to investigate the 

design in different conditions at full scale by computational fluid dynamic 

method. The generation and behaviour of extreme focused wave groups were 

conducted in the numerical wave tank. Nonlinear effects of these extreme waves 

were shown and the implications for a numerical wave tanks were discussed. 

The double frequency force oscillation on the horizontal cylinder and the 

secondary load cycle for the vertical cylinder were observed, which might cause 

severe damage due to the ringing of the structure after being passed by the 

wave. 

Deng et al. (2016) investigated the generation of freak waves using a new 

focusing model, which considered the effects of wave reflection. In the 

developed model, the wave spectrum energy was divided into three parts: one 

for random waves, one for forward transient waves, and one for backward 

reflected waves. The numerical simulations were compared with those of 
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simulations based on Kriebel’s focusing model. The comparisons showed that 

the developed model can generate extremely high waves in an accurate and 

repeatable manner. The primary advantage of the developed model was that 

both the forward transient waves and the backward reflected waves contained 

only half the energy of the transient waves in Kriebel’s focusing model, making 

it much better at easing wave breaking. In addition, the numerical simulations 

indicated that wave reflection could be a possible factor that contributed to the 

formation of freak waves. Figure 2.11 shows the comparisons of focal position 

and focal moments with different focusing model. The large fluctuations on the 

actual focal positions and moments are with Kriebel’s focusing model, which is a 

disadvantage for generating freak waves at a specific point to investigate its 

impact on marine structures. 

 

Figure 2.11 Comparisons of focal position and focal moment with different 

focusing model (Deng et al., 2016) 

Qin et al. (2017) investigated the freak wave structure interactions by applying 

an implicit iterative algorithm in a 2-D numerical wave flume. In this numerical 

wave flume, three simulations were performed, including a regular wave impact 

against a rigid wall, a laboratory-scale freak wave impact against elastic wall, 

and the deck-house impact caused by a full-scale freak wave. Visual snapshots 

were taken to show the entire wave slamming phenomena. Fluid pressures 

adjacent to the wall were reported to indicate the influence of hydroelasticity. 

The displacement of the vertical wall and the deck-house wall from a semi-

submersible barge are analysed with the fast Fourier transformation (FFT) and 
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wavelet transformation method. The total forces of fluid acting on the elastic 

wall and rigid wall are shown in Figure 2.12. The plot indicated that the total 

wave force on the rigid wall has a smooth times series and the force on the 

elastic wall oscillates severely, which is quite similar to distinctions of the fluid 

pressures of the wall models due to the hydroelastic effect.  

 

Figure 2.12 Comparisons of the total force time series between the elastic wall 

and rigid wall (Qin et al, 2017) 

2.3 Sloshing 

The offshore engineering and LNG production develops very fast in recent 

decades. The coupled motion response excited by internal flow and external 

wave excitation becomes the most important research interests in LNG industry. 

The sloshing in the internal tank has a large effect on the LNG ship motion, and 

the ship motion response also has an obvious effect on the excited sloshing. It is 

very important to develop a numerical method to investigate the coupled effect 

of the ship motion response and the sloshing excitation.   

Many experimental and numerical researches about the sloshing tank have been 

conducted. Kim et al. (2004) did an investigation on the violent sloshing flows 

with impact occurrences solved using a finite difference method. Two- and 

three-dimensional prismatic tanks with and without internal members are 

considered, and the concepts of buffer zone and time averaging are applied for 

computing impact pressures on the side wall, chamfer, and ceiling. The research 

results showed that the resent numerical method showing fair numerical 

efficiency and stability in the prediction of impact pressure. This method can be 

applied for actual designs of liquid cargo tanks for ships and FPSOs.  



23 

 

Yang et al. (2006) simulated both internal sloshing liquid of a LNG carrier and 

outer sea waves around the ship by VOF method simultaneously. An 

incompressible Euler/Navier Stokes discretized by finite element methods was 

solved for both internal and outside regions. An arbitrary Lagrangian-Eulerian 

(ALE) was used to treat the motions of ship. However, the turbulent effects 

were neglected in the work.  The computational comparisons  

 

Figure 2.13 Comparisons of roll RAOs for different filling and wave slope. (a) 

A/L=0.01, (b) A/L=0.015, (c) A/L=0.02 and (d) A/L=0.025 (Kim et al., 2007) 

Kim et al. (2007) developed an effective numerical model to investigate the 

coupled effects on ship motion under wave excitation coupled sloshing 

excitation. In the numerical model, the linear ship motion was solved using an 

impulse-response-function (IRF) method, while the nonlinear sloshing flow was 

simulated using a finite-difference method. By converting the frequency-domain 
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solution to the time domain, the computational effort was much less than the 

simulated conducted from the time domain analysis directly. The computational 

results showed that the nonlinearity of sloshing flow played an important role 

in the coupling effects, and the motion responses were sensitive to the filling 

height in the internal tank. An accurate computation of the retardation function 

was critical in the IRF formulation. The computational results were sensitive to 

some parameters, e.g. infinite-frequency added mass, roll-damping coefficient, 

and proper restoring. The nonlinearity of sloshing flow played an important role 

in the coupling effects. The sloshing-induced forces and moments were not 

linear with respect to motion amplitude. Therefore, in the coupled problem, the 

motion amplitude was not linearly proportional to wave amplitude. As the wave 

amplitude becomes larger, the wave-excitation component becomes more 

significant.  The rolling RAO curves for different filling conditions and wave 

slopes are shown in Figure 2.13. 

S. Lee et al. (2007) studied the coupling effects on ship motion and sloshing. A 

barge-type FPSO was investigated by using WAMIT for ship motion and by finite 

difference method with SURF scheme for liquid sloshing. However, since the 

ship motions were predicted by potential theories, there were many limitations 

on these methods, e.g. viscous effects were neglected and breaking waves and 

green water on deck cannot be dealt with. Based on the same numerical theory, 

Jiang et al. (2015) investigated the coupled motion of a three-dimensional 

simplified LNG-FPSO ship with two partially-filled prismatic tanks. A typical grid 

system in AP tank for 20% filling condition is shown in Figure 2.14. Numerical 

simulations showed that the coupling effect was significant at low-filling 

conditions in Beam Sea and the typical anti-rolling characteristics can be 

observed in such cases. The ship motion response showed strong sensitivity to 

incident wave steepness, especially around the natural frequencies for ship 

motion and sloshing motion respectively. The sloshing impact loading had no 

significant coupling effect on global ship response. 
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Figure 2.14 A typical grid system in AP tank for 20% filling condition (S. Lee et 

al. 2007) 

Medeiros et al. (2008) presented some results of an experimental study on the 

effect of the sloshing on the motion of the floating units. The experimental tank 

model is shown in Figure 2.15. The roll motion of the model with fixed cargo 

was measured and compared with WAMIT, which showed very good agreement 

between the experimental and the numerical results. The research results 

showed that the main effect of sloshing was on the roll motion of the model. 

When the wave frequency was close to the resonant liquid motion, the sloshing 

reduced the roll motion remarkably. 

 

Figure 2.15 The model in the tank (Medeiros et al., 2008) 

Khezzar et al. (2009) presented the steps involved in designing a test rig to 

study water sloshing phenomenon in a rectangular container subjected to 

impulsive impact.  Two water levels of 50% and 75% full as well as two driving 

weights of 2.5 and 4.5 kg were used.  The experimental study was supplemented 
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by a computational fluid dynamics study to investigate the fluid motion inside 

the tank. The main purpose of this study was to examine the CFD capacity to 

predict the behaviour of the free surface of the fluid during the container motion. 

The research results showed that the flow visualization of simulation and 

experimental results showing a good agreement.  

Lee et al. (2010) developed a Moving Particle Semi-implicit (MPS) method for a 

2-D incompressible flow simulation to investigate the violent free-surface 

motions interacting with floating vessels containing inner liquid tanks. The 

initial configuration for simulating motions of a 2-D rectangular barge is shown 

in Figure 2.16. In this study, many efficient and robust algorithms had been 

developed to improve the overall quality and efficiency in solving various highly 

nonlinear free-surface problems. The computational results showed that the roll 

amplitudes can be significantly reduced due to the presence of the sloshing tank 

when the excitation frequencies were away from the lowest sloshing natural 

frequencies. The reduction rate depended on the fill ratio, and more reduction 

at 25% fill ratio than that at 50% fill ratio. When the excitation frequencies were 

close to the lowest sloshing natural frequencies, the maximum roll angles could 

be slightly increased due to the liquid cargo.  

 

 

Figure 2.16 Initial configurations for simulating motions of 2-D rectangular 

barge (Lee et al., 2010) 
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Lee and Kim (2010) investigated the coupling and interactions between ship 

motions and inter-tank sloshing by a potential-viscous hybrid method in the 

time domain. Figure 2.17 shows the snapshot of motion-sloshing coupled 

animation in the time domain. In this time-domain simulation, a potential-

theory-based 3D diffraction/radiation panel program in the frequency domain 

was used to calculate the hydrodynamic coefficients and wave forces. Then the 

corresponding simulations of motions in the time domain were carried out 

using the convolution-integral method. The liquid sloshing in a tank was 

simulated in the time domain by a Navier-Stokes solver. A finite difference 

method with SURF scheme assuming the single-valued free-surface profile was 

applied for the direct simulation of liquid sloshing. The computed sloshing 

forces and moments were then applied as external excitations to the ship 

motion. The developed computer programs were applied to a barge-type 

floating production storage and offloading (FPSO) hull equipped with two 

partially filled tanks. The research results showed that the most pronounced 

coupling effects on roll motions are the shift or split of peak frequencies.  

 

Figure 2.17 Snapshot of motion-sloshing coupled animation (37% beam waves) 

in the time domain (Lee and Kim, 2010) 

Shen and Wan (2012) developed a fully coupled numerical method to simulate 

the KVLCC2 tank coupled with sloshing under waves by using their own 

unsteady RANS solver, naoeFoam-SJTU. The computational results showed that 

in the condition of wave length equal to 1.1 times ship length, the sloshing had 
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little effect on the heave and pitch motions, not only for head wave but also for 

beam wave. However, the sloshing had notable effects on the roll motion in 

beam waves. After comparing different wave heights and different filling ratios 

of LNG tanks, the results indicated that instead of increasing, the tank sloshing 

reduced the roll amplitude of ship motion, especially for the largest wave height, 

H=0.18m. Roll motion of 60% filled tank was slightly smaller than 30% filled. 

 

(a) (b) 

Figure 2.18 Schematic of the experimental setups; the wave probe located at the 

upstream of the tank is defined as “upstream”, and the wave probe at the 

downstream of the tank id defined as “downstream”. (a) Front view and (b) side 

view (Zhao et al., 2014) 

Zhao et al. (2014) developed coupled numerical model considering nonlinear 

sloshing flows and the linear ship motions based on a boundary element 

method. The front view and side view of schematic of the experimental setups 

are shown in Figure 2.18. Only the 2-D hydrodynamic performance of a tank 

containing internal fluid under regular wave in sway response was investigated 

by the developed time-domain analysis method, and the computational results 

were compared with the experimental data. The research results showed that 

the internal sloshing amplitude is found to change nonlinearly when the 

incident wave height varies. The asymmetry of the internal surface elevation 

relative to the still water surface becomes obvious as the wave height grows. 

Both the internal sloshing and the ship motions exhibit amplitude modulation 
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phenomenon. The frequency of the amplitude modulation envelope was 

determined by the difference between the incident wave frequency and the 

natural frequency of the internal sloshing. The internal sloshing-induced force 

was π behind the external wave forces at the natural frequency, which was one 

possible reason to explain why the internal sloshing exhibits significant 

reduction effects on the global motions at the natural frequency. 
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3 Numerical Wave Tank 

3.1 General Remarks 

With the development of computer technology, numerical simulation methods 

are widely used in all areas of research. The world has realised great 

achievements in numerically simulated waves, and the interactions between 

waves and offshore structures.  The numerical wave generation technology 

introduced in my thesis is based on the CFD method. Compared with real physical 

experiments, the numerical wave tank has the advantages of low costs, easy 

application, easy transformation, and accurate measurement among others (Tang 

and Yuan, 2001). 

In this present work, both the two dimensional (2D) and three dimensional (3D) 

numerical wave tanks are established based on Navier-Stokes equations for 

viscous, incompressible fluid by CFD commercial software FLUENT. The VOF 

method is used to capture the free surface. Paddle wave generation method and 

added mass term wave generation methods are compared and analysed in 

regular and focused wave generation. Momentum source terms are added in the 

governing equations in dissipation domain to reduce wave reflection.   

In general, a CFD analysis should always pass through the following basic steps: 

1. Problem identification and pre-processing 

o Definition of the modelling goals 

o Identification of the domain 

2. Solver execution 

o Set-up of the numerical model 

o Computation and monitoring of the solution 

3. Post-processing  

o Examination of the results 

o Consideration of model revisions 
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3.2 Wave Generation Method 

Nowadays, wave generation can be classified into two types according to their 

wave generation principles. One type is the physical wave generation 

technology, which is used to imitate the wave makers in the laboratory, such as 

the paddle wave generation method and piston wave generation method. The 

other type of wave generation method is purely numerical and includes the 

velocity inlet method, source function method and momentum function method. 

In the following chapter, only the paddle wave generation method and source 

function method will be introduced. 

3.2.1 Paddle Wave-making Method 

Paddle wave making is the first and most common method in a wave tank 

laboratory. In a numerical wave tank, the same concept can be used. To derive 

the paddle wave generating formulae, length of paddle under water is defined 

as 𝑙. The paddle amplitude at water surface is 𝐸, and the wave propagating 

direction is positive. The regular wave amplitude is 𝑎. The wave length is 𝜆. The 

wave period is 𝑇, and the wave number is 𝑘. The wave frequency is 𝜔.The water 

surface is at x = 0 and the static paddle position is at y = 0. (Tao and Yuan, 

2001) 

The paddle amplitude at a specific water depth is: 

𝑒(𝑦) = 0; 0 ≤ 𝑦 ≤ (ℎ − 𝑙)  

𝑒(𝑦) =
𝐸

𝑙
(𝑦 − ℎ + 𝑙); (ℎ − 𝑙) < 𝑦 ≤ ℎ (3.2.1) 

Horizontal movement of paddle is 

𝑥 = 𝑒(𝑦) ∙ 𝑠𝑖𝑛 𝜔𝑡 (3.2.2) 

Horizontal velocity of paddle 

𝑢 =
𝑑𝑥

𝑑𝑡
= 𝜔 ∙ 𝑒(𝑦) ∙ 𝑐𝑜𝑠 𝜔𝑡 (3.2.3) 
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Based on small amplitude wave assumption, i.e. 𝜆 ≫ 𝑎, denote 𝜙 to be velocity 

potential, 𝑢 and 𝑣 to be horizontal and vertical velocity of wave at wave paddle 

respectively, then 

𝜕𝜙

𝜕𝑥
= 𝑢 = 𝜔 ∙ 𝑒(𝑦) ∙ 𝑐𝑜𝑠 𝜔𝑡   (𝑥 = 0) (3.2.4) 

𝜕𝜙

𝜕𝑦
= 𝑣   (𝑥 = 0) 

(3.2.5) 

Velocity potential satisfies Laplace equation 

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0 

(3.2.6) 

The boundary condition in this case is as follows: 

Vertical velocity at seabed is zero: 

𝑣 =
𝜕𝜙

𝜕𝑦
= 0   (𝑦 = 0) 

(3.2.7) 

The free surface boundary condition: 

𝜕2𝜙

𝜕𝑡2
+ 𝑔 ∙

𝜕𝜙

𝜕𝑦
= 0   (𝑦 = ℎ) 

(3.2.8) 

General solution to the velocity potential of wave propagation is derived based 

on Fourier method: 

𝜙 = 𝐶0

𝜔

𝑘0
𝑐𝑜𝑠ℎ(𝑘0𝑦) 𝑠𝑖𝑛(𝑘0 𝑥 − 𝜔𝑡)

− ∑ 𝐶𝑛

∞

𝑛=1

𝜔

𝑘𝑛
𝑐𝑜𝑠(𝑘𝑛𝑦) 𝑒−𝑘𝑛𝑥𝑐𝑜𝑠 (𝜔𝑡) 

(3.2.9) 

Solve the derivative of 𝜙 and substitute it in free surface boundary condition 

can yield: 
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−𝐶0𝜔 𝑐𝑜𝑠ℎ(𝑘0𝑦) 𝑠𝑖𝑛(𝑘0 𝑥 − 𝜔𝑡)

− ∑ 𝐶𝑛𝜔 𝑐𝑜𝑠(𝑘𝑛𝑦)𝑒−𝑘𝑛𝑥

∞

𝑛=1

𝑐𝑜𝑠 (𝜔𝑡) (
𝜔2

𝑘𝑛

+ 𝑔 𝑡𝑎𝑛( 𝑘𝑛𝑦))|
𝑦=ℎ

= 0 

(3.2.10) 

The dispersion relation is further derived as: 

𝜔2 − 𝑘0𝑔 𝑡𝑎𝑛ℎ(𝑘0ℎ) = 0 (3.2.11) 

𝜔2 + 𝑘𝑛𝑔 𝑡𝑎𝑛(𝑘𝑛ℎ) = 0 (3.2.12) 

For (3.2.12), there is an infinite number of 𝑘 corresponding to a specific 𝜔, 

which is denoted as 𝑘𝑛. 𝑘𝑛 lies in (𝑛𝜋 −
𝜋

2
)/ℎ~𝑛𝜋/ℎ interval. 𝐶0 and 𝐶𝑛 in (3.2.9) 

is solved based on boundary conditions. Substitute (3.2.9) to (3.2.4) and 

multiply by 𝑐𝑜𝑠ℎ( 𝑘0𝑦), followed by integrating: 

𝐶0 ∫ 𝑐𝑜𝑠ℎ2
ℎ

0

(𝑘0𝑦)𝑑𝑦 + ∑ 𝐶𝑛 ∫ 𝑐𝑜𝑠ℎ(𝑘0𝑦)
ℎ

0

∞

𝑛=1

𝑐𝑜𝑠(𝑘𝑛𝑦) 𝑑𝑦

= ∫ 𝑒(𝑦)
ℎ

0

𝑐𝑜𝑠ℎ(𝑘0𝑦) 𝑑𝑦 = 0 
(3.2.13) 

The dispersion relation (3.2.11) and (3.2.12) can validate the 

equation ∫ 𝑐𝑜𝑠ℎ(𝑘0𝑦)
ℎ

0
𝑐𝑜𝑠(𝑘𝑛𝑦) 𝑑𝑦 = 0, therefore:  

𝐶0 = 2𝑘0

∫ 𝑒(𝑦)
ℎ

0
𝑐ℎ(𝑘0𝑦)𝑑𝑦

𝑘0ℎ + 𝑠𝑖𝑛ℎ( 𝑘0ℎ) 𝑐𝑜𝑠ℎ(𝑘0ℎ)
 

(3.2.14) 

The result of 𝐶0 is obtained by integrating (3.2.1): 

𝐶0 =
2𝐸

𝑘0𝑙
∙
𝑘0𝑙 𝑠𝑖𝑛ℎ(𝑘0ℎ) − 𝑐𝑜𝑠ℎ(𝑘0ℎ) + 𝑐𝑜𝑠ℎ(𝑘0ℎ − 𝑘0𝑙)

𝑘0ℎ + 𝑠𝑖𝑛ℎ(𝑘0ℎ) 𝑐𝑜𝑠(𝑘0ℎ)
 

(3.2.15) 

The same approach can be applied to solve 𝐶𝑛: 
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𝐶𝑛 =
2𝐸

𝑘𝑛𝑙
∙
𝑘𝑛𝑙 𝑠𝑖𝑛ℎ(𝑘𝑛ℎ) + 𝑐𝑜𝑠ℎ(𝑘𝑛ℎ) − 𝑐𝑜𝑠ℎ(𝑘𝑛ℎ − 𝑘𝑛𝑙)

𝑘𝑛ℎ + 𝑠𝑖𝑛ℎ(𝑘𝑛ℎ) 𝑐𝑜𝑠(𝑘𝑛ℎ)
 

(3.2.16) 

Furthermore, wave function in front of wave paddle is derived based on 

calculating average displacement of water particle in vertical direction from 

(3.2.7): 

𝜂(𝑥, 𝑡) = ∫
𝜕𝜑

𝜕𝑦
𝑑𝑡|

𝑦=ℎ

= 𝐶0 𝑠𝑖𝑛ℎ(𝑘0ℎ) 𝑐𝑜𝑠(𝑘0𝑥 − 𝜔𝑡)

+ ∑ 𝐶𝑛 𝑠𝑖𝑛(𝑘0𝑦

∞

𝑛=1

)𝑒−𝑘0𝑥 𝑠𝑖𝑛(𝜔𝑡) 

(3.2.17) 

The first part of right hand side of the equation above is propagating wave and 

second part is standing wave. Standing wave can be neglected after moving 

away from wave paddle. The wave amplitude is also observed as: 

𝐴 = 𝐶0 𝑠𝑖𝑛ℎ(𝑘0ℎ) (3.2.18) 

Substitute (3.2.15) with 𝐶0 value: 

𝐴 =
2𝐸

𝑘0𝑙
𝑠𝑖𝑛(𝑘0ℎ) ∙

𝑘0𝑙 𝑠𝑖𝑛ℎ(𝑘0ℎ) − 𝑐𝑜𝑠ℎ(𝑘0ℎ) 𝑐𝑜𝑠ℎ(𝑘0ℎ − 𝑘0𝑙)

𝑘0ℎ + 𝑠𝑖𝑛ℎ(𝑘0ℎ) 𝑐𝑜𝑠(𝑘0ℎ)
 

(3.2.19) 

Therefore, two hydrodynamic transmission functions are obtained: 

𝑇(𝜔) =
𝐴

𝐸
=

2 𝑠𝑖𝑛(𝑘0ℎ)

𝑘0𝑙

∙
𝑘0𝑙 𝑠𝑖𝑛ℎ(𝑘0ℎ) − 𝑐𝑜𝑠ℎ(𝑘0ℎ) + 𝑐𝑜𝑠ℎ(𝑘0ℎ − 𝑘0𝑙)

𝑘0ℎ + 𝑠𝑖𝑛ℎ(𝑘0ℎ) 𝑐𝑜𝑠(𝑘0ℎ)
 

(3.2.20) 

𝑇1(𝜔) =
𝐴

�̃�
=

2 𝑠𝑖𝑛(𝑘0ℎ)

𝑘0

∙
𝑘0𝑙 𝑠𝑖𝑛ℎ(𝑘0ℎ) − 𝑐𝑜𝑠ℎ(𝑘0ℎ) + 𝑐𝑜𝑠ℎ(𝑘0ℎ − 𝑘0𝑙)

𝑘0ℎ + 𝑠𝑖𝑛ℎ(𝑘0ℎ) 𝑐𝑜𝑠(𝑘0ℎ)
 

(3.2.21) 
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(3.2.20) demonstrates the relation between wave amplitude and paddle 

amplitude, namely the amplitude-frequency characteristics of paddle wave 

generator which is the core control mechanism. In (3.2.21), �̃�  is paddle 

amplitude and satisfied the scenario in small amplitude wave theory below. The 

equation is applied in favour of defining paddle movement in the dynamic mesh 

model. 

3.2.2 Source Function Wave-making Method 

3.2.2.1 Basic Functions 

Based on the Continuity equation (A.2.3) and the Navier-Stokes equation (A.2.4) 

which are introduced in Appendix A, the source function wave-making methods 

can be classified into three ways. One method is to add forcing functions in the 

momentum equations. The forcing function can be applied with stress on a free 

surface of water or in the source function region.  Another method is to add a 

mass source function in the continuity equation in a wave generation domain. In 

general, the mass source can be a point, a line, or a volume. The third method is 

the combination of the momentum source and the mass source. In this thesis, 

only the added mass source wave-making method will be introduced. 

For a two-dimensional numerical wave tank, the added source term definition 

can be presented as: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 𝑠(𝑥, 𝑦, 𝑡)             𝑖𝑛 2𝑑 𝛺 

(3.2.22) 

𝑠(𝑥, 𝑦, 𝑡) =
𝑠𝑠(𝑦, 𝑡)           𝑥 = 𝑥𝑠

0                      𝑥 ≠ 𝑥𝑠 
 

(3.2.23) 

where 

𝑥𝑠 = the horizontal position of the source region 

The 𝑠(𝑥, 𝑦, 𝑡) is the added mass term in the mass conservation function in the 

source region, which is defined as  𝛺. If the mass term is added in the continuity 

equation in the source region, the free surface above the source region will 
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change gradually. Theoretically, two trains of surface gravity wave will travel 

with the same wave length and period but in the opposite direction.  

3.2.2.2 Source Region Size and Position: 

In the real numerical simulation process, a finite region is collected as the 

source region. For two dimensional simulations, the source region is always 

defined as a rectangular region. In the present work, the rectangular source is 

used. The position of the source region is regarded as the numerical wave-

making position. The minimum region is a computation cell size. The source 

height is 𝐻𝑠 and width is 𝐿𝑠. The distance from the region top side to the free 

water surface is 𝑒. In theory, the smaller 𝐿𝑠  value makes better wave profile 

results. If 𝐿𝑠  is larger than 20 percent of the target wave length, the modelling 

result may lead to extreme inaccuracy, as at that moment the wave cannot be 

defined and generated in position 𝑥 = 𝑥𝑠. In the present work, the source region 

width is the width of one computation cell. After selecting a proper source 

region width, a suitable value 𝑒, the distance from the region top side to the 

water free surface, is also of great importance. If 𝑒 is quite small, which means 

the mass source region is close to the water free surface, this may lead to 

computation divergence. In contrast, the increase of value 𝑒 may decrease the 

modelled wave amplitude above the source region, which will unlikely meet the 

target wave profile requirement. For the regular wave simulation, 𝑒 is set equal 

to one target wave height, but for irregular and focusing wave simulations, the e 

value should have further validation.   

3.2.2.3 Source Intensity 

In theory, proper mass source intensity can generate any target wave. The 

relationship between source intensity and target wave profile is the main topic 

in this chapter. The source region is set as a layer of rectangle cells positioned 

with a distance from the water free surface directly to the wave tank bottom. 

The width of the source region is small relative to the target wave length, so that 

the wave-making position can be regarded as the centre of the source region 

and two wave trains will be generated at the same time with identical wave 

length and period.  On the premise of an assumption that all the increase and 
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decrease in mass from the added mass term in the continuity equation 

contributes to the wave generation, in every cell domain in the mass region, the 

relationship between generated wave horizontal velocity and source intensity 

for two-dimensional numerical wave tanks can be defined as: 

𝑠𝑠(𝑦, 𝑡)∆𝑥∆𝑦∆𝑡 = 2𝑢(𝑥𝑠, 𝑦, 𝑡)∆𝑡∆𝑦 (3.2.24) 

Such that, 

𝑠𝑠(𝑦, 𝑡) =
2𝑢(𝑥𝑠, 𝑦, 𝑡)

∆𝑥
 (3.2.25) 

In the above two equations, 𝑢(𝑥𝑠, 𝑦, 𝑡) is the water particle horizontal velocity 

above the source region. ∆𝑥 and ∆𝑦 are horizontal length and vertical length of 

the cell.  

