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Abstract

A set of links and nodes are the fundamental units or components used to repre-

sent complex networks. Over the last few decades, network studies have expanded

and matured, increasingly making use of complex mathematical tools. Complex

networks play a significant role in the propagation of processes, which include

for example the case of epidemic spreading, the diffusion process, synchronisa-

tion or the consensus process. Such dynamic processes are critically important in

achieving understanding of the behaviour of complex systems at different levels

of complexity – examples might be the brain and modern man-made infrastruc-

tures. Although part of the study of the diffusion of information in the dynamic

processes, it is generally supposed that interactions in networks originate only

from a node, spreading to its nearest neighbours, there also exist long-range in-

teractions (LRI), which can be transmitted from a node to others not directly

connected.

The focus of this study is on dynamic processes on networks where nodes

interact with not only their nearest neighbours but also through certain LRIs.

The generalised k−path Laplacian operators (LOs) Lk, which account for the

hop of a diffusive particle to its non-nearest neighbours in a graph, control this

diffusive process, describing hops of nodes vi at distance k; here the distance is

measured as the length of the shortest path between two nodes. In this way the

introduction of the k-path LOs can facilitate conducting more precise studies of

network dynamics in different applications. This thesis aims to study a gener-
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alised diffusion equation employing the transformed generalised k-path LOs for

a locally finite infinite graph. This generalised diffusion equation promotes both

normal and superdiffusive processes on infinite graphs.

Furthermore, this thesis develops a new theoretical mathematical framework

for describing superdiffusion processes that use a transform of the k-path LOs

defined on infinite graphs. The choice of the transform appeared to be vitally

important as the probability of a long jump should be great enough. As described

by other researchers the fractional diffusion equation (FDE) formed the mathe-

matical framework employed to describe this anomalous diffusion. In this regard,

it is taken that the diffusive particle is not just hopping to its nearest node but

also to any other node of the network with a probability that scales according to

the distance between the two places. Initially, we extend the k-path LOs above

to consider a connected and locally finite infinite network with a bounded de-

gree and investigate a number of the properties of these operators, such as their

self-adjointness and boundedness. Then, three different transformations of the

k-path LOs, i.e. the Laplace, Factorial and Mellin transformations as well as

their properties, are studied.

In addition, in order to show a number of applications of these operators and

the transformed ones, the transformed k-path LOs are used to obtain a gener-

alised diffusion process for one-dimensional and two-dimensional infinite graphs.

First, the infinite path graph is studied, where it is possible to prove that when

the Laplacian- and factorial-transformed operators are used in the generalised

diffusion equation, the diffusive processes observed are always normal, indepen-

dent of the transform parameters. It is then proven analytically that when the

k-path LOs are transformed via a Mellin transform and plugged into the diffusion

equation, the result is a superdiffusive process for certain values of the exponent

in the transform. Secondly, we generalise the results on the superdiffusive be-

haviour generated by transforming k-path LOs from one-dimensional graphs to
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2-dimensional ones. Our attention focuses on the Abstract Cauchy problem in an

infinite square lattice. A generalised diffusion equation on a square lattice corre-

sponding to Mellin transforms of the k-path Laplacian is investigated. Similar to

the one-dimensional case also for the graph embedded in two-dimensional space,

we could observe superdiffusive behaviour for the Mellin transformed k-path

Laplacian. In comparison to the one-dimensional case, the conclusion reached

is that the asymptotic behaviour of the solution of the Cauchy problem is much

subtler.
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Introduction

0.1 Complex Systems

A concept that pervades our daily lives and changes the way we approach science,

medicine, economics, business, and even the study of intelligence in natural and

artificial systems is that of complexity. Complex system models can represent

a range of real-life phenomena and reproduce, with a certain degree of success,

situations such as cellular interactions, chemical reaction-diffusion systems, stock

market dynamics, motorway traffic, neuronal interactions, or the way opinions

are formed in social systems. Further examples, among many, include the flow

of power grids, internet dynamics, airline transportation, and street plans. Com-

plex systems are systems that comprise a multitude of interconnected parts able

to interact and generate a new quality of collective behaviour by means of self-

organisation, i.e., the spontaneous formation of temporal, spatial or functional

structures [28]. Complex systems are not simply their parts totalled up. Among

the characteristics often attributed to them are extreme sensitivity to initial con-

ditions as well as emergent behaviours that are not readily predictable or even

completely deterministic [81]. Network Science has become a significant frame-

work to model, analyse, simulate and design such complex systems. The definition

of a network could be that it is a diagrammatic representation of a system com-

prising nodes or vertices, representing the entities of the system. Links or edges

join these nodes, representing a certain kind of interconnection among them [36].
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Networks are graphs that represent or model observable reality. An important

concept in this field is: the structure and attributes of the network influence its

dynamical properties.

The network is the main skeleton of complex systems, and ubiquitous in natu-

ral and man-made environments, which range from the social and ecological to the

biology and infrastructure [36, 86, 87, 88]. The revelation of the essential qualities

of the networks was aided by fortuity, inventiveness and experimental collection

of data. Networks have been used extensively in the social sciences to represent

interpersonal relationships [4]. In such cases, the vertices correspond to individ-

uals in a group or society, and the edges join pairs of individuals who are related

in some way. For example, there is a link between individuals x and y if x likes,

hates, agrees with, avoids, or communicates with individual y. Such representa-

tions are extended to relationships between groups of individuals, and have shown

their value in a number of contexts from kinship relationships in certain prim-

itive tribes to relationships between political parties [4]. These representations

are called social networks, also used in political sciences to study international

relations, where nodes correspond to nations or group of nations, and the edges

join pair of nations that are allied, maintain diplomatic relations, or agree on a

particular strategy, among a variety of reasons. Technological networks include

the internet, telephone networks, transportation networks and railway systems.

The internet is one of the largest man-made networks and can be defined as a

huge collection of thousands of millions of computers and routers connected by

physical links. Alternatively, at a more elementary level, they can be regarded

as consisting of thousands of administrative domains among which data transfer

takes place. Biological networks include cellular networks (an ensemble of genes,

proteins and other molecules), and the ways in which they interact to regulate

cell activities; a biological neural network consisting of functionally related neu-

rons performing a specific physiological function. All of these are relatively small
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complex networks compared with the majority of complex networks seen in real

life.

Collecting and processing great amounts of data from different systems is a

recent technological advance which has facilitated the synthesis of networked sys-

tems that resemble, at some point, their natural counterparts in terms of their

functional and operational complexity [78]. Since we live in a complex intercon-

nected world, a deeper understanding of the role that those inter-part interactions

play in the collective functionality of the systems and in the emergence of dif-

ferent global properties has become very important. “There are people studying

the nature of the parts or components of the systems, and there are also peo-

ple interested in the nature of the connections, but there is a group of people

that studies the aspect of the pattern of connections between components (the

structure) which is fundamental to the behaviour of the whole system” [86].

When we devise an abstract view of the complex interaction topologies of

a system associated with the actors or agents, representing them as nodes and

en-coding their interactions as edges, the advantage of applying network science

methods to analyse and synthesise these systems becomes clear: the set of tools

from network science provides a convenient way for examination of how the struc-

ture of the underlying interaction topology among agents evolves into distinct

global behaviour. A graph-based abstraction of a complex networked system im-

plies high-level descriptions of the networked topology as nodes and edges, even

though certain information about what exactly is shared among the elements of

the system is sacrificed.

The last fifteen years have seen significant interest and attention devoted to

understanding the structure underlying complex networks, with particular refer-

ence to their topologies and the large-scale properties devolving from them. The

topology of a complex network is usually represented as a large graph, where

each unit of a complex network can be represented by a site (physics), node
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(computer science), actor (sociology), or vertex (graph theory) and the connec-

tion/interaction between two units may be the equivalent of a bond (physics),

link (computer science), tie (sociology) or edge (graph theory). The study of the

topological structure of complex networks is one the most fundamental steps for

achieving a basic understanding of certain aspects of many kinds of real-world

phenomena. Many, if not all, of the properties of the complex system a network

it represents can be determined by its structure [36]. The structure of a network

always affects its functions, being defined as the “arrangement of and relations

between the parts or elements of something complex” or “the way in which the

parts of a system or objects are arranged or organised” [36]. The study and

understanding of a topological network’s structure is also significant in the eval-

uation and design of networks regulations and protocols that run on top of them.

Understanding complex networks’ topologies can also protect networks from fail-

ures and attacks, with the purpose of achieving a better design and evolution of

networks.

The study of complex networks’ topologies has not been a simple matter over

the past decade, possibly due to the fact that large-scale networks are often a col-

lection of thousands or millions of nodes. In fact, there is no single vantage point

from which a complete picture of the topology can be obtained. Besides, complex

networks can undergo dramatic changes and constant evolution. For example, it

is possible to create or remove a web page on the World Wide Web (WWW) on

a daily basis, rendering it difficult to obtain a view of this network. Furthermore,

since the network cannot naturally be inspected directly, the task of discovering

topologies has fallen to experimentalists developing methods of varying degrees

of sophistication to infer its topology from suitable network measurements. The

elaborate nature of the network means that there is a great number of possible

measurements that can be made, each with its own characteristics: strengths,

weaknesses and limitations, and each offering a distinct specific view of the net-
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work topology. To achieve a proper understanding of the structure of complex

networks, a reference model with which we can compare them is required.

These challenges have prompted the recent use of network models to describe

complex systems and has emphasised the study of graph-theoretic properties as

a means to characterise the similarities and differences in the structures and the

functions of systems over a variety of domains [3, 16, 88]. Researchers have carried

out many more studies on the empirical analysis of graph-theoretic properties

of real systems, trying to identify unifying properties over numbers of complex

networks. Even more attention has been given to developing generic and universal

models in an attempt to explain such unifying properties, to infer more properties

that are not easily obtained empirically. Many such works implicitly assume that

graph theoretic properties adequately capture key system features to serve as a

basis for comparison.

0.2 Diffusion in Complex Systems

Diffusion processes are among the most fascinating phenomena in complex net-

works systems. Diffusion is a fundamental transport process of matter and en-

ergy in various physical, chemical and biological systems [71, 130]. Two types

of motions are easily observable in nature: smooth, regular motion, such as the

Newtonian motion of planets, and random, highly irregular motion, for example

the Brownian motion of small specks of dust in the air. The first of these can

be predicted and therefore can be described from a deterministic point of view.

The second one necessitates a statistical approach. The first man who noted the

Brownian motion was the Dutch physician, Jan Ingenhousz in 1794, who, while

in the Austrian court of Empress Maria Theresa, observed that finely powdered

charcoal floating on an alcohol surface performed a very erratic random motion

[32]. The Scottish botanist Robert Brown [18] made a similar observation when
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he investigated with a microscope the continuous irregular motion of small parti-

cles (micrometers and less in size). The particles moved in disordered trajectories,

with no weakening of their motion. They did not depend on the chemical prop-

erties of the medium, strengthened as the medium temperature increased, with

reduced viscosity and particle sizes. But Brown considered the motion of the

particles (which were not atoms of course) as their own property and made no

mention of atoms or molecules. Nearly 80 years later, two physicists: Albert Ein-

stein [33] and Marian von Smoluchowski [132], found the physical explanation for

Brownian motion, based on taking the thermal motion of molecules surrounding

the Brownian particle into account. Seminal papers by Smoluchowski, Einstein

and Langevin (see the respective references in [22]), devoted their studies to clas-

sical diffusion where the mass density of the grains diffusing in a background

medium was related to the stochastic motion of these particles. In usual condi-

tions, such motion of grains leads to a second moment of the mass distribution

that grows linearly in time. Diffusion process types of this kind play a crucial role

in plasmas, including dusty plasma [122], nuclear physics [125], neutral systems

in various phases [44] and a great range of other problems.

At the same time in many systems the deviation from the linear in time de-

pendence of the mean square displacement have been experimentally observed,

in particular under essentially non-equilibrium conditions or for some disordered

systems. According to Richardson’s law, the average square separation of a pair

of particles passively moving in a turbulent flow grows with the third power of

time [84]. For diffusion typical for glasses and related complex systems [110] the

observed time dependence is slower than linear. These two types of anomalous

diffusion are characterised as superdiffusion and sub-diffusion. A number of ef-

fective models and methods have been suggested in order to describe these two

diffusion regimes. Scher and Montroll’s continuous time random walk (CTRW)

model [116], leading to strong sub-diffusion behaviour, provides a basis for un-
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derstanding photoconductivity in strongly disordered and glassy semiconductors.

The Lévy-flight model [63], leading to superdiffusion, describing a variety of phe-

nomena as self-diffusion in micelle systems [95], reaction and transport in polymer

systems [124] and can be applied even to the stochastic description of financial

market indices [45]. For both cases the so-called fractional differential equa-

tions in coordinate and time spaces are applied as an effective approach [136].

The history of the further study of Brownian motion is linked with the names

of Langevin, Perrin, Fokker, Planck, Uhlenbeck, Ornstein, Chandrasekhar and

other well-known physicists [32].

However, for the first time the diffusion equation appeared in Louis Bachelier’s

thesis [32] (a student of A. Poincaré’s). He devoted his thesis, entitled “The the-

ory of speculations”, to the study of random processes in the evolution of market

prices. It is surprising the way in which the same diffusion equation can describe

the behaviour of neutrons in a nuclear reactor, the light in an atmosphere, stock

market values on a financial exchange, or particles of flower dust suspended in a

fluid. The fact that identical equations describe phenomena completely different

in nature directly indicates that the matter concerns the same common quality

of a whole class of similar phenomena rather than the concrete mechanism of

the phenomenon. The statement of this quality in terms of physical laws and

mathematical postulates or definitions enables the liberation of a given pattern

from details, not essentially influencing the physical process, and the exploration

of the model obtained by means of general laws. This is a typical situation

for statistical physics and applied mathematics. The new approaches proposed

by Einstein, Smoluchowski and Langevin to describe the Brownian motion, in

fact, offer the opportunity to model a considerable variety of natural phenomena.

Simultaneously, for mathematicians, whose achievements built the theory of ran-

dom processes, the Brownian motion became the first object of its application.

N. Wiener [137] has contributed in great measure to the mathematical theory of

7



Brownian motion, insofar as he has proved that the trajectories of the Brownian

process almost everywhere are continuous but are not differentiable anywhere.

Wiener, Markov, Doob, Kaç, Feller, Bernstein, Lévy, Kolmogorov, Stratonovich,

Itô and others [32] studied the mathematical aspects of Brownian motion. Two

significant properties are intrinsic to the homogeneous Brownian motion: the dif-

fusion packet initially concentrated at a point later takes on the Gaussian form,

whose width grows in time as t1/2 . This kind of diffusion was termed normal

diffusion.

Twenty years after Einstein, Smoluchowski and Langevin’s works, L. Richard-

son published an article [106] presenting empirical data contradicting normal dif-

fusion: the size 4 of an admixture cloud in a turbulent atmosphere grows in

time proportionally to t3/2, much more rapidly than in the normal case (t1/2).

This turbulent diffusion constituted the first example of a superdiffusion process,

when 4 ∝ tγ with γ > 1/2. An interpretation of the phenomenon is that it

is a diffusion process with a variable diffusivity D(r) ∝ r4/3. This Richardson’s

“law of four thirds” was grounded theoretically by the Russian mathematicians

A. N. Kolmogorov [66] and A. M. Obukhov [91] as a development from the self-

similarity hypothesis of locally isotropic turbulence. However, the fact that the

diffusivity should depend not on the coordinates (a turbulent medium is supposed

to be homogeneous on average), but on the scale or distance l between a pair of

diffusing particles, creates essential difficulties both to finding a solution to the

equation and to interpreting it [32]. The particular case when γ = 2 is known as

ballistic diffusion, recognisable by the fact that in short instances the particles

are not yet hindered by collisions and diffuse very fast.

There is particularly interest here in the superdiffusive dynamics, found for

instance in the diffusion by flows in porous media [96], signal processing [89], and

time series statistical analysis of DNA [115]. Others include primary sequences

of protein-like copolymers [46], spreading of epidemic processes [52], the flights
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of albatrosses [32], animal behaviour and locomotion [120], and financial time

series [112]. The superdiffusive processes have been modelled in many different

ways (see [79] for a review and analysis). However, the most used models are

based on random walks with Lévy flights (RWLF) [32, 80, 121, 131] and on the

use of the fractional diffusion equation (FDE)[7, 46, 62, 75, 128]. Although the

first method can be easily used for computer simulations, the second is preferred

for analytical studies. There are different types of definitions of a fractional

derivative, however, such as the Caputo and the Riemann–Liouville fractional

operators [99] which then can be interpreted differently adapting differently to

the different physical phenomena in conjunction with which they are studied (see

[51, 74]). Recently, anomalous diffusion of ultracold atoms has been noted in

a discrete one-dimensional system [113]. A simple diffusion model in which the

particles are located in real space, each having a velocity which fluctuates in time

due to interaction with a bath is the model considered in that work for explaining

the superdiffusive process. After some time, the particles’ position is distributed

in a non-Gaussian manner and the full width at half maximum (FWHM) scales

as a power-law of the time with a signature characteristic of superdiffusion.

Dynamical processes which occur on networks are of great significance in or-

der to understand the ways in which complex systems, ranging from the brain to

modern man-made infrastructures [9], work. It could be argued that the main

reason for the existence of networks is to facilitate the dynamical propagation

of effects from one part of a system to another. Despite the fact that there is a

considerable number of dynamical processes occurring on networks, diffusion pro-

cesses are of special importance [14], arising naturally in many social problems

where the issue of propagation of information is concerned. Examples include

behavioural flocking in popular cultural styles, emotional contagion, collective

decision making, the behaviour of pedestrians when they walk and how computer

viruses are propagated. Modelling diffusion of materials in a variety of physical
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and biological systems can be carried out using analogous models, from the dif-

fusion of water in the brain to the diffusion of oil and gas through rock fractures.

Diffusion processes on networks are described by the equation ẋ(t) = −Lx(t),

with the initial condition x(0) = x0, where L is the Laplacian operator (which

will be defined later on) [123]. For finite networks the Laplacian matrix has been

widely studied in the literature due to its relevance in the characterisation of net-

works structure and dynamics [23, 77]. The Laplacian matrix has been extended

to infinite, connected and locally finite graphs and studied as an operator in the

Hilbert space over the vertices [19, 49, 57, 58, 61, 123, 135, 138]. However, dur-

ing the study of dynamical processes on networks, it is generally assumed that

information transmission can only take place between one node and its closest

neighbours. Recently, a new assumption for the information diffusion in the dy-

namical processes was presented [35], putting forward that the information can

hop from one node to another without it being adjacent. Taking the generalised

Laplacian matrix, based on the path matrices that characterise the existence of

shortest paths between pairs of nodes in a graph into consideration, allows for

modelling the information diffusion. The matrices were brought into being by the

problem of determining whether every node of a graph can be visited by means

of a process of jumping from one node to another, at distance k from it. A gener-

alisation of the Laplacian matrix — known as the k-path Laplacian and denoted

by Lk — which takes into account such long-range hops of the diffusive particle

— has recently been considered for finite undirected graphs [35]. However, we

should remark that existence of such long-range hops in diffusive processes has

been well documented since the 1990s on experimental basis of different nature.

First, the group of G. Ehrlich [119] observed experimentally significant contribu-

tions to the thermodynamical properties of the self-diffusion of weakly bounded

Pd atoms from jumps spanning second and third nearest-neighbours in the metal-

lic surface. Since then, the role of long jumps in atom and molecules diffusing on
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metallic surfaces has been confirmed in many different systems [32, 140].

This thesis studies a generalised diffusion equation, which is controlled by the

k-path Laplacian operators (LOs), using the transformed generalised k-path LOs

for locally finite infinite networks. We stipulate an approach that considers a

diffusion process whereby not only nearest neighbour displacements are allowed,

but where also some long-range hops in the network are possible. The main

result of this work is to develop a new method that accounts for normal and

superdiffusive processes on infinite graphs using the k−path LOs. For explaining

the superdiffusive process, the model utilised is a simple diffusion model where

the diffusive particle diffuses in a one-dimensional discrete space, and the particle

not only jumps to its nearest neighbours in the 1D lattice, but also to any other

point in it. The probability scales according to the distance between the two

places. The FDE was the mathematical framework employed to describe this

anomalous diffusion, resulting in us presenting a new method for description of

superdiffusion by a transform of k-path LO defined on an infinite path graph.

The k-path LOs allow the derivation of analytical results as the FDE but use a

unique framework, very similar to the one traditionally used in graph and network

theory. It also makes for an easy computational implementation in the form of

a random multi-hopper on graphs [37]. We then investigate some applications of

these operators and the transformed ones, and for that we consider the generalised

diffusion process. This generalised diffusion equation gives rise to both normal

and superdiffusive processes on infinite one-dimensional graphs. Furthermore,

we present the generalisation of the problem to the case of the 2-dimensional

Cartesian grid. More precisely, we consider the time evolution of the solution of

the generalised diffusion equation with initial condition concentrated at one point.

We then describe the asymptotic behaviour of the generalized diffusion equation

corresponding to the Mellin-transformed k-path Laplacian (which will be defined

later on). We then conclude that the superdiffusive process can be obtained for
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k-path Laplacian transformed by the Mellin’s transform in dimension two.

0.3 Thesis structure

We have structured the present thesis in two main parts which follow the intro-

duction giving an overview on complex networks and graph theory. In part I

we present the theoretical background used to build our proposals and analysis,

the body of the first part is constituted of 3 chapters. In Chapter 1 we present

general concepts from graph theory and operator theory. Chapter 2 presents the

essential concepts for the structure of a network that will be relevant to this the-

sis. Chapter 3 is devoted to review some concepts of dynamical systems that will

be useful in this thesis. We show some examples of the possible dynamics that

can be modelled on a network, such as normal and anomalous diffusion processes.

The second part of the thesis comprises the results and findings coming from our

published works. In Chapter 4 we extend the k-path Laplacians Lk to consider

connected and locally finite infinite graphs. We then investigate some of the main

properties of k-path LOs, such as a self-adjointness and the boundedness of these

operators. We also study the transformed k-path LOs using Laplace, factorial

and Mellin transforms. In Chapter 5 we study an infinite linear chain and obtain

analytical expressions for the transformed k-path LOs as well as for the expo-

nential operators of both, the k-path Laplacians and their transformations. We

introduce a new method to describe superdiffusion by a transformation of k-path

LOs defined on path graph. In Chapter 6 we study the solutions of the general-

ized diffusion equation in 2D graphs. In particular, we focus our attention on the

Abstract Cauchy Problem in an infinite square lattice. Finally, in Chapter 7 we

give our conclusions and discuss future work.
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Chapter 1

Graph and Operator theories

1.1 Introduction

The purpose of this chapter is to recall some definitions, basic concepts and some

theorems which are important for the discussion of our later results. We shall first

introduce definitions and notations to cover essential material on graph theory.

Then, we are going to cover basics material on operator theory that will be useful

throughout this thesis.

1.2 Graph theory

There are many situations when we may use a group of points joined together

either by lines or arrows to represent something of our interest. These points

may stand for people, places or atoms, and the lines or arrows may be kinship

relations, pipelines or chemical bonds. These kinds of diagrams are known under

different names: sociograms (psychology), simplexes (topology), circuit diagrams

(physics), organisational structures (economics), communication networks (engi-

neering), family trees, etc. [12]. More about graph theory may be found in the

literature [17].
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Definition 1.1. A graph is the pair of sets G = (V, E) such that V 6= φ is the

set of nodes (or vertices, or points) of the graph G, and E ⊆ V × V is the set

links (or edges, or lines) of G. That is , E consists of those pairs (u, v) for which

there is a link from u to v. The vertex set of the graph G will be denoted by

V (G) and its edge set by E(G). Therefore G = (VG, EG).

In undirected graphs a pair {u, v} is usually written as uv (sometimes (u, v)).

Notice that then uv = vu. In order to simplify notations, we also write v ∈ V

and e ∈ E instead of v ∈ V (G) and e ∈ E(G).

Definition 1.2. For a graph G, we denote

n = |V (G)|, m = |E(G)|.

The number of vertices n is called the order of G, and m is the size of G.