For a linear regular wave, 

𝑢(𝑥𝑠, 𝑦, 𝑡) = 𝑎𝜔
𝑐𝑜𝑠ℎ𝑘(𝑦 + ℎ)

𝑠𝑖𝑛ℎ𝑘ℎ
𝑐𝑜𝑠 (𝑘𝑥𝑠 − 𝜔𝑡) (3.2.26) 

With the wave profile, 

𝜂 = 𝑎𝑐𝑜𝑠 (𝑘𝑥 − 𝜔𝑡) (3.2.27) 

3.3 Wave Absorption Technique 

An absorption zone is set at the end of the tank domain, aiming for wave energy 

absorption and preventing wave reflection. The artificial viscous wave 

absorption method is not sensitive to wave frequency. In other words, it is 

effective for wave absorption of various frequencies. The idea behind the 

artificial viscous wave absorption method in the numerical wave tank is to 

simulate the real wave tank by adding additional terms in the momentum 

equations. Note that the zone size affects the wave absorption result and the 

damping zone length is always larger than one wave length.  

For the two-dimensional case, the momentum equations (ANSYS FLUENT 14.5 

User’s Guide, 2012) in the absorption domain are defined as: 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜐 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) − 𝜇(𝑥)𝑢 

(3.3.1) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝑔 −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜐 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) − 𝜇(𝑥)𝑣 

(3.3.2) 

𝜇(𝑥) is the damping coefficient and the intensity is 

𝜇(𝑥) = 𝛼(
𝑥 − 𝑥𝑠

𝑥𝑒 − 𝑥𝑠
)2 

(3.3.3) 

where 

𝛼 = damping control parameter 

𝑥𝑠 = the start point of the wave absorption domain 

𝑥𝑒 = the ending point of the wave absorption domain 

3.4 Regular Wave Simulation Setup and Results 

The CFD numerical simulation of the regular wave is conducted in this section. 

Two different wave making methods, the paddle wave making method and 

source function wave making method, are considered here. The results 

demonstrate a good agreement between the numerical and analytical results. 

The accuracy of the numerical simulation is also affirmed. Finally, the two wave 

making methods are compared.  

3.4.1 Paddle Wave-making Results 

The detailed configuration of the numerical wave tank is shown in Figure 3.1. 

The wave tank is 30m long in total and the length of the wave damping domain 

is 6m – located at the wave tank end. The water depth is 5m in total in this case. 

The tank dimensions are defined based on the target wave properties. In this 

case, the wave period T=2s, and the corresponding wave length is 6.24m in 

deep water conditions. As the figure shows, the upper part of the wave tank, 

which is above the initial free surface, is the air phase and the lower part is the 

water phase. The boundary AB, BC, CD, DE, EF and GF is set to be wall. The 
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boundary AH and HG are set to be the pressure inlet. The paddle is also set to be 

the non-slip wall boundary condition.  

 

Figure 3.1  The detailed configuration of paddle wave making numerical wave 

tank 

The design and creation of the grid is an important factor in the CFD simulation 

and can have a lasting effect on the calculation results. The CFD pre-processing 

geometry creation and meshing software GAMBIT is used in the present study. 

Therefore, several points should be considered: 

• Which type of grids can be used, a quadrilateral/hexahedron, a 

triangle/tetrahedron or a hybrid grid cell type? 

• How can numerical diffusion be avoided? 

• How complex is the geometry and the flow? 

• Is sufficient computer memory available for a certain number of cells and 

models? 

Most relevant to the choice of the grid is to minimise numerical diffusion. Thus, 

ideally the flow should be aligned with the mesh which can be achieved by using 

quadrilateral or hexahedral mesh. When the flow is complex or the shape of the 

geometry is complicated, the use of triangular or tetrahedral mesh is 

recommended.  

In this case, a distinction should be made between the static domain and the 

dynamic domain. In the wave generation domain, to simulate the paddle motion, 

the triangle mesh is selected to increase the dynamic mesh accuracy. In the 

working domain and the damping domain, to reduce the CFD computational 
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expenses, the structured quadrilateral mesh is used. More mesh elements are 

set near the free surface for a smoother wave elevation profile, as shown in 

Figure 3.2 and Figure 3.3. 

 

Figure 3.2 The global meshing configuration of the numerical wave tank 

 

Figure 3.3 The meshing configuration around the paddle and free surface 

In the paddle wave-making simulation, the pressure-based, unsteady solver is 

used. The Geo-reconstruct Scheme is utilised for reconstructing the free surface. 

A second-order upwind discretization is used for better accuracy and the 

Pressure-Implicit with Splitting of Operators (PISO) algorithm with a neighbour 

correction is chosen. A non-iterative time-advancing scheme is used as the time-

steeping algorithm. The User Defined Functions (UDFs) are integrated to 

control the predetermined paddle motion. 

In favour of observing wave height at different locations along the wave 

propagating direction, as well as verifying the wave absorption effect in the 
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damping domain, the time history of the wave elevation profile is measured to 

compare with the linear analytical results, shown from Figure 3.4 to Figure 3.11, 

at different locations along the wave tank within 30 minutes. It is obvious that 

the regular wave profiles simulated in the numerical wave tank have good 

agreement with the analytical results. The numerical waves are in phase with 

the analytical wave profiles. When waves propagate gradually away from the 

wave paddle, the wave elevation demonstrates a higher order effect. Compared 

with the first order analytical results, the CFD simulated wave has a higher wave 

crest and a lower wave trough, seen in Figure 3.5 and Figure 3.6. At the wave 

elevation gauge x=10m, the average simulated regular wave crest is 0.114m, 

which is 14% larger than the first order linear analytical results. However, the 

computational diffusion is inevitable in the numerical wave tank, as the 

simulated regular wave elevation reduced slightly after a three-wave length 

distance from the wave paddle. 

In terms of the wave absorption effect in the damping domain, Figure 3.10 and 

Figure 3.11 show the CFD simulated wave elevations measured at locations 

x=27m and x=29m. The damping effect is excellent from the figures where the 

wave amplitude reduces from approximately 0.05m to 0.0005m. After the wave 

passes the damping domain, it will interact with the right boundary of the 

numerical wave tank and then reflect by passing the damping domain again. 

Thus, it can be concluded that there will be negligible reflection effect, and 

therefore the damping zone performs well with absorbing wave energy.  
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Figure 3.4 The numerical time history of wave elevation measured at x=2m 

compared with linear analytical results 

 

Figure 3.5  The numerical time history of wave elevation measured at x=6m 

compared with linear analytical results 

 

 

Figure 3.6 The numerical time history of wave elevation measured at x=10m 

compared with linear analytical results 
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Figure 3.7 The numerical time history of wave elevation measured at x=15m 

compared with linear analytical results 

 

Figure 3.8 The numerical time history of wave elevation measured at x=20m 

compared with linear analytical results 

 

Figure 3.9 The numerical time history of wave elevation measured at x=25m 

compared with linear analytical results 
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Figure 3.10 The numerical time history of wave elevation measured at x=27m 

 

Figure 3.11 The numerical time history of wave elevation measured at x=29m 

The wave contours of the numerical wave tank at different four moments are 

shown from Figure 3.12 to Figure 3.15. 

 

Figure 3.12  Wave contour at time t=5s 
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Figure 3.13 Wave contour at time t=10s 

 

Figure 3.14 Wave contour at time t=15s 

 

Figure 3.15 Wave contour at time t=20s 

3.4.2 Source Function Wave-making Results 

In this part, a period T = 9s deep regular wave is simulated by the mass 

function wave-making method. The detailed configuration of the numerical 
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wave tank is shown in Figure 3.16. The boundary AB and BC is set to be 

symmetry and all the other boundaries are the same as the paddle wave-making 

wave tank. The coordinate origin O is located at the left side of the wave tank. 

Considering the target wave length, the wave tank is 700m long in total, and the 

length of the damping domain is 150m. The total water depth is 100m, and the 

distance between the water free surface and top boundary is 30m. A rectangle 

source domain is used, which is placed 4.22m below the free surface with a 

width of 3.2m.  

 

Figure 3.16 The detailed configuration of source function wave-making 

numerical wave tank 

 

Figure 3.17 The numerical time history of wave elevation measured at x=250m 

compared with linear analytical results 

The wave elevation comparison is shown in Figure 3.17 at location x = 250m. 

The comparison results show that the wave elevation profiles computed from 

the current CFD method and derived from the linear wave theory have a good 
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agreement. It should be noted that the computational regular wave crest is 

higher and the wave trough is much shallower than the linear sine wave profile 

result. The phenomenon is similar with the paddle wave-making method.  

3.5 Conclusions 

The implementation of the numerical method has been discussed in this chapter. 

In order to investigate the wave structure interaction issues by the 

Computational Fluid Dynamic method, the development of the CFD numerical 

wave tank technique is the primary work.  

The general regular wave theory is introduced first. Based on the linear regular 

wave theory, the higher order regular wave theory, the irregular wave theory 

and the extreme wave theory could be developed. Following that, two different 

wave generation methods are discussed. The paddle wave-making method is a 

physical wave generation technology which imitates the wave makers in the 

laboratory. The wave generation formula is derived by a small amplitude wave 

assumption. Then, the source function wave-making method is discussed. The 

empirical formula of the source size and source intensity has been summarized. 

Finally, the regular wave computational simulation setup and results are 

discussed. The numerical wave elevations are all compared with the linear 

analytical results, and a good agreement is achieved. 

In the following chapters, the extreme wave will be generated based on the 

numerical wave tank technique discussed in this chapter, and the wave 

structure interaction issues will be investigated further. 
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4 Freak Wave Models and Numerical Simulations 

4.1 General Remarks 

In this chapter, the freak wave models are introduced. According to Longuet-

Higgins wave model theory, the wave free surface can be represented by the 

linear sum of the individual wave components with different frequencies and 

random phases. Improving this wave model, the wave components have their 

phase adjusted so that a large amount of energy is located at a focused position 

and at a given time. Following this, two more efficient and realistic freak wave 

models are presented: the combined wave models and phase modulation wave 

models, respectively.  

Finally, a 2-D numerical wave tank is established based on the numerical wave 

tank theory introduced in the previous chapter. In this numerical wave tank, 12 

different freak wave events are generated numerically, and the effect of focused 

wave parameters on the nonlinearity of the freak wave train is investigated. The 

parametric studies include the shift of freak wave train focusing position and 

focusing time, and a comparison of numerical time histories of wave elevations 

with the analytical results. 

4.2 Random Wave Model Theory 

Based on the Longuet-Higgins wave model theory, the realistic sea surface in 

space and time  𝜂(𝑥, 𝑡) can be expressed by the linear sum of the individual 

wave component with different wave amplitude, different wave frequency and 

random phase angle in the usual way as: 

𝜂(𝑥, 𝑡) = ∑𝑎𝑖 ∗ 𝑐𝑜𝑠 (𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜏𝑖)

𝑁

𝑖=1

 
(4.2.1) 

Where 

𝑎𝑖 = wave amplitude (m) for group component i 

𝑘𝑖 = wave number (rad/m) for group component i 

𝜔𝑖 = circular wave frequency (rad/s) for group component i 
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𝜏𝑖 = the phase of the wave component 

𝑖 = 1,2…𝑁 represents the wave component  

To generate a random wave train, the phases of each wave component 𝜏𝑖 are 

selected in the usual way by randomly selecting a number between 0 and 2π 

using the random number function in Mathcad.  

In 1968 and 1969, an extensive wave measurement program called the Joint 

North Sea Wave Project JONSWAP was carried out. Analysis of the data yielded a 

spectrum formulation for fetch-limited wind generated seas (Hasselmann et al., 

1973). Based on the given significant wave height and wave spectrum period, 

the formulation can be represented as: 

 

𝑠(𝜔) =
320 ∗ 𝐻1 3⁄

2

𝑇𝑝
4

∗ 𝜔−5 ∗ 𝑒𝑥𝑝 (
−1950

𝑇𝑝
4

∗ 𝜔−4) ∗ 𝛾𝑌 
(4.2.2) 

𝑌 = 𝑒𝑥𝑝 [−(
(𝜔 − 𝜔𝑝)

2

2𝜎2𝜔𝑝
2

)] 
(4.2.3) 

where 

𝛾 = 3.3 peakness factor 

𝜔𝑝 =
2𝜋

𝑇𝑝
  circular frequency at spectral peak 

𝜎 = a step function of 𝜔 

 If 𝜔 < 𝜔𝑝 then: 𝜎 = 0.07.  

And 𝑖𝑓 𝜔 > 𝜔𝑝 then: 𝜎 = 0.09  

For a given wave spectrum, most wave energy is gathered in the frequency 

range (𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥). During the analysis, the total wave component number is 𝑀. 

Thus, the frequency is divided into  M components equally and the frequency 

interval for each component is 𝛥𝜔 = (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)/𝑀. According to the wave 
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spectrum definition, for each frequency component, the relative wave amplitude 

is 𝑎𝑖 = √2 ∗ 𝑠(𝜔𝑖) ∗ 𝛥𝜔 and 𝛥𝜔 is the uniform spacing between frequencies.  

Jonswap is selected as the target wave spectrum in the analysis.  For the random 

wave modelling, the relative spectrum parameters are selected as follows. 

Significant wave height is Hs = 0.1m and peak wave period is Tp = 2s. The total 

simulating time is 60Tp and the time interval during the simulation is 0.05s. The 

wave frequency range is from 𝑓𝑚𝑖𝑛 = 0.1𝑓𝑝 to 𝑓𝑚𝑎𝑥 = 4𝑓𝑝. The wave component 

number M = 100. 

The random initial phase 𝜏𝑖 is shown in Figure 4.1 and the wave amplitude 𝑎𝑖 is 

shown in Figure 4.2. By substituting 𝑎𝑖 𝑎𝑛𝑑 𝜏𝑖 into equation (4.2.1), the time 

histories of the analytical irregular wave train are shown in Figure 4.3 and 

Figure 4.4 at the position x = 0m and x = 10m, respectively.  

 

Figure 4.1 Random initial phase related to each wave frequency component 
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Figure 4.2 Wave amplitude related to each wave frequency component 

 

Figure 4.3 Time history of analytical random wave elevation at x=0m 

 

Figure 4.4 Time history of analytical random wave elevation at x=10m 
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4.3 Freak Wave Modelling Theory 

4.3.1 Basic Freak Wave Model 

Improving the random wave theory stated above, modulation of the phase angle 

for each individual wave component can gather the large amount of wave train 

energy in a fixed position at a fixed moment. The linear sum of individual wave 

components is assumed to be the most effective method to model freak waves.  

Wave number and wave frequency satisfies the wave dispersion relationship 

as 𝜔𝑖
2 = 𝑔𝑘𝑖𝑡𝑎𝑛ℎ𝑘𝑖𝑑. The mechanism of 2D wave focusing theory is related to 

the wave dispersion relationship. Among the wave components, short waves 

with small velocities travel in front of the waves with large velocities at the 

initial time. During the wave propagation, large waves will overtake the short 

waves.  Adjusting the random phase angles can superpose all the waves at a 

fixed time and in a fixed position. At the same time, the wave energy will gather 

theoretically. The wave peaks superposition in a fixed time and position can be 

represented mathematically as:  

cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜏𝑖) = 1 (4.3.1) 

The phase angle of 𝑖𝑡ℎ  wave component can be expressed as 

𝜏𝑖 = 𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 2𝜋𝑚,𝑚 = 0,1,2, … (4.3.2) 

Then, contriving the phases, the wave elevation of the freak event at focused 

position 𝑥𝑐 and focused time 𝑡𝑐 is given by: 

𝜂(𝑥, 𝑡) = ∑𝑎𝑖 ∗ 𝑐𝑜𝑠 (𝑘𝑖(𝑥 − 𝑥𝑐) + 𝜔𝑖(𝑡 − 𝑡𝑐))

𝑀

𝑖=1

 
(4.3.3) 

The above freak wave modelling formula is considered the most basic model 

method which assumes that all the wave components in the wave train gather 

together in the focused position and time. The freak wave is generated from the 

same wave spectrum and relative parameters as used in random wave 

modelling. Significant wave height is Hs = 0.1m and peak wave period is Tp =
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2s. The total simulating time is 30Tp. The time interval during the simulation is 

0.05s and the total number of discrete points in the irregular wave train is 1200.  

The wave frequency range is from 𝑓𝑚𝑖𝑛 = 0.1𝑓𝑝 to 𝑓𝑚𝑎𝑥 = 4𝑓𝑝. Based on the 

wave theory stated above, the complicated freak wave train profile is composed 

of 100 small amplitude waves and the predetermined focused position and 

focused time are xc = 0m and tc = 40m. The analytical focused wave elevation 

profile is shown in Figure 4.5.  

At the focused point, all waves are combined at time t = tc and the water 

surface looks like a single large wave with a high wave amplitude given 

by 𝜂(𝑥𝑐, 𝑡𝑐) = ∑𝑎𝑖. The water surface is quiescent before the focal time, and 

after the large single transient wave passes, the water free surface becomes 

quiescent again. During the wave propagation period at the focal place and time, 

the situation of the transient wave only emerging but without a random 

background surface is unrealistic.  

 

Figure 4.5 Time series of analytical wave elevation at the focused point 

Today, there is still no exact definition of a freak wave event. But it is known 

that the rare freak waves follow the Rayleigh probability distribution of wave 

heights. The Rayleigh distribution is based on the superposition of linear wave 

components and reveals that the most probable maximum wave height in a 

random sea 𝐻𝑀𝐴𝑋 is related to the significant wave height 𝐻𝑠 given by: 

H𝑀𝐴𝑋

𝐻𝑠
= 0.707√𝑙𝑛𝑀 

(4.3.4) 
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Normally, the definition of a freak wave is a large wave whose ratio maximum 

wave height by significant wave height is a factor in a range of (2-2.2). In the 

linear approximation, the random wave field can be regarded as a Gaussian 

process. Under the Gaussian process assumption, a mathematical definition of a 

freak wave can be considered as Hmax ≥ 2.0Hs. Considering the nonlinearities in 

the process, a refined definition is to increase the limit of the freak wave height 

to Hmax ≥ 2.2Hs. In this paper, the ratio Hmax ≥ 2.2Hs and Amax ≥ 1.1Hs are 

considered as the definition of a freak wave event.  

In the freak wave model, the ratio Hmax Hs⁄ = 3.15 which is much more than the 

definition in Chapter 2.2. Further, the water surface derived from this freak 

wave model is quiescent before and after the focused time, which is unrealistic.  

4.3.2 Efficient Freak Wave Model 

4.3.2.1 Combining Wave Models 

The generation of a more realistic freak wave event is also based on the same 

superposition technique introduced above. However, the total wave energy is 

not only used for the freak wave generation, but also a portion of wave energy 

used to generate the surrounding waves. 

4.3.2.1.1 Combining Wave Model One: Random Wave + Transient Wave  

The first combination wave model is stated by Kriebel and Alsina (2000), who 

did a real wave tank experimented by splitting the wave spectrum into two 

parts to model a real freak wave. The first part is used to model surrounding 

random waves and the other one is for transient extreme waves. The 

mathematical method specifies the relative percentage of the total wave energy 

at each frequency, which will go to each part. 𝑃𝑟 is the percentage of energy 

which denotes the random waves, and  𝑃𝑡  is the corresponding percentage 

contributing to the transient wave. These two parameters are related as 𝑃𝑟 +

𝑃𝑡 = 1.  

When the spectrum energy percentage is chosen, the free surface is obtained by 

combining random wave profiles and transient wave profiles by: 
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𝜂(𝑥, 𝑡) = ∑𝑎𝑟𝑖 ∗ 𝑐𝑜𝑠(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜏𝑖)

𝑁

𝑖=1

+ ∑𝑎𝑡𝑖 ∗ 𝑐𝑜𝑠 (𝑘𝑖(𝑥 − 𝑥𝑐) + 𝜔𝑖(𝑡 − 𝑡𝑐))

𝑁

𝑖=1

 

(4.3.5) 

In the above formula, the phase angles for the transient parts are zero and the 

phase angle values are selected randomly between 0 and 2π to generate the 

random waves. The wave amplitudes for the random and transient wave parts 

are represented as: 

𝑎𝑟𝑖 = √2 ∗ 𝑃𝑟 ∗ 𝑠(𝜔𝑖) ∗ 𝛥𝜔  

𝑎𝑡𝑖 = √2 ∗ 𝑃𝑡 ∗ 𝑠(𝜔𝑖) ∗ 𝛥𝜔 (4.3.6) 

The percentages of spectrum energy for random and transient waves Pr and Pt 

are two values from 0%  to 100%. For the situation Pr =  0%, all wave energy 

will contribute to the transient wave generation and there will be no 

surrounding background waves.  Further, for the situation Pr =  100%, all wave 

energy will contribute to the random wave modelling and wave height will not 

exceed the freak height definition. The target for this part is to determine the 

percentage of energy for each part to achieve the freak wave which can 

represent a more realistic sea state. 

 

Figure 4.6 Time history of analytical wave elevation at the focused point when 

Pt= 0% 
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Figure 4.7 Time history of analytical wave elevation at the focused point when 

Pt= 10% 

 

Figure 4.8 Time history of analytical wave elevation at the focused point when 

Pt= 20% 

 

Figure 4.9 Time history of analytical wave elevation at the focused point when 

Pt= 30% 
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Figure 4.10 Time history of analytical wave elevation at the focused point when 

Pt= 40% 

 

Figure 4.11 Time history of analytical wave elevation at the focused point when 

Pt= 50% 

 

Figure 4.12 Time history of analytical wave elevation at the focused point when 

Pt= 60% 
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Figure 4.13 Time history of analytical wave elevation at the focused point when 

Pt= 70% 

 

Figure 4.14 Time history of analytical wave elevation at the focused point when 

Pt= 80% 

 

Figure 4.15 Time history of analytical wave elevation at the focused point when 

Pt= 90% 
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Figure 4.16 Time history of analytical wave elevation at the focused point when 

Pt= 100% 

The analytical results illustrated from Figure 4.6 to Figure 4.16 show how the 

wave elevation is transferred from realistic random sea states to an unrealistic 

sea state with the increase of  Pt from  0% to 100% with an interval of 10%. The 

sea state seems much more unrealistic when  Pt exceeds 40%. At that time, the 

maximum wave height by significant wave height ratio is larger than 2.2.  

 

Figure 4.17 The ratio Hmax⁄Hs with different energy percentage Pt 

The ratio Hmax Hs⁄   at different transient wave energy percentage Pt is shown in 

Figure 4.17. For the case Pt = 0, all the wave energy goes into the random wave 

modelling and no wave energy is used for the freak wave generation. However, 
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for the case Pt = 1, the entire wave energy goes into the freak part simulation. 

With the increase of Pt, the ratio Hmax Hs⁄  grows from 1.115 to 3.151. When Pt <

0.2, the random sea dominates the sea state as the ratio maximum wave height 

by significant wave height is smaller than 1.627. However, when Pt is larger than 

0.5, the focused transient wave dominates the entire sea state and the ratio 

Hmax Hs⁄  is 2.348. When the transient focused percentage  Pt  is 0.4, the 

maximum wave height and significant wave height ratio is 2.139, which is 

adjusted to the freak wave definition.   

4.3.2.1.2 Combining Wave Model Two: Regular Wave + Transient Wave  

Differing from the above combination model, the second efficient focused wave 

modelling method is a combination of transient focused wave and a regular 

wave to generate a realistic freak wave sea state. The model specifies the 

relative percentage of the total wave spectrum energy at each frequency, which 

will go to each part. 𝑃𝑎  is the percentage of energy which denotes the regular 

wave and 𝑃𝑡 is the corresponding percentage contributing to the transient 

waves. These two parameters are related as Pa + Pt = 1. Once the percentages 

are selected, the wave free surface is obtained by adding a regular wave profile 

to the transient wave series as such:  

𝜂(𝑥, 𝑡) =  𝑃𝑎𝑎𝑝 𝑐𝑜𝑠(𝑘𝑝(𝑥 − 𝑥𝑐) − 𝜔𝑝(𝑡 − 𝑡𝑐))

+ 𝑃𝑡 ∑𝑎𝑖 ∗ 𝑐𝑜𝑠 (𝑘𝑖(𝑥 − 𝑥𝑐) + 𝜔𝑖(𝑡 − 𝑡𝑐))

𝑁

𝑖=1

 

(4.3.7) 

For the random wave modelling part, the wave amplitude for each frequency 

component is 𝑎𝑖 = √2 ∗ 𝑃𝑡 ∗ 𝑠(𝜔𝑖) ∗ 𝛥𝜔 and 𝛥𝜔 is the uniform spacing between 

frequencies. For the regular wave part, the wave amplitude 𝑎𝑝 is half the 

significant wave height, which is 𝐻𝑠 2⁄  . The wave number and wave frequency 

are calculated from the spectrum peak period Tp = 2s. 

The percentages of spectrum energy for regular and transient waves Pa and Pt 

are two values from 0%  to 100%. For the situation Pa =  0%, all wave energy 

will contribute to the transient wave generation and there will be no 
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surrounding background regular waves.  Further, for the situation Pa =  100%, 

all wave energy will contribute to the regular wave modelling. The modelling 

result would be a regular wave train, but there is no obvious transient focused 

wave. The time series of analytical wave elevations are shown from Figure 4.18 

to Figure 4.28, and the mathematical water free surface elevation is normalized 

by the significant wave height in these figures. 

 

Figure 4.18 Time history of analytical wave elevation at the focused point when 

Pt= 0% 

 

Figure 4.19 Time history of analytical wave elevation at the focused point when 

Pt= 10% 



62 

 

 

Figure 4.20 Time history of analytical wave elevation at the focused point when 

Pt= 20% 

 

Figure 4.21 Time history of analytical wave elevation at the focused point when 

Pt= 30% 

 

Figure 4.22 Time history of analytical wave elevation at the focused point when 

Pt= 40% 
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Figure 4.23 Time history of analytical wave elevation at the focused point when 

Pt= 50% 

 

Figure 4.24 Time history of analytical wave elevation at the focused point when 

Pt= 60% 

 

Figure 4.25 Time history of analytical wave elevation at the focused point when 

Pt= 70% 
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Figure 4.26 Time history of analytical wave elevation at the focused point when 

Pt= 80% 

 

Figure 4.27 Time history of analytical wave elevation at the focused point when 

Pt= 90% 

 

Figure 4.28 Time history of analytical wave elevation at the focused point when 

Pt= 100% 
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The ratios of maximum wave height by significant wave height  Hmax Hs⁄  are 

shown in Figure 4.29 by different wave spectrum energy percentage 

distributions. In the case Pt = 0, the entire wave spectrum energy contributes to 

the regular wave modelling, while in the case Pt =  100%, the wave free surface 

reduces to the total focused wave modelling. The statistical value ( Hmax Hs⁄ ) 

increases with the growth of Pt. When the random percentage Pt = 0.6, the freak 

wave train is generated with a maximum wave height equalling to 2.258Hs  and 

this satisfies freak wave event definition   Hmax = 2.2Hs. 

 

Figure 4.29 The ratio Hmax⁄Hs with different energy percentage Pt 

4.3.2.2 Focused Wave Models of Initial Phase Adjusting: 

Another freak wave modelling method is presented by adjusting the initial 

phase angle interval. The mathematical model is based on the initial freak wave 

superposition method and the more realistic sea state is generated by 

modulation of the initial phase angle interval.      

By adjusting the phase angles of different wave components, the wave energy 

can be gathered in the limited space at a predetermined time. This modulation 

is based on the choice of initial phase angle. Each wave component of irregular 

wave train has random phases between 0 and 2π. By reducing the random 

number interval, the probability of a large amount of energy gathering in a 
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space at a determined time increases. The wave surface profile is the same as 

the irregular wave profile:  

𝜂(𝑥, 𝑡) = ∑𝑎𝑖 ∗ 𝑐𝑜𝑠 (𝑘𝑖(𝑥 − 𝑥𝑐) − 𝜔𝑖(𝑡 − 𝑡𝑐) + 𝜏𝑖)

𝑁

𝑖=1

 
(4.3.8) 

Where the number 𝜏𝑖 is assumed to be a random number in a range of [0, α] and 

the number α is an interval of [0, 2π]. Figure 4.30 and Figure 4.35 show how the 

wave elevation is transferred from an unrealistic freak sea state to the realistic 

sea state as the initial phase interval decreases. Generally, the analytical wave 

elevation profile is like the random plus transient combination model.  