Definition 1.3. The vertices u and v are adjacent or neighbours, if uv ∈ E. Two

edges e1 = uv and e2 = uw having a common end, are said to be adjacent with

each other.

Definition 1.4. A locally finite graph is a graph in which every vertex has only

a finite number of neighbours.

Definition 1.5. A graph Gs = (Vs, Es) is called subgraph with respect to a

given graph G = (V, E) if Vs ⊆ V and Es = {{vi, vj} ∈ E/vi, vj ∈ Vs}. In other

words, the subgraph Vs consists of the vertices in the subset Vs of V and edges

in G that are incident to vertices in Vs.

Definition 1.6. A graph in which each edge e is associated with a real number

w(e), called its weight, is called a weighted graph. A weighted graph is often

written as G = (V (G), E(G), W (G)) where W (G) is the set of edge weights.
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Definition 1.7. Two graphs G and H are isomorphic, denoted by G ' H, if

there exist bijections f : V (G) −→ V (H) and g : E(G) −→ E(H) such that

ψG(e) = uv ⇐⇒ ψH(g(e)) = f(u)f(v)

for all u, v ∈ G. The pair (f, g) is called an isomorphism between G and H.

1.3 Paths and cycles

Definitions

• A walk from node i to node j is an alternating sequence of nodes and edges

(a sequence of adjacent nodes) that begins with i and ends with j. The

length of the walk is defined as the number of edges in the sequence.

• A trail is a walk in which no edge is repeated.

• A path is a walk in which no node is visited more than once.

• The walk of minimal length between two nodes is known as shortest path

or geodesic.

• A cycle is a closed walk, of at least three nodes, in which no edge is repeated.

A cycle of length k is usually called a k-cycle and denoted as Ck.

• A graph is said to be connected if, for every pair of distinct nodes i and j,

there is a path from i to j, otherwise it is said unconnected or disconnected.

• A graph G that is not connected has two or more connected components

that are disjoint and have G as their union.
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1.4 Adjacency matrix

An adjacency matrix A is a means of representing which vertices of a graph are

adjacent to which other vertices. The adjacency information of the nodes of a

graph G = (V,E) can be represented by the adjacency matrix A = aij defined as:

aij =


1 if (i, j) ∈ E,

0 otherwise.

(1.4.1)

the dimension of this matrix is |V |× |V |. There exists a unique adjacency matrix

for each graph (up to permuting rows and columns) which is not the adjacency

matrix of any other graph. This matrix is a symmetric matrix for undirected

graphs. In the special case of a finite simple graph, the adjacency matrix is a

(0, 1)-matrix with zeros on its diagonal.

1.5 Incidence matrix

There is another matrix which has a close relation with the adjacency matrix,

this is called the incidence matrix.

Definition 1.8. Suppose G = (V,E) is a graph where V = {1, 2, . . . n} and

E = {e1, e2, . . . , em} with ei = (ui, vi). For 1 ≤ i ≤ m and 1 ≤ j ≤ n define

bij =


1 if ui = j,

−1 if vi = j,

0 otherwise.

(1.5.1)

Then the rectangular matrix B = (bij) is called the incidence matrix of G.
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1.6 Degree of Vertices

Definition 1.9. Let v ∈ G be a vertex of a graph G. The neighbourhood of v is

the set

NG(v) = {u ∈ G | vu ∈ E}. (1.6.1)

The degree of the node v is defined to be

kv =| NG(v) | . (1.6.2)

The degree kv is also the number of entries in the vth row or column of the adja-

cency matrix A of the graph G. It represents the number of nearest neighbours

of v. If kv = 0, then v is said to be isolated in G, and if kv = 1, then v is a leaf

of the graph. The minimum degree and the maximum degree of G are defined as

kmin(G) = min{kv | v ∈ G} and kmax(G) = max{kv | v ∈ G}. (1.6.3)

For an undirected graph, the vth row (column) of the adjacency matrix has

exactly kn entries which corresponds to the number of links or nearest neighbours

the node v has, this is the degree of the node. The column vector of node degrees

k can be obtained from the matrix A and a |V | × 1 all-one vector 1 as follows:

k = (1TA)T = A1,

where 1 is a |V |×1 column vector with all entries equal to 1 and 1T its transpose

and A is the adjacency matrix of graph G.

The degree matrix K is the matrix which has the node degrees as its main

diagonal and is given by

K = diag(k). (1.6.4)

In addition, The adjacency matrix A, the incidence matrix B and the degree
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matrix K are related by the relation

A = BTB −K. (1.6.5)

1.7 Special Graphs

Definitions

• A graph G(V, E) is trivial, if it has only one vertex, i.e., |V (G)| = 1;

otherwise G is nontrivial.

• A graph G(V, E) is simple, if it A has no loops and no two of its edges join

the same pair of vertices.

• A graph is k-regular (or regular of degree k ) if the degree of each node is

k (Fig 1.7.1. a).

• A complete graph is a graph in which every two vertices are adjacent. The

complete graph with n nodes is denoted by Kn (Fig 1.7.1. b).

• The complement of a graph G is the graph Ḡ created by taking all the

nodes in G and joining two nodes whenever they are not linked in G.

• A null graph is a graph with no links. The null graph with n nodes is

denoted by Nn. The null graph with n nodes is regular of degree 0 (Fig

1.7.2. a).

• A cycle graph is a graph consisting of a single cycle of vertices and edges.

The cycle graph with n nodes is denoted by Cn (Fig 1.7.2. b).

• A bipartite graph is a graph whose set of nodes can be split into two subsets

V1 and V2 in such a way that each edge of the graph joins a node in V1 and

a node in V2 (Fig 1.7.2. c).
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(a) (b)

Figure 1.7.1: Examples of graphs. (a) Regular graph. (b) Complete graph.

• A star graph Sn is a graph having (n − 1) leaves (nodes of degree 1) and

one central node having degree n− 1.

• A tree graph is a connected graph with no cycles. In this graph, any two

vertices are connected by exactly one path (Fig 1.7.2. d).

1.8 Operator Theory

This section is devoted to the basic material on operator theory and their basic

properties that will be useful through this thesis. There is a vast amount of

literature on operator theory, and other advanced topics may be found in the

literature [26, 68, 104].

Definition 1.10. Suppose that X is a non-empty set. By a metric or distance

function on X, we mean a real-valued function d : X ×X −→ R which satisfies

the following conditions:

• For every x, y ∈ X, we have d(x, y) ≥ 0.

• For every x, y ∈ X, we have d(x, y) = 0⇐⇒ x = y.

• For every x, y ∈ X, we have d(x, y) = d(y, x).
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(a) (b)

(c) (d)

Figure 1.7.2: Examples of graphs. (a) Null graph. (b) Cycle graph. (c) Bipartite
graph. (d) Tree
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• (Triangle Inequality) For every x, y, z ∈ X, we have d(x, z) ≤ d(x, y) +

d(y, z).

If these conditions are satisfied, then X is a called a metric space. The number

d(x, y) is called the distance from x to y.

Definition 1.11. Suppose that (X, d) is a metric space. A sequence (xn)n ∈ N

of points in X is said to be a Cauchy sequence if, given any ε > 0, there exists

N such that

d(xm, xn) < ε wheneverm > n ≥ N.

Definition 1.12. Suppose that (X, d) is a metric space, and that M ⊆ X. We

say that M is complete if every Cauchy sequence in M has a limit in M . If X is

complete, then we say that the metric space (X, d) is complete.

Definition 1.13. A vector space over a field F is a set M , together with vector

addition and scalar multiplication, and satisfying the following conditions:

• For every x, y ∈M , we have x+ y ∈M .

• For every x, y, z ∈M , we have x+ (y + z) = (x+ y) + z.

• There exists an element 0 ∈M such that for every x ∈M , we have x+ 0 =

0 + x = x.

• For every x ∈M , there exists −x ∈M such that x+ (−x) = 0.

• For every x, y ∈M , we have x+ y = y + x.

• For every c ∈ F and x ∈M , we have c x ∈M .

• For every c ∈ F and x, y ∈M , we have c(x+ y) = cx+ cy.

• For every a, b ∈ F and x ∈M , we have (a+ b)x = ax+ bx.
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• For everya, b ∈ F and x ∈M , we have (ab)x = a(bx).

• For every x ∈M , we have 1x = x.

Definition 1.14. A normed vector space is a vector space N over F , together

with a real valued function ‖.‖ : N −→ R, called a norm, and satisfying the

following conditions:

• For every x ∈ N , we have x ≥ 0.

• For every x ∈ N , we have x = 0 ⇐⇒ x = 0.

• For every x ∈ N and every c ∈ F , we have ‖cx‖ =| c | x.

• (Triangle Inequality) For every x, y ∈ N , we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Remark 1.15. A norm on N defines a metric d on N which is given by

d(x, y) = ‖x− y‖, x, y ∈ N,

and is called the metric induced by the norm.

Definition 1.16. Suppose that N is a normed vector space over F . Suppose

further that N is a complete metric space, i.e., if every Cauchy sequence in N

converges to an element of N , under the metric induced by its norm. Then we

say that N is a Banach space.

Definition 1.17. By an inner product space, we mean a vector space N over F ,

together with a function 〈, 〉 : N ×N −→ F , called an inner product, satisfying

the following conditions:

• For every x ∈ N , we have 〈x, x〉 ≥ 0.

• For every x, y ∈ N , we have 〈x, y〉 = 〈y, x〉.
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• For every x, y, z ∈ N and all scalars a, b ∈ F , we have 〈ax + by, z〉 =

a〈x, z〉+ b〈y, z〉.

• For every x ∈ N , we have 〈x, x〉 = 0 ⇐⇒ x = 0.

Remark 1.18. An inner product on N defines a norm on N given by

‖ x ‖=
√
〈x, x〉 = 〈x, x〉1/2, x ∈ N,

and a metric on N given by

d(x, y) = ‖x− y‖ = 〈x− y, x− y〉1/2, x, y ∈ N.

Definition 1.19. Suppose that N is an inner product space over F . Suppose

further that N is a complete metric space under the metric induced by its inner

product. Then we say that N is a Hilbert space.

Remark 1.20. Note that every Hilbert space over F is a Banach space over F .

Definition 1.21. Suppose that N is a vector space over F . By a linear oper-

ator from N to N , we mean a mapping L : N −→ N satisfying the following

conditions:

• For every x, y ∈ N , we have L(x+ y) = Lx+ Ly.

• For every c ∈ F and x ∈ N , we have L(cx) = cLx.

Remark 1.22. The set of all linear operators on N is denoted by L(N).

Definition 1.23. Suppose that N is normed vector space over F . A linear

operator L : N −→ N is said to be bounded if there exists a real number M ≥ 0

such that ‖L(x)‖ ≤M ‖x‖ for every x ∈ N .

Theorem 1.24. Suppose that N is a normed vector space over F . Then for any

linear operator L : N −→ N , the following statements are equivalent:
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(a) L is continuous in N .

(b) L is continuous at x = 0.

(c) L is bounded.

Definition 1.25. Suppose that N is normed vector space over F . We denote by

B(N) the collection of all bounded linear operators on N .

Theorem 1.26. Suppose that N is a Hilbert spaces over F . For every linear

bounded operator L ∈ B(N), there exists a unique linear operator L∗ ∈ B(N)

such that 〈L(x), y〉 = 〈x, L∗(y)〉 for every x, y ∈ N .

Remark 1.27. The unique linear operator L∗ ∈ B(N) satisfying the conclusion of

Theorem above is called the adjoint operator of the linear operator L ∈ B(N).

Definition 1.28. A bounded operator L is called self-adjoint if L = L∗.

Definition 1.29. Let N be a complex Hilbert space. A bounded self-adjoint

linear operator L : N → N is said to be positive, written L ≥ 0, if

〈Lx, x〉 ≥ 0,

for all x ∈ N .

Definition 1.30. A densely defined linear operator L from one Hilbert space,

N1, to another one, N2, is a linear operator that is defined on a dense linear

subspace D(L) of N1 and takes values in N2, written L : D(L) ⊆ N1 → N2.

Definition 1.31. Let L and S be operators on N . If G(L) ⊂ G(S), then L is

said to be an extension of S and we write L ⊂ S. Equivalently, L ⊂ S if and

only if D(L) ⊂ D(S) and Lx = Sx for all x ∈ D(L).

Definition 1.32. An operator L is closable if it has a closed extension. Every

closable operator has a smallest closed extension, called its closure, which we

denote by L.
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The notation of adjoint operator can be extended to the unbounded case.

Definition 1.33. Let L : D(L) → N be a densely defined linear operator in a

complex Hilbert space N . Then the Hilbert-adjoint operator L∗ : D(L∗)→ N of

L is defined as follows. The domain D(L∗) of L∗ consists of all y ∈ N , such that

there is a y∗ ∈ N satisfying

〈Lx, y〉 = 〈x, y∗〉,

for all x ∈ D(L). The Hilbert-adjoint operator L∗ is defined in terms of that y∗

by

y∗ = L∗y.

Definition 1.34. A densely defined operator L on a complex Hilbert space is

called symmetric (or Hermitian) if L ⊂ L∗, that is, if D(L) ⊂ D(L∗) and Lx =

L∗x for all x ∈ D(L).

Definition 1.35. A densely defined operator L on a complex Hilbert space is

called self-adjoint if L = L∗, that is, if and only if L is symmetric and D(L) =

D(L∗).

Definition 1.36. A symmetric operator L is said to be essentially self-adjoint if

the closure of L (L) is self-adjoint. Equivalently, L is essentially self-adjoint if it

has a unique self-adjoint extension.

Definition 1.37. Let N1 and N2 be a Hilbert spaces, L a bounded linear operator

from N1 to N2. The set of vectors x ∈ N1 so that Lx = 0 is called the kernel of

L, written Ker L. The set of vectors y ∈ N2 so that y = Lx for some x ∈ X is

called the range of L, written RanL.

Notice that both Ker L and RanL are subspaces. Ker L is necessarily closed,

but RanL may not be closed.
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Definition 1.38. The identity operator Ix : N → N is defined by INx = x for

all x ∈ N . We also write simply I for Ix; thus, Ix = x.

Theorem 1.39. [104] Let L be a symmetric operator on a Hilbert space N . Then

the following are equivalent:

1. L is self-adjoint.

2. L is closed, Ker(L∗ + I) = {0} and Ker(L∗ − I) = {0}.

3. Ran(L+ I) = N and Ran(L− I) = N .

Proposition 1.40. [104] Let L be a symmetric operator on a Hilbert space. Then

the following are equivalent:

1. L is essentially self-adjoint.

2. Ker(L∗ + I) = {0} and Ker(L∗ − I) = {0}.

3. Ran(L+ I) and Ran(L− I) are dense.

Proposition 1.41. [117] Let L be a symmetric operator on a Hilbert space N

and non-negative , i.e.

〈Lx, x〉 ≥ 0,

for all x ∈ D(L). Then the following are equivalent:

1. L is self-adjoint.

2. L is closed and Ker(L∗ + I) = {0}.

3. Ran(L+ I) = N

Proposition 1.42. [34] Let L be a bounded operator. Then the unique solution

of the Cauchy problem

u′(t) = −Lu(t), u(0) = u0,
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is given by the semigroup applied to the initial condition, i.e.,

u(t) = T (t)u0,

and that the semigroup is given by the series

T (t) = e−tL =
∞∑
n=0

(−t)n

n!
Ln.

Let us briefly recall the definition of the polylogarithm and then consider some

properties that help us to prove some lemmas in the following chapters in this

thesis.

Definition 1.43. [93, 25.12.10] For real or complex s and z the polylogarithm

Lis(z) is defined by

Lis(z) :=
∞∑
k=1

zk

ks
, |z| < 1, (1.8.1)

and by analytic continuation to C \ [1,∞) with 1 being a branch point. The

special case z = 1 is the Riemann zeta function:

Lis(1) = ζ(s) =
∞∑
k=1

1

ks
, (1.8.2)

Remark 1.44. [93, 25.12.12] We have

Lis(z) = Γ(1− s)(ln 1

z
)s−1 +

∞∑
n=0

ζ(s− n)
(ln z)n

n!
, s 6= 1, 2, 3, . . . , | ln z |< 2π.

(1.8.3)

Remark 1.45. [72, p. 131] We have

Lis(z) =
(ln z)s−1

(s− 1)!
(1+

1

2
+. . .+

1

s− 1
−ln(ln

1

z
))+

∞∑
n=0,n6=s−1

ζ(s−n)
(ln z)n

n!
. (1.8.4)

Theorem 1.46. (Dominated Convergence Theorem) Suppose fn : R→ [−∞,∞]

27



are (Lebesgue) measurable functions such that the pointwise limit f(x) = limn→∞ fn(x)

exists. Assume there is an integrable g : R→ [0,∞] with | fn(x) |≤ g(x) for each

x ∈ R. Then f is integrable as is fn for each n, and

lim
n→∞

∫
R
fndµ =

∫
R

lim
n→∞

fndµ =

∫
R
fdµ.
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Chapter 2

Network Structure

2.1 Introduction

Graph theory is the natural framework for the exact mathematical treatment

of complex networks and, formally, a complex network can be represented as a

graph [15]. The words graph and network have been used imprecisely in practice

due to the close relationship between graph theory and network theory. Graph

theory and network theory principally differ from each other in that in the first,

the whole graph is given exactly, then initiating the search for relationships be-

tween its parameters, variables and functions or for efficient algorithms for their

computation. In contrast, for every large real-world network, variables are typi-

cally not entirely known and probably not well defined, which makes representing

them as infinite graphs to promote effective analysis appropriate. Interest in the

theory of networks has increased recently, accompanied by development among

different scientific sectors, producing several works in an attempt to compress all

this knowledge into a general framework.

The purpose of this chapter is to provide material in a brief account of the

latest developments in the characterisation of a network’s structural properties.

The study will only cover very immediate areas as there is a considerable quantity
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of literature relating to network structures and dynamics and other advanced

topics [36, 86]. Therefore, the essential concepts for the structure of a network,

relevant to this thesis will be presented. A variety of different scientific areas in

related literature exists for studies of graph and network theories [15].

2.2 A formal definition of Networks

The study of networks is related to graph theory, and so we will sometimes use

the terms graph and network interchangeably. However, network theory relies not

only on graph theory, but also makes use of topics such as statistical mechanics,

geometry, topology, and dynamical systems.

Definition 2.1. A network is a triple G = (V, E, f) where V is a finite set of

vertices or nodes, E ⊆ V × V = {e1, e2, ..., em} is a set of edges or links and f is

a mapping which associates some elements of E to a pair of elements of V , such

as that if vi ∈ V and vj ∈ V then f : ep −→ [vi, vj] and f : ep −→ [vj, vi]; and a

weighted network is the triple G = (V,E, f) defined by replacing the set of edges

E by a set of edges weights W = {w1, w2, ..., wm} such that wi ∈ R. There are

different kinds of networks [36, 86] that includes:

• Computer Networks: The Internet topology (at both the Router and the

Autonomous System (AS) levels) is a graph, with edges connecting pairs of

routers/AS. This is a graph, which can be both weighted or unweighted.

• Ecology: Food webs are graphs with each node representing a species, and

the species at one endpoint of an edge eats the species at the other endpoint.

• Biology: Protein interaction networks link two proteins if both are necessary

for some biological process to occur.

• Sociology: Individuals are the nodes in a social network edges represent-

ing ties (with labels such as friendship, business relationship, trust, etc.)
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(a) (b)

(c) (d)

Figure 2.2.1: Some examples of networks. (a) Internet networks [86]. (b) Food
web network [86]. (c) Protein-Protein interaction network [53]. (d) Friendship
network.

between people.

• User Psychology: Click stream graphs are bipartite graphs connecting inter-

net users to the websites they visit, thus encoding some information about

the psyche of the web user.

2.3 Properties of Networks

2.3.1 Degree Distributions

From the information that the node degrees of a network provide, some important

insights into the structure of the entire network can be revealed. This analysis
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is based on the distribution of node degrees in the network and such degree dis-

tribution forms the most fundamental topological characterisation of a network.

The degree distribution may be found in terms of the probability p(k), defined as

the probability that a node chosen uniformly at random has degree k, or equiv-

alently as the fraction of nodes in the graph having degree k. Alternatively, the

degree distribution is denoted as p(k), indicating that the variable k assumes

non-negative integer values. The probability p(k) is given by

p(k) =
n(k)

n
, (2.3.1)

where n(k) is the number of nodes having degree k in a network of size n. Some

important information, but not all, about the network can be obtained from the

degree distribution. Information on how the degree is distributed among the

nodes of an undirected network can be gained either by a plot of n(k) versus the

degree k, often in log-log scale, providing a qualitative idea about the kind of

statistical distribution followed by the node degrees or by the calculation of the

moments of the distribution. The n-moment of p(k) is defined as follows:

< kn >=
∑
k

knp(k). (2.3.2)

The first moment < k > (sometimes written k̄) is the mean degree of the network.

The second moment < k2 >, called the variance, measures the fluctuations of the

connectivity distribution. In the limit of infinite graph size, < k2 > radically

changes the behaviour of the dynamical processes occurring throughout the net-

work. Among the different kinds of degree distributions in the study of complex

networks there are the Poisson distribution, the Gaussian distribution, the power-

law distribution and the exponential distribution (Fig 2.4.1). Two distributions,

the in-degree distribution of node p(kin) with kini =
∑

j aji and the out-degree

distribution of p(kout) with kouti =
∑

j aij should be taken into account in the case
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of directed networks.

2.4 Power-Law Degree Distribution

One of the degree distributions that has attracted the attention of the scientific

and even popular literature is the power-law degree distribution. The character-

istic of this distribution is that the probability of finding a node with degree k

decreases as a negative power of the degree. Its expression is p(k) ∼ k−γ meaning

that the probability of finding a high-degree node is relatively small compared

with the high probability of finding low-degree nodes. Networks showing this

form of degree distribution are known as “scale-free” networks, referring to the

existence of a power-law relation

p(k) ∼ Ak−γ,

between the probability density function and the node degree which, when scaling

the degree by a constant factor c, results in a proportionate scaling of the function,

i.e.

p(k, c) = A(ck)−γ = Ac−γp(k),

which is identical to p(k) except for a change of scale.

It is possible to represent power-law relations on a logarithmic scale, resem-

bling a straight line of the form

ln p(k) = −γ ln k + lnA,

where −γ is the slope and lnA is the intercept of the function. When p(k) vs k

in a log-log scale (Fig 2.4.2) is plotted, the tail of the distribution is frequently
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(a) (b)

(c) (d)

Figure 2.4.1: Some examples of degree distribution in networks. (a) Poisson
distribution. (b) Gaussian distribution. (c) Exponential distribution. (d) Power-
law distribution [36].

very noisy. The cumulative distribution function (CDF) approach, defined as

P (k) =
∞∑
k′=k

p(k′),

can be employed to reduce such noise, and represents the probability of choosing

a node with degree greater than, or equal to k at random.

For the case of power-law degree distributions P (k) also exhibits a power-law

decay of the form

P (k) ∼
∞∑
k=k′

k′−γ ∼ k−(γ−1),

this means that the log-log plot of P (k) vs k will be a straight line too for the

scale-free networks.
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(Probability) (Cumulative)

Figure 2.4.2: Probability and cumulative distribution functions of a network with
power-law degree distribution [36].

2.5 Continuous Distributions

We now consider some of the more important continuous probability distributions.

2.5.1 The Normal Distribution

The most widely known and used of all distributions is the normal distribution.

It is important insofar as a great many random variables of interest, in all areas of

the physical sciences and beyond, are described either exactly or approximately

by a Gaussian distribution. Furthermore, other, more complicated, probability

distributions can be approximated using the Gaussian distribution.

If X is normally distributed with a mean µ and standard deviation σ, we write

X ∼ N(µ, σ2), µ and σ being the parameters of the distribution. The probability

density of the Normal distribution is given by

f(x) =
1

σ
√

2π
exp[−(x− µ)2/2σ2], −∞ < x <∞.

The Normal distribution is symmetric about the point x = µ and is characterised

by the ‘bell’ shape shown in Figure 2.5.1. Changing µ and σ has the effect only
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Figure 2.5.1: The normal distribution for mean µ = 3 and different values of the
standard deviation σ.

of shifting the curve along the x-axis or broadening or narrowing it, respectively.

Thus a change of origin and scale can reduce all Gaussians to a standard form

of equivalence. We therefore consider the random variable Z = (X−µ)
σ

, for which

the probability density function takes the form

φ(z) =
1√
2π

exp(−z2/2),

termed the standard Gaussian distribution and has a mean µ = 0 and variance

σ2 = 1. The random variable Z is called the standard variable.

2.5.2 The Cauchy Distribution

The canonical example of a “pathological” distribution, as both its mean and its

variance are undefined, is the Cauchy distribution, often employed in statistics.

It does not have finite moments of an order greater than or equal to one; only

fractional absolute moments exist. The Cauchy distribution f(x; x0, γ) is the

distribution of the X-intercept of a ray issuing from (x0, γ) with a uniformly

distributed angle. It is significant in physics as the result of being the solution

to the differential equation describing forced resonance. In mathematics, it is
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closely related to the Poisson kernel, which is the fundamental solution for the

Laplace equation in the upper half-plane. In spectroscopy, it is the description of

the shape of spectral lines which are subject to homogeneous broadening where

all atoms interact in the same way with the frequency range contained in the line

shape. Homogeneous broadening, particularly collision broadening, is caused by

a number of mechanisms, and is one of the few distributions that is stable and

has a probability density function that can be expressed analytically, the others

being the normal distribution and the Lévy distribution.

The Cauchy distribution has the probability density function

f(x;x0, γ) =
1

πγ[1 + (x−x0
γ

)2]
=

1

πγ
[

γ2

(x− x0)2 + γ2
],

where x0 is the location parameter, specifying the location of the peak of the

distribution, and γ is the scale parameter which specifies the half-width at half

maximum (HWHM), alternatively 2γ is full width at half maximum (FWHM).

Also, γ is equal to half the interquartile range and is sometimes termed the

probable error. The special case is when x0 = 0 and γ = 1 and is called the

standard Cauchy distribution with the probability density function [109, 8]:

f(x; 0, 1) =
1

π(1 + x2)
.

2.6 Stable Distribution

Stable distributions are a rich class of distributions that include the Gaussian and

Cauchy distributions in a family that allows skewness and heavy tails. The class

was characterised by Paul Lévy [70] in his study of normalized sums of indepen-

dent identically distributed terms. The general stable distribution is described by

four parameters: an index of stability, a skewness parameter, a scale parameter

and a location parameter [90].

37



Stable distributions have been proposed as a model for many types of physical

and economic systems. There are several reasons for using a stable distribution

to describe a system. The first is where there are solid theoretical reasons for ex-

pecting a non-Gaussian stable model, e.g. reflection of a rotating mirror yielding

a Cauchy distribution, hitting times for a Brownian motion yielding a Levy dis-

tribution, the gravitational field of stars yielding the Holtsmark distribution. The

second reason is the Generalized Central Limit Theorem which states that the

only possible non-trivial limits of normalized sums of independent identically dis-

tributed terms are stable. It has been argued that many observed quantities are

the sum of many small terms – the price of a stock, the noise in a communication

system, etc. and hence a stable model should be used to describe such systems

[90]. The third argument for modelling with stable distributions is empirical:

many large data sets exhibit heavy tails and skewness. The strong empirical evi-

dence for these features combined with the Generalized Central Limit Theorem is

used by many to justify the use of stable models. There are examples in finance,

economics and communication systems where the data sets are poorly described

by a Gaussian model, but possibly can be described by a stable distribution [90].

The stable distribution can be most conveniently described by its characteristic

function as follows:

Definition 2.2. A random variable X is said to have a stable distribution if

there are parameters 0 < α ≤ 2, γ ≥ 0, −1 ≤ β ≤ 1, and δ ∈ R such that its

characteristic function has the following form [114]:

φ(z;α, β, γ, δ) = exp
[
−|γz|α

(
1 + iβ sign(z)ω(z, α)

)
+ iδz

]
, z ∈ R,

where

ω(z, α) =


− tan

πα

2
if α 6= 1,

2

π
ln |z| if α = 1.
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The parameter α is the index of stability and

sign(z) =


1 if z > 0,

0 if z = 0,

−1 if z < 0.

The parameters β, γ, and δ are unique (β is irrelevant when α = 2).

Thus, a stable characteristic function (or distribution) is completely deter-

mined by four parameters: α, β, γ, and δ, where [89]:

1. α is called the characteristic exponent. It is uniquely determined. The

characteristic exponent measure the thickness of the tails of the distribution.

2. β is a symmetry parameter. β = 0 implies that the distribution is symmetric

about δ. In this case, the distribution is called symmetric α-stable.

3. γ is a scale parameter, also called the dispersion. It is similar to the variance

of the Gaussian distribution and equals half the variance in that Gaussian

case (i.e., when α = 2).

4. δ is a location parameter. For symmetric stable distribution, it is the mean

when 1 < α ≤ 2 and median when 0 < α < 1.

The distribution function and density of the stable distribution with characteris-

tic function φ(z;α, β, γ, δ) are denoted by S(α, β, γ, δ) and f(ξ;α, β, γ, δ) respec-

tively, where

f(ξ;α, β, γ, δ) =
1

2π

∫ ∞
−∞

φ(z;α, β, γ, δ)eiξzdz.

In the applications in the latter sections we only interested in the case when

β = δ = 0, which yields the following simpler function

φ(z;α, 0, γ, 0) = exp(−|γz|α).
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As well, the parameters α and γ that will be used depends on the parameter s

in the Mellin transformation. We also used the scale parameter γ to specify the

full width at half maximum (FWHM).

There are two special cases where the density f can be computed explicitly:

when α = 2, we obtain a normal distribution with variance 2γ2, i.e.

f(ξ; 2, 0, γ, 0) =
1

2
√
π γ

exp
(
− ξ2

4γ2

)
;

when α = 1, we obtain a Cauchy distribution:

f(ξ; 1, 0, γ, 0) =
1

2π

∫ ∞
−∞

e−|γz|eiζzdz

=
1

2π
[

∫ 0

−∞
e−γzeiζzdz +

∫ ∞
0

eγzeiζzdz]

=
1

2π
(

1

γ + iζ
+

1

γ − iξ
)

=
1

π
· γ

γ2 + ξ2
.

When α < 2, Nolan [90] has shown that the tails of non-Gaussian stable dis-

tributions are asymptotically equivalent to a Pareto law. Specifically, if X is a

standardized stable random variable with characteristic exponent 0 < α < 2 and

skewness parameter −1 ≤ β ≤ 1, then as x→∞,

P (X > ζ) ∼ γαcα(1− β)ζ−α,

f(ζ/α, β, γ, δ; 0) ∼ αγαcα(1− β)ζ−(α+1),

where cα = Γ (α) sin(πα
2

)/π.

Thus, the density has a power-like decay:

f(ξ;α, 0, γ, 0) ∼ 1

π
Γ(α + 1) sin

(πα
2

)
γα · 1

ξα+1
as ξ → ±∞. (2.6.1)
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2.7 The central limit theorem (CLT)

The central limit theorem states that the sum of a number of independent and

identically distributed random variables with finite variances will tend to a nor-

mal distribution as the number of variables grows. More precisely, let Xi, i =

1, 2, . . . , n, be independent random variables, each of which is described by a

probability density function fi(x) with a mean µi and a variance σ2
i . The random

variable X̄ =
(
∑
iXi)

n
, i.e. the ‘mean’ of the Xi, has the following properties:

1. its expectation value is given by E[X̄] = (
∑

i µi)/n;

2. variance is given by V [X̄] = (
∑

i σ
2
i )/n

2;

3. as n −→ ∞ the probability function of X̄ tends to a Gaussian with corre-

sponding mean and variance.

We note that for the theorem to hold, the probability density functions fi(x)

must possess formal means and variances. Thus, for example, if any of the Xi

were described by a Cauchy distribution then the theorem would not apply.

2.8 The mean square displacement (MSD)

Although it was Jan Ingenhousz who made the first known documented observa-

tions of fluctuating movements of carbon dust particles in alcohol in 1765, Robert

Brown is credited with the discovery of Brownian motion due to his observations

of pollen in water in 1827. Also because the previous description by Ingenhousz

was not well known, the chaotic movement was for a long time considered to be

a property of living or at least organic matter. Brownian motion is stochastic

movement of small particles suspended in a solution. The molecules (for exam-

ple water molecules) constituting the fluid constantly hit the immersed objects

which results in chaotic and non-directed movements. These movements can be

measured by the mean square displacement <| x |2> and the lag time: 4t , and
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are characterised by the diffusion coefficient D which is a measure of the speed

of diffusion [102].

The mean square displacement (MSD) of a set of N displacements xn is given

by

<| x |2>=
1

N

N∑
k=1

| xk |2 .

It occurs particularly in Brownian motion and random walk problems.

2.9 Shortest paths

A shortest path, also called a geodesic path, is a minimum path distance between

two vertices. Shortest paths fulfil a significant role in transport and communica-

tion within a network. If it is necessary to send a data packet from one computer

to another through the Internet, the geodesic path provides an optimal path way,

resulting in a fast transfer and saving system resources [98]. The average shortest

path length, also known as characteristic path length, defined as the mean of

geodesic lengths over all pairs of nodes [97, 133] provides a measurement of the

typical separation between two nodes in the graph, thus:

l =
1

n(n− 1)

∑
i,j∈V,i 6=j

dij,

where n is the number of nodes and dij is the shortest distance between nodes i

and j. We denote a shortest-path of length l between vi and vj as P (vi, vj). The

nodes vi and vj are called the endpoints of the path.

In a real network like the World Wide Web (WWW), the quick transfer of

information and reduced costs are facilitated by a short average path length.

Studying average path length is a way of evaluating the efficiency of mass transfer

in a metabolic network. Fewer losses will occur in a power grid network if its

average path length is minimised. For reasons such as this, shortest paths have
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also fulfilled an important role in the characterisation of the internal structure

of a graph [133, 134]. In the case of an undirected network, the shortest path

lengths can be represented in a square symmetric matrix D in which the entry

duv is the length of the geodesic from node u to node v. Where directed networks

are concerned, D is not necessarily symmetric and it may contain entries equal

to infinity [36].

Definition 2.3. The maximum graph distance between u and any other vertex

v of the network is called the eccentricity and is defined as

e(u) = max
v∈V (G)

{d(u, v)}.

Definition 2.4. The maximum value of duv (the maximum eccentricity) is called

the diameter of the network, and is defined as

dmax = max
u,v∈V (G)

{d(u, v)}.

Definition 2.5. The minimum graph eccentricity is called the graph radius.

Definition 2.6. A node is called central if its eccentricity is equal to the radius

of the network, and the centre of the graph is constituted by the set of all central

nodes.

Definition 2.7. The sum of all entries of a row (column) of the distance matrix

D is referred to as the distance sum of the correspondent node, and is defined as

D =
∑

v∈V (G)

d(u, v). (2.9.1)

It is also known as the total distance or status of the node.
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2.10 Laplacian matrix of a network

It is possible that the first recognisable appearance of the Laplacian matrix is in

what has become known as Kirchhoff’s matrix tree theorem, referred to variously

as Kirchhoff matrix, matrix of admittance, information matrix, Zimm matrix,

Rouse-Zimm matrix, connectivity matrix and vertex-vertex incidence matrix, de-

pending on the field of application [77]. It is also possible that the origins of the

justification of the name ‘Laplacian’ comes from a study of vibrations of mem-

branes concerned with the question of whether one could “hear the shape of a

drum” posed by Mark Kac in 1966 [77, 59]. This matrix is important for the

study of networks because of the application of its spectral properties to tackle

problems such as clustering, pattern recognition, consensus algorithms, synchro-

nisation, information theory, or expanders, among others [35].

Definition 2.8. The matrix L whose entries are defined as follows:

L(i, j) =


ki if i = j,

−1 if i and j are adjacent,

0 otherwise,

(2.10.1)

where ki are the degrees of the vertices, is called the Laplacian matrix of the

network.

If K is the diagonal matrix whose entries are the degrees of the vertices of the

network, i.e.

K(i, j) =


ki if i = j,

0 otherwise.

(2.10.2)

Then, The graph Laplacian can also be written in terms of the adjacency matrix

by taking into account (2.10.1) as
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L = K − A, (2.10.3)

being A the adjacency matrix of the graph G and K the degree matrix of the

same graph.

2.10.1 The Normalised Laplacian

The normalised Laplacian may have a different form depending on the normal-

isation factor chosen. Here are examples of two different normalised Laplacian

matrices.

• The normalised Laplacian denoted by L whose entries are given by:

L(i, j) =


1 if i = j and di 6= 0,

− 1√
didj

if i and j are adjacent,

0 otherwise.

(2.10.4)

• The normalised Laplacian denoted ∆ whose entries are given by:

∆(i, j) =


1 if i = j and di 6= 0,

− 1

dj
if i and j are adjacent,

0 otherwise.

(2.10.5)

The relationship between the normalised Laplacian L, the degree matrix K and

the Laplacian L is given by:

L = K−1/2LK−1/2, (2.10.6)

= I −K−1/2AK−1/2, (2.10.7)
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where I is the identity matrix and the matrix K−1/2 is such that K−1/2 = 1√
di
.

We also have a similar relationship involving the normalised Laplacian ∆

∆ = K−1/2LK−1/2. (2.10.8)

There are interesting properties of the Laplacian matrix of a network can be

found in [36].

2.11 Spectral analysis of networks

The study of spectral properties of adjacency matrices represents an entire or

research in algebraic theory. The study of spectral properties of matrices rep-

resenting graphs that we know as spectral graph theory [78] has evolved. This

branch of graph theory focuses on the study of the eigenvalues associated with

the matrix representation of graphs. With reference to the Laplacian matrix,

important properties for dynamical problems in networks [35] can be shown in

its spectrum and eigenvalues.

The spectrum of a network is the set of the eigenvalues of its adjacency matrix

A and their multiplicities. Suppose there are p distinct eigenvalues;

µ1(A) > µ2(A) > . . . > µn(A),

and let

m(µ1(A)),m(µ2(A)), . . . ,m(µp(A)),

be their multiplicities, i.e., the number of times each of them appears as an

eigenvalue of A. Then, the spectrum of A is written as

Sp(A) = {µ1(A)m(µ1(A)), . . . , µp(A)m(µp(A))}. (2.11.1)
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The eigenvalues of the adjacency matrix A are the zeros of the characteristic

polynomial of the network, det(µI −A), and the numbers µ satisfy the equation

Au = µ(A)u, (2.11.2)

where each non-zero vector u is called an eigenvector of A. The adjacency matrix

A is real and symmetric, in the case of simple undirected networks, therefore its

eigenvalues µ1(A) ≥ µ2(A) ≥ . . . ≥ µn(A) are real and the associate eigenvectors

are orthogonal. The largest eigenvalue of the adjacency matrix A is called the

index of the network or its spectral radius denoted by ρ(A). Here are some spectra

of some particular networks [36]:

1. Path, Pn : µj(A) = 2cos(πj/n+ 1), j = 1, . . . n.

2. Cycle, Cn : µj(A) = 2cos(2πj/n), j = 1, . . . n.

3. Star, Sn : Sp(A) = {
√
n, 0n−2,−

√
n}.

4. Complete, Kn : Sp(A) = {(n− 1)1, −1n−1}.

5. Complete bipartite, Kn1,n2 : Sp(A) = {−√n1n2, 0n1+n2−2,
√
n1n2}.

In accordance with the Perron-Frobenius Theorem [40], if µ1(A) is the index of a

connected undirected network, then it has multiplicity equal to one. Its associate

eigenvector, called the principal eigenvector, is positive. Let k̄, kmin and kmax be

the range, minimum, and maximum degree, respectively, in a network. Then, the

index of the network is bounded as follow:

kmin < k̄ < µ1(A) < kmax.

The latter holds only if the network is regular. The index of any network satisfies
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the following inequality:

2 cos
π

n+ 1
≤ µ1(A) ≤ n− 1, (2.11.3)

where the lower bound is obtained for the path Pn and the upper one is obtained

for the complete network Kn [36].

Similar to the network spectrum based on the adjacency matrix, the spectrum

of the Laplacian matrix is given by:

Sp(L) =

 µ1(L) µ2(L) . . . µn(L)

m(µ1(L)) m(µ2(L)) . . . m(µn(L))

 , (2.11.4)

where the eigenvalues of L are such that:

µ1(L) ≤ µ2(L) ≤ . . . ≤ µn(L). (2.11.5)

The eigenvalues of the Laplacian matrix L are bounded as

0 ≤ µj(L) ≤ 2kmax, (2.11.6)

and

µn(L) ≥ kmax. (2.11.7)

The multiplicity of 0 as an eigenvalue of L is equal to the number of connected

components in a network and the second smallest eigenvalue, µ2(L), is commonly

referred to as the algebraic connectivity of the network [23].

On the other hand, the normalised Laplacian matrix L is also positive semi-

definite having eigenvalues

0 = µ1(L) ≤ µ2(L) ≤ . . . ≤ µn(L),
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which are bounded [23] as

0 ≤ µj(L) ≤ 2, (2.11.8)

and

µn(L) ≥ n

n− 1
. (2.11.9)

More on the spectrum of the normalised Laplacian L can be found in [41, 36].

The spectra of matrices A, L and L are related by the following inequalities [36]:

kmax − µn(A) ≤ µn(L) ≤ kmax − µ1(A), (2.11.10)

and

µj(L)kmin ≤ µj(L) ≤ µj(L)kmax. (2.11.11)

Some expressions for the spectra of different kinds of simple graphs are:

1. Path, Pn : µj(L) = 2− 2cos(π(j − 1)/n), j = 1, . . . n.

2. Cycle, Cn : µj(L) = 2− 2cos(2πj/n), j = 1, . . . n.

3. Star, Sn : Sp(L) = {0, 1n−2, n}.

4. Complete, Kn : Sp(L) = {0, nn−1}.

5. Complete (bipartite), Kn1,n2 : Sp(L) = {0, nn2−1
1 , nn1−1

2 }.

Analysing the eigenvectors associated to the eigenvalues of L is also part of spec-

tral graph theory. If we let Λ be a diagonal matrix of eigenvalues of the Laplacian

matrix ordered as in the expression (2.11.5), then [36]

Λ = diag(µ1(L), µ2(L), . . . , µn(L)),

and let Φ be a matrix whose columns are orthonormal eigenvectors Φ1,Φ2, . . . ,Φn.
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Then the spectral decomposition of the Laplacian matrix is give by:

L = ΦΛΦT .

The eigenvector of L associated with the 0 eigenvalue in a connected network

is φ1(L) = 1√
n
1, and if 0 6= µ < n is an eigenvalue of the Laplacian, then the

eigenvector associated with µ takes the value 0 on every node of degree n − 1

[36]. The eigenvectors of the Laplacian contain useful information related to

the structure of a network. The spectrum of this important matrix leads to the

concept of algebraic connectivity of a network which is assigned to the eigenvalue

µn−1 , and the eigenvector associated with this value has an important property.

2.12 Summary

In this chapter, an introduction has been given to network theory at the level of

providing the basic tools for reasoning about and analysing networked systems

as they appear in this thesis. Specifically, an overview of the basic structures in

network theory has been supplied, for example, definitions and types of networks.

The structural properties of networks were then investigated. Moreover, some

of the more important continuous probability distributions, for example, Normal

and Cauchy distributions were considered. We then explored connections between

graphs and their algebraic representation in terms of adjacency and Laplacian

matrices, as well as the spectrum of the Laplacian graph and adjacency matrix.
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Chapter 3

Dynamical Systems on Networks

3.1 Introduction

A system whose state, which is shown as a set of quantitative variables, changes

over time in accordance with certain rules or equations, [86] is known as a dy-

namical system. Examples of dynamical systems are communication networks,

and vehicles such as aircraft, spacecraft, motorcycles, or cars. Machines, robots,

chemical plants, electrical circuits, even structures like bridges (think of a struc-

ture subject to strong winds or an earthquake) also qualify as dynamical systems.

Apart from engineering systems, the concept of dynamical systems is applicable

to plants, groups of animals, human beings or the economy a country or coun-

tries. Dynamical processes are the interactions among the parts that a network

is comprised and can be considered on a continuous or discrete time basis.

A review of notions relating to dynamical systems is necessary at this juncture,

since at a later point in this thesis dynamical processes on complex networks will

be dealt with. Not everything in this field is going to be covered, but certain

simple concepts related to this thesis in some way will be presented. There is

an abundance of literature on the topic of dynamical systems – this chapter will

merely scratch the surface.
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3.2 Random walks and Lévy flights

In stochastic optimization, random walks comprise a significant part of the search

process. However, the actual algorithm of interest may determine the exact form.

Here the main concepts of random walks and Lévy flights, and their role in

stochastic search are discussed.

3.2.1 Random Walks

A random walk is a random process consisting of taking a series of consecutive

random steps [139]. Let SN denote the sum of each consecutive random step Xi,

then SN forms a random walk.

SN =
N∑
i=1

Xi = X1 +X2 + . . .+XN =
N−1∑
i=1

Xi +XN = SN−1 +XN ,

where Xi is a random step drawn from a random distribution. This relationship

can also be considered a recursive formula. That is, the next state SN will only

depend on the current existing state SN−1 and the motion or transition XN from

the existing state to the next state, which typically constitutes the main property

of a Markov chain. Here, the step size or length in a random walk can be fixed

or it can vary.

A random walk is a stochastic process in which particles or waves travel along

random trajectories. The first application of a random walk was in the description

of particle motion in a fluid (Brownian motion). Now it is a central concept in

statistical physics, describing transport phenomena such as heat, sound and light

diffusion, as well as in many applications, such as economics, computer sciences,

environmental science and engineering.

Mathematically speaking, a random walk is represented in the following equa-

tion;

St+1 = St + wt,
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where St is the current location or state at t , and wt is a step or random variable

with a known distribution. If each step or jump is carried out in the d-dimensional

space, the random walk SN discussed earlier evolves into a random walk in higher

dimensions. Additionally, there is no reason why each step length should be

fixed. Essentially, the step size can also vary according to a known distribution.

If the step length obeys the Gaussian distribution, the random walk becomes the

Brownian motion or a diffusion process.

In theory, as the number of stepsN increases, the central limit theorem implies

that the random walk should approach a Gaussian distribution. As the mean of

particle locations is zero, their variance will increase linearly with t. In general, in

the d-dimensional space, the variance of Brownian random walks can be written

as;

σ2(t) =| v0 |2 t2 + (2dD)t, (3.2.1)

where v0 is the drift velocity of the system. Here D = s2/(2τ) is the effective

diffusion coefficient, related to the step length s over a short time interval τ during

each jump.

Therefore, the Brownian motion B(t) essentially obeys a Gaussian distribution

with zero mean and time-dependent variance. That is, B(t) ∼ N(0, σ2(t)) where

∼ means that the random variance obeys the distribution on the right-hand side;

that is, samples should be drawn from the distribution. A diffusion process can

be viewed as a series of Brownian motions, obeying the Gaussian distribution.

For this reason, standard diffusion is often referred to as Gaussian diffusion. If

the motion at each step is not Gaussian, then the diffusion is called non-Gaussian

diffusion.

If the step lengths obey other distributions, we have to deal with more gener-

alised random walks. In particular, when step lengths obey the Lévy distribution,

such a random walk is termed a Lévy flight or a Lévy walk.
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3.2.2 Lévy flights

Lévy flights are Markovian stochastic processes whose individual jumps have

lengths that are distributed with a probability density function (PDF) p(x) de-

caying at large x as

p(x) ∼| x |−1−α,

with 0 < α ≤ 2 . Due to their divergent variance, < x2(t) >−→ ∞, rather long

jumps may occur, and typical trajectories are self-similar, on all scales, charac-

terised by clusters of shorter jumps interspersed with long excursions. Similar

to the emergence of the Gaussian as a limit distribution of independent identi-

cally distributed (iid) random variables with finite variance due to the central

limit theorem, Lévy stable distributions represent the limit distributions of (iid)

random variables with diverging variance. In that sense, the limiting case of the

basin of attraction of the so-called generalised central limit theorem for α = 2

[64] is represented by the Gaussian distibution.