 

Figure 4.30 Time history of analytical wave elevation at the focused position 

with α=2π 

 

Figure 4.31 Time history of analytical wave elevation at the focused position 

with α=1.6π 
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Figure 4.32 Time history of analytical wave elevation at the focused position 

with α=1.2π 

 

Figure 4.33 Time history of analytical wave elevation at the focused position 

with α=0.8π 

 

Figure 4.34 Time history of analytical wave elevation at the focused position 

with α=0.4π 
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Figure 4.35 Time history of analytical wave elevation at the focused position 

with α=0π 

 

Figure 4.36 Ratio Hmax ⁄Hs with an interval of 0.2π 

Figure 4.36 illustrates the ratio ( Hmax Hs⁄ ) of analytical freak waves 

corresponding to the different initial phase intervals. When α = 0, the phase 

angle belongs to the range of [0, 0] and the freak wave model is the same as the 

extreme wave model. When α = 2π, the phase angle belongs to the range of [0, 

2π] and the freak wave model is the same as the random wave model. For the 

cases of α < 1.2π, the random phases gather together so that the combination of 
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wave energy can result in the generation of a freak wave. With the increase of 

the initial phase interval, the ratio (Hmax Hs⁄ ) reduces. In the above figure, when 

α = π, the ratio maximum wave height by significant wave height is 2.257, 

which is slightly larger than 2.2Hs.  

4.4 Freak Wave Numerical Simulation 

In this part, a two-dimensional numerical wave tank is established. The source 

function wave-making method is used to simulate freak wave events 

computationally. Finally, the numerical results are compared with the analytical 

ones to discuss the nonlinear characteristics of a freak wave train. 

4.4.1 Freak Wave Generation Theory 

The generation of linear regular waves by source function wave-making 

methods has been introduced in Chapter 3.3. The source intensity equation 

(3.2.23) is not only used for regular wave generation, but is also appropriate for 

freak wave generation. In theory, proper mass source intensity can generate any 

target wave.  The freak wave free surface, which is focused at 𝑥𝑐 and at a 

moment 𝑡𝑐, has been expressed in Equation (4.3.3). The corresponding freak 

wave horizontal velocity can be represented as: 

𝑢(𝑦, 𝑡) = ∑𝑎𝑖 ∗ 𝜔𝑖

𝑀

𝑖=1

∗
𝑐𝑜𝑠ℎ𝑘𝑖(𝑦 + ℎ)

𝑠𝑖𝑛ℎ𝑘𝑖ℎ
∗ cos(𝑘𝑖(𝑥 − 𝑥𝑐) − 𝜔𝑖(𝑡 − 𝑡𝑏)) 

 (4.4.1) 

With the source intensity: 

𝑠𝑠(𝑦, 𝑡) =
2𝑢(𝑥𝑠, 𝑦, 𝑡)

∆𝑥
 

 (4.4.2) 

4.4.2 Input Extreme Wave Conditions 

This work contains the freak wave groups from four different frequency 

bandwidths conditions which are shown in Table 4.1. In each wave group, the 

wave component number  M = 29 . During the numerical modelling, the 

individual wave has the same wave amplitude and the wave frequency is 

uniformly distributed in the frequency range. For each specific frequency range 
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wave group, there are three different input wave amplitudes to analyse the 

freak wave breaking conditions. They are 0.09m, 0.18m and 0.36m respectively. 

Concerning the peak wave number (k = 1.006) in the 29 individual wave 

components, the corresponding freak wave steepness values are 0.02866, 

0.05732 and 0.11465 respectively.  

Table 4.1 Freak wave modelling input conditions 

Case Frequency range (Hz) Input Amplitude (m) 

A1 

0.15-0.85 

0.09 

A2 0.18 

A3 0.36 

B1 

0.2-0.8 

0.09 

B2 0.18 

B3 0.36 

C1 

0.25-0.75 

0.09 

C2 0.18 

C3 0.36 

D1 

0.35-0.65 

0.09 

D2 0.18 

D3 0.36 

4.4.3 Geometric Model 

The detailed configuration of the numerical wave tank is shown in Figure 4.37. 

A two-dimensional geometric model is made in Gambit which is Fluent’s pre-

processing and mesh generation software. The coordinate origin O is located at 

the left side of the free surface in the numerical tank. The tank is 40m long in 

total and the length of the dissipation zone is 10m. The wave tank depth is 10m 

and the height above the free surface is 3m. At x=20m, a major wave probe is 

set to measure the time series of the wave elevation. An example of meshing 
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configuration is shown in Figure 4.38. The meshing convergence test is 

conducted in the following part to select a suitable mesh for the further analysis. 

As the mass source wave generation method is used in the regular and focused 

wave simulation in this part, the structured mesh is used to reduce the CFD 

modelling time. More mesh elements are set near the free surface to capture a 

smoother wave elevation profile.  Along the wave propagation direction, more 

meshes are set around the main wave measurement position in order to capture 

the downstream shifting intensity of the focused wave group. 

The pressure-based, unsteady solver is used in Fluent. The geo-reconstruct 

scheme is utilised for reconstructing the free surface. A second-order upwind 

discretization is used for better accuracy and the Pressure-Implicit with 

splitting of Operators (PISO) algorithm with a neighbour correction is chosen. A 

non-iterative time advancing scheme is used as the time-stepping algorithm.  

 

Figure 4.37 Sketch of 2-D numerical wave tank 
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Figure 4.38 Meshing configuration of the computational domain 

4.4.4 Results and Analysis 

4.4.4.1 Grid Convergence Test 

To validate the mesh convergence of the computation domain, three different 

meshes are used to simulate a regular wave train, which has the same wave 

amplitude of 0.08m and a wave period of 2s. The mesh details are shown in 

Table 4.2. The different mesh conditions are only considered in the working 

domain. 

Table 4.2 Mesh conditions for grid convergence test 

Mesh 

Cell Size in x-

direction 

Cell number around 

free surface 

Computational time

（CPU hours） 

Mesh 1 3%λ= 0.28m 20 2h 35min 

Mesh 2 2.5%λ= 0.2m 30 3h 42min 

Mesh 3 2%λ= 0.12m 40 6h 18min 

 

Figure 4.39 shows the comparisons of time histories of wave elevations 

measured at x=20m. The regular wave crest is underestimated by Mesh 1. 

However, the time histories of wave elevation simulated by Mesh 2 and Mesh 3 

can achieve a good agreement. The increase of mesh number from Mesh 2 to 
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Mesh 3 will not change the simulation results significantly, and both regular 

wave elevations converge to 0.0792m.  

In order to capture the wave elevation free surface exactly, a small time-step 

(1/100 of the wave period) is used over this numerical simulation time. The 

comparisons of computational CPU hours are shown in Table 4.2. By increasing 

the cell size in the x-axis direction and the cell number around the free surface, 

the whole computational time 35s increases from 2 hours and 35 minutes to 6 

hours and 18 minutes. The total CPU hours spent in Mesh 3 case is almost 2.5 

times larger than the CPU hours spent in Mesh 1 case.  

By considering the regular wave elevation convergence results and the 

computational CPU hours, Mesh 2 is used for further analysis.  The 12 different 

focused wave groups will be simulated in this numerical wave tank. 

 

Figure 4.39 Comparisons of regular wave elevation in three mesh conditions 
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4.4.4.2 Evaluation of a Focused Wave Train 

 

Figure 4.40 Numerical wave tank contours from t=23s to t=28s 

The wave contours of the freak wave case D3 are shown in Figure 4.40. Six 

different moments are selected to illustrate the big wave generation procedure. 

The contours show that the freak wave train focuses at t=26s when the 

maximum wave amplitude appears.  

The evolution of a freak wave train travelling in a numerical wave tank is shown 

from Figure 4.41 to Figure 4.48. In these figures, the freak wave case B2 is 

selected here. The time series of wave surface profiles are shown and measured 

at eight different wave probes. They are x=5m, x=8m, x=12m, x=18m, x=20m, 

x=22m, x=24m and x=28m along the wave travelling direction, respectively. It 
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is found that during the propagation of the 29 waves, the large waves chase up 

to the small waves in front of the focused position. When all the waves meet in 

the focal place, a large amplitude wave is generated and the wave energy 

gathers there. After that moment, the wave amplitude begins to reduce.   

 

Figure 4.41 Wave elevation measured at x=5m for freak wave case B2 

 

Figure 4.42 Wave elevation measured at x=8m for freak wave case B2 

 

Figure 4.43 Wave elevation measured at x=12m for freak wave case B2 
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Figure 4.44 Wave elevation measured at x=15m for freak wave case B2 

 

Figure 4.45 Wave elevation measured at x=20m for freak wave case B2 

 

Figure 4.46 Wave elevation measured at x=22m for freak wave case B2 
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Figure 4.47 Wave elevation measured at x=24m for freak wave case B2 

 

Figure 4.48 Wave elevation measured at x=28m for freak wave case B2 

4.4.4.3 Focused Position and Time 

As the linear wave theory is used to model the freak wave, the superposition 

wave theory assumes that all wave components focus at the predetermined 

focused positon 𝑥𝑐  and at the predetermined focal time 𝑡𝑐 . However, the 

ignorance of wave-wave nonlinear interaction can result in the shifting of the 

real focal position and the corresponding focal time. The real focal position and 

focal time should be measured before further analysis. 

Baldock et al. (1996) conducted experimental research to analyse the nonlinear 

characteristics of a focused wave group and his results showed that the 

intensity of shifting ability was closely related to the wave group frequency 

bandwidth and the input amplitude. In the present work, the real focal position 

and the corresponding focused time are measured for all the 12 different cases. 

How the frequency bandwidth and input amplitude affect the focal positon 
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shifting intensity will be compared and discussed.  In order to make the 

measurements, several wave gauges are set around the predetermined focal 

position to calculate the time histories of wave elevation with the same distance 

interval of 0.1m in the x-axis. The real focal position is determined by 

comparing the simulated data when the maximum wave elevation appears. 

Figure 4.49 and Figure 4.50 show the results of the CFD modelling real focal 

position and focal time for the 12 different cases. From the simulation results, it 

is found that the extreme wave train focused position and the corresponding 

focused time are related to the nonlinear behaviour of wave-wave interaction in 

the wave group. 

For any three cases with the same frequency bandwidths, the downstream 

shifting of focal position and focal time grows with the increase of the input 

wave freak amplitude, as an increase of input amplitude results in a growth of 

freak wave nonlinear behaviour. Although the focal position and focal time 

shifting trend are the same in case A, B, C and D, the shifting intensities are 

different.  

The nonlinear behaviour for a freak wave group is not only related to the input 

amplitude, but the frequency range for a wave group is one other important 

parameter to consider. For the small input amplitude cases A1, B1, C1 and D1, 

due to the nonlinear characteristics of the wave group not being obvious, the 

frequency bandwidth does not noticeably affect the focal position. However, for 

cases A3, B3, C3 and D3, the frequency bandwidth affects the wave group 

nonlinear behaviour dramatically. For case A3, the frequency range is from 

0.15Hz to 0.85Hz, and the real wave group focal position downstream shifts 

0.6m to the position x=20.6m. For case D3 with same input amplitude of 0.36m, 

the frequency difference is 0.3Hz ranging from 0.35Hz to 0.65Hz and the 

corresponding wave length is from 3.695m to 12.745m. The frequency range 

reduction increases the wave group nonlinear behaviour and the wave group 

focal position is downstream, shifting 6 meters from the predetermined positon 

x=20m to x=26m. The data provided in Figure 4.49 and Figure 4.50 show that 

the position and timing of a focusing event is dependent upon the nonlinearity 
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of the wave group. In each case, the wave focusing position and focusing time 

increases with a growth of input amplitude and decrease of frequency range.  

 

Figure 4.49 Numerical downstream shifting of the focused position 

 

Figure 4.50 Numerical downstream shifting of the focused time 

4.4.4.4 Surface Elevation at Focused Position 

The nonlinear behaviour of a freak wave train will not only affect the real focal 

position and time, but also results in a change of wave surface elevation. Figure 

4.51, Figure 4.52, Figure 4.53 and Figure 4.54 show the time history of wave 
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elevations for the small input amplitude cases A1, B1, C1 and D1. The 

computational results have a similar tendency as the analytical results. For the 

board-banded case A1, the computational maximum wave elevation is 0.0888m, 

and the corresponding result is 0.098m for the narrow-banded case D1. In these 

cases, as the input freak wave amplitude is small, the nonlinear wave-wave 

interaction behaviour is not obvious in the freak wave groups and the nonlinear 

behaviour can be ignored.  

For the other four cases with the same input amplitude of 0.18m, the 

computational wave surface profiles measured at the focused location are 

compared with the linear analytical results as shown in Figure 4.55, Figure 4.56, 

Figure 4.57 and Figure 4.58. The increase of the input amplitude results in 

obvious nonlinear behaviour of the wave group, which leads to an increase in 

wave elevation compared with the linear wave theory. Although for all the four 

cases, the computational wave elevations measured at the focal position are all 

larger than the results derived from the linear sum of the wave amplitude 

method; this wave elevation increase is only 0.2% for the board-banded case A2. 

However, for the narrow-banded case C2 and D2, the increases in wave 

elevation are 8% and 10%, respectively.  

For the four cases with the same input amplitude of 0.36m, the time histories of 

the wave elevation are shown in Figure 4.59, Figure 4.60, Figure 4.61 and Figure 

4.62. The increased input amplitude results in large nonlinear wave-wave 

interaction issues in a freak wave group, and the nonlinear behaviours of the 

freak wave are obvious. Because much more wave energy is gathered in the 

higher order harmonic, the computational maximum wave elevations are all 

much larger than the linear analytical results. The wave crest measured at the 

focal position is narrower and higher, and the adjacent wave troughs are wider 

and shallower than the linear results.  
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Figure 4.51 Wave elevation comparisons for freak wave case A1 

 

Figure 4.52 Wave elevation comparisons for freak wave case B1 
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Figure 4.53 Wave elevation comparisons for freak wave case C1 

 

Figure 4.54 Wave elevation comparisons for freak wave case D1 
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Figure 4.55 Wave elevation comparisons for freak wave case A2 

 

Figure 4.56 Wave elevation comparisons for freak wave case B2 
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Figure 4.57 Wave elevation comparisons for freak wave case C2 

 

Figure 4.58 Wave elevation comparisons for freak wave case D2 
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Figure 4.59 Wave elevation comparisons for freak wave case A3 

 

Figure 4.60 Wave elevation comparisons for freak wave case B3 
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Figure 4.61 Wave elevation comparisons for freak wave case C3 

 

Figure 4.62 Wave elevation comparisons for freak wave case D3 

4.5 Conclusions 

The freak wave model is introduced in this section. According to the Longuet-

Higgins model, an irregular wave train is presented with a component of 100 

regular waves with different wave numbers and different frequencies. Based on 

the wave amplitude superposition technique, entire wave components can 

gather in a fixed position at a predetermined time by modulating the initial 
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phase for each wave component. In the freak wave model, all the wave spectrum 

energy is used for the transient big wave generation. 

Further, three more efficient and realistic wave models for generating a freak 

wave in a numerical tank are introduced. Because the wave heights of the freak 

wave event in a real sea follows the Rayleigh distribution and the water surface 

elevation generally follows a Gaussian distribution, the definition of a freak 

wave event is determined to be Hmax > 2.2Hs.  

Finally, a freak wave train is simulated numerically in a 2-D numerical wave 

tank, and 12 different cases are conducted. In each freak wave train, there are 

29 individual wave components with the same amplitude. The 12 cases are 

allocated by different input amplitudes and frequency bandwidths. The 

numerical results show that the increased input amplitude and the reduced 

frequency bandwidth can result in a growth of nonlinear behaviour of a freak 

wave group, which will not only shift the focal position and focused time, but 

also change the wave surface profile compared with the linear analytical results. 

When the nonlinear behaviour increases, much more wave energy gathers in 

the higher order harmonic, which result in the computational maximum wave 

elevations being much larger than the linear analytical results.  
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5 Freak Wave Run-up on Vertical Cylinders 

5.1 General Remarks 

The design of offshore structures need an accurate prediction of wave scattering 

and maximum wave run-up elevation around the offshore structures to 

maintain sufficient air gaps below the platform decks. The wave run-up is 

always underestimated by linear diffraction theory, especially in extreme 

conditions.   

At first, a 3-D numerical wave tank is established with the source function wave 

making method to investigate a regular wave run-up on fixed vertical cylinder 

problems. The numerical wave run-up results are compared with experimental 

data, which was conducted by Nielsen (2003), to validate the accuracy of the 

current CFD numerical method. 

Following this, the 3-D numerical wave tank is performed to investigate the 

interactions between a freak wave train and a vertical fixed cylinder. Two 

cylinder sizes in total are considered. The numerical results show that the 

focused wave parameters, including wave steepness, frequency bandwidth and 

focal position, had significant impact on the wave run-up on a cylinder. 

Finally, the 3-D numerical wave tank is performed to investigate the 

interactions between a focused wave group and a pair of two cylinders. The 

results show that the focused wave parameters, including wave steepness, 

frequency bandwidth and distance between cylinders, had significant impact on 

the wave run-up on a cylinder. 

5.2 Validation of Regular Wave Run-up on a Vertical Cylinder 

5.2.1 Experimental Test 

In the present work, the results of a numerical wave run-up on a fixed vertical 

cylinder are compared with experimental data conducted by Nielsen (2003). A 

full-scale test is set up for the simulation. In the experiment, the circular 

cylinder diameter is D=16m and the cylinder draft is 24m. 16 different wave 

elevation measurement points in total are set around the cylinder surface, as 
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illustrated in Figure 5.1 and Table. 5.1, and the radial distances are measured 

from the cylinder centre.  

Table 5.1 Wave measurement point position 

Row Direction (degree) Radial distances (m) point no. 1,2,3 and 4 

A1 270 8.05, 9.47, 12.75 and 16 

A2 225 8.05, 9.47, 12.75 and 16 

A3 202.5 8.05, 9.47, 12.75 and 16 

A4 180 8.05, 9.47, 12.75 and 16 

 

Figure 5.1 Wave measurement point positions 

A regular wave is selected as the target incident wave in this present work. The 

wave parameter is shown in Table 5.2. The regular wave period is T=9s and the 

corresponding wave length is λ=126.5m for a deep-water condition.    

Table 5.2  Wave parameter 

Wave  Height H(m) Period T(s) Steepness H/ λ 

M1 4.22 9 0.0333/1 

M2 7.9 9 0.0625/1 
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5.2.2 Incident Wave Generation 

To investigate regular wave run-up around a vertical cylinder, incident waves 

must be generated in the 3-D numerical wave tank first.  

5.2.2.1 Numerical Tank Configuration 

The coordinate origin O is located at the left side of the free surface in the 

numerical tank. The wave tank is 506 meters long in total and the dissipation 

region length is 126.5m, located at the end position. A source region is placed at 

the front side 4.22m below the free surface with a width of 3.2m. The total 

height of the wave tank is 120m and the water depth is 100m. The numerical 

tank configuration is shown in Figure 5.2.   

 

Figure 5.2 3-D Numerical wave tank configurations 

5.2.2.2 Numerical Results 

Figure 5.3 and Figure 5.4 show the comparison of time histories of wave elevation 

simulated by the present CFD method and linear wave theory. It is found that the 

wave elevation profiles simulated by the numerical method and derived from 

linear theory show a good agreement. A difference worth mentioning is that the 

CFD-simulated regular wave trough is shallower and much more flat than the 

linear theory results. For the high wave steepness case of M2, the numerical 

simulated wave elevation is much narrower than the linear theory results. The 

average wave crests of M1 and M2 during the effective time are 2.2m and 3.97m 
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and both are slightly larger than target wave amplitudes of 2.11m and 3.95m. The 

experiment measured average wave amplitudes of 1.97m and 3.91m. 

 

Figure 5.3 Comparisons of time history of wave elevation simulated by present 

CFD method and linear wave theory for regular wave M1 

 

Figure 5.4 Comparisons of time history of wave elevation simulated by present 

CFD method and linear wave theory for regular wave M2 

5.2.3 Convergence Test 

The mesh convergence test is investigated with three different meshes by 

comparing the horizontal wave forces impacting on the cylinder. The global 

meshing configuration is shown in Figure 5.5, and the detailed meshing 

configuration around the cylinder surface is shown in Figure 5.6. The structured 

hexagonal mesh is used in the present case, which will not only reduce the 

computation time but also produce a smooth free surface. In order to test mesh 

convergence, three different meshes are established to calculate the wave force 

on cylinders listed in Table 5.3.  
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The horizontal wave force impacting on the vertical cylinder by three different 

grid sizes is shown in Figure 5.7, and only the wave case M1 is used for the 

convergence test. It is shown that the horizontal wave force converges to 6340kN. 

Mesh 3 is used for further analysis to obtain a robust numerical result.  

Table 5.3 Three mesh conditions for grid convergence test 

Mesh Cell Size In X-Direction 
Cell Number Around 

Free Surface 

Cell Number Around 

Cylinder Surface 

Mesh-1 3%λ= 3.84m 30 900 

Mesh-2 2.5%λ= 3.2m 35 1600 

Mesh-3 2%λ= 2.56m 40 2500 

 

 

Figure 5.5 Global mesh configurations of the 3D numerical wave tank 
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Figure 5.6 Detailed mesh configurations around the cylinder surface 

 

 

Figure 5.7 Horizontal wave forces on the vertical cylinder in three different 

mesh conditions 
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5.2.4 Horizontal Wave Force 

Time histories of horizontal wave force impacting on the vertical cylinder for 

incident regular waves M1 and M2 are shown in Figure 5.8 and Figure 5.9, 

respectively. The effective simulation time starts at t=95s, and ten periods are 

considered. The mean value of the computational maximum wave horizontal 

force is 6340kN for regular wave M1.  

In order to validate the accuracy of the CFD modelling result, Morrison’s equation 

is used to compare wave horizontal forces impacting on the cylinder, which is 

often used to calculate wave loads on circular cylindrical structural members of 

fixed offshore structures when viscous forces matter. Morrison’s equation tells us 

that the horizontal force 𝑑𝐹  on a strip pf with length 𝑑𝑧 of a vertical rigid circular 

cylinder can be written as: 

𝑑𝐹 = 𝜌
𝜋𝐷2

4
𝑑𝑧𝐶𝑚�̇� +

𝜌

2
𝐶𝐷𝐷𝑑𝑧|𝑢|𝑢 (5.2.1) 

The formula was published by Morison et al. (1950) as a result of force 

measurements on piles due to the action of progressive waves. 𝜌 is the water 

density, 𝐷 is the cylinder diameter, and 𝑢 and �̇� are the horizontal undisturbed 

fluid velocity and acceleration at the midpoint of the strip, respectively. The 

inertia coefficient 𝐶𝑚 and drag coefficient 𝐶𝐷 are determined to be 2 and 1.2, 

respectively, in this case. In the Morrison equation, the first part is called the 

mass (inertia) term, which concerns the pressure on the cylinder and the extra 

force caused by the change in pressure due to the presence of the cylinder. The 

second part is called the drag force, which concerns the viscous effects. The 

maximum wave force derived from the Morrison equation is Fmass(max) =

6278N for regular wave case M1, which has a good agreement with the 

computational results.  
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Figure 5.8 Numerical time history of horizontal wave force impacting on the 

vertical cylinder for regular wave M1 

 

Figure 5.9 Numerical time history of horizontal wave force impacting on the 

vertical cylinder for regular wave M2 

5.2.5 Wave Run-up 

Figure 5.10 shows the free surface elevation when the regular wave M2 runs up 

the cylinder. At t=82.7s, the maximum wave run-up happens along the cylinder 

surface.  

Figure 5.11 and Figure 5.12 show the time histories of wave elevations at wave 

measurement point A14 for the low wave steepness case M1 and high wave 

steepness case M2. The wave elevation profile for case M1 is smooth while, 

during a wave period time, an obvious small wave crest happens near a wave 

elevation trough for wave M2. With the increase of incident wave height, the 

nonlinear effect of a regular wave becomes stronger. 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 5.10 Six snapshots of wave surface when regular wave M2 running-up on 

the cylinder 
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Figure 5.11 Time history of wave elevation at wave measurement point A14 for 

low steepness case M1 

 

Figure 5.12 Time history of wave elevation at wave measurement point A14 for 

high steepness case M2 

The first order diffraction theory was first introduced by MacCamy and Fuchs 

(1956). The first order diffraction theory is used to calculate wave loads on a 

vertical circular cylinder extending from water free surface to the seabed. 

Different from Morrison’s equation, which is used to calculate wave loads 

exerted on a relative small size cylinder, the first order diffraction theory is used 

as a relative large size cylinder causing the reflection and diffraction of the 

incident wave. 

According to small amplitude wave theory, the velocity of the wave incident on 

the rigid cylinder is: 

𝜙𝐼 = −
𝑔𝐻

2𝜔
∗

𝑐𝑜𝑠𝑘(𝑦 + 𝑑)

𝑐𝑜𝑠ℎ𝑘𝑑
∗ 𝑒𝑖(𝑘𝑥−𝜔𝑡) (5.2.2) 
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Where 𝑔 is the gravity acceleration, 𝐻 is the wave height, 𝜔 is the wave 

frequency, 𝜔=2𝜋/T, 𝑇 is the wave period, 𝑘 is the wave number, 𝑘 = 2𝜋/𝜆, 𝜆 is 

the wave length, 𝑑 is the water depth, 𝑡 is the time. The equation for plane 

incident wave can be expressed as an infinite series using the polar co-ordinates 

𝑟 and 𝜃: 

𝜙𝐼 = −
𝑔𝐻

2𝜔
∗

𝑐𝑜𝑠𝑘(𝑦 + 𝑑)

𝑐𝑜𝑠ℎ𝑘𝑑
∗ ∑ ∈𝑚

∞

𝑚=0

𝑖𝑚𝑐𝑜𝑠𝑚𝜃 𝐽𝑚(𝑘𝑟)(𝑘𝑟)𝑒−𝑖𝜔𝑡 
(5.2.3) 

 

Where 𝐽𝑚(𝑘𝑟) are Bessel functions of the first kind of orders 0, 1,2…m, ϵ0=1 for  

m=0 and ϵm=2 for m≥1. 

A cylindrical wave is reflected from the cylinder and may be described by the 

velocity potential 𝜙𝑅: 

𝜙𝑅 = −
𝑔𝐻

2𝜔
∗
𝑐𝑜𝑠𝑘(𝑦 + 𝑑)

𝑐𝑜𝑠ℎ𝑘𝑑
∑ ∈𝑚

∞

𝑚=0

𝑖𝑚𝑐𝑜𝑠𝑚𝜃 [𝐽𝑚(𝑘𝑟) + 𝑖𝑌𝑚(𝑘𝑟)]𝑒−𝑖𝜔𝑡 
(5.2.4) 

Where 𝐴𝑚  are constants and 𝑌𝑚(𝑘𝑟) are Bessel functions of the second kind.  

The total potential 𝜙 is the sum of the incident and reflected potentials: 

𝜙 = −
𝑔𝐻

2𝜔
∗
𝑐𝑜𝑠𝑘(𝑦 + 𝑑)

𝑐𝑜𝑠ℎ𝑘𝑑
∑[∈𝑚

∞

𝑚=0

𝑖𝑚𝑐𝑜𝑠𝑚𝜃 𝐽𝑚(𝑘𝑟)

+ 𝐴𝑚𝑐𝑜𝑠𝑚𝜃𝐻𝑚
1 (𝑘𝑟)]𝑒−𝑖𝜔𝑡 (5.2.5) 

Where 𝐻𝑚
(1)(𝑘𝑟) = 𝐽𝑚(𝑘𝑟) + 𝑖𝑌𝑚(𝑘𝑟) is the Hankel function of the first kind.  