Mathematically speaking, a definition of Lévy distribution should be rendered

in terms of the following Fourier transform:

F(k) = exp(−β | k |α), 0 < α ≤ 2, (3.2.2)

where β is a scale parameter. The inverse of this integral is not easy, as it

does not have analytical form, except for a few special cases. The special case

α = 2 corresponds to a Gaussian distribution, while α = 1 leads to a Cauchy

distribution. For the general case, the inverse integral

p(x) =
1

π

∫ ∞
0

cos(kx) exp(−β | k |α)dk, (3.2.3)
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Figure 3.2.1: Comparison of the trajectories of a Gaussian (left) and a Lévy
(right) processes, the latter with index α = 1.5.

can be estimated only when x is large. We have

p(x) ∼ αβΓ(α) sin(πα/2)

π | x |1+α
, x −→∞. (3.2.4)

Here Γ(z) is the Gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt. (3.2.5)

If z = n is an integer, we have Γ(n) = (n− 1)!.

Lévy flights demonstrate greater efficiency than Brownian random walks when

unknown, large-scale search space is being investigated. Such efficiency can be

explained in many ways: one of them being the fact that there is a much more

rapid increase in the variance of Lévy flights than in the linear relationship (i.e.,

σ2(t) ∼ t) of Brownian random walks.

σ2(t) ∼ t3−α, 1 ≤ α ≤ 2, (3.2.6)

A significant point worth mentioning relates to the link between a power-law

distribution and some scale-free characteristics. In this way self-similarity and

fractal behaviour can be observed in Lévy flight patterns.
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3.3 Dynamical Systems

A dynamical system can be defined as a triple S = (T,W,V), where T is a subset

of R, i.e. the time axis, W is a set known as the signal space, and V is a subset

of WT called the behaviour1 [100]. The set T states the set of times instances

relating to our problem, and usually equals R or R+ in continuous-time systems,

and Z or Z+ in discrete-time systems. The set W defines the formalisation of the

outcomes of the signals produced by the dynamical system as elements of a set,

that is, these outcomes are the variables whose evolution in time is being described

[100]. Behaviour V is a family of time trajectories that take their values in the

signal space, that is to say, the elements of V are the trajectories compatible with

the laws that govern the system. In most models equations are used to describe

the behaviour, and then those elements satisfying a set of equations which often

take the form of differential equations for continuous-time models, and difference

equations for discrete-time models, form this set.

There are two types of dynamical systems, continuous and discrete-time ones

and they can be either deterministic or stochastic.

3.3.1 Continuous dynamical systems

A continuous dynamical system described by a single real variable y(t) that

evolves according to a first-order differential equation is

y′(t) = f(y(t)); y(0) = y0, (3.3.1)

where f(y(t)) is some specified function of y(t). Frequently, there is an initial

condition that specifies the value of variable y at some initial time t0, and is

expressed as y0. A deterministic dynamical system is one in which the equations

that describe the evolution of time are continuous functions.
1WT is standard mathematical notation for the collection of maps from T to W [100].
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3.3.2 Discrete dynamical systems

The concept of discreteness is directly related to the concept of discrete time,

i.e. we suppose that we measure time in discrete units, which might be hours,

seconds, years, centuries or any other period of time of which, once fixed, only

integer multiples may be considered. We represent the state of a system at time

t = 0 by y(0) and the state of the system at the k-th time step as y(k). A discrete

dynamical system is a system in which the state at any time depends only on the

state a the time before [94], then discrete dynamical systems are specified by the

equations:

y(t+ 1) = f(y(t)); y(0) = y0. (3.3.2)

The dynamic system (3.3.2) is often called a difference equation. It follows that

y(t) = fn(y0), where fn = f ◦ f ◦ f . . . ◦ f is the k-fold application of f to y0.

3.4 Stochastic process

Definition 3.1. A stochastic process is a family of random variables denoted as

{X(t), t ≥ 0}, where t is a parameter running over a suitable index set T .

Stochastic processes for which T = [0,∞) are particularly important for ap-

plications. There are two particularly important types of processes, Poisson pro-

cesses and Markov processes.

Definition 3.2. A Poisson process with parameter or rate λ > 0 is an integer-

valued, continuous time stochastic process {X(t), t ≥ 0} satisfying

• X(0) = 0.

• For all t0 = 0 < t1 < t2 < . . . < tn, the increments X(t1)−X(t0), X(t2)−

X(t1), . . . , X(tn)−X(tn−1) are independent random variables.

• For t ≥ 0, s > 0 and non-negative integers k, the increments have a Poisson
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distribution

P(X (t+ s)−X(s) = k) =
(λt)ke−λt

k!
.

Definition 3.3. A Markov process {X(t), t ∈ T}, is a stochastic process with

the property that, given the value of X(t), the values of X(s), s ∈ T and s > t

are not influenced by values of X(u) with u ∈ T and u < t. If the sample space

is discrete, the Markov process is called Markov chain.

3.5 Dynamical processes on networks

It is possible to represent a number of real world phenomena as dynamical sys-

tems on networks. Examples would be the spread of information among a group

of people, the movement of money in a country’s economy, traffic on the roads,

the flow of electricity over the grid, the evolution of population in an ecosystem,

among other situations [86]. A considerable amount of attention has been given

recently to the study of dynamical processes on networks due to the fact that

many physical and engineering systems can be represented as networks of inter-

acting entities [9, 36]. A ubiquitous physical process in most complex systems

is diffusion. It is a fundamental process in any living organism, ranging from

the transport of biomolecules to cell membranes to the specific interactions of

proteins with DNA [108, 107, 11, 101, 65], in many social phenomena [111, 127],

as well as in man-made systems [92].

Two principal approaches are utilised when dealing with dynamical processes

on networks [9]. The first approach includes the identification of each node of

the network with a single individual or element of the system, and in the second

approach, we consider dynamical entities such as people, information packets,

energy or matter flowing through a network whose nodes identify locations where

the dynamical entities transit. In both approaches, the dynamical description

of the system can be achieved by introducing a corresponding variable xi that
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characterises the dynamical state for each node i. Then, if each node represents

a single individual, the variable xi may describe a particular attribute of the

individual.

In the case of dynamical entities moving in a network, the state variable

xi generally depends on the entities present at that node. All possible states

xi = 1, 2, . . . , k can be enumerated for each node and the knowledge of the state

variable of all nodes in the network defines the (microscopic) state of the sys-

tem [9]. Thus, a particular configuration of the network at time t by the set

x(t) = (x1(t), (x2(t), . . . , (xn(t)) can be denoted, where n representing the num-

ber of nodes in the network. When referring to dynamics on networks, having

independent dynamical variables on each node is commonly considered, coupled

together along the edges of the network, that is, when writing an equation for

the time evolution of a variable xi the individual terms appearing in that equa-

tion involve xi, other variables on vertex i, or one or more variables on a vertex

adjacent to i in the network [86]. In real systems, adding the dimension of dy-

namics to the characterisation of networks facilitates a better comprehension of

the systems being analysed through considering the interplay between structural

and dynamical aspects [15].

3.6 A simple dynamical system on a network

If we assume that we have independent dynamical variables xi, yi, . . . , on each

vertex i and that they are coupled together only along the edges of the network,

equations describing the time evolution of the variables will involve only the vari-

ables themselves and other variables on vertex i or more variables on neighbours

of vertex i. No term involving variables on non-nearest neighbours exists. Sim-

ilarly, there is no term involving more than one adjacent vertex. For instance,

let us consider the dynamic describing the time evolution of the probability of
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infection of a vertex in a network of the type (continuous version):

dxi
dt

= β(1− xi)
∑
j

Aijxi. (3.6.1)

The dynamic described by this equation only involves pairs of variables that are

connected by edges since these are the only pairs for which Aij is non-zero. In

general, for systems with a single variable on each vertex we have the equation

[86]:
dxi
dt

= fi(xi) +
∑
j

Aijgij(xi, xj), (3.6.2)

where the first term only involves variables on vertices and the second term in-

volves variables on adjacent vertices. The function fi describes how vertex i will

evolve independently without the other vertices and gij describes only the contri-

bution from the nearest connections themselves. The function gij also represents

the coupling between variables on different vertices that are directly connected

by an edge. The dynamic of each vertex is often the same and we can simply

write,
dxi
dt

= f(xi) +
∑
j

Aijg(xi, xj). (3.6.3)

We also assume that the network is undirected such that if xi is affected by xj

then xj is similarly affected by xi.

3.7 The Diffusion Process

In this section an example illustrating dynamical processes on a network is pre-

sented. In addition to the diffusion process, there are a number of other processes

that can evolve on a network, such as consensus [9], epidemic spreading [9], or

synchronisation [9]. We simply consider here the case of the diffusion process

[86].

The process by which gas moves from regions of high density to regions of
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low density is known as diffusion, and is driven by the radiative pressure or

partial pressure of the different regions. We can consider on the other hand

diffusion processes on networks and some times those processes are convenient

simple models of spread across a network, such as the spread of an idea, or

the spread of disease or any kind of information. Suppose we have some kind of

substance on the vertices of a network and let ωi be the amount of that substance

on vertex i. Let us suppose that the substance moves along the edges, flowing

from one vertex j to an adjacent vertex i at a rate C(ωj − ωi) where C is a

constant called the diffusion constant, i.e., in a short span of time the amount

of fluid flowing from j to i is C(ωj − ωi)dt. The evolution equation of ωi on the

network is given by:
dωi
dt

= C
∑
j

Aij(ωj − ωi). (3.7.1)

The adjacency matrix in this expression ensures that the only terms appearing in

the sum are those that correspond to vertex pairs that are actually connected by

an edge. In the case of an undirected network we can write the equation (3.7.1)

as follows:

dωi
dt

= C
∑
j

Aijωj − Cωi
∑
j

Aij

= C
∑
j

Aijωj − Cωiki

= C
∑
j

(Aij − δijki)ωj, (3.7.2)

where ki is the degree of vertex i and δij is the Kronecker symbol. In matrix

notation we have
dω

dt
= C(A−K)ω, (3.7.3)

where A is the adjacency matrix of the network and K is the matrix with the

vertex degrees along its diagonal and ω is a vector whose components are ωi . By
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the definition of the Laplacian of the previous chapter, equation (3.7.3) can be

written as
dω

dt
= −CLω, (3.7.4)

where L = K − A. This equation has the same form as the ordinary diffusion

equation for a gas where the the Laplacian operator ∇2 has been replaced by the

Laplacian matrix L which also occurs in many places such as random walks on

networks, resistor networks, graph partitioning and network connectivity.

The Solution Equation (3.7.4) can be solved by writing the unknown vector

ω as a linear combination of the eigenvectors of the Laplacian matrix L. That is,

ω(t) =
∑
i

αiui. (3.7.5)

Putting together equations (3.7.3) and (3.7.5) we have the following:

∑
i

(
dαi
dt

+ Cλiαi)ui = 0. (3.7.6)

Multiplying both sides of equation (3.7.5) by uj and taking into account that

eigenvectors of the Laplacian matrix are orthogonal we get

dαi
dt

+ Cλiαi = 0, ∀i, (3.7.7)

which has the solution

αi(t) = αi(0)eCλit, (3.7.8)

thus the solution to equation (3.7.3) is

ω(t) =
∑
i

αi(0)eCλitui. (3.7.9)
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3.8 Anomalous diffusive processes

Anomalous diffusion is a diffusion process with a non-linear relationship to time,

in which the mean squared displacement (MSD),

<| r |2 (t) >∼ tα.

Unlike typical diffusion, anomalous diffusion occurs when α 6= 1. In this case, the

Central Limit Theorem no longer applies and the variance grows slower or faster

than linearly in time. If α < 1, the kind of diffusion is known as sub-diffusion, and

the probability distribution is non-Gaussian. If α > 1, the diffusion is known as

superdiffusion. Motions with α = 2 are also known as ballistic, which commonly

have constant velocity, like particles from a bomb, rather than diffusive, like dye

spreading [43].

The distinction between normal and anomalous diffusion can be understood by

examining the rate at which velocity correlation decrease to zero. If the velocity

correlation decreases rapidly, normal diffusion occurs. However, anomalous diffu-

sion results from processes in which particles move coherently for long times with

infrequent changes of direction. Generally speaking, this distinction is quantified

by the tail behaviour of the velocity autocorrelation function. For example, if the

correlation function decays exponentially, there is normal diffusion, whereas if the

correlation function decays algebraically then anomalous diffusion is possible.

Modelling anomalous diffusion in the presence or absence of an external veloc-

ity or force field occur in a variety of ways, including fractional Brownian motion

dating back to Benoît Mandelbrot, generalised diffusion equations, continuous

time random walk models, Langevin equations, generalised Langevin equations,

generalised master equations and generalised thermostatistics [79].

Over the last twenty years an impressive collection of literature has indicated

that anomalous diffusion models exist. For example, anomalous diffusion is fre-
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quently observed in materials with memory, for example, viscoelastic materials,

and heterogeneous media, such as soil, heterogeneous aquifers, and underground

fluid flow. At a microscopic level, the subdiffusion process can be described by

a continuous time random walk, where the waiting time of particle jumps fol-

lows some heavy tailed distribution, whereas the superdiffusion process can be

described by Lévy flights or Lévy walk, where the length of particle jumps follows

some heavy tailed distribution, reflecting the long-range interactions among par-

ticles. If the aforementioned micro-macro correspondence is followed, the macro-

scopic counterpart of a continuous time random walk is a differential equation

with a fractional derivative in time, and that for a Lévy flight is a differential

equation with a fractional derivative in space [55].

3.9 The fractional diffusion equation (FDE)

The branch of mathematical analysis that deals with pseudo-differential opera-

tors that extend the standard notions of integrals and derivatives to any positive

non-integer order is known as fractional calculus. In recent years the theory

of fractional derivatives and integrals called fractional calculus has steadily in-

creased in importance for diverse applications in various scientific and techno-

logical fields. Examples of these are a variety of many other physical processes

[69, 99] such as thermal engineering, acoustics, electromagnetism, control systems,

robotics, visco-elasticity, diffusion, edge detection, turbulence, and signal process-

ing. Fractional differential equations FDEs have also been applied in modelling

many physical engineering problems, as well as in fractional differential equations

in non-linear dynamics [69]. Fractional derivatives and integrals of order α > 0

are defined differently: Riemann-Liouville, Caputo, Grünwald-Letnikov, Weyl,

Marchaud and Riesz [69, 99] because fractional operators take different kernel

representations in different function spaces as a consequence of the non-local
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character of fractional kernels [82]. In general, the Riemann–Liouville and the

Caputo fractional operators [99] are two of the widely-used fractional operators.

Both concern the so-called Riemann-Liouville fractional integral defined for any

order α > 0. The two definitions differ by reason of the order of evaluation.

However, the free motion of the particle was modelled by the classical diffusion

equation
∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
, x ∈ R, t > 0, (3.9.1)

where u(x, t) represents the probability density function of finding a particle at

the point x in the time instant t. Here D is a positive constant depending on the

temperature, the friction coefficient, the universal gas constant and finally on the

Avogadro number.

Assuming the external outside force acting towards the origin x = 0 and being

proportional to the distance of the particle from the origin, equation (3.9.1) should

be augmented by a drift term:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
− ∂

∂x
(F (x)u(x, t)), (3.9.2)

where F (x) is the external force. Therefore, equation (3.9.2) can be interpreted

as modelling the diffusion of a particle under the action of the external outside

force F (x).

Therefore, the fractional diffusion in time under external force, equation (3.9.2)

becomes

∂αu(x, t)

∂tα
= D

∂2u(x, t)

∂x2
− ∂

∂x
(F (x)u(x, t)), 0 < α ≤ 1, D > 0, (3.9.3)

where ∂α

∂tα are the Riemann-Liouville or Caputo derivatives of order a [103].

Definition 3.4. A real function f(x), x > 0, is said to be in the space Cα, α ∈ R

if there exists a real number p(> α) such that f(x) = xpf1(x), where f1(x) ∈
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C[0,∞), and it is said to be in the space Cn
α if f (n) ∈ Cα, n ∈ N.

Definition 3.5. The standard diffusion equation for the field u(x, t) with initial

condition u(x, 0+ = u0(x) is

∂u

∂t
= K1

∂2u

∂x2
, −∞ < x <∞, t ≥ 0,

where K1 is a suitable diffusion coefficient of dimensions.

Definition 3.6. Riemann-Liouville fractional integration of order α is defined as

Iαf(t) =
1

Γ(α)

∫ x

0

(t− τ)α−1f(τ)dτ, α > 0, τ > 0. (3.9.4)

where Γ is the Gamma function defined in (3.2.5).

Definition 3.7. The fractional derivative of order α > 0 in the Riemann-Liouville

sense Dα
t is defined as

Dαf(t) =



dn

dtn
[ 1
Γ(n−α)

∫ t
α
(t− τ)n−α−1f(τ)dτ n− 1 < α < n ∈ N,

dn

dtn
f(t) α = n ∈ N.

Definition 3.8. the fractional derivative of order α > 0 in the Caputo sense ∗Dα
t

is defined as

∗D
αf(t) =



1
Γ(n−α)

∫ t
α
(t− τ)n−α−1f (n)(τ)dτ n− 1 < α < n ∈ N,

dn

dtn
f(t) α = n ∈ N.
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One of the main advantages of the Caputo fractional derivative is that initial

conditions are expressed in terms of initial values of integer order derivatives.

As a consequence, the Caputo fractional derivative appears more suitable to be

treated by the Laplace transform technique in that it requires the knowledge of

the initial values of the function and of its integer order derivatives [24].

There are two distinct classes of partial differential equations that have a

mixed character, i.e. that can be modelled both in continuous time as well as in

discrete space

Dtv(n, t) = (−L)αv(n, t), t > 0, n ∈ Z, (3.9.5)

and

D
1/α
t u(n, t) = (−L)u(n, t), t > 0, n ∈ Z, (3.9.6)

where Dt denotes the continuous derivative in the variable t and D1/α
t denotes the

fractional derivative of order 1/α in the sense of Liouville (left-sided) and (−L)

denotes the fractional powers of order α of the unidimensional discrete Laplacian,

introduced in [25]. For β := 1
α
> 1, Eq. 3.9.6 describes superdiffusive phenomena

in time. It models anomalous superdiffusion in which a particle cloud spreads

faster than the classical diffusion model predicts. The connection between order

in time and space for partial differential equations is a surprising phenomena

that seems not to be addressed for the discrete fractional Laplacian [24]. it was

proved that {etL}t≥0 is a positive Markovian diffusion semigroup [25]. Moreover,

for each ϕ ∈ `∞(Z) the function u(n, t) = etLϕ(n) is a solution of the discrete

heat equation, that is (3.9.5) with α = 1.

3.10 Summary

The aim of this chapter was to briefly cover the dynamics on networks. We started

by defining some basic concepts from graph theory which will be used through
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this work. We have briefly defined what a dynamical system is, and we have

showed some examples of the possible dynamics that can modelled on a network,

such as normal and anomalous diffusion processes. Moreover, we provided some

basic analysis and observations about random walks and Lévy flights. Finally we

have considered the fractional differential equations and the two most commonly

used definitions: the Riemann-Liouville and Caputo derivatives. All the theory

presented can be studied more deeply by going into the references provided.
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Chapter 4

The k-path Laplacian operators

4.1 Introduction

The introduction of the k-path LOs potentially helps with more precise studies

of the structures of a network’s dynamics corresponding to different applications.

However, there also need for study of the main properties of the k-path LOs, as

greater understanding of the properties of these operators can lead to advances

in algebraic graph theory.

The main goal of the present chapter is to investigate different aspects of

the k-path LOs, which, through their generalisation, can help study undirected,

simple, connected and infinite but locally finite networks. This chapter describes

adjoints, and studies domains of essential self-adjointness for a class of differential

operators on undirected graphs. We intend to characterise the infinite networks

for which the operator Lk still generates a strongly continuous operator semigroup

or even an analytic semigroup, in order to investigate diffusion models (also dis-

cussed in the following chapter). Our task is to specifically tackle when the k-path

Laplacian Lk is self-adjoint on an infinite graph and when it is bounded. Fur-

thermore, the transformed k-path Laplacian operators using Laplace, Factorial

and Mellin transforms will also be studied.
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4.2 Generalised definition of k-path Laplacian op-

erators on graphs

A new kind of graph-theoretic matrix that generalises the graph Laplacian

on finite graph was introduced in [35]. These matrices are based on the path

matrices that characterize the existence of shortest paths between pairs of nodes

in a graph. To construct these kinds of matrices, we need to consider these

definitions:

Definition 4.1. The irreducible set of shortest paths of length l is define as

the set Pl = {Pl(vi, vj), Pl(vi, vr), . . . , Pl(vs, vt)} in which the endpoints of every

shortest path Pl(vi, vj) in the set are different. Every shortest-path in this set is

called an irreducible shortest path.

Definition 4.2. A k-hopping walk of length l is any sequence of (not necessarily

different) nodes v1, v2, · · · , vl, vl+1 such that di,i+1 = k for each i = 1, 2, · · · l.

This k-hopping walk is referred to as a k-hopping walk from v1 to vl+1.

Obviously, this generalizes the concept of walk because a walk of length l is a

1-hopping walk of length l. If every node of a graph can be visited by a k-hopping

walk we say that the graph is k-hopping connected or simply that it can be k-

hopped. Obviously, the number of connected components in a graph is equal to

its number of 1-hopping connected components.

Definition 4.3. A k-hopping connected component in a graph G = (V, E) is a

subgraph G′ = (V ′, E ′), such that there is at least one k-hopping walk that visits

every node vi ∈ V ′.

Definition 4.4. The k-path degree δk(vi) (k ≤ dmax) of a node vi is the number

of irreducible shortest-paths of length k having vi as an endpoint. It is evident

that δ1(vi) is the ‘classical’ node degree, i.e., the number of edges incident to vi.

Then, the generalized Laplacian matrix on finite graph is defined as follows:
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Definition 4.5. The k-path Laplacian matrix Lk(k ≤ dmax) of a connected

undirected graph G = (V, E) is defined as the square symmetric n × n matrix

whose entries are given by:

Lk(i, j) =


−1 dij = k,

δk(i) i = j,

0 otherwise.

(4.2.1)

It is evident that L1 = L is the so-called Laplacian matrix of a graph, i.e.,

L1 = L = K − A.

Example. Consider the k-path Laplacian operators of the graph illustrated in

Fig. 4.2.1.

L1 =



1 −1 0 0 0

−1 3 −1 0 −1

0 −1 2 −1 0

0 0 −1 2 −1

0 −1 0 −1 2


, L2 =



2 0 −1 0 −1

0 1 0 −1 0

−1 0 2 0 −1

0 −1 0 1 0

−1 0 −1 0 2


,

L3 =



1 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

−1 0 0 1 0

0 0 0 0 0


.

Definition 4.6. The k-path incidence matrix (k ≤ dmax), denoted by Bk, of a

connected graph of n nodes and p irreducible shortest paths of length k, is a

matrix of p rows and n columns in which the rows correspond to the elements of

71



Figure 4.2.1: Example of simple graph.

the irreducible set of shortest-paths in the graph in which the paths are arbitrarily

oriented from head to tail and the columns correspond to the nodes of the graph,

v1, v2, · · · , vn. Then, the (i, j) entry of Bk is defined as:

Bk(i, j) =


+1 if vj is the head of the irreducible shortest path pi,

−1 if vj is the tail of the irreducible shortest path pi,

0 otherwise.

(4.2.2)

Definition 4.7. A quadratic form is an expression of the form q(x) = xTAx,

where x is a column vector and A is a symmetric matrix [10].

A quadratic form q is positive definite if q(x) > 0, and positive semi-definite

if q(x) ≥ 0, for every non-zero vector x.

Definition 4.8. The k-path matrix (k ≤ dmax), denoted by Pk, of a connected

graph of n nodes is the square, symmetric, n×n matrix whose entries are defined
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as follows:

Pk(i, j) =


1 di,j = k,

0 otherwise.

(4.2.3)

Notice that δk(vi) = (1TPk)i, where 1 is an all-ones column vector. It can be

seen that the quadratic form is an expression of the form

yTLky =
1

2

∑
i,j∈Pk(vi,vj)

(yi − yj)2, (4.2.4)

for any column vector y. As a consequence, the k-path Laplacian matrices Lk are

positive semi-definite.

Moreover the k-path Laplacian for finite graph can be written also in the form;

(Lk f)(p) =
∑

q:dist(p,q)=k

(f(p)− f(q)), (4.2.5)

where dist denotes the shortest paths distance in G. Note that Lk is symmetric

and bounded [35]. For infinite graphs the self-adjointness and also the bounded-

ness depends on properties of the networks; this dependence will be studied for

various classes of infinite networks.

In the following we always consider G = (V, E) to be an undirected, locally

finite (i.e. every node has a finite degree) and connected infinite graph with set

of vertices V and set of edges E. Let d be the distance metric on G, i.e. d(v, w)

is the length of the shortest path from v to w, and let δk(v) be the k-path degree

of the vertex v, i.e.

δk(v) := #{w ∈ V : d(v, w) = k}. (4.2.6)

Since G is locally finite, δk(v) is finite for every v ∈ V . Denote by C(V ) the set

of all complex-valued functions on V and by C0(V ) the set of complex-valued
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functions on V with finite support. Moreover, let `2(V ) be the Hilbert space of

square-summable functions on V with inner product

〈f, g〉 =
∑
v∈V

f(v)g(v), f, g ∈ `2(V ). (4.2.7)

In `2(V ) there is a standard orthonormal basis consisting of the vectors ev, v ∈ V ,

where

ev(w) :=


1 if w = v,

0 otherwise.
(4.2.8)

Let Lk be the following mapping from C(V ) into itself:

(
Lk f

)
(v) :=

∑
w∈V : d(v,w)=k

(
f(v)− f(w)

)
, f ∈ C(V ). (4.2.9)

On the vectors ev it acts as follows:

(Lk ev)(w) =



δk(v) if w = v,

−1 if d(v, w) = k,

0 otherwise.

(4.2.10)

We define Lk,min and Lk,max , the minimal and maximal k-path Laplacians, as the

restrictions of Lk to

dom(Lk,min) = C0(V ) and dom(Lk,max) =
{
f ∈ `2(V ) : Lkf ∈ `2(V )

}
,

respectively. Clearly, ev ∈ dom(Lk,min), and we obtain from (4.2.10) that
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‖Lk,minev‖ =

√(
δk(v)

)2
+ δk(v) =


0 if δk(v) = 0,

δk(v)
√

1 + 1
δk(v)

if δk(v) > 0.

(4.2.11)

Proposition 4.9. Suppose that Lk,min and Lk,max are defined as above; then

L∗k,min = Lk,max, (4.2.12)

where L∗k,min represents the adjoint of the k-path Laplacian operators Lk,min.

Proof. Let f ∈ C0(V ) and g ∈ C(V ), let V00 be the support of f and set

V0 := V00 ∪
{
v ∈ V : ∃w ∈ V00 such that d(v, w) = k

}
, (4.2.13)

which is a finite set because the graph is a locally finite and V00 is a finite set.

Then suppLkf ⊂ V0 and the following relation holds:

∑
v∈V

(Lk f)(v) g(v) =
∑
v∈V0

(Lk f)(v) g(v) =
∑

v,w∈V0:

d(v,w)=k

(
f(v)− f(w)

)
g(v)

=
1

2

 ∑
v,w∈V0:

d(v,w)=k

(
f(v)− f(w)

)
g(v) +

∑
v,w∈V0:

d(v,w)=k

(
f(w)− f(v)

)
g(w)

 (4.2.14)
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=
1

2

∑
v,w∈V0:

d(v,w)=k

(
f(v)− f(w)

)
(g(v)− g(w)) (4.2.15)

=
1

2

 ∑
v,w∈V0:

d(v,w)=k

f(v) (g(v)− g(w)) +
∑

v,w∈V0:

d(v,w)=k

f(w) (g(w − g(v))

 (4.2.16)

=
∑

v,w∈V0:

d(v,w)=k

f(v) (g(v)− g(w)) =
∑
v∈V00

f(v) (Lk g)(v) (4.2.17)

=
∑
v∈V

f(v) (Lk g)(v). (4.2.18)

Let g ∈ dom(Lk,max). It follows from (4.2.18) that

〈Lk,min f, g〉 = 〈f, Lk,max g〉,

for all f ∈ dom(Lk,min), which implies that g ∈ dom(L∗k,min). Now let g ∈

dom(L∗k,min). For each v ∈ V we obtain from (4.2.18) with f = ev that

(L∗k,min g)(v) = 〈ev, L∗k,min g〉 = 〈Lk,min ev, g〉 =
∑
w∈V

(Lk ev)(w) g(w)

=
∑
w∈V

ev(w) (Lk g)(w) = (Lkg)(v),

which implies that L∗k,ming = Lkg. Since L∗k,ming ∈ `2(V ) by the definition of the

adjoint, it follows that g ∈ dom(Lk,max). Hence L∗k,min = Lk,max.

Since Lk,max is an extension of Lk,min, it follows that Lk,min is a symmetric

operator. Moreover, for f = g we obtain from (4.2.15) that

〈
Lk,min f, f

〉
=

1

2

∑
v,w∈V0:

d(v,w)=k

∣∣f(v)− f(w)
∣∣2, (4.2.19)

where V0 is as in (4.2.13); this shows that Lk,min is a non-negative operator.
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Also, if a subset V0 of V (V0 ⊂ V ) is a k-hopping component, then C(V0)

considered as a subspace of C(V ) is Lk-invariant.

Lemma 4.10. Let V0 be a k-connected component of V and let f ∈ C(V0) be

real-valued and bounded such that f attains its supremum. If

(
Lk f

)
(v) ≤ 0 for every v ∈ V0, (4.2.20)

then f is constant on V0.

Proof. Assume that f is not constant. Then there exist v0, v1 ∈ V0 such that

f(v0) = max{f(v) : v ∈ V0},

f(v1) < f(v0), d(v1, v0) = k.

This implies that

(
Lk f

)
(v0) = f(v0)− f(v1) +

∑
w 6=v1:

d(w,v0)=k

(
f(v0)− f(w)

)
> 0,

which is a contradiction to (4.2.20). Hence f is constant on V0.

Next we show that Lk,min is actually essentially self-adjoint; see, e.g. [57, 135,

138] for the case k = 1.

Theorem 4.11. The operator Lk,min is essentially self-adjoint and hence Lk,max

is self-adjoint and it is equal to the closure of Lk,min.

Proof. Since Lk,min is non-negative and L∗k,min = Lk,max , then by Proposition 1.41

it just needs to show that −1 is not an eigenvalue of Lk,max. Assume that this is

not the case. Then there exists an f ∈ `2(V ) such that f 6≡ 0 and Lk,max f = −f .

The function f must be zero on every finite k-hopping component since Lk,max

restricted to such a component is self-adjoint and non-negative. Therefore there
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exists an infinite k-hopping component V0 where f is not identically zero. It

follows that

δk(v) f(v)−
∑

w: d(v,w)=k

f(w) = −f(v),

for v ∈ V0, or equivalently,

(
δk(v) + 1

)
f(v) =

∑
w: d(v,w)=k

f(w).

Taking the modulus on both sides we obtain

(
δk(v) + 1

)
|f(v)| ≤

∑
w: d(v,w)=k

|f(w)|.

Now we consider the function |f |:

(
Lk|f |

)
(v) = δk(v) |f(v)| −

∑
w: d(v,w)=k

|f(w)| ≤ −|f(v)| ≤ 0.

Since f |V0 ∈ `2(V0), the function |f | attains the supremum on V0. Hence Lemma 4.10

yields that |f | is constant on V0. This implies that f = 0 on V0 because V0 is

infinite; a contradiction.

We denote the closure of Lk,min by Lk and call it the k-path Laplacian. By

the previous theorem we have Lk = Lk,max; it is a self-adjoint and non-negative

operator in `2(V ). Note the difference in notation between the mapping Lk acting

in C(V ) and the self-adjoint operator Lk in `2(V ).

We can now estimate quadratic forms: for f ∈ dom(Lk,min) = C0(V ) we

obtain from (4.2.19) that

〈
Lk,minf, f

〉
=

1

2

∑
v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2 ≤ 1

2

∑
v,w∈V :

d(v,w)=k

(
|f(v)|+ |f(w)|

)2

(4.2.21)
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≤
∑
v,w∈V :

d(v,w)=k

(
|f(v)|2 + |f(w)|2

)
(4.2.22)

=
∑
v∈V

δk(v) |f(v)|2 +
∑
w∈V

δk(w) |f(w)|2 (4.2.23)

= 2
∑
v∈V

δk(v) |f(v)|2. (4.2.24)

In the next theorem we answer the question when Lk is a bounded operator.

Theorem 4.12. The operator Lk is bounded if and only if δk is a bounded func-

tion on V . Now assume that δk is bounded and set

δk,max := {δk(v) : v ∈ V }; (4.2.25)

then

δk,max ≤ ‖Lk‖ ≤ 2δk,max. (4.2.26)

Proof. If δk is unbounded, we choose a sequence (vi)i∈N in V with supi∈Nδk(vi) =

∞ and define fi : V → C by fi(vi) = 1 and fi(w) = 0 if w 6= vi, w ∈ V . Then

we have fi ∈ dom(Lk,max) and

(Lk fi)(w) =



−1 if d(vi, w) = k,

δk(vi) if w = vi,

0 otherwise.

Hence, ‖ Lkfi ‖2= δk(vi)
2 + δk(vi) is unbounded but ‖ fi ‖= 1. Then (4.2.11)

immediately shows that Lk is unbounded. Now assume that δk is bounded. Rela-

tion (4.2.11) yields the lower bound for ‖Lk‖ in (4.2.26). From (4.2.24) we obtain
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that for f ∈ dom(Lk,min),

〈
Lk,min f, f

〉
≤ 2δk,max

∑
v∈V

|f(v)|2 = 2δk,max‖f‖2.

Since Lk is self-adjoint and Lk is the closure of Lk,min, this shows that Lk is

bounded and that ‖Lk‖ ≤ 2δk,max.

4.3 The transformed k-path Laplacian operators

In this section, we introduce modulations, or linear transformations of the k-path

Laplacian. The modulated operators produce diffusion of anomalous forms which

usually occurs under particle-particle interactions (we will study this in the next

chapter). The present modulated operators will be used as effective operators

for anomalous diffusion. Here the transformations of k-path Lk are defined as

combinations of the form

∞∑
k=1

ckLk, (4.3.1)

with some non-negative coefficients ck ∈ C. This combination describes inter-

actions with all nodes where different strengths are used for nodes at different

distances. In general, one uses a sequence ck that is decreasing in k.

If all Lk are bounded and

∞∑
k=1

|ck| ‖Lk‖ <∞, (4.3.2)

then the series in (4.3.1) converges to a bounded operator on `2(V ). If, in addition,

ck ∈ R for all k ∈ N, then the operator in (4.3.1) is self-adjoint; if ck ≥ 0 for all

k ∈ N, then it is a non-negative operator.

Now, we study three different transformations of the k−path Laplacian op-
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erators, namely, Laplace, factorial and Mellin, with the aim of using them in

generalised diffusion models on networks. In the following theorem we discuss

these transformed operators in more detail.

Theorem 4.13. Assume that δ1 is bounded on V and let δ1,max be as in (4.2.25).

(i) The Laplace-transformed k-Laplacian

L̃L,λ :=
∑

e−λkLk, (4.3.3)

is a bounded operator when λ ∈ C with <λ > ln δ1,max. It is non-negative

if λ ∈ (ln δ1,max, ∞).

(ii) The factorial-transformed k-Laplacian

L̃F,z :=
∞∑
k=1

zk

k!
Lk, (4.3.4)

is a bounded operator for every z ∈ C. It is self-adjoint if z ∈ R and

non-negative if z ≥ 0.

(iii) Assume that δk,max satisfies

δk,max ≤ Ckα, (4.3.5)

for some α ≥ 0 and C > 0; then the Mellin-transformed k-Laplacian

L̃M,s :=
∞∑
k=1

1

ks
Lk, (4.3.6)

is a bounded operator for s ∈ C with <s > α + 1.

Under the assumption (4.3.5) the operator L̃L,λ from (4.3.3) is bounded for every

λ ∈ C with <λ > 0.
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Proof. It follows easily that δk,max ≤ δk1,max and hence

‖Lk‖ ≤ 2δk1,max,

for every k ∈ N by Theorem 4.12. Therefore the convergence condition (4.3.2) is

satisfied in items (i) and (ii) for the specified λ and z ∈ C.

For the Laplace-transformed k-Laplacian:

∑
e−λkLk ⇒

∑
| e−λk |‖ Lk ‖≤ 2

∞∑
k=0

(e−(<eλ)δ1,max)
k <∞.

Hence it converges for <eλ > ln δ1,max.

For the factorial-transformed k-Laplacian:

∞∑
k=1

zk

k!
Lk ⇒

∞∑
k=1

| zk |
k!
‖ Lk ‖≤ 2

∞∑
k=1

(| z | δ1,max)
k

k!
<∞.

Hence it converges for every z ∈ C.

For the Mellin-transformed k-Laplacian, we observe that under the condition

(4.3.5) the operators Lk satisfy

‖Lk‖ ≤ 2Ckα.

Hence also in this case the condition (4.3.2) is satisfied for L̃M,s with <s > α+ 1

and for L̃L,λ with <λ > 0.

If the graph is finite, then there is no restriction on the parameters needed,

i.e. one can choose any λ ∈ C in (i) and any s ∈ C in (iii).

The growth condition (4.3.5) is fulfilled for several infinite graphs such as a

linear path graph (or chain) for which δk,max = 2 for every k ∈ N, an infinite

ladder for which δk,max = 4, and for triangular, square and hexagonal lattices for

which δk,max = gk, with g = 6, 4, 3, respectively, among many others. In general,

this growth condition can be applied to any infinite graph with bounded degree.
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However, it is not fulfilled for Cayley trees for which δk,max = r (r − 1)k−1 where

r is the degree of the non-pendant nodes.

Let us now consider the situation when the operators Lk may be unbounded.

The closed quadratic form lk corresponding to Lk in the sense of [60] is given by

lk[f ] :=
1

2

∑
v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2,

with domain

dom(lk) =

{
f ∈ `2(V ) :

∑
v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2 <∞}.

Assume that ck ≥ 0, k ∈ N. Then

N∑
k=1

cklk, (4.3.7)

is an increasing sequence of densely defined, closed, non-negative quadratic forms

(see [60, Theorem VI.1.31]). By [60, Theorem VIII.3.13a] the sequence in (4.3.7)

converges to a closed non-negative quadratic form l̃ that is given by

l̃k[f ] =
∞∑
k=1

cklk[f ] =
1

2

∞∑
k=1

ck
∑
v,w∈V :

d(v,w)=k

∣∣f(v)− f(w)
∣∣2,

dom(̃lk) =
{
f ∈

∞⋂
k=1

dom(lk) :
∞∑
k=1

cklk[f ] <∞
}
.

Assume now that
∞∑
k=1

ckδk(v) <∞, (4.3.8)

for every v ∈ V . Since

lk[ev] = 〈Lkev, ev〉 = δk(v),
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by (4.2.10), condition (4.3.8) implies that ev ∈ dom(̃l) for every v ∈ V , and hence

the form l̃ is densely defined. By [60, Theorem VI.2.1] there exists a self-adjoint

non-negative operator L̃ that corresponds to l̃ in the sense that

l̃[f, g] =
〈
L̃ f, g

〉
, for f ∈ dom

(
L̃
)
, g ∈ dom

(̃
l
)
.

Moreover, [60, Theorem VIII.3.13a] implies that the partial sums
∑N

k=1 ckLk con-

verge in the strong resolvent sense to the operator L̃.

As an example consider a tree where each vertex in generation n ∈ N0 has

n+1 children. It is easy to see that there are n! vertices in generation n and that

δk(v) ≤ (n+ k)!,

for each vertex v in generation n. For z ∈ (0, 1) condition (4.3.8) is satisfied for

the factorial transform since

∞∑
k=1

zk

k!
δk(v) ≤

∞∑
k=1

zk

k!
(n+ k)! <∞,

by Ratio test for every vertex v in generation n. Hence L̃F,z is a self-adjoint

operator on this tree. If one includes linear chains of growing length between

each generation, then δk(v) is growing more slowly and also other transformed

k-path Laplacians are self-adjoint operators.

Assume that we are in the situation as above, i.e. that ck ≥ 0 and that con-

dition (4.3.8) is satisfied. It is not difficult to see that the quadratic form l̃ is a

Dirichlet form, i.e. it is closed and non-negative and it satisfies l̃[Cf ] ≤ l̃[f ] for

every mapping C : C→ C with C(0) = 0 and |Cx−Cy| ≤ |x−y|. By the Beurl-

ing–Deny criteria the operator −L̃ generates an analytic, positivity-preserving

semigroup of contractions; see, e.g. [105, Appendix 1 to Section XIII.12]. In the

next chapters we consider a situation where all Lk are bounded operators and
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(4.3.2) is satisfied. In this case we can write (e−tL̃)t≥0 for the semigroup.

4.4 Summary

This chapter aims to extend the k-path Laplacian operators to infinite graphs

and study a number of their properties such as self-adjointness and boundedness.

The aim was to extend the definition of k-path Laplacian operators to locally

finite infinite graphs. In other words, now there are path Laplacian operators in

a Hilbert space, but further investigations and analysis are still needed. Conse-

quently, some of the main properties of these operators, such as the essentially

self-adjointness and the boundedness were studied. First, we proved analytically

that these k-path LOs are symmetric and non-negative operators. Subsequently,

we proved analytically that the k-path LOs are bounded under certain condi-

tions. Then three different transformations of the k-path LOs were obtained:

namely the Laplace, Factorial and Mellin transformations, which differ in the

rate of convergence to zero of their coefficients. It was shown that all three trans-

formed k-path LOs are, in general, bounded under certain assumptions. These

results stimulated us to take further steps towards achieving the main goal of the

research, which will be explained in the next chapter.
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Chapter 5

One-dimensional diffusion processes

on graph

5.1 Introduction

The definition and some of the major properties of the k-path LOs such as the es-

sentially self-adjointness and the boundedness have already been presented in the

previous chapter. It is well known that the application of the standard Laplacian

L1 can only hop the diffusive ‘particle’ from a node of the network to one of its

neighbours whereas the application of the k-path Laplacian Lk hops the particle

to sites at distance k. Further research is still necessary on certain interesting

aspects, however, one of which is the study of a generalised diffusion equation on

graphs. This study focusses on the use of k-path LOs and their transformations.

Therefore, our prime goal in this chapter is to generalise the diffusive equation

for infinite path graph, with the purpose of obtaining an expression for the trans-

formed k-path LOs to account for the diffusion in networks where combination

long-range hops play an important role. The content of this chapter is drawn

from our published work [38].

86



5.2 The k-path Laplacians on the infinite path

graph

The study of diffusion on graphs is a well-established physico-mathematical the-
ory based on the graph-theoretic version of the diffusion equation [67, 42]

d

dt
u(t) = −Lu(t), (5.2.1)

u(0) = u0, (5.2.2)

where L— the discrete Laplacian — is defined via the adjacency matrix A of the
graph and the diagonal matrix of vertex degrees K as L = K − A [77, 83, 85]
We consider here the infinite path graph (or chain) P∞, i.e. the graph whose

vertices can be identified with Z and each pair of consecutive numbers is connected

by a single edge. We now use index notation and write u = (un)n∈Z for elements

in `2(P∞). The k-path Laplacian acts as follows

(Lku)n = 2un − un+k − un−k, n ∈ Z, u = (uµ)µ∈Z ∈ `2(P∞).

It can also be identified with a double-infinite matrix whose entries are

(Lk)µν = 2δµ,ν − δµ,ν−k − δµ,ν+k, µ, ν ∈ Z, (5.2.3)

where δ denotes the Kronecker delta defined as

δi,j =


1 if i = j,

0 if i 6= j.

In order to consider the diffusion of particles on the graph, we let e0 be as in

(4.2.8), i.e.

(e0)n = δn,0, (5.2.4)

which describes a profile that is concentrated at the origin. Under the application
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of the standard combinatorial Laplacian L1 the particle hops to the neighbouring

sites ±1, whereas under the application of the k-path Laplacian Lk the particle

hops to the sites ±k:

(Lke0)n = 2δn,0 − δn,−k − δn,+k.

Since δk,max = 2 for every k ∈ N, the transformed k-Laplacians L̃L,λ, L̃F,z and L̃M,s

from (4.3.3), (4.3.4) and (4.3.6), respectively, are bounded operators for λ ∈ C

with <λ > 0, for every z ∈ C and every s ∈ C with <s > 1. These operators

are self-adjoint and non-negative if λ ∈ (0,∞), z ∈ (0,∞) and s ∈ (1,∞),

respectively. In the following lemma we find explicit representations of these

operators.

Lemma 5.1. Let λ ∈ C with <λ > 0, z ∈ C and s ∈ C with <s > 1, and let

L̃L,λ, L̃F,z, L̃M,s be as in (4.3.3), (4.3.4) and (4.3.6), respectively. Then for any

u ∈ `2(P∞) we have

(
L̃L,λu

)
n

=
2

eλ − 1
un −

∞∑
k=1

e−λk
(
un−k + un+k

)
,

(
L̃F,zu

)
n

= 2(ez − 1)un −
∞∑
k=1

zk

k!

(
un−k + un+k

)
,

(
L̃M,su

)
n

= 2ζ(s)un −
∞∑
k=1

1

ks
(
un−k + un+k

)
,

where ζ is Riemann’s zeta function defined in (1.8.2).
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Applying them to e0 we obtain

(
L̃L,λe0

)
n

=


2

eλ − 1
if n = 0,

−e−λ|n| if n 6= 0,

(
L̃F,ze0

)
n

=


2(ez − 1) if n = 0,

−z
|n|

|n|!
if n 6= 0,

(5.2.5)

(
L̃M,se0

)
n

=


2ζ(s) if n = 0,

− 1

|n|s
if n 6= 0.

(5.2.6)

Proof. Let ck, k ∈ N, be arbitrary coefficients so that

∞∑
k=1

|ck| ‖Lk‖ <∞, (5.2.7)

is satisfied. Then

( ∞∑
k=1

ckLku

)
n

=

(
2
∞∑
k=1

ck

)
un −

∞∑
k=1

ck(un−k + un+k).

Now the assertions of the lemma can be seen as follow;

For the Laplace transform we have

(
L̃L,λu

)
n

=
∞∑
k=1

e−λk(2un − un+k − un−k)

= 2
∞∑
k=1

e−λkun −
∞∑
k=1

e−λk(un+k + un−k)

=
2

eλ − 1
un −

∞∑
k=1

e−λk(un+k + un−k).
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For the factorial transform we have

(
L̃F,zu

)
n

=
∞∑
k=1

zk

k!
(2un − un+k − un−k)

= 2
∞∑
k=1

zk

k!
un −

∞∑
k=1

zk

k!
(un+k + un−k)

= 2(ez − 1)un −
∞∑
k=1

zk

k!
(un+k + un−k).

For the Mellin transform we have

(
L̃M,su

)
n

=
∞∑
k=1

1

ks
(2un − un+k − un−k)

= 2
∞∑
k=1

1

ks
un −

∞∑
k=1

1

ks
(un+k + un−k)

= 2ζ(s)un −
∞∑
k=1

1

ks
(un+k + un−k),

since

(Lke0)n = 2δn,0 − δn,−k − δn,k.

Hence we have

(
L̃L,λe0

)
n

= 2
eλ−1

δn,0 −
∑∞

k=1 e
−λk(δn,−k + δn,k),

=


2

eλ − 1
if n = 0,

−e−λ|n| if n 6= 0,

(
L̃F,ze0

)
n

= 2(ez − 1)δn,0 −
∑∞

k=1
zk

k!
(δ0,−k + δ0,k),

=


2(ez − 1) if n = 0,

−z
|n|

|n|!
if n 6= 0,
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Figure 5.2.1: Plot of (L̃L,λe0)x, (L̃F,ze0)x, and (L̃M,se0)x at the different nodes of a
linear path with 21 nodes obtained from the Laplace (circles), factorial (squares)
and Mellin (stars) transformed k-path Laplacians with λ = 1, z = 1 and s = 2.5,
respectively.