𝐴𝑚 = −∈𝑚 𝑖𝑚
𝐽𝑚
′ (𝑘𝑎)

𝐻𝑚
,(1)

(𝑘𝑎)
 

(5.2.6) 

For m=0, 1, 2 3…, where 𝐽𝑚
′ (𝑘𝑎) and 𝐻𝑚

,(1)
(𝑘𝑎) are the derivatives of 𝐽𝑚(𝑘𝑟) and 

𝐻𝑚
(1)

(𝑘𝑟) at 𝑟 = 𝑎 Therefore, the total potential is: 
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𝜙 = −
𝑔𝐻

2𝜔
∗
𝑐𝑜𝑠𝑘(𝑦 + 𝑑)

𝑐𝑜𝑠ℎ𝑘𝑑
∑ ∈𝑚

∞

𝑚=0

𝑖𝑚 [𝐽𝑚(𝑘𝑟)  

−
𝐽𝑚
′ (𝑘𝑎)

𝐻𝑚
,(1)(𝑘𝑎)

𝐻𝑚
(1)(𝑘𝑟)] 𝑐𝑜𝑠𝑚𝜃𝑒−𝑖𝜔𝑡 

(5.2.7) 

The water surface elevation η and the dynamic pressure at the surface of the 

cylinder are calculated using the total velocity potential and the linear Bernoulli 

equation: 

𝑝 = −𝜌𝑔𝑦 + 𝜌
𝜕𝜙

𝜕𝑡
 (5.2.8) 

So, that the water surface elevation can be expressed as: 

𝜂 =
𝐻

2
∑ ∈𝑚

∞

𝑚=0

𝑖𝑚+1[𝐽𝑚(𝑘𝑟) −
𝐽𝑚
′ (𝑘𝑎)

𝐻𝑚
,(1)

(𝑘𝑎)
𝐻𝑚

(1)
(𝑘𝑟)]𝑐𝑜𝑠𝑚𝜃𝑒−𝑖𝜔𝑡 

(5.2.9) 

The comparison between current CFD simulation, experiment and first order 

diffraction results of wave run-up on a cylinder are shown in Figure 5.13 and 

Figure 5.14 for two incident waves, M1 and M2. 𝜁  is the mean maximum wave 

crest; 𝐴 is the incident wave amplitude, 𝐴 = 𝐻/2; 𝑟 is the radial distance from 

the cylinder centre to wave measurement point, and 𝑎 is the radius of the 

cylinder. The ratio 𝑟/𝑎 represents the distance between the wave measurement 

point and the cylinder centre. In the present work, the incident wave amplitudes 

for cases M1 and M2 are 2.2m and 3.79m, respectively, in the CFD simulation. 

The effective simulation time starts at time t=70s, and ten time periods are 

considered in total.  

The present CFD simulation and experiment wave run-up results around a 

vertical cylinder show a good agreement with each other. The first order 

diffraction theory underestimates wave run-up dramatically. In the experiment, 

the maximum wave run-up appeared at row A3 and wave measurement point A32 

in both M1 and M2. However, the maximum wave run-up is measured at row A4 

and wave measurement point A41 in the CFD simulation which is opposite to the 
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incident wave direction and closest to the cylinder surface. Some other numerical 

simulation results were also compared with the experiment data in the original 

Nielsen’s work(2003). Their results illustrated the same tendency as the current 

CFD method in which the maximum wave run-up occurs in the wave flow 

direction and is measured in a wave measurement point closest to the cylinder 

surface.  

Except for the wave measurement points in row A3, the CFD measured wave 

run-up amplitudes are almost all slightly larger than the experimental data for 

the regular wave case M1. This can be attributed to the incident regular wave 

amplitudes used in the CFD simulation being larger than the regular waves used 

in the experiment.  

With the increase of incident wave height, the nonlinear characteristics become 

stronger. The maximum CFD simulated wave run-up ratio is 1.53 for case M1 

and the corresponding ratio is 1.69 for case M2, with both measured at wave 

point A41. 

 

 (a) Line A4 
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(b) Line A3 

 

(c) Line A2 
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(d) Line A1 

Figure 5.13 Comparisons of wave run-up ratio in four incident wave directions 

for regular wave M1 

 

(a) Line A4 
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(b) Line A3 

 

 (c) Line A2 
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(d) Line A1 

Figure 5.14 Comparisons of wave run-up ratio in four incident wave directions 

for regular wave M2 

5.3 Freak Wave Run-up on a Single Cylinder 

After validating the accuracy of the current CFD method to simulate the regular 

wave run-up on a vertical cylinder, a freak wave run-up on a vertical cylinder is 

investigated in this section. In particular, how the focused wave parameters, 

including wave steepness, frequency bandwidth and focused position impact on 

the wave run-up on a cylinder are analysed.  

5.3.1 Geometric Model 

The detailed configuration is shown in Figure 5.15. The coordinate origin O is 

located at the left side of the numerical wave tank at the free surface level. The 

tank is 40 meters long in total and a 10 meters long dissipation domain is 

located at the end of the wave tank. A source domain is 0.4m below the free 

surface with a width of 0.2m, placed at the front side of the numerical wave tank. 

The water depth is 10m and the height above the free surface is 3m.  At the 

position x=20m, a vertical cylinder is fixed with a drought of 3m. To investigate 

the effect of wave scattering on freak wave run-up on a vertical cylinder and 

wave-structure interaction characteristics, cylinders with two different sizes are 
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considered. For the small size model, the cylinder has a diameter of 0.812m. For 

the large size model, the cylinder has a diameter of 1.56m.  

 

Figure 5.15 Detailed configuration of the numerical wave tank 

Figure 5.16 shows the sketch of a numerical test set-up. A total of twenty 

different wave gauges are used to measure the wave elevations around the 

cylinder in five different incident wave directions. The freak wave propagates 

from left to right. The radial distances are shown in Table 5.4 and Table 5.5 for 

the small size cylinder and large size cylinder, respectively. The radial distance 

is measured from the cylinder centre.  

Table 5.4  Radial distance from wave measurement point to cylinder centre for 

small size cylinder 

Row Direction (degree) Radial distances (m) point no. 1,2,3 and 4 

A 180 0.812, 0.65, 0.4872 and 0.426 

B 225 0.812, 0.65, 0.4872 and 0.426 

C 270 0.812, 0.65, 0.4872 and 0.426 

D 315 0.812, 0.65, 0.4872 and 0.426 

E 360 0.812, 0.65, 0.4872 and 0.426 
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Table 5.5  Radial distance from wave measurement point to cylinder centre for 

large size cylinder 

Row Direction (degree) Radial distances (m) point no. 1,2,3 and 4 

A 180 1.56, 1.248, 0.912 and 0.819 

B 225 1.56, 1.248, 0.912 and 0.819 

C 270 1.56, 1.248, 0.912 and 0.819 

D 315 1.56, 1.248, 0.912 and 0.819 

E 360 1.56, 1.248, 0.912 and 0.819 

 

 

Figure 5.16 Sketch of numerical test set-up 

5.3.2 Input Freak Wave Parameter 

The different freak wave cases allocated by different input parameters, 

including input wave steepness, frequency bandwidth, cylinder size, and 

focused positions, are shown in Table 5.6. For case D3, the freak wave train is 

focused at the cylinder centre, and in cases D4 and D5, the freak wave train are 

focused at the cylinder’s front side and back side, respectively.  
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Table 5.6 Input freak wave parameters 

Case A (m) ∆f (Hz) ka Focused position 

A1 0.09 0.7 0.406 Cylinder Centre 

A2 0.18 0.7 0.406 Cylinder Centre 

A3 0.36 0.7 0.406 Cylinder Centre 

B1 0.09 0.6 0.406 Cylinder Centre 

B2 0.18 0.6 0.406 Cylinder Centre 

B3 0.36 0.6 0.406 Cylinder Centre 

C1 0.09 0.5 0.406 Cylinder Centre 

C2 0.18 0.5 0.406 Cylinder Centre 

C3 0.36 0.5 0.406 Cylinder Centre 

D1 0.09 0.3 0.406 Cylinder Centre 

D2 0.18 0.3 0.406 Cylinder Centre 

D3 0.36 0.3 0.406 Cylinder Centre 

D4 0.18 0.3 0.406 Front 

D5 0.18 0.3 0.406 back 

E1 0.09 0.3 0.781 Cylinder Centre 

E2 0.18 0.3 0.781 Cylinder Centre 

E3 0.36 0.3 0.781 Cylinder Centre 

 

5.3.3 Freak Wave Generation in a 3-D Numerical Wave Tank 

The computational results introduced in Chapter 6 show that the wave focused 

position and the corresponding focal time change because of the high nonlinear 

behaviour in a freak wave group. It is noted that the phenomenon is still obvious 

in a 3-D freak wave numerical simulation. In the freak wave structure 
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interaction computations, the adjustment of the added mass term in the 

governing mass function is necessary to control the wave group focal positions. 

Figure 5.17, Figure 5.18, Figure 5.19 and Figure 5.20 show the time histories of 

wave elevation measured at x=20m in the 3-D numerical wave tank after 

adjusting the added mass term in the source function for freak wave cases A2, 

B3, C2 and D1. The 3-D and 2-D computational wave elevations have a good 

agreement for all cases, which validates the accuracy of the current 3-D 

numerical wave tank.  

 

Figure 5.17 Wave elevation measured at x=20m for freak wave case A2 

 

Figure 5.18 Wave elevation measured at x=20m for freak wave case B3 
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Figure 5.19 Wave elevation measured at x=20m for freak wave case C2 

 

Figure 5.20 Wave elevation measured at x=20m for freak wave case D1 

5.3.4 Results and Discussion 

The wave run-up induced by wave structure interaction is an important factor 

in the design stage of offshore ocean structures. In this chapter, the wave run-up 

ratios are defined as: 

𝑅 =
𝐴 − 𝐴𝑜

𝐴𝑜
 

(5.3.1) 

Where   

𝐴𝑜 = amplitude of incident wave  

𝐴 = measured wave amplitude around a vertical cylinder 
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It should be noted that the maximum wave amplitude in a focused wave train is 

selected as 𝐴 and 𝐴𝑜 in the above equation to investigate the maximum wave 

run-up around the cylinder surface.  

5.3.4.1 Wave Run-up Tendency 

Figure 5.21 shows the time histories of wave elevation measured at 20 different 

wave gauges at different incident wave directions (referred as α in Figure 5.16) 

around the cylinder for case E1. Concentrating on the extreme wave run-up on 

the cylinder, only the maximum wave amplitudes in a freak wave train are 

considered. Figure 5.22, Figure 5.23 and Figure 5.24 show the maximum wave 

run-up with varying radial distances from cylinder centre in five different 

incident wave directions for case E1, case B3 and case D2.  

In all the three cases, the wave run-up tendency in Line A and Line B is almost 

the same. The wave elevation increases with the freak wave train propagating to 

the cylinder surface, but in Line C and Line D, the wave elevation decreases with 

the freak wave train propagating to the cylinder surface. It is obvious that the 

wave run-up in direction α =180° is highest, especially at wave gauge a4, where 

the severe damage to the offshore structures occurs. In wave direction α=315°, 

the wave run-up ratio has the lowest values in all the three cases.  

 

(a) Row A 
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(b) Row B 

 

(c) Row C 

 

(d) Row D 
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(e) Row E 

Figure 5.21 Wave elevation measured at twenty different wave gauges at 

different incident wave directions for case E1 

 

 

Figure 5.22 The maximum wave run-up for case E1 
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Figure 5.23 The maximum wave run-up for case B3 

 

 

 

Figure 5.24 The maximum wave run-up for case D2 
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5.3.4.2 Wave Run-up at Wave Point a4 

The wave run-up measured at the wave point a4 is investigated by comparing 

three important parameters: wave steepness, wave scattering parameter and 

wave group frequency bandwidth. The wave run-up at wave point a4, where the 

maximum wave elevation happens, should be emphasized as a big wave can 

result in severe damage to offshore structures.  

5.3.4.2.1 Effect of Wave Steepness and Wave Scattering on Freak Wave Run-up 

at Point a4 

Figure 5.25 illustrates the variation of wave run-up at point a4 with different 

values for input wave steepness, 𝑘𝐴. The computational results show that 

increased wave steepness raises the wave run-up dramatically. This 

phenomenon is identical to the regular wave run-up of a circular cylinder. The 

increased wave amplitude results in a growth of nonlinear behaviour and this 

will gather more wave energy into higher order wave components. Looking at 

the computational results of case D and case E, the increased wave scattering 

raises the wave run-up ratios. 

 

Figure 5.25 Variation of wave run-up at point a4 with different input wave 

steepness kA 
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5.3.4.2.2 Effect of Frequency Bandwidth on Freak Wave Run-up at Point a4 

Figure 5.26 shows the variation of wave run-up at point a4 with different 

frequency bandwidth 𝛥𝑓 values. The 12 computational results are allocated into 

three groups, and any four cases have the same input amplitude but different 

frequency bandwidths in each group. The numerical results show that the 

increased frequency bandwidth reduces the freak wave run-up ratio. This 

phenomenon is not obvious in the small input amplitude case, which is shown in 

by blue, while it is quite clear in the cases with large input amplitudes. 

 

Figure 5.26 Variation of wave run-up at point a4 with different frequency 

bandwidth ∆f  

5.3.4.3 Wave Run-up around the Cylinder Surface 

After investigating the effect of focused wave parameters on the wave run-up on 

a vertical cylinder at the wave gauge a4, the research moves to comparing the 

maximum wave run-up around the cylinder surface. 

Figure 5.27, Figure 5.28 and Figure 5.29 show the variations of wave run-up 

around the cylinder with different degrees of input wave amplitudes for case B, 

case D and case E. The results obtained from chapter 4 have shown that the 

wave steepness is a general parameter to express the nonlinear behaviour of a 

freak wave group.  
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The computational results show that the steeper the wave, the larger the wave 

run-up at α =180° and 225°, and the smaller the wave run-up at the position 

near α =315° in all the 12 cases. In other words, the difference between the 

maximum and minimum wave run-up in five wave gauges around the cylinder 

surface rises with increased input amplitude. At the back side of the cylinder 

surface, where the wave gauge e4 is set, the increased wave steepness raises the 

wave run-up largely in case B, case D and case E.  

 

 

Figure 5.27 Variations of maximum wave run-up with different degrees of input 

wave amplitude around cylinder for case B 
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Figure 5.28 Variations of maximum wave run-up with different degrees of input 

wave amplitude around cylinder for case D 

 

 

Figure 5.29 Variations of maximum wave run-up with different degrees of input 

wave amplitude around cylinder for case E 

5.3.4.4 Wave Field around the Cylinder 

Figure 5.30 shows a visualization of the wave run-up around a cylinder at the 

focused time to illustrate how the freak wave run-up wraps. The narrow-
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banded case D3 is selected as the example. Due to the highly nonlinear 

phenomenon, the jet-like wave run-up and a highly nonlinear wave structure 

interaction behaviour is clearly observed.  

 

 

 

Figure 5.30 Visualization of freak wave run-up around a cylinder (wave 

propagates from left to right) 
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5.3.4.5 Effect of Focused Position on Freak Wave Run-up  

Figure 5.31 and Figure 5.32 show the comparison of time histories of wave 

elevation measured at wave point a4 and e4 for three freak wave groups 

focusing at different positions. The freak wave case D4 focuses at the cylinder 

front side at x=19.54m. For case D2, the focal position is x=20m, and the 

focused position of freak wave case D5 is at the cylinder back side x=20.46m. 

The computational results show that at a4, the closer the wave group focused 

position moves to the front cylinder, the larger the maximum wave run-up 

appears. At wave gauge e4, the closer the wave group focused position moves to 

the front cylinder, the smaller the maximum wave run-up occurs.  

 

Figure 5.31 Comparisons of wave elevation measured at a4 for three freak wave 

group focusing positions 

 

Figure 5.32 Comparisons of wave elevation measured at e4 for three freak Wave 

group focusing positions 
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5.3.4.6 Horizontal Freak Wave Force 

The accurate prediction of the wave loading on structures is extremely 

important for design purposes. To analyse the freak wave impacting on a 

vertical cylinder, a non-dimensional parameter is used to present the normal 

and transverse forces. The non-dimensional normal force 𝐹𝑥 and transverse 

force 𝐹𝑦 can be expressed in a standard form:  

𝐹𝑥 =
𝑓𝑥

𝜌𝑔𝐴𝑎2
 

 

𝐹𝑦 =
𝑓𝑦

𝜌𝑔𝐴𝑎2
 (5.3.2) 

Where, 𝑓𝑥 and 𝑓𝑦 are the experimental significant normal and transverse wave 

forces, respectively. On the cylinder, 𝜌 is the water density; 𝑔 is the gravitational 

acceleration; 𝐴 is the incident wave amplitude and 𝑎 is the radius of the cylinder.  

5.3.4.6.1 Effect of Wave Steepness on Freak Wave Force 

Figure 5.33 shows the variations of non-dimensional focused normal wave force 

on a cylinder for cases with different values of wave steepness. The 

computational results show that increased wave steepness raises the freak 

wave normal forces dramatically for cases D and E, while this phenomenon is 

not obvious for case B. 

5.3.4.6.2 Effect of Frequency Bandwidth on Wave Force 

Figure 5.34 illustrates the variation of freak wave force for cases with different 

frequency bandwidths. The computational results show that the increased 

frequency bandwidth reduces the nonlinear behaviour of a freak wave group, 

which decreases the wave normal force further. The freak wave non-

dimensional normal force for narrow frequency banded case D3 is 5.5, and the 

non-dimensional normal force is 3.8 for board frequency banded case B3 with 

the same input amplitude. 
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Figure 5.33 Variations of non-dimensional focused normal wave force on 

cylinder for cases with different wave steepness 

 

Figure 5.34 Variations of non-dimensional focused normal wave force on 

cylinder for cases with different frequency bandwidth 

5.3.4.6.3 Effect of Focused Position on the Freak Wave Normal Force 

Figure 5.35 illustrates the time history of horizontal wave force on the cylinder 

for freak wave case D2, case D4 and case D5. The computational results show 

that when the focal position of the freak wave group moves from the front 
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cylinder side to the back-cylinder side, the maximum horizontal freak wave 

forces increase.    

 

Figure 5.35 Time history of horizontal wave force on cylinder for three different 

focusing positions 

5.4 Freak Wave Run-up on a Pair of Two Cylinders 

After researching a freak wave running up a vertical cylinder, the interactions 

between a focused wave group and a pair of cylinders are investigated. In 

particular, how the focused wave parameters, including wave steepness, 

frequency bandwidth and focused position, impact the wave run-up on a 

cylinder are analysed.  

5.4.1 Geometric Model 

The detailed configuration of a pair of cylinders in the numerical wave tank is 

shown in Figure 5.36, and the meshing configurations are shown in Figure 5.37 

and Figure 5.38. A pair of vertical cylinders is fixed in the wave tank with two 

different radial distances. Only the small size cylinders are considered in these 

cases, and the middle position between the two cylinders is located at x=20m. 
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Figure 5.36 Detailed configuration of a pair of two cylinders 

 

Figure 5.37 Global meshing configuration of the numerical wave tank 

 

 

Figure 5.38 Detailed meshing configuration around the two cylinders 
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5.4.2 Sketch of Numerical Test Set-up 

Figure 5.39 shows the sketch of the numerical test set-up. A total of 41 different 

wave gauges are used to measure wave elevations around the cylinder surfaces. 

Two cylinders with diameters of 0.812m are placed. The cylinder which is 

directly facing the waves is referred to as ‘Cylinder 1’and the one on the 

backside is ‘Cylinder 2’.   

 

Cylinder 1 Cylinder 2 

Figure 5.39 Sketch of numerical test set-up. 

5.4.3 Input Freak Wave Parameter 

The different cases allocated by different input parameters, including input 

wave steepness, frequency bandwidth, cylinder distance, and focused positions, 

are shown in Table 5.7. In case I4, the freak wave train focuses at the centre of 

cylinder 1 and the focal position of case I5 is the centre of cylinder 2. Among the 

other cases, the freak wave groups are all focusing at the middle position of the 

two cylinders. In cases J1, J2, J3 and J4, the distance between the two cylinders is 

2.436m, but the distance between the two cylinders for all the other cases is 

1.624m. 
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Table 5.7 Input freak wave parameters 

Case A (m) ∆f (Hz) 
Cylinder centre 

distance (m) 
Focused position 

F 0.18 0.7 1.624 (2D) Cylinder middle 

G1 0.09 0.6 1.624 (2D) Cylinder middle 

G2 0.18 0.6 1.624 (2D) Cylinder middle 

G3 0.36 0.6 1.624 (2D) Cylinder middle 

H 0.18 0.5 1.624 (2D) Cylinder middle 

I1 0.09 0.3 1.624 (2D) Cylinder middle 

I2 0.18 0.3 1.624 (2D) Cylinder middle  

I3 0.36 0.3 1.624 (2D) Cylinder middle 

I4 0.18 0.3 1.624 (2D) Front cylinder  

I5 0.18 0.3 1.624 (2D) Back cylinder 

J1 0.18 0.7 2.436 (3D) Cylinder middle 

J2 0.18 0.6 2.436 (3D) Cylinder middle 

J3 0.18 0.5 2.436 (3D) Cylinder middle 

J4 0.18 0.3 2.436 (3D) Cylinder middle 

5.4.4 Results and Discussion 

5.4.4.1 Wave Run-up Tendency 

Concentrating on the phenomenon of freak wave run-up on a pair of cylinders, 

the maximum wave run-up ratio during the simulation time is shown in Figure 

5.40, with case G3 used. 

The wave run-up tendency in line a and line b is almost the same as in line f and 

line g, which are all in the upstream incident wave direction. The wave run-up 

ratio increases when the extreme wave train propagates to the cylinder surface.  

For both the front cylinder and the back cylinder, the maximum wave run-up 

happens at the wave measurement point in the upstream incident wave 
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direction closest to the cylinder surface place. In lines c, d, h and I, the wave run-

up decreases when the extreme wave train propagates to the cylinder surface. 

In lines e and j, at the back of the cylinder surface, the wave run-up is almost 

maintained at the same level. Generally, the maximum wave elevations 

measured at wave gauges around the front cylinder are larger than the 

corresponding values measured around the back cylinder in case G3.  

 

Figure 5.40 Maximum wave run-up ratio measured at all wave gauges for freak 

wave case G3 

5.4.4.2 Wave Run-up around the Cylinder 

After introducing the general tendency of a focused wave train running up a pair 

of cylinders, the research moves to comparing the maximum wave run-up 

around the cylinder surface. 

5.4.4.2.1 Effect of Wave Steepness on the Wave Run-up 

Figure 5.41 and Figure 5.42 illustrate the wave run-up around the two cylinders 

with varying degrees of wave steepness for freak wave case G and case I. The 

computational results show that the effect of wave steepness on the wave run-

up depends on the wave elevation measuring positions around the cylinder 

surface. 
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The freak wave run-up tendency around cylinder 1 is similar to the numerical 

results obtained from the freak wave running-up a single cylinder case. The 

computational results show that the steeper the input wave amplitude, the 

larger the wave run-up at the cylinder front places at α =180° to 225° measured 

at wave gauges a4 and b4, and the smaller the wave run-up at position α =315° 

measured at wave measurement point d4. At the back side of the cylinder, at the 

position α =360° measured at wave gauge e4 with the increase of input wave 

steepness, the wave amplification increases dramatically. In case I3, the wave 

run-up ratio at wave point e4 is 0.52 and the corresponding ratio value 

measured in case I1 is 0.27.  

Around the back of cylinder 2, the wave elevation measured at wave gauges f4, 

g4, h4 and i4 have the same wave run-up tendency as the front cylinder. 

However, at wave point j4, the measured wave run-up is almost maintained at 

the same level by different input amplitudes and the wave amplification 

phenomenon is not obvious.  

 

(a) Wave run-up around the front cylinder 
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(b) Wave run-up around the back cylinder 

Figure 5.41 Wave run-up around the two cylinders with varying degrees of 

wave steepness for freak wave case G 

 

(a) Wave run-up around the front cylinder 
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(b) Wave run-up around the back cylinder 

Figure 5.42 Wave run-up around the two cylinders with varying degrees of 

wave steepness for freak wave case I 

5.4.4.2.2 Effect of Focused Positon on the Wave Run-up 

Figure 5.43 shows the variation of maximum wave run-up ratios to illustrate the 

effect of the focused position on the wave run-up around the two cylinders. Case 

I2, I4 and I5 are considered in this regard. The computational results show that 

when the freak wave group focuses at the centre of cylinder 1, the wave run-up 

measured at wave gauges a4, b4, c4 and d4 are the same as the computational 

results obtained from the freak wave single cylinder case D2. However, at wave 

point e4, as the distance between the two cylinders is small, the reflected wave 

from the back cylinder will disturb the flow regions at the back of the front 

cylinder area. The simulated wave run-up ratio in case I4 at wave point e4 is 

0.33, which is much larger than the corresponding value measured in single 

cylinder case D2.  
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(a) Wave run-up around the front cylinder 

 

(b) Wave run-up around the back cylinder 

Figure 5.43 Variation of wave run-up around the two cylinders with different 

wave focused positions for case I2, I4 and I5 

It can be seen from Figure 5.43 (a) that around the front cylinder in the range α 

= [180°, 225°], the closer the wave group focused position moves to the front 

cylinder, the larger the wave run-up appears. However, at α = 360°, it has an 
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opposite tendency; the closer the wave group focused position moves to the 

front cylinder, the smaller the wave run-up appears. 

In Figure 5.43 (b), the numerical results show clearly that around the back 

cylinder, in all the five wave elevation measurement points, the closer the wave 

group focused position moves to the back cylinder, the larger the wave run-up 

appears. At the incident wave facing point f4, the wave run-up ratio is 1 when 

the wave group focuses at the centre of the back cylinder. However, at the same 

point the measured wave run-up ratio is only 0.64 when the wave group is 

predetermined to focus at the centre of the front cylinder.   

5.4.4.3 Horizontal Freak Wave Force 

5.4.4.3.1 Effect of Frequency Bandwidth on Freak Wave Force 

To analyse the effect of frequency bandwidth on the horizontal wave force on a 

pair of cylinders, Figure 5.44 shows the variations of non-dimensional 

horizontal focused wave forces for the freak wave groups with different 

frequency bandwidths. The numerical results show that for all the cases 

illustrated in this section, the decreased frequency bandwidth results in an 

obvious increase in non-dimensional horizontal focused wave force for both 

cylinders. This is because when the frequency bandwidth in a wave group 

decreases, the nonlinear behaviour of this wave group becomes stronger, which 

will further result in a larger wave impact force. This phenomenon is much 

more obvious when the frequency bandwidth declines from 0.5Hz to 0.3Hz. On 

the front cylinder, when the incident focused wave group changes from case 

freak wave case H to freak wave case I2, the non-dimensional wave force 

increases from 4.23 to 5.45 with an increase of 30%. On the back cylinder, this 

increase is 48%. 
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(a) Freak wave force on front cylinder 

 

(b) Freak wave force on back cylinder 

Figure 5.44 Variations of non-dimensional horizontal focused wave force for the 

freak wave groups with different frequency bandwidths 

5.4.4.3.2 Effect of Focused Position on the Wave Forces 

To illustrate the effect of focused position on wave forces, Figure 5.45 and 

Figure 5.46 show a comparison of time histories of focused wave force on a pair 

of cylinders for cases I2, I4 and I5. The computational results show that on the 



134 

 

front cylinder, when the focal positon of the wave group moves from the centre 

of cylinder 1 to the centre of cylinder 2, the maximum positive horizontal wave 

force impacting on the cylinder increases, while the maximum negative force 

decreases. For the back cylinder, the effect of the focused positon on the focused 

wave horizontal force is the same as the front cylinder 1. When the focal positon 

of the wave group moves from the centre of the front cylinder to the centre of 

the back cylinder, the maximum positive horizontal wave force increases, 

however the maximum negative force decreases on the cylinder.  