(
L̃M,se0

)
n

= 2ζ(s)δn,0 −
∑∞

k=1
1
ks

(δ0,−k + δ0,k),

=


2ζ(s) if n = 0,

− 1

|n|s
if n 6= 0.

Figure 5.2.1 illustrates the results of Lemma 5.1 in a graphical form displaying

L̃L,1e0, L̃F,1e0 and L̃M,2.5e0 on 21 nodes. The plot clearly indicates that the three

transforms of the k-path Laplacian operators hop the particles to distant sites in

the linear chain.

5.3 Time-evolution operators

Time evolution is the change of state brought about by the passage of time,

applicable to systems with internal state. In this formulation, time is not required
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to be a continuous parameter, but may be discrete.

Let us now consider the time evolution of the particle density profile governed by

the differential equation
d

dt
u(t) = −Lu(t),

satisfying the initial equation u(0) = w, where L is any of the operators Lk, L̃L,λ,

L̃F,z or L̃M,s, where λ ∈ C with <λ > 0, z ∈ C, s ∈ C with <s > 1 and where

w ∈ `2(P∞). Since L is a bounded operator in all cases, the solution is given by

u(t) = e−tLw, t ≥ 0. (5.3.1)

To find this exponential operator e−tL, we interpret sequences in `2(P∞) as Fourier

coefficients and transform the problem into a problem in L2(−π, π). Define the

unitary operator F : `2(P∞)→ L2(−π, π) by

(Fu)(q) =
1√
2π

∑
n∈Z

une
inq, u = (un)n∈Z ∈ `2(P∞);

its inverse is given by

(F−1g)n =
1√
2π

∫ π

−π
e−inqg(q)dq, g ∈ L2(−π, π).

Let us first determine the operator in L2(−π, π) that is equivalent to Lk via F .

For u ∈ `2(P∞) we have

(
FLku

)
(q) =

1√
2π

∑
n∈Z

(
2un − un−k − un+k

)
einq

=
1√
2π

∑
n∈Z

(
2une

inq − unei(n+k)q − unei(n−k)q
)

=
1√
2π

∑
n∈Z

(
2− eikq − e−ikq

)
une

inq =
(
2− eikq − e−ikq

)
(Fu)(q).
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Hence the operator Lk is unitarily equivalent to the multiplication operator in

L2(−π, π) by the function

`k(q) := 2− eikq − e−ikq = 2
(
1− cos(kq)

)
, (5.3.2)

i.e. (
FLkF−1g

)
(q) = `k(q)g(q), g ∈ L2(−π, π). (5.3.3)

The transformed operators L̃L,λ, L̃F,z and L̃M,s, are also unitarily equivalent to

multiplication operators:

(
FL̃kF−1g

)
(q) = ˜̀

T (q)g(q), (5.3.4)

for T = L, λ, T = F, z or T = M, s where

˜̀
L,λ(q) :=

∞∑
k=1

e−λk`k(q), ˜̀
F,z(q) :=

∞∑
k=1

zk

k!
`k(q),

˜̀
M,s(q) :=

∞∑
k=1

1

ks
`k(q).

(5.3.5)

Closed forms for these sums are given in the next lemma.

Lemma 5.2. Let λ ∈ C with <λ > 0, z ∈ C, s ∈ C with <s > 1. With the

notation from above we have

˜̀
L,λ(q) =

(eλ + 1)(1− cos q)

(eλ − 1)(coshλ− cos q)
, (5.3.6)

˜̀
F,z(q) = 2

[
ez − ez cos q cos(z sin q)

]
, (5.3.7)

˜̀
M,s(q) = 2ζ(s)− Lis(eiq)− Lis(e−iq), (5.3.8)

where Lis is the polylogarithm — also known as Jonquière’s function — as defined

in (1.8.1).
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Moreover, the functions ˜̀
L,λ, ˜̀

F,z and ˜̀
M,s are continuous on [−π, π] and

satisfy

`(q) > 0 for q ∈ [−π, π] \ {0}, (5.3.9)

for ` = ˜̀
L,λ, ˜̀F,z, ˜̀M,s when λ > 0, z > 0, s > 1, respectively.

Proof. Representation (5.3.6) follows from

˜̀
L,λ(q) = 2

∞∑
k=1

e−λk −
∞∑
k=1

e−λkeikq −
∞∑
k=1

e−λke−ikq

=
2

eλ − 1
− 1

eλ−iq − 1
− 1

eλ+iq − 1
=

2

eλ − 1
− 2

eλ cos q − 1∣∣eλ−iq − 1
∣∣2

=
2

eλ − 1
− 2

eλ cos q − 1

e2λ + 1− 2eλ cos q
=

2

eλ − 1
− cos q − e−λ

coshλ− cos q

=
(eλ + 1)(1− cos q)

(eλ − 1)(coshλ− cos q)
.

The representation (5.3.7) follows from

˜̀
F,z(q) = 2

∞∑
k=1

zk

k!
−
∞∑
k=1

zk

k!
eikq −

∞∑
k=1

zk

k!
e−ikq

= 2(ez − 1)−
∞∑
k=1

(zeiq)k

k!
−
∞∑
k=1

(ze−iq)k

k!

= 2(ez − 1)− (eze
iq − 1)− (eze

−iq − 1)

= 2[ez − ez cos q cos(z sin g)].
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The representation (5.3.8) follows from

˜̀
M,s(q) = 2

∞∑
k=1

1

ks
−
∞∑
k=1

1

ks
eikq −

∞∑
k=1

1

ks
e−ikq

= 2ζ(s)−
∞∑
k=1

(eiq)k

ks
−
∞∑
k=1

(e−iq)k

ks

= 2ζ(s)− Lis(eiq)− Lis(e−iq).

The continuity of the functions follows from the representations (5.3.6)–(5.3.8) or

from the uniform convergence of the series. To show (5.3.9), observe that `k(q) =

2(1− cos(kq)) ≥ 0 for all q ∈ [−π, π]. Moreover, `1(q) > 0 for q ∈ [−π, π] \ {0}.

Since all coefficients in the series in (5.3.5) are positive when λ > 0, z > 0, s > 0,

respectively, the claim follows.

The following theorem gives an explicit description of the time evolution op-

erator corresponding to the transformed k-path Laplacians.

Theorem 5.3. Let λ ∈ C with <λ > 0, z ∈ C and s ∈ C with <s > 1, let

L = Lk, L̃L,λ, L̃F,z, or L̃M,s and let ` = `k,˜̀L,λ, ˜̀F,z, ˜̀M,s, correspondingly. For

w = (wν)ν∈Z ∈ `2(P∞) the solution of (5.3.1) is given by

(
u(t)

)
n

=
(
e−tLw

)
n

=
∑
ν∈Z

wν
1

2π

∫ π

−π
ei(n−ν)qe−t`(q)dq, t ≥ 0, n ∈ Z. (5.3.10)

The entries of the double-infinite Toeplitz matrix corresponding to the time evo-

lution operator e−tL are

(
e−tL

)
µν

=
1

2π

∫ π

−π
ei(µ−ν)qe−t`(q)dq =

1

2π

∫ π

−π
cos
(
(µ− ν)q

)
e−t`(q)dq. (5.3.11)

Proof. Since FLF−1 acts as a multiplication operator by ` (see (5.3.3) and
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(5.3.4)), we have

(
Fe−tLF−1g

)
(q) =

∞∑
n=0

(F (−1)ntnLn

n!
F−1g)(q)

=
∞∑
n=0

1√
2π

∑
k∈Z

e−iq(
(−1)ntnLn

n!
F−1g(q))k

=
∞∑
n=0

(−1)ntn

n!
(FLnF−1g)(q)) =

∞∑
n=0

(−1)ntn

n!
`(q)ng(q)

= e−t`(q)g(q), g ∈ L2(−π, π).

Let ν ∈ Z and eν as in (4.2.8). Then

(
e−tLeν

)
n

=
(
F−1e−t`(·)Feν

)
n

=
1√
2π

∫ π

−π
e−inqe−t`(q)

1√
2π

eiνqdq

=
1

2π

∫ π

−π
e−i(n−ν)qe−t`(q)dq =

1

2π

∫ π

−π
ei(n−ν)qe−t`(q)dq,

where the last equality follows since ` is an even function. Since e−tL is a bounded

operator we have

e−tLw =
∑
ν∈Z

wνe
−tLeν ,

which proves (5.3.10) and hence also (5.3.11).

In Figure 5.3.1 we illustrate the time evolution of the density u(t) for the three

transforms of the k-path Laplace operators.

Remark 5.4. For a similar representation for the case L = L1, the discrete Lapla-

cian L acts as follows

(Lu)n = 2un − un+1 − un−1, n ∈ Z, (5.3.12)
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Figure 5.3.1: The particle density (u(t))x as a function of x for the transformed k-
path Laplacians for a linear chain with 41 nodes. The symbols indicate the results
obtained from the simulations of the linear chain and the solid lines connect the
points for better visibility for different time: t = 0.5 (circles), t = 1.0 (squares),
t = 1.5 (dots), t = 2.0 (rhombus), t = 2.5 (triangles), t = 3.0 (stars). (a) Laplace
transform with λ = 1. (b) Factorial-transform with z = 1. (c) Mellin-transform
with s = 4.
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and the fundamental solution of equation above is given by

(u(t))n = exp(−2t) In−m(2t), t ≥ 0,

where Ik is the modified Bessel function of the first kind and other k ∈ Z, defined

as

Ik(t) =
∞∑
m=0

1

Γ(m+ k + 1)
(
t

2
)2m+k.

Consequently, the unique solution of the discrete Laplacian is described by the

formal series

exp(tL)un =
∑
m∈Z

exp(2t) In−m(2t)um. (5.3.13)

It was proved that {exp(tL)}t≥0 is a positive Markovian diffusion semigroup [?].

Here and in the following we use the following notation: let g1 and g2 be functions

that are defined and positive-valued on an interval of the form (a,∞); we write

g1(x) ∼ g2(x) as x→∞ if lim
x→∞

g1(x)

g2(x)
= 1;

a similar notation is used for the behaviour as x→ 0.

5.4 Generalized diffusion on the path graph

In this section we prove that the density profile u(t) that solves

d

dt
u(t) = −Lu(t), (5.4.1)

u(0) = e0, (5.4.2)

where e0 is as in (5.2.4) and L is any of the transformed k-path Laplacians L̃L,λ,

L̃F,z, or L̃M,s, approaches a stable distribution if appropriately scaled.

In the following we study the asymptotic behaviour of the density profile u(t)
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that solves (5.4.1) and (5.4.2). It follows from (5.3.10) that

(
u(t)

)
x

=
(
e−tLe0

)
x

=
1

2π

∫ π

−π
eixqe−t`(q)dq x ∈ Z, t ≥ 0. (5.4.3)

In the next lemma we consider the asymptotic behaviour of integrals as in (5.4.3).

Relation (2.6.1) implies that S(α, 0, γ, 0) has no finite variance if α < 2. Further,

if α ≤ 1, then even the first moment is infinite. We allow also values α > 2 in

the notation f(z;α, 0, γ, 0) although this is not needed later.

Lemma 5.5. Let α > 0 and let h : [−π, π] → R be a continuous function that

satisfies

h(q) > 0 for q ∈ [−π, π] \ {0}, (5.4.4)

h(q) ∼ c|q|α as q → 0, (5.4.5)

with some c > 0. Then

t
1
α

1

2π

∫ π

−π
eit

1
α ξqe−th(q)dq → 1

2π

∫ ∞
−∞

eiξze−c|z|
α

dz (5.4.6)

= f
(
ξ;α, 0, c

1
α , 0
)
, (5.4.7)

uniformly in ξ on R as t→∞.

Hence

1

2π

∫ π

−π
eixqe−th(q)dq = t−

1
αf
(
t−

1
αx;α, 0, c

1
α , 0
)

+ o
(
t−

1
α

)
, (5.4.8)

uniformly in x ∈ R as t→∞.
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Proof. Let t > 0. With the substitution z = t
1
α q we have

∣∣∣∣∣ t 1
α

1

2π

∫ π

−π
eit

1
α ξqe−th(q)dq − 1

2π

∫ ∞
−∞

eiξze−c|z|
α

dz

∣∣∣∣∣
=

∣∣∣∣∣ 1

2π

∫ πt
1
α

−πt
1
α

eiξze−th(t−
1
α z)dz − 1

2π

∫ ∞
−∞

eiξze−c|z|
α

dz

∣∣∣∣∣

≤

∣∣∣∣∣ 1

2π

∫ πt
1
α

−πt
1
α

eiξz
(
e−th(t−

1
α z) − e−c|z|α

)
dz

∣∣∣∣∣
+

∣∣∣∣∣ 1

2π

∫
R\[−πt

1
α ,πt

1
α ]

eiξze−c|z|
α

dz

∣∣∣∣∣
≤ 1

2π

∫ πt
1
α

−πt
1
α

∣∣∣e−th(t−
1
α z) − e−c|z|α

∣∣∣ dz (5.4.9)

+
1

2π

∫
R\[−πt

1
α ,πt

1
α ]

e−c|z|
α

dz. (5.4.10)

First note that the integrals in (5.4.9) and (5.4.10) are independent of ξ. We

show that both integrals converge to 0 as t → ∞. For the integral in (5.4.10)

this is clear. Let us now consider the integral in (5.4.9). Since h is continuous

and satisfies (5.4.4) and (5.4.5), the function q 7→ h(q)/|q|α is bounded below by

a positive constant, i.e. there exists c̃ > 0 such that

h(q)

| q |α
> c̃ for q ∈ [π, π];

i.e.

h(q) ≥ c̃|q|α for q ∈ [−π, π].
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This implies that the integrand in (5.4.9) satisfies

∣∣∣e−th(t−
1
α z) − e−c|z|α

∣∣∣ ≤ e−th(−t−
1
α z) + e−c|z|

α

≤ e−tc̃|t
− 1
α z|α + e−c|z|

α

= e−c̃|z|
α

+ e−c|z|
α,

for z ∈ [−πt 1
α , πt

1
α ]. Therefore the integrand in (5.4.9) is bounded by the inte-

grable function z 7→ e−c̃|z|
α

+ e−c|z|
α , which is independent of t. For fixed z ∈ R

we have

th
(
t−

1
α z
)

= |z|αh(t−
1
α z)

|t− 1
α z|α

→ c|z|α as t→∞,

by (5.4.5) and hence

∣∣∣e−th(t−
1
α z) − e−c|z|α

∣∣∣→ 0 as t→∞.

Now the Dominated Convergence Theorem implies that the integral in (5.4.9)

converges to 0 as t→∞. This shows (5.4.6).

Finally, we prove (5.4.8). With the substitution x = t
1
α ξ we obtain from

(5.4.6) and (5.4.7) that

1

t−
1
α

∣∣∣∣∣ 1

2π

∫ π

−π
eixqe−th(q) dq − t−

1
αf
(
t−

1
αx;α, 0, c

1
α , 0
)∣∣∣∣∣

=

∣∣∣∣∣t 1
α

1

2π

∫ π

−π
eixqe−th(q) dq − f

(
t−

1
αx;α, 0, c

1
α , 0
)∣∣∣∣∣→ 0,

uniformly in x ∈ R as t→∞, which shows (5.4.8).

Remark 5.6. The lemma can be interpreted as follows. If the function

g(x, t) :=
1

2π

∫ π

−π
eixqe−th(q)dq,
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is scaled in the independent and the dependent variable, then it converges:

t
1
α g
(
t

1
α ξ, t

)
→ f

(
ξ;α, 0, c

1
α , 0
)

as t→∞.

This means that the profile spreads proportionally to t
1
α . The solution (u(t))x is

defined only for x ∈ Z. Scaling this discrete profile in the same way leads to a

sequence of points: (
t−

1
αx, t

1
α

(
u(t)

)
x

)
x ∈ Z,

for each t ≥ 0; the points lie on the graph of the function ξ 7→ t
1
α g(t

1
α ξ, t). These

sequences of points become denser as t growths and converge to the limiting

profile f(ξ;α, 0, c
1
α , 0) as t → ∞. In particular, the maximum height, which is

attained at 0, decreases like

(
u(t)

)
0
∼ t−

1
αf
(
0;α, 0, c

1
α , 0
)

=
Γ
(
α+1
α

)
πc

1
α

t−
1
α as t→∞. (5.4.11)

The full width at half maximum (FWHM) increases like

FWHM(t) ∼ 2ξ0t
1
α as t→∞, (5.4.12)

where ξ0 > 0 is such that f(ξ0;α, 0, c
1
α , 0) = 1

2
f(0;α, 0, c

1
α , 0). This implies that

if α = 2, then one has normal diffusion, and if α < 2, then the time evolution is

superdiffusive since (FWHM(t))2 ∼ ctκ with κ = 2
α
. We used the square of the

full width at half maximum FWHM2 instead of the mean square displacement

MSD because the latter is infinite if α < 2.
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5.4.1 Diffusion for the Laplace- and factorial-transformed

k-path Laplacians

In the next theorem we show that the time evolution with the k-path Laplacians

and the Laplace-transformed and factorial-transformed k-path Laplacians show

normal diffusion (see, e.g. [31] for the case L = L1). This is caused by the fact

that `k, ˜̀
L,λ and ˜̀

F,z behave quadratically around 0 (see Fig 5.4.1).

Theorem 5.7. Let P∞ be the infinite path graph, let λ, z > 0 and let L̃L,λ and

L̃F,z be the Laplace-transformed and factorial-transformed k-path Laplacian with

parameters λ and z, respectively. Moreover, let u(t) be the solution of (5.4.1),

(5.4.2) with L = Lk, L = L̃L,λ or L = L̃F,z. Then

(
u(t)

)
x

= t−
1
2

1

2
√
πa

exp

(
− x2

4at

)
+ o
(
t−

1
2

)
as t→∞, (5.4.13)

uniformly in x ∈ Z where

a = k2 for L = Lk, (5.4.14)

a =
eλ
(
eλ + 1

)
(eλ − 1)3

=
coth

(
λ
2

)
2(coshλ− 1)

for L = L̃L,λ, (5.4.15)

a = z(z + 1)ez for L = L̃F,z. (5.4.16)

Proof. From (5.3.2),

lim
q→0

2(1− cos(kq)

aq2
≤ lim

q→0

k sin(kq)

aq

= lim
q→0

k2 cos(kq)

a
.

Hence, with a = k2, the asymptotic behaviour of the functions `k is `k(q) ∼

k2q2as q → 0,
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Also, from(5.3.6),

lim
q→0

(eλ + 1)(1− cos q)

(eλ − 1)(coshλ− cos q) aq2
=
eλ + 1

eλ − 1
lim
q→0

(1− cos q)

(coshλ− cos q)
aq2

=
eλ + 1

eλ − 1
lim
q→0

sin q

2a coshλq + a sin q2 − 2aq cos q

=
eλ + 1

eλ − 1

1

2a(coshλ− 1)
.

With, a = (eλ+1)eλ

(eλ−1)3
, the asymptotic behaviour of the functions ˜̀

L,λis

˜̀
L,λ(q) =

eλ + 1

(eλ − 1)(coshλ− 1)
· q

2

2
+O

(
q4
)

= aq2 +O
(
q4
)

as q → 0.

And from (5.3.7)

lim
q→0

2[ez − ez cos q cos(z sin q)]

aq2
= z(1− z)ez.

With, a = z(1 − z)ez, we obtain that the asymptotic behaviour of the functions

˜̀
F,z is

˜̀
F,z(q) = 2

[
ez − ez

(
1− zq2

2
+O

(
q4
))(

1− z2q2

2
+O

(
q4
))]

= ez(z + z2)q2 +O
(
q4
)

as q → 0,

with a from (5.4.16), respectively (see Fig. 5.4.2) . Now (5.4.13) follows from

(5.4.3) and Lemma 5.5.

Remark 5.8. Theorem 5.7 shows that the diffusion for the k-path Laplacian, the

Laplace-transformed and the factorial-transformed k-path Laplacian is always
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Figure 5.4.1: The graphs of the functions ˜̀
L,λ with λ = 1 (blue solid curve) and

˜̀
F,z with z = 1/2 (orange broken curve) on the interval [−π, π].

normal. The peak height of the distribution is attained at x = 0 and behaves like

(
u(t)

)
0
∼ 1

2
√
πa

t−
1
2 as t→∞,

where a is from (5.4.14)–(5.4.16); see (5.4.11). The mean square displacement

behaves like

MSD(t) ∼ 2at as t→∞,

and the full width at half maximum (FWHM) behaves like

FWHM(t) ∼ 2
√

(ln 2)a t
1
2 as t→∞;

see (5.4.12). For the limiting behaviour after rescaling in x see Remark 5.6.

5.4.2 Diffusion for the Mellin-transformed k-path Lapla-

cian

For the Mellin-transformed k-path Laplacian, the density profile shows superdif-

fusion for 1 < s < 3 and normal diffusion for s > 3; see Fig 5.4.3.
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Figure 5.4.2: The parameter dependence of a for (a) the Laplace-transformed and
(b) the factorial-transformed k-path Laplacian.

Theorem 5.9. Let P∞ be the infinite path graph, let s > 1 and let L̃M,s be the

Mellin-transformed k-path Laplacian with parameter s. Moreover, let u(t) be the

solution of (5.4.1) and (5.4.2) with L = L̃M,s. Then

(
u(t)

)
x

= t−
1
αf
(
t−

1
αx;α, 0, γ, 0

)
+ o
(
t−

1
α

)
as t→∞, (5.4.17)

uniformly in x ∈ Z where

α = s− 1, γ =

(
− π

Γ(s) cos
(
πs
2

)) 1
s−1

if 1 < s < 3, (5.4.18)

α = 2, γ =
√
ζ(s− 2) if s > 3. (5.4.19)

In the case 1 < s < 3, the (rescaled) limit distribution has the following asymptotic

behaviour:

f(ξ;α, 0, γ, 0) ∼ 1

ξs
as ξ → ±∞, (5.4.20)

where α and γ are defined in (5.4.18).

Note that in the case when s > 3 the limiting distribution is a normal distri-

bution and hence

(
u(t)

)
x

= t−
1
2

1

2
√
πζ(s− 2)

exp

(
− x2

4ζ(s− 2)t

)
+ o
(
t−

1
2

)
as t→∞;
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when s = 2, the limiting distribution is a Cauchy distribution and hence

(
u(t)

)
x

=
t

x2 + π2t2
+ o
(
t−1
)

as t→∞.

Proof. We consider the behaviour of ˜̀
M,s from (5.3.8) at 0. Let s > 1 with s /∈ N.

It follows from (1.8.3) that

Lis(e
z) = Γ(1− s)(−z)s−1 +

∞∑
n=0

ζ(s− n)
zn

n!
, |z| < 2π, z /∈ (0,∞),

which yields

˜̀
M,s(q) = 2ζ(s)− Lis(eiq)− Lis(e−iq)

= 2ζ(s)− Γ(1− s)
(

(−iq)s−1 + (iq)s−1
)
−
∞∑
n=0

ζ(s− n)
(iq)n + (−iq)n

n!

= −Γ(1− s)|q|s−1
(
e−i(s−1)π

2 + ei(s−1)π
2

)
−
∞∑
n=1

ζ(s− n)
(iq)n + (−iq)n

n!

= − π

Γ(s) sin(πs)
|q|s−12 cos

(
(s− 1)π

2

)
−
∞∑
l=1

ζ(s− 2l)
2(−1)lq2l

(2l)!