Figure 5.46 also shows that the time history of the focused wave force profile is 

not symmetric around the focal time, which is unlike the wave run-up profile. 

On the back cylinder, after a large slamming force happens around the focal 

time, another large wave force appears. This two-peak wave force situation will 

result in large damage to offshore structures. Comparing the impact of focused 

wave force on a pair of tandem cylinders in the three cases, both cylinders will 

suffer larger freak wave horizontal forces when the incident wave group focuses 

around the centre of the back cylinder. 

 

Figure 5.45 Time history of horizontal wave force on front cylinder for three 

different focusing positions 
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Figure 5.46 Time history of horizontal wave force on back cylinder for three 

different focusing positions 

5.4.4.4 Wave Field around the Cylinder  

Figure 5.47 shows a visualization of freak wave case I3 run-up around the two 

cylinder surfaces at the focused time. The jet-like wave run-up and high 

nonlinear wave structure interaction behaviour can be clearly observed.  
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Figure 5.47 A visualization of the wave run-up around a cylinder at the focused 
time 
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5.5 Conclusions 

In this chapter, the freak wave run-up and wave impacting force on a vertical 

cylinder and a pair of cylinders are investigated numerically. Several freak wave 

parameters are considered, such as wave steepness, frequency bandwidth and 

focused position.  

At first, the experiment conducted by Nielsen (2003) to investigate regular 

wave run-up on vertical cylinder problems is reproduced numerically. The wave 

run-up results are compared with the experimental data, and the regular wave 

forces are compared with the results derived from Morrison’s equation. The 

present CFD simulation and experimental wave run-up results around a vertical 

cylinder have a good agreement, and the first order diffraction theory 

underestimates the wave run-up dramatically. 

Secondly, the freak wave run-up on a single cylinder is investigated numerically. 

17 different freak wave conditions, such as wave steepness, frequency 

bandwidth and focusing position, are considered. The wave run-up tendency for 

all cases is almost the same. The maximum wave run-up appears at the front of 

the cylinder point a4 (α=180°), and the minimum wave run-up appears at the 

position α=315° close to the cylinder surface position d4. The increased wave 

steepness and decreased wave frequency bandwidth grow the nonlinear 

behaviour of the freak wave group, which increases wave run-up at wave point 

a4 and b4 further. At the same time, the increased wave nonlinear behaviour 

reduces the wave run-up level at wave point d4. The computational results also 

show that the increased nonlinear behaviour of the wave group raises the freak 

wave non-dimensional normal force slightly.  

Finally, the freak wave run-up on a pair of cylinders is investigated numerically. 

The simulation results indicate that the maximum wave elevations measured at 

wave gauges around the front cylinder are larger than the corresponding values 

measured around the back cylinder. The numerical results show that the freak 

wave focusing position has a definite effect on wave run-up. The closer the wave 

focal position moves to the front cylinder, the larger the wave run-up appears in 
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the range α= [180°, 225°], and the smaller the wave run-up α=360° around the 

front cylinder. However, around the back cylinder, the closer the focal position 

moves to back cylinder, the larger the wave run-up appears in all the wave 

gauges. The numerical results also indicate that the horizontal freak wave force 

profile is not symmetric around the focal time, while the wave run-up profile is 

nearly symmetric with the incident freak wave profile. 
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6 Floating Structure under a Freak Wave Train 

6.1 General Remarks 

With the development of LNG production, the LNG sloshing excited by the ship 

motion has become one of the most important research interests in the field of 

ocean engineering. The coupling effect of sloshing tanks and ship motions under 

regular wave conditions have been investigated by many authors, both 

experimentally and numerically. In most of the numerical studies such as Zhao 

et al. (2014), Lee and Kim (2010) and Jiang et al. (2015), the ship motion is 

calculated from the potential boundary element method, which may 

underestimate the LNG ship motion under high nonlinear wave conditions. 

Therefore, it is essential to develop a new numerical tool to simulate the 

coupling effects of ship motions and tank sloshing under high nonlinear freak 

wave conditions.  

At first, two validation cases are conducted. The experiment conducted by Liu 

and Lin (2008) to investigate liquid sloshing in a 2-D rectangular tank is 

reproduced numerically. The accuracy of the current numerical method in 

simulating a sloshing case under horizontal excitation should be proved. The 

second validation case is going to be done in a numerical wave tank, and the 

rolling response of a 2D rectangular body under regular waves are calculated 

and compared with the experimental data. 

Secondly, three different freak waves are going to be generated in this 

numerical wave tank. After this, the rolling response of a rectangular structure 

under a freak wave train is going to be analysed, and the effect of focused wave 

factors, frequency bandwidth and peak frequency on the global floating body 

response will be analysed.  

Finally, the coupling effects of the 2-D rectangular body rolling motion and tank 

sloshing are going to be investigated. In this present work, the research focuses 

on the global floating body response. Two different filling levels are considered. 

The numerical results are compared with those conditions without sloshing to 
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investigate the coupling effects on the rectangular body rolling motion under 

freak wave conditions.  

6.2 Validation 

To validate the developed numerical scheme, two models are considered in this 

section. At first, the accuracy of the current numerical method in simulating a 

sloshing case under horizontal excitation is proved by comparing the numerical 

and experimental results. To illustrate the accuracy of the present numerical 

scheme in simulating the rolling motion behaviour of a floating structure, the 

roll RAO (response amplitude operator) of a rectangular body is compared with 

an experiment result in the second case.  

6.2.1 Sloshing under Horizontal Excitation 

The experiment conducted by Liu and Lin (2008) to investigate liquid sloshing 

in a 2-D rectangular tank is reproduced numerically. The sketch of the sloshing 

experiment is shown in Figure 6.1. The tank length is 0.57m and tank height is 

0.3m, and the static water depth is 0.15m. The lowest natural frequency (𝜔o) of 

liquid motion in the tank is 6.0578s-1. The tank is fixed on an oscillating 

sinusoidal motion 𝑥 = −𝑎 sin(𝜔𝑡). The amplitude is 0.005m and the sloshing 

frequencies 𝜔 are 0.583𝜔o and 1.0𝜔o, which correspond to non-resonant and 

resonant cases, respectively.  

The dynamic mesh technique is used to control the tank movement. The no-slip 

wall condition is imposed on the entire boundary, and laminar flow is used for 

this numerical simulation. To investigate the grid convergence, three different 

meshes involving 56×60, 70×75 and 114×150 cells in the x- and z-directions 

are considered and shown in Table 6.1. 

Figure 6.2 shows the results of the free surface elevation at Point H2 against 

time in three different mesh conditions. It can be seen that the numerical results 

with the different meshes approach the experimental results gradually. In 

addition, the values obtained by medium and fine grids lie closely to each other, 

which suggests that a convergent solution is achieved by the present model, and 

the mesh of 70×75 can be used in the following calculations. 
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The numerical wave elevation results are compared with the experimental data 

at H1, H2 and H3 for the two cases shown from Figure 6.3 to Figure 6.8. It can be 

seen that the numerical results and experimental results have a good agreement.  

 

Figure 6.1 Sketch of the sloshing experiment 

 

Table 6.1 Meshes conditions in the gird dependence study 

Grid x × z δx δz Total elements number 

Coarse 56×60 0.01 0.005 3360 

Medium 70×75 0.008 0.004 5250 

Fine 114×150 0.005 0.002 17100 
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Figure 6.2 Free surface elevations at point H2 against time in three different 

mesh conditions 

 

Figure 6.3 Wave elevation comparisons at H1 for case 1 

 

Figure 6.4 Wave elevation comparisons at H2 for case 1 
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Figure 6.5 Wave elevation comparisons at H3 for case 1 

 

Figure 6.6 Wave elevation comparisons at H1 for case 2 

 

Figure 6.7 Wave elevation comparisons at H2 for case 2 
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Figure 6.8 Wave elevation comparisons at H3 for case 2 

6.2.2 Rectangular Body Roll Motion under Regular Waves 

6.2.2.1 Experiment Set-up 

The experiment conducted by Jung (2006) to investigate the rolling motion of a 

rectangular structure is reproduced numerically. The experiment was 

performed in a glass-walled wave tank. The tank is 35m long, 0.9m wide and 

1.2m deep, and the sketch of the wave tank is shown in Figure 6.9. A dry back-

flap type wave maker is installed at the left end of the tank. 

The detailed set-up of free rolling structure is shown in Figure 6.10. A 

rectangular structure with dimensions of 0.900m long and 0.300m wide (𝐵) 

was used as a scaled down barge in the experiments, as shown in Figure 6.10. In 

the experiment, the wave propagates from left to right. The structure was 

located at 20m from the wave maker with its width across the entire width of 

the wave tank, equivalent to the barge in a beam sea condition, so the flow can 

be treated as two dimensional. The water depth (h) was kept at 0.900m 

throughout the experiments. The structure was mounted on the tank walls with 

bars and a pair of hinges through the centre of gravity of the structure (0.05m 

from the keel). The hinges were adjusted so the axis aligned with the calm water 

level. Consequently, the structure floated at a draft D=0.05m.  The hinges 

allowed the structure to roll and aligned with the water level, but restrained it 

from heaving and swaying motions. 
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Figure 6.9 Sketch of wave tank by Jung (2006) 

 

Figure 6.10 Setup of free rolling structure with coordinate system by Jung (2006) 

6.2.2.2 Numerical Wave Tank Set-up 

The sketch of the 2-D numerical wave tank is shown in Figure 6.11. In this part, 

the paddle wave making method is used for regular wave generation. The total 

wave tank length is 20m, and the wave damping domain is 5m long. The 

rectangular body with the same dimensions as the experimental one is located 

at x=7m, and the wave making paddle length below the free surface is 1m. The 

detailed meshing configuration around the paddle and near the free surface is 

shown in Figure 6.12. To simulate the paddle motion, the unstructured triangle 

mesh is used in the wave making domain, while the structured quadrilateral 

mesh is used in the working domain. The detailed meshing configuration 

around the rectangular body is shown in Figure 6.13. In the present work, the 

interface technique is used to simulate the body roll motion. The meshes in the 
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motion domain are moved with the rectangular body motion, while the meshes 

in the working domain remain stationary. 

 

Figure 6.11 Sketch of the 2-D numerical wave tank 

 

Figure 6.12 Detailed meshing configurations around the wave making paddle 

and free surface 
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Figure 6.13 Detailed meshing configurations around the rectangular body 

6.2.2.3 Results and Discussion 

6.2.2.3.1 Decay Test 

In the present numerical study, a decay test is conducted in the calm water 

condition with the time history of decaying roll amplitude records. The 

structure is initially inclined and released with an angle of 15°. The numerical 

roll motion decayed after each cycle due to the damping effects compared with 

the experimental data, as shown in Figure 6.14. The comparison results show 

that the numerical and experimental time histories of decayed roll motion have 

a good agreement.  
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Figure 6.14 Decay test comparisons 

6.2.2.3.2 Motion Response under Regular Waves 

After validating the numerical decay test, the simulation of regular wave 

interaction with floating body is performed first. To understand the interactions 

between the rectangular structures and waves, regular waves with wave 

periods ranging from T=0.8s to T=1.6s, including the roll natural period 

(TN=0.93s), are tested in the numerical wave tank. The numerical tested waves 

with corresponding wavelengths (𝜆) and wave heights (𝐻) are listed in Table 

6.2.  

An example of numerical time history of rectangular body roll motion response 

under a regular wave with short wave length is shown in Figure 6.15. In this 

case, the selected regular wave has a wave period T=0.8s with wave height of 

0.029m. The numerical results show that under the regular wave excitation, the 

rectangular structure rotates stably with an inclination angle of 5° 

approximately after a time t=11s. In Figure 6.16, another case of rectangular 

body rolling motion time history response is shown. In this case, the incident 

regular wave has the same wave period as the rectangular body rolling motion 

natural period T=0.93s. Although the incident regular wave has a small wave 
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height H=0.027m, the floating body begins to rotate at the large inclination 

angle 11°, approximately from time t=12s. 

Table 6.2 Regular wave conditions 

T(s) 𝜔(rad/s) λ(m) H(m) kA 

0.8 7.85 1 0.029 0.0912 

0.93 6.76 1.35 0.027 0.0628 

1 6.28 1.56 0.044 0.0887 

1.2 5.24 2.22 0.06 0.0849 

1.4 4.49 2.93 0.061 0.0653 

1.6 3.93 3.65 0.06 0.0516 

 

Figure 6.15 Time history of rectangular body response under regular wave of 

T=0.8s and H=0.029m 
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Figure 6.16 Time history of rectangular body response under regular wave of 

T=0.93s and H=0.027m 

To prove the accuracy of the current numerical method in the research of 

hydrodynamic behaviour of a floating body under regular waves, the numerical 

response amplitude operators of the rectangular structure are compared with 

the experimental results in six different regular wave conditions, shown in 

Figure 6.17. Here, the response amplitude operator (RAO) is defined by a ratio 

ϕ/kA, and the frequencies in the figure are normalized by the floating structure 

roll natural frequency 𝜔𝑛 =6.76 rad/s. The results show that the numerical 

calculation of the rectangular roll motion has a good agreement with the 

experimental data in the six regular wave cases.  

 

Figure 6.17 Comparisons of response magnification operator 
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6.3 Rectangular Body Roll Motion Response under Freak Wave 

In this part, the extremely nonlinear interactions between freak wave and a 

floating body is investigated numerically. The paddle wave-making method is 

used to generate a freak wave train, and three different freak wave conditions 

are considered.  

6.3.1 Freak Wave Generation 

Before carrying out the freak wave and structure interaction problems, the 

validation of freak wave generation is conducted first. From different freak 

wave models introduced in Chapter 4, an efficient freak wave model, combining 

a freak wave and regular wave, is used to simulate a freak wave appearing in 

calm seas. To investigate the effect of peak frequency and frequency bandwidth 

on body motion, three different freak wave cases are considered. The detailed 

configurations are shown in Table 6.3. In all the three cases, the number of wave 

components is M=29 and the Joint North Sea Wave Project (JONSWAP) is 

selected. The detailed JONSWAP wave spectrum equation (4.2.2) is shown in 

Chapter 4. 

Table 6.3 Freak wave configurations 

Case Frequency Bandwidth (Hz) fp(Hz) Hs(m) Pr 

1 0.6-1.6 1 0.03 0.3 

2 0.8-1.3 1 0.025 0.33 

3 0.4-1.4 0.8 0.025 0.33 

In freak wave case 1, the significant wave height of the wave group is Hs=0.03m; 

the frequency bandwidth of the wave components is [0.6, 1.6], and the peak 

frequency fp=1.0 Hz. The analytical transient wave amplitude Af =0.041m. In 

freak wave case 2, the significant wave height of the wave group is Hs=0.025m; 

the frequency bandwidth of the wave components is [0.8, 1.3], and the peak 

frequency is the same fp=1.0 Hz. The analytical transient wave amplitude Af 

=0.033m. In case 3, the significant wave height of the wave group is Hs=0.025m; 
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the frequency bandwidth of the wave components is [0.4, 1.4], and the peak 

frequency fp=0.8 Hz. The analytical transient wave amplitude Af =0.033m.  

Figure 6.18, Figure 6.19 and Figure 6.20 illustrate the numerical time history of 

freak wave elevation measured at wave gauge x=7m for three different freak 

wave cases compared with the wave surface profile derived from first order 

wave theory. The computational results show that the calculated wave elevation 

agrees well with the corresponding analytical data, and the nonlinear behaviour 

of the wave group is obvious. For the narrow-banded freak wave case 2, the 

wave crest measured at the focal position is much narrower and higher, and the 

adjacent wave troughs are much wider and shallower than the linear results. 

 

Figure 6.18 Wave elevation comparisons for freak wave case 1 

 

Figure 6.19 Wave elevation comparisons for freak wave case 2 



153 

 

 

Figure 6.20 Wave elevation comparisons for freak wave case 3 

6.3.2 Results and Discussion 

The simulation results of the time history of rectangular body response under 

freak wave conditions are shown in Figure 6.21, Figure 6.22 and Figure 6.23 for 

the three different cases. The reason why the combing freak wave model is 

selected is to show what will happen to the body when it is subjected to freak 

waves in more realistic conditions. At the start of the simulation, the body 

shows regular response with the same phase of the surrounding regular wave. 

When all the wave components gather in the position where the rectangular 

body is placed, very large motion amplitude is observed in rolling response.  

When the focused wave passes, the body motion reduces gradually and remains 

at a regular motion. Compared with the rectangular body motion under a 

regular wave condition, the freak wave is more dangerous due to a sudden 

appearance of a large wave crest compared to the common sea states. The 

current numerical method can give a reasonable prediction of a floating body 

under large waves.  

By comparing the computational results of freak wave case 1 and freak wave 

case 2, the peak frequency for the two cases is the same as fp=1Hz, and the 

corresponding peak period is also the same as Tp=1s, which is close to the 

natural frequency of the rectangular body in roll TN=0.93s. In freak wave case 1, 

when the transient freak wave propagates to the floating body, the maximum 

freak wave amplitude reaches to 0.0493m and the rectangular body rotates 

with a maximum negative inclination angle -16.5°. In freak wave case 2, when 
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the transient freak wave propagates to the floating body, the maximum freak 

wave amplitude only reaches to 0.0392m, which is 25% smaller than the 

corresponding maximum wave amplitude in freak wave case 1. However, it is 

interesting to note that the floating structure suffers from a larger rolling 

response angle -19.5°, which results in a larger rolling response than the freak 

wave case 1 with inclination angle of -16.5°. Although in Jung (2006)’s work, it 

has been proven that the RAO magnification factors vary significantly with wave 

heights at natural periods and the response amplitude should increase with 

increased wave height, the complexity of a floating body interacting with 

focused freak waves have been presented here. When investigating the 

hydrodynamic behaviour of a floating body under focused freak waves, the 

frequency bandwidth in the freak wave group is an important factor. Comparing 

the computational results of a floating body rolling response under freak wave 

case 1 and freak wave case 2, it shows that the decreased frequency bandwidth 

gathers more wave energy together, and the high nonlinear behaviour of the 

freak wave group results in larger motion amplitude in roll further. 

In the freak wave cases 2 and 3, the significant wave height is the same for the 

two cases Hs=0.025m. Ignoring the effect of frequency bandwidth on 

rectangular roll motion, the swift of the peak frequency of the wave energy 

spectrum results in a significant change of rectangular body roll motion 

behaviour dramatically. The computational results show that the roll motion 

profile is almost symmetric for freak wave case 2, and the maximum roll motion 

happens at t=20.04s with an inclination angle of -19.5°. When moving the peak 

frequency from 1Hz to 0.8Hz for freak wave case 3, the peak frequency of the 

freak wave spectrum is far away from the rectangular roll motion natural 

frequency. The simulated maximum roll motion of the rectangular body under 

freak wave is only 12°.  
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Figure 6.21 Time history of rectangular body roll response under freak wave 

case 1 

 

Figure 6.22 Time history of rectangular body roll response under freak wave 

case 2 

 

Figure 6.23 Time history of rectangular body roll response under freak wave 

case 3 
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6.3.3 Wave Field around the Floating Structure 

When considering the time history of computational freak wave elevation 

shown in Figure 6.19, the wave free surface profile obtained from the narrow 

frequency bandwidth case 2 is different from the simulated results derived from 

board frequency bandwidth case 1 and case 3. As all the wave spectrum is 

gathered in a narrow frequency range, and besides a giant wave being 

generated at the predetermined focused time, the crests of the adjacent waves 

are also very large. The simulated maximum freak wave amplitude is 0.04m, and 

the wave amplitude of the wave before and after the giant wave is 0.025m 

approximately. In other words, a series of three freak waves is generated with a 

surrounding small amplitude regular wave for freak wave case 2.   

Figure 6.24 shows the wave field around the floating body for freak wave case 2 

during the time when the freak wave propagates to the rectangular position. 

The process of the freak wave impact on the floating body should be divided 

into several stages. At time t=18.85s, the first giant wave propagates to the 

rectangular body position. With the impact of the sudden large amplitude wave, 

the rectangular body suffers from a clockwise rotation 15.4°. After that, the 

anticlockwise torque rotates the floating body to an anticlockwise angle 19° at 

time t=19.55s. Then, the second giant wave with amplitude of 0.04m comes to 

the rectangular body surface. At time t=20.05s, the floating structure suffers the 

maximum clockwise rotation angle 19.5°, where violent nonlinear fluid-

structure interactions can be observed. The nonlinear wave breakings and 

bubbles can be found around the rectangular surface. Finally, the rectangular 

body rotates with the impact of the third giant wave. Although the water free 

surface around the body is disturbed dramatically due to the nonlinear fluid-

structure interactions, the response motion profile is almost symmetric.    
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(a) t=15s 

 

(b) t=16.55s 

 

(c) t=18.1s 

 

(d) t=18.6s 
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(e) t=19.1s 

 

(f) t=19.5s 

 

(g) t=20.03s 

 

(h) t=20.53s 

Figure 6.24 Wave field of the numerical wave tank for freak wave case C2 



159 

 

 

 

 



160 

 

 

 

 



161 

 

 

 

Figure 6.25 Wave field around the floating body for freak wave case 2 

6.4 Coupling Effects on Rectangular Body Roll Motion under Freak Wave 

In ships carrying liquid cargo, motion responses in waves are affected not only 

by external wave excitation but also by internal sloshing-induced forces and 

moments. In other words, the ship motion excites sloshing flow, and after that 

the sloshing flow affects the ship motions further. In this present study, the 

time-domain CFD method is used to investigate the coupling effects on the 

rectangular body motion under freak wave conditions. 

The same rectangular structure is used and the main dimension for the internal 

tank is shown in detail. The gravity centre of the rectangular body is adjusted to 

keep water lines unchanged, and the moments of inertia are as the original 
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structure. Two different filling conditions, 25% and 75%, are studied in this 

section. 

6.4.1 Decay Test and RAOs 

Before investigating the rectangular body rotating under coupled wave 

excitation and sloshing induced excitation, the free decay tests should be 

conducted first. The same as the free decay test conducted for the no filling 

motion case, the structure is initially inclined and released with an angle of 15°. 

The numerical roll decay test with different filling conditions is shown in Figure 

6.26. The computational results show that the decay motion behaviours of the 

rectangular body are affected, largely due to the internal sloshing flow. 

Compared with the free decay case without sloshing, the internal sloshing flows 

extend the roll motion natural periods for all the other two cases. Furthermore, 

in the first three cycles of rectangular free decaying, the anti-rolling effect of the 

low filling condition (25% filling) is obvious.  

 

Figure 6.26 Free decay tests for three filling conditions 

After comparing the roll motion time history of the decay test with different 

filling levels, the rectangular interaction with internal flow sloshing under 

regular waves is investigated. Six regular waves with different wave periods and 

wave heights are considered. Finally, the global roll motion RAOs of the coupled 
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floating body for different filling conditions are calculated and shown in Figure 

6.27. When considering 𝜔/𝜔N =1, the anti-rolling behaviour of the internal flow 

sloshing is obvious, this anti-rolling behaviour of the coupling effects is 

dominant at low filling (25% filling level) conditions especially. Considering the 

regular wave, 𝜔/𝜔N=0.93, where the regular wave has a wave period T=1s, the 

effect of the internal flow excitations on the global ship motion presents a 

different characteristic compared with the natural frequency 𝜔/𝜔N=1 cases. For 

the low filling case (25% filling level) the internal flow excitation obviously 

reduces the global floating rectangular motion, and the anti-rolling effect still 

exists. However, under the high filling condition (75% filling level), the anti-

rolling effect of the internal flow motion does not exist. The internal flow 

excitation largely increases the global floating body response. Looking at the 

response amplitude operator at 𝜔/𝜔N=0.78, when the corresponding regular 

wave has a large regular wave period T=1.2s, the coupling effect reduces the 

rectangular rolling response dramatically compared with the no sloshing case, 

and this phenomenon is presented in the low filling case most obviously.  

 

Figure 6.27 Comparisons of response magnification operator with different 

filling levels 
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6.4.2 Results and Discussion 

Numerical investigations on coupling effects between ship motion response and 

internal liquid sloshing under freak wave excitations are carried out in this 

section. As aforementioned, three different freak wave conditions which have 

been validated are considered here, and three distinguished sloshing filling 

conditions are studied. The comparison of global rectangular body responses 

with and without sloshing effects is shown in detail.  

The computational results illustrated in Figure 6.28 give the comparisons of 

time history of rectangular rotational angles for the no filling condition and two 

filling condition cases under freak wave conditions. In these freak wave cases, 

the peak frequency is selected 1Hz, which is close to the rolling natural 

frequency for both models. The anti-rolling effect, which is generated by the 

internal sloshing flow, can be observed clearly in the low filing case (25 % filling 

level). However, in the case of high filling conditions (75 % filling level), an 

insignificant coupling effect can be observed.  

For the freak wave condition case 2, the peak frequency of the wave group is the 

same as case 1 that is 1Hz. The comparison of rectangular body rotation angles 

for no sloshing case, 25% filling case and 75% filling case are shown in Figure 

6.29. Under the same peak spectrum of the wave group energy, the sloshing 

effect on the rectangular body motion is the same as the freak wave case 1. The 

coupling anti-rolling effect on the floating structure can be visualized in the low 

internal filling case.  However, for the high filling condition case, the coupling 

effect on the rectangular rotation is not significant. 

For the freak wave condition case 3, the peak frequency of the wave energy 

group is 0.8Hz, and the corresponding wave period is T=1.25s, which is far 

away from the model’s rolling natural period TN=0.93s. The computational time 

history of rectangular body rotation induced by internal flow sloshing is shown 

compared with the no sloshing case in Figure 6.30. The behaviour of sloshing 

effect on the rectangular body rotation is very different from the previous cases. 

For both the low filling case and the high filling case, the anti-rolling coupled 

effects are obvious.  
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Figure 6.28 Comparisons of rectangular body rolling response freak wave case 1 

 

Figure 6.29 Comparisons of rectangular body rolling response freak wave case 2 

 

Figure 6.30 Comparisons of rectangular body rolling response freak wave case 3 

6.4.3 Wave Field  

Freak wave condition 2 is collected for example to illustrate the rectangular 

rotation under both the freak wave and internal flow excitations. The freak 

wave group is travelling from left to right. Figure 6.31 demonstrates the global 
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views of rectangular motion when the transient freak wave in the wave group 

interacts with the floating body. The high nonlinear behaviour of the internal 

flow sloshing can be seen in the low filling case (25 % filling level).  
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Figure 6.31 Rectangular body coupled motion for freak wave case 2 with low 

filling level during the freak wave period 

6.5 Conclusions 

In this chapter, a fully coupled numerical method is utilised to investigate the 

coupling effect on a 2-D rectangular body rotating under freak waves.  

First, validation of sloshing under horizontal excitation is investigated, and the 

computational results indicate a good agreement with the experimental data.  

Secondly, the rectangular structure roll response under regular waves is 

investigated in a numerical wave tank. The comparison of magnification factors 

for roll motions between the numerical results and the experimental data are 

given, and the results show that the numerical calculation of the rectangular roll 

motion under regular waves has a good agreement with the experimental data 

in the six cases.  

Thirdly, three freak wave trains are generated by paddle wave making methods 

in the numerical wave tank for different wave spectrum peak frequencies and 

different frequency bandwidths. To simulate the rectangular body under real 

sea conditions, an efficient freak wave model is used by combining a transient 

giant wave and a surrounding regular wave. The computational results indicate 

that the freak wave train shows high nonlinear behaviour, and the nonlinearity 

is much more obvious in the highly significant wave height and narrow 

frequency bandwidth cases.  
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Further, the rolling motion responses of the rectangular body under three 

different freak wave conditions are investigated. At the start of the simulation, 

the body shows a regular response with the same phase of the surrounding 

regular wave. When all the wave components gather in the position where the 

rectangular body placed, very large motion amplitude is observed in roll. After 

the focused wave passes, the body motion reduces gradually and remains at a 

regular motion. The computational results demonstrate violent nonlinear fluid-

structure interactions when the nonlinear behaviour of freak wave increases. 

The nonlinear wave breakings and bubbles can be found around the rectangular 

surface. 

Following this, the global rolling RAOs of the coupled floating body for different 

filling conditions were obtained. The results indicate that the anti-rolling 

behaviour is obvious for the low filling case. However, for the high filling 

conditions, the coupling effect is not significant under the regular waves around 

the natural period.  

Finally, the coupling effects on the rectangular body rolling motion under freak 

waves are investigated. The sloshing time history of rectangular rolling 

responses under freak waves is compared with the no sloshing case for different 

filling levels. The computational results indicate that the coupled rolling motion 

of a rectangular body under both internal flow sloshing and external freak wave 

excitation is a very complicated phenomenon. The peak frequency of a wave 

energy spectrum is an important factor to represent the characteristics of the 

selected wave spectrum.  For freak wave case 1 and case 2, the coupling anti-

rolling effect on the floating structure can be visualized in the low filling level 

cases, and the sloshing can be clearly observed inside the tanks. For freak wave 

case 3, the rectangular structure with high filling condition rolls more violently 

than the low filling level case. 
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7 Summary of conclusions and recommendations for further work 

7.1 Conclusions 

The freak wave is extremely dangerous to offshore structures due to its 

unexpectedly high wave height and strong nonlinearity. In this thesis, the freak 

wave is the research focus. At first, the freak wave was generated in a numerical 

wave tank. Following this, the freak wave run-up on a vertical cylinder and a 

pair of cylinders were investigated. Finally, a rectangular body rolling response 

under a freak wave train was investigated, and the effect of internal flow 

sloshing was also analysed. By investigating the hydrodynamic behaviour 

between freak waves and offshore structures, several important conclusions 

could be made. 

1. The freak wave was simulated numerically in a 2-D numerical wave tank 

and 12 different freak wave cases were considered. The 12 cases were 

allocated by different input amplitudes and different frequency 

bandwidths. The main results and recommendations from the parametric 

studies indicated that: 

• The increased input amplitude and reduced frequency bandwidth could 

result in a growth of nonlinear behaviour of a freak wave group. 

• This increased nonlinear behaviour of a freak wave group would not 

only downstream shift the focal position, but also the focused time.  

• The wave-wave nonlinear interaction could change the wave surface 

profile compared with the linear analytical results. When the nonlinear 

behaviour increased, much more wave energy gathered in the higher 

order harmonic. This would result in a narrower and higher wave crest, 

and a wider and shallower wave trough.  

2. For the freak wave running-up on vertical cylinders, this thesis applied a 

fully nonlinear CFD method for simulating the wave surface elevations 

around the cylinder and the hydrodynamic wave forces impacting on the 

cylinder body. The main observations were: 
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• The present CFD simulated regular wave run-up elevation around a 

vertical cylinder had a good agreement with the experimental results, 

however the analytical wave run-up results derived from the first order 

diffraction theory were underestimated dramatically.  

• For the freak wave run-up on a single vertical cylinder case, the wave 

run-up tendency for all the cases was almost the same. The maximum 

wave run-up happened at the front of the cylinder point a4 (α=180°), 

and the minimum wave run-up appeared at the position α=315°, close 

to the cylinder surface position d4. The increased wave steepness and 

decreased wave frequency bandwidth grew the nonlinear behaviour of 

the freak wave group, which increased wave run-up at wave point a4 

and b4 further. At the same time, the increased wave nonlinear 

behaviour reduced the wave run-up level at wave point d4. The 

computational results also showed that the increased nonlinear 

behaviour of the wave group raises the freak wave non-dimensional 

normal force slightly.  

• For the freak wave running-up on a pair of cylinders, the simulation 

results indicated that the maximum wave elevations measured at wave 

gauges around the front cylinder are larger than the corresponding 

values measured around the back cylinder. The freak wave focusing 

position had a definite effect on wave run-up. The closer the wave focal 

position moved to the front cylinder, the larger the wave run-up 

appeared in the range α= [180°, 225°], and the smaller the wave run-up 

α=360° around the front cylinder. However, around the back cylinder, 

the closer the focal position moved to back cylinder, the larger the wave 

run-up appeared in all the wave gauges. The numerical results also 

indicated that the horizontal freak wave force profile is not symmetric 

around the focal time, while the wave run-up profile was nearly 

symmetric to the incident freak wave profile. 

3. A fully coupled numerical CFD method was utilised to investigate the 

hydrodynamic behaviour of a 2-D rectangular body rolling response under 

a freak wave excitation. Before this, a decay test and rectangular floating 
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body response under six different regular waves were conducted, and 

compared with the experimental results. After that, the effect of internal 

flow sloshing on the global floating structure rolling response under freak 

waves was investigated.  The main results and recommendations from the 

parametric studies indicated that: 

• When investigating the hydrodynamic behaviour of a floating body 

under focused freak waves, the frequency bandwidth in the freak wave 

group was an important parameter. The decreased frequency 

bandwidth gathered more wave energy together, and the high 

nonlinear behaviour of the freak wave group resulted in larger rolling 

motion amplitudes.   

• When considering the effect of internal flow sloshing on the global 

rectangular rolling response, the anti-rolling behaviour was obvious for 

the low filling level case. However, for the high filling conditions, the 

coupling effect was not significant on the floating body motion when 

the exerted regular wave periods were around the natural period. 

• The coupled rolling motion of a rectangular body under both internal 

flow sloshing and external freak wave excitation was a very 

complicated phenomenon. The peak frequency of a wave energy 

spectrum was an important factor to represent the characteristics of 

the selected wave spectrum.  In all the three freak wave conditions, the 

anti-rolling behaviour was obvious for the low filling case.  

7.2 Recommendations 

The freak wave damage, especially to the offshore structures, has drawn 

increasing research interests. To maintain the safety and the reliability of the 

offshore structures, more investigations should focus on the numerical 

generation of the freak wave and the freak wave structure interaction issues.  

The water depth of the numerical wave tank needs to be calibrated to generate 

the shallow water freak waves to study the difference with deep water freak 

waves. 
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More breaking freak waves in shallow water need to be generated to investigate 

the shallow water freak wave running up on offshore structures, like the wind 

turbine support structure. 

Further work is needed on the statistics of the likely freak wave slamming loads 

and dynamic pressure at a given point on the structure. 

A 3-D model is needed to investigate the sloshing effect on the global LNG ship 

motion under freak wave events. 
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Appendix A Mathematical Formulation 

A.1 General Remarks 

Computational Fluid Dynamics (CFD) is applied in a wide variety of industrial 

settings, for example computation of water flow around ship hulls or air flow 

around the wind turbine. 

CFD’s founding father, John von Neumann, indulging him in speculations about 

the possibilities of the emerging digital computer, stated in 1946 that numerical 

models would eventually completely replace analytic solutions of fluid 

dynamics equations and even experimental fluid dynamics, Nieland (1998). As 

usual, the child did not exactly become what the father hoped for, analytic and 

experimental methods are still used, but by now CFD methods have become a 

prominent tool in many industrial settings and still form an active research field. 

Finite volume methods (FVM) have been used extensively in recent years and 

the numerical algorithm exists of three main parts, Versteeg and Malalasekera 

(2007): 

• Formal integration of the governing equations of fluid flow over all the 

(finite) control volumes of the solution domain. 

• Discretization involves the substitution of a variety of finite-difference-

type approximations for the terms in the integrated equation 

representing flow processes such as convection, diffusion and sources. 

This converts the integral equations into a system of algebraic equations.  

• Solution of the algebraic equations by an iterative method. 

The objective of this chapter is to present the numerical models which are used 

to carry out CFD calculations with numerical wave tanks. Following paragraphs 

will cover the subject areas fluid dynamics (governing equation of viscous fluid 

flows, boundary conditions, turbulence modelling). 
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A.2 Continuity and Momentum Equation 

In Reynolds averaging, the solution variables in the instantaneous (exact) 

Navier-Stokes equations are decomposed into the mean (ensemble-averaged or 

time-averaged) and fluctuating components. For the velocity components: 

𝑢𝑖 = �̅�𝑖 + 𝑢𝑖
′ (A.2.1) 

where 

�̅�𝑖 = the mean velocity component (𝑖 = 1,2,3) 

𝑢𝑖
′ = the fluctuating velocity component (𝑖 = 1,2,3) 

Likewise, for pressure and other scalar quantities: 

𝜙 = �̅� + 𝜙′ (3.2.2) 

where 

 𝜙 =  a scalar such as pressure, energy, or species concentration. 

Substituting expressions of this form for the flow variables into the 

instantaneous continuity and momentum equations and taking a time (or 

ensemble) average (and dropping the overbar on the mean velocity,�̅�) yields 

the ensemble-averaged momentum equations. They can be written in Cartesian 

tensor form as: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0 
(A.2.3) 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗)

= −
𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇(

𝜕𝑦

𝜕𝑥
+

𝜕𝑦

𝜕𝑥
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑙

𝜕𝑥𝑙
]

+
𝜕

𝜕𝑥𝑗
(−𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ )  

(A.2.4) 
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The Reynolds-averaged Navier-Stokes (RANS) equations are shown above. They 

have the same general form as the instantaneous Navier-Stokes equation, with 

the velocities and other solution variables now representing ensemble-averaged 

(or time-averaged) values. Additional term now appear that represent the 

effects of turbulence. These Reynolds stress,−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  must be modelled in order 

to close to Equation.  

A.3 Turbulence Model 

Most flows encountered in engineering practice are turbulent and become 

unstable above a certain Reynolds number. Flows at a low Reynolds number are 

laminar whereas flows at a high Reynolds number are turbulent. These 

turbulent flows characterised by fluctuations which create additional unknown 

variables in the modified governing equations in the velocity fields can be 

calculated with various methods. The shear-stress transport (SST) k-𝜔 model is 

such a turbulence model and has been used frequently in practical engineering 

for flow calculations in the time since it was proposed by Versteeg and 

Malalasekera (2007) to effectively blend the robust and accurate formulation of 

the k-𝜔 model in the near-wall region with the freestream independence of the 

k-ε model in the far field. To achieve this, the k-ε model is converted into a k-𝜔 

formulation.  

A.3.1 Transport Equation for the SST k-𝜔 Model 

The SST k-𝜔 model has a similar form to the standard k-𝜔 model: 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖) =
𝜕

𝜕 𝑗
(𝛤𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 

(A.3.1) 

And 

𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑖

(𝜌𝜔𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(𝛤𝜔

𝜕𝜔

𝜕𝑥𝑗
) + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝜔 

(A.3.2) 

where  

𝐺𝑘 = the production of turbulence kinetic energy 
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𝐺𝜔 = the generation of 𝜔 

𝛤𝑘 = the effective diffusivity of k 

𝛤𝜔 = the effective diffusivity of 𝜔 

𝑌𝑘 = the dissipation of k due to turbulence  

𝑌𝜔 = the dissipation of 𝜔 due to turbulence 

𝐷𝜔 = the cross-diffusion term 

𝑆𝑘 𝑎𝑛𝑑 𝑆𝜔 = the user-defined source terms 

A.3.2 Modelling the Effective Diffusivity 

The effective diffusivities for the SST k-𝜔 model are given by 

𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
 

(A.3.3) 

𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
 

(A.3.4) 

where 

𝜎𝑘 = the turbulent Prandtl number of k 

𝜎𝑘 = the turbulent Prandtl number of 𝜔 

The turbulent viscosity 𝜇𝑡 is computed as follows: 

𝜇𝑡 =
𝜌𝑘

𝜔

1

𝑚𝑎𝑥 [
1
𝑎∗ ,

𝑆𝐹2

𝑎1𝜔
]
 

(A.3.5) 

where 

𝑆 = the strain rate magnitude 

𝜎𝑘 =
1

𝐹1
𝜎𝑘,1

⁄ +
(1 − 𝐹1)

𝜎𝑘,2
⁄

 

(A.3.6) 
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𝜎𝜔 =
1

𝐹1
𝜎𝜔,1

⁄ +
(1 − 𝐹1)

𝜎𝜔,2
⁄

 

(A.3.7) 

The coefficient 𝑎∗damps the turbulent viscosity causing a low-Reynolds number 

correction. It is given by  

𝑎∗ = 𝑎∞
∗ (

𝑎0
∗ +

𝑅𝑒𝑡
𝑅𝑘

⁄

1 +
𝑅𝑒𝑡

𝑅𝑘
⁄

) 

(A.3.8) 

where  

𝑅𝑒𝑡 =
𝜌𝑘

𝜇𝜔
 

(A.3.9) 

𝑅𝑘 = 6 (A.3.10) 

𝑎0
∗ =

𝛽𝑖

3
 (A.3.11) 

𝛽𝑖 = 0.072 (A.3.12) 

The blending functions, 𝐹1 and 𝐹2, are given by  

𝐹1 = 𝑡𝑎𝑛ℎ(𝛷𝐼
4) (A.3.13) 

𝛷𝐼 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

0.09𝜔𝑦
,
500𝜇

𝜌 2𝜔
) ,

4𝜌𝑘

𝜎𝜔,2𝐷𝜔
+𝑦2

] 
(A.3.14) 

𝐷𝜔
+ = 𝑚𝑎𝑥 [2𝜌

1

𝜎𝜔,2

1

𝜔

𝜕

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10] 

(A.3.15) 

𝐹2 = 𝑡𝑎𝑛ℎ(𝛷2
2) (A.3.16) 

𝛷2 = 𝑚𝑎𝑥 [2
√𝑘

0.09𝜔𝑦
,
500𝜇

𝜌𝑦2𝜔
] 

(A.3.17) 

where 
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𝑦 = the distance to the next surface 

𝐷𝜔
+ =  the positive portion of the cross-diffusion term 

A.3.3 Modelling the Turbulence Production 

A.3.3.1Production of k 

The term 𝐺𝑘 represents the production of turbulence kinetic energy, and is 

defined in the same manner as in the standard k-𝜔 model. From the exact 

equation for the transport of k, this term may be defined as 

𝐺𝑘 = −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
 

(A.3.18) 

To evaluate 𝐺𝑘 in a manner consistent with the Boussinesq hypothesis,   

𝐺𝑘 = 𝜇𝑡𝑆
2 (A.3.19) 

Where 

𝑆 = the modulus of the mean rate-of-strain tensor. 

𝑆 ≡ √2𝑆𝑖𝑗𝑆𝑖𝑗  
(A.3.20) 

A.3.3.2 Production of 𝜔 

The term 𝐺𝜔 represents the production of 𝜔 and is given by  

𝐺𝜔 =
𝛼

𝑉𝑡
𝐺𝑘 

(A.3.21) 

The coefficient α is given by  

𝛼 =
𝛼∞

𝑎∗
(
𝛼0 +

𝑅𝑒𝑡
𝑅𝜔

⁄

1 +
𝑅𝑒𝑡

𝑅𝜔
⁄

) 

(A.3.22) 

where 
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𝑅𝜔 = 2.95 (A.3.23) 

A.3.4 Modelling the Turbulence Dissipation  

A.3.4.1 Dissipation of k 

The term 𝑌𝑘 represents the dissipation of turbulence kinetic energy is defined as 

𝑌𝑘 = 𝜌𝛽∗𝑓𝛽∗𝑘𝜔 (A.3.24) 

where  

 𝑓𝛽 = 1 (A.3.25) 

and  

𝛽∗ = 𝛽𝑖
∗[1 + 𝜁∗𝐹(𝑀𝑡)] (A.3.26) 

𝛽𝑖
∗ = 𝛽∞

∗ [

4
15⁄ + (

𝑅𝑒𝑡

𝑅𝛽
⁄ )4

1 + (
𝑅𝑒𝑡

𝑅𝛽
⁄ )4

] 

(A.3.27) 

𝜁∗ = 1.5 (A.3.28) 

𝑅𝛽 = 8 (A.3.29) 

𝛽∞
∗ = 0.09 (A.3.30) 

A.3.4.2 Dissipation of 𝜔 

The term 𝑌𝜔 represents the dissipation of 𝜔 is given by 

𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔2 (A.3.31) 

where  

𝑓𝛽 =
1 + 70𝜒𝜔

1 + 80𝜒𝜔
 

(A.3.32) 
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𝜒𝜔 = |
𝛺𝑖𝑗𝛺𝑗𝑘𝑆𝑘𝑖

(𝛽∞
∗ 𝜔)3

| 
(A.3.33) 

𝛺𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(A.3.34) 

The strain rate tensor, 𝑆𝑖𝑗is defined as 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) 

(A.3.35) 

and also, 

𝛽 = 𝛽𝑖 [1 −
𝛽𝑖

∗

𝛽𝑖
𝜁∗𝐹(𝑀𝑡)] 

(A.3.36) 

A.3.5 Cross-Diffusion Modification 

 The SST k-𝜔 model is based on both the standard k-𝜔 model and standard k-𝜔 

model. To blend these two models together, the standard k-ε has been 

transformed into equations based on k and 𝜔, which leads to the introduction of 

a cross-diffusion term. 𝐷𝜔 is defined as 

𝐷𝜔 = 2(1 − 𝐹1)𝜌
1

𝜔𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 

(A.3.37) 

A.3.6 Model Constants 

𝛼∞
∗ = 1 (A.3.38) 

𝛼∞ = 0.52 (A.3.39) 

𝛼0 =
1

9
 (A.3.40) 

𝛽∞
∗ = 0.09 (A.3.41) 

𝛽𝑖 = 0.072 (A.3.42) 
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𝑅𝛽 = 8 (A.3.43) 

𝑅𝑘 = 6 (A.3.44) 

𝑅𝜔 = 2.95 (A.3.45) 

𝜁∗ = 1.5 (A.3.46) 

𝜎𝑘 = 2.0 (A.3.47) 

𝜎𝜔 = 2.0 (A.3.48) 

𝜎𝑘,1 = 1.176 (A.3.49) 

𝜎𝜔,1 = 2.0 (A.3.50) 

𝜎𝑘,2 = 1 (A.3.51) 

𝜎𝜔,2 = 1.168 (A.3.52) 

𝑎1 = 0.31 (A.3.53) 

𝛽𝑖,1 = 0.075 (A.3.54) 

𝛽𝑖,2 = 0.0828 (A.3.55) 

A.4 Free Surface Flows-multiphase Flows 

A.4.1 General Remarks 

In nature and engineering fields a large number of flows are object to a mixture 

of phases. A phase is a region in the parameter space of thermodynamic 

variables in which the free energy is analytic. Between such regions there are 

abrupt changes in the propertied of the system, which correspond to 

discontinuities in the derivatives of the free energy functions. Such physical 

phase as gas, liquid or solid, can be defined as an identifiable class of material 

which has inertial response to and interaction with the flow and the potential 

field in which it is immersed.  
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There are two basic ways to model free surface flows: the Lagrangian method 

where the mesh follows the interface shape and the Eulerian method which 

treats different phases mathematically as interpenetrating continua. The 

concept of phasic volume fraction is a term describing that the volume of a 

phases cannot be occupied by other phases. The sum of the volume fraction is 

equal to one and it is assumed that the volume fraction is a continuous function 

of space and time. A suitable Euler-Euler multiphase model for free surface 

problems is the volume of fluid (VOF) model which will be explained in the 

following chapter.  

A.4.2 Volume of Fluid (VOF) Model 

The VOF model is a surface-capturing technique applied to a foxed Eulerian 

mesh. It is designed for two or more immiscible fluids or phases that are not 

interpenetrating and gives the position of the interface between the fluids. For 

each additional phase added to the model, a variable is introduced and a single 

set of momentum equations if shared by the fluids and the volume fraction of 

the phase in the computational cell is tracked throughout the domain. In each 

control volume, the volume fractions of all phases sum to unity. As long as the 

volume fraction of each of the phases is known at each location all variables and 

properties are shared by the phases and represent volume-averaged values. 

Hence, the variables and properties in any given cell are either representing one 

of the phases, or represent a mixture of the phases, depending upon the volume 

fraction values. That means that if qth fluid’s volume fraction in the cell is 

denoted as αq, then the following three conditions are possible: 

• 𝛼𝑞 = 0 The cell is empty (of the qth fluid). 

• 𝛼𝑞 = 1  The cell is full (of the qth fluid). 

• 0 < 𝛼𝑞 < 1  The cell contains the interface between the qth fluid and one 

or more other fluids. 

Based on the local value of αq, the appropriate properties and variables will be 

assigned to each control volume within the domain.  
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The tracking of the interface between the phases is accomplished by the 

solution of a continuity equation for the volume fraction of one or more of the 

phases where αq evolves from the transport equation: 

𝜕𝛼

𝜕𝑡
+ 𝑑𝑖𝑣(𝛼𝑣) = 0 (A.4.1) 

For the qth phase, the equation has the following form: 

1

𝜌𝑞
[
𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞) + 𝛻 · (𝛼𝑞𝜌𝑞𝑣𝑞)⃗⃗⃗⃗⃗⃗ ] = 𝑆𝛼𝑞

+ ∑|(�̇�𝑝𝑞 − �̇�𝑞𝑝)|

𝑛

𝑝=1

 
(A.4.2) 

where 

 �̇�𝑝𝑞 = the mass transfer from phase 𝑝 to phase 𝑞  

 �̇�𝑞𝑝 =  the mass transfer from phase 𝑞 to phase 𝑝. 

The volume fraction equation will not be solved for the primary phase; the 

primary-phases volume fraction will be computed based on the following 

constraint: 

∑ 𝛼𝑞

𝑛

𝑞=1

= 1 
(A.4.3) 

A.4.2.1 Implicit Scheme 

When the implicit scheme is used for time discretization, standard finite-

difference interpolation schemes, QUICK, Second Order Upwind and First Order 

Upwind and the Modified HRIC schemes are used to obtain the face fluxes for all 

cells including those near the interface. 

𝛼𝑞
𝑛+1𝜌𝑞

𝑛+1 − 𝛼𝑞
𝑛𝜌𝑞

𝑛

△ 𝑡
𝑉 + ∑(𝜌𝑞

𝑛+1𝑈𝑓
𝑛+1𝛼𝑞,𝑓

𝑛+1)

𝑓

= [𝑆𝛼𝑞
+ ∑(�̇�𝑝𝑞 − �̇�𝑞𝑝)

𝑛

𝑝=1

]𝑉 

(A.4.4) 
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Since this equation requires the volume fraction values at the current time step 

(rather than at the previous step, as for the explicit scheme), a standard scalar 

transport equation is solved iteratively for each of the secondary-phase volume 

fractions at each time step. The implicit scheme can be used for both time-

dependent and steady-state calculations. 

A.4.2.2 Explicit Scheme 

In the explicit approach, the standard finite-difference interpolation schemes 

are applied to the volume fraction values that were computed at the previous 

time step. 

𝛼𝑞
𝑛+1𝜌𝑞

𝑛+1 − 𝛼𝑞
𝑛𝜌𝑞

𝑛

△ 𝑡
𝑉 + ∑(𝜌𝑞

𝑛𝑈𝑓
𝑛𝛼𝑞,𝑓

𝑛 )

𝑓

= [∑(�̇�𝑝𝑞 − �̇�𝑞𝑝)

𝑛

𝑝=1

+ 𝑆𝛼𝑞
] 𝑉 

(A.4.5) 

where  

𝑛 + 1 = index for new (current) time step 

𝑛 = index for previous time step 

𝛼𝑞,𝑓 = face value of the qth volume fraction 

𝑉 = volume of cell 

𝑈𝑓 = volume flux through the face, based on normal velocity 

This formulation does not require iterative solution of the transport equation 

during each time step, as is needed for the implicit scheme. 

A.4.3 Interpolation near the Interface 

A special interpolation treatment to the cells that lie near the interface between 

two phases is applied to be able to calculate the convection and diffusion fluxes 

through the control volume faces and to balance them with the control volume 

itself. Figure A.1 (a) shows an actual interface shape along with the interfaces 

assumed during computation by the geometric reconstruction scheme (Figure 

A.1 b) and the donor-acceptor scheme (Figure A.1 c). 
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Figure A.0.1 The actual interface shape, the geometric reconstruction scheme 

and the donor-acceptor scheme 

A.4.3.1 The Geometric Reconstruction Scheme 

Whenever a cell is completely filled with one phases or another, the standard 

interpolation schemes are used in order to obtain the face fluxes. The geometric 

construction scheme is applied when two or more phases split a cell with its 

interface. 

The geometric reconstruction scheme is also known as the piecewise-linear 

approach which represents the interface between fluids. This scheme is the 

most accurate and is applicable for general unstructured mesh which was a 

main achievement in the work of Young (1982). It is assumed that the interface 
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between two fluids has a linear slope within each cell; therefore, the advection 

of fluid through the cell faces can be computed by making use of this linear 

shape, see Figure A.1 (b).  

The interpolation procedure is carried out in three steps: firstly, the position of 

the linear interface relative to the centre of each partially-filled cell is derived 

based on information about the volume fraction and its derivatives in the cell. 

The second step is calculating the advection amount of fluid through each face 

using the computed linear interface representation and information about the 

normal and tangential velocity distribution on the face. The third step is 

calculating the volume fraction in each cell using the balance of fluxes calculated 

during the previous step.  

A.4.3.2 The Donor-Acceptor Scheme 

In almost the same manner as in the geometric reconstruction scheme the 

standard interpolation schemes are used in order to obtain the face fluxes 

whenever a cell is completely flied with one phase or another. A donor-acceptor 

scheme is used, when the cell is near the interface between two phases, to 

determine the amount of fluid advected through the face, Hirt and Nichols 

(1981). This scheme identifies one cell as a donor of an amount of fluid from 

one phase and another neighbour cell as the acceptor of that same amount of 

fluid, and is used to prevent numerical diffusion at the interface. The amount of 

fluid from one phase that can be convected across a cell boundary is limited by 

the minimum of two values; the flied volume in the donor cell or the free volume 

in the acceptor cell. 

The orientation of the interface is also used in determining the face fluxes. The 

interface orientation is either horizontal or vertical, depending on the direction 

of the volume fraction gradient of the qth phase within the cell and that of the 

neighbour cell that shares the face in question. Depending on the interface’s 

orientation as well as its maximum, flux values are obtained by pure upwinding, 

pure downwinding, or some combination of the two.  
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A.5 Dynamic Mesh  

A.5.1 General Remarks 

The dynamic mesh model allows moving the boundaries of a cell zone relative 

to other boundaries of the zone, and to adjust the mesh accordingly. The motion 

of the boundaries can be rigid, such as pistons moving inside an engine cylinder 

or a flap deflecting on an aircraft wing, or deforming, such as the elastic wall of a 

balloon during inflation or a flexible artery wall responding to the pressure 

pulse from the heart. In either case, the nodes that define the cells in the domain 

must be updated as a function of time, and hence the dynamic mesh solutions 

are inherently unsteady.  

The dynamic mesh model can be used in flow cases where the shape of the 

domain, respectively the boundaries, is changing with time. These changes can 

either be prescribed motion with specified changes in linear and /or angular 

velocities about the centre of gravity or unspecified motions where the linear 

and angular velocities of the centre of gravity of a solid body are calculated 

based on the force balance on the body. This body can then move in six-degree-

freedom. Each time step the volume mesh is updated with the new position of 

the boundaries. The volume mesh can be updated with one of the following 

methods or a combination of them: 

• Smoothing methods 

o Laplacian smoothing 

o Spring-based method 

• Dynamic layering 

• Local remeshing 

These smoothing methods and local remeshing will be explained in detail and 

some important equations will be discussed.  