= − π

Γ(s) cos
(
sπ
2

) |q|s−1 −
∞∑
l=1

ζ(s− 2l)
2(−1)lq2l

(2l)!
(5.4.21)

= − π

Γ(s) cos
(
sπ
2

) |q|s−1 + ζ(s− 2)q2 + o(q4), as q → 0. (5.4.22)

By continuity (5.4.21) and hence (5.4.22) are also valid for s = 2. If s < 3,

then the first term in (5.4.22) is dominating; if s > 3, then the second term is

dominating. Hence

˜̀
M,s(q) ∼


− π

Γ(s) cos
(
sπ
2

) |q|s−1 if 1 < s < 3,

ζ(s− 2)q2 if s > 3,
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Figure 5.4.3: The graphs of the functions ˜̀
M,s on the interval [−π, π]. The

parameter s is varied from top to the bottom as 1.5, 2, 2.5 (not labelled) and 4.

as q → 0. Now (5.4.17) follows from (5.4.3) and Lemma 5.5.

To show (5.4.20), we use (2.6.1), which yields

f(ξ; s− 1, 0, γ, 0) ∼ 1

π
Γ(s) sin

(
π(s− 1)

2

)
−π

Γ(s) cos
(
πs
2

) · 1

ξs
=

1

ξs
,

as ξ → ±∞.

When s = 3, the asymptotic expansion of ˜̀
M,s(q) involves a logarithmic term,

which implies that the asymptotic behaviour of (u(t))x is more complicated (see

Fig 5.4.3).

Remark 5.10. In Fig. 5.4.4 we plot the density profiles for various times when the

time evolution is governed by (5.4.1) with L being the Mellin-transformed k-path

Laplacian L̃M,s. The peak height is attained at x = 0 and behaves like

(
u(t)

)
0
∼



Γ
(

s
s−1

)
πγ

t−
1
s−1 if 1 < s < 3,

1

2
√
πζ(s− 2)

t−
1
2 if s > 3,

as t→∞, where γ is as in (5.4.18); see (5.4.11). If s ∈ (1, 3), then the full width
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at half maximum (FWHM) behaves like

FWHM(t) ∼ 2ξ0t
1
s−1 as t→∞,

where ξ0 > 0 is such that f(ξ0; s − 1, 0, γ, 0) = 1
2
f(0; s − 1, 0, γ, 0); see (5.4.12).

This shows that we have superdiffusion in this case since 1
s−1

> 1
2
. A particular

case is when s = 2, when the (rescaled) limit distribution is a Cauchy distribution

and the FWHM grows linearly, i.e. the time evolution shows ballistic diffusion.

For an interpretation of the limiting behaviour using rescaling in x see Remark 5.6

(see Fig.5.4.5).

Remark 5.11. Consider the operator

L = cLa1, (5.4.23)

with c > 0 and a ∈ (0, 1), i.e. La1 is a fractional power of the standard Laplacian

L1 defined, e.g. by the spectral theorem. Since the operator cLa1 is equivalent to

the multiplication operator by

`(q) = c
(
2(1− cos q)

)a
,

in the Fourier representation, we obtain from Lemma 5.5 that

(
u(t)

)
x

= t−
1
2af
(
t−

1
2ax; 2a, 0, c

1
2a , 0

)
+ o
(
t−

1
2a

)
as t→∞,

when u is a solution of (5.4.1), (5.4.2) with L as in (5.4.23). Hence if we choose

a =
s− 1

2
and c = − π

Γ(s) cos
(
πs
2

) ,
for s ∈ (1, 3), we obtain the same asymptotic behaviour of u as the solution in

Theorem 5.9. However, the solutions behave differently for small t as can be seen
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Figure 5.4.4: The time evolution of the density profile under the Mellin-
transformed k-path Laplacian: (a) s = 4 for t = 10, 100, 1000 from high to low;
(b) s = 2.5 for t = 10, 100, 1000 from high to low; (c) s = 2 for t = 10, 30, 100
from high to low; (d) s = 1.5 for t = 10, 20, 40 from high to low. In every panel,
the blue dots indicate the result of numerical integration of (5.4.3) with ` = ˜̀

M,s,
whereas the red curves indicate the asymptote (5.4.17).

from Figure 5.4.6 where the blue solid line with circles corresponds to L = L̃M,s

and the red dashed line with squares corresponds to L = cLa1 for t = 1 (a) and

t = 3 (b). See [24] for a discussion of La1 where it was also shown that (5.4.1),

(5.4.2) with L = La1 is equivalent to an evolution equation with a fractional time

derivative ([24, Theorem 3]).

5.5 Summary

As mentioned in the introduction, the aim of this study was the generalisation of

the diffusion equation, controlled by the k-path LOs. This chapter has focussed

upon a generalised diffusion equation where the transformed generalised k-path
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Figure 5.4.5: The s-dependence of (a) 1/α and (b) γ.

(a) (b)

Figure 5.4.6: The solutions of (5.4.1), (5.4.2) for L = L̃M,s (blue solid line with
circles) and for L = cLa1 (red dashed line with squares) for t = 1 (a) and t = 3
(b).
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LOs for locally finite infinite networks are used. These generalised Laplacian op-

erators are inserted into the graph-theoretic diffusion equation (5.2.1–5.2.2) to

obtain a generalised diffusion equation for graphs. We have presented new meth-

ods to describe superdiffusion by a transformation of k-path LOs defined on the

infinite path graph. Our analysis here proves that under the Mellin transform of

these k-path LOs for certain values of the parameter, 1 < s < 3, a superdiffusive

dynamic appears (see Fig. 5.4.4). On the contrary, the generalized diffusion equa-

tion using Laplace and Factorial transformed operators always produce normal

diffusive processes. When 1 < s < 3, however, the time evolution is superdiffusive

with the superdiffusive exponent being κ = 2
s−1

, which leads to arbitrary values

for κ in (1,∞). Furthermore, we obtained the same supperdiffusive behaviour for

the fractional power of the standard Laplacian for large t. However, for small t

the behaviour is different.
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Chapter 6

Superdiffusive processes on

two-dimensional lattice

6.1 Introduction

In the previous chapter a new theoretical framework to study superdiffusive pro-

cesses on graphs was presented, adding new values to the already existing ones for

modelling anomalous diffusion. The main purpose of this chapter is to investigate

the existence of superdiffusion in the process termed the Abstract Cauchy Prob-

lem with the operator that will be given by the transformed k-path LOs defined

on an infinite square lattice.

Square lattices are ubiquitous in many real-world physical systems. They are

frequently used to describe the spin-1/2 antiferromagnetic Heisenberg model in

a number of materials [76, 50, 5, 30]. They are also the preferred model for two-

dimensional (2D) gases and optical lattices [13, 54, 48, 1, 73]. Recently, square

lattices of superconducting qubits have been employed for error correcting codes

in quantum computers [27]. The experimental finding that the native architecture

of certain photosynthetic membranes has square lattice shapes [126, 6, 29] is

also very significant. This finding is highly relevant in our current work, as the
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existence of long-range interactions (LRI) is well documented for light-harvesting

complexes. Light harvesting complex or antenna molecules is a pigment-protein

complex that are used by plants and photosynthetic bacteria to collect more of

the incoming light and transfer it to the reaction centres for the photo-induced

redox processes [47, 20, 21]. There is plentiful documentation of the existence of

LRI like the ones mathematically described by the k-path LOs considered here

for other systems previously mentioned here, such as cold atomic clouds, helium

Rydberg atoms and cold Rydberg gases [2, 56, 129]. It is also worthy of note that

anomalous diffusion has been observed for ultracold atoms in 2D and 3D lattices

[118]. Consequently, the study of a generalised diffusion model on square lattices

and proving the conditions for which superdiffusive behaviour exists on them is

of considerable theoretical importance because of the many physical processes

involved. The contents of this chapter is based on our published work [39].

The structure of the chapter is as follows: in Section 6.2 the solution of the

generalised diffusion equation is studied and an integral representation is provided

(Theorem 6.3). Then, in Section 6.3 we investigate the asymptotic behaviour of

the solution as time tends to infinity. In particular, we formulate and prove the

main result (Theorem 6.10). Finally, the behaviour of finite truncations of the

Mellin transforms is investigated. Although normal diffusion is present in this

case, the coefficient in the diffusion speed can be increased at will if s ∈ (2, 4)

and N is large enough; see Remark 6.12.
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6.2 Existence and time evolution of the Mellin

transform of the k-path Laplacian on the square

lattice

We consider the square lattice, i.e. the graph Γ = P∞×P∞ = (V,E) with vertices

V = Z2 and edges connecting vertices (i, j) and (m,n) when |i−m|+ |j−n| = 1.

We usually write (ux,y)x,y∈Z for functions on V .

We can define a k-path Laplacian on a square lattice as an operator Lk :

`2(V )→ `2(V ) such that for all u ∈ `2(V ) it takes the form

(Lku)x,y = 4kux,y −
k−1∑
j=0

[
ux+k−j,y+j + ux−k+j,y−j + ux−j,y+k−j + ux+j,y−k+j

]
, x, y ∈ Z.

Let us consider now an Abstract Cauchy Problem

u′(t) = −Lu(t); u(0) = ů, (6.2.1)

with the operator L being the k-path Laplacian Lk or a Mellin-transformed k-

path Laplacian operator on a square lattice in the similar way to the infinite path

graph which defined in chapter 5.

Using Theorem 4.13 we conclude that LM,s is a well-defined, bounded, self-

adjoint and non-negative operator. Again, it allows to describe a process where

the particle can jump an arbitrary number of edges with a probability that de-

pends on the length of a jump.

For m,n ∈ Z let σm,n : `2(V )→ `2(V ) be the shift operator defined by

(σm,nu)x,y = ux+m,y+n, x, y ∈ Z.
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Then Lk can be written as

Lk = 4kI −
k−1∑
j=0

[
σk−j,j + σ−k+j,−j + σ−j,k−j + σj,−k+j

]
. (6.2.2)

The operator Lk is self-adjoint, so from the spectral theorem we can find a unitary

equivalent operator that transforms it into a multiplication operator.

Let us consider the following Fourier transform, which is a unitary operator

that is defined by

F : `2(V )→ L2
(
[−π, π]2

)
,

(Fu)(p, q) =
1

2π

∑
x,y∈Z

ux,ye
ipxeiqy, p, q ∈ [−π, π], u ∈ `2(V ),

and whose inverse given by

(F−1f)x,y =
1

2π

∫ π

−π

∫ π

−π
f(p, q)e−ipxe−iqydp dq, x, y ∈ Z, f ∈ L2

(
[−π, π]2

)
.

Note, these equations are similar to the Fourier transform that is mentioned in

Chapter 5 but here is more complicated.

Now, since

(Fσm,nu)(p, q) =
1

2π

∑
x,y∈Z

ux+m,y+ne
ipxeiqy =

1

2π

∑
x,y∈Z

ux,ye
ip(x−m)eiq(y−n)

= e−ipme−iqn(Fu)(p, q),

we have

(
Fσm,nF−1f

)
(p, q) = e−i(pm+qn)f(p, q), p, q ∈ [−π, π], f ∈ L2

(
[−π, π]2

)
.

(6.2.3)

Together with (6.2.2) we obtain that Lk is unitarily equivalent to a multiplication
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operator; more precisely, the following lemma is true.

Lemma 6.1. With the notations from above we have

(
FLkF−1f

)
(p, q) = lk(p, q)f(p, q), p, q ∈ [−π, π], f ∈ L2

(
[−π, π]2

)
, (6.2.4)

where

lk(p, q) =



4k − i
sin p ·

(
eikp − e−ikp

)
− sin q ·

(
eikq − e−ikq

)
cos p− cos q

, |p| 6= |q|,

4k + i cot p ·
(
eikp − e−ikp

)
− k
(
eikp + e−ikp

)
, |p| = |q| 6= 0, π,

0, p = q = 0,

4k
(
1− (−1)k

)
, |p| = |q| = π.

Moreover, lk is continuous and even in both p and q, and the following inequalities

hold:

0 ≤ lk(p, q) ≤ 8k, p, q ∈ [−π, π], (6.2.5)

l1(p, q) > 0, (p, q) ∈ [−π, π]2 \ {(0, 0)}. (6.2.6)

Proof. It follows from (6.2.2) and (6.2.3) that (6.2.4) holds with

lk(p, q) = 4k −
k−1∑
j=0

[
e−i[(k−j)p+jq] − e−i[(−k+j)p−jq]

− e−i[−jp+(k−j)q] − e−i[jp+(−k+j)q]
]

= 4k − e−ikp
k−1∑
j=0

eij(p−q) + eikp
k−1∑
j=0

e−ij(p−q)

+ e−ikq
k−1∑
j=0

eij(p+q) + eikq
k−1∑
j=0

e−ij(p+q). (6.2.7)
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When |p| 6= |q| we can rewrite this as follows:

lk(p, q) = 4k − e−ikp − e−ikq

1− ei(p−q)
− eikp − eikq

1− e−i(p−q)
− e−ikq − eikp

1− ei(p+q)
− eikq − e−ikp

1− e−i(p+q)

= 4k − eikp
(

1

1− e−ip+iq
− 1

1− eip+iq

)
− e−ikp

(
1

1− eip−iq
− 1

1− e−ip−iq

)
+ eikq

(
1

1− e−ip+iq
− 1

1− e−ip−iq

)
+ e−ikq

(
1

1− eip−iq
− 1

1− eip+iq

)
.

The expressions within the brackets can be simplified, e.g.

1

1− e−ip+iq
− 1

1− eip+iq
=

e−ip+iq − eip+iq

1− e−ip+iq − eip+iq + e2iq

=
e−ip − eip

e−iq − e−ip − eip + eiq
=

i sin p

cos p− cos q
.

Hence

lk(p, q) = 4k − eikp i sin p

cos p− cos q
+ e−ikp

i sin p

cos p− cos q

+ eikq
i sin q

cos p− cos q
− e−ikq i sin q

cos p− cos q

= 4k − i

cos p− cos q

[
sin p ·

(
eikp − e−ikp

)
− sin q ·

(
eikq − e−ikq

)]
.

For the case when |p| = |q| note that lk is continuous by (6.2.7). Write lk as

lk(p, q) = 4k − if(p)− f(q)

g(p)− g(q)
,

with f(p) = sin p · (eikp − e−ikp) and g(p) = cos p. The Generalized Mean Value

Theorem implies that

lk(p, q) = 4k − if
′(ξ)

g′(ξ)
,
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with ξ between p and q. Hence

lk(p, p) = lim
q→p

lk(p, q) = 4k − if
′(p)

g′(p)

= 4k − icos p · (eikp − e−ikp) + ik sin p · (eikp + e−ikp)

− sin p

= 4k + i cot p ·
(
eikp − e−ikp

)
− k
(
eikp + e−ikp

)
. (6.2.8)

The relation lk(0, 0) = 0 follows from (6.2.7), and the value for lk(p, q) when

|p| = |q| = π follows from (6.2.8) by taking the limit p → π. That lk is even

in p and q is clear. Since Lk is a non-negative operator in `2(V ) as describe in

Chapter 4, Section 2, the function lk is non-negative. The upper bound for lk in

(6.2.5) follows from (6.2.7).

Finally, to show (6.2.6) rewrite l1; for |p| 6= |q| we have

l1(p, q) = 4 + 2
sin2 p− sin2 q

cos p− cos q
= 4− 2(cos p+ cos q), (6.2.9)

which extends to all p, q ∈ [−π, π] by continuity. The right-hand side of (6.2.9)

is strictly positive unless p = q = 0.

Let us now consider the Mellin transformation of the k-path Laplacians Lk,

i.e. the operator

LM,s =
∞∑
k=1

1

ks
Lk. (6.2.10)

Since ‖Lk‖ ≤ 8k by Lemma (6.1), the series converges in the operator norm when

s > 2. As the next lemma shows, the operator LM,s is also unitarily equivalent

to a multiplication operator in L2([−π, π]2).

Lemma 6.2. For s > 2 we have

(
FLM,ssF−1f

)
(p, q) = lM,s(p, q)f(p, q), p, q ∈ [−π, π], f ∈ L2

(
[−π, π]2

)
,

(6.2.11)
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where

lM,s(p, q) :=
∞∑
k=1

1

ks
lk(p, q), (6.2.12)

=



4ζ(s− 1) +
gs(p)− gs(q)
cos p− cos q

, |p| 6= |q|,

4ζ(s− 1)− 2 cot p · Im
(
Lis(e

ip)
)
− 2Re

(
Lis−1(eip)

)
, |p| = |q| 6= 0, π,

0, p = q = 0,

4
(
1− (−1)k

)
ζ(s− 1), |p| = |q| = π,

where Lis is the polylogarithm function which defined in (1.8.1) and

gs(p) := 2 sin p · Im
(
Lis(e

ip)
)
. (6.2.13)

The function lM,s is continuous and even in both p and q, and the following

inequalities hold:

0 ≤ lM,s(p, q) ≤ 8ζ(s− 1), p, q ∈ [−π, π], (6.2.14)

lM,s(p, q) > 0, (p, q) ∈ [−π, π]2 \ {(0, 0)}. (6.2.15)

Proof. It follows from Lemma 6.1 that (6.2.11) holds with lm,s defined as in

(6.2.12). When |p| 6= |q|, we have

lM,s(p, q) =
∞∑
k=1

1

ks

[
4k − i

sin p ·
(
eikp − e−ikp

)
− sin q ·

(
eikq − e−ikq

)
cos p− cos q

]
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lM,s(p, q) = 4
∞∑
k=1

1

ks−1
− i

cos p− cos q

[
sin p ·

∞∑
k=1

1

ks

(
(eip)k − (e−ip)k

)

− sin q ·
∞∑
k=1

1

ks

(
(eiq)k − (e−iq)k

)]

= 4ζ(s− 1)− i

cos p− cos q

[
sin p ·

(
Lis(e

ip)− Lis(e−ip)
)

− sin q ·
(
Lis(e

iq)− Lis(e−iq)
)]
,

which proves the formula for lM,s in the first case. Now assume that |p| = |q| 6=

0, π. Then

lM,s(p, q) =
∞∑
k=1

1

ks

[
4k + i cot p ·

(
eikp − e−ikp

)
− k
(
eikp + e−ikp

)]

= 4
∞∑
k=1

1

ks−1
+ i cot p ·

∞∑
k=1

1

ks

(
(eip)k − (e−ip)k

)
−
∞∑
k=1

1

ks−1

(
(eip)k + (e−ip)k

)
= 4ζ(s− 1) + i cot p ·

(
Lis(e

ip)− Lis(e−ip)
)
− Lis−1(eip)− Lis−1(e−ip).

The remaining cases are clear. The continuity of lM,s follows from the continuity

of lk and the fact that the series in (6.2.12) converges uniformly. The symmetry

of lM,s and the inequalities in (6.2.14) follows directly from the symmetry of lk

and (6.2.5). The inequality in (6.2.15) follows from (6.2.6) and the first inequality

in (6.2.5).

Since LM,s is a bounded operator, the Cauchy problem

d

dt
u(t) = −LM,su(t), t > 0, (6.2.16)

u(0) = ů, (6.2.17)

121



has a unique solution, which is given by

u(t) = e−tLM,sů, t ≥ 0.

It follows from Lemma 6.2 that

(
FeF−1f

)
(p, q) = e−tlM,s(p,q)f(p, q), t ≥ 0, p, q ∈ [−π, π], f ∈ L2

(
[−π, π]2

)
.

(6.2.18)

Using this relation and the fact that lM,s is even one can easily show the follow-

ing theorem; cf. Theorem 5.3 for the case of the infinite path graph. For the

formulation of the theorem let em,n ∈ `2(V ) be the vector defined by

(em,n)x,y =


1, m = x, n = y,

0, otherwise.

(6.2.19)

Theorem 6.3. Let s > 2 and ů ∈ `2(V ). The unique solution of (6.2.16),

(6.2.17) is given by

ux,y(t) =
1

4π2

∑
m,n∈Z

ů

∫ π

−π

∫ π

−π
ei[(x−m)p+(y−n)q]e−tlM,s(p,q)dp dq, x, y ∈ Z.

In particular, for ů = e0,0 we obtain

ux,y(t) =
1

4π2

∫ π

−π

∫ π

−π
ei(xp+yq)e−tlM,s(p,q)dp dq, x, y ∈ Z. (6.2.20)

Proof. In order to find a semigroup solution of a form u(t) = e−tLM,sů for t ≥ 0.

Firstly, note that lM,s(x, y) is an even function according to both coordinates.

Using the formulas for Fourier series and inverse Fourier series, the definition of
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base in `2(V ) and the fact that function lM,s is even, we have

(
e−tLM,semn

)
xy

=
(
F−1e−tlM,s(·,·)Femn

)
xy

=
1

4π2

∫ π

−π

∫ π

−π
e−ixpe−iyqe−tlM,s(p,q)

∑
j∈Z

∑
s∈Z

evwe
ijpeisqdpdq

=
1

4π2

∫ π

−π

∫ π

−π
ei(x−m)pei(y−n)qe−tlM,s(p,q)dxdy.

Represent an initial condition ů = (̊upq)p,q∈Z as a linear combination of elements

from the base ů =
∑

p,q∈Z ůepq the solution takes the form

e−tLM,sů =
∑
p,q∈Z

e−tLM,sepqů.

Note that because of the boundedness of the operators e−tLM,s for any t ∈ (0,∞),

the solution is well defined and takes the form

u(t)xy =
1

4π2

∑
m∈Z

∑
n∈Z

ůvw

∫ π

−π

∫ π

−π
ei(x−m)pei(y−n)qe−tlM,s(p,q)dpdq.

Especially for initial condition ů(x, y) = e00, using a symmetry of integrand

function we obtain

e−tLM,sexy,00 =
1

4π2

∫ π

−π

∫ π

−π
cos(xp) cos(yq)e−tlM,s(p,q)dpdq.
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6.3 Diffusion and superdiffusion for the Mellin

transformed k-path Laplacian on a square lat-

tice

In this section we examine the long-time behaviour of the solution to the Cauchy

problem generated by the Mellin-transformed k-path Laplacian. The main re-

sult is contained in Theorem 6.10. To prove this theorem we first examine the

asymptotic behaviour of the function lM,s (see Fig. 6.3.1) as the arguments tend

to zero, which is contained in Proposition 6.8. The discussion is based on similar

considerations undertaken for the path graph in the previous chapter, but the ar-

guments are more subtle. We start with a simple lemma, which is used a couple

of times below.

Lemma 6.4. Let b > 0, let f : (0, b)→ R be differentiable and assume that

|f ′(t)| ≤ Ctα, t ∈ (0, b),

for some C > 0 and α ≥ 1. Then

∣∣∣∣f(p)− f(q)

p2 − q2

∣∣∣∣ ≤ C

2
max

{
pα−1, qα−1

}
, p, q ∈ (0, b), p 6= q.

Proof. Define the function g(x) := f(
√
x), x ∈ (0, b2). Let p, q ∈ (0, b) such that

p 6= q and set x := p2, y := q2. Then

∣∣∣∣f(p)− f(q)

p2 − q2

∣∣∣∣ =

∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ = |g′(ξ)|, (6.3.1)

for some ξ between x and y by the Mean Value Theorem. Since
√
ξ ≤ max{p, q},
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we obtain that

|g′(ξ)| =
∣∣∣∣f ′(√ξ)2
√
ξ

∣∣∣∣ ≤ C(
√
ξ)α

2
√
ξ
≤ C

2
max

{
pα−1, qα−1

}
,

which, together with (6.3.1), finishes the proof.

In the next three lemmas we prove auxiliary asymptotic results, which are

used to obtain the asymptotic behaviour of lM,s in Proposition 6.8.

Lemma 6.5. We have

1

cos p− cos q
= − 2

p2 − q2

[
1 +

1

12

(
p2 + q2

)
+R1(p, q)

]
, p, q ∈ [−π, π], |p| 6= |q|.

where

R1(p, q) = O
(
p4 + q4

)
, p, q → 0, |p| 6= |q|.

Proof. We write

cos p = 1− p2

2
+
p4

24
+ f(p),

where f ′(p) = O(p5), p→ 0. For p, q ∈ (0, π] with |p| 6= |q| we have

cos p− cos q = −p
2 − q2

2
+
p4 − q4

24
+ f(p)− f(q)

= −1

2
(p2 − q2)

[
1− 1

12

(
p2 + q2

)
− 2

f(p)− f(q)

p2 − q2

]
= −1

2
(p2 − q2)

[
1− 1

12

(
p2 + q2

)
+O

(
p4 + q4

)]
, p, q → 0,

where the last relation follows from Lemma 6.4. Now the claim is obtained by

taking inverses on both sides and extending the result to non-positive p, q by

continuity and symmetry.