A.5.2 Conservation Equations 

The integral form of the conservation equation for a general scalar ϕ on 

randomly chosen control volume V with a moving boundary can be written as 
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𝑑

𝑑𝑡
∫ 𝜌𝜙𝑑𝑉 + ∫𝜌𝜙(�⃗� − �⃗� 𝑔) · 𝑑𝐴 = ∫𝛤𝛻𝜙 · 𝑑𝐴 + ∫𝑆𝜙𝑑𝑉 

(A.5.1) 

where 

𝜌 = the fluid density 

�⃗� =  the flow velocity vector 

�⃗� 𝑔 =  the grid velocity of the moving mesh 

𝛤 =  the diffusion coefficient 

𝑆𝜙 =  the source term of ϕ 

Here 𝜕𝑉 is used to present the boundary of the control volume V. 

The time derivation term in equation (A.5.1) can be written, using a first-order 

backward difference formula as 

𝑑

𝑑𝑡
∫𝜌𝜙𝑑𝑉 =

(𝜌𝜙𝑉)𝑛+1 − (𝜌𝜙𝑉)𝑛

△ 𝑡
 

(A.5.2) 

where n denotes the respective quantity at the current time level and n+1 at the 

next time level. The (𝑛 + 1)𝑡ℎ time level volume 𝑉𝑛+1 is computed from 

𝑉𝑛+1 = 𝑉𝑛 +
𝑑𝑉

𝑑𝑡
△ 𝑡 (A.5.3) 

where 

 𝑑𝑉/𝑑𝑡 = the volume time derivative of the control volume.  

In order to satisfy the grid conservation law, the volume time derivative of the 

control volume is computed from  

𝑑𝑉

𝑑𝑡
= ∫ �⃗� 𝑔 · 𝑑𝐴 = ∑�⃗� 𝑔,𝑗 · 𝐴 𝑗

𝑛𝑓

𝑗

 
(A.5.4) 

where 

 𝑛𝑓 = the number of faces on the control volume  

 𝐴 𝑗 =  the j face area vector 

The dot product �⃗� 𝑔,𝑗 · 𝐴 𝑗  on each control volume face is calculated from  
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�⃗� 𝑔,𝑗 · 𝐴 𝑗 =
𝛿𝑉𝑗

△ 𝑡
 (A.5.5) 

where 

 𝛿𝑉𝑗 =  volume swept out by the control volume face j over the time step  △

𝑡. 

A.5.3 Dynamic Mesh Update Methods 

A.5.3.1 Laplacian Smoothing Method 

The Laplacian smoothing method is the simplest among the dynamic mesh 

update methods. It repositions each internal fluid node equidistant to the nodes 

connected to it, see Figure A.2.  

 

Figure A.0.2  Laplacian algorithm 

Unfortunately, this method does not guarantee an improvement on the mesh 

quality but it is computationally inexpensive. The node position at the current 

time step is: 

𝑥 𝑖
𝑚̅̅ ̅̅ =

∑ 𝑥 𝑗
𝑚𝑛𝑖

𝑗

𝑛𝑖
 

(A.5.6) 

where 
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 𝑥 𝑖
𝑚̅̅ ̅̅ = the average node position of node i at iteration m 

 𝑥 𝑗
𝑚 = the node position of neighbour node 𝑥 𝑖

𝑚 at iteration m 

 𝑛𝑖 = the number of nodes neighbouring node i.  

The computation of the node position 𝑥 𝑖
𝑚+1 at the next iteration works as 

follows: 

𝑥 𝑖
𝑚+1 = 𝑥 𝑖

𝑚(1 − 𝛽) + 𝑥 𝑖
𝑚̅̅ ̅̅ 𝛽 (A.5.7) 

where  

𝛽 =  the boundary node relaxation factor. 

A.5.3.2 Spring-Based Smoothing Method 

 The spring-based smoothing method is a physics-based mesh updating 

procedure where the edge of the mesh is replaced with fictitious linear springs. 

It is assumed that the springs in the initial mesh ate in equilibrium. A 

displacement at a given boundary node will generate a force proportional to the 

displacement along all the springs connected to the node. The displacement of 

the nodes can be computed using the generalised Hook’s Law and the force on a 

mesh node can be written as  

𝐹𝑖
⃗⃗ = ∑𝑘𝑖𝑗(△ 𝑥𝑗⃗⃗  ⃗ −△ 𝑥𝑖⃗⃗  ⃗)

𝑛𝑖

𝑗

 
(A.5.8) 

where 

 𝐹𝑖
⃗⃗ =  the force vector 

 𝑛𝑖 = the number of neighbouring nodes connected to node 𝑖 

 𝑘𝑖𝑗 = the stiffness between node 𝑖 and its neighbour 𝑗  

 △ 𝑥𝑖⃗⃗  ⃗ =  the displacement of node 𝑖 

 △ 𝑥𝑗⃗⃗  ⃗ = the displacement of node 𝑗  
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The stiffness 𝑘𝑖𝑗  of the spring connecting nodes 𝑖 and 𝑗 is chosen to be inversely 

proportional to the length of the edge and is defined as  

𝑘𝑖𝑗 =
1

√|𝑥 𝑖 − 𝑥 𝑗|

 

(A.5.9) 

The net force on a node due to all the springs connected to the node must be 

zero when it is assumed that the springs which connect the vertices in the 

unreformed mesh are in tension. The new nodal positions of the internal nodal 

points can be computed using: 

[𝑘]{𝑥} = 0    𝑓𝑜𝑟 𝑥 = 𝑥   𝑜𝑛 𝛤𝑏 (A.5.10) 

where  

𝑥 = the position vector 

𝑥 =  the known position vector of the moving boundary𝛤𝑏. 

This condition results in an equation solved by the Jacobi sweep on all interior 

nodes: 

𝑥 𝑖
𝑚+1 =

∑ 𝑘𝑖𝑗 △ 𝑥 𝑗
𝑚𝑛𝑖

𝑗

∑ 𝑘𝑖𝑗
𝑛𝑖

𝑗

 
(A.5.11) 

At convergence, the positions are updated such that  

𝑥 𝑖
𝑛+1 = 𝑥 𝑖

𝑛 +△ 𝑥 𝑖
𝑚,𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 (A.5.12) 

where 

𝑛 = the position at the current time step  

𝑛 + 1 = the position at the next time step 

The spring-based smoothing is shown in Figure A.3 and Figure A.4 for a cylinder 

cell zone where one end of the cylinder is moving.  
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Figure A.0.3 Spring-based smoothing on interior nodes: start 

 

Figure A.0.4 Spring-based smoothing on interior nodes: end 

A.5.3.3 Local Remeshing Method 

The cell quality can be strongly influenced by large boundary displacements 

compared to the local cell size which can lead to negative cell volumes and in 

the end cause convergence problems. Therefore, areas with faces or cells that do 

not comply with size or skewness criteria will be locally updated with new cells. 

The skewness and size criteria that should be met to be updated are: 

• It has a skewness that is greater than a specified maximum length scale. 

• It is smaller than a specified minimum length scale. 

• It is larger than a specified maximum length scale. 

• Its length does not meet the specified length scale 

Face region remeshing method: also, linear and triangular faces on a deforming 

boundary can be remeshed according to the minimum and maximum length 
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scale. A region of deforming boundary face is marked for remeshing; the 

remeshing algorithm replaces marked faces and adjacent cells with a regular 

mesh on the deforming boundary at the moving boundary, see Figure A.5. This 

method makes it possible to remesh domains with symmetric boundary 

conditions and across multiple face zones preserving all features within a face 

zone and between different face zones.  

As an example: A simple tetrahedral mesh of a cylinder having a moving bottom 

wall is given, see Fig A.5. On the moving boundary, a single loop is generated at 

the bottom end of the cylinder because the notes are moving. Thereafter the 

height of the faces connected to the nodes on the loop is analysed and the faces 

are split or merged depending on the specified maximum or minimum length 

scale. 

 

Figure A.0.5 Remeshing at a deforming boundary 

If the faces in layer j are expanding, they are allowed to expand until the 

maximum length scale is reached; vice versa, if the layer j is contracting, faces 

are allowed to contract until the minimum length scale is reached. 

When either of this condition is met, the compressed layer j of faces is merged 

into the layer I of faces above it, see Figure A.6 and Figure A.7. 
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Figure A.0.6 Expanding cylinder before region face remeshing 

 

Figure A.0.7 Expanding cylinder after region face remeshing 

Local Face Remeshing Method: In contrary to the local region remeshing 

method the local face remeshing method only applies to 3D geometries. Based 

on the face skewness on the deforming boundary the faces and adjacent cells 

are remeshed. Remeshing across multiple face zones is not allowed. 

A.5.4 Sliding Mess Theory 

The sliding mesh model is a special case of general dynamic mesh motion 

wherein the nodes move rapidly in a given dynamic meshes zones. Additionally, 

multiple cells zones are connected with each other through non-conformal 

interfaces. As the mesh motion is updated in time, the non-conformal interfaces 

are likewise updated to reflect the new positions each zone, it is important to 

note that the mesh motion must be prescribed such that zones linked through 

ono-conformal interfaces remain in contract with each other if we assume fluid 

to be able to flow from one mesh to the other.  
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The general conservation equation formulation for dynamic meshes, as 

expressed in Equation (A.5.1), is also used for sliding meshes. Because the mesh 

motion in the sliding mesh formulation is rigid, all cells retain their original 

shape and volume. Thus, the time rate of change of the cell volume is zero, and 

Equation (A.5.3) simplifies to: 

𝑉𝑛+1 = 𝑉𝑛 (A.5.13) 

And Equation (A.5.2) becomes: 

𝑑

𝑑𝑡
∫𝜌𝜙𝑑𝑉 =

[(𝜌𝜙)𝑛+1 − (𝜌𝜙)𝑛]𝑉

△ 𝑡
 

(A.5.14) 

Additionally, Equation (A.5.4) simplifies to: 

∑�⃗� 𝑔,𝑗 · 𝐴 𝑗

𝑛𝑓

𝑗

= 0 
(A.5.15) 

Equation (A.5.1), in conjunction with the above simplifications, permits the flow 

in the moving mesh zones to be updated, if an appropriate specification of the 

rigid mesh motion is defined for each zone (usually this is simple linear or 

rotation motion, but more complex motions can be used). Note that due to the 

face that the mesh is moving, the solution to Equation (A.5.1) for sliding mesh 

applications will be inherently unsteady (as they are for all dynamic meshes. 

A.5.5 Six DOF (6DOF) Solver Theory 

The Six DOF Solver computes the translational and angular motion of the centre 

of gravity of a rigid body by taking its forces and moments into account. The 

mass centre translation is governed by Newton’s law of motion, equation 

(A.5.16), which is written in the inertial coordinate system. 

�⃗� ̇𝐺 =
1

𝑚
∑𝑓  (3.5.16) 

where 
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�⃗� ̇𝐺 =  the translational acceleration of the centre of gravity 

𝑚 = the mass 

 𝑓 = the applied force vector through the centre of mass  

The applied force vector has been broken into three components. 

𝑓 = 𝑓 𝐻 + 𝑓 𝐸 + 𝑓 𝐺  (A.5.17) 

where 

𝑓 𝐻 = the hydrodynamic forces 

 𝑓 𝐸 = the external forces  

 𝑓 𝐺 = the forces due to gravity 

Basically, these forces are determined by the gravitational force of the ship hull, 

the hydrostatic force of the floodwater the hydrodynamic force of the water 

surrounding the ship acting on the shell of the hull. 

Newton’s law can be integrated directly to give the position of the mass centre 

as a function of time. Holding 𝑓  constant over the discrete physical time step (tn, 

tn+1) gives equation (A.5.18). 

𝑟 (𝑡𝑛+1) =
1

2

𝑓 

𝑚
△ 𝑡2 + �⃗� 𝐺(𝑡𝑛) △ 𝑡 + 𝑟 (𝑡𝑛) (A.5.18) 

It is easier to compute the angular acceleration of the object  �⃗⃗� ̇𝐵, equation 1, by 

using body coordinates. 

�⃗⃗� ̇𝐵 = 𝐿−1(∑𝑀𝐵
⃗⃗ ⃗⃗  ⃗ − 𝜔𝐵⃗⃗ ⃗⃗  ⃗) (A.5.19) 

where 

𝐿 = the inertia tensor 

𝑀𝐵
⃗⃗ ⃗⃗  ⃗ = the moment vector of the body 

𝜔𝐵⃗⃗ ⃗⃗  ⃗ = the rigid body angular velocity vector. 
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The moments are transformed from inertial to body coordinates using  

𝑀𝐵
⃗⃗ ⃗⃗  ⃗ = 𝑅𝑀𝐺

⃗⃗ ⃗⃗  ⃗ (A.5.20) 

where R is the following transformation matrix: 

(

𝐶𝜃𝐶𝜓 𝐶𝜃𝑆𝜓 𝑆𝜃

𝑆𝜙𝑆𝜃𝐶𝜓 − 𝐶𝜙𝑆𝜓 𝑆𝜙𝑆𝜃𝑆𝜓 + 𝐶𝜙𝐶𝜓 𝑆𝜙𝐶𝜃

𝐶𝜙𝑆𝜃𝐶𝜓 + 𝑆𝜙𝑆𝜓 𝐶𝜙𝑆𝜃𝑆𝜓 − 𝑆𝜙𝐶𝜓 𝐶𝜙𝐶𝜃

) 

where, in generic term, 𝐶𝜒 = 𝑐𝑜𝑠(𝜒)  𝑎𝑛𝑑 𝑆𝜒 = 𝑠𝑖𝑛(𝜒). The angles 𝜙, 𝜃 𝑎𝑛𝑑 𝜓 are 

Euler angles that represent the following sequence of rotations: 

• Rotation about the x-axis  

• Rotation about the y-axis 

• Rotation about the z-axis 

After the angular and the translational accelerations are computed from 

Equation (A.5.16) and Equation (A.5.19), the rates are derived by numerical 

integration. The angular and translational velocities are used in the dynamic 

mesh calculations to update the rigid body position.  
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Appendix B Numerical Solution 

Following the description of the mathematical model, the attention is turned to 

the numerical models involved on the CFD calculations. The object of this 

chapter is to present the numerical schemes that are used in the simulations. 

The following paragraphs will cover the algorithms, the discretization of the 

method, the coupling between the flow variables that are part of the problem 

and that are used for the application and the solution of fluid flow problems.  

B.1 General Remarks 

The CFD solver uses a finite volume method (FVM) to formulate the solution of 

the governing equation. The algorithm consists of three parts (Versteeg and 

Malalasekera, 2007): 

• Formal integration of the governing equations of fluid flow over each and 

all the finite control volumes of the solution domain 

• Discretization involving the substitution of a variety of approximations 

for the terms in the integrated equation representing flow processes 

such as convection, diffusion and sources. This converts the integral 

equations into a system of algebraic equations 

• Solution of the algebraic equations by an iterative method 

The numerical algorithm applied is the pressure-based solver. In the past, this 

solver was initially developed for low-speed incompressible flows, as opposed 

to the density-based solver, which was used for high speed compressible flows. 

Since then, both methods have been adapted and reformulated to operate on a 

wide range of flow conditions out with their original configuration. 

In the pressure-based algorithm, the pressure field is obtained from the 

equation of state by solving a pressure or pressure correction equation (Poisson 

equation). The velocity fields are obtained from the momentum equations. 

Equations for the conservation of mass momentum and other scalars (e.g. 

turbulence) are solved using the control-volume approach implemented in 

Fluent that consists of: 
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• Division of the domain into discrete control volume using a 

computational grid 

• Integration of the governing equations on the individual control volumes 

to construct algebraic equations for the discrete dependent variables 

(“unknowns”) such as velocities, pressure, temperature and conserved 

scalars 

• Linearization of the discretized equations and solution of the resultant 

linear equation system to yield updated values of the dependent 

variables 

The governing equations of fluid flow are solved separately from each other. 

Two different pressure-based variants can be distinguished: the segregated and 

the coupled algorithm. In the current thesis, a segregated approach is used. 

In the pressure-based segregated algorithm, the governing equations are solved 

sequentially, all solution variables one after another, because they are non-liner, 

in an iteratively wavy. This procedure makes the solution convergence process 

relatively slow. It consists of the following steps: 

• Fluid properties are updated. Solution is initialised at first iteration 

• The x-, y- and z- momentum equations are each solved using values for 

pressure and face mass fluxes, in order to update the velocity field 

• Since the velocities obtained in step 2 may not satisfy the continuity 

equation locally, a Poisson equation for the pressure correction is 

derived from the continuity equation and the linearized momentum 

equations. This pressure correction equation is then solved to obtain the 

necessary corrections to the pressure and velocity fields and the face 

mass fluxes such that continuity is satisfied 

• Equation for scalar, turbulence is solved using the previously updated 

values of the variables 

• Convergence is checked. If successful, the solution ends. If not, the 

solution method restarts from step 1 and a loop is reinitiated. 

On the other hand, the coupled algorithm solves a coupled system of equations 

implying the momentum equations and the pressure-based continuity equation. 
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All the other equations are solved in a decoupled manner similar to the 

segregated method. The solution convergence is improved and the process is 

accelerated.  

B.2 Scalar-transport Equation 

A control-volume based technique is used to convert the governing general 

scalar transport equation to an algebraic equation that can be solved 

numerically. This consists of integrating the governing equations about each 

control-volume. It results in discrete equations that conserve each quantity on a 

control-volume basis. 

Discretization of the governing equations can be illustrated most easily by 

considering the unsteady conservation equation for transport of a scalar 

quantity ϕ. This is demonstrated by the following equation written in integral 

form for an arbitrary control volume V as follows: 

∫
𝜕𝜌𝜙

𝜕𝑡
𝑑𝑉 + ∮𝜌𝜙𝑣 · 𝑑𝐴 

𝑉

= ∮𝛤𝜙𝛻𝜙 · 𝑑𝐴 + ∫𝑆𝜙𝑑𝑉
𝑉

 
(B.2.1) 

where 

𝜌 = the density of the fluid 

𝑣 = velocity vector 

𝐴 = the surface area vector 

𝛤𝜙 =  diffusion coefficient for 𝜙 

𝛻𝜙 = gradient of 𝜙 

𝑆𝜙 =  source of 𝜙 per unit volume 

Then, equation (B.2.1) is discretised and gives the following equation on any 

given cell: 

𝜕𝜌𝜙

𝜕𝑡
𝑑𝑉 + ∑ 𝜌𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

𝑣 𝑓𝜙𝑓 · 𝐴 𝑓 = ∑ 𝛤𝜙𝛻𝜙𝑓 ·

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

𝐴 𝑓 + 𝑆𝜙𝑉 
(B.2.2) 

where 

𝑁𝑓𝑎𝑐𝑒𝑠 = the number of faces enclosing the cell 

𝜙𝑓 = the value of 𝜙 convected through face f 

𝜌𝑓𝑣 𝑓 = the mass flux through the face 
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𝐴 𝑓 =  the face area vector in 3D 

𝛻𝜙𝑓 = the gradient of 𝜙 at face f 

𝑉 = the cell volume 

The diffusion terms are central-differenced and are always second-order 

accurate. The discretized scalar transport equation contains the unknown scalar 

variable ϕ at the cell centre as well as the unknown values in surrounding 

neighbour cells. This equation will, in general, be non-linear with respect to 

these variables. A linearized form of equation (B.2.2) can be written as: 

𝑎𝑝𝜙 = ∑𝑎𝑛𝑏𝜙𝑛𝑏

𝑛𝑏

+ 𝑏 
(B.2.3) 

where 

𝑛𝑏 = neighbour cells 

𝑎𝑝 = the linearized coefficient for 𝜙 

𝑎𝑛𝑏 = the linearized coefficient for 𝜙𝑛𝑏 

B.3 Discretization Methods 

B.3.1 Discretization in Space (Spatial) 

Discrete values of the scalar ϕ are usually stored at the cell centres. Face values 

𝜙𝑓 are required for the convection terms in equation (B.2.2) and must be 

interpolated from the cell centre values. This is accomplished by an upwind 

scheme. 

Upwind means that the face value 𝜙𝑓 is derived from quantities in the cell 

upstream, or “upwind”, relative to the direction of the normal velocity 𝑣𝑛 in 

equation (B.2.2) 

B.3.1.1 First-Order Upwind Scheme 

It is assumed that the cell centres values of any field represent a cell-average 

value. In other words, when the first-order upwind scheme is used the face 

value 𝜙𝑓 is equal to the cell centre value ϕ in the upstream cell.  
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B.3.1.2 Power-Law Scheme 

The power-law discretization scheme interpolates the face value of a variable f 

using the exact solution to a one-dimensional convection-diffusion equation 

𝜕

𝜕𝑥
(𝜌𝑢𝜙) =

𝜕

𝜕𝑥
𝛤

𝜕𝜙

𝜕𝑥
 (B.3.1) 

where  𝛤 𝑎𝑛𝑑 𝜌𝑢 are constant across the interval 𝜕𝑥. Equation (B.3.1) can be 

integrated in order to describe how 𝜙 𝑣𝑎𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑥: 

𝜙(𝑥) − 𝜙0

𝜙𝐿 − 𝜙0
=

𝑒𝑥𝑝 (𝑃𝑒
𝑥
𝐿) − 1

𝑒𝑥𝑝(𝑃𝑒) − 1
 

(B.3.2) 

where 

𝑃𝑒 = the Peclet number 

𝑃𝑒 =
𝜌𝑢𝐿

𝛤
 (B.3.3) 

The variables of 𝜙(𝑥) between x=0 and x=L is illustrated in Figure B.1 for a 

range of values of the Peclet number. It shows that the values of 𝜙 at x=L/2 is 

approximately equal to the upstream value. When there is no flow or pure 

diffusion, 𝑃𝑒 = 0 𝑎𝑛𝑑 𝜙 may be interpolated using the linear average between 

the values at x=0 and x=L. 

 

Figure B.0.1 Values ϕ between x=0 and x=L 
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The power-law differencing scheme is more accurate for ono-dimensional 

problems, because it attempts to represent the exact solution more closely. 

B.3.1.3 Second-Order Upwind Scheme 

The accuracy of hybrid and upwind schemes is only first-order in terms of 

Taylor series truncation error (TSTE). Thought the first-order schemes are very 

stable, they tend to become prone to numerical diffusion errors. Hence, such 

errors can be avoided by introducing higher order discretization which involve 

more neighbour points and bring in wider influence. 

The second-order upwind scheme, a higher order differencing scheme, is based 

on the multidimensional linear reconstruction approach proposed by Barth and 

Jesperson (1989). The cell-centred solution about the cell centroid is 

interpolated to the cell face 𝜙𝑓 through a Taylor series expansion: 

𝜙𝑓,𝑆𝑂𝑈 = 𝜙 + 𝛻𝜙 · 𝑟  (B.3.4) 

where  

𝜙 = the cell-centred value 

𝛻𝜙 = the gradient in the upstream cell 

𝑟 = the displacement vector from the upstream cell centroid to the face 

centroid 

B.3.1.4 Quick Scheme 

Leonard (1979) developed a quadratic upstream interpolation for convective 

kinetics (QUICK) scheme which is based on a weight average of second-order-

upwind and central interpolation of the variable. For face e in Figure B.2 

following value can be determined if the flow is from left to right: 

𝜙𝑒 = 𝜃 [
𝑆𝑑

𝑆𝑐 + 𝑆𝑑
𝜙𝑃 +

𝑆𝑐

𝑆𝑐 + 𝑆𝑑
𝜙𝐸] + (1 − 𝜃)[

𝑆𝑢 + 2𝑆𝑐

𝑆𝑢 + 𝑆𝑐
𝜙𝑃

−
𝑆𝑐

𝑆𝑢 + 𝑆𝑐
𝜙𝑊] 

(B.3.5) 



212 

 

 

Figure B.0.2 Quick scheme 

When 𝜃 = 0  , equation (B.3.5) results in a second-order upwind value, while 

when 𝜃 = 1 a central second-order interpolation is provided.   Usually 𝜃 is set to 

1/8 in the QUICK scheme.  

B.3.2 Discretization in Time (Temporal) 

For unsteady simulations, the governing equations must be discretized in both 

space and time. Temporal discretization involves the integration of every term 

in the differential equations over a time step △t. The integration of the transient 

terms is shown below. 

A generic expression for the time evolution of a variable ϕ is given by: 

𝜕𝜙

𝜕𝑡
= 𝐹(𝜙) (B.3.6) 

where the function 𝐹  comprise any spatial discretization. The first-order 

accurate temporal discretization is given by: 

𝜙𝑛+1 − 𝜙𝑛

△ 𝑡
= 𝐹(𝜙) (B.3.7) 

And the second-order is given by: 

3𝜙𝑛+1 − 4𝜙𝑛 + 𝜙𝑛−1

2 △ 𝑡
= 𝐹(𝜙) (B.3.8) 

where  

𝜙 = the scalar quantity 

𝑛 + 1 = the value at the next time level 𝑡 +△ 𝑡 
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𝑛 = the value at the current time level t 

𝑛 − 1 = the value at the previous time level 𝑡 −△ 𝑡 

When the time derivative has been discretised, 𝐹(𝜙) can be evaluated by using a 

future time level with implicit time integration: 

𝜙𝑛+1 − 𝜙𝑛

△ 𝑡
= 𝐹(𝜙𝑛+1) (B.3.9) 

This is referred to as “implicit” integration since 𝜙𝑛+1 in a given cell is related to 

𝜙𝑛+1 in neighbouring cells through 𝐹(𝜙𝑛+1): 

𝜙𝑛+1 = 𝜙𝑛 +△ 𝑡𝐹(𝜙𝑛+1) (B.3.10) 

This stable approach can be solved iteratively at each time level before moving 

to the next time step. The advantage of the fully implicit scheme is that it is 

unconditionally stable with respect to time step size.  

B.4 Gradients and Derivatives 

Gradients are used to compute values of a scalar at a cell’s faces. In addition, 

gradients such as 𝛻𝜙 can also be used for the calculation of secondary diffusion 

terms and velocity derivatives. The following two methods are considered in 

this thesis for the various simulations: 

• Green-Gauss Cell-Based 

• Green-Gauss Node-Based 

Using the Green-Gauss theorem the gradient of the scalar ϕ at the cell centre c0 

can be written as follows: 

(𝛻𝜙)𝑐0 =
1

𝑣
∑�̅�𝑓

𝑓

𝐴 𝑓 
(B.4.1) 

where  

𝜙𝑓 = the value of ϕ at the cell face centroid 

The Green-Gauss Cell-Based approach enables the method where cell centre 

values are considered for comparing the gradient. The face values are taken 

from the arithmetic average of the values at neighbouring cell centres; this 

method is usually chosen for structured grids and is considered for the air foil 

simulations: 
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�̅�𝑓 =
𝜙𝑐0 + 𝜙𝑐1

2
 (B.4.2) 

On the other hand, the Green-Gauss Node-Based enables the face value to be 

calculated by the arithmetic average of the nodal values on the face; this method 

is preferred when using unstructured or hybrid meshes, such as the ones dealt 

in this thesis for the spheroid and the keel simulations: 

�̅�𝑓 =
1

𝑁𝑓
∑�̅�𝑛

𝑁𝑓

𝑛

 
(B.4.3) 

where 

 𝑁𝑓 = the number of nodes on the face 

B.5 Discretization of the Momentum Equation 

The discretization of the momentum equation can be obtained by using the 

schemes introduced earlier in the chapter. The equation on its general form is 

expressed as: 

𝑎𝑃𝜙 = ∑𝑎𝑛𝑏

𝑛𝑏

𝜙𝑛𝑏 + ∑𝑃𝑓𝐴 · 𝑖̂ + 𝑆 
(B.5.1) 

The pressured field and faces mass fluxes are not known, a priori, and must be 

obtained as a part of the solution by using a pressure interpolation scheme, to 

compute the face values of pressure from the cell values. The scheme 

interpolates the values at the faces using momentum equation coefficients 

outlined by Rhie and Chow (1983): 

𝑃𝑓 =

𝑃𝑐0

𝑎𝑃,𝑐0
+

𝑃𝑐1

𝑎𝑃,𝑐0

1
𝑎𝑃,𝑐0

+
1

𝑎𝑃,𝑐0

 

(B.5.2) 

Standard pressure interpolation scheme method works well with a consistent 

pressure variation between cell centres and cannot be used on momentum 

terms with jumps or large gradients which can cause high pressure gradients at 

the cell faces. If this scheme is used, the discrepancy shows up in overshoots and 

undershoots of cell velocity. Standard scheme is used for the large eddy 

simulation computations for all case studies. 
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When this becomes an issue, a higher scheme is applied for the pressure 

interpolation. The PRESTO (Pressure Staggering Option) scheme uses the 

discrete continuity balance for a “staggered” control volume about the face to 

compute the “staggered” *1. e., face) pressure. This procedure is similar in spirit 

to the staggered-grid schemes used with structured meshes (Patankar, 1980). 

The PRESTO scheme is available for all meshes and makes it more reliable than 

standard scheme for more complex problems. This was used for the detached 

eddy simulation runs. 

B.6 Discretization of the Continuity Equation 

The equation of the steady-state continuity integrated over a control volume 

will give the following: 

∑ 𝐽𝑓𝐴𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

= 0 
(B.6.1) 

Where 

𝐽𝑓 = the mass flux through face 𝑓 

The face values of velocity must be related to the stored values of velocity at the 

cell centres. A linear interpolation of the cell-centre velocities to the face 

centroids by a momentum-weighted averaging algorithm is introduced, using 

weighting factors based on the 𝑎𝑃 coefficients from equation (B.5.1). Using this 

procedure  𝐽𝑓 can be written as: 

𝐽𝑓 = 𝜌𝑓

𝑎𝑃,𝑐0𝑉𝑛,𝑐0 + 𝑎𝑃,𝑐1𝑉𝑛,𝑐1

𝑎𝑃,𝑐0 + 𝑎𝑃,𝑐1

+ 𝑑𝑓[(𝑝𝑐0 + (𝛻𝑝)𝑐0 · 𝑟0⃗⃗  ⃗) − (𝑝𝑐1 + (𝛻𝑝)𝑐1 · 𝑟1⃗⃗⃗  )]

= 𝐽𝑓 + 𝑑𝑓(𝑝𝑐0 − 𝑝𝑐1) (B.6.2) 

where 

 𝑝𝑐0 𝑎𝑛𝑑 𝑝𝑐1 are the pressures, 𝑉𝑛,𝑐0 𝑎𝑛𝑑 𝑉𝑛,𝑐1 are the normal velocities and  𝑑𝑓 is 

a function of 𝑎𝑃̅̅ ̅ which is the average of the momentum equation 𝑎𝑃 coefficient 

for the cell on either side of the face 𝑓. 
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B.7 Pressure-Based Algorithm 

The pressure-based algorithm evolved from a method called projection method 

proposed by Chorin (1968). In this method, the mass conservation of the 

velocity field is defined by the solution of a pressure or pressure correction 

equation which is derived from the continuity and momentum equations. The 

velocity field must satisfy the continuity.  

Furthermore, it can be distinguished between two different pressure-based 

algorithms: the segregated and the coupled algorithm. 

The governing equations in the pressure-based segregated algorithm are solved 

sequentially, all solution variables one after another, because they are non-

linear and coupled and therefore carried out iteratively. This makes the solution 

convergence relatively slow. 

Compared to the pressure-based segregated algorithm the pressure-based 

coupled algorithm is solved in a different manner. It solves a coupled system of 

equations implying the momentum equations and the pressure-based 

continuity equation. All the other equations are solved in a decoupled fashion 

line done in the segregated algorithm. The solution convergence is improved 

and the convergence process is sped up.  

B.7.1 The Pressure- based Segregated Algorithm 

B.7.1.1 The SIMPLE Algorithm 

The SIMPLE algorithm by Caretto et al. (1972) uses pressure corrections to 

update the velocities and to obtain the pressure field. 

 The resulting face flux 𝐽𝑓
∗  from equation (B.6.2) does not satisfy the continuity 

equation of the momentum equation is solved with a presumed pressure 

field  𝑝∗: 

𝐽𝑓
∗ = 𝐽𝑓

∗ + 𝑑𝑓(𝑝𝑐0
∗ − 𝑝𝑐1

∗ ) (B.7.1) 

Therefore, the correction term  𝐽𝑓
′  is added to the face flux 𝐽𝑓

∗  which gives the 

face flux: 

𝐽𝑓 = 𝐽𝑓
∗ +  𝐽𝑓

′  (B.7.2) 

The SIMPLE algorithm implies that 𝐽′ is: 
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 𝐽𝑓
′ = 𝑑𝑓(𝑝𝑐0

′ − 𝑝𝑐1
′ ) (B.7.3) 

where 

 𝑝′ = the cell pressure correction. 

When substituting equation (B.7.2) and (B.7.3) into the continuity equation 

(B.6.1) the equation for the pressure correction  𝑝′ can be written as: 

𝑎𝑝𝑝′ = ∑𝑎𝑛𝑏𝑝𝑛𝑏
′

𝑛𝑏

+ 𝑏 
(B.7.4) 

Where  

𝑏 = the net flow rate into the cell 

𝑏 = ∑ 𝐽𝑓
∗𝐴𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

 
(B.7.5) 

Equation (B.7.4) can be solved by using the algebraic multi grid (AMG) method, 

so that the cell pressure and the face flux are corrected using 

𝑝 = 𝑝∗ + 𝛼𝑝𝑝′ (B.7.6) 

𝐽𝑓 = 𝐽𝑓
∗ + 𝑑𝑓(𝑝𝑐0

′ − 𝑝𝑐1
′ ) (B.7.8) 

where 

 𝛼𝑝 = the under-relaxation factor for pressure. 

When during each iteration, the corrected face flux 𝐽𝑓 satisfies the continuity 

equation. 

B.7.1.2 The SIMPLEC Algorithm 

There are various SIMPLE algorithms in literature. One of them is the SIMPLEC 

(SIMPLE-Consistent) algorithm described by Vandoormaal and Raithby (1984). 

The SIMPLEC procedure is very like the SIMPLE algorithm, but the flux 

correction  𝐽𝑓
′  is expressed differently. The equation (1.1.1) is the same as for the 

SIMPLE algorithm but the coefficient 𝑑𝑓 is refined as a function of(𝑎𝑝 − ∑ 𝑎𝑛𝑏𝑛𝑏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). 

This method considerably accelerates convergence problems where pressure-

velocity coupling causes troubles to obtain a solution.  

B.7.1.3 The PISO Algorithm 

The PISO algorithm of Issa (1986) stands for Pressure Implicit with Splitting of 

Operators. It is a part of the SIMPLE family of algorithms and is based on the 
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higher degree of the approximate relation between the corrections for pressure 

and velocity. One of the limitations of the SIMPLEC algorithm is that new 

velocities and corresponding fluxes do not satisfy the momentum balance after 

the pressure-correction equation is solved. As a result, the calculation must be 

repeated until the balance is satisfied. To improve the efficiency of this 

calculation, the PISO algorithm performs an additional adjustment on top pf the 

skewness correction: the neighbour correction. 

The main idea of the PISO algorithm is to move the repeated calculations 

required by SIMPLEC inside the solution stage of the pressure-correction 

equation. After one-or more additional PISO loops, the corrected velocities 

satisfy the continuity and momentum equations more precisely. This iterative 

process is called a momentum or neighbour correction. The PISO algorithm 

takes a little more CPU time per solver iteration, but it can decrease the number 

of iterations required for convergence, especially for transient problems.  

B.7.2 The Pressure- based Coupled Algorithm 

The coupled algorithm offer more advantages over the segregated or non-

coupled algorithms, when the mesh is of poor quality or large time steps are 

used the coupled algorithm still gives robust and stable results for transient 

flows. 

As previously mentioned, the Couples algorithm solves the momentum and 

pressure-based continuity equations together. A coupling is achieved by an 

implicit discretization of both, the pressure gradient terms in the momentum 

equations and the mass face flux. The pressure gradient for the components k in 

the moment equation can be written as: 

 

∑𝑝𝑘𝐴𝑘

𝑓

= −∑𝑎𝑢𝑘𝑝

𝑗

𝑝𝑗  
(B.7.9) 

Where 

𝑎𝑢𝑘𝑝 = the coefficient computed from the Gauss divergence theorem and 

coefficients of the pressure interpolation schemes, see equation (B.5.2). 

The discretised momentum equation for component 𝑢𝑘 can then be defined as: 
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∑𝑎𝑖𝑗
𝑢𝑘𝑢𝑘

𝑗

𝑢𝑘𝑗 + ∑𝑎𝑖𝑗
𝑢𝑘𝑝

𝑗

𝑝𝑗 = 𝑏𝑖
𝑢𝑘  

(B.7.10) 

By expressing the balance of fluxes in equation (B.6.1) with the flux in equation 

(B.6.2) results in the following: 

∑∑𝑎𝑖𝑗
𝑝𝑢𝑘𝑢𝑘𝑗

𝑗𝑘

+ ∑𝑎𝑖𝑗
𝑝𝑝𝑝𝑗 = 𝑏𝑖

𝑝 
(B.7.11) 

After δ-transformation the system of equations (B.7.11) and (B.7.12) has this 

form: 

∑[𝐴]𝑖𝑗𝑋 𝑗
𝑗

= �⃗� 𝑖 
(B.7.12) 

Where the influence of a cell 𝑖 on a cell 𝑗has the form of the matrix: 

𝐴𝑖𝑗 =

(

  
 

𝑎𝑖𝑗
𝑝𝑝 𝑎𝑖𝑗

𝑝𝑢 𝑎𝑖𝑗
𝑝𝑣

𝑎𝑖𝑗
𝑢𝑝 𝑎𝑖𝑗

𝑢𝑢 𝑎𝑖𝑗
𝑢𝑣

𝑎𝑖𝑗
𝑣𝑝 𝑎𝑖𝑗

𝑣𝑢 𝑎𝑖𝑗
𝑣𝑣

𝑎𝑖𝑗
𝑝𝑤

𝑎𝑖𝑗
𝑢𝑤

𝑎𝑖𝑗
𝑣𝑤

𝑎𝑖𝑗
𝑤𝑝 𝑎𝑖𝑗

𝑤𝑢 𝑎𝑖𝑗
𝑤𝑣 𝑎𝑖𝑗

𝑤𝑤
)

  
 

 

(B.7.13) 

The unknown and residual vectors have the form 

𝑋 𝑗 =

[
 
 
 
 
𝑝𝑖

′

𝑢𝑖
′

𝑣𝑖
′

𝑤𝑖
′]
 
 
 
 

 

(B.7.14) 

�⃗� 𝑖 =

[
 
 
 
 
−𝑟𝑖

𝑝

−𝑟𝑖
𝑢

−𝑟𝑖
𝑣

−𝑟𝑖
𝑤]
 
 
 
 

 

(B.7.15) 

B.7.3 Under-Relaxation of Variables and Equations 

Under-relaxation of variables is used to control the change of 𝜙 during each 

iteration step. The new value of the variable 𝜙 within a cell depends upon the 

old value 𝜙𝑜𝑙𝑑  and the change in 𝜙 and the under-relaxation factor α.  

𝜙 = 𝜙𝑜𝑙𝑑 + 𝛼 △ 𝜙 (B.7.16) 

The under-relaxation of equation is used to stabilise the convergence behaviour 

of the non-linear iterations by introducing selective amounts of 𝜙 in the systems 

of discretised equations. 
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𝑎𝑝𝜙

𝛼
= ∑𝑎𝑛𝑏𝜙𝑛𝑏

𝑛𝑏

+ 𝑏 +
1 − 𝛼

𝛼
𝑎𝑝𝜙𝑜𝑙𝑑 

(B.7.17) 

The Courant-Friedrich-Lewy (CFL) number is a solution parameter in the 

pressure-based coupled algorithm and can be written in terms of 𝛼. 

1 − 𝛼

𝛼
=

1

𝐶𝐹𝐿
 (B.7.18) 
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Appendix C Regular Wave Theory 

C.1 Basic Functions 

Figure C.1 shows a harmonic wave as seen from two different perspectives. 

Figure C.1 (a) shows what one would observe in a snapshot photo made looking 

at the side of a (transparent) wave tank; the wave profile is shown as a function 

of distance x along the flume at a fixed instant in time. Figure C.1 (b) is a time 

record of the water level observed at one location along the flume. Notice that 

the origin of the coordinate system is at the still water level with the positive z-

axis directed upwards. The x-axis is positive in the direction of wave 

propagation. The water depth, h is measured between the sea bed and the still 

water level. 

 

Figure C.0.1 a harmonic wave seen from two different perspectives (a) a 

snapshot of a wave tank; (b) a time record of water level 

The highest point of the wave is called its crest and the lowest point on its 

surface is the trough. If the wave is described by a sine wave, then its amplitude 

a is the distance from the still water level to the crest, or to the trough for that 

matter. The wave height H is measured vertically from wave trough level to the 

wave crest level. The relation between wave amplitude and wave height is  

𝐻 = 2𝑎 For a sinusoidal wave (C.2.1) 

The horizontal distance which is measured in the direction of wave propagation 

between any two successive wave crests is the wave length, λ. The distance 

along the time axis is the wave period, T. The ratio of wave height to wave 

length is often referred to as dimensionless, H/ λ.  
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Since the distance between any two corresponding points on successive sine 

waves is the same, wave lengths and periods are usually actually measured 

between two consecutive upward (or downward) crossing of the still water 

level. Such points are also called zero-crossings, and are easier to detect in a 

wave record.  

Since sine or cosine waves are expressed in terms of angular arguments, the 

wave length and period are converted to angles using: 

𝑘𝜆 = 2𝜋 (C.2.2) 

𝜔𝑇 = 2𝜋 (C.2.3) 

where 

𝑘 = the wave number (rad/m) 

𝜔 = the circular wave frequency (rad/s) 

The wave form moves one wave length during one period so that its speed or 

phase velocity, c, is given  

𝑐 =
𝜆

𝑇
=

𝜔

𝑘
 (C.2.4) 

If the wave moves in the positive x-direction, the wave profile from the form of 

the water surface can be expressed as a function of both space x and time t: 

𝜁 = 𝑎𝑐𝑜𝑠 (𝑘𝑥 − 𝜔𝑡) (C.2.5) 

C.2 Potential Theory  

The water surface slope is very small. This means that the wave steepness is so 

small that terms in the equations of the waves with a magnitude in the order of 

the steepness-squared can be ignored. Using the linear theory, the harmonic 

displacement, velocity, acceleration of the water particle and the harmonic 

pressure will have a linear relation with the wave surface elevation.  
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The profile of a simple wave with a small steepness looks like a sine or a cosine 

and the motion of a water particle in a wave depends on the distance below the 

still water level. This is reason why the wave potential is written as: 

𝜙𝑤(𝑥, 𝑧, 𝑡) = 𝑃(𝑧) · 𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡) (C.2.6) 

where 𝑃(𝑧) is an unknown function of z. 

The velocity potential 𝜙𝑤(𝑥, 𝑧, 𝑡)  of the harmonic waves must fulfil four 

requirements: 

• Continuity condition or Laplace equation 

• Sea bed boundary condition 

• Free surface dynamic boundary condition 

• Free surface kinematic boundary condition 

C.2.1 Continuity Condition and Laplace Equation 

The velocity of the water particles (𝑢, 𝑣, 𝑤) in the three translational directions 

follow from the definition of the velocity potential 𝜙𝑤: 

𝑢 =
𝜕𝜙𝑤

𝜕𝑥
 𝑣 =

𝜕𝜙𝑤

𝜕𝑦
 𝑤 =

𝜕𝜙𝑤

𝜕𝑧
 

(C.2.7) 

Since the fluid is homogeneous and incompressible, the Continuity Condition: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑥
= 0 (C.2.8) 

Results in the Laplace Equation for potential flows: 

𝛻2𝜙𝑤 =
𝜕2𝜙𝑤

𝜕𝑥2
+

𝜕2𝜙𝑤

𝜕𝑦2
+

𝜕2𝜙𝑤

𝜕𝑧2
= 0 

(C.2.9) 

Water particles move here in the x-z plane only, as in the equations above: 

𝑣 =
𝜕𝜙𝑤

𝜕𝑦
= 0 And 

𝜕𝑣

𝜕𝑦
=

𝜕2𝜙𝑤

𝜕𝑦2
= 0 

(C.2.10) 
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Taking this into account, a substitution of equation (C.2.6) in equation (C.2.9) 

yields a homogeneous solution of this equation: 

𝑑2𝑃(𝑧)

𝑑𝑧2
− 𝑘2𝑃(𝑧) = 0 (C.2.11) 

With as solution for 𝑃(𝑧): 

𝑃(𝑧) = 𝐶1𝑒
+𝑘𝑧 + 𝐶2𝑒

−𝑘𝑧 (C.2.12) 

Using this result from the first boundary condition, the wave potential can be 

written now with two unknown coefficients as: 

𝜙𝑤(𝑥, 𝑧, 𝑡) = (𝐶1𝑒
+𝑘𝑧 + 𝐶2𝑒

−𝑘𝑧) · 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) (C.2.13) 

where 

𝜙𝑤(𝑥, 𝑧, 𝑡) = wave potential (m2/s) 

𝐶1 𝑎𝑛𝑑 𝐶2 = undetermined constants (m2/s) 

𝑘 = wave number (1/m) 

𝑥 = horizontal distance (m) 

𝑧 = vertical distance(m) 

𝜔 = wave frequency (1/s) 

C.2.2 Sea Bed Boundary Condition 

The vertical velocity of water particles at the sea bed is zero: 

𝜕𝜙𝑤

𝜕𝑧
= 0 For: 𝑧 = −ℎ 

(C.2.14) 

As given in Figure C.2. 
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Figure C.0.2 The vertical velocity of water particles at the sea bed 

Substituting this boundary condition in equation (C.2.13) provides: 

𝑘𝐶1𝑒
−𝑘ℎ − 𝑘𝐶2𝑒

+𝑘ℎ = 0 (C.2.15) 

Or: 

𝐶1𝑒
−𝑘ℎ = 𝐶2𝑒

+𝑘ℎ (C.2.16) 

By defining: 

𝐶

2
= 𝐶1𝑒

−𝑘ℎ = 𝐶2𝑒
+𝑘ℎ (C.2.17) 

Or: 

𝐶1 =
𝐶

2
𝑒+𝑘ℎ and 𝐶2 =

𝐶

2
𝑒−𝑘ℎ (C.2.18) 

It follows that 𝑃(𝑧) in equation (C.2.12) can be worked out to: 

𝑃(𝑧) =
𝐶

2
(𝑒+𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)) = 𝐶 𝑐𝑜𝑠ℎ 𝑘(ℎ + 𝑧) (C.2.19) 

And the wave potential with only one unknown becomes: 

𝜙𝑤(𝑥, 𝑧, 𝑡) = 𝐶 · 𝑐𝑜𝑠ℎ 𝑘(ℎ + 𝑧) · 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) (C.2.20) 

In which C is an unknown constant. 
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C.2.3 Free Surface Dynamic Boundary Condition 

The pressure p at the free surface of the fluid 𝑧 = 𝜁 is equal to the atmospheric 

pressure 𝑝0. This requirement for the pressure is called the dynamic boundary 

condition at the free surface which is shown in Figure C.3.  

 

Figure C.0.3 The dynamic boundary condition at the free surface 

The Bernoulli equation for an unstationary irrational flow (with the velocity 

given in terms of its three components) is in its general form: 

𝜕𝜙𝑤

𝜕𝑡
+

1

2
(𝑢2 + 𝑣2 + 𝑤2) +

𝑝

𝜌
+ 𝑔𝑧 = 𝐶∗ 

(C.2.21) 

In two dimensions, 𝑣 = 0 and since the waves have a small steepness (u and w 

are small), this equation becomes: 

𝜕𝜙𝑤

𝜕𝑡
+

𝑝

𝜌
+ 𝑔𝑧 = 𝐶∗ 

(C.2.22) 

At the free surface this condition becomes: 

𝜕𝜙𝑤

𝜕𝑡
+ 𝑔𝜁 = 0 For: 𝑧 = 𝜁 

(C.2.23) 

The potential at the free surface can be expanded in a Taylor series, keeping in 

mind that the vertical displacement ζ is relatively small: 

{𝜙𝑤 (𝑥, 𝑧, 𝑡)}𝑧=𝜁 = {
𝜕𝜙𝑤(𝑥, 𝑧, 𝑡)

𝜕𝑡
}𝑧=0 + 𝑂(𝜀2) (C.2.24) 
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which yields for the linearized form of the free surface dynamic boundary 

condition: 

𝜕𝜙𝑤

𝜕𝑡
+ 𝑔𝜁 = 0 For: 𝑧 = 0 

(C.2.25) 

With this, the wave profile becomes: 

𝜁 = −
1

𝑔
·
𝜕𝜙𝑤

𝜕𝑡
 For: 𝑧 = 0 

(C.2.26) 

A substitution of equation (C.2.20) in equation (C.2.26) yields the wave profile: 

𝜁 =
𝜔𝐶

𝑔
· 𝑐𝑜𝑠ℎ 𝑘ℎ · 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) 

(C.2.27) 

Or: 

𝜁 = 𝑎 · 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) with: 𝑎 =
𝜔𝐶

𝑔
· 𝑐𝑜𝑠ℎ 𝑘ℎ (C.2.28) 

With this the corresponding wave potential, depending on the water depth h is 

given by the relation: 

𝜙𝑤 =
𝑎𝑔

𝜔
·
𝑐𝑜𝑠ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) (C.2.29) 

C.2.4 Free Surface Kinematic Boundary Condition 

The relation between 𝑇 and 𝜆 follows from the boundary condition that the 

vertical velocity of a water particle at the free surface of the fluid is identical to 

the vertical velocity of that free surface itself. This is a kinematic boundary 

condition. 

Using the equation of the free surface (C.2.28) yields for the wave surface: 

𝑑𝑧

𝑑𝑡
=

𝜕𝜁

𝜕𝑡
+

𝜕𝜁

𝜕𝑥
·
𝑑𝑥

𝑑𝑡
=

𝜕𝜁

𝜕𝑡
+ 𝑢 ·

𝑑𝜁

𝑑𝑥
 For: 𝑧 = 𝜁 

(C.2.30) 
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The second term in this expression is a product of two values, which are both 

small because of the assumed small wave steepness. This product becomes even 

smaller (second order) can be ignored. 

This linearization provides the vertical velocity of the wave surface: 

𝑑𝑧

𝑑𝑡
=

𝜕𝜁

𝜕𝑡
 For: 𝑧 = 𝜁 

(C.2.31) 

The vertical velocity of a water particle in the free surface is then: 

𝜕𝜙𝑤

𝜕𝑧
=

𝜕𝜁

𝜕𝑡
 For: 𝑧 = 𝜁 

(C.2.32) 

Analogous to equation (C.2.25) this condition is valid for 𝑧 = 0 too, instead of 

for 𝑧 = 𝜁 only. A differentiation of the free surface dynamic boundary condition 

with respect to t provides: 

𝜕2𝜙𝑤

𝜕𝑡2
+ 𝑔

𝜕𝜁

𝜕𝑡
= 0 For: 𝑧 = 0 

(C.2.33) 

Or after re-arranging terms: 

𝜕𝜁

𝜕𝑡
+

1

𝑔
·
𝜕2𝜙𝑤

𝜕𝑡2
= 0 For: 𝑧 = 0 

(C.2.34) 

C.2.5 Dispersion Relationship 

The information is now available to establish the relationship between 𝜔 and k 

referred to above. A substitution of the expression for the wave potential 

equation (C.2.29) in equation (C.2.34) gives the dispersion relation for any 

arbitrary water depth h : 

𝜔2 = 𝑘𝑔 · 𝑡𝑎𝑛ℎ 𝑘ℎ (C.2.35) 

In deep water (𝑡𝑎𝑛ℎ 𝑘ℎ = 1), equation (C.2.29) degenerates to a quite simple 

form which can be used without difficulty: 
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𝜔2 = 𝑘𝑔  (deep water) (C.2.36) 

And the deep water relation between T and λ becomes: 

𝑇 = √
2𝜋

𝑔
· √𝜆 or 𝜆 =

𝑔

2𝜋
· 𝑇2 (deep water) (C.2.37) 

In shallow water, the dispersion relation is found by substituting 𝑡𝑎𝑛ℎ 𝑘ℎ = 𝑘ℎ 

in equation (C.2.35): 

𝜔 = 𝑘 · √𝑔ℎ  (shallow water) (C.2.38) 

C.3 Water Particle Kinematics 

The kinematics of a water particle is found from the velocity components in the 

x- and z- directions, obtained from the velocity potential given in equation 

(C.2.29) and the dispersion relation given in equation (C.2.35). 

C.3.1 Velocities 

The resulting velocity components can be expressed as: 

𝑢 =
𝜕𝜙𝑤

𝜕𝑥
=

𝑑𝑥

𝑑𝑡
= 𝑎 ·

𝑘𝑔

𝜔
·
𝑐𝑜𝑠ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)  

𝑤 =
𝜕𝜙𝑤

𝜕𝑧
=

𝑑𝑧

𝑑𝑡
= 𝑎 ·

𝑘𝑔

𝜔
·
𝑠𝑖𝑛ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) (C.2.39) 

Based on the dispersion relation, a substitution of the velocity components can 

be provided as: 

𝑢 = 𝑎 · 𝜔 ·
𝑐𝑜𝑠ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)  

𝑤 = 𝑎 · 𝜔 ·
𝑠𝑖𝑛ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) (C.2.40) 
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C.3.2 Accelerations 

The water particle accelerations follow directly from a differentiation of the 

velocity components equation (C.2.39).  

�̇� = 𝑎 · 𝜔2 ·
𝑐𝑜𝑠ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)  

�̇� = 𝑎 · 𝜔2 ·
𝑠𝑖𝑛ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) (C.2.41) 

Relative to the velocity components, the accelerations have amplitudes which 

have been multiplied by 𝜔. Their phases have been shifted by 90 degrees as well. 

C.3.3 Pressure  

The pressure p in first order wave theory follows from the linearized Bernoulli 

equation (C.2.22): 

𝜕𝜙𝑤

𝜕𝑡
+

𝑝

𝜌
+ 𝑔𝑧 = 0 𝑜𝑟 𝑝 = −𝜌𝑔𝑧 − 𝜌

𝜕𝜙𝑤

𝜕𝑡
 

(C.2.42) 

With the wave potential from equation (C.2.29) the expression for the linearized 

pressure becomes: 

𝑝 = −𝜌𝑔𝑧 + 𝜌𝑔𝑎 ·
𝑐𝑜𝑠ℎ 𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ 𝑘ℎ
· 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) (C.2.43) 

For deep water, the linearized pressure becomes: 

𝑝 = −𝜌𝑔𝑧 + 𝜌𝑔𝑎 · 𝑒𝑘𝑧 · 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) (deep water) (C.2.44) 

 In shallow water, the dynamic pressure behaves hydrostatically so that: 

𝑝 = −𝜌𝑔𝑧 + 𝜌𝑔𝑎 · 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) (shallow water) (C.2.45) 

 

 

 

 