Lemma 6.6. Let s ∈ (2,∞) \ {4}. Then

2Im
(
Lis(e

ip)
)

= −Cs
2
ps−1 + 2ζ(s− 1)p− ζ(s− 3)

3
p3 +R2,s(p), p ∈ (0, 2π),
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where

Cs :=


− 2π

Γ(s) sin( sπ
2

)
, s /∈ 2Z,

0, s ∈ 2Z,

(6.3.2)

and

R2,s(p) = O(p5) and R′2,s(p) = O(p4), p↘ 0, if s 6= 6,

and

R2,s(p) = O
(
p5| ln p|

)
and R′2,s(p) = O

(
p4| ln p|

)
, p↘ 0, if s = 6.

Proof. First let s ∈ (2,∞) \ N. It follows from (1.8.3) that, for p ∈ (0, 2π),

2Im
(
Lis(e

ip)
)

= 2Im

[
Γ(1− s)(−ip)s−1 +

∞∑
n=0

ζ(s− n)
(ip)n

n!

]

= 2Im

[
Γ(1− s)ps−1e−(s−1)π

2
i +

∞∑
n=0

ζ(s− n)
inpn

n!

]

= −2Γ(1− s) sin
(

(s− 1)
π

2

)
ps−1 + 2

∞∑
l=0

ζ(s− 2l − 1)
(−1)l

(2l + 1)!
p2l+1

= −Cs
2
ps−1 + 2ζ(s− 1)p− ζ(s− 3)

3
p3 +R2,s(p),

where

Cs = 4Γ(1− s) sin
(

(s− 1)
π

2

)
=

4π sin
(
(s− 1)π

2

)
Γ(s) sin(sπ)

= −
4π cos( sπ

2
)

Γ(s) sin(sπ)

= − 2π

Γ(s) sin( sπ
2

)
,

and

R2,s(p) = 2
∞∑
l=2

ζ(s− 2l − 1)
(−1)l

(2l + 1)!
p2l+1.
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This relation extends to s being an odd integer with s ≥ 3. Moreover, R2,s

satisfies

R2,s(p) = O(p5) and R′2,s(p) = O(p4), p↘ 0.

This proves the claim for s ∈ (2,∞) \ 2N.

Now let s ∈ {6, 8, . . .} and set

Hn =
n∑
j=1

1

j
.

From (1.8.4) we obtain, again for p ∈ (0, 2π),

2Im
(
Lis(e

ip)
)

= 2Im

[
(ip)s−1

(s− 1)!

(
Hs−1 − log(−ip)

)
+

∞∑
n=0
n6=s−1

ζ(s− n)
(ip)n

n!

]

= 2Im

[
(−1)

s
2
−1ips−1

(s− 1)!

(
Hs−1 − ln p+ i

π

2

)
+

∞∑
n=0
n 6=s−1

ζ(s− n)
inpn

n!

]

=
2(−1)

s
2
−1

(s− 1)!
ps−1

(
Hs−1 − ln p

)
+ 2

∞∑
l=0

l 6= s
2
−1

ζ(s− 2l − 1)
(−1)l

(2l + 1)!
p2l+1

= 2ζ(s− 1)p− ζ(s− 3)

3
p3 +R2,s(p),

where

R2,s(p) =
2(−1)

s
2
−1

(s− 1)!
ps−1

(
Hs−1 − ln p

)
+ 2

∑
l=2

l 6= s
2
−1

ζ(s− 2l − 1)
(−1)l

(2l + 1)!
p2l+1,

which satisfies

R2,s(p) = O(p5) and R′2,s(p) = O(p4), p↘ 0, if s ≥ 8,
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and

R2,s(p) = O
(
p5| ln p|

)
and R′2,s(p) = O

(
p4| ln p|

)
, p↘ 0, if s = 6.

This finishes the proof in the case when s ∈ {6, 8, . . .}.

(a) s = 2.1 (b) s = 5

(c) lM,s restricted to p = q for s = 2.1 (blue) and s = 5 (red), respectively

Figure 6.3.1: The graph of the function lM,s on the square [−π, π]2 for the pa-
rameters s = 2.1 (a) and s = 5 (b), respectively. The third graph (c) shows the
behaviour of both solutions s = 2.1 and s = 5 restricted to the line p = q.

Lemma 6.7. Let s ∈ (2,∞) \ {4} and let gs be defined as in (6.2.13) and Cs as

in (6.3.2). Then

gs(p) = −Cs
2
ps + 2ζ(s− 1)p2 − ζ(s− 1) + ζ(s− 3)

3
p4 +R3,s(p),
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where R3,s satisfies

R′3,s(p) =



O(ps+1), s ∈ (2, 4),

O(p5), s ∈ (4,∞) \ {6},

O
(
p5| ln p|

)
, s = 6,

(6.3.3)

as p↘ 0.

Proof. Write sin p = p− p3

6
+Rsin(p). From Lemma 6.6 we obtain that

gs(p) = 2 sin p · Im
(
Lis(e

ip)
)

=

[
p− p3

6
+Rsin(p)

][
−Cs

2
ps−1 + 2ζ(s− 1)p− ζ(s− 3)

3
p3 +R2,s(p)

]
= −Cs

2
ps + 2ζ(s− 1)p2 − ζ(s− 1) + ζ(s− 3)

3
p4 +R3,s(p),

where

R3,s(p) =
Cs
12
ps+2 − Cs

2
ps−1Rsin(p) + 2ζ(s− 1)pRsin(p)

+
ζ(s− 3)

18
p6 − ζ(s− 3)

3
p3Rsin(p) + sin p ·R2,s(p),

which satisfies

R′3,s(p) = O(ps+1) +O(p5) +O
(
R2,s(p)

)
+O

(
pR′2,s(p)

)
.

The latter relation yields (6.3.3).

In the next proposition we consider the asymptotic behaviour of the function

lM,s around the origin. In particular, we observe that the behaviour differs for

the two cases s ∈ (2, 4) and s ∈ (4,∞). For the case when s = 4 the behaviour is

more complicated and involves a logarithmic term; we do not consider this case
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in the following.

Proposition 6.8. Let s ∈ (2,∞) \ {4}, let lM,s be as in (6.2.12) and Cs as in

(6.3.2). Moreover, define

h1,s(p, q) :=


Cs
|p|s − |q|s

p2 − q2
, |p| 6= |q|,

sCs
2
|p|s−2, |p| = |q|,

h2,s(p, q) :=
ζ(s− 1) + 2ζ(s− 3)

3
(p2 + q2).

Then

lM,s(p, q) = h1,s(p, q) + h2,s(p, q) +Rs(p, q), p, q ∈ [−π, π],

where

Rs(p, q) = O
(
pα + qα

)
, p, q → 0,

with

α =


min{s, 4}, s 6= 6,

4− ε, s = 6,

with an arbitrary ε > 0.

In particular, we have

lM,s(p, q) =



h1,s(p, q) +O(ps + qs), s ∈ (2, 4),

h2,s(p, q) +O(p4 + q4), s ∈ (4,∞) \ {6},

h2,s(p, q) +O(p4−ε + q4−ε), s = 6,

as p, q → 0 with arbitrary ε > 0 when s = 6.

Proof. Let p, q ∈ (0, π] such that |p| 6= |q|. From Lemmas 6.2, 6.5 and 6.7 we
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obtain

lM,s(p, q) = 4ζ(s− 1) +
gs(p)− gs(q)
cos p− cos q

= 4ζ(s− 1)− 2

p2 − q2

[
1 +

1

12

(
p2 + q2

)
+R1(p, q)

]
×

×
[
−Cs

2
(ps − qs) + 2ζ(s− 1)(p2 − q2)− ζ(s− 1) + ζ(s− 3)

3

(
p4 − q4

)
+R3,s(p)−R3,s(q)

]
= 4ζ(s− 1) +

[
1 +

1

12

(
p2 + q2

)
+R1(p, q)

]
·
[
Cs
ps − qs

p2 − q2

− 4ζ(s− 1) +
2

3

(
ζ(s− 1) + ζ(s− 3)

)
(p2 + q2)− 2

R3,s(p)−R3,s(q)

p2 − q2

]
= Cs

ps − qs

p2 − q2
+

[
2

3

(
ζ(s− 1) + ζ(s− 3)

)
− 1

3
ζ(s− 1)

]
(p2 + q2) +Rs(p, q),

where

Rs(p, q) = Cs

[
1

12

(
p2 + q2

)
+R1(p, q)

]
ps − qs

p2 − q2

+R1(p, q)

[
−4ζ(s− 1) +

2

3

(
ζ(s− 1) + ζ(s− 3)

)
(p2 + q2)

]
+

1

18

(
ζ(s− 1) + ζ(s− 3)

)
(p2 + q2)2

− 2

[
1 +

1

12

(
p2 + q2

)
+R1(p, q)

]
R3,s(p)−R3,s(q)

p2 − q2
.

It follows from Lemma 6.7 that

R′3,s(p) = O(pβ) where β =


min{s+ 1, 5}, s 6= 6,

5− ε, s = 6,

(6.3.4)

131



for arbitrary ε > 0. Lemma 6.4 implies that

ps − qs

p2 − q2
= O

(
ps−2 + qs−2

)
, q, p→ 0, p 6= q,

and
R3,s(p)−R3,s(q)

p2 − q2
= O(pβ−1), q, p→ 0, p 6= q,

where β is as in (6.3.4). The error term Rs satisfies

Rs(p, q) = O
(
pα + qα

)
, p, q → 0, p 6= q,

where

α =


min{s, 4}, s 6= 6,

4− ε, s = 6,

with an arbitrary ε > 0. Since lM,s, h1,s and h2,s are continuous and even in p

and q, the result extends to all p, q ∈ [−π, π].

The next lemma is the key lemma about the long-time behaviour of the so-

lution of the Cauchy problem; it is a generalization of lemma 5.5 to the two-

dimensional setting. It is more subtle than the one-dimensional case, but a further

generalization to n dimensions is straightforward.

Lemma 6.9. Let α > 0 and let l : [−π, π]2 → R be a continuous function that

satisfies

l(p, q) > 0, (p, q) ∈ [−π, π]2 \ {(0, 0)}, (6.3.5)

and can be written as

l(p, q) = h(p, q) +R(p, q),

where the continuous function h : R2 → R satisfies

h(rp, rq) = rαh(p, q), r > 0, p, q ∈ R,
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and

R(p, q) = o
(
|p|α + |q|α

)
, p, q → 0. (6.3.6)

Define the function

f(x, y, t) :=
1

4π2

π∫
−π

π∫
−π

ei(xp+yq)e−tl(p,q)dp dq, x, y ∈ R.

Then

t
2
αf
(
t

1
α ξ, t

1
αη, t

)
→ 1

4π2

∞∫
−∞

∞∫
−∞

ei(ξv+ηw)e−h(v,w)dv dw := F (ξ, η), t→∞,

(6.3.7)

uniformly in ξ, η ∈ R.

Hence

f(x, y) = t−
2
αF
(
t−

1
αx, t−

1
αy
)

+ o
(
t−

2
α

)
, t→∞, (6.3.8)

uniformly in x, y ∈ R.

Proof. Let us first show that there exists C > 0 such that

l(p, q) ≥ C
(
|p|α + |q|α

)
, p, q ∈ [−π, π]. (6.3.9)

For fixed (p, q) ∈ R2 \ {(0, 0)} we have

l(rp, rq) = rαh(p, q) + o(rα), r ↘ 0,

which, together with (6.3.5) implies that h(p, q) > 0 for (p, q) ∈ R2 \ {(0, 0)}. Set

C1 := min
|p|α+|q|α=1

h(p, q),

which is a positive number. Let (p, q) ∈ R2 \ {(0, 0)} and set r := (|p|α + |q|α)
1
α .
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Then

h(p, q) = h
(
r
p

r
, r
q

r

)
= rαh

(p
r
,
q

r

)
≥ C1r

α

and hence

h(p, q) ≥ C1

(
|p|α + |q|α

)
, p, q ∈ R. (6.3.10)

Together with (6.3.6), this implies that

l(p, q) ≥ C1

2

(
|p|α + |q|α

)
, p, q ∈ R such that |p|α + |q|α ≤ r0

for some r0 > 0. Since l is continuous and satisfies (6.3.5), we obtain (6.3.9).

For ξ, η ∈ R and t > 0 we can use the substitution v = t
1
αp, w = t

1
α q to obtain

t
2
αf
(
t

1
α ξ, t

1
αη, t

)
= t

2
α

1

4π2

π∫
−π

π∫
−π

eit
1
α (ξp+ηq)e−tl(p,q)dp dq

=
1

4π2

t−
1
α π∫

−t−
1
α π

t−
1
α π∫

−t−
1
α π

ei(ξv+ηw)e−tl(t
− 1
α v,t−

1
αw)dv dw.

Hence

∣∣∣t 2
αf
(
t

1
α ξ, t

1
αη, t

)
− F (ξ, η)

∣∣∣
=

∣∣∣∣∣ 1

4π2

∫∫
[−t−

1
α π,t−

1
α π]2

ei(ξv+ηw)
(
e−tl(t

− 1
α v,t−

1
αw) − e−h(v,w)

)
dv dw

− 1

4π2

∫∫
R2\[−t−

1
α π,t−

1
α π]2

ei(ξv+ηw)e−h(v,w)dv dw

∣∣∣∣∣
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≤ 1

4π2

∫∫
R2

χ
[−t−

1
α π,t−

1
α π]2

(v, w)
∣∣∣e−tl(t− 1

α v,t−
1
αw) − e−h(v,w)

∣∣∣ dv dw (6.3.11)

+
1

4π2

∫∫
R2\[−t−

1
α π,t−

1
α π]2

e−h(v,w)dv dw, (6.3.12)

where χG is the characteristic function of a set G ⊆ R2. The integral in (6.3.12)

converges to 0 as t → ∞; note that the integral in (6.3.12) exists by (6.3.10).

From (6.3.9) and (6.3.10) we obtain the following estimate for the integrand in

(6.3.11):

χ
[−t−

1
α π,t−

1
α π]2

(v, w)
∣∣∣e−tl(t− 1

α v,t−
1
αw) − e−h(v,w)

∣∣∣
≤ χ

[−t−
1
α π,t−

1
α π]2

(v, w)
(
e−tl(t

− 1
α v,t−

1
αw) + e−h(v,w)

)
≤ χ

[−t−
1
α π,t−

1
α π]2

(v, w)
(
e−tC(t−1|v|α+t−1|w|α) + e−C1(|v|α+|w|α)

)
≤ e−C(|v|α+|w|α) + e−C1(|v|α+|w|α),

where the right-hand side is integrable on R2 and independent of t. For fixed

v, w ∈ R2 and large enough t > 0 we have

tl
(
t−

1
αv, t−

1
αw
)

= th
(
t−

1
αv, t−

1
αw
)

+ tR
(
t−

1
αv, t−

1
αw
)

= h(v, w) + t o
(
t−1
(
|v|α + |w|α

)
→ h(v, w) as t→∞.

Hence the integrand in (6.3.11) converges to 0 pointwise as t → ∞. Now the

Dominated Convergence Theorem implies that the integral in (6.3.11) converges

to 0 as t → ∞. Since the integrals in (6.3.11) and (6.3.12) are independent of ξ

and η, the convergence in (6.3.7) is uniform in ξ and η.

The relation in (6.3.8) follows easily from (6.3.7) by using the substitution

x = t
1
α ξ, y = t

1
αη.

The next theorem is the main result of this chapter. It contains the long-time

135



behaviour of the solution of the Cauchy problem corresponding to the Mellin-

transformed k-path Laplacian. It shows, in particular, that for s ∈ (2, 4) the

solution exhibits superdiffusive behaviour whereas for s > 4 one has normal

diffusion.

Theorem 6.10. Let Γ = (V,E) be the square lattice as described at the beginning

of Section 6.2, let s > 2, s 6= 4, and let lM,s be the Mellin-transformed k-path

Laplacian defined in (6.2.10). Let u be the solution in (6.2.20) of (6.2.16), (6.2.17)

with ů = e0,0, where e0,0 is defined in (6.2.19). Then

ux,y(t) = t−
2
αFs
(
t−

1
αx, t−

1
αy
)

+ o
(
t−

2
α

)
, t→∞, (6.3.13)

uniformly in x, y ∈ Z, where in the case s ∈ (2, 4),

α = s− 2 and Fs(ξ, η) :=
1

4π2

∞∫
−∞

∞∫
−∞

ei(ξv+ηw)e−h1,s(v,w)dv dw,

with h1,s from Proposition 6.8, and in the case s ∈ (4,∞),

α = 2 and Fs(ξ, η) :=
1

4πγs
e−

ξ2+η2

4γs ,

with

γs =
ζ(s− 1) + 2ζ(s− 3)

3
.

(See Figs. 6.3.2 and 6.3.3).

Proof. By Proposition 6.8 and Lemma 6.2 the function lM,s satisfies the assump-

tions of Lemma 6.9 with h = h1,s and α = s−2 when s ∈ (2, 4) and with h = h2,s

and α = 2 when s ∈ (4,∞). Hence all claims follow from Lemma 6.9.

Remark 6.11. Theorem 6.10 shows that the distribution spreads proportionally

to t
1
α where α is as in that theorem; cf. Remark 5.6. When s > 4, one has
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Figure 6.3.2: The s-dependance of 1
α
.

(a) s = 2.5 (b) s = 6

Figure 6.3.3: The graph of the limit solution Fs from Theorem 6.10 for s = 2.5
(a) and s = 6 (b), respectively. The black dots indicate the result of numerical
integration of (6.2.20), whereas the blue curve indicate the asymptote (6.3.13).
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normal diffusion since the profile spreads proportionally to t
1
2 in this case. When

2 < s < 4, however, we observe superdiffusion because then the spread of the

profile is proportional to tκ with κ = 1
s−2

> 1
2
. In particular, when s = 3, then

the profile spreads linearly in time, which is a ballistic behaviour.

One can measure the spread, e.g. with the full width at half maximum (FWHM),

which, for our purpose, we can define as (6.9)

FWHM(t) := 2 sup

{
r > 0 : ux,y(t) ≤

1

2
u0,0(t)

for all x, y ∈ Z with |x|2 + |y|2 ≥ r2

}
.

One can show that FWHM(t) ∼ ct
1
α as t→∞ with some c > 0; cf. Remark 5.6

for the one-dimensional case.

Remark 6.12. Let us consider finite truncations of the Mellin transformation

(6.2.10) of the k-path Laplacian, i.e. set

LM,s,N :=
N∑
k=1

1

ks
Lk,

for N ∈ N. By Lemma 6.1 this operator is unitarily equivalent to the operator of

multiplication by the function

lM,s,N(p, q) =
N∑
k=1

1

ks
lk(p, q),

where lk is defined in that lemma. Using Lemmas 6.4 and 6.5 one can show in a

similar way as above that

lk(p, q) =
2k3 + k

3
(p2 + q2) +O(p4 + q4), p, q → 0,
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and hence

lM,s,N =
N∑
k=1

2k3 + k

3ks
(p2 + q2) +O(p4 + q4), p, q → 0.

Although this leads to normal distribution by Lemma 6.9, the variance of the

limiting normal distribution grows with N . If one measures this with the full

width at half maximum one gets

FWHM(t) ∼ 2

(
(ln 2)

N∑
k=1

2k3 + k

3ks

) 1
2

t
1
2 , t→∞; (6.3.14)

cf. Remark 5.8. As N →∞ one has the following behaviour,

N∑
k=1

(2k2 + 1)k

3ks
∼ 2

3(4− s)
N4−s, N →∞, if s ∈ (2, 4),

N∑
k=1

(2k2 + 1)k

3ks
→ 2ζ(s− 3) + ζ(s− 1)

3
, N →∞, if s ∈ (4,∞).

Note that when s > 4, the limiting distributions converge to the limiting distri-

bution from Theorem 6.10. When 2 < s < 4, the coefficient in (6.3.14) diverges

as N →∞.

6.4 Summary

In this chapter the results for the superdiffusive behaviour of a solution are applied

to the Abstract Cauchy Problem corresponding to transformed k-path LOs on 2-

dimensional graphs. This work focusses on the Cartesian grid particularly square

lattice. Theorem 6.10 describes the asymptotic behaviour of the generalised dif-

fusion equation corresponding to the Mellin-transformed k-path Laplacian and

encapsulates the main result of the current chapter. Superdiffusion is proven to

occur when 2 < s < 4 and that normal diffusion is the rule when s > 4. More
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particularly, the time evolution of the solution of the generalised diffusion equa-

tion with the initial condition concentrated at one point is investigated. As time

t tends to infinity, the spread of the solution (e.g. measured by the full width at

half maximum) grows, similar to tk, where k = 1/2 when s > 4, which is normal

diffusion, and where k > 1/2 when 2 < s < 4, which is superdiffusive behaviour.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

The generalised k-path LOs and their transforms, namely the, Laplace, Factorial

and Mellin for connected and locally finite infinite graphs have been introduced.

This generalisation is based on the k-path LOs, which account for the hop of a dif-

fusive particle to its non-nearest neighbours in a graph. The probability that the

particle jumps to its non-nearest neighbours declines with the distance separating

the target from the original position. A discrete model was constructed, in which

control points characterising the space are situated in the nodes of a network

and the distances between them are calculated as the shortest path between ver-

tices. First, it has been conclusively shown that the k-path LOs are well-defined,

closed and self-adjoined operators. Subsequently, it has been proved that the

operator k-path LOs, defined on the infinite networks, are bounded if and only

if the k-path degree of vertices is bounded. It has furthermore been proven that

all three transformed k-path LOs under certain conditions are self-adjoint and

bounded. Furthermore, we studied the diffusion on an infinite graph, obtaining

analytical expressions for the transformed k-path LOs as well as for the expo-

nential operators of both the k-path Laplacians and their transformations. Here
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we have introduced a new theoretical framework to describe superdiffusion by a

transformation of k-path LOs defined on certain graphs. In this case, 1D and 2D

infinite graphs have been employed. First, we numerically study the transformed

k-path Laplacians for a linear chain with numerous nodes. We have analytically

revealed that the density profile asymptotically converges to stable distributions.

When the Laplace and factorial transformed operators are used in a generalised

diffusion equation, the diffusive processes observed are always normal indepen-

dent of the transform parameters. The asymptotic profile is always Gaussian.

For the Mellin transformed k-path Laplacians, the diffusion is normal only when

the exponent s in the transform ck = k−s is greater than, or equal to, three. For

values of 1 < s < 3, the signature of superdiffusive processes was observed. The

asymptotic profile is not Gaussian - rather a Levy-type stable distribution. It has

been revealed that the anomalous diffusion observed for these values of the Mellin

transform is produced by the probabilities of big jumps of the Mellin transformed

Laplacian operators, which differs to a large extent from those of the Laplace and

factorial transformations. Second, a natural extension of the above-mentioned

theory to the existence of anomalous diffusion on a square lattice was reviewed,

whereby we defined the Mellin transformed k-path LOs on a square lattice, show-

ing that a Mellin’s transformed k-path LO is well-defined, bounded, self-adjoint

and non-negative. This allows us to describe a process where the diffusive parti-

cle can jump any number of edges with a probability that depends on the length

of the jump. A superdiffusive behaviour on a square lattice corresponding to

Mellin transforms of the k-path Laplacian was noted. We have proved that the

superdiffusion process can be obtained for a Mellin’s transformed k-path LO in

the Cartesian grid with the parameter s in the interval (2, 4).
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7.2 Future Works

The results in this thesis establish a solid mathematical foundation for network

analysis. Through this research, some ideas have evolved that could be listed as

directions for future research:

• Extending the current results to the study of a generalised Schrödinger

equation using the transformed k-path Laplacian operators in similar lines

to those we have employed.

• Extending the current results to an infinite hexagonal lattice (grid) as well

as other infinite networks with particular kinds of structures.

• Studying the generalised diffusion equation with the different transforms

for real-world networks.
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